‘ ".rv‘om‘uwh - 71‘: . mix}. JK‘fi 52‘3"! m-J.‘ \q ‘. 8:9 1.4:- 3'1"»? v: Ln. 1' mu‘i ‘1. an»? -1 5-11-2- i}. “A(' H: 1 395‘! 1 . “'3; 1': 1.. ..1:~"1};’3§ u-fln',» ' 14.. ‘. .‘uu‘v .. 1.123%... .‘9‘ 1.. "P 121:1. 1 ~ .-.- ... ' .\. .111 1’11‘1-wui . . “"923‘1‘ A; ,. t“‘31”,§1fij‘:ig‘ 1 59:3. ”1. 1'::1‘fi ‘1 :ul v ’1’ ”WWW... I: . - ‘1 1. ~ 3.:11tx'13u l" 1 —-~§ 1.1 43‘ u n \ ' ' 1 _ ‘.’”;.7"'.‘ 1 ~15. . . . ~ v 11 7 ~1 . m 1. . .r..1...1 .. 1 . .1 1 1 , .11- 1 3: 1 4 —1 9.91m . ,- . w r .‘k 11-.5 A 1‘. -. )3... . , . . . -L» 1 .T ‘71” . f 1; a: ‘ A . ml .. .{ .'..1g:'32,1“'"._.2.7.3$.,. ' ‘ . "7’33“.“ . 1,. 1. 11.13;“. ‘13"..- ‘ .m. 1 '33:? 11;- . 1-111 a .....~.;:~..c:: 1 I“ “#1:“ 'AxMV‘L ~ 123‘ .-.-:~>_. . A . » ’1“ 4611 .u‘ kusr . 2:2. “10117.“ . ;.‘.‘f'.‘\,.,.. .. i: 1 . 3‘31}; w’w-m‘h 1.1.1.1 w . w “Lafifig‘i :" M1311?" 421:1 ‘ 1'?» . - .~ =1.» :w «‘r. I“ Jig: rfigi‘...‘ thrill “ iii-f -.., 35.3.2.3: fi::~:; ‘ 1,1 13‘". :11: 13"" (NYV ‘ I: “hi: ‘ Mm" M ‘1"? 6“ ’ '11 .. ' wkvt 1 '7 “111%. 51...: .1111“... _ V ,-.1¢.Pl' - iii; ‘1’ L {$33.}. ;;;fi" Wham-41' *. ” .J: 1 n,- .H . s y _ ,1“ 01-1111: in 1.1312}??? s;- «gt-"111.9. 11:1: 73L, ,. v... ( A .3 -= ~ ..:x-5z= “ a .5 1,“ ‘x. E..- ’33; :55... .~*-::£: . mm. “3:“ -",>..:"153‘”3~v'-' .z.-_.. ., ‘ ...:*.£w‘fi« P x 7' E ‘aqgfik "" mfirwfi‘w "1:11.392‘13‘m v-I‘ntru-f-‘A ‘5“?2'1.‘ J *3“ “(ii-r 1.1.1:: . . . ~ '_ 1 1-1! “5.11.13“. 11 um . "Q'mfl'f .11. “." 3:1 1 1 1 u 1 {130'1‘1- 1 ‘ “1:11:01 1 '-1 .1 r 1 “ 1n {61.3337 my 1. . -. . éfi“ ‘ 1119‘- ;‘A'. .. . ' 1 Izwafgf’ 1‘; "1.311;. ,5 .‘ztx‘ffiwar. » .w‘-1-cw my“? ' -' ‘ “:1 32:21.1: «Sift "~21: _ ,r-z 3'31}ng 1 ‘ 551.... .. '- Eta-1.12:2,“ 11.13.. ‘ " 5 .rm tux-L“, .‘Cfifgm .1 :;n .11- ‘u "' -frc‘. . -33: SM" 1,;- 1 all]; x - 1'- ' {vamr-«I‘r‘u l .1- 4‘ 1"..2'. «1’ x .11 1"!»- , 1 . 7‘ .1 . ‘ «gym; ‘13: a v1." ' I: ‘f ‘ fi. ‘ f' '11 “aw I ”at. . 3:1 rung-5V1 s‘" M. 1‘." «3- 1 I .111- 'm. . ." v.1 5: 9.. ‘ :i 1 . 1. . . {fur-1r , .... .- . .3- 1..’!:,:,',,, ) 1,, . . vrqtgv ., .1- 1:.1 .: .v 0"": { 4 , . , ., ,~'..:'_'-.....-4. _ . , . ...;.:, 1“,. "."“’d.'" _ . .1 .',,. ,5. H, I PM I Hill “ J lliiilli'lllillilllllllllflfl' 3 1293 00784 5997 ll LIBRARY Mlchlgan State , Unlverslty This is to certify that the thesis entitled Analysis Of Neural Network Response with Varied Neuron Models and Interconnection Patterns presented by David Barnard Pierce has been accepted towards fulfillment of the requirements for ' 0 Master 3 degree in Electrical Engineering I/A (J? l: I“ L 1.1:" 7/1» [Hf/.2111 Yul—‘— ' Major professor 13 Nov 1991 Date 0-7639 MS U is an Affirmative Action/Equal Opportunity Institution PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. DATE DUE DATE DUE DATE DUE fifi A MSU Is An Affirmative ActiorVEqueI Opportunity Institution czlcircmpma-pn ANALYSIS OF NEURAL NETWORK RESPONSE WITH VARIED NEURON MODELS AND INTERCONNECTION PATTERNS By David Barnard Pierce A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Electrical Engineering 1991 __’/// \’l) 1‘ ABSTRACT ANALYSIS OF NEURAL NETWORK RESPONSE WITH VARIED NEURON MODELS AND INTERCONNECTION PATTERNS By David Barnard Pierce This work addresses the performance of a neural network algorithm for constrained optimization. The network is simulated in VHSIC Hardware Description Language (VHDL). Comparisons are made for neurons with a step response and several levels of graded response, as well as several methods of interconnection. The response variables include response function, gain of the response function, and number of interconnections. The results show that a binary response is faster than a graded response. Additional interconnections resulted in an increase in speed of the network. Adding a capacitance factor to the input of the neuron model reduced oscillation and increased problem solving capability. Setting the gain and / or weights becomes the mechanism for implementing learning algorithms. Contents 1 INTRODUCTION 1.1 Motivation ................................. 1.2 Scope ................................... BACKGROUND 2.1 VHDL ................................... 2.1.1 Origin of VHDL .......................... 2.1.2 Structure of VHDL ........................ 2.1.3 Application of VHDL ....................... 2.2 Artificial Neural Networks ........................ 2.2.1 Artificial Neural Network Theory ................ 2.2.2 Neuron Design .......................... 2.2.3 Interconnection Effects ...................... NEURON AND NEURAL NETWORK SIMULATION 3.1 Neuron Model ............................... 3.1.1 Neuron Response Functions ................... 3.1.2 Neuron Interconnections ..................... 3.1.3 Neuron VHDL Code ....................... 3.2 Network Model .............................. 3.2.1 Processor ............................. 3.2.2 Memory .............................. 3.2.3 Network .............................. 3.2.4 Test Bench ............................ 3.3 Simulation Inputs ............................. 3.4 Performance Measurement Technique .................. 3.5 Procedure for Simulation ......................... SIMULATION RESULTS 4.1 Neuron Model Results .......................... 4.2 Interconnection Pattern Results ..................... DISCUSSION CONCLUSIONS APPENDIX A A.1 Neuron Model VHDL Code ....................... APPENDIX B 3.1 Network VHDL Code ........................... iii Ni—tt-I quqcauswwu H 12 12 12 16 19 19 19 20 20 22 22 23 27 32 32 43 43 0' APPENDIX C 54 0.1 Input Data Files .............. ' ............ ‘. . . 54 D . APPENDIX D , 03 DJ Simulation Outputs ...... . ..................... 63 iv List of Figures COGNGO‘rdeNI-d MN NNHI—‘HHHHHHHH huswccanqamaxuwwc 25 Hopfield-Tank Network Model ....................... 9 Sigmoid Transfer Function ......................... 10 Binary Transfer Function. ........................ 13 Low Gain Ramp Transfer Function .................... 14 High Gain Ramp Transfer Function .................... 14 Low Gain Sigmoid Transfer Function ................... 15 High Gain Sigmoid Transfer Function. ................. 15 Network Block Diagram. ......................... 18 VDHL Code for Binary Response Neuron. ............... 33 VDHL Code for Binary Response Neuron with Capacitance. ..... 34 VHDL Code for Low Gain Ramp Response Neuron ........... 35 VHDL Code for Low Gain Ramp Response Neuron with Capacitance. 36 VHDL Code for High Gain Ramp Response Neuron. ......... 37 VHDL Code for High Gain Ramp Response Neuron with Capacitance. 38 VHDL Code for Low Gain Sigmoid Response Neuron .......... 39 VHDL Code for Low Gain Sigmoid Response Neuron with Capacitance. 40 VHDL Code for High Gain Sigmoid Response Neuron. ........ 41 VHDL Code for High Gain Sigmoid Response Neuron with Capacitance. 42 VHDL Code for Neural Network. .................... 44 Two Stage Interconnected Network Input Data. ............ 55 Three Stage Interconnected Network Input Data. ........... 56 Four Stage Interconnected Network Input Data. ............ 57 Two Stage Interconnected Network with Sub-optimal Path Input Data. 59 Three Stage Interconnected Network with Sub-optimal Path Input Data. 60 Four Stage Interconnected Network with Sub-optimal Path Input Data. 61 Results of Binary Neuron Model. .................... 64 Results of Low Gain Ramp Neuron Model. ............... 68 Results of High Gain Ramp Neuron Model ................ 72 Results of Low Gain Sigmoid Neuron Model ............... 76 Results of High Gain Sigmoid Neuron Model. ............. 80 Results of Binary Response Neuron With Capacitance. ........ 84 Results of Low Gain Ramp Response Neuron With Capacitance. . . . 88 Results of High Gain Ramp Response Neuron With Capacitance. . . 92 Results of Low Gain Sigmoid Response Neuron With Capacitance. . . 96 Results of High Gain Sigmoid Response Neuron With Capacitance. . 102 Results of Three Stage Interconnection Pattern and Binary Neuron. . 106 Results of Three Stage Interconnection Pattern and Ramp Neuron. . 110 Results of Three Stage Interconnection Pattern and Sigmoid Neuron. 114 Results of Four Stage Interconnection Pattern with Binary Neuron. . 118 Results of Four Stage Interconnection Pattern with Ramp Neuron. . . 121 Results of Four Stage Interconnection Pattern with Sigmoid Neuron. . 125 42 Results of Two Stage Interconnection Pattern and Sub-optimal Path. 129 43 Results of Three Stage Interconnection Pattern and Sub-optimal Path. 133 44 Results of Four Stage Interconnection Pattern and Sub-optimal Path. 137 List of Tables thwNI-t Results of Neuron Model Simulations ................... 23 Results of Varied Interconnections with Binary Neurons. ....... 25 Results of Varied Interconnections with Low Gain Ramp Neurons. . . 25 Results of Varied Interconnections with Low Gain Sigmoid Neurons. . 25 Results of Varied Interconnections and Nonoptimal Path ........ 26 Results for Network with Capacitance Function ............. 29 vii 1 INTRODUCTION 1.1 Motivation The field of neural networks, although not a new field, is currently experiencing the focus of large amounts of research [1]. This research is exploring various methods of implementing networks, learning algorithms, different neuron models, and applica- tions of the networks. The promise of faster solutions to difficult problems is a major reason for the focus upon neural networks. Because neural networks are parallel processing structures, faster computations are expected. In addition, neural networks have fault-tolerant structures which pro- vide additional incentive for use [2,3]. Neural networks are presently being utilized for many existing computation problems such as nonlinear programming [4] , control applications [5,6], pattern recognition problems [2], and Content Addressable Mem- ory (CAM) [9], to name a few. The parallel structure of the neural network allows fast comparison of patterns to compute a fast, ’near optimal’ solution for a pattern, which can often be more useful than a slowly computed, optimal solution [9]. The neural network is also effective at the ’Traveling Salesman Problem’, an np-complete problem that is time consuming for a single processor, sequential computing machine [11]. Despite the amount of research in the area of neural networks, there is still a large amount of knowledge to be gained. There is work being performed on network structures, learning algorithms, hardware implementations, and the specific neuron models to be utilized. One basic method of affecting the computational ability of the neural network is to vary the specific neuron response, the basic computation block of the network [12,13,14]. Also, the configuration of the network can have effects on the computational ability of the network. For example, the number and location of neuron interconnections will affect the computational ability. Presently, there exists some work on the effect of different neuron responses and their interconnections. Models with binary output and with graded response have been postulated [12,13]. Work has been published to show that a graded response will result in faster computations than a binary response [12]. However, there exists no actual simulation or comparison data for binary as well as graded response neurons. The effect of interconnections has also not been simulated for results. To generate an efficient network, these areas need to be explored. 1.2 Scope Several possibilities exist for optimizing a neural network. The number of intercon- nections can be varied, the type of network algorithm can be varied, the method of interconnections or data transfer can be varied, and the specific neuron implemen- tation can be varied. These parameters are the basic building blocks of each neural network. As will be discussed, the type of neuron implementation can have a significant effect on the neural network and its ability to arrive at a decision in an eficient man- ner. This thesis addresses the performance of a neural network with changes in the implementation of individual neuron response curves and the number of interconnec- tions. These changes will be simulated and the results compared through the use of VHSIC Hardware Description Language (VHDL). VHDL allows hardware to be sim- ulated and tested on a computer without actual implementation of the neural network hardware. This is important as actual hardware may require a great deal of money and time to generate results. VHDL allows simulations and results to be generated for a minimum of cost and time [16,18]. This work will explore the effects of varied neuron responses and the effect of varied interconnection patterns. 2 BACKGROUND 2.1 VHDL 2.1.1 Origin of VHDL As the complexity of the engineer’s design tasks increase, the methods of generating these designs must become more sophisticated. Without tools, such as computers and computer programs, the design task is completely manual. Manual drafting, development of schematics, tracking of part lists, and design analyses require large amounts of time and effort to generate and update. Manual methods are also more prone to errors in workmanship. Because of the increasing complexity of the design tasks, it becomes necessary to develop tools to handle tasks like design analyses. Tools such as computer aided draft- ing, spreadsheets, SPICE (circuit analysis tool), and finite element analysis programs are available to aid the engineer in his/ her design task. For these same reasons, VHSIC Hardware Description Language (VHDL) was conceived and generated. The Department of Defense contracted for the development of VHDL to aid in the design of VHSIC hardware, which was a major item of defense expenditure. Without VHDL, the design of VHSIC hardware would be difficult to generate and to document. VHDL will be utilized because of the amount of time and resources that would be required to prototype a neural network. To implement the necessary neural networks for the simulations would require many integrated circuit devices and much design work. This, in turn, requires a large amount of financial resources: By utilizing VHDL for simulations, the neural network can be generated and its operation verified in a fraction of the time. Any necessary changes can be coded and verified within minutes, which would not be possible with actual hardware. The cost to simulate the network in VHDL is only the time spent to design and code the problem. 2.1.2 Structure of VHDL A major advantage of VHDL is the ability to utilize varied levels of hardware ab- stractions. The code can include exact models of gates with Boolean statements and combine these gates into a design. The code can also use hardware concepts to sim- ulate a design. This can be performed by coding a block which performs complex Boolean and/ or math functions on a set of data. These types of design can also be combined when desired. The design is represented by a behavioral or structural model, or a combination of both. For the designer, this allows portions of uncreated hardware to be simulated and verified prior to spending large amounts of time implementing a specific hardware configuration. For example, a processor unit can be modeled behaviorally by sending certain output data when particular input data is sent to the processor. This can be coded without Boolean gate models allowing the designer to test a function or operation prior to generating all the internal structure necessary for operation. Two basic elements of every system represented in VHDL are performed with an entity statement and an architecture statement. (Words that are reserved in VHDL are shown in boldface in this thesis). These two statements define an external and internal view of the system. The interface of the system is defined by an entity statement, which is the external view of the system. The behavior or structure of the system is given in the architecture statement, which is the internal view of the system. The external view of the system described by the entity statement has commands to declare the system as an entity in addition to the system’s ports. Each port defines a signal between the system and the systems around it. Signals defined by ports can include input, output, or bidirectional signals. Other information may also be declared in the entity statement concerning . signals and values common to other systems. The internal view of the system described by the architecture statement has commands to define what parts make up the system and how these parts define the system’s operation. The system operation can be defined by a structural or a behavioral model. The structural model contains models of real hardware such as logic gates and memory devices and defines their connections. Behavioral models describe the system operation by logic statements such as if statements and loop commands. Both may perform the same function but are represented quite differently. For example, a counter could be implemented with Boolean gate models connected to operate like an actual counter. Or the Boolean logic of the counter could be implemented with if statements without detailed gate models. Also within the achiteeture command, components (other systems) may be de- fined, signal values may be assigned, and other operations performed. The composted statement places a previously defined system within the architecture being defined. The architecture of the counter example could include gate components by the in- stantiated component statement. The componem statement includes a port map statement which defines the signal connections between the two systems. The architecture of the system includes the code that defines the operation of the system. The code could include signal assignment statements that transmit a signal on a signal path. This can be performed as a result of a calculation, or a necesary condition being set. Also, variables can be calculated and arrays of components defined. These operations can be performed with loops, if statements, and other common software functions. For example, in this work the network uses a loop statement to calculate the summation for each neuron input. The neuron decision is made using an if statement. The architecture statement also includes one other important concept which is not commonly found in software packages. The process statement defines a set of code which will run, given certain conditions. The process can be specified with sensitivity to certain signals. The process will begin when a transaction or even occurs on a signal defined by the process as a sensitivity signal. The process statement also has a wait statement which suspends operation of the process when specified conditions occur. This capability will be utilized to update the network inputs and summations when a transaction has occurred. VHDL allows the use of libraries for cataloging basic design elements. Elements such as gates, standard processors, or a hardware abstraction can be stored and recalled for use within any entity or architecture statement. The elements stored within a library are recalled by the use command. This command can recall another entity, or a group of entities within a sub—library. One more significant ability of VHDL is the ability to declare packages. A pack- age stores the basic elements of several designs and allows for use commands to address the package contents. A package body is the unit which contains functions or other commands of the package. System level details such as system constants, common functions, type declarations, and other similar information can be included in a package for use and modification for a single system. In this work, the package and package body will be utilized to store the summation routine for each neuron’s input. This routine will be implemented by a function com- mand, which returns a value when called by the software. The value to be returned is the input summation for each neuron. 2.1.3 Application of VHDL This work utilizes VHDL as the tool for simulating the artificial neural network and for simulating and gathering results. VHDL is a practical, realistic approach to designing a hardware neural network. It would be difficult and expensive to build a network with real hardware to test the network. The neural network utilized was originally described in [15] and will be modified for use in this work. The modifications and rationale are described in the next section. 2.2 Artificial Neural Networks 2.2.1 Artificial Neural Network Theory Neural network theories have been in existence since 1943 [7] The first work on neural networks concerned the mathematical concepts necessary for the network. Later work postulated actual hardware configurations and the mathematics supporting their use [9]. Much work has been centered around the Hopfield-Tank network [4,11,12,13,15]. Neural networks operate by computing a solution that reduces the network’s en- ergy function to a minimum value with certain structure conditions. These conditions allow the network to solve the problems detailed in this report. The energy function of the Hopfield-Tank network is E = fizzy-swem-nl) s' j=i b +2 2 Z Z: (M.+1)5V-iV(-+I)i + d(--1)i-‘V°‘V(°-"") I t 1 +2); (35:) firms. This energy function contains terms for the network energy and the structural constraints of the network. This equation is minimized during the operation of a neural network. The equation forces one neuron to be enabled in each stage and forces the overall energy of the network to a minimum when one neuron is enabled within each stage. The last term on the right side can be ignored for a proper choice of gain (high gain). The choice of weighting factors between each neuron is forced by the energy equa- tion. The equation uses the weighting factors as part of the equation and the net- work is therefore highly dependent upon these choices. Without the proper choice of weighting factors, the network will not compute a valid solution. Neural network theory generally attempts to draw parallels between biological neural networks and artificial neural networks (non-biological). Biological neural networks are responsible for the processing within the animal brain, such as sensory processing, pattern recognition, and speech. Because biological neural networks are very eficient at these tasks, it would be desirable to copy the network and utilize the network for tasks that general purpose, sequential instruction machines perform inefiiciently. ' The use of artificial neural networks is relatively new, due primarily to the inabil- ity of technology to produce a hardware implementation. Artificial neural networks require a large number of processors and interconnections, which has been beyond the capability of circuit technolog. The ability of manufacturers and the capabilities of equipment presently allows small neural networks to be implemented. Massively parallel structures necessary for large neural networks are not far away. These abilities have been progressing rapidly over the last several years [8]. 2.2.2 Neuron Design The Hopfield-Tank network emulates the biological neural network by utilizing an operational amplifier for each neuron. Each amplifier would have inputs, both excitory and inhibitory, from many other neurons [9]. An example is shown in Figure 1. This network is very large for nontrivial problems. An example would be the human brain, which is estimated to contain 1011 neurons [10]. One of the most significant aspects of an artificial neural network is the neuron model. The neuron has been postulated as an analog processor, such as an op-amp [12,17] with excitory and inhibitory inputs. Most models utilize a graded response to the inputs multiplied by their respective weights. The neuron transfer function of a biological neuron is a monotonically increasing V1 V2 V3 Figure 1: Hopfield-Tank Network Model. and odd [-g(-u)] = [g(u)] function, or sigmoid function [3]. An example is shown in Figure 2. The transfer function is commonly defined as g= e) we» The analog neuron model combines inputs and weights for each connection and sums these values. A bias term is added to the summation and then the summation value is utilized to calculate the output of each neuron. The neuron has also been postulated as a discrete, or digital processor [8,9,15]. This model responds with a one or zero output, based on the summation of inputs multiplied by their respective weights. This model has also been utilized in the analysis and simulation of neural networks. The digital model can be implemented easier than the analog version. Simple digital logic gates may be used in place of more complex op-amp or analog gate 0(x) gIXl=[-;-) [E++anh(xlo):[ Figure 2: Sigmoid Transfer Function. models. The number of transistors necessary for a standard op-amp (Texas Instru- ments uA741) is 22 [19]. For a standard digital gate (Texas Instruments SN5400) the number is 4 [20]. The digital version is faster at the individual component level due to the higher speed of digital electronics, 11 nanoseconds versus 10 microseconds [19,20] . However, the number of gate delays in a digital model is dependent on neuron implementation and would reduce the difference in speed. Even with the listed advantages of the digital implementation, the network solu- tion is not necessarily faster with digital neurons. It has been shown that an analog network would arrive at a solution faster than the digital network [14]. This would be true for equal time constants for each individual neuron. So it would be appro- priate to ask, ”For what networks would the analog neuron result in a more efficient computation? What is an ideal (or sufficient) neuron model?” 10 2.2.3 Islercounection Efl'ects A neural network utilizes massive parallelism perform computations. This parallelism is implemented through massive interconnection between individual neurons [2,14]. Each interconnection provides a signal which is multiplied by an appropriate weight and summed with the remaining products. This sum determines each neuron’s output via the neuron response curve. Inhibitory and excitory inputs can be provided to each neuron. In some cases the inhibitory input is simply not excitory. The effect of the number of interconnections to each neuron varies. The network response improves with additional inputs to each neuron. This is a result of each decision point having more information to apply toward that decision. However, additional interconnections can have a decreasing benefit as more are added [14] . The interconnections in typical artificial neural networks are symmetric and the interconnections to each neuron include a full stage or stages. A nonsymmetric net- work would connect parts of a stage or stages to a neuron. This type of network can solve specific problems but is too problem-specific and will not be utilized in this work. The number of stages that are interconnected to each neuron will be varied and the results used to determine the effect of increased interconnections. The ease of implementation of a network is dependent upon the number of in- terconnections. Fewer interconnections reduce the complexity of the network. It is important to ask, ”What is the optimum number of interconnections, and how many are necessary to solve a given class of problems?” 11 3 NEURON AND NEURAL NETWORK SIM- ULATION 3.1 Neuron Model The neuron model utilized is similar to the model used by [15]. That model im- plemented a two-state output for each neuron. In this work, the neuron model is expanded to several states with different response curves. 3.1.1 Neuron Response Functions Three types of response functions are investigated for each neuron. These include binary, ramp, and sigmoid functions. The ramp and sigmoid results will be compared to the binary model. This will provide a method of comparison for the different models. The three response functions were chosen to model the biological neuron response. The binary function is the sigmoid function with an infinite gain. It is also the simplest model to implement. The ramp function is used because it is close to the actual sigmoid response of a neuron but does not have a complex math model, making it easy to implement. The sigmoid is used because it is the actual neuron response function. The simulations of each model will result in a comparison of the ability of each response function to arrive at a solution when used in the neural network. By comparing the results for each neuron, the desired response can be chosen. The simpler models can be utilized if they provide the desired solution time, or the more complex function may be utilized if desired. The results will show the attributes of each of the functions. For each response function, the gain of the curve is varied. By changing the gain of the curve, the effects of gain assumptions are determined. These variations in the neuron model provide coverage of factors that are important to the effectiveness of each neuron and the network. 12 O for x Processor Figure 8: Network Block Diagram. 18 Outputs during the simulation, but could be updated if a learning algorithm was implemented. The memory module has one signal assignment statement that sends the weight inputs for each neuron to the neuron. These weights are arranged in an array for each neuron. This array is multiplied by the input array for each neuron to compute the summation for each neuron. 3.2.3 Network The network module uses a generate statement to define the network of neurons. The generate statement uses a loop to define an array of neurons in a single line of code. 3.2.4 That Bench A common method for running simulations in VHDL involves the use of a test bench. This test bench contains an entity, reference to modules in the library, and network stimulation inputs. The test bench also provides signals for observation at the output. The test bench used initializes the neuron states and begins the simulation. The test bench module has a process that is sensitive to the neuron outputs. The test bench takes the neuron outputs and sends them to the processor to be assigned to the neuron inputs for the next cycle of calculations. 