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ABSTRACT

SYMBOLIC, ALGEBRAIC, AND NUMERIC SOLUTIONS TO HEAT CONDUCTION

PROBLEMS USING GREEN'S FUNCTIONS

by
Paul Henry Zang

Symbolic calculations that involve tedious, error-prone evaluation
have plagued the scientist and engineer for many centuries. A new tool
called computer algebra can be used to evaluate complex mathematical
operations, such as differentiation and integration, which can be
repetitious when applied to partial differential equations. Symbolic
results from computer algebra systems can offer insight to problems
which numerical results lack.

Symbolic manipulation of expressions and operations are used
extensively in this thesis. A new technique, using computer algebra,
for the symbolic solution of heat diffusion-type problems is examined.
The new technique involves the Green'’s function approach and uses
Laplace transforms and separation of variables for determining
appropriate Green's functions. Data bases of Green’'s functions and
integrals are used to speed up the calculation time of solutiomns.

A systematic and orderly procedure for developing Green'’s functions
which are computationally efficient for small dimensionless times is
examined. The small time Green’'s functions are used in a partitioning

scheme which accelerates the evaluation time of the symbolic solutions.
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Two computer programs are presented that symbolically calculates
temperature distributions for a limited number of heat transfer
problems. The one dimensional program called CANSS generated solutions
for various types of boundary conditions, initial conditions, and volume
energy heat sources. The two dimensional program called CANSS2D
generates temperature distributions for boundary conditions of the
zeroth, first and second kinds. The temperature distributions of
examples presented in this thesis match solutions found in the
literature and are partitioned in time to increase evaluation

efficiency.
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CHAPTER 1

INTRODUCTION

The first introduction of a child to mathematics is frequently
symbolic. The child learns that symbols have meaning - such as, two
crossed lines mean the numbers are added and two horizontal lines means
what follows is the sum total. Calculus brings the onset of the numeri-
cal approach and the acceptance of symbols becomes lost in the quest for
approximate solutions.

Computers, long used to reduce the repetition and increase the
accuracy of numerical calculation, can now do the same for symbolic
analysis. Computer algebra systems are used to define new mathematical
concepts and increase the speed of repetitive symbolic analysis pre-
viously performed by hand. Symbolic analysis can give insight to the
structure of the physics of problems that purely numerical solutions
miss.

Computer algebra programs work best on algorithmic representations
of systems that involve complex mathematical operations, such as in-
tegration or differentiation, but are straightforward. Symbolic
calculations of this type are said to be "fierce". At another extreme,
computer algebra programs also work well on systems that represent a
broad class of problems and can be expressed using an algebraic struc-
ture. The calculations for this case are not "fierce", but tedious and

repetitive.



Symbolic manipulation, or computer algebra, was brought into the
public domain by a program called MACSYMA [The MATHLAB Group, 1983] in
the early 70’s. Since that time, many computer algebra systems have
been brought to the market. The early versions of computer algebra
programs were expensive, memory intensive, and dependent on specific
computer hardware. Today, the computer algebra software is more user
friendly, less machine dependent, and less expensive.

The introduction of symbolic software compatible with micro-
computers, personal computers, and, more recently, hand held
programmable calculators encourages the use of computer algebra and will
ultimately lead to educational programs in symbolic manipulation.
Computer algebra can be used as an educational tool in many branches of
science including calculus, physics, chemistry, and engineering. It is
now possible for most universities to offer computer algebra to students
as a learning aid.

This thesis presents a study of the application of computer algebra
techniques to a field of engineering and can be described as computer
aided symbolic engineering (CASE). Symbolic computer programs use
mathematical concepts to describe, analyze, and evaluate the mathemati-
cal operations that formerly required pencil-and-paper analysis.
Symbolic methods improve accuracy by evaluating solution in closed form.
The accuracy of the solutions obtained using computer algebra techniques
is dependent on the accuracy of the parameters or variables input to the
problem thus reducing or eliminating human error caused by evaluating
repetitive algebraic processes. The pattern revealed by a group of
variables or parameters will cover an infinite number of cases.

Computer algebra can be used in the areas of fluid dynamics, to solve
large full symbolic matrices, finite element methods, to generate ac-

curate trial functions, and machine dynamics to name a few. The CASE



field will continue to grow as more uses are discovered for computer

algebra.

Hayes and Michie [1984] state an expert system applies a structured
set of rules to a data base to evaluate input and calculate output, and
is a rudimentary form of artificial intelligence (AI). The expert
system discussed in this thesis employes a rule based procedure
(inference engine) along with known facts and assertions (knowledge
base) and is used to treat problems in heat diffusion. Figure 1.1
represents the structure of a expert system.

An expert system called computer algebraic, pumeric, and symbolic
system (CANSS) applies symbolic manipulation to problems in mathematical
physics. The CANSS program developed in this thesis has the capacity to
solve heat diffusion problems not found in the literature. The CANSS
program represents a new technique in CASE for obtaining temperature
distributions for linear, multi-dimensional, transient heat diffusion
problems by the application of symbolic manipulation computer software.
As a tool for heat transfer engineers in the 80’s and 90’'s, symbolic
analysis can be compared to the introduction of finite element tech-
niques to transient heat transfer in the early 70’s.

The CANSS program uses a Green’s function approach and a symbolic
manipulation program called SMP [1983] to generate analytical tempera-
ture distributions for problems that involve various linear boundary
conditions, initial conditions and volume energy heat sources. The
technique can calculate temperature distributions for some nonlinear
heat diffusion problems by using a transformation found in Ozisik [1980,
Pg. 440] using the Kirchhoff transformation. Some nonlinear diffusion
problems can be treated as linear for special combinations of the physi-

cal properties.
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Transient temperature distributions for finite, infinite, and semi-
infinite single or multi-dimensional bodies are typically calculated
using finite difference or finite element methods. These methods gener-
ate information about the temperature for a finite set of points or
nodes and times. Care must be taken with the distribution size of the
points or mesh and the time step to insure stability of the solution.
Solutions obtained by numerical techniques must be re-calculated for the
entire domain of space and time when one or more input parameters
change. Simple substitution of new parameters into the symbolic form of
the solution result in new solutions without extensive re-calculation.

Computer algebra methods offer accurate symbolic results that can
act as test cases for the calibration of purely numerical techniques
such as finite element or finite difference. Specifically, symbolic
solutions to diffusion problems can complement the numerical solutions
that are normally used in heat transfer analysis. Symbolic solutions to
basic geometries can be included as trial functions in the finite ele-
ment and finite difference methods. Symbolic temperature distributions
can be also used as a starting point for numerical procedures or for
procedures where a poor initial guess will lead to solutions that do not

converge or oscillate.

1.1 Previous Work

The Green’s function approach to the solution of partial differen-
tial equations of heat diffusion is well documented. Morse and Feshbach
[1953), and more recently, Ozisik [1980] and Beck [1984a] provide a
structure for determining temperature distributions using the Green's

function approach.



Walters [1949] uses the Green’'s function approach to solve tran-
sient heat conduction and vibration problems analytically and, more
recently, Hassanein and Kulcinski [1984] use the Green’s function ap-
proach to examine the rapid heating of fusion reactor walls. Hassanein
and Kulcinski reported comparisons of the Green’s function approach to
the finite difference method. They report the Green’s function ap-
proach requires more analytical calculations than the finite element
method but the time step may be larger and the calculations are more
straightforward. The analytical calculations in their study could be
calculated by a computer algebra system to decrease the complexity of
the problem.

The Green’s function approach has been used to generate influence,
or kernel, functions for the unsteady surface element method developed
by Keltner and Beck [1981]. The unsteady surface element method splits
up the boundary and uses the influence functions to obtain solutions for
both linear and nonlinear boundary conditions. Cole [1986] used the
Green’s function approach to determine some influence functions for
conjugate heat transfer problems in the unsteady surface element method.

The Green’'s function is geometry specific - a different Green's
function is needed for each geometry and each set of boundary condi-
tions. Many references and texts such as Butkovski [1982], Stakgold
[1979] and Beck [1984b] include lists of the Green's functions. Beck
and Litkouhi [1985] proposed a numbering system, which is used exten-
sively in this thesis, to generate a data base for the Green’s
functions.

Numerically inefficient solutions to heat and mass diffusion
problems have been the bane of the heat transfer engineer for many
yeafs. Miller and Gordon [1937] report the solutions obtained using the

traditional methods of Fourier series, while mathematically acceptable,



are inefficient for small regions of time because of the slow rate of
convergence. Aizen, et. al., [1971] show additional methods of increas-
ing the speed of convergence for certain problems in heat diffusion.

The Green’s function approach is well suited for symbolic calcula-
tion because it is algorithmic and uses operations not typically found
in numerical analysis. The capability for integration and differentia-
tion of the computer algebra systems make them the unique vehicle for
calculating temperature distributions using the Green’s function method.
Integration and differentiation are the key to the Green’s function
approach. The algorithmic structure of the approach is used with a
computer algebra system to generate new symbolic or numeric solutions.

In a recent paper by Haji-Sheikh and Lakshminarayanan [1986],
symbolic analysis is applied to the solution of diffusion type problems
through the use of the Galerkin method. The temperature solutions
reported in this work are efficient for large dimensionless times and
for complex geometrical shapes.

The integration routines in SMP are based on an algorithm first
proposed by Risch [1969]. Risch bases his algorithm on the text by Ritt
[1949] which describes the integration of expressions in finite terms.
The Risch algorithm states that the integral must be represented as an
elementary function and the integral solution must also be expressible
in elementary functions. An elementary function is a function composed
of polynomials, exponentials, and logarithms using only rational and
algebraic operations. The Risch algorithm is still in its infancy, but
the work of Cherry [1986] and Knowles [1986] continue to expand the
functions to which the algorithm is applied. Cherry extended the types
of elementary functions to include some logarithmic integrals and

Knowles extended Cherry’s work to include some exponential integrals and



a broader class of logarithmic integrals. Ng [1977] describes proce-
dures based on the Risch algorithm as pattern recognition strategies.

Roach and Steinberg [1984] use symbolic manipulation in the area of
computational fluid dynamics. They report the ability of speeding up
code development time and the prospect of virtually error-free testing
of constitutive equations and difference forms.

Rand [1984] describes the application of a computer algebra program
for solving ordinary differential equations, finding eigensolutions to
eigenvalue problems, and solving some examples of boundary value
problems. Rand reports the application of computer algebra for finding
approximate solutions to differential equations that contain small
parameter by using perturbation methods. Mathematicians and engineers
have been interested in finding closed form expressions for summations.
Moenck [1977] describes a method using symbolic manipulation to express
the sum of a rational function as a rational function part and a
transcendental part involving derivitives of the gamma function.

