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ABSTRACT
VOLTAGE COLLAPSE BIFURCATION OF A POWER SYSTEM
TRANSIENT STABILITY MODEL
By
I-Pung Hu

A complete power system model, which is composed of an algebraic load flow model and

y iter model, is developed. This

power system model is for-

mulated to point out the similarities and differences between the load flow models and the

complete power system model that i

electrical lexciter and generator me-
chanical dynamics. Comparison of the load flow and the complete power system model
simulation results indicate a converged load flow simulation may not imply voltage stabil-
ity and will not accurately assess the proximity to voltage instability in the complete pow-
er system model. The effects of line drop compensation, excitation system control,
machine saturation, and field current limits must be modelled precisely if accurate assess-
ments of proximity to voltage collapse are to be obtained. These effects can be accurately
modelled in a transient stability simulation but are not accurately modelled in current load
flow models. A modified load flow model and simulation method is proposed that in-
cludes the effects of line drop compensation, excitation system control, machine satura-

tion, and field current limits.

Voltage instabilities are classified into two categories. Load flow voltage instability is
caused by supply and demand problem. Dynamic voltage instability is caused by the insta-
bility of the flux decay and exciter dynamics. Four voltage bifurcation tests, algebraic, al-

gebraic/d ic, dynamic/algebraic, and flux decay bifurcation tests are developed in this
thesis. The algebraic bifurcation test can identify the supply and demand problem in the

distribution system. algebraic/d ic and dy ic/algeb bif ion tests can detect

A



the instability of the generator dynamics. These tests are applied to analyze a two bus sys-

tem and a twelve bus system. The results indi the dy

/exciter portion of

the lete model b voltage ble before the algebraic load flow portion of

the complete model violates the widely used load flow based tests for voltage instability.
Thus, new limits for stable operation must be established based on the instability of the
dynamic portion of the complete power system model. Simulations show that generators
in a coherent group of buses will lose their flux decay voltage stability when the reactive

generation reserves in that coherent group of buses are exhausted.
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CHAPTER 1

INTRODUCTION

1.1 Voltage Collapse

Voltage collapse of the interconnected power system has been observed frequently and is
of concern to utilities around the world. Voltage collapse has been associated with the

transfer of power over long distances and the trend of siting generators far from load cen-

ters due to 1 and political ¢

Voltage is a slow i decline of voltage over a 10 to 20 minute interval

and followed by a rapid decline of voltage (Fig. 1.1). In some cases, this voltage decline
can occur over an interval as short as one minute and yet in other rare cases the voltage de-

cline can occur over a several hour period.

Although much research has been undertaken to establish the precise model and causes of

N i

voltage collapse, there still isn’ta I or on the exact mod-

'P ] et

¢l to be used to simulate voltage collapse. This thesis develops a precise model and inves-
tigates the contribution of each element in this precise model to voltage collapse. After the
precise model is developed and understood, the causes of voltage collapse, the measures
or conditions for assessing the proximity to voltage collapse are investigated. The operat-
ing and planning criteria that will ensure adequate safety margins against voltage collapse,
and the network enhancement strategy that would most effectively and economically in-

y N



crease margins for voltage collapse problems are then topics for future investigation.

Voltage

Figure 1.1 Voltage collapse phenomenon

1.2 The Purpose of This Thesis

The purpose of this thesis is to

(a) greatly extend the und ding of the modeling of or dynamics

&

needed to accurately assess proximity to voltage collapse;

(b) show that the causes of voltage collapse not only occur in the algebraic equa-

tions of the model but also in the differential equations of the model;
(c) determine tests that indicate the proximity to voltage collapse;

(d) extend the understanding of the various types of voltage collapse and how

each is caused to occur.

13 Load Flow Collapse



The Electric Power Research Institute (EPRI) funded research at Michigan State Universi-
ty [1,2] focuses on the causes of voltage collapse in a load flow model that does not in-
clude generator dynamics. The EPRI funded study of voltage collapse is thus restricted to
only the algebraic equations (load flow) model of a power system. This EPRI research has

11 11

shown that voltage are iated with the following three factors

(a) the increased loading of the transmission lines;

(b) shunt capacitive reactive power withdrawal and increased line losses (/ 2x )

with voltage drop;

(c) inadequate local and neighboring reactive generation support.

The research pointed out that voltage collapse is associated with reactive power supply de-
mand problems in voltage control areas. These voltage control areas are groups of buses
that are coherent in both transient and steady state response in both voltage magnitude and
phase to all disturbances that occur outside the voltage control area. This type of coheren-
Cy is due to the weakness of the transmission network cutset that isolates the coherent
group of buses called a voltage control area. An algorithm was developed that could deter-

mine these voltage control areas for very large data bases.

Voltage collapse can occur if

(a) there are no reactive generation reserves on synchronous generation or on
static var compensators, or if under load tap changers are at the limits on tap
changing action, or if there is no capacitive reactive reserve on mechanically
switched capacitors. If a voltage control area has no supply of reactive power
from any of the above sources, maybe vulnerable to severe voltage decline.
The voltage decline can be large because the reactive power voltage jacobian

1 iated with branches in the voltage control area boundary are

small d with t h ing buses within the voltage control

o



(b)

©)

areas. (The algorithm for determining voltage control areas identifies and
eliminates the branches with the smallest reactive power jacobian elements
connected to each bus. The groups of buses that are isolated by the elimina-
tion of these branches with the smallest reactive power voltage jacobian ele-
ments are the voltage control areas) The voltage decline needed to import
reactive power across the branches in the voltage control area boundary with

small jacobian element values must necessarily be large;

The weak voltage control area boundary branches clog up and can’t effec-
tively transfer reactive power between voltage control areas. These boundary
branches not only clog up but become “drains”, where both ends of the
branch send reactive power into the branch to meet the large /2X losses on
the branch. Branches become drains with large SIL loading levels as bus
voltage drops on both ends of the branch or as real power transfer over the
branch increases. A boundary branch that acts as a drain does not effectively
ship reactive power from one voltage control area with reactive reserves to a
voltage control area that has no reactive reserves and needs reactive power.
A branch that acts as a drain sucks the reactive power needed to meet it’s 12X
reactive losses from both buses it connects in the two voltage control areas.
The voltage control area with the higher voltage level will provide more of

the reactive power needed to meet 12X losses on the branch;

Voltage control areas that do not have reactive power reserves and have

boundary branches with drain probl have difficulty in meeting increased
reactive demand. If the voltage control area is at EHV (Extra High Voltage)

voltage level and is d by long ission lines or underground

lines, the shunt capacitive support may be large. If voltages drop in a voltage

control area with



r——

(1) no reactive reserves

(2) a weak boundary with a significant number of branches with drain
problems

(3) significant shunt capacitive reactive power support,

the large shunt capacitive reactive power withdrawal at buses in the voltage

control area with voltage drop may not be met by the limited amount of reac-

tive power that can be drawn in across the voltage control area boundary.

‘ This results in a lack of a stable load flow solution and thus voltage collapse.

Asa y, the i d loading of tr ission lines clog up the ability of these lines

to supply reactive power to the load area, line losses increase the reactive power load in

power withds 1d the local reactive power

the load area, and cap

‘ supply in load areas. If there is no other way to bring in reactive power support, the volt-
| age will keep decreasing until a point where the load flow solution associated with the
buses in the load area can not be solved. This kind of voltage instability is caused by reac-

tive power supply and demand problems and has nothing to do with the flux decay and ex-

citer dynamics of the generator. This kind of voltage instability is called load flow voltage

instability. It will be shown in this thesis that load flow voltage instability could be one of

the causes of system voltage instability.

14 Review of Load Flow Voltage Collapse Methods

Load flow voltage collapse methods, developed by using load flow model and solution al-
gorithms, have been widely used in the utilities for voltage collapse analysis. It is assumed
that a lack of convergence to a load flow solution is related to voltage collapse. The singu-

larity of a jacobian matrix or part of a jacobian matrix indicates that the load flow solution

algorithm may not converge to a solution and that the solution (if computed) may be a
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point of bifurcation (a point where two or more solutions merge).

Tamura[12,13] showed that existence of closely related multiple load flow solutions were
likely to appear under heavy load condition. A pair of closely located load flow solutions
| seems to be related to the voltage collapse. The closely located load flow solutions are
caused by the singularity of the Jacobian matrix. The voltage instability proximity indica-
tor developed in [12,13] is basically another method to detect the singularity of the jacobi-

an matrix.

Sensitivity analysis based voltage collapse tests place conditions on the relationship be-
tween changes in states or outputs and changes in inputs. Borremans [28] provided condi-
tions of sensitivity matrices SQGQL and Sg_zlLv for voltage stability. Carpentier [8] provided
a condition for S, 0,0, Schlueter [3] defined PQ and PV controllability and developed sen-
sitivity matrix tests on sg,,E’ Sves SQGQ,.' and SélLV that assure PQ and PV controllability.
It is shown that all known tests for voltage collapse can be derived based on assuming PQ

and PV controllability hold.

