

SH1 094 401

686

PH D.



LIBRARY Michigan State University

This is to certify that the

dissertation entitled

FINAL STATE SCATTERING IN Z PRODUCTION

via THE QUARK-GLUON INTERACTION

presented by

THOMAS MITCHEL EWING

has been accepted towards fulfillment of the requirements for

_____PhD____degree in __PHYSICS__

Jernathen Bunglin Major professor

Date June 21, 1990

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.

DATE DUE	DATE DUE	DATE DUE	

MSU Is An Affirmative Action/Equal Opportunity Institution

Final State Scattering in Z Production via the Quark - Gluon Interaction

By

THOMAS MITCHEL EWING

A DISSERTATION

Presented to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSICS

ABSTRACT

lytical calculation of photon scattering between final state quark and a final e lepton in the process $q g \Rightarrow q \bar{q} q \Rightarrow Z^0 q \Rightarrow l^+ l^- q$. Result is found as tiot to the same process without final state scattering. Motivation for the ulation is as a first step towards calculating photon scattering between final eleptons and spectator quarks or debris particles, possibly predicting an irrable asymmetry in the Z^0 decay curve.

Dedication

thesis is dedicated to Jon Pumplin for the right suggestions.

ks to Lansing Community College, especially Claude Watson and Melanie s, for providing their computer for printing this manuscript.

TABLE OF CONTENTS

Chapter 1 - Statement of the Problem

HOM 1.1 General matorical	
tion 1.2Introduction to this Thesis 4	
tion 1.3Division of the problem into	
Allowable Helecity States 7	•
tion 1.4Notation to be used 9	į
(labelling of linear momenta,	
metric used, gamma matrices,	
the Epf function)	
tion 1.5Preparing the Integrals 1	3
(choosing the frame of reference,	
the JACOBIAN and integrating out	
the on-shell delta functions,	
divergence regulation)	
tion 1.6 Evaluating a Preliminary Diagram	6
Chapter 2 - The Calculation	
•	
tion 2.1 Introduction 18	3
ion 2.2 Calculating the BORN Term 19	,
(Spinor replacement,	
removal of Z^0 vertex $(A + B\gamma_5)$	
and strong coupling constant	
Polarisation vector replacement)	
ion 2.3 Calculating the LOOP Term 21	
(Spinor and Polarisation vector	
replacements,	
removal of Z^0 vertex $(A+B\gamma_5)$	
and strong coupling constant	
Expansion of k_{μ} ,	
reduction to 19 irreducible integrals)	
on 2.4 Calculating the RATIO 27	
(FORTRAN Program,	
Physically valid set of	
input paramters)	

Chapter 3 - The Result

Section 3.1 Introduction	30
Section 3.2 Choosing the Display Mode	30
Section 3.3 Presentation of Results	32
Section 3.4 Focus on Mz Peak	41
Section 3.5 Edge Activity	42
Section 3.6 Connecting with the Center of Mass Reference System	. 40
Section 3.7 Analysis of Results	. 44
Chapter 4 - Verification and Validation	
Section 4.1 Introduction	45
Section 4.2 Verification of $Epf(P1, P3, P4, P5)$	
Section 4.3 Verification of Spinor replacement	
Section 4.4 Verification of SCHOONSCHIP Born Term program	
Section 4.5 Verification of SCHOONSCHIP LOOP Term program	
TRACE calculation	46
Section 4.6 Verification of Divergence Regulation Coefficents	46
Section 4.7 Verification of 19 Integrals, analytic solutions	47
Chapter 5 - Conclusion	
ection 5.1 Introduction	49
ection 5.2 Conclusion	49
ection 5.3 Relation to other work	49
ection 5.4 Future Work	50

e main text is written to be read quickly without detail and is thus not agthy. The proofs and calculations are contained in a bulky set of Appenwhich are referenced in the text.

TABLE OF APPENDICIES

- dix A Allowable Helecity Combinations ndix B Gamma matrices, metrics, and the Dirac equation
- $\operatorname{dix} C \dots Expanding Epf(P1, P3, P4, P5)$ dix D Fevnman Rules
- dix E Ignoring the γ_5 in $A + B\gamma_5$.
- idix F Evaluating the Jacobian
- dix G Absolving the Quark Singularity
- dix H Spinor Replacement
- dix I SCHOONSCHIP program to calculate and verify the BORN
- dix J Polarization vector Replacement
- dix K SCHOONSCHIP program for the LOOP term
- dix L The Linear Expansion of k_{μ} dix M Base Integral reduction
- dix N Nineteen Irreducible Integrals , Solved Analytically
- dix O FORTRAN program to calculate the result
- dix P Ascertaining the Physical Range of Parameters dix Q Verification of Spinor replacement
- dix R Verification of SCHOONSCHIP LOOP program,
- TRACE calculation dix S Verification of Divergence Regulation co-efficent cancellation
- dix T Verification of 19 irreducible Integrals
- dix U FORTRAN Output Sample Results
- dix V Selecting Representative Points for displayed output
- dix W Evaluating a Preliminary Diagram

Sect

The artic four date The ics (mos sym the tors Witten tens determined the FN.

Reg

wi II in this sp

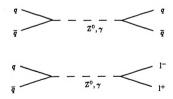
Chapter One Statement of the Problem

Section 1.1 ... General Introduction

The 1984 status of particle physics is summarised in the comprehensive review article of Eichten, Hinchliffe, Lane, and Quigg (EHLQ)¹. Of the traditional four forces, the gravitational force is largely unincorportated (though since that date more promise has evolved from the futher development of string theory). The theory of strong interactions rests comfortably in quantum chromodynamics (QCD), though the experiments are difficult and development is slow. The most remarkable success is the union of the weak and electromagnetic theories via the application of non-Abelian transformation invariance and spontaneous symmetry breaking, introducing the Higgs sector. As described in that article, the investigation of the Higgs sector will await the next generation of accelerators.

With present machines the 1983 verification of the Z^0 and W predicted masses constituted the first hallmark in the experimental resolution of the electro-weak theory. Following this, the second level of refinement will be experiments extending the precision of the theory, the most recent of these being the e^+e^- determination of the Z^0 mass and width at $SLAC^3$, and futher resolution at $FNAL^{11}$.

Regarding the production of Zo, the seroth order (Drell-Yan) processes are:



where its interference with the photon process is noted.

The analytic calculation of these amplitudes presents no difficulty and is given in EHLQ¹. Experimentally the measured invariant mass of the final state particles peaks at the Z⁰ mass, (and for the case of a quark anti-quark pair would appear as a two jet phenonon).

Wi cal Th

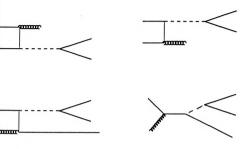
Ti pr di se th to be

to b

7

h the improvement in the experimental precision it is important to do the ulations to first and higher order in perturbation theory.

first order diagrams are:



se calculations are summarised in the workshop of Berger, et al.⁴. The esses, known as 2 particles in and 3 out, represent a degree upwards in the rulty of their analytic solutions. Futher, to forward the amplitudes to cross ons, the kinematics of phase space of 2 in and 3 out processes including oft gluon correction of the first two diagrams above is non-trival. Even so, d in the precision of knowing the Z^0 mass and width, the calculations have carried out and occupy a standard place in the literature.^{4,5,6}

articular current interest is great precision in the width of the of the \mathbb{Z}^0 , as reflects the number of quark and lepton flavors that exist. the EHLQ paper:

$$\Gamma_Z = rac{G_F M_Z^3 \sqrt{2}}{3\pi} \left[1 - 2 oldsymbol{x}_W + rac{8 oldsymbol{x}_W^2}{3}
ight] D$$

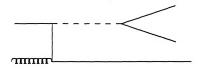
e D is the number of kinematically acessible quark and lepton doublets...."

are faith in first order experimental agreement, it must be held the prosmeasured are free from contamination by other processes that would be tectable in the measurement. For example, the first order contribution of $l^{+}l^{-}q$:

could b the fina

This we produce at SL?
The cally a fairly a bod and V
The color braic Veltm

Even tering partic

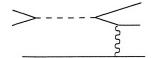


be contaminated by the rescattering of one of the decay leptons with al state quark.

ould cause a change in the invariant mass plot from that inherently ed by the Z^0 decay for mesurements made at FNAL, though not those C.

lculational difficulty of diagrams containing a loop increases dramatithe number of vertices or 'points'. Three and four point diagrams are tandard. The above is a five point diagram. There must be developed of calculational method making these diagrams ammenable. 't Hooft tman have devoted a technique paper," to procedures for these integrals. uplexity and large number of terms involved necessitate the aid of algeanipulation programs, such as the SCHOONSCHIP program written by 18.

orse than the rescattering that occurs above, (which is first order), rescatculd appear as a <u>seroth</u> order contamination via a spectator or debris



affection after the control of the c

T be

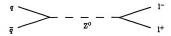
T ti

g the invariant mass plot to an even higher degree. This seroth order ination is very hard to estimate as it involves interaction with particles olved in the Z⁰ production. An assumption can be made that the ratio seroth order rescattering to the seroth order (Drell-Yan) diagram alone oximately the same as the above loop diagram to the first order term to the effect of all rescattering can be estimated by calculating the latter

esis is the estimation of this effect via the calculation of the latter ratio. striced to final state leptons, as the case for final state quarks is done re. 9

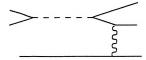
1.2 ... Introduction to this Thesis

attering, first order Z^0 production can take place according to the usual nti-quark union decaying into a lepton pair:



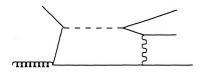
trate assessment of both the Z^0 mass and the width of the decay curve a number of questions. To this end it is important to examine possible tions to shifts of the peak and asymmetric distortions of this width.

nination of one possible source of contribution begins with the ques-HAT IS THE PROBABILITY OF A LEPTON SCATTERING WITH FATOR QUARK ON THE WAY OUT?

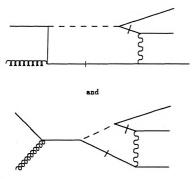


step, one can solve the reduced problem in which the spectator and

production quarks emerge from a common gluon source:



is the calculation of the above five-point and equivalent diagrams estriction of two on-shell lines (The introduction of the on-shell reis to make the LOOP integrations managable, as they reduce the is to two dimensions. It is expected that if the diagrams here examtice small effect under these restrictions, no great enhancement would heir relaxation. This point is futher mentioned in Chapter 5... 'Con-



e two diagrams with the photon scattering switched to the other

e obtained, its interference RATIO to the process without scattering

oduce an observable asymmetry in the Z^0 production curve.

asymmetry would experimentally appear in data gathered at FNAL in data from SLAC, a comparison of the two would reveal an experilimit of resolution of this effect.

ginal motivation for the project was as a step in explaining some extal results which later died away - excess photon production in the Z^0 rocess not explainable by bremsstrahlung. The next step in that now motivation would have been:

First the tribing the tribing photo profit of the tribing photo control with the tribing control

F

t diagrams are hard to evaluate and the value of this work includes poment of the skills and procedures for working them, independent of cular project. A follow up calculation would replace the scattering ith a gluon and final state leptons with quarks, greatly enhancing the y in the ratio of the strong coupling constant to $\frac{x^2}{2}$. This is essensame calculation except the interference term is zero due to the color css of the BORN and LOOP diagrams, the BORN term being a color and the LOOP a color octet. For this reason, the lepton anti-lepton on calculated here might still dominate, and is also easier to compare ent experiments.

we mentioned gluon scattering calculation has already been finished results will be compared with this photon scattering calculation in in 'Conclusions'.)

the RATIO is immediately expected to be of order alpha (1/137) e two added electromagnetic vertices, this could be considerbly imthe relatively short (10⁻²⁴ sec.) lifetime of the 2°0 keeps the decay the locality of the exiting quark and available to the re-scattering

is of the general type described by 't Hooft and Veltman, though the use of on-shell approximations, and uses the SCHOONSCHIP proeltman to calculate the TRACES and perform algebraic substitutions.

on 1.3 ... Division of the Problem into Allowable Helicity Combinations

mass particles only plus or minus projections of the spin onto the menta exist.

pton line :

it is and qua

> Thi lep

La

C D E F G

A be a T it

well known¹² and demonstrated in Appendix A that the final state lepton anti-lepton must have opposing helicities, while the incoming and out-going its must have the same helicity.

means for each helicity of the GLUON there are four allowable on-quark combinations:

		Initial	Final		
L	Gluon	Quark	Quark	Lepton	Anti-lepton
	(*1)	(*1/2)	(*1/2)	(*1/2)	(*1/2)
	+	+	+	+	-
	+	+	+	-	+
	+	_	-	+	-
	+	_	-	-	+
	-	+	+	+	-
	-	+	+	-	+
	_	_	-	+	-
	-	-	-	_	+

he various helicity states are orthogonal, as are all quantum mechanical set states, interference with a Born helicity state will only be non-sero for OP state of the same helicity.

efore the answer is formed separately for each of the eight permitted heliclates, labelled A-H in the above table.

Su

P

P

T.

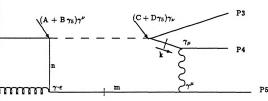
1

S

Section 1.4 Notation

b-Section 1.4.1Diagram Notation

e five point lepton scattering diagram will serve to illustrate the notation d for all diagrams in the problem.



clinear momenta are labelled clockwise P1....P5 beginning with the GLUON.

is defined as the variable LOOP momentum and for convenience:

$$m = k - (P4 + P5)$$

$$n = k - (P4 + P5) + P1 = m + P1$$

r vector dot products are indicated by the contiguous writing of two four ors, for example, P4P5 indicates the dot product of P4 with P5. three part of a four vector is indicated by a bar; e.g. P4 is the space part P4.

>-Section 1.4.2 The Metric

metric used is

$$g^{\mu
u} = g_{\mu
u} = \left(egin{array}{cccc} -1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight)$$

and t

This which

to b

an a

The ric : equ

and.

and the energy-momentum four vector-

$$P^\mu=E_0,P_x,P_y,P_z$$

$$P_{\mu}=-E_0,P_x,P_y,P_z$$

The dot products in this metric are negative:

$$P^{\mu}P_{\mu}=-m^2$$

This metric is consistent with the Minkowski metric $P^{\mu} = P_{\mu} = (P_x, P_y, P_z, iE_0)$ which is used by the SCHOONSCHIP program.

Sub-Section 1.4.3 Gamma Matrices

The original Dirac equation,

$$(\alpha \cdot p - E + \beta \cdot m)\psi = 0$$

to be consistent with the Klein-Gordan equation required that

$$\alpha_i \alpha_i + \alpha_i \alpha_i = 2\delta_{ii}$$

$$\alpha^2 = \beta^2 = 1$$

$$\beta\alpha_i + \alpha_i\beta = 0$$

and α and β must be Hermetian.

The Dirac equation may be written in terms of Gamma matrices for any metric provided they and their dot products with p_{μ} reproduce the original Dirac equation, leading to

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}$$

and futher defining

$$\gamma_5 = i\alpha_1\alpha_2\alpha_3$$

Po m

8.1

75

F

K

I

r the metric used here, the Gamma matrices, defined in terms of the Dirac strices, become:

$$\gamma^i = i\beta\alpha_i$$

$$\gamma^0 = i\beta$$

d change the Dirac equation to be:

$$(i\gamma \cdot p - m)\psi = 0$$

becomes:

$$\gamma_5=i\gamma^0\gamma^1\gamma^2\gamma^3$$

the Minkowski metric used by SCHOONSCHIP:

$$\gamma^i = i\beta\alpha_i$$

$$\gamma^4 = -\beta$$

h the same Dirac equation as above:

$$(i\gamma \cdot p - m)\psi = 0$$

becomes:

$$\gamma_5 = \gamma^1 \gamma^2 \gamma^3 \gamma^4$$

her detail and comparisons are in Appendix B.

>-Section 1.4.4 The Epf Function

articular the Gamma matrix set used by SCHOONSCHIP introduces a tion Epf defined as

$$TRACE(\gamma_5 ABC\mathcal{P}) = i4\epsilon_{\alpha\beta\gamma\delta} A^{\alpha}B^{\beta}C^{\gamma}D^{\delta} = 4 Epf(A, B, C, D)$$

whe

For fun

.

Thi refe Cer Th

ŧ

ere $\epsilon_{\alpha\beta\gamma\delta}$ is the usual Levi-Cevita totally anti-symmetric four tensor.

the Minkowski metric is used by SCHOONSCHIP, then

$$P^{\mu} = P_{\mu} = (P_x, P_y, P_z, iE_0)$$

d the Epf function is always a pure imaginary number.

this problem, as there are only four independent linear momenta, all Epf ctions, following the usual properties of Levi-Cevita tensors, must reduce to y one Epf:

is is a Lorents invariant and may be calculated directly in any convenientrernce frame and co-ordinate system, or by the usual evaluation of Levirita tensor products via determinents, which of course gives the same result.

ese are both done in Appendix C, and the result is

$$Epf(P1, P3, P4, P5) =$$

$$\left[4(P1P4)(P3P5)(P1P5)(P3P4)-\left[(P1P4)(P3P5)+(P1P5)(P3P4)-(P1P3)(P4P5)\right]^2\right]^{1/2}$$

Section 1.5 Preparing the Integrals

b-Section 1.5.1 The Integral

e Cutowsky rule for an on-shell condition gives:

$$\frac{1}{(k^2)\;(k-(P4+P5))^2)}\Rightarrow\;\frac{1}{2}(2\pi i)^2\delta(k^2)\;\delta([k-(P4+P5)]^2)$$

ith this, the amplitude of the sample diagram of the previous section is formed the Feynman rules of Appendix D:

$$M = S * I$$

ere S collects all the multiplicative scale factors:

$$S = \frac{1}{2} \; (2\pi i)^2 \; e^2 \; \frac{1}{(2\pi)^4}$$

I is the LOOP integral of the above sample diagram:

$$\int \frac{d^4k \ \delta(k^2) \ \delta[(k-P4-P5)^2] \ [\overline{u}(P4)\gamma_\mu(\gamma\cdot k)(C+D\gamma_5)\gamma_\nu v(P3)] \ [\overline{u}(P5)\gamma^\mu(\gamma\cdot m)(\gamma\cdot v)(\gamma\cdot n)(A+B\gamma_5)\gamma^\nu u(P2)]}{[(k-P4)^2] \ [(k-P4-P5+P1)^2] \ [(k+P3)^2+M_\phi^2-i\Gamma M_\phi]}$$

b-Section 1.5.2 The Frame of Reference

e first delta function will dictate that $|\overline{k}|^2 = ko^2$. e second, $\delta([k - (P4 + P5)]^2)$, gives

$$k^2 - 2k \cdot (P4 + P5) + (P4 + P5)^2 = 0$$

with

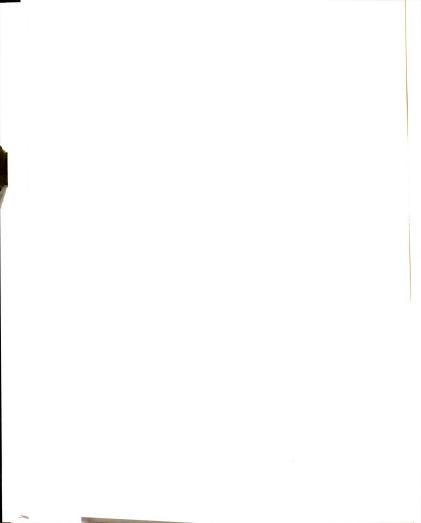
$$k^2 = P4^2 = P5^2 = 0$$

ılts in

$$k \cdot (P4 + P5) = P4P5$$

ch assumes a particularly simple form only in the rest frame of $\overline{P4}$ and $\overline{P5}$:

$$ko(E4 + E5) = -P4P5$$



d, since also in this frame:

$$(P4+P5)^2 = -(E4+E5)^2 = 2(P4P5)$$

 $ko = E4 = E5 = (-P4P5/2)^{1/2}$

ablishing that in this frame ko is CONSTANT.

e enormous simplification gained when the magnitude of \overline{k} remains constant tates this rest frame of $\overline{P4}+\overline{P5}$ to be the frame of reference for this diagram, the diagram for anti-lepton scattering is evaluated by interchanging the lais P3 and P4 (except for the lepton line trace), the same frame of reference distribution the problem.

te that in this frame the energy, Ex, of any other particle, PX, of the problem also simply given:

$$PX \cdot (P4 + P5) = -2(ko)Ex = PXP4 + PXP5$$

$$Ex = \frac{PXP4 + PXP5}{-2ko}$$

b-Section 1.5.3 Removal of the Delta functions

: delta functions may be simply removed by integrating over $d \mid k \mid$ and dko vided the JACOBIAN between the set $(\mid k \mid, ko)$ and the two arguments of delta functions is included. This Jacobian is calculated in the chosen frame eference in Appendix F and evaluates to:

$$J=\frac{-1}{4(P4P5)}$$

Jacobian is now absorbed into the scale factor S:

$$S = \frac{1}{2} (2\pi i)^2 e^2 \left[\frac{1}{(2\pi)^4} \right] \frac{-1}{4(P4P5)}$$

(8 T I (i (i) (i) (i) the remaining integration over $|k|^2 d\Omega_k$,

$$|k|^2 = \frac{-P4P5}{2} = constant$$

n come outside the integral sign and be absorbed into the scale factor:

$$\begin{split} S &= \frac{1}{2} \left(2\pi i \right)^2 e^2 \, \left[\frac{1}{(2\pi)^4} \right] \frac{-1}{4 (P4P5)} \left[\frac{-P4P5}{2} \right] \\ &= - \left(\frac{1}{137} \right) \left(\frac{1}{16\pi} \right) \end{split}$$

hus the sample LOOP integral reduces to being over the directions of \overline{k} :

$$=\int \frac{d\Omega_k \left[\overline{u}(P4)\gamma_\mu(\gamma \cdot k)(C+D\gamma_k)\gamma_\nu v(P3)\right] \left[\overline{u}(P5)\gamma^\mu(\gamma \cdot m)(\gamma \cdot \epsilon)(\gamma \cdot n)(A+B\gamma_k)\gamma^\nu u(P2)\right]}{\left[(k-P4)^2\right]\left[(k-P4-P5+P1)^2\right]\left[(k+P3)^2+M_x^2-i\Gamma M_x\right]}$$

th the understanding that

the frame of reference is $\overline{P4} + \overline{P5} = 0$

$$) |\overline{k}|^2 = ko^2$$

i)
$$ko = (-P4P5/2)^{1/2}$$

$$Ex = \frac{PXP4 + PXP5}{-2ko}$$

is applies to all the various LOOP integrals in the problem.

b-Section 1.5.3 The Divergence Regulation

xamining the above LOOP integral, the first denominator factor, arising 1 the photon line propagator, produces a singularity when the direction of comes co-linear with P4, resulting in a logrithmically infinite value for the gral. This infinity does not occur in Nature - the process is finite - and that flected in the calculation by the coefficient of the logarithmically infinite

ter su is th se ar as P O term becoming sero when the five point and the four point LOOP diagrams are summed. To allow the doing of the diagrams separately, a small photon mass is added to regularise the infinity. When the diagrams are added it is observed that the coefficent of the log of this fictitious photon mass becomes identically sero, producing no ill effects when the photon mass is then allowed to go to sero and its log to infinity. The appearance of the sero coefficent does in fact serve as a check that the various parts of the calculation are fitting together correctly.

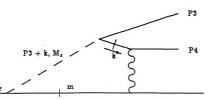
$$I = \int \frac{d\Omega_k \ [\overline{u}(P4)\gamma_\mu(\gamma \cdot k)(C + D\gamma_5)\gamma_\nu v(P3)] \ [\overline{u}(P5)\gamma^\mu(\gamma \cdot m)(\gamma \cdot \epsilon)(\gamma \cdot n)(A + B\gamma_5)\gamma^\nu u(P2)]}{[(k - P4)^2 + M_1^2] \ [(k - P4 - P5 + P1)^2] \ [(k + P3)^2 + M_2^2 - i\Gamma M_z]}$$

Passing to the second denominator factor $(k-(P4+P5)-P1)^2$, it appears to possess a similar infinity. It is shown in Appendix G that at the very direction of \bar{k} that this sero is produced, the value of the numerator also becomes sero, rendering the singularity benign. The non-apearance of this infinity also serves as a check that the integral calculation is proceeding correctly. A small quark mass is carried to allow this check.

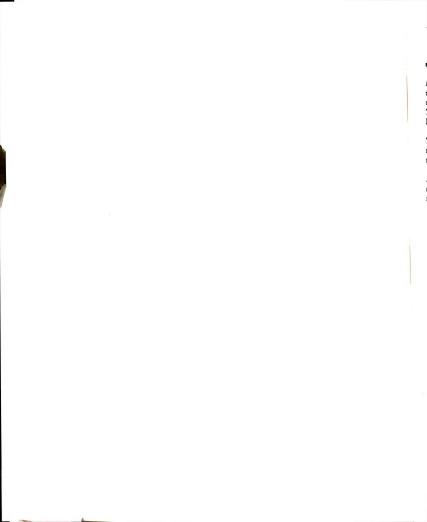
$$I = \int \frac{d\Omega_k}{[(k-P4)^2 + M_\tau^2]} \frac{[\overline{u}(P5)\gamma^\mu(\gamma \cdot m)(\gamma \cdot \epsilon)(\gamma \cdot m)(A + B\gamma_5)\gamma^\nu u(P2)]}{[(k-P4)^2 + M_\tau^2] [(k-P4 - P5 + P1)^2 + M_{quark}^2] [(k+P3)^2 + M_\tau^2 - i\Gamma M_\tau]}$$

Section 1.6 Evaluating a Preliminary Diagram

Prior to beginning the actual calculation it is expedient to calculate a preliminary diagram which contains all the essential features of the larger calculation, yet is simplified sufficently that it may be evaluated analytically (without the aid of SCHOONSCHIP or projection techniques)



P5, M5



and the companion anti-lepton scattering diagram.

All the external fermion particles carry Spin sero, which makes them unphysical, yet experience has shown that Spin does not greatly affect the magnitude of the calculation.

The result of these diagrams should serve as an estimation for the larger calculation, and should that calculation differ significantly, the causes ascertained.

These diagrams are detailed and completely evaluated in Appendix W. The results will be stated in Chapter 5 ... 'Conclusions', and compared with the results of the larger calculation.

An advantage occurs from the simplicity of this diagram: it is possible to assign a non-sero mass to the out-going quark, and to see the effect of varying this mass on the result. The effect is also described in Chapter 5.

Chapter Two The Calculation

Section 2.1 Introduction

As the result will be the ratio of the LOOP plus BORN cross-section to the BORN cross-section, two calculations are needed. The first, the Born amplitude, is a tree structure and does not involve an integral. The calculation will highlight a trick for projecting the spinor product of different linear momenta, i.e. $\bar{u}(P_0)v(P_4)$, onto a basis set more amenable to calculation, and will introduce a projection of the gluon polarisation vector onto a chosen set of linear momenta; both these projections will also be used in the more complicated LOOP calculation. Other than these projections, the Born term calculation is straight-forward.

The LOOP calculation, which of course involves an integration, will use the same spinor replacement technique, which then allows the TRACE of the numerator expressions to be taken. Then the same replacement of the polarization vector is made, resulting in an expression of several hundred terms, each of which must be integrated.

Some of these terms contain a factor of $Epf(k, A_1, B, C)$ in the numerator which would make the integration over directions of \overline{k} quite difficult. Improvement in these terms is obtained by replacing k_{μ} in all Epf factors with a linear expansion onto four momenta of the problem, after which all Epf's become Epf(P1, P3, P4, P5) which of course is the only indepedent Epf in the problem, and since it no longer depends on k_{μ} , can come outside the integral.

The approximately 50 remaining terms in the LOOP integral can be classified into integrals based on the number - from 0 to 3 - of $PX \cdot k$ factors in the numerator and the number of similar denominator factors. three for the five point diagrams, two for the four point. Each integral may then be reduced to a simplier integral through a process of adding and subtracting appropriate terms to allow some of these $PX \cdot k$ factors to cancel with denominator factors.

This reduction results in a set of 19 integrals which can not then be further reduced and must be solved analytically.

In this
for the
the Be
square
This i

Secti

Sub-: The F point,

> P1 70000

(A + B₁

Sub-

The f

BORN

where

n this manner a single complex number is produced for the LOOP amplitude or the chosen helicity state and set of physical parameters. This is added to he Born amplitude, an absolute square taken, and the RATIO to the absolute quare of the Born term determined.

This is repeated for all physically allowable sets of input parameters and heicity states.

section 2.2 ... Calculating the BORN Term

Sub-Section 2.2.1Introduction

The Born term is the sum of two diagrams, called the five point and the four point, by analogy with their counterparts in the LOOP calculation.

ub-Section ... 2.2.2 The BORN Amplitude

$$BORN = BORN_{five} + BORN_{four}$$

he five point amplitude is:

$$ORN_{five} = \frac{[\overline{u}(P4)(C + D\gamma_5)\gamma_{\nu}v(P3)]}{-2(P1P5)MZP} \frac{[\overline{u}(P5)(\gamma \cdot \epsilon)(\gamma \cdot P5 - \gamma \cdot P1)(A + B\gamma_5)\gamma^{\nu}u(P2)]}{-2(P1P5)MZP}$$

$$2RN_{five} = \frac{TRACE[v(P3)\overline{v}(P4)(C+D\gamma_{b})\gamma_{v}]}{-2(P1P5)MZP} \frac{TRACE[v(P2)\overline{v}(P5)(\gamma\cdot\epsilon)(\gamma\cdot P5-\gamma\cdot P1)(A+B\gamma_{b})\gamma^{v}]}{-2(P1P5)MZP}$$

here MZP is the Z^0 particle propagator:

$$MZP = 2(P3P4) + M_z^2 - i\Gamma M_z$$

BO BO! Sull In Mag

who who

8110

vh the

-40

Su

and the four point amplitude is:

$$BORN_{four} = \frac{\left[\overline{u}(P4)(C+D\gamma_5)\gamma_{\nu}v(P3)\right] \left[\overline{u}(P5)(A+B\gamma_5)\gamma_{\nu}(\gamma\cdot P1+\gamma\cdot P2)(\gamma\cdot\epsilon)u(P2)\right]}{2(P1P2)MZP}$$

$$BORN_{four} = \frac{TRACE[v(P3)\overline{u}(P4)(C+D\gamma_5)\gamma^{\nu}] \ TRACE[u(P2)\overline{u}(P5)(A+B\gamma_5)\gamma^{\nu}(\gamma \cdot P1+\gamma \cdot P2)(\gamma \cdot \epsilon)]}{2(P1P2)MZP}$$

Sub-Section 2.2.3Projecting the SPINOR product

In Appendix H it is demonstrated that a spinor product of the form $v(p)\overline{u}(q)$ may be replaced by $(1\pm\gamma_5)\gamma\cdot A$ where A is a four vector given by

$$A_{\mu} = \frac{(p \cdot s)q_{\mu} + (q \cdot s)p_{\mu} - (p \cdot q)s_{\mu} \pm Epf(\mu, q, p, s)}{\sqrt{16(p \cdot s)(q \cdot s)}}$$

where s_{μ} is an arbritary four vector of the problem, and the plus-minus signs are determined by the combination of helecities.

This permits the substitutions:

$$v(P3)\overline{u}(P4) = (1 \pm \gamma_5)\gamma \cdot B$$

and

$$u(P2)\overline{u}(P5) = (1 \pm \gamma_5)\gamma \cdot CU$$

where

$$B_{\mu} = \frac{(P3P5)P4_{\mu} + (P4P5)P3_{\mu} - (P3P4)P5_{\mu} \pm Epf(\mu, P3, P4, P5)}{\sqrt{16(P4P5)(P3P5)}}$$

lnd

$$CU_{\mu} = \frac{(P1P2)P5_{\mu} + (P1P5)P2_{\mu} - (P2P5)P1_{\mu} \pm Epf(\mu, P1, P2, P5)}{\sqrt{16(P1P2)(P1P5)}}$$

hich enable the SCHOONSCHIP program of Appendix I to easily calculate he TRACES.

ub-Section 2.2.4Removal of Z^0 vertex $(A+B\gamma_5)$ and strong coupling constant

The pre-

St Ne

Si bi bi Ti Wi fo

w] J.

fo

The above introduction of the $(1\pm\gamma_5)$ factors into the TRACES nullifies the presence of the \mathbb{Z}^0 vertex coefficent $(A+B\gamma_5)$ as demonstrated in Appendix E. The algebra of Gamma matrices causes the γ_5 in the coefficient to become redundant and the remaining factor (A-B)(A+B)(C+D)(C-D) can come outside the TRACE process where it simply cancels with the same factor that will later come outside the LOOP integration before the final ratio is taken. For this reason the \mathbb{Z}^0 vertex coefficient does not affect the ratio and will not further be carried in the calculation of either the Born or the LOOP terms. This cancellation is also true of the GLUON vertex coefficient, which will thus also not be carried. This is quite desirable as it removes any presence of the strong coupling constant with all its attendant uncertainties from the result.

Sub-Section 2.2.5 ... Projection of the Gluon Polarisation vector

Next the polarization vector of the gluon is replaced by

$$\epsilon_{\mu} = \frac{(P1P2)P5_{\mu} + (P1P5)P2_{\mu} \pm (Epf(\mu, P1, P2, P5)}{\sqrt{(-P1P2)(P1P5)(P2P5)}}$$

where \pm is the GLUON-HELICITY. This replacement is derived in Appendix J.

Sub-Section 2.2.6 The BORN Term result

The Born term amplitude is now entirely evaluated in terms of the set of algebraic dot products that form the set of physical parameters for this problem. The SCHOONSCHIP program of Appendix I outputs this expression in a FOR-TRAN compatible form. It is then incorporated into a FORTRAN program which will use it to determine a single complex number- the BORN amplitude for each physically permissible set of parameters for the chosen helicity state.

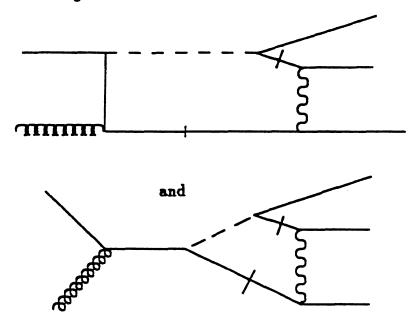
Section 2.3 ... Calculating the LOOP diagrams

Sub-Section 2.3.1 ...Introduction

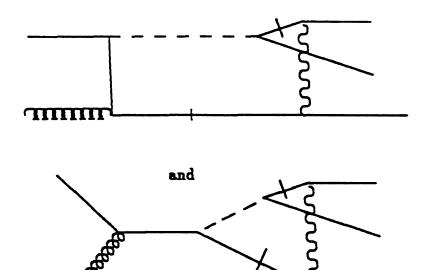
T

The LOOP term is the sum of the four diagrams:

those for lepton scattering:



and those for anti-lepton scattering:



Ones : mente strate

l_{fine} =

Sub-

In easterm
B75)

TRJ follo the

Sub

The to t Epp be k, S1,

Once the lepton scattering diagrams are solved, the anti-lepton scattering nes are obtainable from that solution largely by re-labelling the linear monenta, (except in the lepton TRACE itself). Thus it is sufficent to demontrate the lepton solutions only:

$$I_{loop} = I_{five} + I_{four}$$

$$I_{tree} = \int \frac{d\Omega_k \ TRACE \left[v(P3)\overline{u}(P4)\gamma_n(\gamma \cdot k)(C + D\gamma_5)\gamma_v \right] \ TRACE \left[u(P2)\overline{u}(P5)\gamma^n(\gamma \cdot m)(\gamma \cdot \epsilon)(\gamma \cdot m)(A + B\gamma_5)\gamma^n \right]}{((k - P4)^2 + M_0^2] \left[(k - P4 - P5 + P1)^2 + M_{exc}^2 \right] \left[(k + P3)^2 + M_2^2 - \Gamma M_1 \right]}$$

$$I_{tree} = \frac{1}{2P1P2} \int \frac{d\Omega_k \ TRACE \left[v(P3)\overline{u}(P4)\gamma_n(\gamma \cdot k)(C + D\gamma_5)\gamma_v \right] \ TRACE \left[u(P2)\overline{u}(P5)\gamma^n(\gamma \cdot m)(A + B\gamma_5)\gamma^n(\gamma \cdot c) \right]}{((k - P4)^2 + M_2^2) \left[(k + P3)^2 + M_2^2 - \Gamma M_1 \right]}$$

sub-Section 2.3.2 ... Spinor and Polarisation Replacement, Dropping of the Z^0 vertex coefficient $(A+B\gamma_5)$ and strong coupling constant

n each integral the same spinor four vector replacements as used for the BORN erm are made, with the concurrent dropping of the \mathbb{Z}^0 vertex coefficent $(A+9\gamma_5)$, and the GLUON vertex strong coupling constant.

$$I_{fine} = \int \frac{d\Omega_k}{TRACE} \frac{TRACE [(1 \pm \gamma_5)(\gamma \cdot E)\gamma_{\mu}(\gamma \cdot k)\gamma_{\nu}]}{((k - P4)^2 + M_{\pi}^2)[(k - P4 - P5 + P1)^2 + M_{\pi n + \mu}^2]} \frac{1}{(k + P3)^2 + M_{\pi}^2 - i\Gamma M_{\pi}}}{(k + P3)^2 + M_{\pi n + \mu}^2 - i\Gamma M_{\pi}}$$

$$I_{fine} = \frac{1}{2P1P2} \int \frac{d\Omega_k}{TRACE} \frac{TRACE [(1 \pm \gamma_5)(\gamma \cdot E)\gamma_{\mu}(\gamma \cdot k)\gamma_{\nu}]}{((k - P4)^2 + M_{\pi}^2)[(k + P3)^2 + M_{\pi}^2 - i\Gamma M_{\pi}]}$$

FRACES are taken by the SCHOONSCHIP program listed in Appendix K, ollowed by substitution of the spinor and polarization four vectors, again as in the Born terms.

sub-Section 2.3.3 ... Linear Replacement of ku

The result contains factors not present in the simplier Born calculation, due to the presence here of the LOOP momentum k_{μ} . These factors are of the form $\bar{p}pf(k,A,B,C)$, and an attempt to integrate with them as they stand would every unwieldy. Improvement is obtained by making a linear projection of μ in such factors onto a set of four chosen linear momenta of the problem $-\bar{q}_{\mu}$ in \bar{q}_{μ} , \bar{q}_{μ} ,

$$\mathbf{k}_{\mu} = (C1)S1_{\mu} + (C2)S2_{\mu} + (C3)S3_{\mu} + (C4)S4_{\mu}$$

Th k_p:

¥į

Wi uc

The C1, C2, C3, C4 can be found by forming the set of four dot products with u:

$$S1 \cdot k = (C1)S1S1 + (C2)S2S1 + (C3)S3S1 + (C4)S4S1$$

$$S2 \cdot k = (C1)S1S2 + (C2)S2S2 + (C3)S3S2 + (C4)S4S2$$

$$S3 \cdot k = (C1)S1S3 + (C2)S2S3 + (C3)S3S3 + (C4)S4S3$$

$$S4 \cdot k = (C1)S1S4 + (C2)S2S4 + (C3)S3S4 + (C4)S4S4$$

This set of four equations can be inverted to yield C1, C2, C3, C4 in terms of the various dot products. This is done in Appendix L and yields:

$$C1 = CC11(S1 \cdot k) + CC12(S2 \cdot k) + CC13(S3 \cdot k) + CC14(S4 \cdot k)$$

$$C2 = CC21(S1 \cdot k) + CC22(S2 \cdot k) + CC23(S3 \cdot k) + CC24(S4 \cdot k)$$

$$C3 = CC31(S1 \cdot k) + CC32(S2 \cdot k) + CC33(S3 \cdot k) + CC34(S4 \cdot k)$$

$$C4 = CC41(S1 \cdot k) + CC42(S2 \cdot k) + CC43(S3 \cdot k) + CC44(S4 \cdot k)$$

vith CC11, CC12, CC13,CC43, CC44 given in terms of the dot prodcts of external momenta, again in Appendix L

an auxiliary arrangement of the same result is:

$$k_{\mu} = (S1 \cdot k)\mathcal{F}1_{\mu} + (S2 \cdot k)\mathcal{F}2_{\mu} + (S3 \cdot k)\mathcal{F}3_{\mu} + (S4 \cdot k)\mathcal{F}4_{\mu}$$

here

$$\begin{split} \mathcal{F}1_{\mu} &= (CC11)S1_{\mu} + (CC12)S2_{\mu} + (CC13)S3_{\mu} + (CC14)S4_{\mu} \\ \mathcal{F}2_{\mu} &= (CC21)S1_{\mu} + (CC22)S2_{\mu} + (CC23)S3_{\mu} + (CC24)S4_{\mu} \\ \mathcal{F}3_{\mu} &= (CC31)S1_{\mu} + (CC32)S2_{\mu} + (CC33)S3_{\mu} + (CC34)S4_{\mu} \\ \mathcal{F}4_{\mu} &= (CC41)S1_{\mu} + (CC42)S2_{\mu} + (CC43)S3_{\mu} + (CC44)S4_{\mu} \end{split}$$

Ti S: It is This, as well as being useful later, permits self consistency checks to be made on the calculation of CC11, CC12,..., CC44 as:

$$S(\alpha)^{\mu}\mathcal{F}(\beta)_{\mu}=\delta^{\beta}_{\alpha}$$

which is obtained by dotting the above expression for k_{μ} with S1, S2, S3, S4.

$$S1^{\mu}k_{\mu} = (S1^{\mu}\mathcal{F}1_{\mu})(S1\cdot k) + (S1^{\mu}\mathcal{F}2_{\mu})(S2\cdot k) + (S1^{\mu}\mathcal{F}3_{\mu})(S3\cdot k) + (S1^{\mu}\mathcal{F}4_{\mu})(S4\cdot k)$$

and noting that $S1 \cdot k$, $S2 \cdot k$, $S3 \cdot k$, $S4 \cdot k$ are all independent.

For this problem:

$$S1_{\mu} = P1_{\mu}$$

$$S2_{\mu} = P3_{\mu}$$

$$S3_{\mu} = P4_{\mu}$$

$$S4_{\mu} = P5_{\mu}$$

It is to be noted that in the Appendix L inversion, the condition for a valid inversion - that the Wronskian determinant be non zero - is the same as will later be required in the RESULTS Section for a set of parameters to be physically acceptable and thus does not introduce a new restriction on the problem.

Sub-Section 2.3.4 ... Calculating the Remaining Set of Integrals

With the replacement in the Epf functions of k_{μ} by this linear projection onto P1, P3, P4, P5, all Epf's reduce to Epf(P1, P3, P4, P5) times some number of $PX \cdot k$ factors. The Epf(P1, P3, P4, P5) previously evaluated in Appendix C comes through the integral sign and the terms remaining in the integration number about 30. They can be classified according to the number of numerator $PX \cdot k$ factors they contain.... from 0 to 3 for the five point integral and from 0 to 2 for the four point, reflecting the number of factors of k_{μ} in the original numerator.

Each class, which is an integral, can be reduced to a simplier integral by the process of adding and subtracting pieces which produce cancellation of a denominator factor. This reduction is performed in Appendix M, and results in a set of 19 integrals which can not then be further reduced and each must be solved analytically.

The SCH of the

This the I

Sub-The inser

Sub-

At the

The grouping and labelling of these 19 integrals is the last thing done by the SCHOONSCHIP program, which then produces FORTRAN compatible output of the calculation as it now stands, with each of the 19 integrals algebraically labelled by a symbol.

This output is incorporated into the FORTRAN program already containing the BORN Term result.

Sub-Section 2.3.5 Solving the 19 integrals

The 19 integrals are solved analytically in Appendix N and the solutions are inserted into the above mentioned FORTRAN program as a called sub-routine.

Sub-Section 2.3.6 The LOOP term result

At this point expressions soleth in terms of dot products of external momenta and the plus/minus sign of the Epf(P1, P3, P4, P5) parameter have been inserted into the FORTRAN program for the LOOP term. For each physically allowable set of such parameters it will reduce to a single complex number.

T Id

I

Section 2.4 ... Calculating the RATIO

Sub-Section 2.4.1 Introduction

The FORTRAN program to generate the result is run separately for each of the eight helicity states of the problem, identified by the letters A-H as per the table in Section 1.2. The identifying letter is entered into the FORTRAN program as a parameter before combiliation time.

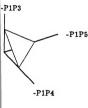
Due to their size (each runs over 1600 lines of FORTRAN code), the two outputs of the SCHOONSCHIP LOOP code, one for LEPTON scattering, the other for ANTI-LEPTON, (each combining internally a five and a four point diagram), are complied separately as FORTRAN functions and joined to the above FORTRAN program at LINK time.

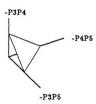
The FORTRAN program contains permanently, (as functions), the eight output amplitudes of the SCHOONSCHIP BORN TERM code, one for each helicity state, and as a called sub-routine, the analytic solutions of the nineteen integrals.

Sub-Section 2.4.2 Physically Valid Set of Input Parameters

The program operates by examining in grid fashion all of phase space.

It is demonstated in Appendix P that all allowable values of the six dot products may be visualised as lying on triangular surfaces: (remembering that dot products in this metric are negative)





Each corner of the triangles intersects the axis at $\frac{E_{cm}^2}{2}$.

These points are covered in grid fashion in the FORTRAN program by allowing:

$$0 < -P1P4 < \frac{E_{cm}^2}{2}$$

$$0 < -P1P5 < \frac{E_{cm}^2}{2} - (-P1P4)$$
$$-P1P3 = \frac{E_{cm}^2}{2} - (-P1P4) - (-P1P5)$$

nd

1.2 GeV, with the corresponding scaling of M_1 to .937 GeV and Γ_2 to .027 GeV. As the result is a dimensionless RATIO, it is unchanged by scaling. The further restriction, that only certain combinations of input-output four vectors conserve separately all four components of energy-momenta (that is - only certain directional cones are allowed), is represented here by the requirement that $P1_{\rm b}$ be real, which is that-

The actual Ecm value of 120 GeV is, for ease of calculation, scaled down to

$$4(P1P4)(P3P5)(P1P5)(P3P4) > [(P1P4)(P3P5) + (P1P5)(P3P4) - (P1P3)(P4P5)]^2$$
 again derived in Appendix P.

If the selected set of six dot products passes this inequality test, the FORTRAN program forwards it for processing. It processes both signs of Epf(P1, P3, P4, P5), representing reflection of the output particles across the plane defined by the two input particles. (In the FORTRAN program Epf(P1, P3, P4, P5) is labelled by the symbol EVL.)

Sub-Section 2.4.3 ... Processing the Point

The parameter labelling the helicity state is examined and the proper BORN TERM function called to produce that amplitude. It contains both four and five point diagram contributions, each multiplied by the appropriate propagator of the other ready to be combined to a single number through the combining denominator 4(P1P5)P1P2(MZP), (labelled PROPIV in the program). The other multiplicative factors, those arising from the two Spinor replacements and the gluon polarization vector replacement, (labelled BOIV, CUOIV, and EOIV in the program), will also appear in the LOOP number and hence livide out when the ratio is taken. For this reason they are set equal to unity, or convenience.

To evaluate the LOOP amplitude, the nineteen integrals for this set of dot products are evaluated, along with WIV, which is the determinent used in the expansion of $k_{\mu 1}$, as per Appendix L. These results are fed into the linked LEP-TON LOOP function which returns a single complex number.

As the ANTI-LEPTON diagram is the same as the LEPTON if one interchanges P3 with P4 (except in the LEPTON line TRACE), the dot products involving P3 or P4 are so interchanged, the sign of Epf(P1, P3, P4, P5) switched to account for this interchange, the nineteen integrals re-valuated along with WIV, and the results fed into the ANTI-LEPTON LOOP attached function, (which has the LEPTON line TRACE in minus reverse form in preperation for the switch), and the calculated number returned. (The minus sign is due to traversing the variable LOOP momentum k_{μ} in the opposite sense when writing the line TRACE for this diagram.)

Each of these numbers has already combined its four and five point contributions with appropriate multipliers in preparation for combining into a single number. The denominator for that combining is now folded in and the results joined as a single number for the LOOP TERM.

That number is then scaled by the scale factors -(1/137) and $1/(16\pi)$. As in the BORN TERM, the factors BOIV, CUOIV, and EOIV arising from the Spinor and polarisation replacements are set to unity.

The LOOP number is added to the BORN number, squared, and divided by the square of the BORN number to form a RATIO, which is written to an output file along with the values of the six dot products that formed it.

The next point in the grid of phase space is examined and, if valid, processed.

This continues until all grid points have been examined.

S T T ti T R R es is n la T es S A -

E T ti T a in

Chapter Three The Results

Section 3.1 ... Introduction

This chapter concerns itself with the presentation of the results of the FOR-TRAN program which calculates the RATIO of the BORN + LOOP cross section to the BORN cross section.

The results are presented separately for each of the eight allowed helicity states.

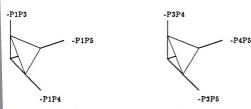
The display of the data is as generated, that is in grid fashion, one dimensionless
RATIO number for each physically allowable set of external dot products.

Rather than display the output from the small grid step size which actually generates the results (this is too much data to comfortably display), the program is rerun with a larger grid step convenient for displaying, the results of the two runs carefully compared to ascertain nothing interesting was lost in going to the larger grid size, and the larger size displayed.

The smaller stepped data is enclosed in Appendix U in case it is desired to examine it.

Section 3.2 Choosing the Display Mode

As indicated at the close of the previous chapter, those points of phase space which are energetically allowable lie on two plane triangular surfaces:



Each corner of the triangles intersects the axis at $\frac{E_{\text{cm}}^2}{2}$.

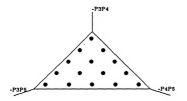
The triangle on the right involves only outgoing dot products. For each point on this triangle, all points of the first (input) triangle are energetically allowable. The data is presented by selecting representative points on the output triangle and for each of those points displaying the RATIOS for a representative set of input points on the input triangle.

View sental

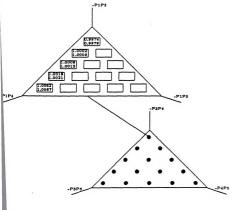
For excalcul put p

Pipa

View the output triangle straight on, and select 15 symmetrically spaced representative points: (the alogarithim for selecting these is given in Appendix V)



For each output point generate an input triangle in which the RATIO has been calculated for each of 15 representative points in conjunction with the fixed output point:



The m points that is 4(P1F

> derive Again, the sm

> The d particl the sei changi

> Section The fo

The missing RATIOs are due to the fact that not all the energetically allowable points also separately conserve each of four components of energy-momenta, that is not all survive the inequality test:

$$4(P1P4)(P3P5)(P1P5)(P3P4) > [(P1P4)(P3P5) + (P1P5)(P3P4) - (P1P3)(P4P5)]^2$$

derived in Appendix P.

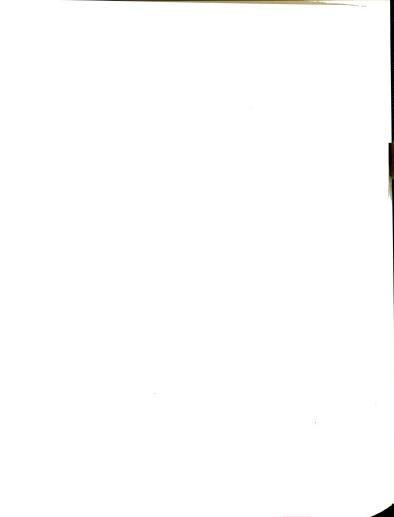
Again, the display data has been carefully compared with that generated by the smaller grid size to assure it is indeed representative.

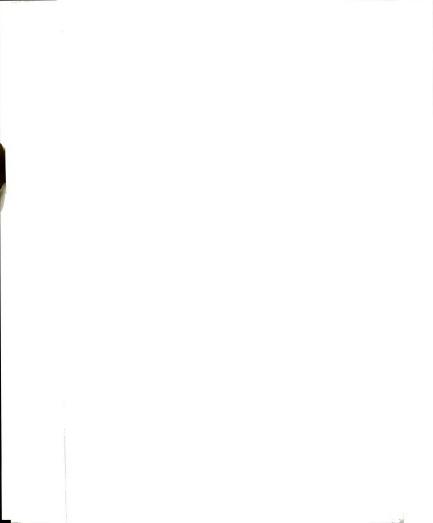
The dual values given for each RATIO represent the reflection of the output

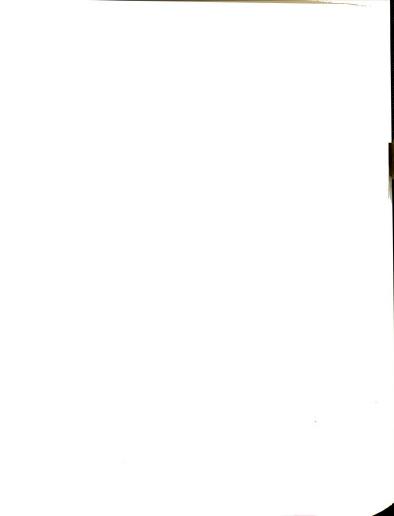
particles across the plane of the input particles. This reflection does not change the set of six dot products, but does alter the RATIO. It is accomplished by changing the sign of Epf(P1, P3, P4, P5).

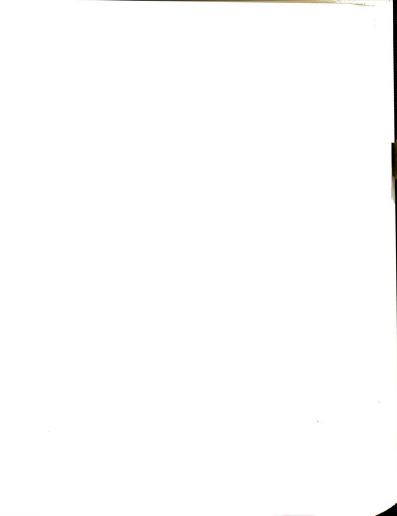
Section 3.3 ... Results for the Eight Helicity States

The following eight pages contain the display of the eight helicity states.









Of fro Z⁰

> Th are ass

T

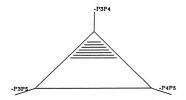
A

Section 3.4 ... Focus on M. Peak

Of particular interest is that area of phase space where the 'mass' carried off from the M_z decay is equal to M_z itself, that is: $-2(P3P4)=M_z^2$, and the Z^0 propagator becomes minimal:

$$MZP = 2(P3P4) + M_z^2 - i\Gamma M_z$$
$$= -i\Gamma M_z$$

Therefore the values of PSP4 are slowly stepped through the M_z peak in a separate running of the FORTRAN program. This is done for the helicity state A, assuming it to be typical in this respect.



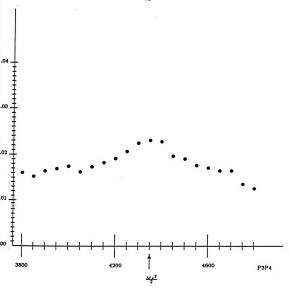
The results (enclosed in Appendix U), show NO particular distinction from any other area of phase space in the range of RATIOs produced.

As one of the goals of this project is to look for asymmetries in the Z^0 decay curve, the above data is plotted-RATIO vs. P3P4, as P3P4 is stepped through the M_2 peak. In this graph, one point stands for the average value of the RATIO on one of the lines in the above diagram, averaged over 1000 points.

1.00

A

MINO



This plot shows NO appreciable asymmetry, NOR shifting of the \mathbb{Z}^0 peak.

Section 3.5 ... Edge Activity

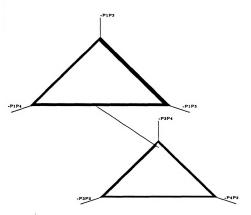
All the above results work on the interior of the triangles, staying away from the edges, that is away by 5 per cent.

.PIP4

Thi tari

It is ang of it of of it.

N



This is because as the edges are approached, the RATIO can become arbritarily large due to the presence of dot products in denominator positions.

Section 3.6 ... Connecting with the Center of Mass System

It may be of interest to relate a set of dot products to outgoing scattering angles in the laboratory (center of mass) system. To this end, the polar angles of the three exiting particles in the center of mass system are derived in terms of dot products in Appendix P.

They are:

$$\begin{split} \cos(\theta_3)_{cm} &= 1 - 2 \left[\frac{P1P3}{P3P4 + P3P5} \right] \\ \cos(\theta_4)_{cm} &= 1 - 2 \left[\frac{P1P4}{P3P4 + P4P5} \right] \\ \cos(\theta_5)_{cm} &= 1 - 2 \left[\frac{P1P5}{P3P5 + P4P5} \right] \end{split}$$

Note that the new restrictions that seem to apply:

$$-(P1P3) < -(P3P4 + P3P5)$$

are ali Secti

The print in the space The lift The print was to the space contract to the The P1P press forw partices.

$$-(P1P4) < -(P3P4 + P4P5)$$
$$-(P1P5) < -(P3P5 + P4P5)$$

are already contained in the restriction that $P1_n^2$ be greater than zero.

Section 3.7 ... Analysis of the Results

The pattern of results is approximately the same for the eight helicity states, in that almost all the RATIO's are near unity except for one 'corner' of phase space, where it might range from a value of 2 to near 50.

The largest ratio in the representative sets is 45.669, the smallest 0.0526. The plot of RATIO vs. P3P4 showed \underline{NO} noticable asymmetry as the M_z peak was traversed. NOR shifting of the Z^0 peak.

For the small grid size, the values grew arbitarily large as the edges of the triangles were approached, as expected due to the presence of these dot products in denominator positions. This increase is unimportant as the amount of phase space near the edge goes to zero faster than the amplitude grows and does not contribute to the integrated cross section. This is demonstrated in the solution

to the preliminary diagram in Appendix W.

The largest values of the RATIO appeared in the phase space 'corner' of large P4P5 and small and equal P3P4 and P3P5. The 'input' triangle indicates small P1P3 and P1P5 and large P1P4. Comparison with the center of mass expressions of the preceding section give particle 5 (the quark) staying in the forward direction, particle 4 (the lepton) reversing direction to emerge at 180°, particle 3 (the anti-lepton) emerging at 90°. Thus the largest effect of this process produces a high transverse momentum product!

Sect Ther

Sect

The calcu sen i

Sec

This stan In A and square (not The mer and ison SC.

Se

The same of the sa

Chapter Four Verification and Validation

Section 4.1 ... Introduction

There are six points at which verification of the calculation is enacted.

Section 4.2 ... Verifying Epf(P1, P3, P4, P5)

The value of Epf(P1, P3, P4, P5) in terms of dot products of the problem is calculated two different ways in Appendix C - first by direct evaluation in a chosen reference frame and co-ordinate system, and second via the usual method of evaluating a determinent. Both methods give the same result.

Section 4.3 ... Verifying the Spinor replacement

This replacement, derived in Appendix H, for dis-similar momenta is nonstandard and is thus checked carefully.

In Appendix Q it is applied to two simplistic diagrams in which the amplitudes and the spin averaged cross sections can be hand calculated. In each case, the square of the amplitude, (using the replacement), is equal to the cross section, (not using the replacement), verifying the correctness of it.

The second calculation is then slightly altered, to use the <u>exact</u> spinor replacements for this problem, and a SCHOONSCHIP routine written to evaluate and compare the amplitude squared and cross section. The successful comparison validates the correctness of the exact replacements and the correct use of SCHOONSCHIP syntax in evaluating the amplitude.

Section 4.4 ... Verifying the Born term

The eight helicity state amplitudes of the Born term are separately squared and added. This sum is then subtracted from the spin averaged cross section. If the amplitude calculations are correct, this will produce sero. It is checked as the last calculation of the SCHOONSCHIP program in Appendix I which generates the amplitudes. The sero is produced. This verifies that the least standard piece of the calculation, the Spinor replacement for dis-similar momenta, is working correctly. Less importantly, though of course also essential, t checks that the other factors of the Born amplitude are free of error.

As it operates on the amplitudes simultaneously as they are outputed into FOR-FRAN compatible format, there is no further possibly of transcription errors in

the Bo Section

It is n precise to the This s After and precise enacts. This c cated produce and t The i This of ten precise to the precise to precise to the precise to the precise to

Sect

Althornoon The by it to coeff the second The div App The At the A

the Born amplitudes.

Section 4.5 ... Verifying the LOOP numerator

It is noted in Appendix G that the quark singularity is benign because for precisely the value of k_{μ} at which it occurs, the numerator also approaches zero to the same order.

This zero is used as a check that the calculation is proceeding correctly.

After SCHOONSCHIP has taken the LOOP traces, substituted for the spinor and polarisation vectors, and replaced k_{μ} in all Epf's by its linear expansion (as per Appendix L), then the replacement in the resulting expression of k_{μ} by precisely this value should still produce the zero, if all the substitutions were enacted correctly.

This check is performed by the SCHHONSHIP program of Appendix R, a truncated copy of the main SCHOONSCHIP loop program (Appendix K) that produces the FORTRAN compatible amplitudes. It is truncated after all the above substitutions are made and before the base integral groups are recognised and the nineteen integrals symbolically labelled.

The insertion of this expression for k_{μ} does produce the zero, indicating that at this point all the above substitutions were made correctly.

This zero took a half hour of SUN time to produce, reflecting the large number of terms present in the calculation at this point, all of which had to be correct to produce the zero.

Section 4.6 ... Validation of Divergent parts of Nineteen Integrals

Although the calculation itself is finite, each separate diagram is infinite, and most of the nineteen integrals possesses an infinite piece.

The infinite part of the diagram (and of the nineteen integrals) is regularised by the use of small photon and quark masses which are allowed to go to sero at the end of the calculation where the masses appear in log form, and their coefficients must sum to sero over both diagrams to avoid divergence as the mass goes to zero.

The appearance of these zero co-efficients verifys once again the correctness of the substitutions already once checked by the replacement of k_{μ} as per the above section

It goes further and verifies the base integral groupings of Appendix M and the divergent parts of the analytic solutions of the nineteen integrals executed in Appendix N.

This check is enacted by using the SCHOONSCHIP loop program of Appendix K and instead of producing algebraic output, altering it to produce a numeric result for a specific set of dot products.

At the beginning of the program the six symbolic dot products are replaced

with a does r separa evalua the SC of six TRAI The cone carries The separa gebra These pend prod It is check

Sec

Fine check tests The mass extra tests value over the tests value over the tests of the tests over the tests ove

with a set of six numbers that form a physically valid set. As SCHOONSCHIP does not evaluate logs, any logs of the above six dot products are evaluated separately and fed into the SCHOONSCHIP program. The same code that evaluates the nineteen integrals in the FORTRAN program is then inserted in the SCHOONSCHIP program, where it produces nineteen numbers from the set of six dot products. (Alternatively, these could have been evaluated in FOR-TRAN and the nineteen numbers fed in.)

The calculation is then performed numerically instead of algebraiclly, with the one exception of the logs of the fictitious photon and quark masses, which are carried as algebraic symbols.

The ouput of the SCHOONSCHIP program now becomes a complex number representing the convergent part of the amplitude being calculated and two algebraic symbols with coefficients for the logs of the photon and quark masses. These coefficients must sum to sero over both diagrams.

The altered SCHOONSCHIP program to perform this check is listed in Appendix S. The valid set of six dot products were arbritarily chosen, and the production of the zero co-efficients verified.

It is to be noted that the convergent parts of the nineteen integrals are not checked by this result.

Section 4.7 ... Numeric semi-check of nineteen integrals

Finally the convergent and divergent parts of the nineteen integrals are semichecked by comparing (for a specific numeric set of dot products), the analytic result with the result of an approximate numerical grid integration.

The result is only approximate as the numerical integration necessarily diverges. This divergenge is examined by introducing small numeric photon and quark masses and comparing runs with increasingly smaller masses, looking for an extrapolation to zero mass.

The approach to zero is quite tame, as expected for a logarithmic divergence, and even the presence of a minute mass, one-thousandth the dot product number. keeps the numerical integration from turning upwards. As the one-thousandth value is approached from the higher value of one-tenth, the integral does not vary, indicating insensitivity to the presence of the mass.

The numeric integrations are thus performed with these one-thousandth masses in place and the results compared with the analytic solutions.

The FORTRAN code for the numeric integrations and the results of the comparisons with the analytic solutions are in Appendix T. In all cases the results are within 30 per cent for a large grid size and become better as the grid size is reduced. In almost all cases the numeric results are above the analytic and by about the same percentage, and in almost all cases change the same as the grid size is reduced.

While not conclusive, this is indicative the analytic solutions are consistent as

a class
This r
lookin
terns.
case t
The s
of the
parts
cients
As th

gent, anon No re

a class.

This method was used to identify errors in the nineteen analytic solutions by looking for those numeric comparisons that did not obey the systematic patterns. It was successful in finding three errors which when corrected led in each

case to the integral falling into the pattern.

The search was instigated by the failure of the sero coefficients of the log terms of the above section to emerge. The three errors found were all in the divergent parts of integrals and when corrected led to the emergence of the zero coefficients, indicating no more errors in the divergent parts.

As the convergent parts of the integrals are functionally similar to the divergent, it is to be expected that any errors in them would produce similar pattern anomilies in the analytic-numeric comparison as did the divergent.

No remaining anomilies are present in the comparisons.

Secti

At the analytions well: Sect

It he later It the The ticke real plit Sev ere a n vec set de ste at In af sin

S

Chapter Five

Section 5.1 ... Introduction

At this point the calculation has been made, and the data summarised and analyzed. It is time to draw the conclusions of the project against the questions raised in the Introduction, to see how it compares with estimations as well as other actual calculations that have been performed and to see what next projects might be undertaken.

Section 5.2 ... Conclusions

It has been ascertained that the influence of the re-scattering process here calculated is, except on the very edges of phase space and one 'hot' corner, minimal. It thus offers little promise of producing an observable consequence.

The specter raised in the Introduction, that the measured width of the \mathbb{Z}^0 particle could be contaminated by the effects of rescattering is not at this point realised. This must be qualified as there is definitely a 'hot' corner in the amplitude that might contribute on a detailed phase space evaluation.

Several key techniques for working with diagrams of this complexity were gathered together: (a) the projection of a dis-similar momenta spinor product onto a momentum basis set of the problem. (b) a similar projection of a polarisation vector (c) the projection of the LOOP momentum k_{μ} onto a momentum basis set of the problem, (d) the technique of reducing a loop integral containing three denominator factors to a sum of integrals containing at most two (e) the various steps for solving this still non-trival set of integrals (f) the set of checks enacted at various points in the calculation to insure its correctness.

In addition it was determined once more that the Spin factors do not largely affect the value of an amplitude, as the simplified preliminary diagram yielded similar results to the full calculation.

Section 5.3 ... Relation to Other Work

In the 'Evaluation of a Preliminary Diagram' in Appendix W, the restriction of sero mass on the outgoing quark was lifted. It was found this did NOT produce an enhancement, indeed that the diagram was maximum at the zero mass.

This can crudely be understood in that the region of interaction for re-scattering of the outgoing particles is greatest if they all have like speeds; so if some have the speed of light (sero mass), all should, for maximum affect.

Also from that diagram an estimation of about 1 per cent was made for the

As to to diagram expect with ti

The la quarks (In GI separa offset consta

Secti

The r the ex as th mom lead i in thi effect of th

result of the larger calculation. That estimation was fulfilled.

As to the restriction of the two internal lines being ON-SHELL, the preliminary diagram has been elsewhere¹⁰ calculated with this restriction removed, and the expectation (based on similar past calculations¹⁰) that the effect is not enhanced with the lifting of the restriction, fulfilled.

The larger calculation done with GLUON scattering and the M_z decaying to quarks has also been done elsewhere and results of the same low order found. (In GLUON scattering, the interference term is of course missing due to COLOR separateness between the BORN and LOOP digrams. This diminishment is offset somewhat by the increased strength of the strong interaction coupling constant over the electromagnetic one of the photon scattering.)

Section 5.4 ... Future Work

The most obvious next things to do would be to futher explore those corners of the extended Dalits plot that generated the most promising effect. In particular, as those corners were in conjunction with the production of a high transverse momentum final state lepton, most accessible to experiment, see if these corners lead to changes in the expected angular distribution of products. As the RATIO in this corner reached a sizable value (near 50), a conclusion as to the negligible effect of this re-scattering process can not be drawn until the weighting factors of the phase space intergration are folded in.

1 ... Ei 2 ... Be

3 ... Ab 4 ... Be

5 ... Ch

6 ... A i ... i

8 ... н

9 ... J 10 ... J

11 ... I

12 ... 3

Footnotes

... Eichen, et al. 1984 'Reviews of Modern Physics' Vol 56, No 4, 579
... Bergsma, et al. 1983 'Physics Letters' 123B, 269
... Abrams, et al. 1989 'Physical Review Letters' Vol 63, No 7, 724
... Berger, et al. 1983 'Proceedings of the Drell-Yan Workshop'
Fermilab, Batavia, Illinois
... Chaichain, et al. 1979 'Physical Review D' Vol 20, No 11, 2873
... Aurenche and Lindfors 1981 'Nuclear Physics B' Vol 185, 274
... 't Hooft and Veltman 1979 'Nuclear Physics B' Vol 153, 365
... H. Strubbe 1974 'Computer Physics Communications' Vol 8, 1
... Jon Pumplin 1988 'Physical Review D' Vol 38, 1149
... Jon Pumplin - personal communication
... Abe, et al. 1989 'Physical Review Letters' Vol 63, No 7, 720

.. Jon Pumplin, Wayne Repko, Jules Kovacs - personal communication

Bjorken an

Jules Kova

Bibliography

Bjorken and Drell - Relativistic Quantum Mechanics, McGraw-Hill, (1964)

Jules Kovacs - Lecture Notes - Relativistic Quantum Mechanics, MSU, (1983-1984)

Consi

The pro

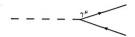
Then

then

gives And

Appendix A Allowable Helicity Combinations

Consider a lepton line through one vertex:



The propagator numerator is:

$$\overline{u}^{\pm} \gamma_{\mu} v^{?}$$

and since

$$\overline{u}^{\pm} = \overline{u}^{\pm} \left(\frac{1 \mp \gamma_5}{2} \right)$$

then

$$\overline{u}^{\pm} \ \gamma_{\mu} v^{?} = \overline{u}^{\pm} \left(\frac{1 \mp \gamma_{5}}{2} \right) \ \gamma_{\mu} v^{?}$$

Then using

$$\gamma_5 \gamma_\mu = -\gamma_\mu \gamma_5$$

gives

$$\overline{u}^{\pm} \gamma_{\mu} v^{?} = \overline{u}^{\pm} \gamma_{\mu} \left(\frac{1 \pm \gamma_{5}}{2} \right) v^{?}$$

And since

$$\left(\frac{1 \pm \gamma_5}{2}\right) v^{\pm} = 0$$

$$\left(\frac{1 \pm \gamma_5}{2}\right) v^{\mp} = v^{\mp}$$

the propagator is zero unless \overline{u} and v have opposite helecities.

Adding additional vertices to the electron line introduces additional gamma

matri

Ho

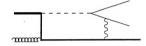
The

T

matrices in pairs, not changing the result.

The same is true for any lepton line with internal line propagtors and vertices that each contribute one gamma matrix.

However, if one particle is incoming, and the other outgoing, as in the quark line for this problem:



The propagator numerator is:

$$\overline{u}^{\pm} \gamma_{\mu} u^{?}$$

and by similar steps as above the helicites must be the same.

G

Th

to be

The For a

and o

In te

Thi the

gi

Appendix B Gamma Matrices, Metrics, and the Dirac Equation

The original Dirac equation,

$$(\alpha \cdot p - E + m)\psi = 0$$

to be consistent with the Klein-Gordan equation required that

$$\alpha_i \alpha_j + \alpha_j \alpha_i = 2\delta_{ij}$$

 $\alpha^2 = \beta^2 = 1$
 $\beta \alpha_i + \alpha_i \beta = 0$

and α and β must be Hermetian.

The Dirac equation may be written in terms of Gamma matrices. For any metric:

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}$$

In terms of the original Dirac matrices, γ_5 is:

$$\gamma_5 = i\alpha_1\alpha_2\alpha_3$$

This evaluation for γ_5 into the original Dirac marices will be the same for all the metrics here considered.

