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ABSTRACT

STRONG LOCAL CONTROLLABILITY AND
OBSERVABILITY OF POWER SYSTEMS

By

Tjing Tek Lie

Inter-area oscillations which are undamped or growing oscillations between dif-
ferent areas in a large geographical region, have become quite common in utilities
throughout the world. The traditional approach to damp these oscillations was to
design a supplementary excitation control, called power system stabilizer (PSS), on
a single generator affected by the oscillations. Since the number of oscillation modes
have greatly increased and a mode of oscillation has been observed to change frequency
and location, the adequacy of single generator power system stabilizer controls has
been questioned. Is there need for more than one generator control and is there
need for coordination between the power system stabilizer controls implemented in
different generators to dampen the multiple modes of oscillation that can change in
frequency and location ?

If control is to be successfully accomplished, it is necessary to know what measure-
ments and controls are necessary to make the portion of the system states associated

with such oscillations observable and controllable. A linearized power system model




is shown to be controllable and observable using a single generator field voltage or
mechanical power input and observable using a single generator output for small dis-
turbances and variations. This result is clearly not true in practice due to bounded
state and control, real time control and state estimation, nonlinearity, disturbances,
measurement noise, and operating condition variation. Definitions of strong system
network disconnectivity, strong input and output connectivity, and strong local con-
trol area are given. The states of all generators and the networks states belonging
to a strong local control area are then proven to be strong locally observable and
controllable based on these definitions. These definitions of strong local observability
and controllability are related to the concept of coherency measure in power system
dynamics and voltage control areas in voltage collapse research.

Having a method for determining strong local observability and controllability,
we are able to identify directly the actual transmission network branches that cause
the weakness of the network boundaries due to faults or any contingencies. Thus,
system operating security can be improved. Moreover, we are also able to detect
the occurrence of inter-area oscillation which can help in understanding more about
inter-area oscillations, leading to better control design. Furthermore, a discussion of
the set of controls and measurements required to dampen different types of inter-area
oscillations is given. Since measurements and controls must lie within an area of
200 miles radius to prevent time delay problems at the sampling rate needed, certain
types of oscillations may not be controllable and observable with measurements taken
within a 200 miles radius. In this case coordination and hierarchical control may be

needed.
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CHAPTER 1

Introduction

1.1 General Power System Mathematical Model

A general power system model, which includes mechanical dynamics and flux decay
dynamics of a generator and real and reactive power balance equations for each net-
work bus, is developed. Two types of nonlinear equations occur in the power system

model:

o Differential Equations
2(t) = f(z(t),y(t), A(t)), A(t) € [Aa, Ne]

e Algebraic Equations
0 = g(=(t),y(1), A(t))

where,

x(t) - state vector of generator dynamics

y(t) - state vector of the bus voltage and angle of terminal buses, high side

transformer buses, and load buses
A(t) - set of slow varying operating parameters

1



A(t) is the set of operating parameters that change over time. Moreover, A(t) can
also be used to represent real and reactive power load, generation dispatch, under
load tap changers, and switchable shunt capacitors. Assume that there is at least one

equilibrium point for each A(t), i.e.,(zo(A), yo(A)) for A(t) € [Aa, As] as time varies.

1.1.1 Differential Equation Model

1. Mechanical Dynamics
Mib; + Dib; = Pag; — Pei( E, 6,v,0) (1.1)

and:=1,2,...,m
where,
M; - generator per unit inertia constant
D; - generator load damping coefficient
i - internal bus angle
Py, - input mechanical power
P.; - output electrical power
E - internal bus voltage
v - load bus voltage
0 - load bus angle

m - number of generator

2. Flux Decay Dynamics

(Idi - 3:1,')

. 1 )
E; = m[—Eq,‘ - Eé, QG:' + Efd:'] (1‘2)

L1




andi=1,2,...,m

where,
E,; - internal generator voltage proportional to field flux linkage behind steady
state direct axis reactance

E;, - internal generator voltage proportional to field flux linkage behind tran-

sient direct axis reactance
Ejq; - generator field voltage
Qg, - generator reactive power generation
T, - generator direct axis transient open circuit time constant
z4; - steady state direct axis reactance
Ty, - transient direct axis reactance

m - number of generator

1.1.2 Algebraic Equation Model
1. Real Power Balance Equation
Fsi = G.‘,‘(E:“)2 + Z E;iE]'Y.‘J'COS((S,' - 6]‘ - ‘)‘,‘j) (13)
<t
f’i#i
2. Reactive Power Balance Equation
Qi = —Bi(E,)* + Y E, E;Yijsin(é; — §; — ;) (1.4)
J=1
J#i

and:=1,2,...,n

where,

B;; - susceptance component of the ij** element of Ygys




G;; - conductance component of the 15t element of Ygys

Y;; = \/Bi* + Gij*
n - number of load buses

The mechanical dynamics of the power system (1.1, 1.3) similar to a mass spring
system which is poorly damped. The electrical system dynamics (1.2, 1.4) can be
shown to reduce damping of the mechanical system dynamics when the system is
stressed. The inter-area oscillations are oscillations between groups of generators

located in different parts of the power system.

1.2 Previous Work

There is really no literature that directly address the controllability and observability
properties of complete power system models. There is literature on observability of
the algebraic or load flow model for the purpose of constructing static state estimators
(10, 43, 44, 45]). Although dynamic state estimation has been proposed [41, 42, 50],
no effort to define observability has been made. The literature on model reduction of
large power system models using coherency and singular perturbation have discussed
observability and controllability properties of a linear time invariant power system
model. Schlueter and Dorsey [54, 56, 22] show that coherent group of generators is
controllable from mechanical inputs at the generators in the coherent group but not
controllable from mechanical inputs at generator outside this coherent group. The
result was proven by showing the coherency measure was a controllability grammian.
Schlueter and Dorsey [54, 56, 22] also showed that states of generators within a coher-
ent group are observable from observation of angle differences in this coherent group
but are not observable from observation of angles outside the coherent group. Chow

et al. [12] utilized singular perturbation theory to assess what generator groups should



be aggregated. The method utilized the two time scale analysis on power systems
and is known as Slow Coherency method. The so called dichotomic transformation
from the singular perturbation technique is used to separate the modes of oscillations
into slow and fast modes. There is really no proper direct link or one to one mapping
between controllability and observability with fast and slow modes of the oscillations.
However, if the disturbances, initial conditions, output variable measurements, con-
trols are restricted only to the slow modes, then the fast modes are uncontrollable
and unobservable in the model of the slow subsystem. Therefore, in this particular
approach, the grouping of the machines, known as areas, is very robust with respect
to the faults or disturbances locations.

These results are solely for power system mechanical dynamics linearized around
a fixed operating condition rather than a model that include electrical and mechan-
ical dynamics. The results in [54, 56, 22, 12] did not directly address controllability
and observability. The results in [54, 56, 22] did indicate a loss of the relative level
of controllability and observability, as measured by controllability and observability
grammian, was experienced across boundaries of coherent groups but did not prove
that a coherent group was not observable and controllable from measurements and
controls in other coherent groups. The results in [54, 56, 22, 12] did not address con-
trollability and observability of the network states as well as the generator dynamic
states since the network model was eliminated by aggregating back to generator in-
ternal buses. Our initial result indicates that all generators in all coherent groups
are observable and controllable from a single measurement and a control anywhere in
the system. Our results on strong local controllability and observability put a formal
foundation under the experimental observation of a relative loss of controllability and
observability across coherent group boundaries and extends the concept to generator
models that include electrical and mechanical dynamics. Moreover, these results will

help us identify the weak transmission network stability boundaries. Loss of transient




stability, loss of steady state angle stability, loss of voltage stability, and inter-area
oscillations occur across such weak transmission stability boundaries. There is very
little published work on developing computational methods for identifying the weak
transmission stability boundaries within or between utilities or regions. Thus, our
results on strong local controllability and observability give us a fundamental criteria

for improving the system security.

1.3 Motivation

1.3.1 Weak Transmission Stability Boundaries

Weak transmission stability boundaries have long been associated with loss of syn-
chronism and islanding due to loss of generation contingencies and loss of transient
stability for fault contingencies. There are some studies that can help identify those
weak boundaries such as contingency screening, AC load flow, transient stability, and
inertial load flow studies. However, those weak boundaries are often unknown to the

utility operator or planner either:

1. because they have developed due to contingencies or unanticipated operating

changes, or

2. because the planner is asked to address stability problems in a large interregional

data base for which he or she has little knowledge or experience, or

3. the computation and manpower required to establish stability boundaries may
prohibit the exhaustive set of stability runs and careful analysis and comparison

needed to establish these weak boundaries.

The boundaries where strong controllability and observability is lost will identify the
weak transmission stability boundaries so that boundary flow can be constrained to

help prevent transient and steady state angle and voltage stability problems.



1.3.2 Multiple Oscillations

An inter-area oscillation is an undamped or growing oscillation between areas in a net-
work spread over a large geographical region. Utilities throughout the world (Taiwan
Power, Ontario Hydro, Pacific Gas and Electric, Hydro Quebec) have been report-
ing that this kind of oscillation is quite common. The traditional approach used to
dampen these oscillations was to design a supplementary excitation control, a Power
System Stabilizer (PSS), for each generator affected by oscillations. Recently, the
number of oscillation modes experienced by a single generator has become large and
the frequency of these modes have begun to vary over a wide range. Designing a
PSS for a single generator to damp multiple oscillations over a large frequency range
has become extremely difficult. Thus, most utilities utilize PSS on several generators
to damp these multiple oscillations. Moreover, PSS is usually designed based on a
specific operating condition of a linear time invariant (LTI) model. Then, the PSS
is exhaustively evaluated based on several other operating conditions. The computa-
tion requirement for designing a PSS is huge because the designer must compute the
eigenvalues, eigenvectors, and time responses due to disturbances in various locations
at several operating conditions. Several investigations have questioned the adequacy
of a PSS on a single generator or on multiple generators to provide damping on mul-
tiple modes of oscillation for all disturbances and operating conditions [26, 27]. The
PSS on each generator is designed to damp a specific modes of oscillation. A certain
level of coordination of the overall supplementary control system and sharing of mea-
surements between PSS controllers are needed for damping the multiple oscillations.
However, currently there is no sharing of measurements between PSS controllers and
there is no coordination of control. The boundaries where strong observability and
controllability is lost identify the generator groups that experience coupled and un-

coupled inter-area oscillations. Knowledge of the boundary and the generators that



belong to these groups should aid in siting controls and measurements and designing

controllers for multiple oscillations.

1.3.3 Oscillations that Change Frequency and Location

Utilities have recently observed that the frequency and location of the modes of
oscillation may change with time and operating condition [26, 27]. This observation

brings up the following questions:

1. What is the fundamental nature of these oscillations between areas ? Are there
oscillations between two groups of generators in different areas or could there
be oscillations between several groups of generators simultaneously ? Are all
oscillations between generator groups or are some or all oscillations between

generator groups and a reference ?

2. Are the states that are involved in any one specific inter-area oscillation or in
a coupled set of oscillations controllable and observable using a specific set of
measurements and a specific set of controls ? Siting of PSS on generators (and
siting of other controls used for providing damping) should be based on the fact
that all the states involved in a particular inter-area oscillation are observable
based on measurements used in the design of current PSS (and other controllers
that provide damping) and controllable from the control signals generated by
the PSS (and other controllers that provide damping). Since current decen-
tralized uncoordinated controls do not share measurements and do not have
knowledge of the control at other generators, the decentralized uncoordinated
controls do not directly take advantage of the observability properties of the set
of measurements and controllability properties of the set of controls used in the

decentralized uncoordinated control of individual generators.




3. Is the current decentralized uncoordinated control structure, where no mea-
surements are shared between controllers and control used at other generators
are not known at each decentralized PSS controller, adequate to damp multiple
oscillations that can change frequency and location with time and operating

conditions ?

If the entire state associated with a single mode oscillation is observable and
controllable from a single generator, attempting to dampen this oscillation may cause
the size of other coupled modes of oscillation to grow. Vittal et al. [71] has shown that
in some cases several modes are coupled to produce an inter-area oscillation and that
the coupling can not be observed in eigenvectors or participation vectors since it is a
nonlinear affect. The coupling can be asymmetric so that one mode couples energy
into another mode but the reverse is not true. It is conceivable that several modes
are coupled and that the coupling can change over time so that energy is coupled
into one mode from other modes and can not escape. This coupling could change
with operating condition causing the appearance of changing frequency and location
of the oscillations. Decentralized controllers could dampen all oscillations without
direct coordination through measurement and control sharing if indirect coordination
could be obtained through careful off-line design of each decentralized controller.
This off-line design of uncoordinated decentralized controls would be valid if these
controls damped all the coupled modes of oscillation over all time and operating
conditions. If the location and frequency of these coupled oscillations change with
time and operating conditions, it would be difficult if not impossible to assure that
the decentralized uncoordinated controllers could remain coordinated, where there
was no sharing of measurements and no direct knowledge of control actions of other
controllers. The above difficulty in assuring coordination between damping controllers

without
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1. sharing measurement information,

2. providing knowledge of actions of other controllers to each damping controller,

or

3. both

becomes even greater when one realizes that all the states associated with any one
mode of oscillation may not be observable and controllable based on the measurement
and control of a single generator. If the states of only one of the areas involved in
an inter-area oscillation are observable and controllable, the damping of any single
inter-area oscillation may not be effective since the variable that are directly involved
in the oscillation are not observable and controllable and thus are not being directly

damped. Examples of inter-area oscillations:

1. Newfoundland - Toronto

[SV]

. Toronto - Kentucky

3. S. Ohio - Virginia

>

. Washington - S. California

5. etc.

indicate inter-area oscillations occur over very large geographical areas, where the
states may not be observable and controllable from a single generator’s PSS controller.
If these inter-area oscillations are really oscillations in both areas with respect to a
common reference, then a single generator in each area could effectively dampen such
an inter-area oscillation without requiring the states in both areas to be observable and
controllable using a single generator’s PSS controller. If these inter-area oscillations
are oscillations between two areas, then the states in both areas must be observable

and controllable from the measurement and control used to design the PSS in each
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area that would damp this mode. It would appear that measurement and control

information should be shared between the controllers to assure robust effective control.

1.4 Applications

It is clear that controllability and observability properties of power systems must be

understood to

1. Identify the branches that belong to weak transmission network boundaries and
the operating conditions that cause the weakness of particular weak transmis-
sion network boundaries. This identification will help the utility operator or
planner to remove the weakness in the weak transmission network boundaries
by reducing flows on these boundaries and maintaining sufficient voltage control
within each bus cluster encircled by these boundaries. Such actions can prevent
loss of transient stability, loss of voltage and angle stability, and development

of multiple inter-area oscillations that change frequency and location.

2. Design the most effective control of single inter-area oscillation mode when the
states of both areas are not observable and controllable using a PSS controller
on a single generator. It may be possible to determine measurements that would
make both areas observable and to determine PSS controls or FACTS(Flexible
AC Transmission System) control‘lers (controls of series reactance, controls of
shunt susceptance, control of real power on branches using FACTS phase shifter
or DC line modulation, and control of reactive power using FACTS tap changers

or SVC’s) that would make both areas controllable.
3. Determine

(a) the siting of measurements and siting of controllers;

(b) whether sharing of measurement information and control actions
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might make the controls on several generator more effective in damping multi-
ple modes of oscillation due to the fact that all states would be observable and
controllable. It should be noted that measurements at more than one site at
sampling rates greater than 100 samples per second do not appear to be taken
synchronous]y,Aif the measurements taken 400 or more miles apart are transmit-
ted from each site to all other measurement sites. If measurement information
is transmitted from each site to other sites, this lack of synchronism will prevent
controls at each site from effectively using the delayed measurements from other
sites without introducing stability problems. If in addition control information
from all sites were transmitted to other sites 400 or more miles apart at rates
greater than 100 samples per second, the use of the outdated control information
at other sites in development of control at a specific site could also introduce
stability problems. This constraint on the distance between measurement and
control sites that would be able to share information would limit the set of
measurements and controls for assuring controllability and observability of the

states associated with any single or multiple coupled or uncoupled oscillations.

. Determine whether a hierarchical control structure may be needed if all of the
states associated with a single or coupled or uncoupled multiple oscillation are
not observable and controllable using measurements and controls separated by
400 miles or less. The measurements at all sites may be used to establish the
locations where particular modes have affect and whether the decentralized fast
controls without measurement sharing or direct control coordination are effec-
tive in damping modes that change frequency and location. If the decentralized
fast (100 samples per second) controllers are not effective, adaptive slow adjust-

ment of the decentralized controllers may be effective.
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1.5 Practical Sense

The principal objective of this thesis is to determine the controllability and observ-
ability properties of power systems. It will be shown that the entire state of the
power system is observable from any one measurement and controllable from any one
control. This result was established for a linearized time invariant model based on
fixed operating conditions, no disturbances, and more importantly that the control
is sufficiently large and that a sufficiently large change in the states occurs. The
result states that all the states of the power system in Michigan could be controlled
and observed from any one control and measurement of any generator in California.