It will be shown in this thesis that the load flow model based voltage collapse tests are in-
correct, especially when the system is stressed. The load flow voltage collapse methods

only investigate the supply and d d problems of the ission and distribution sys-

tem. The instability of the generator dynamics can not be analyzed by load flow voltage
collapse methods. It is shown in this thesis that the instability of generator dynamics will
Cause one type of voltage instability of the power system and that load flow methods in-

Vestigate the other type of voltage instability.

15 Review of Dynamic Voltage Collapse Methods

hods take the d ics of the g into Only

'P

Dynamic voltage coll
mechanical d: ics of the have been included in the d ic model used in




[7, 27). The importance of flux decay and excitation system dynamics to voltage collapse
have been pointed out by Schlueter [1,2,3,4].

Venikov [7] recognized that a sign change of the determinant of the jacobian of equilibri-
um equations of a transient power system stability model may indicate voltage instability
of the power system. Kwatny [27] showed that the static bifurcations of the equilibrium
(load flow) equations were associated with either voltage collapse or steady state angle
stability. Kwatny [27] separated divergence instability (singularity of the jacobian of the
equilibrium equations of both the differential and algebraic equations) from loss of causal-

ity (singularity of the jacobian of just the algebraic equations). The implications of diver-

gence instability and loss of causality with regard to voltage instability will be studied
more completely in this thesis. The differential equations used in this model represented

only the hanical d; ics of the g The algebraic equations represent the real

and ive power bal quations at load buses. Schlueter [1,2,3,4] extended Kwat-

ny’s [27] work by developing conditions for static voltage collapse that included the flux

decay dy ics and excitation system d ics of the g ors. Loss of causality in
this extended model will be associated with load flow voltage collapse and divergence sta-
bility will be associated with dynamic voltage instability. Schlueter [1,2,3,4] defined pa-
Tameters A that change slowly over time and can cause the equilibrium point to move to a
point of bifurcation. Schlueter [1,2,3,4] also showed that PV and PQ controllability could
assure that the transient stability model of [27, 7] could not experience divergence insta-
bility or loss of causality. Sauer and Pai [19] presented the relationship between a power
System dynamic model and standard load flow model. Only generator mechanical dynam-
ics were included in his model.

This thesis shows that instability of the flux decay and excitation system dynamics may
Tesult in voltage collapse. The causes of flux decay and excitation system instability are
identified.

AR



1.6  Thesis Contribution

This thesis will investigate system voltage instability which occurs in a power system
model that includes both generator and exciter dynamics and the algebraic equations asso-

ciated with the real and ive power bal ions at buses in the transmission net-

work. A necessary condition for system voltage instability is that the jacobian of the
equations that describe the equilibrium point of this set of differential and algebraic equa-
tions (general power system model) be singular. A necessary condition for load flow volt-
age instability is that the jacobian of the real and reactive power balance equations of a
load flow model be singular at some equilibrium point. Since the real and reactive power
balance equations in a load flow and in the mid term transient stability model are different,
the necessary conditions for load flow voltage collapse may not indicate a system voltage

instability and vice versa.

The primary contribution of this thesis is the development of a power system model that

includes the following three factors:

(1) air gap ion in the synch hine model,

(2) line drop p ion in the excitation system model,

(3) field current limitation and the field current limit controller in the excitation

system,

and shows their influence on proximity to voltage collapse. All of these factors are associ-
ated with how voltage control is accomplished in the set of differential and algebraic equa-
tions of the system voltage instability model. These factors are greatly simplified in a load

to voltage p

flow model and can cause large error in p

Tt will be shown that the load flow equilibrium point and the equilibrium point of the set of
differential and algebraic equations (general power system model) that describe system
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voltage instability model diverge as the equilibrium points of the two models approach
voltage instability. These three factors

(a) are the factors that cause the differences in the equilibrium point of the load
flow and the equilibrium point of the set of differential and algebraic equa-

tions;

(b) cause the tests for system voltage instability to give different results from the
test for load flow voltage instability even when the same equilibrium point is

used in both models.

The line drop compensation decides the bus or fictitious point in the network where volt-
age is going to be controlled by the generator exciter. In most cases, the generator terminal
voltage and current are measured because these variables are easier to measure. Line drop

cc utilize the d inal voltage and current and a model of the net-

work d to the g to calculate the voltage and current at some other point

(fictitious or real) where the exciter attempts to hold voltage to some reference value. The
actual point in the network where the exciter’s line drop compensator selects to control

voltage, significantly changes the amount of the local reactive power demand supplied by

this and can significantly affect the voltages observed in the network after a con-

tingency or a change in operating conditions.

Theairgap ion of the g is the

gnetic saturation of iron in the rotor and in
the stator. Before saturation, the field current will generate enough flux to induce suffi-
cient stator voltage to control the generator terminal bus voltage. When air gap saturation
happens, the ability of the exciter to increase the induced stator voltage will be reduced

€ven though field current is increased.

Field current limits are thermal limits of generator rotor and prevent overheating of the
Eenerator rotor. The field current limit is given as a curve that plots the level of field cur-
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rent versus the time duration of that level of field current. If the field current limit is ex-
ceeded, there will be a control to disable the exciter in the generator and reduce the field
current down to continuous rating levels that can be sustained indefinitely. Air gap satura-

tion effects certainly contribute to a machine reaching its field current limit.

The second contribution of this thesis is the classification of the various types of system
voltage instability and the development of proximity test for each type of system voltage

| instability. The necessary condition for system voltage instability is based on singularity
of the jacobian of the set of differential and algebraic equations that describe the equilibri-
um point for this general power system model. The necessary conditions for load flow
voltage instability are based on the singularity of the jacobian of the algebraic equations of
the load flow model. The jacobian for testing for system voltage instability is evaluated at
the equilibrium point for the set of differential and algebraic equations. The jacobian for
testing for load flow voltage instability is evaluated at the equilibrium point of the load
flow algebraic equations.

It should be noted that the focus of this thesis is to study only those bifurcations and singu-
larities that can occur when the state of the dynamic and algebraic model is at the equilib-
rium point. Furthermore, the focus is toward describing the necessary conditions for
different types of bifurcations and singularities that cause voltage collapse at the equilibri-
um points rather than describing the bifurcation itself or the dynamical behavior near or
after the bifurcation occurs.

The test conditions for system voltage instability and load flow instability do not necessar-
ily indicate that a bifurcation will occur at that equilibrium point because the test condi-
tions are necessary and not sufficient conditions. Furthermore, the test conditions do not
indicate that a voltage collapse bifurcation occurs even if a bifurcation (change in the

| number of solutions) d at a specific equilibrium point xy(A,) as operating condi-
tion A is varied over [AA,,] and passes through A,,. Several different types of bifurcation

Yy N
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could occur (saddle node bifurcation, steady state angle stability bifurcation) and thus the

'y conditions for bifurcation do not indi that a voltage collapse bifurcation has

occurred. A system algebraic voltage instability bifurcation can occur due to a bifurcation

of the algebraic equations when coupling of the algebraic and differential equations is ig-

nored or there are linearly dependent rows in the linearized real and reactive power bal-
ance equations of load buses. This system algebraic voltage instability is related to load
flow voltage instability but is based on the equilibrium point of the set of algebraic and
differential equations whereas load flow voltage instability is based on the load flow set of
algebraic equations and their equilibrium point. A system dynamic bifurcation occurs

when rows of the jacobian of the system voltage instability model associated with genera-

tor flux decay and exciter dy ics are linearly dependent with the rows associated with
the real and ive power bal equations at g or terminal, high side transformer,
or load buses.

The third contribution is to develop and test imity for dy ic system volt-

age instability and algebraic system voltage instability. There are four test conditions de-
veloped in this thesis. The algebraic bifurcation test can be used to test for algebraic (load
flow) system voltage instability. Testing singularity of the submatrix of the system voltage
stability model jacobian associated with the real and reactive power balance of generator

1 high side transf and load buses (the algebraic bifurcation test jacobian) es-

Hlich Ttk

loss of lity occurs and whether ive d d supply p

exist. If the ive d d supply problems occur at load and high buses, the test is sim-
ilar to a load flow bifurcation test and would satisfy the system voltage collapse bifurca-

tion test. If the row depend of the algebraic bifurcation test includes rows iated

with generator terminal buses, the algebraic bifurcation test indi ible singularity
of the power system model but does not assure that the system bifurcation test is satisfied.

The algebraic/d ic test is equivalent to the system jacobian matrix test since the alge-

braic/dynamic test matrix is singular if and only if the system voltage stability model jaco-
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bian is singular. The dy ic/algebraic test shows the,stability of the dynamic states of

the power system with the assumption that no algebraic bifurcation has occurred. The flux
decay bifurcation test can be used to explain the cause of system dynamic voltage instabil-
ity since it indicates whether system voltage instability is related to instability of the flux

decay dynamics.

This thesis has shown that the tests for voltage instability based exclusively on the load
flow are invalid because the load flow does not accurately model the exciter and genera-
tor. The model which is developed in this thesis is necessary not only to compute the true

equilibrium point of the system but also to develop tests for system voltage instability.