In one such metric, for example the one used in the text by Bjorken-Drell:

$$g^{\mu\nu} = g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

and the energy-momentum four vector-

$$P^{\mu} = E_0 + P_x + P_y + P_z$$

The dot and the

75 bec

Anoth

The

and i

and

$$P_u = E_0 - P_x - P_y - P_z$$

dot products in this metric are positive:

$$P^{\mu}P_{\mu} = +m^2$$

the Gamma matrices, defined in terms of the Dirac matrices:

$$\gamma^0 = \beta$$

$$\gamma^i = \beta \alpha_i$$

ge the Dirac equation to:

$$(\gamma \cdot p - m)\psi = 0$$

ecomes:

$$\gamma_5 = -i \gamma^0 \gamma^1 \gamma^2 \gamma^3$$

ther metric, the one used by 't Hooft - Veltman is:

$$g^{\mu\nu} = g_{\mu\nu} = \left(\begin{array}{cccc} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

the energy-momentum four vector-

$$P^{\mu} = E_0 + P_x + P_y + P_z$$

$$P_{\mu} = -E_0 + P_x + P_y + P_z$$

dot products in this metric are negative:

$$P^{\mu}P_{\mu}=-m^2$$

the Gamma matrices, defined in terms of the Dirac matrices:

$$\gamma^0 = i\beta$$

$$\gamma^i = i\beta\alpha_i$$

change t 75 beco A vari and th The and cha. γ5 nge the Dirac equation to:

$$(i\gamma \cdot p - m)\psi = 0$$

ecomes:

$$\gamma_5=i\gamma^0\gamma^1\gamma^2\gamma^3$$

ariant of the above metric is the Minkowski metric:

$$g^{\mu\nu}=g_{\mu\nu}=\delta_{\mu\nu}=\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

l the energy-momentum four vector-

$$P^\mu = P_\mu = P_x + P_y + P_z + iE_0$$

e dot products in this metric are also negative:

$$P^\mu P_\mu = -m^2$$

the Gamma matrices, defined in terms of the Dirac matrices:

$$\gamma^i = i\beta\alpha_i$$

$$\gamma^4 = -i$$

nge the Dirac equation to:

$$(i\gamma \cdot p - m)\psi = 0$$

ecomes:

$$\gamma_5 = \gamma^1 \gamma^2 \gamma^3 \gamma^4$$

P2 -

conv chos co-o

P1

Th co Th

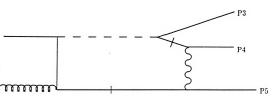
a

F

.

Appendix C Expanding Epf(P1, P3, P4, P5)

As Epf(P1, P3, P4, P5) is a Lorentz invariant, it may be evaluated in any onveinent reference frame and co-ordinate oreintation. The reference system hosen here is the usual one for this problem- the rest frame of $\overline{P4}$ and $\overline{P5}$. The o-ordinate system is with $\overline{P4}$ taken as the plus z direction and $\overline{P3}$ in the x-z



he four vectors- P1, P3, P4, P5 - have their components evaluated for this p-ordinate system in the solutions to Integrals 15, 18, and 118, in Appendix N. he results are- using as usual

$$ko = \sqrt{-P4P5/2}$$

nd working in the Minkowski metric-

$$4 = (0, 0, +ko, iko)$$

$$5 = (0, 0, -ko, iko)$$

$$3 = (\frac{\sqrt{(P3P4||P3P5)}}{k\sigma}, 0, \frac{(P3P4-P3P5)}{2k\sigma}, -i\frac{(P3P4+P3P5)}{2k\sigma})$$

$$1 = (P1_x, P1_y, \frac{(P1P4-P1P5)}{2k\sigma}, -i\frac{(P1P4+P1P5)}{2k\sigma})$$

$$= (P1_x, P1_y, \frac{(P1P4 - P1P5)}{2ko}, -i\frac{(P1P4 + P1P5)}{2ko})$$

here

$$P1_x = \pm \left(\frac{(P1P4)(P3P5) + (P1P5)(P3P4) - (P1P3)(P4P5)}{2ko\sqrt{(P3P4)(P3P5)}} \right)$$

As the E

will Ano

$\frac{4(P1P4)(P3P5)(P1P5)(P3P4) - [(P1P4)(P3P5) + (P1P5)(P3P4 - (P1P3)(P4P5)]^2}{4ko^2(P3P4)(P3P5)}$

appears in the above results. It is obtained in terms of the other dot its by squaring P2 and noting the particles have zero mass-

$$P2^2 = 0 = P3P4 + P3P5 + P4P5 - P1P3 - P1P4 - P1P5$$

Epf function is defined in terms of the Levi-Cevita totally anti-symetric

$$Epf(A, B, C, D) = \epsilon_{\alpha\beta\gamma\delta}A_{\alpha}B_{\beta}C_{\gamma}D_{\delta}$$

e immediately:

$$E_{P}f(P1, P3, P4, P5) = i(2k\sigma^{2})P3_{x}P1_{y}$$

 $i(P1P4)(P3P5)(P1P5)(P3P4) - [(P1P4)(P3P5) + (P1P5)(P3P4 - (P1P3)(P4P5)]^{2})^{1/2}$

must be greater than 0i to make $P1_y$ real.

an be given a more symmetric form by re-arranging the numerator of

$$4ab - (a + b - c)^{2} = b - [a^{2} + b^{2} + c^{2} + 2ab - 2ac - 2bc] = a^{2} + b^{2} + c^{2} - 2ab - 2ac - 2bc$$

$$Epf(P1, P3, P4, P5) = \pm i([(P1P5)(P3P4)]^2 + [(P1P4)(P3P5)]^2 + [(P4P5)(P1P3)]^2 - 2(P1P5)(P3P4)(P1P4)(P3P5)$$

$$(P1P5)(P3P4)(P4P5)(P1P3) - 2(P1P4)(P3P5)(P4P5)(P1P3))^{1/2}$$

is transparently symmetric under the interchange of P3 with P4, indithat Epf(P1, P3, P4, P5) will have the same absolute value for both the on and electron Loop diagrams for this problem, and in order to differ by mus sign required by the interchange of two vectors in the Epf function, ck up the oppositely signed square root of $\sqrt{P1_s^2}$.

er possibly useful symmetric form could be generated by:

$$(a-b)^2 + (a-c)^2 + (b-c)^2 - a^2 - b^2 - c^2$$

The result nant expan

[Epf(P1, F

giving the Ep

-2(P

for Epf(P1, P3, P4, P5) agrees with that obtained by the determination of the four demensional Levi-Cevita tensor:

$$[P3, P4, P5)] * [Epf(P1, P3, P4, P5)] = \begin{vmatrix} P1^2 & P1P3 & P1P4 & P1P5 \\ P1P3 & P2^2 & P3P4 & P3P5 \\ P1P4 & P3P4 & P3^2 & P4P5 \\ P1P5 & P3P5 & P4P5 & P5^2 \end{vmatrix}$$

same result as above:

$$f(P1, P3, P4, P5) = \pm i([(P1P5)(P3P4)]^{2} + [(P1P4)(P3P5)]^{2}$$

$$+[(P4P5)(P1P3)]^{2} - 2(P1P5)(P3P4)(P1P4)(P3P5)$$

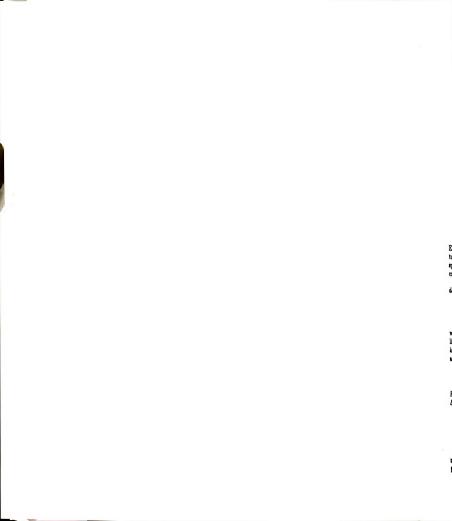
$$P5)(P3P4)(P4P5)(P1P3) - 2(P1P4)(P3P5)(P4P5)(P1P3))^{1/2}$$

These are a ...Bjorken and

Appendix D

Feynman Rules

a verbatim copy of Appendix B in $\underline{RELATIVISTIC}$ QUANTUM MECHANICS d Drell



Appendix ${f B}$

Rules for Feynman Graphs

expressions for cross sections are divided into two parts: first the invariant amplide M, which is a Lorentz scalar and in which physics lies, and second, the phase sace and kinematical factors. In terms of M, the expression for a differential coss section do is, for spinless particles and for photons only,

$$Y = \frac{1}{|\mathbf{v}_1 - \mathbf{v}_1|} \left(\frac{1}{2\omega_{p_1}}\right) \left(\frac{1}{2\omega_p}\right) |\mathfrak{M}|^2 \frac{d^3k_1}{2\omega_1(2\pi)^3} \cdot \cdot \cdot \cdot \frac{d^3k_n}{2\omega_n(2\pi)^3} \times (2\pi)^4 \frac{g^4}{p_1} \left(p_1 + p_2 - \sum_{i=1}^n k_i\right) S$$
 (B.1)

here $\omega_r = \sqrt{|p|^2 + m^2}$ as usual and \mathbf{v}_1 and \mathbf{v}_2 are velocities of the incident colear particles. This expression is then integrated over all undetected momenta $\cdot \cdot \cdot k_n$ of the final particles. The statistical factor S is obtained by including factor 1/m! if there are m identical particles in the final state:

$$S = \prod \frac{1}{m_i!}$$

T Dirac particles, the factor $1/2\omega_p$ is replaced by m/E_p , and the statistical factor is again included; all other factors remain the same.

A differential decay rate of a particle of mass M is given in its rest frame by

$$d\omega = d\left(\frac{1}{\tau}\right) = \frac{1}{2M} |\Re|^2 \frac{d^3k_1}{2\omega_1(2\pi)^2} \cdot \cdot \cdot \cdot \frac{d^3k_n}{2\omega_n(2\pi)^2} (2\pi)^4 \delta^4 \left(p - \sum_{i=1}^n k_i\right) S^{-i}$$

¹ If one adopts the convention that Dirac spinors be normalized to 2m instead to unity as in Eq. (A.2), Eq. (B.1) applies as well to fermions. The energy jection operators are then simply (m + p) in place of (A.3).

Relativistic quantum mechanics

ctrodynamics of a Spin-zero Boson

Here there are three vertices, shown in Fig. B.2, corresponding to the inter-

D.Z

n Lagrangian density

$$\mathcal{L}_{I} = -ie_{0}: \varphi^{\dagger} \left(\frac{\overrightarrow{\partial}}{\partial z_{\mu}} - \frac{\overleftarrow{\partial}}{\partial z_{\mu}} \right) \varphi: A_{\mu} + e_{0}^{\dagger}: A^{\dagger}: : \varphi^{\dagger} \varphi: + \delta \mu^{\dagger}: \varphi^{\dagger} \varphi:$$

rules for these vertices are:

- 1. A factor $-i\epsilon_0(p+p')_p$, where p and p' are the momenta in the charged line. 2. A factor $+2i\epsilon_0{}^3q_{\mu\nu}$ for each "seagull" graph.
- 3. A factor iou for each mass counterterm.
- A factor ½ for each closed loop containing only two photon lines, as shown
 B.3.

Renormalise the charge as in spinor electrodynamics.

Rules for Feynm

γ, Meson-

There 3C1 =

as illustrat

transmitt mam cou

1. strengti neutror 2. 3.

eson-Nucleon Scattering

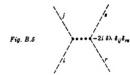
There are four interaction terms in the charge-independent theory:

$$\mathfrak{K}_{I} = -\mathfrak{L}_{I} = :ig_{0}\overline{\Psi}\gamma_{i}\circ \cdot \phi\Psi: -\delta m: \overline{\Psi}\Psi: -\frac{1}{2}\delta\mu^{2}: \phi \cdot \phi: +\frac{1}{2}\delta\lambda: (\phi \cdot \phi)^{2}:$$

istrated in Figs. B.4 and B.5. The dotted line signifies that I = 0 only is

Fig. B.4

mitted from the meson pair ij to the pair rs, as shown by rule 2 below. The counterterms are treated as before and there is:



1. A factor $g_{\theta \gamma p \pi_{\theta}}$ at each meson-nucleon vertex giving relative coupling gths of $\sqrt{2} g_{\theta}$ for charged mesons and ± 1 for neutral ones to protons and ones, respectively.

2. A factor -2:5\delta_i,d., at each four-meson vertex in Fig. B.5.

3. A factor 1/2 for each closed loop containing two meson lines as in Fig. B.6.

Electrodyna

A vector $-g_{\mu\nu}/k^2$ for m as for photons. There are

Fig. B.7

interaction]

 $\mathcal{L}' = -ie_0$:

The rules fo

1. A fa
2. A fa
3. A fa
4. A fa
5. For
anomalous
and C. N.

In all loops this: at the oth

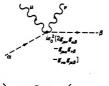
and for ve

Relativistic quantum mechanics

lynamics of Spin-one Boson

actor boson propagator is $[-g_{\mu\nu} + k_{\mu}k_{\nu}/m^{2}](k^{2} - m^{2})^{-1}$ in place of the for massless photons, and the external line has a polarization factor ϵ_{μ}

e are electrodynamics vertices shown in Fig. B.7 corresponding to an



n Lagrangian density

$$\begin{split} & \bullet \colon \left[\left(\frac{\partial \varphi_r^*}{\partial z_\mu} \right) (A^r \varphi_\mu - A_\mu \varphi^r) - \left(\frac{\partial \varphi_r}{\partial z_\mu} \right) (A^r \varphi_\mu^* - A_\mu \varphi^{r*}) \right] \colon \\ & \quad + e_0 \colon \left[A_\mu A^\mu \varphi_\mu^* \varphi^r - A_\mu \varphi^\mu A^r \varphi_\tau^* \right] \colon + \delta \mu^2 \colon \varphi_\tau^* \varphi^r \end{split}$$

for these vertices as illustrated are:

factor
$$-ie_0(p'+p)_{\mu}g_{\alpha\beta}+ie_0g_{\beta\mu}p'_{\alpha}+ie_0p_{\beta}g_{\alpha\beta}$$
.

factor $+ ie_0^2[2g_{\mu\nu}g_{\alpha\beta} - g_{\mu\alpha}g_{\beta\nu} - g_{\mu\beta}g_{\alpha\nu}]$. factor $i\delta\mu^2g_{\alpha\beta}$ for each mass counterterm.

factor 1/2 for each closed loop containing only two photon lines.

or the derivation of these rules from canonical theory, effects of an a magnetic moment term, and a regularization scheme see T. D. Lee Yang, Phys. Rev., 128, 885 (1962).

above examples matrices are arranged in "natural order." For closed means taking a trace. Isotopic indices are contracted with their mate her end of a boson line. In taking polarization sums for photons

$$\sum_{\lambda} \epsilon_{\mu}(k,\lambda) \epsilon_{\nu}(k,\lambda) \Rightarrow -g_{\mu\nu}$$

ctor mesons

$$\sum_{\lambda} \epsilon_{\mu}(k,\lambda) \epsilon_{r}(k,\lambda) \Rightarrow -g_{\mu r} + \frac{k_{\mu}k_{r}}{m^{2}}$$

Give

the A

where in our

Then

Appendix E Ignoring the γ_5 in $A + B\gamma_5$

n an expression of the form

$$(1 \pm \gamma_5) \ \gamma \cdot M \ \gamma \cdot N \ (A + B\gamma_5) \ \gamma \cdot P$$

 $B\gamma_5$ can be commuted to the left:

$$(1 \pm \gamma_5) (A \pm B\gamma_5) \gamma \cdot M \gamma \cdot N \gamma \cdot P$$

ne second \pm depends on an even or odd number of commutations, though ase it will always be even.

 $ing \gamma_5 \gamma_5 = 1$

$$A\pm A\gamma_5\pm B\gamma_5\pm B\gamma_5^2=(A\pm B)(1\pm\gamma_5)$$

It is

In gener

and in

 $\frac{\text{where}}{P4}$ +

Solv

So:

Appendix F Evaluating the JACOBIAN

lesired to evaluate a Jacobian such that

$$d(ko) \ d(|k|) = J \ d(|k|^2 - ko^2) \ d(k - (P4 + P5))^2$$

al, the Jacobian between (x, y) and (f, g) will be

$$J = \begin{vmatrix} \frac{\partial x}{\partial f} & \frac{\partial x}{\partial g} \\ \\ \frac{\partial y}{\partial f} & \frac{\partial y}{\partial g} \end{vmatrix}$$

his case

$$\begin{split} f &= x^2 - y^2 \\ g &= x^2 - y^2 + 2y(E4 + E5) + 2P4P5 \\ df &= (2x)dx - (2y)dy \\ dg &= df + 2(E4 + E5)dy \end{split}$$

=|k| and y=ko and use has been made of the rest frame property $\overline{5}=0$, and of:

$$g = (k - (P4 + P5))^{2} = (P4 + P5)^{2} - 2(P4 + P5) \cdot k + k^{2}$$

$$= 2P4P5 + 2ko(E4 + E5) + k^{2}$$

$$= 2P4P5 + 2y(E4 + E5) + f$$

$$dg = df + 2(E4 + E5)dy$$

$$dy = \frac{-1}{2(E4 + E5)}df + \frac{1}{2(E4 + E5)}dg$$

$$dx = \frac{1}{2x}df + \frac{y}{x}dy = \frac{1}{2x}df + \frac{y}{x}\left[\frac{-df}{2(E4 + E5)} + \frac{dg}{2(E4 + E5)}\right]$$

and using 3

where use

and

$$J = \left| \begin{array}{ccc} \frac{1}{2x} - \frac{y}{2x(E4+E5)} & \frac{1}{2(E4+E5)} \\ \\ \frac{-1}{2(E4+E5)} & \frac{1}{2(E4+E5)} \end{array} \right|$$

ing y = x = ko gives

$$J = \frac{1}{4ko(E4 + E5)}$$

$$J = \frac{-1}{4(P4P5)}$$

use has been made of

$$\delta(k^2) \; \Rightarrow \; |k| = ko$$

$$\delta(k - (P4 + P5))^2 \implies k^2 + 2ko(E4 + E5) + 2P4P5 = 0$$

 $\implies ko(E4 + E5) = -P4P5$

Giver

and the

and no

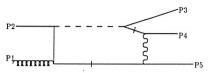
This e

01 W

whice (a – and

Appendix G bsolving the Quark Singularity

n the diagram:



integral:

$$\frac{\Omega_k \left[\overline{w}(P4)\gamma_{\mu}(\gamma \cdot k)(C + D\gamma_b)\gamma_{\nu}v(P3)\right] \left[\overline{w}(P5)\gamma^{\mu}(\gamma \cdot m)(\gamma \cdot \epsilon)(\gamma \cdot m)(A + B\gamma_b)\gamma^{\nu}u(P2)\right]}{\left[(k - P4)^2 + M_{\gamma}^2\right]\left[(k - P4 - P5 + P1)^2 + M_{quark}^2\right]\left[(k + P3)^2 + M_{z}^2 - i\Gamma M_{z}\right]}$$

ing with $m^2 = P1^2 = 0$:

$$n = m + P1 \implies n^2 = 2m \cdot P1$$

nals 0 whenever \overline{m} and $\overline{P1}$ are co-linear:

$$2m \cdot P1 = 2(\overline{m} \cdot \overline{P1} - m_0 E1)$$
$$= 2m_0 E1 [\cos \theta - 1]$$

ever

$$\overline{m} = (\alpha - 1)\overline{P1}$$

teans, because of zero masses, the four vectors are also parallel. m=1

$$n = m + P1 = (\alpha - 1)P1 + P1 = \alpha P1$$

 α is no $k^2 = 0$

using

This

The

the

$$n^2 = \alpha^2 P 1^2 = 0$$

ot free to assume any value. It is restricted by the other on-shell condition:

$$m = (\alpha - 1)P1$$

$$m = k - (P4 + P5) = (\alpha - 1)P1$$

$$k = (\alpha - 1)P1 + P4 + P5$$

$$k^2 = 0 = (\alpha - 1)(P1P4 + P1P5) + P4P5$$

zero mass particles.

$$(\alpha - 1) = \frac{-P4P5}{P1P4 + P1P5}$$
$$\alpha = 1 + \frac{P4P5}{P1P4 + P1P5}$$

means the value of k at the singularity is

$$k_{\mu} = P4_{\mu} + P5_{\mu} - \left(\frac{P4P5}{P1P4 + P1P5}\right)P1_{\mu}$$

singularity uncovered is benign because the numerator of the above integral becomes zero when $m=(\alpha-1)P1$ and $n=\alpha P1$.

$$\begin{split} ...(\gamma \cdot m) \; (\gamma \cdot \epsilon) \; (\gamma \cdot n) \; &= \;(\gamma \cdot m) \; (\gamma \cdot \epsilon) \; (\gamma \cdot \alpha P 1) ... \\ &= \; ...(\alpha - 1)(\gamma \cdot P 1) \; (\gamma \cdot \epsilon) \; (\gamma \cdot \alpha P 1) \; ... \end{split}$$

using $(\gamma \cdot A)$ $(\gamma \cdot B) = -(\gamma \cdot B)$ $(\gamma \cdot A) + A \cdot B$ gives:

$$= ...(\alpha - 1)[-(\gamma \cdot \epsilon) (\gamma \cdot P1) + \epsilon \cdot P1] (\gamma \cdot \alpha P1) ...$$

ch, because $\epsilon \cdot P1 = 0$ becomes

$$= \dots(\alpha - 1)\alpha(\gamma \cdot \epsilon) (\gamma \cdot P1) (\gamma \cdot P1) \dots$$

= \dots(\alpha - 1)\alpha(\gamma \cdot \epsilon) (P1^2) \dots

th goes to zero as $P1^2$, the same power as the denominator goes to zero. is as $n^2=\alpha^2\,P1^2$

The fact th

can be use culates the this value 'he fact that the numerator goes to zero when

$$k_{\mu} = P4_{\mu} + P5_{\mu} - \left(\frac{P4P5}{P1P4 + P1P5}\right)P1_{\mu}$$

an be used to check the correctness of the SCHOONSCHIP program that calulates the LOOP term. At various points in that program the substitution of his value of k_u should produce zero. This check is made in Appendix R.

It is replaced

where !

That t

 χ^+ (r

Since nent:

Simi

No ply

Appendix H Spinor Replacement

It is desired to show that a Spinor product of dis-similar momenta may be according to:

$$v^{(-)}(p3)\overline{u}^{(+)}(p4) = -(1+\gamma_5)\gamma \cdot W$$

ere W_{μ} is a four vector to be determined.

at this is a valid replacement may be seen by:

$${}^{+}(p3)\chi^{+\bullet}(p4)\begin{pmatrix} 1\\1 \end{pmatrix}(1 1)\begin{pmatrix} 1\\0 \\0 -1 \end{pmatrix} = -\begin{pmatrix} 1\\1 1 \end{pmatrix}(\gamma \cdot \overline{W} - \gamma_0 W_0)$$

$$\begin{pmatrix} 1\\1 -1 \end{pmatrix}\chi^{+}(p3)\chi^{+\bullet}(p4) = -\begin{pmatrix} 1\\1 1 \end{pmatrix}\begin{pmatrix} -W_0\\-\sigma \cdot \overline{W} \end{pmatrix}W_0$$

$$\begin{pmatrix} 1\\1 -1 \end{pmatrix}\chi^{+}(p3)\chi^{+\bullet}(p4) = \begin{pmatrix} 1\\1 -1 \end{pmatrix}(W_0 + \sigma \cdot \overline{W})$$

$$\chi^{+}(p3)\chi^{+\bullet}(p4) = \begin{pmatrix} 1\\1 -1 \end{pmatrix}(W_0 + \sigma \cdot \overline{W})$$

ce $(\chi^+(p3)\chi^{+*}(p4))$ and $(W_0+\sigma\cdot\overline{W})$ are 2 X 2 matrices , the four compotes of W_μ may be found by comparison. Q. E. D.

nilarly.

$$\begin{split} v^{(+)}(p3)\overline{u}^{(-)}(p4) &= -(1-\gamma_5)\gamma \cdot W \\ u^{(+)}(p3)\overline{u}^{(+)}(p4) &= -(1+\gamma_5)\gamma \cdot W \\ u^{(-)}(p3)\overline{u}^{(-)}(p4) &= -(1-\gamma_5)\gamma \cdot W \end{split}$$

w that it is established that this replacement is valid, W_{μ} may more simble found by projecting onto a set of four linearly independent four vectors-

$$W_{\mu} = a_3(P3_{\mu}) + a_4(P4_{\mu}) + a_5(P5_{\mu}) + a_{\epsilon pf}Epf(\mu, P3, P4, P5)$$

and the co Starting v multiply

The cor

These R2_μ as

and u

give TR

(1/

d the co-efficents (a_3, a_4, a_5, a_{epf}) determined as follows:

arting with the defining statement for W^{μ}

$$(v^-\overline{u}^+)_{\alpha\beta} = -((1+\gamma_5)\gamma\cdot W)_{\alpha\beta}$$

iltiply both sides by $(\gamma_{\mu})_{\beta\alpha}$

$$\begin{split} (\gamma_{\mu})_{\beta\alpha}(v^-\overline{u}^+)_{\alpha\beta} &= TRACE(-\gamma_{\mu}\gamma_{\nu}W^{\nu} + \gamma_{5}\gamma_{\mu}\gamma_{\nu}W^{\nu}) \\ & \overline{u}^{(+)}\gamma_{\mu}v^{(-)} = -4W_{\mu} \end{split}$$

he conjugate of this yields

$$\overline{v}^{(-)}\gamma_{\mu}u^{(+)}=4W_{\mu}^{\bullet}$$

hese two results may be dotted with different arbritary four vectors $R1_{\mu}$ and 2_{μ} and multiplied together to yield

$$\begin{split} \overline{v}^{(-)}(\gamma \cdot R1)u^{(+)}\overline{u}^{(+)}(\gamma \cdot R2)v^{(-)} &= -16(W^{\bullet} \cdot R1)(W \cdot R2) \\ TRACE\{v\overline{v}(\gamma \cdot R1)u\overline{u}(\gamma \cdot R2)\} &= -16(W^{\bullet} \cdot R1)(W \cdot R2) \end{split}$$

nd using projection operators:

$$\begin{split} v^-(p3)\overline{v}(p3)^- &= \left(\frac{1+\gamma_5}{2}\right)(\gamma+p3) \\ u^+(p4)\overline{u}(p4)^+ &= \left(\frac{1+\gamma_5}{2}\right)(\gamma+p4) \end{split}$$

gives
$$TRACE\left[\frac{(1+\gamma_{5})}{2}(\gamma \cdot P3)(\gamma \cdot R1)\frac{(1+\gamma_{5})}{2}(\gamma \cdot P4)(\gamma \cdot R2)\right] = -16(W^{*} \cdot R1)(W \cdot R2)$$

$$(1/2)\{TRACE[(\gamma \cdot P3)(\gamma \cdot R1)(\gamma \cdot P4)(\gamma \cdot R2)] + TRACE[\gamma_{5}(\gamma \cdot P3)(\gamma \cdot R1)(\gamma \cdot P4)(\gamma \cdot R2)]\}$$

$$= -16(W^{*} \cdot R1)(W \cdot R2)$$

Let R1 using

TRAC

and

the **a**b

where

Now (1/2

and

2[

10

 \mathbb{R} R1 = P5. $W \cdot P5$ can be found by temporarily letting R2 also equal P5:

$$2ACE[(\gamma \cdot A)(\gamma \cdot B)(\gamma \cdot C)(\gamma \cdot D)] = 4[(A \cdot B)(C \cdot D) + (A \cdot D)(B \cdot C) - (A \cdot C)(B \cdot D)]$$

d

$$TRACE[\gamma_5(\gamma\cdot A)(\gamma\cdot B)(\gamma\cdot C)(\gamma\cdot D)]=4\;Epf(A,B,C,D)$$

e above equation yields

$$\left[\frac{(P4P5)(P3P5)}{4}\right]^{1/2} = (W\cdot P5)\epsilon^{i\theta}$$

here $W = |W|e^{i\theta}, \ W^* = |W|e^{-i\theta}.$

ow let R2 once again be arbritary. The equation now assumes the form:

$$/2)\{TRACE[(\gamma \cdot P3)(\gamma \cdot P5)(\gamma \cdot P4)(\gamma \cdot R2)] + TRACE[\gamma_5(\gamma \cdot P3)(\gamma \cdot P5)(\gamma \cdot P4)(\gamma \cdot R2)]\}$$

$$=16(W\cdot R2)\sqrt{\frac{(P4P5)(P3P5)}{4}}e^{-i\theta}$$

nd taking the traces yields

$$\begin{split} & [(P3P5)P4 \cdot R2 + (P4P5)P3 \cdot R2 - (P3P4)P5 \cdot R2 - Epf(P3, P5, P4, R2)] \\ & = 16e^{-i\theta}\sqrt{\frac{(P4P5)(P3P5)}{4}}(W \cdot R2) \end{split}$$

$$\begin{split} [(P4P5)P3_{\mu} + (P4P5)P4_{\mu} - (P3P4)P5_{\mu} - Epf(\mu, P3, P4, P5)]R2^{\mu} \\ = e^{-i\theta}\sqrt{16(P4P5)(P3P5)}W_{\mu}R2^{\mu} \end{split}$$

nd since R2" is totally arbritary,

$$T_{\mu} = \frac{e^{i\theta}}{\sqrt{16(P4P5)(P3P5)}}[(P4P5)P3_{\mu} + (P4P5)P4_{\mu} - (P3P4)P5_{\mu} - Epf(\mu, P3, P4, P5)]$$



Appendix I

SCHOONSHIP Program to Calculate and Verify the BORN Term

START SCHOONSHIP PROGRAM

```
BORN TERM CALCULATION
```

```
this program produces the BORN terms for the various HELECITY
stares. As a check that these are taken correctly it addes
all eight of them together, takes absolute square, then
calulates the spin summed cross section, which does not
use the SPINOR replacement, and takes the difference in
the the two cross sections, which is zero if all is done
correctly.
```

it produces the output in FORTRAN compatible format

```
V B,K,CU,M,E,N4,N5,P1,P2,P3,P4,P5,PD
F C.FO.F1.F2.F3.F4.F5.F6.F7.F84.F85.F94.F95,F104,F105,F11
I J1, J2, M1, M2, K3, K2
```

X P13 = P34 + P35 + P45 - P14 - P15

```
SET SWITCHES
```

```
X FOUR = 1
```

X FIVE = 1

P nstat Р nlist

Č

C

č č

Ċ

C

Č

C

C

Č

c

Č

C Č

Ċ

C

*fix

C č č c

Č

č C

C

C

SET DOT PRODUCTS

X P1P3 = P13

X P1P4 = P14

X P1P5 = P15

X P3P4 = P34

X P3P5 = P35X P4P5 = P45

IN THIS SECTION, TAKE THE Trace, REPLACE EACH K BY IT'S LINEAR EXPANSION

AND REDUCE TO A FINAL ANSWER.

X LHEL = +1 X QHEL = +1

X GHEL = +1 C

SCALE FACTOR FOR THE AMPLITUDE IS ...

TAKE THE Trace

Z HA5=FIVE*F0*F1*F2*F11*F5*F85*F95*F105

```
77
 Z HA4=F0UR*F0*F1*F2*F11*F5*F84*F94*F104
 C
     SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM
 Id,F0=0.5*(1+LHEL)*G6(J1) + 0.5*(1-LHEL)*G7(J1)
 Id.F1=(G(J1.B))
 Id.F2=(G(J1,M1))
 Id,F11=0.5*(1+QHEL)*G6(J2) + 0.5*(1-QHEL)*G7(J2)
Id, F5=(G(J2, CU))
*vep
Id, F85=G(J2, E)
Id.F84=G(J2,M1)
Id, F95=G(J2, N5)
Id, F94=G(J2, N4)
Id, F105=G(J2, M1)
Id.F104=G(J2,E)
*vep
Id, Trick, Trace, J1
C
       Trick AND Trace
Id, Trick, Trace, J2
*yep
C
Ċ
      START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT.
Id,2,Dotpr,N5(J^{\sim}) = FIVE*(P1(J)-P5(J))
AI, Funct, N5 (K2") = FIVE* (P1 (K2) -P5 (K2))
Id, 2, Dotpr, N4(J^{*}) = -FOUR*(P3(J)+P4(J)+P5(J))
Al.Funct.N4(K2^{-}) = - FOUR*(P3(K2)+P4(K2)+P5(K2))
Id,P4DP4=0
A1, P5DP5=0
AI.EDP1=0
CP
     output
*yep
C
Ċ
    PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS.
Id, 2, Dotpr, B(J^{-}) = B3*P3(J) + B4*P4(J) + B5*P5(J) + BEpf*Epf(J, P3.P4.P5)
A1, Funct, B(K3")=B3*P3(K3)+B4*P4(K3)+B5*P5(K3)+BEpf*Epf(K3,P3,P4,P5)
C P output
*ven
Id,B3 = BOIV*P4P5
A1,B4 = B0IV*P3P5
AI.B5 = -BOIV*P3P4
Al, BEpf = + LHEL *BOIV
Id, Trick
Id,P1DP1=0
A1,P3DP3=0
AI,P4DP4=0
A1 .P5DP5=0
Id,P1DP3=P1P3
AI,P1DP4=P1P4
AI.P1DP5=P1P5
AI .P3DP4=P3P4
AI,P3DP5=P3P5
Al.P4DP5=P4P5
     output
```

```
78
*vep
Id,2,Dotpr,CU(J")=
   (CU1-CU2) *P1(J)+CU2*P3(J)+CU2*PD(J)+CU5*P5(J)
  +CUEpf*Epf(J.P1,P3,P5)+CUEpf*Epf(J,P1,P4,P5)
Al Funct.CU(K~)=
   (CU1-CU2)*P1(K)+CU2*P3(K)+CU2*PD(K)+CU5*P5(K)
  +CUEpf *Epf (K,P1,P3,P5)+CUEpf *Epf (K,P1,P4,P5)
Id. CU1 = - CUOIV+(P3P5+P4P5-P1P5)
AI, CU2 = CUOIV*P1P5
A1,CU5 = CUOIV*(P3P4+P3P5+P4P5)
Al.CUEpf = + QHEL*CUOIV
*yep
Id, Trick
Id.EDP1=0
Id,2,Dotpr,PD(J~)=P4(J)+P5(J)
A1, Funct, PD (K2")=P4 (K2)+P5 (K2)
Id.P1DP1=0
A1,P3DP3=0
AI .P4DP4=0
A1 , P5DP5=0
Id,P1DP3=P1P3
AI.P1DP4=P1P4
AI .P1DP5=P1P5
AI,P3DP4=P3P4
AI.P3DP5=P3P5
AI.P4DP5=P4P5
CP
     output
*yep
     NOW PUT IN THE POLARIZATION VECTOR EXPANSION.
                     E1*P1(J) + E3*P3(J)
Id,2,Dotpr,E(J~)=
 E4*P4(J)+E5*P5(J)+EEpf*(Epf(J,P1,P3,P5)+Epf(J,P1,P4,P5))
                    E1*P1(K) + E3*P3(K)
Al.Funct.E(K~)=
 E4*P4(K)+E5*P5(K)+EEpf*(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5))
Id.E1 = E0IV+GHEL+ (P3P5+P4P5-2+P1P5)
AI,E3 = E0IV+GHEL+P1P5
AI,E4 = EOIV*GHEL*P1P5
AI.E5 = -EOIV*GHEL*(P1P3*P1P4)
 AI, EEpf = -EOIV
 *vep
 Id, Trick
 Id,Epf(P1,P3,P4.P5) = EVL
 Id,P1DP1=0
 A1,P3DP3=0
 AI,P4DP4=0
 A1 .P5DP5=0
 Id,P1DP3=P1P3
 AL.P1DP4=P1P4
 AI,P1DP5=P1P5
 A1,P3DP4=P3P4
 AI.P3DP5=P3P5
 A1.P4DP5=P4P5
 CP
     output
 Keep HA4, HA5
 *next
```

Z B non-definition of the state of the state

```
QA = -2*P1P5*HA4 +2*(P3P4+P3P5+P4P5)*HA5
     EOIV, BOIV, CUOIV, EVL
 Punch QA
 Id.EVL=i+A
     PROIV, EOIV, BOIV, CUOIV, A.
 Keep QA
 *next
 Z HA = QA*Conjg(QA)
    PROIV. EOIV. BOIV. CUOIV. A. i
 Keep HA
 *next
  C
 C
     IN THIS SECTION, TAKE THE Trace, REPLACE EACH K BY IT'S
    LINEAR EXPANSION
    AND REDUCE TO A FINAL ANSWER.
 X LHEL = +1
 X QHEL = +1
X GHEL = -1
     SCALE FACTOR FOR THE AMPLITUDE IS ...
      TAKE THE Trace
  HB5=FIVE+F0+F1+F2+F11+F5+F85+F95+F105
Z
  HB4=F0UR*F0*F1*F2*F11*F5*F84*F94*F104
    SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM
Id.F0=0.5*(1+LHEL)*G6(J1) + 0.5*(1-LHEL)*G7(J1)
Id,F1=(G(J1,B))
Id, F2=(G(J1,M1))
Id,F11=0.5*(1+QHEL)*G6(J2) + 0.5*(1-QHEL)*G7(J2)
Id, F5=(G(J2,CU))
*yep
Id, F85=G(J2, E)
Id, F84=G(J2, M1)
Id.F95=G(J2,N5)
Id, F94=G(J2, N4)
Id, F105=G(J2, M1)
Id, F104=G(J2, E)
*vep
Id, Trick, Trace, J1
      Trick AND Trace
Id, Trick, Trace, J2
*yep
     START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT.
Id,2,Dotpr,N5(J^{\sim}) = FIVE*(P1(J)-P5(J))
AI, Funct, N5 (K2") = FIVE* (P1 (K2) -P5 (K2))
```

Č

C

C C

Ċ C

C

C

Id,2,Dotpr,N4 (J AI,Funct,N4 (K2⁻ Id,P4DP4=0 AI,P5DP5=0 AI,EDP1=0 (P output PUT IN THE Id,2,Dotpr,B(AI,Funct,B(K3 (P output *yep Id,B3 = BOIV* AI,B4 = BOIV* AI,B5 = -BOIV AI,BEpf = + I Id,Trick Id,P10P1=0 AI,P30P3=0 AI,P4DP4=0 AI, P30P5=0
Id, P10P3=P1F
AI, P10P4=P16
AI, P10P5=P1
AI, P30P5=P3
AI, P30P5=P3
AI, P40P5=P4 CP output *yep
Id,2,Dotpr
(CU1-CU)
+CUEpf*E
AI,Funct,C
(CU1-CU)
+CUEpf*E
Id, CU1 =
AI,CU2 = (
AI,CUEpf
AI,CUEpf yep
Id, Trick
Id, EDP1=0
Id, 2, Dotr
AI, Funct,
Id, P1DP1=
AI, P3DP3
AI, P4DP4
AI, P1DP4
AI, P1DP4
AI, P1DP4
AI, P3DP3
AI, P4DP4
AI, P3DP3
AI, P4DP4
C P ou *yep

```
pr, N4(J^-) = -FDUR*(P3(J)+P4(J)+P5(J))
,N4 (K2") = - FOUR* (P3 (K2) +P4 (K2) +P5 (K2))
=0
=0
n
put
IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS.
pr,B(J~)=B3*P3(J)+B4*P4(J)+B5*P5(J)+BEpf*Epf(J,P3,P4,P5)
,B(K3")=B3*P3(K3)+B4*P4(K3)+B5*P5(K3)+BEpf*Epf(K3,P3,P4,P5)
put
BOIV*P4P5
BOTV*P3P5
-BOIV*P3P4
= + LHEL*BOIV
<
1=0
3=0
4=0
5=0
3=P1P3
4=P1P4
5=P1P5
4=P3P4
5=P3P5
5=P4P5
tout
tpr,CU(J~)=
-CU2) *P1 (J) +CU2*P3(J) +CU2*PD(J) +CU5*P5(J)
f * Epf (J, P1, P3, P5) + CUEpf * Epf (J, P1, P4, P5)
t, CU(K~)=
-CU2)*P1(K)+CU2*P3(K)+CU2*PD(K)+CU5*P5(K)
f*Epf (K,P1,P3,P5)+CUEpf*Epf (K,P1,P4,P5)
= - CUOIV*(P3P5+P4P5-P1P5)
= CUOIV*P1P5
= CUOIV* (P3P4+P3P5+P4P5)
of = + QHEL *CUOIV
-k
1=0
otpr,PD(J~)=P4(J)+P5(J)
ct, PĎ (K2~) =P4 (K2) +P5 (K2)
P1=0
P3=0
P4=0
P5=0
P3=P1P3
P4=P1P4
P5=P1P5
P4=P3P4
P5=P3P5
P5=P4P5
utput
```

80

```
Ċ
     NOW PUT IN THE POLARIZATION VECTOR EXPANSION.
Id,2,Dotpr,E(J~)=
                   E1*P1(J) + E3*P3(J)
 E4*P4(J)+E5*P5(J)+EEpf*(Epf(J,P1,P3,P5)+Epf(J,P1,P4,P5))
Al, Funct, E(K~)=
                 E1*P1(K) + E3*P3(K)
 E4*P4(K)+E5*P5(K)+EEpf*(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5))
Id.E1 = E0IV*GHEL*(P3P5*P4P5-2*P1P5)
AI,E3 = E0IV+GHEL+P1P5
AI .E4 = EOIV*GHEL*P1P5
AI,E5 = -EOIV*GHEL*(P1P3*P1P4)
AI, EEpf = -EOIV
*vep
Id.Trick
Id, Epf(P1, P3, P4, P5) = EVL
Id.P1DP1=0
A1,P3DP3=0
AI.P4DP4=0
A1,P5DP5=0
Id.P1DP3=P1P3
AI.P1DP4=P1P4
AI.P1DP5=P1P5
AI,P3DP4=P3P4
AI,P3DP5=P3P5
AI.P4DP5=P4P5
CP output
*yep
Keep HA.HB4.HB5
   QB = -2*P1P5*HB4 +2*(P3P4+P3P5+P4P5)*HB5
   EOIV, BOIV, CUOIV, EVL
Punch QB
Id.EVL=i*A
   PROIV, EOIV, BOIV, CUOIV, A, i
Keep HA.QB
*next
Z HB = QB*Conig(QB)
   PROIV, EOIV, BOIV, CUOIV, A, i
Keep HB, HA
*next
 ****************
   IN THIS SECTION, TAKE THE Trace, REPLACE EACH K BY IT'S
   LINEAR EXPANSION.
   AND REDUCE TO A FINAL ANSWER.
c
X LHEL = +1
X QHEL = -1
X GHEL = +1
C
     SCALE FACTOR FOR THE AMPLITUDE IS ...
C
C
      TAKE THE Trace
```

C Č

C C

C

C

```
HC5=FIVE+F0+F1+F2+F11+F5+F85+F95+F105
 HC4=F0UR*F0*F1*F2*F11*F5*F84*F94*F104
Ċ
   SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM
Id,F0=0.5*(1+LHEL)*G6(J1) + 0.5*(1-LHEL)*G7(J1)
Id.F1=(G(J1.B))
Id.F2=(G(J1,M1))
Id.F11=0.5*(1+QHEL)*G6(J2) + 0.5*(1-QHEL)*G7(J2)
Id,F5=(G(J2,CU))
*yep
Id.F85=G(J2,E)
Id, F84=G(J2, M1)
Id.F95=G(J2.N5)
Id, F94=G(J2, N4)
Id,F105=G(J2,M1)
Id, F104=G(J2, E)
*yep
Id, Trick, Trace, J1
C
      Trick AND Trace
Id, Trick, Trace, J2
*yep
     START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT.
C
Id,2,Dotpr,N5(J^{\sim}) = FIVE*(P1(J)-P5(J))
AI, Funct, N5 (K2") = FIVE* (P1 (K2) -P5 (K2))
Id, 2, Dotpr, N4(J^{*}) = -FOUR*(P3(J)+P4(J)+P5(J))
AI, Funct, N4 (K2") = - FOUR* (P3 (K2) +P4 (K2) +P5 (K2))
Id.P4DP4=0
A1,P5DP5=0
AI, EDP1=0
CP output
*yep
   PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS.
Id,2,Dotpr,B(J")=B3*P3(J)+B4*P4(J)+B5*P5(J)+BEpf*Epf(J,P3,P4,P5)
AI, Funct, B(K3")=B3*P3(K3)+B4*P4(K3)+B5*P5(K3)+BEpf*Epf(K3,P3,P4,P5)
СP
    output
*yep
Id,B3 = BOIV*P4P5
AI,B4 = BOIV*P3P5
AI,B5 = -BOIV*P3P4
AI, BEpf = + LHEL *BOIV
Id, Trick
Id.P1DP1=0
A1,P3DP3=0
AI.P4DP4=0
A1.P5DP5=0
Id.P1DP3=P1P3
AI,P1DP4=P1P4
AI,P1DP5=P1P5
AI,P3DP4=P3P4
AI.P3DP5=P3P5
```

Al, CF *ye Id,

AI.

```
AL PADP5=P4P5
CP output
*yep
Id,2,Dotpr,CU(J~)=
   (CU1-CU2)*P1(J)+CU2*P3(J)+CU2*PD(J)+CU5*P5(J)
  +CUEpf*Epf(J,P1,P3,P5)+CUEpf*Epf(J,P1,P4,P5)
AI, Funct, CU(K~)=
   (CU1-CU2)*P1(K)+CU2*P3(K)+CU2*PD(K)+CU5*P5(K)
  +CUEpf*Epf(K,P1,P3,P5)+CUEpf*Epf(K,P1,P4,P5)
Id. CU1 = - CU0IV*(P3P5+P4P5-P1P5)
AI CU2 = CUOIV*P1P5
AI, CU5 = CUOIV*(P3P4+P3P5+P4P5)
AI, CUEpf = + QHEL * CUOIV
*yep
Id, Trick
Id, EDP1=0
Id, 2, Dotpr, PD(J~)=P4(J)+P5(J)
AI .Funct .PD (K2") =P4 (K2) +P5 (K2)
Id,P1DP1=0
A1,P3DP3=0
AI.P4DP4=0
AI.P5DP5=0
Id,P1DP3=P1P3
AI,P1DP4=P1P4
AI.P1DP5=P1P5
AI.P3DP4=P3P4
AL.P3DP5=P3P5
AI,P4DP5=P4P5
C P output
*yep
     NOW PUT IN THE POLARIZATION VECTOR EXPANSION.
Id,2,Dotpr,E(J~)=
                   E1*P1(J) + E3*P3(J)
 E4*P4(J)+E5*P5(J)+EEpf*(Epf(J,P1,P3,P5)+Epf(J,P1,P4,P5))
AI, Funct, E(K")=
                    E1*P1(K) + E3*P3(K)
 E4*P4(K)+E5*P5(K)+EEpf*(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5))
Id.E1 = E0IV*GHEL* (P3P5+P4P5-2*P1P5)
AI.E3 = E0IV*GHEL*P1P5
AI,E4 = E0IV*GHEL*P1P5
AI,E5 = -EOIV*GHEL*(P1P3*P1P4)
Al, EEpf = -EOIV
*yep
Id, Trick
Id, Epf(P1, P3, P4, P5) = EVL
Id.P1DP1=0
A1, P3DP3=0
AI,P4DP4=0
AI,P5DP5=0
Id.P1DP3=P1P3
AI .P1DP4=P1P4
AI,P1DP5=P1P5
AI,P3DP4=P3P4
AI.P3DP5=P3P5
AI.P4DP5=P4P5
CP
     output
*yep
```

Ke *n Z B Pu Id B Ke

```
84
Keep HA, HB, HC4, HC5
*next
  QC = -2*P1P5*HC4 +2*(P3P4+P3P5+P4P5)*HC5
    EOIV, BOIV, CUOIV, EVL
Punch QC
Id, EVL=i *A
    PROIV, EOIV, BOIV, CUOIV, A, i
Keep HA, HB, QC
*next
Z HC = QC*Conjg(QC)
    PROIV, EOIV, BOIV, CUOIV, A, i
Keep HC, HB, HA
*next
  ************************
    IN THIS SECTION, TAKE THE Trace, REPLACE EACH K BY IT'S
C
    LINEAR EXPANSION.
C
    AND REDUCE TO A FINAL ANSWER.
C
Ċ
X LHEL = +1
X QHEL = -1
X GHEL = -1
C
     SCALE FACTOR FOR THE AMPLITUDE IS ...
C
C
      TAKE THE Trace
Z HD5=FIVE*F0*F1*F2*F11*F5*F85*F95*F105
Z HD4=F0UR*F0*F1*F2*F11*F5*F84*F94*F104
C
    SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM
Id,F0=0.5*(1+LHEL)*G6(J1) + 0.5*(1-LHEL)*G7(J1)
Id,F1=(G(J1,B))
Id, F2=(G(J1, M1))
Id,F11=0.5*(1+QHEL)*G6(J2) + 0.5*(1-QHEL)*G7(J2)
Id, F5=(G(J2, CU))
*yep
Id, F85=G(J2, E)
Id, F84=G(J2, M1)
Id, F95=G(J2, N5)
Id.F94=G(J2,N4)
Id, F105=G(J2, M1)
Id, F104=G(J2, E)
*yep
Id. Trick, Trace, J1
      Trick AND Trace
Id, Trick, Trace, J2
*vep
C
     START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT.
C
C
```

Id, Al, Id, Al Id Al C *y C C C C C

```
Id.2.Dotpr.N5(J^{\sim}) = FIVE*(P1(J)-P5(J))
AI, Funct, N5 (K2") = FIVE* (P1 (K2) -P5 (K2))
Id_{,2}, Dotpr_{,N4}(J^{*}) = -FOUR_{,N4}(P3(J)_{,+}P4(J)_{,+}P5(J)_{,+})
Al. Funct. N4 (K2") = - FOUR* (P3 (K2) +P4 (K2) +P5 (K2))
Id.P4DP4=0
A1,P5DP5=0
AI.EDP1=0
C P output
*yep
C
    PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS.
Id, 2, Dotpr, B(J^{\sim}) = B3*P3(J)+B4*P4(J)+B5*P5(J)+BEpf*Epf(J, P3, P4, P5)
AI, Funct, B(K3")=B3*P3(K3)+B4*P4(K3)+B5*P5(K3)+BEpf*Epf(K3,P3,P4,P5)
C P output
*vep
Id.B3 = BOIV*P4P5
AI,B4 = BOIV*P3P5
AI,B5 = -BOIV*P3P4
Al, BEpf = + LHEL*BOIV
Id.Trick
Id, P1DP1=0
A1,P3DP3=0
AI,P4DP4=0
AI.P5DP5=0
Id,P1DP3=P1P3
AI,P1DP4=P1P4
AI.P1DP5=P1P5
AI,P3DP4=P3P4
AI,P3DP5=P3P5
A1.P4DP5=P4P5
СP
     output
*yep
Id, 2, Dotpr, CU(J~)=
   (CU1-CU2)*P1(J)+CU2*P3(J)+CU2*PD(J)+CU5*P5(J)
  +CUEpf*Epf(J,P1,P3,P5)+CUEpf*Epf(J,P1,P4,P5)
Al, Funct, CU(K~)=
   (CU1-CU2) *P1 (K) +CU2*P3 (K) +CU2*PD (K) +CU5*P5 (K)
  +CUEpf*Epf(K,P1,P3,P5)+CUEpf*Epf(K,P1,P4,P5)
Id, CU1 = - CUOIV*(P3P5+P4P5-P1P5)
AI,CU2 = CUOIV*P1P5
AI,CU5 = CUOIV*(P3P4+P3P5+P4P5)
AI, CUEpf = + QHEL * CUOIV
*vep
Id, Trick
Id, EDP1=0
Id,2,Dotpr,PD(J~)=P4(J)+P5(J)
A1, Funct, PD (K2") =P4 (K2) +P5 (K2)
Id.P1DP1=0
A1,P3DP3=0
AI,P4DP4=0
AI,P5DP5=0
Id.P1DP3=P1P3
AI,P1DP4=P1P4
AI,P1DP5=P1P5
AI,P3DP4=P3P4
AI.P3DP5=P3P5
AI .P4DP5=P4P5
```

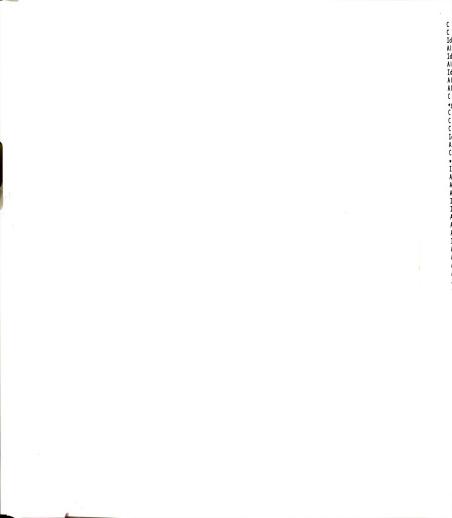
```
C P output
*yep
C
č
     NOW PUT IN THE POLARIZATION VECTOR EXPANSION.
Id.2.Dotpr.E(J^{*})=
                    E1*P1(J) + E3*P3(J)
E4*P4(J)+E5*P5(J)+EEpf*(Epf(J,P1,P3,P5)+Epf(J,P1,P4,P5))
Al, Funct, E(K")=
                   E1*P1(K) + E3*P3(K)
E4*P4(K)+E5*P5(K)+EEpf*(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5))
Id,E1 = E0IV*GHÈL* (P3P5+P4P5-2*P1P5)
AI E3 = E0IV*GHEL*P1P5
AI.E4 = EOIV*GHEL*P1P5
AI.E5 = -EOIV*GHEL*(P1P3+P1P4)
AI, EEpf = -EOIV
*yep
Id, Trick
Id, Epf(P1, P3, P4, P5) = EVL
Id.PIDP1=0
A1,P3DP3=0
AI.P4DP4=0
AI.P5DP5=0
Id.P1DP3=P1P3
AI,P1DP4=P1P4
AI .P1DP5=P1P5
AI.P3DP4=P3P4
AI.P3DP5=P3P5
AL PADP5=P4P5
CP
    output
*уер
Keep HA, HB, HC, HD4, HD5
*next
Z = -2*P1P5*HD4 +2*(P3P4+P3P5+P4P5)*HD5
    EOIV.BOIV.CUOIV.EVL
Punch QD
Id, EVL=i *A
    PROIV. EOIV. BOIV. CUOIV. A. i
Keep HA, HB, HC, QD
*next
Z HD = QD*Conjg(QD)
    PROIV, EOIV, BOIV, CUOIV, A, i
Keep HD, HC, HB, HA
*next
C
Ċ
    IN THIS SECTION, TAKE THE Trace, REPLACE EACH K BY IT'S
C
    LINEAR EXPANSION.
    AND REDUCE TO A FINAL ANSWER.
C
C
X LHEL = -1
X QHEL = +1
X GHEL = +1
C
     SCALE FACTOR FOR THE AMPLITUDE IS ...
C
```

```
č
      TAKE THE Trace
 HF5=FIVE*F0*F1*F2*F11*F5*F85*F95*F105
7
 HE4=F0UR*F0*F1*F2*F11*F5*F84*F94*F104
Č
    SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM
Id.F0=0.5*(1+LHEL)*G6(J1) + 0.5*(1-LHEL)*G7(J1)
Id,F1=(G(J1,B))
Id.F2=(G(J1.M1))
Id,F11=0.5*(1+QHEL)*G6(J2) + 0.5*(1-QHEL)*G7(J2)
Id.F5=(G(J2,CU))
*vep
Id, F85=G(J2, E)
Id.F84=G(J2.M1)
Id, F95=G(J2, N5)
Id, F94=G(J2.N4)
Id.F105=G(J2.M1)
Id.F104=G(J2.E)
*yep
Id, Trick, Trace, J1
Ċ
      Trick AND Trace
Id, Trick, Trace, J2
*vep
     START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT.
C
Id,2,Dotpr,N5(J^{*}) = FIVE*(P1(J)-P5(J))
Al .Funct. N5 (K2") = FIVE* (P1 (K2) -P5 (K2))
Id, 2, Dotpr, N4(J^{*}) = -FOUR*(P3(J)+P4(J)+P5(J))
AI, Funct, N4 (K2") = - FOUR* (P3 (K2) +P4 (K2) +P5 (K2))
Id,P4DP4=0
A1 .P5DP5=0
AI, EDP1=0
C P output
*yep
c
    PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS.
Id,2,Dotpr,B(J~)=B3*P3(J)+B4*P4(J)+B5*P5(J)+BEpf*Epf(J,P3,P4,P5)
Al, Funct, B(K3")=B3*P3(K3)+B4*P4(K3)+B5*P5(K3)+BEpf*Epf(K3,P3,P4,P5)
CP output
*vep
Id.B3 = BOIV*P4P5
AI,B4 = BOIV*P3P5
AI,B5 = -BOIV*P3P4
Al, BEpf = + LHEL *BOIV
Id, Trick
Id.P1DP1=0
A1,P3DP3=0
AI,P4DP4=0
AI.P5DP5=0
Id.P1DP3=P1P3
AI,P1DP4=P1P4
AI .P1DP5=P1P5
```

AI AI C *y Id

```
88
AI,P3DP4=P3P4
AI,P3DP5=P3P5
AL PADP5=P4P5
C P output
*vep
Id.2.Dotpr.CU(J~)=
   (CU1-CU2)*P1(J)+CU2*P3(J)+CU2*PD(J)+CU5*P5(J)
  +CUEpf*Epf(J,P1,P3,P5)+CUEpf*Epf(J,P1,P4,P5)
AI, Funct, CU(K^{\sim}) =
   (CU1-CU2)*P1(K)+CU2*P3(K)+CU2*PD(K)+CU5*P5(K)
  +CUEpf*Epf(K,P1,P3,P5)+CUEpf*Epf(K,P1,P4,P5)
Id. CU1 = - CU0IV*(P3P5+P4P5-P1P5)
Al.CU2 = CUOIV*P1P5
AI,CU5 = CUOIV*(P3P4+P3P5+P4P5)
AI.CUEpf = + QHEL*CUOIV
*yep
Id, Trick
Id.EDP1=0
Id.2.Dotpr.PD(J~)=P4(J)+P5(J)
AI, Funct, PD (K2") =P4 (K2) +P5 (K2)
Id,P1DP1=0
A1,P3DP3=0
AI,P4DP4=0
A1, P5DP5=0
Id.P1DP3=P1P3
AI.P1DP4=P1P4
AI,P1DP5=P1P5
AI,P3DP4=P3P4
A1.P3DP5=P3P5
AI.P4DP5=P4P5
C P output
*уер
C
     NOW PUT IN THE POLARIZATION VECTOR EXPANSION.
Id,2,Dotpr,E(J~)=
                     E1*P1(J) + E3*P3(J)
 E4*P4(J)+E5*P5(J)+EEpf*(Epf(J,P1,P3,P5)+Epf(J,P1,P4,P5))
                   E1*P1(K) + E3*P3(K)
Al, Funct, E(K~)=
 E4*P4(K)+E5*P5(K)+EEpf*(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5))
Id E1 = E0IV*GHEL*(P3P5*P4P5-2*P1P5)
AI.E3 = EOIV*GHEL*P1P5
AI.E4 = EOIV*GHEL*P1P5
AI E5 = -E0IV*GHEL*(P1P3*P1P4)
AI, EEpf = -EOIV
*vep
Id, Trick
Id, Epf(P1,P3,P4,P5) = EVL
Id.P1DP1=0
A1,P3DP3=0
A1.P4DP4=0
A1,P5DP5=0
Id,P1DP3=P1P3
AI,P1DP4=P1P4
AI .P1DP5=P1P5
AI,P3DP4=P3P4
AI,P3DP5=P3P5
AI.P4DP5=P4P5
    output
```

```
*yep
Keep HA, HB, HC, HD, HE4, HE5
*next
Z = -2*P1P5*HE4 +2*(P3P4+P3P5+P4P5)*HE5
   EOIV, BOIV, CUOIV, EVL
Punch QE
Id, EVL=i *A
    PROIV, EOIV, BOIV, CUOIV, A, i
Keep HA, HB, HC, HD, QE
*next
Z HE = QE*Conjg(QE)
    PROIV, EOIV, BOIV, CUOIV, A, i
Keep HE, HD, HC, HB, HA
*next
C
Č
0000
    IN THIS SECTION. TAKE THE Trace, REPLACE EACH K BY IT'S
    LINEAR EXPANSION
    AND REDUCE TO A FINAL ANSWER.
C
c
X LHEL = -1
X QHEL = +1
X GHEL = -1
C
C
     SCALE FACTOR FOR THE AMPLITUDE IS ...
c
C
      TAKE THE Trace
  HF5=FIVE*F0*F1*F2*F11*F5*F85*F95*F105
 HF4=F0UR*F0*F1*F2*F11*F5*F84*F94*F104
C
č
    SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM
Id.F0=0.5*(1+LHEL)*G6(J1) + 0.5*(1-LHEL)*G7(J1)
Id,F1=(G(J1.B))
Id,F2=(G(J1,M1))
Id,F11=0.5*(1+QHEL)*G6(J2) + 0.5*(1-QHEL)*G7(J2)
Id, F5=(G(J2, CU))
*yep
Id, F85=G(J2, E)
Id, F84=G(J2, M1)
Id.F95=G(J2.N5)
Id.F94=G(J2.N4)
Id, F105=G(J2, M1)
Id,F104=G(J2,E)
*yep
Id, Trick, Trace, J1
      Trick AND Trace
Id, Trick, Trace, J2
```



```
90
```

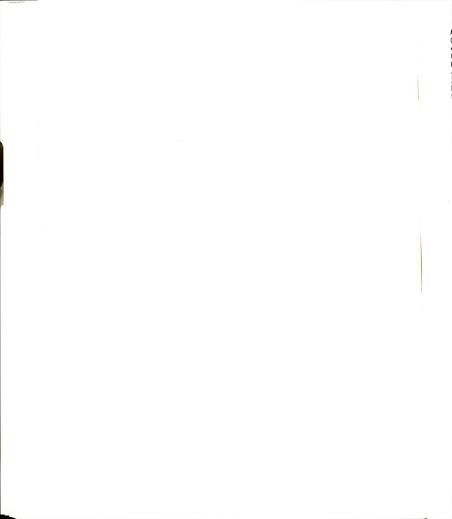
```
C
      START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT.
 Id.2.Dotpr.N5(J^{\sim}) = FIVE*(P1(J)-P5(J))
Al, Funct, N5(K2^{\circ})' = FIVE*(P1(K2)-P5(K2)')
Id, 2, Dotpr, N4(J^{\circ}) = -FOUR*(P3(J)+P4(J)+P5(J))
AI, Funct, N4 (K2") = - FOUR* (P3 (K2) +P4 (K2) +P5 (K2))
Id.P4DP4=0
A1,P5DP5=0
A1.EDP1=0
C P output
*yep
C
     PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS.
Id.2.Dotpr.B(J~)=B3*P3(J)+B4*P4(J)+B5*P5(J)+BEpf*Epf(J.P3.P4.P5)
AI, Funct, B(K3^{\circ}) = B3 * P3(K3) + B4 * P4(K3) + B5 * P5(K3) + BEpf * Epf(K3, P3, P4, P5)
C P output
*yep
Id.B3 = BOIV*P4P5
AI,B4 = BOIV*P3P5
AI.B5 = -BOIV*P3P4
Al.BEpf = + LHEL*BOIV
Id.Trick
Id.P1DP1=0
A1, P3DP3=0
AI,P4DP4=0
AI .P5DP5=0
Id.P1DP3=P1P3
Al.P1DP4=P1P4
AI,P1DP5=P1P5
AI .P3DP4=P3P4
AI,P3DP5=P3P5
AI.P4DP5=P4P5
CP
     output
*yep
Id,2,Dotpr,CU(J~)=
    (CU1-CU2)*P1(J)+CU2*P3(J)+CU2*PD(J)+CU5*P5(J)
  +CUEpf*Epf(J,P1,P3,P5)+CUEpf*Epf(J,P1,P4,P5)
AI, Funct, CU(K~)=
    (CU1-CU2)*P1(K)+CU2*P3(K)+CU2*PD(K)+CU5*P5(K)
  +CUEpf*Epf(K,P1,P3,P5)+CUEpf*Epf(K,P1,P4,P5)
Id, CU1 = - CU0IV*(P3P5*P4P5-P1P5)
AI,CU2 = CUOIV*P1P5
AI,CU5 = CUOIV*(P3P4+P3P5+P4P5)
Al, CUEpf = + QHEL * CUOIV
*vep
Id.Trick
Id, EDP1=0
Id,2,Dotpr,PD(J~)=P4(J)+P5(J)
Al ,Funct, PD (K2") =P4 (K2) +P5 (K2)
Id,P1DP1=0
A1.P3DP3=0
AI,P4DP4=0
A1.P5DP5=0
Id.P1DP3=P1P3
AI.P1DP4=P1P4
AI,P1DP5=P1P5
AI,P3DP4=P3P4
```

```
91
AI,P3DP5=P3P5
A1.P4DP5=P4P5
CP
    output
*yep
C
     NOW PUT IN THE POLARIZATION VECTOR EXPANSION.
r
Id,2,Dotpr,E(J~)=
                     E1*P1(J) + E3*P3(J)
 E4*P4(J)+E5*P5(J)+EEpf*(Epf(J,P1,P3,P5)+Epf(J,P1,P4,P5))
Al, Funct, E(K~)=
                  E1*P1(K) + E3*P3(K)
 E4*P4(K)+E5*P5(K)+EEpf*(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5))
Id.E1 = E0IV*GHEL*(P3P5+P4P5-2*P1P5)
AI.E3 = EOIV*GHEL*P1P5
AI,E4 = EOIV*GHEL*P1P5
AI,E5 = -EOIV*GHEL*(P1P3*P1P4)
Al.EEpf= -EOIV
*yep
Id, Trick
Id,Epf(P1,P3,P4,P5) = EVL
Id.P1DP1=0
AI,P3DP3=0
AI,P4DP4=0
A1,P5DP5=0
Id.P1DP3=P1P3
AI,P1DP4=P1P4
AI,P1DP5=P1P5
AI,P3DP4=P3P4
AI.P3DP5=P3P5
AI.P4DP5=P4P5
C P output
*yep
Keep HA, HB, HC, HD, HE, HF4, HF5
*next
 QF= -2*P1P5*HF4 +2*(P3P4+P3P5+P4P5)*HF5
   EOIV, BOIV, CUOIV, EVL
Punch QF
Id, EVL=i *A
    PROIV, EOIV, BOIV, CUOIV, A, i
Keep HA, HB, HC, HD, HE, QF
*next
Z HF = QF*Conjg(QF)
    PROIV, EOIV, BOIV, CUOIV, A, i
Keep HF.HE.HD.HC.HB.HA
*next
C
c
č
    IN THIS SECTION, TAKE THE Trace, REPLACE EACH K BY IT'S
č
    LINEAR EXPANSION,
Ċ
    AND REDUCE TO A FINAL ANSWER.
č
C
Č
X LHEL = -1
X QHEL = -1
```

