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ABSTRACT

Iytical calculation of photon scattering between final state quark and a final
e lepton in the process gg => ¢gq = Z°¢q = I* I~ q. Result is found as
tio to the same process without final state scattering. Motivation for the
ulation is as a first step ds calculating photon scattering b final
e leptons and spectator quarks or debris pmxcln, polnbly predicting an
rvable asymmetry in the Z° decay curve.
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e main text is written to be read quickly without detail and is thus not
\gthy. The proofs and calculations are contained in a bulky set of Appen-
which are referenced in the text.
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Chapter One
Statement of the Problem

Section 1.1 ... General Introduction

The 1984 status of particle physics is ised in the h review
article of Eichten, Hinchliffe, Lane, and Quigg (EHLQ)'. Of the traditional
four forces, the gravitational force is largely unincorportated (though since that
date more promise has evolved from the futher development of string theory).
The theory of strong interactions rests comfortably in quantum chromodynam-
ics (QCD), though the experiments are difficult and development is slow. The
most remarkable success is the union of the weak and electromagnehc theories
via the application of non-Abelian f in and sp

symmetry breaking, introducing the Higgs sector. As described in that article,
the investigation of the Higgs sector will await the next generation of accelera-
tors.

With present hines the 1983 verification of the Z° and W pxedlctcd muses
constituted the first hallmark in the experimental lution of the electr
theory. Following this, the second level of ref t will be experiments ex-
tending the precision of the theory, the most recent of these bemg the et e~
determlllnutlon of the Z° mass and width at SLAC®, and futher resolution at
FNAL

Regarding the production of Z°, the seroth order (Drell-Yan) processes are:

where its interference with the photon process is noted.

Th: analytic calculation of these amplitudes presents no difficulty and is given
in EALQ!. Experimentally the measured invariant mass of the final state par-

ticles peaks at the Z° mass, (and for the case of & quark anti-quark pair would

appear as a two jet phenonon).
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h the improvement in the experimental precision it is important to do the
ulations to first and higher order in perturbation theory.
first order diagrams are:

e calculations are summarized in the workshop of Berger, et al.. The
esses, known as 2 particles in and 3 out, represent a degree upwards in the
ulty of their analytic solutions. Futher, to forward the amplitudes to cross
ons, the kinematics of phase space of 2 in and 3 out processes including
oft gluon correction of the first two diagrams above is non-trival. Even so,
d in the precision of knowing the Z° mass and width, the calculations have
carried out and occupy a standard place in the literature. 456

articular current interest is great precision in the width of the of the Z°, as
refiects the number of quark and lepton flavors that exist.
1 the EHLQ paper:

Tz

3 2
_ GrM3v2 1—2zp + _s:w] D
3r 3

e D is the number of kinematically acessible quark and lepton doublets....”

ave faith in first order experimental agreement, it must be held the pro-
s measured are free from ination by other p that would be
tectable in the measuement. For example, the first order contribution of
I*l=gq:
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be i d by the tering of one of the decay leptons with
al state quark.

ould cause a change in the invariant mass plot from that inherently
ed by the Z° decay for mesurements made at FNAL, though not those
C.

lculational difficulty of di ining a loop i dramati-
 the number of vertices or ‘points’. Three and four point diagrams are
tandard. The above is a five point diagram. There must be developed
of calculational method making these diagrams ammenable. 't Hooft
tman have devoted a technique paper’ to procedures for these integrals.
nplexity and large number of terms involved necessitate the aid of alge-
anipulation programs, such as the SCHOONSCHIP program written by
8

1.

rse than the rescattering that occurs above, (which is first order), rescat-
ould appear as a geroth order ination via a spectator or debris

SN







g the invariant mass plot to an even higher degree. This zeroth order
ination is very hard to estimate as it involves interaction with particles
olved in the Z° production. An assumption can be made that the ratio
geroth order rescattering to the seroth order (Drell-Yan) diagram alone
oximately the same as the above loop diagram to the first order term
o the effect of all ing can be esti d by calculating the latter

esis is the estimation of this effect via the calculation of the latter ratio.

triced to final state leptons, as the case for final state quarks is done
9

re.

1 1.2 ... Introduction to this Thesis

attering, first order Z° production can take place according to the usual
nti-quark union decaying into a lepton pair:

irate assessment of both the Z° mass and the width of the decay curve
s number of questions. To this end it is important to examine possible
ions to shifts of the peak and asymmetric distortions of this width.

of one possible source of ib begins with the ques-
HAT IS THE PROBABILITY OF A LEPTON SCATTERING WITH
ATOR QUARK ON THE WAY OUT ?

e

step, one can solve the reduced problem in which the spectator and
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- production quarks emerge from & common gluon source:

-

 is the calculation of the above five-point and equivalent diagrams
estriction of two on-shell lines (The introduction of the on-shell re-
is to make the LOOP integrations managable, as they reduce the
s to two dimensions. It is expected that if the diagrams here exam-
ice small effect under these restricti no great enh t would
heir relaxation. This point is futher mentioned in Chapter 5 ... ‘Con-

— -

e two diagrams with the photon scattering switched to the other
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e obtained, its interference RATIO to the process without scattering

oduce an observable asymmetry in the Z° production curve.

