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ABSTRACT

A NEW CHARACTERISTIC SUBGROUP

OF INFINITE GROUPS

BY

Stephen F. Markstein

In this dissertation we investigate a new characteristic

subgroup, S(G), of an arbitrary infinite group G. S(G) is

defined by

S(G)={xelehenever H is a non-finitely generated

subgroup of G so is <H,x>}.

S(G) is always a subgroup of the locally Notherian radical,

N(G). Let SN be the class of all groups for which S(G)=N(G).

A subgroup HcG is nearly finitely generated in G if H is not

finitely generated but every subgroup of G properly contain-

ing H is finitely generated, and I(G)=n(HcG|H is nearly

finitely generated in G}.

In Chapter II we develop the basic prOperties of S(G). We

prove, among others:

Lemma: S(G)cI(G).
 

Lemma: All the subgroups of G are S groups if and only if
 

N

N(K)cI(K) for all subgroups K of G.

Corollary: If X is a subgroup-closed class of groups, then
 

XCSN if and only if N(G)CI(G) for all GeX.
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Lemma: Normal subgroups of 5 groups are SN groups.

IV

In Chapter III we develop further prOperties of 5(6) and the

nearly finitely generated subgroups of G, and we prove our

main results.

Theorem: The class of extensions of Abelian groups by

polycyclic groups is contained in SN'

Definition: A class X satisfies (*) if whenever G is an ex-
 

tension of the X group K by the nilpotent group G/K, then

N(K)cH for all the nearly finitely generated subgroups H of

G.

Theorem: If X is a subgroup-closed class of groups, then

the class of extensions of X groups by nilpotent groups is

contained in S if and only if X satisfies (*).
N

Theorem: Finite extensions of SN groups aretavgroups.

In Chapter IV we construct groups with remarkable pr0perties.

We show how to construct groups G for which S(G)#N(G), and

one of these examples is of a group that is an extension of

a nilpotent group of class 2 by an Abelian group. We also

construct groups having non-normal nearly finitely generated

subgroups, and we show that a nearly finitely generated

subgroup H of G need not intersect a normal subgroup K of

finite index in G in a nearly finitely generated subgroup of

K.



A NEW CHARACTERISTIC SUBGROUP

OF INFINITE GROUPS

BY

Stephen F. Markstein

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1973



......

r

ACKNOWLEDGMENTS

I thank Mr. Kenneth K. Hickin for many fruitful discussions;

the proof of Lemma 3.1 is due to him and it was he who first

noticed PrOposition 2.4. I am grateful to Prof. James E.

Roseblade, who pointed out that enough information was at

hand to prove Theorem 3.10. I am thankful to Prof. Richard

IE. Phillips for reading preliminary versions of this

dissertation and for the useful suggestions he offered.

I am extremely grateful to Prof. Lee. M. Sonneborn, my

advisor, for his moral and mathematical support in the

preparation of this dissertation, as well as throughout my

graduate training, and most particularly for his help in

constructing the examples of Chapter IV.

ii



INTRODUCTION

CHAPTER I.

CHAPTER II.

CHAPTER III.

CHAPTER IV.

BIBLIOGRAPHY

TABLE OF CONTENTS

BACKGROUND 0 O O O O O O O O O O O O O O O O O O O O O O O O O O O 0

PRELIMINARY RESULTS 0 O O O O O O O O O O O O O O O O O O O

THEOREMS O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O I

EXAMPLESOOOOOOOOOOOOOOOOOO0.0.0.0000...

iii

17

31

48



INTRODUCTION

In this paper we introduce a new canonical subgroup, the

S-subgroup, of an arbitrary group G. The inspiration for

our study stems from R. Baer's paper [2], "Group theoretical

pr0perties and functions," and J.B. Riles' paperllfl], "The

near Frattini subgroups of infinite groups."

The primary objective of Baer's paper is the investigation

of possible relationships between group theoretical prOper-

ties and functions. Suppose that X is any isomorphism-

closed class of groups that contains the trivial group, with

the convention that G is an X-group if and only if GeX.

Baer defines the X-hypercenter of an arbitrary group G by

hX(G)=lXeGIHcG, HeX implies <H,x>cKeX for some KcG I.

It is easy to show that hX(G)<>G for all such classes X and

groups G.

Riles starts with a relative pr0perty and defines the set of

non-near generators, U(G), of a group G. U(G) is given by

U(G)=[ xeGI IG:<S> |=°° implies IG:<S,x> I=eo } ,

and it is easy to see that U(G)0 G.

If we alter Baer's definition to

1



2

HX(G)=( xeGlHCG, HeX implies <H,x>exl ,

then without additional assumptions we cannot conclude that

HX(G) is a subgroup of G. However if, for example, we re-

strict ourselves to classes X which are subgroup—closed,

then this definition is equivalent to Baer's.

But it is by no means necessary that X be subgroup-closed

for HX(G) to be a subgroup. Indeed, the S subgroup of G,

the subgroup that we shall study in this dissertation, is ob-

tained by using for X the class of all non-finitely genera-

ted groups, which is obviously not subgroup-closed. Thus,

S(G)=l:xeG|whenever H is a non-finitely generated

subgroup of G so is <H,x>} .

Our primary efforts are aimed at studying the relationship

between S(G) and the locally Notherian radical, ”(G), of G.

Chapter I deals with notation, definitions and the statement

of results from the basic group theory that will be used,

for the most part, without proof or comment. In Chapter II

we prove the basic facts about S(G) and relate S(G) to some

of the well known and intensively studied subgroups of a

group G.

Chapter III contains our main results. We prove that all

groups G which are polycyclic extensions of Abelian groups

have the property that S(G)=N(G), that all finite extensions
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of groups G for which S(G)=N(G) are again such groups, and

we characterize the subgroup-closed classes X with the

prOperty that the extensions, G, of X groups by nilpotent

groups are such that S(G)=N(G). We also give examples of

such classes X.

In Chapter IV we present examples and constructions dealing

with S(G) and other related subgroups of a group G. In

particular, two of our examples are groups for which

S(G)#N(G).



CHAPTER I

BACKGROUND

In this chapter we list our notation and define the usual

group theory terms as we shall use them. InterSpersed with

the definitions are standard theorems and facts about groups,

whose proofs may be found in [6] or [111. We delay the dis-

cussion of Split extensions, wreath products and relatively

free groups until Chapter IV, where they are needed.

For the remainder of this chapter let G be a group, H, K and

LO, peR, subgroups of G, x and y elements of G, S and T non-

empty subsets of G.

e, 1 or 0 the identity of G

E the identity subgroup of G

<S> the subgroup generated by S

xy y-lxy, the conjugate of x by y

Sx [ sxlseS} , the conjugate of S by x

H h .
S <S |heH>, the normal closure of S in <S,H>

[y,x] y"1x-1yx, the commutator of y and x

[S,T] <[s,t]lseS, teT>

G' [G,G], the commutator subgroup of G

4



Z(G) {zeGlzx=xz for all xeG }, the center of G

91' [stlseS, teT}

Hx [hxlheH }, the right coset of H in G containing x

G/H, g the set of right cosets of H in G

H

|G:H| the cardinality of G/H, the index of H in G

IGI the cardinality of G

2, 7 the group of integers

Zp' 7? the group of integers modulo p

H the empty set

KCG K is a subgroup of G

K<G K is a prOper subgroup of G

K:H K is isomorphic to H

S normalizes K if Kx=K for each xes; K is a normal subgroup
 

 

of G, written K<IG, if G normalizes K; K is characteristic
 

in G, written K<>G, if K=Ka for every automorphism a of G.

