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ABSTRACT

CYTOCHROME 85 GENE IN CHICKEN

By

Hong Zhang

Cytochrome b5 functions as an electron transport carrier in fatty
acid desaturation in animal liver, in methemoglobin reduction in
erythrocytes, and in cytochrome P-450 reduction. It exists in two
forms: an amphipathic form, and a cytosolic form. The amphipathic
form consists of a N-terminal hydrophilic domain which contains a
functional heme as a catalytic site, and a C-terminal hydrophobic
domain which anchors the protein in the microsomal membrane. The
cytosolic form is equivalent to the hydrophilic domain of the
amphipathic form. The possibility that the cytosolic form is derived
from the amphipathic form by proteolytical processing was proposed in
the literature. This dissertation describes the isolation and
characterization of the chicken cytochrome b5 gene, and indirect
support for the above hypothesis.

Cytochrome b5 cDNA clones were isolated from chicken liver and



erythrocytes by probing cDNA libraries with synthetic oligonucleotides
designed from the chicken cytochrome b5 protein. The cDNA clones from
liver and erythrocytes showed 100% homology and encoded a protein with
an amphipathic form. The Northern analysis indicated only one kind of
message present in liver total RNA, and this message is about the same
size as the cDNA from erythrocytes. Furthermore, a lambda genomic
clone was shownlto contain a cytochrome b5 gene with an amphipathic
form, and this clone produced the same hybridization pattern as the
chicken genomic DNA did in Southern analysis. A1l the data suggested
that there is only one copy of the cytochrome b5 gene in chicken.

The presence of one gene excluded the possibility that different
genes are reponsible for the two forms of cytochrome b5 protein in
chicken. The complete identity of cDNA clones from liver and
erythrocytes excluded the possibility that differential RNA splicing
is the reason for two kinds of cytochrome b5 from a single gene.
Posttranslational modifications appear to be the mechanism for
synthesis of the cytosolic cytochrome bS‘ There may be one or more
erythroid proteases which are responsible for the solubilization of
amphipathic cytochrome b5 in erythrocytes to give a cytosolic protein.
The data presented in this dissertation supports the existence of such

proteases in erythrocytes.
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CHAPTER I

LITERATURE REVIEW ON CYTOCHROME 85

1. Introduction

Cytochrome b5 is a protohemoprotein which is present in high
amounts in the microsomes of animal liver cells. In the reduced
state, it shows an asymmetrical a-absorption band with a peak at

556 nm and a shoulder around 560 nm. See figure 1 below.

0.04

0.02

Absorbancy

Crystols

500 520 540 560 580 600

Wavelength (nm)

Figure 1. The absorption spectra in a and B region of the
reduced cytochrome b5 in solution and crystals (3).



This cytochrome is bound to the membrane and reduced with NADH by
a flavoprotein (cytochrome b5 reductase) which is also bound to the
membrane. The primary structures and ternary structure of cytochrome
b5 from several animal sources have been determined (1,2). Hagihara
et al. (3) suggested that use of the term cytochrome b5 in referring
to hemoproteins of biological materials other than liver microsomes,
based simply on similarity in the wavelength of the a peak, may not
be desirable unless: a, there is similarity of the low temperature
spectrum in the reduced state (77°K or lower); b, there is similarity
in amino acid sequence or immunochemical similarity; c, a similar
reactivity to the microsomal cytochrome b5 reductase is shown.

Besides the microsomes of animal liver, cytochrome b5 is
contained in the outer membranes of mitochondria of the same tissue
(4,5). A similar cytochrome contained in erythrocytes has been
purified and sequenced (1, 6-8). Spectrally similar pigments are
also found in yeast (9) and plants (10, 49, 50).

2. Functions of cytochrome b5
1). An electron carrier in fatty acid desaturation

Studies of an in vitro system employing microsomal membranes from
animal liver capable of desaturating fatty acids showed that the
overall reaction had a requirement for oxygen and NADH (11). The
first studies examined the requirements for the introduction of the
A9 double bond by the microsomal fraction of rat liver, using stearic

and palmitic acids as substrates. The same system was shown to be
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able to introduce a A6 double bond into oleic acid to form 18:2"36’9

(12). Oshino et al. suggested that the desaturation was associated
with the microsomal electron transport chain and possibly involved
cytochrome b5, not cytochrome P-450, because cyanide inhibited the
desaturation, whereas carbon monoxide did not (13). The first
definitive report implicating the NADH-specific microsomal electron
transport chain showed that the rate of reoxidation of reduced
cytochrome b5 was increased by stearoyl-CoA (51). The absolute
requirement for cytochrome b5 was shown by removing endogenous
cytochrome b5 from detergent-solubilized microsomes and observing the
restoration of desaturase activity upon addition of the purified
cytochrome b5 (14-16). The successful in vitro reconstitution of
lipid desaturation was done by adding the purified cytochrome b5
reductase, cytochrome bS’ and stearoyl-CoA desaturase together plus
substrates in an artificial membrane (17, 18). The involvement of
these microsomal electron transport components in other desaturase
reactions has been demonstrated'by the inhibition of the particular
desaturase reaction by antibodies raised to the purified cytochrome

b5. These results have led to the scheme in figure 2 below.

NADH Cyt.b5

X Rox X X

NAD Cyt.ber_ed Cyt.bsox Des

Cyt.bsred Desox HZO + 18:1 CoA

0, + 18:0 CoA

red 2

Figure 2. The role of cytochrome b, in fatty acid
desaturation. Cyt.bcR=Cytochrome 3 reductase.
Cyt.b5=Cytochrome bS‘ Des=Desaturas§.



2). Reduction of methemoglobin in erythrocytes

The methemoglobin reduction system of red blood cells catalyzes
the reduction of the four ferric ions of methemoglobin to ferrous
ions (21). This reduction proceeds at a rate that is sufficient to
maintain approximately 99% of the hemoglobih in its ferrous state,
despite the continuous conversion of hemoglobin to methemoglobin by
various oxidants of the cells. Under normal conditions, most of the
methemoglobin reduction can be attributed to catalysis by an
NADH-utilizing system, an NADH-dependent reductase. Since the rate
of methemoglobin reduction catalyzed by purified reductase was slow
relative to the rate observed in intact cells, the existence of a
second component of the system was suggested. Also, there is no
correlation between the rate of methemoglobin reduction in intact
cells and the amount of NADH-specific reductase that can be detected
in these cells (20). A soluble cytochrome b5 in erythrocytes
markedly stimulates the catalysis of methemoglobin reduction by the
reductase (21). At concentrations present in erythrocytes,
cytochrome b5 serves as an effective substrate for erythrocyte
NADH-reductase, and the resulting ferrocytochrome b5 then transfers

an electron to methemoglobin as follows:

reductase

1/2 NADH + Cyt.bg (Fe*) ----omoeeo > 1/2 NAD* + Cyt.bg (Fe?*)

4 Cyt.b5 (Fe2+) + Hemoglobin (Fe3+) ---------- >
4 Cyt.b5 (Fe3+) + Hemoglobin (Fe2+)



The name erythrocyte cytochrome b5 arises from the spectral and
structural similarity of the protein to microsomal cytochrome b5 (22,
23). The reductase has been termed erythrocyte cytochrome b5
reductase because it acts upon erythrocyte cytochrome b5 and because

it is enzymically similar to microsomal cytochrome b5 reductase (24).
3). Reduction of cytochrome P-450

The scheme in figure 3 has been proposed for the mechanism of

cytochrome P-450 in hydroxylation reactions (25).