However, this is not true in practi.ce. The theory produced such a result because
1. extremely large control is assumed;
2. extremely large change in the states is assumed,;
3. power system networks are connected;
4. no disturbances and measurement noise are assumed;
5. a fixed operating condition is assumed;
6. a linearized time invariant model is assumed;

7. accomplishment of control objectives and state estimation is assumed satisfac-

tory even if it takes an arbitrarily long period of time.

In practice, control actions in a power system are generally small and local in
nature in order to prevent the control actions from inducing stability problems. Vari-
ations in state can be large due to faults or disturbances but are very local due to lack
of direct strong interconnections between remote regions and the resultant weakness

of interconnection between remote regions. These two reasons have a major affect on
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the convergence of a state estimator and the effectiveness of any controller. Moreover,
there are disturbances and measurement noise that can also affect the convergence
of a state estimator and the effectiveness of any controller eventhough they are not
the major reasons. Thus, although the system is controllable and observable, if the
model is LTI, the state estimator and the control may not be effective in the desired
time frame. Most importantly, the system is nonlinear, the operating conditions are
varied so that the assumption of a LTI model is not valid. Thus, the controllability
and observability properties of any specific LTI model do not necessarily hold for a
nonlinear system model. Coupling between a particular state variable and a partic-
ular control variable needs to be strong for that state to be controllable based on a
constrained or limited control effort and observable based on constrained or limited
state variable values. A subset of the states must be strongly coupled to one or more
of the given controls over some subregion § of state space for the subset of states to
be considered locally strongly controllable. Similarly, a subset of the states must be
strongly coupled to one or more of the given outputs over some subregion § of state
space for the subset of states to be considered locally strongly observable in 2 . To
establish strong local observability, one must utilize a formal theoretical structure to
define the set of observations that can estimate a subset of states. In a similar way to
establish strong local controllability, one must utilize a formal theoretical structure
to define a set of control, that can cause a subset of states to settle at a specific

~ equilibrium.

1.6 Purpose of this Thesis

The purpose of this thesis is as follow:

1. Establish controllability and observability of the complete power system model

(mechanical, electrical, and network of the entire power system model). Con-
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trollability and observability of the power system model is valid for LTI model

at a given operating condition where

(a) states variations can be infinitely large,
(b) control variations can be infinitely large,
(c) there are no disturbances, and

(d) there is no measurement noise.

. Define strong local observability and controllability of a subset of states in a
subregion of the state space of a nonlinear power system model where controls

and states are bounded and measurement and disturbance noise are present.

. Determine conditions for strong controllability and observability of a subset of

states over a subset (0 of the state space.

. Validate the algorithm for determining the strong local control areas and show
that when the system is under a stress condition the areas begin to aggregate

and inter-area oscillation begin to occur.

. Determine if insufficient controllability and observability between strong local
control areas make the weak transmission stability boundaries vulnerable to
large angle changes for loss of generation and line outage contingencies, loss of

transient stability for fault, and loss of steady state voltage and angle stability.

. Determine the set of controls and measurements required to dampen different

types of inter-area oscillations such as:

e Determine if a particular set of measurements must be provided to each .
controller so that it can be observe all the states associated with any single
or multiple mode of oscillation or any subset of the multiple modes of

oscillation.
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o Determineif a particular set of controls must be coordinated either through
computation of all of them at a single site or communication between
controllers to make the states associated with a single or multiple mode
of oscillation controllable or the states associated with some subset of the
multiple mode of oscillation controllable. It may be found that the states
associated with a subset of the set of coupled multiple modes of oscillation
can not be controlled without controlling all the states associated with all
the multiple modes of oscillation because the same states are associated

with every subset of modes of the set of coupled multiple oscillation modes.

e Determine if there are a set of controls and a set of measurements that
are located within 400 miles of each other that can make the states associ-
ated with a particular set of uncoupled or coupled oscillations observable
and controllable. With the current development of FACTS controllers,
this research could provide motivation for designing effective controllers
where such controllers should be placed on interfaces between control ar-
eas which are locally observable and controllable. What types of FACTS
controls and their location are necessary to assure controllability of all the
states involved in all the oscillation modes, and what types of measure-
ments and their location are necessary to assure observability of all the
states involved in all the oscillation modes ? The observability and con-
trollability properties of power system are unknown at present but must be
known if such FACTS controllers are to be implemented to dampen multi-
ple oscillation that can change frequency and location. FACTS controllers
that control real and reactive power flows between control areas and uti-
lize measurements of flows between areas appear to exploit controllability
and observability structure. Observability and controllability structure is

exploited by simultaneously allowing observability and controllability of
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both areas where the FACTS controller is connected to, while minimizing
the number of measurements and controls needed to make all the states

involved in these oscillations observable and controllable.

If the states associated with a particular mode or set of modes is not observ-
able or controllable with measurements and controls taken less than 400
miles apart due to delay incurred at sampling rate of 100 samples per sec-
ond, a hierarchical control structure is necessary. The set of measurements
and set of controls that can make the states of the system associated with
any single or multiple set of oscillation modes can be determined without
the restriction of being within 400 miles of each other. If the measure-
ment and control information can not be transmitted without significant
delay in terms of a 100 samples per second sampling rate between groups
of control sites and groups of measurement sites, then a slower adaptive
coordination would need to be developed. Each fast local controller would
attempt to observe and control the states associated with a particular
subset of oscillation modes where the measurements associated with the
fast controls would make those states associated with this subset of the
oscillation modes observable and the controls would make those states as-
sociated with this subset of the oscillation modes controllable. One or
more fast local controllers would be assigned to every mode of oscillation.
Measurement information could be (a) sent to a central site where the fast
control for every controller is computed and sent to each controller or (b)
the measurements could be sent to each controller where the control for all
controllers would be computed but only the one for that site would be used.
The hierarchical control would adjust the gains and control structure for
fast controllers as it determines that excessive control of one set of oscilla-

tion modes by one fast controller is enhancing modes of oscillation under
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the jurisdiction of another fast local controller. The hierarchical controller
would work on a slower sampling rate and would manage the degree of
control performed by each fast local controller. The sampling rate for the
slower hierarchical control would likely be slow enough to prevent delay
problem regardless of how large a geographical area was involved in the

coupled multiple oscillation problem.



CHAPTER 2

Controllability and Observability

2.1 Objectives

1. Provides a fundamental picture of what can be controlled and observed in the

whole power systems.

2. Provides information so that controllers can be placed correctly and provided
with the correct measurements so that a particular subset of the states of a

power system are observable and controllable.

2.2 System Connectivity Approach

A power system is highly nonlinear, complex, and large in dimension. As a result
of these properties, one needs to pay attention to the theory and control design
methodology of large scale systems such as modeling, control, stability, controllability,
observability, and etc. These concepts are very helpful for analyzing and designing
as well as for performing control and optimization.

Establishing controllability and observability for the complete model of power
system is very difficult. However, the system can be decomposed into n subsystems

and use one of the following approaches to check the controllability and observability

19
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of the composite systems.
1. Frequency Domain Approach
2. Generalized Resultant Approach
3. System Connectivity Approach

In the Frequency Domain approach, controllability and observability based can be
established on the cancellation of one or more poles and zeros. In the Generalized
Resultant approach, controllability and observability can be established based on the
grammian and the rank of the grammian. Both of these approaches are appropriate
if the given system structure is specific enough and the parameters are all known.
However, these approaches are not generic enough to establish controllability and
observability for systems where only the structure is known but the parameter are
not specified and vary over a given range. The last one, which is the System Con-
nectivity approach, establishes controllability and observability based on representing
the system structure using a signal flow graph and then determining the connectabil-
ity properties of the graph. This approach has been applied to large scale systems
models and power systems is a large scale system. The System Connectivity approach
allows generic controllability and observability properties for any power system model
with parameter variations to be established which is not possible using the other ap-
proaches described above. Moreover, this approach requires little computation and
can handle multi input multi output (MIMO) systems. In this thesis, the System

Connectivity approach is used.

2.3 Existing Results

In order to follow this particular approach to check controllability and observability

conditions of the composite systems, the following definitions and the terminology
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are taken from Jamshidi [31].

Definition 1 The arborescence A of root x; € X of a finite graph M is itself a graph

with the following properties:
1. z, is the terminal vertez of no arc
2. Each z; # z, is the terminal vertez of only one arc

3. There is no circuit contained in the graph A

Example 1 The following is a simple ezample for determining the arborescence:

Figure 2.1. A Graph M

1
X X3 x5 4
x6

~—

X2 x4

Figure 2.2. An Arborescence of Root z, or z; for Graph M

It should be noted that these arborescences are not unique.
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Definition 2 A composite system = =

Az + Bu, and y = Cz, denoted by

(C,A,B; N,n,,...,nN) consists of N subsystems interconnected in an arbitrary fash-

ion withz € R",u€ R™,y € IR", and A defined by:

[ Al G12
Gan A
A=
|Gn1 Gwa2

A sparse composite system (C,A,B; N,n,,...

following A matriz:

[ A", G2
Gan A"

A=
| Gn1 Gw2

GiN ]
Gan

AN |

,N) 1S a composite system with the

Gin]
Gan

AN

where A*; = A; + B;K,C;,1 = 1,2,...,N, with (C;, A, B;) being an observable and

controllable triplet. Furthermore, all the interconnection matrices G;; are zero ez-

cept for Gij,i = i1,12,...,1p and j = j1,j2,...,]q given by G;; = k.'ja.‘ﬂjT,i =

Uyeeerlpy] = J1y.-.,Jq where kij is a nonzero scalar called the ij - interconnection

gain, a; and (3; are nonzero (n; x 1) and (n; x 1) dimensional vectors, respectively.

A composite system is a set of N controllable and observable systems

z;, = Air;+ By
yi = C g
2 = ﬂTL'

—_

+

M=

. bt

Q,%ij

.-

#
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where u;, vij, 7 = 1,...,N and j # ¢ are inputs and y; and z; are outputs. The

controls satisfy

y, = —Kyi+u
= —Kiclz; +u
Yii = kijzj

T
= ki p_,‘ Z;

The composite system (C, A, B; N : n,,...,nyn) can be represented by a directed
graph M(C, A, B). The vertices in this graph M(C, A, B) represent all the states,
inputs, and outputs of the composite system. The graph M(C, A, B) is constructed

using the following procedures:

1. Constructs a matrix [C|A|B]

2. For each row i of matrix [C|A|B] draw an arc from each vertex j to vertex i

(i # j) if the tj element of the matrix [C|A|B] is not zero

It should be noted that if the arrows on all arcs in the graph M(C, A, B) are
reversed, then the graph is called the inverse graph M*(C, A, B). Directed graphs
M(A, B) and M(C, A) are representations of composite system (A, B; N : ny,...,ny)
and composite system (C, A; N : n,,...,ny) respectively. If the arrows on all arcs in

the graph M(C, A) are reversed, the the graph is called the inversed graph M*(C, A).

Definition 3 A composite system (A, B; N : n,,...,ny) is called input connectable

if 3 an arborescence not necessarily unique, of root u for the graph M(A, B)

Definition 4 A composite system (C, A; N;n,,...,nn) is called output connectable

if 3 an arborescence not necessarily unique, of root y for the inverse graph M*(C, A).

The following example illustrates the above notions. This is also taken from

Jamshidi [31].
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Example 2 Consider a composite system describe by

I, A"y Gz Gis] [ma 0
i:g = G21 A'g 0 2| + 0 |u
i‘3 G3] 0 A‘3 I3 B3

I

y=[0020]a:2

It is desired to represent this system by a g'Jraph M(C, A, B) and find an arborescence
of root u for M(A, B) and an arborescence of root y for M*(C, A). The last notation
refers to an inverse graph which has all its arrows reversed in direction.

SOLUTION: The graph M(C, A, B) for the system above has five vertices and is
shown in Figure 2.3. An arborescence of root u for graph M(A, B) is obtained by
first disconnecting all arcs terminating at y and following Definition 1. The result is
shown in Figure 2.4{. To obtain an arborescence of root y for graph M*(C, A), it is
necessary to reverse the arrows on all arcs, delete all new arcs terminating at u, and
follow Definition 1. The result is shown in Figure 2.5. Note that in this particular

ezample, both arborescence graphs turn out to be unique as an ezxceptional case.

x2 x3

x1

Figure 2.3. Graph M(C, A, B)
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x2 x3

x1

Figure 2.4. An Arborescence of Root u for Graph M(A, B)

(?Il

x2 x3

0y

Figure 2.5. Graph M*(C, A, B)

Definition 5 If a composite system is both input and output connectable, then it is

called connectable
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x2 x3

x1

e
Figure 2.6. An Arborescence of Root y for Graph M*(C, A)

Then the following theorem provides new conditions for the controllability and

observability of composite systems which also are taken from Jamshidi [31].

Theorem 1 Consider a general composite system (C,A,B; N;ny;...,nn):

1. If the system is connectable, then it is controllable and observable for almost all

output gain matrices K; and interconnection gains Kj;.

2. If the system s not connectable, then the general composite system is neither

controllable nor observable.

Proof:  See Davison [16] m]

The state of the general composite system would not be input or output con-
nectable using control u{ and output y; from subsystem ¢ if there were an isolated

group of systems such that

k,‘j = 0, zGIand]EJ
IuJ = {1,2,...,N}
Ingd =10
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If two groups of systems are not connected, measurements and controls will be re-
quired in both groups of systems to make the general composite system input and
output connectable.

This connectability approach will be applied to three different systems in this

thesis:

1. A classical transient stability model to show that all states in the power system

are controllable and observable if the network is irreducible;

2. A dynamic network load model to show that strongly controllable/observable
bus groups are strongly controllable/observable only if measurements and con-

trols are used in each of those bus groups;

3. A non-classical topological transient stability model to show that network and
generator dynamic states for load and generator buses in strongly control-
lable/observable bus groups are strongly controllable/observable only if mea-

surements and controls within each of those bus groups are used.

The application of connectability theory to a classical transient stability model
is now presented. The application of connectability theory to the dynamic network

load model and the topological transient stability model is presented in Chapter 3.

2.4 Application to Power Systems

2.4.1 Mathematical Model Development

The n machines power system model is

5,~=w,~

wi = 1/M;[Pm; — Pg; — Diw]
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E.a'. = I/TJO:[_E;. - (xdi - z:ii)QGi/E;.‘ + Efdi]

andi=1,2,...,m
where
FPg; = G,’,‘(E:”)2 + Z E,;‘thyijcos(& -6 - 7"1')
=1
J#i

Qci = —BulELV + 3 Bl Vis¥ysin(6i — & — ;)
o

and:1=1,2,...,n

6; - internal bus angle

w; - internal rotor speed

M; - generator per unit inertia constant

Py, - input mechanical power

D; - generator load damping coefficient

Pg; - generator real power generation

Qq, - generator reactive power generation

E,, - internal generator voltage proportional to field flux linkage behind transient

direct axis reactance
T,,, - generator direct axis transient open circuit time constant
z4; - steady state direct axis reactance
T, - transient direct axis reactance

Bi; - susceptance component of the ij** element of Ypys
J) p P

W
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Gij - conductance component of the i 7P element of Yays

Viij - terminal voltage

Y = \/B.'jz + Gi;?
m - number of generator

n - number of load buses

Since several output measurements are possible, a general output model is used solely
depend on the states at the internal buses. Possible outputs include real power, reac-
tive power, apparent power, and voltage. Thus, in order to have a general mathemat-
ical model for the output that can represent several possible output measurements,

the output equation is written as follow:

vi = h(8i, E},)

2.4.2 Preliminary Results

In this section, we would like to show that there are always paths from a control
variable of any generator to each state and paths from the output or the measurement
to each state by using System Connectivity approach. Then from Jamshidi [31], we
can conclude that the single machine infinite bus power system is controllable and
observable. However, Generalized Resultant approach is used to determine that the

single machine infinite bus power system model is controllable and observable.

Lemma 1 The states of a single machine infinite bus power system linearized model

are controllable from either APy, or AEyq; and observable from Ay;
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The linearized single machine infinite power system model has the form

,
k2

T3

0

24

Az

[ar
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1 0 I . 0 0
U
2 zn||z|+|g 0 (2.1)
1 U2
0 4 I3 0 Td’;
+ (B, B;|u
I
0 Cz] T2
I3
Ty A(S.
T2 | = Aw.-
I3 AE;.

