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ABSTRACT

The Development of a Kinematics Solver Based on
Object-Oriented Programming Principles

By

Jiyoung Sung

The methods of object-oriented programming are used to
develop 4 multibody kinematics solver. It appears that several
benefits can result from this approach. These include improved
reliability, incremental capability, readability, and
flexibility. To demonstrate how these benefits can be obtained
through the object-oriented programming principles, a class
hierarchy which describes the kinematic elements in terms of
objects has been designed. From this class hierarchy, two
specific mechanisms have been created and shown as examples: the
first one 1is a four bar mechanism and the other is a mechanism
which combines a four bar mechanism and a slider crank mechanism.
Also shown in the examples is how much simulation process can be

simplified through the object-oriented programming principles.
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CHAPTER 1

INTRODUCTION

In representing a way of thinking and a methodology for
computer programming, 'object-oriented programming (OOP) takes a
quite different path compared with the one taken by the
conventional structured high level programming languages.

According to Pascoe[22], an object-oriehted language should
formally support abstraction, encapsulation, inheritance, and
polymorphism. Complete definitions of these principles are given
in chapter 2. He claims that data abstraction and encapsulation
increases reliability and helps decouple procedural and
representational specification from implementation. Polymorphism
increases flexibility by permitting the addition of new classes
of object without having to modify existing code. Inheritance
coupled with polymorphism allows code to be reused and this
reduces overall code bulk. By reducing the size of code, object-
oriented programming provides major advantages in the production
and maintenance of software: shorter development time, a high

degree of code sharing, and flexibility.[22]
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Based on all of these advantages stated so far, object-
oriented programming claims improved programmer productivity and
easy program maintenance.[2,21]

The objective of this thesis is to explore and demonstrate
the effectiveness of the object-oriented programming and its
programming environment for building engineering analysis
programs. The object-oriented language Smalltalk will be wused.
In doing so, we will evaluate how the basic principles of the
object-oriented language might 1lead us to the creation of
improved computer codes for the analysis of mechanical systems in
terms of the software qualities such as reliability, flexibility
and ease of maintenance. Specifically, effort will be limited to
two dimensional kinematic analysis of the mechanical systems

The layout of the thesis is as follows. In chapter 2, we
give definitions of some of the terminology in the object-
oriented programming and discuss differences between object-
oriented programming and structured pfogramming. specifically we
discuss the object-oriented language Smalltalk. Chapter 3
reviews the basic principle of planar kinematics. Chapter &
describes the program written in Smalltalk followed by some
simple examples in chapter 5. Finally the summary and conclusion
are discussed in chapter 6. Also discussions on Smalltalk and a

brief summary of the class hierarchy are given in the appendices.



CHAPTER II

OBJECT-ORIENTED PROGRAMMING

2.1 Definitions

In essence, object-oriented programming involves sending
messages to objects. An gbject is a package of information and
descriptions of its manipulations. A message is a specification
of one of an objects’s manipulations and a method, which is
similar to a procedure or subroutine, is the description of the
actions to be taken when a message is received by an object. A
protocol is a set of messages to which an object can respond. A
class 1is a description of one or more similar objects and an
instance 1is an object described by a particular class. A
subclass is a class that is created by sharing the description of
another class, often modifying some aspects of that description.
An jnstance varjable is the information used to distinguish an

instance from other instances of the same class. A class

varjable is a variable shared by all instances of a class and the

class itself. A global varjable is a variable shared by



instances of all classes. An effective abstraction is a
simplified description of a system which emphasizes the relevant
characteristics of the system but suppresses other details.
Abstraction techniques have become an important element in the
management of intellectual complexity and they can greatly
simplify the process of creating, verifying, maintaining and
extending complex systém.[28] Encapsulation is the process by
which individual software components are defined. A good method
of encapsulation has following desirable features[l]:
a) A clear boundary defining the scope of all its interﬁal
software
b) A well-defined interface that describes how the software
component interacts with other software
c) A protected internal implementation that gives the details
of the functionality provided by the software component
The contribution of encapsulation 1is that it restricts the
effects of change by placing a wall of code around each piece of
data. All access to the data is handled by procedures that were
put there to mediate access to the data.(2] Inheritance 1is a
formal ordering of classes. Inheritance of class description
reduces the information needed to build up descriptions since
each statement describes how a new class differs from a previous
one in the class hierarchy. An advantage of inheritance is that
it 1s possible to postpone specific details of information to

lower levels in forming a class hierarchy. Polymorphijsm is a

unique characteristic that different objects respond to the same
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message with their own behavior. Dynamic binding(or 1late
binding) means that binding or linking is done later than compile
time, generally while the program is running. Dynamic binding is
needed in loosely coupled collections[2] where computer code can
not predict the type of data to be operated on until the code is
being run. The notion of gtructured programming is a procedure
for developing complex systems wherein a developer is free to
assume the existence of any data structures or operational
procedures, even 1If they do not yet formally exist. This
approach depends heavily on effective and coherent abstraction

technique for its success.[29]

2.2 Comparison and Contrast of Object-Oriented Problem Solving
with Structured Problem Solving
Material in this section is a brief summary taken from [1].
To understand what object-oriented problem solving is about,
we make a brief comparison between object-oriented languages and
procedural languages. We will compare the two approaches in the

following categories.
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2.2.1 Method for accomplishing actions with data

A basic difference between the object-oriented paradigm and
the structured paradigm for computer problem solving is the way
in which actions on data are accomplished. In the object-
oriented programming(OOP) approach, messages(actions) are sent to
objects(data) and the object responds to the message in a
predetermined way. In a structured approach, parameters(data)
are sent to procedures(actions) and the procedures operate on the
data in a predetermined way using a relatively small and fixed
instruction set. If we further examine the details of the two
approaches, some internal details of the receiver object in an
OOP approach must be known by the sender in the structured
approach. Thus for a procedure call, we have to give further
explanations( e.g. Which parameters are input?, Which are
output?, and What is their type? ). This explanation, 1if it is
included, 1is usually in the form of ad hoc comments attached to

the parameters.

2.2.2 Abstraction

In an object-oriented language, selected classes of objects,

can be represented as data abstractions and messages can be

represented as functional abstractions. Although not all classes
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can be considered to be data abstractions, they may be
abstractions for certain physical objects, ideas, processes, or
concepts. This is a more general capability than provided by
data abstraction alone. The key issue is on classes of objects
and how they can be used to represent the other abstraction.

In a procedural language, combining preset data types that
the specific language provides represent data abstractions, and
functional abstractions are represented as procedures operating
on the data abstractions. Again the key issue is on data types
and how they can be used to represent various data abstractions
as well as more general abstractions.

Besides differences in implementation details, the major
difference for representing abstractions is that data types are
the central focus in procedural languages while classes are the

central focus for object-oriented languages.

2.2.3 Encapsulation[l]

In object-oriented problem solving, the unit of encapsulation
is the object. It consists of the complete protocol as given in
its class description and the private data of the particular
ingstance of that class. A class description is for one kind of
object only. Distinct objects that are instances of the same

class are separate units of encapsulation.
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In a procedural language, encapsulation is usually in the

form of library elements. Such elements may contain more than
one data abstraction, as well as the associated functional
abstractions. Depending upon the particular language, the

interface definition may or may not be separate from the
implementation. Further, in some procedural languages the

internal implementation details are not protected.

2.2.4 Inheritance and polymorphism

In general procedural languages do not support inheritance
and polymorphism as all object-oriented languages do. Without
support of inheritance, library elements and the data
abstractions are of equal hierarchical level which places a
severe restriction in understanding the relationship among
various elements of a problem solution in non-object oriented
languages. Also lack of support for polymorphism causes a number
of complicating factors in the choice of names for procedures as
similar operations in different 1library elements must be
distinct.

As an advantage of dynamic binding, polymorphism allows code
to be written that 1is insensitive to the types of object
receiving the message. Of course, if the object does not happen

to have a method for the message sent, an error will occur at run



time. [26]

Due to inheritance and polymorphism, we can find a more
natural solution to problems and also the ability to show
dependency relationships through subclasses and the reduction of
redundancy can be beneficial. As an added advantage,
polymorphism enhances the readability of software by allowing the
same message, indicating a particular action, to be sent to

different kinds of objects.[1]

2.2.5 Extensibility and relative status of new protocol

Extensibility is a property of computer languages that allows
the wuser to define new constructs. Most modern languages are
extensible; however, there are significant differences in the
methodology supported by individual languages for adding new
constructs. In most languages, the new constructs have status
that 1is secondary to those constructs provided by the language.
This typically means that the new constructs suffer significant
degradation in efficiency.

