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ABSTRACT
BANACH SPACE VALUED STATIONARY STOCHASTIC PROCESSES AND

FACTORIZATION OF NONNEGATIVE OPERATOR VALUED
FUNCTIONS ON A BANACH SPACE

By
A.G. Miamee

In this thesis the theory of Banach space valued stationary
stochastic processes and the problem of factorization of nonnegative
operator valued functions are studied. The the thesis consists of
eight chapters and one appendix.

Chapters I and I1 are introductory. In Chapter III, Banach
space valued stationary stochastic processes are systematically
studied. The results, such as Wold's decomposition, Cramér's
decomposition, Wold-Cramér concordance theorem, etc., which are
fundamental in this area are established. These include the
extension to the Banach space of most of the results of R. Gangolli.

In Chapter IV the factorization problem of Banach space
valued stationary stocﬁastic processes which plays an important
role in the prediction theory of Banach space valued stationary
processes, is considered. Several theorems concerning this
factorization are given. These involve the analysis of quasi
square roots and their corresponding invariant subspaces. Con-
tinuing our study of the factorization problem, in Chapter V
several necessary and sufficient conditions for factorability of

these functions are given. The works of Chapters IV and V extend



A.G. Miamee

to the Banach space case, most of the result of R.G. Douglas and
the recent work of Yu. A. Rozanov as well as a certain result of
R. Payen on factoring a nonnegative operator valued function on a
Hilbert space.

Let f be a factorable nonnegative Hilbert space operator
valued function, and let U be a unitary valued function. A
natural question is to see if the nonnegative operator valued
function UfU* is factorable. This problem is investigated in
Chapter VI. As an application of this study some results, such
as a Devinatz's type necessary condition and characterization for
the factorization problem are given.

In Chapter VII the important problem of finding a computable
algorithm for finding the optimal factor and the linear predictor
of a stochastic process is considered. An algorithm similar to
the one given by N. Weiner and P. Masani for the infinite dimensional
process is obtained. This involves the Fourier analysis of in-
finite dimensional matrix valued functions.

In Chapter VIII the problem of minimality and interpola-
tion of infinite dimensional stationary processes is studied,
Most of the results of H. Salehi for multivariate case are extended
to infinite dimensional case. Also a well known result of P. Masani
on minimal multivariate processes is extended to the infinite
dimensional case. In the appendix the construction of quasi square

roots of several operators is given.
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CHAPTER .1

INTRODUCTION

The idea of Banach space valued stationary stochastic pro-
cesses has been recently introduced by S.A. Chobanian in [2 ].
Subsequently some basic results concerning these processes were
announced [24], L 37. 1In the Hilbert space case the basic
questions of regularity, Wold's decomposition, Wold-Cramér con-
cordance, factorability of spectral density, etc. have been studied
in detail [4 ], [8 ], [10], [12], [13], [16], (18], [19]. However
in the Banach space case the study of stationary stochastic processes
and the related problems are in its early stages, and the results
obtained in this direction are not as yet complete. 1In particular
the important problem of factoring a nonnegative operator valued
function on a Banach space has not been investigated. The problem
of determining the optimal factor of a spectral density plays an
important role in the prediction theory of stationary stochastic
processes. This problem was tackled by Wiener and Masani [26] and
later on by Masani [14] for the finite dimensional case. This prob-
lem remains open for the infinite dimensional processes.

In this thesis we first study Banach space valued stationary
stochastic processes and prove some known results as well as
several new results. We then consider the question of factorability

for the Banach space case and establish several criteria for the



factorization problem. In particular we obtain several comparison
type sufficient conditions and some analytic necessary and sufficient
conditions for the factorization problem. In the second part of
this thesis we provide an algorithm for finding the optimal factor
and the linear predictor for the Hilbert space case. We also

study the problem of minimality and interpolation of Hilbert space
valued stationary stochastic processes. With this background we

now summarize the content of each chapter in more detail.

In Chapter II we recall some notations and terminologies
from [ 2 ] concerning Banach space valued stationary stochastic pro-
cesses. We also state some facts [1 7, [24] regarding these pro-
cesses which are needed in the later chapters.

In the first part of Chapter III we study Banach space
valued stationary stochastic processes. Using a new technique
(to be made clear later) we will provide proofs for Wold's de-
composition, relation between regularity and factorization which
were announced in [24q, (3 ]. We also prove several new results
such as a time domain and a spectral domain decomposition as well
as moving average representation for these processes. In the
second part of Chapter III the idea of subprocesses is introduced
and most of the results of R. Gangolli [8 ] are extended to the
Banach space case. In particular a Wold-Cramér concordance theorem
for the Banach space valued stationary stochastic processes as
well as some sufficient condition for the factorization problem are
obtained.

In Chapter IV we consider the problem of factoring a non-

negative operator valued function f on a Banach space in the form



Q*Q, where ¢ is a conjugate analytic operator valued function.

We give several comparison type sufficient conditions for factoriza-
tion problem by extending to the Banach space case most of the
results of R.G. Douglas [4 ]. 1In the Hilbert space case, /f, the
positive square root of f whose existence is known is used
frequently. When f 1is a positive operator valued function on a
Banach space ) the existence of a square root in the ordinary

way does not make sense. Nevertheless we will prove (c.f. Lemma
4.3.1) the existence of a measurable function Q on Y 1into some
auxiliary Hilbert space which behaves almost like a square root in
the sense that f = Q*b. We will call this a quasi square root.

The quasi square root will play the role of square root in this work.

The results of Chapters III and IV provide only sufficient
conditions for the factorization problem. In Chapter V we establish
several necessary and sufficient conditions for the factorability of
a nonnegative operator valued function on a Banach space. In
particular our main theorem of this chapter (Theorem 5.3.8) extends
to the Banach space case the recent work of Yu. A. Rozanov [19]
and a certain result of R. Payen [18] on the factorization problem.
The notion of quasi square root is basic in this chapter.

In Chapter VI we study the following natural question raised
by M.G. Nadkarni in [16]. Given a factorable nonnegative operator
valued function f on a Hilbert space, to see if the nonnegative
operator valued function UfU* is factorable, where U denotes
a measurable unitary valued function. We apply these results to
prove some well known facts as well as some new results regarding

the factorization problem for the Hilbert space case.



In Chapter VII we consider the important problem of finding
an algorithm for determining the optimal factor and the linear pre-
dictor of a Hilbert space valued stationary stochastic process. In
this chapter we will adopt the notations of [16] and employ the
technique of [14] in order to establish our algorithm.

In Chapter VIII we investigate the problems interpolation
and minimality of a Hilbert space valued stationary stochastic
process. We extend most of the results of H. Salehi [21], [22],
[237 to the infinite dimensional case. Using Salehi's technique
we prove infinite dimensional extensions of a result due to Masani
on minimal full rank processes.

Finally in the Appendix we give the construction of a quasi
square root for a particular nonnegative operator valued function

on a Banach space.



CHAPTER II

PRELIMINARIES

In this chapter we introduce some basic terminologies
and state some known facts which will be needed in the latter
chapters.

2.1 Notation. The script letters Y and } will denote Banach
spaces and the script letters ¥ and X will stand for Hilbert
spaces. I1If Y 1is a Banach space, 'x,* will denote the Banach
space of all conjugate linear functionals on Y. For any two
Banach spaces Y and 1\, B(X,y) will stand for the Banach space
of all bounded linear operators on X into V.

In this work all the Banach spaces are assumed to be
separable.

2.2 Definition. An operator £ in B('L,I,*) is said to be non-
negative if for each x € Y, (fx)(x) 2 0. B+(‘I,,'I,*) will denote
the class of all such operators.

2.3 Definition. Let Y be a Banach space and X be a Hilbert
space. A sequence §n, -w<n<go of elements of B(X,X) 1is
called a B(X,X)-valued stationary stochastic process (SSP) if
§:§m depends only on m-n. The operators R(m-n) = gzgm is
called the covariance operators of the process.

The following theorem is proved in [17].

2.4 Theorem. Let R(n), -« < n < » be a sequence of operators

*
on Y into X . Then R(n), -« < n <« » 1is the covariance
S .



operators of some SSP §n, -o<n< o if and only if it can be
represented as
R(n) = 2= Eﬂ e "% (ap),

where F 1is a B+(‘I.,I,*) -valued measure and the integral is in the
weak sense. In this case F 1is called the spectral distribution
of the process gn, o< n< . Incase that F 1is a.c. with
respect to (w.r.t.) the Lebesgue measure, its derivative f is
called the spectral density of the process.

If 8 1is a subset of some Hilbert space ¥ we will denote
by ©{8} the smallest closed subspace of X containing &.

Let us give the following definition.
2.5 Definition. Let §n, > < n< o beaB(X,X)-valued SSP.

Then we need to define the following subspaces

Hg(u) = 6{§kx’ o< kcwo, x €}

Hg(n) =6{§kx, »<kgn, x €Y}

Hg(-w) - gug

(n).
When there is no danger of confusion we will omit the index §
in the above definition.
The following definition is basic in the theory of stationary
stochastic processes.
2.6 Definition. Let gn, o< n<g o beaB(X,X)-valued SSP.
Then €0 ®<n<w is called
(1) Deterministic (or singular) if H(-») = H(n), for all n.
(ii) Nondeterministic if H(-®») # H(n) for some n.

(ii1) Purely nondeterministic (or regular) if H(-o) = 0.



2.7 Definition. Let ¥ be a separable Hilbert space and let
L2(7() denote the Hilbert space of all X - valued functions on
the unit circle which have a square summable norm. The L2(7()
inner product of two functiomns g1 and g,y is given by

2n

2] ®1™ 8y a0 .

The subspace Lg_(}() (L(2)+(7()) consists of all functions g in

1n0i6 =0 for all n< 0 (n>0).

2n ig
L2()() for which tg g(e e
2.8 Definition. A weakly measurable B(X,X)-valued function
A= A(eie) is called analytic (conjugate analytic) if for each
x €1 A™®x et o AaE'®x c1d0m.
2.9 Definition. Let f = f(eie) be a weakly summable B+(I,,I*)-
valued function on the unit circle. We say that £ 1is factorable

if there exists a Hilbert space X and a conjugate analytic

B(X,X) -valued function A = A(eie) such that
*
£(e'® = a"(e'a(e’®),
in the sense that

) () = AaEeOx,ae'®y), for a1l x,y € 1.



CHAPTER III

ANALYSIS OF BANACH SPACE VALUED STATIONARY
STOCHASTIC PROCESSES

3.1 Introduction. The main aim of this chapter is to extend to
the Banach space the well known results of R. Gangolli [8 ] on
subprocesses, Wold-Cramér concordance and factorability. We also
extend to the Banach space a time domain decamposition due to

R. Payen [18]. In the course of our work we will have occasions
to improve some of the results contained in [24], (3 ] as well as
providing proofs for some others.

To accomplish our goal we will associate to our SSP sn auxiliary
Hilbert space valued stationary process. This will make it possible
to utilize the available results for the Hilbert space case.

We settle preliminaries in §3.2. 1In §3.3 we develop some
of the theory of Banach space valued stationary stochastic pro-
cesgses by introducing a Hilbert space valued stationary‘stochastic
process which is relevant to our process. In this section we prove
some new results as well as most of the results in [24], (3 ] by
using our Hilbert space valued stationary process mentioned above.
In §3.4 we extend most of the results of R. Gangolli [8 ] to
Banach space valued stationary processes.

3.2 Preliminaries. All the Banach spaces and Hilbert spaces con-

sidered here will be separable.



3.2.1 Definition. Let SCB(L,X). By 6(S) we mean the
smallest closed (in strong sense) subspace of B(X,X) containing
all the elements of the form SA, where S € S and A € B(X,))
and by &(S) we mean the smallest closed subspace of ¥ con-
taining all the elements of the form Sx, where S € S and

X € Y. One can prove the following theorem by an argument similar
to [18], p. 335.

3.2.2. Theorem. With the notation of Definition 3.2.1, for any

collection S < B(X,X) we have

6(8) = B(X, &(8)).

3.2.3 Definition. Let §n, > < n<o be aB(X,X)-valued SSP.

Then we define the following subspaces
H(w) = 6{§ %, -» < k<=, x €1}, H(w) = é{gk, -» < k < @)

H(n) = 6{§kx, o < k g n}, i(n) = g{gk, -0 < k < n'}

H(-®) = | H(n) and H(-x) = N H(n).
n n

We remark here that by Theorem 3.2.2 it is clear that

H(w) = {Ax, A € H(=), x € X}, H(-®) = [Ax, A € H(-®), x € 1}
and

H(n) = {Ax, A € H(n), x € X} .

3.2.4 Definition. Let A and B be in B(X,X). Then by (A,B)
we mean the unique bounded operator which is defined through

*
((A,B)x,y) = (Ax,By). It is clear that (A,B) =B A, Now if for

AB €eB(X,X), (A,B) =0, we say A 18B.
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One can prove the following theorem
3.2.5 Theorem. Let A ¢ B(X,X) and M= é(s), where S < B(X,%).
Then there exists an operator in B(),X) denoted by (A\ﬁ) such
that (A\l—d) €M and A =A - (A\ﬁ) is orthogonal to M.
Proof. Let (A|M)(x) = (Ax|M), where M = &(S).
3.2.6 Definition. Let gn, o< n< .o be a B(X,X)-valued SSP.
Then we call (_ =§_ - (gnlﬁ(n-n), = < n <o the innovation
process of gn, o< N< o Wewrite G = (go,go) and call it the
predictor error operator of the SSP gn, < n<wow If G is
boundedly invertible then the process is called of full rank. If
G 1is one-to-one then the process 1is said to be of nearly full rank.
3.2.7 Remark. Let gn, o< n<» beaB(Y,X)-valued SSP and
let G be its predictor error operator. Then it is easy to see
that §n, o< n<owo is singular if and only if G =0 and is
nondeterministic if and only if G # O.

We give the following lemma for later reference.
3.2.8 Lemma. Let €, <0< and M,> ~®<n <o be two
B(X,X) -valued SSP's with the same spectral distribution or equi-
valently with the same covariance structure. Then
(1) gn, < n< o 1is regular iff ’t\D, o< n< o is regular
(11) §n, < n< o is singular iff 1\1, o< n < o 18 singular

(1i1) G§ = G,n.

Proof. Proof depends on the fact that the operator V sending

;nx to ‘nnx can be extended to an isometry on H_(x) onto H,n(eo).

g
It i8 clear that H,“(n) = V(Hg(n)) for all n. Hence Hn(-oo) =
V(Hg(-eo)). Thus (i) and (ii) are obvious. For (iii) we further

note that
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V(g gl (1)) = (VEG|VA, (-1)) = (|, (1)),

and hence

Gy = (M - (%\ﬁn(-n), T - (1\(,151\(-1)) =

Wy = V(G |B (1), ¥Ry - V(T [E (-1 =

(€ = Golfig-1), ) - (golﬁnc—n) = G-

Finally we give the following definition which we will
need later.
3.2.9 Definition. Let §n, -o< ne< o and ﬂh, o< n<x be
two B(X,X)-valued SSP. We say §n, -0 < n< oo 1is dominated

by nn, o< n<wo if Hg(n) C:Hn(n) for all n.

3.3 Time and spectral analysis. In this section we first

associate to any Banach space valued SSP gn, -o < n<oo aHilbert
space valued SSP u, = <n< o (c.f.Lemma 3.3.1). We then
examine the close tie which exists between §n, o< n< o and

U, ®<n<w. Using these new processes we can transfer the
information we know for Hilbert space valued processes to get the
corresponding results for Banach space case. By making use of

this technique we provide a proof for Theorems 3.3.5, 3.3.7, 3.3.10,
which are announced in [3 ]- However our moving average representa-
tion for the regular processes will have the natural form, which
prevails in the one dimensional case. Using the technique mentioned
above we also state and prove several new theorems which extends

the known results for Hilbert space valued stationary stochastic

processes.
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The following lemma is essential.
3.3.1 Lemma. Let 0 ®<n<w be a B(X,X)-valued SSP. Then
there is a Hilbert space @ C X and a B(&,X) -valued SSP u s
- < n < » such that gn = un§0 for all n. Moreover gn and
u have the same shift .
Proof. Define U on 6{§nx, x €)X, =< n<+o} by Ugnx =

gn +lx, then we have

(UE x, UE y) = (5_ %, § ,,¥) = (5%, € ).

So U 1is a unitary operator. It is now clear that gn = U“go.
Let g = 6{§ox, x € I} and let una = Una, for a € ¢. Then u
is a B(&4,X) -valued SSP and g, = ungo. So u, @<n<e is the
desired process. It is clear that u and gn have the same
shift U.

In view of the close relations between §n and u the
following definition is appropriate.
3.3.2 Definition. Let §n and u be as above. Then u s
o< n< o 1is called the associated process of gn, o< n< oo,

The following theorem gives some relations between §n
and u, -
3.3.3 Theorem. Let §n, -« < n<o beaB(Y,X)-valued SSP and
let u, be its associated process. Then

(a) R

g(m = §: R (ME,

*
(®) P, =g F g

(¢) F is absolutely continuous (a.c.) iff Fu is a.c.,

g
and in this case we have fg(x,y) = fu(gox, §0}') , where f£(x,y)

denotes the density of (F(de)x)(y).



13

Proof. We observe that

R (MX) () = (€ x, ) = (u g x, §x)

4
= ®,® EXIEY.

Hence Rg(n) = g;Ru(n)go.

To see (b) we note that

1 2m -ing
(Rg(n)X) (y) = ;g e (Fg(de)x) ) (1)

and

(EgR, (MEY () = (R (1) (§ %)) (5,

2n (2)
=1 o -ing, _*
P ((goFu(de)go)(x))(y)-

Now (a), (1) and (2) imply that F_(dg) and g;Fu(de)go have

g

the same Fourier coefficients and hence they are the same measure .

(c) Suppose Fu is a.c., then

35 Fea0m () = Go (§F (40550 ()
4 3)
= &5 (F,(d0) (§x) (5v))

8o :—e((Fg(de)x) ) exists and is equal to :—e (Fu(de) (gox))(goy) )
Now to see the other way suppose Fg is a.c., then
%((Fg(de)x) (x)) exists for all x € X, hence
g—e- (Fu(de) (gox) (§ox)) exists for each x € X. Therefore
%3 (F (d0)a) (a)) exists for each a € /L. Thus by [ 97, §66
[

e (Fu(de)a)(a)) exists for each a ¢ ¢ Therefore Fu is a.c.

Now in this case we have
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{fg(x,y)de = (Fg(A)X) () = ((§;FU(A)§0)X) (y)

= ((F, () ) (§y) = {fu@ox. gy)de.
Hence for all x and y in Y we have

fg(x,y) = fu(§ox, §0y) for almost every 9.

The following lemma reveals a strong tie which exists
between the two processes §n, - < n< o and u o, <N <o,
3.3.4 Lemma. Let §n, ->< n< o be aB(Y,X)-valued SSP with

u , e < n<owo 1its associated SSP, then

(8) H(m) = H (n), H (=) = H (=),

3 €
(b) gn, o< n< o is regular iff u s ~c< n< o is regular.

(c) §n, - < n< o is singular iff u s o< n <o is singular.

Proof. For the proof of (a), (b) and (c) it is sufficient to

show that Hg(n) = Hu(n) , for all n, - < n € ». Consider

Hg(n) = 6{§kX, x €Y, k<n} = S{ngox, X € X, k £n}. Then

He (n) = e{Ufegx, x € 1, k 5 ) )
where U 1is the shift operator in lemma 3.3.1. We note that

SU A) =8USBA)), (2)
o o

where {Aa] is any collection of subsets of ¥. Combining (1)

and (2) we get

B () = s gx, x €1, ks m)] . 3)

Now we observe that for any subset of % we have G(UA) = U(S(A)),

because U 1is unitary. Using (3) and this observation we get
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By () = S{UG(ED), k 5 n} = U @, k = n]

= 6{u, (@, k < n} =H (n)

Now we give a proof for the Wold decomposition theorem.
3.3.5 Theorem. For any B(Y,X) -valued SSP gn, -0 < n < w, there
exists two B(YX,X) -valued SSP 1\“, - < n< o and Cn’ ~o <N < ®

such that
(1) §n=1\n+gn,fora11 n, =o<n< o.

(ii) ‘nn, o< n< o and gn, -» < n< o are dominated by

gn, -0 < n < o and have the same shift as gn, o< N < .

(111) T, - <n < = is orthogonal to €0 ®<n<w, ife.

M, +¢, for all m,n.
(iv) ‘nn, o< n<» is regular and ';n’ -» < n< o is singular.