ROH RH
Fe’s
® o fRH"Fe”
‘ROH Fej‘ : e
/o 0
R Fe-OH* RH Fe?"
[0 o
RH Fe-O*

RH Fe?* O,
X /

2H" RHFE* O] RHFe* 07

H,0

Figure 3. The pathway of oxygenation by cytochrome P-450.
Cytochrome b, was proposed to provide the second electron’
for the P-453 catalyzed hydroxylation reactions (25).
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As indicated in the scheme, substrate binding to native, ferric
P-450 is followed by reduction to the ferrous state, thereby allowing
oxygen binding. A second reduction results in spliting of the
oxygen-oxygen bond, one atom being lost as water. The other oxygen
atom, presumably now an "activated oxygen," is inserted into a
carbon-hydrogen bond of the substrate to produce the corresponding
alcohol, which is then released with regeneration of the ferric form
of the enzyme and completion of the catalytic cycle. Hildebrandt and
Estabrook (26) suggested that cytochrome b5 may supply the second
electron. Miki et al. purified a form of cytochrome P-450 with a
high affinity for cytochrome b5 and showed that reduction'of the
P-450 by NADH required NADH-cytochrome b5 reductase, cytochrome b5,
and suitable concentrations of detergents (27). More recently,
Pompon and Coon proposed a new model for the involvement of

cytochrome bs in the P-450 related reactions (28) shown in figure 4.

( > Fe + Op (a)

¢
Fe SN Fe Op ———> [FeOg]u—e —_—> Fem~ V2H202 (b)

I > Fels H20 (c)
= [Fe02] < >A z
)
I => - -
oa t_)5[11 aH Fe™~ ROH +« HoO ()

Figure 4. Model for cytochrome b5 in cytochrome P-450
related reactions (28).
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proteins
a protein

[L] designate§
from liver and [E] indicates an erythrocyte protein.

The primary structures of cytochrome b

from different animal sources (1).

Figure 5.



On the basis of this model, competition between spontaneous
decomposition of the ferrous dioxygen intermediate and its reduction
by cytochrome b5 is believed to contribute to the partition between
abortive hydrogen peroxide production and substrate hydroxylation in

this enzyme system.
3. Properties of cytochrome b5
1). Primary structure of the protein from vertebrates

The microsomal cytochrome b5 in its native state is an
amphipathic protein with an Mr of 16,000. It contains two domains: a
N-hydrophilic catalytic segment consisting of about 80 amino acid
residues, and a C-hydrophobic segment that is required for binding
the cytochrome b5 to the microsomal membrane (29, 30). Controlled
proteolytic digestion of the native protein yields a water soluble
cytochrome b5 with a Mr of 11,000. The sequence of this soluble
cytochrome b5 has been determined (31) and is very similar to that of
cytochrome b5 found in the supernatant fraction of erythrocytes. The
complete microsomal cytochrome b5 sequences have been determined from
6 different animal species (1). Whereas the microsomal polypeptide
is 133 amino acids long, the erythrocyte b5 is 97 residues long (1).
Figure 5 shows a comparison of some known cytochrome b5 sequences
(see the opposing page).

The sequence homology between the various forms of cytochrome b5
is very striking. The sequence of residues 104-126 contains only

hydrophobic or uncharged hydrophilic side chains. The basic and
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acidic amino acid residues occur at the COOH-terminus and the peptide
1inking the membranous segment to the globular heme-carrying segment.
Such residues may be expected to be present outside the hydrophobic
milieu of the 1ipid membrane, thereby suggesting that the hydrophobic
segment either penetrates the membrane or folds back on itself so
that the COOH-terminus is near the cytoplasmic surface of the
membrane. Although the soluble cytochrome b5 accepts electrons from
cytochrome b5 reductase (33), the complete cytochrome b5, including
the membranous segment, is necessary for functional reconstruction of
the stearyl-CoA desaturase system (17, 18). The spectral properties
of'complete cytochrome b5 are essentially the same as those of the

soluble form (heme peptide segment) (34).
2) Plant cytochrome b5 structure

Microsomal cytochrome b5 has also been discovered and
characterized in plants (10, 49, 50). Bonnerot et al. first purified
cytochrome b5 from potato tubers by 350 fold and this protein is very
similar to animal cytochrome b5 in terms of its Mr (16700) and its
absorption spectrum (49). Later, Madyastha et al. reported the
purification of a very similar cytochrome protein to 30% homogeneity
from Catharanthus roseus, and this protein has a Mr of 16500 (50).
Jollie et al. (10) purified the microsomal cytochrome b5 from Pisum
sativum, and sequenced the N-terminal part of this cytochrome b5
(figure 6). There is no similarity between this sequence and any
animal cytochrome b5 protein. However, they presented results which

indicate that the antibody raised against rat cytochrome b5



10

Figure 7. Schematic diagram of the backbone chain
of cytochrome b, which was solubilized from liver
microsome with Banccreatic lipase (36).
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recognized the pea cytochrome b5 protein on western blots. This
suggests that the conservation of this protein extends into the plant
kingdom, at least at the epitope level.

NH,-Ala-Leu-Leu-GIn-Glu-Asp-Glu-Ala-Ile-Asp-Asp

2
-Phe-Asp-Phe-Asp-Asp-Gly-Ala-Lys-Asp-Asp-Asp-Gly

Figure 6. NHz-terminal amino acid sequence of pea cytochrome b5 (10).

Even though the protein was purified and partially sequenced, its
function in plants is still not known. Possibly it is involved in
reactions like those in animals, since the microsomal electron
transport systems of higher plants are involved in a variety of
central metabolic transformations including fatty acid desaturation
and the mixed function oxidase activities of the cytochrome P-450
dependent monooxygenases. Microsomal cytochrome b5 is certainly a

good candidate for a member of the electron transport system.
3) Ternary structure

The X-ray crystallographic studies of calf liver cytochrome bS
solubilized by pancreatic lipase (with 93 amino acid residues) at 2.8
A and 2.0 A were carried out by Mathews et al (2, 35, 36). The
ternary structure based on their analysis is presented in figure 7 on
the opposing page.