In a truly object-oriented language all objects have equal
status. This includes objects that are user-generated and
objects that are part of the system kernel. This consistency of
status 1is achieved at the expense of overall efficiency for

existing OOP languages. Thus the tradeoff is consistency versus
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local optimization.[1]

2.2.6 Refinement of class hierarchy vs. equivalent status of

all software components

With the support of inheritance and polymorphism, it 1is
possible to develop a hierarchy of classes in an object-oriented
approach to problem solving. Advantage of a class hierarchy is
that we can add incremental capability to currently existing
class hierarchy through subclasses as new problem solution
requires.

In a structured approach to problem solving, as all new
library elements have equal status, they cannot draw on existing
capability without redundant storage of copies of selected
procedures and further, the interdependence of various library
elements is not clear without a hierarchical structure. In
procedural languages, variations on modular design charts have
been used to show relative interdependence of the library
elements. A solution 1in a procedural language must define
separate and complete 1library elements for each of the
"subclasses", and it can cause much of the functional abstraction

to be repeated.
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2.2.7 Passing objects as parameters in an OOP approach and
passing records as parameters in a structured approach
The major difference in passing structured parameters in or
out is that a record parameter, in a procedural language, can be
accessed in any way by the receiving procedure while an object
parameter sent to another object can be accessed by that object
only. Specially in the object-oriented approach, accessing 1is
provided by the protocol of the object parameter, thus we can.
eliminate chance for errors from misuse due to object-oriented

encapsulation.



CHAPTER III

KINEMATICS

The kinematics analysis is used to determine the
displacement, velocity and acceleration of mechanical parts as a
result of the generated motion. In specific, kinematic analysis
is a study of motion of the system, regardless of the forces that
produce the motion.

For large problems with many variables and many equations, it
is difficult and often tedious to write and solve these nonlinear
algebraic equations by hand, thus numerical methods and computer
programs are the usual way to solve these problems.

This chapter presents some of the definitions wused in
kinematics, general forms of kinematic equations, and numerical
methods for solving such equations. Following material is taken
from [9]. An interested reader can find more comprehensive

explanation from the sources(17,18].

12
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3.1 Definitions of the Kinematic Elements

The definition of a rigid body is a system of particles in
which distances between particles remain unchanged. A mechanism
is a collection of rigid elements which produce a specified
motion. The link is a individual rigid body which makes up a
mechanism. A kinematic pair or joint is combination of two links
in contact. The definition of coordinates is any set of
parameters that wuniquely specifies the configuration of all
bodies of a mechanism. In this thesis, the cartesian coordinates
which normally require that the position of each body in space be
defined relative to a fixed global coordinate system are used
exclusively. The minimum number of coordinates required to
completely describe the system configuration is called the number
of degrees of freedom of the system. A kinematic pair imposes
certain conditions on the relative motion between the two bodies
it comprises. When expressed in analytical form, they are called
equations of constraint which reduces the number of degrees of
freedom in a system. In a kinematic pair, since the motion of
one body fully or partially determines the motion of the other,
it 1is obvious that the number of degrees of freedom of a
kinematic pair 1is 1less than the total number of degrees of

freedom of two rigid bodies.
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3.2 Cartesian Coordinates[9]

The coordinates that specify the location of each body need
to be defined to specify the configuration of a planar mechanical
system. Let the xy coordinates system shown in Figure 3.1 be a
global reference frame. Define a body-fixed Ei"i coordinate
system embedded in body 1. Body i can be located in the plane by
specifying the global coordinates r, - [x,y]Ti of the origin of
the body-fixed coordinate system and the angle ¢1 of rotation of
this system relative to the global coordinate system. The uspal
convention 1is that the angle is positive if the rotation from

positive x axis to positive Ei axis is counterclockwise.

y &’ %
=P . _?‘_

i o;
- ()

Figure 3.1 Locating point P relative to the body-fixed
frame and global coordinate systems

A point P, on body i can be located from the origin of 61"1

i
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axes by the»vector'gpi. The coordinates of point Pi with respect

to the £ coordinate system are Epi and np The body-fixed

i1 i

components of vector ?pi are shown as s pi =- fp, qp ]Ti. Since

Pi is a fixed point on body i, fpi and npi are constants,

therefore s Pi is a constant vector. The global xy components of

vector 3p1 vary when body i rotates. Point Pi may also be
T
P1 P yP ] .

The relation between the local and global coordinates of

located by its global coordinates r", = [ x

point Pi is

P -z +AsP (Eq. 3.1)
where

Ai = .cos ¢ -sin ¢

[sin ¢ cos ¢]i
is the rotational transformation matrix for body i.
Equation 3.1 in expanded form can be written as
X, =Xy +‘£picos ¢1 - npi sin ¢i

P

- P
yi y1 + ¢ 1sin ¢i + 1 1 cos ¢i

3.3 Kinematic Constraints(7]

In most kinematic systems, it is necessary to impose
constraints on relative position and orientation between bodies.
The objective for each joint is to define a set of algebraic

constraint equations that approximate a physical joint. Since
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the physical joint 1is to be represented by the constraint
equations, it is important that:
(a) the equations employed imply the relative positional restric-
tions imposed by the physical joint,
(b) the number of constraint equations derived be equal to the
number of degree-of-freedom restricted by the joint,

(c) the equations derived be independent.
3.3.1 Revolute joints[9]

Schematic representation of a revolute joint connecting to
bodies 1 and j is shown in Figure 3.2. The center of the joint
is denoted by the point P that can be considered to be two
coincident points. The constraint equations for revolute joint
are obtained from the vector loop equation.

P _ - gP -
r, +s, rj s j 0
which is equivalent to
’ ’
P _ - P o

= r, + Ai' 1 rj Ajs j 0
more explicitly,

o= xf -x* - 0

i J
F =¥ 0
i J
The two constraints of above equation reduces the number of

degrees of freedom of the system by 2.
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Figure 3.2 Revolute joint P connecting bodies i and j
3.3.2 Translational joints[9]

In a translational joint, the two bodies translate with
respect to each other parallel to an axis known as the 1line of
translation; therefore, there is no relative rotation between the
bodies. For translational joint, there are infinite number of
parallel 1lines of translation. A constraint equation for
eliminating the relative rotation between two bodies i and j 1is
written as

o 0
- -8 )=0 (Eq. 3.2)

b, - ¢

3 3
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0 °
where ¢ 1 and ¢ j are the initial rotational angles.

In order to eliminate the relative motion between the two
bodies 1in a direction perpendicular to the line of translation,
the two vectors E’i and @ shown in Figure 3.3 must remain
parallel. These vectors are defined by locating three points on
the 1line of translation - two points on body i and one point on
body j. This condition is enforced by letting the vector product

of these two vectors be zero. A simple method would be to define

another vector ?1 perpendicular to the line of translation and to

require that ? remain perpendicular to ﬁ'l.; i.e., that
nTid -0 (Eq. 3.3)
where
n, =rx - x° -
N i
P _ R
Ly, -y,
d - -xP - xP e
3 i
P P
-y, -y,

R P Q
b T B B -(yx_yx)

P _ R |_ & -0

Yy, =¥, L Xy

Thus, equations 3.2 and 3.3 yield the two constraint equations for a
translation joint as

P Q P P P Q P P
G-[(xi LRAC AN AR S A ALY xi)J-[O]

0 0

Note that a translational joint reduces the number of degrees of
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freedom of a system by 2.

Figure 3.3 A translational joint between bodies i and j

3.3.3 Simplified constraints[9]

Generally the constraint equations describing certain
kinematic conditions between two bodies, if one of the bodies is
a nonmoving body, can be simplified or replaced by other simple
equations. In order to constraint translation of the origin or
angular motion of a rigid body, one or more of the following
equations may be used:

®mx, -cy - 0
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O = Yy = ¢2 = 0

where c¢,, c¢,, and cy, are constant quantities. Figure 3.4

illustrates graphically the three above constraint equations.

A \ \ C
=TS - V) L
~ -cl ~’ ~-

|

{ i

|

L X X X

1
Cb o
(a) !

'

Figure 3.4 The body can move with (a) constant X,

(b) constant yi, and (c) constant ¢i

3.3.4 Driving links(9]

In kinematically driven systems, the motion of one or more
bodies 1is usually defined. For example, in the slider-crank
mechanism of Figure 3.5, the driving link i rotates with known

constant angular velocity w. If kinematic analysis is to be
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performed using the appended driving constraints method, then the
motion of the driving link must be specified in the form of a
driving constraint equations. For éhe mechanism of Figure 3.5,
one moving constraint of the form can be employed,
= ¢1 - d(t) -0
where d(t) = ¢°i + wt and ¢oi is the angle ¢i at t = 0, If the
driving 1link rotates with a constant angular accelerations a,
0

2 .
then the above equation can be used with d(t) = 0.5at + ¢ t +

° .0 : ,
¢ , where ¢ 1s the angular velocity at t = 0.

