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ABSTRACT

STRONG LOCAL CONTROLLABILITY AND

OBSERVABILITY OF POWER SYSTEMS

By

sz’ng Tek Lie

Inter-area oscillations which are undamped or growing oscillations between dif-

ferent areas in a large geographical region, have become quite common in utilities

throughout the world. The traditional approach to damp these oscillations was to

design a supplementary excitation control, called power system stabilizer (PSS), on

a single generator affected by the oscillations. Since the number of oscillation modes

have greatly increased and a mode of oscillation has been observed to change frequency

and location, the adequacy of single generator power system stabilizer controls has

been questioned. Is there need for more than one generator control and is there

need for coordination between the power system stabilizer controls implemented in

different generators to dampen the multiple modes of oscillation that can change in

frequency and location ?

If control is to be successfully accomplished, it is necessary to know what measure-

ments and controls are necessary to make the portion of the system states associated

with such oscillations observable and controllable. A linearized power system model

 



is shown to be controllable and observable using a single generator field voltage or

mechanical power input and observable using a single generator output for small dis-

turbances and variations. This result is clearly not true in practice due to bounded

state and control, real time control and state estimation, nonlinearity, disturbances,

measurement noise, and operating condition variation. Definitions of strong system

network disconnectivity, strong input and output connectivity, and strong local con-

trol area are given. The states of all generators and the networks states belonging

to a strong local control area are then proven to be strong locally observable and

controllable based on these definitions. These definitions of strong local observability

and controllability are related to the concept of coherency measure in power system

dynamics and voltage control areas in voltage collapse research.

Having a method for determining strong local observability and controllability,

we are able to identify directly the actual transmission network branches that cause

the weakness of the network boundaries due to faults or any contingencies. Thus,

system operating security can be improved. Moreover, we are also able to detect

the occurrence of inter-area oscillation which can help in understanding more about

inter-area oscillations, leading to better control design. Furthermore, a discussion of

the set of controls and measurements required to dampen different types of inter-area

oscillations is given. Since measurements and controls must lie within an area of

200 miles radius to prevent time delay problems at the sampling rate needed, certain

types of oscillations may not be controllable and observable with measurements taken

within a 200 miles radius. In this case coordination and hierarchical control may be

needed.
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CHAPTER 1

Introduction

1.1 General Power System Mathematical Model

A general power system model, which includes mechanical dynamics and flux decay

dynamics of a generator and real and reactive power balance equations for each net-

work bus, is developed. Two types of nonlinear equations occur in the power system

model:

0 Differential Equations

0 Algebraic Equations

0 = 9(x(t),y(i)w\(t))

where,

x(t) - state vector of generator dynamics

y(t) - state vector of the bus voltage and angle of terminal buses, high side

transformer buses, and load buses

A(t) - set of slow varying operating parameters

1



Mt) is the set of operating parameters that change over time. Moreover, A(t) can

also be used to represent real and reactive power load, generation dispatch, under

load tap changers, and switchable shunt capacitors. Assume that there is at least one

equilibrium point for each Mt), I.e.,($o(/\),yo()\)) for A(t) 6 [A3, )5] as time varies.

1.1.1 Differential Equation Model

1. Mechanical Dynamics

Mid, + ngi = PM,- — P¢,(E,6,v,0) (1.1)

and i = 1,2,...,m

where,

M.- - generator per unit inertia constant

D.- - generator load damping coefficient

6,- - internal bus angle

PM, - input mechanical power

PC,- - output electrical power

E - internal bus voltage

v - load bus voltage

9 - load bus angle

m - number of generator

2. Flux Decay Dynamics

.I _ 1 I (xdf “311.)

‘E‘It' — TdOil eq' E’. QGt' + Efdg] (1.2)

‘7:

 



andi= 1,2,...,m

where,

E,” - internal generator voltage proportional to field flux linkage behind steady

state direct axis reactance

Egi - internal generator voltage proportional to field flux linkage behind tran-

sient direct axis reactance

E1.1 i - generator field voltage

Q0,- - generator reactive power generation

T50; - generator direct axis transient open circuit time constant

rd, - steady state direct axis reactance

1:9,- - transient direct axis reactance

m - number of generator

1.1.2 Algebraic Equation Model .

1. Real Power Balance Equation

Pa,- = Gif(E‘it)2 + Z EéiEJ-ngcoswg — (51' -— 7.))
'=1

is

2. Reactive Power Balance Equation

Q0.- = -B.'.'(E.',,.)2 + z EéiEjYi‘jSinwt - 55 - 7:3)

i=1

)9“

andi=1,2,...,n

where,

3.3 - susceptance component of the ij‘h element of Ygus

(1.3)

(1.4)

 



0,-1- - conductance component of the 2'jm element of Ygus

Y." = \/ 3.32 + Griz

n - number of load buses

The mechanical dynamics of the power system (1.1, 1.3) similar to a mass spring

system which is poorly damped. The electrical system dynamics (1.2, 1.4) can be

shown to reduce damping of the mechanical system dynamics when the system is

stressed. The inter-area oscillations are oscillations between groups of generators

located in different parts of the power system.

1 .2 Previous Work

There is really no literature that directly address the controllability and Observability

properties of complete power system models. There is literature on Observability of

the algebraic or load flow model for the purpose of constructing static state estimators

[10, 43, 44, 45]. Although dynamic state estimation has been proposed [41, 42, 50],

no effort to define Observability has been made. The literature on model reduction of

large power system models using coherency and singular perturbation have discussed

Observability and controllability properties of a linear time invariant power system

model. Schlueter and Dorsey [54, 56, 22] show that coherent group of generators is

controllable from mechanical inputs at the generators in the coherent group but not

controllable from mechanical inputs at generator outside this coherent group. The

result was proven by showing the coherency measure was a controllability grammian.

Schlueter and Dorsey [54, 56, 22] also showed that states of generators within a coher-

ent group are observable from observation of angle differences in this coherent group

but are not observable from observation of angles outside the coherent group. Chow

et al. [12] utilized singular perturbation theory to assess what generator groups should



be aggregated. The method utilized the two time scale analysis on power systems

and is known as Slow Coherency method. The so called dichotomic transformation

from the singular perturbation technique is used to separate the modes of oscillations

into slow and fast modes. There is really no proper direct link or one to one mapping

between controllability and Observability with fast and slow modes of the oscillations.

However, if the disturbances, initial conditions, output variable measurements, con-

trols are restricted only to the slow modes, then the fast modes are uncontrollable

and unobservable in the model of the slow subsystem. Therefore, in this particular

approach, the grouping of the machines, known as areas, is very robust with respect

to the faults or disturbances locations.

These results are solely for power system mechanical dynamics linearized around

a fixed operating condition rather than a model that include electrical and mechan-

ical dynamics. The results in [54, 56, 22, 12] did not directly address controllability

and Observability. The results in [54, 56, 22] did indicate a loss of the relative level

of controllability and Observability, as measured by controllability and Observability

grammian, was experienced across boundaries of coherent groups but did not prove

that a coherent group was not observable and controllable from measurements and

controls in other coherent groups. The results in [54, 56, 22, 12] did not address con-

trollability and Observability of the network states as well as the generator dynamic

states since the network model was eliminated by aggregating back to generator in-

ternal buses. Our initial result indicates that all generators in all coherent groups

are observable and controllable from a single measurement and a control anywhere in

the system. Our results on strong local controllability and Observability put a formal

foundation under the experimental observation of a relative loss of controllability and

Observability across coherent group boundaries and extends the concept to generator

models that include electrical and mechanical dynamics. Moreover, these results will

help us identify the weak transmission network stability boundaries. Loss of transient



stability, loss of steady state angle stability, loss of voltage stability, and inter-area

oscillations occur across such weak transmission stability boundaries. There is very

little published work on developing computational methods for identifying the weak

transmission stability boundaries within or between utilities or regions. Thus, our

results on strong local controllability and Observability give us a fundamental criteria

for improving the system security.

1 .3 Motivation

1.3.1 Weak Transmission Stability Boundaries

Weak transmission stability boundaries have long been associated with loss of syn-

chronism and islanding due to loss of generation contingencies and loss of transient

stability for fault contingencies. There are some studies that can help identify those

weak boundaries such as contingency screening, AC load flow, transient stability, and

inertial load flow studies. However, those weak boundaries are often unknown to the

utility operator or planner either:

1. because they have developed due to contingencies or unanticipated operating

changes, or

2. because the planner is asked to address stability problems in a large interregional

data base for which he or she has little knowledge or experience, or

3. the computation and manpower required to establish stability boundaries may

prohibit the exhaustive set of stability runs and careful analysis and comparison

needed to establish these weak boundaries.

The boundaries where strong controllability and Observability is lost will identify the

weak transmission stability boundaries so that boundary flow can be constrained to

help prevent transient and steady state angle and voltage stability problems.



1.3.2 Multiple Oscillations

An inter-area oscillation is an undamped or growing oscillation between areas in a net-

work spread over a large geographical region. Utilities throughout the world (Taiwan

Power, Ontario Hydro, Pacific Gas and Electric, Hydro Quebec) have been report-

ing that this kind of oscillation is quite common. The traditional approach used to

dampen these oscillations was to design a supplementary excitation control, a Power

System Stabilizer (PSS), for each generator affected by oscillations. Recently, the

number of oscillation modes experienced by a single generator has become large and

the frequency of these modes have begun to vary over a wide range. Designing a

PSS for a single generator to damp multiple oscillations over a large frequency range

has become extremely difficult. Thus, most utilities utilize PSS on several generators

to damp these multiple oscillations. Moreover, P83 is usually designed based on a

specific operating condition of a linear time invariant (LTI) model. Then, the P33

is exhaustively evaluated based on several other operating conditions. The computa-

tion requirement for designing a P88 is huge because the designer must compute the

eigenvalues, eigenvectors, and time responses due to disturbances in various locations

at several operating conditions. Several investigations have questioned the adequacy

of a PSS on a single generator or on multiple generators to provide damping on mul-

tiple modes of oscillation for all disturbances and operating conditions [26, 27]. The

PSS on each generator is designed to damp a specific modes of oscillation. A certain

level of coordination of the overall supplementary control system and sharing of mea-

surements between PSS controllers are needed for damping the multiple oscillations.

However, currently there is no sharing of measurements between PSS controllers and

there is no coordination of control. The boundaries where strong Observability and

controllability is lost identify the generator groups that experience coupled and un-

coupled inter-area oscillations. Knowledge of the boundary and the generators that



belong to these groups should aid in siting controls and measurements and designing

controllers for multiple oscillations.

1.3.3 Oscillations that Change Frequency and Location

Utilities have recently observed that the frequency and location of the modes of

oscillation may change with time and operating condition [26, 27]. This observation

brings up the following questions:

1. What is the fundamental nature of these oscillations between areas ? Are there

oscillations between two groups of generators in different areas or could there

be oscillations between several groups of generators simultaneously ? Are all

oscillations between generator groups or are some or all oscillations between

generator groups and a reference 7

2. Are the states that are involved in any one specific inter-area oscillation or in

a coupled set of oscillations controllable and observable using a specific set of

measurements and a specific set of controls ? Siting of PSS on generators (and

siting of other controls used for providing damping) should be based on the fact

that all the states involved in a particular inter-area oscillation are observable

based on measurements used in the design of current PSS (and other controllers

that provide damping) and controllable from the control signals generated by

the PSS (and other controllers that provide damping). Since current decen-

tralized uncoordinated controls do not share measurements and do not have

knowledge of the control at other generators, the decentralized uncoordinated

controls do not directly take advantage of the Observability properties of the set

of measurements and controllability properties of the set of controls used in the

decentralized uncoordinated control of individual generators.

 



3. Is the current decentralized uncoordinated control structure, where no mea-

surements are shared between controllers and control used at other generators

are not known at each decentralized PSS controller, adequate to damp multiple

oscillations that can change frequency and location with time and operating

conditions ?

If the entire state associated with a single mode oscillation is observable and

controllable from a single generator, attempting to dampen this oscillation may cause

the size of other coupled modes of oscillation to grow. Vittal et al. [71] has shown that

in some cases several modes are coupled to produce an inter-area oscillation and that

the coupling can not be observed in eigenvectors or participation vectors since it is a

nonlinear affect. The coupling can be asymmetric so that one mode couples energy

into another mode but the reverse is not true. It is conceivable that several modes

are coupled and that the coupling can change over time so that energy is coupled

into one mode from other modes and can not escape. This coupling could change

with operating condition causing the appearance of changing frequency and location

of theoscillations. Decentralized controllers could dampen all oscillations without

direct coordination through measurement and control sharing if indirect coordination

could be obtained through careful off-line design of each decentralized controller.

This off-line design of uncoordinated decentralized controls would be valid if these

controls damped all the coupled modes of oscillation over all time and operating

conditions. If the location and frequency of these coupled oscillations change with

time and operating conditions, it would be difficult if not impossible to assure that

the decentralized uncoordinated controllers could remain coordinated, where there

was no sharing of measurements and no direct knowledge of control actions of other

controllers. The above difficulty in assuring coordination between damping controllers

without
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1. sharing measurement information,

2. providing knowledge of actions of other controllers to each damping controller,

01‘

3. both

becomes even greater when one realizes that all the states associated with any one

mode of oscillation may not be observable and controllable based on the measurement

and control of a single generator. If the states of only one of the areas involved in

an inter-area oscillation are observable and controllable, the damping of any single

inter-area oscillation may not be effective since the variable that are directly involved

in the oscillation are not observable and controllable and thus are not being directly

damped. Examples of inter-area oscillations:

1. Newfoundland - Toronto

I
Q

. Toronto - Kentucky

3. S. Ohio - Virginia

u
h

. Washington - S. California

5. etc.

indicate inter-area oscillations occur over very large geographical areas, where the

states may not be observable and controllable from a single generator’s PSS controller.

If these inter-area oscillations are really oscillations in both areas with respect to a

common reference, then a single generator in each area could effectively dampen such

an inter-area oscillation without requiring the states in both areas to be observable and

controllable using a single generator’s PSS controller. If these inter-area oscillations

are oscillations between two areas, then the states in both areas must be observable

and controllable from the measurement and control used to design the P83 in each
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area that would damp this mode. It would appear that measurement and control

information should be shared between the controllers to assure robust effective control.

1 .4 Applications

It is clear that controllability and Observability properties of power systems must be

understood to

1. Identify the branches that belong to weak transmission network boundaries and

the operating conditions that cause the weakness of particular weak transmis-

sion network boundaries. This identification will help the utility operator or

planner to remove the weakness in the weak transmission network boundaries

by reducing flows on these boundaries and maintaining sufficient voltage control

within each bus cluster encircled by these boundaries. Such actions can prevent

loss of transient stability, loss of voltage and angle stability, and development

of multiple inter-area oscillations that change frequency and location.

2. Design the most effective control of single inter-area oscillation mode when the

states of both areas are not observable and controllable using a PSS controller

on a single generator. It may be possible to determine measurements that would

make both areas observable and to determine PSS controls or FACTS(Flexible

AC Transmission System) controllers (controls of series reactance, controls of

shunt susceptance, control of real power on branches using FACTS phase shifter

or DC line modulation, and control of reactive power using FACTS tap changers

or SVC’s) that would make both areas controllable.

3. Determine

(a) the siting of measurements and siting of controllers;

(b) whether sharing of measurement information and control actions
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might make the controls on several generator more effective in damping multi-

ple modes of oscillation due to the fact that all states would be observable and

controllable. It should be noted that measurements at more than one site at

sampling rates greater than 100 samples per second do not appear to be taken

synchronously,if the measurements taken 400 or more miles apart are transmit-

ted from each site to all other measurement sites. If measurement information

is transmitted from each site to other sites, this lack of synchronism will prevent

controls at each site from effectively using the delayed measurements from other

sites without introducing stability problems. If in addition control information

from all sites were transmitted to other sites 400 or more miles apart at rates

greater than 100 samples per second, the use of the outdated control information

at other sites in development of control at a specific site could also introduce

stability problems. This constraint on the distance between measurement and

control sites that would be able to share information would limit the set of

measurements and controls for assuring controllability and Observability of the

states associated with any single or multiple coupled or uncoupled oscillations.

. Determine whether a hierarchical control structure may be needed if all of the

states associated with a single or coupled or uncoupled multiple oscillation are

not observable and controllable using measurements and controls separated by

400 miles or less. The measurements at all sites may be used to establish the

locations where particular modes have affect and whether the decentralized fast

controls without measurement sharing or direct control coordination are effec-

tive in damping modes that change frequency and location. If the decentralized

fast (100 samples per second) controllers are not effective, adaptive slow adjust-

ment of the decentralized controllers may be effective.
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1 .5 Practical Sense

The principal objective of this thesis is to determine the controllability and observ-

ability properties of power systems. It will be shown that the entire state of the

power system is observable from any one measurement and controllable from any one

control. This result was established for a linearized time invariant model based on

fixed operating conditions, no disturbances, and more importantly that the control

is sufficiently large and that a sufficiently large change in the states occurs. The

result states that all the states of the power system in Michigan could be controlled

and observed from any one control and measurement of any generator in California.

