if. \(t )\;.\.¢r.. . y . ‘wl n‘V’K 2:114 .57.“ vuhl‘u . .l .a‘.vJ|O‘»|.l.Io . .IIL"..‘.‘ .Orv . I . ‘t‘I : . ,.\rla .1211...» .1 0.: I ’III... . . up ‘ . .431!!! IGNIX‘ND‘ . x». . . 2:?" 3‘1; $9. I 31. 1“ tlnwl .‘ n 2v"!!! ul‘l I I. £31 I? If on! ‘1'." Vt1(\. . C '5‘ .~!\ glut! \VII I n . , ninu. . . |.~ ‘ \‘1? .4 r. 2' 519‘ . r .,.. . Sunk}, . . v .. .I, r v u - rt .v . , I » 51¢..(Nubuu. L'.Ir- .V 1‘; 1r (- 0"! 1!»... 5358314" v ,1)- {tall}- .yrnn 12.0. oil-1'. §K vrnnrl-‘fvr I :1 {0" (1...;9l65“ t! I 101.113.01.251. .,v .0 . .r. ‘3‘ "‘Jnv:g’ " )| VI... .tldrzw}!flb)toanavi€.$ u." l . 11",.."3‘Wl. .5 1., I I .nl¢f.! (III. l .1 u A . u . 4 . V .. . U: -.. g r .51: m: ,g ‘ Bill‘. ‘ b0 {Vii-w?! .I lit.) 1‘; e t‘ 351'); . .lto'r'ltu [tn-ts. .9. fix?“ . I lrl(.v .pp..t1¢l. .l I}. , . . . V . . .. .. . 4 I 4 7 a r r A n y n. . I. . mflhnf‘fl .1. . ., , .. . . . . «Igl‘ 1.1001“!!! 59$? I'D. .otlflflh“ (I: 1": If) 5:111 .{rl’l‘tffli a. A! if? . 5’1. «3'1. , .. . v.‘llf.‘l((rlrv . “list-fay" y“). «III! Ltl’)...,.l . I“)... I)» Vi? ,(I ‘43.! I‘ t.!u%s.fi'l. uflL" » ..‘llJvL4f.nl~(lp}) ,. 01" if--} r: . it 0332!. fig... .. tftrl: {41:34: .1... I 5 ,. its: -Ztv . I’.‘ (7,2 7;," 5 4." 77’ - 5' r IHIIHNHN(“MINIMUMWWIIIIMHNIHW LIBRARY 300771 2494 Michigan State University \ t l This is to certify that the dissertation entitled INFLUENCE OF ROOTSTOCK ON THE RESPONSE OF SEYVAL GRAPEVINES TO ENVIRONMENTAL STRESS presented by R. Keith Striegler has been accepted towards fulfillment of the requirements for Ph.D. degreein Horticulture ( N2+6H20 moz+4fi++2€ > m2++2nzo Fe(an3+3u*+e' >Fe2++3320 > nzs+4nzo 'Ihus, floodedsoilsrapidlybecaneveryreducedandhavealwredooc so4z’+lox"+se' potential (3,42,43,67,123-125). 'Ihe redox potential is reduced slurplyafterfloodirg,ttmincroasessmhat,ardfimllyresmes its decline whidlocalroasynptctically withtime (129). 'mepiofanacidsoilmaymcreasemilethepI-Iofanalkaline soilmydecreasedm'ingfloodirg (129). Mostfloodedmineralsoils haveap-IbetweenSJandLZwiththewoftheinterstitial solutionsbeingbeflem6.5and7.o. 'Iheincreaseinpfiofacid 37 soilsisdllenainlytotheredLlcticnofFe3+the2+. Decreasesin pHofaJJcalinesoilduringfloodingareduetotheaccmmflatimof CD2. Ifasoilhasalcwca'rtentofreducibleions,itspHmaynot riseabcve5.0evenaftermonthsofsubnergence,andiftheorganic mattercontentofahighsoilpHislow,thepHmaymtdecrease below 8.0. InMichigan soils whidlareflooded,thepredcxninant occlrrerceisimreasedcnzconcentrationandreducedsolutionw (A.J.M. Smucker, personal cammmication, 1990). 'meeffectsofflcodingmpI-Imayhavesecouflaryeffectson plantsthroughtheactimofpi-Imthecmcentratimofions (Fe, Ala-I, Zn, Q1) inthesoil solution (129). Flooding also resultsin changes in specific conductance and ionic strength, im enchange, and scrptial-descrptim properties of soils. Itisinportanttomtethatfloodingandthedevelopmentof armcic cmditims in the field are usually non-uniform. When amassivewaterisarpliedtoairhdrysoil,anincroasing prcpcrtion ofmicrcporesinaggregatesandpedsbecanewaterfilled. Centers ofamregatesmaybecaneanondchrtbemumdedbyashellof aerobicsoil. mas,plantrootsmaybesubjectedtovarimssoil Wmhyflmfifllyaerobictohypondctoamdc. This addsalevelofcmpleadtytofloodirgexperimentsinthefield midlisseldmerlcolnrtezodingreeffimsework. W Flooding of roots alters the physiology of roots, shoots, and reproductive orgars of susceptible plants (1,86,93) . Vegetative growth, reproductive growth, water relations, photosynthesis, productimandmctabolimofplantgrowthsubstances, anduptakeof 38 ions fran the soil solution are influenced by soil anoxia. Vegfiativeanngpflctiveerth Reductimofgrwthofroots,shootsandreproductiveorgansis acmnmrespmseofplantstoflooding(86)._ Rootsareoften affectedfirstbyfloodingbecausetheyareexposedtothestress imediately. Infact,rootdevelopnentisoften influencedby floodingbeforeanoxiaoccursinthesoil. Earlyrespmsesofrocts tofloodingareincreasedethylenecontentanddecreasedinternal concentration of 02 (hypoxia). Roctelongationcanbeinhibitedin hypoxic roots because 02 consmption and resistance to diffusion of Ozintcroctsarelargeernlghtocreatearmicconditionswithin theroot.Regicmsoftherootwithahighrateofmetabolism,such as zones of cell division and elcmgation, aremost susceptible to localizedinternalamda. Nudesevemlyinhibitedthedevelqnentofrootlengthani mmberofgmdmmottipeoffivedrybeanmmn) ciltivafs (155). Dryweigntoffootswasfemcedbyfloodinginred maple (Hamlin) (53): kiwifruit mm Planch.) (153). apple (115). mute-1° MWM.biflora malt.) Sarg.) (78), loblolly pine (gigging-agar.) (78), blueberry WWI-J (3).mroak(aaena§mmchxd (172), mmem. (200). “grape mm In) (61). Majorfactorswhidlarehwolvedinthedecreaseindry weigntoffloodedrootsystansarethecessatimofroctgrowthand tindegeneratimoftheexistingrootsystaan). Regenerationof rootsonthestanortmnknearthewatersurfacecanpartially carpensatefordrynetterreductimsintheeidstingroctsystem 39 duringflcoding (53). Dry matter allocation patterns during flooding can also be influenced by cultivar (61) . Allocation of dry weight between leaves, shocts,androctsforsevenyit_i_sx_ri_nll_e__raL. cultivarswas altered considerablyby flooding. 'I‘arrango, Muscat Gordo Blanco, arriShirazhadthehighestreducticnsindryweightandthe reductimwastmifonnacrossplantpart. Colanbardhadalow reductimindryweigntduetofloodirgandthereducticmwas mifomacrossplantpart. CabernetSauvigrmandTrebbiamshowed amallredwtimindryweightfranfloodingwithroctdrymight being affected only slightly. Conversely, Semillon dry weight was reducedtoasmallextentbyfloodingwiththedryweightofroots beingremcedsubstantiallywhilethedryweightofleavesand shoctswasaffectedtoalesserdegree. Growthofabove—growxiorgansofmodyplantsisalso freqmrtlyreducedbyflooding(86,92).1eafgrowthappearstobe sensitivetofloodinginmnyspeciesandshoctextensimof susceptible species is almost always inhibited by flooding. Flooding reducedtheleafareaofrabbiteyeblueberrymmgshei Reade) plants (43,44) andleaf size of highbush blueberry (3). On the other-hard, leaf productim (plastochrcn index) of grapevines wasless sensitivetofloodingthanshootextensim rate (61). 'meeffectoffloodingmshoctgrowthisdeperdantmspecies, tiningofthefloodingstressaniduratimofthefloodingstross (3,9,43,61,78,115,172,185,200) . In general, woody plants which are adaptedtopoorly-drainedsoilsstmlittleormreductiminshoot grwthvhenfloodedmilewoodyplantsmidlareadaptedtovell- drainedsoilsstmsignificantroductiominshootgzowthfrun 4O flooding. Flooding reduced the growth of loblolly pine seedlings (adapted to well-drained soils) but had little effect on growth of swamp tupelo seedlings (adapted to poorly-drained soils) (78) . Shootgrowthofggyggbetggefilgmlge” aflrlsspeciesmich survives flooding extremely well, was not significantly affected by alenonthof floodinginthespring (a). Ontheotherhand, floodingforonenonthinthespringseverelylimitedshcotgrwth offlccmnunisL. (cultivarCHxF97), aggugspecieswhichis are susceptible than 15 maefolia Bunge. to flooding. Highbash blueberry (3), rabbiteye blueberry (43), apple (129), bur oak (172), and grapevine (61,185) displayed reduced growth during flooding. Flooding of m W Mill. seedlings for 43 days did not significantly affect plant height (200). However, this result may havebeenduetootherfactorswhich influencedthegrowthrateof cartxol seedlirqssincebothcontrolandfloodedseedlingsstopped growing after approximately 22 days. Timingandduratimofthefloodingepisodearealso important factorswhich influencethegrowthresponseofwoodyplantsto flooding. Apple trees which were flooded during the smnmer exhibited agreaterroductiminshoctgrowththantreeswhichwerefloodedin the spring or fall (115). Similarly, flooding of rabbiteye blueberriesinthesmmerwasmoredetrimentaltostanlergththan floodinginthespring (43). mange-Lemme. seedlings was not significantly affected by one month of flooding mlileayearofcmtmmsfloodingresultedinfloodedseedlings growing significantly less than control seedlings (8) . Reproductivegrowthofmodyplants isalteredbyflooding (1,43,44,115). Apple trees which were flooded for 2 months in the 41 spring displayed lower fruit load (number of fruit per cm? of branch) , lower yield, and higher return bloan the following year than control trees (115). Furthermore, anmlative effects of seasonal floodingmyieldofappletreeswereobservedwhentrees were flooded during successive years. Flooding of highbush blueberry delayed bloan, decreased fruit set, increased fruit abscissicm, reduced the number of flower buds/shoot, decreased the umber of flowers/bud, reduced berry weight and lowered % soluble solids of fruit (1) . Similar, although less extensive, results were obtained when rabbiteye blueberry plants were flooded for up to 117 days (43,44). Flower bud fonnatim, fruit set, and yield were significantly lower in flooded rabbiteye blueberry bushes. Wa a is Flooding also influences plant water relations and photosynthesis (30,93). Early observations that flooding causes cessatimofgrwth,wilting,arxibasalleafsenescencesuggested thatwaterrelatimswereinvolvedinplantmestoflooding. Subsequent researohhas shownthat stanatal aperture, trampiration, fintosynthesis,ardwaterabsorptimbyroctsaremodifiedby flooding. Waterpotentialofplantshasalsobeenshmmtobe affectedbyfloodingbuttheeffectisnotclear—crtandis influencedbyspecies,themamlerinwhidlfloodingwasinposed,and theduraticmof flooding. 'Iheseresults figuredinthedevelopnent of a hypothesis dealing with plant water relatiom during flooding. 'mesequenceofeventsproposedtooccurinfloodedplantswas: anaerobicstressreducesthewateruptakmlossofwaterfranthe shooteweedsthesupplyfrmtheroct,leadingtoadecreasein 42 leafwaterpctential (wL) andwilting; stanata close inresponseto low “’1. which restricts transpiration and allows the recovery of turgor (29). Aninportantfeatmeofthishypcthesisisthata reduction inwLprecedes stomatal closure. 'Ihis isoftenthe observedsequenceofeventsinleavesofplants subjectedtowater deficit. Sojka and Stolzy (167) reviewed data on soil om, stanatal calductanceande. ‘Ihey found omtobehighly correlatedwith stomatal caductance but not with wL. This relationship was evident in several @ecies and led the authors to conclude that "theories whidlpointtoincreasedroctresistanceresultingfrunlowsoilo2 asthecauseofstanatalclosuredonctfullyexplainsaneofthe observeddata". 'n'lesefindingsdonctsupportthehypcthesis describedabcveandindicatethatregulatimofstanatalaperture duringfloodingiscamlexardmaybeomtrolledbymrethanone mechanism Further infomation m the relationship betweenwL and stamtalccrdlctameinfloodedplantsispresentedlaterinthis partial of the literature review. Stautalbehavioriss‘trmgly influencedbyplant species duringflooding (93). Stmatalapertureisreducedsoonafterthe inposition of flooding in susceptible species. Highbush blueberry (50,51), rabbiteye blueberry (42,44,51,52), bur oak (172), cherry (22), dlerrybark oak (m m. var. pagodaefolia E11.) (124), kiwifruit (153). pear (7). Wm WM L.) (123): and mm WWMJ (27:29) diSPIBY reductiom in stanatal aperture soon after flooding begins. Stanatal behavior of species which are tolerant of flooding differs cmsiderably fran that of species which are sensitive to flooding. 43 Gremash MWWJ seedlingseidlibited stanatal closure rapidly after flooding was initiated (173) . Stanatabegantoreopenwhenseedlingshadbeenflooded for6days, however, stanatalcondllctanceneverincreasedtothelevel of control seedlings. The reopening of stomates was correlated with the production of adventitious roots. A similar result was observed for willow (gulf discolor mail.) which was subjected to one year of flooding (8). Transpiratimisalsoreducedbyfloodingaxflthe pattern observed generally parallels that of stanatal conductance (22,29,51,123,124,153,164) . Plants which are flooded often display a rapid decline in photosynthesis (22,29,51,123,124,153,l64). Photosynthesis of floodedplantsappearstobelinitedbystanatalandnm-stcnatal factors (93). 