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ABSTRACT

The Development of a Kinematics Solver Based on

Object-Oriented Programming Principles

By

Jiyoung Sung

The methods of object-oriented programming are used to

develop a multibody kinematics solver. It appears that several

benefits can result from this approach. These include improved

reliability, incremental capability, readability, and

flexibility. To demonstrate how these benefits can be obtained

through the object-oriented programming principles, a class

hierarchy which describes the kinematic elements in terms of

objects has been designed. From this class hierarchy, two

specific mechanisms have been created and shown as examples: the

first one is a four bar mechanism and the other is a mechanism

which combines a four bar mechanism and a slider crank mechanism.

Also shown in the examples is how much simulation process can be

simplified through the object-oriented programming principles.
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CHAPTER I

INTRODUCTION

In representing a way of thinking and a methodology for

computer programming, ‘object-oriented programming(OOP) takes a

quite different path compared with the one taken by the

conventional structured high level programming languages.

According to Pascoe[22], an object-oriented language should

formally support abstraction, encapsulation, inheritance, and

polymorphism. Complete definitions of these principles are given

in chapter 2. He claims that data abstraction and encapsulation

increases reliability and helps decouple procedural and

representational specification from implementation. Polymorphism

increases flexibility by permitting the addition of new classes

of object without having to modify existing code. Inheritance

coupled with polymorphism allows code to be reused and this

reduces overall code bulk. By reducing the size of code, object-

oriented programming provides major advantages in the production

and maintenance of software: shorter development time, a high

degree of code sharing, and flexibility [22]
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Based on all of these advantages stated so far, object-

oriented programming claims improved programmer productivity and

easy program maintenance.[2,21]

The objective of this thesis is to explore and demonstrate

the effectiveness of the object-oriented programming and its

programming environment for building engineering analysis

programs. The object-oriented language Smalltalk will be used.

In doing so, we will evaluate how the basic principles of Athe

object-oriented language might lead us to the creation of

improved computer codes for the analysis of mechanical systems in

terms of the software qualities such as reliability, flexibility

and ease of maintenance. Specifically, effort will be limited to

two dimensional kinematic analysis of the mechanical systems

The layout of the thesis is as follows. In chapter 2, we

give definitions of some of the terminology in the object-

oriented programming and discuss differences between object-

oriented programming and structured programming. specifically we

discuss the object-oriented language Smalltalk. Chapter 3

reviews the basic principle of planar kinematics. Chapter 4

describes the program written in Smalltalk followed by some

simple examples in chapter 5. Finally the summary and conclusion

are discussed in chapter 6. Also discussions on Smalltalk and a

brief summary of the class hierarchy are given in the appendices.



CHAPTER II

OBJECT-ORIENTED PROGRAMMING

2.1 Definitions

In essence, object-oriented programming involves sending

messages to objects. An oojooo is a package of information and

descriptions of its manipulations. A message is a specification

of one of an objects's manipulations and a method, which is

similar to a procedure or subroutine, is the description of the

actions to be taken when a message is received by an object. A

EIQEQEQl is a set of messages to which an object can respond. A

olooo is a description of one or more similar objects and an

inoooooo is an object described by a particular class. A

oooolooo is a class that is created by sharing the description of

another class, often modifying some aspects of that description.

An inoognoo__g§11§olo is the information used to distinguish an

instance from other instances of the same class. A olooo

Efliléhlfi is a variable shared by all instances of a class and the

class itself. A glooo1__xo11oolo is a variable shared by



instances of all classes. An effective. abstraction is a

simplified description of a system which emphasizes the relevant

characteristics of the system but suppresses other details.

Abstraction techniques have become an important element in the

management of intellectual complexity and they can greatly

simplify the process of creating, verifying, maintaining and

extending complex system.[28] Enogooolgoion is the process by

which individual software components are defined. A good method

of encapsulation has following desirable features[l]:

a) A clear boundary defining the scope of all its internal

software

b) A well-defined interface that describes how the software

component interacts with other software

c) A protected internal implementation that gives the details

of the functionality provided by the software component

The contribution of encapsulation is that it restricts the

effects of change by placing a wall of code around each piece of

data. All access to the data is handled by procedures that were

put there to mediate access to the data.[2] Ignorioonoo is a

formal ordering of classes. Inheritance of class description

reduces the information needed to build up descriptions since

each statement describes how a new class differs from a previous

one in the class hierarchy. An advantage of inheritance is that

it is possible to postpone specific details of information to

lower levels in forming a class hierarchy. Polymorphism is a

unique characteristic that different objects respond to the same
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message with their own behavior. Dynomio oiooiog(or late

binding) means that binding or linking is done later than compile

time, generally while the program is running. Dynamic binding is

needed in loosely coupled collections[2] where computer code can

not predict the type of data to be operated on until the code is

being run. The notion of gogoogonoo_o;og1§mm1ng is a procedure

for developing complex systems wherein a developer is free to

assume the existence of any data structures or operational

procedures, even if they do not yet formally exist. This

approach depends heavily on effective and coherent abstraction

technique for its success.[29]

2.2 Comparison and Contrast of Object-Oriented Problem Solving

with Structured Problem Solving

Material in this section is a brief summary taken from [1].

To understand what object-oriented problem solving is about,

we make a brief comparison between object-oriented languages and

procedural languages. We will compare the two approaches in the

following categories.
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2.2.1 Method for accomplishing actions with data

A basic difference between the object-oriented paradigm and

the structured paradigm for computer problem solving is the way

in which actions on data are accomplished. In the object-

oriented programming(OOP) approach, messages(actions) are sent to

objects(data) and the object responds to the message in a

predetermined way. In a structured approach, parameters(data)

are sent to procedures(actions) and the procedures operate on the

data in a predetermined way using a relatively small and fixed

instruction set. If we further examine the details of the two

approaches, some internal details of the receiver object in an

OOP approach must be known by the sender in the structured

approach. Thus for a procedure call, we have to give further

explanations( e.g. Which parameters are input?, Which are

output?, and What is their type? ). This explanation, if it is

included, is usually in the form of ad hoc comments attached to

the parameters.

2.2.2 Abstraction

In an object-oriented language, selected classes of objects,

can be represented as data abstractions and messages can be

represented as functional abstractions. Although not all classes



can be considered to be data abstractions, they may be

abstractions for certain physical objects, ideas, processes, or

concepts. This is a more general capability than provided by

data abstraction alone. The key issue is on classes of objects

and how they can be used to represent the other abstraction.

In a procedural language, combining preset data types that

the specific language provides represent data abstractions, and

functional abstractions are represented as procedures operating

on the data abstractions. Again the key issue is on data types

and how they can be used to represent various data abstractions

as well as more general abstractions.

Besides differences in implementation details, the major

difference for representing abstractions is that data types are

the central focus in procedural languages while classes are the

central focus for object-oriented languages.

2.2.3 Encapsulation[l]

In object—oriented problem solving, the unit of encapsulation

is the object. It consists of the complete protocol as given in

its class description and the private data of the particular

instance of that class. A class description is for one kind of

object only. Distinct objects that are instances of the same

class are separate units of encapsulation.
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In a procedural language, encapsulation is usually in the

form of library elements. Such elements may contain more than

one data abstraction, as well as the associated functional

abstractions. Depending upon the particular language, the

interface definition may or may not be separate from the

implementation. Further, in some procedural languages the

internal implementation details are not protected.

2.2.4 Inheritance and polymorphism

In general procedural languages do not support inheritance

and polymorphism as all object-oriented languages do. Without

support of inheritance, library elements and the data

abstractions are of equal hierarchical level which places a

severe restriction in understanding the relationship among

various elements of a problem solution in non-object oriented

languages. Also lack of support for polymorphism causes a number

of complicating factors in the choice of names for procedures as

similar operations in different library elements must be

distinct.

As an advantage of dynamic binding, polymorphism allows code

to be written that is insensitive to the types of object

receiving the message. Of course, if the object does not happen

to have a method for the message sent, an error will occur at run



time.[26]

Due to inheritance and polymorphism, we can find a more

natural solution to problems and also the ability to show

dependency relationships through subclasses and the reduction of

redundancy can be beneficial. As an added advantage,

polymorphism enhances the readability of software by allowing the

same message, indicating a particular action, to be sent to

different kinds of objects.[l]

2.2.5 Extensibility and relative status of new protocol

Extensibility is a property of computer languages that allows

the user to define new constructs. Most modern languages are

extensible; however, there are significant differences in the

methodology supported by individual languages for adding new

constructs. In most languages, the new constructs have status

that is secondary to those constructs provided by the language.

This typically means that the new constructs suffer significant

degradation in efficiency.

In a truly object-oriented language all objects have equal

status. This includes objects that are user-generated and

objects that are part of the system kernel. This consistency of

status is achieved at the expense of overall efficiency for

existing OOP languages. Thus the tradeoff is consistency versus
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local optimization.[l]

2.2.6 Refinement of class hierarchy vs. equivalent status of

all software components

With the support of inheritance and polymorphism, it is

possible to develop a hierarchy of classes in an object-oriented

approach to problem solving. Advantage of a class hierarchy is

that we can add incremental capability to currently existing

class hierarchy through subclasses as new problem solution

requires.

