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ABSTRACT

STRUCTURAL BIFURCATION TESTS FOR

VOLTAGE COLLAPSE AND LOW FREQUENCY OSCILLATION

IN MULTIMACI-IINE POWER SYSTEMS

By

TZONG-YIH GUO

A differential-a1gebraic power system model is developed that is more complete

than previous models utilized to study bifurcations of power system dynamics. The

added modeling complexity and accuracy is essential for studying both voltage col-

lapse and low frequency oscillation in a power system.

This dissertation systematically classifies the bifurcation and stability problems,

establishes necessary conditions for each bifurcation and stability problem, and

identifies the generic types of bifurcation associated with steady state angle stability,

voltage instability, and low frequency oscillation. The three generic types of bifurca-

tion in the differential-algebraic power system model are shown to be: (1)

Static/Algebraic Bifurcation due to the singularity of the equivalent static/algebraic

Jacobian matrix; (2) Static Bifurcation and (3) Dynamic Bifurcation due to the

equivalent system Jacobian matrix having eigenvalues with zero real parts. Voltage-

angle bifurcation in the load flow model is shown to be an excellent approximation to

the static/algebraic bifm'cation. The prerequisite for the static/algebraic bifurcation test

is the single machine stability; the one for the static and dynamic bifurcation tests is

the causality condition. These two special stability problems are argued to be improb-

able in a practical sense, even though they are not argued to be non-generic.



The static/algebraic and static bifurcations are shown to be equivalent under the

assumption that single machine stability and causality condition hold. Three types of

static bifurcation are identified to occur and necessary conditions for each are derived;

one in mechanical dynamics, one in flux decay dynamics, and the third one in both

mechanical and flux decay dynamics. The load flow bifurcation is shown to be nearly

identical to the static bifm'cation in mechanical dynamics; but not the other two types.

This dissertation suggests utilizing the static/algebraic Jacobian matrix rather than the

test matrix for static bifurcation as the test for identifying static bifurcation. The

static/algebraic bifurcation test avoids inverting causality matrix, and can be performed

by slightly modifying the load flow program Both analytical and simulation results

for the load flow bifurcation test and the static bifurcation test illustrate the important

role of maintaining the reactive generation reserves at generators in preventing voltage

collapse and steady state stability. These results also point out that both loss of

causality and loss of single machine stability are not likely to occur.

Three types of dynamic bifurcation are identified and necessary conditions for

each are established; in mechanical dynamics, in flux decay dynamics, and in both

mechanical and flux decay dynamics. Experimental results indicate that tests for vari-

ous types of dynamic bifurcation actually classify the type of bifurcation in terms of

the dynamics (mechanical, flux decay, or both) in which it occurs. Such classification

is shown to be more precise than eigenvalue analysis. It is expected that the structur-

ally represented test conditions for various types of static/dynamic bifurcation will be

useful in establishing the factors of these bifurcations.

The proposed approach provides a basis for static/dynamic point of

collapse/oscillation method, that is similar to a V—P or Q-V point of collapse method

in the load flow model, but detects the first mode to become unstable as stress is added

to the network. This unstable mode can be associated with any of the stability prob-

lems classified and identified in this dissertation.
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Chapter 1

Introduction

Low frequency oscillations have been one of the most common and frequent sta-

bility problems in utilities around the world. Voltage collapse is a stability problem

that is less common and frequent than low frequency oscillations, but has captured

widespread attention because its causes and cures were less understood. The bifurca-

tions of a power system mid-term transient stability model, that are observed and

labeled as low frequency oscillations and voltage collapse, are the subjects of this

dissertation. The determination of different types of bifurcation and stability problems

that could happen in multimachine power system load flow and dynamic models, and

the development of necessary condition tests for existence of the identified types of

bifurcation are the main purposes of this dissertation. An improved power system

mid-term transient stability model is developed and structurally organized in this

dissertation, which has the modeling accuracy needed to perform the classification and

identification of bifurcations leading to low frequency oscillations and voltage collapse.

Therefore, each developed bifurcation test structurally shows the effects of power sys-

tem components.

The power system dynamic model is characterized by a set of differential-

algebraic equations (or differential-algebraic model). The set of algebraic equations

describes the active and reactive power balance equations of the transmission network,

i.e., the power balance equations at the internal and terminal buses of machines, at the

transformer high-side buses of machines (simply called as high-side buses), and at the

load buses. The set of differential equations can include (1) synchronous machine

mechanical and flux decay model, and (2) control systems of machines: excitation



systems with load compensators, power system stabilizers, and speed-governing—turbine

systems. The coupling between the differential equations and the algebraic equations

is through the terminal bus of each machine. The load flow model describes the

power system steady state operation condition of the transmission network, and is a set

of algebraic equations composed of the active and reactive power balance equations of

the transmission network excluding the reactive power balance equations at generator

terminal PV-buses, since the excitation systems of these generators are assumed to

have infinite gain. Note that the load demand model adopted in this dissertation can

be voltage dependent.

Based on the representation of the power systems, this dissertation will study the

bifurcations that lead to low frequency oscillations and voltage collapse by systemati-

cally developing simple tests for each class of bifurcation identified. These tests not

only avoid the intensive computation of eigenvalue analysis, but also analytically and

structurally show the effects of transmission network as well as each control system.

Based on the load flow model, the load flow bifurcation is defined, and the generic

form of the load flow bifurcation test matrix is derived and is proven to be consistent

with the generic voltage-angle bifurcation in the load flow model. In power system

dynamic model, static and dynamic bifurcations will lead to voltage and angle instabil-

ity, and will occur due to the coupling of the network, generator, and control systems.

The singularity induced static bifurcation and dynamic bifurcation will be systemati-

cally analyzed in this dissertation. The static/algebraic bifurcation will be defined and

shown to be identical to the generic singularity induced static bifurcation. The static

and dynamic biftu'cations will be defined and shown principally associated with the

generator mechanical and flux decay dynamics, and test conditions for these bifurca-

tions will be established. The proposed approach to assessing the studies of voltage

and angle dynamic stability in multimachine power systems provides a static/dynamic

point of collapse/oscillation method. The proposed approach clearly identifies the



modes mainly associated with mechanical and flux decay dynamics and structurally

shows the effects of the control systems and transmission network, yet avoids the com-

putationally intensive eigenvalue analysis.

1.1 Literature Review about Dynamic Stability

Time-domain simulation has being popularly used to assess the dynamic stability

problems of a power system differential-algebraic model (e.g., [1,2]). However,

recently most of the literature dealing with the problem of dynamic stability is filled

with eigenvalue analysis orientation [3-22]. For eigenvalue analysis, the linearized

power system dynamic model is used, and the elimination of network variables in the

algebraic equations has to be feasible such that the equivalent power system dynamic

model can be obtained and is well defined. Major part of these eigenvalue analysis

studies concentrated on the solution of eigenvalues of the whole equivalent power sys-

tem dynamic model; others on the computation of some particular modes of oscilla-

tion, especially the electromechanical modes which in general are of the low fre-

quency oscillatory modes [3,4,21,22], since the electromechanical modes of low fre-

quency oscillation is more common if oscillations would occur in power systems.

Some special eigenvalue analysis programs have been developed for the above pur-

poses, such as the AESOPS (Analysis of Essentially Spontaneous Oscillations in

Power Systems) [3] and the PEALS (Program for Eigenvalue Analysis of Large Sys-

tems) in the Small Signal Stability Package (SSSP) [4] for particular modes of eigen-

value analysis, and the MASS (Multi-Arca Small Signal Stability Program) in SSSP

[4] for the eigenvalue analysis of the whole equivalent power system dynamic model.

However, eigenvalue analysis of a linearized power system dynamic model has

some drawbacks, such as:

(l) The dimension of the system matrix for a large power system model

becomes extremely large since each synchronous generator has at least



eleven states (see Section 2.4 of Chapter 2: Power System Dynamic

Model).

(2) The computation required to compute all the eigenvalues of such a large

system matrix is beyond the capability of most computers. Numerical error

can make the results invalid when the dimension of the system matrix is so

large.

(3) Eigenvalue analysis provides little information about the factors causing the

existence of zero or positive real part of any eigenvalue. Computation of

left and right eigenvectors and participation factor matrix for each eigen-

value for iterative variation of parameters can provide some information but

at extremely high computational cost.

As mentioned above, this dissertation will develop bifurcation tests for the power sys-

tem dynamic model, especially on the mechanical and flux decay dynamics, that avoid

the eigenvalue analysis and provide insight into the effects of power system com-

ponents on each identified bifurcation.

Another group of the literature about dynamic stability emphasized the computa-

tion on the damping and synchronizing power coefficients of a power system [23-30].

The concept of damping and synchronizing power coefficients is very important to the

study on dynamic stability. This concept has been utilized extensively since chello

and Concordia extended it to study the stability of a synchronous machine affected by

excitation control [23]. However, most of the studies applying this concept were lim-

ited to a single machine case with or without excitation system dynamics [23-25]. In

order to compute the damping and synchronizing power coefficients of multimachine

power systems, some studies even needed to use some time domain signals or to com-

pute the equivalent loading condition of each machine [27-29]. Eliasson and Hill com-

puted damping power coefficient matrix for a power system where each generator was

represented by the classical model [30]. The application of Lyapunov or energy



function method is another approach to study the stability problems of a power system.

Lyapunov methods have been applied for the most part when the electrical dynamics

and the control systems dynamics were ignored [31-35]. In this dissertation, damping

and synchronizing power coefficient matrices associated with the mechanical dynamics

for multimachine power systems will be derived by taking the effects of network and

control systems into account. Lyapunov stability dreary will be applied to obtain con-

ditions on these test matrices for prevention of bifurcations of the mechanical dynam-

ics.

The theory of bifurcation [36-38] has been applied to the study of steady-state

stability and low frequency oscillation based on the differential-a1gebraic power system

model [39-45]. Similar to the eigenvalue analysis, the studies of static and dynamic

bifurcations need the equivalent linearized power system dynamic model, provided that

the elimination of network variables in the algebraic equations is feasible. This

requirement is called as the causality condition of the differential-algebraic model

[39,40]. The equilibrium point is a bifurcation point when the system satisfies one of

the following conditions:

(a) The complete system Jacobian matrix of the differential-algebraic model is

singular,

(b) The equivalent static/algebraic equation Jacobian matrix is singular, which

is obtained by aggregating the differential equations into algebraic equations

provided that this reduction is feasible;

(c) The equivalent system Jacobian matrix has eigenvalues with zero real parts,

provided that the causality condition holds.

Note that in terms of the static bifurcation due to the singularity of the equivalent sys-

tem Jacobian mauix, these three conditions are equivalent to each other. The static

bifurcation could be saddle node bifurcation if the equivalent system Jacobian matrix

has a simple zero eigenvalue, and the transversality condition of this matrix at the



bifurcation point holds. The dynamic bifurcation could be Hopf bifurcation if the

equivalent system Jacobian matrix has a pair of pure imaginary eigenvalues, and the

nondegeneracy condition of this matrix at the bifurcation point holds [36-38].

The static bifurcation on the study of steady-state stability of the power system

was proposed to analyze the singularity of the Jacobian matrix associated with the

differential-algebraic model or with the equivalent power system dynamic model

[40.41.45]. The static bifurcation leading to loss of steady-state stability (and/or vol-

tage stability) was shown to occur in a power system model where only mechanical

dynamics was involved [40,41]. Hopf bifurcation theory has also been applied to

study the dynamic stability of a power system by taking the effects of nonlinearity into

account, assuming that the system is at the operating condition with a pair of pure

imaginary eigenvalues associated with the equivalent system Jacobian matrix [41-44].

The focus was on determining the condition for stability of Hopf bifurcation of a sim-

ple power system model for changes in the bifurcation parameter. These Hopf bifurca-

tions were shown to be pertaining to the mechanical and/or flux decay dynamics due to

the effects of control systems. This dissertation will focus on detecting occurrence of

instabilities due to low frequency oscillations, particularly associated with the mechani-

cal and flux decay dynamics, rather than on determining the behavior of the power

system when Hopf bifurcation occurs.

The role of load demand modeling on power system stability studies has been

discussed [46,47]. However, even though it is obvious that load demand modeling

plays an immrtant role on the stability studies, a proper load demand model for each

time frame of stability study has not yet come to a fairly clear point. The load

demand model adopted in this dissertation will be voltage-dependent.



1.2 Literature Review about Voltage Collapse

Basically, voltage collapse problem has been considered as either a static

phenomenon by analyzing the load flow model or a dynamic voltage behavior by tak-

ing the differential equations of synchronous machines and/or of load into account as

well.

Voltage collapse is a phenomenon where the voltage at some bus(es) of a power

system is slowly declining over a one to several minute interval and then is observed

to drop rapidly. Voltage collapse has been claimed to be a power supply-demand

problem, and has been associated with the power transfer over long and/or weak

transmission systems because of the trend of siting generators far from load centers

(mostly due to the location of power resources and environmental concerns) and

because of insufficient enhancement in the load center or weak transmission lines [48-

52].

Most of the studies on voltage collapse were based on point of collapse methods,

such as the V-P , V-Q , and Q-V cm've approaches, sensitivity analysis approaches,

and optimization approaches, that attempt to establish a load flow bifurcation point by

increasing load or transfer [48-61]. These load flow voltage collapse methods are

assumed to be associated with a lack of convergence to a load flow solution. These

methods determine the additional load or transfer at some bus(es) or on some

branch(es) before voltage collapse occurs. The additional load or power transfer that

can be added or shifted before voltage collapse occurs is the voltage stability margin.

Testing a sign change of the determinant of the load flow Jacobian matrix was

also proposed to indicate voltage instability of a power system [62]. The existence of

a pair of closely related multiple load flow solutions was shown to be an indication of

the singularity of load flow Jacobian matrix and be a proximity to voltage instability

[58]. Modal analysis is another approach by applying the SSSP algorithms [4] to com-

pute the eigenvalues, eigenvectors, and participation factors of an equivalent Q-V



Jacobian matrix. The magnitude of the small eigenvalues approaching zero is used as

a proximity measure to voltage instability for a large power system [63].

Dynamic voltage instability methods take into account the dynamics of synchro-

nous machines and their control systems, and the dynamics of load modeling. How-

ever, most of the research on dynamic voltage stability did not include the complete

control systems dynamics. Some only included the mechanical dynamics of the gen-

erator in the dynamic model [39-41,64-68]; while others neglected the mechanical

dynamics, and only kept the flux decay dynamics and/or excitation system dynamics

[69-72]. Still others included both flux decay dynamics and excitation system dynam-

ics [41,48,525333]. The effects of load (line drop) compensator and saturation on the

problem of voltage stability was investigated in [52,53]. The effects of load demand

model on voltage stability was included in [46,64,65,71,74-79].

Time domain simulation was used to show that the proximity to voltage collapse

in a single machine case could occur because of the dynamics of induction machine

load or tap changer [76,77]. Eigenvalue analysis was proposed to capture the proxim-

ity to voltage collapse by tracking the eigenvalue of a simple dynamic system [71-75].

Singular perturbation theory was also applied to investigate voltage stability problem in

[78], where difl'erent types of voltage instability patterns were shown to be related to

the singularity of load flow Jacobian matrix, to eigenvalue analysis, or to direct non-

linear analysis. The relationship between the singularity of the power system dynamic

Jacobian matrix and that of the load flow model Jacobian matrix was presented in

[45,48,525333].

The theory of bifurcation [36-38] has also been applied based on power system

differential-algebraic model, to investigate dynamic stability and voltage collapse prob-

lems. Most of the research analyzed the existence (and/or uniqueness) of the equili-

brium point of the system by testing the singularity of the system Jacobian matrix

directly or indirectly. The research was generally confined to a simple power system



where excitation systems were simplified or neglected, and speed-governing-turbine

systems and power system stabilizers were omitted [239-4152516440].

One of the necessary conditions for the static bifurcation in a power system lead-

ing to voltage collapse and/or loss of steady-state stability is the singularity of the

equivalent system Jacobian matrix [52,53,39-41,45,64-67,73,78,79]. Schlueter

developed test matrices for static voltage collapse that included the flux decay dynam-

ics and excitation systems dynamics of generators, and the effects of network [51-53].

One of the necessary conditions for the dynamic bifurcation in a power system leading

to dynamic voltage-angle instability is that the equivalent system Jacobian matrix has

eigenvalues with pure imaginary parts. Schlueter also mentioned that Hopf bifurcation

can likely occur in the mechanical dynamics [53]. Hopf bifurcation was shown to

exhibit dynamic voltage instability in a small system [41,42,67-72,79]. The bifurcation

theory was also intensively applied to the study of what occurs just prior to or just

after bifurcation of a dynamic model [41].

In this dissertation, the tests for load flow bifurcation and static/algebraic bifurca-

tion will provide a simply generic approach to assessing voltage collapse and steady

state stability in multimachine power systems. The tests for dynamic bifurcations will

precisely identify that the modes of oscillation are mainly associated with mechanical

and flux decay dynamics. Moreover, the effects of the control systems and the

transmission network will be structurally shown in the test matrices.

1.3 Organization and Main Contributions of This Dissertation

(A) Power System Dynamic Model

In Chapter 2, the representation of the components of power systems is discussed.

First, the general form of the active and reactive power flow between any two buses

connected by any kind of branch is shown. The general branch can be any
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combination of the following network apparatus: (a) a regular transmission line with or

without series capacitor, (b) a tap changing transformer, and (c) a phase shifter. The

models utilized in previous studies of voltage collapse and low frequency oscillation

omitted the series capacitor, tap changing transformer, or phase shifter. Since these

components can affect voltage stability and low frequency oscillation, their models

should be included. The equivalent n-circuit of a general branch is derived, and then

the active and reactive power balance equations at any bus can be formulated. The

voltage-dependent load demand model at any bus is adopted in this dissertation, which

could be any combination of (1) constant power load, (2) constant impedance load, (3)

constant current load, and (4) any other voltage dependent load.

The differential equations of the power system will include synchronous

machines, and the control systems of machines. These control systems are adopted

from general IEEE models, and will be (a) excitation systems with load compensators,

(b) power system stabilizers, and (c) speed-governing-turbine systems. The model of

synchronous generators takes the armature and salient-pole effects into account. The

active and reactive power balance equations at the synchronous machine terminal

buses, and the representation of the load compensator which describes the feedback

from the terminal bus to the excitation system will also be derived in order to model

the coupling between the differential equations and the algebraic equations. These

models of power system dynamics are much more detailed than those generally util-

ized to study voltage stability and low frequency oscillation [23-35,39-45,48-79].

Again, such modeling detail is necessary to study these stability problems.

The equilibrium point representing the steady state operation condition is dis-

cussed by organizing the algebraic power balance equations of the transmission net-

work and the algebraic equations obtained by setting all the derivatives of the

differential equations to be zero. This chapter is ended with the linearized power sys-

tem model to set up the foundation of Jacobian matrices that are necessary for the



ll

discussion of bifurcations in the power system model.

(B) Voltage/Angle Bifurcation in Load Flow Model

The simplified model of the power system is the load flow model, where the

differential equations are omitted and generators are only modeled by their terminal

buses. The load flow model and its linearized representation in matrix form is dis-

cussed in the first section of Chapter 3. The linearized load flow model is structurally

described based on the three bus types: terminal bus of generator, generator-

transformer high-side bus (simply as high-side bus), and load bus.

The load flow bifurcation point is defined as the operating condition where the

load flow Jacobian matrix is singular. The voltage, angle, and voltage/angle bifurca-

tions will be shown to be the three types of bifurcations that could occur in a power

system load flow model. The voltage bifurcation and angle bifurcation, which occur

when the rows of the load flow Jacobian matrix associated with reactive power balance

equations and active power balance equations are respectively dependent, are shown to

be non-generic biftucations which can only occur when a decoupled load flow model

is used. Moreover, the load flow bifurcations due to the row dependence of some par-

ticular rows of the load flow Jacobian matrix associated with single buses are shown to

never occur. Hence, analogies between bifurcations in a two-bus model have limited

usefulness in understanding how voltage instability develops in the large power system

load flow model. Thus, the generic form of load flow bifurcation test matrix is proven

theoretically and experimentally to be the voltage-angle bifurcation which is due to

row dependence of all the rows associated with both active and reactive power balance

equations. This result indicates the important effects of the coupling between active

power and voltage, and the coupling between reactive power and angle on the

voltage-angle bifurcation.
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Finally, the simulation for the load flow bifurcation will be performed on a 9-bus

3-machine power system. The simulation results for the load flow bifurcation illustrate

the important role of maintaining reactive power generation reserves at PV-buses in

preventing voltage collapse.

(C) Stability Problem in a Differential-Algebraic Model

Chapter 4 is devoted to the classification of stability problems in a power system

differential-algebraic model, and to the discussion of the conditions of these identified

stability problems. The linearized differential-algebraic power system dynamic model

is first developed and the properties of its Jacobian matrix are discussed in Section 4.1.

Next, based on the complete power system Jacobian matrix, basic bifurcation

theory is reviewed and six possible types of bifurcation in the power system

differential-algebraic model are identified, and two related non-bifurcation stability

problems are also identified. Necessary condition tests for each of the bifurcation and

stability problems are given. However, only three of these bifurcations are then

identified to be generic:

(a) The static/algebraic biftucation is defined when the equivalent

static/algebraic Jacobian matrix is singular, which is obtained by aggregat-

ing the linearized equilibrium equations associated with the differential

equations into the algebraic equations provided that this reduction is feasi-

ble.

(b) The static bifurcation occurs when the equivalent system Jacobian matrix is

singular, which is produced by the elimination of the network variables in

the linearized algebraic equations provided that this reduction is feasible.

(c) The dynamic bifurcation occurs when the equivalent system Jacobian

matrix has pure imaginary eigenvalues.
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Note that the reduction in (a) of the linearized equilibrium equations associated with

the differential equations requires the stability of the single machine dynamics; the

reduction in (b) and (c) is the so-called causality condition [39] of the differential-

algebraic model. These two special stability problems, loss of single machine stability

and loss of causality, will be argued to be improbable in a practical power system

model.

Both the static/algebraic bifurcation and the static bifurcation are the type of

singularity induced static bifurcation, and will be shown to be equivalent to each other.

In this chapter, testing singularity of the static/algebraic Jacobian matrix for the singu-

larity induced static bifurcation is suggested rather than testing the singularity of the

equivalent system Jacobian matrix. This static/algebraic bifurcation test avoids the

inverse of the transmission network Jacobian submatrix (causality matrix) which is

non-sparse and has high dimension, and yet preserves the structure of the causality

matrix which is very similar to the load flow Jacobian matrix. The static/algebraic

Jacobian matrix corresponds to a set of algebraic equations that are similar to those of

a load flow model, and yet is the Jacobian matrix for computing the (dynamic) equili-

brium point of the differential-algebraic model. Moreover, this approach shows that

each synchronous machine can be represented by the single-axis model, and that only

the DC. gain of the excitation system of each machine is required to model the control

systems.

The similarity and the difference between the static/algebraic Jacobian matrix, the

causality matrix, and the load flow Jacobian matrix will be comprehensively discussed.

It is concluded that if the DC. gains of the excitation systems are very large which is

generally true, the singularity induced static bifurcation test will have similar results as

the load flow bifurcation test. Furthermore, if the reactive power generation limits are

included in the model, the static/algebraic Jacobian matrix will more likely be singular

than the causality matrix. The analysis is conducted for the case where generator flux
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decay and exciter dynamics is replaced by an algebraic equation that specifies the reac-

tive power generation and models the reactive power balance equation at the generator

terminal bus when the reactive power generation limit is reached. An alternative is to

model the field cun'ent limiter that adjusts the voltage reference on the excitation sys-

tem to hold the field current constant. When this alternative is used, static bifiucation

may occur in flux decay dynamics and in both flux decay and mechanical dynamics for

the generators which reach field current limits. This possibility is eliminated if the

generator flux decay and exciter dynamics is replaced by the algebraic reactive power

balance equation. The static bifurcation is solely associated with the mechanical

dynamics of the generators that reach field current limits when their flux decay and

exciter dynamics are replaced by the algebraic reactive power balance equations. No

discussion of the comparison of the static/a1gebraic Jacobian matrix and the load flow

Jacobian matrix is conducted in this dissertation when the field current limiter is used

to adjust voltage reference on the excitation system to control the field current to be

constant.

The simulation results utilizing the static/algebraic bifurcation test on the same

power system as used for the load flow bifurcation test show that static bifurcation and

load flow bifurcation occur at approximately the same operating point and for the same

reason. The results for the load flow model and the differential-algebraic model both

indicate that exhaustion of reactive power generation reserves causes the bifurcation to

occur if the generator electrical dynamics are replaced by the PQ-bus bus load flow

model when the reactive power generation limits are reached.

(D) Static/Dynamic Bifurcation

The static bifurcation and dynamic bifurcation are generic types of bifurcation in

the power system difl'erential-algebraic model. The static or dynamic bifurcation can

occur when the equivalent system Jacobian matrix has eigenvalues with zero real parts,
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provided that the causality condition holds. Based on (a) the proof that the control

system themselves should have asymptotically stable eigenvalues, and (b) the experi-

mental results of the eigenvalue analysis [4] that most oscillations occur in the

mechanical and/or flux decay dynamics, Chapter 5 mainly focuses on the derivation of

simple necessary condition tests for static and dynamic bifurcations in multimachine

power systems associated with mechanical dynamics and with flux decay dynamics.

First, the portion of the equivalent system Jacobian matrix associated with the

control systems themselves is shown to have asymptotically stable eigenvalues. A

reduced Laplace transformed (S = jQ) model of the equivalent system Jacobian matrix

pertaining to solely mechanical and flux decay dynamics is produced by the elimina-

tion of the control system dynamics since they are proven to be nonsingular for any

(I 2 0. This resultant matrix provides the test of static bifurcation if it is singular at

Q = 0, and the test of dynamic bifurcation if it is singular at some I) > 0. Note that

this test matrix also structurally shows the effects of network and control systems.

Damping and synchronizing power coefficient matrices associated with the

mechanical dynamics will be further derived by further elimination of flux decay

dynamics. Test conditions on these matrices for identification and prevention of static

(Q = 0) and dynamic ((2 > 0) bifurcations of the mechanical dynamics will be esta-

blished. Test matrices for identification and prevention of flux decay bifurcation will

be similarly generated from the reduced model.

A static/dynamic point of collapse/oscillation method is proposed that would test

for the closest bifurcation as the system is continually stressed, as is the case when a

Q—V or P—V curve is produced in a load flow model. The method would increase a

transfer or loading level for some active power loading pattern or reactive power load

at some bus(es), determine when the first bifurcation occurs and its type. This metho-

dology would assess proximity to both steady state voltage-angle stability and low fre-

quency oscillation.



tion

tage

Oll‘



16

The simulation results on a power system [4] in the proximity to experiencing

dynamic bifurcation leading to low frequency oscillation illustrate that the proposed

approach clearly identifies the modes associated with mechanical dynamics and flux

decay dynamics without performing eigenvalue analysis. The proposed approach is

shown to identify whether the bifurcation is in the mechanical or flux decay dynamics

when eigenvalue analysis can only shows that the mode affects both mechanical and

electrical dynamics.

(E) Conclusion and Discussion '

This last chapter ends this dissertation with the brief summary of the contribu-

tions of the proposed approaches to assessing the generic bifurcations leading to vol-

tage collapse and low frequency oscillation in the multimachine power system based

on two different models: (1) the voltage/angle bifurcation in the load flow model, and

(2) the static and dynamic bifurcations in the differential-algebraic power system

model. A flow chart for the identification and prevention the generic types of bifurca-

tion is provided. SOme potential future research about this topic is also proposed.



Chapter 2

Power System Dynamic Model

Figure 2-1 represents a general model of any element of the network that can

connect any two buses i and j. The general model for a network element or branch

can represent a transmission line, transformer, phase shifter or any combination. A

specific example is a step-up transformer between a generator terminal bus and its

high-side bus, which allows a general discussion of the modeling of both power injec-

tion (the mismatch between power generation and load demand) at a bus and power

flow on a general branch.

This general branch can be represented by an equivalent n-circuit, which will be

discussed in Section 2.2. The power injection at each bus t“, P,- + 1 Q“ is the alge-

braic sum of power supply, PC,- + j Q6“ and power demand, PD,- + j QDt- The

power demand model, in general, can be any combination of constant power model,

constant current model, constant impedance model, and other types of voltage depen-

dent model, which will be discussed in Section 2.3. Section 2.4 shows the generator

model. The load flow model or the power balance equations that integrate the expres-

sion of a power system is now discussed in the next section.

2.1 Load Flow Model

Figure 2-2 shows the power flow diagram of any two buses, t’ and j. The con-

nection between them is represented by an equivalent general rt-circuit. Note that the

equivalent charging admittance at bus 1', 170,-, could be different from that at bus 1',

17C},- , and that the equivalent transfer admittances, 17,-,- and 17,-,- might not be the same.

These effects are due to the branch types of transformer and phase shifter (see Section

17
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= Y5} Sin(9i " 91' " 7.3)

Note that the above branch power flow is expressed without taking the equivalent

charging admittance into account, since in the ”dumped" model of a general branch the

equivalent charging admittances is considered to be connected at the buses.

During solving the power flow equations, the following variables are specified:

(1) V; (i = l, 2, - - - , m), i.e., voltages at the swing bus (bus number 1 with

91 = O) and the m-l PV-buses.

(2) P,- (i = 2, 0 - - , m) which are the model of net active power injection at

the PV-buses.

(3) P,- and Q,- (i =m+l, m+2, , n) which are the model of net active

and reactive power injection respectively at the load buses (PQbuses). .

Notethat

Pi=PGi—PDi , i=l,2, "’ ,n; (2'5)

Pai=0,i=m+1,m+2, ~-,n;

Qi=QGi-QDi 9 i=1929 ... an;

Q65=O , i=m+l,m+2, ,n;

and that PD; and Q0; are the load demand which may be functions of V,- . Then the

Zn -m —lunlmowns(V,-.i =m+l, ,n,and0,-.i =2, ,n)canbesolved

from 2n '- m - 1 equations (n - 1 active power equations (2-2a) and n — m reactive

power equations (2-2b)), if they are independent. After that, the voltage and angle

(with respect to swing bus) at each bus are known, and the proper reactive power gen-

eration at each PV-bus and active and reactive power generation at swing bus can be

obtained from (2-2). Note that when the reactive power generation of any PV-bus hits

its limits, it becomes a PQ-bus with fixed reactive power generation equal to the limit

and with varying voltage. Thus, the voltage and reactive power generation at this bus



21

become an additional dependent and independent variable, respectively; and the load

flow equations have an additional reactive power balance equation at this bus. Then,

the load flow is re-solved until every variable converges within its limits; otherwise the

load flow diverges.