3.3 Simulation Inputs Several data files are utilized to investigate the operation of the network. These data files contain the weight factors utilized for each of the problems simulated. The data (weights) are contained within the memory module. This is due to the inability of VHDL to utilize input files with real numbers as data. These data files provide a typical example of a problem to be solved by the neural network. The data files contain generated cost values which simulate network constraints. The network will seek a solution that reduces the cost along the path from start to finish. 19 The values utilized in the data sets consist of seven different values. The values, 0.0 and -9.0, either turn off or enable a neuron. This allows a starting point and ending point to be defined for the network. The first and last stages contain these points. The other five values are weights utilized for each neuron. These values will enable a neuron when the weight value is less than the bias value of the neuron. Appendix C contains the data files used for the simulations. 3.4 Performance Measurement Technique The performance of each neuron model is measured by the response time of the network. Each neuron model is implemented with the base network and the results are compared. The results include the final state (if one is reached) and the number of cycles necessary to reach that state. The final state must be a valid solution or the compute time will be meaningless. Because the time between each update of the network state is 10 nanoseconds (10 nanoseconds was selected to represent five gate delays in 1 to 2 micron technology), this is the amount of time for one cycle. Using a time other than 10 nanoseconds would provide a more exact simulation for a particular network and particular neurons. To determine the number of cycles for convergence of the network, the setup time is subtracted from the completion time, and this result is divided by the cycle time. In this report the setup time is 4 nanoseconds, which is the time to feed the weights and initial conditions to the neurons. 3.5 Procedure for Simulation The following steps are taken for each simulation run. Step 1: Determine Neuron Output. The appropriate response curve and the discrete output levels are determined for each neuron. Step 2: Code Neuron Output. The output levels are coded into the VHDL neuron model as a lookup table. 20 Step 3: Determine Weights and Bias. The weights for each input for each neuron are determined. The bias for the neuron response is also determined. The weights are then coded into the VHDL memory model and neuron model. Step 4: Edit VHDL Network File. Edit the network memory and initialization code to utilize the appropriate neuron model, including weights and bias. The current neuron model is added to the network code and then the file is ready to be simulated. Step 5: Simulate VHDL File. Next, the file is put into the VHDL analyzer and the code is compiled and used for simulation. The report output is printed as the last part of this step. Step 3: Analer Output. The output file is analyzed to verify that a valid solution has been computed. If no valid solution has been calculated, return to step 3 and repeat process. If a valid solution is computed, the number of cycles is calculated and the final state is printed. 21 4 SIMULATION RESULTS 4.1 Neuron Model Results The neuron model results show that the binary response function provided the fastest network solution time. The ramp and sigmoid response functions were as fast when the gain was set very high approximating a binary response. When the gain was set to a lower value, the network would oscillate. Many simulations were performed with the network and various problem sets. The weights and bias values were varied to arrive at a network and problem set that had a solution. The majority of the simulations resulted in oscillation or a solution set that was not valid. The network would arrive at invalid solutions or oscillate for two reasons. The network was found to be very susceptible to the value of the gain of the neurons and to the value of the neuron bias used. The neuron bias, if not set to a value less than the weights in the nonoptimal path, results in many neurons being enabled incorrectly (including neurons not in optimal path). If the bias is set to a value more than some weights in the optimal path, then no solution will exist for some stages of the network. The oscillation of the network occurred when the gain of the graded response neuron models was set to a low value. A high value of gain results in a response function that closely approximates a binary function with either a 0.0 or 1.0 output. Therefore, a low value of gain is a value that allows a resultant neuron decision to be other than 0.0 or 1.0. For example, if the sum of products at the neuron input is close to 0.0, then the resultant neuron decision is very close to 0.5. This neuron then provides this output multiplied by a negative weight, to other neurons. If more than one neuron has other than a 0.0 or 1.0 output, other neurons are highly negatively driven. This results in a 0.0 output for many neurons in one cycle. The following cycle then contains many neurons with a 1.0 output (because 22 Table 1: Results of Neuron Model Simulations. Response Function Solution Time Binary 15 Cycles High Gain Ramp 15 Cycles High Gain Sigmoid 15 Cycles Low Gain Ramp No Solution Low Gain Sigmoid N 0 Solution there is no negative bias). The network will continue to oscillate in this way because the low gain does not provide decision-making capability. The high gain value provides only two decision points, so that each neuron has good decision making capability. This results in a solution in the fastest time. The weights and neuron bias values must be set to allow the binary neurons to arrive at a solution. The problem set utilized allows the binary response network to arrive at a decision and also allows the graded response networks to arrive at a solution with the proper bias and gain. The results are shown in Table 1. The neuron model response and number of cycles needed to converge are given. Appendix D contains the actual neuron outputs with times for examination. 4.2 Interconnection Pattern Results The network results for varied interconnection patterns showed an increase in speed for increased numbers of interconnections. The increased numbers of interconnections provided each neuron with a greater knowledge of the problem set. This allows the 23 first stages to compute faster. The starting point is used by the first stages as part of the calculation and increased interconnections allowed more stages to use this known value, thus decreasing the time for these stages to compute. The final stage also computed faster with more than two stage interconnection. This is due to the last stage having information from previous stages which have already reached a solution, in addition to the previous stage. The increased number of interconnections allowed the low gain sigmoid neuron network to compute a solution, although this was not possible with only two stages of interconnections. The low gain ramp neuron network oscillated as with the two stages of interconnections. The additional knowledge combined with the better decision making capability of the sigmoid function resulted in a solution where the ramp function did not. The difference in solution time between the low gain sigmoid and the binary response networks decreased as more interconnections were added. This is due to the added knowledge of each neuron overcoming the amount of ability of each response function to make a decision. Table 2 shows the simulation results for the binary neuron network. Table 3 shows results for the low gain ramp neuron network. Table 4 shows the results for the low gain sigmoid neuron network. Appendix D contains the actual neuron outputs with times. A second problem was simulated with the varied number of interconnected stages. This second problem contained a sub-optimal path between three stages that was not part of the overall optimal path. This would show the capability of the network to handle additional problems sets. Many applications of a neural network include sub—optimal paths, for which fast, near optimal solutions are desired. This additional problem set utilized a sub-optimal path between stages three, four, and five. The sub-optimal path is therefore two stages long. The two- stage 24 Table 2: Results of Varied Interconnections with Binary Neurons. Interconnections Solution Time Two Stages 15 Cycles Three Stages 13 Cycles Four Stages 9 Cycles Table 3: Results of Varied Interconnections with Low Gain Ramp Neurons. Interconnections Solution Time Two Stages No Solution Three Stages No Solution Four Stages No Solution Table 4: Results of Varied Interconnections with Low Gain Sigmoid Neurons. Interconnections Solution Time Two Stages No Solution Three Stages 19 Cycles Four Stages 13 Cycles 25 Table 5: Results of Varied Interconnections and Nonoptimal Path. Interconnections No Solution Two Stages No Solution Three Stages 13 Cycles Four Stages 9 Cycles interconnected network could not compute a solution for this problem set. The three- and four-stage interconnected networks computed a solution in the same time as the problem set that did not include a sub-optimal path. The two-stage network cannot arrive at a decision in the stage that has the two locally optimal paths. This stage sees two paths of a weight that is less than the neuron bias, thus enabling two neurons in this stage. The network solution requires that only one neuron is enabled per stage. So the effect of the suboptimal path is to cause the network to oscillate at the stage where two locally optimal paths exist. The larger two networks have enough interconnections, or information, to see a larger solution set and resolve which of the two paths is the correct choice. The three- and four-stage networks computed a solution in the same time as the problem set without the sub-optimal path. This shows that a solution can be com- puted for a network with an optimal path in a certain time and then sub-optimal paths can be introduced with the same solution time expected. The number of inter- connected stages necessary for the problem set is the only variable that needs to be determined. The results for this additional problem are shown in Table 5. The results of the simulation are given in Appendix D for examination. 26 5 DISCUSSION Based upon the opening text, the simulation results for the varied neuron models were not expected. The graded response neuron models were not faster than the binary neuron models. In some cases the graded response neuron models could not achieve a solution. The binary model proved to be easy to implement and simulate, whereas the graded response models were not. The graded response models were more diflicult to implement due to variables such as gain and the number of discrete steps. These variables required several trials to achieve a valid solution. The weights and bias of the neurons were revised many times during the simulation of each different network. This was necessary to make the network converge to a valid solution in a minimum amount of time. The network must be adjusted in this way for each new problem, as each problem set must utilize different weight values and different bias values. The bias values could be set at a particular value, if the weight values were multiplied by some factor. This would put each problem set within a particular range and allow the same bias value to used for each simulation. The majority of the results acheived through the successive trials were oscillating networks. The bias and / or weights would combine to drive all neurons to a high state, then a low state, and so on. By use of a problem that has only one optimal path, the network would converge. The optimal path must also contain each of the locally optimal paths. Locally optimal paths not in the optimal path could only be present if the number of interconnected stages could effectively ’step over’ this suboptimal solution in search of the overall optimal path. The network would not converge if the gain of the neuron response function was low enough to allow the neurons to make ’fuzzy’ or intermediate decisions. This caused the network to have final solutions that did not meet the validity test, that is, not all neurons had a one or zero output. This occurred for a low gain, when decision 27 points did not fall on the ends at 1.0 or 0.0, but in between. The neuron model first coded into VHDL does not implement all factors of the neuron as proposed by [17] The capacitance term in the network was not imple- mented. Additionally, the network does not accept negative input values. The input values are either positive or zero. The models account for negative inputs with zero input, but the capacitance function is not modeled. Some further simulations were performed to determine if the simplified neuron model caused the results to be other than expected. Each of the neuron response functions was coded into a neuron model and a network that employed a form of capacitance. Because VHDL is intended for digital hardware simulations, no capacitor function is available. A capacitor was implemented by combining the previous input value and the present input value. This is done for each neuron at the neuron input. The VHDL code for this function is shown in Appendix A. The capacitor implemented takes the past and present input and uses the following calculation N euronI nput = 0.6 (Present) a 0.4 (Post) . This calculation limits a graded neuron output from going 1.0 to 0.0, and vice versa. This allows the network to retain some memory and keep neurons from oscil- lating in certain cases. The past value was also limited to a maximum absolute value equal to the value of the neuron bias used. This prevents a highly negative input from keeping the neuron off at all times. The simulations were performed on the modified network and results taken. The modified network results are shown in Table 6. The network did converge in one additional case. However, the network did oscillate for the low gain ramp function as before. The low gain sigmoid function converged to invalid solutions, but did so relatively close to the values of the valid solution. For example, many stages with the low gain sigmoid response had a result of 0.85, and the valid result was 1.0. The 28 Table 6: Results for Network with Capacitance Function. Response Function Solution Time Binary 15 Cycles High Gain Ramp l6 Cycles High Gain Sigmoid 16 Cycles Low Gain Ramp No Solution Low Gain Sigmoid 26 Cycles result could be interpreted as a 1.0 because the other values in these stages were 0.0. This network took longer to converge than the binary network, but did converge. The capacitance allowed the network to retain memory and arrive at a solution. 29 6 CONCLUSIONS The work performed showed that neural networks .and their solution time is very strongly dependent upon the neuron model and the interconnection pattern. The speed of the network can be increased by modifying the neuron model and increasing the number of interconnections. The best network in the cases studied in this work utilizes neuron models with a response function approximating a binary neuron. This neuron model provides the fastest solution because no intermediate cycles were needed to converge. The graded response neuron models require extra cycles to reach the decision point because of intermediate ’decisions’ by each neuron made during simulation. By increasing the number of interconnections, the difference in speed between the binary and low gain sigmoid function is decreased. This decreases the need to employ a binary neuron. A neuron with a moderate to high gain could be employed in a network with many interconnections with little or no penalty in speed. The sigmoid function would also provide more information to a learning algorithm. The learning algorithm can use this information to determine the magnitude of the neuron input. The learning algorithm can also reset the gain within this network to allow modest gain at the start and increase the gain as a solution is near. Additionally, the best network contains many interconnected stages. This also results in a faster solution time. Additional interconnected stages also eliminate solutions that are not part of the overall optimal path because of the larger picture seen by each neuron. By adding a capacitance term to the input of each neuron, it was shown that the time to reach a solution for the network was increased. However the network would cease to oscillate and, if interpretated correctly, could provide a solution where a simplified network would oscillate. The hardware available today can be employed in a digital model of a neuron 30 for the best network. The slower analog components and slower speed of the graded response networks does not compare to the binary neuron implemented with digital gates. The benefit of the analog network would have be to great in the area of learning algorithms to make the analog network desirable. As research on learning algorithms grows, the optimal neuron model may be a graded response function with the gain set to a high enough value to allow a small degree of the switching decision to be on the response function and utilized in the learning algorithm. It may also be advantagous for the learning algorithm to revise the gain of the neuron model. Although this is not employed in biological neural networks, an artificial neural network could put this increased capability to use. 31 APPENDIX A A.1 Neuron Model VHDL Code The response curves are modeled in VHDL by incorporating a simple lookup table. Each table was copied to the network code and a simulation run was made. Figures 9 through 18 show the VHDL code for each neuron model. 32 -ModelofaNcuronBIcmeot use wakNem'aIJackacull; entity Neln'aLeIement is Pm ( Stimulus : in My: Weights : in InpuLAnay: Output : out Real :- 0.0); end NeuaLElemcot; nchitscun'e behavitx of mm is basin NeuraIProccss : MStimulus'Transactioo) ' variable Sum : Real: basin Sum :- CalculatcSum(Stimuhis, Weights) + 1.9; if Sum > (0.0) also Output <- 1.0 after 4 as; else quiut<-0.0atter4ns; endif; eodprocess; eudbchavior: Figure 9: VDHL Code for Binary Response Neuron. 33 -ModelofaNetnonEIemeut use WetlaLPackagsall: entity NeraLsIemeot is ( , l"Stimulus : in Input_An'ay; Weights : in lnpuLAnay; Output : out Real :- 0.0): all NeraLEIcmcnt; rcldtecuaebchsviorofnstnfl.elctneutis componeotCapacitorponQastz'atRealzPresau:onReal): franzapacitoruscetttttyquW). signaIPast_Otn:ReaI: signalPrescm_In:ReaI; l’33.: Capcitor port um (Past_0ot. PrescutJn); NeuraIPtosess ° MStimulus‘Trnuaction) vaiable Sum : Real; vniablc Cap_VaIue : Real: variable In_Veltage: Real: Sum :- CalcuhtcSum(Stimulus. Weights) + 1.9; CqLVaIus :2 PresanIn; if Cap_VaIue < -l.9 then Cap_VaIue :- -l.9: end if; In.Voltsge ;. (0.6‘Sum) + (0.4‘CqLVaIue); if In.Voltage > (0.0) then Output <- l.0 after 4 as; else OutputaODafteMns; endif; Past_0m<-Sum; eadprocess; eodbehavior: Figure 10: VDHL Code for Binary Response Neuron with Capacitance. -ModslofaNeurooEIement use wakNeuraLPackagcall; entity NemaLeIemeot 13 PO" ( Stimulus : in InpuLAmyi Weights : in InpuLAnay; Output : out Real :- 0.0); at! WI; architccunchehavia'otnetnaLelemattis basin NemalProcess: . MStimulus’Tmisacuon) variable Sum : Real: sum :- CabulatsSunKStimulus. Willi") + 1'9; if Sum < (45) the“ 01mm: <- 0.0 after 4 as; chit Sum < (-0.5) then Output <3 0.25 3ft“ 4 03; clsif Sum < (0.5) then Output <- 0.50 after 4 as: elsif Sum < (15) M Output <- O.75 aha 4 as; else Ornate-1.0aflsr4n8; audit”: eodptocess; endhehavior: Figure 11: VHDL Code for Low Gain Ramp Response Neuron. 35 -ModelofaNeuronElsment use WearaLPackageall; unity NewaLelcmetu is 90M Stimulus: in 1:1pr Weights: in InpuLAnay; quan: out Real :- 0. 0): end Neta'aLElement; rchitecunehehaviorofnetuaLeluneluis componentCapacittrmesstthealzPresmtzoutReal): endcornponent; foraIl:Capacitoruscentitywuk.anciu(hehavior): signalPast_Out:Real; lmaignall’tvesentJn:Real: gm cm:Capacitorportm(Past_Out.Ptesent_1n); NeuralProcesr MStimulus‘Tmsaction) variable Sum : Real; variable Cap_Value : Real; variable In_VoItage: Real: basin Sum. - CalculateSum(Stimuhis, Weights) + 1.9; CqL Value :8 In: “C71?- _Va1ue < ~1.9 then Cap_VaIue :- -1.9; and ' : In_VoItage :8 (0.6'Sutn) + (0.4‘CQ_VaIue); if In_VoItage < (-l.5) then Output <- 0.0 after 4 ns; elsif In_Voltage < (-0.5) then Output <- 0.25 after 4 ns; elsif In_VoItage < (0.5) then Output <- 0.50 after 4 as; elsif In.VoItage < (1.5) then Output<= 0.75 after-4113; else Output e- 1.0 after 4 ns; Figure 12: VHDL Code for Low Gain Ramp Response Neuron with Capacitance. 36 -ModclofaNetuonElcment use wukNem'aLPackageall: entity NetuaLeIemcnt is port ( Stimulus : in InpuLArlay; Weights: in Input_Array; Outpm : out Real :- 0.0); end We rchitecuue helnvir of netnaLelement is basin NeuraIPtocess: ' poccss(Stimqus"1'rmsaction) variable Sum : Real; bean Sum :- CalculateSum(Stimulus. Weights) + 1.9; if Sum < (-0.3) then Output <2 0.0 after 4 as; elsif Sum < (-0.1) that Outpm <- 0.25 after 4 as; elsif Sum < (0.1) then Olllptlt <3 0.50 after 4 as; clsit‘ Sum < (0.3) then Output <- 0.75 after 4 us; else OutputcLOafieMns; codif; endprocess; endhehavior; Figure 13: VHDL Code for High Gain Ramp Response Neuron. 37 -MorhlofaNetnonEIsmeot use WWII: mtity NeutaLeIement is POM St'nnulus:in1nput_Ana . Weights: inInpuLAnay; quln: outRcal ::-0.0) mdNeraLElcmeot; rchiucuue behavior of actual.elsment is compaientCapscitcrponG'ast: mReaI;Present: corneal); foran : Capacitor ascentityweI'Kancnameham); signal Past_0ut : Real: signal Present_ln : Real: basin - cap : Capsitor port mm (Past_0ut. PresentJn); NemalProcess : process(Stimulus’Transaction) variable Sum : Real: vniahle Cap_Value : Real: variable In_VoItage: Real; San :- CalculateSum(Stimqus. Weights) + 1.9; Cap__Value :- PresetitJn: NCaLValuc < -1.9 then Cap,Valuc :8 -l.9; end if; In_VoItage :1 (0.6‘Sum) + (0.4'Cap_Va1ue); if In_Voltagc < (-0.3) then Oumut <- 0.0 after 4 ns; elsif In.VoItage < (-0.1) then Output <- 0.25 after 4 as; elsif In_VoItage < (0.1) then Outpm <- 0.50 after 4 as; elsif In_VoItage < (0.3) then Output <= 0. 75 site 4 ns; else Output e- 1.0 after 4 as; Figure 14: VHDL Code for High Gain Ramp Response Neuron with Capacitance. 38 -ModslofaNeuronEIsment use wonkNetnaljacksgerfl: entity NeuraLelement is POM Stimulus : in Input_Amy; Weights : in Input_An-ay; Output : out Real ;. 0.0); and NemlJElement; actutccturc behavior of netnaLeIement is beam NemaIProsess: process(8timuhis"l'rmsaction) variable Sum : Real; basin Sum :2 CalculateSum(Stimulus, Weights) + 1.9; if Sum < (-l.5) then Output <- 0.0 after 4 as; elsif Sum < (-O.5) then Output <3 0.15 after 4 us; elsit‘ Sum < (0.5) then Output <- 0.50 after 4 ns; elsif Sum < (1.5) then Output <- 0.85 after 4 as; else Output <2 1.0 after 4 as; end if; end process; end behavior: Figure 15: VHDL Code for Low Gain Sigmoid Response Neuron. 39 -MotblofaNeumnElsmsnt inc wakNetn'aLPackagcall; entity NeInLelcment is DOM Stimulus: in Input_An'sy; Weights: in InpuLAtray; Output: outReal :2 0.0); and NeraLElemcnt: nehitecuuehelnvicsefnetuaLekmauis componentCapacitcrpcttW:hReal:Ptescnt:omReaI); endcompoocut; franzmhauscmdtymcwm): sigmlPast_Out:Rcal: signslPtcscntankeal: beam eq:Capacitnrponmqi(Past_Out.Pressnt.1n): NeuraIProcess' MStimqus’Trauaction) variable Sum : Real: vriable Cap_VaIuc : Real: vniahle In_Voltage: Real: Sum :2 CalculatcSum(Stimqus. Weights) + 1.9; _Value :2 PiesenLIn; ifCap_Value < -1.9 that Cap_VaIue :2 -1.9; end if; ln_VoItage :2 (0.6’Sum) + (0.4‘CqLVaIuc); if In_VoItage < (-1.5) then Output <2 0.0 after 4 us; chit In_VoItage < (-0.5) then Output <= 0.15 aftu' 4 as; elsif In_Voltage < (0.5) then Output <2 0.50 afta 4 ns; elsif1n_Voltsge < (1.5) then Output <2 0.85 after 4 ns; else Output <2 1.0 after 4 as; end it; Figure 16: VHDL Code for Low Gain Sigmoid Response Neuron with Capacitance. 40 -MotblofaNeuronEIement use wakNemaLPacW-all: entity NetuaLcIcment is DOM Stimulus : in hrput_An-ay; Weights : in InpuLAnay: Output : out Real :2 0.0); aid NemaLEIemeut: rchiectnre behavics of mm: is basin NemlProcess: process(Stimuhis"I'rmsaction) vaiahle Sum : Reel: begin , Sum :2 CalcmstcSmMStimnlns. Weights) + 1.9: if Sum < (-0.3) then Output <- 0.0 after 4 ns; clsif Sum < (-0.1) then Output <— 0.15 after 4 as; clsif Sum < (0.1) then Output <2 0.50 after 4 as; clsif Sum < (0.3) then Output <- 0.85 after 4 as; else Output<21.0after4ns; endif: endprocess; endhehsvior. Figure 17: VHDL Code for High Gain Sigmoid Response Neuron. 41 Weights: inlnanAmy; Output: ontRea! 30.0): aldNetnLBlement; uchiecnuebehavia'ofmmis thflMmzhmm:wM; comm , for all : Capacitor use unity MW); signal Past_0ut: Real; ' sign! PreeenLIn : Real: cap : Capacin pun M (PIILOut. min); NennImess : ‘ MStimulus'Tmsaetion) vuiable Sum : Real: variable Cap_Value : Real; variable BLVolnge: Real; basin Sun :- CalculateSmKStilnnlns. Weights) + 1.9; CQJlalue :- Min; if Cap_Value < -l.9 then CqLValne :- -l.9; end if; In_Vo!tage :- (0.6‘Sunl) + (0.4‘CQ_Value); if In_Volnge < (-0.3) then Outpm <- 0.0 after 4 n8; elsif ln_Voltage < (-0.!) then Output <= 0.15 silent as: clsif In_Voltage < (0.1) then Output <- 0.50 after 4 m; elsif In_Volnge < (0.3) then Output Toleraee then Sum :- Sum + 1; end if; ad loop loop]; if Sum =- 0 then Sasor_0ut <8 0; end if; end process; ad sensor_behavior; Figure 19. (continued). -Thisisthetoplevelassetnblyofallthemb-components.Differat -signa!suegeneratedandfedndifferentparts.lnessence.itisthe - Test-bench for the whole system use wakNetnaljackageall: atity ann_processor is part ( Stimuli : in Neural_Array; Otuputs : out NeuraLArray); ad ann_processor: Ichitectnre Nessa-Juneau of ann_procesaor is component memory pat (marory_output : om Weights_Matrix); ad componat; component network pon< Network_$timu!us : in Stimulus_Matrix: NetworLWeights : in Weights_Matrix: Network_0utput : out Neural_Array); ad componat; component conv_sasor port (Old_0utputs : in Nem-aLArray; New_0utputs : in NeuraLArray; Sensor__0ut : out integer): ad componat; signal Old__0ut: NeuraLArray :8 (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0, 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0); signal New_0ut : NeuraLArrsy :- (1.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0..0 0.0 0.0. 0.0.0.0. 0.0.0.0.0.0.0.0.0.0.0.0. 0.0. 0..O 0.0. 0.0. 0.0 0.0); W Done: integer :8 1; signal Matrix _Weights: Weights_Matrix :- ( (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0). (0.0. 0.0. 0..0 0.0. 0..0 0.0. 0.0 0.0. 0.0 0.0. 0.0.0.0). (0..0..00 0.0 0.0. 0.0. 0.0. 0.0. 0.0. 0..0 0.0. 0.0.0.0). (0.0...00.00 0.0. 0..0 0..0 0.0.0.0. 0.0. 0..0 0.0. 0.0). (0. 0. 0. 0, 0.0.0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0). (0. 0. 0. 0. 0.0.0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0). (0...0.00.00. 0.0. 0.0 0.0. 0..0 0.0. 0..0 0.0. 0.0.0.0). (0.....0.00.00.00 0.0 0.0. 0..0 0.0. 0.0. 0.0. 0.0. 0.0). (0.0.....00.00.00 0.0. 0.0. 0.0. 0.0. 0.0, 0..0 0.0. 0.0). (0. 0. 0. 0. 0. 0. 0. 0.0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0). (0. 0. 0. 0. 0. 0. 0 ..0 0. 0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0). (0. 0. 0. 0. 0. 0. 0.0.0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0). Figure 19. (continued). 49 .................................... mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm. mmmmmmmmmmmm 000000000000000000000000000000000000 000000000000 00000000000&0flflflflflflflflfiflflflflQflflfi£flflflflfl(flflflflfl0000000 0000000000000000000000000000000000003000000000000 000000000Qflfiflfiflflfiflflflflflfiflflflfiflflfl£00000 flflflflflflflflflfiflfi 000000000000000000000000000000000000.000000000000 QflflflflflflflQflflfiflfinflflflflflfifififlflflaflflflflfiflflflfl &&&QQ&Q&&Q&Q 000000000000000000000000000000000000.000000000000 0000000000DDDflflflaflflflfiflflflfiflflflfiflflflflflflflmflflflfiflflflflflflfla 000000000000000000000000000000000000m000000000000 QAQQQQQQQDQflflflaflflflQflaflflflfiflflafiflflflflflflfl.QQQQQQQQQQQQ 0000000000000000000000000000000000008000000000000 Qflflfl£fiflflfififlflflflQOQQQQQQQQQQQ£QQQQQQAQ:flafiflflflflflfiflfifl 000000000000000000000000000000000000m000000000000 AQaflflflflfiflfiflflflfiflflQQQQfl0flQflQQQQQ£QQAAQmQflflflflflfiflflflflfl 000000000000000000000000000000000000m000000000000 Qfiflfl000000&0flflflflflflflflaflflflflflflflflflfiflflflflflS000000000000 000000000000000000000000000000000000.000000000000 0.0..0.0.0..0.0.0..0.00.0.0.090.0.0.0o0o00 0 00 ............ ..Qmmm.mmm..mmmmm.099090000009 000000000000 anunnnuunauuuaauaanauaauaaaaaanunnau Qauunuauunan 000000000000000000000000000000000000 000000000000 aauauaannauanaunannauuunanaannnnaann unnaanauaaan mmmm00mmmmmmwmmmmmmmmmmmmmmmmmmmmmmm.n mmmmmmmmmmmw Figure 19. (continued). 50 (QQ QQ QQ 0.Q 0.0. 0.0. QQ QQ 0.0. QQ QQ 0..0) ....00 0.Q 0.Q 0.Q 0.Q 0.0. 0.Q 0..0 QQ 0.0.) .0 0.Q 0.Q 0.0.0.0. 0.Q QQ 0.Q 0.0. 0.0). ...00 0.Q 0.0. QQ 0.Q 0.0. 0.0. 0.Q 0.0). .0.Q 0.Q 0.Q 0.0. 0..0 QQ QQ QQ 0.0). .0 0.Q QQ QQ QQ QQ QQ QQ 0.0). .0 O.Q QQ 0.Q QQ 0.0. 0.Q 0.Q 0.0). ...00 0.0.0.0. 0.0. 0.0. QQ 0.Q 0.0). ...00 0.Q 0.Q 0.Q 0.Q QQ QQ 0.0). 0. 0.0. QQ 0.Q QQ QQ QQ 0.0). 0. 0.0. Q0. 0.0. 0.Q QQ QQ Q0). ...00 QQ QQ 0.Q QQ 0.Q 0.0). ...00 0.0. 0.0. 0.Q QQ QQ 0.0). ..0 0.Q 0.0. 0.Q 0.0. 0.0.0.0). .0 0.0. QQ 0.Q 0.0. 0.0.0.0). 0.Q 0.0. 0.0. QQ QQ 0.0). 0...0 QQ 0..0 QQ 0.Q 0.0). Q QQ 0.Q 0.0. 0.Q 0.0). Q QQ 0.Q 0.Q 0..0 Q0). 0..Q 0..0 0.0. QQ Q0). ,tmmomummm, .0. 0.0. 0.0. 0.0. 0.0). .0 0.Q QQ 0.Q 0.0). ..Q0 0.0. 0.Q Q0). .0..0 0.0. 0.0. 0..0) 0.MMW.0.% .omummom .0.mem0m Q 0. 0. 0.0. 0.0). 0.0.0. 0.0. 0.0). Q0.QQQQm. Q 0. 0. 0.0. 0.0). Q 0. Q 0. . ..9999999999. boopbb O O C 0 C O O O O 9 pb QOOOOOOOOOOOOOO O O O O C C O O O OOOOOOOO O O O C O O O C C O O C O O O O O ‘ OOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOO O O O 0. 