In a structured approach to problem solving, as all new

library elements have equal status, they cannot draw on existing

capability without redundant storage of copies of selected

procedures and further, the interdependence of various library

elements is not clear without a hierarchical structure. In

procedural languages, variations on modular design charts have

been used to show relative interdependence of the library

elements. A solution in a procedural language must define

separate and complete library elements for each of the

"subclasses", and it can cause much of the functional abstraction

to be repeated.
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2.2.7 Passing objects as parameters in an OOP approach and

passing records as parameters in a structured approach

The major difference in passing structured parameters in or

out is that a record parameter, in a procedural language, can be

accessed in any way by the receiving procedure while an object

parameter sent to another object can be accessed by that object

only. Specially in the object-oriented approach, accessing is

provided by the protocol of the object parameter, thus we can.

eliminate chance for errors from misuse due to object-oriented

encapsulation.



CHAPTER III

KINEMATICS

The kinematics analysis is used to determine the

displacement, velocity and acceleration of mechanical parts as a

result of the generated motion. In specific, kinematic analysis

is a study of motion of the system, regardless of the forces that

produce the motion.

For large problems with many variables and many equations, it

is difficult and often tedious to write and solve these nonlinear

algebraic equations by hand, thus numerical methods and computer

programs are the usual way to solve these problems.

This chapter presents some of the definitions used in

kinematics, general forms of kinematic equations, and numerical

methods for solving such equations. Following material is taken

from [9]. An interested reader can find more comprehensive

explanation from the sources[l7,l8].

12
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3.1 Definitions of the Kinematic Elements

The definition of a 11g1o_oooy is a system of particles in

which distances between particles remain unchanged. A moohoniom

is a collection of rigid elements which produce a specified

motion. The link is a individual rigid body which makes up a

mechanism. A kinomooio_oo1; or join; is combination of two links

in contact. The definition of ooordinates is any set of

parameters that uniquely specifies the configuration of all

bodies of a mechanism. In this thesis, the cartesian coordinates

which normally require that the position of each body in space be

defined relative to a fixed global coordinate system are used

exclusively. The minimum number of coordinates required to

completely describe the system configuration is called the number

of degrees_2£_frssdsm of the system. A kinematic pair imposes

certain conditions on the relative motion between the two bodies

it comprises. When expressed in analytical form, they are called

oooo;1ooo__of_oon§ozoio§ which reduces the number of degrees of

freedom in a system. In a kinematic pair, since the motion of

one body fully or partially determines the motion of the other,

it is obvious that the number of degrees of freedom of a

kinematic pair is less than the total number of degrees of

freedom of two rigid bodies.
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3.2 Cartesian Coordinates[9]

The coordinates that specify the location of each body need

to be defined to specify the configuration of a planar mechanical

system. Let the xy coordinates system shown in Figure 3.1 be a

global reference frame. Define a body-fixed (int coordinate

system embedded in body 1. Body i can be located in the plane by

specifying the global coordinates r1 - [x,y]Ti of the origin of

the body-fixed coordinate system and the angle ¢i of rotation of

this system relative to the global coordinate system. The usual

convention is that the angle is positive if the rotation from

positive x axis to positive 6i axis is counterclockwise.

 
 

Figure 3.1 Locating point P relative to the body-fixed

frame and global coordinate systems

A point P on body i can be located from the origin of {.n

i
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axes by the vector'gpi. The coordinates of point P with respect
i

to the E coordinate system are épi and "p The body-fixed

1"1 1'

components of vector 3pi are shown as 5 pi - [ 5p, "p ]Ti. Since

P1 is a fixed point on body 1, £91 and "pi are constants,

therefore 3 p is a constant vector. The global xy components of
1

vector Epi vary when body 1 rotates. Point Pi may also be

p ppT
located by its global coordinates r 1 - [ x , y ] i'

The relation between the local and global coordinates of

point P1 is

rp - r + A s'p (Eq. 3.1)

where

Ai - cos d -sin e

[sin ¢ cos ¢]i

is the rotational transformation matrix for body i.

Equation 3.1 in expanded form can be written as

xi - xi + epicos d1 - npi sin d1

P
y1 - yi + {Pisin ¢i + n 1 cos a1

3.3 Kinematic Constraints[7]

In most kinematic systems, it is necessary to impose

constraints on relative position and orientation between bodies.

The objective for each joint is to define a set of algebraic

constraint equations that approximate a physical joint. Since
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the physical joint is to be represented by the constraint

equations, it is important that:

(a) the equations employed imply the relative positional restric-

tions imposed by the physical joint,

(b) the number of constraint equations derived be equal to the

number of degree-of-freedom restricted by the joint,

(c) the equations derived be independent.

3.3.1 Revolute joints[9]

Schematic representation of a revolute joint connecting to

bodies 1 and j is shown in Figure 3.2. The center of the joint

is denoted by the point P that can be considered to be two

coincident points. The constraint equations for revolute joint

are obtained from the vector loop equation.

P _ _ P -
r1 + s i rJ s j 0

which is equivalent to

IP .- _ Op -

O - ri + Ais i rj Ajs j 0

more explicitly,

O - xp --‘xp - 0

1 J

y’ -y*’ o
1 J

The two constraints of above equation reduces the number of

degrees of freedom of the system by 2.
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Figure 3.2 Revolute joint P connecting bodies i and j

3.3.2 Translational joints[9]

In a translational joint, the two bodies translate with

respect to each other parallel to an axis known as the line of

translation; therefore, there is no relative rotation between the

bodies. For translational joint, there are infinite number of

parallel lines of translation. A constraint equation for

eliminating the relative rotation between two bodies 1 and j is

written as

0

j) - 0 (Eq. 3.2)

O

¢1-¢J—(¢1-¢
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o o

where ¢ 1 and d are the initial rotational angles.

.1

In order to eliminate the relative motion between the two

bodies in a direction perpendicular to the line of translation,

the two vectors 5; and.3pshown in Figure 3.3 must remain

parallel. These vectors are defined by locating three points on

the line of translation - two points on body 1 and one point on

body j. This condition is enforced by letting the vector product

of these two vectors be zero. A simple method would be to define

another vectorffli perpendicular to the line of translation and to

require that 3 remain perpendicular to 271.; i.e., that

“T1d - 0 (Eq. 3.3)

where

n - xP -x3
i 1 1

P __ R

y1. y’1

P P

R P Q

ni- x1-)‘1 - -(y1-y1)

P __ a _. xP -x9

y'1 y1 1 1

Thus, equations 3.2 and 3.3 yield the two constraint equations for a

translation joint as

P o P P P Q P P

0-[(x1 1:1)(yJ y1)-(y1-yi)(x3 xi)]-[0]

o 0

Note that a translational joint reduces the number of degrees of
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freedom of a system by 2.

(it

Figure 3.3 A translational joint between bodies i and j

3.3.3 Simplified constraints[9]

Generally the constraint equations

kinematic conditions between two bodies,

describing certain

if one of the bodies is

a nonmoving body, can be simplified or replaced by other simple ‘

equations. In order to constraint translation of the origin or

angular motion of a rigid body, one or more of the

equations may be used:

O I xi - c1 - 0

following
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O - y1 - c2 - 0

where c1, c2, and c3 are constant quantities. Figure 3.4

illustrates graphically the three above constraint equations.

   

 

 

Y ~.

'3 Y
1-~

‘, 1 . ‘1
...a" a d

V \“ " L / ' C2,""- I \. \u’ I'

\~--|"' ' ‘~'

I ‘“

I

I 1

I

I y x X

C

(Q)

Figure 3.4 The body can move with (a) constant xi

(b) constant yi, and (c) constant d1

3.3.4 Driving links[9]

In kinematically driven systems, the motion of one or more

bodies is usually defined. For example, in the slider-crank

mechanism of Figure 3.5, the driving link i rotates with known

constant angular velocity w. If kinematic analysis is to be
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performed using the appended driving constraints method, then the

motion of the driving link must be specified in the form of a

driving constraint equations. For the mechanism of Figure 3.5,

one moving constraint of the form can be employed,

O - d1 - d(t) - 0

where d(t) - doi + wt and ¢oi is the angle d1 at t - 0. If'the

driving link rotates with a constant angular accelerations a,

o2 .

then the above equation can be used with d(t) - 0.5at + d t +

o ,o . r _

¢ , where d is the angular velocity at t - O.

Prii‘wsa link

00 1 c0

 

\o

/////l /////////

  
 

Figure 3.5 A slider-crank mechanism

3.4 Kinematic Analysis

For a mechanical system, kinematic analysis is a study of

motion of the system, regardless of the forces that produce the

motion. When the time history of position of one or more bodies

of the system is prescribed, we need to determine the time



22

history of position, velocity, and acceleration of the remaining

bodies by solving system of nonlinear algebraic equations for

position and linear algebraic equations for Avelocity and

acceleration. The only important equations to consider in the

kinematic analysis are constraint equations. The first and

second time derivatives of the constraint equations provide the

kinematic velocity and acceleration equations.