'Iupelo gum (m M12 L.) seedlings were treated for one month as follows; (a) well-watered control; (b) well-watered with salinity; (c) flooded with saline water; and (d) flooded with tapwater (122). niotosynuiesiswasreduoedbybothfloodingam salinitytreatments. Stanatal factorsaccamtedformlylltoZli; ofthecbservedreductiminfilctosynthesis. Non-staretal factors limitedmctosynthesistoagreaterdegreethanstanatal factors especially for seedlings subjected to salinity or salinity canbined with flooding. mvies and Flore (50-52) studied photosynthesis of flooded highbmh and rabbiteye blueberry plants. Generally, flooded plants had significantly lower rates of photosynthesis than control plants aftertwodaysof flooding. Bothstanatalardrm-stanatal linitatimstomotosynthesisweredaservedduring floodingandthe relative importance of each type of limitation changed as flooding 44 dtn'atimincreased. Adecreaseinstanatalcommctarnereduced carbon assimilatim durirg short-term flooding (1-2 days) while longerfloodingdm'atimalsodecreasedresidualcorrmctance (carbmcylation efficiency) of the leaf (50). Stonatal limitations were most signifimnt during short-term flooding while non-stanatal limitations became increasingly responsible for the deserved decline inphotosynthesisasfloodingduratimimreased. Hictosynttesisoftanatoleaveswasmeasuredbeforearfiafter plants had been flooded for 24 flours (27). Carbon assimilation was reducedbyfloodingandtheprinarylinitatimtocarbm assimilation appeared to cane from rm-stomatal factors since stamtal conductance limited the assimilation rate to approximately thesaunedegreebeforearxiafterfloodirgEvaluatimofthe assimilation rate as a function of Ci (the interoellular m2 ca'lcentratim) indicated that flooding primarily was affecting mBP regeneratimmidlimludespntosyntheticelectrmtransport,mnm andATPsynthesis,anithereductivepentosephosphatecycle. It msproposedthathPregeneratimislimitedinfloodedtanato plants due to low availability of pi (orthcphosphate). A reduction insimcactivityoffloodedroctsmigntcauseaccmnatimof sucroseintheleaveswhidlcouldresultinabuild-upoftriose finsphatesarddepletimofthecytoplasmicl’ipool. Aconsequence offllissmofmrtswmldbethediversimofphctosynthate into starch. Additionally, the cytoplasmic pi level might be affectedbythereductiminPuptakemidlocwrsmringflooding. Soilfloodirgrapidlyreducedphotosynthesisofpecanm mm W-) c. Koch) 869513198 (164)- 5119031131 cmductancetocnzmsreducedbyfloodingvmileciwasmt 45 indicating that a reduction in the capacity of the mesophyll to assimilate (D2 was the primary factor limiting assimilation. Swrdmow<< seesaw-D asoesowao @cwo (OOVDO) 091 Go 108 onl70ctober(Figure3). Itsocourrenceseemstobeclosely associated with the ennd of the phase of grapevine cold acclimation in which increasing cold hardiness is correlated with decreasing water contont. Viresweretotallydefoliatedby31 October. Rootstockhadlittleeffectoncoldhardinessorwateroortent ofprimarybudsduring deacclimationinl986 (Figure 4). Hudson Soy/3309 vineshadagreaterwatercontentthanbudsonSey/omor Sey/Harmvinneson26Mardn. Watercontentofbudsincreasedand coldhardinessdecreasedasdeaccliunation proceeded. Primarybuds wereatscalecrackon23April(1). Sey/3309canesweremoreooldresistantthanoanesfronthe othertreatmentson26mrdn(Figure5). Rootstockeffectsoncold hardinessorwatercortontofcaneswerenotevidentatothersanple dateson’ingdeaocliunationin1986. Ingeneral,watercontenntof canesincreasedandcoldhardinessdecreasedduringdeacclimation. Considerable fluctuation in air tenperature occurred during the 1986 deacclimationperiod(Figure6). Itisinterestingtonotethat canesandbudsdidnetseontobeveryrewoeivetorehardening temperatures. Rootstock did not significantly affect primary bud oold hardinessorwatercontenntduring acclimtioninl986 (Figure 7). Primaryhudwateroontontdecreasedanricoldhardinessincreased throughouttteacclinationperiod. Canecoldhardinessandwater contontwereonlyslightlyinfluencedbymm aoclimationin1986 (Figure 8). Sey/SBaneswerehigherinwater oontontthancaresfronottertreahnennteon48eptonber.¢afiefrm Say/3309 vines were significantly more oold resistannt than cares fronSey/SBBon 30 October. UhliJoethe 1985 data, care cold 109 Figure 3. Maudnumandmininumairtenperatures (°C) during acclimation. 1985. Clarksville, m. llO .soO .Eow . I). \/ .. s e I _ P c E cl. \/ \ .Z.’ . : T/o ,, \ <:. (l c 4 e 2.5. II. Xow 4 d Sowxsom ID .23 Sleaze no (OOVDO) 09i 113 Figure 5. Effect of rootstock on the cold hardiness (T50) andwatercontenntofcanesofSeyvalgrapevines during deacclimtion. 1986. Clarksville, MI. 114 (+OVIO) nudge/(A Aug wfirswfi uueuuoo isle/(A coop w._.om+¢ mmEsowOO .eao:\.>om<< somesom ID ssolom oo @cwo IFNI [UPI (OOVDO) 00 091 115 Figure 6. Maximum and minimum air temperatures (°C) airing deacclimation. 1986. Clarksville, MI. 116 moor ” w._.cm §¢ mmmximw 00 somehow ID :BO\.>om O O can vwl rNFI [IO—.l. [ml (<><>VC}O) 091 00 ll9 Figme 8. Effect of rootstock on the cold hardiness (T50) andwatercontentofcanesofSeyvalgrapevines during acclimation. 1986. Clarksville, MI. R0 (+ 9 VI.) nudge/(A Aug 'uu6/'suu6 uueuuog ueueM owop m._.ow .9 Av mmm\.>ow O O .EocESow 4 Q .>cm\.>om I D :30\.>ow .0 0:60 Imwl I o I I ID I [Fl (<><>VI:IO) OQL Oo 121 hardiness increased annd water content decreased continuously throughouttheaccliunationperiod. ‘Ihisdiscrepancymaybedueto the lack of a killing frost during the sampling period in 1986 (Figure 9) . Defoliation of vines was only approximately 30% conpleteonthefinal sample date (30 October). Significantrootstockeffectswereobservedon llMarchand 28 March during deacclimation in 1987 (Figure 10). Primary buds of Sey/HarmwerehardierthanbudsofSey/ownonllflhroh. 0n28March Sey/ownanriSey/Seyhxishadalowerwaércontentthanbudsfron theothertreatnennts. Watercontentincreasedandhardiness decreased during deacclimation except for the finnal sampling date wherewatercontentandcoldhardinessincreased. ‘Ihisresult amearstobeanonalousbasedonthel986andl988deacclimation’ dataforprimarybuds. f Differences among treatments were evident for canes during the 1987 deacclimation period (Figure 11) . Sey/Sey canes had a lower watercontentthancanesfruntheothertreatnenntsonlluarch. ‘IhistrondoontimuedonZBMardnasSey/ownandSey/Seycanes exhibitedthelowestwatercontent. On9AprilSey/3309caneswere themstcoldhardyandSey/ownncanesweretheleastcoldhardy. CanesofSey/ownandSey/Seywerelesscoldhardythancanesfron theothertreatmentsonl7April. magnum-immune remainder of the deacclimtion period, Soy/3309 and Sey/SBB canes tondedtobemoreooldresistantthanSey/omandSey/Seycanes. In general,watercontentincreasedandcoldhardinessdecreasedas deacclimation of canes progressed. Airtenperature data forthe 1987 deacclimtion period were fragmentary due to equipnent malfunnction (Figurelz). Bythefinal sanpledate (17April),budgrowthhad 122 Figure 9. Maxim and minimum air temperatures (°C) during acclimation. 1986. Clarksville, MI. 123 moor H m._. I > \J \ <’ \ I p [m \ . \ , _ . . \ , __ . . . .. . . / x”. .\. \\H . [or .. x. . /.. . .1 _. : .\..\/ . . ... .. .1). / .\ ... .. < / .. ., . r \/\ < __ / \ _\ /I/\ lmw \ .2 < . . [on ImN 2:2 I! x5... I 2.33.3.0 Iom 00 aanlvaadwai 124 Figure 10. Effect of rootstock on the cold hardiness (T50) andwateroontentofprimarybudsofSeyval grapevines during deacclimation. 1987. Clarksville, m. 125 (OOVIO) nudge/IA Aug 'uu5/'suu6 lueluog ueueM “mow m.._.ow 44 .3953 ID 930 550225 CO (<><>VDO) 091 128 Figure 12. Maudmnnandmininnnairtenperaoures (°C) during deacclimation. 1987. Clarksville, MI. Noow ” w._.b co_uoeeeon coo: .ELoo_ooe to mc_c:oen ou aceoeooua >..a:a_> oocmceouoo no: coeuaeeuns oceu > llll'l"l'll'l'l'l'll'l'llIII'I'II||I'll'|""|l"|l||"'|"l'l'|'l"'-"""'I|'|l"""'l'l""|a" . 00.0w n.o~ one.Fo oo.e— no.eo n.5p no.m~ nap.o nn.o no.9 ooeooa .uw no.mo 0.»? 0~.om uu.e— an.Fo m.op no.s~ np.s nn.a an.o no.0.o o.eoe_¢ noc.no 0.0— so.oo em.sp ne.oc «.m- em.n~ em.o np.e no.0 ace_guc>u ncm.~o m.o~ nom.mc no.F~ cm.eo p.09 om.om up.w- oe.m— an.¢ .a>>uw one.oo s.op so.~c nn.op n—.—o ~.op noo.Pn nep.o n~.o ~n~.o cxo moooc moooc ouooc noooc wood: wood: aoooc soooc noose noooc xuounuoox oceans oceans menace unease accuse oceans oceans casual annual ensues *0 co co to we co m0 e0 we we a cones: x tones: x sense: a tonic: a noose: .uoo om .uuo m? .uoo P .uavm he .umom m Ell"-I'lll||||II'|'||Ill|l"l'|||II"'|"|'I'|I'IIIIlI'||l||'l'|""'I'lII"""ll-|-'l'l""|'l|'||| ._: .ac_nceo snow .aoscou consumes eaau.:umseo= .eeo. .co_uns_.00c mc_eco moooc >oosucs we oueucuoeoe oce sense: or» no xuouuuooe mo uuoemm .~ «deep 133 Figure 13. Effect ofrootstockonthecoldhardiness (T50) andwatercontentofprimarybuisofSeyval grapevines during acclimation. 1987. East Ianeing, MI. 134 ( + o v a 0) ('lM Aup 5/6) nueuuoo ueneM 0N .«oO mp .000 home m._.<0 _. .80 t. .500 0 .50m omdl 0N._.I 00...! 00.NI. 0v.N I omN 1* AV o 3.600 .5360 o 0 £20 .a_m\.>ow d 4 550160 a - 509036 0 a EsOx>ow o3 0.0Nl 10.9. [0.0 _.I .Io.mw| (eovco) (0.) 091 135 Rootstock had little effect on cold hardiness annd water content of canes during acclimation in 1987 (Figure 14) . Sey/Sey canes had agreaterdegreeofcoldresistancethancanesfrontheother treatnentson3September. CannesfronSey/Sthineshadthehighest watercontentonlSOctoberand290ctober. Watercontentofcanes decreaseduntilmid-Octoberwhereaplateau of 0.75to0.85 g/g tissuedrywtwasreached. Cannecoldhardinessincreasedthroughont the acclimation period. Inncreases in cold hardiness after mid- Octoberwerenotrelatedtbwatercontent. Akillingfrostwas recordedoanOctober(Figurel7)anditsoccurrenceseeunstobe closely associated with the point in the acclimation process that increasingcoldhardinessisnolongerrelatedtodecreasingwater contont. 'nniswasalsoobservedwithfield-grownvinesin Ecperinent 1 during the 1985 acclinetion period annd in a previous experinnentusirgOoncord(32). Primrybudcoldhardinessandwatercontentwereinfluenoedby rootstock primrily late in the 1988 deacclimtion period (Figure 15). On31mrdn,Sey/ombudshadalwerwateroontentthanbuds frontineothertreatnentsanriSey/CynbudswerehardierthanSey/Sts buds. Water content of Sey/ownn annd Sey/Sey buds was significantly lowerthanthatofSey/StGonMApril. Primarybudsendnibited inereasedwatercontentanidecreasedcoldhardinessduringthe deacclimationperiod. Iargeincreasesinwateroontontofprimary budswereseenbetween3lMaronanril4April. Signnificant rootstock effects on care water contont annd cold hardinesswereperoeivedduring deacclimation in 1988 (Figure 16). Sey/Sthanesdeacclimated earlierthancanesfronothertreatments. Although the differences were not always statistically signnificant, 136 Figure 14. Effect of rootstock on the cold hardiness (T50) and water contont of cares of Seyval grapevines churiug acclimation. 1987. East Iannsing, MI. 137 (OOVIO) ('IM Aup 5/6) lueuuog ueleM hmow wk<0 mm .000 mp .000 F .80 t snow m snow [cool d 0 .lomFl. 10.9: 8.0: / [D.DI O 00.7 omsH 02H lodl AV o 3.900 cwlmw cv.? o o 2.20 .aEEow o q £59.30 a a .>ow\.>ow cos] 0 a EsO\.>ow owl (OOVDO) (0.) 091 138 Figure 15. Effect of rootstock on the cold hardiness (T50) andwatercontentonprimarybudsofSeyval grapevines during deacclimation. 1988. East Iansing, MI. 139 (07-0) (W Aup 6/5) nuenuog ueueM coop m:.ow\.>om o 0 550180 otwn 00.N n (0vno) (0.) 091 140 Figure 16. Effect of rootstock on the cold hardiness (T50) annd water contont of cannes of Seyval grapevines during deacclimation. 1988. East lensing, MI. 141 (OVIO) ('IM MP 5/5) nuenuog ueneM 00.0! 00.01 0N.PI 3 Ee< 000? 5 secs. w._.ox>ow o a .>cw\>om o a c30fi>om 0.mNI II 0.8... I so. 142 Figure 17. Maximum and minimum air tonperatures (°C) during acclimation, mid-winter, and deacclimtion. 1987-88. East Iansing, MI. 143 memo moor hoop F _ E9... zooms. beacon. >525... .— e .— sonEmomo ._ 5080321. sonofiOL beEwEom. E:E_c_s_ III I 835.08.). I (go) eunneuedwei 144 Sey/Sthaneshadthehighestwatercontentandlomst cold resistance throughout the deacclimation period. In addition, Sey/ananesweredelayedintheirdeaccliamtionresponsewhen conparedtoSey/Sthanes. CanesfronSey/Cynvineshadthelowest water content and highest cold resistance during deacclimation. Sey/Cyn canes were 8.5% hardier than Sey/StG canes on 31 March. ‘Ihegeneraltrenriobservedwasthatcanesincreasedinwatercontent anfldecreasedincoldhardinessasdeacclimationproceeded. Sey/Cyn vines had signnificantly fewer shootless nodes than vines fronthe othertreatnennts in 1988 (Table 3). Air temperatures for the 1987-88 dormant season are given in Figure 17. ISCIJSSION Rootstockhadlimitedinpactoncoldhardinessorwatercontent duringacclimation. Couderc3309,whichhasbeenshovntoincrease scion cold hardiness of certain V_._ vinifQLa L. cultivars during mid- winterperiod(19,21),didnotconsistontlyimprove8eyvalcold resistance during acclimtion. This may indicate that rootstock factorsvnnidnareinportantforscionooldhardinessinmid-winrter are not as inportant during acclimation. Alternatively, the lack of effectbycoudero 3309 mayberelatedtoscion characteristics. SeyvalismorecoldhardythanWhiteRiesling. 'Ihenechanismof rootstock-indeedcoldhardinessincreaseinmid-wintermayhave beenoperatingduringacclimationbutwasnotobservedduetoa maskiugeffectoftheinnatehardinesslevelofSeyval. 