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ABSTRACT

TOPICS IN INTERACTING CONTINUA

BY

MOHAMMAD USHAN

This dissertation is focused on the mathematical modeling of the

mechanical response of solid-fluid mixtures within the context of the

Theory of Interacting Continua. In this work, the fundamental

mathematical framework for the Theory of Interacting Continua is

presented, and the theory is employed to model the solid-fluid

interaction in a mixture undergoing large deformations. Furthermore, the

advantages of employing this theoretical approach have been demonstrated

by presenting two boundary-value problems for this class of mixtures.

The first boundary value problem presented herein is intrinsically

interesting since it is one of the few problems involving large non-

homogeneous deformations for which experimental results are available.

The second problem presented in this work is more of theoretical

interest which demonstrates that an infinite mixture slab of finite

thickness, undergoing uniaxial extension, admits infinite solutions.

This work has addressed the issue of investigating the complete

mechanical response of the solid-fluid mixtures and has served as a

test-bed for evaluating the validity and predictive capability of the

Theory of Interacting Continua in modeling the interaction of the

elastic solids and ideal fluids.
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CHAPTER I

INTRODUCTION

This dissertation is focused on the mathematical modeling of the

mechanical response of solid-fluid mixtures within the context of the

Theory of Interacting Continua [1-4]. The study of the mechanical

response of the solid-fluid mixtures has relevance to several technical

problems: The problem of atherogenesis in biomechanics [5] which

involves the diffusion of plasma lipoproteins through the arterial wall,

processes employing cylindrical tubes for the separation of fluids, the

problems of filtration and ultra-filtration [6], non-linear diffusion in

soft tissues and its deformation [7] where the non-linearity in the

problem arises from the permeability of elastic phase which for a number

of tissues (such as articular cartilage) is strongly dependent on

strain, the problem of hygro-thermo-elastic response of polymeric

composite materials undergoing large deformations are but a few

examples.

In the Theory of Interacting Continua the constituents of the mixture

are assumed to be mixed on a molecular level and are chemically neutral.

The theory postulates local balance laws for each individual constituent



of the mixture, namely, balance of momentum, balance moment of momentum,

balance of energy and balance of mass, and an entropy production

inequality for each individual constituent of the mixture.

Moreover, in this approach, thermo-dynamical variables such as the

internal energy, entropy and temperature are admitted for each

constituent and these ,in turn, are assumed to be related to the

corresponding quantities for the whole mixture simply by algebraic

relations.

The study of the mechanical response of the mixture of a non-

linearly elastic solid and an ideal fluid has been of particular

interest to several researchers [8-9]. The application of the theory to

study problems involving large deformation, swelling and diffusion of

fluid through non-linearly elastic solid has been very limited due to

the lack of physically obvious ways for specifying the partial

tractions, which are integral part of the theory. The purpose of this

work is to investigate the mechanical response of the mixture of a non-

linearly elastic solid and an ideal fluid undergoing large deformations

and resolve some problems associated with the applicability of the

theory. This investigation, in turn, will serve as a test-bed for

evaluating the validity and predictive capability of the Theory of

Interacting Continua in modeling the interaction of elastic solids and

ideal fluids.

The application of the Theory of Interacting Continua to model the

phenomenological behavior of the solid-fluid mixtures has been

historically motivated due to limitations in the classical theories.

Classical approaches which have been used to study the diffusion of

fluid through solids, such as Fick's Law [10] discussed in books on

diffusion in solids [11-13] and Darcy's Law discussed by Scheidegger



[14] ,for example, assume that the solid is rigid. However, this

assumption is violated in solid-fluid interactions where the mixture

undergoes large deformations [15-16]. Furthermore, the dependence of

swelling on strain and kinematics constraints has been demonstrated by

Treloar [l7], and Paul and Ebra-Lima [18]. Classical theories do not

adequately account for the interaction between a highly deformable solid

and a fluid in a diffusion process. The limitations of the classical

theories point out the need to use an appropriate theory which is

capable of realistically taking into account the interaction of solid

and fluid.

The Theory of Interacting Continua models the mixture as a

superimposition of individual continua. Each spatial point in the

mixture is assumed to be simultaneously occupied by material particles

from each constituent. This essentially amounts to taking into account

contributions from each constituent in a neighborhood of the point and

averaging them. The theory accounts for large deformations, dependence

of material properties on both constituents and interactive forces.

Atkin and Craine [19] reviewed the applications of this theory through

1976. The discussion includes the work of Crochet and Naghdi [20], Mills

and Steel [21], and Craine, at el. [22]. A critical review of the field

makes it clearly evident that the applications of the Theory of

Interacting Continua to solve boundary-value problems of physical

interest have been very limited. The main difficulty in these problems

arises due to the lack of physically obvious ways for specifying the

partial tractions associated with the solid and fluid. At the boundary,

only the total stresses can be specified. Shi, et al. [23] and

Rajagopal, et a1. [24] were the first to study equilibrium and steady

state boundary-value problems by employing auxiliary conditions at the



boundary of the solid-fluid mixtures in an effort to bypass the

difficulties associated with specifying partial tractions at the

boundary. The use of these auxiliary conditions rendered a whole class

of boundary-value problems tractable where the boundary of the mixture

could be assumed to be saturated. However, these boundary conditions

were scalar in nature and derived on an ad hoc basis, which was not

necessarily thermodynamically consistent.

By employing a rigorous thermodynamic criterion for closed system,

Rajagopal, et a1. [25] provided a systematic rationale for

characterizing saturated states of homogeneously deformed and swollen

cuboids. In particular, they obtained tensorial equations relating the

total stresses with the stretch ratios and the volume fraction of the

solid in the saturated mixture. These equations could then be used to

describe additional boundary conditions assuming material elements at

the boundary of the mixture continuum to be in a saturated state, and

thereby bypass the difficulty associated with prescribing the partial

traction conditions at the boundary.

Since 1976 considerable work by Shi et a1. [23] and Rajagopal et

al. [24,25] and Gandhi et a1. [26] has been done in solving boundary-

value problems involving large non-homogeneous deformations of solid-

fluid mixtures. In this work the Same approach [24-28] has been used in

solving boundary-value problems involving solid-fluid interaction. Two

representative boundary-value problems are presented in the context of

the Theory of Interacting Continua. The first boundary-value problem

presented herein is intrinsically interesting since it is one of the few

problems involving large nonhomogeneous deformations for which

experimental results are available. The second problem presented in this



work is more of theoretical interest which demonstrates that an infinite

mixture slab of finite thickness, undergoing uniaxial extension, admits

infinite solutions.

The first boundary-value problem presented herein is motivated by

the experimental work of Loke and Treloar [8] and theoretical work of

Treloar [29] for the combined finite extension and torsion of a

cylindrical mixture of a non-linearly elastic solid and an ideal fluid

which is swollen to several times the volume of the original rubber

cylinder. In their work, the cylinder was assumed to be saturated with

the fluid. In addition, the problem was not treated within the context

of Theory of Interacting Continua. The present work differs from

Treloar's in two respects. First, the problem is studied within the

context of Theory of Interacting Continua. Second, there is no

restriction on the fluid content of the mixture, the strained state of

the cylinder could range from being cbmpletely dry to fully saturated.