However, this is not true in practice. The theory produced such a result because

1. extremely large control is assumed;

2. extremely large change in the states is assumed;

3. power system networks are connected;

4. no disturbances and measurement noise are assumed;

5. a fixed operating condition is assumed;

6. a linearized time invariant model is assumed;

7. accomplishment of control objectives and state estimation is assumed satisfac-

tory even if it takes an arbitrarily long period of time.

In practice, control actions in a power system are generally small and local in

nature in order to prevent the control actions from inducing stability problems. Vari-

ations in state can be large due to faults or disturbances but are very local due to lack

of direct strong interconnections between remote regions and the resultant weakness

of interconnection between remote regions. These two reasons have a major affect on
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the convergence of a state estimator and the effectiveness of any controller. Moreover,

there are disturbances and measurement noise that can also affect the convergence

of a state estimator and the effectiveness of any controller eventhough they are not

the major reasons. Thus, although the system is controllable and observable, if the

model is LTI, the state estimator and the control may not be effective in the desired

time frame. Most importantly, the system is nonlinear, the operating conditions are

varied so that the assumption of a LTI model is not valid. Thus, the controllability

and Observability properties of any specific LTI model do not necessarily hold for a

nonlinear system model. Coupling between a particular state variable and a partic-

ular control variable needs to be strong for that state to be controllable based on a

constrained or limited control effort and observable based on constrained or limited

state variable values. A subset of the states must be strongly coupled to one or more

of the given controls over some subregion Q of state space for the subset of states to

be considered locally strongly controllable. Similarly, a subset of the states must be

strongly coupled to one or more of the given outputs over some subregion (I of state

space for the subset of states to be considered locally strongly observable in Q . To

establish strong local Observability, one must utilize a formal theoretical structure to

define the set of observations that can estimate a subset of states. In a similar way to

establish strong local controllability, one must utilize a formal theoretical structure

to define a set of control, that can cause a subset of states to settle at a specific

‘ equilibrium.

1.6 Purpose of this Thesis

The purpose of this thesis is as follow:

1. Establish controllability and Observability of the complete power system model

(mechanical, electrical, and network of the entire power system model). Con-



15

trollability and Observability of the power system model is valid for LTI model

at a given operating condition where

(a) states variations can be infinitely large,

(b) control variations can be infinitely large,

(c) there are no disturbances, and

(d) there is no measurement noise.

. Define strong local Observability and controllability of a subset of states in a

subregion of the state space of a nonlinear power system model where controls

and states are bounded and measurement and disturbance noise are present.

. Determine conditions for strong controllability and Observability of a subset of

states over a subset Q of the state space.

. Validate the algorithm for determining the strong local control areas and show

that when the system is under a stress condition the areas begin to aggregate

and inter-area oscillation begin to occur.

. Determine if insufficient controllability and Observability between strong local

control areas make the weak transmission stability boundaries vulnerable to

large angle changes for loss of generation and line outage contingencies, loss of

transient stability for fault, and loss of steady state voltage and angle stability.

. Determine the set of controls and measurements required to dampen different

types of inter-area oscillations such as:

0 Determine if a particular set of measurements must be provided to each-

controller so that it can be observe all the states associated with any single

or multiple mode of oscillation or any subset of the multiple modes of

oscillation.
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0 Determine if a particular set of controls must be coordinated either through

computation of all of them at a single site or communication between

controllers to make the states associated with a single or multiple mode

of oscillation controllable or the states associated with some subset of the

multiple mode of oscillation controllable. It may be found that the states

associated with a subset of the set of coupled multiple modes of oscillation

can not be controlled without controlling all the states associated with all

the multiple modes of oscillation because the same states are associated

with every subset of modes of the set of coupled multiple oscillation modes.

0 Determine if there are a set of controls and a set of measurements that

are located within 400 miles of each other that can make the states associ-

ated with a particular set of uncoupled or coupled oscillations observable

and controllable. With the current development of FACTS controllers,

this research could provide motivation for designing effective controllers

where such controllers should be placed on interfaces between control ar-

eas which are locally observable and controllable. What types of FACTS

controls and their location are necessary to assure controllability of all the

states involved in all the oscillation modes, and what types of measure-

ments and their location are necessary to assure Observability of all the

states involved in all the oscillation modes ? The Observability and con-

trollability properties of power system are unknown at present but must be

known if such FACTS controllers are to be implemented to dampen multi-

ple oscillation that can change frequency and location. FACTS controllers

that control real and reactive power flows between control areas and uti-

lize measurements of flows between areas appear to exploit controllability

and Observability structure. Observability and controllability structure is

exploited by simultaneously allowing Observability and controllability of
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both areas where the FACTS controller is connected to, while minimizing

the number of measurements and controls needed to make all the states

involved in these oscillations observable and controllable.

If the states associated with a particular mode or set of modes is not observ~

able or controllable with measurements and controls taken less than 400

miles apart due to delay incurred at sampling rate of 100 samples per sec-

ond, a hierarchical control structure is necessary. The set of measurements

and set of controls that can make the states of the system associated with

any single or multiple set of oscillation modes can be determined without

the restriction of being within 400 miles of each other. If the measure-

ment and control information can not be transmitted without significant

delay in terms of a 100 samples per second sampling rate between groups

of control sites and groups of measurement sites, then a slower adaptive

coordination would need to be developed. Each fast local controller would

attempt to observe and control the states associated with a particular

subset of oscillation modes where the measurements associated with the

fast controls would make those states associated with this subset of the

oscillation modes observable and the controls would make those states as-

sociated with this subset of the oscillation modes controllable. One or

more fast local controllers would be assigned to every mode of oscillation.

Measurement information could be (a) sent to a central site where the fast

control for every controller is computed and sent to each controller or (b)

the measurements could be sent to each controller where the control for all

controllers would be computed but only the one for that site would be used.

The hierarchical control would adjust the gains and control structure for

fast controllers as it determines that excessive control of one set of oscilla-

tion modes by one fast controller is enhancing modes of oscillation under
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the jurisdiction of another fast local controller. The hierarchical controller

would work on a slower sampling rate and would manage the degree of

control performed by each fast local controller. The sampling rate for the

slower hierarchical control would likely be slow enough to prevent delay

problem regardless of how large a geographical area was involved in the

coupled multiple oscillation problem.



CHAPTER 2

Controllability and Observability

2.1 Objectives

1. Provides a fundamental picture of what can be controlled and observed in the

whole power systems.

2. Provides information so that controllers can be placed correctly and provided

with the correct measurements so that a particular subset of the states of a

power system are observable and controllable.

2.2 System Connectivity Approach

A power system is highly nonlinear, complex, and large in dimension. As a result

of these properties, one needs to pay attention to the theory and control design

methodology of large scale systems such as modeling, control, stability, controllability,

Observability, and etc. These concepts are very helpful for analyzing and designing

as well as for performing control and optimization.

Establishing controllability and Observability for the complete model of power

system is very difficult. However, the system can be decomposed into n subsystems

and use one of the following approaches to check the controllability and Observability

19
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of the composite systems.

1. Frequency Domain Approach

2. Generalized Resultant Approach

3. System Connectivity Approach

In the Frequency Domain approach, controllability and Observability based can be

established on the cancellation of one or more poles and zeros. In the Generalized

Resultant approach, controllability and Observability can be established based on the

grammian and the rank of the grammian. Both of these approaches are appropriate

if the given system structure is specific enough and the parameters are all known.

However, these approaches are not generic enough to establish controllability and

Observability for systems where only the structure is known but the parameter are

not specified and vary over a given range. The last one, which is the System Con-

nectivity approach, establishes controllability and Observability based on representing

the system structure using a signal flow graph and then determining the connectabil-

ity properties of the graph. This approach has been applied to large scale systems

models and power systems is a large scale system. The System Connectivity approach

allows generic controllability and Observability properties for any power system model

with parameter variations to be established which is not possible using the other ap-

proaches described above. Moreover, this approach requires little computation and

can handle multi input multi output (MIMO) systems. In this thesis, the System

Connectivity approach is used.

2.3 Existing Results

In order to follow this particular approach to check controllability and Observability

conditions of the composite systems, the following definitions and the terminology



21

are taken from Jamshidi [31].

Definition 1 The arborescence A of root 31 E X ofa finite graph M is itselfa graph

with the following properties:

1. x1 is the terminal vertex of no are

2. Each 2:.- 96 1:1 is the terminal vertex of only one are

3. There is no circuit contained in the graph A

Example 1 The following is a simple example for determining the arborescence:

x1

x2

 

Figure 2.1. A Graph M

X]
X3 X5 .

x6

\/0
x2 x4

Figure 2.2. An Arborescence of Root 1:; or 2:2 for Graph M

It should be noted that these arborescences are not unique.
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Definition 2 A composite system :i: = A1: + Bu, and y = C3, denoted by

(C, A, B; N,n1, . . . ,nN) consists ofN subsystems interconnected in an arbitrary fash-

ion with a: E Ht",u E BT11 6 R', and A defined by:

_ A1 G12

G21 A2

A =

.GNI GN2 

A sparse composite system (C,A,B; N,n1,...

following A matrix:

r A.1 G12

021 A’z

A =

.GNI GN2 

Gm ‘

GzN

 AN

,nN) is a composite system with the

Gm l

0m

 A'N

where A‘, = A,- + B,Ix’,~C,,i = 1,2,...,N, with (C,,A.-,B.-) being an observable and

controllable triplet. Furthermore, all the interconnection matrices (1.3 are zero ex-

cept for G;,~,i = i1,i2,...,ip andj = j1,j2,...,jq given by G.)- = k,,-a,-,BjT,i =

i1,...,i,,, j = j1,...,jq where kg'j is a nonzero scalar called the ij - interconnection

gain, a,- and B, are nonzero (n,- x I) and (nj x 1) dimensional vectors, respectively.

A composite system is a set of N controllable and observable systems

it = xiii + £3.19

T

31:" = 9.“ it

2; = Bra:

+

M
2

o
u
r
-
0

Qt‘rij

;

g
.
_
k
o
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where y_,-, 7.5, j = 1,...,N and j 75 i are inputs and y.- and z.- are outputs. The

controls satisfy

u- = -Kiyi+y_?

= -K.'2.T§.t+3£?

7s = 1°62;

T

= kiléj £1

The composite system (C, A, B; N : n1, . . . , nN) can be represented by a directed

graph M(C,A,B). The vertices in this graph M(C,A,B) represent all the states,

inputs, and outputs of the composite syStem. The graph M(C, A, B) is constructed

using the following procedures:

1. Constructs a matrix [C IAIB]

2. For each row i of matrix [C IAIB] draw an are from each vertex j to vertex i

(i # j) if the ij element of the matrix [ClAIB] is not zero

It should be noted that if the arrows on all arcs in the graph M(C, A,B) are

reversed, then the graph is called the inverse graph M"(C,A,B). Directed graphs

M(A, B) and M(C, A) are representations of composite system (A, B; N : n1, . . . , nN)

and composite system (C, A; N : n1, . . . , nN) respectively. If the arrows on all arcs in

the graph M(C, A) are reversed, the the graph is called the inversed graph M‘(C, A).

Definition 3 A composite system (A, B; N : 121,. . . ,nN) is called input connectable

if El an arborescence not necessarily unique, of root u for the graph M(A, B)

Definition 4 A composite system (C, A; N; m, . . . , nN) is called output connectable

if 3 an arborescence not necessarily unique, of root y for the inverse graph M'(C, A).

The following example illustrates the above notions. This is also taken from

Jamshidi [31].
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Example 2 Consider a composite system describe by

 

531 All 012 013 .1131 0

i2 = G21 A.2 0 272 'l' 0 u

533 G3] 0 A.3 _133 B3

’1']

y=[0020]$2

 .933

It is desired to represent this system by a graph M(C, A, B) and find an arborescence

of root u for M(A, B) and an arborescence of root y for M'(C, A). The last notation

refers to an inverse graph which has all its arrows reversed in direction.

SOLUTION: The graph M(C,A,B) for the system above has five vertices and is

shown in Figure 2.3. An arborescence of root u for graph M(A,B) is obtained by

first disconnecting all arcs terminating at y and following Definition 1. The result is

shown in Figure 2.4. To obtain an arborescence of root y for graph M‘(C, A), it is

necessary to reverse the arrows on all arcs, delete all new arcs terminating at u, and

follow Definition 1. The result is shown in Figure 2.5. Note that in this particular

example, both arborescence graphs turn out to be unique as an exceptional case.

 
x2 . . x3

 
yes

Figure 2.3. Graph M(C,A,B)
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x2 x3

x1

Figure 2.4. An Arborescence of Root u for Graph M(A,B)

S?“

 
X2 . X3

 
m

Figure 2.5. Graph M‘(C,A,B)

Definition 5 Ifa composite system is both input and output connectable, then it is

called connectable
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X2 X3

x1

 
y 0

Figure 2.6. An Arborescence of Root y for Graph M'(C, A)

Then the following theorem provides new conditions for the controllability and

Observability of composite systems which also are taken from Jamshidi [31].

Theorem 1 Consider a general composite system (C, A,B; N; n“. . . ,nN):

1. If the system is connectable, then it is controllable and observable for almost all

output gain matrices K,- and interconnection gains Kg.

2. If the system is not connectable, then the general composite system is neither

controllable nor observable.

Proof: See Davison [16] E]

The state of the general composite system would not be input or output con-

nectable using control u? and output y,- from subsystem i if there were an isolated

group of systems such that

In, = 0, iEIandjEJ

IUJ = {1,2,...,N}

InJ = (0
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If two groups of systems are not connected, measurements and controls will be re-

quired in both groups of systems to make the general composite system input and

output connectable.

This connectability approach will be applied to three different systems in this

thesis:

1. A classical transient stability model to show that all states in the power system

are controllable and observable if the network is irreducible;

2. A dynamic network load model to show that strongly controllable/observable

bus groups are strongly controll'able/observable only if measurements and con-

trols are used in each of those bus groups;

3. A non-classical topological transient stability model to show that network and

generator dynamic states for load and generator buses in strongly control-

lable/observable bus groups are strongly controllable/observable only if mea-

surements and controls within each of those bus groups are used.

The application of connectability theory to a classical transient stability model

is now presented. The application of connectability theory to the dynamic network

load model and the topological transient stability model is presented in Chapter 3.

2.4 Application to Power Systems

2.4.1 Mathematical Model Development

The n machines power system model is

6,=w,

(it; = l/Mtlth-PGt—Diwi]
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B3, = 1/Tjo,[-E,',£ - (3dr - $Idi)QGi/E;; ‘l' Blair]

and i = 1,2,...,m

where

Pa.- = G.-.-(E.’,,.)2 + Z E;,I/21Kj005(5i - 51 - 7:5)
j=l

iii

06. = —B.-.~(E;,.)2 + i Ema-sinn- — 6.- -— 7..)

3:3-

and i = 1,2,...,n

6; - internal bus angle

to,- - internal rotor speed

M; - generator per unit inertia constant

PM, - input mechanical power

D.- - generator load damping coefficient

Pg,- - generator real power generation

Q3,- - generator reactive power generation

Eéi - internal generator voltage proportional to field flux linkage behind transient

direct axis reactance

50'. - generator direct axis transient open circuit time constant

rd,- - steady state direct axis reactance

3:2“ - transient direct axis reactance

B.5 - susceptance component of the ijm element of Ygus
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G5,- - conductance component of the ijm element of Ygus

V1,,- - terminal voltage

ya = V3.52 + thz

m - number of generator

n - number of load buses

Since several output measurements are possible, a general output model is used solely

depend on the states at the internal buses. Possible outputs include real power, reac-

tive power, apparent power, and voltage. Thus, in order to have a general mathemat-

ical model for the output that can represent several possible output measurements,

the output equation is written as follow:

yi = h(6ii Eqi)

2.4.2 Preliminary Results

In this section, we would like to show that there are always paths from a control

variable of any generator to each state and paths from the output or the measurement

to each state by using System Connectivity approach. Then from Jamshidi [31], we

can conclude that the single machine infinite bus power system is controllable and

observable. However, Generalized Resultant approach is used to determine that the

single machine infinite bus power system model is controllable and observable.

Lemma 1 The states of a single machine infinite bus power system linearized model

are controllable from either APM, or AB”; and observable from Ay;
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Proof: The linearized single machine infinite power system model has the form

351 0 1 0 2:1. 0 0

111

1:2 = 21 22 2'3 1'2 + 1%; 0 (2.1)

“2

253 24 0 25 x3 0 7:3:

= A1 Jr {B} 82 ] u

31

y = [C1 0 Cg] $2

$3

= Csc

where

1'1 A6;

3:2 = Aw.-

173 AEt’n

[U1 APM.’

U2 — AEId.‘

and

1 , .
21 = --M-7[Eqil/thJSZN(5i — 5:" — '76)]

z _ a.
2 _ Mi

1 I
23 = MngiJ'Eq.’ + VtJ-ngcosw.‘ - 6i _ 79)]

1 , z
24 = 3:;— CW." 1.1;)thlt'j005wi _ 6i _ 70)]

dot

1 (xi.- - 2:3,.) (134; - 353;) , -
25 = m[ 1 + _—(E{,,)2 QGt' + E1“. (23:13.),- + Vol/63mm - 52' - “will
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The controllability test matrices are

 

. 0 734‘, 73:

[BI AB: A’Btl = xi: 3’: 3H”?