'Ihe relatioehipbetweontreatnent oold hardiness, exposureto freezing tenperatures,andexpressionofooldinjuryhasbeondisoussedby Muelluz). Inthisinstance,touperaturesduringtheacclimation 145 Table-3. Effect ofrootstockonthepercentageof shootlessnnodes of Seyval grapevines. Horticulture Research Center. 1988. Rootstock Shootless nodes (is) Own 55.9abz Seyval 46.3b Cynthiana 22.2c St. George 66.8a z Mean separation by Duncan's Multiple Range Test, 01 = 0.05. 146 periodmaynothavebeonsevereencghtoallwexpressionof rootstockeffectsoncoldhardiness. Rootstockhadasmalleffectoncanematurationduriug acclinationin1987. Sey/Seycareshadagreaterpercentageof nature nodes early in the acclimtion period. Although a rootstock effectwasnoted,thisresultdoesnotsuguorttheideathat rootstocks with a short vegetative cycle (early acclimtion) positively influennce scion cane maturation and cold hardiness since Say/RG1 canes did nnot exhibit accelerated cane maturation or increasedooldhardiness. RipariaGloirevinesarereportedtohave theshortestvegetativegrcwthcycleamogtherootstocksusedin thisstudy(20). SimilarresultswereobtainedbyBaslerusing well-ocposedshootsongraftedvinesinttefield (2). Hefomdno differoeesincanematnrationduetorootstockeventhoghseveral oftherootstockshemedwerereportedtoinpartearlyorlatecare naturation. 'Inesefindingssuggestthattheobeerveddifferencesin canenaturationanugvaricusyitigspecies(andoonsequontly rootstocks)mayresultfronfactorsoriginatiugintheshootsystem ratherthanintherootsysten. 'Innus,theobservationthat ondogouuscytddninlevelsinLrjmigMiduc.rootoaudate decline with decreasing Wiod is significant for acclimation ofourn-rootedvinesbutmynotbeinportantforacclinationof vinesmtollemm- (9)- Generally,mteroontentdecreasedandooldhardinessincreased duringacclimation. 'nnerewasoengtableennueptiontothis pattern." Inncreasesincanecoldhardinesswerenotaccanpaniedby furtlerdecreasesinwateroontentofcanesfollolingakilling frostin1985and1987. Apparently,thereisadnangeinthecold 147 acclimation process of grapevines which is closely associated with thefirstkillingfrost. 'IhesedataandthoseofWolpertandHowell (32) snggest that grapevine cold acclimation is characterizedby two distinctstages. Duringthefirststageofgrapevinecold acclimation, cold hardiness increases are closely associated with advanncingtissnuenaturityanddecliningtissuewatercontent. 'Ihe secodstageofacclimationbeginsafterthefirstkillingfrostand increasesincoldhardinessseemtoberelatedtodecreasingair temperature. Atvostagemodelofwoodyplantacclimationhas previouslybeonproposedbyWei-ser (23)- Rootstock effects were evidennt during the deacclimtion period, especially in 1988. Say/3309 annd Soy/5% canes were generally more ooldresistantthancaresfronot‘nertreatnentsouriug1987. 'Ihe differences were not always statistically significant, their magnnitudewassnall,andtheywereinoonsistentbetweenseasons. 'nnepresentdataareinsufficionttojudgewhettertheobserved increaseincoldhardinessbyccudero3309andxober538wasrealor anartifact. nurtherstndyisneededtodetermineifttese rootstockscanconsistenntlyinncreasescioncoldhardinessouring acclimationofSeyvalgrapevines. Gunnsistentrootstockeffectsoncoldhardinessanfiwater contontwereobserveddnn'ingdeacclimationwhenrootstocksmidn differ widely in relative timing of bud burst were evaluated. Primarybudcoldhardinesswasaffectedlessbyroctstockthanwas cannecoldhardiness. However,Sey/Cynbudswerehardierthan coy/sosmdsmthelastwosanpledates. Ecaminationofdatafor canesinl988revealedthat$ey/Cyncanneswerelowerinwater contontandhignerincoldhardiressthanSey/Stscanesduringthe 148 entire deacclimation period. cumulative injury was also reduced by rootstock as Sey/Cyn vines had significantly lower percentage of shootlessnodesthanSey/Sthines. The slower rate of deacclimation observed for Soy/cyn canes may beduetotheabilityofthistreatnenttoresistdeacclimation curingocposuretowarmtouperaturesortorehardenuponexposureto lowtemperaturesoncedeacclimationhasbegun. Bothofthese nechanismshavebeenobservedforgrapevinehfls(6). Further researdnontheinvolvementofrootsinthedeacclimationprocessis necessarybeforetleobserveddelayindeacclimationbquhiana rootstockcanbefullyexplained. Ingeneral,watercontentinncreasedanrico1dhardiness decreasedduringdeacclimation. Iargeincreasesinwateroontentof prinaryhudswereoftenobservedlateinttedeacclimationperiod. Budswereatthescalecrackstageofdevelopnontbythefinal sampledatesin1986and1987. Watercontentatscalecrackreached levels of 1.80to3.17 g/gtissuedrywt. W Choice of rootstock had little effect on cold hardiness or water contont during acclimation. A different situation existed duringdeacclimation. Sey/Cyncaneshadalowerwatercontentand hignerlevelofcoldhardinessthantleottertreatnontsthroughont thedeaccliamtionperiod. Sey/Cynprimarybudsrespondedina similarmannerbuttoalesserdegree. 'nnefollowingproposalsare oonsistentwiththedatacollectedinthisstudy: (1)rootstocks withearlyhriburstdeaoclimtesooerthanrootstockswithlate hem; (2)therootsystemappearstobeequallyinportantas 149 above—groundtissuesindeterminingtherateofdeacclimationnand (3)unnderoertaincircnnstanoes,rootstodcsareabletotransmit differences in the rate of deacclimation to scion tissues. Significant rootstock effects were observed for cmnulative cold injuryasindicatedbypercentshootlessnodesdata. Graftedvines hadlowerperoentageofshootlessnodesthanom-rootedvinesin 1986. Percentage shootless nnodes was significantly lower for Sey/Cynvineswhencomparedwith SeY/MrSeY/SeylorSeY/S’OGVM in1988. ° Primaryhndsandcaresincreasedinooldhardinessand decreased in water content during acclimation. One signnificant exceptionwasnoted. Increasesincoldhardinessafterthe occmrenceofakillingfrostwerenotacconpaniedbyfurther decreasesinwateroontent. 'nnissuggeststhatgrapevinecold acclimationoccursintwostages: (1) coldhardinessincreasesin thefirststagewerecloselyassociatedwithadvancingtissue mtmityanddecliningwateroontentoftissues;and(2)tneseoond stageofacclimationbeganafterthefirstkillingfrostand inereasesinooldhardinesswerenologerrelatedtotissue maturationandwatercortent. Coldhardinessdecreasedaniwateroontentincreasedinprimary budsanndcanesduringdeacclimation. Primaryhudsshowedlarge inereasesinwatercontontdun'ingdeacclimationwithlevelsreadning 1.80to3.17g/gtissuedrywtatthescalecrackstageofbud developnent. Morereseardnongrapevineooldaoclimationand deacclimtionisnneededbeforewecansignificantlyincreasecur mnderetandingoftneoonplexinteractionsoccurringbetweon rootstockandscionduuringtheseperiods. 1. 9. 10. 150 W Anderson, K.A., G.S. Howell, and J.A. Wolpert. Phonological developnent of different Vitis cultivars. Fruit Var. J. 34:5-7 (1980). . Basler, P. Cane growth and maturation with various grape rootstocks. Schweizerische Zeitschrift fur Cbst-und Weinbau, ‘Wadenswil. 120:277-283 (1984). [Vitis.Abstr. 23:3c20; 1984]. Bittenbender, 11.0. and G.S. Howell, Jr. Adaptation of the Spearman-KarbermethodforestimatingtheToofooldstressed flm m. J. M. We W. 50.1. 99:18 -190 (1974). Bittenbender, H.C. annd G.S. Howell. Interactions of toquerature andunoistnrecortontonsprirgdeacclimation of flowerbudsof highhush blueberry. Can. J. Plant Sci. 55:447-452 (1975). Burke, M.J., L.V. Gusta, H.A. Quamne, C.J. Weiser, and P.H. Li. Freezing and injury in plants. Ann. Rev. Plant. Physiol. 27:507- 528 (1976). Damborska, M. 'Iheeffect ofhigherwintertemperaturesonchanges of the frost resistannce of grapevine buds. Vitis 17:341-349 (1978). Dethier, B.E. and N. Shaulis. Minimizing the hazard of cold in 1134ka vineyards. Cornell Ect. Bul. 1127 (1964). Ferrell, A., E. Hoover, andAJI. MarkhartIII. Changes inroot hydraulicconductanoe magnum (Concord) andyitig m short-day induced cold acclimation. HortScience 21:885 (1986). (Abstr.). an endogenous cytckininsiindyl.riearia.anduyl.lahruscana.root xylon euaudate. HortScience 23:802 (1988). (Abstr.). Howell, G.S. Vitis rootstocks. In: Rootstocks for Fruit Crone. R.C. Ron and R.F. Carlson (Eds.). pp. 451-472. John Wiley and Sons, New York (1987). I-lowell, G.S. cultural manipulation of vine cold hardiness. In: of tie Second International Synposium for Cool Climte Viticulture and Cenology. R.E. Smart, R.J. Thornton, S.B. Rodriguez, annd J.E. Young (Eds.). pp. 98-102. New Zealand Society for Viticulture and Cenology, Auckland (1988) . mil, G.S. Cold hardiness: how small a difference in relative lnardiness is viticultnrally inportant? In: Proceedings of the Second International Synposium for Cool Climate Viticulture and Cennology. R.E. Start, R.J. Thornton, S.B. Rodriguez, and J.E. Young (Eds.). pp. 105. New Zealand Society for Viticultue annd Conology, Auckland (1988). l3. 14. 16. 17. 18. 20. 21. 22. 23. 24. 25. 151 Howell, G.S. and N. Shaulis. Factors influencing within-vine variationintlecoldresistanceofcaneandprimarybudtissues. Am. J. Enol. Vitic. 31:159-161 (1980). Howell, G.S., B.J. Hanson, and J.A. Wolpert. Culture of in Michigan. Mich. State Univ. Coop. Ext. Bull. E-2025 (1987). Hubackova, M. andV. Hubacek. Frostresistanceofgrapebudson different rootstocks. Vinohrad, Bratislava 22:55-56 (1984) . [Vitis Abstr. 23:3c30: 1934]. Bull, J. and E.J. Hanson. Weed control in fruit crops. In 1985 Fruit Pesticide Handbook. J. Hull, ILL. Jones, and A.J. Hcvitt (£33.). ms 38.450 Midi. State mv. m. M. 3.111. E-154 (1985). Miller, D.P. Cold hardiness of grapevine rootstocks and their effect on scion cold hardiness and tine of bud burst. M.S. 'Ihesis, Michigan State University (1986) . Miller, D.P., G.S. Hoell, and R.N. Striegler. (are and bud hardiness of selected grapevine rootstocks. Am. J. Enol. Vitic. 39:55-59 (1988). Miller, D.P., G.S. Howell, and R.N. Striegler. Care and bud hardinessof can-rootedmitekieslingandscious ofmite Rieslingandcnardomaygraftedtoselectedrootstocks. Am. J. Biol. Vitic. 39:60-66 (1988). Pongracz, D.P. Rootstocks for grapevines. 150 pp. David Philip, Cape Town (1983). Pool, R.M. and (2.3. I-loward. Managing vineyards to survive low temperatures with sons potential varieties for hardiness. In: of the International Sanosium on Cool Climate Viticulture and Enology. B.A. Heather-bell, Innbard, F. W. Bodyfelt, and S.F. Price (Eds.). pp. 184-197. Oregon State University, Corvallis (1984) . Ranedell, D.C. and A.J. Hewitt. ere spray schedule. In: 1985 Fruit Pesticide Handbook. J. Hull, ILL. Joes, and A.J. Hcvitt (Eds.). pp. 87-91. Mid). State Univ. Coqa. mt. Bull. E-154 (1985). Shamtsyan, S.M., F.G. Mikeladze, S.P. Abramidze, and N.G. Radmadze. 'neeffectofgraftingongrapevinefrostresistanoe. Soobehdenija Akadenii Nauk, 'Ibilisi 113:145-148 (1984) . [Vitis Abstr. 23:3c23: 1984]. Shmulis, N. Vinehardinessapartoftlepmblanofhardinessto cold in New York vineyards. Proc. N.Y. State Hort. Soc. 116:158- 167 (1971). Shaulis, N., J. Eineet, and A.E. Pack. Growing cold-tender grape varieties in New York. N.Y. State Agr. Ext. Sta. an. 821 (1968). 26. 27. 28. 152 Steel, R.G.D. and J.H. Torrie. Principles and Procedures of Statistics. A Bionetric Approach. (2nd ed.) 633 pp. McGraw-Hill, 1116., New York (1980). Stergios, B.G. and G.S. Howell, Jr. Evaluation of viability tests for cold stressed plannts. J. Aner. Soc. Hort. Sci. 98:325—330 (1973). Weiser, C.J. Cold resistance and acclimation inn woody plants. HortScience 5:403-410 (1970). 29. Wolf, T.I(. Effects of rootstock and nitrogenn fertilization on the growth, yield, tissue nitrogen concentrations, and domnt bud cold hardiness of 'Cnardonnay' (ELIE m L.) grapevines. PhD Thesis, Cornell university (1986). 30. Wolpert, J.A. and G.S. Howell. Effects of care length and dormant 31. 32. 33. 34. 35. seasonprnuningdateoncoldhardinessandwatercontentof Concord bud and care tissues. Am. J. Bel. Vitic. 35:237-241 (1984). Wolpert, J.A. and G.S. Howell. Cold acclimation of Concord grapevines. I. Variation in cold hardiness within the canopy. Am. J. E3131. Vitic. 36:185-188 (1985). Wolpert, J.A. and G.S. Howell. Cold acclimation of Concord grapevines. II. Natural acclimation pattern and tissne moisture decline incanesandprimaryhdsofbearingvines. Am. J. Enol. 'Vitic. 36:189-194 (1985). Wolpert, J.A. and G.S. Howell. Cold acclimation of Concord grapevines. III. Relationship between cold hardiness, tissue water contennt, and shoot maturation. Vitis 25:151-159 (1986) . Wolpert, J.A. and G.S. Howell. Effect of night internption on cold acclimation of potted 'Concord' grapevines. J. Amer. Soc. Hort. Sci. 111:16-20 (1986). Xiu-wu, C., F. Wang-hog, and W. Guang-jie. Studies on cold hardiness of grapevine roots. Vitis. 