2.2 Transformer and Phase Shifter Model

Figure 2-3 shows the physical one-line diagram of a general branch between bus

1' and bus j, where bus 1' is called tap-side bus, bus j is called impedance-side bus,

and the bus between them is a dummy bus, bus k [80,82]. Between the tap-side bus

and the dummy bus, an ideal transformer with phase shifter is represented by the com-

plex value 57,-,- = a3,- exp (i (15,-), where 0,7 is the tap ratio and (1,-1- is the phase shift.

The n-circuit between the dummy bus and the impedance-side bus represents the leak-

age impedance and magnetizing admittance of a transformer, or the line impedance

and line charging admittance of a transmission line, and hence

fkj=7jk=l7=YexpOfi=G+jB (2-6a)

17(2):} = in = 001 “U ch1 (2-6b)

I"-0ch = i702 = Gcz 4'} Bcz (2-60)

Note that usually

(1) 17 represents the leakage impedance of a transformer, or the line impedance

of a regular transmission line;

(2) for a transformer, 70 = 0 and Ya represents the magnetizing admittance;

(3) for a transmission line, in = in = Ql2, where 1% is the total line charg-

ing admittance.

Thus, Fig. 2-3 can represent a general branch between any two buses.
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The current-voltage relationship between bus 1' and bus j can be derived by con-

sidering the relationship between bus I: and bus 1' first:

Ff,- - —
C1 + Y — Y [5"]:V.-

‘ -17 ran? t7, (2'7”

5".

J

(701 + ?)/a‘% - 7/5,. V.

= — _ - — —‘ (2-7b)
' -' Y/aij Ycz + Y Vj

From (2-7b), we can represent a general branch as an equivalent rt-circuit, Fig. 2-2,

I

0
.
.
.
.
"
0
7
"

 

with the following parameters:

- Y Y .

.Yij =T=ZT¢XPIJ (7+aij)]

5}; u

= Yij CXp (I Yij) = Ci] 4' Bij (2'83)

- i7 Y
Y.. =—=—ex . _a..

,. 5,-- as,- p [I (7 .,)l

= in “P U 71.“) = Gji + Bji (2'3b)

_ for + )7

7i=YCij+Yij= 2
0,-1-

_ infirm-j)?
 

YCij = 2 (2-8C)

ail-

7,‘ = _Cji +717 =fcz+f

_ .. 1 _

YCji = Ycz + (1 - -_—) Y (2-8d)

a”

From the above, the following important phenomena is observed:

( l) for a phase shifter, the equivalent u-circuit is completely asymmetric

because the transfer admittances, ii and Yfi, are different, and the

equivalent shunt admittances, 170-,- and fol-,- , are also different.



(2)

(3)

(4)

(5)

(6)
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for a transformer (ay- = 0), the equivalent n-circuit is partially asymmetric

in that the transfer admittances, Yij and )7.,5 . are identical, but the equivalent

shunt admittances, 70,-] and 176,-,- , are different.

in IEEE Common Format [82], the bus at which its voltage is controlled at

specific value by adjusting the tap ratio if the tap ratio is still within its lim-

its, is called controlled bus. If the controlled bus is the tap-side bus, to

raise its voltage, the tap ratio is set to be greater than 1.0; to lower its vol-

tage, the tap ratio is set to be less than 1.0. If the controlled bus is the

impedance-bus, the setting of tap ratio is reversed.

for a transformer ((1,,- = 0), the magnetizing admittance 17a is approxi-

mately zero, so (- B) > B“. Thus, from (2-8), it is observed that a

transformer has opposite effects on the equivalent shunt admittances, 170-,-

and 70,-. Regardless whether the tap-side bus and the impedance-side bus

are step-up and step-down, respectively; or reverse, the step-up side always

has capacitive equivalent shunt, and the step-down side always has induc-

tive equivalent shunt. These transformer effects are interesting and impor-

tant in the problems of voltage collapse and low frequency oscillation

[52,53,77].

if 05,- = l and (1,-1— = 0, then the dummy bus is no more needed and the ori-

ginal n-circuit (Fig. 2-3) becomes the same representation as the equivalent

n-circuit (Fig. 2-2).

after computing all the parameters of the equivalent n-circuit of any general

branch, i.e., Y5}, Yfi, 170'!" and 170,-, we can formulate the load flow equa-

tions by substituting them into (2-1) - (2-2).
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2.3 Load Demand Model

Since the models derived in this dissertation are to be used in the studies of vol-

tage collapse and inter-area oscillation, it can be assumed that frequency deviation is

small, and thus the effects of frequency deviation on the load model can be ignored.

Then a fairly general load demand model at each bus can be put into a voltage depen-

dent form as follows:

in, = PL + 1,. V + Gs v2 + k, v" (2-9a)

QD = QL +19 v -Bs v2+ k9 v"!2 (2-9b)

where

PL + j QL represents constant power load model;

(1p + j IQ) V represents constant current load model;

(Gs — j BS) V2 represents constant impedance load model

(BS < 0, if inductive; 8,; > 0, if capacitive);

kp V"' + j [:9 V"9 represents other load model different from the above.

Substituting (2-9) into (2-2), we have the following load flow model.

For each bus 1' ,

II n

PGi — (Pu +IPi Vi +kPi Va”) = V52 [ 631' + 2 (GCij + Gij) ] — 2 Vi Vj Tij

i=1 i=1

8

= v} 0,,- - 21 V,- V]. 1,,- ; j #i (2-10a)

1:

Q0.- - (Qu +19.- Vi + in V”) =" Viz [BSi + i (BCij +3.3) ] - i Vi Vj Uij

i=1 i=1

5

I:

where
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7a = Gii +j Bii

with

n

G“: =05;- ‘l" 2 (GCij +60) ; j #1.

i=1

n o a

Bii =85; + 2 (ECU +3“) ; j #1

i=1

is the so called self admittance or the diagonal element of Yb,” matrix under the

assumption that only the combination of constant-current-and-constant-impedance load

model is used in the network. Then - (65,- + j Bij) is the off-diagonal element of

Yb“, matrix. For a constant impedance load, Gs is nonnegative; but BS is negative if

it is inductive, and positive if capacitive.

Note, from (2-10), that load demand model plays an important role in solving the

load flow equations, since it is voltage dependent [46,47].

2.4 Synchronous Machine Model

The synchronous machine model adopted in this dissertation is the single-axis

model which is very common for the representation of synchronous machines

[26,83,84]. Figure 2-4(a) and Figure 2-4(b) represent its one-line diagram and phasor

diagram respectively. The notation is as follows:

7, : terminal bus voltage

1., = 1,, + j 14 : current output of the machine at terminal bus

1,, : direct-axis (d-axis) current

[4 : quadrature-axis (q-axis) current

8 - 6, : angle difference between internal bus (rotor) and terminal bus

P, + j Q, : power output from the machine at terminal bus
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PD, + j Q0, : load demand at terminal bus

P”, + j Q”, : power flow from terminal bus to its transformer high-side bus

P; + j Q5 : power output from the machine at internal bus

Ra : armature resistance

X4 : d-axis synchronous reactance

Xq : q-axis synchronous reactance

X4 : d-axis transient reactance

Eq : internal bus voltage proportional to d-axis flux linkage of field circuit

Td'o : d-axis open-circuit transient time constant (sec)

E,4 : field voltage of the machine

PM : mechanical power input to the machine

a) : angular speed of the machine (radlsec)

H : moment of inertia constant (MW-sec IMVA)

M = 2 HKoo : moment of inertia (sec/(rad/sec))

too : nominal angular speed (at too)

D : damping constant due to damper winding effects (pu l(rad/sec)).

Note that all the above parameters of each synchronous machine are in per unit (pu)

based on machine base, except those with specified units.

The dynamics of the induced stator voltage (at internal bus), 54', is characterized

by the flux decay equation through the open-circuit time constant, Td'o, and is con-

trolled by the excitation system whose output is the field voltage of the machine, E,4 .

The angular speed of the unit, to, is governed by its speed-govemor-and-turbine (or

simply governor-turbine) system whose output is the mechanical power, PM . The

detailed dynamic models of the synchronous machine and its control systems will be
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discussed later in this section to complete the whole dynamic model of the synchro-

nous machine. Before them, the power balance equations at the internal bus and at the

terminal bus are expressed in terms of bus variables (voltage and angle), and branch

parameters in the following subsections.

2.4.1 Power Equation at Internal Bus

The power balance equation at internal bus describes the electrical power output

from the stator, and its active power output will be used in the swing equation (Section

2.4.7) which expresses the rotor dynamics due to the unbalance between mechanical

power input and electrical active power output.

From the phasor diagram shown in Fig. 2-4(b), we can obtain:

E,’ - V, cos(6 - 9,) = R, 1, +x,’ 1,

V, sin(5- e,)+R, I, =x, I,

 

 

1 X, [5, -V, cos(5—e,)]-R, V, sin(8-0,)

‘ " R,2+x,' X,

R, [5, - V, cos(8-6,) 1+X,’ V, sin(5- 9,)

" ' R,2+X,; x,

= 3; Ga "’ Vt Tdt

where

T4, = G, cos(8 - 0,) +8; sin(8 - 9,)

0,, =6, sin(5-e,)—R, cos(5— 9,)

   

Ra I -Xd' -Xq

a = 2 I ; Bd = 2 I ; Bq = 2 I

R, +x, x, R, +x, x, R, +x, x,

(2-11a)

(2-11b)

(2-12a)

(2-12b)

(2-13)
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The electrical power output at internal bus (for the swing equation (see Section 2.4.7»

is

P;- +1“ Q5 = '1, 72=1 5,01 +1 1,1‘ =5, 1., +1 E. I.

E, =E,+(x, —x,')1,

PE = 5,1, =5,’ 1, + (x, -x,)1, I,

Q, =13, 1, =15, I, +(x, —x,; )1,2

Substituting (2-11) into (2-14), we have

R, = 5,2 GE, - E,’ V, 1)., + V3 0;,

Q5 =-E,'ZBEE -E,’ V, HQ,- -V,2BE,

where

GEE =111 G, ; k, = 1 —(x, —X,')R, >1

Tm =k171. +0. or, -X.') U,

=0”,- cos(5-6,)+Bp5 sin(6-9,)

0,, =sz, ;k2=1-2(X, -X,)R, >1

19p,E = k1 B,’ + 6,2 (X, -X,;)

GE, = (X, —x,;) 1,, 0,,

BEE =le,

UQ, =1:2 U,, = 09, sin(5- 90439, cos(6- 9,)

Ga, =1:2 0, =6”;

BQE =k23,

BE, =-(x, -x,;) U;

 

(2-14)

(2-14a)

(2-l4b)

(2-15a)

(2-15b)
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2.4.2 Power Equation at Terminal Bus

It is observed, from Fig. 2-4(a), that the power balance equation at the terminal

bus have three components: (1) net power injection which is the negative sign of the

local load demand, PD, + j Q0,; (2) power flow from the terminal bus to its high-side

bus through a step-up transformer, P,,, + j Q,,,, whose modelihas been shown in Sec-

tion 2.2; (3) power flow from the terminal bus to the internal bus, P,, + j Q,,, which

is the negative sign of the power sent from the internal bus and received at the termi-

nal bus, - (PC, + j QG,).

Thus, from Fig. 2-4 and (2-11) - (2-13), we have

PG: +1 QC. =17, 17“

P0, = V, sin(5 — 0,) I, + V, cos(8 — 0,)],

P,, = - Pa, = V,2 0,, - V, E,’ 7,, (2-16a)

Q6, = V, cos(8 - 0,) I, - V, sin(8 - 0,) I,

Q,, = - Q, = - V3 3,, - V, E,’ U,, (2-16b)

where

T,, = G, cos(8 — 0,) - B, sin(5 - 0,)

= G, cos(0, - 5) + B, sin(0, — 5) (2-l7a)

U,, = - G, sin(8 - 0,) - B, cos(5 - 0,)

= G, sin(0, - 6) - B, cos(0, - 8) (2—l7b)

G,, = 0,, sin(5 - 0,) + 1,, cos(5 - 0,)

= G, — (3,; — 3,) sin(0, - 5) cos(0, - 5) (2-l8a)

3,, = 7,, sin(5 - 9,) - U,, cos(5 - 9,)

= B,’ sin2(9, - 5) + B, cos2(9, - 5) (2-139)
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Note that since B, (X,) and B, (X,) are different, both G,, and B,, are functions of

the angle difference between the terminal bus and the internal bus, 0, - 5.

2.4.3 Flux Decay Equation

The internal bus voltage, E, , is the induced stator voltage through the flux link-

age from the field winding with field voltage 5,, at the rotor of a synchronous

machine. For the single-axis machine model, the dynamics of E, is governed by the

following flux decay equation through the d-axis open-circuit transient time constant,

T,’,.

7,, 5,’ = 5,, — 5, = 5,, — ( 5,’ + (X, - X,’) I, ] (2-19a)

Substituting (2-11) into (2-19a), we can express the flux decay equation in terms of

bus variables (voltage and angle):

T,’, 5,’ = 5,, — 5,3 5,’ + (X, —X,’ ) U,, V, (2-l9b)

where

K53: 1 -(X, -X,)B, >1

We can also describe the flux decay dynamics as a function of reactive power genera-

tion at the internal bus, Q5, by substituting (2-l4b):

 

-5,’+~15,'2+4(X, -X,’)Q,
 

 

 

 

Id: ,

2(X,-X,)

T'5'-5 1 xd-X‘; 5'do «7" f4‘[ ‘20, —X,)] q

4

Xd’Xa v
- . NIE'Z+4(X -Xa)Q5 (2496)
2(X,-X,) " "

This expression has been used in [52,53] to see the role of Q,- in the problem of
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voltage collapse due to the instability of the flux decay dynamics under the assumption

that X, = X,’:

Tia B,=Ef4-E,—(X, ‘Xb?

Q5

4

2.4.4 Excitation System Model

For adjusting the generator field voltage, Ef, , in order to control the terminal vol-

tage properly, there are many control schemes to do so. Basically, the terminal vol-

tage and/or current feedback has been applied. A typical excitation control model is

IEEE Type DCl Excitation System Model [85], as shown in Pig. 2-5(a) that will be

used in this dissertation. Most of other types of excitation control model can be

derived from this IEEE-DCI excitation system model.

The notation is as follows:

VC:

VS:

V
ref:

output of load (or line-drop) compensator (see Section 2.4.5)

output of power system stabilizer (PSS) (see Section 2.4.6)

reference (set point) voltage

output of voltage detector

DC (Direct Current) gain of voltage detector

time constant of voltage detector

transient gain reduction

lagging time constant of TGR

leading time constant of TGR
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VA: output of automatic voltage regulator (AVR)

KA: DC gain of AVR

TA: time constant of AVR

E“: output of exciter or excitation system (field voltage of synchronous

machine)

1/K$51 DC gain of exciter (Note: K55 is function of the saturation effect of

exciter)

TEIKSE :time constant of exciter

K53 washout gain of stabilizing feedback of excitation system

Tp: washout time constant of stabilizing feedback of excitation system

In order to transfer the above excitation system model into state space form, we

can express both lead—lag and wash-out transfer function blocks as a gain block paral-

lel to a lagging block, as shown in Fig. 2—5(b). Then the state space form of the

IEEE-DCI excitation system model is as follows:

    

  

TD YD -1 o o o o

T, V, o -1 o 0 -Kp/Tp

TA VA = "KA Tc’Ta "KA Tc/Ta ‘1 KA 'KA (Tc”5)(KF”5)

T, V, -(l-Tc/Ta) -(1-Tc/T5) 0 -1 -(1-TC/TB)KF/TF

TE Efd . 0 0 1 0 _KSE J

"V, ' .

K0 Vc
VF 0

VA 4' KA (Tc”5) Wu] + Vs) (2-20)

VB (1" Tcn'B) (Va, 4' Vs)

0 .

.514  
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2.4.5 Load Compensator Model

This section and next one will respectively describe the models of the common

accessory functions of excitation systems, load compensator and power system stabil-

izer [85]. Load compensator usually uses the terminal voltage (and current) as feed-

back measurement of the excitation system model. The block diagram of a load com-

pensator is shown in Fig. 2.6(a). Fig. 2-6(b) shows its phasor diagram.

From the phasor diagram, we have

Vc =‘7: +(Rc +17%”:- =Vca +f VCq

= V, sin(5 - 0,) +j V, cos(5 — 0,)

+(RC +j XC) (I, +j 1,)

Substituting (2-11) for I, and 1,, we obtain

VC, = V, sin(5 — 9,) +RC (- 5, 5, - V, U,,) -XC (5, G, — V, 7,)

= 5,, 5, + 5,7 V, (2-21a)

Vc, = V, cos(5 - 9,) +RC (5, G, - V, 1,) +Xc (- 5, 5, - V, U,,)

= 5,, 5, + 5,7 V, (2-219)

V, =W (2-21c)

where,

K52 =- (Xc Ga +Rc 3,)

5,, =Rc G, -Xc 5,

5,7 = (1 +5, 5,’ -RC 6,) sin(5 - 9,) - 5,, cos(5 - 9,)

Kq-z =<1- 5,,) cos(5 - e.) - (Xc 6.. +Rc Bi) sin(a - e.)
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<
l

 

t V

_ n, _ _ C

V,+(RC+jXC)1,| ___,

i    

 

var = Kdqu'+Kd7Vz
_ 2 2

Vc - JVCd‘“ VCq

Kdz = -(XCGa+RCBq) qu = RCGa—XCBq

K117 = (1+XCBd’._RCGa) sin (8-0,) + (XCGa+RCBq) cos (5—0t)

VCq = quEq +Kq7V,

K47 = (_1+XCBq-RCGa) cos (8-9!) — (XCGa+RCBd') sin (8-0,)

Fig. 2-6 Load Compensator Model
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Note that when load compensator is not employed (RC = 0, XC = 0), then

VC = V,. In other words, the magnitude of terminal voltage is sensed and is

transferred to be a DC (direct current) quantity, then is fed into the voltage detector

whose filtering can usually be modeled as a very small time constant (TD = 0 in Fig.

2-5(a)).

On the other hand, when load compensator is desired, the appropriate values of

RC and XC are entered. Both RC and XC can be positive or negative, depending on

how the synchronous machine is connected to other units and to the power system

[85], and how the synchronous machine is set to control the voltage of a certain point

in the system. In most case, the RC component is negligible and only a value for XC

is required. For these cases, the coefficients, K,” and K,7, are functions of the angle

difference, 8 - 0, , so is the load compensator voltage, VC.

2.4.6 Power System Stabilizer Model

The function of power system stabilizer (PSS) is mainly to improve dynamic sta-

bility of a synchronous machine and/or power system, using other regulator input sig-

nals in addition to terminal voltage through its excitation system. These signals are

chosen to provide positive damping to oscillations. Figure 2-7(a) shows the general

model of such a power system stabilizer. Some common stabilizer input signals are:

accelerating power, speed, fiequency, and terminal voltage [85].

Transferring the lead-lag blocks and washout block into first order lagging blocks,

as shown in Fig. 2-7(b), we have the state space form for PS8 model.

    

f . . _
-

782 V32 = 1 '- Ts1/Ts2 - 1 0 Vs,

[T34 V54. (1 ‘ 7'83”“) (TM/TS?) 1 - T337134 - 1 V84
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+ (1 - 751/737) Ks V51

(1 ' 733/154) (731/152) Ks

753 T51 733 731 Ts3
=——K +—-—V +—V +V (2-22)

5 s s: so 32 S4

T84 752 734 Tsz TS4

2.4.7 Swing Equation

The mechanical dynamics of a synchronous generator is at the rotor of this unit.

The motion of the r0tor is due to the acceleration torque/power, mainly which is the

difference between the mechanical power input to the rotor and the electrical power

induced in the stator. The acceleration power will be used:

(1) to change the kinetic energy, or angular speed, of the unit;

(2) to overcome the damping power that develops mainly in the damper wind-

ings and in the form of mechanical frictions.

Equation (2-23) is the so called swing equation which describes the above

 

phenomena:

4 5
+ T, = TM - TE (2-23a)

d t

2 H 2 5 d 5
—— —= P — P -(.00 dtz +D dt M E (223b)

j—f = 0) - (00 . (2-23c)

where,

T = (00 P: T represents torque, and P represents power;

(90: nominal angular speed (radlsec);

PM: mechanical power input to the rotor (pu );
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P5: equivalent electrical power output from the rotor (pu ), which includes the

power loss due to armature effect and the power received at the terminal

bus (PC, + j Q6“ see Section 2.4.2);

P,: damping power (Ru);

WK = (Wm/S3,) (09/913): total kinetic energy of the generator and turbine

(Pu -SOC);

Wm: nominal WK (at (00);

S3,: 3-phase MVA base;

H = WkolS3bz per unit inertia constant (sec);

to: angular speed (rad/sec);

8: the angular rotor position, measured in electrical radians of the rotor rela-

tive to a synchronously rotating reference (rad);

1: time (sec);

D: approximate damping coefficient (pu /(rad lsec)).

M = 2 H/too: moment of inertia (sec/(rad/sec»

2.4.8 Speed-Governing-Turbine System Model

The mechanical power PM is controlled by the speed-governing system through

turbine system, using rotor speed as an input signal. Even though there are

mechanical-hydraulic control (MI-1C) and electro-hydraulic control (EHC) types of

speed-governing system, basically, their models are very similar. Figure 2-8(a) and

Figure 2-8(b) are the general models of speed-governing system for steam-turbine and

hydro-turbine, respectively [86].

Pay is the power at gate or valve and is the input of turbine system. The general

models of steam-turbine and hydro-turbine systems are shown in Fig. 2-8(c) and Fig.
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2-8(d), respectively [86].

After transferring the lead-lag blocks into first-order lagging blocks in the speed-

governing and turbine systems, the state space model of speed-governing-tm'bine sys-

tem can be obtained by combining their models together.

(a) Steam Governor-Turbine

  
    

m5. . up, ‘
.TIS -l 0 0 0- 0 0

3 G," -1—1 0 o o o PGV

TCHPVHR 0 1 -l 0 0 0 PVHR

TRHIPHP - 0 0 1 '1 0, 0 PHP

' 0 O O l -1 0 p
T P H’

"”2.” _o o o o 1 -1, P

LTcoPu’ . LP .

KG (1 -T2/T1) ((1)-(1)0)

"KG (T2’71)(0)-(°o)+Po

C
O
C
O

  L .1

PM =FVHP PVHP +FHR P55 “”715 PIP +FLR PLP

(b) Hydraulic Governor-Turbine

    

F . 1 - '1

TIPI -1 o 0 P1

T3PGV = -l -l 0 Pay

_ TW )5“, . 0 0W6 " “WW PW

KG (1 -T2/T1)(co-wo)

+ "KG (T2/T1) (OJ-(Do)+Po

0

Fur-Fay PGV+PW

013 021

011

 

- 2 . .. . ..

awe -013 021/011 . aww -1/011 . FGV -023-

(2-24a)

(2-24b)
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2.5 Equilibrium point of Power System Dynamic Model

This section will organize the models derived in the previous sections to clearly

describe the dynamic model of a power system, and to discuss obtaining its equili-

brium point(s).

Without loss of generality, it is assumed that the connection between the terminal

bus of a synchronous machine and its high-side bus is equivalently one-to—one, as

shown in Fig. 2-1, and that the power system has 11 buses, including m machines with

m high-side buses, and n - m other (load) buses. From previous derivation, the

dynamics of the power system can be described by the differential equations associated

with rotor dynamics and control system dynamics, and the algebraic equations associ-

ated with active power and reactive power balance (load flow) equations, as follows.

(3) Swing Equation:

For each synchronous machine, from (2-23),

3 = a, _ mo (2-25a)

M tb=-D (to-too)-PE +PM (2-25b)

where PM is the mechanical power output from the speed-governing-turbine system of

the unit (see (2-24)).

(b) Flux Decay Equation:

For each synchronous machine, from (2-19),

7,, 5, = 5,, - 5,3 5, + (X, —X,' ) U,, V, - (2-26)

5,,=1-(X, -X, )5, >1

U,, = G, sin(8 - 0,) - B, cos(5 — 0,)

where, 12,, is the output of the excitation system of the unit (see (2-20) - (2-22)).

(c) Algebraic Load Flow Equation:
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[1] At internal bus, for each synchronous machine, from (2-15),

R, = 5,2 G,, — 5, V, 1,, + V,2 0,, (2-27a)

Q, = - 5,2 5,, - 5, V, HQ, - V,2 5,, (2-279)

The expressions of parameters are listed in (2-15).

[2]Atterrninalbus,t =n +1, ,n +m;h = 1, ,m,from(2-16),

= V,2 G,, - V, 5, 1,, + V,2 (CC-,,, + 0,.) — V, V, 1,,I (2-28a)

- Q»: = Q, + QM

= - V,2 5,, — V, 5, U,, - V3 (5,,, + 5,,.) - V, V,. U,,, (2—28b)

The'expressions of T,,, U,,, G,,, and 3,, can be found in (2—17) and (2-18). The

expressions of T,,, and U”, are similar to those of T,, and U,,, as follows:

Ta, = G,,, cos(0, - 0,) + B,,, sin(0, - 0,) (2-29a)

Ur}: = 61!: sin(91 ' 0),) - 3111 005w: - 9h) (2‘29b)

[3] At high-side bus, h = l, . - - , m; t = n + h, from (2-1) and (2-16),

" PD}: = V1.2 (Gem 4’ Gm) " V1: V1 Th:

2 " " .
+ V,. 2 (Gen. 4' Ghj)- 2 VII Vj Thj , 1 ¢ ’1 (2-308)

jsl i=1

- QDh = - V1.2 (Ban +3») - V1. V: Um

u a

- V112 2 (Bar; + 311;) - 2 Vin Vj Uhj . J' 9* ’1 (2-30b)

i=1 i=1

[4]Atloadbus,i =m +1, ,n,from(2-1),

fl

"PDi = V12 2 (Got; 4' Gij) " 2 V.- V} ng . j 6” (2-3la)

i=1 'J=1



dy.

igr

wl'.

F0



45

n u

- Q01 =- V12 21 (BCij +3.7) - 21 V1 V1 U1,- . j 5“ (2-31b)

l= 1=

Note that in the load flow equations, the load demand at each bus PD + j QD

may be function of its bus voltage, see (2-9), and that we have used the following gen-

eral formulas.

Tij = Gij COS(9,° - 6") +80 sin(0,- - 61') , j #1. (2'323)

Uij = 63'} sin(0,- - 9") -3” COS(9,° - 6") , j #1. (2'32b)

The above power system dynamic model is nonlinear, except the control system

dynamics of governor-turbine systems and excitation systems, if their limits are

ignored. The equilibrium point(s) can be solved by the set of algebraic equations

which include the load flow algebraic equations and those obtained by setting all the

time derivative terms in dynamic equations to be zero. This is equivalent to solve for

the steady state operating condition of the power system dynamic model. At steady

state, each synchronous machine can be equivalently represented by single-axis model,

and its conuol systems are represented by their D.C. gains. Note that the reactive

power output equation at internal bus is only a "side-output" output the synchronous

machine, and has to be replaced by the algebraic equation governored by the DC. gain

of excitation conuol K, IKSE and voltage set point V", . Since at steady state or = (90,

the electrical active power output P, at the internal bus is the same as the mechanical

output PM or the set point P0 of the speed-governing-turbine system which does not

have any effects on the equilibrium point, neither does the power system stabilizer due

to its washout characteristics. Thus, the set of algebraic equation for the equilibrium

point(s) can be described as follows.

For m machines:

to = (00 (2-33a)

P0=PM =P5
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= 5,2 G, — 5, V, 1, + V,2 G,

5 —K‘ (V 5 V V= — +

= 5,3 5, - (X, -X,) 0,, V,

Vs = O

 

V, = «5,, 5, + 5,7 V,)2 + (5,, 5, + 5,, V,)2

- PD: = V12 0,, - Vt E, T,, + V12 (GCrh + Grin) '" V: VI: TM

— Q». = - v3 3,, — V. 5,; U1, — v,2 (30:11 + 3111) - V. v). U».

For n high-side and load buses: i = 1, - - - , n,

2 Ill-HI Ill-HI . .

—PDi = V,‘ 2 (CCU '1' GU)- Vi Vj Tij , j #1

i=1 j=l

2 M44! DIM . .

’Qoi ="Vr' 21(3074’311)" 21 vi Vj Us} . J *1
j: J:

For n+m loads:

R, =5, +1, V +Gs V2”, v"'

Q, =Q,+IQ V-Bs V2”, W

(2-33b)

(2-34a)

(2-34b)

(2-340)

(2-35a)

(2-35b)

(2-36a)

(2-36b)

(2-37a)

(2-37b)

Let the swing bus be the terminal bus at machine 1, i.e., bus 11 + l, with specified ter-

minal voltage V“, (0,,“ = 0). Then there are 4 (m - l) + 2 n equations to be solved

for §,=E,exp(jfi) and l7,=V,exp(j0,) atbusn-t-Z, ,n+m, and for

)7,=V,exp(io,),i=1, ,n,inwhichr'=l, ,m arethem high-side

buses associated with m terminal buses under the assumption that the connection

between each terminal bus and its high-side bus is equivalently one-to-one.

However, the above algebraic equations are also nonlinear. The Newton method

is a general approach by applying the Jacobian matrix of the system, generated by



C0

ca
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taking partial derivative for each equation with respect to each variable. Doing so, the

linearized model of the system is obtained, and the linear system theories can be

applied to analyze the characteristics of the system in a neighborhood of the isolated

equilibrium point of interest. In next section, we will develop the linearized dynamic

model of a power system based on the apparatus dynamic models derived before.

Then, the following studies on the static and dynamic bifurcation leading to voltage

collapse and oscillation, especially associated with fiux decay dynamics and mechani-

cal dynamics, will be investigated on the base of the linearized dynamic model.

2.6 Linearized Power System Model

In analyzing equivalent solutions of a nonlinear system, we generally start by

linearizing the system in a neighborhood of the isolated equilibrium point of interest.