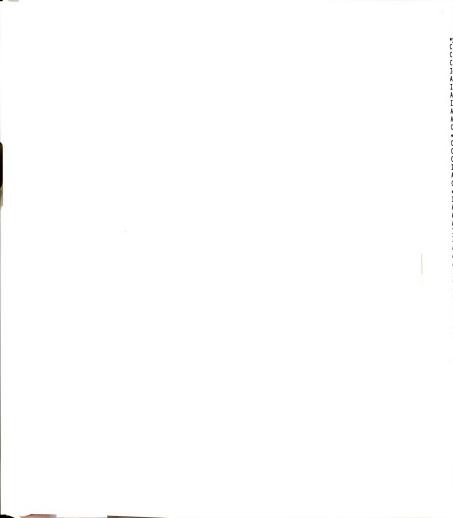
X GHEL = +1

```
c
     SCALE FACTOR FOR THE AMPLITUDE IS ...
Č
      TAKE THE Trace
C
Z HG5=FIVE*F0*F1*F2*F11*F5*F85*F95*F105
Z HG4=F0UR*F0*F1*F2*F11*F5*F84*F94*F104
C
    SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM
C
Id,F0=0.5*(1+LHEL)*G6(J1) + 0.5*(1-LHEL)*G7(J1)
Id,F1=(G(J1,B))
Id.F2=(G(J1.M1))
Id,F11=0.5*(1+QHEL)*G6(J2) + 0.5*(1-QHEL)*G7(J2)
Id, F5=(G(J2, CU))
*yep
Id, F85=G(J2, E)
Id, F84=G(J2, M1)
Id, F95=G(J2, N5)
Id.F94=G(J2.N4)
Id, F105=G(J2, M1)
Id, F104=G(J2, E)
Id, Trick, Trace, J1
C
      Trick AND Trace
Id, Trick, Trace, J2
*yep
C
     START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT.
C
Id,2,Dotpr,N5(J^{\sim}) = FIVE*(P1(J)-P5(J))
AI, Funct, N5 (K2") = FIVE* (P1 (K2) -P5 (K2))
Id, 2, Dotpr, N4(J^{-}) = -FOUR*(P3(J)*P4(J)*P5(J))
AI, Funct, N4 (K2") = - FOUR* (P3 (K2) +P4 (K2) +P5 (K2))
Id.P4DP4=0
AI,P5DP5=0
AI,EDP1=0
CP
    output
*yep
    PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS.
c
Id, 2, Dotpr, B(J^{*}) = B3*P3(J) + B4*P4(J) + B5*P5(J) + BEpf*Epf(J, P3, P4, P5)
AI, Funct, B(K3")=B3*P3(K3)+B4*P4(K3)+B5*P5(K3)+BEpf*Epf(K3,P3,P4,P5)
СŔ
    output
*vep
Id.B3 = BOIV*P4P5
AI.B4 = BOIV*P3P5
A1,B5 = -B0IV*P3P4
Al, BEpf = + LHEL + BOIV
Id.Trick
Id.P1DP1=0
A1, P3DP3=0
A1,P4DP4=0
A1,P5DP5=0
Id.P1DP3=P1P3
```

```
AI,P1DP4=P1P4
AI.P1DP5=P1P5
AI.P3DP4=P3P4
AI,P3DP5=P3P5
AI.P4DP5=P4P5
     output
*vep
Id,2,Dotpr,CU(J^{-})=
    (CU1-CU2) *P1(J) +CU2*P3(J) +CU2*PD(J) +CU5*P5(J)
  +CUEpf*Epf(J,P1,P3,P5)+CUEpf*Epf(J,P1,P4,P5)
Al.Funct.CU(K~)=
    (CU1-CU2)*P1(K)+CU2*P3(K)+CU2*PD(K)+CU5*P5(K)
  +CUEpf*Epf(K,P1,P3,P5)+CUEpf*Epf(K,P1,P4,P5)
Id, CU1 = - CUOIV*(P3P5*P4P5-P1P5)
AI.CU2 = CUOIV*P1P5
AI,CU5 = CU0IV*(P3P4+P3P5+P4P5)
AI, CUEpf = + QHEL * CUOIV
*уер
Id, Trick
Id, EDP1=0
Id, 2, Dotpr, PD(J~)=P4(J)+P5(J)
AI, Funct, PD (K2") =P4 (K2) +P5 (K2)
Id.P1DP1=0
A1, P3DP3=0
AI,P4DP4=0
A1,P5DP5=0
Id.P1DP3=P1P3
AL.P1DP4=P1P4
AI.P1DP5=P1P5
A1.P3DP4=P3P4
AI,P3DP5=P3P5
AI,P4DP5=P4P5
CP
     output
*yep
C
     NOW PUT IN THE POLARIZATION VECTOR EXPANSION.
Id, 2, Dotpr, E(J^{-}) = E1*P1(J) + E3*P3(J)
 E4*P4(J)+E5*P5(J)+EEpf*(Epf(J,P1,P3,P5)+Epf(J,P1,P4,P5))
Al, Funct, E(K~)=
                    E1*P1(K) + E3*P3(K)
 E4*P4(K)+E5*P5(K)+EEpf*(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5))
Id.E1 = E0IV*GHÈL*(P3P5+P4P5-2*P1P5)
AI.E3 = E0IV*GHEL*P1P5
AI,E4 = EOIV*GHEL*P1P5
AI.E5 = -E0IV*GHEL*(P1P3*P1P4)
AI.EEpf= -EOIV
*yep
Id, Trick
Id, Epf(P1,P3,P4,P5) = EVL
Id.P1DP1=0
A1.P3DP3=0
AI,P4DP4=0
A1.P5DP5=0
Id,P1DP3=P1P3
AI.P1DP4=P1P4
AI,P1DP5=P1P5
Al.P3DP4=P3P4
AI.P3DP5=P3P5
```



```
AI.P4DP5=P4P5
C P output
*yep
Keep HA, HB, HC, HD, HE, HF, HG4, HG5
*next
Z = -2*P1P5*HG4 +2*(P3P4+P3P5+P4P5)*HG5
    EOIV, BOIV, CUOIV, EVL
Punch QG
Id.EVL=i *A
    PROIV.EOIV.BOIV.CUOIV.A.i
Keep HA.HB.HC.HD.HE.HF.QG
*next
Z HG =
        QG*Conia(QG)
    PROIV, EOIV, BOIV, CUOIV, A, i
Keep HG, HF, HE, HD, HC, HB, HA
Ċ
C
č
    IN THIS SECTION. TAKE THE Trace. REPLACE EACH K BY IT'S
C
    LINEAR EXPANSION
č
    AND REDUCE TO A FINAL ANSWER.
Č
č
C
X LHEL = -1
X QHEL = -1
X GHEL = -1
C
č
     SCALE FACTOR FOR THE AMPLITUDE IS ...
C
Č
      TAKE THE Trace
  HH5=FTVF*F0*F1*F2*F11*F5*F85*F95*F105
Z
  HH4=F0UR*F0*F1*F2*F11*F5*F84*F94*F104
C
c
    SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM
Id,F0=0.5*(1+LHEL)*G6(J1) + 0.5*(1-LHEL)*G7(J1)
Id, F1=(G(J1,B))
Id.F2=(G(J1.M1))
Id,F11=0.5*(1+QHEL)*G6(J2) + 0.5*(1-QHEL)*G7(J2)
Id, F5=(G(J2, CU))
*vep
Id.F85=G(J2.E)
Id, F84=G(J2, M1)
Id, F95=G(J2, N5)
Id.F94=G(J2,N4)
Id,F105=G(J2,M1)
Id.F104=G(J2.E)
*yep
Id, Trick, Trace, J1
C
      Trick AND Trace
Id, Trick, Trace, J2
```



```
*уер
 c.
 C
       START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT.
 Id.2,Dotpr,N5(J^{-}) = FIVE*(P1(J)-P5(J))
 Al, Funct, N5 (K2") = FIVE* (P1 (K2) -P5 (K2))
 Id, 2, Dotpr, N4(J^{-}) = -FOUR*(P3(J)+P4(J)+P5(J))
 Al, Funct, N4 (K2") = - FOUR* (P3 (K2)+P4 (K2)+P5 (K2))
 Id.P4DP4=0
 AI.P5DP5=0
 AI.EDP1=0
 CP output
 *yep
 C
     PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS.
 Id,2,Dotpr,B(J~)=B3*P3(J)+B4*P4(J)+B5*P5(J)+BEpf*Epf(J,P3,P4,P5)
 AI,Funct,B(K3")=B3*P3(K3)+B4*P4(K3)+B5*P5(K3)+BEpf*Epf(K3,P3,P4,P5)
 CP output
 *vep
 Id.B3 = BOIV*P4P5
 AI,B4 = BOIV*P3P5
 A1,B5 = -B0IV*P3P4
 Al.BEpf = + LHEL+BOIV
 Id. Trick
 Id,P1DP1=0
A1, P3DP3=0
AI.P4DP4=0
AI,P5DP5=0
Id.P1DP3=P1P3
AI,P1DP4=P1P4
AI.P1DP5=P1P5
AI .P3DP4=P3P4
AI,P3DP5=P3P5
AI,P4DP5=P4P5
CP
     output
*yep
Id, 2, Dotpr, CU(J^{-}) =
   (CU1-CU2)*P1(J)+CU2*P3(J)+CU2*PD(J)+CU5*P5(J)
  +CUEpf*Epf(J,P1,P3,P5)+CUEpf*Epf(J,P1,P4,P5)
Al, Funct, CU(K")=
   (CU1-CU2)*P1(K)+CU2*P3(K)+CU2*PD(K)+CU5*P5(K)
  +CUEpf *Epf (K, P1, P3, P5) +CUEpf *Epf (K, P1, P4, P5)
Id, CU1 = - CUOIV*(P3P5+P4P5-P1P5)
AI, CU2 = CUOIV*P1P5
AI,CU5 = CUOIV*(P3P4+P3P5+P4P5)
Al.CUEpf = + QHEL*CUOIV
*yep
Id, Trick
Id,EDP1=0
Id, 2, Dotpr, PD(J")=P4(J)+P5(J)
Al, Funct, PD (K2") =P4 (K2) +P5 (K2)
Id.P1DP1=0
A1,P3DP3=0
A1.P4DP4=0
A1.P5DP5=0
Id,P1DP3=P1P3
AI,P1DP4=P1P4
```

```
AI.P1DP5=P1P5
A1,P3DP4=P3P4
AI,P3DP5=P3P5
AI.P4DP5=P4P5
СÉ
    output
*yep
     NOW PUT IN THE POLARIZATION VECTOR EXPANSION.
Id.2.Dotpr,E(J~)=
                     E1*P1(J) + E3*P3(J)
E4*P4(J)+E5*P5(J)+EEpf*(Epf(J,P1,P3,P5)+Epf(J,P1,P4,P5))
                  E1*P1(K) + E3*P3(K)
Al, Funct, E(K")=
E4*P4(K)+E5*P5(K)+EEpf*(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5))
Id.E1 = E0IV*GHEL* (P3P5+P4P5-2*P1P5)
AI.E3 = E0IV+GHEL+P1P5
AI,E4 = EOIV*GHEL*P1P5
AI,E5 = -E0IV*GHEL*(P1P3+P1P4)
Al.EEpf= -EOIV
*yep
Id, Trick
Id, Epf (P1, P3, P4, P5) = EVL
Id.P1DP1=0
A1,P3DP3=0
A1,P4DP4=0
AI,P5DP5=0
Id,P1DP3=P1P3
AI,P1DP4=P1P4
AI,P1DP5=P1P5
AI,P3DP4=P3P4
AI,P3DP5=P3P5
AI .P4DP5=P4P5
CP
     output
*yep
Keep HA, HB, HC, HD, HE, HF, HG, HH4, HH5
*next
   QH = -2*P1P5*HH4 +2*(P3P4+P3P5+P4P5)*HH5
    EOIV, BOIV, CUOIV, EVL
Punch QH
Id, EVL=i +A
    PROIV, EOIV, BOIV, CUOIV, A, i
Keep HA, HB, HC, HD, HE, HF, HG, QH
*next
Z HH = QH*Conig(QH)
    PROIV. EOIV, BOIV, CUOIV, A, i
Keep HH, HG, HF, HE, HD, HC, HB, HA
*next
Z HEL = PROIV**2* (HA+HB+HC+HD+HE+HF+HG+HH)
    PROIV. EOIV. BOÍV, CUOIV, A
Id, A**2= - (-4*P14*P15*P34*P35+(P15*P34*P14*P35-P13*P45)**2)
Keep HEL
*next
  THE EIGHT HELICITY STATE AMPLITUDES HAVE NOW BEEN
C CALCULATED.
   NOW FORM THE SPIN AVERAGED SUM CROSS SECTION
```

```
97
AND COMPARE IT WITH THE SUM OF THE EIGHT
ABOVE SQUARED. AS A CHECK THAT THEY WERE
ONE CORRECTLY.
IN THIS SECTION, TAKE THE Trace, REPLACE FACH K BY IT'S
LINEAR EXP3ANSION
AND REDUCE TO A FINAL ANSWER
,K,CU,M,E,E2,N4,N5,P1,P2,P3,P4.P5.PD
,F0,F1,F2,F3,F4,F5,F65,F74,F75,F85,F9,F105,F11.A1.A2.A3.AA.
24.F125.F135.F64.F84.F104.F134
1, J2, M1, M2, M3, K3, K2
 SCALE FACTOR FOR THE AMPLITUDE IS ...
  TAKE THE Trace
XP55=FIVE*F0*F1*F2*F3*F4*F11*F5*F65*F75*F85*F9*F105*F125*F135
XP54=FTVF*F0UR*F0*F1*F2*F3*F4*F11*F5*F65*F75*F85*F9*F104*F124*F134
XP45=F0UR*FIVE*F0*F1*F2*F3*F4*F11*F5*F64*F74*F84*F9*F105*F125*F135
XP44=F0UR*F0*F1*F2*F3*F4*F11*F5*F64*F74*F84*F9*F104*F124*F134
SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM
F0 = 1
d.F0=0.5*0.5*(1+LHEL)*G6(J1) + 0.5*0.5*(1-LHEL)*G7(J1)
F1=(G(J1,P4))
F2=(G(J1.M1))
F3=(G(J1,P3))
F4=(G(J1,M2))
F11 = 1
d,F11=0.5*0.5*(1+QHEL)*G6(J2) + 0.5*0.5*(1-QHEL)*G7(J2)
F5=(G(J2,P5))
F65= (G(J2,M3))
F75=(G(J2,N5))
F85 = (G(J2,M1))
F9=(G(J2,P2))
F105= (G(J2,M2))
F125=(G(J2,N5))
F135= (G(J2,M3))
F64=
      (G(J2.M1))
F74=(G(J2,N4))
F84=
     (G(J2,M3))
F104=
       (G(J2,M3))
F124=(G(J2,N4))
F134= (G(J2,M2))
Trick,Trace,J1
  Trick AND Trace
Trick, Trace, J2
output
2.Dotpr.P2(K4^{-}) = P3(K4) + P4(K4) + P5(K4) - P1(K4)
```

```
|.Funct.P2(K4^{-})| = P3(K4) + P4(K4) + P5(K4) - P1(K4)
P output
/ер
   START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT.
1,2,Dotpr,N5(J^{\sim}) = FIVE*(P1(J)-P5(J))
1,2,Dotpr,N5(J") = FIVE*(P1(J)-P5(J)
|,Funct,N5(K2^{*})| = FIVE*(P1(K2)-P5(K2))
1,2,Dotpr,N4(J^{-}) = -FOUR*(P3(J)+P4(J)+P5(J))
1.2.Dotpr.N4(J^{*}) = -FOUR*(P3(J)+P4(J)+P5(J))
|| Funct, N4(K2^{-})|| = -FOUR*(P3(K2)+P4(K2)+P5(K2))|
P output
1.P4DP4=0
.P5DP5=0
I,P1DP1 = 0
|P3DP3 = 0
,EDP1=0
,E2DP1=0
output
/ep
J.P1DP4=P1P4
,P1DP3=P1P3
,P1DP5=P1P5
1,P3DP4=P3P4
,P3DP5=P3P5
,P4DP5=P4P5
P output
yep
eep EXP55, EXP54, EXP45, EXP44, HEL
next
EXP4 = Y*(Y1*EXP55 + Y23*EXP54 + Y23*EXP45 + Y4*EXP44)
4.Y1 = 4*(P3P4+P3P5+P4P5)*(P3P4+P3P5+P4P5)
1,Y23 = -2*P1P5*2*(P3P4+P3P5+P4P5)
,Y4 = 4*P1P5*P1P5
i,Y=PROIV**2*E0IV**2*(-4)*P15*(P13+P14+P15)*(P35+P45-P15)
 EOIV.PROIV
ep EXP4.HEL
next
SSEXP = EXP4*B0IV**2*CU0IV**2*B0*CU0
B0=16+P35+P45
d, CU0=16* (P34+P35+P45) *P15
 PROIV. EOIV. BOIV, CUOIV
ep HEL, SSEXP
next
NOW SUTRACT THE SPIN AVERAGED CROSS SECTION
FROM THE SQUARED SUM OF THE HELECITY
STATES. THE RESULT SHOULD BE ZERO.
```

DIFF = HEL - SSEXP PROIV, EOIV, BOIV, CUOIV

end

T invai

εμ =

The

Thi ticl

wh

As

P P P

E

ì

Appendix J Projecting the Gluon Polarization Vector

The polarization vector of the GLUON particle may be expressed in Lorentz invariant form by projecting it onto a set of four vectors:

$$\epsilon_{\mu} = a_1 P 1_{\mu} + a_4 P 4_{\mu} + a_5 P 5_{\mu} + a_{epf} E p f(\mu, P1, P4, P5)$$

The task is to find the four coefficients, a_1, a_4, a_5, a_{epf}

This can be done most simply in a co-ordinate system where the GLUON particle moves in the +z direction. There the polaroization vector has the form:

$$\epsilon_{\mu}=(1,\pm i,0,0)$$

where ± is the GLUON helecity state.

Assume the usual frame of reference, the rest frame of $\overline{P4}$ and $\overline{P5}$, then

$$P1 = (0, 0, E1, iE1)$$

 $P4 = (P4_{\tau}, 0, P4_{\tau}, iE4)$

$$P5 = (-P4_x, 0, -P4_z, iE4)$$

$$E4 = ko$$

$$E1 = \frac{P1P4 + P1P5}{2ka}$$

$$21 = \frac{-2ko}{-2ko}$$

$$24 = \frac{ko(P1P5 - P1P4)}{2ko(P1P5 - P1P4)}$$

$$P4_x = \frac{k o \sqrt{4(P1P4)(P1P5)}}{P1P4 + P1P5}$$

$$ko = \sqrt{-P4P5/2}$$

With the are, using where ϵ_0 course w

and a

= 62314

then

As e

whi

With these values of P1, P3, P4, P5, the non-zero terms of $Epf(\mu, P1, P4, P5)$ are, using

$$Epf(A, B, C, D) = \epsilon_{\alpha\beta\gamma\delta} A_{\alpha}B_{\beta}C_{\gamma}D_{\delta}$$

where $\epsilon_{\alpha\beta\gamma\delta}$ is the usual Levi-C'evita totally anti-symetric four tensor and of sourse we are in the Minkowski metric.

$$\begin{split} &Epf(\mu, P1, P4, P5) = \epsilon_{2314}(2, P1_3, P4_1, P5_4) \\ &+ \epsilon_{2413}(2, P1_4, P4_1, P5_3) + \epsilon_{2341}(2, P1_3, P4_4, P5_1) \\ &+ \epsilon_{2314}(2, E1, P4_x, iE4) + \epsilon_{2431}(2, P1_4, P4_3, P5_1) \\ &+ \epsilon_{2413}(2, iE1, P4_x, -P4_z) + \epsilon_{2341}(2, E1, iE4, -P4_x) \\ &+ \epsilon_{2431}(2, iE1, P4_z, -P4_x) \end{split}$$

 $= \epsilon_{2314}[(E1)(P4_x)(iE4)] + \epsilon_{2413}[(iE4)(P4_x)(-P4_z)] + \epsilon_{2341}[(E1)(iE4)(-P4_x)] + \\ \epsilon_{2431}[(iE1)(P4_z)(-P4_x)]$

$$= -2i(E1)(E4)(P4_x) \; \delta^2_{\;\mu}$$

and as P1, P4, P5 have no y component and $\epsilon_y = \pm i = (GHEL)i$

then a_{epf} is immediately determined:

$$\begin{split} a_{epf} &= \frac{-GHEL}{2(E1)(P4_{\pi})(E4)} \\ &= \frac{GHEL}{\sqrt{-2(P1P4)(P1P5)(P4P5)}} \end{split}$$

As ϵ has but three deminsions and the space is four deminsional:

$$\epsilon_{\mu}P1^{\mu} = 0 = a_4P1P4 + a_5P1P5$$

which gives:

$$a_4 = -a_5 \frac{P1P5}{P1P4}$$

and

g.

Ву

f.

and using

$$\epsilon_{\mu}P4^{\mu}=P4_{x}=a_{1}P1P4+a_{5}P4P5$$

$$\epsilon_{\mu}P5^{\mu}=P5_{x}=-P4_{x}=a_{1}P1P5+a_{4}P4P5$$

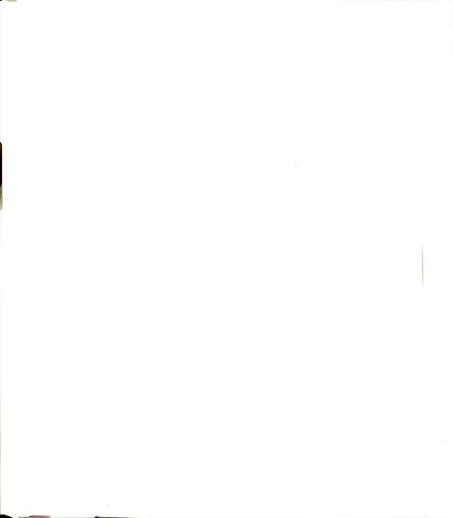
gives,

$$\begin{split} a_1 &= \frac{(P1P4 - P1P5)}{(P1P4 + P1P5)} \frac{P4P5}{\sqrt{-2(P1P4)(P1P5)(P4P5)}} \\ a_4 &= \frac{P1P5}{\sqrt{-2(P1P4)(P1P5)(P4P5)}} \\ a_5 &= \frac{P1P4}{\sqrt{-2(P1P4)(P1P5)(P4P5)}} \end{split}$$

set to zero and the result becomes

By gauge invariance any amount of $P1_{\mu}$ can be added to ϵ_{μ} , so a_1 can be

$$\epsilon_{\mu} = \frac{1}{\sqrt{-2(P1P4)(P1P5)(P4P5)}}[(P1P5)P4_{\mu} + (P1P4)P5_{\mu} - (GHEL)Epf(\mu, P1, P4, P5)]$$



Appendix K

SCHOONSHIP Program for the LOOP Term

```
c
 Č
 C
       START SCHOONSHIP PROGRAM
 C Calculate the LOOP term, algebraically
 C with the 19 integrals labelled by a
 C symbol. Output is by set of helecity
 C states, and for either the two
 C lepton or the two anti-lepton
 C diagrams.
 S LNMP, LNMQ, PI, FPIIV
 V P1, P2, P3, P4, P5, S1, S2, S3, S4, U1, U2, U3, U4
 C
      FEED IN VALUES FOR THIS RUN
 N 30, RO
 C
    SET SWITCHES
 X FOUR = 1
 X FIVE = 1
X ELECT = 1
X POSIT = 0
X LHEL = +1
X QHEL = +1
X GHEL = +1
X MPARIT = +1
Outlimit, 24000000
P nstat
P ninput
P nlist
    SET DOT PRODUCTS
X P1P3 = ELECT*P13 + P0SIT*P14
X P1P4 = ELECT*P14 + P0SIT*P13
X P1P5 = P15
X P3P4 = P34
X P3P5 = ELECT*P35 + P0SIT*P45
X P4P5 = ELECT*P45 + POSIT*P35
C
   FOR CONVEINENCE, DEFINE SOME EXPRESSIONS AND THEIR RECIPROCALS.
X D145 = P1P4 + P1P5
X D1 = D145
X D345 = P3P4 + P3P5
X MZP = 2*P3P4 + D3
C
č
C
     NOW K CAN ALWAYS BE EXPANDED ON AN ARBRITARY BASIS SET S1,S2,S3,S4
č
C
    K = C(1)*S1 + C(2)*S2 + C(3)*S3 + C(4)*S4
C
   AND FOR THIS PROBLEM WE USE THE SET P1,P3,P4,P5
C
 SO....
X S1S2 = P1P3
```

0

.

```
X S1S3 = P1P4
X S1S4 = P1P5
X S2S3 = P3P4
X S2S4 = P3P5
X S3S4 = P4P5
C
C
     TO THIS END, THE ORIGINAL EXPANSION OF K MAY BE DOTTED WITH EACH
C
     OF THE BASIS TO FORM A 4 X 4 MATRIX, WHICH WHEN INVERTED
C
       YIELDS.....
C
Č
      C(1) = CC(1,1)*S1DK + CC(1,2)*S2DK + CC(1,3)*S3DK + CC(1,4)*S4DK
Č
C
     W IS THE DETERMINENT FOR THIS INVERSION AND WIV IT'S RECIPROCAL
C
X W = S1S2*S3S4*(-S1S2*S3S4+S1S4*S2S3+S1S3*S2S4)
    + $1$3*$2$4*( $1$2*$3$4+$1$4*$2$3-$1$3*$2$4)
    + S1S4*S2S3*( S1S2*S3S4-S1S4*S2S3+S1S3*S2S4)
c
     AND NOW, ALL THE CC'S USING THE NOTATION CC(4,3) = CC43
C
X CC44 = WIV*(-2)*(S1S2*S1S3*S2S3)
X CC43 = WIV*S1S2*(-S1S2*S3S4+S1S4*S2S3+S1S3*S2S4)
X CC42 = WIV*S1S3*( S1S2*S3S4+S1S4*S2S3-S1S3*S2S4)
X CC41 = WIV*S2S3*( S1S2*S3S4-S1S4*S2S3+S1S3*S2S4)
X CC33 = WIV*(-2)*(S1S2*S1S4*S2S4)
X CC32 = WIV*$154*( $1$2*$3$4-$1$4*$2$3+$1$3*$2$4)
X CC31 = WIV*$2$4*( $1$2*$3$4+$1$4*$2$3-$1$3*$2$4)
X CC22 = WIV*(-2)*(S1S3*S1S4*S3S4)
X CC21 = WIV*S3S4*(-S1S2*S3S4+S1S4*S2S3+S1S3*S2S4)
X CC11 = WIV*(-2)*(S2S3*S2S4*S3S4)
C
*fix
 ************************
C
Ċ
Ċ
    IN THIS SECTION, TAKE THE TRACE, REPLACE EACH K BY IT'S
    LINEAR EXPANSION
Č
    AND REDUCE TO A FINAL ANSWER.
V B,K,CU,M,E,N,P1,P2,P3,P4,P5,PD
F C,FO,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,A1,A2,A3,AA
I J1. J2. M1. M2. K3. K2
     SCALE FACTOR FOR THE AMPLITUDE IS ...
X FSCAL = 2*(P34+P35+P45)
     TAKE THE TRACE
ž
 EXP5=FSCAL *F0*F1*F2*F3*F4*F11*F5*F6*F7*F8*F9*F10
    SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM
```

C

č

C Ċ

C Č č

C Ċ

```
105
 Id, F0=0.5*((1+LHEL)*(G6(J1))*(1-LHEL)*(G7(J1)))
 Id,F1=(G(J1,B))
 Id,F2=ELECT*(G(J1,M2)) + POSIT*(G(J1,M1))
 Id.F3=(G(J1,K))
 Id, F4=ELECT*(G(J1,M1)) + POSIT*(G(J1,M2))
 Id,F11=0.5*((1+QHEL)*(G6(J2))+(1-QHEL)*(G7(J2)))
 Id, F5=(G(J2, CU))
 *yep
 Id, F6=(G(J2, M2))
 Id,F7=(G(J2,M))
 Id.F8=G(J2,E)
 Id, F9=(G(J2,N))
Id.F10=G(J2,M1)
 *yep
 Id, Trick, Trace, J1
C
       TRICK AND TRACE
Id, Trick, Trace, J2
*уер
c
      START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT.
Id,2,Dotpr,N(J^{\sim}) = M(J)+P1(J)
AI, Funct, N(K2^{\circ}) = M(K2) + P1(K2)
Id, MDM=0
Id, Dotpr, M(J^{\sim})=K(J)-PD(J)
AI, Funct, M(J^{-})=K(J)-PD(J)
Id.KDPD=P4P5
Id, KDK=0
Id,2,Dotpr,PD(J~)=P4(J)+P5(J)
AI, Funct, PD(J~)=P4(J)+P5(J)
Id.P4DP4=0
A1, P5DP5=0
AI.EDP1=0
C P OUTPUT
*yep
C
    PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS.
Id,2,Dotpr,B(J^{-})=B3*P3(J)+B4*P4(J)+B5*P5(J)+BEPF*Epf(J,P3,P4,P5)
A1, Funct, B(K3~)=B3*P3(K3)+B4*P4(K3)+B5*P5(K3)+BEPF*Epf(K3,P3,P4,P5)
C P OUTPUT
*yep
Id.B3 = BOIV*P4P5
AI,B4 = BOIV*P3P5
AI,B5 = -BOIV*P3P4
AI.BEPF = + LHEL*BOIV*(ELECT - POSIT)
Id. Trick
Id, KDK=0
Id,P1DP1=0
A1.P3DP3=0
AI,P4DP4=0
A1.P5DP5=0
Id.P1DP3=P1P3
AI.P1DP4=P1P4
AI,P1DP5=P1P5
AI,P3DP4=P3P4
```

```
AI.P3DP5=P3P5
AI,P4DP5=P4P5
C P NUTPUT
*yep
Id, 2, Dotpr, CU(J~)=
   (CU1-CU2) *P1 (J) +CU2*P3(J) +CU2*PD(J) +CU5*P5(J)
  +CUEPF*Epf (J.P1,P3,P5)+CUEPF*Epf (J.P1,P4,P5)
Al Funct, CU(K~)=
   (CU1-CU2)*P1(K)+CU2*P3(K)+CU2*PD(K)+CU5*P5(K)
  +CUEPF*Epf (K,P1,P3,P5)+CUEPF*Epf (K,P1,P4,P5)
Id, CU1 = - CUOIV* (P3P5+P4P5-P1P5)
AI.CU2 = CUOIV*P1P5
A1, CU5 = CUOIV + (P3P4+P3P5+P4P5)
AI CUEPF = + QHEL + CUOIV
*vep
Id.Trick
Td KDK=0
AI KDPD=P4P5
AI,EDP1=0
Id, 2, Dotpr, PD(J~)=P4(J)+P5(J)
Al, Funct, PD (K2~)=P4 (K2)+P5 (K2)
Id,P1DP1=0
A1,P3DP3=0
AI.P4DP4=0
A1, P5DP5=0
Id,P1DP3=P1P3
AI.P1DP4=P1P4
AI.P1DP5=P1P5
AI.P3DP4=P3P4
AI .P3DP5=P3P5
AL.P4DP5=P4P5
C P OUTPUT
*yep
     NOW PUT IN THE POLARIZATION VECTOR EXPANSION.
                     E1*P1(J) + E3*P3(J)
Id,2,Dotpr,E(J~)=
 E4*P4(J)+E5*P5(J)+EEPF*(Epf(J,P1,P3,P5)+Epf(J,P1,P4,P5))
                    E1*P1(K) + E3*P3(K)
Al, Funct, E(K~)=
 E4*P4(K)+E5*P5(K)+EEPF*(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5))
Id.E1 = E0IV*GHEL* (P3P5+P4P5-2*P1P5)
AI,E3 = E0IV+GHEL+P1P5
AI,E4 = E0IV*GHEL*P1P5
AI,E5 = -EOIV*GHEL*(P1P3*P1P4)
AI, EEPF = -EOIV
*yep
Id, Trick
Id, KDK=0
Id, Epf(P1,P3,P4,P5) = EVL
Id,P1DP1=0
A1,P3DP3=0
AI,P4DP4=0
A1.P5DP5=0
Id,P1DP3=P1P3
AI,P1DP4=P1P4
AI,P1DP5=P1P5
AI,P3DP4=P3P4
AI,P3DP5=P3P5
```

```
107
 AI,P4DP5=P4P5
 C P OUTPUT
 *yep
 C
 C
     REPLACE K BY IT'S LINEAR EXPANSION.
 Id, 2, Funct, K(J^{\sim})=C(1)*P1(J)+C(2)*P3(J)+C(3)*P4(J)
      +P5(J)*(1-C(3)-C(1)*D1*P45IV-C(2)*D345*P45IV)
 *vep
 Id, Trick
 Id, Epf(P1, P3, P4, P5) = EVL
 C P OUTPUT
 *yep
 Id, C(1) = CC11*P1DK+CC21*P3DK+(CC31-CC41)*P4DK+CC41*P4P5
AI,C(2) = CC21*P1DK+CC22*P3DK+(CC32-CC42)*P4DK+CC42*P4P5
AI,C(3) = CC31*P1DK+CC32*P3DK+(CC33-CC43)*P4DK+CC43*P4P5
AI.C(4) = CC41*P1DK+CC42*P3DK+(CC43-CC44)*P4DK+CC44*P4P5
C P OUTPUT
∗yep
C
C
         THE AMPLITUDE IS NOW COMPLETELY
         IN THE FORM OF DOT PRODUCTS
         OF K WITH EXTERNAL MOMENTA.
THE DOT PRODUCTS OF K
                            NEED TO
    BE EVALUATED, FOR EXAMPLE...
                   (P3DK) * (P4DK) * (P5DK)
     AND REMEMBER THIS FACTOR IS TO BE INTERGRATED OVER ALL K SPACE.
   THIS DEFINES THE AS MATRIX....
          A3(4,3,1) = (S4DK)*(S3DK)*(S1DK) INTEGRAL OF, OVER
      ALL K SPACE.
     AND SIMILARLY A2(J,K) AND A1(J) MATRICES.
   THE A3, A2, AND A1 MATRICES ARE EVALUATED USING 19 SIMPLE
   INTEGRALS, EVALUATED EARLIER .... I1 THRU I19....
č
     REPLACE PDK 'S BY A MATRICES
Ċ
    FOR THE FIVE POINT DIAGRAM, OR
Ċ
    SIMILAR B MATRICES FOR THE FOUR POINT.
Id,P1DK = AA(1)
AI.P3DK = AA(2)
AI.P4DK = AA(3)
AI,P5DK = -AA(3) + P4P5
```

 $Id,AA(J^{-})*AA(K^{-})*AA(L^{-}) = A3(J,K,L)$ $Id,AA(J^{-})*AA(K^{-}) = A2(J,K)$

 $Id,AA(J^{-}) = A1(J)$ Id,Symme,A3,1,2,3,A2,1,2

```
Keep EXP5
*next
S AO
Z = A0 \times EXP5
Id,A0*A3(3,3,3) = A3333
A1,A0*A3(2,3,3) = A3332
AI,A0*A3(1,3,3) = A3331
AI,A0*A3(2,2,3) = A3322
AI,A0*A3(1,2,3) = A3321
AI,A0*A3(1,1,3) = A3311
A1,A0*A3(2,2,2) = A3222
AI,A0*A3(1,2,2) = A3221
AI,A0*A3(1,1,2) = A3211
AI,A0*A3(1,1,1) = A3111
*yep
Id,A0*A2(3,3) = A233
A1,A0*A2(2,3) = A232
A1.A0*A2(1.3) = A231
A1,A0*A2(2,2) = A222
AI,A0*A2(1,2) = A221
AI,A0*A2(1,1) = A211
Id, A0*A1(3) = A13
AI,A0*A1(2) = A12
AI, A0*A1(1) = A11
C P OUTPUT
*уер
C.
C
   AND IN TERMS OF THE 19 INTEGRALS
C
   THE ABOVE DEFINED D1 AND D3, THE
C
C
     A3,A2, AND A1 MATRICES,
c
       USING THE NOTATION....
           A3(1,3,3) = A3331
Ċ
c
Id,A3333 = -0.5*(I19)
AI,A3332 = -0.25*(I13 - D3*I9)
AI,A3331 = -0.25*(I15 + 2*D1*I9)
AI,A3322 = -0.25*(I14 - 0.5*D3*I2 + 0.5*D3*D3*I6)
AI,A3321 = -0.125*(4*PI + 2*D1*I2 - D3*I3 - 2*D1*D3*I6)
AI,A3311 = -0.25*(\dot{I}16 + D1*I3 + 2*D1*D1*I6)
A1,A3222 = 0.5*(I17 - D3*A222)
A1,A3221 = (0.25*I12 + 0.5*D1*I7 - 0.5*D3*A221)
AI,A3211 = (0.25*(I11 - D3*I8) + D1*A221)
AI.A3111 = 0.5*(I18 + 2*D1*A211)
Id,A233 = -0.5*(I9)
A1,A232 = -0.25*(12 - D3*16)
A1,A231 = -0.25*(I3 + 2*D1*I6)
A1,A222 = 0.5*(I7 - D3*A12)
AI,A221 = (0.25*(I1 + 2*D1*I4) - 0.5*D3*A11)
AI,A211 = 0.5*(I8 + 2*D1*A11)
*yep
Id,A13 = -0.5*(I6)
AI,A12 = 0.5*(I4 - D3*I10)
AI.A11 = 0.5*(I5 + 2*D1*I10)
C
```

Ċ

C C C C

C C C C C

C

C C

Ι

C

C C C

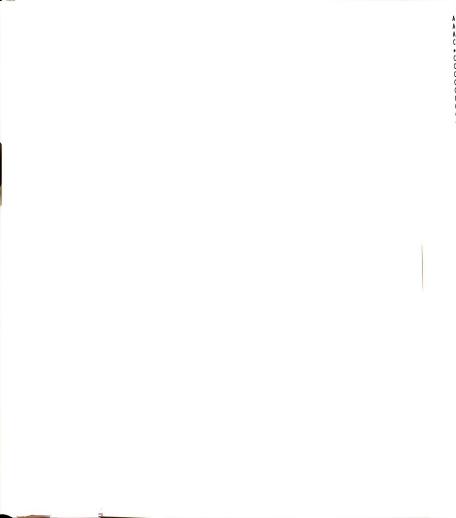
Ž

C

```
*yep
 Id,P13 = P34 + P35 + P45 - P14 - P15
   PUT IN AO
Id,A0 = I10
     THE FIVE POINT ANSWER IS NOW FORMED.
B WIV.D3.PI.FPIIV.CUOIV.BOIV.EOIV.EVL
Keep EXP51
*next
     NOW CALCULATE THE FOUR POINT AMPLITUDE
    IN THIS SECTION, TAKE THE TRACE, REPLACE EACH K BY IT'S
    LINEAR EXPANSION
    AND REDUCE TO A FINAL ANSWER.
V B,K,CU,M,E,N,P1,P2,P3,P4,P5,PD
F C,FO,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,A1,A2,A3,AA
  J1, J2, M1, M2, K3, K2
     SCALE FACTOR FOR THE AMPLITUDE IS ...
X FSCAL = 1.0
      TAKE THE TRACE
  EXP4=FSCAL*F0*F1*F2*F3*F4*F11*F5*F6*F7*F8*F9*F10
    SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM
Id, F0=0.5*((1+LHEL)*(G6(J1))*(1-LHEL)*(G7(J1)))
Id,F1=(G(J1,B))
Id,F2=ELECT*(G(J1,M2)) + POSIT*(G(J1,M1))
Id.F3=(G(J1,K))
Id,F4=ELECT*(G(J1,M1)) + POSIT*(G(J1,M2))
Id,F11=0.5*((1+QHEL)*(G6(J2))+(1-QHEL)*(G7(J2)))
Id,F5=(G(J2,CU))
*vep
Id, F6=(G(J2, M2))
Id, F7=(G(J2, M))
Id, F8=G(J2, M1)
Id, F9=(G(J2,N))
Id,F10=G(J2,E)
Id, Trick, Trace, J1
```

```
TRICK AND TRACE
Id, Trick, Trace, J2
*yep
c
     START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT.
Id, 2, Dotpr, N(J^{\sim}) = P3(J) + P4(J) + P5(J)
AI, Funct, N(K2^{-}) = P3(K2) + P4(K2) + P5(K2)
Id.MDM=0
Id, Dotpr, M(J^{\sim})=K(J)-PD(J)
AI, Funct, M(J~)=K(J)-PD(J)
Id.KDPD=P4P5
Id, KDK=0
Id, 2, Dotpr, PD(J")=P4(J)+P5(J)
AI, Funct, PD(J~)=P4(J)+P5(J)
Id,P4DP4=0
A1,P5DP5=0
AI, EDP1=0
C P OUTPUT
*yep
C
    PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS.
C
Id, 2, Dotpr, B(J~)=B3*P3(J)+B4*P4(J)+B5*P5(J)+BEPF*Epf(J,P3,P4,P5)
AI, Funct, B(K3")=B3*P3(K3)+B4*P4(K3)+B5*P5(K3)+BEPF*Epf(K3,P3,P4,P5)
C P OUTPUT
*уер
Id,B3 = B0IV*P4P5
AI.B4 = BOIV*P3P5
AI,B5 = -BOIV*P3P4
AI, BEPF = + LHEL *BOIV* (ELECT - POSIT)
Id, Trick
Id.KDK=0
Id,P1DP1=0
A1, P3DP3=0
AI,P4DP4=0
A1.P5DP5=0
Id.P1DP3=P1P3
AI.P1DP4=P1P4
AI,P1DP5=P1P5
A1.P3DP4=P3P4
AI,P3DP5=P3P5
AI.P4DP5=P4P5
C P OUTPUT
*yep
Id,2,Dotpr,CU(J~)=
    (CU1-CU2) *P1 (J) +CU2*P3 (J) +CU2*PD (J) +CU5*P5 (J)
  +CUEPF*Epf (J,P1,P3,P5)+CUEPF*Epf (J,P1,P4,P5)
AI, Funct, CU(KT) =
   (CU1-CU2)*P1(K)+CU2*P3(K)+CU2*PD(K)+CU5*P5(K)
  +CUEPF*Epf (K,P1,P3,P5)+CUEPF*Epf (K,P1,P4,P5)
Id, CU1 = - CUOIV*(P3P5+P4P5-P1P5)
AI, CU2 = CUOIV*P1P5
A1,CU5 = CUOIV*(P3P4+P3P5+P4P5)
AI, CUEPF = + QHEL + CUOIV
*yep
```

```
Id, Trick
Id.KDK=0
AI,KDPD=P4P5
AI, EDP1=0
Id, 2, Dotpr, PD(J~)=P4(J)+P5(J)
A1 .Funct .PD (K2") =P4 (K2) +P5 (K2)
Id.P1DP1=0
A1,P3DP3=0
A1.P4DP4=0
A1.P5DP5=0
Id,P1DP3=P1P3
AI,P1DP4=P1P4
AI.P1DP5=P1P5
AI.P3DP4=P3P4
AI,P3DP5=P3P5
AI.P4DP5=P4P5
C P OUTPUT
*yep
     NOW PUT IN THE POLARIZATION VECTOR EXPANSION.
C
                     E1*P1(J) + E3*P3(J)
Id,2,Dotpr,E(J~)=
 E4*P4(J)+E5*P5(J)+EEPF*(Epf(J,P1,P3,P5)+Epf(J,P1,P4,P5))
AI, Funct, E(K")=
                   E1*P1(K) + E3*P3(K)
 E4*P4(K)+E5*P5(K)+EEPF*(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5))
Id E1 = E0IV*GHEL* (P3P5+P4P5-2*P1P5)
AI .E3 = E0IV*GHEL*P1P5
AI,E4 = EOIV*GHEL*P1P5
AI,E5 = -EOIV*GHEL*(P1P3*P1P4)
AI, EEPF = -EOIV
*yep
Id, Trick
Id.KDK=0
Id, Epf(P1,P3,P4,P5) = EVL
Id,P1DP1=0
A1,P3DP3=0
A1,P4DP4=0
A1,P5DP5=0
Id,P1DP3=P1P3
AI.P1DP4=P1P4
AI,P1DP5=P1P5
AI,P3DP4=P3P4
AI,P3DP5=P3P5
AI .P4DP5=P4P5
C P OUTPUT
*yep
c
    REPLACE K BY IT'S LINEAR EXPANSION.
C
Id, 2, Funct, K(J^{-}) = C(1) *P1(J) + C(2) *P3(J) + C(3) *P4(J)
      +P5(J)*(1-C(3)-C(1)*D1*P451V-C(2)*D345*P451V)
*vep
Id.Trick
Id, Epf (P1, P3, P4, P5) = EVL
C P OUTPUT
*yep
Id, C(1) = CC11*P1DK+CC21*P3DK+(CC31-CC41)*P4DK+CC41*P4P5
```



```
AI,C(2) = CC21*P1DK+CC22*P3DK+(CC32-CC42)*P4DK+CC42*P4P5
AI, C(3) = CC31*P1DK+CC32*P3DK+(CC33-CC43)*P4DK+CC43*P4P5
AI, C(4) = CC41*P1DK+CC42*P3DK+(CC43-CC44)*P4DK+CC44*P4P5
C P OUTPUT
*yep
C
          THE AMPLITUDE IS NOW COMPLETELY
C
C
          IN THE FORM OF DOT PRODUCTS
Ċ
          OF K WITH EXTERNAL MOMENTA.
C
C
  THE DOT PRODUCTS OF K
                              NEED TO
C
Ċ
    BE EVALUATED, FOR EXAMPLE...
č
                    (P3DK) * (P4DK) * (P5DK)
C
     AND REMEMBER THIS FACTOR IS TO BE INTERGRATED OVER ALL K SPACE.
CCCC
   THIS DEFINES THE A3 MATRIX....
č
č
           A3(4,3,1) = (S4DK)*(S3DK)*(S1DK)
                                                   INTEGRAL OF, OVER
0000000000
     ALL K SPACE.
     AND SIMILARLY A2(J,K) AND A1(J) MATRICES.
   THE A3, A2, AND A1 MATRICES ARE EVALUATED USING 19 SIMPLE
   INTEGRALS, EVALUATED EARLIER .... I1 THRU I19....
Č
     REPLACE PDK 'S BY A MATRICES
č
    FOR THE FIVE POINT DIAGRAM, OR
    SIMILAR B MATRICES FOR THE FOUR POINT.
C
Id.P1DK = AA(1)
AI.P3DK = AA(2)
AI,P4DK = AA(3)
AI,P5DK = -AA(3) + P4P5
Id, AA(J^{-})*AA(K^{-})*AA(L^{-}) = A3(J,K,L)

Id, AA(J^{-})*AA(K^{-}) = A2(J,K)
Id(AA(J^{*}) = A1(J)
Id, Symme, A3, 1, 2, 3, A2, 1, 2
Keep EXP51.EXP4
*next
S AO
Z = XP41 = A0 \times EXP4
Id, A0*A3(3,3,3) = B3ERR
A1,A0*A3(2,3,3) = B3ERR
A1,A0*A3(1,3,3) = B3ERR
A1, A0+A3(2,2,3) = B3ERR
AI,A0*A3(1,2,3) = B3ERR
AI,AO*A3(1,1,3) = B3ERR
AI,AO*A3(2,2,2) = B3ERR
AI,AO*A3(1,2,2) = B3ERR
AI, AO+A3(1,1,2) = B3ERR
AI,AO*A3(1,1,1) = B3ERR
```

*yep

```
113
Id,A0*A2(3,3) = B233
A1,A0*A2(2,3) = B232
AI,A0*A2(1,3) = B231
AI, A0*A2(2,2) = B222
AI, A0*A2(1,2) = B221
AI,A0*A2(1,1) = B211
Id, A0*A1(3) = B13
AI, A0*A1(2) = B12
AI, A0*A1(1) = B11
C P DUTPŮT
*yep
c.
č
č
   AND IN TERMS OF THE 19 INTEGRALS,
č
    THE ABOVE DEFINED D1 AND D3, THE
Č
     A3.A2, AND A1 MATRICES,
CCCCCCCC
       USING THE NOTATION....
           A3(1,3,3) = A3331
      PUT IN "B" SERIES
Id_B233 = -0.5*I15
AI,B232 = -0.25*(4*PI - D3*I3)
AI.B231 = -0.5*I16
AI,B222 = 0.5*(I12 - D3*B12)
AI,B221 = 0.5*(I11 - D3*B11)
AI.B211 = I18
Id,B13 = -0.5*I3
AI.B12 = 0.5*(I1 -D3*I5)
AI,B11 = I8
   PUT IN AO
c
*yep
Id,P13 = P34 + P35 + P45 - P14 - P15
*vep
Id, A0 = I5
C
c
      THE ANSWER IS NOW FORMED.
C
B WIV,D3,PI,FPIIV,CUOIV,BOIV,EOIV,EVL
Keep EXP51, EXP41
*next
C
  NOW ADD THE FIVE AND FOUR POINT
C
       DIAGRAMS TOGHETHER
C
Ċ
     AND PUNCH THE FORTRAN
 Ċ
     COMPATIBLE OUTPUT
```

Z EXP = EXP51 + EXP41 B WIY, D3,P1,FPIIY, CUGIV,BOIV,EOIV,EVL,I1,I2,I3,I4,I5,I6, I7,I8,I9,I10,I11,I12,I13,I14,I15,I16,I17,I18,I1L Punch EXP *end

com inde the co-e

and

As ter

oı b

Appendix L The Linear Expansion of k_{μ}

An arbritary, though specific four-vector, k_{μ} , being composed of it's four components (k_x, k_y, k_z, k_0) , may always be projected upon four other linearly independent four-vectors- S1, S2, S3, S4, in that what we don't know about the four components of k_{μ} is traded for what we don't know about the four co-efficients of the expansion:

$$k_{\mu} = C1(S1_{\mu}) + C2(S2_{\mu}) + C3(S3_{\mu}) + C4(S4_{\mu})$$

and in general the co-efficents are functions of k

$$k_{\mu} = [C1(k)](S1_{\mu}) + [C2(k)](S2_{\mu}) + [C3(k)](S3_{\mu}) + [C4(k)](S4_{\mu})$$

As the equation is linear, the co-efficents for any k_{μ} may be determined in terms of the dot products:

$$S1 \cdot k$$
, $S2 \cdot k$, $S3 \cdot k$, $S4 \cdot k$

or, to state it differently, what we don't know about the four co-efficents may be futher traded for what we don't know about the four dot products.

This may be seen by forming the dot products:

$$S1 \cdot k = C1(S1 \cdot S1) + C2(S1 \cdot S2) + C3(S1 \cdot S3) + C4(S1 \cdot S4)$$

$$S2 \cdot k = C1(S2 \cdot S1) + C2(S2 \cdot S2) + C3(S2 \cdot S3) + C4(S2 \cdot S4)$$

$$S3 \cdot k = C1(S3 \cdot S1) + C2(S3 \cdot S2) + C3(S3 \cdot S3) + C4(S3 \cdot S4)$$

$$S4 \cdot k = C1(S4 \cdot S1) + C2(S4 \cdot S2) + C3(S4 \cdot S3) + C4(S4 \cdot S4)$$

which may be cast in matrix form

$$\begin{pmatrix} S1 \cdot k \\ S2 \cdot k \\ S3 \cdot k \\ S4 \cdot k \end{pmatrix} = \begin{pmatrix} S1 \cdot S1 & S1 \cdot S2 & S1 \cdot S3 & S1 \cdot S4 \\ S2 \cdot S1 & S2 \cdot S2 & S2 \cdot S3 & S2 \cdot S4 \\ S3 \cdot S1 & S3 \cdot S2 & S3 \cdot S3 & S3 \cdot S4 \\ S4 \cdot S1 & S4 \cdot S2 & S4 \cdot S3 & S4 \cdot S4 \end{pmatrix} \begin{pmatrix} C1 \\ C2 \\ C3 \\ C4 \end{pmatrix}$$

The co Let W

W :

and t

Si

The co-efficients C1, C2, C3, C4 are solved for in the usual Cramer's rule method. Let $\mathcal W$ be the determinant of the above matrix. It is solved to be:

$$\mathcal{W} = -(S1S2)(S3S4)\{-(S1S2)(S3S4) + (S2S3)(S1S4) + (S2S4)(S1S3)\}$$

$$\begin{split} &-(S1S3)(S2S4)\{(S1S2)(S3S4)+(S2S3)(S1S4)+-(S2S4)(S1S3)\}\\ &-(S1S4)(S2S3)\{(S1S2)(S3S4)-(S2S3)(S1S4)+(S2S4)(S1S3)\} \end{split}$$

and the C1 numerator is the same with S1 replaced by k in the first column:

$$C1_{numerator} = 2(S1 \cdot k)(S2S3)(S2S4)(S3S4)$$

$$-(S1S2)(S3S4)\{-(S2 \cdot k)(S3S4) + (S2S3)(S4 \cdot k) + (S2S4)(S3 \cdot k)\}$$

$$-(S1S3)(S2S4)\{(S2 \cdot k)(S3S4) + (S2S3)(S4 \cdot k) + -(S2S4)(S3 \cdot k)\}$$

$$-(S1S4)(S2S3)\{(S2\cdot k)(S3S4)-(S2S3)(S4\cdot k)+(S2S4)(Ss\cdot k)\}$$

$$C1 = \frac{C1_{numerator}}{W}$$

Similarly for the C2, C3, C4 numerators.

Define the elements of the inverse matrix to be:

$$\begin{pmatrix} S1 \cdot S1 & S1 \cdot S2 & S1 \cdot S3 & S1 \cdot S4 \\ S2 \cdot S1 & S2 \cdot S2 & S2 \cdot S3 & S2 \cdot S4 \\ S3 \cdot S1 & S3 \cdot S2 & S3 \cdot S3 & S3 \cdot S4 \\ S4 \cdot S1 & S4 \cdot S2 & S4 \cdot S3 & S4 \cdot S4 \end{pmatrix}^{-1} = \begin{pmatrix} CC11 & CC12 & CC13 & CC14 \\ CC21 & CC22 & CC23 & CC24 \\ CC31 & CC32 & CC33 & CC34 \\ CC41 & CC42 & CC43 & CC44 \end{pmatrix}$$

Then

$$\begin{pmatrix} CC11 & CC12 & CC13 & CC14 \\ CC21 & CC22 & CC23 & CC24 \\ CC31 & CC32 & CC33 & CC34 \\ CC41 & CC42 & CC43 & CC44 \\ \end{pmatrix} \begin{pmatrix} S1 \cdot k \\ S2 \cdot k \\ S3 \cdot k \\ S4 \cdot k \end{pmatrix} = \begin{pmatrix} C1 \\ C2 \\ C3 \\ C4 \end{pmatrix}$$

which gives four equations of the form:

$$C1 = CC11(S1 \cdot k) + CC12(S2 \cdot k) + CC13(S3 \cdot k) + CC14(S4 \cdot k)$$

Comparison with the Cramer's rule generated expressions for C1, C2, C3, C4

yi

yields the CC11.....CC44

$$CC11 = W^{-1}2(S2S3)(S2S4)(S3S4)$$

 $CC12 = -\mathcal{W}^{-1}(S3S4)\{-(S1S2)(S3S4) + (S2S3)(S1S4) + (S2S4)(S1S3)\}$

 $CC13 = -\mathcal{W}^{-1}(S2S4)\{(S1S2)(S3S4) + (S2S3)(S1S4) + -(S2S4)(S1S3)\}$

 $CC14 = -\mathcal{W}^{-1}(S2S3)\{(S1S2)(S3S4) - (S2S3)(S1S4) + (S2S4)(S1S3)\}$

CC21 = CC12

 $CC22 = W^{-1}2(S1S3)(S1S4)(S3S4)$

 $CC23 = -\mathcal{W}^{-1}(S1S4)\{(S1S2)(S3S4) + (S2S3)(S1S4) + -(S2S4)(S1S3)\}$

 $CC24 = -\mathcal{W}^{-1}(S1S3)\{(S1S2)(S3S4) - (S2S3)(S1S4) + (S2S4)(S1S3)\}$

CC31 = CC13

CC32 = CC23

 $CC33 = \mathcal{W}^{-1}2(S1S2)(S1S4)(S2S4)$

 $CC34 = -\mathcal{W}^{-1}(S1S2)\{-(S1S2)(S3S4) + (S2S3)(S1S4) + (S2S4)(S1S3)\}$

CC41 = CC14

CC42 = CC24

CC43 = CC34

 $CC44 = W^{-1}2(S1S2)(S1S3)(S2S3)$

In the above the fact that the particles have zero mass, that is that $S_{\mu}S^{\mu}=0$ has been used.

Alternatively the terms may be rearranged to make explicit the dependence on the dot products:

$$k_{\mu} = (S1 \cdot k)\mathcal{F}1_{\mu} + (S2 \cdot k)\mathcal{F}2_{\mu} + (S3 \cdot k)\mathcal{F}3_{\mu} + (S4 \cdot k)\mathcal{F}4_{\mu}$$

where

$$\begin{split} \mathcal{F}1_{\mu} &= (CC11)S1_{\mu} + (CC12)S2_{\mu} + (CC13)S3_{\mu} + (CC14)S4_{\mu} \\ \mathcal{F}2_{\mu} &= (CC21)S1_{\mu} + (CC22)S2_{\mu} + (CC23)S3_{\mu} + (CC24)S4_{\mu} \\ \mathcal{F}3_{\mu} &= (CC31)S1_{\mu} + (CC32)S2_{\mu} + (CC33)S3_{\mu} + (CC34)S4_{\mu} \\ \mathcal{F}4_{\mu} &= (CC41)S1_{\mu} + (CC42)S2_{\mu} + (CC43)S3_{\mu} + (CC44)S4_{\mu} \end{split}$$

As a check that the matrix elements CC11.....CC44 are correctly calculated, they are compared with the results of the relation:

$$S(\alpha)^{\mu}\mathcal{F}(\beta)_{\mu} = \delta^{\beta}_{\alpha}$$

which is obtained by dotting the above expression for k_{μ} with S1, S2, S3, S4.

$$S1^{\mu}k_{\mu} = (S1^{\mu}\mathcal{F}1_{\mu})(S1\cdot k) + (S1^{\mu}\mathcal{F}2_{\mu})(S2\cdot k) + (S1^{\mu}\mathcal{F}3_{\mu})(S3\cdot k) + (S1^{\mu}\mathcal{F}4_{\mu})(S4\cdot k)$$

and noting that $S1 \cdot k$, $S2 \cdot k$, $S3 \cdot k$, $S4 \cdot k$ are all independent.

For this problem:

$$S1_{\mu} = P1_{\mu}$$

$$S2_{\mu} = P3_{\mu}$$

$$S3_{\mu} = P4_{\mu}$$

$$S4_{\mu} = P5_{\mu}$$

Appendix M Base Integral Reductions

After the TRACE is taken and the four linear substitutions invoked, the OOP calculation has a numerator containing terms of three, two, one, or none tors of dot products with k_{μ} .

ch term, here called a 'base integral', can be integrated separately, and is tentially reducable to a simplier integral via cancellation of the dot products k_{μ} with similar dot products in the denominator.

r example, the 'base integral'

$$\mathbf{3(2,1,1)} = \int \frac{d\Omega_k \ (P3 \cdot k) \ (P1 \cdot k) \ (P1 \cdot k)}{(-2P4 \cdot k + M_{\gamma}^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)}$$

ith some co-efficent), from the five point diagram;

d

$$\mathbf{B1(3)} = \int \frac{d\Omega_k \ (P4 \cdot k)}{(-2P4 \cdot k + M_{\tau}^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)}$$

ith some co-efficient), from the four point diagram, which only has two deminator factors to start with.

establish some notation:

nose 'base integrals' of the five point diagram, (with three denominator facts), will be called 'A' type integrals and will be sub-typed A1, A2, or A3 to licate the number of dot products of k_{μ} present. The first integral above is type A3.

nilarly, the four point diagram integrals (with two denominator factors) will typed 'B', and sub-typed B1 or B2 to indicate the number of dot products k_{μ} present in the numerator. The second integral above is of type B1.

ther the designation will be indexed to show specifically, which dot prodes of k_{μ} are present. This index corresponds to the vectors position in the pansion of k_{μ} effected in Appendix L:

$$k_{\mu} = (C1)P1_{\mu} + (C2)P3_{\mu} + (C3)P4_{\mu} + (C4)P5_{\mu}$$

ning the index 1 to P1, the index 2 to P3, the index 3 to P4, and the index P5. The index 4 is removable by the on-shell condition:

$$P5 \cdot k = -P4 \cdot k + P4P5$$

3 the first example integral above is A3(2,1,1) and the second is B1(3)

reduction of all base integrals by the cancellation of factors is now enacted. In the case reduction is carried out until no futher cancellation is possible. The integral is then expressed in terms of nineteen irreducable integrals which the solved analytically. These nineteen integrals are listed and solved in endix N.

ne reduction, whenever a term proportional to M_{γ} or M_{quark} is generated it opped, in recognition that both these masses will ultimately go to zero.

$$3,3,3) = \int \frac{d\Omega_{k} (P4 \cdot k) (P4 \cdot k) (P4 \cdot k)}{(-2P4 \cdot k + M_{\gamma}^{2})(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^{2})(2P3 \cdot k + M_{z}^{2} - i\Gamma M_{z})}$$

$$= \int \frac{d\Omega_{k} (P4 \cdot k) (P4 \cdot k) (P4 \cdot k)}{(...)(...)(...)}$$

$$= -1/2 \left[\int \frac{d\Omega_{k} (-2(P4) \cdot k) (P4 \cdot k) (P4 \cdot k)}{(...)(...)(...)} \right]$$

$$-1/2 \left[\int \frac{d\Omega_{k} (-2(P4) \cdot k + M_{\gamma}^{2}) (P4 \cdot k) (P4 \cdot k)}{(...)(...)(...)} - M_{\gamma}^{2} \int \frac{d\Omega_{k}}{(...)(...)(...)} \right]$$

$$-1/2 \left[\int \frac{d\Omega_{k} (-2(P4) \cdot k + M_{\gamma}^{2}) (P4 \cdot k) (P4 \cdot k)}{(...)(...)(...)} - 0 \int \frac{d\Omega_{k}}{(...)(...)(...)} \right]$$

$$= -1/2 \left[\int \frac{d\Omega_{k} (P4 \cdot k) (P4 \cdot k)}{\bullet (...)(...)} \right]$$

$$= -1/2 (I19)$$

$$\mathbf{3,3,2}) = \int \frac{d\Omega_k (P4 \cdot k) (P4 \cdot k) (P3 \cdot k)}{(-2P4 \cdot k + M_\gamma^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)}$$

$$= -1/2 \left[\int \frac{d\Omega_k}{\bullet(...)(...)} \frac{(P4 \cdot k) (P3 \cdot k)}{\bullet(...)(...)} \right]$$

$$= \left[1/2 \left(\int \frac{d\Omega_k}{\bullet(...)(...)} \frac{(P4 \cdot k) (2P3 \cdot k + (M_z^2 - i\Gamma M_z))}{\bullet(...)(...)} - (M_z^2 - i\Gamma M_z) \int \frac{d\Omega_k}{\bullet(...)(...)} \frac{(P4 \cdot k)}{\bullet(...)(...)} \right) \right]$$

$$= -1/2 \left[1/2 \left(\mathbf{I}\mathbf{1}\mathbf{3} - (M_z^2 - i\Gamma M_z)\mathbf{I}\mathbf{9} \right) \right]$$

$$3,1) = \int \frac{d\Omega_{k} (P4 \cdot k) (P4 \cdot k) (P1 \cdot k)}{(-2P4 \cdot k + M_{\gamma}^{2})(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^{2})(2P3 \cdot k + M_{z}^{2} - i\Gamma M_{z})}$$

$$= -1/2 \left[\int \frac{d\Omega_{k} (P4 \cdot k) (P1 \cdot k)}{\bullet (...)(...)} \right]$$

$$4 \left[\int \frac{d\Omega_{k} (P4 \cdot k) (2P1 \cdot k - 2(P1P4 + P1P5))}{\bullet (...)(...)} + 2(P1P4 + P1P5) \int \frac{d\Omega_{k} (P4 \cdot k)}{\bullet (...)(...)} \right]$$

$$= -1/4 \left[\mathbf{I} \mathbf{15} + 2(P1P4 + P1P5) \mathbf{I} \mathbf{9} \right]$$

$$2,2) = \int \frac{d\Omega_{k} (P4 \cdot k) (P3 \cdot k) (P3 \cdot k)}{(-2P4 \cdot k + M_{\gamma}^{2})(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^{2})(2P3 \cdot k + M_{z}^{2} - i\Gamma M_{z})}$$

$$= -1/2 \left[\int \frac{d\Omega_{k} (P3 \cdot k) (P3 \cdot k)}{\bullet(...)(...)} \right]$$

$$4 \left[\int \frac{d\Omega_{k} (P3 \cdot k) (2P3 \cdot k + (M_{z}^{2} - i\Gamma M_{z}))}{\bullet(...)(...)} - (M_{z}^{2} - i\Gamma M_{z}) \int \frac{d\Omega_{k} (P3 \cdot k)}{\bullet(...)(...)} \right]$$

$$4 \left[\mathbf{I}\mathbf{1}\mathbf{4} - 1/2(M_{z}^{2} - i\Gamma M_{z}) \left(\int \frac{d\Omega_{k} (2P3 \cdot k + (M_{z}^{2} - i\Gamma M_{z}))}{\bullet(...)(...)} - (M_{z}^{2} - i\Gamma M_{z}) \int \frac{d\Omega_{k}}{\bullet(...)(...)} \right) \right]$$

$$-1/4 \left[\mathbf{I}\mathbf{1}\mathbf{4} - 1/2(M_{z}^{2} - i\Gamma M_{z})\mathbf{I}\mathbf{2} + 1/2(M_{z}^{2} - i\Gamma M_{z})(M_{z}^{2} - i\Gamma M_{z})\mathbf{I}\mathbf{6} \right]$$

$$\begin{split} \mathrm{i}_{*}(\mathbf{2},\mathbf{1}) &= \int \frac{d\Omega_{k} \ (P4 \cdot k) \ (P3 \cdot k) \ (P1 \cdot k)}{(-2P4 \cdot k + M_{7}^{2})(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^{2})(2P3 \cdot k + M_{z}^{2} - i\Gamma M_{z})} \\ &= -1/2 \left[\int \frac{d\Omega_{k} \ (P3 \cdot k) \ (P1 \cdot k)}{\bullet(\ldots)(\ldots)} \right] \\ /4 \left[\int \frac{d\Omega_{k} \ (P1 \cdot k) \ (2P3 \cdot k + (M_{z}^{2} - i\Gamma M_{z}))}{\bullet(\ldots)(\ldots)} - (M_{z}^{2} - i\Gamma M_{z}) \int \frac{d\Omega_{k} \ (P1 \cdot k)}{\bullet(\ldots)(\ldots)} \right] \\ \mathrm{i} \left[\int \frac{d\Omega_{k} \ (P1 \cdot k) \ (2P3 \cdot k + (M_{z}^{2} - i\Gamma M_{z}))}{\bullet(\ldots)(\ldots)} + 2(P1P4 + P1P5) \int \frac{d\Omega_{k} \ (P1 \cdot k)}{\bullet(\ldots)(\ldots)} \right] \\ \mathrm{i} \left[\int \frac{d\Omega_{k} \ (P1 \cdot k) \ (P3 \cdot k) \ (P1 \cdot k)}{\bullet(\ldots)(\ldots)} + 2(P1P4 + P1P5) \int \frac{d\Omega_{k} \ (P1 \cdot k)}{\bullet(\ldots)(\ldots)} \right] \\ \mathrm{i} \left[\int \frac{d\Omega_{k} \ (P1 \cdot k) \ (P1 \cdot k) \ (P1 \cdot k) \ (P1 \cdot k)}{\bullet(\ldots)(\ldots)} + 2(P1P4 + P1P5) \int \frac{d\Omega_{k} \ (P1 \cdot k) \ (P1 \cdot k) \ (P1 \cdot k)}{\bullet(\ldots)(\ldots)} \right] \\ \mathrm{i} \left[\int \frac{d\Omega_{k} \ (P1 \cdot k) \ (P1 \cdot k$$

$$1/8 \left[4\pi + 2(P1P4 + P1P5)\mathbf{I2} - (M_z^2 - i\Gamma M_z)\mathbf{I3} - 2(P1P4 + P1P5)(M_z^2 - i\Gamma M_z)\mathbf{I6} \right]$$

 $1/4 \left[1/2 \left(4\pi + 2(P1P4 + P1P5)\mathbf{I2} \right) - 1/2 \left(M_z^2 - i\Gamma M_z \right) \left(\mathbf{I3} + 2(P1P4 + P1P5)\mathbf{I6} \right) \right]$

$$\begin{aligned} \mathbf{3,1,1}) &= \int \frac{d\Omega_k \ (P4 \cdot k) \ (P1 \cdot k) \ (P1 \cdot k)}{(-2P4 \cdot k + M_{\tau}^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)} \\ &= -1/2 \left[\int \frac{d\Omega_k \ (P1 \cdot k) \ (P1 \cdot k)}{\bullet (...)(...)} \right] \\ &+ 4 \left[\int \frac{d\Omega_k \ (P1 \cdot k) \ (2P1 \cdot k - 2(P1P4 + P1P5))}{\bullet (...)(...)} + 2(P1P4 + P1P5) \int \frac{d\Omega_k \ (P1 \cdot k)}{\bullet (...)(...)} \right] \end{aligned}$$

$$\left[\int \Phi(...)(...) \left(\int \frac{d\Omega_k}{\Phi(...)(...)} \left(\int \frac{d\Omega_k}{\Phi(...)(...)} \left(\frac{2P1 \cdot k - 2(P1P4 + P1P5)}{\Phi(...)(...)} \right) + 2(P1P4 + P1P5) \int \frac{d\Omega_k}{\Phi(...)(...)} \right) \right]$$

 $/4[\mathbf{I}\mathbf{16} + (P1P4 + P1P5)\mathbf{I}\mathbf{3} + (1/2)2(P1P4 + P1P5)2(P1P4 + P1P5)\mathbf{I}\mathbf{6})$

$$\begin{split} ,\mathbf{2},\mathbf{2}) &= \int \frac{d\Omega_k \ (P3 \cdot k) \ (P3 \cdot k) \ (P3 \cdot k)}{(-2P4 \cdot k + M_\tau^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)} \\ ; &\left[\int \frac{d\Omega_k \ (P \cdot k) \ (P3 \cdot k) \ (2P3 \cdot k + (M_z^2 - i\Gamma M_z))}{(\ldots)(\ldots)(\ldots)} - (M_z^2 - i\Gamma M_z) \int \frac{d\Omega_k \ (P3 \cdot k)^2}{(\ldots)(\ldots)\bullet} \right] \\ &= 1/2 \ [\mathbf{117} - (M_z^2 - i\Gamma M_z) \mathbf{A2}(2,2)] \end{split}$$

$$\begin{split} & (\mathbf{Z},\mathbf{1}) = \int \frac{d\Omega_k \ (P3 \cdot k) \ (P1 \cdot k)}{(-2P4 \cdot k + M_\gamma^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{qhark}^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)} \\ & 2 \left[\int \frac{d\Omega_k \ (P3 \cdot k) \ (P1 \cdot k) \ (2P3 \cdot k + (M_z^2 - i\Gamma M_z))}{(...)(...)(...)} - (M_z^2 - i\Gamma M_z) \int \frac{d\Omega_k \ (P3 \cdot k) (P1 \cdot k)}{(...)(...)(...)} \right] \\ & (1/2) \left(\int \frac{d\Omega_k \ (P3 \cdot k) \ (2P1 \cdot k - 2(P1P4 + P1P5))}{(...)(...)^k} + 2(P1P4 + P1P5) \int \frac{d\Omega_k \ (P3 \cdot k)}{(...)(...)^k} \right) - (M_z^2 - i\Gamma M_z) \lambda^2(2, 1) \right] \end{split}$$

= $1/2 \left[1/2 \left(\mathbf{I} \mathbf{12} + 2(P1P4 + P1P5) \mathbf{I} \mathbf{7} \right) - \left(M_z^2 - i\Gamma M_z \right) \mathbf{A} \mathbf{2} (\mathbf{2}, \mathbf{1}) \right]$

$$\begin{split} \mathbf{A},\mathbf{A},\mathbf{1},\mathbf{1}) &= \int \frac{d\Omega_{k} \ (P3 \cdot k) \ (P1 \cdot k) \ (P1 \cdot k)}{(-2P4 \cdot k + M_{\gamma}^{2})(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^{2})(2P3 \cdot k + M_{z}^{2} - i\Gamma M_{z})} \\ &\geq \left[\int \frac{d\Omega_{k} \ (P1 \cdot k) \ (P1 \cdot k) \ (2P3 \cdot k + (M_{z}^{2} - i\Gamma M_{z}) - (M_{z}^{2} - i\Gamma M_{z}) A2(\mathbf{1}, \mathbf{1}) \right] \end{split}$$

 $1/2\left(\int \frac{d\Omega_{k} - (P1 \cdot k) - (2P1 \cdot k - 2(P1P4 + P1P5))}{(...)(...)*} + 2(P1P4 + P1P5) \int \frac{d\Omega_{k} - (P1 \cdot k)}{(...)(...)*}\right) - (M_{\pm}^{2} - i\Gamma M_{\pm})A2(1, 1)$ $1/2\left(I11 + (P1P4 + P1P5) \left[\int \frac{d\Omega_{k} - (2P1 \cdot k - 2(P1P4 + P1P5))}{(...)(...)*} + 2(P1P4 + P1P5) \int \frac{d\Omega_{k}}{(...)(...)*}\right]\right) - (M_{\pm}^{2} - i\Gamma M_{\pm})A2(1, 1)$

 $\left[1/2\left(\mathbf{I}\mathbf{1}\mathbf{1} + (P1P4 + P1P5)\left[\mathbf{I}\mathbf{1} + 2(P1P4 + P1P5)\mathbf{I}\mathbf{4}\right]\right) - (M_z^2 - i\Gamma M_z)\mathbf{A}\mathbf{2}(\mathbf{2}, \mathbf{1})\right]$

The previous may be done another way.

