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ABSTRACT

THE TRANSITION FROM NON-ADIABATIC TO SOLVENT

CONTROLLED ADIABATIC ELECTRON TRANSFER:

SOLVENT DYNAMICAL EFFECTS IN THE INVERTED REGIME

By

DAR-YEN YANG

This study concerns the effect 'of solvent dynamics on

non-adiabatic electron transfer reactions. A hamiltonian is designed to

include: a reaction coordinate for two quadratic potential surfaces of

donor and acceptor species and a heat bath which is characterized by a

single Debye relaxation time 'CL. Solvent dynamical effects are

described by an indirect coupling between the reaction coordinate and

the heat bath. The time evolution of this system is obtained by use of

the quantum Liouville equation. After averaging over the solvent

fluctuations, the dynamics along the reaction coordinate are reduced to

a classical Fokker-Planck operator, but the motion of the electron is

still treated quantum mechanically. When the rate of nuclear motion in

the potential well is comparable to the non-adiabatic transition rate,

a consecutive reaction scheme leads to a rate constant expression k 12 =

1:131 1:2" / ( RI? + k3” ), the steps being the diffusion along the

reaction coordinate with rate k3" followed by crossing at the

intersection of the donor and acceptor potential surfaces with a rate

k'l'S‘l'

ns

Arr

.kd is dependent on the solvent dynamical effects through 1:1. and

k1? is independent of tL. When the motion of the system in the



transition region must be treated quantum mechanically, the transition

region can be spread out over a length larger than the mean free path.

Then RI? should be modified 'by solvent dynamic effects. When the

separation into diffusive and crossing motion is no longer appropriate,

we use an eigen—function method to expand the four coupled equations

' for the density matrix of the system, and solve for the reaction rate.

A comparison of the numerical and analytical results is given.
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I. INTRODUCTION

In oxidative phosphorylation, photosynthesis, and

oxidation-reduction reactions, electron transfer (ET) is an important

chemical process. Non-adiabatic transitions may occur in long-ranged ET

or the spin change of reactants. Recently, Kosower and co—workers1 have

found that ET rates in polar aliphatic alcohols are inversely

proportional to the slowest dielectric relaxation time tL. This shows

that the solvent dynamic effects can influence non-adiabatic ET, which

has attracted considerable attention.

The pioneering work of Marcus2 showed that, in the

high-temperature regime, the ET rate has the thermally activated

Arrhenius form k1? = AA exp (-Bs/kBT). The activation energy is the

height of the nuclear barrier Ea : (AE-Er)Z/4 Er. This expression for

the activation energy is valid in the classical limit when quantum

effects of nuclear tunneling are omitted. In Marcus’ work, the ET

process is adiabatic. Levich3 has treated ET as a non-adiabatic process

using the Fermi-Golden rule rate expression. The medium is modeled by a

set of harmonic oscillators. The frequency factor in the classical

limit is AA = (Zn/fl) V1: (411 Er kBT)-“2. Zusman analysed‘ the

situation when the dynamics of the reaction coordinate is diffusive

rather than uniform; his approach rests upon the stochastic Liouville

equation. In the extreme adiabatic limit, when the dynamics of the

1



2.

reaction coordinate reduces to diffusion over the low adiabatic

surface, Zusman’s expression reduces to Kramers’ results.

Zusman’s result also connects the non-adiabatic limit for the frequency

factor, which is determined by the electronic coupling, and the

solvent-controlled adiabatic limit, which is determined by the reaction

coordinate dynamics. In the non-adiabatic limit, the frequency factor

is AA, while in the solvent-controlled adiabatic limit the frequency

factor is proportional to tr.

The most popular harmonic oscillator model is composed of two

quadratic potential surfaces which cross, embedded in a polar mediated

heat bath. When the system is at equilibrium, before the electron is

transferred, the system is located at the minimum of potential well RA

(see figure 1). When the solvent fluctuates (the system deviates from

the equilibrium state), the system will move away from the minimum

point. This deviation from the equilibrium state, which is activated by

thermal energy, is described by a coordinate called the reaction

coordinate. Since the dipole moment of the solvent always fluctuates

due to thermal energy, and this may be described by diffusive motion,

the system will diffuse along the potential surface. The splitting at

the crossing point of the two surfaces is 2V12 (from the point of view

of the adiabatic representation). When 2V12 > kBT, the system with

thermal energy can not jump to the upper surface. The system will

transfer from the left minimum to the right minimum within the same

surface. This is called an adiabatic transition. When 2V1 < ksT’ the
2

system get enough thermal energy to jump to the upper surface several

times before crossing. This is called a non-adiabatic transition. The
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analysis of the relation between non-adiabatic and adiabatic ET is

important for the understanding of solvent dynamic effects. We first

summarize the outstanding problems6 as follows: 1) the relation between

the ET dynamics along the reaction coordinate and the dissipation of

the medium. Frauenfelder and Wolynes7 have considered the relationship

between the mean free path and the Landau-Zensr length. They get two

limiting physical situations: uniform dynamics and diffusive dynamics.

2) The relation between the ET dynamics and the strength of the

electronic coupling. This depends on the distinction between the strong

and weak electronic coupling in the Landau-Zener transition, which is

determined by the L2 parameter I”. These two LZ limits are the

non-adiabatic and adiabatic coupling limits. 3) The nature of the

dissipative properties of the medium and of the strength of the

electronic coupling. The interesting physical situtations are:

non-adiabatic ET, solvent controlled adiabatic ET, and

uniform-adiabatic ET. 4) The transition between non-adiabatic and the

solvent controlled adiabatic ET. 5) The competition between ET and

medium relaxation. The basic implicit assumption of general

non-adiabatic ET theory includes the separation of the time scales for

the fast medium dielectric relaxation and for the slow electronic

processes. When the microscopic ET rates of a given state are

comparable to the medium relaxation rates, the ET process is expected

to be determined by the longitudinal dielectric relaxation time 1:
1.

corresponding to the solvent controlled adiabatic limit.

These two quadratic potential surfaces have three different

combinations: normal, activationless, and inverted regimes. In the
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normal regime, with barrier energy larger than ka’l‘, the non-adiabatic

'1' L315 1:. . 1's _ _ 1/2

transition rate 18 km - 2 h ( B E.)
 exp(- B Ea). This is

the Arrhenius law which describes localized transitions and kIfT is

independent of tL. The diffusion motion inside the potential surface

Arr

gives kd = + ( g: )1/2 exp( - B Es ), which depends on IL. Both

1.

km, and k3" include an exponential part and a prefactor. For kIfT,
III

the prefactor is proportional to the square of V 12. Usually this makes

131
k

It.

much smaller than k:". In the activationless or low barrier

energy regime, it is still not clear how to describe the transition

rate. The inverted regime which has been discussed by Marcus8 has

strong quantum behavior. The region that nuclei can tunnel through is

called the delocalization width :19 (see figure 1c). When u is spread

out this means that the system exhibts strong quantum behavior. The

diffusive motion inside the tunneling region is our main topic in this

work.

Rips and Jortner6 studied the reaction rate by using a path

integral formalism that ultimately reduces to a consecutive mechanism.

This method separates the reaction rate into diffusive and reactive

1. Whenpart. The total rate is 1 / 1,12 = 1 / kg”-

TST

It.

131'
it

I'll

Arr

k

d

TS

+ l / k“. »

TST

k , k12 1: kn. ; the rate constant for the rate determining step is

which is independent of ti.

. . Arr

18 increased and kd

. If we increase the friction of the

TS‘I‘

« k ;solvent, 1: is decreased, to make kg"
1.

Arr

kd . The rate constant for the rate determining step isthen k12 =

Arr

ks
The solvent effect (through the longitudinal dielectric

relaxation time IL) makes the transition rate slow down and the rate



8

constant k12 is changed from the non-adiabatic transition rate k1"? to

the adiabatic transition rate k3". This shows how the solvent can

controll the transition rate from non-adiabatic to adiabatic behavior

(for an adiabatic transition, the reaction rate is independent of the

TST

electronic coupling V ). In the work of Rips and Jortner, km is
12

independent of IL, and the delocalization width 11 it If. Morillo and

cinder1° showed, with I ) the delocalization width :1 » If, that it: =

vi5(u/Er1ui'r)"zex (_LEr-j EILZ 1

1+x P 4ErkBT l+x
). Here it: depends

on IL. The situation that we are going to study is when I 8 u » I r’

what is the reaction rate expression? And will the consecutive

mechanism still be sensible?