N\

asymmetry would experimentally appear in data gathered at FNAL
in data from SLAC, a comparison of the two would reveal an experi-
imit of resolution of this effect.

inal motivation for the project was as a step in explaining some ex-
tal results which later died away - excess photon production in the Z°
ocess not explainable by b trahlung. The next step in that now
motivation would have been:







7

t diagrams are hard to evaluate and the value of this work includes
>pment of the skills and procedures for working them, independent of
cular project. A follow up calculation would replace the scattering
ith a gluon and final state leptons with quarks, greatly enhancing the
y in the ratio of the strong coupling constant to -4L: This is essen-
same calculation except the interference term is sero due to the color
ess of the BORN and LOOP diagrams, the BORN term being a color
nd the LOOP & color octet. For this reason, the lepton anti-lepton
on calculated here might still dominate, and is also easier to compare
nt experimenh

ve tioned gluon i Iculation has already been finished®
esults will be compared vnth this photon scattering calculation in
- ‘Conclusions’.)

the RATIO is immediately expected to be of order alpha (1/137)
e two added electromagnetic vertices, this could be considerbly im-
the relatively short ( 10~2* sec. ) lifetime of the Z° keeps the decay
 the locality of the exiting quark and available to the re-scattering

is of the general type described by 't Hooft and Veltmax, though
lhe use of on-shell approximations, and mu the SCHOONSCHIP pro-
eltman to calculate the TRACES and p igeb

n 1.8 ... Division of the Problem into
Allowable Helicity Combinati

ass particles only plus or minus projections of the spin onto the
enta exist.

ton line :

1ark line:
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well known!? and demonstrnted in Appendix A that the final state ]epton
anti-lepton must have opposing helicities, while the i ing and out.
ks must have the same helicity.

means for each helicity of the GLUON there are four allowable
n-quark combinations:

Initial Final

1 Gluon Quark Quark Lepton Anti-lepton
(»1) (*1/2)  (*1/2) (*1/2) (*1/2)
+ + + + -
+ + + - +
+ - - + -
+ - - - +
- + + + -
- + + - +
B & = + &
- - - - +
he various helicity states are orth 1, as are all q hanical

set states, interference with & Born helicity state will only be non-sero for
OP state of the same helicity.

efore the answer is formed separately for each of the eight permitted helic-
ates, labelled A-H in the above table.
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Section 1.4 .... Notation
b-Section 1.4.1 ....Diagram Notation

s five point lepton scattering diagram will serve to illustrate the notation
d for all diagrams in the problem.

P5

: linear momenta are labelled clockwise P1....P5 beginning with the GLUON.
s defined as the variable LOOP tum and for con:

m =k — (P4+ P5)

n=k-(P4+P5)+Pl=m+ Pl

iy

1 vector dot p! are indicated by the contig writing of two four
ors, for le , P4P5 indicates the dot product of P4 with P5.

three part of a four vector is indicated by a bar; e.g. P4 is the space part
’4.

>-Section 1.4.2 .... The Metric

metric used is

-1 000
0 100
== o o910
0 001

watl



wd!

The

whic

Sub

The

fob



and the energy-momentum four vector-
P! = Eo, P,, P, P,
Py = —Eo, Pz, Py, P;
The dot products in this metric are negative:

};"P, = —m?

This metric is consistent with the Minkowski metric P* = P, = (P;, Py, P:,iEo)
which is used by the SCHOONSCHIP program.

Sub-Section 1.4.8 .... Gamma Matrices
The original Dirac equation,
(e-p—E+B-m)p=0

to be consistent with the Klein-Gordan equation required that

aiaj + aja; = 26;;

Bai+aif=0

and o and B must be Hermetian.

The Dirac equation may be written in terms of Gamma matrices for any met-
ric provided they and their dot products with p, reproduce the original Dirac
equation, leading to

Y+ = 29"

and futher defining
75 = iajaza3
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r the metric used here, the Gamma matrices, defined in terms of the Dirac
trices, become:

7 = ifa;

1 change the Dirac equation to be:

(iy-p-m)p=0

becomes:
:00.1,2.3

7 = i7"’y

' the Minkowski metric used by SCHOONSCHIP:
+ =ifa;
rT=-8

h the same Dirac equation as above:

(fy-p-mpp=0

>ecomes:

7 =777

her detail and pari; arein A dix B.

PP

»-Section 1.4.4 .... The Epf Function

warticular the Gamma matrix set used by SCHOONSCHIP introduces a
tion Epf defined as

TRACE(ys ABZ P) = itcapys A°B*C7D* = 4 Epf(4, B,C, D)



wle
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ere €ap+5 is the usual Levi-Cevita totally anti-symmetric four tensor.
the Minkowski metric is used by SCHOONSCHIP, then

P* = P, = (P:, Py, P;,iEq)

1 the Epf function is always a pure imaginary number.

 this problem, as there are only four independent linear ta, all Epf
ctions, following the usual properties of Levi-Cevita tensors, must reduce to
y one Epf :

Epf(P1, P3, P4, P5)

s is & Lorents invariant and may be calculated directly in any convenient
rence frame and co-ordinate system, or by the usual evaluation of Levi-
rita tensor products via determinents, which of course gives the same result.

2se are both done in Appendix C, and the result is

Epf(P1,P3, P4, P5) =
[4(P1P4)(P3P5)(P1P5)(P3P4) - [(P1P4)(P3P5) + (P1P5)(P3P4) - (P1P3)(P4Ps)]"/?