Aut(G) is the group of automorphisms of G, and Lat(H,G) is

the lattice of subgroups of G containing H.

If K<IG, then G/K is a group with multiplication given by

(Kx)(Ky)=K(xy). G/K is a factor group, and every right

coset of K in G is also a left coset of K in G. HnK4 H and

H :' HK.

HnK K

If |G:H|<¢ , then H and G are either both finitely generated

or both non-finitely generated.



If C: [LplpeRxH } and if the union of every chain in C is

a member of C, then Zorn's Lemma says that C has maximal
 

members.

A class X of groups is an isomorphism-closed collection of

groups containing E. If X and Y are classes of groups, then

X0! is the class of all extensions of X groups by Y groups;
 

that is, GeXoY if there exists H<:G such that HeX and G/HeY.

.EIKL is the class of all subgroups of members of X. ELXL is

the class of all groups whose finitely generated subgroups

are X groups. A is the class of Abelian groups; flax is the

class of all groups satisfying the maximal condition on sub-

groups, while EEEZB is the class of all groups satisfying

the maximal condition on normal subgroups.

The derived series of G is defined by (i) G(°)=G, and
 

(ii) G(n+l)=[G(n),G(n)], for n20. G is solvable if G‘n)=E

for some integer n. G is polycyclic if there is a series
 

E4 K14 ...4Kn4G with Ki+l/Ki cyclic for each i. G is poly-

cyclic if and only if GeMax and G is solvable. g is the class

of all polycyclic groups. s(P)=P.

The upper central series of G is defined by (i) Z =E, and

0

(ii) Zn+1 is that subgroup of G such that zn+l/zn = 2(G/Zn),

 

n20. ZnOG for each n. The lower central series of G is
 

defined by (i)F1(G)=G, and (ii) [n+1(G)=[G,fn(G)], n21.
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G is nilpotent if Zn=G for some integer n or equivalently,

rm(G)=E for some integer m. If G is nilpotent, then the

smallest value of n such that Zn=G or equivalently, the

smallest value of m—l such that fm(G)=E, is the gla§§_of G.

Eilp is the class of all nilpotent groups, and Nilp as well

as L(Nilp) are subgroup-closed.

G is a free group if there exists a subset S of G such that
 

every non-identity element geG can be written exactly one

n1 n

way in the form gle . . .xk k, X1! 0 e e ,Xkes, Xizxi+ll

i=1,...,k—l, ni a non-zero integer for each i. In this

 

event S is a set of free generators of G, and §_i§ free 92_
 

S. A word is a member of the free group on the set

S={...,x_l,xo,x1,...}. g 18 the class of all free groups

and s(F)=F. Every group is a homomorphic image of a free

group.

The class L(Max) is the class of locally Notherian groups,

groups whose finitely generated subgroups are Max-groups.

Ifliand K are normal locally N5therian subgroups of G, then

HK is a normal locally N5therian subgroup of G. The locally

N6therian radical 2£.§1 written EIELI is the maximum normal

locally Notherian subgroup of G (see Baer [1] for existence.)

N(G) consists of all elements xeG whose normal closure,

<x>G, is locally Natherian. For every subgroup K of G,

N(G)anN(K).
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The FC—center of G, Fl(G), is the (characteristic) subgroup

of G consisting of all elements of G with only finitely many

distinct conjugates in G. The ngseries of G is the series

defined by (i) F =E, and (ii) Fn is that subgroup of G
0 +1

 

. . _ 2 . _ . .
satisfying Fn+l/Fn - Fl(G/Fn), n O. G 15 ES nilpotent if

Fn=G for some integer n, and G is an Eg-group if F1(G)=G.



CHAPTER II

PRELIMINARY RESULTS

In the introduction we defined the object of our study, the

S-subgroup of a group G. We recall it here for convenience.

Definition 2.1: S(G): {Xelehenever H is a non-finitely gen-

erated subgroup of G, so is <H,x>.)

Lemma 2.2: S(G) is a characteristic subgroup of G.

Proof: Suppose x,yeS(G), HcG with H not finitely generated,

but <H,xy‘l> is finitely generated. Then <H,x,y> =

<<H,xy‘1>,y> is finitely generated. However, <H,x> is not

finitely generated (since xeS(G)), so that <H,x,y>=<<H,x>,y>

is not finitely generated (since yeS(G)). This contradiction

gives xy'leS(G) so that S(G) is a subgroup of G. That S(G)

is characteristic follows from the fact that automorphisms

take generating sets to generating sets.D

There is another characterization of S(G), which, although

not exploited in this paper, is interesting and included

for that reason.
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Definition 2.3: Ll(G)= [xeGlH is a finitely generated sub-

group of G implies Lat(H,<H,x>)

eMax },

L2(Gh-( xeGlH is a finitely generated sub-

group of G implies Lat(H,<H,x>)

is finite }.

‘ PrOposition 2.4: S(G)=Ll(G).
 

Proof: Suppose xeS(G), H is a finitely generated subgroup

of G but H<H1<H2<...< <H,x> for some subgroups H1,H2,... of

G. Let K=:Hi. Then K is the union of a prOperly increasing

sequence of groups and cannot be finitely generated. But

<H,x>=<K,x>, so that H is not finitely generated (since

xeS(G)), which is a contradiction. Hence xeL1(G), so

S(G)cL1(G). Conversely, suppose that xeLl(G) and K is a

subgroup of G with <K,x> finitely generated. Then

<K,x>=<k '00.,kn'x> for some k ,oee'knEK and

1 l

Lat(<kl,...,kn>,<K,x>)eMax since xeLl(G). In particu-

lar, then, all the members of this lattice must be finitely

generated. Since KeLat(<kl,...,kn>,<K,x>), K is finitely

generated so that xeS(G). Thus L1(G)cS(G) and equality

follows.D
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The proof of Proposition 2.4 is the only argument that we

know of proving that L1(G) is a subgroup of G. Clearly

L2(G) is a subset of L1(G). Whether L2(G) is a subgroup, we

have been unable to decide.

Intimately connected with the study of the S-subgroup of G

are what we term the nearly finitely generated subgroups of

G.

Definition 2.5: If H is a subgroup of G, then H is nearly
 

finitely generated iE,§ if H is not finitely generated, but
 

every subgroup of G prOperly containing H is finitely

generated.

Thus, H is nearly finitely generated in G if and only if

H is maximal in G with reSpect to being non-finitely

generated.

Lemma 2.6: If H is a non-finitely generated subgroup of G,

then H is contained in a nearly finitely generated subgroup

H of G.

N: Let H= chG|HcK, K is not finitely generated) .

Then Hxfl since HeH. If C is a chain in H and C=uC, then C

is not finitely generated since no proper union of groups is

finitely generated. Hence CeH and by Zorn's Lemma H has

maximal members. It is clear that any maximal member H of H
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is nearly finitely generated in G.D

The intersection of all the nearly finitely generated sub-

groups of G yields another characteristic subgroup of G.

Definition 2.7: I(G)=n [HIH is nearly finitely generated

in G ). (I(G)=G if GeMax.)

Lemma 2.8: S(G) is a subgroup of I(G).

Pgoof: Suppose xeS(G) and H is nearly finitely generated in

G. Then H is not finitely generated and neither is <H,x>

since xeS(G). Hence er since H is maximal non-finitely

generated in G, so S(G)cH, whence S(G)cI(G) since H is an

arbitrary nearly finitely generated subgroup of G.U

Lemma 2.9: S(G) is a subgroup of N(G).