In this workzo, a Debye solvent has been used. The dielectric

fluctuation has frequency lower than ksT / It. A classical diffusive

motion of the system along the potential surfaces can simplify the

calculation. The tunneling effect still needs to be kept in a quantum

manner. The problem is formulated by using a density matrix in

Liouville space. By use of the Wigner transformation, a set of

semi-classical Zusman equations has been obtained, which were written

down by Zusman without derivation. By averaging over all the solvent

degrees of freedom excluding the reaction coordinate, a classical

Fokker-Planck operator is obtained to describe the diffusive motion of

the system. The quantum transition is kept in the off-diagonal terms.

So, we have a set of semi-classical equations of motion. A

phenomenological rate constant is defined“. To calculate the Laplace

transformed rate kernel, an appropriate truncation of the Zusman
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equations with reasonable assumptions gives us two reduced coupled

equations. The well-known projection operator method12 is used to

separate equilibrium and non-equilibrium parts of the motion. A

consecutive mechanism can be sucessfully introduced to separate

diffusive and reactive dynamics. The final rate expression interpolates

between the adiabatic and the solvent-controlled non-adiabatic limits.

The effects of the solvent on the adiabatic character are clarified. A

careful study of the non-adiabatic transition rate shows the solvent

dynamic effects in it. We show that, in the inverted regime, friction

makes the quantum behavior more classical. Beyond the regime that the

consecutive mechanism can be used, an exact numerical calculation has

been done. An eigen-function expansion method” transforms our

equations of motion into four coupled first order differential

equations. The total reaction rate can be identified with the smallest

non-zero eigenvalue". With large fluctuations included, a vector

continued fraction method has been used to extract a relatively small

eigen-value.

The model hamiltonian for the rate process in condensed phases

will be introduced in chapter II. In chapter 111, we define the rate

expression and truncate the Zusman equations. The projection operator

method is used to get the final rate constant expression. We also

analyze the non-adiabatic rate constant in detail. The numerical

calculations will be described in chapter IV. The results of numerical

calculations and discussion of the validity of our consecutive

mechanism are given in chapter V.



II. DERIVATION OF EQUATION OF MOTION

The electron transfer problem consists of a transfer of an

electron from one localized state RA (D‘A) to another localized state

PB (DA-) within the same molecule or between different molecules. We

shall consider Levich's model3 in our following study to derive a

quantum mechanical hamiltonian. The model consists of electron + donor 4-

acceptor + solvent. Donor and acceptor carry charge M» and m+, and

there is no first coordination layer of the ions in Levich's model. The

solvent is a continuum polar medium which is characterized by the

polarization P(r,t) of the optical vibrational branch of the solvent. A

polaron model of this polarization has been used, so the solvent

consists of a set of phonons. The total hamiltonian of the system is

 

H:H+H+v +v (2.1)

s e is es

where

2
a) 2 5-1

3:991: (qz- )+—3-——I(nz.nz)dv (2.2)
s 2h1 k a 2 enez i 2

. qk G

2 z

- -9- 2 2.2 so
“.-'2m.v.+.+1?:'§T (2'3)

< l
l

” -meI-Tl%—f(—:;i»dV-nel(i—iT-—Ei-El‘ldv (2.4)

v" -eI‘1‘—i§—%;-}dv (2.5)

cm is the optical dielectric constant.

10
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H. describes the energy of the solvent: the first term is the

energy of phonons which is described by the normal coordinates qk, and

the second term is the energy of the solvent which is produced by the

electric displacement D1 and Dz due to the ions. H. is the energy of

the electron where the donor and acceptor are located at position 0 and

R. V“ is the coupling between ions and solvent. V” is the coupling

between electron and solvent. If we decompose P into P = PL + PT, from

div PT 2 O, we can see that only the longitudinal part of P will

contribute to VH and V". This is important in our choosing the

relaxation time of the solvent. The Schrodinger equation is

H ‘l’ (r,R,qk) = E V (r,R,qk). ( 2 . 6 )

In order to solve the Schrodinger equation, we can use the

Born-Oppenheimer approximation to separate out the fast and slow motion

of the system, which comes from the fact that both the fast motion of

electron and the slow motion of heavy solvent particles are included in

the total hamiltonian. Let

s (r.R.qk) = (:1 243m) Wuhan) ( 2 . 7 )

and let va(r,q.) satisfy

 

2 8-].
fl 2 (I) 2 2

[-_E-ve+u1+v +v.+ 2J(D1+Dz)dV]\o1

81! so

:ew (2-8)

 -iivzt. +v +V +£0-1(D2i’DzldV
2m e ‘12 ea is 8"62 1 2 W

co

2
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:sw (249‘)

u -s_e_z, mez
i'r Ir-RI

2 2

In 0 n 6

Substituting ‘1' into the Schr'odinger equation and multiplying with w‘,

then integrating over the volume, we get

[ H8 + Ci Ei ] ¢i v12 ¢2

[118».52-32](itzzvmtt1 (2.11)

where

vizzQiz-A12(Hs+€2'E) (2.14)

V21:Q21-A12(H8+£1-E) (2.13)

A = 0 01:3 (2.14)
orB{ * ,

[wavfldv a“,

not °° :6 a iaz'g

9.3“? if. [‘ji’ea‘q—R'devl‘a—‘akltl". aqzd"

I

t

+IwaquBdV]. (2.15)

This describes the Born-Oppenheimer states 4’1 and 412 of the system in

initial and final state. The displacement of the heavy molecules of

solvent caused by the electric field of the electron is small and a

linear approximation of ca( qk ) relative to the equilibrium state can
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be used. So

do a s
_, (o) a _ (a)

Eaiqkl-ealqk l+hf1(5-a:-)qh_q:0’(qk 9k )f(2'16)

 

 

 

where qim is the equilibrium position of qt. Now the total hamiltonian

is

o 2
_ gen _ (0) 2 _ a

Hsiifia' 2 £{(th qt ) (a) z}+Ta’

hi 6 ( q. - q. l

( 2 . 17 )

where

(0) hm Q (0) 2
'l‘aztzm('I )+-2—-Z(q. ); (2.18)

hi '

i.e.

co 2
- {131 (a) 2 a

Hi-Zkfi{(qk-qki)_a( (0))2}+T1 (2'198)

qt: q“

as 2
_ M (0) 2 a ‘

Hz'z z{(qt‘quz)' (0)2}+T2' (2.19b)

"1 a ( it ' quiz )

If we set

E _ _ (0)

t‘qt qki (2.20)

and

E(0) _ (0) _ (0)

it ‘ qt q“ (2 . 21 )



l4

 

 

 

Figure 2. Coordinate representation of the potential energy surface.
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then

on 2

hm 2 a

H:—X(§- )+T

1 2 h, It aEma i (2.22s)

so 2

n2=§§lz[(§k-g:°’)2- 62]+T2. (2.22b)

III 65‘

Since qk is the normal mode of the vibration, Ek can be thought of

as another N orthogonal coordinates in E-space. With a rotation of the

coordinate Eh, a new coordinate set n‘ = 2 a” 8' is obtained. After

the rotation of the coordinate Eh, the potential energy hypersurface of

H is on axis 1‘)1 (see figure 2). The final hamiltonians are

  

  

co 2 z

31=9§12(nk2- az)+§%1(12-az)+T1(2.23a)

ksZ an.I an}

a) 2 2
6 a

H2:§§12(nk2- 2)+J§£2fl ("i-"0’2- 2 +T2
k-z an“ 6r)1

(2.23b)

where

n2-; (Em)2 (2 24)o -k-1 k C O

The 771 axis can be thought of as the reaction coordinate; the other N-l

dimensions are the same for H1 and Hz’ and can be thought of as solvent

coordinates. Unfortunately, there is no coupling between reaction and

solvent coordinates from this perspective. It is not clear how to
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derive the coupling rigorously from a hamiltonian model. We will put

the coupling term (between reaction and solvent coordinate) into the

hamiltonian artificially (see eq. (2.25)).