[7*'\"""‘8 \inK

W 1(8)

o

777777 (1777777

Figure 3.5 A slider-crank mechanism
3.4 Kinematic Analysis

For a mechanical system, kinematic analysis is a study of
motion of the system, regardless of the forces that produce the
motion. When the time history of position of one or more bodies

of the system 1is prescribed, we need to determine the time
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history of position, velocity, and acceleration of the remaining
bodies by solving system of nonlinear algebraic equations for
position and 1linear algebraic equations for velocity and
acceleration. The only important equations to consider in the
kinematic analysis are constraint equations. The first and
second time derivatives of the constraint equations provide the
kinematic velocity and acceleration equations.

At any given instant in position analysis, we must know the
value of k coordinates which is the same as the number of degrees
of freedom. Thus the constraint equation can be solved for the
other m = n - k coordinates. The same principle applies for
velocity and acceleration analysis; the value of k velocities and
k accelerations must be known in order to solve kinematic
velocity and acceleration equations for the other unknown
velocities and accelerations. There are several ways in doing
kinematic analysis but in this report, we will be using so called
the method of appended driving comstraints.(9] In this method,
additional constraint equations, called driving constraints,
equal in number to the number of degrees of freedom of the
system, are appended to the original kinematic constraints. The
driving constraints are equations representing each independent
coordinate as a function of time.

This method stated in its most general form, if there are m

kinematic constraints, the k driving constraints must be appended
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to the kinematic constraints to obtain n = m + k equations:
d=P(q) =0 (Eq. 3.4)
[o(d) - 8(q,t) - o]
where superscript (d) denotes the driving constraints. Equation
3.4 represents n equations in n unknowns q which can be solved at
any specified time t.

The velocity equations are obtained by taking the time
derivative of Equation 3.4:
®.4 -0 ] (Eq. 3.5)
[¢q‘d’é . °c(d) -0
which represents n algebraic equations, linear in terms of q.

Similarly, the time derivative of Equation 3.5 yields the

acceleration equatjons:
[éqﬁ + (éqi])q - 0 (Eq. 3.6)

Qq(d)ﬁ + (¢q(d)d)q& + 2¢qt(d)i + Qtt(d) =0 ]

which represents n algebraic equations linear in terms of §. The
term -(¢qﬁ)qﬁ in Equation 3.6 is referred to as the rjight side of
“the kinematic acceleration equations.

In position Analysis, the Newton-Raphson algorithm wuses
values of the coordinates from the previous time step as an
estimate on qi to start the iteration. Thus the Newton'’s method
can be used to improve these estimates by starting the iterative
computation at a good estimate for the position of the system.

Presuming that position, velocity, and acceleration are known at
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time ti, one may approximate the generalized coordinate vector at

time ti+1 using the Taylor second order expansion.
qi+1 - qi + (t1+1 _ ti)qi + 0.5(t1+1 _ ti)zﬁi

This 1initial estimate can be used to begin Newton-Raphson
iteration and, if the difference between time points 1is not
extreme, rapid convergence may be expected.[7]

The general procedure for kinematic analysis wusing this

method is summarized in the following algorithm:

Algorithm

0
(a) Set a time step counter i to { = 0 and initialize t:i -t .

(b) Append k driving equatidns to the constraint equations.

(c) Solve Eq. 3.4 iteratively to obtain qi.

(d) Solve Eq. 3.5 to obtain 4.

(e) Solve Eq. 3.6 to obtain qi.

(f) 1If final time is reached, then terminate; otherwise increment

t1 to t1+1, let {1 - i + 1, and go to (c).

3.5 Newton-Raphson Method for Nonlinear Algebraic

Equations (9]

One of the most frequently occurring problems in scientific
work 1is to find the roots of one or a set of nonlinear algebraic

equations of the form ®(x) = 0 i.e., zeros of the functions
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o(x). In general, iterative methods are employed and the most
common and frequently used method is known as the Newton-Raphson
method.
Consider n nonlinear algebraic equations in n unknowns,
o(x) =0
where a solution vector x is to be found. The Newton-Raphson
algorithm for n equations is stated as

xj+1

- - e tod) eid) (Eq. 3.7)

where Qx-l(xj) is the inverse of the Jacobian matrix evaluated
at x = xj.

The term ¢(xj) on the right side of Equation 3.7 is known as the
vector of residuals, which corresponds to the violation in the

equations.

Equation 3.7 may be restated as a two-step operation:

o () axd - - 0cxd) (Eq. 3.8)
xj+1 - xj + AxJ (Eq. 3.9)
where Equation 3.8, which is a set of n linear equations, is

solved for ij. Then, xj+1 is evaluated from Equation 3.9.
Gaussian elimination or LU factorization methods are frequently
employed to solve Equation 3.8. The term ij - xj+1 - xj, known
as the Newton difference, shows the amount of correction to the
approximated solution in the jth iteration. The Newton-Raphson
method, when it works, 1is very efficient. Because the Newton-

Raphson method will not always converge, it is essential to
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terminate the process after a finite number of iterations. The

computational procedure is stated as follows:

Algorithm

(a) Set the iteration counter j = O.

(b) An initial estimate x0 is made for the desired solution.

(c) The functions Q(xj) are evaluated. If the magnitudes of

(d)

(e)

all of the residuals Qi(xj), i=1,...,n, are less

than a specified tolerance ¢, i.e., if |¢i| < g,
i=1,...,n, then xJ is the desired solution; therefore
terminate. Otherwise, go to (d)

Evaluate the Jacobian matrix Qx(xj) and solve Equation
3.8 and 3.9 for x3*!

Increment j; i.e., set j to j + 1. If j is greater than
a specified allowed number of iterations, then stop.

Otherwise go to (c).



CHAPTER IV

PROGRAM

This chapter presents in detail how the object-oriented
programming methodology can be applied to kinematic analysis of
the mechanical system composed of several inter-connected rigid
or flexible bodies, it is often useful to divide the problem that
must be solved into smaller pieces and to solve those pieces
separately, to the extent that is possible. Then the separate
pieces must be combined to form a single consistent solution to
the original problem. This is the very foundation of object-
oriented problem solving because the object-oriented programming
principle 1is to develop a class structure which organizes the
elements of a system so that specific details are postponed to
lower 1level of classes. This kind of structuring encourages a
hierarchical decomposition of description and computational
process.

Many of the practical benefits of object-oriented programming
follow from this characteristic. However, achieving this kind of

class structuring is by far the most difficult aspect of object-

27
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oriented programming. We see the design process as at least a
three level process wherein the class being invented is
intellectually coupled to both its superclass and subclass. For
example, while inventing a class, we consider potential
superclass. In order to raise the level of abstraction over the
present perspective. Concurrently, we reflect on the nature of
potential subclasses in order to discover how effectively the
present class encourages the development of objects at the
subclass 1level. Thus our basic design goal is: To the extent
that 1is possible the upper levels of the class hierarchy should
involve abstract description, whereas the lower levels should
represent more concrete or specific constructs. This will
enable hierarchical descriptions and computational process. It
will facilitate the many practical benefits associated with
object-oriented programming. For example, this will make it easy
to add or change computational schemes.

The first step in an object-oriented solution to a problem is
to define the objects. Once the potential objects are
identified, the next step is to develop a complete description of
each object that 1is part of the solution. This description
includes the characteristics of the objects and that actions to
which each object must respond. The actions become method
details with appropriate message selectors to indicate the

expected response. After this is completed, we may decide how to
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add the subclasses in order to represent more specific details.

We now describe a class hierarchy structure which illustrates
how object-oriented programming can be applied to kinematics.
The general approach is based on following underlined classes
which will be described below.
Object

Collection

IndexedCollection

FixedSizeCollection
Array

Matrix
Vector
MechanjcglObject
Constrajnt
RevoluteJoint

In order to represent the world of kinematics, we choose an
abstract class which contains every kinematic element such as
constraints, rigid bodies, and complete mechanisms. The
MechanicalObject class plays this role and is a superclass of all
of the classes that represent kinematic elements. It also
defines two methods such as naming and indexing elements, and
these methods with private variables are inherited by all of 1its

subclasses. By making the MechanicalObject be an abstract
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superclass, it is possible to postpone details of the mechanical
elements to lower levels.
The Constraint class is a superclass of all of the classes
which represent mechanical joints and drivers. This class

defines common methods for initializing instances .of its

subclasses. Again details of each joints and drivers are
postponed to next levels. For example, the RevoluteJoint class

is a subclass of Constraint class. It inherits two instance
variables( name and index ) from the MechanicalObject class and
instance method( initialize ) from the Constraint class. It
differs from 1its super class (Constraint class in that it
represents specific a joint class among several constraints by
redefining 1its class description protocol. As for the
encapsulation of Revolutedoint class, an instance of the
RevoluteJoint class can represent a unique revolute joint in
mechanism by specifying its instance variables such as two rigid
bodies and coordinates of the point in each rigid body and by
defining detailed methods involving these internal objects. An
advantage of the encapsulation is to limit the effects of change
by placing a wall of code around internal data structure. Since
access to this internal data structure can only be made through
its instance methods, reliability is improved. Similarly, these
principles have been applied in defining for translational

joints, driving links and simple constraints. A brief summary of
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class protocol for these subclasses is given in Appendix B.

