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ABSTRACT

STRUCTURAL BIFURCATION TESTS FOR
VOLTAGE COLLAPSE AND LOW FREQUENCY OSCILLATION
IN MULTIMACHINE POWER SYSTEMS
By
TZONG-YIH GUO

A differential-algebraic power system model is developed that is more complete
than previous models utilized to study bifurcations of power system dynamics. The
added modeling complexity and accuracy is essential for studying both voltage col-

lapse and low frequency oscillation in a power system.

This dissertation systematically classifies the bifurcation and stability problems,
establishes necessary conditions for each bifurcation and stability problem, and
identifies the generic types of bifurcation associated with steady state angle stability,
voltage instability, and low frequency oscillation. The three generic types of bifurca-
tion in the differential-algebraic power system model are shown to be: (1)
Static/Algebraic Bifurcation due to the singularity of the equivalent static/algebraic
Jacobian matrix; (2) Static Bifurcation and (3) Dynamic Bifurcation due to the
equivalent system Jacobian matrix having eigenvalues with zero real parts. Voltage-
angle bifurcation in the load flow model is shown to be an excellent approximation to
the static/algebraic bifurcation. The prerequisite for the static/algebraic bifurcation test
is the single machine stability; the one for the static and dynamic bifurcation tests is
the causality condition. These two special stability problems are argued to be improb-

able in a practical sense, even though they are not argued to be non-generic.



The static/algebraic and static bifurcations are shown to be equivalent under the
assumption that single machine stability and causality condition hold. Three types of
static bifurcation are identified to occur and necessary conditions for each are derived;
one in mechanical dynamics, one in flux decay dynamics, and the third one in both
mechanical and flux decay dynamics. The load flow bifurcation is shown to be nearly
identical to the static bifurcation in mechanical dynamics; but not the other two types.
This dissertation suggests utilizing the static/algebraic Jacobian matrix rather than the
test matrix for static bifurcation as the test for identifying static bifurcation. The
static/algebraic bifurcation test avoids inverting causality matrix, and can be performed
by slightly modifying the load flow program. Both analytical and simulation results
for the load flow bifurcation test and the static bifurcation test illustrate the important
role of maintaining the reactive generation reserves at generators in preventing voltage
collapsc and steady state stability. These results also point out that both loss of

causality and loss of single machine stability are not likely to occur.

Three types of dynamic bifurcation are identified and necessary conditions for
cach are established; in mechanical dynamics, in flux decay dynamics, and in both
mechanical and flux decay dynamics. Experimental results indicate that tests for vari-
ous types of dynamic bifurcation actually classify the type of bifurcation in terms of
the dynamics (mechanical, flux decay, or both) in which it occurs. Such classification
is shown to be more precise than eigenvalue analysis. It is expected that the structur-
ally represented test conditions for various types of static/dynamic bifurcation will be
useful in establishing the factors of these bifurcations.

The proposed approach provides a basis for static/dynamic point of
collapse/oscillation method, that is similar to a V—-P or Q -V point of collapse method
in the load flow model, but detects the first mode to become unstable as stress is added
to the network. This unstable mode can be associated with any of the stability prob-
lems classified and identified in this dissertation.
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Chapter 1
Introduction

Low frequency oscillations have been one of the most common and frequent sta-
bility problems in utilities around the world. Voltage collapse is a stability problem
that is less common and frequent than low frequency oscillations, but has captured
widespread attention because its causes and cures were less understood. The bifurca-
tions of a power system mid-term transient stability model, that are observed and
labeled as low frequency oscillations and voltage collapse, are the subjects of this
dissertation. The determination of different types of bifurcation and stability problems
that could happen in multimachine power system load flow and dynamic models, and
the development of necessary condition tests for existence of the identified types of
bifurcation are th; main purposes of this dissertation. An improved power system
mid-term transient stability model is developed and structurally organized in this
dissertation, which has the modeling accuracy needed to perform the classification and
identification of bifurcations leading to low frequency oscillations and voltage collapse.
Therefore, each developed bifurcation test structurally shows the effects of power sys-

tem components.

The power system dynamic model is characterized by a set of differential-
algebraic equations (or differential-algebraic model). The set of algebraic equations
describes the active and reactive power balance equations of the transmission network,
i.e., the power balance equations at the internal and terminal buses of machines, at the
transformer high-side buses of machines (simply called as high-side buses), and at the
load buses. The set of differential equations can include (1) synchronous machine

mechanical and flux decay model, and (2) control systems of machines: excitation



systems with load compensators, power system stabilizers, and speed-governing-turbine
systems. The coupling between the differential equations and the algebraic equations
is through the terminal bus of each machine. The load flow model describes the
power system steady state operation condition of the transmission network, and is a set
of algebraic equations composed of the active and reactive power balance equations of
the transmission network excluding the reactive power balance equations at generator
terminal PV-buses, since the excitation systems of these generators are assumed to
have inﬁnite gain. Note that the load demand model adopted in this dissertation can
be voltage dependent.

Based on the representation of the power systems, this dissertation will study the
bifurcations that lead to low frequency oscillations aﬁd voltage collapse by systemati-
cally developing simple tests for each class of bifurcation identified. These tests not
only avoid the intensive computation of eigenvalue analysis, but also analytically and
structurally show the effects of transmission network as well as each control system.
Based on the load flow model, the load flow bifurcation is defined, and the generic
form of the load flow bifurcation test matrix is derived and is proven to be consistent
with the generic voltage-angle bifurcation in the load flow model. In power system
dynamic model, static and dynamic bifurcations will lead to voltage and angle instabil-
ity, and will occur due to the coupling of the network, generator, and control systems.
The singularity induced static bifurcation and dynamic bifurcation will be systemati-
cally analyzed in this dissertation. The static/algebraic bifurcation will be defined and
shown to be identical to the generic singularity induced static bifurcation. The static
and dynamic bifurcations will be defined and shown principally associated with the
generator mechanical and flux decay dynamics, and test conditions for these bifurca-
tions will be established. The proposed approach to assessing the studies of voltage
and angle dynamic stability in multimachine power systems provides a static/dynamic
point of collapse/oscillation method. The proposed approach clearly identifies the



modes mainly associated with mechanical and flux decay dynamics and structurally
shows the effects of the control systems and transmission network, yet avoids the com-

putationally intensive eigenvalue analysis.

1.1 Literature Review about Dynamic Stability

Time-domain simulation has being popularly used to assess the dynamic stability
problems of a power system differential-algebraic model (e.g., [1,2]). However,
recently most of the literature dealing with the problem of dynamic stability is filled
with eigenvalue analysis orientation [3-22]. For eigenvalue analysis, the linearized
power system dynamic model is used, and the elimination of network variables in the
algebraic equations has to be feasible such that the equivalent power system dynamic
model can be obtained and is well defined. Major part of these eigenvalue analysis
studies concentrated on the solution of eigenvalues of the whole equivalent power sys-
tem dynamic model; others on the computation of some particular modes of oscilla-
tion, especially the electro-mechanical modes which in general are of the low fre-
quency oscillatory modes [3,4,21,22], since the electro-mechanical modes of low fre-
quency oscillation is more common if oscillations would occur in power systems.'
Some special eigenvalue analysis programs have been developed for the above pur-
poses, such as the AESOPS (Analysis of Essentially Spontaneous Oscillations in
Power Systems) [3] and the PEALS (Program for Eigenvalue Analysis of Large Sys-
tems) in the Small Signal Stability Package (SSSP) [4] for particular modes of eigen-
value analysis, and the MASS (Multi-Arca Small Signal Stability Program) in SSSP
[4] for the eigenvalue analysis of the whole equivalent power system dynamic model.

However, eigenvalue analysis of a linearized power system dynamic model has

some drawbacks, such as:

(1) The dimension of the systein matrix for a large power system model

becomes extremely large since each synchronous generator has at least



cleven states (see Section 2.4 of Chapter 2: Power System Dynamic
Model).

(2) The computation required to compute all the cigenvalues of such a large
system matrix is beyond the capability of most computers. Numerical error
can make the results invalid when the dimension of the system matrix is so
large.

(3) Eigenvalue analysis provides little information about the factors causing the
existence of zero or positive real part of any eigenvalue. Computation of
left and right eigenvectors and participation factor matrix for each eigen-
value for iterative variation of parameters can provide some information but

at extremely high computational cost.

As mentioned above, this dissertation will develop bifurcation tests for the power sys-
tem dynamic model, especially on the mechanical and flux decay dynamics, that avoid
the eigenvalue analysis and provide insight into the effects of power system com-

ponents on each identified bifurcation.

Another group of the literature about dynamic stability emphasized the computa-
tion on the damping and synchronizing power coefficients of a power system [23-30].
The concept of damping and synchronizing power coefficients is very irhportant to the
study on dynamic stability. This concept has been utilized extensively since deMello
and Concordia extended it to study the stability of a synchronous machine affected by
excitation control [23]. However, most of the studies applying this concept were lim-
ited to a single machine case with or without excitation system dynamics [23-25]. In
order to compute the damping and synchronizing power coefficients of multimachine
power systems, some studies even needed to use some time domain signals or to com-
pute the equivalent loading condition of each machine [27-29]. Eliasson and Hill com-
puted damping power coefficient matrix for a power system where each generator was

represented by the classical model [30]. The application of Lyapunov or energy



function method is another approach to study the stability problems of a power system.
Lyapunov methods have been applied for the most part when the electrical dynamics
and the control systems dynamics were ignored [31-35]). In this dissertation, damping
and synchronizing power coefficient matrices associated with the mechanical dynamics
for multimachine power systems will be derived by taking the effects of network and
control systems into account. Lyapunov stability theory will be applied to obtain con-
ditions on these test matrices for prevention of bifurcations of the mechanical dynam-
ics.

The theory of bifurcation [36-38] has been applied to the study of steady-state
stability and low frequency oscillation based on the differential-algebraic power system
model [39-45]. Similar to the eigenvalue analysis, the studies of static and dynamic
bifurcations need the equivalent linearized power system dynamic model, provided that
the elimination of network variables in the algebraic equations is feasible. This
requirement is called as the causality condition of the differential-algebraic model
[39,40]. The equilibrium point is a bifurcation point when the system satisfies one of

the following conditions:

(a) The complete system Jacobian matrix of the differential-algebraic model is
singular;

(b) The equivalent static/algebraic equation Jacobian matrix is singular, which
is obtained by aggregating the differential equations into algebraic equations
provided that this reduction is feasible;

() The equivalent system Jacobian matrix has eigenvalues with zero real parts,

provided that the causality condition holds.

Note that in terms of the static bifurcation due to the singularity of the equivalent sys-
tem Jacobian matrix, these three conditions are equivalent to each other. The static
bifurcation could be saddle node bifurcation if the equivalent system Jacobian matrix

has a simple zero eigenvaiue, and the transversality condition of this matrix at the



bifurcation point holds. The dynamic bifurcation could be Hopf bifurcation if the
equivalent system Jacobian matrix has a pair of pure imaginary eigenvalues, and the

nondegeneracy condition of this matrix at the bifurcation point holds [36-38].

The static bifurcation on the study of steady-state stability of the power system
was proposed to analyze the singularity of the Jacobian matrix associated with the
differential-algebraic model or with the equivalent power system dynamic model
[40,41,45]. The static bifurcation leading to loss of steady-state stability (and/or vol-
tage stability) was shown to occur in a power system model where only mechanical
dynamics was involved [40,41]. Hopf bifurcation theory has also been applied to
study the dynamic stability of a power system by taking the effects of nonlinearity into
account, assuming that the system is at the operating condition with a pair of pure
imaginary eigenvalues associated with the equivalent system Jacobian matrix [41-44].
The focus was on determining the condition for stability of Hopf bifurcation of a sim-
ple power system model for changes in the bifurcation parameter. These Hopf bifurca-
tions were shown to be pertaining to the mechanical and/or flux decay dynamics due to
the effects of control systems. This dissertation will focus on detecting occurrence of
instabilities due to low frequency oscillations, particularly associated with the mechani-
cal and flux decay dynamics, rather than on determining the behavior of the power

system when Hopf bifurcation occurs.

The role of load demand modeling on power system stability studies has been
discussed [46,47]. However, even though it is obvious that load demand modeling
plays an important role on the stability studies, a proper load demand model for each
time frame of stability study has not yet come to a fairly clear point. The load
demand model adopted in this dissertation will be voltage-dependent.



1.2 Literature Review about Voltage Collapse

Basically, voltage collapse problem has been considered as either a static
phenomenon by analyzing the load flow model or a dynamic voltage behavior by tak-
ing the differential equations of synchronous machines and/or of load into account as

well.

Voltage collapse is a phenomenon where the voltage at some bus(es) of a power
system is slowly declining over a one to several minute interval and then is observed
to drop rapidly. Voltage collapse has been claimed to be a power supply-demand
problem, and has been associated with the power transfer over long and/or weak
transmission systems because of the trend of siting generators far from load centers
(mostly due to the location of power resources and environmental concerns) and
because of insufficient enhancement in the load center or weak transmission lines [48-
52].

Most of the studies on voltage collapse were based on point of collapse methods,
such as the V-P, V-0, and Q-V curve approaches, sensitivity analysis approaches,
and optimization approaches, that attempt to establish a load flow bifurcation point by
increasing load or transfer [48-61]. These load flow voltage collapse methods are
assumed to be associated with a lack of convergence to a load flow solution. These
methods determine the additional load or transfer at some bus(es) or on some
branch(es) before voltage collapse occurs. The additional load or power transfer that
can be added or shifted before voltage collapse occurs is the voltage stability margin.

Testing a sign change of the determinant of the load flow Jacobian matrix was
also proposed to indicate voltage instability of a power system [62]. The existence of
a pair of closely related multiple load flow solutions was shown to be an indication of
the singularity of load flow Jacobian matrix and be a proximity to voltage instability
[58]. Modal analysis is another approach by applying the SSSP algorithms [4] to com-

pute the eigenvalues, eigenvectors, and participation factors of an equivalent Q-V



Jacobian matrix. The magnitude of the small eigenvalues approaching zero is used as
a proximity measure to voltage instability for a large power system [63].

Dynamic voltage instability methods take into account the dynamics of synchro-
nous machines and their control systems, and the dynamics of load modeling. How-
ever, most of the research on dynamic voltage stability did not include the complete
control systems dynamics. Some only included the mechanical dynamics of the gen-
erator in the dynamic model [39-41,64-68]; while others neglected the mechanical
dynamics, and only kept the flux decay dynamics and/or excitation system dynamics
[69-72]. Still others included both flux decay dynamics and excitation system dynam-
ics [41,48,52,53,73]). The effects of load (line drop) compensator and saturation on the
problem of voltage stability was investigated in [52,53]. The effects of load demand
model on voltage stability was included in [46,64,65,71,74-79].

Time domain simulation was used to show that the proximity to voltage collapse
in a single machine case could occur because of the dynamics of induction machine
load or tap changer [76,77]). Eigenvalue analysis was proposed to capture the proxim-
ity to voltage collapse by tracking the eigenvalue of a simple dynamic system [71-75].
Singular perturbation theory was also applied to investigate voltage stability problem in
[78], where different types of voltage instability patterns were shown to be related to
the singularity of load flow Jacobian matrix, to eigenvalue analysis, or to direct non-
linear analysis. The relationship between the singularity of the power system dynamic
Jacobian matrix and that of the load flow model Jacobian matrix was presented in
[45,48,52,53,73).

The theory of bifurcation [36-38] has also been applied based on power system
differential-algebraic model, to investigate dynamic stability and voltage collapse prob-
lems. Most of the research analyzed the existence (and/or uniqueness) of the equili-
brium point of the system by testing the singularity of the system Jacobian matrix

directly or indirectly. The research was generally confined to a simple power systém



where excitation systems were simplified or neglected, and speed-governing-turbine
systems and power system stabilizers were omitted [39-41,52,53,64-70].

One of the necessary conditions for the static bifurcation in a power system lead-
ing to voltage collapse and/or loss of steady-state stability is the singularity of the
equivalent system Jacobian matrix [52,53,39-41,45,64-67,73,78,79]. Schlueter
developed test matrices for static voltage collapse that included the flux decay dynam-
ics and excitation systems dynamics of generators, and the effects of network [51-53].
One of the necessary conditions for the dynamic bifurcation in a power system leading
to dynamic voltage-angle instability is that the equivalent system Jacobian matrix has
eigenvalues with pure imaginary parts. Schlueter also mentioned that Hopf bifurcation
can likely occur in the mechanical dynamics [53]). Hopf bifurcation was shown to
exhibit dynamic voltage instability in a small system [41,42,67-72,79]. The bifurcation
theory was also intensively applied to the study of what occurs just prior to or just
after bifurcation of a dynamic model [41].

In this dissertation, the tests for load flow bifurcation and static/algebraic bifurca-
tion will provide a simply generic approach to assessing voltage collapse and steady
state stability in multimachine power systems. The tests for dynamic bifurcations will
precisely identify that the modes of oscillation are mainly associated with mechanical
and flux decay dynamics. Moreover, the effects of the control systems and the

transmission network will be structurally shown in the test matrices.

1.3 Organization and Main Contributions of This Dissertation

(A) Power System Dynamic Model

In Chapter 2, the representation of the components of power systems is discussed.
First, the general form of the active and reactive power flow between any two buses
connected by any kind of branch is shown. The general branch can be any
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combination of the following network apparatus: (a) a regular transmission line with or
without series capacitor, (b) a tap changing transformer, and (c) a phase shifter. The
models utilized in previous studies of voltage collapse and low frequency oscillation
omitted the series capacitor, tap changing transformer, or phase shifter. Since these
components can affect voltage stability and low frequency oscillation, their models
should be included. The equivalent ®-circuit of a general branch is derived, and then
the active and reactive power balance equations at any bus can be formulated. The
voltage-dependent load demand model at any bus is adopted in this dissertation, which
could be any combination of (1) constant power load, (2) constant impedance load, (3)

constant current load, and (4) any other voltage dependent load.

