
#
1
.
.

.
1

.1
.

.
.

.
.

1
1

.
1
.
1
.
»

.
o
?

.
.

.
.
.

.
.
1

.
.

.
.

,
.

1
.
3

3
.
f
-
-
.

.
.

.
1

.
1

.
.
.

.
1

.
.

.
.
.

1
.

.
T

.
.

.
.

.
.

,
1

1
.
t

y
1

.
.

.
.

.
.

1
1

.
1
.

.
.

.
.
1

.
.
.

.
.

.
t
i
l
t
.
.
.
"
-

.
1.

.
.

.
.

.
.
.

.
,

H
.

.
1

1
.

1
7
.

.
.

.
.

.
.

.
1

v
1

“
1
'
0
4
.

-
u
t
.
v
r
»

t
.
.
.

I
O

.
.

1
.

,
1

.
.

.
t

.
.

.
r
9
.
1
.
7
.
5
5
9
;

i
n
)
-
.
.

F
a
r
!

E
v
:

z
e
t
a
-
L
a

.
.

.
.

1
.

.
,

1
5
7
.
.
.
.
.
.
a
‘
o
t
’
c
.
.
.
o
.
t
a
'
l
v

l
f
l
n
.
v
f
l
a
|

1
.

.
u
’
¢
k
r
.
1
l
i
l
n
.
.
l
.
.
f
.
o
l
.
.
:
'
v

’

.
.
.

.
.
.
v
v

.— 9)" :
- {.{w

‘ l' .'

pagan .-

.
$
.
1
1
!

.
\
-
.
\
1

-
v
i
i
i
;
fi
t
t
e
r
-
a

.
.
5

A
.

..
.

\
.
l

l
u
.
.
.
‘
1
.
‘
7
1

1
.
f
i

.
1
.

L
.
I
O
O
I

1
1
-
1
I
I

.
.

i
.
3
.
.
.
:
.
7
9
!

\
.
.
3
f

.
6
)
.
.
.

5
1
.
.
.
.
.
.
1
.
.
1

1
.
.
.
.
1

.
.
1
.

.
i
.
n
p
c
1
+
\
0
1
.
.
.
.
.
.
l
l
L
.

.

.
‘
1
‘
I
‘
b
f
‘
.
.
.
(

|
L
I
I
’

I

.
1
.
2
:
.
I
I
I
.

.
!
1
l

.
1
\
0
’
1
.

L
L
.
‘
.

.
1
0
1
.
.
.
”
)

1
.

1
1
.
.
.
.
.
.

.
r
.
.
.
‘
.
f
.
l

1
3
0
.
.
.
“
.
.
.

.
1

1
f
.
.
.

.
.
\
,
1

.
9
6
.
.
.
!
.
’
5
‘

I
»
.

1
.
1
.
2
;
O
i
l
:
0
‘
)
!

..
r
i
f
t
!

.
0
1
t
.
1

.
$
5
.
.

2
7
0
1
.
-
.
.
.
.
”

“"1
2.7",“

.
....

1
[
1
1
.
I
1

.
.

.
1
4
l
5
|
l
l
£
r
|
n
t
.
\
c
l
l

.
O
V
‘
N
‘

1
t
l
l
\
l
.
l
.
\
|
l
.
q
\
n
{
z
.
1
i
!

0
-
D
!
.
.
I
F
7
.
1
I
6
€
A

.
7
,

.
1
.

.
I
t
}
$
.
‘
l
’
6
‘
f
f

4
0
.
.
.

.
.

.
.
.
.
.
.
.
v
:
.
.
.
-
1
.
-
1
1
5
1
1
.
.
.
,
u
1
§
.
.
.
1

.,
1

.
.

_
1

.
.
1
.
1
.
.
1
3
.
m
m

1
1

.
.
.
.
.
|

1
.

.
V
1

t
i
l
i
n
g
.
k
e
g
.

.
.

.
1
'

.
.

.
.

.
.

.
.

.
g

-
.

,
:

.
..

h
a.

-
1
.
1

.
l
.

.
1

....
£

.
_

..
“
8
.
.

.
5

;
i
n

L
a
n
n
a
.
.
.

.
.

.
1
v

.
.
0

I
S
A

9
.
.
-

-
(
a
'
u
.
.
.
|

V
I
N
.
“

2
:
”
!

I
"

4
5
‘
.
»
.
t
|
|
.
l
.
h
s
l
n
€
£

{
I

i
n
:

1
I
!
1
.
0
:
}
.

.
n
l
v
l
o
.
.
.

.
A
.
o
t
.

.
'
1
:

n
.

.
\

I
‘
l
l
)
:

1
.
2
!

.
,

«
1
9
.
1
3
1
.
.
.

r
i
l
e
)

.
.v

1
.

.
I
-

f
.
«
I

.
.

.
1
1
4
.
5
1
.
.
.
-
1
"
!
)
.
1
1
. .

1
.
5
.
.
.
.
1
.
$
1
1
5
2
.
.
.
3
.
1
.
2
:
.
.
.
3
t
d
.
.
.
”

0
h
r
}
:

1
.
4
.
1
.
5
0
.
2

1
?
.
.
.
1
I

.
9
1
1
.

.
.
L
i
?
?
?

1
.
1

.

1
.
.
.
.
.
1
1
.
.
.
.
'
\
.

,
.
b
.
.
.
1
,
|
.
.

.
P
r

.
1
:

.
.

n
.

(
o
.

.
.

.
I
v
e

.

1
.
.

.
u

»
,

F
L

.
;
}
I
,

.
1
v
1
‘
.
.

I
.

.
.
.

2
.
.
.
.
.
.

.
1

.
l
b

-
3

1
.

.
.

(
n
.
1
,
?

.
1
.
.
f
c
l
6
1
1

|
.
.
u
.

I
I
t

.
1

.
I

_
.
1
.
.
.

I
L

1
O
.
.
.

.
1
,
.
.
-
0
3

1
’
7
1
-
v
1
|
\
1
.
\
l
:
‘
.
t
u
t
.
1
l
l
.

1
t

$
.
1
1
.

.
1

1
L
.
.
.

.
I
'

.
1
.
1

3
.
7
1

.
1

t
.

1
1

.
..

1
I

.
I
A
.

9
1

.
.
1
.

x
‘

'
I
-
v

'
I

1
!

‘
l
l
‘

1

111111111111s111111'11111111111111111
l-

T S

1 3 00784 9197

This is to certify that the

dissertation entitled

DYNAMIC PHYSICAL SYSTEM SIMULATION
AND OBJECT ORIENTED PROGRAMMING

presented by

John Douglas Reid

has been accepted towards fulfillment

ofthe requirements for

PhD

degree in Mechanical

Dateflofi/QU

MSU i: an Affirmatiw Action/Equal Opportunity Institution

Engineering

i, LIBRARY

Michigan State

i University

KC

(7&5myb/Qv/ ’
ajor professor

012771

3831396?

PLACE IN RHURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE

 L______

MSU Is An Affirmative Action/Equal Opportunity Institution

cha-pd

DYNAMIC PHYSICAL SYSTEM SIMULATION

AND

OBJECT ORIENTED PROGRAMMING

BY

John Douglas Reid

A DISSERTATION

'Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Mechanical Engineering

1990

@
o
s
a
v
v
/

ABSTRACT

DYNAMIC PHYSICAL SYSTEM SIMULATION

AND OBJECT ORIENTED PROGRAMMING

By

John Douglas Reid

Many useful software packages exist today that effectively implement

physical theory in order to support dynamic physical system simulation.

As simulation methodologies mature and extend, so must their software

implementations. A relatively new software methodology, known as object

oriented programming, is investigated to determine its impact on the

future of physical system simulation. A bond-graph/blockodiagram

processor is developed using Smalltalk-8O to help delineate the benefits

and difficulties of using the object oriented paradigm. Encapsulation,

inheritance, and polymorphism are shown to provide a framework that

supports extendible software on both a small and large scale that is

typically lacking in conventional languages (e.g., FORTRAN and PL/I).

This includes user customization of the software, as well as incorporating

major enhancements to the software. .Additionally, object oriented

implementations are shown to follow closely the world they are modeling.

This allows the software designer to concentrate on the problem being

solved and not on transforming a theoretical solution of the problem into

a software implementation.

To Monica...

iii

ACKNOWLEDGMENTS

I would like to thank my major professors, Dr. Ronald C. Rosenberg and Dr.

Joseph ‘Whitesell, for their guidance and. support throughout my PhD

program. Also, Dr. Steven Shaw, Dr. Jon Sticklen, and Dr. Maciej

Zgorzelski have each made valuable suggestions throughout the research.

Special thanks goes to GMI Engineering & Management Institute for

providing me with the opportunity to pursue my educational and career

interests.

Finally, for their endless love and support, I would like to thank my

family, particularly my mother and father (the Professor), and especially

my wife, Monica and daughter, Amanda.

iv

TABLE OF CONTENTS

Page

LIST OF FIGURES .. vi 1

CHAPTER I - INTRODUCTION ... l

1.1 Problem Definition and Goals 2

1.2 Benefits .. 6

1 3 Order of Reporting .. 7

CHAPTER II - BACKGROUND .. 8

2 1 Dynamic Physical System Simulation 8

2.1.1 A Brief History ... 9

2.1.1.1 Direct Programming of Equations 10

2.1.1.2 Block Diagrams 10

2.1.1.3 Bond Graphs ... 11

2.1.1.4- Macro Models .. 14

2.1.1.5 Direct Physical Description 14

2.1.2 Capabilities and Style: An Engineer's Perspective 15

2.2 Object Oriented Programming 17

2.2 l A Brief History ... 18

2.2.2 Object Oriented Languages 18

2.2 3 Simulation .. 21

CHAPTER III - AN OBJECT ORIENTED BOND-GRAPH/BLOCK-DIAGRAM PROCESSOR 22

3.1 Model Building .. 26

3.1.1 Topological Diagram 27

3.1.2 Functional Specifications 32

3.1.3 Topological Macros 40

3.1.4 Enhancements: Topological and Functional 44

3.2 Model Analysis/Equation Formulation 47

CHAPTER.IV - THE SMALLTALK- 8O IMPLEMENTATION 52

4.1 Object Oriented Design 53

4.1.1 Responsibility-Driven Design 53

4.1.2 Incremental Development 54

4.1.3 Interactive Applications: Model-View-Controller 55

4. 2 NodeGraph-80 .. 57

4. 3 The Implementation .. 58

A. 3.1 Phase I: Primitive Bond Graph Processor 58

4.3.1.1 System Capabilities 58

a. 3.1.2 Object Oriented Structure 59

4.3. 2 Phase II: Additional Multiports and Functions 66

A. 3. 2.1 System Capabilities 66

L
‘

b

u
b
b
b
b
u
b
b

b
w
w
w
w
w
w
w

E a V

U
‘

U
'
I
H

.1

1

l

.1

.l

H
H
H
U
‘
U
’
I
U
'
U
I
H

U
W
N
U
I
U
I
U
'
I 2

3

.1

.2

.2

.2

5. .2

5.2.3

CHAPTER.VI - CONCLUSIONS

6.1 Benefits of Object Oriented Programming

6.2 Difficulties with Object Oriented Programming

6.3 Unanswered Questions and Future Research

APPENDIX A - INTRODUCTION TO BOND GRAPHS

APPENDIX B - INTRODUCTION TO OBJECT ORIENTED PROGRAMMING

APPENDIX C - OOBProc IMPLEMENTATION DETAILS

LI ST OF REFERENCES

. 2 . 2 Adding Multiports

.2.3 Additional Function Capabilities

Phase III: Block Diagrams and View-Controller Pairs

.3.1 System Capabilities

.3.2 Signals

.3.3 Blocks ..

.3.4. View-Controller Pairs

Phase IV: Macros

- CHARACTERISTICS OF OBJECT ORIENTED PROGRAMMING IN

DYNAMIC PHYSICAL SYSTEM SIMULATION

Development

vi

Language Constructs

.1.1 Processing Input Requests

.1.2 Interactive Windowing

.1.3 Data Storage and Usage

.1.4 Software Organization

Environment

Robustness ..

4- Time ..

Enhancements ..

Types ...

.1.1 Functions

.1.2 Nodes ...

.1.3 Methods

Required Expertise

Controlled.Access

5.3 Reusability ...

5.4 Portability Between Object Oriented Languages

5.5 Qualitative Reasons OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

\
0

.10

.11

.12

.13

.14

LIST OF FIGURES

Who Will Benefit? 6

Field Controlled DC Motor ll

Block Diagram of a Plant Process 11

Bond Graph of a Field-Controlled DC Motor 12

Radar Pedestal ... 13

System Graph of Radar Pedestal 13

Macro Model of the Radar Pedestal 14

Roots of Smalltalk 19

Two Wheel Drive Tractor Model: Rigid Body 22

Two Wheel Drive Tractor Model: Drive Train 23

Macro Model of Tractor 23

Details of the Right Wheel 24

The Main.Menu .. 25

Submenu for Arcs 25

Menu for Adding Multiports 25

Node Types ... 26

Arc Types .. 27

Predefined System Equations 33

User Defined System Equations 34

List of Functions 36

Views of a Function During Specification 37

.. 45Diode Function

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

.15 Template Function Format

.16 System Equations for the Radar Pedestal

.1. Model-View-Controller

.2

.3

.9

.10 Multiple Views of a Bond Graph

.1

.2

.3

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOO

MVC Class Hierarchy

Phase I Class Hierarchy

BGControIler 'addNode:' Method 0000000000000000000000000

Summary of Atomic Node Additions

Macro Capacitor Class Hierarchy

Phase II Function Class Hierarchy

Arc Class Hierarchy

Node Class Hierarchy

Generic Data Defining a Node

Data Defining Specific Nodes

Complexity of User Enhancements

Controlled Access to Enhancement Capabilities

Smalltalk-80 Code for Inverting a Matrix

Results From Executing Matrix Inversion Code

Variables Used For Bond Graphs

Bond Graph Multiports

Two Degree of Freedom Spring-Mass-Damper System

ooooooooooooooooooooooooBond Graph of System Figure A.3

Schematic of an Electrical Circuit

Bond Graph Representation of the Circuit 000000000000000

A Simple Class Hierarchy

(a) Procedural vs. (b) Object Oriented Organization

OOBProc Class Hierarchy OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

viii

CHAPTER I

INTRODUCTION

Computer-based physical system simulation is now an integral part of the

design process. The two main benefits of simulating system behavior are

(1) it saves time, which in today's competitive market is vital, and (2)

it saves money. Building multiple proto-type parts is expensive, while

computer resources are relatively inexpensive. It also contributes to

producing better designs by encouraging more "what if? exploration by

design engineers.

Physical system simulation spans many disciplines. It includes mechanical

systems, electrical systems, control systems, and combinations of these

systems, to name a few. Fbr example, an active suspension system for

automotive vehicles includes mechanical, electrical, hydraulic and

feedback control systems.

Simulating these systems is not just an application of physical theories.

The methods one uses to model and analyze these systems depends on

physical theory, the set of conceptual tools available, and computer

implementation techniques. This research investigates how a relatively

new software methodology, object oriented programming, may impact the

future of physical system simulation.

2

1.1 Problem Definition and Goals

As physical system simulation matures, the software that implements the

newer technology becomes increasingly complex. Developing simulation

software has become a major challenge and expense. Cox [1] and Levy [2]

discuss some of the issues associated with developing quality software,

including brittleness, lack of expandability, software reusability, data

type dependency, software maintenance, and the software design process as

the issues pertain to procedural programming languages like FORTRAN, C,

Pascal, or PL/I.

It is evident from these and other writings that research is needed into

the software development process, to develop new software methodologies

and design new implementation languages. Object oriented programming is

one such new methodology [3], [4].

Object oriented programming is believed to be a key to great improvements

in the next generation of computer software. Some of the proposed

benefits of using object oriented.programming are (1) software is reusable

and easily identified throughout a system so that duplication of code is

drastically reduced and understandability is greatly increased; (2) code

can be written generically without reference to the type of data it is

operating on; (3) the object oriented programming environment allows for

user customizable software and for different levels of development, and

(4) complex data structures, such as macro capabilities (a layering

concept dealing with systems, sub-systems and components), can.be modeled

logically and efficiently [5], [6], [7].

3

The overall goal of this research was to investigate how object oriented

programming could be used effectively in physical system simulation. To

help determine these benefits a portion of a bond-graph/block-diagram

processor was developed in the following phases.

Phase I

A limited bond graph processor that derives the equations of motion

was developed. This consisted of the basic bond graph primitives

Se, 1, I, R and CY elements. (An introduction to the bond graph

methodology is presented in Appendix A.)

Phase II

Enhancements to this bond graph processor were investigated from

two different approaches. Capabilities for including bond graph

elements Sf, O, C and TF were examined from (1) a macro

perspective, and (2) an atomic perspective.

Phase III

Further enhancements were added to the bond graph processor by

incorporating block diagrams into the system.

Phase IV

At this point the research could have proceeded in either of two

directions: (1) provide the next step in the simulation process

(i.e., numerical methods, such as integration), or (2) provide

advanced model building techniques by investigating a more abstract

perspective of the models (e.g. , provide macro capabilities). This

4

research focused on the second, model-building perspective.

Smalltalk-80 [8], [9] was the object oriented language used to implement

the bond graph processor. The language was chosen for the following

reasons: (1) It frequently serves as the language to which other object

oriented languages are compared; (2) it is a large system containing many

pre-defined classes, and (3) it is a pure object oriented language. Thus

old programming habits will be kept to a minimum. For example, if C++

[10] were used it might have been tempting to write much of the system

using plain C. It was felt that breaking away from procedural languages

entirely would provide the most insight.

It should be pointed out that the actual implementation was not the major

objective. The focus was on how object oriented programming supports the

transition from phase to phase.

In addition to the development of original software, the capabilities

available to the users of the software are delineated. To make this

clear, let us define three types of users:

Engineer

0 Typical engineer with a Bachelor's degree.

0 Uses physical system simulation software as one of many tools

to complete the job on hand.

0 Knows the basic theory of analysis but if a detailed analysis

is needed would pass it off to an Analysis Engineer.

0 Often needs minor enhancements to existing software.

Analyst

0 Applies analytical methods on a day-to-day basis.

0 Typically holds a Master's or PhD degree in engineering.

0 Often wants to get more out of physical system simulation

software than its original purpose.

Systems Programmer

0 Responsible for administering and perhaps enhancing the

software.

0 Typically trained in computer science.

0 Tasks include making software work on various hardware

platforms, and. implementing .additional analysis techniques

defined by an Analyst within existing software.

Currently any enhancements that are made to a complex simulation package

are done by a systems programmer. This is because of the complexity of

the implementation of the software.

One question to be answered is: What classes of enhancements can be made

by each type of engineer if object oriented programming is used to develop

the original software? By implementing the bond-graph/block-diagram

processor in phases, it is hoped that this question can be answered.

6

1.2 Benefits

There is reason to think that object oriented programming will allow the

several types of users to understand the software and its environment well

enough to make reasonable modifications without becoming expert

programmers. This would be a major benefit to the engineering physical

system simulation community.

.Additionally, both the computer science object oriented ‘programming

community and the engineering physical system simulation community will

benefit from this research. This is depicted in Figure 1.1. Specific

benefits for each community are then listed.

Computer Science Object-Oriented Programming Community

application

Physical S tern Simulation

Usrng Objecl— rrented Methodology

new methodology

Engineering Physical System Simulation Community
Figure 1.1 Who Will Benefit?

Benefits for the Computer Science Object Oriented Programming Community

0 Serious applications are required in order to examine the

theory of the object oriented methodology as it applies in

practice.

7

0 Advantages demonstrated will encourage others to use this

methodology where applicable.

0 Shortcomings recognized (or discovered) give researchers

a direction for further work.

Benefits for the Engineering Physical System Simulation Community

0 May provide a development platform that is readily

extendable to include additional physical and dynamic

effects.

0 May provide implementations that are more readily

maintained (e.g., ported, revised for hardware upgrades).

0 May enable existing physical system simulation technology

to run with fewer bugs (defects, errors) and faster.

In summary, if important benefits are found by applying the object

oriented methodology then significant improvements in future computer

software systems will be obtainable.

1.3 Order of Reporting

Chapter II gives a background for both dynamic physical system simulation

and object oriented programming. Chapter III describes, from the user's

point-of-view, the bond-graph/block-diagram processor (OOBProc) developed

using Smalltalk-80. Chapter IV discusses the implementation

technicalities of OOBProc. Chapter V details the benefits of using object

oriented programming methods that were discovered during the development

of OOBProc. Finally, Chapter VI lists the benefits and difficulties

encountered during the research. .Additionally, some unanswered questions

and future research topics are given in Chapter VI.

CHAPTER II

BACKGROUND

2.1 Dynamic Physical System Simulation

The purpose of simulation is to predict the behavior, the structure or the

attributes of a system [11]. Our interest is in simulation through

computer software, also known as soft proto-typing. Since the advent of

the computer, engineers have been developing and using soft proto-typing

techniques in addition to the normally more costly and time consuming

method of creating hardware proto-types.

The simulation process is complex, involving problem formulation, model

building, model analysis, formulation and numerical solution, and

meaningful response display [12]. Design based on simulation is an

iterative process and can take anywhere from a few days to several months,

depending on the complexity of the model.

The major types of simulation are discrete, continuous and combined [13].

Discrete simulation is based on instantaneous changes in the state of a

system [14]. An example of discrete simulation is modeling a bank

customer queuing system. Continuous simulation is based on continuous

changes in the state of a system over time [15]. For example, planetary

motion in our solar system would be studied with continuous simulation

methods.

Systems that are affected by both discrete and continuous changes in state

are referred to as combined, or hybrid, simulations. For example, a

liquid waste storage system involves continuous dynamics of the liquid in

the storage tank and discrete changes due to trucks unloading of waste at

different intervals.

The physical systems under consideration in this research are those that

are dynamic and involve energy, as well as information, exchange between

components. Examples of these types of systems include an overhead cam

valve positioning mechanism as used in an automotive engine, a

hydraulically controlled landing gear retraction mechanism as used in an

airplane, and an electro-pneumatic transducer as used in a temperature

control system. This research concentrates on bond graph and block

diagram modeling techniques for performing simulations.

2.1.1 A Brief History

This sub-section describes the advances in physical system simulation

technology over the last four decades. Reference [16] gives a survey of

the various continuous system simulation languages developed between 1955

and 1985 in order to implement the newer technology. Of more recent

history and interest to engineers are the automated modeling and analysis

programs, commonly referred to as computer aided engineering (CAE) systems

[17], [18].

10

2.1.1.1 Direct programming of equations

Original digital simulation packages were numerical integrators which

emulated the analog computer style [19]. If one would describe the system

equations to the computer, the software would generate volumes of (useful)

data. The sophisticated packages provided graphical output for easy

interpretation of the system performance. The equation derivations were

left to the engineer. Of course, there were no restrictions on how the

equations were obtained. For example, a set of mechanical system

equations could be derived using Newton's second law, Lagrange's

equations, or Hamiltonian methods. For complicated systems this could be

extremely difficult. Furthermore, the system equations had to be

expressed in a formal language like FORTRAN.