The primary contribution of this thesis is the development of a power system model that
permits simulation of voltage instability. The development of a complete dynamic system
analysis of the bifurcations and singularities of this model that are related to voltage col-
lapse is impossible. A test condition for system bifurcation (change in the number of solu-
tions at equilibria) is developed and an effort is made toward a classification of the types
of bifi ions and singularities (loss of lity) of the model. It should be noted that the

dev of a

1 system analysis of the power system model devel-

oped in this thesis is not easy since the theory for describing bifurcations and singularities

of ined diffi ial ions is not pl

In Chapter 2, a precise power system model is developed. The inability of getting correct
steady state solution of the load flow model is also shown in Chapter 2. The tests for volt-
age collapse and the classification of voltage collapse are provided in Chapter 3. In Chap-
ter 4, a two bus system and a twelve bus system are tested using the theory developed in

Chapter 3. In Chapter 5, conclusions and topics for future research are given.



CHAPTER 2

POWER SYSTEM MODELING
21  Introduction
A general power system model, which includ: hanical dy ics, flux decay dynam-
ics, and excitation system dy ics of a and real and reactive power balance

equations for each network bus, is developed in this chapter. This model can be used to
test for algebraic voltage instability and system voltage instability. There are two different

kinds of nonlinear equations in this general power system model. One is a set of nonlinear

diff ial equations which rep the dy ics of the g or. Another is a set of
li Igebraic equations which rep the real and ive power balance equa-
tion for each bus in the network.
Differential Equation Model
(1) = f&(0)y(1),1(0) A(r) € LA
Algebraic Equation Model

0=gx®,y®,1(1)
where

x(t): state vector of the generator dynamics,
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y(2) : state vector of bus voltage and angle of terminal buses, high side trans-

former buses, and load buses, and

A (1) : state vector of the slow varying operating parameter.

A (1) is the set of operating parameters that change over time. A (#) can be used to repre-
sent real and reactive power load, generation dispatch, under load tap changers, and
switchable shunt capacitors. As A (r) varies over [A A, ], there is assumed to be at least
one equilibrium point for each A, (xy(A),y, (X)) . A necessary condition for the system

to experience system voltage instability is that the jacobian

s Y
o 0x 9|
9g og|
9x 9y
be singular at some Ay and (x (A), Yo (X)) -

Section 2.2 discusses the derivation of each element in the general power system model.

The air gap line drop p ion, field current limit, and excitation system
<ontrol are di d in detailed. Section 2.3 p a general power system model
which has / 1labl buses, m llable g buses, and n load
buses.

"WWe also show that the conventional voltage instability test, which is implemented using a
load flow power system model simulation, has problems getting correct solutions when
the system is stressed. Simulation results which show the inability of load flow simulation

O get the correct solution are provided in Section 2.4.

2.2  Single Bus System Model

The differential ion model includes the mechanical dynamics, flux decay dynamics,




and excitation system dy ics of the The air gap saturation, field current lim-

it, and line drop compensation should be included in this model.

22.1 Mechanical Dynamics
M&+D8 = P, —P*(E,3,V,0) @1

where
M: generator per unit inertia constant
generator load damping coefficient
8: internal bus angle with respect to a synchronous rotating reference line
Py input mechanical power
P®:  output electrical power

The li diffe ial ion (2.1) is called the swing equation because it is the

same equation which describes the “swinging” of a pendulum in a uniform gravitational
field. It describes the “swings” in the power angle & during a transient. If it is assumed

that there is no angle stability problem,
Py = P°(E,3,V,0),

the nonli differential ion (2.1) b a nonli algebraic equation. It is as-

Swumed there is no angle stability problem in the analysis of flux decay bifurcation test in
Chapter 3 and the two bus system simulation in Chapter 4, .
222 Flux Decay Dynamics

The flux decay equation for each generator is

T Eq = Efg—E, = Egg— (B +1;(x4=x')
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[
= Ey— (E'q+-# (xd-x',,))
L 4

xdE’q 4 (x4—x'y) Veos (5-9)
X'y Xq

= Eft_

internal generator voltage proportional to field flux linkage behind steady

state direct axis reactance

internal generator voltage proportional to field flux linkage behind tran-

sient direct axis reactance

generator field voltage

projection of terminal current on direct axis
generator terminal voltage

transient direct axis reactance

steady state direct axis reactance

T ive power g

generator direct axis transient open circuit ime constant

Notice that Qg is the reactive power out of the generator. If x'; = x,, Qgg is the reactive

Power out of the internal bus.

Xt is necessary to include the air gap saturation for studying voltage instability. In Fig 2.1,

= p 1S the voltage behind Potier leakage reactance. Before the air gap saturates, E,< A, the

increase of Iy, can effectively increase E,. KE, 24, Iy, can no longer control E,, effec-

tively due to the air gap saturation. The ability of the exciter to control the induced voltage

has subsequently been reduced.



Irg

Figure 2.1 Air gap saturation

The model that includes air gap saturation is
Vaof'q = Eu= (1+Sp (E)Eq

- 1;(x4=x'g)
= By~ (145, (E,) (Eq+1—+SD—(EP)-)

o o
= Ey- sy ey, = 2eslesxd - 24

where

B(E,-A
sotep = 2
P

V,x’

Xgs

V= VeI, = Vs

(E'q=Vox,
Viy=Vtlg, = V-—1 2

q X4
- 22
E, = JV"+ Ve
Vo V': Projections of terminal voltage on generator d and q axes

E,: Voltage behind the potier leakage reactance

PRV
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The parameters A and B of the generator saturation function S}, are evaluated from the

following equations

B(1.0-A)2 B(12-A)2
S S

The Sg; 0 and Sg; » are provided by the specification of the generator.

22.3 Excitation System Dynamics

In the modeling of excitation system control, we include the transfer function of the line
drop compensator, amplifier, exciter, stabilizer, and the measurement device (Figure 2.2).

The line drop compensator is selected in the design of the excitation system. The excita-

tion system fi voltage is d ined from measuring the generator terminal voltage
V and current I and computing V, = V+jx I using a fictitious reactance x.. By varying
X, V. can be the voltage close to the internal bus, terminal bus, or a fictitious bus out

somewhere in the network. The generator’s excitation system will react to a disturbance

very differently for different line drop compensation values x,.

Stabilizer

' v
[+sTR)——{Ve=IVaixl
Line Drop Compensation

Figure 2.2 Excitation system model
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Field current limit is a curve that relates the field current value to the duration of the inter-
val during which the field current exceeds that value. If the field current exceeds the field
current limit, the generator rotor will over heat and a field current limit control automati-
cally disables the excitation system control and brings the field current down to a level
(continuous rating) that can be sustained indefinitely without overheating the generator ro-
tor. For example, in Figure 2.3, if the field current is at Iy, the time period that allows
field current to remain at that value is tp. After that period of time (t;), the field current

will be brought down to its i rating to prevent any damage of the exciter. If the

field current is lower than its continuous rating (Ig4o), it can remain at that value for infi-
nite time. The action of the field current control will be approximated by setting K, to zero
and setting Egq to the value appropriate to produce the continuous rating of field current.

This model of the field current limiter is not available in all transient stability programs

and this approximate model is quite adequate for i ion or loss of voltage sta-
bility.

t(time)

A
14
t
T Ige Trar I Igg(field current)
continuous
rating

Figure 2.3 Field current limit controller



If we write a set of state equations to rep itation system d;
lowing state equations.
o —Vy+|V+ixd]
R
5L % (_ Vy+ K_:l_/ﬂ n KFEld(SEt(E,d) +Kpg) )
F E E
Vg = }l: (Kp (VRer=V1=V3) = V)
Ey = %; (Vo= (Sg(Epp) +Kp) Epy)
where
V):  measured voltage
V,:  stabilizer output voltage
Vg:  amplifier output voltage
Eg:  exciter field voltage from exciter
T regulator input filter time constant
Tp:  regulator stabilizing circuit time constant
Tgi  exciter ime constant
t,:  amplifier input filter time constant
x,:  line drop compensation reactance
Kp:  regulator stabilizing circuit gain
Kg:  exciter self-excitation at full load field voltage
K,: amoplifier circuit gain
Sg:  rotating exciter saturation at ceiling voltage

we get the fol-
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Vger: reference voltage

224 Algebraic Equation Model

The algebraic equation model is the real and reactive power balance equation which repre-

sent the power flow at each bus in the network. If the air gap saturation is considered at the

generator internal bus and terminal bus, the algebraic equation model is

: B(E,-A)?
by Y e Y
E,

X,

sQ='I_"
X4
. _X‘d'—xp
X 1+SD+XP
"_x”+x

e E'quin(5—9)+Yz(1 1

= 4 x—w—x,—“)sin(Z(S-e))

_ EVsin(3-9) (1+5p) "
x"+SDxP

V2( X4+ XSp (1+5p)

2 x‘xq+xqspzp X4+ Spx,

¥ 2E' Vsin (8- 8) —E',Vcos (8- 6) - V2sin? (5-0) 5

g
Xds

)sin<2<8-e)>

X4 (E'— Vsin(8-6) )?

