.’.3.r,ix.'.. mm - U 4 11mm 1. _. J- 1. .. n 1 1 .1 e ...1T‘1.1_"\.:;'.. ELM" 1. 1 ..-J-."1,1 m...“ “11.1 x_ ‘ , Y "‘f‘f‘: 41::11. .\I‘-_-.}.11 1 . 1.11:... , «41;. ,..1 4 ., “mm.” 5 2.11.1.3 1 (.1?qu 111:-..31 "7,. 3.1 M. 1.1 1 1 C- r '.1;1....11 44 1,1,1 1:111: .1...'1.i: ..1""4\.: x. ‘ 1.1-1 . ‘14 , , “ "" ‘ ‘ 1.1 .1, 1 m1“ ‘11‘J.ll~:i‘"xlll\_ i3; ‘ 1 :31“: .‘w-n n .1, “ «m. w .m- .1vv;‘~:n:1r1~.xix \r :41 Ina/u . .‘ .11 )1. l 4 . 1i?.m./.u«:u1 .r‘. .n: v11“! .(1 1 1, . m1-1...1~ 1111.114. 1 1 _u.—.- 1‘ -.u:_1 nur‘ I .1 m 1 4m.- » “1'1“; 4,. 4- ...a;u ‘21 m"; 1 ,1.“ . :4' u_ . ugu-J.I.:..-u.n- 1414' Jab: '11 4 u "1:111” r - 1-"):1411. r11 . 14r‘.m. I . ,1, N1... _ u~ 2w.- 4 4 _ l>’-'~-1Ir\"\ We: jqrgg 5". ‘ r c l ,r 1 ‘1-F1 ,1: Q . .13 . 7-1-2541 11v: -1- u, :_ ..—-, 0" PE" r um .141- -- (m I k" v "-17.7“..(1 ’11-- . 1.1.4:“11'u .1. u 1 ll ’1 1 .1;‘.,. ""“'F‘" 1 1’ . .L... . ... .‘.. 4« 1,111.1. .1: 1m .1..,. . “0»; '{T'r ‘n 11 1 1 ”'1“ 1. “)3“- .. 1-.1..’1,,.' m. .1...‘ (In :1 I p. ,1,,,_ -1 1 :42, \:'| .. run-1.. figWIV' l\lllll"l\\l\lll\l\\lllll\l\l\\\\\\\\\\\\\l\l1ll\l 1’” 1 Lmfiiliil'igj f This is to certify that the dissertation entitled FINAL STATE SCATTER I NG IN Z PRODUCT I ON via THE QUARK-GLUON INTERACT I ON presented by THOMAS MI TCHEL EWING has been accepted towards fulfillment of the requirements for EH) degree in PHYS T CS imam“ Major professor Date QA'AAQ— 2L /??0 /’ / MSU is an Affirmative Action/Equal Opportunity Institution 0-12771 PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. DATE DUE DATE DUE DATE DUE MSU Is An Affirmative Action/Equal Opportunity Institution c:\cIrc\ddeduaprn3—p.1 _ _ _ _ I =‘inal State Scattering in Z Production via the Quark - Gluon Interaction BY THOMAS MI TCHEL EWING A DISSERTATION Presented to Michigan State Uniyercity in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY DEPARTMENT OF PHYSICS 1989 ABSTRACT Llytical calculation of photon scattering between final state quark and a final e lepton in the process q 9 => qifq => 20 (1 => 1+ 1' (1. Result is found as Ltio to the same process without final state scattering. Motivation for the ulation is as a first step towards calculating photon scattering between final e leptons and spectator quarks or debris particles, possibly predicting an :rvable asymmetry in the 20 decay curve. Dedication thesis is dedicated to Jon Pumplin for the right suggestions. ‘0 L . 8 Community College, upecially Claude Watson and Melanie , for providing their computer for Primins ‘hi' mm’cfiP‘ TABLE OF CONTENTS Chapter 1 - Statement of the Problem :tion 1.1 ...General Introduction 1 :tion 1.2 ...Introduction to this Thesis ...................................... 4 :tion 1.3 ...Division of the problem into Allowable Helecity States ..................................... 7 :tion 1.4 ...Notation to be used ...... 9 (labelling of linear momenta, metric used, gamma matrices, the Epf function) :tion 1.5 ...Preparing the Integrals 13 (choosing the frame of reference, the J ACOBIAN and integrating out the onoshell delta functions, . divergence regulation) :tion 1.6 Evaluating a Preliminary Diagram ......................... 16 Chapter 2 - The Calculation :tion 2.1 Introduction 18 :tion 2.2 Calculating the BORN Term 19 (Spinor replacement, removal of 2° vertex (.4 + 375) and strong coupling constant Polarisation vector replacement) tion 2.3 Calculating the LOOP Term 21 (Spinor and Polarisation vector replacements, removal of 2° vertex (A + B75) and strong coupling constant Expansion of k”, reduction to 19 irreducible integrals) tion 2.4 Calculating the RATIO ......................................... 27 (FORTRAN Program, Physically valid set of input paramters) Chapter 3 - The Result Section 3.1 Introduction Section 3.2 Choosing the Display Mode ......... Section 3.3 Presentation of Results ....... Section 3.4 Focus on M 2 Peak Section 3.5 Edge Activity Section 3.6 Connecting with the Center of Mass Reference System ........ 40 Section 3.7 Analysis of Results 44 Chapter 4 - Verification and Validation Section 4.1 I ‘ J " 45 Section 4.2 Verification of Epf(P1, P3, P4, P5) 45 Section 4.3 Verification of Spinor replacement 45 Section 4.4 Verification of SCHOONSCHIP Born Term program .......... 45 Section 4.5 Verification of SCHOONSCHIP LOOP Term program TRACE calculation ............................................ 46 Section 4.6 Verification of Divergence Regulation Coefficents ................ 46 Section 4.7 Verification of 19 Integrals, analytic solutions ...................... 47 Chapter 5 - Conclusion Section 5.1 Introduction 49 Section 5.2 Conclusion 49 Section 5.3 Relation to other work 49 Section 5.4 Future Work 50 lllltstlI-I-Jl e main text is written to be read quickly without detail and is thus not 15thy. The proofs and calculations are contained in a bulky set of Appen- which are referenced in the text. TAB LE OF APPENDICES 1dix A ..... Allowable Helecity Combinations 1dix B ..... Gamma matrices, metrics, and the Dirac equation 1dix C ..... Expanding Epf(P1, P3, P4, P5) 1dix D ..... Feynman Rules idix E ..... Ignoring the 75 in A + .375. 1dix F ..... Evaluating the Jacobian idix G ..... Absolving the Quark Singularity 1dix H ..... Spinor Replacement 1dix I ..... SCHOONSCHIP program to calculate and verify the BORN term 1dix J ..... Polarization vector Replacement [dix K ..... SCHOONSCHIP program for the LOOP term )dix L ..... The Linear Expansion of Is” dix M ..... Base Integral reduction dix N ..... Nineteen Irreducible Integrals , Solved Analytically dix O ..... FORTRAN program to calculate the result dix P ..... Ascertaining the Physical Range of Parameters dix Q ..... Verification of Spinor replacement dix R ..... Verification of SCHOONSCHIP LOOP program, TRACE calculation 5 ..... Verification of Divergence Regulation co—efiicent cancellation T ..... Verification of 19 irreducible Integrals U ..... FORTRAN Output - Sample Results V ..... Selecting Representative Points for displayed output W Evaluating a Preliminary Diagram Secti The I uticl four 1 date The ‘ is (( most vii t the i Ion. Wit] cons theo tend deie FNI Reg Chapter One Statement of the Problem Section 1.1 ... General Introduction The 1984 status of particle physics is summarised in the comprehensive review article of Eichten, Hinchlifi'c, Lane, and Quigg (EHLQ)1. Of the traditional four forces, the gravitational force is largely unincorportated (though since that date more promise has evolved from the futher development of string theory). The theory of strong interactions rests comfortably in quantum chromodynam- ics (QCD), though the experiments are difficult and development is slow. The most remarkable success is the union of the weak and electromagnetic theories via the application of non-Abelian transformation invariance and spontaneous symmetry breaking, introducing the Higgs sector. As described in that article, the investigation of the Higgs sector will await the next generation of accelera- tors. With present machines the 1983 verification of the Z0 and W predicted masses’ constituted the first hallmark in the experimental resolution of the electro-wcak theory. Following this, the second level of refinement will be experiments ex- tending the precision of the theory, the most recent of these being the e+ e" dctermlilnation of the Z0 mass and width at SLACa, and futher resolution at FNAL . Regarding the production of Z0, the seroth order (Drell-Yan) processes are: ¢1>_ _< q 0 a Z '7 a q > < l— where its interference with the photon process is noted. The analytic calculation of these amplitudes presents no difficulty and is given in EHLQI. Experimentally the measured invariant mass of the final state par- ticles peaks at the z0 mass, (and for the case of a quark anti-quark pair would appear as a two ._]_e_t phenonon). Wit crlc The mans—J h the improvement in the experimental precision it is important to do the ulations to first and higher order in perturbation theory. first order diagrams are: :lmm < —tnmnr Ie calculations are summarised in the workshop of Berger, et al.4. The esses, known as 2 particles in and 3 out, represent a degree upwards in the :ulty of their analytic solutions. Futher, to forward the amplitudes to cross ons, the kinematics of phase space of 2 in and 3 out processes including soft gluon correction of the first two diagrams above is non-trival. Even so, d in the precision of knowing the Z0 mass and width, the calculations have carried out and occupy a standard place in the literature.4'5'6 articular current interest is great precision in the width of the of the 20, as reflects the number of quark and lepton flavors that exist. 1 the EHLQ paper: 3 82 rzzw[1_2zw+ ZWJD 3x e D is the number of kinematically acessible quark and lepton doublets....” ave faith in first order experimental agreement, it must be held the pro- 5 measured are free from contamination by other processes that would be tectable in the measuement. For example, the first order contribution of l+l’q : could bi the final This we product at SLA The ca telly a. hilly I t body and V: The cc bill“ vtllm: Even I lttlng Mic be contaminated by the reseattering of one of the decay leptons with al state quark. 'ould cause a change in the invariant mass plot from that inherently ed by the Z0 decay for mesurements made at FNAL, though not those .0. lculational difficulty of diagrams containing a loop increases dramati- I the number of vertices or ‘points’. Three and four point diagrams are tandard. The above is a five point diagram. There must be developed of calculational method making these diagrams ammenable. ’t Hooft ,tman have devoted a technique paper7 to procedures for these integrals. nplexity and large number of terms involved necessitate the aid of alge- anipulation programs, such as the SCHOONSCHIP program written by 15. vrse than the reseattering that occurs above, (which is first order), reseat- ould appear as a seroth order contamination via a spectator or debris >————< g the invariant mass plot to an even higher degree. This zeroth order ination is very hard to estimate as it involves interaction with particles olved in the Z0 production. An assumption can be made that the ratio seroth order reseattering to the seroth order (Drell-Yan) diagram alone oximately the same as the above loop diagram to the first order term IO the effect of all reseattering can be estimated by calculating the latter esis is the estimation of this effect via the calculation of the latter ratio. striced to final state leptons, as the case for final state quarks is done 9 re. 1 1.2 ... Introduction to this Thesis tittering, first order Zo production can take place according to the usual hti—quark union decaying into a lepton pair: Irate assessment of both the Z 0 runs and the width of the decay curve a number of questions. To this end it is important to examine possible tions to shifts of the peak and asymmetric distortions of this width. ninetion of one possible source of contribution begins with the ques- ‘HAT IS THE PROBABILITY OF A LEPTON SCATTERING WITH FATOR QUARK ON THE WAY OUT ? >———-< step, one can solve the reduced problem in which the spectator and Ollt : production quarks emerge from a common gluon source: X"? I is the calculation of the above five-point and equivalent diagrams restriction of two on-shell lines (The introduction of the on—shell re- is to make the LOOP integrations managable, as they reduce the is to two dimensions. It is expected that if the diagrams here exam- iee small effect under these restrictions, no great enhancement would heir relaxation. This point is futher mentioned in Chapter 5 ‘Con- ie two diagrams with the photon scattering switched to the other t0“ e obtained, its interference RATIO to the process without scattering :_<_+;—'\<+;[ “““ f+1 """ f +)-{ +)—-Section 1.4.4 .... The Epf Emotion varticular the Gamma matrix set used by SCHOONSCHIP introduces a :tion Epf defined as TRACE(75,4,B¢JD) = €450,975 £35070” = 4 Epf(A, B, c, D) whe1 and For fun: only rel: Ce: Th1 :ere Cap-75 is the usual Levi-Cevita totally anti-symmetric four tensor. the Minkowski metric is used by SCHOONSCHIP, then P" = P, = (P,, P,, P,, we) :1 the Epf function is always a pure imaginary number. r this problem, as there are only four independent linear momenta, all Epf tctions, following the usual properties of Levi-Cevita tensors, must reduce to ,y one Epf : Epf(P1, P3, P4, P5) is is a Lorentz invariant and may be calculated directly in any convenient :rence frame and co-ordinate system, or by the usual evaluation of Levi- vita tensor products via determinents, which of course gives the same result. see are both done in Appendix C, and the result is Epf(P1, P3, P4, P5) = [4(P1P4)(P3P5)(P1Ps)(P3P4) — [(P1P4)(P3P5) + (P1P5)(P3P4) — (P1P3)(P4P5)]2] ”2 Section 1.5 Preparing the Integrals Ib-Section 1.5.1 .... The Integral 1e Cutowsky rule for an on-shell condition gives: 1 WED?) =’ %(2”‘)25(’=2) 5([k — (P4 + P5)]’) ith this, the amplitude of the sample diagram of the previous section is formed the Feynman rules bf Appendix D: t M :2 S It I .ere S collects all the multiplicative scale factors: 5 = (27d)2 e2 I 1 2 (271')4 i I is the LOOP integral of the above sample diagram: 6‘1: 50:”) 6w: - P4 — Psfl [7(P4)-ru (7-1:)(0 + 0'15 mum» W(P5)1“(7-M)(7-¢)(7-n)(A + Bur/MM» [(k — P4P] [(k — P4 - P5 + P1P] [(k + Pa)2 + M? — iI‘M.) b-Section 1.5.2 .... The Frame of Reference e first delta function will dictate that m2 = hon. e second, 6([k — (P4 + P5)]2), gives k3—2k.(P4+P5)+(P4+P5)’=o [with k2=P42=P52=O llts in k . (P4+ P5): P4P5 ch assumes a particularly simple form only in the rest frame of P2 and R: 160(E4 + E5) = —P4P5 14 d, since also in this frame: (P4 + 135)2 = —-(E4 + E5)2 = 2(P4P5) ho = E4 = E5 = (—P4P5/2)1/2 ablishing that in this frame ho is CONSTANT. 1e enormous simplification gained when the magnitude of 7:- remains constant :tates this rest frame of fi+fi to be the frame of reference for this diagram. the diagram for anti-lepton scattering is evaluated by interchanging the la- ls P3 and P4 (except for the lepton line trace), the same frame of reference Ids throughout the problem. )te that in this frame the energy, Ex, of any other particle, PX, of the problem also simply given: PX . (P4 + P5) = —2(ko)E:: = PXP4 + PXPs _ PXP4 + PXPs E: —2ko b-Section 1.5.3 .... Removal of the Delta functions : delta functions may be simply removed by integrating over d [It] and disc vided the JACOBIAN between the set (llcl Jen) and the two arguments of delta functions is included. This J acobian is calculated in the chosen frame eference in Appendix F and evaluates to: —1 J ' 4(P4P5) Jacobian is now absorbed into the scale factor S: 1 . 1 —1 = E ‘2”): ‘2 [T275] 494%) h ems)“ em a.“ 15 Tthe remaining integration over lklz dflk, |l¢|2 = :5? = constant 11 come outside the integral sign and be absorbed into the scale factor: _1 .22 1 —1 —P4P5 5 ’ 2 (2“) e [(2104] 4(P4P5) l 2 l _ i L " 137 16: hus the sample LOOP integral reduces to being over the directions of I: = / 40. W(P4)7u(v-k)(0 +D'ul'vuv(P3)] [§(P5)‘7“('v-'n)('r-¢)(7-n)(A+ B'Vs)‘7"fl(fi)l [(k — 194)!) [(1. - P4 — P5 + 191)?) [(h + P3)? + M: - sTM,] ith the understanding that I the frame of reference is E + R = 0 l W2 = kO’ i) lea = (—P4.P5/2)1/2 ~) E: = W is applies to all the various LOOP integrals in the problem. b-Section 1.5.3 .... The Divergence Regulation examining the above LOOP integral, the first denominator factor, arising s the photon line promator, produces a singularity when the direction of :comes co-linear with P4, resulting in a logrithmically infinite value for the gral. This infinity does not occur in Nature - the process is finite - and that :flected in the calculation by the coefficent of the logarithmically infinite -gflfi 16 term becoming zero when the five point and the four point LOOP diagrams are summed. To allow the doing of the diagrams separately, a small photon mass is added to regularise the infinity. When the diagrams are added it is observed that the cocfiicent of the log of this fictitious photon mass becomes identically zero, producing no ill effects when the photon mass is then allowed to go to sero and its log to infinity. The appearance of the sero coeflicent does in fact serve as a check that the various parts of the calculation are fitting together correctly. 1-] 4m («mm m0 + Dvsmumn worm m)('1 6X1 n)(A + Bmthmn [(k— P4)? + M2,] [(k— P4 P5 + P1)=) [(k + P3)? + M;- -.TM,] Passing to the second denominator factor (k— (P4 + P5)-— P1)2 , it appears to possess a similar infinity. It is shown in Appendix G that at the very direction of k that this zero is produced, the value of the numerator also becomes sero, rendering the singularity benign. The non-apearance of this infinity also serves as a check that the integral calculation is proceeding correctly. A small quark mass is carried to allow this check. I = / an. [5(P4)1u(1~k)(0 + Dish-11103)] [5(P5)‘r”(7 m)(‘7 €)(‘Y n)(A+ Eva)1"u(P2)l [(1. — P4)2 + M3] [(1. — P4 — P5 + P1)2 + M;w,] [(1. + P3)2 + M— :TM,] Section 1.6 Evaluating a Preliminary Diagram Prior to beginning the actual calculation it is expedient to calculate a prelimi- nary diagram which contains all the essential features of the larger calculation, yet is simplified sufiicently that it may be evaluated analytically (without the aid of SCHOONSCHIP or projection techniques) P3 , / P3+k,M, / \k“ P4 1, M1 / P5, M5 and the companion anti-lepton scattering diagram. All the external fermion particles carry Spin zero, which makes them unphysi- cal, yet experience has shown that Spin does not greatly affect the magnitude of the calculation. The result of these diagrams should serve as an estimation for the larger calcu- lation, and should that calculation differ significantly, the causes ascertained. These diagrams are detailed and completely evaluated in Appendix W. The results will be stated in Chapter 5 ‘Conelusions’, and compared with the results of the larger calculation. An advantage occurs from the simplicity of this diagram: it is possible to assign a non-zero mass to the out-going quark, and to see the effect of varying this mass on the result. The effect is also described in Chapter 5. Chapter TWO The Calculation Section 2.1 .... Introduction As the result will be the ratio of the LOOP plus BORN cross-section to the BORN cross-section, two calculations are needed. The first, the Born ampli- tude, is a tree structure and does not involve an integral. The calculation will highlight a trick for projecting the spinor product of different linear momenta, i.c. 17(P3)v(P4), onto a basis set more amenable to calculation, and will intro- duce a projection of the gluon polarisation vector onto a chosen set of linear momenta; both these projections will also be used in the more complicated LOOP calculation. Other than these projections, the Born term calculation is straight-forward. The LOOP calculation , which of course involves an integration, will use the same spinor replacement technique, which then allows the TRACE of the nu- merator expressions to be taken. Then the same replacement of the polarisation vector is made, resulting in an expression of several hundred terms, each of which must be integrated. Some of these terms contain a factor of Epf(k, A, B, C) in the numerator which would make the integration over directions of I quite difficult. Improvement in these terms is obtained by replacing k” in all Epf factors with a linear expansion onto four momenta of the problem, after which all Epf’s become Epf(P1, P3, P4, P5) which of course is the only indepedent Epf in the prob- lem, and since it no longer depends on k”, can come outside the integral. The approximately 50 remaining terms in the LOOP integral can be classi- fied into integrals based on the number - from 0 to 3 - of PX - 1: factors in the numerator and the number of similar denominator factors... three for the five ‘point diagrams, two for the four point. Each integral may then be reduced to a 1simplier integral through a process of adding and subtracting appropriate terms 1to allow some of these PX - 1: factors to cancel with denominator factors. This reduction results in a set of 19 integrals which can not then be further ,reduced and must be solved analytically. 18 In this for the the Bo square This i1 licity s Sectie Sub-S The B point, Sub.§ The fi 80m son), when 19 n this manner a single complex number is produced for the LOOP amplitude 'or the chosen helicity state and set of physical parameters. This is added to he Born amplitude, an absolute square taken, and the RATIO to the absolute quare of the Born term determined. This is repeated for all physically allowable sets of input parameters and he- icity states. Section 2.2 Calculating the BORN Term Sub-Section 2.2.1 ......Introduction The Born term is the sum of two diagrams, called the five point and the four mint, by analogy with their counterparts in the LOOP calculation. + 8107' (C + Duh. P3 :r-t P5 lub-Section 2.2.2 The BORN Amplitude BORN = BORNfi" + BORNfour he five point amplitude is: om, , _ {wow + mumps» Wax. - 6X1 - P5 - 7 - P1)(A + B..)~,».(p2)] [we ‘— —2(P1P5)MZP = TRACE[s(P3)§(P4)(C + D75)7.,] Tmca(u(P2)s(Ps)(~, . s)(-7 - P5 .. 1-P1)(A + 8-15 )1'] DEN ;. ’ ‘ —2(P1P5)MzP Jere M Z P is the 27° particle propagator: MZP = 2(P3P4) + M3 - :TM, and 301 80!! Sub may Vie the 5111 20 and the four point amplitude is: _ iz(P4)(C + D75)7.,v(P3)] [5095)” + 37mm .101 + 7 -p2)(7 oe)u(P2)] BORN’”' ' 2(P1P2)MZP BORN _, TRACEI'(P3W(P4)(C + D75 )‘le TRACEI'(P2)7(P5)(A + 3‘75 )‘Yvh' ° P1 + ‘7 ° ”)0! ° ¢)] ’°" ' 2(P1P2)MZP Sub-Section 2.2.3 ....Projecting the SPINOB. product In Appendix B it is demonstrated that a spinor product of the form v(p)iZ(q) may be replaced by (1 i 75 )7 . A where A is a four vector given by A” = (p ° 09" + (9 ° ‘0?” " (P‘ 9)“: i EPfO‘: 9.10. 3) \/ 16(p - 8)(q - 3) where s p is an arbritary four vector of the problem, and the plus-minus signs are determined by the combination of helecities. This permits the substitutions: v(P3)'ii(P4) = (1 i 75 )7 . B and u(P2)'1'1(P5) = (1 :t ‘75)7 - CU here B = (P3P5)P4u + (“NWWi 5‘me P3, P4, P5) " \/16(P4P5)(P3P5) nd CU _ (P1P2)P5,. + (191175)qu - (P2P5)P1,. i Em“, P1, P2, P5) " \/16(P1P2)(P1P5) 'hich enable the SCHOONSCHIP program of Appendix I to easily calculate e TRACES. b'section 2.204 oooooooRemoval Of 20 vertex (A + 375) and strong coupling constant The pm led out For furw Th stn Ne 21 The above introduction of the (1 :L- 115) factors into the TRACES nullifies the presence of the 20 vertex coefficent (A + B75) as demonstrated in Appendix E. The algebra of Gamma matrices causes the 75 in the coefficient to become redundant and the remaining factor (A -— B)(A + B)(C' + D)(C — D) can come outside the TRACE process where it simply cancels with the same factor that will later come outside the LOOP integration before the final ratio is taken. For this reason the Z0 vertex coefficient does not affect the ratio and will not further be carried in the calculation of either the Born or the LOOP terms. This cancellation is also true of the GLUON vertex coefficient, which will thus also not be carried. This is quite desirable as it removes any presence of the strong coupling constant with all its attendant uncertainties from the result. Sub-Section 2.2.5 ... Projection of the Gluon Polarisation vector Next the polarisation vector of the gluon is replaced by e _ (P1P2)P5u + (P1PS)P2,1 i (Epflp, P1, P2, P5) p _ ______________ ,/(—P1P2)(P1P5)(P2P5) where i is the GLUON-HELICITY. This replacement is derived in Appendix J. Sub-Section 2.2.6 ...... The BORN Term result The Born term amplitude is now entirely evaluated in terms of the set of alge- braic dot products that form the set of physical parameters for this problem. The SCHOONSCEIP program of Appendix I outputs this expression in a FOR- TRAN compatible form. It is then incorporated into a FORTRAN program which will use it to determine a single complex number- the BORN amplitude- for each physically permissible set of parameters for the chosen helicity state. Section 2.3 ... Calculating the LOOP diagrams Sub-Section 2.3.1 ...Introduction 22 The LOOP term is the sum of the four diagrams: those for lepton scattering: .1- and those for anti-lepton scattering: ___%__<§_\' \ <2? ones a manta mate [fin = [1m 1 Sub- In ea: term 875): 113" : Iii-r {0110! the I 23 Once the lepton scattering diagrams are solved, the anti-lepton scattering nes are obtainable from that solution largely by re-labelling the linear mo- ienta, ( except in the lepton TRACE itself) . Thus it is sufficent to demon- trate the lepton solutions only: __1_ 2P1P2 Your = Iloap = Ilia: + Ijour ,. . _ f 4‘“ TRACEIv [(PlP4)(P3PS)+(P1PS)(P3P4)—(P1P3)(I-"4P5)]2 again derived in Appendix P. Ifthe selected set of six dot products passes this inequality test, the FORTRAN program forwards it for processing. It processes both signs of Epf(P1, P3, P4, P5), representing reflection of the output particles across the plane defined by the two input particles. (In the FORTRAN program Epf(P1,P3,P4,P5) is la- belled by the symbol EVL.) Sub-Section 2.4.3 ... Processing the Point The parameter labelling the helicity state is examined and the proper BORN TERM function called to produce that amplitude. It contains both four and five point diagram contributions, each multiplied by the appropriate propagator of the other ready to be combined to a single number through the combining denominator 4(P1P5)P1P2(MZP) , ( labelled PROPIV in the program ) The other multiplicative factors, those arising from the two Spinor replace- ments and the gluon polarisation vector replacement, (labelled BOIV, CUOIV, ind EOIV in the program), will also appear in the LOOP number and hence iivide out when the ratio is taken. For this reason they are set equal to unity, 'or convenience. 