In the following, we will assume that the system moves on one

dimensional potential surfaces (or reaction coordinate) which are Born-

Oppenheimer surfaces. There are two well-separated minima which

correspond to D-A and DA-. The heat bath will couple dynamically to the

motion of the system. So the motion of the system on the reaction

coordinate is described by the quantum Liouville equations. Using the

Wigner transformation, four classical-like equations are obtained. We

use classical Fokker-Planck operators to describe nuclear (solvent

polarization) motion, and the electronic coupling is still kept in a

quantum manner.

The hamiltonian is

H=H030+%(Vu-V22)oz+V12<;x, (2.25)

where

HO:[-§%; va2+v((qk})]+[-!2-‘;- vx2+%(v“+v22)]

+v({qk}.x). (2.26)

and

O
H

L
o

I
.
_
_
_
J
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are Pauli spin matrices.

In Ho’ the first term is the heat bath hamiltonian, the second

term is the motion of the system on reaction coordinate, V({q0),x) is

the coupling between the reaction coordinate and the heat bath. We

assume there are no off-diagonal terms in V ({qalm) i.e.

V12({qal.X) V21({qa}.X)=0 (2.27)

and

V“({qk}.X) vzziiqkirx)

viithoX). (2.28)

The two-level pure state wave function is ¢ = ¢1({Qk},x) + Oziiqhiar) ,

so the density matrix p = 0 (it. The Schr3dinger equation of our system

is

. 6 _
Ifi'a—EP-[H,P]. (2.29)

Its components' forms are

.9.
, t_ x 1 t

lfiat¢1¢i '[ HO’¢1¢1]+[-2-(v11-v22)'¢i.¢1]

t 3

+[v12¢2¢1-¢1¢2v12] (2.30s)

p
a

{
3
‘

9 9 I
I

3 1 3

atiz [Ho'¢1¢z]+{§(vii'vzz)’¢i¢z}

t s

+[V12¢2¢2-¢1¢1V12] (2'30b)
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ifi_a_.¢ @‘ :[ Ho,¢ OIJ-{%(V11-szli¢z¢:}
atzi 21

*[V,2°i¢:'¢2¢;v12] (2'30c)

. a s_ s 1 t

11g‘é—Eiiizitz"I:Ho'4.24.2]"['2'(“’11'V22)’4’2¢2]

+[v12¢1¢:-¢2¢:v12]° (2'30d)

Two kinds of terms appear: commutator and anti-commutator. A

non-adiabatic transition is a quantum transition, so we must start from

a quantum description. But we want to treat the solvent classically.

For a quantum system, especially a quantum statistical mechanical

system, the Wigner transformationis gives an appropriate procedure to

transform from quantum to classical motion, because a Poisson

bracket-like term which describes a Liouville equation is obtained and

this describes classical motion.

The Wigner transformation is defined by

P :(uh)-(N+1)

U Idydlyalexpigfiipy+payaH

"-ya')¢:(X+y.q"+y'). (2.31)¢(X'Y9q t! a
i a

We simplify the expression to one degree of freedom only.

The commutator part is

2

fi 2 :1

['25" ”WM”

21

_ --py 2

2(nh)‘ Jaye“ [-g-DVZ+V.¢‘(X—y)¢:(x+y)]

(2.32)



19

-- -21 .. 2-1h{ maxJanka.+21sm[2vxvp]v1)”. (2.33)

The Poisson bracket term is similiar to a Liouville equation

classically. The sine term can be expanded by using a Taylor expansion

and the lowest order term can be included in the Poisson bracket term.

The higher order terms which include h“ (n 2 2) describe the quantum

correction, and are not of interest here.

The anti-commutator is

_ 4 27:“

Vi¢i¢J ~(nfi) e V.¢i(x-y)¢J(X+y)

=2003[§VxVP]VPU. (2.34)

We want to treat the solvent classically, so higher order terms

of the Taylor expansion of the cosine term are omitted too. The

Liouville equation that we obtained yields the Fokker-Planck operator,

following the well-known procedure (see ref. 16). Let

pijzidppij’ (2.35)

then we have

1p :L p +Xl£(p -p ) (2 368)

at 11 11 11 in 21 12 '

a _ 12

atpzz‘L22922+ih (912 921) (2'36b)



 

 

V - V ) V
a __ ( 11 22 12

_atP.z-L,ZP,2+ if, 912+;g-(922-pn) (2.36s)

(V - V ) V-
a _ 11 22 12

57921-151ng- i‘h 921+i-fi—(p11_pzz). (2.36d)‘

The potential surfaces in Li J are, from equation (1 - 4): ( V 11

+v22)/2+(vi -v22)/2=v11’(v11+v22)/2,(vii+v22)1

/2,(Vn'tvzz)/2-(VII-V22)/2=V22inL“,L12,L21,L22

where L i j are the Fokker-Planck operators.

The motion of the system in the initial and final potentials

(V and V22) is determined explicitly, and the off-diagonal terms
11

are described by the motion on the averaged potential surfaces.

These semi-classical equations describe the solvent dielectric

fluctuation as a low frequency fluctuation with energy smaller than

kBT. So the solvent is treated classically. The relaxation time in the

Fokker-Planck operator is ti. (longitudinal relaxation time) instead

of to (transverse relaxation time), because only the ‘longitudinal part

of the solvent polarization contributes to the interaction with

electrons (see eq. (2.1c,d)). Recently, many investigators" have

claimed the relaxation time should have an order of magnitude between

1: and to (usually ID > tL). In our model, a continuum medium has

I.

been used, so the relaxation time is fixed at IL. The diagonal elements

p and 922 are the probabilities of finding the system in the initial
1 1

and final potential well. The diffusion motion (now it is the

fluctuation of solvent polarization) is slow since it is activated by

thermal energy. The off-diagonal terms include not only the diffusion
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motion but the high frequency quantum transition behavior (1 ( x - o )

/ f1 term). These properties are important in our future assumptions.



III. ANALYTICAL EXPRESSION OF RATE CONSTANT

We derived four coupled equations for electron transfer in a

polar medium in the last chapter. In this chapter, we are going to

derive an approximate expression for the rate constant by using a

projection operator method. A consecutive mechanism will be used to

separate the diffusive and reactive dynamics (see figure 3). Electron

transfer can be expressed as motion from RA (D-A) to PB (DA_) through

an intermediate state I. The boundaries of RA-I and PB-I are located in

the region where the tunneling probability is negligible. Such a

division has been used in chemical kinetics. An interesting example is

given by Northrup and Hynes in ref. 11. A double-well potential surface

has been used in a chemical reaction system. The potential surface has

been separated into three different regions RA, PB and 1. RA and PB

correspond to wells and I corresponds to the intermediate region.

During the course of the reaction, spatial equilibrium in each well has

been obtained. But the intermediate state has been perturbed by passage

across the barrier. Thus the intermediate state will deviate from the

equilibrium distribution, and this produces a net change of the

populations which makes the meaning of the rate constant sensible.

Northrup and Hynes use the internal rate constants (which are equal to

our kd1 and kd2) to describe the rate of approach to equilibrium inside

wells RA and PB. The motion within the region of the intermediate state

22
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I is characterized by the barrier rate constants (which are equal to

our k1: and. k::) which describe the rate from RA-I to PB-I and vice

versa. The final overall rate constants then are geometric sums of the

internal rate constant and barrier rate constants. We shall use a

similiar point of view in the following discussion.

The kinetic scheme for the occupation probabilities Ne, Nb, Ni of

the states RA, PB and I is

a -
fiNs--kAle+klANi (3.18)

-a—Ni"k N-k Ni-k Ni+k Nb (3 1b)

at ' AI ' IA 13 BI ’

isz'k Ni-k Nb (3 1c)
at [B B! ‘ ‘

To maintain these expressions, the macroscopic quantities Ns, Nb,

and Ni should exist; the barrier height should be high enough to obtain

an equilibrium state at each potential well and the rate constant

should be small enough to be measurable. The macroscopic quantities can

exist only when they can be explicitly identified. Distinguishability

between N. and Nb exists when RA and PB are well seperated by a high

barrier. Passage across the high barrier can perturb the equilibrium

distribution in the intermediate state, and make it non-equilibrium. A

net change of the populations per unit time in region I produces the

reaction rate. In other words, an oscillation of the change of the

population from RA to PB which is fast forward and backward can not
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kdlpf

(l-Pa)
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di 1’

1,1,8”, kMPr(l-P8)PrPB

 

  
Figure 3. Branching ratio diagram for the forward rate constant.
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have a reaction rate.