Section 1.5 .... Preparing the Integrals

1b-Section 1.5.1 .... The Integral

e Cutowsky rule for an on-shell condition gives:

1
") (k- (Pa+ P5)))

S(xiy§(K?) a(k — (P4+ PE)]%)

ith this, the amplitude of the sample diagram of the previous section is formed
the Feynman rules of Appendix D:
L

M=5xI

ere S collects all the multiplicative scale factors:

1 r 1
5= N (2mi)? €2 (—2?)4-

11is the LOOP integral of the above sample diagram:

&' 6(k7) 6((k - P4 - P5)?) [@(P4)ya(v-k)(C + Dys)rvo(P3)] [B(PS)y* (y-m)(y-e)(x-n)(A + Bys )v*u(P2)]
((k = P4)?] [(k — P4 - P5 + P1)?] [(k + P3)? + M? - iCM,]
b-Section 1.5.2 .... The Frame of Reference

e first delta function will dictate that [k|? = ko®.
+ second, §([k — (P4 + P5)]?), gives

k? — 2k - (P4+ P5)+ (P4+ P5)? =0

| with
¥ =P4=P5=0

ts in
k- (P4+ P5) = P4P5
ch assumes a particularly simple form only in the rest frame of P4 and P5:

ko(E4 + E5) = —P4P5
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d, since also in this frame:
(P4+ P5)? = —(E4 + E5)? = 2(P4P5)

ko= F4 = E5 = (—P4P5/2)'/?

ablishing that in this frame ko is CONSTANT.

e enormous simplification gained when the magnitude of k

tates this rest frame of P4+ P5 to be the frame of reference for this diagram.
the diagram for anti-lepton scattering is evaluated by i hanging the la-
s P3 and P4 (except for the lepton lme trace), the same frame of reference
ds throughout the problem.

te that in this frame the energy, Ex, of any other particle, PX, of the problem
also simply given:

PX . (P4 + P5) = —2(ko)Ez = PXP4+ PXP5

PXP4+ PXPb

Ez = = 2ko

b-Section 1.5.8 .... R;mov;l of the Delta functions

: delta functions may be simply removed by integrating over d |k| and dko
vided the JACOBIAN between the let (Ikl ko) and the two arguments of

deltu tions is included. This lculated in the chosen frame
in Appendix F and evaluates to:
-1
7= 4(P4P5)

Jacobian is now absorbed into the scale factor S:
L WOV i i ) Sl S
=g @) e [(h)* 4(Papy)
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'the remaining integration over |k|? df};,

kP =

d i = constant
2
n come outside the integral sign and be absorbed into the scale factor:

1 % 1 -1 —P4P5
s=3 6" (5] amarg 5 )

-~ (%) (&)

hus the sample LOOP integral reduces to being over the directions of k:

e / a0 [G(P4)7u(7-k)(C + Dvs)7vo(P3)] [B(P5)7v*(v-m)(7-€)(7-n)(A+ Bvs)}v"u(P3)]
g [(k — P4)?] [(k — P4~ PG5+ P1)?) [(k + P3)? + M? — iTM;)

th the understanding that

the frame of reference is P4+ P5 =10
) K2 = ko?

) ko = (—P4P5/2)!/?

) Bz = PARAGEX

is applies to all the various LOOP integrals in the problem.

b-Section 1.5.8 .... The Divergence Regulation

xamining the above LOOP integral, the first denominator factor, arising
1 the photon line propagator, produces a singularity when the direction of
:comes co-linear with P4, resulting in a logrithmically infinite value for the
gral. This infinity does not occur in Nature - the process is finite - and that
flected in the calculation by the coefficent of the logarithmically infinite
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term becoming sero when the five point and the four point LOOP diagrams are
summed. To allow the doing of the diagrams separately, a small photon mass
is added to regularise the infinity. When the diagrams are added it is observed
that the coefficent of the log of this fictitious photon mass becomes identically
sero, producing no ill effects when the photon mass is then allowed to go to sero
and its log to infinity. The appearance of the sero coefficent does in fact serve
s a check that the various parts of the calculation are fitting togeth ly.

e /‘ dQy [G(P4)vu(7-k)(C + D1s)vwo(P3)] [B(P5)v*(v-m)(v-€)(v-n)(4 + Bys)r"u(P2)]

[(k — Pa)? + M3] [(k — P4 — P5 + P1)?) [(k + P3): + M? — iT ;)

Passing to the second denominator factor (k — (P4 + P5) — P1)? , it appears to
possess a similar mﬁmty It is shown in Append:.x G that at the very direction
of k that this sero is produced, the value of the numerator also becomes sero,
rendering the lmgulmty benign. The non-apearance of this mﬂmty also serves
as a check that the int ] calculation is p ding tly. A small quark
mass is carried to allow this check.

40 _[@(P4)vu(7-k)(C + Ds)1v0(P3)] [E(P5)7*(v-m)(v-€)(v-n)(A + Bys)v"u(P32)]

e / [(k— P4)? + M3][(k — P4 — P5 + P1)? + M2, ] (k + P3)? + M7 — iTM;)

Section 1.8 .... Evaluating a Preliminary Diagram

Prior to beginning the actual calculation it is expedient to calculate a prelimi-
nary di which ins all the ial features of the larger calculation,
yet is simplified sufficently that it may be evaluated analytically (without the
aid of SCHOONSCHIP or projection techniques)

P3

P3+k M, e 24

[, M1 7

PS5, M5







and the companion anti-lepton scattering diagram.

All the external fermion particles carry Spin sero, which makes them unphysi-
cal, yet experience has shown that Spin does not greatly affect the magnitude
of the calculation.

The result of these diagrams should serve as an estimation for the larger calcu-
lation, and should that calculation differ significantly, the causes ascertained.

These diag are detailed and pletel luated in Appendix W. The
results will be stated in Chapter 5 ... ‘Conclusions’, and compared with the
results of the larger calculation.

An advantage occurs from the simplicity of this di it is possible to assign
a non-sero mass to the out-going quark, and to see the effect of varying this
mass on the result. The effect is also described in Chapter 5.
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Chapter Two
The Calculation

Section 2.1 .... Introduction

As the result will be the ratio of the LOOP plus BORN cross-section to the
BORN cross-section, two calculations are needed. The first, the Born ampli-
tude, is a tree structure and does not involve an integral. The calculation will
highlight a trick for projecting the spinor product of different linear momenta,
ie. U(P3)v(P4), onto & basis set more amenable to calculation, and will intro-
duce a projection of the gluon polarization vector onto a chosen set of linear
momenta; both these projections will also be used in the more complicated
LOOP calculation. Other than these projections, the Born term calculation is
straight-forward.