_ 0 0 f}.-

P .53.

0 0 TI..-

[B2 A82 A282] 2 0 7%:- gag; + 51,5

400 dot 40'

_L. 2 z 2

"Tim 73:: 73;

(A, B) are controllable if

1

’17?“ t 0

1

‘23??? t 0or

If the two requirements above are not satisfied, then the controllability matrices will

not be full rank matrices. Note that 24 and 23 both can not be zero unless Cg,- = 0

and only when 6.- - 6,- = 0.

The Observability test matrix is

C C1 0 C2

CA = C224 C1 C225

CA2 C121 + 622425 6224 + 0122 6123 + C2252

(C, A) is observable if

C1 [61(0123 + 62252) — 0225(6224 + 6123)] 36 *62[6224(C234 + 6132) — C1(0123 + 022425)]

If the above requirement is not satisfied, then the Observability matrix above will not

be a full rank matrix.
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However, the states of a single infinite bus system are always controllable and

observable since there is no cancellation between poles and zeros.

Remarks: This approach can not easily be extended to multi-machine systems

The result in Lemma 1 will now be extended to a two machines systems as follow:

Lemma 2 A two machines power system model is input connectable from either

APM, or AEfdi of machine i if there are at least one connection through Ab,- and

ABE. of machine i to machinej where i géj

Proof: From Lemma 1, we have shown that states of each machine are controllable

and observable. Assuming the network is irreducible, then there are four networks

that connect I; of machinei to 22:1 and 2:3 of machine j and $3 of machine i to 2:1 and

$3 of machine j where i 79 j. Thus, we can reach all the states of machine j from

the input u] or 112 of machine 2' through these four networks which connect states

of machine i to states of machine j. These four networks are shown with dash lines

in the flow graph (see Figure 2.7). From these four networks, we can determined

connection from inputs of machine i to all states of machine j. Furthermore, we also

have connection from the inputs of machine i to all the states of machine i (Lemma

1) and thus arborescence of root ul or U2 of machine i is determined (see Figure 2.8).

Thus, the two machines power system model is input connectable from input u; or

112 of machine i.

Lemma 3 A two machines power system model is output connectable from Ay; =

Ah(A6,-, AEqi) of machine i if there are at least one connection through Ab.- and A1331
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ul
machine i 

Figure 2.7. The Graph M(C, A, B)
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ul

,IXZ

--------------------------------------------

---------------------------------------b----

machine i

x2x1

machine j

Figure 2.8. The arborescence of root ul or u;
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of machinej to machine i where i # j.

Proof: From Figure 2.7 we can get the following inverse flow graph (see Figure

2.9). We have connection from output measurement of any machine i to all the

states of machine i and all the states of machine j using the similar argument in the

proof of previous Lemma. The arborescence of root Ay is determined and shown in

Figure 2.10 and thus the two machines power system model is output connectable

from output y of machine i.

Note: The proofs of Lemma 2 and Lemma 3 are graphical using System Connectivity

approach.

It should be noted that network and load are aggregated back to generator inter-

nal buses. Assuming that the network is irreducible, there is a path for every pair of

generator internal buses between A6,- and A.6J- and Ali's]. as well as a path between

ABA. and A.6J- and AEgj, for all i ¢ j. Thus, one could prove graphically that n ma-

chine system is input connectable from either APM, or AEfdi and output connectable

from Ag, for any machine i. Since the system is input connectable from either APM;

or AEfdi and output connectable from Ayg, it is controllable and observable. The

following theorem is a statement of these results.

Theorem 2 Given an aggregated power system model where the resultant network is

irreducible, then the states of all generators are input connectable from APM, or AEfdi

of generatori and output connectable from Ay, for any generator i. Furthermore, the

states of the entire system are controllable from the input APM, or AEfd: ofgenerator

i and observable from measurement taken from any machine i.
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Proof: See Lemma 2, Lemma 3, and Lemma 4(Chapter 3) D

This observation allow us to think of algebraic states as input connectable from

APM, or AE1d,. and output connectable from Ay;. Mathematically, discussing con-

nectability of algebraic states of the network is not permissible because these states

are not governed by differential equations. In the next chapter, we will introduce

singularly perturbed differential equation models for network algebraic states so that

connectability of algebraic network states can be properly defined.

2.5 Practical Limitations

As a result of the theorem above, all the states of the interconnected power system

spanning the eastern and midwestern grid of United States of America and Canada

can be controlled and observed from one control and one measurement of any gener-

ator no matter how complex is the system. Experience indicates that this theoretical

result is impossible in practice. One can not steer all states of the entire system to

some equilibrium point with one control nor can one estimate the states of the entire

system using only one measurement; one must take into account measurement noise,

continuous disturbances, operating changes and the nonlinearity of the model, the

requirement that control and state estimation be accomplished in finite time, and

that both the state and control are bounded signals. Further discussion is given in

the next chapter.

 



CHAPTER 3

Strong Local Controllability and

Observability

3.1 Literature Review

DeCarlo et al. [73] have shown that controllability and Observability are generic prop-

erties of dynamical systems, since small variations in parameters in general can make

an uncontrollable and unobservable system to be a controllable and observable sys-

tem. Although controllability and Observability are generic properties of dynamical

systems, one can not reap the theoretical benefits of such controllability and observ-

ability properties since the state, control, and outputs are bounded signals, there is

disturbances and measurement noise, and the system may be nonlinear and time vary-

ing. To achieve the benefits of controllability and Observability with bounded controls

and outputs over finite time for nonlinear plants with measurement noise and distur-

bances, one needs a measure of how effective the controls and measurements are.

Paige [49] shows numerically that the universal method for testing the controllability

and Observability is not precise enough in terms of answering the question of whether a

system is controllable and observable, since proper small variations in specific param-

eters in A(6A) and B(6B) can cause loss of controllability and Observability. Thus, it
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becomes clear that small variations can cause loss of controllability and Observability

for certain states and yet. other or possibly the same parameter variations can cause

certain states that were uncontrollable and unobservable to become controllable and

observable. These results suggest that what is needed is a concept of strong con-

trollability and Observability, which assures one that small parameter variations or

system nonlinearity will not affect this strong controllability and Observability and

that bounded noisy measurements, bounded controls, and disturbances will not hin-

der effective asymptotic stability or convergence of a state estimate in a reasonably

short time interval.

Paige in his paper [49] proposes a general method to measure a distance from a

controllable system to an uncontrollable system. This problem of determining how far

the controllable system is to becoming the uncontrollable system is also investigated

by Eising [23, 24], Boley and Lu [5], and DeCarlo and Wicks [73]. Several methods

have been proposed for assessing the proximity to uncontrollability and unobservabil-

ity. Each method allows different patterns of parameter variation. The first method

for assessing uncontrollability and unobservability uses the singular values decom-

position method. By performing singular value decomposition and eliminating small

singular values of the controllability/observability grammian, the controllable and ob-

servable part of the system can be determined from the controllability/observability

grammian after the components associated with the smallest singular values are elim-

inated. The unobservable and uncontrollable part of the system correspond to states

that are no longer observable and controllable when the components of the con-

trollability/observability grammian corresponding to the smallest singular values are

eliminated. Eising [23, 24] proposed uniformly varying all of the diagonal elements

of the system matrix A by real or complex parameter A. The distance to loss of

controllability over all A is the smallest singular value of matrix [AI - AIB] after all

variation in A are considered. The third method for assessing the distance to loss of
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controllability (Observability) is to compute all of the singular values of the controlla-

bility (Observability) grammian [5, 73]. The controllability (Observability) grammian

can be decomposed into n components that are associated with the n singular values

[46]. The controllability (Observability) of the system is decided based on the approx—

imation to the controllability (Observability) grammian where the largest m of a total

of n singular values of the grammian are retained [46]. The number m is chosen such

that the distance between singular values is the largest. This approximation results

in rather complex changes AA and AB in the system and control matrices.

3.2 Relationship of Strong and Weak Controlla-

bility and Observability to Power Systems

3.2.1 Strong or Weak Controllability and Observability

Strong controllability (Observability) can be defined as holding for those states of the

system that are controllable (observable) for the original system and for the allow-

able prescribed parameter variation in the method used to assess distance to loss of

controllability (Observability). Weak controllability (Observability) can be defined as

holding for those states that are controllable (observable) in the original system but

are not controllable (observable) for the allowable prescribed parameter variation in

the method used to assess the distance to loss of controllability (Observability). It

should be noted that it is possible for some prescribed parameter variations, one can

make those states that are uncontrollable (unobservable) in the original system be-

come controllable (observable). These states can also be defined as a weak controllable

(observable) system.
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3.2.2 Relationship to Power Systems

Coherency

The coherency approach for determining coherent groups that could be aggregated to

produce a dynamic equivalent used a procedure for assessing strong and weak control-

lability (Observability). Coherent groups were generator clusters that had very similar

diagonal and off diagonal elements in the controllability (Observability) grammian. A

specific upper limit on the differences in the coherency measure

Ckl = [QClkk + [chu " [chzk " [chkl

between generators k and l where Qc is the controllability (Observability) grammian,

defines the size of the coherent clusters. The rows of QC corresponding to generators

in the same coherent groups are nearly identical but rows of QC corresponding to

generators in different coherent groups are not similar.

The controllable (observable) generator groups, that are controllable based on a

single control on any generator in that group, are the coherent groups that belong

to a fast model of the power system. If the separation between fast and slow modes

is sufficient, the coherent groups determined based on approximating the controlla-

bility (Observability) grammian will be the same groups determined based on Slow

Coherency procedure [12] that uses a dichotomic transformation. However, if the

separation between the fast and slow system is not very wide, the Slow Coherency

approach [12] will not produce similar groups to those obtained using coherency since

loss of controllability and Observability is not so closely linked to separation of fast

and slow modes.

Dorsey et al. [20, 21] have shown that zero singular values in the controllability

(Observability) grammian are due to coherency because coherency is shown to be the
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only condition that can cause redundancy and thus singularity in the controllability

(Observability) grammian. Dorsey et al. [20, 21] utilize singular value decomposition

to decide the maximum order reduction when the control is restricted to a study area

that is composed of one or more strongly controllable groups. The procedure decides

when continuing to aggregate larger less coherent groups in an external area, which

is outside the study area, leads to loss of controllability of the system. The system is

composed of both the study and external areas and controls are restricted to lie solely

in the study area. Since the coherent groups in the external area are not strongly

controllable from controls in the study area, the aggregation of the coherent groups

in the external area is just aggregating weakly controlled dynamics until they have

some affect of the controllability grammian (eliminate larger non-negligible singular

values) of the system with controls restricted to the study area.

Zaborszky et al. [75] method of identifying coherent generator groups is a singu-

lar perturbation method since the clustered groups of generators determined by the

method have a small eigenvalue that is bounded above by a measure of the weakness

of the boundary separating the groups. Zaborszky et al. method [75] is not based on

obtaining an approximation of a controllability (Observability) grammian as is the co-

herency approach. The Zaborszky et al. method [75] determines generator groups by

looking for the weakness of boundaries between coherent groups that have dynamics

that belong to the fast singular perturbation model of the power system. This ap-

proach would be similar to searching for the decoupling between generator groups in

the controllability (Observability) grammian. The coherency approach [22] attempted

to search for strong coupling within generator groups. Despite the contradictory

methods of determining generators groups, the Zaborszky et al. [75] and Dorsey [22]

methods often produced very similar generator groups. The Slow Coherency ap-

proach [12] produced rather different generator groups than either the coherency [22]

or singular perturbation approaches [75]. The Slow Coherency approach [12] did

.
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.
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not produce generator groups that combined to produce the groups at less stringent

coherency (internal coupling) conditions or conditions which resulted in identifying

groups with weaker boundaries in the singular perturbation method [75].

The procedure for defining and determining strong controllability (Observability)

and weak controllability (Observability) is based on the weakness of links in a system

connectivity graph [31] rather than based on the methods applied to the controlla-

bility and Observability grammians. The system connectivity approach [31] to strong

controllability (Observability) requires that a path of sufficiently strong branches in

the direction of the path be found between the designated controls (outputs) and

every strongly controllable (observable) state based on this set of controls (outputs).

3.3 The Network and Load States

It is clear that determining controllability and Observability of network and load

states as well as generator states is very important. However, if the network and load

equations are added, then a constrained differential model which has both differential

and algebraic equations is produced. The results on connectability have not been

developed for a constrained differential model. In order to overcome this difficulty,

the network and load model are modified in such a way so that they can be written

as a singularly perturbed differential equation. Thus, Large Scale Dynamical System

theory can be applied which has been done in other papers on power systems [70, 19,

11]. Writing the network model as a differential equation model is possible because

the differential equation model for network and load equation is an approximation

to a network and load model where the induction motor loads are represented by

differential equation. The general approach to change the network model algebraic

equation to singularly perturbed differential equation is described in the following

section.
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3.3.1 Conversion to Differential Equation Model

The network and load algebraic equation model represents the real and reactive power

balance equations at every bus in the network. The network and load equation has

the form

0 = g($(t),y(t). A) (3-1)

Converting it to a singularly perturbed differential equation model, it is assumed that

the real power balance equations have neglected the effects of the real power load’s

dependence on angular speed 9 and that the reactive power balance equation have

neglected the reactive power load’s dependence on i). The singularly perturbed model

has the form

63) = 9($(t),y(t)t A, C) (3-2)

where

x(t) - state vector of the generator dynamics

y(t) - state vector of bus voltage and angle of terminal buses, high-side transformer

buses, and load buses

A - state vector of the slow varying operating parameter

c - a very small positive scalar and represents all the small parameter to be neglected.

Model of the form Equation 3.2 has been derived in paper by Walve [72] and has

been utilized extensively in the literature on voltage collapse by Chiang [19, 11]. A

similar model has also been used in developing Lyapunov function for the transient

stability model by Hill [28].
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3.3.2 Result on Network and Load States

Lemma 4 Given the singularly perturbed irreducible network and load model

63) = g($(t).y(t), A.6)

the linearized differential equation is

  

where

Ay=

  

Then the load and network states are input connectable from either APO or AQG for

any i and output connectable from output measurements A2 at any terminal bus i.

Proof: To prove that the algebraic states A9,,A6E,Av¢, and AE' are input

connectable from A9,- (and thus APO,- or AQGi), a path in the flow direction must be

traced through the dynamic network from A9.- to all other elements of A9 (elements

of both A9, and A63) and all elements of Av (elements of both Av, and AB). The

nonzero elements in the row of jacobian matrix J associated with 6A9,- would indicate

the variables of vectors A9,, A65, Avg, and AE that are connected to bus i and have

flow into bus i. To continue the path in the flow direction from any A9J- connected to

bus i, we must look at nonzero elements in the row associated with er9.-. We could

trace a path in elements of A9; and A65 through 3P/89 by repeating the process.

To continue the path in the flow direction from any A9j connected to Avg, we must

look at nonzero elements of the row associated with eA.v,-. We could trace out a
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path from any element of Av, or AE to Av,- through 9Q/9v by looking for nonzero

element in the eAvJ- row of BQ/av. It should be noted that one needs not remain

in the BQ/Bv network and thus trace paths through Av, and AE but could move

to A9;‘ if the jacobian row associated with 6A9;c had nonzero elements in 6Pk/0vj.

One could move to other A9, and A63 variables (A9,) from A9,, based on nonzero

elements in the 1‘” row of the 8P/99k network for some I or move back to Av, and

AE variables (sz) based on nonzero elements in the 1“ row of the 30/39,, network

for some 1. However, once elements in the I“ row are chosen (either A9, or Avl) one

must move to the 1‘” row of 9P/09 or 8Q/99 respectively for the flow from A9,, to

occur in the correct direction for controllability (Flows occur toward the node I label

Av, from nonzero elements in the I“ row associated with eA.v,). One could similarly p

move from Av}, to other Av, and AE variables (Av,) based on a nonzero element in

the 1‘” row of the aQ/ov, network for some I or move back to A9, and A63 variables

(A9; based on a nonzero element in the 1” row of the aP/avk network for some I.

Again once the element in this 1“ row is chosen (either A9, or sz) one must move the

1‘” row of BQ/Bv or BP/av respectively for the flow from Av], to occur in the right

direction. Since the networks 0P/09, BID/av, 6Q/99, and 8Q/9v are irreducible,

all the network variables are input connectable from A9.- or following the similar

arguments from Avg. If the networks were reducible, only variables of A9,, A63, Av,,

and AE that are physically connected in any one of the 9P/69, aP/av, 6Q/69,

and aQ/Bv networks are input connectable from A9,- or Av.- ( or Ang or AQG,

due to input connectability of A9,- or Av,- from ABC,- or AQg, through arborescence

argument above).