The initial conditions are: N. ( t = o ) = 1, Ni ( t = o ) = o,

andNb(t=0)=0.

Using the well-known steady state approximation for the

intermediate state 52? Ni : 0, we obtain

 

Z s I
t

—Idt§r(r)Ne(t-t)+Jdt§r(t)Nb(tft)

(3.2a)

BETszIdti-t’f(t)Ns(t-t)-Idti_tr(t)Nb(t-t)

(3.2b)

where the rate kernels ir and it are defined as

ir:k“6(t)-k“kuexp{-(ku+k”)t} (3.3a)

irzkmkmexp{-(kui-km)t}. (3.3b)

Here 5(t) is the delta function. The memory effect in (eq. (3.2))

means that the rate of change of the stable state population at time t

is dependent on the intermediate state population at time t - t. The

intermediate state population depends on the previous gain from and

loss to the stable state.

Since we are interested in a long time rate t > I" (transient

time which is the time period required for the maintaining of a
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non-equilibrium steady state condition in the intermediate state), the

rate expression can be simplified to

 

a ..
ath—-k12Ns(t)+k21Nb(t) (3.4a)

-a-Nb-k Na(t)-k Nb(t) (3 4b)
at " 12 21 '

where

k12=Jdtxr(t) (3.5a)

k21=Jthr(t). (3.5b)

Then the population equations can be written as

Nb 4:12 1:21 Nb

"“‘l"']N" (3.6)

andwedefine

Q

Nezjdxpn(x,t)

.0

a)

szjdxpzz(x.t)

.m

in our case.

G

After Laplace transformation, f(s) = I e- at F(t) (it, we have

0
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[si+1_;]1§(s)=§(t=0). (3.7)

The reason to do this Laplace transformation is: There are an

infinite number of relaxation modes which are distributed from low to

high frequency. The slow ET rate is assumed to have a comparable rate

to the slowest relaxation frequency (of course not in the low barrier

and activationless regimes). If a long time rate exists, we want to

extract this slowest process from the fast relaxation modes. Letting s

9 0 (i.e. t -+ 00), we can get a long-time rate expression.

Fortunately, our four coupled equations of eq. (2.36) can be reduced to

two coupled equations similar to the reduction to eq. (3.16) and the

rate expression can be identified by using a projection operator

method. We now carry out this reduction. The formal solution of eq.

(2.36c) is

v12

p12:'-K_Idxiidti 612(x,t| xi' t'1)

[p22(xi'ti)-pii(xi'ti)] ‘ (3'8)

where

- 1

- a -

Giz'[8_t-L12+l(vii-v22)/fi]

 = 1 1 exp{%

2/21t/D'cl(l-exp(-2t))

2

7t
1 L -t

D1:L(1-exp(-2t))[2D h (l’e
) 
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2

 

71: 2

. -t 1 -t i.

-1[x-xie -§xo(1-e )]]-D( h)ti.t

yrI. 1

+iT(x-xi-2x0t+at)}

(3.9)

V +V
_ a a a 11 22

Liz-Dn[fi+53—i‘_‘z——’]

for the potential of eq. (4.1).

This propagator includes both the motion induced by the

, and the surface splitting, (V 22 - V 11)' forstochastic process, L 1 2

the tunneling effect. As we discussed in the last chapter, the

diffusion along the reaction coordinate is treated classically because

its characteristic frequency to a 1 cm.1 (i.e. smaller than kBT / h) is

lower than the quantum transition frequency a) a 1000 cm.‘1 (i.e. 1 ( x -

o ) / 11). Assuming the time variation of G 12 is faster than that of the

local population difference, [922 ( x, t ) - t)11 ( x, t ) ], then

912:"1deifiizlxl xi)[922(xi.t)-P“(Xi.t)]

(3. 10)

here

- V12

K12(x|xi) : "fi- I dt G12( x,t|x‘,0)

(3 . 11)

i1 15L 1

(in G12, the _—_h ( a - 2 x0 ) t term shows that the oscillation

frequency will increase as t increases).
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The formal solution of eq. (2.36s) with eq. (3.10) yields

v .

p“(x,t):-%—2-IdxiIdxildtGfl(x,t|x1.0)

Rahal",’[Pzz‘xi-H“Pn‘xr“]'

(3.12)

11

. a -1
where G11 18 the propagator corresponding to [ g-t- - L ] . 61 ‘

describes the motion in well A. If we assume its spatial variation

(with frequency smaller than ksT / ft) is slow relative to that of

_ 7 1’ _

K12 (with frequency 1 ( x - a ) / it) (see i f) L x term in K12), then
 

v12 m -

pnz—g—deiIdth(x,tl x1 ) [Idxi K12‘31l xi)

0

.[pzztxi,t)-p“(x‘,t)]]. (3.13)

This is the key assumption and leads ultimately to the consecutive

rate scheme. Note that we separated the diffusion (G 11) motion and

the transition (R12) behavior in this equation. That is the basis of

a consecutive mechanism.

We define

V

e * .- _12 -

K12(x,x)-fi—Idx K12(x1|x)
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v12 2 o

=(.._fi) d". dtG12(x1,IIX.0)- (3.14)

0

Applying G1? to eq. (3.13), we obtain

a _ . x

[fi-L11]911-2Rex‘2(x,x)

[932(x.t)-p,,(x.t)] (3.15)

A similiar treatment of 022 gives us the final two coupled equations

EQEE=[E+§]E (3-16)

with

p:[pii]

- p22

'
t
‘

N

f
'
_
"
"
!

C
L
"

i H

L
"

o

N N

h
—
—
—
—
—
J

'
W I
I

N R
s
u
b

N

f
—
—
"
1

I

h
e

I

H
t
-
o

t
—
u
—
u
—
l

the if term can also be thought of as a sink term as discussed in

ref. 18.

The projection operator method will now be used to separate the

diffusive and reactive dynamics. The reactive dynamics arise from the

equilibrium part of the rate kernels, see eq. (3.16).
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We define the projection operator 1: = g I dx and its complement Q

l - E! where

2,0 °°

g: . 81=GXP(-anl/ [dxexm-BV“).

0 s
2 4»

By applying 2 and 9 to the Laplace transformation of eq. (3.16), we

get

=Bg(t=0). (3.17)

In obtaining this expression, we have used 2 L, = 0 (this projects

out the diffusive motion), the boundary condition 8 9 0 as x + x a; and

1!! = 0 for the equilibrium distribution conditions in each well.

Comparing with the reaction kernel in eq. (3.7), we can identify the

rate kernel as

a
t
:

i=lim c"{i§-§§[al+9<y+ >"9<9+§)1}§.
s90-

( 3 . 18 )

The first term describes the instantaneous rate constant which is

obtained by assuming equilibrium in the donor and acceptor wells. The

second term accounts for the non-equilibrium effects caused by

diffusion and reaction dynamics.

After simplification of the formal expression (see Appendix A),
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weget

12

kiZ: 12 kn. 21
(3.198)

l+klie/kdili'kns/kdz

and

21

k21= 12 km 21 ' (3'19b)

1{'knslkdi‘.,kns/kt:|2

where

(D

h"- dt c°("t)"(‘)-1 (319s)
di " ii x,x, Si 1: '

o

and

k‘J-dx(-‘) () (319d)M— xU x,x gl x. .

The kc“ are the internal rate constants which describe the

approach to equilibrium in each well. The non-adiabatic transition rate

kit: is a surface crossing rate which depends on the initial equilibrium

distribution g i and the transition term in the intermediate region. Our

KU is derived from (it12 (see eq. (3.14)). For large friction it is

convenient to use G 11 (see ref. 10), because the difference between

G1 1and 612 is small. For moderate friction, their difference must be

treated explicitly.