26:161-171 (1987). II. PRD’IARYANDSECINDARYETFECI‘SOFROOI‘S‘IOCKQI CDIDHARDINESSOFSEYVALW ABS'IRAC_I‘ 'neeffectofrootstockaudvinesizeoncoldhardinessof Seyval grapevinesweredetermined separately. Vine size effects wereoonsideredtobeanindicationofpotentialseoodaryrootstock effects since vine size modification is an important primary rootstockeffect. Cm-rootedSeyval(Sey/own)andSeyvalgraftedto Seyval (Sey/Sey), Kdoer 533 (Sey/SBB), and Couderc 3309 (Sey/3309) veretl'erootstodttreatnentsusedinthisstdy. Iarge,nedinum, andonallvinesizeclasseswereestablishedwithineadnrootstock treatment. Rootstockeffectsonooldhardinessweredeterminedby neasnn'ementofcmulativeinjurytohdsaspercentageofsteotless nodesandtlewithin-vinedistributionofcaneswithcharacteristics associatedwithinncreasedcoldhardiness(nedimndiameterandwell- I ocposedtosunlightduringttegrcvingseason). Bothprimaryand seoodaryeffectsofrootstockoncoldhardinessvereobsenred. Say/3309vineshadtlelouestperoentageofshootlessnodesamong trerootstocktreatments. Vinesizedidnotsignificantlyinfluonce trepercontagesteotlessnedesvtencanesofconparableqnualitywere evaluated. motstock did not significantly affect the within-vine distributionofanes. Iangevineshadagreaternnmberofpoorly neturedcanesandcaneswithsuperiorcoldresistanoe. Iargevines donetappeartobeinferiortosmallvinesincoldhardinessif carefulcaneselectionispracticedatpnminng. 153 154 W Rootstock-scion relationships in the grapevine are complex. 'Ihe performannce of a rootstock-scion conbination represents the sum of an acuitive rootstock contribution, an additive scion contribution, and a nonadditive contribution of the rootstock x scion interaction (3,5,11) . this situation creates considerable difficulty for the viticulture researcher who endeavors to measure rootstock contributions to scion characteristics. Primary rootstock effectsmstbeseparatedfronsecodaryrootstockeffectssothat data can be accurately interpreted. 'Ihemajor functions ofttegrapevinerootsystanarevinewater relations, uptake and translocation of nutrients, synthesis and metabolismofplantgrwthsubstannces, andstorageofcarbohydrates (10). Primaryrootstodceffectsarelfltelymediatedthroughoeor acoubinationoftlesefnmctions. Grapevinerootstockshavea primary effect on vine size (kg cane pruunings/vine) (2,3,7,8). Inncreasesinvinesizewencauepylengthisfiuasdresultin croudinngofonootsandinternalcanwyshading (17). 'n'enegative consequencesofinternnalcancpyshadingonyield, fruitquality, and wine quality are well-documented (12-15,17,18). Most secodary effectsofrootstcckarenediatedtnroughrootstcckinfluenceson vine size and internal canopy shading. Possible mechanisms of rootetockinvolvauentincoldhardinesscfgrwevineprimryhds and canes are outlined in Figure l. Within-vine variation in cold hardiness is considerable (4,16,20,21). 'ne importance of this factor for vine cold resistancewas firstreoognizedbyShaulis (16). Mostofthe withindvinevariationincoldhardinesswhidnisobservedisoueto 155 Figural. Potentialneonanismsofrootstockinvolvonentin coldhardinessofgrapevineprimrybndsandcznes. Rootgtock Primary Effect Secondary Effect (Direct) (Indirect) Functions of root system Vine Size Modification 1 Water uptake. , 2 Mineral nutrient uptake. Small Large 3 Production of plant growth Vine Vine substances. Size Size 4) Storage of carbohydrates and amino acids. Reduced Internal Increased Internal Canopy Shading Canopy Shading I (1 1d Distribution of Distribution of Increase 0° canes in the canes in the PBSlStaDCG canopy is altered canopy is altered (more 03115 Wiih. (more canes with 00d characteristics poor characteristics or cold hardiness) for cold hardiness, also. more canes with poor wood maturation) 157‘ internal cannopy shading. Differences in cold hardiness of primary budsandcznesvariedbyuptolZoCdependirgonthepresenceof per-idem, periderm color, cane diameter, persistent-lateral status, andleafeacposuretosnmlightouringtlegrowingseasonM). Cold lerdinesswasinereasedbyeuqnosuretosunlightdurirgtlegming season, dark-colored periderm, unediumcane diameter, and lackof persistentlateralcanes. 'Iheimportannceofexposurestatusand tissue maturation, as indicated by periderm status and color, for mximumcoldresistanceoftissueshasbeenconfirnedinreoent studies (20,21). I:Iinis information allovs for tie developent of rational samplingprooeduresfor grapevine coldhardinessstdies. current knowlefie dictates that canes which are sanpled should have similar diauneter, snmlignteocposurestatus,persistennt lateral status, and croppingstress. I-Iowell(3)usedthesecriteriatosanp1e couperable canes from 1-year-old potted vines, 2-year-old nonbearing vines, 15-year-old mature bearingvinesandZS-year—oldabandoed vimsoftlesamecultivarattlesamelocationontlesanedateand foundnnohardinessdifference. 'nnisprovidesstro'gevidencethat mn-uea‘tnenntvariationcanbereduoedsubstantiallybyusinga criticalsaunplinngprooedure. 'nedetectionofprimaryrootstock effectsoncoldhardiuessofsciontissuesdependsontleuseof criticallsampling. . Grapevinerootstockshavebeenshonmtohaveaprimaryeffect onscion coldhardinness (6,8trieglerandHowell,opublisted data, l988,see(!napterI). Consumer caneswasincreasedby rootstock omingmid-winter and deacclimation. Effects on bud cold hardinessofaneswerealsonetedhutusuallyonlyvmencnmulative 158 injury (peroenntage of shootless nodes) wasencamiued. Ebcpoouretosumlightouringtnegrovingseasonandcane maturation, two factors which are associated with inereasedprimary b.dandcanecoldhardiness,arenotuniformlydistrib\utedinnest grapevinecannopies. Exteriorcaneshad9tol4maturenodeswhile canesfronthecanopyinnteriorhadOtoZmaturenodes(16). 'Ihus, treatnentswhidninfluenceintennalcanopyshadingcanaltertle distribution of canes which possess characteristics of maximum cold resistance and trendy affect vine cold hardiness. Vine size increasesmilecannopyspaceisfixedprovideameonanismfcr secondary rootstock effects through alteration of the within-vine distributionofcaneswithmaxiummpotentialforooldhardimss. ChardonnayvinesgraftedouCouderc3309(1argevinesize)hada greaternuunbercfcaneswithOtoSandmorethanlOmaturenodes ttnanQnardo'n'naygraftedonElvira(anallvinesize) (20). Amarantly,factorsotterthanperidermstatuswhidnareassociatedl withinereasedcoldhardinesswerenetcoeideredndnonwithin—vine canedistribnntionwasmeasured. A1so,thisisnotconc1usive evidonceofasecondaryrootstockeffectsincerootstockandvine size effects were confounded. Determination of separate rootstock andvinesizeeffectswouldallovustoincreaseourunderstanding ofprimaryandseoodaryrootstockeffectsoncoldhardiness. As poinrtedontbyI-Iowell(3),thismatterisofcoeiderablepractica1 inportance. prrimaryeffectsofrootstockarenoted,genetic impromntcanbemdertakentomdifytrednaracteristicof interest. ontleotlnerhand,ifseoodaryeffectsarennoted,ithe questionbeconesoeofculturalmanagementandnotrootstock. 159 Therefore, themposecftlnisexperinentwastoseparately determinerootstockprimaryandsecodaryeffectsonvinecold hardiness. Cannopydevelopnent, productivity, and fruit qualitywere alsodeteminedduetotheirinnterrelationship with cold hardiness. museums AND MEIR-1013 misexperimentwascoductedinagraftedSeyvalvineyardat the Clarksville Horticulture mperinent Station, Clarksville, MI . Rootstock treatments included own-rooted Seyval (Sey/own) and Seyval graftedeeYVfl(SeY/S€Y).K°ber533(yi§ismtlm§£imandmx crewman) (say/sea), and madam 3309 creepers Michauxxyitij mg Scheele) (Soy/3309). Vineswereplantedinl9831naunifoml apex) wererated sinncethiswastlebearirgmnitretainedatpnnnirg. Allratings werevisualandsubjective. 'Iheoategoriesusedwere: (l) having5 mature nodes,mediumdiameter(7-10 mm),andwe11-euposedto sunlightduringthegrowingseason; (2) all othercaneshaving five mturenodesnard(3)caneswithfewerthanfivematurenodes. Cane diameterwasuueasuredbetweenncdesfourandfive. Persistent lateralstatuswasngtcoeideredouetothehighpercoutageof caneshavingpersistentlateralsatnodesoethroughfive. Persons collecting data were provided with a well-exposed cane piece of nediumdiameterasareference. 'nedataarepresentedonaper vineandpercontagebasis. 'Ihiswasdonesothatnethodsof presentingthistypeofdatacouldbeconpared. Shootlessnodeswerecountedafterhudburst. Shootswere allowedtogrovapprodmatelylSonbeforemeasuronent. tuatawere annalyzedasa4x3factcrialwithrootstockandvinesizeclass servingasfactcrs. mtaweresubjectedtoannalysisofvarianceand meanseparationwasdoebyunean'snovmultiplerangetest. 'Ihe arosiuntransfomationwasperfcrunedonperoontagedatapriorto annalysisofvariannce (19). w motstockhadlittleeffectongrowthandcanopydevelorment (Table 1). Soy/3309 vines were able to occupymore of their allotted cancpy space than Say/own, Sey/Sey, or Sey/SBB vines. Vine sizehadagreatereffectongrovthandczncpydevelopuentthan rootstock. Nodes retained/vine, shoots/vine, slncot density, and percenntage of occupation of trellis space were directly related to 162 Table 1. Effect of rootstock and vine size on growth and canopy development of Seyval grapevines. 1986. Clarksville, MI. Shoot Occupation Vine Nodes dennsity _1 of trellis size retained/ Shoots/ (shoots m space Treatment (lg/vine) vine vine of canopy) (85) M Own 1.35 30 4o 24 68bz Seyval 1.32 28 38 25 65b Kober 588 1.41 31 44 - 27 67b Ccuderc 3309 1.43 31 43 22 79a n.s. n.s. n.s. n.s. Vine Size impel O . 45-0 . 91 O . 77c 17c 29c 20c 60b 1.14-1.59 1.3913 30b 40b 23b 74a 1 . 82-2 . 27 1 . 98a 43a 55a 30a 76a zMeann separation by Duncan's Multiple Range 'Ilest, on - 0.05. 163 vinesize. productivity was only slightly affected by rootstock (Table 2). Sey/SBB vines had the highest yield and the lowest berry weight. ClustersfronSey/ownvineswerelargerthanclustersfronvinesof treotlerrootstocks. Viresizehadasouewhatgreaterimpacton proouctivitythanrootstock. Yieldandtlenunberofclusterper vineinncreasedwithincreasingvinesize. anallvineshadslightly largerberriesthanvinesinthemedimnorlargevinesizeclasses. Fruitfulness was not significantly reduced by large vine size. Rootstockandvinesizeeffectsonfruitqualitywerelimited to soluble solids (Table 3) . 'ne differences observed were innverselyrelatedtoyield. Rootstockdidnotaffecttlne dis‘trihntionofcaneswithintlevineinrelationtocoldresistance (Table4). 'Iheeffectofvinesizeonttewithinnvinedistribution ofcanesinrelationtocoldresistannoevariedacoordingtotle mannerinwhidnthedatawerereported. Increasesinvinesize reoultedinagreaternnumberoftotalcaues,caneswithsuperior coldresistance,andcanewithlessthanfivematurenodeswlen reportedonapervinebasis. Incontrast,presentationoftnedata asaperoontageoftotalcanesindicatedthatincreasingvinesize decreasedtleperoentageofcaneswithsuperiorcoldresistanoeand caneswith inferiorcoldresistanoe. 'Ihepercentageofcaneswith lessthanfivemturenodesinereasedwith increasingvinesize. Rootstockeffectswerepresentintlepercentageofshootless nodes data (Table 5). Sey/ownvines had tie higlnest and Sey/3309 vinestl'elowestperoenntageofshootlessnodes. Vinesizedidnnot significantly affect tie percentage of shootless nnodes whenn couparablecaneswereevaluated. 164 Table 2 . Effect of rootstock and vine size on productivity of Seyval grapevines. 1986. Clarksville, MI. Berry Cluster Fruitfulness Yield Clusters/ Berries/ weight weight (lg fruit/ Treatuent (MI/ha) vine cluster (g) (g) retained node) m Own l7.8a1:>z 37 199 1.89 376.1a 0.46 Seyval 15.0b 35 178 1.86 329.9b 0.40 Kdoer 533 19.0a 46 195 1.68 325.1b 0.47 Couderc 3309 15.8b 39 179 1.80 320.9b 0.41 n.s. n.s. n.s. n.s. Vine Size Heathen 0.45 - 0.91 10.4c 23c 189 1.87a 350.8 0.46 1.14 - 1.59 17.0b 41b 186 1.77b 328.0 0.43 1.82 - 2.27 23.3a 54a 189 1.78b 335.2 0.41 n08. n.s. n.s. 2 Mean separation by Duncan's Multiple mnge Test, - 0.05. 165 Table 3. Effect of rootstock and vine size on fruit quality of Seyval grapevines. 1986. Clarksville, MI. Soluble Solids Titratable Acidity Treatment (is) (g/100 ml) pH more Own 19.282 1.06 3.15 Seyval 19.0ab 1.05 3.14 Kober 588 18.216 1.08 3.16 Couderc 3309 19.4a 1.07 3.19 n S. n.s. Vine size M321 0.45 - 0.91 20.2a 1.09 3.16 1.14 - 1.59 19.016 1.05 3.17 1.82 - 2.27 17.6c 1.06 3.16 n.s. n.s. z Mean separation by Duncan's Multiple Range 'Ilest, - 0.05. 166 Table 4. Effect of rootstock and vine size on the within vine distribution of canes in relation to cold resistance. 1986. Clarksville, m. Superior cold Inferior cold Less than 5 Total m2 lgistancey mature nodes canes/ (canes/ (canes/ (canes/ vine Treatment vine) (%) vine) (%) vine) (is) m Own 10 29 8 23 17 49 35 Seyval 10 32 8 26 13 42 31 Kober 588 9 24 8 22 20 54 37 mflerc 3309 9 25 9 25 18 50 36 n.s. n.s. n.s. n.s. n.s. n.s. n.s. Vine Size some 0.45 - 0.91 816" 36a 7 32a 7c 32c 22c 1.14 - 1.59 9ab 27b 9 27b 15b 45b 331) 1.82 - 2.27 11a 230 8 17C 29a 60a 48a n08. zCanecuharacteristics-7-10uunmindiauuneterandwell-euposedto sunlightduringtlegroviugseason. yCanecharacteristics-caneshaving5ormorematurennodeswhidn werenot7-10mindiameterand/orwell-exposedtosunlignt duringtlegrovingseason. x Mean separation by Duncan's Multiple Range Test, = 0.05. 