0. 0.0. 0.0). 0. 0. 0.0. 0.0). 0. 0. 0.0. 0.0). 0. 0. 0.0. 0.0)); O O O O O O O O O O O O O O C C O O O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOGOO O O O ’58888888888888888888888888888888888 poooooooocoooooooooopppppppppppgppp 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0°COOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 0 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. COOOOOOOOOOOOOOOOOOOOOOOOOOOO ..0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. OOOOOOOOOOOOOCOOOOCOOOOOO 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. O. 0. 0. 0. 0. 0. OOOOOOOOOOOOOOOOO ‘ O O O O O O .O O O O O O O C O C O U C C O O C ‘ O O O O U ..0 0 0 0 0. 0 0. 0. 0. 0. 0. pbbobbbb . O O 0 Figure 19. (continued). 51 faall : networkuseatity WMJIIW); {mall : memory useatity watmemorfimanmymh); for all : conv_sernor use atity WMsasoLbehsvior); Rain man-Laud : memory port ma (Matrix_Weights): rm.netwott : netwuk port ma (Ma'ix_Stnnnlns. Mnrix_Weights. Outputs): sasor : conv_sasor port map (Old_0ut. New_0ut. Done): pocess variabletrnpl:integer:-l; var'nbletrnp2:integu:-l; varnbletmp3:integer:-l; variabletmp4zinteger:-0: begrn waiton Stimuli’Trasaction until Done-1; -Looptodostimu!usforeachneuron AlLNem'ons_Loop: forC_Netn'onsinltoTon!_Naronsloop ~~determinentrtnber'ofsngesforeachneur'onandset unp3 :- Nemlmaconn/Netrrons_per_8tage - 2: -loop ft: the number of stages Each_Stage: while unp3 > ~2 loop -loopforeachneuroninstage Update_Stimulus_Loop: for C_Input in l to Netunns_per_Stage loop - tbtermine current stage for calculation tmpl :- ((C_Neurnns ~ l)/Neurons_per_Stage) ~ tmp3; - ifsngeisnegativesetfm’properwnparomd if trnpl < 1 tha tmpl :- Netwak_Staga + tmpl: ad if; - settrnp2 forcorrectstimulusinputfromcurratnetuon tme := ((trnpl ~ 1) ‘ Neurons_per_Stage) + C_Input; Matrix_S timulus(C_Netu'ons)(trnp4 + C_Inptn) <- Stimuli(tmp2) after 2 us; end loop Update_Stimulus_Loop; -setfornextstagcofnarons trnp3:-tmp3~l; Figure 19. (continued). 52 - set for next stage of inputs unp4 :a tmp4 + Neurons_per_Snge: end loop Each_Stage: :- 0; ad loop A!l_Nenons_Loop; - sad new values to convagence sensor New_to_0!d_1.ocp:ftu i in l b Toflficurom loop Old_0ut(i) c- New_0ut(i); New Out(i) <2 Stimuli(i); ad loop New_to.0ld_Loop; ad process: ad prooessor_structtn'e; ~-‘Iltisisthetestbenchformstingthewholesystem.WlIolesysteInis -integratedinarm4mcesson use wakNeuraLpackagenllz entity est_bench is ad test_bach: architecture test_bench_arch of test_bach is component ann_procasor P011 ( Stimuli : in NeuraLArray; Outputs : out NeuraLArray): ad component: srgrnlkln:Neural_Array:- (0.0...10 0..0 0..0 0..0 0..0 QQ 0000 l.Q 1.0.0.0. 1.0. 0.0. 0.0. 0 .0. 0. Q 0 .0. 0.0. 1.0. 0.0, 0.0. 1.0. 0.0. 0.0. 1.0. 0.0. 1.0. 1.0. 0.0. 0.0. 1.0. 0.0. 0.0. 0.0. 0.0. 1.0. l.Q 0.0...1QOQ QQ 0.0. 0.0. 0..0 0.0 0.0 0.;0) signalkOut: Neural _Array; signalStoszooleanzsfalse; for all : ann_processor use atity wortanmessoflmcessrnstrmnue); basin m:an_ruocesaorpatmqr(kln.k0ut); 9109533 been waitonkOutuntilStop-false; klna-kOutamr4ns; Smpc-Tmeafter304ns: adproceas: adtest_bach.arch; Figure 19. (continued). 53 APPENDIX C 0.1 Input Data Files The input data files used for the simulations are shown in Figures 20 through 25. These files contain the weights used for the simulations. The weights can be inter- preted as cost values from one neuron to the next neuron. The more negative a value is, the less likely that path will be chosen. The values are arranged in arrays by neuron and by stage. There are six neurons in each stage, and there are six stages. The first array of values contains the weights for the first neuron in the first stage. The last six values in each neuron array are weights for neurons within the same stage as the neuron being considered. The values before these last six are from previous stages. For example, with a three stage interconnected network, the first six values in an array are the weights from neurons two stages prior, the next six values are from neurons one stage prior, and the last six values are from neurons in the same stage. The 0.0 value within the last six values is a direct feedback from the neuron to itself, which is neither enabled or disabled because of the 0.0 value. 54 - Neuron Stage 1 (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0). (~9.0. ~9.0. ~9.0. ~9.0, ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0, ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). - Neuron Stage 2 (~25. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0. ~5.0, ~5.0, ~5.0, ~5.0). (~35. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, 0.0. ~5.0, ~5.0. ~5.0, ~5.0). (~05, 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~45. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (~25. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (~45. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). -Neuron Stage 3 (~25. ~45. ~45. ~35. ~25. ~35. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (~45. ~25. ~35. ~45. ~35. ~25. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (~25. ~25. ~45. ~45. ~35. ~35. ~5.0, ~5.0. 0.0. ~5.0, ~5.0, ~5.0). (~25. ~25. ~15. ~45. ~25. ~35. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (~45. ~45. ~25. ~25. ~25. ~25. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (~25. ~25. ~35. ~45. ~35. ~25. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 4 (~25. ~35. ~45. ~45, ~35. ~25. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (~25. ~35. ~35. ~35. 45. ~25. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (~25. ~35. ~45. ~25. ~25. ~25. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~35. ~35. ~45. ~25. ~25. ~25. ~5.0, ~5.0, ~5.0, 0.0, ~5.0, ~5.0). (~45. ~35. ~25. ~05. ~25. ~45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (~45. ~35. ~25. ~25. ~45. ~45. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 5 (~25. ~25. ~25. ~45 . ~35. ~25. 0.0. ~5.0, ~5.0, ~5.0. ~5.0. ~5.0). (~45. ~45. ~25. ~45. ~15. ~45. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (~45. ~25. ~25. ~35, ~35. ~45. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~25. ~45. ~25. ~35. ~35. ~45. ~5.0, ~5.0, ~5.0. 0.0. ~5.0, ~5.0). (~45. ~35. ~25. ~35. ~35. ~45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (~45. ~35. ~45. ~45, ~35. ~35. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 6 . (~45. ~35. ~25. ~25. ~45. ~35. 0.0. ~5.0, ~5.0. ~5.0, ~5.0, ~5.0). (~45. ~25. ~35. ~45. ~25. ~25. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (~45. ~35. ~35. ~45. ~25. ~25. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~25. ~45. ~25. ~25. 45. ~45. ~5.0, ~5.0, ~5.0, 0.0, ~5.0, ~5.0). (~35. ~35. ~45. ~25. ~35. ~45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (~35. ~05. ~35. ~25. ~25. ~25. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neurrm Stage 7 (~25. ~35. ~45. ~25. ~35. ~25. 0.0. ~5.0. ~5.0, ~5.0, ~5.0, ~5.0). (~45. ~25, ~35. ~25. ~25. ~25. ~5.0, 0.0. ~5.0, ~5.0. ~5.0, ~5.0). (~45. ~35. ~25. ~25. ~35. ~35. ~5.0, ~5.0, 0.0. ~5.0. ~5.0, ~5.0). (~35. ~25. ~25. ~35. ~25. ~05. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (~25. ~35. ~25. ~25, ~45. ~45. ~5.0. ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (~45. ~45. ~25. ~45. ~35. ~35. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 8 (~25. ~35. ~45. ~05. ~25. ~35. 0.0. ~5.0. ~5.0, ~5.0, ~5.0, ~5.0). (~9.0. ~9.0. ~9.0. ~9.0, ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). {-90, ~90. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0)): Figure 20: Two Stage Interconnected Network Input Data. 55 - Neuron Stage 1 (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. -9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0..~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). - Naron Stage 2 (0.0, 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~7.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~3.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0. 0.0. ~5.0, ~5.0. ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~9.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0. ~5.0, 0.0. ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~9.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0. ~5.0, ~5.0, 0.0). -Neuron Stage 3 (~25. ~35. ~25. 45. ~25. ~35. ~25. 45. 4.5. ~35. ~25. ~35. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (~25. 45. 45. ~35. ~35. 45. ~45. ~25. ~35. 45. ~35. ~25. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (45. ~35. 45. ~25. ~25. ~35. ~25. ~25. 45. 45. ~35. ~35. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~15. ~25. ~35. 45. ~35. 45. ~25. ~25. ~15. ~45. ~25. ~35. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (45. ~25. ~35. ~25. ~25. 45. 45. 45. ~25. ~25. ~25. ~25. ~5.0, ~5.0, ~5.0, ~5.0, 0.0, ~5.0). (45. 45. 45. ~35. ~25. ~25. ~25. ~25. ~35. 45. ~35. ~25. ~5.0, ~5.0. ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 4 (~25. ~35. 45. 4.5, ~25. ~35. ~25. ~35. 45. 45. ~35. ~25. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (45. ~35. ~25. 4.5. 4.5. ~25. ~25. ~35. ~35. ~35. 45. ~25. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (~25. ~25. ~35. 4.5. ~25. 45. ~25. ~35. 45. ~25. ~25. ~25. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~35. 45. ~25, ~25. 4.5. ~25. ~35. ~35. 4.5. ~25. ~25. ~25. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (~25. ~45. ~15. ~25. 45. ~35. 45. ~35. ~25. ~05. ~25. 45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (~25. 45. ~35. ~35. ~25. 45. 45. ~35. ~25. ~25. 45. 45. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 5 (~25. ~35. ~35. ~25. 4.5. 45. ~25, ~25. ~25. 45. ~35. ~25. 0.0. ~5.0, ~5.0. ~5.0, ~5.0, ~5.0). (~25. ~35. 45. ~15. ~25. 45. 45. 45. ~25. 4.5. ~15. 45. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (~25. ~35. ~35. ~35. 45. ~25. 45. ~25. ~25. ~35. ~35. 45. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~25. ~35. 45. 4.5. 4.5. ~25. ~25. 45. ~25. ~35. ~35. 45. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (~25. 45. ~25. ~25. ~25. 45. 45. ~35. ~25. ~35. ~35. 45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (45. 45. 4.5. ~35, ~25. ~35. 45. ~35. 45. ~45. ~35. ~35. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 6 (45. 45. ~35. ~25. ~25. ~35. 45. ~35. ~25. ~25. 45. ~35. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (~25. ~35. ~35. ~35. 4.5. 45. 45. ~25. ~35. 45. ~25. ~25. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (~25. ~35. ~25. 4.5. ~25. 45. 45. ~35. ~35. 45. ~25. ~25. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (45. 45. ~35. 4.5. ~35. ~25. ~25. 45. ~25. ~25. 45. 45. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (45. 45. ~25. ~25. ~35. ~35. ~35. ~35. 45. ~25. ~35. 45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (~25. 45. ~25. ~35. ~15. 45. ~35. ~05. ~35. ~25. ~25. ~25. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 7 (~35. ~35. 45. ~25. 45. ~25. ~25. ~35. 45. ~25. ~35. ~25. 0.0. ~5.0. ~5.0, ~5.0, ~5.0, ~5.0). (45. ~35. ~25. 4.5. ~25. ~35. 45. ~25. ~35. ~25. ~25. ~25. ~5.0, 0.0. ~5.0, ~5.0, ~5.0. ~5.0). (45. 4.5. 45. ~25. ~35. 45. 45. ~35. ~25. ~25. ~35. ~35. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~35. ~15. 45. ~25. 45. ~35. ~35. ~25. ~25. ~35. ~25. ~05. ~5.0, ~5.0, ~5.0. 0.0. ~5.0, ~5.0). (45. 45. ~25. 45. ~35. ~35. ~25. ~35. ~25. ~25. 45. 45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (45. ~25. ~25. ~25. ~35. ~25. 45. 45. ~25. 45. ~35. ~35. ~5.0. ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 8 (~25. 45, ~35. ~35. ~25. ~15. ~25. ~35. 45. ~05. ~25. ~35. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0, ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0)); Figure 21: Three Stage Interconnected Network Input Data. 56 - Neuron Stage 1 (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). - Neuron Stage 2 (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~75. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0. ~5.0, ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~105. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 45. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~135. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~75. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~135. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). -Neuron Stage 3 (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~25. ~35. ~25. 45. ~25. ~35. ~25. 4.5. ~45. ~35. ~25. ~35. 0.0. 5.0. ~5.0, ~5.0, ~5.0. -5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~25. 4.5. 4.5. ~35. ~35. 45. 45. ~25. ~35. ~45. ~35. ~25. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (0.0. 0.0, 0.0. 0.0. 0.0. 0.0. 45. ~35. 4.5. ~25. ~25. ~35. ~25. ~25. 45. 45. ~35. ~35. ~5.0, ~5.0, 0.0. ~5.0, -5.0. 5.0). (0.0. 0.0. 0.0, 0.0. 0.0. 0.0. ~15. ~25. ~35. 45. ~35. 45. ~25. ~25. ~15. 45. ~25. ~35. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 45. ~25. ~35. ~25. ~25. 45. 45. 45. ~25. ~25. ~25. ~25. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 45. 4.5. 4.5. ~35. ~25. ~25. ~25. ~25. ~35. 45. ~35. ~25. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 4 (~25. ~35. 45. 4.5. ~25. ~35. ~25. ~35. 4.5. 4.5. ~25. ~35. ~25. ~35. 4.5. 45. ~35. ~25. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (~35. ~35. 45. 4.5, ~25. ~35. 45. ~35. ~25. 4.5. 45. ~25. ~25. ~15. ~35. ~35. 45. ~25. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (45. ~24. ~35. ~35. ~35. 45. ~25. ~25. ~35. 45. ~25. 45. ~25. ~35. 45. ~25. ~25. ~25. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (45. 45. 45. ~25. ~35. ~25. ~35. 45. ~25. ~25. 45. ~25. ~35. ~35. 4.5. ~25. ~25. ~25. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (~05. ~25. 45. ~25. ~35. 45. ~25. 45. ~15. ~25. 45. ~35. 45. ~35. ~25. ~05. ~25. 45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (~25. ~35. ~35. ~35. 4.5. 45. ~25. 45. ~35. ~35. ~25. 45. 45. ~35. ~25. ~25. 45. 45. ~5.0, ~5.0, ~5.0, ~5.0. ~5.0, 0.0). Figure 22: Four Stage Interconnected Network Input Data. 57 - Neuron Stage 5 (45. ~25. ~25. ~25. 4.5. ~35. ~25. ~35. ~35. ~25. 45. 45. ~25. ~25. ~25. 45. ~35. ~25. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). ' (45. 45. ~15. ~35. ~25. 45. ~25. ~35. 45. ~15. ~25. 45. 45. 45. ~25. 45. ~15. 45. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (45. ~25. ~25. 4.5. ~25. 45. ~25. ~35. ~35. ~35. 45. ~25. 45. ~25. ~25. ~35. ~35. 45. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~35. ~25. ~25. ~25. 45. ~35. ~25. ~15. 45. 45. 45. ~25. ~25. ~15. ~25. ~35. ~35. 45. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (~35. 45. 45. ~25. ~35. 45. ~25. 45. ~25. ~25. ~25. 45. 45. ~35. ~25. ~35. ~35. 45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (~25. ~25. ~25. ~35. 45. ~35. 45. 45. 45. ~35. ~25. ~35. 45. ~35. 45. 45. ~35. ~35. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 6 (~25. 45. 45. 45. ~35. ~35. 45. 45. ~35. ~25. ~25. ~35. 45. ~35. ~25. ~25. 45. ~35. 0.0. ~5.0. ~5.0, ~5.0, ~5.0, ~5.0). (~35. ~25. ~25. 4.5. ~25. ~35. ~25. ~35. ~35. ~35. 45. 45. 45. ~25. ~35. 45. ~25. ~25. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (45. ~25. ~35. ~35. ~35. ~45. ~25. ~35. ~25. 45. ~25. 45. 45. ~35. ~35. ~45. ~25. ~25. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~35. ~25. 45. 4.5. ~25. ~25. 45. 45. ~35. 45. ~35. ~25. ~25. 4.5. ~25. ~25. 45. 4.5. ~5.0, ~5.0, ~5.0. 0.0. ~5.0, ~5.0). (45. 45. ~35. ~25. ~25. ~25. 45. 45. ~25. ~25. ~35. ~35. ~35. ~35. 4.5. ~25. ~35. 45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (45. ~25. ~25. ~15. 4.5. ~35. ~25. 45. ~25. ~35. ~15. 45. ~35. ~05. ~35. ~25. ~25. ~25. ~5.0. ~5.0, ~5.0, ~5.0, ~5.0. 0.0). - Neuron Stage ‘7 (~25. ~35. 45. 4.5. ~35. 45. ~35. ~35. 4.5. ~25. 45. ~25. ~25. ~35. 45. ~25. ~35. ~25. 0.0. ~5.0. ~5.0, ~5.0. ~5.0. ~5.0). (45. 45. 45. ~25. ~35. 45. 45. ~35. ~25. 4.5. ~25. ~35. 45. ~25. ~35. ~25. ~25. ~25. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (45. 45. ~25. ~25. ~35. ~25. 45. 45. 4.5. ~25. ~35. ~45. 45. ~35. ~25. ~25. ~35. ~35. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~25. ~25. ~35. ~25. ~05. ~35. ~35. ~15. 4.5. ~25. 45. ~35. ~35. ~25. ~25. ~35. ~25. ~05. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (45. ~25. ~25. ~25. ~35. ~25. 45. 45. ~25. 4.5. ~35. ~35. ~25. ~35. ~25. ~25. 45. 45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (45. 45. ~35. ~25. ~25. ~35. 45. ~25. ~25. ~25. ~35. ~25. 45. 4.5. ~25. 45. ~35. ~35. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Netu'on Stage 8 (~25. ~05. ~35. ~25. 45. ~25. ~25. 45. ~35. ~35. ~25. ~15. ~25. ~35. 4.5. ~05. ~25. ~35. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.Q ~9.0. ~9.0. ~9.0. ~9.0. ~9.0)); Figure 22. (continued). 58 - Neuron Stage 1 (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). - Neuron Stage 2 (~25. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.Q ~5.0, ~5.0. ~5.0). (~35. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (~15. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (45. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (~25. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (45. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). -Neuron Stage 3 (~25. 45. 45. ~35. ~25. ~35. 0.0. ~5.0. ~5.0, ~5.0, ~5.Q ~5.0). (45. ~25. ~35. 45. ~35. ~25. ~5.0, 0.0. ~5.0. ~5.0, ~5.0. ~5.0). (~25. ~25. 45. 4.5. ~35. ~35. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~25. ~25. ~15. 4.5. ~25. ~35. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (45. 45. ~25. ~25. ~25. ~25. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (~25. ~25. ~35, 4.5. ~35. ~25. ~5.0. ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 4 (~25. ~35. 45. 45. ~35. ~25. 0.0. ~5.0, ~5.0, ~5.0, ~5.0. ~5.0). (~25. ~35. ~35. ~15. 4.5. ~25. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (~25. ~35. 45. ~25. ~25. ~25. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~35. ~35. 45. ~25. ~25. ~25. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (45. ~35. ~25. ~05. ~25. 45. ~5.0, ~5.0, ~5.0. ~5.0, 0.0. ~5.0). (45. ~35. ~25. ~25. ~45. 45. ~5.0. ~5.0. ~5.0, ~5.0. ~5.0, 0.0). - Neuron Stage 5 (~25. ~25. ~25. 4.5. ~35. ~25. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (45. 45. ~25. 45. ~15. 45. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (~45. ~25. ~25. ~35. ~35. ~45. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~25. ~15. ~25. ~35. ~35. 45. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (45. ~35. ~25. ~35. ~35. 45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (45. ~35. 4.5. 45. ~35. ~35. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 6 (~45. ~35. ~25. ~25. 4.5. ~35. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (45. ~25. ~35. 4.5. ~25. ~25. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (45. ~35. ~35. 4.5. ~25. ~25, ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~25. 45. ~25. ~25. 4.5. 45. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (~35. ~35. 45. ~25. ~35. 45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (~35. ~05. ~35. 4.5. ~25. ~25, ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 7 (~25. ~35. 4.5. ~25. ~35. ~25. 0.0. ~5.0, ~5.0, ~5.0, ~5.0. ~5.0). (45. ~25. ~35. ~25. ~25. ~25. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (45. ~35. ~25. ~25. ~35. ~35. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~35. ~25. ~25. ~35. ~25. ~05. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (~25. ~35. ~25. ~25. 4.5. 45. ~5.0, ~5.0. ~5.0, ~5.0, 0.0. ~5.0). (45. 45. ~25. 4.5. ~35. ~35. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0. 0.0). - Neuron Stage 8 (~25. ~35. 45. ~05. ~25. ~35. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0)); Figure 23: Two Stage Interconnected Network with Sub-optimal Path Input Data. 59 - Naron Stage 1 (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). - Neuron Stage 2 (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~7.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~3.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~9.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0. ~5.0. ~5.0, 0.0. ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~9.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). -Neuron Stage 3 (~25. ~35. ~25. 4.5. ~25. ~35. ~25. 45. 4.5. ~35. ~25. ~35. 0.0. ~5.0, ~5.0, ~5.0. ~5.0, ~5.0). (~25. 45. 45. ~35. ~35. 45. 45. ~25. ~35. 4.5. ~35. ~25. ~5.0, 0.0. ~5.0. ~5.0, ~5.0, ~5.0). (45. ~35. 45. ~25. ~25. ~35. ~25. ~25. 4.5. 45. ~35. ~35. ~5.0, ~5.0, 0.0. ~5.0. ~5.0, ~5.0). (~15. ~25. ~35. 4.5. ~35. 45. ~25. ~25. ~15. 45. ~25. ~35. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (45. ~25. ~35, ~25. ~25. 45. ~45. ~45. ~25. ~25. ~25. ~25. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (45. 45. 45. ~35. ~25. ~25. ~25. ~25. ~35. 4.5. ~35. ~25. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 4 (~25. ~35. 45. 4.5. ~25. ~35. ~25. ~35. 45. 45. ~35. ~25. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (45. ~35. ~25. 4.5. 4.5. ~25. ~25. ~35. ~35. ~15. 45. ~25. ~5.0, 0.0. ~5.0, ~5.0, ~5.0. ~5.0). (~25. ~25. ~35. 4.5. ~25. 45. ~25. ~35. 4.5. ~25. ~25. ~25. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~35. 45. -25. ~25. 4.5. ~25. ~35. ~35. 4.5. ~25. ~25. ~25. ~5.0, ~5.0, ~5.0. 0.0. ~5.0. ~5.0). (~25. 45. ~15. ~25. 45. ~35. 45. ~35. ~25. ~05. ~25. 45. ~5.0, ~5.0, ~5.0. ~5.0, 0.0. ~5.0). (~25. 45. ~35. ~35. ~25. 45. 45. ~35. ~25. ~25. 45. 45. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 5 (~25. ~35. ~35. ~25. 4.5. 45. ~25. ~25. ~25. 4.5. ~35. ~25. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (~25. ~35. 45. ~15. ~25. 45. 45. 45. ~25. 4.5. ~15. 45. ~5.0, 0.0. ~5.0, ~5.0. ~5.0, ~5.0). (~25. ~35. ~35. ~35. 4.5. ~25. 4.5. ~25. ~25. ~35. ~35. 45. ~50. ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~25. ~15. 45. 45. 4.5. ~25. ~25. ~15. ~25. ~35. ~35. 45. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (~25. 45. ~25. ~25. ~25. 45. 45. ~35. ~25. ~35. ~35. 45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (45. 45. 45. ~35. ~25. ~35. 45. ~35. 4.5. 4.5. ~35. ~35. ~5.0, ~5.0. ~5.0, ~5.0, ~5.0. 0.0). - Nmon Stage 6 (45. 4.5. ~35. ~25. ~25. ~35. 45. ~35. ~25. ~25. 45. ~35. 0.0. ~5.0. ~5.0, ~5.0, ~5.0, ~5.0). (~25. ~35. ~35. ~35. 4.5. 45. 45. ~25. ~35. 4.5. ~25. ~25. ~5.0, 0.0. ~5.0, ~5.0. ~5.0, ~5.0). (~25. ~35. ~25. 4.5. ~25. 45. 45. ~35. ~35. 4.5. ~25. ~25. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (45. 45. ~35. 45. ~35. ~25. ~25. 45. ~25. ~25. 45. 45. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (45. 45. ~25. ~25. ~35, ~35. ~35. ~35. 4.5. ~25. ~35. 45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (~25. ~15. ~25. ~35. ~15. ~45. ~35. ~05. ~35. 45. ~25. ~25. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 7 (~35. ~35. 45. ~25. 45. ~25. ~25. ~35. 4.5. ~25. ~35. ~25. 0.0. ~5.0. ~5.0, ~5.0, ~5.0. ~5.0). (45. ~35. ~25. 45. ~25. ~35. 45. ~25. ~35. ~25. ~25. ~25. ~5.0, 0.0. ~5.0. ~5.0, ~5.0, ~5.0). (45. 45. 45. ~25. ~35. ~45. 45. ~35. ~25. ~25. ~35. ~35. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~35. ~15. 45. ~25. 45. ~35. ~35. ~25. ~25. ~35. ~25. ~05. ~5.0, ~5.0. ~5.0, 0.0. ~5.0, ~5.0). (45. 45. ~25. 4.5. ~35. ~35. ~25. ~35. ~25. ~25. 45. 45. ~5.0, ~5.0, ~5.0, ~5.0. 0.0. ~5.0). (~45. ~25. ~25. ~25. ~35. ~25. ~45. 45. ~25. 4.5. ~35. ~35. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 8 (~25. 4.5. ~35. ~35. ~25. ~15. ~25. ~35. 4.5. ~05. ~25. ~35. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0)); Figure 24: Three Stage Interconnected Network with Sub-optimal Path Input Data. 60 - Neuron Stage 1 (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). - Neuron Stage 2 (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~75. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0. ~5.0, ~5.0, ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~105. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, 0.0. ~5.0, ~5.0,: ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0, 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 45. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~135. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~75. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~135. 0.0. 0.0. 0.0. 0.0. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). -Neuron Stage 3 (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~25. ~35. ~25. 45. ~25. ~35. ~25. 4.5. ~45. ~35. ~25. ~35. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~25. 45. 4.5. ~35. ~35. 45. 4.5. ~25. ~35. 45. ~35. ~25. ~5.0. 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0, ~45. ~35. 45. ~25. ~25. ~35. ~25. ~25. 45. 45. ~35. ~35. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. ~15. ~25. ~35. 45. ~35. 45. ~25. ~25. ~15. 45. ~25. ~35. ~5.0, ~5.0, ~5.0. 0.0. ~5.0, ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 45. ~25. ~35. ~25. ~25. 45. 45. 45. ~25. ~25. ~25. ~25. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 45. 4.5. 4.5. ~35. ~25. ~25. ~25. ~25. ~35. 45. ~35. ~25. ~5.0. ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 4 (~25. ~35. 45. 4.5. ~25. ~35. ~25. ~35. 4.5. 45. ~25. ~35. ~25. ~35. 4.5. 45. ~35. ~25. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (~35. ~35. 45. 45. ~25. ~35. 45. ~35. ~25. 4.5. 45. ~25. ~25. ~35. ~35. ~15. 45. ~25. ~5.0. 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (45. ~2.4. ~35. ~35. ~35. 45. ~25. ~25. ~35. 4.5. ~25. 45. ~25. ~35. 4.5. ~25. ~25. ~25. ~5.0, ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (45. 45. 45. ~25, ~35. ~25. ~35. 45. ~25. ~25. 45. ~25. ~35. ~35. 4.5. ~25. ~25. ~25. ~5.0. ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (~05. ~25. 45. ~25. ~35. 45. ~25. 45. ~15. ~25. 45. ~35. 45. ~35. ~25. ~05. ~25. 45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (~25. ~35. ~35. ~35. 4.5. 45. ~25. 45. ~35. ~35. ~25. 45. 45. ~35. ~25. ~25. 45. 45. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). Figure 25: Four Stage Interconnected Network with Sub-optimal Path Input Data. 61 - Nemon Stage 5 (45. ~25. ~25. ~25. 4.5. ~35. ~25. ~35. ~35. ~25. 45. 45. ~25. ~25. ~25. 45. ~35. ~25. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (45. 45. ~15. ~35. ~25. 45. ~25. ~35. 45. ~15. ~25. 45. 45. 45. ~25. 45. ~15. 45. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (45. ~25. ~25. 4.5. ~25. 45. ~25. ~35. ~35. ~35. 45. ~25. 45. ~25. ~25. ~35. ~35. 45. ~5.0. ~5.0, 0.0. ~5.0, ~5.0, ~5.0). (~35. ~25. ~25. ~25. 45. ~35. ~25. ~l5. 45.45. 45. ~25. ~25. ~l5.-2.5. ~35. ~35. 45. ~5.0,-5.0 ~5..0 0..0 ~5..0 ~5.0). (~35. 45. 45. ~25. ~35. 45. ~25. 45. ~25.-2.5. ~25. 45.45. ~35.-2.5. ~35. ~35. 45. ~5...0.~50 ~5..0 ~5..0 0..0 ~5..0) (~25. ~25. ~25. ~35. 4.5. ~35. 45. 45. 4.5. ~35. ~25. ~35. 45. ~35. 45. 45. ~35. ~35. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0. 0.0). - Neuron Stage 6 (~25. 45. 45. 4.5. ~35. ~35. 45. 45. ~35. ~25. ~25. ~35. 45. ~35. ~25. ~25. 45. ~35. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (~35. ~25. ~25. 4.5. ~25. ~35. ~25. ~35. ~35. ~35. 45. 45. 45. ~25. ~35. 45. ~25. ~25. ~5.0, 0.0. ~5.0. ~5.0, ~5.0, ~5.0). (45. ~25. ~35. ~35. ~35. 45. ~25. ~35. ~25. 45. ~25. 45. 45. ~35. ~35. 45. ~25. ~25. ~5.0, ~5.0. 0.0. ~5.0, ~5.0, ~5.0). (~35. ~25. 45. 4.5. ~25. ~25. 45. 45. ~35. 45. ~35. ~25. ~25. 4.5. ~25. ~25. 45. 45. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (45. 45. ~35. ~25. ~25. ~25. 45. 45. ~25. ~25. ~35. ~35. ~35. ~35. 45. ~25. ~35. 45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (45. ~25. ~25. ~15. 45. ~35. ~25. ~l5. ~25. ~35. ~15. 45. ~35. ~05. ~35. 45. ~25. ~25. ~5..0 ~5.0, ~5.0, ~5..0 ~5..0 0.0). - Neuron Stage 7 (~25. ~35, 45. 45 ~35 45. ~35. ~35. 45 ~25. 45. ~25. ~25. ~35. 45. ~25. ~35. ~25. 0.0. ~5..0 ~5..0 ~5.0, ~5..0 ~5.0). (45. 45. 45. ~25. ~35. 45. 45. ~35. ~25. 4.5. ~25. ~35. 45. ~25. ~35. ~25. ~25. ~25. ~5.0, 0.0. ~5.0, ~5.0, ~5.0, ~5.0). (45. 45. ~25. ~25. ~35. ~25. 45. 45. 45. ~25. ~35. 45. 45. ~35. ~25. ~25. ~35. ~35. ~5.0, 5.0. 0.0. ~5.0, ~5.0, ~5.0). (~25. ~25. ~35. ~25. ~05. ~35. ~35. ~l5. 4.5. ~25. 45. ~35. ~35. ~25. ~25. ~35. ~25. ~05. ~5.0, ~5.0, ~5.0, 0.0. ~5.0, ~5.0). (45. ~25. ~25. ~25. ~35. ~25. 45. 45. ~25. 4.5. ~35. ~35. ~25. ~35. ~25. ~25. 45. 45. ~5.0, ~5.0, ~5.0, ~5.0, 0.0. ~5.0). (45. 4.5. ~35. ~25. ~25. ~35. 45. ~25. ~25, ~25. ~35. ~25. 45. 4.5. ~25. 45. ~35. ~35. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0, 0.0). - Neuron Stage 8 (~25. ~05. ~35. ~25, 45. ~25. ~25. 45. ~35. ~35. ~25. ~l5. ~25. ~35. 4.5. ~05. ~25. ~35. 0.0. ~5.0, ~5.0, ~5.0, ~5.0, ~5.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0). (~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0. ~9.0)); Figure 25. (continued). 62 APPENDIX D D.l Simulation Outputs Figures 26 through 44 show the results .for all of the simulations performed. The results show the final outputs of the neural coprocessor and the time of completion. The time of completion minus 4 nanseconds and then divided by 10 nanoseconds equals the number of cycles needed to arrive at a solution. 63 TIMEL SIGNAL NAMES , I (NS) | I KOUTG) KOUT(5) QWEM o.oooooos+oo LW 1.oooooos+oo o.oooooos+oo QWEKX) QW QWEKX) 0.(XXXXX)E+(X) QW o.oooooos+oo 01!!me o.oooooos+oo QWEo-(X) QWE‘o-(X) o.oooooos+oo o.oooooos+oo o.oooooos+oo QWBHX) o.oooooos+oo o.oooooos+oo 000000013400 3007(1) Iowa) 00000005430 Loooooos+oo 00000003400 o.ooooooe+oo o.oooooos+oo o.oooooora+oo o. oooooaa+oo o. oooooua+oo 0. 0000005400 0. 000000300 o.ooooooE+oo aoooooos+oo aooooooa+oo o.oooooor=.+oo o.oooooo£+oo o.oooooora+oo (1000000900 KOUTG) KOUT(6) QW o.oooooos+oo l.QXXXDE-tw Loooooos+oo o.oooooos+oo o.oooooos+oo o.oooooos+oo QWEHD o.oooooos+oo 0.(XX)(XX)E+(X) QWE-HX) o.oooooor-:+oo o.oooooos+oo QWOOOEI-(D QWE-I-(X) o.ooooooa+oo QWE-HX) o.oooooos+oo o.oooooos+oo QWE-HI) QWEHX) QWEHD o.oooooora+oo QWE-t-(X) QWHX) QWEKX) o.oooooos+oo QWE‘KX) QWKX) QWEHX) QWHX) QWEHX) QWM QWEM assessz~ é §§§§E§29 é é SIGNAL NAMES , mum) é KOUT (10) a; KOUTO 1) o.oooooos+oo omoooora+oo Looooooswo KOUT (12) oooooooswo 0mm QW i §§§§§§ssrsssrs:.o 0. oooooos+oo o.oooooos+oo o.oooooos+oo o.oooooos+oo o.oooooos+oo 0. WEI-(X) 0. WSW 0. WEI-(X) QWE-KX) QCKDOOOEI-(X) QWOOOEHD o.oooooors+oo QWE-t-(X) o.oooooos+oo QW 0 .oooooomoo 1.oooooor~:+oo LWOEM LWEM mooooos+oo LWEKX) 190000015400 IMHO-(X) o.oooooos+oo QWM 09000001900 09000001900 o.oooooos+oo QWHX) o.ooooooa+oo QWM QWOOOEM QWEKX) 0.00(XXXJE+(X) o.oooooos+oo QQXDOOW (10000001900 QW 1 000000300 QWE-t-(X) QW o.ooooooa+oo QWEND QW QW QWEAX) o.ooooooa+oo QWEHX) QWE‘HX) 0. 