The formula that we get for the rate constant can be explained by

using a branching diagram (see figure 3). In this diagram, k M

represents the diffusion rate in surface RA, starting from an

equilibrium distribution. P f = k:: / ( kd 1 + k3: ) is the probability
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of reaching the PB-I boundary rather than staying at RA. Pb = k d2 / (

kd 2 + kii ) is the probability of staying at PB rather than crossing

back to RA-I. The total foward rate constant should include the one way

flux and all of the recrossing trajectories, so

‘9 i

k12=kd1Pr{J§O[(I'Pb)Pr] }Pb

k Pth/[l-Pr(1-Pb)]

 

 

 

 

d1

12

kns de

12 ‘ 12

_ ( kd1 + kns ) ( de + kna )

k12 kZI

us as

12 21

( kdi + kns ) ( de + kns )

" k: ( 3 20 )
" 12 21 ’ °

1 + kna I kd1 + kna / de

and similiarly for k21°

If the passage to PB is irreversible (i.e. k3: = 0), then

_ 12 12

kiz-km/(l+kM/k“). (3.21)

. . . . _ 12 21 _

This is the one way reactlon rate. The ratio k13 / k21 - km / k"a —

Kr: , and satisfies detailed balance.

If it: « kd 1, the rate determining step win be the

non-adiabatic transition rate kit. If kl: )9 kd 1, the rate determining -
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step will be the diffusion rate kd 1. Thus, the solvent controlled

transition from a non-adiabatic to adiabatic rate constant is involved

in our rate expression. Sometimes conditions can satisfy k: / li¢n « 1,

k: / kd2 >> 1, i.e. the system reaches an equilibrium state in RA very

12

as

fast and is slowly stabilized in PB. The forward rate then is k12 = k

kd 2 / k:: and the rate is controlled by the rate of stabilization in

PB. The equilibrium constant [(22 = k: / k3, so the forward rate is

independent of ET rate. This can happen for an endothermic reaction.

The k(H rate constants describe the rate of approaching

equilibrium in each well in the absence of the reaction. The propagator

s

G‘ i ( x ,t I x*, 0 ) describes the probability density for being at the

. . t . . . . i .
crossing pomt x at time t, given that the particle is at x at t1me

t = 0. The average time for the particle’s evolution until it reaches

3 -

equilibrium, starting from x , is kd:. For barrier heights B Ea > 5, we

can use the Arrhenius reaction rate (k:" = % ( “E. )

t.

”2 exp (- B E-))

instead of using k; = 3:1 I ( Gii - gi ) dt (see figure 4). As we

can see, for B Ea > 5, they match very well.

The rate constant kl: describes, through G12, the stochastic

process and surface crossing transition in the neighbourhood of the

crossing point starting from the equilibrium initial well RA (see eq.

(3.19d)). This off-diagonal propagator G12 describes the transition

process (see Appendix B) as

1:

K12(x;x*):(%)2%Reldtexp{-ix hL(1-e't)
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71:1. 1 -t
+1 h[§-xo(l-t-e )+ta]

-AiZ[-3+2t+4e“-e‘2‘]} (3.22)

where 1 = k" x0 = AF and AF is the difference of slope (or force) at

the crossing point.

In the normal region, xo -) large (i.e. the separation of the

wells is large, see figure 1c), this implies 118' I -) 0, and we get
1.2

more localized behavior. In the inverted region, x0 ., 0, then 118' I”

-> large, and the quantum behavior becomes more obvious. The interesting

region that we discussed in the Introduction is 1 1O 1, (overdamped

region), and inverted region (A is small). If we assume A 12 x» 1, then

only the short time behavior in eq. (3. 22) is important. Then

 

11:

x 1 . 1-
K12(x;x)=(%)iReJdtexp{-1 h[(x--o)t

1 2 2 2 1 '17ti
+§(-2-xo-x)t 1-[5A1 +3x—fi—

1 -iytt

To accurately describe the delocalization width, )1, is very

difficult. We define it qualitatively as the ratio of the 1/3 power of

the coefficient of t3 and t, and we have

u=lx-0|
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Figure 4. Plot of l/(kdtl) versus BEs. (——-) corresponds to k“, ( - )

corresponds to k3".
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1 3T 1/

= ‘/[§AV]

-1/3

=(xotL) . (3.24)

As the friction increases (i.e. IL + large), the delocalization

width )1 will shrink to 0 (i.e. localized transition). The small x0

(inverted region) will increase 11. After the integration over x in k:

(see eq. (3.19d)), we have

 

 

on

12_ (321 -t _
kna-(Z) intCOS[A(S(l-e ) Pt]

0

2 -t

exp{-Ak [e -1+t]}. (3.25)

When A 12 >> 1, the short time expansion is appropriate, and we

obtain

12 azl A12

kn.=(z) iIdtCOB[ABt]exp{- 2 t}

1 21: B2:_ exp{___-}, (3.26)
2 A12 2A

As we can see, in the last equation there are no friction effects in

the exponential term. This means that in the extreme overdsmped regime,

the transition rate depends on the barrier height only. The width of

splitting is zero (relative to the diffusion length), and it is a

localized transition. This localized transition gives us the Arrhenius
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Figure 5. Plot of k: x 10-3 versus 1. ( x ) for G12 in eq. (3.19d),

( ° ) for G11 in eq. (3.19d). A = 0.06, S = 0.05, P = -4.,

i 1

ho: 300 om" , V12=O.3cm- ,1“: 300 K.
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result.

When A 12 is not too large, it should influence the activation

part (i.e. exponential part). As we can see from figure 4, (x means

k12

as

is calculated with the use of G12 and o is calculated with the use

of G11), which is in the inverted region, our kit will decrease. as the

friction increases. If we increase the friction to have large A 12,

r which is independent of friction. Also wethan k12 will approach k"
I'll “I

can see that the difference between k12 (from G ) and k12 (from. G )

ns 12 ns 11

is large when k (friction) is moderate.

To conclude this chapter, the key step in getting the consecutive

rate expression is the assumption that the spatial variation of G 11 is

slower than that of E12. This separates the diffusion and transition

parts of eq. (3.10). So we have two different rates in the wells and

the intermediate region. The behavior of the transition depends on the

relative size of the splitting width )1 and diffusion length It. If the

diffusion length is smaller than u, than within the length )1 the system

is still undergoing diffusion motion and the friction effect is

obvious. If the diffusion length is larger than u, than within the

transition region the system will not feel the friction effects.

Therefore, the quantum behavior of the transition can be reduced to a

classical (i.e. localized) transition by increasing the friction.

Friction effects (i.e. solvent dynamic effects) will contribute to our

k;:. The solvent controlled transition fron non-adiabatic to adiabatic

behavior is obtained in our result.



IV. NUMERICAL SOLUTION OF COUPLED NUATIONS

We have solved the reduced Zusman equations eq. (3.10) by using a

projection operator method’ and obtained approximate analytic

expressions for the rate constants. The consecutive mechanism relies on

the separation of diffusive and reactive dynamics. To go beyond the

region of I > u, when the transition is no longer confined to the

crossing point, a unified method should be used. In this chapter we

solve the Zusman equations exactly for the long-time reaction rate. The

Fokker-Planck operator describing the Brownian motion in the harmonic

potential surfaces can be cast into a tri-diagonal vector recurrence

relation by basis expansion of the probability density. The Zusman

equations with four coupled (second order in space, first order in

time) differential equations can be transformed into four coupled first

order (in time) differential equations. A vector form of first order

differential equations is obtained. The Laplace transformation of its

solution can change this first order vector differential equation into

an eigen-value problem. We can identify the reversible forward and

backward reaction rates with the smallest non-zero eigen-value. The

efficient way to solve for this small eigen-value is to use

tri-diagonal vector recurrence relations, from which a matrix continued

fraction equation is obtained. This method has the advantage that

without the detailed balance condition we still can get accurate and

fast results. For computer programming, it is a good method especially

40
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to save space.