$$\begin{split} \mathbf{A}\mathbf{3}(\mathbf{2},\mathbf{1},\mathbf{1}) &= \int \frac{d\Omega_k \ (P3 \cdot k) \ (P1 \cdot k)}{(-2P4 \cdot k + M_\gamma^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)} \\ &= 1/2 \left[\int \frac{d\Omega_k \ (P3 \cdot k) \ (P1 \cdot k) \ (2P1 \cdot k - 2(P1P4 + P1P5))}{(...)(...)(...)} + 2(P1P4 + P1P5) \mathbf{A}\mathbf{2}(\mathbf{2},\mathbf{1}) \right] \\ &= 1/2 \left[1/2 \left(\int \frac{d\Omega_k \ (P1 \cdot k) \ (2P3 \cdot k + (M_z^2 - i\Gamma M_z))}{(...) \bullet (...)} - (M_z^2 - i\Gamma M_z) \mathbf{18} \right) + 2(P1P4 + P1P5) \mathbf{A}\mathbf{2}(\mathbf{2},\mathbf{1}) \right] \\ &= 1/2 \left[1/2 \left(\mathbf{I}\mathbf{1}\mathbf{1} - (M_z^2 - i\Gamma M_z)\mathbf{18} \right) + 2(P1P4 + P1P5) \mathbf{A}\mathbf{2}(\mathbf{2},\mathbf{1}) \right] \end{split}$$

$$\begin{split} \mathbf{A3(1,1,1)} &= \int \frac{d\Omega_k \ (P1 \cdot k) \ (P1 \cdot k) \ (P1 \cdot k)}{(-2P4 \cdot k + M_\gamma^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)} \\ &= 1/2 \left[\int \frac{d\Omega_k \ (P1 \cdot k) \ (P1 \cdot k) \ (2P1 \cdot k - 2(P1P4 + P1P5))}{(...)(...)(...)} + 2(P1P4 + P1P5)\mathbf{A2(1,1)} \right] \\ &= 1/2 \left[I18 + 2(P1P4 + P1P5)\mathbf{A2(1,1)} \right] \end{split}$$

$$\begin{split} \mathbf{A2(3,3)} &= \int \frac{d\Omega_k \quad (P4 \cdot k) \quad (P4 \cdot k)}{(-2P4 \cdot k + M_\gamma^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)(2P3 \cdot k + M_i^2 - i\Gamma M_z)} \\ &= \int \frac{d\Omega_k \quad (P4 \cdot k) \quad (P4 \cdot k)}{(...)(...)(...)} \\ &= -1/2 \left[\int \frac{d\Omega_k \quad (-2(P4) \cdot k) \quad (P4 \cdot k)}{(...)(...)(...)} \right] \\ &= -1/2 \left[\int \frac{d\Omega_k \quad (-2(P4) \cdot k + M_\gamma^2) \quad (P4 \cdot k)}{(...)(...)(...)} - M_\gamma^2 \int \frac{d\Omega_k}{(...)(...)(...)} \right] \\ &= -1/2 \left[\int \frac{d\Omega_k \quad (-2(P4) \cdot k + M_\gamma^2) \quad (P4 \cdot k)}{(...)(...)(...)} - 0 \int \frac{d\Omega_k}{(...)(...)(...)} \right] \\ &= -1/2 \left[\int \frac{d\Omega_k \quad (-2(P4) \cdot k + M_\gamma^2) \quad (P4 \cdot k)}{(...)(...)(...)} - 0 \int \frac{d\Omega_k}{(...)(...)(...)} \right] \end{split}$$

$$\begin{split} \mathbf{A2(3,2)} &= \int \frac{d\Omega_k - (P4 \cdot k) - (P3 \cdot k)}{(-2P4 \cdot k + M_\gamma^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)} \\ &= -1/2 \left[\int \frac{d\Omega_k - (P3 \cdot k)}{\bullet(\ldots)(\ldots)} \right] \\ &= -1/2 \left[1/2 \left(\int \frac{d\Omega_k - (2P3 \cdot k + (M_z^2 - i\Gamma M_z))}{\bullet(\ldots)(\ldots)} - (M_z^2 - i\Gamma M_z) \int \frac{d\Omega_k}{\bullet(\ldots)(\ldots)} \right) \right] \\ &= -1/2 \left[1/2 \left(1/2 - (M_z^2 - i\Gamma M_z) \mathbf{16} \right) \right] \end{split}$$

$$\begin{split} \mathbf{A2(3,1)} &= \int \frac{d\Omega_k \ (P4 \cdot k) \ (P1 \cdot k)}{(-2P4 \cdot k + M_{\gamma}^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)(2P3 \cdot k + M_{\gamma}^2 - i\Gamma M_{\gamma})} \\ &= -1/2 \left[\int \frac{d\Omega_k \ (P1 \cdot k)}{\bullet (\dots)(\dots)} \right] \end{split}$$

$$= -1/4 \left[\int \frac{d\Omega_k - (2P1 \cdot k - 2(P1P4 + P1P5))}{\bullet (...) (...)} + 2(P1P4 + P1P5) \int \frac{d\Omega_k}{\bullet (...) (...)} \right]$$

$$= -1/4 \left[I3 + 2(P1P4 + P1P5) I6 \right]$$

$$\begin{split} \mathbf{A2(2,2)} &= \int \frac{d\Omega_k \ (P3 \cdot k) \ (P3 \cdot k)}{(-2P4 \cdot k + M_{\gamma}^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)} \\ &= 1/2 \left[\int \frac{d\Omega_k \ (P3 \cdot k) \ (2P3 \cdot k + (M_z^2 - i\Gamma M_z))}{(\dots)(\dots)(\dots)} - (M_z^2 - i\Gamma M_z) \int \frac{d\Omega_k \ (P3 \cdot k)}{(\dots)(\dots)(\dots)} \right] \\ &= 1/2 \left[\mathbf{I7} - (M_z^2 - i\Gamma M_z) \mathbf{A1(2)} \right] \end{split}$$

$$\begin{split} \mathbf{A2}(2,1) &= \int \frac{d\Omega_k \ (P3 \cdot k) \ (P1 \cdot k)}{(-2P4 \cdot k + M_\gamma^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)(2P3 \cdot k + M_\gamma^2 - i\Gamma M_\gamma)} \\ &= 1/2 \left[\int \frac{d\Omega_k \ (P1 \cdot k) \ (2P3 \cdot k + (M_\gamma^2 - i\Gamma M_\gamma))}{(...)(...)(...)} - (M_z^2 - i\Gamma M_\gamma) \int \frac{d\Omega_k \ (P1 \cdot k)}{(...)(...)} \right] \\ &= 1/2 \left[1/2 \left(\int \frac{d\Omega_k \ (2P1 \cdot k - 2(P1P4 + P1P5))}{(...)(...)} + 2(P1P4 + P1P5) \int \frac{d\Omega_k \ (P1 \cdot k)}{(...)(...)} \right) - (M_z^2 - i\Gamma M_z) \mathbf{A1}(1) \right] \\ &= 1/2 \left[1/2 \left(\mathbf{I1} + 2(P1P4 + P1P5) \mathbf{I4} - (M_\gamma^2 - i\Gamma M_\gamma) \mathbf{A1}(1) \right) \right] \end{split}$$

$$\begin{split} \mathbf{A2(1.1)} &= \int \frac{d\Omega_k \ (P1 \cdot k) \ (P1 \cdot k)}{(-2P4 \cdot k + M_{\tau}^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{\tau uark}^2)(2P3 \cdot k + M_{\tau}^2 - i\Gamma M_{\tau})} \\ &= 1/2 \left[\int \frac{d\Omega_k \ (P1 \cdot k) \ (2P1 \cdot k - 2(P1P4 + P1P5))}{(...)(...)} + 2(P1P4 + P1P5)\mathbf{A1(1)} \right] \\ &= 1/2 \left[\mathbf{I8} + 2(P1P4 + P1P5)\mathbf{A1(1)} \right] \end{split}$$

$$\begin{split} \mathbf{A1(3)} &= \int \frac{d\Omega_k}{(-2P4 \cdot k + M_\gamma^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)} \\ &= \int \frac{d\Omega_k}{(...)(...)(...)} \\ &= -1/2 \left[\int \frac{d\Omega_k}{(...)(2P4) \cdot k)} \right] \\ &= -1/2 \left[\int \frac{d\Omega_k}{(...)(...)(...)} - M_\gamma^2 \int \frac{d\Omega_k}{(...)(...)(...)} \right] \\ &= -1/2 \left[\int \frac{d\Omega_k}{(...)(...)(...)} - 0 \int \frac{d\Omega_k}{(...)(...)(...)} \right] \\ &= -1/2 \left[\int \frac{d\Omega_k}{(...)(...)(...)} \right] \\ &= -1/2 \left[\int \frac{d\Omega_k}{(...)(...)(...)} \right] \end{split}$$

$$\begin{split} \mathbf{A1(2)} &= \int \frac{d\Omega_k - (P3 \cdot k)}{(-2P4 \cdot k + M_\gamma^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)} \\ &= 1/2 \left[\int \frac{d\Omega_k - (2P3 \cdot k + (M_z^2 - i\Gamma M_z))}{(...)(...)(...)} - (M_z^2 - i\Gamma M_z) \int \frac{d\Omega_k}{(...)(...)(...)} \right] \\ &= 1/2 \left[\mathbf{I4} - (M_z^2 - i\Gamma M_z) \mathbf{I10} \right] \end{split}$$

$$\begin{split} \mathbf{A1(1)} &= \int \frac{d\Omega_k - (P1 \cdot k)}{(-2P4 \cdot k + M_{\gamma}^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{guark}^2)(2P3 \cdot k + M_{z}^2 - i\Gamma M_{z})} \\ &= 1/2 \left[\int \frac{d\Omega_k - (2P1 \cdot k - 2(P1P4 + P1P5))}{(...)(...)} + 2(P1P4 + P1P5)\mathbf{I}\mathbf{10} \right] \\ &= 1/2 \left[\mathbf{I5} + 2(P1P4 + P1P5)\mathbf{I}\mathbf{10} \right] \end{split}$$

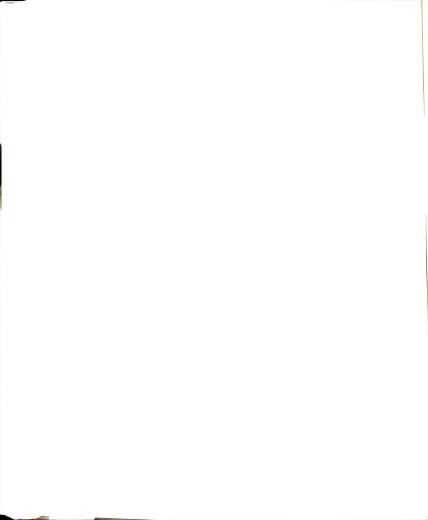
$$\begin{split} \mathbf{B1(3)} &= \int \frac{d\Omega_k}{(-2(P4 \cdot k) + M_\gamma^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)} \\ &= \int \frac{d\Omega_k}{(....)(....)} \\ &= -1/2 \left[\int \frac{d\Omega_k}{(....)(...)} \frac{(-2(P4) \cdot k)}{(....)(...)} \right] \\ &= -1/2 \left[\int \frac{d\Omega_k}{(....)(....)} - M_\gamma^2 \int \frac{d\Omega_k}{(....)(....)} \right] \\ &= -1/2 \left[\int \frac{d\Omega_k}{(....)(....)} \frac{(-2(P4) \cdot k + M_\gamma^2)}{(....)(....)} - 0 \int \frac{d\Omega_k}{(....)(...)} \right] \\ &= -1/2 \left[\int \frac{d\Omega_k}{\bullet(....)} \frac{(-2(P4) \cdot k + M_\gamma^2)}{(....)(....)} - 0 \int \frac{d\Omega_k}{(....)(...)} \right] \\ &= -1/2 \left[\int \frac{d\Omega_k}{\bullet(....)} \right] \\ &= -1/2 (13) \end{split}$$

$$\begin{split} \mathbf{B1(2)} &= \int \frac{d\Omega_k}{(-2P4 \cdot k + M_z^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)} \\ &= 1/2 \left[\int \frac{d\Omega_k}{(\dots)(\dots)} \frac{(2P3 \cdot k + (M_z^2 - i\Gamma M_z))}{(\dots)(\dots)} - (M_z^2 - i\Gamma M_z) \int \frac{d\Omega_k}{(\dots)(\dots)} \right] \\ &= 1/2 \left[\mathbf{I1} - (M_z^2 - i\Gamma M_z) \mathbf{I5} \right] \end{split}$$

$$\mathbf{B1(1)} = \int \frac{d\Omega_k - (P1 \cdot k)}{(-2P4 \cdot k + M_{\gamma}^2)(2P3 \cdot k + M_{\varepsilon}^2 - i\Gamma M_{\varepsilon})}$$

= 18

$$\mathbf{B2(3,3)} = \int \frac{d\Omega_k - (P4 \cdot k) \cdot (P4 \cdot k)}{(-2P4 \cdot k + M_\gamma^2)(2P3 \cdot k + M_\varepsilon^2 - i\Gamma M_\varepsilon)}$$



$$= \int \frac{d\Omega_k \quad (P4 \cdot k) \quad (P4 \cdot k)}{(\dots)(\dots)}$$

$$= -1/2 \left[\int \frac{d\Omega_k \quad (P4 \cdot k)}{\bullet (\dots)} \right]$$

$$= -1/2 \text{ I15}$$

$$\begin{split} \mathbf{B2}(\mathbf{3},\mathbf{2}) &= \int \frac{d\Omega_k}{(-2P4 \cdot k + M_{\gamma}^2)(2P3 \cdot k + M_{z}^2 - i\Gamma M_z)} \\ &= -1/2 \left[\int \frac{d\Omega_k}{\bullet(\ldots)} \right] \\ &= -1/2 \left[1/2 \left(\int \frac{d\Omega_k}{\bullet(\ldots)} \frac{(2P3 \cdot k + (M_z^2 - i\Gamma M_z))}{\bullet(\ldots)} - (M_z^2 - i\Gamma M_z) \int \frac{d\Omega_k}{\bullet(\ldots)} \right) \right] \\ &= -1/2 \left[1/2 \left(4\pi - (M_z^2 - i\Gamma M_z) \mathbf{I3} \right) \right] \end{split}$$

$$\begin{split} \mathbf{B2(3,1)} &= \int \frac{d\Omega_k \ (P4 \cdot k) \ (P1 \cdot k)}{(-2P4 \cdot k + M_{\gamma}^2)(2P3 \cdot k + M_{z}^2 - i\Gamma M_{z})} \\ &= -1/2 \left[\int \frac{d\Omega_k \ (P1 \cdot k)}{\bullet (...)} \right] \\ &= -1/2 \, (\mathbf{I16}) \end{split}$$

$$\mathbf{B2(2,2)} = \int \frac{d\Omega_k \ (P3 \cdot k) \ (P3 \cdot k)}{(-2P4 \cdot k + M_\gamma^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)}$$

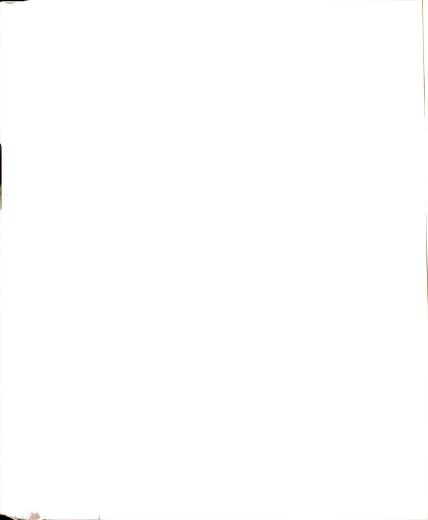
$$= 1/2 \left[\int \frac{d\Omega_k - (P3 \cdot k) \cdot (2P3 \cdot k + (M_z^2 - i\Gamma M_z))}{(....)(...)} - (M_z^2 - i\Gamma M_z) \int \frac{d\Omega_k - (P3 \cdot k)}{(....)(...)} \right]$$

$$= 1/2 \left[\mathbf{I} \mathbf{12} - (M_z^2 - i\Gamma M_z) \mathbf{B} \mathbf{1}(2) \right]$$

$$\begin{split} \mathbf{B2(2,1)} &= \int \frac{d\Omega_k \ (P3 \cdot k) \ (P1 \cdot k)}{(-2P4 \cdot k + M_\gamma^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)} \\ &= 1/2 \left[\int \frac{d\Omega_k \ (P1 \cdot k) \ (2P3 \cdot k + (M_z^2 - i\Gamma M_z))}{(....)(...)} - (M_z^2 - i\Gamma M_z) \int \frac{d\Omega_k \ (P1 \cdot k)}{(....)(...)} \right] \\ &= 1/2 \left[\mathbf{I11} - (M_z^2 - i\Gamma M_z) \mathbf{I8} \right] \end{split}$$

$$\mathbf{B2(1,1)} = \int \frac{d\Omega_k \ (P1 \cdot k) \ (P1 \cdot k)}{(-2P4 \cdot k + M_{\gamma}^2)(2P3 \cdot k + M_{\varepsilon}^2 - i\Gamma M_{\varepsilon})}$$

= I18



Appendix N Analytic Solutions of Nineteen Irreducable Integrals

The calculation involves nineteen integrals which may not be futher reduced and must be done analytically.

They are here listed, and in the remainder of this Appendix, analytically evaluated.

The notation to delineate each of the separate nineteen integrals is based on the following:

$$I = \int \frac{d\Omega_k - (P4 \cdot k) - (P1 \cdot k) - (P3 \cdot k)}{(-2P4 \cdot k + M_\tau^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)(2P3 \cdot k + M_\tau^2 - i\Gamma M_\tau)}$$

The numerator contains three factors, as does the denominator. As illustrated in Appendix M, some of these factors may be cancelled by the judicous adding and subtracting of balancing terms. Those which remain form the nineteen irreducable integrals. They are listed below in a notation where • 's replace those factors of the notation integral above that have been removed by cancellation.

For example, in this noatation the integral

$$\begin{split} \int \frac{d\Omega_k}{(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)} \\ &= \int \frac{d\Omega_k}{\bullet} \underbrace{\bullet \bullet (...)}_{\bullet (...) \bullet} \end{split}$$

The nineteen irreducable integrals are:

II =
$$\int \frac{d\Omega_k}{(\cdots)} \frac{1}{12} = \int \frac{d\Omega_k}{($$

$$I3 = \int \frac{d\Omega_{k}}{\bullet} \bullet \bullet \bullet \bullet \bullet \bullet$$

$$I4 = \int \frac{d\Omega_{k}}{\bullet} \bullet \bullet \bullet \bullet \bullet$$

$$I5 = \int \frac{d\Omega_{k}}{\bullet} \bullet \bullet \bullet \bullet \bullet$$

$$I6 = \int \frac{d\Omega_{k}}{\bullet} \bullet \bullet \bullet \bullet \bullet$$

$$I7 = \int \frac{d\Omega_{k}}{\bullet} \bullet \bullet \bullet \bullet \bullet$$

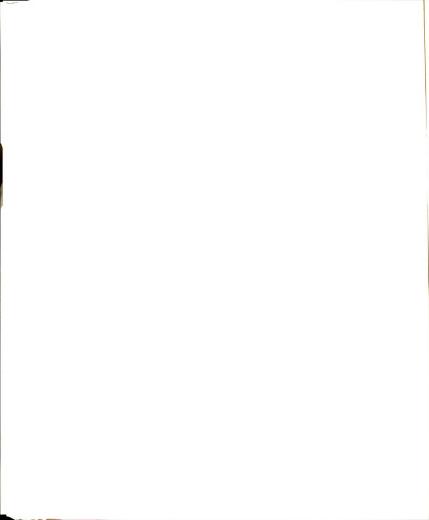
$$I8 = \int \frac{d\Omega_{k}}{\bullet} \bullet \bullet \bullet \bullet \bullet$$

$$I9 = \int \frac{d\Omega_{k}}{\bullet} \bullet \bullet \bullet \bullet \bullet$$

$$I10 = \int \frac{d\Omega_{k}}{\bullet} \bullet \bullet \bullet \bullet$$

$$I11 = \int \frac{d\Omega_{k}}{\bullet} \bullet \bullet \bullet \bullet$$

The integrals may be grouped into 5 classes for solution- I1 - I3. I4 - I6. I7 - I9, I11 - I16, and I17 - I19, which are now solved for. The integral I10 is; through on-shell conditions, expressable in terms of I1 - I9.



The Class of Integrals I1 - I3

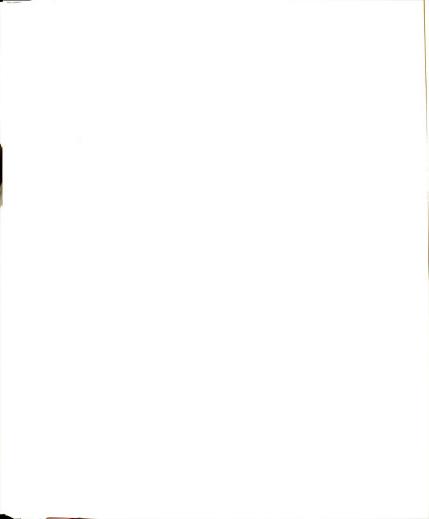
These integrals are simple and may be done directly.

They are of the form:

$$I = \int \frac{d\Omega_k}{(...)}$$

In the co-ordinate system where the only three momentum in the integral is taken to be the z direction they assume the form:

$$\begin{split} \int_{4\pi} \frac{d(\cos\theta)d\phi}{(a\cos\theta+b)} &= 2\pi \int_{-1}^{1} \frac{dx}{ax+b} = \frac{2\pi}{a} \, \log\left(\frac{a+b}{-a+b}\right) \\ \mathbf{II} &= \int \frac{d\Omega_k}{-2(P4 \cdot k) + M_{\gamma}^2} = \int \frac{d\Omega_k}{-2k\sigma^2 \cos\theta + 2k\sigma^2 + M_{\gamma}^2} \\ &= \frac{2\pi}{-2k\sigma^2} \log \frac{M_{\gamma}^2}{4k\sigma^2} \\ &\mathbf{II} = \frac{-2\pi}{P4P5} \log\left(\frac{-2(P4P5)}{M_{\gamma}^2}\right) \\ \\ \mathbf{I2} &= \int \frac{d\Omega_k}{2(P1 \cdot k) - 2(P1P4 + P1P5) + M_{quark}^2} \\ &= \int \frac{d\Omega_k}{2(E1)ko\cos\theta + 2(E1)ko + M_{quark}^2} \\ &= \frac{2\pi}{2(E1)ko\cos\theta + 2(E1)ko + M_{quark}^2} \\ &= \frac{2\pi}{2(E1)ko} \log \frac{4(E1)ko}{M_{quark}^2} \\ \\ \mathbf{I2} &= \frac{-2\pi}{P1P4 + P1P5} \log\left(\frac{-2(P1P4 + P1P5)}{M_{quark}^2}\right) \end{split}$$



$$\begin{split} \mathbf{I3} &= \int \frac{d\Omega_k}{2(P3 \cdot k) + M_z^2 - i\Gamma M_z} \\ \text{and using } 2(E3)ko &= -(P3P4 + P3P5) \\ &= \int \frac{d\Omega_k}{2(E3)ko\cos\theta - 2(E3)ko + M_z^2 - i\Gamma M_z} \\ &= \frac{2\pi}{2(E3)ko}\log\frac{M_z^2 - i\Gamma M_z}{-4(E3)ko + M_z^2 - i\Gamma M_z} \\ \mathbf{I3} &= \frac{-2\pi}{P3P4 + P3P5}\log\left(\frac{M_z^2 - i\Gamma M_z}{2(P3P4) + 2(P3P5) + M_z^2 - i\Gamma M_z}\right) \end{split}$$

The I4 - I6 Class of Integrals

These integrals are of the form:

$$I = \int \frac{d\Omega_k}{(\cdots)(\cdots)}$$

In a co-ordinate system where the left denominator defines the z direction and the right denominator is in the x-z plane, they assume the general form:

$$I = \int \frac{d\Omega_k}{(c\cos\theta + d) \ (\epsilon\cos\theta + f\sin\theta\cos\phi + g)}$$

then using

$$\begin{split} \int_0^{2\pi} \frac{d\phi}{a+b\cos\phi} &= \frac{2\pi}{(a^2-b^2)^{1/2}} \quad a > b > c \\ I &= 2\pi \int_{-1}^1 \frac{dx}{(cx+d) \ ((e^2+f^2)x^2+2gcx+g^2-f^2)^{1/2}} \end{split}$$

Then transforming x = cx + d

$$I = 2\pi \int_{-c+d}^{c+d} \frac{dx}{x (mx^2 + nx + p)^{1/2}}$$

where

$$m = c^2 + f^2$$

$$n = 2(gec - dm)$$

$$p = d^2m - 2gedc + c^2(g^2 - f^2)$$

which is solved using

$$\int \frac{dx}{xX^{1/2}} = \frac{-1}{\sqrt{p}} \log \frac{2\sqrt{pX} + nx + 2p}{x}$$
$$X = mx^2 + nx + p \quad p > 0$$

In general these solutions are intracable, however in the special cases involved in these integrals- $d = \pm c + M^2$, the solutions become:

first for
$$d = -c + M^2$$

$$I = \frac{2\pi}{\epsilon(g+\epsilon)} \left[\log \left(\frac{(g+\sqrt{\epsilon^2+f^2})^2}{(g+\epsilon)^2} \right) + \log \left(\frac{g-\sqrt{\epsilon^2+f^2}}{g+\sqrt{\epsilon^2+f^2}} \right) - \log \left(\frac{-2\epsilon}{M^2} \right) \right]$$

and for the other case $d = +c + M^2$

$$I = \frac{2\pi}{c(g-\epsilon)} \left[\log \left(\frac{(g-\epsilon)^2}{(g+\sqrt{\epsilon^2+f^2})^2} \right) + \log \left(\frac{g+\sqrt{\epsilon^2+f^2}}{g-\sqrt{\epsilon^2+f^2}} \right) - \log \left(\frac{M^2}{2c} \right) \right]$$

Now to use this general solution to find I4, I5 and I6.

$$\begin{split} \mathbf{I4} &= \int \frac{d\Omega_k}{(-2P4 \cdot k + M_\gamma^2)} \frac{d\Omega_k}{(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)} \\ &= \int \frac{d\Omega_k}{(-2ko^2cos\theta + 2ko^2 + M_\gamma^2)(2P1_c(ko)cos\theta + 2P1_r(ko)sin\theta \cos\phi + 2(ko)E1 + M_{quark}^2)} \\ \text{then using } P1_z &= \frac{P1P4}{E4} = \frac{P1P4}{E4} + E1 = \frac{P1P4 - P1P5}{2ko} \quad \text{from} \quad 2(ko)E1 = -(P1P4 + P1P5) \end{split}$$
 and $P1_x = (E1 - P1_x^2)^{1/2} = \sqrt{(P1P4)(P1P5)}/ko$

and noting that

$$\begin{split} c &= -2ko^2 \\ d &= 2ko^2 + M_{\gamma}^2 = -c + M_{\gamma}^2 \\ e &= P1P4 - P1P5 \\ f &= 2\sqrt{(P1P4)(P1P5)} \\ g &= -(P1P4 + P1P5) + M_{quark}^2 \\ \epsilon^2 + f^2 &= (2(ko)E1)^2 = (P1P4 + P1P5)^2 \\ g + \epsilon &= -2(P1P5) + M_{quark}^2 \end{split}$$

gives

$$\begin{split} &\mathbf{I4} = \frac{-2\pi}{2(P4P5)P1P5} \left[\log \left(\frac{(P1P4 + P1P5)^2}{P1P5^2} \right) + \log \left(\frac{M_{quark}^2}{-2(P1P4 + P1P5)} \right) - \left(\log \frac{-2(P4P5)}{M_{\gamma}^2} \right) \right] \\ &= \frac{-1}{(P4P5)P1P5} \left[\pi \, \log \left(\frac{P1P4 + P1P5}{P1P5} \right) + 0.5(P1P4 + P1P5)\mathbf{I2} + 0.5(P4P5)\mathbf{I1} \right] \end{split}$$

$$\mathbf{I5} = \int \frac{d\Omega_k}{(-2P4 \cdot k + M_{\gamma}^2) (2P3 \cdot k + M_z^2 - i\Gamma M_z)}$$

$$=\int \frac{d\Omega_k}{(-2ko^2cos\theta+2ko^2+M_{\gamma}^2)(2P3_z(ko)cos\theta+2P3_x(ko)sin\theta\;cos\phi-2(ko)E3+M_z^2-i\Gamma M_z)}$$

then using
$$P3_z = \frac{\overline{P3} \cdot \overline{P4}}{E4} = \frac{P3P4}{E4} + E3 = \frac{(P3P4 - P3P5)}{2ko}$$
 from $2(ko)E3 = -(P3P4 + P3P5)$

and
$$P3_x = (E3^2 - P3_x^2)^{1/2} = \sqrt{(P3P4)(P3P5)/ko}$$

and noting that

$$c = -2ko^{2}$$

$$d = 2ko^{2} + M_{\gamma}^{2} = -c + M_{\gamma}^{2}$$

$$e = P3P4 - P3P5$$

$$f = 2\sqrt{(P3P4)(P3P5)}$$

$$g = (P3P4 + P3P5) + M_{z}^{2} - i\Gamma M_{z}$$

$$e^{2} + f^{2} = (2(ko)E3)^{2} = (P3P4 + P3P5)^{2}$$

$$g + c = 2(P3P4) + M_{z}^{2} - i\Gamma M_{z}$$

gives, using the symbol MZP for the Z particle proprogator

$$MZP = 2(P3P4) + M_z^2 - i\Gamma M_z$$

$$\begin{split} \mathbf{I5} &= \frac{2\pi}{(P4P5)MZP} \left[\log \left(\frac{(2(P3P5) + MZP)^2}{MZP^2} \right) + \log \left(\frac{M_z^2 - i\Gamma M_z}{2(P3P5) + MZP} \right) - \left(\log \frac{-2(P4P5)}{M_\gamma^2} \right) \right] \\ &= \frac{1}{(P4P5)MZP} \left[2\pi \log \left(\frac{2(P3P5) + MZP}{MZP} \right) - (P3P4 + P3P5)\mathbf{I3} + (P4P5)\mathbf{I1} \right] \end{split}$$

$$\begin{split} \mathbf{I6} &= \int \frac{d\Omega_k}{(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)} \\ &= \int \frac{d\Omega_k}{(2(ko)E1cos\theta + 2(ko)E1 + M_{quark}^2)(2P3_z(ko)cos\theta + 2P3_x(ko)sin\theta \cos\phi - 2(ko)E3 + M_z^2 - i\Gamma M_z)} \end{split}$$

then using
$$P3_z = \frac{\overline{P3}.\overline{P1}}{E1} = \frac{P1P3}{E1} + E3$$
 with
$$P3P4 + P3P5$$

$$E3 = \frac{P3P4 + P3P5}{2ko} \qquad E1 = \frac{P1P4 + P1P5}{2ko}$$

to give

$$P3_z = \frac{-2ko(P1P3 + \frac{(P1P4 + P1P5)(P3P4 + P3P5)}{4ko^2})}{P1P4 + P1P5}$$

with $P3_x = (E3^2 - P3_z^2)^{1/2}$

and noting that

$$c = -(P1P4 + P1P5)$$

$$d = c + M_{quark}^2$$

$$\epsilon = \frac{2(P1P3)(P4P5) - (P1P4 + P1P5)(P3P4 + P3P5)}{(P1P4 + P1P5)}$$

$$f = 2(ko)P3_x$$

$$g = -(P3P4 + P3P5) + M_z^2 - i\Gamma M_z$$

$$e^2 + f^2 = (2(ko)E3)^2 = (P3P4 + P3P5)^2$$

$$g - \epsilon = 2(P3P5) + MZP - \frac{2(P1P3)(P4P5)}{(P1P4 + P1P5)} = \frac{R}{(P1P4 + P1P5)}$$

where

$$R = (2(P3P5) + MZP)(P1P4 + P1P5) - 2(P1P3)(P4P5)$$

using as usual, the symbol MZP for the Z particle proprogator

$$MZP = 2(P3P4) + M_z^2 - i\Gamma M_z$$

$$\begin{split} \mathbf{I6} &= \frac{-2\pi}{R} \left[\log \left(\frac{R^2}{(P1P4 + P1P5)^2 (2(P3P5) + MZP)^2} \right) - \log \left(\frac{M_z^2 - i \Gamma M_z}{2(P3P5) + MZP} \right) - \log \left(\frac{M_{quark}^2}{2c} \right) \right] \\ &= \frac{-1}{R} \left[4\pi \log \left(\frac{R}{(P1P4 + P1P5)(2(P3P5) + MZP)} \right) + (P3P4 + P3P5) \mathbf{I3} - (P1P4 + P1P5) \mathbf{I2} \right] \end{split}$$

The I7 - I9 Class of Integrals

These integrals are of the form:

$$\mathbf{I7} - \mathbf{I9} = \int \frac{d\Omega_k(A \cdot k)}{(\dots)(\dots)}$$

and in each case the solution will involve already solved integrals of the denominator only:

$$I_{left} = I_L = \int \frac{d\Omega_k}{(...) \bullet}$$

$$I_{right} = I_R = \int \frac{d\Omega_k}{\bullet (...)}$$

$$I_{both} = I_B = \int \frac{d\Omega_k}{(...)(...)}$$

The integrals of this class assume the general form:

$$I = \int \frac{d\Omega_k \; (A_x(ko)sin\theta\; cos\phi + A_y(ko)sin\theta\; sin\phi + A_z(ko)cos\theta - A_0(ko))}{(c\; cos\theta + d)(\epsilon\; cos\theta + f\; sin\theta\; cos\phi + g)}$$

using the previously defined co-ordinate system of class 14-16.

Each term of the numerator may be solved separately. In an obvious notation;

$$I = I_x + I_y + I_z + I_0$$

 I_y equals zero by ϕ symmetry, and by inspection:

$$I_0 = -A_0(ko)I_B$$

Ir is easily reduced:

$$\begin{split} I_x &= \frac{A_x ko}{f} \int \frac{f \sin\theta \cos\phi + \epsilon \cos\theta + g - \epsilon \cos\theta - g}{(c \cos\theta + d)(\epsilon \cos\theta + f \sin\theta \cos\phi + g)} \\ I_x &= \frac{A_x ko}{f} \left[I_L - gI_B - \frac{\epsilon}{c} \int \frac{(c \cos\theta + d - d)}{(c \cos\theta + d)(\epsilon \cos\theta + f \sin\theta \cos\phi + g)} \right] \\ &= \frac{A_x ko}{f} \left[I_L - (g - \frac{\epsilon d}{c})I_B - \frac{\epsilon}{c}I_R \right] \end{split}$$

and the final term

$$\begin{split} I_z &= \frac{A_z ko}{f} \int \frac{c \cos\theta + d - d}{(c \cos\theta + d)(e \cos\theta + f \sin\theta \cos\phi + g)} \\ &= \frac{A_z ko}{f} \left[I_R - dI_B \right] \end{split}$$

Combining the four terms:

$$I = -A_0(ko)I_B + \frac{A_z ko}{c}(I_R - dI_B) + \frac{A_x ko}{f} \left[I_L - (g - \frac{\epsilon d}{c})I_B - \frac{\epsilon}{c}I_R\right]$$

Now to use this general solution to find I7.18 and I9.

$$\begin{split} &\mathbf{I7} = \int \frac{d\Omega_k \, P3 \cdot k}{(-2P4 \cdot k + M_\gamma^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)} \\ &\mathbf{I7} = \int \frac{d\Omega_k (P3_r(ko)sin\theta \, cos\phi + P3_y(ko)sin\theta \, sin\phi + P3_z(ko)cos\theta - E3(ko))}{(-2ko^2cos\theta + 2ko^2 + M_\gamma^2)(2P1_z(ko)cos\theta + 2P1_x(ko)sin\theta \, cos\phi + 2(ko)E1 + M_{quark}^2)} \\ &\text{then using } P1_z = \frac{\overline{P1.P4}}{E4} = \frac{P1P4}{E4} + E1 = \frac{P1P4 - P1P5}{2ko} \\ &\text{from } 2(ko)E1 = -(P1P4 + P1P5) \\ &\text{and } P1_x = (E1^2 - P1_z^2)^{1/2} = \sqrt{(P1P4)(P1P5)}/ko \end{split}$$

and noting that

$$\begin{split} c &= -2ko^2 \\ d &= 2ko^2 + M_{\gamma}^2 = -c + M_{\gamma}^2 \\ e &= P1P4 - P1P5 \\ f &= 2\sqrt{(P1P4)(P1P5)} \\ g &= -(P1P4 + P1P5) + M_{quark}^2 \\ e^2 + f^2 &= (2(ko)E1)^2 = (P1P4 + P1P5)^2 \\ g + e &= -2(P1P5) + M_{quark}^2 \end{split}$$

and adding

$$P3_z = \frac{\overline{P3} \cdot \overline{P4}}{E4} = \frac{P3P4}{E4} + E3 = \frac{P3P4 - P3P5}{2ko}$$

and to get P3x

$$\overline{P1} \cdot \overline{P3} = P1P3 + E1E3 = P1_x P3_x + P1_y P3_y + P1_z P3_z$$

with
$$P1_y = 0$$

$$P3_x = 1/P1_x[P1P3 + E1E3 - P1, P3,]$$

$$= ko/\sqrt{(P1P4)(P1P5)} \left[P1P3 + \frac{(P1P4 + P1P5)(P3P4 + P3P5)}{4ko^2} - \frac{(P1P4 - P1P5)(P3P4 - P3P5)}{4ko^2} \right]$$

$$= \frac{S}{2(ko)\sqrt{(P1P4)(P1P5)}}$$

where

$$S = P1P4(P3P5) + P1P5(P3P4) - P1P3(P4P5)$$

and using the general form gives:

$$\begin{split} \mathbf{I7} &= -ko(E3)I_B + \frac{P3P4 - P3P5}{2ko} \frac{ko}{c} (I_R - dI_B) \\ &+ \frac{(S)(ko)}{2ko\sqrt{(P1P4)(P1P5)}} \frac{1}{2\sqrt{(P1P4)(P1P5)}} \bigg[I_L + 2(P1P5)I_B - \frac{(P1P4 - P1P5)}{-2ko^2} I_R \bigg] \\ &\mathbf{I7} = (P3P4)I4 + \frac{(P3P4 - P3P5)}{2(P4P5)} \mathbf{I2} \\ &+ \frac{S}{4(P1P4)P1P5} [\mathbf{I1} + 2(P1P5)\mathbf{I4} - \frac{(P1P4 - P1P5)}{P4P5} \mathbf{I2}] \end{split}$$

$$\begin{split} \mathbf{I8} &= \int \frac{d\Omega_k \, P1 \cdot k}{(-2P4 \cdot k + M_1^2)(2P3 \cdot k + M_2^2 - i\Gamma M_2)} \\ &= \int \frac{d\Omega_k (P1_x(ko)sin\theta \, cos\phi + P1_y(ko)sin\theta \, sin\phi + P1_z(ko)cos\theta - E1(ko))}{(-2ko^2cos\theta + 2ko^2 + M_1^2)(2P3_z(ko)cos\theta + 2P3_x(ko)sin\theta \, cos\phi - 2(ko)E3 + M_2^2 - i\Gamma M_z)} \\ &\text{then using } P3_z &= \frac{P3_2P4}{E4} = \frac{P3P4}{E4} + E3 = \frac{P3P4 - P3P5}{E4} \end{split}$$

from
$$2(ko)E3 = -(P3P4 + P3P5)$$

and $P3_x = (E3^2 - P3_x^2)^{1/2} = \pm \sqrt{(P3P4)(P3P5)}/ko$
 $P1_z = (P1P4 - P1P5)/2ko$
 $P1_x = \frac{1}{P3_x}[P1P3 + E1E3 - P1_zP3_z] = \pm \frac{ko}{\sqrt{(P3P4)(P3P5)}} \frac{S}{2kc^2}$

and noting that

$$\begin{split} c &= -2ko^2 \\ d &= 2ko^2 + M_\gamma^2 = -c + M_\gamma^2 \\ e &= P3P4 - P3P5 \\ f &= \pm 2\sqrt{(P3P4)(P3P5)} \\ g &= (P3P4 + P3P5) + M_z^2 - i\Gamma M_z \\ e^2 + f^2 &= (2(ko)E3)^2 = (P3P4 + P3P5)^2 \\ g + \epsilon &= 2(P3P4) + M_z^2 - i\Gamma M_z \end{split}$$

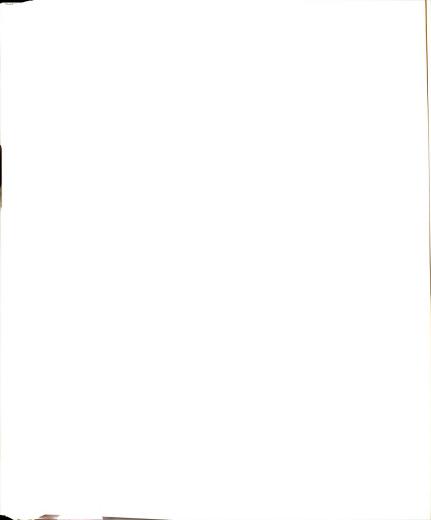
gives, using the symbol MZP for the Z particle proprogator

$$\begin{split} MZP &= 2(P3P4) + M_z^2 - i\Gamma M_z \\ \mathbf{I8} &= -ko(E1)I_B + \frac{(P1P4 - P1P5)}{2ko} \frac{ko}{-2ko^2} (I_R - 2ko^2I_B) \\ &+ \frac{S}{2ko\sqrt{(P3P4)(P3P5)}} \frac{ko}{2\sqrt{(P3P4)(P3P5)}} (I_L - (MZP)I_B - \frac{(P3P4 - P3P5)}{-2ko^2}I_R) \end{split}$$

(Note the \pm arbritariness became self-cancelling due to $\frac{A_x k_0}{f}$ form.)

$$\mathbf{I8} = (P1P4)\mathbf{I5} + \frac{(P1P4 - P1P5)}{2(P4P5)}\mathbf{I3} + \frac{S}{4(P3P4)P3P5}\left[\mathbf{I1} - (MZP)\mathbf{I5} - \frac{(P3P4 - P3P5)}{P4P5}\mathbf{I3}\right]$$

$$\mathbf{I9} = \int \frac{d\Omega_k \ P4 \cdot k}{(2P1 \cdot k \ - 2(P1P4 + P1P5) + M_{augrk}^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)}$$



$$=\int\frac{d\Omega_k(P4_x(ko)sin\theta\cos\phi+P4_y(ko)sin\theta\sin\phi+P4_z(ko)cos\theta-E4(ko))}{(2(ko)E1cos\theta+2(ko)E1+M_{quark}^2)(2P3_z(ko)cos\theta+2P3_x(ko)sin\theta\cos\phi-2(ko)E3+M_z^2-i\Gamma M_z)}$$

then using $P3_z = \frac{\overline{P3} \cdot \overline{P1}}{E1} = \frac{P1P3}{E1} + E3$

.....

$$E3 = \frac{P3P4 + P3P5}{2ko} \qquad E1 = \frac{P1P4 + P1P5}{2ko}$$

to give

$$P3_z = \frac{-2ko(P1P3 + \frac{(P1P4 + P1P5)(P3P4 + P3P5)}{4ko^2}}{P1P4 + P1P5}$$

and

$$\begin{split} P3_x &= (E3^2 - P3_z^2)^{1/2} \\ &= [-\left(\frac{P1P3}{E1}\right)^2 - 2(P1P3)(E1/E3)]^{1/2} \\ &= \left(\frac{T}{A^2}\right)^{1/2} \end{split}$$

where

$$A = P1P4 + P1P5$$

and

T = 2(P1P3)[P1P3(P4P5) - P1P4(P3P4) - P1P4(P3P5) - P1P5(P3P4) - P1P5(P3P5)]

where

$$\begin{split} U &= P3P4(P1P5)^2 + P3P4(P1P4)P1P5 + P4P5(P1P3)P1P4 \\ &- (P1P4)^2(P3P5) - P1P4(P1P5)P3P5 - P1P5(P1P3)P4P5 \end{split}$$

and noting that

$$c = -(P1P4 + P1P5) = -A$$

$$d = c + M_{quark}^2$$

$$\epsilon = \frac{W}{A}$$

where

$$\begin{split} W &= 2(P1P3)(P4P5) - (P1P4 + P1P5)(P3P4 + P3P5) \\ f &= 2(ko)P3_x = 2ko\left(\frac{T}{A^2}\right)^{1/2} \\ g &= (P3P4 + P3P5) + M_z^2 - i\Gamma M_z \\ \epsilon^2 + f^2 &= (2(ko)E3)^2 = (P3P4 + P3P5)^2 \\ g - \epsilon &= 2(P3P5) + MZP - \frac{2(P1P3)(P4P5)}{(P1P4 + P1P5)} = \frac{R}{(P1P4 + P1P5)} \end{split}$$

where

$$R = (2(P3P5) + MZP)(P1P4 + P1P5) - 2(P1P3)(P4P5)$$

using as usual, the symbol MZP for the Z particle proprogator

$$\begin{split} MZP &= 2(P3P4) + M_s^2 - i\Gamma M_s \\ \mathbf{I9} &= -ko^2 I_B + \frac{-ko(P1P4 - P1P5)}{A} \frac{-ko}{A} (I_R - AI_B) \\ &+ \left(\frac{A^2}{T}\right)^{1/2} \left(\frac{ko}{2ko}\right) \left(\frac{A^2}{T}\right)^{1/2} \left(\frac{U}{A^2}\right) (I_L - (R/A)I_B + (W/A^2)I_R) \end{split}$$

$$\begin{split} \mathbf{I9} &= (P4P5/2)\mathbf{I6} - \frac{P4P5}{2}\frac{(P1P4 - P1P5)}{A^2}\mathbf{I3} \\ &- \frac{P4P5}{2}\frac{(P1P4 - P1P5)}{A}\mathbf{I6} + \frac{U}{2T}(\mathbf{I2} - (R/A)\mathbf{I6} + (W/A^2)\mathbf{I3}) \end{split}$$

The I10 Class Of Integral

It is desired to solve I10.

$$\mathbf{I10} = \int \frac{d\Omega_k}{(-2P4 \cdot k + M_\gamma^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)}$$

This is effected by noting from Appendix L:

$$k_{\mu} = (S1 \cdot k)\mathcal{F}1_{\mu} + (S2 \cdot k)\mathcal{F}2_{\mu} + (S3 \cdot k)\mathcal{F}3_{\mu} + (S4 \cdot k)\mathcal{F}4_{\mu}$$

where

$$\begin{split} \mathcal{F}1_{\mu} &= (CC11)S1_{\mu} + (CC12)S2_{\mu} + (CC13)S3_{\mu} + (CC14)S4_{\mu} \\ \mathcal{F}2_{\mu} &= (CC21)S1_{\mu} + (CC22)S2_{\mu} + (CC23)S3_{\mu} + (CC24)S4_{\mu} \\ \mathcal{F}3_{\mu} &= (CC31)S1_{\mu} + (CC32)S2_{\mu} + (CC33)S3_{\mu} + (CC34)S4_{\mu} \\ \mathcal{F}4_{\mu} &= (CC41)S1_{\mu} + (CC42)S2_{\mu} + (CC43)S3_{\mu} + (CC44)S4_{\mu} \end{split}$$

where CC11......CC44 are given in that Appendix as assemblages of dot products.

In this problem-

$$S1 = P1$$

$$S2 = P3$$

$$S3 = P4$$

$$S4 = P5$$

so...

$$k_{\mu} = (P1 \cdot k)\mathcal{F}1_{\mu} + (P3 \cdot k)\mathcal{F}2_{\mu} + (P4 \cdot k)\mathcal{F}3_{\mu} + (P5 \cdot k)\mathcal{F}4_{\mu}$$

where

$$\begin{split} \mathcal{F}1_{\mu} &= (CC11)P1_{\mu} + (CC12)P3_{\mu} + (CC13)P4_{\mu} + (CC14)P5_{\mu} \\ \mathcal{F}2_{\mu} &= (CC21)P1_{\mu} + (CC22)P3_{\mu} + (CC23)P4_{\mu} + (CC24)P5_{\mu} \\ \mathcal{F}3_{\mu} &= (CC31)P1_{\mu} + (CC32)P3_{\mu} + (CC33)P4_{\mu} + (CC34)P5_{\mu} \\ \mathcal{F}4_{\mu} &= (CC41)P1_{\mu} + (CC42)P3_{\mu} + (CC43)P4_{\mu} + (CC44)P5_{\mu} \end{split}$$

Futher, in this problem, the on-shell condition

$$\delta[(P4+P5-k)]^2=0$$

implies

$$P5 \cdot k = P4P5 - P4 \cdot k$$

giving

$$k_{\mu} = (P1 \cdot k)\mathcal{F}1_{\mu} + (P3 \cdot k)\mathcal{F}2_{\mu} + (P4 \cdot k)(\mathcal{F}3_{\mu} - \mathcal{F}4_{\mu}) + (P4P5)\mathcal{F}4_{\mu}$$

Use of this is made by noting the other on-shell condition of this problem- $\delta(k^2)=0$

$$\begin{split} 0 &= k^{\mu}k_{\mu} = \\ \mathcal{F}1_{\mu}\mathcal{F}1^{\mu}(P1\cdot k)(P1\cdot k) + \mathcal{F}2_{\mu}\mathcal{F}2^{\mu}(P3\cdot k)(P3\cdot k) \\ + (\mathcal{F}3_{\mu} - \mathcal{F}4_{\mu})(\mathcal{F}3^{\mu} - \mathcal{F}4^{\mu})(P4\cdot k)(P4\cdot k) + \mathcal{F}4_{\mu}\mathcal{F}4^{\mu}(P4P5)^{2} \\ + 2\mathcal{F}1_{\mu}\mathcal{F}2^{\mu}(P1\cdot k)(P3\cdot k) + 2\mathcal{F}1_{\mu}(\mathcal{F}3^{\mu} - \mathcal{F}4^{\mu})(P1\cdot k)(P4\cdot k) \\ + 2\mathcal{F}1_{\mu}\mathcal{F}4^{\mu}(P1\cdot k)(P4P5) + 2\mathcal{F}2_{\mu}(\mathcal{F}3^{\mu} - \mathcal{F}4^{\mu})(P3\cdot k)(P4\cdot k) \\ + 2\mathcal{F}2_{\mu}\mathcal{F}4^{\mu}(P3\cdot k)(P4P5) + 2(\mathcal{F}3_{\mu} - \mathcal{F}4_{\mu})\mathcal{F}4^{\mu}(P4P5)(P4\cdot k) \end{split}$$

As $k^2 = 0$, any integral of k^2 will also equal 0. In particular the integral of k^2 over the above I10 will be zero.

$$0 = \int \frac{d\Omega_k \ k^{\mu}k_{\mu}}{(-2P4 \cdot k + M_c^2)(2P1 \cdot k - 2(P1P4 + P1P5) + M_{sust}^2)(2P3 \cdot k + M_c^2 - i\Gamma M_c)}$$

When the above expression for $k^{\mu}k_{\mu}$ is inserted into this integral, it produces a sum of integrals which still equals 0.

For example, one such term would be:

$$\int \frac{d\Omega_k \mathcal{F} 1_{\mu} \mathcal{F} 1^{\mu} (P1 \cdot k) (P1 \cdot k)}{(-2P4 \cdot k + M_{\gamma}^2) (2P1 \cdot k - 2(P1P4 + P1P5) + M_{quark}^2) (2P3 \cdot k + M_{\gamma}^2 - i\Gamma M_{\gamma})}$$

This integral, except for $\mathcal{F}1_{\mu}\mathcal{F}1^{\mu}$, is defined in Appendix M to have the notation **A2(1,1)**. The other integrals appearing in this sum have a similar notation defined in that Appendix. Using this notation, the expression for 0 becomes:

$$0 = \mathcal{F}1_{\mu}\mathcal{F}1^{\mu}\mathbf{A2(1,1)} + \mathcal{F}2_{\mu}\mathcal{F}2^{\mu}\mathbf{A2(2,2)} + (\mathcal{F}3_{\mu} - \mathcal{F}4_{\mu})(\mathcal{F}3^{\mu} - \mathcal{F}4^{\mu})\mathbf{A2(3,3)}$$

$$\begin{split} +\mathcal{F}4_{\mu}\mathcal{F}4^{\mu}(P4P5)^{2}\mathbf{I}\mathbf{10} + 2\mathcal{F}1_{\mu}\mathcal{F}2^{\mu}\mathbf{A2}(2,1) + 2\mathcal{F}1_{\mu}(\mathcal{F}3^{\mu} - \mathcal{F}4^{\mu})\mathbf{A2}(3,1) \\ +2\mathcal{F}1_{\mu}\mathcal{F}4^{\mu}\mathbf{A1}(1)(P4P5) + 2\mathcal{F}2_{\mu}(\mathcal{F}3^{\mu} - \mathcal{F}4^{\mu})\mathbf{A2}(3,2) \\ +2\mathcal{F}2_{\mu}\mathcal{F}4^{\mu}\mathbf{A1}(2)(P4P5) + 2(\mathcal{F}3_{\mu} - \mathcal{F}4_{\mu})\mathcal{F}4^{\mu}(P4P5)\mathbf{A1}(3) \end{split}$$

In Appendix M, it is found that

$$\mathbf{A2}(3,3) = -1/2 \ \mathbf{I9}$$

$$\mathbf{A2}(3,2) = -1/2 \left[1/2 \left(\mathbf{I2} - (M_z^2 - i\Gamma M_z)\mathbf{I6}\right)\right]$$

$$\mathbf{A2}(3,1) = -1/4 \left[\mathbf{I3} + 2(P1P4 + P1P5)\mathbf{I6}\right]$$

$$\mathbf{A2}(2,2) = 1/2 \left[\mathbf{I7} - (M_z^2 - i\Gamma M_z)\mathbf{A1}(2)\right]$$

$$\mathbf{A2}(2,1) = 1/2 \left[1/2 \left(\mathbf{I1} + 2(P1P4 + P1P5)\mathbf{I4}\right) - (M_z^2 - i\Gamma M_z)\mathbf{A1}(1)\right]$$

$$\mathbf{A2}(1,1) = \left[\mathbf{I8} + 2(P1P4 + P1P5)\mathbf{A1}(1)\right]$$

$$\mathbf{A1}(3) = -1/2\mathbf{I6}$$

$$\mathbf{A1}(2) = 1/2 \left[\mathbf{I4} - (M_z^2 - i\Gamma M_z)\mathbf{I10}\right]$$

$$\mathbf{A1}(1) = 1/2 \left[\mathbf{I5} + 2(P1P4 + P1P5)\mathbf{I10}\right]$$

After these are substituted in the expression for 0, that expression becomes an algebraic expression for I10, which may be solved to yield:

$$\mathbf{I10} = -\frac{I10_{upper}}{I10_{lower}}$$

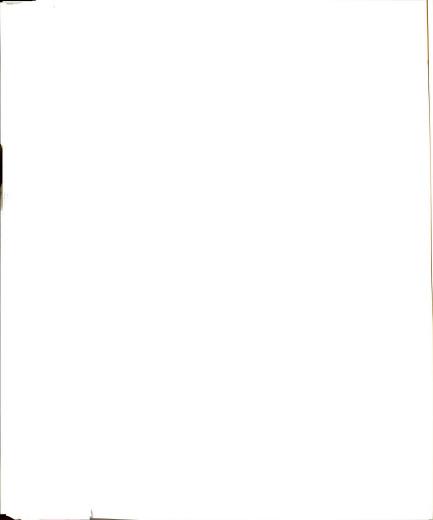
where

$$\begin{split} I10_{upper} &= \mathcal{F}1_{\mu}\mathcal{F}1^{\mu}(1/2(\mathbf{I8}) + 1/2(P1P4 + P1P5)\mathbf{I5} \\ &+ \mathcal{F}2_{\mu}\mathcal{F}2^{\mu}(1/2(\mathbf{I7}) - 1/4(M_z^2 - i\Gamma M_z)\mathbf{I4}) \\ &- (\mathcal{F}3_{\mu} - \mathcal{F}4_{\mu})(\mathcal{F}3^{\mu} - \mathcal{F}4^{\mu})(1/2)\mathbf{I9} \\ &+ \mathcal{F}1_{\mu}\mathcal{F}2^{\mu}(1/2(\mathbf{I1}) + (P1P4 + P1P5)\mathbf{I4}) - 1/8(M_z^2 - i\Gamma M_z)\mathbf{I5}) \\ &- \mathcal{F}1_{\mu}(\mathcal{F}3^{\mu} - \mathcal{F}4^{\mu})(1/2(\mathbf{I3}) + (P1P4 + P1P5)\mathbf{I6}) + \mathcal{F}1_{\mu}\mathcal{F}4^{\mu}(P4P5)\mathbf{I5} \\ &- \mathcal{F}2_{\mu}(\mathcal{F}3^{\mu} - \mathcal{F}4^{\mu})(1/2(\mathbf{I2}) - (M_z^2 - i\Gamma M_z)\mathbf{I6}) \\ &+ \mathcal{F}2_{\mu}\mathcal{F}4^{\mu}(P4P5)\mathbf{I4} - (\mathcal{F}3_{\mu} - \mathcal{F}4_{\mu})\mathcal{F}4^{\mu}(P4P5)\mathbf{I6} \end{split}$$

and

$$\begin{split} &I10_{lower} = \mathcal{F}1_{\mu}\mathcal{F}1^{\mu}((P1P4 + P1P5)^2) + \mathcal{F}2_{\mu}\mathcal{F}2^{\mu}(1/4)(M_c^2 - i\Gamma M_c)^2 \\ &+ \mathcal{F}4_{\mu}\mathcal{F}4^{\mu}(P4P5)^2 + \mathcal{F}1_{\mu}\mathcal{F}2^{\mu}(-1/4(P1P4 + P1P5)(M_c^2 - i\Gamma M_c)) \\ &+ \mathcal{F}1_{\mu}\mathcal{F}4^{\mu}(P4P5)(2(P1P4 + P1P5)) + \mathcal{F}2_{\mu}\mathcal{F}4^{\mu})(-(M_c^2 - i\Gamma M_c)) \end{split}$$

As I1...... 19 are now known, I10 is now also known.



The I11 - I16 Class of Integrals

These integrals are of the form:

$$\mathbf{I11} - \mathbf{I16} = \int \frac{d\Omega_k(A \cdot k)}{(...)}$$

and in each case the solution is reducable to integrals already solved of the denominator only:

$$I_D = \int \frac{d\Omega_k}{(...)}$$

The integrals of this class assume the general form:

$$I = \int \frac{d\Omega_k \left(A_x(ko)sin\theta \cos\phi + A_y(ko)sin\theta \sin\phi + A_z(ko)cos\theta - A_0(ko)\right)}{\left(c \cos\theta + d\right)}$$

using the previously defined co-ordinate system of class 14-16.

Each term of the numerator may be solved separately. In an obvious notation;

$$I = I_x + I_y + I_z + I_0$$

 I_x and I_y equal zero by ϕ symmetry, and by inspection:

$$I_0 = -A_0(ko)I_D$$

I. is easily reduced:

$$I_z = \frac{A_z ko}{c} \int \frac{c \cos\theta + d - d}{(c \cos\theta + d)}$$

80,

$$I = -A_0(ko)I_D + \frac{A_z ko}{c} [4\pi - dI_D]$$

Now to use this general solution to find II1 - II6.

I11 =
$$\int \frac{d\Omega_k P1 \cdot k}{(-2(P4 \cdot k) + M_5^2)}$$

$$\mathbf{II1} = \int \frac{d\Omega_k(P1_\tau(ko)sin\theta\cos\phi + P1_v(ko)sin\theta\sin\phi + P1_z(ko)cos\theta - E1(ko)}{(-2ko^2cos\theta + 2ko^2 + M_\gamma^2)}$$

then using
$$P1_z = \frac{\overline{P1.P4}}{E4} = \frac{P1P4}{E4} + E1 = \frac{P1P4-P1P5}{2ko}$$

from $2(ko)E1 = -(P1P4 + P1P5)$

and noting that

$$d = 2k\sigma^{2} + M_{\gamma}^{2} = -c + M_{\gamma}^{2}$$

$$\mathbf{II1} = \left(\frac{P1P4 + P1P5}{2}\right)I1 + \left(\frac{P1P4 - P1P5}{2(P4P5)}\right)4\pi + \left(\frac{P1P4 - P1P5}{2}\right)I1$$

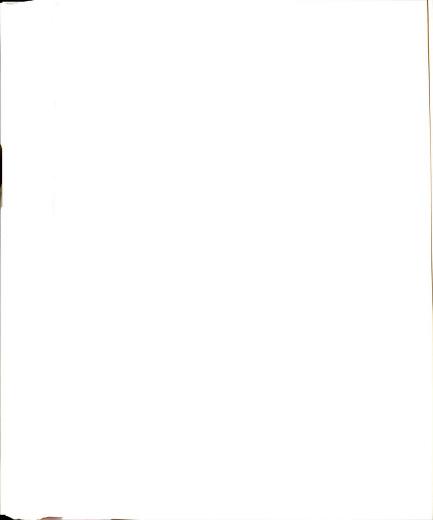
$$\mathbf{II1} = 2\pi \left(\frac{P1P4 - P1P5}{P4P5}\right) + (P1P4)\mathbf{II}$$

 $c = -2ka^2$

and I12 is the indentical with P1 replaced by P3

$$\begin{split} \mathbf{I12} &= \int \frac{d\Omega_k \ P3 \cdot k}{(-2(P4 \cdot k) + M_\gamma^2)} \\ \mathbf{I12} &= 2\pi \left(\frac{P3P4 - P3P5}{P4P5}\right) + (P3P4)\mathbf{I1} \end{split}$$

$$\begin{split} \mathbf{I13} &= \int \frac{d\Omega_k \ P4 \cdot k}{(2(P1 \cdot k) - 2(P1P4 + P1P5) + M_{quark}^2)} \\ \mathbf{I13} &= \int \frac{d\Omega_k \ P4 \cdot k}{(2(ko)E1cos\theta + 2(ko)E1 + M_{quark}^2)} \\ &c &= -(P1P4 + P1P5) \\ &d &= c + M_{quark}^2 = c + 0 = c \\ P4z &= \frac{\overline{P4} \cdot \overline{P1}}{E1} = \frac{P1P4}{E1} + ko = -ko \frac{(P1P4 - P1P5)}{(P1P4 + P1P5)} \\ \\ \mathbf{I13} &= -ko^2I2 + \left(-ko \frac{(P1P4 - P1P5)}{(P1P4 + P1P5)}\right) ko \left(\frac{-4\pi}{(P1P4 + P1P5)} - I2\right) \end{split}$$



$$=-2\pi(P4P5)\frac{(P1P4-P1P5)}{(P1P4+P1P5)^2}+\left(\frac{(P4P5)(P1P5)}{(P1P4+P1P5)}\right)\mathbf{I2}$$

$$\begin{split} \mathbf{I14} &= \int \frac{d\Omega_k \ P3 \cdot k}{(2(P1 \cdot k) - 2(P1P4 + P1P5) + M_{quark}^2)} \\ \mathbf{I14} &= \int \frac{d\Omega_k \ P3 \cdot k}{(2(ko)E1\cos\theta + 2(ko)E1 + M_{quark}^2)} \\ &c &= -(P1P4 + P1P5) \\ &d &= c + M_{quark}^2 = c \\ &P3_z &= \frac{-2ko(P1P3 + \frac{(P1P4 + P1P5)(P3P4 + P3P5)}{4kc^2}}{P1P4 + P1P5} \\ &= \frac{-[-2(P1P3)(P4P5) + (P1P4 + P1P5)(P3P4 + P3P5)]}{2ko(P1P4 + P1P5)} \\ &\mathbf{I14} &= \left(\frac{P3P4 + P3P5}{2}\right) \mathbf{I2} \\ &+ \left(\frac{-2(P1P3)(P4P5) + (P1P4 + P1P5)(P3P4 + P3P5)}{2(P1P4 + P1P5)}\right) \left(\frac{4\pi}{P1P4 + P1P5} + \mathbf{I2}\right) \end{split}$$

$$\begin{split} \mathbf{I15} &= \int \frac{d\Omega_k \; P4 \cdot k}{(2(P3 \cdot k) + M_z^2 - i \Gamma M_z)} \\ \mathbf{I15} &= \int \frac{d\Omega_k \; P4 \cdot k}{(2E3(ko)cos\theta - 2(ko)E3 + M_z^2 - i \Gamma M_z)} \end{split}$$

and noting that

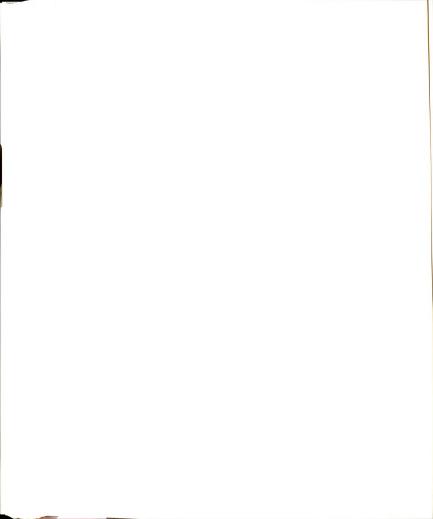
$$c = -(P3P4 + P3P5)$$

$$d = (P3P4 + P3P5) + M_z^2 - i\Gamma M_z$$

$$E4 = ko$$

$$P4_z = \frac{\overline{P4} \cdot \overline{P1}}{E1} = \frac{P1P4}{E1} + ko = -ko \frac{(P1P4 - P1P5)}{P1P4 + P1P5)}$$

$$\mathbf{I15} = -ko^2 I3 + \left(-ko \frac{(P3P4 - P3P5)}{(P3P4 + P3P5)^2}\right) (-ko) (4\pi - [P3P4 + P3P5 + M_z^2 - i\Gamma M_z] I3)$$



$$=\left(\frac{(P4P5)}{2(P1P4+P1P5)^2}\right)(-4\pi(P3P4-P3P5)+\mathbf{I3}\left[4(P3P4)(P3P5)+P3P4-P3P5)\right]MZP)$$

$$\begin{split} \mathbf{I16} &= \int \frac{d\Omega_k \; P1 \cdot k}{(2(P3 \cdot k) + M_z^2 - i\Gamma M_z)} \\ \mathbf{I16} &= \int \frac{d\Omega_k \; P1 \cdot k}{(2E3(ko)cos\theta - 2(ko)E3 + M_z^2 - i\Gamma M_z)} \end{split}$$

and noting that

$$c = -(P3P.4 + P3P5)$$

$$d = (P3P4 + P3P5) + M_z^2 - i\Gamma M_z$$

$$E1 = \frac{-(P1P4 + P1P5)}{2ko}$$

$$P1_z = \frac{\overline{P3} \cdot \overline{P1}}{E3} + E1$$

$$= \frac{-2ko(P1P3 + \frac{(P1P4 + P1P5)(P3P4 + P3P5)}{4ko^2}}{P3P4 + P3P5}$$

$$= \frac{-[-2(P1P3)(P4P5) + (P1P4 + P1P5)(P3P4 + P3P5)]}{2ko(P3P4 + P3P5)}$$

gives

$$\mathbf{I16} = \left(\frac{(P1P4 + P1P5)}{2}\right)\mathbf{I3} - \left(\frac{[2(P1P3)(P4P5) - (P1P4 + P1P5)(P3P4 + P3P5)]}{2(P1P4 + P1P5)}\right)(4\pi - [P3P4 + P3P5 + M_z^2 - i\Gamma M_z]\mathbf{I3})$$

The I17 - I19 Class of Integrals

These integrals are of the form:

I17 - I19 =
$$\int \frac{d\Omega_k (A \cdot k)^2}{(...)(...)}$$

Most of the solution is expressable in terms of previously used I_L , I_R , and I_B and integrals also already solved involving just <u>one</u> of the numerator factors and one or both of the denominators:

$$\begin{split} I_{TopLeft} &= I_{TL} = \int \frac{d\Omega_k \left(A \cdot k \right)}{\left(\ldots \right) \bullet} \\ I_{TopRight} &= I_{TR} = \int \frac{d\Omega_k \left(A \cdot k \right)}{\bullet \left(\ldots \right)} \\ I_{TopBoth} &= I_{TB} = \int \frac{d\Omega_k \left(A \cdot k \right)}{\left(\ldots \right) \left(\ldots \right)} \end{split}$$

The solution is effected by expanding just $on\epsilon$ of the numerator factors into four terms:

$$I = \int \frac{d\Omega_k \left(A_x(ko)sin\theta \; cos\phi + A_y(ko)sin\theta \; sin\phi + A_z(ko)cos\theta - A_0(ko)\right) \; (A \cdot k)}{(c\; cos\theta + d)(\epsilon\; cos\theta + f\; sin\theta\; cos\phi + g)}$$

using the previously defined co-ordinate system of class I4 - I6, producing the four terms, in an obvious notation;

$$I = I_x + I_y + I_z + I_0$$

First solve I_0 , by inspection:

$$I_0 = -A_0(ko)I_{TB}$$

and then I.

$$I_{\varepsilon} = \frac{A_{\varepsilon} ko}{c} \left[I_{TR} - dI_{TB} \right]$$

and I-

$$I_{x} = \frac{A_{x}ko}{f} \left[I_{TL} - (g - \frac{\epsilon d}{c})I_{TB} - \frac{\epsilon}{c}I_{TB} \right]$$

These were done in the usual way of adding and subtracting the terms required

to produce cancellation of denominator factors.

 I_y is harder. It is approached by also expanding the other numerator factor:

$$I_y = \int \frac{d\Omega_k \ (A_y(ko)sin\theta \ sin\phi) \ (A_x(ko)sin\theta \ cos\phi + A_y(ko)sin\theta \ sin\phi + A_z(ko)cos\theta - A_0(ko) \)}{(c \cos\theta + d)(e \cos\theta + f \ sin\theta \ cos\phi + g)}$$

Three of the terms are zero by symmetry. The remaining term:

$$\begin{split} I_{y} &= A_{y}^{2}ko^{2} \int \frac{d\Omega_{k} \left(sin^{2}\theta \sin^{2}\phi \right)}{\left(c\cos\theta + d \right) \left(e\cos\theta + f\sin\theta\cos\phi + g \right)} \\ I_{y} &= \frac{A_{y}^{2}ko^{2}}{f^{2}} \int \frac{d\Omega_{k} \left(f^{2} - f^{2}\cos^{2}\theta - f^{2}\sin^{2}\theta\sin^{2}\phi \right)}{\left(c\cos\theta + d \right) \left(e\cos\theta + f\sin\theta\cos\phi + g \right)} \end{split}$$

which three terms may be called:

$$I_{y} = I_{y1} + I_{y2} + I_{y3}$$

By inspection:

$$I_{y1} = A_y^2 k o^2 I_B$$

and

$$\begin{split} I_{y2} &= \frac{-A_y^2 k o^2}{c^2} \int \frac{d\Omega_k \left(c^2 cos^2 \theta + 2cd \cos\theta + d^2 - 2cd \cos\theta - d^2 \right)}{(c \cos\theta + d)(e \cos\theta + f \sin\theta \cos\phi + g)} \\ I_{y2} &= \frac{-A_y^2 k o^2}{c^2} \left[-2dI_R + 2d^2I_B - d^2I_B + dI_R + c(IC') \right] \\ I_{y2} &= \frac{-A_y^2 k o^2}{c^2} \left[dI_R - d^2I_B - c(IC') \right] \end{split}$$

where

$$IC = \int \frac{d\Omega_k \cos\theta}{(e \cos\theta + f \sin\theta \cos\phi + g)}$$

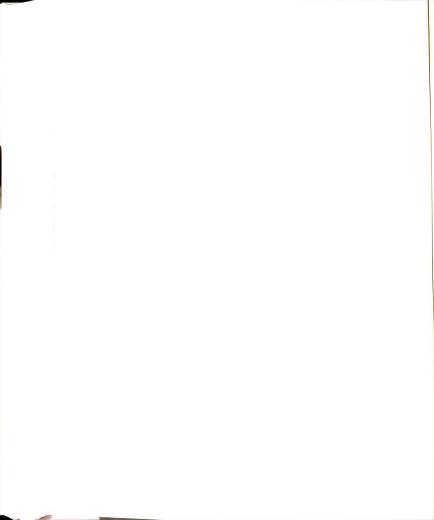
and remains to be evaluated

Lastly,

$$I_{y3} = \frac{A_y^2 ko^2}{f^2} \int \frac{d\Omega_k \left(-f^2 sin^2 \theta \, sin^2 \phi \right)}{(c \, cos\theta + d)(\epsilon \, cos\theta + f \, sin\theta \, cos\phi + g)}$$

Then, using

$$f^2 \sin^2 \theta \sin^2 \phi = \left[(e \cos \theta + g) + (f \sin \theta \cos \phi) \right]^2 - 2(e \cos \theta + g)(f \sin \theta \cos \phi) - (e \cos \theta + g)^2$$



$$\begin{split} &= \left[(e \cos\theta + g) + (f \sin\theta \cos\phi) \right]^2 - 2(e \cos\theta + g) \left[(e \cos\theta + g) + (f \sin\theta \cos\phi) \right] + (e \cos\theta + g)^2 \\ &= \left[(e \cos\theta + g) + (f \sin\theta \cos\phi) \right] \left[-(e \cos\theta + g) + (f \sin\theta \cos\phi) \right] + (e \cos\theta + g)^2 \\ &I_{y3} &= \frac{A_y^2 ko^2}{f^2} \left[\int \frac{d\Omega_k (e \cos\theta + g)}{(c \cos\theta + d)} - \int \frac{d\Omega_k (f \sin\theta \cos\phi)}{(c \cos\theta + d)} - \int \frac{d\Omega_k (e^2 \cos^2\theta + 2ge \cos\theta + g^2)}{(c \cos\theta + d)(e \cos\theta + f \sin\theta \cos\phi + g)} \right] \end{split}$$

The second term is zero.

The remaining become:

$$\begin{split} I_{y3} &= \frac{-A_y^2 k c^2}{f^2} \\ &\left[\frac{-e}{c} 4\pi + \frac{ed}{c} I_L - g I_L + \frac{2ge}{c} (I_R - d I_B) + g^2 I_B + \epsilon^2 \int \frac{d\Omega_k \left(\cos^2\theta \right)}{\left(c \cos\theta + d \right) \left(e \cos\theta + f \sin\theta \cos\phi + g \right)} \right] \end{split}$$

Then, using the results of I_{u2} on the cos^2 integral:

$$I_{y3} = \frac{-A_y^2 k o^2}{c^2} \left[\frac{-\epsilon}{c} 4\pi - (g - \frac{\epsilon d}{c}) I_L + \frac{2g\epsilon}{c} (I_R - dI_B) + g^2 I_B - \frac{\epsilon^2}{c^2} \left(dI_R - d^2 I_B - c(IC) \right) \right]$$

and the complete integral for this class of integrls:

$$\begin{split} I &= I_0 + I_z + I_{\pi} + I_{y_1} + I_{y_2} + I_{y_3} \\ \text{I17} - \text{I19} &= -A_0(ko)I_{TB} + \frac{A_z ko}{c} \left[I_{TR} - dI_{TB}\right] + \frac{A_x ko}{f} \left[I_{TL} - (g - \frac{\epsilon d}{c})I_{TB} - \frac{\epsilon}{c}I_{TR}\right] \\ &+ A_y^2 ko^2 I_B + \frac{A_y^2 ko^2}{c^2} \left[dI_R - d^2 I_B - c(IC)\right] \\ - \frac{A_y^2 ko^2}{f^2} \left[\frac{-\epsilon}{c} 4\pi - (g - \frac{\epsilon d}{c})I_L + \frac{2g\epsilon}{c}(I_R - dI_B) + g^2 I_B - \frac{\epsilon^2}{c^2} \left(dI_R - d^2 I_B - c(IC)\right)\right] \end{split}$$

It remains to evaluate IC.

$$IC = \int \frac{d\Omega_k \cos\theta}{(e \cos\theta + f \sin\theta \cos\phi + g)}$$

Using

$$\begin{split} & \int_0^{2\pi} \frac{d\phi}{a + b \cos\phi} = \frac{2\pi}{(a^2 - b^2)^{1/2}} \quad a \, > \, b \, > \, c \\ & IC = 2\pi \int_{-1}^1 \frac{x \, dx}{((c^2 + f^2)x^2 + 2g\epsilon x + y^2 - f^2)^{1/2}} \end{split}$$

$$IC = 2\pi \int_{-1}^{1} \frac{x \ dx}{(mx^2 + nx + p)^{1/2}}$$

where

$$m = \epsilon^{2} + f^{2}$$

$$n = 2g\epsilon$$

$$p = g^{2} - f^{2}$$

which is solved using

$$\int_{-1}^{1} \frac{x \, dx}{X^{1/2}} = \frac{\sqrt{X}}{m} - \left(\frac{n}{2m}\right) \left(\frac{1}{\sqrt{m}}\right) \log(2\sqrt{mX} + 2mx + n)$$

Noting

$$X(+1) = (g + e)^2$$
$$X(-1) = (g - e)^2$$

and

$$\frac{(g+\epsilon)\sqrt{\epsilon^2+f^2}+2(\epsilon^2+f^2)+2(g\epsilon)}{(g-\epsilon)\sqrt{\epsilon^2+f^2}-2(\epsilon^2+f^2)+2(g\epsilon)} = \frac{(g+\sqrt{\epsilon^2+f^2})(\epsilon+\sqrt{\epsilon^2+f^2})}{(g-\sqrt{\epsilon^2+f^2})(\epsilon+\sqrt{\epsilon^2+f^2})}$$

gives

$$IC = \frac{2\pi}{(\epsilon^2 + f^2)} \left[2\epsilon - \frac{g\epsilon}{\sqrt{\epsilon^2 + f^2}} \log \left(\frac{g + \sqrt{\epsilon^2 + f^2}}{g - \sqrt{\epsilon^2 + f^2}} \right) \right]$$

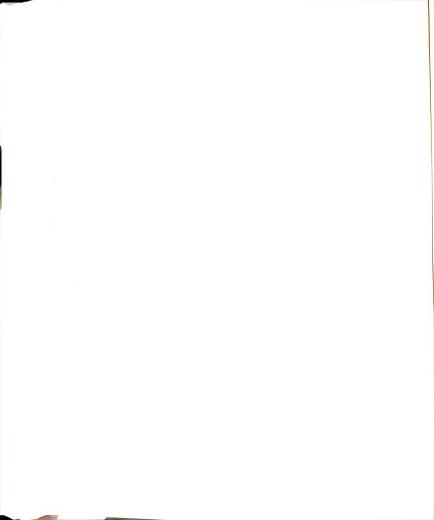
The log is the same as appears in the II - I3 class integrals and will be expressable in terms of them.