Proof. Let u, be the associated process of §n, o< n < o,
Then by the usual Woldsdecomposition for the Hilbert space valued
process u , @< N <® (8], p. 899, we have u =V +wn
where V) ®<n<e and W ~®<n < » are B(d,X)-valued
SSP's satisfying similar conditions as (i)-(iv). Now let

'nn = vngo and Cn = wngo. Then obviously gn = ‘nn + Cn' It is
clear that 7 , ~e<n<w and ( , -®<n<wo are SSP's with

the same shift as §n, o< n« . Now
(s Cy) = (v §gx, W EX) = (v (§x), w (Ey)) = O

because v, .me. This means 'nn 1 gm Now observe that
n
T = V.50 v vo)§o. Because Vv , > < n < o is dominated by

U e<Nncw and H (n) = Hu(n) (c.f. Letma 3.3.4), it follows

g



16

that “n’ - < n< o is dominated by gn, - < n< o Similarly one
can show that ) ®*<nN<eo is dominated by §n, -® < n < o,

It remains to verify (iv) . For this we observe

H,n(n) = G{T\kx, x €Y, k€n} = S{ngox, k<n, x €Y} .
Thus
H,“(n) c Hv(n) for all n.
Hence H,n(-eo) - 2 H,n(n) [ qu(n) = Hv(-a) . Since Vs ®<nN<e
is regular therefore 1\1, - < n <o is regular. Now to prove

that gn, -« < n< o 1is singular, similarly we can get Hc(n) c
Hw(n) . But Hw(n) = Hw(-co) for all n, since W, e<n € = is

singular. Hence for each n, H_(n) C Hw(-eo). Now we know that for

4
the Hilbert space case H (-») =H (-) (c.f. (87, p. 899) so we
have H_(n) = Hu(-ca). To complete the proof it suffices to show

¢

that

Hg(n) = Hu(-—o), for all n. (4)

Suppose (4) is not true, i.e. suppose Hu(-eo) iHC(n) for some n.

Then there exists h, 0 # h € Hu(-cn) © H_(n). Hence

¢
h.Lgkx for all x € Y and all k<n . (5)
On the other hand

h.l.nkx for all x €Y and all k<€n , (6)

because 1\kx - vkcox - vk(cox) , he Hu(-va) - Hw(-eo) and the fact

that v, tv - Since gn = “n + Cn ‘for all n using (5) and (6)
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we get h .\.gkx, for all x € Y and all k<n. So h .Luk§0x
for all x € X and all k< n. Hence h .Luka for all a € EOI

and all k < n. But since §01 is dense in (¢ we see that

h . u,a for all a € g and all k< n. Thus h J,Hu(l'l) which
implies h L Hu(-co). But h € Hu(-co) by the choice of h, hence

h = 0 which is a contradiction to the choice of h. This completes
the proof.

3.3.6 Remark. The Wold decomposition is unique. To see this let

'nn, o< n< oo and Cn’ < n< o be two B(X,X)-valued SSP's

satisfying (1)-(iv) of the last theorem. Then we claim

Hg(-ao = Hc(-m) . (1)

Granting (1), since § x =T x + ( x we get
(€% |Hg () = (x|He (=) + (¢ x|B(-) = (O x|H (-=))
+ (g x|Hg (=) -
Thus by (iii) and (iv) we get
(Cx|H(-=)) = (x and Tx =€ x - (5x|H (=)

which means the uniqueness. Now we will verify (1). By (i) we
have Hg(n) = 6{§kx, x€X, k<sn} = S{nkx + gkx, x ¢ X, k £n}.

Thus Hg(n) c H,n(n) ® Hc(n). But ( 1is singular and hence

Hg(n) c H,n(n) ® HC(-a) . We know l-l,n(n) and Hg

hence Hg(n) - H,n(n) ® HC(-m) , H“(n) 1 Hg(-a) so we have

(-=) c H (n),

g

) = = -c0) ) = -m) . 2
Hg( ) Qﬂg(n) tI"\(H.n(t!)QHC( )) HC( ) (2)
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The last equality in (2) follows because H“(n) = {0}.

In the next theorem we give a movi:g average representa-
tion for a regular B(X,X)-valued SSP. A moving average representa-
tion was also given in [24]. We remark that our representation is
exactly in the form that one obtains for the finite dimen8ional case.
Our proof is natural and based on the associated process u s
~o < N < ®.

3.3.7 Theorem. Let gn’ -« < n< o be aB(X,X)-valued SSP which

is regular, then we have the representation

E. = LS8 (1)
n k'_.Orn-kAk

where Si's are orthogonal partial isometries and Ak 's are in B(X,X),
and the convergent in (1) is in the weak sense.
Proof. Let U, ®<n<e® and g be as in lemma 3.3.1. Then by

the corresponding theorem for the Hilbert space valued process

u, ®<n<e (c.f. (18], p. 359) we have
®
u = s .B, (2)
n k_onkk

where Si's are partial isometries on ¥ and Bk € B(a,X) -

Applying both sides of (2) to go we get
®
S = S0 ™ (B 5,B0% T T8, B
Letting nkgo be Ak’ then we have
©
Sa ™ kEosn--k Ak ’
3.3.8 Remark. The coefficients Ai's in the moving average repre-

sentation (1) is not unique, however S iA are unique for each i

3
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and j. For if there is An's and Bn's satisfying in the
hypothesis of the last theorem, then we have

(-] -}
E = £S A = S B .
n "o nk ko n-kk

*

We multiply both sides of the last relation by 8181

to get

* @ * @
SS (LS ,A)=SS (LS ,B)

-1 for all n and 1i. Thus SiAj=siBj

for all i and j. Now we can prove the following theorem.

Hence siAn-:l = Si.Bn
3.3.9 Theorem. Let §n, o< n<owo be aB(X,X)-valued SSP.

Then the following are equivalent:

(1) §n, -« < n< o 1is regular.
g o
(ii) gn = kEos“'kAk’ Ak € B(X,d) and {sn}ns-c is a sequence
of mutually orthogonal isometries in B(Z,X).
(i11) Hg(-co) = {0}.

Proof. (i) = (ii) by Theorem 3.3.7. (iii) = (i) follows by the
uniqueness of Wold's decomposition. It remains to show (ii) =

(1i1). Now suppose (ii) holds. Then for each x we have
2 ® 2 ® 2 2 2
legel = ¢ 2 8o dxl” = I 25, pl” = 215, a0l <o
Letting i(.(n) - é(sk):--g it follows that
= e - 2 ° 2
GlKCm) = 25, A &Ko) = 2 s, Al

whence from (1) “(gop_((-n))(x)“ +0,a8 n - o for each x € ).
But from (11) H(-n) C K(-n) and ||(§,|H(-0))x]| < lig)|K(-m)|| and

hence
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“(go\ﬁ(-n))x“ -0 as n - o for each x € X

“(§0x|H(-n))“~ 0 as n —~o for each x € Y .
Similarly we can show for each k £ 0 and each x € X

(| EXIHC-D)|- 0 as n ~w

hence

Il €, x|HC-m)|| ~ 0

\|(a|a(-n))|| - 0 for all a € L(E X, x €Y, k £0) =
(2)

the linear manifold generated by {gkg, x € X, k s 0}.
Now given ¢ >0 and b € H(0) then there exists a ¢ 1K§kx,
x €Y, k <0) such that |a-b| < £. Then | (b|H(-n))| <

“((a—b)\H(-n))“ + “(a\H(—n))“. Hence for all n >N we have

li®|aC-)|| < |la-b|| + ||a|H(-n))|| < 3 + £

e -

Hence |(b|H(-n))|| -0 as n -+« for all b € H(0). Now using

this and the fact that P strongly we see that

H(-n) ~ PH(-w)
H(-x) = 0.

Now we prove the following theorem, part (b) of which was
announced in [3].

3.3.10 Theorem. Let gn, o< n< o beaB(X,X)-valued stationary

process with spectral distribution F. Then
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(a) if €y ®<n<w has a two-sided moving average representa-
tion € = kﬂz_:m Pt Vith (9.9 =6 K, K o, A € B

and LR € B(X,X). Then its spectral distribution F 1is a.c. and

we have
g-e- (F(do)x) () = (3 ®x, s¢e'®x)
where
ae Ox = k.; et 1k A -

(b) §n, o< n<w» is regular iff F is a.c. and

& @Ee () = |l#e'dx|®

@
where Q(eie)x of the form Q(eie)x = ¥ e-ikQA X.
k
k=0
Proof. (a) Consider
4+ 4w
@e'®x, 8’0 = £ eHOxax, T e xax
k=< k=~

4o 4w .
= £ £ etk AN, kAN

k'=-0 k=-o

+x -1ng +
= £ ™ 5 Ukax, K A X)
n=-o k=-

So the n-th Fourier coefficient of (Q(eie)x, Q(eie)x) is
)
T VKAx, /KA _ X

k=-c

On the other hand the n-th Fourier coefficient of (F(dg)x)(y)

is (R(n)x)(x) which is equal to



22

+o L)
EREOE) = €x 80 = ( T g A% T o AL
+w» +w

= z z (¢n _kAkx ’ ¢_k lAk |x)

k=-0 k'=-c

TR B S
n-k=-k'

+o

£ VKAx, /KA
k=-o k k-

x)

n

Hence (F(d@)x)(x) and (Q(eie)x, Q(eie)x) have the same Fourier
coefficients and hence the proof is complete.

(b) Necessity. Suppose gn, o< n< o 1is regular, then by
Theorem 3.3.9 it has a moving average representation. Now apply
part (a) to conclude factorability.

Sufficiency. Let {an}::-eo c B(X,X) be any sequence such that

+w
= ' -
(> @) =6 1 and consider the new SSP € ki. Pp-iBy’ then
by theorem 3.3.9, g‘;, -o < n< o is regular, hence by part (a),

F is a.c. and we have

g'
f‘,; Fg 1 (d0)0) () = (aCe O, a(e™Om)

hence

g; Fp (d0%) (1) = I Fy (d0%) () -

g g

Hence §n, -« < n<o and §t", - < n< o have the same spectral

distributions, and so by lemma 3.2.8, €, ®<nN<w is regular.
As a consequence of the Wold decomposition theorem we have

3.3.11 Theorem. Let §n, - < n <o be a non-deterministic

B(X,X) -valued SSP with F as its spectral distribution. Then
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F = Fn + FQ’

where P is a.c. and %; F_(d0)%) (v)) = (3 Ox,8(e %y),

. il
$(e 9) as before

- 1 .
Proof. Let gn = “n + gn be Wold's decomposition of gn,
- < n € »- Then by part (iii) of theorem 3.3.5 we get

2n
= [ @ @omny)

(Rg(n)x) ) = (§nx, §0y)

(X + Cxs §oy + Coy)

(nx, W]Oy) + (gnx, Qoy)

2t .
%; g e 180 (F_(do)x)x) + (F(d0)x) ()]

M

Thus F(dg) = Fn(de) + F_(dg). Now by theorem 3.3.10 Fn has the

¢

required properties.
3.3.12 Theorem. Let F be the spectral distribution of a B(X,¥)-
valued stationary process §n, -« < n< o Then gn, o< n<w

is regular of full rank iff F 1is a.c. and %6 (F(de)x) (x)) =

2 ®
“Q(eie)x“ , where Q(eie)x = T e ikﬁAkg, with An € B(X,%) and
k=0
*
AOAO being invertible. Furthermore if we assume that F' is

bounded operator valued then § 1is also a bounded operator valued

function.

Proof. Because of theorem 3.3.10, part (b) it suffices to show

o
that, for the function @(eie) = ¥ Ake-ike, in that theorem we

* k=0 o
= ' =
have G AOAO' To see this, set gn kfoqh-kAk’ where

P € B(X,¥p with (¢n,qh) = Gnml' Then consider the SSP g;,
-o < n < o, defined by Céx = gdx - (géx\Hg,(-l)) = quox.
Now for each x and y in X we have
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%*
(Gg.x)(y) = (c&x,céy) = (quox,¢bAoy) = (on,Aoy) = (Aoﬂox,y)-
Thus Gg, = A;Ao.

QI", @< n <o have the same covariance structure. Hence by

But one can see that gn, - <n< o and

lemma 3.2.8 Gy = Gy,. Thus Gy = A;Ao. The proof of the last
statement of the theorem is clear. In fact one can show more.
See remark 4.2.1,

The following is an extension of a result due to Payen
(18), pp. 371-372.
3.3.13 Theorem. Every B(X,X)-valued SSP €,p °<n <= is the

sum of three processes
1 2 3
g =& +E +E

which are mutually orthogonal, the first one being regular, the
second one being deterministic with a.c. spectral distribution
and the third one being deterministic with singular spectral dis-
tribution.

Proof. Let u and ¢ be as in lemma 3.3.1. Then let u =
u: + u: + u: be the corresponding decomposition of the process
u, ®<n<®, given in [ 18], pp. 371-372. Let §:" = uigo,
i=1,2,3. Then g:, -« < n <o are mutually orthogonal SSP 's
because uni’ o< n<o® are so. Since u}\, o< n< o is
regular as in the proof of Wold's decomposition theorem, we can
see §:, o< n< o 18 regular. Now to show that §:, o><NnN<®
is deterministic with singular spectral distribution it suffices
to show F 3 is singular. (By Wold's decomposition theorem.)

g
But (F 3(cle)l!)(tl) Ldo for all a € ¢. Hence
u

((F 3(49))(§0x))(§0x) 1 dg for all x € X which implies that
u
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(F§3(de)X) x) = (§;F 3(d0)E7) (x)) (x) . Hence (F 3(de)x)(x) L de
for all x € X whic; means F 5 is singular. Finally by a
similar argument one can show that F 2 is a.c. using the fact
that F 2 is a.c. So we just have to show that §:, o< n<w
is deteurministic. Suppose this is not the case, i.e. suppose
there exists 0 # a € H ,(0) @ H 2(-1). So a 1L gix for all

X €Y and all k £ -1. Also a J.gli'x for all x € X, all k
and i =1,3. (Because a € H 2(0) and §§, o< n<» is
orthogonal to §t1', o< n<ow gand §:, - < n < o). Hence

a 1 Qkx, for all x € X, and all k € -1. Hence a .\.Hg(-l).

So we get

a i1 H

F;(-m) . (1)

On the other hand H ,(0) € H ,(0) = H ,(-x), because uz,
§2 u2 2 n
u
o< n< o is deterministic. So H 2(0) CH 2(-«) CHu(-co), by
u
the choice of u , - < n< =, see (18], pp. 371-372. Hence

H 2(0) CHu(-oo) = H_(-») by lemma 3.3.6, part (a). Thus

g

g(--m) because a € H 2(0), by the choice of a. But this
€
and (1) implies that a = 0, which is a contradiction.

a eHn

The following corollary gives an extension of Cramér's
decomposition theorem.
3.3.14 Corollary (Cramér's decomposition). Let F be the spectral
distribution of a B(),X)-valued SSP gn, > <N ® 'then we can
decompose F as
(a) F = Fl + F2 + F3, where Fl

of a regular process, l?2 and F3 are spectral distributions of

is a.c. and spectral distribution

a deterministic process with F2 being a.c. while F3 is singular.



26

(b) F = Fa + FB, where Fa is a.c. and F3 is singular.

Proof. (a) Let gn = §; + §: + g: be the decomposition of

€, "®<Dn <= as given in theorem 3.3.13. Then since these are
mutually orthogonal processes by the standard computations one

can immediately see F =F 1 +F 2 +F 3 - We can take Fi =F

et e? ¢ gl

for i =1,2,3.
(b) Let Fa = Fl + F2 and Fs = F3, then obviously Fa is a.c.
and FS is singular.

We conclude this section with the following theorem which
gives a sufficient Devinatz's type condition for the factorability
of a the spectral distribution of a Banach space valued SSP.
3.3.15 Theorem. Let §n, @< n< o be aB(X,%) -valued SSP with

a bounded spectral density f_ satisfying

g

2m .
£ lognfél(ele)“-lde > o . 1)

Then f is factorable or equivalently §n, o< n< o is

g

regular.
p 2m 19
Proof. We have (§x,Ex) = (Ryx)(x) = 5;& (fg(e Yx) (x)do.

Hence for each x € Y we have
2 217 _ .
legrl® = 35 [ (Eete Om e = 35 [ixilieg e O "o

2n
- IR 37 g <Dl a0 = s,

2n
where ) = %;-£ “f;l(eie)“-lde, obviously 0 < A < ». By theorem

3.3.6 we have (fgx)(y) = fu(gox,goy) for all x,y € X. So

|£,6™ ) @b | = | gle'Deg g | s lisge sy

= llegCe S lgs 1 Pall® < A eg e el
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for all a € ¢. Hence fu(a,b) is a bounded bilinear form and
hence there exists an operator valued function fu(eie): a-d

such that (fg(eie)x)(y) - (g;fu(eie)gox)(y). Now (1) means that

2 (£. (e Ox) (x)
{E log{inf 5 > }de > - . (2)
0xEX I

Hence we get

2n (0@  2m (Eg£, (e g %) ()
log{ inf 3 }de = | log{inf 5 }dg > -o.
ofxer x| Ofxex |lxl|

Thus

(£ (gox))(s x)

1o > - .
b e e
Hence
. tag (f a)(a)
o n Q> -~» .
iy S

But since gox is dense in (¢ we get

Jog{ tn (£ a)(a)}
og{ in > - .
& acq  |a|’

Hence the associated process u, ®<n<® is regular.

By lemma 3.3.7 we see that our process gn, o< n< o is regular.

3.4 Subprocesses and Spectral Conditions for Factorability of the

Spectral Density. In this section we extend to the Banach
space case the results of R. Gangolli on subprocesses and their
relation to the process itself and to the factorability of its
spectral density. Making use of the results of §3.3 the technique

employed by Gangolli can be used to establish our results.
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3.4.1 Defipition. Let §n, o< n<wo beaB(X,¥)-valued SSP,
and let @ be a subspace of X, then the SSP gn \0, ~c<nN<o
is called a subprocess of gn, -0 < n < .

Note that in case that & is complementary, gn\9 can
be identified with §nP where P is the projection on &. Hence
in the Hilbert space case this definition coincides with Gangolli's
definition. Since we will be mostly working with finite dimensional
subspaces, which, are complementary we sometimes use §g.P
instead of §n‘0- Hence §n\0 €E B, .
3.4.2 Lemma. Let §n, > <n<o beaB(X,%)-valued SSP and &

be a subspace of Y. Then

G9>G,

i.e. (GOX) (x) > (Gx) (x) for all x € @, here G and GO are
the predictor error operator of gn, -» < n< o and gn \9,
-® < n < o respectively.

Proof. Since H§|9(n) CH_.(n), for each x € & we have

g
(Gox) (x) = (gox = (gox‘Hg\o(-l))i gox - (gox\ngole(-l))' Hence

(GOX) (x) 2 (gox - §ox\H§(-1), §Ox - §ox\H§(-1)) = (Gx)(x). Hence
(Gex)(x) 2 (Gx)(x) for all xc @ .

3.4.3 Notation. Denote by L(GO) = inf{(GOx) &), |x|| =1, x € ).
The following theorem will be useful later.
3.4.4 Theorem. Let §n, - < n< o be aB(),X)-valued SSP, then

g0 *<n<o is of full rank iff

1nf{L(Go) \0 a finite dimensional subspace of X} 2 c2 > 0. (1)
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Proof. If §n, o< n<o is of full rank then inf (Gx)(x) =
c2 > 0. Hence by lemma 3.4.2 L(GO) 2 c2 for allﬂxg: a sub-
space of Y. Now suppose that (1) holds. We must show G 2 c2.
Suppose not. Then there exists x € X with |xl| =1 such that
Gx) (x) = c'2 < c2. But (Gx)(x) = (§0x - (§ox\Hg(-1)), §ox -
(§ox\H§(-1)). Hence “gox - (§ox\H§(-1)“ =c¢' < c. Thus, the
distance of §0x from H_(-1) = ¢' < c. Therefore there exists

g

numbers a0 j=-1,-2,...,N, k=1,2,... N and vectors

Xy €Y, k=1,2,...,N such that

-N N
lEgx - j=§1 kzlajkgjxj“ <<

Letting @ = S{x,xl K see ,N} we then have

-N N
L(GO) < Hgox - (§0Px\HgP(-1))“ < “gox - '_8 }E aikgjxj“ < c.
j=-1 k=1
This is a contradiction to (1).
3.4.5 Remark. The finite dimensional subspaces are essentially
multivariate SSP in the sense of Weiner and Masani [25] and in
this case L(GO) is the smallest eigenvalue of the matrix GO'
As was noted in [17] there are errors in theorem 5.3 and
5.4. Because the proof of theorem 7.3 depends on theorem 5.3
this theorem is also in doubt. Using the result of [17], p. 405,
we extend correct versions of Gangolli's result to Banach space.
The next theorem gives a concordance between these two de-
compositions.