Char, et. al., [1986] describes the application of computer algebra
to undergradﬁate mathematics curriculum. They have found it feasible to
offer courses in computer algebra to large groups of students. The
initial findings suggest the introduction of a computer algebra system
to undergraduates has met with limited success. They suggest more
powerful facilities for integration, a smooth interface to numerical

procedures, and a more user friendly interface.



1.2 Thesis Objectives

The first objective of this thesis is to use the computer algebra
system SMP (1983] to develop two computer algebra programs that calcu-
late symbolic temperature distributions, one for one-dimensional bodies
and the second program for two-dimensional bodies. A unified method of
solution based on Green’s functions is developed. The symbolic solu-
tions generated by the programs are to be computationally efficient for
the whole range of dimensionless times.

The second objective is the generation of symbolic temperature
distributions for some heat diffusion problems using the programs men-
tioned above. Experience needs to be obtained with the capabilities and
limitations of such computer programs. The solutions to basic heat
transfer problems can be used as kernel functions in numerical tech-
niques such as finite element, finite difference, and boundary element
methods. The programs in this thesis are based on the Green’'s function
approach to heat transfer which implies a linear problem model.

Litkouhi [1982] shows the distributions developed by the linear Green's
function approach can be used in a numerical surface element method to
obtain distributions to more physically complex or nonlinear problems.
Some temperature distributions that are not available are also gener-
ated.

The third objective of this thesis is to investigate a new class of
applications of computer algebra systems to mathematical problems in
engineering. The programs and examples in this thesis are chosen from
heat transfer, but the computer algebra environment is not restricted to

the diffusion equation.
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The fourth objective of this thesis is to study the need for a
structure in the field of interest. Structure in a field of interest
means the availability of a formalism for the calculation of solutions
and a data base of pertinent information relating to the field. The
structure is important because cases with different parameters can be
treated with the same formalism. For example, the formalism for solu-
tion of a conduction heat transfer problem could be the application of
Fourier series analysis and the data base would include solutions to
fundamental ordinary differential equations and some basic integrals.

The fifth objective is an examination of the knowledge bases neces-
sary for efficient computation of solutions. Hayes-Roth, et. al.,
[1983] state that the knowledge base aid the efficiency of an expert
system by eliminating "blind alleys", eliminating repetitive calcula-
tions, and applying specific information about the problem.

A sixth objective is to use the new concepts of time partitioning
by Beck and Keltner ([1984] to obtain symbolic solutions to heat transfer
problems that converge rapidly for the whole range of dimensionless
times. Efficient symbolic solutions can give valuable insight to the
physics of the solutions. An investigator can determine how the solu-
tion to a specific system would react to a change of input parameters
without re-calculating the solution over the entire domain of time and
space.

The final objective is to survey areas associated with mathematical
physics in engineering for the mathematical structure or formalism that

can effectively use the elements of computer algebra.
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1.3 Synopsis of the Thesis

This thesis is divided into six chapters. Chapter 1 is the intro-
duction and gives the motivation for studying heat diffusion using a
Green’s function approach and computer algebra. Previous work and the
scope of the thesis are examined in Chapter 1.

Chapter 2 introduces the mathematical development and structﬁre of
the Green’ function approach to the solution of heat diffusion problems
that appear in this thesis. The partial differential equations and the
associated boundary and initial conditions are examined. A procedure
for obtaining the Green’s functions and a procedure for generating the
products of one dimensional Green'’s functions to obtain the Green's
functions for two and three dimensional cases in rectangular coordinates
are presented.

Chapter 3 describes a method for obtaining approximate expressions
for Green’s functions in one dimension using the technique of Laplace
transforms. The expressions generated by this method converge quickly
for small times. Examples of Green’'s functions are given which examine
the effect of various boundary conditions for semi-infinite bodies.
Three example problems are examined for finite, one dimensional bodies
using various boundary conditions.

Chapter 4 describes a computer algebra program, called CANSS, that
calculates symbolic temperature distributions for semi-infinite and
finite bodies in one dimension. Various types of boundary conditions,
initial conditions, and volume energy heat sources may be applied to the

bodies using the CANSS algorithm. Three example problems are examined
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along with some important integrals that relate to one dimensional
problems. A flowchart/example is presented.

Chapter 5 describes a symbolic computer algorithm, called CANSS2D,
that generates symbolic temperature distributions for two dimensional
plates. Two example problems are examined along with some special
integrals that occur during the calculation. A discussion of time
partitioning in two and three dimensions concludes the chapter.

Chapter 6 presents the conclusions and summary. This chapter also

offer suggestions for the extension of this thesis.



CHAPTER 2

GREEN’S FUNCTION FORMULATION
2.1 Introduction

This chapter traces the development of the Green’s function ap-
proach to the solution of linear partial differential equations for heat
conduction. This approach has become an accepted solution technique due
to the recent work by Greenberg [1971], Ozisik [1980] and Beck [1984b],
and the previous work of Morse and Feshbach [1953]. These authors show
that the Green’s function approach to the solution to heat conduction
problems offers both simplicity and structure and gives the engineer and
scientist an alternate approach for solving diffusion type problems.

The unifying structure implicit in the Green’s function approach
provides an ideal testing vehicle for demonstrating the use of symbolic
computation.

The Green’s function approach is simple because of the straightfor-
ward manner in which the boundary condition, initial condition and heat
generation terms of the solution are generated. The approach has struc-
ture due to the use of a single Green’s function for the complete
solution.

Classical heat conduction theory states that the heat transfer

rate, q, is proportional to the temperature gradient in the medium, or,

aT
T o, (2.1.1)

13
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where r, is a coordinate in the direction of the heat flow in the
medium. Inserting a constant of proportionality called the thermal
conductivity, k, the constitutive equation that describes the rate of

heat flow by conduction in the r, direction as,

q - ‘kg:f . (2.1.2)
i

One consequence of the above equation is that a thermal disturbance
on or in the medium is propagated everywhere instantaneously. The
constitutive equatiqn is very accurate even though instantaneous diffu-
sion is unrealistic. Maxwell [1867] and, more recently, Vick and Ozisik
[1984] modified the constitutive equation by including a relaxation term
that includes some start-up time, ¢, for the initiation of heat flow.

The modified constitutive equation,

q+¢g-itl- -k g-;‘:a'i (2.1.3)

was first suggested by Maxwell to account for finite diffusion velocity
and shows that the spontaneous release of a finite pulse of energy
causes a thermal wave front to move through the body at a finite
velocity. The wave of thermal energy dissipates exponentially as it
moves through the medium, see Figure 2.1. Other researchers (Vernotte
[1958] and Chester [1963]) have used the modified constitutive equation
to account for thermal waves in their experiments with helium at tem-
peratures close to absolute zero.

This thesis will not concern itself with the property of the ther-
mal wave that moves through the medium. When the relaxation time ¢ is
small, equation (2.1.3) reduces to equation (2.1.2) except for extremely

small real times or temperatures near absolute zero.
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The solutions to heat conduction problems using the Green’s func-
tion approach is presented in Section 2.2. The partial differential
equations for multi-dimensional heat conduction are developed along with
the boundary and initial conditions. In Section 2.3, the concepts of
the time-reversed auxiliary Green’s function are presented along with a
technique to determine the Green’s function and multiplying Green's
functions to obtain multi-dimensional Green’s functions. The structure
and formalism of the approach are discussed in Section 2.4. Section 2.5

summarizes and concludes this chapter.

2.2 Mathematical Derivation of Heat Diffusion in a Body

2.2.1 Heat Conduction Equation and Boundary Conditjons

The purpose of this section is to discuss the partial differential
equation and its boundary and initial conditions used to generate tem-
perature distributions in infinite, semi-infinite and finite bodies.
The partial differential equation that describes the transient, multi-

dimensional, linear heat conduction in cartesian coordinates is,

2
VT+‘%";')'-ﬂg'¥J+1T-Ja‘g"£. (2.2.1)

2
The symbol V is the Laplacian operator defined as,

2
Vo (2.2.2)
ax
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the symbol g(r,t) is the internal heat generated in the solid body and
is the rectangular coordinate (i.e. x, y, or z). The boundaries are
assumed to be parallel to the rectangular coordinates. The symbols a
and k are the thermal diffusivity and conductivity, respectively, of the
solid body. The diffusion equation is nonlinear when the thermal dif-
fusivity or p Cp are functions of the temperature. Ozisik [1980, pg.
440] shows that for certain boundary conditions and restrictions, the
nonlinear equation can be transformed into a linear equation. For

example, if the thermal conductivity can be expressed as,
k=1+8T (2.2.3)
and p Cp is expressed as,

p Cp -1+ pZT, (2.2.4)

the diffusion equation is nonlinear. If the constants ﬂl and ﬂz are
equal, the diffusion equation can be transformed into a linear equation
by the Kirchhoff transformation and the thermal diffusivity becoming a

constant.

4T

arj

the rJ direction and the term YT could represent generation that is

The term S8 represents energy carried by a convective flow in

proportional to the local temperature. The terms B and vy are constant.
In heat transfer analysis, the 4T term may also represent the effect of
side losses for a fin.

The nonhomogeneous boundary conditions that are applied to the

surfaces are written as,

a1 ar )
ki an, * (P)y e + MyT = £i(ry 0, (2.2.5)
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where the integer i represents the surface to which the boundary condi-
tion is applied and ny is the outward pointing normal to the i-th
surface. The symbol hi is the convection coefficient and fi(ri’t) is
the nonhomogeneous forcing function associated with the i-th surface.
The ki symbol will represent the thermal diffusivity of the body, except
when a temperature condition is imposed on the surface, ki is set equal
to zero.

An additional term, (pcb), & , has been added to the traditional
boundary equation that takes into account a thin film occurring at the
i-th surface. It could represent a thin film of gold on a glass or
silicon substrate or (see Carslaw and Jaeger [1959, pg. 128]) a slab in
contact with a well stirred fluid. A laminar sublayer will form across
a boundary of a slab placed in a flow of fluid. If the flow velocity of
the sublayer can be considered constant, the sublayer can be considered
a thin £ilm.

A thin film term acts to hold or store some energy. It is assumed
that the thickness of the thin film is small enough so that the tempera-
ture at the surface of the film is the same as the temperature at the
surface of the body. The term (pcb)i represents the storage capacity of
the thin film at the i-th surface.

The initial condition necessary to complete the description for the

solution of equation (2.2.1) is,

T(z,0) = F(x). (2.2.6)

The heat conduction equation (2.2.1) in the rectangular coordinate
system with convection in a direction parallel to the rectangular coor-
~ dinate directions can be reduced to a more desirable form by defining a

new variable (see Ozisik [1980, pg. 75]), W(r,t), where
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B B B2 B2
T(x,t) = W(x,t) exp(-vt] exp[77 (x - 53~ t)] exp[57 (y - 7~ ©)]
Bs Bs
exp[E; (z - 7 t)] (2.2.7)

Substituting equation (2.2.7) into equation (2.2.1) yields,

2 g£(r.t) _1aW
v Bl o2 (2.2.8)

where,

ﬂl 1 ﬂg ﬂ2
g'(x,t) = g(x,t) exp[-vyt] exp[-57 (x - 5~ t)] exp[-5= (y - 7~ ©)] *

Bs s
exp[-5= (z - 7~ ©)] (2.2.9)

represents the heat generation in the solid body.