29 To evaluate the LOOP amplitude, the nineteen integrals for this set of dot products are evaluated, along with WIV, which is the determinant used in the expansion of k,“ as per Appendix L. These results are fed into the linked LEP- TON LOOP function which returns a single complex number. As the AN TI-LEPTON diagram is the same as the LEPTON if one interchanges P3 with P4 (except in the LEPTON line TRACE), the dot products involving P3 or P4 are so interchanged, the sign of Epf(P 1, P3, P4, P5) switched to ac- count for this interchange, the nineteen integrals re-evaluated along with WW, and the results fed into the ANTI-LEPTON LOOP attached function, (which has the LEPTON line TRACE in minus reverse form in preperation for the switch), and the calculated number returned. (The minus sign is due to travers- ing the variable LOOP momentum Ir." in the opposite sense when writing the line TRACE for this diagram.) Each of these numbers has already combined its four and five point contri- butions with appropriate multipliers in preparation for combining into a single number. The denominator for that combining is now folded in and the results joined as a single number for the LOOP TERM. That number is then sealed by the scale factors —(1/137) and 1/(161r). As in the BORN TERM, the factors BOIV, CUOIV, and EOIV arising from the Spinor and polarisation replacements are set to unity. The LOOP number is added to the BORN number, squared, and divided by the square of the BORN number to form a RATIO, which is written to an output file along with the values of the six dot products that formed it. The next point in the grid of phase space is examined and, if valid, processed. This continues until all grid points have been examined. Chapter Three The Results Section 3.1 ... Introduction This chapter concerns itself with the presentation of the results of the FOR- TRAN program which calculates the RATIO of the BORN + LOOP cross sec- tion to the BORN cross section. The results are presented separately for each of the eight allowed helicity states. The display of the data is as generated, that is in grid fashion, one dimensionless RATIO number for each physically allowable set of external dot products. Rather than display the output from the small grid step sise which actually gen- erates the results (this is too much data to comfortably display), the program is rerun with a larger grid step convenient for displaying, the results of the two runs carefully compared to ascertain nothing interesting was lost in going to the larger grid size, and the larger sise displayed. The smaller stepped data is enclosed in Appendix U in case it is desired to examine it. Section 3.2 ....Choosing the Display Mode As indicated at the close of the previous chapter, those points of phase space ‘ which are energetically allowable lie on two plane triangular surfaces: ‘ -P1P3 -P3P4 -P1P5 -P4P5 -P1P4 -P3P5 1 Each corner of the triangles intersects the axis at EEK The triangle on the right involves only outgoing dot products. For e_ach point on . this triangle, ;a_ll__ points of the first (input) triangle are energetically allowable. w The data is presented by selecting representative points on the output triangle and for each of those points displaying the RATIOS for a representative set of input points on the input triangle. 30 View 1 «mt For ea calculi Pill pt 3' v A \ 31 View the output triangle straight on, and select 15 symmetrically spaced repre- sentative points: (the alogarithim for selecting these is given in Appendix V) -P3P4 For each output point generate an input triangle in which the RATIO has been calculated for each of 15 representative points in conjunction with the fixed out- put point: .P1P3 The mi points that is 4(P1P derived Again, the em The (11 Mich the set changh Sectio The fol 32 The missing RATIOs are due to the fact that not all the energetically allowable points also separately conserve each of four components of energy-momenta, that is not all survive the inequality test: 1(P1P4)(P3P5)(P1P5)(P3P4) > [(P1P4)(P3P5)+(P1P5)(P3P4)—(P1P3)(P4P5)]7 ierived in Appendix P. ‘ Again, the display data has been carefully compared with that generated by the smaller grid sise to assure it is indeed representative. The dual values given for each RATIO represent the reflection of the output particles across the plane of the input particles. This reflection does not change the set of six dot products, but does alter the RATIO. It is accomplished by :hanging the sign of Epf(P1, P3, P4, P5). ‘ Section 3.3 Results for the Eight Helicity States The following eight pages contain the display of the eight helicity states. to: Z0 lll III 41 Section 3.4 ... Focus on M, Peak ' Of particular interest is that area of phase space where the ’mass’ carried off from the M, decay is equal to M, itself, that is: —2(P3P4) = M3 , and the 20 propagator becomes minimal: MZP = 2(P3P4) + M} — iI‘M, = —irM; Therefore the values of P3P4 are slowly stepped through the M, peak in a sep- arate running of the FORTRAN program. This is done for the helicity state A, assuming it to be typical in this respect. -I’3P4 .135, Q’s .The results ( enclosed in Appendix U), show N_O particular distinction from any other area of phase space in the range of RATIOs produced. As one of the goals of this project is to look for asymmetries in the 20 de- cay curve, the above data is plotted— RATIO vs. P3P4, as P3P4 is stepped through the M, peak. In this graph, one point stands for the average value of the RATIO on one of the lines in the above diagram, averaged over 1000 points. RATIO 1.02 1.01 1.00 00 Illlllll'llllllllll IIIII'II I'I'IIIII 42 0 ° 0 I. 0 .. o 0 ° 0 .. o 0 0 O O .. o I o .. o J: J l ' I I I I I I I I I J I I I I I I I I I I I I I I i In I 7 I I I l I I I I 3300 4200 T 4600 pap, U M‘— This plot shows & appreciable asymmetry, NOR shifting of the ZO peak. Section 8.5 ... Edge Activity All the above results work on the interior of the triangles, staying away from the edges, that is away by 5 per cent. 3w 1' ll 11 of t of d ThI NI -PxPs -P1Pd ~P1P5 I’TI”T -P8P( -P:Ps/ £5 This is because as the edges are approached, the RATIO can become arbri— tarily large due to the presence of dot products in denominator positions. Section 3.6 Connecting with the Center of Mass System It may be of interest to relate a set of dot products to outgoing scattering angles in the laboratory (center of mass) system. To this end, the polar angles of the three exiting particles in the center of mass system are derived in terms of dot products in Appendix P. They'are: P1P3 ] “(93)“ = 1 ’ 2 [P3P4 + P3P5 _P_1P_4_ P3P4 + P4P5 P1P5 ”495%" = 1‘ 2 [m] c040,)”, = 1 — 2[ Note that the new restrictions that seem to apply: —(P1P3) < —(P3P4+ P3P5) are air Secti< The p in the Ipece, The 1: The p was II For tl angle: in is space contr l0 illI The 1 WE PIPE press forwI parti E 1+4 -(P1P4) < —(P3P4+P4P5) —(P1P5) < —(P3P5+P4P5) are already contained in the restriction that P1: be greater than zero. Section 8.7 Analysis of the Results The pattern of results is approximately the same for the eight helicity states, in that almost all the RATIO’s are near unity except for one ‘corner’ of phase space, where it might range from a value of 2 to near 50.. The largest ratio in the representative sets is 45.669, the smallest 0.0526. The plot of RATIO vs. P3P4 showed _N_O_ noticable asymmetry as the M1 peak was traversed, Egg shifting of the Z0 peak. For the small grid size, the values grew arbritarily large as the edges of the tri- angles were approached, as expected due to the presence of these dot products in denominator positions. This increase is unimportant as the amount of phase space near the edge goes to zero faster than the amplitude grows and does not contribute to the integrated cross section. This is demonstrated in the solution to the preliminary diagram in Appendix W. The largest values of the RATIO appeared in the phase space ‘corner’ of large P4P5 and small and equal P3P4 and P3P5. The ‘input’ triangle indicates small P1P3 and P1P5 and large P1P4 . Comparison with the center of mass ex- pressions of the preceeding section give particle 5 (the quark) staying in the forward direction, particle 4 (the lepton) reversing direction to emerge at 180°, particle 3 (the anti-lepton) emerging at 90°. Thus the largest effect of this pro- cess produces a high transverse momentum product! Secti There Seeti The ‘ calm In I of em Sect Thin Item III A and aqua (not The Illtll iron SCI Sec Chapter Four Verification and Validation Section 4.1 ... Introduction There are six points at which verification of the calculation is enacted. Section 4.2 Verifying Epf(P1,P3,P4,P5) The value of Epf(P1,P3, P4,P5) in terms of dot products of the problem is calculated two different ways in Appendix C - first by direct evaluation in a cho- sen reference frame and co-ordinate system, and second via the usual method of evaluating a determinent. Both methods give the same result. Section 4.3 ... Verifying the Spinor replacement This replacement, derived in Appendix H, for dis—similar momenta is non- standard and is thus checked carefully. In Appendix Q it is applied to two simplistic diagrams in which the amplitudes and the spin averaged cross sections can be hand calculated. In each case, the square of the amplitude, (using the replacement), is equal to the cross section, (not using the replacement), verifying the correctness of it. The second calculation is then slightly altered, to use the exact spinor replace- ments for this problem, and a SCHOONSCHIP routine written to evaluate and compare the amplitude squared and cross section. The successful compar- ison validates the correctness of the exact replacements and the correct use of SCHOONSCHIP syntax in evaluating the amplitude. Section 4.4 ... Verifying the Born term The eight helicity state amplitudes of the Born term are separately squared and added. This sum is then subtracted from the spin averaged cross section. If the amplitude calculations are correct, this will produce zero. It is checked as the last calculation of the SCHOONSCHIP program in Appendix I which generates the amplitudes. The sero is produced. This verifies that the least standard piece of the calculation, the Spinor replacement for dis-similar mo- menta, is working correctly. Less importantly, though of course also essential, .t checks that the other factors of the Born amplitude are free of error. As it operates on the amplitudes simultaneously as they are outputed into FOR- I‘RAN compatible format, there is no further possibly of transcription errors in 45 theBor Sectio: it is m puchd tothe‘ Thh u lfleIE and pc II per precise enacte Thh c eeted produ above andti Theh the p This 1 otter i0 le Sect llth mom The by t: at u coefl me: The 46 the Born amplitudes. Section 4.5 Verifying the LOOP numerator It is noted in Appendix G that the quark singularity is benign because for precisely the value of Icy at which it occurs, the numerator also approaches sero to the same order. This zero is used as a check that the calculation is proceeding correctly. After SCHOONSCHIP has taken the LOOP traces, substituted for the spinor and polarisation vectors, and replaced I»:" in all Epf’s by its linear expansion ( as per Appendix L ), then the replacement in the resulting expression of In” by precisely this value should still produce the zero, if all the substitutions were enacted correctly. I This check is performed by the SCHHONSHIP program of Appendix R, a trun- cated copy of the main SCHOONSCHIP loop program ( Appendix K ) that produces the FORTRAN compatible amplitudes. It is truncated after all the above substitutions are made and before the base integral groups are recognised and the nineteen integrals symbolically labelled. The insertion of this expression for k” does produce the sero, indicating that at this point all the above substitutions were made correctly. This zero took a half hour of SUN time to produce, reflecting the large number of terms present in the calculation at this point, all of which had to be correct to produce the zero. Section 4.6 ... Validation of Divergent parts of Nineteen Integrals Although the calculation itself is finite, each separate diagram is infinite, and most of the nineteen integrals possesses an infinite piece. The infinite part of the diagram (and of the nineteen integrals) is regularized by the use of small photon and quark masses which are allowed to go to sero at the end of the calculation where the masses appear in log form, and their coefficients must sum to zero over both diagrams to avoid divergence as the mass goes to sero. ‘ The appearance of these zero co-efiicents verifys once again the correctness of the substitutions already once checked by the replacement of k“ as per the above section. It goes further and verifies the base integral groupings of Appendix M and the divergent parts of the analytic solutions of the nineteen integrals executed in Appendix N. This check is enacted by using the SCHOONSCHIP loop program of Appendix K and instead of producing algebraic output, altering it to produce a numeric result for a specific set of dot products. At the beginning of the program the six symbolic dot products are replaced with a does n sepsis mine the SC of six Titll The m ore e: cards The 0 reps gehre There The I pendi prodI It is checl Sect with a set of six numbers that form a physically valid set. As SCHOONSCHIP does not evaluate logs, any logs of the above six dot products are evaluated separately and fed into the SCHOONSCHIP program. The same code that evaluates the nineteen integrals in the FORTRAN program is then inserted in the SCHOONSCHIP program, where it produces nineteen numbers from the set of six dot products. (Alternatively, these could have been evaluated in FOR- TRAN and the nineteen numbers fed in.) The calculation is then performed numerically instead of algebraiclly, with the one exception of the logs of the fictitious photon and quark masses, which are carried as algebraic symbols. The ouput of the SCHOONSCHIP program now becomes a complex number representing the convergent part of the amplitude being calculated and two al- gebraic symbols with coefficients for the logs of the photon and quark masses. These coefficients must sum to zero over both diagrams. The altered SCHOONSCHIP program to perform this check is listed in Ap- pendix S. The valid set of six dot products were arbritarily chosen, and the production of the zero co-efficents verified. It is to be noted that the convergent parts of the nineteen integrals are not checked by this result. Section 4.7 Numeric semi-check of nineteen integrals Finally the convergent and divergent parts of the nineteen integrals are semi- checked by comparing (for a specific numeric set of dot products), the analytic result with the result of an approximate numerical grid integration. The result is only approximate as the numerical integration necessarily diverges. This divergenge is examined by introducing small numeric photon and quark masses and comparing runs with increasingly smaller masses, looking for an extrapolation to zero mass. The approach to zero is quite tame, as expected for a logarithmic divergence, and even the presence of a minute mass, one-thousandth the dot product number, keeps the numerical integration from turning upwards. As the one~thousandth value is approached from the higher value of one-tenth, the integral does not vary, indicating insensitivity to the presence of the mass. The numeric integrations are thus performed with these one-thousandth masses in place and the results compared with the analytic solutions. The FORTRAN code for the numeric integrations and the results of the com- , parisons with the analytic solutions are in Appendix T. In all cases the results ‘ are within 30 per cent for a large grid size and become better as the grid size is reduced. In almost all cases the numeric results are above the analytic and by about the same percentage, and in almost all cases change the same as the grid size is reduced. 0 While not conclusive, this is indicative the analytic solutions are consistent as a class. This in looking terns. cue tc The Ie of the putt . dents, A! th gent, i wont No re 48 a class. This method was used to identify errors in the nineteen analytic solutions by looking for those numeric comparisons that did not obey the systematic pat- terns. It was successful in finding three errors which when corrected led in each case to the integral falling into the pattern. The search was instigated by the failure of the sero coeflicients of the log terms of the above section to emerge. The three errors found were all in the divergent parts of integrals and when corrected led to the emergence of the zero coeffi- cients, indicating no more errors in the divergent parts. As the convergent parts of the integrals are functionally similar to the diver— gent, it is to be expected that any errors in them would produce similar pattern anomilies in the analytic-numeric comparison as did the divergent. No remaining anomilies are present in the comparisons. Secti Atth analy fions wela prfie Sect ltha leted It th The fide reah phh Sev ued um vec an den “e at In at in Chapter Five Conclusion Section 5.1 Introduction At this point the calculation has been made, and the data summarised and analysed. It is time to draw the conclusions of the project against the ques- ‘ tions raised in the Introduction, to see how it compares with estimations as well as other actual calculations that have been performed and to see what next projects might be undertaken. Section 5.2 Conclusions It has been ascertained that the influence of the re~scattering process here calcu- lated is, except on the very edges of phase space and one ‘hot’ corner, minimal. It thus offers little promise of producing an observable consequence. The specter raised in the Introduction, that the measured width of the Z0 par- ticle could be contaminated by the effects of rescattering is not at this point realised. This must be qualified as there is definitely a ‘hot’ corner in the am- plitude that might contribute on a detailed phase space evaluation. Several key techniques for working with diagrams of this complexity were gath- ered together: (a) the projection of a dis-similar momenta spinor product onto a momentum basis set of the problem. (b) a similar projection of a polarisation vector (c) the projection of the LOOP momentum k“ onto a momentum. basis set of the problem, (d) the technique of reducing a loop integral containing three denominator factors to a sum of integrals containing at most two (e) the various steps for solving this still non-trival set of integrals (f) the set of checks enacted at various points in the calculation to insure its correctness. In addition it was determined once more that the Spin factors do not largely affect the value of an amplitude, as the simplified preliminary diagram yielded similar results to the full calculation. Section 5.3 ... Relation to Other Work In the ‘Evaluation of a Preliminary Diagram’ in Appendix W, the restriction of zero mass on the outgoing quark was lifted. It was found this did N21 produce an enhancement, indeed that the diagram was maximum at the zero mass. This can crudely be understood in that the region of interaction for re-scattering of the outgoing particles is greatest if they all have like speeds; so if some have the speed of light (sero mass), all should, for maximum affect. Also from that diagram an estimation of about 1 per cent was made for the 49 result 0 A! to tl diegrsn erpeete with th The in! quarts (In GL septum otieet 1 counts Seeth The I: the er a the acne lead it in thi: effect of the 50 result of the larger calculation. That estimation was fulfilled. As to the restriction of the two internal lines being ON-SHELL, the preliminary diagram has been elsewhere10 calculated with this restriction removed, and the expectation (based on similar past calculations”) that the efi'ect is not enhanced with the lifting of the restriction, fulfilled. The larger calculation done with GLUON scattering and the M, decaying to quarks has also been done elsewhere9 and results of the same low order found. (In GLUON scattering, the interference term is of course missing due to COLOR separateness between the BORN and LOOP digrams. This diminishment is offset somewhat by the increased strength of the strong interaction coupling constant over the electromagnetic one of the photon scattering.) Section 5.4 ... Future Work The most obvious next things to do would be to futher explore those corners of the extended Dalits plot that generated the most promising effect. In particular, as those corners were in conjunction with the production of a high transverse momentum final state lepton, most acessible to experiment, see if these corners lead to changes in the expected angular distribution of products. As the RATIO in this corner reached a sizable value (near 50), a conclusion as to the negligible effect of this re—scattering process can not be drawn until the weighting factors of the phase space intergration are folded in. 1... Eic 2|” Be! 3'” hbl 4... Be: 5... Ch 5... Au 7_--- ’t B... a. 9... J( 10 J, 11 A I.‘ J Footnotes Eichen, et al. 1984 ‘Reviews of Modern Physics’ Vol 56, No 4, 579 Bergsma, et a1. 1983 ‘Physics Letters’ 1238, 269 Abrams, et a1. 1989 ‘Physical Review Letters’ Vol 63, No 7, 724 Berger, et a1. 1983 ‘Proceedings of the Drell-Yan Workshop’ Fermilab, Batavia, Illinois Chaichain, et a1. 1979 ‘Physical Review D’ Vol 20, No 11, 2873 Aurenche and Lindfors 1981 ‘Nuclear Physics B’ Vol 185, 274 ’t Hooft and Veltman 1979 ‘Nuclear Physics B’ Vol 153, 365 H. Strubbe 1974 ‘Computer Physics Communications’ Vol 8, 1 Jon Pumplin 1988 ‘Physical Review 0’ Vol 38, 1149 Jon Pumplin - personal communication Abe, et a1. 1989 ‘Physical Review Letters' Vol 63, No 7, 720 Jon Pumplin, Wayne Repko, Jules Kovacs - personal communication 51 Bjorken and Me: Kom Bibliography Bjorken and Drell - Relativistic Quantum Mechanics, McGraw-Hill, (1964) Jules Kovacs - Lecture Notes - Relativistic Quantum Mechanics, MSU, (1983-1984) 52 Consii The pro and sin then Then giVes And the Adi Appendix A Allowable Helicity Combinations Consider a lepton line through one vertex: 7;! The propagator numerator is: Ed: 7,, v‘ and since Hi 2 ii 1 4: 75 2 then 1 as 7””? = at < i 75) 7W? 2 Then using 75714 = ‘71175 gives 1 :1: Hi 71:”? = id: 7# (775') 1’7 And since 1 i < ‘75) vi ___ 0 2 (1 i715) v; =1} 2 the propagator is zero unless ii and 11 have opposite helecities. Adding additional vertices to the electron line introduces additional gamma 53 matrii The lice: How line 54 matrices in pairs, not changing the result. The same is true for any lepton line with internal line propagtors and ver— tices that each contribute one gamma matrix. However, if one particle is incoming, and the other outgoing, as in the quark line for this problem: arm The propagator numerator is: _ '7 ui 7,, u.‘ and by similar steps as above the helicites must be the same. «... ‘l—V The to be< and o The 1 For a In te This the ‘ Inc am Appendix B Gamma Matrices, Metrics, and the Dirac Equation The original Dirac equation, (am-E+mw=o to be consistent with the Klein-Gordan equation required that Orgaj + «1,0,- = 26,} 02 = :82 = 1 130; + 0m = 0 and a and [3 must be Hermetian. The Dirac equation may be written in terms of Gamma matrices. For any metric: V’W” + 7"?” = 29“" In terms of the original Dirac matrices. 75 is: ‘75 = i0'10'203 This evaluation for 75 into the original Dirac marices will be the same for all the metrics here considered. In one such metric, for example the one used in the text by Bjorken-Drell: 1 o o 0 ,,,,_ _ 0 —1 0 o 9 ‘9""‘ 0 0 —1 0 0 o o —1 and the energy-momentum four vector- Pu=E0+Pr+Py+P: 55 The dot and the change 75 beer Anoth and t The and 56 P“=E0—P1-_Py—P; dot products in this metric are positive: P“P,, = +m."z the Gamma matrices, defined in terms of the Dirac matrices: 7° = 13 7". = Bar ge the Dirac equation to: (7 -p- "the: 0 _ ' 0 1 ,2 3 ther metric, the one used by ’t Hooft - Veltman is: —1000 ,,__0100 9‘9“”‘0010 0001 the energy-momentum four vector- P“=Eo+Px+P,+P.- P,,=——E0+P,,-i—Py—i-Pz dot products in this metric are negative: the Gamma matrices, defined in terms of the Dirac matrices: 7° = 17/3 7" = 1330'; change t 75 bec01 A varia and it The t and 1 char 751 57 nge the Dirac equation to: (7'7"19 - "IN = 0 )eCOflleS: 75 = i7°717"73 'ariant of the above metric is the Minkowski metric: 1000 0100 [JV—...— 9 "“9“"“6W‘ 0010 0001 l the energy-momentum four vector- P“=Pp=P,+Py+Pz+iEo e dot products in this metric are also negative: ., P“P = —m.‘ l the Gamma matrices, defined in terms of the Dirac matrices: ‘7" = i130? 7'4 = -l3 nge the Dirac equation to: (hr-171W: 0 )ecomCS: q 4 75‘: 717‘737 conv chos (0'01 plan P2- P1 c0- Th "U“U“U'TU Appendix C Expanding Epf(P1, P3, P4, P5) As Epf(P1,P3,P4.P-")) is a Lorentz i11variant,it may be evaluated in any onveinent reference frame and co-ordinate oreintat.ion The reference system hosen here is the usual one for this prolilem- the rest frame of P—4 and P J The o—ordinate system is with P_4 taken as the plus z direction and P3 111 the x- 2 lane. P3 F 1 p4 ‘116 four vectors— P1,P3,P4.P5 - have their components evaluated for this >—ordinate system in the solutions to integrals 15, I8, and 118. in Appendix N. 'he results are- using as usual k0 = ,/—P4P5/2 11d working in the Minkowski metric— 4 = (0 0 +160, iko) 5 = (0 0. —ko 1.11:0) _ W (P3P4— P3P5) _.(P3p4+P3P5) 3 —( H0 Zko ) 1: (P1: Ply, (P1P4-kP1P5): ai-(P1P42-L-E’1P51) here P1_ (P1P4)(P3P5)+(P1P5)(P3P-1)-(P1P3)(P~1P5)> ’ _ i 2km/(P3P4)(P3P5) 58 P1P3 ap‘ products As the E tensor we have. = 11.141 Which r This C: 'l P1,}: Whirl catin Posh. the n will 1 A110 59 4(P1P4)(P3P5)(P1P5)(P3P4) — [(P1P4)(P3P5) + (P1P5)(P3P4 — (P1P3)(‘P4P5)]=’ 4ko'-’(P3P4)(P3P5) appears in the above results. It is obtained in terms of the other dot :ts by squaring P2 and noting the particles have zero mass- P22 = 0 = P3P4 + P3P5 + P4P5 — P1P3 — P1P4 — P1P5 Epf function is defined in terms of the Levi-Cevita totally anti-symetric Epft‘l, B, C, D) = fag751‘iaBpCv'7Dfi '9. immediately: Epf(Pl, P3, P4, P5) = 1(2k03)P3,P1, 1(P1P4)(P3P5)(P1P5)(P3P4)—[(P1P4)(P3P5)+(P1P5)(P3P4—(P1P3)(P4P5)]3)1/3 must be greater than 0i to make P lg real. an be given a more synnnetric form by re-arranging the numerator of 4ab—(a+b—c)2: b—[a2+b2+c2+2ab-2ac—2bc]:a2+b2+c2—2ab—2ac—2bc Epf(Pl, P3, P4, P5) = ii([(PlP5)(P3P4)]2 + [(P1P4)(P3P5)]2 +[(P4P5)(P1P3)]3 — 2(P1P5)(P3P4)(P1P4)(P3P5) (P1P5)(P3P4)(P4P5)(P1P3) — 2(P1P4)(P3P5)(P4P5)(P1P3))1/2 is transparently symmetric under the interchange of P3 with P4, indi- that Epf(Pl, P3, P4, P5) will have the same absolute value for both the >11 and electron Loop diagrams for this problem. and in order to differ by nus Sign required by the interchange of two vectors in the Epf function. ck up the oppositely signed square root of P13. er possibly useful symmetric form could be generated by: (a-b)"+(a—c13+(b—ci?-a=_12_c2 The result 1 nant expanr [EpflPtf giving the Eu -2(Pl 60 for Epf(Pl, P3, P4, P5) agrees with that obtained by the determi- 1sion of the four demensibnal Levi-Cevita tensor: P12 P1P3 P1P4 mm 1022 P3P4 P1P4 P3P4 P33 P1P5 P3P5 P4P5 E’3. P4. P5)] 2: [Epf(P1, P3, P4, P5)] = same result as above: ’(P1, P3, P4, P5) = ii([(P1P5)(P3P4)]2 + [(P1P4)(P3P5)]3 +[(P4P5)(P1P3)]‘~’ - 2(P1P5)(P3P4)(P1P4)(P3P5) P5)(P3P4)(P4P5)(P1P3) — 2(P1P4)(P3P5)(P4P5)(P1P3))1’2 These are a ---Bjorlren and Appendix D Feynman Rules a verbatim copy of Appendix B in RELATI\-'lSTIC QUANTUM MECHANICS d Drell 61 “hunk- 1“ 62 .AppmmflxJEg Rules for Feynman Graphs lxprcssions for cross sections are divided into two parts: first the invariant ampli- ide In, which is a Lorentz scalar and in which physics lies, and second, the phase me and kinematics! factors. In terms of 1111, the expression for a difierential F088 section do is, for apinleu particles and for photons only, ,-;(;)(m),mi . . .11; )v, — v.) 201,, 24», 2mm)! 29.12:)! . xmm(m+m- kOSmh ‘ 1 here u, - V 1pr + m! as usual and v1 and v, are velocities of the incident col- lear particles. This expression is then integrated over all undetected moments ' - - k. of the final particles. The statistical factor S is obtained by including factor l/ml if there are m identical particles in the final state: s-flfi 0' 1r Dirac particles,x the factor 1/2u, is replaced by m/E” and the statistical factor is again included; all other factors remain the same. . A diflerential decay rate of a particle of man M is given in its rut frame by I - 1 ...i'. I_‘w“_..i cac(_zk)3 d“ ‘1 (¥) 2111””l 2.142,): 242.): (2’) 7 1-1 ‘ ‘ If one adopts the convention that Dirac spinor-s be normalized to 2171 instead to unity as in Eq. (11.2), Eq. (3.1) applies as well to fermions. The energy ijection operators are then simply (in i i) in place of (A3). 