2
Xds

(1+5p)

= (2E' Vsin (8-6) —E'Vcos (8- 6) —Vsin” (8-6)) +

o X +5px,

y N
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(xg%q +%%,5p) (1+S5p)? (', = Vsin(8-6) )?

(X'4+Spx,) % (x4 +X,Sp)
E' Vsin(8-0) 2/ 1
e s = i -
Pg= G +> (x,, x,d’)sm(Z(B 0))

E' Vsin (8-0) (1+Sp)
ey Dy
X' 4+5px,

V2 xd+quD (1+Sp) \ .
7(x,xqi-xqsbxp—x'd+SDxp)sm(2(s_9))
E ¥
;= quos(S 0) —Vz(

0
X ds

cos(8~9)2+sin(8—9)2
Xy X,

g5
i E'chos(S—O) (1+Sp) _
X'd+SD",

Vz(oos (5'-9)2(1+s,,) 5 sin (8- )% (x,+x,Sp) )
X.:*sp"p xéxq+quDxP

n
d
Pg—Py = Z V"VLqucos(O—eLj—‘yLi)
Jj=1

n
0G-0f = ¥, VyVy¥ysin (8-6,,-7,)
i=1

where

o real power g ion at internal bus
D% g ive power ion at internal bus
Pg:  real power injection at g inal bus
Qg: ive power injection at 1 bus

P§:  real power load at high side transformer bus

Qf: reactive power load at high side transformer bus
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generator saturation function applied to direct axis reactance
generator saturation function applied to quadrature axis reactance
potier reactance

internal bus voltage

internal bus angle

terminal bus voltage

terminal bus angle

high side transformer bus voltage

high side transformer bus angle

load bus voltage

load bus angle



23  General Power System Model

The variable and parameters that are used in this section are defined in LIST OF SYM-

BOLS.
@ = (Ml)(PM,—Dm -P @1
@ = (Mli)(PM,—Djmj—P;) @2
5= (23)
Sj = o 2.4)

3 —Xg5iE’ ai (Fasi =X 4) Vricos (8, - 0p)
(‘mx)

X 4si X gsi )(1 +8p) +Em)

_1+8p, ( (xg;+Spx,) E' ai, (xg;=x'g;) Vp;cos (8, 6) ) . EL’“
X i+ Spipi X i+ SpiXpi Ta0i

0 (xgi =% )
L (T‘O ) B (1+5p) E == @5)
" x4 E' ;. (Xge5—X 45;) Vr;COS (8 0..)
e asifqi (Xg5j= X' 45) V1 ) (145, + By
y 1d0/ x! dsj x dsj Z 1
o 1480 (~ G+ Spy) Ei | (5= ¥ ) V008 (8~ B) ) + B
T \ X4+ S X 4+ Sp%pj Taoj
QJ' (xdj % xldj)
( )( 4= 1 +55) Eg=~—f— @6

Vi = (2 ) Vit Vi +i Urixd ) @7
TRi
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;.
Il

(1 )( v..s KriVai KFiEfdi(SEi(Efdi)+KE‘))
— ||~ Vst -

; 1
Vei = (ﬁ) (Kpi (Veeri=V1i= V3) = Vi)
:

Efgi = (tlm)(vki" (Sgi (Egg) +Kg) Egyy)

E'4iVr;sin (8;-0p) (1+5p,) .

€= pPt. =
Fi=Fr X gi+ SpiXp;
2
KT_:( Xgi+xSp;  (1+Sp) )sin(2(8—9 1)
2 \XgiXgi+ X0iSpiXpi  X'ai+SpiXp; i
e X'4j+ Spfp;
2
Zzz( o B ) )sin(2(6.-e )
2 \Xf%ej+ XgiSpf%pj ¥ 4j* Sn%pj ;o

d 2
P1;—Pr; = VrVyY1ig;008 (0, — 64, — Yrip) + VY rigicos (Yryy,)

d 2
P1;=P1j = VijVaY1jnj008 (Og; = Op; = Yrjp)) + V1Y 1ymjc0s (o)

I
-P§; = Y, VuiVus hinsos (85, — 8, = Yyuy,) +
s=1

m
Y VuiVui¥ pinjcos (O, — Oy =Yy +
=1

n

Y, ViiVicijc0s (0, — 6, —¥y,,) +
k=1

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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VuiV1i¥airicos (84, — 01, — Yyiry) (2.15)

1
d
~Pyi = X VyiVui¥yjnicos (8= 0y, — Vi) +

i=1

ViV us¥ hins©0s (Oy;— 8y, —Yyiy,) +
s=1

n
Y, ViiVi¥ jacos (8, -0, —1y,) +
k=1

VH jVTjYHjchos (OHJ. - eTj - Y”ﬂ'j) (2.16)

!
Py = 3 ViVl 1408 (8= By, = Yy +

i=1
m
Y. ViVyi¥gyicos (6, — O = Yewj) +
j=1
n
Y V,V,Y,.cos(6,—6,—7,) (2.17)
s=1

(1+Sp)) Vy; (2E ;sin (5,-6s,) - E j;cos (5,-6) - V,-isin2 (8,-6:5)) .

X' gi+ SpiXpi

(XX g+ Xg%piSpi) (14 Sp) 2 (E' 5= Vsin(8, - 0p) )2
(% g+ Spxpi) 2 (Xgi+ X4iSpi)

(2.18)

. _ (1+5p)Vy;2F sin (3;-8p) — E jie0s (8,-8y;) — Vy;sin® (8,-67)) .

! X' g+ SpiXpj

(xgi%aj* %o%pSp)) (1 +8p))? (E'gj= Vyysin(3; - 0p) )?
(%' 4+ Sp%p)) * (xaj+ 4;Spj)

(2.19)



27

QC i ] -
T X gi+ Spi¥pi
cos (5,-0.,)2(1+Sp,) sin(8,—0.)2(xy;+x,,5p)
%‘_( ( i ' Tl) ( Dl) + ( i Ti d qi®D ) (2.20)
X' gi+SpXpi X% qi + X0 piXpi
& X'gj+ SpXp;
_a 12 s _ o \2
V%j (cos (81.' OTj) (1+5p)) . sin (Sj GTJ.) (x4+X,Sp;) ) @.21)
X'4j+ SpiXpj X4%qj + X4iSD%pj
0fi— OF; = VriViyi¥rigisin (87, — 04— Yrup) — V¥ rigisin (V) 2.22)
. 2 .
0r;~ Q;i = VyiVuiY1jnjsin (8p; = 0y = Yr;y;) — Vj¥gjm;sin (Yrjy)) (2.23)
) I
~04i = X, VuiVusY hinsSin (8, — Oy = Yyin,) +
s=1
m
Y VuiVii¥yinssin Oy, — 04— Yy +
j=1
n
Y, VuiVaYyasin (8~ 0, —vy,) +
k=1
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pi
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_ Bi(Ey,—4)

SDj Epj

(2.28)

24  Comparison of Load Flow and General Power System Steady State Simula-

tions

Load flow simulation has been used as a standard tool to analyze voltage instability. The
solution of load flow equations is assumed to be the steady state solution (equilibrium
point) of the power system. In this section, we show that the solution of the load flow
equations is similar to the equilibrium point of the general power system model only under
light load conditions. These two solutions tend to diverge as the power system is stressed.
Since the voltage instability usually occurs in heavy load conditions, we will not be able to

get the correct data to analyze voltage instability problems by using load flow simulation.
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Figure 2.4 shows the network diagram of a 12 bus system model [23] which is used for the
simulations of this thesis. There are three internal buses, three terminal buses (low side
transformer buses), three high side transformer buses, and three load buses. In the simula-
tion, we increase the reactive power load at bus LOAD2 and solve for the solutions of a
load flow model and general power system model. The reason we choose to increase the
reactive power load at bus LOAD2 is that generator bus GEN3 has relatively small reac-
tive generation capacity compared with GEN1 and GENZ2. It is easier to exhaust reactive
generation capability of GEN3 in the load flow simulation and the field current capability
of GEN3 in a general power system model simulation. In the simulation results of Figure
2.5 and Figure 2.6, we assume the voltage of terminal buses are controlled by the genera-
tors in both the load flow model and the general power system model. The only difference
between Figure 2.5 and Figure 2.6 is that in Figure 2.5 we use a smaller exciter amplifier
gain (K5=50) and in Figure 2.6 we use a larger exciter amplifier gain (K ,=200) for all the
exciters in the general power system model. In each figure, we show the voltage magni-
tude differences of load flow model and general power system model solutions for high
side transformer buses (HST1, HST2, and HST3) and load buses (LOAD1, LOAD?2, and
LOAD?3). The x axis is the reactive power load at bus LOAD2 and y axis is the voltage

magnitude difference of those two different models.