2.1.1.2 Block diagrams

Block diagrams are a graphical technique used to model physical systems

[20], [21]. Block diagrams are used for information transfer processes,

such as control. They provide a convenient and useful representation for

characterizing the functional relationships among the various components

of a control system. Using graphics terminals, simulation software can

capture the graphical representation of the system in its block diagram

form. For example, Figure 2.1 shows a ‘block, diagram for a simple

field-controlled dc motor [22]. This leads to insight into the system

structure that is not evident just by examining the system equations.

Although the initial system equations are still needed to create the block

ll

diagram for detailed analysis, modifications to the system are much more

easily adapted into the block diagram.

R + G K K21 => C

9(Js/B + 1)

Controller Amplifier Motor

Figure 2.1 Field Controlled DC Motor

Additionally, block diagrams allow for abstractions, such as transfer

functions and 'plant' models. See Figure 2.2 as an example.

outputinput

——9-[Controller = —B--

—-{Measurement+6——

Figure 2.2 Block Diagram of a Plant Process

2.1.1.3 Bond graphs

Of more recent vintage is a modeling technique known as bond graphs [23],

[24], [25]. Bond graphs are used for structured modeling of energy and

power transfer processes, including mechanical, electrical, magnetic,

hydraulic, and thermal processes and their combinations. Like block

diagrams, bond graphs are a graphical representation form. But unlike

12

block diagrams, bond graphs are derived directly from the physical system

model, rather than through the equations of the system. This gives the

trained engineer direct insight into the physical system by examining the

bond graph without interpreting any equations.

Figure 2.3 shows a bond graph representation of a field-controlled dc

motor connected to a load. An introduction to bond graphs is given in

Appendix A.

sss——‘*| 1E 73- SEM —AH1M Bload l

e1 i m1 m4 l

l
e2 3 tn2 3 i

l

IE RE IM RM l

l

l

Figure 2.3 Bond Graph of a Field-Controlled DC Motor

Using a combination of bond graphs and block diagrams allows the engineer

to model an extremely large set of dynamic physical systems [26]. The

bond graph portion of the model captures the system dynamics, while the

block diagram portion can be used to represent the control of the system.

For example, a radar pedestal used to track moving objects is shown in

Figure 2.4 [27]. The system graph shown in Figure 2.5 includes bond graph

elements used to model the open loop system and block diagram components

used to impose feedback control. This control is used to set the angular

position of the pedestal to a desired location.

Tachometer

 Command Signal

Figure 2.4 Radar Pedestal

IE RE IM BM CS IP RP

Figure 2.5 System Graph of Radar Pedestal

Once a model of the dynamic system is Obtained in bond-

graph/block-diagram form it can be handled by computer software, such as

ENPORT, CAMP, and TUTSIM [27], [28], [29].

14

2.1.1.4 Macro models

Topological macros provide for storage of sub-system descriptions in order

to be used in larger systems [30] . This is like a component library

system. Three advantages of using macros are: (l) describing and working

with large complex systems in a manageable way; (2) reusability of

component models, and (3) efficiency when testing variations of the same

physical component. Figure 2.6 shows a macro model for the radar pedestal

shown in Figure 2.4.

SRC

ref

Gontroller) ‘5

ctfl

cvl—e—a
s s P

Figure 2.6 Macro Model of the Radar Pedestal

2.1.1.5 Direct physical description

Currently, a lot of attention has been directed to integrating computer

aided design (CAD) systems with simulation packages. The CAD systems are

15

used for capturing,the geometric design descriptions, generating the input

to a simulation package, executing the simulation software, and then

displaying the results from the simulation in a meaningful way. For

example, Magic [31] is a graphical layout editor for VLSI design which

interfaces with SPICE [32], a circuit simulation program. As another

example, MEDS [33] is a uwchanical design system that interfaces with

ADAMS [34], a software package for simulating the force and motion

behavior of mechanical systems.

2.1.2 Capabilities and Style: An Engineer's Perspective

When designing physical system simulation software one must consider the

different groups that will be working with the software. One can identify

three such groups: software developers, software maintainers, and

engineers. These three groups have tasks and viewpoints that differ and

are sometimes in conflict.

Software developers are responsible for creating and implementing the

simulation software. Software maintainers handle system administration

functions, including different hardware configuration implementations, bug

fixes and minor enhancements.

The engineer's point-of-view stems from the question: What can the

software do for me? This can be broken down into three main categories,

those being: (1) modeling domain; (2) solution capabilities, and (3)

presentations of results. The first two issues are generally of main

16

concern to the engineer.

The modeling domain of a software package identifies the types of systems

an engineer can simulate. For example, a rigid body mechanism could be

simulated using ADAMS [34] or DADS [35]. Would these packages still be

appropriate for simulating flexible bodies, or for simulating an active

suspension with mechanical, electrical, hydraulic and feedback control

components? The engineer needs to match his/her particular applications

with the appropriate simulation software.

Once the modeling domain is specified, a detailed look into the actual

simulation capabilities is required. Does the software treat linear and

non-linear systems? Does it cope with stiff systems? Is linearization

and eigen analysis included? How well does it react to singular states or

model inconsistencies? These are but a few of the questions associated

with simulation capabilities.

Style also plays an important role. Style includes, for example, the user

interface features and documentation support for the software and

training. These issues help determine how easy a package is to learn and

to use. This is extremely important for new' users and also for

intermittent users who will be using the software on an as needed basis.

The every day users also need specialized styling features. Being very

familiar with the software, they would not want to be slowed down by an

extensive menu system, for example.

17

2.2 Object Oriented Programming

Physical system simulation software is written to imitate behavioral

aspects of real physical systems. It would make sense to design the

computer-based information structure to be congruent with the way'we think

about the physical world. For example, if you were going to assemble and

operate a dynamic mechanism you would first identify its components,

assemble them and then put the mechanism in motion. The initial focus

would be on the components, gradually shifting to the system.

Object oriented programming is a relatively new idea in software

programming that concentrates on the objects of a system rather than on

the procedures that manipulate data, as conventional engineering software

does (e.g., FORTRAN or PL/I) [l], [3], [8]. According to Floyd [7]:

"Our world is filled.with objects, so it seems only natural to

describe and solve problems in terms of objects as well. This

idea is the basis for object-oriented programming."

Stefik and Bobrow [5] think object oriented programming is directly

applicable to simulation:

"Objects are a uniform programming element for computing and

saving state. This makes them ideal for simulation problems

where it is necessary to represent collections of things that

interact."

Focussing on. the objects would appear to have great potential in

simulating physical systems. This dissertation investigates that

potential. Appendix B gives a brief overview of object oriented

programming.

18

2.2.1 A Brief History

The origins of object oriented programming are quite diverse. It is

commonly agreed among the experts that Smalltalk is considered the first

language to encompass and define object oriented programming. However,

the roots of Smalltalk include conventional languages (Algol and Simula),

artificial intelligence (AI) languages (Lambda-Calculus, Lisp, Planner and

Logo), and unique languages (Sketchpad and Flex) [36]. This is depicted

in Figure 2.7

2.2.2 Object Oriented Languages

Object oriented languages are specific implementations of vendors'

interpretations of what object oriented programming should be. The

majority of the literature suggests that, to be a true object oriented

language, the language must have the following two properties:

Encapsulation

Ability to combine data and the code that operates on that

data into a single structure.

Inheritance

Ability to derive specialized structures from more general

structures.

Ada [37] and Modula-2 [38] are two languages that provide encapsulation

but do not provide inheritance. A.few people still call these object

oriented languages but the majority do not [39], [40]. A compromise is to

call languages such as these object based.

19

Conventional Unique and Extremely AI World

World Influential Systems

7 Algol Lambda-Calculus

d as“ 5 General.“ held at:

let-I. W (cum)

J, * Sketchpad *

blue-Ikem u-

m with d.- and

hi.“w

Simula -

Wlull“. lerm

dun-Gm

Flex

Ills-ills law will

do.- eed W. (Key)

l] Planner

u on. gum also-la

l mm»?
(norm

Logo

M Relative

Smalltalk ... was...
graphic and. any. (Fem-uh)

Figure 2.7 Roots of Smalltalk

20

A third property sometimes added to the definition of object oriented

languages is:

Polymorphism

Ability to send the same message to different objects. That

is, the same action can be requested from different objects

without special processing.

We adopt these three properties in our approach.

There are two types of object oriented languages, pure and hybrid. There

are dozens of object oriented languages available today. Rettig et a1

[41] discuss 17 of them.

Pure object oriented languages operate strictly within the rules of object

oriented programming” This means that everything (essentially) is

considered an object and that the language is built upon that concept.

Smalltalk-80 [9], Trellis/Owl [42] and. Actor [43] are three object

oriented languages that are considered to be pure.

Hybrid languages consist of object oriented extensions to a non-object

oriented language like C, Lisp or Pascal. Examples such as C++ [44] and

Objective-C [45] are hybrid object oriented languages written on top of

standard C. CommonLoops [46] and Flavors [47] are object oriented

languages implemented using LISP. .Jacky and.Kalet use standard Pascal but

program with the concepts of object oriented programming [48]. New

releases of Pascal from both Microsoft and Borland [49] (major software

corporations) include some basic object oriented programming capabilities.

21

2.2.3 Simulation

Object oriented simulation is relatively new but traces its roots back to

Simula in the 1960's [50]. The majority of the applications to date have

concentrated on discrete simulation.

General object oriented languages, like Smalltalk-80, often 'provide

discrete simulation capabilities [51], [52]. Also, special languages have

been developed for general discrete simulation applications [53], [54].

Additionally, object oriented languages have been developed for specific

applications. For example: (1) Ruiz-Mier and.Talavage describe a paradigm

for simulating manufacturing processes [55]; (2) Larkin et al describe

SERB, an object oriented language for research biologists [56], and (3)

Gates et a1 discuss the object oriented language Ross, under development

since 1982, used for military modeling and simulation [57].

Work on continuous simulation using object oriented programming is just

beginning. Fbr example, Gaush and Huntsinger [58] describe an object

oriented continuous system simulation environment that integrates a few

nonlinear functions that could be described by a block diagram, for

instance. Sung [59] describes a kinematic solver developed in

Smalltalk-80, as another example. Both works concentrate on the numerical

solution aspect of simulation. The work of this dissertation concentrates

on the model description and equation formulation aspects of the

simulation process.

CHAPTER III

AN OBJECT ORIENTED BOND-GRAPH/BLOCK-DIAGRAM PROCESSOR

This chapter describes, from the user's point-of-view, the bond-

graph/block-diagram processor developed using Smalltalk-80. For

conciseness the object oriented bond-graph/block-diagram processor will be

referred to simply as OOBProc.

Two examples are used through out this chapter to illustrate the features

of OOBProc: a radar pedestal with positional control and a two-wheel-drive

tractor. The radar pedestal was shown in Figures 2.4, 2.5 and 2.6. The

two wheel drive tractor is shown in Figures 3.1 and 3.2. The details of

the bond graph for the tractor were developed by Kaumbutho [60]. Figure

3.3 shows a macro model of the tractor, while Figure 3.4 shows the details

that compose the right wheel node.

 E3273
l__:]

«
l

 IW%M>

Figure 3.1 Two Wheel Drive Tractor Model: Rigid Body

22

23

mom's-a
Figure 3.2 No Wheel Drive Tractor Model: Drive Train

(left wheel)

lwc

dflw

We:

dfrw

l’WC

J.

Gight wheel 5

Figure 3.3 Macro Model of Tractor

_
'
-
.
_
_
.
.
_
_
-
.
_
_
_
_
_
—
—
_
.
V

4
4
—
.
.
.
”

.
_
.

-
i

24

dfrw rwc

W1o]—-—‘=- TFRADIUS10 I—A1V1oI——=- omnusno

sw310 V110 v210

9,210 110 wel10

RW10 IW10 RSLIP10

Figure 3.4 Details of the Right Wheel

With the exception of a few activities every option in OOBProc is chosen

by use of a hierarchical menu; with each option there is a possibility of

a sub-menu associated with it. This is recognized by options with arrows

to the right.

The main menu of OOBProc is shown in Figure 3.5. To bring up a sub-menu

all one needs to do is to drag the mouse to the higher option desired and

the sub-menu is brought up automatically. See Figures 3.6 and 3.7 for

example. A specific request is submitted to the bond graph processor when

the user finally selects a menu option that has no sub-menu associated

with it.

Throughout this chapter picking an option from the menu refers to working

through the menu hierarchy until that option is selected.

25

nodes

arcs

bondgraph

graph

utflhfies

Figure 3.5 The Main Menu

add D

edk D

I nodes Dinspect

reshapeD

bondgraph bold

graph

uflfith5_£]

Figure 3.6 Submenu for Arcs

lO-Juncfion

I1-Juncflon

l Capachor

Effort

Hove

Gyrator

Inertia

Resistor

Transformer

add block

nodes D edh

arcs Dmacro nodes

bondgraphD inspect

graph D nodes

ufififles D

Figure 3.7 Menu for Adding Multiports

26

3.1 Model Building

The first stage of the simulation process is to describe the physical

model to the software application" For a bond graph this means describing

the topology and the functional specifications of the nodes.

A graph consists of nodes and arcs. Bond graph nodes are referred to as

multiports while their arcs are called bonds. Block diagram nodes are

called blocks and their arcs are referred to as signals. Figures 3.8 and

3.9 list the specific types of nodes and arcs available in OOBProc

respectively. Methods to add, modify, manipulate and remove these

components are needed for proper model building.

Multiports O-Junction

l-Junction

Capacitor

,Effort

Flow

Gyrator

Inertia

Resistor

Transformer

Blocks Distributor

Gain

Integrator

Source

Sink

Weighted Summer

Figure 3.8 Node Types

27

Bonds

Signals

Figure 3.9 Arc Types

Associated with each node are functional specifications. These

specifications are mathematical relationships that depend upon the

topology; Methods that define the functions and.keep them consistent with

the topology are required. Function definition is part of the model

building process.

Advanced model building capabilities have been included in the bond graph

processoru These include: (1) topological macros, which. are nodes

composed of multiple nodes and arcs; (2) user addition of new function

types, and (3) addition of new multiport and block types not supplied in

the original application.

This section describes in detail the model building features of OOBProc.

This work concentrates on building models using graphical tools rather

than through keyboard entry.

3.1.1 Topological Diagram

The topological diagram is a description of the connection network

describing the system. ‘This describes what components exist, how they are

connected and how they interact with each other. Describing the topology

28

of the bond graph to OOBProc consists of adding, modifying, manipulating

and removing components or groups of components.

ADDING COMPONENTS

Each node and arc in the system is restricted to have a unique label

(i.e., name) in order to communicate efficiently between the user and the

software. This is checked at creation time for nodes and arcs.

An icon is the term used for the graphical representation of anything to

be displayed on the screen. The icon of a multiport node is just a

graphical representation of its label, while that of a block is its label

with a box around it.

An arc requires a from_node and a to_node. Bonds are restricted to

connect exactly two multiports. Signals can start from a block, a

l-Junction or a O-Junction; they must end in a block or any multiport but

a 1 or 0- Junction. Additionally, arcs have internal points associated

with them to allow for polyline or spline display, rather than just

straight lines from beginning node to ending node. This and other

graphical features are discussed later in this section.

MODIFYING COMPONENTS

At some point in the simulation, functional specifications are made for

each node. Modifying the topology will affect these specifications if

they'have been set previous to the modifications. These implications will

29

be discussed in section 3.1.2. Here topological modifications are

discussed as if functional specifications have not been set. However, the

methods for modifying components do not change even after functions have

been assigned. The following topological modifications are permitted:

1” The label of any node or arc can be changed as long as the

new label is unique.

2. The type of a node may be changed. However, a multiport

can only be changed into another multiport, and a block

can only be changed into another block. For example, a

resistor can be changed into a capacitor but not into an

integrator.

3. The direction of a bond can be reversed” A signal was not

made reversible because the input/output characteristics

of blocks do not lend themselves to switching signal

directions effectively.

in The fromgnode and/or to_node of any arc can be changed

with the same restrictions as for new bonds and signals as

mentioned previously.

MANIPULATING COMPONENTS

There are multiple types of graphical manipulation provided, including the

following:

30

1. Any node can be dragged around on the display window

simply by picking the node and moving the mouse. This

occurs dynamically and all connecting arcs are

continuously re-displayed as the node moves.

2. The entire graph can be dragged by picking a minimum

distance away from any node and moving the mouse.

3. The display of an arc can be made into any one of the

following: (1) straight; (2) polyline; (3) rectilinear

polyline, or (4) spline. Polylines and splines can be

edited dynamically by dragging their defining points. The

arcs themselves can be displayed as bold (i.e., thicker

lines than the default display).

4. The graph can be scaled to fit into a defined rectangle or

into the current displayed view.

5. The graph can he zoomed in and out either to look at

details more closely (zoom in) or to look at the overall

graph better (zoom out).

Another type of manipulation is to work on multiple nodes, and the

internal arcs defined by these nodes, at one time. This is referred to as

a group.

31

A group can be moved around graphically just as if it was a single node.

A group can also be removed from the graph. This is done one node at a

time (see removing components below).

A buffer is supplied to allow for what is known as copy, cut and paste for

a group. Copy makes a copy of the group and stores it in the buffer. Cut

behaves as copy but additionally removes the group from the graph. Paste

makes a copy of whatever is in the buffer and adds it to the graph.

Pasting the buffer to the graph requires that unique labels are adhered

to. This may require re-labeling of the nodes and arcs. This can.be done

either manually or automatically.

Pasting also requires a spot in the graph to put the new components. Four

options are provided for this:

a. insert as is

b. insert scaled to rectangle

c. paste as is

d. paste scaled to rectangle

Insert spreads apart current nodes to allow for the insertion. Paste puts

the new components directly on top of whatever happens to be in the spot

the user chooses as the reference point for pasting. Scaled to rectangle

for both options allow for scaling of the new components to a rectangle

before adding them to the graph. After the buffer is copied into the

graph, that group of components is made dynamically movable for precise

32

placement.

REMOVING COMPONENTS

Finally, if a node is deleted, then all of its attached arcs are removed

also. This is because an arc without both ends defined.is meaningless for

a bond graph. For protection, confirmation is required before the

deletion of a node takes place.

3.1.2 Functional Specifications

As mentioned previously, associated with each node are mathematical

equations. The collection of the equations from all of the nodes in the

system graph is referred to as the system equations. The topology defines

some of the system equations (see Figure 3.10), while other equations are

user defined (see Figure 3.11). This section discusses specifying the

user defined functions.

The functions listed for the multiports in Figure 3.11 are for the simple

cases when no block diagrams are used. When a signal is directed towards

a valid multiport, that multiport is referred to as modulated. For

example, the voltage input source SEE in the radar pedestal is a modulated

source based on the signal labelled 'ctrl' . The functions associated with

modulated multiports then include the input signals as part of the

functional definition input variables.

33

Multiports

O-Junction

l-Junction

Common Efforts

Sum of Flows - 0

Common Flows

Sum of Efforts - 0

Capacitor Displacement - integral(Flow) or

Flow - derivative(Displacement)

Gyrator Effortl - modulusl * Flow2 and

Effort2 - modulusl * Flowl

or

Flowl - modulus2 * Effort2 and

Flow2 - modulus2 * Effortl

The modulus is user defined.

Inertia Momentum - integral(Effort) or

Effort - derivative(Momentum)

Transformer Flowl - modulusl * Flow2 and

Effort2 - modulusl * Effortl

or

Flow2 - modulus2 * Flowl and

Effortl - modulus2 * Effort2

The modulus is user defined.

Blocks

Distributor outputl- input

outputn- input

Gain output - constant * input

Integrator output - integral(input)

Source output - function(time)

Weighted output - constantl * inputl

Summer + constant2 * input2

+ constantn * inputn

Figure 3.10 Predefined System Equations

34

Multiports

Capacitor Effort - function(Displacement) or

Displacement - function(Effort)

Effort Effort - function(valid system variables)

Flow Flow - function(valid system variables)

Gyrator modulus - function(valid system variables)

Inertia Momentum - function(Velocity) or

Velocity - function(Momentum)

Resistor Effort - function(Flow) or

Flow - function(Effort)

Transformer modulus - function(valid system variables)

Blocks The user can override any predefined

function type of a block, if desired, with

the exception of the Distributor and Sink

block types. However, in doing so, the

consistency between the topology and the

functional specifications is lost.

Figure 3.11 User Defined System Equations

35

A function consists of a type, output variables, input variables and

parameters. The topology of the system graph is used, by default, to

determine the outputs and inputs for each node. The user can override the

input variables for a particular node but not the output variables.

In general, one would probably not want to override input variables

because this makes the equation structure inconsistent with the topology,

resulting in a system that would be hard to interpret. However, special

cases do exist where this overriding convenience is warranted. Thus, this

feature is provided in the bond graph processor. It would be possible to

provide a switching mechanism that could be turned on to force the

functional variables to be consistent with the topology. if desired.

Valid system variables consist of the effort, flow, momentum and

displacement on all bonds, the values of all signals, and time. System

variables are determined by the labels of the arcs. Signal variables are

just the signal labels, while bond variables are prefaced by characters to

distinguish between effort (E.label), flow (F.1abel), momentum (P.1abel)

and displacement (Q.label) variables.

Briefly, for block diagrams, the signal specifies the direction of its

variable. For bond graphs, a technique known as causality determines the

direction of'a‘bond's effort and flow‘variable. These variable directions

on the arcs uniquely determine the inputs and outputs for all nodes.

36

Before assigning functions to the nodes, the system graph must:

a. be complete

Have a valid number of bonds and/or signals attached to

each node.

b. have assigned causality

In order to determine the input/output variables for

multiports.

If these constraints are not satisfied then the user is notified of the

problem and is not allowed to assign functions until the problems are

fixed.

The list of available functions in OOBProc is shown in Figure 3.12. The

current list of functions is just a representative choice of functions a

more complete and practical system would have.

I

j [Choose a function to inspem

ADD

ATT

BACKLASH

CONSTANT

(DOS

DHODE

GA"!

INTEGRATOR

LHMFTER

LINEAR

POLY

Sfll

SUMMER

USER DEFINED'

Figure 3.12 List of Functions

37

To aid the user in specifying the input variables and parameters of the

function, two views of the function are brought up on the screen. For

example, Figure 3.13 shows the shaft compliance in the radar pedestal

being changed. The view on the left is the generic template used to

specify functions in general and.the view on the right is that function as

it is currently defined for the node. In this case, the left view shows

the generic GAIN function definition and the right view shows the current

definition of the shaft effort equation.

Enter new system variable for input1

61.5%

Generic function definition: Current function definition:

GAIN

Inputs = 1

Outputs = 1

Parameters . 1

outputl = parm1 * input1

5.52 I 5000 * 0,.5‘2

Figure 3.13 Views of a Function During Specification

When modifications are made to the system topology (section 3.1.1) it is

required to investigate the functional specifications in order to see if

they are still valid. The following cases must be handled:

a. Re-labeling a node.

In general, node labels are not used for functional

38

specifications, thus no special handling is required.

However, the gyrator and transformer moduli functions do

require the node name for unique identification” Thus, if the

label of a gyrator or a transformer is changed then their

function is updated appropriately.

b. Re-labeling an arc.

Arc labels are used as the system variables. If an arc changes

its label then all functions using that label as a variable

must either be (1) modified to use the new label or (2) reset

to the default function because the old label would no longer

exist, thus invalidating the old function. The first case is

desired and occurs if the user follows the topology for

determining system variables allowable for each node. Case

(2) occurs if a different variable (which is modified) is used

to override the default variables for a node. This method is

used because it was determined that a global system search of

all functional definitions was not reasonable just to check if

the user has used the special case of overriding system

variables.

c. Removing an arc (or changing an arcs nodes).