Proof: Suppose xeS(G). We show that <x>G is locally

Notherian. Since S(G)q G and xeS(G), <x>GCS(G). If

G
Kc<x1,...,xn>c<x> and K is not finitely generated, then

adjoining each xi, in turn, to K gives a non-finitely gener-

ated subgroup at each step since xieS(G) for all i, and thus

<xl,...,xn>=<K,xl,...,xn> is not finitely generated, a con-

tradiction. Hence K is finitely generated and <x>GcN(G)

so that S(G)CN(G).U
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The main positive results in our paper concern classes X

for which GeX implies S(G)=N(G). This suggests the follow-

ing definition.

Definition 2.10: SN is the class of all groups for which

S(G)=N(G).

The following lemma is of value in proving that all sub-

groups of a group G are SN groups.

Lemma 2.11: All subgroups of a group G are SN groups if and

only if for each subgroup K of G, N(K)cI(K).

Proof:+: If all subgroups of G are SN groups, then Lemma

2.8 yields N(K)cI(K) for all subgroups K of G.

+: Suppose that N(K)cI(K) for all subgroups K of G, but

that for some subgroup K and some X€N(K), x¢S(K). Then

there exists a non-finitely generated subgroup H of K such

that <H,x> is finitely generated. By Lemma2.6 there exists

a nearly finitely generated subgroup H of <H,x> that con-

tains H. Then <H,x>=<H,x> and XeN(<H,x>) since X€N(K). By

hypothesis xaH since H is nearly finitely generated in

<H,x>. But this says that <H,x> is not finitely generated,

a contradiction.D

As an immediate corollary of this lemma, we find the groups

that are their own S-subgroups.
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Corollary 2.12: S(G)=G if and only if N(G)=G.

Proof: If S(G)=G, then N(G)=G since S(G)cN(G) by Lemma 2.9.

Conversely, if N(G)=G, then I(K)=N(K)=K for all subgroups K

of G so that N(G)=S(G) by Lemma 2.11.0

Another immediate corollary gives a criterion for proving

that a subgroup-closed class is contained in SN'

Corollary 2.13: If X is a subgroup-closed class, then X is

contained in SN if and only if N(G)cI(G) for all GeX.

Of course, in applying Corollary 2.13, we need only worry

about the finitely generated X groups since any non-finitely

generated group trivially satisfies N(G)cI(G)=G. We may

apply this corollary to the class L(X) in the event that X

is contained in SN’

 

Corollary 2.14: If X is a subgroup-closed class of SN groups,

then L(X) is a class of SN groups.

Pgoof: L(X) is subgroup-closed since X is, so, by Corollary

2.13, it suffices to show that N(G)cH whenever H is a nearly

finitely generated subgroup of the L(X) group G. Since we

need concern ourselves only with the finitely generated L(X)

groups, which are X groups, the result is immediate because,

in this event, N(G)=S(G)cH, by hypothesis and Lemma 2.8.0
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Definition 2.15: If X is a class of groups, then X satif-
 

fies the local theorem provided that we may conclude that
 

a group G is an X group whenever all the finitely generated

subgroups of G are X groups.

We observe that a class X satisfies the local theorem if and

only if all the subgroups of a group G are X groups whenever

all the finitely generated subgroups of G are X groups.

Another corollary to Lemma 2.11 is thus:

Corollary 2.16: SN satisfies the local theorem.
 

Many of the classes of groups that are commonly studied are

contained in SN. We have already cited the class of locally

Notherian groups. The class of all free groups is also con-

tained in SN since N(F)=S(F)=E if F is free on more than 1

generator, and N(F)=S(F)=F if F is free on 1 generator.

Hence, SN is the class of all groups in the event that homo-

morphic images of SN groups are again SN groups, since each

group is a homomorphic image of a free group. However, in

Chapter IV, we construct groups for which S(G) is a prOper

subgroup of N(G), so the class S is not quotient-closed.
N

It also follows that SN is not subgroup-closed since any

group can be embedded in a simple group (see [11], p. 316)

and each simple group is an SN group by Corollary 2.12. SN

groups are, however, closed under the taking of normal

subgroups.
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Lemma 2.17: If G65” and K4 G, then KeSN.

Proof: N(K)=KnN(G)=KnS(G)cS(K) so S(K)=N(K) by Lemma 2.9.0
 

Duguid and Mc Lain [4] have proved that all FC-nilpotent

groups are locally Notherian, (hence belong to SN°) Thus,

for an FC-nilpotent group G, F1(G)cS(G). This is true

generally.

Proposition 2.18: For any group G, F1(G)CS(G).
 

Proof: Suppose xaFl(G), H is a non-finitely generated sub-

group of G, but <H,x> is finitely generated. Then

 

<H,x> H<x>H H .

H = —————fi—- :.______ is finitely generated so

<x> <x> <X>HnH

that <x>HnH is not finitely generated since H is not

finitely generated. But <x>H is a finitely generated FC—

nilpotent group, hence <x>HeMax so that <x>HnHeMax, a contra-

diction. Hence <H,x> is not finitely generated and xeS(G).0



CHAPTER III

THEOREMS

In this chapter we prove our main results, Theorems 3.10,

3.13 and 3.19.

Theorem 3.10 says that all polycyclic extensions of Abelian

groups are SN groups. Since s(AoP)=AoP, we need only show

that if GerP, then N(G)cH for all nearly finitely generated

subgroups of G (by Lemma 2.11.) Our first result in that

direction is Theorem 3.8, which gives sufficient conditions

for all normal Abelian subgroups to be contained in every

nearly finitely generated subgroup of G. That this is not

the case for an arbitrary group is shown in Theorem 4.1, in

the next chapter. The example constructed in Theorem 4.2

shows that even if all normal Abelian subgroups are con-

tained in all nearly finitely generated subgroups of G it is

not necessary that the locally Notherian radical be contain-

ed in each nearly finitely generated subgroup of G.

Theorem 3.13 gives sufficient conditions on a class X of

groups that the class of XoNilp groups is also contained

in SN' The theorem applies in the case X=F, the class of

free groups.

17
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Theorem 3.19 says that finite extensions of SN groups are

SN groups.

Our first lemma has as its corollary a key theorem, which

says that all normal nearly finitely generated subgroups

contain the locally Notherian radical.

Lemma 3.1: If X€N(G) and H<x> is a finitely generated

extension of H by <x>, then H is finitely generated.

Proof: Suppose the lemma is false and H is not finitely

generated. Since H<x>=<H,x> is finitely generated, Hn<x>=E,

and there exist hl,...,hneH such that <H,x>=<h1,...,hn,x>.

<>
x>Hence H=<h1<X>,h2<X>,...,hn . Let

-1

h l , U =UluU1xuulx , and inductively

2

. = x x
define Un+1 UnuUn uUn , n>1.