The differential equations of the power system will include synchronous
machines, and the control systems of machines. These control systems are adopted
from general IEEE models, and will be (a) excitation systems with load compensators,
(b) power system stabilizers, and (c) speed-governing-turbine systems. The model of
synchronous generators takes the armature and salient-pole effects into account. The
active and reactive power balance equations at the synchronous machine terminal
buses, and the representation of the load compensator which describes the feedback
from the terminal bus to the excitation system will also be derived in order to model
the coupling between the differential equations and the algebraic equations. These
models of power system dynamics are much more detailed than those generally util-
ized to study voltage stability and low frequency oscillation [23-35,39-45,48-79].
Again, such modeling detail is necessary to study these stability problems.

The equilibrium point representing the steady state operation condition is dis-
cussed by organizing the algebraic power balance equations of the transmission net-
work and the algebraic equations obtained by setting all the derivatives of the
differential equations to be zero. This chapter is ended with the linearized power sys-

tem model to set up the foundation of Jacobian matrices that are necessary for the
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discussion of bifurcations in the power system model.

(B) Voltage/Angle Bifurcation in Load Flow Model

The simplified model of the power system is the load flow model, where the
differential equations are omitted and generators are only modeled by their terminal
buses. The load flow model and its linearized representation in matrix form is dis-
cussed in the first section of Chapter 3. The linearized load flow model is structurally
described based on the three bus types: terminal bus of generator, generator-

transformer high-side bus (simply as high-side bus), and load bus.

The load flow bifurcation point is defined as the operating condition where the
load flow Jacobian matrix is singular. The voltage, angle, and voltage/angle bifurca-
tions will be shown to be the three types of bifurcations that could occur in a power
system load flow model. The voltage bifurcation and angle bifurcation, which occur
when the rows of the load flow Jacobian matrix associated with reactive power balance
equations and active power balance equations are respectively dependent, are shown to
be non-generic bifurcations which can only occur when a decoupled load flow model
is used. Moreover, the load flow bifurcations due to the row dependence of some par-
ticular rows of the load flow Jacobian matrix associated with single buses are shown to
never occur. Hence, analogies between bifurcations in a two-bus model have limited
usefulness in understanding how voltage instability develops in the large power system
load flow model. Thus, the generic form of load flow bifurcation test matrix is proven
theoretically and experimentally to be the voltage-angle bifurcation which is due to
row dependence of all the rows associated with both active and reactive power balance
equations. This result indicates the important effects of the coupling between active
power and voltage, and the coupling between reactive power and angle on the

voltage-angle bifurcation.
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Finally, the simulation for the load flow bifurcation will be performed on a 9-bus
3-machine power system. The simulation results for the load flow bifurcation illustrate
the important role of maintaining reactive power generation reserves at PV-buses in

preventing voltage collapse.

(C) Stability Problems in a Differential-Algebraic Model

Chapter 4 is devoted to the classification of stability problems in a power system
differential-algebraic model, and to the discussion of the conditions of these identified
stability problems. The linearized differential-algebraic power system dynamic model
is first developed and the properties of its Jacobian matrix are discussed in Section 4.1.

Next, based on the complete power system Jacobian matrix, basic bifurcation
theory is reviewed and six possible types of bifurcation in the power system
differential-algebraic model are identified, and two related non-bifurcation stability
problems are also identified. Necessary condition tests for each of the bifurcation and
stability problems are given. However, only three of these bifurcations are then
identified to be generic:

(@) The static/algebraic bifurcation is defined when the equivalent
static/algebraic Jacobian matrix is singular, which is obtained by aggregat-
ing the linearized equilibrium equations associated with the differential
equations into the algebraic equations provided that this reduction is feasi-
ble.

(b) The static bifurcation occurs when the equivalent system Jacobian matrix is
singular, which is produced by the elimination of the network variables in
the linearized algebraic equations provided that this reduction is feasible.

(c) The dynamic bifurcation occurs when the equivalent system Jacobian

matrix has pure imaginary eigenvalues.
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Note that the reduction in (a) of the linearized equilibrium equations associated with
the differential equations requires the stability of the single machine dynamics; the
reduction in (b) and (c) is the so-called causality condition [39] of the differential-
algebraic model. These two special stability problems, loss of single machine stability
and loss of causality, will be argued to be improbable in a practical power system
model.

Both the static/algebraic bifurcation and the static bifurcation are the type of
singularity induced static bifurcation, and will be shown to be equivalent to each other.
In this chapter, testing singularity of the static/algebraic Jacobian matrix for the singu-
larity induced static bifurcation is suggested rather than testing the singularity of the
equivalent system Jacobian matrix. This static/algebraic bifurcation test avoids the
inverse of the transmission network Jacobian submatrix (causality matrix) which is
non-sparse and has high dimension, and yet preserves the structure of the causality
matrix which is very similar to the load flow Jacobian matrix. The static/algebraic
Jacobian matrix corresponds to a set of algebraic equations that are similar to those of
a load flow model, and yet is the Jacobian matrix for computing the (dynamic) equili-
brium point of the differential-algebraic model. Moreover, this approach shows that
each synchronous machine can be represented by the single-axis model, and that only
the D.C. gain of the excitation system of each machine is required to model the control

systems.

The similarity and the difference between the static/algebraic Jacobian matrix, the
causality matrix, and the load flow Jacobian matrix will be comprehensively discussed.
It is concluded that if the D.C. gains of the excitation systems are very large which is
generally true, the singularity induced static bifurcation test will have similar results as
the load flow bifurcation test. Furthermore, if the reactive power generation limits are
included in the model, the static/algebraic Jacobian matrix will more likely be singular

than the causality matrix. The analysis is conducted for the case where generator flux
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decay and exciter dynamics is replaced by an algebraic equation that specifies the reac-
tive power generation and models the reactive power balance equation at the generator
terminal bus when the reactive power generation limit is reached. An alternative is to
model the field current limiter that adjusts the voltage reference on the excitation sys-
tem to hold the field current constant. When this alternative is used, static bifurcation
may occur in flux decay dynamics and in both flux decay and mechanical dynamics for
the generators which reach field current limits. This possibility is eliminated if the
generator flux decay and exciter dynamics is replaced by the algebraic reactive power
balance equation. The static bifurcation is solely associated with the mechanical
dynamics of the generators that reach field current limits when their flux decay and
exciter dynamics are replaced by the algebraic reactive power balance equations. No
discussion of the comparison of the static/algebraic Jacobian matrix and the load flow
Jacobian matrix is conducted in this dissertation when the field current limiter is used
to adjust voltage reference on the excitation system to control the field current to be

constant.

The simulation results utilizing the static/algebraic bifurcation test on the same
power system as used for the load flow bifurcation test show that static bifurcation and
load flow bifurcation occur at approximately the same operating point and for the same
reason. The results for the load flow model and the differential-algebraic model both
indicate that exhaustion of reactive power generation reserves causes the bifurcation to
occur if the generator electrical dynamics are replaced by the PQ-bus bus load flow

model when the reactive power generation limits are reached.

(D) Static/Dynamic Bifurcation
The static bifurcation and dynamic bifurcation are generic types of bifurcation in
the power system differential-algebraic model. The static or dynamic bifurcation can

occur when the equivalent system Jacobian matrix has eigenvalues with zero real parts,
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provided that the causality condition holds. Based on (a) the proof that the control
system themselves should have asymptotically stable eigenvalues, and (b) the experi-
mental results of the eigenvalue analysis [4] that most oscillations occur in the
mechanical and/or flux decay dynamics, Chapter S mainly focuses on the derivation of
simple necessary condition tests for static and dynamic bifurcations in multimachine
power systems associated with mechanical dynamics and with flux decay dynamics.
First, the portion of the equivalent system Jacobian matrix associated with the
control systems themselves is shown to have asymptotically stable eigenvalues. A
reduced Laplace transformed (S = j€2) model of the equivalent system Jacobian matrix
pertaining to solely mechanical and flux decay dynamics is produced by the elimina-
tion of the control system dynamics since they are proven to be nonsingular for any
Q 2 0. This resultant matrix provides the test of static bifurcation if it is singular at
Q =0, and the test of dynamic bifurcation if it is singular at some Q > 0. Note that

this test matrix also structurally shows the effects of network and control systems.

Damping and synchronizing power coefficient matrices associated with the
mechanical dynamics will be further derived by further climination of flux decay
dynamics. Test conditions on these matrices for identification and prevention of static
(2 =0) and dynamic (2 > 0) bifurcations of the mechanical dynamics will be esta-
blished. Test matrices for identification and prevention of flux decay bifurcation will

be similarly generated from the reduced model.

A static/dynamic point of collapse/oscillation method is proposed that would test
for the closest bifurcation as the system is continually stressed, as is the case when a
Q-V or P-V curve is produced in a load flow model. The method would increase a
transfer or loading level for some active power loading pattern or reactive power load
at some bus(es), determine when the first bifurcation occurs and its type. This metho-
dology would assess proximity to both steady state voltage-angle stability and low fre-
quency oscillation.
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The simulation results on a power system [4] in the proximity to experiencing
dynamic bifurcation leading to low frequency oscillation illustrate that the proposed
approach clearly identifies the modes associated with mechanical dynamics and flux
decay dynamics without performing eigenvalue analysis. The proposed approach is
shown to identify whether the bifurcation is in the mechanical or flux decay dynamics
when cigenvalue analysis can only shows that the mode affects both mechanical and

electrical dynamics.

(E) Conclusion and Discussion

This last chapter ends this dissertation with the brief summary of the contribu-
tions of the proposed api:roachcs to assessing the generic bifurcations leading to vol-
tage collapse and low frequency oscillation in the multimachine power system based
on two different models: (1) the voltage/angle bifurcation in the load flow model, and
(2) the static and dynamic bifurcations in the differential-algebraic power system
model. A flow chart for the identification and prevention the generic types of bifurca-
tion is provided. Some potential future research about this topic is also proposed.



Chapter 2
Power System Dynamic Model

Figure 2-1 represents a general model of any element of the network that can
connect any two buses i and j. The general model for a network element or branch
can represent a transmission line, transformer, phase shifter or any combination. A
specific example is a step-up transformer between a generator terminal bus and its
high-side bus, which allows a general discussion of the modeling of both power injec-
tion (the mismatch between power generation and load demand) at a bus and power

flow on a general branch.

This general branch can be represented by an equivalent x®-circuit, which will be
discussed in Section 2.2. The power injection at each bus i, P; + j Q;, is the alge-
braic sum of power supply, Pg; +j Qg;, and power demand, Pp; +j Qp;. The
power demand model, in general, can be any combination of constant power model,
constant current model, constant impedance model, and other types of voltage depen-
dent model, which will be discussed in Section 2.3. Section 2.4 shows the generator
model. The load flow model or the power balance equations that integrate the expres-

sion of a power system is now discussed in the next section.

2.1 Load Flow Model

Figure 2-2 shows the power flow diagram of any two buses, i and j. The con-
nection between them is represented by an equivalent general n-circuit. Note that the
equivalent charging admittance at bus i, Y-C,-,-, could be different from that at bus j,
Y¢ji, and that the equivalent transfer admittances, ¥; and ¥;, might not be the same.
These effects are due to the branch types of transformer and phase shifter (see Section

17
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" Step-up General
Gen | Xfmr - Branch
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Bus Bus .
P;+iQ; Pj+iQ;
P; = Pgi-Pp, Q; = Q6;~pi

Fig. 2-1 A General Branch Between Two Buses

V.£0.
I PijtiQy | Cij*iByj =Yy | Pji+iC; |
-t > . - Kk
P.+jQ; Pj +jO ;

Ycij| = Ccij*IBcij Geji*iBcji = |Yciji

= V2G..-

= -V2B..—

Fig. 2-2 Power Flow Diagram
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2.2). The generality of this branch model is introduced to permit modeling of
transformer and phase shifter [80]. -

Assume that there are n buses in a power system. Then the power flow between
bus i and bus j, and the power balance equation at each bus i can be expressed as
follows [81]:

P,-j = Viz Gu -V; V) [ G,J cos(8; — OJ) +B.'j sin(6; — 6,) ]
= V;z G‘J -V Vj Y,‘j cos(0; - 6, - 'Y,J)
=V2G; -V, V; T; (2-1a)

Qij = - Viz BU - Vi V] [ G‘J sin(G,- - 01) - BIJ COS(O,’ - OJ) ]

=-V2B; -V, V; Y, sin(®; - 8; -,

=-V2B; -V, V; U (2-1b)
n
P; =Pg; — Pp; = 21 (V2 Gij + Pyj)
J:
2 & n o
=Vif Y G +Gj))- X Vi V; T 5 j#i (2-2a)
j=1 =

Q; =06 —Qpi = "l (- Vi Bgyj + Qy))

J
, 8 n o
=- V" z (BCij +Bij) - 2 V,' V] Ui' y J#1 (2-2b)
Jj=1 Jj=1
where
Y; =NG}+ B} ; v = tan™! (B;/Gy)) (2-3)
T;j = Gt] cos(9; — 01) + Bu sin(6; — OJ) (2-4a)

= Y‘l cos(O, - 9, - ‘Y‘J)

U,-j = Gq sin(e, - 01) - B‘J COS(O,' - 9]) (2-4b)



=Y}; sin(9; - 6; - v;;)

Note that the above branch power flow is expressed without taking the equivalent
charging admittance into account, since in the "dumped" model of a general branch the
equivalent charging admittances is considered to be connected at the buses.

During solving the power flow equations, the following variables are specified:

aJGa Vv,a@=12, ---,m),ie, voltages at the swing bus (bus number 1 with
0, = 0) and the m~1 PV-buses.

2) P; (i=2, --- ,m) which are the model of net active power injection at
the PV-buses.

(3) P; and Q; (i =m+1, m+2, --- , n) which are the model of net active
and reactive power injection respectively at the load buses (PQ-buses).

Note that
Pi=PGi_PD£' , i=1,2, crt,an (2-5)
PG‘-=0,i=m+l,m+2, RS

0i=06-Cpi -i=12 - ,n;
Q6i=0,i=m+l,m+2, -+ ,n ;

and that Pp; and Qp; are the load demand which may be functions of V;. Then the
2n —m — 1 unknowns (V; i =m+1, --- ,n,and 6; i =2, - -+ , n) can be solved
from 2n — m — 1 equations (n — 1 active power equations (2-2a) and » — m reactive
power equations (2-2b)), if they are independent. After that, the voltage and angle
(with respect to swing bus) at each bus are known, and the proper reactive power gen-
eration at each PV-bus and active and reactive power generation at swing bus can be
obtained from (2-2). Note that when the reactive power generation of any PV-bus hits
its limits, it becomes a PQ-bus with fixed reactive power generation equal to the limit

and with varying voltage. Thus, the voltage and reactive power generation at this bus
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become an additional dependent and independent variable, respectively; and the load
flow equations have an additional reactive power balance equation at this bus. Then,
the load flow is re-solved until every variable converges within its limits; otherwise the

load flow diverges.

2.2 Transformer and Phase Shifter Model

Figure 2-3 shows the physical one-line diagram of a general branch between bus
i and bus j, where bus i is called tap-side bus, bus j is called impedance-side bus,
and the bus between them is a dummy bus, bus k£ [80,82). Between the tap-side bus
and the dummy bus, an ideal transformer with phase shifter is represented by the com-
plex value &;; = a;; exp (j a;;), where g;; is the tap ratio and a;; is the phase shift.
The n-circuit between the dummy bus and the impedance-side bus represents the leak-
age impedance and magnetizing admittance of a transformer, or the line impedance

and line charging admittance of a transmission line, and hence

i'_ch=—jlz=17=y'3"1’(1"Y)=G+J'B (2-6a)
Yo,y =¥c1=Ger +J 3c1 (2-6b)
Yorj =Yoo =Gea+j Bc, (2-6¢)
Note that usually

(1) Y represents the leakage impedance of a transformer, or the line impedance

of a regular transmission line;
(2) for a transformer, ¥ = 0 and ¥, represents the magnetizing admittance;
(3) for a transmission line, ¥¢; = ¥¢, = ¥ /2, where ¥ is the total line charg-
ing admittance.

Thus, Fig. 2-3 can represent a general branch between any two buses.
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= = V.0,
»l Y2y = G +jB |a ..
P:+jQ; Pj+ij
Yc, e,
V.20.
Vi<9; i)
| Pij+jQij Gij+jBij = Yij[yij Pji"']jS
oo o . . -~ o o
1 Gjj+JBj; = Yj;<Y;; 1
P;+jQ; Pj+ij
Ycij| = Gcij*/Bcij Geji+iBcji = | Yji
vy _Y Y : 7 1 o -

—..—Z—L -_— = ] .o Y --=Y +(l-=l-)}—’
YJ, = aij = aijé(Y aij) Gji"'.lBﬂ Cji='C2 a;

Fig. 2-3 Equivalent n-circuit of a General Branch Between Two Buses
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The current-voltage relationship between bus i and bus j can be derived by con-

sidering the relationship between bus k£ and bus j first:

aL| [far? -7 ||7m,
|| -F fop+F||V 2-78)
I-i ] (YCI + Y—)/a,z -
= | = = _ 2-7b
Ij ] - Yla,-j Ycz + Y ( )

From (2-7b), we can represent a general branch as an equivalent x-circuit, Fig. 2-2,

with the following parameters:

Y Y ,
Yj=—=——exp[j+oy]

d;j ij
=Y;; exp (J V;;) = G;; + By; (2-8a)
= ¥ v
¥y =—=—ex o;
it T e plj(¥y-a;)]
=Y exp ( ;) = Gj; + Bj; (2-8b)
Y; -YCij+Yu = 2
a‘-j
_ Yo, +(-3;)Y
Yo = T (2-8¢)
a,-j
7, = -Cji +}7ji =Yco+Y
_ — 1.~
Yeji=Yca+(1-—)Y (2-8d)
aij

From the above, the following important phenomena is observed:

(1) for a phase shifter, the equivalent x-circuit is completely asymmetric

because the transfer admittances, Y and YJ,, are different, and the

equivalent shunt admittances, ¥¢;; and ¥¢j;, are also different.
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for a transformer (o;; = 0), the equivalent ®-circuit is partially asymmetric
in that the transfer admittances, ¥;; and ¥;, are identical, but the equivalent
shunt admittances, ¥;; and Y¢;;, are different.

in IEEE Common Format [82], the bus at which its voltage is controlled at
specific value by adjusting the tap ratio if the tap ratio is still within its lim-
its, is called controlled bus. If the controlled bus is the tap-side bus, to
raise its voltage, the tap ratio is set to be greater than 1.0; to lower its vol-
tage, the tap ratio is set to be less than 1.0. If the controlled bus is the
impedance-bus, the setting of tap ratio is reversed.

for a transformer (a;; = 0), the magnetizing admittance Yc, is approxi-
mately zero, so (— B) » Bc,. Thus, from (2-8), it is observed that a
transformer has opposite effects on the equivalent shunt admittances, fc,-j
and Y'Cj;. Regardless whether the tap-side bus and the impedance-side bus
are step-up and step-down, respectively; or reverse, the step-up side always
has capacitive equivalent shunt, and the step-down side always has induc-
tive equivalent shunt. These transformer effects are interesting and impor-
tant in the problems of voltage collapse and low frequency oscillation

[52,53,77].

if a;; =1 and oy; = 0, then the dummy bus is no more needed and the ori-
ginal z-circuit (Fig. 2-3) becomes the same representation as the equivalent
x-circuit (Fig. 2-2).

after computing all the parameters of the equivalent n-circuit of any general
branch, ie., ¥;;, ¥;, ¥¢;;, and ¥¢;;, we can formulate the load flow equa-

tions by substituting them into (2-1) - (2-2).
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2.3 Load Demand Model

Since the models derived in this dissertation are to be used in the studies of vol-
tage collapse and inter-area oscillation, it can be assumed that frequency deviation is
small, and thus the effects of frequency deviation on the load model can be ignored.
Then a fairly general load demand model at each bus can be put into a voltage depen-

dent form as follows:

f,, =P, +IpV +Gsg Vi+kp V™ (2-92)
Op =0+l V -Bs V+ky V™ (2-9b)
where
PL+j0Op represents constant power load model;

Up+jlg)V represents constant current load model;

(Gs — j Bg) V2 represents constant impedance load model

(Bs < 0, if inductive; Bg > 0, if capacitive);
kp V* + j ko V™ represents other load model different from the above.