D;

M;

U
U2

|

7i5)]

I
—

APy ]
AEjq,

1 /
172G Eqy + Vi Yiico8(8i = 65 — ;)]

1
Tho
U (ea—l)
1+ i
T 1 (B

(zdi - x:{,’)‘/tj},ijCOS((s,' - 61 -
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. — ! .
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The controllability test matrices are

(0w
| 0 O o
r 23
o 0
[Bz AB, A232] = 0 -7-?.-‘- %2‘,.’::..[.%!:
1 22
" Tdo Tj;: 72;
(A, B) are controllable if
1
“apn 7O
1
g
oi

If the two requirements above are not satisfied, then the controllability matrices will
not be full rank matrices. Note that z; and 23 both can not be zero unless G;; = 0
and only when §; — 6; = 0.

The observability test matrix is

C C 0 C2
CA = Co24 1 C225
CA? G121 + Caz425 Cozq + €122 €123 + Co25°

(C, A) is observable if

cifai(crzs + ca25%) — cazs(caza + €123)] #  —calcaza(caza + c122) — 1123 + €22425))

If the above requirement is not satisfied, then the observability matrix above will not

be a full rank matrix.



32

However, the states of a single infinite bus system are always controllable and

observable since there is no cancellation between poles and zeros.

Remarks: This approach can not easily be extended to multi-machine systems

The result in Lemma 1 will now be extended to a two machines systems as follow:

Lemma 2 A two machines power system model is input connectable from either
APuy; or AEjq; of machine i if there are at least one connection through A6; and

AE;'. of machine 1 to machine j where i # j

Proof: From Lemma 1, we have shown that states of each machine are controllable
and observable. Assuming the network is irreducible, then there are four networks
that connect ; of machine ¢ to z; and z3 of machine j and z3 of machine i to z; and
z3 of machine j where ¢ # j. Thus, we can reach all the states of machine j from
the input u; or u; of machine 7 through these four networks which connect states
of machine ¢ to states of machine j. These four networks are shown with dash lines
in the flow graph (see Figure 2.7). From these four networks, we can determined
connection from inputs of machine i to all states of machine j. Furthermore, we also
have connection from the inputs of machine 7 to all the states of machine i (Lemma
1) and thus arborescence of root u; or u; of machine i is determined (see Figure 2.8).
Thus, the two machines power system model is input connectable from input u, or

u3 of machine i.

L.emma 3 A two machines power system model is output connectable from Ay; =

A h(Ab;, AE,,) of machine i if there are at least one connection through Aé; and AE;'.
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Figure 2.7. The Graph M(C, A, B)



34

machine i

x2

x1
machine j

Figure 2.8. The arborescence of root u; or u;
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of machine j to machine i where 1 # j.

Proof: From Figure 2.7 we can get the following inverse flow graph (see Figure
2.9). We have connection from output measurement of any machine ¢ to all the
states of machine 7 and all the states of machine j using the similar argument in the
proof of previous Lemma. The arborescence of root Ay is determined and shown in
Figure 2.10 and thus the two machines power system model is output connectable

from output y of machine 1.

Note: The proofs of Lemma 2 and Lemma 3 are graphical using System Connectivity

approach.

It should be noted that network and load are aggregated back to generator inter-
nal buses. Assuming that the network is irreducible, there is a path for every pair of
generator internal buses between A&; and A$§; and AE’{,J. as well as a path between
AE'{“ and A.éj and AE{,J., for all 2 # j. Thus, one could prove graphically that n ma-
chine system is input connectable from either APyy; or AEy4; and output connectable
from Ay; for any machine . Since the system is input connectable from either A Pyy;
or AEgy,; and output connectable from Ay;, it is controllable and observable. The

following theorem is a statement of these results.

Theorem 2 Given an aggregated power system model where the resultant network is
irreducible, then the states of all generators are input connectable from APp; or AEyy,
of generator i and output connectable from Ay; for any generator i. Furthermore, the
states of the entire system are controllable from the input APy, or AEjq, of generator

it and observable from measurement taken from any machine 1.
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Figure 2.9. The Graph M*(C, A, B)
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x2

x2

x1

machine i

x1

Figure 2.10. The arborescence of root y
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Proof: See Lemma 2, Lemma 3, and Lemma 4(Chapter 3) @]

This observation allow us to think of algebraic states as input connectable from
APpy; or AE;4; and output connectable from Ay;. Mathematically, discussing con-
nectability of algebraic states of the network is not permissible because these states
are not governed by differential equations. In the next chapter, we will introduce
singularly perturbed differential equation models for network algebraic states so that

connectability of algebraic network states can be properly defined.

2.5 Practical Limitations

As a result of the theorem above, all the states of the interconnected power system
spanning the eastern and midwestern grid of United States of America and Canada
can be controlled and observed from one control and one measurement of any gener-
ator no matter how complex is the system. Experience indicates that this theoretical
result is impossible in practice. One can not steer all states of the entire system to
some equilibrium point with one control nor can one estimate the states of the entire
system using only one measurement; one must take into account measurement noise,
continuous disturbances, operating changes and the nonlinearity of the model, the
requirement that control and state estimation be accomplished in finite time, and
that both the state and control are bounded signals. Further discussion is given in

the next chapter.




CHAPTER 3

Strong Local Cohtrollability and

Observability

3.1 Literature Review

DeCarlo et al. [73] have shown that controllability and observability are generic prop-
erties of dynamical systems, since small variations in parameters in general can make
an uncontrollable and unobservable system to be a controllable and observable sys-
tem. Although controllability and observability are generic properties of dynamical
systems, one can not reap the theoretical benefits of such controllability and observ-
ability properties since the state, control, and outputs are bounded signals, there is
disturbances and measurement noise, and the system may be nonlinear and time vary-
ing. To achieve the benefits of controllability and observability with bounded controls
and outputs over finite time for nonlinear plants with measurement noise and distur-
bances, one needs a measure of how effective the controls and measurements are.
Paige [49] shows numerically that the universal method for testing the controllability
and observability is not precise enough in terms of answering the question of whether a
system is controllable and observable, since proper small variations in specific param-

eters in A(6A) and B(6B) can cause loss of controllability and observability. Thus, it

39
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becomes clear that small variations can cause loss of controllability and observability
for certain states and yet other or possibly the same parameter variations can cause
certain states that were uncontrollable and unobservable to become controllable and
observable. These results suggest that what is needed is a concept of strong con-
trollability and observability, which assures one that small parameter variations or
system nonlinearity will not affect this strong controllability and observability and
that bounded noisy measurements, bounded controls, and disturbances will not hin-
der effective asymptotic stability or convergence of a state estimate in a reasonably
short time interval.

Paige in his paper [49] proposes a general method to measure a distance from a
controllable system to an uncontrollable system. This problem of determining how far
the controllable system is to becoming the uncontrollable system is also investigated
by Eising (23, 24], Boley and Lu [5], and DeCarlo and Wicks [73]. Several methods
have been proposed for assessing the proximity to uncontrollability and unobservabil-
ity. Each method allows different patterns of parameter variation. The first method
for assessing uncontrollability and unobservability uses the singular values decom-
position method. By performing singular value decomposition and eliminating small
singular values of the controllability /observability grammian, the controllable and ob-
servable part of the system can be determined from the controllability /observability
grammian after the components associated with the smallest singular values are elim-
inated. The unobservable and uncontrollable part of the system correspond to states
that are no longer observable and controllable when the components of the con-
trollability /observability grammian corresponding to the smallest singular values are
eliminated. Eising [23, 24] proposed uniformly varying all of the diagonal elements
of the system matrix A by real or complex parameter A. The distance to loss of
controllability over all A is the smallest singular value of matrix [A] — A|B] after all

variation in A are considered. The third method for assessing the distance to loss of
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controllability (observability) is to compute all of the singular values of the controlla-
bility (observability) grammian [5, 73]. The controllability (observability) grammian
can be decomposed into n components that are associated with the n singular values
[46]. The controllability (observability) of the system is decided based on the approx-
imation to the controllability (observability) grammian where the largest m of a total
of n singular values of the grammian are retained [46]. The number m is chosen such
that the distance between singular values is the largest. This approximation results

in rather complex changes AA and AB in the system and control matrices.

3.2 Relationship of Strong and Weak Controlla-

bility and Observability to Power Systems

3.2.1 Strong or Weak Controllability and Observability

Strong controllability (observability) can be defined as holding for those states of the
system that are controllable (observable) for the original system and for the allow-
able prescribed parameter variation in the method used to assess distance to loss of
controllability (observability). Weak controllability (observability) can be defined as
holding for those states that are controllable (observable) in the original system but
are not controllable (observable) for the allowable prescribed parameter variation in
the method used to assess the distance to loss of controllability (observability). It
should be noted that it is possible for some prescribed parameter variations, one can
make those states that are uncontrollable (unobservable) in the original system be-
come controllable (observable). These states can also be defined as a weak controllable

(observable) system.
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3.2.2 Relationship to Power Systems
Coherency

The coherency approach for determining coherent groups that could be aggregated to
produce a dynamic equivalent used a procedure for assessing strong and weak control-
lability (observability). Coherent groups were generator clusters that had very similar
diagonal and off diagonal elements in the controllability (observability) grammian. A

specific upper limit on the differences in the coherency measure

Cu= [QC]kk + [Qc]u - [QC]lk - [Qc]kl

between generators k and ! where Q. is the controllability (observability) grammian,
defines the size of the coherent clusters. The rows of Q. corresponding to generators
in the same coherent groups are nearly identical but rows of Q. corresponding to
generators in different coherent groups are not similar.

The controllable (observable) generator groups, that are controllable based on a
single control on any generator in that group, are the coherent groups that belong
to a fast model of the power system. If the separation between fast and slow modes
is sufficient, the coherent groups determined based on approximating the controlla-
bility (observability) grammian will be the same groups determined based on Slow
Coherency procedure [12] that uses a dichotomic transformation. However, if the
separation between the fast and slow system is not very wide, the Slow Coherency
approach [12] will not produce similar groups to those obtained using coherency since
loss of controllability and observability is not so closely linked to separation of fast
and slow modes.

Dorsey et al. [20, 21] have shown that zero singular values in the controllability

(observability) grammian are due to coherency because coherency is shown to be the
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only condition that can cause redundancy and thus singularity in the controllability
(observability) grammian. Dorsey et al. [20, 21] utilize singular value decomposition
to decide the maximum order reduction when the control is restricted to a study area
that is composed of one or more strongly controllable groups. The procedure decides
when continuing to aggregate larger less coherent groups in an external area, which
is outside the study area, leads to loss of controllability of the system. The system is
composed of both the study and external areas and controls are restricted to lie solely
in the study area. Since the coherent groups in the external area are not strongly
controllable from controls in the study area, the aggregation of the coherent groups
in the external area is just aggregating weakly controlled dynamics until they have
some affect of the controllability grammian (eliminate larger non-negligible singular
values) of the system with controls restricted to the study area.

Zaborszky et al. [75] method of identifying coherent generator groups is a singu-
lar perturbation method since the clustered groups of generators determined by the
method have a small eigenvalue that is bounded above by a measure of the weakness
of the boundary separating the groups. Zaborszky et al. method [75] is not based on
obtaining an approximation of a controllability (observability) grammian as is the co-
herency approach. The Zaborszky et al. method [75] determines generator groups by
looking for the weakness of boundaries between coherent groups that have dynamics
that belong to the fast singular perturbation model of the power system. This ap-
proach would be similar to searching for the decoupling between generator groups in
the controllability (observability) grammian. The coherency approach [22] attempted
to search for strong coupling within generator groups. Despite the contradictory
methods of determining generators groups, the Zaborszky et al. [75] and Dorsey [22]
methods often produced very similar generator groups. The Slow Coherency ap-
proach [12] produced rather different generator groups than either the coherency [22)

or singular perturbation approaches [75]. The Slow Coherency approach [12] did
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not produce generator groups that combined to produce the groups at less stringent
coherency (internal coupling) conditions or conditions which resulted in identifying
groups with weaker boundaries in the singular perturbation method [75].

The procedure for defining and determining strong controllability (observability)
and weak controllability (observability) is based on the weakness of links in a system
connectivity graph [31] rather than based on the methods applied to the controlla-

bility and observability grammians. The system connectivity approach [31] to strong
controllability (observability) requires that a path of sufficiently strong branches in
the direction of the path be found between the c‘lesignated controls (outputs) and

every strongly controllable (observable) state based on this set of controls (outputs).

3.3 The Network and Load States

It is clear that determining controllability and observability of network and load
states as well as generator states is very important. However, if the network and load
equations are added, then a constrained differential model which has both differential
and algebraic equations is produced. The results on connectability have not been
developed for a constrained differential model. In order to overcome this difficulty,
the network and load model are modified in such a way so that they can be written
as a singularly perturbed differential equation. Thus, Large Scale Dynamical System
theory can be applied which has been done in other papers on power systems [70, 19,
11]. Writing the network model as a differential equation model is possible because
the differential equation model for network and load equation is an approximation
to a network and load model where the induction motor loads are represented by
differential equation. The general approach to change the network model algebraic
equation to singularly perturbed differential equation is described in the following

section.



45

3.3.1 Conversion to Differential Equation Model

The network and load algebraic equation model represents the real and reactive power
balance equations at every bus in the network. The network and load equation has

the form

0 = g(z(t),y(t),2) (3.1)

Converting it to a singularly perturbed differential equation model, it is assumed that
the real power balance equations have neglected the effects of the real power load’s
dependence on angular speed 6 and that the reactive power balance equation have
‘neglected the reactive power load’s dependence on v. The singularly perturbed model

has the form

ey = g(x(t),y(t), A€ (3.2)
where
z(t) - state vector of the generator dynamics

y(t) - state vector of bus voltage and angle of terminal buses, high-side transformer

buses, and load buses
A - state vector of the slow varying operating parameter
€ - a very small positive scalar and represents all the small parameter to be neglected.

Model of the form Equation 3.2 has been derived in paper by Walve [72] and has
been utilized extensively in the literature on voltage collapse by Chiang [19, 11]. A

similar model has also been used in developing Lyapunov function for the transient

stability model by Hill [28].



46

3.3.2 Result on Network and Load States

Lemma 4 Given the singularly perturbed irreducible network and load model

€y = g(.’l:(t), y(t)’ A 6)

the linearized differential equation is

APg
eAy = JAy —
AQg
where
S0 _[% W
y |99 oq
56 Bv
AG
Ay =
Av

Then the load and network states are input connectable from either APg or AQg for

any t and output connectable from output measurements Az at any terminal bus 1.

Proof: To prove that the algebraic states Af;, Aég, Avy, and AFE are input
connectable from Af; (and thus APg; or AQg;), a path in the flow direction must be
traced through the dynamic network from A#; to all other elements of Af (elements
of both Af; and Aég) and all elements of Av (elements of both Av; and AE). The
nonzero elements in the row of jacobian matrix J associated with eA6; would indicate
the variables of vectors A#,, Aég, Av,, and AF that are connected to bus ¢ and have
flow into bus z. To continue the path in the flow direction from any A#; connected to
bus 7, we must look at nonzero elements in the row associated with eA.O.-. We could
trace a path in elements of A6, and Aég through dP/98 by repeating the process.
To continue the path in the flow direction from any Af; connected to Av;, we must

look at nonzero elements of the row associated with eAv;, We could trace out a
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path from any element of Av, or AE to Av; through dQ/dv by looking for nonzero
element in the eAv; row of Q/dv. It should be noted that one needs not remain
in the dQ/dv network and thus trace paths through Av; and AE but could move
to Ad; if the jacobian row associated with €¢A0, had nonzero elements in 0Py /0v;.
One could move to other A, and Aég variables (Af,) from Af; based on nonzero
elements in the I** row of the dP/80) network for some ! or move back to Av, and
AE variables (Av;) based on nonzero elements in the I** row of the 8Q/d0; network
for some I. However, once elements in the I** row are chosen (either Af; or Av;) one
must move to the I** row of dP/d0 or 8Q /30 respectively for the flow from Af; to
occur in the correct direction for controllability (Flows occur toward the node ! label
Av,; from nonzero elements in the I** row associated with cdv,). One could similarly
move from Av, to other Av, and AFE variables (Av;) based on a nonzero element in
the I** row of the 8Q /v network for some [ or move back to Af; and Aég variables
(A6 based on a nonzero element in the I row of the dP/8v; network for some I.
Again once the element in this I** row is chosen (either Af, or Av;) one must move the
I** row of 8Q/8v or dP/dv respectively for the flow from Awv, to occur in the right
direction. Since the networks dP/30, dP/dv, 8Q/30, and 3Q /v are irreducible,
all the network variables are input connectable from A#; or following the similar
arguments from Av;. If the networks were reducible, only variables of Af;, Abg, Avy,
and AFE that are physically connected in any one of the dP/d8, 0P/dv, 0Q/d0,
and 9Q/8v networks are input connectable from Af; or Av; ( or APg; or AQg;
due to input connectability of Af; or Av; from APg; or AQg; through arborescence
argument above).