This class of integrals thus has solution:

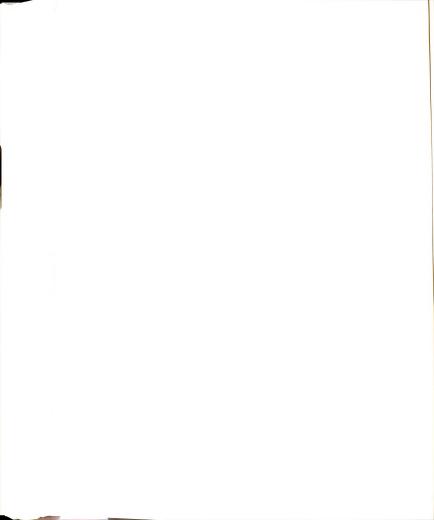
$$\begin{split} \mathbf{I}\mathbf{1}\mathbf{7} - \mathbf{I}\mathbf{1}\mathbf{9} &= -A_0(ko)I_{TB} + \frac{A_zko}{c}\left[I_{TR} - dI_{TB}\right] + \frac{A_zko}{f}\left[I_{TL} - (g - \frac{\epsilon d}{c})I_{TB} - \frac{\epsilon}{c}I_{TR}\right] \\ &+ \frac{A_y^2ko^2}{f^2}\left[\left(\frac{-\epsilon(f^2 + \epsilon^2)}{c(f^2 + \epsilon^2)} + \epsilon/c\right)4\pi + (g - \frac{\epsilon d}{c})I_L + \left(f^2(1 - \frac{d^2}{c^2}) - (g - \frac{\epsilon d}{c})^2\right)I_B + N\right] \end{split}$$

where

$$N = \left(\frac{d}{c^2}(f^2 + \epsilon^2) - \frac{2g\epsilon}{c}\right)I_R + \frac{(f^2 + \epsilon^2)}{c}\frac{2\pi}{(f^2 + \epsilon^2)}\frac{g\epsilon}{\sqrt{\epsilon^2 + f^2}}\log\left(\frac{g + \sqrt{\epsilon^2 + f^2}}{g - \sqrt{\epsilon^2 + f^2}}\right)$$



$$\begin{split} \mathbf{I}\mathbf{I}\mathbf{7} - \mathbf{I}\mathbf{I}\mathbf{9} &= -A_0(ko)I_{TB} + \frac{A_z ko}{c}\left[I_{TR} - dI_{TB}\right] + \frac{A_x ko}{f}\left[I_{TL} - (g - \frac{\epsilon d}{c})I_{TB} - \frac{\epsilon}{c}I_{TR}\right] \\ &\quad + \frac{A_y^2 ko^2}{f^2} \\ &\left[\left(g - \frac{\epsilon d}{c}\right)I_L - (g - \frac{cd}{c})^2I_B + 1/c\left(\left[\frac{d}{c}(f^2 + \epsilon^2) - 2g\epsilon\right]I_R + \frac{2\pi g\epsilon}{\sqrt{\epsilon^2 + f^2}}\log\left(\frac{g + \sqrt{\epsilon^2 + f^2}}{g - \sqrt{\epsilon^2 + f^2}}\right)\right)\right] \end{split}$$



Now to use this general solution to find I17, I18 and I19.

$$\begin{split} \mathbf{I17} &= \int \frac{d\Omega_k \, (P3 \cdot k)^2}{(-2P4 \cdot k + M_\gamma^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)} \\ \mathbf{I17} &= \int \frac{d\Omega_k (P3_r(ko)sin\theta \, cos\phi + P3_y(ko)sin\theta \, sin\phi + P3_z(ko)cos\theta - E3(ko))(P3 \cdot k)}{(-2ko^2cos\theta + 2ko^2 + M_\gamma^2)(2P1_z(ko)cos\theta + 2P1_x(ko)sin\theta \, cos\phi + 2(ko)E1 + M_{quark}^2)} \\ I_L &= \mathbf{I1} \qquad I_R = \mathbf{I2} \qquad I_B = \mathbf{I4} \qquad I_{TL} = \mathbf{I12} \qquad I_{TR} = \mathbf{I14} \qquad I_{TB} = \mathbf{I7} \end{split}$$

The parameters are the same as for the I7 solution,

using
$$P1_x = \frac{\overline{P1.P4}}{E4} = \frac{P1P4}{E4} + E1 = \frac{P1P4-P1P5}{2ko}$$

from $2(ko)E1 = -(P1P4+P1P5)$
and $P1_x = (E1-P1_x^2)^{1/2} = \pm \sqrt{(P1P4)(P1P5)}/ko$

and noting that

$$\begin{split} c &= -2ko^2 \\ d &= 2ko^2 + M_\gamma^2 = -c + M_\gamma^2 \\ e &= P1P4 - P1P5 \\ f &= \pm 2\sqrt{(P1P4)(P1P5)} \\ g &= -(P1P4 + P1P5) + M_{quark}^2 \\ e^2 + f^2 &= (2(ko)E1)^2 = (P1P4 + P1P5)^2 \\ g + e &= -2(P1P5) + M_{quark}^2 \\ ge &= -\left[P1P4^2 - P1P5^2\right] \end{split}$$

and adding

$$\begin{split} \frac{2\pi}{\sqrt{\epsilon^2 + f^2}} \log \left(\frac{g + \sqrt{\epsilon^2 + f^2}}{g - \sqrt{\epsilon^2 + f^2}} \right) &= \frac{2\pi}{(P1P4 + P1P5)} \log \left(\frac{M_{quark}^2}{-2(P1P4 + P1P5)} \right) = \mathbf{I2} \\ P3_z &= \frac{\overline{P3} \cdot \overline{P4}}{E4} &= \frac{P3P4}{E4} + E3 = \frac{P3P4 - P3P5}{2ko} \end{split}$$

and to get P3.

$$\overline{P1} \cdot \overline{P3} = P1P3 + E1E3 = P1_rP3_r + P1_yP3_y + P1_zP3_z$$

which, since $P1_y = 0$

$$\begin{split} P3_x &= 1/P1_x[P1P3 + E1E3 - P1_zP3_z] \\ &= \pm ko/\sqrt{(P1P4)(P1P5)} \left[P1P3 + \frac{(P1P4 + P1P5)(P3P4 + P3P5)}{4ko^2} - \frac{(P1P4 - P1P5)(P3P4 - P3P5)}{4ko^2} \right] \\ &= \frac{\pm S}{2(ko)\sqrt{(P1P4)(P1P5)}} \end{split}$$

where

$$S = P1P4(P3P5) + P1P5(P3P4) - P1P3(P4P5)$$

Now in addition, is needed $P3_u^2$:

$$P3_y^2 = E3^2 - P3_x^2 - P3_z^2$$

$$= \frac{4(P3P4)P3P5(P1P4)P1P5 - S^2}{4ko^2(P1P4)P1P5}$$

and using the general form gives:

$$I17 = -ko(E3)I7 + \frac{P3P4 - P3P5}{2(-2ko^2)}(I14) + \frac{P3P4 - P3P5}{2}(I7)$$

$$+ \frac{(S)(ko)}{2ko\sqrt{(P1P4)(P1P5)}} \frac{1}{2\sqrt{(P1P4)(P1P5)}} \left[I12 - \frac{P1P4 - P1P5}{(-2ko^2)}(I14) + 2(P1P5)I7 \right]$$

$$+ \left[\frac{4(P3P4)P3P5(P1P4)P1P5 - S^2}{4(P1P4)(P1P5)4(P1P4)P1P5} \right]$$

$$\left[-2(P1P5)I1 - 4(P1P5)^2I4 + \frac{1}{-2ko^2} \left(-(P1P4 + P1P5)^2 + P1P4^2 - P1P5^2 \right) I2 \right]$$

where the ± arbritariness has cancelled out.

$$\mathbf{I17} = (P3P4)\mathbf{I7} + \frac{P3P4 - P3P5}{2(P4P5)}(\mathbf{I14}) + \frac{(S)}{4(P1P4)(P1P5)} \left[\mathbf{I12} - \frac{P1P4 - P1P5}{(P4P5)}\mathbf{I14} + 2(P1P5)\mathbf{I7} \right] \\ + \left[\frac{4(P3P4)P3P5(P1P4)P1P5 - S^2}{16(P1P4)^2(P1P5)^2} \right] \left[-2(P1P5)\mathbf{I1} - 4(P1P5)^2\mathbf{I4} - \left(\frac{(P1P4 + P1P5)}{P4P5} \right) (2P1P5)\mathbf{I2} \right]$$

$$\mathbf{I18} = \int \frac{d\Omega_k \, (P1 \cdot k)^2}{(-2P4 \cdot k + M_\gamma^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)}$$

$$=\int\frac{d\Omega_k(P1_x(ko)sin\theta\cos\phi+P1_y(ko)sin\theta\sin\phi+P1_z(ko)cos\theta-E1(ko))\left(P1\cdot k\right)}{(-2ko^2cos\theta+2ko^2+M_\tau^2)(2P3_z(ko)cos\theta+2P3_x(ko)sin\theta\cos\phi-2(ko)E3+M_\tau^2-i\Gamma M_\tau)}$$

$$I_L = I1$$
 $I_R = I3$ $I_R = I5$ $I_{TL} = I11$ $I_{TR} = I16$ $I_{TB} = I8$

The parameters are the same as for the I8 solution.

Using
$$P3_z = \frac{\overline{P3.P4}}{E4} = \frac{P3P4}{E4} + E3 = \frac{P3P4 - P3P5}{2ko}$$

from
$$2(ko)E3 = -(P3P4 + P3P5)$$

and
$$P3_x = (E3^2 - P3_z^2)^{1/2} = \pm \sqrt{(P3P4)(P3P5)}/ko$$

$$P1_z = (P1P4 - P1P5)/2ko$$

$$P1_{\tau} = 1/P3_{\tau}[P1P3 + E1E3 - P1_{z}P3_{z}] = \frac{\pm ko}{\sqrt{(P3P4)(P3P5)}} \frac{S}{2k\sigma^{2}}$$

and noting that

$$c = -2ko^{2}$$

$$d = 2ko^{2} + M_{\gamma}^{2} = -c + M_{\gamma}^{2}$$

$$\epsilon = P3P4 - P3P5$$

$$f = \pm 2\sqrt{(P3P4)(P3P5)}$$

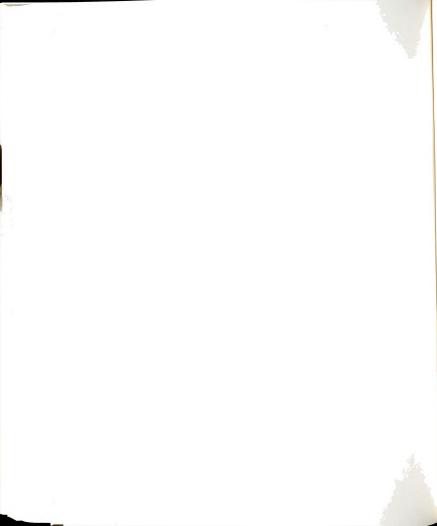
$$g = (P3P4 + P3P5) + M_{z}^{2} - i\Gamma M_{z}$$

$$= -(P3P4 - P3P5) + MZP$$

$$\epsilon^{2} + f^{2} = (2(ko)E3)^{2} = (P3P4 + P3P5)^{2}$$

$$g + \epsilon = 2(P3P4) + M_{z}^{2} - i\Gamma M_{z}$$

$$g\epsilon = (P3P4 - P3P5)[-(P3P4 + P3P5) + MZP]$$



using, as usual, the symbol MZP for the Z particle proprogator

$$MZP = 2(P3P4) + M_s^2 - i\Gamma M_s$$

and now adding

$$\begin{split} \frac{2\pi}{\sqrt{\epsilon^2 + f^2}} \log \left(\frac{g + \sqrt{\epsilon^2 + f^2}}{g - \sqrt{\epsilon^2 + f^2}} \right) &= \frac{2\pi}{(P3P4 + P3P5)} \log \left(\frac{2(P3P4) + MZP}{M_c^2 - i\Gamma M_c} \right) = \mathbf{I3} \\ P1_z &= \frac{\overline{P1} \cdot \overline{P4}}{E4} &= \frac{P1P4}{E4} + E1 = \frac{P1P4 - P1P5}{2ko} \end{split}$$

Now in addition, is needed $P1_n^2$:

$$\begin{split} P1_y^2 &= E1^2 - P1_x^2 - P1_z^2 \\ &= \frac{4(P3P4)P3P5(P1P4)P1P5 - S^2}{4ko^2(P3P4)P3P5} \end{split}$$

and using the general form gives:

and using the general form gives:
$$\begin{split} \mathbf{I18} &= -ko(E1)I8 + \frac{P1P4 - P1P5}{2(-2ko^2)}(I16) + \frac{P1P4 - P1P5}{2}(I8) \\ &+ \frac{(S)(ko)}{2ko\sqrt{(P3P4)(P3P5)}} \frac{1}{2\sqrt{(P3P4)(P3P5)}} \left[I11 - \frac{P3P4 - P3P5}{(-2ko^2)}(I16) - (P3P4 - P3P5)I8\right] \\ &+ \left[\frac{4(P3P4)P3P5(P1P4)P1P5 - S^2}{16(P3P4)^2(P3P5)^2}\right] \\ \left[(MZP)I1 - (MZP)^2I5 - \frac{I3}{2ko^2}(-(P3P4 + P3P5)^2 - (P3P4 - P3P5)\left[-(P3P4 - P3P5) + MZP\right])\right] \end{split}$$

where the ± arbritariness has cancelled out.

$$\begin{split} \mathbf{I18} &= (P1P4)\mathbf{I8} + \frac{P1P4 - P1P5}{2(P4P5)}\mathbf{I16} + \frac{(S)}{4(P3P4)(P3P5)}\left[\mathbf{I11} - \frac{P3P4 - P3P5}{(P4P5)}\mathbf{I16} - (MZP)\mathbf{I8}\right] \\ &+ \left[\frac{4(P3P4)P3P5(P1P4)P1P5 - S^2}{16(P3P4)^2(P3P5)^2}\right] \end{split}$$

$$\left[(MZP)\mathbf{I1} - (MZP)^2\mathbf{I5} - \frac{1}{P4P5} \left\{ (P3P4 + P3P5)2(P3P5) + (P3P4 - P3P5)MZP \right\} \mathbf{I3} \right]$$

$$\mathbf{I19} = \int \frac{d\Omega_k \; (P4 \cdot k)^2}{(2P1 \cdot k \; - 2(P1P4 + P1P5) + M_{quark}^2)(2P3 \cdot k + M_z^2 - i\Gamma M_z)}$$

$$=\int\frac{d\Omega_k(P4_x(ko)sin\theta\cos\phi+P4_y(ko)sin\theta\sin\phi+P4_z(ko)cos\theta-E4(ko))\left(P4\cdot k\right)}{(2(ko)E1cos\theta+2(ko)E1+M_{quark}^2)(2P3_z(ko)cos\theta+2P3_x(ko)sin\theta\cos\phi-2(ko)E3+M_z^2-i\Gamma M_z)}$$

$$I_L = \mathbf{I2}$$
 $I_R = \mathbf{I3}$ $I_B = \mathbf{I6}$ $I_{TL} = \mathbf{I13}$ $I_{TR} = \mathbf{I15}$ $I_{TB} = \mathbf{I9}$

The parameters are the same as for the I9 solution.

Using
$$P3_z = \frac{\overline{P3} \cdot \overline{P1}}{E1} = \frac{P1P3}{E1} + E3$$
 with

$$E3 = \frac{P3P4 + P3P5}{2ko} \qquad E1 = \frac{P1P4 + P1P5}{2ko}$$

to give

$$P3_z = \frac{-2ko(P1P3 + \frac{(P1P4 + P1P5)(P3P4 + P3P5)}{4ko^2}}{P1P4 + P1P5}$$

and

$$\begin{split} P3_{\pi} &= (E3^2 - P3_{\pi}^2)^{1/2} \\ &= \pm \left[-\left(\frac{P1P3}{E1}\right)^2 - 2(P1P3)(E1/E3) \right]^{1/2} \\ &= \pm \left(\frac{T}{A^2}\right)^{1/2} \end{split}$$

where

$$A = P1P4 + P1P5$$

and

$$T = 2(P1P3)[P1P3(P4P5) - P1P4(P3P4) - P1P4(P3P5) - P1P5(P3P4) - P1P5(P3P5)]$$

$$\begin{split} P4_z &= \frac{\overline{P4} \cdot \overline{P1}}{E1} = \frac{P1P4}{E1} + ko = -ko \frac{(P1P4 - P1P5)}{P1P4 + P1P5)} \\ P4_z &= 1/P3_x[P4P3 + E4E3 - P4_zP3_z] \\ &= 1/P3_x[P3P4 + ko(E3) - (\frac{P1P3}{E1} + E3)(\frac{P1P4}{E1} + ko)] \\ &= \pm \left(\frac{A^2}{T}\right)^{1/2} \left(\frac{U}{A^2}\right) \end{split}$$

where

$$U = P3P4(P1P5)^2 + P3P4(P1P4)P1P5 + P4P5(P1P3)P1P4$$

$$-(P1P4)^2(P3P5) - P1P4(P1P5)P3P5 - P1P5(P1P3)P4P5$$
 and noting that
$$c = -(P1P4 + P1P5) = A$$

$$d = c + M_{sure}^2 = c + 0 = c$$

 $\epsilon = \frac{W}{4}$

where

$$\begin{split} W &= 2(P1P3)(P4P5) - (P1P4 + P1P5)(P3P4 + P3P5)(P1P4 + P1P5) \\ f &= 2(ko)P3_{\pi} = \pm 2ko\left(\frac{T}{A^2}\right)^{1/2} \\ g &= (P3P4 + P3P5) + M_c^2 - i\Gamma M_c \\ e^2 + f^2 &= (2(ko)E3)^2 = (P3P4 + P3P5)^2 \\ ge &= W/A\left[-(P3P4 + P3P5) + M_c^2 - i\Gamma M_c \right] \\ g - e &= 2(P3P5) + MZP - \frac{2(P1P3)(P4P5)}{(P1P4 + P1P5)} = \frac{R}{(P1P4 + P1P5)} \end{split}$$

where

$$R = (2(P3P5) + MZP)(P1P4 + P1P5) - 2(P1P3)(P4P5)$$

using, as usual, the symbol MZP for the Z particle proprogator

$$MZP = 2(P3P4) + M_z^2 - i\Gamma M_z$$

and adding

$$\frac{2\pi}{\sqrt{\epsilon^2 + f^2}} \log \left(\frac{g + \sqrt{\epsilon^2 + f^2}}{g - \sqrt{\epsilon^2 + f^2}} \right) = \frac{2\pi}{(P3P4 + P3P5)} \log \left(\frac{2(P3P4) + MZP}{M_c^2 - i\Gamma M_c} \right) = \mathbf{I3}$$

and now in addition, is needed Ply:

$$\begin{split} P4_y^2 &= E4^2 - P4_z^2 - P4_z^2 \\ &= ko^2 - \frac{ko^2(P1P4 - P1P5)^2}{A^2} - \frac{U^2}{A^2T} \\ &= \frac{2(ko^2)(P1P4)(P1P5)}{A^2} - \frac{U^2}{A^2T} \end{split}$$

and using the general form gives:

$$\begin{split} \mathbf{I19} &= (-ko^2)I9 + \left(\frac{ko^2(P1P4 - P1P5)}{A^2}\right)I15 + \left(\frac{ko^2(P1P4 - P1P5)}{A}\right)I9 \\ &+ \left(\frac{A^2}{T}\right)^{1/2} \left(\frac{U}{A^2}\right) \left(\frac{1}{2}\right) \left(\frac{A^2}{T}\right)^{1/2} \left(I13 + \left(\frac{W}{A^2}\right)I15 + \left(\frac{W}{A}\right)I9 - (P3P5 - P3P4 + MZP)I9\right) \\ &+ (P4_y^2) \left(\frac{1}{4}\right) \left(\frac{A^2}{T}\right) \\ &\left[\left(\frac{R}{A}\right)I2 - \left(\frac{R}{A}\right)^2I6 - \frac{1}{A}\left([P3P4 + P3P5]^2 - \frac{W}{A}[-(P3P4 - P3P5) + MZP]\right)I3\right] \end{split}$$

where the ± arbritariness has cancelled out.

$$\begin{split} \mathbf{I19} &= \left(\frac{(P4P5)(P1P5)}{A}\right)\mathbf{I9} - \left(\frac{(P4P5)(P1P4 - P1P5)}{2A^2}\right)\mathbf{I15} \\ &+ \frac{U}{2T}\left(\mathbf{I13} + \left(\frac{W}{A^2}\right)\mathbf{I15} + \left(\frac{W}{A}\right)\mathbf{I9} - (P3P5 - P3P4 + MZP)\mathbf{I9}\right) \\ &+ \left[\frac{-P4P5(P1P4)P1P5}{2T} - \frac{U^2}{4T^2}\right] \\ &\left[\left(\frac{R}{A}\right)\mathbf{I2} - \left(\frac{R}{A}\right)^2\mathbf{I6} - \frac{1}{A}\left([P3P4 + P3P5]^2 - \frac{W}{A}\left[-(P3P4 - P3P5) + MZP\right]\right)\mathbf{I3}\right] \end{split}$$

Appendix O

FORTRAN Program to Calculate the Result

```
PROGRAM thesis
       IMPLICIT NONE
       INTEGER LHEL.QHEL.GHEL
       REAL ECM.PI.ALPHA
       COMPLEX MZ
       PARAMETER (LHEL = +1, QHEL = +1, GHEL = +1, ECM = 5.80)
       PARAMETER (ALPHA = 1.0/137.PI = 3.14157.MZ = (93.5.2.7))
       INTEGER EPF PARITY
       REAL P1P3.P1P4.P1P5.P3P4.P3P5.P4P5.LIMIT.P1Y SQD.P1Y
       REAL PP1P3.PP1P4.PP3P5.PP4P5
       REAL WIV, FPIIV
       REAL PROPIV.EO.BO.CUO.EOIV.BOIV.CUOIV.RATIO
       COMPLEX I1, 12, 13, 14, 15, 16, 17, 18, 19, 110, 111, 112, 113, 114, 115
       COMPLEX I16, I17, 118, I19
       COMPLEX EVL.BORN TERM.BORN.LOOP TERM.MZP.MZPIV
       COMPLEX NUMERATOR. ELECTRON LOOP TERM. POSITRON LOOP TERM
       COMPLEX E LOOP, P LOOP
       CHARACTER SET HEL CODE * 1. HEL CODE * 1
       OPEN ( UNIT = 10. FILE = 'TOUTPUT', STATUS = 'NEW')
       LIMIT = -2*ECM**2
       HEL CODE = SET HEL CODE (LHEL, QHEL, GHEL)
       PRINT*. 'HEL CODE = '. HEL CODÉ
      DO 1000 P3P4 = 0,LIMIT,-10
          DO 1000 P3P5 = 0.LIMIT-P3P4.-10
             P4P5 = LIMIT - P3P5 - P3P4
             DO 1000 P1P4 = 0,LIMIT,-10
                DO 1000 P1P5 = 0.LIMIT-P1P4.-10
                   P1P3 = LIMIT - P1P5 - P1P4
                   P1Y SQD = (4*P1P4*P1P5*P3P4*P3P5)
                        - (P1P5*P3P4+P1P4*P3P5-P4P5*P1P3)**2
                   PRINT*, 'P1Y SQD = ',P1Y SQD
                   IF ( PIY SOD .GE. O ) THEN
                       PRINT* 'P1P3 = ' .P1P3
                      PRINT*, 'P1P4 = ',P1P4
PRINT*, 'P1P5 = ',P1P5
                       PRINT*, 'P3P4 = '.P3P4
                       PRINT*, 'P3P5 = '.P3P5
                       PRINT*, 'P4P5 = '
                                        .P4P5
                       DO EPF PARITY = -1, +1, 2
                          P1\overline{Y} = EPF PARITY*P1Y SQD**(0.5)
                           PRINT*.'PIY = '.P1Y
                           EVL = CMPLX(0.0,P1Y)
                          PRINT* . 'EVL = '
                                           , EVL
                          BORN TERM = BORN (HEL CODE, P1P3, P1P4, P1P5,
                                             P3P4.P3P5.P4P5.EVL)
                          MZP = 2*P3P4 + MZ
                          MZPIV = 1.0/MZP
                          PROPIV = 1.0/(-2*P1P5*2*(P3P4*P3P5*P4P5))
                          BORN TERM = PROPIV*MZPIV*BORN TERM
                           E0 = -4*P1P5*(P3P5*P4P5-P1P5)*(P3P4*P3P5*P4P5)
c
                           E0 = 1
                          EOIV = 1.0/E0**(0.5)
                            BO = 1
                            B0 = 0.125*(P3P4*P3P5)**(0.5)
C
                          BOIV = 1.0/B0**(0.5)
                           CUO = 0.125* (P3P4+P3P5+P4P5) *P1P5
C
                            CUO = 1
                          CUOIV = 1.0/CU0**(0.5)
```

```
FPIIV = 0.25*(1/PI)
         BORN TERM = FOIV*BOIV*CUOIV*BORN TERM
         PRINT*. 'BORN TERM = ', BORN TERM
         I1 = (0.0)
         12 = (0.0)
         I3 = (0.0)
         I4 = (0.0)
         15 = (0.0)
         T6 = (0,0)
         17 = (0.0)
         I7 = (0,0)
         18 = (0.0)
         19 = (0,0)
         I10 = (0,0)
         I11 = (0.0)
         T12 = (0.0)
         I13 = (0.0)
         I14 = (0.0)
          I15 = (0,0)
          I16 = (0.0)
          I17 = (0.0)
          I18 = (0.0)
          I19 = (0.0)
          WTV = 0
          CALL INTEGRALS (P1P3.P1P4.P1P5.P3P4.P3P5.P4P5.
                           11,12,13,14,15,16,17,18,19,110,
                     I11, I12, I13, I14, I15, I16, I17, I18, I19.
                           WIV, FPÍIV,
                           MZ)
    ELECTRON LOOP TERM = E LOOP (HEL CODE, P1P3, P1P4, P1P5.
                            P3P4.P3P5.P4P5
                           11,12,13,14,15,16,17,18,19,110,
                      I11.I12.I13,I14,I15,I16,I17,I18,I19,
                            WIV.FPIIV, BOIV, CUOIV, EOIV, EVL,
                            MZ)
    FLECTRON LOOP TERM = ELECTRON LOOP TERM/(2*P4P5)
          PP1\overline{P}3 = \overline{P}1P4
          PP1P4 = P1P3
          PP3P5 = P4P5
          PP4P5 = P3P5
          EVL = -EVL
    E0 = -4*P1P5*(PP3P5*PP4P5-P1P5)*(P3P4*PP3P5*PP4P5)
    E0 = 1
          FOIV = 1.0/E0**(0.5)
           B0 = 1
           B0 = 0.125*(P3P4*PP3P5)**(0.5)
          BOIV = 1.0/B0**(0.5)
           CUO = 1
           CUO = 0.125*(P3P4+PP3P5+PP4P5)*P1P5
          CUOIV = 1.0/CUO**(0.5)
    CALL INTEGRALS (PP1P3, PP1P4, P1P5, P3P4, PP3P5, PP4P5.
                         11,12,13,14,15,16,17,18,19,110,
                    I11, I12, I13, I14, I15, I16, I17, I18, I19,
                           WIV, FPIIV,
                           MZ)
POSITRON LOOP TERM = P_LOOP (HEL CODE, PP1P3, PP1P4, P1P5,
                            P3P4 . PP3P5 . PP4P5 ,
                         11.12.13.14,15,16,17,18,19,110,
```

C

C

C

```
I11, I12, I13, I14, I15, I16, I17, I18, I19,
                                          WÍV, FPIIV, BOIV, CUOIV, EOIV, EVL,
                                            MŹ)
                  POSITRON LOOP TERM = POSITRON LOOP TERM/(2*PP4P5)
                  LOOP TERM = ELECTRON LOOP TERM - POSITRON LOOP TERM
                          LOOP TERM = LOOP TERM*BOIV*CUOIV*EOIV
                          LOOP TERM = LOOP TERM/(2*(P3P4+P3P5+P4P5))
                          PRINT*, 'LOOP TERM = ',LOOP_TERM
                          LOOP TERM = LOOP TERM*ALPHA/(8*PI*P4P5)
                          NIMERATOR = LOOP TERM + BORN TERM
                          RATIO = NUMERATOR*CONJG(NUMERATOR)
                          RATIO = RATIO/(BORN TERM*CONJG(BORN TERM))
                          PRINT*, 'RATIO = ', RATIO
                  WRITE ( 10,200 ) HEL_CODE, P1P3, P1P4, P1P5, P3P4, P3P5,
                                  PAPS RATIO
                   FORMAT (A1.6F7.2,F12.7)
 200
                      FNDDD
                   FNDIF
1000
      CONTINUE
      FND
      CHARACTER FUNCTION SET HEL CODE (LHEL, QHEL, GHEL)
      INTEGER LHEL, QHEL, GHEL
         IF ((LHEL .EQ. +1) .AND. (QHEL .EQ. +1)
              .AND. (GHEL .EQ. +1)) THEN
                    PRINT*.'A'
                    SET HEL CODE = 'A'
                    retūrn
         ELSEIF ((LHEL .EQ. +1) .AND. (QHEL .EQ. +1)
               .AND. (GHEL .EQ. -1)) THEN
                    PRINT*,'B'
                    SET HEL CODE = 'B'
                    RETŪRN
          ELSEIF ((LHEL .EQ. +1) .AND. (QHEL .EQ. -1)
                .AND. (GHEL .EQ. +1)) THEN
                    PRÎNT*,'C'
                    SET HEL CODE = 'C'
                    RETURN
           ELSEIF ((LHEL .EQ. +1) .AND. (QHEL .EQ. -1)
                 .AND. (GHEL .EQ. -1)) THEN
                    PRINT*, 'D'
                    SET HEL CODE = 'D'
                    RETŪRN
           ELSEIF ((LHEL .EQ. -1) .AND. (QHEL .EQ. +1)
                 .AND. (GHEL .EQ. +1)) THEN
                    PRINT+, 'E'
                    PRINT*, 'EVL = ', EVL
                    SET HEL CODE = 'E'
                    RETŪRN
             ELSEIF ((LHEL .EQ. -1) .AND. (QHEL .EQ. +1)
                  .AND. (GHEL .EQ. -1)) THEN
                    PRINT*,'F'
SET_HEL_CODE = 'F'
                    RETÜRN
             ELSEIF ((LHEL .EQ. -1) .AND. (QHEL .EQ. -1)
                  .AND. (GHEL .EQ. +1)) THÈN
                    PRINT*,'G'
```

```
169
              SET HEL CODE = 'G'
             RETŪRN
       ELSEIF ((LHEL .EQ. -1) .AND. (QHEL .EQ. -1)
             .AND. (GHEL .EQ. -1)) THEN
             PRINT*,'H'
              SET HEL CODE = 'H'
             RETŪRN
       ENDIF
RETURN
END
COMPLEX FUNCTION BORN (HEL CODE, P13, P14, P15, P34, P35, P45, EVL)
REAL P13.P14.P15.P34,P35,P45
COMPLEX EVL, QA, QB, QC, QD, QE, QF, QG, QH
CHARACTER HEL CODE+1
IF (HEL CODE .EQ. 'A') THEN
   BORN = QA(P13,P14,P15,P34,P35,P45,EVL)
   RETURN
ENDIF
IF (HEL CODE .EQ. 'B') THEN
   BORN = QB(P13, P14, P15, P34, P35, P45, EVL)
   RETURN
FNDTF
IF (HEL CODE .EQ. 'C') THEN
   BORN = QC (P13, P14, P15, P34, P35, P45, EVL)
   RETURN
ENDIF
IF (HEL CODE .EQ. 'D') THEN
   BORN = QD (P13,P14,P15,P34,P35,P45,EVL)
   RETURN
ENDIF
IF (HEL_CODE .EQ. 'E') THEN
   BORN = QE(P13,P14,P15,P34,P35,P45,EVL)
   RETURN
ENDIF
IF (HEL CODE .EQ. 'F') THEN
   BORN = QF (P13, P14, P15, P34, P35, P45, EVL)
   RETURN
FNDIF
IF (HEL_CODE .EQ. 'G') THEN
   BORN = QG(P13,P14,P15,P34,P35,P45,EVL)
   RETURN
ENDIF
IF (HEL CODE .EQ. 'H') THEN
   BORN = QH(P13,P14,P15,P34,P35,P45,EVL)
   RETURN
```

ENDIF

RETURN

```
SUBROUTINE INTEGRALS (P1P3.P1P4.P1P5.P3P4.P3P5.P4P5.
                        11.12.13.14.15.16.17.18.19.110.
C
                        I11, I12, I13, I14, I15, I16, I17, I18, I19,
č
                        WIV.FPIÍV.
č
                        D3)
 COMPLEX D3.MZP.R.LN3.LN5.LN6.MZP1.ZI10D.RUPPER.
                                                                       110
C
         MZPUP.MZPIV.RIV.ZI10U.UPPER.
                                                                       120
C
                                                                       130
         I1. I2. I3. I4. I5. I6. I7. I8. I9. I10. I96. IR.
         I11. I12. I13. I14. I15. I16. I17. I18. I19
                                                                       140
 RFAL
         LN1.LN2.LN4.RLOWER.MZPLW.I9U.I9L.I93.IW.IS.
                                                                       150
C
         LOWER.WIV
 RFAI
         P1P3.P1P4.P1P5.P3P4.P3P5.P4P5.API.FPIIV.K02.K02IV
 DOUBLE PRECISION CC44, CC43, CC42, CC41, CC33, CC32, CC31,
                   CC22, CC21, CC11
 API = 3.142857143
                                                                       200
 P13IV = 1/P1P3
                                                                       570
 P14TV = 1/P1P4
                                                                       580
 P15IV = 1/P1P5
                                                                       590
 P34IV = 1/P3P4
                                                                       600
 P35IV = 1/P3P5
                                                                       610
 P45IV = 1/P4P5
                                                                       620
 M7P = 2*P3P4 + D3
                                                                       630
 S1S2 = P1P3
                                                                       640
 S1S3 = P1P4
                                                                       650
 S1S4 = P1P5
                                                                       660
 S2S3 = P3P4
                                                                       670
 S2S4 = P3P5
                                                                       680
 S3S4 = P4P5
                                                                       690
 W = S1S2*S3S4*(-S1S2*S3S4+S1S4*S2S3+S1S3*S2S4)
                                                                       700
C + S1S3*S2S4*( S1S2*S3S4+S1S4*S2S3-S1S3*S2S4)
                                                                       710
C + S1S4*S2S3*( S1S2*S3S4-S1S4*S2S3+S1S3*S2S4)
                                                                       720
WIV = 1.0/W
                                                                       730
CC44 = WIV*(-2)*(S1S2*S1S3*S2S3)
                                                                       740
CC43 = WIV*$152*(-$1$2*$3$4+$1$4*$2$3+$1$3*$2$4)
                                                                       750
CC42 = WIV*S1S3*(S1S2*S3S4*S1S4*S2S3-S1S3*S2S4)
                                                                       760
CC41 = WIV*S2S3*( S1S2*S3S4-S1S4*S2S3+S1S3*S2S4)
                                                                       770
CC33 = WIV*(-2)*(S1S2*S1S4*S2S4)
                                                                       780
CC32 = WIV*$154*( $1$2*$3$4-$1$4*$2$3+$1$3*$2$4)
                                                                       790
CC31 = WIV*S2S4*( S1S2*S3S4+S1S4*S2S3-S1S3*S2S4)
                                                                       800
CC22 = WIV*(-2)*(S1S3*S1S4*S3S4)
                                                                       810
CC21 = WIV * \hat{S}3S4 * (-S1S2 * S3S4 + S1S4 * S2S3 + S1S3 * S2S4)
                                                                       820
CC11 = WIV* (-2) * (S2S3*S2S4*S3S4)
                                                                       830
R = -2*P4P5*P1P3*2*P3P5*(P1P4+P1P5) + MZP*(P1P4+P1P5)
                                                                       840
LN1 = LOG (-2*P4P5)
                                                                       850
LN2 = LOG(-2*(P1P4*P1P5))
                                                                       860
LN3 = LOG((2*P3P5+MZP)/D3)
                                                                       870
LN4 = LOG((P1P4+P1P5)/P1P5)
                                                                       880
LN5 = LOG(MZP/(2*P3P5*MZP))
                                                                       890
LN6 = LOG((2*P3P5+MZP)*(P1P4+P1P5)/R)
                                                                       900
K02 = 0.5*(-P4P5)
                                                                       1060
KO2IV = 1/KO2
                                                                       1070
D145 = P1P4 + P1P5
                                                                       1080
```

```
1090
  D1 = D145
  D145IV = 1/D145
                                                                     1100
  D345 = P3P4 + P4P5
                                                                     1110
  D345IV = 1/D345
                                                                     1120
  MZP = 2*P3P4 + D3
                                                                     1130
  I1 = -2*API*P45IV*(LN1)
                                                                     1140
  I2 = -2*API*D145IV*(LN2)
                                                                     1150
  I3 = +2*API*D345IV*LN3
                                                                     1160
  R = -2*P4P5*P1P3+2*P3P5*D1+MZP*D1
                                                                     1200
  MZP1 = MZP
                                                                     1210
  RUPPER = CONJG(R)
                                                                     1220
  RLOWER = R*CONJG(R)
                                                                     1230
  MZPUP = CONJG(MZP1)
                                                                     1240
  MZPLW = MZP1*CONJG(MZP1)
                                                                     1250
  RIV = RUPPER/(RLOWER)
                                                                     1260
  MZPIV = MZPUP/(MZPLW)
                                                                     1270
  I4 = - api *P45IV*P15IV*LN4 -
                                                                     1290
               0.5*D1*P45IV*P15IV*I2 - 0.5*P15IV*I1
                                                                     1300
  I5 = P45IV*MZPIV*(-4*api*LN5 - D345*I3 +P4P5*I1)
  I6 = RIV*(+4*api*LN6 - D345*I3 + D1*I2)
  I7 = 0.25*(P3P5*P15IV*P3P4*P14IV-P1P3*P4P5*P14IV*P15IV)*
                                                                     1360
           (I1 - (P1P4-P1P5)*P45IV*I2 + 2*P1P5*I4)
                                                                     1370
             -0.5*(P3P5-P3P4)*P45IV*I2
                                          + P3P4*I4
                                                                     1380
  I8 = 0.25*(P1P4*P34IV+P1P5*P35IV-P1P3*P4P5*P34IV*P35IV)*
                                                                     1390
        (I1 - (P3P4-P3P5)*P45IV*I3 - MZP*I5)
                                                                     1400
              -0.5*(P1P5-P1P4)*P45IV*I3 +P1P4*I5
                                                                     1410
  I9U = P3P4*P1P4*P1P5+P3P4*P1P5*P1P5+P4P5*P1P3*P1P4
                                                                     1420
               P4P5*P1P3*P1P5-P1P4*P1P4*P3P5-P1P5*P1P4*P3P5
                                                                     1430
  I9L = 2*P1P3*
                                                                     1440
           (P1P3*P4P5-P1P4*P3P4-P1P4*P3P5-P1P5*P3P4-P1P5*P3P5)
                                                                     1450
  I93 = 2*P4P5*P1P3*D145IV*D145IV-(P3P4*P3P5)*D145IV
                                                                     1460
  I96 = -2*P4P5*P1P3*D145IV + 2*P3P5 + MZP
                                                                     1470
  I9 = 0.5*I9U*(1/I9L)*(I2+I93*I3-I96*I6)
                                                                     1480
       + 0.5*P4P5*(P1P5-P1P4)*D145IV*(D145IV*I3+I6)
                                                                     1490
       + 0.5*P4P5*I6
                                                                     1500
  I11 = 2*API*P45IV*(P1P4-P1P5) + P1P4*I1
  I12 = 2*API*P45IV*(P3P4-P3P5) + P3P4*I1
 I13 = -2*API*P4P5*D145IV*D145IV*(P1P4 - P1P5) +
                                                                     1560
        P4P5*P1P5*D145IV*I2
 I14 = 0.5*(P3P4 + P3P5)*I2 +
                                                                     1580
    0.5*(D145*D345-2*P1P3*P4P5)*D145IV*( 4*API*D145IV + I2)
                                                                     1590
 I15 = -2*API*P4P5*D345IV*D345IV*(P3P4 - P3P5) +
                                                                     1600
       0.5*P4P5*(1+D345IV*D345IV*(P3P4-P3P5)*(D345+D3))*I3
                                                                     1700
 I16 = 0.5*D145*I3 +
                                                                     1620
         0.5*(D145*D345 - 2*P1P3*P4P5)*
                                                                     1630
               D345IV*D345IV*( 4*API - I3*(D345 + D3))
                                                                     1640
 I17 = P3P4*I7 + 0.5*P45IV*(P3P4-P3P5)*I14 +
                                                                     1720
C 0.25*IS*P14IV*P15IV*(I12 - (P1P4-P1P5)*P45IV*I14 + 2*P1P5*I7) +
                                                                     1730
C 0.0625*P14IV*P14IV*P15IV*P15IV*(4*P3P4*P3P5*P1P4*P1P5-IS*IS)*
                                                                     1740
C (-2*P1P5*I1 - 4*P1P5*P1P5*I4 - P45IV*D145*2*P1P5*I2)
                                                                     1750
 I18 = P1P4*I8 + 0.5*P45IV*(P1P4-P1P5)*I16 +
                                                                     1760
C 0.25*IS*P34IV*P35IV*(I11-(P3P4-P3P5)*P45IV*I16-(2*P3P4+D3)*I8)+
                                                                     1770
C 0.0625*P34IV*P34IV*P35IV*P35IV*(4*P3P4*P3P5*P1P4*P1P5-IS*IS)*
                                                                     1780
                                                                     1790
C
      (MZP) *I1-MZP*MZP*I5
                                                                     1800
Č
                 -P45IV*(D345*2*P3P5+(P3P4-P3P5)*MZP)*I3
                                                                     1810
                                                                     1820
 IW = 2*P1P3*P4P5 - D145*D345
                                                                     1830
```

```
TR = -2*P4P5*P1P3 + D1*(2*P3P5 + M7P)
                                                                    1840
 I19 = P4P5*P1P5*D145IV*I9 -
                                                                    1850
          0.5*D145IV*D145IV*P4P5*(P1P4-P1P5)*I15 +
        0.5*T9U*(1/T9L)*
                                                                    1860
C
        (I13 + D145IV*D145IV*IW*I15+(D145IV*IW-P3P4-P3P5-D3)*I9) + 1870
Č
      (
                                                                    1880
Ċ
          -0.5*P4P5*P1P4*P1P5*(1/T9L)
                                                                    1890
č
          -0.25*I9U*I9U*(1/I9L)*(1/I9L)
                                                                    1900
Ċ
                                                                    1910
C(
                                                                    1920
  (D145IV*IR)*I2
                                                                    1930
  -D145IV*D145IV*IR*IR*I6
                                                                    1940
  -D145IV*(D345*D345+D145IV*IW*(P3P4-P3P5-MZP))*I3
                                                                    1950
C)
                                                                    1960
 UIDU1=+2 *CC41*CC31*P4P5+2 *CC41*CC21*P3P5+2 *CC41*CC11*P1P5+2 *
                                                                    2000
CCC31*CC21*P3P4+2.*CC31*CC11*P1P4+2.*CC21*CC11*P1P3
                                                                    2010
 U1DU2=+CC42*CC31*P4P5+CC42*CC21*P3P5+CC42*CC11*P1P5+CC41*CC32*P4
                                                                    2020
CP5+CC41*CC22*P3P5+CC41*CC21*P1P5+CC32*CC21*P3P4+CC32*CC11*P1P4+C
                                                                    2030
CC31*CC22*P3P4+CC31*CC21*P1P4+CC22*CC11*P1P3+CC21**2*P1P3
                                                                    2040
 U1DU3=+CC43+CC31+P4P5+CC43+CC21+P3P5+CC43+CC11+P1P5+CC41+CC33+P4
                                                                    2050
CP5+CC41*CC32*P3P5+CC41*CC31*P1P5+CC33*CC21*P3P4+CC33*CC11*P1P4+C
                                                                    2060
CC32*CC31*P3P4+CC32*CC11*P1P3+CC31*CC21*P1P3+CC31**2*P1P4
                                                                    2070
 U1DU4=+CC44*CC31*P4P5+CC44*CC21*P3P5+CC44*CC11*P1P5+CC43*CC41*P4
                                                                    2080
CP5+CC43*CC21*P3P4+CC43*CC11*P1P4+CC42*CC41*P3P5+CC42*CC31*P3P4+C
                                                                    2090
CC42*CC11*P1P3+CC41*CC31*P1P4+CC41*CC21*P1P3+CC41**2*P1P5
                                                                    2100
 U2DU2=+2.*CC42*CC32*P4P5+2.*CC42*CC22*P3P5+2.*CC42*CC21*P1P5+2.*
                                                                    2110
CCC32*CC22*P3P4+2.*CC32*CC21*P1P4+2.*CC22*CC21*P1P3
                                                                    2120
 U2DU3=+CC43*CC32*P4P5+CC43*CC22*P3P5+CC43*CC21*P1P5+CC42*CC33*P4
                                                                    2130
CP5+CC42*CC32*P3P5+CC42*CC31*P1P5+CC33*CC22*P3P4+CC33*CC21*P1P4+C
                                                                   2140
CC32*CC31*P1P4+CC32*CC21*P1P3+CC32**2*P3P4+CC31*CC22*P1P3
                                                                    2150
 U2DU4=+CC44*CC32*P4P5+CC44*CC22*P3P5+CC44*CC21*P1P5+CC43*CC42*P4
                                                                    2160
CP5+CC43*CC22*P3P4+CC43*CC21*P1P4+CC42*CC41*P1P5+CC42*CC32*P3P4+C
                                                                    2170
CC42*CC21*P1P3+CC42**2*P3P5+CC41*CC32*P1P4+CC41*CC22*P1P3
                                                                    2180
 H3DH3=+2 *CC43*CC33*P4P5+2 *CC43*CC32*P3P5+2 *CC43*CC31*P1P5+2 *
                                                                    2190
CCC33*CC32*P3P4+2.*CC33*CC31*P1P4+2.*CC32*CC31*P1P3
                                                                    2200
 U3DU4=+CC44*CC33*P4P5+CC44*CC32*P3P5+CC44*CC31*P1P5+CC43*CC42*P3
                                                                    2210
CP5+CC43*CC41*P1P5+CC43*CC32*P3P4+CC43*CC31*P1P4+CC43**2*P4P5+CC4
                                                                    2220
C2*CC33*P3P4+CC42*CC31*P1P3+CC41*CC33*P1P4+CC41*CC32*P1P3
                                                                    2230
 U4DU4=+2.*CC44*CC43*P4P5+2.*CC44*CC42*P3P5+2.*CC44*CC41*P1P5+2.*
                                                                    2240
CCC43*CC42*P3P4+2.*CC43*CC41*P1P4+2.*CC42*CC41*P1P3+0.
                                                                    2250
                                                                    2260
  ZI10U = U1DU1*(0.5*I8+0.5*D1*I5)+U2DU2*(0.5*I7-0.25*D3*I4)
                                                                    2270
  (U3DU3-2*U3DU4+U4DU4)*0.5*I9
  + U1DU2*(0.5*I1+D1*I4-0.5*D3*I5)
                                                                    2280
 - (U1DU3-U1DU4) * (0.5*I3+D1*I6)
                                                                    2290
C + U1DU4*P4P5*I5-(U2DU3-U2DU4)*0.5*(I2-D3*I6)+U2DU4*P4P5*I4
                                                                    2300

    (U3DU4-U4DU4)*P4P5*T6

                                                                    2310
 ZI10D = U1DU1*D1*D1+U2DU2*0.25*D3*D3+U4DU4*P4P5*P4P5
                                                                    2320
   -1.0*U1DU2*D1*D3+2*U1DU4*P4P5*D1-U2DU4*P4P5*D3
                                                                    2330
UPPER = -ZI10U*CONJG(ZI10D)
                                                                    2340
                                                                    2350
LOWER = ZI10D*CONJG(ZI10D)
I10 = UPPER/(LOWER)
                                                                    2360
RETURN
END
                                                                    5010
```

```
173
                          I11.I12.I13.I14.I15.I16.I17.I18.I19
                          WIV.FPIÍV.BÓIV.CUOIV.EOÍV.EÝL.
                          D3)
 REAL P13.P14.P15.P34.P35.P45
 REAL WIV, FPIIV, BOIV, CUOIV, EOIV
 COMPLEX EVL, ELA, ELB, ELC, ELD, ELE, ELF, ELG, ELH
 COMPLEX I1.I2.I3.I4.I5.I6.I7.I8.I9.I10.I11.I12.I13.I14.I15.
         I16, I17, I18, I19
 COMPLEX D3
 CHARACTER HEL CODE*1
 IF (HEL CODE .EQ. 'A') THEN
    È LOOP = ELA(P13,P14,P15,P34,P35,P45,
                   11,12,13,14,15,16,17,18,19,110,
                   I11.I12.I13.I14.I15.I16.I17.I18.I19.
                   WIV.FPIIV.BOIV.CUOIV.EOIV.EVL
                   D3)
    RETURN
 ENDIF
 IF (HEL_CODE .EQ. 'B') THEN
    \dot{E} LOOP = ELB(P13.P14.P15.P34.P35.P45.EVL)
    RFTURN
 ENDIF
 IF (HEL CODE .EQ. 'C') THEN
    È LOOP = ELC(P13,P14,P15,P34,P35,P45,EVL)
    RĒTURN
 FNDTF
 IF (HEL CODE .EQ. 'D') THEN
    È LOOP = ELD(P13,P14,P15,P34,P35,P45,EVL)
    RETURN
ENDIF
 IF (HEL CODE .EQ. 'E') THEN
    \dot{E} LOOP = ELE(P13,P14,P15,P34,P35,P45,EVL)
    RETURN
ENDIF
IF (HEL CODE .EQ. 'F') THEN
   \dot{E} LOOP = ELF(P13.P14.P15.P34.P35.P45.EVL)
   RFTURN
ENDIF
IF (HEL CODE .EQ. 'G') THEN
   E LOOP = ELG(P13,P14,P15,P34,P35.P45.EVL)
   RETURN
ENDIF
IF (HEL CODE .EQ. 'H') THEN
   E LOOP = ELH(P13, P14, P15, P34, P35, P45, EVL)
   RĒTURN
FNDTF
```

RETURN

END

```
COMPLEX FUNCTION P LOOP (HEL CODE, P13, P14, P15, P34, P35, P45,
                          11.12.13.14.15.16.17.18.19.110.
                          I11, I12, I13, I14, I15, I16, I17, I18, I19
                          WIV. FPIIV. BOIV. CUOIV. EOIV. EVL.
REAL P13.P14.P15.P34.P35.P45
REAL WIV, FPIIV, BOIV, CUOIV, EOIV
COMPLEX ÉVL, PLÁ, PLB, PLC, PLD, PLE, PLF, PLG, PLH
COMPLEX I1.12.13.14.15.16.17.18.19.110.111.112.113.114.115.
         I16, I17, I18, I19
COMPLEX D3
CHARACTER HEL CODE+1
IF (HEL CODE .EQ. 'A') THEN
   P LOOP = PLA(P13, P14, P15, P34, P35, P45,
                   11,12,13,14,15,16,17,18,19,110,
                   I11, I12, I13, I14, I15, I16, I17, I18, I19,
                   WIV.FPIÍV.BOIV.CUOIV.EOIV.EVL
                  D3)
   RETURN
ENDIE
IF (HEL CODE .EQ. 'B') THEN
   P LOOP = PLB(P13.P14.P15.P34.P35.P45.EVL)
   RĒTURN
FNDTF
IF (HEL CODE .EQ. 'C') THEN
   P LOOP = PLC (P13, P14, P15, P34, P35, P45, EVL)
   RETURN
ENDIF
IF (HEL CODE .EQ. 'D') THEN
   P LOOP = PLD (P13, P14, P15, P34, P35, P45, EVL)
   RETURN
ENDIF
IF (HEL CODE .FQ. 'F') THEN
   P LOOP = PLE(P13,P14,P15,P34,P35,P45,EVL)
   RETURN
ENDIF
IF (HEL CODE .EQ. 'F') THEN
   P LOOP = PLF (P13, P14, P15, P34, P35, P45, EVL)
   RĒTURN
ENDIF
IF (HEL CODE .EQ. 'G') THEN
   P LOOP = PLG(P13,P14,P15,P34,P35,P45,EVL)
   RETURN
ENDIF
IF (HEL CODE .EQ. 'H') THEN
```

```
P LOOP = PLH(P13.P14.P15.P34.P35.P45.EVL)
        RFTURN
     FNDTF
     RETI IRN
      FND
C Expression QA
      COMPLEX FUNCTION QA(P13 P14 P15 P34 P35 P45 EVI )
      REAL P13, P14, P15, P34, P35, P45
      COMPLEX ÉVI
      COMPLEX TLPART, HDPART, XTOTAL
       XTDTAI = 0
      HDPART = 1
      TI PART=256*P34*P35*P45*P14*P15**2-256*P34*P35*P45*P15**3+512*P3
     1 4*P35*P45**2*P14*P15+768*P34*P35*P45**2*P15**2-512*P34*P35*P45*
     1 *3*P15+256*P34*P35**2*P45*P14*P15+256*P34*P35**2*P45*P15**2-256
     1 aP34aP35aa2aP45aa2aP15a512aP34aP35aa2aP14aP15aa2a256aP34aP35aa2
     1 *P15**3-256*P34*P45**2*P14*P15**2-256*P34*P45**2*P15**3+256*P34
     1 *P45**3*P14*P15*510*P34*P45**3*P15**0-256*P34*P45**4*P15*256*P3
     1 4**2*P35*P45*P14*P15+1024*P34**2*P35*P45*P15**2-512*P34**2*P35*
     1 P45**2*P15+256*P34**2*P35*P14*P15**2-512*P34**2*P35*P15**3-256*
     1" P34**2*P45*P14*P15**2
      TL PART=TL PART-512*P34**2*P45*P15**3+256*P34**2*P45**2*P14*P15+1
     1 024*P34**2*P45**2*P15**2-512*P34**2*P45**3*P15+512*P34**3*P45*P
     1 15**2-256*P34**3*P45**2*P15-256*P34**3*P15**3+256*P35*P45**2*P1
     1 4*P15**2+256*P35*P45**2*P15**3-256*P35*P45**3*P15**2+512*P35**2
     1 *P45*P14*P15**2+256*P35**2*P45*P15**3-512*P35**2*P45**2*P15**2-
     1 256*P35**3*P45*P15**2+256*P35**3*P14*P15**2
        XTOTAL=XTOTAL+HDPART*TLPART
      HDPART=FVI
      TLPART=-256*P34*P35*P45*P15+512*P34*P35*P15**2+256*P34*P45*P15*
     1 #2-256*P34*P45**2*P15-256*P34**2*P45*P15*256*P34**2*P15**2+256*
     1 P35*P45*P15**2+256*P35**2*P15**2
        XTOTAL=XTOTAL+HDPART*TLPART
        QA=XTOTAL
      RETURN
      FND
*end
C Expression QB
      COMPLEX FUNCTION QB(P13.P14.P15.P34.P35.P45.EVL)
      REAL P13, P14, P15, P34, P35, P45
      COMPLEX EVI
      COMPLEX TLPART, HDPART, XTOTAL
        XTOTAL =0.
      HDPART=1
      TLPART=512*P34*P35*P45**2*P14*P15+256*P34*P35*P45**2*P15**2-102
     1 4*P34*P35*P45**3*P15+256*P34*P35**2*P45*P14*P15-256*P34*P35**2*
     1 P45*P15**2-512*P34*P35**2*P45**2*P15+256*P34*P45**3*P14*P15+512
     1 *P34*P45**3*P15**2-512*P34*P45**4*P15-256*P34**2*P35*P45*P15**2
     1 -256*P34**2*P35*P45**2*P15+256*P34**2*P45**2*P15**2-256*P34**2*
     1 P45**3*P15+768*P35*P45**3*P14*P15+512*P35*P45**3*P15**2-768*P35
     1 *P45**4*P15+768*P35**2*P45**2*P14*P15+256*P35**2*P45**2*P15**2-
     1 768*P35**2*P45**3*P15+256*P35**3*P45*P14*P15-256*P35**3*P45**2*
```

```
1 P15+256*P45**4*P14*P15
       TLPART=TLPART+256*P45**4*P15**2-256*P45**5*P15
        XTOTAL=XTOTAL+HDPART*TLPART
      HDPART=EVL
      TLPART=-256*P34*P35*P45*P15-256*P34*P45**2*P15-512*P35*P45**2*P
     1 15-256*P35**2*P45*P15-256*P45**3*P15
        XTOTAL=XTOTAL+HDPART*TLPART
        OR=XTOTAL
      RETURN
      END
*end
C Expression QC
      COMPLEX FUNCTION QC(P13.P14.P15.P34.P35.P45.EVL)
      REAL P13, P14, P15, P34, P35, P45
      COMPLEX EVL
      COMPLEX TLPART HDPART XTOTAL
        XTOTAL =0.
      HDPART=1
      TLPART=256*P34*P35*P45**2*P14*P15+512*P34*P35*P45**2*P15**2-512
     1 *P34*P35*P45**3*P15+512*P34*P35**2*P45*P14*P15+256*P34*P35**2*P
     1 45*P15**2-1024*P34*P35**2*P45**2*P15-512*P34*P35**3*P45*P15+256
     1 *P34*P35**3*P14*P15-256*P34*P35**3*P15**2+256*P34**2*P35*P45*P1
     1 5**2-256*P34**2*P35*P45**2*P15-256*P34**2*P35**2*P45*P15-256*P3
    1 4**2*P35**2*P15**2+256*P35*P45**3*P14*P15+256*P35*P45**3*P15**2
     1 -256*P35*P45**4*P15+768*P35**2*P45**2*P14*P15+512*P35**2*P45**2
    1 *P15**2-768*P35**2*P45**3*P15+768*P35**3*P45*P14*P15+256*P35**3
     1 *P45*P15**2
     TLPART=TLPART-768*P35**3*P45**2*P15-256*P35**4*P45*P15+256*P35*
     1 *4*P14*P15
        XTOTAL =XTOTAL +HDPART*TI PART
     HDPART=EVL
      TLPART=256*P34*P35*P45*P15+256*P34*P35**2*P15+256*P35*P45**2*P1
     1 5+512*P35**2*P45*P15+256*P35**3*P15
       XTOTAL=XTOTAL+HDPART*TLPART
        QC=XTOTAL
      RETURN
      END
*end
C Expression QD
      COMPLEX FUNCTION QD (P13, P14, P15, P34, P35, P45, EVL)
      REAL P13, P14, P15, P34, P35, P45
      COMPLEX EVL
      COMPLEX TLPART, HDPART, XTOTAL
        O= IATOTX
      HDPART=1
      TLPART=256*P34*P35*P45*P14*P15**2+512*P34*P35*P45*P15**3+256*P3
     1 4*P35*P45**2*P14*P15-1280*P34*P35*P45**2*P15**2-256*P34*P35*P45
     1 **3*P15+512*P34*P35**2*P45*P14*P15-512*P34*P35**2*P45*P15**2-51
     1 2*P34*P35**2*P45**2*P15~256*P34*P35**2*P14*P15**2~256*P34*P35**
     1 3*P45*P15+256*P34*P35**3*P14*P15+512*P34*P45**2*P14*P15**2+768*
     1 P34*P45**2*P15**3-768*P34*P45**3*P15**2+256*P34**2*P35*P45*P14*
     1 P15-1024*P34**2*P35*P45*P15**2-512*P34**2*P35*P45**2*P15-256*P3
     1 4**2*P35*P14*P15**2+256*P34**2*P35*P15**3-512*P34**2*P35**2*P45
      1 *P15
```

```
177
TI PART=TI PART+256+P34++2+P35++2+P14+P15-256+P34++2+P35++2+P15++
     1 2+256*P34**2*P45*P14*P15**2+768*P34**2*P45*P15**3-768*P34**2*P4
     1 5**2*P15**2-256*P34**3*P35*P45*P15-256*P34**3*P35*P15**2-256*P3
     1 4**3*P45*P15**2+256*P34**3*P15**3+512*P35*P45**2*P14*P15**2+256
     1 *P35*P45**2*P15**3-512*P35*P45**3*P15**2+256*P35**2*P45*P14*P15
     1 **2-256*P35**2*P45**2*P15**2+256*P45**3*P14*P15**2+256*P45**3*P
     1 15**3-256*P45**4*P15**2
        XTOTAL=XTOTAL+HDPART*TI PART
      HDPART=FVI
      TLPART=256*P34*P35*P45*P15-256*P34*P35*P15**2+256*P34*P35**2*P1
     1 5-510*P34*P45*P15**0+256*P34**2*P35*P15-256*P34**2*P15**2-256*P
     1 35*P45*P15**2-256*P45**2*P15**2
        XTOTAL=XTOTAL+HDPART*TLPART
        INTOTX=OD
      RETURN
      END
*end
C Expression QE
      COMPLEX FUNCTION QE(P13,P14,P15,P34,P35,P45,EVL)
      REAL P13, P14, P15, P34, P35, P45
      COMPLEX EVI
      COMPLEX TLPART. HDPART. XTOTAL
        XTOTAL =0.
      HDPART=1
      TLPART=-256*P34*P35*P45*P14*P15**2-512*P34*P35*P45*P15**3-256*P
     1 34*P35*P45**2*P14*P15+1280*P34*P35*P45**2*P15**2+256*P34*P35*P4
     1 5**3*P15-512*P34*P35**2*P45*P14*P15+512*P34*P35**2*P45*P15**2+5
     1 12*P34*P35**2*P45**2*P15+256*P34*P35**2*P14*P15**2+256*P34*P35*
     1 *3*P45*P15-256*P34*P35**3*P14*P15-512*P34*P45**2*P14*P15**2-768
     1 *P34*P45**2*P15**3+768*P34*P45**3*P15**2-256*P34**2*P35*P45*P14
     1 *P15+1024*P34**2*P35*P45*P15**2+512*P34**2*P35*P45**2*P15+256*P
     1 34**2*P35*P14*P15**2-256*P34**2*P35*P15**3+512*P34**2*P35**2*P4
     1 5*P15
      TLPART=TLPART-256*P34**2*P35**2*P14*P15+256*P34**2*P35**2*P15**
     1 2-256*P34**2*P45*P14*P15**2-768*P34**2*P45*P15**3+768*P34**2*P4
     1 5**2*P15**2+256*P34**3*P35*P45*P15+256*P34**3*P35*P15**2+256*P3
     1 4**3*P45*P15**2-256*P34**3*P15**3-512*P35*P45**2*P14*P15**2-256
     1 *P35*P45**2*P15**3+512*P35*P45**3*P15**2-256*P35**2*P45*P14*P15
     1 **2+256*P35**2*P45**2*P15**2-256*P45**3*P14*P15**2-256*P45**3*P
     1 15**3+256*P45**4*P15**2
        XTOTAL =XTOTAL +HDPART+TI PART
      HDPART=EVL
      TI PART=256*P34*P35*P45*P15-256*P34*P35*P15**2+256*P34*P35**2*P1
     1 5-512*P34*P45*P15**2+256*P34**2*P35*P15-256*P34**2*P15**2-256*P
     1 35*P45*P15**2-256*P45**2*P15**2
        XTOTAL=XTOTAL+HDPART*TLPART
        QE=XTOTAL
      RETURN
      END
*end
C Expression OF
      COMPLEX FUNCTION OF (P13, P14, P15, P34, P35, P45, EVL)
      REAL P13, P14, P15, P34, P35, P45
      COMPLEX EVL
      COMPLEX TLPART, HDPART, XTOTAL
```

```
YTOTAL -O
      HDPART=1
      TI PART=-256*P34*P35*P45**2*P14*P15-512*P34*P35*P45**2*P15**2+51
     1 2*P34*P35*P45**3*P15-512*P34*P35**2*P45*P14*P15-256*P34*P35**2*
     1 P45*P15**2+1024*P34*P35**2*P45**2*P15+512*P34*P35**3*P45*P15~25
     1 6*P34*P35**3*P14*P15+256*P34*P35**3*P15**2-256*P34**2*P35*P45*P
     1 15**2+256*P34**2*P35*P45**2*P15+256*P34**2*P35**2*P45*P15+256*P
     1 34**2*P35**2*P15**2-256*P35*P45**3*P14*P15-256*P35*P45**3*P15**
     1 2+256*P35*P45**4*P15-768*P35**2*P45**2*P14*P15-512*P35**2*P45**
     1 2±P15±±2+768±P35±±2±P45±±3±P15-768±P35±±3±P45±P14±P15-256±P35±±
      1 3*P45*P15**2
       TLPART=TLPART+768*P35**3*P45**2*P15+256*P35**4*P45*P15-256*P35*
      1 *4*P14*P15
         XTOTAL =XTOTAL +HDPART+TL PART
      HDPART=FVI
       TLPART=256*P34*P35*P45*P15+256*P34*P35**2*P15+256*P35*P45**2*P1
      1 5+512*P35**2*P45*P15+256*P35**3*P15
         XTOTAL=XTOTAL+HDPART*TLPART
         QF=XTOTAL
       RETI IRN
       FND
 *end
C Expression QG
       COMPLEX FUNCTION QG(P13,P14,P15,P34,P35,P45,EVL)
       REAL P13.P14.P15.P34.P35.P45
       COMPLEX EVI
       COMPLEX TLPART. HDPART. XTOTAL
        XTOTAL = 0.
      HDPART=1
      TI PART=-512*P34*P35*P45**2*P14*P15-256*P34*P35*P45**2*P15**2+10
      1 24*P34*P35*P45**3*P15-256*P34*P35**2*P45*P14*P15+256*P34*P35**2
     1 *P45*P15**2+512*P34*P35**2*P45**2*P15-256*P34*P45**3*P14*P15-51
     1 2*P34*P45**3*P15**2+512*P34*P45**4*P15+256*P34**2*P35*P45*P15**
     1 2+256*P34**2*P35*P45**2*P15-256*P34**2*P45**2*P15**2+256*P34**2
     1 *P45**3*P15-768*P35*P45**3*P14*P15-512*P35*P45**3*P15**2+768*P3
     1 5*P45**4*P15-768*P35**2*P45**2*P14*P15-256*P35**2*P45**2*P15**2
     1 +768*P35**2*P45**3*P15-256*P35**3*P45*P14*P15+256*P35**3*P45**2
     1 *P15-256*P45**4*P14*P15
      TI PART=TI PART-256*P45**4*P15**2+256*P45**5*P15
        XTOTAL=XTOTAL+HDPART+TLPART
      HDPART=FVI
      TLPART=-256*P34*P35*P45*P15-256*P34*P45**2*P15-512*P35*P45**2*P
     1 15-256*P35**2*P45*P15-256*P45**3*P15
        XTOTAL=XTOTAL+HDPART*TLPART
        DG=XTOTAL
      RETURN
      END
*end
C Expression QH
      COMPLEX FUNCTION QH(P13,P14,P15,P34,P35,P45,EVL)
      REAL P13, P14, P15, P34, P35, P45
      COMPLEX EVL
     COMPLEX TLPART, HDPART, XTOTAL
```

,

```
XTOTAL=0.
      HDPART=1
      TLPART=-256*P34*P35*P45*P14*P15**2+256*P34*P35*P45*P15**3-512*P
     1 34*P35*P45**2*P14*P15-768*P34*P35*P45**2*P15**2+512*P34*P35*P45
     1 **3*P15-256*P34*P35**2*P45*P14*P15-256*P34*P35**2*P45*P15**2+25
     1 6*P34*P35**2*P45**2*P15-512*P34*P35**2*P14*P15**2+256*P34*P35**
     1 2*P15**3+256*P34*P45**2*P14*P15**2+256*P34*P45**2*P15**3-256*P3
     1 4*P45**3*P14*P15-512*P34*P45**3*P15**2+256*P34*P45**4*P15-256*P
     1 34**2*P35*P45*P14*P15-1024*P34**2*P35*P45*P15**2+512*P34**2*P35
     1 *P45**2*P15-256*P34**2*P35*P14*P15**2+512*P34**2*P35*P15**3+256
     1 *P34**2*P45*P14*P15**2
      TL PART=TLPART+512*P34**2*P45*P15**3-256*P34**2*P45**2*P14*P15-1
     1 024*P34**2*P45**2*P15**2+512*P34**2*P45**3*P15-512*P34**3*P45*P
     1 15**2+256*P34**3*P45**2*P15+256*P34**3*P15**3-256*P35*P45**2*P1
     1 4*P15**2-256*P35*P45**2*P15**3+256*P35*P45**3*P15**2-512*P35**2
     1 *P45*P14*P15**2~256*P35**2*P45*P15**3+512*P35**2*P45**2*P15**2+
     1 256*P35**3*P45*P15**2-256*P35**3*P14*P15**2
        XTOTAL=XTOTAL+HDPART*TLPART
      HDPART=EVL
     TLPART=-256*P34*P35*P45*P15+512*P34*P35*P15**2+256*P34*P45*P15*
     1 *2-256*P34*P45**2*P15-256*P34**2*P45*P15+256*P34**2*P15**2+256*
     1 P35*P45*P15**2+256*P35**2*P15**2
        XTOTAL=XTOTAL+HDPART*TLPART
        QH=XTOTAL
      RETURN
      FND
C Expression ELC
      COMPLEX FUNCTION ELC(P13.P14.P15.P34.P35.P45.EVL)
      REAL P13, P14, P15, P34, P35, P45
      COMPLEX EVL
      COMPLEX TLPART.HDPART.XTOTAL
        O= IATOTX
      HDPART=1
      TLPART=256*P34*P35*P45**2*P14*P15+512*P34*P35*P45**2*P15**2-512
     1 *P34*P35*P45**3*P15+512*P34*P35**2*P45*P14*P15+256*P34*P35**2*P
     1 45*P15**2-1024*P34*P35**2*P45**2*P15-512*P34*P35**3*P45*P15+256
     1 *P34*P35**3*P14*P15-256*P34*P35**3*P15**2+256*P34**2*P35*P45*P1
     1 5**2-256*P34**2*P35*P45**2*P15-256*P34**2*P35**2*P45*P15-256*P3
     1 4**2*P35**2*P15**2+256*P35*P45**3*P14*P15+256*P35*P45**3*P15**2
     1 -256*P35*P45**4*P15+768*P35**2*P45**2*P14*P15+512*P35**2*P45**2
     1 *P15**2-768*P35**2*P45**3*P15+768*P35**3*P45*P14*P15+256*P35**3
     1 *P45*P15**2
      TLPART=TLPART-768*P35**3*P45**2*P15-256*P35**4*P45*P15+256*P35*
     1 *4*P14*P15
        XTOTAL=XTOTAL+HDPART*TLPART
      HDPART=FVI
      TI PART=256*P34*P35*P45*P15+256*P34*P35**2*P15+256*P35*P45**2*P1
     1 5+512*P35**2*P45*P15+256*P35**3*P15
        XTOTAL=XTOTAL+HDPART+TLPART
      FI C=XTOTAL
      RETURN
      END
*end
```