Equation (2.2.8) is easier to solve than equation (2.2.1), and it
represents a broad class of conduction problems that include convective
diffusion, heat generation and generation proportional to the local
temperature. The transformation given by equation (2.2.7) must be
applied to the boundary and initial condition as well as the heat con-
duction equation. Applying the transformation to the general boundary

condition, equation (2.2.5), yields,

oM L
ki an1+ (pcb)1 at + hiw fi(ri’t)’ (2.2.9)
where,

2
B B
' - A
h{ = h; - k; 7> - (pcb), [ T - 3 ] (2.2.10)
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the new convection coefficient, and,

B1 By B2 B2
£i = £5(x;.t) exp[-7t] exp[-52 (r; - 5~ )] exp[-57 (r; - 3~ ©)] -
Bs 3
exp[-5- (rs - 7~ ©)] (2.2.11)

represents the new forcing function.
The boundary conditions for a diffusion problem has been stated

previously as,

a1 ar )
kg gn, * PPy ge * BT = £ (x0) (2.2.12)

Five distinct classes of boundary conditions can be obtained from this
equation.
The first kind is when the temperature is prescribed condition at a

boundary, see Figure 2.2a,

- ’
T fi(ri’t)’ (2.2.13)
Equation (2.2.13) can be obtained from equation (2.2.12) by letting ki =
0, (pcb)1 = 0, and h1 = 1. The term fi(ri’t) is the prescribed tempera-
ture history at the boundary. If the temperature at the boundary is

zero, equation (2.2.13) on the boundary becomes the homogeneous boundary

condition,
T = 0. (2.2.14)

The temperature boundary condition is also called a Dirichlet condition.



T=1
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. Figure 2.2a

Semi-infinite Slab
With a Temperature Boundary
Condition (X10).

Figure 2.2b 1Ty "

Semi-infinite Slab
With a Heat Flux Boundary
Condition (X20).

Figure 2.2¢c

Semi-infinite Slab
With a Convective Boundary
Condition (X30).
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The second kind of boundary condition (also called a Neumann

condition) is one in which the heat flow is prescribed, see Figure 2.2b,

ﬂ -
k n, £,(r,,0), (2.2.15)
ry

where fi(ri,t) is a prescribed heat flux. This equation is obtained
from equation (2.2.12) by letting h1 and (pcb)1 equal zero.

If the heat flux at the boundary is zero, the boundary condition
becomes homogeneous and is referred to as being insulated,

ar - 0. (2.2.16)

A Robin condition or convective boundary condition occurs when
there is a linear combination of the temperature and the normal deriva-
tive of the temperature -- a boundary condition of the third kind; see
Figure 2.2c. The value of the thin film coefficient in equation

(2.2.12) is set to zero and the boundary condition equation becomes,

k. &

1 ani + h1 T = fi(ri’t) (2.2.17)

Ty
or,
L gI +BiT=£"(r,,t) L, (2.2.18)

ni i
Ty
hiL

where f"(ri,t) was previously defined, Bi = x is the Biot number for

the solid body at the i-th surface and L may be the thickness of the
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body. The Biot number is the convective coefficient divided by the
thermal conductivity. If f"(ti,t) is zero, the boundary conditions is
homogeneous.

A boundary condition of the fourth kind, or Carslaw condition,
exists when a "thin" film with no convective heat loss is prescribed at
the surface of the thin film’s outer boundary; see Figure 2.3a. The
thin film is assumed to have high conductivity therefore no temperature
gradient exists through the film. The value of hi is set to zero and

the boundary condition equation (2.2.12) becomes,

a1 4T
ky n,| (pcb); 9% = £,(r;,t) (2.2.19)
r
1
or,
(PCb) f (r 't)
g.In + .T_ig.'g --1—1:1—, (2.2.20)
i, i i -

where ki is the thermal conductivity of the solid body and (pcb)i is the
thin film coefficient. This equation is homogeneous if fi(ri’t) is set
equal to zero.

The boundary condition of the fifth kind, or the Jaeger condition,
includes all of the terms in the boundary condition equation described
by equation (2.2.12), see Figure 2.3b. The term ki is set to the ther-
mal conductivity of the solid body, the term hi is the convection
coefficient and (pcb)i is the thin film coefficient. It is homogeneous
if fi(ri,t) is set equal to zero.

Another type of boundary condition that is considered will be

called a boundary condition of the zeroth kind. This boundary condition
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Figure 2.3a Finite Slab With a Non-convective Thin Film and a
Heat Flux Condition (X42).

'

)
NN =

)

~_

AN NNNNNNNNN

x
[]
o
b3
-

Figure 2.3b Finite Slab With a Convective Thin Film and a Heat
Flux Condition (X52).
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has no physical boundary, such as in the case of an infinite or semi-
infinite body; see Figure 2.4. The zeroth condition has also been
referred to as the natural condition.

The initial condition for the heat conduction equation,
T(x,0) = F(x). (2.2.21)

This concludes the description of the transient linear heat diffu-

sion equation that will be used in this thesis.

2.2.2 ! u o

The purpose of this section is to generate the auxiliary Green'’s
function equation. This equation, when combined with the heat diffusion
equation, gives a formalism to the solution of heat diffusion for tem-
perature distribution.

The development of the auxiliary Green’s function equation follows
the work of Morse and Feshbach [1959], Ozisik [1980], and Beck [1984].
The auxiliary Green'’s function equation for heat diffusion is obtained
from the heat conduction equation model with an instantaneous heat pulse
source of unit strength. The boundary conditions for this auxiliary
problem are homogeneous and the solution to this auxiliary problem is
called the Green’s function, G. The auxiliary Green’'s function equation

is,

2
a VG, tlr',r) + 6 - ') 6(c - 1) = 52 (2.2.22)

in the region R and t > 7,
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q=q,

(a) Semi-infinite Body (X20)

(b) Infinite Body (X00)

Figure 2.4 A Semi-infinite Body and an Infinite Body.
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subject to the boundary conditioms,

a6 ac -
ki ani + (pcb)1 at t hiG 0 (2.2.23)

on the i-th surface,
and subject to the causality relationship,

G(x,tlz',r) =0 (2.2.24)

for t < r.

The physical interpretation of the Green’s function is the response
of the system to a unit impulse of heat that occurs at some time r and
at some position r’. The solution to the auxiliary problem is given the
symbol G(x,tl;',r) where r and t are the point and time of interest
respectively, r’ and r are the position and time of the impulse.

Equation (2.2.24) is called the causality relationship because it
expresses the relationship between the impulse, which occurs at time 7,
and the effect of the impulse, which can occur only after time r. This
means that for times t < 7 or, mathematically, for times -t > -r , there
is no effect and the Green’s function is zero.

The heat diffusion equation and the auxiliary Green’s function
equation are parabolic in time due to the appearance of the first
derivative with respect to time. This means, for example, that a solu-
tion to the heat conduction equation, T(r,t), is not the same as the
solution T(r,-t). The diffusion equation and the auxiliary Green’'s
function equation are asymmetric in time; they can distinguish between
the past and future.

The Green’s function also satisfies a reciprocity condition,
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G(x,t|g’',r) = 6(x',-rlE,-t). (2.2.25)

The function G(;',-rl;,-t) is the effect of a source at location r and
time -t at a point r’ and at time -r. The causality condition is still
true and the reciprocal function G(;',-fl;,-c) satisfies the time

reversed auxiliary Green’ function equation,

2 ¢

aVyG + 68(x -x') 6§(t - 7) = - ar’ (2.2.26)
2

where V, is the Laplacian operator for the y' coordinates. This

auxiliary Green’s function now describes the development of the effect

of a source placed at position r and at time -t.

2.3 The Green’'s Function Approach

2.3.1 Mathematical Derjvatjion of the Green’s Function Approach

The purpose of this section is to combine the heat diffusion and
the auxiliary Green’s function to obtain a formalism for the solution of
heat diffusion problems for the temperature distribution. A general
expression for the solution to the heat conduction equation [0Ozisik,
1980] can be generated by combining the heat conduction equation and the
time-reversed auxiliary Green’s function equation. Multiplying the heat
conduction equation (equation (2.2.8) with r replaced by r’ and t re-
placed by r) by the Green’s function, multiplying the time-reversed
auxiliary Green's function equation (equation (2.2.26)) by the tempera-

ture and subtracting gives,
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(GVoT - TV,6) + BE g . Lysp . pygqe - gy 7= 2 2ED

a ar

(2.3.1)

This equation is integrated over the total region, R, with respect to 1’
and r. The term r goes from O to t+e¢, where ¢ is arbitrarily small value

of time which will be made to approach zero. This yields,

t+e t+e
2 2
I Ia(GVoT-TVoG)dv'dr+I I%Gg(;',r)dv'dr
r=0 R r=0 R
t+e
- T(r,t) -I [c 'r] dv’. (2.3.2)
R r=0

where dv’ is an volume element in the region R. Rearranging the above

equation for the temperature distribution gives,

t+e t+e
T(;,:)--I[c'r] dv'+I I%Gg(;',r) dv’' dr
R r=0 r=0 R
t+e
2 2
+I J.a(GVoT-TVoG)dv' dr. (2.3.3)
r=0 R

The only term on the left hand side is the temperature distribution of
the body at location r and at time t. This equation is now examined
term by term.

The first term on the right hand side of equation (2.3.3) is,

t+e

] J' [c 'r] dv’ . (2.3.4)

R r=0
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t+e

Evaluating - [c 'r] --@-6T|__) =+6T| _,. The Green's

r=0

function evaluated at r=t+e¢ is zero because the effect cannot begin
before the impulse. When r = 0, the temperature distribution, T(x,0),

is the initial temperature distribution, F(x). This term becomes,

I - I G(x,t|x’,0) F(x') av’, (2.3.5)
R

and is the effect of the initial distribution on the temperature dis-

tribution and is designated Il’

The second term on the right hand side of equation (2.3.3) is,

t+e

I, - I ch(;,d;',r) g(x',r) av' dr. (2.3.6)
r=0 R

This term is the effect of a distributed heat source, g(x,t), on the

temperature distribution and is designated I3.