In the problem considered here, both the solid and fluid constituents

are at rest. However, the fluid can be non-homogeneously dispersed

throughout the mixture domain, which gives rise to concentration

gradients. The physical mechanism for the existence of such gradients is

provided by the presence of an interaction body force which each

constituent exerts on each other. This work is the first one of its kind

to exploit Theory of Interacting Continua in order to adequately

reproduce experimental results of a highly swollen mixture subjected to

a complex non-homogeneous deformations.

The second problem has been motivated by the work of Rajagopal and

Wineman [30]. In their work, they presented exact solutions for the

problem of uniaxial extension and demonstrated that an axial variation



of the stretch ratio is possible for non-linearly elastic materials. In

addition, they obtained an infinite class of exact solutions for the

uniaxial extension of an infinite Neo-Hookean slab of finite thickness.

In this work, the boundary-value problem is studied for an infinite

mixture slab of finite thickness in the context of the Theory of

Interacting Continua. The applicability of the theory is demonstrated by

presenting the response of a mixture slab undergoing large non—

homogeneous deformations. It has been shown that infinite exact

solutions are possible for the uniaxial extension of "Neo-Hookean type"

mixture slab, and the possibility of axial variation of the stretch

ratio is also demonstrated. This is the first such example of non-

uniqueness of equilibrium deformation states presented within the

context of Theory of Interacting Continua.

A brief review of the notation and basic equations relevant to a

mixture of interacting continua is presented in chapter II. The

constitutive equations for the mixture of a non-linearly elastic solid

and an ideal fluid are discussed in chapter III. The application of the

Theory of Interacting Continua is demonstrated by presenting two

boundary-value problems in chapter IV.



CHAPTER II

REVIEW OF THE GENERAL.THEORY OF

INTERACTING CONTINUA

PRELIMINARIES: NOTATIONS AND BASIC EQUATIONS

A brief review of the notations and basic equations of the Theory

of Interacting Continua is presented in this section for completeness

and continuity. The historical development and a detailed exposition of

the theory are succinctly presented in the comprehensive review articles

by Atkin and Craine [1] and Bowen [2].

Let 0 and 0t denote the reference configuration and the

configuration of the body at time t, respectively. For a function

defined on 0 x R and Otx R, V and grad are used to represent the partial

derivative with respect to 0 and 0t, respectively. Also 3: denotes the

partial derivative with respect to t. The divergence operator related

to grad is denoted by div.

The solid-fluid aggregate will be considered a mixture with $1

representing the solid and $2 representing the fluid. At any instant of

time t, it is assumed that each place in the space is occupied by

particles belonging to both S1 and 82. Let g and X denote the reference

positions of typical particles of S1 and S . The motion of the solid
2

and the fluid is represented by



g - 51 (g. t). and z - g2 (X. t). (2.1)

Where the subscript ~ denotes a quantity in an orthogonal coordinate

system.

These motions are assumed to be one-to-one, continuous and

invertible. The various kinematical quantities associated with the

solid S1 and the fluid 82 are

 

  

I,<1>3_,1 l“2),,2

Veloc1ty: u - Dt , y - Dt , (2.2)

Dmg 0(2)!

Acceleration: f - Dt , g - Dt , (2.3)

Bu ay

Velocity gradient: L - a; , M - 3E , and (2.4)

. , I T l T
Rate of deformation tensor. Q = 2 (L + L ), N - 2(M + M ), (2.5)

where D(l)/Dt denotes differentiation with respect to t, holding x

fixed, and D(Z)/Dt denotes a similar operation holding y fixed and the

subscript underscore (_) denotes a tensorial quantity in an orthogonal

coordinate system. The deformation gradient E associated with the solid

is given by

E - "—‘. (2.6)



The total density of the mixture p and the mean velocity of the mixture

3 are defined by

p - p1 + p2. (2 7)

and

p3 - p19 + p23. (2.8)

where p1 and p2 are the densities of the solid and the fluid in the

mixed state, respectively, defined per unit volume of the mixture at

time t.

The basic equations of the Theory of Interacting Continua are

presented next.

(1) Conservation of mass

Assuming no interconversion of mass between the two interacting

continua, the appropriate forms for the conservation of mass for the

solid and the fluid are

P1 ldet El - P10: (2-9)

and

6’02 .
at + le (p2 y) = O, (2.10)

where p10 is the mass density of the solid in the reference state.

(2) Conservation of linear momentum

Let g and 5 denote the partial stress tensors associated with the

solid S1 and the fluid 52, respectively. Then, assuming that there are
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no external body forces, the balance of linear momentum for the solid

and fluid are given by

div g - b - plf, (2.11)

and

div _ (2.12):
1

+ U
‘

I

'
b

N

m

In equations (2.11) and (2.12), 2 denotes the interaction body force

vector, which accounts for the mechanical interaction between the solid

and the fluid.

(3) Conservation of angular momentum
 

This condition states that

I
Q +

|
=
l I

I
Q +

|
=
l (2.13)

However, the partial stresses g and 5 need not be symmetric.

(4) Sur ace tractions

Let a and n denote the surface traction vectors taken by S1 and 82,

respectively, and let 3 denote the unit outer normal vector at a point

on the surface of the mixture region. Then the partial surface

tractions are related to the partial stress tensors by

l
Q II

I
Q o

l
5

and . (2.14)

t
a I

I
=
l 0

l
5



ll

(5) Thermodynamical considerations

The laws of conservation of energy and the entropy production

inequality are not explicitly mentioned here for brevity. However, the

relevant results are quoted. A complete discussion of these issues is

presented in [31]:

Let the Helmholtz free energy per unit mass of $1 and 82 be denoted

by Asland ASZ’ respectively. The Helmholtz free energy per unit mass of

the mixture is defined by

pA - p1 ASl + p2 AS2' (2.15)

Note that by setting

2 - grad ¢1 + E - grad ¢2 + E, (2.16)

g-fiI+E. (LU)

£'%l+i. (am)

where,

¢1 ' pl(ASl-A)’ ¢2 = p2(A32-A), and

¢1+¢2-09

equations (2.11) - (2.13) become

div E - g - plf, (2.19)

div 1 + b - p2g, (2.20)

§+i-?+ET (am)

The terms in a 1 and b which depend on ¢1 and ¢2 do not contribute

to the equations of motion or the total stress.
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(6) Volume additivity assumption and incompressibility constraint

Attention is restricted to a mixture of incompressible materials.

It is assumed that the volume of the mixture in any deformation state

and at any given time is the sum of the volumes occupied by the solid

and fluid constituents at that state and time. This implies that the

motion of the interacting continua at that time is such that it

satisfies the following relationship [32]:

p p
_l_+_2_ _ 1, (2.22)

p10 p20

where p20 is the mass density of the fluid in the reference state. It

may be emphasized that this assumption has a significant bearing on the

form of the constitutive equations, and renders the constitutive

equations to be tractable due to the elimination of the density of one

of the constituents as an independent variable by virtue of equation

(2.22).