Removing an arc may cause the functions of the nodes that use

that arc as a system variable to be invalid. These nodes will

be reset to their default functions. If an arcs' to and from

nodes are changed the nodes affected in the change must also

be reset.

39

d. Removing a node.

The arcs attached to that node are also removed. This

requires handling as described in c. above.

e. Adding nodes.

.Adding nodes do not directly effect the existing system.except

that this is usually followed by adding new arcs, which does

affect the system equations.

f. Adding arcs.

Adding arcs affects the topological system variables

associated with the nodes that the new arcs are attached to.

By default, it is assumed the user will want to change those

node functions and they are thus reset to default conditions.

Before proceeding to functional specifications after completing

topological modifications the checks for completeness and valid causality

are made. At this time the functional changes described in, b.(2), c, d,

e and f are actually made. This is because the assignment of causality

checks to make sure that the existing functions are still valid for the

modified system. If not, then those functions are reset to default

functions. Most of the cases described above are discovered at this time.

Another possible change in functions is due to a possibly different

causality assignment on the system graph than the previously assigned

causalityu Recall that causality determines the input and output

variables for a node. If causality changes then so do the input and

40

output variables for the nodes attached to the changed causality bonds.

These nodes must be reset to their default functions.

3.1.3 Topological Macros

Topological macros are needed for: (l) describing and working with large

complex systems in a.manageable way; (2) reusability of component models,

and (3) efficiency when testing variations of the same physical component.

Macros are incorporated in OOBProc by use of what is referred to as a

macro node. The reason for this will be explained in section 4.3.4. A

macro node is a node in the system graph that is composed of other nodes

(either multiport, block or other macro nodes) and arcs. A macro node can

not contain itself.

For example, the tractor model shown in Figure 3.3 is shown as composed

entirely of macro nodes. The details of each node are hidden from the

observer; The expanded tractor model contains over eighty multiport nodes

and seventy bonds. Without macros to organize the tractor model the

editing and understandability of the tractor would be extremely complex.

The macro nodes provide for managing large and complex systems

efficiently.

A macro node behaves as any other node in a several ways. For example, the

graphical capabilities described in section 3.1.1 apply to macro nodes in

the same manner as they did for multiport and block nodes. This point is

41

very useful for developing the software in an object oriented language,

which will be discussed in the next chapter.

A macro node is also different from a block or multiport in the following

ways:

a. Different methods for creation and modifications are

required.

b. ‘Viewing the internals of a macro is required.

c. Expanding a macro to un-create it but leave its

composition in the system is required.

dc Saving and restoring macro nodes by themselves are

required.

Creating a macro node requires the user to define a rectangle that

encloses the nodes that are to make up the macro. The arcs that are

defined within these nodes become the internal arcs of the macro node.

The arcs that are only defined by one end point among these nodes become

the external arcs of the macro node. These external arcs are the

connections between the macro node and the rest of the system.

Making modifications to a macro node include:

1. Changing its internal structure.

Modifications to the internal topological structure of a macro

42

are not allowed directly. If the user wants to change the

internals he/she must un-create (expand) the macro into its

component parts and then modify those components. This

restriction is used to help keep consistent macro part

libraries. If the user could modify directly the internals of

a macro it 'would lead to non-standardized. parts fairly

quickly.

2. Modifying its functional specifications.

Changing the functional specifications of multiport and block

nodes is required even when those nodes are part of a macro

node. For this reason, if the user selects a macro node to

modify its functional specification (see section 3.1.2), the

macro temporarily expands itself in a graphical view in order

for the user to select the desired node to change. Since

modifying a functional specification is only valid for a

multiport or ‘block, this expansion. process continues in

recursion until one of these types of nodes is selected.

3. Changing its external arcs.

The arcs that connect a macro node to the rest of the system

have to be user definable and modifiable. For this reason,

when.the user adds an arc to the system and selects either its

to_node or from_node and if one of these happen to be a macro

node, the macro node will expand itself in order for the user

to select one of its internal nodes. This is required because

an arc must attach itself directly to a.multiport or'block for

43

meaning (see section 3.1.1). When selecting the to_node and

from_node of an arc, the user is prohibited from selecting

these nodes from inside the same macro node. Otherwise item

1. above would be violated.

Viewing a macro means to expand a macro in a graphical view in order to

display its composition. This is required for both 2. and 3. above.

This capability is also provided separately in order to inspect the

composition of a system as demonstrated for the tractor in Figure 3.4.

The two wheel drive tractor requires two rear wheels that are the same.

Making a macro out of a generic wheel allowed for reusability of the wheel

macro. Inside the tractor model are four tires that are patterned after

the same tire model. It is quickly determined that large macro libraries

would be very beneficial for reusability of common models. The difference

between generic macro models and specific ones would. be in their

functional specifications. For example, there are different size tires

between the front and rear on the tractor. Providing functional

modifications as described in 2. above makes the system very useful in

this regard.

Finally, the radar pedestal shown in Figure 2.6 contains a field

controlled DC motor. If one wants to change the field motor to a shunt

motor in the bond graph processor all that needs to be done is:

a” IRead in the shunt motor macro from file. (Assuming this

has already been created before hand.) For the user this

44

is handled like the paste options discussed in 3.1.1.

bu Change the connecting arcs (labelled 'ctrl' and 'cl') from

the field motor to the shunt motor.

cw Remove the field motor from the graph.

(L. Modify the functional specifications of the default shunt

motor to the specific one desired.

This capability demonstrates the ease in which testing various types of

the same component (in this case motors) can be done when macros are

available.

3.1.4 Enhancements: Topological and Functional

Providing a variety of node types and a large choice of functions to

choose from is needed in a useful bond graph simulator. However, there

will always be users who have special applications that require nodes and

functions other than the ones provided. This section describes the

process used to make these types of enhancements.

The functions assigned to a node are implemented in a way so that users

can add, modify or remove functions from the system. This is done through

a concept referred to as template functions.

45

The function definitions are stored in template form in text files that

are read into the bond graph processor as needed.‘ For example, the

generic GAIN function template was shown in Figure 3.13. The DIODE

function is shown in Figure 3.14 as another example.

DIODE

Inputs 2 1

a: Outputs = 1

Parameters - 2

if (input1 >= 0.0)

then output1 - parm1 "‘ input1

else output1 . parm2 * input1

endif

[click here to continLEI

Figure 3.14 Diode Function

Template functions are written by editing a text file formatted as shown

in Figure 3.15, containing the following information:

a. Function name

IL Number of input variables. These variables are referred

to as inputl, input2, and so on.

(L Number of output variables. These variables are referred

to as output1, output2, and so on.

46

d” Number of parameters. These parameters are referred to as

parm1, parm2, and so on.

e. The functional definition based on the input variables,

output'variables and parameters. This is currently'written

in a FORTRAN style of definition.

<name>

Inputs - <n in>

Outputs - <n out)

Parameters - <n parms>

Text to define function.

Figure 3.15 Template Function Format

A text editor option is provided in the bond graph processor in order to

ease the definition of the functions. However, these functions can be

edited by any editor outside of the program and will be automatically

incorporated into the system if they are put in the file directory in

which OOBProc looks for them.

When used, the template files are read in from memory and the generic

inputs, outputs and parameters are replaced by the specific ones

associated with the node that uses the template.

The bond graph processor has no means for checking to see if the functions

are 'correct' since complete definition of correctness would not come into

focus until the system equations are actually solved, which is not part of

this system. The user, however, can check to see if the functions are as

47

desired by assigning the functions to desired nodes and inspecting the

resulting system equations. (This feature is discussed in section 3.2).

Although the user probably would not need to create new node types as

often as new functions, the capability to add them efficiently and

relatively easily is important. With object oriented programming this

capability can be realized. Here we briefly discuss what is required for

a.new node. The implementation and associated details can be found in the

next chapter and in the Appendix.

Adding a new node type involves three main acts: (1) Creating the node

class; (2) defining its methods, and (3) incorporating the node into

OOBProc.

For example, creating the source of flow multiport required: (1) Creating

the class named Flow; (2) writing three methods (the rest of the Flow's

behavior is inherited), and.(3) modifying,the method that defines the menu

for OOBProc to include the class Flow.

3.2 Model Analysis/Equation Formulation

Once a description of the model exists in OOBProc model processing can be

performed. Many procedures deal with converting the topological model

into a mathematical model useful for numerical solution. However, some

analysis can be done on the model from its topological description. Four

important issues are:

48

1. Model Analysis

2. Equation Structure (sorting)

3. Coupled Algebraic Equations

4. Explicit/Implicit State Equations

Model analysis refers to performing operations on the model without

necessarily generating any equations. For rigid body mechanisms the

choice of coordinates to be used is very important and needs to be done in

a meaningful way [61]. The analogy in bond graphs is the assignment of

causality. This can be done with the standard sequential causality

assignment procedure (SCAP) [24] or by other methods, such as Lagrangian

bond graphs [62].

In electrical networks a proper choosing of a tree structure can lead to

insights not apparent from the initial model. Similarly, assigning

causality to a bond graph determines state variables and identifies

dependent energy storage components. If a system has dependent energy

storage components it is referred to as having differential causality.

This means that the energy variables used to describe the system are not

dynamically independent from each other. This information may suggest to

an engineer where trouble spots might arise (or already exist).

Causality is displayed on the system graph as shown in the radar pedestal

and tractor models. When macro models are used one can not tell directly

if there exists differential causality. For this reason, OOBProc

recognizes and notifies the user of cases where differential causality is

assigned.

49

Additionally, macro model causality gives the engineer insight into how

the different components interact with one another in a system context.

For example, the engine in the tractor model (Figure 3.3) supplies an

angular velocity to the clutch. In return, the engine 'feels' the torque

due to the clutch.

Related to each node in the system graph are a set of equations. The

equation set of all of the node equations in a bond-graph/block-diagram

system is called the system equations. It is deSirable to collect these

equations such that input and output variables are identified (i.e., such

that the equations are written as output variables are functions of input

variables). In OOBProc this is handled by the use of causality during the

functional specification stage (see section 3.1.2). Figure 3.16 shows a

portion of the system equations as developed in OOBProc for the radar

pedestal of Figure 2.5.

Two special cases that make the equation structure complex are systems

that result in. implicit equations and coupled algebraic equations.

Implicit equations result from dependent energy storage elements (i.e.,

differential causality). Coupled algebraic equations result from coupled

dissipation elements.

50

P. p2 . int(E. p2)

F.p2 3 0.003125 "‘ P.p2

ctrl : -1 * $92

+ -1 * theta

+ 1.0 "‘ ref

IE.p3 e 10.67 * F.p3

lE.e1 a: 1.0 "‘ ctrl

P. m2 = int(E.m2)

F.m2: 4* P.m2

E.m3 = 0.33 "' F.m3

E61 = E 2

E53 = {-2.52

F.s2 = F.s1 - F.53

E.e3 a 5 * F.e3

theta x int(W1)

P.02 s intSlE..e2)

F.e2 - 10 P.e2

F53 a MOD.TF * F.p1

E.p1 = MOD.TF * E53

MOD.TF s 30

F.p3 a F.p2

F.p1 I F.p2

w2 s F.p2

W1 8 F.p2

Figure 3.16 System Equations for the Radar Pedestal

51

OOBProc allows for both algebraic coupling and implicit equations in the

stack of system equations. Actually solving these equations numerically

is a difficult procedure. What can be supplied from the model is a set of

checks to identify such equations. This is helpful because special

solution techniques could then be used for processing them.

Once the system equations are analyzed and sorted they are ready for the

next stage in the simulation process, the equation analysis and

numerical/symbolic solution phase. This portion of the simulation process

is left for future research as it relates to object oriented programming

techniques.

In summary, this chapter has presented a detailed description of OOBProc

developed in Smalltalk-80. The description has been made from a user's

point-of-viewn The features include a graphical environment, views to aid

in functional specifications, topological macros, and user enhancements

for new template functions and new simple node types. To date, all of

these features have not been available in a single bond graph simulator

system. However, some of these features have been implemented on a

limited basis in existing systems.

CHAPTER IV

THE SMALLTALK-BO IMPLEMENTATION

This chapter discusses the object oriented implementation of the

bond-graph/block-diagram processor (OOBProc) described in chapter III.

The implementation has been broken down into three main areas, those being

(1) object oriented design; (2) NodeGraph-BO, and (3) the actual

implementation.

Object oriented design is a methodology used to design a software system.

Because system requirements change over time it is important that the

design be flexible enough to support these changes. This is part of what

is referred to as incremental development. The model-view-controller is

Smalltalk-80's concept for organizing/designing an interactive user

environment.

NodeGraph-80 is a software product written in Smalltalk-80 that supports

generic graph modeling. This product was used as an initial base for

OOBProc.

An overview of the design approach for the four phase implementation is

described. Some detail is required here in order to set the stage for

describing the benefits and problems associated with object oriented

programming that will be discussed in later chapters. The details of the

52

53

object oriented implementation are given in Appendix C.

4.1 Object Oriented Design

4.1.1 Responsibility-Driven Design

Object oriented design is the term used for the design phases of a

software system. According to Jacobson [63] , using object oriented design

techniques promotes a seamless transition from systems analysis all the

way to the actual code. However, according to Wirfs-Brock [64], in order

to achieve maximum benefits one must use a responsibility-driven approach

to the design rather than a data-driven approach.

Data-driven design focuses on the data in the system and what algorithms

are to be applied to that data. What this amounts to is the adaptation of

abstract data type design to object oriented programming techniques. This

type of design is a natural transition for procedural language

programmers. The problem with this is, according to Wirfs-Brock:

”Even though the goal of data-driven design is to encapsulate

data and algorithms, it inherently violates that encapsulation

by'making the structure of an object part of the definition of

the object. This in turn leads to the definition of

operations that reflect that structure (because they were

designed with the structure in mind). Attempts to change the

structure of an object transparently are destined to fail

because other classes rely on that structure. This is the

antithesis of encapsulation.”

Responsibility-driven design concentrates on the actions and the

information sharing requirements of the objects in a system (i.e., the

54

protocols of the objects). At this stage, no attempt is made to define

the data structure of the objects. This means that the data of an object

will be better encapsulated.since the Object.is designed without knowledge

of its data structure.

During the development of OOBProc the design was initially done by the

data-driven method. As progress was made the designing switched to the

responsibility-driven. method. As a greater understanding of object

oriented techniques was obtained the responsibility-driven method was

found to work better.

4.1.2 Incremental Development

Initial design of a system is important but the software, lifecycle

requires that the resulting software be flexible with respect to changes

[65]. This includes:

a. Support for system requirement changes.

IL Capabilities for software restructuring due to a greater

understanding of the actual system.as you continue to work

with it.

c. Implementing portions of the system during the design

process but with enough flexibility that you would not

become tied down to the proto-typed software

55

implementation.

The term incremental development is used to represent the above ideas.

The bond graph processor was implemented in four phases specifically to

test object oriented programming's incremental development capabilities.

4.1.3 Interactive Applications: Model-View-Controller

Designing an interactive system in Smalltalk-80 requires the use of the

Model-View-Controller (MVC) metaphoru Figure 4.1 shows a schematic of the

MVC. The model is responsible for the application domain state and its

behavior. The controller handles the user interaction. The controller

receives requests from various input devices and processes them, generally

sending specific application behavior messages to the model or viewing

messages to its associated view. The view is responsible for displaying

the model.

Associated with each view is a controller, each having exactly one model

(usually the same one). A model may have multiple view/controller pairs.

Basically the view is designed around how you want to see and interact

with the model. For example see the radar pedestal system graph in Figure

2.5. The view handles the actual displaying of the bond graph on the

screen.

56

MODEL

update update

model access

and edltlng

input View output

——_.>. 1"

sensors CONTROLLER messages 3- VIEW dl'sBIay

Figure 4.1 Model-View-Controller

The controller is designed around what you want to do to the model and to

the display of the model. In a limited sense, the controller doesn't

actually do the work, it processes the requests from the user.

The model concentrates on the fundamental state and behavior of an

application, leaving the user interaction and display to the controller

and view. The behavior of the model (or any object) is determined by what

you want that model to do, or how that model behaves in real life.

The model-view-controller are three separate objects each with their own

responsibilities, working together in an application. This concept

follows the responsibility-driven method described in section 4.1.1 above.

57

4.2 NodeGraph-80

NodeGraph-80 is a user interface tool kit developed in Smalltalk-80 to

provide a structural and user interface foundation for Smalltalk-80

applications which make use of directed node graph representations [66].

This tool kit can either be used as an application itself for the

generation of various types of graphs, or as abstract classes to be

subclassed and specialized in some way.

OOBProc was developed.using,NodeGraph-BO as a starting point. In order to

cleanly separate new code from existing code, all NodeGraph-80 classes

were subclassed to handle modifications and additions to the original

system. All of NodeGraph-80's classes begin with the characters NG80.

This helps in reading the class hierarchies presented when describing

OOBProc (see Figure 4.2, for example). For the most part, the discussions

that follow treat NodeGraph-8O as if it were part of Smalltalk-80 itself.

Section 5.3 discusses the usefulness of NodeGraph-80 in.the development of

OOBProc.

58

4.3 The Implementation

4.3.1 Phase I: Primitive Bond Graph Processor

4.3.1.1 System Capabilities

Phase I consisted of developing a bond graph processor with the following

capabilities/limits.

1. Handle bond graphs consisting of the basic primitive

multiport nodes Se, 1, I, R and CY, and bonds.

2. Graphical user interface to input/modify the graph

description.

3. Modify equation definitions for the Se, 1, R and CY nodes.

Function types available: Constant, gain, linear, sin and

backlash.

4n Assign causality to the bond graph. Retaining, if

possible, node equation definitions when the bond graph is

modified and causality is re-assigned.

5. Derive system equations based on causality.

59

6. Display capabilities

- Graphical representation of the bond graph, with and

without causality.

- Dynamic placement and movement of graph components.

- System equation list.

4.3.1.2 Object Oriented Structure

Describing an.object oriented system consists of describing the objects in

the system and how these objects interact with each other. According to

Goldberg [8] this is best done in Smalltalk-80 by browsing and running the

actual software. Since this is not possible in a written document, the

next best tool to use is the class hierarchy.

Figure 4.2 shows the relevant portion of the class hierarchy for the

Model—View-Controller (MVC) of phase I. BGGraph, BGView and BGController

are the classes created for the model, view and controller of phase I,

respectively. Inheritance is read from top to bottom following the lines.

For example, Object is the top level class. All other classes are

subclasses of Object and inherit all of the properties (data structure and

behavior) of Object. As another example, class BGGraph inherits from

Object, NG800bject, BGObject and NG80Graph.

A running bond graph processor results when an instance of the MVC is

created. The instances of the appropriate classes are called objects.

60

Object

l l

NG800bject View Controller

BGObject NGBOView MouseMenuCantroller

NG8OGraph BGView NGBOController

BGGraph BGController

Figure 4.2 MVC Class Hierarchy

The controller object, an instance of BGController, handles all user

interactions. Associated with this object are the menus presented to the

user for running the system. When a menu option is chosen this object

receives the message associated with that menu option. The controller

then processes the request. This is done by the methods of BGController.

An example of this will be given shortly.

The view object, an instance of BGView, is responsible for a graphical

display of its associated.models bond graph description. Figure 3.3 shows

an example of a BGView object for the tractor model. The view must keep

track of things like its size, its location on the terminal screen, where

different objects are to be displayed on it, and how to display objects.

61

The model object, an instance of BGGraph, handles the behavior and storage

of the actual bond graph. This is designed by first asking the question

of ”What do you want the graph to be able to do?". This corresponds to

responsibility-driven design discussed in a previous section. That is,

first determine the behavior and then design its implementation.

The behavior of the model includes:

1. Adding, removing, and modifying nodes and arcs.

2. Assigning and clearing causality.

3. Accumulating system equations.

This helps determine the protocol of the BGGraph class. The implementation

then requires data structuring to further refine objects that compose a

bond graph. Figure 4.3 shows the main class hierarchy created during

phase I for this purpose. Many classes supplied with the original system

were also used extensively by these new classes by means of instance

variables and temporary variables. In particular, collection sub-classes

(Dictionary, TextCollection, OrderedCollection and String) were used for

storing relationships between objects and for attributes of objects.

An abbreviated version of how this was implemented in OOBProc is as

follows. Bond graphs consist of nodes and arcs. Thus, there are two

collection variables associated with a BGGraph object, one for nodes and

one for arcs. These variables are called instance variables.

62

NGBOObject

| BGIcon | Iflngtamll aim]] Sin I

_.

 BGNode

Figure 4.3 Phase I Class Hierarchy

In phase I there was only one type of arc, namely a bond. This was

implemented by the class Bond. Bond inherits general arc behavior from

class BGArc. For example, arcs have two ends attached to nodes, referred

to as the from_node and to_node. (For our purposes we are considering

only directed arcs.) Thus BGArc is responsible for storing and accessing

these nodes. The Bond class implements specific behavior related to a

bond, such as causality.

There were five different nodes in phase I (classes Effort, Gyrator,

Inertia, OneJunction and Resistor). These share common attributes that are

captured by the class BGNode. One of these attributes is an associated

graphical picture of the node. This graphic is handled by the class

BGIconu .Another common attribute is an associated function (or functions)

63

with each node. The icon and function of a node are stored as instance

variables for that node.

Specific behavior of these nodes not shared by each other are, for

example, the handling of different causality assignments and different

input/output variables of the node. This behavior is implemented by the

individual node types.

Abstract class FunctionSISO handles common properties of

single-input/single-output functions. Specific functions that inherit

from FunctionSISO are handled by the classes Constant, Sin, Gain, Linear

and Backlash. These objects can be used by nodes or by any other object

that requires a function definition. This is an example of encapsulation

and reusability as defined in object oriented programming.

The class hierarchy is very useful but it does not indicate how the

various objects behave and interact with each other in an actual running

environment“ The Smalltalk-80 environment provides many tools for

tracking object behavior. Currently, there is no clean and precise way to

describe this interaction similar to the class hierarchies structure

outside of the software environment itself.

The following is a condensed version of object interactions occurring

during the addition of an inertia to the bond graph.

64

User selects Inertia from the add multiport menu.

The BGController will receive the message 'addNode:

Inertia'. The method with the same name will control the

addition of the inertia. For reference, this method is

shown in Figure 4.4.

The message 'getUniqueLabel:' is sent in order to retrieve

a unique name for the new node. The model (i.e., the

BGGraph object) will be consulted in this process in order

to check for uniqueness.

Next, the new inertia will be created and initialized (an

instance of class Inertia). The inertia will set its label

and create its graphical icon.

The model is then sent the message 'addNode:

inertiaObject'. The model will add the node to its node

collection, clear causality and broadcast to its views

that it has been changed. The BGView object will add the

inertias icon to the view at a default location.

Finally, the BGController will send the message

'placeNode: inertiaObject' to itself in order to let the

user dynamically place the inertia at the desired

location. 'placeNode:' will interact with the BGView for

this.

65

addNode: aType

"Add a node of type aType to my model."

| label node |

"1. Get a unique label for the new node."

label <- self getUniqueLabel:

('Enter the label for the new ' + (aType asString)).

label isNil

ifTrue:

[self model messageHandling: 401

from: ' the new ' + (aType asString).

view flash.