35 Elects He in / 4‘ p, t Fig. B“ action 6 3 Relativistic quantum mechanics ctrodynann'cs of a Spin-zero Boson Here there are three vertices. shown in Fig. 3.2, corresponding to the inter. ' ———— ---- 'i‘o(p+P’)‘ /. z;\\ 3.8 n Lagrangian density 131 - —g‘¢°-¢Y (i _ .9.) WA + c I-AI- .ptp- + “av”. . 32; as. . p o . . . . . 0 rules for these vertices are: l. A factor -ieo(p + p')., where p and p’ are the momenta in the charged line. 2. A factor +2ieo’g, for each “seagull” graph. 3. A factor iap’ for each mass counterterm. l. A factor 5 for each closed loop containing only two photon lines, as shown 3. B3. 3. Renormalise the charge as in spinor electrodynamica. Rulufor F073” 1; Melon- There I 56: " u illustnt Mitt ms com 61+ eynman graphs 289 Ieson-Nucleon Scattering ['here are four interaction terms in the charge-independent theory: 3c; - —.c; whim-w:- amzi‘rw: — Kau’:§°§:+ Mama-w: nstrated in Figs. BA and B.5. The dotted line signifies that I - 0 only is I l / / w A X\ / \ / ““2 \g /f \\ Fig. 3.4 mitted from the meson pair ij to the pair rs, as shown by rule 2 below. The counterterms are treated as before and there is: \ I \\j I], \ / \\ / Fig. 8.5 )0 so(-2i 5X GU68 / \ / /i \< I/ \ l. A factor 9.7.1. at each meson-nucleon vertex giving relative coupling gths of \/§ 9. for charged mesons and 11 for neutral ones to protons and rons, respectively. 2. A factor —2iaxa.~,-a,. at each four-meson vertex in Fig. B.5. . . B. A factor x for each closed loop containing two meson lines as in Fig. B.6. Fig.3.6 ooo<: >000X§ t 0/ I Electrodynl' A vector -g,,/k’ for n «for photons There on p //-ie°[(p+l l/' ' 1‘1. / ’iluz; ‘ r d / Fig. 8.7 interaction I 3' ' ‘lCoI Th! rules to 1. A is 2. A is 3. A in 4. A f: 5. For “Omnibus thd C. N. ‘ 11ml. loop; m“ “d for M 65 Relativistic quantum mechanics dynamics of Spin-one Boson ector boson propagator is [—g," + k,k,/m'](lc' — 7M)“ in place of the for massless photons, and the external line has a polarization factor c. otons. re are electrodynamics vertices shown in Fig. 13.7 corresponding to an 5.)“ u I .__-_..-a _2———-——-5 [(fip’Ls.‘ 1” I‘o [291.5 p.’ gal-Pfl'u] ” / -“‘"‘ " -s_s,,] (\ \\ x/ 21.? \ x} ‘\ B / \ \ / \ \ >n Lagrangian density ..[(6L:) (Ar _ v)_(2)(‘47 O -A It)]. '0' 82,. ‘P" W . at. w, W I + co’iIA.A“w:¢' - A.¢“A'¢:l= + éu':¢:¢': . for these vertices as illustrated are: fector -ieo(r’ + puns + ieooapf. + iconoc- flew? + ieo'l29um - anon. - 9-590]- factor am... for each mass counterterm. factor 34 for each closed loop containing only two photon lines. >r the derivation of these rules from canonical theory, efiects of an s magnetic moment term, and a regularization scheme see T. D. Lee . Yang, Phys. Rem, 128, 885 (1962). 1 above examples matrices are arranged in “natural order." F or closed means taking a trace. Isotopic indices are contracted with their mate an end of a boson line. In taking polarization sums for photons 2 «mask,» - -a»- A actor mesons 2 manna,» .s -9” + 15%]? A Give the A + where i in our Then 1 Appendix E Ignoring the 75 in A + B75 an an expression of the form (liVs) 7-M 7-N(A+B7~5) 7-P ‘B75 can be commuted to the left: (12!:75)(A=*:375) 7-M 7-N 7-P Je second :L- depends on an even or odd number of commutations. though ase it will always be even. :ing 7575 :1 A :l: A75 i 375 :t B7§ = (A i B)(1:t 75) 66 Itisd In gene: and in Where P4+ Solv So: Appendix F Evaluating the J ACOBIAN lesired to evaluate a Jacobian such that d(ko) d(|k|) = J d(lk|2 - 1.702) d(lc — (194+ 135))2 3.1, the Jacobian between (2:,y) and (fly) will be 61: Q1; 0f 69 QHQH 6f By his case ., 9 f = as” - y‘ g = x2 — y? + 2y(E4 + E5) + 2194135 df = (210611 - (2y)dy dg = df + 2(E4 + E5)dy Ik .I and y = kc and use has been made of the rest frame property 0, and of: g: (k —(P4+P5))2 = (134+135)2 —2(P4+P5)-k+k'—' = 2P4P5 + 2ko( E4 + E5) + k? = 2P4P5 + 2y(E4 + E5) + f dg=df+2(E4+E5)dy 1 -...— ———————d dy =2(E4+E5)df+2 (E4+E5)g _1 y _i g —df d0 ] d” ‘ fidf‘L Edy ‘ 23df+ x [2(E4+ E5) + 2(E4+ E5) 67 and using y where use and 68 _1-.__.‘/__ _1— 21 2::(E4+E5) 2(E4+E5) J = —1 1 2(E4+E5) 2(E4+E5) ing y = 1: : lco gives J _ 1 _ 4ko(E4 + E5) J = ; 4(P4P5) use has been made of at?) => |k| = k0 6(k — (P4 + P5))2 => 1:2 + 2ko(E4 + E5) + 2P4P5 = 0 => ko(E4 + E5) = -P4P5 “mun“— Given and BC This e or W} Whic‘ (0 ~ and Appendix G obsolving the Quark Singularity n the diagram: P3 P2—— ------ P4 P I 1 P5 integral: 0): [F(P4h'u(')~k)(c+ Drum/11173)] [WPSHWT-mlh«lb-TINA+ Bo.=.)')"-U-(P'3)] [(k — P4)2 + A13] [(k - P4 — P5 + Pl)2 + Mgmk] [(k + Pa.)2 + M? — mm] ing with m2 = P12 = 0: n..—_-m.+Pl 3 n2=2171-P1 lals 0 whenever m and P—l are co—linear: 2m - P1 = 2(m-fi— moEl) = 2moE1 [0039 - 1] ever 3—=(a--1)—1 leans, because of zero masses. the four vectors are also parallel. m = 3 n=m+P1=(u—1)P1+P1=0P1 69 ‘V‘__ onnd k2=0z nng Th5 Tm Mm me 70 .2 = 02m: = 0 0t free to assume any value. It is restricted by the other on-shell condition: 0. m = (0' — 1)P1 m = k — (P4+ P5): (0 — 1)P1 k=(a-1)P1+P4+P5 k2 = 0 = (a — 1)(P1P4 + P1P5) + P4P5 ; zero mass particles. (0 _1)_ —P4P5 — P1P4+ P1P5 P4P5 o- = 1+ P1P4+ P1P5 means the value of k at the singularity is P4P5 ’“u = “(I + ”u ‘ (W) “(I singularity uncovered is benign because the numerator of the above integral becomes zero when m = (a — 1)P1 and n. = 0P1. ...(7 - m) (7' - c) (7' - 71).... = ....(7'-m) (7‘~c) (7-0131)... : ...(o-—— 1)(7-P1) (7. c) (7 - 0P1) using (7 - A) (7 - B) = — (7' - B) (7 -A) + A - B gives: = ...(a -1)[-(7'-6) (7-P1)+ 6 - P1] (7' - 0P1) :h, because 6 - P1 = 0 becomes - ...(a - 1)cr(7' - 6‘) (7' - P1) (7‘ - P1) = ...(0'-—1)o‘(7 -e) (P13) :11 goes to zero as P12 . the same power as the denominator goes to zero. 0 :isasn2=o" Pl2 The fact tli can be use culates the this value 71 ‘he fact that the numerator goes to zero when P4P5 lc = _ — “ P4“+P5“ (7W_70W0) 1 —1 _ 1 —1I' a-W ( 1 _1 )x+(p3)1+ (p4)=—( 11) (_ 91— We > 1 —1 . 1—1 (1 _1>x+(p3)x+ (p4)=(1 :1)(i’-Io+a W ) \'+(p3)1'+‘(p4) =( We + 0.177 ) e(\' +(p3)\ +‘(p4)) and (lVo + a W) are 2 X 2 matrices , the four compo- lets of ”I: may be found by comparison Q. E D nilarly, "('+)(P3)—(_)(P4l = -(1— 75 )7 - W u‘+’(p3)fi<+’(p4)= «+7517- W u‘ M123)? )(p41= -(---1—75)7 W w that it is established that this replacement is valid ll“ max more sim- be found by projecting onto a set of four linearh independent four \ect01 s- W” = a.3(P3u)+a4(P4 )+a.5(P5 )_+a€,..jEpf(y P3 P4 P5) 72 and the co Starting v1 multiply ' The con These 1 R2“ ar and u glV‘e: TRr 73 :l the co-efficeuts (a3, a4, as, aw!) determined as follows: rrting with the defining statement for W“ (WWW = —((1 + 75h - Wm iltiply both sides by (7“ )ga (71“ )fia (11- T >05 2 TRACE( "—7y TV TV” + 75711711 VVV) filmy“) = —4Wp he conjugate of this yields n-H-“um = 41-17; hese two results may be dotted with different arbritary four vectors R1” and i2“ and multiplied together to yield amm- - R1)u(+)fi(+l(7 - raw“) = —16(W" -R.1)(W - R2) TRACE{11’17(7-R1)ufi(7‘ -R2)} = —-16(VV‘ -R1)(ll7 - R2) 11d using projection operators: v'(p3)'17‘(p3)' = (1:75) (7 - p3) u+(p4)fi(p4)+ = (1 :75) (7 - p4) gives FRACE[(—1—i2£l(7-P3)(7-Rl)(1:75)(7-P4)(')'-R2)] = —16(II".R1)(1-I7.R2) :1/2){TRACE[(-y-P3)(7-R1)(7-P4)(7-R2)]+TRAC-'E = —16(W' -R1)(II=' - R2) [75(1-P3it'1-R1)(7-P4)(1-R2)]} Let R1 i using TRAC 1' and the ab: 0! 74 t R1 = P5. l/V ~ P5 can be found by temporarily letting R2 also equal P5: ng iACEIh-AXv-BMGM-Di] = 4 [(A - Bx-C - D) + (A - D1<><><><><>> ,yep 78 Id,2,Dotpr,CU(J')= (CU1-CU2)tPl(J)+CU2tP3(J)+CU2tPD(J)+CU5:P5(J) +CUEpftEpf(J,P1,P3,P5)+CUEpf¢Epf(J,P1,P4,P5) A|,Funct,CU(K-)= (CUl-CU2)tP1(K)+CU2¢P3(K)+CU2¢PD(K)+CU5¢P5(K) +CUEpftEpf(K,P1,P3,P5)+CUEpf¢Epf(K,P1,P4,P5) Id, CUl = — CUOIV¢(P3P5+P4P5-P1P5) AI,CU2 = CUOIVtPlPS A|,CU5 = CUOIV*(P3P4¢P3P5+P4P5) A|,CUEpf = + QHELtCUOIV *yep Id,Trick Id,EDP1=O Id,2,Dotpr,PD(J')=P4(J)+P5(J) Al,Funct,PD(K2')=P4(K2)+P5(K2) Id,PlDP1=O AI,P3DP3=0 Al,P4DP4=0 A|,P5DP5=0 Id,PlDP3=P1P3 Al,PlDP4=P1P4 Al,PlDP5=P1P5 Al,P3DP4=P3P4 A|,P3DP5=P3P5 AI,P4DP5=P4P5 C P output *yep C NOW PUT IN THE POLARIZATION VECTOR EXPANSION. C Id,2,Dotpr,E(J')= E1tP1(J) e E3tP3(J) + E44P4(J)+ES#P5(J)+EEpft(Epf(J,P1,P3,P5)+Epf(J,P1,P4,P5)) Al,Funct,E(K-)= E1:P1(K) + E3tP3(K) + E4#P4(K)+E5#P5(K)+EEpf*(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5)) Id,E1 = EOIV*GHEL*(P3P5+P4P5-2#P1P5) Al,E3 = EOIV:GHEL#P1P5 A|,E4 = EOIV¢GHELtP1P5 Al,E5 = -EOIVtGHEL#(P1P3+P1P4) A|,EEpf= -EOIV *yep Id,Trick Id,Epf(P1,P3,P4,P5) = EVL Id,PlDP1=O AI,P30P3=0 Al,P4DP4=O AI,PSDP5=O Id,PlDP3=P1P3 Al,PlDP4=P1P4 A|,PlDP5=P1P5 AI,P3DP4=P3P4 AI,P30P5=P3P5 Al,P4DP5=P4P5 C P output ryep Keep HA4,HA5 ‘next 'lel B l Punc Id,E I Keep tnex Z HA Keep (36‘ 7-, ‘0 -x nfihNNnnnmnxxxrsnnrsnfinn .AAAI“- Hanan—4A Z QA=-2#P1P51HA4 +2*(P3P4+P3P5+P4P5)tHA5 B EOIV, BOIV, CUOIV, EVL Punch QA Id,EVL=i*A B PROIV,EOIV,BOIV,CUOIV,A,i Keep QA tnext Z HA = QAaConjg(QA) B PROIV,EOIV,BOIV,CUOIV,A,i Keep HA :next IN THIS SECTION, TAKE-THE Trace, REPLACE EACH K BY IT’S LINEAR EXPANSION, AND REDUCE TO A FINAL ANSWER. LHEL = +1 QHEL = +1 GHEL = -1 SCALE FACTOR FOR THE AMPLITUDE IS . TAKE THE Trace HBS=FIVE¢FO*F1*F2tF11tF5:F85*F95¢F105 HB4=FOURtFOtF1tF2tF11tF5tF84tF94tF104 SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM nonNNnnnnnxxxnnnnnnnnr-sn Id,FO=O.5¢(1+LHEL)tGG(J1) + O.5*(1—LHEL)¢G7(J1) Id,F1=(G(J1,B)) Id ,F2=(G(J1, M11)) Id ,F11=0 5¢(1+QHEL)¢GG(J2) + o 5*(1- QHEL)¢G7(J2) Id ,F5=(G(J2, CU)) yep Id,F85=G(J2,E) Id,F84=G(J2,M1) Id,F95=G(J2,N5) Id,F94=G(J2,N4) Id,F105=G(J2,M1) Id,F104=G(J2,E) *yep Id,Trick,Trace,J1 C C Trick AND Trace C Id,Trick,Trace,J2 tyep C START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT. C Id,2,Dotpr,N5(J’) = FIVE:(P1(J)-P5(J)) A|,Funct,N5(K2’) = FIVE¢(P1(K2)'P5(K2)) inbounw ' ll,Funct,N4l 2 1d,?lDP4:0 ll,P5l)P5=0 ll ,EDP1=0 t P will)“ W t t PUT IN THE c 1 ld,2,l)otpr ,Bl: ll ,Funct,B(K3 t P output uev Id,83 = BOIV-l ALBA = BOIVt ALBS = -BOIV ll,BEpi = + L Id,Trick ld,PlDP1=0 ll ,PSDP3:0 ll,PtDP4=0 ll,P5DP5=0 ld,l’1l)P3=P1P ll,P1llP4=P1P ll ,PlDP5:P1F ll ,P30P4:P3l ll ,P3DP5:P3l Al ,PtDP5=P4l {P output ‘iep . 14.2,Dotpr, (nu-cu: *CUEpitEF ll,Funct,Cl (CUl-CUf iCUEpitE 1d. (01 = Al,CU2 : C MUS : ( lWEpr = tyep Muck ltEDP1=o “121%“; lrFUnct’ 111mm: MIP3DP3: “MON: “£5195: llJ’lDPS ltPnri “this “main “$3st ltPIDP! (P on .yep 8O pr,N4(J') = — FOUR:(P3(J)+P4(J)+P5(J)) ,N4(K2") = — FOUR:-(P3(K2)¢P4(K2)+P5(K2)) ;o 0 put IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS. ipr,B(J“)=83*P3(J)+84tP4TtEpf(K,P1,P3,P5)+CUEpftEpf(K,P1,P4,P5) . = - CUOIVt(P3P5¢P4P5-P1P5) = CUOIV‘PIPS = CUOIV‘(P3P4+P3P5+P4P5) 3f = + QHEL'CUOIV :k i=0 otpr,PD(J')=P4(J)+P5(J) :t,PD(K2')=P4(K2)+P5(K2) P1=0 P3=0 P4:O P5=0 P3=P1P3 P4=P1P4 P5=P1P5 P4=P3P4 P5=P3P5 'P5=P4P5 rutput ...—......- xn’n>>>>> man 81 NOW PUT IN THE POLARIZATION VECTOR EXPANSION. Id, 2 ,Dotpr, E(J )= E1*P1(J) + E3tP3(J) + E4tP4(J)+E5tP5(J)+EEpf¢(Epf(J, P1 ,P3 ,P5)+Epf(J, P1, P4 ,P5)) Al ,Funct ,E(K )= E1#P1(K) + E3*P 3(K) + E4:P4(K)+E5¢P5(K)+EEpft(Epf(K, P1 ,P3 ,P5)+Epf(K, P1, P4 ,P5)) Id,E1 = EOIV:GHEL¢(P3P5+P4P5- -2¢P1P5) > rn A II II II EOIVtGHELtPlPS EOIV*GHEL*P1P5 -EOIV*GHEL*(P1P3+P1P4) AI ,EEpf: -EOIV *yep Id, Tri Id ,Epi(P1, P3, P4 ,P5) = EVL Id ,Pian AI,P3DP3=0 A|,P4DP4=O A|,PSDP5=O Id,PlDP3=P1P3 Al,PlDP4=P1P4 A|,PlDP5=P1P5 AI,P30P4=P3P4 A1,P30P5=P3P5 A|,P4DP5=P4P5 C P output *yeP Keep HA,HB4,HBS enext Z B QB = -2tP1P5*HB4 +2:(P3P4+P3P5+P4P5)¢HBS EOIV,BOIV,CUOIV,EVL Punch O8 Id,EVU=itA B PRDIV,EOIV,BOIV,CUOIV,A,i Keep HA,QB anext Z 8 HB = QBtConjg(QB) PROIV,EOIV,BOIV,CUOIV,A,i Keep HB,HA tnext C nnnnxxxnnnnnnnnn IN THIS SECTION, TAKE THE Trace, REPLACE EACH K BY IT’S LINEAR EXPANSION, AND REDUCE TO A FINAL ANSWER. LHEL = +1 QHEL = -1 GHEL = +1 SCALE FACTOR FOR THE AMPLITUDE IS . . TAKE THE Trace _“-HA—l)>)fi—4A. n>bfififl 82 HC5=FIVEmFOtF1:F2*F11:F5:F85wF95¢F105 HC4=FOURwFOPF1tF2tF11:F5tF84*F94:F104 hNNfi C SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM C Id,F0=0.5#(1+LHEL)*G6(J1) + 0.5*(1—LHEL)*G7(J1) Id,F1=(G(J1,B)) Id,F2=(G(J1,M1)) Id,F11=0.5t(1+QHEL)¢G6(J2) + O.5*(1-QHEL)*G7(J2) Id,F5=(G(J2,CU)) eyep» Id,F85=G(J2,E) Id,F84=G(J2,M1) Id,F95=G(J2,N5) Id,F94=G(J2,N4) Id,F105=G(J2,M1) Id,F104=G(J2,E) *yep Id,Trick,Trace,J1 C C Trick AND Trace C Id,Trick,Trace,J2 *yeP C C START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT. C Id,2,Dotpr,N5(J") = FIVE:(P1(J)-P5(J)) Al,Funct,N5(K2") = FIVE:(P1(K2)-P5(K2)) Id,2,Dotpr,N4(J') = - FOUR¢(P3(J)+P4(J)+P5(J)) Al,Funct,N4(K2”) = - FOUR:(P3(K2)+P4(K2)+P5(K2)) Id,P4DP4=O Al,PSDP5=O AI,EDP1=O C P output eyep C C PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS. c Id,2,Dotpr,B(J')=B3tP3(J)+B4tP4(J)+BS#P5(J)+BEpftEpf(J,P3,P4,P5) Al,Funct,B(K3')=83¢P3(K3)+B4eP4(K3)+BS¢P5(K3)+BEpf¢Epf(K3,P3,P4,PS) C P output ryeP Id,83 BOIVtP4P5 AI,B4 ; BOIVtPSPS AI,BS = -BOIV¢P3P4 Al,BEpf = + LHELtBOIV Id,P1nP1=o A|,P3DP3=O AI,P4DP4=O AI,PSDP5=0 Id,PlDP3=P1P3 AI,P1DP4=P1P4 A|,PlDP5=P1P5 AI,P3DP4=P3P4 Al,PsDP5=P3P5 83 A|,P4DP5=P4P5 C P output *yep Id,2,Dotpr,CU(J~)= (CU1-CU2)#Pl(J)+CU2*P3(J)+CU2:PD(J)+CU5*P5(J) +CUEpftEpf(J,P1,P3,P5)+CUEpf#Epf(J,P1,P4,P5) AI, Funct ,CU(K7)= (CU1-CU2)#P1(K)+CU2tP3(K)+CU2tPD(K)+CU5¢P5(K) +CUEpftEpf(K, P1, P3 ,P5)+CUEpf#Epf(K, P1, P4 ,P5) Id, CU1= — CUOIV*(P3P5+P4P5- -P1P5) Al,CU2 = CUOIVtPlPS A|,CU5 = CUOIV*(P3P4+P3P5+P4P5) Al,CUEpf = + QHELtCUOIV wyep Id,Trick Id,EDP1=0 Id,2,Dotpr,PD(J~)=P4(J)+P5(J) Al,Funct,PD(K2')=P4(K2)+P5(K2) Id,P1DP1=O A|,PBDP3=O A|,P4DP4=O Al,PSDP5=0 Id,PlDP3=P1P3 Al,PlDP4=P1P4 Al,PlDP5=P1P5 Al,PSDP4=P3P4 Al,P30P5=P3P5 AI,P4DP5=P4P5 C P output *yeP C C NOW PUT IN THE POLARIZATION VECTOR EXPANSION. Id, 2 ,Dotpr, E(J )= E1*P1(J) + E3*P3(J) E4tP4(J)+E5*P5(J)+EEpft(Epf(J, P1, P3 ,P5)+Epf(J, P1, P4 ,P5)) Al ,Func t ,E(K )= E1*P1(K) + E3:P3(K) + E4¢P4(K)+E5¢P5(K)+EEpfa(Epf(K, P1, P3 ,P5)+Epf(K, P1, P4 ,P5)) Id,E1 = EOIV:GHEL:(P3P5+P4P5- -2tP1P5) Al,E3 EOIV:GHEL¢P1P5 E01VtGHELtP1P5 -EOIV:GHEL¢(P1P3+P1P4) Al ,EEpf: -EOIV eyep Id,Trick Id,Epf(P1,P3,P4,P5) = EVL Id,FlDP1=0 AI,P30P3=O Al,P4DP4=O Al,PSDP5=O Id,PlDP3=P1P3 A|,PlDP4=P1P4 Al,PlDP5=P1P5 Al,PSDP4=P3P4 Al,P3DP5=P3P5 A|,P4DP5=P4P5 C P output #yep C > m .5 II II II 84 Keep HA,HB,HC4,HC5 anext Z QC = -2tP1P5tHC4 +2:(P3P4+P3P5+P4P5)4HC5 B EOIV,BOIV,CUOIV,EVL Punch QC Id,EVL=i#A B PROIV,EOIV,BOIV,CUOIV,A,i Keep HA,HB,QC anext Z HC = QCtConjg(QC) B PROIV,EOIV,BOIV,CUOIV,A,i Keep HC,HB,HA tnext C C C C C IN THIS SECTION, TAKE THE Trace, REPLACE EACH K BY IT’S C LINEAR EXPANSION C AND REDUCE TO A FINAL ANSWER. C C C X LHEL = +1 X GHEL = -1 X GHEL = -1 C C SCALE FACTOR FOR THE AMPLITUDE IS ... C C TAKE THE Trace C Z HDS=FIVEtF0tF1tF2tF11tF5eF85tF954F105 Z HD4=FOUR¢F04F1*F2tF114F5tF84tF94aF104 C SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM no Id,FO=O.5t(1+LHEL):GG(J1) 4 0.5:(1-LHEL)¢GY(J1) Id,F1=(G(J1,B)) Id,F2=(G(J1,M1)) Id,F11=0.5t(1+QHEL):GG(J2) + 0.5:(1-QHEL)tG7(J2) Id ,F5=(G(J2, CU)) ype Id ,F85=G(J2, E) Id, F84: G(J2, M1) Id,F95=G(J2,N5) Id,F94=G(J2,N4) Id,F105=G(J2,M1) Id,F104=G(J2,E) 'yeP Id,Trick,Trace,J1 C C Trick AND Trace C Id,Trick,Trace,J2 #yep C C START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT. C 85 Id,2,Dotpr,N5(JT) = FIVE#(P1(J)-P5(J)) A|,Funct,N5(K2') = FIVE*(P1(K2)-P5 K2)) Id,2,Dotpr,N4(J~) = - FOUR*(P3(J)+P4(J)+P5(J)) A|,Funct,N4(K2-) = - FOUR:(P3(K2)+P4(K2)+P5(K2)) Id,P4DP4=O A|,PSDP5=O Al,EDP1=O C P output *yep C C PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS. C Id,2,Dotpr,B(J‘)=B3*P3(J)+B4*P4(J)+BS#P5(J)+BEpftEpf(J,P3,P4,P5) Al,Funct,B(K3')=BStP3(K3)+B4*P4(K3)+B54P5(K3)+BEpf¢Epf(K3,P3,P4,P5) C P output *yeP Id,83 = BOIVtP4P5 A|,B4 = BOIV4P3P5 A|,BS = -BOIV¢P3P4 Al,EEpf = + LHELtBOIV Id,Trick Id,P1DP1=O Al,P3DP3=0 Al,P4DP4=0 Al,P50P5=0 Id,PlDP3=P1P3 Al,PlDP4=P1P4 Al,P1DP5=P1P5 Al,P3DP4=P3P4 Al,PSDP5=P3P5 Al,P4DP5=P4P5 C P output *yep Id,2,Dotpr,CU(J')= (CU1-CU2)*P1(J)+CU2*P3(J)+CU2¢PD(J)+CU5:P5(J) +CUEpf¢Epf(J,P1,P3,P5)+CUEpftEpf(J,P1,P4,P5) Al,Funct,CU(K’)= (CU1-CU2)#P1(K)+CU2¢P3(K)+CU2¢PD(K)+CU5¢P5(K) oCUEpftEpf(K,P1,P3,P5)+CUEpftEpf(K,P1,P4,P5) 'Id, CU1 = - CUOIV:(P3P5+P4P5-P1P5) Al,CU2 = CUOIV¢P1P5 Al,CU5 = CUOIV:(P3P4+P3P5+P4P5) Al,CUEpf = + QHELtCUOIV *yep Id,Trick Id,EDP1=0 Id,2,Dotpr,PD(J~)=P4(J)+P5(J) Al,Funct,PD(K2')=P4(K2)+P5(K2) Id,PlDP1=O Al,P3DP3=0 A|,P4DP4=O A|,PSDP5=O Id,FlDP3=P1P3 Al,P1DP4=P1P4 A|,P1DP5=P1P5 Al,PSDP4=P3P4 A|,P3DP5=P3P5 AI,P4DP5=P4P5 86 C P output *yeP C NOW PUT IN THE POLARIZATION VECTOR EXPANSION. C Id,2,Dotpr,E(J")= E1*P1(J) + E3tP3(J) + E4+P4(J)+E5+P5(J)+EEpft(Epf(J,P1,P3,P5)+Epf(J,P1,P4,P5)) Al,Funct,E(K')= E1+P1(K) + E3tP3(K + E4+P4(K)+E5*P5(K)+EEpft(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5)) Id,E1 EOIV:GHEL*(P3P5+P4P5-2+P1P5) EOIVtGHELtPlPS EOIV4GHELtP1P5 -EOIVtGHEL*(P1P3+P1P4) Al ,EEpf: -EOIV 3. [TI 01; II II II II Id ,Epf(P1, P3, P4 P5): Id ,P1DP1=O Al,P3DP3=O Al,P4DP4=0 Al,PSDP5=O Id,FlDP3=P1P3 Al,PlDP4=P1P4 Al,PlDP5=P1P5 Al,P3DP4=P3P4 Al,P3DPS=P3P5 Al,P4DP5=P4P5 C P output *yep Keep HA,HB,HC,HD4,HDS #next Z QD = -2+P1P5+HD4 +2+(P3P4+P3P5+P4P5)+HDS B EOIV,BOIV,CUOIV,EVL Punch QD Id,EVL=itA B PROIV,EOIV,BOIV,CUOIV,A,i Keep HA,HB,HC,QD tnext Z HO: QDtConj 9(OD) B PROIV, EOIV, BOIV ,CUOIV,A,i Keep HD, HC, HB, HA anext c 11111 C C C C IN THIS SECTION, TAKE THE Trace, REPLACE EACH K BY IT’S C LINEAR EXPANSION, C AND REDUCE TO A FINAL ANSWER. C C C X LHEL = —1 X GHEL = +1 X GHEL = +1 C C SCALE FACTOR FOR THE AMPLITUDE IS ... .¥_.Arsnv r—cnnn 87 TAKE THE Trace HES:FIVE*F0*F1*F2*F11tFStF85tF95tF105 HE4=FOUR¢F0tF1tF2tF11tFStF84tF94tF104 SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM nnnNNnnn Id,FO=0.5*(1+LHEL)*66(J1) + 0.5*(1-LHEL)*G7(J1) Id,F1=(G(J1,B)) Id,F2=(G(J1,M1)) Id,F11=0.5¢(1+QHEL)¢GG(J2) + 0.5t(1-QHEL)¢G7(J2) Id,F5=(G(J2,CU)) *yep Id,F85=G(J2,E) Id,F84=G(J2,M1) Id,F95=G(J2,N5) Id,F94=G(J2,N4) Id,F105=G(J2,M1) Id,F104=G(J2,E) *yep Id,Trick,Trace,J1 C C Trick AND Trace C Id,Trick,Trace,J2 tyep C C START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT. C Id,2,Dotpr,N5(J”) = FIVE#(P1(J)-P5(J)) Al,Funct,N5(K2') = FIVE:(P1(K2)-P5(K2)) Id,2,Dotpr,N4(J“) = - FOUR:(P3(J)+P4(J)+P5(J)) Al,Funct,N4(K2”) = - FOUR:(P3(K2)+P4(K2)+P5(K2)) Id,P4DP4=0 Al,PSDP5=O AI,EDP1=0 C P output :yep C C PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS. C Id,2,Dotpr,B(J')=B3tP3(J)+B4¢P4(J)+BS¢P5(J)+BEpf¢Epf(J,P3,P4,P5) AI,Funct,B(K3")=33.P3(K3)+B4.P4(K3)+35.95(K3)+8Epftepf(K3,?3,P4.P5) C P output *yep Id,83 BOIVtPAPS AI,B4 2 301v.P395 AI ,85 = -BOIV:P3P4 Al,BEpf = . LHELtBOIV Id,FlDP1=0 Al,PSDP3=0 Al,P4DP4=0 Al,PSDP5=O Id,FlDP3=P1P3 Al,PlDP4=P1P4 Al,PlDP5=P1P5 88 Al,P3DP4=P3P4 Al,P3DP5=P3P5 Al,P4DP5=P4P5 Cy Pp output Ide 2 ,Dotpr, CU(J )= (CU1—CU2)#Pl(J)+CU2¢P3(J)+CU2¢PD(J)+CU5¢P5(J) +CUEpftEpf(J,P1,P3,P5)+CUEpf*Epf(J,P1,P4,P5) A|,Funct,CU(K")= (CU1-CU2)*Pl(K)+CU2*P3(K)+CU2¢PD(K)+CU5:P5(K) +CUEpftEpf(K,P1,P3,P5)+CUEpf¢Epf(K,P1,P4,P5) Id, CU1 = - CUOIV:(P3P5+P4P5-P1P5) Al,CU2 = CUOIVtPlPS Al,CU5 = CUOIV*(P3P4+P3P5+P4P5) Al,CUEpf = + QHELtCUOIV #yep Id,Trick Id,EDP1=O Id,2,Dotpr,PD(J')=P4(J)+P5(J) Al,Funct,PD(K2')=P4(K2)+P5(K2) Id,PlDP1=0 Al,P3DP3=O Al,P4DP4=O Al,PSDP5=O Id,FlDP3=P1P3 Al,PlDP4=P1P4 Al,PlDP5=P1P5 Al,PSDP4=P3P4 Al,PSDP5=P3PS AI,P4DP5=P4P5 C P output *yep C NOW PUT IN THE POLARIZATION VECTOR EXPANSION. C Id, 2 ,Dotpr, E(J )= E1tP1(J) + E3¢P3(J) E4tP4(J)+E5mP5(J)+EEpft(Epf(J, P1 ,P3 ,P5)+Epf(J, P1, P4 ,P5)) Al, Funct, E(K )=E1tP1(K) + E3:P3(K) + E4tP4(K)+E5#P5(K)+EEpf:(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5)) Id,E1 = EOIVtGHEL:(P3P5+P4P5-2¢P1P5) Al,E3 = EOIVtGHELtPlPS Al,E4 = EOIVtGHELePlPS Al,ES = -EOIV#GHEL:(P1P3+P1P4) Al,EEpf: -EOIV *yep Id,Trick Id,Epf (P1,P3,P4,P5) = Id,FlDP1=O Al,P3DP3=0 Al,P4DP4=O Al,P5DP5=O Id,PlDP3=P1P3 Al,PlDP4=P1P4 Al,P1DP5=P1P5 Al,P30P4=P3P4 Al,P30P5=P3P5 Al,P4DP5=P4P5 C P output 89 *yep c Keep HA,HB,HC,HD,HE4,HE5 tnext Z QE = ~2tP1P5tHE4 +2t(P3P4+P3P5+P4P5)*HE5 B EOIV,BOIV,CUOIV,EVL Punch OE Id,EVL=itA B PROIV,EOIV,BOIV,CUOIV,A,i Keep HA,HB,HC,HD,QE :next Z HE = QEtConjg(QE) B PROIV,EOIV,BOIV,CUOIV,A,i Keep HE,HD,HC,HB,HA *next IN THIS SECTION, TAKE THE Trace, REPLACE EACH K BY IT’S LINEAR EXPANSION, AND REDUCE TO A FINAL ANSWER. LHEL GHEL GHEL -1 +1 -1 SCALE FACTOR FOR THE AMPLITUDE IS ... TAKE THE Trace HF5=FIVE+FO+F1+F2+F11tF5+F85¢F95+F105 HF4=FOUR+FotFltF2¢F11-F5:F84+F94+F104 SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM nnnNNnnnnnxxxnnnnnnnnnn Id,FO=O.5#(1+LHEL)tGS(J1) + 0.5#(1-LHEL)1G7(J1) Id,F1=(G(J1,B)) Id,F2=(G(J1,M1)) Id,F11=0.5t(I+QHEL)tG6(J2) + O.5t(1-QHEL)$G7(J2) Id,F5=(C(J2,CU)) *yep Id,F85=G(J2,E) Id,F84=G(J2,M1) Id,F95=G(J2,N5) Id,F94=G(J2,N4) Id,F105=G(J2,M1) Id,F104=G(J2,E) ‘yep Id,Trick,Trace,J1 C C Trick AND Trace C Id,Trick,Trace,J2 *yep C CCCTAAC $.1AAAIIAAWJJJ I I 1 90 C START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT. C Id,2,Dotpr,N5(J-) = FIVE:(P1(J)-P5(J)) Al,Funct,N5(K2~) = FIVE+(P1(K2)-P5(K2)) Id,2,Dotpr,N4(J-) = - FOUR:(P3(J)+P4(J)+P5(J)) A|,Funct,N4(K2') = - FOUR:(P3(K2)+P4(K2)+P5(K2)) Id,P4DP4=O Al,PSDP5=O Al,EDP1=O C P output tyep C C PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS. C Id,2,Dotpr,B(J')=B3+P3(J)+B4+P4(J)+BS*P5(J)+BEpftEpf(J,P3,P4,P5) Al,Funct,B(K3‘)=B3*P3(K3)+B4*P4(K3)+85+P5(K3)+BEpf#Epf(K3,P3.P4.P5) C P output #yep Id,B3 = BOIV+P4P5 A|,B4 = BOIV+P3P5 A|,BS = -BOIV+P3P4 A|,BEpf = + LHELtBOIV Id,PlDP1=0 Al,P3DP3=O Al,P4DP4=O Al,PSDP5=O Id,P10P3=P1P3 Al,PlDP4=P1P4 Al,PlDP5=P1P5 Al,P3DP4=P3P4 Al,P3DP5=P3P5 Al,P4DP5=P4P5 C P output t yep Id, 2 ,Dotpr, CU(J )= (CU1——CU2)¢P1(J)+CU2¢P3(J)+CU2+PD(J)+CU5+P5(J) +CUEPf‘EPf(J,P1.P3,P5)*CUEPf‘EPf(J,P1,P4.P5) A|,Funct,CU(K')= (CU1-CU2)tP1(K)+CU2+P3(K)+CU2¢PD(K)+CU5¢P5(K) +CUEpftEpf(K,P1,P3,P5)+CUEpftEpf(K,P1,P4,P5) Id, CU1 = - CUOIV+(P3P5+P4P5-P1P5) Al,CU2 = CUOIVtPlPS Al,CUS = CUOIV+(P3P4+P3P5+P4P5) Al,CUEpf = + QHEL#CUOIV *yep Id,Trick Id,EDP1=O Id,2,Dotpr, PD(J )=P4(J)+P5(J) Al ,Funct ,PD(K2 )=P4(K2)+P5(K2) Id ,PlDP1=0 AI ,P3DP3=O Al,P4DP4=O Al,PSDP5=O Id,FlDP3=P1P3 Al,PlDP4=P1P4 Al,PlDP5=P1P5 Al,P3DP4=P3P4 ’r‘ ... q-A-n1p>>>> 91 Al,P3DP5=P3P5 Al,P4DP5=P4P5 C P output ‘yep C C NOW PUT IN THE POLARIZATION VECTOR EXPANSION. C Id,2,Dotpr,E(J")= E1+P1(J) + E3tP3(J) + E4¢P4(J)+E5tP5(J)+EEpf*(Epf(J,P1,P3,P5)+Epf(J,P1,P4,P5)) Al,Funct,E(K')= E1+P1(K) + E3+P3(K) + E4:P4(K)+E5tP5(K)+EEpf¢(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5)) Id,E1 EOIV:GHEL+(P3P5+P4P5-2tP1P5) Al,E3 EOIV#GHEL+P1P5 Al,E4 EOIV¢GHEL+P1P5 Al,ES -EOIV#GHEL¢(P1P3+P1P4) Al,EEpf: -EOIV *yep Id,Trick Id,Epf(P1,P3,P4,P5) = EVL Id,PlDP1=O Al,PsDP3=O Al,P4DP4=0 Al,PSDP5=0 Id,PlDP3=P1P3 Al,PlDP4=P1P4 Al,PlDP5=P1P5 Al,PBDP4=P3P4 Al,P30P5=P3P5 Al,P4DP5=P4P5 C P output *yep C Keep HA,HB,HC,HD,HE,HF4,HF5 tnext Z QF: -2+P1P5tHF4 +2:(P3P4+P3P5+P4P5)tHF5 B EOIV,BOIV,CUOIV,EVL Punch QF Id,EVL=itA B PROIV,EOIV,BOIV,CUOIV,A,i Keep HA,HB,HC,HD,HE,QF tnext Z HF = QFtConjg (OF) B PROIV, EOIV, BOIV, CUOIV, A, i Keep HF, HE, HD, HC, HB, HA tnext C I I C C C C IN THIS SECTION, TAKE THE Trace, REPLACE EACH K BY IT’S C LINEAR EXPANSION, C AND REDUCE TO A FINAL ANSWER. C C C X LHEL = —1 X QHEL = —1 X GHEL = +1 hfihNNhfifififi w—T .-AA‘HnnnH 92 SCALE FACTOR FOR THE AMPLITUDE IS ... TAKE THE Trace HG5=FIVEtFOtF1tF2tF11tF5tF85+F95tF105 HG4=FUUR¥FO¢F1tF2tF11¢F5¥F84tF94tF104 SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM nnnNNnnnnn Id,F0=0.5:(1+LHEL)¢66(J1) + 0.5:(1-LHEL)+G7(J1) Id,F1=(G(J1,B)) Id,F2=(G(J1,M1)) Id,F11=0.5+(1+QHEL)+06(J2) + 0.5:(1-QHEL)*G7(J2) Id,F5=(G(J2,CU)) *yep Id,F85=G(J2,E) Id,F84=G(J2,M1) Id,F95=G(J2,N5) Id,F94=G(J2,N4) Id,F105=G(J2,M1) Id,F104=G(J2,E) *yep Id,Trick,Trace,J1 C C Trick AND Trace Id,Trick,Trace,J2 tyep C C START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT. C Id,2,Dotpr,N5(J') = FIVEt(P1(J)-P5(J)) A|,Funct,N5(K2') = FIVE+(P1(K2)-P5(K2)) Id,2,Dotpr,N4(J') = — FOUR:(P3(J)+P4(J)+P5(J)) Al,Funct,N4(K2’) = - FOUR:(P3(K2)+P4(K2)+P5(K2)) Id,P4DP4=O Al,PSDP5=0 Al,EDP1=O C P output tyep C C PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS. C Id,2,Dotpr,B(J')=83+P3(J)+B4#P4(J)+BS+P5(J)+BEpf+Epf(J,P3,P4,P5) Al,Funct,B(K3”)=83:P3(K3)+B4-P4(K3)+BS+P5(K3)+BEpf¢Epf(K3,P3,P4,P5) C P output = BOIV+P4P5 AI,B4 = BOIV+P3P5 A|,BS = -BOIV¢P3P4 A|,BEpf = + LHEL¢BOIV Id,Trick Id,PlDP1=O Al,P3DP3=0 Al,P4DP4=O Al,PSDP5=O Id,PlDP3=P1P3 .__“\-.H1>)>H>H 93 Al,PlDP4=P1P4 Al,PlDP5=P1P5 Al,P3DP4=P3P4 Al,P3DP5=P3P5 Al,P4DP5=P4P5 C P output tyep Id,2,Dotpr,CU(J')= (CU1-CU2)+P1(J)+CU2¢P3(J)+CU2+PD(J)+CU5¢P5(J) +CUEpftEpf(J,P1,P3,P5)+CUEpmepf(J,P1,P4,P5) Al,Punct,CU(K')= (CU1-CU2)#P1(K)+CU2¢P3(K)+CU2+PD(K)+CU5+P5(K) +CUEpf+Epf(K,P1,P3,P5)+CUEpftEpf(K,P1,P4,P5) Id, CU1 = - CUOIVt(P3P5+P4P5-P1P5) Al,CU2 = CUOIVtPlPS Al,CUS — CUOIV+(P3P4+P3P5+P4P5) Al,CUEpf = + QHELtCUOIV *yep Id,Trick Id , EDP1=0 Id,2,Dotpr,PD(J')=P4(J)+P5(J) Al,Funct,PD(K2')=P4(K2)+P5(K2) Id,PlDP1=0 Al,P3DP3=O Al,P4DP4=O Al,PSDP5=0 Id,PlDP3=P1P3 Al,PlDP4=P1P4 Al,PlDP5=P1P5 Al,P3DP4=P3P4 Al,P3DP5=P3P5 Al,P4DP5=P4P5 C P output #yep C NOW PUT IN THE POLARIZATION VECTOR EXPANSION. C Id,2,Dotpr,E(J')= E1+P1(J) + E3*P3(J) + E4+P4(J)+E5+P5(J)+EEpft(Epf(J,P1,P3,P5)+Epf(J,P1,P4,P5)) Al,Funct,E(K')= E1+P1(K) + E3+P3(K) + E4tP4(K)+E5tP5(K)+EEpf+(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5)) Id,E1 = EOIVtGHEL¢(P3P5+P4P5—2mP1PS) Al,E3 EOIV.GHEL:P1P5 Al,E4 EOIV+GHELtP1P5 Al,E5 -EOIV+GHEL:(P1P3+P1P4) Al,EEpf: -EOIV Id,Epf(P1,P3,P4,P5) = EVL Id,PlDP1=0 Al,PSDP3=0 Al,P4DP4=O Al,PSDP5=0 Id,PlDP3=P1P3 Al,PlDP4=P1P4 Al,PlDP5=P1P5 Al,P30P4=P3P4 Al,P30P5=P3P5 ‘(‘(|l ....AIIW 94 Al,P4DP5=P4P5 C P output *yep C Keep HA,HB,HC,HD,HE,HF,HG4,HG5 tnext Z QG = -2#P1P5+HG4 +2¢(P3P4+P3P5+P4P5)¢HG5 B EOIV,BOIV,CUOIV,EVL Punch QG Id,EVL=i+A B PROIV,EOIV,BOIV,CUOIV,A,i Keep HA,HB,HC,HD,HE,HF,QG tnext Z HG = QGtConjg(QG) B PROIV,EOIV,BOIV,CUOIV,A,i Keep HG,HF,HE,HD,HC,HB,HA #next C 1.; I444 I I IIIIIII IN THIS SECTION, TAKE THE Trace, REPLACE EACH K BY IT’S LINEAR EXPANSION, AND REDUCE TO A FINAL ANSWER. LHEL QHEL GHEL SCALE FACTOR FOR THE AMPLITUDE IS ... -1 -1 —1 TAKE THE Trace HH5=FIVEtFOtF1tF2¢F11+F5¢F85¢F95¢F105 HH4=FOUR+FO+F1tF2tF11tF5+F84tF94tF104 SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM OOONNOOOOOXXXOOOHOGHOO Id,FO=O.5+(1+LHEL)¢G6(J1) + 0.5:(1—LHEL):G7(J1) Id,F1=(G(J1,B)) Id,F2=(G(J1,M1) Id,F11=O.5t(1+QHEL)¢G6(J2) 4 O.5t(1-QHEL)+G7(J2) Id,F5=(G(J2,CU)) ‘yep Id,F85=G(J2,E) Id,F84=G(J2,M1) Id,F95=G(J2,N5) Id,F94=G(J2,N4) Id,F105=G(J2,M1) Id,F104=G(J2,E) ‘yep Id,Trick,Trace,J1 C C Trick AND Trace C Id,Trick,Trace,J2 Ic MTMAAHC r.CCCIAC AIAAAIIAAAIWJJJJ‘ 1.. 