Of course, every function describing the above power system dynamic model has a

Taylor series expansion of the first degree plus higher order rest terms in the neighbor-

hood of of the equilibrium point; linearizing means that we leave out the higher order

terms.

Due to the linear representation of the control apparatus of every synchronous

machine, linearization work for speed-governing-turbine system model, power system

stabilizer model, and excitation system model is not needed, but it is needed for load

compensator model. The linearization work will be done in the following sequence:

(a) load demand model; (b) power balance equation; (c) swing equation; (d) flux decay

equation; (e) load compensator. Note that to simplify the notation, a variable with A

l in front means the deviation of this variable from the equilibrium point of interest, and

its coefficient (in front of A) consists of variables that are evaluated at their equili-

brium values.

(a) Linearized Load Demand Model:
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For each load, from (2-9),

APD = AP, + FPV AV (2-38a)

AQD = AQC + FQV AV (2-38b)

where

va =1, +20, V +11, 1:, V""1

- : coefficient of active power load functional of bus voltage;

5,,, =1, —ZBS V+nQ 1:, WV1

: coefficient of reactive power load functional of bus voltage;

AR, =APL +V A1,. +V2AGS +V"' Ak, +11, v" (an)Anp

: coefficient of active power load not functional of bus voltage;

AQ, =AQ, +V A1,2 -V2ABS 4w"!2 A5, +5, W (an)AnQ

: coefficient of reactive power load not functional of bus voltage.

(b) Linearized Power Balance Equation:

[1] At internal bus, for each synchronous machine, substituting the following

PTOPCTW

ij - ij - U . 0*. 239

_30,---39,-- 11.11 (-8)

0H,. _ av, -1 . . . 2399

99,-"ae."i"¢’ (‘)
1

into (2-11) and (2—15), we can derive

A1, = - B, A5, - U,, AV, — 1,, V, (A5 - A9,) (2-40a)

A1, = G, A5, - 1, AV, + U, V, (A5 - A9,) (2409)

T,, = G, cos(5 -— 0,) + B, sin(5 - 0,) (2-40c)

U, = G, sin(5 - 9,) - B, cos(5 - 9,) (2-409)
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AP, = 5,11 (A5 - A9,) + 53, A5, + 53, AV, (2-41a)

AQ, = 531 (A5 — A9,) + 53, A5, + 53, AV, (2.419)

where,

53, = 5, V, Up, + V,2 (X, -X,) (1, 1,, - U, U,,)

53, = 2 5, 0,, - V, 1,,,

53, = 2 V, 0,, -5,1,.,

U55 = 1‘1 U4: "' Ga (X4 “'Xd') T111

1,, = [Cl 1, + G, (X, -X,') U,,

531 = - 5, V, 1,, + 2 V,2 (X, -X,’) U,, 1,,

53, =-25,B,, -V, U,,-

53, =—2V, 5,, —5, U9,

1,, = k2 1,,

UQE = k2 th

[2] At terminal bus, for each synchronous machine, from (2—28) and (2-29),

M, + APD, + AP”, = 0

AQ,, + AQ,, + AQ,, = 0

— A5,, = AP,, = 53, (A9, — A5) + 53, A5, + 53, AV, (2-42a)

- AQ,, = AQ,, = 531 (A9, - A5) + 53, A5, + 53, AV, (2425)

- A5,, = —53, A5 +53, A5, + (531 +A1,) A9, +51, A9,,

+ (K31, + C1,) AV, +D,,,, AV,I (2-43a)

—AQ,, =-53l A5+53, A5, + (531 +A3,,) A9, +53, A9,,
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+ (53, + C3,) AV, + D 3,, AV, (2—43b)

where, the same properties of (2-39) and (2-40) are used such that

53, = V, 5, U,, - V,2 (B, - 3,) cos[2(e, - 8)]

53, = — V, 1,,

53, =2V, 0,, -5,1,,

Ala = V: VI. U».

31:}. =" V: V» Um ="Am

Cm = FPV, + 2 V: (Gem + Ga.) - V); T»:

D 1m = ' V: T».

53, = — V, 5, 1,, - V,2 (5, - 5,) sin[2(e, — 8)]

53, = - V, U,,

I

U53, =-2V,B,, —5 ,,
q

43:: =" V: VI. Ta.

33:). '-" V: V]: T». =‘A3a

C31: = FQV, ' 2 V: (3cm +30.) - VI. Um

D3”, =- V, U,,,

[3] At high-side bus,h =1, -~ ,m,j ¢h,from (2-30),

3

-APCII =A2~ A0, +821”. A9,. + 2 32’”- A0]-

i=1

n

+ C2” AV: +02”. AV'. 4' E Dz,”- AVj (2443)

”=1

l

-AQCII =Am A9, +84”, A6,. + 2 8410' A9}

i=1
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n

+ C4,, AV, +04”, AV,l + 2 D4,”- AV,-

i=1

where, we use the same property of (2-39) and have

A2» ='Vh V: Um

n

Bm=vh V, UM+2VII Vi Ullj

i=1

82h] =- VII Vj Uhj

C2” =—Vh Th!

fl

DZhh=Fth+2VII [GCM+GM+2(GChj+Ghj)]-Vt Th:—

i=1

D7},-
1 ='Vh 1,,,

A45: =Vh V: Th:

n

34». =-Vh V: Tin-Z VI. Vj Thj

-1

Bug = VII Vj Thj

C4» =-Vh Uh:

a

D4». =FQV. "ZVI. [BCM +35: + 2 (3011' +th)]-V: Uh: "

i=1

DMj=-Vh Uhj

[4]Atloadbus,i=m+1, ,n,j¢i,from(2—31),

I! II

- Ape; =82fi A63 4' 2 82,1- AOJ- +025 AV; 4' 2 D2,? AV,-

j=l i=1

n n

”AQCi =3“: A9: + 2 34:} A0j +044? “'3' + 2 D40 AV}
i=1 i=1

where, we use the same property of (2-39) and have

(2-44b)

n

2 V; Thj

i=1

n

Z V} Uhj

i=1

(2-45a)

(2—45b)
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3,-- =- V, V,- U,-

n n

0241' =FPV, + 2 Vi 2 (GCij + Gij) " Z Vj Tij

i=1i=1

Dzij =‘ V: Tij

n

34.; =" Z V: V} Tij

i=1

’3 '3

D4“ =FQV; — 2 V,- 2 (ECU +3”) - 2 Vi Uij

i=1 j=1

0,,- = - V,- U,-

(c) Linearized Swing Equation:

For each synchronous machine, from (2-25),

AS = Am (246a)

MAtb=—DA(o-AP,+APM (24Gb)

where, APM can be obtained from (2-24); APE can be substituted by (2—41a).

' (d) Linearized Flux Decay Equation:

For each synchronous machine, from (2- 19) and the properties of (2-39) and (2-

40).

Td’o AB; = AEfd - K53 AEq' -' K54 (A8 — A6,) + K57 AV, (247)

where,

5,3 =1- (X, -X,)B,

5,4 = - (X, -X,)1,, V,



K57 = (X4 " Xi) U4:

Note that each K,3 is a constant coefficient only functional of the machine parameters.

AB], can be obtained from (2-20) - (2-22), and from the linearized load compensator

model (see (e)).

(e) Linearized Load Compensator Model:

For each excitation system, from (2-21),

2 V, AV, = 2 V,,, AV,,, + 2 V,, AV,,

AV, = 5,, (A5 — A9,) + 5,, A5, + 5,, AV, (2-48)

where,

Kc1=(K41 Vca + K41 ch)/Vc

Kcz = (K42 Vca + K42 VCq)/Vc

Kcv = (K47 VCd + K47 ch)/Vc

5,,, = [ (1 + X, B, -R, 0,) cos(5 - 9,) + 5,,, sin(8 - 9,) 1 V,

5,1 =- [ (1 -5,,) sin(5- e,,+ (X, G, +5, 3,) cos(5— 9,)] V,

Having the complete linearized power system dynamic model, the following

chapters are going to study the characteristics of the power system based on three

different approaches:

(1) voltage-angle bifurcation in the load flow model,

(2) static/algebraic bifurcation in the dynamic model, and

(3) static/dynamic bifurcation in the dynamic model.

Matrix forms of linearized load flow model and linearized power system dynamic

model will also be formulated Different kinds of test matrix for the above bifurcation

tests will then be established.



Chapter 3

Bifurcation in a Load Flow Model

The bifurcation in a load flow model (simply called as Load Flow Bifurcation)

will occur when the Jacobian matrix of the load flow model is singular. The load flow

Jacobian matrix describes the linearized load flow model, and is a square matrix,

which will be structurally discussed in the next section. In this chapter, a necessary

and sufficient condition test mauix for the load flow bifmcation is derived, that

includes effects of PV-bus to PQ-bus changes. It will be shown that the load flow

bifurcation can not occur due to the row dependence of the load flow Jacobian matrix

associated with the rows of the active and reactive power balance equations at a single

bus or at a subset of buses; solely associated with all the rows of active power balance

equations; or solely associated with all the rows of reactive power balance equations.

The result that load flow bifurcation of a large power system model can not occur at

single buses shows that the two-bus analogies used to understand large power system

voltage stability problems have very severe limitations. Thus, the load flow Jacobian

matrix is the generic test mauix for the load flow bifurcation. The generic load flow

bifurcation is also the so called voltage/angle bifurcation, since it occurs only when the

load flow Jacobian matrix is singular due to the row dependence associated with active

and reactive power balance equations at all the buses. Special cases of the load flow

bifurcation, voltage bifurcation and angle bifurcation, will also be discussed to provide

better understanding of the causes of the load flow bifurcation in term of active and

reactive power u'ansfer and limitations. Finally, the simulation results of a 9-bus 3-

machine power system demonstrate the voltage collapse due to the load flow bifurca-

tion, and show the important role of the reactive power generation reserves.

55
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3.1 Linearized Load Flow Model

The load flow model is a simplified model of power system dynamic model under

the following assumptions: (1) the coupling between internal bus and terminal bus (or

between rotor and stator) of each generator is neglected, (2) the excitation gain of each

generator is infinite, and (3) all time constants in the differential equations are zero.

Hence, for a generator, its terminal bus is the only bus required to represent it.

All the buses in the load flow model can be classified as the following types of

bus.

(0) swing bus:

(1) PV—bus:

(2) PQ-bus:

It is one of the generator terminal bus with infinite active and reactive

power capacity (reserve), so that its voltage can be specified and its

angle is always set to be zero as the angle reference of the system.

Its active and reactive power generations are dependent variables, that

match the power mismatch in the rest of the system.

This type of bus has its active power generation or injecn'on (genera-

tion - load demand) and voltage specified as independent variables,

and its reactive power generation and angle to be dependent. This

bus type is specified when the bus has adjustable reactive power gen-

eration reserves, which implies that its reactive power generation lim-

its have not yet been reached. Generator buses and buses with

switchable shunt capacitors are PV-buses.

This type of bus has its active and reactive power injection specified

as independent variables, and its voltage and angle are dependent

variables. High-side buses, load buses and PV-buses at their reactive

power generation limits are all PQ-buses. Note that the active and

reactive power generations at high-side and load buses are zero.



57

Thus, the load flow model consists of active power balance equations at both PV-buses

and PQ-buses, and reactive power balance equation at PQ-buses. The reactive power

generation at each PV-bus, and the active and reactive power generations at swing bus

are the output equations of the load flow model. The load flow model can be

described as follows.

0=81()’1;)‘2,)’3’llr) (3-18)

QPV = 82(Y1;)’2 , Y3 . N2) —’ PV-Bus 0WD!“ Equation (3-1b)

P5 = g3, (y, , y3 ) -> Swing Bus Output Equation (3-lc)

Q3 =g3Q (y, ,y3) —9 Swing Bus Output Equation (3-ld)

where,

g 1: active power balance equations at PV-buses and PQ-buses, and reactive

power balance equations at PQ-buses;

g2: reactive power balance equations at PV-buses;

g3p: active power balance equation at the swing bus;

g 39: reactive power balance equation at the swing bus;

y ,: angles at PV-buses and PQ-buses, and voltages at PQ-buses;

y2: specified voltage at PV-buses;

y3: voltage at the swing bus;

[11: active power demand at PV—buses and PQ-buses, and reactive power

demand at PQ-buses;

u,: reactive power load demands at PV-buses;

va: reactive power generations at PV-buses;

PS: active power injection at swing bus;
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Q5: reactive power injection at swing bus.

Note that since the swing bus is assumed to have infinite active and reactive power

generation capacity, the characteristics of the swing bus will not be further discussed

in the load flow model, and the voltage at swing bus is assumed to be always constant,

i.e., y 3 is a specified constant.

Consider an n bus power system with one of the generator terminal buses

selected as the swing bus (bus# 1), rn - 1 generator terminal PV-buses and n - m

PQ-buses. It is assumed that no generator PV-bus has become a PQ-bus, referring to

the power balance equations derived in Chapter 2, the linearized load flow model and

the load flow Jacobian matrix I“: can be structurally represented as follows:

  
      

381 381
- =—A +-—A (3-2aAlli ah Y1 ah Y2 )

382 382 .
AQPV -Au2 = — Ay1+ —— Ayz -9 Output Equatron (3-2b)

3Y1 3Y2

. ' "A a o D o ' r - - -

AP1 l I” 1” A91 C1

“APCH A25 32"” 32m. 02m! 02111. A6,, c2” ‘

-APCL =' 0 8w! Bu 02L” Du AOL + 0 AV]: (3'28)

_ C

_:gc” A45 B455 B451. D455 045:. 2‘6” 6"

. CL. _0 34”, 54,124,, Da.. L. ‘

A9,

A0,,

AQT =[A3 B3” 0 03H 0] AOL +C3 AVT —) Output Equation

AV,

AVLJ  

APQ =‘AF1=[AP1' 'N’CH' ‘APCL' "AQCH' 'AQCL' 1‘

Ay,=[Ae,‘ A9,‘ A6,‘ AV,‘ AV,‘ 1‘ ; Ay,=AV,

AQPV=AQGT ;-Ach="Al>12



where,

59

APT = AP,” - AFC, : active power injections at terminal buses;

AQ, = AQ,-r - AQ,,- : reactive power injections at terminal buses;

APQ: P and Q injection vector of the left hand side of (3-2a).

subscript T: represents the generator terminal PV-buses (including switchable

subscript H:

subscript L:

subscript G:

subscript C:

shunt capacitor buses), i.e., P0,, PC, , 0,, Q,“ Q,,, V,,

t = 2, ..., m .

represents the generator-nansformer high-side PQ-buses. If the con-

nection between each generator and its transformer high-side bus is

equivalently one-to-one, then PC," 0,, QC," V,,, h = m + 1, ...,

m + m .

represents the rest of the PQ-buses. If the above one-to-one con-

HOCtiOl’l is ”Slim then PCI’ 61, QCI’ V,, I = 2»: +1, ..., n.

active or reactive power generations;

not-voltage-dependent (or constant) active or reactive power load

demand or injection;

The above matrices can be partitioned and defined as follows:

[

  

 

. C, .

J J 3g, [In 1W] J 33, C8"

“P "-ayl- Jco 12v ’ ”-3y2_ c,”

0 .

382 882
J =—-=[A B OD 0];J =—=C21 an 3 35 311 22 332 3

r . .

A, 32 = A211 32m: 32m. 3 15v: D, - 02m: Dun.

. o 5,”, 5,,“ 5,,, Du.    



JQ0=[A4 B4]=[
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Au! Bum 34m.

 

Dam 0451.]

];JQV=D4= D411! D411.
0 B4“, 5,,

where, J”; is referred as to the load flow Jacobian matrix. The output equation then

becomes

AQT = SQV AVT + SQP Ma (32!»

SQV =122-12115'r1 112 3 Sm =J21113=l

where, SQV is the equivalent Q-V sensitivity matrix of PV-buses when the load flow

Jacobian mauix J”: of (3-2) is nonsingular.

Based on the assumed one-to-one connection between each generator bus and its

u'ansformer high-side bus (simply called the high-side bus), the following properties

are observed.

(1)

(2)

(3)

(4)

A1, A3, C1, and C3 are all (m - l) x (m - l) diagonal mauices;

A2", A4”, C2”, and C4” are all m x (m - 1) matrices. Each has the first

row being zero and the rest being an diagonal (m - l) x (n: — 1) subma-

nix.

B1”, B3”, DI”, and D3” are all (m — 1):: m matrices. Each has the

first column being zero and the rest being an diagonal (m - 1) x (m - l)

submatrix.

Since the power balance equation of each bus is function of the angle

differences between this bus and other buses that connect to it, each diago-

nal element of the power-angle Jacobian matrices (JP, and 199) of the

above load flow Jacobian matrix 1,,, shown in the matrices of A and B , is

the negative sum of its corresponding off-diagonal elements; except the first

diagonal elements of the matrices B 21!!! and Bum , which are associated

with the swing bus. Thus, if the angle of the swing bus is not set to be



(5)

(6) '

(7)
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zero as the reference of the system, the load flow Jacobian matrix Ju will

be singular [45].

With the angle reference of the swing bus, the diagonal man-ix A, is equal

to the diagonal submatrix of - B m3 and the diagonal matrix A3 is equal to

the diagonal submatrix of -- B35 , where the submatrix means the matrix

without the row and/or the column corresponding to the swing bus.

AP,- and AQ, are respectively the coefficients of active and reactive power

load demand, PD and Q0 , which are not function of bus voltage. Hence,

the effect of the voltage dependence of load demand model, mentioned in

Chapter 2, is included in each diagonal element of the power-voltage Jaco—

bian matrices (pr and JQV) of the load flow Jacobian matrix 1”, shown

in the matrices ofC andD.

Recalling (2-1) and (2-2)

Pij = Viz Gij — Vi V] [GU COS(9,' - 6") +351: sin(0,- - 0,)]

= V52 01'} "' Vi Vi Ti} (3'33)

Qij = " Viz Bij " Vi Vj [ Gij Sin(9t - 9;) '- Bij 008(95 " 9;) ]

= — Viz Bij - V,- Vj Ugj (3'3b)

we have the following properties shown in (2-48):

fl—-fl-_U” - igej (3-4a)

30, 39,- " ’

3U”- 3U-- '
__=_.__‘L-_—, .. - ° ’39‘. 80,- T,, , rat 1 (34b)

3P3,- ‘1

3'0..— —- - 39': — Vi V] ”U (3'53)

3 .. ..
_Q_"J = - .321. = ._ v, v, 1,]. (3-5b)
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ea, 35-.
__ =2 V- 0.. _. v. 1.. ; ._‘L = — V- T.. (3-5c)

av, ' '1 I *1 av, ' '

3‘7?— =- 2 Vi Bi}. - Vj Uij ; a—V‘j = - Vi Uij (3'5d)

t 1

Note that in general, T5] at :l: Tii and U,,- : i U1,. However, if the network

does not have phase shifter branch so that 6,,- = 6,, and EU = ,,, and if

the series resistance of each network branch is small enough and is

neglected (Gij = 0), then Tij = - Ti,- and Uij = ”it" Thus,

35,-- 35.-

379;— = 30;; = - Vi Vi "ii = ’ Vi Vi Uji (3'63)

3Q.“ 3Q'i
33’— = — Bi- = V, V, 1,, = - V,- V,- 1,-, (3-6b)

so that the Jacobian mauix J" is symmetric, B, is screw-symmetric, and

A,” = - B3,, where superscript t means matrix transpose. This presents

the sparse property of the load flow Jacobian matrix.

(8) If the voltage variable is chosen as per unit deviation, i.e., AV/V , then,

without the assumption 0,,- = O, we have

apt] aQij

-—aj 5,,-TIT! - Vi Vj Uij (3'73)

aQij aPij _

so that A,” = C4", B1” =03”, and both B, and D, have the same off-

diagonal elements, and that A4” =- C2”, B3,, =—D,H, and each off-

diagonal element of B4 is the negative sign of that of D 2. This further

shows the another sparse property of the load flow Jacobian matrix.
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When any generator PV-bus becomes a PQ-bus due to exhausting its reactive

power reserve or hitting its reactive power generation high or low limit, the defining

equations for the load flow model change by adding a reactive power balance equation

at the generator terminal bus, because the voltage magnitude at the generator terminal

bus is no longer specified. At this generator PQ-bus, its reactive power generation is

set to be fixed at the limit. Hence, in the case that any generator PV-bus becomes a

PQ—bus, using the following matrix partitions associated with terminal buses:

A5,” A9,”

APT = APFQ ; A61 = AGTPQ

AQP’ AVP’

Af" A53, 0 B Bf};

Al-A‘fg- OAfflQ’m-Bffi

€va 0 0P1};
=WPQ= - =

C1 [C1 Cr] O (3ng :01” off}

Azu=tA§uV A581 ; cw=tc§¥ 6581

A 15V 153, o B 55};

3" A59 " 0 A53, ’ 3”' 358

05% 0 vii
= W m = ‘ =

C3 [C3 C3 1 0 C522 .035 pm

A,” =[A53 Afg] ; c4, =[Cf3 cm]

then the linearized load flow model and its corresponding Jacobian matrix Ju- would

become as follows.
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_ A, 3,, 0 cf9 D,” 0 _ q . .

AP A9 PV

APT A23 3253 3251. C23 021m 0235 AOT C},

_ C” o 3 3 o D D ” C2”

AAQQTEQ A59 85,? 0 C399 D33 0 (2‘39 C2,,

- 4H

—AQ::I A43 B4HH 3431. C53 D435 D431. AV]: 0

" 0 841.” Ba 0 D411; D4LL ‘ " b .

"A9,?

A9,,

A9

AQfV=rA§V 31:3 0 0 053 0] ,,,; wilt/AV?”

AV,

AV,“

= 5,,, AVP’ + 5,,, AP, —9 Output Equation

139 JPV

JLF= JQe JQV (3'8)

P I .- P -

A, 3, A1 Bi}! 0 CIQ D,” 0

139: A, 32 = A2” 3233 32111. ; JPV= C23 D2113 02m.

0 3w, 3,, _ 0 3,“, 3,,“    

Age 33; 0 6% Difi 0

JQG - A43 B4HH 34m. 3 JQV= C53 D4HH D4HL

    019me _OD,,,,D,,,,‘

3.2 Load Flow Bifurcation

Load flow bifurcation will occur when the load flow Jacobian matrix I”: is

singular. This section will comprehensively discuss the subclasses of load flow bifur-

cation based on the the structure and the properties of the load flow Jacobian matrix.

These subclasses are due to row dependence associated with different types of buses

leading to the singularity of load flow Jacobian matrix, when some of generator PV-
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buses become PQ-buses (see (3-8)). which is more generic than when all generators

have reactive power reserves and are PV-buses (see (3-2)).

Based on the matrix partitions associated with terminal buses shown in (3-8), the

load flow Jacobian matrix Ju: (3-8) can be rewritten as the following form:

    

.an A1 3111 0 Gig 013 0

1552 A59 353 0 C53, D53 0

J ’33 A211 32m: 3251. C53 0253 0251. (3 9)

LP- le — A45 Bum 3451. C59 D455 Dam.

1n. o 3,“, 3,, 0 3,,” 0,,

1,53 A,” 35}; o o 3”,}; 0

’PT' 132 ‘ A593530C53, 3530

ormoreprecisely:

$34,453,, 0 35}; o o of}; 0]

133=to A53, 353 0 C53, 353 0)

J33=[o A53, 353 0 C53, D53 0]

JP]! =[A55v A53 32115 B231. 0’2? 021m 0251.]

JQH =[Afnv Am 34.53 3431. Gill 04311 0431.]

JPL=[0 0 32111 3212 0 021.3 0211.]

J,,=[o o 3,”, 3,, 03,, Du]

Note that this arrangement of J”.- according to the type of bus shows that 1;?

and 15?, JP” and 1,”, and JP, and 1,, respectively have the same suucture. Hence,

basically from the su'ucture and the properties of the load flow Jacobian matrix Ju-

(3-9), there are three possible single-bus subclasses of load flow bifurcation leading to
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the singularity of load flow Jacobian matrix. These single-bus bifurcations, if they

exist, would establish the correspondence between the load flow bifurcation that occurs

due to the singularity of J” and the bifurcation that is evident in a transfer versus vol-

tage nose curve for a two bus model. These three subclasses are due to row depen-

dence associated with the power balance equations at PQ-buses: terminal (T), high-

side (H), and load (L).

LF-T: This type of bifurcation is solely due to row dependence associated with

the active and reactive power balance equations at terminal PQ-buses

(J33 and 133).

LF—H: This type of bifurcation is solely due to row dependence associated with

the active and reactive power balance equations at high-side buses (1311

and JO}! ).

LF-L: This type of bifurcation is solely due to row dependence associated with

the active and reactive power balance equations at load buses (JFL and

JQL ).

Note that since the diagonal properties of A and C matrices shown in Section 3.1

(property (1) and property (2)), other types of biftu'cation due to the combination from

any two of above three are not possible at all. However, the following subsections

will prove that none of the above subclasses of load flow bifurcation can happen, and

will derive a reduced form of J” based on the generic form of 1“.» with the structure

of (3-8) or (3—9) [87].

3.2.1 LF—T Bifurcation ?

Since under the assumption that the connection between each generator terminal

bus and its transformer high-side bus is one to one, all the submatrices of If? and

133, i.e., M3,, 353, 0:3,, 353, A53, 353, C53,, and 353, are diagonal matrices.
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The only condition for row dependence leading to the LF-T type of bifurcation is that

the ratios of each corresponding pair of elements of these diagonal matrices must be

thesame:

kT=—=-—=——=———
(3.10)

where, each small character represents the element corresponding to the matrix with

the same subscript, and the superscript PQ is omitted. Using the following facts and

definitions from Chapter 2 and Section 3.1:

Tij = Gij COS(9,' "' 01') +83]: sin(0,- - 01-)

= Yij COS(6,' " 6" -75).) ; i #1. (3°lla)

Uij = Gij sin(0,- "' 6") -35] COS(9,° -9,)

= Yij Sin(9i - 9,- " 'Yij) ; i #1. (3'llb)

-1Bij . .
Y,- = Jag-+8.32 ; 7,,- = tan —G— ; t at} (3-11c)

u

3T,- 8T,-

—= - —- = — U... ; . . -1139‘. 39} ,1 t at] (3 d)

Uij anj . .
36,- -- 80,- -T,-,- . tat} (3-llc)

we can obtain each element as follows:

a, = V, V,, Y,,, sin(O, - 0,, - 7”,) (3-12a)

b,” = - V, V,, Y», sin(e, - 6,, - 7”,) (3-12b)

c, = 2 V, (6,, + G,,,, + G,,,) — V,, Y,,, cos(0, - 0,, - y,,,) + 1,, (3-12c)

d1” = ' Vt Ytlt 005w: - 93 " 7th) (342(1)

03 =- Vt VI. Yul 008(9t " 91. '73.) (3-13a)
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by, = V, V,, Y,“ 008(9, - 0,, - 7”,) (3’13b)

C3 = "' 2 V, (Bs, +ch + 3,1,)- V,, Y”, sin(e, " 6h " 7”,) + IQ, (3'13C)

d3H = " Vt Ytlt 5mm: " 0,, "’ 7th) (343(1)

Note that the load demand model adopted here is the combination of constant power,

constant impedance, and constant current models. It is clear that

,,,: fl=£_l_fl_= Ytlt Sin(9t ‘91. '73.) (3-14)

T “3 b3" "' Ya. cos(et " on ’73.)

 

d Y cosG -0 -k3: m = th . (t I. 7th) (3-15)

433 Y». 8m(9t - 9;. " Ya.)

 

~ which makes the satisfaction of (3-10) impossible unless Y,,, = 0. Computing the ratio

of the element in C, to that in C3 is not necessary. Thus, it is concluded that the

LF—T type of load flow bifru'cation due to the row dependence associated with the

active and reactive power balance equations at a single generator terminal PQ-bus can

never happen. This proof holds for every generator terminal bus.

3.2.2 LF—H Bifurcation ?

Under the same one-to-one connection assumption, among the Jacobian subma-

uices opr,, and 1,”, both A,” = (A5? A28] and A4,, = [AfHV A28 ] are diago-

nal matrices, and both CW and C23 have the same structure with diagonal subma-

uices. Hence, to determine whether the U”-H bifurcation can occur or not, one can

first check if the corresponding elements of the above four matrices have the same

ratio or not. Similarly, letting the notation of small character with the same subscript

represent the element of that matrix, and using the facts stated in (3-11), we have

025 = — VI: Vt Yht Sin(oh “ 9t ’7») (3-163)

Cm = — V,, YA, 008(6), " 6, " 7“) (3461))
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045 = Vlr Vt Yr: 008(9). ‘ et ‘75:) (3-178)

c4” = - V,, Y,,, sin(e, - e, -7,,,) (3-l7b)

,,,-333333;;

k, = Ci = Y» cos(Ot. - 0. -Yt..) (349)

C45 Yht 8111(95 ' 9t '7»)

Since kfi at 1:3 , the LF-I-l type of load flow biftucation due to the row dependence

associated with the active and reactive power balance equations at a single high-side

bus can never occur either. This proof holds for every generator-transformer high-side

bus.

3.2.3 LF—L Bifurcation ?

To check whether the U“—L bifurcation is possible to occur or not, one can first

compare the corresponding elements of off-diagonal Jacobian submatrices of Jp, and

1,,, i.e., B2,”, Du”, B4,”, and D4,”. Similarly, using the facts of (3-11), we have

  

bZLH = " V1 V3 Y”! Sin(91 ' 91. " Tu.) (3-203)

d2”, = - V, V,, Y”, cos(e, - 6,, - 7”,) (3-20b)

bu.” = Vt Vt. Y3. 008(91 " 95 ' 70.) (3-213)

44111 = ' V1 V1. Y3. Sinai: - 91. '73.) (3-21b)

k, = bzur = ' Ya. SW91 " 91. ‘- 70.) (3_22)

btur Y3. 008(91 ' on - 73.)

kg = dun Yul cos(G, - 91. — Ya.) ' (3_23)
  

441.5 = Ya. sin(O, " 95 ‘70.)

Since kf at 55, the LF-L type of load flow bifurcation due to the row dependence

associated with the active and reactive power balance equations at a single load bus



70

can never occur. This proof holds for every load bus.