Now, in order to prove that algebraic states A9,,A63,Av,, and AE are output

connectable from A9,- or Av.- (or A2), a path in the opposite direction to flow must

be traced through the network from A9,- or Av; to other elements of A9(A9,,A63)

and Av(Av,, AE). We know that the nonzero elements in the row of jacobian ma-

‘
-
1
1
1
5
4
—
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trix associated with 6A9.- or eAv; would indicate the variables Av and A9 that are

connected to bus i and have flow into bus i for graph M(C, A, B) but have flow away

from bus i in graph M"(C, A, B). Therefore, by going through the proper differential

equations 6A9.- or eAv, for graph M'(C, A, B), we can find paths from any buses j to

bus i that are connected to bus i and flow away from bus i. Similarly, observing rows

of er9J- or eAlvj, paths from any buses k to bus j that are connected to bus j and

flow away from bus j can be found in 114‘(C, A, B). We can only find a path to bus

j in M'(C, A, B) in the direction of flow through one of the nonzero elements in the

row associated with 6A9,- where i is connected to j. If we are at bus j, we can only

find a path to bus I: in the direction of flow through the nonzero element of 3P/69k

in the row associated with eA.9,-. We could trace a path from A9.- or (A2) to all A9,

and A63 through 6P/69 network in the direction of flow in M‘(C, A, B) by repeating

the process. Following a similar argument, we could trace a path from Av.- (or A2)

to all Av, and AE through aQ/av network in the direction of flow. It should also

be noted that one needs not remain in the BQ/av network to trace paths to other

Av, and AE but could move to A9,- if the jacobian row associated with eAvk have

nonzero elements in BQk/99j. Thus, one could move to other A9, and A63 variables

from A9,- based on the nonzero elements in the jth row of the 9P/99 network or move

back to Av, and AE variables based on the nonzero elements in the j“ row of the

aP/av network. One could similarly move from Av,- to other Av, and AE variables

based on the nonzero elements in the jth row of the aQ/av network and to A9, and

A63 variables based on the nonzero elements in the j“ row of the 6Q/39 network.

Thus, if the networks 9P/99, 9P/9v, 9Q/99, and 6Q/0v are irreducible, then all the

network variables are output connectable from A9.- (or A2). It should be noted that

if the networks were reducible, then only variables A9 and Av that are physically

connected and connected in one of the 6P/39, BP/av, 0Q/89, and aQ/av networks

are output connectable from A9,- or Av,- (or A2 due to output connectability of A9;
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or Av,- from A2 through the arborescences argument above). The lemma is proved.

C]

3.4 The Complete Power System Model

3.4.1 Mathematical Model Development

A singularly perturbed differential equation irreducible network model and n gener-

ators model are as follow:

j: = f($(t)iy(t)i A: 6)

6i = g($(t),y(t).A,6)

and the output equation model is

z = h(90(0)

Then, the linearized model is

       

A.2? A 012 A37 Bl

eAy G2, J Ag 0

A2 = Ah(Aa:) (3.4)

where

A27 = (A6, Aw, A133,)

AyT = (AQIT. A37. A5_ET. AET)
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AuT = (APM,,AE,,.)

BP 95

J _ 2g_ .89 av

— 63”];92 29]

89 8v

A = diag(A1, A2, . . . , Am)

E
) II connection — gain — matrices

B, = input-matrices

and

9, - angle of voltage at terminal buses

v, - voltage magnitude at terminal buses

63 - angle of voltage at transformer high-side load buses

E - voltage magnitude at transformer high-side load buses

A,- - generator i state matrix similar to that in equation 2.1

m - number of generator

3.4.2 Results on Complete Power System Model

The first result is on the model of just one generator but a complete power system

network including all of the generator terminal buses without generators connected

and all of the load buses. The second result is really the extension of the connectability

results for the states of a single generator model to all states of all generators and

network (Ax, Ay).

Lemma 5 Given a singularly perturbed diflerential equation irreducible network

model and a single generator model of the i“ generator. Then all the states of the

network and states of the generator are input connectable from APM, or AB“; for

anyi and output connectable from A2 for any i.
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Proof: From Equations 3.3 and 3.4 and Lemma 4, the flow graph is shown in

Figure 3.1

on

 

 
C') 2

Figure 3.1. The flow Graph 111(C, A, B)

011

 

Figure 3.2. The Arborescence of Root APM, or AEfdi of Graph M(C, A, B)
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0 2

Figure 3.3. The Arborescence of Root A2 of the Inverse Flow Graph M‘(C, A, B)

The arborescences given in Figures 3.2 and 3.3 come from the differential equa-

tions and output equations (see Figure 3.1). It is clear that the states AzT =

(A6,, Aux, AE;) and AyT = (A9,,, Av,,-) are input connectable from APM, or AB“,-

from Lemma 1. The variables A9,,- and Av,,- are connectable from A6; or AEéi since

the terminal bus is connected to the internal bus in the power system network. Thus,

Av,,- and A9,,- are input connectable from AE13‘. or APM,. All the states of the net-

work are input connectable from A9,, and Av,,- (see Lemma 4) and thus from AEfdi

or APM,. Therefore, all the states of the network and states of the generator are

input connectable from AB14:. or APM, of any machine i.

If A2 depends on the machine state, then Lemma 1 indicates the state A2: are

observable. The variables A9,,- and Av,,- are connectable from A6,- and AE;.. since

the terminal bus is connected to the internal bus in the power system network. Thus,

A9,, and Av,,- are output connectable from A2. All the states of the network are

output connectable from A9,,- and Av,,- (see Lemma 4) and thus from A2. Now, if Az

depends on the network states, A9,, and Av,,- are output connectable. All network

states including A9,,- and Av,,- are output connectable from Lemma 4. Furthermore,

the internal bus is connected to the terminal bus and A6,- and AEét. are output

connectable from A2. Then, the state Ax,- is observable (see Lemma 1). Therefore,
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all the states of the network and states of the generator are output connectable from

A2. The Lemma is proved. D

The result in this particular Lemma above will now be extended to a general power

system with n generators and irreducible non-aggregated network.

Lemma 6 States of all generators in the power system and states of the irreducible

network are input connectable from APM, or AE13'. for anyi and output connectable

from A2 for any i.

Proof: From Lemma 5, we have shown that all the states of the network and states

of the generator are input connectable from AEfdi or APM, and output connectable

from measurement A2 of machine i. We also know that Av,,- and A9,j are connected

to A6,- and AE,’,J. of machine j since the internal bus is connected to the terminal

bus in the power system network. From Lemma 1, we know that the state of the

generator is controllable and thus A6j and AE;J. are connected to Aug. Therefore, all

the states of generators and states of the network are input connectable from AEfdi

or APM, of machine i.

We now prove the state at any generator j not connected to generator i is output

connectable from A2. From Lemma 5, all network states are output connectable from

A2 as well as dynamics state of generator i. The terminal bus angle (A9”) and volt-

age (Avg) at any generator j is thus output connectable from A2. The terminal bus

is connected to the internal bus in the power system network. Thus, A9,,- and Av”-

are connected to A6,- and AE,’,J.. Moreover, from Lemma 1 we know that the state of

the generator is observable and thus ij is connected to A6j and AEgj. Therefore,

all the states of the generators and states of the network are output connectable from

any output measurement A2. The Lemma is proved. D
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3.5 Procedure for Determining Strong’ Local

Controllability/Observability

The procedure in determining strong local controllability and Observability is as fol-

low:

1. Define the following

o a disconnected network 1

e a control area

0 a strong locally disconnected network  
e a strong local control area

strong local input connectability

strong local output connectability

strong local controllability

strong local Observability

These definitions are needed to develop a procedure for determining whether a

subset of states of the power system are strongly controllable and observable

given a set of measurements and controls.

2. Prove that for a given differential equation model and an output equation model,

all the states (‘37) of the network in a strong local control area, and all the states

(5) of generator i, and all other generators connected to this strong local control

area are strong local input and output connectable from APM, or AE;.,, and

A2 for any i and V3, y 6 0. Since the power system model is nonlinear, strong

controllability and Observability can not be guaranteed for all states (at, y) but

only those belong to some subset of the state space 9.
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3. Prove that a given strong local control area of a power system, where the dy-

namic states of all generators and the algebraic states of the network are strong

local input connectable from any generator’s input and strong local output con-

nectable from any measurement from that strong local control area Vx, y 6 fl,

is strong local controllable and observable Vs, y E Q

It has been discussed earlier that it is impossible to control all states in the power

system from one input or control and to observe all the states in the power system

from one measurement at a single bus. In order to discuss strong local controllabil-

ity and Observability, some method has to be developed for determining when the

network connecting areas or coherent bus groups is too weak to permit coupling of

information from measurements on states in one area to states in other areas. In

order to define this decoupling, one must define it in the 6P/89, 0P/6v, 9Q/69, and

aQ/Bv networks. Now, the clusters of buses in 8P/69 and aQ/Bv networks that are

decoupled should be the same because the off diagonal elements which describe the

decoupling or coupling of pairs of buses have the same values. Similarly, the clusters

of buses in the aP/Bv and 962/99 that are decoupled should be the same because

the absolute values of the off diagonal elements are the same. The decoupling in the

9P/99 and BP/av networks or 9Q/99 and BQ/av networks needs to be described

because of the common boundaries. The definition of a disconnected network assumes

that the branches with weak coupling have been defined and eliminated in 813/89,

aP/Bv, 9Q/99, and 9Q/9v networks. The definition of strong local disconnected net-

work will be used in defining strong local input and output connectability. It should

be noted that the coupling is defined not in terms of every path between bus i and bus

j or an equivalent path but in terms of branches in paths because the computational

burden of attempting to compute the effective coupling of all paths between Egi and

E3]. or 61- and 6,- and E4). and 6j would be high for every large networks. If the network

is aggregated back to internal buses in an attempt to obtain equivalent connections
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between (6,, th.) and (61-, EU), all information on the controllability and Observability

prOperties of the network will be lost. The loss of this network controllability and

Observability information loses information on (a) the weak interfaces and boundaries

where loss of stability occurs and can be prevented by real and reactive power flow

constraints, and (b) the boundaries where FACTS based controls should be sited and

measurements taken.

The disconnectivity or irreducibility property does not define what is meant by

strong local input and output connectability. These definitions will be defined based

on the strong locally disconnected network. The procedure for determining the iso-

lated bus groups in the strong locally disconnected network will ultimately determine

what generator dynamic states and network algebraic states are strong local input

connectable from a certain input and strong local output connectable from a certain

output.

3.6 Final Results

3.6.1 Definitions, Examples, and Discussions

It is clear from the results of Chapter 2 and previous sections on the n generator

case that all the states of the generator and the network (Az,Ay) would be input

connectable from AE13'. and from APM, and output connectable from some measure-

ment Az if the network is irreducible. However, in practice there are branches in

the network with weak coupling where the reactive power transfer in this branches

is small. Thus, results on practical power systems need to be obtained. In order to

obtain these meaningful results, a set of definitions are proposed.

Definition 6 The dynamic network of a power system cAy = JAy is called discon-

nected if the clusters of isolated bus groups in 8P/09 and the clusters of isolated bus

A
_

.
i
l
'

 



57

groups in aP/av have common boundaries (clusters of isolated bus groups in 6Q/39

has common boundaries with BP/Bv and clusters of isolated bus groups in aQ/av

have common boundaries with 8P/89 since the absolute values of the ofl' diagonal

elements are the same).

In order to have a better picture about the definition of a disconnected network,

some remarks and examples are given below.

1. The power system network is disconnected if all four matrices 913/39, aP/av,

0Q/99, and BQ/av have isolated bus groups with the same boundaries. Since

the ij and ji off diagonal entries of 6P/69 and BQ/av are identical and the

absolute values of ij and j i off diagonal entries in BP/Bv and 9Q/99 are identical

based on the jacobian definitions in Costi [13], clusters of bus groups with

common boundaries need to be established only in 0P/69 and BP/av (or 3Q/09

and 9Q/8v).

2. The isolated groups of buses in 8P/39 and BID/av (6Q/39 and aQ/Bv) need

not have common boundaries and the dynamic network would not be considered

disconnected. For example, see Figure 3.4.
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Figure 3.4. No Common Boundaries
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3. If there are common boundaries between groups of buses in 8P/89 and aP/av

(9Q/89 and aQ/av), not all groups need to have common boundaries. For

example, the first bus group in 9P/99 and BP/Bv in Figure 3.5 have a com-

mon boundary and thus the network is disconnected in the pattern observed

in 9P/69. The last isolated group is BP/Bv has no similar isolated group in

6P/99 and thus the network is not disconnected along the boundary of the last

group in aP/av.

Legend:
 

 

- common boundaries
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Figure 3.5. One Common Boundaries

4. Since bus groups in ZIP/99 can be broken into more than one isolated subgroups

in BP/Bv and vice versa (see Figure 3.6), one or more isolated bus groups in

9P/69 can have common boundaries with one or more isolated bus groups in

aP/av.

5. When the power system is decoupled the absolute values of each of the off

diagonal elements of both BID/9v and 8Q/99 are less than c, where e is a small

number greater than zero. Then, the elements on 0P/9v and 9Q/39 are just

diagonal matrices and every bus is isolated in BP/Bv and 8Q/69 networks.

“
-
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Legend:
 

I - common boundaries

  

  
Figure 3.6. One or More Common Boundaries

Thus, the isolated groups of buses in 9P/99 (or the isolated groups of buses in

6Q/6v which are identical) are disconnected.

Definition 7 A control area is a minimum size cluster of groups of buses in the

619/39 and in the aP/Bv (0Q/39 and 6Q/6v) networks which have common bound-

aries.

Definition 8 Given the linearized network and load system

cAy = JAy

where

M = (AaT.AaT.AeT.AeTI

 

8P 8P

J ._ a- e r:
— 6y- Q 92]

89 av

with initial equilibrium point (xo,yo) and some set 9 containing (xo,yo), the dynamic

network and load system is called a strong locally disconnected network in Q if the

control areas produced by applying the following procedure to matrix J at the equilib-

rium point and at every point in the set {I are the same:
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1. Rank order the absolute values of the ofl' diagonal elements ofBP/39 and 0P/0v

on each row of [6P/69, aP/av] from the smallest to the largest. Note, rank or-

dering the absolute values of the of diagonal elements of 0Q/99 and aQ/av

on each row of [BO/99, aQ/Bv] from the smallest to the largest would produce

an identical ordering of the ofl diagonal elements for corresponding rows of

[BF/09,6P/6v] since 9P/39 and 0Q/3v have identical ofl diagonal elements

and BP/Bv and 0Q/89 have identical absolute values of the of diagonal ele-

ments [58].

2. Sum those ordered ofl diagonal elements in each row of [8P/09,0P/6v]

3. Then eliminate the elements in this sum from the network if the sum is less

than some value ad where d is the largest diagonal element of matrix J and a

is some arbitrary small positive constant.

4. Order the buses in the reduced network to produce diagonal block matrices in

the 819/69, aP/av, 0Q/39, and aQ/av respectively.

5. Control areas are clusters of isolated groups of buses in the 0P/09 and in the

6P/9v(6Q/99 and BQ/av) of the reduced network which have minimum size

and common boundaries.

It should be noted that when a = 0 the whole network is in one area and all the

states are connectable. When a value is much greater than zero, then there are many

control areas with single bus. Thus, a value must be chosen properly.

Strong locally disconnected network implies that the connections within discon-

nected bus groups are strong and that the connections between bus groups is weak

and is neglected for all state variation (xo,yo) in some local set (I. The following

remarks may help clarifying the definition above:

 v-.
.
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1. When the system is stressed, the group boundary is weakened. Thus, it requires

a smaller 0 value to detect that group boundary.

2. When the system is decoupled, the control areas are determined by applying

the procedure or algorithm above to 0P/39 rather than both 0P/69 and 3P/6v

or to 6Q/(9v rather than both 3Q/39 and aQ/fiv

3. An algorithm similar to the one proposed [20, 21, 22] has been used to define

coherent groups of generators that can be aggregated to produced a reduced

order model. The model used classical generator model and the network was

aggregated back to internal generator buses. The reduced order model was

shown to be the model of the slow dynamics in a singularly perturbed power

system model. It has been shown that the same groups of generators are ag-

gregated if the controllability and Observability grammians were used to define

the coherent groups are singular. Since coherency used in [20, 21, 22] is a lack

of controllability in groups of buses that do not contain the disturbance, the

approach for local controllability is defining the loss of controllability of fast dy-

namics in coherent groups of generators which do not contain the disturbance.

This type of controllability was restricted to a power system model that did not

include generator electrical and exciter dynamics. The reduced order models

produced based on loss of local controllability were excellent approximations to

the full system model.

4. An algorithm similar to the one proposed in this thesis has been used to define

voltage control areas for study of loss of voltage stability [58, 59, 60]. The

algorithm was only applied to BQ/av network in a model where mechanical

and electrical generator dynamics were ignored. It was shown that groups of

buses in a voltage control area acted as a single bus in terms of their voltages

and angles at any operating conditions and in terms of changes induced by
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any disturbances or contingencies. All of the branch outages that were found

to cause voltage collapse belong to the voltage control area boundaries that

were identified as having weak coupling in 9P/99, aP/av, 0Q/69, and 9Q/9v

networks. It is clear that when a system is close to loss of voltage stability the

coupling in BP/av and 6Q/09 can no longer be ignored. The procedure for

determining strong local control areas is thus a generalization of the algorithm

for determining voltage control areas, which is valid even when the system

approaches voltage collapse.