95 *yep C START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT. C Id,2,Dotpr,N5(J') = FIVEt(P1(J)-P5(J)) Al,Funct,N5(K2') = FIVEt(P1(K2)-P5(K2)) Id,2,Dotpr,N4(J') = - FOUR+(P3(J)+P4(J)+P5(J)) Al,Funct,N4(K2') = — FOUR:(P3(K2)+P4(K2)+P5(K2)) Id,P4DP4=O Al,PSDP5=O Al,EDP1=0 C P output_ *yep C C PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS. C Id,2,Dotpr,B(J’)=B3*P3(J)+B4¢P4(J)+BS+P5(J)+BEpftEpf(J,P3,P4,P5) Al,Funct,B(K3‘)=B3*P3(K3)+B4+P4(K3)+BS+P5(K3)+BEpf:Epf(K3,P3,P4,P5) C P output *yep Id,83 = BOIVtP4P5 AI,B4 = BOIVtP3P5 AI,Bs = -BOIV*P3P4 ‘Al,BEpf = + LHELtBOIV Al,PBDP3=O Al,P4DP4=O Al,PSDP5=O Id,PlDP3=P1P3 Al,PlDP4=P1P4 Al,PlDP5=P1P5 Al,P3DP4=P3P4 Al,PSDP5=P3P5 Al,P4DP5=P4P5 C P output ’Yep Id,2,Dotpr,CU(J')= (CU1—CU2)+P1(J)+CU2+P3(J)+CU2+PD(J)+CU5+P5(J) +CUEpftEpf(J,P1,P3,P5)+CUEpf-Epf(J,P1,P4,P5) A|,Funct,CU(K')= (CU1-CU2)¢P1(K)+CU2:P3(K)+CU2:PD(K)+CU5+P5(K) +CUEpffiEpf(K,P1,P3,P5)+CUEpf¢Epf(K,P1,P4,P5) Id, CU1 = - CUOIVt(P3P5+P4PS—P1P5) Al,CU2 = CUOIVtPlPS Al,CUS = CUOIV+(P3P4+P3P5+P4P5) Al,CUEpf = + QHELtCUOIV *YSP Id,Trick Id,EDP1=O Id,2,Dotpr,PD(J')=P4(J)+PS(J) AI,Funct,PD(K2")=P4(K2)+P5(K2) Id,PlDP1=O Al,P3DP3=0 Al,P4DP4=0 Al,PSDP5=0 Id,PlDP3=P1P3 Al,PlDP4=P1P4 96 Al,PlDP5=P1P5 Al,P3DP4=P3P4 Al,P3DP5=P3P5 Al,P4DP5=P4P5 C P output :yep C NOW PUT IN THE POLARIZATION VECTOR EXPANSION. C Id, 2 ,Dotpr, E(J )= EltP1(J) + E3+P3( J) E4¢P4(J)+E5*P5(J)+EEpf¢(Epf(J, P1, P3 ,P5)+Epf(J, P1, P4 ,P5)) Al ,Funct ,E(K )= E1:P1(K) + E3:P3(K E4:P4(K)+E5+P5(K)+EEpf¢(Epf(K, P1, P3 ,P5)+Epf(K, P1, P4 ,P5)) EOIV:GHEL+(P3P5+P4P5- -2*P1P5) EOIV+GHELtP1P5 EOIVtGHELtPlPS -EOIV+GHEL:(P1P3+P1P4) Al NEE f: -EOIV ‘yep Id,Trick Id,Epf(P1,P3,P4,P5) = Id,PlDP1=0 Al,PSDP3=O Al,P4DP4=O Al,PSDP5=O Id,PlDP3=P1P3 Al,PlDP4=P1P4 Al,PlDP5=P1P5 Al,PSDP4=P3P4 Al,P3DP5=P3P5 Al,P4DP5=P4P5 C P output ‘yep Keep HA,HB,HC,HD,HE,HF,HG,HH4,HH5 inext Z OH = —2¢P1P5¢HH4 +2:(P3P4+P3P5+P4P5)+HH5 B EOIV,BOIV,CUOIV,EVL Punch QHA Id ,EVL: B PROIV, AEOIV, BOIV, CUOIV, A, i Keep HA, HB, HC, HD, HE, HF, HG, OH tnext Z HH: QHtConjg(QH) B PROIV, EOIV, BOIV, CUOIV, A, i Keep HH, HG, HF, HE, HD, HC, HB, HA tnext Z HEL = PROIV¢t2+(HA+HB+HC+HD+HE+HF+HG+HH) B PROIV, EOIV, BOIV, CUOIV, A Id, A+t2= - (-4tP14+P15¢P34+P35+(P15tP34+P14¢P35-P13+P45)+#2) Keep HEL tnext C C C THE EIGHT HELICITY STATE AMPLITUDES HAVE NOW BEEN C CALCULATED. > mm 01-h II II II II C C NOW FORM THE SPIN AVERAGED SUM CROSS SECTION C AND C C ABOVE CDONEC C IN ' C LIN! C AND VB,K,C F m, F124,F I J1,J: Z EXPS Z EXPS Z EXP4 Z EXP4 C St Id,FO Id,Fi: 97 AND COMPARE IT WITH THE SUM OF THE EIGHT ABOVE SQUARED, AS A CHECK THAT THEY WERE ONE CORRECTLY. IN THIS SECTION, TAKE THE Trace, REPLACE EACH K BY IT’S LINEAR EXPSANSION, AND REDUCE TO A FINAL ANSWER. ,K,CU,M,E,E2,N4,N5,P1,P2,P3,P4,P5,PD ,F0,F1,F2,F3,F4,F5,F65,F74,F75,F85,F9,F105,F11,A1,A2,A3,AA, 24,F125,F135,F64,F84,F104,F134 1,J2,M1,M2,M3,K3,K2 SCALE FACTOR FOR THE AMPLITUDE IS ... TAKE THE Trace XP55=FIVEtFOtF1tF2¢F3¢F4¢F11tF5*F65*F75*F85#F9*F105tF125tF135 XPS4=FIVE¥FUUR*FO*F1#F2tF3tF4tF11#F5*F65*F75#F85*F9¥F104#F124*F134 XP45=FOUR¢FIVE¢FO¢F1mF2tF3tF4tF11tFStF64tF74tF84tF9tF105tF125tF135 XP44=FOUR¢FO¥F1¥F2*F3*F4*F11¢F5*F54¥F74tF84*F9*F104*F124#Fl34 SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM F0 = 1 d,F0=0.5t0.5t(1+LHEL):G6(J1) + O.5¢O.5t(1-LHEL)tG7(J1) F1=(G(J1,P4)) F2=(G(J1,M1)) F3=(G(J1,P3)) F4=(G(J1,M2)) F11 = 1 d, F11=0. 5:0. 5t(1+QHEL)#G6(J2) + O.5¢O.5t(1-QHEL):G7(J2) F5=(G(J2, P$)) F65: (G(J2, M3)) F75=(G(J2, N5)) F85: (C(J2, M1)) F9=(G(J2, P2)) F10105= (C(JZ, M2)) F125=(G(J2, N5)) F135: (G(J2,M3)) F64: (G(J2,M1)) F74=(G(J2,N4)) F84: (G(J2,M3)) F104: (G(J2,M3)) F124=(G(J2,N4)) F134: (G(J2,M2)) p Trick,Trace,J1 Trick AND Trace Trick,Trace,J2 output p 2,Dotpr,P2(K4') : P3(K4) . P4(K4) + P5(K4) - P1(K4) Al,Pun: CP 0| tyep C C S' C Id,2,D Id,2,D Al,Pur Id,2,[ Id,2,[ ALFUI CP 1 Id,P4I A|,P5‘ Al,Pl Al,P3 Al,ED ALE? P 01. W D thnnnnmn 98 I,Funct,P2(K4') = P3(K4) + P4(K4) + P5(K4) - P1(K4) P output rep START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT. i,2,Dotpr,N5(J') FIVEt(P1(J)—P5(J)) i,2,Dotpr,N5(J') FIVE:(P1(J)-P5(J)) |,Funct,N5(K2") = FIVE:(P1(K2)—P5(K2)) i,2,Dotpr,N4(J') - FOUR*(P3(J)+P4(J)+P5(J)) i,2,Dotpr,N4(J~) — FOUR#(P3(J)+P4(J)+P5(J)) |,Funct,N4(K2") = - FOUR:(P3(K2)+P4(K2)+P5(K2)) P output i,P4DP4=O |,PSDP5=O |,PlDP1 = O |,PSDP3 = O l,EDP1=0 |,E2DP1=0 output rep i,PlDP4=P1P4 |,PlDP3=P1P3 [,PlDP5=P1P5 I,P3DP4=P3P4 |,P30P5=P3P5 |,P4DP5=P4PS P output rep Bep EXPSS,EXP54,EXP45,EXP44,HEL 1ext EXP4 : Y:(Y1:EXP55 + Y23¢EXP54 + Y23:EXP45 + Y4¢EXP44) i,Y1 = 4:(P3P4+P3P5+P4P5)t(P3P4+P3P5+P4PS) I,Y23 = —2tP1P5:2:(P3P4+P3P5+P4P5) I,Y4 : 4:P1P5:P1P5 i,Y=PROIVt#2tEOIV¢t2t(-4)tP15#(P13+P14+P15)t(P35+P45-P15) EOIV,?ROIV eep EXP4,HEL 1ext SSEXP = EXP4:BOIV:n2¢CUOIVt42tBO#CUO i,BO=16:P35:P45 i,CUO=16-(P34+P35+P45)tP15 PROIV,EOIV,BOIV,CUOIV Bep HEL,SSEXP 1ext NOW SUTRACT THE SPIN AVERAGED CROSS SECTION FROM THE SQUARED SUM OF THE HELECITY STATES. THE RESULT SHOULD BE ZERO. DIFF : HEL - SSEXP PROIV,EOIV,BOIV,CUOIV 3nd The Thi: tick wh As ‘11th Appendix J Projecting the Gluon Polarization Vector The polarization vector of the GLUON particle may be expressed in Lorentz invariant form by projecting it onto a set. of four vectors: The task is to find the four coefficents, al, a4. (15, ac” This can be done most simply in a co—ordinate system where the GLUON par- ticle moves in the +2 direction. There the polaroization vector has the form: cu = (1,520.0) where i is the GLUON helecity state. Assume the usual frame of reference, the. rest frame of 733 and m. then ._Pl= (0,0.E1,iE1) P4 = (P4,.O,P4,,iE4) P5 = (—P4,,0,—P4,,£E4) E4 = k0 E1 = P1P4qikPlP5 = = P1P4+P1P5 P4 __ kolzflPlP-UU’lPS) r — P1P4+P1P5 [co = —P4P5/2 99 With the are, using where {a course w« = (2314 and a: then ( Whit 100 Nith these values of P1, P3,P4.P5, the non-zero terms of Epfm, P1. P4,P5) Lre, using Epf(A, B,C. D) = Cap-,5 AaBgC'ayDé vherc fer/376 is the. usual Levi—Cevita totally anti—symetric four tensor and of :ourse we are in the Minkowski metric. E1)f([.l, P1, P4. P5) = €3314(2, P13, P41. P54) +62413(2. P14. P41. P53) + €23-ut2a 1313.1344. P51.) +62314(2,51,P4z~i34)+ €2431(21P14v-P431 P51) +62413(2,iE1,P41-. -P4;) + (2341(2, E1. iE4, -P4¢-) +62431(2iiE19P4:a _P41'-) = €2314ltE1)(‘P4r)(iE4)]+62413[(iE4l(P4rl(—P4:)]+€2341l(51ltiE4)(-P4r)l+ €2431[(iE1)(P4;)(V—P417)] = —2i(E1)(E4)(P4x) 6"", and as P1, P4,P5 have no y component and {y 2 ii = (GHEL)1' then “er! is immediately determined: _ —GHEL ‘1‘" ’ 2(El)(P4,)(E4) _ GH EL - \/—2(P1P4)(P1P5)(P4P5) As 6 has but three deminsions and the space is four deminsional: eflPl“ = 0 = a4PlP4+ a5P1P5 which gives: P1P5 “4 = rasp—rpz and ‘ give 101 and using cpP/i“ = P4, : a1P1P4+ a5P4P5 (”P5" = P5, = —P4: = u1P1P5 + a4P4P5 gives, (11 : (PIP4 — P1P5) P4P5 (P1P4 + P1P5) \f—2(P1P4)(P1P5)(P4P5) a4 = PIP-5 W as = P1P4 —2(P1P4)(P1P5)(P4P5) By gauge invariance any amount of P1” can be added to 6”. so a1 can be set to zero and the result becomes = 1 r r r _ ' . 1.P4.P-r c,‘ \/_2(P1P4XP1P5KHP5)L(P1P0)P4u+(P1P4)P3,, (GHEL)Epf(p P 3)] Appendix K SCHOON SHIP Program for the LOOP Term 102 XXXOOOZOO<><><><><><>> H M AND IN TERMS OF THE 19 INTEGRALS, THE ABOVE DEFINED D1 AND 03, THE A3,A2, AND A1 MATRICES, USING THE NOTATION ... A3(1,3,3) = A3331 nnnnnnnnn Id,A3333 AI,A3332 AI,A3331 AI,A3322 AI,A3321 AI,A3311 AI,A3222 AI,A3221 AI,A3211 AI,A3111 1d,A233 AI,A232 AI,A231 AI,A222 AI,A221 AI,A211 :yep Id,A13 = -0.5:(16) AI,A12 : 0.5.(14 - 03.110) AI,A11 = 0.5t(15 + 2:01:110) C —o.5.(119) -0.25:(113 - 03:19) -0.25t(115 + 2:01:19) -0.25#(114 - O.5¢D3¢I2 + 0.5:D3t03eIG) -0.125t(4tPI + 2:01:12 - D3313 - 2*DltD3FIS) -0.25*(116 . 01:13 + 2:01:01:Is) 0.5:(117 - Ds:A222) (0.25:112 + 0.5:Dltl7 — 0.5:D3tA221) (0.25¢(111 - 03:18) + DltA221) 0.5-(118 + 2tDltA211) -0.5¢(19) -O.25t(12 - D3t16) -0.25¢(I3 + 2¢D1¢16) 0.5:(17 - D3¢A12) (0.25#(11 + 2:01:14) - 0.5#03#A11) 0.5:(18 o 2tD1tA11) C C 109 -yep Id,P13 : P34 + P35 + P45 - P14 - P15 C PUT IN Ao C Id,A0 = 110 c C C C C THE FIVE POINT ANSWER IS Now FORMED. n B WIV,D3,PI,FPIIV,CUOIV,BOIV,EOIV,EVL Keep EXP51 *next C NOW CALCULATE THE FOUR POINT AMPLITUDE IN THIS SECTION, TAKE THE TRACE, REPLACE EACH K BY IT’S LINEAR EXPANSION, AND REDUCE TO A FINAL ANSWER. BIKIwIMIE’NIPIIP2IP3'P4IP5IPD C,Fo,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,A1,A2,A3,AA J1,J2,M1,M2,K3,K2 SCALE FACTOR FOR THE AMPLITUDE IS ... FSCAL = 1.0 TAKE THE TRACE EXP4=FSCALtFO¢F1tF2:F3tF4tF11tF5tF6tF7tF8tF9tF10 SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM nnnNnnnnxnnnnHm- 1/24Mf - lrfll;) (I3+2(P1P~1+ P1P5)16)] . ... . o(...)l [/4 [1/2 (471' + 2(P1P4 + P1P5)12)—1/2(1\If—i1‘1)-I,)(I3 + 2(P1P4 + P1P5)16)] [/8 [4n + 2(P1P4+ P1P5)I2 — (ME — iriuzns — 2(P1P4+ P1P5)(Mf—if1\-I;)IG] 31 1)_/ (10;. (P44) (P14) (P14) ’ ’ " (—2P44+M,'-’)(2P1-k—2(P1P4+P1P5)+A-Ijm,)(2P34+Mg—irM,) =_1/2 [/ko (Ill-k) (Pl-k) [/4 [/4112], (Pl-k) (2f(l-;c(—)2(P1P4+P1P5))+2(P1P4+P1P5)/d9:()fl)dc)] an 2P14—2P1P4 PIPS) do '4[116+(P1P4+P1P5)(/ " l 0‘ ): ) + )+2(P1P4+P1P5)/" H" )>] ./4 [116 + (P1P4-l- P1P5)I3+ (l/2)2(P1P-l+ PlP5)2(PlP-l+ P1P5)I6) 123 2 2):/ 019:: ('P3'k) (P3-k) (P3-k) , . (-2P4.Ic +2143)(2P1.k — 2031194.). P1P5)+1\Ifa,.k)(2P3-k +1113 — iI‘AL) U (191: (P3 - H2] tU ko (P.1c) (P3-k) (2P3-k+(M;—i1‘111;))_(MZ:»_ITM:)/ ( )( ). (...)(...)(...) = 1/2 [I17 — (1113 — il‘Mz)A2(2, 2)] / alm- (P3-k) (PB-k) (P1-k) (—2P4 - k +1113)('2P1-k — 2(P1P4 + P1P5) + 11flft‘a,.k)(2P3 . k + M? — iI‘AL) )U do,c (Pm/c) (P1-k) (2P3-k+(M}—ier)) _W?_im[:)/dm (P3-k)(P1-k)] (...)(...)(...) ~ (...)(...)(...) an F: - k 2P1»k — 2 PIP-l PxPs 417 P3 2 k ., 1/2 (/ " ( ) ( ( + ”+2(P1P4+P1P5)/—" ( )) - (M; — IFAI:)A212‘~H] (...)(...)o (...)(...). = 1/2 [1/2 (112 + 2(P1P4 + P1P5)I7) — (ME — iF1)[;)A2(2,1)] ¢,2.1)= / (1m. (PB-k) (P1-k) (P1-k) (—2P4 . k + M;~’)(2P1-Ic — 2(P1P4 + P1P5) + MZWM2P3 - k + M} - iI‘AL.) (I ,[ ko (P1-k) (P1-k) (2P3-k+ (ME — iI‘M; ' (...)(...)(...) 40 P ~k 2P 41—2 PIP-l PlPs d0 Pl~k ., 1/2 (/ " ( 1 ) ( l ( + )) +2”?qu + P1PS)/ ———" )( )) - (M; - '1'M:)A:I(1.l)] (...)(...)a _ (... (...). m 2P1-k—2lPIP4 P1P!) 40. , 1/2(111 +(P1P4 +P1Ps) [/ k ( + n + :(mm + P1P5)/ ‘ J) - (M; — :I‘1\l;)A2(l.l)] (..4)(...). (...)(...)- :[1/2 (111 + (P1P4 + PIP-5) [11 + 2(P1P4 + P1P5)I4]) — (.113 — ir.\1_.)A2(2. 1)] ‘,1,1)= ) —(1113—ir111;)A2(1,1)] 124 The previous may be done another way. A3(2 1 1)_/ (1521. (P3-k) (P1-k) (Pl-k) ’ ' ’ (—2P4-k+111;-’)(2P1.Ic—2(P1P4+P1P5)+Mgwk)(2P3-Ic+M§—mm) =1/2[ (1121. (P31) (PL?){(2P)1('l;_2(P1P4+P1PJ))+2(P1P4+P1P5)A2(2,1)] -L- '2 - 2 —' 1. =1/2 [1/2 (j an. (P1 ’(‘ fa(.k;"“"= II1‘")-(M,2—x'l"M:)18>+ 2(P1P4+P1P5)A2(2.1)] . = 1/2 [1/2 (111 ~ (ME — iI‘M;)18) + 2(P1P4 + P1P5)A2(2,1)] dm. (Pl-k) (P1-k) (Pl-k) /(—2P4 ~ k + A!.',-’)(2Pl - k — 2(P1P4 + P1P5) + 1115“”): )(2P3 . k +1113 — 11111:) [/ d9), (P1-k) (P1-k) (2P1'k—2(P1P4+P1P5)) =1/2 (...)(...)(...) =1/2[118 + 2(P1P4+ P1P5)A2(1.1)] A3(1,1,1) = + 2(P1P4+ P1P5)A2(1. 1) 125 dQL. (P4- k) (P4- k) A ' = 2(3’3) j(—2P4-k+M_3)(2P1-lc—2(P1P4+ P1P5)+M§ua,k)(2P3-Ic+1113 41111;) :(/d_______Qk (P4 k) (P4 k) ...... P)(...) d121(— k) (P4-In] —1 2 / [ 2(...)( ...)(...) d9); (—2( (P4)-Ic+M-) (P4-k) 9 do) ——1 2 7 — -- —— / U: (...)(...)(...) [UV/(...)(...)(...)] (112,: (—2(P4)-k+M?) (P4-1c) dm ——1 2 7 —0 — / U (...)(...)(...) /(...)(...)(...)J __ 412k (P4-k) _ W U -<...>(...) 1 = —1/2 19 “(3 2)_/ d9): P(4 1) (P3 k) ’ ‘ —2P4 k+M°)(2P1 k—2(P1P4+P1P5)+M;u;m)(_2P3-k+M3—i1‘1\I:) __ 4121 (P3-k) WU -(...)(...) 1 =_ (1521 (2P3-k+(M§—iI‘M;))_ /2_, ‘ (19,; )] 1/2[1/2(/ .(...)(...) (M; ‘FM‘)/.(...)(...) = -1/2 [1/2 (12 — (ME — i1“M.-)16)] A2(3 1)—/ 491. (P4-k) (P1-k) , — ("2P4'kfluvgmpl"'—2(P1P4+PIP-5)+.\/f.1.1,.1.)(2P3-I.-+M;—;r,\/:) _1/2 U d9). (P1-1)] .(...)(...) 126 412 2P1-lc—2P1P4 .r k ( -(...)(...) +P1P)))+2(P1P4+P1P5)/ = -1/4 [13 + 2(P1P4 + P1P5)16] —_1/4[ 110). ] .(...)(...) A2(2 2):/ (101 (P3- 1:) (P3 k) , ( —.2P4 H1113 )(2P1 1c—2(P1P4+P1P5)+quX21231“);_,TM) 11m (P3 1:) (2P3 k+(ME —1r11-1)) 4 , 1112). (P3-k) =1 2 / 1: — . -~ /———-] / [ (...)(...)(...) (M ’FM') (...)(...)(...) = 1/2 [17 — (1113 — 1111.. 141(2)] ko (P3 K) (P1-k) A2 2(’2 1)=/(— 2P4 Ic+M;’)(2P1 k— 2(P1P4+ P1P5)+1\1 umx2P3 (Hug—11111) d9): (P1-k) (2P3-k +(11-13— 1111.)) , /dm (P1~1.)] =12 — M:—.I‘\I. —— / [ (...)(...)(...) ( - ’ ’ ‘) (...)(...)(...) an 2 .11.: r :1]: [1/2 (/ 1. 1 P1 (P1P4+P1Po))+2(P1P4+P1P5)/( )1 ’ ...... C 1 )1 1. )-(Mf-ir‘)\l;)A1(1)] =1/2[1/2(11 + 2(P1P4 + P1P5)I4) — (ME — 11‘111: )A1(1)] / 1191- (P1 1') (P1 In) (— 2P4 k+M=)(2P1 k— 2(P1P4+P1P5)+M;uark)(2P3 (+1113- 1111:) [/ (IQ)g (P1-k) (2P1 k-2(P1P4+P1P5)) =1/2 (...)(...)(...) = 1/2[18 +2(P1P4+ P1P5)A1(1)] A2(1 1)= + 2(P1P4 + P1P5)A1(1)] 127 111(3):] 1112). (P4-k) (—2P4 - k + 1113)(2P1-k — 2(P1P4 + P1P5) + Mfwm2P3 - k + M? - iI‘MJ z/dm (P4-k) , (...)(...)(...) .1121 (—2(P4)-k)] =—1 2 —— / U (...)(...)(...) 1112). (-2(P4)-k+1112) 4 (1:21- =—1 2 7 —M-/———— / [/ (...)(...)(...) 7 (...)(...)(...)] =_]/2 /d§2,. (—2(P4)- :+M;) _0/ 1112), (...)(...)(...) (...)(...)(...) = -1/2 [/ .(_d,s)2(l)] = -—1/2(I6) _/ (19). (P3 - k) " (—2P4 - k + 1113)(2P1-k — 2(P1P4 + P1P5) + 1115””)(2P3 - k + M3 — 1111:) l A1(2) _ 1112,. (2P3 - k+ (ME — 11M,» _ ’1/2U (...)(...)(...) = 1/2 [14 — (111,2 — 1111.)11o] ., . d9); ’1- : — '- —— (11. 11“NJ/(...)(...)(...)] A1 1 _ c112,, (P1-k) ( )_ / (-2P4 - k + 11$)(2P1-k — 2(P1P4 + P1P5) + 111;”,].)(2P3 - k + 1113—1111.) _1/2]/d§21 (2P1 - k - 2(P1P4+ PIP-5)) ' (...)(...)(...) =1/2[15 + 2(P1P4 + P1P5)110] + 2(P1P4 + PIP-SKID] m1 128 B1(3):/ (1121 (P41) . (—2(P4-k)+M$)(2P3-k+1\f} 41111.) _/ko (P4-k) ‘ (....)(....) = —1/2 U110). (—2(P4).1-.)] (....)(.....) c112,. (—2(P4) - k+ 1113) ., (112). : — 2 _ , - 1/ U (....)(....) M7/(....)(....)] (1521, '(—2(P4)-k+M'-’) 412). = —1 2 W - / / U (....)(....) 0 (...)(...)J = ~12 V 37.31 = —1/2(13) ko (P3 ~ k) B1(2) = (4124.1 + 1113)(2P3 - k + 1113—1111..) _ 452,. (2P3-k+(ME—iI‘AL))_ 2_, , / dm ] “I/QU (....)(...) (M; 71711:) (----)(.-.) = 1/2 [11 — (113 — 11111.. )15] 131 1 _ d91- (Pl-k) ( )—/(—2P4-k+M.3)(2P3-k+M§—ir1\1’;) =18 _ (1m. (P4-k) (P4-1“) B2(3,3)_/(41%],+A13)(2p3.1+1113—11111.) 129 _/df21 (P4-k) (P4-k) _ (....)(...) 11—— .1 1 = —l/2 I15 32 3 2 _ 1112). (P4-k) (P31) ( ’ )‘ (—2P4-lc+M.;-’)(2P3-k+M§’—iI‘M=) = _1/2 U «1521. (P3 - 1)] d9; = —l/2 [1/2 (/df21-, (2P3 - k+()M; — iI‘M:)) _ (M? _ iI‘M;)/ .(m:))] o(.... = —1/2[1/2(4:r — (ME — iI‘M; )13)] _ (112,. (P4-k) (P1-k) 132(311) - (42124.1; + 113)(2P3 ~ k + M? — 11111..) 419- Pl-k) = —1/2[_/ Lo(.(...) ] = —1/2(116) (19). (P31) (P31) B20” = / (—2P4 - (v + 1113)(2P.3 -1-+ 1113—1111:) 130 = 1/2 [112 — (ME — 11M. )B1(2)] c191 (P3-k) (P1-k) B2 2,1 = _ ( ) (—2P4-k+fif$)(2P3-k+1\13—zI‘11[;) = ”2 [j (191: (P1-k) (22193)] k)+(M; —iI‘J\'1'.~))_(ME_I.I,M;)-/d§2)E ()EPl).L-.):] = 1/2 [111 — (ME — iI‘M: )18] 13211 —/ d911P1.1~.)(p1.).) (, )— (—2P4-k+M.';’)(2P3.k+ME_irM:) = I18 Appendix N Analytic Solutions of Nineteen Irreducable Integrals The calculation involves nineteen integrals which may not be futher reduced and must be done analytically. They are here listed, and in the remainder of this Appendix‘ analytically eval- uated. The notation to delineate each of the separate nineteen integrals is based on the following: I—/ (101. (P4-k) (P1-k) (P3-k) '— (—2P4 - k + 111$)(2P1-k - 2(P1P4 + P1P5)+ Afft‘arl.)(2P3 - k + M? -— 7T1U;) The numerator contains three factors as does the denominator. As illustrated in Appendix M, some of these factors may be cancelled by the judicous adding and subtracting of balancing terms. Those which remain form the nineteen ir- reducable integrals. They are listed below in a notation where o ‘s replace those factors of the notation integral above that have been removed by cancellation. For example, in this noatation the integral (1:2,. (P3-k) (2P1 ~12 — 2(P1P4+ P1P5) + M2 m) =/dm ..(....)(:) w The nineteen irreducable integrals are: _ d9]. 0 a - 11 ‘/ (...) ' ~ / ({Ql' a o A 12 = 131 132 I4: IG: 18: I9: / / / / / / / I10 = 133 112 = 115 = 116 = / / f3. . 1...) / / 117 = [d91- O O (..) 118 : jdflk o (...)' o 119 = der. (...)' o o The integrals may be grouped into 5 classes for solution- 11 — I3. I4 -IG. 17-19. Ill —116, and 117 - 119. which are now solved for. The integral 110 is '. through on-shell conditions. expressable in terms of I1 — 19. The Class of Integrals II - I3 These integrals are simple and may be done directly. They are of the form: dflk I = — / (...) In the co—ordinate system where the only three momentum in the integral is taken to be the z direction they assume the form: d(cos6')dd> 1 d: 21r a +b —— = 27r —-———— = — log —— 4,,(acos(9+b) _1aa:+b a —a.+b 11 _ / d9}; _ / ko — —2(P4 - k) + A13 — —2ko'-’ c080 + 21:03 + A172 __ 271' A13 ‘ —2k02 °g «aka? 11- —2« IO <—2(P4P5)) ’ P4P5 g M; 12_/ (ml. ‘ 2(P1-lc) — 2(P1P4 + P1P5) + A'quuark and using 2(E1)ko = —(P1P4+ P1P5) -_ J/ d§2k 2(E1)ko c089 + 2(El)ko + Affuark 271’ 4(El)ko = —— o ., 2(E1)ko g lug-Md. M 2 quark —27r 1 —2(P1P-1+P1P5) :————o 12 P1P4+P1P5 g 135 13— / ————_d9“ ' 2(P3 - k) + ME — ITM: and using 2(E3)ko = —(P3P4 + P3P5) ’ 2(E3)ko c036 — 2(133 )k0 + M? —i1‘M: 271' ME — il‘M; = 2(E3)ko l°g —4(E3)ko + N; — if)”; —2 I3 ME — iI‘M: 7r ‘ P3P4 + P3P5 l°g (2(P3P4) + 2(P3P5) + M? — 1T1”: ) 136 The I4 - 16 Class of Integrals These integrals are of the form: I = (19;. tux...) In a co-ordiuate system where. the left denominator defines the z direction and the right denominator is in the x-z plane, they assume the general form: I _ / c191. _ (c c050 + d) (e c039 + f sine cosqS + g) then using /“ dd, — 27 a > b > c o a+bcos¢$ — (a1’—b'-’)1/2 1 d1 , [=2 ' '7 ‘I '1 '1 '7 "/1(cx+d)((e-'+f-):c-+2gew+g-—f-)1/- Then transforming a: = C: + d 6-” dx c+d 1' ("T-1" + m: + p) - where m = c: + f2 n. = 2(gec — dm) 0, p : dam — dedc+ c2(g2 — f’) which is solved using / da: __—_110 2x/p.\'+nz+2p xXl/2 - J13 g 1? X=m32+nz+p p > 0 In general these solutions are intracable. however in the special cases involved in these integrals- d = it + A13, the solutions become: first for d = —c + M2 2% [log ((9+\/€2+f2)2)+log(!I-\/€2+f2>_10g(’2(')] =c‘(g+€) (9+9)? g+ €'-’+f2 M2 137 and for the other case (1 = +c + M? 2" (9-6)2 g+\’/e2+f2 (1‘12) I:—-— l —— l —————— _ C(g—e) [0g ((g+‘/ez+fz)2) + 0g (9- fe3+f2) log 2c J Now to use this general solution to find I4, 15 and IS. I4 _ / - ko ’ (-2P4 - k + A13) (2131-1.- — 2(P1P4 + P1P5)+ Mfum) _ in. — / (-2lco'-’cos€ + 21:02 + A13)(2P1;(ko)cos6' + 2P1,(ko)sin.6 cosq‘) + 2(lco)El + Affuarl.) then using P1; = P—gfz = %E3 + E1 = Pl—Péfmmi from 2(ko)E1 = -—(P1P4+P1P5) and P1, =(E1— P13)"2 = WNW and noting that ., c = -2ko' d = 21w2 + M: = —-c+ A13 6 = P1P4 — P1P5 f = 2 (P1P4)(P1P5) g = —(P1P4+ P1P5) + Mfwk e2 + f2 = (2(ko)E1)2 = (P1P4 + 10119.5)2 9 + e = -2(P1P5) + Mia“ .gives —2« (P1P4 + 13mm?) Mimi. < —2(P4P5)) = ———-—— —— 1 —— — lo —q— I4 2(P4P5)P1P5 l°g( 1311352 + °g (—2(P1P4+P1P5) g M; —1 P1P4+ P1P5 , ] : _..___ __—_. __ P1P4 P1P? 12 0.? P4135 11 (P4P5)P1P5 [rl0g( PIP-5 )+0)( + )) + )( l 138 aim. (—2P4 - k + 111.?) (2P3 - k + 1113 — mm.) 15: _ ' d9;- - / (i—2k03c059 + 21:03 + Mf)(2P3Ako)cos€ + 2P3£(ko)sin.0 cosqS - 2(ko)E'3 + ME - EAL.) fin then using P3; = if? = 323% + E3 = (”Rafa”) from 2(ko)E3 = -(P3P4 + P3P5) and P3, = (E33 - 1033)”2 = \/(P3P4)(P3P5)/ko and noting that c. = —2k0"2 d = 21:02 + Mj" = -c + M? e = P3P4 — P3P5 f = 2\/(P3P4)(P3P5) g = (P3P4 + P3P5) + M} — 271w: e3 + 1" = (2(ko)E3)3 = (P3P4 + P3P5)2 g + c = 2(P3P4) + M} — iI‘M; gives, using the symbol M Z P for the Z particle proprogator MZP = 2(P3P4) + ME — {I‘ll-I: r 2 2 _ f . _¢ ‘. r 21r [I ((2(P3P-))+MZP) )+lo < M: :I‘M, >_ (108 2(P1P)))] I5 : (P4P5)}UZP IUZP2 2(P3P5l-i- JUZP AL? r : (P4P51)A'IZP [27f log (2(P3133)Z+PAIZP) — (P3P4 + P3P5)I3 + (P4P5)Il] 16 _ (19;. —/ (2P1- k - 2(P1P4 + P1P5l+ .l/qguarkM'Zpli - l’ + .lf? - ITAL) (IQ;- - ./ (2(ko)Elcosfl + 2(ko)El + fiffuark )(2P3:(ko)c059 + 2P3,(ko)sinfi coso - 2(ko)£‘3 + M? — ITAL) 139 their using P3: = P—ZIP—T : 12,-’13?- + E3 \ t w' 1 P3P4 + P3P5 P1P4 + P1P5 E3 = —* 171 = —_ 2k0 2kg to give -2k0(P1P3+ (P1P4+P1PR(OI:3P4+P3P5)) P3” _ P1P4+ P1P5 with P3; = (E33 — P3§)1/'~’ and noting that c : —(P1P4 + P1P5) d = c + MEWL. 2(P1P3)(P4P5) — (P1P4+ P1P5)(P3P4+ P3P5) e: (PlP4+P1P5) f = 2(lco)P3._t g = —(P3P4 + P3P5)+Mf—1TM; e? + f3 = (2(1-10)1§3)2 = (P3P4 + P3P5)2 2(P1P3)(P4P5) R —. — l' I _ = g e ' 203%”sz (P1P4+P1P5) (P1P4+P1P5) where R = (2(P3P5) + MZP)(P1P4+ P1P5)— 2(P1P3)(P4P5) using as usual,the symbol AIZP for the Z particle proprogator MZP = 2(P3P4) + ME — 11w; 16 —27r R2 > 1 ( ME — I'm/1,. ) log Mimi : —— _ O ——_____ _ .— R l°g ((P1P4 + P1P5)2(2(P3P5) + MZP)2 g 2(P3P5) + MZP 2c —1 R = — , + P3P4 + P3P5)I3 — (P1P4 + P1P5)12] R [4T log <(P1P4 + P1P5)(2(P3P5) + 112m) ( 140 The 17 - I9 Class of Integrals These integrals are of the form: I7 — 19 = / __dQ“(A ‘ "’ (...)(...) and in each case the solution will involve already solved integrals of the denom- inator only: d9 . d9. Iright:IR=/.( 1) dQ. . Iboth=IB=/(H)(L) The integrals of this class assume the general form: I __ / ko (AA/coking cosd) + Ay(ko)sin0 sinq’i + .-l:(ko)cos€ — .-lo(ko)) — (c cosl9+d)(€ c059+fsin€ cos¢+g) using the previously defined co-ordinate system of class 14 -IG. Each term of the numerator may be solved separately. In an obvious notation; Iy equals zero by d> symmetry. and by inspection: 10 = —Ao(k0)IB I, is easily reduced: A,lco f sinfi c0345 + 6 c050 + g — e c050 — g f (ccosfl+d)(ecos€+fs1'n€ coso+{/) 1,: I fir/co I I 6 (c (0304-4—11) ] I — f L -g B — r/ (r 00594-100 (050+fsinficmo+g) Arko ed : f [IL—(g—Tlla-EIR] 141 and the final term I _A_.ko/ ccosfl+d—d .- - f (c cosfi + d)(e 6039 + f 51711.9 cosd) + g) :Lko : :f [In —dIB] Combining the four terms: k0 .4,er (IR —dIB)+ A. ed 6 I=—Ao(k0)IB-i- h [IL—(g—T)IB';IR] C Now to use this general solution to find 17,18 and 19. I7 _ / (19;. P3 - k ‘ (—2P4 1+ 11,2)(2P1-k — 2(P1P4 + P1P5)+ Min“) ko(P3,.(ko)sin9 cos¢ + P3y(ko)sin9 sinzb + P3:(ko)c050 - E3(ko)) I7 = (—2Ico'-’cos€ + 2k02 + A[$)(2P1.._(ko)cos€ + 2P1,(ko)sin€ (03¢ + 2(ko)El +1lf‘fuar‘.) . _ fi-fi _ P1P4 _ P1P4-P1P5 then usmg P1; — E4 — £4 + £1 — 21-0 from 2(ko)E1= -(P1P4+ PIP-5) and P1, = (1311’ — P13)”2 = ‘/(P1P4)(P1P5)/ko and noting that C = ~2k02 d = 21.03 + M; = —c + 113 e = P1P4 — P1P5 f = 2 (P1P4V)(P1P5) g = —(P1P4 + P1P5) + Min“. e? + f3 = (2(ko)E1)3 = (P1P4 + P1P5)2 g + e = —2(P1P.5) + 1‘15"”;- and adding —-‘.— : .P4—P3Pr _P.5 P4_P3P4 + £3 =P3 ) P3“?- 134 210 142 and to get P3, - 3 = P1P3 + E1E3 = Per35 + PlyP3y + P1,;P3; El with P1,, = 0 P3,; = 1/P1;[P1P3 + E1E3 - Pl;P3:] V r F 1 _ 1' — . 3' = ko/ (P1P4)(P1P5) [P1P3+ (P1P4+ P1P;::I:3P4+ P3130) _ (PIP—l PlP;/:E)I:3P4 P3PJ) S I 2(k0) (P1P4)(P1P5_) where S = P1P4(P3P5) + P1P5(P3P4) — P1P3(P4P5) and using the general form gives: P3P4 — P3P5 £3 — dI 21cc c (IR B) 17 = —ko(E3)IB + (P1P4 -— PIP-'3) —2/c02 (5)060) ____.___—.—.‘ 1 + ________——— 2kot/(PIP4)(P1P5) 2 (PlP4)(PlP-5) (P3P4 —- P3P5) 2(P4P5) S (P1P4 — P1P5) ___———— 11 2 P1Pr I4 — —————— +4(P1P4)P1P5[ + ( °) P4P5 [IL+2(PIP5)IB— In I7 = (P3P4)I4+ 12] 18 _ ko Pl -k “ / (—2P4 - k +111$)(‘2P3 -1- +113 arm) ko(Pl,(ko)sin6 c0565 + P1,,(Irolsinfisino + FLU-(1)0190 — EMA-0)) — / (—2I€02(‘O$6 + 21602 +1lI.;-’)('2P3_~(I\'o)c039 + 2P3;(k0)sin(9 (0.51;) — 2(kolE3 + .lf? -— il‘dL) . "‘."-' , . P3P4-P3P? then usnig P3; = BEE—5:! = P2? + E3 = 21:0 ) 143 from 2(ko)E3 = —(P3P4 + P3P5) and P3, = (1332 — P33)”2 = ix/(P3P4)(P3P5)/l:o P1; = (P1P4 — P1P5)/2ko Ira S x/(P3P4)(P3P5)m§ 1 P1, = F[P1P3 + E1E3 — P1:P3:] = i and noting that c = -2ko2 d = 210? + 113 = —c+ 113 e = P3P4 - P3P5 f = aha/W g = (P3P4+ P3P5) + ME — iI‘M: e2 + f3 = (2(ko)133)=’ = (P3P4 + P3P5)2 g + e = 2(P3P4) + 113 — iI‘M: gives, using the symbol M Z P for the Z particle proprogator MZP = 2(P3P4) + M? — iI‘M; (P1P4 — PIP-5) [ca 2120 —2/co'-’ 5' k0 +———————(IL-( 2k0y/(P3P4)(P3P5) 2V (P3P4)(P3P5) 18 = —ko('E1)IB + (IR — 210313) (P3P4;P3P5) MZP)IB— 21:02 13) (Note the :t arbritariness became self-cancelling due to AffL—° form.) _ r S (P1P4 P1P) I“ [11 — (MZP)15 - - K VT 18 ‘ (P1P4)I"+ 2(P4P5) 4(P3P4)P3P5 (P3P4 — P3P5)13 , P4P5 19 d§2k 134 'k ‘/ (2P1-k — 2(P1P4 + P1P5) + 1113 quar “(217.3% + M} - ITAL) 144 ko(P4,(ko)sin0 cosd) + P4 (ko)s-in€ sinq’) + P4. (ko)cost9 — E4(ko)) (2(ko)E1cos€ + 2(ko)E1 + M2 k)(2P3 (ko)c099 + 2P3 (k0)sin.0 cos¢>- 2(k0)E3 +1lf?— iI‘Ms) quar their using P3; = 5%]? = % + E3 wit1 P3P4 + P3P5 P1P4 + P1P5 E3 = —— = __ 21cc E1 2ko to give (P1P4+P1P5NP3P4+P3P5 P3: _ —2Ico(PlP3+ “.0, ’ “ P1P4+ P1P5 and P31 = (1:32 — P33)”2 P1P _ —[_ (——3) — 2(P1P3)(E1/E3)]1/- 11 1/2 = (:2) where A = P1P4 + P1P5 and T = 2(P1P3)[PlP3(P4P5)—-P1P4(P3P4)—PIP4(P3P5)—P1P5(P3P4)-—P1P5(P3P5)] P4 _P4 P1_P_1_P4+k0_ k0(P1P4—P1P5) 5 ’ —El “ E1 ‘ P1P4+P1P5) P4, = 1/P3,[P4P3 + E4E3 — P4.P3 ] P P — _1/P3,[P3P4+ ko(E3) — (ID—2,1133 + E3)(—1—— + k0 )] = (t) (:33). U = P3P4(P1P5)2 + P3P4(P1P4)P1P5+ P4P5(PlP3)PlP-l where —(P1P4)2(P3P5) — P1P4(PIP5)P3P5 — PlP5(PlP3)P~lP5 and noting that -(PIP4 + PlPS) : —-.~l 145 d = C + Affirm-k ii" 6: tel where W = 2(P1P3)(P4P5) — (P1P4 + P1P5)(P3P4 + P3P5) 1/2 f = 2(ko)P3, = 2ko (%) g = (P3P4 + P3P5) + ME — :TM: e2 + 12 = (2(ko)E3)2 = (P3P4 + P3P5)"’ 2(P1P3)(P4P5) _ R _ =2PP MZ — — ' g e (3 5)+ P (P1P4+P1P5_) (P1P4+P1P5) where R = (2(P3P5) + MZP)(P1P4 + P1P5) — 2(P1P3)(P4P5) using as usual,the symbol )1»! Z P for the Z particle proprogator MZP = 2(P3P4) + ME — 1PM, —k P1P4— PIP? —l.‘. Lil—”TOUR _ #1113) A2 ”2 [so A2 ”2 U _ .2 +(?) (72%) (7F) (fi)(IL—(R/-~1)IB+(u/A)IR) P4P5(PJP4—P1P5) 7T” 19 = --ko2IB + 19 = (P4P5/2)16 — P4P5 (P1P4 — P1P5) ———_A— U , 2 2 16+ fiuz— (R/.4)16+ (ii/A )13) 146 The 110 Class Of Integral It is desired to solve 110. I10 —/ m" ' (—2P4 .1: + 11$)(2P1-k — 2(P1P4 + P1P5) + 111; ”)(2P3 - k + 1113-11‘114) u This is effected by noting from Appendix L: ku = (51 Mm“ + (S2 - k)f2,, + (53 1173,, + ($4 - 1V4“ where $1,, = (CC11)Sl,J + (CC12)S2u + (CC13)S3p + (CC14)S4u $2,, = (CC21)51,. +(CC22)52“+(CC23)S3,1+(CC'24)S4;, 73,, = (CC31)51,‘ + (CC32)52,‘ + (C'C'33).S'3p + (C-‘C'34)S4u f4“ = (CC-‘41)Sl,, + (CC-‘42)S2u + (CC43)53,‘ + (C'C44)S4,‘ where CC 11 ....... CC44 are given in that Appendix as assemblages of dot prod- ucts. In this problem- Sl = P1 52 = P3 53 = P4 54 = P5 so... k” = (P1 - k).7:1,, + (P3 - Hf?” + (P4 . k).'F'3,i + (P5 ~ k)f4,, where flu = (CC11)P1,, + (C7C12)P3,. + ((‘C'13)P4,. + mamas” T211 = (CC21)P1,. + (002-2)qu + (('('-23)P4,, + (("('2.1)Pr,,, $3,, = (CC-'31)P1,. + (C'C'32)P3,, + (51-'33,}:4“ + ((1734) P5" $4,, =(CC41)P1u + (CC-'42)P3,, + (c.'(743)p4u + (CC44)P5“ 147 F uther, in this problem. the on-shell condition 6[(P4+ P5 — k)]2 = 0 implies P5-k: P4P5—P4-k giving k,J =(P1~kg)f1u + (P3 - k).’F'2,, + (P4 - k)(.7-'3,, — fi1#)+(P4P5).7-"4,, Use of this is made by noting the other on-shell condition of this problem- 6(k2) = 0 0 = H‘ku = f1,,fl“(P1'k)(P1-k)+ 72”.???”(P3 - k)(P3 - k) +(1‘3u — $4..)(f31‘ — f4“)(P4 - 1:)(P4- k)+ f4..1—”4"(P4P5)2 +2?1,,.7-‘2“(P1 - k)(P3 - k) + 2fl,1(.7-'3“ — f4”)(Pl - k)(P4 - k) +2.7:lpf4“(Pl - k)(P4P5) + 2f2“(.’F3” — f4")(P3 - 1:)(P4 - 1:.) +2?2,,.7-‘4“(P3 - Ic)(P4P-5) + 2(J-"3p — .774“).7-'4“(P4P5)(P4 ~ 1:) As 1:3 = 0. any integral of 1:2 will also equal 0. In particular the integral of k2 over the above 110 will be zero. 0 _ / dm we“ ‘ (—2P4 - k + 113)(2P1-Ic — 2(P1P4 + P1P5) + 1115“,. )(2P3 - k + 113 — inn.) When the above expression for k.“ k” is inserted into this integral. it produces a sum of integrals which still equals 0. For example. one such term would be: 1191 flufl“(P1 1k)(Pl -1~) /(—2P4 - k + M.;-,’)(2Pl - k — 2(P1P4 + P1P5l+ 1115M”. )(2P3 - k + 1113—1'I‘11L) This integral. except for 71,..7-‘1". is defined in Appendix M to have the notation A2(1.1). The other integrals appearing in this sum haw.- a similar notation defined in that Appendix. Using this notation. the expression for 0 becomes: 0 = f1,,f1"A2(1.1)+ f2,.f2"A2(2. 2) + (73,, - 74,. )(f3" — f4“)A2(3. 3) 148 +f4uf4"(P4P5)2110 + vignmzm, 1) + 2f1,.(.7:3” — .7-‘4“)A2(3. 1) +2?1,..7~'4“A1(_1)(P4P5) + 22:2),(1314 — f4”)A2(3. 2) -+2f2,,$4"A1(2)(P4P5) + 2(13). — $4,.)f4"(P4P5)A1(3) In Appendix M. it is found that A2(3,3) = —1/2 19 A2(3,2) = —1/2 [1/2 (12 — (ME —1rM.)16)] A2(3, 1) = ~1/4 [13 + 2(P1P4 + P1P5)IG] A2(2. 2) = 1/2 [17 — (111.2 — irM.)A1(2)] A2(2, 1) = 1/2 [1/2 (11 + 2(P1P4 + P1P5)I4)—(1\13—irM,.)A1(1)] A2(1. 