At any given instant in position analysis, we must know the

value of k coordinates which is the same as the number of degrees

of freedom. Thus the constraint equation can be solved for the

other m - n - k coordinates. The same principle applies for

velocity and acceleration analysis; the value of k velocities and

k accelerations must be known in order to solve kinematic

velocity and acceleration equations for the other unknown

velocities and accelerations. There are several ways in doing

kinematic analysis but in this report, we will be using so called

e _ d v c t i ts.[9] In this method,

additional constraint equations, called driving constraints,

equal in number to the number of degrees of freedom of the

system, are appended to the original kinematic constraints. The

driving constraints are equations representing each independent

coordinate as a function of time.

This method stated in its most general form, if there are m

kinomoo1o_ooo§ozoiooo, the k oriviog constraiots must be appended
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to the kinematic constraints to obtain n - m + k equations:

Q I C(q) - 0 (Eq. 3.4)

[cm - e(q,c) - o]

where superscript (d) denotes the driving constraints. Equation

3.4 represents n equations in n unknowns q which can be solved at

any specified time t.

The xelesitx__eguatiens are obtained by taking the time

derivative of Equation 3.4:

eqq - o ] (Eq. 3.5)

[%“M+¢J”-o

which represents n algebraic equations, linear in terms of 6.

Similarly, the time derivative of Equation 3.5 yields the

Wises:

[qu + (¢i>q<'1)c.l - 0 (Eq. 3.6)

¢q(d)2i + (eq(d)4)qq + 2oqt(d)q + etc“) - 0]

which represents n algebraic equations linear in terms of a. The

term -(eqq)qq in Equation 3.6 is referred to as the right sioo of

'W.

In position Analysis, the Newton-Raphson algorithm uses

values of the coordinates from the previous time step as an

estimate on q1 to start the iteration. Thus the Newton's method

can be used to improve these estimates by starting the iterative

computation at a good estimate for the position of the system.

Presuming that position, velocity, and acceleration are known at
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time t1, one may approximate the generalized coordinate vector at

time ti".-1

1+1

q

using the Taylor second order expansion.

_ q1 + (ti+l _ t1)qi + O.S(ti+1 _ ti)2§i

This initial estimate can be used to begin Newton-Raphson

iteration and, if the difference between time points is not

extreme, rapid convergence may be expected.[7]

The general procedure for kinematic analysis using this

method is summarized in the following algorithm:

Algorithm

- o

(a) Set a time step counter i to i - O and initialize t1 - t .

(b) Append k driving equations to the constraint equations.

(c) Solve Eq. 3.4 iteratively to obtain qi.

(d) Solve Eq. 3.5 to obtain 41.

(e) Solve Eq. 3.6 to obtain qi.

(f) If final time is reached, then terminate; otherwise increment

t1 to ti+1, let i e i + 1, and go to (c).

3.5 Newton-Raphson Method for Nonlinear Algebraic

Equations[9]

One of the most frequently occurring problems in scientific

work is to find the roots of one or a set of nonlinear algebraic

equations of the form Q(x) - O i.e., zeros of the functions
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0(x). In general, iterative methods are employed and the most

common and frequently used method is known as the Newton-Raphson

method.

Consider n nonlinear algebraic equations in n unknowns,

0(x) - 0

where a solution vector x is to be found. The Newton-Raphson

algorithm for n equations is stated as

xj+1 - xj - ox‘1(xj) e(x3) (Eq. 3.7)

where Ox-l(xj) is the inverse of the Jacobian matrix evaluated

at x - xj.

The term O(xj) on the right side of Equation 3.7 is known as the

vector of residuals, which corresponds to the violation in the

equations.

Equation 3.7 may be restated as a two-step operation:

ox(x3) AxJ - - @(xj) (Eq. 3.3)

xj+1 - xj + ij (Eq. 3.9)

where Equation 3.8, which is a set of n linear equations, is

solved for Ax]. Then, xj+1 is evaluated from Equation 3.9.

Gaussian elimination or LU factorization methods are frequently

employed to solve Equation 3.8. The term ij - xj+1 - xj, known

as the Newton difference, shows the amount of correction to the

approximated solution in the jth iteration. The Newton-Raphson

method, when it works, is very efficient. Because the Newton-

Raphson method will not always converge, it is essential to
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terminate the process after a finite number of iterations. The

computational procedure is stated as follows:

W

(a) Set the iteration counter j - 0.

(b) An initial estimate x0 is made for the desired solution.

(c) The functions ¢(xj) are evaluated. If the magnitudes of

(d)

(e)

all of the residuals ¢i(xj), i - 1,...,n, are less

than a specified tolerance c, i.e., if |¢i| < c,

i - 1,...,n, then xJ is the desired solution; therefore

terminate. Otherwise, go to (d)

J
Evaluate the Jacobian matrix ¢x(x ) and solve Equation

3.8 and 3.9 for xJ+1

Increment j; i.e., set j to j + 1. If j is greater than

a specified allowed number of iterations, then stop.

Otherwise go to (c).



CHAPTER IV

PROGRAM

This chapter presents in detail how the object-oriented

programming methodology can be applied to kinematic analysis of

the mechanical system composed of several inter-connected rigid

or flexible bodies, it is often useful to divide the problem that

must be solved into smaller pieces and to solve those pieces

separately, to the extent that is possible. Then the separate

pieces must be combined to form a single consistent solution to

the original problem. This is the very foundation of object-

oriented problem solving because the object—oriented programming

principle is to develop a class structure which organizes the

elements of a system so that specific details are postponed to

lower level of classes. This kind of structuring encourages a

hierarchical decomposition of description and computational

process.

Many of the practical benefits of object-oriented programming

follow from this characteristic. However, achieving this kind of

class structuring is by far the most difficult aspect of object-

27
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oriented programming. We see the design process as at least a

three level process wherein the class being invented is

intellectually coupled to both its superclass and subclass. For

example, while inventing a class, we consider potential

superclass. In order to raise the level of abstraction over the

present perspective. Concurrently, we reflect on the nature of

potential subclasses in order to discover how effectively the

present class encourages the development of objects at the

subclass level. Thus our basic design goal is: To the extent

that is possible the upper levels of the class hierarchy should

involve abstract description, whereas the lower levels should

represent more concrete or specific constructs. This will

enable hierarchical descriptions and computational process. It

will facilitate the many practical benefits associated with

object-oriented programming. For example, this will make it easy

to add or change computational schemes.

The first step in an object-oriented solution to a problem is

to define the objects. Once the potential objects are

identified, the next step is to develop a complete description of

each object that is part of the solution. This description

includes the characteristics of the objects and that actions to

which each object must respond. The actions become method

details with appropriate message selectors to indicate the

expected response. After this is completed, we may decide how to
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add the subclasses in order to represent more specific details.

We now describe a class hierarchy structure which illustrates

how object-oriented programming can be applied to kinematics.

The general approach is based on following underlined classes

which will be described below.

Object

Collection

IndexedCollection

FixedSizeCollection

Array

Harris

Easter

MeehenieelQhJssLt

9211mm;

82191113312111;

In order to represent the world of kinematics, we choose an

abstract class which contains every kinematic element such as

constraints, rigid bodies, and complete mechanisms. The

Moohonioolgojooo class plays this role and is a superclass of all

of the classes that represent kinematic elements. It also

defines two methods such as naming and indexing elements, and

these methods with private variables are inherited by all of its

subclasses. By making the MochanicalObject be an abstract
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superclass, it is possible to postpone details of the mechanical

elements to lower levels.

The gonogzoino class is a superclass of all of the classes

which represent mechanical joints and drivers. This class

defines common methods for initializing instances \of its

subclasses. Again details of each joints and drivers are

postponed to next levels. For example, the RovolutoJoiog class

is a subclass of gonoogojoo class. It inherits two instance

variables( name and index ) from the MochaoicalObjec; class and

instance method( initialize ) from the Qoostzaint class. It

differs from its super class gooooxoioo class in that it

represents specific a joint class among several constraints by

redefining its class description protocol. As for the

encapsulation of Eogolooogoin; class, an instance of the

Rogoloooioin; class can represent a unique revolute joint in

mechanism by specifying its instance variables such as two rigid

bodies and coordinates of the point in each rigid body and by

defining detailed methods involving these internal objects. An

advantage of the encapsulation is to limit the effects of change

by placing a wall of code around internal data structure. Since

access to this internal data structure can only be made through

its instance methods, reliability is improved. Similarly, these

principles have been applied in defining for translational

joints, driving links and simple constraints. A brief summary of
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class protocol for these subclasses is given in Appendix B.

The Elomono class is an object representing any mechanisms

which consist of the mechanical constraints and the rigid bodies.