CHAPTER III

CONSTITUTIVE EQUATIONS

1. CONSTITUTIVE ASSUMPTIONS

A mixture of an elastic solid and a fluid is considered. The solid

is assumed to be non-linearly elastic, and the fluid is assumed to be

ideal. Thus all the constitutive functions A, n, b, g, 5, d1, ¢2 and q

are required to depend on the following variables:

I. VE. p2. grad p2. T. grad T. g and z.

where A is the Helmholtz free energy for the mixture defined per unit

mass of the mixture, n denotes the entropy of the system, 9 represents

the heat flux vector, T denotes the common absolute temperature of the

solid and the fluid and rest of the variables are defined in previous

part of the text.

Following Crochet and Naghdi [8] and Shi, et a1. [23] , The partial

stress tensors and diffusive body force vector for the solid and fluid

constituents may be written as the sum of static and dynamic part as

follows

E-E+E. (3.1)

13
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H
I ll

H
]

+ D
)

:
3

O
.

(3.2)

1
0
‘ ll

l
C
‘
I

+

l
O
‘
l

. (3.3)

where superscript 5 denote the static part and superscript d denote the

S S S

dynamical part of the constitutive equations and E g , b depend upon

d d d

statical variables and E , g , 9 together with A, n, 2 and the heat

flux vector depend on all variables. The energy balance law and the

application of the Clausius-Duhem inequality yield following

constitutive relations

""a_T' (3.4)

3k: - p ggij ij ' P 5%, Ski’ (3'5)

;:i - - p p2 3&2 ski - p 230 Ski’ and (3.6)

-5 aFij QA 6A 3:: P 5P1
 

b--p2 +p1— -——. (3.7)

where the Helmholtz free energy function A is assumed to depend on E ,

p2 and T. In equations (3.5)-(3.7), p is an indeterminate scalar arising

from the use of volume additivity assumption/incompressibility

constraint equation (2.22). The dynamical part of the partial stress

tensors and diffusive body force vector satisfy the reduced entropy

inequality
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d d _d _d

fik + ”[ki] (Fik ' Aik) + k (“k ' Vk)0(ki) dik + "(k1)

~11; [qk + N mm uk - wk > + pzm vk - wk m a z o, (3.8)

where () or [] around the subscripts denote the symmetric and skew

symmetric parts of the tensors, respectively.

Following the arguments based on the restrictions due to the

principle of material objectivity, as presented by Crochet and Naghdi in

[9] it may be concluded that the constitutive functions may depend upon

the velocities of the constituents only through the relative velocity

ui-vi, upon the velocity gradient only through rate of deformation

and the relative vorticity tensor P - A and

i] 13 ’

. Furthermore,

tensors f and di

1.1 J

upon the deformation gradient only through Bij - Fki ij

it is assumed that both the solid and fluid are initially isotropic with

a center of symmetry, hence as a consequence of this assumption, the

T
constitutive functions depend on Fij through Cij . ij, where E - E . E

It is aSSumed that dynamical parts of the partial stress tensors

and diffusive body force vector depend linearly on the dynamical

variables given by

_d

0(ij) - 11dkk61j + 2p1dij + szkksij + 2p2fij , (3.9)

_d

"(ij) - 73dkk5ij + 2p3dij + V‘fkksij + Zp‘fij , (3.10)

a[ij] - -"[1j] - -c1 (I‘ij - Aij)’ and. (3.11)
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_d

bk - c, (uk- vk). (3.12)

The coefficients appearing in the equations (3.9)-(3.12) are function of

p1, p2 and T. From equation (3.8) it may be concluded that

I
V

0.‘
R

a
n I
V

0

4 p
a +

W
I

#1

I
V

5
3

.
4

a
. +

w
I
N

1
:

‘

I
V

.
0

#4

I
A

p

2

(#3 + #2) #1 p4. (3 13)

2

(p. + #3)] s 4(11 + § p1)(13 + § #3). and»

O
D
I
N

[(72+13) +

O

H

I
V

0 O

'
0 I
V

0

The constitutive equations are written in terms of the Helmholtz

free energy function A per unit mass of the mixture, and the form of

this function, under the assumption of isotropy, is given by

A - A (11’ I 2. I3. p2. T). (3.14)

where 11, 12, 13 are the principal invariants of E - E . ET defined

through

I1 2 tr E , (3-15)

I = % [<cr E>2 - tr E 1. (3.16)

and
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I3 - det E - (det £)2- (3.17)

Using (2.9), (2.22) and (3.17), I3 can be expressed in terms of p2 by

the relation

1/2 -1

13 - det E - (l - pZ/pZO) . (3.18)

Hence, The Helmholtz free energy function A is assumed to depend on

II, 12, p2 and T, so equation (3.14) reduces to

A - A (11, 12, p2,T). (3.19)

Substitution of equations (3.4)-(3.7), (3.9)-(3.12) and (3.15)-(3.18)

along with the functional form of the free energy function, given by.

equation (3.19) , into equations (3.l)-(3.3) yields the constitutive

equations as follows

-s -d

ki ' Ski ¢1 + ”k1 + oki '
0

91 EA EA aA

”k1 ' 5k: ¢1 ' p p10 ski + 2p {[61, + 312 I1] Bki ' aI2 Bkm Bmi}

- - - __ _ QA

ki 6ki ¢1 P p20 5RI ””2 ap25kt + 73djj6ki + 2“3dk1
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PI 92

+ y‘fjj5ki + 2”‘fki+ fi(I‘ki - Aki)’ and (3 21)

910920

6¢1
___ s -d

bk - axk + bk + bk ,

aa, P 391 6A 6P2 EA. 2A.

bk - ax - p10 6x + p1 6p? ax ' 2 {[811 + 812 Il]6i£
k k k

5A— f._1_£2_
- 812 Biz} Bi£,k + a p10 p20 (uk - vk). (3.22)

It is to be noted that c1 and c2 have been redefined, and instead in

equations (3.21 and 3.22) two new constitutive parameters a and fl appear

which account for a contribution to the interaction body force due to

relative motion between the solid and the fluid.The interaction between

the solid and the fluid is evident in these equations, where the partial

stress of each constituent is affected by the deformed state of both the

constituents.

2. CONSTITUTIVE EQUATIONS

Steady state and equilibrium formulation of the problems where

dynamical parts of the constitutive equation for aij and "ij do not

contribute to the complete analysis of the solid-fluid mixtures may

further simplify the constitutive equations (3.20)-(3.22). Furthermore,

for isothermal condition the components of the partial stress tensors

for the solid and fluid, and the interaction body force vector may be

written as

— ”1 2A 8A 6A

”k1 ' ’ Pp105ki + 2p{[arl + 61211]Bki ' 312 Bkm Bmi}’ (3'23)



l9

; - - p 52— 6 - pp Q5 8 and (3 24)
ki p20 ki 2 8p2 ki ' -

g__La_”_1.+p aAa_p2_p{[;ux_+aA_I]5.
k p10 axk p1 6p2 axk 2 611 (H2 1 12

2 ' ”10 P20

It is also useful to record the representation for the total stress

Tki ”k1 + “R1 ' paki' ppz ap 6k + 2” {(£1 211 )Bki

aA
- 6I2 EI Bmi}. (3.26)

In the remainder of this paper, only E, and E and E, will be used.