0000001900 0 .WE-t-(X) 0 .(XXXXDEKX) Q WEAK) OWE-HI) Figure 26: Results of Binary Neuron Model. LWEHX) o.ooooooe+oo o.oooooos+oo QWEW o.oooooos+oo QWEKX) o.ooooooa+oo QWEM QWE‘t-(X) o.oooooos+oo o.oooooor-:+oo o.oooooora+oo o.oooooor-:+oo o.oooooos+oo 0.000000154-00 QW Figure 26. (continued). 65 mm 1. storm. NAMES I I ors)1 mums) warm) KOUTOS) mums) xoum'l) worms) 1 01 0000000900 0.000000900 0.000000900 0000000900 0000000900 0.000000900 41 1.000000900 1000000900 1.000000900 1000100900 1.00000900 1000000900 141 0. 000010900 0000000900 0000000900 0000001900 0000000900 0000000900 241 1000000900 1.000000900 1000000900 1010000900 1000000900 1000000900 341 0. 000000900 0000000900 0000010900 0000000900 0000000900 0000000900 441 0.000000900 0000000900 0000000900 1.000000900 0000000900 0000000900 541 0000000900 0000000900 0000000900 100000900 0000000900 0 .000000900 1541 0000000900 0000000900 0000000900 1.000000900 0000000900 0. 000000900 741 0.000000900 0000000900 0000000900 1000000900 0000000900 0. 000000900 841 0000000900 0000000900 0000000900 1.00000900 0000000900 0000000900 941 0000000900 0000000900 0000000900 1.00000900 0010000900 0000000900 1041 0000000900 0000100900 000000900 1010000900 0000000900 0000000900 1141 0000000900 0010000900 0000100900 1000000900 0. 000000900 0000000900 1241 0000000900 0000000900 0010000900 1000000900 0. 000000900 0000000900 1341 0010000900 0000000900 0010000900 1000000900 0. 000000900 0.000000900 1441 0000000900 0000000900 0000100900 1000100900 0000000900 0000000900 1541 0000000900 0000000900 000000900 1.00000900 0000000900 0000000900 mas. L SIGNAL NAMES 1 04s.“ mums) KOUT(20) Itom‘m) xovrm) trauma) x0009) 01 0000100900 0001000900 0. 000000900 0000000900 0000001900 0010000900 41 1000000900 1000000900 1.00000900 1000000900 100000900 100000900 141 0.000000900 0000010900 0. 000000900 0000000900 0000000900 0000000900 241 1000000900 1000000900 1000000900 1000001900 1000000900 1000000900 341 0000010900 0000000900 0000000900 0.000000900 0000000900 0000000900 441 1000000900 1000000900 1000000900 100000900 1001000900 1010000900 541 0.000000900 0000000900 0000000900 0010000900 0000000900 0000000900 1541 0000000900 0010000900 0000000900 0000000900 1000000900 0000000900 741 0.000000900 0000000900 0000000900 0000000900 1000000900 0000000900 :41 0000000900 0000000900 0000000900 0.000000900 1000000900 0000000900 941 0000000900 0000000900 0000100900 0.000000900 1000000900 0000000900 1041 0000000900 0000000900 0010000900 0000000900 1000000900 0000000900 1141 0010000900 0. 000000900 000000900 0000000900 1000010900 0000000900 1241 0001000900 0. 000000900 0000100900 0000000900 1000000900 0000000900 1341 0000000900 0. 000000900 000000900 0000000900 1000000900 0000000900 1441 0001000900 0. 000100900 0. 000000900 0000000900 1010010900 0010000900 1541 0000000900 0000100900 000000900 0000100900 1000000900 0010000900 :‘O §§§§E§ssrsrssa -3_g §E§§§§ssrssrss:4 SIGNAL NAMES ! KOUTQS) Km KOUT (27) KOUTQS) KW) KOUTOO) 0000000900 0.000000900 QW 0000000900 0000000900 0.000000900 1. WW 1.00000900 1 .W 1W 100000900 1.000000900 0. 000000900 0.000000900 0. WEI“) QW 0.000000900 QWEHX) 1 .mm LW 1000000900 100000900 LW 1.000000900 0000000900 QW 0000000900 000100900 QW QWEKX) 1.000000900 LW l.QXXXDENX) LW LW 1010010900 QWEM QW QW 000000900 0.000000900 0.000000900 LWEHX) LW l.QWE't-(X) 1010000900 1010000900 LWEM 0001000900 QW QWM 000000900 QW 0010000900 0.000000900 1.00000900 QW QWM QW 0.000000900 0.000000900 LW 000mm 000010900 QW QM“ QW 1000000900 000000900 QW QWENX) QW 0.000000900 1.000000900 000000900 QW QW 0.000000900 0. 000000900 1.000000900 000000900 QW 0.000000900 QW 0. 000000900 1000000900 0000000900 0000000900 0000000900 QWEAX) 0.000000900 1000000900 0.00000900 0000000900 0001000900 0.000000900 QW 1000000900 000000900 QW 0W QW E SIGNAL NAMES E KOUTG 1) KOUT(32) KOUT (33) KOUTCM) KOUTOS) [(001136) 0000000900 0000000900 Q W QW 000000900 QW 1.000000900 1000000900 1.00000900 1W 1000000900 LUMBER!) 0010010900 QW 0000000900 0.000000900 QW 0010000900 LWEM LW 1.000000900 100100900 1.000000900 1000000900 0W4!) QW 0000000900 0.00000900 0000000900 0.000000900 LWEM LW URINE-14X) 100000900 LW LWEM QWEHD QW 0000000900 000000900 0000000900 0.000000900 1.000000900 1.000000900 LW MIME-14!) 1.000000900 1.000000900 QWEM QW 0.000000900 0000000900 QW 0. 000000900 LWEHX) LW 1000000900 1000000900 1001000900 1.000000900 0.000000900 QW 0000000900 Q 00000900 0.000000900 QWEM 0010010900 QW 000000900 QWEHD 0W 1.000000900 QWEHX) 0000000900 000000900 Q WEN!) 000000900 LWE-o-(D QWEM 0000000900 000000900 0.000000900 QWE‘HX) 1.000000900 0.000000900 QW 0000000900 0001000900 0.000000900 LW 0.000000900 0.000000900 0000000900 0000000900 Q 010000900 1010000900 QW 0W 001111340) 0000001900 0000000900 LW Figure 26. (continued). 66 EEEEEfissssssssstg §E§§E§rsrssssssao as 67 Figure 26. (continued). SIGNAL NAMES ! XOUTG‘I) Km KOUTG9) KOUT(40) KOUT(41) KOUTGZ) QWEM 0.000000900 0.000000900 OWE-IQ) 0000100900 QW 1.000000900 1.000000900 LWEHD 1000000900 1000100900 LW 0. W QW 0000000900 0000000900 Q W 0.000000900 1000000900 LW 1.000000900 100000900 1 .W 1000000900 OWEN!) QW 0000000900 0000000900 0000010900 QWEM 1.000000900 LWW 1000000900 100000900 LWEAX) 1010000900 OWEN!) QW 0000100900 0000000900 0010000900 QWBM 1000000900 1.000000900 1000100900 1.0000900 1.000000900 MIME-14D 0.000000900 QW MIME-14X) QW 0000000900 QQXXXDE-I-(X) 1000000900 1.000000900 1.000000900 1.000000900 LW LWEKX) 0.000000900 QW QWAX) 0000000900 0.000000900 0.000000900 1.000000900 1000000900 1000000900 1.000000900 1010010900 1.000000900 QW 0000000900 000000900 QW QWEM 0. WEI-(X) Q 000000900 0000000900 QWKD 1.000000900 0.000000900 Q WOODS-14X) Q 000000900 0.000000900 000010900 l.QXXXJOE-I-(X) QWEW 0000000900 0.000000900 0000000900 0000000900 LW 0000010900 0.000000900 QW 0W 000000900 LW QWEd-(X) QW 5 SIGNAL NAMES E $001743) KOUT(45) KOUT(46) KOU'I‘(47) KOUTGS) 0000000900 W44!) QW 0W 000000900 QW 1.000000900 1000000900 kW 1W 1000001900 1.000000900 0000000900 QW 0000100900 QNOOOOEHX) QW QWEHD 1.000000900 kW 1.000000900 1.000000900 LW 1000010900 ~ QWEM QW 0010000900 QWHX) QWEM 0.000000900 LWEW LW 1.000000900 1.000000900 1.000000900 1.000000900 QWEW 0.000000900 0W 0. 00000900 QW QWEM 1.000000900 LW 1.000000900 1.000000900 1.000000900 1.000000900 0.000000900 0000010900 OWE-IQ) 0 .000000900 0.000000900 0. 000000900 1.000000900 1.000000900 1000000900 1.000000900 LWEHD 1.000000900 0000000900 QW-I-(D 0000000900 0.000000900 QWE-I-Q) 0. 000000900 1001000900 1000000900 1.000000900 LWEM LW-I-(X) 11!me 0010000900 0.000000900 0.00000900 QWE-I-(X) 0.000000900 0.000000900 1.000000900 LW 1.00000900 1000100900 1.000000900 1.000000900 0000000900 QMHX) 000000900 QWEM 0. WEI-(X) QWEM ”HIDDEN” 0000000900 0000100900 0.000000900 Q WIDE-14X) 0010000900 LW 0000000900 0000000900 QW Q «WE-14X) QW £§§§§ii§§§§§rrrsrtrsz~ 1P -3 § f§§33t3§39° §§§§§§§§E§ -§_-_-______ :3 a some» QW LW 0000000900 ISM-01 W01 ISM-0! 1500000901 7500000901 7W0! ISM-01 ISM-01 ISM-01 ISM-01 ISM-01 ISM-01 ISM-01 ISM-01 ISM-01 ISM-01 ISM-01 1500000901 ISM-01 7W1 68 SIGNAL NAMES KOUT (10) 0W 1W 0000000900 Figure 27: Results of Low Gain Ramp Neuron Model. KOUTO l) Kan-(12) 0.001411%“) 'l'llFL NSI B a §f§flifitf§za S a. §§§§§EE§§ -3 23 a §§§§§§§§§E§trtsstsss~o KOUTOS) 0000100900 LWEM QWEHX) LWHX) 0.000000900 1- KOUT(19) QWM LWEHX) QWEHX) 1 .000000900 0.000000900 LWM 0.000000900 1.000000900 0.000000900 1000000900 QWEM 1.000000900 QWEM ! .000000900 0.000000900 1 000000900 QWEHD 1 .000000900 0.000000900 1.000000900 0.000000900 LWEM 0.000000900 norm“) 0000000900 KOUTOS) Q W 1.000000900 Q WEI-(X) ”DOME-14X) QWW ISM-01 0.000000900 2500000901 QW‘HX) ZW-Ol 0.000000900 2W0! 000000900 KOUT (21) Q W l .W Q W40) 1.000000900 0010000900 ”MINER” 0000100900 1.000000900 QWEW 1.000000900 0. 000000900 1 .000000900 Q 000000900 1000000900 QWM l.Q)(XXXE'I-(X) 0.000000900 100000900 QWM LW'KD 0000001900 1 00000900 0000000900 SIGNAL NAMES SIGNAL NAMES KOUTOG) 0W 1 .000000900 0.000000900 LWKD 0.000000900 kW 0000000900 7.5011100501 KOUTOD QWM 1 00000900 KOUT (18) QW LWEHX) QWEAX) QWEHX) 1010000900 LWE‘KX) 0010000900 0.000000900 7W0! 7501000901 0000001900 0.000000900 5000000901 2500100901 QWNX) 0.000000900 0010000900 1500000901 SHINE-01 WE-Ol 0010000900 0.(XX)(XJOE+(X) 0.000000900 7501100501 SIXXXXXJE-Ol SHINE-01 ISM-01 ISM-01 QWM 0.000000900 0.000000900 75000001301 1W0! W01 QQXDOOBHX) QWEKX) 0.000000900 ISM-01 5000000901 W01 QW QWND 0000000900 KOUTOZ) QW 1W QWKX) LWM 0000000900 1.000000900 0000000900 1000000900 000000900 LW‘KX) 0.000000900 Figure 27. (continued). 69 KM) KOUTOQ) 000000900 QWM 1.00000900 0.000000900 1.000000900 0. 000000900 100000900 0. WEI-(X) LW QW 1010000900 QW 1.000000900 0.000000900 1000010900 0.000000900 1.000000900 QW-KX) l.QXXXDE-KX) 0001000900 LWE‘IQ) QWE‘KX) 1000000900 0000010900 LUMBER!) 0.000000900 1.000000900 0.000000900 1 .000000900 0.000000900 1000010900 0000010900 LWEM 0.000000900 LWW 0.000000900 1.000000900 QWEHD l.QXXXflfii-Q) QW 1.0)0000900 0000010900 1000010900 0.000000900 1.000000900 QW ML 6 E§sssssrrs=~ §§§§§§E§§ B 9. 0000000900 1.000000900 0010010900 1 WEAK) Q 000000900 1.000000900 Q 000000900 LWEM 0.000000900 1.000000900 QWM 1.000000900 QWEKD LWE'I-(X) QWOOOEI-OO LWOEKX) QWEHX) 1.000000900 0.000000900 1.000000900 0.000000900 1010000900 QW 000000900 Q WEI-Q) 1 0100001900 0000000900 0. W 1 .000000900 0. 000100900 LWM 0010000900 LWEKX) 0.000000900 LWHXJ QWM 1 .000000900 Q WEI-(I) 1 000000900 0. 000000900 1.000000900 0. 00000900 100100900 Q 0100005400 1000000900 QWAX) LWHX) 0000000900 LWE'IN 000000900 SIGNAL NAMES KOUTQS) KOU'I‘QG) KOU'I'(27) W) W) 0000000900 LWEM QWW 1000000900 000000900 100000900 0.000000900 100000900 0.000000900 100000900 QWKD 1.000000900 0000000900 l.QXXXXIB-I-Q) 0000000900 1.000000900 QWM 11!!me QW 1.000000900 QW l.QXDOOE-I-(X) QW 0.000000900 1000000900 QWEHX) LWEHD 0000000900 LWOEAX) QW 1001000900 QWEM 1.000000900 Q WEI-(X) 1.000000900 Q 000000900 100000900 0. WEI-(X) 1010010900 0. 000010900 1.000000900 0 .000000900 1.000000900 0. MBA!) 1000000900 000000900 KOUT (30) 0.000000900 1.000000900 QWE'KX) 1.000000900 QWE‘HX) LWEKX) 0.000000900 l .(XXXXDEHX) 0.000000900 1.000000900 0.000000900 LWHD 0.000000900 l.Q)OOOOEM 0.000000900 1.000000900 QWEKX) LWEKX) 0.000000900 1.000000900 0.000000900 LWHD 0010000900 ‘P SIGNALNAMES E l (NS) l KOUTGI) KOU'I'OZ) [OUT (33) «b and L §§§§§§E§§E§ffiirtrfi B a QWEHX) LWEHX) 0.000000900 1.000000900 0.000000900 1.000000900 0.000000900 1.000000900 QWEM 1.000000900 0.000000900 1.000000900 QWEHX) l.QXDOOE-I-(X) QWE-t-Q) 1.010000900 QWEA!) 1.000000900 QWEM 1.000000900 0010000900 1.000000900 QWEMX) 0000000900 1000010900 Q 000000900 100000900 QWEHD 1.000000900 0.000000900 LMHD QW 1.000000900 QWEW l.Q!!WEi-Q) 0.000000900 1010000900 0.000000900 1010000900 0.000000900 1.000000900 0010000900 1010000900 0000010900 1000010900 0000100900 QWAD LW 0.000000900 1010000900 0.000000900 1000010900 0.000000900 1.000000900 0.000000900 1.000000900 Q 010000900 100010900 QWW 100010900 QWEM LWM 0000000900 1 .000000900 0.000000900 1.000000900 0.000000900 1.000000900 000000900 Figure 27. (continued). 70 0. OWEN!) 1.000000900 1 010000900 QWEM LWEHX) QWEd-Q) l .WEAX) 0. 000000900 1.000000900 0.000000900 1.000000900 QQXJOOOE-I-(X) 1.000000900 QWOOOE-I-Q) l.QXXXDB-Q) QW TIMBL SIGNAL 14.411153 5 1 043} l mum?) K0011”) KOU'l‘t40) KOUT(41) 0000000900 100000900 0000000900 1000000900 0000000900 1.010000900 0010000900 1001000900 0000000900 1010000900 0000000900 1010000900 0000000900 1000000900 0000000900 1000000900 0000000900 1000000900 0000000900 1000000900 0000000900 1000000900 KOUT(42) QWEHX) LWBW QWEHX) 1.000000900 Q 000000900 1 010000900 0.000000900 1.000000900 0. WEI-(X) 1.000000900 Q WEI-(X) 1.000000900 0.000000900 1.000000900 QW 1010000900 0.000000900 1000000900 0.000000900 1000010900 0000100900 1 W400 Q 000000900 1 .000000900 0. 010000900 LWKX) 0.00000900 100000900 0.00000900 1.000000900 QWEKX) 1 .000000900 QWAX) 1010000900 0.000000900 1.000000900 000010900 0000000900 LW 0.000000900 1.000000900 000000900 1.000000900 0000000900 QW 1.000000900 QWEM 1.000000900 QWE'l-Q) LWEI-(X) QWE-t-(X) 1.000000900 QWEKX) 1111me 0.000000900 1.000000900 QW LWEKX) QWEHD l .WEW 0. WEAK) 1.000000900 Q WEI-(I) 1000100900 0000100900 LWHX) gas: 1 .WOE-KX) 0. 000000900 1.000000900 000000900 1.00me 000000900 1.000000900 0.000000900 §§§§§§E§§E§f§flfitrfi B a rsrrusaazsfffiirtrfizso gflfluflflflfl—uu ------ 8 a. KOUT(43) 0.000000900 LWEHX) QWEHX) LWEW QWEHD ”MINE-(X) QWEA'D 1.000000900 QWEM 1.000000900 QQXXXDEHX) 1.000000900 0.000000900 1010000900 0.000000900 1.000000900 QQXIJOOE-I-(X) 1.000000900 QWE'IN 1.010000900 0.000000900 1.000000900 0.000000900 KOU'IIM) 0000000900 1010000900 QW LW QWHD LW 0.000000900 1 000000900 OHM-14!) 1010000900 0.000000900 1000100900 0000000900 1.000000900 0.000000900 1.000000900 0.000000900 LWEM 0000100900 LWEW 0000000900 1000000900 0.010000900 rooms) QW LW QWE‘KX) 1.000000900 0.000000900 1.000000900 QWEM 1.000000900 QWEW LOWE-(X) 0010000900 LW-I-Q) 0.000000900 l.QXJOOOE-I-(X) QWKX) 1.000000900 0.000000900 100000900 Q WEI-(X) 1 .000000900 0. W44!) 1.00000900 000000900 SIGNAL NAMES KOUT(46) Q WEI-(X) 1W 0. 00000900 l.Q)OOOtE4-(X) QWOEI-OO 1.000000900 0.000000900 1.000000900 QOQJOIXEM 100000900 0000000900 Figure 27. (continued). 71 KOUT(47) 0000001900 QW-I-Q) 0.000000900 KOUT (48) 0000000900 LW 0.00000900 1.000000900 0.000000900 l.QXXXXEHX) 0000000900 1.000000900 0.000000900 1000010900 QWEW 1.000000900 QWEW 1000000900 0.000000900 l.QXXXJOEHX) 000000054X) 1.000000900 QQX)000E+(X) 1 .WE-I-Q) Q 000000900 1.000000900 QW SIGNAL NAMES I I (NSI) I KOUTO) KOUTQ) KOUT (3) KOU'l'(4) KOUTG) KOUT(6) 0! 0000000900 QW QWEM 0000010900 QW Q 010010900 4! 1000000900 LW LW 1000100900 1.000000900 LWEKX) 14! 1000100900 QW-I-(X! QW QW QWEM 0. 000000900 24! 1.000000900 0.000000900 QW-HX) 0.000000900 0.000000900 0010000900 34! LWOEHD 0.00000900 0.000000900 0000100900 QWE-I-(X! 0. W 44! l.QXXJOOE'I-(X! 0.000000900 QW 0000000900 0.000000900 0. 000000900 54! l.QXXDOE-I-(X! 000010900 QWE-I-(X! QW 0000100900 0. 000100900 64! 1.000000900 QWHX! 0.000000900 QWE-I-(X) 0010000900 0.000000900 74! LIXXDOOE'KX) QW‘KX! 0.000000900 QW 0010000900 0.000000900 84! 1.000000900 000100900 QW 01!!me 0000000900 0010000900 94! 1.000000900 0000100900 0.000000900 QW 0.000000900 Q WEI-(I! 104! 1.000000900 0111110054!) 0.000000900 0.000000900 0.000000900 Q WEI-(X! 114! 1000000900 QW QWMX) 0001000900 QWAD 0.000000900 124! 1.000000900 QW 001000900 QWEHX) QWM QW 134! 1.000000900 QW 0000000900 DUMB-14!) 000000900 QW 144! 1.000000900 QWE-I-(X! QWM 0000000900 000010900 QWEW 154! 1.000000900 QW 000000900 0W 000000900 QW m I SIGNAL NAMES I I (NS) I KOU'I'G) KOU'KS) KOUTG) KOUTOO) KOU'I'OI) KOUTOZ) I 0! 0.000000900 0.000000900 Q W 0W 000000900 Q W 4! l.QXDOOEvI-(D 1000000900 LW 1010000900 1.00000900 LW 14! 0.000000900 QW 0 .000000900 QWM QW 0 000010900 24! 0.000000900 0. W 1000010900 0010000900 0.000000900 QWE-I-(X) 34! OWEN!) Q WEI-(X! 1.000000900 QW-I-(X! 0000000900 QIXXXXDEt-(X) 44! QWEM QW 1000000900 0.000000900 0. “0008+“! 0.000000900 54! 0.000000900 0.000000900 1000100900 0.000000900 Q WEI-(X) 0.000000900 64! QWEM QW LWM 0.000000900 0010000900 0.000000900 74! 0.000000900 QW LWEM 0000000900 0.000000900 QWEM 84! 0000010900 0. W 1.“!!!an 0.00000900 QW 0.000000900 94! 0000000900 0. WEI-Q) 1.000000900 Q 010000900 Q 000000900 QWW 104! 0000000900 QWM 1000000900 QW 0.000000900 QWOOOB-I-(D 114! 0. MOE-14X! 0.000000900 1000000900 QW Q WEI-(X) 0.000000900 124! 0. 000000900 QWEW LWM 0000000900 MIME-14!) 0.000000900 134! Q MOE-14X! 0.000000900 LWW OMXDOOEHX) 0.000000900 0.000000900 144! QWEHX! 0000010900 1010000900 0000000900 0010010900 0010000900 154! QW 0W 100000900 QW 0.00000900 0.000000900 Figure 28: Results of High Gain Ramp Neuron Model. 72 TIME 9 SIGNAL NAMES I I (NS) I KOU'I'(13) KOUIU4) KOU'I‘ (15) KOUTOG) KOUTO'I) KOUT (18) 0000000900 0000000900 0.000000900 0W 000000900 QW 4 I 1W 1000010900 1010000900 1W 100000900 1.000000900 14 I 0.000000900 QW QWEI-IX) QW QW 0.000000900 24 I 1.000000900 1.000000900 LWE'IQ) 1000000900 MINDS-IQ) 1.000000900 34 I QWEM QW 0.000000900 QW QW 0.000000900 44 I OWEN!) QW 0.000000900 LW QW 0000000900 54 I 0000000900 QW 0000000900 LWM QW 0010000900 64 I OWEN QW 0000000900 1.000000900 QW 0010000900 74 I OWE-(X) QW QW LW QW QWEKX) 84 I 0.000000900 QW QWEHX! 100000900 QW OWEN!) 94 I 0.000000900 QW QWM 1.00000900 QW 0.000000900 104 I 0000000900 0000000900 000000900 100000900 QWM QW 114 I QW 0.000000900 0W 1.000000900 QWM 0.000000900 124 ! QW 0W 0.000000900 LW Q 000000900 0.000000900 134 I QW 0.000000900 0.00000900 LW Q WEI-(X) QWE'I-(X) 144 I 0.000000900 0000000900 000000900 LW Q 000000900 0.000000900 154 I W W 0.00000900 LW 0W QW TIME I SIGNAL NAMES I ! “‘5? 1 zooms) 11001120) KOUT(21) x0002) KOU'I‘(23) Korma) 0 I 0000000900 000100900 QWW 0000000900 0W4“! QW 4 I 1001000900 1W LW 1W LW 1.000000900 14 I 0000010900 QW 0.000000900 0000000900 QWEd-(X! QWEM 24 I 1000000900 1.000000900 1.000000900 1000100900 1.000000900 1.000000900 34 I 0. 000000900 QW QM“ 0000000900 0000000900 Q WEI-(X) 44 I 1 .000000900 LW LWEM 100000900 1.000000900 1 WEI-IX) 54 I OWE-(X) QW QWEM 0. 000000900 QW Q 000000900 64 I OWEN!) QW QW 0. W 1010000900 0 .000000900 74 I 0000000900 QW QWM 0. 000000900 1.00000900 Q WEI-(XI 84 I OWE-(X) QW QWW 01010000900 LW 0.000000900 94 I 0001000900 QW 0000100900 000000900 1.000000900 0.000000900 104 I Q WEI-(X! 0000000900 0000000900 QW 1W QW 114 I Q MOB-14X) 000000900 000000900 QW 1010010900 QW 124 I Q 010000900 0000000900 QWEM QW 100000900 0.000000900 134 I QWEMX) 0000000900 0.000000900 QW 1001000900 QWEHX) 144 I 0000000900 0000000900 0000000900 QW 1.00000900 0000010900 154 I 0W 0W 000000900 0000000900 1W 0.000000900 Figure 28. (continued). 73 TIME; §§§§E§ssssssrss~o 0.4 .1 reassess: §E§§E§ Figure 28. (continued). 74 SIGNAL NAMES I I (NS) I KOUTOS) KOUTOG) KOUT(27) KOU'I‘(28) KW) KOU'I‘ (30) ! 0000000900 QWEHX) QWKD 0W 0001001900 QW 1.000000900 1.000000900 LW 1.000000900 1M4“) 1010000900 QOOIXXXIE'I-(X) QWBAD 0.000000900 QW-I-Q) QIXDOOOE'HX) QWEI-OO 1MB“) l.QXXXIOE-I-Q) 1000000900 LWHX) LW LWE‘KX) QWOIDEKX) 0000010900 0000000900 00000005400 0000010900 QWE'I-IX) 1.000000900 LW 1000010900 1000001900 1.000000900 l.QXXXDEKX) 0000000900 QWEHXI QWEI-IX) 001000900 0.000000900 QWEHXI IWE‘KX) LW 1000000900 LW‘IN LW 1.000000900 0000000900 QWEHX) 0.000000900 QWAXI 0.000000900 0.000000900 OWE-(I) 1.000000900 0W4“) 0000000900 QWEAX) QWM 0.000000900 LIXXXIOOEHX) 0.000000900 001000900 QWHX) QWEKX) QWEI-W 1000000900 0000000900 QWEM QW-t-(X) QWEHX) QWEW l.QXXXXIE'I-Q) 0.00000900 0000000900 0.000000900 QWEW 0.000000900 LOWE-14X! QWKX! 0.000000900 QIanEt-(X) 0.000000900 0001000900 1.000000900 0000000900 0.000000900 0.000000900 QWEI-Q) 0000000900 1000000900 000000900 0000000900 0000000900 QWEHD QW 1000000900 000000900 0000000900 0.000000900 QWE'I-Q) I SIGNAL NAMES I KOU'I'G 1) KOU'I‘GZ) KOU'I' (33) KOUT(34) KOU'I‘OS) KOU'I' (36) 0.000000900 0000000900 QW 0W 0000100900 QW LWB-t-(X) 1000000900 LW 1W 100100900 l.QXXXXIE-I-(X) QWEHX! 0.000000900 QWEM QWAX) 0.000000900 QWE‘KX) 1.000000900 LW ' 1000000900 1000000900 LWEHD IMHO“) QWEKX) QW 0000010900 0010000900 0.000000900 0.000000900 ”DOME-(X) l.QDOME‘I-Q) 1000010900 1000000900 l.QXXIOOE-I-Q) 1.000000900 QIXIOOIDE+00 0001000900 0.000000900 0010000900 0.000000900 0.000000900 1000000900 1.000000900 LWBM 100000900 LWEKX) 1.000000900 QWEAI! QW QW 0010000900 QW 0.000000900 l.Q!)OIDE-I-IX) 1.000000900 1.000000900 1.000000900 ”HINGE-(X) 1.000000900 QWEM 0010000900 QWEKXI 0.00000900 0.000000900 0.000000900 0.000000900 QWE'I-(XI 0.000000900 QW 0010010900 1.000000900 0.IXX)OOOE+(X) QWEKX) QWKX) 0.000000900 0.000000900 LWEHD 0.000000900 QWEM 0010000900 QWEM 0.000000900 1.000000900 QOQIOOOE-t-(X) 0.000000900 QQXXXXE-I-(X) QOOIXIOOE'I-(X) 0.000000900 1.000000900 QWEKXI 0010010900 0000000900 QW 0010000900 l.QXXXIOEI-Q) 0.000000900 0000000900 0000000900 QW 000100900 1.000000900 MI- Figure 28. (continued). 75 SIGNAL NAMES I I (NS) I K001 (37) KOU'I'GS) K0010” K001‘(40) [(001141) K001 (42) I 0 I W44!) 0000000900 Q W 0000000900 000000900 0.000000900 4 I 1.000000900 1.000000900 1 .000000900 100000900 LWEM l.QXXXIOEHX) 14 I QM“ QW 0. 000000900 0010000900 0001000900 QWEAX) 24 I 1.000000900 LW 1.000000900 1.00000900 LWEM LWEM 34 I OWE-(X) QW 0.000000900 0.00000900 0.000000900 0.000000900 44 I 1000000900 LWHX) 1010000900 1.000000900 LW l.QXXXDE-I-IX) 54 I QWEM QW 0.000000900 0.00000900 0. WAX) QWEM 64 I 1.000000900 LW LWBM 1.000000900 1.000000900 LWEHD 74 I 0000000900 QW 0.000000900 Q W44!) 0. WEI-(X) QWEHX) 84 I LWEHXI LW LWEKX) LWW 1.000000900 LWEW 94 I 0000000900 QW 0000000900 Q 00000900 QWAX) QWBW 104 I 1.1!!!)me 1.000000900 LWKII 1.000000900 1.000000900 l.QXXXXIENX! 114 I 0.000000900 0010000900 000000900 0.000000900 0000010900 QWE-I-(D 124 I 0.000000900 0.000000900 QWHX) LW 0.(XXXXX)E+(X) QW 134 I 0.000000900 QWAXI 0 .00000900 1.000000900 QWEM 0010000900 144 I QWEM 0000000900 Q 000000900 1.000000900 OWEN!) QW 154 I 0000000900 0000000900 000000900 LW QW QW 11MB I SIGNAL NAMES I I (NS) I KOUT(43) KOUKM) K001" (45) K00'I‘(46) K00'I'(47) X001 (48) I 0 I 0. MOE-14X! 0000010900 QW Q W Q 0000001900 0000000900 4 I 1000100900 LWEM l.QWEI-(D 1000000900 1 .000000900 1.000000900 14 I 0. WEI“) QMXJOOEHD 0.000000900 0000000900 Q 010000900 QWEKX) 24 I 1.000000900 1.000000900 1.000000900 1.00000900 1.000000900 1.000000900 34 I QWEKX! QWEW QWEI-Q) 0.00000900 0.000000900 0.000000900 44 I 1.000000900 1.000000900 1.000000900 1.000000900 1001000900 1.000000900 54 I 0.000000900 QWEAD 0.000000900 0000100900 0.000000900 QWEHX) 64 I LWEM LWEHD 1010000900 1.00000900 1.000000900 1000010900 ‘74 I QWOOOEKX) 0.000000900 0.000000900 0.000000900 QW-I-IXI 0.000000900 84 I 1.000000900 LW l.QXXDOE-I-Q) 1.000000900 1.01MB“) 1000010900 94 I 0010000900 0.000000900 QWAX) 0000000900 0.000000900 QWEM 104 I 1.000000900 1.000000900 1000000900 1.000000900 LIXXXXDEHX) LWEM 114 I 0.000000900 0.000000900 0.0000900 QIXXXIOOEKX) 0.000000900 0.000000900 124 I LW LWIKX) LWAX) LW 1000000900 LW 134 I 031300244!) 0.000000900 00000900 QW 0. 000000900 0. 000000900 144 I LWEW 0000000900 000000900 0.000000900 0. 000000900 Q 000000900 154 I 1000100900 0000100900 0W4“) QW Q 000000900 Q W §ssasssrszuo S a §§§§§§EEE I‘.’ a 4 -3 inc iifiifitfgi’fitgggrtrg gunned—Hummus P O N an ‘ I SIGNAL NAMES J. I K0010) K0010) K0016) K00'1‘(4) K001'(5) K0016) I 000010900 QW QW 0000000900 0000100900 QW 1.000000900 LWHD LW 1.000000900 1000100900 1.000000900 1.000000900 0.000000900 QW QW 0000000900 0.000000900 1.000000900 0.000000900 000000900 QW 0.000000900 QWEHD l.QXXXXJE-t-Q) 0.0000900 0W QW 0.000000900 QWEI-(D LW QW QW QW QW 0.000000900 1.000000900 000000900 QW QW 0.000000900 QW 1.000000900 0000000900 QW QW 0.000000900 QW LWE‘KX) 0.00000900 QW 0010000900 QW QWEHD LW 0000001900 QW QW 0010000900 0.010000900 1.000000900 000000900 QW 0.000000900 0.000000900 QW 1.000000900 QW 000000900 0000000900 000000900 000000900 1.000000900 QW 000000900 QW 001000900 0.000000900 1000000900 QW QW QW QW 0W 1.000000900 QW 0000000900 QW 000000900 QW 1000000900 QW 0.000000900 QWW 000000900 0W 1010000900 0000100900 000010900 QW 0000000900 QW 1000010900 QW 0000100900 QW 0.00000900 QW 1.000000900 QW 001000900 QW QWKX) 0.000000900 LWEM QW 0.000000900 QW 0000000900 0.000000900 1000010900 0.000000900 0.000000900 QWHX) 0.000000900 QWOE-I-(X) 1.000000900 QW 000000900 QW 0000000900 0.000000900 100000900 QW 000000900 0W 000000900 0W a; SIGNAL NAMES I 1:01:09) KOUT(10) Koo-rm) Korma) 0000100900 0W QW 0000000900 0.00000900 QW . LW 1W 100000900 1.000000900 0.000000900 QW QWM QWOOIEKX) 0.000000900 QW-I-Q) lWE-Ol QW‘KX) 3500000501 0.000000900 1000000901 0.000000900 QMOOQE-HX) QW 5111111190! QW 0000000900 0.000000900 0.000000900 QW 8300000901 QW 0010010900 0.000000900 . . 8W0! QW 0.000000900 0.000000900 QWEM QW 8W0! QW 0.000000900 QW 0000000900 0.000000900 8.5m-Ol 0001000900 QWEKD QW QWEM QW 8W0! QW 0.000000900 QW 0.000000900 0.000000900 8W0! QW 0000000900 0010000900 QW QW-I-(X) 8M0! 0.000000900 QWEAX) 0000000900 0.000000900 0000000900 8W0! 0.000000900 QWEW 0.000000900 QW 0000100900 BM-OI 0.000000900 0.000000900 QW 0.000000900 QW 8W0! QW'KX) 0.000000900 QW QW 0000000900 8M0! 0.000000900 QWE-t-Q) 0.000000900 0.000000900 0000000900 850M-Ol 0.00000900 QW 0.000000900 . 8500000501 0.000000900 0000100900 QWW QW 0000000900 8.5m-Ol 0.000000900 0.000000900 0000100900 0.000000900 QW 8M0! 0.000000900 0000100900 QW QW QW 8W0! 0.000000900 0010000900 QWEHX) QW 0000000900 8W0! 000000900 0.00000900 0W 0000010900 0000000900 8W1 000100900 0.000000900 0000100900 § i I I I Figure 29: Results of Low Gain Sigmoid Neuron Model. 76 Figure 29. (continued). 77 11MB L SIGNAL NAMES I I CNS.) I K001‘(13) K00'1‘(14) K001‘(15) KOUT(16) K0010?) K001' (18) ‘ ' 0 'I 0000000900 0000000900 Q W 0000000900 000000900 QW 4 ! 1.000000900 1010000900 1 .000000900 111me 100000900 1.000000900 14 I 000000900 0.000000900 Q WEI-IX) 0.00000900 QW 0.000000900 24 I 1000000900 LW 1.000000900 100000900 LW LWEHX) 34 I OWN!) QW Q 000100900 0W QW 0000010900 44 I 5WD! SW-Ol SHINE-01 8W1 8M0! SWOI 54 ! 0000000900 QW 0000000900 000000900 QW 0010010900 64 I OWEN!) 1W1 0000000900 9100000901 1W! 1501000901 74 I OWN QW 0W QWE‘IQ) 0.000000900 0.000000900 84 I Q 000000900 1W1 Q 00000900 WE—Ol “HMS-01 lWB-Ol 94 I 0. W Q 000000900 Q 000000900 0011000844!) QW 0.000000900 104 I Q WEI-(X) 15WE-01 Q W14!) 8W0] 1W! 1.5IXXXJOE-01 114 I Q 000000900 0 .000000900 000000900 QW 0.000000900 QW 124 I QW 1500000201 0000000900 8M0! 5.WOE-01 15li 134 I 0.000000900 0000000900 0010000900 QW 0.00000900 0010000900 144 I QW 1W0! QW 8W0! 5000000901 1.5(XXIOOE-01 154 I 0.000000900 Q 000000900 QW'IN QW QWKX) 0010000900 164 I QWOOOEM 1W0! QWE'I-Q) 8W0! 5.WOE~01 15000001501 174 0.000000900 Q WEI-(X) 001000900 0.000000900 0.000000900 QWEHD 184 I QW IMO! QW 8m-Ol 5.IXXXIX)E-01 1.5(XXJO0E-0l 194 I QIXXXDOE-I-(X! Q 000000900 0.00000900 QW 0.000000900 0.000000900 204 I 0.000000900 1500100501 0000000900 8M0! SWINE-01 1500000901 0W 0.000000900 000000900 QW 0W 0.000000900 11MB I SIGNAL NAMES I (NS? I K001'(l9) KOUI‘QO) K001 (21) K001(22) K001‘(23) K001 (24) 0 I QWEM 0000000900 QW 0000000900 0010000900 0000000900 4 I LWOEHX) 1.000000900 LW 1W 1000000900 LWEHX) 14 I 0000000900 QW 0000000900 0000000900 QW QWEW 24 I 1000000900 LW LWW 1.00000900 MINNIE-14!) 1.000000900 34 I QWE-I-Q) 0.000000900 0010000900 0.000000900 QW 0.000000900 44 I LIXDOIXJEM LWEI-(D LWB‘KX) 1.000000900 LW 1000010900 54 I 0.000000900 Q W 0.000100900 Q 00000900 0000000900 QWEW 64 I LWEAXI 1 0100001900 1000000900 100000900 LWEKX) LWEHX) 74 I 0.000000900 0. 000000900 Q W44!) 000000900 0000000900 0.“!!me 84 I 1000000900 1.000000900 1000000900 1.000000900 1.000000900 1000010900 94 I OWEN!) Q WEI-(X) Q 000010900 0000000900 QW QWEI-(X) 104 I LW 1.000000900 LIXXXXXEKX) 1.000000900 HUME-(X) LIIXIOOOEAX) 114 I QWE-Hl) 0.000000900 0.000000900 0.000000900 0.000000900 01!!!)me 124 I 1001000900 1.000000900 1.000000900 LW LWXXIEM l.QXDOOEHD 134 I Q 000000900 0.000000900 0.000000900 QQXXJOOW 0.000000900 0.000000900 144 I LWENX) LW 1.00000900 1.000000900 1.0)0000900 l.QXXXXIEHX) 154 I Q “DODGE-IQ) 0.000000900 0000000900 0.000000900 0000000900 0.(XIXXX)E+(D 164 I 1010000900 1000000900 LW-I-(XI 1.000000900 1.000000900 1000010900 174 I 0.IXXX)00E+IXI 0 010000900 000000900 QWEHI) Q WEI-(X) 0000010900 184 I 1.000000900 LWEM 1.00000900 l.QXXIOOE-I-IX) LWBM LIDOOOOEHD 194 I Q MOB-14!) QWM 0000000900 0.000000900 QWEI-(X) 0.000000900 204 I 1.WE+N 1W4“) 1000001900 MIME-14!) 1.000000900 1.0)0000900 214 I Q 000000900 000000900 000010900 QW Q WEI-(X) QW It! a % 11MB!— 1 (NS) I HHHHHF‘I‘I—‘HH fissasssrs O greasrsraz~ : 3 I”: a reassessssffifiirtrfiie°_ §HH--HHH~ K001'(25) 0000000900 1 .(XXXXXIEHD 0. WEI-(X) 1 .000000900 0. WEI-(K) LWEM QWEM 1.000000900 0.000000900 1.0(XXXX)E+(X) 0000000900 LIXXIOOOEW QWOOOE-I-IX) LOIDOOOE-I-(X) QOIXIOOOEW LIXXXIOOEKXI QIXXIOOOEHX) l.QDOIXIE-I-(X) QWOOOEM 1.000000900 Q WEAK) Q 000000900 K001'(3 1) QWEHXI LWOEHX! QWEKX) LWBM QIXJOOQJEM LIXXXXXIEAX) 0.000000900 1.000000900 QWEHX) 1.000000900 QWEM ”HINGE-14X) QWOOOEAX) 1.000000900 QWEM 1.000000900 0010000900 1001000900 0.000000900 l.QXDOOEM QWEM 1010000900 QWEHX) 0000000900 K001' (32) K001 (27) Q W 1 .W 0. MOE-14X) 1 .000000900 Q WEI-(X) 1000010900 Q W40) 1000000900 0.000000900 1010000900 0000010900 1.000000900 0.000000900 100000900 0.00000900 LW 000000900 1.000000900 QWKX) 1000000900 0.000000900 1000000900 000000900 K001 (33) Q W 1 .W 01!!!me 1.000000900 0.000000900 1.000000900 0.000000900 LWOE‘KXI QWE-HX) 1000010900 0000000900 1.00000900 0.000000900 1.000000900 0010000900 101000900 0.000000900 l.QXXXXE'I-(X) 0000000900 1.00000900 0.000000900 1 .W Q 01000900 SIGNAL NAMES SIGNAL NAMES [(00104) Q W K001‘(28) Q W 1000000900 Q 000000900 1 00000900 000000900 1000000900 QWM 1.000000900 0.000000900 1000000900 QIXIOOOIE+00 MIME-(X) QW LIXXXXXIE-I-(X) 0000000900 1.000000900 0.000000900 1.000000900 QOIXXIOOE+00 1.000000900 QW LWEW 0000000900 1W 0 .000000900 1.00000900 0.000000900 1.000000900 Q 00000900 1.00000900 0 .00000900 1.00000900 Figure 29. (continued). 78 KW) K001‘(35) 0.000000900 1001001900 0000000900 LW 0000000900 1.000000900 Q WEI-(X) 1 .000000900 QWOOOE-I-Q) 1.000000900 0000000900 1.000000900 QWE'I'Q) 1.000000900 0000000900 1.000000900 QWE-I-(X) 1.000000900 OWE-14!! LWEAX) 0.000000900 1000000900 0001001900 1000000900 Q W44!) 111!wa 0.000000900 MINNIE-14X) QW 1.000000900 QIXXXIOOE-I-Q) 1.000000900 QW LIXXXXDEHX) QWEM 1000000900 QWEHX) 1.000000900 QWEI-OO 1.000000900 0.000000900 LWE'HX! 0000000900 1000000900 0000000900 K001'(30) 0000000900 LWEM 0000010900 ”KIWI-2+“) QWEHX) LWEHX) 0.(XJ(XXX)E+00 1.000000900 0.000000900 1.000000900 QIXXXXDE4-00 1010000900 Q WEAK) 1 .010000900 0. WEI-Q) 1.000000900 QQXXXIOEHD 1.000000900 QW 1.000000900 Q WEI-(X! 1.000000900 QW K00'I‘(36) 0. 