167 Table 5. Effect of rootstock and vine size on the percentage of shootless nodes. 1987. Clarksville, no.7- Shootless NodesY Treatuennt (if) m Own 58ax Seyval 31b Kober SBB 15bc Couderc 3309 9c Vine Size lied/£1.91 0.45 - 0.91 28 1.14 - 1.59 25 1.82 - 2.27 28 n.s. zMeasuronenntsweremadeoncanneswlnicnnwereretainedatprnuning. Caneswere7-10mindiameterandhadbeennvell-exposedto sunnlightmringtlegrowingseason. yAr'cusintrannsfouonnationwasperfoudnnedbeforneAflV. Meanerepresent detrannsfonned data. 1: Mean separation by Duncan's Multiple range Test, - 0.05. 168 W 'Ihemumberofshootspervineincreasedwithincreasingvine size. This, coupledwithafixedcanopyspaceallottedtoeach vine, resultedinaninncreaseinslnootdensityasvinesize increased. Inereasesinshootdensityresultingreaterleafarea perunitrwlengthandshadewithinthecznopy(12,l7). Seyval vineswith6shootsper30onofrovhadgreaterinnternalcanopy shadingthanvineswith2cr4shootsper30cnofrov(9). Although occupation of trellis space increased with increasing vine size, itisdoubtfulthatthisisapracticalnethodofsolvingtl'e problemduuetotl‘egreaterintennalcanepyshadingthatvmldoccur withinereasedvinesizeatafiuaedcancpyspace. Bettertrainning Ofcordonsanduuediumvinesizewouldlikelyyieldacanqnywiththe desiredcharacteristics. 'nerelatioehipbetweenvinesizeandyieldisnotsurprising inthatnnodemumberpervineisbasedonvinesize. Agreater munbercfnodespervineresultsinircreasedmmbersofshootsard clusters. Clustermmberandyieldaredirectlyrelatedforthimed vinessuchasinthisstudy. Sey/SBBviueshadthehighestyield amogrootstocktreatnennts. 'nedataareinnsufficienttodeclare thisasaprimaryrootstockeffectsinceSey/onmvinesalso displayed increased yield. However, syntlesis and netabolion of cytokininsbygrapevinerootsandtleinvolvementofcytoldninein tlefloraldevelopnentaudfruitsetprovideapossibleavemuefor primaryrootstockeffectsonscionyield (10). Rootstockandvine size differennces in soluble solids were related to yield. Conpetition between "sinks" for photosynthate and the resulting 169 reduction in fruit or vegetative maturity are well-documented in the WW)- 'Ihelackofeffectcfrootstcckandtheconsiderableeffectcf vine size on the within-vine distribution of canes with superior cold resistance indicates that rootstock influences on vine cold hardinessflnroughthisnednanismwereofasecondarynature. 'Ihe problemthenisnnotoeofrootstockbutofculturalmanagonent. Mannagementofvinesizetoincreasevinecoldhardinessisasubject ofconsiderableinteresttogrowers. Itiscomnonlyacoeptedthatsmallvinesaresuperiorincold hardinesstolargevinesouetotheirreducedinternalcannopy shading. Ourdatadonnotsupportthisview.1argevineshada greaternnmnberofpoorlymaturedcanesbutalsohadmorecaneswith superiorcoldresistannce. Moreiuuportantly,largevineshada sufficientmmberofcaneswithsuperiorcoldresistancetomeetthe reguirouentscftletrainingsystemandprumingseverityusedin thisstudy. 'flniscggeStsthatwithcarefulceneselectionduring prnming,largevineswouldnotbeinferiortoonallvinesincold hardiness. Presentationofcanedistribntiondataonapervinebasiswas nereappropriatethanonapercentagebasissincepercentagedata did not always dennote viticulturally significant differences. As an exannple,ttefactthatsmallvineshadahignerperoentageofcanes with superior cold resistance than large vines is nnot viticulturally inportantaslogaslargevineshadsufficientcaneswithsuperior coldresistancetoneettlerequirouentsoftletrainingsystonand pruningseverity. Itappearsthatreportiugwithinvinecane distributiondataonaperoontagebasiscanresultininaccurate 170 inrterpretationoftl'edata. 'neshootlessnodedataprovidefurtherevidenceagainsttle conceptofsmallvineshavingagreaterdegreeofcoldresistance thanlargevinnes. Vinesizedidnotaffecttlepercentageof shootless nnodeswhen conparable canes (medium diauueter, well-exposed canesretainedatprmning)vereevaluated. Primryrootstock effectswerewservedamg‘therootstocktreatlents. Soy/3309 vines had significantly lower percentage of shootless nodes then Sey/own or Say/Soy vines. mam , Vinesizegenerallyhadagreateriuupactontleparameters measuredthandidrootstock. Vinesizewasdirectlyrelatedtothe numberof shoots/vine, shootdeneity, percentage of themellis space that was cocpied, number of clusters/vine and yield/vine and wasinnvereelyrelatedtoberryweightand%solublesolids. ‘Ihe highershoctdonsityoflargevinesascouparedwithsnnllvines wouldnecultinagreaterdegreeofinterunalcanopyshadinginlarge vines(12,17). Evidennoeofprimryandpotentialseoodaryrootstockeffects onvinecoldhardinesswereobserved. 'Inewithin-vinedistribution ofcamswithsuperiorcoldresistanncemsalteredbyvinesizebnt nnotrootstock. 'nnisindimtesthatrootstockeffectsoncold hardiness by this neonanim (vine size modification) are possible andwouldbeofasecodarynnature. Curdatadonotsupporttle cmlyleldviovthatsmallvinesaresuperiorincoldhardiness tolargevines. Iargevineshadagreatermmberofcaneswith supericrcoldresistaneethandidsmallvines. 'nennumberofcanes 171' with superior cold hardiness on large vines was sufficient to meet therequirementsoftheprumingseverityusedinnthisstudy. When caneswithsuperiorcoldhardinesswereretainedatprmning,vine sizehadnnoeffectonperoeuntshootlessnodes. VinesgraftedtoCouderc3309hadtnelowestpercentageof shootlessnodesindicatingaprinery effectonscion cold hardiness. Furtherstdyisneededtodeterminetheseasonalvariationinthe within-vine distribution of canes. Assesonentofthewithin-vine distributionofoaneswithsuperiorcoldhardinessapgearstobea usefulnethcdofdeterminingsecodarytreatnenteffectsonvine coldhardiness. 'nnisaspectofvinecoldhardinessshouldreoeive greater attenntion by viticulture researchers. l. 2. 3. 6. 7. 8. 10. 172 W CITED Amerine, H.A. and G.S. Ough. Metlnods for Analysis of Musts and Wines. 341 pp. John Wiley and Sons, New York (1980) . Carbonneauu, A. andP. Casteran. Interactions "trainningsystemx soil x rootstock" with regrd to vine ecophysiolcgy, vigor, yield and red wine quality in t‘ne Bordeaux area. Acta Hortic. 206:119- 140 (1987). Howell, G.S. Vitis rootstocks. In: Rootstocks for Fruit Crcps. R.C. Ron and R.F. Carlson (Eds.). pp. 451-472. Jd'm Wiley and Soe, New York (1987). I-kuwell, G.S. and N. Shaulis. Factors influencing within-vine variationintlecoldresistanceofczneandprimrybudtissues. Am. J. Enol. Vitic. 31:158-161 (1980). . Iefort, P.L. and N. Isgisle. Quantitative stock-scion relationships in vine. Preliminary investigations by tl‘e annalysis of reciprocal graftings. Vitis. 16:149-161 (1977). Miller, D.P., G.S. Honell, and R.N. Striegler. Cane and bud hardiness of own-rooted White Riesling and scions of White Rieslingandcnardonnaygraftedtoselectedrootstocks. Am. J. Enol. Vitic. 39:60-66 (1988). Pogracz, D.P. Rootstocks for Grapevines. 150 pp. David Philip, Cape Town (1983). Roget, R. Usefulness of rootstocks for controlling vine vigor and inproviug wine quality. Acta Hortic. 206:109-118 (1987) . Reynolds, A.G., R.M. Pool, and L.R. Mattick. Effect of shoot density and crop control on growth, yield, fruit coposition, and wine quality of 'Seyval blanc' grapes. J. Anner. Soc. Hort. Sci. 111:55-63 (1986). Richards, D. be grape root system. Inn: Horticultural Reviews. J. Janidc (me). me 127-1680 AVI MIN (30., W, CT. (1983). Rives, M. Statistical analysis of rootstock experinentsas adefinitionofthetermsvigourandaffinityin grapes. Vitis 9. 280-290 (1971). mart, R.E. Principles of grapevine canopy microclimate minulation with inplications for yield and quality. A review. Am. J. m1. Vitic. 36:230-239 (1985). Snort, R.E. Influennce of light on couposition and quality of grapes. Acta Hortic. 206:37-47 (1987). 14. 16. 17 . l8. l9 . 20. 21. 22. 173 anart, R.E. and S.M. Smith. Canopy management: identifying the problons and practical solutions. In: Proceedings of tie Secod International Symposium for Cool Climate Viticulture and Cennolcgy. R.E. mart, R.J. Thornton, S.B. Rodriguez, and J.E.Youug (Eds.). pp. 109-115. New Zealand Society for Viticulture and Cennology, Auckland (1988) . Smart, R.E., S.M. anith, and R.V. Winnchester. Light quality and quantity effects on fruit ripeuning for Cabernet Sauvignon. Am. J. Enol.‘Vitic. 39:250-258 (1988). Shaulis, N. Vinehardinessasapartoftleproblonofhardiness to cold in N.Y. vineyards. Proc. N.Y. State Hort. Sci. 116:158- 167 (1971). Shaulis, N.J. Responseeofgrapevinesandgrapestospacingof andwithincanopies. In: ProceedingsoftheGrapeandWine Centennial Winn. A.D. Webb (Ed.). pp. 353-361. Unniversity of Califonia Press, Davis (1982). Slnaulis, N., H. Amberg, andD. Crone. ResponseofConcordgrapes to light, exposure, and Geneva double curtain training. Proc. Amer. Soc. Hort. Sci. 89:268-280 (1966). Steel, R.C.D. and J.H. Torrie. Prinnciples and Procedures of Statistics. A Bionetric Approach (2nd Ed.). 633 1p. MoGraw—Hill, Innc., New York (1980). Wolf, T.K. Effects of rootstock and nitrogen fertilization on the growth, yield, tissue nitrogenn concentrations, and dormant bud cold hardiness of 'Cnardonnay' (11515 M L.) grapevines. PhD Dissertation, Cornell University (1986) . Wolpert, J.A. and G.S. Howell. Cold acclimation of Concord . I. Variationincoldhardinesswithintl'ecancpy. Am. J. Ernl. Vitic. 36:185-188 (1985). Winkler, A.J., J.A. Cook, W.M. nicer, and L.A. Lider. General Viticulture. 710 pp. Univ. of California Press, Berkeley (1974). SECTIQ‘III WOmefl-IER‘ESWOF mmmmmsmss 174 EFFECI‘OFROOIS‘IOCKCN'HiEmn-IANDHNSIOW OFSEYVALGRAPEVDIESIIJRDIGFIDODDIG m Own-rooted St. George, Colderc 3309, Riparia Gloire, Kober SBB, Seyval,and@nthianavinesweresubjectedtosoil floodingunder greenhouse coditions. The rate of shoot elogation (RSE), net photosynthesis (pm) , stonatal coductance (gs) , transpiration (Tr), andwateruseefficienncy (mE)wereuneasuredatoetofourday intervalsasanestimate of sennsitivitytoflooded coditions. In general,RSEwastlemostseneitiveardethe1eastsonsitive parameter to flooding. St. George, Couderc 3309, and Riparia Gloire were the most tolerant cultivars, while Kotuer 538, Seyval, and CYnthianaweretl'emostsusoeptiblecultivarstoflooding. Symptom of flooding were desiccation of tie shoot apex, flaggingofleaves,necroticareasonleaves,senescenuceofbasal leavesandregenerationofrootsneartlewatersurface. Oxygen diffusionrate (OIR)valuesvhichhavebeenstmntobedamagingto woodyplannts (Cuzvalueoflessthan20g02x10'8cn’2minn'l)were attainedwithinthreehourscfflooding. Tneeffectofrootstockonfloodingtoleraueecfasusceptible scionwasuneasuuredouringanadayfloodingperiod. Treatmentswere own-rootedSeyvalandSeyvalgraftedonSeyval,Coderc3309,and St. George. FloodingtoleranoeofSeyvalwasincreasedslightlyby graftingontoCouderc3309. W Soildrainnageisanninportantaspectofsiteselectionfor fruit crops (8,22,37,39). Soils with poor internal drainnage or a 175 176 high ground water level are generally uunnsuitable for fruit production because tley are periodically flooded (11,17,20-22, 33,34). Vineyard soils in the Great lakes region of the easternUSA are coumnly of glacial origin and can display considerable heterogeneity (34,38) . Well-drained sandy loam soils are often found in close association with poorly drained clay loam soils. 'n'e perfomannoe of Seyval grapevines growing on two distinnct soiltypeswasuunnitoredouringafiveyearirrigationstdy (6,Doug1as Welsch,persona1 comunication,l988) . Soil type had a greater influence on vine performannce than irrigation treatment. Vines grown on Kalanazoo loannn soil (sonnewhat poorly-drained) had lowervinesize, yield, andsurvivalthanvinesgrovnonoshtemo sandy loam soil (well-drained). These observations suggested that flooding might be a significant problem in poorly-drained vineyard soils in Michigan. Flooding has significant effects on the anatonny, morphology, and physiology of roots and shoots of woody plants (4,9,10,25, 28,32). Anatonical and morfielogical responses to flooding innclude tl'e develOpnent of adventitious roots, stem hypertrophy, hypertnofinied lentioels onstone, andaerenehymatissue (9). Flooding influencestlerinysiologyofwoodyplantsinannmuerof ways. Root and shoot growth, stonatal conductance, transpiration, Wis, androothydrauliccoductannoearegenerallyreduoed by flooding (4,9,10). In addition, flooding alters tie uptake of ions from tl'e soil solution (9), production of plant growth substances (23), and suscwtibilitytodisease causedby soil fungi (31). 177 Vegetative growth, yield, and suurvival of woody fruit crops are reduuced by flooding (2,3,4,12,13,18,28). Flooding injury is influueneedbyspecies,timeoftleyearinwhichfloodingoccurs, andtheduration of flooding (9). 