Substituting (2-9) into (2-2), we have the following load flow model.

For each bus i,

n n
PGi - (PLI +lPi Vi +kp" Vn") = Viz [ Gs" + z (GCij + G‘J) ] - z Vi Vj le
j=1 j=1

n
=V2Gi =X ViV T; ; j=i (2-10a)
j=1

n n
Qi — Q@ +1g; Vi +kg; V™)== V2 [Bg; + Z‘i (Bcij +B;j) 1- Zl ViV, U
j= j=

n
=-V2?B; - 21 ViV Uy j#i (2-10b)
l=

where
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Y; =G; +j B;
with

n
Gi =Gs; + 3, (Ggij +Gy) & j#i
i=1

n
B; =Bgi + 3, (Bcij +By;) 5 j#i

i=1
is the so called self admittance or the diagonal element of Y,,, matrix under the
assumption that only the combination of constant-current-and-constant-impedance load
model is used in the network. Then - (G;; + j Bj;) is the off-diagonal element of
Y,.s matrix. For a constant impedance load, Gg is nonnegative; but Bg is negative if
it is inductive, and positive if capacitive.
Note, from (2-10), that load demand model plays an important role in solving the

load flow equations, since it is voltage dependent [46,47]).

2.4 Synchronous Machine Model

The synchronous machine model adopted in this dissertation is the single-axis
model which is very common for the representation of synchronous machines
[26,83,84]. Figure 2-4(a) and Figure 2-4(b) represent its one-line diagram and phasor
diagram respectively. The notation is as follows:

V, : terminal bus voltage

I, =1, + j 1, : current output of the machine at terminal bus

1, : direct-axis (d-axis) current

I, : quadrature-axis (q-axis) current

8 — 6, : angle difference between internal bus (rotor) and terminal bus

P, + j Q, : power output from the machine at terminal bus



27

Pp+i@p,
R XXX Ptq+thqT Pip+iQp
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Fig. 2-4 Synchronous Machine Model
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Ppy + j Qp, : load demand at terminal bus

Py + j Oy : power flow from terminal bus to its transformer high-side bus
Pg + j Qf : power output from the machine at internal bus

R, : armature resistance

X, : d-axis synchronous reactance

: g-axis synchronous reactance

X, : d-axis transient reactance

: internal bus voltage proportional to d-axis flux linkage of field circuit
T,;, : d-axis open-circuit transient time constant (sec)

E;, : field voltage of the machine

Py : mechanical power input to the machine

o : angular speed of the machine (rad/sec)

H : moment of inertia constant (MW —sec /MVA )

M =2 H/uy : moment of inertia (sec/(rad/sec))

@ : nominal angular speed (at wg)

D : damping constant due to damper winding effects (pu/(rad/sec)).

Note that all the above parameters of each synchronous machine are in per unit (pu)

based on machine base, except those with specified units.

The dynamics of the induced stator voltage (at internal bus), Eq' , is characterized
by the flux decay equation through the open-circuit time constant, T,,, and is con-
trolled by the excitation system whose output is the field voltage of the machine, E fd-
The angular speed of the unit, ®, is governed by its speed-governor-and-turbine (or
simply governor-turbine) system whose output is the mechanical power, Py,. The

detailed dynamic models of the synchronous machine and its control systems will be
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discussed later in this section to complete the whole dynamic model of the synchro-

nous machine. Before them, the power balance equations at the internal bus and at the

terminal bus are expressed in terms of bus variables (voltage and angle), and branch

parameters in the following subsections.

2.4.1 Power Equation at Internal Bus

The power balance equation at internal bus describes the electrical power output

from the stator, and its active power output will be used in the swing equation (Section

2.4.7) which expresses the rotor dynamics due to the unbalance between mechanical

power input and electrical active power output.

From the phasor diagram shown in Fig. 2-4(b), we can obtain:
E,-V,cos(3-6,)=R, I, +X4 I,

V,sin6-6,)+R, I, =X, I,

; X, [E, -V, cos(8-6,)1-R, V, sin(5 - 6,)
7 R2+X, X,

=-E, B, -V, Uy
;- R, [E, -V, cos(8-6,)1+ X, V, sin( - 6,)
7" RE+X;X,

=E, G, -V, T,

where
T, =G, cos(d — 6,) + By sin(8 — 6,)

U, =G, sin( - 6,) - B, cos(3 - 6,)

(2-11a)

(2-11b)

(2-12a)

(2-12b)

(2-13)
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The electrical power output at internal bus (for the swing equation (see Section 2.4.7))

is

Pe+jQp=E, L =jE U +j1) =E, I, +]jE, I

E,=E +(X,-X4) ],
Pg =E,,.1,, =E I, + (X = Xg) Iy I,
Qp =E I, =E I, + (X, - X3 ) 1}
Substituting (2-11) into (2-14), we have
Pg =E,>Ggg —E, V, Tpg + V2 Gg,
Qp =— E,2Bgg — E, V, Ugg -V By,
where
Gege =k G, 5 ky=1-(X, —Xz) B, > 1
Tpe = k1 Ta +Ga (Xg = Xy) Ug
= Gpg cos(d — 6,) + Bpg sin(d — 6,)
Gpe =k2G, ; ka=1-2(, -X;)B,>1
Bpg = ky By + G2 X, —X,)
Gg = (X, —Xg) Ty Uy

BEE =leq

Uge =k, Uy = G sin@ - 6,) — Bgg cos(3 - 6,)

GQE =k2 Ga =GPE
BQE =k23¢

B =— (X, —X;) U2

(2-14)

(2-14a)

(2-14b)

(2-15a)

(2-15b)
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2.4.2 Power Equation at Terminal Bus

It is observed, from Fig. 2-4(a), that the power balance equation at the terminal
bus have three components: (1) net power injection which is the negative sign of the
local load demand, Pp, + j Qp,; (2) power flow from the terminal bus to its high-side
bus through a step-up transformer, P,, + j Q, whose modelAhas been shown in Sec-
tion 2.2; (3) power flow from the terminal bus to the internal bus, P,, +j Q,, which
is the negative sign of the power sent from the internal bus and received at the termi-

nal bus, — (Pg, +j Og)-
Thus, from Fig. 2-4 and (2-11) - (2-13), we have
P +j Q6 =V, I
PG =V, sin(8 - 6,) I; + V, cos(® - 8,) I,
Py =-Pg=V2G,-V,E, T, (2-162)
Qg =V, cos(d - 8,) I — V, sin(3 - 8,) I,
Q, =-Qc =-V?B, -V, E, U, (2-16b)
where
T, =G, cos(® - 6,) - B, sin(d - 6,)
= G, cos(6, - 8) + B, sin(6, - 8) (2-172)
Uy =-G, sin(8 — 6,) - B, cos(d - 6,)
=G, sin(9, - 8) — B, cos(8, - 8) (2-17b)
G,y = Uy sin(d - 6,) + T cos(d - 6,)
=G, - (B4 - B,) sin(8, — 8) cos(8, — ) (2-18a)
B, =Ty sin(d - 6,) — Uy cos( - 6,)

= B, sinX(®, — 8) + B, cos¥(6, - J) (2-18b)
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Note that since B; (X,) and B, (X,) are different, both G,, and B,, arc functions of

the angle difference between the terminal bus and the internal bus, 6, — &.

2.4.3 Flux Decay Equation

The internal bus voltage, Eq', is the induced stator voltage through the flux link-
age from the field winding with field voltage E;, at the rotor of a synchronous
machine. For the single-axis machine model, the dynamics of Eq' is governed by the

following flux decay equation through the d-axis open-circuit transient time constant,

’

Ts.
Tio Eg=Erqa —Ej =Epg —[Ej+ X4 =X Iy ) (2-19a)

Substituting (2-11) into (2-19a), we can express the flux decay equation in terms of

bus variables (voltage and angle):
Tio Eq =Epg —Kps E, + (X4 — X4 ) Uy V, (2-19b)
where
Kes=1-(X,-X4)B, > 1

We can also describe the flux decay dynamics as a function of reactive power genera-

tion at the internal bus, Qf, by substituting (2-14b):

—E,+VE*+4(X, -X;) Of

I = ,
‘ 2(X, -X;)
.o X, - X, .
TdoEq=Efd-[l"m)']Eq
q9
X, - X4 .
- VE*+4 (X, - Xs) Q¢ (2-19¢)
2(X,-Xg) !

This expression has been used in [52,53] to see the role of Qg in the problem of
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voltage collapse due to the instability of the flux decay dynamics under the assumption
that X, = X,:

Tio é«;"Efd‘Ec;‘(Xd-x.;)'E—.

Or

q

2.4.4 Excitation System Model

For adjusting the generator field voltage, E;4, in order to control the terminal vol-

tage properly, there are many control schemes to do so. Basically, the terminal vol-

tage and/or current feedback has been applied. A typical excitation control model is

IEEE Type DC1 Excitation System Model [85], as shown in Fig. 2-5(a) that will be

used in this dissertation. Most of other types of excitation control model can be

derived from this IEEE-DC1 excitation system model.

The notation is as follows:

VC:

VsI

an .

output of load (or line-drop) compensator (see Section 2.4.5)
output of power system stabilizer (PSS) (see Section 2.4.6)
reference (set point) voltage

output of voltage detector

DC (Direct Current) gain of voltage detector

time constant of voltage detector

transient gain reduction

lagging time constant of TGR

leading time constant of TGR
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output of automatic voltage regulator (AVR)

DC gain of AVR

time constant of AVR

output of exciter or excitation system (field voltage of synchronous
machine)

DC gain of exciter (Note: Kgz is function of the saturation effect of
exciter)

time constant of exciter

washout gain of stabilizing feedback of excitation system

washout time constant of stabilizing feedback of excitation system

In order to transfer the above excitation system model into state space form, we

can express both lead-lag and wash-out transfer function blocks as a gain block paral-

lel to a lagging block, as shown in Fig. 2-5(b). Then the state space form of the

IEEE-DCI1 excitation system model is as follows:

[

Tg l‘:'fd

Tp Vp -
T Vr

Ty Va | =
Ty Vp

-1 0 0 0 0
0 -1 0 0 — Kp /s
~KyTclTp —-KyTcTp —1 Ky =Ky (Tc/Tg) (Kp/Tf)
-(A-TcMp) -(1-TcTp) 0 -1 -1 -Tc/Tg)Kp/TF
0 0 1 0 - Kgg
vy
Kp Vc
Ve 0

Va |+ | Ka (Tc/Tg) (Vyep + Vs)
Ve (1 = T/Tp) (V,op + Vs)
0

(2-20)
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2.4.5 Load Compensator Model

This section and next one will respectively describe the models of the common

accessory functions of excitation systems, load compensator and power system stabil-

izer [85]. Load compensator usually uses the terminal voltage (and current) as feed-

back measurement of the excitation system model. The block diagram of a load com-

pensator is shown in Fig. 2-6(a). Fig. 2-6(b) shows its phasor diagram.

From the phasor diagram, we have
Ve=V,+@Rc+jXc)=Veg+Jj Ve,
=V, sin(d - 0,) + j V, cos(® - 6,)
+Rc +J Xc)Uq +J 1)

Substituting (2-11) for I; and I, we obtain

Vea =V, sin®-6,)+Rc (- E; B, -V, Uy) - Xc (E; G, =V, T4)

=K E;+Ks7 Y,

(2-21a)

Veq =V, cos(®—6,) + Rc (E; G, =V, Ty) +Xc - E; B, -V, Up)

=Ky E; +K;7V,
where,
K4y =- Xc G, +Rc B,)
K,;=Rc G, - X¢ B,

K47=(+Xc B; —Rc G,) sin(d — 6,) — K45 cos(8 — 6,)

K 7 =(1-K,p) cos(d - 8,) - Xc G, +R¢ By) sin(3 - 6,)

(2-21b)

(2-21¢c)
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t Ve
—] = R =
== |V,+ (RC+,XC)1,| |
I

t

g-axis

Ve =V,+ (RC+jXC)ll = VCd+jVCq

= 2 2
Ve = JVeatVeq

Ved = KaEd +K Vs
ch = quEq'+Kq7V'
Kd2=—(xcGa+Rch) qu=RCGa_xCBq

Kd7 = (1+XCBdI_RCGa)Si"(5_ex) + (XCGa+RCBq)COS(8—9,)

Kq7 = (1+XCBq-RCGa)cos(5-6,) = (XCGa+RCBd') sin(ﬁ—et)

Fig. 2-6 Load Compensator Model
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Note that when load compensator is not employed (Rc =0, X =0), then
Vo =V,. In other words, the magnitude of terminal voltage is sensed and is
transferred to be a DC (direct current) quantity, then is fed into the voltage detector
whose filtering can usually be modeled as a very small time constant (T, = O in Fig.
2-5(a)).

On the other hand, when load compensator is desired, the appropriate values of
Rc and X are entered. Both R- and X can be positive or negative, depending on
how the synchronous machine is connected to other units and to the power system
[85], and how the synchronous machine is set to control the voltage of a certain point
in the system. In most case, the Rc component is negligible and only a value for X
is required. For these cases, the coefficients, K7 and K, are functions of the angle

difference, & — 6,, so is the load compensator voltage, V.

2.4.6 Power System Stabilizer Model

The function of power system stabilizer (PSS) is mainly to improve dynamic sta-
bility of a synchronous machine and/or power system, using other regulator input sig-
nals in addition to terminal voltage through its excitation system. These signals are
chosen to provide positive damping to oscillations. Figure 2-7(a) shows the general
model of such a power system stabilizer. Some common stabilizer input signals are:

accelerating power, speed, frequency, and terminal voltage [85].

Transferring the lead-lag blocks and washout block into first order lagging blocks,
as shown in Fig. 2-7(b), we have the state space form for PSS model.
Ts Vso -1 0 0

Tga Vsy | = 1-TgTs, -1 0 Vsa
Tsa Vsa | | (1 = Ts3/Tse) Ts1Tsp) 1= TsaTgq — 1| L Vss
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+ (1 -Ts/Tg)) Kg Vst

Vsz + VS (2-22)
Ts4 Ty Ts 4

2.4.7 Swing Equation

The mechanical dynamics of a synchronous generator is at the rotor of this unit.
The motion of the rotor is due to the acceleration torque/power, mainly which is the
difference between the mechanical power input to the rotor and the electrical power
induced in the stator. The acceleration power will be used:

(1) to change the kinetic energy, or angular speed, of the unit;

(2) to overcome the damping power that develops mainly in the damper wind-

ings and in the form of mechanical frictions.

Equation (2-23) is the so called swing equation which describes the above

phenomena:
d Wy
+ Td = TM - TE (2-23a)
dt
2H d%% dd _
o 47 +D T =Py - Pg (2-23b)
ds _ -
- = RO (2-23c)

where,
T = g P: T represents torque, and P represents power;
®,: nominal angular speed (rad/sec);

Py: mechanical power input to the rotor (pu );
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Pg: equivalent electrical power output from the rotor (pu), which includes the
power loss due to armature effect and the power received at the terminal

bus (Pg, + j Qg,, see Section 2.4.2);

P,: damping power (pu);

Wx = Wgo/S3p) (@W¥wd): total kinetic energy of the generator and turbine
(pu—sec);

Wgo: nominal Wy (at wy);

S3,: 3-phase MVA base;

H = W,(/S3,: per unit inertia constant (sec);

o: angular speed (rad/sec);

the angular rotor position, measured in electrical radians of the rotor rela-

tive to a synchronously rotating reference (rad);
t: time (sec);
D: approximate damping coefficient (pu/(rad/sec)).

M = 2 H/wy: moment of inertia (sec/(rad/sec))

2.4.8 Speed-Governing-Turbine System Model

The mechanical power Py, is controlled by the speed-governing system through
turbine system, using rotor speed as an input signal. Even though there are
mechanical-hydraulic control (MHC) and electro-hydraulic control (EHC) types of
speed-governing system, basically, their models are very similar. Figure 2-8(a) and
Figure 2-8(b) are the general models of speed-governing system for steam-turbine and
hydro-turbine, respectively [86].

Pcy is the power at gate or valve and is the input of turbine system. The general

models of stcam-turbine and hydro-turbine systems are shown in Fig. 2-8(c) and Fig.
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Kg(1+T,5)
" 1S
Pgy P
M
l Fyyp _‘+<‘1> Q?—»
P
1 VHP
1 F F
T+TcyS HP Lp
Steam ©
ydro
Py, p
o, MAX
© 47 . K;(1+T,5) ) Pey
(1+T,5) (1+T,5)
(®) Pyin
P ap = (81385, = a1,83) TyS p
GV e 1+ auTWS —- M
()

Fig 2-8 Speed-Governing-Turbine System Model
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2-8(d), respectively [86].