Like many other proteins, the interior of the molecule is

distinctly nonpolar. The heme is buried in a hydrophobic crevice
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with two vinyl groups lying deep in the interior of the molecule.
One of the propionic acid groups lies on the surface of the molecule
and is hydrogen-bonded to the <¥-oxygen and the peptide nitrogen of
Ser-64, and the other projects outward into solution. The walls of
the heme crevice are formed by two pairs of roughly antiparallel
helices and the floor by the pleated sheet structure. The iron atom
is coordinated by His-39 and His-63 which extend from the wall of the
crevice. The nitrogens of the two histidines are hydrogen-bonded to
the main chain carbonyl oxygens of Gly-41 and Phe-58, respectively.
Furthermore, His-39 is in van der Waals contact with Leu-46 and
His-63 lies close and paralled to Phe-58, suggesting a w -7
interaction between the latter pair of residues. Thus, the histidine
residues are held firmly in place by the rigidity of the backbone
structure and by a variety of interactions with the main and side
chains. The core part (residues 3 to 86) contains the heme group at
the top, lying in the hydrophobic crevice, and also has a narrow
hydrophobic group open to the aqueous environment. The residues
principally involved in this latter group are Phe-35, Leu-70, and
Phe-74. The site of the action of the NADH-cytochrome b5 reductase
may be this group, and the two phenylalanines in the vicinity of the
group may provide a path for an electron to the heme.

von Bodman et al (44) chemically synthesized a gene coding for

rat liver cytochrome b5 and expressed it in Escherichia coli.

Transformants containing the soluble core of cytochrome b5 produced
holoprotein containing the protoporphyrin IX prosthetic group in
amounts up to 8% of the total cellular protein. The complete

cytochrome b5 gene including the membrane anchor domain was also
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efficiently expressed in E. coli with incorporation of the
holoprotein into the membrane fraction of the cell. The successful
expression of cytochrome bS in E. coli means that it is possible to
construct mutant cytochrome b5 forms with alterations at specifically
selected amino acids within the product protein. von Bodman et al.
(44) replaced histidine-63 with alanine by cassette mutagenesis. The
resulting protein failed to incorporate heme during fermentative
growth and was not reconstituted with exogenous heme after
purification of the apoprotein. Mutant cytochrome b5 protein with a
methionine substituted at position 63 resulted in the production of
thé apo form of the cytochrome in high yield. Purification of this
apoprotein foilowing the identical procedure for the wild-type
holoprotein allowed reconstitution with heme to form the intact
mutant protein. This methionine-63 cytochrome b5 displayed an axial
high spin ESR signal (g=6) and optical spectra in the ferric form,
which was interpreted as evidence that the methionine sulfur was not
bonded to the heme iron. Consistent with this interpretation, the
reduced protein was found to readily bind carbon monoxide with a 420
nm Soret maxima similar to that observed for myoglobin and
hemoglobin. It appears that the methionine-63 protein is a state
five-coordinate heme protein. It will be very informative to see the
results after the surface charge distributions, the composition of
the hydrophobic membrane anchor domain, and the residues that
potentially control the redox potential and electron transfer rate

have been altered.
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4. Cytochrome b5-1ip1d interaction

There are two distinct mechanisms for the integration of de
novo-synthesized polypeptides into cell membranes. One is specified
by an "insertion" sequence and proceeds unassisted into any exposed
cell membrane, resulting in the anchorage of a hairpin-loop domain of
the polypeptide chain into the 1ipid bilayer; such a hairpin loop
could easily extend into the hydrophilic milieu on the other side of
the membrane. The other one is mediated by a "signal" sequence and
is dependent on a signal-specific receptor that effects the
translocation of a domain of the polypeptide from the biosynthetic
compartment to the other side of a specific cell membrane. The
membrane bound cytochrome b5 is first synthesized on free ribosomes
(45), then bound to microsomal membranes without being recognized by
any receptors (37). |

Using the binding of the cytochrome b5 to artificial phospholipid
vesicles as a model system, Enoch et al (38) found two types of
protein binding: one was capable of intermembrane transfer, the other
was not. Based on these properties, they proposed a model for two

different orientations of the protein in the membrane ( figure 8).
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neme
peptide

linkage

pepnide transferable form

nonpolar
peptide

nontransferable form

Figure 8. Models for insertion of cytochrome b

in artificial membranes (38). 5

The ability of cytochrome b5 to transfer from artificial
membranes to other membranes, but not from biological membranes, may
reflect a difference in the nature of the protein binding to the
membrane. A nontransferable form of cytochrome bS’ which may
represent the microsomal type of binding, was obtained when
cytochrome b5 was bound during the formation of phosphatidylcholine
vesicles. A soluble, heme peptide fragment of cytochrome b5 was
released when vesicles containing cytochrome b5 in the transferable
form were incubated with carboxypeptidase Y. In contrast, the
nontransferable form of cytochrome b5 in microsomes and artificial
vesicles was not released by carboxypeptidase Y treatment (39, 40).
When cytochrome b5 binds to pure, unperturbed bilayers, the loose
binding form is predominately obtained. However, if the bilayer is
in a perturbed state due to the presence of deoxycholate or another

integral membrane protein (i.e., desaturase) in the bilayer, then
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cytochrome b5 is inserted in the tight binding form. On the basis of
their studies of cytochrome bS’ Enoch et al. concluded that integral
membrane proteins in general do not readily undergo intermembrane
transfer between biological membranes (38).

As to the mechanism and topology of the interaction between the
hydrophobic domain of cytochrome b5 and the membrane, we know very
little. The results of a predictive analysis for conformational
features, according to the rules of Chou and Fasman (41,42), are
similar for the amino acid sequence of the membranous segment from
equine and bovine proteins. The sequence from 103 to 112, which
contains a cluster of three tryptophanyl residues, seems to consist
of 3-4 overlapping B-turns. However, Jagow and Sebald stressed that
the prediction must be viewed with caution, because the
conformational parameters employed were derived from studies on
globular hydrophilic proteins and may not be necessarily extendable

to membranous peptides (43).

5. Erythrocyte cytochrome b5

On the basis ‘of studies done with bovine erythrocyte cytochrome
b5, Hultquist et al. (32) proposed that the soluble erythrocyte
cytochrome b5 is derived during erythropoiesis by proteolytic
cleavage of the membrane-bound cytochrome b5 present in the
endoplasmic reticulum of the proerythroblasts. Bovine erythrocyte
cytochrome b5 is indistinguishable from protease-solubilized liver
microsomal cytochrome b5 on the basis of spectral properties (22) and

ability to react with other redox proteins (24). Cytosolic



17

cytochrome b5 is not present in an immature erythroid cell, but
instead, a membranous form of the cytochrome b5 is present (45). An
electron microscope study has shown that the endoplasmic reticulum
disappears during erythroid maturation (32). There are reports of
the existence of stromal proteases which are activated after
hemolysis (46, 47). It is possible that a particular class of
proteases convert membrane-bound cytochrome b5 into cytosolic
cytochrome b5 during erythroid maturation. Since bovine liver
lysosomal proteases can digest microsomal cytochrome bs to produce
hydrophilic segments which correspond to erythrocyte cytochrome b5 in
vitro, these proteases can serve as a good model for the putative
erythroid proteases which solubilize microsomal cytochrome b5 during
erythroid maturation.