C Expression ELD COMPLEX FUNCTION ELD(P13,P14,P15,P34,P35,P45,EVL) REAL P13,P14,P15,P34,P35,P45

```
COMPLEX EVI
     COMPLEX TLPART. HDPART. XTOTAL
        XTOTAL =0
     HDPART=1
      TLPART=256*P34*P35*P45*P14*P15**2+512*P34*P35*P45*P15**3+256*P3
     1 4*P35*P45**2*P14*P15-1280*P34*P35*P45**2*P15**2-256*P34*P35*P45
     1 **3*P15+512*P34*P35**2*P45*P14*P15-512*P34*P35**2*P45*P15**2-51
     1 2*P34*P35**2*P45**2*P15-256*P34*P35**2*P14*P15**2-256*P34*P35**
     1 3*P45*P15+256*P34*P35**3*P14*P15+512*P34*P45**2*P14*P15**2+768*
     1 P34*P45**2*P15**3-768*P34*P45**3*P15**2+256*P34**2*P35*P45*P14*
     1 P15-1024*P34**2*P35*P45*P15**2-512*P34**2*P35*P45**2*P15-256*P3
     1 4**2*P35*P14*P15**2+256*P34**2*P35*P15**3-512*P34**2*P35**2*P45
     1 *P15
      TI PART=TI PART+256*P34**2*P35**2*P14*P15-256*P34**2*P35**2*P15**
     1 2+256*P34**2*P45*P14*P15**2+768*P34**2*P45*P15**3-768*P34**2*P4
     1 5**2*P15**2-256*P34**3*P35*P45*P15-256*P34**3*P35*P15**2-256*P3
     1 4**3*P45*P15**2+256*P34**3*P15**3+512*P35*P45**2*P14*P15**2+256
     1 *P35*P45**2*P15**3-512*P35*P45**3*P15**2+256*P35**2*P45*P14*P15
     1 **2-256*P35**2*P45**2*P15**2+256*P45**3*P14*P15**2+256*P45**3*P
     1 15**3-256*P45**4*P15**2
        XTOTAL=XTOTAL+HDPART*TLPART
     HDPART=FVI
      TLPART=256*P34*P35*P45*P15~256*P34*P35*P15**2+256*P34*P35**2*P1
     1 5-512*P34*P45*P15**2+256*P34**2*P35*P15-256*P34**2*P15**2-256*P
     1 35*P45*P15**2-256*P45**2*P15**2
        XTOTAL=XTOTAL+HDPART*TLPART
        FI D=XTOTAL
      RETURN
      END
*end
C Expression ELE
      COMPLEX FUNCTION ELE(P13.P14.P15.P34.P35.P45.EVL)
      REAL P13, P14, P15, P34, P35, P45
      COMPLEX EVI
      COMPLEX TLPART.HDPART.XTOTAL
        XTOTAL=0.
     HDPART=1
     TLPART=-256*P34*P35*P45*P14*P15**2-512*P34*P35*P45*P15**3-256*P
     1 34*P35*P45**2*P14*P15+1280*P34*P35*P45**2*P15**2+256*P34*P35*P4
     1 5**3*P15~512*P34*P35**2*P45*P14*P15+512*P34*P35**2*P45*P15**2+5
     1 12*P34*P35**2*P45**2*P15+256*P34*P35**2*P14*P15**2+256*P34*P35*
     1 *3*P45*P15-256*P34*P35**3*P14*P15-512*P34*P45**2*P14*P15**2-768
     1 *P34*P45**2*P15**3+768*P34*P45**3*P15**2~256*P34**2*P35*P45*P14
     1 #P15+1024*P34**2*P35*P45*P15**2+512*P34**2*P35*P45**2*P15+256*P
    1 34**2*P35*P14*P15**2-256*P34**2*P35*P15**3+512*P34**2*P35**2*P4
     1 5*P15
     TLPART=TLPART-256*P34**2*P35**2*P14*P15+256*P34**2*P35**2*P15**
     1 2-256*P34**2*P45*P14*P15**2-768*P34**2*P45*P15**3+768*P34**2*P4
    1 5**2*P15**2+256*P34**3*P35*P45*P15+256*P34**3*P35*P15**2+256*P3
     1 4**3*P45*P15**2-256*P34**3*P15**3-512*P35*P45**2*P14*P15**2-256
     1 *P35*P45**2*P15**3+512*P35*P45**3*P15**2-256*P35**2*P45*P14*P15
     1 **2+256*P35**2*P45**2*P15**2-256*P45**3*P14*P15**2-256*P45**3*P
     1 15**3+256*P45**4*P15**2
       XTOTAL=XTOTAL+HDPART+TLPART
     HDPART=EVL
```

```
TI PART=256*P34*P35*P45*P15-256*P34*P35*P15**2+256*P34*P35**2*P1
     1 5-512*P34*P45*P15**2+256*P34**2*P35*P15-256*P34**2*P15**2-256*P
     1 35*P45*P15**2-256*P45**2*P15**2
        XTOTAL =XTOTAL +HDPART*TI PART
        FLF=XTOTAL
      RETURN
      FND
*end
C Expression FLF
      COMPLEX FUNCTION ELF(P13.P14.P15.P34.P35.P45.EVL)
      REAL P13.P14.P15.P34.P35.P45
      COMPLEX EVI
      COMPLEX TLPART. HDPART. XTOTAL
        XTOTAL =0.
      HDPART=1
      TI PART=-256*P34*P35*P45**2*P14*P15-512*P34*P35*P45**2*P15**2+51
     1 2*P34*P35*P45**3*P15-512*P34*P35**2*P45*P14*P15-256*P34*P35**2*
     1 P45*P15**2+1024*P34*P35**2*P45**2*P15+512*P34*P35**3*P45*P15-25
     1 6*P34*P35**3*P14*P15+256*P34*P35**3*P15**2~256*P34**2*P35*P45*P
     1 15**2+256*P34**2*P35*P45**2*P15+256*P34**2*P35**2*P45*P15+256*P
     1 34**2*P35**2*P15**2-256*P35*P45**3*P14*P15-256*P35*P45**3*P15**
     1 2+256*P35*P45**4*P15-768*P35**2*P45**2*P14*P15-512*P35**2*P45**
     1 2*P15**2+768*P35**2*P45**3*P15-768*P35**3*P45*P14*P15-256*P35**
     1 3*P45*P15**2
      TLPART=TLPART+768*P35**3*P45**2*P15+256*P35**4*P45*P15-256*P35*
     1 *4*P14*P15
        XTOTAL =XTOTAL +HDPART+TI PART
      HDPART=EVL
      TI PART=256*P34*P35*P45*P15+256*P34*P35**2*P15+256*P35**2*P1
     1 5+512*P35**2*P45*P15+256*P35**3*P15
        XTOTAL=XTOTAL+HDPART*TLPART
        FI F=XTOTAL
      RETURN
      FND
*end
C Expression ELG
      COMPLEX FUNCTION ELG(P13.P14.P15.P34.P35.P45.EVL)
      REAL P13, P14, P15, P34, P35, P45
      COMPLEX EVI
      COMPLEX TLPART, HDPART, XTOTAL
        XTOTAL =0
     HDPART=1
      TLPART = -512*P34*P35*P45**2*P14*P15-256*P34*P35*P45**2*P15**2+10
     1 24*P34*P35*P45**3*P15-256*P34*P35**2*P45*P14*P15+256*P34*P35**2
     1 *P45*P15**2+512*P34*P35**2*P45**2*P15-256*P34*P45**3*P14*P15-51
     1 2*P34*P45**3*P15**2+512*P34*P45**4*P15+256*P34**2*P35*P45*P15**
     1 2+256*P34**2*P35*P45**2*P15-256*P34**2*P45**2*P15**2+256*P34**2
     1 *P45**3*P15-768*P35*P45**3*P14*P15-512*P35*P45**3*P15**2+768*P3
     1 5*P45**4*P15-768*P35**2*P45**2*P14*P15-256*P35**2*P45**2*P15**2
     1 +768*P35**2*P45**3*P15-256*P35**3*P45*P14*P15+256*P35**3*P45**2
     1 *P15-256*P45**4*P14*P15
      TLPART=TLPART-256*P45**4*P15**2+256*P45**5*P15
        XTOTAL =XTOTAL +HDPART*TI PART
     HDPART=EVL
```

```
TLPART=-256*P34*P35*P45*P15-256*P34*P45**2*P15-512*P35*P45**2*P
     1 15-256+P35++2+P45+P15-256+P45++3+P15
        XTOTAL =XTOTAL +HDPART*TI PART
        ELG=XTOTAL
      RETURN
      FND
*end
C Expression FLH
      COMPLEX FUNCTION ELH(P13.P14.P15.P34.P35.P45.EVL)
      REAL P13.P14.P15.P34.P35.P45
      COMPLEX EVI.
      COMPLEX TLPART.HDPART.XTOTAL
        XTOTAL =0.
      HDPART=1
      TI PART=-256*P34*P35*P45*P14*P15**2+256*P34*P35*P45*P15**3-512*P
     1 34*P35*P45**2*P14*P15-768*P34*P35*P45**2*P15**2+512*P34*P35*P45
     1 **3*P15~256*P34*P35**2*P45*P14*P15~256*P34*P35**2*P45*P15**2*P
     1 6*P34*P35**2*P45**2*P15-512*P34*P35**2*P14*P15**2+256*P34*P35**
     1 2+P15++3+256+P34+P45++2+P14+P15++2+256+P34+P45++2+P15++3-256+P3
     1 4*P45**3*P14*P15-512*P34*P45**3*P15**2+256*P34*P45**4*P15-256*P
     1 34**2*P35*P45*P14*P15-1024*P34**2*P35*P45*P15**2+512*P34**2*P35
     1 ±P45±±0±P15-256±P34±±0±P35±P14±P15±±2±512±P34±±2±P35±P15±±3±256
     1 *P34**2*P45*P14*P15**2
      TI PART=TI PART+512+P34++2+P45+P15++3-256+P34++2+P45++2+P14+P15-1
     1 024*P34**2*P45**2*P15**2+512*P34**2*P45**3*P15-512*P34**3*P45*P
     1 15**2+256*P34**3*P45**2*P15+256*P34**3*P15**3-256*P35*P45**2*P1
     1 4*P15**2-256*P35*P45**2*P15**3+256*P35*P45**3*P15**2-512*P35**2
     1 *P45*P14*P15**2~256*P35**2*P45*P15**3+512*P35**2*P45**2*P15**2+
     1 256*P35**3*P45*P15**2-256*P35**3*P14*P15**2
        XTOTAL=XTOTAL+HDPART+TLPART
      HDPART=FVI
      TLPART=-256*P34*P35*P45*P15+512*P34*P35*P15**2+256*P34*P45*P15*
     1 *2-256*P34*P45**2*P15-256*P34**2*P45*P15+256*P34**2*P15**2+256*
     1 P35*P45*P15**2+256*P35**2*P15**2
        XTOTAL=XTOTAL+HDPART*TLPART
        FI H=XTOTAL
      RETURN
      FND
C Expression ELB
      COMPLEX FUNCTION ELB(P13.P14.P15.P34.P35.P45.
                         11, 12, 13, 14, 15, 16, 17, 18, 19, 110,
                         I11, I12, I13, I14, I15, I16, I17, I18, I19,
                         WIV.FPIIV.BOIV.CUOIV.EOIV.EVL
      REAL P13, P14, P15, P34, P35, P45
      REAL WIV, FPIIV, BOIV, CUOIV. EOIV
      COMPLEX EVL
      COMPLEX I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13, I14, I15.
              I16, I17, I18, I19
      COMPLEX D3
      COMPLEX TLPART, HDPART, XTOTAL
      XTOTAL = 0
     HDPART = 1
```

```
TI PART=256*P34*P35*P45*P14*P15**2-256*P34*P35*P45*P15**3+512*P3
     1 4*P35*P45**2*P14*P15+768*P34*P35*P45**2*P15**2-512*P34*P35*P45*
     1 +3+P15+256+P34+P35++2+P45+P14+P15+256+P34+P35++2+P45+P15++2-256
     1 *P34*P35**2*P45**2*P15+512*P34*P35**2*P14*P15**2-256*P34*P35**2
     1 +P15++3-256+P34+P45++2+P14+P15++2-256+P34+P45++2+P15++3+256+P34
     1 *P45**3*P14*P15+512*P34*P45**3*P15**2-256*P34*P45**4*P15+256*P3
     1 4**2*P35*P45*P14*P15+1024*P34**2*P35*P45*P15**2-512*P34**2*P35*
     1 P45++2+P15+256+P34++2+P35+P14+P15++2-512+P34++2+P35+P15++3-256+
     1 P34**2*P45*P14*P15**2
      TI PART-TI PART-512+P34++2+P45+P15++3+256+P34++2+P45++2+P14+P15+1
     1 024*P34**2*P45**2*P15**2-512*P34**2*P45**3*P15+512*P34**3*P45*P
     1 15**2-256*P34**3*P45**2*P15-256*P34**3*P15**3+256*P35*P45**2*P1
     1 4*P15**2+256*P35*P45**2*P15**3-256*P35*P45**3*P15**2+512*P35**2
     1 *P45*P14*P15**2+256*P35**2*P45*P15**3-512*P35**2*P45**2*P15**2-
     1 256*P35**3*P45*P15**2+256*P35**3*P14*P15**2
        XTOTAL=XTOTAL+HDPART*TLPART
      HDPART=FVI
      TLPART=-256*P34*P35*P45*P15+512*P34*P35*P15**2+256*P34*P45*P15*
     1 #2-256*P34*P45**2*P15-256*P34**2*P45*P15+256*P34**2*P15**2+256*
     1 P35*P45*P15**2+256*P35**2*P15**2
        XTOTAL=XTOTAL+HDPART*TLPART
        PI A=XTOTAL
      RETURN
      FND
*end
C Expression PLB
      COMPLEX FUNCTION PLB(P13.P14.P15.P34.P35.P45.EVL)
      REAL P13.P14.P15.P34.P35.P45
      COMPLEX EVI
      COMPLEX TLPART, HDPART, XTOTAL
        XTOTAL =0
     HDPART-1
      TLPART=512*P34*P35*P45**2*P14*P15+256*P34*P35*P45**2*P15**2-102
     1 4*P34*P35*P45**3*P15+256*P34*P35**2*P45*P14*P15-256*P34*P35**2*
     1 P45*P15**2-512*P34*P35**2*P45**2*P15+256*P34*P45**3*P14*P15+512
     1 *P34*P45**3*P15**2-512*P34*P45**4*P15-256*P34**2*P35*P45*P15**2
     1 -256*P34**2*P35*P45**2*P15+256*P34**2*P45**2*P15**2-256*P34**2*
     1 P45**3*P15+768*P35*P45**3*P14*P15+512*P35*P45**3*P15**2~768*P35
     1 *P45**4*P15+768*P35**2*P45**2*P14*P15+256*P35**2*P45**2*P15**2-
     1 768*P35**2*P45**3*P15+256*P35**3*P45*P14*P15-256*P35**3*P45**2*
     1 P15+256*P45**4*P14*P15
      TLPART=TLPART+256*P45**4*P15**2-256*P45**5*P15
        XTOTAL =XTOTAL +HDPART*TI PART
      HDPART=FVI
      TLPART=-256*P34*P35*P45*P15-256*P34*P45**2*P15-512*P35*P45**2*P
     1 15-256*P35**2*P45*P15-256*P45**3*P15
        XTOTAL =XTOTAL +HDPART*TLPART
        PLB=XTOTAL
      RETURN
      FND
*end
C Expression PLC
      COMPLEX FUNCTION PLC(P13,P14,P15,P34,P35,P45,EVL)
      RFAL P13.P14.P15.P34.P35.P45
```

COMPLEX EVL

COMPLEX TLPART.HDPART.XTOTAL

```
YTOTAL -O
     HDPART=1
     TLPART=256*P34*P35*P45**2*P14*P15+512*P34*P35*P45**2*P15**2-512
     1 *P34*P35*P45**3*P15+512*P34*P35**2*P45*P14*P15+256*P34*P35**2*P
     1 45*P15**2-1024*P35**2*P45**2*P15-512*P34*P35**3*P45*P15+256
     1 *P34*P35**3*P14*P15-256*P34*P35**3*P15**2+256*P34**2*P35*P45*P1
     1 5++2-256+P34++2+P35+P45++2+P15-256+P34++2+P35++2+P45+P15-256+P3
     1 4**2*P35**2*P15**2+256*P35*P45**3*P14*P15+256*P35*P45**3*P15**2
     1 -256*P35*P45**4*P15+768*P35**2*P45**2*P14*P15+512*P35**2*P45**2
     1 *P15**2-768*P35**2*P45**3*P15+768*P35**3*P45*P14*P15+256*P35**3
     1 *P45*P15**2
      TI PART-TI PART-768+P35++3+P45+2+P15-256+P35++4+P45+P15+256+P35+
     1 *4*P14*P15
        XTOTAL =XTOTAL +HDPART*TI PART
     HDPART=EVL
      TI PART=256*P34*P35*P45*P15+256*P34*P35**2*P15+256*P35*P45**2*P1
     1 5+512*P35**2*P45*P15+256*P35**3*P15
        XTOTAL =XTOTAL +HDPART*TI PART
        PI C=XTOTAL
     RETURN
      FND
*end
C Expression PLD
      COMPLEX FUNCTION PLD (P13, P14, P15, P34, P35, P45, EVL.)
     REAL P13, P14, P15, P34, P35, P45
      COMPLEX EVI
      COMPLEX TLPART, HDPART, XTOTAL
        XTOTAL =0.
     HDPART=1
     TI PART=256*P34*P35*P45*P14*P15**2*512*P34*P35*P45*P15**3*256*P3
     1 4*P35*P45**2*P14*P15-1280*P34*P35*P45**2*P15**2-256*P34*P35*P45
     1 **3*P15+512*P34*P35**2*P45*P14*P15-512*P34*P35**2*P45*P15**2-51
     1 2±P34±P35±±2±P45±±2±P15=256±P34±P35±±2±P14±P15±±2=256±P34±P35±±
     1 3*P45*P15+256*P34*P35**3*P14*P15+512*P34*P45**2*P14*P15**2+768*
     1 P34*P45**2*P15**3-768*P34*P45**3*P15**2+256*P34**2*P35*P45*P14*
     1 P15-1024*P34**2*P35*P45*P15**2-512*P34**2*P35*P45**2*P15-256*P3
     1 4**2*P35*P14*P15**2+256*P34**2*P35*P15**3~512*P34**2*P35**2*P45
     1 *P15
      TLPART=TLPART+256*P34**2*P35**2*P14*P15-256*P34**2*P35**2*P15**
     1 2+256*P34**2*P45*P14*P15**2+768*P34**2*P45*P15**3-768*P34**2*P4
     1 5**2*P15**2-256*P34**3*P35*P45*P15-256*P34**3*P35*P15**2-256*P3
     1 4**3*P45*P15**2+256*P34**3*P15**3+512*P35*P45**2*P14*P15**2+256
     1 *P35*P45**2*P15**3-512*P35*P45**3*P15**2+256*P35**2*P45*P14*P15
     1 **2-256*P35**2*P45**2*P15**2+256*P45**3*P14*P15**2+256*P45**3*P
    1 15**3~256*P45**4*P15**2
       XTOTAL=XTOTAL+HDPART*TLPART
     HDPART=FVI
     TLPART=256*P34*P35*P45*P15-256*P34*P35*P15**2+256*P34*P35**2*P1
     1 5-512*P34*P45*P15**2+256*P34**2*P35*P15-256*P34**2*P15**2-256*P
     1 35*P45*P15**2~256*P45**2*P15**2
        XTOTAL =XTOTAL +HDPART+TLPART
        PI D=XTOTAL
     RETURN
     END
```

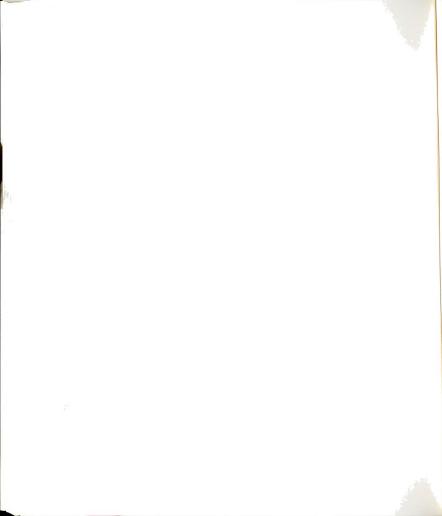
*end

```
C Expression PLE
      COMPLEX FUNCTION PLE(P13.P14.P15.P34.P35.P45.EVL)
      REAL P13, P14, P15, P34, P35, P45
      COMPLEX EVL
      COMPLEX TUPART HOPART XTOTAL
        XTOTAL =0
      HDPART=1
      TLPART=-256*P34*P35*P45*P14*P15**2-512*P34*P35*P45*P15**3-256*P
     1 34*P35*P45**2*P14*P15+1280*P34*P35*P45**2*P15**2+256*P34*P35*P4
     1 5**3*P15-512*P34*P35**2*P45*P14*P15+512*P34*P35**2*P45*P15**2+5
     1 12*P34*P35**2*P45**2*P15+256*P34*P35**2*P14*P15**2+256*P34*P35*
     1 *3*P45*P15-256*P34*P35**3*P14*P15-512*P34*P45**2*P14*P15**2-768
     1 *P34*P45**2*P15**3+768*P34*P45**3*P15**2-256*P34**2*P35*P45*P14
     1 *P15+1024*P34**2*P35*P45*P15**2+512*P34**2*P35*P45**2*P15+256*P
     1 34**2*P35*P14*P15**2-256*P34**2*P35*P15**3+512*P34**2*P35**2*P4
     1 5*P15
      TI PART=TI PART-256*P34**2*P35**2*P14*P15+256*P34**2*P35**2*P15**
     1 2-256*P34**2*P45*P14*P15**2-768*P34**2*P45*P15**3+768*P34**2*P4
     1 5**2*P15**2+256*P34**3*P35*P45*P15+256*P34**3*P35*P15**2+256*P3
     1 4**3*P45*P15**2-256*P34**3*P15**3-512*P35*P45**2*P14*P15**2-256
     1 *P35*P45**2*P15**3+512*P35*P45**3*P15**2-256*P35**2*P45*P14*P15
     1 **2+256*P35**2*P45**2*P15**2-256*P45**3*P14*P15**2-256*P45**3*P
     1 15**3+256*P45**4*P15**2
        XTOTAL =XTOTAL +HDPART+TI PART
      HDPART=FVI
      TLPART=256*P34*P35*P45*P15-256*P34*P35*P15**2+256*P34*P35**2*P1
     1 5-512*P34*P45*P15**2+256*P34**2*P35*P15-256*P34**2*P15**2-256*P
     1 35*P45*P15**2-256*P45**2*P15**2
        XTOTAL=XTOTAL+HDPART*TLPART
        PI F=XTOTAL
      RETI IRN
      END
*end
C Expression PLF
      COMPLEX FUNCTION PLF (P13, P14, P15, P34, P35, P45, EVL)
      REAL P13, P14, P15, P34, P35, P45
      COMPLEX EVI
      COMPLEX TLPART.HDPART.XTOTAL
        XTOTAL =0.
      HDPART=1
      TI PART=-256*P34*P35*P45**2*P14*P15-512*P34*P35*P45**2*P15**2+51
     1 2*P34*P35*P45**3*P15-512*P34*P35**2*P45*P14*P15-256*P34*P35**2*
     1 P45*P15**2+1024*P34*P35**2*P45**2*P15+512*P34*P35**3*P45*P15-25
     1 6*P34*P35**3*P14*P15+256*P34*P35**3*P15**2-256*P34**2*P35*P45*P
     1 15**2+256*P34**2*P35*P45**2*P15+256*P34**2*P35**2*P45*P15+256*P
     1 34**2*P35**2*P15**2-256*P35*P45**3*P14*P15-256*P35*P45**3*P15**
     1 2+256*P35*P45**4*P15-768*P35**2*P45**2*P14*P15-512*P35**2*P45**
     1 2*P15**2+768*P35**2*P45**3*P15-768*P35**3*P45*P14*P15-256*P35**
     1 3*P45*P15**2
      TI_PART=TI_PART+768*P35**3*P45**2*P15+256*P35**4*P45*P15-256*P35*
     1 *4*P14*P15
        XTOTAL =XTOTAL +HDPART+TI PART
      HDPART=FVI
```

```
186
      TI PART=256*P34*P35*P45*P15+256*P34*P35**2*P15+256*P35*P45**2*P1
     1 5+512*P35**2*P45*P15+256*P35**3*P15
        XTOTAL=XTOTAL+HDPART*TLPART
        PI F=XTNTAI
      RETURN
      FND
*end
C Expression PLG
      COMPLEX FUNCTION PLG(P13.P14.P15.P34.P35.P45.EVL)
      REAL P13, P14, P15, P34, P35, P45
      COMPLEX EVI
      COMPLEX TLPART. HDPART, XTOTAL
        YTOTAL =0
      HDPART-1
      TI PART=-512+P34+P35+P45++2+P14+P15-256+P34+P35+P45++2+P15++2+10
     1 24*P34*P35*P45**3*P15~256*P34*P35**2*P45*P14*P15+256*P34*P35**2
     1 *P45*P15**2+512*P34*P35**2*P45**2*P15-256*P34*P45**3*P14*P15-51
     1 2*P34*P45*3*P15**2+512*P34*P45**4*P15+256*P34**2*P35*P45*P15**
     1 2+256*P34**2*P35*P45**2*P15-256*P34**2*P45**2*P15**2+256*P34**2
     1 *P45**3*P15-768*P35*P45**3*P14*P15-512*P35*P45**3*P15**2+768*P3
     1 5*P45**4*P15~768*P35**2*P45**2*P14*P15~256*P35**2*P45**2*P15**2
     1 +768*P35**2*P45**3*P15-256*P35**3*P45*P14*P15+256*P35**3*P45**2
     1 *P15~256*P45**4*P14*P15
      TI PART=TI PART-256*P45**4*P15**2+256*P45**5*P15
        XTOTAL=XTOTAL+HDPART*TLPART
      HDPART=FVI
      TLPART=-256*P34*P35*P45*P15-256*P34*P45**2*P15-512*P35*P45**2*P
     1 15-256*P35**2*P45*P15-256*P45**3*P15
        XTOTAL =XTOTAL +HDPART*TL PART
        PLG=XTOTAL
      RETURN
      FND
*end
C Expression PLH
      COMPLEX FUNCTION PLH(P13.P14.P15.P34.P35.P45.EVL)
      REAL P13, P14, P15, P34, P35, P45
      COMPLEX ÉVL
      COMPLEX TLPART.HDPART.XTOTAL
        XTDTAL=0.
      HDPART=1
      TLPART=-256*P34*P35*P45*P14*P15**2+256*P34*P35*P45*P15**3-512*P
     1 34*P35*P45**2*P14*P15-768*P34*P35*P45**2*P15**2+512*P34*P35*P45
     1 **3*P15-256*P34*P35**2*P45*P14*P15-256*P34*P35**2*P45*P15**2+25
     1 6*P34*P35**2*P45**2*P15-512*P34*P35**2*P14*P15**2+256*P34*P35**
     1 2*P15**3+256*P34*P45**2*P14*P15**2+256*P34*P45**2*P15**3-256*P3
     1 4*P45**3*P14*P15-512*P34*P45**3*P15**2+256*P34*P45**4*P15-256*P
     1 34**2*P35*P45*P14*P15-1024*P34**2*P35*P45*P15**2+512*P34**2*P35
     1 *P45**2*P15-256*P34**2*P35*P14*P15**2+512*P34**2*P35*P15**3+256
     1 *P34**2*P45*P14*P15**2
      TLPART=TLPART+512*P34**2*P45*P15**3-256*P34**2*P45**2*P14*P15-1
```

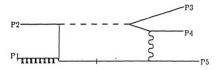
1 024*934*24*P34**2*P15**2*512*P34**2*P45**3*P15**512*P34**3*P45*P 1 15**2*256*P34**3*P45**2*P15**256*P34**3*P15**3*P256*P35*P35**2*P1 1 4*P15**2*256*P35**P45**2*P15**3*P256*P35**2*P15**2*512*P35**2*P15**2*P15**2*512*P35**2*P15**2*P35**2*P15**2*512*P35**2*P15**2*P15**2*512*P35**2*P15**2* 1 256*P35**3*P45*P15**2-256*P35**3*P14*P15**2
XTOTAL=XTOTAL*HDPART*TLPART
HDPART=EVL
TLPART=-256*P34*P35*P45*P15*512*P34*P35*P15**2+256*P34*P45*P15*
1 *2-256*P34*P45**2*P15*-256*P34**2*P15*256*P34**2*P15**2*256*P34**2*2*256*P34**2*2*256*P34**2*2*256*P34**2*2*256*P34**2*2*2*256*P34**2*2*2*2*2*2*2*2*2

RETURN END



Appendix P Ascertaining the Physical Range of Parameters

All interacting systems of two particles in and three particles out possess six degrees of freedom- five continuous ones and a plus-minus degree which represents the reflection of the three output particles across the plane defined by the two input particles.



It is common to work in the center of mass system and represent the degrees of freedom by the energies and directions of the particles. This representation is desribed here though not used. For this calculation it is more appropriate to work in the rest frame of $\overline{P4}$ and $\overline{P5}$, with the degrees of freedom representated by ranges of dot products.

Section 1 ... Center of Mass System

Sub-Section 1.1 ... Fixing the Parameters

For the input particles, one parameter E_{cm} fixes their values:

$$P1^{\mu} = (0, 0, \frac{E_{cm}}{2}, \frac{E_{cm}}{2})$$

$$P2^{\mu} = (0, 0, -\frac{E_{cm}}{2}, \frac{E_{cm}}{2})$$

(The assignment of the minus sign to one of the input paticle's momentum is the fixing of the plus-minus degree of freedom.) For the output particles, three parameters fix the directions:

Pick particle 4 to be in the x-z plane:

$$P4^{\mu} = [E4\sin(\theta_4), 0, E4\cos(\theta_4), E4]$$

and θ_4 becomes the second parameter.

Then θ_5 and ϕ_5 become the third and fourth parameters, fixing the direction of $P5^{\mu}$.

$$P5^{\mu} = [E5\sin(\theta_5)\cos(\phi_5), E5\sin(\theta_5)\sin(\phi_5), E5\cos(\theta_5), E5]$$

and P3 becomes fixed by energy-momentum conservation:

$$P3^{\mu} = [-(P4_x + P5_x), -(P4_y + P5_y), -(P4_z + P5_z), (E_{cm} - E4 - E5)]$$

Now select E3 as the fifth and last parameter.

Then E4 and E5 are determined by the simultaneous solution of:

$$E4 + E5 = E_{cm} - E3$$

and the zero mass of P3

$$P3^2 = 0 \Rightarrow$$

 $E3^{2} = [E4\sin(\theta_{4}) + E5\sin(\theta_{5})\cos(\phi_{5})^{2} + [E5\sin(\theta_{5})\sin(\phi_{5})]^{2} + [E4\cos(\theta_{4}) + E5\cos(\theta_{5})]^{2}$

Sub-Section 1.2 ... The Center of Mass Outgoing Polar Angles

To find the polar angles made by the three outgoing particles in the center of mass frame of reference system, first note, taking particle 3 as an example, that:

$$(P1 + P2) \cdot P3 = -(E1 + E2)E3 = -2(E1)E3$$

but also:

$$(P1 + P2) \cdot P3 = (P3 + P4 + P5) \cdot P3 = P3P4 + P3P5$$

giving:

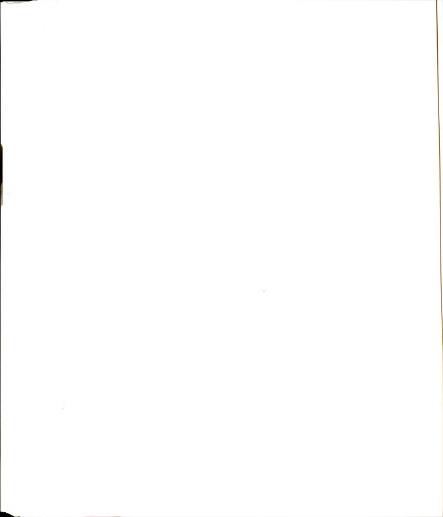
$$(E1)E3 = \frac{P3P4 + P3P5}{-2}$$

Then to find $\cos \theta_3$:

$$\overline{P1} \cdot \dot{\overline{P3}} = |P1| |P3| \cos \theta_3 = (E1) |E3| \cos \theta_3$$

but also:

$$\overline{P1} \cdot \overline{P3} = P1P3 + (E1)E3$$



giving:

$$\cos \theta_3 = 1 + \frac{P1P3}{(E1)E3}$$

then using the above for (E1)E3:

$$\cos \theta_3 = 1 - \frac{2(P1P3)}{P3P4 + P3P5}$$

and similarly for $\cos \theta_4$ and $\cos \theta_5$:

$$\cos\theta_4 = 1 - \frac{2(P1P4)}{P3P4 + P4P5}$$

$$\cos\theta_5 = 1 - \frac{2(P1P5)}{P3P5 + P4P5}$$

Section 2 ... Another System

For this problem the chosen set is:

the five continuous-

and the plus-minus degree-

the sign of
$$Epf(P1, P3, P4, P5)$$

As these are all Lorentz invariants, the combinations of values that are physically allowable may be ascertained in any convenient reference frame and co-ordinate system. The reference frame chosen here is the usual one for this problemthe rest frame of $\overline{P4}$ and $\overline{P5}$. The co-ordinate system is with $\overline{P4}$ taken as the plus z direction and $\overline{P3}$ in the x-z plane.

The four vector P2 is removable by energy-momentum conservation

$$P2 = P3 + P4 + P5 - P1$$

The remaining four vectors- P1. P3. P4. P5 - have their components evaluated

for this co-ordinate system in the solutions to Integrals I5, I8, and I18, in Appendix N.

The results are using as usual $ko = \sqrt{-P4P5/2}$:

$$P4 = (0, 0, +ko, ko)$$

$$P5 = (0, 0, -ko, ko)$$

$$P3 = \left[\frac{\sqrt{(P3P4)(P3P5)}}{ko}, 0, \frac{(P3P4 - P3P5)}{2ko}, -\frac{(P3P4 + P3P5)}{2ko}\right]$$

$$P1 = \left[P1_x, P1_y, \frac{(P1P4 - P1P5)}{2ko}, -\frac{(P1P4 + P1P5)}{2ko}\right]$$

where

$$P1_{x} = \pm \left(\frac{(P1P4)(P3P5) + (P1P5)(P3P4) - (P1P3)(P4P5)}{2ko\sqrt{(P3P4)(P3P5)}} \right)$$

$$P1_{y}^{2} = \frac{4(P1P4)(P3P5)(P1P5)(P3P4) - [(P1P4)(P3P5) + (P1P5)(P3P4 - (P1P3)(P4P5)]^{2}}{4ko^{2}(P3P4)(P3P5)}$$

P1P3 appears in the above results. It is obtained from the above expression for P2 by squaring and noting the particles have zero mass-

$$P2^2 = 0 = P3P4 + P3P5 + P4P5 - P1P3 - P1P4 - P1P5$$

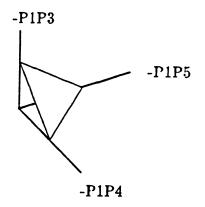
Selecting a value for the Center of Mass energy imposes a restriction on the set of dot products

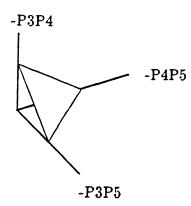
$$(P1 + P2)^2 = (P3 + P4 + P5)^2 = -E_{cm}^2$$

and removing P2 as usual-

$$P1P3 + P1P4 + P1P5 = P3P4 + P3P5 + P4P5 = -E_{cm}^{2}/2$$

The allowable values may be visualized as lying on triangular surfaces





where each corner of the triangles intersects the axis at $\frac{E_{cm}^2}{2}$.

These points are generateable in the output FORTRAN program by allowing

$$0 < -P1P4 < \frac{E_{em}^2}{2}$$

$$0 < -P1P5 < \frac{E_{em}^2}{2} - (-P1P4)$$

$$-P1P3 = \frac{E_{em}^2}{2} - (-P1P4) - (-P1P5)$$

and

$$0 < -P3P4 < \frac{E_{cm}^2}{2}$$

$$0 < -P3P5 < \frac{E_{cm}^2}{2} - (-P3P4)$$

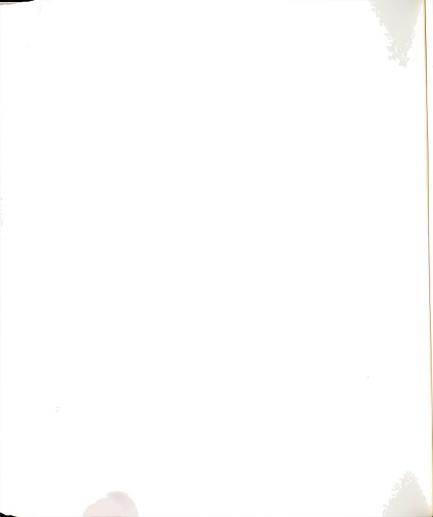
$$-P4P5 = \frac{E_{cm}^2}{2} - (-P3P4) - (-P3P5)$$

These possibilities are then restricted by the requirement that $P1_y$ be real, which is that-

$$4(P1P4)(P3P5)(P1P5)(P3P4) > [(P1P4)(P3P5) + (P1P5)(P3P4) - (P1P3)(P4P5)]^{2}$$

A set of six dot products which is on the two triangles and also obeys this restriction may be regarded as a physically realizable point and processed.

The remaining degree of freedom, the plus-minus sign appears as that sign



which is selected for $\sqrt{P1_y^2}$, (with $P2_y$ picking up the opposing sign). As Epf(P1, P3, P4, P5), evaluated in Appendix B in this same reference frame and co-ordinate system is equal to $i(2ko^2)(P3_x)(P1_y)$, the sign of $P1_y$ enters the calculation as the sign of Epf(P1, P3, P4, P5).

Appendix Q Verification of Spinor Replacement

Section 1 Introduction

In Appendix H it is demonstrated that a spinor product of the form $v(p)\overline{u}(q)$ may be replaced by $(1 \pm \gamma_5)\gamma \cdot A$ where A is a four vector, and is given by

$$A_{\mu} = \frac{(p \cdot s)q_{\mu} + (q \cdot s)p_{\mu} - (p \cdot q)s_{\mu} \pm Epf(\mu, q, p, s)}{\sqrt{16(p \cdot s)(q \cdot s)}}$$

where s_{μ} is an arbritary four vector of the problem, and the sign of γ_5 is determined by the combination of helecities.

This permits the substsitutions:

$$v(P3)\overline{u}(P4) = (1 \pm \gamma_5)\gamma \cdot B$$

and

$$v(P2)\overline{u}(P5) = (1 \pm \gamma_5)\gamma \cdot CU$$

where

$$B_{\mu} = \frac{(P3P5)P4_{\mu} + (P4P5)P3_{\mu} - (P3P4)P5_{\mu} \pm Epf(\mu, P3, P4, P5)}{\sqrt{16(P4P5)(P3P5)}}$$

and

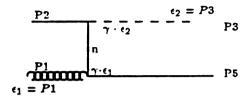
$$CU_{\mu} = \frac{(P1P2)P5_{\mu} + (P1P5)P2_{\mu} - (P2P5)P1_{\mu} \pm Epf(\mu, P1, P2, P5)}{\sqrt{16(P1P2)(P1P5)}}$$

which enable the SCHOONSCHIP program of Appendix I to easily calculate the TRACES.

Here this result is checked in two examples by squaring the amplitude it leads to and comparing it to the cross section obtained by the standard method spin sum replacement of: $u(p) \overline{u}(p) = \gamma \cdot p$

Section 2 Example 1

Consider the following simplistic diagram in which the polarization of the incident gluon and the exiting Z^0 are simply set equal to their linear momenta:



Overall energy momenta conservation dictates:

$$P1 + P2 = P3 + P5$$

which gives immediately, using zero mass particles:

$$P1P2 = P3P5$$

 $P2P3 = P1P5$
 $P1P3 = P2P5$
 $P2P5 = P3P3 - P1P5$

and the amplitude is proportional to:

$$\overline{u}(P5)$$
 $\gamma \cdot \epsilon_1$ $\gamma \cdot n$ $\gamma \cdot \epsilon_2$ $v(P2)$

Then using

$$(\gamma \cdot \epsilon_1)(\gamma \cdot n) = (\gamma \cdot P1) \ \gamma \cdot (P1 - P5) = -[(\gamma \cdot P1) \ (\gamma \cdot P5) \] = [(\gamma \cdot P5) \ (\gamma \cdot P1) \ -P1P5]$$

gives:

$$\overline{u}(P5) [(\gamma \cdot P5) (\gamma \cdot P1) - P1P5] (\gamma \cdot \epsilon_2) v(P2)$$

and because of the Dirac equation $\overline{u}(P5) \gamma \cdot P5 = 0$ becomes:

$$-(P1P5) TRACE[v(P2)\overline{u}(P5)\gamma \cdot \epsilon_2]$$

and using the above definition of CU:

-(P1P5)
$$TRACE[(1+\gamma_5)(\gamma \cdot CU)(\gamma \cdot \epsilon_2)]$$

$$= -4(P1P5)[CU \cdot P3]$$

Using the expansion of CU:

$$=\frac{-4(P1P5)[(P1P2)P3P5+(P1P5)P2P3-(P2P5)P1P3\pm Epf(P3,P1,P2,P5)]}{\sqrt{16(P1P2)(P1P5)}}$$

noting P3 = P1 + P2 - P5 makes the Epf zero

$$= \frac{-4(P1P5)[(P3P5)^2 + (P1P5)^2 - (P2P5)^2}{\sqrt{16(P1P2)(P1P5)}}$$
$$= \frac{-4(P1P5)[-2(P3P5)(P1P5)]}{\sqrt{16(P1P2)(P1P5)}}$$

and squaring to produce the cross section

$$Amplitude^2 = 4(P1P5)^2(P3P5)P2P3$$

This is to be checked with the spin summed cross section:

$$\overline{u}(P5) \quad \gamma \cdot \epsilon_1 \quad \gamma \cdot n \quad \gamma \cdot \epsilon_2 \quad v(P2)\overline{v}(P2) \quad \gamma \cdot \epsilon_2 \quad \gamma \cdot n \quad \gamma \cdot \epsilon_1 \quad u(P5)$$

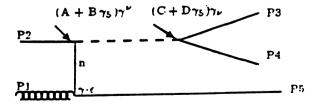
$$= -(P1P5)^2 \quad TRACE \quad \left[\frac{(1+\gamma_5)}{2} \quad \gamma \cdot P5 \quad \gamma \cdot P3 \quad \gamma \cdot P2 \quad \gamma \cdot P3 \right]$$

$$= 4(P1P5)^2(P3P5)P2P3$$

giving agreement.

Section 3 Example 2

Consider a second example:



First evaluate the spin summed cross section.

The quark line yields:

$$\begin{split} &\overline{u}(P5) \quad \gamma \cdot \epsilon \quad \gamma \cdot n \quad \gamma^{\nu} \ v(P2)\overline{v}(P2) \ \gamma^{\mu} \ \gamma \cdot n \quad \gamma \cdot \epsilon^{\star} \ u(P5) \\ &= \ TRACE[\ u(P5)\overline{u}(P5) \ \gamma \cdot \epsilon \ \gamma \cdot n \quad \gamma^{\nu} \ \frac{(1+\gamma_5)}{2} \ (\gamma \cdot P2) \ \gamma^{\mu} \ \gamma \cdot n \quad \gamma \cdot \epsilon^{\star} \] \end{split}$$

then using the Example 1 relationship between ϵ , n, and the Dirac equation:

$$\begin{split} &=\frac{4(P1P5)^2}{2}\;TRACE[\;\;(1+\gamma_5)\;\;\gamma\cdot P5\;\;\gamma^{\nu}\;\;\gamma\cdot P2\;\;\gamma^{\mu}\;\;]\\ &=\frac{4(P1P5)^2}{2}\;\left[4(P5_{\nu}P2_{\mu}+P5_{\mu}P2_{\nu}-(P2P5)g_{\mu\nu})-4\;Epf(P5,\mu,P2,\nu)\right] \end{split}$$

and from the lepton line:

$$\begin{split} \overline{u}(P4) \, \gamma_{\nu} v(P3) \overline{v}(P3) \, \gamma_{\mu} u(P4) \\ &= \frac{1}{2} \, TRACE [\, (1+\gamma_5) \, \, \gamma \cdot P4 \, \, \gamma_{\nu} \, \, \gamma \cdot P3 \, \, \gamma \, \,] \\ &= \frac{1}{2} \, (4) [4 \, (P4^{\nu}P3^{\mu} + P4^{\mu}P3^{\nu} - (P3P4)g^{\mu\nu}) - 4 \, Epf(P4,\mu,P3,\nu) \, \,] \end{split}$$

and the product:

$$= 16(P1P5)^{2}\{(P4P5)P2P3+P2P4)P3P5-P3P4(P2P5)-Epf(P4, P2, P3, P5)\\ (P3P5)P2P4+(P2P5)P4P5-P3P4(P2P5)-Epf(P4, P4, P3, P2)\\ -(P3P4)P2P5-(P3P4)P2P5+4(P3P4)P2P5+0\\ -Epf(P5, P3, P2, P4)-Epf(P5, P4, P2, P3)+0\\ +[Epf(P5, \mu, P2, \nu)]*[Epf(P4, \mu, P3, \nu)]\}\\ = 16(P1P5)^{2}[2(P4P5)P2P3+2(P2P4)P3P5+2\Big| \begin{array}{c} P4P5 & P3P5 \\ P2P4 & P2P3 \end{array} \Big| \]\\ = 16(P1P5)^{2}4 (P4P5)P2P3 \end{array}$$

Now calculate and compare the amplitude squared.

$$\begin{split} \overline{u}(P4) & \gamma \cdot \epsilon \ \gamma^{\nu} \ v(P3)\overline{u}(P5) \ \gamma \cdot \epsilon^{\nu} \ \gamma \cdot n \ \gamma_{\nu} \ v(P2) \\ = TRACE \left[v(P3)\overline{u}(P4) \ \gamma \cdot \epsilon \ \gamma^{\nu} \ \right] \ TRACE \left[v(P2)\overline{u}(P5) \ \gamma \cdot \epsilon^{\nu} \ \gamma \cdot n \ \gamma_{\mu} \ \right] \end{split}$$

$$= \ TRACE \left[(1+\gamma_5) \ \gamma \cdot B \ \gamma^{\nu} \ \right] \ 2(P1P5) \ TRACE \left[(1+\gamma_5) \ \gamma \cdot CU \ \gamma_{\mu} \ \right]$$

$$= 4 \ (B^{\nu}) \ (P1P5) \ 4 \ (CU_{\nu})$$

Then using

$$B_{\mu} = \frac{(P3P5)P4_{\mu} + (P4P5)P3_{\mu} - (P3P4)P5_{\mu} \pm Epf(\mu, P3, P4, P5)}{\sqrt{16(P4P5)(P3P5)}}$$

and a slightly different CU

$$CU_{\mu} = \frac{(P2P3)P5_{\mu} + (P3P5)P2_{\mu} - (P2P5)P3_{\mu} - Epf(\mu, P3, P2, P5)}{\sqrt{16(P1P3)(P3P5)}}$$

with

$$\begin{split} B \cdot CU &= 0 + P4P5(P3P5)P2P3 + P4P5(P2P3)P3P5 + 0 \\ &- P3P5(P2P5)P3P4 + P3P5^2(P2P4) + P2P3(P3P5)P4P5 \\ &- P3P5\left[Epf(P4, P3, P2, P5)\right] - P3P5\left[Epf(P2, P3, P4, P5)\right] \\ &- \left[Epf(\mu, P3, P4, P5)\right] * \left[Epf(\mu, P2, P3, P5)\right] \end{split}$$

$$=3(P4P5)P2P3(P3P5)-P3P5(P2P5)P3P4\\ +P3P5^2(P2P4)-\begin{vmatrix} P2P3 & P2P4 & P2P5 \\ P3^2 & P3P4 & P3P5 \\ P3P5 & P4P5 & P5^2 \end{vmatrix}$$

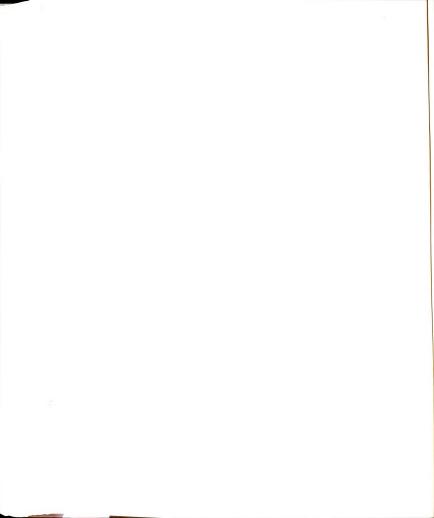
all over appropiate denominator,

$$=\frac{4(P4P5)P2P3(P3P5)}{\sqrt{16(P3P4)(P3P5)}\sqrt{16(P1P3)(P3P5)}}$$
$$=4(16)(P1P5)^{2}(P4P5)(P2P3)$$

giving agreement.

Now do again using the regular projection of CU:

$$CU_{\mu} = \frac{(P1P2)P5_{\mu} + (P1P5)P2_{\mu} - (P2P5)P1_{\mu} \pm Epf(\mu, P1, P2, P5)}{\sqrt{16(P1P2)(P1P5)}}$$



This will give a result that SCHOONSCHIP will be asked to calculate the final step of.

$$B \cdot CU = \\ -P4P5(P2P5)P1P3 + P4P5(P1P5)P2P3 \\ +P4P5(P1P2)P3P5 - (P4P5) Epf(P3, P1, P2, P5) \\ -P3P5(P2P5)P1P4 + P3P5(P1P5)P2P4 \\ +P3P5(P1P2)P4P5 - (P3P5)Epf(P4, P1, P2, P5) \\ +P3P4(P2P5)P1P5 - P3P4(P1P5)P2P5 + (P2P5)Epf(P1, P3, P4, P5) \\ -(P1P5)Epf(P3, P3, P4, P5) + [Epf(\mu, P3, P4, P5)] * [Epf(\mu, P1, P2, P5)]$$

$$= -P4P5(P2P5)P1P3 + P4P5(P1P5)P2P3 - P3P5(P1P5)P2P3$$

$$-P3P5(P2P5)P1P4 + P3P5(P1P5)P2P4 + 2(P4P5)P1P2(P3P5)$$

$$+(P2P5 + P1P5 - P3P5 + P4P5) Epf(P1, P3, P4, P5)$$

$$+\begin{vmatrix} P1P3 & P1P4 & P1P5 \\ P2P3 & P2P4 & P2P5 \\ P3P5 & P4P5 & P5^2 \end{vmatrix}$$

$$= -2(P4P5)P2P5(P1P3 + 2(P4P5)P1P5(P2P3) + 2(P4P5)P1P2(P3P5) + 2(P4P5)Epf(P1, P3, P4, P5)$$

$$=\frac{2(P4P5)\left[\ P1P2(P3P5)+P1P5(P2P3)-P2P5(P1P3)+\ Epf(P1,P3,P4,P5)\ \right]}{\sqrt{16(P1P2)P1P5(16)P3P5(P4P5)}}$$

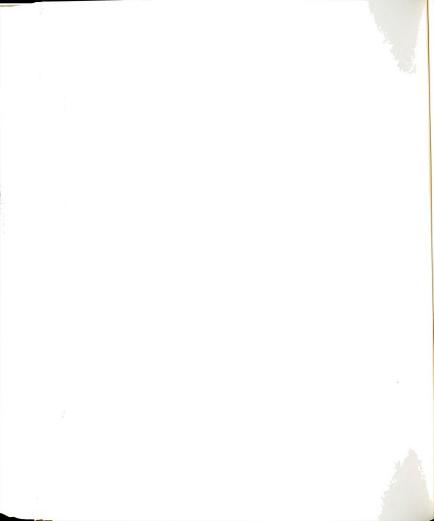
This is evaluated by the attached SCHOONSCHIP program to be:

$$Amplitude^2 = 64(P1P5)^2(P4P5)P2P3$$

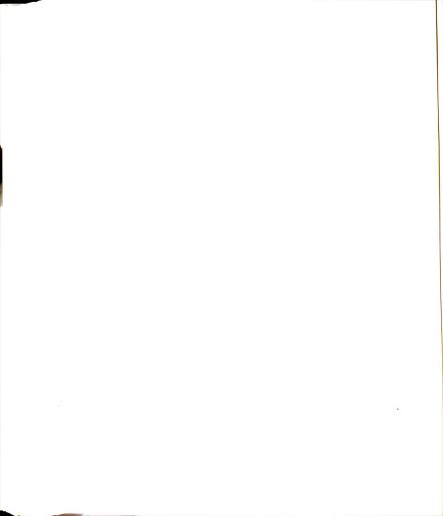
giving agreement.

Appendix R

Verification of SCHOONSHIP LOOP Program, TRACE Calculation



```
c
     START SCHOONSHIP PROGRAM
Č
    ALGEBRAIC TEST OF LOOP - TRACE PROGRAM
  this program tests the spinor, polarization replacements
  and the expansion of Ku , by after these replacements
  have all been made, replacing Ku by an expression that
 should force a zero result , as per this appendix,
  if all these replacements have been made correctly.
S LNMP.LNMQ.PI.FPIIV
A P14.P13.P15.P34.P35.P45
V P1,P2,P3,P4,P5,S1,S2,S3,S4,U1,U2,U3,U4
C
    FEED IN VALUES FOR THIS RUN
N 20
C SET SWITCHES
X FOUR = 0
X FIVE = 1
X ELECT = 1
X POSIT = 0
X LHEL = +1
X QHFL = +1
X GHEL = +1
X MPARIT = +1
P nstat
P ninput
Outlimit.12000000
P nlist
   SET DOT PRODUCTS
X P1P3 = ELECT*P13 + POSIT*P14
X P1P4 = FLECT*P14 + POSIT*P13
X P1P5 = P15
X P3P4 = P34
X P3P5 = ELECT*P35 + P0SIT*P45
X P4P5 = ELECT*P45 + POSIT*P35
Ċ
  FOR CONVEINENCE, DEFINE SOME EXPRESSIONS AND THEIR RECIPROCALS.
X D145 = P1P4 + P1P5
X D1 = D145
X D345 = P3P4 + P4P5
X MZP = 2*P3P4 + D3
Č
    NOW K CAN ALWAYS BE EXPANDED ON AN ARBRITARY BASIS SET $1,52,53,54
Ċ
   K = C(1)*S1 + C(2)*S2 + C(3)*S3 + C(4)*S4
C AND FOR THIS PROBLEM WE USE THE SET P1,P3,P4,P5
```



```
C SO....
X S1S2 = P1P3
X S1S3 = P1P4
X S1S4 = P1P5
X S2S3 = P3P4
X S2S4 = P3P5
X S3S4 = P4P5
C
     TO THIS END, THE ORIGINAL EXPANSION OF K MAY BE DOTTED WITH EACH
C
      OF THE BASIS TO FORM A 4 X 4 MATRIX, WHICH WHEN INVERTED
C
       YIELDS....
C
C
      C(1) = CC(1,1)*S1DK + CC(1,2)*S2DK + CC(1,3)*S3DK + CC(1,4)*S4DK
C
C
     W IS THE DETERMINENT FOR THIS INVERSION AND WIV IT'S RECIPROCAL
X W = S1S2 + S3S4 + (-S1S2 + S3S4 + S1S4 + S2S3 + S1S3 + S2S4)
    + S1S3*S2S4*( S1S2*S3S4+S1S4*S2S3-S1S3*S2S4)
    + S1S4*S2S3*( S1S2*S3S4-S1S4*S2S3+S1S3*S2S4)
C
C
     AND NOW, ALL THE CC'S USING THE NOTATION CC(4.3) = CC43
C
X CC44 = WIV*(-2)*(S1S2*S1S3*S2S3)
X CC43 = WIV + S1S2 + (-S1S2 + S3S4 + S1S4 + S2S3 + S1S3 + S2S4)
X CC42 = WIV + S1S3 + (S1S2 + S3S4 + S1S4 + S2S3 - S1S3 + S2S4)
X CC41 = WIV + S2S3 + (S1S2 + S3S4 - S1S4 + S2S3 + S1S3 + S2S4)
X CC33 = WIV*(-2)*(S1S2*S1S4*S2S4)
X CC32 = WIV*S1S4*(S1S2*S3S4-S1S4*S2S3+S1S3*S2S4)
X CC31 = WIV*S2S4*(S1S2*S3S4+S1S4*S2S3-S1S3*S2S4)
X CC22 = WIV + (-2) + (S1S3 + S1S4 + S3S4)
X CC21 = WIV*S3S4*(-S1S2*S3S4+S1S4*S2S3+S1S3*S2S4)
X CC11 = WIV*(-2)*(S2S3*S2S4*S3S4)
*fix
C
C
    IN THIS SECTION. TAKE THE TRACE, REPLACE EACH K BY IT'S
    LINEAR EXPANSION,
C
    AND REDUCE TO A FINAL ANSWER.
C
V B,K,CU,M,E,N,P1,P2,P3,P4,P5,PD
F C,F0,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,A1,A2,A3,AA
I J1, J2, M1, M2, K3, K2
C
     SCALE FACTOR FOR THE AMPLITUDE IS ...
X FSCAL = 0.5*FPIIV*(1/137)*(FIVE*(P34+P35+P45) + FOUR)
C
C
      TAKE THE TRACE
```

```
Z EXP=FSCAL+F0+F1+F2+F3+F4+F11+F5+F6+F7+F8+F9+F10
C
    SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM
C
Id, FO=0.5*((1+LHEL)*(G6(J1))+(1-LHEL)*(G7(J1)))
Id_F1=(G(J1,B))
Id,F2=ELECT*(G(J1,M2)) + POSIT*(G(J1,M1))
Id_F3=(G(J1,K))
Id,F4=ELECT*(G(J1,M1)) + POSIT*(G(J1,M2))
Id,F11=0.5*((1+QHEL)*(G6(J2))*(1-QHEL)*(G7(J2)))
Id,F5=(G(J2,CU))
*yep
Id,F6=(G(J2,M2))
Id,F7=(G(J2,M))
Id,F8=FIVE*(G(J2,E)) + FOUR*(G(J2,M1))
Id,F9=(G(J2,N))
Id,F10=FIVE*(G(J2,M1)) + F0UR*(G(J2,E))
*yep
Id, Trick, Trace, J1
C
      TRICK AND TRACE
Id, Trick, Trace, J2
*yep
C
     START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT.
C
Id,2,Dotpr,N(J^{-}) = FIVE*(M(J)*P1(J)) - FOUR*(P3(J)*P4(J)*P5(J))
AI, Funct, N(K2^-) = FIVE * (M(K2) + P1(K2)) - FOUR * (P3(K2) + P4(K2) + P5(K2))
Id, MDM=0
Id.Dotpr.M(J")=K(J)-PD(J)
AI, Funct, M(J^{-})=K(J)-PD(J)
Id, KDPD=P4P5
Id,KDK=0
Id, 2, Dotpr, PD(J^-)=P4(J)+P5(J)
AI, Funct, PD(J^{\sim})=P4(J)+P5(J)
Id, P4DP4=0
A1.P5DP5=0
AI,EDP1=0
C P OUTPUT
C Id,2,Dotpr,K(J^{-}) = P1(J)
C Id, 2, Funct, K(J^{-}) = P1(J)
*yep
C
    PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS.
C
Id,2,Dotpr,B(J^{-})=B3*P3(J)*B4*P4(J)*B5*P5(J)*BEPF*Epf(J,P3,P4,P5)
Al, Funct, B(K3")=B3*P3(K3)+B4*P4(K3)+B5*P5(K3)+BEPF*Epf(K3,P3,P4,P5)
C P OUTPUT
*yep
Id,B3 = BOIV*P4P5
A1,B4 = BOIV + P3P5
AI,B5 = -BOIV * P3P4
AI, BEPF = + LHEL +BOIV+ (ELECT - POSIT)
Id, Trick
Id, KDK=0
Id,P1DP1=0
A1,P3DP3=0
```

```
A1.P4DP4=0
A1,P5DP5=0
Id.P1DP3=P1P3
AI.P1DP4=P1P4
AI PIDP5=P1P5
A1.P3DP4=P3P4
AI.P3DP5=P3P5
AL PADP5=P4P5
C P DUTPUT
*vep
Id,2,Dotpr,CU(J~)=
   (CU1-CU2) *P1(J)+CU2*P3(J)+CU2*PD(J)+CU5*P5(J)
  +CUEPF*Epf(J,P1,P3.P5)+CUEPF*Epf(J.P1.P4.P5)
AI, Funct, CU(K~)=
   (CU1-CU2)*P1(K)+CU2*P3(K)+CU2*PD(K)+CU5*P5(K)
  +CUEPF*Epf (K.P1.P3.P5)+CUEPF*Epf (K.P1,P4,P5)
Id, CU1 = - CUOIV+(P3P5+P4P5-P1P5)
AI, CU2 = CUOIV*P1P5
A1, CU5 = CUOIV* (P3P4+P3P5+P4P5)
AI, CUEPF = + QHEL + CUOIV
*vep
Id.Trick
Id.KDK=0
A1.KDPD=P4P5
AI .EDP1=0
Id, 2, Dotpr, PD(J")=P4(J)+P5(J)
AI, Funct, PD (K2")=P4 (K2)+P5 (K2)
Id.P1DP1=0
A1 , P3DP3=0
AL.P4DP4=0
A1.P5DP5=0
Id.P1DP3=P1P3
AI,P1DP4=P1P4
AI,P1DP5=P1P5
AI.P3DP4=P3P4
AI,P3DP5=P3P5
AI,P4DP5=P4P5
C P OUTPUT
*yep
     NOW PUT IN THE POLARIZATION VECTOR EXPANSION.
Id,2,Dotpr,E(J")= E1*P1(J) + E3*P3(J) +
 E4*P4(J)+E5*P5(J)+EEPF*(Epf(J,P1,P3,P5)+Epf(J,P1,P4,P5))
Al, Funct, E(K")= E1*P1(K) + E3*P3(K) +
 E4*P4(K)+E5*P5(K)+EEPF*(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5))
Id, E1 = E0IV*GHEL*(P3P5+P4P5-2*P1P5)
AI.E3 = EOIV+GHEL+P1P5
AI E4 = EOIV+GHEL+P1P5
AI .E5 = -E0IV*GHEL* (P1P3+P1P4)
AI, EEPF = -EOIV
*yep
Id, Trick
Id.KDK=0
Id, Epf (P1, P3, P4, P5) = EVL
Id,P1DP1=0
A1.P3DP3=0
AI PADP4=0
```

```
A1.P5DP5=0
Td.P1DP3=P1P3
AI .P1DP4=P1P4
A1.P1DP5=P1P5
AI.P3DP4=P3P4
A1 P3DP5=P3P5
AI .P4DP5=P4P5
C P OUTPUT
*vep
c
    REPLACE K BY IT'S LINEAR EXPANSION.
Id.P5DK = -P4DK + P45
Id, 2, Funct, K(J^{-})=C(1)*P1(J)+C(2)*P3(J)+C(3)*P4(J)
     +C(4) *PS(J)
*vep
Id.Trick
Id, Epf(P1, P3, P4, P5) = EVL
C P OUTPUT
*vep
Id.C(1) = CC11*P1DK+CC21*P3DK+(CC31-CC41)*P4DK+CC41*P4P5
AI, C(2) = CC21*P1DK+CC22*P3DK+(CC32-CC42)*P4DK+CC42*P4P5
A1.C(3) = CC31*P1DK+CC32*P3DK+(CC33-CC43)*P4DK+CC43*P4P5
AI, C(4) = CC41*P1DK+CC42*P3DK+(CC43-CC44)*P4DK+CC44*P4P5
C P OUTPUT
*vep
Id.Epf (P1.P3.P4.P5) = EVL
B WIV, CUOÍV, PI. FPIÍV, BOIV. EOIV. EVL
Keep EXP
*next
c
    now begin the replacement of Ku by that which should force a zero.
c
Z \exp 0 = D0 * EXP
Id, Ainbe, DO+WIV = 1
Id.DO = W
B D145IV, CUOIV, PI, FPIIV, BOIV, EOIV, EVL
Keep exp0
*next
Z = \exp 00 = \exp 0
Id_{,2}, Dotpr_{,K}(J^{-}) = (P4(J) + P5(J)) - D145IV*P4P5*P1(J)
C Id, 2, Funct, K(J^{-}) = (P4(J) + P5(J)) - D145IV*P4P5*P1(J)
Id . Epf (P1 , P3 , P4 , P5) = EVL
Id.P1DP1 = 0
AI .P1DP3 = P1P3
AI ,P1DP4 = P1P4
A1 .P1DP5 = P1P5
AI.P3DP4 = P3P4
A1, P3DP5 = P3P5
AI,P4DP5 = P4P5
AI.P1DP1 = 0
AI.P3DP3 = 0
AI,P4DP4 = 0
AI.P5DP5 = 0
Id.P13 = P34 + P35 + P45 -P14 - P15
```

```
Id.Epf (P1.P3.P4.P5) = EVL
B D1451V, CUOIV, PI, FPIIV, BOIV, EOIV. EVL
Keep exp00
*next
Z = xp1 = D0*exp00
Id, Ainbe, DO+D145IV^2 = 1
Id,D0 = P14*P14 + 2*P14*P15 +P15*P15
B D145IV, CUOIV, PI, FPIIV, BOIV, EOIV, EVL
Keep exp1
*next
Z = D0 = D0 = xp1
Id.Ainbe.DO+D145IV = 1
Id, DO = P14 +P15
B D145IV, CUOIV, PI, FPIIV, BOIV, EOIV, EVL
*end
c
č
    the test is now finished.
č
    the remainder of the program is not
    subject to this test as all Ku's will
000
    now be replaced by A and B expresssions.
č
```

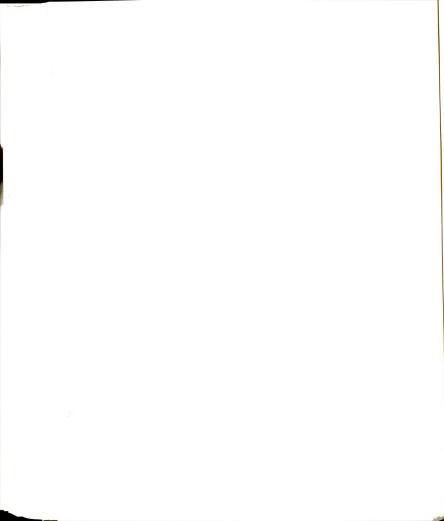
Appendix S

Verification of Divergence Regulation Co-efficent Cancellation



```
C
 C
 C
       START SCHOONSHIP PROGRAM
 C
 C
        CHECK DIVERGENCE CO-EFFICENT
 C
        CANCELLATION
 C
C
C
    THIS PROGRAM CHECKS THE SCHOONSHIP LOOP
C
   PROGRAM BY COMPUTING A NUMERICAL RESULT
C
   FOR AN ARBRITARILY CHOSEN SET OF PARAMETERS.
C
C
   IT CALCULATES AND USES THE NUMERICAL
C
   VALUE OF THE 19 INTEGRALS FOR THIS
C
   SET OF NUMERICAL INPUT.
C
   IT LOOKS FOR THE COEFFICENT OF THE
   LOG PHOTON MASS AND THE COEFFICENT
C
   OF THE LOG QUARK MASS TO COME THROUGH
   THE COMPLICATED CALCULATION AS ZERO.
C
   INDICATING THAT THE TRACE CALCULATION
   AND VARIOUS SUBSTITUTIONS, AND AT
C
   LEAST THE DIVERGENT PART OF THE 19
C
   INTEGRALS HAVE BEEN CODED CORRECTLY.
S LNMP, LNMQ, PI, FPIIV
V P1, P2, P3, P4, P5, S1, S2, S3, S4, U1, U2, U3, U4
X D3 = 93.7*93.7 - 2.7*93.7*i
C
     FEED IN VALUES FOR THIS RUN
N 30,R0
X P13 = -0.5*66.0605782596549785908571076
             *66.0605782596549785908571076
X P14 = -0.5*70*70
X P15 = -0.5 * 15 * 15
X P34 = -0.5*92*92
X P35 = -0.5 * 20 * 20
X P45 = -0.5*25*25
C \times P13 = P34 + P35 + P45 - P14 - P15
C
C
   SET SWITCHES
X FOUR = 0
X FIVE = 1
X ELECT = 1
X POSIT = 0
X LHEL = +1
X QHEL = +1
X GHEL = +1
X MPARIT = +1
C
P nstat
P ninput
P nlist
    SET DOT PRODUCTS
X P1P3 = ELECT*P13 + POSIT*P14
X P1P4 = ELECT*P14 + POSIT*P13
```