3.4.6 Theorem. (Concordance theorem). Suppose the B(X,X)-valued

SSP g ®<n<e has full rank. Let F==F,n+Fg and
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F = Fa + Fs be Wold's and Cramér's decomposition of F, the spectral
distribution of § , -» < n < . Assume that F'(eie) is bounded

and has a bounded inverse for almost every ¢. Then

= F_=F .
Fg=Fp»F =F,

ig
Proof. Take some ao such that F'(e 0) is bounded and boundedly
invertible. Then by a lemma in [ 1], p. 21, there exists a Hilbert
ig
space ¢ and a bounded operator T: X —» ¢ such that F'(e 0) =
ig

T*T and range of T dense in . Now since F'(e 0) has a
bounded inverse T is onto and has a bounded inverse. Now define
the process U, ®<N<e by ua= §nT-1a, a € d- Then l.ln,
-« <n<wo is a B(4,X)-valued SSP and we have €, = unT. One can
show that §n and u, and T satisfies most of the properties
we proved about E , u ~and €y 1n Section 3.3. 1In particular
the results 3.3.3, 3.3.4, 3.3.5, 3.3.7, 3.3.13 and 3.3.14 hold.
Now let v W and 1\“, Cn be the components of Wold's
decomposition of the processes u, @®<n<w® and §n, o< N<o®
respectively, as in theorem 3.3.5. Let ui, -o < n <o and
§:, o< n<w, 1=1,2,3 be as in theorem 3.3.13. Now as in the
proof of theorem 3.3.15, we have F'(eie) = T*F‘;(eie)T and
F"l(eie) = T*-ll?'(eie)'r-l. Thus F"l(eie) is bounded and has a
bounded inverse a.e. We also note that G§= T*GuT and hence u s

-~ < n<® is of full rank. From the results on page 405 of

[17] we get
(F) =F . (1)

i .
But we have ‘nn = vnT and §;' = unT for all n and i =1,2,3
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(c.f. theorems 3.3.5 and 3.3.13). An argument similar to the proof

of theorem 3.3.3 may be used to show that

* *
F.=TFT and F =TpFf ,T, 1 =1,2,3. (2)
’n v i i
3 u
We also have
(Fu)a=F1+F2and Fa=F1+F2. (3)
u u g £
By (3) and (2) we get
*
F =T F),T - (4)

Now by (1), (4) and (2) we get Fa = F,n which is the concordance.

Now as a corollary we have the following theorem.
3.4.7 Theorem. Let F and ) ®<N<w be as in the previous
theorem. Then the SSP §n, -0 < n<owo 1is regular iff the follow-
ing two conditions hold
(1) F 1is absolutely continuous
(ii) there exists constant ¢ > 0 such that <L(99) = c, for all
finite dimensional subspaces &.
Proof. 1If gn, o< n <o is regular of full rank, then by theorem
3.3.10 F 1is a.c. and (ii) follows from theorem 3.4.4.

Now suppose (i) and (ii) hold. Then from (ii) and theorem
3.4.4 it follows that the process is of full rank and hence by the
concordance theorem we get Fg = Fs' But Fs =0 by (i), hence
FC =0, 80 F = F“, i.e. gn, -« < n< o is regular.
3.4.8 Notation. Let R be an n X n positive matrix with eigen-
values A oS Ay <iceS A Following Gangolli for o € [0,1] we

1

1 1
let [31’02’---,0'n]-a[;’;""’ ;}"'(1 -a)[l,0,0,...] and
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dl dz an
define A(a,R) = )‘1 , xz ,...,)\n . Note that A(O,R) 1is the

smallest eigenvalue of and A(1l,R) 1s the n-th root of deter-
minant of R and for a fixed R, A(o¢,R) 1is a continuous increasing
function of o on [0,1]. We also note that P*FP is the spectral
distribution of the finite dimensional subprocess §nP. Next
theorem deals with the evaluation of L(GO) in terms of F.

3.4.9 Theorem. Let gn, - < n <o be aB(X,%) -valued SSP with
spectral distribution F, which has a bounded derivative F' so
that F(dg) = F'(eie)de + Fs(de). Suppose that @ 1is a finite

dimensional subspace of dimension n_, then there exists a unique

¢
o =ao@ in [0,1] such that

p 2m *
H log a(a(P), P F'P)de = log AG)) .

2m *
Proof. Define f(q) = ;—ﬂg log &(a,P F'P)dp then £(0)

p 2m * m *
z;g log 4(0,P ,F'P)dg = | log )A(P F'P)de. Hence

£(0) = log L(Gg) .
On the other hand

1 2n * p 2 P ———
£(1) = ;{ log a(1,P F'P)dg = E;r.g log ./dec P F'P dg

1 2n * 1
= ——— ' = - = .
=3 IE log det (P F'P)dg = —— log det G log A(G))

Now £(a) being a continuous, increasing function on [0,1]
(see p. 907, [ 8]) and since £(0) < log L(Ge) € f(1) we see
that there exists a unique o = o(¥#) such that

p om *
£(a) = 5= [ log A(x(&), P F'P)dp = log A(G) -
0
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3.4.10 Theorem. Suppose §n, - < n<w is a B(X,X)-valued SSP.
Then §n, -s<n<o is of full rank iff each finite dimensional
subprocess is of full rank and

2n *

g log A(a(R)), P F'P)dg 2 -c > -w,
where F' is the bounded spectral density of F, any «(P) is
as in theorem 3.4.9. P is finite dimensional.
3.4.11 Theorem. Let gn, - < n< o be aB(X,X)-valued SSP with
distribution F. For §n, o< n< oo tobe of full rank it is

necessary that for all o, € o £1 we have

2y
21 N
[ 1log A(a, P F'P)de = -c > -

and it is sufficient that for some o, 0 £ o € o_ we have

2 *
& log A(a,P F'P)dg 2 -c > -,

where P is any finite dimensional projection and F' is the
bounded derivative of F. Here @, and o_ are l.u.b. and
g.u.b. of the set {w(P), P finite dimensional projections}.

3.4.12 Theorem. Let f(eie) be a B+(I,If)-va1ued function on

the unit circle. Then (£(e®x)(y) = (2(e'¥x, 8(el®y), where

i > -ike *
(e = ¢ 8 with QOQO invertible iff for each finite
k=0 *
dimensional P, P*fP admits a factorization with § $ in-

] 1 o,p O,P
* -
vertible. Furthermore in this case n(QO,PQO,P) | € ¢ < =, where

c 1is a constant independent of P.

Proof. (=) Clearly if we have (f(eie)x)(y) = (Q(eie)x,Q(eie)y)
* ig i9 ig *

then ((P f(e )P)x)(y)) = ((3(e )P)x, (¥(e ")P)y). Hence P fP

*
is factorable. Now as in the proof of theorem 3.3.12, QOQO is the
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predictor error operator G, of the corresponding SSP and hence

*
the invertibility of &, % follows from lemma 3.4.2.
0,P 0,P
*
(=) Since @0 PQO P have bounded inverses then by lemma 3.4.4, the

corresponding process which has density f is of full rank and

hence by the concordance theorem Fa =F so F = F1 = Fu, i.e.

f = fu’ but by theorem 3.3.10 f , and hence f is factorable. Now
u

*
invertibility of QOQO

3.4.13 Theorem. Let o and o be as in theorem 3.4.11. Then

*
follows since QOQO = G as above.

. * i .
for f to be factorable as f(ele) = @ (ele)é(ele), where

ig o -ing . * . .
$(e’) = T e ® , with & %  invertible it is necessary that
n 00
n=0
for all ¢, a, <o <1 we have
2

*
g log A(a, P fP)dg 2 -c > -

and it is sufficient that for some o, 0 < o < o_

21 *
lg log A(a, P fP)dp 2 -c > -,

where P is any finite dimensional projection and ¢ is inde-
pendent of P.

3.4.14 Remark. If we put o = 0 in the second part of the last
2 *
theorem we get that the condition g log A(P fP)dg 2 -c > -~ s

ig *

* *
sufficient for factorability of f as f(e ") = & (e e)Q(e e),

i ® ik
where Q(ele) = £ e 0
k=0 X
improvement on theorem 3.3.15.

*
, With QOQO invertible. This 1is an

3.4.15 Remarks. (a) The proof of lemma 3.3.4 can be simplified

considerably. Note that H_(n) c H (n) and for a € &, a = lim gox
g u . . Mo m
for some sequence {xm] C X, hence Ua =1im U goxm = lim §kxm

which gives Hu(n) S H.(n). Also the proof of theorem 3.3.5 can be

g
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directly obtained by using projections in B(X,X) (see theorem 3.2.5)
and standard methods.

(b) Throughout this work we shall work with the assumption
that ¥ 1is separable. 1In case X, ®°<n<e is a stochastic pro-
cess taking values in a separable Banach space Y then the relevant
Hilbert space is ¥ = G{x*(xn), x* € If, n € Z}. It can be shown that

2
under the condition E“xoﬂ < ®» (in particular where x, is Gaussian)

0
X 1is separable. We note that we do not use here separability of If.
3.4.16 Remark. Suppose the covariance operators Rn’ o< n<®

is given. Let gn, -o < n <o be the SSP given in theorem 2.4. 1In
the next chapter we assume that the condition of Y under the norm
\\\x‘\\ = (R(0)x)(x) 1is separable. 1In this case we can show that
Hg(n) = 6{§kx, x € X., k £n}. Thus for the study of prediction prob-
lem the relevant factorization problem can be studied with Y and

X being separable. As remarked before, this assumption is satisfied

in several cases.



CHAPTER IV

FACTORIZATION OF NONNEGATIVE OPERATOR VALUED
FUNCTIONS ON A BANACH SPACE

4.1 Introduction. The main purpose of this chapter is to extend

most of the results of R.G. Douglas [ 4] on factoring nonnegative
operator valued functions on a Hilbert space to nonnegative operator
valued functions on a Banach space. As we mentioned before the
problem of factoring nonnegative operator valued functions on a
Banach space plays an important role in the study of Banach space
valued stationary stochastic processes (c.f. Theorems 3.3.10

and 3.3.12).

We remark that our definition of '"factorization' is exactly
what Douglas called "conjugate factorization'. However all our
results have dual statements and hence we have the extension of
Douglas' results.

When f is a positive operator valued function on a
Hilbert space, /f, the square root of f whose existence is known
plays a significant role. But when f 1is a positive operator
valued function on a Banach space Y the existence of a square
root in the ordinary way does not make sense. Nevertheless we
can prove (c.f. lemma 4.3.1) the existence of a measurable operator
valued function A on Y into some auxiliary Hilbert space which
behaves almost like a square root in the sense that f = A*A. The

operator valued function A, called a quasi square root, enables

36
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us to extend to the Banach space case a lemma of Helson [10],
p. 117 and the main lemma of Douglas [4].

In §4.2 we set up necessary terminologies and state some
known results. Section 4.3 includes the proof of existence of a
quasi square root and two lemmas on the characterization of
factorability of a positive operator on a Banach space. The re-
sults of §4.4 extend in a natural way most of the work of R.G.
Douglas [4 ] to the Banach space case. In establishing these re-
sults we make use of our fundamental lemmas proved in §4.3 and

Douglas' techniques employed in [4 ].

4.2 Ancillary results. In this chapter all the Banach spaces

and Hilbert spaces are separable. We recall that if f = f(eie)
is a weakly summable B+(I,If)-va1ued function on the unit circle,
then we say f 18 factorable if there exists a Hilbert space ¥
and a conjugate analytic B(X,X)-valued function A = A(eie) such
that f£(e'® = A" (el®A(e!®, in the sense that (£(el®x)(y) =
Ae'®x, Ae'®y); x,y € 1.

4.2.1 Remark. With the notation of the last paragraph we can
show that

ike

AE™® = paeTE,

k=0

where Ak's are bounded, in fact we can show that
® 2 2
zllax|l, sc |x|”, xex,
= Jagly = © x|

for some finite constant C.
To prove these we proceed as follows. It is easy to see

(-]
that A(eie) = A e-ine, where A

K are linear operators
k=0

'
k ]



38

® 2n .
2 2
defined on Y. We observe that I \\Akx“ = g \\A(ele)x“ de =
27 1o k=0 X X
& (f(e )x) (x)d9 < . To complete the proof it is sufficient to
show that the operator T: X - Lz(}() defined by Tx = A(eie)x
is bounded. By the standard method [11], p. 85, one can show
that T is closed, and being everywhere defined, it follows that
T 1is bounded.
ie + *

Let f = f(e' ") be a B (X,X )-valued function on the

unit circle. Theorem 2.4 shows that there exists a stationary

process §n, - < n < o, gn: X - X, for some Hilbert space X,

x, for

whose spectral density is f(eie). Letting U(§nx) = §n+1

all x €)Y and - < n < o, we obtain a unitary operator on
6(§n1, o< N < .

Let ua = Una for each a € g = 6(501). It is clear that u_
-o< n < o, ig a stationary process on ¢ into X. Call Fu
the spectral distribution of u . It is easy to see that Fg =
T*Fu'l.‘, where T = go and Fé is the distribution of §n.
4.2.2 Lemma. With the above notation, the distribution Fu is

a.c. w.r.t. the Lebesgue measure, and its density fu is a bi-

linear functional on @ X @. Moreover we have
(fx)(y) = £ (Tx,Ty); x,y € X . (1)

Proof. let a = Tx for some x € Y. Since (Fg(de))x) (x) is

a.c. w.r.t. the Lebesgue measure and (Fg(de)x) (x) = (Fu(de)Tx) (Tx) =
(Fu(de)a) (a), it follows that (Fu(de)a)(a) is a.c. w.r.t. the
Lebesgue measure for all a-e T(X). By §66 L9 ] we have that

(Fu(de)a) (a) is a.c. on @ Now (1) easily follows.
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4.3 Main Lemmas. In this section we will show the existence of
a quasi square root for a B+('I.,I*) -valued function on the unit
circle. We then extend a lemma due to Helson [10], p. 117, and
the main lemma of Douglas [ 4 ] to the Banach space case.

Our first lemma is on the existence of a quasi square
root.
4.3.1 Lemma. Let f be a weakly summable B+(’L,I,*) -valued func-
tion on the unit circle. Then there exists a Hilbert space ¥
and a measurable B(X,X)-valued function Q = Q(eie) on the unit

circle such that
£el® = (e!®q!® a.c., (4.3.2)
in the sense that
¥ = @Ee'®x, ae®y), xyex .

Proof. By lemma 4.2.2 there exists a Hilbert space (7, an operator
T in B(X,4d), and a bilinear functional g on @ X & with

d = 6(TY) such that
£ %) (5) = ge!® (1x,Ty); for x,y € X. 1))

Let {xi, l1<€ic< cn] be a countable dense subset of Y. Consider

{Tx1}:=1 and let {ei}:=1 be the Gram-Schmidt orthogonalization
-}
of {Tx1}1=1. Set
ig, _ ig
g,5(¢ ) =8(e’ (e ey

(e®

It is clear that gij ) defines a nonnegative matrix (mot

necessarily bounded). The result of p. 112 [10] can be applied
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to show the existence of a Hilbert space % and a sequence

F3)im
F,(e'®, F

of functions in Lz(x) such that 3ij(eie) -

ig
j(e ))x-

A on the finite linear combinations of {ei]:=1 by

N N
A(L a.e,)) = g a F .
=1 11y 1

It is clear that

N
2

N
l1<i<wo}. Then Tx = E ae, for some a
i=]1

Let x € {xi,

1 £1i<N<®. Then by (3) we have

i’

2 N
“A'l’x“xs 13 aiaj h ).

By (1), (4) and bilinearity of g we have
“ATx“;,= (f(eie)x)(x), X € {xi, 1<ic<a}.

Because f 1is weakly summable by (5) we have that the operator
AT: X - L,(X) is densely defined. For almost all 9's we de-

fine B(eie) on {xi, 1<ico} by B(eie)x = (ATx)(eie).

Following [10], p. 113, we obtain an operator

(2)

3)

(4)

€))

Extend B(eie) to 10’ the finite rational linear combinations of

xi's through linearity. From (5) we obtain

®'Ox, Be'®y) = P @), xy € 1y

This shows that for almost all g@'s, B(eie) is well defined and

bounded on 10. Hence a.e. B(eie) has a continuous extension
to Y. Call this extension Q(eie). It follows by (6) and the

continuity of Q and £ that

(6)
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Q" (e!®q(e'® = £(e'?).

Furthermore from the continuity of Q(eie), and (2) it follows
that Q(eie) is weakly measurable. This completes the proof.

Lemma 4.3.1 allows us to make the following definition.
4.3.3 Definition. The function Q -Q(eie) in lemma 4.3.1 is
called a quasi square root of ¢£.

In the absense of the square root, a quasi square root
has almost all the desired properties. One of its applications
is demonstrated in the following lemma where we extend to the
Banach space a result due to Helson [10], p. 117. First we
introduce the following definition.

4.3.4 Definition. Let f be a weakly summable B+('I,,T,*) -valued
function on the unit circle. Let Q be a quasi square root of
f with values in B(X,X). 7M(@Q) will denote the smallest sub-
space of Lz()() invariant with respect to U (U is multiplica-
tion by e-ie) that contains the functions [Q(eie)x :x € X}.

N
A function p(eie) = § e-mex

n=0
conjugate analytic trigonometric polynomial and the set of all

with xn € )Y 1is said to be a

such polynomials will be denoted by u. It is clear that 7NQ)
is the norm closure of Q(U) 1in LZ(’O'

4.3.5 Lemma. Let f be a weakly summable B+()‘,,1*) -valued func-
tion on the unit circle. Then f 1is factorable iff for any Q,
a quasi square root of f, M(Q) contains mo non-trivial reducing
subspace of U.

Proof. Suppose 7M@Q) < Lz()() contains no non-trivial reducing

subspace. Then, [10], p. 61, it has the form V(Lg-(){)), where
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V is a measurable isometry operator on & into X. In particular

0-
Qx = VGx, Gx € L2 ). Therefore

(£2) (x) = @x,Qx)y = (VG,, V6 )y = (6, G - (0

Define the operator Q(eie) on X into ¥ by
Q(eie)x = Gx(ele), x €)Y a.e. (2)

It is clear that Q(eie) is linear, and moreover by (1) and (2)

we have

lece Oy = flo, ce* &)

. (3)
- Ve B = et .

Hence & 1is bounded. Then by (2) and (3) and the weak summability
of f it follows that & 1is a conjugate analytic B(YX,%) -valued

function. Hence
* i i
£el® = 3" (% s(e!Y. %)

By (4) f 1is factorable.

Now assume f 1is factorable, say f = Q*Q, where § is
a conjugate analytic B(X,%) -valued function. Let Q be a B(L,X)-
valued function which is a quasi square root of f. We can compare

$ and Q as follows. Define
V(¢p) =Qp, PE U . )

We have (V(QP) ’ V(QP))LZM = (QP: QP)LZM =

2
%;'g (f(eie)p(eie)(p(eie))de = (§p, QP)LZ(X9. Hence we can extend

V to an isometry on N(3) onto MQ), where M(3) = S(&p, P € U).
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This mapping commutes with multiplication with e-ie. Now (%)
contains no non-trivial reducing subspace of the shift U, be-
cause it is a part of Lg-(}(). Hence its image M(Q), under V
cannot contain a non-trivial reducing subspace.

Now we can extend the main lemma of Douglas as follows.
4.3.6 Lemma. Let f be a weakly summable §+(I,1*)-va1ued func-
tion on the unit circle. Then £ 1is factorable iff for each non-

e, g(eie) = 0}

zero function g € M(@Q), the measure of Zg = {e
is positive.

Proof. This follows from lemma 4.3.5 and the fact that an in-
variant subspace of the shift U contains a non-trivial reducing

subspace of U iff it contains a non-zero function g for which

the measure of Zg is positive.

4.4 Main Theorems. In this section we extend most of the results
of Douglas [4] to the Banach space case. Lemma 4.3.6 is repeatedly
used in the course of the proof of our theorems.