Definition 9 Given a strong locally disconnected network for all states x,y E Q, a

minimum size cluster of groups of buses in the 8P/09 and in the BP/av (BO/69 and

aQ/av) networks which have common boundaries is called a strong local control area

in!)

Notes: Strong local control areas are defined the same as control areas but in term

of the bus clusters produced from a strong locally disconnected network rather

than the disconnected network.

Definition 10 All of the states of generators and network in some subsystem are

strong local input connectable for all x,y E Q as long as there is a path from input

APM, or AEfdi for any generatori in the flow direction to the states of generator i,

every bus in the subsystem network, and to the states of every generator connected to

this subsystem network Vx, y E 9.

Definition 11 All of the states of generators and network in some subsystem are

strong local output connectable for all x, y 6 Q as long as there is a path from output

A2 for anyi in the opposite direction of the flow to each states of generator i, every

bus in the subsystem network, and to the states of every generator connected to this

subsystem network Vx, y 6 Q.
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Definition 12 A power system is said to be strong local controllable at to for all

x,y 6 9 if it is possible to find some input that belong to the strong local control

area, defined overt 6 [to,t;], which will transfer the initial state x(to),y(to) in some

subspace of [x(t),y(t)] corresponding to a strong local control area to the origin at

some finite time t, E [to,t,],t, > to Vx,y E 0.

Definition 13 A power system is said to be strong local observable at to for all

x,y 6 0 if the state x(to),y(to) corresponding to the strong local control area can be

determined from the output or measurement yum,” in that strong local control area

for to 6 [to,t,], to S t, and all x,y 6 Q, where t, 6 [to,t;]

3.6.2 Results

It is clear now that for any irreducible non-aggregated network, the system is input

connectable from APM, or ABM. and output connectable from A2 eventhough the

network and load equations are added. However, if the network is reducible, then only

the states of all generators and network of the isolated system are input connectable

from APM, or AEldg and output connectable from A2 where ABM“ AEfdi, and A2

belong to the isolated system.

Lemma 7 Given a differential equation model and output equation then all the states

y of the network in a strong local control area, all the states of generator i, and all the .

states of other generators connected to this strong local control area 5 are strongly local

input and output connectable from APM, or AB“, and A2 for any i and Vx,y 6 fl

' Proof: See proof of Lemma 5 and Lemma 6 since the proof is identical except that

this Lemma is being applied to the strong local disconnected network and Lemma 5

and 6 are proved for the global power system network. D
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Theorem 3 Given a strong local control area of a power system where the dynamic

states of all generators and the algebraic states of the network are strongly local input

connectable from any generator’s input and strongly local output connectable from any

measurement from that strong local control area Vx, y 6 It, then the system is strongly

local controllable and observable Vx,y 6 9.

Proof: Use Jamshidi’s Theorem [31] U



CHAPTER 4

Applications

The research to be reported on in this thesis

1. directly addresses strong and weak controllability (Observability) of power sys-

tems for the first time;

2. determines strong controllability (Observability) for a model that includes gen-

erator electrical and exciter dynamics along with the generator mechanical dy-

namics;

3. determines strong controllability (Observability) for a model that includes both

generator dynamics as well as network algebraic states. The previous work only

utilized models where the network was aggregated back to generator internal

buses.

Determining the network states as well as the generator dynamics states that are

strongly controllable and observable utilizing a particular control and measurement

is quite important in the following applications.

65
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4.1 , Weak Transmission Stability Boundaries

A recent paper [36] has indicated that the weak steady state angle stability boundaries

may also be vulnerable to voltage collapse, inter-area mode of oscillation, and multiple

swing loss of transient stability due to faults. Those weak boundaries are often

undetected by utility planner or operator either

1. because they have developed due to contingencies or unanticipated operating

changes, or

2. because the planner or operator is asked to address stability problems in a large

interregional data base for which he or she has little knowledge or experience,

01'

3. because the computation and manpower required to establish stability bound-

aries may prohibit the exhaustive set of stability runs and careful analysis and

comparison needed to establish these weak boundaries.

The algorithm for determining strong local control areas, presented in the previous

chapter, is based on the weakness of the elements in the network load flow jacobian

matrix. Thus, the actual weak transmission network branches and boundaries of

the transient stability model are directly identified as we determine the strong local

control areas. These weak boundaries between control areas experience large angle

deviations for inertial load fiow simulation of all loss of generation contingencies.

The same weak boundaries can experience a loss of synchronism for any specific

loss of generation contingency or a loss of synchronism (stability) for a specific fault

contingency. The identification of such weak boundaries is impossible in [54, 56, 38,

61, 47] since the network is aggregated back to internal buses. The identification of the

actual weak boundaries that lose stability for faults or loss of generation contingencies

is essential to the development of improved dynamic security assessment methods.
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First, one must know the branches that belong to weak boundaries and the operating

conditions that cause the weakness of particular weak boundaries in order to most

effectively remove the weakness and thus improve system security. Second, recently

developed methods for characterizing the region stability for a topological transient

stability model [4, 7, 62, 63, 65, 8] place conditions on the potential energy or angle

and voltage differences on the set of branches in a weak boundaries that encircle

a group of buses. In order not to have to test these topological transient stability

conditions for a particular fault on all transmission system weak boundaries (which

is clearly computationally impossible), the weak boundaries that are weak and most

vulnerable to loss of stability must be identified. Furthermore, if the branches that

lie in the weakest steady state and transient stability boundaries are known, it is easy

to develop security constraints on transfers across these boundaries (or power flows

across particular elements). These transfer constraints will reduce vulnerability to

loss of steady state stability and loss of transient stability.

Research [47, 48] has shown that loss of transient stability may occur between

coherent generator groups identified by singular perturbation techniques [56, 2] if

the fault lies within a group of coherent generators that would be identical to those

determined in this thesis if the load flow decoupling assumption holds as explained

in the previous chapter. The research on topological methods for direct stability

assessment [4, 65] has shown that loss of synchronism for faults occurs across actual

network weak boundaries. The results in [65] indicate that the actual transmission

network obeys a quasi equal area criterion. The actual network weak boundaries

that experiences loss of synchronism for a fault is the one that can not accommodate

the flow changes required to exhaust the acceleration energy developed during the

fault period. This weak boundary can be the weak boundary surrounding a group of

coherent generators if the fault occurs within the group. Identifying and strengthening

the weak transmission network stability boundaries is thus a more direct method
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of improving transient stability margins when loss of synchronism occurs between

coherent generator groups than trial and error procedures.

Recent research on voltage stability [58, 60, 64] has shown that the Q-V curve is

nearly identical if computed at any bus in a control area. However, the Q-V curve

computed in different control areas has quite different shapes, exhausts reactive supply

and voltage control reserves at different rates, and exhausts different reactive supply

and voltage control reserves at the minimum of the Q-V curve, which is the point

where voltage collapse occurs. Thus, each control area is protected by a uniquely

different set of controls as the theory suggests. When the reserves that maintain

the control area as voltage collapse secure are exhausted, voltage collapse occurs as.

a result of the loss of strong controllability in that control area. Thus, the weak

boundaries restrict the reactive supply and voltage control resources that protect a

control area. Hence, strong controllability and Observability insure prevention of loss

of transient stability, loss of steady state angle stability, and voltage collapse.

4.2 FACTS Controllers

Only the generator and network controls within a strongly controllable group of buses

can cause the algebraic states at those buses and the generator dynamic states for

generators connected to those buses to be strongly controllable. Since inter-area os-

cillations are hypothesized to occur between two or more strongly controllable groups

of buses, the excitation controls and network controls in each of the strongly control-

lable groups of buses need to be coordinated to damp inter-area oscillations if all the

states in both groups of buses associated with these oscillations are strongly control-

lable and observable. Since the controls in different strongly controllable bus groups

do not currently share measurements, the states associated with inter-area oscilla-

tions will not necessarily be strongly observable to controllers in either control area.
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Since the controls in the two strongly controllable bus groups are not necessarily co-

ordinated, the states associated with the inter-area oscillation may not be effectively

controlled eventhough coordinating the controls in each strongly controllable groups

would theoretically make the inter-area oscillation strongly controllable. It should

be noted that a control in each strongly controllable bus group is necessary to make

all the states associated with an inter-area oscillation strongly controllable. FACTS

controllers placed on lines in boundaries between strongly controllable groups of buses

can make all the states associated with an inter-area oscillation strongly controllable

using just one control since the flow is a control to both strongly controllable bus

groups. A single flow measurement on interfaces between strongly observable groups

of buses will make both the algebraic and dynamic states of generators in strongly

observable bus groups strongly observable since the flow measurement will be a mea-

surement for both strongly observable bus groups. Taking measurements of interface

flows between areas have indeed been shown to be far more effective in damping

inter-area oscillations using either excitation controls, SVC controls, or FACTS series

capacitor or phase shifter controls [26, 27]. Thus, knowledge of the strongly control-

lable and observable bus groups and the interfaces should make the design of FACTS

and non-FACTS controllers more effective.

4.3 MASS/PEALS PrOgrams

Currently, all of the eigenvalues of a power system can not be computed since the

computational burden is too great. The power system is dichotomized and the eigen-

values for each piece is computed using a program called MASS. The power system

is then aggregated and the effects of the reconnection of the pieces is used to modify

the eigenvalues obtained for each piece. The accuracy of this procedure depends on

breaking up the system along the boundaries of strongly controllable and observable



70

bus groups. If the separation between the fast and slow subsystem is sufficiently

broad, then the eigenvalues affected by the dichotomization are solely in the slow

subsystem and are not eigenvalues of both fast and slow subsystem. At present there

is no method of determining the boundaries between strongly controllable and ob-

servable bus groups. The methods only indicate the groups of generators which are

in each strongly controllable and observable bus group. The algorithm to be devel-

oped for identifying strong controllability and Observability of both network algebraic

states and generator dynamic states is the first procedure for determining how to

dichotomize the buses and generators so that the eigenvalues of the power system

obtained after reconnecting the pieces are accurate.

4.4 Underfrequency Relay Breakers

Underfrequency relaying procedures attempt to break up the system into survivable

pieces when the system is experiencing a net generation load mismatch. The real

power generation level must be decreased in islands which have surplus generation,

load must be shed in islands where generation is insufficient, and voltage controllers

must be readjusted so that the voltage will be stable and at sufficiently high values.

It is clear that each of the islands must be composed of one or more strongly control-

lable and observable bus groups in order that there is sufficient control to accomplish

settling to a stable equilibrium. The controls would include real power generation,

load at certain load buses, switchable shunt capacitors, excitation controls on gen-

erators, SVC’s, etc. It is not sufficient to just be controllable (observable) at some

equilibrium points but to have sufficient control reserves so that the islands remain

strongly controllable (observable) until an equilibrium is reached.

 



CHAPTER 5

Simulation Results on Inter-area

Oscillations

5.1 Objectives

1. To prove that low frequency electromechanical oscillation modes are oscillations

of strong local control areas against one another. These oscillations occur across

the weak transmission boundaries determined from 9P/89 or aQ/av when the

coupling BPg/avj and GQg/GGJ' on the weak transmission boundaries equals the

values of 6P,/69,- and BQg/ij.

2. To prove that the operating conditions where these inter-area oscillations occur

can be detected through the jacobian matrix of aggregated network model using

the algorithm for determining strong local control areas.

5.2 Types of Oscillation Modes

For many years, several utilities around the world have observed that electro-

mechanical oscillations between interconnected synchronous generators are the main

problem in power system operation. These oscillation modes can be categorized into

71
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two types [35]:

1. Local Modes

2. Inter-area Modes

5.2.1 Local Modes

Local modes are oscillations between single generator in the same area with frequency

around 0.8 to 2.0 Hz. [35]. Designing the control for the stability of these kind of

oscillations is no longer a problem since all the characteristic and behavior of these

oscillations are well understood [37]. Thus, the stability of these oscillation is not

really a big concern in term of security of the power systems.

5.2.2 Inter-area Modes

Inter-area modes are oscillations between groups of generators in different areas with

frequency of oscillation around 0.1 to 0.8 Hz. [35]. Recently, many utilities around

the world have observed that inter-area modes occur over large geographical region.

Moreover, designing the control for the stability of these modes is a difficult and

unresolved problem as explained in the previous chapter. There are actually four

different types of inter-area modes :

1. Horizontal Modes - where the groups of generators oscillate against each other

(horizontally).

2. Horizontal-Vertical Modes - where the groups of generators oscillate against each

other (horizontally) and oscillate against the reference (vertically).

3. Adjacent Mode Coupling - where several adjacent groups of generators oscillate

against each other.
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4. Non-adjacent Mode Coupling — where one set of adjacent groups of generators

causes oscillations within another set of adjacent groups of generators which is

not directly connected to the first set of adjacent generator groups.

The first two above will be shown and analyzed using the two area power system

model taken from [35], the latter two are beyond the scope of this research. The

EPRI Small Signal Stability Program Packages (SSSP) isused to perform the modal

analysis. This program is capable of calculating all the eigenvalues, eigenvectors, and

participation vectors for reasonable sized power systems. This program is the best

tool available for identifying the frequencies, damping, mode shape, and participation

of the generators that experiences the low frequency electromechanical oscillations.

5.3 Simulation Results on Two Area Power Sys-

tem Model

5.3.1 Two Area Power System Model

The ten bus power system model shown below in Figure 5.1 consists of two identical

areas connected through weak tie lines. Each area consists of two identical generating

units which have the same power outputs. The dynamic data for the generators is

shown in Table 5.1 . There are two different types of exciters used in this simulation

studies (see Figure 5.2 and Figure 5.3) and the excitation systems data are shown in

Table 5.2 and Table 5.3 respectively. The base case system is made to be symmetric

so that the effect of varying different factors on the inter-area modes and mode shapes

can be seen clearly. It should be noted that all of these models and data are taken

from [35].
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5.3.2 Horizontal Modes

In the first case, we used identical detailed generator model and fast static exciter

models for all four generators in the system. Moreover, the load in area 1 is identical

with the load in area 2 and there is no power transfer through the tie lines. A constant

impedance load model is used to represent all the loads in this particular study. In

this case 1, we have six oscillatory electro-mechanical modes as shown in Table 5.4 and

there are some interactions between them. The lowest frequency mode (0.7667 Hz.)

is the inter-area mode to be investigated. The corresponding eigenvector magnitude

and phase and the participation vector are shown below in Table 5.5. Generator 1

(GEN 1) and generator 11 (GEN11) are dominant since the rotor speed state (DG 1)

and rotor angle state (DG 2) of these two generators have the maximum participation

vector magnitude. Generator 1 and 11 are oscillating against one another since the

eigenvector for angle and speed on the two generators are 180° apart. Generator 2

and 12 oscillate one another since the participation vector elements for angle and

speed on the two generators are identical and the eigenvector components for angle

and speed on the two generators are 1800 apart. Generators 1 and 2 swing together

against generators 11 and 12 since the eigenvector components for generators in the

same group have nearly the same phase but with slightly different magnitude.

In case 2, we tripped two out of three tie lines. Six oscillatory electromechanical

modes are obtained and are associated with interactions between the four generators

(see Table 5.6). In Table 5.7, the corresponding eigenvector magnitude and phase

and the participation vector magnitude of the low frequency (0.5217 Hz.) inter-

area mode is given. Generators 1 (GEN 1) and 11 (GEN11) are again the most

dominant generators in the system and they are oscillating against each other. It

is also clearly shown that the rotor speed state and the rotor angle state have the

maximum participation vector magnitude. Generators 1 and 2 again oscillate against
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Table 5.1. Synchronous Generator Dynamic Data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R, 0.0025

X, 1.8

X, 1.7

X, 0.2

X; 0.3

X; 0.55

Xg’ 0.25

X: 0.25

Tdo 8.0 8

T9,, 0.03 s

Ta]:J 0.40 8

T5, 0.05 s

H 6.5

RATING 900 MVA       

Table 5.2. Fast Static Exciter Data

 

KA 200.0
 

 

 

 

     

T3 0.01

To 0.0

T3 0.0

T, 0.0
 



79

Table 5.3. Slow Exciter Data

 

 

  

 

 

 

 

 

K3 250.0

TA 0.055

T}; 0.36

Agx 0.00555

BEX 1.075

Kp 0.125

TF 1.8

T}; 0.01       

generators 11 and 12. The generators 1 and 2 and generators 11 and 12 oscillate more

as a single generator since the participations of the generators in each group are closer

together. The magnitude of the frequency component of all the eigenvector on all four

generators is much larger indicating the damping has been reduced. The damping

on the inter-area mode decreased (0.0106 to 0.0033) comparable to the increase in

reactance of the equivalent transmission line (0.22/3 to 0.22). The frequency of the

inter-area mode only decreased from 0.7667 to 0.5217 due to loss of two of the three

parallel transmission lines. The results of the time domain simulation (Figure 5.5 and

Figure 5.6) confirm the results from the eigenvalue/eigenvector analysis of the above

test cases. ‘

It should be noted that Table 5.5 and 5.7 only show those state vector elements

with participation vector or eigenvector magnitude greater than 0.2. The structure

of Table 5.4 - Table 5.7 are typical of those produced by the SSSP program taken

from [69].