Hence, for notational convenience, the superposed bars are dropped.

3. SPECIFIC FORM OF THE HELMHOLTZ FREE ENERGY FUNCTION

The application of the Theory of Interacting Continua to study

diffusion and swelling phenomena of non-linearly elastic solids requires

a particular form of the Helmholtz free energy function A for the solid-

fluid mixture. Ideally, a broad experimental program should be setup to

determine the Helmholtz free energy function for a given solid-fluid

mixture. Due to the lack of experimental data for determining the

specific form of A, Treloar's work [17] has been modified to suit the
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constitutive equations defined per unit mass of the mixture in the

previous section.

The specific form of the Helmholtz free energy function is derived

by assuming that the mixture is of "Neo-Hookean type," that is, A is a

linear function of I1 . The free energy function for a mixture of this

type may be written as:

A - A + A , (3.27)

e m

Where, Ae is free energy of deformation and AIn is the free energy of

mixing for the solid in the uncross-linked state both defined per unit

mass of the mixture. The first term on the left hand side of the

equation (3.27) represents the strain energy function for a Neo-Hookean

material per unit mass of the mixture and may be given as

v RTp

1 10

The second term Am in equation (3.27) is derived from Flory-Huggins

relation [17] and is given by:

 

V A l-V

1 RT 1
Am — p V1 [ v1 £n(l-u1) + X(1-V1)], (3.29)

where,

V1 is the molar volume of the fluid,

x is a constant which depends on the particular combination of

the solid and the fluid,
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R is the universal gas constant,

T is the absolute temperature,

MO is the molecular weight of the polymeric solid between the

cross-links.

The specific form of the free energy function given by equations

(3.27)-(3.29) may be used to get an explicit form of the components of

the partial stress tensors for solid constituent, for fluid constituent,

and interaction body force vector, and are given as:

1 (M

p U

2 _ QA
«k1 - p p20 6ki pp2 apzski , and (3.31)

P 6p 6p p p

b "Tfil+p1%%aTz'Pzg'A—Buk+a'lhi
10 k 2 k 1 '



CHAPTER IV

APPLICATIONS OF THE THEORY OF INTERACTING

CONTINUA

1. INTRODUCTION

The general Theory of Interacting Continua is useful in studying

the phenomenological behavior of a mixture of multiconstituents.

Mixtures for which continuum models may be proposed are fluid-fluid

mixtures (e.g. bubbly liquids and suspensions), fluid-filled porous

elastic solids (e.g. swollen soils), solid-solid mixtures (e.g.

polymeric composites) and solid-fluid mixtures (e.g. swollen polymeric

materials). The Theory of Interacting Continua may be employed to find

complete system of equations governing the thermo-mechanical response of

these mixtures. The fundamental work in formulating the theory was done

in 60is but the process of application of the theory to solve real-life

boundary-value problems has been very slow. The slow pace in solving

boundary-value problems involving mixtures, in general, is due to the

complexity which is the consequence of the presence of more than one

constituents, and due to many unresolved issues regarding specification

of the boundary conditions, and lack of specific forms of mixture

characterization. The application of the theory has been successful

[27,28] in solving equilibrium and steady state boundary-value problems

involving solid-fluid mixtures.

22
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In this chapter the equilibrium boundary-value problems involving a

mixture of an incompressible non-linearly elastic solid and an ideal

fluid are treated within the context of the Theory of Interacting

Continua. In particular, attention is focused on presenting complete

solutions of two boundary-value problems involving mixture of

this class, and undergoing large non-homogeneous deformations.
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1. COMBINED EXTENSION AND TORSION OF.A SWOLLEN CYLINDER

The combined finite extension and torsion of a cylindrical mixture

of an incompressible non-linearly elastic solid and an ideal fluid is

considered. A ‘Universal Relation' was presented by Gandhi et al. [33]

for the case of small twist. In this work, the general problem for the

finite deformation of a heterogeneous cylindrical mixture is formulated

in the context of the Theory of Interacting Continua in order to account

for the interaction between the solid and fluid constituents. This

formulation permits the analysis of the individual motion of the solid

and fluid constituents by incorporating the interaction between the two.

However, the fluid can be non-homogeneously dispersed throughout the

mixture region, which gives rise to gradients in the fluid density. The

physical mechanism for the existence of such gradients is provided by

the presence of an interaction body force which each constituent exerts

on the other. The objective of this study is to investigate the

qualitative behavior of the solid-fluid mixtures, hence only equilibrium

of cylindrical mixture is considered in this work.

Consider a solid circular cylinder described by a radius R0 and a

length L0 in the reference configuration Figure l. The co-ordinates of

a material particle in the reference configuration will be denoted by

cylindrical co-ordinates (R, 9, Z). The cylinder is assumed to be

subjected to the following deformation:
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r - r(R).

a - e + ¢Az, (4.1)

and

z - AZ,

where (r, 0, 2) denote the co-ordinates of the particle at (R, 6, Z) in

the deformed swollen configuration, A and ¢ being constants. The above

deformation corresponds to a finite elongation (with an associated

stretch ratio A) along the z-co-ordinate direction, followed by a

rotation of ¢ per unit current length.

The Cauchy-Green tensor g which is defined as

E ' E . E (4.2)

takes the following form for the above deformation:

  

QE 2 o o W
dR

r 2

Q ' o [R] + (wxr)2 ¢A2r ' (4'3)

0 wxzr A2

L J

r 2 1

A o o
r

’ o A? + (wRAAo)2 ¢A2A9R ' (4")

Lo ¢A2A9R A2 ,  

where Ar - dr/dR and A6 - r/R denote the stretch ratios in the r and 0

directions, respectively. The principal invariants of g are then given

as
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11 - A2 + 12(1 + pzazxz) + A2, (4.5)
r 0

2 2 2 2 2 2 2 2
12 - A (Ar + A9) + A9Ar(1 + p R A ), and (4.6)

2 2 2
I3 - Arxax . (4.7)

The balance of mass equation for the solid constituent (2.9) may

be expressed in terms of the stretch ratios as

p

l 1

—“ . (4.8)
p10 Arng 1

 

where v1 represents the volume fraction of the solid.