In both Figure 2.5 and Figure 2.6, the solutions of both models are quite similar when the
reactive power load at bus LOAD?2 is less than 100 MVar. The solutions start to diverge at
the point where the reactive power load at bus LOAD2 exceeds 100 MVar. This is because
the load flow model fixed the terminal bus or high side transformer bus voltage and ap-
proximates the field current limit by a reactive power limit. The general power system
model does not specify the generator terminal or high side transformer bus voltage but at-
tempts to regulate it through the effects of generator flux decay dynamics, generator air
gap saturation as well as the exciter loop voltage regulation dynamics. Furthermore, the

exciter’s line drop compensator generally does not regulate voltage at either the terminal
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Figure 2.4 Twelve bus test system model
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bus or high side transformer bus voltage as with load flow but regulates some fictitious
point that can be anywhere between the internal generator bus and some point out in the
network. Finally, the reactive power limit in a load flow model is an approximation to the
reactive power produced by the generator after the field current limit of the generator is hit
and the field current limit controller has brought the field current down to its continuous
rating level. Thus, the general power system model would allow a much higher field cur-
rent level than indicated by the continuous field current level for durations indicated by a
field current capability curve. The computational results presented compare the equilibri-
um point of the general power system model before field current limits are hit (the exciter
is not disabled by the field current limit controller and field current is not reduced to con-
tinuous rating level) with that obtained from a load flow that contains a reactive generation
limit that is related to continuous rating limit. This result will show a divergence between
the general power system model equilibrium point and the load flow power system model
equilibrium point even before field current limit is hit in the general power system model;
that is when the system has not yet progressed to the point where generators have lost con-
trol of voltage. A second comparison of the equilibrium points of the load flow with con-
tinuous rating reactive limits with the equilibrium of the general power system model
could be conducted when the field current limit is hit and the field current limiter has dis-
connected the exciter and reduced field current down to continuous rating levels with the
equilibrium. The comparison of the load flow and general power system model equilibria
should be quite close if the continuous rating of field current is at a level where saturation
effects are negligible or have been accurately modeled and the generator is operating close
to the point at which the correspondence between the field current and reactive power lim-

it is computed.

It shows in our simulations that the solution of the general power system model diverged
at 125 MVar which is much less than the reactive load level of 182 M Var at which the load
flow diverges. The assumption that the load flow simulation is conservative, which has
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been widely applied, is not true. The general power system model is more vulnerable to

voltage collapse and lack of a converged solution than the load flow model.

Figure 2.5 and Figure 2.6 show that the divergence of solutions of HST3, LOAD2, and
LOAD3 are much larger than the other buses. This is because the reactive reserve at bus
GENS3 has been exhausted in the heavy load condition and LOAD2 and LOAD3 are close
to GEN3.

The solutions in Figure 2.6 for an exciter amplifier gain of K5=200 are far closer than the
solutions in Figure 2.5 for K5=50 in light load conditions. The reason that there is better
agreement between the equilibria of the load flow and general power system model at
large exciter gain is that the load flow model assumes the exciter gain is infinite so that the
control of terminal voltage has no error. The general power system model has a finite exci-
tation system closed loop gain Kgx and an error in regulating voltage proportional to the
inverse of Kgx (K'lEx). Since Kgy is proportional to the exciter amplifier gain K, and in-
versely related to air gap saturation, the agreement between the models increases with K

and decreases as the air gap saturation and reactive generation increase.

The reasons for the divergence of the load flow model from the general power system
model are summarized in the following:

(a) the load flow simulation uses reactive power generation to regulate bus volt-
age and the general power system model uses field current to regulate bus

voltage,

(b) the general power system model takes into account the air gap saturation,
which affects the closed loop gain of the exciter control loop, but the load
flow model does not,

(c) theload flow model assumes K, is infinite but K, is a finite value in the gen-
eral power system model; The exciter loop gain Kgx is proportional to the
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exciter amplifier gain and inversely proportional to air gap saturation. The er-

ror in regulating voltage is proportional to K'lEx.

(d) generators in the load flow model regulate either their high side transformer
bus voltage or terminal bus voltage but the general power system model
which takes line drop compensation into account allows any point between
the generator internal bus and some fictitious point out in the network to be

regulated.



CHAPTER 3

TESTS FOR VOLTAGE COLLAPSE

31 Introduction

Voltage instability problems are classified into two different categories in this thesis.
These two kinds of voltage instability are results of very different types and locations of
stress. Load flow voltage instability is caused by the inability of the transmission system to
supply the reactive load when there is no reactive power supply at that load voltage con-
trol area. System voltage instability is caused by either the instability of generator dynam-
ics or the links between dynamic states and algebraic states in a stressed network. Four

voltage instability tests are discussed in this chapter.

32 Classification of Types of Voltage Instability

In a power system, there are strong connections and weak connections in the transmission
system. We define the strength of the branch in terms of reactive power transferring capa-
bility of the branch. A strong connection has no problem in transferring both real and reac-
tive power. A weak connection has difficulty in transferring reactive power in the sense
that if the operating condition of the system is changed the weak transmission line gets
clogged up and can not transfer reactive power without significant losses and voltage dif-

ference across the branch. It can be shown that the strength of a connection is dependent
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on the reactance of the transmission line and the operating condition. A heavily loaded
transmission line with large line reactance usually has difficulty in transferring reactive
power. If we put any kind of disturbance in the system, the buses connected with strong
connections will respond to the disturbance coherently in both voltage magnitude and
phase. If we collect those buses with strong connections, we can form a coherent group of
buses and we call this coherent group of buses a Voltage Control Area(VCA). (Schlueter/
Costi[9])

3.2.1 Load Flow Voltage Instability

Load flow voltage instability problems are reactive supply and demand problems. They
are caused by the weak boundary connections among voltage control areas and capacitive
reactive withdrawal with voltage drop inside the voltage control areas. A voltage decrease
in a voltage control area will increase line reactive losses and weaken the strength of
boundary connections to the neighboring areas. Because of the decrease of voltage, the re-
active power supplied by line charging and shunt capacitors in that area will be decreased.
Thus the voltage decrease at an area will not only decrease the shunt capacitive reactive
power supply in that area but also reduce the capability of boundary transmission lines to
transfer reactive power from other areas. It will come to a point where the load flow equa-
tions associated with the buses in that area can not be solved and the jacobian matrix be-

comes singular at that point. We call this kind of voltage instability load flow instability.
In this thesis, we show that

(1) weak boundary transmission lines may get clogged up and become a reac-
tive drain that sucks reactive power from both buses they are connected to;

(2) the voltage instability caused by supply and demand problems can be ana-
lyzed by load flow simulation and the singularity of the load flow jacobian
matrix indicates this kind of problem;
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(3) load flow voltage instability, a particular type of system voltage instability,
can not occur when there is plenty of reactive supply close to the point of
stress. In contrast, system dynamic voltage instability may occur in an area

even when there is plenty of reactive power supply close to it.

It will be shown in the Voltage Instability Tests chapter that load flow voltage instability
(supply and demand problems) satisfy the necessary condition for bifurcation of the con-
strained differential equation if the jacobian matrix associated with the real and reactive
power equations at high side transformer buses or load buses have linearly dependent
rows. This would confirm the validity of the methods that apply load flow jacobian analy-
sis to investigate voltage instability problems. It should be noted that load flow instability,
that includes the real and reactive power balance equations at generator terminal buses,
may not imply system voltage instability. More importantly, system voltage instability will
be shown to occur without load flow voltage instability. This indicates that the load flow
jacobian analysis is not conservative enough to predict all the possible types of voltage in-
stability. The load flow instability test can be used to test for system voltage instability that

result from reactive supply/demand problems at high side transformer and load buses.

32.2 System Voltage Instability

System voltage instability occurs due to two possible reasons. One reason is the reactive
demand supply imbalance and the other is the instability of generator dynamics. There are
four factors, air gap saturation, field current limit controller, line drop compensator, and
excitation system control which may cause the instability of generator dynamics. These

four factors have been modelled in Chapter 2.

Air gap saturation reduces the ability of a generator to create reactive power and control
voltage. As air gap saturation increases, the increase in field current needed to control a

specific terminal voltage change increases. If the field current limit is hit, the excitation
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system is disconnected and field current is reduced to it’s continuous rating level. The bus
voltage controlled by the exciter is no longer controlled. It will be shown that increased air
gap saturation and increased reactive generation in a stressed network will move the ei-
genvalues of dynamic states toward the right half plane and system voltage instability may
occur. If the fictitious bus voltage controlled by the line drop compensator is located far
out in the network, field current will be closer to saturation and the generator will be re-
quired to produce more reactive generation. It will be shown that the flux decay and excit-
er eigenvalues are generally complex if the field current limit is not hit and the excitation
system is still in control of terminal bus voltage. It will be shown that, in some cases, these
complex eigenvalues of the flux decay and exciter or the generator mechanical dynamics
move to the right half plane and a Hopf bifurcation may occur. The loss of stability associ-
ated with Hopf bifurcation may cause the field current limit to be hit before the reactive
loads on the machine would have caused the field current limit to be hit. Thus, the genera-
tor excitation system may be disabled and the field current reduces to continuous rating if
either the field current limit is hit or if the flux decay and exciter or generator mechanical
dynamics experience a Hopf bifurcation. Both air gap saturation and increased reactive
generation will be shown to move the flux decay eigenvalues close to the right half plane.
If the field current limit is hit, the exciter is disconnected, and field current is reduced to
it’s continuous rating. It will be shown that the flux decay eigenvalues will generally be
real rather than complex as they were before the field current is hit and will be far closer to
the jo axis. After the field current limit is hit, the flux decay eigenvalue may be positive or
become positive with increased reactive load. The generator’s response after the flux de-
cay eigenvalue becomes positive will be shown to result in monotone decreasing field cur-
rent, induced voltage, and reactive power output. All of these would explain why voltage
collapse is observed to be a continuous decline of voltage. This kind of voltage instability
can be detected by using a dynamic/algebraic test to be defined. It will be also shown that

this dynamic voltage collapse may occur even if the field current limits aren’t reached and






the exciter is not disabled.