'Ihereisoonsiderable variation infloodingtolerancebothbetweonandwithinfruittreespecies (28)- mmmm-lrmm—WL-LW apple mmm.) aretolerant of flooding while apricot (mm-abhpeadummmlfiatsdI-Lamfi mmmtson.),andolive(9£amb)are sennsitive to flooding. Species which are intermediate in tolerannce tofloodirearecitmsmtrlsspp-l.pltm(2ouu_sicesfi_caL-l. 6:1de mmmMMm. Ingmeral. floodingofmodyplantsour'ingactivegrowthreoultsinagreater degreeofinjuurythanfloodiugouringdormaneyorotnerperiodswhon growth is miniml (4,9,18,28). Injuury colluonly-beoones more severe as the duuration of flooding increases (2,3,4,9,28) . For sample, tlecoupositionofwcodyspeciesonfloodplainsoilsisofton directlyrelatedtotledurationoffloodingduringtlegrowing season(9). 'nerearefowreportsintlescientificliteratureconcerning grapevine responses to flooding. Most infonunation that is available conesfronfieldobservationsandissubjective. VialaandRavaz (35) sumrizedtle findings of Europeanviticultural scientists of tlel9thcorturyonfloodingtoleranceofgrapevinespeciesand Walden. www.mrusm Beam,!itisiduunenahxymssmfioelmmhybrid8. Mpestrisdnulct,$olonis,l_liflgymtfmbxyit1§m Sdeelehybrids,yitisyjm:mbx.yi§i§muidm. hybrids, 178 V_ii:i_s§ipa_r_igMid1x.and!i_ti_sMi_sSdneelewereregardedas having tolerance to flooding. More recently, the flooding tolerance ofmtstockwltivarswascarpiledbyPagraczQB). Rootstccks tolerant of flooding included Riparia Gloire, Richter 110 , Paulson 1103, so-4, Kober see, Malegue 44-53, canard 3309, and Millardet lOl-l4.Rupestrisdqut, Richter 99,Millardet4lB,andm333were reportedtobesensitivetoflcoding. Itisamarentthatthe subjective evaluation of flooding tolerance under field conditions isprcblanaticmenaiecmsidersthecmtrastingratinggiven Rupestrisdulot. 'misrcotstockisratedasbeingtolerantof flocdingbyVialaanriRavaz(35)andintoleranrtofflocdingby Pongracz(23). Limited data are available on morphological and physiological responsesofgrapevimstoflccdirg. Shootgrowthofsixyitig ML. wltivarsmsredncedbyflccding (36). mrthemore, floodirgofvinesexpoeedtosalinityhmasedflieuptaksofmani fl,inr:reasedtheammtofNaamCltranspcrtedtoshccts,anxi resultedindmgetoleaveswithinfivedaysofflccding. FremnsubjectedeevenMML.mltivarsto40days offloading (5). Azeduotiminehcotgrowthwaswtdaeervedm'rtil vineshadbeenfloodedfcrlZdays. Allshootgrwthceasedafter 34dayscfflccding. 'meratecfsl'nootextensimmsmoresensitive toflocdingthantheplastodnrmindex. Floodingreducedvinedry weightby30t069%. 'niepatterncfdrymtterallccatimbemeen leaves, shoots, andrcotsduring flooding differedamcngonltivars. Synptauofflccdingwerebasalleafsenescemeanfithedevelcpent cfadvenrtitiousrootsnearthemtersurface. 179 'merhizcspnerecfpottednelawareandmscatofAlmandria vineswassugaliedwith O, 5, 10, or20%02 (7). Amdazesultedin decreasedgmthofrootsandshcots,photcsyntncsis,androot respiration. In additim, concentrations of N, P, and K in leaves aniN,P,K,and)ginxootswerereducedbylowsoilozcorrtent. Rootsenqcsedtoanmdadisplayedswellirgofthemottip,a brumishcoloratimoftheroots,anincreaseinthemmbercfroots ' Y withbrokenlenrticels,andadecreasein.themmberoflateral i7“ 'Ihe problu- associated with flooding of grapevines on pcorly- :1 draincdsoflscanbeamnnrtedbysoflinpmvenerrtorplant inprwemenrt (28). Installation ofdrainagetiles, deepcultivation ofsoiltoshattercalpactedzaies,andanlmreofvincsmraised bedscanbeusedtcimprwescilcmditiac. 'Iheusefulnesscf thesepracticesisoftenlimitedbecausetheyarediffiwlttc inplauennt and expensive. Furthermore, the effectiveness of soil inprovanenrtnetlcdsisredlcedmmsoilheterogeneityeadsts. Plantinprovemenrtcanalsobeusedtoreducetheinpactof flocdinginpcorly-draincdvimyandsoils(28). antivarscanbe selectedwhidiaretolerantofflcodingorflccdingtolerancecanbe increasedbygraftingsusceptiblewltivarsmmoretoleranrt rcotstccks. Graftinghasbeenusedtosuccessf'ullyincreasethe flooding tolerance of fruit trees (2,3,12,13,15). 'mepcssiblecmtributimscfgrapevinemotstcckstoscim performance during flooding have not been mined. Identification: ofmotstccksvhidncouldbeusedvheresoildraihageisinadequate would be beneficial. Reduction of flooding injury in poorly-drained areasofvincyardswmldiuproveproductivityandincreasegruver 180 profitability. Also, it is likely that use of flooding tolerant rootstocks waild provide sate benefit even on well-drained soils following eimssive rainfall or irrigation. 'Ihus, thepurpcsesofthisstudyaretol) evaluatethe flooding tolerance of selected grapevine cultivars under controlled conditimsandZ) determineiftheflccdingtolerancecfa susceptiblescimailtivarcanbeinfluercedbygrafting. W Aseriesofexperinentswasccnmctedduringathreeyear period. AllexperinentswerelocatedinthePlantScience Greenmouses, Michigan State University, Eastlansing, MI. Ecperimenthasccnxiuctedinlhy—JImel986,E>q>erimentIIwas cacuctedinJUIy-August1987, anchcperimentIIIwascm'ductedin March-AprillQBB. W S‘t.George (17%me Wmmnipestns dulot), Goidero33OQ mmmdm. xmm Schools), RipariaGloire aluminium KobeISBB (311215 mexmionmmmm Seyval (mm interspecifichybrid), andcynthiana mmmm.) were cbtainedasme-yearcldrootingsfranacannercialmrsery. 'Ihese antivarswereeelectedbasedmdifferencesinflcodingtclerance asrepcrhedbyhgracz (23). St. Georgehasalowtoleranceof flocdingwhileoaxierc3309,Ripariacloire, anchberSBBhavea hightolerarce of flooding. 'meflcoding‘ tolerance atom: and (.ynthiana was mm. However, previous field observations stggestedthatSeyvalisintoler-antof flooding (6). 181 ilircsmreplantedinllJLplasticpotsusingasterile mediumofsoiksandyloamsoil,3o%spagmnnpeat,and20%sanfl(by volume)inlateuay. Pottedvinesmrencvedintoagreenhmse vaieretheygrwforvdaysbeforetrea‘onentswereinposed. Daring this period, vines were fertilized once with soluble 20-20-20 fertilizer. Each vine received 480 ng of N, P, and K, respectively. Waterwasappliedbasedmtensianeterreadingsfranrepresentative pots. 'I'wostcotswereallowedtodeveloppervine. Bamboostakes wereplaoedinpotsanridevelopingshootstrainedtpdardalonga stake. Flounrclustersandlateralstcotswereremovedasthey deve10ped. Vincswereblcckedacoordingtomiformitycfgrowthmlsm and treatments were randmly assigned within blocks. Healthy leaves ofsimilarageandsizewereselectedmeadnshootandtagged. Gas exchangemeasurmntsweremdemthesancleavesduringthecmrse cftheexperiment. Initialmeasurementsweretalmmmamc. Measurements includedtherateofshootelagatim (RSE),:retfictosyntl'nesis (Pn)' stonatal «raistance (gs), tramiration (Tr), anri water use efficiency (MIR). GasexchangedatawerecolleotedusinganADc ran-2 portable pctosynthesis systan with the broadleaf Parkinsm 1eafChanber(AnalyticalDevelomnentCo.,I-Ioddesdon, United Kingdan). Allgaseldmgemeasmntswereconnmctedbetweenosoo andlZOOhmflerconditionscflightsamration. Gaseoudxange paramterswerecalmlatedasdescribedbyucmandr‘lcre (16). ‘ReatedvincswereflcodedathOOh. 'Ihemethodofflcoding wasasfollows:18.9Lplasticpotswerelincdwithtwopolyethylene bags(meinsidetheother):then,vincsinll.3Lpotswereplaced 182 ' inside tie polyethylene bags which were immediately filled with water. 'Ihewater levelwasmonitoreddailyandmaintained approadnatelySomabovetlesoil surface. Controlvineswerealso placed inside 18.9 Lplasticpots anciexteriorpotswerecovered with aluminum foil to maintain similar soil temperatures ancng treatnents. Vineresponsestc floodingwereevaluatedovera 13 dayperiod. Shootelcxgationneasurenentsweremadeat 1-2 day intervalsand subsequentgasenriiangeneasurenentswereca'mctedatz-4 day intervals. Meanmxinm/minimmairtenperatures duringthepericd of flooding were 34/18°C. A randanized cmplete block experimental design was used. Data were analyzed by analysis of variance (30). W Seyvalgrapevineswereobtainedasone—year—oldrcotingsfroma cannercialmrsery. Vineswereplantedinmidaulyancgrownfcrw dayswithouttreaunent. Planting, training,andmainntenarcecf vineswereaccmplistedasdescribedinnqml. Vinesvereblodcedacoordingtomifomityofgrowthmu Agustandtreatmentsvererandanly assigned within blocks. Treated vineswerefloodedat1830h. floodingwasimposedinthesane nennerasinmp.I. VineswerefloodedforlSdaysanxisoilmtygen difosim rates (OER) were measured periodically using an oxygen diffusion rate meter equipped with an Ag'VAgCl reference electrode. Five 25-gmge platinum electrodes were inserted approndnnately 10 cm intotl'esoilmidwaybetweentterimandtnecenterofeadnpot. Oxygendiffusimratemunmeasuremmtsweretakenafterathree 183 minute equilibration period using an applied voltage of 0.65 V (14,31) . Air tenperatures were not ncnitored. A randanized canplete block experimental designn was used. Data were analyzed by analysis of variance (30). my; Rootstodctreatmentsusedinthisexperimentvereown-rooted SeyvalandSeyvalgraf‘tedtoSeyval,Couderc3309 GLiLiseimrie MidIX-xmgrmesdaeele). artist-George Mamie Scheele). 'nnesercotstodcsvereselectedbasedontheirrangecf floodingtolerarceasdeterminedinExp. I. Vinesvereobtainedfrmacamnercialmnrseryandplantedin midMaroh. Pottedvinesverencvedinntoagreenl'msemerethey grewfcr 28daysbefcre treatmentsvereinposed. Planting, training, arrimaintenanceofvinesvereacoanplishedasdescribedin Exp. I. Vineswereblcckedaccordingtonmiformityofgrowthanls Aprilandtreatnentsvereranflmly assigned within blocks. Healthy lamescfsimilarageancsizevereselectedaneadnshootand tagged. Gasexdnangenneasuranentswerennadeanthesameleaves duringtl'ecourseoftl'eexperinent. Collectimofdatabegananmlnpril.ueasuranentsincluded RSE,Pn,gsanxi'1‘r. Gasendnangemeasurementsuereconductedusing anADcmA-Zportablennotcsynthesissystemasdescribedinmp.1. FloodingmsinposedatnOOhafterinitialmeasurementshad beentaken. 'nemamnerinmidnflcodingwasinposedhasbeen illustratedinmp.1. Vinesvereflcodedforeigntdays.Datawere collectedattwodayinntervalsmnringtteperiodcfflooding. Mean 184 mandnnm/minnimm air tanperatures during this time were 25/18°C. A randmized couplets block experimental design was used. Data were analyzed by analysis of variance (30) . m mom-in Evaluation of control vines on 21 June 1986 indicated that SeyvalanrlcynthianahadlowerRSE, Pn' gs, andTrthantheother cultivars (Table 1) . WUE was nct significantly affected by cultivar. St. George, Curlers 3309, and Riparia Gloire vines displayed considerable tolerance of flooding (Tables 2,3,4). RSE of St. George vines was significantly reduced after five days of flooding, butgrowthcontimedgnringtnen day flcodingpericd (Table 2). Pn, gs, Tr, and WUE were not significantly lowered by flooding. Conderc 3309 vines did not exhibit a significant reduction in RSE, Pn' gs, orTruntil 13 days of flooding (Table 3). WUEwasnot affectedbyflooding. 'IherespaeeofRiparia Gloirevinnesto floodingwasintermediatebetweentlerespgeesofSt. Georgeannd Gandero 3309 (Table 4). Riparia Gloire vines demonstrated a significant reaction in RSE after five days of flooding. However, srcotsgnfloodedvinescgntinnnedtoelcngateduringtneremainning eight days of flooding. Pn, gs, annd Tn: were not significantly reduceduntilvineshadbeenflcodedforndays. WUEwasnot affected by flooding. cher5BB, Seyval, andQnthianavineswerelesstolerantof flooding than St. George, Oouderc 3309, and Riparia Gloire vines (Tables 5,6,7). RSE, In 93' and Tr of cher SBB vines were 185 .mo.o u a .umoa omoom sameness n.sooeoo an coauouocom one: N .moH an oowHoHuHoa some o>oc mooae> a .nmca> omoooHulco: song one mono x w.” om.m . noe.o 0H.» oe.o noeeoudmo m.~ no.e oe~.o om.~H om.HH Ho>amm e.~ mo.o osm.o oe~.o~ oo~.on mom wooom o.~ an.» nom.o no.ma no.oe oueoao meander o.~ e~.o oem.o goo.H~ no.o~ moan owooooo o.~ um.oH neo.o ue.m~ noe.o~ oowooo .um dew” “wnmme “new.. m.mmmmm.. MemM.. .DW. .m-uu -HMMW.M.W he-.um.u.w n..n.n.u haemaowmmm a an a a Houwwwmm « uuoz u c vooowuuo owem memo Houe3 .mmma moon Hm .xmno>wuaoo ocfi>ooouu omuomaom mo auoHOwoanm can euaouo .a manna .>Hm>fluommmou .Ho.o ose no.0 n o ue ooceowuwcmwm HeOfiumfiueum oueofiosa «« one « u .noa >2 oofiamfiuaoa soon m>ec mooHe> a .GflXflH ¢H03 MUCflfimhfimflma Hflflflflflfl “09““ mme 0C5” mH EO UflflOOHH 0H03 m03fi> X 186 m G .m.G .m.fi .mofl ti m.H ¢.m o¢.o >.nH N.oa oooooam o.~ o.~a me.o n.a~ o.m¢ Houusoo ma .m.s .m.o .m.o .u.c ae o.~ ¢.oa om.o m.mH o.on ooooodh o.~ b.NH No.0 n.5m o.oo Houucoo m .m.: .m.s .m.: .m.: we , m.~ 0.x Hm.o o.o~ g.on oooOOHm m.n b.o em.o m.¢~ o.~m Houucoo m .moc OmO: OmO: .mOc Om.“ m.m o.~a no.0 m.n~ o.bm oooooah o.~ m.oa no.0 H.m~ v.m~ Houvcoo N Ono: .mOg in.“ Imog In.“ o.n H.o ov.o «.ma o.en oooooam ~.~ n.h me.o m.¢a ~.vn aonucoo o Ammo moaoa Aanooo IEUOmgoav A loom 20v A In: Isomoooav A naeo flay vooauemua amoaoooHu \ oo moaoav escaumuanmseua mwoeuooosoo mane ushnouonm omaueoooao «0 when moomflofiuue Heuesoum uoz noose no ouem homo Hopes .mmo«>mmeum monomo .um no moodoamhcm one cusoum on» so usaoooHu no poouum .N wanes .