Comparison of the cytochrome b5 sequences of both erythrocyte and
liver forms in species such as bovine support the hypothesis of
Hultquist and coworkers (32), because the sequence of erythrocyte
cytochrome bS is identical to liver cytochrome b5 from residue 1 to
97. The problem is that residue 97 is proline for human erythrocyte
cytochrome b5 and serine for the porcine protein, while residues 97
for human and porcine liver cytochrome b5 are threonine. Three
possibilities exist to explain the above problem. 1. There are two
or more cytochrome b5 genes in those species, and the cytosolic
cytochrome b5 and microsomal cytochrome b5 are encoded by two
different, but closely related genes; 2. There is only one
cytochrome b5 gene which gives rise to more than one form of
cytochrome b5 protein by an alternative RNA splicing mechanism. It

has been shown in mouse that four forms of myelin basic protein are
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encoded by a single gene, and all four mRNAs are produced through an
alternative splicing mechanism (48). 3. There is only one
cytochrome b5 gene, but different cytochrome b5 proteins are due to
posttranslational modifications. Proteolytic cleavage of the
membrane-bound cytochrome b5 to produce the cytosolic cytochrome b5
in erythrocyte cells can explain the bovine case. In human and
porcine, there may be one more modification after the proteolytic
cleavage, the addition of one amino acid to the C-terminal of the
proteolytically processed protein. I am not aware of any precedents
for the third possibility. The investigation of this problem
rebresents one of the main goals of the work described in this

study.
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A cDNA clone encoding the chicken liver cytochrome bs was isolated by probing a
library with synthetic oligonucleotides based on a partial amino acid sequence of the
protein. Determination of the DNA sequence indicated a 414-nucleotide open reading
frame which encodes a 138-amino acid residue polypeptide. The open reading frame
contains 6 amino acids at the amino terminus which were not present on any of the
cytochrome bs polypeptides for which the amino acid sequence has been determined
directly, suggesting that the protein is proteolytically processed to the mature form.
The results of genomic Southern analysis were consistent with the presence of two
structurally different genes in the chicken genome, raising the possibility that the
soluble and membrane-bound forms of the protein are the products of separate genes.

© 1988 Academic Press, Inc.

Liver microsomal cytochrome bs is an amphipathic
membrane protein consisting of an N-terminal hy-
drophilic domain which contains a functional heme
as a catalytic site and a C-terminal hydrophobic do-
main which anchors the protein in the microsomal
membrane (1, 2). It functions as a component of the
microsomal stearyl-CoA desaturase (3, 4), and is also
involved in liver cytochrome P-450 reduction (5, 6).
Determination of part or all of the amino acid se-
quences of liver cytochrome bs from six different
vertebrate species (7-14) has revealed that the pri-
mary structures are highly conserved (15). The pro-
teins characterized to date have a molecular mass of
about 16 kDa and contain 133 amino acid residues.
The protein has been extensively studied as a model
for protein-protein interaction, protein-membrane
interaction, and the dynamics of heme protein fold-
ing (16-19). However, many questions remain con-
cerning the mechanism and topology of the interac-
tion of the cytochrome with membranes, the struc-
ture and regulation of the genes which code for
cytochrome by, and the structure of the protein in
nonvertebrates.

! To whom correspondence should be addressed.
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Although no genes encoding cytochrome bs have
been cloned previously, a gene encoding rat liver cy-
tochrome by has been synthesized and expressed in
Escherichia coli (20). Since there are several ques-
tions which cannot be addressed with a synthetic
gene we have undertaken the cloning and sequencing
of a chicken liver cDNA which encodes the mem-
brane-associated cytochrome bs.

EXPERIMENTAL PROCEDURES

Materials. A chicken liver A-gtll ¢cDNA library,
constructed by blunt-end ligating EcoRI linkers to
c¢DNA, was kindly provided by J. Dodgson (Michigan
State University). Oligonucleotides were synthesized
by the phosphoramidite method on an Applied Bio-
systems 380A instrument. The plasmid pBluescript
(KS*) was purchased from Stratagene (San Di-
ego, CA).

Plaque screening. The cDNA library was plated on
E. coli Y1090 and nitrocellulose plaque lifts were
screened with the oligonucleotide mixtures bs-1 and
bs-4 (Fig. 1) which were end-labeled to an average
specific activity of 10° dpm ug™! with [v-?PJATP
(3000 Ci mmol™') and T4 polynucleotide kinase (21).
Filters were prehybridized 3 to 5 h at 42°C in 6X SSC

0003-9861/88 $3.00
Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.



GluAsp Phe Glu Asp Va!

GAA GAC TTC GAA GAC GT
G T 17T C T

Glu Val Gin Lys His Asn

GAA GTA CAA AAA CAT AA
G €C G 6 C
G
T

by-4

F1G. 1. The oligonucleotide mixtures used as probes
for the cytochrome bs gene.

(1X SSC is 150 mm NaCl, 15 mM sodium citrate ad-
justed to pH 7.0), 50 mM NaPO, (pH 6.8), 5X Den-
hardt's solution (0.1% (w/v) Ficoll, 0.1% (w/v) poly-
vinylpyrrolidone, and 0.1% (w/v) bovine serum albu-
min), 100 ug ml™! of sonicated herring DNA (Sigma).
The hybridizations were carried out at 37°C for 24 to
30 h in the same solutions with the addition of 10%
(w/v) dextran sulfate and 1-2 pmol ml™! of labeled
oligonucleotide. The temperature for final washing
was based on an empirical formula (22) by assuming
that all ambiguous positions contained A or T bases.
The filters were washed four times for 5 min in 6X
SSC at 22°C, twice for 30 min at 37°C, and once for 20
min at 42°C (for bs-1) or 40°C (for bs-4).

DNA sequence analysis. The 0.8-kb insert in a re-
combinant phage was excised as a single fragment by
cleavage with EcoRI and subcloned in both orienta-
tions into the EcoRlI site of pBluescript to produce
the recombinant plasmids pHZ5-1 and pHZ5-2. A
series of overlapping unidirectional deletions were
made in plasmids pHZ5-1 and pHZ5-2 with exonucle-
ase III and mung bean nuclease essentially as de-
scribed (23). The deleted inserts from both orienta-
tions were self-ligated to produce a series of overlap-
ping plasmids which were then transformed into E.
coli DH5a. The plasmids were sequenced on both
strands as double-stranded DNA by the chain termi-
nation method as described (24).