The third term on the right hand side of equation (2.3.3) is,

t+e

2 2
I Ia ( G VOT = T VOG ) dV' df. (2.3.7)
r=0 R

Green’s theorem can be used to change the volume integral to a

surface integral so that,

t+e

2 2
I I a ( GVET - T VyG ) dv' dr
r=0 R
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t+e s
- a(c& -Td ) ds, dr, (2.3.8)
ny an1 i
r=0 i=1 S1 r'=r, r'=r,
where the term 3%- is differentiation along an outward drawn normal to
i
the boundary surface Si, see Figure 2.5, where i=1,2,3,...,s, and s is

the number of boundaries.

The integrand of this integral can be expressed in terms of the
boundary conditions of the heat conduction equation and the auxiliary
Green’s function equation. Multiplying the boundary condition equation
(2.2.12) by the Green’'s function, multiplying equation (2.2.23) by the

temperature and subtracting yields,

£, (r!,t) (p ¢ b)
(G gI - T G ) = b Dl S G + AR § (T aG +G éT y,
ni ani k1 ki ar ar
r'=r r'=r
i
or, (2.3.9)
& cpdey e o ebaen
an1 an1 k1 ki ar ’
r'-ri r'-ri

(2.3.10)

Integrating over the surface S, and the time, r, for constant thermal

i
diffusivity and boundary conditions of the second through fifth kinds,

yields,

tt+e s

Ia(cg-I .1 é5 ) dS, dr
n1 ani
r=0 i=1 S r'-ri r'=r

i i
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a1 |
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Figure 2.5

4T

T T~
G

A Description of Normals at the Surface of a Finite
Body.
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t+e s £.(c!.7)
-a I } I —i—ki— 6(z,t|z’,r) ds; dr
7=0 1=l S, i

-]

(p ¢ b)

+ a§ I ——> o tlr’,0) Fx) s, (2.3.11)
1

s

The first term on the right hand side of equation (2.3.11) is the
effect of the boundary conditions on the temperature distribution and
will be designated as 14. The second term on the right hand side of
equation (2.3.11) is the effect of the thermal storage capacity of the
thin film on the temperature distribution of the solid body and is
designated 12.
For a boundary condition of the first kind, since G at the boundary

is zero, equation (2.3.8) becomes,

t+e s’
-- ' e
I, a I } fj(rj,r) anj | de dr. (2.3.12)
=0 j=1 Sj r'=-r

where s’ is the number of boundary conditions of the first kinds.
Drawing together the four terms yields an expression for the tem-

perature distribution as,

T(z,t) = I1 + 12 + 13 + I4

- IG(x,tl;',O) F(z') av’

R
S
(p ¢ b)
va) [ = e@elro ran as;
i

i=1 Si
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t+e
+ I J‘ﬁc(z.tlz',r) g(x',r) dv' dr
r=-0 R

t+e s £.(x!,r)
+a I } I —1—-1—k G(z,t|r’,r) ds; dr
r=0 1-1 5, i

(for boundary conditions of the second through fifth kinds)

t+e s’
- , a6
a I } I fj(rj,r) anj de dr. (2.3.13)
r=0 j=1 SJ r'-rj

(for boundary condition of the first kind only)

The four terms on the right hand side of equation (2.3.13) describe
a formalism to be used to solve for the temperature distribution in a
body for boundary conditions of the second through fifth kind. The
first two terms represent the effect on the temperature distribution
caused by a nonzero initial condition. The third term represents the
effect caused by a volume energy source and the last two terms repre-
sents the effect caused by nonhomogeneous boundary conditions.

If a boundary condition of the zeroth kind occurs at a surface i=j,
the last two terms in equation (2.3.13) are omitted for that surface.

The temperature distribution in the one dimensional cartesian

coordinate x for a one dimensional slab is,

L
T(x,t) = IG(x,tIx',O) F(x') dx'

x'=0

S (e
+ a} n [G(x,tlx',O) F(x')]
i=1 1 X=Xy
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+ I Igc(x,tlx',r) g(x’',r) dx' dr
r=0 x'=0
£.(x!,7)
E —1—1—G(x t:|x ,r) dr ,
r=0 i=1

(for boundary conditions of the second through fifth kinds)

t s’
- a I } £5(xj,7) oo 96 dr, (2.3.14)
rm0 =l " lx =Xy

(for boundary condition of the first kind only)
where L is the length of the slab in the x direction.
The temperature distribution in the two dimensional cartesian

coordinates x and y for a two dimensional plate is,

T(x,y,t) = I IG(x.y.tlw.y'.O) F(x',y') dx’ dy’' +

x' y'
I
(p ¢ b)
a} -—k—j‘ [G(X.y.tIX':y'.O) F(X’.y')] +
i X'=X.
1-1 ’ 1
y -yi
t
.[ I I%G(x.)’.tlx'»}"ﬁ) g(x',y’,r) dA dr +
=0 x'y’
f (x yi.r)
} G(x.y.tlx .Y ’1)x'-x dT ’
r=0 i=l y’-yi

(for boundary conditions of the second through fifth kinds)

’

S
} £y (x],y].7) o 96 dr, (2.3.15)
j-1 R Rt

t
-aJ’
r=0

(for boundary condition of the first kind only)



36

2.3.2 Determination of the Green’'s Functjon

The objective of this section is to discuss some methods to deter-
mine the correct Green’s function based on the boundary conditions.
There are many procedures for the determination of the Green’s function.
One procedure, which will be discussed in the next chapter, is by the
method of Laplace transforms._ A second method, which produces results
similar to the Laplace transform method, is the method of images. Both
of these techniques produce Green’s functions that are computationally
efficient at small dimensionless time. The third method, which produces
Green’s functions that are computationally efficient at large dimension-
less times, is obtained by using the traditional method of separation of
variables.

The method of images requires the temperature in a finite or semi-
infinite body caused by a supply of heat at certain points, and the
removal of heat at other points. A supply of heat at a point is called
a source while the removal of heat at a point is called a sink. In a
one dimensional infinite body, the temperature distribution due to an

instantaneous heat pulse is,

T(x,x'|t,7) = Q [4 7 & (t-r)] /2 exp[-(x-x")2/(4 @ (t-T))],

(2.3.16)

where Q is the strength of the source, x’ and r are the location and
starting time of the source, and x and t are the location and time of
interest. Multiplying this temperature distribution by pc and integrat-

ing over the entire infinite body yields,
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I pcT dx' = Qpc I [6  « (t:-‘r)].l/2 exp[-(x-x')z/(4 a (t-r))] dx’

- Qpc. (2.3.17)

which shows the total amount of heat liberated in the infinite solid is
Qpc.

When the infinite body is bounded by planes, the bounding planes
can be considered to act as heat mirrors which reflect the sources and
sinks. The Green’s function of a bounded body is simply the distribu-
tion of the original source plus the effects of these reflections, see
Figure 2.6. The method in Chapter 3 will give a technique for the
placement of the sources, sinks and correction terms for the positions
shown in Figure 2.6.

In his book on partial differential equations, Sommerfeld [1967]
describes the method of images for heat diffusion in a slab as a room
with parallel mirrors. This simulates a finite body of length L. A
light placed in the room will be reflected by both mirrors not once, but
in infinite repetition. The reflections of the light source are the
heat poles with a period 2nL where L is the distance between the mirrors
and n is an integer index. The summation of the poles yield the Green's
function for small dimensionless time. The reflections can be con-
sidered to form background correction factors to the effect of the
source.

The method of images is restricted to systems that have boundaries
composed of straight lines. Other shapes may be considered but the
method may be applied only approximately.

A second approach that is frequently used to solve heat conduction
Problems is by using the separation of variables. This technique gives

Green's functions that are efficient for large times. The homogeneous
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heat conduction equation is solved using the separation of variables
technique, with homogeneous boundary conditions and an initial condi-

tion, F(r), and the solution is expressed in the form,

T(x,t) = I K(z,x',t) F(g') dav’'. (2.3.18)
R

Since the Green’s function solution for this case is,

T(L,t) = I G(x,r'|t,0) F(x') av’, (2.3.19)
R

and it follows that,

G(x,x’'|t,0) = R(x,x’,t). (2.3.20)

r]

Replacing t with t-r in K(x,r’,t) gives the general Green'’s function for

solution to nonhomogeneous problems, G(;,;'|t,r).

It is important to note that to solve the nonhomogeneous problem

for temperature, the homogeneous problem for the Green's function is all

that is needed to be considered.

2.3.3 Products of Green's Functions

The purpose of this section is to show the combinations of Green'’s

functions that are mathematically possible for rectangular coordinates.

A unique feature of the Green’s function approach to the solution

of transient heat diffusion problems is the capability of multiplying

one dimensional Green’s functions to obtain Green'’s functions for two
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and three dimensions in cartesian coordinates for boundary conditions of
the zeroth through third kinds. The development of this idea follows
the techniques of 0zisik [1980]) and Beck and Yen[1984b].

In cartesian coordinates it is desired to prove,

G(xthzvtIx' »Y' 'z' :7) -

Gy(x,t|x',7) « Gy(y,tly',r) -« Gg(z,t|z’,7). (2.3.21)

To prove this, the right hand side of equation (2.3.21) is substituted

into the auxiliary Green'’s function equation and the boundary conditions

and then compared to the equation of the individual coordinate equations
added together.

Substituting the right hand side of equation (2.3.21) into the

auxiliary Green’s function equation (equation (2.2.26)) yields,

2 2 2
ae, 3¢, 3 G
a | G,Gg 2 + G;Gg 2z + G,G; 2

ax dy az
ac, 3G, 3G,
- | G2Cs 3y * Ci6s G+ GG | -
§(x-x') 6(y-y') 8(z-z') 6(t-r). (2.3.22)

The one dimensional equations that describe G,, G,, and G, are,

2
3 G, a6
12 '
@ [ a? @ or ] = §(x-x') &(t-71) (2.3.23)

2
. d G, 1 3G, = §(y-y') 8(t-1) (2.3.24)
8y2 a adr e
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2
3 Gy 3G
a [ ol & " ] - §(z-2') §(t-7) (2.3.25)

Multiplying these three equations by G,G;, G,G3, and G,G, respectively,

and adding gives,

2 2 2
3 Gy 3 G, 3 Gy
a | G3Gy 2 t G;Gs z + GG 2
ax ay iz
aG, aG, 3Gg
- | G2Gg 27 * G,Gg 5 1 G,G, “ar

G,Gs 6(x-X') §(t-1) + G,Gg 5(y-y') 6(t-1) + G,G, 6(z-2') &(t-7).