4.4.1 Theorem. Let f1 and f, be weakly summable B+(’L,I*)-
valued functions on the unit circle and Q1 and Q2 be B(X,X) -

valued quasi square roots of f1 and f_  respectively such that

2
(a) fz(eie) -3 fl(eie) a.e.,
* *
() nQy) 2NQ) a.e.,
(c) <p(e‘°)\p1(e1°)x\\,( > R} (e %, e O] ,, awe.,
1

where ¢ is some nonnegative scalar valued function. If f1

is factorable then fz is factorable.
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Proof. Let U be the set of all conjugate analytic polynomials
(-]
in Y. Suppose g € M(Qz). Then there exists a sequence {pn}n=1
in U such that {QZPn}:=1 converges to some g in Lz(x).
ie ie ©
Now fl(e ) < f2(e ) a.e. implies that {len}n=1 is a Cauchy
sequence in Lz(x). Therefore there exists some h € WKQI) such
(.-} .
that ngpn}n=1 converges to h in Lz(x). We choose a sub-

sequence of P denoting it again by P, such that

Ql(eie)pn(eie) converges a.e. to h(ele) in X

(1)
Qz(eie)pn(eie) converges a.e. to g(eie) in ¥%.
By (a) and (1) we have
i i
Ince™®ll, < llste™® ], a-e
Hence
the measure of Z;\Zh is zero. (2)

It follows from (c) that

IR e D, = 1im T 0, Dp, (e,
n

-

< gle™®11m |0 (eie)pn(eieﬂ\,(

nN-—o

= ate 8 |lnce %,

Hence by (b), for almost all @'s we have the following implica-

tions.
h(e'® = 0 20](e"®g(e'® = 0205(e'Ha(e™® =0

= g(e'® ¢ n@y.
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But on the other hand by (1) we have g(eie) € closure of range
of Q2(eie). Hence g(eie) =0 a.e., because closure of range

* i
Qz(eie) is a subset of 7("'(Q2(e e)). Therefore
Z} Z8 has zero measure. (3)

(2) and (3) imply that Zh and Zg are a.e. equal. Now apply-
ing lemma 4.3.5 we conclude that f2 is factorable.
4.4.2 Remark. In case ) 1is a Hilbert‘space with Q, = /?1-,
Q, =/£,, (a) and (b) imply that N(£,) = N(E,) . Also in this
case, condition (c) is the same as (p(eie)fl(eie) 2
Qz(eie)fl(eie)qz(eie) a.e. Hence our result 4.4.1 extends the
main theorem of Douglas [4 ].

The following theorem does not seem to follow from theorem
4.4.1. However we provide a direct proof of it based on lemma
4.3.5.
1 and fz be weakly summable B+(I.,I*)-

valued functions on the unit circle such that

4.4.3 Theorem. Let f

£,(e'% 2 £,™®) 2 ge!Dg, ('Y a.e.,

where (p(eie) is a positive scalar valued function. If f1 is
factorable, then f2 is factorable.

Proof. By lemma 4.3.5 it is sufficient to prove that for a non-
zero g in 77((Q2), the measure of Z8 is zero. Let szn - g
in L2(7(2), then f.1 < f2 implies that there exists h ¢ LZ(’(I)
such that len - h in Lz(}(l). Choose a subsequence of P,

denoting it again by P, such that
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Qz(eie)pn(eie) converges a.e. in 7(2 to g(eie)

1

Ql(eie)pn(eie) converges a.e. in X; to h(eie)-

By (1) we have, a.e., uh(eie)“x < “g(eie)“’( . Hence the measure
1 2
of Zg\ Z, = 0. Similarly by (1) and assumption for almost all

0's we have

ig, - ig ig
lste™ll, = Ltm oyce e ey
1 ig ig
sw(e“’) pn IRyt Dryte iy
1 ig
= lhce™% ||, -
(e'% \Kl

Hence the measure of Zh\Zg is zero. So we have shown that

Zh = Zg a.e. Now by lemma 4.3.5 and factorability of fl it
follows that f2 is factorable.

The following theorem is a slight extension of theorem
4.4.1.
4.4.4 Theorem. Let f1 and f2 be weakly summable B+(1,1*)-

valued functions on the unit circle such that

(a) fz(eie) 2 m(eie)fl(eie) a.e. where m(eie) is non-
2
negative scalar valued and ll; log m(eie)de > -,

®) 7@y 27QY, a.e.,

(c) (p(eie)\\Ql(eie)x“x 2 \\Q;(eie)Ql(eie)x“ x 8-€.
X

where ¢ 1is a nonnegative scalar valued function.

1f fl is factorable, then f2 is factorable.
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Proof. The proof is a combination of a standard method and theorem

4.4.1. Let t(e'® =1 Ame!®. Then 0<t(e!® <1 a.e. and

2n 10 19

g log t(e ")de > -». By Szegd's theorem there exists k=k(e °) in the
{ .

Hardy class H2 such that t(e e) = lk(eie)\z. Assuming fl(eie) =

Q*(eie)é(eie) we have
t(e' e (e'® = (Re'®a(e'®) (ke a(e™®).

Applying theorem 4.4.1 to fl(eie) and t(eie)fl(eie) we conclude
the factorability of f2'

We now state the following extension of theorem 4.4.3,
whose proof is omitted.

*
4.4.5 Theorem. Let £, and fz be weakly summable B+(I,I )-

1

valued functions on the unit circle such that
i i@ ig ie ig
fz(e ) 2 m(e )fl(e ) 2 o(e )fz(e ) a.e.,

where m and ¢ are positive scalar valued functions, with
2n

& log m(eie)de > -o. If f is factorable, then f is factor-

1 2

able.

Now we shall give some Devinatz' type theorems. First
we introduce the following definitionm.
4.4.6 Definition. Let f be a B+(I,I?)-va1ued function on the
unit circle, we say that

(a) f has a '"conjugate analytic null function" 1if

(1) n(f(eie» is complementary a.e. and

(1) [lP(e*®x|2 = (ace®yx, Q(eie)x)x; x €1,

where P 1is the projection into the complement of n(f(eie))
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along n(f(eie)), and § 1is a conjugate analytic B(X,X) -valued
function.
(b) f has a '"quasi conjugate anmalytic null function" if condi-

tion (a) (i) holds and (a) (ii) replaced by
i i i 2
(@(e"x, 3 Om), = [P x|

< (e ® (e ®)x, s x), x € 1,

X

where ¢ 1is a positive scalar valued function.

We remark that in the Hilbert space case the termonologies
"conjugate analytic null", ''quasi conjugate analytic null" and
""conjugate analytic range' are all equivalent.

The following result is a generalization of theorem 2
of [ 4] to the Banach space case.

4.4.7 Theorem. Let £ be a weakly summable B+(I,1f)-va1ued
function on the unit circle such that
(a) f has a quasi conjugate analytic null functionm,

®) (£ 2 ne|peHx|,

2 .
is a positive valued function with f log n(ele)de > -o.

0

where n(eie)
Then £ is factorable.
ig io
Proof. Let t(e ") =1 A n(e ). Then as in the proof of theorem
*
4.4.4, t(eie) = lp(eie)lz, with p(eie) € Hz. Since f =Q Q,

nE) =NQ), and (£(x))(y) =0 if either x or y 1is in NQ).

We then have

n(e'O|p(e Ox|2 < (£(*0 (0 5 |2 | Ppee x|z @)

By (1) and our assumptions we have
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@ ®x, 2e'n, < EEPHnm = uf<ei°>n¢(ei°)(o(e‘°>x,o<e1°>x)x

X

where ¢ 1is as in definition 4.4.6(b). Hence we have
(re*® 8 ®)* (p(e!®a(e!®) < £(elf 2
< v'® (e eE!®)  Gethace?)y,

where § = |f|p/t. Hence by theorem 4.4.3, f is factorable.

Using this result we can prove the following theorem
which generalizes Devinatz' theorem [10], p. 119 to the Banach
space case.
4.4.8 Theorem. Let f be a weakly summable B+(1,If)-valued func-
tion on the unit circle such that f-l(eie) exists a.e. and is
bounded. 1If iﬂlog[“f-l(eie)“-ljde > -», then f is factorable.
Proof. Let us denote Hf-l(eie)“-1 by n(eie), so we have

2

n(eie)“x“2 < (f(eie)x)(x) and £ log n(eie)de > -c. (1)
1 2m ig 2
Denot ing the positive quantity E;-g n(e “)dg by N from (1)
we obtain
2n
N |x|? < %—;g (£e*Hx) () do - (2)

By [1 ] there exists a Hilbert space % and an operator T in

B(X,X) such that
2
* i
@ () =52 [ (£ xde, x € 1. 3)
J 1
By (2), (3) and boundedness of T we have

N||x|| = “Tx“’( < M||x| for all x € X, (4)
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where 0 < N <M < ». We note that %(f(eie)) = {0}, so that

the projection operator occurring in the last theorem is identity.
Then (1) and (4) guarantee the validity of the hypothesis of
theorem 4.4.7. Hence f 1is factorable.

4.4.9 Remark. As we have seen above the condition
2m -1, ig -1
'g log[||f “(e 9)“ ]de > -» implies the existence of a Hilbert

space X and a bounded linear operator T on Y onto ¥ which
is one to one. This means that the topology of Y can be obtained
through an inner product. Hence one could also obtain our theorem
4.4.9 by appealing directly to the Hilbert space case.

It is useful to know under what condition the finite sum,
limit and series of factorable B+(I,,'I,*) -valued functions is
factorable. Having our main lemma 4.3.6 available we can prove
the following theorems.

*
4.4.10 Theorem. Let £, and f, be weakly summable B (Y,L )-

1 2

valued functions on the unit circle. 1If f1 and f2 are factor-

able, then f = f1 + f2 is factorable.

Proof. Let Ql’ Q2 and Q be quasi square roots of fl’ f2

and f respectively, and 7(1, X, and X be the corresponding
Hilbert spaces. Let g € M(Q), then there exists a sequence

P, € U such that lmen =g in Lz(x). Since f 2 fj’ j=1,2,
N=—0
giving similar argument as in the proof of theorem 4.4.3 we can

show the existence of a subsequence of P, denoting it again by

P> such that

lUmQp, =g in Ly(30; lmQup =g, 1in Ly(X)), J=1,2,
Ll n—w

(1)

in Xj a.e., ] =1,2.

lmQp =g in X a.e.; lim ijn = Sj

n—<e n
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From (1) it follows that

oy (o™l + sy ™l = st Dl a-e. @

Since fj (j =1,2) is factorable, by lemma 4.3.6 either gj

(j =1,2) is a zero function or the measure of Zgj is zero. 1In
any case from (2) it follows that either g is a zero function

or the measure of Zg is zero. Hence by lemma 4.3.6 the proof

is complete.

4.4.11 Theorem. Let [fi]§=1 be an increasing sequence of factor-
able B+(I,If)-va1ued functions on the unit circle and ¢ be a non-

negative scalar valued function such that

(a) lim fj(eie) = f(eie) a.e.,
e
2
i
(b) 1m£(%@ )x) (x)dg < », for all x € X,
N—0
@  NEE®| < oe™® a.e.

Then f 1is factorable.

Proof. Let ﬁlj];=1 and Q denote quasi square roots of
{fj]?=1 and f respectively. By (b) and (c) f is weakly
summable B+(1,If)-valued. If £ 18 not factorable then there
exists a sequence P, €U and a function g € Lz(x) such that
1lim Qpn =g in Lz(}() with g non-zero and the measure of Zg
::mpositive (c.f. lemma 4.3.6). As in the proof of the last
theorem, there exists a subsequence of P> 88y P, 80 that

:-1: ijn = gj, for each j, in Lz(}(j) norm, and tl‘-j_: ijn =
gy a.e. in x&. (These limits are uniform w.r.t. j because

f doninates all f,'s.) Since lim f el® = £(el® in the

e
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strong sense we have 1lim (f (e )x)(x) = (f(e )x)(x), X €)X,
J—o
and hence for almost all @§ we have

i i
Lim I8yl = llste Dl -

Thus the measure of Zg is pointwise positive for some j which
implies by lemma 4.3.6, g =0 a.e. and hence g =0 a.e. This
contradiction completes the proof.

4.,4.12 Theorem. Let {fi};;l be a sequence of factorable B+(1,1*)-
valued functions on the unit circle and ¢ be a nonnegative scalar

valued function such that

(a) j(e 8 - £el?
J‘l
© 21

(b) g (£ (e 18 %) (x)do < =, x € X,
j’l

(<) EE®)| < ¢e’® a.e.

Then f 1is factorable.

Proof. Apply theorem 4.4.11 to the increasing sequence of partial

sums { Z fj}N 1° which are factorable by theorem 4.4.10.



CHAPTER V
NECESSARY AND SUFFICIENT CONDITIONS FOR FACTORABILITY

OF NONNEGATIVE OPERATOR VALUED FUNCTIONS ON A
BANACH SPACE

5.1 Introduction. In this chapter we continue to study the

important problem of factoring a nonnegative operator valued func-
tion on a Banach space. In Chapter IV we were able to extend to
the Banach space the work of R.G. Douglas [4 ] on factoring non-
negative operator valued functions. However these results pro-
vided only sufficient condition for the factorization problem.

Our purpose here is to establish some necessary and sufficient
conditions for factorability of nonnegative operator valued func-
tions on a Banach space. This extends to the Banach space the re-
cent work of Yu. A. Rozanov [19] and a certain result of R. Payen
[18] on necessary and sufficient conditions for the factorization
problem. It also reveals the close connection which exists between
these characterizations.

In §5.2 we set up necessary terminologies and state some
known results. In §5.3 we prove our main theorem on characterizing
factorable operator valued functions on a Banach space. 1In establish-
ing our main theorem we make use of quasi square roots and technique

employed in [19].

5.2 Preliminaries. In this chapter all Banach spaces and Hilbert
spaces will be separsble.
53
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Let £ = f(eie) be a weakly summable B+(I,,'L*) valued
function on the unit circle. Then by lemma 4.3.1 a quasi square
root of £, Q -Q(eie), with values in B(),X) exists. Let
§n = emeQ(eia). Then gn, o< n< o is a B(I,LZ(X))-valued SSp
whose spectral density is £. From here on gn, o< n< o, re-
presents this process.

In §5.3 we need a lemma due to Rozanov. Because of its
impoftance and for ease of reference we state this lemma here.
First we introduce some notations (c.f. [19]). Let B be a
linear manifold in L2(7() and § = {gn(eie)}:=1 be a complete
orthonormal system of functions in B. We denote by Bs(eie) the
linear manifold in the Hilbert space X generated by all values
gl(eie) ,gz(eie),... . Obviously the closure ﬁ(eie) = fs(eie)

does not depend on § in the sense that §S (eie) = BS
1 2

e, 1f s1 and 32 are any two complete orthonormal systems in B.

(eie) a.e.

In case B = Q(eie)]', it easily follows that
= 1 i
Ble'® =qe'dH1 a.e.,

where Q(eie)I, denotes the closure of the range of the operator
Q(e'®).

5.2.1 Lemma (Rozanov). Let B be a linear manifold in Lz(}().
Then the subspace S(emeB, -» < n € ®) generated by emeB,

-© < n< o, consists of all functions g € L2(7() such that
i = i
g(e e) € B(e e) a.e.

5.3 Main results. In this section we prove our main results. X

is a separable Banach space and X 1is a separable Hilbert space.
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f 1is a weakly summable B+(I,?L*) -valued function on the unit circle.
Q will denote a quasi square root of f with values in B(X,)).
§n = eineQ(eie) , o< n<», i8 a B(‘I,,LZ(K))-valued SSP with the
spectral density f. Let H = 6(§nx, X €)Y, ~-o<n< x) and
H(n) =6(E x, x € X, -=» <n).

We shall be interested in the structure of the subspaces

B = H(T) © H(S), where T, S are some sets of integers and for

any set T
H(T) =6(§ x, x € X, n €T).

One can say that B 1is the innovation of H(T) in comparison
with H(S).

LT will denote the linear space of all 1* valued in-
tegrable functions ¢{for each x € Y, cp(eie)x is summable} with

Fourier decomposition of the form

i i *
pe’® ~ £a e™? a €Y (5.3.1)
n€T
1.e.
cp(eie)x ~ Lax enie, x€eX
n€T
such that
i * i
oe® € q (e Oy (5.3.2)
and
2 *
- i ig 2
‘g Ik e ® (e ®| 40 < =, (5.3.3)
*-1, i9 * 19
where Q (e ) 1is the inverse operator from Q (e “)X onto
n"' = orthogonal complement of the null subspace of Q*(eie).

q (el
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5.3.4 Lemma. Let S be the complement of T in the set of all

integers and BT = H(T) © H(S). Then
*-
By = Q ]"'r° (5.3.5)

* ig ig
Proof. Let cp(e )GB Define ‘l’(e )=Q( Jp(e 7). From

the relations £ (Q (e e)cp(e )) (x)de = g (cp(e ) Q(e )x)de
2n
< (£ || cpCe 19)“ dg) (g Ik Ce ie)xn de)% < =, it follows that
2n
‘Y(eie) (x) 1is summable, x € X. Also we have that 0 = tE e-ise(q;(eie),

2n *
Q(e'®x)de = l[ e 200" e'% ,0e’®)) (x)ds, s € 5. Since ¢cH,
by lemma 5.2.1 and the paragraph preceding it (p(eie) € Q(eie)‘r, a.e.

%o
Hence q;(eie) = Q 1(eie)‘i'(eie) and Y(eie) GLT. Thus

*o
BT:Q II.T. Now let ‘{'(eie) be in LT' Set (p(eie) =

*-
Q 1(eie)‘i’(eie). We will show that cp(eie) € BT' We note that

for each x € X, (q;(eie) -Q (eie)x) = Y(eie) (x). Hence

2n -1s9 ig
‘g 8 ((p(e ),Q(e )x)dg = 0, 8 € S, x € X. It suffices to show

that ¢ €H = 6(eineQ(eie)I, < n< x. But cp(eie) € range of

*-1

Q (eie) = Q(eie)'L. Hence by lemma 5.2.1 and the paragraph pre-

ceding it we have that cp(eie) € BT' This completes the proof of
*o
SB_.
Q" s 8,
5.3.6 Corollary. The relation 6(emeBT, -~c<ne«w® =H holds

if and only if

Q(eie)x = Q*']Lr(eie) a.e. (5.3.7)

Proof. Since H = 6(eineQ( 19)1, -® < n<®), by lemma 5.2.1
H= S(emeB -o < n<eo if and only if B (e ) = Q(eie)’L

But by the last lemma B (el % =q 17..1.(&19)
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We note that this result in particular is useful for
regularity if we take T to be the set of all nonnegative in-
tegers. In this case the space LT is included in the Hardy

class of functions

© N
cp(eie) ~gaem®
n
0
More precisely they are so that for each x € ), the scalar valued
function cp(eie) (x) 1is in the classical Hardy class Hl. We also

note that in this case the relation
meB
S(e T ~s<n<wx =H

of corollary 5.3.6 is equivalent to the regularity of the process
g =e "', =<nca

We are now ready to prove our main result.
5.3.8 Theorem. Llet f = f(eie) be a weakly summable B+('I,,I*)-
valued function on the unit circle. Then the following statements
are equivalent:
1. £ 1is factorable

2. there exists a conjugate analytic B(X,X)-valued function V¥

such that

) vy e !ty

*1

1) Q  Ye!dy ey = qe!®y a.e.

2n
@ | IR* " e*®¥* e k| %ap < =, k € .

3. The process ein%(eie), -» < n < o, is regular.
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4. There exists a sequence {¢h(eie)]:=1 of measurable )-valued

functions such that

19, o
(a) a.e. 9, {¢h(e )]n=l is an orthonormal basis for
i
Qe d,
(b) For each n, Sn(eie)x = Q*(eie)qh(eie)x is in the usual

Hardy class H2 for all x € Y.

*
Proof. (1) = (2). Let f = ¢ %, where & 1is conjugate analytic.

Then

I (eiOx||® = ece dx|?, x € 1. (5.3.9)

Define
v(e'®Q(el®x = 3¢ Ox, x € 1. (5.3.10)

By (5.3.9) - (5.3.10), V(eie) can be extended to an isometry

on Q(eie)l onto Q(eie)x. Then the operator valued function

¥ = W} satisfies the conditions (i) - (iii) of (2).

(2) = (3). Let Y be a conjugate analytic B(X,X)-valued function
satisfying (i) - (iii). By corollary 5.3.6 and the paragraph

following this corollary, it suffices to show that

i *- i
Qe D1 = L ('®) ae.
Clearly the right hand side is a subset of the left hand side.
The other inclusion follows from (ii) - (i1ii) and the fact that
*
for each k € X, ¥ ke LT.