Anil].

"2. Create the new node and initialize it."

node <- (Smalltalk at: aType) new.

node initialize.

node changeLabel: label withCRs.

"3. Add the node to my model."

self model addNode: node.

"4. Dynamically place the node on my view."

self placeNode: node.

Anode

Figure 4.4 BGController 'addNode:' Method

66

4.3.2 Phase II: Additional Multiports and Functions

The objectives of Phase II were to enhance the capabilities of the bond

graph processor developed in phase I by adding additional bond graph nodes

and functional capabilities.

4.3.2.1 System Capabilities

The bond graph. nodes added in ‘phase II were the source of flow,

O-Junction, capacitor and transformer. This was done from two

perspectives:

a. Macro - A capacitor can be composed by combining a gyrator

and an inertia.

b. .Atomic - A capacitor can also be defined independently.

Also, additional node functions were investigated from a*user perspective.

A common request by many dynamic system analysts is the ability to define

specialized functions for standard components. For example, a linear

spring function is given by F - kx. A researcher might desire to test a

spring with a function given by F'- kxf. ‘If that function is not supplied

by the original software the user will want to add it to the system.

67

4.3.2.2 Adding Multiports

The addition of the new multiport elements as individual classes can be

summarized in Figure 4.5.

Type Patterned New Modifications Time

after methods required

Capacitor Inertia 5 1 method 1 hr

Flow Effort 3 1 method 30 min

ZeroJunction OneJunction 5 1 method 1 hr

Transformer Gyrator 7 1 method 2.5 hr

Figure 4.5 Summary of Atomic Node Additions

The meaning of the table titles are as follows.

Type

This is the name used for the new class which matches its

multiport type.

Patterned After

Each new class had very similar behavior to an existing class.

Methods were copied from the patterned after class listed and

modified to handle the new class (thus making new methods).

Although this sounds like subclassing, it actually isn't for

this application. For example, the inertia element desires

causality towards it and works with flow and momentum

variables, while the capacitor element desires causality away

from it and works with effort and displacement variables.

68

Their methods look similar in handling behavior, but one could

not inherit from the other.

New Methods

This is the number of methods written for the new class.

Modification Required

Time

The "patterned after" design concept was devised due to familiarity with

The existing system had to be modified minimally to add the

new classes. For each new class, only one method had to be

changed. This was the initialize method in the BGController

class. This method contains the list of allowable node types

from which the menu is created for the user to pick from” One

line is added to this method for each new node type added to

the system.

This was the time it took to program and test (on a small

scale) the new node.

the bond graph methodology.

The next step is to determine what it would take to add these new node

types from a macro perspective.

that a macro implementation of these basic node types is not the best

approach in an object oriented environment.

at the capacitor element.

The results from this portion determined

This will be shown by looking

69

This is not to imply that macros are not needed. In fact, they are a very

useful tool for dealing with large systems composed of many components,

each with its own complex definitions. This viewpoint of macros is

deferred until phase IV of the project.

As a macro node the capacitor would behave as a standard bond graph

element to the outside world. But internally it would be composed of

different atoms, specifically, a gyrator connected by a bond to an

inertia. This is depicted as:

Equivalents: —-—7 C fl CY —7 I

external view internal view

An implementation of the macro capacitor could have a class hierarchy as

shown in Figure 4.6.

BGNode

l

MacroNode

MacroCa

Figure 4.6 Macro Capacitor Class Hierarchy

The MacroNode class would contain all of the methods required to store a

macro composition and.the methods to distribute messages to the decomposed

elements. As discussed above, this capability will be developed during

phase IV. This means that this class would not play a direct role in

determining the effectiveness of a macro capacitor.

70

The MacroCa class represents the capacitor in its gyrator-inertia form.

This class would require the following:

A new class added to the class hierarchy.

Methods to create the GY-In composition.

Methods to handle the user interfaces when talking about

the capacitor. For example, the engineer will refer to a

capacitor in terms of two types of equations:

1. effort - f(displacement) and

2. d/dt(displacement) - flow.

The GY-In equivalent will have to convert this to its

stored representation. Specifically, for the inertia:

1. flow - f(momentum) and

2. d/dt(momentum) - effort.

These methods would handle the differences between the

external and internal viewpoints of the capacitor.

Just as in the atomic version, the method that handles the

menu for node choices will have to be modified.

Note: The macro version of the capacitor still has a minimal effect on the

existing system.

71

A comparison between the atomic capacitor and the macro capacitor can now

be made in four different categories.

1. Storage

The storage (or run time) memory requirements would be

similar. However, it appears the atomic version would take

less space due to the complexity of trying to coordinate both

the external and internal views of the macro version.

2. Execution Time

Atomic version would run much faster on all but trivial

messages received.

3. Development-Implementation Time

Atomic capacitor took less than 1 hour to code and test. Work

on the macro capacitor lasted for about three hours without

any code written.

4. Code Readability-Understandability

The atomic version would be much easier to comprehend. The

atomic capacitor methods show how the capacitor actually

behaves while the macro capacitor‘ basically does

transformations between external and internal perspectives.

If the storage requirements are similar, and the execution time , the

development-implementation time and the code readability-understandability

are in favor of the atomic nodes, then it is appropriate to conclude that,

72

for this object oriented application, atomic versions of the standard bond

graph elements are superior to the macro versions.

4.3.2.3 Additional Function Capabilities

The functions available for the mathematical definitions of the node

objects after phase I was straight forward. Each function type (gain,

sin, etc.) had its own class. Subclassing was used to inherit instance

variables, but methods to define the equations for each function could.not

be inherited. The extension to this is to just add more classes.

However, this turns out to be inefficient and not desired from a users

perspective. The two reasons for this are:

1” Each new function will require a new class and anywhere

from one to five new methods. If the function library

grows to an expected 50+ functions, one can see that the

run time storage requirements are not ideal. (This makes

a big difference when working on a PC.)

2. For the engineer to add a new class, he/she would have to

learn some of the object oriented language. This could be

held to a minimum by automatic class creation and some

standard instance variable handling methods (such as

setting and retrieving). However, the actual function

definition methods would still have to be written by the

engineer. The number of methods would be small (one to

73

three), but they would require knowledge of the object

oriented methodology and portions of the current

implementation. This applies particularly to

implementations of the bond graph, node and bond objects.

To solve these problems, a new implementation of the functions was done

during phase II. The old class hierarchy dealing with functions was

removed and a totally different one was added to the system (see Figure

4.7).

Object

l

NG800bject

l

BGObject

I

Function

l

l l

TemplateFunction UserDefinedFunction

Figure 4.7 Phase II Function Class Hierarchy

The two types of functions identified were pre-defined functions and

specialized functions (those functions one might use for testing but not

needed in a function library for other use). Each of these types are

defined by separate classes.

The pre-defined functions (or template functions, class TemplateFunction)

consist of inputs, outputs, parameters and a math specification of how

74

these define the specific function. This behavior is handled generically

by methods of the TemplateFunction.class. The specifics for each function

type are stored in.a standard.ASCII text file. This immediately does three

things:

1» Hundreds of specific function types can be defined without

effecting the run time memory requirements.

25 Engineers can create new function types without knowing

anything about the object oriented language. All they

need to learn is the format of the ASCII text files. From

there they can:

a. Use any text editor to define new functions.

b. Use the create/modify function option developed in

phase II that simplifies the task.

3. .Allows for multiple-input/multiple-output functions

(previously only s ingle - input/s ingle - output functions were

allowed).

The specialized functions (user defined functions, class

UserDefinedFunction) are used for the engineer to specify functions

exactly as desired. The engineer is responsible for correctness of all

input and output variables and associated parameters. When defining one

of these objects a text editing ‘window' handles a user definition

75

interface. This also has two benefits:

1” No object oriented programming knowledge is required.

2. New functions can be tested easily.

To increase the 'usefulness of' these function, classes, methods *were

developed to convert between the two function types. For example, if you

have a user defined function object and you decide that you would like it

as a template function, a conversion process is included to aid in the

process. No object oriented programming is required, just knowledge of

the text file format requirements.

The only modifications required of the existing system in order to

incorporate these new functions were to the node classes. These changes

consisted of:

1. Modify node methods assignFunction. The variables for

input, output and parameters had to be changed to

collections in order to be compatible with the new

TemplateFunction class. This would have been required

eventually if’ multiple-input/multiple-output functions

were ever desired.

2. Modify node methods modifyFunction. This method was

changed to handle the difference when the user switches a

node's function from a template function to a user defined

function (or the reverse).

76

4.3.3 Phase III: Block Diagrams and View-Controller Pairs

4.3.3.1 System Capabilities

The first part of phase III consisted of adding block diagram capabilities

to OOBProc. Block diagrams consist of blocks and signals (for example,

see Figure 2.1). Blocks represent functional operations based on signal

inputs. Signals represent a single variable information transfer process

from one node to another. Adding block diagrams allows, for example,

feedback control mechanisms to be added to bond graph models.

The second part of phase III consisted of adding two new view-controller

pairs in order to further investigate the MVC concept for interactive

applications. This helped to further define what constitutes the actual

model versus how to interact with and display that model.

4.3.3.2 Signals

Signals are a specific type of arc, just as bonds are. Thus adding signals

involves subclassing the BGArc class, as shown in Figure 4.8. The Signal

class required just five new methods, three of which are used for

displaying the signal.

77

Object

l

NG800bject

l

BGObject

l

NGBOArc

I

BGArc

I

I I

Bond Signal

Figure 4.8 Arc Class Hierarchy

Adding the Signal class had a far greater effect on the system than adding

new multiports. The greatest effect was on the nodes. The main

differences was in how the nodes were going to handle different types of

arcs connected to them.

For example, there are restrictions on an are as to what node types it may

be attached to. A signal's from_node must be either a block, a l-junction

or a 0-junction. Additionally, a signal's to_node must either be a block

or a multiport of type Se, Sf, R, C, I, TF or GY. Bonds can only be

attached to multiports. To satisfy these restrictions one could either

let the arcs decide if they are valid for the particular node or let the

node decided if the particular arc is valid. Both ways were tested and it

was determined that a few simple methods for the nodes could efficiently

check the proper restrictions. An example for this will be given when the

blocks are discussed.

78

Another node change consisted of defining two instance variables for the

nodes, called bondPorts and signalPorts. These store the node's attached

bonds and signals, respectivelyu .At first, the attached bonds and signals

were stored in the same instance variable, but it became rather cumbersome

to keep searching this variable to separate the signals and bonds. Due to

encapsulation, changing the storage of the nodes ports was an internal

manner to the nodes and thus did not require changes throughout the

system. This did however, require two new methods and seven modified

methods within the BGNode class.

Finally, adding signals helped to refine the BGArc class to be more

generic. For example, reversing an arc might seem to be something that

all arcs would want to do in a general manner. However, for this system

reversing a signal is not allowed because signals, as used in block

diagrams, are very much one directional and changing that direction would

rarely make sense. Also, reversing a bond has an influence on its

attached node's equations. Thus, reversing an arc is handled only by the

specific subclasses and ‘not the abstract classes (e.g., BGArc) as

originally designed.

4.3.3.3 Blocks

Adding blocks to OOBProc resulted in a new abstract layer of classes for

nodes (see Figure 4.9). The classes Block and Multiport were added to

handle abstract behavior of blocks and multiports, respectively, that

could not be captured by the single class BGNode.

79

NGBOOb' ’ct

I Block I

I Distributor I!denial

[Integrator I'- -I Sink I

I VISummer J'- “LSourcLI

filled I‘J-{ Capacitor I

[Flow I'- —I OneJunctionI

[Gyrator I—~I‘l‘ranslormefl

Due-afl- *IZeroJunctionI

Figure 4.9 Node Class Hierarchy

For example, refer to the restrictions placed on an arc's from_node and

to_node discussed previously. Both classes, Block and Multiport,

implement the method 'checkIfBondIsValidPort'. If'a block.object receives

this message then it will return false. Conversely, if’a multiport object

receives this message it will return true. This is because a band can

only be attached to a multiport. An important point here concerning

object oriented programming is that nowhere in this code is an

if..then..else.. statement to check if the response should be true or

false. Each object knows its own behavior and does not need to perform

control statements.

Another example is the icon type associated with a node. A blocks icon is

80

a box around its label, while a multiport icon is just its label defined

within an invisible rectangle.

Due to the simplicity of a block, the input and output variables from any

specific block can be handled by the Block class. Recall that each

specific multiport had to determine its own input and output variables.

The specific block types, subclasses of the Block class, shown in Figure

4.9, required a total of ten new methods for all classes combined. For

example, the 'assignFunction' method required re-defining by most of the

Block subclasses. The default function for a block is the gain. Classes

Distributor, Integrator and WSummer all re-defined this default to match

their appropriate function.

The node and arc class hierarchy changes had no effect on the functions

that the nodes use and a minor affect on the BGGraph which use the arcs

and nodes as part of its definition. The BGGraph class changes were

actually further refinements of the object oriented methodology.

For example, removing a node requires the removal of all of its attached

arcs. Previously, the BGGraph method 'removeNode: ' sent the message

'removeArc:' to each arc listed in the nodes ports list. By separating

port collection of a node into signalPorts and ‘bondPorts, it was

discovered that the previous method was actually accessing the nodes data

structure and.thus violating,encapsulation. The correction was to have the

BGGraph method ask the node for its connected arcs, leaving the

implementation details to the node.

81

Finally, the changes to the view-controller consisted of: (1) menu changes

to include the blocks and arcs (1 method); (2) enforcing the restrictions

associated with an arcs from_node and to_node (5 methods), and (3)

generalizing the methods associated with adding, removing and modifying

nodes so as not to be dependent upon the node type (3 methods).

4.3.3.4 View-Controller Pairs

Two new view-controller pairs were added to OOBProc in order to further

refine the distinctions between the model, view and controller that

constitute the MVC concept. These consisted of a node and an arc view-

controller. See Figure 4.10 for example. The node view lists the nodes

by type followed by their label. This is done similarly for the arc view.

The graphical view-controller works under the concept of first picking a

menu option and then picking the appropriate elements to apply the method

to. The node and arc view-controllers work under the concept of first

picking the appropriate element and then picking what to do with that

element from an associated menu.

This experiment helped to refine two important concepts of the MVC. Those

were the responsibility of the controller and broadcasting model changes

to the views for updating.

82

Resistor: RE

OneJunction: 1h

Resistor: RM

Resistor: Rload

OneJunction: 1E

Effort: SEE

Effort: SEM

Inertia: IE

Inertia: IM

SEE—A1E
9SEM—A1M

e1 i m1 mu

e2 3 m2 3 Bond: e3

Bond: m3

IE RE NW

Figure 4.10 Multiple Views of a Bond Graph

For example, removing a node is possible from both the graph view and the

node view. Their respective controllers should have minimally duplicated

code to handle this task. Previously, without the node view-controller,

the graph controller was processing part of the removal process. The node

view-controller addition clarified for the BGGraph class (the model) what

was its responsibility in removing a node.

When there was only one view, the graphical view, model changes obviously

would effect only that view. This sometimes led to having the controller

update the view rather then the model broadcasting a change to that single

view. Although this might be considered 'sloppy' programming, it is not

at all obvious when this occurs if you don't have multiple views to ensure

proper updating.

83

4.3.4 Phase IV: Macros

Implementing topological macros was the final development stage of

OOBProc. As discussed in chapter III, topological macros are used to

build up complex systems from simpler systems.

A macro is a component in a system graph that consists of multiports,

blocks, bonds, signals and other macro components. A macro can not

contain itself.

A macro is similar to a node in the following ways:

1. It requires a unique label.

2. It requires a graphical representation.

3. Causality assignment is meaningful to it, through its

multiports and bonds.

4“ Functional assignments are meaningful to it, through its

nodes.

5. It contains a set of ports (i.e., connection points to the

outside environment).

6. .A set of system equations is associated with it.

84

Another argument could be made about how the macro behaves very similarly

to a graph, that being:

1. It contains a collection of nodes and arcs.

2. Assigning causality requires individual assignment of its

multiports.

3. Getting the system equations requires collecting them from

its individual nodes.

From this, it appears that multiple inheritance may apply for the macro.

That is, the macro component could be a subclass of both BGGraph and

BGNode. Unfortunately, Smalltalk-80 does not support multiple

inheritance, so this could not be tested.

It was decided to implement the macro as a node, class MacroNode, a

subclass of BGNode. There were two main reasons for this were. First,

conceptually a graph consists of nodes and arcs. If a graph contains

macros then it is reasonable to think of the macro as a node. Secondly,

a majority of the user interfaces required for nodes can be used as is for

macros if they are treated. as nodes. Since model-view-controller

implementations are rather complex, re-use of the current interface is

desired. However, macros do require additional user interface tools.

The required modifications to the existing system in order to incorporate

macros fall into two groups. 'Those are further refinement of the

85

encapsulation of each object and additional user interface features.

In the previous section it was discussed how mmltiple view-controller

pairs helped to refine the responsibilities of the model, views and

controllers. Similarly, macro nodes helped to refine the responsibility

of the graph model and the nodes and arcs that compose the graph. For

example, a few methods in the BGGraph class were found to assume the

structure of the nodes that define the graph. With the addition of the

MacroNode class these methods had to be modified to request behavior from

its nodes rather than using their assumed data structure. Once again,

this is a matter of responsibility driven design versus data-driven design

discussed in section 4.1.1.

The user interface (view-controllers) needed new methods to display and

access the internal structure of the macro node. For example, to modify

a nodes functional specification an atomic node needs to be selected. If

the user selects a macro node, the internal structure of that macro is

presented so as to allow the user to select one of its nodes. This

process continues until the user selects an atomic node.

To handle the different selection of nodes, the method to select a node

needed to be reconstructed as three separate functions. Those were (1) to

select an atomic node, as in modify_function; (2) to select a macro node,

as in view;macro_structure; and (3) to select either a macro or atomic

node, as in delete_node. Each node menu option had to be examined to see

which of these three methods to use for selecting a node. The appropriate

modifications were then made.

86

In summary, this chapter has presented some of the details of the object

oriented implementation of OOBProc. The implementation was done in four

separate phases. It was shown that incorporating small modifications,

like adding new functions or node types, and large enhancements, like

‘block diagrams and macros, are possible with only'minor disruptions to the

existing system. These and other observations made during this research

will be discussed in the next two chapters.

CHAPTER V

CHARACTERISTICS OF OBJECT ORIENTED PROGRAMMING IN

DYNAMIC PHYSICAL SYSTEM SIMULATION

Chapters III and IV demonstrated that object oriented programming can be

used to implement a fairly extensive bond graph processor. As was pointed

out in chapter I, the goal of the research is to determine the advantages

and disadvantages of doing so. This chapter details some of the benefits

of using object oriented programming relative to a more conventional

language like FORTRAN or C.

The concentrated effort was on developing a bond graph processor using

Smalltalk-80 versus FORTRANZ Generalizations are made, where possible, to

extend comparisons to include general programming of dynamic physical

system simulations using object oriented techniques.

The first section (5.1) discusses the software development process and the

tools supplied by the languages that support this process. Section 5.2

explains how object oriented programming supports user customized software

in an efficient manner. The reusability of software components is then

discussed in section 5.3.

The first phase of the bond graph processor was programmed in the object

oriented language Actor. Section 5.4 discusses how the transition from

87

88

Actor to Smalltalk-80 was made easy by using object oriented design

techniques. Finally, a few qualitative reasons for using object oriented

programming are given in section 5.5.

The theme developed in this chapter is that object oriented languages

provide good tools and constructs to help structure an actual software

implementation, while FORTRAN-like languages do not. The value of this

structure is pointed out through the benefits detailed in this chapter.

They include: (1) a means for constructing an efficient and consistent

user interface; (2) storing and using data; (3) software organization; (4)

user-customizable software; (5) controlled modifications; (6) a software

developing environment unmatched in FORTRAN; (7) a reduction of possible

errors in the system, and (8) reusable software components from project to

project. The problems associated with these tools and constructs are

presented in chapter V1.

5.1 Development

Developing simulation software is a complex and time consuming process.

The language chosen to write the software must provide the means for

effective development. This includes: (1) language constructs for things

such as user interfaces and data storage; (2) a flexible environment with

tools to write, test and modify code; (3) robustness, meaning not only

ways to find and eliminate errors but to avoid them in the first place,

and (4) productivity, meaning programmers should be able to produce

quality software in short periods of time (i.e., efficiently).

89

It is shown in this section that object oriented languages provide these

capabilities on a greater scale than FORTRAN does. Specifically,

Smalltalk-80 is shown to provide tools for software development that are

far superior to FORTRAN's.

5.1.1 Language Constructs

A software language provides means for developingpuser interfaces, storing

and using data, and organizing the software. This section explains how

object oriented languages can provide very useful aids in handling these

tasks while FORTRAN like languages give the developer practically no help

in these areas.

5.1.1.1 Processing Input Requests

Interactive software written in any language requires some type of user

interface. This is the portion of the code that intercepts user inputs

and calls the appropriate code to perform the requested action. In most

applications, menus are organized in levels so that a choice in one menu

brings up another menu. A language that provides capabilities to

effectively handle this process, which is often complex, would have a

clear advantage over one that does not. Smalltalk-80 provides this

capability; FORTRAN does not.

In FORTRAN one has basically two choices: (1) Write your own menu

91

5 . l . l . 2 Interactive Windowing

Multiple displays on the screen at the same time are valuable in

simulation software. With multiple windows you could, for example, show

things like: .a graphical view of your model, a display of one of the

node's functions (using multiple views for it), and a display for

prompting the user for input to modify the function, all at the same time.

Designing interactive software without these features today is not very

common .

Unfortunately, FORTRAN does not provide any direct means for providing

interactive windowing. To write these features using FORTRAN is a

formidable task. In fact, it is not possible without actually calling

machine code (which you would have to write). Calling a windowing

software package is a possibility, but then you would have to learn

another language. Integrating distinct software languages is not

recommended practice.

As described in the previous chapter, Smalltalk-80 provides what is called

the Model-View-Controller (MVC). It is an implementation of an

interactive windowing environment. It is written totally in Smalltalk and

the developer is provided with the several dozen classes that define it.

A new language does not have to be learned by the programmer.

Coupling interactive windowing and processing input requests for each

separate window becomes quit a complex task. However, this is required

90

processor with multiple if. . . then. . .elseif statements spread around dozens

of subroutines along with the use of multiple Read/Write/Format statements

or (2) call specially designed packages (languages in themselves) that

handle user interfaces (for example, Microsoft Windows or X-Window“Xx.

Neither option is particularly attractive to someone faced with the task

of developing a new user interface.

Smalltalk-80 provides multiple classes that are designed specifically to

handle user interrupts. Writing a complex hierarchical menu requires one

method that basically lays out the menu with regard to its appearance.

When the user drags the mouse (interactive pointing device) over the menu,

if the mouse points to a high level menu option (those with sub-menus) the

sub-menu.is automatically brought up onto the screen” Thus, no processing

is required from the developer to change between levels of the menu

hierarchy.

Associated with each low level menu option (one that requires specific

action) is a key word. When the user selects that option with the mouse

the key word is sent as a parameter to the method responsible for the

whole menu. This method is often extremely short due to a system method

called 'performz'. This perform: method will cause the execution of any

method whose name is passed to it as a parameter. Thus, if the key word

associated with the low level menu option is the same name as the method

you want performed because of its choice, then basically all you need to

do to 'process' the menu is to send the message 'perform: keyword'.