After transferring the lead-lag blocks into first-order lagging blocks in the speed-
governing and turbine systems, the state space model of speed-goveming-turbine sys-
tem can be obtained by combining their models together.

(a) Steam Governor-Turbine

[ . 1 . -
T, P, . .
-10 0 0.0 0 !
T3 Pov ~1-10 0 0 o ||Pe
Tcy Pvup 0O 1 -1 0 0 O Pyup
TenPup | | 0 O 1 =1 0 O ||Pp
: 0 0 0 1 -10]||p
T P )/ d
2P Lo o 0o 0o 1 -1],
LTcoPu' Lr
Ke (1 -T,T)) (0 -
- K¢ (ToT)) (0 - wg) + Py
. 0
0
0
0 -
Py =Fyyp Pyyp + Fyp Pyp + Fip Pip + F1p Pip (2-24a)
(b) Hydraulic Governor-Turbine
T, P, -1 0 0 P,
T3PGV = —l —l 0 PGV
Ty Py | L O 9w —aww || Py
Kg (1 -T,T) (0 - ay)
+| = Kg (T5T)) (@ - wg) + Py
0
Py =Fgy Pgy + Py (2-24b)
a3 Gy

awg =ay3an/afy i aww =lay ; Foy =an- an
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2.5 Equilibrium point of Power System Dynamic Model

This section will organize the models derived in the previous sections to clearly
describe the dynamic model of a power system, and to discuss obtaining its equili-
brium point(s).

Without loss of generality, it is assumed that the connection between the terminal
bus of a synchronous machine and its high-side bus is equivalently one-to-one, as
shown in Fig. 2-1, and that the power system has n buses, including m machines with
m high-side buses, and n — m other (load) buses. From previous derivation, the
dynamics of the power system can be described by the differential equations associated
with rotor dynamics and control system dynamics, and the algebraic equations associ-
ated with active power and reactive power balance (load flow) equations, as follows.

(a) Swing Equation:
For each synchronous machine, from (2-23),
S=w-awn (2-25a)
M@=-D (0-wg) - P + Py (2-25b)

where Py, is the mechanical power output from the speed-governing-turbine system of
the unit (see (2-24)).
(b) Flux Decay Equation:

For each synchronous machine, from (2-19),
Tio Eq =Efa —Kps Eg + (X4 = X4 ) Uy V, (2-26)
Kp3=1-(X;-X;)B, > 1
U =G, sin(3 - 6,) - B, cos(d - 6,)

where, E,,, is the output of the excitation system of the unit (see (2-20) - (2-22)).
(c) Algebraic Load Flow Equation:
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[1] At internal bus, for each synchronous machine, from (2-15),
Pg =E,*Ggg - E, V, Tpg + V;? G, (2-27a)
Qp =— E,>Bgg —E, V, Ugg — V;? B, (2-27b)
The expressions of parameters are listed in (2-15).
[2] At terminal bus,t =n +1, --- ,n+m;h=1, --- , m, from (2-16),

=V2Gy —V, E; Ty + V2 (G +Gy) =V, V), Ty (2-28a)
- QD! = th + O
=-V2B, -V, E, U, — V2 Bcy +By) -V, Vs Uy (2-28b)

The -expressions of T,q, U,q, G,q, and B,q can be found in (2-17) and (2-18). The

expressions of T,, and U,, are similar to those of T,, and U,,, as follows:

Tth = thl COS(O‘ - 0,,) + Bth sin(e, - 9,,) (2-298)
Un =Gy sin(6, — 6,) — By, cos(6, — 6,) (2-29b)
[3] At high-side bus, s =1, -+ ,m;t =n + h, from (2-1) and (2-16),

—Ppy =V (Gew +Gp) =V V, Ty,

n n
+V2Y Gonj +Gi) =X Vo V; Ty , j2h (2-30a)
jsl j=l

~QOpy =— Vi Bcy +By) =V, V, Uy,
2+ " ,
Vi X Barj+Brj)- X Va Vi Uyj , j#h (2-30b)
Jj=1 j=1

[4) Atload bus,i =m +1, --- , n, from (2-1),

n n
-Ppi=V2Y Gcij+G)- XV, V;T; , j#i (2-31a)
j=1 =
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n n
- Qpi =-V{ 21 (Bcij + B;;) - 21 ViV U; , j#i (2-31b)
j= i=

Note that in the load flow equations, the load demand at each bus Pp + j Qp
may be function of its bus voltage, see (2-9), and that we have used the following gen-
eral formulas.

T;j =Gj; cos(®; —6;) + B;; sin(6; — 0;) , j =i (2-32a)
Uij = Gy; sin(; — 8;) — B;j cos(®; - 6;) , j #i (2-32b)

The above power system dynamic model is nonlinear, except the control system
dynamics of governor-turbine systems and excitation systems, if their limits are
ignored. The equilibrium point(s) can be solved by the set of algebraic equations
which include the load flow algebraic equations and those obtained by setting all the
time derivative terms in dynamic equations to be zero. This is equivalent to solve for
the steady state operating condition of the power system dynamic model. At steady
state, each synchronous machine can be equivalently represented by single-axis model,
and its control systems are represented by their D.C. gains. Note that the reactive
power output equation at internal bus is only a "side-output” output the synchronous
machine, and has to be replaced by the algebraic equation governored by the D.C. gain
of excitation control K, /Ky and voltage set point V,... Since at steady state @ = @,
the electrical active power output Pz at the internal bus is the same as the mechanical
output P), or the set point P of the speed-governing-turbine system which does not
have any effects on the equilibrium point, neither does the power system stabilizer due
to its washout characteristics. Thus, the set of algebraic equation for the equilibrium
point(s) can be described as follows.

For m machines:
o=, (2-33a)

P0=PM =PE
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=E>2Gep —E, V, Tp + V2 Gp

Ky
Efy = Ksg Vyer = Kp Ve +Vs)
=Kg3 Eg - Xy —X) Uy V,
Vs = 0

Ve =VNKy, E,,' +K;7 V) + (Kq2 E,’ +Kpq V,)*
—Pp, =V2Gy -V, E Ty + V2 Gy + Gy) =V, Vi Ty
—Q0p =-V2Byy =V, E, Uy = V2 Bca +By) -V, V) Uy

For n high-side and load buses: i =1, --- , n,

2 "t min ..
- PDi = V,‘ Z (GCl'j + G‘J) - z V" Vj T‘J y J #EI
ja ja

2 m+n m+n . .
-Qpi=-Vi® Y Bgj+Bj)- Y V;V; Uy , j=i
j=] j=l
For n+m loads:
Pp=P, +Ip V+Gs Vi4kp V¥

Op =Qp +1p V —Bg V2+kQ Ve

(2-33b)

(2-34a)
(2-34b)
(2-34¢)
(2-35a)

(2-35b)

(2-36a)

(2-36b)

(2-37a)

(2-37b)

Let the swing bus be the terminal bus at machine 1, i.e.,, bus n + 1, with specified ter-

minal voltage V., (0,,; = 0). Then there are 4 (m — 1) + 2 n equations to be solved

for E—¢;=E¢;CXP08) and V, =V, exp (j 6,) at bus n +2, --- ,n +m, and for

Vi=V,exp(j9;),i=1 -+ ,n,in which i =1, --- ,m are the m high-side
buses associated with m terminal buses under the assumption that the connection

between each terminal bus and its high-side bus is equivalently one-to-one.

However, the above algebraic equations are also nonlinear. The Newton method

is a general approach by applying the Jacobian matrix of the system, genecrated by
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taking partial derivative for each equation with respect to each variable. Doing so, the
linearized model of the system is obtained, and the linear system theories can be
applied to analyze the characteristics of the system in a neighborhood of the isolated
equilibrium point of interest. In next section, we will develop the linecarized dynamic
model of a power system based on the apparatus dynamic models derived before.
Then, the following studies on the static and dynamic bifurcation leading to voltage
collapse and oscillation, especially associated with flux decay dynamics and mechani-
cal dynamics, will be investigated on the base of the linearized dynamic model.

2.6 Linearized Power System Model

In analyzing equivalent solutions of a nonlinear system, we generally start by
linearizing the system in a neighborhood of the isolated equilibrium point of interest.
Of course, every function describing the above power system dynamic model has a
Taylor series expansion of the first degree plus higher order rest terms in the neighbor-
hood of of the equilibrium point; linearizing means that we leave out the higher order

terms.

Due to the linear representation of the control apparatus of every synchronous
machine, linearization work for speed-goveming-turbine system model, power system
stabilizer model, and excitation system model is not needed, but it is needed for load
compensator model. The linearization work will be done in the following sequence:
(a) load demand model; (b) power balance equation; (c) swing equation; (d) flux decay
equation; (¢) load compensator. Note that to simplify the notation, a variable with A
in front means the deviation of this variable from the equilibrium point of interest, and
its coefficient (in front of A) consists of variables that are evaluated at their equili-

brium values.

(a) Linearized Load Demand Model:
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For each load, from (2-9),
AP = AP + Fpy AV
AQp = AQc + Fgy AV
where

va =Ip +2Gs V+np kp Vn'-l

- 1 coefficient of active power load functional of bus voltage;

Foy =lp—2BsV +ng kg V™!

: coefficient of reactive power load functional of bus voltage;
APc =AP; +V Alp + V2 AGg + V™ Akp + kp V™ (InV) Anp

: coefficient of active power load not functional of bus voltage;
AQc =AQ; +V Aly - V2 ABg + V" Ak + kg vhe (InV) Ang

: coefficient of reactive power load not functional of bus voltage.

(b) Linearized Power Balance Equation:

(2-38a)

(2-38b)

[1] At internal bus, for each synchronous machine, substituting the following

property
oT;; dT;; o
aei == aej --Uij s V#)
%,  09; =Ty i)

J

into (2-11) and (2-15), we can derive
Al; =— B, AE; — Uy AV, - T, V, (A8 - A6,)
Al, =G, AE; — Ty AV, + Uy V, (A - A6,)
Ty = G, cos(d - 6,) + B, sin(5 - 6,)

Uy =G, sin(d - 6,) — By cos(8 - 6,)

(2-39a)

(2-39b)

(2-40a)
(2-40b)
(2-40c)

(2-40d)
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AP = Kf§y (A8 - A9,) + K§y AE, + K§4 AV, (2-41a)
AQr = K§, (A5 - AS,) + K&, AE, + Kg, AV, (2-41b)
where,

K§y =E, V, Upg + V2 (X, —X3) Ty Ty = Uy Uy)

Kfy =2E, Ggg -V, Tpg

K§y =2V, Gy —E, Tpg

Upg = ky Uy = G Xy = Xg) Ty

Tpg =k Ta + G, (X; —Xq) Uy

K\ =-E, V, Togr +2V2 X, - X) Uy T,

K8, =-2E,Bgg -V, Ugge

K8, =-2V, By, —-E, Uge

Toe =k Ty

Uge = ky Uy

[2] At terminal bus, for each synchronous machine, from (2-28) and (2-29),

AP, + APp, + APy, =0

AQ,, +AQp, +AQy, =0
~ APg, = AP, = K} (86, — AB) + Kf% AE, + K% AV, (2-42a)
- AQq, = AQ,, =K, (A6, — AB) + KY, AE, + K§, AV, (2-42b)
- AP, = - Kfy AB + Kfy AE, + (KF) +A,,) AS, + By, A9,

+ (K% +Cy,) AV, + Dy, AV, (2-43a)

- AQc, =~ Kly A3+ K[, AE, + (KYf) + A3,) AB, + B3, AS,
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+ (K + Cay) AV, + D3y AV, (2-43b)

where, the same properties of (2-39) and (2-40) are used such that

K# =V, E, U, - V]2 (B4 - B,) cos[2(6, - 8)]

Kih=-V, T,

K$ =2V,G,-E, T,
Ay =V, Vy Uy
Byp ==V, Vj Uy =—Ayy
Ciu =Fpy, +2V, (Gci +Gp) —Vy Ty,
Dyp ==V, Ty
K4, =-V, E, T,, - V;> B4 - B,) sin[2(8, - §)]
K§, =-V, U,
K4, =-2V,B, -E, U,
Ay ==V, V) Ty
Byp =V, Va Ty == A3y
Cau =Fgy, =2V, Bci +By) = V) Uy,
Dyy ==V, Uy

[3] At high-side bus, A =1, --- ,m, j # h, from (2-30),

n
—APC’, =A2',, AO, +Bw th + z BZ’C] AO,
j=1

n
+Copy AV, + Dy AV, + 3 Doy AV; (2-44a)
j=1

n
-AQCII = A AG, +Bm AO,, + z BMJ AOJ
i1
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n
+ Cap AV, +D 4, AV, + 3 Dy AV, (2-44b)
j=1

where, we use the same property of (2-39) and have

Am == Vh V, Um
n
By =V, V, Uy + 2 Vi V] Uhj
=i
Bﬂlj == Vh V] U"J
CM =- Vh Th,
n n
Doy =Fpy, +2Vy [Gen + G + X (Genj +Gpj) 1=V, Ty = X V; T
j= =i
Dayyj == Vi Ty
A =Vp Vi Ty
n
Bm =—Vh V‘ Thl - ZIV,, VJ Thj
Jj=
BM] = VII V] Th]
Camw ==V Up
n n
Dy =Fgy, =2 V) [Bey + By + 3, Bcyj +Bpj) 1=V, Uy = 3 V; Uy
Jj=1 : j=1
D gpj == Vi Uyj
[4]) Atload bus,i =m +1, --- ,n,j #i, from (2-31),
n n
- Apc,- =Bz"" AO, + 2 820 AOJ +D2‘-‘- AV‘ + z Dz‘l AVJ (2-458)
j=1 Jj=1
n n
- AQC!' = By; AO, + z B‘lj AO_, + Dy; AV; + z D“J AVI (2-45b)
jl ja

where, we use the same property of (2-39) and have
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n
Jj=

=- Vi V] Uu

n n
Dy; =Fpy, +2V; 3 Ggij+Gj)- X V; Tj;
=1 j=1

n n
Dy =Fgy,-2V; X Bcij +Bij) - X V; Uy
Jj=1 j=1

Dyj=-V; Uy
(c) Linearized Swing Equation:
For each synchronous machine, from (2-25),
Aé = Aw (2-46a)
M A =-D Aw - APp + APy, (2-46b)

where, APy, can be obtained from (2-24); APr can be substituted by (2-41a).
" (d) Linearized Flux Decay Equation:

For each synchronous machine, from (2-19) and the properties of (2-39) and (2-
40),

Ts AE, = AE;y — Kgs AE, — Kgq (A8 — A8,) + K4 AV, (2-47)
where,
Kp3=1- (X, —X,) B,

Kea=— g =X) Ty V,



Kg1= (g —X3) Uy

Note that each Kz, is a constant coefficient only functional of the machine parameters.
AE;; can be obtained from (2-20) - (2-22), and from the linearized load compensator
model (see (¢)).

(e) Linearized Load Compensator Model:

For each excitation system, from (2-21),
2 Ve AV =2 Vg AVgy +2 Ve, AV,
AVe = K¢y (A8 - A8,) + K¢g AE, + Kcq AV, (2-48)
where,

Kcy = Kq1 Vea + Kgy Veg)Ve

Kcy = (Kgz Vea + Koz Veg)Ve

Kcq1=Ka1Vca + Kg7 Veg)Ve

Ky =[(1+Xc By —Rc G,) cos(d - 6,) + Kz, sin(8 - 6,) 1V,

K, =—[(1-K;)sin(d-6,y+ (Xc G, + Rc Bg) cos(3-6,)]1V,

Having the complete linearized power system dynamic model, the following
chapters are going to study the characteristics of the power system based on three
different approaches:

(1) voltage-angle bifurcation in the load flow model,
(2) static/algebraic bifurcation in the dynamic model, and
(3) static/dynamic bifurcation in the dynamic model.
Matrix forms of linearized load flow model and linearized power system dynamic

model will also be formulated. Different kinds of test matrix for the above bifurcation
tests will then be established.



Chapter 3
Bifurcation in a Load Flow Model

The bifurcation in a load flow model (simply called as Load Flow Bifurcation)
will occur when the Jacobian matrix of the load flow model is singular. The load flow
Jacobian matrix describes the linearized load flow model, and is a square matrix,
which will be structurally discussed in the next section. In this chapter, a necessary
and sufficient condition test matrix for the load flow bifurcation is derived, that
includes effects of PV-bus to PQ-bus changes. It will be shown that the load flow
bifurcation can not occur due to the row dependence of the load flow Jacobian matrix
associated with the rows of the active and reactive power balance equations at a single
bus or at a subset of buses; solely associated with all the rows of active power balance
equations; or solely associated with all the rows of reactive power balance equations.
The result that load flow bifurcation of a large power system model can not occur at
single buses shows that the two-bus analogies used to understand large power system
voltage stability problems have very severe limitations. Thus, the load flow Jacobian
matrix is the generic test matrix for the load flow bifurcation. The generic load flow
bifurcation is also the so called voltage/angle bifurcation, since it occurs only when the
load flow Jacobian matrix is singular due to the row dependence associated with active
and reactive power balance equations at all the buses. Special cases of the load flow
bifurcation, voltage bifurcation and angle bifurcation, will also be discussed to provide
better understanding of the causes of the load flow bifurcation in term of active and
reactive power transfer and limitations. Finally, the simulation results of a 9-bus 3-
machine power system demonstrate the voltage collapse due to the load flow bifurca-

tion, and show the important role of the reactive power generation reserves.

55
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3.1 Linearized Load Flow Model

The load flow model is a simplified model of power system dynamic model under

the following assumptions: (1) the coupling between internal bus and terminal bus (or

between rotor and stator) of each generator is neglected, (2) the excitation gain of each

generator is infinite, and (3) all time constants in the differential equations are zero.

Hence, for a generator, its terminal bus is the only bus required to represent it.

All the buses in the load flow model can be classified as the following types of

bus.