(3) = (4). Since einql(eie), < n«<o is a regular process,

H(0) = S(emq)(eie)l, n £ 0) does not contain a non-trivial
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doubly invariant subspace of X. Hence by [10], p. 61 it is of
the form V Lg-m, where V 1is a measurable isometry operator
ig o

on some Hilbert space & into X. Let {q;n(e )}n=1 be an

orthonormal basis for H(0) @ H(-1). An argument similar to one

used in [18], p. 380 and [10], p. 61 may be used to show that for
ig, @

almost all o, {q;n(e )}n=1 forms an orthonormal basis for

i i * i i
Qe'hHX. Let x €X. Toshow g (e’ x) = (Vg (')
2
is in the Hardy class H , we observe that for each n,

R .LeikeQ(eie)x for x € X and k € -1. Hence

2n _ 2n _
£ . ikegn(eie)(x)de _ g . 1kq2*(eie)qh(eie)(x)de )

2 _
& e ﬂ(e(qan(eie) Q (eie)x)de = 0. Thus g X € HZ.

(4) » (1). Let (a) - (b) hold. Let {en}:=1 be an orthonormal

basis for ¥. We define the operator valued function & by

i i
e x =z g (" e . x e (5.3.11)
n
We note that for all x,y € X

(fx)(y) = Qx.Qy) =1 @x,q)@Qy,¢)
n

=1 @ 0@ gy =1 @X(@y) (5.3.12)
n n

= (T (g,¥)e, T (g y)e) = (¥x,¥y),
n n

where the second equality follows by (a). Hence Q(eie) € B(XL,X) -
Because of weak summability of f it follows that for each

x €Y, §x € LZ(X). Using (5.3.11) and (5.3.12) it is not hard

to show that the conjugate analytic B(X,X) -valued sequence

N
by Ox = £g (e converges to #e'Ox 1 1,00

N n=1
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- *
Therefore & € Lg (). Since by (5.3.12) f =% § the result
follows.
2 ‘
We remark that if one assumes I l|£Ce e)“de < «©, then
0
part (b) of (4) in the above theorem can be replaced by (b'):
*
For each n, gn(eie) =Q (eie)qh(eie) satisfies

lEﬁ\\tz,,(ei%\\zde < =



CHAPTER VI

*
FACTORIZATION OF UfU

6.1 Introduction. Let £ = f(eie) be a B+(x3x)-va1ued function
on the unit circle. Suppose U(eie) is a B(X,¥) unitary valued
function. Then UfU* is also nonnegative operator valued func-
tion. Suppose f 1s factorable, then the natural question raised
by M.G. Nadkarni in [16] is to investigate the factorability of
UfU*. We study this problem here in this chapter. Using the
results of Yu. A. Rozanov on factorization problem [19] (c.f.
theorem 5.3.8) we give several necessary and sufficient conditions
for the factorability of UfU*. As a natural application of our
theorems we obtain a result similar to the one given in [187],

p. 381 on the factorization of a nonnegative operator valued func-
tion, involving the eigenvalues of f. We also obtain a Devinatz's
type necessary condition for the factorability of nonnegative
operator valued functions. In connection with these results we
cons ider the problem of factoring a 2 X 2 nonnegative matrix
valued function of rank one which has been discussed earlier by

N. Weiner and P. Masani [27].

6.2 Factorability of UfU*. Let X and ¥ be two separable

Hilbert spaces. A B+(x;x)~va1ued function f = f(eie) is called
uniformly summable if g nf(e“’)\\ dg < =, and weakly summable if
Eﬂ(f(ei )x,%)d0 < ®, for all x € L. A weakly summable B (X,¥) -

61
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valued function is called factorable if f(eie) = Q*(eie)i(eie)
where Q(eie) is a conjugate analytic B(X,X) -valued function
(c.f. definition 2.9).

To stay in the framework of the standard results on
Hilbert space valued stationary stochastic processes in the rest
of this thesis we take the following definition of factorability
which in the Hilbert space case is equivalent to our earlier
notion of factorability given in definition 2.9.

We say that a weakly summable B+kx3x3-va1ued function
f= f(eie) is factorable if there exists an analytic B(X,%) -

]

valued function § = Q(ei ) such that

£el® = 3(e!®s (19

The following theorem is a natural extension of Devinatz's
theorem [10], p. 119.
6.2.1 Theorem. Let f = f(eie) be a uniformly summable B+(X3X9‘
valued function which is a.e. invertible and
iﬂlog“f-l(eie) 46 < = . (1
Then the B+0VJV)-va1ued function UfU* is factorable.

Proof. We observe that for each x € X we have
(wer™y 0 = e R0 = @ uo < e

So we have “(UfU*)-ln < “f-lu. Hence by (1) we see that
2n
£ log“(UfU*)-lnde < ®. But by Devinatz's theorem we see that

%*
UfU is factorable.
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The following theorem is an immediate consequence of
theorem 6.2.1.

6.2.2 Corollary. Let f = f(eie) be a weakly summable non-
negative finite dimensional matrix valued function which is of
full rank. Then £ 1is factorable if and only if UfU* is
factorable.

Recently Yu. A. Rozanov [19] gave a necessary and suf-
ficient condition for factorability of a weakly summable B+(x;x3-
valued function. We extended his results to the Banach space
case in Chapter V.. However since we are going to use his result
in this chapter, we will state his theorem in the context of the
notations of this chapter. Before doing so we recall the follow-
ing necessary notation.

6.2.3 Notation. As before Lz(x) is the Hilbert space of all
geasurable X valued functions k(eie) such that
&nuk(eie)uzde < ®, with the inner product of any two elements

1 i
k= k(e % and k, = k(e 8 ¢ L,00 defined by (k,,k,) =

2n
i
%;'g (k, (e e),kz(eie)de.

6.2.4 Theorem (Rozanov). Llet f = f(eie) be a weakly summable
B+(x;x)-va1ued function. Then £ 1is factorable if and only if

there exists an analytic operator valued function ¥ such that

(a) Y(eie)}(: f%(eie)x a.e.

®) £ 5Oyl = £5e!®y a.e.

’

2n
@ [l 5(e'®)y (e 10)x|%d0 < =
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where f-%(eie) is the inverse operator from fs‘;(eie

e loy.

)X into
f
6.2.6 Theorem. Let f be a nonnegative finite dimensional

matrix valued function such that M(eie)/m(ele) is in L
ig

1’ where

) and m(eie) denote the largest and smallest non zero
i
9) .

M(e

eigenvalue of f(e Suppose f%(ele)}( is an invariant sub-

space of U(eie). Then f 1is factorable if and only if UfU*
is factorable.

Proof. Suppose £ 1is factorable as f(eie) = Q(eie)é*(eie),
with Q(eie) being analytic valued function. We will show that
conditions (a) - (d) hold for UfU* with ‘f(eie) being

Q(eie). By [5 7], p. 413 we have

ig

Byx = g Oy . @)

f%(e
But by hypothesis Uf%?( = f%)(. Hence by (2) we have
w = £% = vex = vefw = ey,

*
so we have ¥ = (Ufgu )X for a.e. 9 which is (a). Now by defini-

tion of f-)5 we have f-%f%)( = f%x. So we have

Uf"‘f”x = Uf‘ix . 3

Now f!,}( is invariant under U. Hence ka is also invariant

under U*. Thus from (3) we get
Uf!’;( = Uf-%(f“x) = Uf'!‘(u*f% = Uf"’u*f!’y(.

So by (2) we get Uf%X = Uf-gu*f%'}( = Uf-%U*QX. Hence we get

Uf%U*X = Uf-kU*QX which is (b). To see (c) we have flsf’s = N*.



65

By [ 5], p. 413 there exists an operator valued function C(eie)

%

with Banach norm one such that Q(eie) = f (eie)C(eie). So we have

:["\\Uf'%*@nzde p Eﬂnf"‘u*onzae < z"\\f‘%u*f’*uzde
< E“\\f'%\\z\\f”\\zde > iﬂ(n(ei") Im(e*®))dg < w.

Now suppose UfU* is factorable. Note that UfU* and f have
the same eigenvalues. We also note that Uf%U*K’ is invariant
under U*, because U*(Uf%U*x) = U*U(f%U*x) = f%U*x’= f%x =
U(f%x) = (Uf%)(x) = (Uf%

* *
ment we gave above, with UfU and U instead of £ and U

* gU*
J(UX) =UfU X. So repeating the argu-

respectively we can show that f 1s factorable.

We now state the following infinite dimensional extension
of the last theorem whose proof is exactly as in the last theorem
and hence is omitted.

6.2.7 Theorem. Let U be an unitary B(X,X) -valued function.

Let f(eie) be a uniformly summable B+(x;x3-va1ued function such
that R(eie) = f(eie)x' is a reducing subspace (closed) of U(eie).
Suppose that m(eie)I < f(eie) < M(eie)I on R(eie), with

M(eie)/m(eie) being in L Then f is factorable if and only if

1
UfU* is factorable.

As a consequence to theorem 6.2.7 we obtain the following
corollary.
6.2.8 Corollary. Let f be a uniformly summable B+(x3x)-valued
function satisfying m(eie)I < f(eie) < M(eie)I, with M(eie)/m(eie)GLl.
Let U be a unitary B(X,¥)-valued function. Then £ 1is factor-

*
able if and only if UfU is factorable.
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Proof. From M(e ")/m(e” ") € L,, and
nel®1 < £(e!® < M9,

it follows that f(eie)X's % a.e. We now apply theorem 6.2.7 to
conclude the proof of this corollary.
The next two theorems provide some necessary and suf-
ficient conditions for the factorability of UfU*.
6.2.9 Theo;em Let f = f(eie) be a B+KX’K)-va1ued function
3

such that £ "f(e )“de < ». Then UfU is factorable if and

only if there exists a partial isometry valued function V(e e),

with initial range in % and terminal range U(e )f (eie)U (eie)ﬂ3
% * 18 ig
such that U(e )f (e )U (e")V(e ™) 1is an analytic B(¥,¥)-
valued function.
%U*
Proof. Sufficiency. Let & =UfU V. Then § 1is an analytic
* %U* * %U* *
operator valued function and &% = UfU Vv Uf = UfU .
* * *
Necessity. Suppose UfU 1is factorable of the form UfU = §% ,

where § 1is analytic operator valued function operator valued

function. We then get

wel™y ue®y = aa”. (1
80 for each x € X we have

lweD™) )2 = %)% @

ig 50* * *
Then we can define W(e ™) on (UfU ) ¥ into & ¥ by
i %U* * *
W(e e)((Uf ) x) = 3§ x and by (2) we can extend it to an isometry

%U* >
W on UEUX onto & X. We then have
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WUf%U* = Q* . (3)

Taking adjoint on both sides of (3) we get & = Uf%U*w* and
letting W* to be V we get Uf%U*V = %. Thus Ufku*v is analytic
operator valued because § 1is so.

The following theorem gives a relation between the factors
of £ and UfU*.
6.2.10 Theorem. Let f be a B+(K3X)-va1ued function such that
iﬂnf(eie)“de < ©. Suppose that & 1is an analytic factor of f.
Then UfU* is factorable if and only if there exists a partial

isometry valued function V(eie) with terminal range being

ie 19y,,*,.10 *,
U(e )&(e " ™)U (e ") such that U%U V 1is an analytic operator
*
valued function. 1In this case U§U V 1is the analytic factor of

*
ufu .

6.3 Application. In this section we establish some new results
and prove some well known facts using the materials of §6.2.

The following is a special case of a result due to Weiner
and Masani [257.
6.3.1 Corollary. Let f be a nonnegative finite dimensional
matrix valued function such that M/m € Ll’ where M(eie) and
m(eie) are the largest and smallest eigenvalues of f(eie)
respectively. Then f 18 factorable if and only if 1log det f € Ll.
Proof. Let U(eie) be the unitary operator valued function which

is measurable and diagonalizes f. Suppose we have
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where A\ S A, S k3 S...5 xn are the eigenvalues of f. We
know by corollary 6.2.8 that f is factorable iff UfU* is factor-
able. But obviously UfU* is factorable iff log Ai € L1 for
all i=1,2,...,n. Hence f 1is factorable if and only if
16g A € Ll' Thus £ 1is factorable if and only if 1log det f ¢ Ll'

A well known sufficient condition for factorability of a
weakly summable B+(x3x)-va1ued function f is

inlog “f-l(eie)n-lde > - .

The following theorem shows that under some extra con-
ditions the above condition is also necessary. First we prove
the following lemma.
6.3.2 Lemma. Let f be a uniformly summable B+(X;X)-va1ued
funct ion which is factorable. Suppose m(eie)I < f(eie) < M(eie)I
with M/m € Ly- Let k(eie) be an eigenvalue of finite multi-
plicity for f(eie) a.e. Then

Enlog A(eie)de > -o.

Proof. Let v(eie) be a measurable unit eigenvalue of f(eie)
corresponded to \(eie). (For the existence of such an eigen-
function one may give a proof similar to the one in the proof
of part (b) of theorem 6.3.5.) Let U(eie) be a measurable
unitary operator valued function such that UfU* = N*, where
$ 1s analytic. Hence (UfU*,a) = (QQ*a,a) = (Q*a,t*a). Thus

we have
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M = (5™ ,ve!®) = (£’ e e, 0T Oe))
= WU e e e = (2ep e

*
Since ¢ e, = 8 (§ e, e )e we get

n=1
i
Ae % - 8 \(Q e e )\
k=1
But since Q (e e) = z Q -ing we see that
n=0 "
* i@ ng
(3 (e )eyse ) = z (Q n81°%, ye
2n
:1e) & log \(Q (e )el,e )\ - for some m. Hence by (1)

2n
£ log x(e )de > -o .

6.3.3 Theorem. Let f be a B" (X% -valued uniformly summable

function such that M/m € L;s where m(eie)I < f(eie) < M(eie)I.

Suppose f(eie) has at least one eigenfunction of multiplicity
one. Then f being factorable implies that

2m “1.,16

g log ||f~ )“ de > -m.

Proof. Since M(e ) 2 x(e ), using lemma 6.3.2 we get

2n 2n .
-0 <& £ log k(eie)de < g log M(ele)de .

We also know that

2 2
0 sg (log M(e® - log m(e ®))dg = rg logM(e ®) /m(e®))dp

2n
= g (M(eie)/m(eie))de <o .

(1)

(1)

(2)
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From (1) and (2) we see that 1log m(ele) is summable, because
we have 1log m(eie) = log M(eie) - (log M(eie) - log m(eie)).

2 ig
Hence we get log m(e “)d@ > -», which means

2n
-1, ig,-1
tg log ||£7 (e ¥ || o > -w.
The next theorem is an interesting consequence of corollary
6.2.8. We shall need the following lemma first.
6.3.4 Lemma. Let f be a measurable B+(x;x)-va1ued function
whose spectrum consists only of the eigenvalues, each eigenvalue
i@ ig ig

having finite multiplicity. Let Ll(e ) = Lz(e ) = 43(e ) =2..

8

denote the eigenvalues of f(ei ) 1listed according to their

multiplicity. Then LI’LZ’L3"" are measurable and there exists

a measurable unitarily valued function U(eie) such that
i ig, * i - i i
ue B Hu e = £ 4 (et Y,
-1 J 3
j=1
where Qj's are constant one dimensional projectors.

Proof. Here is an outline of the proof.
By a similar argument as in [ 67, p. 653, one can show
q

that I Lj(eie) is measurable for each q 2 1. Hence each
i=1

LJ(eie) is measurable. Following the proof of [7 ], p. 391, we
can show the existence of a complete orthonormal sequence

{uj}?-l of eigenvectors of f which are measurable. Let

{ej]:-l be a complete orthonormal sequence of vectors in X.
Define the unitary operator valued function U by U(eie)uj = ej.
We then see that U has the desired properties.

6.3.5 Theorem. Let £ be a uniformly summable B+(x3x)-va1ued
function such that m(eie)I < f(eie) < M(eie)I, with M/m being

summable. Then
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(a) Let the spectrum of f consist of only eigenvalues, each
one of which being of finite multiplicity. Then £ 1is factor-
able if and only if for each j, 1 £ j € », we have

2n
£ log Lj(eie)de > -,

where Ll(ele) 2 Lz(gie) 2 L3(eie) 2... are the eigenvalues of

f(eie) listed according to their multiplicity.

(b) If

f£(e’® = g p, (e!Op (19,

jo1 ] ]
Pj's are measurable one-dimensional projection valued functions
such that Pj(eie) are mutually orthogonal. Then £ 1is factor-

2n
able if and only if & log pj(eie)de > -w, for all j =1,2,3,...

Proof. (a) Let U(e e) be the unitary operator valued function
obtained in lemma 6.3.4. Then we have
ig., %, i by i
u(e'®ee'®uTEe!® = £ 1 (',
j=1 j j

where Q is the orthonormal projection on e,. Now by corollary

3 3
6.2.8 we know that UfU* is factorable if and only if f |is
factorable.
Now suppose that for each j =1,2,3,... we have
2n
g log 4,

Then there exists scalar valued conjugate analytic functions

(eie)de > - .

qﬁ such that Lj(eie) = |q3(eie)\2, i=1,2,3,... . Let x €X.

Then we observe that
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N N N
I £ o e x| = (£ oye™Hax, = He "9 %)
j=1 i=1 =1
N
= (jz L )ij,x) 1 (j:_;lx,j(e )ij,x).
Hence we have
N 19 2 10, ., 10, * 19
“jzlcpj(e e x||” £ W EETHU (e hx,x) - (1)
Similarly we get
M M
2
£ o e ¥ x| = ( z L (e*¥q x,x). (2)
Parthl j i i

By (1) and (2) we get (e )ij converges and defines a

%
i= 1 -
bounded operator, say &, through &x = g qh jx. We also have
j=
\\ 2 wj(e % xll” = ¢ z Lj(e %9 %0 (3)

j:
Now letting N - «» in (3), we get

(UEUx,%) = |z qh(eie)qjxnz =(Z qﬁ(eie)Q j(e t8yq x)
j=1 j=1 J=1

X,

3

* *
which means that UfU = %% . Now clearly for each m =1,2,3,...

we know that me = & j(e )ij, has only nonnegative Fourier
coefficients. We also observe that
2mn M 2n M
g \\j'_N j(e )ij\\ dg = lg (T2, e’ )ij,x)de
2n M
rg (L )Q x,x)de
211 N

g (z Lj(e % oxde .
j=1
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Hence by the dominated convergence theorem we see that the func-

M_
tion ¢ qu(eie)ij is Cauchy in Lz(){) . Hence we see that
i=1

Q(eie)x has only nonnegative Fourier coefficients. Now for each

n <0 we let an be the n-th Fourier coefficient of &x, then
@

gx= Le"®

n=0 *

with the weak integrability of UfU and closed graph theorem

* * %
an. But we have UfU = (§ x,% x), which together

*
we see that Qn's are bounded (Remark 4.2.1). Hence UfU 1is factor-

able, which means that f 1is factorable. Then by lemma 6.3.2
2 .
£ 108(Lj(ele))de > -w, for all § =1,2,3,...

(b) For each fixed j =1,2,3,... 1let u (eie) be a unit vector

3

in P (eie). Let {em}°° be an orthonormal base for . Then

] m=1

for all j € Z+, meEZ, Pj(eie)em = (em,u (eie)uj(eie) is measur-

3

able . We can divide the unit circle as the disjoint union of

countable sequences of ({E such that Pj(eie)em is different

mj}m=1

from zero on Em and zero on En for all n > m. Then obviously

] i
we have
{ P (e'%e
o i m
uj(e ) = To if ¢ € Emj
e e,
ig ig
Now since each of Pj(e )em is measurable, we see that uj(e )

are measurable. But Lj(eie) = (f(eie)uj(eie),uj(eie)), 8o
Lj(eie) is measurable for each j =1,2,3,... . Now one can

def ine the unitary operator valued function U through

U(eie)u (eie) = e

3 3

Now U 1is measurable and the rest of the proof is exactly similar

to the proof of (a).
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Based on theorem 6.2.9 we give a proof of a result due
to Weiner and Masani. However we point out here that for the proof
of sufficiency we make use of an argument contained in [27].
First we introduce some notation and state a lemma from [27].

We denote by Lg+

in Hardy class H6 and by Q2+ the class of all functions £

. o+
such that f = h1/h2 a.e. with h; and h2 € L6 .

the boundary values of the functions

6.3.6 Lemma. Every function in Q(5)+ on the unit circle,

0 £ § < », such that \f\ =1 a.e.i is in ng and admits a
factorization f = *1;2’ where *1?*2 € L2+ and \*1‘ = \*2\ = 1.
6.3.7 Theorem. Let f = [fi;]i,jSI be a weakly summable 2 X 2
(non zero) nonnegative matrix valued function such that det f =0
a.e. Then the following two conditions are equivalent.