The Element class is an object representing any mechanisms
which consist of the mechanical constraints and the rigid bodies.
Instance variable elementlist contains information on the
connection of each rigid body in the system and instance variable
constraintlist provides information about the joints connectivity
between rigid bodies. By storing these data in instance
variables, an instance of the Element class is created and then
we can perform complete kinematic analysis on this object by
sending messages.

We note that several of the concepts of OOP play a beneficial
role here. For example, the Jacobian matrix is needed for the
kinematic analysis of a mechanism and the method for doing this
uses the concept of polymorphism. If we send the jacobian
message to an instance of the Element class, then each joint in
that mechanism gets this same message and responds accordingly.
The same principle has been applied in computing the cartesian
position vector, velocity vector, acceleration vector etc. The
contribution of polymorphism coupled with inheritance is that, if
we want to add more classes or subclasses, there will be less
original code for a programmer to write.

A single rigid body is a unit element of the mechanisnm,
accordingly this class is classified as subclass of the Element

class along with other mechanisms such as four bar mechanisms,
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slider crank mechanisms and quick return mechanisms. Of course,
a; we develop more specific mechanisms, we can add those to
existing class hierarchy since the organization of this class
hierarchy 1is very much flexible in terms of adding or modifying
class objects. One example which illustrates these points is
given in Sec. 5.3.

The Node class represents the cartesian coordinates of the
points. The Vector class defines basic concepts of vector
algebra and its manipulations. Similarly, so does the Matrix
class. The reason behind placing Vector and Matrix classes under
the Collectjion class is to utilize another subclass Array and
some of methods in Collection class protocol.

Based on discussions so far, we can notice how the world of

kinematics has been broken down from abstract( MechanjcalObject )
to specific subclasses( RevoluteJoint, TranslationalJoint,
SimpleConstraint, Drivinglink, RigidBody, FourBar ) for the

design of the class hierarchy in terms of the objects. In doing
this, the object-oriented principles such as abstraction and
encapsulation have been applied. Also the FourSlider class which
has been created by combining instances of existing subclasses
does not lose any efficiency because this subclass, once added to
class structure, Dbecomes part of the system class hierarchy.
Particularly, for the kinematic analysis of the Element class

object, we have shown how polymorphism is used in forming system
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Jacobian matrix and from this, it is evident that this approach
reduces overall code to be written. According to Cox's
definition of programmer productivity that bulk is bad, we can
improve programmer’s productivity since we have less original
code to write. A summary of each class description is presented

in the appendix.



CHAPTER V

SIMPLE EXAMPLES

5.1 Modeling and Analysis

Generally there are many ways to model a  particular
mechanism. The important factor to consider in kinematic
analysis is that there must be no free degrees of freedom for the
combination of bodies, kinematic constraint, and drivers in
kinematic modeling.

Here, in order to assemble the mechanism, an initial estimate
of the position and orientation of each body as well as joints
data of the mechanism must be provided. These estimates, x, 1y,
and ¢ for each body, can be obtained from a reasonably scaled
diagram of the mechanism. These estimates need not to be
extremely accurate. The Newton-Raphson algorithm starts the
iterations wusing the estimated values and finds exact values for
the coordinates at t = 0.

After specification of the bodies and kinematic constraints,

one or more degrees of freedom will remain. To complete the

34



35
model a number of drivers equal to the number of degrees of
freedom must be specified. Drivers are usually define relative
or absolute motion that is imposed by motors or by specifying
some characteristics of motion that is desired, regardless of the
prime mover that is to generate the motion.

We will now illustrate these ideas with three examples.

5.1.1 Kinematic analysis of a four bar mechanism

A four bar mechanism with four revolute joints is modeled in
Figure 5.1. In Model 1, each link and ground is modeled as a
body. Four revolute joints complete the model, and the ground
constraint 1is treated as having three simple constraints on 1its

X, y, and ¢ motion, as follows:

Model 1
4 bodies
(3 generalized coordinates / body) 12 g.c.
Constraints
Revolute Joint 1 2
2 2
3 2
4 2
Ground Constraint 3
(Body 1 is ground)
Driver 1 1
Total No. of Constraints 12

DOF = 12 - 12 = 0

From the Figure 5.1, initial position estimates can be measured
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and tabulated in Table 5.1.1.

Table 5.1.1 Initial position estimate of four bar mechanism

Body No. | 1 2 3 4

x| 00 o 2.6 35
"y | o0 o8 26 18
" e(rad)] 0.0 1.047 0.524  1.047

Revolute joint data for Model 1 are shown in Table 5.1.2.

Table 5.1.2 Revolute joint data of four bar mechanism

Joint No. | 1 2 3 4
Common Point | A B c D
Body 1 1 2 3 4
§ { 0.0 1.0 2.0 2.5
"’y 0.0 0.0 0.0 0.0
Body j 2 3 4 1
¢ { -1.0 -2.0 2.0 0.5
q’i 0.0 0.0 0.0 1.5

Sample program for model 1 of a four bar mechanism is
as follows:

Class method for instantiating a Four Bar Mechanism
modell

| fourbar ground body2 body3 body4 rjointl rjoint2 rjoint3
rjoint4 simplel simple2 simple3 driverl
nodel node2 node3 node4 node5 nodeé node7 node8|

fourbar := Element new initialize:#('fourbar’).
ground := RigidBody new initialize:#(’ground’ 1 0.0 0.0 O
body2 := RigidBody new initialize:#(’body2’' 2 0.5 0.8 1.047).
body3 := RigidBody new initialize:#('body3’ 3 2.6 2.6 0.5
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body4 := RigidBody new initialize:#('body4’' 4 3.5 1.8 1.047).
nodel := Node new initialize:#(’'nodel’ 1 0.0 0.0).
node2 := Node new initialize:#(’'node2’' 2 -1.0 0.0).
node3 := Node new initialize:#('node3’ 3 1.0 0.0).
node4 := Node new initialize:#(’'node4’ &4 -2.0 0.0).
node5 := Node new initialize:#(’'node5’ 5 2.0 0.0).
node6é := Node new initialize:#('node6’ 6 2.0 0.0).
node? := Node new initialize:#(’node7’ 7 -2.0 0.0).
node8 := Node new initialize:#('node8’ 8 2.5 0.0).

simplel := SimpleConstraint new initialize:#(’'simplel’ 1).
simple2 := SimpleConstraint new initialize:#(’simple2’ 2).

simple3 := SimpleConstraint new initialize:#(’'simple3’ 3).
rjointl := RevoluteJoint new initialize:#('rjointl’ 4).
rjoint2 := RevoluteJoint new initialize:#(’'rjoint2’ 5).
rjoint3 := RevoluteJoint new initialize:#(’'rjoint3’ 6).
rjoint4 := RevoluteJoint new initialize:#('rjoint4’ 7).

driverl := DrivingLink new initialize:#(’driverl’ 8).
simplel isOn:ground direction:’x’ with:0.
simple2 isOn:ground direction:’'y’ with:0.
simple3 isOn:ground direction:’angle’ with:0.
driverl isOn:body2 direction:'’angle’ with:1.0472 with:6.2832
with:0.0.

rjointl connect:ground with:nodel to:body2 with:node2.
rjoint2 connect:body2 with:node3 to:body3 with:node4.
rjoint3 connect:body3 with:node5 to:body4 with:nodeé6.
rjoint4 connect:body4 with:node7 to:ground with:node8.
fourbar

addElement:ground;

addElement:body2;

addElement:body3;

addElement:body4;

addConstraint:simplel;

addConstraint:simple2;

addConstraint:simple3;

addConstraint:rjointl;

addConstraint:rjoint2;

addConstraint:rjoint3;

addConstraint:rjointé4;

addConstraint:driverl.
“fourbar

This completes an instance creation of the FourBar class
object which describes a unique four bar mechanism. This four

bar object completely encapsulates its internal data structure.