(2.3.26)

The terms on the left hand side of equations (2.3.22) and (2.3.26) match
therefore it must be shown that the right hand terms of these equations

are equal. This means, for example, that,
G,Gg §(x-x') §(t-7) = % §(x-x') 6(y-y’') 6(z-2') 6(t-7) (2.3.27)

Integrating equation (2.3.24) with respect to r from minus to plus

infinity ,

@ 82G2 l acz ®
I * 2 " a ar ar = &(y-y") I §(t-r) dr (2.3.28)
. ay a

-

which yields,

Gy = &§(y-y') H(t-7). (2.3.29)
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When tsr, the left and right hand side of equation (2.3.27) are zero.
When t=r, G, and Gy act like unit step functions, H(t-r), multiplied by

functions independent on time. Therefore,
2
GGy = 6(y-y’') 6(z-2') H (t-r1). (2.3.30)

Substituting equation (2.3.30) in equation (2.3.27), integrating over

time yields,
I H (t-r) §(t-7) dt = I 3 §(t-r) dt
'y 1
-3 -3 - (2.3.31)
C=r

The same procedure is used for the remaining terms on the right hand

side of equation (2.3.27) and results in,
3[ % §(x-x') §(y-y’') 6(z-2') 6(t-r) } -
§(x-x') 8§(y-y’') 6(z-2') 6(t-1), (2.3.32)
which completes the proof for the differential equation.
The boundary conditions must also be satisfied for the product
relationship to hold. The general boundary condition for boundary

conditions of the first, second and third kind is,

[ -
ki 3“1 + hi G = 0. (2.3.33)
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Substituting equation (2.3.21) in this expression gives,

3G,

or, dividing through by G,Gs gives,

3G,

k1 . h1 G, =0, (2.3.35)
i

which is the same expression as equation (2.3.33). This proves that the
product relationship will hold for boundary conditions of the first,
second and third kind.
The general equation for boundary conditions of the fourth and
fifth kind is,
k. 95—

m -
L an; * (bl 5+ By C =0, (2.3.36)

Substituting equation (2.3.21) in this equation gives,

3G,

aG, aG, 3G,
* (pcb)1 G,Gsg T G,Gg ¢ t 6162 3¢ -0

(2.3.37)
which cannot be reduced to the form of equation (2.3.36). Consequently,
the product relationship of the one dimensional Green'’s functions is not
valid for two or three dimensional diffusion problems when there are

boundary conditions of the fourth or fifth kinds.



rhH



44

2.4 Formalisa of the Green’s Function Approach

The description of the temperature distribution based on the
Green’s function approach, equation (2.3.13), provides a logical and
mathematical structure to the solution of heat diffusion problems. This
formalism is used to begin a structured data base of solutions based
solely on the geometry and the boundary condition types of the specified
problems.

The dictionary defines formalism as a rigorous adherence to recog-
nized forms. A mathematical formalism uses some basic "building blocks”
or functions in a structure to obtain analytical solutions. In the
Green’s function approach, the basic "building blocks" are contained in
the data bases. Both data bases in the Green'’s function approach, the
Green’s function data base and the integral data base, are finite and
analytical. This will restrict the capabilities of the method to a
finite number of cases, but the solutions will be analytical. The data
bases do no need to be analytical in general. For example, in the
integral data base, an integral that does not have a closed form could
be expressed in numerical form, but the solution based on the numerical
form will not be analytical.

The Green’s function approach to heat diffusion problems relies on
the availability of Green’'s functions. A single Green’s function is used
in each term on the right hand side of equation (2.3.13). Independent
of the initial condition and volume energy source, the Green'’s function
is determined from the boundary conditions. This suggests that a look-
up table or data base of Green'’s functions is important to the
formalism. Furthermore, a complete table of one dimensional Green's

functions for the cartesian coordinate system is available.



.
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Beck and Litkouhi [1984] have suggested a numbering system for
single and multi-dimensional Greens functions based on the types of
boundary conditions that occur on the surfaces of the body. Figure 2.7
shows the distinct number of cases for the Green’s function for the one
dimensional rectangular coordinate system. For example, a one dimen-
sional slab with a boundary condition of the first kind at the left
surface and insulated on the right surface is designated as X12. The
numbering scheme allows the Green’s functions to be manually and com-
puter catalogued and the effort necessary for locating the functions
will be the effort necessary to establish the catalogue number for the
specified problem. Figure 2.7 shows the distinct number of cases for
the Green’s function for the rectangular coordinate system.

The numbering system proposed is important since the temperature
distributions obtained by the Green’s function approach can be
catalogued and stored and need not be re-evaluated. The numbering
system uses the types of boundary conditions and determines a Green’s
function that represents a plane, line, or point source that occurs at
some point x’ in the slab (or on the boundary), and at some time r. Due
to the linearity of the problems, this function is then multiplied by
the forcing function and integrated over the boundary, area, and/or time
of interest.

Since all of the Green’s functions for the six linear boundary
conditions have been catalogued, it is easy to calculate new solutions
by implementing the Green’s function formalism. The convergence of the
new solutions is greatly improved over the solutions based solely on the
method of separation of variables or the method of Laplace transforms.

For small times, the Laplace transform method is most efficient.

For dimensionless times greater than 0.05, more terms are necessary in
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the Laplace transform series for convergence. At this point, by switch-
ing to the separation of variables function, convergence is retained and
the number of terms evaluated in the series remains small or at least
tractable.

The ability to use the product of Green’s functions for multi-
dimensional temperature distributions is advantageous since the same
solution kernel may be programmed for one, two, or three dimensional
problems for boundary conditions of the zeroth, first, second, and third
kinds. The Green’s function approach does not allow boundary conditions
of the fourth and fifth kinds for problems in two and three dimensions.

The great usefulness of the Green’s function procedure is startling
due to the vast number of cases that are involved. The CANSS program
will treat heat conduction problems that deal with nonhomogeneous bound-
ary conditions of the zeroth through fifth kind, time and space
variation in the boundary conditions and initial condition, constant
volume energy sources, terms associated with fins, and terms associated
with flow.

The symbolic formalism of the Green’'s function approach permits the
use of either the small time Green’s function or the large time function

in the solution to the stated problem. Time partitioning of the solu-
tion, as suggested by Beck and Keltner [1985] may be used effectively to
reduce the computational load.

Time partitioning for the solution of linear, transient diffusion
type equations uses a linear combination of two separate, but equivalent
expressions. One expression is obtained using a Laplace transform
technique and converges quickly when time is small; the other expression
cam be obtained using the method of separation of variables and will

converge rapidly when the dimensionless time is large. Therefore, two

eXpressions are available for use, each having a region of dimensionless
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time for which it is best suited. The Green’s function expressions can

be used to generate a solution that converges for any dimensionless time

by combining both the small and large dimensionless time expressions .
An example of the combined Green’s function for a one dimensional

slab insulated on both boundaries is,
*
G(x;,%7,t) =

Le x )12 } (exp[-(2m+x.L-x1")2/At*] + exp[-(2m+xL+x;_)2/4c*])

Me=-c0
(2.4.1)
* *
for t small, and for large t |is,
*
G(xL,xI",t ) = Constant
(]
l 2 2 2 %
+1 = exp[-n x t ] cos[nxxL] cos[nxxi] (2.4.2)
Jx
n=1
where Xy and xi are normalized with respect to L and t* - gisizl . Note
L

that the exponential term converges rapidly to zero for small dimension-
less times in the small time expression and rapidly to zero for large

dimensionless times in the large time expression.

2.5 Summary

A formalism for solving simple, multi-dimensional, linear, tran-

sient heat diffusion problems is presented in this chapter. This
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formalism consists of a multi-dimensional equation and a group of kernal
functions called Green’'s functions. The formalism allows the applica-
tion of six distinct types of boundary condition, and the facility for
handling nonhomogeneous initial conditions and volume energy sources.

The unique structure of the Green’s function formalism and the
availability of the Green'’s functions themselves are ideal candidates
for symbolic solution. A simple transformation allows the formalism to
handle terms that include convective diffusion and temperature gener-
ation proportional to the local temperature.

Two methods are discussed to determine the Green'’s functions. A
third method will be described in the following chapter. These methods
provide a data-base form for cataloging the Green’s functions.
Multiplying one dimensional Green’s functions for certain combinations

of boundary conditions is shown.



Chapter 3

SMALL TIME GREEN’S FUNCTIONS OBTAINED USING LAPLACE TRANSFORMS

3.1 Introduction

Carslaw and Jaeger [1959] and Morse and Feshbach [1953]
demonstrate the use of the small time Green’s functions, and Ozisik
[1980] summarizes the importance of these functions in their classical
heat transfer and physics texts. The small time functions permits
efficient investigation of transient thermal activity at very small
times. For small times, the heat conducting bodies are thermally semi-
infinite; that is, temperature changes are contained only in the region
of the body near the heated surface. The small time Green’s functions
are particularly important in problems where the forcing functions
resemble instantaneous sources, such as in the areas of robotics,

e lectronics, and measuring energy deposition by pulsed lasers.

A limited group of small time Green’s functions can be found in
the previously cited references, but no care was taken to organize these
functions. This chapter extends the work of Beck[1984], 0zisik[1980],
and Morse and Feshbach([1954] by (a) organizing and systematizing the
small time solutions for boundary conditions of the first, second, and
third kind, and (b) generating additional small time functions for
fourth and fifth types of boundary conditions.

The boundary condition of the fourth kind involves a surface

film of finite heat capacity and the fifth kind involves a surface film

50
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but also has convective heat transfer at the outside surface of the
film.

The method for obtaining small time Green’s functions incor-
porates a symbolic manipulation program called SMP [1983] for the
manipulation and evaluation of large algebraic expressions. The ability
of SMP to perform complicated algebraic manipulations and the necessity
of dealing with advanced mathematical constructs such as integration,
differentiation, factoring, and expansions, to name a few, is the prime
motivation for using SMP. The procedures written in the SMP language
have a generality not found in the traditional scientific numerical
programs (i.e. BASIC, FORTRAN, PASCAL) due to the ability of the program
to manipulate symbolic expressions, as well as the capability for
numerical evaluation.

Table 3.1 and Figure 3.1 show a comparison of the Green'’s func-
tion for a semi-infinite body versus a finite body at small times. The
location of the source is at coordinate x’, the location of the point of
interest is the coordinate x, and the thickness of the finite body is L.
The symbol t is the time of interest and the symbol r is the time when
the source begins. Each body has a heat flux condition at the left

b oundary and the finite bodies are insulated on the right side. The
diffusivity of the medium is constant and equal to one.