3.3 Generic Load Flow Bifurcation

From the above, it can be concluded that there are no load flow bifurcation subc-

lasses due to the row dependence of some particular rows of the load flow Jacobian

matrix associated with single buses. Thus, analogies between bifurcation in a two-bus

' model have limited usefulness in understanding how voltage instability develops in the

large power system load flow model. The only necessary and sufficient test condition

for the load flow bifurcation is the test for the singularity of the load flow Jacobian

matrix JL,- (3-9) due to joint row dependence at all buses. This generic load flow

bifurcation is called the voltage/angle bifurcation because it occurs due to not only the

active power-angle coupling (Jpa) and the reactive power-voltage coupling (JQV), but

also due to the active power-voltage coupling (Jpv) and the reactive power-angle cou-

pling (Jae) at all the buses [53,87].

If the active power-voltage coupling and the reactive power-angle coupling can be

ignored, or a decoupled load flow model is assumed, then the voltage bifurcation

and/or the angle bifurcation can approximately occur. The voltage bifurcation [53],

due to the row dependence of the reactive power balance equations of IL, or the

singularity of Jay, is a bifmcation that solely leads to voltage instability. The angle

bifurcation, due to the row dependence of the active power balance equations of JLF

or the singularity of JP9, is a bifurcation that solely leads to steady state angle instabil-

ity. The voltage bifurcation [53] when a bus or a group of buses can not be loaded

with an additional increment of reactive power load, because the reactive power supply

from the generator PV-buses with reactive power reserves that would attempt to supply

this reactive power load is totally consumed in the network reactive power losses. The

angle instability would occur when a transmission interface or boundary has reached

its active power transfer limit. Note that since there always is some active power-



71

voltage coupling and reactive power-angle coupling, the load flow Jacobian mauix Ju:

can be singular, even though the mauix 1,, is nonsingular or the mauix 1,,, is non-

singular. Thus, the generic voltage/angle load flow bifurcation can be understood to be

caused by the active and reactive power transfer limitation, and can occur before the

active power transfer limitation due to the angle bifurcation or the reactive power

transfer limitation due to the voltage bifurcation is reached in a decoupled load flow

model.

It should be pointed out that the above proof not only indicates that the singular-

ity of the load flow Jacobian matrix J” leading to the load flow bifurcation can not

occur due to the row dependence associated with the active power and reactive power

balance equations at a single bus, but also implies that the load fiow bifurcation can

not occur due to the row dependence associated with any subset of rows of 1,,. The

singularity of J”- requires that v' I“: = 0, where v is the left eigenvector of 1,;

associated with the zero eigenvalue of Jut- . The requirement that only a subset of the

rows of 1,,.- be row dependent amounts to finding a point of singularity where

v‘ 1,,- = 0 such that elements of v are specified to be zero and not free. Thus, load

flow bifurcations due to the row dependence associated with any subset of rows of I”:

can be considered as very rare types of the load flow bifurcation since the constrains

associated with forcing elements of v to be zero for the operating conditions where

v‘ 1,,.- =Omakeit so.

It has been proven [53] that a Q—V curve test is a test for voltage/angle bifurca-

tion that occurs at the Q—V we minimum. The Q-V curve has a minimum when

the load flow Jacobian matrix J".- is singular due to the row dependence of both active

and reactive power balance equations at all the buses [53,87]. The minimal of Q-V

curve test for voltage collapse is the test for the singularity of the equivalent Q—V

sensitivity matrix SQV (3—8), where the test bus (pattern) is treated as a (set of) PV-

bus. It has also been shown that the V—P (or V—Q) curve test is a test for
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voltage/angle bifurcation which occurs when the nose of the V-P (or V-Q) curve is

reached, where the load flow Jacobian mauix J”- is singular also due to the row

dependence of both active and reactive power balance equations at all the buses. The

nose of V—P (or V—Q) curve test for voltage collapse is the test for the singularity of

the load flow Jacobian mauix Ju: ((3-8) or (3-9)) solely due to the row dependence

between the rows associated with the active (or reactive) power balance equation at the

test bus pattern and the rest rows of load flow Jacobian matrix.

It should be noted that the singularity of the load flow Jacobian matrix 1,,.- is

approached continuously with added active or reactive power transfer. across an inter-

face or boundary as long as generator PV-buses do not experience exhausting reactive

power reserves. When a generator PV-bus exhausts its reacuve power reserve and

becomes a PQbus, the addition of another reactive power balance equation and

another voltage variable causes a discontinuity in the measure of the singularity of

1,,. This discontinuity often occurs at the point of voltage collapse because the load

flow Jacobian matrix for the case where this bus is still a PV-bus are row independent

but yet no voltage instability would occur because the load flow Jacobian matrix is

nonsingular. If this PV-bus became a PQ-bus so that the Jacobian of the reactive

power balance equation at this bus was added to the load flow Jacobian that existed

prior to this bus becoming a PQ-bus, the expanded Jacobian matrix would be singular

and the loss of voltage stability would begin immediately. This phenomenon will be

observed in the simulation results of a 9-bus 3-machine power system shown in the

following section.

3.4 Simulation Results

The 9-bus 3-machine power system of Fig. 3-1 [26] is adopted to confirm the

load flow bifurcation test. Figure 3-1 shows the transmission network configuration,

and gives the base case data, where the resistance, reactance, and line charging
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susceptance of the transmission network is in pa based on 100.00 MVA and the rated

bus voltage as shown in Fig. 3—1; the bus voltage is shown in the format: V ( 0 ) with

V in pa and 0 in degree; and the active and reactive power injection at each bus is

givenintheformat:P (Q )withP inMW andQ inMVAR. Thesethreegenerators

are operated as follows: the generator terminal bus#l is the swing (infinity) bus; the

generator terminal bus#2 is a PV-bus with reactive power generation limit

:1: 40.00 MVAR; and the generator terminal bus#3 is a PV-bus with reactive power

generation limit :1: 50.00 MVAR . Note that the resistance, reactance, and line charging

susceptance of this power system are adjusted and are different fi'om the original data

in [26].

The Q—V curve test of the point of voltage collapse method [53] is used to show

the load flow bifurcation as shown in Fig. 3-2(b). The bus#8 is ueated as a fictitious

PV-bus — a dummy generator test bus — whose voltage is assigned and changed

from the base case voltage 1.02 pu with reactive power "generation" (its negative sign

is the actual reactive power load) 0.0965 pu . Figure 3-2(a) shows two matrix deter-

minants: one with the noration Det (LFO ) is for the load flow Jacobian mauix Ju:

((3-2) or (3-8)) excluding the fictitious PV-bus; the other Det (LFl ) is for the load

flow Jacobian matrix including the fictitious PV-bus. Figure 3-2(b) shows the Q-V

curve at the fictitious PV-bus, and its slope Det (QV ) (a scalar) which is the

corresponding diagonal element of the sensitivity matrix SQV ((3-2) or (Ii-8)) of this

Q-V curve. Figure 3-2(c) gives the Q-V curve profile of the generator buses with

reactive power generation high limits, and Figure 3-2(d) represents the voltage profile

of each bus. The voltage angle (in degree) of each bus, and the active power genera-

tion of each generator bus are respectively shown in Fig. 3-2(e) and Fig. 3-2(f), which

should help understand the phenomena of the power system when the voltage and the

reactive power injection at the test bus (fictitious PV-bus) are changed.



D
e
t
(
L
F
O
)
&

D
e
t
(
L
F
l
)

0
1
3
8
&

D
c
t
t
Q
V
)

x10”

75

Fig. 3-2(a) - 0mm)» ; Det(LFl):

 2.5

1.5 P..........

0_5,....

 

r l 1

7‘lxxxl‘  
 

0.8 0.85 0.9 0.95

V(FPV-bus: 8)

Fig 3-2(b) -- QgtS:x; Det(QV):"

1.05

 

f
r T

t . .

:5 ............................
.fl ..... .....4p ..... ;. .3

. U

I
. .

C

 
txxixaaxigalitxxlli‘7“.

O . . .

O ‘ '. ... . . ..... ...,. .... . . ..... ... ... ... ............ .... _

' ' ...... t ............................. . I0 .u-nu...-o..u--......~...o.................v.u.......-....n-n-oo.....g ....... ‘. . ..... .0: uuuuuuu . . . . .‘...‘-..‘...

 
 

0.75 0.8 0.85 0.9 0.95

V(FPV-bus: 8)

l l .05



Q
s
l
(
Q
u
i
n
)

V
W

76

 

l 4 Fig. 3-2(c) - Qgt (anax):[bus: 8x: 3+(-.) ; 2‘(~) ; 10]

o f §

.....................9. .1”... ,. . , _

1.2 . ' o :

o . 1

0

1,. .............. Qua.-. ................... _,

o o .

o E

0.8.. ........... . . . .....o. 9 .. .. _. . . . _ _,

, - O '

*“-‘.'-. *'¢. *OOWD- *. ‘.".*'4.-*0"0"*-*--§tufi 020-00-.o~o--°O o-o O C o o o c

. . - ‘ .

. O 0 g

0.4 h------ .-.---."CO'OO-OOOO--.---.O¢C~OOOC'O: ...............00....OOOOOOOOO9-0 q

o 9

. _ ' . 7 9

' ~ 0 . - O .

0.2 p.................................... ...,... ...................................... .... ....................... 2. ..................... . ...... . d

. . .

’ . C
_ , . . ‘

‘ O

0.... ................. , . fl

l

I

X

.03.. ......... .,... A

I

‘ X

g X

.04.. .. I g ‘ X ‘ ‘..... , X I I _,

‘ 5 8 s a a a a s ‘    
0.7 0.75 0.8 0.85 0.9 0.95 l l .05

V(FPV-bus: 8)

 

Fig. 3-2(d «- Vpu(bus# 4-,5-,6:,7-.,9. ; 3+,2“,lo)

 

1.05
17

T U T '

0 O 0 0 0 O O 0 O O O O O 0 0 O O 0 9 O 0 O O 0 0 O O O 0 O 0

e e e e g o o o o e o o e g e

O - . .

l .
A

0.9 A

0.85 -

e ,8.-
g .‘ I

0.8 -.. .... ....... '. ............................
............................

......................

an:

0.75 ‘
   

0.7 0.75 0.8 0.85 0.9 0.95 l 1.05

V(FPV-bus: 8)



A
n
g
l
e
(
D
e
g
r
e
e
)

P
S
I

Fig. 3-2(e) «- Angle(bus# 4-.5-.6:.7-..8it.9. : 3+.Z‘.lo)

77

 

15 _......

  

f ...,... .....

§

O

O

0

7 +
. +. a. ‘ .

¢ 0 O O 9 §

0
O . . . . .

' 0 e e o e e e e o o 0

0000000000000 0000-0 0

x t ‘ ‘ .‘O-!-5-.&.§-.‘O05.1.0‘.--.-.-5-.x..§-.‘..‘..--.E.--’

  

1.7

Fig. 3.20) Pgt(bus

0.85 0.9

V(FPV-bus: 8)

0.95

it 3+, 2", lo)

 
1.05

 

0.00000000000000000000000000

1.6 _

1.43--

1.3--

1.1.-..“

 
0009000eeeeeeteeeeéeeeegoeee

0.85....
.006 .......

~ ,

.000 - . : .

: 090000000000990060000

fi

.......

f

i

1.

l   
0.7 - 0.85 0.9

V(FPV-bus: 8)

p
.
-



78

It is observed from Fig. 3-2 that the load flow biftucation occurs at the minimum

of the test bus#8 Q-V curve when the reactive power load about 0.467 pu is added at

the bus#8 whose voltage is assigned at 0.87 pa. Note from Fig. 3-2 (a) - Fig. 3-2 (c)

that the generator bus#3 hits its reactive power generation high limit 0.50 pu before

the generator bus#2 does, and that whenever one generator hits its reactive power gen-

eration (high) limit and becomes a PQ-bus, the dimension of the load flow Jacobian

matrix Ju- changes by increasing one; whereas the dimension of the Q—V sensitivity

matrix SQV reduces by one. This causes the jump phenomena of the determinant of

the load flow Jacobian matrix and that of the slope of the test bus Q-V curve. Note

also that, from Fig. 3-2(c), the load flow bifurcation occurs at about the point where

the generator bus#3 becomes a PQ-bus (the generator bus#2 has already become a

PQ-bus), even though the swing bus#1 has infinite active and reactive power reserves.

This result shows that the voltage collapse is a problem of (reactive) power demand

and supply. Each time a PV-bus changes to a PQ-bus, the supply rate from the PV-

bus is lost and the rate of increase in reactive power losses increase with further vol-

tage decline. The effective reactive power supply rate to the bus with voltage drop

decreases until the reactive power load demand at the bus#8 is 0.467 pu , where the

transmission network does not have the ability to transfer enough reactive power to

meet the requirement at bus#8 and the losses in the transmission network, even though

this system still has reactive power reserve at bus#l.

It should be pointed out that from Fig. 3-2(e), the angle differences between any

two contiguous buses are never more than about 40.00" . In addition, after bus#3

changes from a PV-bus to PQ-bus, its voltage angle starts dramatically increasing

when the system is more stressed. The voltage angle at bus#2 also begins to increase

rapidly after it becomes a PQ-bus. Whenever a generator PV-bus becomes a PQ-bus,

its voltage is no longer constant and begins to decrease when the system gets more

stressed, but it still keeps constant active power output (see Fig. 3-2(f)). The generator
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PQ-bus then needs to increase its angle to compensate the voltage drop in order to

keep its active power output to be constant. When both voltage and angle change as

stress is added, a voltage/angle bifurcation is being approached.



Chapter 4

Stability Problems in a Differential-Algebraic Model

The theory of bifurcation [36-38] has been applied to investigate dynamic stabil-

ity and voltage collapse problems, under the assumption that the causality condition

[39,40] holds in the differential-algebraic power system dynamic model. The

equivalent system Jacobian matrix can then be obtained after inverting the causality

matrix and aggregating the transmission network back to the generator internal buses.

One of the necessary conditions for static/saddle-node or dynamic/Hopf bifurcations is

that the equivalent system Jacobian matrix has eigenvalues with zero real parts (others

are transversality and nondegeneracy conditions) [36-38]. The above bifurcations have

been shown to lead to loss of dynamic stability and/or voltage collapse, and been

shown to be mainly associated with both mechanical and electrical system dynamics of

generators [3945.52.53,64-73,78,79,87,88]. However, most of the studies have used

eigenvalue analysis on the equivalent system Jacobian matrix to establish if these

bifurcations can occur. Eigenvalue analysis is not only computationally memory inten-

sive, but also computationally time intensive for a large power system dynamic model.

Furthermore, eigenvalue analysis has not generally been applied to the very large data

bases to study voltage stability problems. Moreover, the main assumption that the

causality condition holds may not be true, such that the equivalent dynamic system

Jacobian matrix can not be simply defined. The stability problems due to loss of

causality are not described and are not associated with the eigenvalues of the

equivalent system Jacobian matrix.

This chapter will classify the types of bifrucation and stability problems in the

differential-algebraic model. Necessary conditions are determined for each of these

80
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types of bifurcation and stability problems. Several of these bifurcations are shown to

be non-generic. The static and dynamic bifurcations associated with eigenvalues of the

equivalent system Jacobian matrix having zero real parts are shown to be generic

bifurcations. The stability problems due to loss of causality and due to loss of stability

of the generator dynamics are also identified as possible, if not improbable, stability

problems. The static/algebraic bifurcation will be shown to be equivalent to the static

bifurcation. The static/algebraic Jacobian mauix has similar structure to the load flow

Jacobian mauix. This static/algebraic Jacobian matrix is associated with a set of

linearized algebraic equations that produces the equilibrium point of the differential-

algebraic model, which is very similar to the load flow model. In addition, this

static/algebraic bifurcation test mauix avoids the inverse of causality matrix. Finally,

the static bifurcation test due to the singularity of the static/algebraic Jacobian matrix

will be shown to occur based on the simulation results of a 9-bus 3-machine power

system.

4.1 Linearized Power System Dynamic Model

From Chapter 2, the dynamics of a power system is characterized by two types of

equations: (1) the differential equations of rotor and flux decay dynamics of machines,

and those of their control systems (that include (a) Excitation System with Load

(Line-Drop) Compensator [85], (b) Power System Stabilizer (PSS) [85], and (c)

Speed-Governing-Turbine System [86]), and (2) the active and reactive power balance

(algebraic) equations at the internal and terminal buses of machines, at the transformer

high-side buses of machines (simply called high-side buses), and at the load buses.

Hence, the specific power system dynamic model can be represented as follows:

i=f(x.y;u) (4-1a)

0=8(x.y;u) (4-1b)
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where,

x : the M~vector of dynamic states of generators and conuol systems;

y : the N-vector of network dependent variables, i.e., the voltage and angle at

each terminal bus (VT, 07), high-side bus (V,,, 0,, ), and load bus (V,, 0, );

u : the vector of independent parameters, such as reference voltage of excita-

tion system (V,,, ), mechanical power setting of speed-governing-turbine

system (Po), and load demand parameters (PD , QD );

f : the function describing the relationship among the dynamic states, network

dependent variables, and control parameters, through the coupling branch

between internal bus and terminal bus of each generator;

g : the function describing the power balance equation at generator terminal

buses, at high-side buses, and at load buses.

All the solutions of (44) must belong to the M-dimensional surface S, which is

defined as all points x and y where (4-lb) is satisfied. The Jacobian matrix of (4-1) at

any equilibrium point (1:, y:; u: ) can be obtained from the linearized power system

dynamic model, that has the following mauix form, by combining the linearized equa-

tion of each component in the power system shown in Section 2.6. The relationship

between the Jacobian submatrices is shown in Fig. 4-1.

  

'E’L 2L.

J— J! _[fx fy]_ 81: By

‘ J. ' s. t. ' 28. a (4’2”
_3x 3y,(x.°.y.':u.')

- A10: A55 Axe 0 Axe AXV AXrt
' 1,,, A5,, 1
TE AX‘E Ag ABE 0 A3 A59 AEV AXE Bo

' A 0 A 0 0 0 AX 5°
TC, AX, GX ‘36 G 360

      

1,, A5, A, 0 0 As, 0 0 AX, + (0) AUG (4‘2”)

- APC Apx 0 0 0 Ape Apv A9 0

" - AQC ‘ AQX 0 0 0 A09 AQV . AV a b -  



 

 
 

 

"
f

+
E
x
c
i
t
a
t
i
o
n

1

S
y
s
t
e
m

_
fi
_

K
5
3
+
T
4
0
S

 
 

 
 

 

 

 
 
 

 
 

  

 

A

v
s

I
I

f
“

P
o
w
e
r

*
s

-

S
y
s
t
C
m

P
C

Q
C

8
;
(
K
g
p
K
3
1
:

1
6
3
2
.
K
3
2
)

I
G
m
d
m
i
n
g
-

S
t
a
b
i
l
i
z
e
r

J
l

.
T
u
r
b
i
n
e

   

‘
3
3

S
y
s
t
e
m
‘
6
0

 
 

 
V
:

 
 

 
 

 

 
 

 

 
(
N
e
t
w
o
r
k
M
o
d
e
l
)
—

'5
P
o

 

f
l
g
’
(
A
,
B
,
C
,
D
)
—
|
¢
—
>

1
0
,

-
“
3
:
1
4
9

I
.
.
.
“

t

I
  f

I
K
c
h
c
h
E
v
a

l
—

f
,

 

 
  

F
i
g
.
4
-
1

B
l
o
c
k
D
i
a
g
r
a
m
o
f
P
o
w
e
r
S
y
s
t
e
m
J
a
c
o
b
i
a
n
M
a
t
r
i
c
e
s

83



84

where,

Axx AXE Axe 0

fx = (diag[ Tn TEE Toe 735 1)" flex 0 A60 0

ASXO 0.433  

Axe Axv

. _‘ A50 sz

fy=(dlangror TEE T66 T533]) 0 0

_o o

Apxooo

82‘ AmOOO

Are APV

g, = Age AQV

  

AXX = [ Ato‘ A5‘ A5," 1‘

: states of mechanical and flux decay dynamics;

AXE = [ AVD' AV,‘ AVA' AVB‘ AEfd‘ ]‘

: states of excitation systems (see Fig. 2-5);

AXG =[AP1' APGV' APVHP' APHP' Apr!" “’0' 1'

: states of speed-governing-tmbine systems (see Fig. 2-8);

M8 = [ AVso' AVsz‘ AVS4' 1‘

: states of power system stabilizers (see Fig. 2-7);

A0 =[A01‘ AOH‘ AOL‘ 1‘

: angle variables at network buses (terminal: T, high-side: H , load: L);

AV = [ AVT‘ AVH‘ AVL‘ ]‘

: voltage variables at network buses;
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A”c = [ Apart APCH' APCL' 1‘

: coefficients of non-voltage-dependent active power load demand model;

AQc = I Ach' Ach' Ach.' 1'

: coefficients of non-voltageodependent reactive power load demand model;

M O 0

Txx =diag[M 1 14;]: o I o

o o 1;,

M =diag[M1,M2,...,Mm]

: inertia constants of m synchronous machines;

I : m x m identity matrix;

T40 : m x m diagonal time constant mauix of flux decay dynamics;

TEE = ding [To TF 7.4 Ta 75]

: time constants of excitau'on systems (see Fig. 2-5);

TGG = 41°08 [T1 Ta Ten Tum Turn Tco ]

: time constants of speed-governing-tm'bine systems (see Fig. 2—8);

Tss = 41°08 [Ts Tsz Tsa]

: time constants of power system stabilizers (see Fig. 2-7);

Note that TEE , TOG , and T33 submatrices above are defined using a similar notation to

that used in defining Tu, and the submatrices T4'0, - ° - , TM are m dimensional diag-

onal matrices composed of the appropriate time constants of the generator and conuol

systems models. The A -matrices of each Jacobian submatrix are defined as follows.
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A11: 3111 0 C11: Dru 0

APO: A211 32m! 32m. 3 Apv= C2” DZHH DZHL

o 3,”, 3m o 0,“, Du

A1K=KF1 +A1;C1K=K;q7 +C1

ASK 33H 0 Cart 03H 0

AQ0= A411 Bum 34m 3 AQV= C411 Dam D4111.

A3K =K31+A3 ; C3K =K37 +C3

The following properties of the submatrices of the linearized power system model

help provide understanding of the model.

(1)

(2)

(3)

(4)

All the K matrices are m x m diagonal matrices. Among them, the

matrices, K33, K53, K54, K157, K156, K32, and Km, are associated with the

flux decay dynamic states 8,; of the single-axis modeled synchronous

machines.

The matrices th and K“? of the power balance equations at internal buses

and terminal buses of synchronous machines represent the coupling between

both buses. In general, K'9 a: K4‘ , because of the armature and salient-pole

effects of synchronous machines, that cause X4, Xq , and x; are different.

If the armature resistances (Rd) and salient-pole effects are neglected, then

PE =PG, = -P,q such that [(33 =Kfi41,Kfl'2 =-—K;92, and K33 = -K}."-,.

The load compensator is characterized by the diagonal matrices: KC 1, KC2,

and Kc7. If a load compensator is not employed, then VC = VT, i.e.,

Km: 0, Kc; =0, and Km =1.

Due to the effects of transformers, phase-shifters, and network conduc-

tances, each of these network submatrices, Ape, AW, A99, and AQV,



89

composing of the network Jacobian mauix is not symmetric.

(5) The coefficients of voltage dependent load demand model are embedded in

the diagonal elements of C and D submatrices.

(6) Under the assumption that the connection between each generator terminal

bus and its transformer high-side bus is one-to-one, the submatrices A,- , C,- ,

i =1, 2, 3, 4, and Bi ,DJ-HJ =1, 3 are diagonal.

(7) . Other properties of the network Jacobian matrix can be found in Section

3.1, that are associated with the submatrices of the load flow Jacobian

matrix in the load flow model.

4.2 Bifurcations in Power System Dynamic Model

At any parameter pattern ti = u, of the power system dynamic model (4-1), an

equilibrium point (xe, y,; u,) on the surface 88 defined by (4-1b) is a solution to

o=f(x.y;u) “30

0=8(X.y;u) (4-3b)

Note that the precise formula of (4—3) for solving for the equilibrium point(s) of the

power system dynamic model has been discussed in Section 2.5. The bifurcation prob-

lem is to characterize the solution set of (4-3) in a neighborhood of an equilibrium

point (x,, y,; rte ). The equilibrium point (x; y:; [1,.) is a bifurcation point and rt: is

a bifurcation value of the parameter if the system satisfies one of the following condi-

tions.

(a) The complete system Jacobian mauix

2L.fll

J ft fy 8x By

]- f - - 4.4

- J: - 313) - 28.28. ( )

8): 3y (xi-yiwi)



is singular.

(b) The equivalent static/algebraic Jacobian matrix

Jy = 8y - 81 :1 fy (4'5)

is singular, provided that f, is nonsingular.

(c) The equivalent system Jacobian matrix

Jx = fx "fy gy-l gx (4'6)

has eigenvalues with zero real parts, provided that gy is nonsingular.

Note that Jacobian submatrices, f,, fy , g,, and g, , can be found from the linearized

power system dynamic model (4—2).

From the above, six subclasses of bifurcation in power system dynamic model are

identified.

(1) A static/algebraic bifurcation occurs when the equivalent static/algebraic Jaco-

bian matrix J, is singular, but J, is row independent and g, and f, are non-

singular [52.53.87.88].

(2) A static biftu'cation occtus when the equivalent system Jacobian matrix J, is

singular and does not have pure imaginary eigenvalues, but JI is row

independent and g, and f, are nonsingular. The static bifurcation could be

the saddle node bifurcation if the matrix J, has a simple zero eigenvalue, and

the transversality and nondegeneracy condition of J, at the bifurcation point

holds [36-38].

(3) A dynamic bifurcation occurs when the equivalent system Jacobian matrix J,

is nonsingular and has pure imaginary eigenvalues, but 3, and f, are non-

singular. The dynamic bifurcation could be Hopf bifurcation if the mauix J,

has a pair of pine imaginary eigenvalues, and the nondegeneracy condition of

J, at the bifurcation point holds [36-38].
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(4) A differential bifurcation occurs when the equivalent system Jacobian matrix

J, is singular due to the row dependence of J, (but 3, is nonsingular) [53].

(5) An algebraic bifurcation occurs when the equivalent static/algebraic Jacobian

matrix J, is singular due to the row dependence of J, (but f, is nonsingular)

[53].

(6) A differential-algebraic bifurcation occurs when the complete system Jacobian

matrix J is singular due to bOth the row dependence of JI and the row depen-

dence of J, .

Note that two specially stability problems occur along with the above bifurcations:

(a) A single-machine instability occurs when the machine Jacobian mauix f, is

singular, or when f, has complex eigenvalues with zero real parts, but Jf is

row independent.

(b) Loss of causality occurs when the transmission network Jacobian matrix g, is

singular, but J, is row independent.

The above stated conditions are necessary conditions for these specific types of bifur-

cation. Transversality condition for saddle-node bifurcation and nondegeneracy condi-

tion for Hopf bifurcation [36-38] which control the nondegeneracy of the behavior

with respect to the p. parameter change and the dominant effects of the nonlinear terms

of power system dynamic model will not be discussed in this dissertation.

Note that type 1, type 2, and type 3 bifurcations require that both f, and g, be

nonsingular and both If and J, be row independent, and that type 4, type 5, and type

6 bifurcations are due to the characteristics of row dependence either in JI , or J, , or

both. The first three types of bifurcation require both f, and g, be nonsingular mak-

ing both J, and J, well defined. The type 4 differential bifurcation requires J, be row

independent and g, be nonsingular so that J, is well defined. This differential bifurca-

tion also requires f, be singular and I! be row dependent leading to the singularity of
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both J and J,. The type 5 algebraic bifurcation requires that f, be nonsingular so that

J, is well defined, and that g, be singular and J, be row dependent resulting in the

singularity of both J and J, . The type 6 differential-algebraic bifurcation is restricted

to the case where both f, and g, are singular and both J, and J, are row dependent

causing J to be singular and both J, and J, to be undefined. The above restrictions

on the above bifurcation tests make sure that the classifications are distinct. The rela-

tionship and difference between the six classes of bifurcation are now discussed.

It can be shown, using Schur’s formula (Appendix A), that the static/algebraic

bifurcation due to the singularity of J, (4—5) can be proven to be equivalent to the

static bifurcation due to the singularity of J, (4-6), provided that both f, and g, are

nonsingular which is assumed in the definition of the static and static/algebraic bifurca-

tions. Thus, one could consider making the static and static/algebraic bifurcations as a

single bifurcation class. The two reasons this wasn’t done was (a) a proof is required

to establish they are completely equivalent, and (b) at an initial review one would con-

sider singularity of J, and singularity of J, as different stability problems, which

indeed they would be if all of the possible stability problems due to singularity of J,

or J, were considered as one class of stability problem. The classification of the

bifurcations and the stability problems indicates that there are different stability prob-

lems associated with singularity of J, (static; differential) and different stability prob-

lems associated with singularity of J, (static/algebraic; algebraic); but when f, and

g, are nonsingular, then there is one stability problem associated with J, and J, being

singular. If one chose to make the static and static/algebraic one class of bifurcation

problem based on the fact that f, and g, are assumed nonsingular in the definition of

these stability problems, it would be called a static bifurcation, static/algebraic bifurca-

tion, or singularity induced static bifurcation, since both J, and J, are singular for this

bifurcation to occur. A singularity induced static bifurcation Will be shown to be

~ caused by the transmission network Stress (see Section 4.6), in a manner almost
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identical to that causing the load flow bifurcation as shown by the simulation results in

Section 3.4.

Note that the type 4 differential bifurcation is not equivalent to the type 2 static

bifurcation even though both occur when J, is singular. The difference between them

is that the differential bifurcation is solely due to the instability of the single machine

dynamics (Jf is row dependent and f, is singular), whereas the static bifrucation is

due to the instability of the transmission network coupled with the dynamic states

represented by J, . Likewise, the type 5 algebraic bifurcation is not equivalent to the

type 1 static/algebraic bifurcation even though both occur when J, is singular. The

difference between them is that the algebraic bifurcation is solely due to the lack of

solutions or multiple solutions of the transmission network (J, is row dependent and

g, is singular), whereas the static/algebraic bifurcation is due to the instability of the

u'ansmission network coupled with the dynamic states represented by J, . The similar-

ity of J, and the load flow Jacobian matrix I” is discussed in Section 4.4. It shOuld

also be pointed out that the row dependence of J, and loss of causality (g, singular)

indicate that the set of algebraic equations (4-3b) may have either no solutions or mul-

tiple solutions; but the static/algebraic bifurcation is a bifurcation in both machine

dynamics and transmission network. The two special stability problems due to the

singularity of f, and that of 3, will be discussed in Section 4.3, even though they are

not bifurcations because they indicate loss of stability and because the tests for the

static/algebraic, static, and dynamic bifurcations require that they be nonsingular.