1) = [I8 + 2(P1P4 + P1P5)A1(1)] 141(3) = -1/216 A1(2) = 1/2 [14 - (ME - if)”: )110] A1(1) = 1/2 {15 + 2(P1P4 + P1P5)110] After these are substituted in the expression for 0. that expression becomes an algebraic expression [or 110, which may be solved to yield: _ Iloupper 110 = Ilolower where 110m," = fl‘,fl“(l/2(IS) + 1/2(P1P4 + P1P5)15 +f2,,f2#(1/2(17) — 1/4(Mf — irM. )14) —(f3,. — 74,.)(131‘ - f4")(1/2)19 +f'1,,f2“(1/2(11)+ (P1P4 + P1P5)I4) — 1/8(Mf — if)”; )15) —f1,.(J-'3” - f4”)(1/2(I3) + (P1P4 + P1P5)16) + f1,,.7~'4“(P4P5)15 —J-'2,,(}'3“ — f4“)(l /2(12) — (1113 — irM. )16) +f2,,f4“(P4P5)I4 — (73,. — P4,, )f4”(P4P5 )16 and 11mm, = .7-‘1,,.7-'1“((P1P4 + P1P5)3) + f2,,f2“(1/4)(M§’ — iI‘AI; )1’ +f4uf4”(P4P5)2 + .7-‘1,.f2“(—1/4(P1P4 + P1P5)(.-\!.'-’—i1‘.-U:)) +f1,.}'4“(P4P-5)(2(P1P4 + P1P5))+ f2,,}'4" )1—(1/3 — 112)]. )) As 11......19 are now known. 110 is now also known. 149 The Ill - 116 Class of Integrals These integrals are of the form: 111 —116 = / ———d9”((‘4)' 1“) and in each case the solution is reducable to integrals already solved of the denominator only: dflk I = —- D (...) The integrals of this class assume the general form: I: /d§2k (Az (ko)sin0 cosd>+ A y(ko)sin0 sin¢+ A: (ko)cos€ — Ao(l'o)) (c c050 + (1) using the previously defined co-ordinate system of class 14 -16. Each term of the numerator may be solved separately. In an obvious notation; I, and Iy equal zero by (1) symmetry. and by inspection: 10 = —Ao(k0)ID I: is easily reduced: I _A:ko cc059+d-—d ‘ c (cc059+d) so. k0 [47f — dID} A I = -Ao(k0)ID + New to use this general solution to find 111 - I16. 11 de11 1 ‘/(‘1P4l+\!) er(Pl, (ko)sin9 c056") + P1 y-(lo)sin() sino + P1 (Lo)cosfl - 151(k)) 111:] (— —2ko- cosfi+2ko~+ AL? ) then using P1; = FE? = P115? = BAP—é'gf—“fi from 2(ko)E1= --(P1P4 + P1P5) and noting that c = —2k02 d = 2102 + M3 = —c + 1113 P1P4+P1P5 P1P4-P1P5 P1P4—P1P5 111: ————— ____—— _— ( 2 )H ( 2(P4P5) )4”+( 2 )“ P1P4— P1P5 P4P5 )+ (P1P4)Il Ill:21r( and I 12 is the indentical with P1 replaced by P3 (1521. P3-k 112 ’ / (—2(P4 - k) + 1113.) P3P4 - P3P5 P4P5 )+(P3P4)Il 112 = 27r< 113 (19,. P4 . k =/(2(P1 k)— 2)(P1P4+P1P5)+quua,k) 113 _ (191 P4 - k ’ (2(ko)E1c059 + 2(ko)El + Mia“) c = —(P1P4 + P1P5) d=C+AIg2uark :C+O=C ’74' ”PT _PlP4+ko__Lo(P1P-1—P1P5) E1 ’ (PIP-1+P1P5) P4;= 2 (P1P4 P1P5))ko( —4, _ 12) 11:1 = 'k" 12 + (—ko(PlP4 + P1P5) (P1P4 + PIP-‘3) 151 = —21r(P4P5‘ (P1P4 — PIP-'3) ((P4P5)(P1P5)> ( ’(P1P4+P1P.5)'-' P1P4+P1P5) 114 z] (19;, P3 - k . (2(P1-l-.)—2(P1P4+P1P5)+nguark) I14 = /’ d011‘P3 - k ., (2(ko)Elcos€ + 2(ko)E1+ Mq'uark) c: —(P1P4+ P1P5) d = C + ALiner-k. = C P1P4 P1P5 P3P4 P3P5 P3_ = —2ko(P1P3+‘ + “1‘0, + ’ ‘ . P1P4+P1P5 _ - [—2(P1P3)(P4P5) + (P1P4 + P1P5)(P3P4 + P3P5)] ‘ 2ko(PlP4+ P1P.5) , 114 = (w) 12 + —2(P1P3)(P4P5)+(P1P4+P1P5)(P3P4+P3P5) 411- +12 2(P1P4+P1P5) P1P4+P1P5 115 _/ (1121. P4 .1. ‘ (2(P3 - k) + 1113 — 11M.) d9;c P4-k 115 = (2E3(ko)cos€ — 2(101133 + 1113 —1tr111..) and noting that c = -(P3P4 + P3P5) d = (P3P4 + P3P5) + M} — mu. E4 = 1:0 flfi P1P4 (P1P4—PJP5) P4: = 1:1 = 731‘ + k” = "k" PIP-1+ PIP-5) (P3P4 - P3P5) (P3P4 + P3P5)? 115 = —Ico"’I3+ (4.0 ) (—lco) (41 — [P3P4 + P3P5 +1113— 1111.] 13) 152 _ (P4P5) ‘ 2(P1P4 + P1P5)'-’ (19;; P1 - k 116 = /(2(P3-k)+1lff—1T1U;) I16 _/ (19;; P1 - Ic _ (2E3(k0)cos€ — 2(ko)E3 + 1M} — iI‘AL.) and noting that c = _(P3P4 + P3P5) d = (P3P4 + P3P5)+1’t[3—i1‘1\=[; _ , r E1: (P1P4+ P1P1) ko P_3-fl PL: 1 . E3 +E (P1P4+P1P5)(P3P4+P3P5) _ —2k0(P1P3 + 1112 P3P4 + P3P5 _ — [—2(P1P3)(P4P5) + (P1P4 + P1P5)(P3P4 + P3P5)] ‘ 2ko(P3P4 + P3P5) gives I3 P1P4 PlPF (<__;__2) __ [2(P1P3)(P4P5) — (P1P4 + P1P5)(P3P4 + P3P5)] 2(P1P4+ PIP-5) ) (—47r(P3P4 - P3P5) + I3 [4(P3P4)(P3P5) + P3P4 — P3P5)] MZP) > (4,1 — [P3P4 + P3P5 + M} - 171311;] 13) 153 The I17 - I19 Class of Integrals These integrals are of the form: 1191, (A ~ 1‘.)2 117 — 119 = Most of the solution is expressable in terms of previously used I L,I R. and I B and integrals also already solved involving just 911; of the numerator factors and one or both of the denominators: d9 .4 1k ITopLejt = ITL =/_:(—):‘l d9: A - k ITOPRight = 171-? = / —-:—%—)——) 11:21. (.4-1-.) ITopBO‘h = [TB =/ (...)(---) The solution is effected by expandingjust one of the numerator factors into four terms: I _ d9; (A,(ko)s1'.n0 cosd> + Ay(ko)s1'110 Sin-d5 + A:(Ico)cosfl - ADM-0)) (A - k) _/ (c c056 + d)(e c050 + f sine cosd: + g) using the previously defined co-ordinate system of class I4 - I6. producing the four terms, in an obvious notation: First solve Io, by inspection: Io = —Ao(k0)ITB and then I , .4-k I: = if 0 [1111 - dITBl and 1: fill-1‘0 ((1 ( Ir: f ITL-(fl—TNTB";]TR These were done in the usual way of adding and subtracting the terms required 154 to produce cancellation of denominator factors. 1,, is harder. it is approached by also expanding the other numerator factor: I _ / d0); (Ay(lco)sin0 sindi) (.4,(ko)sin0 cosd: + .4y(ko)si11.9 51nd: + A:(ko)cosfl - 140(130) ) y — (c c056 + d)(e c039 + f sine c0542 + g) Three of the terms are zero by symmetry. The remaining term: ko (sin-'39 sinqu) (c c056 + d)(e c050 + f sine cosq') + g) n=Aflf Aglw2 dflk (f2 — fzcoszfi — fzsinzfl 51.11.2113) f2 (c c059 + d)(e c059 + f sin0 cosgb + g) 19: which three terms may be called: By inspection: Iyl = 113110313 and I -A3k03 ko (czcosgfi + 2cd c050 + d2 — 2cd 0050 — (I?) y: — c3 / (c c050 + d)(e c059 + f sing cosqS + g) —A§ko2 ._, 3 d IC' Iyz = c2 {—2113 + 2d 13 — d 13 + .111 + c( 1] _Azk 2 9 I92 = _zv—° [dIR — d'IB — c(IC-')] where IC _ d9]; C059 _ / (e c050 + f sing cos¢ + g) and remains to be evaluated. Lastly, ., - ., ’ Ailco2 (IS-2;. (—fzsin'0.s1n-o) I93 = f“-3 (c (030 + d)(c c050 + f sing cnso + .11) Then. using I2 sinzflsi112¢ = [(6 cost? + g) + (f sin.9coso)]2—2(e cosfl+g)(f sinflcosq))—(e cosfl+g)2 155 = [(e c039 + g) + (f sin9c05¢)]2—2(e cosfi+g) [(6 c050 + g) + (f si11.0cos¢)]+(c c056+g)2 : [(e c050 + g) + (f sin10c05¢)][—(e c050 + g) + (f sinflcosm] + (e c030 + g)2 Aiko" / ko(e c030 +g) _ / dfli. (f sinflcosd) ) _ (191. (ezcosgfi + 296 c050 +92) f2 (c c089 + d) (c c050 + d) (c c050 + d)(e c056 + f 51119 cos¢ + g) Iya = The second term is zero. The remaining become: ko (c0529) ] —e ed 2ge 3 2 [74“ + 71L — gIL + 7”}? _ dIB) + g 18 + 6 (c c059 + d)(e c056 + f sine cosqS + 9) Then. using the results of [ya on the cos? integral: -A§k02 —e ed I93 = f3 —47T-(9-—)IL +—(I11-d13)+o IB-—(d11=z dq'IB—CUC')) and the complete integral for this class of integrls: I=Io+Iz+Ir+Iy1+Iy2+Iy3 14.1: 117 — I19=—Ao(ko)I1-3+ °[Im — dIral+ .1-4 L d 0 [In - (9 — 'e—lITB - SITE] f c c 11312 + 431.0 13 + 02[d1,1 — d- 13 — cum] ‘ ; [_—477-(9-—)1L+—(IR-dfs)+9213-:—:(dIR- dqls-CUC') )] It remains to evaluate IC. (19;. cost? IC = / . (e c050 + f 51119 c0547 + 9) Using 21 dd) _ 271' o a + bcosaS — ((13 — 1,2)1/2 2 1 1rd: 1C.— 7/;((53+f2)13+29€r+92—f2l1/' a>b>c 156 1 IC = 21r/ +dx— _1(m1:-+n.1:+p)1/'-’ where ., 1n=62+f' 112296 19:112—1‘2 which is solved using 1 - 1. .1_(1)(;_m).,..1 1 X”? W 2112 Noting X1+1> = (9+ «:12 -\'(-1) = (y - 6)." and (g+€)\/€"’ +f3+:2(c2+f'-’)+2(.<1c)= (9+ \/e?+f'-')(e+\/e?+f?) (g-e)\/63+f'~’—2(62+F)+2(yc) (g—¢e2+12)(e+\/e?+13) gives Ic=L 2e__z:__,og 2+__ x/e'+f (12+P) W g—W The log is the same as appears in the II - 13 class integrals and will be express- able in terms of them. This class of integrals thus has solution: ”,4 k0 6d I17-119: —Ao(k0)IrB+ACko [Ira - d1r8l+ —f_ 0[ITL - (a - —)ITB - 4711] 4‘43“? —e(f'-’+e'-’) ) _fi (21_.d_'_,_£‘.’2>1 N] -r f2 [( C(fz-l-62) +C/C 47l'+(.<7 C)IL+ fl (:1) (.l C). 3+ where : N(d —2(f‘ +e e2)- 2g__e>IR+ (j—_3 +(-') 371' __g_-( fglog(_r/+1/c-+f') c (f—-+_e'-’)./2 g_‘/,.'.'_*_f2 157 AJ: A,k d 117 - 119 = -Ao(k0)Ira+ c 0 [Ira - d1r13]+ f o [In — (y - 517”” - EITR] Azkog + ”1 f- ed cd 2 d 2 2 27rgt 9+ “(2+)” [(5] — :) IL — (g — 7) I3 +1/c ([;(f + e )— 2ge] In + ——\/€2+—f2 log (g———_ W))l 158 Now to use this general solution to find 117, 118 and 119. 117—] 1112111131): “~ (—2P4 . k + Mjf)(2P3 . 11+ 1113 — ier) dQL.(P3,(ko)sin9 cos¢ + P3y(ko)si11.9 5111.115 + P3;(ko)cos(7 - E3(Ico))(P3 - k) 117 = (—2k02c050 + 211:02 + Mf)(2Pl;(ko)cosfi + 2P1,(ko)sin.0 cosd: + 2(ko)E1 + Mimk) IL=II 13:12 IB=I4 ITL=IIZ [73:11.4 ITB=I7 The parameters are the same as for the I7 solution. —4 _ P1P4 __ P1P4-P1P5 - £4 + E1 " 21:0 using P1; = from 2(Ico)E1= —(PlP4 + P1135) and P1, =(E1— P13)”2 = :t‘/(P1P4)(P1P5)/ko and noting that ,, c = —2ko' d = 2ko2 + 111.3 2 —C+ AL? 6 = P1P4 — P1P.5 f = 12W g = —(P1P4 + P1P5) + 1115.111 62 + f2 = (2(10)E1)2 = (P1P4 + P1P.5)2 g + e = —2(P1P5) + 111‘wa ge = - [P1P42 — P1P52] and adding 2 _2” .-1 L_ W _ 2" 10g 11.1.1.1 = 12 ./—ez + f2 °5 9 _ C2 + f2 ” (P1P4 + P1P5) -2(P1P4+P1P5) fl - PE P3P4 P3P4 — P3P5 - = _— = _— E3 = ———.—.—— P3‘ E4 E4 + 21-0 and to get P3,- _1-_3 = P1P3 + EIE3 = P1,P3, + P1yP3y + P1:P3: 159 which, since P1,, = 0 P3, = 1/P1x[PlP3+ E1E3 - P1,,P33] (P1P4 + P1P5)(P3P4 + P3P5) (P1P4 - P1P5)(P3P4 - P3P5) 411202 W 41902 = iko/\/(P1P4)(P1P5) [P1P3 + ___ 1:5 2(ko)\/(P1P4)(P1P5) where S : P1P4(P3P5) + P1P5(P3P4) — P1P3(P4P5) Now in addition, is needed P33: q P33 ..—. E32 - P3; - P3; _ 4(P3P4)P3P5(P1P4)P1P5 — S2 ’ 4k02(P1P4)P1P5 and using the general form gives: _ P3P4 — P3P5 _A P3P4 — P3P5 _ 117 _ —ko(E3)I1 + 14—21-02 (114) + 2 (11) (5)0”) 1 [ — P1P4 - {1})”(114) + 2(P1P5)17] 2ko\/(P1P4)(P1P5) 2\/(P1P4)(P1P5) (—2ko~ 4(P3P4)P3P5(P1P4)P1P5 — 52] 4(P1P4)(P1P5)4(P1P4)P1P5 {—2(P1P5)Il — 4(P1P5)2I4 + 21mg (—(P1P4 + P1P5)'-’ + P1P42 — P1P52) 12] where the :1: arbritariness has cancelled out. -. P3P4 - P3P5 (.S') P1P4 — P1Pr1 _] = . 112— I14+2 P1P? I 1” (PBP‘HH‘L 2(P4P5 (114)+4(P1P4)(P1P5) [ (P4P5 ( ’l ‘ ~ F —:'~’ ., P1 4 P1Pr [4(P3P4lp3p5(P,lP4)Plf’ S J [—2(P1P5)Il — 4(P1P5)-I4— (( P + r ’l) (2P1P5)12] 16(P1P4)-(P1P5)- P4P.1 160 d9): (Pl-k)", 118 = (—2P4 - k + 1H,?)(2P3 . k + AIS—17111;) _/ dQL.(Pl,(Ico)sin0 cosd) + Plg(ko)sin€ sinqS + Pl;(ko)cosfl — E1(ko)) (P1 ~13) — (—2k03cos(9 + 21m2 + A!$)(2P3;(ko)cosfl + 2P3a.(ko)sin9 cosc’: — 2(lco)E3 + 1U} —iI‘1\/;) IL=Il IR=I3 13:15 ITL=111 ITR=116 [73:18 The parameters are the same as [or the 18 solution. - _ fi-P—4 _ P3P4 _ P3P4—P3P5 Usmg P3; — E4 — —E4 + E3 — ————._,ko from 2(ko)E3 = —(P3P4 + P3P5) and P3, = (E33 — P33)”2 = i\/(P3P4)(P3P:3)/ko P1; = (P1P4 — P1P5)/2ko iko S P1, :1 P3, P1P3 E1E3 — P1..P3.. = —— q / [ + ] x/(P3P4)(P3P5) 2ko- and noting that 0 c : —2ko’ d = 21:02 + M: = —c+ M: e = P3P4 — P3P5 f = am = (P3P4 + P3P5) + M3 — iI‘M: = —(P3P4 — P3P5) + MZP e2 + f3 = (2(ko)133)=' = (P3P4 + P3P5)"’ g + c = 2(P3P4)+J!f’—i1'.\l: g6 = (P3P4 — P3P5) [—-(P3P4 + P3P5) + MZP] 161 using. as usual, the symbol M Z P for the Z particle proprogator MZP = 2(P3P4) + M} — 171‘111z and -now adding 271' 0g (9 + x/e- + j”) _ 27r )log (2(P3P4)+ MZP) = 13 _1 _ ,F—ez+ f2 g_,/—e2+ f3 (P3P4+P3P5 M3 41w: fl - P—4 P1P4 P1P4 — P1P5 P1” E4 - ‘54—”1 "—2?— Now in addition, is needed P13: P1; = E12 — P13r — P13 _ 4(P3P4)P3P5(P1P4)P1P5— S? ‘ 4k03(P3P4)P3P5 and using the general form gives: P1P4— P1P5 P1P4—P1P5 118 = —ko(E1)18 + 2(_2k02 (116)+ —-——2—(18) —————(S)(k°) —————l [111— ————-——P'5P4 _ P,,3P'J(116)— (P3P4 —- P3P5)I8] 2ko‘/(P3P4)(P3P5) 2 (P3P4)(P3P5) (—2ko- 4(P3P4)P3P5(P1P4)P1Pr — 52] 16(P3P4)=(P3P5)= [(MZP)II — (MZP)2I5 — 22:2 (—(P3P4 + P3P5): — (P3P4 — P3P5) [—(P3P4 — P3P5) + MZPD where the d: arbritariness has cancelled out. P1P4 — P1P$ r (5) [ P3P4 — P3P5 J = 1 0+ 1 — ——nc — MZP 18 118 (P “D “18* 2(P4P5) 1 4(P3P4)(P3P5) (P1P5) ( ) 4(P3P4)P3P-5(PlP-1)PlP-r — 52] 16(P3P4)'-’(P3P-5)'-’ 162 l P4P5 [(Msz — (MZP)"’15 — {(P3P4 + P3P5)2(P3P5) + (P3P4 — P3P5)A~IZP}IS] 119=/( ko(P4-k)3 2P1 - k — 2(P1P4 + P1P5)+1L[:uark)(2P3-k + M; 41311:) _/ th(P4x(k0)sin6 cosqS + P4y(k0)sin0 sings + P4;(ko)c059 - E4(ko)) (P4 - k) ' (2(ko)E1cos6 + 21101131 + M; M )(2P3;(ko)c050 + 2P3,(1o)sma cos¢ — 2(ko)E3 +1113 — 1mm U ILZIZ [12:13 IB=IG ITLZII3 ITRZII5 ITB=19 The parameters are the same as for the 19 solution. Using P3z = 7;? = % + E3 with E3 _ P3P4+ P3P5 E1 _ P1P4+ P1P5) _ 21cc _ 21:0 to give P1P4+P1P5 P3P4+P3P5) P3- = —2ko(PlP3 + t 4503 “ P1P4+ P1P5 and P31 = (E32 — P313)”2 1/2 P1P3 2 = _ — — 2(P1P3)(E1/E3) E1 - :1: l 1/'_’ _ A2 where A = P1P4 + P1P5 and T = 2(P1P3)[P1P3(P4P5)—Pl P4(P3P4)—P1P4(P3P5)—PlP-5(P3P-l)—P1P5( [33135)] 163 Eiffi P1P4 (P1P4— P1P5) P4. = = ——- 1 = — . —-—-————— * E1 E1 “0 [‘0 P1P4+P1P5) P4, = 1/P3,[P4P3 + E4E3 - P4CP3...] = 1/P3:[P3P4 + ko(E3) — (5%? + E3)(%fi + k0)] A" 1’3 U “*(E) (:13) U = I-"3P4(P1P.’5)2 + P3P4(P1P4)P1P5 + P4P5(P1P3)P1P4 where —(P1P4)2(P3P5) — P1P4(P1P5)P3PF — P1P5(P1P3)P4P5 and noting that ' c = —(P1P4 + PIP-5) = A d=c+Mfuark =c+0=c ..q <4 6: i=~| where W = 2(P1P3)(P4P5)—(1P1P4 + P1P5)(P3P4 + P3P5)(P1P4 + P1P5) T 1/2 f = 2(lco)P3, = $21.30 (71—2) 9 = (P3P4 + P3P5) + MS — mu: e2 + f2 = (2(Ico)E3)2 = (P3P4 + P3P5)2 ge = W/A {—(P3P4 + P3P5) + ME — mm] 2(P1P3)(P4P5) _ R- g — e = 2(P3P5)+ MZP - (P1P4+ 121105) ‘ (P1P4+ P1P5) where R. = (2(P3P5) + MZP)(P1P4 + P1P5)— 2(P1P3)(P4P5) usingras usual. the symbol M Z P for the Z particle proprogator MZP = 2(P3P4) + M? — iI‘M: and adding 21: 0 9+ M; +72 _ 2,1 10 (2(P3P4)+MZP) _13 ,/’—_e2 + f2 g g _ F2 + f2 ’ (P3P4+P3P5) ‘5 1113 — 11111; ‘ and now in addition, is needed Ply: P43 = E42 — P43 — P43 2 _ k02(P1P4— PIP-‘3)"z _ U: = k 0 A2 A31“ _ 2(kog)(P1P4)(P1P5) _ U2 ’ A? .421 and using the general form gives: k03(P1P4 — PIPS) A3 <—> <1) <1) <> (43+ I15+ . 2 _ .r 119: (—ko=)19+( (————————L" (P1P: P1P”) 19 TV ”2) 11.5 + (1—3) 19 — (P3P5 —- P3P4 + 1112mm) , 2 '1 IV I [(S) 12 — (E) 16 —14 ([P3P4+ P3P-Sl' - L4- l—(P3P4 - P3P5) + NZ”) 13] where the :t arbritariness has cancelled out. 119 = ((P4P5)(P1P5))19 _ ((P4P5)(P1P:1— P1P5))115 A 2A- +-U— (113 + (3)115 + (33) 19 — (P3P5 — P3P4 + 112mm) 2T A2 A —P4P5(P1P4)P1P5 (73 +l 2T — T179] 2 " ‘1. n r [(11) 12 _ (E) 16 — l4 ([P3P4+ P3P5]' — 714121134 — 12,1231.» 112191) 13] Appendix 0 FORTRAN Program to Calculate the Result 165 166 PROGRAM thesis IMPLICIT NONE INTEGER LHEL,QHEL,GHEL REAL ECM,PI,ALPHA COMPLEX MZ PARAMETER (LHEL = +1, QHEL = +1, GHEL = +1, ECM = 5.80) PARAMETER (ALPHA = 1.0/137,PI = 3.14157,MZ = (93.5,2.7)) INTEGER EPF_PARITY REAL P1P3,P1P4,P1P5,P3P4,P3P5,P4P5,LIMIT,P1Y_$QD,P1Y REAL PP1P3,PP1P4,PP3P5,PP4P5 REAL WIV,PPIIV REAL PROPIV,E0,BO,CUO,EOIV,BOIV,CUOIV,RATIO COMPLEX Il,IZ,I3,I4,I5,IG,I7,18,I9,I10,Ill,I12,Il3,114,115 COMPLEX 116,117,118,119 COMPLEX EVL,BORN_TERM,BORN,LOOP_TERM,MZP,MZPIV COMPLEX NUMERATOR ,ELECTRON_LOOP_TERM,POSITRON_LOOP_TERM COMPLEX E_ LOOP, P _LOOP CHARACTER—SET_HEL_CODE#1,HEL CODEtl OPEN ( UNIT = -10, FILE = ’TOUTPUT’, STATUS = ’NEW’ ) LIMIT = -2#ECMI¥2 HEL_ CODE = SET_ HEL _CODE(LHEL, QHEL, GHEL) PRINTt, ’HEL CODE = ’ ,HEL_ CODE DO 1000 P3P4 = 0 ,LIMIT, -10 DO 1000 P3P5 = 0,LIMIT-P3P4,-10 P4P5 = LIMIT - P3P5 - P3P4 DO 1000 P1P4 = 0,LIMIT,-10 DO 1000 P1P5 = O,LIMIT-P1P4,-10 P1P3 = LIMIT - P1P5 - P1P4 P1Y_SQD = ( 4tP1P4tP1P5tP3P4tP3P5) - (P1P5tP3P4+P1P4*P3P5-P4P5#P1P3)#12 PRINTt ’P1Y_SQD= ’ ,P1Y 5 D IF ( P1Y _SQD .GE. 0 ) THEN PRINTI, ’P1P3 = ,P1P3 PRINT: ’P1P4 = ’,P1P4 PRINT:,’P1P5 = ’,P1P5 PRINT:,’P3P4 = ’,P3P4 PRINT:,’P3P5 = ’,P3P5 PRINT: ’P4P5 = ’,P4P5 P1Y= EPF_ PARITYIP1Y _SQD:#(O. 5) PRINT: ’PlY = ’ ,P1Y EVL: CMPLX(O. 0 ,P1Y) PRINT‘, ’EVL = ’,EVL BORN_TERM= BORN(HEL_ CODE, P1P3, P1P4, P1P5, P3P4, P3P5, P4P5 ,EVL) MZP = 2¢P3P4 + MZ MZPIV = 1.0/MZP PROPIV = 1. O/(- -2tP1P5#2t(P3P4+P3P5+P4P5)) BORN_ TERM = PROPIV:MZPIV:BORN_ TERM E0 = -4tP1P5¢(P3P5+P4P5- -P1P5)t (P3P4+P3P5+P4P5) E0IV==11.0/E0t¢(0.5) 80 = 1 80 = 0.125:(P3P4tP3P5)tt(0.5) BOIV = 1.0/BO:¢(0.5) cuo = 0.125:(P3P4+P3P5+P4P5)tP1P5 CUO = 1 CUOIV = 1.0/CUO:¢(O.5) ++++ +++++ 0941+ § 167 FPIIV = 0.251(1/PI) BORN_TERM = E01V¢BOIV¢CUOIV*BDRN_TERM PRINT:,’BURN TERM = ’,BORN_TERM H 03 II II II II II II II II II II A ~O O V (010) H H 01 II II II II II II II II II II II A O 0 V w 0 CALL INTEGRALS (P1P3,P1P4,P1P5,P3P4,P3P5,P4P5, I1,I2,13,I4,I5,16,I7,18,I9,110, 111,112,113,114,115,116,117,118,119, w1v,FP11v, MZ) ELECTRON_LO0P_TERM = E_LO0P(HEL_CODE,P1P3,P1P4,P1P5, P3P4,P3P5,P4P5, 11,12,13,14,15,16,17,18,19,110, I11,112,113,Il4,I15,116,I17,118,119, WIV,FPIIV,BOIV,CUOIV,EOIV,EVL, MZ) ELECTRON_LO0P_TERM = ELECTRON_LDOP_TERM/(2¢P4P5) PP1P3 = P1P4 PP1P4 = P1P3 PP3P5 = P4P5 PP4P5 = P3P5 EVL = -EVL E0 = -4tP1P5¢(PP3P5+PP4P5-P1P5)#(P3P4+PP3P5+PP4P5) E0 = 1 EOIV = 1.0/E0t¢(0.5) 80 = 1 80 = O.125¢(P3P4¢PP3P5):¢(0.5) BOIV = 1.0/BO:¢(0.5) CUO = 1 CUO = 0.125s(P3P4+PP3P5+PP4PS)*P1PS CUOIV = 1.0/CUOtt(0.5) CALL INTEGRALS (PP1P3,PP1P4,P1P5,P3P4,PP3P5,PP4P5, I1,I2,I3,I4,15,16,I7,18,19,110, Ill,112,113,Il4,I15,116,117,118,119, WIV , IIV, POSITRON_LO0P_TERM = P_LUOP(HEL_CDDE,PP1P3,PP1P4,P1P5, P3P4,PP3P5,PP4P5, 11,12,13,14,15,16,17,18,19,11o, 168 4. I11, 112, I13, I14, 115, 116, I17, 118, I19, + WIV, FPIIV, BOIV, CUOIV, EOIV, EVL, MZ POSITRON_ LOOP TERM: POSITRON LOOP _TERM/(2tPP4P5) LOOP _TERM = ELECTRON LOOP TERM - PUSITRON LOOP_ TERM LOOP _TERM: LUOP TERMtBOIVACUOIVtE6IV LOOP TERM LOOP _TERM/(2.(P3P4+P3P5+P4P5)) PRINTP, ’LOOP TERM = ’ ,LOOP TE RM LOOP TERM: LOOP _TERMLALPHA/(BMPIMP4P5) NUMERATOR = LOOP TERM 4 BURN_ TERM RATIO = NUMERATD§1CUNJG(NUMERATUR) RATIO = RATIO/(BORN_ TERMICONJO(BORN_ TERM)) PRINTI, ’RATIO = ’ ,RATIO WRITE ( 10, 200 ) HEL CODE, P1P3, P1P4, P1P5 P3P4, P3P5, + P4P5 RATIO 200 FORMAT (A1,6F7. 2, F12. 7) ENDDO ENDIF 1000 CONTINUE END CHARACTER FUNCTION $ET_ HEL _CUDE(LHEL, OHEL, GHEL) INTEGER LHEL, QHEL Om IF ((LHEL Eq. .1) .AND. (OHEL .Eq. 1) 4 .AND. (GHEL .EO 41))m PRINTt,’A’ SET_ HEL_ CODE = ’A’ RETURN ELSEIF -((LHEL .Eq. +1) .ANDTH (OHEL .eq. 1) + (G GHEL EQ -1))TH PRINT#, ’8’ SET HEL_ CODE = ’B’ RETURN ELSEIFA ((LHEL .Eq. .1) .AND. TH(OHEL .Eq -1) 4 . (c GHEL Eq 41))m NDPRINT. C $ET_HEL_CODE = ’C’ RETURN ELSEIF ((LHEL .Eq. 41) .AND. (OHEL .EQ. -1) ,4 .AND. (GHEL .EQ. —1)) THEN PRINT-, ’0’ SET_ HEL_ CODE: ’0’ RETURN ELSEIF ((LHELH .Eq. E.1) AND. (QHEL .Eq 1) + (GH +1))W PRINT: 'E'ELI PRINT:,’EVL = ,EVL $ET_ HEL_ CODE = E RETURN ELSEIFA((LHELH.EQ.E-1) .ANDm(QHEL .EQ. 1) . + (CH --1))TH APRINTt, ’F’ SET_ HEL_ CODE = ’F’ RETURN ELSEIFA((LHELH.EQ.E-1) '??DW(QHEL .EQ. -1) 4r (CH +1 APRINT: ’G 5ET_ 169 HEL_CODE = ’6’ RN R ELSEIF A((LHEL .EO. -1) .AND TH(OHEL .EO -1) (c GHEL .EO -1))m PRINT4, ’H’ SET_HEL_CUDE : ’H’ RETURN ENDIF RETURN END COMPLEX FUNCTION REAL P13, P14, P15, BORN(HEL_ CODE,P13,P14,P15,P34,P35,P45,EVL) P34, P35 P45 COMPLEX EVL, OA, OB, OC, OD, OE, OF, OG, OH CHARACTER HEL_ CODEtl IF (HEL_ CODE .EO BORN : OA(P13, IF (HEL_ CODE EO. BORN: OB(P13, RETURN ENDIF IF (HEL_CODE .EO BORN : OC(P13, RETURN ENDIF IF (HEL_ CODE EO. BORN: OD(P13, RETURN ENDIF IF (HEL_ CODE EO BORN: OE(P13, RETURN ENDIF IF (HEL_ CODE .EO. BORN: OF(P13 RETURN ENDIF IF (HEL_ CODE EO. BORN : OG(P13, RETURN ENDIF IF (HEL_ CODE ..EO BORN: OH(P13, RETURN ENDIF ’A’) THEN P14, P15, P34, P35 P45, EVL) ’8’) THEN P14, P15, P34 P35, P45 ,EVL) ’C’ THEN P14, P15, P34, P35, P45, EVL) D) THEN P14, P15, P34, P35, P45 ,EVL) ’E’) THEN P14,P15,P34,P35,P45,EVL) ’F’) THEN P14, P15, P34, P35, P45, EVL) 'c') THEN P14,P15,P34,P35,P45,EVL) ’H’) THEN P14, P15, P3O P35, P45 ,EVL) 170 RETURN END SUBRDUTINE INTEGRALS (P1P3,P1P4,P1P5,P3P4,P3P5,P4P5, Il,I2,13,I4,IS,IB,I7,18,IQ,110, 111,112,113,114,I15,116,117,118,119, WIV,FPIIV, D3) nnnn COMPLEX D3,MZP,R,LN3,LN5,LN6,MZP1,ZIlOD,RUPPER, c MZPUP,MZPIV,RIV,ZIIOU,UPPER, c I1,12,13,14,15,16,17,18,19,110,196,IR, c 111,112,113,114,115,116,117,118,119 REAL LN1,LN2,LN4,RLOWER,MZPLW,IQU,19L,193,IW,IS, c LOWER,WIV REAL P1P3,P1P4,P1P5,P3P4,P3P5,P4P5,API,FPIIV,K02,K02IV DOUBLE PRECISION CC44,CC43,CC42,CC41,CC33,CC32,CC31, c CC22,CC21,CC11 API = 3.142857143 P13IV = 1/P1P3 P14IV = 1/P1P4 P151V = 1/P1P5 P34IV = 1/P3P4 P3SIV = 1/P3P5 P4SIV = 1/P4P5 MZP = 2tP3P4 + 03 5152 = P1P3 5133 = P1P4 5154 = P1P5 3253 = P3P4 5234 = P3P5 5354 = P4P5 W = 5152:5384:(~51S2¢$3$4+8154tSZS3+$1$3*$254) C + $153#$254t( $1$2tS3$4+$1$4t$2$3-S153:5254) C + SlS4tSZ$3t( 5152:5354-3154tSZSB+Sl$3tSZ$4) WIV = 1.0/W CC44 = WIVt(-2)t(SlS2tSISBtSZS3) CC43 = WIV*51$2*(-51$2t53$4+5154t5253+3153152$4) CC42 = WIVtSlS3t( 5152:533495154#SZS3-SlSStSZS4) CC41 = WIV#8253#( S152:S3S4~$1$4¢$2$3+$153t$2$4) CC33 = WIV:(-2)t(51$2t$1$4¢$2$4) CC32 = WIVtSlS4t( 5152:5354-5154t32$3+$133t$2$4) CC31 = WIV*$2$4¢( 5152*535443154:5253-Sls3t5254) CC22 = WIV:(~2)¢(Sl$3*$1$4t$3$4) CC21 = WIV#S3S4*(-$1$2*$3S4+$1$4*5233+$1$3t5254) CC11 = w1v¢(-2).(5253‘3234.sas4) R = -2¢P4P5:P1P3+2:P3P5¢(P1P4+P1P5) + MZP¢(P1P4+P1P5) LN1 = Lee (-2¢P4P5 ) LN2 = LOG(-2¢(P1P4‘P1P5)) LN3 = LOG((2¢P3P5+MZP)/03) LN4 = LOG((P1P4+P1P5)/P1P5) LNS = LOG(MZP/(2.P3P5+MZP)) LN6 = LOG((2¢P3P5+MZP)t(P1P4+P1P5)/R) K02 = 0.5a(-P4P5) Kosz = 1/K02 0145 = P1P4 + P1P5 110 120 130 140 150 L 171 01 = 0145 D145IV = 1/0145 0345 = P3P4 + P4P5 03451v = 1/0345 MZP = 2*P3P4 + D3 11 = ~2tAPItP4SIV*(LN1) I2 = -2tAPI*Dl451V*(LN2) I3 = +2:API¢D345IV¢LN3 R = —2tP4P5tP1P3+2*P3P5*01+MZP¢01 MZP1 = MZP RUPPER = CONJG(R) RLOWER = RtCONJG(R) MZPUP = CUNJG(MZP1) MZPLW = MZP1¢CONJG(MZP1) RIV = RUPPER/(RLUWER) MZPIV = MZPUP/(MZPLWO I4 = - apitP451VtP15IVtLN4 - 0.5:01*P45IV#P151V¢12 - 0.5*P151V*Il I5 = P45IV¢MZPIV#(—4*api*LN5 - 0345:13 +P4P5*I1) I6 = RIV#(+4*api*LN6 - 0345*I3 + 01:12) I7 = 0.25:(P3P5:P15IV+P3P4tP14IV-P1P3tP4P5tP14IVtP15IV)t C (11 - (P1P4-P1P5)*P45IV*12 + 2tP1P5*I4) C —0.5t(P3P5—P3P4)#P45IV#I2 + P3P4tI4 18 = 0.25*(P1P4#P34IV+P1P5#P3SIv-P1P3¢P4P5$P34IV¥P351V)t C (II - (P3P4—P3P5):P4SIV#I3 - MZPtIS) C -0.5¢(P1P5-P1P4)‘P451V*I3 +P1P4tIS IQU = P3P4tP1P4wP1P5+P3P4#PlP5*P1P5+P4P5tP1P3#P1P4 C — P4P5tP1P3tP1P5-P1P4tP1P4tP3P5-P1P5tP1P4tpaps I9L = 2¢P1P3t C (P1P3tP4P5—P1P44P3P4-P1P4tP3P5-P1P5#P3P4-P1P5*P3P5) = 2tP4P5¢P1P3t0145IV¢0145IV-(P3P4+P3P5)*01451V 196 = -2¢P4P5¢P1P3#01451V + 2¢P3P5 + MZP 19 = O.5¢I9Ut(1/IQL):(I2+193*I3—196¢16) c + 0.5*P4P5:(P1P5-P1P4)*D145IV¢(D14SIV:I3+I6) C + 0.5*P4P5*15 111 = 2.API.P451V*(P1P4-P1P5) + P1P4tI1 112 = 2‘API‘P4SIV$(P3P4-P3P5) + P3P4$Il 113 = -2¢API#P4P5t01451Vt01451V:(P1P4 — P1P5) + C P4P5¢P1P5t01451V312 114 = 0.5:(P3P4 + P3P5)tI2 + C 0.5:(0145:0345-2tP1P3tP4P5)#014SIVt( 4tAPI#DI45IV + I2) 115 = -2:API¢P4P5tD345IV¢DS45IVa(P3P4 - P3P5) + C 0.5tP4P5t(1+034SIV10345IV¢(P3P4-P3P5):(0345+03))tI3 I16 = 0.5!0145tI3 4 C 0.5#(0145#0345 - 2tP1P3tp4P5)m C D3451Vt034SIV*( 4#API - I3t(0345 + 03)) 117 = P3P4t17 + 0.51P451Vt(P3P4-P3P5)¢Il4 + 0.25tIS#P14IV#P151V#(112 - (P1P4-P1P5):P451th14 + 2tP1P5tI7) + o.0625#P14IVtP14IV#P15IV‘P1SIVt(4tP3P4tP3P5$P1P4tP1P5-IS*IS)t (-2tPlP5:I1 - 4¢P1P51P1P5t14 - P451Vt0145¢2tP1P5¢I2) 118 = P1P4#18 + 0.5:P451Vt(P1P4-P1P5)t116 + 0.25nIStP34IV:P351V:(I11-(P3P4—P3P5)tP451VtI16-(2tP3P4+03):18)+ 0.0625tP34IVtP34IVtP351V¢P35IVt(4tP3P4tP3P5¢P1P4tP1P5-I$¥IS)t ( (MZP)#Il-MZPtMZP#15 -P45IV~(0345¢2¢P3P5+(P3P4-P3P5)¢MZP)¢I3 ) IW = 2¢P1P31P4P5 - 0145:0345 1090 1100 1110 1120 1130 1140 1150 1160 1200 1210 1220 1230 1240 1250 1260 1270 1290 1300 1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500 1560 1580 1590 1 1700 1620 1630 1640 1720 1730 1740 1750 1760 1770 1780 1790 1800 1810 1820 1830 172 IR = -2#P4P5#P1P3 + 01*(2*P3P5 + MZP) 119 = P4P5tP1P5tDl4SIV419 - 0.5*0145IVt014SIVtP4P5t(P1P4—P1P5):I15 + 0.5:I9U¢(1/19L)# (113 9 01451Vt01451VtIWt115+(01451VtIW-P3P4-P3P5-03)#19) + —0.5*P4P5*P1P4tP1P5*(1/I9L) -0.25*IQU*I9U*(1/IQL)t(1/I9L) )t ( C (0145IV*IR)*I2 C —01451V¢01451V1IR1IR416 C -01451Vt(D345:DB45+DI45IV#IW*(P3P4-P3P5-MZP))*I3 C hfinfihfififl ) , U10U1=+2.*CC41:CC31*P4P5+2.tCC41tCC21*P3P5+2.*CC41:CC11*P1P5+2.* CCC31*CC21*P3P4+2.tCC31tCC11tP1P4+2.tCC21tCC11¢P1P3 U10U2=+CC42tCC31tP4P5+CC42¢CC21tP3P5+CC42¢CC11tP1P5+CC41*CC32#P4 CP5+CC41*CC22tP3P5+CC4laCC21*P1P5+CC32*CC21tP3P4+CC32tCC11tP1P4+C CC31tCC22tP3P4+CC314CC21:P1P4+CC22:CC111P1P3+CC21#:21P1P3 UlDU3=+CC43tCC31:P4P5+CC43*CC21tP3P5+CC43aCC11*P1P5+CC41*CC33xP4 CP5+CC411CC32tP3P5+CC41#CC31tP1P5+CC33#CC21tP3P4+CC33tCC11¢P1P4+C CC32tCC31tP3P4+CC32tCC11tP1P3+CC31*CC21*P1P3+CC31**2*P1P4 U10U4=+CC44¥CC31#P4P5+CC44*CC21#P3P5+CC44#CC114P1P5+CC43ICC414P4 CP5+CC43tCC21*P3P4+CC433CC11tP1P4+CC42tCC41*P3P5+CC42:CC31*P3P4+C CC42:CC11*P1P3+CC41¢CC31tP1P4+CC41tCC21tP1P3+CC41**2*P1P5 U20U2=+2.tCC42tCC32¢P4P5+2.*CC42*CC22#P3P5+2.tCC42tCC21tP1P5+2.i CCC32¢CC22¢P3P4+2.:CC32tCC21*P1P4+2.tCC22tCC21$P1P3 U2DU3=+CC43*CC32:P4P5+CC43tCC22¢P3P5+CC43¢CC21*P1P5+CC42tCC33tP4 CP5+CC42tCC32tP3P5+CC42tCC31*PlP54CC33:CC22:P3P4+CC33#CC21tP1P4+C CC32*CC31#P1P4+CC32#CC211P1P3+CC32**2*P3P4+CC31*CC22*P1P3 U2DU4=oCC44tCC32tP4P5+CC44tCC22tP3P5+CC44tCC21tP1P5+CC43tCC42tP4 CP5+CC43*CC22*P3P4+CC43¢CC214P1P4+CC42*CC41*P1P5+CC42tCC32*P3P4+C CC42tCC21tP1P3+CC42tt2tP3P5+CC41tCC32tP1P4+CC41tCC22#P1P3 _ U30U3=+2.tCC43tCC33tP4P5+2.tCC43tCC32tP3P5+2.tCC43tCC31tP1P5+2.t CCC33¢CC32tP3P4+2.tCC33tCC31tP1P4+2.tCC32tCC31tP1P3 U3DU4=+CC44tCC33tP4P5+CC44:CC32:P3P5+CC44:CC31tPlPS+CC43¢CC42tP3 CP5+CC43tCC411P1P5+CC43#CC32#P3P4#CC43#CC31tP1P4+CC43t¢2tP4P5+CC4 c2‘cc33‘P3P4*CC42$CC31*P1P3+CC41fiCC33*P1P4*CC41tCC32¥P1P3 U4DU4=+2.tCC44tCC43:P4P5+2.tCC44tCC42tP3P5+2.aCC44tCC41tP1P5+2.t CCC43tCC42tP3P4+2.tCC43fiCC41tP1P4+2.tCC42tCC41tP1P3+O. ' ZIIOU = U10U1t(0.5t18+0.5*01#IS)+U20U2#(0.5tI7-O.25t03*14) C - (U30U3-2:U30U4+U40U4):0.5¢19 C + U10U2t(0.5#I1+01#I4-0.5*03tI5) C - (U10U3-UIDU4)*(O.5:13+D1t16) C + U10U4tP4P5tI5-(U20U3-U20U4)t0.5t(I2-D3tI6)+U20U4tP4P5tI4 C - (U30U4-U40U4):P4P5¢I6 Z1100 = U10U1#01t01+U20U2*0.25t03tD3+U4DU4tP4P5*P4P5 C -1.0tU10U2t01t03+2¢U10U4tP4P5tDl-U20U4tP4P5tD3 UPPER = -ZI10UtCONJG(ZIlOD) LOWER = ZIIoO.c0NJc(ZIIOO) 110 = UPPER/(LOWER) RETURN END COMPLEX FUNCTION E_LOOP(HEL_COOE,P13,P14,P15,P34,P35,P4s, + 11,12,13,I4,Is,Ie,I7,Ie,19,I1o, 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 5010 173 + 111,I12,113,114,115,116,117,118,119 + WIV,FPIIV,BOIV,CUOIV,EOIV,EVL, + 03) REAL P13,P14,P15,P34,P35,P45 REAL WIV,FPIIV,BOIV,CUOIV,EOIV COMPLEX EVL,ELA,ELB,ELC,ELD,ELE,ELF,ELG,ELH COMPLEX Il,I2,13,I4,I5,16,I7,I8,19,110,111,I12,I13,I14,I15, + 116,I17,I18,119 COMPLEX 03 CHARACTER HEL_CODEtl IF (HEL_CDDE .EO. ’A’) THEN E_LOOP = ELA(P13,P14,P15,P34,P35,P45, Il,12,13,14,15,16,I7,I8,I9,110, 111,I12,Il3,I14,115,I16,117,118,119, WIV,FPIIV,BOIV,CUOIV,EOIV,EVL 03) ¢+++ R ENDIF IF (HEL_ CODE ..EQ ’8’) THEN L=DOP ELB(P13 P14 ,P1,5 P34, P35, P45 ,EVL) ETURN R ENDIF IF (HEL_CODE .EQ. ’C’) THEN E_LOOP = ELC(P13,P14,P15,P34,P35,P45,EVL) RETURN ENDIF IF (HEL_CODE .EO. ’0’) THEN E_LOOP = ELD(P13,P14,P15,P34,P35,P45,EVL) RETURN ENDIF IF (HEL_ CODE .EQ. EN EL OOP =ELE(P13, EP14 P15, P34 ,P35, P45 ,EVL) ENDIF IF (HEL6 CODE EO. 