The effect of increasing the tie line impedance on the mode shape is now sum-

marized. As we can see from Table 5.5, the generator 1 and 2 and generators 11

and 12 oscillate in anti phase and the amplitude of the oscillation is exactly equal.

These results are produced in both cases since the system is symmetric with no power
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Table 5.4. Electro-Mechanical Modes for Case No. 1

 

 

 

 

 

 

 

 

[[Modes [ Eigenvalue ] Frequency] Damping Ratio [I

1,2 -0.6253X10'4 :i: J0.09155 0.0146 0.0007

3,4 -0.0509 :1: 14.817 0.7667 0.0106

5,6 -0.9831 :1: J8.092 1.2879 0.1206

7,8 -0.9875 :1; 38.231 1.3101 0.1191 n

15,16 -17.87 :t 317.57 2.7966 0.7130 ||

17,18 -19.11 :I: J11.17 _ 1.7777 0.8634 [I      
 

Table 5.5. Selected Participation Vector and Eigenvector Elements of the Inter-area

Modes (3,4)

 

 

 

 
 

 

 

 

 

 

      

System Bus No. Stations Local Participation Eigenvector ll

State Name State Vectg:

x1 1 GEN 1 DG 1 1.0: 1.414 10°

1:; l GEN 1 DG 2 1.0 0.294 t269.4°

x8 2 GEN 2 DG 1 0.607 1.049 t12.2°

x9 2 GEN 2 DG 2 0.607 0.217 £281.7"

x15 6 GEN11 DG 1 1.0 1.414 [180°

x16 6 GEN11 DG 2 1.0 0.294 [894°

x22 7 GEN12 DG 1 0.607 1.049 tl92.2°

x23 7 GEN12 DG 2 0.60L 0.217 £101.7°  
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Table 5.6. Electro-Mechanical Modes for Case No. 2

 

 
 

 

 

 

 

 

 

 

     

Modes Eigenvalue [ Frequency [ Damping Ratio I]

1,2 -0.5232x10"‘ :1: 30.09307 0.0148 0.0006

3,4 -0.01069 :1: J3.278 0.5217 0.0033

5,6 -1.013 :I: J8.081 1.2861 0.1244

7,8 -1.018 :1: 18.133 1.2943 0.1242

15,16 -18.05 2‘: ]17.62 2.8040 0.7155

17,18 -18.52 :1: J15.00 2.3872 0.7771  
 

 

Table 5.7. Selected Participation Vector and Eigenvector Elements of the Inter-area

 

 
 
 

 

 

 

 

 

 

 

 

Modes (3,4)

System Bus No. Stations Local Participation Eigenvector

State Name State Vector II

x, 1 GEN 1 DG 1 1.0 1.414 [180°

x2 1 GEN 1 DG 2 1.0 0.431 [89.9°

x8 2 GEN 2 DG 1 0.8 1.225 [184.8°

x9 2 GEN 2 DG 2 0.8 0.374 [94.6°

x15 6 GEN11 DG 1 1.0 1.414 [0°

x16 6 GEN11 DG 2 1.0 0.431 [2699"

$22 7 GEN12 DG 1 0.8 1.225 (4.80

x23 7 GEN12 DG 2 0.8 0.374 [274.6°         
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transfer through the tie lines. The normalized eigenvector components corresponding

to the rotor angle speeds are shown below in Figure 5.4. From Figure 5.4, we can

see that the generator units oscillate against each other (horizontally) and there is

not much difference between the system with three tie lines and the system with only

one tie line. However, the frequency and the damping are reduced by a significant

amount as the tie line impedance increases.

Table 5.8. Summary of Case 1 and 2

 

 

 

 

 

 

       
 

 

 

  

Power Flow Generation/Load

Area 1 to 2 l Frequency Damping

(MW) Ties Area 1 Area 2 (Hz.) _ Ratio

0 3 1400/1367 1400/1367 0.7667fi 0.0106 ||

0 1 1400/1367 1400/1367 0.5217 £03”

GEN 2

GEN 2

GEN 1 GEN 1
EN12

GEN 12 G

(a) (b)

Figure 5.4. The Normalized Speed Eigenvector for (a) Case 1 and (b) Case 2
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4 6 8 10 12 14 16

TIME (SECOND)

Figure 5.5. Power Output of GEN 1 and GEN11 (1 Tie Line)

 

    
   
4 6 s 10 12 14 16

TIME (SECOND)

Figure 5.6. Power Output of GEN 2 and GEN12 (1 Tie Line)
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It will now be shown that inter-area oscillations occur between strong local control

areas. Furthermore, it will be shown that these inter-area oscillations can be detected

through the jacobian matrix of the network using the algorithm for determining strong

local control areas developed in this thesis. The algorithm developed in [58, 60] was

applied to the aQ/av network to determine voltage control areas. The algorithm

presented in this thesis applies the same algorithm used in [58, 60] to [662/66 0Q/av].

The results show that the control areas produced by the two algorithms are identical

as long as the assumption of the load flow decoupling is valid so that elements in

aQ/Bfi are small. Table 5.10 show that the same control areas (see Table 5.9) can

be produced from the two algorithms but the a values for the algorithm developed

in [58, 60] (ALG 2) are smaller than the a values for the algorithm developed in

this thesis (ALG 1). These results are due to the lack of validity of the decoupling

assumption when there is real power transfer.

The aQ/av or aP/aa terms will no longer dominate in the results of the next

subsection as the system is stressed by increasing the power transfer through the tie

lines. The a values required to determine the same control areas for the algorithm

developed in this thesis will increase to a maximum and then decrease as power

transfer increases. However, the a value required by the algorithm of [58, 60] to

determine the same control areas will decrease with increased power transfer. This

decrease in a values indicates the weakening of transmission boundaries in aQ/av

and 6P/00 with increased real power transfer.

As we can see from Table 5.10 and Table 5.9, both methods agree on groups

of buses. Moreover, these groups also agree with the above eigenvalue/eigenvector

analysis and time domain simulation results. We also see that when the number of

tie lines decrease, the a value increases. This 01 value in this case can be used as a

measure of the frequency of the inter-area mode.



85

Table 5.9. Control Areas that Oscillate against each other in the Inter-area Mode

 

I] Bus No. 1 Bus Name 1 Area No. I]

GEN 1 l

GEN 2

HST]

HST2

LOADl

GEN11

GEN12

HSTll

HST12

LOAD2
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Table 5.10. a Values to Produce Two Control Areas for the Two Algorithms

 

 

 

 

 

Power Flow 0 Values

Area 1 to 2 Exciter

(MW) Ties Type ALG 1 ALG—

0 3 Fast 0.000401 0.000370

0 1 Fast 0.000428 0.000388         
 



86

5.3.3 Unstable Horizontal Modes

In this test case, identical detailed generator units and fast static exciter models are

used and these models are the same as those used in test cases 1 and 2 in the previous

section. The generator power output and the load in both areas are not identical

because a power transfer from area 1 to area 2 is established. A constant impedance

load model is used. The frequency and damping of the low frequency mode is shown in

Table 5.11 as transfer level is increased. Note that this low frequency mode becomes

unstable at a transfer level exceeding 200 MW. Note that the frequency of the mode

decreases with the transfer which indicates the boundary between the two areas is

weaker with increased transfer. The results on time simulation, shown in Figure 5.7,

Figure 5.8, Figure 5.9, and Figure 5.10, agree with the eigenvector/eigenvalue analysis

and the method of identifying control areas (ALG 1).

Table 5.11. Frequency and Damping of the Inter-area Mode as Function of Power

Transfer Level

 

 

 

 

 

 

 

 

 

      

Power Flow

Area 1 to 2 Frequency Damping

(MW) Ties (Hz.) Ratio

0 1 0.5217 0.0033

50 1 0.5208 0.0025

100 1 0.5173 0.0012

150 1 0.5096 0.0002

200 1 0.4973 -0.0008

300 1 0.4534 -0.0013

400 1 0.3291 -0.003L   
 4—

Seven oscillatory electro-mechanical modes for the system are given in Table 5.12

for a 200 MW transfer level. The low frequency (0.4973 Hz.) modes’ participation

vector and eigenvector magnitude and phase are shown in Table 5.13. It is clear
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that generator 11 (GEN11) is oscillating against generator 1 (GEN 1) with a phase

difference on angle and frequency eigenvector components of 160° rather than the

1800 which existed when there was no power transfer. The magnitudes of these angle

and frequency eigenvector components on the pair of generators oscillating against

one another is no longer equal. When the mode is stable (transfer is less than 200

MW) the magnitude and phase difference of the angle and frequency eigenvector

components for pairs of oscillating generators increase with transfer. The complete

data for various power transfer levels can be seen in Appendix A.

Table 5.12. Electro-Mechanical Modes for 200 MW Transfer Case

 

 

 

 

 

 

 

 

   

Modes Eigenvalue Frequency Damping Ratio

1,2 0.2621 xlO’2 1:13.124 0.4973 -0.0008

3,4 -0.4445 x10“4 :1: 10.05719 0.0091 0.0008

5,6 -O.7677 :t 18.264 1.3152 0.0925

7,8 -1.186 :1: 17.961 1.2670 0.1473

15,16 -17.90 :t 117.75 2.8248 0.7101

17,18 -18.18 :1: 115.14 2.4095 0.7685

19,20 ~31.11 :1: 10.5571 0.0887 0.9998   
 

 

 



88

Table 5.13. Selected Participation Vector and Eigenvector Elements of the Inter-area

Modes (1,2)
m
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o

 

  
 

 
 

 

 

 

 

 

          

 

 

 

   

 

System Bus No. Stations Local Participation Eigenvector

State Name State Vector

2:1 1 CEN 1 DG 1 0.706 1.041 2163.3T

$2 1 GEN 1 DG 2 0.706 0.334 [733°

18 2 GEN 2 DG 1 0.528 0.798 [174.1°

1‘9 2 GEN 2 DG 2 0.528 0.255 [842"

$15 6 GEN11 DG 1 1.0 1.414 [0°

2:16 6 GEN11 DG 2 1.0 0.453 [270.0°

2:22 7 GEN12 DG 1 0.826 1.314 [359.5°

2:23 7 GEN12 DG 2 0.826 0.42 [269.6°

850 I T I T 1

W
800 gen 1’ — _

750 - _

700 r '-

650 -
_

600 ~ '1

550 -
-

500 l l l

4 6 8 10 12 14 16 18 20

TIME (SECOND)

Figure 5.7. Power Output of GEN 1 and GEN11 (150MW Transfer)
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Figure 5.8. Power Output of GEN 2 and GEN12 (150MW Transfer)
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Figure 5.9. Power Output Of GEN 1 and GEN11 (200MW Transfer)
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Figure 5.10. Power Output of GEN 2 and GEN12 (200MW Transfer)

The results shown in Table 5.14 tell us that real power/angle coupling and reactive

power/voltage coupling on the interface between control areas decrease with increase

of real power transfer level between these control area since the a value required to

identify control areas using the algorithm (ALG 2), that ignores real power/voltage

coupling and reactive power/angle coupling, decrease with increased transfer level

between control areas. On the other hand, the a value for the control area iden-

tification algorithm (ALG 1), that does not ignore real power/voltage and reactive

power/angle coupling, increases to a maximum and then decreases as transfer be-

tween the control areas is increasing. These results can be observed in Figure 5.11.

The increase in a value with transfer level is due to increased real power/voltage and

reactive power/angle coupling, that exceed the decrease of real power/angle and re-

active power/voltage coupling between the control areas as transfer level is increased.

The unstable inter-ar‘ea oscillation first occurs when the a value is maximum for the

control area identification algorithm (ALG 1) that includes real power/voltage and re-

active power/angle coupling. The a value at the maximum suggest real power/voltage

-
\
T
'
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coupling is as nearly strong as real power/angle coupling or that reactive power/angle

coupling is nearly as strong as reactive power/voltage coupling. The increase in cou-

pling of real power dynamics to voltage and thus reactive power dynamics introduces

negative damping torques which lead or lag mechanical torques on the mechanical

dynamics by 90° just as reactive power leads or lags real power by 90°. The change in

phase of the total torques (mechanical plus damping) is observed in a change in phase

on the frequency components of the inter-area mode eigenvector for each generator

associated with the inter-area mode of oscillation. The frequency component of the

eigenvector are in phase in each control area and around 180° out of phase between

control areas when the inter-area mode is stable. When the inter-area mode of oscil-

lation becomes unstable for increased transfer, the angle differences of the frequency

component of the eigenvector for generators in the same control area remain small

but the angle differences of generators in different areas change to 150° - 160° rather

than around 180°. The loss Of stability for this inter-area mode for increased transfer

occurs exactly when 0 reaches maximum in the control area identification algorithm

(ALG 1) and where real power/voltage coupling begins to exceed real power/angle

coupling in this simple example system.

5.3.4 Horizontal-Vertical Modes

In this test case, we also used identical detail generator units models but with slow

exciter models in the system. The load is also identical between area 1 and area 2 of

the system and the load is modeled as constant impedance load model. We have power

transfer from area 1 to area 2 through the tie lines and thus the system is becoming

an asymmetric system where the generator output and the load in both areas are

not identical. The frequency is reduced and damping ratio of the inter-area mode is

increased as power transfer level increases from zero when the system is stable. The

 



Table 5.14. a Values for Two Control Areas as Transfer Level Increases for the Two

Algorithms that Determine Control Areas

 

 

 
  
 

 

 

 

 

 

 

 

         
 

 

 

 

Power Flow 0 Values

Area 1 to 2 Exciter

(MW) Ties Type ALG 1 ALG 2

0 1 Fast 0.000428 0.000368,

50 1 Fast 0.000396 0.000389

100 1 Fast 0.000444 0.000387

150 1 Fast 0.0004487 0.000359

200 1 Fast 0.0004482 0.000353

250 1 Fast 0.000419 0.000297

300 1 Fast 0.000398 0.000258

350 1 Fast 0.000349 0.000172

400 1 Fast 0.000333 °'°°°147_.

0.00045 I .

0.0004\/

0.00035 P

0.0003 1-

0' 0.00025 r

0.0002 -

0.00015 -

00001 L J l l J l l   
0 50 100 150 200 250 300 350 400

POWER TRANSFER (MW)

Figure 5.11. a Values vs. MW Power Transfer for the Two Algorithms That Deter-

mine Control Areas when only Two Control Areas are Desired
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frequency and damping ratio are reduced as power transfer level is further increased

until the power system becomes unstable (see Table 5.15). The detailed results for

each power transfer level can be seen in Appendix B.

Table 5.15. Frequency and Damping of the Inter-area Mode as Transfer Level In-

creases

 

 

 

 

 

 

 

 
 

 

 

Power Flow

Area 1 to 2 Frequency Damping

(MW) Ties (Hz.) Ratio

0 1 0.6972 0.0074

50 1 0.6876 0.0104

100 1 0.6577 0.0197

150 1 0.6054 0.0299

200 1 0.5374 0.0030

250 1 0.4683 -0.1020

300 1 0.3524 -0.3045       
 

 

Now, we like to investigate the results when there is no power transfer between

areas through the tie lines. This result is similar to test case 1 except the fast

exciters are replaced by slow exciters. We have twelve oscillatory electrO-mechanical

modes when the transfer level is zero (see Table 5.16). The participation vectors and

eigenvectors magnitude and phase corresponding to the low frequency (0.6972 Hz.)

inter-area mode are shown in Table 5.17. It is clearly shown that generator 1 (GEN

1) and generator 11 (GEN11) are dominant in this mode. These generators oscillate

against each other as in the case of fast exciters. Moreover, we also see that the

generators in one area are oscillating in anti phase with the generators in the other

area (see Figure 5.12 a). Thus, we can view this as a horizontal mode as observed in

all previous test cases.

However, if we add 200 MW power transfer from area 1 to area 2 through the

tie lines, the mode shape changes significantly. The fourteen oscillatory electro-
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mechanical modes are shown in Table 5.18. In Table 5.19, the participation vectors

magnitude and eigenvector magnitude and phase of the low frequency (0.5374 Hz.)

is given. It is clear that generator 11 (GEN11) and generator 12 (GEN12) are very

dominant and are oscillating against the generators 1 and 2. We also notice that the

generators 11 and 12 in one area are oscillating against the two generators 1 and 2

in the other area with phase difference of around 75° rather than 180° (see Figure

5.12 b). We called these modes horizontal-vertical modes since the generators in each

area oscillate in the horizontal direction in Figure 5.12 b with different magnitude

so they oscillate against each other. Furthermore, they oscillate with sufficient phase

difference (75°) that Figure 5.12 b suggests that there is also a vertical or voltage

magnitude dimension to this oscillation. This can be observed in the Figure 5.18

and 5.19. Figure 5.18 shows the LOADl bus voltage oscillates against LOAD2 bus

voltage in anti phase with small magnitude since there is no power transfer and the

oscillation is controlled by the excitation systems of the generators. However, when

there is power transfer the LOAD] bus voltage oscillates against LOAD2 bus voltage

in phase with greater magnitude than with no power transfer (see Figure 5.19). This

oscillation between the bus voltages and the real power voltage dependent loads in the

two area has significant effect in the power exchange associated with the inter-area

mOde.