Essentially no checks (if...then..elseif) are required to process the

users IGQUBSCS .

91

5 . l . l . 2 Interactive Windowing

Multiple displays on the screen at the same time are valuable in

simulation software. With multiple windows you could, for example, show

things like: .a graphical view of your model, a display of one of the

node's functions (using multiple views for it), and a display for

prompting the user for input to modify the function, all at the same time.

Designing interactive software without these features today is not very

common .

Unfortunately, FORTRAN does not provide any direct means for providing

interactive windowing. To write these features using FORTRAN is a

formidable task. In fact, it is not possible without actually calling

machine code (which you would have to write). Calling a windowing

software package is a possibility, but then you would have to learn

another language. Integrating distinct software languages is not

recommended practice.

As described in the previous chapter, Smalltalk-8O provides what is called

the Model-View-Controller (MVC). It is an implementation of an

interactive windowing environment. It is written totally in Smalltalk and

the developer is provided with the several dozen classes that define it.

A new language does not have to be learned by the programmer.

Coupling interactive windowing and processing input requests for each

separate window becomes quit a complex task. However, this is required

92

because that is what constitutes the user interface, a critical part of

any software package. Since Smalltalk-80 provides both capabilities

individually the integration is not only feasible, it is one of the major

strengths of the language. That is, it provides an interactive

environment for both developers and users. FORTRAN is sorely missing

these features. (The interactive development environment will be

discussed in detail later.)

5.1.1.3 Data Storage and Usage

Storing and using data is an important part of any software package. In

a bond graph processor the graph description, as described in the previous

chapter, must be completely stored and any portions of the graph must be

retrievable by the code that is to operate on it. For example, to change

a node's function the software must easily retrieve the data representing

the specific node to be changed. The way in which a language stores the

data and how the data is retrieved can make a big difference in the

complexity of the code that performs operations on the data.

The tools to do this are provided in FORTRAN. They include common blocks

and passing parameters. Common blocks store groups of data as defined by

the programmer. There is no formalized organization for the groups and

data names are limited to seven characters. This makes organizing and

retrieving the data in an orderly fashion very cumbersome. For example,

'What data is stored where?', is continuously asked by programmers not

extremely familiar with the software. The usage of common block data also

93

creates another problem in that every subroutine can have access to the

data enabled. Keeping control over how the data is used and modified is

essentially impossible. Modifications to the system data structure can

have effects in literally hundreds of subroutines in a large package.

Here we have hit upon object oriented programming's number one strength:

encapsulation. First, data is stored in groups known as objects. While

there is no guarantee that the objects make sense as groups of data, if

you program using object oriented design concepts as described in the

previous chapter then the objects will hopefully make sense and be easily

understood by other programmers. For example, storing a bond graph as a

collection of nodes and arcs is quite natural. As another example,

storing a simple node in terms of its name, its type, its attached arcs

and its mathematical definition is logical.

Second, the methods that operate on the data are also stored with the data

in the object. This means that common blocks are not needed in object

oriented programming. However, parameters are still passed between code

segments but are greatly reduced because you no longer need to send

parameters that deal with outputs from a subroutine or switches that tell

the subroutine what to do (very common in FORTRAN call statements).For

example, when requesting the system equations from a bond graph you could

simply send the message 'getSystemEquations' to the bond graph object.

Younwould.not have to locate all the common blocks that store the required

data (e.g., the nodes, arcs, connections, functions associated with the

nodes, etc) because the bond graph object stores its definition itself.

But this is not overly complex. The bond graph is composed of nodes, so

94

all it has to do is send the same message 'getSystemEquations' to its

nodes and collect the results. The nodes would then be responsible for

their portion of the process. Each object is responsible for itself and

need not concern itself with the data storage and usage of all the other

objects in the system.

This last point means that modifications to the system can be localized

and not have far reaching effects on the system as was pointed out in

FORTRAN systems above. The effects of modifications will be discussed

again when looking at the programmer's development environment.

By examining a portion of the node structure it can be reasoned that

storing data as objects is easier to define, work with and understand.

Figures 5.1 and 5.2 show the data associated with nodes in general and

some specific nodes used in the radar pedestal example, respectively.

Name String name for ease of communication with the user.

Type Specific type (e.g.. capacitor or inertia). An object doesn't

really store this data because this is what it is.

Regime Examples: M — mechanical. E - electrical. H - hydraulic

Icon A graphical picture of the node to be used for display.

FORTRAN doesn't have icon-like descriptions. It would probably

have to draw each node each time it is to be displayed.

Parts List of the attached bonds and signals.

Function The function(s) associated with the node. The data associated

with the function follows. FORTRAN would store these

separately. Smalltalk-80 stores the function as one object.

Type Function type (e.g., gain, polynomial, sin, summer).

Outputs Output variable(s) from the function(s).

Inputs Input variab|e(s) to the function(s).

 Parameters Parameters used in the function(s).

Figure 5.1 Generic Data Defining a Node

95

Functions

Name Type Regime Icon Ports Type Outputs Inputs Parameters

Nodal SEE Effort Electrical oFormI ctrI. e1 Gain E.eI cm 20

ref. that , r I, 2

Node2 ControIIer WSummer General oForm2 a Summer ctrI e w I, -I, -1

w2. ctrl theta

Node3 CS Capacitor Rotational oF’orm3 92 Gain E.s2 0.32 5000

Figure 5.2 Data Defining Specific Nodes

The horizontal rows in Figure 5.2 represent each node. The vertical

columns represent specific data attributes. Due to FORTRAN's limited.data

types and encapsulation (e.g., reals, integers, logicals, strings, and

lists or arrays, as long as the members all have the same data type) the

only practical way to store the data is by the columns shownt Often, this

is not very useful. For example, what good is the list containing the

regimes for each node? By itself, it's meaningless. To get the data

associated.with a particular node, you must first find its index and then

search through each vertical list for the appropriate data.

A node object would store the data by the horizontal rows. In this way

the data for a node is kept in a logical unit. There is no restriction on

using different data types in the object’s instance variables (technical

term for an object's data).

This way of storing data is often the reason why it is claimed that object

oriented programming follows the way we think about the real world.

Objects in the real world contain themselves and this property is captured

in object oriented languages.

96

5.1.1.4 Software Organization

Simulation software requires thousands of lines of executable code.

Dividing this code into manageable pieces is an undisputed requirement.

Different languages provide different means for organizing the software.

Some ways are definitely more desirable than others.

FORTRAN provides a bare bones means for organizing software. Ybu can

write as many subroutines as you want as long as you link them all

together when.making the executable module. FORTRAN does not provide you

with any means for organizing these subroutines. That function is left to

the software design process and the operating system that the system is

developed on.

This is usually done on a small scale. For example, each person or group

decides on personal organization standards. One might decide to limit the

number of subroutines in a file to five and the number of files per

directory to twenty. To help find specific routines it would be decided

that the first two characters of the subroutine and file names are to be

key coded” MT would stand for math related code, ST would stand for code

computing statistics (or should those be MT also?). Anyone who has

programmed a great deal knows how this becomes unwieldy once you get into

large numbers of subroutines (100+). Such size is required for simulation

code. Trying to standardize this for a large group of programmers becomes

a costly and time consuming task. The point is: FORTRAN doesn't really

care and provides essentially no tools for organization.

97

Software design processes offer tools like flow charts and data flow

diagrams [67], [68]. These help in determining what subroutines to write

and how, hopefully, to eliminate duplication of code. This also provides

a means for documenting the system. The problem is that keeping up with

this external documentation is extremely difficult over the life cycle of

a software package, and is usually not done. What is needed are languages

that are self documenting. That is, the structure of the software should

represent itself clearly enough so that extensive external documentation

is not needed.

Smalltalk-80 provides many tools for organizing (and re-organizing) the

software. First, objects are created from classes. Classes are defined

by inheriting from previously defined classes and then adding anything not

captured by the superclass. The resulting class hierarchy describes the

entire system. Smalltalk provides the means for viewing, creating and

modifying the entire hierarchy or just portions of it.

Second, in Smalltalk-8O you can organize your classes into class

categories independent of the class hierarchy. This allows one to

partition classes into easily accessed groups. For example, the developed

bond graph processor required 41 new classes. These classes were broken

down into 6 class categories, those being:

I. BG-Core: High level core of the bond graph processor.

2. BG-Nodes: The various multiport nodes.

3. BD-Nodes: The various block diagram nodes.

4. BG-Arcs: Specific types of arcs.

98

5. BG-Functions: Classes dealing with functions.

6. BG-Utilities: Supporting classes.

Third, within a specific class there are method categories that allow you

to organize the methods of a particular class into easily accessed groups.

For example, the BGGraph class (the Model) has 35 methods. To work more

efficiently with these methods 8 method categories were created, those

being:

1. accessing

Assigning and retrieving instance variables.

2. causality

Methods dealing with adding and removing causality from the

model.

3. checking

Various methods to check if the model is correct or not (e.g.,

check to see if all arcs have two nodes attached).

4. initialize

Methods called when creating or resetting defaults of the

model.

5. inquiry

Methods that return information about the model (e.g., return

system equations or return all nodes in my system).

99

6. modifications

Methods that modify the model's instance variables (e.g., add

an are or remove a node).

7. releasing

Methods that clean up the model when it is about to be

removed.

8. storing

Methods used to store a description of the model in a text

file.

These software organizational tools were extremely valuable in developing

OOBProc. In fact, the ease in finding specific portions of code

encouraged incremental development (discussed in the previous chapter).

Since code was well partitioned it generally was not a formidable task to

rewrite portions of the system. In other words, the Smalltalk-8O system

is self documenting.

Object oriented programming promotes these kinds of tools in general. For

example, class categories and method categories are nothing more than

objects that contain a group of classes and a group of methods,

respectively. The behavior of these objects allow you to access and edit

the appropriate classes or methods. Once again this leads to a good

development environment, which will be discussed in the next section.

100

5.1.2 Environment

The development environment is very important to the programmer. It

conditions how the developer is going to interact with the computer and

the software language during the software development process. Effective

tools in this area contribute enormously to programmers' productivity.

This area is important to all software development and not just to

physical system simulation. Thus specific reference to the bond graph

processor are not made in this section.

Languages like FORTRAN or C do not, in general, provide tools for the

developmental environment. The development consists of editing,

compiling, linking and executing the code. You can purchase development

environments for these languages that provide some conveniences in these

steps, but are still relatively primitive (e.g., Codeview). For example,

since FORTRAN does not provide extensive means for software organization

(as discussed in 5.1.1.4), how could anyone provide extensive means for

editing it?

On the other hand, Smalltalk-80 provides a seamless environment (i.e., one

that has a uniform operating mode). This is done by providing classes

(thus, the objects) that handle editing, compiling and execution, Recall

that everything is an object. Editing, compiling and execution are done

by sending the appropriate objects the necessary messages. This

consistency, once mastered, makes working with and figuring out the

language and its capabilities very straight forward.

101

Note that to a large extent linking is not required in Smalltalk-80

because messages are bound to the appropriate method during execution.

This is called late binding.

Smalltalk-80 provides the classes for an extensive development

environment. This is done through four main areas referred to as: (1)

browser; (2) inspector; (3) debugger, and (4) utilities. All of these

have numerous capabilities.. (I seem to find a new one at least every

week.) Here just a brief overview is given to make the point that object

oriented languages lend themselves to useful developmental environments

more readily than do FORTRAN or similar languages.

All four tools are based on the user interface discussed in section 5.1.1

and thus are considered user friendly (i.e., multiple windows, multiple

views within a window, pull down menus, etc.).

First, the browser is provided to look at, modify and add new software

components. These may be class categories, classes, method categories,

and methods. The tools provided in the browser allow you to organize your

software as discussed in section 5.1.1.4 in an efficient manner. In fact,

the browser's view (see model-view-controller in section 4.1.3) of the

software is one reason many, including myself, claim that modifications to

the system are so encouraged. (See incremental development in section

4.1.2.)

There are multiple types of browsers provided. Each type is dependent

upon what it is that you wish to 'browse’. For example, one type of

102

browser can handle class categories, classes, method categories, and

methods all together. Another type of browser is provided just to examine

and edit all the methods in the system with the same name.

Second, the inspector allows one to examine and send messages to any

object. This provides an internal look and the means to modify the

system's data base at any time, which is not possible in FORTRAN.

Looking at the internal data base is very useful when creating new objects

to see if they are being formed correctly. It is also very useful in

determining what existing objects (ones that you can make from the

supplied classes) are really composed of. The added capability of being

able to send these objects messages within the inspector allows you to

check (or determine) the behavior of any object directly under your

control and not through an application.

Normally, in. FORTRAN, you. write out. the data structure ‘within the

appropriate routines that use the data if you want to examine the data.

There is no means for then 'sending' this data to another subroutine to

help determine the behavior, as there is with an inspector.

Third, the debugger allows one to inspect objects and browse methods

during execution of some message. This is useful, for example, when an

error occurs. This tool combines some of the browser's capabilities and

all of the inspector capabilities into one feature that lets the developer

examine the current execution and change it if so desired.

103

The debugger is not just an 'error' handler. It can be invoked at any

time, either through an error, a halt statement in your code, or simply by

typing control-c at the keyboard. When a halt occurs (i.e. , a debugger is

invoked) you can: (I) modify any method or object that led to the halt and

then resume execution; (2) look around the system at that point and then

either resume execution or terminate the current process, or (3) if an

error has occurred, fix the error before proceeding, as in (1).

Finally, Smalltalk-80 provides various utilities that are very useful

during development. The three most useful utilities for making a more

consistent system are:

1. senders

Collects and makes a browser out of all the methods that send

a particular message.

2. implementors

Collects and makes a browser out of all the methods with the

same name .

3. messages

Collects and.makes a specialized list out of all the messages

sent by a particular method. If a choice from this list is

made then it uses this choice for the implementor's utility

described above.

These utilities are nothing more than easily accessed messages that are

104

sent to specific methods. Once again, everything is an object and using

anything in the system is just knowing what message to send to what

object. Providing a full set of objects and easily accessed messages

makes the programming environment extremely productive.

In summary, the browser, inspector, debugger and utilities compose a

useful and productive development environment in Smalltalk-80 unmatched by

anything in FORTRAN.

5.1.3 Robustness

Using object oriented programming is claimed to reduce the errors that

occur in software development. In this section an argument is made to

support that claim. Three different issues have been identified: (1) user

interface; (2) data storage, and (3) the environment. Each one of these

will be discussed separately.

First, recall the discussion in section 5.1.1.1 about Smalltalk280's built

in menu handler. The developer codes a complex hierarchical menu in one

relatively simple method” The handling of the menu is left to the system.

This provides a consistent user interface.

In FORTRAN, you have menu handling spread throughout the entire system, in

many different subroutines. Writing and maintaining these subroutines

becomes quite a task for a complicated system (e.g. , a bond graph

processor). To provide a consistent user interface is difficult because

105

the subroutines are often written by different people and over a period of

years. This provides an opportunity for errors and inconsistencies to

enter the system that does not exist in Smalltalk-80.

Second, recall the discussion in section 5.1.1.3 about data storage and

usage. Storing and passing data in common blocks leaves the data

unprotected from the possibility that even the most remote subroutine

might modify the data in.a*way unacceptable by another subroutine, perhaps

after multiple processes. Finding and eliminating these types of errors

are difficult activities in FORTRAN-like systems.

Encapsulation reduces these types of errors and helps in finding ones that

do occur. Since an object is responsible for its own behavior it can

control undesirable changes to its data, thus reducing errors caused by

unprotected data. Also, while finding bugs in software is often very

difficult, encapsulation helps in this task. If an object is not behaving

appropriately the best place to look for errors is with that object

itself. The Smalltalk-80 environment aids in this process, as discussed

next .

Finally, the environment (section 5.1.2) not only helps in finding and

eliminating errors, but it helps prevent them from ever becoming part of

the system in the first place. As discussed in section 5.1.2, the

inspector, debugger and utilities can be used together to determine

exactly how an object is behaving (or mis-behaving). Thus, finding the

errors and then using these tools to eliminate the errors are much easier

than in a language like FORTRAN.

106

Additionally, encapsulation allows for pre-testing objects before they are

put into the system. For example, the functions assigned to the nodes

were developed and tested relatively easy outside of the bond graph

processor before they'were ever assigned to any node. Also, nodes existed

and were used long before their functions were developed (incremental

development, sectioni4.l.2). It is true that subroutines can be tested in

FORTRAN before they are used, but the language does not provide for any

reasonable means to do so. One must develop one's own test package.

The Smalltalk-80 environment encourages the creation.of new objects as you

go in order to test new methods immediately upon their writing. Recall

that Smalltalk-80 is an environment. Once you make something (class,

method, etc.) it immediately becomes part of the environment and can be

used extensivelyu There is no compile-link time-consuming process

required to test new concepts. This pre-testing can considerably reduce

the errors that are often found when finally piecing a large system

together.

In summary, although statistics for reducing errors were not accumulated

it has been reasonably argued that using Smalltalk-80's user interface

tools, encapsulation, and the environment can not only help find and

eliminate errors effectively, they can also help to prevent them from

occurring in the first place. This makes for a more robust system.

107

5.1.4 Time

Proving, with statistics, that developing a software package in an object

oriented language is quicker than in a conventional language like FORTRAN

is beyond the scope of this research. However, this section describes

just how productive Smalltalk-80 was in.OOBProc. The author's experience

is a strong indication that time efficiency was achieved.

OOBProc was developed in.Smalltalk-8O over a period of five months working

on it part time. This five month period includes learning Smalltalk-80

without any training and without the benefit of having others near by for

help. It was totally self learned. The total estimated time for

development (including learning) is 300 hours. This, I believe, is an

indication that using object oriented programming techniques is very

productive.

A little background will put this development time in perspective. First,

a thorough understand of bond graphs had been obtained prior to the

beginning of the research. Second, 21 months prior to the Smalltalk-80

implementation was spent on learning object oriented programming.

Finally, a basic bond graph processor (essentially phase 1) without any

graphics was developed using the language Actor. None of the Actor code

was transportable to Smalltalk-80 but the design experience definitely

helped. This will be discussed in section 5.4.

What this means is that with a sound foundation in the application domain

and the techniques of object oriented programming,one can produce powerful

108

software in a relatively short period of time.

5.2 Enhancements

One of the statements made at the beginning of this dissertation was that

the object oriented environment allows for user customizable software and

for different levels of development. This section will attempt to show

the validity of this statement by discussing the enhancements made to

OOBProc from a developer's point-of-view. Recall the discussion in

section 3.1.4 where enhancements were described from a user's point-of-

view on how to make changes and additions to the software.

5.2.1 Types

The specific types of enhancements singled.out for user customization are:

(1) functions; (2) nodes, and (3) methods. Each one of these will be

discussed in detail.

5.2.1.1 Functions

To allow'user customizable functions in FORTRAN is a complex job. The two

basic choices are: (a) Develop an in line FORTRAN compiler that will

accept user written FORTRAN subroutines and incorporate them into the

system, or (b) let the user be responsible for compiling and linking the

109

whole system together so new subroutines can'be added” Neither option.has

been proven feasible for the every day engineer. Generally, a systems

programmer would be the only one with enough knowledge to do such a task

regularly.

In OOBProc, capabilities for user customizable functions were programmed

into the system without a great deal of trouble, relative to the FORTRAN

choices.

Associated with most node types is a mathematical function. The choices

of functions desired for a bond graph processor are quite large (40-60).

In order to satisfy the user's demand this system was built to allow for

easy creation of new function types. This is handled by a class called

TemplateFunction. A template function defines generically a function that

is created specifically upon demand by the node. How this works is:

1. Function definitions are stored in text files on the hard

disk.

2. A Node has an instance variable that points to a

TemplateFunction object. This object stores the type of

function it represents (e.g., sin) and the appropriate

input variables, output variables and parameters.

3. When asked for its mathematical definition the

TemplateFunction object reads in the function definition

from file and substitutes its specific variables for the

110

generic ones.

In this way a user can define as many functions as can fit on the hard

disk (literally thousands). Special utilities are provided in OOBProc to

help the user define new functions in a way that the TemplateFunction can

understand them. However, the function files are independent of the

software, meaning that you could use any text editor outside of the

simulation package to create new functions. If these new functions follow

the prescribed format (see Figure 3.15) and are in the proper directory,

then.OOBProc will automatically incorporate them into possible choices for

node functions. This last point is subtle; the user need not tell the

bond graph processor explicitly that a new function was created.

A special function type (UserDefinedFunction) allows the user to define

specific one-time functions to associate with a given node. This allows

the user to experiment with a function before actually making a template

definition for it.

5.2.1.2 Nodes

There are three types of' nodes allowed in. the current ‘bond graph

processor, namely, blocks, macro nodes and.multiport nodes. A macro node

is a specific type of node containing,multiple nodes and arcs. Blocks and

multiports are abstract nodes, meaning they represent general behavior of

more refined node types. Blocks represent functions that produce signal

outputs based on specified inputs. For example, a gain function, an

lll

integrator, and a weighted summer are all specific types of blocks. A

multiport is a node type that represents the mathematical aspects of a

physical component based on power. For example, an inertia represents a

component that stores and releases energy, and a resistor represents a

component that dissipates energy. The node class hierarchy was shown in

Figure 4.9 for OOBProc.

New node types can be added to the system in multiple ways:

1. Add a new block type.

2. Add a new multiport type.

3. Add a specialized type of macro node.

4. Add a new type of node independent of the existing ones.

The first two choices would be rather straightforward. For example, let's

say we wanted to add a capacitor to the initial bond graph system from

phase I, as was done during phase II (see section 4.3.2). A capacitor is

a multiport and thus would be a subclass of MultiPort (class name

Capacitor). Just by creating this subclass the following occurs:

1. The Capacitor inherits basic node behavior from class

BGNode.

2. The Capacitor inherits basic multiport behavior from class

MultiPort.

13. The Controller of the bond graph processor will

112

automatically handle the new node type because it is

independent of the specific node types. However, you

would have to add the choice Capacitor to its menu (one

line of code).

4. The View would require no modifications because BGNode and

Multiport node already handle any view related issues for

this type of node.

5. The Model would require no modifications ‘because it

handles nodes generically and a new type of this kind

would be no different then existing ones.

In order for this new node type to behave like a capacitor (e.g., a spring

component) you would have to specialize five methods. Those are

1. assign desired causality

Bond graphs have something called causality that determines

the proper form of the node equations. A capacitor has a

preferred causality. Overwriting its inherited causality

would allow the capacitor to behave as desired.

2. inputs and outputs

The input and output variables of a multiport are based on

causality and the type of node it is. A capacitor would be

required to supply its specific input and output variables

(e.g., force and displacement).

113

3. getSysEqn

This would return the specific equations that represent a

capacitor.

4. stateEquation

One of the capacitors system equations is its state equation.

This method would supply that particular equation.

Adding a new type of block to the system is actually much simpler than

adding a multiport since a block does not have to deal with causality.

Its input and output variables are determined by topology and thus can be

handled by superclass methods.

Adding a specialized macro node would probably start by inheriting from

the existing MacroNode class. Methods would have to be written to

override the existing ‘behavior in order to determine its specific

behavior. This could possibly be a complex addition depending upon how

different the new macro type would be from the existing type. Adding the

original MacroNode class was a complex addition.