Now, in order to prove that algebraic states Ab;, Aég, Av,, and AE are output
connectable from A#f; or Av; (or Az), a path in the opposAite direction to flow must
be traced through the network from A#; or Av; to other elements of A(A6:, Abg)

and Av(Av, AE). We know that the nonzero elements in the row of jacobian ma-

BT g
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trix associated with eA@; or eAv; would indicate the variables Av and A# that are
connected to bus ¢ and have flow into bus ¢ for graph M(C, A, B) but have flow away
from bus ¢ in graph M*(C, A, B). Therefore, by going through the proper differential
equations eAf; or eAv; for graph M*(C, A, B), we can find paths from any buses j to
bus ¢ that are connected to bus ¢ and flow away from bus i. Similarly, observing rows
of cA'H,- or cA-v,-, paths from any buses k to bus j that are connected to bus j and
flow away from bus j can be found in M*(C, A, B). We can only find a path to bus
j in M*(C, A, B) in the direction of flow through one of the nonzero elements in the
row associated with eAd; where i is connected to j. If we are at bus j, we can only
find a path to bus k in the direction of flow through the nonzero element of 0 P/030;
in the row associated with eAf;. We could trace a path from A#d; or (Az) to all Aé,
and Aég through dP/060 network in the direction of flow in M*(C, A, B) by repeating
the process. Following a similar argument, we could trace a path from Av; (or Az)
to all Av, and AF through 8Q/dv network in the direction of flow. It should also
be noted that one needs not remain in the dQ /v network to trace paths to other
Av; and AFE but could move to Ad; if the jacobian row associated with €Av; have
nonzero elements in dQx/06;. Thus, one could move to other Af; and Aég variables
from Ad; based on the nonzero elements in the j** row of the 8 P/30 network or move
back to Av, and AE variables based on the nonzero elements in the j** row of the
OP/0v network. One could similarly move from Av; to other Av; and AFE variables
based on the nonzero elements in the j** row of the dQ/dv network and to Af; and
A6 variables based on the nonzero elements in the j** row of the dQ/86 network.
Thus, if the networks AP/, dP/dv, 0Q /00, and 3Q/dv are irreducible, then all the
network variables are output connectable from A§; (or Az). It should be noted that
if the networks were reducible, then only variables Af and Av that are physically
connected and connected in one of the dP/d6, dP/dv, 0Q /80, and Q) /Fv networks

are output connectable from Af; or Av; (or Az due to output connectability of Ab;

~=wy
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or Av; from Az through the arborescences argument above). The lemma is proved.

0

3.4 The Complete Power System Model

3.4.1 Mathematical Model Development

A singularly perturbed differential equation irreducible network model and n gener-

ators model are as follow:

T = f(z(t),y(t), A\ e)

€y = g(x(t), y(t)v A 6)

and the output equation model is

z = h(z(t))
Then, the linearized model is
Az A Gu Az Bl
= + Au (3.3)
Ay Gan J Ay 0
Az = Ah(Az) (3.4)
where
AzT = (A6,Aw,AE))

AyT = (867, AvT, 08T, AET)
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(APumi AEy4,)
P aP
o_[¥ &
dy [9;62 2Q
a6 dv

diag(A,, Azy..., Am)
connection — gain — matrices

input — matrices

0, - angle of voltage at terminal buses

v - voltage magnitude at terminal buses

6 - angle of voltage at transformer high-side load buses

E - voltage magnitude at transformer high-side load buses

A; - generator 1 state matrix similar to that in equation 2.1

m - number of generator

3.4.2 Results on Complete Power System Model

The first result is on the model of just one generator but a complete power system
network including all of the generator terminal buses without generators connected
and all of the load buses. The second result is really the extension of the connectability
results for the states of a single generator model to all states of all generators and

network (Az, Ay).

Lemma 5 Given a singularly perturbed differential equation irreducible network
model and a single generator model of the i** generator. Then all the states of the

network and states of the generator are input connectable from APy, or AEyq; for

any i and output connectable from Az for any 1.



)

Proof: From Equations 3.3 and 3.4 and Lemma 4, the flow graph is shown in

Figure 3.1

ou

Sz

Figure 3.1. The flow Graph M(C,A,B) °

Oll

Figure 3.2. The Arborescence of Root APy, or AEyy, of Graph M(C, A, B)
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0 Z

Figure 3.3. The Arborescence of Root Az of the Inverse Flow Graph M*(C, A, B)

The arborescences given in Figures 3.2 and 3.3 come from the differential equa-
tions and output equations (see Figure 3.1). It is clear that the states AzT =
(A6, Aw;, AE;‘.) and AyT = (Ab,;, Av;) are input connectable from A Pyy; or AEyq,
from Lemma 1. The variables Af;; and Avy; are connectable from Aé; or AE;, since
the terminal bus is connected to the internal bus in the power system network. Thus,
Av,; and Af,; are input connectable from AEy4; or APp;. All the states of the net-
work are input connectable from Af,; and Av,; (see Lemma 4) and thus from AEy,,
or APy;. Therefore, all the states of the network and states of the generator are
input connectable from AEj4; or APy, of any machine 1.

If Az depends on the machine state, then Lemma 1 indicates the state Az are
observable. The variables Af,; and Av,; are connectable from Aé; and AE;.. since
the terminal bus is connected to the internal bus in the power system network. Thus,
Af,; and Av,; are output connectable from Az. All the states of the network are
output connectable from A#f;; and Avy; (see Lemma 4) and thus from Az. Now, if Az
depends on the network states, Af,; and Av,; are output connectable. All network
states including Af; and Av,; are output connectable from Lemma 4. Furthermore,
the internal bus is connected to the terminal bus and Aé; and AE;, are output

connectable from Az. Then, the state Az; is observable (see Lemma 1). Therefore,
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all the states of the network and states of the generator are output connectable from
Az. The Lemma is proved. a]
The result in this particular Lemma above will now be extended to a general power

system with n generators and irreducible non-aggregated network.

Lemma 6 States of all generators in the power system and states of the irreducible
network are input connectable from APy; or AEyqy, for any i and output connectable

from Az for any i.

Proof: From Lemma 5, we have shown that all the states of the network and states
of the generator are input connectable from AEy4; or APy, and output connectable
from measurement Az of machine :. We also know that Av,; and A#f,; are connected
to Aj and AE of machine j since the internal bus is connected to the terminal
bus in the power system network. From Lemma 1, we know that the state of the
generator is controllable and thus Aé; and AE;J. are connected to Aw;. Therefore, all
the states of generators and states of the network are input connectable from AEyq4;
or APy, of machine i.

We now prove the state at any generator j not connected to generator 1 is output
connectable from Az. From Lemma 5, all network states are output connectable from
Az as well as dynamics state of generator i. The terminal bus angle (Af,;) and volt-
age (Avy;) at any generator j is thus output connectable from Az. The terminal bus
is connected to the internal bus in the power system network. Thus, Af,; and Av,;
are connected to Aé; and AE;J.. Moreover, from Lemma 1 we know that the state of
the generator is observable and thus Aw; is connected to Aé; and AE;J.. Therefore,
all the states of the generators and states of the network are output connectable from

any output measurement Az. The Lemma is proved. (m)
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3.5 Procedure for Determining Strong’' Local

Controllability /Observability

The procedure in determining strong local controllability and observability is as fol-

low:
1. Define the following

e a disconnected network

e a control area

e a strong locally disconnected network

e a strong local control area

e strong local input connectability
e strong local output connectability
e strong local controllability

e strong local observability

These definitions are needed to develop a procedure for determining whether a
subset of states of the power system are strongly controllable and observable

given a set of measurements and controls.

2. Prove that for a given differential equation model and an output equation model,
all the states (7) of the network in a strong local control area, and all the states
(Z) of generator i, and all other generators connected to this strong local control
area are strong local input and output connectable from APp; or AEy4; and
Az for any 7 and Vz,y € §2. Since the power system model is nonlinear, strong
controllability and observability can not be guaranteed for all states (z,y) but

only those belong to some subset of the state space .
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3. Prove that a given strong local control area of a power system, where the dy-
namic states of all generators and the algebraic states of the network are strong
local input connectable from any generator’s input and strong local output con-
nectable from any measurement from that strong local control area Vz,y € 2,

is strong local controllable and observable Vz,y €

It has been discussed earlier that it is impossible to control all states in the power
system from one input or control and to observe all the states in the power system
from one measurement at a single bus. In order to discuss strong local controllabil-
ity and observability, some method has to be developed for determining when the
network connecting areas or coherent bus groups is too weak to permit coupling of
information from measurements on states in one area to states in other areas. In
order to define this decoupling, one must define it in the 8P/86, dP/dv, 8Q/06, and
8Q/0v networks. Now, the clusters of buses in P/38 and 8Q/dv netw’orks that are
decoupled should be the same because the off diagonal elements which describe the
decoupling or coupling of pairs of buses have the same values. Similarly, the clusters
of buses in the P/0v and 0Q/08 that are decoupled should be the same because
the absolute values of the off diagonal elements are the same. The decoupling in the
0P/00 and OP/0v networks or 3Q /30 and 8Q /v networks needs to be described
because of the common boundaries. The definition of a disconnected network assumes
that the branches with weak coupling have been defined and eliminated in 8P/89,
0P/0v,0Q /06, and Q/0v networks. The definition of strong local disconnected net-
work will be used in defining strong local input and output connectability. It should
be noted that the coupling is defined not in terms of every path between bus ¢ and bus
j or an equivalent path but in terms of branches in paths because the computational
burden of attempting to compute the effective coupling of all paths between E’;.. and
E'{,J. or 5_5 and §; and E';j and Sj would be high for every large networks. If the network

is aggregated back to internal buses in an attempt to obtain equivalent connections
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between (;, E;;) and (6;, E,;J.), all information on the controllability and observability
properties of the network will be lost. The loss of this network controllability and
observability information loses information on (a) the weak interfaces and boundaries
where loss of stability occurs and can be prevented by real and reactive power flow
constraints, and (b) the boundaries where FACTS based controls should be sited and
measurements taken.

The disconnectivity or irreducibility property does not define what is meant by
strong local input and output connectability. These definitions will be defined based
on the strong locally disconnected network. The procedure for determining the iso-
lated bus groups in the strong locally disconnected network will ultimately determine
what generator dynamic states and network algebraic states are strong local input
connectable from a certain input and strong local output connectable from a certain

output.

3.6 Final Results

3.6.1 Definitions, Examples, and Discussions

It is clear from the results of Chapter 2 and previous sections on the n generator
case that all the states of the generator and the network (Az, Ay) would be input
connectable from AEyq; and from A Py; and output connectable from some measure-
ment Az if the network is irreducible. However, in practice there are branches in
the network with weak coupling where the reactive power transfer in this branches
is small. Thus, results on practical power systems need to be obtained. In order to

obtain these meaningful results, a set of definitions are proposed.

Definition 6 The dynamic network of a power system eAy = JAy is called discon-

nected if the clusters of tsolated bus groups in OP/06 and the clusters of isolated bus

= vy




57

groups in OP/0v have common boundaries (clusters of isolated bus groups in 0Q /00
has common boundaries with OP/0v and clusters of isolated bus groups in 0Q[0v
have common boundaries with OP/06 since the absolute values of the off diagonal

elements are the same).

In order to have a better picture about the definition of a disconnected network,

some remarks and examples are given below.

1. The power system network is disconnected if all four matrices dP/d8, dP/dv,
0Q/00, and 0Q /v have isolated bus groups with the same boundaries. Since
the 17 and ji off diagonal entries of 9P/00 and 0Q/0v are identical and the
absolute values of ij and ji off diagonal entries in 9P/dv and 8Q /08 are identical
based on the jacobian definitions in Costi [13], clusters of bus groups with
common boundaries need to be established only in 3P/36 and 8 P/dv (or 8Q /30
and 0Q/0v).

2. The isolated groups of buses in dP/00 and dP/dv (0Q/00 and 0Q/3v) need
not have common boundaries and the dynamic network would not be considered

disconnected. For example, see Figure 3.4.

Figure 3.4. No Common Boundaries

oy

WSS S v



58

3. If there are common boundaries between groups of buses in 9P/30 and dP/dv
(0Q/06 and 0Q/0v), not all groups need to have common boundaries. For
example, the first bus group in dP/00 and OP/0v in Figure 3.5 have a com-
mon boundary and thus the network is disconnected in the pattern observed
in OP/00. The last isolated group is dP/0v has no similar isolated group in
0P/06 and thus the network is not disco_nnécted along the boundary of the last

group in dP/0v.

= Legend:

u - common boundaries

R e ettt

Figure 3.5. One Common Boundaries

4. Since bus groups in dP/00 can be broken into more than one isolated subgroups
in 9P/0v and vice versa (see Figure 3.6), one or more isolated bus groups in
O0P/08 can have common boundaries with one or more isolated bus groups in

OP/0v.

5. When the power system is decoupled the absolute values of each of the off
diagonal elements of both dP/0v and 8Q /30 are less than ¢, where ¢ is a small
number greater than zero. Then, the elements on dP/0v and 0Q/00 are just

diagonal matrices and every bus is isolated in dP/dv and 9Q/30 networks.
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Legend:

. - common boundaries

Figure 3.6. One or More Common Boundaries

Thus, the isolated groups of buses in dP/36 (or the isolated groups of buses in

0Q/0v which are identical) are disconnected.

Definition 7 A control area is a minimum size cluster of groups of buses in the
0P/06 and in the OP/0v (0Q/00 and 0Q/0v) networks which have common bound-

aries.

Definition 8 Given the linearized network and load system
eAy = JAy
where

AyT = (88T, AvT, A8, AET)
8P 8P

0y |39 8q
08 ov

with initial equilibrium point (zo,yo) and some set ) containing (zo,yo), the dynamic
network and load system is called a strong locally disconnected network in Q if the
control areas produced by applying the following procedure to matriz J at the equilib-

rium point and at every point in the set Q) are the same:
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1. Rank order the absolute values of the off diagonal elements of 0P/08 and OP/dv
on each row of [0P/36, OP/3v] from the smallest to the largest. Note, rank or-
dering the absolute values of the off diagonal elements of 0Q /00 and 3Q /v
on each row of [0Q /30, 0Q/dv] from the smallest to the largest would produce
an identical ordering of the off diagonal elements for corresponding rows of
[0P/08,0P/0v] since AP/30 and 0Q/0v have identical off diagonal elements
and OP/0v and 0Q/00 have identical absolute values of the off diagonal ele-
ments [58].

2. Sum those ordered off diagonal elements in each row of [0P/86,0P/dv]

3. Then eliminate the elements in this sum from the network if the sum is less
than some value ad where d is the largest diagonal element of matriz J and o

ts some arbitrary small positive constant.

4. Order the buses in the reduced network to produce diagonal block matrices in

the dP/36,0P/0v,0Q /06, and 0Q /0v respectively.

5. Control areas are clusters of isolated groups of buses in the OP/00 and in the
0P/0v(0Q/00 and 0Q/0v) of the reduced network which have minimum size

and common boundaries.

It should be noted that when a = 0 the whole network is in one area and all the
states are connectable. When a value is much greater than zero, then there are many
control areas with single bus. Thus, a value must be chosen properly.

Strong locally disconnected network implies that the connections within discon-
nected bus groups are strong and that the connections between bus groups is weak
and is neglected for all state variation (zo,y0) in some local set Q. The following

remarks may help clarifying the definition above:

T oy



61

1. When the system is stressed, the group boundary is weakened. Thus, it requires

a smaller a value to detect that group boundary.

2. When the system is decoupled, the control areas are determined by applying
the procedure or algorithm above to 8P/06 rather than both dP/80 and P/0v
or to dQ/0v rather than both 0Q /00 and 0Q/0v

3. An algorithm similar to the one proposed [20, 21, 22] has been used to define
coherent groups of generators that can be aggregated to produced a reduced
order model. The model used classical generator model and the network was
aggregated back to internal generator buses. The reduced order model was
shown to be the model of the slow dynamics in a singularly perturbed power
system model. It has been shown that the same groups of generators are ag-
gregated if the controllability and observability grammians were used to define
the coherent groups are singular. Since coherency used in [20, 21, 22] is a lack
of controllability in groups of buses that do not contain the disturbance, the
approach for local controllability is defining the loss of controllability of fast dy-
namics in coherent groups of generators which do not contain the disturbance.
This type of controllability was restricted to a power system model that did not
include generator electrical and exciter dynamics. The reduced order models
produced based on loss of local controllability were excellent approximations to

the full system model.