However, it should be noted that the horizontal-vertical modes are only on gen-

erators 11 and 12 since generators 1 and 2 have no observable oscillation in power

output (small participation).

These kind of results are as expected since we know that if we have good voltage

control in the system, we will keep vertical oscillations from developing. Moreover,

poor voltage control in the generation units will generally not cause vertical oscil-

lations to develop as long as there is no power transfer. However, if there is power

transfer, then vertical and horizontal oscillations between generating units will de-
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velop. The latest is what we see here in the test case where we have 200 MW or

more power transfer from area 1 to area 2 through the tie lines. The results above

from the eigenvalue/eigenvector analysis are confirmed by the results from the time

domain simulations shown in Figure 5.13, Figure 5.14, Figure 5.15, Figure 5.16, and

Figure 5.17 respectively.

Table 5.16. ElectrO-Mechanical Modes for NO Power Transfer Case

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fl Modes 1 Eigenvalue J Frequency 1 Damping RatEJ]

1,2 0.1905 x10-3 :1: 10.02281 0.0036 0.0084 1

3,4 -0.03223 :1: 14.381 0.6972 0.0074

5,6 -0.2252 :1: 10.2888 0.0460 0.6150

7,8 -0.2289 :t 10.3010 0.0479 0.6053

9,10 -0.6171 :t 10.5359 0.0853 0.7551

12,13 -0.8556 :1: 17.795 1.2406 0.1091

14,15 -0.9054 :t 17.905 1.2582 0.1138

16,17 -1.699 :t 11.122 0.1786 0.8345

21,22 -9.074 :1: 127.69 4.4063 0.3115

23,24 -9.138 :1: 127.87 4.4359 0.3116

25,26 -9.294 :t 128.14 4.4781 0.3136

28,29 -9.305 :t 128.15 4.4801 0.3139       
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Table 5.17. Selected Participation Vector and Eigenvector Elements of the Inter-area

Modes (3,4)

 

    

 

 

 

 

 

 

 

System Bus NO. Stations Local Participation Eigenvector

State Name State jector II

:61 1 GEN 1 DG 1 ‘1.0 1.414 40°

2:; 1 GEN 1 DG 2 1.0 0.323 [269.6°

$11 2 GEN 2 DG 1 0.538 1.100 [0.8°

x12 2 GEN 2 DG 2 0.538 0.251 [270.5°

2:21 6 GEN11 DG 1 1.0 1.414 [180°

2;; 6 GEN11 DG 2 1.0 0.323 [89.6°

x31 7 GEN12 DG 1 0.538 1.099 [180.8°

2:32 7 GEN12 DG 2 0.538 0.251 [90.5°      

 

  
  

Table 5.18. ElectrO—Mechanical Modes for 200 MW Transfer Case

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

[[ Modes I Eigenvalue T FrequencyIDanging Ratio H

1,2 0.8761 x10'°:1: 10.1403 0.0223 71.0062

3,4 -0.01028 :1: 13.377 0.5374 0.0030

5,6 -0.3020 :1: 10.3306 0.0526 0.6745

7,8 -0.3286 :1: 10.2749 0.0437 0.7671

10,11 07951 :1: 17.847 1.2488 0.1008

12,13 -O.8177 :1: 10.3557 0.0566 0.9170

14,15 -1.559 :1: 17.277 1.1581 0.2094

17,18 -2.441 :1: 11.515 0.2411 0.8496

21,22 -9.017 :1: 127.66 4.4014 0.3100

23,24 -9.195 i 127.85 4.4326 0.3135

25,26 -9.275 :1; 128.11 4.4743 0.3133

27,28 -9.367 :1: 128.16 4.4816 0.3156

29,30 -30.48 :1: 11.134 0.1805 0.9993

33,34 -38.49 :1: 33.131 0.0050 1.0000 1.  
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Table 5.19. Selected Participation Vector and Eigenvector Elements of the Inter-area

 

 
 
 

 

 

 

 

 

        
 

 

 

  

Modes (3,4)

System Bus No. Stations Local Participation Eigenvector

State Name State Vector

$1 1 GEN 1 DG 1 0.153 0.18 [75.2°

2:11 2 GEN 2 DG 1 0.117 0.286 [44.3°

2:21 6 GEN11 DG 1 1.0 1.414 [0°

$22 6 GEN11 DG 2 1.0 0.419 [269.90

3:31 7 GEN12 DG 1 0.637 1.139 [12.1°

2:32 7 GEN12 DG 2 0.637 0.337 [281.8°

GEN] GEN11

GEN11 GEN 2 GEN 1
<—¢ = b» i.—

GEN12 GEN l GEN2

  
(a) (b)

Figure 5.12. The Normalized Speed Eigenvector for (a)No Transfer and (b)200MW

Transfer
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Figure 5.13. Power Output of GEN 1 and GEN11 (NO Transfer)
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Figure 5.14. Power Output of GEN 2 and GEN12 (NO Transfer)
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Figure 5.15. Power Output of GEN 1 (With Transfer)

 

27 I I I I I I I

26 -
’genll’ — _

25 - -

24 -
..

23 4

22 -

21 b ,. ..

20 - .

19 — I J

w
a
g
o
v

  18 l 1 l 1 l l

4 6 8 10 12 14 16 18 20

TIME (SECOND)

_

 

Figure 5.16. Power Output of GEN11 (With Transfer)
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The results from the algorithm for determining strong local control areas are

shown in Table 5.20 and in Figure 5.20. These results also tell us that unstable inter-

area oscillation first occurs when the a value start dropping from the maximum from

the control area identification algorithm (ALG 1). However, in this case when the

inter-area oscillation becomes unstable for increased transfer, the angle differences of

generators in different areas change to around 60° rather than around 180°. This is

due to the combination of poor voltage control and power transfer which produces

vertical and horizontal oscillations. The vertical oscillation would not occur unless

a constant impedance load model is used since the load power could not vary if a

constant power load model is used.

5.3.5 Discussion

From all the test cases above, we have learned that power transfer from area 1 to area 2

in the system with constant impedance load and fast exciter models cause horizontal

-
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-
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Table 5.20. a Values for Two Control Areas as Transfer Level Increases for the Two

Algorithms that Determine Control Areas

 

 

 

 

 

 

 

 

 

         

 

 

 

   

 

   

Power Flow 0 Values ]

Area 1 to 2 Exciter

(MW) Ties Type ALG 1 ALG 2

0 3 Slow 0.000434 0000388"

50 3 Slow 0.000395 0.000387

100 3 Slow 0.000434 0.000379

150 3 Slow 0.000455 0.000354

200 3 Slow 0.000450 0.000317

250 3 Slow 0.000422 0.000264

300 3 Slow 0.000277 0.000090
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0.00035 -

0.0003 L

0 0.00025 P

0.0002 P
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Figure 5.20. a Values vs. MW Power Transfer for the Two Algorithms that Determine

Control Areas when only Two Control Areas are Desired
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inter—area oscillations. These horizontal oscillations occur without power transfer

between area 1 and 2. Moreover, good voltage control kept vertical oscillations from

developing and poor voltage control did not cause vertical oscillations in the inter-area

mode as long as there was no power transfer between areas. With power transfer and

poor voltage control in the system, poorly damped or unstable vertical and horizontal

oscillations will be produced in the inter-area mode. All of these phenomena can be

detected through the coupling terms in the jacobian matrix of the network.

When the system is unstressed, generating units in one area oscillate in anti-phase

to those in the second area regardless of the generators and exciters characteristics

but these oscillations are damped. However, when the system is under a stressed

condition, the damping of the inter-area mode decreases and can become unstable.

If the exciters are slow, vertical and horizontal oscillations are observed on this inter-

area mode but with fast exciters only horizontal oscillations are Observed on this

inter-area mode.

It should be noted that exciters also have impact on oscillations within areas. For

example,

1. Slow Exciters

The generating units oscillate with small difference in the magnitude and phase

of eigenvector components because the controls on different generators do not

”fight” for control within control areas.

2. Fast Exciters

The generating units can oscillate with large difference in the magnitude and

phase of eigenvector components because there is a big ”fight” over control of

voltage within a control area.

This method can be applied directly to a multi machine power system model

if there are oscillations between generators in one area against the generators in
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the rest of the system. Moreover, this method also can be applied directly to a

multi machine power system model if the generators in one area oscillate against

generators in the surrounding area. This method for detecting oscillation can not be

extended to a multi machine power system model with general pattern of inter-area

oscillations. However, the interface method of ranking contingencies in boundaries

may be appropriate approach. An interface measure

z: ”’01

C = fli—

p, Z lJiJ'l

Helm

Z vizGij +ilvi| 1041 0’61 609491 — 95 " 70')

5.15190

X Ivel lvjl lYijl 8in(9i - 91' — 70')

5.15qu

 

where

2' - bus in voltage control area p

j - bus in voltage control area q

Ipq - set of branches connecting voltage control area 10 and q

ng - flow of real power between branch 71

L3 - real power voltage jacobian on branch 21

can be an ideal measure for detecting when inter-area oscillation develop especially if

0,,- is small since then

2: 605(94 - 91' - 76')

C = 1.75190

pg 2: sin(0,- - 91' - 7,5)

1.75190
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If Cm were normalized by dividing the number of branches in the interface (NW), one

would have an indication of whether the angle across an equivalent line representing

the connection is approaching 45° which is indicated when g1:- z 1. This method can

be applied to either a transient stability model with an aggregated or non-aggregated

transient stability model. The control area algorithm discussed was applied to an

aggregated network transient stability model.

It should be noted that algorithm ALG 1, developed in this thesis, will indicate

that for a specified value of a, control areas can merge as the interfaces between the

control areas are stressed. This merging of control areas does not occur with algo-

rithm ALG 2 developed in [58, 60]. This result indicates real power angle coupling

or reactive power voltage coupling is reduced with stress, but the real power voltage

coupling and the reactive power angle coupling increase causing merger of control

areas in algorithm ALG 1. Although controllability as defined by algorithm ALG 1

can extend to several algorithm ALG 2 control areas as stress increases, this extension

of controllability can lead to loss of stability due to inter-area oscillations since the

coupling that causes this extension of controllability produces destabilizing damp-

ing torques whereas the normal real power angle or reactive power voltage coupling

produces stabilizing synchronizing torques. Thus, controllability defined based on

algorithms ALG 1 and ALG 2 help explain the development of inter-area oscillations

in terms of extension of controllability beyond the control areas defined by algorithm

ALG 2.

 



CHAPTER 6

Conclusions

This thesis develops a theory of strong controllability and observability of dynamical

systems; a controllability and Observability that can not be gained or lost for a par-

ticular subset of states (based on a particular set of measurements and controls) by

arbitrary small parameter changes in the original model. This theory is applied to a

dynamical model of the power system network, then to a power system transient sta-

bility model composed of the dynamic network model, generator models, and exciter

models.

A power system transient stability model with an irreducible network is shown to

be both controllable and observable. Although this theoretical result is correct, it is

impractical since measurements and controls are effective locally. Initially, a single

generator/exciter that includes both electrical and mechanical dynamics is shown

to be controllable and observable for all stable equilibrium points. Then the result

is extended to n generators/exciters but, as mentioned above, this is not practical.

Therefore, an algorithm that determines bus groups in a network (called control areas)

which would be strongly controllable and observable for all network and generator

states around the equilibrium point is developed.

Definitions of strong control areas, strong input and output connectable, and strong

local controllable and observable are defined. The term local is used here since the

106
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system is linearized around the equilibrium point and the results only apply to some

neighborhood around the equilibrium where the algorithm obtains the same control

areas. Under these definitions the states of all generators and states of the network

are strong local observable and controllable.

6.1 Detection of Weak Boundaries

As we have described above, this thesis develops a method for directly identifying

the control areas that have strong local controllability and Observability property for

measurements and controls at the buses within the control area. This method also

directly identifies the actual weak transmission network branches and boundaries of

the load flow and transient stability models. In addition, we have shown that loss

of transient stability, voltage collapse, and steady state angle stability can occur

as a result Of loss of controllability and Observability between control areas. Thus,

the knowledge of the control areas in a power system can indicate whether there is

sufficient voltage control to protect a control area from voltage collapse. Knowledge

Of the weak boundaries allows one to constrain real and reactive flows on these weak

boundaries. Such constraints can reduce the vulnerability of the system to loss of

transient stability, inter-area oscillations, voltage collapse, and steady state angle and

voltage stability.

6.2 Detection of Instability of Inter-area Oscilla-

tions

The simulation resultsfrom a previous chapter have shown that inter-area oscilla-

tions occur between strong local control areas and can be detected through the jaco-

bian matrix Of the network. It is shown that when the algorithm that includes real
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power/voltage and reactive power/angle coupling deviates from the algorithm that

ignores such coupling, unstable inter-area oscillations develop. These results indicate

that inter-area oscillation becomes unstable when the coupling between control ar-

eas is principally due to real power/voltage and reactive power/angle coupling rather

than real power/angle and reactive power/voltage coupling, the latter” dominating

when the inter-area oscillations are stable.

One can utilize the control area identification algorithm to identify control area

boundaries, that are vulnerable to unstable inter-area oscillation, as well as the level

of power transfer level where the unstable oscillation sets in.

6.3 Guidance for Siting the Measurements and

Controls

If we can measure the interface flow from our area to the other area (in the opposite

direction of the flow), then we can observe the other area and obtain the state estimate

of that control area as well as the state estimate of the area containing the swing bus.

Moreover, if we can control the interface flow from that area back into our area, then

we can control the states of the other area with respect to the area containing the

swing bus. Thus, it is possible to Show strong local input and output connectability

of both areas using the same input and output connectability argument used in the

Chapter 3. Using the Jamshidi’s theorem (Theorem 1) [31] we can say that both

areas are strongly local controllable and observable from measurement and control of

boundary flow. Thus, only one control and measurement is needed to achieve strong

local controllability and Observability. Strong local controllability and Observability

can also be achieved by putting controls in both areas and taking measurements in

both areas. However, this is not as effective as having measurement and control

of interface flow between the oscillating control areas. First, because one is not
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directly measuring or controlling the inter-area oscillation with other measurements

and controls. Second, measurements from both areas has to be transmitted to both

area controllers for the inter-area oscillation to be observable to both controllers.

moreover, controls in both areas have to be tuned in such a way such that they are

coordinated while controlling the inter-area oscillation over which these controls do

not have direct control. These controls must remain coordinated for all operating

conditions. Third, the cost is higher. Last, the design of the controller is much

more complicated. Therefore, it is clear why modulation of the real power flow on a

DC line is such an effective control for damping oscillations between areas since the

measurements used are flow measurements on the parallel AC line and the control is

the flow on the DC line.

The proper selection Of measurement and control can greatly assist in controlling

oscillations. The following examples Show how selection of measurement and control

can make all the states associated with an oscillation observable and controllable.

1. Suppose there are oscillations between two areas in the system and the rest

of the system including the swing bus are perfectly coherent with one of these

oscillating areas. Then, observing and controlling the states of the oscillating

area with respect to the swing bus should damp the oscillations.

2. If the oscillations occur between three areas where one Of these areas includes

the swing bus and the rest of the system, then one will not be able to damp the

oscillations without observing and controlling all the states of the two oscillating

areas with respect to the area containing the swing bus.

3. If there are several areas that are oscillating with respect to one area and with

respect to the area containing the swing bus, then the oscillations will not be

damped, unless one can observe and control the states Of his own area and the
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states of the several other oscillating areas in the system with respect to the

area containing the swing bus.

4. Finally, if there are oscillations between one area and each of the surrounding

areas where one of these areas is perfectly coherent with the area containing

the swing bus, then one will be able to damp the oscillations providing that

one can control and Observe the flow between his area and every surrounding

area (since the surrounding areas are observable and controllable based on the

measurement and control of each interface flow).

Thus, it is possible to damp all oscillations that occur between our area and all

other area when we have strong local controllability and Observability of all areas

including our area, due to measurements and control of interface power flow between

all these areas and our area.

6.4 Guidance for Designing An Effective Con-

troller

From the examples in the previous section, we can see that it is possible to damp

oscillations as long as all the oscillating areas have strong local controllability and

Observability. However, if the system is more complicated, say we do not have strong

local controllability and Observability in all the areas that have oscillations, then the

possibilities for damping the inter-area oscillations is very limited. For example, if

the oscillations occur between one area and another area that is separated where

there is no direct connection, then it is necessary to take measurements in both

areas and transmit this information to controllers in both areas in order to damp the

oscillations. However, when this is not feasible due to propagation delay problems in

communicating data between control areas, a hierarchical control may be required.
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Therefore, it is always possible to build an effective control for damping inter-area

oscillations if we have strong local controllability and Observability condition of the

states which are involved in that oscillations.