Then <U,><<U, > for each i since H=u<U > and H is not

1 1+]. i J.

finitely generated. Hence, there exists heUl such that the

subgroup generated by the conjugates of h by all powers of x

lies outside of <Ui> for each i. We complete the proof by

constructing a non-finitely generated subgroup

G
Ac<[h,x],x>c<x> , which contradicts the fact that xeN(G).
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(x)

Because h ¢<Ui> for all i, there exists a sequence

nl<n2<... of distinct non-negative integers such that

n I ‘ n

i

hx e<Ui> but hX l¢<Uj> for j<i. Let

xnk'l -1 xnk- 2
1h" ,..., (h ) h >, k=l,2,... .Ak=<h'1hx, (hx)

-1 xnk+1

Then Ak<Ak+l for all k since h h eA but
k+l'

—1 xnk+l
h h ¢<Uk>DAk. Let A=uAk. Then A is not finitely

k

generated since it is the union of a prOperly ascending

sequence of groups. Finally,

1 _ i+1 - i i

(hx ) lhx =(h 1h")x =[h,x1x e<[h,x],x>,

so that Akc<[h,x],x> for all k, and thus Ac<[h,x],x>,

which completes the proof.0

Theorem 3.2: If H is nearly finitely generated in G and

H4 G, then N (G)CH.

Proof: Deny the theorem and suppose xeN(G) but xtH. Then

<H,x> is finitely generated and <H,x>=H<x> since H<3G. By

Lemma 3.1, H is finitely generated, which contradicts that

H is nearly finitely generated in G.0

A particular case of the following technical lemma will be

of repeated use to us in proving Theorem 3.10.
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Lemma 3.3: If Y is a subset of the group G with H=<Y>G

and <Y>4H, and if G/H=<ng|peR>, then G=<Y,gplpeR>.

Proof: If geG, then g=hw(g ,...,gp ) for some heH, w a

0l n

word and go ,...,go 6 [gplp€R}. Thus, for each XeY

l n

g hw(gpx =x l'ooe'gpn) hW(gpl'ooe’g )

=(X ) 0n €<Y,gplpeR>

since <Y>4.H. Therefore H=<Y>GC<Y,gplpeR> and

G=<H,gplpeR>C<Y,gp|peR>.0

Corollary 3.4 is the form of Lemma 3.3 that we need., Its

proof is omitted since it is immediate from the lemma.

Corollary 3.4: If HOG, 5/1? is finitely generated, H is
 

is Abelian and not finitely generated, and if Y is a finite

subset, YcH, such that <Y>G=H, thenG is finitely generated.

Phillip Hall has proved the following theorem concerning

Abelian by polycyclic groups.

Theorem 3.5: ([5], p. 430, theorem 3) Every finitely

generated extension G of an Abelian group A by a polycyclic

group [=G/A satisfies Max-n.

In light of this theorem, our attention turns to the class

of groups satisfying Max—n, the maximal condition on normal

subgroups. Our next lemma is well known and says that in a
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group satisfying Max-n each normal subgroup is finitely

normally generated.

G
k > forLemma 3.6: If GeMax-n and K4 G, then K=<kl,..., m

some k1,...,kmeK, m a positive integer.

Proof: If the lemma is not true, then we may construct a

properly ascending sequence

G G
<k> <<k

1

,...,km> < ... < K
G

l,k2> < ... < <kl,k2

of normal subgroups of G contained in K. Since GeMax-n this

cannot happen: the chain must break off after finitely many

steps, and the lemma follows.0

Our next lemma gives us information about certain factori-

zations of finitely generated Max-n groups.

Lemma 3.7: If G=AH is a finitely generated Max-n group with

AQG, and A Abelian, then H is finitely generated.

Proof: Deny the assertion and suppose that H is not

finitely generated. Then AnH is not finitely generated

H AH G

since '——— : -— = - is finitely generated and H is not

AnH A A

finitely generated. Furthermore, AnH<IAH=G since A is

Abelian. We apply Corollary 3.4 with GEH and HéAnH and

conclude that

<a ,...,an>H<AnH for all a1 'ooe'an6AnH' n21.

1
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H AH . .

But <al,...,an> =<al,...,an> =<al,...,an>G, again Since A

G
is Abelian. Thus we have that <al,...,an> <AnH for all

al,...,aneAnH, n21. This contradicts the fact that G

satisfies Max—n, by Lemma 3.6. Hence, H must be finitely

generated.0

Theorem 3.8: If all the finitely generated subgroups of a

group G satisfy Max-n, then each normal Abelian subgroup A

of G is contained in each nearly finitely generated subgroup

H of G.

Proof: Suppose A<JG, A Abelian, and H is nearly finitely

generated in G but A¢H. Then K=AH is finitely generated and

thus KeMax-n by hypothesis. By Lemma 3.7, H is finitely

generated, a contradiction. Hence AcH.0

Our last lemma preliminary to proving Theorem 3.10 gives us

further information about factorizations in a more restrict-

ed setting than Lemma 3.7.

Lemma 3.9: If G=N(G)H is a finitely generated Max-n group,

and if A<IG, A Abelian, with G/AeMax and AcH, then H is

finitely generated.

Proof: If A is finitely generated, then GeMaxoMax so that

H is finitely generated. Suppose then that A is not
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finitely generated. Since GeMax-n and A4 G,

A=<a ..,an>G for some a ,...,aneA, n21, (by Lemma 3.6)

l" l

=<al,...,an>N(G)H = N(G))H.
(<al,...,an>

Clearly ACN(G), and N(G)/AeMax since G/AeMax so that

NAG) = <Axl,...,Axk> for some xl,...,xkeN(G), k21.

N(G)
Hence <a ... a > c <a ... a x ... x > = K

I ll I n II I nI lI I 1"

since <al,...,an>cAcN(G) and A is Abelian. Now KcN(G) so

. . . . G
KeMax Since K is finitely generated. Thus <al,...,an>N( )

N(G)
is finitely generated and <a1,...,an> =<b ,...,br> for

1

H
some b breA,r21. Hence A=<bl""’br> . Now A4H and1,000,

H/A is finitely generated since G/AeMax. Corollary 3.4

applied to GSH and HEA yields that H is finitely generated.0

Theorem 3.10: AoPcSN

Pgoof: Since S(AoP)=AoP, it suffices by Corollary 2.13 to

Show that GerP implies N(G)cI(G) . Thus, suppose that GerP,

H is nearly finitely generated in G but N(G)¢H. Then

K=N(G)H is finitely generated and K=N(K)H since N(K):N(G).

Also, H is nearly finitely generated in K. Now K is a

finitely generated AoP group so that KeMax-n by Theorem 3.5.

Let A<IK, A Abelian, with K/AeMax. Then AcH by Theorem 3.8,

and Lemma 3.9 yields that H is finitely generated. This

contradicts that H is nearly finitely generated in G, so it



24

must be that N(G)cH, and the theorem is proved.0

Since SN satisfies the local theorem (Corollary 2.16), it is

immediate that L(AoP)cSN. From this observation follows the

inclusion in SN of the subclasses of L(AoP) described in

Chapter I.

Theorem 3.11: The classes AoNilp, AoL(Nilp) and L(AoNilp)

are contained in SN'

Proof: This follows immediately since AoNilpcAoL(Ni1p)c

L(AoNilPICL(AoP)CSN.0

We now investigate the circumstances under which a class X

has the prOperties:

(i) S(XoNilp)=XoNilp, and (ii) XoNilpcSN.

In pursuing this question it is convenient to make the

following definition. Suppose X is a class of groups.

Definition 3.12: X satisfies (*) if GeXoNilp, Kq G, KeX
 

with G/KeNilp implies that N(K)=KnN(G)cH for all nearly

finitely generated subgroups H of G.

Returning to our question it is clear that we satisfy (i) if

(iii) S(X)=X. Suppose that X satisfies (ii) in addition to

(i). If GeXoNilp, K<G with KeX and G/KeNilp, then
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certainly KnN(G)cH whenever H is nearly finitely generated

in G since N(G)=S(G)cH by Lemma 2.8. Thus X satisfies (*).