38

Suppose we want to add some points of interest on one or more
bodies, all we need to do is to access a specific component and
then add an interesting point to that component and this is shown
below. By dealing directly with a component( body 3 ) of the
fourbar object, rest of internal data structure of the fourbar
mechanism has not been changed and the rigid body 3 is also an
encapsulation of the RigidBody class, thus adding a point to it
does not change its internal data structure. In the case of
Fortran programs, we often need to modify data file, which can be
cumbersome and also can cause a problem if we change the wrong
data. In an object-oriented program, these problems are
minimized by encapsulation, thus the simulation process becomes
safer and easier. To run the sample program, we execute
following statements.

| fourbar |

fourbar := FourBar modell.

(fourbar getElement:’'body3’) addInterestingNode:(Node new

initialize:#(’'node9’ 9 0.5 1.5)).

fourbar kinematicAnalysisFrom:0.0 to:1.0 with:0.025.

A portion of the output for the first two time steps is as
follows.

KINEMATIC ANALYSIS for Four Bar Mechanism

TIME = 0.0

element No. X y angle

1 0.0 0.0 0.0

2 4.9999788e-1 8.6602663e-1 1.0472

3 2.8235171 2.5534971 4.2324569e-1
4 3.5735192 1.6874704 1.0042045
element No. vel X vel Y angular Vel

1 0.0 0.0 0.0



2
3
4

element No.
1

2
3
4

-5.4414185
-11.084945
-5.6435267

acc X

0.0
-19.739217
-52.441015
-32.701798

39

3.1415867
6.7318329
3.5902462

acc Y

0.0
-34.189521
-39.898215
-5.7086945

INTERESTING POINT in Element 3

'‘node9’

pos X = 2.6633146
vel X = -11.471967
acc X = -77.04228

TIME = 0.025
element No.
1

2

3

4

element No.

SLWN -

element No.

P VENN S

b3

0.0
3.5836532e-1
2.5314838
3.4231185

vel X

0.0
-5.8658789
-12.220203
-6.3543239

acc X

0.0
-14.147762
-38.613196
-24.465434

pos Y = 4.126499
vel Y = 6.6924166
acc Y = -42.499944

y
0.0
9.3358144e-1
2.7078006
1.7742192

vel Y
0.0
2.251681
5.5578081
3.3061271

acc Y

0.0
-36.85649
-53.045822
-16.189332

INTERESTING POINT in Element 3

'‘node9’

pos X = 2.3546939
vel X = -13.133149
acc X = -56.692983

pos Y = 4.2790247
vel Y = 5,4550858
acc Y = -55.617287

6.2832
2.4604019e-1
3.3443707

angular Acc
0.0
4.1023146e-15
15.645856
12.263731

angle

0.0

1.20428
4.3379665e-1
1.0910443

angular Vel
0.0

6.2832
5.8104113e-1
3.581477

angular Acc
0.0
3.8054674e-15
11.544803
7.1155912



Figure 5.1 Kinematic modeling of a four bar mechanism
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Figure 5.2 Kinematic modeling of a slider crank mechanism
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5.1.2 Kinematic analysis of a slider crank mechanism

In Model 1, each link in the mechanism and ground is modeled
as a body and this is shown in Figure 5.2. Joint can then be

modeled as revolute and translational joints, as follows:

Model 1

Bodjes
4 bodies

(3 generalized coordinates / body) 12 g.c.

Constraints
Revolute Joint 1

2

3
Translational Joint 1
Ground Constraint
(Body 1 is ground)
Driver 1
Total No. of Constraints 12

WNNNDN

-

DOF = 12 - 12 = 0

For Model 1, initial estimates for position and orientation are
tabulated in Table 5.2.1.

Table 5.2.1 Initial position estimate of slider crank mechanism

Body No. | 1 2 3 4

T e aee aero st
.
ety 0.0 are o2 oo

-----------------------------------------------

The three revolute joints in Model 1 are defined in Table 5.2.2.
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Table 5.2.2 Revolute joint data of slider crank mechanism

Joint No. | 1 2 3
Common Point | A B (0]
Body 1 4 3 2
e’i 0.0 300.0 100.0
',’1 0.0 0.0 0.0
Body J 3 2 1

e’i -200.0 -100.0 0.0
q"i 0.0 0.0 0.0

..........................................

A translational joint in Model 1 is defined in Table 5.2.3.

Table 5.2.3 Translational joint data of slider crank mechanism

Joint No. | 1
Bgdy i 4
¢ { 0.0
p
"y 0.0
q
£y 100.0
q
T A
Body j 1
] 1 0.0
P
"y 0.0

-------------------------

To simulate, we execute following statement.
(SliderCrank modell) kinematicAnalysisFrom:0.0 to:1.0 with:0.1.

A portion of the output for the first two time steps is as
follows:

AN S er C echanism

TIME = 0.0
element No. x y angle



SWN

element No.

S wN -

element No.

S W e

TIME = 0.1

element No.

sSwN =

element No.

S W=

element No.

S wN -

0.0

-86.623206
-467.19395
-663.15898

vel X
0.0
59.957026
145.35697
162.31892

acc X
0.0
124.73742
286.99918
312.01541

p 4
0.0

-80.018944
-451.27725
-645.43682

vel X
0.0
71.969679
172.41377
191.39672

acc X
0.0
115.22728
253.21743
268.39268

0.0
49.964188
39.971351
0.0

vel Y
0.0
103.94785
83.158278
0.0

acc Y

0.0
-71.948431
-57.558745
0.0

y
0.0

59.974733
47.979786
0.0

vel Y
0.0
96.022733
76.818186
0.0

acc Y

0.0
-86.363615
-69.090892
0.0

.76
.0121172e-1

(ol SRV, Ne)
OONO

angular Vel
0.0
-1.2
4.2435265e-1
0.0

angular Acc
0.0
0.0

-2.5698921e-1

0.0

angle
0.0
5.64
2.4226174e-1
0.0

angular Vel
0.0

-1.2
0.3956446
0.0

angular Acc
0.0
0.0

-3.1716383e-1

0.0
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5.1.3 Kinematic analysis of a combined Four bar and
Slider crank mechanism

In this section, we develop a mechanism( FourSlider ) which
consists of a four bar mechanism connected to a slider crank
mechanism with a new link. This example specially 1illustrates
application of 1incremental capability of object-oriented
languages. Suppose two mechanisms have been created, now we want

to combine these two mechanisms with a new link and as a result,

we want to create new mechanism called FourSlider. By
encapsulation, data stored inside of a fourbar object and a
slider object are protected. In order to create a combined

mechanism, we add additional instance methods such as accessing,
changing and removing its elements or constraints to the Element
class. Having done that, we can create a new mechanism which
consists of a four bar mechanism and a slider crank mechanism.
Explanations on the specific steps are given 1later in this
section. Also once we have created this combined mechanism, we
can add this object as another subclass of the Element class,
thus expanding the class hierarchy and making it useful in the
future as a subclass. This shows a real advantage of object-
oriented languages. In other words, if new mechanism had to be
created from the scratch, much more computer code would have been
written and debugged. By wutilizing already available

information, it 1is possible and much easier to develop a
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complicated software system, thus again improving the
programmer’s productivity. Also, as shown in the example in Sec.
5.1, an instance of the FourSlider class encapsulates a unique
combined mechanism and the simulation becomes simple process(e.g.
sending a message to that object).

This mechanism has nine revolute joints and one translational
joint and 1is shown in Figure 5.3. In Model 1, each link and
ground is modeled as a body. Nine revolute joints, one
translational joints and one driver complete the model, as

follows:

Model 1

Bodjes
8 bodies

(3 generalized coordinates / body) 24 g.c.
Revolute Joint

1
2
3
4
5
6
7
8

9
Translational Joint 1
Ground Constraint
(Body 1 is ground)
Driver 1
Total No. of Constraints

WRRNNDDNDNDNDNDNDDNDND

S

DOF = 24 - 24 = 0

For Model 1, initial estimates for position and orientation are
tabulated in Table 5.3.1.
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Table 5.3.1 Initial position estimate of combined mechanism

Body No. | 1 2 3 4 5
Tx ) 00 os 2.6 35 5.3
Ty 1 00 o8 26 1.8 0.9
" a(rad)| 0.0 1.047  0.526  1.047  1.222
Body No. | 6 7 8

Tx ) e88 80 45
Ty 1 0% 00 134

" a(rad)| 5.585 0.0 5.864

The nine revolute joints in Model 1 are defined in Table 5.3.2.

Table 5.3.2 Revolute joint data of combined mechanism

Joint No. | 1 2 3 4 5
Common Point | A B c p E
Body 1 1 2 s . .
e’i 0.0 1.0 2.0 -2.0 0.0
q"i 0.0 0.0 0.0 0.0 0.0
Body 3 2 3 . o '
£ -1.0 -2.0 2.0 2.5 -1.0
q"i 0.0 0.0 0.0 0.0 0.0
Joint No. | 6 7 8 9

Common Point | F ¢ " r

Body 1 s 1 s 6

&, 0.0 5.0 1.0 1.5

n"i 0.0 0.0 0.0 0.0

------------------------------------------------



The translational joint in Model 1 is defined in Table 5.3.3.