(@) £el® = 5 e !®), where 0 # 3 ¢ 12

9 -
f
-+
(b) For i =1or 2, log £,, €L, and for i # j, LY € Q0 .
ii 1 fii )
Proof. Assuming £1 # 0 a.e. we have
ie ie -
£, £,(e™) 1 "
fel® = - £, ,
ie ieg 2
£,0(e77)  fy,(e) ¥ |¥] ]
f21
where § = Y Clearly the eigenvalues of £ are zero and
11

f11 + f22 = f11(1 + ‘t\z). Let a(eie) be a scalar valued func-
tion, then the vector (-;a,a) and (;,ti) are eigenvalues of

f corresponded to zero and fll(l + \W\z) respectively. If we

let a = —l then the unit vectors (-Ga,a) and (5,*5)
1+ |v)?

are eigenvectors of f corresponded to zero and fll(l + ]v\z)

respectively. Hence the unitary valued function
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a -a w(eie)
U(eie
a v(ele) a

sends the vectors (1,0) and (0,1) to (a,ay) and (-a@,a)

respectively. In other words we have

SRR I L B B IS PR P B

f21 f22 ay a 0 0 -ay a

Let us denote by

*
Then by theorem 6.2.9, f = Uf'U is factorable iff there exists
a partial isometry valued function V with terminal range

'y "
uf % such that Uf'U V 1is analytic. Now since

a -ya /Yli+f22 0| | a Va

ve' %" -

|
.
)

ya a 0 Of | -ya a
(D

2 —
a  /f,  +f
2 2
11 "2 " \W\

*
Hence Uf'%U is the subspace generated by the vector (1,y).

So the operator V(eie) has to send some vector, say
1 ]

( 7 2

L+ v /1 + (v

to (0,0), where s(eie) and t(eie) are some scalar valued

(s(e®,eel®) to ) and (-t(e % ,s(e'®)



76

functions with the property \s(eie)‘2 + \t(eie)\2 =1. So V

must be of the form

s t

vel® - —2— : (2)

EELIES BT

2 2 i
where |s|” + |t|” = 1. If we define V(ele) by (2) then from

(1) we get
s t
y * —_
' =
ue''u = VE L (3)
sy ty
where \s\z + \tlz = 1. Now suppose (a) holds, then we have
* 2 o+ 2 2
f=9% ,0#3% = [¢ij]i,j=1 €L, . Sowe get f11 = \qﬁl\ + l¢i2\ ,

f22 = | \2 + \qbz‘z Thus

log £,, > 2 log \¢11\, 2 log \¢12\

log f,, > 2 log \qbl\’ 2 log |, |-

Since % # 0 then P 4 # 0 for some i and j. Hence
log f11 € L1 or log f22 € Ll' Without loss of generality we
assume log f11 € Ll. Now by (3) and theorem 6.2.9 there exists

functions s(eie) and t(eie) such that

[n ]

s s /f t /f
_ 11 11
Uf'kU*V = /fn = €L
sy ty sy VE,, t4/E,

o+
5

P /Yll 1]
s /f
11
o+ o+
¥V € Q2 , hence f21/f11 € Q2 .

Now since y = and s /?;; ¥, s /?II € Lg+, we see that
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We now show that (b) implies (a). Suppose (b) holds.
For definiteness we assume that i = 1, so that we have

o+
log f.. € L, and f21/f11 € Q6 . If f£,, =0 then obviously

11 1
f 1s factorable. Assuming that f22 >0 on a set of positive

measure. Then as shown in [27], p. 306, the condition

o+ -
f21/f11 €Q, implies that log f,, €L;. Let f.. =g ¢
and f22 = cpzc.pz be the analytic factorization of f11 and f22.
£ @
Apply lemma 6.3.5 to the function ??-g '(;1- to get
11 *2
£ 9 ¥
22, lo L gpere ¥, =1 and ¥, e for i-=1,2.
fll (p2 WZ 1 0 1 ®
Let s(eie) = t(eie) = % ¥, '}_—__ . Then we have
‘/fll
st Y0, ¥,0
271 271
* —
veR™v = /% -
11 s H 2
Voo 1 1%

*
So Uf%U v €L0+

9 because L GL?: and 9 EL(2)+ for 1 =1,2.



CHAPTER VII

ALGORITHMS FOR DETERMINING THE OPTIMAL FACTOR
AND THE LINEAR PREDICTOR

7.1 Introduction. The theory of multivariate stationary stochastic
processes as developed by Wiener and Masani [257, [26], [14],
essentially consists of two parts. Part one deals with the analysis
of time and spectral domain. This part has been studied by several
authors and has been extended to the infinit e dimensional case

(c.£. [ 4], [ 8], (127, [167, [18], [19]). Part two is concerned
with the important problem of determining the generating function,
namely given a nonnegative Hermitian q X q, (1 £ q < @) matrix
valued function on the unit circle, such that f(eie) is weakly
summable and log det f summable, to find a q X q matrix valued

function § such that
*
£(e'® = 3(e!® e (!9,

where % 1is an analytic optimal factor.
An iterative procedure which yields an infinite series
for & 1in terms of f has been given there by Wiener and Masani

[26] under the following assumptions

c.I < £(e9 < eI, (1)

1

where 0<c15c2<a.

78
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In [14] Masani was able to improve the result he and
Wiener give in [26] by assuming in lieu of condition (1), that
(1) f 1is a weakly summable hermitian matrix valued function.
(i1) f-1 exists a.e. and f-l is weakly summable.

(iii) 1if v(eie) and p(eie) denote the smallest and largest
eigenvalue of f(eie), then p/v 1s summable.

The problem of determining the optimal factor was also
the subject of discussion by Salehi [21), where some improvements
were made in the field.

The problem of determining the optimal factor for the
infinite dimensional case has not been discussed in the literature.
In this chapter we wish to obtain an algorithm for determining
the optimal factor and the linear predictor for the infinite
dimensional case. As seen from Wiener and Masani's work, it looks
as though one has to assume that the spectral density is bounded
away from zero. On the other hand a trace class operator on an
infinite dimensional Hilbert space is not bounded away from zero.
Hence processes with finite trace will not satisfy the stipulation
and purpose of this chapter. This suggests the adoption of nota-
tions and terminologies provided by M.G. Nadkarni. 1In doing so
we can extend the algorithm given by Masani [14] for multivariate
process to the infinite dimensional case. Section 7.2 is devoted
to preliminary results. In §7.3 the relation between the two
sided predictor error matrices of a process and its subprocesses
is studied. Using this relation we show that under some bounded-
ness condition our process is minimal fullrank. We then show the

1 0+

crucial fact that for the optimal factor §, % is in L2 . In
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§7 .4, under some extra conditions, we obtain an algorithm for
finding the linear predictor.

We would like to mention that our method of attacking
the problem of determination of the generating factor and the
linear predictor is in the spirit of the work of N. Wiener and

P. Masani [26] and Masani [14].

7.2 Preliminaries. In this section we shall set down the notations
and preliminaries which will be needed in the next sections. Al-
though some of these notations have been introduced in Chapter II,
since we will sometimes deal with unbounded operators, this re-
introduction is necessary. Most of the notations and results of

the first half of this section are given in the work of M.G. Nadkarni
[16]. In the second half we prove some results on the Fourier
analysis of infinite dimensional matrix valued functions which

will be needed later.

7.2.1 Definition. Let X be a complex separable Hilbert space.
We denote by N the collection of all E = [§n], ne€z, of
elements in K. Clearly ¥ 1is a linear space and we give %

the product topology, 1i.e. g“ - E 1if for each k € Z+,

§:~ §k in ¥. Let E,T7 ef. We denote by (§,T) the Gramian

of € and 1| to be the matrix whose (i,j)-th entry is

(gi,'nj). Clearly (€,§) 1is nonnegative and (E,f) = 0 1if and
only if € = 0. The Gramian has the following properties:

(1) gn - €, “n - T implies that (§n,1\t‘) - (E,T, elementwise.
(ii) §n -+ 0 {if and only if (§n,§n) - 0.

(11i) If A and B are infinite dimensional matrices such that

*
AE and BT are defined, then (Ag,BT)) = A(g,T\)B*, where B is
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the adjoint matrix of B.
A closed subset H of ¥ 1is called a subspace if H is closed
under addition and Ag € H for any matrix A and any € € H
for which Ag 1is defined. We say & 17 if (E,n) =0. A
vector € 1is called normal if (§,E) = I, where I 1is the identity
matrix. A sequence {gn}::_m is called orthonormal if (§n,§m) =
Sml

For any B CX, EC‘J_{., we write
(i) S6(@) = subspace of N spanned by &
(ii) B(E) = gubspace of % spanned by ]
(iit) G(E) = gubspace of N spanned by coordinates of vectors

in E
(iv) 603) = the set of all vectors in !-/- with coordinates in &.
It is easy to see that for a subspace B of ¥, 6(8) is a sub-
space of ; and 1if E is a subspace of X then we have
B = 6(6(5)). Hence for any subspace B of N ve have B = 6(6) ,
for some B. Let E € N. We write (§|§) to denote the vector
whose i-th coordinator is given by (§\§)i = (§i‘6).
7.2.2 Definition. A sequence §n, o< n <o of elements of
& 1is called an infinite dimensional stationary stochastic process
(SSP) 1f the Gramian (gm,gn) depends only on m-n. It is easy
to see that there exists a unitary operator U on ¥ such that
u“g; - E;. Let U be its inflation operator defined on N.

Hence we have & = ﬁ“go. Let €, w<n<ew be a SSP. We write
H(n) = ©(E,, k < n), H(w) = 6§, k < =)

H(-®) = N H(n) and E(n) = 8(§,, k #n).
n
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7.2.3 Definition. Let T =§ - (gn\ﬁ(n-l)). One can see that
nn = ﬁnTb. We call “n’ -® < n <o the innovation process of

€h» “® <N < o Wevwrite G = (ﬂo,ﬂo) and call G the predictor
error matrix of §n, “-®»< N < o. We say gn’ o< n< oo is of
full rank if its predictor error matrix is of full rank, i.e. if
G 2 \I for some positive number ).

7.2.4 Definition. Let Ch = gn - (§nif(n)), the processes gn,
- < n< o is called the two sided innovation process of §n.

We write § = (go,go) and we call the process gn, “w<n<eo

to be minimal if § # 0, and minimal full rank if § = )\I, for
some positive number ).

7.2.5 Definition. Let u be an infinite dimensional nonnegative
matrix valued measure on the Borel subsets of the unit circle
(16], and let g = [gk], k €2, be a row vector valued function
such that gy = 0 for all except finitely many k, and for these
k, 9 is a trigonometric polynomial. Let Li(p) be the set of

all such g's with norm given by
21'\‘ ©

2 1 i ie
el = on {  E_ = Vg (4018, (e a0 .

Two elements of Li(u) are identified if their difference has

zero norm. The inner product of two elements g and h is given

by
211' ©
=L ig PR
(8,0) = 5= { o X E(e gy (000 (e Tydo

7.2.6 Definition. Let Lz(u) denote the completion of Lé(p).



83

In case of f being a spectral density we denote by
Lz(f) the space Lz(p), where um&(A) {me(e )d§. Hence the

inner product in this case is given by

2 @
i i
(g,h) ¢ = %;lg . fﬂlgm(e e)fm(e e)hL(eie)de

2n

- %T-tj‘ g(e (e ®n (' aq.
0

7.2.7 Definition. Let f be the spectral density of a SSP
gn, - < n < ». There is a natural isomorphism between Lz(f)
and Hg(ao which can be obtained by linearity from the mapping

S: §: - Y:, where Y: = [e-ineb We now state the following

k3
lemma (c.f. [16], p. 152).
7.2.8 Lemma. Let f(eie) be an infinite dimensional positive

matrix valued function which satisfies
ig ig ig
O<m(e™)I < f(e™ ) s M(e )1 a.e.

Then Lz(f) consists of all 42 valued functions g = [gl,gz,...]
with measurable entries such that ||g /Y“z = g(eie)f(eie)g*(eie) =
lim ¢ gm(eie)fmt(eie)gL(eie) exists a.e. and the resulting
function is summable.

Now we give the following two definitions.
7.2.9 Definition. Let f(eie) be a positive infinite-dimensional

matrix valued function which satisfies
0 <me 1 < £(e!® < Mel®HI a.e.

We denote by ié(f) the set of all infinite dimensional matrix

valued functions, each row of which being in Lz(f). We then give
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fé(f) the row-wise convergent topology, i.e. if Qn’ € ié(f)
then @n - & in fé(f) sense if and only if Q; - Qi for all
ie Z+, where Qi denotes the i-th row of &. When f = I, then
we write L, and fé instead of Lz(f) and ié(f) respectively.
7.2.10 Definition. Let S be the inflation of S, defined on
on ﬁg(o) into L,(f) by the relation et = sEly, vhere
£ € ﬁé(«b and i € Z+.

The following lemma gives some properties of S.
7.2.11 Lemma. With the above notation we have
(i) E,n = (§§,§3Df, where for each & and Y in ié(f)

we let (8.0) = [ D]
(ii) S is one-to-one
(111) S(§ + M = 5(8) + 5(V
(iv) S is a continuous transformation

(v) §(A§) = A(gg), whenever AE 1is defined.

Proof. (i) - (iv) 1is obvious. To see (v) consider
sag) = 5(tag'yl ) = [scan H1,

crs(ra 1™ = o O
[S(jglaijg )iy [jflaijS(g)]i=1 A(SE) .

Now we digress to discuss some Fourier analysis of infinite
dimensional matrix valued functions. For a matrix valued func-

tion § = [¢ ]m,L-l whose elements are summable, we define its
n
n-th Fourier coefficient An (a_.) by
2m
n _1 i9, -ing
a _2“£¢ (e e de .

We first prove the Parseval identity.
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7.2.12 Lemma (Parseval identity). Let § = [¢1,¢2,q5,...] and

m m
Y = [¥,.¥,,¥3,...] belong to L,. Let A and B, be the k-th

Fourier coefficients of o and *m respectively. Then

211‘ 4o o
ig. *
(@) ¥ = %—£ e’y (e!ha0 = £ zAB
n k=-o m=1
2n to @
2 1 i
® |8l =5 £ 2 Ce e)“ dg= £ = [Ak\
k=-o m=1
Proof. Let et = [e 1k96 ] Then e:. o< k<€ ow,]1 £mg o,

becomes a complete orthonormal system. We also observe that

(Y,gm) = A" and (§,¢m) = B®. Now standard Hilbert space argu-
k k k

K
ments can be used to complete the proof of the theorem.

7.2.13 Remark. The space L2 consists of all weakly measurable

Lz-valued functions V¥ = [*1’*2""]’ for which “Y“iz = 121|vi|2

is integrable.
We now prove the Riesz-Fisher theorem for infinite
dimensional case.

7.2.14 Lemma. Let be a sequence of infinite dimensional

(A e

+w
matrices. Then {A ] is the Fourier coefficients of a func-
nin=-o © +o

tion ¥ in fé if and only if § & lan ‘2 < o for all
n,
=1 n=-o “+o ing
m € Z+. Furthermore in this case we have VY = g Ane .
n==-o

Proof. If Y € fé, then for each m € Z+, we have

o o® zm'hn
L cla,|"= 2 T |a

n \2
n==-o Lﬂl m't‘ L-l n=-c

21 ig 2
L§1 Z“I Way (e )1 de

n = ig. 2
"g LEINM(E )‘ dg < » .

The last inequality follows because each row of Y belongs to L2-
4o ©®
For the other way assume that T I \a

2 < o, for each m € Z+.
n=-o =1

o
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“+o

Then for each m,{ € Z_, ne-w\amL\

there exists a square integrable function *m& whose n-th Fourier

2
< ». Hence for each m,q ¢ Z+

n ®
coefficient is 8 Let Y [*mL]m,L=1'

its n-th Fourier coefficient, and ¥ 1is in f., because

Then Y has An as

21 o © 2n ® <o

i 2 ig.,2 n 2
T v (ee)\de=z&w ehH=z £ |a%| <= .
tg =1 ™ =10 ™ =1 n=-m\ mt
oo .
Now standard arguments show that § = ¢ Anelne.
n=-c

An important consequence of the last lemma is that if An

is the n-th Fourier coefficient of a function in fé and {B }+m
n‘n=-co
is composed from A 's and zeros, then {B }+m is also the
n n"n=-c0

Fourier coefficients of a function in fé. This allows us to give
the following definition.
7.2.15 Definition. (a) If VY ¢ ié and has Fourier coefficients
o+’ Y_ and YO- will denote the function in Lz
whose n-th Fourier coefficient is An for all n >0; n 20,

An’ then Y,, Y

n<0 and n <0 and zero for the remaining n's respectively.

YO will be the constant function YO = AO.

(b) f;, fg+, f;, ig- will denote the subset of all functions

in fé whose n-th Fourier coefficient vanishes for all n <O,
n<0,nz20,n>0 respectively. Note that Y

e - —
belongs to fg+, LZ’ L2, fg whenever Y € L2.

oYY

o+ ¥ 0-

The proof of the following lemma is obvious and hence is

omitted.

—_4 -

7.2.16 Lemma. (a) The sets £0+ L2’ Lg, fg' are closed sub-

2’
spaces of Eé with f; J-f;.

(b) Let Y € L2 and let Yi denote the i-th row of Y. Then



87

: = = + = +
(1) Y=y +tY HY =¥ Y =Y ¥

an P = e+ e+ et = e i s ez,

i) el gl gl edl < vl ¢ e 2,

* * * *
(v) () =), () =),

7.2.17 Remark. Similar definitions and properties can be given
for 'L2 instead of L2'

We now prove a convolution rule for the functions in L2.
7.2.18 Lemma (Convolution rule). Let An and Bn be the n-th
Fourier coefficients of Y and § € EZ respectively. Then the

* (-]
n-th Fourier coefficient of VY@ is T A B
K=co k n-k’

Proof. The n-th Fourier coefficients of the (j,{)-th element of

2
* * -0
¥Y$ is given by ;—ﬂg(‘f(eie)é (eie)) emede, which is

iz
i@ ig -ing 1 2n - ipg, -ing
z[m )8 (e19))e  "0aq = 5= EAUNS cpm(e Ye T "de .
Consider
21 o 20 o
ig.— 1e -ing -
lg m}jl\v (e g (e |de = g zwj (e! )\lcpm(e % |de
2n o ©
ig 2. %
< | (Zly, (7))L ) ) de
lg m"l. Jm ‘ m'=1\<P \
21 o 211 ® X

2
< ( z ) de) ( 8 (e ) de)

— 2 o -
Now since Y and QGLZ we get IE mi‘,lem(pw\de<m. Hence

we can change the order of integration and summation,



211' . 211‘ =)
1 ig, . *, i@ -ing _ 1_ ig,— ig, -ing
o g (¥(e )2 (7)) e e g T ¥yn(e Dgule Ve e
© -k
- 197 (o180 - o kg
m-l zﬂ g Vin(e D@y, e m§1 kE-m?jm .

The last equality is by the usual convolution rule. If we change

the order in the last term we get

2n
1 ig, . *, i@ -ing
gm || (HeTIE () e e
4o o +w +x
k -n- k %* *
= L ZTa b £ AB ) =( £ AB ). .
k=-o n=1 j k=-c kn-k jg k=-c k' n-k j¢
We also need the following definition.
7.2.19 Definition. Let § be in fg+. Then ¢ 1s called the optimal

factor of f 1if the following three conditions hold
i i * i

(1) e = 3" (¥ a.e.

(ii) . 20

0
(iii) For any Y € ig*, £(e™® = y(e!®y (el = 3(e'®3 (!9,

*
we have Qo 2,/\1'0‘1'0 .

The following uniqueness theorem can be proved exactly as
in the finite dimensional case (c.f. [15]), and hence we omit its
proof.

7.2.20 Theorem (Uniqueness theorem). Let &,Y¥ be bounded linear

operator valued functions such that Q-l, Y-l exist and are bounded.

1 -1 70+

Let &, & ,Y,¥  bein L, . If

19 8%e!®) = v(el®y*(e!?),

then there exists a unitary operator U0 such that
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8e’® - v(eie)uo .

Furthermore Uo = I, if either &

are positive definite.