6.5 Future Work

Future work that could be undertaken as a result of this thesis are as follow:

0 Establish strong local controllability and Observability on large systems experi-

encing oscillations

0 Establish the measurement and control structure needed to damp those oscilla-

 tions

0 Design a control that

1. requires minimal state estimation

2. does not require knowledge of the model on-line

3. is robust with respect to

O parameter uncertainty and disturbances

O unmodeled dynamics

All the above requirements are important because state estimation of dynamic

states of the network, generators, and controls is too costly with current technol-

ogy and because the accuracy is in doubt due to delay problem. The Operating

condition of any power system is continually changing and thus updating the

model on-line for different and rapidly changing operating condition is compu-

tationally costly. Finally, there are some noise, disturbances, and unmodeled

dynamics in any power system model, the controls must be robust with respect
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to noise, disturbances, and unmodeled dynamics. Since the economic and politi-

cal costs of relying on such controls to preserve stability when components fail or

when the controls are not sufficiently robust to prevent instability are too high,

robustness must be theoretically and practically guaranteed and redundancy of

components must be high.
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APPENDIX A

SSSP Results on System With Fast

Exciter

Table A.1. Electro-Mechanical Modes for Test with 50 MW Transfer

 

 

 

 

 

 

 

 

 

fl Modes I Eigenvalue I Frequency J Da4mping Ratio ll

1,2 0.3955 x10" :1; 10.03454 0.0055 ‘0.0011

3,4 -0.0081 :1: 13.272 0.5208 0.0025

5,6 -0.9561 :1: 18.152 1.2975 0.1165

7,8 -1.062 :1: 18.065 1.2835 0.1306

15,16 -18.02 :1: 117.63 2.8051 0.7148

17,18 -18.48 :1: 114.99 2.3857 0.7766      
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Table A.2. Selected Participation Vector and Eigenvector Elements of the Interarea

Modes (3,4)

 

  
 

   

 

 

 

 

 

 

 

System Bus No. Stations Local Participation Eigenvector

II State _ Name i:State YECtOL II

x, __f GEN 1‘ DG 1 ’0192‘ 1.317 [l76.5°

3:2 1 GEN 1 DG 2 0.92 0.403 [86.4°

3:3 2 GEN 2 DG 1 0.734 1.12 [1826"

1:9 2 GEN 2 DG 2 0.734 0.342 [92.3°

$15 6 GEN11 DG 1 1.0 1.414 [0°

:16 6 GEN11 DG 2 1.0 0.432 [269.9°

1:22 7 GEN12 DG 1 0.804 1.244 [3.7°

$23 7 . GEN12 DG 2 0.804 0.38 [273.6°       
 

 

Table A.3. Electro—Mechanical Modes for Test with 100 MW Transfer

 

 

 

 

 

 

 

 

 

II Modes I Eigenvalue I Frequency I Damping Ratio II

1,2 -0.6893 X10"4 :1: 10.120 0.0191 0.0006

3,4 -0.3967 X 10"2 :1: 13.250 0.5173 0.0012

5,6 -0.8886 :1: 18.193 1.3039 0.1078

7,8 -1.107 :1: 38.029 1.2779 0.1366 [|

15,16 -17.97 :t 117.64 2.8082 0.7135

17,18 -18.40 :1: 114.99 2.3862 0.7732 II

19,20 -31.24 :1: 30.2539 0.0404 1.0000 ||      
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Table A.4. Selected Participation Vector and Eigenvector Elements of the Interarea

Modes (3,4)

 

 

 

 

 

 

 

 

 

        

System Bus No. Stations Local Participation Eigenvector

State Name State Vector

2:1 1 GEN 1 DG 1 0.846 1.225 [172.7°

2:2 1 GEN 1 DG 2 0.846 0.377 [825°

33 2 GEN 2 DG 1 0.667 1.016 [180.2°

2:9 2 GEN 2 DG 2 0.667 0.313 [90.2°

2:15 6 GEN11 DG 1 1.0 1.414 [0°

2:16 6 GEN11 DG 2 1.0 0.435 [269.9°

2:22 7 GEN12 DG 1 0.808 1.263 [2.5°

2:23 1 GEN12 DG!2 0.808 _ 0.388 [272.5°    

Table A5. Electro—Mechanical Modes for Test with 150 MW Transfer

 

 

 

 

 

 

 

 

 

     

Modes I J Eigenvalue I Frequency I Damping-Ratio]

1,2 07137 x10“ 21:10.1245 0.0198 0.0006 . ||

3,4 0.6988 x10-3 :1: 33.202 0.5096 0.0002 n

5,6 0.8266 :1: 38.230 1.3098 0.0999

7,8 -1.149 :1: 37.994 1.2723 0.1423

15,16 -1794 i 317.69 2.8152 0.7121

17,18 -18.30 :t 315.04 2.3944 0.7725 1]

19,20 -31.18 :1: 30.4214 0.0671 0.9999 II
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Table A.6. Selected Participation Vector and Eigenvector Elements of the Interarea

Modes (3,4)

 

 
  

  

 

 

 

 

 

 

  

System Bus NO. Stations Local Participation Eigenvector

State Name Shite Vector II

2:1 1 GEN 1 DGi 0.775 1.134 [168.4°

:62 1 GEN 1 DG 2 0.775 0.354 [78.3°

2:8 2 GEN 2 DG 1 0.6 0.91 [177.4°

2:9 2 GEN 2 DG 2 0.6 0.284 [87.4°

2:15 6 GEN11 DG 1 — 1.0 1.414 [0°

$16 6 GEN11 DG 2 1.0 0.442 [270.0°

$22 7 GEN12 DG 1 0.815 1.286 [1.1.0

2:23 7 GEN12 DC 2 0.815 0.402 [271.1°       
 

Table A.7. Electra-Mechanical Modes for Test with 300 MW Transfer

 

 

 

 

 

 

  
 

 

 

   

Modes I JEigenvaluL firequency Dar_nping Ratio II

1,2 0.3665 x10-2 4W849 0.4534 0.0013 l]

3,4 -0.6741 X10"I $101247 0.0198 0.0005

5,6 -0.6645 :1: 18.324 1.3249 0.0796 II

7,8 -1.276 :1: 37.882 1.2545 0.1598 [|

15,16 -17.92 :1: 117.97 2.8593 0.7061 II

17,18 -17.96 :1: 115.53 ‘ 2.4720 0.7563

II 19,20 31.88 :1: 30.7532 0.1199_ 0.9999 II
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Table A8. Selected Participation Vector and Eigenvector Elements of the Interarea

Modes (1,2)

 

 

 

 

 

 

 

 

 

          

II System Bus No. Stations Local Participation Eigenvector II

State _ Name State Vector

4, " 1 GEN 1 DG 1 0.557 0.834 [149.8°

2:2 1 GEN 1 DG 2 0.557 0.293 [59.8°

1:8 2 GEN 2 DG 1 0.362 0.542 [162.9°

2:9 2 GEN 2 DG 2 0.362 0.190 [72.9°

2:15 6 GEN11 DG 1 1.0 1.414 [0°

2:16 6 GEN11 DG 2 1.0 0.496 [270.l°

1'22 7 GEN12 DG 1 0.868 1.389 £355.70

2:23 7 GEN12 DG_2 0.868 0.096 [47.9°
 

Table A9. Electro—Mechanical Modes for Test with 400 MW Transfer

 

 

 

 

 

 

 

 

 

 

II Modes I Eigenvalue I Frequency Damping Ratio II

1,2 0.6925 ><10'2 :1:]2.068 0.3291 -0.0033 II

3,4 ~0.5135 X10" i10.1242 0.0198 0.0004 II

5,6 0.5670 2t 38.407 1.3381 0.0673 [I

7,8 -1.568 :h 17.650 1.2176 0.2007 II

11,12 -3.738 :1: 10.2060 0.0328 0.9985 J

15,16 -1794 4 316.28 2.5909 0.7406 ||

17,18 -18.61 a; 318.86 3.0016 0.7024 ||

'i20 -30.43 :1: 10.8003 0.1247 0.9997 II    
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Table A.10. Selected Participation Vector and Eigenvector Elements of the Interarea

Modes (1,2)

 

System Bus No. Stations Local Participation Eigenvector

_ State Name _ State Vector _

 

 

 

 

 
 

 

 

 

        

2:1 1 GEN 1 DG 1 0.277 ‘ 0.388 [ll7.6°

3:2 1 GEN 1 DG 2 0.277 0.188 427.9°

$15 6 GEN11 DG 1 1.0 1.333 [5.60

4,6 6 GEN11 DG 2 1.0 0.644 [275.8°

4:22 7 GEN12 DG 1 0.968 1.414 20°

523 7 GEN12 DG 2 0.968 0.684 z271.7°
 

 

 

 

 



APPENDIX B

SSSP Results on System with

Slow Exciter

Table B.1. Electra-Mechanical Modes for Test with 50 MW Transfer
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ModesI Eigenvalue Frequency I Damping Ratio II

1,2 0.1541 x10‘3:1: 30.0228 ‘ 0.0036 0.0068 ||

3,4 ~0.04506 :1: 14.320 0.6876 0.0104 II

5,6 0.2249 :1: 30.2848 0.0453 0.6197 1]

7,8 -0.2387 :1: 10.3059 0.0487 0.6153

9,10 0.6228 :1: 30.5327 0.0848 0.7599 II

12,13 -0.8729 :1: 17.888 1.2555 0.1100

14,15 0.9375 i 37.755 1.2342 0.1200 I

16,17 -1.720 :1: 11.163 0.1851 . 0.8285

21,22 -9.068 :1: 127.68 4.4059 0.3113 II

23,24 -9.140 i 127.87 4.4352 0.3117

25,26 -9.290 3: 128.13 4.4778 0.3136

17,18 -9.310 :1: 328.15 4.4801 0.3140 
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Table B.2. Selected Participation Vector and Eigenvector Elements of the Interarea

Modes (3,4)

 

 

 

 

 

 

 

 

         

System Bus No. Stations Local Participation Eigenvector

State Name State Vector

2:1 - l GEN 1 DG 1 0.7 0.895 [182.6°

$2 1 GEN 1 DG 2 0.7 0.207 [91.9°

2:11 2 GEN 2 DG 1 0.312 0.653 [182.2°

2:12 2 GEN 2 DG 2 0.312 0.151 [91.5°

2:21 6 GEN11 DG 1 1.0 1.414 [0°

2:22 6 GEN11 DG 2 1.0 0.327 [269.5°

x31 ’ 7 GEN12 DG 1 0.577 1.111 [3.3°

2:32 7 GEN12 DG 2 0.577 0.38 [273.6°

Table B.3. Electro-Mechanical Modes for Test with 100 MW Transfer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II Modes I Eigenvalue I Frequency Damping Ratio II

0.1414 x10-3 1 30.02061 0.0033 0H169

3,4 0.08146 :1: 34.132 0.6577 0.0197

5,6 0.2377 :1: 30.2789 0.0444 0.6487

7,8 ’ 0.2568 :1: 30.3146 0.0501 0.6324

9,10 0.6511 3: 30.5208 0.0829 0.7809 .

12,13 0.8474 :1— 37.886 1.2551 0.1068

14,15 -1.114 :1; 37.589 1.2079 0.1452

16,17 -l.788 :1: 31.261 0.2006 0.8173

21,22 -9.050 :1: 327.67 4.4046 0.3108

23,24 0.149 :1: 327.86 4.4337 0.3120

25,26 -9.285 4: 328.13 4.4769 0.3135

27,28 0.323 :1: 328.15 4.4804 0.3144     
 

  



Table B.4. Selected Participation Vector and Eigenvector Elements of the Interarea

Modes (3,4)
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II System Bus NO. Stations Local Participation Eigenvector II

State Name State Vector

1:1 1 GENT DG 1 0.402 0.511 [183.9°

2:2 1 GEN 1 DG 2 0.402 0.124 [928°

31] 2 GEN 2 DG 1 0.14 0.308 [181.90

3321 6 GEN11 'DG 1 1.0 1.414 [0°

2:22 6 GEN11 DG 2 1.0 0.342 [268.8°

2:31 7 GEN12 DC 1 0.585 1.091 [7.4°

$32 7 GEN12 DG 2 0.585 _ 0.264 [276.30        

Table B.5. Electro—Mechanical Modes for Test with 150 MW Transfer

 

I Frequency I Damping Ratio II
 

 

 

 

 

 

 

 

 

 

 

 

 

     

Modes _ Eigenvalue

1,2' 0.1162 x10’3:1: 30.02162 0.0034 0.0054 _:II

3,4 -0.1138 :1: 33.807 0.6054 0.0299

5,6 0.2743 :1: 30.2761 0.0439 0.7049

7,8 0.2795 :1: 30.3231 0.0514 0.6542

10,11 0.7372 4: 30.4787 0.0762 0.8387

12,13 0.8287 :1: 37.870 1.2526 0.1047

14,15 -1.365 4 37.374 1.1736 0.1820

16,17 -1.966 :1: 31.344 0.2140 0.8254

21,22 0.026 :1: 327.66 4.4024 0.3102 1]

23,24 0.166 :1: 327.85 4.4325 0.3126 n

25,26 0.280 :1: 328.12 4.4756 0.3134 [|

27,28 0.341 i 328.15 4.4809 0.3149

_29,30 -3023 1: 30.5531 i 0_.0880 0.9998 II
  

  

  



122

Table B.6. Selected Participation Vector and Eigenvector Elements of the Interarea

Modes (3,4)

 

  

  

 

 

 

 

 

 

System Bus No. Stations Local Participation Eigenvector

II State Name State Vector _ II

2:1 1 GEN 1 DG 1 0.172 0.21 [172.3°

2:21 6 GEN11 DG 1 1.0 1.414 [0°

2:22 6 GEN11 DG 2 1.0 0.371 [268.3°

$31 7 GEN12 DG 1 0.589 1.083 [12.1°

2:32 7 GEN12 DG 2 0.589 0.285 [280.3°       

Table B.7. Electro-Mechanical Modes for Test with 250 MW Transfer

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

     

Modes 1_ Eigenvalue T Frequency Damping Ratio II

1,2 " 0.3018 :1: 32.943 0.4683 " 0.1020

3,4 -0.7372 x10“ :1: 10.01933 0.0031 0.0038

5,6 -0.3211 2h 10.3423 0.0545 0.6841

7,8 -0.3265 :h 10.2558 0.0407 0.7872

9,10 -0.6368 :1: 10.4729 0.0753 0.8028

12,13 -0.7328 :1: 17.821 1.2448 0.0933

14,15 -1.466 :1: 17.450 1.1857 0.1931

16,17 -2.800 :1: 11.621 0.2579 ' 0.8655

21,22 0.044 a: 327.68 4.4054 0.3106

23,24 0.243 1 327.86 4.4344 0.3149

25,26 -9.272 :1: 128.11 4.4733 0.3133

27,28 0.403 :1: 328.17 4.4829 0.3167

29,30 -30.90 i 11.415 0.2252 0.9990 II
 

 



Table B.8. Selected Participation Vector and Eigenvector Elements of the Interarea

Modes (1,2)
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ystem Bus No. Stations Local Participation Eigenvector

[State J Name_ State Vector II

ll 3. ' 1 GENT DG1 0.405 0.455 444.10

2:2 1 GEN 1 DG 2 0.405 0.154 [320.0°

:1:“ 2 GEN 2 DG 1 0.235 0.557 [34.9°

$12 2 GEN 2 DG 2 0.235 0.189 [310.7°

2:21 6 GEN11 DG 1 1.0 1.414 [0°

$22 6 GEN11 DG 2 1.0 0.479 [275.90

331 7 GEN12 DC 1 0.741 1.240 [4.6°

2:32 7 GEN12 D32 0141 0.419 [280.5° 

Table B.9. Electro—Mechanical Modes for Test with 300 MW Transfer

     
 

 
 

 

 

 

 

  
 
 

 

 

 

 

 

 

 

 

 

 

    0.2344‘_    0.9989

Miles I j Eigenvalue I Frequency I Damping Ratio II

1‘,2 ' 0.7079 :1: 32.214 0.3524 ‘ 0.3045 ||

3,4 0.3330 x10" i 30.02305 0.0037 0.0014

5,6 0.2996 i 30.2678 0.0426 0.7456 II

7,8 0.3309 3: 30.3582 0.0570 0.6786

9,10 0.6324 3: 30.5058 0.0805 0.7810 II

11,12 0.6499 :L- 37.736 1.2312 0.0837 n

14,15 -1.151 :1: 37.757 1.2346 0.1468

16,17 -3.097 :1: 31.727 0.2749 0.8733 II

21,22 0.10 :1 327.74 4.4149 0.3117 II

23,24 0.277 :1: 328.10 4.4728 0.3135

25,26 0.286 :1: 327.86 4.4342 0.3162

27,28 0.435 :1: 328.17 4.4832 0.3176

29,30 931.28 :1: 31.473  
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Table 3.10. Selected Participation Vector and Eigenvector Elements of the Interarea

Modes (1,2)

 

 
 

 

 

 

 

 

 

  

System Bus No. Stations Local Participation Eigenvector

State Name State Vector J

x, 1 GEN 1 DG 1 0.817 0.922 2275" '

2:3 1 GEN 1 DG 2 0.817 0.397 [315.3°

2:11 2 GEN 2 DG 1 0.476 0.96 [25.4°

2:12 2 GEN 2 DG 2 0.476 0.412 [313.1°

1:21 6 GEN11 DG 1 1.0 1.414 [0°

2:22 6 GEN11 DG 2 1.0 0.608 [287.7°

2:31 7 GEN12 DG 1 0.887 1.333 [358.9°

      0.573 [286.6°
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