000100900 Q WEI-IX) 1 .W 0.000000900 1.000000900 QWEH'X) l.QXXXDEI-IX) QWE+N 1.000000900 QIXIOIXXJEM LIXXXXDE'HX) 0.000000900 l.QXXXIOEHX) 0.Q)0(X)OB+IX) ”HIDDEN” QWE-I-Q) 1.000000900 0.0!”me 14!“)me QWEHX) 1000010900 QWEHD 1.000000900 QW Figure 29. (continued). 79 11MB I SIGNAL NAMES I KOUT(37) KOUT(38) K001 (39) KO0T(40) [(001141) K001 (42) I 0 l 0000000900 0000000900 QW 0. W 000000900 QW 4 I l.QXXIOOEHX) 1000000900 LW 1000100900 1W 100000900 14 I 0.000000900 0000010900 QWEKX! 0000000900 QWM 0000010900 24 I l.QXIOIXIEI-(X) l.QXJIXXIE-I-Q) LWEM 101000900 1000000900 1.000000900 34 I QWEKX) 0.000000900 0010000900 0000100900 QW 0.000000900 44 I 1.000000900 1.000000900 1.000000900 1.000000900 1010000900 ”DOME-0Q) 54 I 0.(XXXXXIE+IXI 0.000000900 0010000900 QWHD 0010000900 0000010900 64 I 1001000900 LW 1000000900 LWW LW 1.000000900 74 I QIXIOOIXIEAX) 0.000000900 Q 44!) 0.000000900 QWOB-I-IX) QWEKX) 84 I 1.0(XIOIXIE+(X! 1.000000900 1. 900 1.000000900 1.000000900 LIXXXIDEM 94 I QWEM 0.000000900 0. B44!) 0.000000900 0.000000900 QWEHX) 104 I l.QXJOOOE4-(X) MIME-14!) 1 +00 LW 1000010900 1010000900 114 I 0.000000900 0000100900 0.000000900 QWE-I-(X) 0.000000900 QWOOOEW 124 I l.QIIOOOE-I-IXJ 1.000000900 LWKX) 1.000000900 1.000000900 LW 134 I 0.000000900 0000000900 QW QW 0.000000900 QW 144 I 1.000000900 1.000000900 1.000000900 l.QXXXJOE-I-Q) 1.000000900 1000100900 154 I QIXDOOOEHX) 0000100900 0000001900 QW 0000010900 QW 164 I 1.000000900 1.000000900 LWW 1.000000900 1010010900 1111110054!) 174 0.000000900 QWE‘KX) 0.000000900 QW QWIKXI 0.000000900 LIXXIOOOBKX) 1000000900 1000001900 l.QXXXJOE-I-(XI 1.000000900 l.QXXDOEI-Q) QOQXJOOEI-(X) 0.000000900 Q 00000900 0.000000900 Q WEI-(XI QWOOOEHX) l.QDOOOEI-IXI LWE-I-(X) 1000000900 1.000000900 1WE4G) 1 .QXXIOOE-HII 0001000900 0000000900 0000000900 QW 0000010900 Q 010000900 TIME I SIGNAL NAMES I I (NS) I KO0T(43) K001 (44) K001 (45) KOUT (46) K001 (47) K001 (48) 0 I WAX) 0.00000900 Q W 0W 000000900 QW 4 I 1.000000900 1.000000900 1 .000000900 LIXXXXDEHD 100000900 100000900 14 I QWEKX) QWE-I-(X) 0 .000000900 0000000900 QWENXI 0010010900 24 I 1.000000900 ”WINE-(X) LW‘I-(XI 1.000000900 1.000000900 LWEAX) 34 I 0.000000900 0.000000900 QWE'IN 0.000000900 0000000900 QWEM 44 I LIXXXIOOE+OO l.QWOOEd-(X) 1.000000900 1.000000900 1.000000900 1.000000900 54 I QMXIOOEI-(X) QWEMD 0.000000900 0.000000900 0.000000900 QOIXXXDE-I-(X) 64 I l.QDOWE't-Q) 1.000000900 1.000000900 LIXXJOIXEAX) 1.000000900 1.000000900 74 I 0.000000900 QWEW 0000100900 0.000000900 0000000900 QWEHD 84 I 1.000000900 1.000000900 LWE't-(X) LIXXXIOIBMX) LWE-I-(X! 1.000000900 94 I 0.000000900 QW QW-I-(X) 0000000900 QM“ 0.000000900 104 I 11111100514!) LNOQXJEM 1000000900 LW 1010000900 l.QXXXDEHD 114 I QWEM 0.000000900 000000900 Q W QWE-I-(X) 0010000900 124 I LWOEH'X) l.QXXXXIE-I-OO LWW 1 .000000900 LWEKXI 1.000000900 134 I 0.000000900 0.000000900 QWHXI Q WEI-(X) QWE‘KX) QWEAX) 144 I 1.000000900 1.000000900 LWEHD 1.000000900 1.000000900 l.QXXIOOEM 154 I 0.000000900 0010000900 0.000000900 0.000000900 QWEM QWOEAD 164 I 1.000000900 10!!meva LWM 1.000000900 l.QXXXDB-Q) l.Q!(XJOOEAXI 174 I 0.000000900 0.000000900 000000900 0.000000900 000000900 QWEHX) 184 I l.QXXXIOE-I-IX) MINNIE-14X) “KIM-100 ”INDOOR-14X) 1000000900 1 .QXXIOOB-I-IX) 194 I 0.000000900 MIME-14X) 0.00000900 QWBW Q WEI-(X! Q WEI-(D 204 I 1010000900 1000000900 1.000000900 l.Q!(DOOE-I-IX! 1000010900 1.000000900 214 I QWEM 0000100900 QWE‘I-(X) QW Q 00000900 QW r§““ ES” 113.15 I—— —SIGNAL NAMES ' (NSI) I KOUTO) KOUTQ) KOUTG) KOUT(4) KOU'KS) KOUT(6) I E E s I I E§§§§§EEESEEEEE‘ I I I I I I I I _§_g I I KOUTO 1) KOUTOZ) 22:-extreme I I 5 I I Figure 30: Results of High Gain Sigmoid Neuron Model. 80 aoooooomoo o.oooooo£+oo 0.000000%» onoooooawo omoooaawo 0.0000005 l(iIooooooIatgci) Iiaiooooafl) l(iooooooewo 10' +00 1° +00 1' :83 o. E+00 0: +00 .oooooomoo o.ooooooa+oo o.oooooos+oo TIMBI gffliirtrfixtg Ktfifii fifiifitfifi §§§§E§ SIGNAL NAMES I I (NS) I KOUTOB) K0011“) KOUT (15) KOUTOG) KOUTO7) KOUTOS) I QWEHXI o.oooooo£+oo o.ooooooa-oo 090000015400 DWI-(X) QWE-o-m 1300000300 1.0000005+00 Loooooos+oo 1.ooooooa+oo Looooooa+oo l.QXJOIXIE-I-(X) QWEd-(XI o.oooooor-:+oo QWEM o.oooooas+oo o.oooooos+oo QWEKXI 1.moooo£+oo LIXXXXJOBm 1.ooooooE+oo Looooooe+oo l.QXXIOOEm 1.ooooooE+oo o.ooooooa+oo o.oooooos+oo o.ooooooa+oo Qmm 00000009300 o.ooooool-:+oo QWERXI o.ooooooE+oo 09000001900 woooooaoo QWEHX) QWEHX) QWEKD QWEI-(l) QWE'I-(X) LWIEM o.oooooos+oo QWEW o.ooooool=.+oo o.oooooos+oo QWAXI Loooooomoo QWOOOE-I-(II QWEI-(X) o.oooooon+oo QWE-o-m 0000000300 LWM o.ooooooa+oo QNOOQIE-o-(X) QWE'I-w o.ooooooE+oo QWM LW-o-m QW 00000001900 ooooooomoo o.owoooI-:+oo o.oooooos+oo LW-I-(D QQXXJOOE'HXI o.oooooos+oo o.oowoo£+oo o.ooooooe+oo o.oooooa-:+oo LW o.ooowon+oo 03000005300 QWEHX) 0900000900 o.oooooos+oo LWW QWE+OO QQXXJOOEAX) o.oooooos+oo o.ooooooa+oo o.oooooa=.+oo LWEHX) 0.0000(an o.oooooos+oo QMXIOOEM o.ooooooa+oo o.ooooom=.+oo LW o.ooooooe+oo o.ooooooE+oo o.oooooor-:+oo omoooomoo oooooooaoo LWOEM 00000005400 03000005400 QW 0mm o.oooooua+oo LW 0900000300 0.00000054-00 I SIGNAL NAMES I KOUT(19) KOUTm) KOU'I' (21) KOUTC22) KOU'I'(23) KOUTQA) QWEM o.oooooos+oo QWE-o-m 0W amour-2m o.ooooooa+oo 10000001900 10000001900 Loooooomoo 10000001900 11100000300 LIXDOIXIEAX) QWEI-Q) o.ooooooE+oo o.oooooos+oo onooooo£+oo QW QWEM 1mm Loooooos+oo Locomomoo l.QXIOIXE-I-m LW Loooooomoo QM“ 0.000000134-00 09000001900 o.oooooo£+oo QW o.ooooooE+oo IWEM l.QXXXIOE-o-(D Loooooomoo Loooooos+oo MINDS-RX) Loooooomoo QWEM Qmm QWE‘KX) o.oooooo£+oo QQXXJOOEI-(X) o.ooooooa+oo o.oooooos+oo QWEW QMXXJOE-O-(XI omoooomoo LW 0.00wooE+oo QWM QW 09000003410 00000005400 LW o.ooooooa+oo QWEd-(XI o.oooooors+oo QWEd-(l) o.ooooooE+oo 10000005400 QWEM QWE-I-(X) o.oooooos+oo QWBW QW'I-(XI 1.ooooooE+oo 0.0000005+oo o.oooooos+oo o.ooooooa+oo o.oooooaa+oo o.oooooos+oo Loooooo£+oo omoooomoo o.ooooooa+oo QWEM QWM QW LWBM o.oooooos+oo o.oooooor-:+oo o.oooooos+oo o.ooooooe+oo 0.00M” Loooooomoo 0.(XX)000E+Q) o.omooor.+oo 09000005400 ammo o.oooooos+oo Looooooa+oo QWEHX) QWEM o.ooooom=.+oo 0900000900 (100000013400 10000001900 00000001900 00000005300 ooooooomoo omoooa-zwo QW 1900mm QW Figure 30. (continued). 81 TIME I Figure 30. (continued). 82 SIGNAL NAMBE I I (NS) I KOUTQS) KOUI‘OG) KOUT(27) KOUTQS) KOUT(29) KOUTGO) 0 I amouaoo 0.0mm Q W 0W 0W aoooooomoo 4 I Lamoswo LW 1 .W Looooooe+oo Locoootmoo LWEHXI 14 I omnooomoo 0000000900 Q ooooooa+oo QOQIOOOEM QWOOOW QOOOOIDEW 24 I 10000001900 Locomwo 19000001900 LWAX) l.QXXXXJEm LWEM 34 I o.ooooooa+oo QW 09000001900 QWd-(XI QW 0000000900 44 I LWE'IN Looooooa+oo LW 10000001900 LW LWEKX) 54 I QWEM o.omoooe-oo oooooooewo o.oooooos+oo QW o.ooooool=.+oo 64 I MIME-04X) LW 1.000000£+oo l.QXXXXE-I-(X) kW LWM 74 I o.oooooos+oo QIXIXIOOEAXI o.oooooos+oo o.oooooos+oo 0.0(XXXXIE+(X) o.oooomE+oo 84 I o.oooooo£+oo LW oooooooaoo o.oooooaa+oo QWEi-N 09000005400 94 I o.oooooo£+oo Loooooomoo o.ooooooa+oo o.ooooooe-oo 0900000300 09000001900 104 I o.oooooox=.+oo 1.000000%» o.oooooa=.+oo QWEM o.oooooos+oo o.oooooon~:+oo 114 I Q MOB-(X) Looooooaoo 09000003400 o.oooooos+oo o.ooooooa+oo o.ooooooa+oo 124 I Q WEI-(X) 1.oooooos+oo ammo QW 09000001900 o.ooooooE+oo 134 I Q oooooom-oo LWOEW o.oooooos+oo o.ooooooa+oo o.ooooom-:+oo o.oooooos+oo 144 I Q WEI-(X) Loooooomoo o.oooooma+oo o.oooooo£+oo Q ooooooa+oo QWE‘KXI 154 I QW Looooooewo omoooumo comma-mo Q ooooooem QW TIME I SIGNAL NAMES I I KOUT (31) KOUTGZ) KOUT (33) KOU'I' (34) KOUTGS) KOUT (36) I 0 I QWE-rm omooooaoo Q W 0W 0mm uooooooa+00 4 I kWh-(XI MINDS-om LWEM woooooewo moooooaoo Looooooe+oo 14 I ooooooomoo QWEHXI Q ooooooE+oo o.ooooooa+oo QWEHX) QWEHXI 24 I l.QXXXXIE-tm 1000000900 10000001900 hmm Looooooem 10000001900 34 I QWEHXI QW QWEAX) 0900000900 0000000900 00000001900 44 I l.lemE-KX) LW 1.000(XJOE-I-(X) 1.ooooooa+oo LW LWEM 54 I QWEAXI QW o.ooomoa+oo o.oooooos+oo o.omooor-:+oo QWE‘I-(XI 64 I Loooooos+oo LW 1 .ooooooswo Loooooamoo Looooooe+oo LWE-rm 74 I 0.000000124-00 QWEFQ) Q WEI-(X) 00000001900 o.oooooos+oo QWEM 84 I LWE‘KXI Loooooon+oo 1WE+QJ LWMXI 1.oooooor-:+oo Looooooswo 94 I QWEvI-(XI 00000005400 Q 0000008400 0000000900 o.owoooa+oo QWE‘HXI 104 I o.ooooooa+oo omoooomoo o.oooooaa+oo 0000000300 QWEHX) LWEHD 114 I QWEHX) 00000001900 o.oooooaa+oo o.oooooos+oo 0 .ooooooewo 10000001900 124 I QW o.oooooma+oo 0.000an400 0.00000054-00 0 “WEI-(X) LWOEM 134 I o.ooooooa+oo o.ooooooa+oo omoooomoo QQXDOOM Q WEI-(X) 1 .ooooooawo 144 I o.ooooooE+oo omooooswo o.oooooo£+oo QWEHX) OWE-(XI 1.00000054-00 154 l QW oooooooewo o.oooooos+oo ooooooom-oo 0mm 1 .oooooomoo TIMBI SIGNAL NAMES I I (NS) I KOUT (37) KOUTGS) Km 3001140) K0011“) KOU'I'(42) I 0 I Q WEI-(l) omoooomoo Q W QW omoooomoo ooooooom-oo 4 I 1 .ooooooa-oo MIME-om 1 .ooooooawo LWEHX) woooooewo Locooooem 14 I OWEN QW Q ooooooewo 00000005400 QW o.ooooooa+oo 24 I 13000001900 momma-mo 1mm Loooooomoo Loooooomoo moooooewo 34 I o.oooooo£+oo o.oooooo£+oo Q W44!) o.ooooooE+oo o.ooooooa+oo QWE'IN 44 I moooooewo LWXIBM Loooooomoo LW-Im l.QXXXXIE-I-(X) LWEM 54 I OWEN!) o.oooooo£+oo Q momoo 09000001900 QW o.ooooooa+oo 64 I LWEM LW Loooooosm 1.ooooo(£+oo 10000001900 LWXXIE-I-m 74 I QWE'IM QW o.ooooooa+oo omooamoo 0000000300 o.oooooos+oo 84 I 1MB“) 1.ooooooa+oo MINNIE-m 1900000900 Loooooomoo LWEAXI 94 I OWE-rm QW 09000001900 omoooaswo QW QWEd-(X) 104 I LW Looooooam 1.ooooo(£+oo 1.oooooor-:+oo l.QXXXDEHD Looooooa+oo 114 I Q 0000005400 04000000900 o.oooooc£+oo (10000001900 0.0000(an QWEHD 124 I Q W o.ooooooe+oo o.oooooos+oo Loooooosa-oo o.oooooos+oo o.oooooos+oo 134 I Q MOE-HI) ooooooomoo uncommon LW 09000002400 Qm-o-(II 144 I Q WEI-(XI omoooomoo 0000mm LW omoooomoo QWEHD 154 I omoooomoo o.ooooooa+oo 0W LW omoomewo QW TIME I SIGNAL NAMES I I (NS) l KOU'I‘(43) KOU'I‘(44) KOU'I' (45) ICOUT(46) KOUT(47) KOU'I‘(48) I 0 I 0.00000054-00 0mm Q W 0W omooooa+oo QW 4 I Locomoewo Loooooomoo 1 .W mooooomoo moooooswo LWEHX) 14 I 09000001300 Q W Q WEI-(XI o.oooooa-:+oo Q W 0000000300 24 I moooooewo 1300000900 Looooooa+oo Looooooaoo mooooomoo 1.ooooooa+oo 34 I o.ooooooa+oo Q mm 0.000me o.ooooooa+oo o.oooooos+oo o.oooooor='+oo 44 I mooooomoo 1.000000%» Loooooos+oo LWE‘I-m Loooooomoo 10000001900 54 I o.ooooool-:+oo QW o.ooomoa+oo o.ooooo(£+oo QW o.oooooox-:+oo 64 I 19000001900 l.de-m MIME-(X) l.QXIOOOE-om 1.ooooom~:+oo Loooooomoo 74 I o.oooooor~:+oo 09000005410 Q ooooooe+oo o.ooooom=.+oo QW QWEKXI 84 I 10000001900 LWW LWIEM LWM Loooooos+oo Loooooomoo 94 I QWEd-(X) o.owooos+oo Q W844!) QWW 0.0000(an QWE‘KX) 104 I 1.ooooooa+oo Lomooomoo LWM 1“!me LWE-I-(X) Loooooos+oo 114 I o.oooooos+oo 09000001900 09000001900 QW o.oooooos+oo 0.00000054-00 124 I Loooooos+oo 1.ooooooa+oo Loooooos+oo hm 1.oooooos+oo l.QXJOOOEflII 134 I o.ooooooa+oo o.oooooos+oo o.oooooos+oo QW QWEM QQXXJOOEd-(XI 144 I l.QXXIOOE-rm o.ooooooe+oo o.ooooooa+oo QWEHX) o.ooooooa+oo QWEM 154 I 10000001900 000mm o.ooooom+oo QW o.oooooo£+oo o.ooooooa+oo Figure 30. (continued). 83 TIMEI I (NS) I KOUTO) I I é Imwooswo 1.000000154-00 LWE-I-(X) LW MIME-km LWEM MIME-rm ”HIDDEN” 1000000900 MIME-km Loooooomoo IMHO-(XI 1.WE+N 19000002400 Loooooomoo zoom) QW LW ammo MIMI-(X) uncommon omoootmoo o.ooooo(£+oo Qm-rm KOUTG) Q W 10000001900 0 .ooooomawo o.oowooe+oo QW QW ammo QW o.ooooooe+oo QW 0W 0.0000084» 09000005400 omoooamo o.oooooaa+oo 09000003400 SIGNAL NAMES xoum) o.ooooooa+oo Looooooewo QW QW o.ooooooa+oo QW o.ooooomE+oo uncommon o.ooooooE+oo QW QWM o.ooooooa+oo QW o.ooooooa+oo QW QW x001!» QW MIME-H!) o.oooooos+oo QWEI-w ooooooomoo o.oooooos+oo 0W omoooomoo 00000002400 0900000900 o.ooooooe+oo QW 0mm omoooumo onooooaawo 0mm KOUT (6) QW 1 .ooooooa-m Q 000000500 Q WEI-(X) Q 0000005400 QW o.oooooos+oo EEE’E“ §E§§E§::::::22:. 1W omoootmoo QW 0W SIGNAL NAMEE I KOU'l'(8) KOUTG) KOU'I‘OO) Q W 1 .W Q oooooomoo LW‘IN LWM Looooooa+oo LWEM Loooooos+oo LWBM 1 0000005400 1 9000003400 Loooooomoo momma Looooooa+oo 1.oooooa=.+oo 1W4“) 11111113441) Is I KCXJTO 1) 0mm tmfll) o.oooooos+oo o.ooooooa+oo omoooomoo QWHX) ommooswo omoooomoo o.oooooos+oo o.oooooa.=.+oo ammo o.ooooooa+oo QW QW o.ooooooa+oo aooooooawo uoowooamo KOUI'OZ) QW LW 0900000900 09000001300 omoooomoo Q ooooooa+oo omooooewo 0 “WEI-(X) 00000001900 omoooomoo uoooooomoo ‘O I 0 9000001900 Q oooooo£+oo QWEKX) o.ooooooI-:+oo QWEHX) QWEM o.ooooooa+oo QWE-I-(X) QWE-I-(X) o.oooooos+oo QWEM QWEHX) o.omoool.=.+oo QWEd-w QW zefifiifitfifi Figure 31: Results of Binary Response Neuron With Capacitance. 84 MI Figure 31. (continued). 85 SIGNAL NAMES I I CNS) I KOUI‘(13) KOU'I‘O4) KOU'I'OS) KOUTO6) KOU'I'(17) KOUI'(18) I 0 I QWEM 09000001900 Q W onoooooa+oo o.oooooola+oo o.ooooooa+oo 4 I monooomoo 14000000900 1 .oooooom-oo 1 omoooaoo mooooos+oo Loooooos+oo 14 I QWEM QW Q oooooos+oo Q ooooooswo ounooomoo 0.0000005+oo 24 I 1.oooooos+oo LWW Looooooa+oo 1.oooooa-:+oo 1.0moooa+oo 10000001900 34 I 0.0000005+00 QW o.oooooor-:+oo Q oooooaa+oo Q W 00000005400 44 I QWEi-(XI o.ooooooa+oo mammal-300 Q oooooaa+oo Q WEN!) 00000001900 54 I OWE-Kl) QW 0000000300 1.oooooa=.+oo Q ooooooewo o.ooooooE+oo 64 I o.oooooos+oo o.ooooooz-:+oo ammo LW QW o.ooooooE+oo 74 I o.moooo£+oo o.ooooooa+oo ammo mooooaawo 0.0000005+oo o.oooooor-:+oo 84 I omooooaoo o.ooooomz+oo omowoswo LWI-m QW o.oooooos+oo 94 I o.ooooooE+oo o.oooooos+oo o.ooooooa+oo LWM QW o.ooooooE+oo 104 I o.oooooon+oo o.oooooo£+oo o.oooooaa+oo LW 0900000900 00000003400 114 I o.ooooooa+oo omooooawo QWM 1.00000024-00 0000000900 0000000300 124 I o.ooooooa+oo QWEI-Q) momma-“.400 l.QXXXXIEI-(X) Qm-I-m QWEKX) 134 I 00000003400 o.oooooos+oo cocoons-poo LW o.oooooos+oo QW 144 I QWOOOEHXI 09000001900 09000005410 momma-00 omoooo£+oo o.oooooos+oo 154 I QW 0W oooooouawo LW 0mm QW TIME I SIGNAL NAMES I I (NS') I KOUT(19) KOU'I'QO) ROW (21) KOUT (‘22) KOU' 1123) KOUT (24) 0 I monomer-mo omooooa+oo QW QW 0mm QW 4 I 1.00000054-00 moooooa+oo LW moooooa+oo mooootmoo Loooooos+oo 14 I 09000001900 09000002400 o.ooooooa+oo o.ooooooa+oo QWEM 09000001900 24 I 1.oooooos+oo LW 1900000900 l.QXXXXE-I-(X) LW Looooooewo 34 I o.ooooooa+oo o.ooooooa+oo o.ooooooa+oo QW'IN ooooooomoo o.ooooooe+oo 44 I LWE+OO LWEAX) Loooooomoo moooooewo LW Loooooomoo 54 I o.oooooos+oo 0000000900 QWENX) QOIXIOOIEM QW QWE‘I-(X) 64 I o.oooooor-:+oo 00000001900 omoooomoo omoooomoo LW QWd-(XI 74 I 09000001900 o.ooooooa+oo onoooooaoo o.oooooos+oo LWHX) 0900000900 84 I 0900000900 QWE-I-m QWEHI) 00000001900 1111me 00000005430 94 I o,oooooos+oo QW‘o-m ooooooomoo o.ooooo(£+oo Locooooswo o.ooooooa+oo 104 I QWEAXI QWEI-N o.ooooooa+oo QW 19000008400 omooooam 114 I QWEHX) o.oooooos+oo o.ooooooa+oo QW 1.ooooooe+oo QWEM 124 I QWOOOE-I-(XI o.ooooooa+oo o.ooooooa+oo QW Looooooa+oo o.ooooooE+oo 134 I o.oooooora+oo o.oooooos+oo ammo o.oooooox~:+oo LWE‘I-(X) QW 144 I 090000013400 o.ooooooa+oo o.ooooooE+oo 0.000000%» 10000001900 o.oooooos+oo 154 I o.ooooooa+oo 0W 09000005400 QW mooooomoo QW TIMEI SIGNAL NAMEE I I (NS') I KOUT(25) KOUTGG) KOUT(27) KOU'I'OB) KOIJ'I’(29) KOU'I' (30) 0 I oooooooa+oo 0000mm Q WEI-(X) o.oooooomoo omooooewo QW 4 I 19000001300 mooooomoo 1.a)ooooe+oo moooooewo wooooomoo LW 14 I QWE-I-(XI o.oooooos+oo Q ooooooE+oo 0.0000008+oo QW o.oooom£+oo 24 I 1.(X)00(X)E+w LWEM 1.oooooos+oo Looooooawo LW Loooooomoo 34 I QWEi-(X) QW Q WEN!) Q ooooooE+oo o.oooooon+oo o.ooooooE+oo 44 I 1.oooooor-:+oo 1 .WEW 1.ooomoa+oo LIXXXXXE'I-m 10000001900 1 .WEM 54 I o.oooooor-:+oo Q W Q 000000900 Q ooooooe+oo QW Q ooooooa+oo 64 I LWEKXI 1 .ooooooewo 11!me mooooomoo MIME-rm Loooooomoo 74 I QWEKX) Q 0000003400 o.ooooooa+oo o.oooooos+oo QW Q 0000001900 84 I o.ooooooe+oo QWEM o.oooooos+oo o.oooooos+oo 00000001900 0 .WEKII 94 I omooooswo Looooooawo oooooooswo 0000000900 Q WEI-(XI 0 .WEAX) 104 I o.ooooooza+oo 1000000300 omooooewo QWE'I-(XI Q WEI-(X) 0000000900 114 I QWOOOEND LWE-I-m QWEI-M o.ooooooE+oo Q ooooooewo QWEHX) 124 I QWEAX) 1.ooooooa+oo o.oooooaa+oo QWEHXI o.ooooooz-:+oo o.ooooooa+oo 134 I QWOOOEHX) LW o.ooooooa+oo QWE-o-(XI o.ooooooa+oo omoooomoo 144 I o.oooooo:—:+oo mooooomoo o.oooooaa+oo MIME-om oooooooawo QW 154 I QWEHX) 1mm 0mm QW QWd-(D 0.00000054-00 TIME I SIGNAL NAMES I I (NS) I KOUT(31) KOUI‘(32) XOUT (33) W) KOUI‘OS) KOUTG6) I 0 I o.ooooooe+oo QM“ QW 090mm onoooormoo QW 4 I Loooooom-oo LWEM LWE+QI 1W woman-mo LW 14 I OMB-(X) QWEHXI 09000005430 o.oooooo£+oo QW 09000001900 24 I kWh-(XI LW LWEM Looooooawo LW Loooooomoo 34 I OWEN!) Qme 00000001900 0000000900 QW 0000000900 44 I LOWER!) 11!!!)me Looooooa+oo 1000000500 LW l.QXXXXIE-o-m 54 I 00000001900 QW 00000005400 omoooamo QW QWEM 64 I IWEKI) Looooooa+oo Looooooa+oo 1.ooooou-:+oo Locooooa+oo MIME-om 74 I o.oooooos+oo QWEAX) Q WEI-(X) o.oooooos+oo QW 0000000900 84 I 1.oooooor-:+oo 1.00000054-00 MIME-om Loooooos+oo LW Loooooos+oo 94 I QWEI-Q) Q 000000300 o.ooooooa+oo 0900000900 QW ammo 104 I QWOOOE-I-(XI Q WEI-(XI o.ooooooe-oo ooooooo5+oo 00000001900 1.0000005m 114 I QWOOOEd-(XI Q oooooomoo o.oooooos+oo QW QWE-I-(XI Loooooomoo 124 I QMOOOEHX) 0 .oooooomoo o.oooooaa+oo QW onooooomoo MINNIE-m 134 I QWOOOFA-(XI o.oooooos+oo o.oooooa=.+oo QWE‘I-(XI 0.IXXXIQIE+(X) 1.oooooos+oo 144 I QWE-KX) o.ooooooe+oo o.ooooooa+oo QWEi-(XI Q WEI-(XI 1300000300 154 I QWEM o.ooooooa+oo 0W QW ammo hm“) Figure 31. (continued). 86 iiifiififsssssssszs-E—I I r =:s_§_§ fil‘iitffi §E§§E§ Figure 31. (continued). 87 SIGNAL NAMES I KOUT(37) KOUI'(38) KOUT (39) KOUT(40) [001141) KOUT(42) QWE‘I-(XI ooooooomoo QW 0W o.ooooo<£+oo QW LQXXIOOE‘o-m Loooooom-oo LW 1W mooooomoo LW OWE-Q) 0.00000054-00 o.oooooos+oo o.oooooa-:+oo 0.(XXX)OOE+OO 000000015400 l.QXIQXJE-I-(X) Looooooa+oo Loooooos+oo Looooooa+oo 1.ooooool-:+oo LWE-I-m QWEKXI QW o.wwooE+oo 0900001300 QW o.oooooos+oo LIDOOIXIEM LW moooooawo 1 .ooooormoo Loooooomoo l.QXXXXIEI-(XI 00000001900 QW o.oooooon+oo Q oooooos+oo QW QWE‘KXI LIXXIOCDE-I-m l.Q!XXXIE-I-m 19000001900 1 .oooooaa-mo Looooooawo MIME-(X) WEI-(X) QW oooooooawo Q oooooomoo o.oooooo:-:+oo QWE'IN Loooooomoo l.QXXXIOE-KX) LIXXXXXIEM l.Q!)OOE-om Looooooa+oo hm!” o.ooooooa+oo QW o.ooomos+oo o.oooooaa+oo o.oooooos+oo QWEKXI 1 .MOEM 1000000500 1W Loooooow mooooomoo 1.0000(an Q ooooooa+oo omooooswo o.oooooaa+oo QW 09000002400 QW Q oooooo£+oo o.ooooooa+oo ammo LOWE-rm o.ooooooe+oo 0300000900 Q WEI-(X) o.ooooooa+oo o.oooooa-:+oo LW QWEd-m QWEW QWE-I-m omooooaoo o.oooooua+oo LWEM Q oooooomoo 03000001900 OW 0mm OW LW oooooooawo QM“) I SIGNAL NAMES I XOU'I'(43) K0011“) KOUT(4S) KOUT (46) KOUT(47) KOUT (48) o.oooooor~:+oo o.ooooooa+oo Q W OW omooocmoo QW 1.ooooooI-:+oo mooooomoo 1W 1W moooooewo l.QXXXIOEm o.oooooos+oo QW omoooomoo o.ooooooa+oo QWEM QWEKX) mooooomoo LW 1W Looooooewo 10000001900 10000005400 QWEi-(X) QW onoooooewo 0900000900 o.ooooooa+oo o.ooooooa+oo LWEM 1 .ooooooam IWEW moooooewo LW Loooooomoo o.ooooooE+oo Q WEI-(XI 09000005400 o.ooooom-:+oo QWEM QWEI-Q) 1.0(XIOQIE-I-(X) 11!me Loooooomoo l.QXIOOIE-I-(X) l.QXIOMEI-m 1.oooooos+oo QWEd-(X) o.ooooooa+oo ooooooos+oo o.oooooo!-:+oo o.oooooos+oo omooooewo Looooooewo LWEAX) mooooomoo 1.oooooaa+oo 1.00000054-00 10000001900 QWEHXJ o.omoooa+oo oooooooam o.ooooom-:+oo QW onoooooa+oo l.QXJOOOE-I-(X) moooooawo 1.ooooom-:+oo 1.oooooo£+oo l.QXXImE-o-(I) l.Q!)(XIOEm QWEHXI onoooooa+oo o.oooooos+oo QW QQX'IOWEHX) 03000005400 1.00000054-00 looooooawo 10000005400 Looooooa+oo l.QXXXXIEd-m l.QXXXIOE-I-m QQXXIOOEi-W 00000005400 ooooooos+oo 0900000900 QWEM o.oooooos+oo 1.00!an 0300000900 ooooooomoo QWE-I-m QWEW 03000001900 1W omoooomoo ammo QW QWEHXI 00000005400 113:3 I SIGNAL NAMES I (NS') I KOUI‘O) KOUT(2) KOUTG) KOUT(4) KOU'I'(5) KOU'I‘(6) OI onoooooswo OW QW o.oooooos+oo QW o.oooooos+oo I ISM-01 ISM-01 ISM-OI 7M~Ol 75WE01 7WE-01 10000001900 oooooooswo 0 .W O. W Q W4!) Q W 1 .WXXIE-I-(X) 0mm omoooomoo Q WEI-(X) omoooos+oo Q W LWEHX) 0.000me QW o.ooooooa+oo o.oooooos+oo QWEHX) l.QXXXXIE-I-m o.oooooaa+oo 0W 0000000900 QWEIN QW LW omoooosm o.oooooos+oo Q WEI-(X) o.oooooos+oo QW LW o.oooooa-:+oo QW Q W QWEM 00000009400 LWEW ammonia-+00 ooooooos+oo Q W QWM 030000013400 Looooooa+oo 0W OW Q WEI-(X) 00000005400 QW LW omooouawo 0000000500 QW o.oooooos+oo QW looooooawo QW o.ooooo(£+oo o.oooooo£+oo o.oooooaa+oo QW 1.ooooool~:+oo o.oooooos+oo o.ooooool:-.+oo o.oooooos+oo 0900000900 o.oooooos+oo 1.0000005+oo QW omoooaawo QWE'HX) Q oooooos+oo o.oooooor-:+oo MIME-04X) QW o.oooooo£+oo QWE-I-(X) Q ooooocmoo 0.(XXXXJOE+(X) 1.oooooo£+oo QW QMW 09000001900 0 .ooooowwo OWE-(X) 1.oooooos+oo QW o.oooooa~:+oo o.ooooooa+oo O .oooooomoo QW 10000001900 QW o.oooooos+oo QWEHX) 090000015400 o.oooooos+oo 19000001900 QW o.oooooos+oo o.oooooos+oo o.ooooooI-:+oo QQXIIXIOE'I-(X) Loooooos+oo QW omoooamo o.ooooooE+oo 09000005400 03000005400 10000001900 QW o.oooooa-:+oo o.ooooooE+oo o.oooooa-:+oo 0.00000054-00 1W4!) QW Q oooooamo 0900000900 o.oooooox-:+oo o.oooooos+oo lsoooooswo QW ammo QW o.oooooa.=.+oo OW §§§§§§E§§§§§g§ggggg§. :3 A» SIGNAL NAMES I K001“) K0070) KOUT (10) KOUTO I) KOUI‘(12) o.ooooool=.+oo 0mm 0. W Q W 0900mm QW 1500000501 7W1 ISM-01 ISM-01 7W1 7500000501 0000000900 QW OW Q ooooooa+oo QW O .oooomewo m-Ol OW swam-01 Q oooooos+oo ISM-01 Q oooooos+oo OWEN!) QW momma-01 Q WEI-(XI o.oooooos+oo Q W 09000001900 QW SWE-OI QWOOOE-I-IXI QWE-IQ) o.oooooos+oo omoooomoo QW 7500000501 omoooos+oo 0900000500 00000005400 o.oooooo£+oo o.oooooos+oo LIME-01 QW 0.000000st o.oooooos+oo 00000005400 QW 7500000201 ooooooom-oo ooooooos+oo QWE-o-Q) 00000001900 QW ISM-01 o.oooooom o.oooooos+oo o.ooooooa+oo QWE-I-(X) o.oooooos+oo ISM-01 QWEd-N o.oooooor-:+oo QWE-I-(X) I-I I ssssgtr§:.o_ 104 I QWEHD o.oooooos+oo ISM-01 QWE-o-Q) o.oooooos+oo QW 114 I QWEI-Q) o.oooooos+oo ISM-01 o.oooooos+oo o.oooooos+oo QOIXXXIOE-I-(XI 124 I QWEHX) ooooooomoo ISM-OI o.oooooos+oo QWE-I-(X) QW 134 I QW OWN!) 7500mm o.oooooos+oo QW QW 144 I o.oooooos+oo omoomswo ISM-01 o.oooooos+oo QW omooooa-oo 154 I o.oooooos+oo o.oooooos+oo vsooooaa-m o.oooooos+oo 0.000000154-00 o.oooooos+oo 164 I o.ooooooa+oo o.oooooos+oo ISM-01 QWEHX) QW QW 174 I o.oooooos+oo OWE-«(XI ISM-01 QWE-KX) 0.000000%!) 0.00mooE+oo 184 I Q W 000000012400 LIME-01 omoooos+oo QW QW 194 I Q WEI-(XI 0mm ISM-01 09000002400 doom-+00 o.oooooos+oo a): : QW QWE‘KX) ISM-01 Q WEI-(XI o.oooooos+oo o.oooooos+oo QW 0W ISM-01 omooooswo o.oooooos+oo onooooomoo Figure 32: Results of Low Gain Ramp Response Neuron With Capacitance. 88 §§§§§§§§§E§93393t2§=:3_3 I‘.’ ; ;.° 3 §§§§§§§E§§E§ffifltr§ v- [00103) 10.11114) omoooosm 7W1 QW SW1 o.oooooos+oo MOI QW 2W1 Q W Q oooooom-oo Q oooooos+oo Q WEI-(X) 0900000300 0900000300 09000001900 o.oooooos+oo o.oooooos+oo QWEAX) 090000013400 osooooos+oo 0.000000st omoooos+oo 0mm omoooomoo ' SHINE-01 SIGNAL NAMBE J. KOUTOS) KOUTO6) K0011”) KOU1'(18) Q W OW 0W Q W ISM-01 ISM-01 1500000501 0000000900 uncommon QW ooooooos+oo SWINE-01 1W! smoooos-m soooooos-on uncommon o.oooooaa+oo ooooooos+oo o.ooooooE+oo ISM-OI SWINE-01 SW-Ol ”WE-01 o.ooooooa+oo o.oooooaa+oo o.oooooor-:+oo 0000000300 0000000900 1000000501 ISM-01 WE-Ol o.oooooos+oo ISM-01 o.oooooos+oo o.oooooos+oo o.oooooos+oo 1mm W401 QWE-I-Q) 09000002400 “HEM-01 QWEHD ammo 1W] o.oooooas+oo ISM-OI QWM ISM-01 o.ooooooe+oo ISM-01 090000013400 ISM-OI QW 7W1 090000th 7W1 omooocmoo 7W1 o.oooooaa+oo 7W1 omooooseoo ISM-01 ammo 7W1 OW 7W1 SIGNAL NAMES I KOUI'(21) Km) X00103) KOIJ1‘(24) Q W OW 0mm QW ISM-01 ISM-01 ISM-01 7W1 O. oooooos+oo QWEW QW 0000000300 5. MIKE-01 5. WIDE-01 EMS-01 5.(XXXXXIE-01 Q WEI-(XI Q oooooas+oo O. oooooos+oo Q WEI-(XI 1000000901 10000001501 5 .WE-Ol 5 .(XXIDOE-Ol omooooswo o.oooooo£+oo QW o.oooooo£+oo “HIRE-01 5.QX)OOOE-OI QWE-Ol 5.(XXXXXIE-Ol o.oooooos+oo o.ooooooa+oo QW 090000015400 1W0] QWEOI 5.(XXXXIIE~01 QWE-Ol 0.000000st omoooomoo o.oooooos+oo o.oooooos+oo 5 .(XXXXIOE-Ol QWE-Ol someone-01 Q oooooaa+oo Q W omooooswo ammonia-+00 ISM-01 zsooooos-ox someone-01 W01 Q oooooos+oo ISM-OI o.oooooos+oo ISM-01 o.oooooa=.+oo ISM-01 o.oooooos+oo ISM-01 OW o.oooooos+oo M01 QWE‘I-Q) 2500000301 o.oooooos+oo LIME-01 ooooooos+oo LIME-01 ooooooos+oo Figure 32. (continued). 89 LIME-01 SWE-Ol WE-Ol SOME-01 LIME-01 LWE-Ol ISM-01 SWE—Ol 1500000501 Q oooooos+oo lSWE—Ol Q WEI-(XI WE-Ol o.oooooos+oo 2.5(IXXJOE-Ol o.ooooooa+oo WE-Ol QW I 2§§iiiiiisafirrrer:2:::g-§ 3-; I: & §§§§§§§§§E§39§35¢trfizeo 1P KOUTQS) m [001(27) 0000000900 KOU1(31) 000000m-:+00 7W0! 000000013+00 SHINE-01 00000005400 5000000501 Q WEI-(X) SIGNAL NAMEE I xoumx) tom-(29) KOUTGO) OW QW OW OW QW 7W1 7W1 IMO] SIGNAL mums g m tomes) xom‘cu) £00165) was) 0W QM!” OW OW QW 7500000501 7m-Ol 7300000201 7500000501 7500000501 000000aa+00 0mm 0.00moos+00 5000000501 5000000501 50000001301 0000001900 00000005400 0000000300 5000000501 5000000501 5000000501 QW QW QW 5000000501 5000000501 5000000501 Figure 32. (continued). 11MB I SIGNAL NAMES I I 018') I K00 1137) K0011”) K0011”) K001140) K0011“) X00132) QW omoooos+oo QW 0W 0W QW 7500000501 7500000301 1.5000050: 1500000301 ISM-01 7500000001 0000000300 0.0000008+00 0000me 00000001900 000000015+00 SW01 SWI SW01 SW01 SW01 3'“: gserextrx §§§§§E§§E" 30------" 8 a. 0.000000£+00 SW01 QWEd-(X) SWE01 QWEM SWE01 QWE‘I-(XI SWI 00000001900 SWOE01 000000015400 SNOOE01 QIXXXJOOE-I-(X) 5000000501 QW SWE01 QWEHX) SWE01 QW QWEM o.oooooa=.+00 0.000000£+00 0.000000£+00 SW01 SWI SW01 SW01 0.0000003+00 00000002+00 QW 0.0000005+00 SW801 5.0000002-01 SW01 SW01 0 WEI-(II 0000001900 QW 0000000£+00 SW] QW SW01 0000mm SWE01 SWE01 SWE01 000mm QW 0000000£+00 SW01 SW01 SW01 0.00moos+00 0.0000005+00 0.000000£+00 SW01 SWI SW01 0000000£+00 0000000£+00 0.0000(an SWOE-Ol SW01 SW01 QW 0000000£+00 QWE-o-Q) SW01 SW01 SW01 QW 0mm 0.000000£+00 SWE01 SW01 SW01 0000000£+00 0.0000me QWEAD SW01 SW01 SW01 0mm W 0W MAL NAMES I M45) W46) M47) K001'(48) QW OW QW QW woman-01 7.5ME01 7500000301 7500000201 o.0000005+00 QWKXI QW QIXXXXXIE‘KXI SW01 SW01 SWE01 SWE01 0.0000003+00 o.oooooas+oo QW 00000001900 SWI SWOE01 SWE01 SWE01 000010012400 0.000000F.+00 QW 0.000000£+00 SWOI SWOE—Ol SW01 SW01 0.000000s+00 0.00000ua+00 0.0000005+00 0.000000£+00 SW01 SW01 SWE01 SWE01 I X00183) 0000000£+00 7M0! 0.000000£+00 SWE01 0000000£+00 SWE01 00000005+00 SWE01 Qme SWE01 0.000000£+00 SW! 0000000300 ~3.: g £3322t2§ flfl :9 §§§§§§§§§ 8 a. SWI SW! QWEM 5000000501 0.0000001~:+00 SWEOI 50000001501 00000005900 0000000300 5000000301 00000001900 50000001301 0.000000£+00 00000005+00 SWE01 OWN!) 0.000000£+00 QWE-o-(XI QW SWOE01 SWE01 SW01 QWE-I-(X) 0000000300 0.0000001-:+00 SW01 SWEOI SW01 QW 0.000000£+00 0000000900 SWE01 SW01 SW01 0000000900 0.0000005+00 QW Figure 32. (continued). 91 §§§§§E§rrssstrsz* §§E§§E§ssisxtssz.o I 1.000000£+00 11000000900 13000000£+00 1.0000003+00 110000002+00 120000005400 I I I I I I I I I I I 1.0000002+00 QW 03000001300 0000mm Q mm QW SIGNAL NAMES I I I K001'(9) KOUI'(10) K0010 1) K00'l'(12) WEI-Q) 0.000000£+00 Q W 0000000900 0.00000(B+00 QM“) . 1 .000000£+00 1W 1.0000005+00 101!me Q 000000£+00 QW Q WEI-(X) 0.0000005+00 QW QWEHX) Q WEI-(X) QWEAXI SW01 00000005400 QWE‘KXI 00000001900 Q WEAK) QW 1.0000001-:+00 0.0000005+00 00000001900 00000001900 0.000000£+00 QW LWE‘IN 0.00000(£+00 QW 00000001900 Q 000000£+00 omooooswo 1000000900 000000ms+00 QW QWEM Q WEN!) QW 1.000000£+00 00000005+00 QWE‘I-(XI 0000000900 Q WEI-(X) 0.000000£+00 1000000£+00 0.00000(£+00 QW 0.000000st 0.000000£+00 QWOEHI) 10000001900 QWI-(XI 0.000000£+00 QWE‘HX) QWEI-Q) QW 1.0000002+00 o.00000a~:+00 QW QWE-I-(XI 0.00000015+00 000000013+00 1.00000a-:+00 QMXIOOE-I-(XI 0.0000001-:+00 QMOOOEAD QWEW OWE-om LWAXI QWEHX) QWEMXI 000000013400 QWEI-(XI 0.000000£+00 1000000500 QWM 0.0000001=.+00 QW O.(XXX)OOE+OO 00000005400 LWIE'I-(X) QW OWEN!) QW QWOOOEHX) 0.000000£+00 1.000000£+00 0.0000001-:+00 o.0000001-:+00 0.0000005+00 00000005400 0000000900 10000003400 QW 0.00000015+00 0.0000001=.+00 QW OWN!) 1W (1W 0. 000000300 QW I I Figure 33: Results of High Gain Ramp Response Neuron With Capacitance. 92 TIME I SIGNAL NAMES I l (NS) I KOU'KB) 100704) KOUTOS) [00706) KOUTOT) KOUT (18) a000000£+oo 000000015400 Q W 0W 0.00000a-:+00 0.0000005+00 . LW 1W 10000003400 MIME-HI) QWEM QW 0. 000000£+00 0.0000005+00 QW 0.0000(nE+00 LWEM LW LWEM 1000000900 LW LUMBER!) QWEi-(l) QW 00000001900 QW‘KI) QW 0000000900 0.0000me 0.00000015+00 0.000000£+00 QWHXI QW 00000001300 . . QWHX) MIMI-(l) 0.0000001-:+00 QWE-o-(XI 0.000000£+00 QW 0000000£+00 10000001900 QW QWE-I-(XI OWE-Ml) QW 0000000£+00 1.00000(£+00 QW 0.00000015+00 0.0000001=.+00 QW 00000001900 10000005300 QW 0.000000£+00 0.000000F.+00 0.0000005+00 0000000900 1.00000(£+oo o.oooooor-:+00 00000005400 0.oooooos+oo 0000000£+00 0.0000005+oo 1.0000005+00 00000002400 I I I QW 0.0000001-:+00 0000000500 0000000900 LWEHX) 0.0000005+00 QW QW 00000008+00 00mm 100000th 0000000£+00 0.000000£+00 . 0W LW 000000015+00 QW Q WEI-(X) 0W 000000a-:+oo LW omooommo QWE-I-(D Q WEI-(X) 0.00000015+oo 0000000£+00 LW 00000005300 QW Q WEI-(XI 0000000£+00 QWd-Q) LW 0000mm QW §§§§§§§2zraxtrs I I SIGNAL NAMES I I KOUT(19) KOUTOO) KOUTOI) KOUTQZ) W) KOUTQA) 0W 0W 0W 0W omooouawo I I QW o.000woz-:+oo Qmm 'Q WEI-(X) LW 0000000500 0000000900 Q W 1000000£+00 QWEHD QWE-I-(X) Q WEI-(X) QW-I-m Q WEI-(l) IWE-KX) 0.000000£+00 0mm 0.00000th QW QW 0000000900 0000001500 QW 0.000000% 10000002400 QW 1000000£+00 QM“) 0 QW 4 . . LW LW 10000003400 1000000900 14 I OWE-(X) QW 00000001900 omooamoo QW 00000001a+oo 24 I 1.000000£+00 LW 1000000900 LWW LW LWBM 34 I 0000000£+oo QW 00000005+00 0000000900 QW 0000000900 44 I IWEHX) LW LWEMX) 1.000000£+00 LW LWEW 54 I 0000000300 QW 0000000500 0000000900 0000000900 0.000000£+00 64 I 0.0000005+00 QW QW'HX) 000000aa+00 5W! 0.000000% 74 I QWEKX) QW 0000000300 0000000900 LW 0000000900 84 I QWEM 0.000000£+00 0.000000£+00 o.oooooaa+00 LW‘HD 0.(XXXXDE+Q) 94 I 0.000000£+00 0.000000£+00 00000005400 00000001900 LW Qme 10‘ QWOOOE-I-(XI 00000001900 MIMI-(XI QW LWEKXI 000000013400 3: QWEM 00000003+00 QW Q W 10000001900 0000000300 134 144 154 164 I Figure 33. (continued). 93 113:3: (NSII §§E§§E§22:2:32§:.o_ I -3 §§E§§§§xrazxtrxzuo I KOU'I' (25) QWE-KX) 1.000000£+00 QWEHXI l.QXXXXIEHXI QWEKXI 100000015400 0.0000(an LWEM o.0000001~:+00 OWEN!) 00000005400 0.000000£+00 0.0000001=.+00 QW QWEW 0.0000005+00 0mm QW KOUT (31) I 1000000900 10000005400 0. WBW Q WEAK) 1.000000£+00 Q 000000£+00 0. MODEM!) QWW 0.0000001.=.+00 0.000000£+00 0.0000001-:+00 0000000900 0.000000£+00 Karma) 0.00001m+00 1.0000005+00 0.00000013+00 LWEAD QW 1.000000£+00 QW LW 0.0000001=.+00 00000001900 10000001900 10000003400 1000000£+00 1W 10000008+00 10000005410 Loooooomoo 1000000300 KOUTGZ) o.0000001=.+00 KOUTM) QW 1.0000001=.