Figure 3.1 shows the semi-infinite body solution is a good
approximation to the finite body solution when the time is small and the
thickness of the body is large. It is not a good approximation when the
time becomes large or the thickness of the body is small. As the thick-
ness of the finite body increases, the Green’s function for the finite
bodies converge to the solution of the semi-infinite body, as expected.
The Green’s function for the larger width bodies can be approximated at

Small times by the semi-infinite Green’s function. The dependence of
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Table 3.1 Small Time for Finite and Infinite Body
0 , Point of Interest at x = 0.25

Source at x' =

X20

Leowo

e e e et et et (b e b e e 1 B

time

.001
.005
.010
.025
.050
.100
.250
.500
.000
.000

LWVHOOOO0OO0OO0OO0OO

.18261
.82649
.93495
.90875
.84596
.77522
.70583
.64080
.58090
.52604
.47584
.42983
.38757
.34862
.31262
.27924
. 24820
.21924
.19216
.16676

X22

L=20.5

RPN NN

.18261
.83002
. 96495
.99278
.99851
.99969
.99994
.99999
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

L=20.75

e e e et e e b et e e e e e

X22

.18261
.82649
.93496
.90891
.84698
.77865
.71391
.65606
.60579
.56278
.52626
.49542
.46943
.44758
.42922
.41380
.40086
.38999
.38088
.37323

Table 3.2 Exponential as a Function of Time

[eNeNoNoNoNoNoNeNoNol

LT expansion

e-l/ht e-4/4t
.00000 0.00000
.00000 0.00000
.00000 0.00000
.00005 0.00000
.00674 0.00000
.08209 0.00005
.36788 0.01832
.60653 0.13534
.77880 0.36788
.95123 0.81873

[eNeNeNoNoNoNoNoNo Nl

SOV expansion

- t
e

.99018
.95185
.90602
.78134
.61050
.37271
.08480
.00719
.00005
.00000

el eNeNoNoNoNeNeoNoNo)

2
-4 t
e

.96129
.82087
.67383
.37271
.13891
.01930
.00005
.00000
.00000
.00000

P e = 2 e

X22
L=1.0

.18261
.82649
.93495
.90875
.84596
.77523
.70587
.64094
.58129
.52689
47747
.43264
.39199
.35516
.32178
.29154
.26414
.23932
.21683
.19645
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the thickness scale may be removed from consideration of the solution by

defining a non-dimensional time parameter, t*, where,

¢ - allen) _ (3.1.1)

Small and large time solutions can be combined to obtain solu-
tions that are computationally efficient for the total time region. The
solutions are split into time partitions for which the resulting solu-
tions may be evaluated. At early times, the transient solutions are
more efficiently represented by a summation of exponential functions
derived from the Laplace gtransform (LT) or the method of images. The
exponential terms generated by the Laplace transform technique are
functions of -Cn/t* where Cnl is a function of m2 and increases in value
as the index m increases, and t* is the dimensionless time. As the
dimensionless time becomes small, the exponential terms rapidly ap-
proaches zero. For example, the first two typical exponential terms of
the summation derived by the Laplace transform technique for a one
dimensional slab, insulated on both boundaries, are shown in Table 3.2

(/6T g (66T

under the LT heading, namely e Notice that for

£%< 0.05, the term e (1% {5 legs than 0.0068 and for t™< 0.01 there
is no contribution out to the fifth decimal place. This means that as
the dimensionless time gets small, only the first few terms need be kept
for an accurate approximation. The additional terms may be dropped

2
without diminishing the accuracy of the computation. When m=2 (m =4),

4/6t”
one additional term, e'( /4t ), is also shown in Table 3.2. Five
decimal place accuracy is obtained for the sum of these two terms by

retaining only the first term when the dimensionless time is less than

0.1.
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The solutions derived using geparation of variables (SOV) are
more efficient at large times. Like the solutions found in the Laplace
transform technique, the solutions for the SOV method are functions of a
summation of exponential terms, but the exponential functions are typi-
cally functions of -cnt* where t* is the dimensionless time. The value
Cn is a function of n2 and it increases in value as the value of the
index n increases. As dimensionless time increases, these exponential
terms decrease rapidly towards zero. The first two typical exponential

2 % 2 %

"t and e*® T, of the summation found by using the SOV

terms, e
method for a one dimensional slab with insulated boundary conditions,
are shown in Table 3.2 under the SOV heading. When t* > 0.500, the

2 x

contribution of the first summation term, " t , 1s less than 0.0072.

For t" greater than 0.250, five decimal place accuracy is obtained when
only the first term in the summation is retained.

Accuracy can be increased for both the LT and the SOV method at
any dimensionless time by including additional terms to their respec-
tive series. Inclusion of the additional terms not only increases the
accuracy of the solution, but unfortunately also increases the amount of
computation time necessary to arrive at the solution due to the time of
evaluation of the additional terms.

Table 3.2 shows for any dimensionless time, the second term in
the LT or SOV series is always numerically equal to or less than the
first term in the series. This means the first term will dominate the
solution if the appropriate series is chosen based on the time.
Retaining an infinite number of terms in either the SOV or LT methods
will yield an exact solution but the choice of series that results in
the most efficient method is dependent of the time.

The analysis methods used in heat transfer are typically the

finite element (FE) method or the finite difference (FD) method and are
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numerical in nature. These numerical analysis methods generate informa-
tion at the locations designated by the resolution of both the spatial
grid size and the time step size. A smoothing function is used to
develop information at locations that differ from the spatial grid
points or at times that differ from the time step size. Very fine
temporal and spatial resolution are needed for solution convergence at
early times for FE and FD methods; therefore, at early times these
solution techniques are not efficient in the use of computer time.

The procedure for the small time Green'’s functions is useful in
the continuing research to develop the unsteady gurface element (USE)
method [Keltner and Beck,1981], which is a method for solving linear
transient heat conduction problems. Solutions to certain basic tran-
sient heat conduction problems, called influence or kernel functions,
are used as building blocks to solve problems of complex geometry and
problems that deal with nonlinear boundary conditions in the USE method.
The small and large time Green’s functions, along with a combination of
the small and large time Green’s functions, can be used to generate the
influence functions in the USE method.

Section 3.2 of this chapter gives a mathematical statement of
the general linear transient heat conduction problem and the development
of the small time Green’'s funct terms of a one dimensional slab.

The objective of Section 3.3 is to examine some examples of Green's
functions for semi-infinite bodies. Section 3.4 gives examples of how
the small time Green'’s functions are developed for finite one dimen-

sional bodies. Section 3.5 is a summary of the chapter.
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3.2 Mathematical Development of the Small Time Green’s Function

The objective of this section is to develop a procedure to
generate small time Green’s functions for one dimensional bodies with
boundary conditions of the zeroth through fifth kinds. The technique
uses the partial differential equation of heat diffusion, the associated
boundary conditions and Laplace transforms to generate an expression for
the Green's function that is accurate and efficient at small times. As
the dimensionless time approaches zero, the approximate solution goes to
the exact solution.

The partial differential equation for linear transient heat
conduction developed in Chapter 2 is, after the appropriate transforma-

tions,

2 B(I., t)
vr+——a-142 in region R. (3.2.1)

The associated boundary conditions are,

o1 at _ .
kg an, + (pcb) oo+ hT=£f(,t), (3.2.2)
for i=1,2,...,s, where the symbol s is the number of boundaries, and the

initial condition is,
T(x,0) = F(r). (3.2.3)
The thermal conductivity, k, and the thermal diffusivity, a, are

2
constant with position, time, and temperature, (x,t,T); V 1is the

Laplacian operator and n is an outward pointing normal.



%
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For a one dimensional slab without heat generation, i.e. g(r,t)

= 0, equation (3.2.1) reduces to,

2
41 _14I
axz =~ a dt 0 <x <L (3.2.4)

The one dimensional transient heat conduction equation (equation

3.2.4) is satisfied by,
2
T = [4 7 a(t-r)] /2 ¢~ (x-x") /(4 a(t-1)) (3.2.5)

which tends to zero when r - t at all points except x’, where it goes to
infinity. This solution is called the temperature due to an instan-
taneous plane source through x’ and at time r and of strength unity per
unit area. It is the fundamental transient solution in a planar heat-
conducting body and is actually a Green’s function. Since the
describing equation and boundary and initial conditions are linear, this
solution must be included in any solution to a planar region.

A solution, T(x,t), to the transient heat conduction equation
(equation 3.2.4) is required that goes to infinity at x = x' when 7 -
t, but is zero for every other value of x in 0 < x < L when 7 » t and
will satisfy the boundary conditions. The method of obtaining this
solution is similar to that given in Carslaw and Jaeger[1959, pp. 359-
360].

Let the solution for the instantaneous source at r = 0 and at x'

be equal to,

2
U= [4xat] /2 (XX /(4 at) (3.2.6)
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The complete solution for the temperature, T, that satisfies the dif-

ferential equation and the boundary conditions is,
T=u+w (3.2.7)

Since T and u are described by the transient heat conduction equation, w

is also; hence w is given by the solution of a subsidiary equation,

2
zle..i-g% 0<x<L, t>0. (3.2.8)

The Laplace transformation of the subsidiary equation for w is,

2,
2
d¥ Jw-o0 0<x<L (3.2.9)
dx
2
for q = p/a (3.2.10)
@
and w -I e Pt w(x,t) dt (3.2.11)
t=0

where p is the Laplace transform parameter.
A solution for w that is convenient for satisfying boundary

conditions as x -+ 0 and x + L is of the form,
W - D, sinh(q x) + D, cosh(q x) (3.2.12)
where D, and D, are constants determined from the boundary conditions

and sinh and cosh are the hyperbolic sine and cosine functions, which

are defined as,
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sinh(qL) - % [ L e'qL] (3.2.13)
and
cosh(qL) = % [ ell 4 o-dL ]. (3.2.14)

The Laplace transform solution for T is,

T=u+w (3.2.15)
-q|x-x'|
- & 557;77—' + D, sinh(q x) + D, cosh(q x)] (3.2.16)

subject to the boundary conditions,

41 o - -
dni + éiT 0 when x 0 or x L (3.2.17)

]
o

where 61 for the Neumann condition
(second kind)
- hi/k for the Robin condition
(third kind)

2
(p c b)iq /(p ¢) for the Carslaw condition

(fourth kind)

hi/k + (p c b)iqz/(p c) for the Jaeger condition
(fifth kind).
Setting ki equal to zero will result in a boundary condition of
the first kind (Dirichlet) and causes fi to go to infinity.
Substituting the solution T into these boundary conditions to

find the constants D, and D, for all the possible cases is a tedious and
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error-prone process when done by hand. The process is made more effi-
cient when symbolic manipulation is used. In SMP, the differentiation
operator D[$expr, ($x,$n,$pt)] forms the partial derivative of expression
$expr successively $n times with respect to coordinate $x, evaluating
the final result symbolically at the point $pt.

Differentiation of T with respect to x (for a one-dimensional
slab) is executed by using the differentiation operator D[T, (x,1,pt}]
where the location (pt) is set to zero or the thickness L. Applying the
two boundary conditions to the solution T results in two expressions and
two unknowns, D; and D,, as functions of sinh(qL) and cosh(qL).
Expressing the hyperbolic functions in terms of negative exponentials
and expanding the result in a series by the binomial theorem yields the
solution T as a summation of negative exponential terms.