'F’) THEN =ELF(P13, P14 P15, P34 ,P35, P45 ,EVL) ENDIF IF (HEL_CODE .EO. ’0’) THEN E_LOOP = ELG(P13,P14,P15,P34,P35,P45,EVL) RETURN ENDIF IF (HEL_ CODE .EQ ’H’) THEN E_LOOP: ELH(P13, P14, P15, P34 ,P35 P45 ,EVL) RETURN ENDIF RETURN 174 END COMPLEX FUNCTION P_LO0P(HEL_CODE,P13,P14,P15,P34,P35,P45, 11,12,I3,I4,IS,IS,I7,I8,I9,IIO, 111,112,113,114,115,116,Il7,118,119 WIV,FPIIV,BOIV,CUOIV,EOIV,EVL, O3) ++++ REAL P13,P14,P15,P34,P35,P45 REAL WIV,FPIIV,BOIV,CUOIV,EOIV COMPLEX EVL,PLA,PLB,PLC,PLD,PLE,PLF,PLG,PLH COMPLEX Il,I2,13,14,15,16,I7,18,19,110,111,I12,113,114,I15, + 116,117,I18,119 COMPLEX D3 CHARACTER HEL_CODE¢1 IF (HEL_CODE .EQ. ’A’) THEN P_LOOP = PLA(P13,P14,P15,P34,P35,P45, + Il,12,I3,I4,I5,I6,I7,18,19,I10, + I11,112,113,Il4,115,116,117,118,I19, + WIV,FPIIV,BOIV,CUOIV,EOIV,EVL + 03) RETURN ENDIF IF (HEL_ CODE .EQ. ’8’) THEN PLOOP: PLB(P13, P14 ,P15, P34, P35 ,P45 ,EVL) ETURN ENDIF IF (HEL_CODE .Eq. ’C’) THEN P_LOOP = PLC(P13,P14,P15,P34,P35,P45,EVL) RETURN ENDIF IF (HEL_CODE .EO. ’0’) THEN P_LOOP = PLD(P13,P14,P15,P34,P35,P45,EVL) RETURN ENDIF IF (HEL_ CODE .EQ PLOOP: PLE(P13, EP14, P15, P34, P35, P45 ,EVL) RETURN ENDIF IF (HEL_ CODE .EQ. ’F’) THEN “LOOP PLF(P13, P14, P15, P34, P35, P45 ,EVL) RETURN ENDIF IF (HEL_ CODE .EQ ’6’) THEN PLOOP = PLG(P13, P14, P15, P34 ,P35, P45 ,EVL) RETURN ENDIF IF (HEL_CODE .EQ. ’H’) THEN 175 P_LOOP = PLH(P13,P14,P15,P34,P35,P45,EVL) RETURN ENDIF RETURN END C Expression QA COMPLEX FUNCTION QA(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL XTOTAL = 0 HDPART = 1 TLPART=256tP34tP35tP45tP14tPlSt*2-256tP34tP35tP45tP15##3+512*P3 4aP35*P45tt2tP14*P15+768#P34*P35*P45##2tP15tt2-512tP34tP35tP45¢ *3:P15+256¢P34tP35**2*P45—P14#P15+256tP34tP35##2:P45*P15t#2-256 tP34tP35t#2tP45#*2tP15+512tP34tP35*t2tP14tP15*t2—256*P34tP35t*2 *P15*t3-256*P34*P45**2*P14*P15**2-256*P34*P45$*2*P15#*3+256*P34 tP45t:3tP14tP15+512tP34tP45tt3*P15tt2-256tP34tP45tt4tP15+256tP3 4tt2*P35tP45tP14tP15+1024tP34t12*P35tP45tP15t#2-512tP34##2#P35# P45:#21P15+256:P34¢t2tP351P14*P15*t2-512tP34tt2¢P35tP15#*3-256# 1'P34tt2tP45tP14tPlstt2 TLPART=TLPART-512#P34**2tP451P15**3+256#P34t*2*P45¢t2*P14#P15+1 1 O24tP34t¢2tP45t*2tPlStt2—512tP34tt2tP45tt3tP15+512tP34tt3tP45tP 1 15*t2-256*P34¢t3#P45##2tP15-256RP34:#3tP15t#3+256tP35tP45t*2tP1 1 4tP15t#2+256tP35tP45tt2tP15tt3-256tP35:P45tt3tP15#t2+512tP35t*2 1 #P45*P14#P15*t2+256tP35tt2tP45tP15nt3-512tP35t#2tP45*t2tP15*t2— 1 256RP35tt3tP45tP15t*2+256:P35t#3tP14:P15tt2 XTOTAL=XTOTAL+HDPARTtTLPART HDPART=EVL - TLPART=-256tP34tP35tP45tP15+512tP34wP35tP15tt2o256tP34tP45tP15t 1 42-256tP34tP45*‘2*P15-256*P34#t2tP45#P15+256tP34t#2tP15tt2+256t 1 P35tP45¢P15¢t2+256¢P35*¢2RP15¢*2 XTOTAL=XTOTAL+HDPART¢TLPART QA=XTOTAL HHHHHI—‘H END tend C Expression QB COMPLEX FUNCTION OB(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL XTOTAL=O. HDPART=1 TLPART:512:P34#P35¥P45**2aP14tP15+256tP34tP35tP45¢*2IP151t2-102 4tP34tP35tP4Stt3tP15+256tP34tP35t*2RP45*P14tP15—256tP34tP35tt2t P45sP153#2-512tP34tP35tt2tP45tt2¢P15+256tP34:P45t#3tP14tP15+512 tP34tP45tt3tP15t#2-512PP341P45tt4tP15~2$6tP34t¢2tP35tP45¢P15tt2 -256tP34:t2tP35tP45tt2tP15+256¢P34tR2tP45tt2tP150t2-256tP34t‘2‘ P45tt3tP15+768tP35tP45tt3!P14tP15+512tP35¢P45tt3tP15tt2-768OP35 tP45t:4:P15+768tP35t:2PP45t~2tP14¢P15+256uP35tt2:P45#t2tP15:t2- 768tP35:t2tP45tM3sP15+256tP35tt3tP45:P14tP15-256tP35tt3tP45tt2: HHHHHHH 176 1 P15+256tP451t4tP14tP15 TLPART=TLPART+256tP451t4tP15tt2-256tP45tt51P15 XTOTAL=XTOTAL+HDPARTtTLPART HDPART=EVL . TLPART=-256*P34tP35tP451P15-256:P34*P45tt2*P15-512PP354P45**2#P 1 15-256tP35t*2tP45*P15-256*P45**3#P15 XTOTAL=XTOTAL+HDPARTnTLPART QB=XTOTAL RETURN END tend C Expression QC COMPLEX FUNCTION QC(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL XTOTAL=O. HDPART=1 TLPART=256tP34tP35tP45t*2tP14¢P15+512tP34tP35tP45tt2¢P15t*2-512 *P34*P35*P45**3#P15+512*P34*P35#*2*P45‘P14*P15+256*P34*P35**2*P 45tP15**2-1024tP34tP35**2tP45:*2tP15-512tP34tP35tt3tP45tP15+256 ¢P34tP35~t3tP14*Pl5—256*P34tP35tt3¢P15t12+2561P34#*2*P35*P45*P1 5tt2-256tP34t*2tP35tP45t*2:P15-256¢P34¢t2tP35tt2tP45tP15-256PP3 4tt2tP35*#2cP15t#2+256#P35tP45#*3tP14#P15+256tP35tP45tt3tP15*#2 ~2561P35tP45tt4wP15+768tP35**2*P45**2*P14*P15+512tP35tt2tP45tt2 #P15tt2-768tP35tt2#P45¢*StPl5+768tP35tt3¢P45¢P14#P15+256#P35##3 tP45:P15#*2 TLPART=TLPART—768tP35tt3¢P45*t2tP15-256tP35t#4tP45tP15+256*P35t 1 t4¢P14tP15 XTOTAL=XTOTALCHDPARTtTLPART HDPART=EVL - TLPART=256tP34RP35tP45tP15+256¢P34tP35-t2NP15+256tP35¢P45tt2wP 1 5+512tP35t#2:P45*P15+256¢P35t¢3tP15 XTOTAL=XTOTAL+HDPARTtTLPART QC=XTOTAL RETURN END HHHHHHHH send C Expression QD COMPLEX FUNCTION QD(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL XTUTALzo . HDPART=1 TLPART=256tP34¢P35¢P45¢P14¢P15¢t2+512#P34tP35tP45tP15t33+256tP3 1 4tP35tP45*:2tPl4tP15-1280tP34tP35tP45tt2tP15t#2-256iP34tP35tP45 1 tt3tP15+512tP34tP35tt2OP45tP14tP15-512tP34tP35*t2tP45tP15n#2-51 '1 2¢P34¢P35tt2tP45tt2tP15-256tP34¢P35tt2tP14tP15tt2-256tP34tP35#t 1 3*P45tP15+256tP34tP35t:3tP14tP15+512¢P34tP45t#2tP14tP15tt2+768¢ 1 P34tP45tt2tP15tt3-768#P34tP45tt3¢P15##2+256:P34tt2tP351P45tP14t 1 P15-1024tP34tt2cP35tP45tP15tt2-512tP34tt2tP35tP45tt2tP15-256tP3 1 4t:2PP35tP14tP15t¢2+256~P34tt2tP35¢P15¢t3~512tP34tt2tP35#t2tP45 1 #P15 tend TLPART=TLPART+256*P34tiézp3st*2*P14*P15-256*P34¥*2#P35‘*2*P15“ 2+256tP34tt2¢P45tP14*P15~t2+768tP34t*2tP45*P15tt3—768tP34tt2*P4 5*t2#P15#t2-256tP34t*3tP35tP45tP15-2561P34tn3tP35tP15tt2—2561P3 4*t3¢P45tP15*t2+256tP34*t3tP15**3+512tP35*P45¢t2tP14tP15*t2¥256 *P35*P45t*21P151*3-512:P35*P45**3#P15**2+256#P35#*2tP45¢P14MP15 tt2-256tP35tR2tP45tt2tP15tt2+256tP45t#3*P14*P15t*2+256tP45*t3tP 15tm3-256tP45*t4*P15tt2 XTOTAL=XTOTAL+HDPARTtTLPART HDPART=EVL TLPART=2561P34tP35$P45tP15-256tP34tP35:P15#t2+256tP34¢P35tt2tP1 1 5-512tP34tP45tP15:t2+256tP34tt2tP35tP15-256*P34tt2tP15t32-256tP 1 35*P451P15tt2-256tP45t*2#P15¢#2 XTOTAL=XTOTAL+HDPARTATLPART QD=XTOTAL RETURN END HHHHHH C Expression OE tend HHHHHHHH COMPLEX FUNCTION OE(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL XTOTAL=0. HDPART:1 TLPART=—256*P34tPBStP45tP14tP15*t2—512tP34tP35*P45tP15¢t3—256tP 34tP35¢P45tt2tP14tP15+1280*P34#P35#P45t*2tP15#*2+255*P34¢P35*P4 5*t3-P15-512tP34tP35tt2tP45tP14*P15+512tP34tP35tt2tP45tP15t*2+5 12*P34tP35tt2tP45tt2tP15+256*P34tP35wt2tP14tP15*t2+256tP34*P35¢ #3tP45tP15-256tP34tP35t#3:P14*P15-512*P34#P45t12¢P14tP15t*2-768 tP34tP45¢#2tP15tt3+768tP34tP45tt3tP15t*2—256tP34tt2tP35tP45tP14 1P15+1024tP34tt2tP35#P45:P15*:2+512*P34tt2tP35tP45tR2tP15+256tP 34*t2tP35*P14:Pls:t2-256xP34tt2tP35*P15tt3+512#P34tt2*P35t*2*P4 5tP15 TLPART=TLPART-256*P34¢t2tP35t#2tP14tP15+2561P34t*2tP35tt21P151t 2-256tP34-*2*P45*P14:P15¢t2-768:P34tt2tP45tP15tt3+768¢P34tt2tP4 5tt2tP15#t2+256tP34*t3tP35tP45¥P15+256tP34#t3#P35#P15t*2+256#P3 4tt3tP45tP15tt2-256#P34tt3tP15t:3-512tP35tP45t:2tP14tP15*t2-256 #P35:P4Stt2tP15tt3+512RP35tP45#t3tP15*t2-256tP35¢¢2tP45tP14*P15 tt2+256tP35¢*2tP45tt2tP15tt2—256fiP45tt3tP14¢P15¢t2~256tP45#~3PP 15tt3+256tP45tt4tP15t¢2 XTOTAL=XTOTAL+HDPARTtTLPART HDPART=EVL TLPART=256*P34#P35tp45#P15-255tp34tp35fipl5t#2+256*P34#P35*#2*P1 1 5-512:P34:P45¢P15:t2+256tP34tt2tP35aP15-2564P34tt2tP15tt2—256tP 1 35tP4StP15tt2-256tP45tt2tP15tt2 XTOTAL=XTOTAL+HDPARTtTLPART QE=XTOTAL RETURN END HHHHI—‘H C Expression OF COMPLEX FUNCTION QF(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL 178 XTOTAL=O. HDPART=1 TLPART=-256*P34*P35tP45t*2#P14*P15-512tP34tP35#P45#*2#P15**2+51 2tP34tP35tP45¢t3tP15-512tP34tPSStt2#P45#P14tP15-256tP34tP35**2* P45tP15tt2+1024tP34tP35tt2*P45*t2tP15+512tP34tP35tt3tP45tP15—25 6*P34¢P35#*3:P14*P15+256*P34*P35**3tP15*#2—256tP34tt2tP35tP45#P 15*t2+256*P34¢#2:P35*P45t#2PP15+256#P34#*2:P35*¢2¢P45¢P15+256¢P 34**2*P35¢*2tP15tt2-256tP35tP454:34P14tP15-256:P35¢P45##3*P15¢t 2+256tP35tP45t*4tP15-768tP35tt2tP45t#2tPl4tP15-512tP35tt2tP4SRt 2*P15t12+768*P35**2*P45t¢3*P15-7681P35**3*P45*P14*P15-256*P35** 3¢P45*P15t*2 TLPART=TLPART+768*P35*t3tP45**2*P15+256tP35tt4tP45tP15-256tP35t 1 t4tP14tP15 XTOTAL=XTOTAL+HDPARTtTLPART HDPART=EVL TLPART=256tP34tP35tP45tP15+256tP34*P35#*2:P15+256#P35#P45*t2tP1 1 5+512tP35tt2¢P45tP15+256¢P35tt3¢P15 XTOTAL=XTOTAL+HDPARTtTLPART QF=XTOTAL RETURN END tend HHHI—‘t—‘D—‘HH C Expression QG COMPLEX FUNCTION QG(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL XTOTAL=O. HDPART=1 . TLPART=-512¢P34*P35tP45¢*2tP14tP15—256tP34tP35tP45tt2tP15#t2+10 24*P34PP35tP45t*3tP15-256tP34tP35tt2#P45tP14tPlS+256tP34¢P35tt2 tP45tP15tt2+512¢P34tP35ta2tP45t*2tP15-256tP34tP45:#3#P14:P15—51 2tP34tP45¢t3tP15tt2+512tP34tP4St*4tP15+256tP34tt2tP35tP45tP15tt 2+256tP34tn2tP35tP45t*QtPl5-256tP34tt2tP45tt2tP15tt2+256tP34t¥2 tP45tt3tP15-768tP35tP45t*3tP14tP15-512tP35tP45Rt3tP15**2+768tP3 StP4Stt4tP15-768tP35*t2nP45tt2tP14tP15—256tP35tt2tP45tt2tP15tt2 ¢768tP35tt2tP45tt3tP15-256tP35tt3tP45tP14tP15+256tP35¢t3¢P45tt2 #P15-256:P45t:4tP14tP15 TLPART=TLPART-256tP45#¢4tP15tt2+256tP45ttStP15 XTOTAL=XTOTAL+HDPART¢TLPART HDPART=EVL TLPART=-256¢P34tP35tP45tP15-256tP34:P45tt2tP15-5124P35¢P45*#2#P 1 15-256tP35tt2*P45tP15-256tP4SCR3tP15 XTOTAL=XTOTAL+HDPARTtTLPART QG=XTOTAL RETURN END HHHHHHHH tend C Expression QH COMPLEX FUNCTION QH(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL 179 XTOTAL=O. HDPART=1 ~ TLPART=-256*P34*P35tP45:P14*P15*t2+256tP34¢P35*P45*P15t¢3-512:P 34*P35tP45w#21P14tP15-768*P34*P35#P45t*2:P15*t2+512¢P34tP35tP45 tt3*P15-256tP34tP35t#2tP45*P14tP15-256tP34*P35tt2tP45tP15fi#2+25 6*P34tP35t:2tP45tt2tP15-512tP34tP35t*2tP14tP15t#2+256tP34tP35tt 2*P15*t3+256tP34tP45tt2tP14tP15*t2+256¢P34¢P45tt2tP15¢*3—256tP3 4tP45t#3tP14tP15-512uP34tP451*3*P15*#2+256¢P34¢P45tt4tP15-256:P 34**2‘P35*P45*P14*P15-1024*P34tt2&P351P45tpl5t#2+512‘P34*‘2‘P35 *P45*:2tP15-256tP34t*2tP35:P14tP15*#2+512tP34t#2¢P35tP15*¢3+256 tP34tt2tP45*P14*P15#*2 TLPART=TLPART+512tP34¢*2tP45tP15tt3-256tP34t#2tP45tt2tP14tP15~1 1 024*P34tt2tP45#t2tP15*¢2+512¢P34t#2tP45:t3tP15—512#P34#*3¢P45*P 1 15*t2+256¢P34t*3#P45t12tP15+256tP34¢t3tP15t*3-256tP35tP45tt2tP1 1 4*P15**2-256tP35tp45**2*P15**3+256*P35*P45*13*P15**2-512#P35t*2 1 *P45tP14xP15tt2~256tP35tt2tP45tP15*#3+512*P35tt2tP45tt2tP15tt2+ 1 256~P35*t3tP45tP15#t2-256tP35t#34P14#P15*t2 XTOTAL=XTOTAL+HDPARTtTLPART HDPART=EVL TLPART=-256tP344P35:P45¥P15+512rP34*P35¢P15**2+256*P34*P45*P15# 1 *2-256tP34*P45tt2tP15-256tP34:t2tP45tP15+256xP34tt2tP15**2+256* 1 P35:P45*P15tt2+256tP35¢t2tP15tt2 XTOTAL=XTOTAL+HDPARTgTLPART QH=XTOTAL RETURN END HHHD—‘HHHH C Expression ELC tend COMPLEX FUNCTION ELC(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTDTAL XTOTAL=O. HDPART=1 TLPART=256*P34*P35tP45tt2tP14tP15+512tP34‘P35tP45tt2tP15ttQ—512 tP34tP35#P45#t3#P15+512tP34tP35tt2tP45tP14tP15+256¢P34tP35tt2tP 45*P15"2‘1024‘P34fip35#*2*P45fi*2‘P15-512*P34*P35**3*P45¥P15+256 tP34#P35¢:3tP14tP15-256nP34sP351t3tP15t#2+256tP34t#2tP35tP45tP1 5t:2-256tP34tt2tP35tP45tx2tP15-256tP34tt2tP35:#2tP45#P15-256tP3 4tt2tP35tt2tP15-t2o256tP35tP45tt3tP14tP156256tP35tP45tt3tP15t‘2 —256*P35tP45#t4tP15+768tP35#t2tP45Nt2tP14tP15+512tP35¢#2tP45##2 tPIStt2-768tP35tt2tP45tt3aP15+768tPastt3tP45:P14#P15+256#P35#:3 nP45tP15t¢2 TLPART=TLPART-758*P35"3‘P45**2#P15—255¥P35¢*4‘P45‘P150256tP35‘ 1 t4tP14tP15 XTOTAL=XTOTAL+HDPART¢TLPART HDPART=EVL TLPART=256tP34tP35tP451P15+256tP34tP35tt2¢P15+256tP35tP45tt2tP1 1 5+512tP35tt2tP45tP15+256tP35tt3tP15 XTOTAL=XTOTAL+HDPARTtTLPART ELC=XTOTAL RETURN END HHHHHHHH C Expression ELD COMPLEX FUNCTION ELD(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 hIF‘F‘h‘P‘P‘F‘PJ h‘k‘h‘h‘h‘h‘ 1 1 *end C Expr hlh‘h‘h‘hlh‘h‘h‘ 180 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL XTOTAL=O. HDPART=1 TLPART=256#P34tP35tp45*P14*P15tt2+512tP34tP35*P45*P15##3+256*P3 4*P35tP45tt2tP14tP15-1280*P34tP35tP45tt2tP15tt2-256tP34tP35tP45 tt3tP15+512tP34¢P35tt2tP45*P14*P15-512*P34tP35tt2tP45tP15tt2—51 2tP34¢P35t#2tP45t#2—P15-256tP34tP354t2tP14¢P15**2—256fiP344P35tt 3*P45mP15+256tP34tP35t#3tP14tP15+512*P34tP45*t2tP14tP15t12+768t P34tP45t*2tP15tt3-768tP34tP45:t3tP15*t2+256tP34¢#2#P35*P45*P14¢ P15-1024tP34tt2tP35tP45tP15tt2-512mP34*t21P35*P45tA2tP15-256tP3 4t*2tP35tP14tP15tt2+256tP34tt2tP35tP15tt3-512tP34tt2tP35tt2tP45 tP15 TLPART=TLPART+2561P34t*2tP35‘*2‘P14*P15-256*P34**2*P35**2*P15*$ 2+256tP34t#2tP4SPP14tP15tt2+768¢P34tt2tP45tP15t*3-768tP34tt2tP4 5t*2tP15**2-256tP34t*3tP35tP45tP15-256mP34tt3tP35tP15tt2—256tP3 4**3tP45tP15*#2+256tP34tt3tP15**3+512*P35tP45*t2tP14tP15:*2+256 tP35¢P45t*2tP15**3-512tP35tP45**3:P15*t2+256tP35tt2tP45tP14tP15 ti2—256tP35tt2tP45:*2tPlS::2+256*P45**3*P14*P15tt2+256tP45tt3tP 15*:3-256*P45tt4tP15tt2 XTOTAL=XTOTAL+HDPARTtTLPART HDPARTzEVL TLPART=255*P34tP35¥P45tpl5-256tp34*P35*P15**2+256#P34#P35#*2#P1 5—5121P34tP45tP15tt2+256wP34t:2*P35:P15-256tP34tt2*P15t#2-256#P 35tP45*P15t*2—256tP45tt2tP15tt2 XTOTAL=XTOTAL+HDPART:TLPART ELD=XTOTAL N END ession ELE COMPLEX FUNCTION ELE(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL XTUTAL=O. HDPART=1 TLPART=-256tP34#P35#P45¢P14tP151t2-512tP34$P35tP45:P15##3-256#P 34:P35*P45¢t2¢P14tP15+1280*P34tP35tP45:t2tP15tt2+256tP34tP35¢P4 5tt3tP15—512tP34tP35tt2nP45tP14tP15+512tP34tP35*t2tP45tP15tt2+5 12*P34PP35tt2tP45-t2¢P15+256tP34tP35t¢2:P14tP15tt2+256tP34tP35* t3tP45tP15—256#P34tP35t*3tP14tP15-512tP34tP4stt2tP14tP15tt2-768 tP34tP45¢#2tP15tt3+768¢P344P45t*3tP15#*2-256#P34tt2tP35tP45tP14 -P15+1024¢P34t¢2tP35tP45tP15¢t2+512RP34¢*2tP35tP45t*2tP15+256#P 34:t2RP35tP14tP15:t2-256tP34tt2tP35tP15tt3+512tP34t¢2tP35tn2tP4 5tP15 TLPART=TLPART-256tP34tt2tP35¢t2tP14tP15+256tP34t#2tP35tt2tP15—t P‘h‘h‘h‘h‘h‘ 2-256tP34t¢2tP45tP14tP15tt2-768¥P34##23P45#P15##3+768¢P34$¥2tp4 5t#2tP15*t2+256¢P34tt3tP35tP45tP15+256tP34t¢3tP35tP15¢t2+256tP3 4tt3¢P45tP15¢t2-256tP34t:3:P15tt3-512tP35tP45*t2tP14tP15tn2-256 ¢P35tP451¢2tP15tt3+512¢P35¢P45tt3tP15tt2-256tP35tt2tP45tP14tP15 tt2+256tP35¢¢2tP45tt2¢P15¢t2-256tP45tt3tP14¢P15#:2~256tP45:t3¢P 15*t3+256tP45tt4tP15tt2 XTOTAL=XTOTAL+HDPARTtTLPART HDPART=EVL 181 TLPART=256tP34tP35tP45tP15-256tP34*P35tP15t#2+256tP34tP35#*2*P1 1 5-512tP34tP45tP15tt2+256tP34t*2tP35tP15-256tP34tt2tP15tt2—2564P 1 35*P45tP15tt2-256tP45tt2tP15tt2 XTOTAL=XTOTAL+HDPARTtTLPART ELE=XTOTAL RETURN END tend C Expression ELF COMPLEX FUNCTION ELF(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL XTOTAL=O. HDPART=1 TLPART=—256*P34tP35*P45t*2*P14*P15-512tP34tP35tP45tt2tP15*t2+51 2*P34tP35tP45#*3tP15-512*P34*P35tt2:P45tP14tP15—256tP34tP35*12t P45tP15*t2+1024tP34tP35t¢2tP45t*2:P15+512tP34tP35*t34P45tP15-25 GXP34*P35t#3tP14tP15+256tP34tP35tt3tP15t*2~256*P34**2tP35tP45tP 15:t2+256*P34*t2tP35tP45tt2tP15+256tP34tt2tP35t*2tP45tP15+256¢P 34*#2tP35t*2:P15**2-256tP35tP45t*3PP14tP15-256tP351P45*#3:P15¢# 2+256tP35tP45t*4tP15-768tP35tt2tP45##QtP14tP15—512tP35:t2tP45*t‘ 2*?15‘*2+768*P35**2‘?45**3‘P15-768#P35**3tP45tP14‘P15-256tp35fit 3tP45tP15tt2 TLPART=TLPART+768tP35**3*P45*#2#P15+255*P35**4*P45*P15-256*P35* 1 ¢4tP14rP15 XTOTAL=XTOTAL+HDPART¢TLPART HDPART=EVL TLPART=256tP34~P35tP45tP15+256¢P34*P35*tZtPlS+256tP35tP45tt2tP1 1 5+512tP35tt2tP45tP15+256tP35¢t3tP15 XTOTAL=XTOTAL+HDPARTtTLPART ELF=XTOTAL RETURN END HHHHHHHH tend C Expression ELC COMPLEX FUNCTION ELG(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL XTOTAL=O. HDPART=1 TLPART=-512*P34*P35tP45*#2¢P14#P15-256tP34tP35*P45tt2tP15##2+10 24tP34tP35tP45:#3tP15—256tP34tP35:t2tP45tP14tP15+256tP34tP35tt2 aP45¢P15tt2+512tP34tP35¢¢2¢P45:t2¢P15-256tP34tP45tt3tP14tP15-51 2tP34tP45tt3tP15¢t2+512tP34tP45tt4tP15+256tP34t¢2¢P35tP45tP15#t 2+256tP34tt2tP35¢P45tt2tP15-256tP34t42tP45:42¢P15tt2+256¢P34t¢2 tP45t*3tPls-768tP35tP45t:3tP14tP15—512tP35tP45tt3tP15tt2+768¢P3 5-P45tt4tP15-768tP35tt2tP45t:2*P14tP15-256-P35tt2tP45¢t2tP15tt2 +768tP35¢t2tP4Stt3tP15-256tP35*$3:P45#P14:P15+256tP35tt3¢P451:2 tP15-256tP45tt4tP14tP15 TLPART=TLPART-256tP45#¢4tP151¢2+256tP45tt5¢P15 XTOTAL=XTOTAL+HDPARTMTLPART HDPART=EVL HHHHHHHH 182 TLPART=-256*P34tP35tP45tP15-256tP34tP45tt2:P15—512*P35*P45t*2tP 1 15-256‘P35**2*P45$P15-256ip45*#3tpl5 XTOTAL=XTOTAL+HDPARTtTLPART ELG=XTOTAL RETURN END tend C Expression ELH COMPLEX FUNCTION ELH(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL XTOTAL=O. HDPART=1 TLPART=-256*P34tP35tP45tP14tP15t#2+256*P34tP35*P45¢P15t*3-512tP 34tP35tP45t:2tP14tP15-768tP34tP35¢P45t*2tP153#2+512*P34*P35*P45 ##3#P15-256tP34tP35:t2tP45tP14tP15—256*P34tP35t#2tP45tP15tt2+25 6*P34tP35t*2#P45t:2tP15-512tP34tP35tx2tP14tP15tt2+256¢P34tP35tt 2*P15t*3+255*P34*P45t42*P14fiP15*42+255tp34tp45#*2*P15**3-255’P3 4*P45tt3tP14tP15-512tP34tP45t*3tP15tt2+256tP34tP45tt4tP15-256wP 34*t2*P35tP45tP14*P15-1024tP34t#2:P35*P45¢P15¢t2+512tP34tt2tP35 ¢P45tt2tP15-256*P34tt2:P35tP14tPlStn2+512tP34t¢2tP35tP15**3+256 tP34tt2tP45tP14tP15tt2 TLPART:TLPART+512$P34t*23P45*P15**3*256*P34#*2*P45**2*P14*P15-1 1 024tP34tt2¢P45*t2tP15t*2+512tP34tt2tP45tt3tP15-512tP34tt3tP45tP 1 15**2+256*P34#*3*P45**21P15+256*P34#*3‘P15**3-256*P35#P45$#2#P1 1 4tP15tt2-256tP35tP45tt2tP15nt3+256tP35eP45-t3tP15::2—512tP35tt2 1 tP45tP14tP15t#2-256tP35tt2tP45tP15xt3+512tP35t*2tP45tt2tP15#*2+ 1 256tP35tt3tP45tP15tt2-256:P35**3tP14tP15t#2 XTOTAL=XTOTAL+HDPART¢TLPART HDPART=EVL TLPART=-256tP34tP35tP45tP15+512tP34tP35tP15:t2+256tP34tP45tP15t 1 *2-256xP34tP45tt2tP15-256tP34tt2tP45tP15+256tP34t*2tP15tt2+256t 1 P35tP45tP15¢t2+2561P35tt2tP15tR2 XTOTAL=XTOTAL+HDPARTOTLPART ELH=XTOTAL RETURN END HHHHHHHH C Expression ELB COMPLEX FUNCTION ELB(P13,P14,P15,P34,P35,P45, 11,I2,I3,I4,15,16,I7,IB,IQ,IIO, I11,112,113,I14,I15,116,I17,118,119, WIV,FPIIV,BOIV,CUOIV,EOIV,EVL ' D3) V §+C+ REAL P13,P14,P15,P34,P35,P45 REAL WIV,FPIIV,BOIV,CUOIV,EOIV COMPLEX EVL COMPLEX I1,I2,I3,I4,I5,16,I7,I8,I9,IIO,I11,I12,I13,Il4,I15, + I16,I17,I18,119 COMPLEX 03 COMPLEX TLPART,HOPART,XTOTAL XTOTAL = o i HDPART = 1 T *end 183 TLPART=256tP34tP351P45tP14tP15t*2-2561P34#P35tP4SRP15#*3+512*P3 4tP35tP454¢2¥P14*P15+768#P34#P35*P45*#2tP15*t2-512¢P34*P35#P45* ¢3*P15+256*P34#P35*t2tP45tP14*Pl5+256*P34tP35tt2tP4SMP15t:2-256 tP34tP35:t2tP45¢t2¢P15+512tP34tP35t¢2tP14tP15t*2-256:P34*P35:t2 :P15t*3-256tP34tP45t*2tP14*P15:t2-256tP34tP45tt21P15**3+256*P34 *P45t*3*P14#P15+512¢P34*P45*t3$P15tt2-256*P34tP45t¢4:P15+256*P3 4**2MP35*P45#P14*P15+1024tP34tt2:P35#P45#P15#*2-512:P34t*2*P35t P45t*2!P15+256#P34*t2tP35tP14tP15tt2-512tP34tt2tP35tP15tt3-256t P34##2#P45¢P14¢P15*t2 TLPART=TLPART-512*P34tt2tp45*P15**3+256#P34#t2tp45**2*P14*P15+1 1 024*P34tt2tP45*t2#P15tt2-512tP34tt2tP45t#3tP15+512*P34**3¢P45*P 1 15**2-256tP34t#3tP45r#2¥P15-256*P34tt3¢P15tt3+256¢P35tP45tt2tP1 1 4*P15tt2+256tP35¢P45tt2tP15tt3-256tP35tP45t*3:P15¢*2+512*P35tt2 1 *P45*P14*P15#t2+256¢P35¢*2tP45*P15*t3—512*P35t#2tP45tm2tP15**2- 1 256#P35**3*P45*P15*#242564P35*#3#P14*P15**2 XTOTAL=XTOTAL+HDPARTwTLPART HDPART=EVL TLPART=-256*P34tP35tP45tP15+512tP34tP35tP15tt2+256tP34tP45tP15t 1 t2-256tP34tP45tt2tP15-256tP34tt2tP45fiP15+2561P34t*2tP15tt2+256t 1 P35:P45*P15*t2+256tP35tt2¢P15tt2 XTOTAL=XTOTAL+HDPARTtTLPART PLA=XTOTAL RETURN END HHHHHHHH C Expression PLB tend COMPLEX FUNCTION PLB(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTUTAL XTOTAL=0. HDPART=1 TLPART=512tP34#P35tP45t‘2tP14tP15+256tP34tP35tP45‘*2*P15t*2-102 4tP34tP35tP45tt3tP15+256tP34tP35t*2tP45tP14tP15-256*P34:P35*t2: P45¢P15¢t2-512tP34tP35t*2:P45¢t2tP15+256¢P34tP45¢~3¢P14tP15+512 tP34tP45ta3tP15tt2—512tP34tP45t¢4¢P15-256tP34#t2tP35¢P45tP15tt2 —256tP34t¢2¢P35tP45tt2tP15+256tP34tt2tP45t:2xP15tt2-256tP34ct2t P45:t3tP15+768tP35cP45tt3tP14tP15+512xP35RP45nt3tP15tOZ-7684P35 tP4Stt4tP15+768tP35Rt2tP45t#2tP14tP15+256¢P35¢t2tP451t2tP15t:2- 768tP35at2tP45tt3¢P15+256tP35¢¢3#P45tP14vP15-256tP35tt3wP45tt2t P15+256¢P45fit4¥P14tP15 TLPART=TLPART+256¢P45tt4¢P15¢t2—256tP45t¢5*P15 XTOTAL=XTOTAL+HDPARTtTLPART HDPART=EVL TLPART=—256#P34tP35tP45*P15-256tP34tP45t#2tP15-512tP35tP4SRt2tP 1 15-256:P35*t2tP45tP15-256tP45tt3wP15 XTOTAL=XTOTAL+HDPARTtTLPART PLB=XTOTAL RETURN END HHHHHI—‘HD—l C Expression PLC COMPLEX FUNCTION PLC(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL 184 COMPLEX TLPART,HDPART,XTOTAL XTOTAL=O. HDPART=1 TLPART=256*P34*P35*P45**2fiP141P15+512*P34*P35*P45#*2*P15*#2-512 tP34tP35tP45**3tP15+512tP34*P35t*2tP45:P14tP15+256*P34*P35tt2#P 45*P15t*2-1024*P34¥P35**2tP45**2*P15-512tP34*P35**3*P45*P15+256 tP34tP35*t3*P14*P15-256tP34tP35tt3tP15#*2+256*P34¢#21P35tP45tP1 5t*2-256tP34t*2tP35tP45t*2tP15-256tP34tt2tP35*t2tP45tP15-256tP3 4¢t2tP35#t2tP15tt2+256tP35tP45¢t3tP14tP15+256tP35¢P45t*3:P15tt2 -256*P35tP45*t4*P15+768*P35:t2¢P45t#2:P14:P15+512:P35tt2tP45¢A2 tP15*¢2—768*P35#t2*P45**3*P15+768*P35t*3tP45tP14tP15+256*P35¢t3 tP45tP15tt2 TLPART=TLPART-768tP35##3tP45t¢2*P15~256#P35**4tP45tP15+256*P35t 1 t4~P14xP15 ' XTOTAL=XTOTAL+HDPART:TLPART HDPART=EVL TLPART=256*P34tP35tP45tP15+256tP34tP35¢t2¢P15+256¢P35¢P45tt2tP1 1 5+512tP35tt2tP45*P15+256tP35tt3RP15 XTOTAL=XTOTAL+HDPARTtTLPART PLC=XTOTAL RETURN END HHHHHHHH tend C Expression PLD COMPLEX FUNCTION PLD(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL XTOTAL=O. HDPART=1 TLPART=256*P34tP35nP45#P14tPl5**2+512mP34tP35#P45*P15¢R3+256tP3 4¢P35tP45¢‘2tP14*Pl5-1280tP34tP35tP45¢t2tP15*t2-256tP34tP35*P45 tt3tP15+512tP34tP35tt2tP45tP14tP15-512tP34tP35mt2tP45tP15t#2-51 2tP34tP35tt2tP45tt2tP15-256tP34tP35tx2tP14tP15tt2-256tP34tP35t: 3-P45:P15+256:P34#P35¢#31P14tP154512tP34tP45t¢2tP14¢P15t:2+768¢ P34tP45tt2tP15tt3—768tP34tP45t#3tP15*¢2+256tP34:#2tP35*P45tP14t P15-1024tP34t¢2IP35tP45fiP15t*2-512tP34fit2tP35tP45tt2tP15-256tP3 4¢t2tP35tP14tP15tt2+256¢P34tn2tP35xP15tt3-512tP34tt2tP35tt2tP45 tPlS TLPART=TLPART+256tP34¢#2tP35tt2tP14tP15-256tP34t¢2tP35¢t2tP15¢t 2+256tP34st2xP45tP14tP15:t2+768tP34:t2tP45tP15tt3—768tP34tt2xP4 5tt2tP15tt2-256tP34tt3¢P35#P45¢P15-256:P34tt3tP35tP15RR2-256eP3 4tt3tP4SXP15tt2+256tP34tt3tP15tt3+512tP35tP45tt2tP14tP15t¢2+256 tP35tP45tt2¢P15¢t3~512tP35¢P45tt3tP15¢#2+256*P35:m2¢P45¢P14¢P15 tt2-256tP35:t2tP45tt2tP15tt2+256tP45tt3tP14¢P15*#2+256tP45tt3tP 15tt3—256tP45tt4tP15tt2 XTOTAL=XTOTAL+HDPART¢TLPART HDPART=EVL TLPART=256#P34tP35tP45*P15—256tP34¢P35¢P15t*2+256tP34¢P35**2:P1 1 5-512¢P34tP45tP15tR2+256tP34tt2tP35tP15-256tP34tt2tP154t2-256tP 1 35tP45tP15tt2—256tP45tt2xP15#:2 XTOTAL=XTOTAL+HDPART¢TLPART PLD=XTOTAL RETURN END HHHHHHHH HHHHHH :end 185 C Expression PLE COMPLEX FUNCTION PLE(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL XTOTAL=O. HDPART=1 TLPART=-256*P34tP35tP45tP14tP15t*2-512tP34tP35tP45tP15tt3—256tP 34:P35tP45**2tP14tP15+1280tP34tP35*P45¢¢2tP15t*2+256tP34tP35tP4 5tt3¢P15-512tP34*P35tt2tP45tP14tP15+512*P34tP35tt2tP45tP15tt2+5 12tP34tP35:*2tP45:*2tP15+256tP34#P35t*2tP14tP15*#2+256#P344P35t t3tP45tP15-256:P34*P35*t3*P14tPI5-512tP34tP45t:2tP14*P15**2—768 #P34xP45tt2tP15tt3+768tP344P45tt3tP15tt2-256tP34t#2tP35tP45*P14 *P15+1024#P34*t2tP35tP45¢P15t*2+512#P34*t2tP35*P45**2*P15+256¢P 34tt2tP35tP14tP15¢*2-256tP34tt2tP35tP154t3+512tP34tt2¢P35**2tP4 5*P15 TLPART=TLPART-256*P34¢t2tP35t:2tP14tP15+256tP34:*2:P35**2*P15t¢ 2—256tP34t*2tP45tP14*P15t#2-768tP34t*2*P45*P15**3+768tP34**2xP4 5tt2tP15t*2+256tP34t*3*P35tP45*P15+256*P34**3:P35*P15*t2+256¢P3 4t*3tP45tP15t#2-256¢P34#*3tP15**3-512:P35*P45#t2tP14tP15tt2-256 tP35tP45tt2tP15*t3+512*P35tP45tt3tP151t2-256tP35t#2tP451P14tP15 tt2+256tP35t*2tP45tt2tP15tt2-256tP45*t3tP14tP15tt2-256tP45tt3tP 15t¢3+256tP45et4tP15tt2 XTOTAL=XTOTAL+HDPARTtTLPART HDPART=EVL TLPART=256tP34tP35tP45tP15-256tP34tP35tP15tt2+256*P34*P35*#2#P1 1 5—512tP34tP45tP15tt2+256tP34tt2tP35tP15-256tP34tt2tP15*t2—256*P 1 35¢P45tP15t*2-256tP45t*2tP15t*2 XTOTAL=XTOTAL+HDPARTRTLPART PLE=XTOTAL RETURN END HHHHHHHH HHHHHH #end C Expression PLF COMPLEX FUNCTION PLF(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL XTOTAL=O. HDPART=1 TLPART=-256tP34tP35tP45tt2#P14tP15-512tP34tP35tP45tt2tP15tt2+51 2tP34¢P35tP45¢#3tP15—512tP34tP35t#2tP45tP14tP15-256tP34#P35t#2: P45¢P15*t2+1024tP34tP35tR2¢P45#t2tP15+512sP34tP35*t3tP454P15-25 6tP34RP35tt3tP14tP15+256tP34tP35t¢3tP15tt2-256tP34tt2tP35tP45tP 15¢t2+256tP34t#2tP35tP45t#2:P15+256*P34**2¢P35:a2tP454P15+256tP 34¢:2tP35t*2tP15tt2-256tP35‘P45tt3—P14tP15—256#P35¢P45tt3tP15tt 2+256tP35tP45:t4tP15—768:P35*t2tP45tt2tP14tP15—512tP35tt21P45tt 2tP15*:2+768tP35#t2tP45tt3tP15-768:P35¢n3tP45tPl4:P15-256:P35t: 3tP45tP15tt2 TLPART=TLPART+768tP35¢t3tP45t:2tP15+256tP35tt4tP45tP15-256tP35t 1 t4tP14¢P15 XTOTAL=XTOTAL+HDPARTtTLPART HDPART=EVL HHHHHHHH 186 TLPART=256tP34tP35tP451P15+256tP34tP35:*2:P15+256¢P35¢P45**2*P1 1 5+512¢P35tt2tP45tP15+256tP35tt3tP15 XTOTAL=XTOTAL+HDPART*TLPART PLF=XTOTAL RETURN END tend C Expression PLG COMPLEX FUNCTION PLG(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL XTOTAL=O. HDPART=1 TLPART=-512¢P34tP35tP45tt21P14*P15-2561P34*P35¢P45*t2¢P15tt2+10 24#P34*P35*P45t*3tP15-256tP34tP351*2:P45tP14tP15+256¢P34tP35**2 tP45tP15t42+512tP34iP35tt2*P45*t2tP15-256tP34tP45tt3tP14tP15-51 2*P34tP45tt3tP15tt2+512¢P34tP45t*4*Pl5+256*P34**2*P35*P45*P15nx 2+256tP34tt2tP35tP45**2tP15-256tP34t*2tP45t*2:P15t*2+256tP34*t2 *P45t:3*P15-768tP35wP45*t3*P14*P15—SthP35tP45**3¢P15tt2+768tP3 5#P45t*4tP15—768tP35tt2tP45t42:P14tP15-256#P35$t2:P45*t2tP15¢*2 +768tP35tt2tP45tt3tP15-256¢P35t*3:P45*P14#P15+256#P35¢*3tP45*t2 tPlS—256tP45tt4tP14tP15 TLPART=TLPART—256¢P45tt4tP15t:2+256¢P45*#5tP15 XTOTAL=XTOTAL+HDPARTRTLPART HDPART=EVL TLPART=~256tP34tPBStP45tP15-256:P34*P45**2tP15-512tP35tP45*t2*P 1 15—256*P35##2tP45¢P15-256¢P45¢#3tP15 XTOTAL=XTOTAL+HDPARTxTLPART PLG=XTOTAL RETURN END HHHHHHHH tend C Expression PLH COMPLEX FUNCTION PLH(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45 COMPLEX EVL COMPLEX TLPART,HDPART,XTOTAL XTOTAL=0. HDPART=1 TLPART=-256tP34tP35tP45tP14tP15:t2+2561P34~P35¢P45tP15tt3-512tP 34*P35tP45tt2¢P14tP15-768tP34:P35:P45#¢2*P15xt2+512tP34tP35tP45 ##3#P15-256tP34tP35tt2*P45tP14tP15-256tP34tP35tR2:P45¢P15tt2+25 6tP34tP35t#2#P45tt2tP15-512#P34tP35*#2tP14tPlSttZ+256tP34tP35tt 2tP15tt3+256tP34tP45tt2¢P14tP15tt2+256tP34tP45#t2tP15tt3-256tP3 4tP45t*3MP14tP15-512tP34tP45tt3tP15*t2+256tP34tP45¢¢4¢P15—256¢P 34#*2‘P35*P45¥P14tP15-1024*P34**2iP35tP45*P15##20512tp34‘*2‘P35 tP45tt2tP15-256tP34t#2tP35tP14:P15:t2+512tP34cR2tP35tP15tt3+256 fiP34tt2‘P45tP14tP15‘*2 TLPART=TLPART¢512tP34tt2tP45:P15*t3-256tP34tt2tP45tt2tP14tP15-1 1 024tP34tt2¢P45¢t2tP15:t2+512¢P34tt2*P45:t3tP15-512tP34tt3tP45tP 1 15*R2+256tP34nx3xP45tt2tP15+256tP34tt3tP15¢t3-256tP35tP45tt2tP1 1 4tP15tt2-256tP35tP45tt2tP15tt3+256tP35tP45$t3tP15tt2-5121P35tt2 1 tP45tP14tP15tt2—256tP35:t2:P45tP15t¢3#512tP35tt2tP45tt2tP15tt2¢ HHHHHHHH 187 1 256tP35t#3#P451P15¥t2-256fiP35tt3tP14tP15tt2 XTOTAL=XTOTAL+HDPART¢TLPART HDPART=EVL _ TLPART=—256tP34tP35tP45tP15+512*P34fiP35tP15tt2+256tP34tP45tPISR 1 t2—256tP34tP45tt2tP15-256tP34t#2tP45*P15+256#P34tfi2¢P15¥¢2+256¢ 1 P35tP45tP15tt2+256tP35tt2¢P15112 XTOTAL=XTOTAL+HDPARTtTLPART PLH=XTOTAL END Appendix P Ascertaining the Physical Range of Parameters All interacting systems of two particles in and three particles out possess six degrees of freedom- five continuous ones and a plus-minus degree which repre— sents the reflection of the three output particles across the plane defined by the two input particles. P3 P2————- —————— P4 l ' P5 It is common to work in the center of mass system and represent the degrees of freedom by the energies and directions of the particles. This representation is desribed here though not used. For this calculation it is more appropiate to work in the rest frame of P3 and E. with the degrees of freedom representated by ranges of dot products. Section 1 Center of Mass System Sub-Section 1.1 ...Fixing the Parmneters For the input particles, one parameter EC," fixes their values: E E u_ cm cm P1 —(O,0.—-—2 .——2) .E.", E", u- ...._'- _-_ P2 —(0.0. 2 . 2 ) (The assignment of the minus sign to one of the input paticle's momentum is the fixing of the plus-minus degree of freedom.) For the output particles. three parameters fix the «:liro-cticms: Pick particle 4 to be in the x-z plane: P4“ = [E4sin(94). O. E4cos(fi4). E4] 188 189 and 04 becomes the second parameter. Then 65 and #5 become. the third and fourth parameters. fixing the direction of P5". P5” : [E5sin(65)cos(¢5), E5si11(95_)sin(d>5) E5 cos( (05) E] and P3 becomes fixed by energy-momentum conservation: P3” = {—(P43+P5r), —(P4y+P5y), —(P4:+P52)! (Erin —E4-E5l] Now select E3 as the fifth and last parameter. Then E4 and E5 are determined by the simultaneous solution of: E4 + E5 = Ecn) _ E3 and the zero mass of P3 1932 = 0 => E3': [E4 s111((94)+E5 sin(05)c os(a’>5]' +[E5 sin((95)sin(q35)]' +[E4 cos(94)+E5 cos(65 )]2 Sub-Section 1.2 The Center of Mass Outgoing Polar Angles To find the polar angles made by the three outgoing particles in the center of mass frame of reference system. first note. taking particle 3 as an example. that: (P1+P2)-P3=—- --(E1+E2)E3=— 2(E1)E3 but also: ‘ (P! + P2) - P3 = (P3+ P4 + P5) - P3 = P3P4+ P3P5 giving: 4 P3Pr (E1)E3 __P3P :2 0 Then to find cos 63 : _-1 P3: lP1||P3| ”0‘93——(El)53 mwg but also: ' 1~ 3=P1P3+(E1)E3 190 giving: P1P3 6 = 1 —-—- “’5 3 + (E1 1133 then using the above for (E1)E3 : 2(PlP3) cos 93 = l — —* P3P4 + P3P5 and similarly for cos 04 and cos 65: 2(P1P4) P3P4 + P4P5 _ 2(P1P5) P3P5 + P4P5 cos ()4 = 1— cos ()5 = Section 2 Another System For this problem the chosen set is: the five continuous- P 1P4 P 1 P5 P3P4 P3P5 P4P5 and the plus-minus degree- the sign of Epf(Pl.P3. P4,P5) As these are all Lorentz invariants, the combinations of values that are physically allowable may be ascertained in any convenient reference frame and co-ordinate system. The reference frami- chosen here is the usual one for this problem- the rest frame of W and P5 . The co—ordinate system is with W taken as the plus 2 direction and P73 in the x-z plane. The four vector P2 is removable by energy-momentum conservation P2=P3+P4+PF—Pl The remaining four vectors- P1.P3.P4. P5 - have their components evaluated 191 for this co—ordinate system in the solutions to Integrals 15. 