0 and YO are equal, or they

7.3 Further Analysis of Time and Spectral Domain. In this section

we develop some results which will be needed in the next sections.
Let gn, -c &< n< o, be aSSP. We denote by gL,n’
- < n <o the L-dimensional subprocess of it, i.e. for each

i

n € Z, we have (§L n)i = gn if 0<i<L and zero if i > L.
’

The following theorem gives some relation between § and
ZL’ the predictor error matrix of §n, o< N <o and gL,n’
- < n < o respectively.
7.3.1 Theorem. Let §n, -o<n < o be a SSP such that (go,go)
is a bounded operator. Let ¥ and EL be the two sided predictor
error matrices of §n, -« < n< o and gL,n, - < n< o respec-
tively. Then § 2 le if and only if EL 2 XZIL for all L > 0.
Proof. If 3% > \21 then clearly L > LZIL for all L >0. To
prove the other way, let us assume 2L > XZIL for all L > 0,

and suppose I < XZI, i.e. suppose there exists a sequence .
-]

o< n< o with po \c1|2 = 1 such that
i=]1
2 — 2 2
£ ¢ c, =N <\ . (1)
1,3=1 i ™) )

Let ¢ = )\ - )\' and take N1 > 0 such that

© 2 ' 2
£ |e \2 < A - (L"+i§[gl , for all n >N._. (2)
j=n h| 1

We have
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o o12 o o i >
Iz ciSoll™ = (& eifge T efg) = L 1&g rEP < =
because (go,go) is bounded. Hence there exists N2 > 0 such
that

| £ cigé“ < e/4, for all n >N, . (3)
i=n

If ¢ is the two sided linear predictor of E , -« < n < ®
0 n

then (1) means

2 2 = ) _
VAT 1,§=1c1 Ly 5 7 By ci(go’go)ij%
= Elci Coll = “iEIC1 € - (i§1ci g, 1RO ",

(-}
Hence we get |Q( E cy §é)“ =)' < )\, where Q 1is the projection
i=1
on K(O)'L N H(x). Let QL be the projection on H(e) N KL(O) +
Then since KL(O) t K(0) we obtain QL 1 Q. So there exists

N3 > 0 such that

lla, ¢ zlcigé)\\ < \' + /4, for all n >N (4)
i=

3 -

Let N = max(Nl,N ,N then by (4) we obtain that

3)
\\QN(izlcigé)u < \' + ¢/4. Hence we get

® N
1 i
(g cg)+Q (ELcE)|| <\ +e/b.
R 1N+ 1707 Ny 170 “ )
So we get
N o
\\QN(iE .8 - \\QN( z 15 )

\lQN(HE e, £0) +Q( z c gl s A+ els
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Hence
\Q”( T Cigo) < }' + 3/4 + \QN( z Clgi) l < )" + e/Z
‘ i=1 “ \ i=N+1 0 \ |

N
Thus “QN(izlcigé)“z < (\'+ 3/2)2 and hence by (2) we get

N ®
oy € = c.gé)nz <+ +IOE -+ e oA e ]
i=1 * 1=N+1 *

2 2 2 2 2 2 2 ® 2
<A -\ I |c =\ (2 |c - T e ).
1=N+1\ i i=1\ i i=N+1\ il

N2 2N o
Hence \pN( p) cigo)u <\ z \ci\ and thus we get

i=1 i=1

N N N
i i 2 2 2

NEeckE - (ZcE|KON|" A T ||,
i=1 i°0 =1 i O‘IS‘I i‘l\ i
or

N N
|2 easg = Golkg@I <a” T e, -

So we get || 2 c 5: “2 < 12 t:‘. |e ‘2 which implies
=1 L0 i=1' 1

N N _ LN 5
T ciz cj<)‘ E‘Ci\ .
i,j=1 13 i=1
2
Hence we get ):N < A IN’ which is a contradiction.
A similar theorem for the one sided predictor errors,
G and G, was proved by Gangolli [(817.
We will need the following theorem due to Masani [14].
7.3.2 Theorem. Let §n’ o< n< o, be a finite dimensional
SSP with spectral distribution F and two sided predictor error
matrix §£. Then §n, ~-o<n< o is minimal full rank if and
1

only if F".'1 exists a.e. and F' € 1L,. In this case we have
1
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p 2

1 -1, i@, -1
[2n£ F' “(e °)de)]

To progress further in this section, we suppose our
stationary stochastic process satisfies the following condition.
7.3.3 Assumption. Let €,> ~°<n <o beaSSPwith a spectral
density f such that m(eie)I < f(eie) < M(eie)I a.e. with
1/m(eie) and M(eie) being summable.

Let fL be the spectral density of the L-dimensional sub-
process of §n, o< n < . Then m(eie)I < f(eie) < M(eie)l
and hence for all L >0, (1/m(el®))1 < fl:l(eie) < (1/m(e*®)1.
Hence by theorem 7.3.2, the subprocess gL,n’ o< n< o is

minimal full rank for each L > 0. Now applying theorem 7.3.2

to these subprocesses we get
-1
zL-[ giL (e )de] , for all L > 0.

Thus by theorem 7. ; d, 1> [2 IE (1/tn(e ))de] I We also
have G >I >3- lEﬁ(llm(ejLe yde) 1.

Summarizing we get the following lemma.
7.3.4 Lemma. If §n, -x<n<w is a SSP with density f
satisfying the assumption 7.3.3, then G > & > \I for some
A >0. Now since G-]’ exists we let B = F “k’ and we call
it the one sided normalized innovation process of the processes
§n, -» < n <o,

Now using the last lemma in conjunction with several
results in [12], we prove the following theorem.

7.3.5 Theorem. Let gn, < n< oo be aSSP with density f

satisfying assumption 7.3.3. Then §n, =< n< o 18 purely
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nondeterministic and f is factorable as

£(e® = 3 ('Y,

i o ik > 2.k

where §(e e) = I Cye ® and T T \Ci
k=0 k=0 j=1

i €Z,. Furthermore § 1is the optimal factor with C0 = /G

2
j\ < o, for each

and Ck = (go,e_k), for each k € Z+.
Proof. Let d(e'® = (1 A m(e'®)I, then f£(e'® = d(e'® a.c.
and we have

2n i 21 ig
£ | log(1 A m(e'® |de < g log(1/(1 A m(e'%)))de

< log jn(ll(l A m(eie)))de < 1og[£(1/m(e19))de + f del,
c
19 2m ’ ig
where E = {9, 0 £ 9 < 21, m(e °) < 1}. Hence g \log(l A m(e “)dg <
log[iﬂ(l/m(eie))de + 1] < ». Now by [17], p. 165, we see that f
is factorable and hence by [17], p. 163, the SSP gn, > <& Nn< o

is purely nondeterministic. Thus by [17], pp. 155-156, §n,
(-]

- < n < o, has a one sided moving average, € = £ C 0 , such
k n-k
® o Kk .2 k=0
that for each 1 €2,. T T |Ci,| <> and @ , -w<n< e
je1 kel 1 n
is the one sided normalized innovation process of §n, ~o< n < .
@
Now take Q(eie) = T Ckgike. It is clear that ¢ 1is an analytic
k=0

factor of f, and we have
[ -}

(8928, = (£ €8 .80 = Co(8,,8)) =C

k=0 0

Also we have

(§9:0_4) = (£ C0_,,0 ) = (€00 ) =C (8,80 =Cp -
k=0

Finally, in order to show & is an optimal factor, assume that
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* *
Y is an analytic factor, then we have f = §% = Y¥ . Let

N
H(-N,-1) -G(gk, N<gk<-1), (go\n(-u,-n) = kflAkg_k. Then
G = lim GN’ where
N0
N N
=(,- LAE ,E - ZAE.)
G Gom S b0 7 Z Ak
2m N * N .
- -;—-j‘ a - ZAkeikg) £eiSy - ):Akelke)de
To k=1 k=1
p &m N ke * % N ke
=27 (- AT YT - £ae e .
0 k=1 k=1
Hence
6 > @@ > @h*ah
9
N™ o K "k 1 1
N ®  ike
where Ek is the k-th Fourier coefficient of Y(I - % Ake ).
k=1
It is easy to see that Eﬁ = YO for all N. Thus
GN 2 YOYO.

Now let N - = to get

*Q G *
% = ¥o¥p -

The proof of optimality given above is adapted from the proof
of the similar result due to Masani, for finite dimensional case.

We will need the following lemma.
7.3.6 Lemma. Let 8h? " < n <= be a SSP with spectral density
f satisfying assumption 7.3.3. Let 8, ®<n<e and % be
its normalized innovation and generating function respectively. Then
(a) e-nieb-l(eie) belongs to fé(f) and corresponds to en in

ﬁ(co) .
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(b) For Y in fé(f), ¥3% belongs to L2

(c) For any Y in fé(f), if we let Ak be the k-th Fourier
n 1ko 4z -1
coefficient of V¥§, then ( I Ae )&
k=-n_
Proof. (a) Since en belongs to H(x), there exists a correspond-

- Y in Eé(f) sense.

ing element of fé(f), say Y. Now consider

ing 2 i(n+i)e _ o ije
Q) = ( z (go’ej)e )*{um = 8 (goyen_j){,’me . (1)

(e
1,m j=0 j=n

On the other hand, we have

21 2n

-ikg, ., 18, %, 10 _ o -ike, o 19 ig
ge (F(e™ )Y (e7)), do ge (j§1f“(e MW yg(e ))de
_, -ike
=(e LY, .- (2)

The last equality is by definition, since for arbitrary VY, @

(-]
in Lz(f) we have (Q,Y)L’m @",Y) fi,g_lqbifij*jmde' Now
by (2) we get

2n
[ @), o=

ko _
1Y), = €0y o

Now (1) and (3) imply that for each 4g,m € Z+, (eniei(eie))L o

and (f(eie)Y*(eie))& n have the same Fourier coefficients.
nig, i@ - 19, ,* .16
Hence for each 4 ,m € Z+ we have (e $(e ))L,m (f(e"P)Y (e ))L,m

which means

"0 el® = £(elfy (el = 5(el® s (e!Oy (9.

ing *-
e ng, *-1 eie

ig * i@
Now since &(e ~) 1is invertible we get ¥ (e °) = $ (e ).

Thus

19) - e-nie -1

i
8 te'®

Y (e ) a.e.
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so e_nieﬁ-l(e

(b) Suppose Y € ié(f). It suffices to show that (\YQ)k € L2,

19) corresponds to 0"

k
for all k € Z+. We observe that (Y¥§) = [Wk,l’vk,Z""]Q’

Now we observe

2n 2
g \\Oi'o)kl\zde = £ \\[vk,l,wk,z....m\zde
= S ([wk,l’*k 2:-'-]§’ [wk’lswk’zg-'-]é)de

= g ([*k,l’wk,Z""]f’ [wk’lka’zx-°°l)de .

21 21 ® _
“”e£“””m%°'£ii#mfnﬂmf°<“ The last in-

equality follows from YK ¢ L, ().

(c) Using the Parseval identity of lemma 7.2.12 twice, we get

n -] © -]

YW2ae= £ g |af

— - Lj \ - - Lj\
k=-n j...' k_-m j_l

z I e 2=Ak

I Eﬂ\\ an|’a0 = oY) < =.

n —

The last inequality follows by (b). So T Akeike is in L2.
_ k=-n

Hence z (A eike)Q 1 belongs to Lz(f) for each n 2 0.

k=-n

(This follows by similar argument provided below') Now to show

n
ikg, . -1 -
9
L (Ae )% ¥ converges to zero in L,(f), it is sufficient to show

k=-n n
that (( I Akeik9)§'1 -y )L - 0 for each ¢ € Z+. Consider

k=-n

ike ike

T Ae 187 - vyt 2ae

kﬂ—n

e w)u-—“((ue

ike

2 n 102
o ((( TA K& Ye T - ¥YWE)V|| de
-l z n

2n n _
%;g \l((k zAe™® - yna e %ee -
=-n



T—— m— ———
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2n n
1 ike L.-1,.,2
== (( LA - ¥Yo)¥8 Vf|| de
2 £ “ k=-n k “

2 n n
1 ikg L. -1 -1% ikg )
== (( TAe -¥)" JE/ES T, ( TAe - ¥8) ™ )dg .
211 & k=-nAk k=-n k
Hence
n ike, . -1 L2 1 Zm n ikg 4,2
( ZAe Hd " -Y) = ( TAe - v§) || de.
Iz A =N R (NN I
Hence
n ikg -1 £,2 n 1ko 4,2
N zae e " -07" =[( £Ae™ -v¥8)7| de. (4)
k=-n k=-n

Now since Ak's are the Fourier coefficients of Y&, by the
Parseval identity the right hand side of (4) converges to zero

n
and hence ||( £ Akei‘ke)Q'1 - Y){'n2 converges to zero.

k=-n
Now we prove the following corollary which is important.
7.3.7 Corollary. Let rv(eie) - [e‘iVQQ(eie)]o+§'1(e1°), v>0.

Then Fv(eie) belongs to ié(f) and corresponds to the linear
predictor &v = (§v|ﬁ10)) under the isomorphism S given in
definition 7.2.10.

Proof. Consider

2
I Y = 3 Ll eetd) e

2
1 ig i 2
5;& llr, e Oyt ae

@(eie)]0+§'¥/f(ei°))‘n2de

n
'l—'
o
~
—
o
[ve
<
D

2 _ )
;—ﬂl[ N IO S ML R W TR T

[}
—
7~

M
[

[y

<

D

8e*® 7 0% a0
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The last equality follows as in the proof of part (c) of the last
i -1 2 i 2
I (G U2 = (e "%(e“’)] o2 = llace Y2,
Thus “(F ) “ < -—‘g (e QQ ,e )de = 1 £ (e f, eL)de < o, because
1"°¢(ei°)]o+§'1(e1°)
belongs to fé. Now let C, be the k-th Fourier coefficient of

k
the generating function §; Fv(eie)Q(eie) = [e 1ve

f is weakly summable. Hence Fv(e ) = [e

¥y, =

2 c i 8 belongs to fé and by lemma 7.3.6 part (c), we see

oo VHE

that
N 6 _
(2™t 2 ' m L.
k=0 v+

Now let Yy be the random function in ﬁ(m) corresponded to

Fv in fé(f). Then by part (a) of lemma 7.3.6, we have

N —
£cC 8, Y, in H sense.
k=0 vtk -k v
N ~
On the other hand, T Cv+ke converges to gv, because
® k=0 R
§v = g Cv+kek Hence Yy = gv, i.e. gv corresponds to Fv,

k=0 _
under the isomorphism §S.

Let gn, o< n < be a minimal full rank process with
two sided innovation process €2 @ <n<o. We write a =
B-ICn and call o, ®<n<e the normalized two sided
innovation process of gn, o< n< ®.

Now we prove the following lemma which is crucial in
getting our algorithm.

7.3.8 Lemma. Let §n, < n< o be aSSP with density f
satisfying assumption 7.3.3 and let @, ®<n<e be its two
sided normalized innovation process. Then

(a) The sequences a5, °<n<e and gn’ -« <n< o are bi-

orthogonal.
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[-<]

*
(b) o = kEoDken-l-k’ where en’ -0 & n < o is the one sided

normalized innovation process of gn, -© < n <o, and Dk is

the k-th Fourier coefficient of the inverse 6-1 of the generat-
ike

ing function Q(eie) = 3C
k=0

ke

(¢) @ € L2

Proof. (a) We have
(@8 = (€ 6ok = 2 Gy
= £7HE, - (5, |K(0)),Ey)
= £ - (& K(O)), €y - (5,K(0)).
So we get
(ag:8p) = (Cguly) =2 x =1 . m
For n #0 we have £ € K(n) + o, - Hence
(s §g) = 0 - )

Using (1), (2) and the stationarity of our process, we get (a).

(b) and (c). Since a, LK(0) 2H(n) for n <0, we get

1N HM) =H(-o). 3)
n

%
Now since oy € H(=) and H(w) = H(-) ®8(g, =< k<=, ve

get o € é(ek, -o < k< ®. In fact o € -G-(ek, k 2 0), because

for each k < O, ek c E(-l) c E(O) 1 oy- Hence

an = I g,, with ¥ ¢ la < o, 4)
07 0% o 1o i3]

for each 1 € Z+. Now by Wold's decomposition we have
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[~
E = TC 9 + v_, where v_ € H(-»). Hence by (3) and (4) we
n n n

k=0
obtain

(ot,§)=(2‘A9 C] )=EA
0’°n §=0 jj kﬂkn-k j‘()jn_j

Hence by part (a) we have

n

*
jEOAan-j =6 I - (5)

Then by the convolution rule we get

( z ke O 5 et =1 ace. (6)

*
(6) , together with the invertibility of ¢ , implies that

*- -
p 1 _ 5 Ak ikg )
k=0
Taking adjoint, we get
o _3 *
1. (LAe l'ke) a.e. (8)
k=0
-1 1 ® ik
So the (4 ,m)-th entry of & is (3 ) = 3 a e e.
L,m k=0 m,L_____
Hence the k-th Fourier coefficients of (& ) m is a; v for
each m,,, 1 € m,l, < ». Hence if we let Dk = Ak then we have
@ :
Q-l = T Dkelke
k=0
in the following sense
-1, 1 k -ik
@, - z:dwe °. ©)
’ kao ’
Now from ||2 1( 19)“ “f-l(eie)“ < 1/m(eie) we see that Q-l € ié,

@

which means & z \d \2 <o, for all 4, 1 £ 4 < ». This and
m=1 k=0 1,m

(9) implies that
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¢ 'e'® = £t
k=0

k6 in 1,8

This completes the proof of (b) and (c).

7.4 Determination of the generating function and the linear predictor.

In this section we shall express the generating function of a SSP,
gn, - < n <o satisfying some boundedness conditions (to be made
precise later) in terms of the spectral density f by an iterative
procedure as in the finite dimensional case [14]. We shall then
derive a computable expression for the linear predictor error
matrix. We mention here that because of infinite dimensionality
our convergents here would be in a weaker sense than the convergents
of the corresponding results in [14].

Here we suppose that our process gn, -o<n<oo has a
spectral density f satisfying the following assumption.
7.4.1 Assumption. Let f(eie), the spectral density of our pro-

cess satisfy
nel®1 < £e® < MEeld1,

with M(eie), 1/m(eie) and M(eie)/m(eie) being summable.

We need the following lemma.
7.4.2 Lemma. Let §n, -o < n< o be a SSP whose spectral density
f, satisfies the assumption 7.4.1. Then there exists a nonnegative

16) and a nonnegative infinite dimensional

real valued function fl(e
matrix valued function fz(eie) such that

@ £e'® = £ e (e

(b) fz(eie) =1 + N(eie), where “N(eie)nB <1l a.e.

(c) fz(eie) satisfies assumption 7.3.3
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(d) fl(eie) and 1/f1(eie) being summable.

Proof. (a) Let £ (e'% = 5u(e™® +m(e’®) and £, =
f(eie)/fl(eie) which are defined a.e. and satisfies (a).

®) Let N(e'® =g,(e'® -1 - (fl(eie)/fz(eie)) - I. Since

m(eie)I < f(eie) < M(eie)I, for all ¢o's we get

ig ig
1\N(ei°) = 2 fel® 1| Me ) —me )
HB \m(eie) + M(eie) \ M(ele) + m(eie)

Now since m(eie) >0 a.e. we get \\N(eie)“B < 1a.e.

(c) Now from fz(eie) =1+ N(eie) = f(eie)/fl(eie), we get

io ig
2m(e” %) ie 2M(e )
io I < f2(e ) €

M(eie) + m(e V) M(eie) + m(eie)

I.

Hence (m(eie)/M(eie))I < fz(eie) < 2(M(eie)/M(eie)) = 21, which
completes the proof of (c).

(d) fl(eie) and l/fl(eie) are summable, because we have

0< fl(eie) < MEe'® and 0= 1/f1(eie) < 2/m(e'®y.

The following theorem gives the relation between the gen-
erating functions of the spectral densities f, f1 and f2.
7.4.3 Theorem. Let £ be the spectral density of a SSP which
satisfies the assumption 7.4.1. Let fl(eie), fz(eie) and
N(eie) be as in theorem 7.4.2. Let &, 9 §2 be the generat-
ing functions and G, gl, G2 be the predictor error matrices
of the spectral densities f, fl’ f2 respectively. Then
(a) &1, (I/qi)l and §£1 are in fg+.

(b) & = ¢i§2'
(¢) G = 3162.
Proof. (a) is clear from theorem 7.4.2 and lemma 7.3.8. For

(b) consider
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where Y = ‘PIQZ' By (a) and convolution rule we see that VY
and ‘k'-l belong to I-:(ZH' Since the O-th Fourier coefficients
of § and Y are positive matrices, we can apply the uniqueness

theorem 7.2.21 to conclude § =Y. Hence § = cpl‘bz-

Now (c) follows because

Since f1 is a real valued spectral density one can find
its generating function by the usual method. So in order to find
% we just have to get an algorithm to find the optimal factor of
f2. Hence in view of the last theorem, we can assune that our
spectral f satisfies the following condition.