Genomic Southern analysis. The chicken DNA was
purchased from Clontech Laboratories (Palo Alto,
CA). DNA (5 ug per lane) was digested to completion
with restriction endonucleases, resolved by electro-
phoresis in 0.8% agarose gels containing 89 mM
Tris-borate (pH 8.2), 2 mM EDTA, and transferred to
nitrocellulose filters as described (21). The filters
were prehybridized for 4 to 6 h at 42°C in 50% (v/v)
formamide, 5X SSC, 50 mM NaPO, (pH 6.8), 5X Den-
hardt’s solution, 250 ug ml~! of sonicated herring
DNA. The hybridization was carried out at 42°C for
about 20 h in the same solutions with the addition of
0.8 ug of probe DNA which was nick translated with
[«-2P)CTP to a specific activity of about 10* dpm
ug™! (21). After hybridization, the filters were
washed three times for 20 min at 42°C in 2X SSC,
0.1% SDS, then twice for 30 min at 65°C in 0.1X SSC,
0.1% SDS.
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RESULTS AND DISCUSSION

From a partial amino acid sequence of the chicken
liver cytochrome by (13) we designed two nonoverlap-
ping oligonucleotide mixtures of 17-mers (Fig. 1)
which had the lowest possible degree of ambiguity. It
was subsequently learned that the region of amino
acid sequence used to design oligonucleotide mixture
bs-1 erroneously contained an Asp residue instead of
an Asn residue (14). However, this resulted in only
one incorrect nucleotide in the oligonucleotide mix-
ture and did not prevent the effective use of the mix-
ture as a hybridization probe. These oligonucleotides
were used to screen a Agtll cDNA library con-
structed from chicken liver poly(A)* RNA. Among
the 200,000 plaques screened, 41 hybridized to oligo-
nucleotide mixture bs-1. Only 13 out of the 41 clones
were also recognized by oligonucleotide mixture bs-4
which was derived from a sequence near the amino
terminus of chicken cytochrome bs. The size of the
inserts in these 13 phage were determined by restric-
tion analysis, the largest insert, a 0.8-kb EcoRI frag-
ment, from one of the 13 phage was subcloned in both
orientations into the EcoRI site of pBluescript, and
the DNA sequence was determined.

The DNA sequence of the cDNA clone encoding
chicken liver cytochrome bs and the deduced amino
acid sequence of the open reading frame is shown in
Fig. 2. The clone lacked a 3-poly(A) sequence, sug-
gesting incomplete methylation during library con-
struction. Because the clone had only 20 nucleotides
upstream of the first ATG codon, it appears likely
that some of the mRNA leader sequence is also miss-
ing. Thus, it is not possible to exclude the possibility
that translation begins at a codon further upstream.
However, the deduced amino acid sequence is in
agreement at each residue with at least one of the
two independently obtained partial amino acid se-
quences of the chicken protein which were previously
obtained from residue 8 to 91 (13, 14). The open read-
ing frame of 414 nucleotides encodes a polypeptide of
15,544 Da containing 138 amino acid residues. All of
the previously determined liver cytochrome by se-
quences contain 133 amino acid residues and, where
it has been unambiguously determined (15), begin
with an N-acetylated alanine (designated Ala 1 in
Fig. 2). Although the amino terminus for the chicken
protein was not previously determined, the appar-
ently ubiquitous presence of an N-terminal alanine
on the other vertebrate proteins raises the possibility
that the chicken and other forms of the protein are
proteolytically processed from a larger precursor.

Alignment of all available microsomal cytochrome
by sequences indicates striking similarity between
the chicken and other sources of cytochrome by (Fig.
3). As with the cytochrome by from other vertebrates,
most of the sequence heterogeneity is located at the
N- and C-terminal ends. The sequence from residues
42 to 72, which forms the heme-binding site (25), is
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0 50 60

10 30 4
GGCTGTCTGTCAAGCGAGGAT ATG GTG GGC TCC AGT GAA GCC GGC GGT GAG GCG TGG CGG GGC
Met Val Gly Ser Ser Glu Ala Gly Gly Glu Ala Trp Arg Gly
-5 1 H

70

100 110 120

80 90
CGC TAC TAT CGG CTG GAG GAG GTG CAG AAG CAT AAC AAC AGC CAG AGC ACC TGG ATC ATC
Arg Tyr Tyr Arg Leu Glu Glu Val Gln Lys His Asn Asn Ser Gln Ser Thr Trp Ile Ile
25

10 15
130 140 150

20

160 180

170
GTG CAC CAC CGT ATC TAC GAC ATC ACC AAG TTC CTG GAT GAG CAC CCT GGT GGA GAA GAA
Val His His Arg Ile Tyr A;p Ile Thr Lys Phe Leu Asp Glu His Pro Gly Gly Glu Glu
3 45

30
190 200

40
220 230 240

210
GTC CTT AGG GAG CAA GCT GGG GGA GAT GCT ACT GAG AAC TTT GAA GAT GTT GGC CAC TCT
Val Leu Arg Glu GIn Ala Gly Gly Asp Ala Thr Glu Asn Phe Glu Asp Val Gly His Ser
65

50 55
250 260 270

60
280 290 300

ACA GAT GCA AGG GCG CTG TCG GAA ACA TTT ATT ATT GGG GAG CTT CAC CCG GAT GAT AGA
Thr Asp Ala Arg Ala Leu Ser Glu Thr Phe Ile Ile Gly Glu Leu His Pro Asp Asp Arg
75

70
310 320 330

80 85
340 350 360

CCG AAG CTT CAG AAA CCA GCA GAA ACT CTT ATT ACC ACT GTG CAG TCT AAT TCC AGT TCA
Pro Lys Leu GIn Lys Pro Ala Glu Thr Leu Ile Thr Thr Val Gln Ser Asn Ser Ser Ser
95

90
370 380 390

100 105
400 410 420

TGG TCC AAC TGG GTG ATC CCG GCA ATA GCA GCA ATT ATT GTG GCC CTG ATG TAT CGT TcCC
Trp Ser Asn Trp Val Ile Pro Ala Ile Ala Ala Ile Ile Val Ala Leu ';;; Tyr Arg Ser