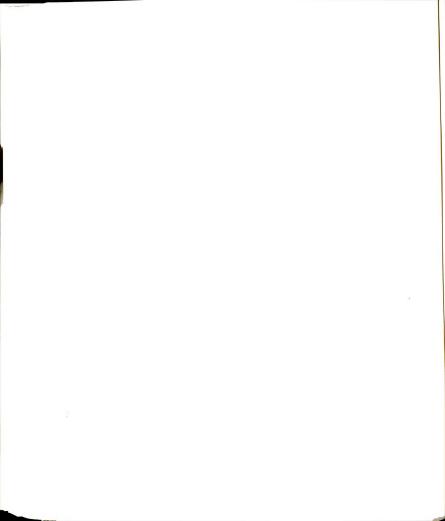
```
X P1P5 = P15
X P3P4 = P34
X P3P5 = ELECT*P35 + P0SIT*P45
X P4P5 = ELECT*P45 + POSIT*P35
C
C
    RECIPROCALS
X P13IV = ((P1P3) **-1)
X P14IV = ((P1P4)**-1)
X P15IV = ((P1P5)**-1)
X P34IV = ((P3P4)**-1)
X P35IV = ((P3P5)**-1)
X P45IV = ((P4P5)**-1)
   FOR CONVEINENCE, DEFINE SOME EXPRESSIONS AND THEIR RECIPROCALS.
C
X K02 = 0.5*(-P4P5)
X KO2IV = ((KO2)**-1)
X D145 = P1P4 + P1P5
X D1 = D145
X D145IV = ((D145)**-1)
X D345 = P3P4 + P4P5
X D345IV = ((D345)**-1)
X MZP = 2*P3P4 + D3
C
     NOW K CAN ALWAYS BE EXPANDED ON AN ARBRITARY BASIS SET S1,S2,S3,S4
C
    K = C(1)*S1 + C(2)*S2 + C(3)*S3 + C(4)*S4
   AND FOR THIS PROBLEM WE USE THE SET P1,P3,P4,P5
C
C SO....
C
X S1S2 = P1P3
X S1S3 = P1P4
X S1S4 = P1P5
X S2S3 = P3P4
X S2S4 = P3P5
X S3S4 = P4P5
C
     TO THIS END, THE ORIGINAL EXPANSION OF K MAY BE DOTTED WITH EACH
C
     OF THE BASIS TO FORM A 4 X 4 MATRIX, WHICH WHEN INVERTED
C
C
       YIELDS.....
C
      C(1) = CC(1,1)*S1DK + CC(1,2)*S2DK + CC(1,3)*S3DK + CC(1,4)*S4DK
C
     W IS THE DETERMINENT FOR THIS INVERSION AND WIV IT'S RECIPROCAL
C
X W = S1S2*S3S4*(-S1S2*S3S4+S1S4*S2S3+S1S3*S2S4)
    + S1S3+S2S4+( S1S2+S3S4+S1S4+S2S3-S1S3+S2S4)
    + S1S4*S2S3*( S1S2*S3S4-S1S4*S2S3+S1S3*S2S4)
X WIV = ((W) * * -1)
     AND NOW, ALL THE CC'S USING THE NOTATION CC(4,3) = CC43
C
X CC44 = WIV*(-2)*(S1S2*S1S3*S2S3)
```



```
X CC43 = WIV*S1S2*(-S1S2*S3S4+S1S4*S2S3+S1S3*S2S4)
X CC42 = WIV*S1S3*( S1S2*S3S4*S1S4*S2S3-S1S3*S2S4)
X CC41 = WIV*S2S3*( S1S2*S3S4-S1S4*S2S3+S1S3*S2S4)
X CC33 = WIV*(-2)*(S1S2*S1S4*S2S4)
X CC32 = WIV*S1S4*( S1S2*S3S4-S1S4*S2S3+S1S3*S2S4)
X CC31 = WIV*S2S4*( S1S2*S3S4+S1S4*S2S3-S1S3*S2S4)
X CC22 = WIV*(-2)*(S1S3*S1S4*S3S4)
X CC21 = WIV*S3S4*(-S1S2*S3S4+S1S4*S2S3+S1S3*S2S4)
X CC11 = WIV*(-2)*(S2S3*S2S4*S3S4)
*fix
   THE NINETEEN INTEGRALS WILL NOW BE EVALUATED.
        THEY WILL MAKE USE OF SIX LOGS WHICH ARE ...
C
      LN1 = LN(-2*P4P5)
c
      LN2 = LN(-2*(P1P4+P1P5))
      LN3 = LN((2*P3P5+MZP)/D3)
Ċ
      LN4 = LN((P1P4+P1P5)/P1P5))
      LN5 = LN(MZP/(2*P3P5+MZP))
      LN6 = LN((2*P3P5+MZP)*(P1P4+P1P5)/R)
            WHERE R = -2*P4P5*P1P3+2*P3P5*(P1P4+P1P5)+MZP*(P1P4+P1P5)
0000
    SET LOG VALUES
Z LN1 = ELECT*(6.43775164973640149840303733)
       + POSIT+(5.99146454710798198687044715)
Z LN2 = ELECT * (8.54188580400660892766904137)
       + POSIT*(8.43141741439483350344920756)
Z LN3 = ELECT*(-3.494604862965 - 1.863668333657*i)
       + POSIT*(-3.090158418852 - 2.427214215569*i)
Z LN4 = ELECT * (3.12578540180218879567703223)
       + POSIT * (3.01531701219041337145719842)
Z LN5 = ELECT*( .4167792613628 + 1.216889362411*i)
       + POSIT*(.01233281724963 + 1.780435244322*i)
Z LN6 = ELECT+(-.6569902501244 - 1.378299363866+i)
       * POSIT*( .3589882796597 - 1.320996180611*i)
Keep LN1,LN2,LN3,LN4,LN5,LN6
*next
Z I1 = -2*PI*P45IV*(LN1 - LNMP)
Z I2 = -2*PI*D145IV*(LN2 - LNMQ)
Z I3 = +2*PI*D345IV*LN3
Keep LN4, LN5, LN6, I1, I2, I3
*next
Z R = -2*P4P5*P1P3+2*P3P5*D1+MZP*D1
Z MZP1 = MZP
Keep LN4,LN5,LN6,I1,I2,I3,R,MZP1,PPD
*next
Z RUPPER = Conig(R)
Z RLOWER = R+Conig(R)
Z MZPUP = Conig(MZP1)
Z MZPLW = MZP1 *Conjg(MZP1)
```

```
Keep LN4,LN5,LN6,I1,I2,I3,RUPPER,RLOWER,MZPUP.MZPLW
*next
Z RIV = RUPPER/(RLOWER)
Z MZPIV = MZPUP/(MZPLW)
Keep LN4, LN5, LN6, I1, I2, I3, RIV, MZPIV
*next
Z I4 = - PI*P45IV*P15IV*LN4 -
              0.5*D1*P45IV*P15IV*I2 - 0.5*P15IV*I1
Z I5 = -P45IV*MZPIV*(4*PI*LN5 +D345*I3 - P4P5*I1)
Z I6 = RIV * (4 * PI * LN6 - D345 * I3 + D1 * I2)
Keep I1, I2, I3, I4, I5, I6, PPDIV, RIV
*next
Z I7 = 0.25*(P3P5*P15IV+P3P4*P14IV-P1P3*P4P5*P14IV*P15IV)*
           (I1 - (P1P4-P1P5)*P45IV*I2 + 2*P1P5*I4)
      - 0.5*(P3P5-P3P4)*P45IV*I2
                                      + P3P4*I4
Z I8 = 0.25*(P1P4*P34IV+P1P5*P35IV-P1P3*P4P5*P34IV*P35IV)*
             (I1 - (P3P4-P3P5)*P45IV*I3 - MZP*I5)
       - 0.5*(P1P5-P1P4)*P45IV*I3 +P1P4*I5
Z I9U = P3P4*P1P4*P1P5*P3P4*P1P5*P1P5*P4P5*P1P3*P1P4
      - P4P5*P1P3*P1P5-P1P4*P1P4*P3P5-P1P5*P1P4*P3P5
Z I9L = 2*P1P3*
   (P1P3*P4P5-P1P4*P3P4-P1P4*P3P5-P1P5*P3P4-P1P5*P3P5)
Keep I1, I2, I3, I4, I5, I6, I7, I8, I9U, I9L, RIV
*next
X I93 = 2*P4P5*P1P3*D145IV*D145IV-(P3P4+P3P5)*D145IV
X I96 = -2*P4P5*P1P3*D145IV + 2*P3P5 + MZP
X I9F = 0.5*I9U*((I9L)**-1)*(I2+I93*I3-I96*I6)
Z I9 = I9F + 0.5*P4P5*(P1P5-P1P4)*D145IV*(D145IV*I3+I6)
            + 0.5*P4P5*I6
Keep I1,I2,I3,I4,I5,I6,I7,I8,I9,I9U,I9L,RIV
*next
Z I11 = 2*PI*P45IV*(P1P4-P1P5) + P1P4*I1
Z I12 = 2*PI*P45IV*(P3P4-P3P5) + P3P4*I1
Z I13 = -2*PI*P4P5*D145IV*D145IV*(P1P4 - P1P5) +
             P4P5*P1P5*D145IV*I2
Z I14 = 0.5*(P3P4 + P3P5)*I2 +
          0.5*(D145*D345-2*P1P3*P4P5)*D145IV*( 4*PI*D145IV + I2)
Keep I1, I2, I3, I4, I5, I6, I7, I8, I9, I11, I12, I13, I14, I9U, I9L, RIV
*next
Z I15 = -2*PI*P4P5*D345IV*D345IV*(P3P4 - P3P5) +
             0.5*P4P5*(1+D345IV*D345IV*(P3P4-P3P5)*(D345+D3))*I3
Z I16 = 0.5*D145*I3 *
               0.5*(D145*D345 - 2*P1P3*P4P5)*
                    D345IV*D345IV*( 4*PI - I3*(D345 + D3))
Keep I1, I2, I3, I4, I5, I6, I7, I8, I9, I11, I12, I13, I14, I15, I16, I9U, I9L,
     RIV
*next
Z I17 = P3P4*I7 + 0.5*P45IV*(P3P4-P3P5)*I14 +
  0.25*IS*P14IV*P15IV*(I12 - (P1P4-P1P5)*P45IV*I14 + 2*P1P5*I7) +
        0.0625*P14IV*P14IV*P15IV*P15IV*(4*P3P4*P3P5*P1P4*P1P5-IS*IS)*
        (-2*P1P5*I1 - 4*P1P5*P1P5*I4 - P45IV*D145*2*P1P5*I2)
Z I18 = P1P4*I8 + 0.5*P45IV*(P1P4-P1P5)*I16 +
   0.25*IS*P34IV*P35IV*(I11 - (P3P4-P3P5)*P45IV*I16-(2*P3P4+D3)*I8)+
```

```
0.0625*P34IV*P34IV*P35IV*P35IV*(4*P3P4*P3P5*P1P4*P1P5-IS*IS)*
 ((MZP)*I1-MZP*MZP*I5-P45IV*(D345*2*P3P5+(P3P4-P3P5)*MZP)*I3)
Id, IS = P1P4*P3P5 + P1P5*P3P4 - P1P3*P4P5
Keep I1, I2, I3, I4, I5, I6, I7, I8, I9, I11, I12, I13, I14, I15, I16, I9U, I9L,
     I17, I18
*next
Z I19=P4P5*P1P5*D145IV*I9-0.5*D145IV*D145IV*P4P5*(P1P4-P1P5)*I15 +
   0.5*I9U*((I9L)**-1)*
    (I13 + D145IV*D145IV*IW*I15 - D145IV*IR)*I9) +
 (-0.5*P4P5*P1P4*P1P5*((I9L)**-1)-0.25*I9U*I9U*((I9L)**-1)*((I9L)**-1))*
        (D145IV*IR)*I2
       -D145IV+D145IV+IR+IR+I6
       -D145IV*(D345*D345+D145IV*IW*(P3P4-P3P5-MZP))*I3
       )
C
Id, IW = 2*P1P3*P4P5 - D145*D345
Id_{,}IR = -2*P4P5*P1P3 + D1*(2*P3P5 + MZP)
Keep I1, I2, I3, I4, I5, I6, I7, I8, I9, I11, I12, I13, I14, I15, I16,
         I17, I18, I19
*next
Z ZI10U = U1DU1*(0.5*I8+0.5*D1*I5)+U2DU2*(0.5*I7-0.25*D3*I4)
        - (U3DU3-2+U3DU4+U4DU4)+0.5+I9
        + U1DU2*(0.5*I1+D1*I4-0.5*D3*I5)
        - (U1DU3-U1DU4) * (0.5*I3+D1*I6)
  + U1DU4+P4P5+I5-(U2DU3-U2DU4)+0.5+(I2-D3+I6)+U2DU4+P4P5+I4
        - (U3DU4-U4DU4) *P4P5*I6
Z ZI10D = U1DU1+D1+D1+U2DU2+0.25+D3+D3+U4DU4+P4P5+P4P5
         -1.0+U1DU2+D1+D3+2+U1DU4+P4P5+D1-U2DU4+P4P5+D3
Id,2,Dotpr,U1(J^{-})=CC11*P1(J)+CC21*P3(J)+CC31*P4(J)+CC41*P5(J)
Al,2,Dotpr,U2(J~)=CC21*P1(J)+CC22*P3(J)+CC32*P4(J)+CC42*P5(J)
AI,2,Dotpr,U3(J-)=CC31*P1(J)+CC32*P3(J)+CC33*P4(J)+CC43*P5(J)
AI,2,Dotpr,U4(J")=CC41*P1(J)+CC42*P3(J)+CC43*P4(J)+CC44*P5(J)
Id, Numer, P1DP1, 0, P3DP3, 0, P4DP4, 0, P5DP5, 0
AI,P1DP3=P1P3
AI,P1DP4=P1P4
A1,P1DP5=P1P5
A1,P3DP4=P3P4
A1.P3DP5=P3P5
A1,P4DP5=P4P5
Keep I1, I2, I3, I4, I5, I6, I7, I8, I9, I11, I12, I13, I14, I15, I16,
          I17, I18, I19, ZI10U, ZI10D
*next
Z UPPER = -ZI10U+Conjg(ZI10D)
Z LOWER = ZI10D*Conjg(ZI10D)
Keep I1, I2, I3, I4, I5, I6, I7, I8, I9, I11, I12, I13, I14, I15, I16,
          I17, I18, I19, UPPER, LOWER
*next
Z I10 = UPPER/(LOWER)
Keep I1, I2, I3, I4, I5, I6, I7, I8, I9, I11, I12, I13, I14, I15, I16,
          I17, I18, I19, I10
*next
```



```
C
   ALL THE NINETEEN INTEGRALS ARE NOW CALCULATED.
 *****************
C
C
C
C
    IN THIS SECTION, TAKE THE TRACE, REPLACE EACH K BY IT'S
C
C
    LINEAR EXPANSION,
    AND REDUCE TO A FINAL ANSWER.
C
C
 B,K,CU,M,E,N,P1,P2,P3,P4,P5,PD
F C,FO,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,A1,A2,A3,AA
I J1, J2, M1, M2, K3, K2
C
C
     SCALE FACTOR FOR THE AMPLITUDE IS ...
X FSCAL = 0.5*FPIIV*(1/137)*(P34*P35*P45)
Ć
      TAKE THE TRACE
C
Z EXP5=FSCAL+F0+F1+F2+F3+F4+F11+F5+F6+F7+F8+F9+F10
    SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM
C
Id, F0=0.5*((1+LHEL)*(G6(J1))+(1-LHEL)*(G7(J1)))
Id,F1=(G(J1,B))
Id,F2=ELECT*(G(J1,M2)) + POSIT*(G(J1,M1))
Id,F3=(G(J1,K))
Id,F4=ELECT*(G(J1,M1)) + POSIT*(G(J1,M2))
Id, F11=0.5*((1+QHEL)*(G6(J2))+(1-QHEL)*(G7(J2)))
Id, F5=(G(J2,CU))
*yep
Id.F6=(G(J2,M2))
Id,F7=(G(J2,M))
Id, F8=G(J2, E)
Id,F9=(G(J2,N))
Id,F10=G(J2,M1)
*Yep
Id, Trick, Trace, J1
      TRICK AND TRACE
C
Id, Trick, Trace, J2
*yep
     START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT.
C
Id,2,Dotpr,N(J^{-}) = M(J)+P1(J)
AI, Funct, N(K2^{-}) = M(K2) + P1(K2)
Id, MDM=0
Id, Dotpr, M(J^-)=K(J)-PD(J)
AI, Funct, M(J^{-})=K(J)-PD(J)
Id, KDPD=P4P5
Id,KDK=0
```

```
Id, 2, Dotpr, PD(J") = P4(J) + P5(J)
AI, Funct, PD(J^{\sim})=P4(J)+P5(J)
Id,P4DP4=0
A1, P5DP5=0
AI, EDP1=0
C P OUTPUT
*yep
    PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS.
C
Id,2,Dotpr,B(J^{-})=B3*P3(J)*B4*P4(J)*B5*P5(J)*BEPF*Epf(J,P3,P4,P5)
A1, Funct, B(K3")=B3+P3(K3)+B4+P4(K3)+B5+P5(K3)+BEPF+Epf(K3,P3,P4,P5)
C P OUTPUT
*yep
Id.B3 = BOIV * P4P5
AI,B4 = BOIV * P3P5
AI,B5 = -BOIV*P3P4
A1,BEPF = + LHEL *BOIV* (ELECT - POSIT)
Id, Trick
Id, KDK=0
Id,P1DP1=0
A1,P3DP3=0
AI,P4DP4=0
A1,P5DP5=0
Id,P1DP3=P1P3
AI,P1DP4=P1P4
AI,P1DP5=P1P5
A1, P3DP4=P3P4
AI,P3DP5=P3P5
AI,P4DP5=P4P5
C P OUTPUT
*yep
Id,2,Dotpr,CU(J~)=
    (CU1-CU2)*P1(J)+CU2*P3(J)+CU2*PD(J)+CU5*P5(J)
   +CUEPF*Epf (J,P1,P3,P5)+CUEPF*Epf (J,P1,P4,P5)
AI, Funct, CU(K<sup>-</sup>)=
    (CU1-CU2) +P1 (K)+CU2+P3 (K)+CU2+PD (K)+CU5+P5 (K)
   +CUEPF*Epf (K,P1,P3,P5)+CUEPF*Epf (K,P1,P4,P5)
Id, CU1 = - CUOIV*(P3P5+P4P5-P1P5)
AI, CU2 = CUOIV+P1P5
A1, CU5 = CUOIV* (P3P4+P3P5+P4P5)
AI, CUEPF = + QHEL + CUOIV
*yep
Id, Trick
Id,KDK=0
AI,KDPD=P4P5
AI,EDP1=0
Id,2,Dotpr,PD(J^{\sim})=P4(J)+P5(J)
A1, Funct, PD (K2^{-}) = P4 (K2) + P5 (K2)
Id,P1DP1=0
A1,P3DP3=0
AI,P4DP4=0
 A1,P5DP5=0
 Id,P1DP3=P1P3
 AI,P1DP4=P1P4
 AI,P1DP5=P1P5
 AI,P3DP4=P3P4
 A1, P3DP5=P3P5
```

```
215
```

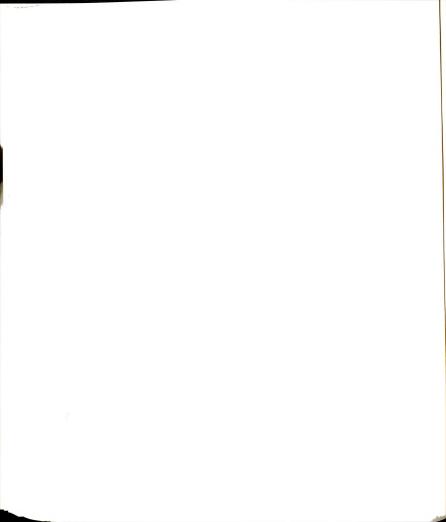
```
AI,P4DP5=P4P5
C P OUTPUT
*yep
c
c
     NOW PLIT IN THE POLARIZATION VECTOR EXPANSION.
Id.2.Dotpr.E(J^{-}) = E1*P1(J) + E3*P3(J)
E4+P4(J)+E5+P5(J)+EEPF+(Epf(J,P1,P3,P5)+Epf(J,P1,P4,P5))
                   E1*P1(K) + E3*P3(K) +
AI, Funct, E(K~)=
E4*P4(K)+E5*P5(K)+EEPF*(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5))
Id.E1 = EOIV*GHEL*(P3P5*P4P5-2*P1P5)
A1 E3 = E0IV+GHEL+P1P5
AI.E4 = EOIV*GHEL*P1P5
AI E5 = -E0IV*GHEL*(P1P3*P1P4)
AI, EEPF = -EOIV
*yep
Id.Trick
Id, KDK=0
Id, Epf(P1,P3,P4,P5) = EVL
Id.P1DP1=0
A1.P3DP3=0
AI,P4DP4=0
A1,P5DP5=0
Id.P1DP3=P1P3
AI,P1DP4=P1P4
AI,P1DP5=P1P5
AI,P3DP4=P3P4
AI .P3DP5=P3P5
AI.P4DP5=P4P5
C P OUTPUT
*yep
c
    REPLACE K BY IT'S LINEAR EXPANSION.
c
Id, 2, Funct, K(J^{-})=C(1)*P1(J)+C(2)*P3(J)+C(3)*P4(J)
     +P5(J) * (1-C(3)-C(1) *D1 *P451V-C(2) *D345 *P451V)
Id. Trick
Id, Epf (P1, P3, P4, P5) = EVL
C P OUTPUT
*vep
Id,C(1) = CC11*P1DK+CC21*P3DK+(CC31-CC41)*P4DK+CC41*P4P5
AI, C(2) = CC21*P1DK+CC22*P3DK+(CC32-CC42)*P4DK+CC42*P4P5
AI, C(3) = CC31*P1DK+CC32*P3DK+(CC33-CC43)*P4DK+CC43*P4P5
AI, C(4) = CC41*P1DK+CC42*P3DK+(CC43-CC44)*P4DK+CC44*P4P5
C P OUTPUT
*yep
         THE AMPLITUDE IS NOW COMPLETELY
         IN THE FORM OF DOT PRODUCTS
Č
         OF K WITH EXTERNAL MOMENTA.
C
  THE DOT PRODUCTS OF K NEED TO
    BE EVALUATED, FOR EXAMPLE...
C
                   (P3DK) * (P4DK) * (P5DK)
C
c
```

```
AND REMEMBER THIS FACTOR IS TO BE INTERGRATED OVER ALL K SPACE.
C
0000
   THIS DEFINES THE A3 MATRIX....
          A3(4,3,1) = (S4DK)*(S3DK)*(S1DK) INTEGRAL OF, OVER
C
     ALL K SPACE.
Ċ
     AND SIMILARLY A2(J,K) AND A1(J) MATRICES.
č
C
  THE A3. A2. AND A1 MATRICES ARE EVALUATED USING 19 SIMPLE
   INTEGRALS, EVALUATED EARLIER .... I1 THRU I19....
Č
     REPLACE PDK 'S BY A MATRICES
c
    FOR THE FIVE POINT DIAGRAM, OR
    SIMILAR B MATRICES FOR THE FOUR POINT.
Id.P1DK = AA(1)
AI,P3DK = AA(2)
AI.P4DK = AA(3)
AI,P5DK = -AA(3) + P4P5
Id,AA(J^{-})*AA(K^{-})*AA(L^{-}) = A3(J,K,L)
Id.AA(J^{-})*AA(K^{-}) = A2(J,K)
Id,AA(J^-) = A1(J)
Id.Symme, A3, 1, 2, 3, A2, 1, 2
Keep I1, I2, I3, I4, I5, I6, I7, I8, I9, I11, I12, I13, I14, I15, I16,
         I17, I18, I19, I10, EXP5
*next
S AO
Z = XP51 = A0*EXP5
Id,A0*A3(3,3,3) = A3333
A1.A0*A3(2,3,3) = A3332
A1,A0*A3(1,3,3) = A3331
A1,A0*A3(2,2,3) = A3322
AI, A0*A3(1,2,3) = A3321
A1,A0*A3(1,1,3) = A3311
A1,A0+A3(2,2,2) = A3222
A1,A0*A3(1,2,2) = A3221
A1,A0*A3(1,1,2) = A3211
A1,A0*A3(1,1,1) = A3111
*vep
Id.A0*A2(3,3) = A233
A1.A0*A2(2,3) = A232
AI,A0*A2(1,3) = A231
A1,A0*A2(2,2) = A222
A1,A0*A2(1,2) = A221
A1,A0*A2(1,1) = A211
Id.A0*A1(3) = A13
AI,A0*A1(2) = A12
A1.A0*A1(1) = A11
C P OUTPUT
*yep
   AND IN TERMS OF THE 19 INTEGRALS,
```

```
217
      THE ABOVE DEFINED D1 AND D3, THE
  C
  C
       A3,A2, AND A1 MATRICES,
         USING THE NOTATION....
  C
             A3(1,3,3) = A3331
  C
  C
  Id,A3333 = -0.5*(I19)
  AI,A3332 = -0.25*(I13 - D3*I9)
  AI,A3331 = -0.25*(I15 + 2*D1*I9)
 AI,A3322 = -0.25*(I14 - 0.5*D3*I2 + 0.5*D3*I6)
 AI,A3321 = -0.125*(4*PI + 2*D1*I2 - D3*I3 - 2*D1*D3*I6)
 AI,A3311 = -0.25*(I16 + D1*I3 + 2*D1*D1*I6)
 A1,A3222 = 0.5*(I17 - D3*A222)
 AI,A3221 = (0.25*I12 + 0.5*D1*I7 - 0.5*D3*A221)
 A1,A3211 = (0.25*(I11 - D3*I8) + D1*A221)
 AI,A3111 = 0.5*(I18 + 2*D1*A211)
 Id,A233 = -0.5*(I9)
 A1,A232 = -0.25*(I2 - D3*I6)
 A1,A231 = -0.25*(I3 + 2*D1*I6)
 A1,A222 = 0.5*(I7 - D3*A12)
 AI,A221 = (0.25*(I1 + 2*D1*I4) - 0.5*D3*A11)
 AI,A211 = 0.5*(I8 + 2*D1*A11)
 *yep
 Id,A13 = -0.5*(I6)
 A1,A12 = 0.5*(I4 - D3*I10)
 AI,A11 = 0.5*(I5 + 2*D1*I10)
 C
 C
 *yep
 C
   PUT IN AO
Id,A0 = I10
C
C
C
C
     THE FIVE POINT ANSWER IS NOW FORMED.
B LNMP, LNMQ, PI, FPIIV, CUOIV, BOIV, EOIV, EVL
Keep I1, I2, I3, I4, I5, I6, I7, I8, I9, I11, I12, I13, I14, I15, I16,
          I17, I18, I19, I10, EXP51
*next
C
C
C
C
    NOW CALCULATE THE FOUR POINT AMPLITUDE
C
C
C
    IN THIS SECTION, TAKE THE TRACE, REPLACE EACH K BY IT'S
    LINEAR EXPANSION,
C
    AND REDUCE TO A FINAL ANSWER.
C
V B,K,CU,M,E,N,P1,P2,P3,P4,P5,PD
```

```
F C.FO.F1.F2.F3.F4.F5.F6.F7.F8.F9.F10.F11.A1,A2,A3,AA
I J1, J2, M1, M2, K3, K2
C
C
     SCALE FACTOR FOR THE AMPLITUDE IS ...
X FSCAL = 0.5*FPIIV*(1/137)
C
C
C
      TAKE THE TRACE
C
  EXP4=FSCAL*F0*F1*F2*F3*F4*F11*F5*F6*F7*F8*F9*F10
Z
    SUBSTITUE ACCORDING TO HELICITIES AND DIAGRAM
C
Id, F0=0.5*((1+LHEL)*(G6(J1))+(1-LHEL)*(G7(J1)))
Id.F1=(G(J1.B))
Id,F2=ELECT*(G(J1,M2)) + POSIT*(G(J1,M1))
Id.F3=(G(J1,K))
Id,F4=ELECT*(G(J1,M1)) + POSIT*(G(J1,M2))
Id,F11=0.5*((1+QHEL)*(G6(J2))+(1-QHEL)*(G7(J2)))
Id,F5=(G(J2,CU))
*yep
Id, F6=(G(J2,M2))
Id,F7=(G(J2,M))
Id,F8=G(J2,M1)
Id,F9=(G(J2,N))
Id,F10=G(J2,E)
*yep
Id, Trick, Trace, J1
C
      TRICK AND TRACE
Id, Trick, Trace, J2
*yep
C
     START CONDENSATION SUBSTITUTIONS, SOME DIAGRAM DEPENDENT.
C
Id, 2, Dotpr, N(J^{-}) = P3(J) + P4(J) + P5(J)
AI, Funct, N(K2^{-}) = P3(K2) + P4(K2) + P5(K2)
Id, MDM=0
Id, Dotpr, M(J^{-})=K(J)-PD(J)
AI, Funct, M(J^-)=K(J)-PD(J)
Id, KDPD=P4P5
Id, KDK=0
Id, 2, Dotpr, PD(J^-)=P4(J)+P5(J)
AI, Funct, PD(J^{-})=P4(J)+P5(J)
Id.P4DP4=0
A1.P5DP5=0
AI,EDP1=0
C P OUTPUT
*yep
C
    PUT IN THE ELSEWHERE EVALUATED SPINOR EXPRESSIONS.
C
Id,2,Dotpr,B(J^{*})=B3*P3(J)+B4*P4(J)+B5*P5(J)+BEPF*Epf(J,P3,P4,P5)
Al, Funct, B(K37)=B3*P3(K3)+B4*P4(K3)+B5*P5(K3)+BEPF*Epf(K3,P3,P4,P5)
C P OUTPUT
```

```
*yep
Id,B3 = BOIV*P4P5
AI,B4 = BOIV + P3P5
A1,B5 = -BOIV * P3P4
AI, BEPF = + LHEL + BOIV + (ELECT - POSIT)
Id.Trick
Id, KDK=0
Id,P1DP1=0
A1,P3DP3=0
A1,P4DP4=0
A1,P5DP5=0
Id,P1DP3=P1P3
AI,P1DP4=P1P4
AI,P1DP5=P1P5
AI,P3DP4=P3P4
A1,P3DP5=P3P5
A1,P4DP5=P4P5
C P OUTPUT
*yep
Id,2,Dotpr,CU(J~)=
   (CU1-CU2) +P1 (J)+CU2+P3(J)+CU2+PD(J)+CU5+P5(J)
  +CUEPF*Epf(J,P1,P3,P5)+CUEPF*Epf(J,P1,P4,P5)
AI, Funct, CU(K")=
    (CU1-CU2)*P1(K)+CU2*P3(K)+CU2*PD(K)+CU5*P5(K)
  +CUEPF*Epf(K,P1,P3,P5)+CUEPF*Epf(K,P1,P4,P5)
Id, CU1 = - CU0IV*(P3P5+P4P5-P1P5)
AI,CU2 = CUOIV*P1P5
AI,CU5 = CUOIV + (P3P4 + P3P5 + P4P5)
AI, CUEPF = + QHEL + CUOIV
*yep
Id, Trick
Id, KDK=0
AI, KDPD=P4P5
AI, EDP1=0
Id,2,Dotpr,PD(J~)=P4(J)+P5(J)
A1, Funct, PD (K2^{-})=P4(K2)+P5(K2)
Id,P1DP1=0
A1,P3DP3=0
A1,P4DP4=0
A1,P5DP5=0
Id,P1DP3=P1P3
A1.P1DP4=P1P4
AI,P1DP5=P1P5
AI,P3DP4=P3P4
A1,P3DP5=P3P5
 A1,P4DP5=P4P5
C P OUTPUT
 *yep
 C
      NOW PUT IN THE POLARIZATION VECTOR EXPANSION.
 C
 Id,2,Dotpr,E(J^{-})=E1*P1(J)+E3*P3(J)
  E4*P4(J)+E5*P5(J)+EEPF*(Epf(J,P1,P3,P5)+Epf(J,P1,P4,P5))
                     E1*P1(K) + E3*P3(K)
 AI, Funct, E(K^{-}) =
  E4+P4(K)+E5+P5(K)+EEPF+(Epf(K,P1,P3,P5)+Epf(K,P1,P4,P5))
 Id,E1 = E0IV+GHEL+(P3P5+P4P5-2+P1P5)
 AI,E3 = E0IV+GHEL+P1P5
 AI,E4 = EOIV+GHEL+P1P5
```



```
A1.E5 = -EOIV*GHEL*(P1P3*P1P4)
AI.EEPF = -EOIV
*yep
Id, Trick
Id, KDK=0
Id, Epf(P1, P3, P4, P5) = EVL
Id.P1DP1=0
A1.P3DP3=0
A1,P4DP4=0
A1.P5DP5=0
Id.P1DP3=P1P3
AI,P1DP4=P1P4
AI.P1DP5=P1P5
AI,P3DP4=P3P4
A1, P3DP5=P3P5
A1,P4DP5=P4P5
C P OUTPUT
*yep
C
C
    REPLACE K BY IT'S LINEAR EXPANSION.
Id, 2, Funct, K(J^{-}) = C(1) + P1(J) + C(2) + P3(J) + C(3) + P4(J)
     +P5(J)*(1-C(3)-C(1)*D1*P45IV-C(2)*D345*P45IV)
*yep
Id, Trick
Id, Epf(P1, P3, P4, P5) = EVL
C P OUTPUT
*yep
Id,C(1) = CC11*P1DK+CC21*P3DK+(CC31-CC41)*P4DK+CC41*P4P5
AI,C(2) = CC21*P1DK+CC22*P3DK+(CC32-CC42)*P4DK+CC42*P4P5
AI,C(3) = CC31*P1DK+CC32*P3DK+(CC33-CC43)*P4DK+CC43*P4P5
AI,C(4) = CC41*P1DK+CC42*P3DK+(CC43-CC44)*P4DK+CC44*P4P5
C P OUTPUT
*yep
C
C
         THE AMPLITUDE IS NOW COMPLETELY
         IN THE FORM OF DOT PRODUCTS
C
C
         OF K WITH EXTERNAL MOMENTA.
C
C
 THE DOT PRODUCTS OF K
                            NEED TO
    BE EVALUATED, FOR EXAMPLE...
C
                   (P3DK) * (P4DK) * (P5DK)
C
C
     AND REMEMBER THIS FACTOR IS TO BE INTERGRATED OVER ALL K SPACE.
C
C
C
   THIS DEFINES THE A3 MATRIX....
C
                                                INTEGRAL OF, OVER
          A3(4,3,1) = (S4DK)*(S3DK)*(S1DK)
C
C
C
      ALL K SPACE.
C
```

AND A1(J) MATRICES.

THE A3, A2, AND A1 MATRICES ARE EVALUATED USING 19 SIMPLE

AND SIMILARLY A2(J,K)

CCC

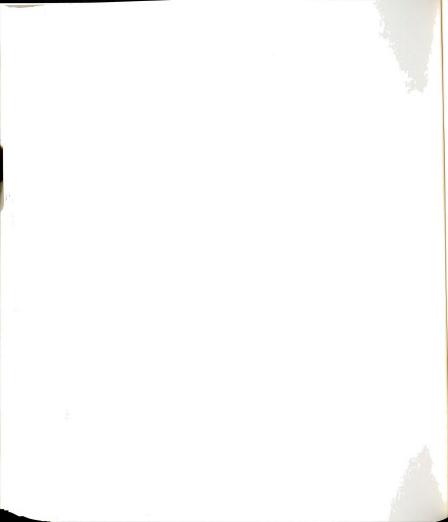
```
INTEGRALS, EVALUATED EARLIER .... I1 THRU I19....
C
Ċ
C
     REPLACE PDK 'S BY A MATRICES
    FOR THE FIVE POINT DIAGRAM, OR
C
    SIMILAR B MATRICES FOR THE FOUR POINT.
C
Id.P1DK = AA(1)
AI,P3DK = AA(2)
AI.P4DK = AA(3)
A1.P5DK = -AA(3) + P4P5
Id,AA(J^{-})*AA(K^{-})*AA(L^{-}) = A3(J,K,L)
Id,AA(J^-)*AA(K^-) = A2(J,K)

Id,AA(J^-) = A1(J)
Id, Symme, A3, 1, 2, 3, A2, 1, 2
Keep I1, 12, 13, 14, 15, 16, 17, 18, 19, 111, 112, 113, 114, 115, 116,
          I17, I18, I19, I10, EXP51, EXP4
*next
S AO
Z = A0 + EXP4
Id,A0*A3(3,3,3) = B3ERR
A1.A0*A3(2,3,3) = B3ERR
A1,A0*A3(1,3,3) = B3ERR
A1,A0*A3(2,2,3) = B3ERR
A1,A0*A3(1,2,3) = B3ERR
A1,A0*A3(1,1,3) = B3ERR
A1,A0*A3(2,2,2) = B3ERR
A1,A0*A3(1,2,2) = B3ERR
AI,A0*A3(1,1,2) = B3ERR
Ai, A0*A3(1,1,1) = B3ERR
*yep
Id,A0*A2(3,3) = B233
A1,A0*A2(2,3) = B232
A1,A0*A2(1,3) = B231
A1,A0*A2(2,2) = B222
A1,A0*A2(1,2) = B221
A1,A0*A2(1,1) = B211
Id, A0*A1(3) = B13
AI, A0*A1(2) = B12
AI, A0*A1(1) = B11
C P OUTPUT
*yep
C
C
   AND IN TERMS OF THE 19 INTEGRALS,
    THE ABOVE DEFINED D1 AND D3, THE
C
      A3,A2, AND A1 MATRICES,
C
        USING THE NOTATION....
C
            A3(1,3,3) = A3331
C
 Ċ
 C
       PUT IN "B" SERIES
 C
 Id,B233 = -0.5*I15
AI,B232 = -0.25*(4*PI - D3*I3)
 AI,B231 = -0.5*I16
```

```
AI,B222 = 0.5*(I12 - D3*B12)
AI,B221 = 0.5*(I11 - D3*B11)
AI,B211 = I18
Id,B13 = -0.5*I3
AI,B12 = 0.5*(I1 -D3*I5)
AI,B11 = I8
C
  PUT IN AO
Id,A0 = I5
000
Č
C
     THE FOUR POINT ANSWER IS NOW FORMED.
B LNMP, LNMQ, PI, FPIIV, CUOIV, BOIV, EOIV, EVL
Keep EXP51, EXP41
*next
C
C NOW ADD THE FIVE POINT AND FOUR POINT RESULTS
C
Z EXP = EXP51 + EXP41
B LNMP, LNMQ, PI, FPIIV, CUOIV, BOIV, EOIV, EVL
*end
```

Appendix T

Verification of 19 Irreducible Integrals



```
PROGRAM check 19 integrals
                                                                                 090
       COMPLEX D3.MZP.R.LN3.LN5.LN6.MZP1.ZI10D.RUPPER.
                                                                                 110
      C MZPUP, MZPIV, RIV, ZI10U, UPPER, I,
                                                                                 120
                                                                                 130
      C I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I96, IR.
      C I11, I12, I13, I14, I15, I16, I17, I18, I19,
      C g,p,xx,i5u,i51,z,II1,n
       REAL LN1, LN2, LN4, RLOWER, MZPLW, I9U, I9L, I93, IW, IS,
                                                                                 150
      C LOWER, S, MP, MQ, x, c, d, e, f, m, za, z0, z1, NN, NX, NZ, NO, AX, NY, NY1
      REAL P1P3, P1P4, P1P5, P3P4, P3P5, P4P5, API, FPIIV, K02, K02IV, NX1, NZ1
       DOUBLE PRECISION WIV, CC44, CC43, CC42, CC41, CC33, CC32, CC31,
      C CC22,CC21,CC11
      GAM = 2.7
                                                                                 170
      MP = 1
      MQ = 1
      MZ = 93.7
                                                                                 180
                                                                                 190
      D3 = (8779.69, -252.99)
                                                                                 200
       API = 3.142857143
                                                                                 210
       FPIIV = 0.25*(1/API)
       PRINT+, API
                                                                                 220
       PRINT*,'D3 = ',D3
                                                                                 230
       PRINT+, 'P3P4 = 92'
                                                                                 240
                                                                                 250
       P3P4 = 92
                                                                                 260
       PRINT*.'P3P5 = 20'
                                                                                 270
       P3P5 = 20
                                                                                 280
       PRINT*, 'P4P5 = 5'
                                                                                 290
       P4P5 = 5
                                                                                 300
      P3P4 = -0.5*P3P4**2
                                                                                 310
      P3P5 = -0.5*P3P5**2
                                                                                 320
      P4P5 = -0.5 * P4P5 * * 2
      P14MAX = (P3P4+P4P5) *P4P5* (P3P4+P3P5+P4P5)
                                                                                 330
      P14MAX = P14MAX/((P3P4+P4P5)*(P3P5+P4P5) - P3P4*P3P5)
                                                                                 340
      PRINT*, 'P14MAX = ',-((2*(-P14MAX))**(0.5))
PRINT*, 'P1P4 = 70'
                                                                                 350
                                                                                 360
                                                                                 370
      P1P4 = 70
                                                                                 380
      P1P4 = -0.5*P1P4**2
                                                                                 390
      R = P3P4 + P4P5
                                                                                 400
      S = P1P4*(P3P5+P4P5) - P4P5*(P3P4+P3P5+P4P5)
                                                                                 410
      T = P1P4 * P3P4 * P3P5
                                                                                 420
      DISC = (16*T*(T-R*S))**(0.5)
                                                                                 430
      P15UP = (-(2*R*S - T) + DISC)/(2*R*R)
                                                                                 440
      IF (P15UP) 370,367,367
                                                                                 450
      P15UP = 0
367
                                                                                 460
      P15DN = (-(2*R*S - T) - DISC)/(2*R*R)
370
                                                                                 470
      IF (P15DN) 380,377,377
                                                                                 480
      P15DN = 0
377
                                                                                 490
      PRINT*, 'P15UP = ',-((2*(-P15UP))**(0.5))
PRINT*, 'P15DN = ',-((2*(-P15DN))**(0.5))
380
                                                                                 500
                                                                                   5:
      PRINT+, 'P1P5 = 15'
                                                                                 520
      P1P5 = 15
                                                                                 530
      P1P5 = -0.5*P1P5**2
                                                                                 540
      P1P3 = P3P4+P3P5+P4P5-P1P4-P1P5
                                                                                 550
      PRINT*, 'P1P3 = ',P1P3
                                                                                 560
      PRINT*, 'P1P3 = ', (-2*P1P3)**(0.5)
                                                                                 570B
      P13IV = 1/P1P3
                                                                                 580
      P14IV = 1/P1P4
                                                                                 590
      P15IV = 1/P1P5
                                                                                 600
      P34IV = 1/P3P4
                                                                                 610
      P35IV = 1/P3P5
```


11

VIDE A

```
620
P45IV = 1/P4P5
                                                                                 630
MZP = 2*P3P4 + D3
                                                                                 640
S1S2 = P1P3
                                                                                 650
 S1S3 = P1P4
                                                                                 660
 S1S4 = P1P5
                                                                                 670
 S2S3 = P3P4
                                                                                 680
 S2S4 = P3P5
                                                                                 690
 S3S4 = P4P5
 W = S1S2*S3S4*(-S1S2*S3S4+S1S4*S2S3+S1S3*S2S4)
                                                                                 700
C + S1S3*S2S4*( `S1S2*S3S4+S1S4*S2S3-S1S3*S2S4)
                                                                                 71C
                                                                                 720
C + S1S4*S2S3*( S1S2*S3S4-S1S4*S2S3+S1S3*S2S4)
                                                                                  7.
 WIV = 1.0/W
                                                                                 740
 CC44 = WIV*(-2)*(S1S2*S1S3*S2S3)
 CC43 = WIV * \hat{S}1S2 * (-S1S2 * S3S4 + S1S4 * S2S3 + S1S3 * S2S4)
                                                                                 750
                                                                                 760
 CC42 = WIV*S1S3*( S1S2*S3S4+S1S4*S2S3-S1S3*S2S4)
CC41 = WIV*S2S3*( S1S2*S3S4-S1S4*S2S3+S1S3*S2S4)
                                                                                 770
                                                                                 780
 CC33 = WIV*(-2)*(S1S2*S1S4*S2S4)
                                                                                 790
 CC32 = WIV+S1S4+( S1S2+S3S4-S1S4+S2S3+S1S3+S2S4)
                                                                                 800
 CC31 = WIV+S2S4+( S1S2+S3S4+S1S4+S2S3-S1S3+S2S4)
                                                                                 810
 CC22 = WIV*(-2)*(S1S3*S1S4*S3S4)
 CC21 = WIV*S3S4*(-S1S2*S3S4+S1S4*S2S3+S1S3*S2S4)
                                                                                 820
                                                                                 830
 CC11 = WIV*(-2)*(S2S3*S2S4*S3S4)
 PRINT*, 'WIV = ', WIV
PRINT*, 'CC44 = ', CC44
PRINT*, 'CC43 = ', CC43
PRINT*, 'CC42 = ', CC42
 PRINT*, 'CC41 = ', CC41
 PRINT*, 'CC33 = ', CC33
PRINT*, 'CC32 = ', CC32
PRINT*, 'CC31 = ', CC31
PRINT*, 'CC22 = ', CC22
 PRINT*,'CC21 = ',CC21
PRINT*,'CC11 = ',CC11
 R = -2*P4P5*P1P3+2*P3P5*(P1P4+P1P5) + MZP*(P1P4+P1P5)
                                                                                  840
 LN1 = LOG (-2*P4P5 + MP**2)
 LN2 = LOG(-2*(P1P4+P1P5) + MQ**2)
                                                                                  870
 LN3 = LOG((2*P3P5+MZP)/D3)
                                                                                  880
 LN4 = LOG((P1P4+P1P5)/P1P5)
                                                                                  890
 LN5 = LOG(MZP/(2*P3P5*MZP))
                                                                                  900
 LN6 = LOG((2*P3P5+MZP)*(P1P4+P1P5)/R)
                                                                                  910
  B0 = (8*P3P5*P4P5)**(-0.5)
                                                                                  920
  CUO = (8*P1P5*(P3P4+P3P5+P4P5))**(-0.5)
  E0 = (-4*P1P5*(P3P5+P4P5-P1P5)*(P3P4+P3P5+P4P5))**(-0.5)
                                                                                  930
                                                                                  940
  EVL1=(P1P5*P3P4*P1P4*P3P5-P4P5*P1P3)**2
                                                                                  950
  EVL = ( 4*P1P4*P1P5*P3P4*P3P5 - EVL1)**(0.5)
                                                                                  960
           'B0 = ',B0
  PRINT*,
                                                                                  970
  PRINT+, 'CUO = ', CUO
                                                                                  980
  PRINT+, 'EO = ', EO
                                                                                   990
  PRINT*, 'EVL = ', EVL
                                                                                  1000
  PRINT*,'LN1 = ',LN1
PRINT*,'LN2 = ',LN2
                                                                                   1010
                                                                                   1020
  PRINT+, 'LN3 = ',LN3
                                                                                   1030
  PRINT+, 'LN4 = ',LN4
                                                                                   1040
  PRINT*,'LN5 = ',LN5
PRINT*,'LN6 = ',LN6
                                                                                   1050
                                                                                   1060
  K02 = 0.5*(-P4P5)
                                                                                   1070
  KO2IV = 1/KO2
                                                                                   1080
  D145 = P1P4 + P1P5
```

```
D1 = D145
                                                                             1090
      D145IV = 1/D145
                                                                             1100
      D345 = P3P4 + P4P5
                                                                             1110
      D345IV = 1/D345
                                                                             1120
      MZP = 2*P3P4 + D3
                                                                             1130
      I1 = -2*API*P45IV*(LN1)
                                                                             1140
      I = 0
      S = .00001
      Print+,'s=',s
      X = -1
1135 I = I + S/(P4P5*(X-1) + MP**2)
      X = X + S
      IF (X-1) 1135,1137,1137
1137 PRINT+, 'CHECK I1 = ', I+2+API
                                                                             1150
      I2 = -2*API*D145IV*(LN2)
      I = 0
      S = .00001
      print+,'s=',s
      X = -1
1145 I = I + S/(-(P1P4+P1P5)*(X+1) + MQ**2)
      X = X + S
      IF (X-1) 1145,1147,1147
1147 PRINT+, 'CHECK I2 = ', I+2+API
                                                                             1160
      I3 = +2*API*D345IV*LN3
      I = 0
      S = .00001
      print*,'s= ',s
      X = -1
1155 I = I + S/(-(P3P4+P3P5)*(X-1) + D3)
      X = X + S
      IF (X-1) 1155,1157,1157
1157 PRINT*, 'CHECK I3 = ', I*2*API
PRINT*, 'I1 = ', I1
PRINT*, 'I2 = ', I2
                                                                             1170
                                                                             1180
                                                                             1190
      PRINT*, '13 = ',13
                                                                             1200
      R = -2*P4P5*P1P3+2*P3P5*D1+MZP*D1
                                                                             1210
      MZP1 = MZP
                                                                             1220
      RUPPER = CONJG(R)
                                                                             1230
      RLOWER = R*CONJG(R)
                                                                             1240
      MZPUP = CONJG(MZP1)
                                                                             1250
      MZPLW = MZP1 + CONJG (MZP1)
                                                                             1260
      RIV = RUPPER/(RLOWER)
                                                                             1270
      MZPIV = MZPUP/(MZPLW)
                                                                             1280
      PRINT+, 'MZPIV = ', MZPIV
      Z0 = 2*((P1P4*P1P5)**(0.5))
      I = 0
      S = .01
      print*,'s=',s
      X = -1
1163 Y = 0
      Z1 = Z0 * sin(acos(X))
1165 \quad ZA = Z1 * cos(Y)
      II1 = (P1P4-P1P5) *X+ZA-P1P4-P1P5+MQ**2
      I = I + S*S/((P4P5*(X-1) + MP**2)*II1)
      Y = Y + S
      IF (Y - 2*API) 1165,1167,1167
      X = X + S
1167
      IF ( X-1) 1163,1169,1169
```

```
227
1169 PRINT+, 'CHECK I4 = ', I
      I4 = - api + P45 IV + P15 IV + LN4 -
                                                                     1300
                   0.5*D1*P45IV*P15IV*I2 - 0.5*P15IV*I1
      print*, 'I4 = ', I4
      c = p4p5
      d = -c + mp + 2
      e = p1p4-p1p5
      f = 2*((p1p4*p1p5)**(0.5))
      g = -(p1p4+p1p5) + mq**2
      m = (p1p4+p1p5)**2
      n = 2*(g*e*c - d*m)
      p = d*d*m - 2*g*e*c*d + c*c*(g*g - f*f)
      x = c + d
      xx = m*x*x + n*x + p
      z = (p*xx)**(0.5)
      i4u = log((2*z + n*x + 2*p)/x)
      x = -c + d
      xx = m*x*x + n*x + p
      z = (p*xx)**(0.5)
      i41 = log((2*z + n*x + 2*p)/x)
      i4 = +2*api*(p**(-0.5)*(i4u-i41))
      print*, 'i4detl = ',i4
      Z0 = 2*((P3P4*P3P5)**(0.5))
      I = 0
      S = .01
      print*,'s= ',s
      X = -1
1183 Y = 0
      Z1 = Z0 * sin(acos(X))
1185 ZA = Z1*cos(Y)
      II1 = (P3P4-P3P5) *X+ZA+P3P4+P3P5+d3
      I = I + S*S/((P4P5*(X-1) + MP**2)*II1)
      Y = Y + S
      IF (Y - 2*API) 1185,1187,1187
1187 X = X + S
      IF (X-1) 1183,1189,1189
1189 PRINT*, 'CHECK I5 = ', I
      I5 = P45IV*MZPIV*(-4*api*LN5 - D345*I3 +P4P5*I1)
      print*,'I5 = ',I5
      c = p4p5
      d = -c + mp**2
      e = p3p4 - p3p5
      f = 2*((p3p4*p3p5)**(0.5))
      g = +(p3p4+p3p5) + d3
      m = (p3p4+p3p5)**2
      n = 2*(q*e*c - d*m)
      p = d*d*m - 2*g*e*c*d + c*c*(g*g - f*f)
      x = c + d
      xx = m*x*x + n*x + p
      z = (p*xx)**(0.5)
      i5u = log((2*z + n*x + 2*p)/x)
      x = -c + d
      xx = m*x*x + n*x + p
      z = (p*xx)**(0.5)
      i51 = log((2*z + n*x + 2*p)/x)
      i5 = 2*api*(p**(-0.5)*(i5u-i5l))
      print*, 'i5det! = ',i5
      e = (2*p1p3*p4p5-(p1p4+p1p5)*(p3p4+p3p5))/(p1p4+p1p5)
```

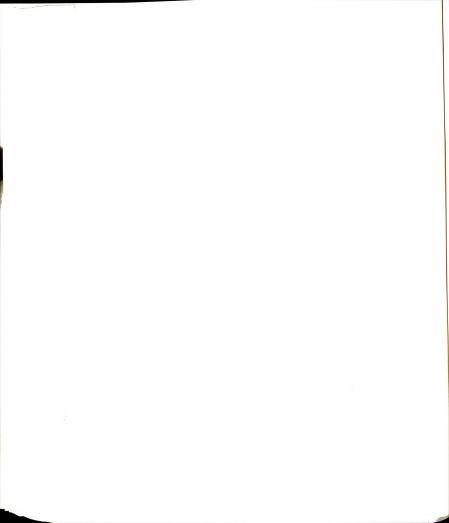
```
Z0 = ((p3p4+p3p5)**2 - e*e)**(0.5)
      I = 0
      S = .01
      PRINT*, 'S = ', S
      X = -1
1193 Y = 0
      Z1 = Z0 * sin(acos(X))
1195 ZA = Z1 * cos(Y)
      II1 = \bullet *X + ZA + P3P4 + P3P5 + d3
      I = I + S*S/((-(P1P4+P1P5)*(X+1) + MQ**2)*II1)
      Y = Y + S
      IF (Y - 2*API) 1195,1197,1197
1197 X = X + S
      IF (X-1) 1193,1199,1199
1199 PRINT*. 'CHECK 16 = '
      I6 = RIV*(+4*api*LN6 - D345*I3 + D1*I2)
      PRINT*,'16 = ',16
      c = -p1p4-p1p5
      d = +c + mq * *2
      e = (2*p1p3*p4p5-(p1p4*p1p5)*(p3p4*p3p5))/(p1p4*p1p5)
      g = +(p3p4+p3p5) + d3
      f = Z0
      m = (p3p4+p3p5)**2
      n = 2*(g*e*c - d*m)
      p = d*d*m - 2*g*e*c*d + c*c*(g*g - f*f)
      x = c + d
      xx = m*x*x + n*x + p
      z = (p*xx)**(0.5)
      i6u = log((2*z + n*x + 2*p)/x)
      x = -c + d
      xx = m*x*x + n*x + p
      z = (p*xx)**(0.5)
      i61 = log((2*z + n*x + 2*p)/x)
      i6 = 2*api*(p**(-0.5)*(i6u-i61))
      print*, 'i6detl = ',i6
      ZO = 2*((P1P4*P1P5)**(0.5))
      NO = 0.5 + (P3P4 + P3P5)
      AX = 0.5*((P1P4*P1P5)**(-0.5))*(P1P4*P3P5+P1P5*P3P4-P1P3*P4P5)
      I = 0
      s = .01
      print*,'s= ',s
      X = -1
2163 Y = 0
      NZ = 0.5*(P3P4-P3P5)*X
      NX = AX * sin(acos(X))
      Z1 = Z0*sin(acos(X))
2165 \quad ZA = Z1*cos(Y)
      NN = NX * cos(Y) + NZ + NO
      II1 = (P1P4-P1P5)*X+ZA-P1P4-P1P5+MQ**2
      I = I + S*S*NN/((P4P5*(X-1) + MP**2)*II1)
      Y = Y + S
      IF (Y - 2*API) 2165,2167,2167
2167 X = X + S
      IF (X-1) 2163,2169,2169
2169 PRINT+, 'CHECK I7 = ', I
      Z0 = 2*((P3P4*P3P5)**(0.5))
      NO = 0.5*(P1P4+P1P5)
      AX = 0.5*((P3P4*P3P5)**(-0.5))*(P1P4*P3P5*P1P5*P3P4-P1P3*P4P5)
```

```
I = 0
      S = .01
      print*,'s=',s
     X = -1
2263 Y = 0
      NZ = 0.5*(P1P4-P1P5)*X
      NX = AX * sin(acos(X))
      Z1 = Z0*sin(acos(X))
2265 \quad ZA = Z1*cos(Y)
      NN = NX*cos(Y) + NZ + NO
      II1 = (P3P4-P3P5) *X+ZA+P3P4+P3P5+D3
      I = I + S*S*NN/((P4P5*(X-1) + MP**2)*II1)
      Y = Y + S
      IF (Y - 2*API) 2265,2267,2267
2267 X = X + S
      IF (X-1) 2263,2269,2269
2269 PRINT+, 'CHECK I8 = ', I
      e = (2*p1p3*p4p5-(p1p4+p1p5)*(p3p4+p3p5))/(p1p4+p1p5)
      Z0 = ((P3P4+P3P5)**2 - e*e)**(0.5)
      NO = 0.5*(P4P5)
      u = p3p4*p1p5*p1p5 + p3p4*p1p4*p1p5 + p4p5*p1p3*p1p4
             - p1p4*p1p4*p3p5 - p1p4*p1p5*p3p5 - p1p5*p1p3*p4p5
      t = 2*p1p3*(p1p3*p4p5-p1p4*p3p4-p1p4*p3p5-p1p5*p3p4-p1p5*p3p5)
      AX = ((-p4p5/2)**(0.5))*u/((p1p4+p1p5)*t**(0.5))
      I = 0
      S = .01
      print*,'s=',s
      X = -1
2363 Y = 0
      NZ = 0.5*P4P5*(P1P4-P1P5)*X/(P1P4+P1P5)
      NX = AX * sin(acos(X))
      Z1 = Z0*sin(acos(X))
2365 \quad ZA = Z1*cos(Y)
      NN = NX * cos(Y) + NZ + NO
      II1 = \bullet *X + ZA + P3P4 + P3P5 + D3
      I = I + S*S*NN/((-(P1P4+P1P5)*(X+1) + MQ**2)*II1)
      Y = Y + S
      IF (Y - 2*API) 2365,2367,2367
2367 X = X + S
      IF (X-1) 2363,2369,2369
2369 PRINT+, 'CHECK 19 = ', I
      I7 = 0.25*(P3P5*P15IV+P3P4*P14IV-P1P3*P4P5*P14IV*P15IV)*
                                                                          1360
                                                                          1370
          (I1 - (P1P4-P1P5)*P45IV*I2 + 2*P1P5*I4)
                                                                          1380
                                     + P3P4*I4
     C- 0.5*(P3P5-P3P4)*P45IV*I2
      I8 = 0.25*(P1P4*P34IV+P1P5*P35IV-P1P3*P4P5*P34IV*P35IV)*
                                                                          1390
                                                                          1400
             (I1 - (P3P4-P3P5) *P45IV*I3 - MZP*I5)
                                                                          1410
     C - 0.5*(P1P5-P1P4)*P45IV*I3 +P1P4*I5
                                                                          1420
      I9U = P3P4*P1P4*P1P5*P3P4*P1P5*P1P5*P4P5*P1P3*P1P4
                                                                          1430
     C - P4P5*P1P3*P1P5-P1P4*P1P4*P3P5-P1P5*P1P4*P3P5
                                                                          1440
      I9L = 2*P1P3*
     C(P1P3+P4P5-P1P4+P3P4-P1P4+P3P5-P1P5+P3P4-P1P5+P3P5)
                                                                          1450
                                                                          1460
      I93 = 2*P4P5*P1P3*D145IV*D145IV-(P3P4*P3P5)*D145IV
                                                                          1470
      I96 = -2*P4P5*P1P3*D145IV + 2*P3P5 + MZP
                                                                          1480
      I9 = 0.5*I9U*(1/I9L)*(I2*I93*I3-I96*I6)
                                                                          1490
           + 0.5+P4P5+(P1P5-P1P4)+D145IV+(D145IV+I3+I6)
                                                                           1500
           + 0.5*P4P5*I6
                                                                           1510
      PRINT*,'I7 = ',I7
                                                                           1520
      PRINT*, '18 = ',18
```

```
PRINT*, '19 = ',19
      PRINT*, '19U = ',19U
     PRINT+, 'I9L = ', I9L
PRINT+, 'I93 = ', I93
                                                                           1530
     PRINT*,'196 = ',196
      I11 = 2*API*P45IV*(P1P4-P1P5) + P1P4*I1
                                                                           1540
     PRINT*,'I11 = ',I11
      NX = 2*((P1P4*P1P5)**(0.5))
      I = 0
      S = .01
      print*,'s=',s
      X = -1
2763 Y = 0
      NX1 = NX * sin(acos(X))
2765 \quad NX2 = NX1*cos(Y)
      NN = (P1P4-P1P5)*X+NX2+P1P4+P1P5
      I = I + S*S*0.5*NN/(P4P5*(X-1) + MP**2)
     . Y = Y + S
      IF (Y - 2*API) 2765,2767,2767
2767 X = X + S
      IF (X-1) 2763,2769,2769
2769 PRINT*, 'CHECK 11 = ', I
      I12 = 2*API*P45IV*(P3P4-P3P5) + P3P4*I1
      PRINT*,'I12 = ',I12
      NX = 2*((P3P4*P3P5)**(0.5))
      I = 0
      S = .005
      print*,'s= ',s
      X = -1.
2963 Y = 0
      NX1 =NX + sin(acos(X))
2965 \quad NX2 = NX1 + cos(Y)
      NN = (P3P4-P3P5)*X+NX2+P3P4+P3P5
      I = I + S*S*0.5*NN/(P4P5*(X-1) + MP**2)
      Y = Y + S
      IF (Y - 2*API) 2965,2967,2967
2967 X = X + S
       IF (X-1) 2963,2969,2969
      PRINT*, 'CHECK 12 = ', I
                                                                            1560
2969
      I13 = -2*API*P4P5*D145IV*D145IV*(P1P4 - P1P5) +
            P4P5*P1P5*D145IV*I2
                                                                            1570
       PRINT*,'I13 = ',I13
       NO = 0.5 * (P4P5)
       NZ = 0.5 + P4P5 + (P1P4-P1P5) / (P1P4+P1P5)
       NX = (N0**2 - NZ**2)**(0.5)
       I = 0
       S = .01
       print*,'s=',s
       X = -1
3063 Y = 0
       NZ1 = NZ * X
       NX1 = NX * sin(acos(X))
3065 NN = NX1*cos(Y) + NZ1 + NO
       I = I + S*S*NN/(-(P1P4+P1P5)*(X+1) + MQ**2)
       Y = Y + S
       IF (Y - 2*API) 3065,3067,3067
 3067 X = X + S
       IF (X-1) 3063,3069,3069
```

```
3069 PRINT*, 'CHECK I13 = ', I
                                                                           1580
      I14 = 0.5*(P3P4 + P3P5)*I2 +
         0.5*(D145*D345-2*P1P3*P4P5)*D145IV*( 4*API*D145IV + I2)
                                                                           1590
      PRINT*.'I14 = ',I14
      NZ = (2*p1p3*p4p5-(p1p4+p1p5)*(p3p4+p3p5))/(p1p4+p1p5)
      NX = ((p3p4+p3p5)**2 - NZ**2)**(0.5)
      I = 0
      S = .01
      PRINT*, 'S = ', S
      X = -1
3193 Y = 0
      NZ1 = NZ * X
      NX1 = NX* sin(acos(X))
      NX2 = NX1*cos(Y)
      NN = NZ1+NX2+P3P4+P3P5
      I = I + S*S*0.5*NN/(-(P1P4*P1P5)*(X+1) + MQ**2)
      Y = Y + S
      IF (Y - 2*API) 3195,3197,3197
3197 X = X + S
      IF (X-1) 3193,3199,3199
      PRINT*, 'CHECK I14 = ', I
      I15 = -2*API*P4P5*D345IV*D345IV*(P3P4 - P3P5) +
                                                                           1600
                                                                           1700
            0.5*P4P5*(1+D345IV*D345IV*(P3P4-P3P5)*(D345+D3))*I3
      PRINT*, 'I15 = ', I15
      NO = 0.5*(P4P5)
      NZ = 0.5 + P4P5 + (P3P4 - P3P5) / (P3P4 + P3P5)
      NX = (N0**2 - NZ**2)**(0.5)
      I = 0
      S = .01
      print*,'s= ',s
      X = -1
3363 Y = 0
      NZ1 = NZ * X
      NX1 = NX*sin(acos(X))
      NN = NX1 * cos(Y) + NZ1 + NO
3365
      I = I + S*S*NN/(-(P3P4+P3P5)*(X-1) + D3)
       Y = Y + S
      IF (Y - 2*API) 3365,3367,3367
3367 X = X + S
      IF (X-1) 3363,3369,3369
3369 PRINT+, 'CHECK I15 = ', I
                                                                            1620
      I16 = 0.5 * D145 * I3 +
                                                                            1630
               0.5*(D145*D345 - 2*P1P3*P4P5)*
     C
                    D345IV+D345IV+( 4+API - I3+(D345 + D3))
                                                                            1640
     C
       PRINT*,'I16 = ',I16
      NZ = (2*p1p3*p4p5-(p1p4+p1p5)*(p3p4+p3p5))/(p1p4+p1p5)
       NX = ((p3p4+p3p5)**2 - NZ**2)**(0.5)
       I = 0
       S = .01
       PRINT*, 'S = ', S
       X = -1
3593 Y = 0
       NX1 = NX * sin(acos(X))
3595 \quad NX2 = NX1 * cos(Y)
       NN = NZ + X + NX^{2} + P^{3}P^{4} + P^{3}P^{5}
       I = I + S*S*0.5*NN/(-(P3P4+P3P5)*(X-1) + D3)
       Y = Y + S
       IF (Y - 2*API) 3595,3597,3597
```

```
3597 X = X + S
      IF (X-1) 3593,3599,3599
3599 PRINT*, 'CHECK I16 = ',I
      Z0 = 2*((P1P4*P1P5)**(0.5))
      NO = 0.5*(P3P4+P3P5)
      NX = 0.5*((P1P4*P1P5)**(-0.5))*(P1P4*P3P5+P1P5*P3P4-P1P3*P4P5)
      NZ = 0.5*(P3P4-P3P5)
      NY = (N0**2 - NZ**2 - NX**2)**(0.5)
      I = 0
      s = .01
      print*,'s=',s
      X = -1
4163 Y = 0
      NZ1 = NZ*X
      NX1 = NX*sin(acos(X))
      NY1 = NY*sin(acos(X))
      Z1 = Z0*sin(acos(X))
4165 ZA = Z1 * cos(Y)
      NN = NX1*cos(Y) + NY1*sin(Y) + NZ1 + NO
      II1 = (P1P4-\dot{P}1\dot{P}5)*X+ZA-P1\dot{P}4-P1P5+MQ**2
      I = I + S*S*NN*NN/((P4P5*(X-1) + MP**2)*II1)
      Y = Y + S
      IF (Y - 2*API) 4165,4167,4167
4167 X = X + S
      IF (X-1) 4163,4169,4169
4169 PRINT*, 'CHECK I17 = ', I
      Z0 = 2*((P3P4*P3P5)**(0.5))
      NO = 0.5*(P1P4+P1P5)
      NX = 0.5*((P3P4*P3P5)**(-0.5))*(P1P4*P3P5+P1P5*P3P4-P1P3*P4P5)
      NZ = 0.5*(P1P4-P1P5)
      NY = (N0**2 - NZ**2 - NX**2)**(0.5)
       I = 0
       S = .01
       print*,'s=',s
      X = -1
4263 Y = 0
       NZ1 = NZ * X
       NX1 = NX*sin(acos(X))
       NY1 = NY*sin(acos(X))
       Z1 = Z0*sin(acos(X))
4265 \quad ZA = Z1*cos(Y)
       NN = NX1*cos(Y) + NY1*sin(Y) + NZ1 + NO
       II1 = (P3P4-P3P5)*X+ZA+P3P4+P3P5+D3
       I = I + S*S*NN*NN/((P4P5*(X-1) + MP**2)*II1)
       Y = Y + S
       IF (Y - 2*API) 4265,4267,4267
 4267 X = X + S
       IF ( X-1) 4263,4269,4269
 4269 PRINT*, 'CHECK I18 = ', I
       e = (2*p1p3*p4p5-(p1p4+p1p5)*(p3p4+p3p5))/(p1p4+p1p5)
       Z0 = ((P3P4+P3P5)**2 - e*e)**(0.5)
       NO = 0.5*(P4P5)
       u = p3p4*p1p5*p1p5 + p3p4*p1p4*p1p5 + p4p5*p1p3*p1p4
              - p1p4*p1p4*p3p5 - p1p4*p1p5*p3p5 - p1p5*p1p3*p4p5
       t = 2*p1p3*(p1p3*p4p5-p1p4*p3p4-p1p4*p3p5-p1p5*p3p4-p1p5*p3p5)
       NZ = 0.5*P4P5*(P1P4-P1P5)/(P1P4+P1P5)
       NX = ((-p4p5/2)**(0.5))*u/((-(p1p4+p1p5))*t**(0.5))
       NY = (NO**2 - NZ**2 - NX**2)**(0.5)
```



```
I = 0
      S = .01
      print*,'s=',s
      X = -1
4363 Y = 0
      NZ1 = NZ*X
      NX1 = NX*sin(acos(X))
      NY1 = NY * sin(acos(X))
      Z1 = Z0*sin(acos(X))
4365 \quad ZA = Z1*cos(Y)
      NN = NX1*cos(Y) + NY1*sin(Y) + NZ1 + NO
      II1 = e * X + ZA + P3P4 + P3P5 + D3
      I = I + S*S*NN*NN/((-(P1P4+P1P5)*(X+1) + MQ**2)*II1)
      Y = Y + S
      IF (Y - 2*API) 4365,4367,4367
      X = X + S
4367
      IF (X-1) 4363,4369,4369
4369 PRINT+, 'CHECK I19 = ', I
      IS = P1P4*P3P5 + P1P5*P3P4 - P1P3*P4P5
                                                                           1710
      I17 = P3P4*I7 + 0.5*P45IV*(P3P4-P3P5)*I14 +
                                                                           1720
     C 0.25*IS*P14IV*P15IV*(I12 ~ (P1P4-P1P5)*P45IV*I14 + 2*P1P5*I7) +
                                                                           1730
     C 0.0625*P14IV*P14IV*P15IV*P15IV*(4*P3P4*P3P5*P1P4*P1P5-IS*IS)*
                                                                           1740
     C (-2*P1P5*I1 - 4*P1P5*P1P5*I4 - P45IV*D145*2*P1P5*I2)
                                                                           1750
      I18 = P1P4*I8 + 0.5*P45IV*(P1P4-P1P5)*I16 +
                                                                           1760
      C 0.25*IS*P34IV*P35IV*(I11-(P3P4-P3P5)*P45IV*I16-(2*P3P4+D3)*I8)+
                                                                           1770
      C 0.0625*P34IV*P34IV*P35IV*P35IV*(4*P3P4*P3P5*P1P4*P1P5-IS*IS)*
                                                                           1780
      C
                                                                           1790
      C
            (MZP) *I1-MZP*MZP*I5
                                                                           1800
      C
                        -P45IV*(D345*2*P3P5+(P3P4-P3P5)*MZP)*I3
                                                                           1810
                                                                           1820
       IW = 2*P1P3*P4P5 - D145*D345
                                                                           1830
       IR = -2*P4P5*P1P3 + D1*(2*P3P5 + MZP)
                                                                           1840
       I19 = P4P5*P1P5*D145IV*I9 -
                0.5*D145IV*D145IV*P4P5*(P1P4-P1P5)*I15 +
                                                                           1850
      С
              0.5*I9U*(1/I9L)*
                                                                           1860
      C
              (I13 + D145IV*D145IV*IW*I15+(D145IV*IW-P3P4-P3P5-D3)*I9) + 1870
      C
                                                                            1880
      C
                 -0.5*P4P5*P1P4*P1P5*(1/I9L)
                                                                            1890
      C
                -0.25*I9U*I9U*(1/I9L)*(1/I9L)
                                                                            1900
      C
                                                                            1910
      C(
                                                                            1920
      C (D145IV+IR)+I2
                                                                            1930
      C -D145IV*D145IV*IR*IR*I6
                                                                            1940
      C -D145IV*(D345*D345+D145IV*IW*(P3P4-P3P5-MZP))*I3
                                                                            1950
      C)
                                                                            1960
       PRINT*,'I17 = ',I17
                                                                            1970
       PRINT*,'I18 = '
                       .I18
                                                                            1980
       PRINT*,'I19 = ',I19
                                                                            1990
       Z0 = 2*((P1P4*P1P5)**(0.5))
       NO = 0.5*(P3P4+P3P5)
       NX = 0.5*((P1P4*P1P5)**(-0.5))*(P1P4*P3P5+P1P5*P3P4-P1P3*P4P5)
       NZ = 0.5*(P3P4-P3P5)
       NY = (N0**2 - NX**2 - NZ**2)**(0.5)
       I = 0
       s = .01
       print*,'s = ',s
       X = -1
 5163 Y = 0
```



```
NZ1 = NZ*X
      NX1 = NX*sin(acos(X))
      NY1 = NY*sin(acos(X))
      Z1 = Z0*sin(acos(X))
5165 ZA = Z1*cos(Y)
      NN = NX1 * cos(Y) + NY1 * sin(Y) + NZ1 + NO
      II1 = (P1P4-P1P5)*X+ZA-P1P4-P1P5+MQ**2
      I = I + S*S/((2*NN+D3)*(P4P5*(X-1) + MP**2)*II1)
      Y = Y + S
      IF (Y - 2*API) 5165,5167,5167
5167 X = X + S
      IF (X-1) 5163,5169,5169
5169 PRINT*, 'CHECK I10 = ', I
      U1DU1=+2.*CC41*CC31*P4P5+2.*CC41*CC21*P3P5+2.*CC41*CC11*P1P5+2.*
                                                                         2000
     CCC31*CC21*P3P4+2.*CC31*CC11*P1P4+2.*CC21*CC11*P1P3
                                                                         2010
      U1DU2=+CC42*CC31*P4P5+CC42*CC21*P3P5+CC42*CC11*P1P5+CC41*CC32*P4
                                                                         2020
     CP5+CC41*CC22*P3P5+CC41*CC21*P1P5+CC32*CC21*P3P4+CC32*CC11*P1P4+C
                                                                         2030
     CC31*CC22*P3P4+CC31*CC21*P1P4+CC22*CC11*P1P3+CC21**2*P1P3
                                                                         2040
      U1DU3=+CC43*CC31*P4P5+CC43*CC21*P3P5+CC43*CC11*P1P5+CC41*CC33*P4
                                                                         2050
     CP5+CC41*CC32*P3P5+CC41*CC31*P1P5+CC33*CC21*P3P4+CC33*CC11*P1P4+C
                                                                         2060
     CC32*CC31*P3P4+CC32*CC11*P1P3+CC31*CC21*P1P3+CC31**2*P1P4
                                                                          2070
      U1DU4=+CC44*CC31*P4P5+CC44*CC21*P3P5+CC44*CC11*P1P5+CC43*CC41*P4
                                                                          2080
     CP5+CC43*CC21*P3P4+CC43*CC11*P1P4+CC42*CC41*P3P5+CC42*CC31*P3P4+C
                                                                          2090
     CC42*CC11*P1P3+CC41*CC31*P1P4+CC41*CC21*P1P3+CC41**2*P1P5
                                                                          2100
      U2DU2=+2.*CC42*CC32*P4P5+2.*CC42*CC22*P3P5+2.*CC42*CC21*P1P5+2.*
                                                                          2110
     CCC32*CC22*P3P4+2.*CC32*CC21*P1P4+2.*CC22*CC21*P1P3
                                                                          2120
      U2DU3=+CC43*CC32*P4P5+CC43*CC22*P3P5+CC43*CC21*P1P5+CC42*CC33*P4
                                                                          2130
     CP5+CC42*CC32*P3P5+CC42*CC31*P1P5+CC33*CC22*P3P4+CC33*CC21*P1P4+C
                                                                          2140
     CC32*CC31*P1P4+CC32*CC21*P1P3+CC32**2*P3P4+CC31*CC22*P1P3
                                                                          2150
      U2DU4=+CC44*CC32*P4P5+CC44*CC22*P3P5+CC44*CC21*P1P5+CC43*CC42*P4
                                                                          2160
     CP5+CC43*CC22*P3P4+CC43*CC21*P1P4+CC42*CC41*P1P5+CC42*CC32*P3P4+C
                                                                          2170
     CC42*CC21*P1P3+CC42**2*P3P5+CC41*CC32*P1P4+CC41*CC22*P1P3
                                                                          2180
      U3DU3=+2.*CC43*CC33*P4P5+2.*CC43*CC32*P3P5+2.*CC43*CC31*P1P5+2.*
                                                                          2190
     CCC33*CC32*P3P4+2.*CC33*CC31*P1P4+2.*CC32*CC31*P1P3
                                                                          2200
      U3DU4=+CC44*CC33*P4P5+CC44*CC32*P3P5+CC44*CC31*P1P5+CC43*CC42*P3
                                                                          2210
     CP5+CC43*CC41*P1P5+CC43*CC32*P3P4+CC43*CC31*P1P4+CC43**2*P4P5+CC4
                                                                          2220
     C2*CC33*P3P4+CC42*CC31*P1P3+CC41*CC33*P1P4+CC41*CC32*P1P3
                                                                          2230
      U4DU4=+2. *CC44*CC43*P4P5+2. *CC44*CC42*P3P5+2. *CC44*CC41*P1P5+2. *
                                                                          2240
     CCC43*CC42*P3P4+2.*CC43*CC41*P1P4+2.*CC42*CC41*P1P3+0.
                                                                          2250
       ZI10U = U1DU1*(0.5*I8+0.5*D1*I5)+U2DU2*(0.5*I7-0.25*D3*I4)
                                                                          2260
        - (U3DU3-2*U3DU4+U4DU4)*0.5*I9
                                                                          2270
         + U1DU2*(0.5*I1+D1*I4-0.5*D3*I5)
                                                                          2280
         - (U1DU3-U1DU4)*(0.5*I3+D1*I6)
                                                                          2290
      C + U1DU4+P4P5+I5-(U2DU3-U2DU4)+0.5+(I2-D3+I6)+U2DU4+P4P5+I4
                                                                          2300
        - (U3DU4-U4DU4)*P4P5*I6
                                                                          2310
      ZI10D = U1DU1*D1*D1*D1+U2DU2*0.25*D3*D3*U4DU4*P4P5*P4P5
                                                                          2320
         -1.0*U1DU2*D1*D3+2*U1DU4*P4P5*D1~U2DU4*P4P5*D3
                                                                          2330
      UPPER = -ZI10U*CONJG(ZI10D)
                                                                          2340
      LOWER = ZI10D * CONJG(ZI10D)
                                                                          2350
       I10 = UPPER/(LOWER)
                                                                          2360
       PRINT*,'I10 = ',I10
                                                                          2370
       END
                                                                          5010
```

```
HSCOOO$DUA3: [EWING]CK. LDG; 8
$ IF F$MODE() . EQS. "BATCH" THEN $ EXIT
$ RUN CHECK
  3.142857
D3 = (8779.690, -252.9900)
P3P4 =
P3P5 =
P4P5 =
P14MAX =
           -94 14882
P1P4 =
P15UP =
          0.000000E+00
P15DN =
          -23.0050B
P1P5 =
P1P3 =
         -2182,000
P1P3 =
          66.06058
BO =
       1.4142136E-03
CUO =
       4. 8393107E-04
       3. 4219094E-05
E0 =
EVL =
         899726.6
         5. 993961
LN1 =
LN2 =
         B. 542081
LN3 =
       (-3.090159, -2.427214)
LN4 =
         3. 125785
LN5 =
       (1.2334378E-02, 1.780435)
LN6 = (0.4495091, -1.008301)
CHECK I1 = (0.1881661, 0.0000000E+00)
CHECK I2 = (2.09593B1E-02.0.0000000E+00)
CHECK I3 = (4.2695566E-03, 3.3561315E-03)
I1 = (0.1883816, 0.0000000E+00)
12 = (2.0953396E-02.0.0000000E+00)
     (4. 3826397E-03, 3. 4424122E-03)
13 =
MZPIV = (1.9288890E-03, 1.5457852E-03)
CHECK 14 = (1.2800620E-03, 0.0000000E+00)
I4 = (7.5656187E-04, 0.0000000E+00)
i4det1 = (1.0532890E-03.0.0000000E+00)
CHECK I5 = (2.2208611E-04, 2.6291382E-04)
15 = (1.2245527E-04.2.1099522E-04)
i5det1 = (1.4313067E-04, 2.0318378E-04)
      5. 0000002E-04
S =
CHECK 16 = (8.5144438E-06.4.8571172E-05)
16 = (9.2996797E-06.4.2994034E-05)
i6det1 = (5.9150848E-06.4.8653204E-05)
CHECK IB = (-0.5183365, -0.6392409)
CHECK I9 = (-4.7151849E-04, -2.4306704E-03)
17 = (-4.466591, 0.0000000E+00)
       (-0.3241602, -0.4922062)
18 =
       (-2. 1155991E-04, -5. 3360919E-04)
19 =
        (-388, 0707, 0, 0000000E+00)
111 =
I12 =
        (-674.0468, 0.000000E+00)
       (-0.6314969, 0.0000000E+00)
113 =
       (-80, 43964, 0, 0000000E+00)
I14 =
115 =
       (-0. 2915253, -6. 7722343E-02)
I16 =
        (-7.577801, -8.108868)
I17 =
       (10072.33, 0.0000000E+00)
I18 =
       (469, 3852, 892, 2405)
 I19 = (-103.7464, -261.4523)
 HECK 110 = (1 0808019F-04 3 0718329E-06)
```

```
:1 = (C 1883816.0 D000000E+00)
12 = (2.0953396E-02, 0.0000000E+00)
13 = (4.3826397E-03, 3.4424122E-03)
MZPIV = (1.9288890E-03, 1.5457852E-03)
CHECK 14 = (1 2800620E-03.0 0000000E+00)
14 = (7.5656187E-04, 0.0000000E+00)
i4det1 = (1.0532890E-03.0.0000000E+00)
CHECK IS = (2.2208611E-04.2 6291382E-04)
15 = (1.2245527E-04, 2.1099522E-04)
i5det1 = (1 4313067E-04, 2.031837BE-04)
5 = 9 999998E-03
CHECK I6 = (3.6448710E-05.2.6391298E-04)
16 = (9.2996797E-06.4.2994034E-05)
indet1 = (5.9150848E-06.4.8653204E-05)
SHECK I7 = (-5, 436626, 0, 0000000E+00)
CHECK IB = (-0.5183365, -0.6392409)
CHECK IF = (-4.7151849E-04.-2.4306704E-03)
17 = (-4.466591, 0.0000000E+00)
18 = (-0.3241602, -0.4922062)
19 = (-2.1155991E-04, -5.3360919E-04)
 _HSCOOO$DUA3: [EWING]CK. LDG: 1
 I11 = (-388.0707, 0.0000000E+00)
 112 = (-674.046B, 0.0000000E+00)
 113 = (-0.6314969.(0000000E+00))
 I14 = (-80.43964, 0 @000000E+00)
 115 = (-0.2915253, -6.7722343E-02)
 116 = (-7.577801, -8.108868)
        (10072.33,0 0000000E+00)
 117 =
        (469, 3852, 892, 2405)
 I18 =
       (-103. 7464, -261. 4523)
 119 =
       1.000000E-03
 s =
 CHECK I10 = (7.6385157E-07.2.8371851E-06)
 110 = (5.7549897E-07.4.0432174E-06)
 %FOR-F-ENDDURREA, end-of-file during read
   unit -4 file SYS$INPUT:.;
   USET PC 000037E2
 -RMS-E-EDF, end of file detected
 %TRACE-F-TRACEBACK, symbolic stack dump follows
 module name routine name
                                                   line
                                                             rel PC
                                                             0000C0D6
                                                             0000BFE3
                                                             00008060
                                                             00008716
 CHECKIPINTEGRAL CHECKIPINTEGRALS
                                                    477
                                                             00002FE2
                 job terminated at 1-JUL-1988 16:56:00.85
   EWING
   Accounting information:
                                  68
                                          Peak working set size:
   Buffered I/O count:
                                                                   529
                                  58
                                          Pear page file size:
   Direct I/D count
                                                                   787
                                 539
                                          Mounted volumes:
   Page faults.
                                          Elapsed time: 0 00:45:41...
                                                                     0
   Charged CPU time 0 00 10 31.50
```

```
HSCOOOSDUAS [EWING]CK. LDG; 1
THECH I? = (-5.436626, 0.0000000E+00)
    9 9999998E-03
CHECK IB = (-0.5183365, -0.6392409)
     9.99999BE-03
CHECK 19 = (-4.7151849E-04, -2.4306704E-03)
7 = (-4.466591, 0.0000000E+00)
15 = (-0.3241602, -0.4922062)
19 = (-2.1155991E-04, -5.3360919E-04)
     5 0000002E-04
Ę Œ
CHECK 11 = (-387, 2682, 0, 00000000E+00)
     5 0000002E-04
CHECK 12 = (-674.6837, 0.0000000E+00)
s= 5 0000002E-04
CHECK 113 = (-0.3193493, 0.0000000E+00)
     5. 0000002E-04
CHECK 114 = (-70.59887, 0.0000000E+00)
     5 0000002E-04
CHECK I15 = (-0.5000000, -0.5654656)
S = 5.0000002E-04
CHECK I16 = (-8.238111, -12.45711)
111 = (-388.0707, 0.0000000E+00)
112 = (-674.0468, 0.0000000E+00)
I13 = (-0.6314969.0.0000000E+00)
114 = (-80.43964, 0.0000000E+00)
115 = (-0.2915253, -6.7722343E-02)
I16 = (-7.577801, -8.108868)
     9.99999BE-03
5=
CHECK 117 = (23191, 27, 0, 00000000E+00)
     9.999998E-03
 CHECK I18 = (1225.885, 1556.307)
     9.999998E-03
 CHECK I19 = (1.5155446E-02, 2.4578951E-02)
 I17 = (10072.33, 0.0000000E+00)
 I18 = (469.3852.892.2405)
 119 = (-103, 7464, -261, 4523)
      9.99999BE-03
 5 =
 CHECK I10 = (1.0828019E-06, 3.0718329E-06)
 I10 = (5.7549897E-07, 4.0432174E-06)
 %FOR-F-ENDDURREA, end-of-file during read
   unit -4 file SYS$INPUT: .;
   USET PC 00004474
 -RMS-E-EDF, end of file detected
 %TRACE-F-TRACEBACK, symbolic stack dump follows
                routine name
                                                   line
 module name
                                                              Tel PC
                                                             0000CCD6
                                                             0000CBE3
                                                             00009860
                                                              00009316
 CHECK19INTEGRAL CHECK19INTEGRALS
                                                             00003A74
                 Job terminated at 4-JUL-1988 11:08:05.74
   EWING
   Accounting information:
                                  72
                                          Peak working set size:
   Buffered I/O count
                                                                    535
   Direct I/O count:
                                  69
                                          Peak page file size:
                                                                    787
                                 539
                                          Mounted volumes:
   Page faults:
                          0 01:28:07 84
                                                                      0
   Charged CPU time:
                                          Elapsed time:
                                                             0 01:39:23.
```

```
CHECK I7 = (-5 436626, 0. 0000000E+00)
9 999999BE-03
CHECK IB = (-0.5183365, -0.6392409)
5= 9.99999BE-03
CHECK I9 = (-4.6512054E-04.-2.4429935E-03)
17 = (-4.466591, 0.0000000E+00)
IB = (-0.3241602, -0.4922062)
19 = (-2.1155991E-04, -5.3360919E-04)
I11 = (-388.0707, 0.0000000E+00)
s= 9.999998E-03
CHECK 11 = (-487. 2787, 0. 0000000E+00)
I12 = (-674.046B, 0.0000000E+00)
    4.999999E-03
CHECK 12 = (-753.0253, 0.0000000E+00)
113 = (-0.6314969, 0.0000000E+00)
    9.99999BE-03
CHECK I13 = (-1.124600, 0.0000000E+00)
114 = (-80.43964, 0.0000000E+00)
S = 9.999998E-03
CHECK I14 = (-327. 2178, 0. 0000000E+00)
I15 = (-0.2915253, -6.7722343E-02)
     9.999998E-03
CHECK I15 = (-0. 2977193, -6. B340585E-02)
 116 = (-7.577801,-8.108868)
 S = 9.999998E-03
 CHECK I16 = (-12.40340,-13.92181)
     4.999999E-03
 CHECK I17 = (21520.46, 0.0000000E+00)
     4. 9999999E-03
 CHECK I18 = (967, 8455, 1364, 273)
 5= 4.999999E-03
 CHECK I19 = (1.6154986E-02, 1.6571850E-02)
 I17 = (19075. B1, 0. 0000000E+00)
 118 = (749.0870, 1194.346)
 119 = (1.3806876E-02, 8.2438448E-03)
      9.999998E-03
 CHECK 110 = (1.0650439E-06, 3.0762460E-06)
 s =
 I10 = (5.7549897E-07, 4.0432174E-06)
 %FOR-F-ENDDURREA, end-of-file during read
   unit -4 file SYS$INPUT:.;
   USET PC 00004548
 -RMS-E-EOF, end of file detected
 %TRACE-F-TRACEBACK, symbolic stack dump follows
                                                             rel PC
                                                  line
                routine name
 module name
                                                            0000CED6
                                                            0000CDE3
                                                             00009460
                                                             00009516
                                                            00003848
                                                    657
 CHECK19INTEGRAL CHECK19INTEGRALS
                 Job terminated at 5-NOV-1988 16:14:22.00
   EWING
                                          Peak working set size:
                                                                   536
    Accounting information:
                                  67
                                          Peak page file size:
                                                                   837
    Buffered I/O count:
                                  54
                                                                    ٥
                                          Mounted volumes:
    Direct I/O count:
                                          Elapsed time: 0 00:01:49.
                                 539
    Page faults:
                       0 00:01:38.80
    Charged CPU time:
```

```
CHECK I7 = (-5.436626, 0.0000000E+00)
s= 9.999998E-03
CHECK IB = (-0.5183365, -0.6392409)
s= 9.999998E-03
CHECK I9 = (-4.6512054E-04, -2.4429935E-03)
I7 = (-4.466591, 0.0000000E+00)
18 = (-0.3241602, -0.4922062)
19 = (-2.1155991E-04, -5.3360919E-04)
I11 = (-388.0707, 0.0000000E+00)
s= 9.99999BE-03
CHECK 11 = (-487, 2787, 0.0000000E+00)
112 = (-674.0468, 0.0000000E+00)
s= 4.999999E-03
CHECK 12 = (-753.0253, 0.0000000E+00)
113 = (-0.6314969, 0.0000000E+00)
s= 9.999998E-03
CHECK I13 = (-1.124600, 0.0000000E+00)
I14 = (-80.43964, 0.0000000E+00)
s = 9.999998E-03
CHECK I14 = (-327, 2178, 0, 00000000E+00)
I15 = (-0.2915253, -6.7722343E-02)
   9.999998E-03
CHECK I15 = (-0. 2977193, -6. B340585E-02)
116 = (-7.577801, -8.108868)
S = 9.999998E-03
CHECK 116 = (-12.40340, -13.92181)
s= 4.999999E-03
CHECK I17 = (21520.46, 0.0000000E+00)
    4. 9999999E-03
CHECK I18 = (967. 8455, 1364. 273)
s= 4.999999E-03
CHECK I19 = (1.6154986E-02, 1.6571850E-02)
I17 = (19075.81, 0.0000000E+00)
118 = (749.0870.1194.346)
I19 = (1.3806876E-02, 8.2438448E-03)
s = 9.999998E-03
CHECK I10 = (1.0650439E-06.3.0762460E-06)
110 = (5.7549897E-07, 4.0432174E-06)
%FOR-F-ENDDURREA, end-of-file during read
  unit -4 file SYS$INPUT: ;
  USET PC 0000454B
-RMS-E-EOF, end of file detected
%TRACE-F-TRACEBACK, symbolic stack dump follows
                                                           rel PC
                                                 line
              routine name
module name
                                                           0000CED6
                                                           0000CDE3
                                                           00009A60
                                                           00009516
                                                           00003B4B
                                                  657
CHECK19INTEGRAL CHECK19INTEGRALS
              Job terminated at 5-NOV-1988 16:14:22.00
  EWING
  Accounting information:
                                67
  Buffered I/O count:
                                54
  Direct I/O count:
                               539
  Page faults:
  Charged CPU time: 0 00:01:38.80
```

```
_-SCOOGSDUAS (ENING)CK LDG; 2
   . \neg ECH I7 = (-5 436626, 0.0000000E+00)
   s= 9 <del>2099938E-</del>03
   IHECK IB = (-0.5183365, -0.6392409)
   s= 9 999999E-03
   imECh ig = (-4.7151849E-04, -2.4306704E-03)
   = \cdot -4.466591, 0.0000000E+00)
   IE = (-0.3241602, -0.4922062)
  7^{6} = 1-2.1155991E-047-5.3360919E-04
  111 = (-388.0707, 0.00000000E+00)
  5= 9 999999BE-03
  THECK 11- = - +-487-2792; 0 0000000E+00>-
   12 = (-674 0468, 0.0000000E+00)
  := 4. 999999E-03
   inECH 12 - (-753.6212,0-0000000E+00)-
   113 = (-0.6314969, 0.0000000E+00)
     9. 999999E-03
  5=
  *HECK 113 = - (-1 143450 -0 0000000E+00)
   1:4 = (-80 \ 43964, 0 \ 0000000E+00)
  E = 9.999998E-03
  +CHECK I14 = (-327: 1871: 0: 0000000E+00) -
  115 = (-0.2915253, -6.7722343E-02)
  s= 9 999998E-03
 116 = -7 577801. -8.108868
76
   S = 9 999998E-03
30
: -- CHECK-116 ----1-12. 40342;-13.-92181)
  5= 5. 0000002E-04
  CHECK I17 = (19989.04, 0.0000000E+00)
  CHECK I18 = (1225.885, 1556.307)
  •= 9.999998E-03
4L
   s = 9.999998E-03
۲١
   CHECK IIO = (1.0828019E-06.3.0718329E-06)
  43
  %FOR-F-ENDDURREA, end-of-file during read
4:
   unit -4 file SYS$INPUT:.;
-:
 41
  -RMS-E-EOF, end of file detected
  TRACE-F-TRACEBACK, symbolic stack dump follows
  -module name - " routing name" - - ----
                                           dine
                                                 · rel PC
...
                                                   0000CCD6
٤.
                                               ----- <del>00</del>00CBE3
::
                                                   00009860
                                                   00009316
  ٤.
   EWING job terminated at B-JUL-1988 20:08:20.36
••
  Accounting information:
   Buffered I/D count.
Direct I/D count:
                             68
                                   Peak working set size: 535
                                    Peak page file size:
                             59
    Page faults: 537 Mounted volumes: 0 Charged CPU time. 0 00:22:52.56 Elapsed time: 0 00:32:51.
 :3
6:
```