4.3 Prerequisites of Bifurcation Study

Having classified the simplest types of bifurcation for a differential-algebraic

power system model, it will now be shown that the type 4 differential bifurcation due

to JI being row dependent, the type 5 algebraic bifurcation due to J, being row
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dependent, and the type 6 differential-algebraic bifurcation due to both J, and J,

being row dependent are not generic types of bifurcation. The singularity of J

requires that v‘ I = 0, where v is the left eigenvector of J associated with the zero

eigenvalue of J . The requirement that an only subset of the rows of J be row depen-

dent amounts to finding a point of singularity where v' J = 0 such that the elements of

v are specified to be zero and not free. Thus, the differential bifurcation, the algebraic

bifurcation, and the differential-algebraic bifurcation can be considered as very rare

types of bifurcation since the constraints associated with forcing elements of v to be

zero for the operating conditions where v' J“.- = 0 make it so.

Therefore, although we started with the possibility of six different types of bifur-

cation in the power system dynamic model of (4-1) and (4-2), only three types, type 1,

type 2, and type 3, of bifm'cation appear to remain as likely, and will be discussed in

the rest of this dissertation. Both type 1 and type 2 are singularity induced static

bifurcations and equivalent to each other when f, and g, are always nonsingular,

which are required to be based on their definitions. The type 3 of bifurcation is the

dynamic bifurcation. It should be pointed out that both f, and 3, might still be singu-

lar [87] and produce non-bifurcation stability problems. The behavior of the system

due to loss of causality will now be discussed further in Section 4.3.1. The singularity

of f, will be further addressed in Section 4.3.2, and be argued to be improbable, but

the proof is not strong enough to prove that the singularity of f, is non-generic. Thus,

singularity induced bifurcation, dynamic bifurcation, and loss of causality will remain

as generic stability problems. Although loss of causality must be considered as a gen-

eric stability problem, discussion concerning the structure of 3, compared to the

static/algebraic Jacobian matrix J, addressed in Section 4.4 and the simulation results

of the static/algebraic bifurcation test for a power system with the reactive power gen-

eration reserve constraints addressed in Section 4.6 suggest that loss of causality may

not be a generic stability problem.
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Chapter 5 will concentrate on systematically developing test conditions for the

static and dynamic bifurcations (type 2 and type 3), based on the equivalent dynamic

Jacobian matrix J, , under the assumptions that causality condition holds (g, is non-

singular) and that transversality/nondegeneracy condition holds. Test conditions for

the static and dynamic bifurcations pertaining to mechanical and flux decay dynamics

will also be established [88], based on the property that each of control systems itself

does not have eigenvalues with zero real parts which will also be proven to be true in

Section 4.3.2.

4.3.1 Causality Condition — g,

In Section 4.1, the M—dimensional surface S, is defined, which requires that all

the solutions of the power system dynamic model (44) x and y must satisfy (4-lb)

0 = g (x , y ; tr ) at any n parameter. The causality condition of the power system,

g, = 8g [By being nonsingular, means that every solution x and y must belong to the

regular part of S, ,

5,, = {0=g (x ,y :u) ; J, is row independent.)

which is an M-dimensional submanifold in S, [89].

When J, is row dependent, the solutions 1: and y on the surface S, are no longer

regular and do not belong to 3,. Thus, there can not only be more than one y solu-

tion for each x but several x solutions with more than one y solution for each 1:.

These 1: and y , when J, is row dependent, lie on the geometric boundary separating

the regular part of S, from the remainder of S, . Note that the row dependence of J,

implies the singularity of 3, leading to loss of causality. Since loss of causality can

still happen even when J, is row independent, this boundary is characterized by the

particularly complicated type of stability problems observed as being associated with

loss of causality.
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Loss of causality (g, is singular) occurs on the so-called frontier

F, = [0=g (x ,y ;u) ; g, issingular.)

which is an M-l-dimensional surface [89]. On the frontier, y in (4-1b) can no longer

be solved as a unique function of x . Loss of causality results in uncertain dynamic

behavior of two different types: singular points and impasse points can occur on the

F, surface. At an impasse point, a solution may not be continued for all time after an

impasse point is encountered on the frontier. This is not the case for a singular point.

If the initial condition is a singular point, then solutions exist but are not unique. A

solution can switch from component to component of the regular part of the solution

set via singular points. Jump phenomena and complicated periodic solutions can occur

at these impasse and singular points.

From the linearized power system dynamic model (4-2), the causality matrix g,

can be structurally represented as follows:

Ape APV

g, = 3490 AQV

A11': 3111 0 Cur Dru 0

A211 32101 32m. Czu DZHH 02m.

= A3K 33H 0 Car Dan 0 (4’7)

A4” 34m! 34111. C411 Dam Dun.

  
Note that the structtue and properties of the causality mauix g, and the Jacobian

matrix J, = [ g, g, ] are very similar to those of the generic load flow Jacobian

matrix Ju- shown in (3-8). The only differences are that there are reactive power bal-

ance equations at all terminal buses and that the inequality of the diagonal matrices

A1,, #31”, CIK #01”, A“ #83”, and C3; ¢D3H holds in g, but not in I”,

because Am, Cm, A“, and C3,; have the effects of the coupling between the
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internal buses and terminal buses in g, . This results in a significant diagonal domi-

nance in g, that is not present in Ju.~ if all the generator terminal buses were PQ-

buses. Note that since the reactive power balance equations at all the generator termi-

nal buses are included in g, , the eigenvalues of g, will not change discontinuously

when reactive power generation limits are reached and PV-bus to PQ-bus changes

occur. The test for the static/algebraic bifurcation on J, will be shown to be similar to

J”- , and will experience discontinuous change when any generator exhausts it reactive

power generation reserve and changes to a PQ—bus. The simulation results will also

show that the singularity of g, is nor likely to happen when the reactive power genera-

tion limits are included in the model for the simple power system considered.

Loss of causality (g, singular) will occur due to the row dependence of J, . The

discussion of the various possible subclasses of the load flow bifurcation due to the

singularity of J“.- can be viewed as possible subclasses of loss of causality. The dis-

cussion in Section 3.2, that illusu'ated that (a) the bifurcation at a single bus due to the

row dependence of the rows of J“.- associated with the active and reactive power bal-

ance equations at this bus, (b) the voltage bifurcation due to the row dependence of

rows of .1” associated with the reactive power balance equations, (c) the angle bifur-

cation due to the row dependence of rows of IL]: associated with the active power bal-

ance equations can not happen, can be carried over to J, and loss of causality.

4.3.2 Single Machine Condition — f,

From the linearized power system dynamic model and the Jacobian submatrices

of (4—2), the matrix f, is defined as

f; =(diagl Txx TEE Too Tss l)“l Fx (4-8a)



98

Arrx AXE Axe 0

Azx ABE 0 Ass [Axx Axe]

  

FX = Aax 0 A66 0 Acx Ace (4.813)

As, 0 0 Ass

where,

A” A55 0 A53

Axe = [AXE AXG O] ; ACX = AGX ; ACC = 0 A66 0 (4-8C)

Asx o 0 Ass

It. is observed that the matrix f, represents the operation condition where each syn-

chronous machine is assumed to have a swing (infinite) bus at its terminal bus, since

f, is formed by diagonal block submauices composed of the K -coefficients of each

machine, as shown in the steady state block diagram Fig. 4-2. The nonsingularity and

lack of complex eigenvalues with zero real parts of f, or the singularity of (f, - jfl}

for some frequency 0 2 O characterizes the "proper" or "nonproper" basic design of

each machine when its terminal bus is treated as the swing bus of the power system.

The mauix f, can now be argued to be nonsingular and has no complex eigenvalues

with zero real parts because the system is designed so that loss of stability will not

occur on the machine dynamics only (f, ), but rather on the complete system dynamics

(J, ). It should be noted that the excitation systems and power system stabilizers are

designed to prevent stability problems and thus the stability problems in f, are not

likely to occur. However, the stability problems may occur in J, , especially when the

system is heavily stressed or when some machines are operated in underexcited condi-

tion (leading power factor at the terminal bus) [27]. A simple test matrix for testing

the (non)singularity of f, will also be derived for the case where the machine is not

sure to meet the basic operating and design practice for a single machine operated

independent of the transmission network.
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Note that each block submatrix of f, is diagonal and can be viewed as an ele-

ment, since the dynamics of each machine is uncoupled in f, . From (4-8), it is obvi-

ous that the control systems form an upper triangular block matrix ACC , hence the

eigenvalues of Ace are those of each control system, A53 , AGO , and A$3 . Moreover,

- based on the IEEE general model of speed-governing-turbine systems (Fig. 2-8) [86],

for both steam and hydro turbines, and the model of power system stabilizer (Fig. 2-7)

[85], both A66 and Ass are lower uiangular matrices with real and negative eigen-

values. Regarding the excitation system matrix A5,,- , if the excitation system is "prop-

erly tuned" and is able to be manually operated, A55 should not have any eigenvalue

with zero real part. Hence, the control system matrix Acc is virtually certain to be

nonsingular. Therefore, the conu-ol systems matrix Ace . can be aggregated into the

mechanical and flux decay mauix A“, such that the singularity of f, is equivalent to

the singularity of the following matrix (Appendix B: A56):

Afx = An - Axe A56 Acx

" (D + KG) " Kfl'r ‘ K33

= I O 0 (4'9)

0s " (K54 + K51) - (K53 + K152)

where, the following matrices are defined

KG = A006 A53; A600

: effects of speed-governing-turbine system;

Os = APE A121! [Arm 'Arzs A531A5m1= 0

: effects of power system stabilizer;

K121 =AFE AEEIAEC1=KEE Kcr

: effects of excitation system on A8;

K52 = An Air} Arscz = K35 Kcz

: effects of excitation system on A5,;
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K55 = K3721 KA K03

The block diagram of Age is also shown in Fig. 4-2.

Note that KG is the D.C. gain of speed-governing-ttu'bine system (Fig. 2-8), and

K55 is the D.C. gain of excitation system (Fig. 2-5). The power system stabilizer does

not show any effects on Ag, due to its D.C. washout transfer function (Fig. 2-7).

Hence, the singularity of f, is fully dependent upon the D.C. gains of excitation sys-

tems K55 and speed-goveming-turbine systems KG , and upon network effects through

the six diagonal coefficient matrices: Kfl‘l , Kfl‘z, K333 K54, K013 and Kcz- The nota-

tion of these diagonal K -matrices are adopted so that they are consistent with those

K -matrices [23,26] of the single-machine-to-infinite-bus power system where synchro-

nous machine is represented as the single-axis model and does not have control sys-

tems (K55 = O):Kp1= K1, Kn = K2, K53 = K3, K54 = K4, and K5 = 0, K, = 0 since

in this case the generator terminal bus is the infinite bus.

Note also that based on the theory of synchronous machine, when all the deriva-

tives of dynamic states are set to be zero (at steady state), all the induced currents at

damper windings are also zero. Hence, the synchronous machine can be represented

by single-axis model, such that only the dynamic state 5, of flux decay dynamics

needs to be preserved. Therefore, Afx represents the Jacobian matrix of (single-axis

modeled) synchronous machines at steady state condition with the D.C. gains of con-

trol systems [87]. It will now be shown that f, and .45, would not be singular and

would have asymptotically stable eigenvalues, provided that each generator is operated

at the usually overexcited condition (lagging power factor) and at the power levels

where steady state angle stability limit, and its excitation D.C. gain is not "badly"

tuned [23.26].

Each synchronous machine is assumed to be operated below its steady state sta-

bility limit so that each element of the diagonal matrix K‘3'] which is the power-angle
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coefficient at internal bus is not zero (Appendix C). The matrix

AM — (4-10)

 

- (D +KG) 'Kfl'r]

l O

is thus nonsingular, assuming that KA is nonsingular. This is also true even though

the damper constant D and the D.C. gain of speed-governing~turbine system K6 are

neglected, because from (4-8) setting D + KG to be zero does not affect the singular-

ity or the determinant of A5,. Hence, the singularity of f, can be shown to be

equivalent to that of the following matrix:

K 1

Km =(KE3+K52)+[0 (KE4+K51)]A,;1[ 52]

= (K53 + K52) " (K54 + K151) Kfl‘l-l K33 .(4-11)

assuming that Kfl'l is nonsingular. Thus, the singularity of f, is solely a function of

the D.C. gain matrix of excitation systems K55, and the six diagonal coefficient

matrices: Kfl‘l , K33, K53, K54, Km, and Kcz- In Other words, the singularity of KFD

is a necessary and sufficient condition for the singularity of f,, provided that K’7‘] is

nonsingular. Checking the singularity of f, can thus be performed neglecting the

effects of damping constant D , speed-governing-turbine systems, and power system

stabilizers, which tremendously reduces the computational burden.

Note that the characteristics of f, and Afx describes the steady state operation

condition of each synchronous machine when its terminal bus is assumed to be the

infinite (swing) bus. The matrix KFD provides an equivalent singularity test of f, and

Ag, associated with the flux decay dynamics when K3', is nonsingular. At the steady

state condition, f, , Afx, and K[:0 (Appendix C) should be nonsingular and have

(asymptotical) stable eigenvalues, except when the synchronous machine is operated at

the steady state angle stability limit and/or the D.C. gain of the excitation system is

"badly tuned". Thus, it is likely that f, is nonsingular.
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It should be pointed out that the test mauix KFD will be shown to be the same as

the test matrix TF0, (Q = 0), derived in Chapter 5, for the static bifurcation associated

with the flux decay dynamics except KFD neglects the network effects. The test con-

ditions of singularity of {f, - jQ} for all 0 2 0 were not established in a manner that

test conditions of singularity of {J, - jQ} are obtained in Chapter 5. It is important

to make certain that (f, -j£2} has neither singularity for (2:0, nor for all n > 0

since stability problems could well result in the full model that includes the effects of

the transmission network.

4.4 Structure of Static/Algebraic Jacobian Matrix — J,

In this section, the structure of the static/algebraic Jacobian matrix J, will be

derived based on the assumption that f, is nonsingular as indicated in previous sec-

tion. The structure of the matrix J, will also be shown to be similar to that of the

causality matrix g, (4-7).

The relationship between the power system Jacobian submatrices, f,, f, , g, , and

g,, has been represented by the block diagram as shown in Fig. 4-1. The

static/algebraic Jacobian matrix is defined as

Jy = 8y " gx :1 fy (4‘12)

provided that both g, and f, are nonsingular. Based on the properties of f, shown in

previous section, the matrix f, only directly affects the internal bus and terminal bus

variables of each generator, and can be represented by its reduced forrrr Afx as shown

in Fig. 4-2. Likewise, the Jacobian matrices f, and g, composed of diagonal K-

submatrices show the coupling between the internal bus and terminal bus of each gen-

erator. Thus, the second part of the matrix J, , {g, f,"1 f, I, should only show the

effects on the terminal bus variables, and the static/algebraic Jacobian matrix J, would

in turn keep the same structure as that of the causality mauix g,, where only the
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diagonal block submatrices associated with the active and reactive power balance equa-

tions at the terminal buses are expected to be modified.

From Fig. 4-1 and Fig. 4-2, the relationship between f, and f, can be illustrated

by the steady state block diagram of each machine shown in Fig. 4w3, where the incre-

mental symbol A in fi'ont of each variable is omitted. At steady state condition,

Am = 0 and only the D.C. gain of the excitation system shows the effects of the com-

plete control systems. Based on Fig. 4-3, the mechanical and flux decay states A8 and

AE,’ can be represented in terms of the terminal bus variables A6, and AV,~ as fol-

 

 

 

 

lows:

APO Kfltl K33 A5

K5751 K, AV", — L [ K54 + Kris Kcr ] [K33 + K55 Kczl AE,’

- Kfl'r KIT? A6, 4

+ - [ K34 +1955 Ker] - [K57 "KEE K67] AVT (J33)

' —1

A5 _ Kfltl K312 . APO

A5,; - L[Kira 4' K55 Kcr 1 [K53 4' K55 Kc2] K37} K, AV",

" Kfl’i K197 A0, 4- 3

-L-[KE4+KEEKC1] ’lKE'I-KEEKC'I] AVT ) ( 1b)

Note that f,‘1 f, is embedded in the above formulation:

-1

_1 K31 K33

0" f’)’ _ [KE4+KEE KCI] [K53+KEE Kczl

' K33 K39-

- K K K K K K (4'14)[154+ 55 ch-l 57" 55 c7] .

where, «,4 f, ), represents that f;1 f, has only effects on the internal bus variables
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A8 and AE,’, since the rest of block mauices off,‘1 f, are zero. Note that each of the

matrices in each of the sub-blocks is diagonal. Based on the assumption that f, and

Kfl‘l are nonsingular, and on the two equalities K31 =KEE KC] and K52 = K35 KC2

defined in Afx (4»9) and in Km (4-11), and applying the inverse matrix formula pro-

vided in Appendix A, we have the further formulation for (f,‘1 f, )1 as follows. Let

-1

K33 K33

[K£4+K51][K53+K£2] = 021 022

 

all 012]

then

Gzz=([K£3 +K521-[Kr4+KEl ]Kfl'1’1Kfl‘2 )'1

_ -1
- FD

G21= " Kiri [K54 + K13111933-l

012:- Kfl'l-l K33 Kiri

Gn=Kfl'1-1[I 'Kl3'2 021]

= 1091-1 + Kiri-1 K172 Kiri [K54 + K5111033-l

Hence, (f;1 f, ), can be written as

-1 611 612] ’Kfltl K33

x fy)1- _021022 -[KE4+K51] -[K57-Klz£ Kcv]

'—1 H12
= _ 0' H22

(4-14a) 
where,

”21 = Kfl'l'l K133 + Kfl'l-l Kfl'z Kiri [K34 4' K51 ] Kfl'l-l K193

+ Kfl'l-l Kfl'z Kiri [K157 - K515 Kev]

= K33“ K39 + K33“ Kfl‘, K53 K50 (4-141))
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”22 = ' K513 [K54 4‘ K21 11(1'3'1-l K33 " Kiri [K37 ‘ K315 Kev]

= — K53 KEC (4-14C)

Ker: = (K154 + K515 KC1)Kfl‘1'1Kfl‘-, + (K57 - K55 K07)

Note that K51 = K55 KCI.

Likewise, the active and reactive power balance equations show the coupling

between the internal bus and terminal bus of each machine as follows (from (4-2)):

A8 [A 1K C 1K J A9,
= o 4'

AE, A3K C3K AVT

F

'N’cr] -K}.‘11 K32

  

 

— AQC'I' - K51 K52

_ 3311 Dan AVH

 

where, the main submatrices of g, associated with the internal bus variables A5 and

A5,, Kfii’l , Kl‘r‘lz, K31, and K3,, are included. Note that each submauix in the above

representation is diagonal. Then substituting (4-13b) into (4-15), we have

[we]: [Arr C1K]- m cm )[Aer]
“‘3ch A3K C3K K31 C3x AVr

3m Din A6 AP11 o
+ +6 4-16

[33” Dan] AVH . 7 K37} KA AV", ( )

  

since the computation of g, f,‘1 f, shows the first part of (4-16) and its sub-block

matrix associated with the terminal bus variables A01» and AV,, (g, ,‘l f,)1 has the

form:

_1 _ “K191 K1542 _1

(gr 1 fy)T"' -K31K32 '(fx fy)!

[(51 CIX (417)

K51 Csx



108

where,

Clx ="Kf-ql Kfl'I-l KIT-I - (K1541 Kfl'l-l K192 +1092) Kiri KEC

Csx = ‘Kal Kfi‘l-l K35 - (K31 Kfl'l-l Kfl'z 4' K32) Kiri KEC

Note that the rest of block matrices of g, ,‘1 f, are zero. The expression for G, is

omitted without loss of continuity.

It is observed from (4-16) and (4-17) that g, ,-1 f, only affects the diagonal

submatrices of g, associated with the terminal bus variables. Thus, substituting (from

(4-2))

All: =Kifll+A13ClK =19"? +C1

A3, =K31+A3 ; C3,, =K§7 + C3

and (4-17) into (4»12) by combining the Jacobian submatrices of g, associated with

the power balance equations at high-side buses and load buses, we have the final form

of the static/algebraic Jacobian matrix J, as follows:

    

PA] 31,, 0 Cf, D1,, 0 , ’5”

A2” Bum 32m. C2" 021m Dznz Jr”

0 3,“, Bu 0 02”, Du 15”"

J" A3 B3,, 0 C5“ D3,, 0 = 1,97 (4’18)

A411 Bum 34111. C411 D4111! D4111. 1,9”

0 B4”, Bu 0 D4“, D“. I,“

where,

C¥K=Kitrql +C1-C1X

C§K = K37 + C3 - Csx

Note that both Cfx and Cé‘x are still diagonal matrices, and that A1, C1, A3, and C3

are the appropriate diagonal sub-blocks of the load flow Jacobian matrix I” defined in
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(3-9).

The above shows that J, can be obtained from the causality mauix g, by slightly

modifying the submatrices associated with the (active and reactive) power-angle and

power-voltage diagonal Jacobian matrices at terminal buses. Note that the active and

reactive power-angle Jacobian matrix of g, are A“ = Kffll + A1 and A3,, =

Kg, +A3; but those of J, become A1 and A3 that are the same as those in the load

flow model of the specific case where all the generator terminal buses are represented

as PQ-buses. This is because in each generator, except the swing bus, the power-angle

Jacobian matrices associated with the internal bus angle 5 and the terminal bus angle

6, are opposite in sign. This also implies that the control systems at steady state do

not have direct effects on the terminal bus angle through the coupling coefficient

matrices KH and Kg 1. Moreover, in the active power-voltage Jacobian matrices Cfx

and Cm of J, and g, respectively, the difference between them is due to the fact that

K9‘ at K‘4 which represents the active power losses in the armature resistance R, and

the reactive power losses in the reactances of synchronous machines. Note that if R,

is neglected, then P5 = P0, = - ,, such that Kfl'l = Km , Kfi‘z = — Kl‘flz, and K39, =

-K}r‘l,. Hence, CIX = -Kfl‘-, = Kiri“ and C’fx = C1 whether the generator has

reached reactive power generation limits and disabled the excitation control or not.

This result implies that if R, is neglected, the control systems at steady state do not

have any direct effects on the active power-voltage coefficient matrix C’fx = C 1.

However, C{5: of J, is not equal to C3 of Jut- , which indicates the excitation control

has efl‘ect on the reactive power generation of the synchronous machine by controlling

the generator terminal voltage.

Thus, the structure of the static/algebraic Jacobian mauix J, is like the load flow

Jacobian matrix Jur except for C§K, since 0;], = K37 + C3 - C3x. Note that since

- C3x is a diagonal matrix with positive elements (see Appendix D) that increase
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almost linearly with K55 when it is assumed that the load compensators are not used

in the model, the matrix C’3‘K is then also a diagonal matrix with positive elements that

increase almost linearly with K55 because the D.C. gain of the excitation system KE,-

is in general very large compared to the rest of terms in ng. Hence, the load flow

bifurcation is an excellent predictor of the singularity induced static bifurcation

because

(a) there are rows associated with the reactive power balance equations at all

generator terminal buses in J, , but only in J“.- when the reactive power

generation reserves are exhausted;

(b) the reactive power-voltage Jacobian matrix in J, is exuemely diagonally

dominant when the reactive power generation limits are not reached and

exciters are not disabled (C§K is a diagonal matrix with very large positive

elements), which is much like adding equations V, = V10 or AV, = 0 for

the generator terminal buses in the load flow model;

(c) the rows of J, and Jut- associated with the reactive power balance equa-

tions at the generator PQ-buses, when the reactive power generation

reserves are exhausted, are identical.

This similarity between the static/algebraic bifurcation test and the load flow bifurca-

tion test will be shown in Section 4.6.

The difference between the static/algebraic Jacobian matrix J, (4-18) and the

causality matrix g, (4-7) is that the four diagonal submatrices associated with the

power balance equations at the terminal buses: A1, C1, A3, and C§K =K§7 +

C3- C3,, of 1,; and Am =A1+K,'¥1, Cm = C1+Kfi7, A3; =A3+K§1, and

C3,, = C3 + K37 of g, . When generators do not reach their reactive power genera-

tion limits, J is more diagonally dominant than g, in the reactive power-voltage Jaco-

bian matrix at terminal buses (8QT/3VT) since C35, in J, is a diagonal matrix with
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very large positive elements proportional to K35 . When generators exhaust their reac-

tive power generation reserves and become PQ-buses, C§K in J, then becomes C3

which is less dominant than C3,, in g, . Furthermore, the active power-angle

(EFT/867) mauix in J, is A 1, but the matrix in g, is A 1K which is more diagonally

dominant. Hence, J, is less diagonally dominant than g, in both EFT/867 and

3Q,IBVT matrices when the reactive power generation limits are reached. Thus, when

the reactive power generation limits of all the generators in a region are reached, J,

should generally become singular before g, . If the reactive power generation limits

are ignored, loss of causality (g, singular) may occur before the static/algebraic bifur-

cation (J, singular), since 3Q]-13V, is more diagonally dominant in J, than in g, , but

3?,IBGT is more diagonally dominant in g, than in J, . Moreover, the discontinuous

changes will occur in J, causing the static bifurcation, but do not occur in g, which

becomes singular as a continuous function of the imposed stress on the system. This

will be shown in the simulation results of the static/algebraic bifurcation test in Section

4.6.

Testing the singularity of the static/algebraic Jacobian matrix J, for identifying

the singularity induced static bifurcation rather than testing the singularity of the

equivalent system Jacobian matrix J, is recommended since both tests are valid and

should theoretically always become singular at the same point as long as f, and g, are

nonsingular. This proposed static/algebraic bifurcation test mauix is proven to have

similar structure to the causality matrix g, , and is virtually identical to the load flow

Jacobian matrix I”. A set of nonlinear equations is thus proposed with J, that com-

putes the equilibrium point of the power system differential-algebraic model. The

equivalent load flow model would represent generators which have not reached reac-

tive power generation limits by the steady state model of generators and excitation sys-

tems, and by the reactive power balance equations when reactive power generation

limits are reached This equivalent load flow model for the static/algebraic Jacobian
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matrix J, would precisely determine when a static bifurcation occurs in the

differential-algebraic power system model. Testing for a static bifurcation using J,

does not require inverting g, which is required when J, is used.

The load flow model for the load flow bifurcation test on J”.- and the equivalent

load flow model for the static/algebraic bifurcation test on J, are shown to be virtually

identical for all rows of J“.- and J, if the D.C. gains of the excitation systems are very

high so that the generator terminal voltage can be kept constant, and if the flux decay

equations are replaced by the reactive power balance equations at terminal buses for

those generators exhausting reactive power generation reserves and being modeled as

PQ-buses like in the load flow model. However, they would not be identical if the

equivalent load flow model includes the effects of the generator flux decay dynamics,

excitation system dynamics, and field current limit controller dynamics at steady state

condition when the reactive power generation limits or field current limits are reached.

The reason is that a static bifurcation in flux decay dynamics or in both flux decay

dynamics and mechanical dynamics would be captured by the equivalent load flow

model if steady state representation of flux decay dynamics, excitation system dynam-

ics, and field current limit controller dynamics is used when field current limits are

reached; but would not be captured in the load flow model or in the equivalent load

flow model if the generator and excitation system dynamics is replaced by a reactive

power balance equation (simply called the conventionally equivalent load flow model).

This result is quite important because it indicates that the conventionally

equivalent load flow model can only capture one of the three generic static bifurcations

(in mechanical dynamics, in flux decay dynamics, and in both) that occurs in mechani-

cal dynamics [39,40,57,62]. The static bifurcations that occur in flux decay dynamics

[52,53], and mechanical and flux decay dynamics are most likely to occur when field

current limits are reached and the field current limit controller works through the exci-

tation system to fix field current to the continuous rating value. A modified load flow
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model that properly reflects the steady state behavior of the generator flux decay

dynamics, excitation system dynamics, and field crurent limit controller dynamics

would accurately determine the equilibrium point(s) of the differential-algebraic model,

and experience all of the static bifurcations of the differential-algebraic model.

The comparison of the static/algebraic Jacobian matrix J, , the causality matrix

g,, and the load flow Jacobian matrix Jug, carried out in this dissertation, is for the

case where- the flux decay dynamics and excitation system dynamics are replaced by

the reactive power balance equations when the reactive power generation limits are

reached The use of the reactive power balance equations is justified based on the

approximation of operation action to maintain the units close to their capability curves

when the reactive power generation limits or field current limits are reached.

4.5 Generic Static/Algebraic Bifurcation Test

This section will discuss the subclasses of static/algebraic bifurcation due to the

singularity of equivalent static/algebraic Jacobian matrix J, , which is structurally simi-

lar to that of the load flow Jacobian matrix Jur. Based on the structure of J, shown

in (4-15), basically it seems that there will be three possibilities leading to the singu-

larity of J, that can causes static bifurcation [87].

SA -T: This type of biftu'cation is solely due to row dependence associated with

the active and reactive power balance equations at terminal buses (J57

and 1,97).

SA -H: This type of bifurcation is solely due to row dependence associated with

the active and reactive power balance equations at high-side buses 0;”

and 1,9").

SA -L: This type of. bifurcation is solely due to row dependence associated with

the active and reactive power balance equations at load buses (Jfl‘ and
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1,31).

Note that since A and C submatrices of J, (4-15) are diagonal, other types of bifurca-

tion due to the combination from any two of above three are not possible at all.