110 115
430 440 450

120
460 470 480 490

TAC ATG TCA GAG TGA GCACCTTACTGAGAACTAATGCAAGAAGAGACTGATCTGGGAGAGAATAGAAGCAATCC

Tyr Met Ser Glu ---
130

560 $70

500 510 520 530 540 550
TAACCCAATATATTTCCTGACAAAAGCCTGATGTCTGAAGATAAATTCAACTTTTTCAGAAAACTGAACAATTCTTTTC

580 590 600 610 620 630 640 650
TGCTGTGCACTTTTCTTGATGTTGCCTTCTTATTTGCTGCACTGAAGTAATAAAAAGGCAGCATTTCTTTTCGTATAAC

660 670 680 690 700 710 720 730
AATATATTCTCTAATGAATGATTTGATAACTGTATTAGTTGCTGTATTAAAATAGTTTTGTAAGTAGCATTCTGATTCT

740 750 760 770
GGTTATATCTTTTTAATCTGTAATGGAGTCTGTCTTGCA

F1G. 2. Composite nucleotide sequence of the cDNA for chicken cytochrome by and the deduced
amino acid sequence. The amino acid sequence is numbered from the alanine residue most com-
monly found at the amino terminus of the vertebrate protein. The regions of homology to the
oligonucleotide probes extend from nucleotides 82 to 98 and 217 to 233 for bs-4 and bs-1, respectively.

completely conserved. The chicken polypeptide lacks
one amino acid at the C-terminus which is present on
all other known sequences. The overall amino acid
sequence homologies of chicken liver cytochrome by
with the available sequences for this protein from
other species are human 76.8%, porcine 77.4%, bo-
vine 71.8%, rat 78.2%, and rabbit 79%.

In vertebrate erythrocytes, a cytochrome by is
present in the soluble fraction where it is involved in
the reduction of methemoglobin (26). The sequence of
bovine erythrocyte cytochrome bs was reported to be
identical to the liver microsomal protein from resi-
dues 1 to 97, suggesting that the erythrocyte protein
was derived from the same gene product as the mi-
crosomal protein by proteolytic processing during

erythroid maturation (27). However, the presence of
an amino acid difference at the C-terminal residue of
the erythrocyte cytochrome bs from human, porcine
(15), and rabbit (7), suggests that mammalian eryth-
rocyte cytochrome b5 is encoded by a different
mRNA. Since only one amino acid difference was ob-
served between the two forms, the two kinds of
mRNA could arise from a single gene by differential
mRNA splicing, or could be the products of highly
conserved separate genes. In order to examine these
possibilities we probed filters containing restriction
digests of total chicken DNA with the complete
cDNA and with a 3 HindIII fragment of the cDNA
(nucleotides 307 to 774 in Fig. 2) which encodes only
the hydrophobic domain (residues 91 to 132). When
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Chicken
Porcine
Bovine
Horse
Rat
Rabbit

Chicken
Porcine
Bovine
Horse
Rat
Rabbit

Chicken
Porcine
Bovine
Horse
Rat
Rabbit

Chicken
Porcine (8)
Bovine (9)
Horse (10)
Rat (11)
Rabbit (12)

FI1G. 3. A comparison of the deduced amino acid sequence of chicken cytochrome bs with the
sequences obtained by direct amino acid sequencing of the microsomal cytochrome bs from other
vertebrates. The numbers in parentheses give the references for the sequences. The residues which
differ from the most consensus sequence are enclosed in boxes.

the entire cDNA was used as a probe we observed two
EcoRI bands of 18 and 8.7 kb, three HindIII frag-
ments of 3.5, 2.3, and 1.4 kb, and two Bgl/II fragments
of 16.5 and 2.3 kb (Fig. 4A). On the basis of other
experiments (results not presented), we consider it
likely that the slightly reduced intensity of the 18-kb
EcoRI band was due to incomplete fragmentation by
the acid treatment which resulted in incomplete
transfer to the nitrocellulose filter. By contrast,
when we probed the filters with the region of cDNA
encoding the hydrophobic domain, we observed ho-
mology only to one EcoRI fragment of 8.7, one
HindIIl fragment of 3.5 kg, and one BglII fragment
of 16.5 kb (Fig. 4B). There are no internal EcoRI or
Bglll sites and only one HindIII site in the cDNA
clone. Thus, these results could be explained by the
presence of two genes, one of which lacks homology
to the region of the cDNA which encodes the hydro-
phobic domain. These results are also consistent with
the presence of one gene containing intron sequences
of less than about 5.3 kb total length with one site
each for EcoRl, Bglll, and HindIIl. An unequivocal
resolution of this problem will require the cloning
and characterization of a cDNA for the soluble cy-
tochrome bs from erythroid cells. In this respect, the

E H B E H B8
23.1 - e -
9.4 - o« )
6.6 - -
4.4 -
- -
2.3 - - O
2.0 - -
L d
A B

F1G. 4. Hybridization of cytochrome by cDNA
probes to chicken genomic DNA. The genomic DNA
was digested with EcoRI (E), HindIII (H), and BgllI
(B).[A] The entire cDNA was used as a probe. [B] The
Hindlll fragment encoding the hydrophobic domain
was used as a probe.
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chicken is a favorable experimental organism be-
cause it has nucleated erythroid cells. The availabil-
ity of the cDNA clone described here should facilitate
a resolution of this and several other problems con-
cerning the structure and function of cytochrome bs.
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CHAPTER II1

CYTOCHROME B, GENE IN CHICKEN

Abstract

A cDNA clone coding for chicken cytochrome b5 has been isolated
from an erythrocyte cDNA library using synthetic oligonucleotides
based on a partial amino acid sequence of the protein and the DNA
sequence of the previously described chicken 1iver cytochrome b5 cDNA
clone. The complete homology between the erythrocyte cDNA and the
liver cDNA suggests that they are transcribed from the same gene.
Both genomic blotting data and the mapping of cytochrome b5 genomic
clones support the notion that there is only one cytochrome b5 gene
in chicken. This gene appears to be responsible for the two forms of
cytochrome b5 protein discovered in different organisms. This
suggests that, at least in chicken, the formation of soluble
erythrocyte cytochrome b5 occurs by proteolytic processing of

membrane-bound cytochrome b5 found in liver.
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Introduction

Cytochrome b5 is a heme protein (1,2) which is involved in the
fatty acid desaturation in animal liver (3), methemoglobin reduction
in erythrocytes (4,5) and cytochrome P-450 reduction (6).. It exists
in two forms: an amphipathic form in the microsomal membrane of
animal liver, and a cytosolic form in erythrocytes. The amphipathic
form, which is 133 amino acid residues long, consists of an
N-terminal hydrophilic domain which contains a functional heme as a
catalytic site and a C-terminal hydrophobic domain which anchors the
protein in the microsomal membrane. The cytosolic form is equivalent
to the hydrophilic domain of the amphipathic form. Both forms have
been purified and sequenced from several species (1, 7). The amino
acid sequences of the two forms in a given species are either the
same or differ by only one amino acid residue at the C-terminus of
the cytosolic form. For example, the primary structure of bovine
erythrocyte cytochrome b5 is identical to its liver form from
residues 1 to 97. However, residue 97 is proline for human
erythrocyte and serine for porcine erythrocyte forms, whereas residue
97 of both human and porcine liver forms is threonine. This raises
possibility that two forms of cytochrome b5 come from two different
mRNAs. But the question as to the whether those mRNAs are
transcribed from a single gene or two different genes cannot be
answered with available data.