Instance variable olomonoLioo contains information on the

connection of each rigid body in the system and instance variable

oonoozoinoLioo provides information about the joints connectivity

between 'rigid bodies. By storing these data in instance

variables, an instance of the Elomono class is created and then

we can perform complete kinematic analysis on this object by

sending messages.

We note that several of the concepts of GOP play a beneficial

role here. For example, the Jacobian matrix is needed for the

kinematic analysis of a mechanism and the method for doing this

uses the concept of polymorphism. If we send the jacobian

message to an instance of the Elomono class, then each joint in

that mechanism gets this same message and responds accordingly.

The same principle has been applied in computing the cartesian

position vector, velocity vector, acceleration vector etc. The

contribution of polymorphism coupled with inheritance is that, if

we want to add more classes or subclasses, there will be less

original code for a programmer to write.

A single rigid body is a unit element of the mechanism,

accordingly this class is classified as subclass of the Elemont

class along with other mechanisms such as four bar mechanisms,
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slider crank mechanisms and quick return mechanisms. Of course,

as we develop more specific mechanisms, we can add those to

existing class hierarchy since the organization of this class

hierarchy is very much flexible in terms of adding or modifying

class objects. One example which illustrates these points is

given in Sec. 5.3.

The flooo class represents the cartesian coordinates of the

points. The yoooo; class defines basic concepts of vector

algebra and its manipulations. Similarly, so does the Moogig

class. The reason behind placing yoooo; and Moogix classes under

the QflllQSEIQD class is to utilize another subclass Aggoy and

some of methods in Qolloooion class protocol.

Based on discussions so far, we can notice how the world of

kinematics has been broken down from abstract( Mechanioalgbjoot )

to specific subclasses( Rovolotogoiot, IranslationalJoiog,

W. Drixinshinls. 8111111922. Louder) for the

design of the class hierarchy in terms of the objects. In doing

this, the object-oriented principles such as abstraction and

encapsulation have been applied. Also the Eoorfilioog class which

has been created by combining instances of existing subclasses

does not lose any efficiency because this subclass, once added to

class structure, becomes part of the system class hierarchy.

Particularly, for the kinematic analysis of the ement class

object, we have shown how polymorphism is used in forming system
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Jacobian matrix and from this, it is evident that this approach

reduces overall code to be written. . According to Cox's

definition of programmer productivity that bulk is bad, we can

improve programmer's productivity since we have less original

code to write. A summary of each class description is presented

in the appendix.



 

CHAPTER V

SIMPLE EXAMPLES

5.1 Modeling and Analysis

Generally there are many ways to model a particular

mechanism. The important factor to consider in kinematic

analysis is that there must be no free degrees of freedom for the

combination of bodies, kinematic constraint, and drivers in

kinematic modeling.

Here, in order to assemble the mechanism, an initial estimate

of the position and orientation of each body as well as joints

data of the mechanism must be provided. These estimates, x, y,

and d for each body, can be obtained from a reasonably scaled

diagram of the mechanism. These estimates need not to be

extremely accurate. The Newton-Raphson algorithm starts the

iterations using the estimated values and finds exact values for

the coordinates at t - 0.

After specification of the bodies and kinematic constraints,

one or more degrees of freedom will remain. To complete the

34
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model a number of drivers equal to the number of degrees of

freedom must be specified. Drivers are usually define relative

or absolute motion that is imposed by motors or by specifying

some characteristics of motion that is desired, regardless of the

prime mover that is to generate the motion.

We will now illustrate these ideas with three examples.

5.1.1 Kinematic analysis of a four bar mechanism

A four bar mechanism with four revolute joints is modeled in

Figure 5.1. In Model 1, each link and ground is modeled as a

body. Four revolute joints complete the model, and the ground

constraint is treated as having three simple constraints on its

x, y, and d motion, as follows:

M92214

lease

4 bodies

(3 generalized coordinates / body) 12 g.c.

Constraints

Revolute Joint l 2

2 2

3 2

4 2

Ground Constraint 3

(Body 1 is ground)

Driver 1 1

Total No. of Constraints 12

DOF - 12 - 12 - O

From the Figure 5.1, initial position estimates can be measured
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and tabulated in Table 5.1.1.

Table 5.1.1 Initial position estimate of four bar mechanism

Body No. | l 2 3 4

xloo"""6:;"""5'2."""33'"

yloo'''''6:5"""{é"""i'é'"

"";2;;&$I"'6'6"""iiézl}""6:§£;""i?6zl¥

Revolute joint data for Model 1 are shown in Table 5.1.2.

Table 5.1.2 Revolute joint data of four bar mechanism

Joint No. | l 2 3 4

Common Point | A B C D

Body 1 l 2 3 4

5 1 O 0 1.0 2 O 2 5

"’1 o o 0.0 o o o 0

Body j 2 3 4 l

5 i -l 0 -2.0 2 O 0 5

"’1 o o 0.0 o o 1 5

Sample program for model 1 of a four bar mechanism is

as follows:

ngoo moohoo for inoooooiooiog o Foo; Ba; Mechanism

modell

|fourbar ground body2 body3 body4 rjointl rjointZ rjoint3

rjoint4 simplel simple2 simp1e3 driverl

nodel node2 node3 node4 nodeS node6 node7 node8|

fourbar :- Element new initialize:#('fourbar').

ground :- RigidBody new initialize:#('ground' l O O 0 0 0 .

body2 :- RigidBody new initialize:#('body2' 2 0.5 0.8 1.047).

body3 :- RigidBody new initialize:#('body3' 3 2.6 2 6 O 5

 



body4

nodel

node2

node3

node4

nodeS

node6

node7

node8

simplel

simple2

simple3 :

rjointl

rjoint2

rjoint3

rjoint4

driverl

simplel

simple2

simple3

driverl

rjointl

rjoint2

rjoint3

rjoint4

fourbar
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RigidBody new initialize:#('body4' 4 3.5 1.8 1.047).

Node

Node

Node

Node

Node

Node

Node

Node

new

new

new

new

new

new

new

new

with:0.0.

connectzground with:nodel to:body2 with:node2.

connectzbody2 with:node3 to:body3 with:node4.

connectzbodyB with:nodeS to:body4 with:node6.

connectzbody4 with:node7 to:ground with:node8.

initialize

initialize

initialize

initialize:

initialize:

initialize

initialize

initialize

:- SimpleConstraint new initialize:#('simple1' l).

:- SimpleConstraint new initialize:#('simple2' 2).

SimpleConstraint new initialize:#('simple3' 3).

:- RevoluteJoint new initialize:#('rjoint1' 4).

:- RevoluteJoint new initialize:#('rjoint2' 5).

:- RevoluteJoint new initialize:#('rjoint3' 6).

:- RevoluteJoint new initialize. #(' rjoint4' 7).

:- DrivingLink new initialize. #(' driverl' 8).

isOn: ground direction: 'x' with. O.

isOn: ground direction. 'y' with: 0.

isOnzground directionz'angle' with20.

isOn:body2 directionz'angle' with:l.0472 with:6.2832

addElementzground;

addElement:body2;

addElement:body3;

addElement:body4;

addConstraint:

addConstraint:

addConstraint:

addConstraint:

addConstraint:

addConstraint:

addConstraint:

addConstraint:

“fourbar

Thi

object which describes a unique four bar mechanism.

bar object completely encapsulates its internal data

completes

simplel;

simple2;

simple3;

rjointl;

rjoint2;

rjoint3;

rjoint4;

driverl.

:#('nodel'

:#('node2'

:#('node3'

#('node4'

#('node5'

:#('node6'

:#('node7'

:#('node8'

l

o
o
x
i
o
w
a
-
‘
w
m

an instance creation of the

0.0 0.0).

-l.0 0.0).

1.0 0.0).

-2.0 0.0).

2.0 0.0).

2.0 0.0).

-2.0 0.0).

2.5 0.0).

Fouroar class

This four

structure.
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Suppose we want to add some points of interest on one or more

bodies, all we need to do is to access a specific component and

then add an interesting point to that component and this is shown

below. By dealing directly with a component( body 3 ) of the

fourbar object, rest of internal data structure of the fourbar

mechanism has not been changed and the rigid body 3 is also an

encapsulation of the Rigionooy class, thus adding a point to it

does not change its internal data structure. In the case of

Fortran programs, we often need to modify data file, which can be

cumbersome and also can cause a problem if we change the wrong

data. In an object-oriented program, these problems are

minimized by encapsulation, thus the simulation process becomes

safer and easier. To run the sample program, we execute

following statements.

|fourbar]

fourbar :- FourBar modell.

(fourbar getElement:'body3') addInterestingNode:(Node new

initialize:#('node9' 9 0.5 1.5)).

fourbar kinematicAnalysisFrom:0.0 to:l.0 with:0.025.

A portion of the output for the first two time steps is as

follows.

ou a ' m

TIME - 0.0

element No. x y angle

1 0.0 0.0 0.0

2 4.9999788e-1 8.6602663e-l 1.0472

3 2.8235171 2.5534971 4.2324569e-1

4 3.5735192 1.6874704 1.0042045

element No. vel X vel Y angular Vel

l 0.0 0.0 0.0



 

2

3

4

element No.