The LOOP calculation , which of course involves an integration, will use the
same spinor replacement technique, which then allows the TRACE of the nu-
merator expressions to be taken. Then the same repl t of the pol it
vector is made, resulting in an expression of several hundred terms, each of which
must be integrated.

Some of these terms contain a factor of Epf(k, 4, B, C) in the numerator which
would make the integration over directions of k quite difficult. Improvement
in these terms is obtained by replacing k, in all Epf factors with a linear
expansion onto four momenta of the problem, after which all Epf’s become
Epf(P1, P3, P4, Pb) which of course is the only indepedent Epf in the prob-
lem, and since it no longer depends on k,, can come outside the integral.

The approximately 50 remaining terms in the LOOP integral can be classi-
fied into integrals based on the number - from 0 to 3 - of PX - k factors in the
numerator and the number of similar denominator factors... three for the five
point diagrams, two for the four point. Each integral may then be reduced to a
simplier integral through a process of adding and subtracting appropriate terms
to allow some of these PX - k factors to cancel with denominator factors.

This reduction results in a set of 19 integrals which can not then be further
reduced and must be solved analytically.

18
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n this manner a single complex number is produced for the LOOP amplitude
or the chosen helicity state and set of physical parameters. This is added to
he Born amplitude, an absolute square taken, and the RATIO to the absolute
quare of the Born term determined.

his is repeated for all physically allowable sets of input parameters and he-
city states.

ection 2.2 ... Calculating the BORN Term

ub-Section 2.2.1 .....Introducti

Che Born term is the sum of two diagrams, called the five point and the four
oint, by analogy with their counterparts in the LOOP calculation.

+ Bs)r” (C+Dw)n P3

Ps

'ub-Section ... 2.2.2 The BORN Amplitude

BORN = BORNjis + BORN our

he five point amplitude is:
ORN:... = BPA(C + Dys)r,v(P3)] [@(PE)(y - €)(y - P5— v P1)(A + Bs)v’u(P2)]
Jiee, = —2(P1P5)MZP

RN ... = TRACE[s(P3)S(P4)(C + Dys}v.] TRACE[(P2)E(PS)(y - €)(7 PS = v P1)(A + Brs "]
e —3(P1P5)MZP

aere MZP is the Z° particle propagator:

MZP =2(P3P4)+ M? — il M,
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and the four point amplitude is:
_ [@(P4)(C + Dvs)y,v(P3)] [w(P5)(A+ Bys)vu(y - P14 7 - P2)(y - €)u(P2)]
BORNjour = 5 2(P1P2)MZSP

BORN... . = TRACE[s(P3)T(P4)(C + Dys}y*] TRACE[u(P2)(P5)(A + Bysyr"(y- P1+7- P2)(1-¢))
Jour = 2(P1P2)MZP

Sub-Section 2.2.8 ....Projecting the SPINOR product

In Appendix H it is demonstrated that a spinor product of the form v(p)%(q)
may be replaced by (1 & v5)y - 4 where A is a four vector given by

_(p-2)au +(q-2)ps — (P~ 9)ou + Epf(k:9,p,2)

V16(p-s)(g- o)

where s, is an arbritary four vector of the problem, and the plus-minus signs
sre determined by the combination of helecities.

Ap

This permits the substitutions:

v(P3)u(P4)=(1%xv)v-B

and
u(P2)u(P5) = (1+v)y-CU
here
B = (P3P5)P4, + (P4P5)P3, — (P3P4)P5, + Epf(u, P3, P4, P5)
g /16(P4P5)(P3P5)
ind
cv. — (P1P2)PS, + (P1P5)P2, — (P2P5)P1, + Epf(u, P1, P2, PS)
# \/16(P1P2)(P1P5)
hich enable the SCHOONSCHIP program of Appendix I to easily calculate
e TRACES.

b-Section 2.2.4 .......Removal of Z° vertex (4 + Bv;) and
strong coupling constant
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The above introduction of the (1 + v5) factors into the TRACES nullifies the
presence of the Z° vertex coefficent (A + Bvs) as demonstrated in Appendix
E. The algebra of Gamma matrices causes the v5 in the coefficient to become
redundant and the remaining factor (4 — B)(4 + B)(C + D)(C — D) can come
outside the TRACE process where it simply cancels with the same factor that
will later come outside the LOOP integration before the final ratio is taken.
For this reason the Z° vertex coefficient does not affect the ratio and will not
further be carried in the calculation of either the Born or the LOOP terms.
This cancellation is also true of the GLUON vertex coefficient, which will thus
also not be carried. This is quite desirable as it any p of the
strong coupling constant with all its attendant uncertainties from the result.

Sub-Section 2.2.5 ... Projection of the Gluon Polarisation vector

Next the polarization vector of the gluon is replaced by
_ (P1P2)P5, + (P1P5)P3, £ (Epf(s, P1, P2, P5)

\/(=P1P2)(P1P5)(P2P5)

where + is the GLUON-HELICITY. This replacement is derived in Appendix
I

Sub-Section 2.2.6 ...... The BORN Term result

The Born term amplitude is now entirely evaluated in terms of the set of alge-

braic dot products that form the set of physical ters for this probl

The SCHOONSCHIP prog; of Appendix I out this i mlFOR-
TRAN compatible form. It is then mcorpomted into a FORTRAN program
which will use it to d ine a single )! ber- the BORN amplitude-

for each physically permissible set of parameters for the chosen helicity state.