The SA -H and SA -L types of static/algebraic bifurcation are identical to the

LF-H and [F-L types of load flow bifurcation, respectively. The LF—H and LF—L

bifurcations have been shown to never happen in Section 3.2.2 and Section 3.2.3, and

the SA-H and SA -L bifurcations will never occur based on the same argument. The

SA —T type of bifurcation is similar to U“-T type of bifurcation, and will also never

occur due to the fact that qub ¢ k7‘4’ shown in Section 3.2.1, even though the C matrices

associated with SA -T and LF-T types of bifurcation are different. Hence, none of

the above subclasses of static/algebraic bifurcation will happen. The analogies

between the bifurcations in a two—bus model and those of the model considered in this

dissertation are shown to have limited validity. It was shown that voltage bifurcation

due to the row dependence of the Jacobian rows associated with the reactive power

balance equations will not occur, and that angle bifurcation due to the row dependence

of the Jacobian rows associated with the active power balance equations can never

happen. Thus, the generic type of static/algebraic bifurcation is shown to be the one

that has row dependence in all the rows of the static/algebraic Jacobian matrix J, [87].

4.6 Simulation Results

The 9-bus 3-machine power system with the base case data as the one shown in

Fig. 3-1 [26] is adopted to confirm that the following three tests for the static bifurca-

tion in the power system dynamic model are equivalent to each other:

(1) testing the singularity of the static/algebraic Jacobian matrix J, for the

singularity induced static bifurcation;
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(2) testing the singularity of the complete system Jacobian matrix J, that allows

the detection of all the types of bifurcation except the dynamic bifurcation

(differential algebraic, differential-algebraic, static/algebraic, and static

bifurcation);

(3) testing the singularity of the equivalent dynamic system Jacobian mauix J,

for the static bifurcation due to the static/algebraic or differential bifurca-

tion;

(4) testing the singularity of f, for single machine instability;

(5) testing the singularity of g, for loss of causality.

The purpose of these results is to show that the static/algebraic bifurcation due to the

singularity of J, will be the generic singularity induced static bifurcation that is

equivalent to the static bifurcation due the singularity of J,. and that the differential,

algebraic, differential-algebraic bifurcations and loss of causality do not occur in a

practical sense. Note that if the static/algebraic bifurcation is the generic static bifur-

cation, testing for the singularity of J, is far easier to implement than other tests, since

it is easy to compute from the load flow Jacobian matrix and because it does not

require the inversion of g, as does J,.

It should be noted that these simulation results are only searching for the static

bifurcation even though the theory suggests that both static bifurcation and dynamic

bifurcation be generic. The static and dynamic bifurcations are studied and classified

in the Chapter 5 of this dissertation. Simulation results in Chapter 5 compute both the

various types of static bifurcation and dynamic bifurcation.

Along with the base case shown in Fig. 3-1, the dynamic system data required for

the static/algebraic bifurcation test is the single-axis parameter data of each synchro-

nous machine as listed in Table 4-1 [4].
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Table 4.1 Static Data of Synchronous Machines

 

 

R, X, X; X, K55

Gen#l: 0.0000 1.7900 0.3000 1.7000 19.000

Gen#2: 0.0000 1.9400 0.2900 1.9100 44.000

Gen#3: 0.0000 1.7200 0.2400 1.6600 270.00        
 

* Data is on machine base.

* Gen#1: 150.0 MVA; Gen#2: 150.0 MVA; Gen#3: 250.0 MVA .

Note that the D.C. gain K55 = K3751 KA KD of the excitation system of each machine

can be obtained from the complete data machine parameter data set (see Table 5-1,

where the dynamic data of the power system is adopted from [4]).

Similar to the load flow bifurcation test used in Section 3.4, the static/algebraic

point of voltage collapse method [53] is used to find the static/algebraic bifurcation by

making bus#8 a fictitious PV-bus. Figure 4-4(a) shows the determinant of f, with the

noration Der (F, ), that of g, with the notation Der ( G, ), and that of J, with the

notation Der (J, ). Figure 4-4(b) shows the Q—V curve at the fictitious PV-bus, and

its slope Der ( QV ) (a scalar) which is the corresponding diagonal element of the sen-

sitivity matrix similar to SQV of (3-8) of this Q-V curve. Figure 4-4(c) gives the

Q-V curve profile of the generator buses with reactive power generation high limits,

and Figure 4-4(d) represents the voltage profile of each bus. The voltage angle (in

degree) of each bus, and the active power generation of each generator bus are respec—

tively shown in Fig. 4-4(e) and Fig. 4»4(f), which should help understand the

phenomena of the transmission network when the voltage and the reactive power injec-

tion at the test bus (fictitious PV-bus) are changed. Figure 4-4(g) shows the profile of
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the internal bus voltage 8,, and Figure 44(h) gives the voltage set points V,,, of the

excitation systems which control the voltage at terminal buses, that are not provided in

the load flow bifurcation test. Note that the reactive power generation limits (Gen#2:

i 40.00 MVAR; Gen#3: 3:50.00 MVAR) are still used as the constraints whose viola-

tion causes the excitation systems on these generators to be disabled. If the generator

exhausts its reactive power reserves, it is operated as a constant active and reactive

power generation unit.

It is observed from Fig. 4-4(a) that this power system experiences a

static/algebraic bifurcation when 43.11 MVAR reactive power load is added at bus#8

which occurs when the voltage at this bus is about 0.86 pa . At the bifurcation point,

the static/algebraic Jacobian mauix J, becomes singular; while both the matrix f, and

the causality matrix g, are nonsingular. Note that the matrix f, is always nonsingular,

whose determinant starts with 0.0057 at the base case, and graduately increases as the

system is more su'essed and before any generator operates in PQ-bus mode. When

Gen#3 becomes a PQ-bus when bus#8 is at 0.92 pa voltage and 35.26 MVAR load,

the determinant of f, jumps to 2.1407, and then increases slowly until Gen#2 becomes

a PQ-bus. When Gen#2 exhausts its reactive power reserve, the determinant of f,

jumps more dramatically to 97.0080 where bus#8 is at 0.86 pa voltage and

43.11 MVAR load. The static/algebraic bifurcation Jacobian mauix J, becomes singu-

lar at this point. The causality mauix g, is nonsingular until the voltage at bus#8 is

down to about 0.73 pa with 14.14 MVAR load far after the static/algebraic bifurcation

point. This confirms that in general the matrix f, is not singular and that g, is more

diagonally dominant than J, if reactive power generation limits are reached. More-

over, this proposed approach for assessing the test for the static bifurcation by testing

the singularity of the static/algebraic Jacobian matrix J, rather than the dynamic Jaco-

bian matrix J, provides the advantages that no test for causality condition is necessary.

In addition, this test can be performed by slightly modifying the load flow program,
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since the structure of J, is similar to that of the load flow Jacobian matrix Jur.

It should be pointed out that comparing Fig. 4-4(a) - Fig. 4-4(f) with Fig. 3-2(a) -

Fig. 3-2(f), the results of the load flow bifurcation test and the static/algebraic bifurca-

tion test are very similar. This is because of the high D.C. gain of the excitation sys-

tem of each machine kept the generator terminal voltage almost constant until the gen-

erator exhausts its reactive power reserve and becomes a PQ-bus. Note that when a

generator operates in a manner of a PQ-bus and the system is getting more stressed, its

internal voltage E, should be controlled by the voltage set point V,,, of the excitation

system to produce constant power output at its terminal bus, as shown in Fig. 4-4(g)

and Fig. 4-4(h). This type of control reflects the operator action that attempts to keep

the generator near its capability curve.



Chapter 5

Static/Dynamic Bifurcation in Dynamic Model

In Chapter 4, the basic necessary conditions for a power system dynamic model

to experience static and/or dynamic bifurcation were categorized:

f f

(a) The system Jacobian matrix J = [8‘ g, is singular.

x y

(b) The equivalent static/algebraic Jacobian matrix J, = g, - g, f,'1 f, is singu-

lar, provided that f, is nonsingular and J, is row independent. The singular-

ity of J, is the generic test for the static/algebraic bifurcation or what has

been called the singularity induced static bifurcation.

(c) The equivalent system Jacobian matrix J, = f, - f, g,‘1 g, has eigenvalues

with zero real parts, provided that g, is nonsingular and J, is row indepen-

dent. When J, has zero eigenvalues, a static bifurcation is said to occur.

This is the generic type of static bifurcation due to the singularity of J, , since

J, has been shown to be row independent and f, has been shown to be non-

singular. This type of static bifurcation is equivalent to the static/algebraic

bifurcation, and is also referred to as a singularity induced static bifurcation.

A dynamic bifurcation occurs when J, has complex eigenvalues with zero

real parts.

The differential, algebraic, and differential-algebraic bifurcations have been

identified that are respectively associated with the row dependence of J, , of J, , and of

both J, and J, . These three bifurcations have been shown to be nongeneric and thus

extremely rare. Moreover, it has been argued that both f, and g, should be
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nonsingular in practical power systems, and that f, should have no complex eigen-

values with zero real parts if the control systems of each generator are designed prop-

erly and each generator is operated within design limits. Thus, the singularity induced

bifurcation and dynamic bifurcation are the most probably generic bifurcations of the

power system dynamics.

This chapter will thus assume that the system is causal, and will be devoted to the

discussion of static/dynamic bifurcation [88] that occurs when J, is singular or has

pure imaginary eigenvalues. The static bifurcation could be saddle node bifurcation if

J, has a simple zero eigenvalue, and if the transversality condition of J, at the bifur-

cation point holds. The dynamic bifurcation could be Hopf bifurcation if J, has a pair

of pure imaginary eigenvalues, and if the nondegeneracy condition of J, at the bifurca-

tion point holds. Note that the auxiliary necessary conditions — transversality condi-

tion for saddle-node bifurcation and nondegeneracy condition for Hopf bifurcation —

will not be discussed in this dissertation.

In general, the dynamic angle and voltage stability problems are associated with

the mechanical and flux decay dynamics of the power system equivalent dynamic

model, and are particularly in the modes of low fi-equency oscillation. This chapter

will study low frequency oscillation and voltage collapse bifurcations by identifying

static and dynamic bifurcations associated with mechanical and flux decay dynamics,

and by developing tests for these bifurcations, based on the fact that the control sys-

tems themselves have stable eigenvalues as proven in Chapter 4. A reduced Laplace

transformed (S = jfl) model is produced that is composed of solely mechanical and

flux decay dynamics, after the elimination of the control system dynamics since they

are not singular for any 0 2 0. A test matrix for bifurcations of mechanical and flux

decay dynamics is then developed. Damping and synchronizing power coefficient

mauices associated with the mechanical dynamics will be further derived, and test con-

ditions on these matrices for identification and prevention of bifurcations of the
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mechanical dynamics will be established. Test matrices for identification and preven-

tion of flux decay bifurcation will be similarly generated from the reduced model.

These tests not only avoid the intensive computation of eigenvalue analysis, but also

structurally show the effects of transmission network and control systems. Finally, the

simulation on a 9-bus 3-machine power system model confirms the results [88]. -

5.1 Static/Dynamic Bifurcation

The equivalent system Jacobian matrix is defined as

Jx =fx -f, 8," gr

provided that the causality matrix g, is nonsingular. If the equivalent system Jacobian

matrix J, is obtained by directly substituting the corresponding Jacobian submatrices,

f,, f,, g,, and g,, from the linearized power system dynamic model (4-2), significant

mauix manipulations would be required. In this section, an equivalent system Jaco-

bian matrix J, will be derived in more physically understandable manner based on the

relationship between these Jacobian submatrices shown in Fig. 4.1.

Under the assumption that the causality condition holds (3, is nonsingular), from

the linearized power system dynamic model (4-2) and Fig. 4-1, one can represent the

variables at terminal buses, A01 and AVT, in terms of mechanical and flux decay

states, A5 and AE,’, as follows:

A0 _ AP AX

[AV]=gy1'([AQ:]-gx AX: )

APO Arv-

37‘_AQ, A,“ '31:: A9, 000

”A A "1
A0 _ '9 ”V . APC Apx
[AV]-LAQ9 AQV. ([AQCJ-[AQXJAXX) (5'13)  
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A91

A0,,

A9, 110 ,9 100000 A9,

[AVT]=[0 If] AV]=[0 0 0 I 0 0] AV,

AV,

AVL
1 .

s7 s8 A, 5,, 5,, AP,

= $5 56 A5, + SVP SVQ AQC (5-1b)

Substituting (S-lb) into the active power output equations at internal bus (for the swing

equations), flux decay equations of machines, and load compensators of excitation sys-

tems, we have:

PE =K,i‘1(A5-A9,)+K,i‘,AE,’+K,i‘7 AV,

= 5,, A5 + Sp, AE,’ + 5,,, APC + 5,, AQC (5-2)

f,, AE,’ =AEFD -KE4(A8-AOT )-KE3 AE,’ +KE7AVT

=AE,.-D — s4 A8-S3 AE,’ + 5,,. APC +s£Q AQC (53)

TD AV, = KD AVC (5-4a)

AVC = KC1 (A8 - A01- )KC2 AE,’ + KC7 AV,

= SC, A6 + SC, AE,’ + 5,,. APC + 5,, AQC (5-4b)

where,

Sp1=Kfl'1-Kfl‘IS-7 “”97 55

SP2 =K17'2 " K33 58 +197 56

54=K£4-K£4 57-1927 55

53=K£3"K£4 Sa'Km So

Scr = K01 - K0157 + Km 55

Scz =Kc2— K0158 4‘ K07 56
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Note that these S -matrices might not be symmetric if the network is not symmetric

(see Section 2.6). The notation of these S ~matrices are adopted so that they are con-

sistent with those K -matrices [23,26] of single-machine-to-infinite-bus power system

where the synchronous machine is also represented by single-axis model: SP1 = K 1,

SP2 = K2, 5;, = K3, 5., = K4, S, = K5, and S, = Kg. Recalling that if the load com-

pensator is not employed, then Kc, = 0, KC; = 0, and Km = I , such that

5c1=55 =K5, and SC2=Sg=Kg.

It should be noted that the above derivation for the active power equations at the

internal buses, the flux decay equations, and the voltage dewctor and load compensator

equations by aggregating the terminal bus variables (A01 and AV,) through the

transmission network is equivalent to performing the computation of f, g,‘1 g, , the

second part of the equivalent dynamic Jacobian matrix J, . Thus, after the elimination

of the network variables, the equivalent dynamic model and the equivalent system

Jacobian matrix J, can be structurally written as follows:

     

PTxx AXx - 43h AXE Axe 0 T FAqu

TEEAKE A3, A5,- 0 A53 Ax,

Too Air; = AG, 0 AG, 0 AXG +3 AU (5-5)

LTSSAJES . far 0 0 Ass. _AXs_ 

Jx =fx -fy 8;] 8x

= X-1 17,;
(5'53)

TX = drag [ Txx TEE TOG TSS ] (S'Sb)

S _

  
where,
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. , 0 Kb SCl K0 Scz

'0 “SP1 “SP2 0 0 0

A§x= 1 0 0 ;A,§~x= AA, 0 0

0 -Sr ~53 . AB, 0 0

' L 0 0 0 .

’ 0 0 3,, Bx,‘ AV,,,

3,, 0 3,, BBQ APO

B = O BOG 0 0 ; AU= AFC

_ 0 0 0 0 . LAQC .  
The complete expressions of the A submatrices can be found from (4-2). The detailed

form of the B mauix is omitted without loss of continuity. The equivalent power sys-

tem dynamic model can also be shown in Fig. 5-1, which help provide understanding

of the model.

It is observed that the structure of the equivalent dynamic Jacobian matrix J, is

the same as that of the matrix f, and that of the matrix F}, defined in (4-8). The

difference between them is shown by the superscript S and by the sensitivity S -

matrices replacing the coefficient K-matlices. This indicates the physical meaning that

the effects from the transmission network through the terminal buses on the internal

buses are responded by the corresponding dynamics that governs or feeds back the ter-

minal bus variables.

The static and/or dynamic bifurcation may occur when the equivalent system

Jacobian matrix J, of (5-5) has eigenvalues with zero real parts. Taking the Laplace

transform, S =jQ where j =‘J-—1 and Q: 2 1th, on (5-5) and on (4-2), it can be

shown that for all 0 2 0, the singularity of the matrix

1,09) =J, - jm ‘ (5-6)

is a test condition for static and dynamic bifurcations, since, by Schur’s formula

(Appendix A), the singularity of J,(i£2) and that of
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jot 0

JIUQ)=J-[ 0 0] (5-7)

are equivalent if causality holds. In Other words, assuming that causality condition and

transversality/nondegeneracy condition hold, the singularity of J, (j9) is a necessary

condition for either static/saddle node bifurcation if Q = 0, or dynamic/Hopf bifurca-

tion if (2 > 0. The static and dynamic bifurcations due to the singularity of the matrix

1,09) (5-6) is associated with the mechanical dynamics, the flux decay dynamics, the

control systems dynamics, and their couplings.

5.2 Mechanical and Flux Decay Dynamics

In general, from the experimental results of SSSP [4,21], low frequency oscilla-

tions often link with mechanical and flux decay dynamics, but are rarely associated

with control systems dynamics. This characteristics of the mechanical and flux decay

dynamics can be self-explained by the properties of f, shown in Section 4.3, and by

the structure of the static/dynamic Jacobian matrix J, (5-5). It is observed that J, has

the same structure as f, (4-8), and that the transmission network effects only show on

the mechanical and flux decay dynamics — AjEx, and on the dynamics of voltage

detectors of the excitation systems through the load compensators — AEx Moreover,

the excitation systems govern the field voltage Em and in turn affect the internal bus

voltage 5,. However, the main diagonal matrix Ace (4-8c) of both f, and J, does

not change, which indicates that the bifurcations or low frequency oscillations would

not be associated with the dynamics of control systems, if the bifurcations or low fre-

quency oscillations are caused by the transmission network effects.

In other words, the static and dynamic bifurcations due to the singularity of

J,(iQ) (5-6) associated with all the dynamic states of synchronous machines could be

further reduced to a Jacobian matrix solely pertaining to the mechanical and flux decay
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dynamics. In order to obtain the equivalent Jacobian matrix associated with mechani-

cal and flux decay dynamics, the effects of exciter, governor, and stabilizer control

systems are going to be aggregated. As discussed in Section 4.3, the control systems

themselves are usually asymptotically stable, i.e., no eigenvalues with zero real parts.

Thus, the Laplace transformed diagonal block matrix of the conuol systems (from (4-

80))

  

"A5, -jrr T5,; 0 Ass 1

ACCUQ) = 0 Ace "' 19 TGG 0 (5-8)

0 0 Ass - jo T53

should be nonsingular for all 9 2 0, and its inverse is as follows.

  

' [A55 -jfl Tmrl 0 A5509) 1

A5509) = 0 [A66 - ja 10,14 0

L o 0 [Ass - in Tssr‘.

45509) = - [Ass '1"2 TEETI A5.911435 - in Tris]-1

Therefore, aggregating control systems from (5-5), one can produce the following

equivalent model solely associated with mechanical and flux decay dynamics where the

input matrix B is omitted without loss of continuity.

Air

1,, jfl Ax, =.(A,~§x 474,, Am MAC-gun) A,x )AXX (5-9a)

Asx .

M j!) Acu A00

'1'!) A8 ’ =A§xum A8, (5.91))

1,, ,1) AE, ,

7190,00) = Ag, -A,, [A6, - in To, 1471,, (5-9c)

-AXE [A5,-(in) As, +915, -ja 1551-1 A5,]

= Ari-r 4,390!» "Afstm drive)
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r 1

-[D +DGUQ)] ‘Spl ’SP2

= I 0 0

- $500) "' [ S4 ‘1' 55100)] - [ S3 '1' 55209)]

where, the following complex matrices are defined

415609): Axe [A66 ‘19 Tea TI 40x

D609) 0 0

= 0 00

0 00

Do (im= DGr (9) + 1'9 061(9)

=Atua [Ass ’19 Tea 1'1 A00

: effects of speed-governing-turbine system;

A309): Arr Arson) An

0 00

= 0 00

ssqo)00

5509) = 59(9) + 1'9 551(9)

”Aral/155 ‘19»ng 1'1 [A500 ”4551435 "'1'‘2 Tss 1'1 Astra]

: effects of power system stabilizer;

AfoQF AXE [ Arr - in TEE 1'1 43x

0 0 0

= 0 0 0

0 $5100) 35200)

5510.9)" SElr(Q) +19 5511(9)

=4th [ABE "J.Q T1513 1'1 AECI

: effects of excitation system. on A5;

$5200)= 552(0) + j!) 5523(9)

= APE [A55 '19 Tea 1’1 Arcz

: effects of excitation system on A5,.
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Note that AF,- is a submatrix of AXE defined in (4-2), and that A5,, ABC], and Aacz

are submatrices of Aat (4-2). Each matrix with (9), that is defined as a function of

Q, is a real matrix. Figure 5-2 shows the equivalent model of mechanical and flux

decay dynamics.

From Schur’s formula (Appendix A), it is observed that the test for the singularity

of the matrix

1mm = AXIXUQ) - 1'9 Txx (540)

Txx=diag [M I f,,]

is equivalent to the test for the singularity of 1,09) = J, - j9 1 (5-6), if ACCUQ)

(5-8) is nonsingular for all 0 2 0 of interest. Thus, adding one more condition,

ACCOQ) is nonsingular for all 9 2 0 (which has been proven to be true in Section

4.3), to these two preliminary conditions: causality and transversality/nondegeneracy,

allows one to focus the necessary test condition on India) (5-10) for the static and

dynamic bifurcation associated with the mechanical and flux decay dynamics, rather

than on 1,012) (5-6) or on J,(j£2) (5-7).

In addition, 7153,09) (5-9) structurally shows the effects of different control sys-

tems and those of transmission network sensitivity matrices. It should also be pointed

out that Ace (j0) represents the frequency response of the control systems (in general,

the frequency range of interest is from 0.00 Hz to 2.00 Hz for the studies of low fre-

quency oscillations), is only function of the parameters of the conuol systems that are

usually constant, and is an upper-triangular mauix preserving the structure of each

component of control systems. The inverse of Ace (j9) (5-8) keeps the structural

sparse property, and needs to be performed only once. This indicates the savings on

the computation and memory if the bifurcation test is performed based on J,“ (j 12)

(5-10). Furthermore, the structtue of JxxUQ) can be analyzed either analytically or

computationally to establish the causes of various static bifurcations, dynamic
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bifurcations or even complex dynamical phenomena.

5.3 Mechanical Dynamics

In this section and next section, test conditions solely associated with the mechan-

ical dynamics and solely associated with the flux decay dynamics will be established,

respectively. The objective is to more precisely determine to "main" dynamics that

could be vulnerable to experience the static and/or dynamic bifurcations, if the cou-

pling between the mechanical dynamics and flux decay dynamics is "weak".

In this section, damping and synchronizing power coefficient matrices will be

derived, and test condition for the static and dynamic bifurcations strongly associated

with the mechanical dynamics will be developed from these two matrices. This pro-

vides a measure of proximity to static/dynamic bifurcation pertaining to the mechanical

dynamics. To accomplish the above purpose, it is assumed that the main block matrix

of the flux decay dynamics of (5-9)

S3012): 53 + 5,,-20(2) + m 1,},

=53r(9)+1'9531(9) (5-11)

is nonsingular, or that both real and imaginary components

S3,(Q) = 53 + 35,,(0) (5-1 la)

531(9) = Tr; + Sea-(n) mm

are nonsingular for all 0 2 0 of interest. These conditions along with the conditions

that Acc (i (2) (5-8) is nonsingular and that causality and transversality/nondegeneracy

hold assure that if the power system (4-2) experiences a bifurcation, it will mainly

occur in the mechanical dynamics.

Thus, from (5-9), aggregating the flux decay states back into mechanical states we

have
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MjQAO) -[D+DGUQ)] -SP1

1°vo ]=( 1 0

P

—s_ 0P2] $5109) l-SsUQ) —(S4+Sgl(jfl))]) [fig]

L

 
'- Kroc) - 1000) A,

= L . I 0 J A5] (5'12)

K4012) = D + 06052) + 0,300) (5-12a)

KrU £2) = Sm + 135500) (5-12b)

where,

0,309) = - 5,, [ s, + 55209) + m 7,, r1 5,00)

= 1),-5,02) + m 055.19)

0,509) = - 5,, [ 53 + 5,209) + 112 rd; 1'1 [54 + 55109)]

= 055,62) + jfl 0mm)

Using the following properties of the rotor angle and rotor speed

Ato0rr) =m A500) (5-13a)

- £22 A500) = jfl AcoUQ) (5-13b)

we define the following damping and synchronizing power coefficient mauices in a

manner similar to that of Concordia and deMello [23] for a single-machine-to—infinite—

bus system.

[‘2are]

 

-Kmm) -K,,,,(Q)] [Am]

I 0 A5 (5'14)

Km((2) = D + 06,02) + 0,, (a) + 0,, (o) (5-l4a)

Ksyrtc (Q) = SP1 + DEEr (Q) - 92 1 061(0) 4" Drstm) 1 (5-14b)
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It is observed that excitation system, power system stabilizer, and speed-governing-

turbine system have effects on both damping and synchronizing power coefficient

matrices K,,,, (Q) and K,,,, ((2), which are functions of the six sensitivity matrices:

Sp], SP2, S3, S4, SCI, and 562- If load compensators are not employed, SCI and Scz

will respectively become SS and S, in (5-1), since Kc1= 0 , Kc, = 0, and Km = 1.

Note that for all 12 2 0, the singularity of (5-14) is equivalent to that of

0 '= - jfl Kmm) - chm) + 92 M

= — jfl Kdamp (Q) - Kmm) (5-14c)

Km(0) = Km, (9) - (22 M ’ (5-14d)

It can be concluded that the necessary condition for static and dynamic bifurcations

associated with mechanical dynamics is that

(l) for static bifurcation: Q = 0,

Km“) = 0) is singular;

(2) for dynamic bifurcation: (I > 0,

both Km(0) and Kmm) - ,,,,(o) - 02 M are singular;

when

(a) causality is assumed,

(b) transversality/nondegeneracy is assumed,

(c) ACCUQ) is assumed nonsingular, and

((1) S300) = S3 + Sn, (0) + j (I [ Ti, + 852,-(9) ] is assumed nonsingular.

It should be noted, for Q = 0 , that the imaginary component of each matrix with

subscript i is equal to zero, such that

1),,(9 = 0) = Aw A55 A6, = KG (5-15a)

5,02 = 0) = A"; A5,} [A5, - A5, A531 A5,, 1 = 0 (5-15b)
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strum = 0) = An: 4&1 AEC1= K515 Scr (5-156)

Sszrm = 0) = Ans Alt-151 Ascz = K55 Sc2 (5-15d)

0,5,0) = 0) = — 5,2 is, + 352,02 = 0) 1'1 SS,(Q = 0) = 0 (5-15e)

1955,02 = 0) = - 5,1.2 [ s, + 3,2,“) = 0) 1'1 [$4,355,412 = 0) 1

=-SP2[S3+KEESC2]—I [54+KEE Scr] (5-150

K55 = Ks? KA K0 (5-158)

and that

Km(:2 = 0) = D + KG (5-l6a)

K,,,,(Q = 0) = 5,,, + 0,5,“) = 0) (S-l6b)

where, K6 is a diagonal matrix composed of the D.C. gains of the speed-governing-

turbine systems (see Fig. 2-8) [86]; and K55 is the D.C. gain diagonal matrix of the

excitation systems (see Fig. 2-5) [85]. The power system stabilizers do not show any

effects on damping and synchronizing power coefficient matrices when (2 = 0

(SS, (52 = 0) = 0 is the same as the 03 shown in Afx (4-9)), due to their D.C. washout

transfer functions (see Fig. 2-7) [85]. Since D > 0 and K6 > 0 (positive definite) such

that Km ((2 = 0) > 0, the stability of the mechanical dynamics at Q = 0 will fully

depend on K,,,, (Q = 0) which in turn depends on the D.C. gains of excitation systems

KE,- and the transmission network effects through the six sensitivity matrices: Sp],

S”, S3, S4, Sc13 and Scz- It is obvious that from the Lyapunov stability theory, the

sufficient condition for this system being locally stable is that both K,,,, (£2 = 0) and

K,,,, (Q = 0) are positive definite [22-35].

Moreover, testing the singularity of K,,,, (Q = 0) leading to static bifurcation

associated with mechanical dynamics is equivalent to testing the singularity of the

static/algebraic Jacobian matrix J, discussed in Chapter 4. However, for K,,,, (Q = 0),
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inverse of causality matrix g, is needed: for J, , there is no further information about

participation dynamics or states provided. Note also that the dependence of

K,,,, (Q = 0) on the the D.C. gains of excitation systems and on network sensitivity

matrices is similar to the dependence of J, on them shown in Section 4.4.

These tests for static and dynamic bifurcations associated with the mechanical

dynamics are the first time such tests have been derived for a multimachine power sys-

tem model, although such tests for static bifurcations have existed for single-machine-

to-infinite-bus models [23]. These tests clearly show the roles of various control sys-

tems and the effects of transmission network on the development of static and dynamic

mechanical stability problems. These results open up the possibility of analytically

and computationally investigating the generic causes of such stability problems in a

manner heretofore impossible. In addition, these test matrices allow sensitivities to be

analytically derived or to be computationally calculated to help understand the specific

cause of the stability problem of the mechanical dynamics and the most appropriate

remedial actions. These results may be extremely useful and further research is neces-

sary to investigate their usefulness.

5.4 Flux Decay Dynamics

In this section, a necessary condition is developed for the static and dynamic

bifurcations associated with flux decay dynamics. This test condition provides an

identification and an prevention measure of proximity to static/dynamic bifurcation

su'ongly pertaining to the mechanical dynamics, likewise the one for the mechanical

dynamics.

From (5-9), if for all (2 2 0 of interest, the main block matrix of the mechanical

dynamics

-[D +0009” “SP1

WU“): I 0

 

jam 0

0 ml
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—[D +DGUQ)]-jQM —Sp1

is nonsingular, which is equivalent to require the matrix

52.109) = Spl +19 10 + 0009) +79 M l

= SM, (9) + 10 Slur-(Q) (5-17b)

be nonsingular, or both real and imaginary components

5mm) = Sm - 02 t M + Bra-(fl) 1 (5-l7c)

SM.- (9) = D + Dorm) (5-17d)

be nonsingular, we can aggregate the mechanical states back into the flux decay states

in order to investigate the equivalent flux decay dynamics:

7,, m AE,’ = — 1,009) AE,’ (5-18)

-S

TFDUQ)=S3+ng(jQ)-[Ss(jfl)
S4+SEIUQ)]AMUQ)-l[

0P2]

= 53 + 3,209) - [ jfl 5,012) + .94 + 5,100) 15,5100)»,

= TFDr (a) + f9 TI-‘Dt' (9)

For all 9 2 0, the singularity of (5-18) is equivalent to that of

0 =m 1,}, + 1,000)

= TF1» (Q) + iQ Tm:(9) (5-138)

f,,,(a) = 73;, + rpm-(fl) (5-18b)

Thus, the necessary condition for static and dynamic bifurcations associated with flux

decay dynamics is that

(1) for static bifurcation: (I = 0,

Tm, (Q = 0) is singular;
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(2) for dynamic bifurcation: 9 > 0,

both T530412) and 1mm) = f,, + rm. (9) are singular,

when

(a) causality is assumed,

(b) transversality/nondegeneracy is assumed,

(c) ACCUQ) is assumed nonsingular, and

(e) 5,09) = 5,1- 92 [M + Dc,(n)1+m [D + 0,,(12) 1 is nonsingular.