The equations of equilibrium which are appropriate for the

deformation being considered are documented next. Since the assumed

form of deformation implies that the stresses depend only on the radial

co-ordinate r, the equations of equilibrium for the solid constituent,

namely (2.11), reduce to

darr Orr ' 000

37' + r ' hr = 0, (4.9)

where arr and 000 denote the appropriate components of g, and br denotes

the component of the interaction body force 9 in the radial direction.-

The equilibrium equations for the fluid constituent, namely (2.12),

reduce to

___. + _________ + b _ o, (4.10)



where t

rr
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and "60 denote the appropriate components of 5. Equations

(3.26), (4.9) and (4.10) yield

dTrr Trr ' T00
dr + r - 0, (4.11)

which is the equation of equilibrium for the mixture.

For the deformation under consideration, it follows from equation

(4.4) and equations (3.30) - (3.32) that the non-zero components of the

partial stress tensors for the solid and fluid constituents are given by

rr

90

22

Oz

and

fl— + 2p(A + A 1 )AZ - 2p(A )A4 (4 12)
p10 1 2 l r 2 r’ '

p

—l— + 2p(A + A I )A2(l + wzazxz)
p10 1 2 1 o

-2pA2{A:(l + ¢2R2A2)2 + pzkzxaxg}, (4.13)

p

- p —l— + 2p(A + A I )A2 - 2pA {A“(1 + ¢2R2A2)), (4.14)
p10 1 2 1 2 o

2p¢R {(Al + A211)A2A0 - A2[A2A6((l + ¢2R2A2)A§ + A2)]},

' (4.15)

”2 .
- fizz - - p ;;3 - pp2 Ap2 , respectively. (4.16)

non—zero component of the interaction body force vector is
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d 2 2 2 2 2 2 2

- p2 Al :23R {Ar + A0 + p A R A0 + A }

(4.17)

d [A2 2 2 2 2 2 2 2 2 ]

r 0 ’

- p2A2 323E A + A A + ArA9(l + p R A )

ilk. 25. 2A.
, A - and A - .

all 2 612 p2 6p2

It is sufficient to satisfy any two of the three equilibrium

where A1 -

equations (4.9) - (4.11). Equations (4.12) - (4.17) are substituted in

to the equilibrium equations for the solid and the mixture (4.9) and

(4.11), respectively, to get the following functional forms of the

equilibrium equations which are stated in terms of the co-ordinates in

the reference configuration for computational convenience:

- EE— fl” + (A A A A A R A' A' A ¢2R2)-0 (4 18)

dR p10 81 1’ 2’ p.2’ r, 0’ 9 r, 0’ , ’ o

and

dp

—
l r 2 2 -

- dR + 32 (A1, A2) A y Ar, A0, R, Ar, A0, A, w R ) O. (4.19)

P2

In equations (4.18) and (4.19) the prime denotes differentiation with

respect to the reference radial coordinate R, and the radial and

tangential stretch ratio Ar and A0, respectively, are related through

the compatibility condition given by

ER_ - ___. (4.20)

Subsequently, the mixture is assumed to be of a "Neo-Hookean-type," that

is, A is a linear function of 11. For this case the explicit forms of

the equilibrium equations for the mixture and the solid (see appendix B

and C for details) are given by
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dp dA A

-_-d_ :3; _£,_L _

dR dR [ppz apz] + 2p A1*: [ dR AoR [Ar A0]

_1_ 2 2 2 2 2 2
- *oR (Ag-Ar + p A R A0)] - 0, (4.21)

and

dp dAr r

- "1 EE + 2P A1). [ aa‘ - :;§ [*r -*o]

- -l- (AZ-A2 + ¢2A2R2A2) - p p QA’ u ‘l 2:: + l“ £i£Lifll

A R 0 r 0 l 20 6p 1 A dR A R
0 2 r 0

dA (A -A )
__r r 0 2 2 _

+ 2p2 A1 [Ar dR + A0 R + p A AaArR] 0. (4.22)

Equations (4.20) - (4.22) may be solved for p, Ar and A0 once the

specific form of the Helmholtz free energy function for the mixture is

known, and the appropriate boundary conditions are specified. For the

"Neo-Hookean type" mixture considered here the Helmholtz free energy

function per unit mass of the mixture may be written from equations

(3.27-3.29) as:

:l RTp10 BI l-v1

A ' 2M (11 ’ 3) + v y
P c 1 1

  

2n(l-v1) + x(l-ul)]], (4.23)

Two of the appropriate boundary conditions for solving the set of

ordinary differential equations (4.20) - (4.22) are given by

Ar(0) - A0(O), and (4.24)

Trr(Ro) - O (4.25)

The boundary condition given by equation (4.24) arises due to the

compatibility requirement between the radial and tangential stretch
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ratios at the axis of the cylinder. The boundary condition on the total

traction vector represented by equation (4.25) is a consequence of the

requirement that the outer surface of the cylinder be traction-free.

Since a boundary condition for the partial traction vector is not

physically obvious, following the arguments presented in [25] it is

assumed that the outer surface of the cylinder is in a saturated state.

This assumption results in the boundary condition represented by

Srr(Ro) - 0, (4.26)

where Srr represents the radial stress component for a saturated state,

and is given by [25] —

_ - £4. 2
Srr p (p2O p2) 692 + p20A + 2 p A1 Ar . (4.27)

The governing equations (4.20) - (4.22) for the combined extension

and torsion of a swollen cylinder are highly non-linear and coupled,

and may be solved numerically for the variables Ar, A and p. For
0

computational convenience, equations (4.21) and (4.22) may be combined

to eliminate p, and for the Helmholtz free energy function given by

(4.23) the resulting equation (see appendix D for details) is given by

 

 

 

 

(A -A ) K(2x - 1 )u - A A + ¢2A2R2A2A

r 0 l-u l r 0 0 r

RA dA l

_2__r_,
428)

A dR 2 1 A2 ('
r K ( x - 1_V1)v1 -

where,

Mc
K -
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The set of ordinary differential equations given by (4.20) and

(4.28) subjected to boundary conditions given by (4.24) and (4.26) were

solved numerically. The following material properties [1] were used for

the numerical calculations:

Density of rubber in the reference state p10 - .9016 gm/cc

Density of solvent in the reference state p20 - .862 gm/cc

Molar volume of the solvent v1 - 106.0 cc/mole

The molecular weight of rubber between

cross links Mc - 8891.0 gm/mole

Rubber-solvent interaction constant x - .400

The numerical value of the universal gas constant R is given by

8.317 x 107 dyne-cm/mole - °K, and the absolute temperature T was

assumed to be 303.16°K. The computational results are presented in

Figures 1-6 for a value of the axial stretch ratio A - 1.938 which was

maintained in the experimental work presented in [28].

Figure 2 shows the variation of the radial and circumferential

stretch ratios for two different values of the angle of twist p. For

the case of no twist (p - 0) the cylinder is homogeneously swollen

whereby the radial and tangential stretch ratios are equal and constant

throughout the domain. However, when the swollen cylinder undergoes

finite torsion (p - 1.0) significant gradients in the stretch ratios are

evident. Furthermore, even in the case of finite torsion, the

deformation in the axial domain is relatively homogeneous, and the

gradients in the stretch ratios increase with the radial co-ordinate.