Table 5.3.3 Translational joint data of combined mechanism

Joint No. | 1
Body 1 7
€ 1 0.0
P

"y 0.0
q

3 { 0.5
q

X S o
Body j 1
€ { 0.0
P

"y 0.0

Sample program for model 1 of a combined mechanism is
as follows:

mechan our de

| fourSlider fourbar slider ground body4 body5 body8 rjoint5
rjoint6é node9 nodel0 nodell nodel2|

Step 1. The following two statements are used to create a new element,
a four bar mechanism, and a slider crank mechanism

fourSlider := Element new initialize:#('fourSlider’).
fourbar := FourBar modell.
slider := SliderCrank model2.

Step 2. The following three statements are used to access ground element
and link( body 4 ) in the four bar mechanism, and link
( body 5 ) in the slider crank mechanism

ground := fourbar getElement:’ground’.
body4 := fourbar getElement:’'bodys’.
body5 := slider getElement:'body5’.
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Step 3. The following statement is used to create a new link for
connecting two mechanisms

body8 := RigidBody new initialize:#(’'body8’ 8 4.5 1.34 5.8643).

Step 4. The following six statements are used to create two revolute
joints which will be placed in link( body 8) and
coordinates of each joint

rjoint5 := RevoluteJoint new initialize:#(’'rjoint5’,8).
rjoint6 := RevoluteJoint new initialize:#('rjointé6’,9).
node9 := Node new initialize:#('node9’ 9 0.0 0.0).
nodel0 := Node new initialize:#(’'nodel0’ 10 -1.0 0.0).
nodell := Node new initialize:#('nodell’ 11 1.0 0.0).
nodel2 := Node new initialize:#('nodel2’ 12 0.0 0.0).

Step 5. The following two statements are used to establish joint
connections between links( body 4 & body 8 and
body 8 & body 5 )

rjoint5 connect:body4 with:node9 to:body8 with:nodelO.
rjoint6 connect:body8 with:nodell to:body5 with:nodel2.

Step 6. The following is used to transfer the nodes of the ground
element in the slider crank mechanism to ground element in
four bar mechanism

ground getNodesFrom: (slider getElement:’ground’).

Step 7. Following statements remove the ground element, three
simple constraints, and driver constraint from the slider
crank mechanism

slider

removeElement:’'ground’;

removeConstraint:’'simplel’;
removeConstraint:’simple2’;
removeConstraint:’simple3’;
removeConstraint:’driverl’.

Step 8. The following combines the two mechanisms
fourSlider combine:fourbar with:slider.

Step 9. The following adds a new link( body 8 ) and the two revolute
joints to combined mechanism

fourSlider
addElement:body8;
addConstraint:rjoint5;



addConstraint:rjoint6.

Step 10.
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The following changes joint instance variables( second

body ) to the redefined ground element

(fourSlider getConstraint:’'rjoint7’) changeSecondElement:ground.
(fourSlider getComstraint:’tjointl’) changeSecondElement:ground.

To run the sample program, we execute following statement.

(FourSlider model2) kinematicAnalysisFrom:0.0 to:0.0 with:0.025.

A portion of the output for the first time step is as

follows:

TIME = 0.0
element No.

NV WN -

[
—
g
o
=
(g4
4
o

NV S W

element No.

PNAULE WN -

.0
.9999788e-1
.8235171
.5735192
.4159581
.0248208
.2177253
.4947387

S ONUNMWNDSONK

vel X

0.0
-5.4414185
-11.084945
-5.6435267
-6.0006053
-14.093583
-16.185955
-5.822066

acc X

0.0
-19.739217
-52.441015
-32.701798
-42.716733
-73.814036
-62.194607
-37.709265

a

.0
.6602663e-1
.5534971
.6874704
.0938377e-1
.0938377e-1
.0

.2984271

- O WWVWENO®ONY

®
-
<

.0

.1415867
.7318329
.5902462
.7447164
.7447164
.0

.1674813

WOMNNWOHWO{E

acc Y

0.0
-34.189521
-39.898215
-5.7086945
-28.340466
-28.340466
0.0
-17.02458

lider Crank Me sm

a

0

1
4.2324569e-1
1.0042045
1.1418002
5.6318412
0.0
5.8835924

angular Vel
0.0

6.2832
2.4604019%e-1
3.3443707
6.5985401
-2.3008685
0.0
-4.5891879%e-1

angular Acc
0.0
4.1023146e-15
15.645856
12.263731
27.057456
19.721773

0.0
-12.372536
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Figure 5.3 Kinematic modeling of a combined four bar
and slider crank mechanism



CHAPTER VI

SUMMARY AND CONCLUSIONS

The object paradigm has several features that can be used as

guidelines for developing object-oriented programs. In chapter
4, the problem 1is broken down into the sub-problems and is
characterized in terms of objects. In designing a class

hierarchy structure for kinematic analysis, we have shown how
object-oriented principles can be applied to engineering analysis
problems. By using encapsulation and abstraction, we have broken
the world of kinematics into objects which describe the basic
kinematic elements. From these objects, we were able to form a
mechanism and perform kinematic analysis on the mechanism. Due
to the encapsulation of objects, each object is described by its
internal data structure by instance variables and also a message
protocol is defined for accomplishing actions with these
variables. Since those instance variables can be accessed only
by the methods in specific class description protocol, it is
possible to insure a high degree of reliability of the program to

a user. A change to one part of the software need not affect the
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rest of tﬁe system. This is shown in the example in Sec. 5.1.
In creating an instance of a four bar mechanism, the object-
oriented approach results in much more readable program compared
with structured approach, thus it is easy to wunderstand the
overall code. Specifically, if a problem has a solution that is
an incremental change from existing capability, then its solution
is more quickly achieved.

Complex problem solving would often be enhanced by direct
access to a language’s source code, particularly if modifications
could be carried out in\a simple and safe manner. In Smalltalk,
any part of the image(source code) 1is readily available to the
user and it is easy to browse or modify the image. Also, as an
added advantage, Smalltalk’s simple edit-execute cycle, which
replaces edit-compile-link-execute cycle of other procedural
languages, reduces time for editing and execution can be halted
and resumed when bugs are encountered and fixed. Bug fixing is
especially easy since hierarchical connection between a fault and
the original message leading to it is always available. Thus,
the Smalltalk language is coupled with powerful supporting tools
which can reduce time for compiling, testing, and debugging
phases of program development. This capability to integrate
changes rapidly 1is a desirable advantage over conventional
software systems based on procedural languages which may require

a lot of time to rebuild systems after changes.
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The example in the section 5.3 shows how we can apply
Smalltalk’s incremental problem solving capability. In this
example, an instance of Element class combines a four bar
mechanism and a slider crank mechanism and as a result, a new
mechanism called FourSlider is created and subsequently, this
mechanism is added to the class hierarchy as a subclass. From
this example, we have demonstrated that the existing class
hierarchy is flexible because the addition of a new subclass can
be easily achieved without disrupting the whole software system.

The 1inheritance principle was used both in the design of
class hierarchy structure and in the case of the subclasses of
Consgtraint class and the Element class. Specially if we want to
expand from the world of kinematics to the world of dynamics to
perform dynamic analysis on mechanical systems, I believe that
the advantage of the inheritance principle could be even more
apparent. The polymorphism principle that the same message can
elicit a different response depending on the receiver object has
been utilized throughout classes. For example, we need to form a
global jacobian matrix for a system in the Element class and the
same message jacobjap is sent to each joint which connects each
rigid body. In turn, each joint computes its own Jacobian matrix
and sends it back to the instance of Element class, thus forming
a system Jacobian matrix. This illustrates how the object-

oriented approach places the responsibility for computing
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Jacobian matrix onto the joints themselves. Also polymorphism
increases flexibility by permitting the addition of new classes
of objects without the need to modify existing code. If we want
to add more constraints as subclasses to the existing class
hierarchy, all we need to do is to provide new Jacobjan methods
for each new constraints without changing the method in the
Element class. Polymorphism coupled with inheritance reduces
code to be written and as a result, we can increase the
programmer’s productivity because the programmer has to write
less original code. This, in turn, improves maintenance of the
program because there is only one place for code to perform a
specific job. Polymorphism also enables dynamic or late binding.
By reducing type dependence from the language, it is easier to
write and modify programs written in Smalltalk.