We use the harmonic potential surfaces

-1 2

vii-kax

v --1-ir(x-x)+v (4 1)
22'2 w o o' '

The stochastic processes corresponding to overdsmped Brownian

motionsre

— .59.. .9. _§_ -L -Dax[ax+saxv“],i-1,2 (4.2)
Ii

also

(4.3)t
" I

C
" I

N
I
H

I
"

+ I
.
"

12" 21'

To simplify the calculation, we need to rearrange the definition

of the density matrix and have the same differential operator for its

elements. Also we can eliminate the complex components. This can

simplify the computer calculation.

We define our new density matrix elements as

t

93(91‘1922) (4.48)

2Rep122'p12-tt)21 (4.4b)

21mp12=912-921 (4.40)

With these definitions, the Zusman equations can be written as



 

 

 

 

a + a2 a + 1 a -
57p-[ax2+(x--xo)5—;+l]p+§xo-a—;p (4.58)

a - a2 a 1 a

6—3;" =[ax2+(x--2-xo)5-;+1]p +2x061;p -aImpn

(4.5b)

-a—Rep = a2+(x--1-x )—a-+1 Rep
at, 12 a 2 2 0 air 12

x

+b(x-O)Imp12 (4.5c)

.3... - a?” -- ,6...
at mpiz" a 2 x 2110 ax mpiz

x

8-

-b(x-a)Rep12+zp. (4.5d)

Now we introduce a basis set expansion of our new density matrix:

:1: a) :t

P=Ean(t)rn(y//—2) (4.68)

nIO

. m +

Rep12=2bn(t)rn(y/f2) (4.6b)

n-O

m -

Imp12=2bn(t)rn(y//—2). (4.6c)

11-0

The argument y = x - -;- x0. The set { rn } are the right

eigen-functions of the Fokker-Planck operator L12:

 

2

6 1 a -
[ax2+(x--2-xo)5-;+1]rn—unrn (4.7)
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With

-1,2
_ n -1/2 __l__1/4 2 __

rn-(Zn!) (2*) e Hn( 2y)

and

Hz-n,n=O,1,2,...

(see Appendix C for details)o

The left-hand eigen-function { In ) also has been introduced and

the integration over x leads to

a + + -
5min":uflan«é-xoy/Tiana1 (4.38)

a -_ 1 'l—
a-Tan-uan-é-xo na_1-ab (4.8b)

5%b:=unb:+b/—fib;_1+b/n+lb;”-bayb; (4.8c)

a -_ - + + + 1 -

fibn—unbn-bmbnd—by’nribani-baybni-zaan.

(4.8d)

We assemble all of the coefficients into a matrix form

d ..572(t)-1§y(t) (4.9)

where
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is a column vector of the time-dependent coefficients.

Rate expression:

The formal solution of eq. (4.9) is

I t

y(t)=e 11(0).

This formal expression can be rewritten in

eigen-functions and eigen-values of 13].

Let

I : Al I

1:. ‘2‘ J E.

U = A .

non-degeneracy implies L and I}, are orthogonal, i.e.

J

E3 _|‘ : 61k

1:; g 31.: A) -3 But: A): 1" -|t‘

Thus,

(4.10)

terms of the

(4.11s)

(4.11b)

(4.12s)

(4.12b)

(4.13)
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This shows a multi-exponential relaxation process or modes of

fluctuation in the solvent. The eigen-values are the relaxation

frequencies. We can show, from the conservation of probability, that AD

=0andcoRoozl.

D

Recalling the rate expression from Chapter III, our scheme is

- t

Ns(t)=e-tt [k erxdx+N(0) ,N(0)=1

o

k
21 12-tt (4.14)

Now from the definition

(a

Ns(t)=Ip11(x,t)dx

m
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Q

%I[p++p-]dx

.‘Q

O

1‘” + - 1
--2-n}.30[an(t)+an(t)]Jrn(x—-2-xo)dx

—O

1‘” w
:§n§o[a:(t)+a;(t)]Irn(x)dx

-@

=%(2u)"‘(a:(t)+a;(t)), (4.15)

Also from probability conservation

0

I(p,,(x.t)+pzz(x.t))dx

-®

0

=Ip+(x,t)dx

—(D

0° + 1

=It.§.a.<t>r.<x-ax.>1dx
—co

G

-n§oan(t) rn(y)dy.y-x-2xo

8
5
—
H
8

.0.
1/4

(21¢) aO (t)

-1. (4.16)

So we have
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- 1 1/4 - .
.

-§[1+(2n) ao(t)], (4.17)

i.e.

2 k 2 k
114 - _ 21 _ 12 - r 1.

(2x) ao(t)—( 1: 1‘)+ 1: e . (4.18)

Comparing eq. (4.13) and eq. (4.18)

k --(El'-9+1)A/2 (4 19a)
21 ' R 1 ‘

0,0

kizz-A1_k21° (4.19b)

The quantities that we are going to calculate now are A1 and

R1 0 / R0 0 of the matrices 1:1. The method of solution relies on the

useful feature that 1;) is a block tri-diagonal matrix, where the blocks

are 4 x 4 matrices, corresponding to the four coefficients at, bf for a

given i. This tri—diagonal matrix actually satisfies a vector

recurrence relationship. The details of the method are presented in

Appendix D.

From the structure of the zeroth 4 x 4 block, there is at least

one zero eigen-value corresponding to the equilibrium state. Of the

three other eigen-values, one is real and corresponds to 1 / ( k 12 +

k21 ), and the other two are complex conjugates. For the existence of

the reaction rate, A1 4! A2 - A1 (where 0 = A < A1 < A2 <...) and
0

R1 0 < R1 1 must be satisfied. Otherwise, ,an initial condition

dependent rate constant expression should include all of the relaxation

modes. It will be observed in the ativationless region.



V. RESULTS AND DISCUSSION

The numerical results of our algorithm can be checked with the

Arr _ 2

kne-(v12/2fi)

( BnEa )1]2 e-BEa) at high barrier. Table 1 shows Be 2 B2 / 2A = 2.69

crossing rate of Arrhenius’ result (i.e.

 

and the friction changes from k = 10 to 500. As we can see when we

. . . . TS‘I’ irr rev

increase the friction, the ratio k12 / kn. < 1‘12 / k12 < 1:12 / It12 ,

but all of the ratio are close to one. This means, for the normal

region, with small splitting of the delocalization width, we can get

the Arrhenius result from our numerical method.

To check the validity of the consecutive mechanism, the

parameters were chosen to have approximately equal diffusive (kd 1 ,

kd 2) and crossing (k3: , kil) contributions in the approximate rate

expression eq. (3.19a,b). In this situation, the effect of

non-separability of the dynamics will be explicit (i.e. the assumption

of eq. (3.10) will not be valid).

The friction values ranging from ti. = 10/3 to 200/3 represent

liquids with moderate to large 1". values. The range ti. = 1000/3 to

2000/3 may represent a protein solvent. The electronic matrix element

. . _ 2 1/2
V12 is chosen to satisfy td - (V12 / f1) [Id (v11 - V22) / dxl D

1-1/3 for non-adiabatic transitions (see ref. 9). This is the condition

for the validity of perturbation theory. If this condition is violated,

48
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for example, for large friction, the transition which is non-adiabatic

in the ballistic region will change into an adiabatic transition.

The factors in eq. (3.19 a,b) must be evaluated. The diffusion

rates km and kd2 are obtained by direct integration of eq. (3.19c).

The non-adiabatic rate constants kg: and k: are defined in eq. (3.19d)

They would follow directly from a Golden-rule calculation, with the

propagator corresponding to evolution on the averaged surface.

The results presented in Table 2 show that for sufficiently

inverted behavior the overall rate cannot be broken up into the

consecutive steps of diffusion in the donor well and surface crossing.

The width of the surface crossing region becomes so large, due to

nuclear tunneling, that this separation can no longer be made.

For not too inverted behavior, Table 2 shows that the

approximate expression is good, when kii is evaluated by incorporating

the nuclear tunneling effect. That is, if we were to use kifr instead

of k;: , the result would be completely incorrect.

For future work, we can expand our present work to include

activationless ET with a localized initial condition (a delta function)

which is different from, our gaussian equilibrium distribution. In the

activationless case, there is no barrier, and the reaction rate is very

fast. Before the equilibrium is reached, the reaction may be finished.