(0) swing bus:

(1) PV-bus:

(2) PQ-bus:

It is one of the generator terminal bus with infinite active and reactive
power capacity (reserve), so that its voltage can be specified and its
angle is always set to be zero as the angle reference of the system.
Its active and reactive power generations are dependent variables, that
match the power mismatch in the rest of the system.

This type of bus has its active power generation or injection (genera-
tion — load demand) and voltage specified as independent variables,
and its reactive power generation and angle to be dependent. This
bus type is specified when the bus has adjustable reactive power gen-
eration reserves, which implies that its reactive power generation lim-
its have not yet been reached. Generator buses and buses with
switchable shunt capacitors are PV-buses.

This type of bus has its active and reactive power injection specified
as independent variables, and its voltage and angle are dependent
variables. High-side buses, load buses and PV-buses at their reactive
power generation limits are all PQ-buses. Note that the active and

reactive power generations at high-side and load buses are zero.



57

Thus, the load flow model consists of active power balance equations at both PV-buses
and PQ-buses, and reactive power balance equation at PQ-buses. The reactive power
generation at each PV-bus, and the active and reactive power generations at swing bus
are the output equations of the load flow model. The load flow model can be

described as follows.

0=¢;(y1:y2,73, 1) (3-1a)
Opv =82(Y1:¥2,Y3, W) — PV-Bus Oupus Equation (3-1b)
Ps =g3p (y1,y3) — Swing Bus Output Equation (3-1¢c)
Os =839 (¥1,y3) — Swing Bus Output Equation (3-1d)

where,

g1: active power balance equations at PV-buses and PQ-buses, and reactive

power balance equations at PQ-buses;
g2 reactive power balance equations at PV-buses;
g3p: active power balance equation at the swing bus;
830" reactive power balance equation at the swing bus;
y;: angles at PV-buses and PQ-buses, and voltages at PQ-buses;
y,:  specified voltage at PV-buses;
y3: voltage at the swing bus;

M,: active power demand at PV-buses and PQ-buses, and reactive power
demand at PQ-buses;

W,: reactive power load demands at PV-buses;
Qpy : reactive power generations at PV-buses;

Pg: active power injection at swing bus;



58

Qg: reactive power injection at swing bus.
Note that since the swing bus is assumed to have infinite active and reactive power
generation capacity, the characteristics of the swing bus will not be further discussed
in the load flow model, and the voltage at swing bus is assumed to be always constant,

i.e., y3 is a specified constant.

Consider an n bus power system with one of the generator terminal buses
selected as the swing bus (bus# 1), m — 1 generator terminal PV-buses and n — m
PQ-buses. It is assumed that no generator PV-bus has become a PQ-bus, referring to
the power balance equations derived in Chapter 2, the linearized load flow model and
the load flow Jacobian matrix J;r can be structurally represented as follows:

9g, 98
- =—Ay; 1+ — A 3-2a
Aul ayl Y 1 ayz Y2 ( )
98 g .
AQpy —Au2='a—y'l—Ay1+ sy—z'Ayz — Output Equation (3-2b)
1 [A, B 0 D 0 Jr.. 1 . -
AP, 1 By H A8, c,
~ APy A2y Bayn Bom Doy Dani | | aey, Can
-APCL =] 0 Bw, Bm D2LH DZLL AO,_ + CO AVT (3-2a)
:28"” Asi Buyn Banr Dann Dam 2‘;" 6”
“l | 0 Byy Bay Dyy D JL7F1 = 7
Alr
Ay
AQr =[As Bay 0 Day 01| A8, | +C5AVy — Oupus Equation
AVy
AV,

APy =— Ay =[APr' — APcy' —APq' —AQcy' —AQq' T
Ay, =[A6r' A8y" ABL' AVY' AV.'T ; Ay, =AVp

AQpy =AQgr ; — AQcr =- A,
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where,
APy = APgr — APcr ' active power injections at terminal buses;
AQr = AQqgr — AQcr : reactive power injections at terminal buses;
APQ: P and Q injection vector of the left hand side of (3-2a).

subscript T: represents the generator terminal PV-buses (including switchable
shunt capacitor buses), i.e., Pg, Pcs 0,, Qg Qct» Vis
t=2,..,m.

subscript H: represents the generator-transformer high-side PQ-buses. If the con-
nection between each generator and its transformer high-side bus is
equivalently one-to-one, then Pc,, 0, Qcy, Vi, h=m + 1, ..,
m+m.

subscript L: represents the rest of the PQ-buses. If the above one-to-one con-

nection is assumed, then P¢;, 6;, Qcy, Vi, I =2m + 1, .., n.
subscript G: active or reactive power generations;
subscript C: not-voltage-dependent (or constant) active or reactive power load
demand or injection;

The above matrices can be partitioned and defined as follows:

¢,
P 9, |Jre Jev | 98, Cg”
FoNT 9y e Jov [ TR 3y, | ey
0

agz agZ

Jyy==——==[A3 Byy 0 Dyy 0] ; Jyy=—=C
2= 5 3 Bay 3H 2=3=Cs

Jre=| 4, B,|=|A2 B Baw | i Jw=|p, |=|Dowm D

0 Byy By Dyy Doy



.’QQ=[A4 84]=[
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Dy Dyt
Dyy Dyy

Ayt Buin B
0 Byy Bus

] s Joy =Dy =

where, J;p is referred as to the load flow Jacobian matrix. The output equation then

becomes

AQT = SQV AVT + SW AP, 0 (3-2b)

Sov =Jn-Jn IR J12 i Sgp =Jn I

where, Sy is the equivalent Q-V sensitivity matrix of PV-buses when the load flow

Jacobian matrix J;r of (3-2) is nonsingular.

Based on the assumed one-to-one connection between each generator bus and its

transformer high-side bus (simply called the high-side bus), the following properties

are observed.

1)
()

3

)

A, A3, Cy,and Cy are all (m — 1) x (m — 1) diagonal matrices;

Aoy, Asy,Coy,and Cyy are all m x (m — 1) matrices. Each has the first
row being zero and the rest being an diagonal (m — 1) x (m — 1) subma-
trix.

By, B3y, D1y, and D3y are all (m — 1) x m matrices. Each has the
first column being zero and the rest being an diagonal (m — 1) x (m - 1)

submatrix.

Since the power balance equation of each bus is function of the angle
differences between this bus and other buses that connect to it, each diago-
nal element of the power-angle Jacobian matrices (Jpg and Jgg) of the
above load flow Jacobian matrix J;r, shown in the matrices of A and B, is
the negative sum of its corresponding off-diagonal elements; except the first
diagonal eclements of the matrices Boyy and B gy, which are associated

with the swing bus. Thus, if the angle of the swing bus is not set to be



)
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zero as the reference of the system, the load flow Jacobian matrix J;r will
be singular [45].
With the angle reference of the swing bus, the diagonal matrix A, is equal
to the diagonal submatrix of — By ; and the diagonal matrix A5 is equal to
the diagonal submatrix of — B3y, where the submatrix means the matrix
without the row and/or the column corresponding to the swing bus.
AP. and AQ, are respectively the coefficients of active and reactive power
load demand, Pp and Qp, which are not function of bus voltage. Hence,
the effect of the voltage dependence of load demand model, mentioned in
Chapter 2, is included in each diagonal element of the power-voltage Jaco-
bian matrices (Jpy and Jgy) of the load flow Jacobian matrix Jir, shown
in the matrices of C and D.
Recalling (2-1) and (2-2)
P;; =V2 G;; - V; V; [ G;j cos(6; — 6;) + Bj; sin(8; — 6;) ]

=V2G; -V, V; T; (3-3a)
Q;j =—- Vi B;; - V; V; [ G;; sin(6; - 6;) — B;; cos(6; — 6;) ]

=- V‘-2 Bij - V,- Vj U,'j (3-3b)

we have the following properties shown in (2-48):

ij - _ b __1. . .
%, = 80,- Uj s i#j (3-4a)
09; 06, v
Py __ 9P =V, V; U (3-5a)
% o8, 47
00;; i
QJ == an = V" VJ Tt] (3'5b)

®; 09
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aP,, . aP,,

_a—‘/T = 2 V,‘ Glj - Vj T‘J M -éT,;— = - Vi Tl“ (3'50)
0Q;; 0Q;;

a_V‘. =-2 V" B‘] - Vj U‘J ’ BT s - V" Ui] (3-5d)

J
Note that in general, T;; # £ T; and U;; # £ Ujy;. However, if the network
does not have phase shifter branch so that G,'j = Gﬁ and B,‘j =Bj,', and if
the series resistance of each network branch is small enough and is

neglected (Gq = (), then T‘J =- TJ‘ and U‘J = Uj.'. Thus,

aP,-j an,-

%Tj=303-_=—v" Vj Uij=_Vj Vi Uj‘- (3-6a)
90;; 00;;

ae =- aei = Vi VJ T‘J == V’ V,' Tl‘ (3'6b)

so that the Jacobian matrix Jpg is symmetric, B, is screw-symmetric, and
A,y = - B%y where superscript ¢ means matrix transpose. This presents
the sparse property of the load flow Jacobian matrix.

If the voltage variable is chosen as per unit deviation, i.e., AV/V, then,

without the assumption G;; = 0, we have

oP;  0Q;

@, vV, ViV; Uj (3-7a)
00;;  OoP;

=" 3 =ViViT (3-7b)

so that Aoy = Cy4y, By = D3y, and both B, and D, have the same off-
diagonal elements, and that A,y =- Coy, B3y == Dy, and each off-
diagonal element of B4 is the negative sign of that of D,. This further
shows the another sparse property of the load flow Jacobian matrix.
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When any generator PV-bus becomes a PQ-bus due to exhausting its reactive
power reserve or hitting its reactive power generation high or low limit, the defining
equations for the load flow model change by adding a reactive power balance equation
at the generator terminal bus, because the voltage magnitude at the generator terminal
bus is no longer specified. At this generator PQ-bus, its reactive power generation is
set to be fixed at the limit. Hence, in the case that any generator PV-bus becomes a

PQ-bus, using the following matrix partitions associated with terminal buses:

p APFY x5, A0FY
T=lapfe| > 7T~ | aef2
aofY avfY
ACr =\ appe| P 4V1 = avpe
ApY Ay, 0 . BY
A= AP2 |7 o Alg | "W |Big
civ O DYy
= 144 PQ = . =
Cl [Cl Cl ] 0 C% ’ Dl” Dm

Ay =A% A1 ; Cop=1CHY CE7)

. AYY Ay, o . :144

371A52 |7 o Aff | T ¥ T |BIR
civ O D%}

= 44 ro = : =
Ca=0C C3%1=1 o crp, | ' Pw=|prg

Ay =[A%Y AR Ccyy=1CH CiB
then the linearized load flow model and its corresponding Jacobian matrix J;r would

become as follows.
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| A By 0 ¢ Dy 0 |
A 144
_[2’;,7 Ay By By C38 Doy Do AgT €
cH 0 Byy B 0 Dyy Dy ” Can
—4AP¢ | _ Ah TAL AG‘,; +| 9 |avey
AQf? Afe Bfg o cif DEF o ||av? c(‘)""
-A AV, 4H
—A(QQZ,I Ast B Baw CP8 Dupn Daw AVil 0
) 0 B4LH B4LL 0 D4LH Du - - ) }
po,
AOy
A6
A0f"=1A5Y Bi 0.0 DY 01| Ly | +Chpv AVFY
AVy
AV, |
=SQV AV]"’V""SQP APQ - 0utput Equation
[ Jpe Jpv
Jir = _JQe Jov (3-8)
(A, B, A, By 0 cf® Dy 0
Jre=| 4, 32]‘ A Boyy Boay | 5 Jv =|Cf Doy Do
' 0 Byy By 0 Dyy Doy
afe BIg o Cifp Dif O

Joo =|Aw Bayn Bay | s Jov =| Cif} Dy Dar
0 Buy By 0 Dyy Duy

3.2 Load Flow Bifurcation

Load flow bifurcation will occur when the load flow Jacobian matrix J; g is
singular. This section will comprehensively discuss the subclasses of load flow bifur-
cation based on the the structure and the properties of thg load flow Jacobian matrix.
These subclasses are due to row dependence associated with different types of buses

leading to the singularity of load flow Jacobian matrix, when some of generator PV-
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buses become PQ-buses (sec (3-8)), which is more generic than when all generators

have reactive power reserves and are PV-buses (see (3-2)).

Based on the matrix partitions associated with terminal buses shown in (3-8), the

load flow Jacobian matrix J;r (3-8) can be rewritten as the following form:

(Jor ] | A1 B O cf2 Dy 0
IR A2 B o cif, DI o
Jry Aw Buyy Byy C3§ Doy Doy

Tir = Jon |~ |Awt Baun Bam CH8 D Dame
JpL 0 Byy By, O Dyy Dy
o] | 0 Buw Bu 0 Duy Du
] [av o o oEo

T = sgp | T | abe B2 0 CBF, DIE O

or more precisely:

JE =1A%% 0 BY; 0 0 DYy 01

JER =10 Af%, Bf 0 clf, DR 0]

JGP=10 A%E, BLf 0 Ci8, Dif 0]

Jpy =A% A% Boyy By C5§ Doyy Doy ]
Jou =A% A% Buun Buw CIB Duy Dy )
Jp =[0 0 Byy Byy O Doy Doy )

-

(3-9)

Note that this arrangement of J; according to the type of bus shows that JPP

and JGP, Jpy and Joy, and Jp, and Jg respectively have the same structure. Hence,

basically from the structure and the properties of the load flow Jacobian matrix J; ¢
(3-9), there are three possible single-bus subclasses of load flow bifurcation leading to
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the singularity of load flow Jacobian matrix. These single-bus bifurcations, if they
exist, would establish the correspondence between the load flow bifurcation that occurs
due to the singularity of J;r and the bifurcation that is evident in a transfer versus vol-
tage nose curve for a two bus model. These three subclasses are due to row depen-
dence associated with the power balance equations at PQ-buses: terminal (T'), high-
side (H ), and load (L).

LF-T: This type of bifurcation is solely due to row dependence associated with
the active and reactive power balance equations at terminal PQ-buses
(£ and J3P).

LF —-H : This type of bifurcation is solely due to row dependence associated with
the active and reactive power balance equations at high-side buses (Jpy
and Jou ).

LF-L: This type of bifurcation is solely due to row dependence associated with
the active and reactive power balance equations at load buses (/p; and
JoL)-

Note that since the diagonal properties of A and C matrices shown in Section 3.1
(property (1) and property (2)), other types of bifurcation due to the combination from
any two of above three are not possible at all. However, the following subsections
will prove that none of the above subclasses of load flow bifurcation can happen, and
will derive a reduced form of J;r based on the generic form of J;r with the structure
of (3-8) or (3-9) [87].

3.2.1 LF-T Bifurcation ?

Since under the assumption that the connection between each generator terminal

bus and its transformer high-side bus is one to one, all the submatrices of JEP and

15?, ie, A%, BYg, C%, DR, A%, B%%, C%, and D%, are diagonal matrices.
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The only condition for row dependence leading to the LF ~T type of bifurcation is that
the ratios of each corresponding pair of elements of these diagonal matrices must be

the same:

a b c d
kT=_1=_1”=_1=_1i (3-10)

ay by c3 dyy
where, each small character represents the element corresponding to the matrix with

the samc.subscript, and the superscript PQ is omitted. Using the following facts and
definitions from Chapter 2 and Section 3.1:

T"j = G‘l cos(9; — 9,) + B‘J sin(0; - 0,)
=Y;; cos(6; —=6; —v;) ; i#j (3-11a)

U,‘j = G‘J sin(O,- - 9,)—8,, COS(O‘- —9,)

=Y sin(8; —0; ;) ; i #) (3-11b)
B,
Y = \IG;‘}' +Bijz T tan“lc—-’. s i# (3-11¢)
ij
o __ ol o
2, %, ==U; i i#] (3-11d)
aU,-j_ aU,--_T e il
80,--691--‘7"1 (3-11¢)

we can obtain each element as follows:
a; =V, Vy Y, sin(6, — 6, —7v,) (3-12a)
biyy==-V, VY, sin(0, -0, —vy) (3-12b)
€1=2V, (G + Gy +Gy) =V, Yy cos(6, — 0, —y,) + Ip, (3-12¢)
dig ==V, Yy cos(6; = 0, = Yu) (3-12d)

a3 ==V, V) Yy cos(6, = 6, — Vi) (3-13a)
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bay =V, Vy Yy cos(6, — 6, — V) (3-13b)
Cy3=-— 2 Vt (Bs‘ + BCth +Bm) - Vh Y". Siﬂ(e‘ - 0,, - Yﬂl) + IQ, (3‘130)
dsy ==V, Yy sin(6, — 6, —,,) (3-13d)

Note that the load demand model adopted here is the combination of constant power,

constant impedance, and constant current models. It is clear that

pab = 81 _ by _ _ Y sin®6, - 6, —va) 314)
T " a; b — Y, cos(6, — 8, — Yu)
3 by

dig _ Y cos(8; — 6, —Yn)
dyy Yy sin(6, — 6, —vy)

kf = (3-15)

- which makes the satisfaction of (3-10) impossible unless Y,;, = 0. Computing the ratio
of the element in C; to that in C5 is not necessary. Thus, it is concluded that the
LF-T type of load flow bifurcation due to the row dependence associated with the
active and reactive power balance equations at a single generator terminal PQ-bus can

never happen. This proof holds for every generator terminal bus.

3.2.2 LF-H Bifurcation ?

Under the same one-to-one connection assumption, among the Jacobian subma-
trices of Jpy and Jgy, both Ay =[ A5 ASR 1and Ay =[ ALY AZH ] are diago-
nal matrices, and both C£§ and C{§ have the same structure with diagonal subma-
trices. Hence, to determine whether the LF-H bifurcation can occur or not, one can
first check if the corresponding elements of the above four matrices have the same
ratio or not. Similarly, letting the notation of small character with the same subscript

represent the element of that matrix, and using the facts stated in (3-11), we have
Gy = Vll V‘ Yht sin(O,, -9, _YM) (3-163.)