In fact the converse of this statement is true, and its

proof gives us our result.

Theorem 3.13: If S(X)=X, then XoNilpcSN if and only if X

has prOperty (*).

Egoof: It only remains to Show that if X satisfies (iii) and

(*), then XoNilpcSN. Under these assumptions we have al-

ready commented that s(XoNilp)=XoNi1p so that by the remark

following Corollary 2.13 we need only Show that if GeXoNilp

and H is nearly finitely generated in G, then N(G)CH. So

let GeXoNilp, KQG, with KeX and G/KeNilp. Then G has the

invariant series

E4K=Zod 214 ...d Zn=G, for some n20,

where the 21 are from

K/K=Zo/K 4 Zl/K 4 . . . 4 Zn/K=G/K,

the upper central series for G/K. We show that N(G)nzicH

for i=0,l,...,n. The proof is by induction, and the case

i=0 is simply the assumption that X satisfies (*).

Suppose now that N(G)nzicH for some i, Osisn-l. We claim

that N(G)nzi+1 normalizes H. Let er, y€N(G)nZ Then
i+l°

[x,y]€ZinN(G)CH by the inductive hypothesis. So,

1
[x,y]=x— xYEH, which gives xYeH since er. Thus we have
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that H¢:[Zi+lnN(G)]H=L, and H is nearly finitely generated

in L since H is nearly finitely generated in G. By Theorem

3.2, H3N(L)Dzi+lnN(G), which completes the induction.

Hence, HDZnnN(G)=N(G), and the proof is complete.[]

The question of the existence of non-trivial subgroup-closed

classes X satisfying property (*) is answered in the next

lemma.

Lemma 3.14: If S(X)=X and GeX implies N(G)=E or GeA, then

X satisfies property (*).

_P_r_o_c£: Suppose GeXoNilp, K4 G, KeX with G/KeNilp and

suppose H is nearly finitely generated in G. Now

KnN(G)cN(K). If KnN(G)=E, then KnN(G)cH is trivial. If

KnN(G)>E, then N(K)>E so that KeA, by hypothesis. Hence

GerNilpcsN so that KnN(G)cs(G)cH.0

Example 3.15: The class X=A, of Abelian groups, satisfies

(*) by Theorems 3.11 and 3.13. A more interesting case is

obtained by choosing X=F, the class of all free groups. To

see that Lemma 3.14 applies, we recall that subgroups of

free groups are free, and 1—generator free groups are cer-

tainly Abelian. Thus it remains only to show that N(F)=E if

F is free on more than 1 generator. Suppose K<3F, K>E; K

cannot be Abelian so that K is free on more than 1 generator.

Let H be a 2-generator subgroup of K. Then H is free and

E
l
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IH:H'|=°° so that H' is not finitely generated (see [8],

p. 104.) Hence N(F)=E and the hypotheses of Lemma 3.14 are

satisfied. Therefore, F satisfies prOperty (*) and Theorem

3.13 yields FoNilpCSN.

Our attention now turns to proving that finite extensions

N groups. We begin with a lemma that

gives an easy rule for identifying some of the non-finitely

of SN groups are 5

generated subgroups of a group.

Lemma 3.16: If HcG, H is not finitely generated, and

HCHcHS(G), then H'is not finitely generated.

Proof: Suppose to the contrary that H is finitely generated.

Then there exist $1,...,sneS(G) such that HS<H,Sl,...,sn>.

Let H =H and inductively define Hi+0 =<Hi,s >, 05i<n.

1 1+1

Then H0=H is not finitely generated by hypothesis, and if

we assume that H1 is not finitely generated, then

H. =<H.,S

1

1+1 > is not finitely generated Since si+leS(G)
1+1

for each i. Thus HéHn is not finitely generated, a

contradiction.0

In any group G if K<JG, then N(K)=KnN(G), so that in partic-

ular N(K)cN(G). If finite extensions of SN groups are

again to be SN groups, then we must certainly have that

S(K)cS(G) for normal subgroups K of finite index in G.
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Lemma 3.17: If KQG and lG:K|<co , then S(K)cS(G).

Egoof: Deny the lemma and suppose that xeS(K)-S(G), H is a

non-finitely generated subgroup of G, but <H,x> is finitely

generated. Now lH:HnKl=|HK:KISIG:KI<¢n so that HnK is not

finitely generated since H is not finitely generated.

Similarly l<H,x>:<H,x>nK|=l<H,x>K:K|SIG:Kl<¢»so that <H,x>nK

is finitely generated since <H,x> is finitely generated.

Furthermore, <HnK,x> is not finitely generated since xeS(K)

and HanK is not finitely generated, and clearly

HnK c <H,x>nK. To complete the proof, we show that

<H,x>an(HnK)S(K) giving Han<H,x>nKC(HnK)S(K). By Lemma

3.16 we find that <H,x>nK is not finitely generated, which

is a contradiction. Suppose then that ge<H,x>nK=(H<x>H)nK.

Then g=h§ for some heH, §t<x>H. But <x>HcS(K) Since

an(K)0K4 G, so FieK. Now, we have that g,§€eK so that

heHnK. Hence g=h§e(HnK)S(K), which completes the proof.E]

Our last lemma is of the exercise variety and, although we

cannot remember having seen it, we suSpect that it is prob-

ably well known.

Lemma 3.18: If A, B, C, D, BD and AC are subgroups of G

with CQBD, and if IB:A|, ID:C|< no, then IBD:ACI< 09.

Proof: Suppose that Ax1,...,Axn form a complete set of

right cosets of A in B, and Cyl,...Cym form a complete set
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of right cosets of C in D. Let g=bdeBD, beB, deD. Then

bd=(axi)(cyj) for some aeA, ceC, lSiSn, lsjsm. Since C<IBD

xic=cxi for some ceC so that bd=(axi)(cyj)=a(xic)yj=acxiyje

(AC)xiyj. Hence, (xiyjllsisn, lSanl] includes a complete

set of right coset representatives of AC in BD, whence

|BD:AC|Snm<°° . D

Theorem 3.19: Finite extensions of SN groups are SN groups.

Proof: Suppose Kq G, KeSN, lG:K|<oo , and let xeN(G). We

prove that xeS(G). If xeK, then xeKnN(G)=N(K)=S(K)cS(G)

by Lemma 3.17. Suppose then that x¢K and x¢S(G). Then

there exists a non-finitely generated subgroup H of G such

that <H,x>=H<x>H is finitely generated. As in the proof of

Lemma 3.17 IH:HnKI<¢: and HnK is not finitely generated, and

a similar argument gives |<x>H:<x>HnK|<w». Furthermore,

<x>HnK4H<x>H so that (KnH) (<x>HnK)cH<x>H. Applying Lemma

3.18 with A=KnH, B=H, C=<x>HnK and D=<x>H yields that

|H<x>H: (KnH) (<x>HnK)I<oo so that (KnH) (<x>HnK) is finitely

generated since H<x>H is finitely generated. But

<x>HnKC<x>GnKCN(K)=S(K) so that by Lemma 3.16 (KnH)(<x>HnK)

is not finitely generated since KnH is not finitely genera-

ted. This gives our contradiction so that xeS(G), and the

proof is complete.[]
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An easy extension of Theorem 3.19 is that if all the sub-

groups of a normal subgroup L of finite index in G are SN

groups, then all the subgroups of G are SN groups.

Corollary 3.20: If K<1G, IG:K|<~ and LeS for all LcK,
N 

then fies” for all LtG.