+00 0.0000005+00 1000000500 0.000000£+00 10000005400 QWEHX) 1.0000005+00 0000000900 QWEM 0.00000015+oo 0.0000005+00 00000012400 0000000900 QWM 0000000900 000mm 0m KOU'I'(33) QW LW QIXXXXXIBKXI I 000000900 0000000900 1 .0000005+00 momma 1000000£+00 00000005400 1000000900 00000001900 0000000900 o.00000a~:+00 0000000900 DWI-(X) QWd-(X) 0000000500 0W SIGNAL NAMES SIGNAL NAMES ICOUT(28) 0W 1W 0000000300 1.0000005+00 00000005400 10000001900 omooooawo 100000t£+00 0000000£+oo 0.000000£+00 0000000900 QW 00000001900 0.00000015+00 0000000900 QW W 00000003+00 Figure 33. (continued). 94 more» 00000008+00 10000005+00 00000005400 LWOE-o-OO 00000001900 QQXXXDBI-(XI 0.0000me KOU'I‘GO) QW I .(XXJOOOEHX) 0 .00000015+00 1.0000005+00 QWEKX) 1000000900 0.0000005+00 I 000000300 Q 000000500 Q WEI-(X) 0.0000005+00 QWEH'D 0.000000£+00 0000000300 0.0000005+00 QWEW 0.000000£+00 QW 0. WEI-(X) I 0000001900 0000000900 100000013+00 QWEKX) LMXXXIE-I-Q) QWE‘KX) LWXDEW QWEA-(XI 50000001501 1 .000000£+00 I .(XXXXJOEHX) 1000000300 LWEHD 1 .000000£+00 1.0000001=.+00 effflifit$§:*o_ '5‘ §§E§§"" ________E:2-§-§ EE§£§§2K£K§ iii? nqsk (RSI)! KOU'I'G‘I) 0.000000£+00 LWE-KX) QWEKX) 1.00000015+00 0000000900 1.0000005+00 Q 000000900 I “WE-+0) 0. 0000001300 I 0000001900 Q WEI-(XI LWOEHXI QWE-KX) 0000000900 QWEd-(XI 0.0000002+00 0.0000001.=.+00 QW awn“) QW 1.000000£+00 QWEHX) 10000001900 0.00me+00 1 0000001900 0.000000F.+oo 100000015+00 0.000000£+00 1000000900 00000001900 1.0000001=.+00 0.000000£+00 LIXIXXJOEM 00000005400 5000000501 1mm 1W awn”) Imam» 00000003+00 LWW QW I 00000054» KOUT(39) Q W I 0000005400 0 000000900 1000000£+00 o.00000m~:+00 1.000000£+00 0.000000£+0o 1.000000£+00 000mm LWM 0.000000£+00 1000000500 0000000300 o.00000aa+00 0.00000as+00 0.00000t15400 0000000900 0W awn”) Q W I 000000le Q WEI-(XI LWEM 0000000£+00 1000mm QWEKXI 1W 0000000540 1000mm 0000000900 1000mm 0.00000aa+00 Ham-K!) 0.0000005+00 (1000000300 0.000000I.=.+oo 0000mm SIGNALNAMES SIGNAL NAMES KOUTGO) KOUTGQ 0W 1000000900 00000001900 1.00000a=.+00 0.00000(B+00 I 000000300 0. 000000500 1 0000005+00 0. W LIXXXXXE'KX) 0000000£+00 LW QWEd-Q) LW QWEd-(X) QWEM QW QW Figure 33. (continued). 95 zany» mmmn) 0000000300 LWM 0.000000£+00 LWEM QW 1.000000£+00 ammo 100mm QW 1.000000£+00 00000005400 1.0000005+00 00000003400 10000001900 KOUT(42) QW 1.000000£+oo 0.(XXXXX)E+(XI 1.000000£+oo 0.000000£+00 1.000000£+00 0000000300 1000000900 00000001900 1.0000005+00 0000000900 1000000900 Q ooooooa+00 Q 0000005+00 0. W 00000001900 o.0000001~:+00 QW awn“) QW LW 0.000000£+00 1.0000005+00 0.0000005+00 10000005+00 0.000000£+00 I .0000001=.+00 QWKX) 10000001900 0.000000£+oo l .0000001-:+00 000000013400 I .WEHX) QWEI-Q) QWE-I-Q) 0000000900 QW mm .L SIGNAL NAMES 4 018') I XOUTO) KOUI‘Q) KOU'I‘G) [007(4) KOU'IIS) KOUT(6) 0 I 0.000000£+00 00000112400 QW 00000001900 QW 0.00000ma+00 4 I Sim-OI WI Sim-OI Sim-01 SSW-01 8W0] 0W 0W QW QWE‘IN QW LWOEM o.oooooua+00 0W 00000005400 00000001900 QWEi-(X) 10000001900 0W 0W 0.0000005+00 00000005+00 QW 1.00000054-00 0.00000tn400 OW QW 0.0000001=.+00 QW 1.0000001-:+00 QWI-(X) QW 03000001900 0.00000015+00 QW LOWE-rm 0W QW o.ooooooa+00 0000000900 QW LWOEHX) omooormoo QW QW OWE QW 1.000000£+00 0.00000aa+00 o.ooooooaoo QW omoooom QW LW 0.00000aa+00 QW QW DWI-(X) QW 1000000900 QW 0 0000005+00 0W 0.00000mwo QW 1000000st omoooaswo 0 0000003400 0W QWM QW 1000000500 QW o.oooooas+00 0W 0000000900 0000000300 IWEW QW 0.00000m00 0000000900 01100000900 omooooaoo 10000001900 0.00000012+00 00000005300 QWEHX) 0.00000ua+00 QW-o-(X) 1.000000£+00 QW 000mm QW 0000000900 09000005400 10000005410 QW 00000005400 0000000900 00000005400 QW INS-0m QW omoooaswo 00000005+00 omoootmoo 0W §§§§§§§E§E§EEEEEfisssssssss I I I TIME' I— SIGNAL NAMES I (NS') I KOUTG) K0011!) K0079) KOUTOO) KOUTO I) KOU'KIZ) 0 I 0.0000005+00 0000000300 QW 09000005400 QM“ QM“) 4 I QWE-OI SWOI SW-OI SWE-OI W01 W01 I4 I 00000001900 0000000540 00000005400 0000000900 QW 00000001900 24 I IJOOQXIE-OI 09000005400 5000000301 0000000900 1500000501 MIME-HI) 34 I 0.000000£+00 0000000900 1W0] QW 0.000000£+00 QW 44 I amount-300 0.0000001~:+00 BW-m 0.00000015+oo 0.000000£+00 QWEKD 54 I 00000001900 0.0(1000015+00 Sim-OI 0.000000% 0.0000ws+00 QW 64 I 000000015+oo 0.000000% Sim-OI QWOEHX) 0000000900 QWW 74 I 0.0000001.-:+00 QW SSW-01 QW 0.0000005+00 QW 34 I 0000000£+00 QW 8501115401 QW 0000mm QW 94 I QWEi-(X) onmoom-oo SSW-01 QW 0000000900 00000001900 104 I QWEM 00000003+oo 8W0! 0.00000013+00 QW 00000005100 114 I QW 0.0000005+00 8W0! 00000001900 QW OWEN!) g: : o.oooooox-:+00 ammo asooooma-m QW-KXI 000000012400 0W QW 0mm 8W0! QWEM QW omooooawo Figure 34: Results of Low Gain Sigmoid Response Neuron With Capacitance. 96 §§§§§§§ 93 a EEEEE 0.0000005+00 QWEHXI Q WEI-(XI Q 0000005+00 Q (XXXIOOE-o-(XI Q WEAK) Q WEI-(I) 0.000000£+00 Q WEI-(X) Q MODEM aoooooomoo QW WOI SSW-01 8W0] 8W0! BW-m SW-OI SW-Ol woman-01 SW01 momma-01 Sim-01 Sim-01 W01 97 Figure 34. (continued). TIME I SIGNAL NAMES I I (NS) I KOUT(13) KOU'I'(I4) KOUTOS) KOU'KI6) KOUTO‘I) KOUTOS) I 0 I QW 00mm QW 00000003+00 0.0000002+00 Qm-I-(X) 4 I W01 “000005-01 Sm01 SW01 SW01 SW01 14 I 0000000900 Q WEI-(XI QWEi-(XI 0.00000(E+00 QW 00000002410 74 I SWBOI SW01 50000001301 SW01 SW01 5000000201 34 I Q 0000005400 QWEI-(D DWI-(XI 0.000000£+00 QW QWEI-Q) 44 I IWE01 IWEOI 1W1 S.WE01 SW01 1W0] 54 I 0 OWE-(X) QW 000000013400 0.00000aa+00 QW Q WEI-(X) 64 I QWE‘HX) LSQXXIOEOI 0.0000005+oo SW] IWEOI IWEOI 74 I QWE+00 QWE-o-Q) QWEM 1W0! Q WEI-(X) QWEI-(II 84 I 0000000900 QW O .0000005+00 SW01 LSWEOI QW 94 I QWE‘HXI 0.000000£+00 Q 000000900 5000000501 OWE-0m QW 104 I QWE-I-(X) QWEHXI Q 000000900 SW01 0.0000005+00 0.00000015+00 114 I QWEW QWEKXI 0 .W SW01 QWEM QWE-I-(X) 124 I 0.0000001=.+oo 00000001900 00000005400 SW01 0.000000% 0.0000005+00 134 I 0000000900 0000000900 00000001900 SW01 QW QW 144 I 0.0000001-:+00 QW-I-Q) 00000005400 W01 QWEHX) QW 154 I QOQIOOOE-I-Q) 0.000000£+00 0000000500 SW01 0.0000002+00 0.0000005+00 164 I QQXXIOOM 0.0000001~:+oo 0.000me SW01 0.0000005+00 QW 174 I QWEM QWEKXI 0.00000aa+00 SW01 o.00000015+00 0.0000001=.+00 IS4 I QWEM QWI-(X) QWEM SW01 0.000000£+00 00000001900 194 I 0000000900 Q WEI-(XI 0.000000£+00 SW1 QW 00000005400 20! I QWOEM 0 .(XXXDOEHXI 0000000300 SW01 QW QWW 214 I 0.000000£+00 Q WEI-(X) 00000001900 SW01 QWEHD QWEM 274 I 0.0000005+00 0000000£+00 0 .000000£+00 SW01 o.m00001.~:+00 0000000900 234 I 0.0000005+00 0.0000008+00 Q 000000£+00 SW01 QW 0.0000005+00 244 I QWEM 00000005400 0 .0000005+00 SW01 QW QWEM 254 I 0.0000005+00 0000000900 oncoootmoo W1 00000001900 OWE-(XI 264 I 0.000000£+00 0.00000aa+00 0mm SSW-01 W QW TIME I SIGNAL NAMES I I (Nsl) I KOUI(19) KOUIIZO) K0010!) K0073?) K0011”) ,KOUTQA) 0 I 0000000£+00 0W4“) Q W 0W 0.0mm a0000005+00 4 I SWEOI SW01 SW01 SW50! SWEOI SW01 I4 I OWE-(XI 0.0000005+00 Q 0000005+00 omoooaa+oo Q 0000005+00 Q OWE-(X) 24 I SW01 S.WOEOI 5. W01 S W01 S 000000501 5 .OQXXXJEOI 34 I 00000001900 00000001900 Q WEI-(XI QWI-(X) 0000000500 00000001900 44 I 5.0QJOQJE01 S.WE01 S.(XXXXIOEOI S.QXXI(XIEOI 5000000501 S.QXXXXIEOI S4 I OWEN!) 00000001900 0.000000£+00 QWXXEHXI QW 0.000000£+00 64 I SW01 SIXXXDOEOI 10000001501 SW01 SIXXXXDE01 S.QXXX)OEOI 74 I 0000000500 QW 0000000£+00 QWd-(X) QWEM QMOOQIE'HX) S4 I SWE-OI SW01 S. W01 5410000301 S .WEOI S .WOEOI 94 I OWEW QW Q 0000005200 Q 000000900 00000005400 0 000000900 104 I LSIXXXIOE01 1W0] SW01 SW1 S 000000201 5 000000501 114 I 0.000000£+00 0.000000£+00 Q oooommoo Q W Q 000000£+00 Q WEAK) 124 I 0000000300 Im0l mom-01 1111111301 SW01 15000001301 134 I 0.000000£+00 ammo omooormoo QM“) SW01 0W Figure 34. (continued). 98 §§§§§§E B ; §§§¥§_-_-_-__ I I :gtraar:r§:.o ”§§§§§§E§§"" a. fi §§§?§___ 0.000000£+oo 0.0000001=.+00 QOQJOOOE-I-(XI QWEHXI Q WEI-(X) Q 0000001900 Q 000000£+00 0.0000001=.+00 QWEHD QWOOOEd-(X) QQXXIOOE-o-(XI 00000001900 QW KOUTOS) 0.000000£+00 SWEO! 0.oooooos+oo SW01 0.000000£+00 SWO! QWEHXI SWO! 00000001900 SWE01 0.0000005+00 S.(XI)OOOE01 QOIXXIOOE-o-OO SW01 QIXXXIOOEM 1.5MOOE01 QQXXIOOE+OO QWOOOEKI) QWOOOEW 0000000900 QWOOOE-I-(XI QWOOOB-o-(XI 00000001900 QWOOOEM QWOOOE-KX) QWOOOEHX) QWEAX) 0W 00000003+00 0.000000P.+00 QWEW 00000005+00 Q 0000003+00 0000000£+00 Q WEN!) 0.0000(an QWE‘o-(XI 00000005+00 0000000300 0.000000£+00 000000aa+00 0.000000£+00 0.00000m+00 0.000000£+00 000000t£+00 0.0000005+00 onooootmoo 0000000300 0000000300 QWI-Q) 00000001900 W QW 00000005400 QWE-I-(XI 0.000000E+00 QOOQIOOEHX) QW QWEM 000000015200 QWEHX) 0.0000001-:+00 00000001900 SW01 SW01 SW80! SW50! SW50! SSOOOQIEOI SW01 SW01 SW50! SW50! SW50! SW50! QW ommooE+00 Q OOQIOOEHXI 0 .(XXXXIOE-O-OO 0 000000500 Q MOEHX) QOOQJOOEM QOOQXIOEAX) QWEW QWEM 0.0000001a+00 QWEAX) 0.0000005+00 KOU'I‘(26) Q 000000£+00 SWO! Q WEI-III SWO! QW 5000000501 00000001900 SW01 QW SWE01 QW SW01 0.000000£+00 SW01 o.0000001=.=.+00 SW01 LSQXIIOE0! SW50! SW01 SW01 SW01 SW01 Sm0l SW01 SW01 SW50! SW50! SW01 omoootmoo QW Sm01 QW SIGNAL NAMES I KOU'I'(2‘7) KW) KOUT(29) KOUT (30) QW OWE-04X) 0000mm 00000005400 SW01 SW01 SW01 SW30! 0000000£+00 00000001900 Q WEI-(X) 00000001900 SW01 S.QXXXX)E01 1W0! SW01 0000000£+00 SW01 0.0000001-:+00 5000000501 000000015+00 S. 000000201 Q 000000£+00 S .WEOI Q 000000900 SW01 0000000900 IWEO! 5. W501 S 0600001501 5 .WOBOI Q 000000900 Q 000000900 Q WEI-(X) SIXXXJOOE0! SW01 SW01 0000000300 0.00000013+00 0000000300 S.(XXXIOOBOI SW! SW01 QOIXXXXIE-I-(X) 0.000000£+00 QWEW lSQXDOE0! 1.S(IIIXDE01 1500000501 0.0000005+00 0000000900 QOIXXXIOEAX) 0.000000£+oo 00000001900 00000001900 QWEI-Q) 0000000900 QWEAX) 0000000900 QWEM QWEAX) 0.000000£+oo QW 0.0(XXXJOE-I-(X) 00000001900 QWEHXI QWEHX) 0.000000£+00 QWEIOO QOOOOQIE‘I-(XI 0000000300 OWEN!) 0000000500 Figure 34. (continued). 99 0.000000£+00 QWEM QWEM 0.000000£+00 00000001900 QW 01!!!me QWE-I-OO 00000001900 QOIXXIOOEM 0.(XXXX)0E+IXI QWEI-OO SIGNAL NAMES KOUT (33) 1? I KOUTO 1) i KOUTOZ) 000mm S.m01 E? woman-01 SW! SW01 SW! "7%..." i6£§§§§§i§§i§§§§§rrrzr:22::2_3 9 o.oooooaa+oo ' SIGNAL NAMES mums) mums» onoooooaoo SW01 o.oooooo£+oo SWO! QW S.WE01 QWE-I-m 1W0! 1- KOUTG‘T) é-a W0! 10000001301 S. m0! S. W01 S .ooooooa-on rrrzrtrxz‘o é S .ooooooa-m SW01 SW01 §§E§ u E S: Figure 34. (continued). 100 [(00164) QW OWN o.oooooua+oo 00000005400 SW01 QWEd-(X) o.oooooaa+oo o.oooooo£+oo o.oooooo:-:+oo S.WEO! 00000001900 onoooooewo aooooooaoo QWEKX) SWO! o.ooooooa+oo onooootmoo QWEAX) o.oooooos+oo SW50! 00000005400 o.oooooaa+oo QWW QWBM S .WDOEOI KOUTGS) Sm0l W01 SWE01 1W0! S .ooooooe-ox S.WE01 SW! SW01 QW 0900000300 o.ooooool-:+oo QW o.ooooooI-:+oo QW QW o.ooooooa+oo aooooooa+oo ammo KOUTGO) XOUTG!) QW 0W omoootmoo SW01 SW01 5 .WE01 S .WE01 S .mB-O! S .WE01 S .WE01 S .m01 SW30! 1W0! S.(XXXXX)E01 SW01 QW Q WED-(X) o.oooooo£+oo SW01 QWEHD o.ooooooE+oo QW SW01 o.oooooor~:+oo QWEd-(X) o.ooooom=.+oo SW01 S.WE01 S.WE01 SW! o.ooooooe+oo 1W0! 0.(XXXXX)E+(X) o.oooooo£+oo o.oooooo£+oo o.ooooooa+oo 09000005400 o.ooooooa+oo OMAN) onooooomoo S .WOE01 KOUTGG) 1000000501 1W0! 09000001900 SW01 5111111501 S.(XXXXX)E0! SW01 S.S(XXXJOE01 ”000005-01 8.5mE0! SW01 SW01 KOUTGZ) QW SW01 o.ooooooz+oo Q ooooooa+oo Q W 0000000900 S. W01 Q 0000005qu QWM QW QWE-o-m S .WI uoooooomoo omooooewo o.ooooooa+oo 0900000900 1000000201 Q oooooomoo omoooos+oo o.ooooooa+oo 09000005400 S .QXXXJOE01 aooooooaoo o.oooooaa+oo o.ooomoa+oo o.oooooor~:+oo S .oooooos-m o.oooooos+oo Q ooooooE+oo QW o.ooooooE+oo 0300000300 SW01 0W 090000th QW 0mm 0300000300 S .WEO! SW01 5 .W01 5.000an01 144 I 1000000501 SW01 SW01 SW01 S .W! SW01 154 I o.ooooooa+oo Q 000000300 o.oooooaa+oo QW Q WEI-(X) Q W 164 I 5110000501 S .oooooua-on SW01 SW01 S .WEO! S .oooooos-ox 0. “0000510) 090000013400 09000005400 0. W 0. WEN!) 0. oooooomoo 184 I S. (111)00501 S .m01 momma-01 S .ooooomm S. W01 S .oooooaa-on 194 I QWOOOEM Q ooooooE+oo o.ooooooe+oo 0. W 0 .ooooooa+oo 0. W 204 I S.(XXXXIOE01 S .ooooooe-m 1W0! S .WOE01 1. 500000801 1W0! 214 I 09000001900 o.ooooooa+oo QWM 0. ooooooa+oo 0. WEI-(XI 0. W 224 I 15WE01 1W0! 1W0! SW01 QW 15MB01 234 I 0. W o.ooowos+oo QMM S. cocoons-01 0.00000054-00 QWEHX) 244 I 0. WEI-(X) QW QWHX) 5W0! QWEW o.ooooooa+oo 254 l 0. ooooooswo 09000001300 omooomwo SW01 o.ooooooE+oo o.oo:noo£+oo $4 I 03000002400 0mm ammo SW01 QW ooooooomoo TIME I SIGNAL NAMES I I 018') I KOU!‘(43) K0011“) KOUTGS) W46) KOUT(41) KOU'1‘(4S) 0 I QWEW 09000001900 0. W 0W 0W 0. ooooooaroo 4 I W01 S.m0! SW01 SW01 SW01 SW01 14 I ooooooo£+oo o.ooooooa+oo 0mm omooocmoo QW o.oooooos+oo 24 I ' SQXXXXIE01 SW01 1W0! 501010501 SW01 5 .WE01 34 I OWE-(X) QW 0W 0. oooooaa+oo 0. 0000mm 0 .oooooomoo 44 I _ SW80! SW01 SW01 S W! SW01 SW01 S4 I o.oooooox-:+oo QWHXI 09000005400 OHM-Kl) QW QW‘IN 64 I 1000000501 1W0! SW01 10000001301 S.WE01 S.WE01 74 I omooooaoo QW o.ooooooa+oo omooooawo QW 09000002400 S4 I SW80! 1mm 1W0! SW01 SW01 SW01 94 I QWE'o-m QWHXI 09000008400 o.ooooous+oo QW o.oooooos+oo 104 I 5111000501 SW01 SW01 SW01 1000000501 SW01 114 I QWEAX) OWN!) omoootmoo QWEHX) o.ooooooa+oo o.oooooos+oo 124 I S.QX)0(X)E0! SW01 SW01 SW01 1W! SW01 134 I QWEM 0W 0. ooooocmoo QW 0W QW 144 I 1000000201 SW01 S .m01 S.WE01 SW01 SW01 154 I 0111100544.!) ammo omooooewo QW omoooomoo QW 164 I S.(XXXX)OE0! SW01 5 .WE01 SWOE-O! SW! SW01 174 I QWEM ooooooomoo 0. ooooooa+oo QW o.oooomE+oo QWKX) 184 l S.WE01 smoooaa-m S .m01 SW01 1000000301 SW01 194 I QWEM 0. WEI-(X) QW‘KX) 0.000000134-00 0.(XXXXXIE+(XI QQXXXXIEM 204 I S .WOE01 51100000341 10000002411 SW01 SW! SW01 214 I 0. MOE-14X) Q 0000005400 0. ooooooa+oo QWE-I-(X) o.ooooooB+oo QQXXXXIEM 224 I 10000001501 S .ooooooa-o: S .(XXXXDEO! SW01 SWE01 SW01 234 I 0. oooooos+oo QWE-HX) 0. 0000001900 o.oooooos+oo QWEM o.ooooooa+oo 244 l SQXXXIOE01 QWM 0. WEI-(X) 0. W40) 0. oooooos+oo QWE-I-(XI 254 I Loooooos+oo 09000001900 omooooaoo 0. W o.oooooo£+oo 0300000900 264 I 1mm 0mm 0mm 0mm omooooawo QWEHXI Figure 34. (continued). 101 :rrtrcrz §§E§§E§33 I mSI) I KOUTO) Iii? KOU'RZ) 0W Loooooos+oo QWEW ooooooamo ooooooomoo 0. W44!) 0. ooooomwo ammo QW oooooooewo omooooewo uoooooomoo uooooooE+oo uooooooewo QW o.ooooooa+oo o.oooooos+oo QW KOU!‘(3) olooooocmoo SIGNAL NAMES KOUT (4) omooooa+oo mooooomoo QWEKX) QW o.oooooor-:+oo obwwoem KOUT(S) K001“) QQXXXXIE‘I-(X) 0W LWM o.ooooooa+oo o.oooooon+oo o.oooooor-:+oo QWEI-m 00000001900 QWEKX) o.oooooor.+oo ooooooomoo QWEI-(X) QWM o.ooooooE+oo 0W4“) o.ooooox£+oo o.oooooos+oo o.oooooos+oo ammo 1 .omoooam 7% SIGNAL NAMES I KOUTG) S KOU!‘ (10) KOUTO 1) r::zx:rc::3_§ §§E§§E§ uoooooomoo Loooooomoo omoooom-oo QWEM QWE'I-m o.oooooor-:+oo OWEN!) OWEN!) OWEN!) 03000001900 OWEN!) QWE'I-m QWE-I-(X) 0. WEI-(X) 0. (100001544!) ooooooomoo o.oooooos+oo LW o.oooooos+oo S.QXXXX)E01 1.0000(an Loooooomoo LW-KX) wooooos+oo 1.000000st 140000005410 LWE‘KX) Looooooewo Loooooomoo Looooowwo moooooa+oo 1 .ooooooaoo moooooswo LW o.ooooooz+oo hm 09000001900 0. 000000900 0. ooooooawo 0. ooooomwo omooooa+oo QWM 04000000900 QWKX) ammo moooooewo QWEM QWE-I-m o.omoooe+oo QW 00000001900 QW 001me QW uooooooaoo QWEM o.oooooo£+oo o.ooooooa+oo 0.000000%» o.ooooooE+oo OWEN!) onooooomoo KOUT(12) QW LWEM OWE-04X) QW-I-(X) QWEd-(X) o.ooooooE+oo o.ooooooI-:+oo 0. oooooos+oo 0. (“KNEW 0mm QWE-om QWEHX) QWE‘KD QWEHXI o.ooooooa+oo 0. WEI-IX) 0. MBA!) QW Figure 35: Results of High Gain Sigmoid Response Neuron With Capacitance. 102 TIME k SIGNAL NAMES I I W) I KOUTOS) KOUT(14) KOUTOS) KOUTOG) [(001117) KOUTOS) 01100000900 0. W 0W QW QW LMW 1 .W LW mooooa-mo LWE-o-(X) QW 0. mm o.oooooas+oo QW QWE-I-(XI LW woooooawo Loooooaawo LW Looooooem QW omoooonwo 09000005400 QW omoooomoo . o.ooooooa+oo 0. ooooooa+oo QW omoooomoo QM“) omooooaoo lmooooawo QW o.ooooooa+oo o.ooooooa+oo QWM 1 .ooooooawo QWE‘KXI o.oooooor~:+oo QW 09000002400 1W QWHII o.oooooos+oo QW omoooomoo Loooooa-zwo 0.00000054-00 QWEM 040000005400 o.ooooooa+oo omoooomoo LWIEi-(XI QWEHX) 0900000300 QW oooooooswo QW LW o.oooooo£+oo QWEM QW omoooomoo o.oooooaa+oo LW o.oooooos+oo QW o.oooooos+oo 01000000900 o.ooooo(E+oo LW oooooooewo 0.00000054-00 . momma LW o.ooooooa+oo 0.0000005+oo 0300000500 onoooooa+oo QWM LW o.oooooos+oo 0300000300 mmoomoo omoooomoo o.oooooaa+oo LW 0000000300 09000001900 W omoooomoo ooooooomoo LW omoooomoo o.ooooooz+oo éééééééééé I §§E§§E§:::r::::::g_ I <3; SIGNAL NAMES I ~3. KOUT(19) KOUTCN) KOU'!‘(21) Km) KOU'I‘(23) KOUTQ4) QW 0W moments-+00 0W 0mm QW 1000000900 1mm LW 1W Loooooomoo LW QWEM QW 0900000900 QW‘HX) 0.00000054-00 o.ooooool~:+oo nmooooewo 1.oooooo£+oo MIME-IQ) 19000001900 LW 1 WEI-(X) OWE-Kl) QW o.ooooooa+oo omooooawo QW 02000000300 moooooa+oo l.QXmOE-o-Q) LWHX) moooooswo Lamoooem 0 4 14 24 34 44 Looooooe+oo S4 QWE+00 QW QW o.oooooaa+oo 0. W o.oooooo£+oo 64 o.ooooooa+oo QW QW o.ooooom+oo S. W0! o.oooooos+oo 74 omoooom-oo QW 0. WEI-(X) o.oooooaa+oo 1 .ooooooewo 01!!!!an S4 0000000900 0.00000054-00 0. WEI-Q) QIXXXIIXEJ-(II 1.00me 0000000900 94 o.oooooos+oo QW 001100844!) o.ooooom=.+oo LWE-I-(X) o.ooooooI-:+oo 104 I QW 0000000900 0. oooooamo o.oooooos+oo 1.0000me 0.00000054-00 114 I o.oooooor-:+oo QQXXXIOE'KXI o.ooooooE+oo QW 1.ooooooa+oo 01111110544!) 124 I 0.0000005+oo 0 .ooooooewo QWM QW Loooooos+oo QW 134 I o.ooooooa+oo 0. 0000001900 o.oooooos+oo QW LWE-I-(XI QW 144 I 001000514!) o.ooooooe+oo o.oooooaa+oo 0.000()o01=.+oo 1.ooooooE+oo QWEI-(XI :2 : QW ooooooomoo oooooomwo QW 10000002400 QW oooooooswo QW 0W QW 1.oooooo£+oo QW Figure 35. (continued). 103 I -—— "3-; eugggggrrxertxnzte Hide-Ionian...— --’-—- smmunums g I xmnwn mmNM) Immmn o.oooooo£+oo LWOEM QWEM 1.oooooos+oo QIXJOOQIEAX) l.QXXJQIEd-(XI QWE-I-(X) l.QXIOMEm QWEKD QWE'HX) omoooosm QWE-o-m QWOEHX) 0. WEI-(X) 0. 0000mm 0. WEI-(X) o.oooooor-:+oo QWE'I-N 0. W 1 .ooooooem 0. 0000001900 1 .oooooomoo 0. 000000500 1 “WEI-(X) 0. 0000001900 momma-00 QWEW QWEM 09000001900 QWEM 00000005400 00000002400 QW o.oooooos+oo o.ooooooe+oo QWW 0 .oooooomoo 10000001900 QWE-KX) LWE-I-m 0. oooooos+oo 1 “HIDE-KI) 0. oooooos+oo 0000000900 0000000900 QWEHI) o.oooooos+oo QWE‘I-m QWEM 0. WEI-(X) 0W 0 mm 03000000900 1- 42 autrgzgttrflrtrfizeo Multiple-ope... ---— KOUI'G 1) ooooooo£+oo Loooooos+oo 000000012400 LWE-I-m QWE-I-(X) LWEMX) o.oooooo£+oo ”NINE-0m o.oooooos+oo l.QXXXXIE-o-m o.oooooos+oo QWOOOEKD o.oooooon+oo QQXXIO0E+M o.ooooooa+oo 0011000544!) QIXXIOOOEHX) QIXIXIOOEKX) KOUTGZ) OM44!) Loooooo£+oo QWEM 1 .ooooooswo KOUI'GS) 0. W 1 .ooooooawo 0 .ooooooswo Loooooomoo QWEKXI 1 .oooooomoo Q WEI-(XI 1 .oooooomoo 0 “WEI-(X) l.QXXXXJEm QWEM QM“ oooooooewo o.oooooos+oo QWXXEm 0900000300 o.oooom!.=.+oo 0W mmnu) omoooomoo LW QWHX) ' Looooooem QIXXXXXEHX) 1110001544!) QWW 1.ooooooE+oo QWM 11!me 00000005400 QW QW QIXXXIOOEHII o.oooooo£+oo o.ooooooa+oo QWEHD QW Figure 35. (continued). 104 XOUTGS) 0W4“) 10000005410 0.00000054-00 l.QIXXXIE-om QWEHD LW o.oooooos+oo 1 .ooooooswo Q WEI-(X) 1 .ooooooawo o.ooooooa+oo o.ooooooa+oo o.ooooooa+oo QWE‘KX) QWEM Q WEI-(X) omoooomoo omoooo£+oo $IGNAL NAMES g KOUTOG) QW Looooooewo anemone-+00 Looooooa+oo o.oooooos+oo LWE-I-(X) o.oooooos+oo 1 900000900 0. WEI-(XI 1 .ooooooem 090000015400 S. oooooos-on Loooooos+oo 1.oooooos+oo l.QXXXXJE-KD 1.ooooooe+oo 1 .ooooooE+oo LW Mk Figure 35. (continued). 105 5101141. NAMES 1 1 0451 1101111371 50111130) 110111139) Karma) 1101:1141) 1101:1142) 1 01 00000005400 00000015400 0. 0000005400 0000005400 0000005400 00000005400 41 1.0000005400 1.0000005400 1.000005400 10000005400 1.0000015400 1.0000005400 141 0.0000005400 0.0000005400 0. 0000005400 0.000005400 0.0000005400 0.0000005400 :41 1.0000005400 1000005400 1.0000005400 1.000005400 1.0000005400 1.0000005400 341 00000005400 0.0555400 0.5005545 0.5000545 0.0055545 0.5005545 441 1.5500545 1.0055400 1.0000005400 1.000005400 10000005400 1.5005545 :41 0.0000005400 0.0000005400 0.0000005400 0000005400 0.0000005400 0.0000005400 641 1.5500545 1.00me400 1000005400 1.000005400 1.5555400 1.5000545 141 0.0000005400 00000005400 0.5500545 0.0555400 0.000005400 0.000005400 1141 1.0000005400 1.5005545 1.0005545 1.0050545 10000005400 10000005400 1141 00000005400 00000005400 0. 0000005400 0.000005400 00000005400 0.0000005400 1041 10000005400 10000005400 1 .000005400 1.000005400 10000005400 1.000005400 1141 0.0550545 00000005400 0000005400 0.0000005400 00000005400 00000005400 1241 00000005400 00000005400 0000005400 5000000501 00000005400 00000005400 1341 00000005400 0.0055545 11. 000005400 10000005400 00000005400 00000005400 1441 00000005400 0.0000005400 0. 000005400 1.0000005400 0.0000005400 00000005400 1541 00000005400 0.000005400 0000005400 10000005400 00000005400 00000005400 1641 00000015400 0000005400 0.0000015400 1.0000015400 00000015400 0.0000005400 1111451 SIGNAL 514145: e 1 (14.4.11 110111143) tau-1144) now-(45) zoo-1146) 151111141) 110111140) 01 00000005400 00000005400 0. 000005400 0. 0000005400 0000005400 0.0000005400 41 10000005400 10000005400 10000005400 10000005400 10000015400 10000005400 141 00000005400 00000005400 0. 0000005400 0 .000005400 0.0000005400 00000005400 241 1.0000005400 10000005400 10000005400 1.000005400 1.0000005400 10000005400 341 00000005400 00000005400 0.0000005400 0.000005400 00000005400 00000005400 441 1.0000005400 10000005400 10000005400 10000005400 10000005400 10000005400 541 00000005400 00000005400 00000005400 0.000005400 00000005400 00000005400 1541 10000005400 10000005400 10000005400 1.000005400 10000005400 10000005400 141 00000005400 00000005400 00000005400 0.000005400 00000005400 00000005400 1141 10000005400 10000005400 10000005400 1.000005400 1.0000005400 1.0000005400 941 00000005400 00000005400 00000005400 0.000005400 0. 0000005400 0.0000005400 1041 10000005400 10000005400 1.000005400 10000005400 10000005400 10000005400 1141 00000005400 00000005400 00000005400 00000005400 00000005400 00000005400 1241 10000005400 10000005400 1.000005400 10000005400 10000005400 10000005400 1341 0. 0000005400 00000005400 0.000005400 0.0000005400 00000005400 00000005400 1441 5 000000501 0000005400 00000005400 00000005400 00000005400 00000005400 1541 10000005400 00000005400 00000015400 00000005400 00000005400 0.0000005400 11541 10000005400 00000005400 0.000005400 00000005400 00000005400 00000005400 . QW QM 4 I 1000005400 1W LW 10000005400 10000005400 LWE-tg 14 I 10000005400 0000005400 00000005400 0.0000005400 QWEM QWOOOE'I-(XI 24 I 1 WEI-(X) 0 000005400 QWEHI) MIME-14X) 0 WEI-(XI 00000005400 34 I 1 WEI-(X) 0 000005400 QW QW 0 WEI-(XI 00000005400 44 I 1 OOQXIOBHX) 0 W 00000005400 QW 0 0000005400 00000005400 S4 I 1 WEi-OO 0 000005400 QW QW OWEN!) QWEHD 64 I 1 WEI-00 0 000005400 QW QW 0 WEI-Q) 00000005400 74 I 1 WEI-(X) 0 000005400 QWEHX) 00000005400 0 WEN!) 00000005400 S4 I 1 0000005400 0 000005400 QW 00000005400 0 0000005400 QW 94 I 1 MODEM 0 000005400 QW QNIXXIOE-HXJ 0 WK!) QWE‘KX) 104 I 1 0000005400 0 0000005400 QWM QWEHX) 0 000005400 00000005400 114 I 1 MEN» 0 W00 00000005400 00000005400 00000015400 QWEM 124 I 1 11(1) 0 W 0000005400 00000005400 0 000005400 QWE-HI) 134 I 10000005400 QW 0000005400 0W 0000005400 00000005400 115:8 !—~ WSIGNAL NAMES ' -3 I KOUTCI) KOU'1'(S) KOU'I'(9) KOUTOO) KOUT(1 1) KOUTOZ) 25552532254: I 1 iii? Figure 36: Results of Three Stage Interconnection Pattern and Binary Neuron. 106 MI Figure 36. (continued). 107 SIGNAL NAMES I I (NS) I K007'(13) KOU7(14) K00'1'(1S) K007(16) K00'l‘(17) K00'1‘(1S) I 0 I QW 00000005400 QW 0W 0.000005400 W 4 I 11110005140 1.0000005400 LW “RIDGE-(XI 10000015400 1.5500545 14 I 0.0055545 0.5005545 00000005400 QWE'KXI QW 0.0000005400 24 I 1010001544!) LW 00000005400 1.000005400 QW 0.5555400 34 I OWEN!) QW 0.0000005400 0. 000005400 QWE-I-(XI QWEKXI 44 I 00000005400 00100005400 0W 1000005400 QW 0.5005545 54 I 0.0000005400 QW QWEKX) 1000005400 QW 0.0000005400 64 I QWEKX) QW 0.0000005400 1000005400 QW 0.5500545 74 I 0.0000005400 QW QW 1W QW 0.0000005400 S4 I 0. WEI-Cl) QWH'D 0.0000005400 1.000005400 QW QWE-KX) 94 I 00000005400 00000005400 00000005400 1.000005400 QW 00000005400 104 I Q 0000005400 0.5055400 0.5505400 LW QQXXXIIE-I-(XI QW 114 I 0.0000005400 0.0000005400 0.0005545 1.5500545 QWEAXI QW-HXI 1214 I QW 0W 0000005400 LW 0M4“) QW 134 I W 0W W LW 00000005400 00000005400 TIME I SIGNAL NAMES I I (NS') I K007(19) KOUTW) K0070!) K007(22) K007(23) K00704) 0 I QW 0.055545 0. W 0.0005545 0.5000545 0W 4 I 1.5500545 1.5555400 1 AIME-10) 1111111154411 1000005400 MIME-14'!) 14 I 00000005400 QW 0. 0000005400 0.0000005400 QW QWEM 24 I LWEM 1.0000005400 10000005400 1.5000545 1.5005545 10000005400 34 I 00000005400 0.0000005400 Q WEI-(X) 0.000005400 QW QW‘KXI 44 I OMB-(XI LW LWXIEKII 1000005400 1.0000005400 LWE-I-Q) S4 I QWEHX) QWE-I-(D 00000005400 00000015400 QW QWEKKI 64 I QWEi-(X) 0.0000005400 00000005400 00000005400 LWM 0.5005545 74 I 00000005400 QW 00000005400 QQXXXXEMX) 1.0000005400 QWEM S4 I OWEKXI QWEW 00000005400 00000005400 1.5500545 0.5005545 94 I QWEW QW 00000005400 0.000005400 LW 0.0000005400 104 I QWOOOEM QWEd-(X) 0.0555400 0.5005545 LWE-KXI MINNIE-10) 114 I 0.0000005400 0.0000005400 QWHX) QW 1.5555400 0.5050545 124 I 00000005400 00000005400 0.000005400 QW 10000005400 QW 134 I QW 0000005400 0000005400 QW LWM QWEAX) 3-2 99953352255552 39:35:25540 §§E§ Figure 36. (continued). 108 SIGNAL NAMES I K007(25) Km K0070?) KW) K007(29) KOUI'OO) QW OWN!) 0. W 0W 0.000005400 Q W LWOEM 10000005400 1 .W 1W 1.5055400 1.5555400 00000005400 QW 00000005400 0000005400 QW 0 .(XXIOWE-HXI LWEHXI LW 10000005400 10000015400 10000005400 1 .0000005400 00000005400 00000005400 0.0000005400 0.000005400 QW QWEKXI 10000005400 LW 1000005400 1000005400 LW LWEW 00000005400 00000015400 0000005400 0000005400 0.0000005400 0.0000005400 LWEW LW 10000005400 0000005400 1.0000005400 10000005400 00000005400 QW 0W QWM QW 00111111544!) QWEM LWM 0.000005400 0000005400 QW 0.0000005400 QWEKD LW 00000005400 QWEd-(l) QW QWW 00000005400 1.0000005400 QWM QW 00000005400 QWEHI) QW 10000005400 0.000005400 QW 00000015400 QW 0.0000005400 10000005400 0000005400 00000005400 00000005400 0.0000005400 QW 1000005400 0W QW 0W 0.000005400 I SIGNAL NAMES I K00'I‘(31) K00'I'(32) W) K007(34) K007 (36) QW 00000005400 0. W 0W 0.000005400 0W LWOEAX) 1.0000005400 1 .W 1.0000005400 1000005400 LMM QWEM QW 0. 000005400 0.000005400 QW QWE‘KXI LWE‘KX) LW LW 1.000005400 10000005400 1.0000005400 0.0000005400 QW 0.000005400 0.000005400 QW 00000005400 LWEKD LW 10000005400 1.000005400 LWHX) 1.5500545 0.00me400 QW 0.0000005400 00000005400 QW QWHD 1.0000005400 LWM 10000005400 LWAXI LW LWEM 0. 0000005400 QW 00000005400 QW QW 0.0000005400 1 .0000005400 QW 1000005400 _ LW‘HII LW 1.0000005400 00000005400 QW 0. 0000005400 0.000005400 QW 00000005400 01111100514!) 00000015400 Q 000005400 0. WEI-(D 0.5005545 1.5005545 QWEHD 00000005400 Q 000005400 0. W44!) QW-I-(X) 1 .0000005400 0.0000005400 00000005400 0000005400 QWEd-(X) 0.0000005400 1.0055545 0.0500545 0W 0W QW 0W 1 .000005400 1- SIGNALNAMEE I (1118') I K007(37) K00'I‘(3S) K007(39) M40) KM“) K007 (42) 0 I W40) 0.000005400 QW 0W 0000005400 QW 4 I LW 10000005400 LW 1W 1.0005545 1.5005545 14 I 00000005400 QW 00000005400 0.000005400 QW 0.5500545 24 I 10000005400 LW 10000005400 LW LW 10000005400 34 I 0.0000005400 QW 0W 0000005400 0.0000005400 00000005400 44 I 10000005400 LW 1000005400 1.000005400 LW 10000005400 S4 I 0W QW 00000005400 0000005400 QW 00000005400 64 I 10000005400 LW 1111110844!) 10000015400 LW 1.0000005400 74 I 0.0000005400 QW 00000005400 0.000005400 QW 0.0000005400 S4 I 10000005400 LW 1000005400 1.000005400 101100544X) 1.0000005400 94 I 0.0505545 0.5000545 0000005400 0000005400 0.0000005400 00000005400 104 LW 10000005400 0000005400 LW 0.0055545 1.5000545 . QW QWM QWEHX) 0.0000005400 00000005400 00000015400 1.0000005400 00000005400 QW 00000005400 0.0000015400 WK!) LW 0W QW I 1 E 1? SIGNAL NAMEE I I K0!I!‘(43) K007(44) W45) K007(46) K007(47) K007(4S) 00000005400 QW QW 00000005400 1.0000005400 10000005400 LW 1000005400 0 0000005400 QW 0W 0.000005400 0 W :2-3 0000005400 QW in § I . . 0000005400 24 I 1.0000005400 LW 1.000005400 LWW LW 1110108414!) 34 I 0.0000005400 QW 00000005400 QWM QWHD 0.5005545 44 I LIXIXXXIEHX) 1000005400 101110544!) LWM 1.0505545 1.0550545 S4 I 00000005400 QW 0.0000005400 00000005400 QW QWEM 64 I 1.0000005400 LW 1.0000005400 1.000005400 LW 1.0000005400 74 I 0.0000005400 QW 00000005400 00000005400 0.0000005400 0.0000005400 S4 I 1.0000005400 LW 10000005400 “BMW-14!) 1.0000005400 1.5005545 94 I 0.0000005400 0000005400 QW 0.000005400 QW 0.0000005400 104 I 1.0000005400 LWE'KXI 1.000005400 1.0000005400 MIME-14!) ”HINGE-14X) 114 I QWE'KX) 0W 0.000005400 QW 0 0000005400 0.5005545 :32: : 1.0505545 0.0050545 0W 00000005400 00000005400 0.0000005400 10000005400 0000005400 0W 00000005400 Figure 36. (continued). 109 713:5 I SIGNAL NAMES 4. (NSI) I K0070) K0070) K0070) K007(4) K0076) K007(6) 0.0000005400 QM'FN 0.0005545 0.5005545 0.5005545 I LWHXI 1.0000005400 LW 10000005400 LW LWEM LWOEM QWE+00 QW QW 00000005400 QW 10000005400 QW 0.0000005400 QW Q W44!) 0000005400 101100544!) QWXXEIN 0.0000005400 QW 0W QQXXIXIEI-(D l.QXXXXIEd-(XI QQXXXXE-I-Q) QW QW 00000005400 QW 1010005114!) 0.000005400 QW 0.0000005400 0.000005400 0.0000005400 LONGER!) 0.000005400 QW QW 00000005400 01000111544!) LWOEM QWHX) 0.0000005400 QW QW QWEHD LWOE-HXI 0000005400 QW QW 000011005400 QW 1.5005545 0.5000545 QW QW QWEHX) 0.5000545 1.00me400 QW QQXXXXEKX) 0.0055545 0.0005545 0.000(XIOE+(XI 10000005400 QW QWW 0.0055545 0.5000545 QW 1.0055545 0.0055545 QWXEM QW 0.000005400 QW LWEM QW 0.000005400 QW 0.5000545 0.0550545 1.5005545 00000005400 QWM QWE-HXI 0.000005400 QW 1.0000005400 QW 0.000005400 QW 0.000005400 00000005400 1.0000005400 QW QW QWE‘KX) 00000005400 0W I IWEM QW 0.0555400 0.0055545 0000005400 00000005400 184 I 1011000544!) QWE‘KX) QWKXI QWM 0. 000005400 QW 194 I LWEAX) QWEKX) 0.000005400 OWN!) 0 .000005400 QW N4 I 1.“!!me QW Q 000005400 0.0000005400 0. W 0W 214 I 10000005400 QW Q 000005400 00000005400 0W QW I 5 §§§§§§22555522 ‘— 23% 713:3 I SIGNAL NAMES I (NS) I K007 (7) K007(S) K0079) K007 (10) K00701) K00702) WEI-(X) 00000005400 QW 0W 0000005400 QW 1.5005545 1.0500545 1.5055400 1W 1.000005400 1 .000005400 QWEM 0. W 0000005400 0000005400 QW 0. 0000005400 2000000501 0 .0000005400 7.0000501 0.5005545 2W0! 0. WEI-(X) 0.0000005400 0. MBA!) QIXXXIXIEIQ) 0.000005400 QW 0. WEI-(X) 2500000501 0.0000005400 7W0! 0.0000005400 2000000501 QWEHX) 0.0000005400 QW 0000005400 0000005400 QW QWEKX) 2W0! QWEKX) 750000501 0.0000005400 2M0! 00000005400 00000005400 QW 0.0000005400 0000005400 QW 0.000005400 WE01 0. W40) 7W0! 