18. and 118. in Ap- pendix N. The results are» using as usual [:0 = \/-P4P5/2 : P4 = (0, 0. +110, k0) P5 = (0. 0, -ko. k0) \/(P3P4)(P3P5) 0 (P3P4— P3P5) _(P3P4+ P3P5) k0 ' ' 21:0 ‘ 21m (P1P4 - P1P5) _ (P1P4 + P1P5)] ”=1 P1: [Pl”P1”' 2ko 21:0 where P1 _i (P1P4)(P3P5)+(P1P5)(P3P4)-(P1P3)(P4P5) "' — 2ko\/(P3P4)(.P3P5) P 2 13’ 4k03(P3P4)(P3P5) P1P3 appears in the above results. It is obtained from the above expression for P2 by squaring and noting the particles have zero mass- P22 = 0 = P3P4 + P3P5 + P4P5 — P1P3 — P1P4 — PIP-5 Selecting a value for the Center of Mass energy imposes a restriction on the set of dot products (P1+ 192)2 = (P3 + P4 + 1913)2 = -E;-’,,, and removing P2 as usual— P1P3 + P1P4 + P1P5 .—_ P3P4 + P3P5 + P4P5 = —E,f:’,,, /2 The allowable values Inay be visualized as lying rm triangular snrfm-ns _ 4(P1P4)(P3P5)(P1P5)(P3P4) — [(P1P4)(P3P5) + (PlP5)(P3P4 — (P1P3)(P4P5)] 1) 192 -PlP3 -P3P4 -P1P-5 -P4P-5 \ -P1P4 -P3P5 o o ' E2 where each corner of the triangles mtersects the axis at —.,m . Thase points are generateable in the output FORTRAN program by allowing 0 < -P1P4 < 5% EB", 0 < —P1P5 < ——2'———(—P1P4) E2 —P1P3 : —-§1'- — (—P1P4) — (—P1P5’) and q Ezm 2 O < -P3P4 < E? 0 < -—P3P5 < —§"l—(—P3P4) Efm 2 — ('—P3P4) - (—P3P5) —P4P5 : These possibilities are then restricted by the requirement that P1y be real. which is that- 4(P1P4)(P3P5)(P1P5)(P3P4) > [(P1P4)(P3P5)+(P1P5)(P3P4)—(P1P3)(P4P5)]1’ A set of six clot products which is on the two triangle-s and also obeys this restriction may be regarded as a physically realizable point and [.‘rrcv'essed. The remaining degree of freedom. the plus-minus sign appears as that Sign 193 which is selected for MP1?” (with P23, picking up the opposing sign ). As Epf(P1.P3.P4,P5), evaluated in Appendix B in this same reference frame and co-ordinate system is equal to i(2k02)(P3.,)(Ply). the sign of Ply enters the calculation as the sign of Epf(P1. P3, P4..P5). Appendix Q Verification of Spinor Replacement Section 1 Introduction In Appendix B it is demonstrated that a spinor product of the form v(p)i?(q) may be replaced by (1 i 75h - A where A is a. four vector. and is given by :1 = (77 ° Sign + (q ' SlPu - ('17 ' q)s,, i Epf(p.. q.p.s) " \/16(P - sxq . s') where s" is an arbritary four vector of the problem. and the sign of 75 is deter- mined by the combination of helecities. This permits the substsitutions: «Pawn-1) = (1:1: 75 )7 . B and v(P2)TI(P5) = (1 :1; 75 )7 - CU where B _ (P3P5)P4,, + (P4P5)P3u —- (P3P4)P5,, i Epf(11.. P3. P4. P5) “ ' ./16(P4P‘5)(P3P5) and _ (P1P2)P5.. + (P1P5)P2,, - (P2P5)P1,. i Ep m1. P1. P2. P5) . f _ CI “ 16(P1P2)(P1P5) which enable the SCHOONSCHIP program of Appendix I to easily calculate the TRACES. Here this result is checked in two examples by squaring the amplitude it leads to and comparing it to the cross section obtained by the standard method spm sum replacement of: 11(1)) 17(1)) = ‘1 '17 194 195 Section 2 Example 1 Consider the following simplistic diagram in which the polarization of the inci- dent gluon and the exiting Z O are simply set equal to their linear momenta: P2 _ _ _ _ _ _fzf P3 '7 :2 P3 n P! m; P5 (1 = P1 Overall energy momenta conservation dictates: P1+ P2 : P3 + P5 which gives immediately. using zero mass particles: P 1P2 = P3P5 P2P3 = P1P5 P1P3 = P2P5 P2P5 = P3P3 - P1P5 and the amplitude is proportional to: E(PS') 7"61 7'" 7"62 NP?) Then using (7.5,)(741) = (7-P1)7-(P1-P5) =—[(7-P1)(7495)]:[(7-P5)(7-P1)-P1P5l gives: E(PS) [(7 - P5) (7 PI) — P1P5] (7- «2) v(P2) and because of the Dirac equation i7(P5) 7 - P5 = 0 becomes: —(P1P5) TRACE [r(P2)U(P5)1 .62] and using the above definition of C 'I ’: —(P1P5) TRACE [(1 +7s)(7 -CC') (1 42)] M6 = —4(P1P5)[CU . P3] Using the expansion of CU: = —4(P1P5)[(P1P2)P3P5 + (P1P5)P2P3 — (P2P5)P1P3 :1: Em P3. P1. P2. P5)] \/16(P1P2)(P1P5) noting P3 = P1 + P2 — P5 makes the Ep f zero 2 ‘4lP1P5lw- (WP-5)" 16(P1P2)(P1P5) _ —4(P1P5)[—2(P3P5)(P1P5)] ' 16(P1P2)(P1P5) and squaring to produce the cross section Amplitude? = 4(P1P5)2(P3P5)P2P3 This is to be checked with the spin summed cross section: E(PS) 7-61 7-12 7-63 v(P2)ii(P2) '7 -€2 7-17 7-61 u(P5) = —(PIPS)2 TRACE [ll—E11) 7:135 7-P3 7 -P2 7-193] _—_ 4(P1P5)3(P3P5)P2P3 giving agreement. Section 3 ..... Example 2 Consider a second example : (it-#87517" (CT-+015)» P3 _2_\ ..... .\.< P4 11 Pl 7-! P5 197 First evaluate the spin summed cross section. The quark line. yields: E(P5) 7-6 7‘-n 7‘” 11(P2)T1(P2) 711 7.12 7-6‘ u(P5) = TRu‘iCET U(P5)E(P5) .7. . 6 7, . 1l- 7.11 (_£_-;_’)_5_) (7 . 132).“! 7. '11- 7 . (a ] then using the Example 1 relationship between 6. n. and the Dirac equation: = 4.___—(P12P5l' TRACE[(1+75) 7~P5 7'” 7 '1’? 7'" l r 2 = 412211 [4( 125,192“ + P5,.P2. — (P2P5lgpu) — 4 Epf(P5.u. P2. ”)1 and from the lepton line: T11194) 7‘uv(P3W(P3) Vim-(P4) TR.4CE[ (1+75) ‘1"P4 7., 7'-P3 7] l 2 (4)[4 (P4"P3“ + P4"P3" — (P3P4)g‘“’) — 4 Epf(P4.11., P3. V) ] _ l — 2 and the product: = 16(P1P5_)2{(P4P5)P2P3+P2P4)P3P?—P3P4(P2P5)-EPf(P4. P2. P3. P5) (P3P5)P2P4 + (P2P5)P4P-r — P3P4(P2P5) -— Epf(P4. P4. P3. P2) -(P3P4)P2P5 — (P3P4)P2P5 + 4(P3P4)P2P5 + 0 -Epf(P5.P3, P2.P4) — Epf(P5.P4. P2.P3) + 0 +[Epf(P5. 11, P2. v1] ... [Epf(P4.11. P3. um ” P4P5 P3P5 =16(P1P5)~[ 2(P4P5)P2P3+2(P2P4)P3P5+2l P2194 p2p3 l l = 16(P1P5)2 4 (P4P5)P2P3 Now calculate and compare the amplitude squared. if(P4) ‘1 '6 7" 1‘(P3)‘17(P5) ’1 '6' ”.- "1 7,, F(PL’) = TRACE [v(P3)‘1Z(P4) 7 -€ 7" ] TR.4C'E[I'(P2)TI(P5) 7 -c' 7 ~11 7‘, ] 198 = TRACE [(1+75) 7-8 7" ]2(P1P5) TRACE[(1+7'5) 7 -CU 7,. ] = 4 (13") (P1P5) 4 (CU..) Then using B _(P3P5)P4 +(P4P5)P3 — (P3P4)P5,.i 13pm P3 P4 P5) ”= ./16(P4P.5)(P3P5) and a slightly different CU (P2P3)P5u+(P3P5)P2u — (P2P5)P3 — Epf“: P3 P2 P5) CU”: ./16(P1P3)(P3P5) with B - CU = o + P4P5(P3P5)P2P3 + P4P5(P2P3)P3P5 + o —P3P5(P2P5)P3P4 + P3P52(P2P4) + P2P3(P3P5)P4P5 —P3P5 [ Epf(P4, P3, P2.P5)] — P3P5 [ 5mm. P3. P4. P5)] ; [Epf(p,P3.P4,P5)]* [Epf(p.P2,P3,P5)] = 3(P4P5)P2P3(P3P5) — P3P5(P2P5)P3P4 P2P3 P2P4 P2P5 P32 P3P4 P3P5 +P3P53(P2P4) — P3P5 P4P5 P52 all over appropiate denominator, 4(P4P5)P2P3(P3P5) = ______________——— \/16(P3P4)(P3P5)./16(P1P3)(P3P5) .—_ 4(16)(P1P5)2(P4P5)(P2P3) giving agreement. Now do again using the regular projection of ('1': (P1P2)P5u+(P1P5)P2u-(P2P5)Plu wiEpflp Pl. P2. P5) CUu=16(P1P2)(P1P5) 199 This will give a result that SCHOONSCHIP wiil be asked to calculate the final step of. B . CU = -P4P5(P2P5)P1P3 + P4P5(P1P5)P2P3 +P4P5(P1P2)P3P5 - (P4P5) Epf(P3. P1. P2. P5) -P3P5(P2P5)P1P4 + P3P5(P1P5)P2P4 +P3P5(P1P2)P4P5 - (P3P5)Epf(P4. P1. P2. P5,) +P3P4(P2P5)P1P5 - P3P4(P1P5)P2'P5 + (P2P5)Epf(P1. P3, P4. P5) -(P1P5)Epf(P3, P3, P4. P5)+ [Epf(p. P3. P4. P5)] 4 [Epf(p. P1. P2. P5)] = —P4P5(P2P5)P1P3 + P4P5(P1P5)P2P3 - P3P5(P1P5)P2P3 -P3P5(P2P5)P1P4 + P3P5(P1P5)P2P4 + 2(P4P5)P1P2(P3P5) +(P2P5 + P1P5 - P3P5 + P4P5) Epf(P1. P3. P4. P5) P1P3 P1P4 P1P5 + P2P3 P2P4 P2P5 P3P5 P4P5 P53 = -2(P4P5)P2P5(P1P3 + 2(P4P5)P1P5(P2P3) +2(P4P5)P1P2(P3P5) + 2(P4P5) Epf(P1. P3. P4. P5) _ 2(P4P5) [P1P2(P3P5) + P1P5(P2P3) - P2P5(P1P3) + EPflPl. P3. P4. P5)] \/16(P1P2)P1P5(16)P3P5(P4P5 This is evaluated by the attached SCHOONSCHIP program to be: Amplitude? = 64(P1P5)"-(P4P5)P2P3 giving agreement. Appendix R Verification of SCHOON SHIP LOOP Program, TRACE Calculation 200 13nx><><><><><><>mnnnnnnnnnnnnn P 201 START SCHOONSHIP PROGRAM ALGEBRAIC TEST OF LOOP - TRACE PROGRAM this program tests the spinor, polarization replacements and the expansion of Ku , by after these replacements have all been made, replacing Ku by an expression that should force a zero result , as per this appendix, if all these replacements have been made correctly. LNMP,LNMQ,PI,FPIIV P14,P13,P15,P34,P35,P45 P1,P2,P3,P4,P5,Sl,$2,$3,$4,U1,U2,U3,U4 FEED IN VALUES FOR THIS RUN 20 SET SWITCHES FOUR = 0 FIVE = 1 ELECT = 1 POSIT = O LHEL = ‘1 QHEL = +1 GHEL = +1 MPARIT = +1 ninput Outlimit,12000000 OOOOOOXXXXOGOODXXXXXXOV C nlist SET DOT PRODUCTS ELECTtP35 + POSITeP45 ELECTeP45 o POSITePSS P3P5 P4P5 P1P3 = ELECT#P13 + POSITeP14 P1P4 = ELECTeP14 + PUSITePl3 P1P5 = P15 P3P4 = P34 FOR CONVEINENCE , DEFINE SOME EXPRESSIONS AND THEIR RECIPROCALS. 0145 = P1P4 o P1P5 01 = 0145 0345 = P3P4 o P4P5 MZP = 2eP3P4 + 03 now K CAN ALWAYS as EXPANDED ON AN ARBRITARY BASIS SET 51,sz,ss,s4 K = C(1):Sl . C(2)a52 4 C(3):$3 4 C(4):S4 AND FOR THIS PROBLEM we use THE ssr P1,P3,P4,P5 202 C C SO. C X 5152 = P1P3 X 3153 = P1P4 X 5154 = P1P5 X 5253 = P3P4 X 5234 = P3P5 X 5354 = P4P5 C C TO THIS END, THE ORIGINAL EXPANSION OF K MAY BE DOTTED WITH EACH C OF THE BASIS TO FORM A 4 X 4 MATRIX, WHICH WHEN INVERTED C YIELOS ...... C C C(l) = CC(1,1)t$1DK + CC(1,2)#SZDK + CC(1,3)e$30K + CC(1,4)eS4DK C E W IS THE DETERMINENT FOR THIS INVERSION AND WIV IT’S RECIPROCAL X W = 5132:5354e(-Sl$2¢S3S4+Sl$4eSZSS+SIS3eSZS4) + 5153.52544( 515245354451$445253-515345254) + 5154:5253e( $152eSSS4-S154eSZS3+SIS3eSZS4) C C AND NOW, ALL THE CC’S USING THE NOTATION CC(4,3) = CC43 C X CC44 = WIVt(-2)t($1$2t5133#3253) X CC43 = WIVtSIS2e(-Sl$2¢S3S4+SIS4#52$345153.5284) X CC42 = WIVe51$3e( 5152:5334+SIS4¢5253-5133t5234) X CC41 = WIVt5253¢( $152¢S3$4-SIS4tSZSS+Sl$3e$2$4) X CC33 = WIVe(—2)e(8152eSIS4eSZS4) X CC32 WIVtSIS4t( 5152:3354-51S4eSZSS+5153eSZS4) w1v45254.( 5152453544515445233-515345254) WIV:(-2)¢(Sl$3:$1$4¢$3$4) w1v45354-(-$1$2.$354+$1$4452534515345254) WIV:(-2)4(S253¢SZS44$3S4) CC31 CC22 CC21 CC11 fix fitfi“¢$tttfifi¢fitfifitfitttttttt‘fittittt...fitttttfitttfitttttttfitttttt‘ IN THIS SECTION, TAKE THE TRACE, REPLACE EACH K BY IT’S LINEAR EXPANSION, AND REDUCE TO A FINAL ANSWER. ,P1,P2,P3,P4,P5,PO 3,F4,F5,F6,F7,F8,F9,F10,F11,A1,A2,A3,AA K3,K2 SCALE FACTOR FOR THE AMPLITUDE IS ... FSCAL = 0.5:FPIIVO(1/137):(FIVE:(P34+P35+P4S) + FOUR) TAKE THE TRACE nonnxnnnnHm > (.0 P 5 ( ) A3(J,K.L) S Z EXP51 = AOtEXPS Id,Ao.A3(3,3,3) = A3333 AI,Ao.A3(2,3,3) = A3332 AI,Ao.A3(1,3,3) = A3331 AI,Ao.A3(2,2,3) = A3322 Al,Ao-A3(1,2,3) = A3321 AI,Ao.A3(1,1,3) = A3311 AI,Ao.A3(2,2,2) = A3222 AI,AOaA3(1,2,2) = A3221 AI,AO.A3(1,1,2) = A3211 Al ,AO.A3(1,1,1) = A3111 ”0 Id ,Ao.A2(3, 3) = A233 AI ,AO.A2(2, 3) = A232 AI,Ao.A2(I,3) = A231 Al,Ao-A2(2,2) = A222 Al,A0tA2(1,2) = A221 AI,Ao.A2(1,1) = A211 Id,AO.A1(3) = A13 AI,AO.A1(2) = A12 AI,AO.A1(1) = A11 C P OUTPUT eyep C C C AND IN TERMS OF THE 19 INTEGRALS, 217 C THE ABOVE DEFINED 01 AND 03, THE C A3,A2, AND A1 MATRICES, C USING THE NOTATION. . .. C A3(1,3,3) = A3331 C C Id,A3333 = -O.5¢(119) AI,A3332 = -0.25¢(113 - 03:19) AI,A3331 = -o.2s.(IIS + 2.01.19) AI,A3322 = -0.25t(114 - 0.5303312 + 0.5103RD3t16) AI,A3321 = -0.125:(4OPI + 2:01:12 - 03‘13 - 2301:03316) AI,A3311 = -O.25¢(116 + 01:13 + 2:01:01316) AI,A3222 = o.5¢(117 - D3¢A222) AI,A3221 = (0.25.112 o 0.5:DI¢I7 - 0.5:D3¢A221) AI,A3211 = (O.25¢(Ill - 03:18) + 01¢A221) AI,A3111 0.5:(118 + 2tDl¢A211) Id,A233 = -0.5t(19) AI,A232 = -0.25¢(12 - 03.15) A|,A231 = -0.25‘(I3 9 2‘01‘16) AI,A222 = 0.5¢(17 - 033A12) AI,A221 = (0.25t(11 o 2‘01t14) - 0.5tD3tA11) A',A211 = 0.5¢(18 0 2*01'A11) ‘YQP 1d,A13 = -0.5¢(16) AI,A12 = 0.5:(14 - 03.110) AI,A11 = 0.5¢(IS 4 2¢Dlt110) C C C *yeP C C PUT IN A0 C 1d,AO = 110 THE FIVE POINT ANSWER IS NOW FORMED. a LNMP,LNMO,PI,FPIIV,CUOIV,BOIV,EOIV,EVL Keep 11,12,IS,I4,IS,IS,IT,18,19,111,112,113,II4,115,116, 117,113,119,IIO,EXP51 (5(3F5firifi . 3 O X C? ti.it00.000.00.000000000ittfifitfittttttttltttttttttittttdtfittttttt NOW CALCULATE THE FOUR POINT AMPLITUDE IN THIS SECTION, TAKE THE TRACE, REPLACE EACH K BY IT’S LINEAR EXPANSION, AND REDUCE TO A FINAL ANSWER. '<(5(5(5(3r5(3(5(5(5(5(3(3 B,K,CU,M,E,N,P1,P2,P3,P4,PS,PD 218 FO,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,A1,A2,A3,AA ,J2,M1,M2,K3,K2 1‘...“ HR. SCALE FACTOR FOR THE AMPLITUDE Is ... FSCAL = O.5¢FPIIV¢(1/137) TAKE THE TRACE EXP4=FSCAL¢F0¢F1¢F2¢F3tF4tF11tFStFGtF7¢F8tF93F10 SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM Id,FO=O.5¢((1+LHEL)¢(06(J1))+(1-LHEL)¢(G7(J1))) Id,F1=(G(J1,B)) Id,F2=ELECT¢(G(J1,M2)) . POSIT¢(G(J1,M1)) Id,F3=(G(J1,K)) - Id,F4=ELECT.(c(J1,M1)) . POSIT¢(G(J1,M2)) Id,F11=o.5.((1+OHEL).(O5(J2))+(1-OHEL)1(c7(J2))) Id,F5=(G(J2,CU)) nnnNnnnnxnnnnH'n ‘YOP Id,F6=(G(J2,M2)) Id,F7=(G(J2,M)) Id,F8=G(J2,M1) Id,F9=(G(J2,N)) Id,F10=G(J2,E) *yep Id,Trick,Trace,J1 C C TRICK AND TRACE C Id,Trick,Trace,J2 *yeP C C START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT. C Id,2,Dotpr,N(J') = P3(J)+P4(J)+P5(J) A|,Funct,N(K2”) = P3(K2)+P4(K2)+P5(K2) Id MDM=0 Id,Dotpr,M(J')=K(J)-PD(J) Al,Funct,M(J')=K(J)-PD(J) Id,KDPD=P4P5 1d,KDK=0 Id,2,Dotpr,PD(J')=P4(J)+P5(J) Al,Funct,PD(J')=P4(J)+PS(J) Id,P4DP4=0 Al,PSDP5=0 Al,EDP1=0 C P OUTPUT Prep C C PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS. C Id,2,Dot r,B J“ =83:P3(J)+B4tP4(J)+85¢P5(J)+BEPF‘Epf(J,P3,P4,P5) Al,Funct?B(K§f);BanP3(K3)+B4SP4(K3)+BS¢P5(K3)+BEPF:Epf(K3,P3,P4,PS) C P OUTPUT 219 *yeP Id,B3 BOIVCPAPS A|,B4 BOIV¢P3P5 A|,85 - -BOIV#P3P4 Al,EEPF = + LHEL:BOIV:(ELECT - POSIT) Id,Trick Id,KDK=0 Id,PlDP1=0 Al,P30P3=0 Al,P4DP4=0 Al,PSDPS=O Id,PlDP3=P1P3 Al,PlDP4=P1P4 Al,PlDP5=P1P5 Al,P3DP4=P3P4 Al,P3DP5=P3P5 Al,P4OP5=P4P5 C P OUTPUT Prep Id,2,Dotpr,CU(J')= (CU1-CU?)3P1(J)+CU2OP3(J)+CU2:PD(J)+CU5¢P5(J) +CUEPFtEpf(J,P1,P3,P5)+CUEPFtEpf(J,P1,P4,P5) A|,Funct,CU(K')= (CU1-CU2)¢P1(K)+CU2¢P3(K)+CU2OPD(K)+CU5:P5(K) +CUEPFtEpf(K,P1,P3,P5)+CUEPFtEpf(K,P1,P4,P5) 1d, CU1 = - CUOIVO(P3P5+P4P5-P1P5) Al,CU2 = CUOIVtPlPS Al,CUS = CUOIV¢(P3P4+P3P5+P4P5) Al,CUEPF = + QHELFCUOIV Myep Id,Trick 1d,KDK=0 AI,KDPD=P4PS Al,EDP1=0 1d,2,Dotpr,PD(J")=P4(J)+P5(J) Al,Funct,PD(K2')=P4(K2)¢P5(K2) Id,PlDP1=0 Al,P30P3=0 A|,P4DP4=0 Al,PSDPS=0 Id,PlDP3=P1P3 Al,PlDP4=P1P4 Al,PlDP5=P1P5 Al,P3DP4=P3P4 Al,P30PS=P3P5 Al,P40P5=P4P5 C P OUTPUT *yep C C NOW PUT IN THE POLARIZATION VECTOR EXPANSION. C Id,2,Dot r,E J’ = EltP1(J) + E3tP3(J) + E4tP4(J§+ESSP51J)+EEPFt(Epf(J,P1,P3,PS)4Epf(J,P1,P4,P5)) A|,Funct,E(K')= E1tP1(K) + E3¢P3(K) + E4:P4(K)+E5tP5(K)+EEPFt(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5)) Id,E1 = EOIVDGHELO(P3P5+P4P5-2tP1P5) Al,E3 = E01VtGHELtP1PS Al,E4 = EOIVOGHELSPIPS 220 Al,ES = -E01VtGHEL#(P1P3+P1P4) Al,EEPF = -E01V ‘YOP Id,Trick Id,KDK=O 1d,Epf(P1,P3,P4,P5) = EVL Id,PlDP1=O Al,P30P3=O Al,P4DP4=0 Al,P50P5=0 Id,PlDP3=P1P3 Al,PlDP4=P1P4 Al,PlDP5=P1P5 Al,P30P4=P3P4 Al,P3DP5=P3P5 Al,P4DP5=P4P5 C P OUTPUT *yeP C C REPLACE K BY IT’S LINEAR EXPANSION. C Id,2,Funct,K(J')=C(I).P1(J).C(2).P3(J)+C(3).P4(J) .P5(J).(1-C(3)-C(1).DI.PASIv-C(2).0345.P4SIV) *yep Id,Trick Id,Epf(P1,P3,P4,P5) = EVL C C P OUTPUT .yep 1d,C(1) = CC11¢PIDK+CC21tP3DK+(CC31-CC41)MP4DK+CC4IMP4P5 Al,C(2) = CC21¢P10K+CC22¢P30K+(CC32-CC42)tP4DK+CC42tP4P5 Al,C(3) = CC31.PIDK+CC32.P30K.(CC33-CC43).PADK+CC43.P4P5 Al,C(4) = CC41.PIDK+CC42.PSDK+(CC43-CC44).P4DK+CC44.P4P5 C P OUTPUT ¢yep THE AMPLITUDE IS NOW COMPLETELY IN THE FORM OF DOT PRODUCTS OF K WITH EXTERNAL MOMENTA. THE DOT PRODUCTS OF K NEED TO BE EVALUATED, FOR EXAMPLE... (PSDK).(P4DK).(PSDK) AND REMEMBER THIS FACTOR IS TO BE INTERGRATED OVER ALL K SPACE. THIS DEFINES THE A3 MATRIX. . .. A3(4,3,1) = (SADK).(SSDK).(SIDK) INTEGRAL OF, OVER ALL K SPACE. AND SIMILARLY A2(J,K) AND A1(J) MATRICES. nnnnnnnnnnnnnnnnnnnnnnn THE A3, A2, AND A1 MATRICES ARE EVALUATED USING 19 SIMPLE 221 C INTEGRALS, EVALUATED EARLIER .... I1 THRU 119.... C C C REPLACE PDK ’5 BY A MATRICES C FOR THE FIVE POINT DIAGRAM, OR C SIMILAR B MATRICES FOR THE FOUR POINT. C . Id,PIDK = AA(1) Al,P3DK = AA(2) Al,P4DK = AA(3) Al,PSDK = -AA(3) + P4P5 Id,AA(J"):AA(K')¢AA(L') = A3(J,K,L) Id,AA(J')tAA(K') = A2(J,K) 1d,AA(J") = A1(J) 1d,Symme,A3,1,2,3,A2,1,2 Keep 11,12,13,14,15,16,I7,18,19,111,112,113,114,115,116, 117,118,119,110,EXP51,EXP4 .next S A0 Z EXP41 = A0tEXP4 Id,A0#A3(3,3,3) = B3ERR Al,A0¢A3(2,3,3) - B3ERR AI,AOtA3(1,3,3) = B3ERR AI,A0*A3(2,2,3) = B3ERR - Al,A0#A3(1,2,3) = B3ERR A1,A0¢A3(1,1,3) =.B3ERR AI,A0*A3(2,2,2) = B3ERR AI,A0¢A3(1,2,2) = B3ERR AI,AOtA3(1,1,2) = B3ERR AI,AOtA3(1,1,1) = B3ERR *yeP Id,A0¢A2(3,3) = 8233 AI,A0tA2(2,3) = 8232 AI,AOtA2(1,3) = 3231 A|,A0tA2(2,2) = 3222 Al,A0¢A2(1,2) = 3221 AI,AODA2(1,1) = 8211 Id,Ao.A1(3) = 313 AI,AO.A1(2) = 312 AI,AOMA1(1) = 811 C P OUTPUT 'yoP AND IN TERMS OF THE 19 INTEGRALS, THE ABOVE DEFINED DI AND 03, THE A3,A2, AND A1 MATRICES, USING THE NOTATION.... A3(1,3,3) = A3331 PUT IN '8' SERIES nnnnnnnnnnnnn Id,8233 = -0.5¢115 A|,B232 = -0.25t(4tP1 - 03:13) Al,8231 = -0.53116 222 , = 0.5.(112 - 033812) A|,8221 = 0.5.(111 - 03.311) A|,3211 I18 Id,BIS = -0.5tI3 Al,312 = 0.5!(11 '03115) AI,311 = I8 C C PUT IN A0 C Id,A0 = 15 C C C C C THE FOUR POINT ANSWER IS NOW FORMED. C B LNMP,LNMQ,PI,FPIIV,CU01V,BOIV,E01V,EVL Keep EXP51,EXP41 tnext C C C NOW ADD THE FIVE POINT AND FOUR POINT RESULTS C C 2 EXP = EXP51 + EXP41 B LNMP,LNMQ,PI,FPIIV,CU01V,BOIV,E01V,EVL tend Appendix T Verification of 19 Irreducible Integrals 223 367 370 377 380 224 PROGRAM check 19 integrals COMPLEX 03,MZP,R,LN3,LN5,LN6,MZP1,ZIIOD,RUPPER, C MZPUP,MZPIV,RIV,ZIlOU,UPPER,I, C 11,12,13,I4,15,16,17,I8,I9,110,196,IR, C 111,112,113,114,115,116,117,118,119, C g,p,xx,i$u,i5l,z,111,n REAL LN1,LN2,LN4,RLOWER,MZPLW,19U,19L,193,IW,IS, C LOWER,S,MP,MQ,x,c,d,e,f,m,za,zO,21,NN,NX,NZ,N0,AX,NY,NY1 REAL P1P3,P1P4,P1PS,P3P4,P3P5,P4P5,API,FPIIV,K02,K021V,NX1,NZl DOUBLE PRECISION WIV,CC44,CC43,CC42,CC41,CC33,CC32,CC31, C CC22,CC21,CC11 CAM : 2.7 “P = 1 Mu : 1 M2 = 93.7 03 = ( 8779.69,-252.99) API = 3.142357143 FPIIv = 0.25-(1/API) PRINT¢,API PRINT-t, ’03 = ’,03 PRINTc,’P3P4 = 92’ P3P4 = 92 PRINT:,’P3P5 = 20’ P3P5 = 20 PRINT:,’P4PS = S’ P4P5 : 5 P3P4 = -O.StP3P4:t2 P3P5 = -O.5tP3P5¢t2 P4P5 = -O.5¢P4P5tt2 P14MAX (P3P4+P4P5)GP4P5¢(P3P4+P3PS+P4PS) P14MAX = P14MAX/((P3P4+P4P5)n(P3P5+P4P5) - P3P4tP3P5) PRINTt, ’P14MAX = ’,-((2t(-P14MAX))¢:(O.S)) PR1NT¢,’P1P4 = 70’ P1P4 = 70 P1P4 = -0.5¢P1P4¢#2 R = P3P4 + P4P5 S = P1P4t(P3P5+P4PS) - P4P5t(P3P4+P3P5+P4P5) T = P1P4¢P3P4¢P3P5 DISC = (16¢Tt(T-Rt$))tt(0.5) PISUP = (-(2thS - T) o DISC)/(2:ROR) IF (PISUP) 370,367,367 P15UP = 0 PISDN = (~(2thS - T) - DISC)/(2¥ROR) IF (PISDN) 380,377,377 P150" = 0 PRINTt, ’PISUP = ’,-((2t(-P15UP))tt(0.5)) PRINTt,’P150N = ’,-((2t(-P150N))tt(0.5)) PR1NT¢,’P1P5 = 15’ P1P5 = 15 P1P5 = -O.SaP1P5t32 P1P3 = P3P43P3P5wP4PS-PIP4-P1PS PRINT¢,'P1P3 = ’,P1P3 PRINT‘,’P1P3 = ’,(-2#P1P3)#¢(0.5) P13IV = 1/P1P3 P14IV = 1/P1P4 P1SIv = 1/P1Ps P34IV = I/P3P4 P35IV = 1/P3P5 090 110 120 130 150 170 180 190 210 220 230 240 250 260 270 280 290 310 320 330 340 350 370 380 390 400 410 420 430 440 450 460 470 480 490 500 520 530 540 550 560 5708 580 590 600 610 225 P45IV = 1/P4P5 520 MZP = 23P3P4 3.03 630 8152 = P1P3 549 3133 = P1P4 650 ' 5154 = P1P5 660' 3253 = P3P4 670 5254 = P3P5 680 S334 = P4P5 690 W = 5152353543(-SIS23$354+SIS4352533515338254) 700 C + SlS33SZS43( $1523S3$4+Sl$43SZS3-SIS33SZS4) 710 C + 5134352533( $1S23$354-$134332533313333234) 720 WIV = 1.0/W 7. CC44 = WIV3(-2)3($152351333SZS3) 740 CC43 = WIV3$1$23(-S18235354+SIS43SZSS+SIS33SZS4) 750 CC42 = WIV351533( SlS23S3S4+SI$438253-513335254) 760 CC41 = WIV3S2533( $1523S3S4-SIS4352833315335254) 770 CC33 = WIV3(-2)3(51323515435234) 780 CC32 = WIV331S43( $1523S354-SIS43$253351533SZS4) 790 CC31 = WIV3SZS43( $152353543515438253-513335254) 800 CC22 = WIV3(-2)3(SIS33SIS43S3$4) 810 CC21 : WIV3S3SA3(-SIS23S354+SI54382533513335254) 820 CC11 = WIV3(-2)t(52533525435354) . 830 PRINT3,'WIV = ',va PRINTt,’CC44 = ’,CC44 PRINTt,’CC43 = ’,CC43 PRINT3,’CC42 = ’ CC42 PRINTt,’CC41 = ’,CC41 PRINTt,’CC33 = ’,CC33 PRINTt,’CC32 = ’,CC32 PRINTt,’CC31 = ’,CC31 PRINTt,’CC22 = ’,CC22 PRINTt,’CC21 = ’,CC21 PRINTt,’CC11 = ’,CC11 R = -23P4P53P1P3+23P3P53(P1P4+P1P5) + MZP3(P1P4+P1P5) 340 LN1 = LOG (-23P4P5 3 MP332) LN2 = LOG(-23(P1P4+P1P5) + M0332) LN3 = LOG((23P3PS+MZP)/D3) 870 LN4 = LOG((P1P4+P1P5)/P1PS) 880 LNS = LOG(MZP/(23P3PS+MZP)) 890 LN6 = LOG((23P3P5+MZP)3(P1P43P1PS)/R) 900 80 = (83P3P53P4P5)33(-O.5) 910 CUO = (83P1P53(P3P43P3PS3P4PS))33(-0.5) 920 E0 = (-43P1P53(P3P5+P4P5-P1P5)3(P3P43P3P53P4PS))33(-0.5) 930 EVL1=(P1P53P3P43P1P43P3P5-P4P53P1P3)332 940 EVL = ( 43P1P43P1P53P3P43P3P5 - EVL1)33(0.5) 950 PRINT3,’80 = ’,80 - 960 PRINTt,’CUO = ’,CUO 970 PRINTt,’E0 = ’,E0 980 PRINTt,’EVL = ’,EVL 990 PRINTt,’LN1 = ’,LN1 1000 PRINTt,’LN2 = ’,LN2 1°10 PRINTt,’LN3 = ’,LN3 1020 PRINT‘,’LN4 = ’,LN4 1030 PRINTt,’LNS = ’,LN5 1°40 PRINT‘,’LN6 = ’,LN6 105° K02 = O.$3(-P4PS) i833 K021V — 1/K02 1080 0145 = P1P4 + P1P5 1135 1137 1145 1147 1155 1157 1163 1165 1167 226 DI = 0145 DI4SIV = 1/0145 D345: P3P4 3 P4P5 D3451V= 1/0345 MZP = 23P3P4 3 D3 I1 = -23AP13P45IV3(LN1) I = 0 S =.00001 Print3,’s= ’,s X = -1 I = I 3 S/(P4P53(X-1) 3 MP332) X = X35 1F ( X-1) 1135,1137,1137 PR1NT3, ’CHECK 11:1323AP1 120 = -23API301451V3(LN2) S =. 00001 pr rin at; ,’3= ’,3 X = -1 I = I 3 S/(- (P1P43P1P5)3 (X31) 3 M0332) X = X 3 S 1F ( X—l 1) 1145,1147,1147 PRINT3, ’CHECK 12: I323AP1 I3 = 323API3D3451V3LN3 I = S =.00001 9 IF ( X-l) 1155,1157,1157 PRINT3, ’CHECK 13: ,1323API PRINT3, ’11 = ’,11 PRINT3, ’12 = ’,12 PRINT3, ’13 = ’ ,13 R = -23P4P53P1P3+23P3P53Dl3MZP3DI MZP1: MZP RUPPER = CONJG(R) RLOWER = R3CONJG(R) MZPUP=CONJGGMZP1) MZPLW = MZP13CONJG(MZP1) RIV = RUPPER/(RLOWER) MZPIV= MZPUP/(MZPLW) PRINT3, ’MZPIV = ’ ,MZPIV ZO s 23((P1P43P1PS)33(0. 5)) I = 0 S =.01 print3,’s- ’,s X = -1 Y = 0 ll =ZO3 sin(acos(X)) ZA = 213cos(Y) 111 = (P1P4-P1P5)3X32A-P1P4-P1P53MQ332 I = I 3 S3S/((P4P53(X-1) 3 MP332)3111) Y = Y 3 S 1F (Y - 23API) 1165,1167,1167 X = X 3 S IF ( X-l) 1163,1169,1169 1090 1100 1110 1120 1130 ' 1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1169 .PRINT:,’CHECK 14 = .' I 227 I4 = - api3P45IV3P151V3LN4 - C 0}53DI3P451V3P151V312 - 0.53PISIV3II 1300 print3,’I4 2 ’ ,14 c = p4p5 d = -c 3 mp332 e = p1p4-p1p5 f = 23((plp439195)33(0 5)) 9 = -(plp4+9195) + mq332 m = (plp4+p195)*32 n = 23(g3o3c - d3m) p = d3d3m - 239393c3d 3 c3c3(g3g - ftf) x = c 3 6 xx = m3x3x 3 n3x 3 p z = (p3xx)33(0.5) u '4u = log((23z 3 n3x 3 23p)/x) x = -c 3 d xx = moxtx 3 ntx 3 p z = (p3xx)33(0.5) i4| = log((23z 3 n3x 3 23p)/x) i4 = 323api3(p33(-O.5)3(i4u-i4l)) print3, ’i4detl = ’,i4 20 = 23((P3P43P3P5)33(0.5)) I = 0 S =.01 print3,’s= ’,s X = -1 1183 Y = 0 21 =ZO3 sin(acos(X)) 1185 ZA = 213cos(Y) III = (P3P4-P3P5)3X32A3P3P43P3P53d3 I = I 3 S3S/((P4P53(X-1) 3 MP332)3111) Y = Y 3 S IF (Y - 23API) 1185,1187,1187 1187 X = X 3 3' IF ( X-l) 1183,1189,1189 1189 PRINT3,’CHECK IS = ’, I 15 = P451V3MZPIV3(-43api3LN5 - 0345313 3P4P5311) prinbt,’15 = ' ’15 p4p5 -c 3 np332 p3p4-p3p5 23((p3p43p3p5)3¢(0.5)) +(939439395) + 63 (p3p43p3p5)332 23(g3o3c - 63m) dtd3m - 2393.3c3d 3 c3c3(gcg - ftf) c 3 d x = n3x3x 3 nox 3 p z = (p3xx)33(0.5) iSu = Iog((23z 3 n3x 3 23p)/x) x = -c 3 d xx = m3x3x 3 03x 3 p z = (p3xx)33(0.5) 35' = 109((232 3 n3x 3 23p)/x) i5 = 23api3(p33(-O.S)3(35u-35l)) print3, ’iSdetl = ’,35 o = (23919339495-(plp4+plpS)3(9394+p395))/(91p4+9195) X X‘U 3 3‘0 43. 0.0 1193 1195 1197 1199 2163 2165 2167 2169 -<‘U (DH X HI 0 =NX 3 sin(acos(X)) NX13cos(Y) (P1P4-P1P5)3X3NX23P1P43P1P5 I 3 $3330. 53NN/(P4P53(X-1) 3 MP332) .Y 3S IF (Y - 23API) 2765,2767,2767 2767 X = X 3 S IF ( X-l) 2763, 2769, 2769 2769 PRINT3, ’CHECK 11: I . 112 = 23API3P4SIV3(P3P4-P3P5) + P3P43I1 PRINT3, ’112= ’ ,I12 NX = 23((P3P43P3P5)33(0. 5)) 2765 NX2 z 2 II II -< H II II 0 .0055 “nt3 ,5 -1 2963 z-<><‘o (DH X =NX 3 sin(acos(X)) NX13cos(Y) (P3P4-P3P5)3X3NX23P3P43P3P5 3 $3530. 53NN/(P4P53(X- -1) 3 MP332) 3S IF (Y - 23API) 2965,2967,2967 =X 3 S IF ( X-1 ) 2963, 2969, 2969 2969 PRINT3, ’CHECK 12: I 113: —23API3P4P53Dl451V3Dl4SIV3(P1P4 - P1P5) 3 1560 C P4P53P1P5301451V3I2 PRINT3,’II3 = ’ ,113 N0 = 0 53(P4P 5) N2 = 0. 53P4P53(P1P4-P1P5)/(P1P43P1P5) = ( NO332 - NZ332)33(0. 5) NH II II -< H II II 2965 X 2967 1570 0 .0 ...; I ,8 3063 NZ3X NX3sin(acos(X)) =NX13cos(Y) 3 N21 3 N0 3 S3S3NN/(-(P1P43P1P5)3(X31) 3 M9332) nt, 0 |§22<-<- 18 I (-0.3241602.-0.4922062) 19 I (-2.1155991E-04.-5.3360919E-04) 111 (-388.0707.0.0000000E300) 112 - (-¢74.o4ee.o.00000005300) 113 - (-0.6314969.0.0000000E300) 113 - (~80.43964.0.000000083001 115 : (-O.2913233.-6.77223438-02) 116 . (-7.577301.-a.xoeaea> 117 - (10072.33.0.0000000£+00) 119 = (469.3852.892.2405) 119 = (~103.7464.-261.4523) ‘ut' r . qu : c1 nQDQnIOt-OA Q 07183995-063 236 I ‘0 1883816-0 3000000E+00) I (2.0953396E-02.0.0000000E+00> OJ I (4.3826397E-03.3.44241225-03) HZPIV I (1.9288890E-03a1.5457852E-03) CHECK 14 I (1 2800620E-03.0 0000000E+00) 14 I (7.5656187E-04o0.0000000E+00> i4det1 I (1.ossze¢os—os.o.00000005300) CHECK 15 I (2.2208611E-O4.2 6291382E-04) ’5 I (1.2245527E-04.2.1099522E-04) 'Sdetl I (1 4313067E~04.2.03183785-04) = 9 9999998E’03 CHECK 16 I (3.6448710E-05.2.6391298E-04) 16 I (9.2996797E-Obo4.2994034E-05) zodetl I (5.9150848EIO6a4.8653204E-05) "HOO if)... 0 n» d CHECK 17 I {-5.436626.0.0000000E+00) CHECK 18 I {-0.5183365.-0.6392409) CHECK 19 I 1-4.7151849E-04.—9.4306704E-03) 17 I (~4.466591o0.0000000E+00) 18 I (-0.3241602o-0.4922062) 19 I (-2.1155991E-04o-5.3360919E-04) _HscboosDUAe;IENINCJCK.LOG.1 111 I (-388.0707,0 0000000E+001 112 I (-674.0468.0 0000000E300) 113 I (-0.6314969.C 0000000E300) 114 I (-80.43964.0 0000000E*00) 115 I (-0.2915253.-6.7722343E-02) 116 I (-7.577801.-8.108868) 117 I (10072.33.0 0000000E+00) 118 I (469.3852o892.2405) 119 I (-103.7464.-261.4523) s I 1.00000005-03 CHECK 110 I (7.6385157E-O7.2.8371851E-06) 130 I (5.7549897E-O7.4.04321748-06) xFOR-F-ENDDURREA. end-o3-File during read unit -4 File SYS‘INPUT:.5 user PC 000037E2 —RH$-E-EOF. end of file detected ZTRACE-F-TRACEBACK. symbolic stack dump 3ollows module name routine name lane 3.} pc oooocooa ooooarea ooooacao CHECK191NTEGRAL CHECK191NTECRALS 477 gg°°§716 EHING Job termxnated at 1-JUL-19Ba 19:56'00.85 00;FE2 Accountxng Information' BUIIEFQG I/O count: 68 PQIR martin S Direct.1/0 covnt 58 p2.. p.9. 621.9:i:1392 529 Page faults. 539 Haunted valum.,. ' 7B7 Charged CPU time- 0 00-10.31.50 Elapsed txmet ' 0 0 OO:45:41_. 237 _HSCOOOIDUAS'EENINGJCK.LDG;1 CHECK I7 I (—5.436626.0.0000000E+00) SI 9 9999998E-03 CHECK 18 I (-O.5183365.-O.6392409) s: 9.9999998E-03 CHECK I9 I (~4.7151849E-O4.-2.4306704E-03) 27 I (~4.466591.0 00000008300) 15 I t-O.3241602,-O.4922062) 1° I (-2.1155991E-04.-5.3360919E-O4) SI 5 0000002E-04 CHECK 11 I <-387.2682.0.0000000E+00) EI 5 0000002E-04 ' CHECK 12 I (-674.6837.0.0000000E+00) sI 5 OOOOOOZE-O4 CHECK 113 I {-0.3193493o0.0000000E+00) E I 5.0000002E-04 CHECK 114 I {-70.59887.0.0000000E300) sI 5 OOOOOOZE-04 CHECK 115 I (-0.5000000.-0.5654656) S I 5.0000002E-04 116 I (-8.238111.-12.45711) (-388.0707.0.0000000E300) n I m n x 111 112 I (-674.0468.0.00000005300) 113 I (-O.6314969.0.0000000E300) 114 I (-80.43964.0.0000000E300) , 115 I .(-0 2915253.