The other type of system voltage instability is caused by the stress on the transmission and
distribution system and is tested using the algebraic/dynamic test to be defined. This type
of voltage instability will be shown to not only capture load flow instability at high side
transformer and load buses that do not interact with generator flux decay dynamics as well
as the voltage instability caused by interaction between the generator and the network at
generator terminal, high side transformer, and load buses. The system voltage instability
caused by interaction of flux decay dynamics with the network at terminal, high side trans-
former, and load buses can be tested by the algebraic/dynamic test since the algebraic/dy-

namic test can test for every type of voltage instability.

3.3  Voltage Instability Tests

It should be noted that the focus of this thesis is to study only those bifurcations and singu-
larities that occur when the state of the algebraic and dynamic models are at the equilibri-
um point. Furthermore, the focus is toward describing the necessary conditions for
different types of bifurcations and singularities rather than describing the bifurcation or
describing the dynamical behavior before or after the bifurcation occurs. This thesis pro-
vides different types of tests for voltage instability. The algebraic bifurcation test will be
used for testing for load flow voltage instability. The algebraic/dynamic and dynamic/al-
gebraic bifurcation tests are tests for dynamic voltage instability. The algebraic, algebraic/
dynamic, and dynamic/algebraic tests for voltage instability are not tests for the same type
of voltage instability. The types of voltage instability tested for in each of these three tests
will be described. A flux decay bifurcation test is a test for instability of the flux decay dy-
namics under the assumption that there are no angle stability problem. This flux decay bi-
furcation test shows theoretically that the sensitivity matrix SQ,,E' Syg and the air gap

saturation, excitation system control, and reactive power generation decide the stability of
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generator flux decay dynamics.

33.1 Model Linearization

() =f(x(®),y(®),A()) (3.1
0=2gx(,y(®),A()) (3.2)
where

x(t): state vector of the generator dynamics

y(t): state vector of bus voltage and angle of terminal buses, high side trans-

former buses, and load buses

A (¢) : state vector of the slow varying operating parameter, A () € [A, A,]

_ |A (g Yer Ag) B (xg: Yo )‘0)} (3.3)

- C (xp Yoo l0) D (x4, ¥ A-0)

L

!
Bl &I
SR S&

where matrix A, B, C, and D are a function of initial values of xg, o, and A,,.

We can write a set of linearized equations

Ax (1) = AAx (1) +BAy (1) (3.4

0 = CAx(2) +DAy (1) (3.5)

Ay contains the changes of bus voltage and angle of terminal buses, high side transformer
buses, and load buses. We can further divide Ay into Ay, and Ay, where Ay, is the

changes of bus voltage and angle of terminal buses, and Ay, is the changes of bus voltage
and angle of high side transformer buses and load buses. Equation (3.4) and (3.5) become

Ax(1) = AAx (1) +[B, B] [ﬁ; 1 Eg] (34.1)
2
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0 = [Cl]Ax(t) +|P1D2)|851 () (3.5.1)
0 D3D4 Ayz(t)
where

B, B, = B

Cl]:c C,=0
C2

D1D2 =D
D, D,

The C; matrix is zero because there is no direct connection from internal buses to high

side transformer buses or load buses.

33.2 System Bifurcation Test

It should be pointed out that for each A (¢) value there are several solutions (equilibrium
points) (x:; @ ,yg ) of equations 3.1 and 3.2. Some of these equilibria are stable and oth-
ers are not stable. It is assumed that the system is operating at a stable equilibrium at t=0
and that the bus voltages are near 1.0 p.u. and angle differences are less than 45° in this so-
lution. As A (#) slowly varies for t>0, the equilibrium point (xﬁ @ ,yow)) changes until at

some point
A =2(9) e L),
the jacobian matrix J becomes singular. The condition

det{.l (xﬁ, y},, i)} =0

is a necessary condition for static bifurcation of the general power system model. Singu-
larity of J does not imply a bifurcation (change in the number of solutions at (x:,‘, yﬁ, A )

as A (1) passes through J.\.). If a system bifurcation occurs, it may not be a bifurcation that
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causes voltage instability but could result in angle instability or some other type of bifur-

cation.

If the bifurcation occurs that results in voltage instability and it may result in one of at

least three types of system voltage instability.

It should be noted that the development of a complete dynamical system analysis of the
power system model developed in this thesis is not easy. The theory for describing bifur-
cation and singularities of constrained differential equation system models is not complete
and the degree of complexity is too high to be handled by today’s state of the art computer
system. For example, it takes six nonlinear differential equations and four nonlinear alge-
braic equations to describe a generator and its terminal and high side transformer buses. A
simplified two bus system with one generator bus and one terminal bus will be investigat-
ed in this thesis. It will be shown that we have to make crude assumptions to make this
two bus system model valid and this model can only be used to investigate a limited num-

ber of causes of voltage instability.

3.3.3 Algebraic Bifurcation Test
Algebraic bifurcation is a change in the number of solutions in the algebraic equation
0=g(x(®,y(®,r(0) 3.7

as a function of y (x (#), A (7)) in a neighborhood around a point (35»). A necessary con-
dition for algebraic bifurcation is that

%g(i,i,i) =D

is singular at (x, i.i) . The test condition for algebraic bifurcation is a test condition for
loss of causality [27] of the transient stability model. Loss of causality indicates that the
transient stability simulation packages that iteratively updated x using the differential



4

equations and update y using the algebraic equations may not obtain unique solutions and
will generally terminate due to numerical failure as singularity of D is approached. Alge-
braic bifurcation does not guarantee that a system bifurcation will occur as will be dis-
cussed in more detail shortly. However, algebraic bifurcation indicates a point where the
transient stability simulation will fail and where strange (chaotic) behavior may occur[21]

under stressed operating conditions.
The algebraic bifurcation test is similar to the widely used load flow jacobian test. If

det (Dl"o-Yo 7‘0) =0

then algebraic bifurcation occurs. At the bifurcation point (xg, Yo, A,), two closely located
load flow solutions merge into one and matrix D becomes singular at this bifurcation
point. The singularity of matrix D indicates that there is lack of a solution to satisfy the
supply and demand problem. It is usually caused by the weak boundaries of voltage con-
trol areas that reduce the ability to import reactive power, the shunt capacitive reactive
supply withdrawal with voltage decline, and the lack of sufficient reactive supply in criti-

cal voltage control areas.

The difference between algebraic bifurcation test and load flow jacobian test is that the

steady state solutions we use to determine the singularity of matrix D are different. In

an algebraic bifurcation test, we use the solutions of

0=F(x(0,y(,A() (3.6)

0=2g(x(,y(®,r()) 3.7
to test the singularity of matrix D. In widely used load flow jacobian test, the solution of
0 = g(xp 01 (0),A(2)) (3.8)

is used, where g includes the real power balance equations at terminal high side trans-
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former, and load buses; retains reactive power balance equations at high side transformer
and load buses, but eliminates reactive power balance equation at generator terminal buses
that are included in g. The y(t) vector is thus divided into a vector y,(t) of the angle at all
buses and the voltage at all high side transformer and load buses. y( represents the genera-
tor voltage setpoint at terminal buses. The test for load flow bifurcation is then based on
the singularity or nonsingularity of

9%

a9y,
We have shown that the solutions of (3.6) and (3.7) and the solutions of (3.8) tend to di-
verge at heavy load condition but before the field current limits are hit. The results of the
algebraic bifurcation test and the load flow jacobian test will also diverge as we move the
system close to load flow voltage instability. Note that if algebraic bifurcation test shows
that the matrix D is singular, the system jacobian matrix J will not be singular unless
D — CA™!B is singular as will be discussed in the next subsection.

If the singularity of matrix D is caused by the linear dependency of two or more rows in
matrix |:D3 D 4] in equation (3.5.1), this implies that there are linearly dependent rows in
the system jacobian matrix J because the submatrix C, is a zero matrix. Linearly depen-
dent rows of |:D3 D ;l thus implies the system jacobian matrix J becomes a singular matrix
and that a system bifurcation may occur. This indicates that the linear dependency of the
rows of the real and reactive power jacobian associated with high side transformer and
load buses is one of the ways to cause system bifurcation. It shows that the methods which
use the algebraic bifurcation test to investigate voltage instability problems are valid if the
voltage instability is caused by linearly dependent rows of [D3 D 4] associated with high

side transformer buses or load buses.