Section 2.8 ... Calculating the LOOP diagrams

Sub-Section 2.3.1 ...Introduction







22

The LOOP term is the sum of the four diagrams:

those for lepton scattering:

and

and those for anti-lepton scattering:
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Once the lepton scattering diagrams are solved, the anti-lepton scattering
nes are obtainable from that solution largely by re-labelling the linear mo-
enta, ( except in the lepton TRACE itself) . Thus it is sufficent to demon-
rate the lepton solutions only:

Tioop = Ifive + Ijour

_ [ 99 TRACE [v(P3)T(P4)vu(7-k)(C + Dys)rv] TRACE [u(P2)T(P5)y*(v-m)(7-€)(v-n)(A + Bys "]
i [(k = P4)? + M2) [(k - P4— P5+ P1)? + M2__ ] [(k + P3)? + M? —iTM,]

four =

1 40 TRACE [9(P3)a(P4)7,(7-k)C + Dys)vv] TRACE [u(P2)a(P5)y*(v-m)(A + Bys }v*(7-¢)]
2P1P2 [(k = P4)? + M2] [(k + P3)? + M2 —i[M,]

ub-Section 2.3.2 ... Spinor and Polarisation Repl t
Dropping of the 2° vertex coefficent (4 + Bvs)
and strong coupling constant

n each integral the same spinor four vector replacements as used for the BORN
erm are made, with the concurrent dropping of the Z° vertex coefficent (4 +
B5), and the GLUON vertex strong coupling constant.

o= [ 90x TRACE((1£5)(v- Byyu(y-k)n] TRACE[(1%7s)(y - CUN*(v-m)(x-)(v-n)7v"]
A [(k = P4)? + M2) [(k - P4 = P5 + P1)? + M2___1[(k + P3)2 + M? - iTM,]}

Jour =

1 40 TRACE[(1% 7s)(v - BYvu(7:E)7] TRACE[(1 2 vs)(y - CUN*(v-m)r*(y-¢))
2P1P2 [(k = P4)? + M2) [(k + P3)2 + M2 - il M,)

'RACES are taken by the SCHOONSCHIP program listed in Appendix K,
ollowed by substitution of the spinor and polariration four vectors, again as in
he Born terms.

ub-Section 2.3.3 ... Linear Replacement of k,

he result contains factors not present in the simplier Born calculation, due
the presence here of the LOOP momentum k. These factors are of the form
pf(k,A,B,C), and an attempt to integrate with them as they stand would
e very unwieldy. Improvement is obtained by making a linear projection of
u in such factors onto & set of four chosen linear momenta of the problem -
11 S2,, S3,, S4,, .

k, = (C1)S1, + (C2)52, + (C3)S3, + (C4)S4,
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he C1,C2,C3,C4 can be found by forming the set of four dot products with
":

51-k = (C1)S151 + (C2)5251 + (C3)S351 + (C4)5451
52-k = (C1)5152 + (C2)5252 + (C3)5352 + (C4)5452
S3 .k = (C1)5153 + (C2)5253 + (C3)5353 + (C4)5453
S4 -k = (C1)5154 + (C2)5254 + (C3)5354 + (C4)5454

This set of four equations can be inverted to yield C1, C2, C3, C4in terms
{ the various dot products. This is done in Appendix L and yields:

C1=CC11(51 k) + CC12(52 - k) + CC13(53 - k) + CC14(S4 - k)
C2 = CC21(S1- k) + CC22(S2 - k) + CC23(S3 - k) + CC24(54 - k)
C3 = CC31(51- k) + CC32(S2 - k) + CC33(S53 - k) + CC34(54 - k)
C4 = CC41(51- k) + CC42(S2 - k) + CC43(S3 - k) + CC44(54 - k)

ith CC11,CC12,CC13,......... CC43,CC44 given in terms of the dot prod-
cts of external momenta, again in Appendix L

auxiliary arrangement of the same result is:

k,=(S1-k)F1,+(S2-k)F2,+ (53 -k)F3, +(S4-k)F4,
here

F1, = (CC11)51, + (CC12)52, + (CC13)S3, + (CC14)54,

F2, = (CC21)S1, + (CC22)52, + (CC23)S3, + (CC24)54,

F3, = (CC31)51, + (CC32)S2, + (CC33)S3, + (CC34)54,

F4, = (CC41)S1, +(CC42)S2, + (CC43)S3, + (CC44)54,
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This, as well as being useful later, permits self consistency checks to be made
on the calculation of CC11, CC12,....CC44 as:

S(@)*F(B)u = &2
which is obtained by dotting the above expression for k, with 51, 52, 53, S4.

S1¥k, = (S1#F1,)(S1-k)+(S1# F2,)(S2-k)+(51# F3,)(53-k)+(S1# F4,)(S4-k)

and noting that S1-k, S2-k, S3-k, S4 -k are all independent.
For this problem:

51, =P1,
52, = P3,
S3, = P4,
54, = Ps,
It is to be noted that in the Appendix L i ion, the condition for a valid in-

version - that the Wronskian determinant be non zero - is the same as will later
be required in the RESULTS Section for a set of parameters to be physically

acceptable and thus does not introd a new iction on the probl

Sub-Section 2.3.4 ... Calculati g the R ini

g Set of Integrals

With the repl t in the Epf functions of k, by this linear projection onto
P1,P3,P4,P5, all Epf's reduce to Epf(P1, PS P4, P5) times wme nnmber
of PX -k fncton The Epf(P1,P3, P4, P5) previously eval d in A

C comes through the integral sign and the terms remaining in the integration
number about 30. They can be classified ding to the ber of t
PX -k factors they contain.... from 0 to 3 for the five point integral and from

0 to 2 for the four point, reflecting the number of factors of k, in the original
numerator.