-6.77Z234BE-02) 116 I (-7.577801:-8.108868) SI 9.9999998E-03 CHECK 117 I (23191.27.O.OOOOOOOE3OO) SI 9.9999998E-03 CHECK 118 I (1225.885.1556.307) sI 9.9999998E-03 CHECK 119 I (1.5155446E-OZ-2.4578951E-02) 117 I (10072.33.0.0000000E300> 118 I (469.3852oe92.2405) 119 I (-103.7464.3261.4523) s I 9.9999998E-03 CHECK 110 I (1.0828019E-06.3.0718329E-06) 110 I (5.7549897E-O7;4.0432174E-06) xFDR-F-ENDDURREA. end-of—File during read unit -4 file SYS!1NPUT:.5 user PC 00004474 ~PHS-E-EOF. end 03 File detected kTRACE-F-TRACEBACK. symbolic stack dump 3ollowg module name routine name 11“. Tel PC OOOOCCDé OOOOCBEB 00009860 CHECK191NTEGRAL CHECK191NTEGRALS 646 30009313 EWING Job terminated at 4-JUL-19BB 11:08:05.74 00°3A74 Accounting information: - a - _. Buffered 1/0 count' 72 Peak workin - Direct 1/0 count; 69 Peak Page 1:1:.:1:1?.: 535 Page faults: 539 Haunted VOIUm.‘- I. 787 Charged CPU time: 0 01:28:07.84 ‘ Elapsed time: 0 01'39‘22 238 CHECK 17 I (-5 436626a0.0000000E+OO) SI 9.9999998E-03 CHECK 18 I (-0.5183365.-O.6392409) SI 9.9999998E-03 CHECK 19 I (-4.6512054E-04.-2.4429935E-03) 17 I (-4.466591.0.0000000E+00) 18 I (-0.3241602:-0.4922062) 19 I (-2.1155991E-04.-5.3360919E-04) 111 I (-388.0707.0.0000000E300) SI 9.9999998E-03 CHECK 11 I (~487.2787.0.0000000E300) 112 I (-674.046810.0000000E300) SI 4.9999999E-03 CHECK 12 I (~753.0253.0.0000000E300) 113 I (-0.6314969.0.0000000E+00I S: 9.9999998EI03 CHECK 113 I (-1.124600.0.0000000E*00) 114 I (-80.43964.0.0000000E300) S I 9.9999998E-03 CHECK 114 I (-327.2178.0.0000000E300) 115 I {-0.29152531-6.7722343E‘02) :I 9.9999998E-03 CHECK 115 I (-0.2977193.-6.8340585E-02) 116 I (-7.577801o-8.108868) S I 9.9999998E-03 CHECK 116 I (-12.40340o-13.92181) SI 4.9999999E-03 CHECK 117 I (21520.46.0.0000000E+00) S. 4.9999999E-03 CHECK 118 I (967.8455o1364.273) s- 3.99999995-03 CHECK 119 - <1.6154986E-02.1.6571850E-02> 117 I (19075.81.0.00000005*00) 118 I (749.0870.1194.346) 119 I (1.3806876E-02.8.2‘38448E-03) s - 9.9999998E-03 CHECK 110 - (1.0650439E-06.3.07624605-06) 110 I (5.7549897E-07.4.0432174E-06) ZPOR-F-ENDDURREA. end-of-file during read unit -4 Qile SYS‘INPUT:.5 user PC 00004548 -RHS-E-EOF. end of file detected xTRACE-F-TRACEBACK. symbolic stack dump follows 1 PC module name routine name line re OOOOCEDé OOOOCDEB 00009A60 00009516 CHECK19INTEGRAL CHECK191NTEGRALS . 657 00 00003848 suxuo Job terminated at 5-NDV-i988 16.14.22. . Ac t‘ information: ' Bu::::e:n1/0 count: 67 Peak working set size. 536 Direct I/o count: 54 Peak page_311e Size: 837 Page faults- 539 Hounted golumes: 0 . ' 0 00:01:38 80 Elapsed time: 0 00 01:49. Charged CPU time: 239 CHECK 17 I (-5.436626.0 0000000§+00) SI 9.9999998E-03 CHECK IS I (-0.5183365.-O.6392409) SI 9.9999998E-03 CHECK 19 I (-4.6512054E-04.-2.4429935E-03) 17 I (-4.406591.0.0000000E+OO> 18 I (-O.3241502.-O.4922002) 19 I (~2.1155991E-O4.-5.3300919E-04) 111 I (—388.0707.0.0000000E+001 SI 9.99?999BE-03 CHECK 11 I {-487.2787.0.0000000E+00) 112 I (-674.0468.0.0000000EIOO) SI 4.9999999E-03 CHECK 12 I (-753.0253.0.0000000E+OO) 113 I (-0.0314969.0.0000000E+OO) SI 9.9999998E-03 CHECK 113 I (-1.124600.0.0000000E+OO) 114 I (-80.439b4.0.0000000E+OO> S I 9.9999998E-03 CHECK 114 I (-327.2178.0.0000000E+OO) 115 I {-0.2915253.-6.7722343E-02) SI 9.9999898E-03 CHECK 115 = (-O.2977193.-6.8340585E-02) 116 I (-7.577801.-8.108868) s - . 9.99999995—03 CHECK 116 I {-12.40340.-13.92181) SI 4.9999999E-03 CHECK 117 I (21520.46.0.0000000E+OO> SI 4.99999?9E-03 CHECK 118 I (967.8455.1364.273) s- 4.99999995-03 CHECK I19 I (1.6154986E-02.1.6571850E-02) 117 I (19075.81.0.0000000E+OO) 118 I (749.0870.1194.3401 119 I (1.3806B76E-02.B.243844BE-03) S I 9.9999998E-03 CHECK 110 I (1.0650439E-06.3.0762460E-06) 110 I (5.7549897E-07.4.0432174E-06) ZFOR-F-ENDDURREA. end-of—file during read unit -4 file SYSSINPUT:.; user PC 00004548 -RHS-E-EOF. end of file detected ZTRACE-F-TRACEBACK. Sumbolic Stack dump Follows module name routine name line 657 O CHECK191NTECRALS CHECK1.INTEGRAL s-NDV’lqea 15:14:22-00 EHINC Job terminated at Accounting information: Buffered 1/0 count: 67 Direct 1/0 count: 54 Page taultS: 53? Charged CPU time: 0 00:01:38.80 rel PC 0000CE06 OOOOCDEB 00009A60 00009516 00003348 240 ,ISCOOCSDUAa-tsuruoicx LOG:2 .IECV :7 I (-5 430020 0. OOOOOOOEIOC) SI 9 °°999§8E~03 CHECP 18 I {-0.5183305.-0.6392409) s: 8 89999985-03 CHECK 1° I {-4 71518495-04.-2u¢300704E-03) 1‘ I --4.400591.O.0000000EIOO) I 1-0.3241002,-0.4922062) i-2.11558915-0Ir-5u3360919E-04) I (~388 0707.0.0000000E+00> 9 99998885-03 Ct. '1t- I - (P48772792: 0 0000000900,- I 1-674 0468,0.0000000E+OO) 4.9998999E-03 CHECK 12 I 1—753m6212.0-00690605+88+— I13 I (-O.6314969.0.00000005+OO) SI 9 9899998E- 03 “HECV 113- --‘.-t 1434596. W9 .14 = (-80 43964 O OOOOOOOEIOO) 5 I 9.9999998E-03 .: 'CHECK 114 I <-327v+87ir8r8800008€+009- .. I: I (-0.2915253.-b.7722343E-02) L. sa 9 9999998E-03 m-b-HECK’ '1 :5 I “-0. 29861-89.~77-602097¢E-629 - 18 I '-7 577801.-8.108868) 30 I 9 a999998E-03 3:‘“€HE€K—ilo'I“"1I12.403*2r-13r927819' ;. SI 5.0000002E-04 .. CHECK 117 I (19989.04.0.0000000E¢00) —-SI"-9.-°99999BE-08—"III .. CHECK 118 I (1225 885.1556.307) SI 9 9999998E'03 -—eHECK-+i9-I-—+i:—5r&5§‘65—6292~45789fiiE-621 3: 117 I (18432.83 0.0000000EIOO) as 118 I (697.3430.1197.104) q-——++9-—m+-e~909+952£—02v+~4¢eaterE—ee+— z, a I 9 99999985-03 .. CHECK 110 I (1.0828019E-Ob.3.0718329E-06) ~-1i—O -.-—(.5 #W‘FPE-OH.0432-17IE-06+ - ZFDR-F-ENDDURREA. end-oG-file during read - unit -4 file SYS‘INPUT:.3 'I"—~vser-PC'6990I45t'I'II ..... ~9HS-E-EOF. end of file detected 27RACE-E-TRACEBACK. symbolic stack dump Follows ..a n g" I -- lec'em rod-co ..a " a; .‘E " O f O U. 0.0 -_- .-. .-—- (- L.’ .? "module”name - ~ rootine name - ~- -- v-~ - itne rel PC :3 ooooccoe .. - --« --- --- -I-—--——-———-~—- --I--«8000C859 00009860 ,_ 00009316 ;. CHECK191NTEGRAL CHECK191N¥EORALS----~ ---~ - -----6‘¥-~--- 00003fi£1 ' EHINC Job terminated at 8-JUL-1988 20:08:20.36 - Accountrng rn+ormatt0n Bu‘fered 1/0 count 68 Peak working Set Size: 535 Direct 1/0 count; :9 Peat page File Size: 787 §‘---the Tovitet ‘59¢—————-Hoon+ed-vo+vmet< <% Charged CPU time. 0 00:22:52.56 ElapSed tine: 0 00:32:51. 0 Appendix U FORTRAN Output Sample Results 241 e‘_ _‘h‘ ' -" . 47 47 4 4 -u -n 4 4 47 -n 4 4 47 -u 4 4 4 4 47 -n 4 ~27 ~27 ~17 ~17 ~7 ~7 -u 47 ~17 ~17 ~7 ~27 ~27 ~17 ~7 ~7 ~37 ~37 ~27 ~27 ~17 ~7 ~7 ~27 ~27 ~17 ~17 ~7 ~7 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 ~27. ~27. 28 .28 .28 ~7. .28 .28 .28 -7. .28 .28 .28 .28 ~17. .28 .28 .28 .28 .28 .28 .28 ~17. 28 28 28 .28 .28 .28 .28 .28 .28 .28 .28 ~10. ~10. ~10. ~10. ~20. ~20. ~20. ~20. ~30. ~30. ~30. ~30. ~40. ~40. ~40. ~40. ~50. ~50. ~10. ~10. ~10. ~10. ~20. ~20. ~20. ~20. ~20. ~20. ~30. ~30. ~30. ~30. ~30. ~30. ~40. ~40. ~40. ~40. ~10. ~10. ~10. ~10. ~10. ~10. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~30. ~30. ~30. ~30. ~30. ~30. 88888888888888888888888888888888888888888888888888888 ~40.00 ~40.00 ~50.00 ~50.00 ~30.00 ~30.00 ~40.00 ~40.00 ~20.00 ~20.00 ~30.00 ~30.00 ~10.00 ~10.00 ~20.00 ~20.00 ~10.00 ~10.00 ~40.00 ~40.00 -50.00 ~50.00 ~20.00 ~20.00 ~30.00 ~30.00 ~40.00 ~40.00 ~10.00 ~10.00 ~20.00 ~20.00 ~30.00 ~30.00 ~10.00 ~10.00 ~20.00 ~20.00 ~30.00 ~30.00 ~40.00 ~40.00 ~50.00 ~50.00 ~10.00 ~10.00 ~20.00 ~20.00 ~30.00 ~30.00 ~40.00 ~40.00 ~10.00 ~10.00 ~20.00 ~20.00 ~30.00 ~30.00 24 ~10.00 ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10.00 ~10.00 ~10.00 ~10.00 ~10.00 8888888888888888888888888888888888888888888888888888 2 ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30.00 ~30.00 ~30.00 8888888888888888888888888888888888888888888888888888888 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 HHHHHHHHHHHHHHHHHHHOHHHHHHHHHHHHHHHHHHOHHHHHHOHHHHHHHHOHCH .0001823 .9995154 .0004421 .9997410 .0012978 .0009155 .0004318 .0001115 .0014023 .0016459 .0006382 .0005274 .9998592 .0003670 .0004268 .0004545 .0004847 .0004878 .0000499 .9999858 .0001203 .0000110 .0001280 .0001181 .0000650 .0000538 .0000736 .0000571 .0002115 .0002140 .0000709 .0000695 .0000588 .0000566 .0000805 .0000807 .0000527 .0000530 .9999997 .0000006 .0000060 .0000060 .0000273 .0000241 .0000234 .0000242 .0000116 .0000124 .0000155 .0000159 .0000300 .0000296 .0000151 .0000153 .0000153 .0000157 .0000250 .0000250 ~47. ~47. ~37. ~37. ~27. ~27. ~17. ~17. ~7. 47 47 47 47 47 47 4. 4. 47 47 47 47 47 47 47 47 4. -7. 47 47 47 47 47 47 47 47 ~7. ~17. ~17. -7. ~7. ~17. ~17. ~7. ~7. ~7. ~7. ~37. ~37. ~27. ~27. ~17. ~17. ~37. ~37. ~27. ~27. ~10. ~10 ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~20. ~20. ~20. ~20. ~20. ~20. ~30. ~30. ~30. ~30. ~40. ~40. ~40. ~40. ~50. ~50. ~10. ~10. ~10. ~10. ~10. ~10. ~20. ~20. ~20. ~20. 8888888888888888888888888888888888888888888888888888888888 I Hi. 00 8888888888888888888888888888888888888888888888888888888888 ~40 -w ~30. ~40. ~40. ~50. ~50. ~10. ~10. ~20. ~20. ~30. ~30. ~40. ~10. ~10. ~20. ~20. ~30. ~30. ~40. ~40. ~50. ~50. ~30. ~30. ~40. ~20. ~20. ~30. ~30. ~40. ~40. ~20. ~20. ~30. ~30. ~10. ~10. ~20. ~20. ~10. ~10. ~20. ~20. ~30. ~30. ~40. ~40. ~10. ~10. ~20. ~20. 243 ~10.00 ~40. ~10.00 ~40. ~10.00 ~40. ~10.00 ~40. ~10.00 ~40. ~10.00 ~40. ~10.00 ~40. ~10.00 ~40. ~10.00 ~40. ~10.00 ~40. ~10.00 ~40. ~10.00 ~40. ~10.00 ~40. ~10.00 ~40. ~10.00 ~40. ~10.00 ~40. ~10.00 ~40. ~10.00 ~40. ~10.00 ~50. ~10.00 ~50. ~10.00 ~50. ~10.00 ~50. ~10.00 ~50. ~10.00 ~50. ~10.00 ~50. ~10.00 ~50. ~10.00 ~50. ~10.00 ~50. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~10. ~20.00 ~20. ~20.00 ~20. ~20.00 ~20. ~20.00 ~20. ~20.00 ~20. ~20.00 ~20. ~20.00 ~20. ~20.00 ~20. ~20.00 ~20. 00 ~20. ~20. 8888888888888888888888888888888888888888888888888888888888 ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~7. ~7. ~7. ~7. ~7. ~7. ~7. ~7. ~7. ~7. ~37. ~37. ~37. ~37. ~37. ~37. ~37. ~37. ~37. ~37. ~37. ~37. ~37. ~37. ~37. ~37. ~37. ~37. ~37. ~37. ~27. ~27. ~27. ~27. ~27. ~27. ~27. ~27. ~27. ~27. HHHHOHHHHHHHHHHHHHHHOHHHHHOHHHOHOHOHOHHHHHHHHHOOOHOHOHHOHO .9999987 .0000116 .9999945 .0000080 .0000180 .9999999 .0001134 .9999255 .0003524 .9998058 .9999896 .9999975 .0000117 .0000210 .0000646 .0000260 .0001945 .0000782 .0000559 .0000392 .0004574 .9997701 .0004416 .9995570 .0005606 .9993567 .0008919 .9989069 .0004668 .0002506 .0002546 .9998090 .0003794 .0006411 .0002084 .0000930 .0001754 .9999792 .0002677 .0003685 .0003191 .0002532 .0000964 .0002494 .0001615 .0001963 .0001832 .0002077 .0000391 .0000329 .0000377 .0000068 .0000615 .9999869 .0000486 .0000494 .0000381 .0000353 ~17. ~17. ~7. ~7. ~27. ~27. ~17. ~17. ~7. ~7. ~17. ~17. ~7. -7. ~47. ~47. ~37. ~37. ~27. ~27. ~17. ~17. ~37. ~37. ~27. ~27. ~17. ~17. ~7. -7! ~27. ~27. ~17. ~17. ~7. ~7. ~47. ~47. ~37. ~37. ~27. ~27. ~17. ~17. ~37. ~37. ~27. ~27. ~17. ~17. -7. ~7. ~37. ~37. ~27. ~27. ~27. ~27. 888888888888888888888888888888882888888288888888888888888 888882882888888888288888888888888888888888888888888888882 ~27. ~27. ~27. ~27. ~27. ~27. ~27. ~27. ~27. ~27. ~27. -27. ~27. ~27. ~17. ~17. ~17. ~17. ~17. HHOHHHOHOHOHHHOHOHOHOHHHHHOCOHHHHHHOOHOHHHOOHHHHHHHHHHHHHH .0000433 .0000330 .0000776 .0000544 .0000284 .0000288 .0000317 .0000308 .0000434 .0000398 .0000242 .0000242 .0000283 .0000281 .9999931 .9999921 .0000050 .0000061 .0000238 .9999933 .0001128 .9998851 .9999999 .0000011 .0000169 .0000159 .0000610 .0000013 .0001838 .9999730 .9999969 .9999995 .0000256 .0000248 .0000890 .0000483 .0000602 .9999943 .0003091 .9997653 .0003698 .9996312 .0005966 .9995495 .0001339 .0000833 .0001533 .9998985 .0002170 .9997231 .0003839 .9994360 .0001581 .0001721 .0001353 .9998673 .0000621 .0000722 ~17. ~17. ~27. ~27. ~17. ~17. ~7. ~7. ~17. ~17. ~7. ~7. ~7. ~7. ~47. ~47. ~37. ~37. ~27. ~27. ~37. ~37. ~27. ~27. ~17. ~17. ~27. ~27. ~17. ~17. ~7. ~7. ~17. ~17. ~7. -7. ~47. ~47. ~37. ~37. ~27. ~27. ~37. ~37. ~27. ~27. ~17. ~17. ~27. ~27. ~17. ~17. ~7. ~7. ~47. ~47. ~37. ~37. ~20. ~20. ~30. ~30. ~30. ~30. ~30. ~30. ~40. ~40. ~40. ~40. ~50. ~50. ~10. ~10. ~10. ~10. ~10. ~10. ~20. ~20. ~20. ~20. ~20. ~20. ~30. ~30. ~30. ~30. ~30. ~30. ~40. ~40. ~40. ~40. ~10. ~10. ~10. ~10. ~10. ~10. ~20. ~20. ~20. ~20. ~20. ~20. ~30. ~30. ~30. ~30. ~30. ~30. ~10. ~10. ~10. ~10. 8888888888888888888888888888888888888888888888888 ~30. ~30. ~10. ~10. ~20. ~20. ~30. ~30. ~10. ~10. ~20. ~20. ~10. ~10. ~10. ~10. ~20. ~20. ~30. ~30. ~10. ~10. ~20. ~20. ~30. ~30. ~10. ~10. ~20. ~20. ~30. ~30. ~10. ~10. ~20. ~20. ~10. ~10. ~20. ~20. ~30. ~30. ~10. ~10. ~20. ~20. ~30. ~30. ~10. ~10. ~20. ~20. ~30. ~30. ~10. ~10. ~20. ~20. 8888888888888888888888888888888888888888888888888888888888 I w 0 ~30. llllllllllil||lUllllllltllllili wwwwwwwwwwwwwwwwwwwwwwwmc.0000: OOOOOOOOOOOOOOOOOOO000000008888 888888888888888888888888888888888888888288888888888 ~30. II 0000 00 ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. -30_ ~30. ~30. ~30. ~30. ~30. ~30. ~40. ~40. ~40. ~40. 88888 245 .00 ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~20. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~30. ~10. ~10. ~10. ~10. O O 8888888888888888888888888888888888888888888888888888888888 ~27. ~27. ~27. ~27. ~27. ~27. ~27. ~27. ~27. ~27. ~27. ~27. ~27. ~27. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~17. ~7. ~7. ~7. ~7. -7. ~7. ~7. -7. ~7. ~7. -7. ~7. ~7. ~7. ~7. ~7. ~7. ~7. ~17. ~17. ~17. ~17. OHHOOHOHHHOHOHHHOHOHOHHHHHHHHHHHOHHHHHOHHHHHHHHHHHHHHHHHOH .0001293 .9999323 .0000063 .0002060 .0001479 .0001553 .0002267 .0001467 .0000354 .0001311 .0000887 .0000920 .0000826 .0001055 .0000076 .0000077 .0000262 .0000091 .0000528 .9999568 .0000110 .0000110 .0000341 .0000228 .0000964 .9999866 .0000069 .0000068 .0000361 .0000263 .0001028 .0000306 .0000091 .0000087 .0000402 .0000347 .0000592 .9999726 .0002339 .9997764 .0002892 .9997909 .0000761 .0000086 .0001488 .9998469 .0003250 .9996486 .0000329 .0000187 .0000623 .9998929 .0001607 .9997097 .9999943 .0000066 .0000588 .9999164 ~37 ~37 ~27 ~27 ~27 ~17 ~17 ~17 ~7 4 4 ~47 ~37 ~37 ~37 ~fl -m -v -N -u -n -u 4 4 47 47 -m -w -m 47 47 47 4 4 .28 .28 .28 .28 .28 ~27. 28 .28 .28 ~17. 28 .28 .28 ~7. .28 .28 ~47. .28 .28 ~37. .28 .28 ~27. .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28 28 ~20. ~20. ~20. ~20. ~30. ~30. ~30. ~30. ~40. ~40. ~40. ~40. ~50. ~50. ~10. ~10. ~10. ~10. ~20. ~20. ~20. ~20. ~30. ~30. ~30. ~30. ~40. ~40. II #5 OO 888888888888888888888888888888888888888 a 0 I o I u I 010500an 0000000 2 ~10. ~10. ~20. ~20. ~10. ~10. ! N O 8888888888888888888888888888888888 ~20. ~10. ~10. I N 0 ~20. ~10. ~10. ~10. ~10. ~20. ~20. ~10. ~10. ~20. ~20. ~10. ~10. ~20. ~20. ~10. ~10. ~20. ~20. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. ~10. N ~40. ~40. ~40. ~40. ~40. ~40. 8888888888888888888888888888888888888 8888888888888888888888888888888 ~17 ~17 ~17 ~17 ~17 ~17 ~17 ~17 ~17 ~17 ~7 ~7 4 4 4 4 4 4 4 ~7 ~7 4 4 4 4 4 4 .28 ~17. .28 ~17. .28 .28 .28 .28 .28 .28 ~17. .28 ~17. .28 .28 .28 ~7. .28 .28 .28 .28 .28 ~7. .28 ~7. ~7. 28 28 28 28 .28 .28 ~7. .28 .28 ~7. 28 28 .28 .28 .28 .28 ~7. .28 ~7. .28 28 CDCDFICDP‘CJF‘CDF‘CDCDF‘C)CDCDF‘CDFICDFICDP‘CDFI()hfihlk‘hlhlh‘hlhihfih‘hfiCDFJPJ<3 .9999630 .0000271 .0000608 .9999344 .0000068 .0000540 .0001011 .0000043 .0000051 .0000310 .0000550 .0000092 .0000192 .0000259 .0000458 .9999602 .0001544 .9998147 .0000379 .9999750 .0001663 .9998199 .0000105 .9999717 .0001074 .9998375 .9999896 .9999704 .0000352 .9998696 .9999591 .0000567 .9999549 .0000485 .9999517 .0000306 .9999638 .0000210 .9999527 .9999833 Appendix V Choosing the Output Data Display Points. Given that the allowable output data. points lie on a triangular surface: ~P3P4 -P4P5 —P3P5 2 where each corner of the triangles intersects the. ans at 3., Each edge of the triangle is obviously of length (fl) (5%) To find the angle between the plane of the triangle and any of the three co- ordinate planes. for example the x-y plane: The normal to the triangle is N1 =: i + j + k The normal to the x-y plane is N2 = k N1 'N2 =1=IN1HN2|c030 = (1)(\/8)cosfi cosfl—-1—- sinfl-[g '75 75 So if p measures the distance ‘up‘ the face of the triangle from the base line in the x-y plane, p is related to the 'z' co—ordinate. that is the value. of —P3P4. by: \f2- —P3P4 :: —— P J; 247 248 433134 -P4P5 ~P3P5 Viewing the triangle straight on and selecting 15 symmetrically spaced rep- resentative points. Allow the internal distance between any two points to be one unit, with an additional 3 unit to the corner. as shown. -P3P4 4 units 249 Then 5 1/2 units equals the edge length of (72) (5%“) or lunitz (121.) (,5) (57372;) The width of each border is i 78 units, and the vertical distance between rows is % 78 units, so if N = 0, 1, 2, 3, 4 indicates the horizontal row number, then the distance p from the lower edge to that row is given by: p = [G 73) + N G- 7§)] [length of one unit] 2 _(_)(E;.,,(,.., and since \/_ 2 —P3P4= — p 4 then 2 E gm 1 r (a) (——. >) (2 +1) and the values of —P3P4 to run the FORTRAN program at to generate these display points are given by allowing N to range through its values 0.1.2.3.4. In a similar fashion the values of the other axis, -P3P5 and —P4P5 are gen- ... _2_ E3. .1. ’P3P”’(11)(2’)(2+L) 2 E3", 1 and the set N,L,M locates the display point. The set of three values for the other triangle, —P1P3, —P1P4. —P1P5 are gen- erated in an identical fashion. _ l .1. 3 E_gm —[(4\/§)+N(27§)] [1172’ ] erated, Appendix W Evaluation of a Preliminary Diagram Section 1 Introduction Consider the diagram of a single, massive, incoming particle of mass Ml > M“ which decays to M; and an outgoing ’quark‘. Assign Spin zero to all external particles. Allow the outgoing ‘quark’ to have mass, MS. Section 2 The Diagrams This four point lepton scattering diagram will serve to illustrate the notation used for both diagrams in the problem. P3 / P3 + k, M. / \k“ P4 / / P1, Ml __f / m P5. MS 7 / } The linear momenta are labelled clockwise P1....P5 beginning with the GLUON. Icy is defined as the variable LOOP momenta and for conveinence: m:k-(P4+P5) Four vector dot products are indicated by the contiguous writing of two four vectors, for example, P4P5 indicates the dot product of P:1_with P5. The three part of a four vector is indicated by a bar: e.g. P4 is the space part of P4. 250 251 The anti-lepton scattering diagram is: P3 / . P3 + k, M. / \k~ / P4 / P1, Ml 7-6 / / l 1]] P5, M5 1 Section 3 Preparing the Calculation The Cutowslry2 rule for an on—shell condition gives: 1 1 n o o ., . ,, ~2.T~6k'6k—P4 P. - M' (k3)[(k-(P4+P5))3+Mg] : 2( T?) ( ) ([ ( + 5)] + 5) With this, the amplitude of the sample diagram of the previous section is formed by the Feynman rules of Appendix D: Let A! = 5* I where S collects all the multiplicative scale factors: 1 (270" S = g (27:7)? e2 and I is the LOOP integral of the above diagram: I _ d4]: 6(k2) 5w: — P4 — P5)2 + Mg] (1: + P4). 9"” (P4 + P5 — k + P5). "/ [(1. — P4P] [(k + P3)? + M; — mu.) Sub-Section 3.1 The flame of Reference 2 The first delta function will dictate that m2 = k0 . The second, 6([k — (P4 + P-5)]2 + 1115'). gives 1:?—2k-(P4+P5)+(P4+P5)'-’+M§=0 252 and with ’92 =3 P42 :: O and P52 = 4115? results in k - (P4+ P5) = P4P5 which assumes a. particularly simple form only in the rest frame of P3 and F5: ko(E4 + E5) = -P4P5 And, since also in this frame: (P4 + P5)2 = —(E4 + 13.5)? = 2(P4P5) — M: from the above result (P4P5)2 ———:—- = 2(P4P5) — 11153 ko~ then 9 v) (P4P5)' ko" - _ ‘7 Mg — 2(P4P5) establishing that in this frame k0 is CONSTANT. The enormous simplification gained when the magnitude of 8 remains constant dictates this rest frame of P71 + P5 to be the frame of reference for the lepton diagram (and similarly P_3 + P5 for the anti-lepton). Note that in this frame the energy, Ex. of any other particle, PX. of the problem is also simply given: . P4P5 = PXPd + P.\'P5 k0 PX ~ (P4 + P5) = -E,(E4 + E5) = E, or ., k0" . . E? = —— .\ P4 PA P5 253 Sub-Section 3.2 The SPIN Factor The SPIN factor in the above integral can be evaluated to: (k + P4)” 9“” (P4 + P5 — 15+ P5). 2(P5 ~ 1:) + 2(P4P5) : 2P5 - ‘ — 2(ko)E5 + 2(P4P5) then using the above equivalent for (k0)E5 =2P5-F—2 k0? _ .3 1' P4P5(P4P5 A15)+2(P4P-)) Sub-Section 3.3 Removal of the Delta functions Using (141: = d [kl dko k02 ko The delta functions may be simply removed by integrating over (1' [kl and dko provided the J ACOBlAN between the set ( [1:]. kc) and the two arguments of the delta functions is included. This Jacobian is the same as for the larger problem. It is calculated in the chosen frame of reference in Appendix F and evaluates to: —1 J:——— 4(P4P5) The Jacobian is now absorbed into the scale factor S: _ 1 ,2 2 1 —1 S" 5 (27”) 6 [(2.44] 4(P4P5) 1 5=;_____ 1 137 (2a) 4(P4P5) Thus the sample LOOP integral reduces to being over Mgr/Qt. k0? may be absorbed into the scale factor: 1 k0? , 1 >=—————- 137(27)4(P~1P5) 254 leaving the integral over the directions of 1:: ___ I191 (k + P4)” g“" (P4 + P5 -— k + P5).. [Ur ~ P4)'-’] [(k + P3)? + 113 - {I‘ll-1:] with the understanding that # (i) the frame of reference is P3 + 5 == 0 (ii) )1)? = 1.02 (P4195)? one I) ("1) L0 " big-2(P4P5) (iv) tow.) = P3; (PXP4 + PXP5) This applies to both LOOP integrals in the problem. Sub-Section 3.4 The Divergence Regulation In examining the above LOOP integral. the first denominator factor. arising )agator. produces a singularity when the direction of from the photon line pro; It becomes co-linear with P4, resulting in a. logritlnnically infinite value for the integral. This infinity does not occur in Nature - the process is finite — and that is reflected in the calculation by the coefiicent of the logritlnnically infinite term becoming zero when the LEPTON scattering and the ANTI-LEPTON. scattering LOOP diagrams are summed. To allow the doing of the diagrams separately, a small photon mass is added to regularize the infinity. When the diagrams are added it is observed that the coefficent of the log of this ficticous photon mass becomes identically zero. producing no ill effects when the photon mass is then allowed to go to zero and its log to infinity. The appearance of the zero coefficent does in fact serve as a Check that the various parts of the calculation are fitting together correctly. I— fink (k-i-P4lug'w (P4+P5—k+P5)"/‘ '- [(1.2 .— P4)2 + 113] [(i' + P312 +‘l13’ir‘m 255 Section 4 The Calculation I /' th [2(P5 - k) + 2(P4P5)] (-—2P4 - k + M?) (2P3 - k + M? — iI‘M;) In a co-ordinate system with P4___ in the +2 direction and using the above ex- pansion of the SPIN factor with P5: ——P4: _ / dn.[— —2|P5|kocosa—2 ,;;,:5,(P4P5— Mg)+2(P4P5)] " (—2ko-cos€ + 2ko- + Mg.) (2P3 - k + M} —i1‘M;) ko ( a. 0050 + b.) (cc056+ d.) (2P3-k+ Mg"— {I‘ll/1;) where __ a. = —2 [PSI kc and since |_5| = (7| : E4 = 1:0 a : —2ko2 1‘02 (2 = —-2 P4P5— M 2 P4P (P40P5)( 52)_,_ ( 5) ('2 —2k02 = a d=2k02+Mz.=—c+M$ I—' 119;.(“7 [cc059]+ +/ (19,,(b—L d) _ ) 2P3 k+M.-—i.I‘M. ) (ccos9+d)(2P3 k+1\1-—1FAI- (ccosfi+d)( I=Ia+Ib First solve Ia: ko( c cost? +d) =/ Q;- (cc059+ d) (2P3- L+M-—11‘I\I ) (2P3-k+M;—’—i1‘.\[:) noting 5%: 1. As this is integrated over all angles, the co—ordinate system may be switched to 256 P3 in the +2 direction. I =/+1 qu d(cos€) ° _1 2033ch c059 — 2(E3)ko + M} — irM; _ —21r ,0 (-4(E::ko+ Alf—11PM: ‘ 2(E3)ko g M2 — iI‘M I _ _ mp4? ,0 -—4 ,;(P3P4+ (P3P5)+ ’\I;-1'I‘M.. ° ko'—’(2P3P4 + 2P3P5) M- — iI‘M- Now to solve Ib. It remains in the original co—ordinate system of P4 in the +2 direction and taking P3 to be in the x-z plane. ad d9. I = b— —— b ( c )j (~2kozcosfi + 21:02 + 1113) (2P3=(ko)co:9 + 2P3,(ko)sin€ cow — 2(ko)E$+ ME “'1‘sz . a _ Usmg -; _ 1 (b d) (112,. — i (c c056 + d) (e c059 + f 51110 cosq’: + g) noting P3- Péfi— —-P',33% + E3 = 3%}? + E3 then 0 C : -—2k0' d: 21:02 +M2— - —c+ M2 e- — 2(ko)P3-- __ 2(P3P4) + 2(lco)E3—— = 2(P3P4) + ——-—-(P3P4 + P3P5) g = TEE—“0:11:31?“ P3P5) + M:—1'I‘M e? + f2 = (2(1201E313 = [32%— ———2—5(P3P4 + 193135)] then using ~t__i——:.-q’2:r7"q a >b>c 0 a+bcosd> (a- —b-)1/- 257 1 (11‘ 11> =(b—dl27111(.cx+d) ((63+f2)$2+2962:+g3—f2)1/3 Then transforming a: = or + d I : (b -— (0217/ . 9 o -c+d :1: (mx- + 11.1: +p)1/- where . m. = 62 + f2 n = 2(gec — dm.) p = dim — 2gedc + c2(g2 — f2) which is solved using / dz :1, 2m+nx+2p o zXl/z \/1-) g .1: X=mx3+nr+p p > 0 __(b-dm (gm/£5472)" , g—W)_, (35)] 1“ C(9+6) [log( (9+6)2 )+Og(g+\/e=’+f2 09 M; Now noting ., . g + e = 2(P3P4) + M; - zI‘M: = AI Z P using the symbol A! Z P for the Z particle proprogator MZP .—. 2(P3P4) + M3 — iI‘M: g + Me? + f2 = M3 - iI‘Mz 41202 o . _ 2 2 -_-.- - P3P4 + P3P5 + M; - If)”: g e + f P4P5( ) b - d —2ko-?(P4P.5 — Mg) + 211941195)2 +1 6 = 412021104195 ) _ -2(P4P5) [.102 258 gives 2 —4, P4P .3—'I-3 —4k°’ ' 13—' / ‘~’ ,6: kw; 5) 10g ((111, . my.) )+,Og P4P5(P3P4+P3I’5)+M; er; _ 10g 4ko (, o )MZP MZP~ I113 — MI; 1113 Combining Ia and lb, folding in the scale factor S = —’k———— and 02 137(27r)4(P4P5) ‘ ~ 2 _ 1941952 replacmg k0 — m . 1 AI = S I = S L, I M : ——— ' . * *i + bl 4,137) tunes —2 10 (ME—mm)? MZP g MZP? _( 2 + 1 1 -[,\,542(f:,};ilp5,,(P3P4+P3P5)+Mf—iI‘AL MZP 2(P3P4)+2(P3P5)) 0g IlIE—iFM: if? )l-1°(/‘PW ll MZP g [11.152-21P4P5HWH The anti-lepton scattering diagram produces the indentical result with P4 and P3 interchanged and an overall minus Sign to account for traversing the variable LOOP momentum k“ in the opposite direction when writing the lepton line TRACE. When the two diagrams are combined. the leading term, which is symmetrical in P3 and P4, vanishes, and the co-elficent of the log(1l--I.';’) term becomes zero. leaving: l . It/Ibou, = m tunes 2 1 1 ~5§L¥§£fi 0g Mg — 1.er —W%(P3P4 + P4P5) + 11.13 — $115)] 2 1 ... / 1 q . + (MZP + 2(P3P4) + 2(P4P5)> [0g ( M; ~1.1111: 2 _ lo <(P4P5)3[A[53 — 2(P3P5)]>] MZP g (10313.5)?[1152 — 2(P4P5)] First to examine the effects of Ill-'32 . the mass of the outgoing ‘quark‘. Re- membering that dot products in this metric are negative. it is clear from its 259 position in the factors that the matrix element obtains its greatest value when MS is zero ! W ith that replacement we have: 1 A10 =-———_— t. b th 4(13” 117265 _( 2 + 1 ,0 1+ 2(P3P4+ P3P5) MZP 2(P3P4 + P3P5) g M} — iI‘M: 2 1 2(P3P4 + P4P5) + (MZP + 2(P3P4+ P4P5l> i1°g<1+ M} —1'.1‘M: >i _ 2 _ ,0 r. as 1' — 0 shows that these terms will at most become unity. It is the final term that dominates: M _ 1 2 >10 (P4P5>] ”°""4(137) MZP g P3P5 Notice this term, (as well as the terms above) goes to zero when P3P5 = P4115, as it should, for in this case there is no distinguishing the lepton scattering di- agram from the anti-lepton one, and the two are subtracted. It becomes a. maximum when either P3P5 or P4P5 is zero. indicating one of the leptons is co—linear (assuming MS = 0) with the outgoing ‘quark‘ . Conservation of energy-momemtum dictates that: 11112 = (P3 + P4 + 135)2 : 2(P3P4 + P3P5 + P4P5) so that P3P5 and P4P5 must add to a constant: IlIl2 P3P5+ P4P5 : T — P3P4 P3P5 = [112—1: - P3P4] -— P4P5 _M— l (RIP-5) log .1113—21P3P4) 09 ' r = 21P-1P5) P3P‘) 1' A113—21P3P-1) 260 Thus lo ”I” ra hsa I L . .° ._ 2(P-1P5) , 9p3p5 g P 5 09(,_,,) vs. .1. “It-112. _ M1,_2,P3P4,, To realize the divergence does not contribute (due to the disappearance of phase space where it occurs), find the average between 0 and 1/2: L Average = 1/ f(;z:)d:1: L o 1 1,2, x d Average : 1—/—2— f0 0g(l———:r) :1 1/2 1/2 = 2 (/ log(;1:) dz —/ 109(1— 2:) d3) 0 o /10g(;r) dz = :1: 109(3) — 1' and using: and l‘Hopital‘s rule: 261 gives Average = 2 (log (3) - 1) Average = —4 so approximately, so an ‘average’ value of the matrix element is 1 1 4(137) MZP Mboth = (4) and since the matrix element for the same diagram without scattering (the BORN term) is just: 1 AIZP 3 then the RATIO of @7323?” becomes: AIB om : '1 4 4 ' RATIO = 1+ 2 (4(137)) + (4037)) so the scattering diagrams can expect to contribute on the order of 1.0 per cent. UNIV. LIBRQRIES f “Tittijfliul @78i5ii785