>Ho>auomcmmu .Ho.o one mo.o nee ue moceowuaomwo Heowumwueun oueanoa «a one e u .moa an omaaowuaoa soon m>ec mmoae> h .smxeu who; muomsmuomems Heaven“ Mouue emma moon ma :0 oooooau whoa nooa> x 187 m s at «e we no ~.~ m.v ma.o o.m w.eH omoooam m.a e.aa mm.o H.oa ~.on Houusoo nH .m.: .m.: .m.: .o.c .m.s v.~ m.o m~.o ~.eH ¢.en oooooam h.N ¢.m «v.0 o.o~ o.m¢ HOHUCOU m .m.: Om.“ OuOC .mOG Ou0: h.~ H.w o¢.o H.ma o.o~ ooooon m.m o.m mm.o n.o~ o.m¢ Houucou m OmOc OmOc on.“ On.“ On.“ n.~ m.HH mo.o n.NN g.Hn oooooam o.m n.m em.o o.H~ m.o~ Houusco a .m.: .m.c .m.c .o.s .o.e v.~ n.m mo.o n.oH N.n¢ oooooam m.~ m.e Hm.o o.oa o.o¢ Houuooo o Ammm eoaoa Aalooo Isoonmav A noon one A Inn Isomoooav A Imeo any usoaueoua xcowooodm \ oo mmaoav essay uwmuoeua owoeuoooooo Mano ushmouoco smaueocoao no when ausm«0auuo Heueaoum an: noose no ovum ewes Moves .mmsw>omeum moan oumoooo no emoHOanhcm one cuooum on» so mowoooHu no uoouuu .n canes .>Hm>auomcmmu .H0.0 one no.0 no ue mooeowufisoam Heowumaueuu oueOwoow to one a u .noa en onwamfiuaoa soon o>ec muoae> a .Cflunflu. 0H0? mucmawuamnmfi HflfiHHCH HOUR“ DQGH 05h. QH GO fiGCOOHH $.H03 UOCH> no 188 o o «c «a «o « m.H n.m nu.o g.h o.e~ oooolo m.a >.HH No.0 >.mH o.om Houucoo ma Omoc Omoc OmOc Om.“ * H.~ ~.o m~.0 m.nH 0.m¢ oooOOHm >.~ H.AH mm.0 m.n~ o.vg Houucou m on.“ .m.: .mOG 0".“ N‘ m.~ N.m Hm.0 0.¢H o.oe oooooam o.n 0.5 no.0 n.H~ 0.No donunou m .m.c .n.s .u.: .u.o .n.s n.N b.0H mm.0 m.0~ w.me omoooah m.~ N.m 0m.o m.gH c.0v Houucou N Ono: On.“ In.“ 0“.“ .u.: m.~ H.o 0v.o n.nH v.¢c oooooah m.N m.o «v.0 m.nH N.¢o donucou 0 Ammm nodes Aanoem nooo~mcav A loan one A In: nsomoomav A theo any usoaueoue xmowoooHu \ oo mmaoav eeoaumufimmoeua ewseuoooooo mane camouocm swauemsoao no when >0o0«0auue Heueaovm uoz noose no ouem ammo Hopes .mm:«>eoeum ouaoHo eaueoam no eooHoanhsn one ouaoum on» so mowoooau no voouum .e canes .>Ho>wuooomou .H0.0 one no.0 axe ue ooeeofiuficoam Hecaumwueuo oueoHoou to one « u .noa en omfiaoauaoa coon o>en mooae> » .Gflunflu. 0H0? QUEOEpHflmflmE HGHUfl—hfi “00““ OQGH 05” GH GO ”GOOOHH 0H0? QGCH> X 189 .m.s «e «a re we m.H 0.n HH.0 o.m 0.n oooooam b.H n.0H no.0 H.oa ~.ov Houucoo ma « «a we to «a 0.H e.~ o0.0 H.n N.» oooooah v.~ m.0H he.o b.0m v.mm Houucou m .o.: «a «e so no n.~ o.n ma.0 e.> ~.o~ oooooam b.m 0.m om.0 n.0m N.nm Houuoou m .m0: .m0: OMOG Gui: Duo: H.~ e.oe ~m.o H.oa ~.on eoeooam s.~ e.o em.o ~.o~ ~.en Houuooo m .m0: .m0: Ono: Cu.“ in.“ o.n ¢.h no.0 ¢.mH ¢.me ooooon o.n s.e ne.o o.oH o.~e Houuooo o Ammo modes Aanoom nonemmosv A loom one A In: noomoooav A Iheo as. unoaueoua xmoaoooau \ oo meaoav meow» nanoseua emceuooocoo ma omuseuouocc omwueoooao no oxen hoooaonmm Heueaoum uoz noose no ouem ewes neuez .moe«>omeuo mom nonox no hoodedoecn one cuaouo can so unfloooHu no uoouum .m canes .>Ho>auooamou .H0.0 one no.0 nee ue ooseowmwcofio anHuowueuu oueoaocd no one o u .noa en oeaaoauaos seen o>ec meoae> » .omxeu memo uuooamuomeoa Heauasa Houue coma «sob ma :0 oooooHu one: mosq> x 190 m C t% R! to to. m.0 m.0 no.0 H.H o.a ooooon o.a n.0H 0m.0 0.oH «.ma Houuooo ma « we or to es H.H N.N m0.0 n.n ~.n ooooodh n.m n.o mn.0 m.>a 0.0a Houusoo m .m.o «a .3. «e at 0.~ ¢.N ~H.0 n.m 0.n oooooam m.~ o.o mn.0 o.oa o.na Houuooo m Om.“ Duo: On.“ On.“ .mOC ~.~ 0.n nH.0 e.o 0.o ooooon m.~ e.e e~.o m.~H e.HH Houueoo m .o.: .m.: .m.: .u.: .m.: n.~ m.~ mH.0 o.m o.oH ooooon o.~ ¢.n oH.0 >.h e.na Houucoo 0 Ame: modes Aanoem Isoo~moav A some one no Iaomoooav A theo say noeaueeua xosaoooHu \ ou neaoav esofiumuao ewceuoooooo me uohmouooo cmaueosoHo «0 when aooefioauuo Heueaoum no: peace we ouem ammo Moves .moca>eceuo He>>om no meadowmhco one ovsoum on» so ocaoooau no uoenuu .o canes .>Hm>auommmmu .Ho.o one mo.o any ue eoneOfiuanoam Hecaumaueum eueoaona «* one « u .noa ha omfiamauann nmmn o>en mmnae> » .nmxeu mums munmnmunmema aefiuuna umuue mama mnnh ma no oeoooau mu03 mena> x « «t «e «a a 5.0 m.o mo.o ¢.o «.H emeooam o.~ n.m H~.o o.m m.oH Houunou ma * «« t «e « u.o ~.H mo.o e.a e.H emeoon «.N ¢.m -.o H.HH o.ma Houunoo m g t g «« nee o.a e.a mo.o >.H o.a eoeoon m.~ e.¢ m~.o ~.m e.oa Houunoo m .m.G .m.C .m.G .m.G .mofi o.H m.m nH.o m.n ~.o emeooam «.m m.n ea.o a.» c.m Houunoo m Om.“ .moc Cm.“ Om.“ .mOC m.a o.m >~.o ~.m o.eH eoeooam m.m «.e m~.o ~.m o.oa Houunou o Ammm mmaon Aanomm unnammmnv A loan soy A nun Inomooonv A naeo any unmfiueeua xmnaoooau \ ou mmHonv anoaumuammneua mmneuononoo mane unhmouonm nm«uemno~o no when wonm«0fiumo Heuenoum uez uoonm no euem hem: umuez .mwna>mmeuv enefinunho no auoHOamhnm one nu3oum en» no mnfioooau no uoeuum .5 wanes 192 significantly reduced follwing flooding for five days (Table 5). WUE was not cmsistemzly affected by flooding. Flooding had a fairly rapid impact on the growth and physiology of Seyval vines (Table 6). Although not statistically significant, flooded vines displayed a reduction in RSE, Pm and 95 of ammodmately 50% after two days of flooding. Five days of flooding produced statistically significant reductims in all parmneters exceptWUE. Mgrwthofshoctsmfloodedvimswasnegligibleby the end of the experiment. Cynthianavineseamibitedasignificantdecreaseinall parameters when the flooding duration reached five days (Table 7). SImotelcngatimardgasexdmngewerealmstm—adstentafter vines were flooded for 13 days. Synptmsobservedmfloodedgrapevinesweredesiccatimofthe shootapex, flaggingofleaves, necroticaneasmleaves, senescence ofbasalleavesardregeneratimofrootsnearthewateran'face. RootmgenezatimwasobsenredinallcaltivarsexceptCynthiana. W moodirgproducedarapid reduction in soil OER (Figure 1). Within three hams, om fell below 20 g 02 x 10’8an‘2min'1 in flooded soil. Soil OER gradually declined during 15 days of flooding. W FloodingtolerameofSeyvalmsircreasedbygraftingmto Calderc3309 (Table 8). 'meeffectwaslimitedtoRSEandPnand itsmgnimdewassmll. AsignificantreductiminRSEandinas mtcbservedforthisgmftcmbinatimmrtilvineshadbeenflooded 193 Figure 1. Effect of floodingmmtygmdifmsim rate ofpctted Seyvalgrapevinesmeamredatmandepth. 194 02.0004...— n_0 meOI OWN onww 0%.. CW? DwQOOJuOIIo 405.2001 00 _ 0? L0 l l I l 0 0 o 0 to Vt 00 N (bum: Z—wOB-le 30 5) alVH NOlsnddICl N39AXO l O (O 195 .noa ha ooaamauacfi noon o>e n monae> u .36 as no egg on m m m m monomo :3 N N e v moan ouoonoo N N N N He>>mm N N N N :30 Aauoom IaoonmnV A loom soy A nun unoNoouav A aheo any xooumuoom unoaumuwmmneua omneuononoo Mame unzmouona nmwuemnoao Heuenoum uoz uoonu no open .hcoHowmhnm one nusonm n“ nowuonoou auneOAMNnmfim e sonm ou mona> oooooHu you oonwnvou cnaoooau no wheo no sense: .e wanes 196 forfmrdays. Own-rootedSeyvalandSeyvalgraftedonSeyvaland St. George displayed significant reductions in all parameters after twodaysoffloodirg. Synptcnscbservedmfloodedvinesweresimilartothosein Exp. Ieooceptforrootregeneratim. Fewadventiticusrootswere observednearthewater surfaceaftereight days of flooding. Ems—M Anaerobic conditions occurred in soil of potted vines shortly after floodingwas imposed. omof flooded soil fell belchOgOz x lo'acm'zmin'l within three bars of flooding. Critical one values havemtbeendeterminedforgrapevines. However, decreasedfruit treeperformnce andsurvival havebeenassociatedwithOIRvalues of 15 to 30 g 02 x lo'8cm‘2-min'1 (2,3,18) . Growth and physiological responses cf grapevines to flooding weresimilartothosecbservedinctherwoodyfruitcrope (l- 4,13,18,19,28,29) . In general, flooding significantly reduced RSE, Pn, gs, and Tr. Flooding had little effect on we. Significant reductions inRSEcccirredeitl'iersimltanecuslywithorprecedinga significant reduction in Pn' g3, Tr, or ME by flooding. This indicatesthatRSEwasmresensitivetofloodingthanthegas Wparmetersmeasm'eddm'ingthesufiy. RSEwasprevicusly showntobemoresersitivetofloodirgthantheplastochmnirdex (5) . misiderable variaticm in flooding tolerance was observed between grapevine wltivars. St. George, Coudem 3309, and Riparia Gloireweremretolerant of flooding‘thaanberSBB, Seyval, and cynthiana. A clear relationship between cultivar differences in RSE 197 ardthegasexdlangeparanetersofnm-floodedvinesarrifloodirg tolerancewas not observed. For marble, cultivars with statistically higher values of RSE, Pn, gs, andTrarefctmdinboth the flooding-tolerant group of cultivars and the flooding-intolerant groupofcultivars. 'meraxfldngofrootstockfloodirgtoleranceobtainedinthis studydeviatesfrunthatofPongracz(23). St.Georgeisconsidered intolerantamxobersaetolerantofrloodingbypmgracz. Data collectedinthisexperimentareinagreanentwithvialaarxinavaz (35) caicerningthe flooding tolerance of St. George. Differerms intherankingofrootstockflcodingtolerancelihelyresultfrun themamierinwhich floodingtolerancewasevaluated. St.Georgehasbeenreportedtohavelwresistancetothesoil mummmmmmum. 'meeffectsofzi m can be caifanfled with floodirg effects during field evaluatim of rootstock flooding tolerance. Also, avoidance mednnisnssldiasadventitiwsroctirg,dsvelopnentofaererdlyma tissue, and formatim of hypertroghied lenticels arennre likelyto cautritutetoplantsurvivalmflerfieldcafiitialsthanduring shorttermflcodingmfiercmtronedcmditionsinthegremtmse. Advertitimsroctsdevelopednearthemtersurfaceaftern daysofflooding. However, adventitiousroctingdidmtamearto inmovevineperformancesincebcthtolerantandintolerant clltivarsproducedadventiticusrocts. 'medevelopnentof anaerobiosis in flooded soils is cmly not unifom. Regeneration of roots into aerobic'areas of the soil would. likely inprcve vine performnceandsurvivalmringfloodinginthefield. 'Ihe formatim of adventitious roots is an important flooding avoidance 198 mechanism in many tree species (2,9,23). 'megrapevineroctstocksusedinthisstudywerelesseffective thanapple (12),peach(15),orpear(2)roctstccksininprcvirgtl'1e performance of a susceptible scion during flooding. Flooding toleranceofgraftedvineswasnctcaweyedbyasinplemedmanism. Responsesofgraftedvinestofloodingmggestacmplex interrelatiaishipbetweenroctstockandscim. Increasedfloodingtolerancewasobtainedwhenasensitive scimwasgraftedmamretolerantroctstock. 'Ihisdataprcvides evideroeofarootstockcmtributimtoscimperfomance. Grapevineroctsareinvolvedinvinewaterrelaticns,uptakearr1 translocatim of nutrients, synthesis of plant growth substances, ardstorageofcemdiydratesarflamimacidsmé). Rootstock effectsmfloodingtolerancearelflcelymediatedttmaghmeor mreoftheseroctftmctims. Humantheeffectofroctstockmfloodirgtolerancewasnot canistentammgfloodin; tolerant rootstocks, i.e., Ccuderc3309 irxzreasedfloodimtoleramemileSt.Georgedidmt. This suggeststhatfactcrsctherthanrcotstockmeinvolvedin detemining flooding tolerance of a specific graft cmbimtim. Rives (27) hasproposedthattheperformance of agraftcanbination isthesmnofanadditivescicncmtributim,anadditiverootstcd< caitributim, and a nan-additive, interactive cartributim specific tothegraftccmbinatim. Floodingtoleranceofgraftedgrapevines may result frunrootstock, scim, andpossiblygrafttmicn factors (affinity). ' W 199 (INCLUSIONS Soil OER values rapidly declined following flooding. Levels of omwhidlhavebeenshowntobedamagingtootherwoodyspecieswere reachedwithinthreehcursof flooding. 0320f flooded soil ranained low during a 15 day floodirg period. Floodirg altered the growth and physiology of grapevine cultivarsusedinthis study. Speciesandduration of floodirgwere inportant factors in determining the severity of flooding injury. St. George, Riparia Gloire, and Oouderc 3309 displayed a greater degreeoffloodingtolerancethankoberSBB, Seyval,andcynthiana. Significant reductia'isinRSEwerecbtainedafterfive days of floodingforallclltivarsemeptomxierc3309. 'Ihiswltivarwas abletomintaingrcwthoffloodedvinesatthesamelevelas cmtrolvinesfcrmorethan9daysofflooding. Gasexdaangemeasmementsofthemcretolerantcultivarswere mtsigrdficantlyreducedmatilvineshadbeenfloodedforndays. Conversely, the flooding intolerant cultivars showed adecline in gaseaadaangeafterfivedaysoffloodirg. WUEwasmtcmsistently affectedbyflcoding. Ingeneral,RSEwasthemcstsensitiveand WUEtheleastsensitiveparametertofloodim. Synptmscbservedmfloodedvkesweredesiccatimofflae shoctapex,flaggingofleaves,necrcticareasmleaves,senesceme ofbasalleaves,andregeneratimofadventitiwsroctsmarthe watersurface. Rootregeneratimcwldbeanimportantavoidance mechanismwhengrapevinesareflcodedinthefield. 'Ihisresponse wasobservedinallclltivarselaceptCynthiana. 200 Floodingtoleranceofasusceptiblescimwasincreasedby grafting. Useofcarlerc3309asarootstockincreasedthefloodjng toleranceofSeyval. 