Each class, which is an i 1, can be reduced to a simplier integral by the
process of adding and subtracting pieces which produce cancellation of a de-
nominator factor. This reduction is performed in Appendix M , and results in

a set of 19 integrals which can not then be further reduced and each must be
solved analytically.
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The grouping and labelling of these 19 integrals is the last thing done by the
SCHOONSCHIP program , which then produces FORTRAN compatible output
of the calculation as it now stands, with each of the 19 integrals algebraically
labelled by a symbol.

This output is incorporated into the FORTRAN program already containing
the BORN Term result.
Sub-Section 2.3.5 .... Solving the 19 integrals

The 19 integrals are solved analytically in Appendix N and the solutions are
inserted into the above mentioned FORTRAN program as a called sub-routine.

Sub-Section 2.3.8 ....The LOOP term result

At this point expressions solely in terms of dot products of external momenta
and the plus/minus sign of the Epf(P1, P3, P4, P5) parameter have been in-
serted into the FORTRAN program for the LOOP term. For each physically
allowable set of such parameters it will reduce to a single complex number.
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Section 2.4 ... Calculating the RATIO

Sub-Section 2.4.1 .... Introducti

The FORTRAN program to generate the result is run separately for each of
the eight helicity states of the problem, identified by the letters A-H as per
the table in Section 1.2. The identifying letter is entered into the FORTRAN
program as a parameter before complilation time.

Due to their size (each runs over 1600 lines of FORTRAN code), the two outputs
of the SCHOONSCHIP LOOP code, one for LEPTON scattering, the other for
ANTI-LEPTON, (each combining internally a five and a four point diagram),
are complied separately as FORTRAN functions and joined to the above FOR-
TRAN program at LINK tune

The FORTRAN prog; tly, (as functions), the eight output
amplitudes of the SCHOONSCHIP BORN TERM code, one for eac.h h:huty
state, and as a called sub-routine, the analytic solutions of the ni g/

Sub-Section 2.4.2 .... Physically Valid Set of Input Parameters

The prog by ining in grid fashion all of phase space.
It is demanstnted in Appendn P thn.t all allowable values of the six dot prod-
ucts may be visualised as lying on t: lar surfaces: ( remembering that dot

products in this metric are negative)
-P1P3 -P3P4

-P1P5 -P4P5

-P1P4 -P3P5

Tach corner of the triangles intersects the axis at E;‘

These points are covered in grid fashion in the FORTRAN program by allowing:

EZ
0 < -P1P4 < %
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EZ
0 < —P1P5 < =% —(~P1P4)

E?
== _ (-P1P4) - (-P1P5)

and 5

0 < —P3P4 < %—"‘

E?
0 < -P3P5 < —™ —(~P3P4)

2
—PaPs = ETM — (~P3P4)— (—P3P5)

The actual E.n value of 120 GeV is, for ease of calculation, scaled down to
1.2 GeV, with the corresponding scaling of M, t0 .937 GeV and I'; t0.027 GeV.
As the result is a dimensionless RATIO, it is unchanged by scaling.

The further restriction, that only certain combinations of input-output four vec-
tors conserve separately all four components of energy-momenta (that is - only
certain directional cones are allowed), is represented here by the requirement
that P1, be real, which is that-

4(P1P4)(P3P5)(P1P5)(P3P4) > [(P1P4)(P3P5)-+(P1P5)(P3P4)—(P1P3)(P4P5)]?
again derived in Appendix P.

\

1If the selected set of six dot products passes this inequality test, the FORTRAN
program forwards it for processing. It processes both signs of Epf(P1, P3, P4, P5),
representing reflection of the output particles across the plane defined by the
two input particles. (In the FORTRAN program Epf(P1,P3, P4, P5) is la-
belled by the symbol EVL.)

Sub-Section 2.4.8 ... Pr ing the Point

The parameter labelling the helicity state is examined and the proper BORN
TERM function called to produce that amplitude. It contains both four and
five point diagram contributions, each multiplied by the apprapnste ptopngntor
of the other ready to be combined to a single b h the
denominator 4(P1P5)P1P2(MZP), ( labelled PROPIV in the program ).
The other multiplicative factors, those arising from the two Spinor replace-
mentl and the gluon polarisation vector replacement, (labelled BOIV, CUOIV,
md EOIV in the program) will also appear in the LOOP number and hence
fivide out when the ratio is taken. For this reason they are set equal to unity,
lor convenience.
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To evaluate the LOOP amplitude, the ninet integrals for this set of dot
products are evaluated, along with WIV, which is the determinent used in the
expansion of k,, as per Appendix L. These results are fed into the linked LEP-
TON LOOP function which returns a single complex number.

As the ANTI-LEPTON diagram is the same as the LEPTON if one interchanges
P3 with P4 (except in the LEPTON line TRACE), the dot products involving
P3 or P4 are s0 interchanged, the sign of Epf(P1, P3, P4, P5) switched to ac-
count for this interch the ni integrals 1 luated along with WIV,
and the results fed into the ANTI-LEPTON LOOP attached function, (which
has the LEPTON line TRACE in minus reverse form in preperation for the
switch), and the calculated number returned. (The minus sign is due to travers-
ing the variable LOOP momentum k, in the opposite sense when writing the
line TRACE for this diagram.)

Each of these numbers has already combined its four and five point contri-
butions with appropriat ltipliers in prep ion for bi into a single
number. The d inator for that bining is now folded in and the results

Jjoined as a single number for the LOOP TERM.

That number is then scaled by the scale factors —(1/137) and 1/(16x). As
in the BORN TERM, the factors BOIV, CUOIV, and EOIV arising from the
Spinor and polarisation replacements are set to unity.