Figure 3 shows the variation of the radial stress for two different

values of the angle of twist. It is seen from Figure 3 that the non-

dimensional radial stress is compressive and approaches zero at R - RO

due to the boundary condition (4.26) which requires the outer surface of

the deformed cylinder to be traction-free. The corresponding variation
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of the non-dimensional circumferential stress is shown in Figure 4. The

non-dimensional radial and circumferential stresses in Figures 3 and 4

denoted by Trr and T06 have been non-dimensionalized with respect to

R T”10

M
c

It is clear from Figures 2, 3, and 4 that the gradients of

the radial and circumferential stretch ratios and stresses increase with

increasing twist. The variation of the volume fraction of the solid

along the reference radial co-ordinate is shown in Figure 5 for three

different values of the angle of twist. It is evident from Figure 5

that the fluid leaves the swollen deformed cylinder as the angle of

twist is increased. The non-dimensional ratio of the current volume V

(in the swollen twisted state) to the volume of the original unswollen

rubber cylinder Vu is presented in Figure 6. It is clear from these.

results that as the angle of twist increases the fluid leaves the

cylindrical mixture resulting in the reduction of the current volume of

the swollen cylinder. Finally, the ratio of the change in the volume AV

- (V - V0) to the saturated swollen untwisted volume V0 is compared with

experimental results [28] in Figure 7. The computational results based

on Mixture Theory predict the same qualitative and quantitative trends

as observed in experimental results, thereby illustrating the value of

employing Mixture Theory in modeling the interaction of elastic solids

and ideal fluids undergoing large deformations.
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2. NON¥UNIFORHIUNEAXIAL EXTENSION OF A MIXTURE SLAB

In this section, a boundary-value problem is studied for a slab

which is a mixture of a non-linearly elastic solid and an ideal fluid.

Consider a mixture slab of an incompressible non-linearly elastic solid

and an ideal fluid. The slab is assumed to have finite thickness h, and

the other two dimensions of the slab are assumed to be infinite Figure

8. Let (X,Y,Z) denote the coordinates of a particle in the reference

configuration and (x,y,z), the coordinates of the same particle in the

deformed configuration. Consider the deformation

x - f(Z) X,

y - f(Z) Y and, (4.29)

z = A(Z).

The deformation gradient F is given by

f O Xf'

E - 0 f ‘Yf' . (4.30)

0 0 A'

The prime denotes differentiation with respect to Z. The Cauchy-Green

tensor g - E . ET can now be represented as



l
t
fl
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f2 + xzf'2 XYf'2 Xf'A'

XYf’2 £2 + Y2f'2 Yf'A' . (4.31)

Xf’A' Yf'A' A'

The equilibrium equations are expressed in terms of the reference

configuration for computational convenience. Assuming no external body

forces, the equations of equilibrium for the mixture take the form

The tensor 3'1

The equilibrium equations

and

8T..

1J

8Xp

 

P
T
)

I

- + 4A

K
l
”

H
1

-1
F . - 0. 4.32p3 ( )

that appears in these equations has the form

' l Xfii

f 0 ' fA'

l _ Xi;
o f f), . (4.33)

l.
_ o o , A, 

for a mixture of "Neo-Hookean type" reduce to

.2 i. Q. . v _
pr + 2A1 X A' 82 (pf A ) 0, (4.34)

+ 4A pr'2 + 2A Y fi— 9— ( f'A') - 0 (4 35)
1 A' 62 p ' °

Q—P— ' ' .f—L '2

62 + 4A1 pf A + 2A1 A' 62 (pA )

QB QB - i. Q. QB. -
[X 8X + Y BY ] A' 62 [p2 p apz ] 0. (4.36)

In equations (4.34) - (4.36),

A
_M.

l 81
l
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2 + 2A i— g— (pf A ) . (4.37)
g(Z) - 4A1 pf' 1 A'

Then, equations (4.34) - (4.36) may be written as

- 6X + X g(Z) - O, (4.38)

- 5? + Y 3(2) - 0, (4.39)

and

2
4A pf'A'

6P 1 a ,2

‘ 62 + f + 2A1 az (”A )

+

f’ 2 2 fl_ 2A.
f [X + Y ] g(Z) - az [pzp apz - 0. (4.40)

The scalar P in equations (4.38-4.40) is eliminated by the standard

procedure of cross-differentiation to obtain

f'

g<2) - 2 g<2> (4.41)

The equilibrium equations for the solid take the form

aaij -1

BXP ij - bi = 0. (4.42)
 

The equilibrium equations for the solid reduce to

22 519 . ”1o fa- ax + 2A1 p1 sz (2p + p2) + 2A1pp1 x—A, az (pf A ) = o, (4.43)
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_Q .19 .2 _LQ Jig—z -aY + 2A1 p1 Yf (2p + p2) + 2A1pp1 Y A' (pf' A' ) 0, (4.44)

and

ELL 91f: fl

[ p10 32 + 2A1 32 (pA ) ]f , + 4pA1 f A + p10 A, [ x ax

f 3 p f

a: _ Q__ ”2 _ f' 2 2 2 ,
+ Y aY ]pp1 6p2 A' 2AAlp 2 A' [ X + Y ] + A1 A' [ 4ff

+ 2(x2+Y2) f'f" + 2A'A"] - O. ' (4.45)

Let

p10 2 p10f Q_
h(Z) - 2A1 —;I f' (2p + p2) + 2A1 -;I—A' (p f' A' ). (4.46)

Then, equations (4.43) - (4.45) may be written as

QB
- 8X + X h(Z) O, (4.47)

1P- :-
- aY + Y h(Z) 0, (4.48)

and

p

-1_22 £1. . .f. ..
-[ p 62 + 2A1 62 (pA ) ] A' + 4pA1 f A

10

p . p'f

+ —l— f: [x2 + Y2] h(Z) - pl 35- ;%— (4.49)

p10 82 .

3
f' 2

- 2A1p2 A' [X + Y2 ]
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Again, the scalar P in equations (4.47-4.49) is eliminated using the

procedure of cross-differentiation to obtain

h'(Z) - 2 f'f— h(Z) + h(Z), (4.50)

where,

A p 2

__19. ”_L
h(Z) - 4Alp2 p1 f [f f ]. (4.51)

A simple integration of equation (4.41) yields

2

g(Z) - le . (4.52)

where C1 is a constant.

By virtue of (4.37), equation (4.52) may be written as

  

2 C f

.. f' " 2; . 2f' _1__ _
f + A' + f + f - 2A 0 (4.53)

(4.54)

constant.

Exact solutions to equations (4.53) and (4.54) are presented next.

First, consider the case when the density of the solid remains

That is

”_1_
'= constant .

”10

(4.55)

Using equations (4.55) and (2.22), equation (4.54) is identically

satisfied. By virtue of (2.9)
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' __—§. (4.56)

which reduces equation (4.53) to

2 A'C
A" l

2 A' + 2pA O. (4.57)

I
t
»

All!