In summing wup discussions thus far, it is my belief that
object-oriented programming and its environment provides several

important advantages in the production and maintenance of complex

software systems in terms of reliability, readability,
extensibility, and flexibility. Unfortunately computational
efficiency 1is not a strong point of Smalltalk. Ungar(5]
suggested two ways to improve this poor cost-performance. One

way is with clever software on a cheap, conventional machine. 1In
addition to 1innovative software, special purpose hardware may

further reduce the cost. For more detailed information on
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Smalltalk’s performance in speed and efficiency, an interested

reader is referred to [5].
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APPENDIX A

SMALLTALK

My intention in this section is to give a brief basic
understanding of the principles of the Smalltalk language. For a
full description, an interested reader is referred to Smalltalk-
80: The Language and Its Implementation by Goldberg and
Robson(Addison-Wesley 1983). Also some material in this section
are taken from [1].

Among several languages that support object-oriented problem
solving, Smalltalk which was developed at the Xerox Palo Alto
Research Center in the 1970s with the help of Alan Kay, 1is the
most consistent with definitions and properties of the object-
oriented paradigm.

Smalltalk is not just another language. It is an extensive
programming environment and its virtual image(Smalltalk source
code) consists of more than two hundred classes and several
thousand methods. Although the language is small in terms of
reserved words and symbols, the entire system is quite large and

it takes time to learn what is in the image. Within the image,
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the Smalltalk provides the capability for solving many standard
computer problems because all the classes and methods are
available for changing with the exception of primitives which are
a group of low-level operations written in assembly 1language.
Many new problems are solved by using or modifying existing
classes and methods in the image, thus the image can grow in size
as new capability are added to the system.

Since Smalltalk is an interpretive language, Smalltalk
programs execute more slowly than those written in other object-
oriented languages that are compiled. Compilers for Smalltalk
programs that produce machine code are currently under
development. Their success will help eliminate the speed
disadvantage for Smalltalk production software systems. Although
it 1is not the only widely used object-oriented language, the
Smalltalk language and system continue to serve as an inspiration
and model for object-oriented problem solving.[1]

Following subsections present how the underlying features of

the Smalltalk language support the object-oriented paradigm.

A.1 Objects and Messages

In Smalltalk, everything is accomplished by sending messages

to objects. The result of sending a message to an object is

another object. By utilizing existing objects and messages in
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the Smalltalk image, we can establish the desired object-message
sequence as a way of problem solving.

Objects are instances of a particular class. The messages to
which an object can respond are defined in the protocol for 1its
class. Methods give the implementation details for messages and
are a part of the class description protocol for a given class.
These are the fundamental relationships among the five key
components( object, instance, class, message, method) of the
Smalltalk system. Understanding these five key components and
their relationships is understanding Smalltalk.[1]

There are three kinds of messages in Smalltalk: unary,
binary, keyword. A unary message is a single message selector
with no argumeﬁts. A binary message is a single message selector
with one argument and one or two special characters as the
selector. A keyword message is a message to a single object with
one or more arguments. Message selectors are typically colon-
terminated identifiers.

The order of arithmetic expressions in Smalltalk is strictly
from left to right unless altered by the presence of parentheses
or by message priorities. The precedence of the three kinds of
messages is unary, binary, and keyword. Because of this left-to-
right precedence in Smalltalk which differs from most other
languages, careful consideration of thinking is required to avoid

unexpected error.
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A.2 Abstraction of Objects and Methods

In Smalltalk, there are two types of abstraction, data and
functional abstractions. The former represents private or shared
data which defines the properties of the object. The 1latter
represents the details of methods how an object is to respond to
messages. There is a method for each message to which an object
can respond and a message always returns a single object as 1its
result.

Every object belongs to a specific class which has a wunique
name and represents a specific kind of object. To create
instances of object(classes), it is required to send instance
creation messages to the class name. Everything that is needed
to be defined for an object, such as private data, shared data,
and methods can be found in its class description protocol.

Class Qbject is the superclass of all classes and defines the
protocol common to all object. Class Qbject defines the default
behavior for displaying, comparing, copying, accessing indexed
instance variables and error hahdling. Class QObject includes
capabilities to maintain dependency relationships between objects
and to broadcast messages from an object to its dependents.
Subclasses may polymorphically redefine any of the methods that
are part of Class Qbject and they may also add new private or

shared data.
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All the classes in the Smalltalk are organized according to
categories and a dependency hierarchy and some of the classes are
abstract classes which are identified by the following
properties:

® No objects are instances of an abstract class. They will
always be instances of a subclass of the abstract class.

B Methods contained in abstract classes represent protocol
common to all its subclasses. Subclasses can polymorphi-
cally redefine methods and add new data.

B Abstract classes provide a logical hierarchical organization
by serving as an umbrella for related subclass of equal

stature [1]

A.3 Encapsulation of Objects

In Smalltalk, the class description protocols for individual
classes provide encapsulation of objects. The class description
protocol consists of basic elements such as definition, private
data, shared data, pool data, instance methods, class methods.
Some of classes will not have all these elements. The existence
of private data or shared data is determined by how the objects
is represented by the class; the number and type of methods are
also. determined by the complexity and richness of functional

abstractions to which objects of the class must respond.
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B Definition: the location'of the class in the cléss
hierarchy. 1list of identifiers for private, shared,
and pool data objects that are part of the class.

B Private data: instance variables which represent the
private memory of an object and they can be accessed
only by instance methods.

W Shared data: class variablés whose value are shared by
all instances of the class and they can be accessed
by both instance methods and class methods.

B Pool data: pool variables whose values are shared across
multiple classes. Pool variables are contained in named
pool dictionaries that the user specifically creates.

To make pool variables accessible to a class and its
instances, the user must modify the class specification.

@ Instance methods: implementation details for messages
to which instances of the class can respond or receive.

B Class methods: implementation details for messages to
which the class can respond or receive. Typically they
are used to initialize class variables or to create

instances of the class.
A.4 Inheritance of the Class Hierarchy

Inheritance is the Smalltalk capability which allows user to
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reuse software by specializing already existing general
solutions. Classes higher in the hierarchy represent more
general characteristics, while classes lower in the hierarchy
represent specific characteristics. Superclasses do not inherit
from their subclasses; subclasses inherit from their
superclasses, and subclasses in a different hierarchical subtree
generally do not inherit while some implementations of Smalltalk
support multiple inheritance. Things inherited by a subclass
include private and shared data, instance and class methods. The
same rules as the class description protocol apply for accessing
private and shared data for inherited. A subclass inherits from
its 1immediate superclass to all the way to class Object which is
the superclass of all classes. Because a subclass has different
protocol such as new data or methods from its super class, it may
need to redefine methods inherited from a superclass. As a way
of polymorphism, redefinition of inherited methods 1is called

method overriding.

A.5 Polymorphism in Smalltalk

Polymorphism is a unique characteristic of object-oriented
programming whereby different objects respond to the same message
with their own unique behavior even though the same message

selectors may exist in many classes in the Smalltalk image.
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Polymorphism enhances the readability of software by allowing
the introduction of entirely new classes of objects in existing
applications, as long as they implement the message protocol
required by the application, thus facilitating the reuse of
generic code.

As an example, the message printOn: can be sent to any object
in the Smalltalk system. The only requirement is that the
details for printOn: be included somewhere in the hierarchy path
of the object’s class. Conceptually, printOn: implies a
particular action to be taken. The concept is identical for any

object; only the implementation details may be different.[1]
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APPENDIX B

SUMMARY OF CLASS HIERARCHY

Protocol Summary for Class MechanicalObject
Superclass: QObject
Définition: abstract super class of all of the classes objects used
in kinematics
Private Data: two instance variables
name: an instance of String that is the name of all of the
subclass elements
index: an instance of Integer that is used for numbering
for the subclass elements
Instance Methods
name to assign name for a object
index to assign number for a object

Class Method: no class method of its ownm

Protocol Summary for Class Constrajint
Superclass: MechanicalObject

Definition: abstract super class of all of the constraint elements
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Private Data: Instance variables( pame & jindex ) are inherited

from the class MechanjicalObject.