Adding a new node type that may not be invented yet would definitely

require some thinking. It is probably safe to say that the

Model-View-Controller would handle this new node type like it does the

other nodes. Additional methods would have to be created in order to

handle any specialized user interaction associated with the new node type

not present in the existing nodes. For example, when the macro node was

added the methods to create, view and expand the macro were required.

114

These concepts did not exist when.just blocks and.multiports were around.

It is predicted that the class BGNode will still handle the basic behavior

of the new node type. (At least it did when blocks were added and then

when macro nodes were added.)

In summary, adding new multiport or block nodes would be relatively

simple. Changes to the system would be minimal and localized so that the

existing system would require no modifications (except adding a menu

choice, which is simple). Adding more complex node types could become

complex, but the basic node behavior foundation would not have to be

redone.

Object oriented languages allow for these capabilities because of their

two main features as discussed in section 2.2.2, those being encapsulation

and inheritance. Inheritance allows for reusability of the basic node

behavior and encapsulation provides for minimal effects on the existing

system due to changes.

By following good object oriented design methodologies (see section 4.1)

the developer automatically provides the framework for adding new

specialized classes to a system” Here, by forming a node class hierarchy,

as was shown in Figure 4.9, the ease of adding new node types was designed

into the system from the start.

115

5.2.1.3 Methods

Adding new procedures to the bond graph processor is another important

type of enhancement. For example, if someone wanted to determine the

subgraph consisting of all of the one junctions, zero junctions,

transformers and gyrators (called the general junction structure) this

could be done by someone with the proper programming training. You would

not have to learn the entire system to implement this new capability. You

would, however, need to know how to do the following:

1. Install a user interface to the new option.

an .Add the requested action to the appropriate

controllers' menus.

IL Write the controller method(s) to direct the execution

of the requested action. For this case, the method

would contain two parts: (1) Request from the model

its junction structure, and (ii) display the results

in a meaningful way. For example, store them in a

file, make a simple displayable list with them, etc.

2. ‘Write the method in the Model that actually collects the

required nodes and arcs.

A knowledge of how the graphs data is stored would be

required” ‘You'would have to loop through all of the nodes

116

and collect the appropriate ones and their attached

internal bonds. A simple request to the nodes themselves

inquiring if they are part of the junction structure or

not would ensure that the method would be general enough

to handle all node types (existing or future ones).

These types of enhancements would not affect any existing behavior. They

would add new behavior, such as nodes responding if they are part of a

junction structure or not. This could be handled at the Node class level

for the majority of the node types. Thus only nodes that are actually

junction structure nodes would have to be specifically changed. Knowing

the current system would definitely help in re-using existing methods and

techniques.

5.2.2 Required Expertise

Section 1.1 identified three types of users involved with the software,

namely, the engineer, the analyst, and the system programmer. One of the

goals of using object oriented programming is to allow for customizable

software. This would mean that each of these users could reasonably make

useful modifications to the system without considerable effort and/or

training.

The previous section discussed types of enhancements. Here we want to

discuss the expertise required to make such enhancements.

117

Adding new functions to the system‘was shown to be quite straight forward

and independent of the software language used to write the simulation

package. The format for new functions is not particularly complex, and

anyone who works with a computer could easily learn how to edit text.

This implies that the every day engineer would be able to modify/create

functions required for applications on an as needed basis.

It should be noted that adding new functions was specifically programmed

for in the bond graph processor. There doesn't seem to be any specific

restriction that would.prevent other enhancements to be programmed for and

thus made accessible to the engineer. However, investigating this

possibility is left for future research.

Adding new node types was shown to involve basic programming knowledge.

But due to encapsulation and inheritance it is kept to a minimum. The

analyst of today is usually familiar with specialized programming because

generic simulation packages rarely contain all of the specifics required

at individual work places. The limited amount of work required to add

multiport or block nodes to the system would mean the analyst could

undertake such a task with some basic training.

.Adding new methods to a system was shown to involve a considerable amount

of understanding of the entire system. Unless a new method was fairly

simple, modifying the system in this way would probably require a systems

programmer.

The boundaries between the engineer, analyst and programmer are not as

118

clearly defined as may be implied above. Very simple tasks could be

performed by the engineer who is involved with current programming

techniques. Figure 5.3 shows a matrix of the type of enhancements versus

who would have enough expertise to make those enhancements. The ratings

in the boxes indicate the complexity of the type of enhancements that one

could make.

Engineer Analyst Systems

Programmer

familiarizing;med med... .9. .9.

New subclasses low medium high

New methods low low medium

Figure 5.3 Complexity of User Enhancements

Adding new methods of high complexity would probably require the original

software developers. This accounts for the rating of 'medium' for the

complexity of new methods for the systems programmer.

5.2.3 Controlled Access

So far we have discussed enhancement types and the expertise required to

make those enhancements. The final discussion point is based on

controlling the actual enhancements made to a system.

119

In FORTRAN this is easy. Either provide them with the source code or

don't. You either have complete access or no access to the system in

order to make enhancements.

In object oriented languages you theoretically can control the access to

the system. For example, maybe an engineer is capable of adding new

functions, but do you really want them to? Changes to the system can

cause problems. Discussion of this topic is deferred until chapter VI.

Six different levels of access to the software code have been identified

for the bond graph processor. These are depicted in Figure 5.4. The

capabilities are accumulative as the access becomes greater.

Access Capabilities Relative to Band Graph Processor

None Add orrnodny funchons

Browse Investigate how the system is put together.

Add Subclasses Add new node types, particularly multiport and block node types.

Add new methods. Add new view/controller pairs to interact

Limited We with the model differently.

Expanded Write Change existing methods.

FuH Access No restnchons.

Figure 5.4 Controlled Access to Enhancement Capabilities

A good result from this is that as the complexity of the desired

enhancement increases, so does the need to access more of the system.

This is significant because it correlates well with the previous section

on the expertise required to make enhancements. In other words, the

changes a user can.make theoretically can match with the changes they are

120

allowed.to make. Users can'be given just the tools they need.without undo

complexity.

5.3 Reusability

There are three basic types of reusability, namely, inheritance,

portability between ‘hardware configurations, and reuse of software

components between projects. This section focuses on object oriented

programming's support of these issues.

First, inheritance as a form of reusability was discussed in detail in

section 5.2. This dealt with the ease of enhancements due to inheriting

behavior from superclasses. For example, adding a multiport node was

straightforward due to inheriting basic node behavior from class BGNode

and inheriting more refined behavior from class MultiPort.

Second, portability between hardware platforms is an important issue due

to the lack of standards in the hardware industry: Writing and re-writing

software to meet different hardware configurations is a complex task" One

of the strengths of the C language is its portability. It would be a step

backwards to lose this by using an object oriented language.

Some object oriented languages are portable. For example, C++ is just as

portable as C. Smalltalk-80 is currently available on the Macintosh,

MS-DOS PC's, Sun workstations, Hewlett-Packard workstations and Apollo

workstations. Source code written using the base Smalltalk-80 system is

121

generally portable between the different platforms. However, some object

oriented languages are restricted to specific platforms. For example,

Actor is available only on IBM compatible PC's.

In general, object oriented programming can ease portability by

encapsulating,objects that deal with.the specific hardware configurations.

This would help minimize the amount of work required to support multiple

hardware platforms from the same language.

Finally, reusability of software components between projects would be very

beneficial to software development in general. For example, if an

electrical circuit simulator was to be programmed could portions of the

existing'bond graph processor system be used? If the underlying model has

been developed well enough then the answer is yes. An electrical circuit

can be represented by a graph in a similar manner to a bond graph.

OOBProc was built upon a generic graph system called NodeGraph-80 (see

section 4.2). NodeGraph-8O was used as a template for creating the

working bond graph simulator. As specifics to the bond graph were

implemented it turned out that.a.majority of the methods from NodeGraph-80

were overridden by subclasses. Although the reusability wasn't very high

(as promised by the object oriented methodology), the code was extremely

useful as a template and for designing through iteration. During the

development phases there was almost always a working system. This aided

greatly in writing and testing new code. This incremental development is

advocated by most of the object oriented literature (see section 4.1.2).

122

It is for these reasons that I believe that portions of OOBProc are

reusable for a generic graph simulator. However, to be really effective

NodeGraph-80 should be modified to include things learned from OOBProc's

implementation. The major changes would be:

11. Eliminate specific calls to class methods. Subclassing

existing classes requires re-writing all methods that

reference the superclass specifically.

2. Incorporate more encapsulation. Too many methods were

found to be accessing another class's data structure. For

example, locations of nodes were assumed always to be

handled in the same way. When a change was made to this

format some 33 methods had to be modified because they

accessed data structures directly.

3. Provide multi-level graphs.

4. Allow multiple types of arc displays similarly to the

multiple types of node displays. Also, do not rely upon

the nodes to 'clean up' the arc display.

5. Provide generic message handling (those messages that are

given to the user). For example, the incorrectly picking

an arc message appeared in 8 different methods. When this

notice was modified, all 8 methods had to be modified.

123

These and other changes were made to the bond graph system, but not to

NodeGraph-80 itself. I believe these changes are directly associated with

generic graphs and not specific to bond graphs. Thus, by incremental

development, NodeGraph-8O can become more and more reusable between

projects that use graph structures for their underlying models.

In summary, object oriented programming supports reusability of software

components to aid in making enhancements, for portability between hardware

platforms, and for re-use in new projects.

5.4 Portability Between Object Oriented Languages

The first part of this research was done using the object oriented

language Actor. The system developed in Actor contained a basic bond

graph processor, without graphics, blocks or macros. However, enough work

had been done that losing it and starting over did not seem very

attractive. This section discusses how the object oriented methodology is

transferable between different languages.

Actor is a pure object oriented language similar to Smalltalk-80. This

means that everything (essentially) is an object. The major difference

between the two languages is in syntax. Actor code looks like a

combination of Pascal and C. In fact, it was developed to look like that

in order to help the transition from conventional methods to object

oriented methods. Smalltalk-80's syntax is entirely different than

conventional languages, and designed that way on purpose. What this means

124

is that none of the Actor code was transportable to Smalltalk-80.

However, the structure of the Actor system was very useful in writing the

initial portions of the Smalltalk-80 implementation. This refers to the

self documenting property of object oriented systems discussed in section

5.1.1. The class hierarchy and the class definitions captured in Actor

were essentially the same as were used in Smalltalk-80. The difference

mostly involved re-programming the specific methods to be in the correct

syntax” The environment and incremental development 'properties of

Smalltalk-8O made this transformation quite efficient.

Re-writing a FORTRAN system, say in C, would be a major undertaking.

Since the structure of a FORTRAN system is not self documenting there

would be essentially no template to follow. Of course, if proper data

flow diagrams and flow charts were kept up to date then they would

definitely come in handy. However, this is external documentation which

has proven.to be quite a burden on.programmers in general, and so often is

neglected. Also, data flow diagrams and flow charts are not part of the

FORTRAN system as classes and class hierarchies are in object oriented

systems.

In summary, although changing languages in the middle of a project is not

recommended, it is nice to know that the structure of an object oriented

implementation is relatively easy to transfer'between.two different object

oriented. languages. Properly designed class hierarchies and class

protocols are independent of the language used to implement them. This

kind of structure does not exist in a conventional language.

125

5.5 Qualitative Reasons

The prior discussions in this chapter on development, enhancements and

reusability as they relate to Smalltalk-80 lead to the qualitative

observation that programming using an object oriented language is less

frustrating and more fun than working with conventional programming

languages. Since OOBProc is such a large system, justifying this claim is

probably not possible. However, this section examines a smaller

application to let the reader get a better feeling for the claim.

The example chosen is to invert a square matrix using both Smalltalk-80

and using FORTRAN. This problem was chosen because it is straight

forward, very useful to engineers, and the author needed this capability

for another project.

First, let us discuss the Smalltalk-8O implementation. Found on Pachench

(Smalltalk bulletin board) were a collection of classes dealing with

matrices. Downloading these from the bulletin board and then loading them

into Smalltalk-80 took about 10 minutes. This illustrates reusability

(section 5.3) at its best.

By browsing through these matrix classes it was easily determined how to

make a new matrix; how to send math requests to it (e.g., *, +, invert),

and how to print out the matrix in a nice format. This took less then 5

minutes. The Smalltalk-80 developer's environment was extremely useful

(section 5.1).

126

Using a work window the code in Figure 5.5 was produced in about 5

minutes. The code is relatively straight forward once you realize that

'Transcript show:' is a standard message used to print output to a

particular window in the environment.

I error m mPrime mm I

error _ [:message | Transcript cr; show: message; cr].

”Create the matrix m and print it on the Transcript."

m _ Matrix rows: #(

(1 3 2)

(2 6 9)

(3 8 8)).

Transcript cr; show: 'Matrix m'.

Transcript show: m prettyPrintedString.

”Invert the matrix m to get matrix mPrime, print mPrime."

mPrime _ m invertSquareMatrifoSingular: [error value:

'Trouble'].

Transcript cr; show: 'm inverse'.

Transcript show: mPrime prettyPrintedString.

”Multiply m by mPrime to check if inversion worked."

mm _ m * mPrime.

Transcript cr; show: 'm * m inverse'.

Transcript show: mm prettyPrintedString.

Figure 5.5 Smalltalk-8O Code for Inverting a Matrix

Executing the code requires highlighting the text and.picking 'do it' from

a standard pop-up menu. This took all of 10 seconds. The results are

shown in Figure 5.6.

Modifications to the matrix are easyu Just point the cursor to the matrix

entries and text edit them. Re-execute as above and you can invert as

many matrices as desired. Each one took less than a minute (including

editing and execution time).

127

Total 'project' time was less than 25 minutes.

Matrix m

l 3 2

2 6 9

3 8 8

m inverse

(-24/5) (-8/5) 3

(ll/5) (2/5) -1

(-2/5) (1/5) 0

m * m inverse

1 O O

0 1 0

0 O l

Figure 5.6 Results From Executing Matrix Inversion Code

The FORTRAN implementation turned out not to be as convenient. Being

familiar with a standard set of routines for matrices written in FORTRAN

called LINPACK it seemed, at first, reusability would make this as simple

as Smalltalk-80's implementation. What follows is an outline of what

happened.

1” Find the routine in a directory of about 50 files that

handles inversion. After selective browsing with a

standard VAX editor a file called SGEDI was found.

2. Determine all the subroutines that are called within

SGEDI; otherwise the system won't compile and link

together.

3. ‘Write the main routine.

a” Initially hardwire the matrix to be predefined. Add

'easy' modifications later.

b. Call SGEDI(A,LDA,N,IPUT,DET,WORK,JOB)

This is the calling sequence to SGEDI. Determine what

each parameter means and make sure you declare them

128

correctly. Doing this it is found that one of the

parameters must be an output variable from a

subroutine that must be called before calling SGEDI.

Which one? It turns out you can either call SGECO of

SGEFA. They both will produce the required input for

SGEDI.

OK, call SGEFA first. Get its calling tree for

compiling and linking, determine parameters, etc.

(L Using Format statements display the results. How do

you get a matrix displayed nicely with Format

statements? Not easily. (There must be a subroutine

to do this, but where is it?)

4. Compile and link the required.subroutines. Compiling files

from different directories is not trivial. Write a

command file to handle compiling and linking” Chances are

you're going to need it multiple times.

Fix compile and linking errors. Incorrect Format

statements, missing some files in the link stage. Must be

more careful.

5. Fix format statements for nicer display. Reecompile, link

and execute. Success, a victory.

6n Enhancements, in order to compete with the Smalltalk-8O

implementation: (1) Output initial matrix, and (2)

multiply the resulting matrix by the input matrix and

display outcome for verification that inverse worked.

7. How do you change the matrix? Edit the main program,

compile, link and execute. No good? Program a better

method, either: (1) Read in the matrix from a file, so the

user 'only' has to edit that file and then execute the

program, (2) prompt for the entries, or (3) do both. Let

the user pick which option to follow. Provide multiple

runs by looping through the main program until user says

to stop.

Total 'project' time was less than.2 hours, not including item 7 (I just

didn't have the patience).

Section 5.1 talked about robustness and productivity without statistics.

Errors like 4. above did not occur in the Smalltalk-80 implementation.

129

Almost 2 hours for the FORTRAN implementation doesn't even compare to

the Smalltalk-80 25 minute implementation.

The bond-graph/block-diagram processor implementation had a lot of nice

development stages that went similarly to the matrix inversion.project.

This explains why it is claimed that object oriented programming is less

frustrating and more fun than conventional programming.

CHAPTER VI

CONCLUSIONS

6.1 Benefits of Object Oriented Programming

This section discusses the main 'benefits of using object oriented

programming for physical system simulation as discovered during the

development of OOBProc.

First, the development platform of an object oriented implementation is

readily extendible. This was shown by conducting a four phase

implementation of OOBProc. Each phase introduced new capabilities to the

system without major revisions of the existing system. The concentrated

efforts were on developing the new classes that implemented the new

behavior. Modifications to the existing system consisted mainly of

refinement of previously defined behavior. Polymorphism was crucial in

allowing new classes to be used correctly without modify existing code.

Second, object oriented programming lends itself to user customizable

software. This was detailed in section 5.2. The encapsulation of objects

and the ability to inherit from existing classes allows the user to

comprehend enough of the system to make additions without becoming a

professional programmer.

130

131

Third, implementations follow closely the world they are modeling. This

is extremely helpful because the design process can fully concentrate on

the problem being solved and.not on transforming a theoretical solution.of

the problem into a software implementation. Both sections 4.3 and 5.1

referred to this. For example, Figure 5.2 showed the data that defines a

node. As an object, a node contains all of this data and the behavior of

a node. Object oriented design (section 4.1) is an important step in the

process.

Fourth, implementations contain self‘ documenting features. This was

discussed in section 5.1.1.4. With tools like class categories, class

hierarchies and method categories, along with encapsulation, the structure

of an object oriented implementation is represented by that implementation

and not by extensive external documentation.

Fifth, classes readily lend themselves to reusability, as discussed in

section 5.3. The two types of reusability most applicable to this work

were inheritance and reuse of software components. Reuse of code reduces

code bulk, code complexity and development time.

Sixth, classes can be tested easily throughout their development and are

thus more robust. The Smalltalk-80 environment (section 5.1.2) and

encapsulation of objects can allow for new classes (objects) to be

thoroughly tested before they become part of a system. This pre-testing

of objects contributes to a more robust system (section 5.1.3).

132

Seventh, control statements are drastically reduced, thus reducing code

complexity and preventing bugs from being introduced into the system.

Being able to send the same message to different objects (i.e.,

polymorphism) eliminates a large number of control statements,

particularly in the user interface (section 5.1.1.1).

Finally, object oriented programming is less frustrating,andumore fun than

conventional programming. Although this statement is highly subjective,

an argument was made in section 5.5 to support it.

6.2 Difficulties with Object Oriented Programming

This section discusses the main difficulties encountered with object

oriented programming during the development of OOBProc.

First, violating encapsulation is easy to do and very dangerous. For

example, a view object in OOBProc contains an instance variable named

nodeLocations. This variable is an instance of the class Dictionary. Its

key is a node object and the corresponding value is the node's location in

the view. To access a node's location all you need to do is to send the

message 'nodeLocations at: aNode' to the view. This message violates

encapsulation.because it assumes what the variable nodeLocations is. The

message should be something more like 'locationOfNode: aNode'. Leaving

the view with the responsibility of getting the actual location.

133

After phase II it was desired to test a new way of storing node locations.

It was determined that 54 methods directly accessed the views instance

variable nodeLocations in. some ‘way (36 of' those methods ‘were from

NodeGraph-80). A change in the storage could not be made until the

violation of encapsulation described above was fixed. A few methods like

'locationOfNode:' were written for the view and then all 54 methods were

updated to use the appropriate message. Even with the utilities of the

Smalltalk-80 environment (section 5.1.2) determining and correcting these

methods was time consuming.

Wirfs-Brock and Wilkerson [69] discuss this issue in some detail. Their

solution is one of setting recommended practices to be used by

programmers. However, as was pointed out in section 4.3.3, it is not

always obvious when you are violating encapsulation.

Second, determining how something actually gets done is a complex task.

Objects are responsible only for themselves, which is good, but they tend

to send a large volume of messages to other objects (mostly their instance

variables). The message passing between objects is often.a long road from

the original request until the desired behavior is achieved. To determine

this process a great deal of effort is often required.

There are methods available to determine the message passing sequence.

One can use the debugger to stop the process at any location and examine

the calling sequence dynamicallyu One can. also use the available

searching utilities to locate the methods that respond to a given message.

Using this recursively allows one to create a calling tree structure of

134

the sequence. Cunningham and Beck [70] describe a notation for

diagramming the message sending dialog that takes place between objects.

Although all of these tools are useful none of them seem to illustrate the

message passing sequences effectively and efficiently.

Third, some aspects of physical systems are hard to clearly define in

terms of objects. For example, causality is a procedure applied to a bond

graph that indicates the direction of the effort and flow variables on the

bonds to be used by the multiports to determine proper equation formats.

Additionally, there is a graphical display of causality required. A

change in the bond graph model could have far reaching effects on the

proper causality (and thus the equation structure) for that bond graph.

Causality is clearly not an object, but there is data and behavior

associated with assigning and using causality for a bond graph.

Determining which objects are responsible for that data and behavior is

complex.

Finally, due to the large number of classes that can be supplied with an

object oriented language the learning curve is rather steep.

Specifically, Smalltalk-80 has approximately 250 classes and thousands of

methods. Learning the system enough to make effective use of inheritance

and reusability from a programmer's view can not be done over night.

135

6.3 Unanswered Questions and Future Research

First, numerical solution techniques using object oriented programming

were not investigated in this research but is none the less critical for

simulation software. Other work:has been done in this area [58], [59] but

much more research is needed.

Second, there is a question as to the run time speed of object oriented

software. This is a critical issue associated with the cpu intensive

processes required for numerical solutions. Both Thomas [71] and Peskin

et a1 [72] begin to address this issue. Peskin has shown for a few

specific cases that calling a C program within Smalltalk for computations

lead to a time savings of a factor of about 100. Thomas states that

1"Using cache technology allows Smalltalk.systems to execute a message send

in half the time of an equivalent C procedure call." However, Ungar [73]

disputes this claim but does agree that advanced computer architectures

will lead to faster object oriented implementations.

Third, bond graphs and block diagrams model physical systems. The future

in simulation software, as discussed in section 2.1.1.5, will focus on

integrating computer aided design (CAD) systems with simulation software.

What will be needed are methods to capture descriptions of actual physical

systems and components through CAD and to formulate a corresponding

mathematical model suitable for the desired simulation. This could be a

bond-graph/block-diagram, a finite element model or some other type of

mathematically based model. Object oriented programming should be

effective in this endeavor.

136

Fourth, predicting behavior is one of the purposes of simulation. This

requires numerous response display capabilities. Ideally this should be

highly user customizable. With the many different graphical capabilities

of Smalltalk-80 and. the user customizable features demonstrated in

OOBProc, the desired capabilities for response display should be

attainable. Again, Peskin et a1 [72] have begun work in this area.

Fifth, the current methodology used for simulation includes formulating a

set of system equations corresponding to a model, solving those equations

and then relating the results to the original model. In the real world,

no "master simulator" (to our knowledge) is formulating and solving sets

of equations to determine behavior. Each object in the physical world

controls itself based on its environment” Object oriented programming and

parallel processing may have the potential to actually simulate the

physical world as we know it. This might be done by, for example, having

objects determine their own motions based on their surrounding environment

and to have these objects relay their responses to that environment. This

is currently being done with discrete time simulation.