In equation (4.57), A1 is a constant when the Helmholtz free energy

function A for the mixture is linear in I1 (a ”Neo-Hookean-type"

mixture). Then,

N
I
L
»

A"' - - C A', (4.58)

where, C - Egg}.

Next, solutions to the ordinary differential equation (4.58) will be

presented for three possible cases depending on the value of the

constant C being negative, zero or positive.

(i) When C > 0, it can be shown that

A'(Z) - _ 1 _ 2

A sin J g 2 + B cos J Q 2

l 1
2 2

- “(31.31. c. E) . (4.59)

and the solution to the first?order ordinary differential equation

(4.59) may given in the functional form as

2

2(2) - A(Z) = J ”1(X1,§1,c, 2)d2 , (4.60)

o
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where El and 81 are constants of integration, and have to be evaluated

by the given boundary conditions. For a mixture layer of thickness H,

fixed at the bottom, and whose deformed thickness is h, the appropriate

boundary conditions may be given as

z(O) - 0, (4.61)

z(H) - h. (4.62)

(ii) When C < O,

’ (4.63)

and the solution to the first-order ordinary differential equation

(4.63) may given in the functional form as

Z

2(2) - A(Z) - I n2(A2,B2,C', 2)d§ , (4.64)

0

where A2 and 82 are constants of integration, and have to be evaluated

by the given boundary conditions (4.61-4.62), and C' - - C such that

C' > 0.

(iii) When C - 0,

A'(Z) = constant, (4.65)

is a solution to equation (4.58), which corresponds to the classical

solution.
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Now, consider the general case where the density of the solid is a

function of the space coordinates. For this case the equilibrium

equations for the mixture (4.53) and the solid (4.54) reduce to

 

p p

f2f'A" + (f2f" + 2 ff'2- Kf3)A' + {-lQ;—ZQ )f" - o, (4.66)

‘ P20

and

f'2 + Kf2 - o, (4.67)

C1
respectively, where K - . Equation (4.67) can be solved

2"20"1

independently of equation (4.66) to obtain f(Z).

When K < 0, let K - -a2, a > 0. Equation (4.67) has solutions

given by

az

~az
f2 - 32 e , (4.69)

where Bl and 82 are constants of integration. When K > 0, equation

(4.67) has imaginary solutions, which are not physically meaningful.

When K - 0, equation (4.67) admits the classical solution,

f(Z) - constant. (4.70)

Equation (4.66) can be used to obtain the transverse stretch ratio A(Z)

corresponding to f1(Z) and f2(Z) given by equations (4.68) and (4.69).

substituting equation (4.68) in equation (4.66) gives

A" + 4aA'- 71 e-2aZ - o, (4.71)
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p10 - ”20 §__
where, 11 - p20 3 2,

l

which admits a one parameter family of solutions

e-2aZ + e-4aZ

.7

l

A(Z) a ' 2

4a

L , (4.72)
l

where L1 is a constant of integration. Substituting equation (4.69) in

equation (4 66) yields

which admits a one parameter family of solutions

7

A(Z) - - —3§ e2aZ + 12e4az , (4.73)

aA

where L2 is a constant of integration. Corresponding to the classical

solution for f(Z) given by (4.70), equation (4.66) admits the classical

solution given by (4.65). Figure 9 shows the variation in the

deformation along the thickness of the layer with respect to the

reference coordinate Z for various values of the parameter a. The

appropriate boundary conditions used in obtaining the results presented

in Figure 9 by using equation (4.72) are;

z(l) - 2, and
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2(0) - 0.

Figure 10 shows the corresponding variation in lateral stretch ratio

f(Z) with respect to the reference coordinate Z for various values of

the parameter a.



CONCLUDING REMARKS

The thermo-mechanical response of solid-fluid mixtures in problems

involving non-homogeneous equilibrium swelling of solids, diffusion of

fluids in solids, steady-state flow of fluids through swollen solids and

wave propagation in solid-fluid mixtures may be treated within the

context of the Theory of Interacting Continua. In this work, attention

is focused on the mechanical response of a mixture of an incompressible,

non-linearly elastic solid and an ideal fluid undergoing large

deformations. The fundamental mathematical framework for the Theory of

Interacting Continua is presented, and the theory is employed to model

the mechanical response of solid-fluid mixtures undergoing large

deformations, and in particular, two boundary-value problems have been

presented for this class of mixtures. The first boundary value problem

presented herein is intrinsically interesting since it is one of the few

problems involving large non-homogeneous deformations for which

experimental results are available. The second problem presented in this

work is more of theoretical interest which demonstrates that an infinite

mixture slab of finite thickness, undergoing uniaxial extension, admits

infinite solutions.

The first boundary-value problem of finite extension and torsion

of a swollen cylinder of an incompressible, non-linearly elastic

material presented herein is formulated within the context of The Theory

of Interacting Continua.

43
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Computational results for the variation of the radial and tangential

stretch ratios and the distribution of the fluid in the swollen deformed

state are presented. The results demonstrate that the swollen volume of

a cylinder reduces with twisting when the axial stretch ratio is held

constant. Computational results for the reduction in the swollen volume

predict the same qualitative and quantitative trends as observed in

experimental results.

The second boundary-value problem of non-uniform uniaxial

extension of a mixture slab presented herein demonstrates the

possibility of an axial variation of the stretch ratio for uniaxial

extension of a mixture of a non-linearly elastic solid and an ideal

fluid. In addition to the classical solution, a one parameter family of

solutions has also been presented.

This work investigates the complete mechanical response of the

solid-fluid mixtures and has served as a test-bed for evaluating the

validity and predictive capability of the Theory of Interacting Continua

in modeling the interaction of elastic solids and ideal fluids, and also

demonstrates the applicability of the theory to the problems involving

solid-fluid mixtures. This approach may be extended to study steady-

state and time—dependent problems of interest involving solid-fluid

mixtures, the static and elasto-dynamic response of composite materials

under hygro-thermal environment may be adequately modeled by employing

the Theory of Interacting Continua, for example. Furthermore, an

experimental program for the material characterization of solid-fluid

mixtures will be very for pushing the frontier of understanding the

complex non-linear behavior of these mixtures.
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Appendix.A

SPATIAL DERIVATIVES

A.1 Derivatives Of p, p1, p2 and I, with respect to r

In this appendix some derivations are performed which will be used in

appendix A3 to A5. The source of each equation is indicated

respectively.

The equation for the conservation of mass may be written from the

equation (2.9) as

pl 1 All
P10 V1 Aerg' (')

The equation of the volume additivity constraint from equation (2.22)

may be rewritten as

P1 P2
__ __ _ 1.