Coyy =— Vi Yu COS(O’, - 9, - Yt) (3-16b)
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Gayr =V, V, Y, 0088, — 6, — T (3-17a)
Can ==V Yy sin®, — 6, —Yy) (3-17b)
-t pmoy
kg = Coy _ Yp cos(®y =6, = Vi) (3-19)

Ca Yi 5in(®, — 6 = Yy,)
Since kf} # kf;, the LF—-H type of load flow bifurcation due to the row dependence
associated with the active and reactive power balance equations at a single high-side

bus can never occur either. This proof holds for every generator-transformer high-side

bus.

To check whether the LF —-L bifurcation is possible to occur or not, one can first
compare the corresponding elements of off-diagonal Jacobian submatrices of Jp; and

JoL- i€, By, Doy, Byy, and D . Similarly, using the facts of (3-11), we have

byy ==V, V, Yy sin(0; = 6, —vy) (3-20a)

doyuy ==V, V Yy cos(®; = 6, —vy) (3-20b)

bay =V Vi Yy cos(6; — 6, —vy) (3-21a)

dyy ==V, Vs Yy, sin®; = 6, —vu) (3-21b)
b - Yy, sin(6;, - 6, -

e e

W = dyy _ Y cos(6; — 6, — Yn) ' (3-23)

dyy Yy sin(6; — 6, —yy,)

Since k{ # k!, the LF-L type of load flow bifurcation due to the row dependence

associated with the active and reactive power balance equations at a single load bus
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can never occur. This proof holds for every load bus.

3.3 Generic Load Flow Bifurcation

From the above, it can be concluded that there are no load flow bifurcation subc-
lasses due to the row dependence of some particular rows of the load flow Jacobian
matrix associated with single buses. Thus, analogies between bifurcation in a two-bus
- model have limited usefulness in understanding how voltage instability develops in the
large power system load flow model. The only necessary and sufficient test condition
for the load flow bifurcation is the test for the singularity of the load flow Jacobian
matrix J;r (3-9) due to joint row dependence at all buses. This generic load flow
bifurcation is called the voltage/angle bifurcation because it occurs due to not only the
active power-angle coupling (Jpg) and the reactive power-voltage coupling (Jgy), but
also due to the active power-voltage coupling (Jpy) and the reactive power-angle cou-
pling (Jge) at all the buses [53,87].

If the active power-voltage coupling and the reactive power-angle coupling can be
ignored, or a decoupled load flow model is assumed, then the voltage bifurcation
and/or the angle bifurcation can approximately occur. The voltage bifurcation [53],
due to the row dependence of the reactive power balance equations of J;r or the
singularity of Jgy, is a bifurcation that solely leads to voltage instability. The ahgle
bifurcation, due to the row dependence of the active power balance equations of J; ¢
or the singularity of Jpg, is a bifurcation that solely leads to steady state angle instabil-
ity. The voltage bifurcation [53] when a bus or a group of buses can not be loaded
with an additional increment of reactive power load, because the reactive power supply
from the generator PV-buses with reactive power reserves that would attempt to supply
this reactive power load is totally consumed in the network reactive power losses. The
angle instability would occur when a transmission interface or boundary has reached

its active power transfer limit. Note that since there always is some active power-
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voltage coupling and reactive power-angle coupling, the load flow Jacobian matrix J; ¢
can be singular, even though the matrix Jpg is nonsingular or the matrix Jyy is non-
singular. Thus, the generic voltage/angle load flow bifurcation can be understood to be
caused by the active and reactive power transfer limitation, and can occur before the
active power transfer limitation due to the angle bifurcation or the reactive power
transfer limitation due to the voltage bifurcat?on is reached in a decoupled load flow

model.

It should be pointed out that the above proof not only indicates that the singular-
ity of the load flow Jacobian matrix J; leading to the load flow bifurcation can not
occur due to the row dependence associated with the active power and reactive power
balance equations at a single bus, but also implies that the load flow bifurcation can
not occur due to the row dependence associated with any subset of rows of J;r. The
singularity of Jyr requires that v’ Jir =0, where v is the left eigenvector of J;p
associated with the zero eigenvalue of J;r. The requirement that only a subset of the
rows of Jir be row dependent amounts to finding a point of singularity where
v! Jir =0 such that elements of v are specified to be zero and not free. Thus, load
flow bifurcations due to the row dependence associated with any subset of rows of J;
can be considered as very rare types of the load flow bifurcation since the constrains
associated with forcing elements of v to be zero for the operating conditions where
v! Jir = 0 make it so.

It has been proven [53] that a Q—-V curve test is a test for voltage/angle bifurca-
tion that occurs at the Q—V curve minimum. The Q-V curve has a minimum when
the load flow Jacobian matrix J; r is singular due to the row dependence of both active
and reactive power balance equations at all the buses [53,87). The minimal of -V
curve test for voltage collapse is the test for the singularity of the equivalent Q-V
sensitivity matrix Sgy (3-8), where the test bus (pattern) is treated as a (set of) PV-

bus. It has also been shown that the V-P (or V—-Q) curve test is a test for
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voltage/angle bifurcation which occurs when the nose of the V-P (or V—Q) curve is
reached, where the load flow Jacobian matrix J;r is singular also due to the row
dependence of both active and reactive power balance equations at all the buses. The
nose of V=P (or V—Q) curve test for voltage collapse is the test for the singularity of
the load flow Jacobian matrix J;z ((3-8) or (3-9)) solely due to the row dependence
between the rows associated with the active (or reactive) power balance equation at the

test bus pattern and the rest rows of load flow Jacobian matrix.

It should be noted that the singularity of the load flow Jacobian matrix J;p is
approached continuously with added active or reactive power transfer.across an inter-
face or boundary as long as generator PV-buses do not experience exhausting reactive
power reserves. When a generator PV-bus exhausts its reactive power reserve and
becomes a PQ-bus, the addition of another reactive power balance equation and
another voltage variable causes a discontinuity in the measure of the singularity of
Jir. This discontinuity often occurs at the point of voltage collapse because the load
flow Jacobian matrix for the case where this bus is still a PV-bus are row independent
but yet no voltage instability would occur because the load flow Jacobian matrix is
nonsingular. If this PV-bus became a PQ-bus so that the Jacobian of the reactive
power balance equation at this bus was added to the load flow Jacobian that existed
prior to this bus becoming a PQ-bus, the expanded Jacobian matrix would be singular
and the loss of voltage stability would begin immediately. This phenomenon will be
observed in the simulation results of a 9-bus 3-machine power system shown in the

following section.

3.4 Simulation Results

The 9-bus 3-machine power system of Fig. 3-1 [26] is adopted to confirm the
load flow bifurcation test. Figure 3-1 shows the transmission network configuration,

and gives the base case data, where the resistance, reactance, and line charging
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susceptance of the transmission network is in pu based on 100.00 MVA and the rated
bus voltage as shown in Fig. 3-1; the bus voltage is shown in the format: V ( 0 ) with
V in pu and O in degree; and the active and reactive power injection at each bus is
given in the format: P ( Q ) with P in MW and Q in MVAR. These three generators
are operated as follows: the generator terminal bus#1 is the swing (infinity) bus; the
generator terminal bus#2 is a PV-bus with reactive power generation limit
1+ 40.00 MVAR; and the generator terminal bus#3 is a PV-bus with reactive power
generation limit + 50.00 MVAR. Note that the resistance, reactance, and line charging
susceptance of this power system are adjusted and are different from the original data
in [26].

The Q-V curve test of the point of voltage collapse method [53] is used to show
the load flow bifurcation as shown in Fig. 3-2(b). The bus#8 is treated as a fictitious
PV-bus — a dummy generator test bus — whose voltage is assigned and changed
from the base case voltage 1.02 pu with reactive power "generation" (its negative sign
is the actual reactive power load) 0.0965 pu. Figure 3-2(a) shows two matrix deter-
minants: one with the notation Det ( LF0 ) is for the load flow Jacobian matrix J;
((3-2) or (3-8)) excluding the fictitious PV-bus; the other Det ( LF 1) is for the load
flow Jacobian matrix including the fictitious PV-bus. Figure 3-2(b) shows the Q-V
curve at the fictitious PV-bus, and its slope Der (QV ) (a scalar) which is the
corresponding diagonal element of the sensitivity matrix Sgv ((3-2) or (3-8)) of this
Q-V curve. Figure 3-2(c) gives the Q-V curve pi'oﬁle of the generator buses with
reactive power generation high limits, and Figure 3-2(d) represents the voltage profile
of each bus. The voltage angle (in degree) of each bus, and the active power genera-
tion of each generator bus are respectively shown in Fig. 3-2(e) and Fig. 3-2(f), which
should help understand the phenomena of the power system when the voltage and the

reactive power injection at the test bus (fictitious PV-bus) are changed.
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It is observed from Fig. 3-2 that the load flow bifurcation occurs at the minimum
of the test bus#8 Q—V curve when the reactive power load about 0.467 pu is added at
the bus#8 whose voltage is assigned at 0.87 pu. Note from Fig. 3-2 (a) - Fig. 3-2 (c)
that the generator bus#3 hits its reactive power generation high limit 0.50 pu before
the generator bus#2 does, and that whenever one generator hits its reactive power gen-
eration (high) limit and becomes a PQ-bus, the dimension of the load flow Jacobian
matrix J;r changes by increasing one; whereas the dimension of the Q-V sensitivity
matrix Sy reduces by one. This causes the jump phenomena of the determinant of
the load flow Jacobian matrix and that of the slope of the test bus Q—V curve. Note
also that, from Fig. 3-2(c), the load flow bifurcation occurs at about the point where
the generator bus#3 becomes a PQ-bus (the generator bus#2 has already become a
PQ-bus), even though the swing bus#1 has infinite active and reactive power reserves.
This result shows that the voltage collapse is a problem of (reactive) power demand
and supply. Each time a PV-bus changes to a PQ-bus, the supply rate from the PV-
bus is lost and the rate of increase in reactive power losses increase with further vol-
tage decline. The effective reactive power supply rate to the bus with voltage drop
decreases until the reactive power load demand at the bus#8 is 0.467 pu, where the
transmission network does not have the ability to transfer enough reactive power to
meet the requirement at bus#8 and the losses in the transmission network, even though

this system still has reactive power reserve at bus#1.

It should be pointed out that from Fig. 3-2(¢), the angle differences between any
two contiguous buses are never more than about 40.00°. In addition, after bus#3
changes from a PV-bus to PQ-bus, its voltage angle starts dramatically increasing
when the system is more stressed. The voltage angle at bus#2 also begins to increase
rapidly after it becomes a PQ-bus. Whenever a generator PV-bus becomes a PQ-bus,
its voltage is no longer constant and begins to decrease when the system gets more

stressed, but it still keeps constant active power output (see Fig. 3-2(f)). The generator
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PQ-bus then needs to increase its angle to compensate the voltage drop in order to
keep its active power output to be constant. When both voltage and angle change as

stress is added, a voltage/angle bifurcation is being approached.



Chapter 4
Stability Problems in a Differential-Algebraic Model

The theory of bifurcation [36-38] has been applied to investigate dynamic stabil-
ity and voltage collapse problems, under the assumption that the causality condition
[39,40] holds in the differential-algebraic power system dynamic model. The
equivalent system Jacobian matrix can then be obtained after inverting the causality
matrix and aggregating the transmission network back to the generator internal buses.
One of the necessary conditions for static/saddle-node or dynamic/Hopf bifurcations is
that the equivalent system Jacobian matrix has eigenvalues with zero real parts (others
are transversality and nondegeneracy conditions) [36-38]. The above bifurcations have
been shown to lead to loss of dynamic stability and/or voltage collapse, and been
shown to be mainly associated with both mechanical and electrical system dynamics of
generators [39-45,52,53,64-73,78,79,87,88]. However, most of the studies have used
cigenvalue analysis on the equivalent system Jacobian matrix to establish if these
bifurcations can occur. Eigenvalue analysis is not only computationally memory inten-
sive, but also computationally time intensive for a large power system dynamic model.
Furthermore, eigenvalue analysis has not generally been applied to the very large data
bases to study voltage stability problems. Moreover, the main assumption that the
causality condition holds may not be true, such that the equivalent dynamic system
Jacobian matrix can not be simply defined. The stability problems due to loss of
causality are not described and are not associated with the eigenvalues of the

equivalent system Jacobian matrix.

This chapter will classify the types of bifurcation and stability problems in the
differential-algebraic model. Necessary conditions are determined for each of these

80
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types of bifurcation and stability problems. Several of these bifurcations are shown to
be non-generic. The static and dynamic bifurcations associated with eigenvalues of the
equivalent system Jacobian matrix having zero real parts are shown to be generic
bifurcations. The stability problems due to loss of causality and due to loss of stability
of the generator dynamics are also identified as possible, if not improbable, stability
problems. The static/algebraic bifurcation will be shown to be equivalent to the static
bifurcation. The static/algebraic Jacobian matrix has similar structure to the load flow
Jacobian matrix. This static/algebraic Jacobian matrix is associated with a set of
linearized algebraic equations that produces the equilibrium point of the differential-
algebraic model, which is very similar to the load flow model. In addition, this
static/algebraic bifurcation test matrix avoids the inverse of causality matrix. Finally,
the static bifurcation test due to the singularity of the static/algebraic Jacobian matrix
will be shown to occur based on the simulation results of a 9-bus 3-machine power

system.

4.1 Linearized Power System Dynamic Model
From Chapter 2, the dynamics of a power system is characterized by two types of

equations: (1) the differential equations of rotor and flux decay dynamics of machines,
and those of their control systems (that include (a) Excitation System with Load
(Line-Drop) Compensator [85], (b) Power System Stabilizer (PSS) [85], and (c)
Speed-Governing-Turbine System [86]), and (2) the active and reactive power balance
(algebraic) equations at the internal and terminal buses of machines, at the transformer
high-side buses of machines (simply called high-side buses), and at the load buses.
Hence, the specific power system dynamic model can be represented as follows:

X=f(x,y;n) (4-1a)

O=g (x.,y:H) (4-10)
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where,

x : the M -vector of dynamic states of generators and control systems;

y : the N-vector of network dependent variables, i.c., the voltage and angle at
cach terminal bus (Vr, 6r), high-side bus (Vy, 6 ), and load bus (V, 6, );

u: the vector of independent parameters, such as reference voltage of excita-

tion system (V,, ), mechanical power setting of speed-governing-turbine

system (P ), and load demand parameters (Pp, Op);

f : the function describing the relationship among the dynamic states, network

dependent variables, and control parameters, through the coupling branch

between internal bus and terminal bus of each generator;

g . the function describing the power balance equation at generator terminal

buses, at high-side buses, and at load buses.

All the solutions of (4-1) must belong to the M-dimensional surface S, which is

defined as all points x and y where (4-1b) is satisfied. The Jacobian matrix of (4-1) at

any equilibrium point ( x_, y;; 1, ) can be obtained from the linearized power system

dynamic model, that has the following matrix form, by combining the linearized equa-

tion of each component in the power system shown in Section 2.6. The relationship

between the Jacobian submatrices is shown in Fig. 4-1.

of of
= Jf -[fx fy]- ox By
e ] L8 & ] | 92 92

ax Ay JOx e

Too A%y uxx Axe Axg 0 Axe Axv
Tec A’?c; _ Agy 0 Agg 0 0 O
- ;Agc Apy 0 0 O Apg Apy

€ |Agx 0 0 0 Agg Agy |l

(4-2a)

AU, (4-2b)
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where,

Axx Axg Ax¢ 0
. Ay A 0 Ags

Ay 0 0 Ag

Axe Axv
. _, | Ao Aev
fy=(diag[Txx Teg T Tss D) 0 0o
3 0 0 -
(Apy 000
8:=1Ax 000
[ Apg Apy
8 = | Age Agy

AXy =[A0f A AE. Y

: states of mechanical and flux decay dynamics;
AXg =[AVp' AVE' AV,' AVp' AE.' Y

: states of excitation systems (see Fig. 2-5);
AXg =[ AP\ APgy' APyyp' APyp' APp' APp' Y

: states of speed-governing-turbine systems (see Fig. 2-8);
AXg =[AVsy AVg) AVl Y

: states of power system stabilizers (see Fig. 2-7);
A0 =[A6; A0,° A9.'T

: angle variables at network buses (terminal: T, high-side: H, load: L);
AV =[AVe' AVt AV Y

: voltage variables at network buses;
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APc =[APc' APy’ APq 'Y
: coefficients of non-voltage-dependent active power load demand model;

AQc =[AQcr' AQcy' AQc'Y
: coefficients of non;voltage-dependcnt reactive power load demand model;

MO O
Tyx =diag [M I Tg1=|01 0
0 0T,

M =diag [M,,M,,... . M,]

: inertia constants of m synchronous machines;
I : m x m identity matrix;
T, :m x m diagonal time constant matrix of flux decay dynamics;
Tege =diag [Tp Tp Ty Tp Tg]
: time constants of excitation systems (see Fig. 2-5);
Tec =diag [Ty T3 Tey Tryy Truz Teo )
: time constants of speed-governing-turbine systems (see Fig. 2-8);
Tss =diag [Ts Tsy Tsq)
: time constants of power system stabilizers (see Fig. 2-7);
Note that Tgg, T, and Tgg submatrices above are defined using a similar notation to
that used in defining Tyy, and the submatrices T,, - - - , T4 are m dimensional diag-
onal matrices composed of the appropriate time constants of the generator and control

systems models. The A -matrices of each Jacobian submatrix are defined as follows.
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0 -Kps —Kg3
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Ax By O Cx Dy O
Apo=|Aay Boyy Boyr | s Apy = | Coy Doy Doy

0 Byy By 0 Dyy Dy
Aix =Kph +A, ; Cix =Kp4y +C,

Asx Byy O Cixx D3y O
Age=|As Bain Banr | s Agv = | Cant Dapyn DayL

0 Byy B 0 Dyy Duy

A3K =Kal +A3 ; CSK =Ka7 +C3

The following properties of the submatrices of the linearized power system model

help provide understanding of the model.

¢))

()

3

C))

All the K matrices are m x m diagonal matrices. Among them, the
matrices, Kﬂ‘z, Kg3, Kg4, Kgg, Kﬂz, Kaz, and K ,, are associated with the
flux decay dynamic states Eq' of the single-axis modeled synchronous

machines.

