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ABSTRACT

SYMBOLIC, ALGEBRAIC, AND NUMERIC SOLUTIONS TO HEAT CONDUCTION

PROBLEMS USING GREEN'S FUNCTIONS

by

Paul Henry Zang

Symbolic calculations that involve tedious, error-prone evaluation

have plagued the scientist and engineer for many centuries. A new tool

called computer algebra can be used to evaluate complex mathematical

operations, such as differentiation and integration, which can be

repetitious when applied to partial differential equations. Symbolic

results from computer algebra systems can offer insight to problems

which numerical results lack.

Symbolic manipulation of expressions and operations are used

extensively in this thesis. A new technique, using computer algebra,

for the symbolic solution of heat diffusion-type problems is examined.

The new technique involves the Green's function approach and uses

Laplace transforms and separation of variables for determining

appropriate Green's functions. Data bases of Green's functions and

integrals are used to speed up the calculation time of solutions.

A systematic and orderly procedure for developing Green's functions

which are computationally efficient for small dimensionless times is

examined. The small time Green's functions are used in a partitioning

scheme which accelerates the evaluation time of the symbolic solutions.
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Two computer programs are presented that symbolically calculates

temperature distributions for a limited number of heat transfer

problems. The one dimensional program called CANSS generated solutions

for various types of boundary conditions, initial conditions, and volume

energy heat sources. The two dimensional program called CANSSZD

generates temperature distributions for boundary conditions of the

zeroth, first and second kinds. The temperature distributions of

examples presented in this thesis match solutions found in the

literature and are partitioned in time to increase evaluation

efficiency.
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CHAPTER 1

INTRODUCTION

The first introduction of a child to mathematics is frequently

symbolic. The child learns that symbols have meaning - such as, two

crossed lines mean the numbers are added and two horizontal lines means

what follows is the sum total. Calculus brings the onset of the numeri-

cal approach and the acceptance of symbols becomes lost in the quest for

approximate solutions.

Computers, long used to reduce the repetition and increase the

accuracy of numerical calculation, can now do the same for symbolic

analysis. Computer algebra systems are used to define new mathematical

concepts and increase the speed of repetitive symbolic analysis pre-

viously performed by hand. Symbolic analysis can give insight to the

structure of the physics of problems that purely numerical solutions

miss.

Computer algebra programs work best on algorithmic representations

of systems that involve complex mathematical operations, such as in-

tegration or differentiation, but are straightforward. Symbolic

calculations of this type are said to be "fierce". At another extreme,

computer algebra programs also work well on systems that represent a

broad class of problems and can be expressed using an algebraic struc-

ture. The calculations for this case are not "fierce", but tedious and

repetitive.‘



Symbolic manipulation, or computer algebra, was brought into the

public domain by a program called MACSYMA [The MATHLAB Group, 1983] in

the early 70's. Since that time, many computer algebra systems have

been brought to the market. The early versions of computer algebra

programs were expensive, memory intensive, and dependent on specific

computer hardware. Today, the computer algebra software is more user

friendly, less machine dependent, and less expensive.

The introduction of symbolic software compatible with micro-

computers, personal computers, and, more recently, hand held

programmable calculators encourages the use of computer algebra and will

ultimately lead to educational programs in symbolic manipulation.

Computer algebra can be used as an educational tool in many branches of

science including calculus, physics, chemistry, and engineering. It is

now possible for most universities to offer computer algebra to students

as a learning aid.

This thesis presents a study of the application of computer algebra

techniques to a field of engineering and can be described as gomputer

aided symbolic engineering (CASE). Symbolic computer programs use

mathematical concepts to describe, analyze, and evaluate the mathemati-

cal operations that formerly required pencil-and-paper analysis.

Symbolic methods improve accuracy by evaluating solution in closed form.

The accuracy of the solutions obtained using computer algebra techniques

is dependent on the accuracy of the parameters or variables input to the

problem thus reducing or eliminating human error caused by evaluating

repetitive algebraic processes. The pattern revealed by a group of

variables or parameters will cover an infinite number of cases.

Computer algebra can be used in the areas of fluid dynamics, to solve

large full symbolic matrices, finite element methods, to generate ac-

curate trial functions, and machine dynamics to name a few. The CASE



field will continue to grow as more uses are discovered for computer

algebra.

Hayes and Michie [1984] state an expert system applies a structured

set of rules to a data base to evaluate input and calculate output, and

is a rudimentary form of artificial intelligence (AI). The expert

system discussed in this thesis employes a rule based procedure

(inference engine) along with known facts and assertions (knowledge

base) and is used to treat problems in heat diffusion. Figure 1.1

represents the structure of a expert system.