Note that for Q = 0, using the facts shown in (5-15) and SM, (9 = 0) = SP1, we have

rFD,(o = 0) '= [ 53 + 5,,,(0 = 0) 1 - 1 34 + 5,,,(0 = 0) 1 $17,162 = 0) Sp,

= [ 53 +1925 5C2 1 " [ 54+KEE SCI 151711 SP2 (5'19)

This test matrix TF0, (Q = 0) for static bifurcation in flux decay dynamics shows

the dependence on the the D.C. gains of excitation systems KE,- and on the transmis-

sion network sensitivity matrices: Sp], SP2, S3, S4, SCI, and Sc23 similarly to the syn-

chronizing coefficient matrix K,,,, (Q = 0) (5-16), and to the equivalent static/algebraic

Jacobian matrix J, (Chapter 4). In addition, TFD, (Q = 0) has another similar charac-

teristic to Kayne (Q = 0) about the inverse of the causality matrix g, . Testing the

singularity of Tm, (Q = 0) leading to the static bifurcation associated with flux decay

dynamics is also equivalent to testing the singularity of the static/algebraic Jacobian

matrix J, . However, for T”), (Q = 0), inverse of causality matrix g, is needed; for

J, , there is no further information about participation dynamics or states provided.

It should be pointed out that the test matrix Tm, (Q = 0) is consistent with the

one previously derived in [52,53] for the flux decay dynamics of a power system

without both power system stabilizers and speed-goveming-turbine systems, but using

a very different procedure. The static bifurcation in flux decay dynamics due to the

singularity of T“), (Q = 0) has also been experimentally shown to cause voltage



142

collapse, especially when field current limits are reached and then the normal excita-

tion controls are disabled [52,53].

The Hopf bifurcation of flux decay dynamics has been shown to occur when

mechanical dynamics, speed-goveming-turbine dynamics, and power system stabilizer

dynamics are ignored [42,68]. Whereas, the test condition on TFD, (Q) and TFD;(Q)

for (2 > 0 can test for this Hopf bifurcation, including all the effects of mechanical and

control systems dynamics.

The tests for the static and dynamic bifurcations of the generator flux decay

dynamics are the first tests of their kind ever developed for multimachine power sys-

tems, although such problems have been studied in small power system models with

simple excitation controls [39-42,45,52,53,64-73,78,79]. These tests clearly show the

effects of various conuol systems and transmission network on the development of

static and dynamic stability problems associated with flux decay dynamics. These

results probably make the analytically and computationally investigating the generic

causes of such stability problems possible. Moreover, these test matrices provide the

significance of the sensitivity matrices of the control systems and transmission net-

work, which allows further analytical development or computationally calculation on

these sensitivity matrices to help understand the cause of flux decay dynamic stability

problem and the most appropriateremedial measures.

5.5 Simulation Results

The 9-bus 3-machine power system shown in Fig. 5-3 [4] is adopted to confirm

the above bifurcation tests associated with mechanical and flux decay dynamics. Fig-

ure 5-3 also shows the operating condition of this power system. This power system

is very similar to the ones used in the previous two chapters. The difference between

these two systems is that the system of Fig. 5-3 has less transmission line impedance



143

100.00

 

  

 

 

  

  
  

 

18.4 KV 230 KV (3,500) 230 KV 13.8 KV

'0. 25 jO. 586

Gen” ’26 0.0085+j0.0720 0.0ll9+j0.1008 % 683“”

1 .00 B/2=j0.0745 B/2=j0.1045 85.00

(6.65) __ {-10.86)

Bus#3 B11>#7 Bus#8 Bu s#9 Bu s#2

0.9998 1.0035,, 0.9947 1.0142 1.0067

(11.85) (4.08) c (0.94) § 3 (2.21) (5.01)

"" {g "1 h

2 "1 $2, a
.9, .

i A 8 A
o m o. an
O O

Bus#S Bus#6

12500 <———— 0.9824 1.0011———> 90.00

(5000) (4.01) (-3.70) (30.00)

C O

'33 8 g 8
. OO . 8

.9. o- 9. o.

8 E é "g

5: an 5. an
O O

230 KV 1,3381%

(-224)

vv j0.0576

16.5 KV Bus#l

1.0400
71.88

(39.82)0 (900)

Gen#1

Fig. 5-3 9-bus 3-machine Power System Diagram



144

and has more line charging susceptance, so that the generators Gen#2 and Gen#3

operate at lower terminal voltage and provide less reactive power generation. The

dynamic data of the synchronous machines is listed in Table 5-1. Table 5-2 shows the

eigenvalue analysis [4] for this system data which is provided for reference. These

results will be compared with the bifurcation test results from the proposed approach.

It should be n0ted that the causality condition of this system operation condition holds.

It is observed, from Table 5-2, that the system has two pairs of complex eigenvalues

with very small real parts — one pair associated with mechanical dynamics (Mode#1),

and the other associated with both mechanical dynamics and flux decay dynamics

(Mode#3). Nate that the mechanical and flux decay dynamics associated with these

two pairs of complex eigenvalue are also coupled with other states (control systems

dynamics).

Figure 5-4(a) and Figure 5-4(b) respectively show the determinant of K4,", ((2)

and that of Kmm) = Kmm) - (12 M where o = 21th for f0 from 0.0 Hz to

2.0 Hz, which is in general the range of low frequency oscillation. It is observed that

these two determinants are simultaneously approaching zero in these two frequency

ranges: 0.0 —> 0.03 HZ and 1.1 -) 1.5 Hz, which are consistent with the oscillation

frequencies associated with mechanical dynamics as obtained from the eigenvalue

analysis shown in Table 5-2. Figure 5-4(c) and Figure 5-4(d) more precisely show

both determinants in the above two ranges, respectively. It is observed from Fig. 5-

4(c) that both the determinants of Km (52) and Km(9) are zero at about 0.01 Hz.

These results indicate that the system is close to experiencing low frequency (interarea)

oscillation in the mode of 0.01 Hz associated with mohanical dynamics. Compared

with the eigenvalue analysis, this proposed approach clearly points out that there is

only one low frequency oscillation mode at about 0.01 Hz in the mechanical dynam-

ics. Some other (asymptotically) stable modes in the same frequency range are also

associated with the mechanical dynamics, Mode#9 (0.05 Hz) and Mode#12 (0.007 Hz)



Table 5-1 Dynamic Data of Synchronous Machines
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Gen: H D x, 10,1 x; r,

...... T#1 4.00 1.00 1.79 1.70 0.30 5.70

#2 3.80 1.00 1.94 1.91 0.29 7.30

#3 3.00 0.00 1.72 1.66 024 7.10

—r 4 —

Exciter. K, 7', K3,- 1‘, K,- r,

#1 19.0 0.12 1.00 0.65 0.05 2.00

#2 44.0 0.10 1.00 0.30 0.075 2.00

#3 270.0 1.20 0.00 0.00 0.00 0.00

Exciter: r, r, K, 7', RC Xc

Wm

#1 0.00 0.00 1.00 0.06 0.00 0.00

#2 0.00 0.00 1.00 0.00 0.00 0.00

#3 2.00 1.00 1.00 0.05 0.00 0.00

 

 
  

* Data is on machine base, and R, = 0.

"' Gen#l: 150.0 MVA; Gen#2: 150 MVA; Gen#3: 250 MVA .



Table 5-2 Eigenvalue Analysis for 9—bus System
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fie-l Eigenvalue Frequency Major States“

......

1 - 0.0219 r j 0.0483 0.0077 51 , 52 , 53

3 - 0.0038 1 j 3.9144 0.6230 to, , to2 , to, , 5;, , V,,3 ,PSS;

5 - 0.1714 r: j 7.6557 1.2184 to1 , or, , (1)3 ,Pss3

7 -0.2631ij 9.1371 1.4622 to2 , 52 , (1)3 , 53 ,PSS;,

9 - 0.3946 :1: j 0.3210 0.0511 51 , 52 , 53 ,5,’, , V,,

11 - 0.5206 Eq’, ,V,.-1

12 - 0.9983 11' 0.0448 0.0071 5,1 ,Vp1,t03,53,V33,PSS3

14 - 1.2839 :1: j 1.2844 0.2044 54', , Em, , (.03 , P533

16 - 6.3489 :1: j 6.1678 0.9816 V,,2 , Em

18 - 8.4695 ' 5;, , V,,1 , V,,1

19 - 16.429 V,l

20 - 20.539 V03

21 - 44.405 P583

22 - 55.192 ms,

 

* due to high participating factor and high magnitude of eigenvector
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from the eigenvalue analysis results in Table 5.2. However, the determinants of

Kdamp (Q) and K,, ((2) do not approach zero at these frequencies, since these modes

are not close to or on the fa axis and thus not close to causing bifurcations. The

eigenvalue analysis shows two other modes (Mode#5 and Mode#7) are associated with

mechanical dynamics. From Fig. 5-4(d) (Kmm) is rescaled by 10*). these two

modes at 1.22 Hz and 1.46 ”2 have effects on the determinants of Km(9) and

K,,,, (0). Since these two modes are asymptotically stable modes, the determinants of

Km (12) and K,, (9) do not approach zero simultaneously. When one of the deter-

minants is zero, the other is above or below zero, and the determinant of K,,, (Q) is on

the order of 105. Note that from the eigenvalue analysis, Mode#l4 (0.20 Hz) and

Mode#l6 (0.98 Hz) are also asymptotically stable modes associated with flux decay

dynamics. Note also that at these two frequencies, the determinants of K,,,, (a) and

Km(0) do not approach zero or even change significantly since they are not coupled

to the mechanical dynamics.

It should be pointed out that from Fig. 5-4(a) and Fig. 5-4(b) both the deter-

minants of Kdamp (Q) and K,,,, (0) have sudden changes and have sign changes in the

frequency range of 0.55 —> 0.62 Hz. This indicates that there exists one eigenvalue

with small real part and with imaginary part whose frequency is in the the frequency

range or close to these two boundary frequencies associated with mechanical dynamics

and other dynamics or solely associated with other dynamics. From the eigenvalue

analysis, Mode#3 (0.62 Hz) is associated with mechanical, flux decay, and other (con-

trol systems) dynamics. This mode will be shown to be a mode close to

dynamic/Hopf bifurcation (low frequency oscillation) mostly pertaining to flux decay

dynamics in Fig. 5-5.

Figure 5-5(a) and Figure 5-5(b) respectively show the determinant of T”), (Q)

and that of TH), (12) = TF]: + TFD,‘(Q). Both determinants are close to zem in the
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frequency range 0.05 -) 2.00 Hz. Figure 5-5(c) and Figure 5-5(d) more precisely

show how both determinants are approaching zero simultaneously. It is observed that

there is a mode about 0.62 Hz of a pair of complex eigenvalue with very small real

part associated with the flux decay dynamics. This proposed approach precisely points

out that the system experiences the 0.62 ”2 mode of low frequency oscillation, or is

close to experiencing dynamic/Hopf bifurcation of flux decay dynamics at this fre-

quency. The eigenvalue analysis indicates that this mode affects both mechanical and

electrical states of the generator. But these proposed tests for the dynamic bifurcation

of flux decay dynamics in Fig. 5-5(c) and Fig. 5-5(d), and the dynamic bifurcation of

mechanical dynamics in Fig. 5-4(a) and Fig. 5-4(b) clearly identify this mode as being

associated with the dynamic bifurcation of flux decay dynamics. These tests are thus

more precise in establishing the cause of bifurcation mode than eigenvalue analysis.

It can be observed from the eigenvalue analysis that Mode#9 (0.05 Hz) and

Mode#12 (0.007 H2) are asymptotically stable modes associated with mechanical and

flux decay dynamics. The tests for the flux decay dynamic bifurcation in Fig. 5-5(c)

and the mechanical dynamic bifurcation in Fig. 5-4(c) show that these two modes are

unrelated to the dynamic bifurcation in either mechanical dynamics or flux decay

dynamics. Note also that two sudden changes shown in Fig. 5-5(d) at 1.20 Hz and

1.40 Hz reciprocally illustrate that there are two modes around these two frequency

associated with other dynamics, which has been shown from Fig. 5-4 to be the asymp-

totically stable modes in terms of mechanical dynamics.



Chapter 6

Conclusion and Discussion

The principal contribution of this dissertation is the systematic categorization of

the stability problems and the establishment of necessary test conditions for different

types bifurcations leading to voltage collapse and low frequency oscillation in mul-

timachine power systems, based on a differential-algebraic power system model.

Bifurcations in a load flow model are also classified. since the load flow model is an

approximation to the steady state behavior in the differential-algebraic model. Both

the linearized load flow model and the linearized differential-algebraic power system

model, and their Jacobian mauices are systematically and structurally formulated in

this dissertation. This dissertation concludes that the generic types of bifurcation in

the power system model can be

VAB:Voltage/Angle Bifurcation in a Load Flow Model,

SAB: Static/Algebraic Bifurcation in a Differential-Algebraic Model,

SDB: Static/Dynamic Bifurcation in a Differential-Algebraic Model.

This dissertation establishes a test condition for each kind of bifurcation identified

above. Singularity of the full load flow Jacobian matrix J“: is the generic form for

the voltage/angle (load flow) bifurcation test. Singularity of the equivalent

static/algebraic Jacobian mauix J, is the generic form for the static/algebraic bifurca-

tion test. The load flow Jacobian mauix Jut- is shown to be similar to the

static/algebraic Jacobian mauix J, , and to have similar bifurcation properties if the

generator and excitation system model is replaced by the reactive power balance equa-

tion when the reactive power generation limit or the field current limit is reached.

153
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The replacement of the generator and excitation system dynamics by the reactive

power balance equation is an approximation to the insertion of the field current limit

controller. If the field current limit controller is inserted into the model, then the

static/algebraic Jacobian matrix Jy can experience static bifurcation in flux decay

dynamics, in mechanical dynamics, and in flux decay and mechanical dynamics as can

be observed from the results of Chapter 5. However, if the generator and excitation

system dynamics is replaced by the reactive power balance equation to reflect the

operator actions to hold the generator near its capability curve, then the static/algebraic

bifurcation can only occur in mechanical dynamics. It is possible to conclude that

bifurcations in the equivalent load flow model only approximate the static bifurcations

in mechanical dynamics but not in flux decay dynamics or not in mechanical and flux

decay dynamics. This equivalent load flow model certainly can not indicate the

occurrence of the dynamic bifurcations.

Singularity of the reduced equivalent dynamic system Jacobian mauix Afxo'fl)

solely associated with mechanical and flux decay dynamics at any Q 2 0 is the generic

form for the static/dynamic bifurcation test at that Q. The static/algebraic bifurcation

and the static bifurcation are equivalent to each other, and are generic types of singu-

larity induced static bifurcation. Although loss of causality (singularity of gy) and loss

of stability of single machine dynamics (singularity of fJ,) have not been proven to be

non-generic stability problems, arguments have been made that suggest they be highly

improbable.

A second contribution of this dissertation is the identification of three different

static bifurcations and three different dynamic bifurcations. A static bifurcation can

occur in mechanical dynamics, can occur in flux decay dynamics, and can occur in

both mechanical and flux decay dynamics if they are "strongly" coupled. Specific test

matrices for identification when these specific bifurcations have occurred are derived

which may indicate why, where, and how each of these three static bifurcations occurs.
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An equivalent test, - singularity of the static/algebraic Jacobian matrix, for the static

bifurcation is also established, that has similar structure to the load flow Jacobian

matrix so that this test can be performed by slightly modifying the load flow program.

A dynamic bifurcation can occur in mechanical dynamics, can occur in flux decay

dynamics, and can occur in both mechanical and flux decay dynamics if they are

"strongly" coupled. Specific test matrices for identification when these specific bifur-

cations have occurred are developed which may indicate why, where, and how each of

these three dynamic bifurcations occurs. A static and a dynamic bifurcation can occur

in b0th mechanical and flux decay dynamics. An algorithm for testing the

static/dynamic bifurcation in mechanical and flux decay dynamics is proposed that

allows one to classify bifurcations into dynamic or static and whether they affect

mechanical, flux decay, or both mechanical and flux decay dynamics.

6.1 Main Contributions of This Dissertation

(A) Power System Model

Both the load flow model and the power system dynamic model are used and are

systematically formulated in this dissertation. The load flow model describes the

power system steady state operation condition of the transmission network. The load

flow model is a set of algebraic equations composed of the active and reactive power

balance equations of the transmission network excluding the reactive power balance

equations at generator terminal PV-buses. The power system dynamic model is

characterized by a set of differential-algebraic equations (or differential-algebraic

model). The set of algebraic equations describes the active and reactive power balance

equations of the transmission network including all generator terminal buses. The set

of differential equations can include
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(l) synchronous machine mechanical and flux decay dynamics, and

(2) control systems dynamics of machines:

(a) excitation systems with load compensators,

(b) power system stabilizers, and

(c) speed-governing-turbine systems.

Power system stabilizers and speed-governing-turbine systems have not been used in

any of the previous studies of bifurcations in a power system model. Furthermore, the

excitation system model is often quite simple and the load compensator is omitted in

most of the previous studies of bifurcations in a power system model.

Note that the load demand model adopted in this dissertation can be voltage

dependent, including any combination of '

(1) constant power load,

(2) constant impedance load,

(3) constant current load, and

(4) any other voltage dependent load.

This detailed modeling of load demand is necessary to study voltage collapse and low

frequency oscillation.

In addition, the model of a general branch between two buses is also derived,

which can be any combination of

(1) regular transmission line,

(2) transformer, and

(3) phase shifter.

The general branch model is used since tap changing transformers, phase shifters, and

switchable shunt capacitors affect voltage collapse and low frequency oscillation.

These devices have often been ignored in the studies of voltage collapse, low
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frequency oscillation, and bifurcations in power systems.

Both the linearized load flow model and the linearized power system model, and

their Jacobian matrices are systematically and structurally formulated in this disserta-

tion. The matrix form of the linearized power system model shows the structure of the

Jacobian matrix and the Jacobian submauices show the coupling between components

of the power system. The properties of these Jacobian matrices are also clearly dis-

cussed and organized This su'uctural representation of power system Jacobian matrix

provides valuable evidence for classifying the various bifurcation and stability prob-

lems, and establishing those generic bifurcations in the power system model:

(1) Voltage/Angle Bifurcation in a Load Flow Model,

(2) Static/Algebraic Bifurcation in a Differential-Algebraic Model,

(3) Static/Dynamic Biftucation in a Differential-Algebraic Model.

It has also been shown that

(1) single-machine stability generally holds,

(2) control systems stability holds, and

(3) causality condition is generally maintained.

Having provided a brief summary of contributions above, a more complete set of

contributions follows.

(B) Load Flow Bifurcation

The Load Flow Bifurcation occurs when the load flow Jacobian matrix J”- is

singular. The voltage, angle, and voltage/angle bifurcations have been shown to be the

three types of bifurcations that could occur in a power system model. The voltage

bifurcation and angle bifurcation are shown to be non-generic bifurcations which can

only occur when a decoupled load flow model is used. The voltage bifurcation occurs
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when only the load flow Jacobian rows associated with the reactive power balance

equations are row dependent and the load flow model is decoupled. The angle bifurca-

tion occurs when only the load flow Jacobian rows associated with the active power

balance equations are row dependent and the load flow model is decoupled. The angle

bifurcation occurs due to the active power transfer limits across some boundary or

interface. The voltage bifurcation occurs due to the reactive power transfer limits

across some boundary or interface. Thus, the voltage/angle bifurcation, which occurs

when the load flow Jacobian rows associated with the active and reactive power bal-

ance equations become row dependent, is due to both the active and reactive power

transfer limits across some boundary or interface. This theoretical result corresponds

with observation and with design and operating practice that constrains power transfer

and loading, and constrains the lower reactive margin from a Q—V curve that assures

reactive power transfer capability. It is also shown that bifurcations can not occur due

to the row dependence of the load flow Jacobian rows associated with the active and

reactive power balance equations at a single bus. Hence, the analogies between the

bifurcations in a two bus model to the bifurcations in a large power system load flow

model have limited validity. Finally, it is shown that the bifurcations due to the row

dependence of subsets of the load flow Jacobian rows are nongeneric bifurcations.

This result indicates that bifurcations generally affect a very large region, if not the

entire system, when under voltage relaying, load shedding, and conuol actions do not

prevent the bifmcations from occurring or from spreading.

The simulation for the load flow bifurcation test is performed on a 9-bus 3-

machine power system by applying the Q-V curve point of voltage collapse method.

The simulation results for the load flow bifurcation illustrate the important role of

maintaining the reactive power generation reserves at PV—buses in preventing voltage

collapse. Whenever a generator PV-bus exhausts its reactive power generation reserve

and becomes a PQ-bus, the determinant of load flow Jacobian mauix decreases
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discontinuously toward zero and then load flow bifurcation occurs resulting in voltage

collapse or loss of steady state stability. The more generators at which reactive power

generation reserves are exhausted, the closer the system comes to experiencing the

load flow bifurcation.

(C) Classification of Stability Problems in a Differential-Algebraic Model

Eight distinct types of stability problems are identified and necessary conditions

for each of these stability problems are given based on the Jacobian mauix of the

differential-algebraic power system model:

If - fx fy]

J,]-[g, g, “’1’

The differential, algebraic, and differential-algebraic bifurcations, that could occur due

 

to the row dependence of J,. of Jg, and of both J, and 13 respectively, are shown to

be non-generic bifurcations just as the bifurcations which occur due to the row depen-

dence of subset rows of the load flow Jacobian matrix are non-generic. Loss of

causality due to 3, being singular and loss of stability in the single machine dynamics

due to f3 having eigenvalues with zero real parts are two special stability problems.

Although these two stability problems and are not proven to be nongeneric, they are

proven to be improbable when the generator controls are properly designed, the gen-

erators are properly operated within design limits, and the generator reactive power

generation limits are included in the model. The remaining three generic bifurcations

assuming that fx and g, are nonsingular are

(a) the static bifurcation which may occur when the equivalent system Jacobian

matrix

I: =fx ’fy gy-l gx (6’13)

is singular;
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(b) the dynamic bifurcation which may occur when J, has complex eigenvalues

with zero real parts;

(c) the static/algebraic bifurcation which occurs when the equivalent

static/algebraic Jacobian matrix

1) =8) .81 1.1 fy (64b)

is singular.

It is proven that a static bifurcation is identical to a static/algebraic bifurcation

which indicates that J,. J,. and J are singular for this bifurcation where J, and J: are

row independent, and fx and gy are nonsingular. This static or static/algebraic bifur-

cation is also called a singularity induced bifurcation, and results in voltage collapse

and/or loss of steady state stability.

The prerequisite for the static/algebraic bifurcation is that the single-machine sta-

bility Jacobian mauix fx is nonsingular in order to obtain the equivalent

static/algebraic Jacobian mauix. The mauix fx is shown to equivalently (1) model

each synchronous machine as the single-axis model, (2) represent excitation systems as

D.C. gains K55, and (3) neglect all the effects of machine damping constant D,

spwd-goveming-turbine systems, and power system stabilizers. This prerequisite for

f3 being nonsingular is argued to be true, since each synchronous machine should be

designed to be operated in a stable manner below its steady state stability limit when

its terminal bus is operated as the swing bus. The prerequisite for the static and

dynamic bifurcations is that the transmission network Jacobian mauix g, is nonsingu-

lar in order to obtain the equivalent system Jacobian matrix J,. This prerequisite is

. also referred to as the causality condition of the differential-algebraic model, and is

discussed in this dissertation. The transversality and nondegeneracy conditions for

static/saddle-node and dynamic/Hopf bifurcations, controlling the nondegeneracy of the

behavior with respect to the parameter change and the dominant effects of the
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nonlinear terms of power system dynamic model are not discussed in this dissertation.

The system behavior when the system loses the causality condition is briefly discussed

in this dissertation.

Testing the singularity of the static/algebraic Jacobian mauix J, for identifying

the singularity induced static bifurcation rather than testing the singularity of the

equivalent system Jacobian matrix J, is recommended since both tests are valid and

should theoretically always become singular at the same point as long as fx and g, are

nonsingular. This proposed static/algebraic bifurcation test mauix is proven to have

similar structure to the causality mauix g,, and is virtually identical to the load flow

Jacobian matrix J”. A set of nonlinear equations is thus proposed with J, that com-

putes the equilibrium point of the power system differential-algebraic model. i The

equivalent load flow model would represent generators which have not reached reac-

tive power generation limits by the steady state model of generators and excitation sys-

tems, and by the reactive power balance equations when reactive power generation

limits are reached. This equivalent load flow model for the static/algebraic Jacobian

mauix J, would precisely determine when a static bifurcation occurs in the

differential-algebraic power system model. Testing for a static bifurcation using J,

does not require inverting g, which is required when JJr is used.

The load flow model for the load flow bifurcation test on J”: and the equivalent

load flow model for the static/algebraic bifurcation test on J, are shown to be virtually

identical for all rows of J”- and J, if the D.C. gains of the excitation systems are very

high so that the generator terminal voltage can be kept constant, and if the flux decay

equations are replaced by the reactive power balance equations at terminal buses for

those generators exhausting reactive power generation reserves and being modeled as

PQ-buses like in the load flow model. However, they would not be identical if the

equivalent load flow model includes the effects of the generator flux decay dynamics,

excitation system dynamics, and field current limit conuoller dynamics at steady state
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condition when the reactive power generation limits or field current limits are reached.

The reason is that a static bifurcation in flux decay dynamics or in both flux decay

dynamics and mechanical dynamics would be captured by the equivalent load flow

model if steady state representation of flux decay dynamics, excitation system dynam-

ics, and field current limit controller dynamics is used when field current limits are

reached; but would not be captured in the load flow model or in the equivalent load

flow model if the generator and excitation system dynamics is replaced by a reactive

power balance equation (simply called the conventionally equivalent load flow model).

This result is quite important because it indicates that the conventionally

equivalent load flow model can only capture one of the three generic static bifurcations

(in mechanical dynamics, in flux decay dynamics, and in both) that occurs in mechani-

cal dynamics [39,40,57,62]. The static bifurcations that occur in flux decay dynamics

[52,53], and mechanical and flux decay dynamics are most likely to occur when field

current limits are reached and the field current limit controller works through the exci-

tation system to fix field current to the continuous rating value. A modified load flow

model that properly reflects the steady state behavior of the generator flux decay

dynamics, excitation system dynamics, and field current limit controller dynamics

would accurately determine the equilibrium point(s) of the differential-algebraic model,

and experience all of the static bifurcations of the differential-algebraic model.

The comparison of the static/algebraic Jacobian matrix J, , the causality matrix

g,, and the load flow Jacobian mauix J”, carried out in this dissertation, is for the

case where the flux decay dynamics and excitation system dynamics are replaced by

the reactive power balance equations when the reactive power generation limits are

reached. The use of the reactive power balance equations is justified based on the

approximation of operation action to maintain the units close to their capability curves

when the reactive power generation limits or field current limits are reached. The

comparison carried of J , g, , and J“.- is now reviewed.



163

It should be noted that all elements that are not associated with the generator ter-

minal bus variables of the static/algebraic Jacobian mauix J, and those of the causality

mauix g, are identical. The only difference between J, and g, are those diagonal

matrices of arr/39,, EFT/8V1, aQT/EOT, and EQT/BVT. In 3,, the elements of these

four diagonal matrices are composed of the elements in load flow model and the ele-

ments of the coupling between generator terminal buses and internal buses. In J, , the

elements of EFT/861, EFT/8V7, BQT/BGT, are identical to those in load flow model.

However, if the generators do not reach their reactive power generation limits, the ele-

ments of BQTIBVT include not only the elements of g, , but also the elements propor-

tional to the D.C. gains of the excitation systems; if the generators reach the limits,

these elements become the same as those in load flow model. Hence, the diagonal ele-

ments of BQT/VT of J, where generators have not reached their reactive power genera-

tion limits are much larger than the same elements of g, which do not change whether

generators reach the limits or not. When generators reach the limits, the diagonal ele-

ments of J,. which are much larger than the same elements of 3, before the limits are

reached, then become the same elements as those in load flow model which are

smaller than those of g, . Thus, in the region where reactive power generation limits

are reached and the reactive power transfer limits are violated, the static/algebraic

Jacobian matrix J, is closer to singularity than the causality matrix g,. This result

indicates that loss of causality is not a likely cause of loss of stability compared to a

static bifurcation which is tested by the singularity of J,.

The values of these diagonal elements of BQT/VT of the static/algebraic Jacobian

mauix J, are very large when reactive power generation limits are not reached, that

are the only different elements compared to the load flow Jacobian mauix JLF. These

diagonal elements (a) are very diagonally dominant compared to the rest elements of

the rows associated with reactive power balance equations at generator terminal buses,

causing the generator terminal voltage to remain constant when reactive power
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generation limits are not reached, and (b) are identical to the elements of J“: when

reactive power generation limits are reached. Thus, Ju:- and J, are virtually identical

whether reactive power generation limits are reached or not reached at any bus.

The results of the classification of stability problems in the differential-algebraic

power system model are important contributions because

(1) A static bifurcation was not known to be identical to a static/algebraic bifurcation. '

(2) The occurrence of a static bifurcation can be determined using an equivalent load

flow model rather than a transient mid-term stability model (differential-algebraic

model).

 

(3) The bifurcation properties of the load flow model approximate the static bifurcation

properties of the differential-algebraic model if generator terminal buses are

modeled as PQ-buses when their reactive power generation limits are reached. The

static bifurcation properties of solely mechanical dynamics would be captured using

such a differential-algebraic model (or equivalent load flow model). The static

bifurcation of flux decay dynamics could also be detected if the equivalent load

flow model includes the effects of flux decay dynamics after the generator reactive

power generation limits are reached.