(A1.2)

P10 P20

Substitution of the equation (Al.1) in equation (A1.2) yields

92

ul - l - -— . (A1.3)

P20

The equation (2.7) may be rewritten as

p - p1 + p2. (Al.4)

The equation (Al.4) may be rewritten with the help of equations (Al 1)

and (A1.3) as

P ‘ (P10 ‘ P20) V1 + P20 . (Al-5)
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Differentiating equations (Al.1),(Al.3) and (Al.5) with respect to the

radial coordinate r yields following equations respectively

dpl du1

317' P10 21? » (Al.6)

dpz dul

a?“ - - p20 5;— , and (Al.7)

dp du1

d; ' (P10 ‘ P20) a;_ ° (A1'8)

Differentiating equation (4.5) with respect to the radial coordinate r

 

 

yields

(111 d 2 2 2 2

dr - dr Ar + A0 (1 + w A R ) + A ,

d 1 2 2

- a; 2 2 2 + A + w A r + A ,

A A6 v1

r 2 2

- 2 - Ar dul - Ar dAo + A dA2 + $2 )2 r

1 V1 dr 0 dr 9 dr ’

r A2 du A2 dA_E 1 - _£ 2 2 2

2 V1 -;- + A0 + A0 dr + p A r . (Al.9)

L

dAz

dr is eliminated from equation (Al.9) by using equation (4.20) to yield

2 2 2

dIl A (ll/1 (A ' A ) (A " A ) 2 2

___ _; ___ 0 r r 0
dr 2 - ”1 dr + Ar r +¢ A r . (Al.10)

A.2 Differentiation of Ar with respect to r

The mass balance of solid constituent may be given by the equation

1

V1 - A Ar A9 . (A2.1)

Differentiating the above equation with respect to the radial coordinate

r yields

dill dA dA 2 2

dr -- Ar —+A — l/AAo Ar. (8.2.2)



or

(4.20) to

Or

The above
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du dA dA

-—1--- A’—Q+,\—1 ”1 (A23)
dr r dr 0 dr Ar A0 ' '

dA2

dr is eliminated from the above equation by using equation

yield

du1 A (A - A ) dA v1
6 r 6 r

dr - '[ Ar r A + A0 dr ] A A (AZ'A)
r r 0

dyl - - (Ar - A0) + dAr :1 (A2 5)

dr r dr Ar ° °

equation may be rearranged as

dAr r dv1 1

5?--Ar(1+—a-r— -A0) ;. (A2.6)

V1
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APPENDIX.B

Derivation of the equilibrium equation for the solid-fluid.lixture

The equilibrium equation of the mixture may be written from equation

(4.11) as

+ - 0.
(3-1)

The constitutive equations may be written for the mixture by using

equations (3.30) and (3.31) in equation (3.26) as

dA
2 .

Trr - - p - p p2 EZ2 + 2 p A1 Ar , and (3.2)

dA 2 222

Tee - - p - p p2 dpg + 2 p.A1 A6 (1 + R ¢ A ) . (3.3)

For the case of "Neo-Hookean type" mixture considered, the constitutive

equations may be written as

M 2

Trr - - p - p p2 3;: + G v1 Ar , and (3.4)

dA 2 222

Too - - p - p p2 dpz + G v1 A0 (1 + R p A ), (3.5)

where G is a material constant. Differentiation of equation (8.4) with

respect to the radial coordinate r yields

SEE; E- SE - (—1—(,) p E2 ) - G A2 3:; - 2Q ( i; - 1) (B 6)
dr dr dr 2 dpz r dr rA A '

0

The second term in equation (8.1) may be represented in terms of the

stretch ratios and the constitutive constants as

T T-
2 2 222

Ari,%[cvl()r_)o(1+¢AR))]. (8.7)
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Summing equations (8.6) and (3.7) yields the final equilibrium equation

for the mixture of an incompressible elastic solid and an ideal fluid

as follows

dp d dA 2 du1 2c; Ar-A!

' dr '.dr ( p p2 dp2 ) - C Ar dr ' rA ( A0 )

+ 2:: 2 2 2 2 2 O 8

r (Ar_A9(1+¢AR))-. (3.)
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Appendix C

Derivation of equilibrium equation for solid constituent.

The equilibrium equation of the solid from equation (4.9) is rewritten

as

 

dr + ————————- - b - 0 , (0.1)

Where arr and 000 are appropriate components of partial stress 2 of the

solid and br is the radial component of diffusive body force b and in

the context of the current problem these quantities are given by the

following equations, respectively

 

P1 2

arr - - p p10 + G ”1 Ar , (C.2)

P1 2 1 2 2 2

009 - - p p10 + G v1 A9 ( + p A R ) , and (C.3)

p dp1 dA dp2 p2 V1 G (111

br - - p10 dr + p1 dpz dr - 2 p dr (C.4)

Differentiation of equation (C.2) with respect to the radial coordinate

 

r yields

do p1 dp p dpl 2 dvl 2G A

—r£- _ _ —— - — _ G A ___ _ _ (——r. _ 1)

dr plo dr P10 dr r dr rA A0

(C.5)

The second term of equation (4.1) may be expressed in terms of the

stretch ratios and the constitutive constants from equations (C.2) and

(C.3) as follows

a a Cu

‘——-;———‘ r ( Ar _ A0 ( 1 + w A R ))

(C.6)
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Substitution of equations (C.4-C.6) in equation (C.1) yields the

equilibrium equation of the solid constituent

Ep 2 du1 29 Ar _ A0

-v1 - G A "‘ — 1—‘—————l

dr r dr rA A9

CV1 2 2 2 2 2 dA dP2 P2 ”1 G 2&1 O

+ r (Ar _ A0 (1 + p A R )) _ p1 dpg dr + ———§;—- dr - .

(C.7)



52

Appendix D

Derivation of governing equation.

The governing equation of the problem of combined extension and torsion

of an incompressible, non-linearly elastic swollen cylinder may be

dp

obtained from equations (8.8) and (C.7) by eliminating the quantity 5?

from these equations and the resulting equation may be given as

d dA

V1 3; (p p2 EZ2) + a(1-v1) + fl(l-V1) + 1 - 0 , (D.1)

Where variables a, fi, 1 are defined as below:

2 du1 26 A A

 

_ _ r ‘ o 9 (13.2)

a ' G Ar dr ' rA A0

CV1 2 2 2 2 2

p - ;—- ( Ar _ A0 (1 + p A R )) , and (”'3’

dA dp2 p2 v1 G dIl (0.4)

1 - - p1 dp2 dr + 2p dr

The explicit form of the Helmholtz free energy function A, defined per

unit mass of the mixture, is used to find an explicit form of the

governing equation. The Helmholtz free energy function is rewritten here

from equation (4.23) as

A

RTp l-v

___lQ - 3) + 31 _;—l pn(1-yl) + X(1-y1)]]. (0.5)
2M (11 v

C

V

A - ‘l

P 1 1

dA

A lengthy derivation ofa;— from equation (D.S) is omitted which when

2

d1,

used in equation (D.1-D.4) along with expression for d;_ from

appendix Al yields the governing equation as
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(A 'A ) K(2x - 1 )v - A A + ¢2A2R2A2A
r 0 l-u l r 9 0 r

RA dA 1

_0;_r__

A dR 1 2 (D.6)

r K (2x - 1 )V - A
-v 1

1

where,

M

K— C
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Figure 1: Extension and Torsion of 0 Cylinder
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