Sixth, it is not clear at this time how one would effectively implement a

software version control process with an object oriented system. Fbr

example, if a group of, say ten, engineers were using the same object

oriented software system and each wanted to customize the software, a

controlled process of doing this must be enforced or else conflicts in the

software will arise. Section 5.2.3 discussed controlled access on an

individual bases, but how this would work in a group is unclear.

137

Seventh, the proliferation of object oriented languages is immense

(section 2.2.2). Which will be the important languages of tomorrow is

unclear. The question remains as to which language a software development

organization should use for engineering applications. The safe choice at

this time, outside of the AI world, appears to be C++ with its strong

roots in the currently popular C language.

Finally, this research has shown that new physical system simulation

software should be written using obj ect oriented techniques. What remains

to be answered is: At what point should old software be re-written to take

advantages of the newer technology?

APPENDICES

APPENDIX A

INTRODUCTION TO BOND GRAPHS

Bond graphs are used for structured modeling of energy and power based

physical system [23], [24], [25]. The recognized benefits of using the

bond graph technique are as follows:

1. Bond graphs can be used to model a wide range of systems, including

mechanical, electrical, magnetic, hydraulic, and thermal systems.

Bond graphs provide coupling,mechanisms between domains. For example,

the electrical-mechanical rotation conversion of a motor.

Bond graphs are a graphical technique derived directly from the

physical systenlmodel, rather than through the equations of the system.

This provides the following:

a. This gives the trained engineer direct insight into the

physical system by examining the bond graph without

interpreting any equations.

b. Large problems are more understandable depicted graphically

rather than by a large set of equations.

(L Modifications made to a system are more easily incorporated

into a graphical structure than a derived set of equations.

d” Graphical structures lend.themse1ves to useful abstract (macro)

models of the system.

Bond graphs lead to state space differential equations (1 e., first

order ordinary differential equations). This provides the following:

a. Numerical solution techniques are well developed for these

types of equations.

b. State space. equations readily' lend. themselves to feedback

control techniques.

Once a model of the dynamic system is obtained in

bond-graph/block-diagram form it can be handled by computer software,

such as ENPORT, CAMP, and TUTSIM [27], [28], [29].

138

139

To minimize the complexity of this Appendix, bond graphs will be described

in terms of mechanical translation and electrical systems only.

Before beginning the discussion about bond graphs it is important to

understand the variables used in the methodology. There are four general

variables used, these are: effort, flow, momentum and displacement.

Figure A.1 shows the terminology used in this Appendix for the different

variables. Note the re-use of some variables, for example q can represent

general displacements or the charge in an electrical system. The context

in which a variable is used should make the distinction possible.

e f p a

General
.

Effort Flow Momentum Displacement

Mechanical F V P X

Translation Force Velocity Lin. Momentum Lin. Displace.

e i h
Electrical . q

: Vahage Cunent Hux Lmkage Charge

|

Figure A.1 Variables Used For Bond Graphs

A bond graph consists of nodes and bonds. The bonds indicate energy

transfer between the nodes. The bonds 'carry' the four variables effort,

flow, momentum and displacement at all times. The bond is depicted by a

straight line with a half arrow on one end. This arrow is called the

power stroke and represents the direction of positive power. The power

associated with a bond is equal to the effort times the flow of that bond.

140

The nodes of the bond graph describe both the physical laws of the

components and the constraints the components exert on each other. These

nodes are often called multiports.

The basic multiports consist of the capacitor (C), inertia (I), resistor

(R), source of effort (Se), source of flow (Sf), l-Junction (1),

O-Junction (O), transformer (TF) and gyrator (CY). Figure A.2 lists the

physical meaning, bond graph representation and mathematical definitions

for these multiports in terms of mechanical translation and electrical

components.

Learning how to construct bond graph models is beyond the scope of this

Appendix. However, two examples are looked at to demonstrate the meaning

of the resulting bond graphs.

141

Mechanical: Spring F I k t X. it = V

Capacrtor C Electrical: Capacitor e I l/C 0 q. q = i

Mechanical: Mass v . l/m . P. e = r

m" ’ ' Electrical: Inductor i . l/L . x, i = e

Resistor R Mechanical: Damper F I b 0 V

Electrical: Resistor e a R t i

Source of Se Mechanical: Force F - F(time)

Ellort Electrical: Voltage e - e(time)

Source of Sf Mechanical: Velocity V s V(time)

Flow Electrical: Current i - i(time)

\\ }’/ Mechanical: see (a) n + F2 - F3 8 0

Vi - V2 - V3

l—Junction 1 3

a . . el + e2 - e = 0

L Electncal. see (b) il 8 i2 3 i3

.

F] 3 F2 = F3
\ 7 Mechanical: see (C)

0
Vi V2 V3 0

O—Junction

2 3
’

.
el 8 e = 0

l, Electncol. see (d) it _, i2 - i3 = 0

.
F] I mod 0 F2

Mechanical. Fulcrum v2 _ mod , v1

Transformer —'7 "1""not
.

e] = mOd ‘ 82

Electrical: Transformer. -'2 : mOd . '1

 Mechanical: N/A

(.yralar —‘76Y-'7 . el = x . i2
Electrical. Gyrator e2 -.- K . i1

linear relationships are used for the equations; k. C. m. L. b. R. mod and K

are the parameters associated with the linear equations.

(a) The l-Junction for mechanical translation systems handles two properties;

(1) the sum of all the forces acting on a particular object is equal to

zero (including inertial forces). and (2) the velocity at connection points

between components are the same.

(b) The l-Junction for electrical systems handles two roperties; (l) the sum

of the voltage drop around any loop is zero. and 2) the current in any

line is the same throughout.

(c) The O-Junction for mechanical translation systems handles two properties;

(I) velocity constraints, where a simple algebraic velocity equation must

be satisfied (i.e.. the sum of the velocities must be equal to zero). and

2) the force in a component is the same throughout that component

e.g., the force in a spring).

(d) The O-Junction for electrical systems handles two properties: (1) the

current going into a connection must equal the current coming out of

that connection. and (2) the voltage drop across parallel lines are equal.

Figure A.2 Bond Graph Multiports

142

MECHANICAL TRANSLATION EXAMPLE

Figure A.3 shows a simple two degree of freedom spring- mass-damper system

with an applied force. Figure A.4 is a corresponding bond graph of the

physical system.

V1 V2

2 kl k2 . F(t)

/ ~———4>\
/ 71 ml 71 m2 .____7/

/ LJ JJ

/ bl C b2 3 (3

¢/////7/////7////////////////7////////

Figure A.3 Two Degree of Freedom Spring-Mass-Damper System

ll 12

R1 <:—————-1V1‘<r————— O <:—————'1V2 <:-————'Se

1Vre]

/ \.

C1

C2

Figure A.4 Bond Graph of System Figure A.3

143

The bond graph components of Figure A.4 have the following meanings:

C1, C2

The springs l and 2, respectively.

11, 12

The masses 1 and 2, respectively.

R1, R2

The dampers l and 2, respectively.

Se

The applied force F(t).

lVl

The velocity of mass 1, end point of spring 1, end point of damper

1, and end points of spring 2 and damper 2 are all equal to V1.

The sum of the forces (including inertial) on mass 1 is equal to

zero.

1V2

The velocity of mass 2, applied force location, and end points of

spring 2 and damper 2 are all equal to V2.

The sum of the forces (including inertial) on mass 2 is equal to

zero.

1Vre1

The relative velocity between mass 1 and mass 2 is the same as the

relative velocity of spring 2 and damper 2.

The total force of spring 2 and damper 2 is, magically, equal to

the force in spring 2 plus the force in damper 2.

The total force applied to mass 1 due to spring 2 and damper 2 is

equal to the total force applied to mass 2 also due to spring 2 and

damper 2.

The relative velocity of 1Vre1 is equal to velocity of mass 2 minus

the velocity of mass 1.

144

ELECTRICAL CIRCUIT EXAMPLE

Figure A.5 shows a simple electrical circuit with a current source in

series with a capacitor, both of which are in parallel with an inductor

and a resistor. Figure A.6 shows a bond graph representation of this

electrical circuit.

Figure A.5 Schematic of an Electrical Circuit

 l

Figure A.6 Bond Graph Representation of the Circuit

Sf /1 7 /I

145

The bond graph components of Figure A.6 have the following meanings:

Sf

The current source applied to the system, I(t).

C

The capacitor.

R

The resistor.

I

The inductor.

l

The current source and capacitor are in series (meaning they have

common currents) and their voltage drops added together is equal

to the voltage drop of the rest of the system.

0

The resistor is in parallel with the inductor and also in parallel

with the remainder of the system (i.e., the current source and

capacitor combined). This means these all have the same voltage

drop. AlSo, the current from the source/capacitor line is equal

to the sum of the currents in the resistor and inductor lines.

APPENDIX B

INTRODUCTION TO OBJECT ORIENTED PROGRAMMING

Object oriented programming is a relatively new idea in software

programming that concentrates on the objects of a system rather than on

the procedures that manipulate data, as conventional engineering software

does (e.g., FORTRAN or PL/I) [1], [3], [8].

BASIC CONCEPTS

Defining object oriented programming precisely is difficult. There are

many different interpretations of this idea. At an abstract level all

agree that it is a set of principles, practices and procedures used to

compose an effective computer implementation to solve a given problem.

Some details of object oriented programming used in this dissertation are

given below. The author believes that these definitions represent the

majority view as derived from the literature written on the subject [4].

Object oriented programming is an abstract idea that proposes that large

complex problems can be broken down into simple, easy to manage problems

with the relatively few concepts of objects, classes, encapsulation,

inheritance and messages.

146

147

Objects combine data and the code that operates on that data into a single

useable structure. An object captures the state and the behavior of

something. The code that operates on the data, or that represents the

behavior, are called methods.

The way to manipulate an object's data is to send that object a message.

If the message is understood by the object it will perform the requested

action using its appropriate method(s). If not, the object will respond

that the message was not understood. The localization of data

manipulation by the object itself is known as encapsulation. One cannot

manipulate an object's data structure without sending it a message.

Objects sharing common properties are grouped together in a class. A

class provides a template for objects so that common objects are always

stored and.manipulated in a consistent manner. The class feature provides

a consistency in the software that typically is lacking in more

conventional languages. An object is an instance of a class.

In order to take further advantage of common data structures and methods,

a class hierarchy is introduced. A particular class can have subclasses

(dependents) and superclasses (parents and/or ancestors). This family-

tree-like structure is referred to as the class hierarchy.

The advantage of a class hierarchy is that an object (instance of a

particular class) inherits all of the properties of its superclasses.

This means that the object not only has available to it its own data and

methods, it also has access to the data structures and methods associated

148

with its superclasses. On the other hand, an object knows nothing about

any of its subclasses.

An example of a class could be the class of rigid bodies. This class could

be denoted by the symbol RigidBody. A specific rigid body, denoted by

aRigidBody, is an instance of the RigidBody class. The methods of the

RigidBody class would handle any messages that would be sent to

aRigidBody. For example, if you wanted to draw aRigidBody on a graphics

terminal you might send the message 'draw' to aRigidBody. If the

RigidBody class had a method that understands this message then aRigidBody

would perform the requested action using its specific data. In this

example aRigidBody would draw itself using its geometric description data

(i.e., its width, height, orientation angle and center location).

Taking the RigidBody class one step further, a simple class hierarchy can

be identified. For example, one might identify two types of bodies: rigid

bodies and deformable bodies. Here a class hierarchy might consist of

three classes: Body, RigidBody and DeformableBody. This is depicted in

Figure B.l. Body is the superclass of the other two classes, while

RigidBody and DeformableBody are subclasses of Body. The Body class

contains data structures and methods that are associated with both of its

subclasses. These would be inherited by all instances of both RigidBody

and DeformableBody. In other words, the attributes held in common by the

subclasses are stored in their superclasses.

149

Body

Common data and

methods for all

bodies.

RigidBody DeformableBody

Data and methods of a Data and methods of a

rigid body not captured deformable body not captured

by class Body. by class Body.

Figure 8.1 A Simple Class Hierarchy

THE CONCEPTUAL DIFFERENCE

Conventional programming languages (e.g., FORTRAN, Pascal) organize their

programs around procedures with data being passed from procedure to

procedure. Object oriented programming focuses attention on the data as

(fixed) objects. Messages are passed from object to object. The objects

operate on themselves using their own methods based on the messages they

receive.

From a<certain‘point-of-view'object oriented programming is the inverse of

conventional programming. It recognizes that the data is an essential

part of a systemlwhereas conventionally the procedures are treated in this

role. Figure 8.2, taken from [74], gives us a better visualization of this

concept. Notice also the encapsulation of the data in (b) by its methods.

This data protection is sorely missing from (a).

150

DATA?

Proc4

Messaget Message C

lethodl Hethodl Methodz

lethodt lethodii

lethod3

Object ll Object 2

Figure 8.2 (a) Procedural vs. (b) Object Oriented Organization

APPENDIX C

OOBProc IMPLEMENTATION DETAILS

This appendix gives some of the details of the classes developed during

this research. Figure C.1 shows the main class hierarchy for OOBProc.

Classes beginning with NG8O (NGBOObject, NG80Arc, NG80Node, NG8OView and

NGSOController) are part of the NodeGraph-8O software package used to help

develop OOBProc” Classes Object, View, Controller and.MouseMenuController

are part of the base Smalltalk-80 system. The remaining classes shown

were developed by the author.

In total, 41 new classes were created for OOBProc, 30 of which are shown

in Figure 0.1. The remaining 11 classes are supporting classes for the 30

main ones.

151

152

F
i
g
u
r
e

C
.
l

O
O
B
P
r
o
c

C
l
a
s
s

H
i
e
r
a
r
c
h
y

153

A method was written to produce a description of each class without

showing the detailed code of the class. This includes the class comment,

the class category, the superclass, the subclasses, the instance

variables, the class variables, the method categories and the method

protocols for each class. What follows in this Appendix are the class

descriptions for each of the 41 classes developed for OOBProc. These are

organized in the following format:

Model-View-Controller Classes

Node Classes

Arc Classes

Function Classes

Miscellaneous Classes

154

The Model-View-Controller classes are composed of the following classes:

BGGraph

BGView

BGController

ArcView

ArcController

NodeView

NodeController

155

class name: BGGraph

class comment:

This class is used as the model for the bond graph processor.

J. Reid 4/89

class category: BG-Core

superclass: NGBOGraph

subclasses:

instance variables:

bgComplete

causality

selectedArcIndex

selectedNodeIndex

class variables:

method categories followed by the instance methods:

accessing

bgComplete

bgComplete:

causality

causality:

locations

locations:

nodes

nodes:

selectedArcIndex

selectedArcIndex:

selectedNodeIndex

selectedNodeIndex:

causality

assignCausality

clearCausality

checking

checkBgComplete

checkIfLabelIsUnique:

checkVariable:

initialize

initialize

inquiry

getAllArcs

getAllNodes

getSysEqns

getUniqueLabel:defaultIsOK:

listOfArcs

listOfNodes

modifications

addArc:

addNode:

156

editLabel:

relabelArc:

removeArc:

removeNode:

renameNode:

replaceOldNode:withNewNode:

releasing

release

storing

saveOn:

stringDefinition

class method categories followed by the class methods:

checking

checkVariable:

instance creation

fromFile:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

157

class name: BGView

class comment:

This class is used as the graphical view for the bond

graph processor. J.Reid 4/89

class category: BG-Core

superclass: NG80View

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

accessing

canvas

nodeLocations

nodeLocations:

controller access

defaultControllerClass

displaying

displayView

displaying arcs

calculateDisplayPts:tozmiddlePts:

displayArc:

displayArcOnCanvasXOR:

displayArcXOR:

displayBoldArcs:

displayFatArc:

endPtsOfAnArc:

fastDisplayArchOR:

reshapeDisplayArcXOR:

unDisplayArc:

displaying nodes

unDisplayNodes:

inquiry

boundingBox

centerOfCanvas

centerOfView

displayLocationOfNode:

locationOfNode:

locationsIncludesNode:

nodeResponsibleForDisplay:

modifications

addNodezatLocation:

addNodes:andArcs:at:

insertNodeszandArcszat:

insertNodesScaled:andArcs:at:

moveNodezto:

pasteNodes:andArcs:at:

158

pasteNodesScaledzandArcs:at:

removeNode:

updateCanvasSize

updating

update:

updateNodes

class method categories followed by the class methods:

example

example

example2

instance creation

openMultipleViewsOn:

openOn:

openOnMacroNodeToPickAtomicNode:

openSubGraphOn:

openViewOnMacroNode:

system - fileOut

classDescriptionBGBD

classDescriptionNGBO

fileOutBGBD

fileOutCategories

fileOutClassDescription

fileOutClassDescription:file:

fileOutNG80

fileOutST8O

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

159

class name: BGController

class comment:

This class is used as the Controller for a bond graph

processor. J. Reid 4/89

class category: BG-Core

superclass: NGBOController

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

controlling

viewHasCursor

yellowButtonActivity

menu messages

convertUserFunction

editTemplateFunction

inspectFunctions

notImplemented

openGraphView

openMultipleViews

menu messages (arcs)

addBond

addSignal

changeArcNodes

convertPolyToSpline

convertSplineToPoly

editArc

inspectArc

polylineArc

rectilinearPolylineArc

relabelArc

removeArc

reverseArcDirection

splineArc

straightArc

menu messages (nodes)

addNode:

changeNodeType

copyNodes

createMacroNode

cutNodes

editMacroNode

expandMacroNode

inspectNode

modinyodeFunction

pasteMacroFromFile

160

pasteNode

pasteNodeOld

removeNode

removeNodes

renameNode

saveMacroToFile

viewMacroNode

menu messages (graph)

assignCausality

clearCausality

clearGraph

getSysEqns

inspectGraph

inspectMVC

pasteFromFile

saveToFile

scaleToRectangle

scaleToView

zoomIn

zoomOut

prompt user

displayTempMessage:

getUniqueLabel:

pickPoint:

restoreScreen:

shaping arcs

pointFromUserStartingAt:

polylineFromUserFor:

rectilinearPolylineFromUserFor:

utilities

autoRelabel:

changeBondNodes:

changeLabel:

changeSignalNodes:

pasteFromFile:

scalezzoomPoint:

utilities (nodes)

copyNodes:

moveNode:

moveNodesAfterPaste:

pickArc

pickAtomicNode

pickMacroNode

pickNode

placeNode:

selectAtomicNodeStartingAt:

selectNodeStartingAt:

class method categories followed by the class methods:

class initialization

initializePPS

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

161

class name: ArcView

class comment:

This class implements the view for the arc MVC. The model

is, at this point, a BGObject. This view/controller

of the model lists the arcs in the model and handles

specific behavior that can be performed on those arcs.

J. Reid 6/89

class category: BG-Viethrls

superclass: ListView

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

updating

update:

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

162

class name: ArcController

class comment:

This class implements the controller for the arc MVC.

J. Reid 6/89

class category: BG-Viethrls

superclass: ListController

subclasses:

instance variables:

class variables:

ArcYellowButtonMenu

ArcYellowButtonMessages

NoArcYellowButtonMenu

NoArcYellowButtonMessages

method categories followed by the instance methods:

controlling

redButtonActivity

yellowButtonActivity

menu messages

inspectArc

noArcSelected

relabelArc

removeArc

private

changeModelSelection:

class method categories followed by the class methods:

initialize

initialize

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

163

class name: NodeView

class comment:

This class implements the view for the node MVC. The

model is, at this point, a BGObject. This view/controller

of the model lists the nodes in the model and handles

specific behavior that can be performed on those nodes.

J. Reid 6/89

class category: BG-Viethrls

superclass: ListView

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

updating

update:

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

164

class name: NodeController

class comment:

This class implements the controller for the node MVC.

J. Reid 6/89

class category: BG-Viethrls

superclass: ListController

subclasses:

instance variables:

class variables:

NodeYellowButtonMessages

NodeYellowButtonMenu

NoNodeYellowButtonMenu

NoNodeYellowButtonMessages

method categories followed by the instance methods:

controlling

redButtonActivity

yellowButtonActivity

menu messages

inspectNode

modinyodeFunction

noNodeSelected

removeNode

renameNode

node utilities

getAtomicNodeFrom:

private

changeModelSelection:

class method categories followed by the class methods:

initialize

initialize

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

165

The Node classes are composed of the following classes (indentations

indicate inheritance structure):

BGNode

Block

Distributor

Gain

Integrator

Sink

Source

WSummer

MacroNode

MultiPort

Capacitor

Effort

Flow

Gyrator

Inertia

OneJunction

Resistor

Transformer

ZeroJunction

166

class name: BGNode

class comment:

The BGNode class is an abstract superclass used to implement

the data and behavior of the nodes found in a bond graph

and/or block diagram. J. Reid 5/89

class category: BG-Core

superclass: NGBONode

subclasses:

Block

MacroNode

MultiPort

instance variables:

bondPorts

signalPorts

function

partOfAMacro

class variables:

method categories followed by the instance methods:

accessing

bondPorts

bondPorts:

function

function:

icon

partOfAMacro

partOfAMacro:

signalPorts

signalPorts:

causality

assignArbitraryCausality

assignDesiredCausality

assignRequiredCausality

extendCausality

checking

checkFunction

copying

deepCopy

deepCopyIntoMacro:

initialize

assignFunction

initialize

initializeWith:

inquiry

arcsConnectedTo

boundingBoxOfIcon

findNodeWithLabel:

167

findNodeWithUniqueID:

getAllArcs

getAllNodes

getSysEqns

includesInDefinition:

modifications

addPort:

addPortKeepFunction:

changeLabel:

modifyFunction

removePort:

releasing

release

storing

saveOn:

stringDefinition

class method categories followed by the class methods:

instance creation

fromFile:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

168

class name: Block

class comment:

This class is an abstract superclass of block diagram

blocks. J. Reid 6/89

class category: BD-Nodes

superclass: BGNode

subclasses:

WSummer

Distributor

Source

Gain

Sink

Integrator

instance variables:

class variables:

method categories followed by the instance methods:

accessing

iconType

causality

assignArbitraryCausality

checking

checkBgComplete

checkIfBondIsValidPort

checkIfSignalIsValidFromNode

checkIfSignalIsValidToNode

inquiry

inputs

outputs

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

169

class name: Distributor

class comment:

This class represents the block diagram distributor element.

It has a single signal input and multiple signal outputs,

all equal to the input. J. Reid 12/89

class category: BD-Nodes

superclass: Block

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

causality

assignArbitraryCausality

checking

checkBgComplete

inquiry

getSysEqns

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

170

class name: Gain

class comment:

This class is used as a block diagram gain element. The

output signal is equal to the input signal multiplied

by a constant (default). Behaves exactly like the standard

Block node (currently). J. Reid 7/89

class category: BD-Nodes

superclass: Block

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

171

class name: Integrator

class comment:

This class is used as a block diagram integrator element.

The integrator integrates an input signal and produces

the result as its output signal. J. Reid 7/89

class category: BD-Nodes

superclass: Block

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

initialize

assignFunction

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

172

class name: Sink

class comment:

This class implements the block diagram sink element.

It has exactly one signal input and no outputs. J.