The matrix [Dl Dz] has the form



0P, oP,]
13 14
D1 = ae_1'377' = Dn,nDn,u
90r%n b2, DY,
38, 3V,
Py P
=728 15 6
D2= ae_H 0 aVH 0| = Dn,n On.m Drln.n On,m
H H

oPr 0Py 6Qr 0Qr oPy oPr 9Qr Qs . .
where ETT’ 5V—T’ E‘ , m, ae—ﬂ, ;TH’ B—H, and 37,, are diagonal matrices represented

by the notation D] ..

Rows of l:Dl D2:| can not be dependent unless the ith row of [D1 Di] is linearly depen-
dent with the i+nth row. If [D1 D;] has linearly dependent rows or if one or more rows of
[D1 Dz] are linearly dependent with one or more rows of [D3 D 4] , then an algebraic bi-
furcation (loss of causality) may exist that will not necessarily cause system bifurcation
which requires J to be singular. An algebraic bifurcation (loss of causality) that does not
cause a static system bifurcation can result in chaos [21] and possibly other unacceptable
behavior which may or may not be associated with voltage collapse. A loss of causality
that does not cause system bifurcation is studied for a two bus example system in the next
chapter. A general investigation of loss of causality (algebraic bifurcation) and it’s impacts

on the behavior of the system behavior is beyond the scope of this thesis.

33.4 Algebraic/Dynamic System Bifurcation Test

If matrix A is nonsingular, the system jacobian J is nonsingular(singular) if and only if
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M,=D-CA™'B
is nonsingular(singular)[24].

Since it is shown that matrix A is always nonsingular in Appendix B.3, the algebraic/dy-
namic system bifurcation test is always valid for testing the singularity of the system jaco-
bian matrix J. We have indicated that the (loss of causality) algebraic bifurcation test on D
can be used to test the singularity of the system jacobian matrix if I:D3 D 4] have linearly
dependent rows of D. If these linearly dependent rows of D belong to [Dl Dz;l or both
[Dl D.;I and [D3 D 4] , there is a loss of causality (possibly chaotic behavior) but no steady
state system bifurcation. Likewise, there are system bifurcations of the algebraic equations
(and obviously also the set of differential and algebraic equations) that can’t be detected

by the algebraic bifurcation test. Two such cases are
(a) linearly dependent rows in matrix [C 1 D, Dz:l , Or
(b) linearly dependent rows in matrix [1)3 D;J and [Cl D, D2:| .

A method that will identify the linearly dependent rows in the matrix [C 1D, D2] is pre-
sented here. The matrix [C, D, D] can be represented by

- .
13 14 15 16
onm D;lu,lnD;lu.znon,u Dn.nDn.an.n On.mDn.non.m
c, 0102] = =
23 N4 n2S 26
O,,,,, D:lanno-n,Au Du.nDn.nDn.n On.mDn.non,m
-Kl]
K,
oP oP a0 a0
11 T 12 T p21 T 2 T .
whereD,,.,, =55 .D,,.,, = BE_',,’D"-" =55 ,andD,,,n = aTqandtheotherdxago—

nal matrices that belong to D; and D, have been previously defined in section 3.3.4. There

are n generator buses and m high side transformer buses and load buses in this example. If
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there are linearly dependent rows in the matrix [Cl D, Dz] , it has to be one row in the

matrix K; and another row in the matrix K,. It is only possible that the ith row of K is lin-
early dependent on the ith row of K. The ith row in the matrix K;can never be linearly de-
pendent on the jth row of the matrix K3 if i is not equal to j. The algorithm for identifying
the linearly dependent row in the matrix [C 1 Dy D2:| is given in Figure 3.1. The computa-

tion effort is less than or equal to
6n (scalar division) + 7n (scalar comparison) + n (scalar addition)

where n is the number of generator buses.

335 Dynamicl/Algebraic System Bifurcation Test

If matrix D is nonsingular, the system jacobian matrix J is nonsingular(singular) if and

only if

M, = A-BD'C
is nonsingular(singular).

If D is nonsingular, both M; and M, can be used to test for system bifurcation (singularity
of J). Both M; and M; can be used to test for singularity of J when D and A are nonsingu-
lar because the singularity of J depends on the row dependence of rows of [ p] and

[A B] rather that row dependence in [4 B] or [ D] alone. M; represents the system ma-
trix of the nonlinear constrained differential equation modeled linearized at an equilibrium
point Xy, Yo, A, and thus defines the eigenvalues of the equivalent unconstrained dynami-
cal system. If the real parts of the eigenvalues of M, are all negative, the equivalent un-
constrained dynamical system is locally stable in the neighborhood of the equilibrium
point. A dynamic/algebraic system bifurcation test can be used to test the stability of the

dynamic states if the matrix D is nonsingular. If there are complex eigenvalues with zero



49

START

es i
@ no linearly
dependent row
no i
Nonzero elements of the ith row of the

matrix K, are divided by the corresponding
nonzero elements of the ith row of the
matrix K2

save the result in the matrix Y

there are ﬁnemly
dependent rows

Srop

i=i+1

Figure 3.1 Algorithm for identifying the linearly dependent rows
in the matrix [C, D, D]



50

real parts, the system may experience Hopf bifurcation and yet J and M, will be nonsingu-
lar. Thus, singularity of J and M, will not indicate all possible bifurcations but only static
bifurcations. A fundamental assumption, which is confirmed by our computational results,
is that voltage collapse bifurcations are static bifurcation that can be tested for by singular-
ity of J, My, or M. Examples of singularities, that are not detected by singularity of J, M;,

and M, and are not necessarily associated with voltage collapse, are

(a) Hopf bifurcations which occur when eigenvalues of M, are complex with

zero real parts and

(b) algebraic bifurcation (loss of causality)

det (D) = det([D‘ D2D =0
D, D,

where rows of [Dl Dél are dependent on rows of I:D3 D 4] . (Note that row dependence in
[D3 D 4] are detected in J and M, and is associated with load flow bifurcation which are
reactive demand/supply related voltage collapse bifurcations) It should be noted that de-
spite the above theoretical results and the computational results in the next chapter that
confirms this theory, there is no doubt that our understanding of bifurcations of this system

is not complete.

This M, test for system static bifurcation is a test for bifurcation of a type that are not re-
lated to algebraic bifurcation or the bifurcations that occur in equation (3.8) are related to
load flow bifurcation. The singularity of M, as A () varies indicates that J is singular and
that a bifurcation may have occurred in the dynamical system where the algebraic con-

straints have been eliminated. Whether a bifurcation occurs or not and whether the bifur-
cation is related to voltage instability or not, the system will become unstable if the real

part of the eigenvalue that became zero becomes positive as A (f) continues to vary. This

instability could be related to voltage collapse even if no bifurcation occurs when M; and
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J were singular. Zaborsky[21] discusses this type of dynamic/algebraic bifurcation on a
two bus system and provides some preliminary results on it’s dynamical system behaviors.
33.6 Flux Decay Bifurcation Test
In flux decay system bifurcation test, we assume that there is no angle instability.

2 (1) = £1(x,(0),x(0),y(2),A (D))

% (D) = f,(x1 (0, x,(0),y(0),A(1))

0=2g(x(,x0),y(0,A())

x(t) in equation (3.1) is divided into x;(t) and x,(t). x, (t) represents the flux decay states of

the generator. x(t) represents the states of mechanical and exciter dynamics.

The jacobian of the above equations is

o, o, o,
dx, 0x, dy
J = afz afz afz - [TIT‘;]

d9x, 0x, 9y| |T3 T,
dg dg dg
dx, 9x, dy|

where
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If there are linearly dependent rows where one or more occur in [Tl Tz] and the remaining
TOWS occur in [T3 T4:| , the dynamic/algebraic test of this new jacobian will be singular if J
is singular and |:Tl TJ is linearly independent and I:T3 T4] is linearly independent. Singu-

larity or existence of positive eigenvalues of
= o _

indicates that the voltage instability may be related to dynamic voltage instability associat-
ed with flux decay dynamics. Matrix T represents the matrix associated with flux decay
dynamics when the excitation system dynamics, generator mechanical dynamics, and al-
gebraic equations have been eliminated at the equilibrium point. Matrix T is used as a test
for the flux decay dynamics in a manner similar to the AESOPS algorithms tests for the
stability of mechanical system eigenvalue. The results indicate M3 does not change signif-
icantly as the excitation system of every generator remains in control of terminal bus volt-

age. However, if the field current limit is hit on one generator, then M; varies significantly.