1

2

3

4

-5.44l4l85

-ll.084945

-5.6435267

acc X

0.0

-19.739217

-52.441015

-32.701798

39

3(1415857

6.7318329

3.5902462

acc Y

0.0

-34.l89521

-39.898215

-5.7086945

INTERESTING POINT in Element 3

'node9'

pos X - 2.6633146

vel X - -11.471967

acc X - -77.04228

TIME - 0.025

element No.

l

2

3

4

element No.

¢
~
C
a
n
>
h
d

element No.

b
u
n
n
y
-
i

INTERESTING POINT in Element 3

'node9'

pos X - 2.3546939

vel X - ~13.133l49

acc X - -56.692983

x

0.0

3.5836532e-1

2.5314838

3.4231185

vel X

0.0

-5.8658789

-12.220203

-6.3543239

acc X

0.0

-l4.147762

-38.613l96

-24.465434

pos Y - 4.126499

vel Y - 6.6924166

acc Y - -42.499944

Y

0.0

9.3358144e-l

2.7078006

1.7742192

vel Y

0.0

2.251681

5.5578081

3.3061271

acc Y

0.0

-36.85649

-53.045822

-16.189332

pos Y - 4.2790247

vel Y - 5.4550858

acc Y - -55.617287

6.2832

2.4604019e-l

3.3443707

angular Acc

0.0

4.1023146e-15

15.645856

12.263731

angle

0.0

1.20428

4.3379665e-1

1.0910443

angular Vel

0.0

6.2832

5.8104ll3e-l

3.581477

angular Acc

0.0

3.8054674e-15

11.544803

7.1155912
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Figure 5.1 Kinematic modeling of a four bar mechanism
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Figure 5.2 Kinematic modeling of a slider crank mechanism



41

5.1.2 Kinematic analysis of a slider crank mechanism

In Model 1, each link in the mechanism and ground is modeled

as a body and this is shown in Figure 5.2. Joint can then be

modeled as revolute and translational joints, as follows:

119.121.].

Miss

4 bodies

(3 generalized coordinates / body) 12 g.c.

QQDSSIELDES

Revolute Joint 1

2

3

Translational Joint 1

Ground Constraint

(Body 1 is ground)

Driver 1

Total No. of Constraints 12

M
N
N
N
N

H

DOF - 12 - 12 - O

For Model 1, initial estimates for position and orientation are

tabulated in Table 5.2.1.

Table 5.2.1 Initial position estimate of slider crank mechanism

Body No. | l 2 3 4

1..""" :gg';"":z.;;t.3'":gggti'

yloo"""gay;""".1313"""513‘"

"";2;;;;;°".3t5"""g7;"""5‘;""".313“

The three revolute joints in Model 1 are defined in Table 5.2.2.
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Table 5.2.2 Revolute joint data of slider crank mechanism

Joint No. | 1 2 3

Common Point | A B 0

Body 1 4 3 2

5’1 0 0 300.0 100 0

"’1 0 0 0.0 o 0

Body j 3 2 1

5’, -200.0 -100.0 0.0

"’1 0 o 0.0 o 0

A translational joint in Model 1 is defined in Table 5.2.3.

Table 5.2.3 Translational joint data of slider crank mechanism

Joint No. | 1

Body i 4

5’1 0 0

"’i 0.0

6“, 100.0

nqi 0.0

Body j 1

5’1 0 0

"’1 0.0

To simulate, we execute following statement.

(SliderCrank modell) kinematicAnalysisFrom:0.0 to:l.0 with:0.1.

A portion of the output for the first two time steps is as

follows:

AN 8 e C echanism

TIME - 0.0

element No. x y angle



D
U
I
-
I
M
P

element No.

{
>
m
e

element No.

¢
~
u
a
h
a
r
d

TIME - 0.1

element No.

#
W
N
H

element No.

J
-
‘
W
N
H

element No.

#
‘
U
i
h
i
h
‘

0.0

-86.623206

-467.19395

-663.15898

vel X

0.0

59.957026

145.35697

162.31892

acc X

0.0

124.73742

286.99918

312.01541

x

0.0

-80.018944

-451.27725

-645.43682

vel X

0.0

71.969679

172.41377

191.39672

acc X

0.0

115.22728

253.21743

268.39268

0.0

49.964188

39.971351

0.0

vel Y

0.0

103.94785

83.158278

0.0

acc Y

0.0

-71.948431

-57.558745

0.0

y

0.0

59.974733

47.979786

0.0

vel Y

0.0

96.022733

76.818186

0.0

sec Y

0.0

-86.363615

-69.090892

0.0

6

l

O
N
U
‘
O

C
O
M
O

angular Vel

0.0

-1.2

4.2435265e-1

0.0

angular Acc

0.0

0.0

-2.5698921e-1

0.0

angle

0.0

5.64

2.4226174e-1

0.0

angular Vel

0.0

-1.2

0.3956446

0.0

angular Acc

0.0

0.0

-3.l716383e-1

0.0

21172e-l
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5.1.3 Kinematic analysis of a combined Four bar and

Slider crank mechanism

In this section, we develop a mechanism( FourSlider ) which

consists of a four bar mechanism connected to a slider crank

mechanism with a new link. This example specially illustrates

application of incremental capability of object-oriented

languages. Suppose two mechanisms have_been created, now we want

to combine these two mechanisms with a new link and as a result,

we want to create new mechanism called £0or§lioer. By

encapsulation, data stored inside of a fourbar object and a

slider object are protected. In order to create a combined

mechanism, we add additional instance methods such as accessing,

changing and removing its elements or constraints to the Elomono

class. Having done that, we can create a new mechanism which

consists of a four bar mechanism and a slider crank mechanism.

Explanations on the specific steps are given later in this

section. Also once we have created this combined mechanism, we

can add this object as another subclass of the filomooo class,

thus expanding the class hierarchy and making it useful in the

future as a subclass. This shows a real advantage of object-

oriented languages. In other words, if new mechanism had to be

created from the scratch, much more computer code would have been

written and debugged. By utilizing already available

information, it is possible and much easier to develop a
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complicated software system, thus again improving the

programmer's productivity. Also, as shown in the example in Sec.

5.1, an instance of the Eoogfilioo; class encapsulates a unique

combined mechanism and the simulation becomes simple process(e.g.

sending a message to that object).

This mechanism has nine revolute joints and one translational

joint and is shown in Figure 5.3. In Model 1, each link and

ground is modeled as a body. Nine revolute joints, one

translational joints and one driver complete the model, as

follows:

112921.31

Misc

8 bodies

(3 generalized coordinates / body) 24 g.c.

92mins;

Revolute Joint 1 2

2 2

3 2

4 2

5 2

6 2

7 2

8 2

9 2

Translational Joint l 2

Ground Constraint 3

(Body 1 is ground)

Driver 1 1

Total No. of Constraints 24

DOF - 24 - 24 - O

For Model 1, initial estimates for position and orientation are

tabulated in Table 5.3.1.
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Table 5.3.1 Initial position estimate of combined mechanism

Body No. | 1 2 3 4 5

"";""'i"’6'6"""6';"""5T;""" 5';"""é’éi’

-"'§'-'-'i"'6’6"""6'5"""it;"""i’é"""6’éi'

"";2;;ASI"'6'6"""i'éii’"'6'§£;'"'iT6L%""iTé££

Body No. | 6 7 8

"";"°"i"'éféé"""5'6"""L’;"'

°-"§-""I"'6'§é"""6T6"""" i’éi”
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The nine revolute joints in Model 1 are defined in Table 5.3.2.

Table 5.3.2 Revolute joint data of combined mechanism

Joint No. | 1 2 3 I a 5

é;;;;;'é;;;;'i"'i""""i""""é""""g""""é""

;;;;’;""""""i"""" é"""" 3""""a"""";""
5’1 0 0 1.0 2 0 -2 0 0 0

"’1 0 0 0.0 0 0 0 o 0 0

£;;;'3 """""""é""""3""""A"""" i""""é""
5 1 -1 0 -2.0 2 0 2 s -1 o

"’1 o o 0 o 0.0 0 o 0 0

Joint No. | 6 7 8 9

é;;;;;'§;i;;'i"'§""""é""""A""""i"'

£;;;’i""""""é"""" i"""" 5""""5"“
e 1 0 0 5.0 1 0 1 5

0‘1 0 0 0.0 0 o o 0



The translational joint in Model 1 is defined in Table 5.3.3.

Table 5.3.3 Translational joint data of combined mechanism

Joint No. | 1

Bgdy i 7

E i 0 0

P
n i O 0

q
5 1 0 5

q

'.'-1. ..............°.'.°.-

Bgdy j 1

f i 0 0

P
n 1 0.0

Sample program for model 1 of a combined mechanism is

as follows:

e b mec an our ider

|fourSlider fourbar slider ground body4 bodyS body8 rjointS

rjoint6 node9 nodelO nodell nodel2|

Step 1. The following two statements are used to create a new element,

a four bar mechanism, and a slider crank mechanism

fourSlider :- Element new initialize:#('fourSlider').

fourbar :- FourBar modell.

slider :- SliderCrank mode12.