4. An algorithm similar to the one proposed in this thesis has been used to define
voltage control areas for study of loss of voltage stability [58, 59, 60]. The
algorithm was only applied to dQ/dv network in a model where mechanical
and electrical generator dynamics were ignored. It was shown that groups of
buses in a voltage control area acted as a single bus in terms of their voltages

and angles at any operating conditions and in terms of changes induced by
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any disturbances or contingencies. All of the branch outages that were found
to cause voltage collapse belong to the voltage control area boundaries that
were identified as having weak coupling in dP/86, dP/dv, Q/d0, and 3Q /v
networks. It is clear that when a system is close to loss of voltage stability the
coupling in dP/0v and 8Q/06 can no longer be ignored. The procedure for
determining strong local control areas is thus a generalization of the algorithm
for determining voltage control areas, which is valid even when the system

approaches voltage collapse.

Definition 9 Given a strong locally disconnected network for all states z,y € Q, a
minimum size cluster of groups of buses in the 9P/00 and in the OP/0v (0Q /30 and
0Q /0v) networks which have common boundaries is called a strong local control area

in Q

Notes: Strong local control areas are defined the same as control areas but in term
of the bus clusters produced from a strong locally disconnected network rather

than the disconnected network.

Definition 10 All of the states of generators and network in some subsystem are
strong local input connectable for all z,y € Q as long as there is a path from input
APy, or AEyy; for any generator i in the flow direction to the states of generator i,
every bus in the subsystem network, and to the states of every generator connected to

this subsystem network Vz,y € (2.

Definition 11 All of the states of generators and network in some subsystem are
strong local output connectable for all z,y € §) as long as there is a path from output
Az for any i in the opposite direction of the flow to each states of generator i, every
bus in the subsystem network, and to the states of every generator connected to this

subsystem network Vz,y € Q.
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Definition 12 A power system is said to be strong local controllable at to for all
z,y € N if it ts possible to find some input that belong to the strong local control
area, defined over t € [to,ts], which will transfer the initial state Z(to),Y(to) in some
subspace of [z(t),y(t)] corresponding to a strong local control area to the origin at

some finite time t; € [to,t5],t; > to Vz,y € Q.

Definition 13 A power system is said to be strong local observable at to for all
z,y € Q if the state T(to),Y(to) corresponding to the strong local control area can be
determined from the output or measurement yjy, ¢ ) in that strong local control area

for to € [to,ty], to <ty and all z,y € N, where t; € [to, 1]

3.6.2 Results

It is clear now that for any irreducible non-aggregated network, the system is input
connectable from APy, or AE;,, and output connectable from Az event‘hough the
network and load equations are added. However, if the network is reducible, then only
the states of all generators and network of the isolated system are input connectable
from APp; or AE;4; and output connectable from Az where APy, AEyq;, and Az

belong to the isolated system.

Lemma 7 Given a differential equation model and output equation then all the states
¥ of the network in a strong local control area, all the states of generator i, and all the .
states of other generators connected to this strong local control area T are strongly local

input and output connectable from APy; or AE;y; and Az for any i and Vz,y €

Proof: See proof of Lemma 5 and Lemma 6 since the proof is identical except that
this Lemma is being applied to the strong local disconnected network and Lemma 5

and 6 are proved for the global power system network. 0
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Theorem 3 Given a strong local control area of a power system where the dynamic
states of all generators and the algebraic states of the network are strongly local input
connectable from any generator’s input and strongly local output connectable from any
measurement from that strong local control area Vz,y € Q, then the system is strongly

local controllable and observable Vz,y € Q.

Proof: Use Jamshidi’s Theorem [31] 0



CHAPTER 4

Applications

The research to be reported on in this thesis

1. directly addresses strong and weak controllability (observability) of power sys-

tems for the first time;

2. determines strong controllability (observability) for a model that includes gen-
erator electrical and exciter dynamics along with the generator mechanical dy-

namics;

3. determines strong controllability (observability) for a model that includes both
generator dynamics as well as network algebraic states. The previous work only
utilized models where the network was aggregated back to generator internal

buses.

Determining the network states as well as the generator dynamics states that are
strongly controllable and observable utilizing a particular control and measurement

is quite important in the following applications.
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4.1 Weak Transmission Stability Boundaries

A recent paper [36] has indicated that the weak steady state angle stability boundaries
may also be vulnerable to voltage collapse, inter-area mode of oscillation, and multiple
swing loss of transient stability due to faults. Those weak boundaries are often

undetected by utility planner or operator either

1. because they have developed due to contingencies or unanticipated operating

changes, or

2. because the planner or operator is asked to address stability problems in a large
interregional data base for which he or she has little knowledge or experience,

or

3. because the computation and manpower required to establish stability bound-
aries may prohibit the exhaustive set of stability runs and careful analysis and

comparison needed to establish these weak boundaries.

The algorithm for determining strong local control areas, presented in the previous
chapter, is based on the weakness of the elements in the network load flow jacobian
matrix. Thus, the actual weak transmission network branches and boundaries of
the transient stability model are directly identified as we determine the strong local
control areas. These weak boundaries between control areas experience large angle
deviations for inertial load flow simulation of all loss of generation contingencies.
The same weak boundaries can experience a loss of synchronism for any specific
loss of generation contingency or a loss of synchronism (stability) for a specific fault
contingency. The identification of such weak boundaries is impossible in [54, 56, 38,
61, 47] since the network is aggregated back to internal buses. The identification of the
actual weak boundaries that lose stability for faults or loss of generation contingencies

is essential to the development of improved dynamic security assessment methods.

oy
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First, one must know the branches that belong to weak boundaries and the operating
conditions that cause the weakness of particular weak boundaries in order to most
effectively remove the weakness and thus improve system security. Second, recently
developed methods for characterizing the region stability for a topological transient
stability model [4, 7, 62, 63, 65, 8] place conditions on the potential energy or angle
and voltage differences on the set of branches in a weak boundaries that encircle
a group of buses. In order not to have to test these topological transient stability
conditions for a particular fault on all transmission system weak boundaries (which
is clearly computationally impossible), the weak boundaries that are weak and most
vulnerable to loss of stability must be identified. Furthermore, if the branches that
lie in the weakest steady state and transient stability boundaries are known, it is easy
to develop security constraints on transfers across these boundaries (or power flows
across particular elements). These transfer constraints will reduce vulnerability to
loss of steady state stability and loss of transient stability.

Research [47, 48] has shown that loss of transient stability may occur between
coherent generator groups identified by singular perturbation techniques [56, 2] if
the fault lies within a group of coherent generators that would be identical to those
determined in this thesis if the load flow decoupling assumption holds as explained
in the previous chapter. The research on topological methods for direct stability
assessment [4, 65] has shown that loss of synchronism for faults occurs across actual
network weak boundaries. The results in [65] indicate that the actual transmission
network obeys a quasi equal area criterion. The actual network weak boundaries
that experiences loss of synchronism for a fault is the one that can not accommodate
the flow changes required to exhaust the acceleration energy developed during the
fault period. This weak boundary can be the weak boundary surrounding a group of
coherent generators if the fault occurs within the group. Identifying and strengthening

the weak transmission network stability boundaries is thus a more direct method
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of improving transient stability margins when loss of synchronism occurs between
coherent generator groups than trial and error procedures.

Recent research on voltage stability [58, 60, 64] has shown that the Q-V curve is
nearly identical if computed at any bus in a control area. However, the Q-V curve
computed in different control areas has quite different shapes, exhausts reactive supply
and voltage control reserves at different rates, and exhausts different reactive supply
and voltage control reserves at the minimum of the Q-V curve, which is the point
where voltage collapse occurs. Thus, each control area is protected by a uniquely
different set of controls as the theory suggests. When the reserves that maintain
the control area as voltage collapse secure are exhausted, voltage collapse occurs as.
a result of the loss of strong controllability in that control area. Thus, the weak
boundaries restrict the reactive supply and voltage control resources that protect a
control area. Hence, strong controllability and observability insure prevention of loss

of transient stability, loss of steady state angle stability, and voltage collapse.

4.2 FACTS Controllers

Only the generator and network controls within a strongly controllable group of buses
can cause the algebraic states at those buses and the generator dynamic states for
generators connected to those buses to be strongly controllable. Since inter-area os-
cillations are hypothesized to occur between two or more strongly controllable groups
of buses, the excitation controls and network controls in each of the strongly control-
lable groups of buses need to be coordinated to damp inter-area oscillations if all the
states in both groups of buses associated with these oscillations are strongly control-
lable and observable. Since the controls in different strongly controllable bus groups
do not currently share measurements, the states associated with inter-area oscilla-

tions will not necessarily be strongly observable to controllers in either control area.
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Since the controls in the two strongly controllable bus groups are not necessarily co-
ordinated, the states associated with the inter-area oscillation may not be effectively
controlled eventhough coordinating the controls in each strongly controllable groups
would theoretically make the inter-area oscillation strongly controllable. It should
be noted that a control in each strongly controllable bus group is necessary to make
all the states associated with an inter-area oscillation strongly controllable. FACTS
controllers placed on lines in boundaries between strongly controllable groups of buses
can make all the states associated with an inter-area oscillation strongly controllable
using just one control since the flow is a control to both strongly controllable bus
groups. A single flow measurement on interfaces between strongly observable groups
of buses will make both the algebraic and dynamic states of generators in strongly
observable bus groups strongly observable since the flow measurement will be a mea-
surement for both strongly observable bus groups. Taking measurements of interface
flows between areas have indeed been shown to be far more effective in damping
inter-area oscillations using either excitation controls, SVC controls, or FACTS series
capacitor or phase shifter controls [26, 27]. Thus, knowledge of the strongly control-
lable and observable bus groups and the interfaces should make the design of FACTS

and non-FACTS controllers more effective.

4.3 MASS/PEALS Programs

Currently, all of the eigenvalues of a power system can not be computed since the
computational burden is too great. The power system is dichotomized and the eigen-
values for each piece is computed using a program called MASS. The power system
is then aggregated and the effects of the reconnection of the pieces is used to modify
the eigenvalues obtained for each piece. The accuracy of this procedure depends on

breaking up the system along the boundaries of strongly controllable and observable
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bus groups. If the separation between the fast and slow subsystem is sufficiently
broad, then the eigenvalues affected by the dichotomization are solely in the slow
subsystem and are not eigenvalues of both fast and slow subsystem. At present there
is no method of determining the boundaries between strongly controllable and ob-
servable bus groups. The methods only indicate the groups of generators which are
in each strongly controllable and observable bus group. The algorithm to be devel-
oped for identifying strong controllability and observability of both network algebraic
states and generator dynamic states is the first procedure for determining how to
dichotomize the buses and generators so that the eigenvalues of the power system

obtained after reconnecting the pieces are accurate.

4.4 Underfrequency Relay Breakers

Underfrequency relaying procedures attempt to break up the system into survivable
pieces when the system is experiencing a net generation load mismatch. The real
power generation level must be decreased in islands which have surplus generation,
load must be shed in islands where generation is insufficient, and voltage controllers
must be readjusted so that the voltage will be stable and at sufficiently high values.
It is clear that each of the islands must be composed of one or more strongly control-
lable and observable bus groups in order that there is sufficient control to accomplish
settling to a stable equilibrium. The controls would include real power generation,
load at certain load buses, switchable shunt capacitors, excitation controls on gen-
erators, SVC’s, etc. It is not sufficient to just be controllable (observable) at some
equilibrium points but to have sufficient control reserves so that the islands remain

strongly controllable (observable) until an equilibrium is reached.




CHAPTER 5

Simulation Results on Inter-area

Oscillations

5.1 Objectives

1. To prove that low frequency electromechanical oscillation modes are oscillations
of strong local control areas against one another. These oscillations occur across
the weak transmission boundaries determined from dP/38 or 8Q/dv when the
coupling 0P;/0v; and 0Q;/00; on the weak transmission boundaries equals the
values of 9P;/00; and 0Q;/0v;.

2. To prove that the operating conditions where these inter-area oscillations occur
can be detected through the jacobian matrix of aggregated network model using

the algorithm for determining strong local control areas.

5.2 Types of Oscillation Modes

For many years, several utilities around the world have observed that electro-
mechanical oscillations between interconnected synchronous generators are the main

problem in power system operation. These oscillation modes can be categorized into
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two types [35]:
1. Local Modes

2. Inter-area Modes

5.2.1 Local Modes

Local modes are oscillations between single generator in the same area with frequency
around 0.8 to 2.0 Hz. [35]. Designing the control for the stability of these kind of
oscillations is no longer a problem since all the characteristic and behavior of these
oscillations are well understood [37]. Thus, the stability of these oscillation is not

really a big concern in term of security of the power systems.

5.2.2 Inter-area Modes

Inter-area modes are oscillations between groups of generators in different areas with
frequency of oscillation around 0.1 to 0.8 Hz. [35]. Recently, many utilities around
the world have observed that inter-area modes occur over large geographical region.
Moreover, designing the control for the stability of these modes is a difficult and
unresolved problem as explained in the previous chapter. There are actually four

different types of inter-area modes :

1. Horizontal Modes - where the groups of generators oscillate against each other

(horizontally).

2. Horizontal-Vertical Modes - where the groups of generators oscillate against each

other (horizontally) and oscillate against the reference (vertically).

3. Adjacent Mode Coupling - where several adjacent groups of generators oscillate

against each other.
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4. Non-adjacent Mode Coupling - where one set of adjacent groups of generators
causes oscillations within another set of adjacent groups of generators which is

not directly connected to the first set of adjacent generator groups.

The first two above will be shown and analyzed using the two area power system
model taken from [35], the latter two are beyond the scope of this research. The
EPRI Small Signal Stability Program Packages (SSSP) is used to perform the modal
analysis. This program is capable of calculating all the eigenvalues, eigenvectors, and
participation vectors for reasonable sized power systems. This program is the best
tool available for identifying the frequencies, damping, mode shape, and participation

of the generators that experiences the low frequency electro-mechanical oscillations.

5.3 Simulation Results on Two Area Power Sys-

tem Model

5.3.1 Two Area Power System Model

The ten bus power system model shown below in Figure 5.1 consists of two identical
areas connected through weak tie lines. Each area consists of two identical generating
units which have the same power outputs. The dynamic data for the generators is
shown in Table 5.1 . There are two different types of exciters used in this simulation
studies (see Figure 5.2 and Figure 5.3) and the excitation systems data are shown in
Table 5.2 and Table 5.3 respectively. The base case system is made to be symmetric
so that the effect of varying different factors on the inter-area modes and mode shapes
can be seen clearly. It should be noted that all of these models and data are taken

from [35].
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5.3.2 Horizontal Modes

In the first case, we used identical detailed generator model and fast static exciter
models for all four generators in the system. Moreover, the load in area 1 is identical
with the load in area 2 and there is no power transfer through the tie lines. A constant
impedance load model is used to represent all the loads in this particular study. In
this case 1, we have six oscillatory electro-mechanical modes as shown in Table 5.4 and
there are some interactions between them. The lowest frequency mode (0.7667 Hz.)
is the inter-area mode to be investigated. The corresponding eigenvector magnitude
and phase and the participation vector are shown below in Table 5.5. Generator 1
(GEN 1) and generator 11 (GEN11) are dominant since the rotor speed state (DG 1)
and rotor angle state (DG 2) of these two generators have the maximum participation
vector magnitude. Generator 1 and 11 are oscillating against one another since the
eigenvector for angle and speed on the two generators are 180° apart. Generator 2
and 12 oscillate one another since the participation vector elements for angle and
speed on the two generators are identical and the eigenvector components for angle
and speed on the two generators are 180° apart. Generators 1 and 2 swing together
against generators 11 and 12 since the eigenvector components for generators in the
same group have nearly the same phase but with slightly different magnitude.