Therefore, we should consider all of the following factors: 1) a delta

function initial distribution. 2) For the activationless case, the
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reaction rate is governed by the shorter time dynamics rather than by

the longer time dynamics. Thus the high frequency relaxation modes

(i.e. high frequency friction) are most important. Rips and Jortner use

Zusman’s method to find the activationless solvent-controlled ET rate

with thermal equilibrium and a localized initial state. Qualitatively,

they found when the initial state is in thermal equilibrium, within a

relevant time t / 1: < 4, an asymptotic rate expression is in good
I.

agreement with activationless ET kinetics. In the localized initial

state, the system will move from its initial position to the bottom of

the initial well. The time it takes is called the delay time t‘ which

is smaller than the thermalization time. For t > t*, a single

exponential decay description is appropriate. Our numerical algorithm

gives a quantitative understanding of the contribution of the fast

relaxation modes to the transition rate (i.e. the modes in eq. (4.13).

with j 2 2 should be considered, because the splitting of the

eigen-values between Ii1 and A2 is small).

In the two crossing point case, Kakitani and Mataga et. al.19 have

argued that the force constant of the potential well should increase

significantly when the solute charge is increased (for example, the

reaction A+B- 9 AB) and the ET rate will be dependent on the large

change of the activation energy. Using our method, it is possible to

solve numerically for the ET rate when the potential wells have

different curvatures.
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. . TST lrr rev

Table 1. Comparison of k,12 with kn. , k12 and k12

 

1 1

s = 40, p = -10, T = 300 K, v12 = 10 om" , not = 100 cm'

 

 

-1 TST irr rev

A k12(sec ) kiZ / kn. k12 / R12 12 / kiZ

10 2.3411109 0.95 0.97 0.98

50 9.76x107 0.99 0.994 0.997

100 2.45::107 0.9957 0.9978 0.999

200 6.13x106 0.9958 0.9969 0.9975

500 1.00x106 1.018 1.018 1.018

irr _ TST Arr TST Arr

I kiz ' kna kd1 / ( kns + kd1 )’

rev _ TST TST Arr TST Arr

k12 ' na,12 / ( 1 + kna,12 / kd1 + ns,21 / kd2 )
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Table 2. Comparison of k12 with k::

 

1

T=300K,‘huL=10cm-,P=-4,7L=10

 

s V12(cm-1) tL(psec) ammo“) tin/kg

0.00948 0.1 100/3 136 2.99

200/3 68 2.99

0.0248 1.5 100/3 2.72::10'I 2.82

200/3 1.41::107 2.74

0.174 2.5 100/3 3.55x109 1.19

200/3 1.82x109 1.17

 

 

1

T=300K,huL=100cm-.P=-4,k=10

 

-1 -1 Ip

S V12(cm ) tL(psec) k12(sec ) k‘Z/k12

0.0938 0.1 mm 2.49x103 2.362

20/3 1.247x103 2.362

0.304 20 10/3 1.74x109 1.97

20/3 8.89x10° 1.92

0.68 23.75 10/3 1.98x10‘° 1.09

20/3 1.01x10‘° 1.06
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Table 2 (cont’d)

 

T: 300 Last = 10 on", p: -4,).: 100

 

s V12(cm-1) tL(psec) k12(sec-1) tin/k3

0.00948 0.01 1000/3 13.64 2.99

2000/3 6.83 2.99

0.0166 0.375 1000/3 7.4iir10‘| 2.97

2000/3 3.88x10‘ 2.88

0.039 0.788 1000/3 1.50::107 1.06

2000/3 7.67x10‘ 1.04

 

 

T=300K,th2100cm-,P=-4,k:100

 

s V12(cm-1) rL(pseo) hams“) trig/2:;

0.0753 0.01 100/3 1.85 2.31

200/3 0.93 2.31

0.126 1.0 100/3 4.27x10‘ 2.58

200/3 2.27x10‘ 2.69

0.313 7.5 100/3 1.22x10° 1.16

200/3 6.25x107 1.14

 

as
1! R12 see eq. (3.19)
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APPENDIX A

Formal derivation of reaction rate expression

We use a projection operator method to derive the formal reaction

kernel and the reversible forward and backward reaction expression.

First, Laplace transformation (LT) of eq. (3.16) gives us

(A.l)

1
'
0
)

4
.

'
9
!

r
e
)

1
.
.
.
:

88-8<0)=[y

where g; is the LT of [ p", 922 ]T and g (0) is the initial

distribution. In our model, at t = 0, the particle is distributed in

potential well A, with an equilibrium distribution. For a harmonic

potential this is a gaussian distribution. So 2 (0) = [gf 0 Jr, where

g‘ = exp ( - B V“ ) / I exp ( - BV11 ) dx. Applying g, gto eq. (A1),

we obtain

aié-§e<0>=-[2499+9999+r§£§+299§1

(14.2)

and

899-9p<0>=-[9929+999§+999§+9§9é1

(A.3)

54
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Rearranging them, and using the following conditions,

9 ( o ) I d p“ ( 0 ) 1 8‘ ( )p =g x =g = A.4a

" " 922(0) ' O O

_ __ gi g‘l _ 0

where

911(0)=81.Pzz(0)=822

Ee+s<9+§>199=-<9+9+9§>98 (1.5,

then

899-22<0)

='(EE+§§)E§-E(E+§)Q§

A -‘I

=-‘E£*§§’28+(§E+§§>[8+9(E+§)l

<99+9§>ié (1..)

Finally we have
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-1

{8+[9<9+i>-§<9+§)[8+9<9+§>1

9(i_.+§)]}gg=gg(0). (74.7)

Comparing this with eq. (3.7), we have

-1

§=“m§{3‘b+§>'§‘9*§’[8+9‘itill
s90

Q(L+K)}Eo (A.8)

Note that P L. = 0, as a boundary condition, and L g = 0,since g is the

equilibrium distribution.

Our final formal result is

'
9
:

-1

i=1ms”{9§-iifs+9ii+ )1 9§}i <A-9)

To get the rate expression, we need to do the following

expansion,

§=IdX[§-§[dy§(lby)9§(y)]g (A.10)

where

satisfies
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Then

k=IdX§g-IdX§Idygo(X.y)Q§(ylg

+JdX§de§o(x.y)Q§(y)Idzgo(y.Z)Q§(z)§

:K‘Egog+§§o§§og-

.— -‘I

where we have used

fgzjdx§(x)=2ldxnexn(x,x*)[_i‘i]=h[_i'i]

{30:90 -de§o(X.y)g(y)

0 O

G11"].61131 0

= O 0

0 Gzz'fczzgz
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and

1+kC-322 lit-"3:2 31-22

§=<1+k63.+k<3§2>“ .. -. .. -.
kG111+kG11 '31 82

Finally,

k12=(141:6;‘1’141.5.22)"'1

:k::/(1+k::/kd1+k::/kdz) (A.12a)

k21=(1+kG:1+kG:2)-‘-2

:k::/(1+k::/kd1+k::/kd2). (A.12b)



APPENDIX B

Derivation of G 1 2

The potentials that we need are given in eq. (4.1). The

crossing point can be calculated at V11 = V22, so

-_1_ _
a..2x0 Vo/kuxo (3.1)

and

VH-szzkwxo(x-o) (8.2)

=7(x-0)

where

yzkwxo.

V

Assume the coupling term 'i-‘hl-Z- ( p22 - p ) is a source term
11

then 612 should satisfy the Fokker-Planck like equation

a a2 1 a .
[<9—t-D'a—;2-50(kwx-2kwxo)-a_;—Bbkw+1%(x-a)]

612:6(x-x0)5(_t-t0)' (8.3)

59
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Use the space Fourier transformation,

-Iex A

[Gas dx.-G12

yields

A

a 2 a 1 . .1._§__
[57+Ds -3ka(-Ba—§-2xols)+lfi(las 0)]612

e""‘06(t-to). (3.4)

Now we want to calculate G12 from

[-2E+(BkQDs-%)-é§—+(Dsz+i%Bkquos—i%0)]G,
a s 2

:0 (8.5)

by solving the partial differential equations.

  

Weuse

dt_ ds ._ dGiz '

T' 1' 2 .1 .1 (8'6)
BkuDs- -D8-l'2-Bkax08+lfiO

and

l.



Q
.