Instance Method

initialize:array assigning name and index no. for each joint

Class Method: no class method of its own

Brotocol Summary for Class RevolutelJoint
Superclass: Constraint

Definition: Object representing revolute joints

Private Data: six instance variables

firstBody: an instance of RigidBody for first element
xCompOfFirstNode: an instance of Float for x component

of first node

yCompOfFirstNode: an instance of Float for y component
of first node

secondBody: an instance of RigidBody for second element

XCompOfSecondNode: an instance of Float for x component
of second node

yCompOfSecondNode: an instance of Float for y component
of second node

Instance Method

changeFirstElement:aElement used for changing first rigid body
changeSecondElement:aElement used for changing second rigid body

positionCoords used for computing joint position
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coordinates in the global frame
with: o : ondElemen
with:secondNo used for connection of rigid bodies with

points

constraintEgn:time used to compute local constraint equation
velocityEqn:time used to compute local velocity equation
accelerationEqn used to compute local acceleration equation

Jacobian:noOfColumn used to compute local jacobian

Class Method: no class method of its own

Brotocol Summary for Class TranslationalJoint
Superclass: Constraint

Definition: Object representing translational joints
Private Data: ten instance variables
firstBody: an instance of RigidBody for first element
XCompOfFirstNode: an instance of Float for x component

of first node

yCompOfFirstNode: an instance of Float for y component

of first node

XCompOfSecondNode: an instance of Float for x component

of second node

yCompOfSecondNode: an instance of Float for y component

of second node

gecondBody: an instance of RigidBody for second element
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XCompOfThirdNode: an instance of Float for x component

of third node

yCompOfThirdNode: an instance of Flogat for y component
of third node

firstBodvAngle: an instance of Float for angular

orientation of first element
secondBodyAngle: an instance of Float for angular
orientation of second element

Instance Methods

changeFirstElement:aElement used for changing first rigid body
changeSecondElement:aElement used for changing second rigid body

positionCoords wused for computing joint position

coordinates in the global frame
w : tNode to:secondEleme
with:secondNo used for connection of rigid bodies with
points
constraintEqn:time used to compute local constraint equation
velocityEqn:time used to compute local velocity equation
accelerationEqn used to compute local acceleration equation

Jacobian:noOfColumn used to compute local jacobian

Class Method: no class method of its own

eC aint

Superclass: Constraint
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Definition: Object representing simple constraints
Private Data: three instance variables
constrainedDirection: an instance of Integer for
constrained direction
element: an instance of RigidBody for constrained element
constant: an instance of Float for constrained constant
quantities
Instance Methods
columnindex used for computing column number for the jacobian
matrix
isOn:body directjon:string with:aConstant used for setting
values of the instance variables
constraintEqn;:time used to compute local constraint eqﬁation
velocityEqn:time used to compute local velocity equation

accelerationEqn used to compute local acceleration equation

Jacobian:noQfColumn used to compute local jacobian

Class Method: no class method of its own

Protocol Summary for Class DrivingLink
Superclass: Constraint

Definition: Object representing driving link
Private Data: five instance variables

constrajinedDirection: an instance of Integer for constrained

direction
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element: an instance of RigidBody for driving link element
initialPosition: an instance of Float for initial position
initialVelocity: an instance of Float for initial velocity
initialAcceleration: an instance of Float for initial
acceleration
Instance Methods
columnIndex used for computing column number for the jacobian
matrix
with: tant used for setting
values of the instance variables

constraintEqn:time used to compute local constraint equation
velocityEqn:time used to compute local velocity equation

accelerationEqn used to compute local acceleration equation

Jacobian:noOfColumn used to compute local jacobian

Class Method: no class method of its own

Protocol Summary for Class Element
Superclass: MechanicalObject

Definition: Object representing mechanical elements
Private Data: six instance variables
nodeList: an instance of OrderedCollection for storing nodes
elementList: an instance of QrderedCollection for storing
rigid body elements

constraintlList: an instance of QOrderedCollection for storing
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constraint elements

positionVector: an instance of Vector for the cartesian

generalized position vector

velocityVector: an instance of Vector for the cartesian

generalized velocity vector

accelerationVector: an instance of Vector for the cartesian

generalized acceleration vector

Instance Methods

constrajintEqn:time used to compute system constraint equation
velocityEqn:time used to compute system velocity equation
accelerationEqn used to compute system acceleration equation
Jacobian:noOfColumn used to compute system jacobian matrix
reportNodes used for reporting position, velocity, and
acceleration of interesting nodes of rigid
body on the screen
reportNodes:outputFile used for reporting position, velocity,
and acceleration of interesting nodes
of rigid body to output file
positionVector used for computing the cartesian generalized
position vector
velocjityVector used for computing the cartesian generalized
velocity vector
accelerationVector used for computing the cartesian

generalized acceleration vector
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changePosition:array used for replacing the components of

position vector

changeVelocity:array used for replacing the components of

velocity vector
changeAcceleration:array used for replacing the components of
acceleration vector
analysigs:time used for position, velocity, acceleration
analysis at each time step
v : t me to:finalTi
with:timeIncrement used for the kinematic analysis for overall
time span
injitialize:array used for setting instance variables such as
elementList, constraintList, and pame
positionAnalysis:time used for Newton iteration method at each
time step
addElement:element used for adding an element
addConstraint:constraint used for adding a constraint
removeElement:element used for removing an element
removeConstraint:constraint used for removing a constraint
getElement:element used for accessing a specific element
getConstraint:constraint used for accessing a specific constraint
combine:aElement with:bElement used to combine two elemenfs

resequenceElement used for rearranging order of instance variable

elementList
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Class Method: one class method of its own

examples shows how to simulate sample model of each mechanism

Brotocol Summary for Class RigidBody
Superclass: Element

Definition: Object representing rigid bodies

Private Data: 11 instance variables
X: an instance of Float for x coordinate of rigid body
y¥: an instance of Float for y coordinate of rigid body
angle: an instance of Float for angular orientation

XVelocity: an instance of Flogt for x component of

velocity

YVelocity: an instance of Float for y component of

velocity
angularVelocity: an instance of Float for angular
velocity

XAcceleration: an instance of Float for x component of
acceleration

xAggglg;ggign: an instance of Float for y component of
acceleration

angularAcceleration: an instance of Float for angular

acceleration

rotationalCoords: an instance of Array for storing

rotational coordinates
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interestingNodeList: an instance of QOrderedCollectjon for
storing interesting point
Instance Methods
addNode used for storing joint points in the rigid bodies

addinterestingNode used for storing interesting points in
the rigid body

interestingNodes used for reporting position, velocity,
and acceleration of interesting points
of rigid body on the screen
ipterestingNodes:file used for reporting position, velocity,
and acceleration of interesting points
of rigid body in the output file
rotation used for computing rotational coordinates of rigid
body elements
initialize:array used for setting instance variables such as
nodeList, interestingNodeList, name, index
X, ¥, angle, rotationalCoords

getNodesFrom:element used for transferring nodes between
rigid bodies

Class Method: no class method of its own

Protocol Summary for Class FourBar
Superclass: Element

Definition: Object representing four bar mechanism
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Private Data: no instance variables of its own
Instance Method: no instance methods of its own
Class Methods
modell used to create sample model 1 of four bar mechanism

model?2 used to create sample model 2 of four bar mechanism

Protocol Summary for Class FourSlider

Superclass: Element

Definition: Object representing combined four bar and slider crank
mechanism

Private Data: no instance variables of its own

Instance Method: no instance methods of its own

Class Methods

modell used to create sample model 1 of fourSlider mechanism

Protocol Summary for Class SliderCrank
Superclass: Element
Definition: Object representing slider crank mechanism
Private Data: no instance variables of its own
Instance Method: no instance methods of its own
Class Methods
model]l used to create sample model 1 of slider crank mechanism

model2 used to create sample model 2 of slider crank mechanism
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Protocol Summary for Class OQuickReturn
Superclass: Element

Definition: Object representing quick return mechanism
Private Data: no instance variables of its own
Instance Method: no instance methods of its own

Class Method

modell used to create sample model 1 of quick return mechanism

Protocol Summary for Class Node
Superclass: MechanicalObject

Definition: Object representing points
Private Data: two instance variables
X: an instance of Float for x coordinate
y: an instance of Float for y coordinate
Instance Method
initialize:array used to set values for instance variables
such as name, index, x, y

Class Method: no class method of its own

Protocol Summary for Class Matrix
Superclass: FixedSizeCollection

Definition: Object representing matrices
Private Data: no instance variables

Instance Methods
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linear:vector used for solving the linear system equations
luFactorization used for performing L-U factorization on
the given matrix
row:al col:aJ used to access specific element of matrix
row:al col:aJ put:aObject are used for replacing specific
element of matrix
add:aMatrix used for adding two matrices
product;:aMatrix used for multiplying two matrices
scale:aNumber used for scaling a matrix
subtract:aMatrix used for subtracting two matrices
Class Method
row:rDim col:cDim used for creating an instance of matrix

whose element is initialized to zero value

Brotocol Summary for Class Vector
Superclass: Matrix
Definition: Object representing vectors
Private Data: one instance variable
compList: an instance of Array for storing the vector element
Instance Methods
components used for accessing vector elements
components:array used for replacing elements of given vector

add:bVector used for adding two vectors

innerProduct:bVector used for computation of dot product of
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two vectors
scale:aNumber used for scaling of a ve;tor
subtract:bVector used for subtracting two vectors

Class Method: no class method of its own
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