00000005400 2500000501 0.0000005400 QWEHX) 0. MBA!) Q 0000005400 QWAX) QWM 0.0000005400 2.5(XIOOOE01 Q 000005400 7. SW01 QW W01 QW QCXXXIOOE-I-(XI 0 .0000005400 0 .000005400 00000005400 0.0000005400 QW 2000000501 0 0000005400 7000000501 0011me 2500000501 00000005400 0.555545 0 0000005400 QWAX) QWEM 0.0000005400 QW lSQDOOE01 0. WINE-100 7000000501 QW 2W0! QW 00110005414!) 0 000110544!) 0.000005400 QW 00000005400 QW 15411100801 0.5000545 7.0000501 QW W01 QWEKX) 0.0550545 0.5050545 0.5505400 QW 00000005400 QW W01 0000005400 1W! 0.0000005400 W01 0.000005400 01110005114!) 00000005400 QWM QW 00000005400 QW WE01 0. 000005400 7M0! QW 2W0! 00000005400 0.0000005400 0. 0000005400 QWEM 00000005400 00000005400 QW §§i§§§§§§§§f§§ffff§ffig- N H «b Figure 37: Results of Three Stage Interconnection Pattern and Ramp Neuron. 110 r0145: (NSH §E§fritrtrfiztg_ §§§§§§§§ :3 ; =:2-3.§ §§§§§§§5eaaxzrx - Si 194I § 214 I SIGNAL NAMES K00703) K00704) K0070S) K00706) QWEHD 0. 0000005400 0. W 00000005400 10300054101 10000005400 1 .W 1.0000005400 0.0000005400 0. 0000005400 0. 0000005400 0.000005400 75WE01 75WE01 2W0! LW 0.0000005400 QWEAX) 00000005400 0.000005400 7W0! 7W0! 1500000501 1.0000005400 QQXIOQIEHD QW 0.000005400 QWKX) 75ME01 7W0! W01 LW 00000005400 QW 0.000005400 0000005400 7500000501 7W0! W01 l.QXXXXIE-I-Q) QWFAQI 00000005400 0.5000545 0.0050545 7500000501 7W0! W01 IWHX) QW 0.0000005400 0000005400 00000005400 7W0! 7W0! W0! 1.0000005400 QWEHX) Q 0000005400 QWW 0.0000005400 7.SQIOOOE01 7W0! 2M0! 1.0000005400 0011000541) 00000005400 QWM 0.0000005400 75WE01 750000501 W01 10000005400 QQXDOOEIQ) 0. 0000005400 QM“ 0.0000005400 7541000501 7W0! W01 101110310) 000000544X) 0000005400 0.000005400 QW 75WE01 7500001501 2500000501 10000005400 QW 00000005400 0W QW I SIGNAL NAMES K00709) K00'I'C20) K007 (21) K007(22) 00000005400 00000005400 QW 00000005400 1.5555400 1.0050545 1.0000005400 1 W 0.0000005400 0.0000005400 00000005400 00000005400 1.(X100(X)E+IXI LW 1.000005400 1011105114!) QOQXXXJEd-(X) 0.0000005400 0.0000005400 0.0050545 1.00me400 MIME-10) 101100514X) 1.000005400 QWEH'D QWEM QWi-Q) 0000005400 IWEd-OO LW 1.0000005400 1000005400 OWL-1400 QW 0.0000005400 0000005400 LWE+00 1.0000005400 LWM 1.0050545 0.5555400 0.0550545 QW‘IQI 0.000005400 10000005400 LWEKX) 10000005400 LWOEI-(XI 00000054!) QW'KX) QW-HX) 000100844X) 1.0000005400 10000005400 1.5000545 1.5000545 011000054” Q WEI-Q) 0.000005400 QW ”KNOB-(X) 1.5050545 1.5000545 1.5005545 0.0505545 Q 0000005400 0.000005400 QW 1.0000005400 10000005400 LWM kW QWEI-(X) QWE+00 0.000005400 0011100544!) l.QXXIOOEHX) 1.0000005400 LWHD LW 0.0000005400 QWEI-(XI 0.000005400 QW 1110000544!) 10000005400 1000005400 LW 001000544X) 0000005400 QW QW K00707) _ , K007 (IS) 0000005400 QWXIOOEHXI 1.0000005400 101100084X) 0.0550545 0.5005545 2W0! ZSQXDOB01 0.0000005400 QWEM W01 1500000501 0.5500545 0.0505545 W01 lSQXBOE01 QW QWEI-(XI W01 2.5MXXIE01 QWEHXI QWi-(XI 2M0! 2W0! QWM 0.0000005400 2W0! 2500000501 QWEM 0011005110) W01 W01 0.0000005400 0.0000005400 250000501 2W0! 0.0000005400 QWHX) 2W0! 2W0! 0.0000005400 QWEAD W01 W01 0000005400 QW Figure 37. (continued). 111 W) K007(7.4) QWEKD QW LWM 0.0000005400 0. 0000015400 10000005400 0.5500545 1.5500545 0.5005545 1.5005545 00000005400 l.QXJOQIE-I-(X) QWEW LWEW 0.0000005400 10000005400 0.5005545 1.5005545 QWEM 1 .0000005400 0.0000005400 1 .WOEHX) 0.0000005400 LWHXI QW 1.0000005400 QW TIME . SIGNAL NAMBE I I (NS) I K007(25) K00706) K007 (27) K00'I‘(28) K007(Z9) K007(30) I 0 I 00000005400 0.0000005400 Q W Q W 0000005400 QW 4 I 1.0000005400 1.0000005400 1 .W 1011110510) 1000005400 ”“me401 14 I QWEM QW 0 .0000005400 Q 000005400 0011000614!) QOQIOQIE+00 24 I LWE-HXI LWOEAD 1.0000005400 LW‘HX) l.QIXXXIE-o-Q) LOWER!) 34 I 0.0000005400 QW QWM 0000005400 QW 0.5500545 44 I 10110101544!) 1.0000005400 10000005400 1.000005400 1.0000005400 1.0000005400 S4 I 00000005400 QW QWEI-Q) Q 000005400 QWE-I-(X) QWM 64 I LWE-I-N LWEI-QI LW 1000005400 LWOEKX) LWB-I-Q) 74 I 0.0000005400 QWEAXI QWEKXI Q 000005400 QWEHX) 0.QX)0Q)E+(XI S4 I 1.0000005400 1 .0000005400 1.000005400 1.0050545 1.0550545 LOWE-14X) 94 I Q 0000005400 0. MOE-10) 00000005400 QWM 0.0550545 0.5005545 104 I 1000005114!) 10000005400 LWIN LW 1.0000005400 1.0000005400 114 I Q 0000005400 0. 0000005400 0.000005400 QW 0.0000005400 QW 124 I 100100544X) 1.0000005400 1000005400 10000005400 MINDS-14X) 1.0000005400 134 I 0 .(XXXIOOEHX) 0.0000005400 0W QW 0.0000005400 QW 144 I 11100005414!) LWBd-Q) 1000005400 1.0000005400 LIXXXXDEM 1.0000005400 154 I Q 0000005400 0.0000005400 00000005400 00000005400 0.0000005400 QW 164 I 1110000514!) LW 1.000005400 10000005400 1.0000005400 1.0000005400 174 I 0.0000005400 Q W44!) 00000005400 QW 0011111844!) QWd-Q) 184 I 10111005440 10000005400 10000015400 l.QXXJOOE-I-(XI 10000005400 1.0000005400 194 I 00000005400 Q WEI-(X) Q 000005400 QW 0.0000005400 QWENXI 204 I 101000540) 1.0000005400 1.000005400 LW 1.5005545 1.5050545 214 I QW 0W 0W QW 0W QW 11145 I SIGNAL NAMES I 0118') I K007(31) K007(32) K007(33) K00'I‘(34) K00'I‘(3S) K00706) 0 I QW 0.0000005400 Q W 0W 0000005400 QW 4 I LWEM 10000005400 1 .W 1W 1000005400 l.QXXXXIE-I-(XI 14 I QWEHX) QW 0. 0000005400 00000015400 QW QWEAX) 24 I 1WE+QI 1.0055545 1.5050545 1000005400 1.1!!!)me LWEM 34 I 0.0000005400 QW 0.0000005400 0.000005400 QW 0 .0000005400 44 I l.QXJOQIEi-(XI LIXXXXIOEHX) 1.0000005400 10000005400 LW 1 .(XXXXXIE'I-Q) S4 I QWEM QW 00000005400 Q 000005400 0.0000005400 QWE-Kl) 64 I 1.0000005400 1111me 1.0005545 1.5000545 1.0550545 1.5005545 74 I OWE-(XI QWE‘I-Q) 0.0000005400 0. 000005400 0.0000005400 0.0000005400 S4 I 10000005400 MIME-(II 1.000005400 LWEHXI 10000005400 1.0055545 94 I QQXIOIXIE-I-Q) QW 0.0000005400 0.000005400 00000005400 QWEM 104 I 1000005400 LWEW LWNXI LW LW'KXI l.QXIOOOE-I-(D 114 I 001100054X) 0.0000005400 0000005400 0.5500545 0.5555400 QW 124 I 101000510) 1.0550545 1.5505400 1.5500545 1.5005545 101000540) 134 I QQXDOOEAXI 0.0000005400 QWEi-W Q W QQXXXDE+00 QWEW 144 I 1011000544» 10000005400 10000005400 10000005400 LWEIOO 1 .0000005400 154 I 0.0000005400 0 “HIDE-100 0.000005400 Q W QWEKX) 0. MOE-10) 164 I 1.0000005400 1 WEI-(XI 1000005400 LWE-o-(X) LIXXXIQIE-KXI 1 .(XXXXIOEHXI 174 I 0.0000005400 Q WEI-(XI 0000005400 QW 0.0000005400 0. 0000005400 184 I 1.5555400 1.5050545 1.5000545 LW 101110844!) 1 .0000005400 194 I QWEI-(XI 0.0000005400 QWEM QW 0.0000005400 Q WIDE-Q) 204 I LWOEHX) IWM 1.000005400 l.QXXXXIE-I-Q) LWE-HXI 1.0000005400 214 I 00000005400 00000005400 00000015400 QW 00000005400 Q mm Figure 37. (continued). 112 TIMBL I 018') I KOUTOT) KOUTGS) KOU'I‘G9) _§-_--____-_ -flflflfl-- N 3 G trfizefffiiftr'fii‘ ffiflik 3-; §§§§§"”""” gerraextr2:.o tffi -§--_--_--__ N H b w- 0.000000st LWOEHX) QWEM 1&1!”me o.ooooooa+oo Loooooomoo o.ooooooa+oo LWEM o.ooooooa+oo 1 .ooooooawo o.oomooE+oo 1 .ooooooaoo QWE-I-(X) 1300000900 09000001900 l.QXXJOOEm o.oooooos+oo LWOE‘KX) o.ooooooa+oo 1 .(XXXJOOE-I-(X) QWEM 1.000000% 0W KOUT(43) ammonia-00 1.00000054-00 0900000300 1900000900 0000000300 l.QXXXDE‘I-m QWEi-Q) MIME-hm o.oooooos+oo LWEW 09000005400 11!!me QWEd-(X) 1.0moooa+oo o.ooooooa+oo 1moooos+oo QWEM 1.ooooooa+oo QWE-o-w 1.oooooos+oo o.oooooos+oo LWOEHI) o.oooooos+oo onoooooe+oo 10000005400 QW 1 .W o.ooooooa+oo 030000002400 KOU'I‘(44) 0W 1.ooooool.=.+oo QW 10000001900 o.ooooooa+oo Lamoooswo 03000001900 LWEHD QW LW o.ooooooe+oo 1.oooooos+oo 0900000300 1.ooomor~:+oo 0.0000(an 1 .oooooomoo 0W 1 .W-I-Q) omoooomoo LWMX) o.ooooooa+oo woooooaoo o.ooooooa+oo QW 1 .oooooomoo 0000000900 19000001900 09000001300 LWE-o-m o.ooooooe+oo 1.0000001-:+oo o.ooooooa+oo LWEM 00000001900 19000005400 omoooamo LWW omoooomoo LW-I-m 0000000500 Loooooaawo o.oooooaa+oo LW-I-w QWXEm mooooamo omooormoo KOUTGS) QW Looooooawo o.oooooo.=.+oo 10000001900 o.oooooox~:+oo 1.ooomoa+oo QWM 10000001900 QWM LIXXXIDE-IQ) o.ooomoa+oo 1 .ooooooawo o.ooooooE+oo 1 .ooooooaoo 0.0m4-00 1 .ooooomawo o.ooooom~:+oo 1 .ooooooewo o.ooooooa+oo LWM onoooouawo 1mm 0mm SIGNAL NAMES KOUTGO) SIGNAL NAMES onoooooswo LWE'I-m QWW lmoooos+oo 09000005400 Looooooewo o.oooooos+oo Loooooo£+oo o.ooooom~:+oo Looooooewo o.oooooua+oo l.QXWEm QW Loooooomoo QW LWEHI) QW LWEAX) o.ooooooE+oo Loooooomoo QWEHX) momma QW KOUT (46) o.ooooooe+oo mooooomoo o.oooooa-:+oo 1 .oooooomoo ammo LWW 00000001900 1 .ooooooewo o.ooooooa+oo LWM 0.000000%» 1.ooooooa+oo o.oooooos+oo ”RIDGE-rm Figure 37. (continued). 113 KOU'I‘(4 1) KOU'I‘(47) 09000008400 Loooooaa+oo QWEHD LW o.ooooooe+oo LWE-I-m o.ooooooa+oo LWE‘I-m o.oooooos+oo 1.ooooooa+oo QW 1900000900 03000001900 Loooooomoo o.oooooos+oo 1.oooooos+oo QWEM Looooooa+oo o.oooooo£+oo MIME-IQ) o.ooooooB+oo 10000005400 00000005410 KOUT (42) QW LWEHX) o.ooooms+oo Looooooawo 0000000900 1.oooooos+oo o.oooooos+oo LWEI-Q) o.oooooor-:+oo LWEM 011130me 1.0000001=.+oo QQXXJOOEHI) KWWIS) QWEHX) LWE-o-m 0900000500 1.ooooooI-:+oo 0.(XX)0Q)E+(X) 1.oooomE+oo QWEi-(l) LWEAX) 00000001900 1 .oooooom-oo QWEAX) MINDS-fl!) QWEHD LW omoooomoo LWE'I-Q) QWE-o-Q) 1 .ooooooaoo o.ooooooe+oo LW o.oooooo£+oo LWEHD QW SIGNAL m g KOUTG) KOU'I'(4) mum) zooms) 0000000300 0000000300 0.000000300 0000000300 KOUTO) K0070) MIME-0Q) fiiktKfiie QW 1000000300 QW QW 0.000000300 QW QWE-I-(X) LW QWEi-(X) QWE‘I-(X) 0.000000300 0.000000300 0000000300 0.000000300 QWEI-(X) 0000000300 1000000300 0.000000300 0.(X)0000£+(D 0.000000300 0.000000300 QWE-I-Q) 0.000000300 QW 0.000000300 flflhuuu—enuu ”flfluunfluuu 0.(X)(XXJOE+(X) 0000000300 0000000300 o00000m~3+00 QWKX) 0.000000300 0.00000ua+00 0000000300 QWd-(X) 0000000300 000000300 QWEKX) 0.000000300 :22! "H-555-..“ g. . é 1000000300 MIME-(D 1000000300 ffflik 000000300 SIGNAL NAMES 3 W) K001- (10) MI I) 0W 0W 1000000300 1W Q 000000300 0000000300 SSW-01 0000000300 1500000301 QW 8m-Ol QW SWOI 0.000000300 SSW-01 0000000300 SW-m QW Sim-01 QW SSW-01 0000000300 SSW-01 Q 000000300 SSW-01 Q 000000300 SSW-01 0000000300 SSW-01 0000000300 SSW-01 0.000000300 SSW-01 0000000300 SSW-01 0000000300 SSW-01 0.000000300 SSW-01 0000000300 SSW-01 0000000300 -% KOU'I'OZ) 000000amo 0000000300 1.0000001=.+00 1000000300 0.000000300 0000000300 1500000301 0.000000300 0.000000300 0.000000300 0.000000300 0.000000300 0000000300 000000300 0.000000300 0.000000300 0.000000300 0000000300 0000000300 0.000000300 0.000000300 0.000000300 0.000000300 0000000300 0.000000300 0000000300 0.000000300 0.000000300 0.000000300 0000000300 0.000000300 0.000000300 0.000000300 0.000000300 0.000000300 0.000000300 0000000300 0.000000300 0.000000300 000(000300 0.000000300 0000000300 -§ 2 § ’777§f7" trackersreiffiirtrfizeo -"7§777"’ Figure 38: Results of Three Stage Interconnection Pattern and Sigmoid Neuron. 114 TIME!— SIGNAL NAMES I I (NS) l KOU'I'OS) KOU'I‘OG) KOUTO‘I) KOUTOS) QW QWEKXI 0000000300 QWOEKX) 1000000300 1000000300 1000000300 1000000300 0.000000300 0.000000300 0.000000300 QWEHX) 1500000301 LWHD 1500000301 LW-Ol QWW 0000000300 0.000000300 0.000000300 0000000300 1 .000000300 LW-Ol 1500000301 0.000000300 0.000(00300 0.000000300 QWEW 0000000300 SSW-01 QWE-KX) 0.000000300 0000000300 SSW-01 0000000300 0000000300 QWM SSW-01 0.000000300 QWE-I—(D 0000000300 SSW-01 QWd-(D 0.000000300 0000000300 0500000501 0.000000300 0000000300 SSW-01 QWEW 0.00000(I-:+00 SSW-01 0.000000300 0.00000aa+00 SSW-01 QW 0000000300 SSW-01 0.000000300 QWM SSW-01 QWEW QWEM SSW-01 QWEAX) QWM SSW-01 0000000300 000000tn+00 SSW-01 0.000000300 ROW (13) QWEM 1000000300 QWEHXI SWE-Ol Q WEI-(X) S .0030008-01 Q WEI-(X) QWEi-(X) QWEM QWEM 0.000000300 0000000300 0.000000300 0000000300 0.000000300 0.000000300 QWEAX) 0.000000300 0.000000300 0.000000300 0000000300 XOUI'(14) 0.000000300 errrtrrr:::g_ xifiiiiififi" ~ 0000mm reezxtu§i§frrirtriztg --fl~fl -————-—_-— 0.000000300 1000000300 LWE‘HX) QWHD Q 000000300 SSW-01 0.000000300 1500000301 QWE‘KX) QWEAX) 0000000300 QWEd-(X) 0. W44!) Q 000000300 0000000300 QWEM Q W054“) 0000000300 KOU'I'(21) LW Q 000000300 1000000300 QWM LWE‘HX) 0.000000300 W1 0000000300 1500mm QWEKD 0000000300 0.000000300 QWKX) QWM 0000000300 000000th 0.000000300 0000000300 QW Qm-rm SIGNAL NAMES KOU'I‘(22) W1 1 .W 000000300 LWHX) 0.00000ua+00 1000001300 KW) QWKD 0000000300 000000t300 1000000300 QW LWEM 0.000000300 1 .000000300 QWi-(XI KOU'I' (24) QW 1000000300 QWEAX) LWEM 0.000000300 1.000000300 0000000300 1000000300 SSW-01 0.000000300 Q 000000300 0. 000000300 1500000301 0000000300 LW-Ol 0.000000300 0.000000300 QW QM“) 0000000300 0.000000300 QW QW QW Figure 38. (continued). 115 LW 1W1 LW SSW-01 1.000000300 LWEM 1000000300 1000000300 LWE'IQ) LWEM 1000000300 1000000300 1500000301 0.000000300 QW QWEHD QWEM 0.000000300 0.000000300 0.000000300 QWEd-Q) QWEKD QW QW TIME I SIGNAL NAMES I I (NS) I KOUT(25) KOUT(26) KOUT (27) KOUT(28) KOUT (29) KOU'I' (30) I 0000000300 0.000000300 QW 0000000300 0000000300 QW 1000000300 1000000300 1000000300 1000mm 1000000300 1000000300 0.000000300 0.000000300 0000000300 0000000300 0.000000300 QWEd-(X) URINE-(X) 1000000300 1.000000300 1000000300 1000000300 1000000300 0000000300 QW QWd-Q) 0000000300 QW 0.(XXXXX)E+(X) 1000000300 1.000000300 1000000300 LWHI) 1000000300 1.1!!!)me 0.000000300 QW 0000000300 0000000300 QW 0.000000300 1000000300 LW LWM 1000000300 LW 1000000300 0.000000300 QW 0.000000300 QW QW 0.000000300 85WE-01 HUMAN) 8.5m-Ol 5000000301 SSW-01 QWE-Ol 0.000000300 0000000300 0000000300 0000000300 QW QWEd-Q) 8W0! 1000000300 5000000501 1W1 8500000301 SWINE-01 0.000000300 0000000300 0000000300 QW QWM QW 15WE-01 350000301 0000000300 QW 1500000301 0.000000300 QW 1500000301 QW QW QW QW 0.000000300 8M0! QW 0000000300 0000000300 QW 0.000000300 8W0! 0.000000300 QWM 0.000000300 QWE-I-(X) 0.000000300 8m-Ol QW QWd-Q) 0.000000300 0.000000300 0.000000300 8.5m-Ol QW 0000000300 0000000300 QW 0.000000300 8m01 QW 0.000000300 0.000000300 0000000300 0.000000300 8.5m-Ol QW 0000000300 0000000300 0.000000300 iiii’ififiififtfifltkkho 'r- SIGNALNAMES I I KOUT(31) W32) KOUT (33) M34) KWI‘OS) KOUT(36) 0000000300 0000000300 QW 0W 0000000300 W l.QXXXIOEHX) 1W LW 1W 1000mm 1.000000300 QWE'KX) QW 0000000300 QWW QW 0.000000300 1000000300 1000000300 LWM 1000000300 1000000300 1000000300 0.000000300 QW 0.000000300 QWM QW QWEd-(X) 1000000300 LW LW LW 1000000300 1000000300 QWEW 0.000000300 0.000000300 QW‘I-(X) QW 0000000300 1000000300 LW LWM 1.000000300 LW 1.000000300 0.000000300 0.000000300 QWM 0.000(00300 0.000000300 0.000000300 1000000300 LW 1W 1000000300 LW 1000000300 QWEHX) 0.000000300 0.000000300 0000000300 0.000000300 0000000300 1000000300 LWE‘KD 1000000300 1000000300 1000000300 l.QXXXXIEflX) QOQDOOEM QWEM 0000000300 QWEHD QWEM QW 8.5WE-01 5000000301 8500000301 8W1 8.5WE-01 1000000300 0.000000300 0000000300 0.00000u300 QW 0.000000300 QW 8.5(XXIOOE-01 ISM-01 8500000301 ISM-01 50000001501 1000000300 QWOOOE-I-Q) 0000000300 0000000300 QW 0.0000(0300 QW 0.000000300 0.000(00300 QIXXXXXE-I-Q) QW 0000000300 1000000300 QWE‘HX) 0000000300 0.000000300 QW 0000000300 LW 0.000000300 0.000000300 0000001300 QWEHD 0000000300 1000000300 0000000300 0000000300 00000033400 QW 0000000300 LW r::0utr§§§ff313338=:3_3 flu—oth-II‘ —-----— Figure 38. (continued). 116 Figure 38. (continued). 117 TIME I SIGNAL NAMES I I (NS) I KOUT(37) KOU'I' (38) KOU'I'G9) KOUTGO) KOUT(41) KOUT (42) I 0 I 0000000300 0000000300 W 0W 0W QW 4 I LWEHX) 1000000300 LW 1000000300 1000000300 1000000300 14 I 0000000300 QW 0000000300 Q 000000300 QW 0000000300 24 I 1000000300 LW LW 1000000300 1.000000300 1000000300 34 I 0.1!!!me QW 0111111124“) 0000000300 ‘ Q W 0.000000300 44 I IWB'HX) LW LW 1000000300 1 .W LWEW S4 I OWEN!) QW QW 0W 00(0000300 0000000300 64 I 1000000300 1000000300 LW 1000000300 LW 1000000300 74 I OWEN!) QW QW 0000000300 QW 0.000000300 84 I 1000000300 LW 1000000300 1W LW LWEM 94 I OWEN!) QW 0000000300 0000000300 0000000300 QWE'I-(X) 104 I LW 1000000300 1000001300 LW 1000000300 1000000300 114 I QW 0W 000000c300 0.000000300 0000000300 0.000000300 124 I l.QDOOOE-I-Q) 1.000000300 1000001300 1000000300 1000000300 l.QXJOOOEHD 134 I 01113000344!) 0 .W 0.00000t300 QW QWEM 0. 000000300 144 I 1000000300 1000000300 1000000300 LW 1000000300 1100000300 154 I QOQJOOOEHD Q 000000300 0000000300 QWHXI 0. 000000300 0. 000000300 164 I 8.5WOOB-01 venous-01 SW1 1000000300 5000000301 8m-Ol 174 I 01111000240) QWd-N 0000000300 QW 0.000000300 0.000000300 184 I 0000000300 0000000300 0000000300 1000000300 0000000300 Q 000000300 194 I 0.000000300 0000000300 0.00000m+00 LW Q 000000300 0. W TIME I SIGNAL NAMES I I (NS) I KOUT(43) KOUT(44) KOU'I‘(4S) KOUT(46) KOUT(47) KOUT (48) 0 I 0000000300 0.000000300 0.000000300 0000000300 0000000300 QW 4 l' l.QXIXJOE-I-Q) 1000000300 LW 1000000300 LW‘IN 1000000300 14 I QWEM Q W QWEd-Q) 0.00000(E+00 0.000000300 0000000300 24 I l.Q)OOIXJEW 1000000300 1.“!!!an 1.W00(E+(X) l.QHXIOE-I-(X) l.Q)OOQJBHX) 34 I 0.000000300 0.000000300 QWOEI-(X) QWM 0.000000300 0.000000300 44 I LWEW LW 1000000300 LIXXXXXE‘KXJ LW MINDS-HI) S4 I 0.000000300 QW QWE‘KXI o00000m=.+00 0000000300 0.000000st 64 I “KNEW LW 1000000300 1000000300 LW l.QXXXDE-o-(X) 74 I 0.000000300 0000000300 QWEd-N 0000000300 QW QWEKX) 84 I 1000000300 LW 1000000300 1000000300 LW 1000000300 94 I 0.000000300 QW 0000000300 0.000000300 0.000000300 0 “WEI-(X) 104 I l.QXXJOOB‘I-(X) 1000000300 LWM 1.WOE+(X) 1000000300 1000000300 114 I 0.000000300 0.000000300 0000000300 QIXXDOOW 0 .000000300 Q WEI-(XI 124 l 1000000300 1000000300 1.000000300 1000000300 l.QXXXDE-KX) LWKX) 134 I 0.000000300 0000000300 0000000300 QW QWEd-Q) Q 000000300 144 I LWOEMX) 1W 1000000300 LWEW 1000000300 1 .WOE-I-(D 154 l. QWEM 0.000000300 0000000300 QW 0. WEI-(X) 0000000300 164 I l.QXXXJOE-I-(X) LWEW 1.00000aa400 LWEHX) LWEKX) 1000000300 174 l 0.000000300 0.000000300 0000000300 0.000000300 0000000300 QWEi-Q) 184 I 1000000300 0000000300 0.000000300 0000000300 0000000300 QW 194 I 1000000300 0000000300 000000tn+oo QW 0000000300 0.000000300 11MB! SIGNAL NAMES e I ms.) I room) room) now-(3) Koo-0(4) xou'rm Korma) 0 I 0000000300 0W QW 0.000000300 QW 0mm 4 I 100000(300 1W 1000000300 1000000300 MINER!) 1000000300 1000000300 QW QW QW 0.000000300 0.000000300 1000000300 0000000300 QW 0.000000300 0000000300 QWE-I-(X) LWEW QW‘KX) QWEKD 0000000300 QWEKX) QWEM LWOEW 0000000300 0.000000300 QW-I-(XI QWi-(XI 000000300 LWEM 0000000300 0.000000300 QM“) 0000000300 000000300 1000000300 000mm QW QW 0.000000300 QW 1000000300 0mm QW QW 0000000300 0.000000300 LWEM 000000300 QW 0000000300 0.000000300 QW LW 0W QW QW QWW QM“) “are“: -Q-? § I i E KOUTG) XOUI' (10) KOUTO 1) KOU'1‘(12) 0000000300 0mm QW 0W 0000(00300 QW . . . LMM LW OWE-KI) QW QWM 0000000300 0000000300 QWEAX) 0000000300 0000000300 1000000300 000000300 QW 0000000300 0000000300 QW 1000000300 0000000300 QW 0.000000300 0000000300 QW LWOE‘KX) 0000000300 QWEI-(l) 0.000000300 0000000300 QW 1000000300 0000000300 QW 0000000300 0000000300 QW 1W 0W QW 0000000300 0.000000300 QW 1000000300 0000001300 QW 0000000300 0.000000300 0.000000300 1.000000300 0000000300 QW 0.000000300 0000000300 0W 1000100300 0.00000a~:+00 QW 0000000300 E E E I fffliitffl'EWG KOUTOS) M14) KOUTGS) KOUTO6) KOUTO7) KOU'I'(18) 0000000300 0000000300 QW 0W 0.00000t300 QW 1WE+M 100mm 1000000300 1W 1.00000tmoo 1.000000300 0000000300 QW 0000000300 0000000300 QW 0.000000300 1000000300 LW 1000000300 1000000300 MIME-H!) 1000000300 0000000300 QW 0.000000300 0.0000m300 QWd-(D 0.000000300 QWEM QWHX) 0.000000300 1000000300 0.000000300 0.000000300 QWEKXJ QW 0000000300 100000(£+00 0.000000300 0.000000300 0.000000300 QW 0000000300 1000000300 QW 0000000300 0000000300 QW 0000000300 1000000300 QW 0000000300 0000000300 QW 0000000300 1000mm 0000000300 0000000300 0000000300 QW 0W 1000001300 QW 000000300 _§_g I E frflflttfifii'fl’ Figure 39: Results of Four Stage Interconnection Pattern with Binary Neuron. 118 22:21:“: 2232333303396 1 2-3 K0011”) KOUTQI) Q 000000300 1.11me 0000000300 1000000300 0000000300 0000000300 0000000300 0W 0000000300 QW 1- 0000000300 Q WEI“) LWEW QWEM 1000000300 0.000000300 0.000000300 0000000300 0000000300 0000000300 SIGNAL NAMBE SIGNAL NAMEE ' KOUTO3) KOUTQZ) W 1W Q W 1000000300 Q 000mm 0.00000(£+00 QW 0W 000000us+00 0W M) 0m 0000000300 1 .mm 0000000300 100000t300 0.00000(£+00 QWW 0.00000t300 0000000300 0000001300 Figure 39. (continued). 119 KOUTGS) KW) 000000aa+00 100000aa+00 QW 1.1!!me 0.000000300 LW MIME-04X) 1000000300 1000000300 LW LW KOUTQA) QW LW QWd-(X) 1000000300 0000000300 0000000300 0000000300 0.0000001mo QWEM 0000000300 0W 0000000300 QW 1000000300 1.000000300 0000000300 Q WEI-(X) Q 000000300 Q 000000300 QW 1.000000300 0.000000300 1000000300 0000000300 1000000300 QWE‘KX) 1000000300 1.000000300 1 .000000300 1000000300 TIME I SIGNAL NAMES I I (NS) I KOIJT(37) KOUI‘G8) KOU'I‘(39) W40) M41) KOUT (42) 0 I 0000000300 0000000300 QW 0W 0000mm QW 4 I LWOEKX) 1000000300 LW LW ”Hm-om 1000000300 14 I 0000000300 0.0(0000300 0.000000300 0000000300 QW 0.000000300 24 I 1000000300 1000000300 1000000300 1000000300 LW LWKX) 34 I OWE-(X) QW QWW QW QW QWW 44 I 1000000300 1.1!me 1000000300 1000000300 LW 1000000300 S4 I 0000000300 0.000000300 0000000300 0000000300 QW 0000000300 64 I 1000000300 LW 100mm 1000000300 LW 1000000300 74 I 0.000000300 0000000300 0000000240 QWEM QW 0.000000300 84 I 0.000000300 0.000000300 0W 1mm W 0000000300 94 .I 0W W 0000000300 1W W 0000000300 TIME I SIGNAL NAMEE I I (NS') I KOUT(43) W44) KOUT(4S) KOU'l‘(46) Koo-m7) XOUT(48) 0 I 0.00am300 0000000300 QW 0W 0000001300 QW 4 I. 1000000300 1000000300 LW 1000000300 1W+N 1000000300 14 I QWEHX) 0.000000300 0.000000300 0000000300 QW 0000003300 24 I 1000000300 1000000300 1000000300 1000000300 1000000300 1000000300 34 I QWEM QW 0.000000300 0.00000<300 0000000300 0000000300 44 I LWE'I-(X) 1000000300 1000000300 1000000300 1000000300 1000000300 S4 I QWE-I-(X) QW 0.000000300 0000000300 QW OWEN!) 64 I MIME-(X) 1000000300 1000000300 1000000300 MIME-HI) LWEM 74 I QWE-I-(X) 0.000000300 0.000000300 0000000300 0.000000300 0.000000300 84 I 1000000300 QW 0000000300 000000a=.+00 QW 0.000000300 94 I 1000000300 QW 0000000300 0.00000a=.+00 QW 0.000000300 Figure 39. (continued). 120 n?“ «9! I KOUTU) I é §§§§§§§§§§§3333332§3> N H ‘ -2 -3 guide-o.— ----—-- 3 ; D-I-lu-oo-l-e.‘ rrrarrrr rererrrrrao :9 5 g 1000000300 1 .OOQIOOEHX) 1. WORK!) 1.000000300 1000000300 l.QXXIOOEHX) 1000000300 1. WEI-(X) 1 .(XXDOOE-I-(XI 1000000300 LWE-l-(X) 1000000300 1 .WE-I-(X) 1 .(XJOQXIEM 1000000300 1 000000300 1000000300 LWEAX) 1WE+OO 1WE+N 'F' QWEM 1000000300 0000000300 0000000300 0. WEI-(X) 0.000000300 QWEW QWEHX) QWEHX) 0.000000300 0 “HIDE-00 O. OWOOOEHX) Q 000000300 0. WOOOE-I-OO Q OWOOEHXI 0. WOOOEAX) Q ”00050-00 0. WEI-(X) 0. 000000300 Q WEI-(X) Q 000000300 Q WEI-(X) Q WORM mmmn Q 000000300 1000000300 0. 000000300 0000000300 QWW 0.000000300 0.00000(B+00 QWW 0000000300 QWM 0000000300 0.000000300 QWEM O.(XXXXXIE+(X) 0.000000300 0.000000300 0.000000300 0.000000300 0.000000300 0.000000300 QW QWEHX) QW 0. 000000300 Q WEI-(X) Q 000000300 KOUTG) smmuunms awn» 0000000300 0.000000300 LWEAD QWEHXI QIXXDOOEM 0.000000300 QWE‘I-Q) QWEHX) 0.000000300 QOQIIOOE‘I-(X) 0000000300 QW 0.000000300 0.000000300 0.00000IE+00 0000000300 QWW 0000000300 000000300 QIXXXXXEM QWM QIXIOIXXE'I-(XI 0000000300 0000000300 ROI-m9) SIGNAL NAMES 1000000300 0000000300 0.000000300 0.000000300 QWE-I-(X) QWEMXI QWE-I-(XI 0.000000300 0.000000300 0000000300 QWEHX) QWEW 0.000000300 QWEM 0.000000300 QWEHX) QWEM QWE-HX) 0.000000300 0.000000300 0.000000300 0000000300 nmum) “WK” QW 1000000300 0 .(XXXXJOE‘KX) Q 000000300 0.000000300 QOIXXDOEI-(X) 0. 000000300 0. WEI-(X) Q WEI-(X) 0.000000300 0.000000300 QW-FQ) 0000000300 QWKX) QWM QWHXI 0000000300 0000000300 QQXXXJOEM 000000300 0.000000300 0. WEI-(X) Q 000000300 nmuu) HNNQ 0.000000300 LWEKXI 0. 000000300 0. WEAK) O. WOOOE-I-(D 0.000000300 0113000084!) QQJOOIXIE-I-(X) QQXXJOOEHXI 0. WEI-Q) Q (”GONE-IQ) 0. WEAK) O .QXXXXJEHX) QWEW 0. 000000300 0 .WOEHXI 0. WEI-(X) O. WEI-(X) Q 000000300 Q MOWER!) 0 000000300 Q 000000300 ammu) Q 000000300 1.”!me Q 000000300 ISM-01 7500000301 ISM-01 ISM-01 ISM-01 ISM-01 ISM-01 ISM-01 ISM-01 ISM-01 ISM-01 ISM-01 ISM-01 ISM-01 ISM-01 ISM-01 mom-01 ISM-01 ISM-01 ISM-01 ml 0.000000300 1W 0000000300 QQXXDOEI-(X) QWEHX) QWEHX) 0.000000300 QW 0.000000300 QWEM QQXXJOOEA-(X) QWE-I-(X) 0000000300 QWEHX) 0.000000300 0.000000300 0.000000300 0.000000300 0.000000300 QWE'KX) 0.000000300 Q 000000300 Q 0000mm 0.00000a-:+00 1000000300 0. 000000300 0 .000000300 0 .WEM QWE-I-(XI 0.000000300 QIXXXXDE-I-(XI QWEHX) 0000000300 0.000000300 0000000300 0.000000300 QWEHD QIXXXIOOE+QI QW QIXXXJOOEHI) QWEHX) 0.000000300 0.WE+(D MIME-Kl) QWEM QW 0. MEN!) 1 000000.300 O. WEM O.(XX)000E+(X) 0.(XI0000E+Q) QQIOOOOE+QI QQIOOOOE-HI) 0.000000300 QQXIOOOEHXI 0.000000300 QWOOOEHX) O.(XXX)00E+(XI 0.000000300 QWEI-(X) 0.000000300 QOWOOEHX) QQXDOOE'I-(XI 0.000000300 QWEHX) 0000000300 0 .WOEHXI Q 000000300 0000000300 Figure 40: Results of Four Stage Interconnection Pattern with Ramp Neuron. Figure 40. (continued). 122 TIME L SIGNAL NAMES E KOUTOB) KOU'1'(14) KOUTOS) KOUT(16) KOUTO‘I) KOUTOS) 0 II aooomom-oo ooooooomoo Q W OW ammo QW 4 I l.QXXXXJEm LWE-Im LW LW Imoooomoo LW 14 I o.ooooooa+oo o.ooooooa+oo Q oooooomoo o.ooooom+oo QW omoooomoo 34 I 1.ooooooE+oo LW 75000001501 LW 7500000301 7500000501 34 I o.oooooox-:+oo QWE-o-Q) QM“ 00000005400 0. W 0. WEI-(X) 44 I W01 5.WE01 oooooooa-oo 1W 1W1 omooooawo 54 I o.oooooos+oo QW o.oooooos+oo ammo Q W o.ooooooa+oo 64 I W01 momma-01 QW Looooooa+oo W01 o.ooooool-:+oo 74 I o.ooooooa+oo o.oooooo'='+oo QWEM QWM QW 0900000300 84 I W01 QWE01 QWHD LWEM 2W1 o.ooooooa+oo 94 I QWEAI) 09000001900 o.ooooooe+oo 09000009300 o.ooooooe+oo o.ooooooE+oo 104 I 1511000501 SW01 o.ooooooa+oo 1.000000% W01 QW 114 I o.ooooooa+oo Q oooooo£+oo cocoon-2400 QW 000000015400 o.ooooooa+oo 121 I 1501100501 5 mom-01 omooooewo Loooooos+oo W01 QWEd-(X) 134 I QWEW omoooos+oo omoooomoo o.oooooos+oo o.oooom£+oo QWEM 144 I 2.5(XJOOOE01 SW01 09000005410 LW 2W1 QW 154 I QWOOOEd-Q) 0. 0000001900 o.ooooooa+oo QW o.oooooos+oo QW 164 I 2.5(XIOOOE01 5 .ooooooe-m o.ooooooE+oo l.QXXXXIE'o-m W01 o.ooooooa+oo 174 I QWE-I-(X) Q oooooomoo o.oooooos+oo QWHD o.ooooooE+oo o.oooooor~:+oo 184 I 1500000501 1000000501 QWEM LWM W01 0000000900 194 I QWEHX) Q WEI-Q) 09000005400 QW QW QW 204 I 2.5(XIOOOE01 5.1XXXXIIE01 o.ooooooB+oo momma-co W01 0000000900 214 I QW 0W 0W ammo o.ooooooa+oo QW “11313 .L SIGNAL NAMES 5 (NS) I KOU'I'(19) KOUI‘QO) KOUT (21) KOUT(22) [(00103) KOUTQA) I o I- 09000005400 omoooomoo Q W 0W 0mm QW 4 I Loooooos+oo mooooos+oo Loooooos+oo 1W moooouswo 1.00000054-00 14 I Q oooooos+oo Qme 0 .oooooomoo o.ooooooa+oo QWHX) onoooooE+oo 24 I LWE‘I-m 1.0000001=.+oo 15000001501 7.5(XXXIOE01 Loooooosm LWE-I-(l) 34 I o.oooomE+oo QWEM o.ooooooa+oo o.oooooa£+oo o.ooooooa+oo 0.0000005“) 44 I W01 smooooa-m QWEHD W01 10000005400 momma-01 54 I Q oooooos+oo o.oooooos+oo QWd-(X) omoooaa+oo common-+00 o.ooooooI-:+oo 64 I ZWE01 10000001501 o.oooooos+oo W01 19000003900 SW01 74 I Q (BOOGIE-(X) o.ooooooa+oo 0 .ooooooswo o.ooooooa+oo QW QWEHXI 84 I W01 QWE01 QW WE01 1900000300 5.(XW)E01 94 I o.oooooor-:+oo QWE-I-Q) Q WEI-(X) o.ooooooa+oo QWEHX) QWEKX) 104 I 2500000301 5.m01 0 .oooooomoo 2.5QDME01 LWBW 1000000301 114 I QWOOOEAX) o.oooooos+oo o.oooooos+oo QW o.oooooos+oo QW 124 I 2W0] 1000000501 Qm-KX) 2500000301 Loooooomoo 5.WE01 134 I Q WOOOEHXI Qmm o.oooooo:=.+oo QW o.ooooooa+oo o.oooooos+oo 144 I 2. W01 5.00000on 0.0000005+oo 2W1 moooooawo 1000000501 154 I Q oooooom-oo QWEKX) omooooem QW 0.0000(an 00000003400 164 I 1500000301 1000000501 QWKX) 2.5MXXIE01 Looooooewo 1000000501 174 I o. oooooo£+oo o.ooomo15+oo o.oooooa3+oo QWE-I-Q) 00000005400 QW 184 I lSWE01 momma-01 o.oooooo£+oo W01 mooooaa+oo 5.WE01 194 I Q ooooooewo 00000001900 omoooaswo Qoooooomoo ooooooo£+oo QW 204 I WE01 SW01 0mm W01 Loooooaa+oo 1W] 214 I QW ammo omoooumo QW 0mm 00000001900 Figure 40. (continued). 123 ms.) I KOU'ITZS) KOUTQG) KOUTC") K0011”) [(00109) KOUTGO) O I aooooooswo ammo 03000005410 announce-00 omoooaawo aooooooawo 4 I momma-poo LWEHX) 1.“!!me LWEW 1.ooooooe+oo LWEW 14 I o.oooooos+oo o.oooooo:-:+oo o.ooooooa+oo o.ooooooe+oo o.oooooos+oo QWEM 24 I LOWE-IQ) 1.0000001=.+oo Loooooos+oo LWM l.QXmOE-HXJ 1.oooooox-:+oo 34 I o.ooooooa+oo QW o.oooooon+oo o.ooooooa+oo QW Q WEI-(X) 44 I 1000001841) 1900000900 LW Looooomwo LWHX) LWEM 54 I Q 0000001900 uncommon o.ooooooe+oo o.ooooooa+oo QWW Q WK!) 64 I 10000001900 LW LWEHX) LW-I-m 11111110544!) 1 .ooooooaoo 74 I Qmem o.oooooos+oo Q WIDE-IQ) o.oooooa-:+oo QWEKX) 0.0100109“) 84 I Loooooomoo LWEKD Looooooa+oo wooooomoo LWEd-m l.QXXXXJE-I-(X) 94 I o.ooooooa+oo QWEHD o.oooooou-:+oo ammo QWEHX) common-+00 104 I l.QDOOOE-I-(X) LWEW LWM Loooooos+oo LWEKX) l.QXXXXIEAXI 114 I QWEHD QWi-(X) o.oooowe+oo oooooooE-Ioo o.ooooooa+oo QWE-I-Q) 124 I l.QXIOOOE-I-m LWE'I-(XI LWM Loooooomoo wooooomoo Loooooos+oo 134 I QOQXIOOE-I-w o.ooooooE+oo omooowwo QW o.ooooooa+oo 0300000900 144 I 1.0000001:-:+oo LWE‘HX) LWEM LWNX) LW-om LWOEM 154 I 03000001900 Q 000000300 QWi-(D Q ooooooa+oo QWE‘HD 01!!!me 164 I Loooooomoo 19000001900 mooooomoo 1 .oooooom-oo Looooooewo LWEHD 174 00000005400 QWEKX) o.ooooom+oo uooooooa+oo o.ooooooe+oo QW 184 I l.QXXJOOEKX) l.QIXXIOE-rm Looooooswo 1.000000F.+oo LWDEM 1300000900 194 I QIXXXJOOEW QWEM o.ooooooa+oo o.ooooooa+oo o.ooooom-:+oo 0. WEI-(XI 204 I LUMBER!) LWE-bm LWM LWIEM moooooa+oo LWEM 214 I o.ooooorm+oo Momma OW W 000mm QW TnfE .L SIGNAL NAMES I (NS) I [091131) KOUTGZ) KOU'!‘(33) KOUTCM) KOUTGS) KOUTGG) O 'I ooooooomoo 0000000300 Q oooooomoo Q 0000001900 0mm uoooooom-oo 4 I 1 oooooom-oo 1111111154!) 1 .0000me LW Locum-mo MIME-rm 14 I Q WEI-(X) QW Q oooooomoo o.ooooool-:+oo QW 0300000900 24 I LWOQIEM l.QXIOOOE-I-Q) Loooooomoo momma Lamooom l.QXXXXIE‘KXI 34 I 0 .oooooomoo QW o.ooooooa+oo QWW 0.00000054-00 omoooomoo 44 I LWEi-w LWE-o-Q) 1.oooooor~:+oo mooooomoo LWE-o-(l) l.QXXXDE'o-Q) 54 I o.oooooos+oo QW 0900000900 o.ooooous+oo QW QWEd-(X) 64 I l.QXIOQJE-I-m ”MIME-rm 1 WEI-(X) LW'KXI LWE-o-m 1 .(XDOIDEM 74 I 00000001900 QWE-I-Q) Q WEI-Q) 0900000900 QW Q WEN!) 84 I LIXXXXXIEW LWEHX) LWEM 1.ooooom+oo LWEM 1900000900 94 I o.ooooooa+oo 0.000000134-00 Q oooooos+oo QWM o.ooooooa+oo Q WEI-(X) 104 I LWOOOEHX) LMOE-I-m lmooooawo l.QXXXDE'I-m Looooooe+oo Loooooomoo . 114 I QWOEHX) o.oooooos+oo 0000000900 QWEW QWE-KX) o.ooooooa+oo 124 I l.QXXIOOE-KX) Looooooa+oo 1000mm momma-+00 l.QXXXDE-Im 1.