Proof: Let L—CG. Then LanL and IL:L-nK|=IK'l—.:KIS|G:K|<~ .

By hypothesis, then, LnKeS Since IL:LnKI<~ , Theorem 3.19N.

gives LeSN.E]



CHAPTER IV

EXAMPLES

In this chapter we construct groups G whose nearly finitely

generated subgroups H or whose subgroup S(G) possess remark-

able prOperties. The primary examples are of groups that

lie outside the class SN'

A general strategy for constructing such groups is to find a

finitely generated group G with a non-finitely generated

subgroup H such that <H,N(G)>=G. If G is such a group, then

there exists a nearly finitely generated subgroup H’of G

containing H, and H clearly cannot contain N(G), so that we

must have S(G)¢N(G) (since in any group we always have that

S(G) is contained in every nearly finitely generated sub-

group, by Lemma 2.8.)

All our constructions are semi-direct products (Split

extensions) and all but one of these are wreath products.

We recall here the structure of semi-direct products and

wreath products. For details and proofs concerning semi-

direct products see Scott ([11], section 9.2), and for wreath

products see Neumann [9].
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A group G is the semi—direct pooduct of its subgroups H and
 

K if and only if H<IG, G=KH, and KnH=E. In this case, every

element of G has a unique representation as kh, with keK and

heH. Multiplication in G is given by (klhl)(k2h2)=

k

(klk2)(hl 2hz). If T denotes the inner automorphism of G

k

induced by keK (that is, ng=gk for all geG), the function T

defined by kT=TkIH is a homomorphism from K into Aut(H).

Multiplication in G now becomes

(klhl)(k2h2)=(klk2)((hl(k2T))h2). In this event, G is a

semi-direct product with (associated) homomorphism 1.

Conversely, suppose we are given two groups H and K and a

homomorphism T:K+Aut(H). Let G=KxH as a set, and define

multiplication in G by

(k1,h1)(k2,h2)=(k1k2,(h1(k2T))h2). Under this multi-

plication, G is a group. Let K*= ((k,e)|keK l,

H*= [(e,h)lheH I. Then K* and H*are subgroups of G. Define

U and V by hU=(e,h), kV=(k,e), heH and keK. U and V are

isomorphisms of H onto H* and K onto K*, reSpectively. Let

T* be the homomorphism from K* into Aut(H*) that satisfies

(hU)((kV)T*)=(h(kT))U. Then G is the semi-direct product of

*

H* by K with homomorphism T*.

Because of the natural correspondence between H and H*,

* * .

K and K , and T and T , we will say that G is the semi-

direct product of H by K with homomorphism T.
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In our examples, we will be interested in the case where K

is a subgroup of Aut(H) and T is the embedding of K into

Aut(H). Multiplication then becomes

(al,hl)(02,h2)=(a1a2,(h1a2)h2), h1,h2€H, al,a26K. In

this instance, G is a relative holomorph of H by K, written

G=Hol(H,K).
 

We identify (a,e) with a and (e,h) with h, aeK, heH. If we

compute [h,a], then on the one hand we get h-lh“ and on the

other we get

1 -l
[h,a]=h- a hot=(e,h-l )(a'1.e) (e,h) (one)

=(a-1,h-la-l)(e,h)(a,e)=(a-l,(h-la-l)h)(a,e)

=(e,<(h‘la'1)h)a)=(e,h‘1(ha))

=h-1(ha).

Hence, we have that the action of a on h, ha, is given by

he

We are now ready to define the standard restricted wreath

product, AIB, of the group A by the group B. Let

K={f|f:B+A and f(b)=e for only finitely many beBJ

Then K is a group under ordinary componentwise multiplica-

tion, and each element beB induces an automorphism 5 of K

defined by

f5(b')=f(b'b-1) for feK, b'eB.

If Bé{31beB], then B becomes a group under function
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composition 5i3é= 152, and B'is clearly isomorphic to B

under the correspondence b+3. Thus, we identify B with B

and consider B to be a subgroup of Aut(K). -Finally, we

define A1B by

A1B=H01(K,B).
 

It is customary to call K the base group of the wreath
 

product and B the top group. Thus, A1B=KB, with K<1AIB,and
 

KnB=E.

For each beB, there correSponds a subgroup Kb of K isomor-

phic to A. Kb is defined by

Kb=[lfeKlf(x)=e if xxb‘].

Thus, K is isomorphic to the direct sum of lBl copies of A.

We identify A with the subgroup Ke of K, where e is the

identity in B. Hence AIB=<Kb,B> for each beB and A13 is

finitely generated if and only if A and B are finitely

generated.

Theorem 4.1: SN is a prOper subclass of the class of all

groups.

Egoof: Let B be any finitely generated group, BéMax, and

let C be nearly finitely generated in B. Then IB:C|=¢”

21B. We Show

Ithat G23”. Let K be the base group of the wreath product

because C is not finitely generated. Let G=Z

and let
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M: [feKlf has an even number of non-zero entries on

each right coset of C in B').

M is clearly a subgroup of K, and B normalizes M since the

members of B Simply permute cosets of C in B. Furthermore,

M is not finitely generated, for, if [x ,...,x ,... ) is a
l n

complete set of coset representatives for the right cosets

of C in B, with xl=e, and if

Mi=[fele(x)=0 for all xerj, j>i],

then Ml<M2<...<Mn<... and M=uMi, so that M is a union of a

i

prOperly ascending chain of subgroups and thus cannot be

finitely generated.

Moreover, MB is not finitely generated, for, suppose to the

contrary that MB=<fl,...,fn,bl,...,bm> with f fneM and1'...’

b1,...,bmeB. Now without loss of generality, we may assume

that fieMl for each i since Mc<Ml,B>. For each ceC,c¢e, let

1 if x=c or x=e

be given by fc(x)= . Then with-let fceM

0 otherwise
1

out loss of generality, fi=fc- for some cieC, i=1,...,n,

i

1 if X6 (Xi ,..OIXi )

for, if fi(x)= 1 2n (with the conven-

0 otherwise

tion that xi =0 if 06 {xi ,...,xi } ), then

1 1 2n

f -f - -f if x- 20'
X- X- X- l

f - 11 12 lzn l

1 f ...-f ifx.=0 '
x. x 11
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Now if Ce<cl,...,cn> and CeC-C, then we claim that

b

C .

1.

fC¢<f1,...,fn,bl,...,bm>. For, if bEB, then f has 2 non-

zero entries on the coset of E in B containing b so that

the product of conjugates of the fc has an even number of

i

non-zero entries on each coset of E'in B. Hence,

fC¢<fl,...,fn,bl,...,bm> so that MB is not finitely genera—

ted.

Now, <K,MB>=<K,B>=G and KcN(G) so that G=<N(G),MB> with MB

not finitely generated, so that S(G)=N(G) by the introductory

remarks to this chapter. Hence, GtSN.[]

Theorem 3.11 says that AoNilp is contained in S Our nextN‘

example shows that the containment does not hold for NilpoA.

In fact, we construct a group G which is an Abelian extension

of a free nilpotent group of class 2, but is not an SN group.

G, of course, is an extension of an SN group by an SN group,

and thus SNoSN¢SN. (The same conclusion could be drawn from

the construction in Theorem 4.1.)