Isolation of a cytochrome b5 cDNA clone from chicken liver has
provided new information about cytochrome b5 primary structure (8).

The genomic Southern analysis using this liver cDNA clone as a probe
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Glu Asp Phe Glu Asp Val
bg-1  GAA GAC TTC GAA GAC GT
G T T € T

Glu Val GIn Lys His Asn
b5-4 GAA GTA CAA AAA CAT AA
G C G G C

G
T
Gly Arg Tyr Tyr Arg Leu Glu
b5-7 (3’)CCG GCG ATG ATA GCC GAC CTC(5’)

Val Ile Pro Ala Ile Ala Ala
b5-8 (3’)CAC TAG GGC CGT TAT CGT CGT(5’)

Figure 1. 011gonuc1eot1des designed from chicken
cytochrome b, protein (b 1, and b.-4), and from
chicken 1ive§ cytochrome b5 clone b5 7, and b5-8).
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indicated that either one gene or at most two genes encode cytochrome
b5 in chicken. In this chapter, we describe the isolation and
characterization of cDNA clones from erythrocyte cells and genomic
clones of cytochrome b5. The results presented here suggest that
there is only one gene in chicken which is responsible for all forms
of cytochrome b5. This suggests that posttranslational modification
is the mechanism responsible for the synthesis of the two forms of

cytochrome b5 in chicken.
Materials and methods
Materials:

A chicken erythrocyte lambda gtll cDNA library was constructed by
blunt-end 1igating EcoRI linkers to cDNA (26). A chicken Charon 4A
genomic library was constructed by collecting 7-23 kb fragments from
a partial digestion of genomic DNA with enzymes Alul and Haelll, then
ligating them to EcoRI linkers (25). Both libraries were kind gifts
from Dr. J. Dodgson (Department Of Microbilogy and Public Health,
Michigan State University). The total RNA used for Northern blots
and the beta-globin gene used as an internal standard were from D.
Browne and J. Dodgson. The plasmid pBluescript (KS+) was purchased
from Stratagene (San Diego, CA). Oligonucleotides (figure 1) were
synthesized by the phosphoramidite method on an Applied Biosystems
380A instrument.
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Plaque screening:

The cDNA library was plated on E. coli Y1090 and nitrocellulose
plaque 1ifts were screened with the oligonucleotide mixtures b5-1,
b5-4, b5-7, and b5-8 (fig. 1) which were end-l1abeled to an average
specific activity of 107 dpm ug™! with ( v-32p)ATP (3000 Ci mmo1™!)
and T4 polynucleotide kinase (9). Filters were prehybridized 3 to 5
h at 42°C in 6 X SSC (1 X SSC fs 150 mM NaCl, 15 mM sodium citrate
adjusted to pH 7.0), 50 mM NaPO4 (pH 6.8), 5 X Denhardt’solution
(0.1% (w/v) Ficoll, 0.1% (w/v) polyvinylpyrrolidone, and 0.1% (w/v)
bovine serum albumin) and 100 ug ml'l of sonicated herring DNA
(Sigma). The hybridizations were carried out at 37°C for 24 to 36 h
in the same solution with the addition of 1-2 pmol ml'l of labeled
oligonucleotide. The temperature for final washing was based on an
empirical formula (10) by assuming that all ambiguous positions
contained A or T bases. The filters were washed four times for 5 min
in 6 X SSC at 37°C, twice for 30 min at 42°C (for bg-1), 40°C (for
bg-4), and 60°C (for bg-7 and bg-8).

The charon 4A library was plated on E. coli 803 supF and
nitrocellulose plaque 1ifts were screened with the chicken liver cDNA
clone which was labelled by random-priming (24) to at least 109 dpm
ug™! with (a-32P)dcTP (3000 Ci mmo1™!). Filters were prehybridized
2 to 6 h at 42°C in 6 X SSC, 30% formamide (v/v), 50 mM NaPO, (pH
6.8), 5 X Denhardt’s solution, 250 ug ml'l sonicated hering DNA. The
hybridizations were carried at 42°C for 24-46 h in the same solution

with the addition of 0.2 ug of labeled probe. The washing conditions
were as follows: once in 6 X SSC plus 30% formamide at 42°C for 10
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min, twice in 2 X SSC plus 0.5% SDS at 55°C for 20 min each time,
twice in 0.1 X SSC plus 0.1% SDS at 55°C for 20 min each time.

DNA sequence analysis:

The 1.5 kb insert in a recombinant phage was excised as a single
fragmentby cleavage with EcoRI and subcloned in both orientations
into the EcoRI site of pBluscript to produce the recombinant plasmids
pHZ-3 and pHZ-4. A series of overlapping unidirectional deletions
were made in plasmids pHZ-3 and pHZ-4 with exonuclease III and mung
bean nuclease essentially as described (11). The deleted inserts
from both orientaions were self-ligated to produce a series of
overlapping plasmids which were sequenced on both strands as
double-stranded DNA by the chain termination method as described
(12).

Genomic Southern analysis:

The chicken DNA was purchased from Clontech Laboratories (Palo
Alto, CA). DNA (5 ug per lane) was digested to completion with
restriction endonucleases, resolved by electrophoresis in 0.8%
agarose gels containing 89 mM Tris-borate (pH 8.2), 2 mM EDTA, and
transferred to nitrocellulose filters as described (9). The filter
was prehybridized for 4 to 6 h at 42°C in 50% (v/v) formamide, 5 X
SSC, 50 mM NaPO4 (pH 6.8), 5 X Denhardt’s solution, 250 ug ml’l
sonicated herring DNA. The hybridization was carried out at 42°C for
about 20 h in the same solutions with the addition of 0.8 ug of probe
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'DNA which was nick translated with ( a-32P)dCTP to a specific
activity of about 108 dpm ug'l (9). After hybridization, the filter
was washed three times for 20 min at 42°C in 2 X SSC, 0.1% SDS, then
twice for 30 min at 65°C in 0.1 X SSC, 0.1% SDS.

Northern analysis:

Total RNA (10 ug per lane) was electrophoresed in a 0.8% agarose
gel containing formaldehyde (13), then blotted onto a nitrocellulose
filter. The filter was prehybridized and hybridized under exactly
the same conditions as in the genomic Southern analysis. The filter
was first probed with the cytochrome b5 cDNA clone of erythrocytes,
exposed to films, then rehybridized to a chicken g-globin gene (25).