Step 2. The following three statements are used to access ground element

and link( body 4 ) in the four bar mechanism, and link

( body 5 ) in the slider crank mechanism

ground :- fourbar getElementz'ground'.

body4 :- fourbar getElementz'body4'.

body5 :- slider getElementz'bodyS'.
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Step 3. The following statement is used to create a new link for

connecting two mechanisms

body8 :- RigidBody new initialize:#('body8' 8 4.5 1.34 5.8643).

Step 4. The following six statements are used to create two revolute

joints which will be placed in link( body 8) and

coordinates of each joint

rjointS :- RevoluteJoint new initialize:#('rjoint5',8).

rjoint6 :- RevoluteJoint new initialize:#('rjoint6',9).

node9 :- Node new initialize:#('node9' 9 0.0 0.0).

node10 :- Node new initialize:#('node10' 10 -1.0 0.0).

nodell :- Node new initialize:#('nodell' 11 1.0 0.0).

node12 :- Node new initialize:#('node12' 12 0.0 0.0).

Step 5. The following two statements are used to establish joint

connections between links( body 4 & body 8 and

body 8 & body 5 )

rjoint5 connect:body4 with:node9 to:body8 with:nodelO.

rjoint6 connect:body8 with:nodell to:bodyS with:nodel2.

Step 6. The following is used to transfer the nodes of the ground

element in the slider crank mechanism to ground element in

four bar mechanism

ground getNodesFrom:(slider getElement:'ground').

Step 7. Following statements remove the ground element, three

simple constraints, and driver constraint from the slider

crank mechanism

slider

removeElementz'ground';

removeConstraint:'simplel';

removeConstraint:'simple2';

removeConstraint:'simple3';

removeConstraint:'driverl'.

Step 8. The following combines the two mechanisms

fourSlider combinezfourbar withzslider.

Step 9. The following adds a new link( body 8 ) and the two revolute

joints to combined mechanism

fourSlider

addElement:body8;

addConstraint:rjoint5;
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addConstraint:rjoint6.

Step 10. The following changes joint instance variables( second

body ) to the redefined ground element

(fourSlider getConstraint:'rjoint7') changeSecondElement:ground.

(fourSlider getConstraint:'tjointl') changeSecondElement:ground.

To run the sample program, we execute following statement.

(FourSlider model2) kinematicAnalysisFrom:0.0 to:0.0 with:0.025.

A portion of the output for the first time step is as

follows:

1 der Cra k 9e 1- ism1 \ 9; 3 3 0 011- 1‘0 o .a \

TIME - 0.0

element No. x y angle

1 0.0 0.0 0.0

2 4.9999788e-1 8.6602663e-1 1.0472

3 2.8235171 2.5534971 4.2324569e-1

4 3.5735192 1.6874704 1.0042045

5 5.4159581 9.0938377e-1 1.1418002

6 7.0248208 9.0938377e-1 5.6318412

7 8.2177253 0.0 0.0

8 4.4947387 1.2984271 5.8835924

element No. vel X vel Y angular Vel

1 0.0 0.0 0.0

2 -5.4414185 3.1415867 6.2832

3 -11.084945 6.7318329 2.4604019e-1

4 -5.6435267 3.5902462 3.3443707

5 -6.0006053 2.7447164 6.5985401

6 -14.093583 2.7447164 -2.3008685

7 -l6.185955 0.0 0.0

8 -5.822066 3.1674813 -4.5891879e-l

element No. acc X acc Y angular Acc

1 0.0 0.0 0.0

2 -19.739217 -34.189521 4.1023146e-15

3 -52.441015 -39.898215 15.645856

4 -32.701798 -5.7086945 12.263731

5 ~42.716733 -28.340466 27.057456

6 -73.814036 -28.340466 19.721773

7 -62.l94607 0.0 0.0

8 -37.709265 -l7.02458 -12.372536
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Figure 5.3 Kinematic modeling of a combined four bar

and slider crank mechanism



CHAPTER VI

SUMMARY AND CONCLUSIONS

The object paradigm has several features that can be used as

guidelines for developing object-oriented programs. In chapter

4, the problem is broken down into the sub-problems and is

characterized in terms of objects. In designing a class

hierarchy structure for kinematic analysis, we have shown how

object-oriented principles can be applied to engineering analysis

problems. By using encapsulation and abstraction, we have broken

the world of kinematics into objects which describe the basic

kinematic elements. From these objects, we were able to form a

mechanism and perform kinematic analysis on the mechanism. Due

to the encapsulation of objects, each object is described by its

internal data structure by instance variables and also a message

protocol is defined for accomplishing actions with these

variables. Since those instance variables can be accessed only

by the methods in specific class description protocol, it is

possible to insure a high degree of reliability of the program to

a user. A change to one part of the software need not affect the
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rest of the system. This is shown in the example in Sec. 5.1.

In creating an instance of a four bar mechanism, the object-

oriented approach results in much more readable program compared

with structured approach, thus it is easy to understand the

overall code. Specifically, if a problem has a solution that is

an incremental change from existing capability, then its solution

is more quickly achieved.

Complex problem solving would often be enhanced by direct

access to a language's source code, particularly if modifications

could be carried out in\a simple and safe manner. In Smalltalk,

any part of the image(source code) is readily available to the

user and it is easy to browse or modify the image. Also, as an

added advantage, Smalltalk’s simple edit-execute cycle, which

replaces edit-compile-link-execute cycle of other procedural

languages, reduces time for editing and execution can be halted

and resumed when bugs are encountered and fixed. Bug fixing is

especially easy since hierarchical connection between a fault and

the original message leading to it is always available. Thus,

the Smalltalk language is coupled with powerful supporting tools

which can reduce time for compiling, testing, and debugging

phases of program development. This capability to integrate

changes rapidly is a desirable advantage over conventional

software systems based on procedural languages which may require

a lot of time to rebuild systems after changes.
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The example in the section 5.3 shows how we can apply

Smalltalk's incremental problem solving capability. In this

example, an instance of Elomon; class combines a four bar

mechanism and a slider crank mechanism and as a result, a new

mechanism called Eooxfilioo; is created and subsequently, this

mechanism is added to the class hierarchy as a subclass. From

this example, we have demonstrated that the existing class

hierarchy is flexible because the addition of a new subclass can

be easily achieved without disrupting the whole software system.

The inheritance principle was used both in the design of

class hierarchy structure and in the case of the subclasses of

QQDSSIBIDS class and the Elomono class. Specially if we want to

expand from the world of kinematics to the world of dynamics to

perform dynamic analysis on mechanical systems, I believe that

the advantage of the inheritance principle could be even more

apparent. The polymorphism principle that the same message can

elicit a different response depending on the receiver object has

been utilized throughout classes. For example, we need to form a

global jacobian matrix for a system in the Element class and the

same message jooooion is sent to each joint which connects each

rigid body. In turn, each joint computes its own Jacobian matrix

and sends it back to the instance of Element class, thus forming

a system Jacobian matrix. This illustrates how the object-

oriented approach places the responsibility for computing
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Jacobian matrix onto the joints themselves. Also polymorphism

increases flexibility by permitting the addition of new classes

of objects without the need to modify existing code. If we want

to add more constraints as subclasses to the existing class

hierarchy, all we need to do is to provide new Jacobiao methods

for each new constraints without changing the method in the

Elonono class. Polymorphism coupled with inheritance reduces

code to be written and as a result, we can increase the

programmer's productivity because the programmer has to write

less original code. This, in turn, improves maintenance of the

program because there is only one place for code to perform a

specific job. Polymorphism also enables dynamic or late binding.

By reducing type dependence from the language, it is easier to

write and modify programs written in Smalltalk.

In summing up discussions thus far, it is my belief that

object-oriented programming and its environment provides several

important advantages in the production and maintenance of complex

software systems in terms of reliability, readability,

extensibility, and flexibility. Unfortunately computational

efficiency is not a strong point of Smalltalk. Ungar[5]

suggested two ways to improve this poor cost-performance. One

way is with clever software on a cheap, conventional machine. In

addition to innovative software, special purpose hardware may

further reduce the cost. For more detailed information on
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Smalltalk's performance in speed and efficiency, an interested

reader is referred to [5].
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APPENDIX A

SMALLTALK

My intention. in this section is to give a brief basic

understanding of the principles of the Smalltalk language. For a

full description, an interested reader is referred to Smalltalk-

80: The Language and Its Implementation by Goldberg and

Robson(Addison-Wesley 1983). Also some material in this section

are taken from [1].

Among several languages that support object-oriented problem

solving, Smalltalk which was developed at the Xerox Palo Alto

Research Center in the 19703 with the help of Alan Kay, is the

most consistent with definitions and properties of the object-

oriented paradigm.