In case 2, we tripped two out of three tie lines. Six oscillatory electro-mechanical
modes are obtained and are associated with interactions between the four generators
(see Table 5.6). In Table 5.7, the corresponding eigenvector magnitude and phase
and the participation vector magnitude of the low frequency (0.5217 Hz.) inter-
area mode is given. Generators 1 (GEN 1) and 11 (GEN11) are again the most
dominant generators in the system and they are oscillating against each other. It
is also clearly shown that the rotor speed state and the rotor angle state have the

maximum participation vector magnitude. Generators 1 and 2 again oscillate against
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Table 5.1. Synchronous Generator Dynamic Data

R, 0.0025 ||
Xa 1.8
T u
Xi 0.2

X} 0.3 |
X, 0.55

Xi 0.25

X 0.25

T4 80s

Ty 0.03 s
A 0.40 s
T 0.05s

H 6.5

RATING | 900 MVA

Table 5.2. Fast Static Exciter Data

K4 | 200.0
Tr | 0.01
Tc | 0.0
H Tg | 0.0

Ta| 0.0
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Table 5.3. Slow Exciter Data

" K4 250.0 ||
" T4 0.055
Te 0.36
Aex | 0.00555
Bex | 1.075
Kr 0.125 |
Tr 1.8
“ Tr 0.01 |

generators 11 and 12. The generators 1 and 2 and generators 11 and 12 oscillate more
as a single generator since the participations of the generators in each group are closer
together. The magnitude of the frequency component of all the eigenvector on all four
generators is much larger indicating the damping has been reduced. The damping
on the inter-area mode decreased (0.0106 to 0.0033) comparable to the increase in
reactance of the equivalent transmission line (0.22/3 to 0.22). The frequency of the
inter-area mode only decreased from 0.7667 to 0.5217 due to loss of two of the three
parallel transmission lines. The results of the time domain simulation (Figure 5.5 and
Figure 5.6) confirm the results from the eigenvalue/eigenvector analysis of the above
test cases. .

It should be noted that Table 5.5 and 5.7 only show those state vector elements
with participation vector or eigenvector magnitude greater than 0.2. The structure
of Table 5.4 - Table 5.7 are typical of those produced by the SSSP program taken
from [69].

The effect of increasing the tie line impedance on the mode shape is now sum-
marized. As we can see from Table 5.5, the generator 1 and 2 and generators 11
and 12 oscillate in anti phase and the amplitude of the oscillation is exactly equal.

These results are produced in both cases since the system is symmetric with no power
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Table 5.4. Electro-Mechanical Modes for Case No. 1

| Modes | Eigenvalue [ Frequency [ Damping Ratio I
1,2 [-0.6253x10~* & ;0.09155
3,4 -0.0509 + y4.817
5,6 -0.9831 + 8.092
78 20.9875 £ 78.231
15,16 T17.87 £ J17.57
(17,08 | 1901 & 1117 |

Table 5.5. Selected Participation Vector and Eigenvector Elements of the Inter-area

Modes (3,4)

System | Bus No. | Stations | Local | Participation | Eigenvector

State Name | State Vector ||
T 1 GEN1 |DG1 1.0 1.414 £0°
L 2% 1 GEN1 | DG 2 1.0 0.294 £269.4°
zg 2 GEN2 {DG1 0.607 1.049 £12.2°
zg 2 GEN 2 DG 2 0.607 0.217 £281.7°
Zs 6 GEN11 | DG1 1.0 1.414 £180°
Zie 6 GEN11 [ DG 2 1.0 0.294 £89.4°
29! 7 GENI12 [DG1 0.607 1.049 £192.2°
Ts | 7 | GENI2 [DG2]  0.607 0.217 £101.7°
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Table 5.6. Electro-Mechanical Modes for Case No. 2

[| Modes Eigenvalue | Frequency | Damping Ratio |

1,2 [-0.5232x107% £+ 70.09307 | 0.0148 0.0006
3,4 -0.01069 + ;3.278 0.5217 0.0033

5,6 -1.013 + 8.081 1.2861 0.1244
7,8 -1.018 £ 8.133 1.2943 0.1242
15,16 -18.05 * 17.62 2.8040 0.7155

17,18 -18.52 + 15.00 2.3872 0.7771 I

Table 5.7. Selected Participation Vector and Eigenvector Elements of the Inter-area
Modes (3,4)

System | Bus No. | Stations | Local | Participation | Eigenvector

State | Name | State Vector
T, 1 GEN1 |{DG1 1.0 1.414 £180°
L 28 1 GEN1 [DG 2 1.0 0.431 £89.9°
Tg 2 GEN 2 [DG1 0.8 1.225 £184.8°
Tg 2 GEN 2 { DG 2 0.8 0.374 £94.6°
Tys 6 GEN11 [DG1 1.0 1.414 £0°
T16 6 GENI11 [ DG 2 1.0 0.431 £269.9°
29 7 GEN12 | DG 1 0.8 1.225 £4.8°
T3 7 GEN12 |DG2| 08 0.374 £274.6°
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transfer through the tie lines. The normalized eigenvector components corresponding
to the rotor angle speeds are shown below in Figure 5.4. From Figure 5.4, we can
see that the generator units oscillate against each other (horizontally) and there is
not much difference between the system with three tie lines and the system with only
one tie line. However, the frequency and the damping are reduced by a significant

amount as the tie line impedance increases.

Table 5.8. Summary of Case 1 and 2

Power Flow Generation/Load
Area 1 to 2 Frequency | Damping
(MW) Ties | Areal | Area?2 (Hz.) | Ratio
l 0 3 [1400/1367 | 1400/1367 | 0.7667 | 0.0106
0 1 | 1400/1367 | 1400/1367 | 0.5217 0.0033
GEN 2

GEN 2

GEN11 _— GEN11 —
- - 7
— GEN 1

EN12 GEN 1
GEN12 G

(a) (b)

Figure 5.4. The Normalized Speed Eigenvector for (a) Case 1 and (b) Case 2
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680 T T T T T
675 ‘genl’ — _

'genll’ —
670
665
660
655
650
645
640 : .

635 | 1 1 1 1
4 6 8 10 12 14 16
TIME (SECOND)

) ——
——
1

I

1

Figure 5.5. Power Output of GEN 1 and GEN11 (1 Tie Line)

720

715
710
705
700
695
690

685

680 | 1 1 1 |
4 6 8 10 12 14 16
TIME (SECOND)

Figure 5.6. Power Output of GEN 2 and GEN12 (1 Tie Line)
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It will now be shown that inter-area oscillations occur between strong local control
areas. Furthermore, it will be shown that these inter-area oscillations can be detected
through the jacobian matrix of the network using the algorithm for determining strong
local control areas developed in this thesis. The algorithm developed in [58, 60] was
applied to the dQ/0v network to determine voltage control areas. The algorithm
presented in this thesis applies the same algorithm used in [58, 60] to [0Q /30 8Q/dv].
The results show that the control areas produced by the two algorithms are identical
as long as the assumption of the load flow decoupling is valid so that elements in
0Q /08 are small. Table 5.10 show that the same control areas (see Table 5.9) can
be produced from the two algorithms but the a values for the algorithm developed
in [58, 60] (ALG 2) are smaller than the a values for the algorithm developed in
this thesis (ALG 1). These results are due to the lack of validity of the decoupling
assumption when there is real power transfer.

The 9Q/0v or OP/036 terms will no longer dominate in the results of the next
subsection as the system is stressed by increasing the power transfer through the tie
lines. The a values required to determine the same control areas for the algorithm
developed in this thesis will increase to a maximum and then decrease as power
transfer increases. .However, the a value required by the algorithm of [58, 60] to
determine the same control areas will decrease with increased power transfer. This
decrease in a values indicates the weakening of transmission boundaries in 0Q/ov
and GP/00 with increased real power transfer.

As we can see from Table 5.10 and Table 5.9, both methods agree on groups
of buses. Moreover, these groups also agree with the above eigenvalue/eigenvector
analysis and time domain simulation results. We ;;.lso see that when the number of
tie lines decrease, the a value increases. This a value in this case can be used as a

measure of the frequency of the inter-area mode.



Table 5.9. Control Areas that Oscillate against each other in the Inter-area Mode
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[ Bus No. [ Bus Name I Area No. "
1

GEN 1 I

GEN 2

HST1

HST?2

LOADI1

GEN11

GEN12

HST11

O D DO | W=

HST12

Pt
o

LOAD?2

DO NI D] DO D] =] =t | =] =

Table 5.10. a Values to Produce Two Control Areas for the Two Algorithms

Power Flow a Values
Area 1l to 2 Exciter
(MW) Ties | Type | ALG1 | ALG 2
0 3 Fast | 0.000401 | 0.000370 “
Q 1 Fast 0.000_428 0.000388 "
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5.3.3 Unstable Horizontal Modes

In this test case, identical detailed generator units and fast static exciter models are
used and these models are the same as those used in test cases 1 and 2 in the previous
section. The generator power output and the load in both areas are not identical
because a power transfer from area 1 to area 2 is established. A constant impedance
load model is used. The frequency and damping of the low frequency mode is shown in
Table 5.11 as transfer level is increased. Note that this low frequency mode becomes
unstable at a transfer level exceeding 200 MW. Note that the frequency of the mode
decreases with the transfer which indicates the boundary between the two areas is
weaker with increased transfer. The results on time simulation, shown in Figure 5.7,
Figure 5.8, Figure 5.9, and Figure 5.10, agree with the eigenvector/eigenvalue analysis

and the method of identifying control areas (ALG 1).

Table 5.11. Frequency and Damping of the Inter-area Mode as Function of Power
Transfer Level

Power Flow
Area l to 2 Frequency | Damping
(MW) Ties (Hz.) Ratio
0 1 0.5217 0.0033
50 1 0.5208 0.0025 |
100 1 0.5173 0.0012
150 1 0.5096 0.0002 ||
200 1 0.4973 -0.0008 |
300 1 0.4534 -0.0013
400 1 0.3291 -0.0033 |

Seven oscillatory electro-mechanical modes for the system are given in Table 5.12
for a 200 MW transfer level. The low frequency (0.4973 Hz.) modes’ participation

vector and eigenvector magnitude and phase are shown in Table 5.13. It is clear
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that generator 11 (GEN11) is oscillating against generator 1 (GEN 1) with a phase
difference on angle and frequency eigenvector components of 160° rather than the
180° which existed when there was no power transfer. The magnitudes of these angle
and frequency eigenvector components on the pair of generators oscillating against
one another is no longer equal. When the mode is stable (transfer is less than 200
MW) the magnitude and phase difference of the angle and frequency eigenvector
components for pairs of oscillating generators increase with transfer. The complete

data for various power transfer levels can be seen in Appendix A.

Table 5.12. Electro-Mechanical Modes for 200 MW Transfer Case

Modes Eigenvalue Frequency | Damping Ratio

1,2 0.2621 x107% +33.124 0.4973 -0.0008

3.4 -0.4445 x10~* £ 70.05719 0.0091 0.0008

5,6 -0.7677 + 38.264 1.3152 0.0925

7,8 -1.186 £ 37.961 1.2670 0.1473
15,16 -17.90 £ $17.75 2.8248 0.7101
17,18 -18.18 £ 315.14 2.4095 0.7685
19,20 -31.11 £ 30.5571 0.0887 0.9998




Table 5.13. Selected Participation Vector and Eigenvector Elements of the Inter-area

Modes (1,2)
System | Bus No. | Stations | Local | Participation | Eigenvector
State Name | State Vector
z) 1 GEN1 [DG1 0.706 _ [1.041 /163.3°
T, 1 GEN1 | DG 2 0.706 0.334 £73.3°
Tg 2 GEN2 [ DG1 0.528 0.798 /174.1°
Tg 2 GEN 2 | DG 2 0.528 0.255 £84.2°
T1s 6 GENI11 | DG 1 1.0 1.414 £0°
T16 6 GEN11 | DG 2 1.0 0.453 £270.0°
T2 7 GEN12 | DG 1 0.826 1.314 £359.5°
T3 7 GEN12 | DG 2 0.826 0.42 £269.6°
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Figure 5.7. Power Output of GEN 1 and GEN11 (150MW Transfer)
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The results shown in Table 5.14 tell us that real power/angle coupling and reactive
power/voltage coupling on the interface between control areas decrease with increase
of real power transfer level between these control area since the a value required to
identify control areas using the algorithm (ALG 2), that ignores real power/voltage
coupling and reactive power/angle coupling, decrease with increased transfer level
between control areas. On the other hand, the a value for the control area iden-
tification algorithm (ALG 1), that does not ignore real power/voltage and reactive
power/angle coupling, increases to a maximum and then decreases as transfer be-
tween the control areas is increasing. These results can be observed in Figure 5.11.
The increase in a value with transfer level is due to increased real power/voltage and
reactive power/angle coupling, that exceed the decrease of real power/angle and re-
active power/voltage coupling between the control areas as transfer level is increased.
The unstable inter-area oscillation first occurs when the a value is maximum for the
control area identification algorithm (ALG 1) that includes real power/voltage and re-

active power/angle coupling. The a value at the maximum suggest real power/voltage

1o 4
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coupling is as nearly strong as real power/angle coupling or that reactive power/angle
coupling is nearly as strong as reactive power/voltage coupling. The increase in cou-
pling of real power dynamics to voltage and thus reactive power dynamics introduces
negative damping torques which lead or lag mechanical torques on the mechanical
dynamics by 90° just as reactive power leads or lags real power by 90°. The change in
phase of the total torques (mechanical plus damping) is observed in a change in phase
on the frequency components of the inter-area mode eigenvector for each generator
associated with the inter-area mode of oscillation. The frequency component of the
eigenvector are in phase in each control area and around 180° out of phase between
control areas when the inter-area mode is stable. When the inter-area mode of oscil-
lation becomes unstable for increased transfer, the angle differences of the frequency
component of the eigenvector for generators in the same control area remain small
but the angle differences of generators in different areas change to 150° - 160° rather
than around 180°. The loss of stability for this inter-area mode for increased transfer
occurs exactly when a reaches maximum in the control area identification algorithm
(ALG 1) and where real power/voltage coupling begins to exceed real power/angle

coupling in this simple example system.

5.3.4 Horizontal-Vertical Modes

In this test case, we also used identical detail generator units models but with slow
exciter models in the system. The load is also identical between area 1 and area 2 of
the system and the load is modeled as constant impedance load model. We have power
transfer from area 1 to area 2 through the tie lines and thus the system is becoming
an asymmetric system where the generator output and the load in both areas are
not identical. The frequency is reduced and damping ratio of the inter-area mode is

increased as power transfer level increases from zero when the system is stable. The




Table 5.14. a Values for Two Control Areas as Transfer Level Increases for the Two

Algorithms that Determine Control Areas

Power Flow a Values
Area 1l to 2 Exciter
(MW) Ties | Type ALG 1 ALG 2
0 1 Fast | 0.000428 | 0.000388 |
50 1 Fast 0.000396 | 0.000389 |]
100 1 Fast | 0.000444 |0.000387 |
150 1 Fast | 0.0004487 | 0.000359 ||
200 1 Fast | 0.0004482 | 0.000353
250 1 Fast 0.000419 | 0.000297
300 1 Fast 0.000398 | 0.000258
350 1 Fast 0.000349 | 0.000172
400 1 Fast 0.000333 | 0.000147 |
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Figure 5.11. a Values vs. MW Power Transfer for the Two Algorithms That Deter-
mine Control Areas when only Two Control Areas are Desired
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frequency and damping ratio are reduced as power transfer level is further increased
until the power system becomes unstable (see Table 5.15). The detailed results for

each power transfer level can be seen in Appendix B.

Table 5.15. Frequency and Damping of the Inter-area Mode as Transfer Level In-
creases

Power Flow
Areal to 2 Frequency | Damping
(MW) Ties (Hz.) Ratio
0 1 0.6972 0.0074
50 1 0.6876 0.0104
100 1 0.6577 0.0197
150 1 0.6054 0.0299
200 1 0.5374 0.0030
250 1 0.4683 -0.1020
300 1 0.3524 -0.3045 ||

Now, we like to investigate the results when there is no power transfer between
areas through the tie lines. This result is similar to test case 1 except the fast
exciters are replaced by slow exciters. We have twelve oscillatory electro-mechanical
modes when the transfer level is zero (see Table 5.16). The participation vectors and
eigenvectors magnitude and phase corresponding to the low frequency (0.6972 Hz.)
inter-area mode are shown in Table 5.17. It is clearly shown that generator 1 (GEN
1) and generator 11 (GEN11) are dominant in this mode. These generators oscillate
against each other as in the case of fast exciters. Moreover, we also see that the
generators in one area are oscillating in anti phase with the generators in the other
area (see Figure 5.12 a). Thus, we can view this as a horizontal mode as observed in
all previous test cases.