Results

1. Cloning and sequencing of a cytochrome b5 gene from erythrocyte

cells

Oligonucleotides b5-l and b5-4 were previously used to obtain a
cDNA clone for cytochrome b5 from chicken liver (8). These
oligonucleotides were also used to screen a chicken erythrocyte cDNA
library. Out of 200,000 plaques screened, 19 hybridized to b5-l, and
two of these also hybridized to b5-4. These two clones, designated
lambda HZ-3 and 1lambda HZ-5, were also recognized by
oligonucleotides b5-7 and b5-8 which were based on regions of

sequence from the hydrophilic domain and hydrophobic domain of
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cytochrome b5 respectively. The fact that the hydrophobic domain
probe (b5-8) hybridized to the two clones suggested that cytochrome
b5 mRNA in erythrocytes encodes a hydrophobic domain comparable to
that in cytochrome b5 mRNA from liver.

The inserts in lambda HZ-3 lambda HZ-5 were subcloned'into the
EcoRI site of pBluescript to produce plasmids designated pHZ-3 and
pHZ-5. The larger insert (1.5 kb) was in pHZ-3. The complete
sequence of the insert in pHZ-3 is shown in figure 2. This cDNA
clone was approximately twice as large as the cDNA clone from chicken
liver (8). The region of the cDNA from nucleotides 27 to 799 was
106% homologous to the liver cDNA clone. The open reading frame
extends from nucleotide 48 to 462, so most of the extra sequence in

pHZ-3 is at the 3’ untranslated region.

2. Expression of the cytochrome b5 gene in liver and erythrocyte

cells

The complete sequence identity between the cDNAs from erythrocyte
and liver cells suggested that there is only one kind of cytochrome
b5 message in both liver and erythrocyte cells. In order to examine
this, a Northern blot of total RNA from liver and erythrocyte cells
was probed with the cDNA clone from liver (figure 3).

The cytochrome b5 probe hybridized to a 1.6 kb mRNA from liver
which is approximately the same size as the cDNA clone from
erythrocytes. The intensity of signal was relatively high as
indicated by the fact that panel A in Figure 3 is an 24 h exposure.

By contrast, there was no apparant hybridization of the probe to the
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Figure 3. The Northern Blotting of liver total RNA (lane 1) and
erythrocyte total RNA (lane 2). Filter was first hybridized to
cytochrome b5 gene (A), then the filter was washed before it was
rehybridized“to bete-globin gene (B).
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bs-8 bg-1 bs-7
H HH E EE s
HEH E H HH g2
H EH E H g17

Figure 4. Restriction maps of three genomic clones of
cytochrome b Wavy lines designate the fragments which

hybridized tg.the indicated oligonucleotides.
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'erythrocyte RNA lane, even after 3 days exposure. Presumably the
abundance of cytochrome b5 mRNA is relatively low in this cell type.
This is consistant with the fact that only two clones out of 200,000
plaques screened were recovered from the erythrocyte cDNA library.
In order to ensure that the mRNA was not degraded, the filter was
rehybridized to the beta-globin gene. In this case, the probe
hybridized strongly to an mRNA of the correct size (0.6 kb). This
internal standard indicates that the RNA from erythrocytes was intact
and was accurately quantitated. These results are consistent with
the hypothesis that the membrane-bound form (amphipathic form) and
the cytosolic form (hydrophilic form) of cytochrome b5 are the
products of posttranslational modification of a polypeptide produced

from a common mRNA.
3. Cloning and mapping the genomic sequences

The chicken Tiver cDNA clone was used as a probe to screen a
chicken Charon 4A genomic library. Twelve clones were isolated from
600,000 plaques. Analysis of the restriction pattern of these phage
indicated that only three were independent. A partial restriction
map for each of these 3 clones, designated g2, g5, and gl7, is
presented in figure 4. The devised restriction maps overlapped,
indicating that they all contain a common region of the chicken

genome.



41

A B C
23.1— 23— D
QA — 23.1 94—
6.6— 94— bb= . pg
’ 4.4— . C—b5-7
®
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2.3— 2.0— [
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Figure 5. Restriction digests of chicken genomic DNA and
the g5 clone probed with liver cytochrome b. cDNA or
oligonucleotides. Lanes A and B are genomig digests, C
and D are g5 clone digests. A and C were digested with
Hind III, B and D were with Xba I. A, B, and C were
probed with cytochrome b. gene, and D was probed with
oligonucleotides b.-1, bg-7, and b.-8 sequentially.

The bands recognizgd by §pecific o?igonucleotides

in lane D are marked.
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4. Genomic southern analysis

In a previous experiment (see Chapter II), chicken genomic DNA
was digested with 3 restriction enzymes and probed with the chicken
liver cytochrome b5 cDNA clone. The results were consistent with 2
possible explanations. 1. There are two gehes in the chicken genome
which give rise to two kinds of cytochrome b5; 2. There is only one
gene in the chicken genome, but within the gene, there is
approximately 5.3 kb of intron DNA which harbors one site each for
EcoRI, BglII, and HindIII. When clone g5 was digested with HindIII
and Xbal and probed with the chicken liver cDNA clone, the
hybridization'pattern produced was exactly like that of genomic
digests (figure 5).

The results of this experiment indicate that there is only one
cytochrome b5 gene in the chicken genome which is entirely contained
in clone g5, because the 18 kb fragment of lambda clone g5 generated
tha same hybridization pattern as the total chicken genomic DNA did.
Clone g5 encodes one copy of microsomal cytochrome b5 gene. From
analysing the size of the fragments which hybridize to the
oligonucleotides, it is apparent that there are introns within the
gene, and the introns are more than 5.3 kb long, but less than 9.3

kb.
Discussion

It has been suggested that the bovine erythrocyte cytochrome b5

protein is derived from the same gene product as the microsomal
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protein by proteolytic processing during erythroid maturation (7).
This is based on the observation that the cytosolic cytochrome b5 is
not present in an immature erythroid cell. Instead, a membrane-bound
form of cytochrome b5 is present (23). Electron microscopy also
showed that the endoplasmic reticulum disappears during erythroid
maturation. Microsomal cytochrome b5 from liver cells can, when
treated with livér lysosomal proteases, produces two hydrophilic
segments one of which was identical to the form II of bovine
erythrocyte cytochrome b5 (7). Erythrocyte cytochrome b5 I and II
are equivalent to residues 1-97 and 1-95, respectively, of microsomal
cytochrome bS in bovine. The existence of 1ysosomal proteases
capable of converting microsomal cytochrome b5 to the cytosolic
protein nurtured the idea that the putative erythroid proteases are
responsible for the solubilization of microsomal cytochrome b5 in
erythrocyte cells. Several lines of evidence presented here support
the above hypothesis. First, a cDNA clone from erythrocytes was
about 1.5 kb long<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>