Smalltalk is not just another language. It is an extensive

programming environment and its virtual image(Smalltalk source

code) consists of more than two hundred classes and several

thousand methods. Although the language is small in terms of

reserved words and symbols, the entire system is quite large and

it takes time to learn what is in the image. Within the image,

56



57

the Smalltalk provides the capability for solving many standard

computer problems because all the classes and methods are

available for changing with the exception of primitives which are

a group of low-level operations written in assembly language.

Many new problems are solved by using or modifying existing

classes and methods in the image, thus the image can grow in size

as new capability are added to the system.

Since Smalltalk is an interpretive language, Smalltalk

programs execute more slowly than those written in other object-

oriented languages that are compiled. Compilers for Smalltalk

programs that produce machine code are currently under

development. Their success will help eliminate the speed

disadvantage for Smalltalk production software systems. Although

it is not the only widely used object—oriented language, the

Smalltalk language and system continue to serve as an inspiration

and model for object-oriented problem solving.[l]

Following subsections present how the underlying features of

the Smalltalk language support the object-oriented paradigm.

A.1 Objects and Messages

In Smalltalk, everything is accomplished by sending messages

to objects. The result of sending a message to an object is

another object. By utilizing existing objects and messages in
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the Smalltalk image, we can establish the desired object-message

sequence as a way of problem solving.

Objects are instances of a particular class. The messages to

which an object can respond are defined in the protocol for its

class. Methods give the implementation details for messages and

are a part of the class description protocol for a given class.

These are the fundamental relationships among the five key

components( object, instance, class, message, method) of the

Smalltalk system. Understanding these five key components and

their relationships is understanding Smalltalk.[l]

There are three kinds of messages in Smalltalk: unary,

binary, keyword. A unary message is a single message selector

with no arguments. A binary message is a single message selector

with one argument and one or two special characters as the

selector. A keyword message is a message to a single object with

one or more arguments. Message selectors are typically colon—

terminated identifiers.

The order of arithmetic expressions in Smalltalk is strictly

from left to right unless altered by the presence of parentheses

or by message priorities. The precedence of the three kinds of

messages is unary, binary, and keyword. Because of this left-to-

right precedence in Smalltalk which differs from most other

languages, careful consideration of thinking is required to avoid

unexpected error.
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A.2 Abstraction of Objects and Methods

In Smalltalk, there are two types of abstraction, data and

functional abstractions. The former represents private or shared

data which defines the properties of the object. The latter

represents the details of methods how an object is to respond to

messages. There is a method for each message to which an object

can respond and a message always returns a single object as its

result.

Every object belongs to a specific class which has a unique

name and represents a specific kind of object. To create

instances of object(classes), it is required to send instance

creation messages to the class name. Everything that is needed

to be defined for an object, such as private data, shared data,

and methods can be found in its class description protocol.

Class onooo is the superclass of all classes and defines the

protocol common to all object. Class gojooo defines the default

behavior for displaying, comparing, copying, accessing indexed

instance variables and error handling. Class onooo includes

capabilities to maintain dependency relationships between objects

and to broadcast messages from an object to its dependents.

Subclasses may polymorphically redefine any of the methods that

are part of Class onooo and they may also add new private or

shared data.
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All the classes in the Smalltalk are organized according to

categories and a dependency hierarchy and some of the classes are

abstract classes which are identified by the following

properties:

i No objects are instances of an abstract class. They will

always be instances of a subclass of the abstract class.

I Methods contained in abstract classes represent protocol

common to all its subclasses. Subclasses can polymorphi-

cally redefine methods and add new data.

I Abstract classes provide a logical hierarchical organization

by serving as an umbrella for related subclass of equal

stature [l]

A.3 Encapsulation of Objects

In Smalltalk, the class description protocols for individual

classes provide encapsulation of objects. The class description

protocol consists of basic elements such as definition, private

data, shared data, pool data, instance methods, class methods.

Some of classes will not have all these elements. The existence

of private data or shared data is determined by how the objects

is represented by the class; the number and type of methods are

also. determined by the complexity and richness of functional

abstractions to which objects of the class must respond.
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I Definition: the location of the class in the class

hierarchy. list of identifiers for private, shared,

and pool data objects that are part of the class.

I Private data: instance variables which represent the

private memory of an object and they can be accessed

only by instance methods.

I Shared data: class variables whose value are shared by

all instances of the class and they can be accessed

by both instance methods and class methods.

I Pool data: pool variables whose values are shared across

multiple classes. Pool variables are contained in named

pool dictionaries that the user specifically creates.

To make pool variables accessible to a class and its

instances, the user must modify the class specification.

I Instance methods: implementation details for messages

to which instances of the class can respond or receive.

I Class methods: implementation details for messages to

which the class can respond or receive. Typically they

are used to initialize class variables or to create

instances of the class.

A.4 Inheritance of the Class Hierarchy

Inheritance is the Smalltalk capability which allows user to
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reuse software by specializing already existing general

solutions. Classes higher in the hierarchy represent more

general characteristics, while classes lower in the hierarchy

represent specific characteristics. Superclasses do not inherit

from their subclasses; subclasses inherit from their

superclasses, and subclasses in a different hierarchical subtree

generally do not inherit while some implementations of Smalltalk

support multiple inheritance. Things inherited by a subclass

include private and shared data, instance and class methods. The

same rules as the class description protocol apply for accessing

private and shared data for inherited. A subclass inherits from

its immediate superclass to all the way to class Object which is

the superclass of all classes. Because a subclass has different

protocol such as new data or methods from its super class, it may

need to redefine methods inherited from a superclass. As a way

of polymorphism, redefinition of inherited methods is called

method overriding.

A.5 Polymorphism in Smalltalk

Polymorphism is a unique characteristic of object-oriented

programming whereby different objects respond to the same message

with their own unique behavior even though the same message

selectors may exist in many classes in the Smalltalk image.
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Polymorphism enhances the readability of software by allowing

the introduction of entirely new classes of objects in existing

applications, as long as they implement the message protocol

required by the application, thus facilitating the reuse of

generic code.

As an example, the message printOn: can be sent to any object

in the Smalltalk system. The only requirement is that the

details for printOn: be included somewhere in the hierarchy path

of the object's class. Conceptually, printOn: implies a

particular action to be taken. The concept is identical for any

object; only the implementation details may be different.[1]
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APPENDIX 3

SUMMARY OF CLASS HIERARCHY

Superclass: onoo;

Definition: abstract super class of all of the classes objects used

in kinematics

Private Data: two instance variables

mono: an instance of 55113; that is the name of all of the

subclass elements

imoox: an instance of Iooogo; that is used for numbering

for the subclass elements

Instance Methods

nomo to assign name for a object

inoox to assign number for a object

Class Method: no class method of its own

2r2r2s2l_Ssmmar1_£er_§lass_§2nstraint

SUPerclass: West

Definition: abstract super class of all of the constraint elements
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Private Data: Instance variables( nomo & logo; ) are inherited

from the class MW.

Instance Method

inioioljzoooxgoy assigning name and index no. for each joint

Class Method: no class method of its own

WW

Superclass: QQDSEIEIDE

Definition: Object representing revolute joints

Private Data: six instance variables

fingofloox: an instance of RigidBody for first element

xQomonEizogflooo: an instance of Flog; for x component

of first node

yQomonEixfioflooo: an instance of Elooo for y component

of first node

gooonofioox: an instance of Rigiofiooy for second element

xQomoQfifiooonoflooo: an instance of Flog; for x component

of second node

ygomogffiooonoflooo: an instance of Flog; for y component

of second node

Instance Method

Wiener used for changing first rigid body

ohongofiooonofilomooooofilomooo used for changing second rigid body

DQEIEIQDQQQIQS used for computing joint position
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coordinates in the global frame

w ' o 0' e ondElem n

HIEDIEEEQDQHQ used for connection of rigid bodies with

points

EQDSEIEIDEEQDIELIQ used to compute local constraint equation

zoloolgyfionoolmo used to compute local velocity equation

ooooloxoolonfion used to compute local acceleration equation

joooolononogfgolomm used to compute local jacobian

Class Method: no class method of its own

WWW

Superclass: Qonotrain;

Definition: Object representing translational joints

Private Data: ten instance variables

flzooflooy: an instance of Riglofiooy for first element

EQQEDQIEIISENgéfii an instance of Float for x component

of first node

xgompgffilgooflooo: an instance of Flog; for y component

of first node

xQomoQfifiooonoflooo: an instance of Eloat for x component

of second node

xQomefifiooonoflooo: an instance of Eloot for y component

of second node

oooonofioox: an instance of nglooooy for second element
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xQomoQfiIhlgoflooo: an instance of Flog; for x component

of third node

xgononIhlgouooo: an instance of Flog; for y component

of third node

flgoofiooyfinglo: an instance of {lost for angular

orientation of first element

sessndBQQxAngle: an instance of Flog; for angular

orientation of second element

Instance Methods

changeiirsrnlemenriafilemsst used for changing first rigid body

shangsfisssndfilemenriafilemsst used for changing second rigid body

DQSIEIQDQQQIQE used for computing joint position

coordinates in the global frame

w ° tNode O°seco dEleme

EIEDLSESQDQHQ used for connection of rigid bodies with

points

QQDSEIELDEEQDLEIEQ used to compute local constraint equation

YElQELEYEQDLSiEE used to compute local velocity equation

fiQSQlQIflSiQDEQD used to compute local acceleration equation

joooolooooogfgolomo used to compute local jacobian

Class Method: no class method of its own

EIQEQSQI Sommory to: gloss SimoleCongtgaint

Superclass:,gongozoln;
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Definition: Object representing simple constraints