5
)
)

dt 12

 

G12=G12(t)eXP{‘D[°

7 1
+2———-c
Bkah tfika

Att=t =0.

12(0):e 026120
)

From

61

2 1

1 2BkmD

(eBkun

1 ( 

It
2

- 1 ) + ( B. kw'D fl ) t']

eBkth _1)
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7 7
8____:(8-____)eBRth

Bkafi o Bkah

1 7
B): Dt

s:(s-——-—)e (0 +-———-——

0 Bkah Bkqul

1
c: Bkat;

( s - ————— ) e-
1 B kw D it

finally we have

G "ex -ix [(s-——Z——)-Bkunt+ Y 1

12' p o Bka‘h e BkuDE

 

1 7 2 -2Bth
—D[m(S-W)(l-e In) )

I 7
-Bk 01.

+2 (s-—-—--)(l-e (i) )

(Bka)zfi Bkqui

I
2

+(BkmDfi) ‘1

 

 

-i[%xo(s-F-E;I—D-g)(l-e-Bkwni)

+%xo%t-%ot]}. (B-7)

Inverting the Fourier transformation, we get

812:217518'128‘ .xds

: 1 1 exp{-;-[2D1—:;:(1-e-i)

{—252/DtL(l-exp(-2t))
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- 2

-%x(l-eflt)]]/[DIL(1-e-2t)]

+i-—i£(x-xi-%xot+ot)} (3.8)
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- 2

(l-e‘t)]] /[DIL(1-e-Zt)]

-D( fi)tLt+i-—fi£(x-x‘-%xot+ot)} (B.8)



APPENDIX C

Eigen-functions of L12

The L12 operator with simplified notation is

32 1 a

PHI-55’5“.” ¢.=".°. ”3'“
X

with

The boundary condition at x 9 :1: 00 is (in = 0. Then the eigenvalue

problem is

 

a -1 2 1 _
a x Z + (‘—Z y“ + §'- A“ ) ‘Wn - 0 ( C . 2 )

where

_ -'y I4

4)“ - '9“-

The solution is

2

-1/2 1/4 6- y I!

wn=(z“nz) Hun/f2). (0.3)
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So

it -1/2 1 1/4 -2/2

¢n=(2n!) (fl) 6" Hn(Y//—§)

=rn (0.4)

An3-n,n=0,1,2,....

1 1/4 -( - /2 )Z

The ground state, 11 = 0, is ( n) e x no .

Adjoint operator

For an operator L which satisfies

2

 

 

 

_ 8 a
Lu-Po(x)a 2u+P1(x)3—-;‘-u+P2u, (0.5)

x

then

~ 62 d
Lu==a (Pou)--a-;(P1u)+qu

x

62 I a II I

:Poax2u+(2P0-P1)3-_xu+(P0-P1+P2)u°

(0.6)

For our diffusion equation
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2

a a a

12 6x2 81: 5t

~ -__9_2_ _a_._a_
12.6 2 "6x at"

(0.7)

(0.8)

the left-hand eigen-function of L 12 should be the right eigen-function

of L12.

Eigen-functions and eigen-values of :12

2/4

Let ¢n 3 By (P 1

N

then L 0 = A' 41 is
12 n n

 

62 '1 I 1 _

a 2*‘(73’ +An+2) 'Pn-Or

where

_ n —1/2 _1_1/4 -y/4

(pm-(2 :) (2,) Hun/F2

_ n 1/2 1 1/4 _

(tn-(2 ') (77,-) Hn‘Y/fil-I.

A! = n ' n = 0’ l. 2’ 0.. O

The identities that we use to derive the basis expansion are:

)

(0.9)

(0.10)

(0.11)

(0.12)
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l.

3 3

InLizrn-(L121n) r“ (C.l3a)

II I!

2.

00

3

Idxlrzfi (C.l3c)
In an

-o

3.

3-4-- +14 () (0 13d)
ayn- n n+1 y °

4.

a)

36 __

11".5-;;rndy.--y’n+16m."H (C.l3e)

-00

5.

Q

* -

Jlnyrndy-y’ni-l6mnnttf—E m,n-l (0.13f)

-®

6.

a)

__ 0 for n21
I¢n(y)dy-{(2n)1/4, “:0. (0.13g)

(D



APPmDIX D

Vector recurrence relation

Eq. (4.8) can be written in the form

 

  

a _ ..

fish gash-1 +971 Sn+9n Emil

where

__ + —1'

_n-[a,8,bn,b]

ro gin/T. 0

_ -%xof71 0 0

9,:

0 0 0 of;

_0 0 -b/'Ti

-n 0 0

0 -n 0 -a

Q :

'n 0 0 -n -b0

1 v

0 :8 b0 -n

.. y J

i0 0 0 0

00 0

9+ -

"‘ 00 0 b/nTi

0 —by’n+1 0 J 
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(0.1)

(D.2a)

(D.2b)

(D.20)
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Let 9“ ( t ) = c_ne- A t; we have

A

9" +(9n+Al)§n+-Q:§n+1:o. (D.3)
—n En-i

We define

then

9'2 +[(9+AI)+9*§+]2:0 (D.4a)
-n —n-1 —n -n -n -n

or

[Q;§;+(Q+Al)]0n+9:§n”=0. (D.4b)

From eq. (D.4b)

[Q;§;+(gn+u)]§n=-9:§m (D.5a)

[92§2+(9.+“)1§2..sn..=--an.n (D-Sb)

wehave

"+ + “+ '1 -

§n:-[(9n+1+Al)+9n+1§n+1] 9n+1 (D.6&)

._ _ ._ -1 +

§n:-[9n-1§n-1 +(9n-I+Al)] git-I. (D'Sb)

We can calculate s: and 8; by expanding them into
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-n+1

15+
+

_1

s:-{(Q +Al)+9n.1(-l)[(9n.z+Al)+“°
]

9n+2 } gnoi

(D.7)

and

§;=o

._ -1

§.=-[9.+HJ 9.

“- - -1 +1 '1

§2:-[91+Al+91”(-1)(QO+AI) 90] 91

(D.8)

Our equation can be expressed in terms of S:, S; as

[(9;§.+2:§:>+<9.+M>1§.=o 7...,

i.e.

[Qn+Al+§n(A)]§n=0 (0.10)

where

)

§n(A)=9;s’+9 3".
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The eigen-value A can be determined from

Det[gn+Al+§n(A)]:0. (0.11)

For the zeroth block, n = 0,

0et[go+hl+f_(o()\)]:o. (D.12)

isb
e
»

The structure of

r0

0

k31 32 33

k W
W
O
O

”
3
'
0
0

  41 42 43 “j.
b

80

A

Det[go+Al+§o(A)]

A[A(A+k33)(A+k“)-ak32(boy+k‘3)

+a(a+k‘2)(A+k33)-A(k34-boy)(bay‘tknfl
Z

:0.
(0.13)

This shows there is at least one A = 0 root.

How are k12 and 1:21 determined?
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First note that

y(t) H

—
‘
1

m ')(t)=i:4y(0)

O
I
O
-
O
'

  

I
I

0

    

From probability conservation

a3<t>=<2n)"”.

i.e.

-A t_ -1/4

coRo,o+J§10Ro,j° J -(2n)

Ast-HD,

_ -1/4
CORO,O-(2n) ,

so

c :(2u)""‘/R .

(D.14)

(D.15)

(D.16)
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-1/4 -

We need 00R -(2n) Ri'o/Ro'otocalculateao(t).

1,0

From [ 90 +. A l + 20 ( 0 ) ] so : 0, for the first eigen-value A : 0,

    

 

0 0 0 0 R0.0

0 0 0 0 R1,0 =0'(D 17)

km kaz k3: k34 - b 0y R2,0

a R

_k“ 152+; k43+b0y k“) _ 3,0

Solving these algebraic equations yields

a ksz -1

R1.0/120,0 : [4+k42 -_ ( boy+ k43)]
33

k31

[E—(boy+kw)-h“]. (v.18)

33

So

k12+k21=A1 (D.19)

2k2‘-1~R /R (0 20)
A1 - 1'0 0.0.

0

Our final results are

R1 0

k21(§-—+1)A1/2 (D.21a)

0,0
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