7.4.4 Agsumption. Let £ be a spectral density of a SSP such
that f(eie) =1+ N(eie) » Where N(eie) is a Hermiation valued
function with the following two properties.

W NS <1 ae.

(i1) m(eie)I <I+ N(eie) £ MI, where M 1is a positive
constant and llm(eie) is summable.

From now on we will be working under the set up of assump-
tion 7.4.4.

7.4.5 Definition. For any Y € L2 define @(Y) = (YN)+, this
makes sense because “N(eie)“B < 1. Now for each Y € fz we de-
fine @ by (5?)1 = 0(?1), for all 1 € Z+.

We omit the easy proof of the following lemma.
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7.4.6 lemma. (a) & 1is a bounded operator on L2 into L2

with the Banach norm less than or equal to one.
(b) 7(1) =N, &) = NN
Now we prove the following lemma.
7.4.7 Lemma. Let § and G be the generating function and the

)

predictor error matrix of the spectral density f(ei ) =

I+ N(eie) satisfying condition 7.4.4. Then
- = -1
@W+AUG e ) =1,

where J 1is the identity operator on EZ'

Proof. Let ¥ =/G #"l. Then by theorem 7.3.8 part (c), ¥ be-
longs to ig+ and Yo = 1. Hence Y =1+ ‘i’+. Next, since
I+ N(eie) = Q(eie)ﬁ*(eie) we get

YW =/6 M) =68 D)
Hence Y++(‘1’N)+=(Y+‘¥N)+=O. Thus Y-I+(YN)+=0. Hence
G+ =1 .

We next state the following theorem.
7.4.8 Theorem. Let @ and @ be as in the definition 7.4.5.
Then

(a) @ 1is a strict contraction on L i.e. 0O#YC¢€ L(2)+ implies

) >
that |lg¥|| < [¥|.

(b) 4+ @ 1is one-to-one on L, into itself.
+
(c) (#4,X) = (¥,9X), for all Y¥,X €L,.
Proof. (a) By assumption 7.4.4 there exists an ¢ >0 and a

set Ce with positive measure such that
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\\N(eie)HB </1 -, forall ge€C_.

o+

Let 0 #VY € L, . Since \\01’“ = \‘(YN)_A\ < \\YN“ we have

m 2
\stiin%w%Wmsagwéwﬂw%ﬁw

sa-aﬁgww%ww+§agw%w

o+

Hence we get \\9{'“2 < H‘l’\\z - g;& H‘i’uizde. Now since 0 # Y €L,

one can see that £ \\Y(eie) \\dee ; 0, which means ||@¥| < ||Y||-

(b) Let Y ¢€ 1_,2 and suppose that (J + @)(¥) = 0. Then

@] +0)(Y1) =yl +0(‘i’i) =0 for all i €Z, . Hence vl
-O(Yi). So \Yi € L(2)+ and consequently H‘l’l“ = \\O(Yi) |- Hence
by part (a) we get ‘l’i =0 for all 1i ¢ Z+, which means Y = 0.
This completes the proof of (b).

+
(c) For ¥ and X in L2 we have

(m’x) = ((YN)+!X) = (YN!X+) .
(The last equality follows from Parseval identity.) Hence

@,X) = (W,X) = (N,X) = (¥,XN)

= (10N = (¥,(N) ) = (¥,8).

We now show that for the operator 6 + 5) -1, the usual
geometric series converges; the convergence, as one expects, is
strongly and in fz(f) sense.

7.4.9 Theorem. Let @ and @ be as in definition 7.4.5. Then

(a) é -0 strongly in L,, as n -, f.e. for each ¥ €L,

1im ||¢" ¥|| = 0.
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PR ¢ | —_ —
(b) ¢ -0 strongly in L,, i.e. for each Y €L, iez

1im @™ = 0.

n-wo

(¢) If Y 1is in the range of J + 5 then

+’

n
G+ W =1in £ DY), in L,-
n—o k=0

Proof. Let Y € L,. Then using theorem 7.4.8 (a) and an argu-
ment similar to the one used by Masani in theorem 4.8 of [14],
one can show that “9“‘{'“ - 0, a8 n —» ». This completes (a).
Now (b) and (c) immediately follow from (a).

We know that the range of ._ﬂ + 5 is a subset of L;,
containing I. Let us write

v=@+5 Y1) =1 SN, N+ €L

The function Y 1is thus available from the spectral density by
an iterative method. We shall now show that the generating func-
tion ¢ of our SSP and its predictor error matrix G are easily
obtainable from VY.

7.4.10 Theorem. Let f, the spectral density of our SSP, satisfy
the assumption 7.4.4. Then (a) Y =,G Q-l, (b) ‘i’f‘l’* =G a.e.

Proof. (a) Since by theorem 7.4.9 (c) and lemma 7.4.7 we have
G+aI =1=G+06 e H.

On the other hand, by theorem 7.4.8 (b), 3 + 5 is one-to-one.

Hence Y = /G Q-l which gives (a).

(b) By (a) we get /G = ¥ and hence we get

G =/G /G = (¥8) (¥8) = veo'y" = yey .
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k=0 ¥

From the series ¥ =1 - N+ + (N+N)+ -... we see that

Since & and Q-l € Lg it follows that Y and Y-l ¢ Lg .
@® (-]
- i
Let ¥(e'® = £ ae™® vl o £ ™
k=0

AO = 1, and for each n >0

@ [--} (o]
A = - ] + 1™y - (] ) ) +- ..
=T IR nflpi:lrprn_prm_n (1)

where Fi is the k-th Fourier coefficient of N. Thus the co-

efficient Ak is determinable. The coefficient B can be found

k
from the relations
AOBO =1 = BOAO
AOB1 + AIBO =0 = BOA1 + Ble (2)

Since AO =1 matrix inversion will not be encountered in finding

Bk' Now for C

and Q-l respectively, we have A = /G DB

K and Dk’ the k-th Fourier coefficients of &

_ -1
= Ck /G . But

k
* o . _ike
G can be evaluated from G = YfY , so we can get § = T Cke .

The last thing we are going to do in this sectig:Ois, given
the SSP En, -~ < n < o, with spectral density f, to find a scheme
for computing év’ the linear predictor of 1log v.

Let §n, -o<n< o be a SSP with spectral density f.

Let M be a constant and m(eie) be a scalar valued function
with l/m(eie) being summable. Suppose m(eie)I < f(eie) < MI.
It is clear that under this condition, f satisfies assumption 7.4.1,

and hence one is able to find Ck and D, , the k-th Fourier co-

k

efficients of § and Q-l respectively. So one can compute
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1

-inQ(e1e) ](H_Q- , in

E ., the k-th Fourier coefficients of [e
vk K

fact Ev = ¥TC D Also in this case, we have

k vin k-n’
n=0 n
-ive,, ig -1 -0+ ike -ivg, i -1
[e (e V)], & € L, . Hence kEoEVke - (e d(e e)]C d 7,

as n - o, in Eé sense. From f(eie) < MI it follows that,
as n - o,

n
T E e

iko - [ -ive io
vk €
k=0

(e )]0+§'1(eie), in Eé(f).

Applying the isomorphism S we see that

n
lim L E

= E , in ﬁ(m) sense.
n—o k=0 ¥ v

kg-k

So we have a scheme for finding Ev'
Meanwhile we proved the following theorem.
7.4.11 Theorem. Let §n, o< n«< o be aSSP with spectral

density f satisfying m(eie)I < f(eie) < MI, where M 1is a

ig

constant and m(e °) is a scalar valued function with a summable

reciprocal. Then with the above notation we have

n
lim § E
n— k=0 v

n —
Hence we get ;:: kEOEvkg_k = §v, in H(e).

ik -1 i -1, 1 -
k€ ® [e VGQ(G e)]0+§ (e e), in LZ(f)'



CHAPTER VIII

MINIMALITY AND INTERPOLATION OF INFINITE
DIMENSIONAL STATIONARY STOCHASTIC PROCESSES

8.1 Introduction. In this chapter we investigate the problems

of interpolation and minimality for infinite dimensional stationary
stochastic processes. We will continue with the notation of the
last chapter. We will first extend to the infinite dimensional
case, most of the results of H. Salehi [21], [22], [23].

Using his technique in [ 23] we prove two infinite dimensional
extensions for a result due to P. Masani [14] on the minimal full

rank stationary stochastic processes (c.f. theorem 7.3.2).

8.2 Minimality and interpolation. We assume that our stationary

stochastic process satisfies the following assumption.

8.2.1 Assumption. Our SSP has a spectral density £, with

0 < ®1 < £(e!® < ME!®I a.e.

8.2.2 Definition. Let M and N be weakly measurable 1 X o
matrix valued functions. We say <M,N> 1is Hellinger integrable
with respect to f 1if

2n

QN> = ;_ng ML N" 18 dp < w.

We denote by Hz(f) the class of all 1 X » matrix valued func-
tions M, for which <M,M> 1is Hellinger integrable with respect

to f.

109
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The following lemma gives some properties of Hz(f)
functions.

8.2.3 Lemma. (a) M € H,(f) if and only if ue? € L,.
(b) M and N in Hz(f) implies that <M,N> is Hellinger
integrable with respect to f.

(¢c) M and N in Hz(f) implies that M+ N ¢ Hz(f).
Proof. Since M,N>. = (M,N)., the proof follows from the
corresponding properties of Lz(f).

The following lemma is needed later to establish the
isomorphism between Hz(f) and the space Lz(f) introduced in
§7.2.

8.2.4 Lemma. Let M(e'®) = s(e'®f(el® and N(e'®) -
Y(eie)f(eie), where $ and VY € Lz(f). Then <M,N> is Hellinger

integrable with respect to f and
LN> = (8,Y) .

The proof is clear because

2
*
%—{ (e (e'% a0
2n
= =] ae®re'®) et et ee'®) e
0

ﬂ
= -;—l[ 2 % ee ity  (e!®ag = CR
114

Let T be the linear transformation defined on Lz(f)
into Hz(f) by T3 = &f.
Some important properties of T are stated in the next

theorem.
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8.2.5 Theorem. (a) T 1is a linear operator on Lz(f) into
Hz(f), i.e. for any a,b € ¢ and any VY,% ¢ Lz(f), we have
T(ad + bY) = aTd + bTY.

(b) T 1is an isomorphism, in fact <T%,TY> . = (Q,Y)f for all
¢ and Y € L,y(f).

(c) T 1is onto. 1In fact, if M ¢ Hz(f) then T(Mf-l) =M.
Proof. (a) is obvious. (b) follows from lemma 8.2.4. To see

(c) we just have to show that Mf-1 is in Lz(f), which is the

case because

_ 21 IR 1 s
e S LG S O I LR G P
2n
- ;—”E e e e M (e o < o

Now since Lz(f) is a Hilbert space, the following
corollary whose proof is omitted, is an immediate consequence
of the last theorem.
8.2.6 Corollary. Hz(f) is a Hilbert space over complex numbers.
8.2.7 Definition. We denote by ﬁé(f) the space of all o X »
matrix valued functions, each row of which being in Hz(f). For

M and N in Hy(f), we define <MN>. by

=l §d
(<M’N>f)i,j <M ,N >f .
Let the transformation T on fé(f) into ﬁé(f) be the
inflation of T. The results of theorem 8.2.5 and the usual
technique can be used to show that T 1s a one-to-onme transforma-

tion on ié(f) onto ﬁé(f) which is an isometry, in fact for

all & and Y ¢ fé(f),
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<r§, w>f = (§$ ‘y)f .

Leiy(6) ana Tae'h = .

Furthermore for any M € ﬁé(f), Mf
Now let us give the following definition.
8.2.8 Definition. Let gn, -c<nNn<o be aSSP. Let J be a

subset of integers Z. We write m, = 6(§j, j e, n

=-L —w
J J mJl nn()’

where J' =2\J. We say that

(a) J 1is interpolable with respect to gn’ o< n<o if

n, = {0}.
(b) §n, -« < n < o 1is interpolable if each bounded subset, J, of
integers is interpolable with respect to §n, o< N< ™,
(c) The process gn, o< n< oo is minimal if for each integer
j» J = {j} 1is not interpolable with respect to §n, -« < n< ».
8.2.9 Definition. (a) For each element E € ;J we write

'® = £ (.5pe7 8.

s 1€ )
(b) We define the operator Q on n

P

3 into Hz(f) to be

Qg = Pg’

Part (a) of the next theorem shows that Qf € ﬁé(f), for
each § ¢ n;.
8.2.10 Theorem. (a) Let € € GJ and Y € fé(f) such that
SY = €. Then P_ = Yf.

g

(b) Q 1is an isometry on ﬁJ into Hz(f), in fact

(.1 = REQTP,,

where € and 1 are any two elements of ﬁ(w).

Proof. (a) Let Y ¢ fé(f) and € = SY. Then
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-16ky 1 2" e . i *, ig
(§,8 = (Y, ") 2"£w(e YE(e )Y (e )de .
On the other hand we have
1 & p 2w

L. g eikepg(eie)de - E;>£

> (£ (5.8 I%e 1 19yaq

jed

2n .
1 - v 1(k-3)0 -
-z z—n‘g(g,sje( Vo = g5y
jed

Hence Yf and P_ have the same Fourier coefficients, which

g

implies

P_ = Yf .
g

(b) Let € and T € ﬁJ and 3,Y € fé(f) such that EY = €

and S% = T. Then we have

REQTP, = <P§’PT\>f = <T¥,T¢>_

= (1,89, = (5.0

The following theorem gives a characterization for inter-
polability of an infinite dimensional SSP.
8.2.11 Theorem. Let §n, -o< n<o be aSSP. Then it is
interpolable if and only if for any trigonometric polynomial P
with matrix coefficients, either P is zero in Hz(f) or P ¢ ﬁé(f).
Proof. Sufficiency. Suppose ﬁJ # {0} for some bounded subset
J of Z. Then there exists 0 % E ¢ EJ. Hence we get 0 # (E,E) =
<P§,P§>f. Hence Pg is a non zero Frigonometric polynomial in
H, (£) .
Necessity. Suppose there exists a non zero trigonometric

polynomial in ﬁé(f). Then § = Pf-l € fé(f). Hence there exists
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€, 0 # € € H(@) such that S§ = €. We have

eie eie

)eiked

) £( ]

Hence

A, k€J
(€,54) ={ >
0 kd¢J

where P(eie) = v A_je-ije. So we see that (g,gk) =0 1if
jed - -
jJ €J and hence £ ¢ m;,. But obviously £ € H(w). Therefore

g € EJ and furthermore

)e-ije = TA_ e"ije =P.

P. = T (§,§
g jes j

jeg 3

Hence P = P§' Now since O # (§,E) = (T§,T€)f = <P§,P§>f =

<P,P>;. Therefore EJ ¥ {0}. Hence J 1is not interpolable with
respect to gn, - &< n <o Thus gn, -» < n <o is not inter-
polable.

In the next two theorems we give generalizations of theorem
7.3.2.
8.2.12 Theorem. Let E,» ™® <D< o be aSSP whose density, f
satisfies m(eie)l < f(eie) < M(eie)I with M(eie) and 1/m(eie)

being summable. Then the process §n, -2 < nN< o is minimal

full rank and we have

21
1 -1, 1 -1
L= [5;‘([; £ (e a0t
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Proof. By lemma 7.3.4, § > \I for some positive number ) > 0.
Hence the process is minimal full rank. By theorem 8.2.10 (b)

we have
r= (QO:QO) = ngg ng>f .
But ng = Pgo = (go,go) =¥%. So we get
2n .
L= <,Dg " ;—ﬁgz £ e Oz ac

Now since 1/m(eie) is summable one can see that
2n
1o
£eslpn [ £ %dels -
Now because g 2 )\I we get

2 _
L= [;—ﬂg £ e % a0t

Theorem 8.2.11 and lemma 7.3.4 give sufficient conditions
for minimal full rank processes. The next theorem provides a
necessary and sufficient condition for a process to be minimal
full rank. The next theorem also gives a natural extension of
theorem 7.3.2.
8.2.13 Theorem. Let gn, -« < n< o be aSSP with spectral
density f satisfying O < m(eie)I < f(eie) < M(eie)I a.e.,
where M(eie) is a summable scalar valued function. Let fL
be the top left L XL submatrix of £. Then
(a) the process gn, o< n<® is minimal full rank if and

only if there exists a constant |, such that

2

g (g ') a0 s ur



116

uniformly for all L, 1 €L < o.

(b) We have

2n
1 ig, -1, -1
L= iof [sz; (£, (e"%)) "de]

Proof. (a) The process §n, o< n< o is minimal full rank if
and only if £ 2 )\I for some ) > 0. By lemma 7.3.1 we see that
$ 2 A\ 1if and only if 2L 2 AIL uniformly in L, 1 €< L < =.
Hence the process §n, - <N <o is minimal if and only if

zL 2 xIL unifo;:ly in L, 1 €L < o. But by lemma 7.3.2 we know
that 2;1 ;ﬂ & (f (eie)) do. So g y o< nNn< o is minimal

2n ig

full rank if and only if £ (f (e )) de <upIl, uniformly in L,

L
1 €L < .

(b) We know that zL - ¥ strongly, as n — o. Now taking limit

on both sides of
2n
1l ig, . -1 -1
ﬂg (£.(e7%)) “de]
we get

2
£= inf [ (g (e'®)T7!
1<1<o
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*
Here we consider an exsmple of a weakly summable B(Y,X )
valued function f = f(eie) on the unit circle. Using the
technique of lemma 4.3.1 we construct a quasi square root of f£.
We adhere to the notations of lemms 4.3.1.
1 2 * ® .
Let X =4 ,X =4 . Hence X =4 . Take the partition

@ - @" - Dn
E ( 2n-l ’ n-1 ’° l1<n<o of [0,2n), for esch

L2 b
X = (xl,xz,...) € L~ we define

f(el®x = (xyo%gse -5 50,0,...) 1f B EE .

n

Since (f(eie)x)(x) = ¥ \xj\z for 9 € En we see that f is
j=1

a nonnegative operator valued function. It is clear thst

f = f(eie) is measurable and \f(eie)‘B €1 for each §. Now

we give the construction of a quasi square root of £ as out-

lined in lemma 4.3.1. We first obtain the operator T. Since

2
(Tx,Tx) = (T'Tx) (0) = 2= g (£ ®x) x)de
s

== x,|"do=>— ¢ £ = |x
M -1 En\ j\ 2 ns1 j=1 2" j\
-z oz Ltz oz L)
n=1 j=1 2" ] j=1 n:j " ]
S | 2
jo1 231 il

117
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2
one can see that T: Ll -4 can be taken as

2
Tx = (x;, XZA/Z, x3A/2 yeed).
Hence the function g in the proof of lemma 4.3.1 is given by
n
. 1 -
geD@m = 227 b, ek ;
=1 "
2

a = (al,az,a3,...) and b = (bl’bZ’bS"") in ¢ .

Consider the countable set {xi}:=1 in the proof of lemma 4.3.1

VARK
5ji)j-1° Then Tx, (bjil 2 )j=1' Now
the Gram-Schmidt orthogonalization of {Tx

to be given by X, = (

1]:=1 becomes

(- -] -]
= . d f
{ei}i=1’ where ei (6.“).1“1 Hence the matrix value unction
®
[gijli,j=1 is given by

i-1

2 if i=j
ie, _ 19 -
si,j(e ) = g(e )(ei,ej) { 6 o1dy

Now it is easy to see that the functions Fj € Lz(x) of the proof
of lemma 4.3.1, can be taken to be the constant functions

Fj(eie) = G/éj‘l 5j1):;1. The operator A 1is given by

2 [n-
A(eie)(al,az,a3,...) = (al, a2/2, a3/$ seees B 2" 1,0,0,...) = En'

Now for each ¢ € En’ we have

B(eie)x = (ATx)(eie) = A(xl, sz/2,x3A/§2,...)
= (xl,xz,...,xn,0,0,...)

Hence we have

e, _
Q(e M)x (xl,xz,...,xn,0,0,...), o€ En'
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Obviously Q(eie) is measurable and

¥ ¢ = @E!dx, ey, xy e 1 .

Clearly Q(eie) is bounded. So we have obtained an explicit
form for this quasi square root.

In this example since f' is countably vslued function,
following [1 ] one could factor each value of f separately to
determine Q, whose measurability is automatic. However in
general when f 18 not countably valued this procedure may not

yield a measurable quasi square root.
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