(4) Loss of causality has been considered as an important type of loss of stability

based on the results in [70]. The results derived in this dissertation also shows that

loss of causality can occur before the static/algebraic bifurcation occurs if the gen-

erator reactive power generation limits are ignored in the model. Questions arose

whether the network algebraic model is valid when loss of causality occurs and

whether the algebraic model should be replaced by a partial differential equation

model. The validity of the differential-algebraic model on the frontier where loss

of causality occurs is uncertain, because the reality of the lumped model that

includes the concept of reactive power may be invalid on the frontier. Significant
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research effort is expected on replacing the differential-algebraic model by a

differential-partial differential model either to confirm the validity of the

differential-algebraic model on the frontier or to show that a differential-partial

differential model is required if loss of causality is closely approached or occurs.

However, the result that loss of causality is not probable if the reactive power gen-

eration limits are included, suggests that this effort at focusing on a differential-

partial differential model may be of minimal value practically. If loss of causality

can be shown to be non-generic, the investigation of bifurcations in a differential-

partial differential model may be of limited value theoretically and practically.

(5) The differential bifurcation has been shown to be a non-generic class of power sys-

tem stability problems, despite the fact that much of the study has been on a single

machine to infinite bus model where the network equations are nonexistent. Such

simple models can only have differential bifurcations which are the same as the

single machine stability problems due to the singularity of fx , being proven

improbable in this dissertation.

(6) The algebraic bifurcation has been previously identified as a separate type of stabil-

ity problem [9,10]. This dissertation has shown it to be nongeneric.

(7) The dynamic bifurcation is shown to be a second generic class of bifurcation prob-

lems, and be principally associated with the mechanical and flux decay dynamics,

since the bifurcations in control systems are argued to be nongeneric.

The simulation for the static/algebraic biftucation test on the same power system

used to test for the load flow bifurcation shows similar results. This is expected since

the D.C. gains of the excitation systems are enough high to keep the generator voltage

almost constant as they are PV-buses in the load flow model until they exhausted reac-

tive power generation reserves. In addition, these simulation results also point out that

both loss of causality (g, singular) and loss of single machine stability (f, singular)
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are not likely to occur in a practical power system where the reactive power generation

limits are taken into account.

(D) Classification of Static and Dynamic Bifurcations

The static/dynamic bifurcation is identified when the equivalent system Jacobian

matrix J, has eigenvalues with zero real parts. It could be the static/saddle-node bifur-

cation if J,. has a simple zero eigenvalue, and could be the dynamic/Hopf bifurcation

if J, has a pair of pure imaginary eigenvalues, provided that

(a) causality condition holds, and i

(b) transversality/nondegeneracy condition holds.

The research has identified that there can be static or dynamic bifurcation associ-

ated with

(l) solely mechanical dynamics;

(2) solely flux decay dynamics;

(3) both mechanical and flux decay dynamics.

Test matrices are developed for identifying and preventing each of these bifurcations.

The structure of these test matrices can indicate the causes of the bifurcations and the

sensitivity of a particular type of bifurcation to various operating changes or conuol

system design changes. These test matrices are derived using the procedure described

below.

The Jacobian matrix of the control systems themselves ACC is shown to have

stable eigenvalues, meaning that the assumption:

(c) ACCUQ) is nonsingular,

holds. Then the reduced Laplace transformed (S = jQ) model of J,. Afxqfl),
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is produced that is composed of solely mechanical and flux decay dynamics, after the

elimination of the control system dynamics since they are not singular for any 0 2 O.

The mauix A1500) provides the test of static/dynamic bifurcation if it is singular at

some (2 2 0: static if Q = O, and dynamic if 9 > 0. Note that this test mauix structur-

ally shows the effects of network and conuol systems:

network: SP1, SP2, S 3, and S4;

control: DG, SS, 551, and 552;

DC: effects of speed-governing system

SS: effects of power system stabilizer

SE 1: effects of excitation system on A8

852: effects of excitation system on A5,.-

where, 551 and 852 include the effects of load compensator, SCI and 5C2 respectively.

These six sensitivity matrices: SP1, SP2, S3, S4, Scr and 8C2, are consistent with those

K constants of the single-machine power system without load compensator: Sm = [(1,

SP2 = K2. 53 = K3: 54 = K4: Scr = K5» 5C2 = K6-

Darrrping and synchronizing power coefficient matrices, Kdanp (Q) and K,,,,c ((2),

associated with the mechanical dynamics are further derived, under the assumption:

(d) S309) = 5;, + Sn, ((2) + j9 [ Tpp + 5525(9) ] is nonsingular.

Then test condition on these matrices for identification and prevention of bifurcations

of the mechanical dynamics are established. Similarly, flux decay matrices, Tpp, ((2)
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and Tm,- (Q), are derived, and test mauices for identification and prevention of flux

decay bifurcation are also generated fi'om the reduced model, under the assumption:

(e) such) = 5,,, - (22 [M +DG,(Q) ] +10 [D + 06,62) ] is nonsingular.

Figure 6-1 shows the flow chart of static and dynamics bifurcation tests on

mechanical and flux decay dynamics. When the above assumptions (a)-(c) hold, the

reduced model pertaining to mechanical and flux decay states, Afxo‘a), is obtained by

eliminating the network variables and control systems states. Then damping Kdamp (Q)

and synchronizing K,,,,c (9) power coefficient matrices of mechanical dynamics, and

flux decay matrices T“), (Q) and T”),- (Q) are derived when further assumption (d) and

(e) hold respectively. Based on these matrices, necessary test conditions for

static/dynamic bifurcations associated with mechanical dynamics and flux decay

dynamics are initiated as shown in Fig. 6-1.

Option 0: mechanical and flux decay dynamics

(a) for static bifurcation: Q = 0,

A§xm = 0) is singular;

(b) for dynamic bifurcation: 9 > 0,

Afion) is singular. ‘

Option 1: mechanical dynamics

(a) for static bifurcation: Q = 0,

K3,“. ((2 = 0) is singular;

(b) for dynamic bifurcation: (2 > 0,

both Km(0) and Kmm) = ch(fl) — 02 M are singular.

Option 2: flux decay dynamics

(a) for static bifurcation: Q = 0,

TFDr (Q = 0) is singular;
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assumption (a)w No Loss of Causality

Yes

 

[for all (2 2 0]

Not “Properly Tuned

Control Systems

 

 

  

|Kdmp(fl)| = 0

|Km(Q)| = O     
No1 Yes1 Yes" Yes2 No2

0 : Bifurcation of Mechanical and Flux Decay Dynamics

1 : Bifurcation of Mechanical Dynamics

2 : Bifurcation of Flux Decay Dynamics

Yes : assumption (b) for Transversality/Nondegeneracy Condition

Fig. 6-1 Flow Chart of Bifurcation Tests for

Mechanical and Flux Decay Dynamics
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(b) for dynamic bifurcation: D > 0,

both Tm, (a) and 1mm) .-. Td'o + rm,- (:2) are singular.

It should be noted that the flow chart shown in Fig. 6-1 provides a static/dynamic

point of collapse/oscillation method [53] that would test for the closest bifurcation as

the system operation condition is continually changed in a manner that could cause one

or more of the bifurcation or stability problems to occur. The point of

collapse/oscillation method would be similar to computing a Q-V curve by adding

reactive load at buses until bifurcation occurs, or a P—V curve where active power

transfer or active power load level is increased at some pattern buses until bifurcation

occurs. This approach indicates the stress level in reactive power load, active power

transfer, or active power load at some pattern buses that brings about the closest bifur-

cation in that subregion of the network. This method also indicates that the bifurcation

is static and/or dynamic, and points out that the bifurcation is associated with mechani-

cal dynamics and/or flux decay dynamics. The test condition matrices structurally

show the effects of operation conditions and control systems as well. Analysis of the

components of these test matrices should help understand the factors causing bifurca-

tions and help design conuols and change operating limits to prevent bifurcations.

This approach avoids the computational burden of all eigenvalues of the equivalent

system Jacobian matrix J, , provided that causality holds.

The simulation for the static/dynamic bifurcation tests associated with mechanical

and flux decay dynamics is performed on the same power syStem where load flow

bifurcation was tested but with dynamic data of the synchronous machines and control

systems provided from [4]. At some operation condition, the system is in the proxim-

ity to experiencing dynamic bifurcation leading to low frequency oscillation in both

mechanical dynamics and flux decay dynamics. The proposed approach clearly

identifies the mode mainly associated with mechanical dynamics, and the mode princi-

pally pertaining to flux decay dynamics without having to perform any eigenvalue
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analysis. The eigenvalue analysis is shown to have difficulty identifying whether a

bifurcation is possibly occurring in mechanical or in flux decay dynamics.

6.2 Relationship to Literature

Regarding the studies of voltage collapse, the point of voltage collapse method is

a very popular approach to establishing a bifurcation point based on the load flow

model by increasing active or reactive load or transfer at a pattern of bus or branch in

order to understand the margin in terms of the additional load or transfer that can be

added at the bus or branch pattern before loss of voltage stability will occur [53]. The

point of voltage collapse method is usually referred to the V—P, V—Q , or Q-V curve

approach, or to the sensitivity matrix approach [48-59], or to the optimization approach

[60,61]. This dissertation derived the generic load flow bifurcation that has not been

pointed out in the literature.

In the power system differential-algebraic model, the voltage collapse problem

has been investigated by applying the theory of bifurcation on the complete system

Jacobian matrix [39-45,52,53,64-79]. The research was generally confined to a simple

power system where excitation systems were simplified or neglected, and speed-

governing-turbine systems and power system stabilizers were omitted. Under the

assumption that the causality condition holds, the static bifurcation leading to loss of

steady-state stability and/or voltage collapse has been studied based on testing the

singularity of the equivalent system Jacobian matrix [3941.45.52.5164.

67,69,70,73,78,79], where transversality/nondegeneracy condition for the static/saddle-

node bifurcation was not discussed. A test matrix for the static bifurcation solely asso-

ciated with flux decay dynamics has been derived and defined as flux decay bifurcation

[52,53] for a power system without both power system stabilizers and speed-

governing-tln'bine systems, provided that the causality condition holds. If this flux

decay bifurcation test mauix is approaching singularity, experimental results show that
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the system is at the proximity to voltage collapse, especially when field current limits

are reached and then the normal excitation controls are disabled [52,53].

In this dissertation, static voltage stability is investigated based on the two

different representations of the power system: (a) algebraic load flow model, and (b)

differential-algebraic power system dynamic model. The load flow bifurcation due to

the singularity of the load flow Jacobian matrix is studied from the viewpoint of the

point of voltage collapse method for the load flow model. The load flow Jacobian

mauix is also proven to be the generic test mauix for load flow bifurcation. In the

power system dynamic model, the equivalent static/algebraic Jacobian mauix is

developed, and is also shown to be the generic test mauix for the singularity induced

static bifurcation due to the singularity of this test matrix. The static/algebraic bifurca-

tion test is equivalent to the static bifurcation test due to the singularity of the

equivalent system Jacobian mauix. However, testing the singularity of the

static/algebraic Jacobian mauix for the singularity induced static bifurcation, rather

than testing the equivalent system Jacobian mauix, avoids the inverse of the causality

mauix. Moreover, this test matrix preserves the form of the linearized load flow

model so that this static/algebraic bifurcation test can be performed by slightly modify-

ing the load flow program. '

This dissertation further develops test matrix for the static bifurcation associated

with mechanical dynamics and flux decay dynamics, after proving that the control sys-

tems themselves have asymptotically stable eigenvalues. The static flux decay bifurca-

tion test matrix is consistent with the one proposed in [52,53].

In the studies of dynamic stability, especially for low frequency oscillation, both

bifurcation theory and eigenvalue analysis have been applied. A dynamic/Hopf bifur-

cation can occur when the power system is at the operating condition such that the

equivalent system Jacobian matrix has a pair of pure imaginary eigenvalues, provided

that causality and transversality/nondegeneracy conditions hold. Hopf bifurcation of
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flux decay dynamics has been shown to occur when mechanical dynamics are ignored

[42,68]. Low frequency oscillation has experimentally been shown to be associated

with mechanical and flux decay dynamics [3.4.21], mainly due to lack of damping and

synchronizing power [22-30].

This dissertation establishes more precise test conditions for the static/dynamic

bifurcation pertaining to mechanical and flux decay dynamics by proving that the con-

trol systems themselves have stable eigenvalues. Moreover, damping and synchroniz-

ing power coefficient mauices are derived, and test conditions based on these two

matrices are established for the static and dynamic bifurcation in mechanical dynamics.

Flux decay test matrices are also defined for the static and dynamic bifurcation in flux

decay dynamics. This approach not only precisely identifies the modes principally

associated with mechanical dynamics and flux decay dynamics, but also does not

involved in the computationally intensive eigenvalue analysis.

6.3 Future Work

Although a classification of the types of stability problems has been developed

and generic stability problems have been identified, much additional work is necessary.

The generic static and dynamic bifurcations have been studied solely for identifying

and preventing generic static/saddle-node and dynamic/Hopf bifurcations in power sys-

tem models. Research is needed to more thoroughly describe the center manifold and

the behavior of the system dynamics and the network response near the bifurcation

point. Loss of stability in single machine dynamics and loss of causality have been

argued to be improbable. Research on these two special stability problems is also

needed to show whether they are generic or not. If loss of causality is a generic sta-

bility problem, more effort must be put on the study of the validity of the differential-

algebraic power system model. The validity of the differential algebraic model on the

frontier, where loss of causality occurs, can be assessed by using a differential-partial
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differential model. If the differential-algebraic model is invalid on the frontier, it may

also be invalid as one approaches the frontier. A differential-partial differential model

would be used rather than a differential-algebraic model wherever the differential-

algebraic model proves invalid.

Although some understanding of these stability problems exists for the single

machine to infinite bus model, little understanding exists for the multimachine power

system stability model. Moreover, no methods exists for establishing where, why, and

when certain stability problems occur. The test matrices proposed in this dissertation

for the generic stability problems structurally show the effects of the transmission net-

work and conuol systems, that may be useful in understanding the causes of the stabil-

ity problems. Methods for preventing and correcting the various stability problems

should be undertaken once the above understanding is comprehensive. The computer

program for the point of collapse/oscillation method also needs to be developed.

Regarding the parameters of the control systems, it should be noted that only the

D.C. gain of excitation system affects the necessary condition of the static bifurcation;

but each control system has the effect on the necessary condition of the dynamic bifur-

cation. It can be concluded that the proper tuning of each parameter of each control

system, especially the excitation system, is also another main concern of power system

planning. Moreover, the particular parameters of control systems that have major

effects on the damping margin before the power system experiences static/dynamic

bifurcation should be identified, and their relationship should also be established.

Some particular parameters of major control systems are expected to be the D.C. gain

of the excitation system, the gain and time constant of the stabilizing feedback of the

excitation system, and the lead-lag time constants of the power system stabilizer.

Based on the simulation results shown in this dissertation and the experimental

results from previous research [48-53], the reactive power generation reserve of the

power system plays a very important role in the studies of voltage collapse and low
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frequency oscillation. Sufficient and properly placed reactive power supply in the sys-

tem should be carefully studied to prevent the generic bifurcations identified in this

dissertation.
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Appendix A

Schur’s Formula and Inverse Matrix _

Consider an (m + n)-dimensional square mauix A which can be partitioned as

follows:

A11 A12

A: A21A22 (A-la)

where, A11 is an m x Ill-dimensional square matrix; A12 is an m x n-dimensional

mauix: A21 is an n x m-dimensional mauix; and A22 is an n x n-dimensional square

mauix.

If the matrix A is nonsingular, its inverse, A", has the following form:

A-1 [Bu Biz] B (Alb)

- B21322 - -

satisfying

1 o

AB=BA=[;I] (A-lc)
n.

where, each 8 -submatrix has the same dimension as A -submatrix with the same sub-

script; 1,, and I, are the m - and n-dimensional identity matrices, respectively; and 0 is

the zero matrix with appropriate dimension.

(l)lfA11 ls nonsingular, the determinant of the matrix A, (Der[A 1), can be

written as

Det[A ]=Det[Au]-Det[A22—A21Afil A12] (A-2)

Then the submauices of B , the inverse of A , can be represented as

176
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322=[A22'A21A1-11 .4121"1 (A-Za)

Bzr=-322A21Ar'rl (A-Zb)

B122-Ail1 A1232: (A-ZC)

311=Af11 [1». ‘A12 321 1 . (A-Zd)

(2) If A22 is nonsingular, then

 

DetlA.]=Der[A22] -Det[Au-A12A2‘21 A21] (A-3)

and

Bll=[All-A12A22’l ’1211-1 (A-3a)

312=-311A12A2-21 (A-3b.)

le="Az-21 A21311 (A-3C)

1322:1452! [1,, —A21812] (A-3d)

(3) If both All and A22 are nonsingular, then both case (1) and case (2) are

valid, and the B -submatrices with the same subscripts are equal to each other.

 



Appendix B

-1
Ace

Rewrite the matrix Acc (4-8c), which is formed by the control systems of the

synchronous machines, as follows:

PA” 0 Ag,

Acc= 0 ’ AGO 0 (3'1)

0 0 Ass   

where, A55 represents the block mauix of the excitation systems; A06 represents the

block matrix of the speed-governing-turbine systems; Ass represents the block rmtrix

of the power system stabilizers; and A53 represents the block mauix of the PSS con-

trols through the excitation systems. The complete forms of these control systems

matrices are rewritten from (4-2) with some short notations for the excitation systems

and power system stabilizers:

Tsc =73.ch ; [RC =1 " Tsc

T21=T§21T31 3 ’21=’ "'T21

T43=Ts-4lTss 3 143:1 “T43

  

F - I o o o o '

o — I o o - 1‘;le

A5,; = - K4 THC - K4 Tpc - I K4 - grunt-1K, (B-la)

- 18c — Inc 0 - I - 13c1),-1K,

o o I o - K5,,- ‘
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'-1 o o o o o '

-I —I 0 0 0 0

0 l -I O 0 0

A66: 0 o l -1 o 0 (3‘1”)

0 0 O I -l 0

L o o o o I -l_

-I 0 0

Ass= 121 —I 0 (B-lc)

.l43T21 143 ‘1

o o o “

0 0 0

Als's = KATBCT43T21 KATBCT43 KA Tsc (B-ld)

IBCT43T21 IscT43 lac

u 0 0 0 . 
Note that the submatrices of each control system block mauix are all diagonal.

The mauix Acc (B-l) is an upper-triangular mauix, and has been proven to be

nonsingular based on the nonsingularity of individual control system. Thus, its

inverse, A56, can be represented as follows:

Ass 0 - Ari} Ass Ass‘

Ac‘c‘= 0 A5};

L o o 

0

A531

(B-Z)

 d

Since A66 and Ass are lower-triangular matrices, we have

 

h
-

8
.
1
.

I
I

N
N
N
N
N

’-1 o o o o

—10 o o

-I-IO o

-I-I-IO

-I-I-I-10

4-1-1-1-1,

O

O

0

0
03-3)
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-I 0 0T

Ass]: ”121 '1 0

L443 “143 "1   

(34)

Regarding A5,}, one can apply the Schur’s formula shown in Appendix A. Based on

the structure of A55 (B-la), A35 can be partitioned and has its inverse as follows:

511312

‘38: Ba Ba

F11 F12

A“:

55 [F21 F22]

where,

-I O 0

E11: 0 "I 0 :E12=

”KA Tsc ‘KA Tsc "1

—Isc ”Inc 0

521: o o 1

 

3522: 0

F11=[Ell-512E2-21 15.21]-1

F12=-F1151252'21

1'722=[5'22"1‘3211-‘3‘1'115512]"l

F21=-F2252151'11

 

' o

0

'1 ‘13c Til KP

'KSE

0

__--1

F Kr

_KA "KA Tsc Til Kr .

(B-Sa)

(B-Sb)

 

Note that the main diagonal block submatrices, E 11 and £22, in the above partition are

all nonsingular, since E 11 is lower-triangular; 522 is upper-triangular; and both have

nonzero diagonal elements. Moreover, the matrix manipulations, [E 12 E 2'21 E21} of

F11 and {E21 Efil En} of F22, respectively keep the same structure as E11 and 522.

Thus, after applying the Schur’s formula and performing the matrix manipulations, one

can obtained the final form of A5,}:
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- I 0

“TF5 KA -I+TFE KA

AE-El = KA KA

Inc lac

L K5751 KA " Ks? KA 
where

Tn; = Til Kr Ks?

o o o 1

TFE TFE KA TFE

- I - KA 0

0 - I 0

"’ K3751 " K5751 KA "’ .9751 _ 

(B-SC)

Having the main diagonal block matrices of A551- (B-2), one can obtain the only

one off-diagonal mauix of A53} by substituting (B-ld), (B-4), and (B-Sc) as follows:

AES Ass] =

A511 Ass AS? =

 

’ o o o

O 0 0

" KA Tac - KA Tsc " KA Tao

" 13c " lac " Inc

0 O 0 .

o o o '

" Tn: KA " TF5 KA " TFE KA

K, K, K,

lac Inc lac

_ Ks? KA K3731 KA K3751 KA _

 

 

(B-6a)

(B-Gb)



Appendix C

K33 and Km

This Appendix will show that the diagonal mauix Kfi‘, , representing the

coemcient of the active power generation at the internal bus with respect to the rater

angle, is in general positive definite if each synchronous machine is operated in the

condition of lagging power factor. Then the diagonal matrix KFD , representing the

steady state operation condition of each synchronous machine, should also be positive

definite, when it is assumed that the load compensators are not used in the power sys-

tem model.

Rewrite the mauix [(33 from (2-41):

K33 = a; V, U,,; + v} (x, -x;) (1,,, r, - U,,, U,,.) (01)

where,

Ups =kt Ua -G. (X, ~16) 7,. ; kt=1— (X, Jim,

1,,, = G, cos(8 - 0,) + a; sin(5 :- 0,)

U,,, = G, sin(5 - 0,) -s; cos(5 - 0,)

T4, = G, cos(5 - 0,) + B, sin(8 - 0,)

U,,, = G, sin(8 - 0,) - Bq cos(8 - 0,)

Rd , -xj -x,
= 2 ' - BU: 2 , ; 84 = 2 ’

Ra +Xd Xq Ra +Xd Xq Ra +Xd Xq

 
 

 

Assuming that the armature resistance R, of synchronous machines are small and

neglected, then
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Ga=0 ; B,,'=—l/Xq<o ; Bq=-1/x;<o

k1=1- (x, -X,;)B, =Bq/s; >1

Up; =—Bq cos(8— 0,) > 0

1,,, =3; sin(8-9,)<o

U,,, =—Bd' cos(8-0,)>0

T,” = 8,, sin(8 - 0,) < 0

U,,, = — Bq cos(8 — 0,) > 0

rd, 7,, — U,,, U,,, = - 3,; B, cos[2 (5 — 9,)]

Hence,

K33 = - E,’ V, a, cos(8— 9,) + V} (X, -XJ) (—B,,' a, cos[2 (6 - 9,»)

= —B,, V, [5,; cos(8— 0,)

+ v, (x, -x.;) -;—‘ ( cos2<6— e.)- sin2<8- 6.) )1
(I

I

, X
=-B, V, [(E, —V, (1- i“'—)cos(5-9r))c08(5-9r)

q

I

X41
+ V, (1 - —) sin2(5 — 9,) 1 > o (02)

X4

Note that the following factors causing Kfl'l > 0:

I

, x
(a)x, 2x,,, such that0< (1- 31k 1.

‘1

(b) If the synchronous machine is operated in lagging power factor, then

8 - 0, < 90° implies cos(8 — 0,) > 0, and from the phasor diagram shown in

Fig. 4-4(b), [15,; - V, cos(5 - 0,)] > 0, hence,

I

. X4

[8,, — V, (l — Z) cos(8 - 0,)} > 0.
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Rewrite the mauix Km from (4-11):

Km = (K53 4' K52) - (K54 4' K51) K1"’1.1 K35 (03)

where,

K51 = K55 K01 3 K52 =K££ Kc:

Note that the diagonal matrix K55 represents the D.C. gains of excitation systems.

Under the assumption that the load compensators are not employed, which implies that

KC1= 0, Mid Kcz = 0, WC have

Km = K53 " K54 Kg1 -1 K175 (04)

Each K-matrix (K33 is discussed above) can be found from Section 2.6 as follows:

K33 = 2 Eq' GEE - V, TPE (C-Sa)

K54 = — (X. with T, V. (C-5b>

K53 = 1 - (X, - Kg) 3, (C-Sc)

where,

GEE =1:l G, ; k1=1—(Xq —x,;)3,

TF5 =k, 7,, + G, (x, -x,;) U,,

With the assumption Ra = 0, and the properties of the coefficients shown in the dis-

cussion of K3‘, above, we have

GEE =0 ; TPE =84 sin(8-0,)< 0

K35 = - V, a, sin(8 - 0,) > o (C-6a)

. K54 = — V, (x, - x;) B, sin(5 - 9,) (C-6b)

X
=V, (—“,--1)sin(5-e,)>o

Xd
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K 1 (X X ) X4 0 (C 6C)= + - — = — >
_

53 d 4 X1; X,

Note that X, > Xi. If Kfl‘, > 0 (from (02)). and since each K-submatrix is diagonal,

then the (positive) definiteness of KFD is equivalent to that of Kfl‘l KFD . Thus,

Kfl‘r Km = K33 K53 - K54 Kfl'z

=—B,, V, [E,,' cos(8-0,)

X

- V, (l - 31-) (cos2(8 - 0,) - sin2(8 - 8,) )] —i,-

X, ,,

X

—v, (X—{-1)sin(5-e,)[-V. 8., Shaw-901
d

,,,X

_-.—B,, V,,;[E —cos(8- 9,)

X4

X4 2 X4 2
-V, -—-;-cos (8- 0,)+V,— sin (8— 0,)

X4 X4

V-X—d 28-9 x, 28-0+-X—cos( (MT: ( r)

X
- V, X1 sin2(5 - 9,) + V, sin2(8 - 6,)]

d .

=—Bq V,[(E,,' V, cos(8 0,)):{ cos(8- 0,)

d

X,

+V, x cos[2(8- e, )]+V, sin2(8- 9,)] (c-7)

Conservatively, if 8 — 0, s 45" and from Fig. 4-4(b) which assure K3', > 0, then the

first two terms of K3’, KFD are nonnegative, and hence KFD > 0.



Appendix D

C3,, and car,

This Appendix will show that - C3,, is a diagonal mauix with positive elements

that increase almost linearly with the D.C. gains of the excitation system K55 that are

in general very large compared to the rest of terms in 03x, when it is assumed that the

load compensators are not used in the power system model. Then the mauix C’3‘K is

also a diagonal mauix with positive elements that increase almost linearly with K55.

Rewrite the mauix C§K from (4-18):

C1,“ = Kg, + C3 — C3,, (D-l)

Csx = 'Kal Kfl‘l-l K33 " “‘51 [($14 K192 4' 1‘32)de K150 (D-la)

Xsc = (K54 + Krr Ker) K33" K39 + (K31 - KEE Ker) (D-lb)

Km = (Kss +K57)‘ (1(15'4'1'I"Is‘l)K133.1 K33 (D-Ic)

where,

K£1=KEE Kcr ; KEZ=KEE Kcz

Under the assumption that the load compensators are not employed, which implies that

KC, = 0, Kc; = 0, and Km = I , and if the D.C. gains of the excitation systems K5,;

are very large, we have

Km = K53 - K54 K191 -1 KIT: (D-ZC)

Ksc = K154 K171 -1 K35 + K57 - KEE

z .. K55
(1)-2b)

C3X =(K31Kfl‘t"Kfl'2 +K32) Kn; Kss (D-2a)
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As discussed in Appendix C, K3‘, and KFD should be positive definite, and since K33

is positive definite with very large elements, then the definiteness of C3x is equivalent

to that of KM a {K31 K33 + K32 Kfl‘l }, where [(33 and Kfl‘z are shown in Appen-

dix C, and

K3, = - V, 3,’ 1,, - V,2 (3,; - 3,) sin[2(6, - 6)] (D-3a)

K3, = - V, U,, (D-3b)

T}, = G, cos(O, — 8) + B, sin(0, — 8)

U,, = G, sin(0, - 8) - B, cos(0, - 8)

Assuming R, = 0, then

T,, =-B, sin(8-0,) >0

U,, =-B, cos(8-0,)>0

Kg, = V, 3,’ 3, sin(8 - 6,) + V,2 (3,; — 3,) sin[2 (6 - 6, )] (D-4a)

K32 = V, B, cos(8 - 0,) < 0 (D-4b)

Hence, substituting (from Appendix C)

K3, = - 3,’ V, 3, cos(6 - 6,) - V,2 (3,; - 3,) cos[2 (6 - 6, )1 (D-Sa)

K3, = - V, 3, sin(8 - 6,) > o (D-Sb)

we have

KPQ =K5'l Kfl'z 4' K32 Kfl'l (1)-6)

= —3, V,2 [ E,’ 3, sin2(8- 6,) + V, (B; —B,) sin[2(5 - 9,)] sin(5 - 9t)

+ 3,’ 3, cos2(6 - 6,) + V, (3,; - 3,) cos[2(8 - 6.)] cos(6 - 6,) ]

=43, v,2 t 5,3, +v, (3,; -3,)(2 sin2(8-9,)cos(8— 6.)

+ cos2(6 - 6,) cos(6 — 6,) - sin2(8 - 6,) cos(8 - 6,) ) 1
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=—3, V,2[E,' B, +V, (Bi—8,)c08(5-9.)l

=-Bq V,2[B, [5,,—V, cos(8-0,)]+V,Bd' cos(8—9,)]<0

Note that KP, < 0 implies (K51 K3, '1 Kn" + K5,} < 0. Hence, - C3,, is a diago-

nal and positive definite matrix with positive elements that increase almost linearly

with K55. Note also that ca‘, - Kg, + c3 — C3, and that both K3, and C3 are the

coefficients of reactive power-voltage Jacobian matrix at the terminal bus that are finite

and are neglectable compared with - C3,; when K33 is very large. Thus, the matrix

C§K is approximately to — C3x and is also a diagonal matrix with the positive ele-

ments that increase almost linearly with K55.
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