“!!me 134 I QWXIOOEAX) o.oooooo;-:+oo o.ooooooa+oo QW QWEM QWKD 144 I LIXXDOOE-I-m 1.000000E+oo 19000001900 1.0000001-:+oo LWM LWEW 154 I QWE-I-(X) QWEHX) o.ooooooa+oo QWEHX) o.ooooooE+oo QW 164 I l.QXDOOE-I-w Looooooawo l.de-m MIME-04X) MIME-hm LW 174 I QWXIOOE'I-m QWE‘I-w o.oooooa-:+oo QW o.oooooos+oo 03000005400 184 I l.QXIOOOE-I-m 1000000300 LW-KX) LWEHD LW‘KXI 1.1!!wa 194 I o.oooooos+oo QW‘IN ommoaawo QW o.oooooo£+oo omooooawo 204 I LWEHD 10000001900 10000013400 LWE'I-m 1W4“) LW 214 I QW o.ooooooa+oo ammo ammo 0.0000005+oo QW Figure 40. (continued). 124 TIME L SIGNAL NAMES I I 018') I K00'1‘I37) K00'1'(38) K00'I'(39) [001140) K0011“) KO0T(42) O I QW omooommo Q «momma 0W omoooua+oo o.ooooooa+oo 4 I Loooooomoo 1000000900 1 .W LW mooooamoo l.QXXINE-I-Q) 14 I QWEM QW Q oooooomoo omooooawo 0.00000054-00 QWE-I-(X) 24 I Loooooos+oo LW LW Loooooaawo 1111100544!) 1.ooooooe+oo 34 I QW QW OW QW o.ooooooe-oo omoooomoo 44 I Loooowmoo LW mooooomoo wooooaswo LWEM 1.0000005+oo 54 I QWHX) QW o.ooomoe+oo o.oooooo£+oo QW o.oooooos+oo 64 I l.QXXXDE-I-(XI LWE-om mooooomoo 1900000900 10000001900 Looooooewo 74 I o.ooooooE+oo QW 0W omoooaawo o.ooooooE+oo o.ooooooa+oo 84 I LW‘I‘N LW LW Looooamoo 1W Loooooomoo 94 I QWEd-m QWi-N omoooomoo ammo o.a100001=.+oo QWEM 104 I hm LW 1.ooooo(£+oo LW LWEM 1000000900 114 I QW QW Q W o.oooooos+oo omoooomoo QWOOOEHX) 124 I 1010000544!) moooooe+oo LWM Loooooo£+oo 1000000300 ”HINGE-(X) 134 I QW 0W omoootmoo QW o.ooooooa+oo o.ooooooa+oo 144 I Lamoooam 1.0000005+00 woooomwo LWOE-I-(X) LWEKX) l.QXXXXIE-o-w 154 I QW 0900000300 0mm QW o.oooooos+oo QW 164 I LW LW 1W LW LooooooE+oo l.QJOIXDE'I-QI 174 I QWE-I-(D omooommo onooootmoo QW o.oooooo£+oo 0.(XXXXX)E+(D 184 I Looooooa+oo 10000002400 19000005400 LW 19000005410 l.QXJOOOE-rm 194 I o.ooooooa+oo QW ammo QW ammo o.ooooooa+oo 204 I LW 1W 19000005400 LW Imooomam LW 214 I QW OW OW amen o.oooooon+oo QW TIME .L WA]. NAMES I I (148') I [(001143) KM“) KGJTGS) [001(46) W47) K00'1'(48) O I aoooooomoo omoooomoo Q W W OW QW 4 I- Loooooos+oo LW-Im LW LW moooooewo 1.000000% 14 I 000000013410 QW Q 0000005400 OW QW-O-(XI 00000001900 24 l 1.oooooo£+oo LW looooom-zwo 1000001300 LW LWEM 34 I 0.00000054-00 QW o.ooooooa+oo o.oooooaa+oo QW o.ooooooewo 44 I l.QXIOIXIE-I-(X) 1.ooooool-:+oo 1.000000%» l.QXXXXE-I-(X) LW LWKX) 54 I QWEM QW QW o.oooooa=.+oo QW 0000000900 64 I Loooooos+oo hm 1900000900 LW'I-m LWE-I-Q) LWEAX) 74 I o.oooooos+oo QW 09000005410 QWM QW 0.0000005+oo 84 I 19000005400 LW 19000008400 Loooooaa+oo LW 1900000300 94 I o.oooomE+oo QW omoooomoo o.oooooos+oo QW 0900000900 104 I l.QIXXIOE-I-(X) Looooooaoo mooommoo Looooooewo LWW LWOEHD 114 I QW omooommo Q oooooas+oo o.ooooooa+oo Q oooooomoo QW 124 I LW 13000001900 1 oooooamo LW 19000001900 LW 134 I Q MOE-H!) o.oooooos+oo Q oooooomoo QW ammo o.oooooos+oo 144 I 1 .ooooooawo LIXXXXXIE-rm Looooouawo Looooooa+oo LWE'I-m 1 .(XXXXXIE‘I-Q) 154 I Q MOE-HI) 00000001900 o.oooooaa+oo 0. W QWE-I-(X) Q 000000900 164 I 10000001900 Loooooomoo Lamond-300 1.oooooo£+oo 1.000000st 1 .oooooom-oo 174 I Q MOE-«(D o.ooooooa+oo o.ooooom+oo Q 0000001900 QWEKX) QWEND 184 I 1 .oooooom-oo LIXXXmE-I-Q) woooouawo hm LWEM LW 194 I Q WEI-(XI OWEN!) Q oooooua+oo QW 09000005400 o.ooooooe+oo 204 I 1.WOE+M ”HIKE-IN wooooaawo 1000000300 mooooomoo 1.oooomE+oo 214 I Q oooooomoo omooooaoo ammo QW 00000001900 QW 11MB! SIGNALNAMES I K0010) K001‘(4) K001‘(5) OI o.oooooas+oo 0W QW ooooooomoo . o.ooooooa+oo o.ooooooa+oo Looooooa+oo LW LW Looooooswo LW LWE'HX) l.QHIOOE-tm omooooewo QW-HX) QW o.oooooo:=.+oo QWEW LIXXXIOOEM o.ooooom+oo QW QW QWEd-(X) QWE‘o-Q) LWEHX) o.ooooocmoo QW omoooosm QWEM 01000me LWE-I-m QW'KX) QW QW 090000013400 QQXXIOOEAD l.QXXIOOE-I-(X) o.oooooaa+oo QW QW 0000000900 0110000544!) 1.(XXX)OOE+(X) o.ooooooa+oo QW QW QWE-I-(X) o.ooooooE+oo LWOE'I-(X) o.ooooooe+oo QW QW o.ooooooa+oo QWOOIXIEi-(X) l.QXIJOOEm QW‘I-(XI QW QWEM o.oooooos+oo o.oooooos+oo Looooooewo o.ooooooa+oo QW QW QWEM 0900000300 1900000500 0.0mm o.ooooooa+oo QW o.ooooooa+oo 00000003400 1.(XIOOOOE+OO o.oooooos+oo 0000101544!) 0100100540) o.ooooooa+oo 0000000300 1WE+QI o.ooooooa+oo o.oooooua+oo QW 000000015400 000000015400 19000001900 QW omooamoo QW o.ooooooa+oo 0W I (NS') I K0010) K0010) K0016) §§§§rrrcrrrrzt :3 SIGNAL NAMES I K001 (9) s E K00'1‘00) K00101) K00102) aooooooE+oo -- Loooooos+oo omoooos+oo QWEi-(X) o.ooooool.=.+oo OWE-om QWE'I-(X) QWEM QWEW QIXXXXXIE-I-(D QWEi-(X) o.oooooos+oo o.oooooos+oo §§§§rrrextrexso QW LW o.ooooooa+oo “cocoon-01 85010501 8m01 8m01 8W0] 8W0] 8m0l 8m01 8m01 8m01 8m01 W01 onoooooawo 1.ooooooe+oo o.ooooooa+oo QWEM omooooawo o.ooooooE+oo o.oooooon=.+oo QWEd-(X) o.oooooo£+oo o.oooooos+oo QWE‘I-m QW QW o.oooooos+oo 0W QW l.QXXIOOE-I-(l) o.ooooooe+oo o.ooooooE+oo QW 03000001900 Qme QW o.oooooos+oo QW QWEd-Q) QWEd-m QW 0W 0W Figure 41: Results of Four Stage Interconnection Pattern with Sigmoid Neuron. 125 ML SIGNAL NAMES I I (NS? I K001113) K001'04) mums.) K001116) K001117) K001118) O |I aoooooom OW Q W OW 000000084» QW 4 I LWEHX) 1W Lamooomoo LW moooooewo LWEW 14 I o.oooooo£+oo QW Q ooooooa+oo o.oooooaa+oo QW o.oooooos+oo 24 I 1900000300 LW SW01 LW 8m01 8m01 34 I QWE-rm QW Q 000000300 o.ooooouE+oo QW o.oooooos+oo 44 I 1WOI 1000000501 aoooooomoo 14000000300 o.ooooooa+oo QW 54 I QWEHX) o.owoooa+oo Q mm mamas-01 o.ooooooE+oo QW 64 I QWEi-W 14500000501 Q oooooua+oo LW QWE‘KX) QW 74 I o.oooooo£+oo QW ammo 1.oooooas+oo QW 00000001900 84 I o.oooooo£+oo QW Q oooooomoo Looooooe+oo QW 0900000300 94 I QWEHX) QWEd-Q) Q oooooomoo Loooooaa+oo 0.000on+00 0900000900 104 I QW 09000001900 Q 000mm LW o.oooooo£+oo QW 114 I QWEHX) 09000001300 0. oooooaawo 1.1!er(1) QWEi-(X) o.ooooooa+oo 124 I o.ooooooa+oo o.oooooor-:+oo o.oooooon+oo monomwo omooooewo QWE‘I‘Q) 134 I o.oooooos+oo 0W W LW onooooomoo QW 11MB L SIGNAL NAMES I I (NSI) I K001119) K001120) K00'I121) KW'1122) 1:00 1123) K001124) o I comm-mo OW Q W OW omoooa-zwo QW 4 I‘ momma-co Imoooomoo LW 1W 1W URINE-rm 14 I QWE-I-w o.oooooos+oo Q mm ammo (1000000300 09000005400 24 I 1 oooooos+oo LW 8m01 W01 Loooooomoo 1 .W 34 I Q WEI-(X) QW omomoswo Q W o.ooooooa+oo Q 0000001900 44 I 1500000501 1500000501 QW QWEM LW 501111501 54 I 0. WEI-(X) 0.0000me QW Q oooooomoo o.ooooooa+oo Q ooooooswo 64 I OWE-(X) momma-01 0900000900 QWE‘FN LWM 1500000301 74 I Q oooooomoo QW common-mo 0W W01 QW 84 I 04000000900 QW o.ooooooa+oo 0mm Loooooos+oo o.oooooo£+oo 94 I o.oooooo£+oo QWEM o.ooooooa+oo o.oomooa+oo 19000005400 ammo 104 I QWE-I-m ammo QW QW 1.00000054-00 QWEd-m 114 I QW 09000005400 o.oooooa-:+oo o.mooooE+oo 1.ooooom~:+oo o.ooooooE+oo 124 I 0.000000% 0W ammo QW 19000001900 QWEd-Q) 134 I ammo common 0W QW wooooomoo o.ooooooa+oo Figure 41. (continued). 126 11MB E SIGNAL NAMES I I (NS) I K001125) K001126) K001127) K001128) K001129) K001’(30) (100000015400 o.oooooos+oo QW omoooom o.oooooua+oo QW LWEM LWE-I-m LW LW Loooooomoo l.QXXmE-I-(XI o.ooooooa+oo QW omoooomoo omoooomoo QW Q WK!) LWEKX) LW Looooooewo LWM LOWEM 1 “BOWEN o.oooooos+oo QW omoooo£+oo QW‘IQ) QWEd-Q) Q ooooooB+oo 1 .0000:an 1.1!!!an40) LW-tm Looooooa+oo 8.5WE01 l.QXXXXIE-rm Q WEI-(XI QW 00000005410 omooouawo QW o.oooooo£+oo 1 .oooooomoo LWOE-o-m 1900000900 Looooomwo asooooos-m LWEHXI Q oooooo£+oo o.oooooos+oo o.ooooooe+oo o.oooooos+oo QW o.oooooora+oo o.oooooos+oo QW-Ol QW QW o.oooooo£+oo Q WEI-(XI QWEAX) 8W1 o.ooooom+oo aoooooomoo QWEKX) Q oooooos+oo o.ooooooa+oo 8m01 QW Q WEI-(X) QW Q WEI-(X) o.ooooooe+oo 8m01 QW Q WEN!) QW QWE‘o-Q) QW M01 QW 0W 0300000900 0900000900 QW W01 QW OW QW QW E§E§££§sssss§*°— -3_ E E 048') I K001131) K001132) K001 (33) K001134) K0010!) K001136) 0 I QW 00000005400 QW ammo 0mm QW 4 I MIME-Pm 1mm LW momma-co 1mm Lomooomoo 14 I o. oooooos+oo QW o.oooooo£+oo o.oomo(£+oo QW o.oooooox~:+oo 24 I 140000001900 LW ”KIM-0m 1W 1000000300 Looooooewo 34 I o.ooooooE+oo QW o.ooooooe+oo 000mm o.oooooo£+oo 0900000900 44 I immommo hm“) LW'I-m Looooamoo Loooooomoo Looooooe+oo 54 I QWEd-(XI o.ooooooe+oo 00000001900 09000001900 QW 00000001900 64 I LIXXXXDE-o-w Loooooos+oo LW moooooaoo LW 1900000900 74 I QWE'KXI QW 090000013400 omoooa-zwo Q oooooos+oo oooooooewo 84 I QWEKX) QW monsoon-01 QW 5.m01 1MB“) 94 I 09000005400 QWM 09000001900 00000001900 QW o .ooooooewo 104 I o. WEN!) OW OW QW 0900000900 1 .ooooooaoo 114 I Q (111000544X) QW QW o.ooooool=.+oo o.oooooo£+oo 1100000304!) :3 : Q WEI-(l) 0mm 0W QW o.ooooooa+oo 1 .WEHX) Q oooooos+oo OW OM44!) common 0mm LWAD Figure 41. (continued). 127 “MEL SIGNAL NAMES I I (NS? I K001137) K001138) K001139) KOUT(40) K001141) K001 (42) O I aoooooow omoommoo Q W OW omoooa-zwo aoooooom-oo 4‘ I 1MB“) LWE-o-m 1 mom-mo LW mooooomoo LWEM 14 I o.oooooos+oo 00000005400 Q 000000900 onoooocmoo QWEHX) QWE-I-(X) 24 I LWEM LW 10000005410 Loooooaawo LW LWEM 34 I omoooomoo QW omoooomoo cocoon-mo 0.00000054-00 QWEAX) 44 I 1mm LW LW-tm 1W LW LWM 54 I o.oooooo£+oo QW 0mm onoooooaoo Q W o.oooooo£+oo 64 I mooooom-oo Lomoooewo 13000001900 LWEM 1 .ooooooE+oo moooooem 74 I ooooooo£+oo QW QWEHX) omooormoo Q ooooooaooo 09000001900 84 I moooooaoo hm“) LWE-o-m mooooosmo LW 1.oooooos+oo 94 I omoooos+oo Q WEI-Q) o.ooooooa+oo o.oooooaa+oo QWEHXI QWEM 104 I 1500000301 1500mm o.oooooo£+oo 1.000000£+oo QW S.W)E01 114 I o.oooooos+oo OW ammo 1W1 QW QWE-om 124 I QWEHXI onooooomoo omoooomoo LW omoooosm QWEM 134 I OWN omoooos-roo 0W LW OW o.ooooooa+oo 11MB L SIGNAL NAMES I I (143.) I K001143) K001144) K0011“) K001146) K001147) K001148) O I QW OW Q W OW omoootmoo QW 4 I momma-00 moommo LW imooooam mooooomoo l.QXXXIOEm 14 I QWEW ammo 00000001900 ammo 00000005400 09000001900 24 I LWEHD LWW LWIEW 1mm LW Loooooos+oo 34 I QWEKX) Q W ammo omooooawo QW 0000000900 44 I LWEM 1 .W Loooooomoo 1.000001:st LW 1900000900 54 I QWE'o-Q) o.oooooor-:+oo omoooomoo 0.000000st 0.0000005+oo 0000000900 64 I l.QXIOIDEé-(XI LW LWKX) Looooooaoo LIXXXXXJEHX) Loooooos+oo 74 I o.ooooooa+oo QW 00000005400 09000001900 QW QWEAX) 84 I 1WE+M LOWE-Q) LWEM LW-o-m momma-+00 1.oooooos+oo 94 I o.oooooos+oo QWEd-(D QWEM o.oooooo£+oo QW QWE-I-(X) 104 I Loooooos+oo o.ooomoe+oo omooowwo o.oooooomoo o.oooooos+oo O.(IXIIOOE+(XI 114 I S.(XXXXIOE01 04000000900 QWE-I-(X) 00000001900 QW QWEW 124 I Looooooa+oo OWE-rm omooooswo (1000000900 Q oooooomoo 0300000900 134 I hm 0W 0110000er aoooooom-oo 00000001900 o.oooooos+oo Figure 41. (continued). 128 B .5 “MEL SIGNALNAMES I I 018) I K0010) Km K00113) K00114) K00115) K00116) OW QW 0000mm QW QW moooowwo 1900mm LW MINNIE-om LW imoooomoo 1.ooooooB+oo ammo QW QWEd-(X) o.ooooooa+oo QW 1300000300 omoootmoo amen QWE-HXI o.oooooos+oo QW Looooooa+oo omoooaawo OW QW omoooomoo QW LW onooootmoo 0W QW omoooomoo QW onooooa-zwo QW QW 0mm QW 1.000000% OW 0W QW o.oooooon+oo QW LW omoooaa+oo QW QW ooooooomoo omoooomoo LW omooooaoo o.oowooa+oo 0.000000% omooooe+00 o.oooooos+oo LW omooormoo OW QW QWEAX) QW LIXXXXDEM QW ammo QWE-I-Q) QMKX) QWEHX) Loooooos+oo o.oomoor-:+oo onoooooewo 0W onooootmoo 000mm mooooos+oo QW QW ooooooo£+oo ooooooomoo QW 1000000900 QW Qm‘tw QWE-I-m 0000mm QW moooooswo QW omoootmoo QW uncommon 00000001900 moooooaoo o.ooooooa+oo o.ooooom+oo o.ooooooe+oo ammo QWE-rm . . . o.oooooa-:+oo QW 1.oooooo£+oo QW o.ooooooE+oo QWE-o-m QWi-(XI o.ooooooa+oo 1.oooooo£+oo QW onoooou-zwo 0W4“) o.oooooaa+oo 0W 1.0000003+00 QW 0000000300 00000005400 00000005400 QW 10000005300 QW 0000005400 0W o.oooooaa+oo QW 1mm W 0mm OW OW 0W §§§§§§E§§E§flnurrzm é S E § § 3 é 8 a. SIGNAL NAMES I K00119) MIG) “1101) K001112) -32.; E I I I I W '1.oooooo£+oo moooooewo LW-I-(D 1mm 1mm LW o.oooooo£+oo QW ammo 09000002400 QW omoooomoo on. fi I 24 I o.oooooon+oo QW Looooooam o.ooooooa+oo QW OW 34 I onooooo£+oo QW moooooawo omoooaa+oo cameos-.00 000000015400 44 I QWE-I-m QW Loooooos+oo o.ooooooa+oo aoooooomoo 09000008410 54 I Qme o.ooooooe+oo MIME-om o.oooooos+oo QW 09000001900 64 I QWE-I-(X) o.owoooa+oo ”KNEW o.oooooos+oo QWEM 0000000900 74 I o.oooooos+oo QW woooooa+oo o.ooooom=.+oo QW 03000005410 84 I omoooomoo QW LW o.oooooos+oo QW QWEKX) 94 I QWEd-Q) QW LWEKD o.ooooooa+oo aooooooawo o.ooooooa+oo 104 I 00000001900 0 oooooomoo 1 oooooomoo ammo 0 000000900 0 WEI-Q) 114 I O oooooomoo 0 mm 1 0000001900 QW o WEI-(X) 0 W441) 124 I OWE-(XI 0W 10000001900 QW oooooooe+oo OW 134 I o MOE-Kl) 0 0000001900 1 oooooomoo QWEHX) 0 0000001900 0 W 144 I o M00054“) 0 oooooomoo moooomwo QW 0 0000001900 0 W 154 I 0 0000005400 omoooomoo 1 W QW o oooooomoo 0 W 164 I o oooooos+oo 0 000000900 woooooawo QW 0 000000900 0 ooooooawo 174 I QW 000000013400 1 mm QW o oooooomoo o W 184 I o oooooom-oo 0 mm 1 comm o.oooooos+oo O cocoons-+00 0 000000300 % : O ooooooa+oo omoooozwo 1 ooooommoo O W 0 000mm 0 W I Figure 42: Results of Two Stage Interconnection Pattern and Sub-optimal Path. 129 Figure 42. (continued). 130 11MB I SIGNAL NAMES I I 048') I K00103) KGJ'I'04) K00105) M16) KGJ'I‘07) K00108) o I QW 0W Q W OW o.ooooooa+oo QW 4 I 1mm Loooooomoo 1 .W Loooooozm 1mm MINNIE-(X) 14 I QWd-IXI QW Q ooooooe+oo o.ooooooE+oo commas-too o.oooooo£+oo 24 I Loooooomoo LW LW moooowwo LWOE-o-m LWE-om 34 I OWN!) QW onooooomoo omoooomoo QW o.ooooooe+oo 44 I QWE-tm QW QW 1.ooooom+oo aoooooomoo o.oooom1=.+oo 54 I omoooomoo commas-too omoooomoo MIME-0m QW o.ooooooa+oo 64 I o.oooooos+oo QW o.oooooos+oo HINGE-om QW o.ooooooe+oo 74 I OWEN!) QW QW woooooawo QWM QWE-I-(X) 84 I QWE-I-(X) QW QWM mooooaawo o.oooooos+oo o.ooooooa+oo 94 I o.ooooooE+oo QW o.ooomoa+oo LW QW QWE-om 104 I QW o.oooooor=.+oo uncommon LW 09000001900 o.ooooooe+oo 114 I QW o.ooooooa+oo QW LW o.oooooos+oo o.oooooos+oo 124 I QW 00000005410 onooootmoo LWE-I-Q) o.oooooos+oo QWEAD 134 I QW o.oooooos+oo omooooswo LW QWEM QW 144 I o.oooooos+oo OWE-IQ) o.oooooor-:+oo LW QCXXIOQJEI-m QW 134 I QW o.ooooooa+oo QWi-N LW QWE-I-(X) QW 164 I QW 0mm QW 11!me oooooooewo QWEW 174 I QW 0W 0.0mm LW omoooomoo QWE-tm 184 I QW omooooa+oo o.ooooom-:+oo LW QWE-KXI 00000001900 194 I QW omoooomoo 0900mm kW o.oooooo£+oo QWXIEH” 204 I QW QWEM o.oooooa=.+oo LWM o.ooooooa+oo o.oooooo.=.+oo 214 I QW OW uncommon LW OW QW 111:3 I SIGNAL NAMES I (148.) I K00109) W) K001 (21) K001(22) K001123) K001 (74) O I aoooooom-oo OW Q W 0W OWN QW 4 I. LW moooooawo 1 .W LW uncommon LWHX) 14 I QWEM QW omoooomoo o.oooooa=.+oo QW o.oooooo£+oo 24 I Loooooomoo LW Looooooaoo LW'I-(XI 1.0000005+oo LIXXXXXIEM 34 I 09000001900 QWE-I-Q) 00000001900 o.ooooooa+oo QW o.ooooooe+oo 44 I LUMBER!) LWE-I-m 1.ooooooa+oo 1.oooooo£+oo LW LIXXXXDE'I-(X) 54 I o.oooooor-:+oo o.oooooos+oo o.oooooos+oo omooooewo o.oooooos+oo o.ooooom-:+oo 64 I omoooomoo LW o.oooooos+oo omoooaawo LW Q oooowswo 74 I o.oooooos+oo o.oooooos+oo QWE'KXI o.ooooooa+oo QW Q ooooooa+oo 84 I o.ooooooa+oo LW o.oooooo.=.+oo o.oooooa-:+oo LW Q WEI-(XI 94 I omoommoo o.ooooooa+oo OWEN!) o.oooooa-:+oo QW QWEM 104 I QW LW-rm o.oooooua+oo QW l.QXIQDEM QW 114 I 00000001900 0mm omooooaoo QW QWEKX) o.oooooos+oo 124 I QW mooooomoo o.ooooo(£+oo QW 1110000013410 QW 134 I QW 00000001900 uncommon o.oooooma+oo QW QWEHD 144 I QW imoooomoo o.ooooou£+oo o.oooooos+oo 1.ooooooa+oo QW 154 I 000000015400 omoooomoo o.oooooaa+oo QW o.oooooor-:+oo o.oooooos+oo 164 l o.ooooooe+oo 1mm . 0900000900 aoooooomoo 1.a)ooooa+oo QW 174 I QW o.oooooon+oo ammo o.ooooooa+oo o.ooooma+oo 0.000000154-00 184 I QW mooooomoo o.oooooaa+oo QW LWEM o.ooooooa+oo 194 I QW o.ooooooa+oo o.oooooos+oo QW QWEd-(X) QWOE-I-(D ”4 I QW 11100000300 omooooswo aooooooB+oo momma-+00 QW 214 I QW uncommon 0.0mm QW Q 000mm o.oooooos+oo Figure 42. (continued). 131 TIME I SIGNAL NAMES ' I (NS) I K001125) K001126) K001 (27) K00'1128) K00'1129) K001 (30) ' A 0 I QWEHX) OW QW 00000008400 omoooamoo W 4 I Loooooomoo Looooooa+oo LW 1W imooooawo LW 14 I Q WEI-(X) o.ooooooE+oo o.ooooooa+oo o.ooooooa+oo 001000314!) o.oooooos+oo 24 I 1.oooooo£+oo Looooooa+oo LWE-o-m LWM 10000005400 Loooooomoo 34 I Q WEI-(X) QW o.oooooos+oo omooooawo QW o.ooooooE+oo 44 I 1.ooooooa+oo LW 1.oooooos+oo LW-Im Looooooa+oo 1.00000084-00 54 I 090000015400 QW o.oooooos+oo 0W4“) aoooooomoo o.oooomE+oo 64 I 1.oooooo£+oo LW LW LWM l.QDOIXIE-I-(X) LWM 74 I o.oooomE+oo QW 09000003410 o.ooooom=.+oo QW onooooomoo 84 I Loooooomoo LWEHX) Loooooomoo moooooewo Locoooomoo LWE‘I-Q) 94 I QWEM o.oooooo£+oo o.ooooooa+oo o.ooooooe-oo QW o.ooooooa+oo 104 I LIXXXXIOEKXI Looooooem 1.00000(E+oo 190000015400 Looooooa+oo Loooooos+oo 114 I QWE-I-Q) omoooomoo o.ooooow+oo ooooooomoo o.ooooooE+oo QWE-I-Q) 124 I LONGER!) Loooooomoo LW‘KD 1.0100084“) Loooooomoo Looooooa+oo 134 I o.ooooooa+oo o.ooooooa+oo 0900000900 QW QWEi-m QWEKX) 144 I l.QXXDOE-tm Looooooa+oo LWM LW 1 .ooooooawo Lowoooewo 154 I QW o.ooooooa+oo ammo QW Q WEAK) omooooewo 164 I 1.111100%“) 1000000300 LWM 1.oooooos+oo LIXXXXDEAI) mmoomoo 174 I 0.1110008“) onoooooaoo o.oooooo£+oo o.ooooooa+oo o.ooooooE+on I‘. I: W. memo 184 I Looooooewo LWE‘IQI 1.ooooom+oo Loooooos+oo 1.oooooos+oo IUJIKXIOE‘I-(D 194 I QIXXXIOOEAX) 09000005400 0000000500 QW Q 00000015400 ouxmosmo 204 I Looooooa+oo Loooooomoo 1 .ooooooswo LWENX) 1 .oooooomoo l.QXXXXJEm 214 I woman-+00 o.oooooos+oo 0mm QW 0000000900 o.ooooooa+oo 115:5 I SIGNAL NAMES I 018') I K001131) m2) K001 (33) K001(34) K001135) K001 (36) O I o.oooooor=.+oo 0W Q W OW onooootmoo QM“) 4 I- LWE'o-w Loooooos+oo 1 .W 1W 1mm LW 14 I 040000001900 QWEHD Q oooooom-oo QWM QW 00000001900 24 I 1.0001054“) LWEKD 1110mm moooomwo LW LWE‘HX) 34 I o .oooooomoo 0.000000% o.oooooos+oo o.ooooooa+oo QW o.oooooos+oo 44 I 1 .oooooos+oo LW 1.ooooool-:+oo LWM Loooooomoo LWE‘KX) 54 I o.ooooooa+oo o.ooooooa+oo Q ooooooewo QWHX) QWE-I-(X) QWEI-(XI 64 I 1.oooooo£+oo LIXNXJEHD 1.000000£+oo 1.oooooos+oo LOWE-rm 19000001900 74 I 0100003544!) QW Q «momma o.ooooooa+oo 0.00000024-00 QWEM 84 I Loooooomoo LW 1.ooooom=.+oo Loooooomoo LW Loooooos+oo 94 I 0900000900 0.00000024-00 QWEM QWKX) QW O.QXXJQ)E+(XI 104 I Looooooa+oo LWIE-I-(XI LWKII LWW 1.0000(an l.QXXIOOE-I-(X) 114 I o.oooooos+oo o.ooomoa+oo o.oooooo!~:+oo QWW o.oooomE+oo QW 124 I 1111000844!) Looooooawo LW-tm LW 1.000000st 1.00000054-00 134 I Q W ammo o.oooooos+oo QWEd-(XI o.oooooo£+oo o.oooooos+oo 144 I 1 .ooooooewo LW'IQ) LIXXXXJIEHX) 10000001900 1.ooooooE+oo l.QIOOOOE-I-Q) 154 I Q oooooomoo o.oooooos+oo o.oooooma+oo QW omoooomoo 01100001544!) 164 I 1 .ooooooa-oo Loooooomoo 1.oooooaa+oo LW 1.oooooos+oo 1.moooos+oo 174 I o.oooooos+oo OW omooouawo aoooooomoo QOIXIOQJEM QQIOOQIEAD 184 I LW LWOEM 1.oooooa-:+oo l.QXDQIEM LWE‘HX) l.QXIIXIOEHD 194 I o.ooooooa+oo o.oooooos+oo QW-I-Q) QW o.ooooooE+oo Q 000000300 204 I Loooooomoo 1 ooooooswo mooooomoo Loooooosm 1 WEI-(X) 1 .ooooooE+oo 214 I QW Q 000mm o.ooooom+oo QW omoooomoo QW 1'qu (NSH SIGNALNAMBE I ROUND) K0011“) OW 1W o0ooooas+00 1000000500 0W 10000005+00 o00000mwo 1000000300 0000000900 1000000500 K0010?) mm) 0000000900 1000000900 00000005000 10000001900 000000015900 1000000500 0000000300 1000000500 00000001900 1000000500 0000000500 10000001300 00000005+00 1000000900 00000001900 10000005400 00000002200 10000005+oo 0.000000£+00 10000005+00 0000000500 10000001900 00000001900 QW 100000015400 0000000900 LWEM 0.0000(05+oo 10000005300 00000001300 10000001300 0000000£+00 LWEW QWEd-Q) 10000005400 00000005400 1000000£+00 QWOEI-Q) LWOE-I-QI 0.000000£+00 LW 000000012400 :2!!§2!t!§i*°_ §E§§§§§§“ _§-_________ 8 & SIGNAL NAMES 5 K001 (45) W46) KOUTQ'I) :3 I zooms) zoo-rm) Karma) ---3 fixixtrfizifriiitffireo g—l—Iup—I—o—ouu— —-—--—--- 23 a. 0000000£+00 1.0000001=.+00 0000000200 1 .QXXXDEM 0.0000001-:+00 LWEd-(X) QWEKX) 1 0000005+00 QOIXJOIDEHX) 1000000900 OWE-(X) 100000013+00 00000001-:+00 100000013+00 o000000£+00 1.0100084!) 0.0000001-:+00 1000000900 0000000000 1000000500 0000000300 100000015400 OW 00000002400 1000000£+00 QWE-I-Q) 11101084411 00000005410 00000001900 0mm 0W LW 00000001900 100000015200 00000001900 0mm 0W 1.00000013+00 o00000¢na+oo LWIEHXI 0000000200 1000mm 00000005200 100000ma+00 Figure 42. (continued). 132 10000001900 000mm QW LW 0000000300 1 000000500 QWEM 10000001900 o0000001=.+oo LIXXXXXIE'KX) 0000000900 1000000500 00000005+00 LWEHX) o.ooooooa+00 l.QXXXXIE'I-Q) 0000000300 1 0000005+00 0000000300 LW 0000000500 LWEKD 0000000£+00 LW QW 111:5L NH 3001(1) I o I 00000001500 1mm LW 10000005200 LWEHX) 1000000300 LWEHXI LWE-I-(D 10000005200 10000001900 LWOE-KX) 1000000£+00 1.0000001-:+00 1000000200 moooowwo §§E§rrrrrtrrrg -% 3.2 I if §§E§553255555‘° é Tgff Km Q W 1 .W Q ooooooaoo 0000000900 00000008200 00000001500 0mm 0000000900 0000000300 00000003400 K0010) QW 10000002+00 0000000500 0000000900 SIGNAL NAMES K00114) SIGNAL NAMES OW K00118) K00119) K00100) Q W 1 .W 00000001900 10000001500 1.101103% LWM 1000000300 LW-rw 100000015400 100000015400 10000001500 LWXEKX) 10000003+oo 100000t£+00 100mm OW 1W 0000000£+00 QW QWd-(D 0000000£+00 00000005400 0000000900 0000000900 o00000aa+00 000000(£+00 300115) 0. W 1 000000300 Q 000000500 Q 000000800 Q 000000900 Q W Q WEI-(X) Q W Q 000000st Q 000000900 00000005400 0000000£+00 0000000900 0000000500 OW K00101) K0016) K00102) Figure 43: Results of Three Stage Interconnection Pattern and Sub-optimal Path. 133 11MEI Figure 43. (continued). 134 SIGNAL NAMEE I I 048') I K00103) K00104) K00105) K00106) K00107) K00108) O 'I o000000£+00 0000000500 Q W OW 0000000300 QW 4 I LNOOEW 10000005400 1 000000300 1W 100000tm00 1000000300 14 I 00000002400 0000000£+00 OWN!) 000mm QW QWEHXI 24 I LWE-o-(D LW 00000005300 100000aa+0o QWOM 0 000000500 34 I OWEN!) 0000000500 0000000900 0000000500 0000000500 0 .(XXXXXIE-I-(X) 44 I 0000000900 00000005400 00000003400 10100013200 QWEHX) 00000001900 54 I OWE-04X) QW 0000000900 LWHD QWEd-(XI QWE-HX) 64 I 00000002400 QW 00000001900 1.00000u-:+00 0000000900 QWEd-(X) 74 I 0000000900 QW 0000000500 100mm QW 0.0000001=.+00 84 I QWEHXI QW 0000000500 10000005400 QW 000mm 94 I 0000000500 QW 0000000300 1000000500 QW 0.0000001-:+00 104 I 0000000900 0000000500 00000005400 100000012+00 QWEM 0.“!!me 114 I 00000005+00 QWi-(X) 000000th LW 0000000£+00 0000000500 124 I 0000000£+00 0000110500 0000000500 LW 00000001500 QW 134 I 00000005000 OW 0W LW 0000000900 QW 11MB L SIGNAL NAMEE I I CNS.) I K00109) Km K001121) K001122) K001123) K001 (24) O I- 0.000000£+00 0mm OW OW 0mm comooomoo 4 I 1000000300 LWXIEM LW 1.000000£+00 100mm LW 14 I QWEM 000000013+00 o00000015+00 00000001900 Q W 0000000500 24 I LWEM LW LWOE-o-m 1000000900 1 .W 1000000500 34 I QWEW 0000000500 00000001900 00000005400 QWEHXI Q 000000st 44 I OWE-(l) 1 .W 1000000300 1000000500 1W 10000005000 54 I 00000001900 Q W 0000000900 0.00000(£+00 QW Q 0000001900 64 I 00000001900 Q WORM 00000001900 00000001900 LWOEHD 0000000500 74 I OWEN!) Q W 00000001900 OWN!) LW 00000008+00 84 I QWEHX) 0000000900 o0000005+00 o0ooooos+oo LW 00000001900 94 I QWEM QW 000mm 0000000900 LW QW‘KX) 104 I QWOE'KXI Q 000000300 QWKX) QW LW'I-(X) 0.1!!!me 114 I QIXXXIOOEM Q 000000500 0000000500 QW 10ooooos+oo 000000013+00 124 I QIXXXIOOEHX) 0000000500 0.00000(£+00 QW 1000000900 QWEHD 134 I 0000000£+00 o0000005+00 00000001900 QW 1000mm QW MI §§E§rritxtrgztg -§ ffiflifitffiitg §§§§ I (NSI): mums aooooooswo LW-rm 09000:an 19000005400 01100000300 1.ooooooB+oo o.oooooo£+oo Locomoaoo omooooswo 00000002400 Figure 43. (continued). Karma) QW LWEHXI QWEM l.QXXXXIB-I-w 0900000900 1.“!!!an o.oooooo£+oo lm-KX) 0000000300 09000005400 ammo o.ooooooa+oo o.ooooooa+oo QW TIME I SIGNAL NAMES I I . 015') I KOUI‘(37) KOUTG8) KOUTG9) KOUTGO) KOUT(41) KOU'1'(42) 0 I W 0W QW 0W 0W QW 4 I 1.ooooooa+oo 190000013400 LW 1W Loooooaawo Lomoooswo 14 I QWEM 00000005410 0W 0W QW 0000mm 24 I 1.ooooooE+oo LWM 19000005410 mooooamo LW LWM 34 I o.ooooooa+oo QW omoooomoo omooomwo QW o.ooooooa+oo 44 I Loooooomoo LW LWEd-(l) 1900000300 MINNIE-04X) LWB-rm 54 I onoooooswo QW 0W o.oooooaa+oo QW o.ooooooa+oo 64 I LWEW LW LWEHX) LW-tm LW Looooooswo 74 I QWEHX) QW-o-Q) o.oooooos+oo omooooaoo QW o.ooooooa+oo 84 I 10000002400 LW-O-(D Loooooomoo LW LW 1mm 94 I QWEM o.oooooos+oo o.ooooooB+oo o.oooooos+oo «0000001300 00000001900 104 I LIXDOOOE-o-m moooooam omoooomoo LW omoooomoo 11100000900 114 I o.oomooB+oo o.ooooooa+oo 0W QW 00000002410 ammo 124 I noooooomoo Q ooooooe+oo omooooawo LW omooooe+oo QWEM 134 I 09000001900 omooooawo 0W LW 0W 0W TIME I SIGNAL NAMES I I 018') _ I KOUK43) KOU'I'(44) KOUT(45) KOUTGQ KOU'I‘(47) KOU'I‘(48) 0 I aoooooo£+oo onooooomoo 030000013400 0W OHM-KI) QW 4 I 1.WE+€X) 1mm momma moooooe+oo Loooooaswo LW 14 I QWEM QW o.ooooooa+oo omooooawo 0.000000% 0.000000%» 24 I Looooooa+oo LW-I-m mooooomoo 19000005400 momma-+00 LW-tm 34 I o.oooooox~:+oo o.oooooo£+oo omoooomoo o.oooooas+oo QW o.ooooooa+oo 44 I MINER!) Lowoooswo 1900000300 Looooowwo LWM 1.oooooo£+oo 54 I QWEM QW 0411000001900 0900000500 00000001900 Q WEI-(II 64 I l.QXXXXJE-om LW Looooooa+oo 1.ooooom+oo LW 19000001900 74 I o.oooooor.~:+oo QW omoooomoo o.oooooaa+oo Q W Q W44!) 84 I 1.ooooooa+oo LW 1mm Looooom+oo Locooooswo 10000005400 94 I QWE-o-(X) 0300000300 OWEN!) o.oooooas+oo Q 0000005300 omoooomoo 104 I 1.mOOE+00 1900000900 moooocmoo 1.000000£+oo 1.oooooos+oo Looooooa+oo 114 I QWOOOBd-Q) Q W44!) o.ooooooB+oo o.ooooooE+oo QWEM o.oooooot-:+oo 174 I 1.00000054-00 Q oooooomoo onooooms+oo noooooos+oo 0900000300 o.oooooos+oo 134 I 1.oooooos+oo Q WEI-(X) woman-r00 aoooooomoo 0W QW Figure 43. (continued). 136 KOUTO) 0 I omooocmoo 4 I Looooooewo LW LWOW 1.000000£+oo 1.oooooo£+oo Looooooa+oo Loowoomoo LWEd-m LW l.QWJEe-N ffififlfitfifii 1r- -§ EIIIIE é ffifiittfifiie° ffii‘i!t!§i*° 3-2 _________ 1- onooooo£+oo QWE-rm 0000000900 000000013410 onooooomoo KOUT(13) o.ooooool~:+oo 19000001900 QWEM 04000000900 oooooooawo QWE-KXI o.ooooooa+oo omooooswo omooooswo Km QW LW o.ooooorn+oo omoootmoo 00000005410 ooooootmoo 0W omoooomoo o.oooooaa+oo 0W 0.0mm KOUTG) 300119) SIGNALNAMES KOUTG) KOUT(4) MAI-NAMES ammo LW-o-m KGJ'IUO) K0076) 3007(6) o.oooooon+oo omoooomoo LW moooooaoo ooooooomoo o.ooooooa+oo OWE-o4!) QWEAD 0900000900 o.oooooomoo 00000001900 03000001900 QW 0W KOUTO 1) KOUT-f 11’. 5 0mm LW 09000001900 SIGNALNAMBS 0W LW o.oooooaa+oo 04000001300 omooormoo omoooomoo 0W 0900mm 0000001300 0W 0W KOUT(17) W LW o.oooooma+oo o.oooooo£+oo o.oooooos+oo omoooomoo ooooooos+oo 0000000900 onooooomoo onooooomoo 0W KM“) ammo QW 1mm oooooooawo LW 09000005410 LWE-rm 09000008400 ooooooomoo QWE-I-m 00000005400 omooooawo 0000000900 0mm Figure 44: Results of Four Stage Interconnection Pattern and Sub-optimal Path. 137 2-3- ifflgfitf'fi'i‘O fifflflfit‘fifiiecw ___g_g rrrrrtrrzt ...3.3 P 1 KOU'1'(19) QW I ooooooomoo 1.oooooo£+oo QWE'KD ooooooomoo o.oooooor-:+oo 0.0000me QOOOOQIEM 09000003400 0900000300 W) KOU'1‘(21) Loooomoo 00000005410 mooooomoo 00000005400 0W omooooawo ooooooomoo o.oooooo£+oo 0.0mm 0W 1- 1.. onoooooawo KOUT(31) aooooooaoo 1900000300 0900000900 Loooooomoo o.ooooooa+oo 1000000300 o.oooan5+oo o.ooooooE+oo o.oooooo£+oo o.oooooos+oo omooooaoo KOUTGS) o.oooooos+oo omoooomoo moooooawo o.oooooo.=.+oo 000mm 000mm omoooomoo omoooomoo SIGNALNAMBS SIGNALNAMBS xoumz) M) 1mm 0mm 1mm o.ooooma+oo omooooswo ooooooomoo 0mm 00000003400 ooooooamo mm Figure 44. (continued). 138 0mm 1mm QW Loooooomoo QW LW woooooaoo LWXIEKX) LWHXI 1W LW xomm) QW Loooooos+oo o.oooooos+oo mooooomoo o.oooooot-:+oo o.oooom+oo o.oooooox~:+oo omoooo£+oo o.oooom1=.+oo 04000000900 o.oooooo£+oo onooooomoo LWW TIME! I (NS') I XOUT(37) KOU'I'OS) £00709) (1000000900 13000001240 OWEN!) LWE-om ooooooomoo LWE'HD omoooomoo moooooswo OWEN!) 00000002410 o.ooooom-:+oo runner»- 3-; I trauma) onmooswo 1W 09000001300 LWHXI amour-2m mooooomoo QWi-(X) 1.oooooos+oo OWE-04!) moooooaoo 1.oooooo£+oo runner” QW 1 .W o.ooooooa+oo moooooawo ammo wooooomoo o.ooooooa+oo 1mm o.ooooooa+oo 0.0mm 0W SIGNALNAMBS W40) 0W 1W ammo 1W 0mm 1mm ooooooa-za-oo 1mm o.oooooa~:+oo moooooaoo 1W Figure 44. (continued). 139 KM“) 0mm Looooamoo xou'mz) QW LW 00000001900 LWE‘KD o.ooooooa+oo Loooooom-oo o.ooooooe+oo Looooooa+oo omooooewo omoooo£+oo 0W References 140 References [1] R. Jurgen, ”The Specialties”, IEEE Spectrum, January 1991, p. 79. [2] R. Lippmann, ”An Introduction To Computing With Neural Nets”, IEEE ASSP Magazine, April 1987, pp. 4-22. [3] F. Salam, ”A Tutorial Workshop On Neural Nets And Their Engineering Imple- mentations”, 31 st Midwest Symposium 0n Circuits And Systems. [4] M. Kennedy and L. Chua, ”Neural Networks For Nonlinear Programming”, IEEE' Transactions on Circuits and Systems, Vol. 35, N o. 5, pp. 554-562. [5] M. Hanes, S. Ahslt, K. Mirza, and D. Orin, ”A Neural Network Interface to the DIGITS Grasping System”, ICJNN Conference on Neural Networks, 1990, Vol. III, pp. 343-348. [6] S. Wang and H. Yeh, ”Self-Adaptive Neural Architectures for Control Applica- tions”, ICJNN Conference on Neural Networks, 1990, Vol. III, pp. 309-313. [7] W. McCulloch and W. Pitts, ”A Logical Calculus of the Ideas Imminent in Nervous Activity”, Bulletin of Mathematical Biophysics, Vol. 5, pp. 115-133, 1943 [8] J. Vidal, J. Pemberton, and J. Goodwin, ”Implementing Neural Nets with Pro- grammable Logic”, IEE'E 1st Conference on Neural Networks, 1987, Vol. III, pp. 539-545. [9] J. Hopfield, ”Neural Networks and Physical Systems with Emergent Collective Computational Abilities”, Proceedings of National Academy of Science, Vol. 79, pp. 2554-2558. [10] B. Shriver, ”Artificial Neural Systems”, Computer, March 1988, pp. 8-9. 141 [11] C. Chin, C. Maa, and M. Shanblatt, ”An Artificial Neural Network Algorithm for Dynamic Programming”, International Journal of Neural Systems, Vol. 1, No. 3, pp. 211-220. [12] J. Hopfield, ”Neurons with Graded Response have Collective Computational Properties like those of Two-State Neurons”, Proceedings of National Academy of Sciences, Vol. 81, pp. 3088-3092. [13] P. Bozovsky, ”Discrete Hopfield Model with Graded Response”, ICJNN Confer- ence on Neural Networks, Vol. III, pp. 851-856. [14] J. Hopfield and D. Tank, ””Neural” Computation of Decisions in Optimization Problems”, Biological Cybernetics, Vol. 52, pp. 141-152. [15] C. Keshavachandra and M. Shanblatt, ”Modeling Artificial Neural Networks Us- ing VHDL”, Technical Report, MSU-ENGR-90-009, Michigan State University Technical Report. [16] R. Lipsett, C. Schaefer, and C. Ussery, VHDL: Hardware Description and Desig_n, Kluwer Academic Publishers, 1989. [17] D. Tank and J. Hopfield, ”Simple ”Neural” Optimization Networks: An A/ D Converter, Signal Decision Circuit, and a Linear Programming Circuit”, IEEE Transactions on Circuits and Systems, Vol. OAS-33, No. 5, pp. 533-541. [18] User’s Manual for the Standard VHDL 1076 Support Environment, Intermet- rics, 1988. [19] W, Texas Instruments, 1984, pp. 3-224 and 3-227. [20] The TTL Data Book, Volume 2, Texas Instruments, 1985, pp.3-4 and 3-5. 142 “IW]]]]]]]]]]]]]]“