The matrices K% and K'? of the power balance equations at internal buses
and terminal buses of synchronous machines represent the coupling between
both buses. In general, K # K%, because of the armature and salient-pole
effects of synchronous machines, that cause X;, X,, and X, are different.
If the armature resistances (R,) and salient-pole effects are neglected, then
Pg = Pg, = = Py, such that K§ = K}, K§5 = - Kfb, and K = - Kf%.
The load compensator is characterized by the diagonal matrices: K¢, K¢cj,
and Kc7. If a load compensator is not employed, then Vo = V7, ie,
Kc1=0,Kcy=0,and Ko7 =1.

Due to the effects of transformers, phase-shifters, and network conduc-

tances, each of these network submatrices, Apg, Apy, Age, and Agy,
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composing of the network Jacobian matrix is not symmetric.

(5) The coefficients of voltage dependent load demand model are embedded in
the diagonal elements of C and D submatrices.

(6) Under the assumption that the connection between each generator terminal
bus and its transformer high-side bus is one-to-one, the submatrices A;, C;,
i=123,4,andBjy, Dy, j =1, 3 are diagonal.

@ . Other properties of the network Jacobian matrix can be found in Section

3.1, that are associated with the submatrices of the load flow Jacobian

matrix in the load flow model.

4.2 Bifurcations in Power System Dynamic Model

At any parameter pattern U = |, of the power system dynamic model (4-1), an
equilibrium point (x,, y.; K.) on the surface S, defined by (4-1b) is a solution to

O0=f(x,y;Hn) (4-3a)
O=g(x,y;H) (4-3b)

Note that the precise formula of (4-3) for solving for the equilibrium point(s) of the
power system dynamic model has been discussed in Section 2.5. The bifurcation prob-
lem is to characterize the solution set of (4-3) in a neighborhood of an equilibrium
point (x,, ¥,; H.). The equilibrium point (x;, y;; i;) is a bifurcation point and p, is
a bifurcation value of the parameter if the system satisfies one of the following condi-

tions.

(a) The complete system Jacobian matrix

of of
Jf fx fy ox ay
7= Jo]Tle &) |22 22 @4
ox dy J(=.y:iw)



is singular.
(b) The equivalent static/algebraic Jacobian matrix

Jy=8 -8 I 1, 4-5)
is singular, provided that f, is nonsingular.

(c) The equivalent system Jacobian matrix

Jy=fx—fy gy_l 8x (4-6)
has eigenvalues with zero real parts, provided that g, is nonsingular.

Note that Jacobian submatrices, f,, f,, 8. and g,, can be found from the linearized
power system dynamic model (4-2).

From the above, six subclasses of bifurcation in power system dynamic model are

identified.

(1) A static/algebraic bifurcation occurs when the equivalent static/algebraic Jaco-
bian matrix J, is singular, but J, is row independent and g, and f, are non-
singular [52,53,87,88].

(2) A static bifurcation occurs when the equivalent system Jacobian matrix J, is
singular and does not have pure imaginary eigenvalues, but J, is row
independent and g, and f, are nonsingular. The static bifurcation could be
the saddle node bifurcation if the matrix J, has a simple zero eigenvalue, and
the transversality and nondegeneracy condition of J, at the bifurcation point
holds [36-38].

(3) A dynamic bifurcation occurs when the equivalent system Jacobian matrix J,
is nonsingular and has pure imaginary eigenvalues, but g, and f,; are non-
singular. The dynamic bifurcation could be Hopf bifurcation if the matrix J,
has a pair of pure imaginary eigenvalues, and the nondegeneracy condition of

J, at the bifurcation point holds [36-38].



91

(4) A differential bifurcation occurs when the equivalent system Jacobian matrix
J, is singular due to the row dcpendenoc of J; (but g, is nonsingular) [53].
(5) An algebraic bifurcation occurs when the equivalent static/algebraic Jacobian
matrix Jj is singular due to the row dependence of J, (but f, is nonsingular)
[53].

(6) A differential-algebraic bifurcation occurs when tﬁe complete system Jacobian
matrix J is singular due to both the row dependence of J; and the row depen-

dence of J,.
Note that two specially stability problems occur along with the above bifurcations:

(a) A single-machine instability occurs when the machine Jacobian matrix f, is
singular, or when f, has complex eigenvalues with zero real parts, but J; is

row independent.

(b) Loss of causality occurs when the transmission network Jacobian matrix g, is

singular, but J, is row independent.

The above stated conditions are necessary conditions for these specific types of bifur-
cation. Transversality condition for saddle-node bifurcation and nondegeneracy condi-
tion for Hopf bifurcation [36-38] which control the nondegeneracy of the behavior
with respect to the . parameter change and the dominant effects of the nonlinear terms
of power system dynamic model will not be discussed in this dissertation.

Note that type 1, type 2, and type 3 bifurcations require that both f; and g, be
nonsingular and both J, and J, be row independent, and that type 4, type 5, and type
6 bifurcations are due to the characteristics of row dependence either in J, or J,, or
both. The first three types of bifurcation require both f, and g, be nonsingular mak-
ing both J, and J, well defined. The type 4 differential bifurcation requires J, be row
independent and g, be nonsingular so that J, is well defined. This differential bifurca-
tion also requires f, be singular and J, be row dependent leading to the singularity of
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both J and J,. The type 5 algebraic bifurcation requires that f, be nonsingular so that
Jy is well defined, and that g, be singular and J; be row dependent resulting in the
singularity of both J and J,. The type 6 differential-algebraic bifurcation is restricted
to the case where both f, and g, are singular and both J; and J, are row dependent
causing J to be singular and both J, and J, to be undefined. The above restrictions
on the above bifurcation tests make sure that the classifications are distinct. The rela-

tionship and difference between the six classes of bifurcation are now discussed.

It can be shown, using Schur’s formula (Appendix A), that the static/algebraic
bifurcation due to the singularity of J, (4-5) can be proven to be equivalent to the
static bifurcation due to the singularity of J, (4-6), provided that both f, and g, are
nonsingular which is assumed in the definition of the static and static/algebraic bifurca-
tions. Thus, one could consider making the static and static/algebraic bifurcations as a
single bifurcation class. The two reasons this wasn’t done was (a) a proof is required
to establish they are completely equivalent, and (b) at an initial review one would con-
sider singularity of J, and singularity of J, as different stability problems, which
indeed they would be if all of the possible stability problems due to singularity of J,
or J, were considered as one class of stability problem. The classification of the
bifurcations and the stability problems indicates that there are different stability prob-
lems associated with singularity of J, (static; differential) and different stability prob-
lems associated with singularity of J, (static/algebraic; algebraic); but when f, and
8y are nonsingular, then there is one stability problem associated with J, and J, being
singular. If one chose to make the static and static/algebraic one class of bifurcation
problem based on the fact that f, and g, are assumed nonsingular in the definition of
these stability problems, it would be called a static bifurcation, static/algebraic bifurca-
tion, or singularity induced static bifurcation, since both J, and J, are singular for this
bifurcation to occur. A singularity induced static bifurcation will be shown to be

- caused by the transmission network stress (see Section 4.6), in a manner almost
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identical to that causing the load flow bifurcation as shown by the simulation results in
Section 3.4.

Note that the type 4 differential bifurcation is not equivalent to the type 2 static
bifurcation even though both occur when J, is singular. The difference between them
is that the differential bifurcation is solely due to the instability of the single machine
dynamics (J; is row dependent and f, is singular), whereas the static bifurcation is
due to the instability of the transmission network coupled with the dynamic states
represented by J,. Likewise, the type S algebraic bifurcation is not equivalent to the
type 1 static/algebraic bifurcation even though both occur when J, is singular. The
difference between them is that the algcbraiq bifurcation is solely due to the lack of
solutions or multiple solutions of the transmission network U, is row dependent and
8y is singular), whereas the static/algebraic bifurcation is due to the instability of the
transmission network coupled with the dynamic states represented by J,. The similar-
ity of J, and the load flow Jacobian matrix J;r is discussed in Section 4.4. It should
also be pointed out that the row dependence of J, and loss of causality (g, singular)
indicate that the set of algebraic equations (4-3b) may have either no solutions or mul-
tiple solutions; but the static/algebraic bifurcation is a bifurcation in both machine
dynamics and transmission network. The two special stability problems due to the
singularity of f; and that of g, will be discussed in Section 4.3, even though they are
not bifurcations because they indicate loss of stability and because the tests for the

static/algebraic, static, and dynamic bifurcations require that they be nonsingular.

4.3 Prerequisites of Bifurcation Study

Having classified the simplest types of bifurcation for a differential-algebraic
power system model, it will now be shown that the type 4 differential bifurcation due
to J; being row dependent, the type 5 algebraic bifurcation due to J, being row
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dependent, and the type 6 differential-algebraic bifurcation due to both J, and J,
being row dependent are not generic types of bifurcation. The singularity of J
requires that v* J =0, where v is the left eigenvector of J associated with the zero
cigenvalue of J. The requirement that an only subset of the rows of J be row depen-
dent amounts to finding a point of singularity where v* J = 0 such that the elements of
v are specified to be zero and not free. Thus, the differential bifurcation, the algebraic
bifurcation, and the differential-algebraic bifurcation can be considered as very rare
types of bifurcation since the constraints associated with forcing elements of v to be

zero for the operating conditions where v* J;r = 0 make it so.

Therefore, although we started with the possibility of six different types of bifur-
cation in the power system dynamic model of (4-1) and (4-2), only three types, type 1,
type 2, and type 3, of bifurcation appear to remain as likely, and will be discussed in
the rest of this dissertation. Both type 1 and type 2 are singularity induced static
bifurcations and equivalent to each other when f, and g, are always nonsingular,
which are required to be based on their definitions. The type 3 of bifurcation is the
dynamic bifurcation. It should be pointed out that both f, and g, might still be singu-
lar [87] and produce non-bifurcation stability problems. The behavior of the system
due to loss of causality will now be discussed further in Section 4.3.1. The singularity
of f, will be further addressed in Section 4.3.2, and be argued to be improbable, but
the proof is not strong enough to prove that the singularity of f, is non-generic. Thus,
singularity induced bifurcation, dynamic bifurcation, and loss of causality will remain
as generic stability problems. Although loss of causality must be considered as a gen-
eric stability problem, discussion concerning the structure of g, compared to the
static/algebraic Jacobian matrix J, addressed in Section 4.4 and the simulation results
of the static/algebraic bifurcation test for a power system with the reactive power gen-
eration reserve constraints addressed in Section 4.6 suggest that loss of causality may
not be a generic stability problem.
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Chapter 5 will concentrate on systematically developing test conditions for the
static and dynamic bifurcations (type 2 and type 3), based on the equivalent dynamic
Jacobian matrix J,, under the assumptions that causality condition holds (g, is non-
singular) and that transversality/nondegeneracy condition holds. Test conditions for
the static and dynamic bifurcations pertaining to mechanical and flux decay dynamics
will also be established [88], based on the property that each of control systems itself
does not have eigenvalues with zero real parts which will also be proven to be true in

Section 4.3.2.

4.3.1 Causality Condition — g,

In Section 4.1, the M-dimensional surface S, is defined, which requires that all
the solutions of the power system dynamic model (4-1) x and y must satisfy (4-1b)
O0=g (x,y;u) at any y4 parameter. The causality condition of the power system,
gy =0dg/dy being nonsingular, means that every solution x and y must belong to the
regular part of S,

Sgr ={0=¢g (x,y ;H) ; J; is row independent.}
which is an M -dimensional submanifold in Sg [89].

When J, is row dependent, the solutions x and y on the surface S, are no longer
regular and do not belong to Sg,. Thus, there can not only be more than one y solu-
tion for each x but several x solutions with more than one y solution for each x.
These x and y, when J, is row dependent, lic on the geometric boundary separating
the regular part of S, from the remainder of S;. Note that the row dependence of J,
implies the singularity of g, leading to loss of causality. Since loss of causality can
still happen even when J, is row independent, this boundary is characterized by the
particularly complicated type of stability problems observed as being associated with
loss of causality.
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Loss of causality (g, is singular) occurs on the so-called frontier

Fg={0=g (x,y ;1) ; g8 is singular.}
which is an M —1-dimensional surface [89]. On the frontier, y in (4-1b) can no longer
be solved as a unique function of x. Loss of causality results in uncertain dynamic
behavior of two different types: singular points and impasse points can occur on the
F, surface. At an impasse point, a solution may not be continued for all time after an
impasse point is encountered on the frontier. This is not the case for a singular point.
If the initial condition is a singular point, then solutions exist but are not unique. A
solution can switch from component to component of the regular part of the solution
set via singular points. Jump phenomena and complicated periodic solutions can occur

at these impasse and singular points.

From the linearized power system dynamic model (4-2), the causality matrix g,
can be structurally represented as follows:

Ape Apy
8y =

| Age Agv

Aixk By 0 Cix Dyy O

Aoy Boyy Boyr Coy Doyy Doyp
0 Byy Byy, O Dyy Doy

=| Ay B 0 Ci D 0 4-7)

3k By 3k Day

Ayt Byyn Bayr Cai Dapin Dant

0 Byy By, 0 Duyy Doy

Note that the structure and properties of the causality matrix g, and the Jacobian
matrix Jx =[g 8y ] are very similar to those of the generic load flow Jacobian
matrix J;r shown in (3-8). The only differences are that there are reactive power bal-
ance equations at all terminal buses and that the inequality of the diagonal matrices
Aig #Byy, Cix 2Dy, Asx # B3y, and Ca3x # D3y holds in g, but not in Jip,

because A;x, Cix, Asx, and Cax have the effects of the coupling between the
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internal buses and terminal buses in g,. This results in a significant diagonal domi-
nance in g, that is not present in Jpp if all the generator terminal buses were PQ-
buses. Note that since the reactive power balance equations at all the generator termi-
nal buses are included in g,, the eigenvalues of g, will not change discontinuously
when reactive power generation limits are reached and PV-bus to PQ-bus changes
occur. The test for the static/algebraic bifurcation on J, will be shown to be similar to
Jir, and will experience discontinuous change when any generator exhausts it reactive
power generation reserve and changes to a PQ-bus. The simulation results will also
show that the singularity of g, is not likely to happen when the reactive power genera-

tion limits are included in the model for the simple power system considered.

Loss of causality (g, singular) will occur due to the row &wn&nce of J,. The
discussion of the various possible subclasses of the load flow bifurcation due to the
singularity of J;r can be viewed as possible subclasses of loss of causality. The dis-
cussion in Section 3.2, that illustrated that (a) the bifurcation at a single bus due to the
row dependence of the rows of J;r associated with the active and reactive power bal-
ance equations at this bus, (b) the voltage bifurcation due to the row dependence of
rows of J r associated with the reactive power balance equations, (c) the angle bifur-
cation due to the row dependence of rows of J;r associated with the active power bal-

ance equations can not happen, can be carried over to J, and loss of causality.

4.3.2 Single Machine Condition — f,

From the linearized power system dynamic model and the Jacobian submatrices
of (4-2), the matrix f, is defined as

fx=(diag[ Ty Teg Tgg Tss 1) Fy (4-8a)
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Axx Axe Axg O
Ay Agg 0 Ag [Axx Axc]

Fx=lagy 0 Agg © Acxy Acc (4-8b)
Ay 0 0 Ag
where,
Axc =[AXE Ax(; 0] M ACX = Agx M ACC = 0 AGG 0 (4-80)
Asx 0 0 Ag

It is observed that the matrix fx represents the operation condition where each syn-
chronous machine is assumed to have a swing (infinite) bus at its terminal bus, since
fx is formed by diagonal block submatrices composed of the K -coefficients of each
machine, as shown in the steady state block diagram Fig. 4-2. The nonsingularity and
lack of complex eigenvalues with zero real parts of f, or the singularity of {f, — jQ}
for some frequency Q 2 O characterizes the "proper" or "nonproper” basic design of
each machine when its terminal bus is treated as the swing bus of the power system.
The matrix f, can now be argued to be nonsingular and has no complex eigenvalues
with zero real parts because the system is designed so that loss of stability will not
occur on the machine dynamics only (f, ), but rather on the complete system dynamics
(J;). It should be noted that the excitation systems and power system stabilizers are
designed to prevent stability problems and thus the stability problems in f, are not
likely to occur. However, the stability problems may occur in J,, especially when the
system is heavily stressed or when some machines are operated in underexcited condi-
tion (lcading' power factor at the terminal bus) [27]. A simple test matrix for testing
the (non)singularity of f, will also be derived for the case where the machine is not
sure to meet the basic operating and design practice for a single machine operated

independent of the transmission network.
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Note that each block submatrix of f, is diagonal and can be viewed as an ele-
ment, since the dynamics of each machine is uncoupled in f,. From (4-8), it is obvi-
ous that the control systems form an upper triangular block matrix Acc, hence the
eigenvalues of Ao are those of each control system, Agg, Agg, and Aggs. Moreover,
. based on the IEEE general model of speed-governing-turbine systems (Fig. 2-8) [86],
for both stcam and hydro turbines, and the model of power system stabilizer (Fig. 2-7)
[85], both Ag; and Agg are lower triangular matrices with real and neéative eigen-
values. Regarding the excitation system matrix Agg, if the excitation system is "prop-
erly tuned” and is able to be manually operated, Az should not have any eigenvalue
with zero real part. Hence, the control system matrix Ao is virtually certain to be
nonsingular. Therefore, the control systems matrix Acc'can be aggregated into the
mechanical and flux decay matrix Ayy, such that the singularity of f, is equivalent to

the singularity of the following matrix (Appendix B: A&):

Ay = Axx — Axc Acé Acx

- +Kg) - K§y -Kfh
= I 0 0 4-9)
Os = (Kga + Kgy) — (Kg3 + Kg))

where, the following matrices are defined
Ko =Auws A Aco
: effects of speed-governing-turbine system;
Os =Apg AfE [Apo — Aps A A5 1=0
: effects of power system stabilizer;
Ky =Arg Af# Apcy = Kgg Ke)
: effects of excitation system on A§J;

Kgy =Apg Afd Apco =Kge Kea

: effects of excitation system on AE;
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Ker =Kgg Ky Kp.
The block diagram of A is also shown in Fig. 4-2.