The solution T is inverted term by term either by the Laplace
transform inversion theorem or, more simply, by a table of Laplace
transforms. Some important Laplace transforms that occur when using
this method can be found in Appendix A. Typically, a table of Laplace
transforms is all that is necessary for the inversion of T when only a
few of the terms in the series are retained.

As an example of the method, consider the X42 case, a one dimen-
sional slab with no heat generation, a nonconvective thin film boundary
condition at x = 0 and insulation at x = L. The transient heat conduc-
tion equation for this case is described in equation (3.2.4). The left
boundary is described by equation (3.2.2) with h; and f,(t) set to zero.
The right boundary condition is described by equation (3.2.2) with h,,
(pcb),, and f,(t) set to zero. Substituting the solution, equation

(3.2.16) for T into the left boundary condition yields,

-qx
x - Cqu)gal—“ + D, - CqLD, = 0 (3.2.18)
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Substituting the solution into the right boundary condition yields,

g-q(L-x')

D, cosh(qL) + D, sinh(qL) - 2qL - 0 (3.2.19)

Using matrix notation gives,

M My, D, 1 N,
[ Mz, Mjp ] [ D, ] T 2qL [ N, ] (3.2.20)

where M,;~ 1, M;,= -C,qL, M,;= cosh(qL), M,,= sinh(qlL),
N,= -(1-Cqu)e'qx' and N,= e U(L-X") ' The determinant of the M matrix

is equal to,
Determinant = sinh(qL) + C,qL cosh(qlL). (3.2.21)

Expanding the hyperbolic functions using equations (3.2.13) and (3.2.14)

gives,
( L . ol ( Ik 4 o-aLy
Determinant = 2 + C,qL 2 , (3.2.22)

or,

L

a _ % (1 - ¢,qL) e 9L, (3.2.23)

Determinant = % (1 +C,qL) e

or,

(1-C,qL)

qu |,
(1+CyqL)

-2qL

Determinant = 2 (14+C,qL) e | 1 (3.2.24)
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When 2qL is large, which is appropriate when time is small, the
second term in the brackets in equation (3.2.24) goes to zero and an

approximation to the determinant becomes,

Determinant = % (1+C,qL) eqL (3.2.25)

Cramer’s Rule is used with the approximation to the determinant
(equation (3.2.25)) to solve the matrix equation (equation (3.2.20)) for

the constants D, and D,.

D. = _1_ (l'cqu) e'Q(ZL"’x') i (l'cqu) e_qx'+ 2Cqu e_q(ZL_x:)
1 2qL | (1+C,qL) (1+C,qL) (1+C,qL)

(3.2.26)

D. = =k (1-C,qL) o-9(2L#x") (1-C,qL) o IX', %SLEE_ e~q(2L-x")
2 < 2qL | (1+C,qL) (1+C,qL) (1+C,qL)

(3.2.27)

Substituting D, and D, into the solution for T and expanding the
hyperbolic functions yield the Laplace transform Green's function, G,

for this case, which is,

’ (l'c qL) ’ ’
= I -q(x-x’) 17" -q(x+x’) -q(2L-x-x')
Cxa2 = 2qL [ e * T+ c,qL) © te
(l'cqu) ’ '
-_—t -q(2L+x-x') -q(2L-x+x')
+ (1+Cqu)[ e + e ] ], (3.2.28)

and is valid for e-qu being small. The term qL is large when time is

small.
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When equation (3.2.28) is expanded with partial fractions, the
coefficients of each term can be matched with a transform in a Laplace
table of transforms found in Appendix A.

The exponentials in the complete series (with no approximation
to the determinant) for boundary conditions of the first and second kind
have simple coefficients for the transforms that lead to solutions that
are valid for all times, but for large times, the solutions converge
slowly.

For the more complicated boundary condition of the third, fourth
or fifth kind, and for larger times with the first and second boundary
condition, the coefficients of the successive exponentials in the com-
plete series for the transforms become more complicated functions of
quz; hence only the first few terms of the series are readily used and
the solutions are valid for relatively small times. The coefficients
for the five types of boundary conditions are calculated by combining
the similar terms of the expansion. A general form is obtained below
for the small time Green’s functions.

Only a few terms in the small time expressions need be generated
because the small time solution can be combined with the large time
(Fourier) solution to get a solution that is accurate and efficient for
any time. Beck and Keltner [1985] demonstrate this idea in a paper on
the time partitioning of transient heat conduction solutions. Time
partitioning of the Green’s function allows the solution to transient
heat conduction problems to be more efficient since the number of terms
in the solution are tractable. The integration of a Green’s function
with respect to time may have poor convergence properties when the
Green’s function has not been properly partitioned.

Following the notation of Beck and Litkouhi [1985], the equation

below can be used for all cases for small times (large qL), XIJ, where I
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represents the boundary condition on the left side (1,2,3,4, or 5) and J
represents the boundary condition on the right side (1,2,3,4, or 5) of
the slab,

Ex;[J(x'x"s) - I.-' [_1_ e‘QIX'xl'

a | 2qL
+ AGap e IOy yp ) o7 U(HXXD)
+ B(aI'bJ) [ e'q(ZL+X'X') + e'q(ZL-x+x')] ] (3.2.29)

A maximum of five terms is retained for the small time solution.
The five terms in equation (3.2.29) represents the original source and
four sources or sinks closest to the original source term as shown in

Figure 3.2. The coefficients A(-) and B(+,+) are given below.

0 Y - R
A(c) = 2qL ~ qL(qL + <) (3.2.30)
- . 1
2qL + qLte (3.2.31)
qL-c
- E;Eaﬁrzfzj (3.2.32)
A _c+d
B(c,d) = 2qL ~ (qL+c) (qL+d) (3.2.33)
(qL-c) (qL-d)
= 2qL(qL+c) (qL+d) (3.2.34)
If ¢ » d, B(c,d) can be written as,
A o edd 1 __ 1
B(c,d) = 2qL + ood [ qltc ~ qi+d (3.2.35)
If ¢ = d, B(c,c) can be written as,
B(c,c) = == . —2S— (3.2.36)

- 2
2qL (qL+c)
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+ additional reflection terms
‘(2!.-:4-!')
+ additional reflection terms

LSS

|x - x|

T
//'\/‘Cf 1277777777

+ additional reflection terms

— S — emee emm— em— oo e  — e x--L

+ additional reflection terms
‘(2L+x - x')

—_—— e, e _—— - x = -2L

@(2L + x + x')

+ additional reflection terms

Figure 3.2 Reflections of Sources and Sinks in a Finite Body
and the Locations of Additional Reflection Terms.
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The a; and bJ values used in equation (3.3.29) are given by,
ax - @ bl - (3.2.37)
a, =0 b, =0 (3.2.38)
as - Bl bs - Bz (3.2.39)
2 2 2 2
a, = Cq L b, = C,q L (3.2.40)
2 2 2 2
where,
Bl - T Bz - T (3.2.42)
(PCb)1 (PCb)z
C, = (pel) C, = (peD) (3.2.43)

Equations (3.2.37) through (3.2.41) give the simplified version
of the coefficients A(+) and B(+,+) to be used in equation (3.2.29).
Table 3.3 gives a summary of the coefficients of e-q(x+x') for boundary
conditions of the first through fifth kinds and indicates the two types
of coefficients that need to be transformed.

The coefficient Eéi and the coefficient fazl:-z) coupled with
the exponential term, each have a simple transform found in the table of
Laplace transforms in Appendix A. The symbol B is a constant that
depends on the type of condition at the boundary. The Laplace Inversion
Theorem could be applied if the transform does not appear in the table
of Laplace transforms, but for small times, this is not necessary.

Table 3.4 is similar to Table 3.2 except it contains the coefficients
for e A(2L-x-x')
Table 3.5 contains the coefficients for the two exponential

terms e F(ZLAX-X") 14 ¢ U(ZL-X+X') ' 144 table depends on the previous
two tables with the exception of nine coefficients. The nine coeffi-

cients that appear in Table 3.5 and do not appear in Tables 3.3 and 3.4
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Table 3.3 Coefficients of e 1(X*X')
I=0 A=0
_ R
1 1 A(a,) 2qL
_ S
I=2 A(ap) 2qL
_ I W S
I=-3 A(ay) 2qL + qL+B,
- o . 1
1=24 A(ay) 2qL  qL+1/C,
) - . L 1 l_ . 1
I1=5 A(ag) 2qL * C,(5,-55) [ qL-S, qL-S, ]
- .
for Cl < 431
where, S, = Eé- [ -1+ (1 - 45101)1/2 ]
1
s, - 52:': [ -1 - (1 - 4B,c,)/2 }
Table 3.4 Coefficients of e-q(ZL-x-X')
_ R
J=1 A(b,) 2qL
_ S
J =2 A(bz) 2qL
_ - =, 1
J=3 A(bs) 2qL + qL+B,
_ - . 1 _
J =4 A(b,) 2qL ~ qL+1/C,
) oL 1 1 1
J =5 A(bg) 2qL ¥ C,(55-5,) [ qL-Sg  qL-S, }
-
for C, < 4B,

wl-‘ere, 33 - ‘z'é— [ -1 + (1 - 432C2)1/2 ]
2

2
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Table 3.5 Coefficients of e-q(2L+x-x') and e-q(2L-x+x')

J =0 J =1 J =2 J =3 J =4 J =5
I=0 0 0 0 0 0 0
I=1 0 -A(a,) A(a,) -A(bg) -A(b,) -A(bg)
I =2 0 -A(ay) A(ay) A(by) A(by) A(bg)
I =3 0 -A(ag) A(ag) B(ay,bg) B(ag,b,) B(ag,by)
I =4 0 -A(ay) A(ay) B(a,,bg) B(a,,b,) B(a,,bs)
1 B, + B, 1 1
where B(agq,bg) = 2qL + B, - B, [ gL + B, " qL + B, ] » By # By
S . S,
2qL 2 ’ 1 2
(qL + B,)
B(a,,bs) = - R 1 . —1 C.B, = 1
473 2qL 1 - CIBQ qL + l/Cl qL + Bz ’ 171

2/C
®™ (qL + 1/€y)

i -1 1
B(avas) - qu [ 1 + (Bl + B'))[ 8182 + (2_51)(2-32)] ]
2
1 [ C,S; + (B, + B,) |
(aL+S,) | 5,(5; - s, - s,)J

1 ( c,s: + (B, + B,)
* (qL+sy) | 52051 - 52 - 5y

’ Bzcl - 1

+

and where S; and S, are defined in Table 3.3 and C; < 1/4B,
cC, +C
1 ! 2 1 1
Blag,b) =20 * ¢, - ¢, [ oL + 1/¢, ~ qL + 1/C, ] » €1 7 Gy

) 2/¢,

- - C, = C
2 ’ 1 2
2aL (4L + 1/¢y)

r

1 -1 1
Blag,b) = L |1+ B [ 5:8; © (2'51)(2'52)] ]

,

2
.1 C,S; + B,
(qL+Sl) 31(52 ~Sl)(2 - Sl)
.
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Table 3.5 (cont.)