If we define the S-series of a group G by (i) SO=E, and

(11) Si+l is that subgroup of G such that Si+l/Si=S(G/Si)'

i20, and if we define the N-series by (i) N0=E, and

(ii) N1+1 is that subgroup of G such that Ni+l/Ni=N(G/Ni)’
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i20, then the G in our next example has the prOperty that

82<S3=G while N1<N2=G. Thus, the S and N series may both

reach G though not necessarily in the same number of steps.

Before proceeding with the construction, we recall some

definitions and a few of the results that we need pertaining

to free, free nilpotent, and free Abelian groups. Details

may be found in [8].

If F is free on the set S=[ ...,x_l,x0,x1,...} and w is a

word (that is, weF), then w is a law in the group G if the

only possible value of w in G is e, the identity. By this

we mean that for every homomorphism a:F+G wa=e. (For

example, [xi,xj] is a law in every Abelian group.)

A group K is free Abelian if K is isomorphic to F/F' for

some free group F. A group G is free nilpotent if G is iso-
 

morphic to F/[n(F) for some free group F and integer n21.

Every Abelian group is a homomorphic image of a free Abelian

group and every nilpotent group of class n is a homomorphic

image of a free nilpotent group of class n. If G is a free

nilpotent group of class 2, then G'=Z(G), and if G is any

free nilpotent group and TCG is a subset containing at least

2 elements, the T freely generates a free nilpotent group if

and only if T is linearly independent modulo G' (see [8],

p. 121.)
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Theorem 4.2: NilpoA¢S S 03 ¢S
N'NNN'

Pgoof: Let X=(...,x_1,xo,x1,...} be a countably infinite

set indexed by the integers and F=F(x) be the free group on

X. Consider the group G=<K,a> where K=F/r3(F) is the free

nilpotent group of class 2 on X and a is the Neumann shift

operator defined by a:xi[3(F)+xi+1f3(F). (To simplify the

notation we will omit the [3(F) in writing members of K.)

Now aeAut(K) and G=Hol(K,<a>), so that G is a split extension

of K by <a>. Hence, G=K<a>eNilp°A, whence KcN(G). Note

also that <K,a>=<xo,a>, which says that G is finitely gener-

ated. To Show that GKSN we need only find a non-finitely

generated subgroup H of G containing a, for then G=<K,a>=

<N(G),H> and S(G)¢N(G) by our comments at the beginning of

this chapter. To this end consider the subgroup H=<K',a>.

Now K'=Z(K) and K' is free Abelian, freely generated by the

set Ké{[xi,xj]|i<ji, Since (i) K surely generates K', and

(ii) ifZ n [xi ,x. ]=0, then every nilpotent group of class

k k k 3k

2 on, say, the 2 generators xil and le satisfies the law

nl
[xil,xj1] , which is certainly not the case. Suppose now

that <K',a> is finitely generated. Without loss of general-

ity, then, <K',a>=<[xo,xill,...,[xo,xin],a>, x. >0,

13'

j=1,...,n, so that

K'=K'n<K',a>=<[xi,xj]lj-ie{i1,...,in[> <K', a
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contradiction.

Thus far we have shown that S(G)¢N(G). To prove that N(G)=K

it remains only to show the inclusion N(G)cK. To obtain

this, we observe that if M>K, then ameM for some integer mzo

(without loss of generality m>0). Hence <K,am>=

(XOIXl,---.Xm_l,am> is finitely generated and

lG:<K,am>|=m so that IG:MlSm and thus M is finitely generated

since G is. Since K<M M¢L(Max) so that N(G)=K.

To Show that Z(K)CS(G), suppose to the contrary that 25Z(K),

HcG is not finitely generated, but <H,z> is finitely

H

  

generated. Then H¢K (since KeL(Max)). <H,z>=H<z> and

<H,z> H<z>H ~ H . . .

= - ——————- is finitely generated so that

H H H
<z> <z> <z> nH

<z>HnH is not finitely generated since H is not finitely

generated. Thus, H=< <z>HnH,hl,...,hn> for some h1,...,hneH.

If heH, then h=amk for some integer m, keK, and

m mm

h amk a )k=z“ since 2“ eZ(K)-2 =2 =(z

Hence, there exists an infinite subset Icz such that

H oi - mi
<z> nH=<z I1€I>CZ(K) and hi=a ki for some mieZ, kieK,

lSiSn. Furthermore, mi¢0, and without loss of generality

m1>0. But then,

i m

< <z>HnH,hl>=<z“ ,a lkllieI> is finitely generated;
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for, if we choose a subset Im cI that contains a unique

1

representative of every coset of <ml> in Z that is found in

I (that is, for each ieI, i=j mod m1 for some jeIm , and

l

jxl’ mod m1 if i=6". jJeIm ). then
1

- m

<<z>HnH,hl>=<zaj,a lklljeIm> is finitely generated

1

since Im contains at most m1 members. Hence,

1

3
h >=<za ,h ,...,h IjeI > is finitely
n l n m1

H=<<z>HnH,hl,...,

generated, a contradiction. Hence, 265(6).

Suppose finally that xeK-Z(K). We Show that x¢S(G). The

construction follows the lines of the early part of this

m

proof. Let L=<x° Imez>. Then LcK and L is a free nilpotent

am

group of class 2 freely generated by the x , mez, since

m

[x“ ImeZ) is clearly linearly independent modulo K'. For

convenience, let yi=xai for each i. Then L=<...,y0,y1,...>,

L4 <L,a>, and a simply permutes the y...L in the same manner as

the xi. AS earlier in the proof, we may conclude that

<L',a> is not finitely generated, but

<<L',a>,x>=<L',a,y0>=<yo,a> is finitely generated so

that X¢S(G).
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The lengths of the S and N series may easily be found.

N(G)=K and G/K:<a> so that N(G/K)=G/K and N =G.
2

S(G)=Z(K)=K' so that G/S(G)=G/K'erA. But then,

S(G/S(G))=N(G/S(G))=N(G/K')=K/K' (by Theorem 3.11.) There-

fore, SZ=K and S(G/S2)=S(G/K)=G/K since G/KeA. Hence $3=G.

In the introductory comments to Chapter III we remarked that E

G in this example has the prOperty that all the normal

Abelian subgroups of G are contained in I(G), yet N(G)¢I(G).

We have already seen that N(G)¢I(G), since <K',a> is con-

tained in some nearly finitely generated subgroup H of G,

and N(G)¢H since <N(G),H>:<N(G),a>=G. To see that all the

normal Abelian subgroups of G are contained in I(G) we Show

that if A<)G, A Abelian, then AcZ(K)=S(G)cI(G), by Lemma 2.8.

S

Suppose x=(ar,k)eA, r an integer, keK, and let y=x° , S an

integer. A straight-forward computation Shows that

-l s+r

a[x,y]=k-1(k )(kar)(kas). The hypothesis that A is a

normal Abelian subgroup of G requires that [x,y]=e, which

is equivalent to (kar)(kas)=(kas+r)k. Since a is the

Neumann Shift Operator, the only way this equality can hold

if s¢0 (xry) is for r=0. Hence, we must have =k and

k(kas)=(kas)k. This latter equality holds only if

keZ(K)=K'=S(G). Since k is arbitrary, AcZ(K)=S(G), as

required.[]
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Our next example shows how to construct a class of groups

having nearly finitely generated subgroups that are not

normal. However, we first need some preliminary information

about certain subgroups of Z IZ.
2

Definition 4.3: If fEKCAIZ=KZ, then f‘i_ oo [r,s], r and s
 

integers, if f(zm)=e for all m not between r and s inclusive.

Lemma 4.4: If G=Z 12=KZ and H>Z, then ngzlz and |G:H|<O ,
2

and if L>K, then L is finitely generated.