The LOOP number is added to the BORN number, squared, and divided by the
square of the BORN number to form a RATIO, which is written to an output
file along with the values of the six dot products that formed it.

The next point in the grid of phase space is examined and, if valid, processed.

This continues until all grid points have been examined.
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Chapter Three
The Results

Section 8.1 ... Introduction

This chapter concerns itself with the presentation of the results of the FOR-
TRAN program which calculates the RATIO of the BORN + LOOP cross sec-
tion to the BORN cross section.

The results are presented separately for each of the eight allowed helicity states.
The display of the data is as generated, that is in grid fashion, one dimensionless
RATIO number for each physically allowable set of external dot products.
Rather than display the output from the small grid step sise which actually gen-
erates the results (this is too much data to comfortably display), the program
is rerun with a larger grid step convenient for displaying, the results of the two
runs carefully compared to ascertain nothing interesting was lost in going to the
larger grid size, and the larger sise displayed.

The smaller stepped data is losed in Appendix U in case it is desired to
examine it.

Section 8.2 ....Choosing the Display Mode

As indicated at the close of the previous chapter, those points of phase space
which are energetically allowable lie on two plane triangular surfaces:

-P1P3 -P3P4

-P1P5 -P4P5

-P1P4 -P3P5

Each corner of the triangles intersects the axis at 5%-

The triangle on the right involves only outgoing dot products. For each point on
this triangle, all points of the first (input) tnang]e are energetically allowable.
The data is p ted by selecti ive points on the output triangle
and for each of those points duplaymg the RATIOS for a representative set of
input points on the input triangle.

30
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View the output triangle straight on, and select 15 symmetrically spaced repre-
sentative points: (the alogarithim for selecting these is given in Appendix V)

-P3P4

For each output point generate an input triangle in which the RATIO has been
calculated for each of 15 representative points in conjunction with the fixed out-
put point:

-P1P3

1Py

<P4Ps
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The missing RATIOs are due to the fact that not all the energetically allowable
boints also separately conserve each of four P of energy t
hat is not all survive the inequality test:

{(P1P4)(P3P5)(P1P5)(P3P4) > [(P1P4)(P3P5)+(P1P5)(P3P4)—(P1P3)(P4P5))?
derived in Appendix P.

Again, the display data has been full, d with that ted by

he smaller grid sise to assure it is indeed representative.

The dual values given for each RATIO represent the reflection of the output
particles across the plane of the input particles. This reflection does not change
he set of six dot products, but does alter the RATIO. It is accomplished by
hanging the sign of Epf(P1, P3, P4, P5).

Section 3.8 ... Results for the Eight Helicity States

[he following eight pages contain the display of the eight helicity states.
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Section 8.4 ... Focus on M,; Peak

Of particular interest is that area of phase space where the 'mass’ carried off
from the M, decay is equal to M, itself, that is: —2(P3P4) = M?, and the
2° propagator b inimal

MZP = 2(P3P4) + M? —iTM,
= —il'M,

Therefore the values of P3P4 are slowly stepped through the M, peak in a sep-
arate running of the FORTRAN program. This is done for the helicity state A,
assuming it to be typical in this respect.

-P3P4

-P4P5

-P3p5~

The results ( enclosed in Appendix U), show NO particular distinction from
any other area of phase space in the range of RATIOs produced.

As one of the goals of this project is to look for asymmetries in the Z° de-
cay curve, the above data is plotted- RATIO vs. P3P4, as P3P4 is stepped
through the M, peak. In this graph, one point stands for the average value of
the RATIO on one of the lines in the above diagram, averaged over 1000 points.
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This plot shows NO appreciable asymmetry, NOR shifting of the Z° peak.

Section 3.5 ... Edge Activity

All the above results work on the interior of the triangles, staying away from
the edges, that is away by 5 per cent.




X



-P1P3

-P1P4 -P1Ps

-P3P4

-P3PS P4Ps

This is because as the edges are approached, the RATIO can become arbri-
tarily large due to the p of dot products in d i P

Section 8.8 ... C ting with the Center of Mass System

It may be of interest to relate a set of dot products to outgoing scattering
angles in the laboratory (center of mass) system. To this end, the polar angles
of the three exiting particles in the center of mass system are derived in terms
of dot products in Appendix P.

They-are:

P3P4+ P3PS
P1P4
P3P4+ P4P5
P1P5
P3P5+ P4P5

cot(ﬂ;,)a,.:l—z[ P1P3 ]

cos(fs)em =1—2 [
co8(8s)em = 1— 2 [

Note that the new restrictions that seem to apply:

—(P1P3) < —(P3P4+ P3P5)
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—(P1P4) < —(P3P4+ P4P5)
—(P1P5) < —(P3P5+ P4P5)

are already contained in the restriction that Pl: be greater than gero.
Section 8.7 ... Analysis of the Results

The pattern of results is approximately the same for the eight helicity states,
in that almost all the RATIO’s are near unity except for one ‘corner’ of phase
space, where it might range from a value of 2 to near 50..

The largest ratio in the representative sets is 45.669, the smallest 0.0526.

The plot of RATIO vs. P3P4 showed NO noticable asymmetry as the M, peak
was traversed, NOR shifting of the Z° peak.

For the small grid size, the values grew arbritarily large as the edges of the tri-
angles were approached, as expected due to the presence of these dot products
ind inator positi This i is unimportant as the amount of phase
space near the edge goes to zero faster than the amplitude grows and does not
contribute to the integrated cross section. This is d d in the sol

to the preliminary diagram in Appendix W.