However, if we add 200 MW power transfer from area 1 to area 2 through the

tie lines, the mode shape changes significantly. The fourteen oscillatory electro-
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mechanical modes are shown in Table 5.18. In Table 5.19, the participation vectors
magnitude and eigenvector magnitude and phase of the low frequency (0.5374 Hz.)
is given. It is clear that generator 11 (GEN11) and generator 12 (GEN12) are very
dominant and are oscillating against the generators 1 and 2. We also notice that the
generators 11 and 12 in one area are oscillating against the two generators 1 and 2
in the other area with phase difference of around 75° rather than 180° (see Figure
5.12 b). We called these modes horizontal-vertical modes since the generators in each
area oscillate in the horizontal direction in Figure 5.12 b with different magnitude
so they oscillate against each other. Furthermore, they oscillate witle sufficient phase
difference (75°) that Figure 5.12 b suggests that there is also a vertical or voltage
magnitude dimension to this oscillation. This can be observed in the Figure 5.18
and 5.19. Figure 5.18 shows the LOAD1 bus voltage oscillates against LOAD2 bus
voltage in anti phase with small magnitude since there is no power transfer and the
oscillation is controlled by the excitation systems of the generators. However, when
there is power transfer the LOAD1 bus voltage oscillates against LOAD2 bus voltage
in phase with greater magnitude than with no power transfer (see Figure 5.19). This
oscillation between the bus voltages and the real power voltage dependent loads in the
two area has significant effect in the power exchange associated with the inter-area
m;)de.

However, it should be noted that the horizontal-vertical modes are only on gen-
erators 11 and 12 since generators 1 and 2 have no observable oscillation in power
output (small participation).

These kind of results are as expected since we know that if we have good voltage
control in the system, we will keep vertical oscillations from developing. Moreover,
poor voltage control in the generation units will generally not cause vertical oscil-
lations to develop as long as there is no power transfer. However, if there is power

transfer, then vertical and horizontal oscillations between generating units will de-
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velop. The latest is what we see here in the test case where we have 200 MW or
more power transfer from area 1 to area 2 through the tie lines. The results above
from the eigenvalue/eigenvector analysis are confirmed by the results from the time
domain simulations shown in Figure 5.13, Figure 5.14, Figure 5.15, Figure 5.16, and

Figure 5.17 respectively.

Table 5.16. Electro-Mechanical Modes for No Power Transfer Case

(| Modes | Eigenvalue | Frequency | Damping Ratio ||
1,2 |-0.1905 x10~2 + ;0.02281 | 0.0036 ~0.0084 I
3,4 -0.03223 + 74.381 0.6972 0.0074 f
5,6 -0.2252 £ ;0.2888 0.0460 0.6150
7.8 -0.2289 £ 30.3010 0.0479 0.6053
9,10 -0.6171 + 70.5359 0.0853 0.7551

12,13 -0.8556 + 37.795 1.2406 0.1091
14,15 -0.9054 + 37.905 1.2582 0.1138
16,17 -1.699 + 71.122 0.1786 0.8345
21,22 -9.074 £ 727.69 4.4063 0.3115
23,24 -9.138 + 727.87 4.4359 0.3116
25,26 -9.294 + ;28.14 4.4781 0.3136
28,29 -9.305 + j28.15 4.4801 0.3139
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Table 5.17. Selected Participation Vector and Eigenvector Elements of the Inter-area
Modes (3,4)

System | Bus No. | Stations | Local | Participation | Eigenvector

State | | Name | State Vector II
2y | 1 [ GEN1 [DGI 1.0 1.414 0° |
T, 1 GEN1 [DG 2 1.0 0.323 £269.6° |
Ty 2 GEN2 |DG1 0.538 1.100 £0.8° ||
T12 2 GEN 2 | DG 2 0.538 0.251 £270.5°
T2 6 GEN11 | DG1 1.0 1.414 £180°
T2 6 GENI11 | DG 2 1.0 0.323 £89.6°
T3 7 GEN12 | DG 1 0.538 1.099 £180.8°
T3z 7 | GENI12 | DG 2 0.538 0.251 £90.5°

Table 5.18. Electro-Mechanical Modes for 200 MW Transfer Case

| Modes | Eigenvalue [ Frequency [ Damping Ratio |
1,2 ] 0.8761 x10~3 +;0.1403 | 0.0223 -0.0062
3,4 -0.01028 + 33.377 0.5374 0.0030
5,6 -0.3020 + 0.3306 0.0526 0.6745
7.8 -0.3286 + 70.2749 0.0437 0.7671
10,11 -0.7951 + 77.847 1.2488 0.1008
12,13 -0.8177 + 70.3557 0.0566 0.9170 [
14,15 -1.559 + 37.277 1.1581 0.2094 I
17,18 -2.441 £ 1.515 0.2411 0.8496 |
21,22 -9.017 + ;27.66 4.4014 0.3100 |
23,24 -9.195 + j27.85 4.4326 0.3135 |
25,26 -9.275 + j28.11 4.4743 0.3133 |
27,28 -9.367 + 528.16 4.4816 0.3156 I
29,30 -30.48 + 71.134 0.1805 0.9993
33,34 -38.49 + 53.131 0.0050 1.0000 "
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Table 5.19. Selected Participation Vector and Eigenvector Elements of the Inter-area
Modes (3,4)

System | Bus No. | Stations | Local | Participation | Eigenvector
State Name | State Vector

zy 1 GEN1 [DG1 0.153 0.18 £75.2°

zn 2 GEN 2 | DG1 0.117 0.286 £44.3°

2% 6 GEN11 [ DG1 1.0 1.414 £0°

29! 6 GEN11 [ DG 2 1.0 0.419 £269.9°

z3 7 GEN12 | DG 1 0.637 1.139 £12.1°

Z39 7 GEN12 | DG 2 0.637 0.337 £281.8°

GEN1 GEN11
GENI1 GEN 2 GEN 1
—g g e
GEN12 GEN 1 GEN2
(@) ()

Figure 5.12. The Normalized Speed Eigenvector for (a)No Transfer and (b)200MW
Transfer
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The results from the algorithm for determining strong local control areas are
shown in Table 5.20 and in Figure 5.20. These results also tell us that unstable inter-
area oscillation first occurs when the a value start dropping from the maximum from
the control area identification algorithm (ALG 1). However, in this case when the
inter-area oscillation becomes unstable for increased transfer, the angle differences of
generators in different areas change to around 60° rather than around 180°. This is
due to the combination of poor voltage control and power transfer which produces
vertical and horizontal oscillations. The vertical oscillation would not occur unless
a constant impedance load model is used since the load power could not vary if a

constant power load model is used.

5.3.5 Discussion

From all the test cases above, we have learned that power transfer from area 1 to area 2

in the system with constant impedance load and fast exciter models cause horizontal
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Table 5.20. a Values for Two Control Areas as Transfer Level Increases for the Two
Algorithms that Determine Control Areas

0.0005
0.00045
0.0004
0.00035
0.0003

a  0.00025
0.0002
0.00015
0.0001
5e-05

Power Flow a Values
Area 1l to 2 Exciter
(MW) Ties | Type | ALG1 | ALG 2 l]
0 3 Slow | 0.000434 | 0.000388 "
50 3 Slow | 0.000395 | 0.000387
100 3 Slow | 0.000434 | 0.000379 N
150 3 Slow | 0.000455 | 0.000354
200 3 Slow | 0.000450 | 0.000317 ||
250 3 Slow | 0.000422 | 0.000264 |
300 3 _Slow 0.000277 | 0.000090 "

1

T 1

’ALGYl’ —
G2’ —

0

50 100
POWER TRANSFER (MW)

150

200 250 300

Figure 5.20. a Values vs. MW Power Transfer for the Two Algorithms that Determine
Control Areas when only Two Control Areas are Desired
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inter-area oscillations. These horizontal oscillations occur without power transfer
between area 1 and 2. Moreover, good voltage control kept vertical oscillations from
developing and poor voltage control did not cause vertical oscillations in the inter-area
mode as long as there was no power transfer between areas. With power transfer and
poor voltage control in the system, poorly damped or unstable vertical and horizontal
oscillations will be produced in the inter-area mode. All of these phenomena can be
detected through the coupling terms in the jacobian matrix of the network.

When the system is unstressed, generating units in one area oscillate in anti-phase
to those in the second area regardless of the generators and exciters characteristics
but these oscillations are damped. However, when the system is under a stressed
condition, the damping of the inter-area mode decreases and can become unstable.
If the exciters are slow, vertical and horizontal oscillations are observed on this inter-
area mode but with fast exciters only horizontal oscillations are observed on this
inter-area mode.

It should be noted that exciters also have impact on oscillations within areas. For

example,

1. Slow Exciters
The generating units oscillate with small difference in the magnitude and phase
of eigenvector components because the controls on different generators do not

"fight” for control within control areas.

2. Fast Exciters
The generating units can oscillate with large difference in the magnitude and
phase of eigenvector components because there is a big "fight” over control of

voltage within a control area.

This method can be applied directly to a multi machine power system model

if there are oscillations between generators in one area against the generators in
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the rest of the system. Moreover, this method also can be applied directly to a
multi machine power system model if the generators in one area oscillate against
generators in the surrounding area. This method for detecting oscillation can not be
extended to a multi machine power system model with general pattern of inter-area
oscillations. However, the interface method of ranking contingencies in boundaries
may be appropriate approach. An interface measure

%: |P;1

ij€1pq

O = > 5]
ij€lpq
> u’Gij + |vil |v;] |Yi;] cos(8; — 8; — ;)
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where
t - bus in voltage control area p
J - bus in voltage control area ¢
I, - set of branches connecting voltage control area p and ¢
P,; - flow of real power between branch ij
Ji; - real power voltage jacobian on branch ij

can be an ideal measure for detecting when inter-area oscillation develop especially if

Gi; is small since then
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If Cp, were normalized by dividing the number of branches in the interface (/Vp,), one
would have an indication of whether the angle across an equivalent line representing
the connection is approaching 45° which is indicated when %ﬁ- = 1. This method can
be applied to either a transient stability model with an aggregated or non-aggregated
transient stability model. The control area algorithm discussed was applied to an
aggregated network transient stability model.

It should be noted that algorithm ALG 1, developed in this thesis, will indicate
that for a specified value of a, control areas can merge as the interfaces between the
control areas are stressed. This merging of control areas does not occur with algo-
rithm ALG 2 developed in [58, 60]. This result indicates real power angle coupling
or reactive power voltage coupling is reduced with stress, but the real power voltage
coupling and the reactive power angle coupling increase causing merger of control
areas in algorithm ALG 1. Although controllability as defined by algorithm ALG 1
can extend to several algorithm ALG 2 control areas as stress increases, this extension
of controllability can lead to loss of stability due to inter-area oscillations since the
coupling that causes this extension of controllability produces destabilizing damp-
ing torques whereas the normal real power angle or reactive power voltage coupling
produces stabilizing synchronizing torques. Thus, controllability defined based on
algorithms ALG 1 and ALG 2 help explain the development of inter-area oscillations
in terms of extension of controllability beyond the control areas defined by algorithm

ALG 2.




CHAPTER 6

Conclusions

This thesis develops a theory of strong controllability and observability of dynamical
systems; a controllability and observability that can not be gained or lost for a par-
ticular subset of states (based on a particular set of measurements and controls) by
arbitrary small parameter changes in the original model. This theory is applied to a
dynamical model of the power system network, then to a power system transient sta-
bility model composed of the dynamic network model, generator models, and exciter
models.

A power system transient stability model with an irreducible network is shown to
be both controllable and observable. Although this theoretical result is correct, it is
impractical since measurements and controls are effective locally. Initially, a single
generator/exciter that includes both electrical and mechanical dynamics is shown
to be controllable and observable for all stable equilibrium points. Then the result
is extended to n generators/exciters but, as mentioned above, this is not practical.
Therefore, an algorithm that determines bus groups in a network (called control areas)
which would be strongly controllable and observable for all network and generator
states around the equilibrium point is developed.

Definitions of strong control areas, strong input and output connectable, and strong

local controllable and observable are defined. The term local is used here since the
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system is linearized around the equilibrium point and the results only apply to some
neighborhood around the equilibrium where the algorithm obtains the same control
areas. Under these definitions the states of all generators and states of the network

are strong local observable and controllable.

6.1 Detection of Weak Boundaries

As we have described above, this thesis develops a method for directly identifying
the control areas that have strong local controllability and observability property for
measurements and controls at the buses within the control area. This method also
directly identifies the actual weak transmission network branches and boundaries of
the load flow and transient stability models. In addition, we have shown that loss
of transient stability, voltage collapse, and steady state angle stability can occur
as a result of loss of controllability and observability bétween control areas. Thus,
the knowledge of the control areas in a power system can indicate whether there is
sufficient voltage control to protect a control area from voltage collapse. Knowledge
of the weak boundaries allows one to constrain real and reactive flows on these weak
boundaries. Such constraints can reduce the vulnerability of the system to loss of
transient stability, inter-area oscillations, voltage collapse, and steady state angle and

voltage stability.

6.2 Detection of Instability of Inter-area Oscilla-
tions

The simulation results from a previous chapter have shown that inter-area oscilla-
tions occur between strong local control areas and can be detected through the jaco-

bsian matrix of the network. It is shown that when the algorithm that includes real
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power/voltage and reactive power/angle coupling deviates from the algorithm that
ignores such coupling, unstable inter-area oscillations develop. These results indicate
that inter-area oscillation becomes unstable when the coupling between control ar-
eas is principally due to real power/voltage and reactive power/angle coupling rather
than real power/angle and reactive power/voltage coupling, the latter dominating
when the inter-area oscillations are stable.

One can utilize the control area identification algorithm to identify control area
boundaries, that are vulnerable to unstable inter-area oscillation, as well as the level

of power transfer level where the unstable oscillation sets in.

6.3 Guidance for Siting the Measurements and
Controls

If we can measure the interface flow from our area to the other area (in the opposite
direction of the flow), then we can observe the other area and obtain the state estimate
of that control area as well as the state estimate of the area containing the swing bus.
Moreover, if we can control the interface flow from that area back into our area, then
we can control the states of the other area with respect to the area containing the
swing bus. Thus, it is possible to show strong local input and output connectability
of both areas using the same input and output connectability argument used in the
Chapter 3. Using the Jamshidi’s theorem (Theorem 1) [31] we can say that both
areas are strongly local controllable and observable from measurement and control of
boundary flow. Thus, only one control and measurement is needed to achieve strong
local controllability and observability. Strong local controllability and observability
can also be achieved by putting controls in both areas and taking measurements in
both areas. However, this is not as effective as having measurement and control

of interface flow between the oscillating control areas. First, because one is not
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directly measuring or controlling the inter-area oscillation with other measurements
and controls. Second, measurements from both areas has to be transmitted to both
area controllers for the inter-area oscillation to be observable to both controllers.
moreover, controls in both areas have to be tuned in such a way such that they are
coordinated while controlling the inter-area oscillation over which these controls do
not have direct control. These controls must remain coordinated for all operating
conditions. Third, the cost is higher. Last, the design of the controller is much
more complicated. Therefore, it is clear why modulation of the real power flow on a
DC line is such an effective control for damping oscillations between areas since the
measurements used are flow measurements on the parallel AC line and the control is
the flow on the DC line.

The proper selection of measurement and control can greatly assist in controlling
oscillations. The following examples show how selection of measurement and control

can make all the states associated with an oscillation observable and controllable.

1. Suppose there are oscillations between two areas in the system and the rest
of the system including the swing bus are perfectly coherent with one of these
oscillating areas. Then, observing and controlling the states of the oscillating

area with respect to the swing bus should damp the oscillations.

2. If the oscillations occur between three areas where one of these areas includes
the swing bus and the rest of the system, then one will not be able to damp the
oscillations without observing and controlling all the states of the two oscillating

areas with respect to the area containing the swing bus.

3. If there are several areas that are oscillating with respect to one area and with
respect to the area containing the swing bus, then the oscillations will not be

damped, unless one can observe and control the states of his own area and the
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states of the several other oscillating areas in the system with respect to the

area containing the swing bus.

4. Finally, if there are oscillations between one area and each of the surrounding
areas where one of these areas is perfectly coherent with the area containing
the swing bus, then one will be able to damp the oscillations providing that
one can control and observe the flow between his area and every surrounding
area (since the surrounding areas are observable and controllable based on the

measurement and control of each interface flow).

Thus, it is possible to damp all oscillations that occur between our area and all
other area when we have strong local controllability and observability of all areas
including our area, due to measurements and control of interface power flow between

all these areas and our area.

6.4 Guidance for Designing An Effective Con-
troller

From the examples in the previous section, we can see that it is possible to damp
oscillations as long as all the oscillating areas have strong local controllability and
observability. However, if the system is more complicated, say we do not have strong
local controllability and observability in all the areas that have oscillations, then the
possibilities for damping the inter-area oscillations is very limited. For example, if
the oscillations occur between one area and another area that is separated where
there is no direct connection, then it is necessary to take measurements in both
areas and transmit this information to controllers in both areas in order to damp the
oscillations. However, when this is not feasible due to propagation delay problems in

communicating data between control areas, a hierarchical control may be required.
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Therefore, it is always possible to build an effective control for damping inter-area
oscillations if we have strong local controllability and observability condition of the

states which are involved in that oscillations.