Pgoof: Since H>Z, HnK>E, and since Z may be used to Shift

the interval that a function is on, as per the previous

definition, we choose feK such that f is on [0,n], n>0, with

n as small as possible. We claim that H=<f,z>, for suppose

that g is a function in H, g is on [k,r]. Then, by multiply-

ing g by apprOpriate conjugates of f (by powers of 2), we

may reduce the length of the interval that g is on until we

finally arrive at a function E that is on [0,n]. But 3 must

be f since if it were not, then 3f would be a non-trivial

function on [0,5] for some 0<Hkn, which contradicts our

l§e<f,z> so thatchoice of f. Hence, we have that g and g'

ge<f,z> and H=<f,z>. Incidentally, we have also shown that

f is unique in H with reSpect to being on [0,n].

1 if n=0

Let gEK be the function defined by g(zn)= .

0 if n10
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n n n n

Then G=<g,z>. The mapping (zk,gz l...gz r)->(zk,fz 1...f2 r)

is easily checked to be an isomorphism of G=221Z onto

H=<f,z>. Hence, szziz.

To Show that |G:H|<", let yeG. Then Hy=ngr for some gEK,

r an integer, so Hy=Hz~rgzr=H§, EEK, since zeH. AS we

argued before, we may multiply g’by apprOpriate conjugates

of f, all of which are in H, until we get a function 3‘, and

3' is on [0,n]. Thus, Hy=H§‘, with 3‘ on [0,n]. Since the

number of functions in K on [0,n] is finite we have shown

that H has only a finite number of right cosets in G so that

lG:H|<co .

Finally, if L>K, then L=K<zs> for some positive integer s

and L:(Zz+...+zz)12 by [9, Lemma 8.1]. Thus L is finitely

s-c0pieS ‘

generated.[]

Theorem 4.5: If A is finitely generated and G=A1(ZZIZ)=

K(Z212) , then K2 is a non-normal nearly finitely generated

subgroup of G.

Proof: G is clearly finitely generated since A and 2212

are finitely generated. Suppose H>H=Kz. Then

G H H H

212 g - a - > - : Z. Hence, - is isomorphic to a subgroup

K K K K

Z
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of ZZIZ that prOperly contains the tOp group Z. Thus, by

Lemma 4.4, lG/K:H/K|<O so that IG:H|<¢' and H'is finitely

generated since G is finitely generated.

That H is not normal in G follows from the fact that the

normal closure of Z in 2212 is larger than Z, so that the

normal closure of H in G is greater than H.

If N is the base group in Z 12 and Ké{feK|f(x)=e if x¢N],
2

then certainly KceK,Z> so that if H=KZ is finitely generated,

say H=<f fn,z>, f1,...,fn5K, then without loss of1,000,

generality, fl,...,fneK. But then,

Ké<fl,...,fn,z>nKé<f1,...,fn>. This says that K is

finitely generated, which is impossible since N is not

finitely generated. Hence, H is not finitely generated, and

the proof is complete.0

Our next example shows that it is not the case that the

intersection KnH of a nearly finitely generated subgroup

H of G with a normal subgroup K of finite index in G need be

nearly finitely generated in K. First we need a lemma

concerning the subgroups of 212 that contain the tOp group.

Lemma 4.6: If H contains the top group in 212, then H is

finitely generated.
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Pgoof: If K is the base group in 212, then H=(HnK)Z and HnK

is normal in leo le is a finitely generated Abelian

extension of an Abelian group, so 212 satisfies Max-n by

Theorem 3.5. Hence HnK is finitely normally generated so

that H=(HnK)Z is finitely generated.0

Example 4.7: There exists a group G containing subgroups

H and K, with K<G, |G:Kl<¢I and H nearly finitely generated

in G, but HnK is not nearly finitely generated in K.

Construction: Let G=AIZ where A is any finitely generated
 

group containing a nearly finitely generated subgroup B.

Let us identify B with the subgroup of the base group K

consisting of all functions f satisfying

e if n¢0

f(z“): . If L={feKlf(zn)eB for all n}, then

beB if n=0

<B,Z>=LZ:BIZ, Z normalizes L and L2 is certainly not finitely

generated since B is not finitely generated. Consider the

subgroup K<zz>. Clearly IG:K<zZ>|=2, so K<zz><lG, and

LZn(K<zz>)=L<zz>.

L<zz> is not nearly finitely generated in K<zz>, for consider

the subgroup M of G defined by

2n+1
M={feKlf(zzn)eA, f(z )eB, n an integer}. Then <zz>

2
normalizes M, L<z ><M<22> and M<22>is not finitely generated

since B is not finitely generated.
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Thus, it remains only to Show the existence of an A such

that L2 is nearly finitely generated in G. To this end,

consider AéfztiéKE. K'is not finitely generated but K’is

nearly finitely generated in A by Lemma 4.4 Now, we have

- _ _. _ __ Z _Z_Z _

G=(ZZIZ)IZ=(ZZIZ)ZZ=(KZ) Z:(K Z )Z, L=Kz and LZZKZZ.

Also, KZ<IG since fa as well as Z, normalizes KG Now,

(x—z') zz (rz'z'z) z n

—z _ —-z : ZZZ= 212. Thus, if H>Lz:i<'zz, then :-

K K K
KZ

 

G

:5 =

is isomorphic to a subgroup of 712 containing the tOp group,

Z, and so is finitely generated by Lemma 4.6. So, we have

_—Z =‘—z
2.2

that H—<K Z,gl,...,gn> <K ,z,gl,...,gn> for some g1,...,gne ,

and without loss of generality, we may assume that 91(1)¢e,

for all i, since we may conjugate the 91 by powers of 2, if

necessary, to effect this condition. Furthermore,

..z ..z —z _z
K Z=<K1,z> so that H=<K1,z,g1,...,gn>. Now <K1,gl>

is finitely generated since gl(l)¢e so that <K§,gl> is

isomorphic to a subgroup of iéIZEKE'containing'the base

group K and thus is finitely generated by Lemma 4.4. Hence,

H is finitely generated, and the proof is complete.0

Our last example is a counterexample to a conjecture made by

J.E. Roseblade, in discussion. The conjecture was that for

polycyclic extensions of Abelian groups, G, S(G)=N(G)=

Fitt(G), where Fitt(G), the Fitting subgroup of G, is the
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maximum normal nilpotent subgroup of G (which exists for any

Max-n group.) We have already seen that the first equality

in the assertion is true (Theorem 3.10), but the following

example shows that Fitt(G) can be a preper subgroup of N(G)

if GEAOP.

Example 4.8: In G=Zp1(quZ), where p and q are distinct

primes, Fitt(G)=K, the base group, while S(G)=N(G)=qu.

Proof: KZq is clearly normal in G and locally N5therian,

but not finitely generated. If H>KZq, then IG:H|<¢’ so

that H is finitely generated. Thus H cannot be locally

N5therian, and it follows that N(G)=qu.

We recall that in AIB=KB, if B :8, then KB is isomorphic
l 1

to the wreath product of a direct sum of a certain number

of c0pies of K with B ([9, Lemma 8.11), and that A1B is
1

nilpotent if and only if A and B are p-groups for the same

prime p, B is finite and A is of finite exponent (see [3].)

Now K is a p-group and if er xZ, then x is either of in-

q

finite order or of order q. Thus K<x> cannot be nilpotent

since pzq. Hence K, which is Abelian, is the Fitting sub-

group of G.[]
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