Private Data: three instance variables

£2D§£I§1D2QDII££§12D3 an instance of lotoge; for

constrained direction

olomono: an instance of Blgloflooy for constrained element

gonoognoz an instance of {logo for constrained constant

quantities

Instance Methods

oolomnlnoox used for computing column number for the jacobian

matrix

Wused for setting

values of the instance variables

EQDSSIBIDEEQDISIEE used to compute local constraint equation

xolooloyflonoolmo used to compute local velocity equation

BSSEIEIQEIQDEQD used to compute local acceleration equation

joooolooooogfgolomm used to compute local jacobian

Class Method: no class method of its own

WW

Superclass: QQDSSIBIDE

Definition: Object representing driving link

Private Data: five instance variables

£2D§£I§1D£QDII§££12D1 an instance of Integer for constrained

direction
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olomomg: an instance of ngloflooy for driving link element

lnlolalzoglglon: an instance of Flog; for initial position

inlglolyoloolgyz an instance of flog; for initial velocity

lnlolalfioooloxgolon: an instance of Elooo for initial

acceleration

Instance Methods

oolomnlnoox used for computing column number for the jacobian

matrix

isQn1h2sxidirectisnisrring_sithia92nstant used for setting

values of the instance variables

EQDSLIBIDEEQDLEIEE used to compute local constraint equation

xolooloyfionoolno used to compute local velocity equation

gooolozoolonfion used to compute local acceleration equation

joooolononogfgolomn used to compute local jacobian

Class Method: no class method of its own

C et

SUPerclass: Mechanicalghlsst

Definition: Object representing mechanical elements

Private Data: six instance variables

nooongo: an instance of QIQQIEQQQLLEQEIQD for storing nodes

olomonoLlooz an instance of ngezedgollectioo for storing

rigid body elements

constraintLlst: an instance of OrderedCollection for storing
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constraint elements

poololonyoooogz an instance of yoooo; for the cartesian

generalized position vector

xoloolgyyoogozz an instance of Vooto; for the cartesian

generalized velocity vector

BESEIQIQEIQDXQESQII an instance of yoooog for the cartesian

generalized acceleration vector

Instance Methods

SQDSEIEIDEEQDLEIEE used to compute system constraint equation

YEIQEISYEQDLEIEQ used to compute system velocity equation

ooooloxoglonfion used to compute system acceleration equation

jgooolononogfgolomn used to compute system jacobian matrix

IEEQIEHQQQS used for reporting position, velocity, and

acceleration of interesting nodes of rigid

body on the screen

IEDQIEHQQBSLQBEDEEELIQ used for reporting position, velocity,

and acceleration of interesting nodes

of rigid body to output file

poololonyoooo; used for computing the cartesian generalized

position vector

xolooigxyooso; used for computing the cartesian generalized

velocity vector

BEEEIEIBEIQDYEESQI used for computing the cartesian

generalized acceleration vector
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QhQDSEZQSIEIQDIBIIéY used for replacing the components of

position vector

ohongoyoloolgyooxgoy used for replacing the components of

velocity vector

QBQDEEAQSEIEIBEIQDLEIIBY used for replacing the components of

acceleration vector

onolyolooolmo used for position, velocity, acceleration

analysis at each time step

v ' t T me t0° na i e

EIEDISIIEIDEIQEQDS used for the kinematic analysis for overall

time span

lololollzoooxmoy used for setting instance variables such as

W.W. and ms

poololonénolyolooolmo used for Newton iteration method at each

time step

goofilomongoolomono used for adding an element

BQQQQDSEIEIDSLSQDSEIQLDE used for adding a constraint

IEEQZEEIQEQDELEIQEEDE used for removing an element

I2flQEEQQDSEIELDELQQDSSIEIDE used for removing a constraint

ZELEIEEEDELEIEEEDE used for accessing a specific element

EESQQDSEIBIDSLEQDSSIELDE used for accessing a specific constraint

oomo1no;ofilomon§_gl§hoofilomom§ used to combine two elements

{ESEQEEDEEEIEEQDE used for rearranging order of instance variable

9.121112115111315
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Class Method: one class method of its own

oxomoloo shows how to simulate sample model of each mechanism

WW

Superclass: Elonono

Definition: Object representing rigid bodies

Private Data: 11 instance variables

3: an instance of Flog; for x coordinate of rigid body

1: an instance of Elooo for y coordinate of rigid body

onglo: an instance of Flog; for angular orientation

xyolooloyz an instance of Flog; for x component of

velocity

yyolooloy: an instance of Flog; for y component of

velocity

ongoloxyolooloy: an instance of Flog; for angular

velocity

onooloxoglon: an instance of Flog; for x component of

acceleration

YASQEIEIBEIQDi an instance of flog; for y component of

acceleration

ongoloonoolozgolon: an instance of Flog; for angular

acceleration

gogoolonolgoogogz an instance of Agray for storing

rotational coordinates
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inooxooglngNoooLlogz an instance of deegedcollectlon for

storing interesting point

Instance Methods

gooflooo used for storing joint points in the rigid bodies

ooolnoogooolngflooo used for storing interesting points in

the rigid body

lnooxooglngNoooo used for reporting position, velocity,

and acceleration of interesting points

of rigid body on the screen

looogooglngflooooofillo used for reporting position, velocity,

and acceleration of interesting points

of rigid body in the output file

goooolon used for computing rotational coordinates of rigid

body elements

inlolollzooogxoy used for setting instance variables such as

119.431.1335. MW. Ila—ms. 1111s;

it. 1. angle. Mam

EEEEQQEEEIQILEIEEEDS used for transferring nodes between

rigid bodies

Class Method: no class method of its own

WW

Superclass: Elomon;

Definition: Object representing four bar mechanism
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Private Data: no instance variables of its own

Instance Method: no instance methods of its own

Class Methods

moooll used to create sample model 1 of four bar mechanism

mooolz used to create sample model 2 of four bar mechanism

WWW

Superclass: Element

Definition: Object representing combined four bar and slider crank

mechanism

Private Data: no instance variables of its own

Instance Method: no instance methods of its own

Class Methods

moooll used to create sample model 1 of fourSlider mechanism

C a d Crank

Superclass: Elomomo

Definition: Object representing slider crank mechanism

Private Data: no instance variables of its own

Instance Method: no instance methods of its own

Class Methods

moooll used to create sample model 1 of slider crank mechanism

mooolz used to create sample model 2 of slider crank mechanism
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2r2t2s2l_Ssmmarx_fsr_£lsss_QsiskBetsrn

Superclass: Elomont

Definition: Object representing quick return mechanism

Private Data: no instance variables of its own

Instance Method: no instance methods of its own

Class Method

moooll used to create sample model 1 of quick return mechanism

2r2s2s213%mmmuocJ3ucIflsss.fl2de

SUPerclsss: Mechanicalthsct

Definition: Object representing points

Private Data: two instance variables

3: an instance of £1252 for x coordinate

1: an instance of Flog; for y coordinate

Instance Method

lololollzoooxxoy used to set values for instance variables

such as name, index, x, y

Class Method: no class method of its own

2r2t2s2l_Summarx_fer_91ass_uatrir

SUPerclassz Eixssfiizsgsllectien

Definition: Object representing matrices

Private Data: no instance variables

Instance Methods
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IIDSEIIEESEQI used for solving the linear system equations

IBEQQEQIIZBEIQD used for performing L-U factorization on

the given matrix

:ox;gl_ool;§J used to access specific element of matrix

rog;§1_ool;og_oo§;ogojooo are used for replacing specific

element of matrix

Bdfliflflflfilix used for adding two matrices

DIQQQQSLEEBSIIX used for multiplying two matrices

SEQIQIEHBEDQI used for scaling a matrix

EEDEIEEELBMQEIIX used for subtracting two matrices

Class Method

rog;rnim_ool;onlm used for creating an instance of matrix

whose element is initialized to zero value

WWW

Superclass: MEEIIX

Definition: Object representing vectors

Private Data: one instance variable

iflanifiii an instance of 51:51 for storing the vector element

Instance Methods

oomoononoo used for accessing vector elements

EQERQBQQESLBIIEY used for replacing elements of given vector

oooooyoooo; used for adding two vectors

inmomggoooooooyoooo; used for computation of dot product of
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two vectors

oooloooflomoo; used for scaling of a vector

oohogoogooyoooox used for subtracting two vectors

Class Method: no class method of its own
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