Note that K; is the D.C. gain of speed-governing-turbine system (Fig. 2-8), and
Kgg is the D.C. gain of excitation system (Fig. 2-5). The power system stabilizer does
not show any effects on A%, due to its D.C. washout transfer function (Fig. 2-7).
Hence, the singularity of f, is fully dependent upon the D.C. gains of excitation sys-
tems Kz ahd speed-governing-turbine systems K;, and upon network effects through
the six diagonal coefficient matrices: K§, K8%, Kg3, Kg4, Kc1, and Kc,. The nota-
tion of these diagonal K -matrices are adopted so that they are consistent with those
K -matrices [23,26] of the single-machine-to-infinite-bus power system where synchro-
nous machine is represented as the single-axis model and does not have control sys-
tems (Kgg =0): Kpy =K, Kpy =Ky, Kp3 =K3, Kgq =Ky, and K5 =0, K¢ = 0 since
in this case the generator terminal bus is the infinite bus.

Note also that based on the theory of synchronous machine, when all the deriva-
tives of dynamic states are set to be zero (at steady state), all the induced currents at
damper windings are also zero. Hence, the synchronous machine can be represented
by single-axis model, such that only the dynamic state Eq' of flux decay dynamics
needs to be preserved. Therefore, Afx represents the Jacobian matrix of (single-axis
modeled) synchronous machines at steady state condition with the D.C. gains of con-
trol systems [87]. It will now be shown that f, and A% would not be singular and
would have asymptotically stable eigenvalues, provided that each generator is operated
at the usually overexcited condition (lagging power factor) and at the power levels
where steady state angle stability limit, and its excitation D.C. gain is not "badly"
tuned [23,26].

Each synchronous machine is assumed to be operated below its steady state sta-
bility limit so that each element of the diagonal matrix K| which is the power-angle
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coefficient at internal bus is not zero (Appendix C). The matrix

Ay = (4-10)

I 0

- (D +Kg) -Kﬂ‘x]

is thus nonsingular, assuming that K#', is nonsingular. This is also true even though
the damper constant D and the D.C. gain of speed-govemning-turbine system K; are
neglected, because from (4-8) setting D + K; to be zero does not affect the singular-
ity or the determinant of A§. Hence, the singularity of f, can be shown to be

equivalent to that of the following matrix:

K
Kep = (Kg3 +Kg)) + [0 (KE4+KEI)]A5;1 [ gtzjl

= (Kgs + Kpp) — Kga + Kpy) KBy KBS _(4-11)

assuming that K§ is nonsingular. Thus, the singularity of f, is solely a function of
the D.C. gain matrix of excitation systems Kpr, and the six diagonal coefficient
matrices: K§', Kf,, Kg3, Kg4, Kc1, and Kc,. In other words, the singularity of Krp
is a necessary and sufficient condition for the singularity of f, provided that K8 is
nonsingular. Checking the singularity of f, can thus be performed neglecting the
effects of damping constant D, speed-governing-turbine systems, and power system

stabilizers, which tremendously reduces the computational burden.

Note that the characteristics of f, and Ay describes the steady state operation
condition of each synchronous machine when its terminal bus is assumed to be the
infinite (swing) bus. The matrix Krp provides an equivalent singularity test of f, and
Afy associated with the flux decay dynamics when K3 is nonsingular. At the steady
state condition, f,, Afy, and Krp (Appendix C) should be nonsingular and have
(asymptotical) stable eigenvalues, except when the synchronous machine is operated at
the steady state angle stability limit and/or the D.C. gain of the excitation system is

"badly tuned". Thus, it is likely that f, is nonsingular.
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It should be pointed out that the test matrix Kzp will be shown to be the same as
the test matrix Tgp, (2 = 0), derived in Chapter S, for the static bifurcation associated
with the flux decay dynamics except Krp neglects the network effects. The test con-
ditions of singularity of {f, — j€Q} for all Q 2 0 were not established in a manner that
test conditions of singularity of {J, — jQ) are obtained in Chapter 5. It is important
to make certain that {f, — jQ)} has neither singularity for Q = 0, nor for all Q >0
since stability problems could well result in the full model that includes the effects of

the transmission network.

4.4 Structure of Static/Algebraic Jacobian Matrix — J,

In this section, the structure of the static/algebraic Jacobian matrix J, will be
derived based on the assumption that f, is nonsingular as indicated in previous sec-
tion. The structure of the matrix J, will also be shown to be similar to that of the
causality matrix g, (4-7).

The relationship between the power system Jacobian submatrices, f,, f, 8,, and
8y, has been represented by the block diagram as shown in Fig. 4-1. The

static/algebraic Jacobian matrix is defined as
Jy =8y — 8 [ fy 4-12)

provided that both g, and f, are nonsingular. Based on the properties of f, shown in
previous section, the matrix f, only directly affects the internal bus and terminal bus
variables of each generator, and can be represented by its reduced form Afx as shown
in Fig. 4-2. Likewise, the Jacobian matrices f, and g, composed of diagonal K-
submatrices show the coupling between the internal bus and terminal bus of each gen-
erator. Thus, the second part of the matrix J,, {g, £ fy), should only show the
effects on the terminal bus variables, and the static/algebraic Jacobian matrix J, would

in tum keep the same structure as that of the causality matrix g,, where only the
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diagonal block submatrices associated with the active and reactive power balance equa-

tions at the

terminal buses are expected to be modified.

From Fig. 4-1 and Fig. 4-2, the relationship between f, and f, can be illustrated

by the steady state block diagram of each machine shown in Fig. 4-3, where the incre-

mental symbol A in front of each variable is omitted. At steady state condition,

A = 0 and only the D.C. gain of the excitation system shows the effects of the com-

plete control systems. Based on Fig. 4-3, the mechanical and flux decay states A3 and

AEq' can be represented in terms of the terminal bus variables A6y and AV as fol-

lows:
AP, Kﬂ‘l Kﬂtz AS
K Ky AV, | 7 | [Kea+ Kgp Ky 1 [ Kps+ Kgg Kea 1 | | AE,
-Kf K§ A8y s
¥ | = [ K+ Kgg Kcy ] — [ Kg7—Kgg Kc71 | | AVr (4-132)
- -1
AS | _ Kﬂ'l Kﬂ‘2 ) APO
AE; | ~ | [Kgs+ Kgg K¢y ] [ Kg3+ Kgg Kz ] K¢ Ky AV,
- K8 K§ A8y
" | = [Kgqa+Kgg Koy ) = [ Kg7—Kgg Kcq1 | | AVy ) (4-130)
Note that f,! f, is embedded in the above formulation:
-1
» Kg kg,
U fyh = [ Kgs+ Kgg Kc1]1 [ Kp3 + Kgg Kea ]
- KB K.
—[Kgq+Kge K1) — [ Kg7— Kge Kcq ] (@-14)

where, (f; f,); represents that f,”! f, has only effects on the internal bus variables
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Ad and AEq', since the rest of block matrices of f ;l f, are zero. Note that each of the
matrices in each of the sub-blocks is diagonal. Based on the assumption that f, and
K§# are nonsingular, and on the two equalities Kz = Kpz K¢y and Ky = Kgg Ko
defined in Ay (4-9) and in Kgp (4-11), and applying the inverse matrix formula pro-
vided in Appendix A, we have the further formulation for (f,} f y)r as follows. Let

-1
K8, Kg, Gy Gz
(Kea+ K1) [Kg3+Kgal| |Gy G

then

Gn=([Kgs+Kga]l-[Kga+Kpy 1 KB, KB )
_ p-l
=Krp

Gy =-Kpp [Kga+Kgy 1 KB,

Gy, =- K8, K&, K}

Gy=Kg ' [I-K§, Gy
=K§ 7 + K87 Ky K [ Kpy+Kgy 1 KB

Hence, (f;! f,); can be written as

B Gy Gy - kf, kg
= Iy1=|6y G| |- (Kea+Ker1 - [ Key—Keg Ker)

[T le]

- 0 Hy (4-14a)

where,
Hy = K87 K§y + K™ K8y K [ Kgy + Kgy ) K§, 7L KBY
+ K8~ K8y Kiph [ Kgr— Kee Ko ]

=K§ ™ Kgh + K§\” K§y Kip Kec (4-14b)
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Hyp=-Ki) [Kgs+Kp 1 K$y ™ K8y — Ky [ Kgy — Kgg Kcq)
=-Kip Kec (@-140)
Kec = (Kps + Kep Kcy) K847 K§Y + (Kg7 — Keg Kco)
Note that Kg; = Kgz K¢

Likewise, the active and reactive power balance equations show the coupling

between the internal bus and terminal bus of each machine as follows (from (4-2)):
[
—aPq | | KA KB | [ a5 . Aix Cix | | a8y
- AQC’I' - Kal Kaz AEq’ A3K C3K AVT

Dun Dut | | 80y 4-15
*| Bsu Dan | | AVy (4-15)

where, the main submatrices of g, associated with the internal bus variables A5 and
AE,, KF\, Ki%, K, and K, , are included. Note that each submatrix in the above
representation is diagonal. Then substituting (4-13b) into (4-15), we have

- APqr [AIK Clx] Kp Cix ASr
—AQcr |~ V| Axx Cxx k4 Cax AVy

Bn Dlﬂ] A6 AP

" 0
+|B.. D v, | +C 4-16
[311 3H AVy T Ksj}KA AV, s (4-16)

since the computation of g, ;’ fy shows the first part of (4-16) and its sub-block
matrix associated with the terminal bus variables A8 and AVr, (g, f,;! fy)r has the

form:

G | KA K&
@ fx fy)T- -Kal KaZ "Ux fy)l

i
KF Cix
K§, Cax

(4-17)
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where,
Ciwx =—Kp K87 KBy — (K4 K§y™' K8y + Kfy) K Kc
Cax =—KY§ K87 K&y — (KY, K8, K§y + KS) Kip Kec
Note that the rest of block matrices of g, f, ! fy are zero. The expression for Gr is

omitted without loss of continuity.

It is observed from (4-16) and (4-17) that g, f, f, only affects the diagonal
submatrices of g, associated with the terminal bus variables. Thus, substituting (from
4-2))

Aix=Kp) +A; ; Cx =Kph +C,
Asxx =K§), +A3 ; Cyx =Kff, + C;
and (4-17) into (4-12) by combining the Jacobian submatrices of g, associated with

the power balance equations at high-side buses and load buses, we have the final form

of the static/algebraic Jacobian matrix J, as follows:

Ay, By 0 Cc¥% Dyy O 5T

PH

Ay Boyy Boyp Coy Daoyy Doy Jy

0 Byy Byy; O Dyy Doy JPE
=14, By 0 C% Dy o0 |° Iz (4-18)

Ast Bann Ba Can Dann Dam JH

where,
Cl =Kl +C,-Cyy
C¥x =K}, + C3-Cxx

Note that both C¥x and C%y are still diagonal matrices, and that A,, C,, A5, and C;
are the appropriate diagonal sub-blocks of the load flow Jacobian matrix J;r defined in
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3-9).

The above shows that J, can be obtained from the causality matrix g, by slightly
modifying the submatrices associated with the (active and reactive) power-angle and
power-voltage diagonal Jacobian matrices at terminal buses. Note that the active and
reactive power-angle Jacobian matrix of g, are Ajx = Kif, +A, and Ay =
K{, + A3; but those of J, become A, and A that are the same as those in the load
flow model of the specific case where all the generator terminal buses are represented
as PQ-buses. This is because in each generator, except the swing bus, the power-angle
Jacobian matrices associated with the internal bus angle 8 and the terminal bus angle
0, are opposite in sign. This also implies that the control systems at steady state do
not have direct effects on the terminal bus angle through the coupling coefficient
matrices Kp; and Kp,. Moreover, in the aclive power-voltage Jacobian matrices c%
and Cyx of J, and g, respectively, the difference between them is due to the fact that
K% # K" which represents the active power losses in the armature resistance R, and
the reactive power losses in the reactances of synchronous machines. Note that if R,
is neglected, then Pg = Pg, = — Py, such that K§| = K¢, K§, = - K}, and K§ =
- K}%. Hence, Cix = —K§4 = Ki%, and C¥¢ = C, whether the generator has
reached reactive power generation limits and disabled the excitation control or not.
This result implies that if R, is neglected, the control systems at steady state do not
have any direct effects on the active power-voltage coefficient matrix C¥x = C,.
However, C3x of Jy is not equal to C3 of Jyr, which indicates the excitation control
has effect on the reactive power generation of the synchronous machine by controlling

the generator terminal voltage.
Thus, the structure of the static/algebraic Jacobian matrix J, is like the load flow
Jacobian matrix J;r except for C%g, since C%y = K{; + C3—Csx. Note that since

— C3x is a diagonal matrix with positive elements (see Appendix D) that increase
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almost linearly with Kz when it is assumed that the load compensators are not used
in the model, the matrix Cy is then also a diagonal matrix with positive elements that
increase almost linearly with Kgz because the D.C. gain of the excitation system Kgg
is in general very large compared to the rest of terms in C%x. Hence, the load flow
bifurcation is an excellent predictor of the singularity induced static bifurcation
because

(a) there are rows associated with the reactive power balance equations at all
generator terminal buses in J,, but only in Jir when the reactive power
generation reserves are exhausted;

(b) the reactive power-voltage Jacobian matrix in J, is extremely diagonally
dominant when the reactive power generation limits are not reached and
exciters are not disabled (C%y is a diagonal matrix with very large positive
elements), which is much like adding equations Vy = Vrq or AVy =0 for

the generator terminal buses in the load flow model;

(c) the rows of J, and J;r associated with the reactive power balance equa-
tions at the genecrator PQ-buses, when the reactive power generation
reserves are exhausted, are identical.

This similarity between the static/algebraic bifurcation test and the load flow bifurca-
tion test will be shown in Section 4.6.

The difference between the static/algebraic Jacobian matrix J, (4-18) and the
causality matrix g, (4-7) is that the four diagonal submatrices associated with the
power balance equations at the terminal buses: A,, C;, A;, and C¥y =K}, +
C3—Csax of Jy; and Ajx =A, +Kfy, Cx =C, +Kp4, Asx =A3+ K}, and
Cak = C3 +K{; of g,. When generators do not reach their reactive power genera-
tion limits, J, is more diagonally dominant than g, in the reactive power-voltage Jaco-

bian matrix at terminal buses (3Qr/0Vy) since Cy in Jy is a diagonal matrix with
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very large positive elements proportional to Kzz. When generators exhaust their reac-
tive power generation reserves and become PQ-buses, C4x in J, then becomes C;
which is less dominant than C3x in g,. Furthermore, the active power-angle
(OPr/09r) matrix in J, is Ay, but the matrix in g, is A;x which is more diagonally
dominant. Hence, J, is less diagonally dominant than g, in both oPr/d6r and
0Qr/dVy matrices when the reactive power generation limits are reached. Thus, when
the reactive power generation limits of all the generators in a region are reached, J,
should generally become singular before g,. If the reactive power generation limits
are ignored, loss of causality (g, singular) may occur before the static/algebraic bifur-
cation (J, singular), since dQr/dVy is more diagonally dominant in J, than in g,, but
0P7/00r is more diagonally dominant in g, than in J,. Moreover, the discontinuous
changes will occur in J, causing the static bifurcation, but do not occur in g, which
becomes singular as a continuous function of the imposed stress on the system. This
will be shown in the simulation results of the static/algebraic bifurcation test in Section
4.6.

Testing the singularity of the static/algebraic Jacobian matrix J, for identifying
the singularity induced static bifurcation rather than testing the singularity of the
equivalent system Jacobian matrix J, is recommended since both tests are valid and
should theoretically always become singular at the same point as long as f, and g, are
nonsingular. This proposed static/algebraic bifurcation test matrix is proven to have
similar structure to the causality matrix g,, and is virtually identical to the load flow
Jacobian matrix J;r. A set of nonlinear equations is thus proposed with J, that com-
putes the equilibrium point of the power system differential-algebraic model. The
equivalent load flow model would represent generators which have not reached reac-
tive power generation limits by the steady state model of generators and excitation sys-
tems, and by the reactive power balance equations when reactive power generation

limits are reached. This equivalent load flow model for the static/algebraic Jacobian
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matrix J, would precisely determine when a static bifurcation occurs in the
differential-algebraic power system model. Testing for a static bifurcation using J,
does not require inverting g, which is required when J, is used.

The load flow model for the load flow bifurcation test on J;r and the equivalent
load flow model for the static/algebraic bifurcation test on J, are shown to be virtually
identical for all rows of J;r and J, if the D.C. gains of the excitation systems are very
high so that the generator terminal voltage can be kept constant, and if the flux decay
equations are replaced by the reactive power balance equations at tcrminal buses for
those generators exhausting reactive power generation reserves and being modeled as
PQ-buses like in the load flow model. However, they would not be identical if the
equivalent load flow model includes the effects of the generator flux decay dynamics,
excitation system dynamics, and field current limit controller dynamics at steady state
condition when the reactive power generation limits or field current limits are reached.
The reason is that a static bifurcation in flux decay dynamics or in both flux decay
dynamics and mechanical dynamics would be captured by the equivalent load flow
model if steady state representation of flux decay dynamics, excitation system dynam-
ics, and field current limit controller dynamics is used when field current limits are
reached; but would not be captured in the load flow model or in the equivalent load
flow model if the generator and excitation system dynamics is replaced by a reactive

power balance equation (simply called the conventionally equivalent load flow model).

This result is quite important because it indicates that the conventionally
equivalent load flow model can only capture one of the three generic static bifurcations
(in mechanical dynamics, in flux decay dynamics, and in both) that occurs in mechani-
cal dynamics [39,40,57,62]. The static bifurcations that occur in flux decay dynamics
[52,53], and mechanical and flux decay dynamics are most likely to occur when field
current limits are reached and the field current limit controller works through the exci-

tation system to fix field current to the continuous rating value. A modified load flow
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model that properly reflects the steady Statc behavior of the generator flux decay
dynamics, excitation system dynamics, and field current limit controller dynamics
would accurately determine the equilibrium point(s) of the differential-algebraic model,
and experience all of the static bifurcations of the differential-algebraic model.

The comparison of the static/algebraic Jacobian matrix J,, the causality matrix
8y, and the load flow Jacobian matrix Jir, carried out in this dissertation, is for the
case where the flux decay dynamics and excitation system dynamics are replaced by
the reactive power balance equations when the reactive power gen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>