2
1 C,S, + B,
T @l+sy) | 55(8, - s (2 - Sy
2
(Cy + C)S; + (B, + By) 1
2qL 7 (S,-5,)(S3-5,)(S-Sy) [ qL+S, ]
2
(5,-52)(55-53)(5,-S3,) L qL+S, |
2
(Cy + C;)Sy + (B, + By) 1 )
(5,-53)(53-S3)(5,-S3) [ qL+S5 |,
2
(51-54)(52-54)(S3-S,) { qQL+S, |

where S; and S, are defined in Table 3.4 and,

B(as ,bs) -

B, >0, B,>0,C, >0, C; >0, C, < 1/4B,, C, < 1/4B,

2
B(as,bs) - —2-%{‘ - 2 [ 2 ]
2
(S - 8) qL+S,
2
2(0182 + Bl - 2 CISQ) [ 1 ]
- 2 2
(82 - Sl) (qL + Sz)

2
c152 [ 1 ]
(8, - 8,) qL+S,

for Bl - Bz ’ Cl - C2 » and BlCl v l/l‘

+

B(as,b‘) - B(a.,bs)
B, »B, ,C, »~C,

B(as ,bs) - B(as ,bs)

B(a‘lbs) - B(ava‘)
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are expanded and attached to the end of Table 3.5. Each of the nine
1

coefficients can be expressed as a combination of the functions 2qL’

z—il:-z), or ——-—1-——;, where, as before, g depends on the condition at
1 (qL + B)

the boundary. Two of these coefficients have been previously discussed
and the third coefficient can also be found in the table of Laplace
transforms in Appendix A.

Equation (3.2.29), Tables 3.3, 3.4 and 3.5, and a brief table of
Laplace transforms are all that is necessary to determine an approxima-
tion to the small time Green’s function for boundary conditions of the
first through fifth kinds. Table 3.6 gives the inverse Laplace trans-
forms for the terms that are included in Table 3.3.

The four locations nearest the original source, along with the
source’s location, correspond to the locations of the exponential terms
that will lead to an approximate expression of the small time Green's
function. This procedure lends to itself a simple physical interpreta-
tion. Each term in the approximate series corresponds to the solution of
a related problem for an infinite slab, see Figure 3.2, and thus the
solution for the finite region can be interpreted as the effects of
adding sources and sinks to an infinite body. Since the coefficients of
equation (3.2.29) can always be written in terms of E&i + additional
terms, the approximate solution to problems with boundary conditions of
the first through fifth kinds will include the solution for a slab that

is insulated at both boundaries. The choice of placing a source or sink

1
2qL

negative. A positive value for this term gives a source at the loca-

at a particular location depends on whether the term is positive or

tion. Any additional terms associated with the location represent the

effects of a boundary condition that is not insulated. Figure 3.2 shows
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Table 3.6 Inverse Laplace Transforms of A(e) e 3*

1 Inverse Laplace Transform

0 0

1 - % EX(x,t)
L

2 - EX(x,t)
L

3 e [ EX(x,t) - By ER(x,t,B,) ]
L

4 - Lz [ EX(x,t) - Cilm(Xatocil) ]
L

5 - g; { EX(x,t) - — L [ ER(x,t,S,) - ER(x,t,S,) ] }

+ 2

*
EX(x,t) = [4xt ] /2 BF FoE S F_at

rx-Ltt-

%*

— X
*1/2

* 2 *
ER(x,t,u) = e (x) /(4t) rerf [
(4t

ru @)

2
where the function rerf(z) = e erfc(z), t*- dimensionless time, and x*

is the normalized coordinate.
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the locations of the sources and sinks for a slab along with the loca-
tions of any additional terms that might occur for a boundary that is
not insulated.

The procedure may be extended to include more reflections of the
source by retaining the second term in equation (3.2.19) for the deter-
minant of matrix equation (3.2.20). A third term, C(c,d), appears in

the coefficient list of equation (3.2.29) and multiplies the reflection

locations e I(ZLHXHX') 14 o A(AL-X-X") 1o coefficient C(c,d) is,
2 2
(qL-c) (qL-d) (qL-d) (qL-c)
C(c,d) = 2 or 2 . (3.2.44)
2qL(qL+c) (qL+d) 2qL(qL+d) (qL+c)

The third term, C(c,d), complicates the evaluation of the solution by
including additional terms and functions that are not easily trans-
formed. Recently, a paper dealing with the generalization and
application of Laplace transformation formulas in diffusion problems
[Shibata and Kugo, 1983] has eased the calculation for some of the
inverse transforms of the coefficient C(c,d), but for small dimension-

less times, the term C(c,d) is not necessary.

3.3 Green’'s Functions for Some Semi-infinite Cases in One Dimension

The objective of this section is to show the effects of boundary
conditions on some semi-infinite geometries. The Green’s functions for
semi-infinite geometries are developed from the source solution and, for
boundary conditions of the first, second and third kinds, can be found

in Carslaw and Jaeger [1959].
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The basic building block Green'’s function for infinite and semi-
infinite bodies (called the source solution by Carslaw and Jaeger [1959,

pg. 50]) is,
G( ’ '1/2 ’ 2
X,X |t,r) = [4 x a(t-7)] exp[-(x-x') /(4 a(t-7))]. (3.3.1)

This function represents a unit impulse occurring at time r and
at position x’. In an infinite or semi-infinite medium the impulse has
an effect on the medium a long time after the impulse is generated.
This effect is shown in the figures below.

Figure 3.3 is a plot of the Green’s function of a semi-infinite
body normalized with respect to the position of the point of interest
for boundary conditions of the zeroth, first, and second kind. The
impulse occurs at x'=0 and r=0. One curve is the function l/J(ht*),
which is the leading coefficient of the Green’s function for an infinite
body, where the symbol t* is the dimensionless time. The Green'’s func-
tion for an infinite medium, represented by n = 0, is, as expected,
about one half the value the leading coefficient curve except at small
dimensionless times because the impulse can move in two directions.
When n = 1, which means that there is a boundary condition of the first
kind occurring at the surface of a semi-infinite body, the Green's
function is zero for all times. This means the effect of an impulse at
the surface of a body with a boundary condition of the first kind at
that surface is zero.

When n = 2, which means a boundary condition of the second kind
occurs at the surface of a semi-infinite body, the curve is twice the
value of the infinite curve after a dimensionless time of five. The

boundary condition of the second kind reflects the impulse which is the
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cause for the doubling. All of the curves, except when n = 1, converge
very slowly as the time increases.

Figure 3.4 is a plot of the Green’s function for a one dimen-
sional, semi-infinite body with a convective boundary condition (X30) at
the surface, normalized with respect to x’. The three curves show the
effect of increasing the Biot number on the Green’s function. The
1/Sqrt(4 t*) curve is shown for reference. If the Biot number is very
small, the Green’s function approaches the Green’s function for an
insulated case (X20) as expected. As the Biot number increases, the
Green’'s function decreases until it becomes zero, which represents a
boundary condition of the first kind.

Figure 3.5 is a plot of the Green’s function for a semi-infinite
body in one dimension with a nonconvective thin film at the surface
(X40) and normalized with respect to x’. The three curves represent the

effect of increasing the Carslaw number, C,, which is the thermal

L
storage capacity of the thin film divided by the thermal storage
capacity of the solid. When the thermal capacity of the thin film
approaches zero, the Green’s function approaches the Green’s function
for an insulated body (X20).

Figure 3.6 are the Green’'s functions, normalized with respect to
the source location, x’, for various positions of interest and dimen-
sionless times. Curves for an infinite medium (Figure 3.6a, X00) and a
semi-infinite medium with boundary conditions of the first (Figure 3.6b,
X10) and second kind (Figure 3.6c, X20) are shown. An important feature
of these plots is the shape of the Green’s function at very small times.
Notice for t* < 0.05, the shape of the curves are independent of the

type of boundary condition that occurs at the surface when the location

of the source and the point of interest coincide.
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Another important feature of these curves is the difference
between the curves when the time is not small and the point of interest
is at the surface (x = 0). For boundary conditions of the first kind
(X10), the Green’'s function is zero for all times. The Green's function
for the zeroth boundary (X00) is one half the Green’s function for a
boundary condition of the second kind (X20). The result is expected and
it has been shown previously.

Figures 3.7a, 3.7b, and 3.7c show the Green’s functions for a
semi-infinite body, normalized with respect to x’, with a boundary
condition of the third kind on the surface (X30). The three plots
represent the Biot number increasing by factors of ten from 0.1 to 10.
When the Biot number is small, the X30 Green’s function approach the
Green’s function for a boundary of the second kind (X20), as expected.
When the Biot number is large, the X30 Green’s function approaches the
Green’s function for a boundary condition of the first kind (X10).

Similar conclusions can be observed from Figures 3.8 and 3.9
which are the Green’s functions for a semi-infinite body with boundary
conditions of the fourth (X40) and fifth (X50) kind occurring at the

surface with various parameter values.

3.4 Small Time Green’s Functions for Finite Bodies

The objective of this section is to use the general results of
Section 3.2 to generate approximate Green’s functions that are accurate
and efficient at small times.

Two example problems will be discussed in this section. Both
problems involve a one dimensional slab with constant thermal conduc-

tivity, k, constant thermal diffusivity, a, and no heat generation. The
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transient heat conduction equation that describes this case is given in
equation (3.2.4). If r » 0 in the following expressions, substitute for
the time t the value (t - r). The first example has insulated boundary
conditions on both sides (Figure 3.10a) and the second example has a

nonconvective thin film (Figure 3.10b) at x = 0 and is insulated at x =
L. The first example is called a X22 case since it has boundary condi-
tions of the second kind on either side, while the second example is

called a X42 case since it has a boundary condition of the fourth kind

on the left boundary and is insulated on the right boundary.

3.4.1 Slab Insulated On Both Boundaries (X22)

For a slab insulated on both boundaries (X22), the coefficients

from Tables 3.3, 3.4 and 3.5 are,

- _ L
A[O] 2qL and B[0,0] 2qL
since a; = 0 and b, = 0. Adding the five terms of the Laplace transform
solution for small times for the Green’'s function, equation (3.2.29)

gives an approximate solution of the form,

oo = k[ Ao ( eralxex'], -aCxx’) -q(2L-x-x")
GX22 . [ 2qL (e + e + e
4+ e 9QLax-x') | -q(2L-x4x’) ] (3.4.1)

Using a table of Laplace transforms (Appendix A) or Table 3.6
for the inversion of these types of Laplace transform gives an ap-

proximation to the small time Green's function for the X22 case as,
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