Note that singularity of M, may not be an appropriate test for dynamic instability of the
flux decay dynamics when D is singular. However M3 may be a valid test for flux decay
bifurcation when D is singular since D is a submatrix of T3 which mat be nonsingular
when D is singular. The flux decay bifurcation test can point out how the air gap satura-
tion, line drop compensation, field current limit, sensitivity matrices, and reactive genera-

tion will influence the stability of flux decay dynamics.
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Computational results in the next chapter indicate that when a generator has not hit field
current limit the eigenvalues associated with both the mechanical dynamics or the genera-
tor flux decay dynamics and the exciter dynamics are generally complex. Although real
parts of these eigenvalues will be shown to approach zero and possibly result in Hopf bi-
furcation that can cause field current limit violation as reactive load network and network
stress, it does not appear that it will cause voltage instability. The disablement of the exci-
tation system and the reduction of the field current to continuous rating levels caused by
the oscillation generally seems to extinguish the Hopf bifurcation. The resultant system af-
ter the excitation system is disabled has real eigenvalues rather than complex eigenvalues
in the examples discussed in the next chapter. If the real eigenvalues associated with the
generator flux decay dynamics are negative the system is stable and J remains nonsingular.
If the eigenvalues associated with the flux decay dynamics are positive, the system experi-
ences a dynamic voltage collapse where the induced flux, field current, and reactive power
out of the generator approach zero forcing the voltage collapse in the system. When the ei-
genvalues associated with this flux decay dynamics become positive, the determinant of J
changes sign. A specific flux decay bifurcation test is desired which would indicate when
the eigenvalues associated with the flux decay dynamics become real rather than being

complex and indicate whether the eigenvalue is positive or negative.

It should be noted that it is possible to effectively disable the excitation system if the field
current is above continuous rating and the air gap saturation has reduced the excitation
loop gain to small values. In this case, the flux decay eigenvalue will be shown to ap-
proach the right half plane if S-Q:_v and Sy have negative elements. In this case, the alge-
braic voltage collapse test was violated indicating a reactive demand supply problem has
occurred that could have brought on dynamic collapse where generator field current flux

are unstable and approach zero.

An analysis of flux decay bifurcation in undertaken. To perform this analysis, it will be
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necessary to assume that steady state angle instability has not occurred so that the required
sensitivity matrices are well defined. Since voltage collapse is assumed to be a static bifur-
cation, the derivatives 8 and & can be set to zero and the swing equations are deleted and
replaced by an algebraic real power balance equation of the generator. The reactive power
balance equation of the generator internal bus is also added because it will be used for sen-

sitivity matrix analysis in this section.
= £,(5,6,E,V)
Q¢ =£,(5,6,E,V)
The sensitivity matrix model has the form (Appendix II)
AQ¢ = So,EAE+Sg 0 A0 (3.9)
AV = SgyAQ; +SygAE (3.10)

We also set the derivative of exciter states belonging to x5 in the general power system
model to be zero and we obtain another set of algebraic equations. We can solve for the
field voltage in terms of the terminal bus voltage.

—K, Ky
E, = diag( AR )v
1 Sgi(Ep) +Kg; ) T

. —KAiKR:
AE, = dlag( )AVT (3.11)
SEi (Ega0) +Kpi+SEi (Epg0) E 1d0i

where E_, is the vector of generator field voltage and V7, is the vector of terminal bus volt-

age.
The only linearized dynamic equations left are for flux decay equations

(3.12)

. ®(x,—x x,—x',)AQ¢
AE, _..L AE,-AF, MAE_(‘ JAQ
Tl 2 T E?

E qi0 qi0
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Substituting (3.9), (3.10), and (3.11) into (3.12) we obtain

AE'q = (diag (‘C'L)) (diag (_ 1+ Qio (JZ;’X di) )
doi

qi0

—KAiKpiVio
Sgi+ Kgi+SEiEgg0

+diag ( )WSVE

X =X .
—diag( "‘E'z d')SQcE )AE'q+11AQL)= TAE+1AQ, (3.13)
qi0

where W selects the terminal bus voltage vector out of the vector V that includes voltage

at terminal, high side transformer, and load buses.

Matrix T is a diagonally dominant matrix and all the eigenvalues of matrix T has nega-
tive real parts in the normal operating condition. As the system becomes stressed, the reac-
tive power generation QF, of generators start to increase in a speed faster than E’z i0- This
will reduce the negative diagonal dominance of matrix T and move T toward singularity.

When the generator experiences excitation system saturation, the term
Ski (Eggio) + Kgi+ Ski (Epgio) E

may increase and force the diagonal elements of matrix T to become less negative. If
there is a terminal bus voltage deviation such that Sy, elements and row sums increase,
the diagonal dominance of matrix T is even further reduced. The loss of diagonal domi-
nance of T indicates the matrix is approaching singularity since T is a diagonally dominant
M matrix. The sensitivity matrix SQ‘,E has the property that the negative off diagonal ele-
ments become more negative and the positive diagonal elements become less positive as
the system is stressed. This would also contribute to the loss of diagonal dominance and

singularity of matrix T . The air gap saturation will help to move the field current to its up-
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per limit. Air gap saturation can significantly reduce x',, and x,,. Thus, both the diagonal
and off diagonal elements of the third term of equation 3.13 associated with o diagonally
dominant matrix SQGE will move toward zero which has the effect of moving the eigen-

values associated with equation 3.13 toward the right half plane.

If the field current limit is hit, the excitation system is disabled and the second term

K, KgiVio
Sgi (Eggio) +Kpg;+ SEi( (Egai0) Ef40)

becomes zero. This means that a large negative diagonal element of matrix T will be re-
moved. The eigenvalues of matrix T will be moved to a point where either it is very close
to the origin or even becomes positive. When the excitation system is disabled, the field
current is reduced to continuous rating which reduces air gap saturation. The reduction of
field current and air gap saturation has the effect of causing the eigenvalues associated

with the third term in equation 3.13 to be more negative.

PQ controllability requires Sy to be nonnegative. Strong PQ controllability requires row
sums of Sy to be near 1. PV controllability requires that S, oE have positive diagonal el-
ements, be an M matrix, and be o diagonally dominant. Loss of PQ controllability occurs
when elements of row sums of Sy, approach infinite and then instantly go negative. Note
that if elements of Sy are negative, it is virtually certain that the eigenvalue of matrix T

will be positive since the diagonal matrix

(3.14)

di ( —K4iKriVio )
iag

SEi (Eggio) + K+ SEi ((Eggig) Epgio)
is so large. Loss of PV controllability results in loss of the M matrix and a diagonal dom-
inance property of S Q0" When the exciter is disabled due to field current limitation and
the second term in equation 3.13 is missing, the loss of PV controllability can cause the ei-

genvalues of T to become positive, since the term
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. 1Y, (*ai~%a
diag (%)dzag( Ez,- )SQGE

is not small compared to the first term. If SQc £ is a diagonally dominant, the above term
has positive eigenvalues, but if SQa g is no longer a diagonally dominant or loses its M
matrix property, then the eigenvalues of the term will be negative and the eigenvalues of T

can become positive.

Loss of PV controllability can also contribute to eigenvalues of T becoming positive
when the excitation system is not disabled due to field current limitation, but its effect

should be small compared to loss of PQ controllability.

This simplified power system model shows clearly how a dynamic voltage instability

would happen and indicates the contribution of each element to voltage instability.

34 Relationship to Literature

There is a large amount of literature on the voltage stability problem. Most of this
literature deals with the existence of load flow solutions in the steady state or static
condition of the power system. Research efforts have resulted in several different
methodologies for the coordination and utilization of the reactive power and voltage

control resources of the system.

It has been known that there will be two static load flow solutions which eventually merge
into one in a two bus system when a bus with an increasing real or reactive power load is
fed through a transmission line from a fixed magnitude voltage source. With increasing
load beyond the critical load value, there exists no load flow solution. In mathematical
terms, this is a static or saddle node bifurcation. A similar event occurs on a large power
system if real or reactive load (A, (#) ) is increased at a critical bus. Before A, (1) is
increased, there are many solutions under normal operating conditions. One or more of the



58

numerous load flow solutions will converge together and merge into one and the jacobian
matrix becomes singular, which indicates a bifurcation and voltage collapse if the
bifurcation is associated with voltage collapse. Many research efforts of voltage stability

are devoted to this static bifurcation event.

Tamura [12,13] has confirmed that closely related multiple load flow solutions that merge
are likely to appear under heavy load conditions. He showed that a pair of load flow
solutions located close to each other is related to voltage instability. A voltage instability
proximity index which measures the closeness of a pair of load flow solutions and
proximity of the jacobian matrix to singularity are developed in his research. A method for

computing these multiple load flow solutions are provided in his recent research.

Much of the voltage collapse literature [28,29,8,12,13] uses a conventional load flow
model to analyze voltage instability. Generator dynamics are not included in their
research. This kind of voltage stability problem has been classified as a demand/supply
problem. In this thesis, we use algebraic bifurcation test to investigate the supply demand
problems of the power system. The difference between an algebraic bifurcation test and
the widely used load flow jacobian test is that in an algebraic bifurcation test we use the
equilibrium point from a general power system model which includes the mechanical
dynamics, flux decay dynamics, and excitation system dynamics and the test for voltage

collapse is a test for row dependence of

D= [Dl D 2] :
D, D,
Load flow bifurcati<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>