The largest values of the RATIO appeared in the phase space ‘corner’ of large
P4P5 and small and equal P3P4 and P3P5. The ‘input’ triangle indicates small
P1P3 and P1P5 and large P1P4 . Comparison with the center of mass ex-
pressions of the preceeding section give particle 5 (the quark) staying in the
forward direction, particle 4 (the lepton) reversing direction to emerge at 180°,
particle 3 (the anti-lepton) emerging at 90°. Thus the largest effect of this pro-

cess produces & high transverse momentum product!
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Chapter Four
Verification and Validation

Section 4.1 ... Introduction

There are six points at which verification of the calculation is enacted.
Section 4.2 ... Verifying Epf(P1, P3, P4, P5)

The value of Epf(P1, P3, P4, P5) in terms of dot products of the problem is
calculated two different ways in Appendix C - first by direct evaluation in a cho-

sen refe frame and dinate system, and second via the usual method
of evaluating a determinent. Both methods give the same result.

Section 4.8 ... Verifying the Spinor replacement

This replacement, derived in Appendix H, for dis-simil ta is non-
standard and is thus checked carefully.
In Appendix Q it is applied to two simplistic diagrams in which the amplitudes
and the spin averaged cross sections can be hand calculated. In each case, the
square of the amplitude, (using the replacement), is equal to the cross section,
(not using the replacement), verifying the correctness of it.
The second calculation is then slightly altered, to use the exact spinor replace-
ments for this problem, and a SCHOONSCHIP routine written to evaluate
uzd pare the amplit q d and cross section. The successful compar-
on validates the correctness of the exact replacements and the correct use of
SCHOONSCHIP syntax in evaluating the amplitude.

ection 4.4 ... Verifying the Born term

he eight helicity state amplitudes of the Born term are separately squared
nd added. This sum is then subtracted from the spin averaged cross section.

the amplitude calculations are correct, this will produce sero. It is checked
as the last calculation of the SCHOONSCHIP program in Appendix I which
generates the amplitudes. The sero is produced. This verifies that the least
standard piece of the calculation, the Spinor repl t for dis-similar mo-
menta, is working correctly. Less importantly, though of course also essential,
t checks that the other factors of the Born amplitude are free of error.
As it operates on the amplitudes simultaneously as they are outputed into FOR-
TRAN compatible format, there is no further possibly of transcription errors in

45
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the Born amplitudes.
Section 4.5 ... Verifying the LOOP numerator

It is noted in Appendix G that the quark singularity is benign because for
precisely the value of k, at which it occurs, the numerator also approaches sero
to the same order.

This sero is used as a check that the calculation is p: di tly.

After SCHOONSCHIP has taken the LOOP traces, lubutxtuted for the spinor
and polarisation vectors, and replaced k, in all Epf's by its linear expansion (
as per Appendix L ), then the repl t in the Iting expression of k, by
precisely this value should still produce the sero, if all the |ubm¢utwm were
enacted correctly.

This check is performed by the SCHHONSHIP program of Appendix R, & trun-
cated copy of the main SCHOONSCHIP loop program ( Appendix K ) that
produces the FORTRAN compatible amplitudes. It is truncated after all the
above substitutions are made and before the base integral groups are recognised
and the nineteen integrals symbolically labelled.

The insertion of this expression for k, does produce the sero, indicating that at
this point all the above substitutions were made correctly.

This zero took a half hour of SUN time to produce, reflecting the large number
of terms present in the calculation at this point, all of which had to be correct
to produce the zero.

Section 4.8 ... Validation of Divergent parts of Nineteen Integrals

Although the calculation itself is finite, each separate diagram is infinite, and
most of the nineteen integrals possesses an infinite piece.

The infinite part of the di (and of the ninet i ls) is larised
by the use of small photon and quark masses which are a.llowed to go to sero
at the end of the calculation where the masses appear in log form, and their
coefficients must sum to sero over both diagrams to avoid divergence as the
mass goes to sero.

The appearance of these zero co-efficents verifys once again the correctness of
the substitutions already once checked by the replacement of k,, as per the above
section.

It goes further and verifies the base integral groupings of Appendix M and the
divergent parts of the analytic solutions of the nineteen integrals executed in
Appendix N.

This check is enacted by using the SCHOONSCHIP loop program of Appendix
K and instead of producing algebraic output, altering it to produce a numeric
result for a specific set of dot products.

At the beginning of the program the six symbolic dot products are replaced







]

47

with a set of six numbers that form a physically valid set. As SCHOONSCHIP
does not evaluate logs, any logs of the above six dot products are evaluated
separately and fed into the SCHOONSCHIP program. The same code that
luates the ninet int, Is in the FORTRAN program is then inserted in
the SCHOONSCHIP program, where it produces nineteen numbers from the set
of six dot products. (Alternatively, these could have been evaluated in FOR-
TRAN and the nineteen numbers fed in.)
The calculation is then performed numerically instead of algebraiclly, with the
one exception of the logs of the fictitious photon and quark masses, which are
carried as algebraic symbols.
The ouput of the SCHOONSCHIP prog; now b 1 b
representing the convergent part of the amplitude being cnlculuted and two al-
gebraic symbols with coefficients for the logs of the photon and quark masses.
These coefficients must sum to sero over both diagrams.
The altered SCHOONSCHIP program to perform this check is listed in Ap-
pendix S. The valid set of six dot products were arbritarily chosen, and the
production of the zero co-efficents verified.
It is to be noted that the convergent parts of the nineteen integrals are not
checked by this result.

Section 4.7 ... Numeric semi-check of nineteen integrals

Finally the convergent and divergent parts of the nineteen integrals are semi-
checked by comparing (for a specific numeric set of dot products), the analytic
result with the result of an approximate numencn.l gnd mtegrutmn

The result is only approximate as the ical integ ily diverges.
This divergenge is ined by introducing small ic photon and quark
masses and comparing runs with increasingly sm<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>