'meeffectwaslimitedtoRSEandPnandits mgnitudewassmall. I-Iamever',theinportanceofa1-2dayincrease infloodirqtolerancestnfldrntbemflerestimted. Floodingin agricultural soils is usually transitory. 'Ihe ability to maintain shootgmwmamphotosmesismmgsrm-temrloodingwuna likelyresultingreaterprcductivity. Furtherresearchisneeded todetermineifcmderc3309caninfluencefloodingtolerancemder fieldconditicts. 3. 4. 10. 13. 201 W Anderson, P.C., P.B. Lombard, and M.N. Westwood. Effect of root anaerobiosis on the water relations of several Pyrus species. Physiol. Plant. 62:245-252 (1984) . Anderson, P.C., P.B. Lombard, and M.N. Westwood.1’.eaf conductance, growth, andsurvival ofwillcwarxidecidumsfruit treespeciestmderfloodedsoilcafliticns. J.Amer. Soc. Hort. Sci. 109:132-138 (1934). Beclcnan, T.G. Flooding tolerance of sour cherries. Dissertation, Michigan State University (1989) . Crane, J.E. and F.S. Davies. Flooding responses of My species. HortScience 24:203-210 (1989). Freshen, B.M. Grapevine developnent as influenced by water and oxygen surply. In: Proceedings of the Sixth Australian Wine Tedmical Conference. T.Iee (Ed. ). pp. 59-61. Australian Industrial Publishers, Adelaide (1987). I-Icwell, G.S. Grapeaniwinereseard‘iintheneparmentof Horticulture, Michigan State University. ‘76 pp. (1988) . Ishii, T., K. Fusao, F. Mizutani, K. Iwasaki, andK. Kadoya. Ethylene evolution in the rhizosphere of grapevines, and growth disorders as affected by ethylene. Men. Fac. Edu., Rune Univ., Series III Neural Science 2:97-111 (1982) . Jordan, TD.,R.M. Pool T.J.Zabada1, “J.P.Itnpldns. CulturalPracticesfor'CamercialVineyards. CornellOoop. Ext. Ser. Misc. Bul. 111. 69 m. (1981). Kozlcwski, T.T. Respcnses of woody plants to flooding. In: Flooding and Plant Growth. T.T. Kozlowski (Ed.). pp. 129-163. Academic Press, Orlando (1984). Kozlcwski, T.T. and S.G. Pallardy. Effect of flooding on water, carbohydrate, and mineral relatims. In: Flooding and Plant Growth. T.T. Kozlcwski (Ed.). pp. 165-193. Acadenic Press, Orlarrlo (1984). Kraft, S. arri H.E. Omklin. Soil factors affecting varietal grape respmse in Finger Iake vineyards. N.Y. Food and Life Sci. 9:12- 13 (1976). Iee, C.H., H. Motosugi, A. Sugiura, and T. Tanana. Water tolerance of apple trees as affected by different roctstock-scim caminaticns. J. Jap. Soc. Hort. Sci. 51:387-394 (1983) (Abstr.). Iee, C.H., A. Sugiura, and T. Itmana. Effect of flooding on the growth and sane physiological changes of young apple rootstocks. J. Jap. Soc. Hort. Sci. 51:270-277 (1982) (Abstr.). 14. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 202 Lem, E.R. and A.E. Erickson. 'Ihe measurment of oxygen diffusion in the soil with a platimnn microelectrode. Soil Sci. Soc. Amer. Proc. 16:160-163 (1952). Mizutani, P., M. Yamada, and T. 'Ibmana. Differential water tolerance and ethanol accumulation in Prunus species under flooded conditions. J. Jap. Soc. Hort. Sci. 51:29—34 (1982). Moon, J.W., Jr. and J.A. Flore. A BASIC cmplter program for calculation of photosynthesis, stanatal cmductame, am related in an open gas enchange systan. Hictosynthesis Res. 7:269-279 (1986) . ' Neja, R.A., W.E. Wildman, and L.P. Christensen. How to arpraise soil physical factors for irrigated vineyards. Univ. of Calif., Div. of Agric. Sci. leaflet 2946. 20pp. (1980). Olien, W.G. Effect of seasonal soil waterloggirg on vegetative growth and fruiting of apple trees. J. Amer. Soc. Hort. Sci. 112:209-214 (1987). Olien, W.G. Seasonal waterlogging influences water relatims and leaf nutrient content of bearing apple trees. J. Amer. Soc. Hort. Sci. 114:537-542 (1989). Oskanp, J. 'Ihe rooting habit of deciduous fruits on different soils. Proc. Am. Soc. Hort. Sci. 29:213-219 (1932). Partridge, N.L. and J.D. Veatch. ‘Ihe relationship between soil profile arr! root development of fruit trees. Mich. Agric. Exp. Sta. aim-t. ail. 14:200-207 (1932). Partridge, N.L. and J.D. Veatdu. Selectim of orchard sites in ncrthern Michigan. Midi. Agric. Exp. Sta. Cir. 311. 155. 27pp. (1936). Paigracz, D.P. Ibotstocks for Grapevires. 150 pp. David Philip Publisher, Cape Town (1983). W, F.N. Effects of flooding on soils. In: Flooding and Plant Growth. T.T. Kozlcwski (Ed.) pp. 9-45. Acadanic Press, Orlando (1984). Reid, D.M. and K.J. Bradford. Effects of flooding m honme relatims. In: Flooding and Plant Growth. T.T. Kozlcweki (Ed.). m. 195-219. Acadenic Press, Orlando (1984). Richards, D. 'Ihegraperoctsysten. In: Horticllturalneviews. V01. 5. Jo Jmid‘ (fit). me 127-1680 AVI mblm mo, Westport, or (1983). Rives, M. Statistical analysis of rootstock experiments as adefinitimofthetemsvigmrandaffinityin grapes. Vitis 9:280—290 (1971). 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 203 Rowe, R.N. and D.V. Beardsell. Waterlogging of fruit trees. Hort. Abstr. 43:533-548 (1973). anith, M.W. and P.L. Ager. Effects of soil flooding on leaf gas dachange of seedling pecan trees. HortScience 23:370-372 (1988) . Steel, R.G.D. and J.E. Torrie. Principles and Procedures of Statistics. A Bidnetrical Approach (2nd ed.). 633 pp. McGraw- Hill, Inc., N64 York (1980). Stolzy, L.R. and J. Ietey. Measmrdnent of oxygen diffusion rates with the platinum microelectrode: III . Oorrelatim of plant response to soil oxygen diffusion rates. Hilgardia 35:567-576 (1964). Stolzy, L.R. and R.E. Sojka. Effects of flooding on plant disease. In: Flooding and Plant Growth. T.T. Kozlcwski (Ed.). pp. 221-264. Academic Press, Orlando (1984). Veatdl, J.O. and N.L. Partridge. Respmse of fruit tree growth to thesoilcanplexreadxedbytherocts. Proc. Amer. Soc. Hort. Sci. 29:208-212 (1932). Veatdi, J.o. and N.L. Partridge. Utilizatid: of land types for fruit production. Berrien County, Michigan. Midi. Agric. Exp. Sta. Special m1. 257. 87 pp. (1934). Viala, P. and L. Ravaz. Anerican Vines. Their Adaptation, oilture, Grafting, and Propagation. (2nd ed.: english translatim) 299 pp. Freygang-Ieary Co., San Francisco (1903). West, D.W. and J.A. Taylor. Respmse of six grape diltivars to the cmbined effects of high salinity and rcctzone waterlogging. J. Amer. Soc. Hort. Sci. 109:844-851 (1984). Westwood, M.N. Tamerate-zdie Pumlogy. 428 pp. W.M. Freenan and Co., San Francisco (1978). miteside, E.P., I.F. Sdineider, and R.L. Cook. Soils of Michigan. rm Agric. Exp. Sta. 3.11. 402 42 m. (1963). Whiting, J.E., G.A. Badlanan, and M.E. Edwards. Assessment of rootstocksforwinegrapeproductim. In: Proceedingsofthe Sixth Australian Wine Irrlustry Tedmical Conference. T. Lee (Ed.). pp. 184-190. Australian Industrial Publishers, Adelaide (1987) . Winkler, A.J., J.A. Cook, W.M. mierler, and L.A. Lider. General Viticulture (2nd ed.) 710 pp. Univ. of Calif. Press, Berkeley (1974). APPENDI“ I. WOFMDMQIW‘ERRELATIQ‘IS,IEAFGAS W,ANDMOFW 204 .ham>wuooemou Hoc.o one .Ho.o .mo.o u s on ooneosuesmeo Heoeuneueum oueoeens as. one .e. .s u .oaneaae>e uon even a .moa an omeaewuass noon o>en nosae> x .ooa an ooeamfiuann noon o>en monae> 3 .Cmvnflfl 0HG3 unvfimfimhflmflflfi HMHHHGH HOUHQ mmmfl COMM: w :0 UGUOOHH 0H¢3 mmflfikw > {fit {8% too {ct ##i n.¢ mn.m m.H mo.o won oooooam m.nm b¢.NN m.h nN.o bmem Houunoo Ha are a a a use H.m sc.ss n.o nH.c can cocoons e.o~ se.es n.sa e~.o seen Houusoo e OmO: .moc .qu Ono: m.¢N mm.HN v.u nN.o III omoooam . m.e~ sm.s~ ~.s -.o sun- Houunoo o aeo any AMI IsoNooosv AH com soonmav own any new day unosueeua >mnaoooHu nmmuemnoaew Mmmnhmovond xnoHpmmwmmneua oomeuosonoo auflwmuononoo no when poonm 32 Heueaoum sowaseuohn uoom no open .mone>odeum He>>om no nusouo one .omnenoxo new weed .auw>«uononoo ceaseuo>n noon no unwoooHu no vacuum .H canes .>Hm>auommmou Hoo.o one .Ho.o .mo.o u c we moneo«MHanm aeofiumaueum mueofiona are one see .e N .noH xn ooeaeeuans noon o>en monae> a .noxeu ones munofiounueon Heavens Houue coma Hanan oN no oooooau ohms monfi> x 205 «re «re «es sec es m.a no.5 o.H mo.o m.NHI oooooam m.NN mn.nN n.o oN.o H.mI Houunoo are see «re can «a n.N oo.oa o.N oo.o A.NHI oooooah n.eN Ho.SN m.> oN.o m.nI Houunoo ¥¥¥ {it {to {it % s.o Ho.o m.n no.o. n.HHI ooooon H.¢N eN.nN o.oH nN.o n.mI Houunoo * * ¥ ¥ N‘ o.NH nN.mH e.m ma.o m.NHI oooooam N.oa no.HN H.o «N.o o.HHI Houunoo own: one“ omen one: owe: o.eN n>.vN m.oa mn.o n.¢I oooooah m.mN on.¢N H.AH mn.o N.¢I Houunoo meo say an IsoNooonv A noon soonmsv A Icon s00 Anuenv unenueoua xmnaoooHu A- A- I . nmfiuemnoae nwmon nxnouone Mnoeumueemneua oo euononoo HeuunouOA no when uoonm uez Heuesoum Moves neon Mo «Hem .non«>edeum He>>cm no npsoum one .omnenoxo men need .Hefiunmuom Hopes need no oneoooau no uomumm .N manea 206 .>Hm>fiuoommmu aoo.o one .Ho.o .mo.o use 9e moneUfimwnmfim Heoflumwueum oueoHonw «es one see .c N .moa an ooeaeeuann noon o>en mmsHe> m .noxeu ones nunonounmeon Heaven“ nouue coma Hanan oN no oooooHu mums omna> x ess «es see «es «es o.e nm.aa o.m oo.o o.eHI oooooam m.oa hm.nN o.h oN.o N.oHI Houunou o e: «e «e «a «a o.o m>.ma H.e nH.o n.¢HI oeoooam m.HN No.eN a.> oN.o o.HHI Houunoo o «e « .m.n .m.n «a H.AH ms.ns n.m ma.o s.eHI eoeooam H.HN Nn.oN e.o oH.o o.oHI Houunou e omen omen owe: one: N*** e.ma Hm.ma m.h NN.o N.wHI omooodh m.oH oh.oN o.h NN.o v.nHI Houunoo N .m.n .m.n .n.n .n.n .n.n H.mN Nm.mN o.NH Hm.o o.oI ooooon o.on nn.¢N o.oH bN.o H.mI Houunoo o Izeo adv InoNoomnv AH 0mm Isoonvnv 00o soy Anuenv unmsueoua xmnfioooau nmwueonoao nwmon nxnouone hnoflummfienneue coweuosonoo HeduneuOQ no oxen uoonm uez Heuenoum Hope: need no open .mona>edeuo monm ouoonou no neaouo one .omnenoxo men need .Hefiunouoe hove: need no mnaoooau no voouum .n canes 207 Figure 1. Effect of flooding on root hydraulic conductivity of Oouderc 3309 and Seyval grapevines. 208 025004... .10 -m>>mmOIIO 00000.: .monndllI 000m homezoo .monnd D II D XII/\Iwnpuog oIInon/(H 3,003 II. WOFSEYWLW'IOFIDODMAT DMS‘WOFDEVEIDHENI‘ 209 Table l . Effect of time of floodingw on cumulative growth and cane maturation" of Seyval grapevines . Mature Mature NodesY Sanple Nodes/ Nodes/ /Vine date Treatment Vine Vine (85) 1987 10 Sept. control 28a2 4 14.3 Flooded in July 24b 3 12.5 Flooded in Sept. 28a 4 14.3 n.s. n.s. 25 Sept. Cdrtrol 28a 13 46.4 Flooded in July 24b 12 50.0 Flooded in Sept. 29a 13 44.8 n.s. n.s. 7 Oct. Control 28a 17 60.7 Flooded in July 24b 15 62.5 Flooded in Sept. 29a 17 58.6 n.s. n.s. w Vines flooded for 1 week (ll-18 July 1987 and 10-17 September 1987) . xCanemattn'ationdetenninedvisuallyaccordingtobr'ctplningof periderm. yAr'csin transformatimwasperfonnedbeforeAOV. Means represent detransformed data. 2 Mean separation by nincan's Multiple Range Test, 0= 0.05. 210 Table 2. Effect of time of floodirgx oncoldhardiness of Seyval grapevmes. Sample__0ete Treatment 7 Oct. 1987 3 Dec. 1937 7 Jan. 1988 Itjflggy: Buds Control -11.4 -18. 6 -18.8 Flooded in.Ju1y’ -11.2 -18.6 -18.2 Flooded in.Sept. -10.6 -18.8 -l7.4 n.s. n.s. n.s. Gangs control -10.4 -16.8 -l9.2az Flooded in.JUly' -lo.2 -l7.o ~17.6b Flooded in Sept. -10.4 -l7.4 -18.6a n.s. n.s. 'X'Vines flooded for 1 week.(11-18 JUly'1987 and 10-17 September 1987). 2 Mean separaticm by Dmcan's mltipleRange Test, 0= 0.05. 211 Table 3. Effect of time of floodingx on the percentage of shootless nodes of Seyval grapevines. Shoctless nodesY Treatment (’3) control 13.3bz Flooded in Jilly 46.5a Flooded in Sept. 35.1ab X Vines flooded for 1 week (ll-18 July 1987 and 10-17 September 1987). Y Arcsin transformation was performed before ADV. Means represent detransformed data. 2 Mean separation by Durmn's Multiple Range Test, OI = 0.05. 212 Figure 1. Effect of time of flooding on net photosynthesis of Seyval grapevines. 213 oneo oEEew Testes: as noted. cases: no oozed seem me some. 2 came. 3 seen. 3 92...: 22. 5 same. as. c. 2% E _ A _ _ oneH 3% ‘ one one ‘ one Ce demo c_ 882... . few 22. s Booed. ’ - .9280 o I O F I O N [00 (LJHZJJJP 300 51“) sgseqlufisoloqd IeN 214 Figure 2. Effect of time of flooding on stonatal cormlctance of Seyval grapevines. 215 onen— 03:50 9.500: A0 oozed 9.68: so oozed _[ n p - been on seen. 2 Ben 3 an...“ c. 92 n. 32.. 5 2:... e. :2. cs 22“. I A A A A A A A one boom E oooooIe 22. E oooooE .. _o:cooo 0.0 170 I00 [dd 10.0 (hoes we) eouelonpuoo |BlBUJOlS 216 Figure 3. Effect of tine of flooding on transpiration of Seyval grapevines. ‘ 217 oneo oEEem oscoo: so noted 9.58: so oozed been. on snow 2 seen. 3 soon. 9 92. e. es... 5 can 2 2:... 3 23 I Bow 5 ooooorT 32. E oooooE. AonAcoOo I I 0 In P l ,“3 (“093%qu 03H 5w) U0!.].BJ!dSUBJ_|_ 218 Figure 4. Effect of time of flooding on the rate of shoot elongation of Seyval grapevines. 219 oseo 0.953 0:500: Ac ootonA .com on snow 2 seem 3 snow. 9 92.9 9.68: co totes F n 32.. 5 22...? as... c. 22.... caeH seen 5 882.... 22. s Booed. .8200. Foe uoglefiuola locus I0 9123 (“Rep ww)