6.5 Future Work

Future work that could be undertaken as a result of this thesis are as follow:

¢ Establish strong local controllability and observability on large systems experi-

encing oscillations

e Establish the measurement and control structure needed to damp those oscilla-

tions
e Design a control that

1. requires minimal state estimation
2. does not require knowledge of the model on-line
3. is robust with respect to

o parameter uncertainty and disturbances

o unmodeled dynamics

All the above requirements are important because state estimation of dynamic
states of the network, generators, and controls is too costly with current technol-
ogy and because the accuracy is in doubt due to delay problem. The operating
condition of any power system is continually changing and thus updating the
model on-line for different and rapidly changing operating condition is compu-
tationally costly. Finally, there are some noise, disturbances, and unmodeled

dynamics in any power system model, the controls must be robust with respect
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to noise, disturbances, and unmodeled dynamics. Since the economic and politi-
cal costs of relying on such controls to preserve stability when components fail or
when the controls are not sufficiently robust to prevent instability are too high,
robustness must be theoretically and practically guaranteed and redundancy of

components must be high.
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APPENDIX A

SSSP Results on System with Fast

Exciter

Table A.1. Electro-Mechanical Modes for Test with 50 MW Transfer

{| Modes | Eigenvalue [ Frequency | Damping Ratio ||
1,2 [-0.3955 x10~* £ 70.03454 0.0055 ~0.0011
3.4 -0.0081 + 3.272 0.5208 0.0025
5,6 -0.9561 + 38.152 1.2975 0.1165

78 -1.062 % 8.065 1.2835 0.1306
15,16 -18.02 % 517.63 2.5051 0.7148
17,18 | -18.48 % 514.99 2.3857 0.7766
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Table A.2. Selected Participation Vector and Eigenvector Elements of the Interarea
Modes (3,4)

n System | Bus No. | Stations | Local | Participation | Eigenvector Iﬂ

State | Name | State |  Vector

[z [ 1 GEN1 [DG1[ 092 1.317 £176.5° ||
z, 1 GEN1 | DG 2 0.92 0.403 £86.4°
Zg 2 GEN 2 | DG 1 0.734 1.12 £182.6°
zg 2 GEN 2 | DG 2 0.734 0.342 £92.3°
Zys 6 GEN11 | DG1 1.0 1.414 £0°
Ty6 6 GEN11 | DG 2 1.0 0.432 £269.9°
Ty 7 GEN12 | DG 1 0.804 1.244 £3.7°

|z | T GEN12 | DG 2 0.804 0.38 £273.6°

Table A.3. Electro-Mechanical Modes for Test with 100 MW Transfer

[ Modes | Eigenvalue [ Frequency | Damping Ratio I
1,2 [-0.6893 x10~* £;0.120 | 0.0191 0.0006
3,4 [-0.3967 x10~* £;3.250 | 0.5173 0.0012
5,6 -0.8886 + 38.193 1.3039 0.1078
7,8 -1.107 £ 8.029 1.2779 0.1366
15,16 -17.97 + 17.64 2.8082 0.7135
17,18 -18.40 £ 714.99 2.3862 0.7732
0.0404

-31.24 % 50.2539

1.0000 I
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Table A.4. Selected Participation Vector and Eigenvector Elements of the Interarea

Modes (3,4)

System | Bus No. | Stations | Local | Participation | Eigenvector
State Name | State Vector _ll
u ) 1 GEN1 [DG1] 0.846 1.225 £172.7° |
T, 1 GEN1 | DG 2 0.846 0.377 £82.5°
zg 2 GEN 2 [ DG 1 0.667 1.016 £180.2° ll
Tg 2 GEN 2 | DG 2 0.667 0.313 £90.2°
Z1s 6 GEN11 [ DG1 1.0 1.414 £0°
Zy6 6 GEN11 | DG 2 1.0 0.435 £269.9°
Zg2 7 GEN12 | DG 1 0.808 1.263 £2.5°
T3 7 GEN12 | DG 2 0.808 0.388 £272.5° |

Table A.5. Electro-Mechanical Modes for Test with 150 MW Transfer

| Modes | Eigenvalue [ Frequency [ Damping Ratio ||
[ 1.2 [-0.7137 x10° £,0.1245 | 0.0198
[l 3,4 -0.6988 x10~° £ 33.202 0.5096
[l 5,6 -0.8266 + 78.230 1.3098
ﬂ 7,8 -1.149 £+ 37.994 1.2723
15,16 T17.94 £ 717.69 2.8152
17,18 -18.30 + 715.04 2.3944
H: 19,20 | 3118 & ;04214 0.0671
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Table A.6. Selected Participation Vector and Eigenvector Elements of the Interarea
Modes (3,4)

System | Bus No. | Stations | Local | Participation | Eigenvector

State Name | State Vector II
T 1 GEN1 |DG1 0.775 1.134 £168.4° “
2 1 GEN1 [DG2 0.775 0.354 £78.3° |
Tg 2 GEN 2 | DG1 0.6 0.91 £177.4° |
Zg 2 GEN 2 | DG 2 0.6 0.284 £87.4°
zys 6 GEN11 |DG1| - 1.0 1.414 £0°4
16 6 GEN11 | DG 2 1.0 0.442 £270.0° ||
Zop 7 GEN12 | DG 1 0.815 1.286 £1.1° |
Zo3 7 GEN12 | DG 2 0.815 0.402 £271.1° |

Table A.7. Electro-Mechanical Modes for Test with 300 MW Transfer

" Modes | Eigenvalue l Frequency l Damping Ratio |]

1,2 | 0.3665 x10-2 £ 2.849 | 0.4534
34 |-0.6741 x10-% £,0.1247 | 0.0198
5,6 -0.6645 £ ;8.324 1.3249

7,8 -1.276 + 57.882 1.2545
15,16 -17.92 + 717.97 2.8593
-17.96 + 715.53 1 2.4720
-30.88 + ;0.7532 0.1199
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Table A.8. Selected Participation Vector and Eigenvector Elements of the Interarea
Modes (1,2)

System [ Bus No. | Stations [ Local | Participation | Eigenvector
“ State Name | State Vector
2 1 GEN1 |DG1 0.557 0.834 £149.8°
z; 1 GEN1 [ DG 2 0.557 0.293 £59.8°
zg 2 GEN 2 |DG1 0.362 0.542 £162.9°
zg 2 GEN 2 | DG 2 0.362 0.190 £72.9°
I1s 6 GEN11 | DG 1 1.0 1.414 L0°
T16 6 GEN11 | DG 2 1.0 0.496 £270.1°
T2 7 | GEN12 [DG1| 0.868 | 1.389 £355.7° |
Zo3 7 GEN12 [ DG 2 0.868 0.096 £47.9° |

Table A.9. Electro-Mechanical Modes for Test with 400 MW Transfer

|| Modes | Eigenvalue [ Frequency | Damping Ratio ||
1,2 0.6925 x10~% % ;2.068 0.3291 -0.0033 "

34 [-0.5135 x107* £ 70.1242 0.0198 0.0004

5,6 -0.5670 + 78.407 1.3381 0.0673 I

7,8 -1.568 + 37.650 1.2176 0.2007 |

11,12 -3.738 + 0.2060 0.0328 0.9985

15,16 -17.94 + 316.28 2.5909 0.7406 ﬁ"

17,18 -18.61 + 718.86 3.0016 0.7024 |

19,20 -30.43 + 30.8003 0.1247 | 0.9997 ||




Table A.10. Selected Participation Vector and Eigenvector Elements of the Interarea

Modes (1,2)
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System [ Bus No. | Stations | Local | Participation | Eigenvector
Il State Name | State Vector | ||
q z 1 GEN1 [DG1 0.277  [0.388 /117.6°
z2 1 GEN1 | DG 2 0.277 0.188 £27.9°
Z1s 6 GEN11 | DG 1 1.0 1.333 £5.6°
Zye 6 GEN11 (DG 2 1.0 0.644 £275.8°
29 7 GEN12 | DG 1 0.968 1.414 L0° |
To3 7 GEN12 [ DG 2 0.968 0.684 £271.7° |




APPENDIX B

SSSP Results on System with

Slow Exciter

Table B.1. Electro-Mechanical Modes for Test with 50 MW Transfer

Modes | Eigenvalue ‘Frequency | Damping Ratio ||
1,2 [-0.1541 x107° £ ;0.0228 0.0036 0.0068
3,4 -0.04506 + 74.320 0.6876 0.0104
5,6 -0.2249 £+ ;0.2848 0.0453 0.6197
" 7,8 -0.2387 £ 70.3059 0.0487 0.6153
9,10 -0.6228 £+ ;0.5327 0.0848 0.7599
12,13 -0.8729 + ;7.888 1.2555 0.1100
n 14,15 -0.9375 £ »7.755 1.2342 0.1200
16,17 -1.720 £ 71.163 0.1851 0.8285
H 21,22 -9.068 £ 327.68 4.4059 0.3113
23,24 -9.140 + ;27.87 4.4352 0.3117
H 25,26 -9.290 + ;28.13 4.4778 0.3136
[ 17,18 9310 £ ;28.15 2.4801 0.3140
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Table B.2. Selected Participation Vector and Eigenvector Elements of the Interarea

Modes (3,4)

System | Bus No. | Stations | Local | Participation | Eigenvector
State Name | State Vector Il
[z -1 | GEN1 [DG1 0.7 0.895 £182.6° H
z, 1 GEN1 | DG 2 0.7 0.207 £91.9°
zy 2 GEN 2 |DG1 0.312 0.653 £182.2°
Zy2 2 GEN 2 | DG 2 0.312 0.151 /.91.5:'
L 2% 6 GEN11 [ DG1 1.0 1.414 £L0°
T2 6 GEN11 | DG 2 1.0 0.327 £269.5° |
T3 T GEN12 | DG 1 0.577 1.111 £3.3° |
Z3; 7 GEN12 | DG 2 0.577 0.38 £273.6° |

Table B.3. Electro-Mechanical Modes for Test with 100 MW Transfer

| Modes | Eigenvalue | Frequency | Damping Ratio ||
[ 1.2 ]-0.1414 x10-3 £ ;0.02061 | 0.0033
3,4 -0.08146 + 34.132 0.6577
H 5,6 -0.2377 + 70.2789 0.0444
ff 7.8 -0.2568 + ;0.3146 0.0501
9,10 -0.6511 + 70.5208 0.0829
12,13 -0.8474 + ;7.886 1.2551
14,15 -1.114 £ 37.589 1.2079
16,17 -1.788 + 71.261 0.2006
[| 21,22 -9.050 £+ 527.67 4.4046
| 23,24 -9.149 £+ 327.86 4.4337
| 25,26 -9.285 + 528.13 4.4769
[ 27,28 -9.323 + ;28.15 4.4804




121

Table B.4. Selected Participation Vector and Eigenvector Elements of the Interarea

Modes (3,4)

System | Bus No. | Stations | Local | Participation | Eigenvector
State Name | State Vector
" z, 1 GEN1 |DG1 0.402 0.511 £183.9°

T 1 GEN1 | DG 2 0.402 0.124 £92.8° ||
T 2 GEN 2 |[DG 1 0.14 0.308 /181.9°
T2 6 GEN11 [DG1 1.0 1.414 £0°
29 6 GEN11 { DG 2 1.0 0.342 £268.8°
z3; 7 GEN12 | DG 1 0.585 1.091 £7.4°
Z3; 7 'GEN12 [ DG 2 0.585  |0.264 £276.3° |

Table B.5. Electro-Mechanical Modes for Test with 150 MW Transfer

Modes Eigenvalue | Frequency | Damping Ratio |
[ 1,2 [-0.1162 x107% £ ;0.02162 [ 0.0034
3,4 -0.1138 £ ;3.807 0.6054
5,6 -0.2743 % 70.2761 0.0439
78 -0.2795 + 30.3231 0.0514
Prlo,n -0.7372 + 70.4787 0.0762
12,13 -0.8287 % 37.870 1.2526
[ 14,15 -1.365 £ 37.374 1.1736
[ 16,17 -1.966 + 71.344 0.2140
21,22 -9.026 + 727.66 4.4024
H 23,24 -9.166 * ;27.85 4.4325
[ 25,26 -9.280 + 728.12 4.4756
[ 27,28 -9.341 + ;28.15 4.4809
[ 29,30 | -30.23 + ;0.5531 0.0880
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Table B.6. Selected Participation Vector and Eigenvector Elements of the Interarea
Modes (3,4)

System | Bus No. | Stations | Local | Participation | Eigenvector
State Name | State Vector | ||
z 1 GEN1 |DG1 0.172 0.21 £172.3°

T 6 GEN11 |DG1 1.0 1.414 £L0°

To9 6 GEN11 | DG 2 1.0 0.371 £268.3°
z3 7 GEN12 [ DG 1 0.589 1.083 /12.1°
Z3) 7 GEN12 | DG 2 0.589 0.285 £280.3°

Table B.7. Electro-Mechanical Modes for Test with 250 MW Transfer

Modes |  Eigenvalue [ Frequency | Damping Ratio |
[T12 T  0.3018 + ;2.943 0.4683 -0.1020
34 [-0.7372 x10~* £ ;0.01933 | 0.0031 0.0038
5,6 -0.3211 £+ 50.3423 0.0545 0.6841
7,8 -0.3265 + 70.2558 0.0407 0.7872
9,10 -0.6368 + 70.4729 0.0753 0.8028
12,13 -0.7328 + 57.821 1.2448 0.0933
i 14,15 -1.466 £ 77.450 1.1857 0.1931
16,17 72.800 £ 41.621 0.2579 0.8655
H721,22 -9.044 + 27.68 4.4054 0.3106
I] 23,24 -9.243 + 527.86 4.4344 0.3149
| 25,26 -9.272 £+ 528.11 4.4733 0.3133
| 27,28 -9.403 + ;28.17 4.4829 0.3167
| 29,30 -30.90 £ 71.415 0.2252 0.9990




Table B.8. Selected Participation Vector and Eigenvector Elements of the Interarea
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Modes (1,2)

[[System | Bus No. | Stations | Local | Participation | Eigenvector

| State Name | State Vector

" I, 1 GEN1 |DG1 0.405 0.455 £44.1° Il
T2 1 GEN1 | DG 2 0.405 0.154 £320.0°
T 2 GEN2 | DG 1 0.235 0.557 £34.9°
Zy2 2 GEN 2 | DG 2 0.235 0.189 £310.7°
T 6 GEN11 | DG 1 1.0 1.414 L0°
Zo2 6 GEN11 [ DG 2 1.0 0.479 £275.9°
z3 7 GEN12 | DG 1 0.741 1.240 /4.6°

= 7 GEN12 [ DG 2 0.741 0.419 £280.5°

Table B.9. Electro-Mechanical Modes for Te'st with 300 MW Transfer

" Modes l Eigenvalue l Frequency | Damping Ratio ||

1,2 0.7079 £ ;2.214 0.3524 -0.3045
34 |-0.3330 x10~* + ;0.02305 [ 0.0037 0.0014
5,6 -0.2996 + ;0.2678 0.0426 0.7456
7,8 -0.3309 £ ,0.3582 0.0570 0.6786
9,10 -0.6324 £ 30.5058 0.0805 0.7810
11,12 -0.6499 + 57.736 1.2312 0.0837
14,15 -1.151 + 57.757 1.2346 0.1468
16,17 -3.097 + 51.727 0.2749 0.8733
21,22 -9.10 £ 527.74 4.4149 0.3117
23,24 -9.277 + 728.10 4.4728 0.3135
25,26 -9.286 + ;27.86 4.4342 0.3162
27,28 -9.435 + 528.17 4.4832 0.3176 f
-31.28 £ 31.473 0.9989 "
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Table B.10. Selected Participat.ion Vector and Eigenvector Elements of the Interarea
Modes (1,2)

System | Bus No. | Stations | Local | Participation | Eigenvector ||
State Name | State 1 Vector
[ =, 1 GEN1 [DG1] . 0.817 0.922 £27.5°

T 1 GEN1 | DG 2 0.817 0.397 £315.3°
T 2 GEN2 [ DG 1 0.476 0.96 £25.4°
Z12 2 GEN 2 | DG 2 0.476 0.412 £313.1°
L 2% 6 GENI11 DG 1 1.0 1.414 £L0°
T2 6 GEN11 | DG 2 1.0 0.608 £287.7°
z3 7 GEN12 [ DG 1 0.887 1.333 £358.9°
Z3; 7 GEN12 | DG 2 0.887 0.573 £286.6°
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