Appendix U

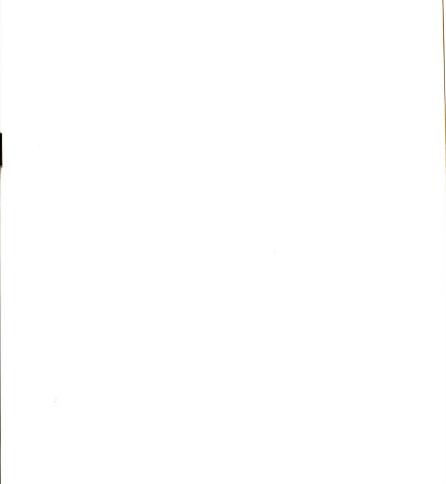
FORTRAN Output -Sample Results

	1		
_			

```
-17.28 -10.00 -40.00 -10.00 -10.00 -47.28
                                             1.0001823
-17.28 -10.00 -40.00 -10.00 -10.00 -47.28
                                             0.9995154
 -7.28 -10.00 -50.00 -10.00 -10.00 -47.28
                                             1.0004421
 -7.28 -10.00 -50.00 -10.00 -10.00 -47.28
                                             0.9997410
                                             1.0012978
-17.28 -20.00 -30.00 -10.00 -10.00 -47.28
-17.28 -20.00 -30.00 -10.00 -10.00 -47.28
                                             1.0009155
 -7.28 -20.00 -40.00 -10.00 -10.00 -47.28
                                             1.0004318
 -7.28 -20.00 -40.00 -10.00 -10.00 -47.28
                                             1.0001115
-17.28 -30.00 -20.00 -10.00 -10.00 -47.28
                                             1.0014023
-17.28 -30.00 -20.00 -10.00 -10.00 -47.28
                                             1.0016459
 -7.28 -30.00 -30.00 -10.00 -10.00 -47.28
                                             1.0006382
 -7.28 -30.00 -30.00 -10.00 -10.00 -47.28
                                             1.0005274
-17.28 -40.00 -10.00 -10.00 -10.00 -47.28
                                             0.9998592
-17.28 -40.00 -10.00 -10.00 -10.00 -47.28
                                             1.0003670
 -7.28 -40.00 -20.00 -10.00 -10.00 -47.28
                                             1.0004268
 -7.28 -40.00 -20.00 -10.00 -10.00 -47.28
                                             1.0004545
 -7.28 -50.00 -10.00 -10.00 -10.00 -47.28
                                             1.0004847
 -7.28 -50.00 -10.00 -10.00 -10.00 -47.28
                                             1.0004878
-17.28 -10.00 -40.00 -10.00 -20.00 -37.28
                                             1.0000499
-17.28 -10.00 -40.00 -10.00 -20.00 -37.28
                                             0.9999858
-7.28 -10.00 -50.00 -10.00 -20.00 -37.28
                                             1,0001203
 -7.28 -10.00 -50.00 -10.00 -20.00 -37.28
                                             1.0000110
-27.28 -20.00 -20.00 -10.00 -20.00 -37.28
                                             1.0001280
-27.28 -20.00 -20.00 -10.00 -20.00 -37.28
                                             1.0001181
-17.28 -20.00 -30.00 -10.00 -20.00 -37.28
                                             1.0000650
-17.28 -20.00 -30.00 -10.00 -20.00 -37.28
                                             1.0000538
 -7.28 -20.00 -40.00 -10.00 -20.00 -37.28
                                             1.0000736
 -7.28 -20.00 -40.00 -10.00 -20.00 -37.28
                                             1.0000571
-27.28 -30.00 -10.00 -10.00 -20.00 -37.28
                                             1.0002115
-27.28 -30.00 -10.00 -10.00 -20.00 -37.28
                                             1.0002140
-17.28 -30.00 -20.00 -10.00 -20.00 -37.28
                                             1.0000709
-17.28 -30.00 -20.00 -10.00 -20.00 -37.28
                                             1.0000695
-7.28 -30.00 -30.00 -10.00 -20.00 -37.28
                                             1.0000588
 -7.28 -30.00 -30.00 -10.00 -20.00 -37.28
                                             1.0000566
-17.28 -40.00 -10.00 -10.00 -20.00 -37.28
                                             1.0000805
-17.28 -40.00 -10.00 -10.00 -20.00 -37.28
                                             1.0000807
 -7.28 -40.00 -20.00 -10.00 -20.00 -37.28
                                             1.0000527
 -7.28 -40.00 -20.00 -10.00 -20.00 -37.28
                                             1.0000530
-27.28 -10.00 -30.00 -10.00 -30.00 -27.28
                                             0.9999997
-27.28 -10.00 -30.00 -10.00 -30.00 -27.28
                                             1.0000006
-17.28 -10.00 -40.00 -10.00 -30.00 -27.28
                                             1.0000060
-17.28 -10.00 -40.00 -10.00 -30.00 -27.28
                                             1.0000060
-7.28 -10.00 -50.00 -10.00 -30.00 -27.28
                                             1.0000273
-7.28 -10.00 -50.00 -10.00 -30.00 -27.28
                                             1.0000241
-37.28 -20.00 -10.00 -10.00 -30.00 -27.28
                                             1.0000234
-37.28 -20.00 -10.00 -10.00 -30.00 -27.28
                                             1.0000242
-27.28 -20.00 -20.00 -10.00 -30.00 -27.28
                                             1.0000116
-27.28 -20.00 -20.00 -10.00 -30.00 -27.28
                                             1.0000124
-17.28 -20.00 -30.00 -10.00 -30.00 -27.28
                                             1.0000155
-17.28 -20.00 -30.00 -10.00 -30.00 -27.28
                                             1.0000159
-7.28 -20.00 -40.00 -10.00 -30.00 -27.28
                                             1.0000300
 -7.28 -20.00 -40.00 -10.00 -30.00 -27.28
                                             1.0000296
-27.28 -30.00 -10.00 -10.00 -30.00 -27.28
                                             1.0000151
-27.28 -30.00 -10.00 -10.00 -30.00 -27.28
                                             1.0000153
-17.28 -30.00 -20.00 -10.00 -30.00 -27.28
                                             1,0000153
-17.28 -30.00 -20.00 -10.00 -30.00 -27.28
                                             1.0000157
-7.28 -30.00 -30.00 -10.00 -30.00 -27.28
                                             1.0000250
-7.28 -30.00 -30.00 -10.00 -30.00 -27.28
                                            1.0000250
```

```
-47.28 -10.00 -10.00 -10.00 -40.00 -17.28
                                             0.9999987
-47.28 -10.00 -10.00 -10.00 -40.00 -17.28
                                             1.0000116
-37.28 -10.00 -20.00 -10.00 -40.00 -17.28
                                             0.9999945
-37.28 -10.00 -20.00 -10.00 -40.00 -17.28
                                             1.0000080
-27.28 -10.00 -30.00 -10.00 -40.00 -17.28
                                             1.0000180
-27.28 -10.00 -30.00 -10.00 -40.00 -17.28
                                             0.999999
-17.28 -10.00 -40.00 -10.00 -40.00 -17.28
                                             1.0001134
-17.28 -10.00 -40.00 -10.00 -40.00 -17.28
                                             0.9999255
 -7.28 -10.00 -50.00 -10.00 -40.00 -17.28
                                             1.0003524
 -7.28 -10.00 -50.00 -10.00 -40.00 -17.28
                                             0.9998058
-37.28 -20.00 -10.00 -10.00 -40.00 -17.28
                                             0.9999896
-37.28 -20.00 -10.00 -10.00 -40.00 -17.28
                                             0.9999975
-27.28 -20.00 -20.00 -10.00 -40.00 -17.28
                                             1.0000117
-27.28 -20.00 -20.00 -10.00 -40.00 -17.28
                                             1.0000210
-17.28 -20.00 -30.00 -10.00 -40.00 -17.28
                                             1.0000646
-17.28 -20.00 -30.00 -10.00 -40.00 -17.28
                                             1.0000260
 -7.28 -20.00 -40.00 -10.00 -40.00 -17.28
                                             1.0001945
 -7.28 -20.00 -40.00 -10.00 -40.00 -17.28
                                             1.0000782
-47.28 -10.00 -10.00 -10.00 -50.00
                                     -7.28
                                             1.0000559
-47.28 -10.00 -10.00 -10.00 -50.00
                                     -7.28
                                             1.0000392
-37.28 -10.00 -20.00 -10.00 -50.00
                                     -7.28
                                             1.0004574
-37.28 -10.00 -20.00 -10.00 -50.00
                                     -7.28
                                             0.9997701
-27.28 -10.00 -30.00 -10.00 -50.00
                                     -7.28
                                             1.0004416
-27.28 -10.00 -30.00 -10.00 -50.00
                                     -7.28
                                             0.9995570
-17.28 -10.00 -40.00 -10.00 -50.00
                                     -7.28
                                             1.0005606
-17.28 -10.00 -40.00 -10.00 -50.00
                                     -7.28
                                             0.9993567
 -7.28 -10.00 -50.00 -10.00 -50.00
                                     -7.28
                                             1.0008919
 -7.28 -10.00 -50.00 -10.00 -50.00
                                    -7.28
                                             0.9989069
-27.28 -10.00 -30.00 -20.00 -10.00 -37.28
                                             1.0004668
-27.28 -10.00 -30.00 -20.00 -10.00 -37.28
                                             1.0002506
-17.28 -10.00 -40.00 -20.00 -10.00 -37.28
                                             1.0002546
-17.28 -10.00 -40.00 -20.00 -10.00 -37.28
                                             0.9998090
-27.28 -20.00 -20.00 -20.00 -10.00 -37.28
                                             1.0003794
-27.28 -20.00 -20.00 -20.00 -10.00 -37.28
                                             1.0006411
-17.28 -20.00 -30.00 -20.00 -10.00 -37.28
                                             1.0002084
-17.28 -20.00 -30.00 -20.00 -10.00 -37.28
                                             1.0000930
 -7.28 -20.00 -40.00 -20.00 -10.00 -37.28
                                             1.0001754
 -7.28 -20.00 -40.00 -20.00 -10.00 -37.28
                                             0.9999792
-17.28 -30.00 -20.00 -20.00 -10.00 -37.28
                                             1.0002677
-17.28 -30.00 -20.00 -20.00 -10.00 -37.28
                                             1.0003686
-7.28 -30.00 -30.00 -20.00 -10.00 -37.28
                                             1.0003191
 -7.28 -30.00 -30.00 -20.00 -10.00 -37.28
                                             1.0002532
-17.28 -40.00 -10.00 -20.00 -10.00 -37.28
                                             1.0000964
-17.28 -40.00 -10.00 -20.00 -10.00 -37.28
                                             1.0002494
 -7.28 -40.00 -20.00 -20.00 -10.00 -37.28
                                             1.0001615
-7.28 -40.00 -20.00 -20.00 -10.00 -37.28
                                             1.0001963
 -7.28 -50.00 -10.00 -20.00 -10.00 -37.28
                                             1.0001832
 -7.28 -50.00 -10.00 -20.00 -10.00 -37.28
                                             1.0002077
-37.28 -10.00 -20.00 -20.00 -20.00 -27.28
                                             1.0000391
-37.28 -10.00 -20.00 -20.00 -20.00 -27.28
                                             1.0000329
-27.28 -10.00 -30.00 -20.00 -20.00 -27.28
                                             1.0000377
-27.28 -10.00 -30.00 -20.00 -20.00 -27.28
                                             1.0000068
-17.28 -10.00 -40.00 -20.00 -20.00 -27.28
                                             1.0000615
-17.28 -10.00 -40.00 -20.00 -20.00 -27.28
                                             0.9999869
-37.28 -20.00 -10.00 -20.00 -20.00 -27.28
                                             1.0000486
-37.28 -20.00 -10.00 -20.00 -20.00 -27.28
                                             1.0000494
-27.28 -20.00 -20.00 -20.00 -20.00 -27.28
                                             1.0000381
-27.28 -20.00 -20.00 -20.00 -20.00 -27.28
                                             1.0000353
```

```
-17.28 -20.00 -30.00 -20.00 -20.00 -27.28
                                             1.0000433
-17.28 -20.00 -30.00 -20.00 -20.00 -27.28
                                             1.0000330
-7.28 -20.00 -40.00 -20.00 -20.00 -27.28
                                             1.0000776
-7.28 -20.00 -40.00 -20.00 -20.00 -27.28
                                             1.0000544
-27.28 -30.00 -10.00 -20.00 -20.00 -27.28
                                             1.0000284
-27.28 -30.00 -10.00 -20.00 -20.00 -27.28
                                             1.0000288
-17.28 -30.00 -20.00 -20.00 -20.00 -27.28
                                             1.0000317
-17.28 -30.00 -20.00 -20.00 -20.00 -27.28
                                             1.0000308
-7.28 -30.00 -30.00 -20.00 -20.00 -27.28
                                             1.0000434
-7.28 -30.00 -30.00 -20.00 -20.00 -27.28
                                             1.0000398
-17.28 -40.00 -10.00 -20.00 -20.00 -27.28
                                             1.0000242
-17.28 -40.00 -10.00 -20.00 -20.00 -27.28
                                             1.0000242
-7.28 -40.00 -20.00 -20.00 -20.00 -27.28
                                             1.0000283
-7.28 -40.00 -20.00 -20.00 -20.00 -27.28
                                             1.0000281
-47.28 -10.00 -10.00 -20.00 -30.00 -17.28
                                             0.9999931
-47.28 -10.00 -10.00 -20.00 -30.00 -17.28
                                             0.9999921
-37.28 -10.00 -20.00 -20.00 -30.00 -17.28
                                             1.0000050
-37.28 -10.00 -20.00 -20.00 -30.00 -17.28
                                             1.0000061
-27.28 -10.00 -30.00 -20.00 -30.00 -17.28
                                             1.0000238
-27.28 -10.00 -30.00 -20.00 -30.00 -17.28
                                             0.9999933
-17.28 -10.00 -40.00 -20.00 -30.00 -17.28
                                             1.0001128
-17.28 -10.00 -40.00 -20.00 -30.00 -17.28
                                             0.9998851
-37.28 -20.00 -10.00 -20.00 -30.00 -17.28
                                             0.999999
-37.28 -20.00 -10.00 -20.00 -30.00 -17.28
                                             1.0000011
-27.28 -20.00 -20.00 -20.00 -30.00 -17.28
                                             1.0000169
-27.28 -20.00 -20.00 -20.00 -30.00 -17.28
                                             1.0000159
-17.28 -20.00 -30.00 -20.00 -30.00 -17.28
                                             1.0000610
-17.28 -20.00 -30.00 -20.00 -30.00 -17.28
                                             1.0000013
-7.28 -20.00 -40.00 -20.00 -30.00 -17.28
                                             1.0001838
                                             0.9999730
-7.28 -20.00 -40.00 -20.00 -30.00 -17.28
-27.28 -30.00 -10.00 -20.00 -30.00 -17.28
                                             0.9999969
-27.28 -30.00 -10.00 -20.00 -30.00 -17.28
                                             0.9999995
-17.28 -30.00 -20.00 -20.00 -30.00 -17.28
                                             1.0000256
-17.28 -30.00 -20.00 -20.00 -30.00 -17.28
                                             1.0000248
-7.28 -30.00 -30.00 -20.00 -30.00 -17.28
                                             1.0000890
-7.28 -30.00 -30.00 -20.00 -30.00 -17.28
                                             1.0000483
-47.28 -10.00 -10.00 -20.00 -40.00
                                    -7.28
                                             1.0000602
-47.28 -10.00 -10.00 -20.00 -40.00
                                    -7.28
                                             0.9999943
-37.28 -10.00 -20.00 -20.00 -40.00
                                    -7.28
                                             1.0003091
-37.28 -10.00 -20.00 -20.00 -40.00
                                    -7.28
                                             0.9997653
-27.28 -10.00 -30.00 -20.00 -40.00
                                    -7.28
                                             1.0003698
-27.28 -10.00 -30.00 -20.00 -40.00
                                     -7.28
                                             0.9996312
-17.28 -10.00 -40.00 -20.00 -40.00
                                    -7.28
                                             1.0005966
-17.28 -10.00 -40.00 -20.00 -40.00
                                    -7.28
                                             0.9995495
-37.28 -20.00 -10.00 -20.00 -40.00
                                    -7.28
                                             1.0001339
-37.28 -20.00 -10.00 -20.00 -40.00
                                    -7.28
                                             1.0000833
-27.28 -20.00 -20.00 -20.00 -40.00
                                    -7.28
                                             1.0001533
-27.28 -20.00 -20.00 -20.00 -40.00
                                    -7.28
                                             0.9998985
-17.28 -20.00 -30.00 -20.00 -40.00
                                    -7.28
                                             1.0002170
-17.28 -20.00 -30.00 -20.00 -40.00
                                    -7.28
                                             0.9997231
-7.28 -20.00 -40.00 -20.00 -40.00
                                    -7.28
                                             1.0003839
-7.28 -20.00 -40.00 -20.00 -40.00
                                    -7.28
                                             0.9994360
-37.28 -10.00 -20.00 -30.00 -10.00 -27.28
                                             1.0001581
-37.28 -10.00 -20.00 -30.00 -10.00 -27.28
                                             1.0001721
-27.28 -10.00 -30.00 -30.00 -10.00 -27.28
                                             1.0001353
                                            0.9998673
-27.28 -10.00 -30.00 -30.00 -10.00 -27.28
-27.28 -20.00 -20.00 -30.00 -10.00 -27.28
                                            1.0000621
-27.28 -20.00 -20.00 -30.00 -10.00 -27.28
                                            1.0000722
```

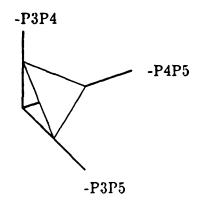


```
-17.28 -20.00 -30.00 -30.00 -10.00 -27.28
                                             1.0001293
-17.28 -20.00 -30.00 -30.00 -10.00 -27.28
                                             0.9999323
-27.28 -30.00 -10.00 -30.00 -10.00 -27.28
                                             1.0000063
-27.28 -30.00 -10.00 -30.00 -10.00 -27.28
                                             1.0002060
-17.28 -30.00 -20.00 -30.00 -10.00 -27.28
                                             1.0001479
-17.28 -30.00 -20.00 -30.00 -10.00 -27.28
                                             1.0001553
 -7.28 -30.00 -30.00 -30.00 -10.00 -27.28
                                             1.0002267
 -7.28 -30.00 -30.00 -30.00 -10.00 -27.28
                                             1.0001467
-17.28 -40.00 -10.00 -30.00 -10.00 -27.28
                                             1.0000354
-17.28 -40.00 -10.00 -30.00 -10.00 -27.28
                                             1.0001311
                                             1.0000887
 -7.28 -40.00 -20.00 -30.00 -10.00 -27.28
 -7.28 -40.00 -20.00 -30.00 -10.00 -27.28
                                             1.0000920
 -7.28 -50.00 -10.00 -30.00 -10.00 -27.28
                                             1.0000826
 -7.28 -50.00 -10.00 -30.00 -10.00 -27.28
                                             1.0001055
                                             1.0000076
-47.28 -10.00 -10.00 -30.00 -20.00 -17.28
-47.28 -10.00 -10.00 -30.00 -20.00 -17.28
                                             1.0000077
-37.28 -10.00 -20.00 -30.00 -20.00 -17.28
                                             1.0000262
-37.28 -10.00 -20.00 -30.00 -20.00 -17.28
                                             1.0000091
-27.28 -10.00 -30.00 -30.00 -20.00 -17.28
                                             1.0000528
-27.28 -10.00 -30.00 -30.00 -20.00 -17.28
                                             0.999568
-37.28 -20.00 -10.00 -30.00 -20.00 -17.28
                                             1,0000110
-37.28 -20.00 -10.00 -30.00 -20.00 -17.28
                                             1.0000110
-27.28 -20.00 -20.00 -30.00 -20.00 -17.28
                                             1.0000341
-27.28 -20.00 -20.00 -30.00 -20.00 -17.28
                                             1.0000228
-17.28 -20.00 -30.00 -30.00 -20.00 -17.28
                                             1.0000964
-17.28 -20.00 -30.00 -30.00 -20.00 -17.28
                                             0.9999866
-27.28 -30.00 -10.00 -30.00 -20.00 -17.28
                                             1.0000069
-27.28 -30.00 -10.00 -30.00 -20.00 -17.28
                                             1.0000068
-17.28 -30.00 -20.00 -30.00 -20.00 -17.28
                                             1.0000361
-17.28 -30.00 -20.00 -30.00 -20.00 -17.28
                                             1.0000263
 -7.28 -30.00 -30.00 -30.00 -20.00 -17.28
                                             1.0001028
 -7.28 -30.00 -30.00 -30.00 -20.00 -17.28
                                             1.0000306
-17.28 -40.00 -10.00 -30.00 -20.00 -17.28
                                             1.0000091
-17.28 -40.00 -10.00 -30.00 -20.00 -17.28
                                             1.0000087
 -7.28 -40.00 -20.00 -30.00 -20.00 -17.28
                                             1.0000402
 -7.28 -40.00 -20.00 -30.00 -20.00 -17.28
                                             1.0000347
-47.28 -10.00 -10.00 -30.00 -30.00
                                    -7.28
                                             1.0000592
-47.28 -10.00 -10.00 -30.00 -30.00
                                     -7.28
                                             0.9999726
-37.28 -10.00 -20.00 -30.00 -30.00
                                     -7.28
                                             1.0002339
-37.28 -10.00 -20.00 -30.00 -30.00
                                     -7.28
                                             0.9997764
-27.28 -10.00 -30.00 -30.00 -30.00
                                     -7.28
                                             1.0002892
-27.28 -10.00 -30.00 -30.00 -30.00
                                     -7.28
                                             0.9997909
-37.28 -20.00 -10.00 -30.00 -30.00
                                     -7.28
                                             1.0000761
-37.28 -20.00 -10.00 -30.00 -30.00
                                     -7.28
                                             1.0000086
-27.28 -20.00 -20.00 -30.00 -30.00
                                     -7.28
                                             1.0001488
-27.28 -20.00 -20.00 -30.00 -30.00
                                     -7.28
                                             0.9998469
-17.28 -20.00 -30.00 -30.00 -30.00
                                     -7.28
                                             1.0003250
-17.28 -20.00 -30.00 -30.00 -30.00
                                     -7.28
                                             0.9996486
-27.28 -30.00 -10.00 -30.00 -30.00
                                     -7.28
                                             1.0000329
-27.28 -30.00 -10.00 -30.00 -30.00
                                     -7.28
                                             1.0000187
-17.28 -30.00 -20.00 -30.00 -30.00
                                     -7.28
                                             1.0000623
-17.28 -30.00 -20.00 -30.00 -30.00
                                     -7.28
                                             0.9998929
 -7.28 -30.00 -30.00 -30.00 -30.00
                                     -7.28
                                             1.0001607
 -7.28 -30.00 -30.00 -30.00 -30.00
                                     -7.28
                                             0.9997097
-47.28 -10.00 -10.00 -40.00 -10.00 -17.28
                                             0.9999943
-47.28 -10.00 -10.00 -40.00 -10.00 -17.28
                                             1.0000066
-37.28 -10.00 -20.00 -40.00 -10.00 -17.28
                                             1.0000588
-37.28 -10.00 -20.00 -40.00 -10.00 -17.28
                                             0.9999164
```

```
-37.28 -20.00 -10.00 -40.00 -10.00 -17.28
                                             0.9999630
-37.28 -20.00 -10.00 -40.00 -10.00 -17.28
                                             1.0000271
-27.28 -20.00 -20.00 -40.00 -10.00 -17.28
                                             1,0000608
-27.28 -20.00 -20.00 -40.00 -10.00 -17.28
                                             0.9999344
-27.28 -30.00 -10.00 -40.00 -10.00 -17.28
                                             1.0000068
-27.28 -30.00 -10.00 -40.00 -10.00 -17.28
                                             1.0000540
-17.28 -30.00 -20.00 -40.00 -10.00 -17.28
                                             1.0001011
-17.28 -30.00 -20.00 -40.00 -10.00 -17.28
                                             1.0000043
-17.28 -40.00 -10.00 -40.00 -10.00 -17.28
                                             1.0000051
-17.28 -40.00 -10.00 -40.00 -10.00 -17.28
                                             1.0000310
 -7.28 -40.00 -20.00 -40.00 -10.00 -17.28
                                             1.0000550
 -7.28 -40.00 -20.00 -40.00 -10.00 -17.28
                                             1.0000092
 -7.28 -50.00 -10.00 -40.00 -10.00 -17.28
                                             1.0000192
 -7.28 -50.00 -10.00 -40.00 -10.00 -17.28
                                             1.0000259
-47.28 -10.00 -10.00 -40.00 -20.00
                                    ~7.28
                                             1.0000458
                                     -7.28
-47.28 -10.00 -10.00 -40.00 -20.00
                                             0.9999602
-37.28 -10.00 -20.00 -40.00 -20.00
                                     -7.28
                                             1.0001544
-37.28 -10.00 -20.00 -40.00 -20.00
                                     -7.28
                                             0.9998147
-37.28 -20.00 -10.00 -40.00 -20.00
                                     -7.28
                                             1.0000379
                                     -7.28
-37.28 -20.00 -10.00 -40.00 -20.00
                                             0.9999750
-27.28 -20.00 -20.00 -40.00 -20.00
                                     -7.28
                                             1.0001663
-27.28 -20.00 -20.00 -40.00 -20.00
                                     -7.28
                                             0.9998199
-27.28 -30.00 -10.00 -40.00 -20.00
                                     -7.28
                                             1.0000105
-27.28 -30.00 -10.00 -40.00 -20.00
                                     -7.28
                                             0.9999717
                                     -7.28
-17.28 -30.00 -20.00 -40.00 -20.00
                                             1.0001074
                                     -7.28
-17.28 -30.00 -20.00 -40.00 -20.00
                                             0.9998375
-17.28 -40.00 -10.00 -40.00 -20.00
                                     -7.28
                                             0.9999896
-17.28 -40.00 -10.00 -40.00 -20.00
                                     -7.28
                                             0.9999704
-7.28 -40.00 -20.00 -40.00 -20.00
                                     -7.28
                                             1.0000352
 -7.28 -40.00 -20.00 -40.00 -20.00
                                     -7.28
                                             0.9998696
-47.28 -10.00 -10.00 -50.00 -10.00
                                     -7.28
                                             0.9999591
-47.28 -10.00 -10.00 -50.00 -10.00
                                     -7.28
                                             1.0000567
-37.28 -20.00 -10.00 -50.00 -10.00
                                     -7.28
                                             0.9999549
-37.28 -20.00 -10.00 -50.00 -10.00
                                     -7.28
                                             1.0000485
                                     -7.28
-27.28 -30.00 -10.00 -50.00 -10.00
                                             0.9999517
-27.28 -30.00 -10.00 -50.00 -10.00
                                     -7.28
                                             1.0000306
-17.28 -40.00 -10.00 -50.00 -10.00
                                     -7.28
                                             0.9999638
-17.28 -40.00 -10.00 -50.00 -10.00
                                     -7.28
                                             1.0000210
-7.28 -50.00 -10.00 -50.00 -10.00
                                     -7.28
                                             0.9999527
-7.28 -50.00 -10.00 -50.00 -10.00
                                    -7.28
                                             0.9999833
```

Appendix V Choosing the Output Data Display Points.

Given that the allowable output data points lie on a triangular surface:



where each corner of the triangles intersects the axis at $\frac{E_{en}^2}{2}$.

Each edge of the triangle is obviously of length $(\sqrt{2})$ $(\frac{E_{cm}^2}{2})$

To find the angle between the plane of the triangle and any of the three coordinate planes, for example the x-y plane:

The normal to the triangle is N1 = i + j + k

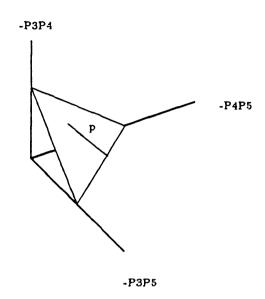
The normal to the x-y plane is N2 = k

$$N1 \cdot N2 = 1 = |N1| |N2| \cos \theta = (1)(\sqrt{3}) \cos \theta$$

$$\cos\theta = \frac{1}{\sqrt{3}} \qquad \sin\theta = \frac{\sqrt{2}}{\sqrt{3}}$$

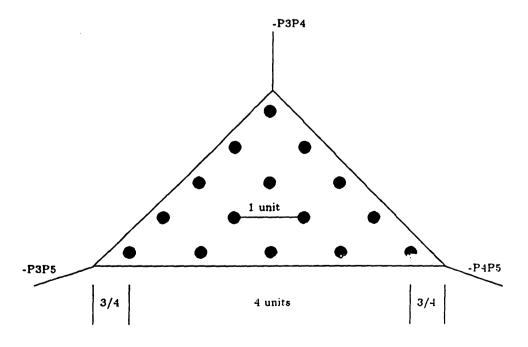
So if p measures the distance 'up' the face of the triangle from the base line in the x-y plane, p is related to the 'z' co-ordinate, that is the value of -P3P4, by:

$$-P3P4 = p \frac{\sqrt{2}}{\sqrt{3}}$$



Viewing the triangle straight on and selecting 15 symmetrically spaced representative points.

Allow the internal distance between any two points to be one unit, with an additional $\frac{3}{4}$ unit to the corner, as shown.



Then 5 1/2 units equals the edge length of $(\sqrt{2})$ $(\frac{E_{cm}^2}{2})$ or

$$1 \ unit = \left(\frac{2}{11}\right) \left(\sqrt{2}\right) \left(\frac{E_{cm}^2}{2}\right)$$

The width of each border is $\frac{1}{4}\sqrt{3}$ units, and the vertical distance between rows is $\frac{1}{2}\sqrt{3}$ units, so if N=0,1,2,3,4 indicates the horizontal row number, then the distance p from the lower edge to that row is given by:

$$\begin{split} p &= \left[\left(\frac{1}{4} \sqrt{3} \right) + N \left(\frac{1}{2} \sqrt{3} \right) \right] \left[\text{ length of one unit } \right] \\ &= \left[\left(\frac{1}{4} \sqrt{3} \right) + N \left(\frac{1}{2} \sqrt{3} \right) \right] \left[\frac{2}{11} \sqrt{2} \frac{E_{cm}^2}{2} \right] \\ &= \left(\frac{\sqrt{3}\sqrt{2}}{11} \right) \left(\frac{E_{cm}^2}{2} \right) \right) \left(\frac{1}{2} + N \right) \end{split}$$

and since

$$-P3P4 = p \frac{\sqrt{2}}{\sqrt{3}}$$

then

$$-P3P4 = \left(\frac{2}{11}\right) \left(\frac{E_{cm}^2}{2}\right) \left(\frac{1}{2} + N\right)$$

and the values of -P3P4 to run the FORTRAN program at to generate these display points are given by allowing N to range through its values 0.1.2.3.4. In a similar fashion the values of the other axis, -P3P5 and -P4P5 are generated,

$$-P3P5 = \left(\frac{2}{11}\right) \left(\frac{E_{cm}^2}{2}\right) \left(\frac{1}{2} + L\right)$$
$$-P4P5 = \left(\frac{2}{11}\right) \left(\frac{E_{cm}^2}{2}\right) \left(\frac{1}{2} + M\right)$$

and the set N,L,M locates the display point. The set of three values for the other triangle, -P1P3, -P1P4, -P1P5 are generated in an identical fashion.

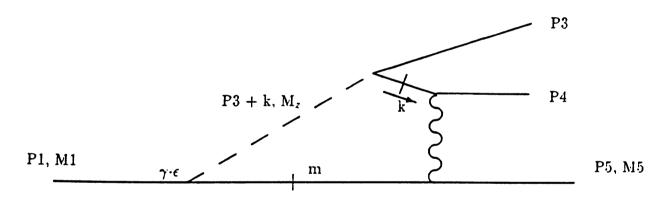
Appendix W Evaluation of a Preliminary Diagram

Section 1 Introduction

Consider the diagram of a single, massive, incoming particle of mass $M1 > M_z$, which decays to M_z and an outgoing 'quark'. Assign Spin zero to all external particles. Allow the outgoing 'quark' to have mass, M5.

Section 2 The Diagrams

This four point lepton scattering diagram will serve to illustrate the notation used for both diagrams in the problem.

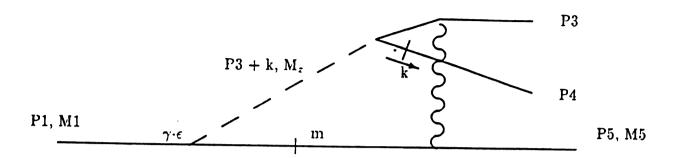


The linear momenta are labelled clockwise P1....P5 beginning with the GLUON. k_{μ} is defined as the variable LOOP momenta and for convenence:

$$m = k - (P4 + P5)$$

Four vector dot products are indicated by the contiguous writing of two four vectors, for example, P4P5 indicates the dot product of P4 with P5. The three part of a four vector is indicated by a bar; e.g. $\overline{P4}$ is the space part of P4.

The anti-lepton scattering diagram is:



Section 3 Preparing the Calculation

The Cutowsky² rule for an on-shell condition gives:

$$\frac{1}{(k^2)\left[(k-(P4+P5))^2+M_5^2\right]} \Rightarrow \frac{1}{2}(2\pi i)^2 \delta(k^2) \,\delta([k-(P4+P5)]^2+M_5^2)$$

With this, the amplitude of the sample diagram of the previous section is formed by the Feynman rules of Appendix D: Let

$$M = S * I$$

where S collects all the multiplicative scale factors:

$$S = \frac{1}{2} (2\pi i)^2 e^2 \frac{1}{(2\pi)^4}$$

and I is the LOOP integral of the above diagram:

$$I = \int \frac{d^4k \ \delta(k^2) \ \delta[(k-P4-P5)^2 + M_5^2] \ (k+P4)_{\mu} \ g^{\mu\nu} \ (P4+P5-k+P5)_{\nu}}{[(k-P4)^2] \ [(k+P3)^2 + M_5^2 - i\Gamma M_5]}$$

Sub-Section 3.1 The Frame of Reference

The first delta function will dictate that $|\overline{k}|^2 = k\sigma^2$. The second, $\delta([k - (P4 + P5)]^2 + M_5^2)$. gives

$$k^2 - 2k \cdot (P4 + P5) + (P4 + P5)^2 + M_5^2 = 0$$

and with

$$k^2 = P4^2 = 0$$

and

$$P5^2 = -M_5^2$$

results in

$$k \cdot (P4 + P5) = P4P5$$

which assumes a particularly simple form only in the rest frame of $\overline{P4}$ and $\overline{P5}$:

$$ko(E4 + E5) = -P4P5$$

And, since also in this frame:

$$(P4 + P5)^2 = -(E4 + E5)^2 = 2(P4P5) - M_5^2$$

from the above result

$$-\frac{(P4P5)^2}{ko^2} = 2(P4P5) - M_5^2$$

then

$$ko^2 = \frac{(P4P5)^2}{M_5^2 - 2(P4P5)}$$

establishing that in this frame ko is CONSTANT.

The enormous simplification gained when the magnitude of \overline{k} remains constant dictates this rest frame of $\overline{P4} + \overline{P5}$ to be the frame of reference for the lepton diagram (and similarly $\overline{P3} + \overline{P5}$ for the anti-lepton).

Note that in this frame the energy, Ex, of any other particle, PX, of the problem is also simply given:

$$PX \cdot (P4 + P5) = -E_x(E4 + E5) = E_x \frac{P4P5}{ko} = PXP4 + PXP5$$

or

$$ko(E_x) = \frac{ko^2}{P^4P^5}(PXP4 + PXP5)$$

Sub-Section 3.2 The SPIN Factor

The SPIN factor in the above integral can be evaluated to:

$$(k + P4)_{\mu} g^{\mu\nu} (P4 + P5 - k + P5)_{\nu}$$

= 2(P5 \cdot k) + 2(P4P5)
= 2\overline{P5} \cdot \overline{k} - 2(ko)E5 + 2(P4P5)

then using the above equivalent for (ko)E5

$$=2\overline{P5}\cdot\overline{k}-2\frac{ko^{2}}{P4P5}(P4P5-M_{5}^{2})+2(P4P5)$$

Sub-Section 3.3 Removal of the Delta functions

Using

$$d^4k = d |k| dko ko^2 d\Omega_k$$

The delta functions may be simply removed by integrating over $d \mid k \mid$ and dko provided the JACOBIAN between the set $(\mid k \mid, ko)$ and the two arguments of the delta functions is included. This Jacobian is the same as for the larger problem. It is calculated in the chosen frame of reference in Appendix F and evaluates to:

$$J = \frac{-1}{4(P4P5)}$$

The Jacobian is now absorbed into the scale factor S:

$$S = \frac{1}{2} (2\pi i)^2 \epsilon^2 \left[\frac{1}{(2\pi)^4} \right] \frac{-1}{4(P4P5)}$$
$$S = \frac{1}{137} \frac{1}{(2\pi)} \frac{1}{4(P4P5)}$$

Thus the sample LOOP integral reduces to being over $k\sigma^2 d\Omega_k$. $k\sigma^2$ may be absorbed into the scale factor:

$$S = \frac{1}{137} \frac{1}{(2\pi)} \frac{ko^2}{4(P4P5)}$$

leaving the integral over the directions of \overline{k} :

$$I = \int \frac{d\Omega_k (k + P4)_{\mu} g^{\mu\nu} (P4 + P5 - k + P5)_{\nu}}{[(k - P4)^2] [(k + P3)^2 + M_z^2 - i\Gamma M_z]}$$

with the understanding that

(i) the frame of reference is $\overline{P4} + \overline{P5} = 0$

(ii)
$$|\overline{k}|^2 = ko^2$$

(iii)
$$ko^2 = \frac{(P4P5)^2}{M_5^2 - 2(P4P5)}$$

(iv)
$$ko(E_x) = \frac{ko^2}{P4P5}(PXP4 + PXP5)$$

This applies to both LOOP integrals in the problem.

Sub-Section 3.4 The Divergence Regulation

In examining the above LOOP integral, the first denominator factor, arising from the photon line propagator, produces a singularity when the direction of \overline{k} becomes co-linear with $\overline{P4}$, resulting in a logrithmically infinite value for the integral. This infinity does not occur in Nature - the process is finite - and that is reflected in the calculation by the coefficient of the logrithmically infinite term becoming zero when the LEPTON scattering and the ANTI-LEPTON scattering LOOP diagrams are summed. To allow the doing of the diagrams separately, a small photon mass is added to regularize the infinity. When the diagrams are added it is observed that the coefficient of the log of this fictious photon mass becomes identically zero, producing no ill effects when the photon mass is then allowed to go to zero and its log to infinity. The appearance of the zero coefficient does in fact serve as a check that the various parts of the calculation are fitting together correctly.

$$I = \int \frac{d\Omega_k (k + P4)_{\mu} g^{\mu\nu} (P4 + P5 - k + P5)_{\nu}}{[(k - P4)^2 + M_{\gamma}^2] [(k + P3)^2 + M_{z}^2 - i\Gamma M_{z}]}$$

Section 4 ... The Calculation

$$\mathbf{I} = \int \frac{d\Omega_k \left[2(P5 \cdot k) + 2(P4P5) \right]}{(-2P4 \cdot k + M_{\gamma}^2) \ (2P3 \cdot k + M_z^2 - i\Gamma M_z)}$$

In a co-ordinate system with $\overline{P4}$ in the +z direction and using the above expansion of the SPIN factor with $\overline{P5} = -\overline{P4}$:

$$\begin{split} &= \int \frac{d\Omega_k \left[-2 \, | \overline{P5} | \, ko \cos \theta - 2 \frac{k \, o^2}{(P4P5)} (P4P5 - M_5^2) + 2 (P4P5) \right]}{(-2ko^2 cos\theta + 2ko^2 + M_7^2) \, (2P3 \cdot k + M_2^2 - i\Gamma M_2)} \\ &= \int \frac{d\Omega_k \left(a \, \cos \theta + b \right)}{\left(c \, cos\theta + d \, \right) \, (2P3 \cdot k + M_2^2 - i\Gamma M_2)} \end{split}$$

where

$$a = -2 |\overline{P5}| ko$$

and since $|\overline{P5}| = |\overline{P4}| = E4 = ko$

$$a = -2ko^2$$

$$b = -2\frac{k\sigma^2}{(P4P5)}(P4P5 - M_5^2) + 2(P4P5)$$
$$c = -2k\sigma^2 = a$$

$$c = -2ko^2 = a$$

$$d = 2k\sigma^2 + M_\gamma^2 = -c + M_\gamma^2$$

$$I = \int \frac{d\Omega_k \left(\frac{a}{\varepsilon} \left[c \cos \theta\right] + \frac{ad}{\varepsilon}\right)}{\left(c \cos \theta + d\right) \left(2P3 \cdot k + M_z^2 - i\Gamma M_z\right)} + \int \frac{d\Omega_k \left(b - \frac{ad}{\varepsilon}\right)}{\left(c \cos \theta + d\right) \left(2P3 \cdot k + M_z^2 - i\Gamma M_z\right)}$$

$$I = I_a + I_b$$

First solve Ia:

First solve
$$I_a$$
:
$$I_a = \frac{a}{c} \int \frac{d\Omega_k \left(-c \cos \theta + d \right)}{\left(c \cos \theta + d \right) \left(2P3 \cdot k + M_z^2 - i\Gamma M_z \right)} = \int \frac{d\Omega_k}{(2P3 \cdot k + M_z^2 - i\Gamma M_z)}$$

noting $\frac{a}{c} = 1$.

As this is integrated over all angles, the co-ordinate system may be switched to

 $\overline{P3}$ in the +z direction.

$$\begin{split} I_a &= \int_{-1}^{+1} \frac{d\phi \; d(\cos\theta)}{2(E3)ko\cos\theta - 2(E3)ko + M_z^2 - i\Gamma M_z} \\ &= \frac{-2\pi}{2(E3)ko} \log \left(\frac{-4(E3)ko + M_z^2 - i\Gamma M_z}{M_z^2 - i\Gamma M_z} \right) \\ I_a &= -\frac{2\pi(P4P5)}{ko^2(2P3P4 + 2P3P5)} \log \left(\frac{-4\frac{kc^2}{P4P5}(P3P4 + (P3P5) + M_z^2 - i\Gamma M_z}{M_z^2 - i\Gamma M_z} \right) \end{split}$$

Now to solve I_b . It remains in the original co-ordinate system of $\overline{P4}$ in the +z direction and taking $\overline{P3}$ to be in the x-z plane:

+z direction and taking
$$\overline{P3}$$
 to be in the x-z plane.

$$I_k = (b - \frac{ad}{c}) \int \frac{d\Omega_k}{(-2ko^2\cos\theta + 2ko^2 + M_2^2)} \frac{d\Omega_k}{(2P3_1(ko)\cos\theta + 2P3_k(ko)\sin\theta\cos\phi - 2(ko)E3 + M_2^2 - i\Gamma M_1)}$$

Using $\frac{a}{c} = 1$

$$I_{b} = (b-d) \int \frac{d\Omega_{k}}{(c\cos\theta + d) (e\cos\theta + f\sin\theta\cos\phi + g)}$$

noting
$$P3_z = \frac{\overline{P3}.\overline{P4}}{E4} = \frac{P3P4}{E4} + E3 = \frac{P3P4}{ko} + E3$$

then

en
$$c = -2ko^2$$

$$d = 2ko^2 + M_{\gamma}^2 = -c + M_{\gamma}^2$$

$$e = 2(ko)P3_z = 2(P3P4) + 2(ko)E3 = 2(P3P4) + \frac{2ko^2}{P4P5}(P3P4 + P3P5)$$

$$g = \frac{-2ko^2}{P4P5}(P3P4 + P3P5) + M_z^2 - i\Gamma M_z$$

$$e^2 + f^2 = (2(ko)E3)^2 = \left[\frac{2ko^2}{P4P5}(P3P4 + P3P5)\right]^2$$

then using

$$\int_{0}^{2\pi} \frac{d\phi}{a + b \cos \phi} = \frac{2\pi}{(a^2 - b^2)^{1/2}} \qquad a > b > c$$

$$I_b = (b-d)2\pi \int_{-1}^1 \frac{dx}{(cx+d) ((e^2+f^2)x^2+2qex+q^2-f^2)^{1/2}}$$

Then transforming x = cx + d

$$I = (b-d)2\pi \int_{-c+d}^{c+d} \frac{dx}{x (mx^2 + nx + p)^{1/2}}$$

where

$$m = e^{2} + f^{2}$$

$$n = 2(gec - dm)$$

$$p = d^{2}m - 2gedc + c^{2}(g^{2} - f^{2})$$

which is solved using

$$\int \frac{dx}{xX^{1/2}} = \frac{-1}{\sqrt{p}} \log \frac{2\sqrt{pX} + nx + 2p}{x}$$
$$X = mx^2 + nx + p \quad p > 0$$

$$I_b = \frac{(b-d)2\pi}{c(g+e)} \left[\log \left(\frac{(g+\sqrt{e^2+f^2})^2}{(g+e)^2} \right) + \log \left(\frac{g-\sqrt{e^2+f^2}}{g+\sqrt{e^2+f^2}} \right) - \log \left(\frac{-2c}{M_\gamma^2} \right) \right]$$

Now noting

$$g + e = 2(P3P4) + M_z^2 - i\Gamma M_z$$
$$= MZP$$

using the symbol MZP for the Z particle proprogator

$$\begin{split} MZP &= 2(P3P4) + M_z^2 - i\Gamma M_z \\ g &+ \sqrt{e^2 + f^2} = M_z^2 - i\Gamma M_z \\ g &- \sqrt{e^2 + f^2} = -\frac{4k\sigma^2}{P4P5}(P3P4 + P3P5) + M_z^2 - i\Gamma M_z \\ \frac{b - d}{c} &= \frac{-2k\sigma^2(P4P5 - M_5^2) + 2(P4P5)^2}{-2k\sigma^2(P4P5)} + 1 \\ &= \frac{-2(P4P5)}{k\sigma^2} \end{split}$$

gives:

gives:
$$I_b = \frac{-4\pi (P4P5)}{(ko^2)MZP} \left[\log \left(\frac{(M_z^2 - i\Gamma M_z)^2}{MZP^2} \right) + \log \left(\frac{-\frac{4ko^2}{P4P5} (P3P4 + P3P5) + M_z^2 - i\Gamma M_z}{M_z^2 - i\Gamma M_z} \right) - \left(\log \frac{4ko^2}{M_\tau^2} \right) \right]$$

Combining I_a and I_b , folding in the scale factor $S=\frac{k\sigma^2}{137(2\pi)4(P4P5)}$, and replacing $ko^2 = \frac{P4P5^2}{[M5^2 - 2(P4P5)]}$:

$$\begin{split} M &= S*I = S*(I_a + I_b)M = \frac{1}{4(137)} \ times \\ & \frac{-2}{MZP} \left[\log \left(\frac{(M_z^2 - i\Gamma M_z)^2}{MZP^2} \right) \right] \\ &- \left(\frac{2}{MZP} + \frac{1}{2(P3P4) + 2(P3P5)} \right) \left[\log \left(\frac{\frac{4(P4P5)}{(M5^2 - 2(P4P5))} (P3P4 + P3P5) + M_z^2 - i\Gamma M_z}{M_z^2 - i\Gamma M_z} \right) \right] \\ &- \left(\frac{2}{MZP} \right) \left[- \log \left(\frac{(P4P5)^2}{[M5^2 - 2(P4P5)][M_\gamma^2]} \right) \right] \end{split}$$

The anti-lepton scattering diagram produces the indentical result with P4 and P3 interchanged and an overall minus sign to account for traversing the variable LOOP momentum k_{μ} in the opposite direction when writing the lepton line

When the two diagrams are combined, the leading term, which is symmetrical in P3 and P4, vanishes, and the co-efficent of the $log(M_{\gamma}^2)$ term becomes zero. leaving:

$$\begin{split} M_{both} &= \frac{1}{4(137)} \ times \\ &- \left(\frac{2}{MZP} + \frac{1}{2(P3P4) + 2(P3P5)} \right) \left[\log \left(\frac{-\frac{4(P4P5)^2}{[M5^2 - 2(P4P5)]} (P3P4 + P3P5) + M_z^2 - i\Gamma M_z}{M_z^2 - i\Gamma M_z} \right) \right] \\ &+ \left(\frac{2}{MZP} + \frac{1}{2(P3P4) + 2(P4P5)} \right) \left[\log \left(\frac{-\frac{4(P3P5)^2}{[M5^2 - 2(P3P5)]} (P3P4 + P4P5) + M_z^2 - i\Gamma M_z}{M_z^2 - i\Gamma M_z} \right) \right] \\ &- \left(\frac{2}{MZP} \right) \left[- \log \left(\frac{(P4P5)^2 [M5^2 - 2(P3P5)]}{(P3P5)^2 [M5^2 - 2(P4P5)]} \right) \right] \end{split}$$

First to examine the effects of $M5^{2}$, the mass of the outgoing 'quark'. Remembering that dot products in this metric are negative, it is clear from its position in the factors that the matrix element obtains its greatest value when M5 is zero! With that replacement we have:

$$\begin{split} M_{both} &= \frac{1}{4(137)} \ times \\ &- \left(\frac{2}{MZP} + \frac{1}{2(P3P4 + P3P5)}\right) \left[\log\left(1 + \frac{2(P3P4 + P3P5)}{M_c^2 - i\Gamma M_c}\right)\right] \\ &+ \left(\frac{2}{MZP} + \frac{1}{2(P3P4 + P4P5)}\right) \left[\log\left(1 + \frac{2(P3P4 + P4P5)}{M_c^2 - i\Gamma M_c}\right)\right] \\ &- \left(\frac{2}{MZP}\right) \left[-\log\left(\frac{P4P5}{P3P5}\right)\right] \end{split}$$

To examine the effect of setting either (P3P4+P3P5) or (P3P4+P4P5) to zero and thereby gaining a large co-efficient, noting that $log(1+x)\Rightarrow x$ as x=0 shows that these terms will at most become unity.

It is the final term that dominates:

$$M_{both} = \frac{1}{4(137)} \left(\frac{2}{MZP} \right) \left[\log \left(\frac{P4P5}{P3P5} \right) \right]$$

Notice this term, (as well as the terms above) goes to zero when P3P5 = P4P5, as it should, for in this case there is no distinguishing the lepton scattering diagram from the anti-lepton one, and the two are subtracted.

It becomes a maximum when either P3P5 or P4P5 is zero, indicating one of the leptons is co-linear (assuming M5=0) with the outgoing 'quark'.

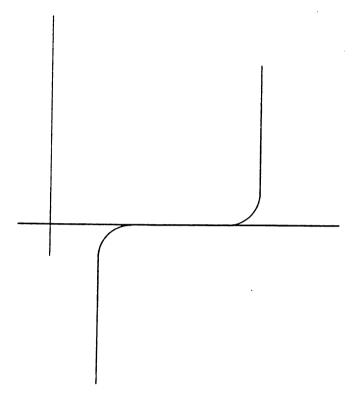
Conservation of energy-momentum dictates that:

$$M1^{2} = (P3 + P4 + P5)^{2}$$
$$= 2(P3P4 + P3P5 + P4P5)$$

so that P3P5 and P4P5 must add to a constant:

$$\begin{split} P3P5 + P4P5 &= \frac{M1^2}{2} - P3P4 \\ P3P5 &= \left[\frac{M1^2}{2} - P3P4\right] - P4P5 \\ log\left(\frac{P4P5}{P3P5}\right) &= log\left[\frac{\frac{2(P4P5)}{M1^2 - 2(P3P4)}}{1 - \frac{2(P4P5)}{M1^2 - 2(P3P4)}}\right] \end{split}$$

Thus $\log \frac{P4P5}{P3P5}$ graphs as $\log \left(\frac{x}{1-x}\right)$ vs. x with $x = \frac{2(P4P5)}{M1^2 - 2(P3P4)}$:



To realize the divergence does not contribute (due to the disappearance of phase space where it occurs), find the average between 0 and 1/2:

$$Average = \frac{1}{L} \int_0^L f(x) dx$$

$$Average = \frac{1}{1/2} \left(\int_0^{1/2} log(\frac{x}{1-x}) dx \right)$$

$$= 2 \left(\int_0^{1/2} log(x) dx - \int_0^{1/2} log(1-x) dx \right)$$

and using:

$$\int \log(x) \ dx = x \log(x) - x$$

and l'Hopital's rule:

limit as
$$x - 0$$
 of $x \log(x) = \frac{\log(x)}{1/x} = \frac{1/x}{-1/x^2} = 0$

gives

$$Average = 2\left(\log\left(\frac{1}{2}\right) - 1\right)$$

so approximately,

$$Average = -4$$

so an 'average' value of the matrix element is

$$M_{both} = (4) \frac{1}{4(137)} \frac{1}{MZP}$$

and since the matrix element for the same diagram without scattering (the BORN term) is just:

$$M_{Born} = \frac{1}{MZP}$$

then the RATIO of $\frac{|Born+Loop|^2}{|Born|^2}$ becomes:

$$RATIO = 1 + 2\left(\frac{4}{4(137)}\right) + \left(\frac{4}{4(137)}\right)^2$$

so the scattering diagrams can expect to contribute on the order of 1.0 per cent.