Reid 2/90

class category: BD-Nodes

superclass: Block

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

checking

checkBgComplete

causality

assignArbitraryCausality

inquiry

getSysEqns

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

173

class name: Source

class comment:

This class implements the block diagram source element.

It has exactly one signal output based on auser defined

function of time (default). J. Reid 7/89

class category: BD-Nodes

superclass: Block

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

checking

checkBgComplete

inquiry

inputs

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

174

class name: WSummer

class comment:

This class implements the block diagram weighted summer

black. It produces a signal output based on the sum

of multiple signal inputs, each multiplied by a constant.

J. Reid 7/89

class category: BD-Nodes

superclass: Block

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

checking

checkBgComplete

initialize

assignFunction

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

175

class name: MacroNode

class comment:

This class implements macro modeling capabilties. A macro

node is composed of other node objects, including other

macro nodes. A macro node can not contain itself. J.

Reid 7/89

class category: BG-Core

superclass: BGNode

subclasses:

instance variables:

arcs

nodes

locations

class variables:

method categories followed by the instance methods:

accessing

arcs

arcs:

iconType

locations

locations:

nodes

nodes:

causality

assignArbitraryCausality

assignDesiredCausality

assignRequiredCausality

checking

checkBgComplete

copying

deepCopyIntoMacro:

initialize

initialize

inquiry

arcsConnectedTo

findNodeWithLabel:

findNodeWithUniqueID:

getAllArcs

getAllNodes

getSysEqns

includes:

includesInDefinition:

releasing

release

storing

stringDefinition

176

class method categories followed by the class methods:

instance creation

fromFile:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

177

class name: MultiPort

class comment:

This class is used as an abstract superclass for bond

graph multiport elements (e.g., 1, Se, R, GY, 1, O ,

etc.). J. Reid 5/89

class category: BG-Nodes

superclass: BGNode

subclasses:

Effort

Inertia

Gyrator

Flow

ZeroJunction

OneJunction

Transformer

Capacitor

Resistor

instance variables:

class variables:

method categories followed by the instance methods:

accessing

iconType

label:

checking

checkBgComplete

checkIfBondIsValidPort

checkIfSignalIsValidFromNode

checkIfSignalIsValidToNode

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

178

class name: Capacitor

class comment:

This class represents the bond graph capacitor element.

J. Reid 10/89

class category: BG-Nodes

superclass: MultiPort

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

causality

assignDesiredCausality

inquiry

getSysEqns

inputs

outputs

stateEquation

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

179

class name: Effort

class comment:

This class represents the bond graph Source of Effort

element. J. Reid 5/89

class category: BG-Nodes

superclass: MultiPort

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

causality

assignRequiredCausality

inquiry

inputs

outputs

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

180

class name: Flow

class comment:

This class represents the bond graph Source of Flow element.

J. Reid 11/89

class category: BG-Nodes

superclass: MultiPort

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

causality

assignRequiredCausality

inquiry

inputs

outputs

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

181

class name: Gyrator

class comment:

This class represents the bond graph gyrator element.

J. Reid 5/89

class category: BG-Nodes

superclass: MultiPort

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

causality

assignArbitraryCausality

extendCausality

checking

checkBgComplete

initialize

assignFunction

inquiry

getSysEqns

inputs

outputs

modifications

changeLabel:

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

182

class name: Inertia

class comment:

This class represents the bond graph inertia element.

J. Reid 5/89

class category: BG-Nodes

superclass: MultiPort

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

causality

assignDesiredCausality

inquiry

getSysEqns

inputs

outputs

stateEquation

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

183

class name: OneJunction

class comment:

This class represents the bond graph l-Junction element.

J. Reid 5/89

class category: BG-Nodes

superclass: MultiPort

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

causality

causalBond

extendCausality

checking

checkBgComplete

checkIfSignalIsValidFromNode

checkIfSignalIsValidToNode

inquiry

effortEqn

getSysEqns

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

184

class name: Resistor

class comment:

This class represents the bond graph resistor element.

J. Reid 5/89

class category: BG-Nodes

superclass: MultiPort

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

causality

assignArbitraryCausality

inquiry

inputs

outputs

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

185

class name: Transformer

class comment:

This class represents the bond graph transformer element.

J. Reid 10/89

class category: BG-Nodes

superclass: MultiPort

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

causality

assignArbitraryCausality

extendCausality

checking

checkBgComplete

initialize

assignFunction

inquiry

getSysEqns

inputs

outputs

modifications

changeLabel:

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

186

class name: ZeroJunction

class comment:

This class represents the bond graph O-Junction element.

J. Reid 10/89

class category: BG-Nodes

superclass: MultiPort

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

causality

causalBond

extendCausality

checking

checkBgComplete

checkIfSignalIsValidFromNode

checkIfSignalIsValidToNode

inquiry

effortEqn

floqun

getSysEqns

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

187

The Arc classes are composed of the following classes (indentations

indicate inheritance structure):

BGArc

Bond

Signal

188

class name: BGArc

class comment:

The BGArc class is an abstract superclass used to implement

common data and behavior of the bonds and signals found

in a bond graph and/or block diagram. J. Reid 5/89

class category: BG-Core

superclass: NG80Arc

subclasses:

Signal

Bond

instance variables:

class variables:

method categories followed by the instance methods:

accessing

label:

causality

clearCausality

copying

COPY

initialize

initializeFromztozlabel:

initKeepFunctionFromzto:

modifications

replaceOldNode:withNewNode:

releasing

release

storing

saveOn:

stringDefinition

class method categories followed by the class methods:

instance creation

fromFile:for:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

189

class name: Bond

class comment:

This class represents the bond graph bond element. J.

Reid 5/89

class category: BG-Arcs

superclass: BGArc

subclasses:

instance variables:

causalNode

oldCausalNodeLabel

class variables:

method categories followed by the instance methods:

accessing

causalNode

causalNode:

label:

oldCausalNodeLabel

oldCausalNodeLabel:

causality

assignCausalityznode:

clearCausality

checking

checkVariable:

copying

COPY

displaying

polylineDisplayOn:from:to:inside:using:

splineDisplayOn:from:to:insidezusing:

straightDisplayOnzfrom:to:insidezusing:

modifications

reverseDirection

releasing

release

storing

stringDefinition

class method categories followed by the class methods:

instance creation

fromFile:for:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

190

class name: Signal

class comment:

This class represents the block diagram signal element.

J. Reid 5/89

class category: BG-Arcs

superclass: BGArc

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

checking

checkVariable:

displaying

polylineDisplayOn:from:to:insidezusing:

splineDisplayOn:from:to:insidezusing:

straightDisplayOn:from:tozinsidezusing:

modifications

reverseDirection

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

191

The Function classes are composed of the following classes (indentations

indicate inheritance structure):

Function

TemplateFunction

Table

UserDefinedFUnction

FunctionController

FunctionView

192

class name: Function

class comment:

This class is used as an abstract superclass for mathematical

definitions. Basically used for a convenient superclass

hierarchy. J. Reid 5/89

class category: BG-Functions

superclass: BGObject

subclasses:

UserDefinedFunction

TemplateFunction

instance variables:

class variables:

method categories followed by the instance methods:

modifications

changeVariablezto:

modFunctionOld:

modifyFunction:

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

193

class name: TemplateFunction

class comment:

This class implements generic function definitions that

are stored in text files. Specific input variables, output

variables and parameters are stored, along with the function

type. When needed, the specific variables are substituted

into the generic definitions to produce complete mathematical

functions. J. Reid 5/89

class category: BG-Functions

superclass: Function

subclasses:

Table

instance variables:

inputs

outputs

parameters

class variables:

method categories followed by the instance methods:

accessing

inputs

inputs:

outputs

outputs:

parameters

parameters:

copying

deepCopy

function handling

getFileName

readContentsOfEntireFunction

readFunction

initialize

name:inputs:outputs:

setDefaultParameters

inquiry

getSysEqns

getVarSysEqns:numberVariables:

modifications

changeVariablezto:

convertToTemplate

modifyFunction

modifyInputs

modifyParameters

updateFunction

releasing

release

194

storing

stringDefinition

class method categories followed by the class methods:

instance creation

fromFile:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

195

class name: Table

class comment:

This class implements a table function. That is, a set

of (x,y) points. This could have been implemented by

a template function, but it is being used as a test case

for more advanced functional capabilities. J. Reid 11/89

class category: BG-Functions

superclass: TemplateFunction

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

function handling

readContentsOfEntireFunction

initialize

setDefaultParameters

inquiry

getSysEqns

modifications

modifyParameters

updateFunction

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

196

class name: UserDefinedFunction

class comment:

This class is used to store a user defined function.

The user is responsible for the existence of each variable

and the correctness of the function. The function definition

is stored as text in i.v. systemEqns. J. Reid 6/89

class category: BG-Functions

superclass: Function

subclasses:

instance variables:

systemEqns

class variables:

method categories followed by the instance methods:

accessing

systemEqns

systemEqns:

inquiry

getSysEqns

inputs

modifications

convertToTemplate

modifyFunction

modifyFunction:

stringChanged:

releasing

release

storing

stringDefinition

class method categories followed by the class methods:

instance creation

fromFile:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

197

class name: FunctionController

class comment:

This class is used to control the modifications of a Function.

J. Reid 6/89

class category: BG-Functions

superclass: Controller

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

controlling

startUp

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

198

class name: FunctionView

class comment:

This class is used to view the function while it is being

worked on by the function. J. Reid 6/89

class category: BG-Functions

superclass: View

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

controller access

defaultControllerClass

class method categories followed by the class methods:

instance creation

openOn:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

199

The Miscellaneous class are composed of the following classes:

BGIcon

BGObject

NodeAndPointDictionary

NodeCollection

StringEditorController

StringEditorView

200

class name: BGIcon

class comment:

This class is used for the icons that are associated with

the nodes in the bond graph processor. (Display form

- picture.) J. Reid 4/89

class category: BG-Utilities

superclass: NGBOIcon

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

copying

deepCopy

icon creation

createIconOnype:withLabel:

createInvisibleRectangleIconWithLabel:

createRectangleIconWithLabe1:

createRoundedRectanglelconWithLabel:

inquiry

boundingBox

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

201

class name: BGObject

class comment:

This class is used as an abstract superclass for the main

components that make up a bond graph. (eg, bonds, signals,

multiports, inertias, icons, functions, etc.) J. Reid

5/89

class category: BG-Core

superclass: NG800bject

subclasses:

NGBOArc

NGBOIcon

NGSONode

NGBOGraph

Function

instance variables:

label

class variables:

method categories followed by the instance methods:

accessing

label

label:

modifications

changeLabel:

notifying

inform:

messageHandlinngrom:

printing

printOn:

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

202

class name: NodeAndPointDictionary

class comment:

This class is a dictionary with: keys: Instances of

BGNode (or subclasses of) values: Points It is used

for storing a point directly with a particular node.

For example, the location of the node on a Form to be

displayed - e.g., BGView. It provides the methods that

one would want to apply to such a Dictionary - e.g.,

Calculating the bounding box. J. Reid 8/89

class category: BG-Utilities

superclass: Dictionary

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

copying

deepCopy

inquiry

boundingBox

boundingBoxIncludingArcs:

internalArcs

locationOfNode:

locationsIncludesNode:

nodes

modifications

addNode:atLocation:

moveNodezto:

removeNode:

release

release

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

203

class name: NodeCollection

class comment:

This class is used as a an ordered collection of nodes.

It's members are assumed to be instances of BGNode

(or subclasses of). It provides the methods that one

would want to apply to a collection of such nodes. J.

Reid 8/89

class category: BG-Utilities

superclass: OrderedCollection

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

inquiry

findNodeWithLabel:

findNodeWithUniqueID:

includesInDefinition:

internalArcs

release

release

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

204

class name: StringEditorController

class comment:

This class is used as the controller for StringEditorView.

It differs from TextCollectorController in only one

aspect. It tells the views strinngner that a change

has been made and accepted to its string. J. Reid 7/89

class category: BG-Viethrls

superclass: TextCollectorController

subclasses:

instance variables:

class variables:

method categories followed by the instance methods:

menu messages

accept

class method categories followed by the class methods:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

LI ST OF REFERENCES

205

class name: StringEditorView

class comment:

This class is used to edit a string using a window. The

difference between this class and TextCollectorView is

that StringEditorView can be used in stream by any object

that wants to edit a string. StringEditorController

reports the edited string back to the string owner object

with the message "stringChanged: newString". J. Reid

7/89

class category: BG-Viethrls

superclass: TextCollectorView

subclasses:

instance variables:

strinngner

class variables:

method categories followed by the instance methods:

accessing

strinngner

strinngner:

controller access

defaultControllerClass

class method categories followed by the class methods:

instance creation

openWithString:label:owner:

time stamp: Smalltalk-80, Version 2.3 of 13 June 1988

on 13 February 1990

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

LIST OF REFERENCES

B.J. Cox, Object-Oriented Programming: An Evolutionary Approach,

Addison-Wesley, 1986.

L.S. Levy, Taming the Tiger: Software Engineeering and Software

Economics, Springer-Verlag, 1987.

BYTE, Special Issue on Object-Oriented Programming, August 1986.

G.E. Peterson, Object-Oriented Computing, Computer Society of the

IEEE, Volume 1 and 2, 1987.

M. Stefik and D.G. Bobrow, "Object-Oriented Programming: Themes and

Variations," The AI Magazine, Winter 1986, 40-62.

B.J. Cox, "Message/Object Programming: An Evolutionary Change in

Programming Technology," IEEE Software, January 1984, 50-61.

M. Floyd, "A Class Act," Dr. Dobb’s Journal, April 1989, 58-64.

A. Goldberg and D. Robson, Smalltalk-80: The Language and Its

Implementation, Addison-Wesley, 1983.

A. Goldberg, Smalltalk-80: The Interactive Programming Environment,

Addison-Wesley, 1984.

B. Stroustrup, "A Better C2," BYTE, August 1988, 215- 216D.

B.P. Zeigler, Theory of Modelling and Simulation, Krieger Publishing

Co., Malabar, Florida, 1976.

W.E. Biles, ”Introduction To Simulation," Proceedings of the 1987

Winter Simulation Conference, December 1987, 7-15.

P.F. Roth, "Discrete, Continuous and Combined Simulation,"

ProceedingS’of'the l987’Winter’Simu1ation Conference, December 1987,

25-29.

J. Banks and J.S. Carson, Discrete-Event System Simulation,

Prentice-Hall, Inc., Englewood Cliffs, NJ, 1984.

R.J. 0rd-Smith and J. Stephenson, Computer Simulation of Continuous

Systems, Cambridge University Press, 1975.

206

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

207

I. Bausch-Gall, "Continuous System Simulation Languages," 3rd

Seminar on Advanced Vehicle System Dynamics, Amalfi, Italy, May

1986, 347-366.

D. Conner, ”Mixed Analog-Digital Simulators," EDN, July 20, 1989,

160-166.

"MCAE Enters The Picture at Polaroid," Mechanical Engineering,

October 1989, Vol 111, No. 10, 50-53.

J. McLeod, ”Computer Modelling and Simulation: The Changing

Challenge,“ Simulation, March 1986, 114-118.

K. Ogata, Modern Control Engineering, Prentice-Hall, Inc. , Englewood

Cliffs, NJ, 1970.

Y. Takahashi, M.J. Rabins and D.M. Auslander, Control and Dynamic

Systems, Addison-Wesley Publishing Co., 1972.

J. Van de Vegte, Feedback Control Systems, Prentice-Hall, Inc.,

Englewood Cliffs, NJ, 1990.

D. Karnopp and R. Rosenberg, System Dynamics: A Unified Approach,

John Wiley and Sons, NY, 1975.

R. Rosenberg and D. Karnopp, Introduction to Physical System

Dynamics, McGraw-Hill, NY, 1983.

A.M. Bos and P.C. Breedveld, "1985 Update of the Bond Graph

Bibliography," J. Franklin Institute, Vol. 319, No. 1/2, 1985,

269-286.

2. Zalewski and R.C. Rosenberg, "Simulation of Engineering Models

Containing Bond Graphs and Block Diagrams," Proc. 1986 ASME Joint

PVP & Computers in Engineering Conf., 1986.

R. Rosenberg, The ENPORT QuickGuide, ROSENCODE Associates, 1987.

J.J. Granda, "Computer Generation of Physical System Differential

Equations Using Bond Graphs," J. Franklin Institute, Vol. 319, No.

1/2, 1985, 243-255.

J.J.A.J. Beukeboom, J.J. van Dixhoorn and J.W. Meerman, "Simulation

of Mixed Bond Graphs and Block Diagrams on Personal Computers Using

TUTSIM,” J. Franklin Institute, Vol. 319, No. 1/2, 1985, 257-267.

R.C. Rosenberg and Z. Zalewski, "Macro Modeling of Engineering

Systems," ASME Paper 86-WA/DSC-12, Presented at the Winter Annual

Meeting, Anaheim, California, 1986.

W.S. Scott, et a1, editors, 1986 VLSI Tools, Computer Science

Division, EECS Department, University of California at Berkeley,

1986.

[32]

[33]

[34]

[35]

[36]

[37]

[33]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

208

T. Quarles, et a1, SPICE .381 User’s Guide, EECS Department,

University of California, Berkeley, CA, 1987.

Intergraph Corporation, Mechanical Engineering Design System I and

II (MEDS) course Guides, Huntsville, Alabama, 1988.

Mechanical Dynamics, Inc., ADAMS User’s Manual, MDI, October 1987,

Ann Arbor, MI.

B.J. Haug, computer Aided Kinematics and Dynamcis of Mechanical

Systems, Allyn and Bacon, Needham Heights, Mass., 1989.

T. Nelson, "The Zoo Story," Creative Computing, October 1980, 62-70.

US Department of Defense, Reference Manual for the Ada Programming

Language, ANSI/MIL-STD-l8lSA-l983.

N. Wirth, Programming in Modula-Z, Springer-Verlag, 1983.

E. Seidewitz, "Object-Oriented Programming in Smalltalk and Ada,"

OOPSLA ’87 Proceedings, October 1987, 202-213.

S.R. Ladd, "Comparing;Modula-2 and C++," Dr. Dobb’s Journal, January

1989, 62-68.

M. Rettig, et a1, "Object-Oriented Programming in Al: New Choices,"

AI Expert, January 1989, 53-70.

C. Schaffert, et al, "An Introduction to Trellis/Owl," OOPSLA ’86

Proceedings, September 1986, 9-16.

C. Duff, Introducing'.Actory 43 page ‘booklet about Actor, The

Whitewater Group, 1987.

S. Dewhurst and K. Stark, Programming in C++, Prentice Hall,

Englewood Cliffs, NJ, 1989.

E.R. Tello, "Objective-C," Dr. Dobb's Journal, August 1988, 56-69.

D.G. Bobrow, et a1, "CommonLoops: Merging Lisp and Object-Oriented

Programming,” OOPSLA ’86 Proceedings, September 1986, 17-29.

D.A. Moon, ”Object-Oriented Programming with Flavors," OOPSLA ’86

Proceedings, September 1986, l- 8.

J.P. Jacky and I.J. Kalet, ”An Object-Oriented Programming

Discipline for Standard Pascal,” Communications of the ACM,

September 1987, Vol. 30, Number 9, 772-776.

M. Floyd, "Turbo Pascal with Objects," Dr. Dobb’s Journal, July

1989, 56-63.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

£58}

[59]

[60]

[61]

[62]

[63]

[64]

209

J. Rothenberg, "Object-Oriented Simulation: Where Do We Go From

Here?" Proceedings of the 1986 Winter Simulation Conference,

December 1986, 464-469.

V. Knapp, "The Smalltalk Simulation Environment," Proceedings of the

1986 Winter Simulation conference, December 1986, 125-128.

O.M. Ulgen and T. Thomasma, "Simulation Modeling in an

Object-Oriented Environment Using Smalltalk-80," Proceedings of the

1986 Winter Simulation Conference, December 1986, 474-484.

R.P. Rich, ”Message Oriented Simulation Language," Proceedings of

the 1988 Summer'Computer'Simulation Conference, July 1988, 303-308.

B.P. Zeigler, ”Hierarchical, Modular Discrete-Event Modelling in an

Object-Oriented Environment," Simulation, November 1987, 219-230.

S. Ruiz-Mier and J. Talavage, "A Hybrid Paradigm for Modeling of

Complex Systems," Simulation, April 1987, 135-141.

T.S. Larkin, et a1, "Simulation and Object-Oriented Programming: The

Development of SERB," Simulation, September 1988, 93-100.

B. Gates, et al, ”A Demon Facility for Object- Oriented Simulation

Languages," Proceedings of the 1988 Summer Computer Simulation

Conference, July 1988, 667-673.

A. Guasch and R.C. Huntsinger, "Object Oriented Continuous System

Simulation," Proceedings of the 1989 Summer Computer Simulation

Conference, July 1989, 562-565.

J. Sung, The Development of a Kinematic Solver Based on

Object-Oriented Programming Principles, Master's Thesis, Mechanical

Engineering, Michigan State University, Fall 1989.

P.C. Kaumbutho, A.Bond’Graph Model for Simulating the.Performance of

a Farm Tractor, PhD Dissertation, Agricultural Engineering, Michigan

State University, 1987.

B.J. Haug, "Elements and. Methods of Computational Dynamics,"

Computer Aided Analysis and Optimization of Mechanical System

Dynamics, NATO ASI Serie, Vol. F9, Springer-Verlag, 1984, 3-38.

D. Karnopp, "Lagrange's Equations for Complex Bond Graph Systems,"

Journal of Dynamic Systems, Measurement, and Control, December 1977,

300-306.

I. Jacobson, “Object Oriented Development in an Industrial

Environment," OOPSLA ’87 Proceedings, October 1987, 183-191.

R. Wirfs-Brock and B. Wilkerson, "Object-Oriented Design: A

Responsibility-Driven Approach,” OOPSLA ’89 Proceedings, 1989.

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

210

S.T. Pope, et a1, "Object-Oriented Approaches to the Software

Lifecycle Using the Smalltalk-80 System as a CASE Toolkit," 1987

Fall JOint Computer Conference, ACM-IEEE, 1987, 13-20.

8.8. Adams, NodeGraph-BO Version 1.0 User Manual, Knowledge Systems

Corporation, 1987.

M. Page-Jones, The Practical Guide to Structured Systems Design,

Yourdon Press, New York, 1980.

8.1.. Pfleeger, Software Engineering, Macmillan Publishing Company,

New York, 1987.

A. Wirfs-Brock and B. Wilkerson, "Variables Limit Reusability,"

Journal of Object-Oriented Programming, May/June 1989, Vol. 2, No.

1, 34-40.

W. Cunningham and K. Beck, "A Diagram for Obj ect-Oriented Programs,"

OOPSLA ’86 Proceedings, September 1986, 361-367.

D. Thomas, ”The Time/Space Requirements of Obj ect-Oriented

Programs, " Journal of Object-Oriented Programming, March/April 1989.

R.L. Peskin, et a1, "Smalltalk - The Next Generation Scientific

Computing Interface? , " Mathematics and Computers in Simulation, Vol.

31, Numbers 4 & 5, October 1989, 371-381.

D. Ungar, Letter to the Editor, Journal of Object-Oriented

Programming, September/October 1989, Vol. 2, No. 3, 76-77.

R. Wilson, "Object-Oriented Languages Reorient Programming

Techniques," Computer Design, November 1, 1987, 52-62.

MICHIGAN S

l lllllllllllll12