An expert system called computer algebraic, numeric, and symbolic

system (CANSS) applies symbolic manipulation to problems in mathematical

physics. The CANSS program developed in this thesis has the capacity to

solve heat diffusion problems not found in the literature. The CANSS

program represents a new technique in CASE for obtaining temperature

distributions for linear, multi-dimensional, transient heat diffusion

problems by the application of symbolic manipulation computer software.

As a tool for heat transfer engineers in the 80's and 90's, symbolic

analysis can be compared to the introduction of finite element tech-

niques to transient heat transfer in the early 70's.

The CANSS program uses a Green's function approach and a symbolic

manipulation program called SMP [1983] to generate analytical tempera-

ture distributions for problems that involve various linear boundary

conditions, initial conditions and volume energy heat sources. The

technique can calculate temperature distributions for some nonlinear

heat diffusion problems by using a transformation found in Ozisik [1980,

pg. 440] using the Kirchhoff transformation. Some nonlinear diffusion

problems can be treated as linear for special combinations of the physi-

cal properties.
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Transient temperature distributions for finite, infinite, and semi-

infinite single or multi-dimensional bodies are typically calculated

using finite difference or finite element methods. These methods gener-

ate information about the temperature for a finite set of points or

nodes and times. Care must be taken with the distribution size of the

points or mesh and the time step to insure stability of the solution.

Solutions obtained by numerical techniques must be re-calculated for the

entire domain of space and time when one or more input parameters

change. Simple substitution of new parameters into the symbolic form of

the solution result in new solutions without extensive re-calculation.

Computer algebra methods offer accurate symbolic results that can

act as test cases for the calibration of purely numerical techniques

such as finite element or finite difference. Specifically, symbolic

solutions to diffusion problems can complement the numerical solutions

that are normally used in heat transfer analysis. Symbolic solutions to

basic geometries can be included as trial functions in the finite ele-

ment and finite difference methods. Symbolic temperature distributions

can be also used as a starting point for numerical procedures or for

procedures where a poor initial guess will lead to solutions that do not

converge or oscillate.

1.1 Previous Herr

The Green's function approach to the solution of partial differen-

tial equations of heat diffusion is well documented. Morse and Feshbach

[1953], and more recently, Ozisik [1980] and Beck [1984a] provide a

structure for determining temperature distributions using the Green's

function approach.



Walters [1949] uses the Green's function approach to solve tran-

sient heat conduction and vibration problems analytically and, more

recently, Hassanein and Kulcinski [1984] use the Green's function ap-

proach to examine the rapid heating of fusion reactor walls. Hassanein

and Kulcinski reported comparisons of the Green's function approach to

the finite difference method. They report the Green's function ap-

proach requires more analytical calculations than the finite element

method but the time step may be larger and the calculations are more

straightforward. The analytical calculations in their study could be

calculated by a computer algebra system to decrease the complexity of

the problem.

The Green's function approach has been used to generate influence,

or kernel, functions for the unsteady surface element method developed

by Keltner and Beck [1981]. The unsteady surface element method splits

up the boundary and uses the influence functions to obtain solutions for

both linear and nonlinear boundary conditions. Cole [1986] used the

Green's function approach to determine some influence functions for

conjugate heat transfer problems in the unsteady surface element method.

The Green's function is geometry specific - a different Green's

function is needed for each geometry and each set of boundary condi-

tions. Many references and texts such as Butkovski [1982], Stakgold

[1979] and Beck [1984b] include lists of the Green's functions. Beck

and Litkouhi [1985] proposed a numbering system, which is used exten-

sively in this thesis, to generate a data base for the Green's

functions.

Numerically inefficient solutions to heat and mass diffusion

problems have been the bane of the heat transfer engineer for many

years. Miller and Gordon [1937] report the solutions obtained using the

traditional methods of Fourier series, while mathematically acceptable,



are inefficient for small regions of time because of the slow rate of

convergence. Aizen, et. a1., [1971] show additional methods of increas-

ing the speed of convergence for certain problems in heat diffusion.

The Green's function approach is well suited for symbolic calcula-

tion because it is algorithmic and uses operations not typically found

in numerical analysis. The capability for integration and differentia-

tion of the computer algebra systems make them the unique vehicle for

calculating temperature distributions using the Green's function method.

Integration and differentiation are the key to the Green's function

approach. The algorithmic structure of the approach is used with a

computer algebra system to generate new symbolic or numeric solutions.

In a recent paper by HaJi-Sheikh and Lakshminarayanan [1986],

symbolic analysis is applied to the solution of diffusion type problems

through the use of the Galerkin method. The temperature solutions

reported in this work are efficient for large dimensionless times and

for complex geOmetrical shapes.

The integration routines in SMP are based on an algorithm first

proposed by Risch [1969]. Risch bases his algorithm on the text by Ritt

[1949] which describes the integration of expressions in finite terms.

The Risch algorithm states that the integral must be represented as an

elementary function and the integral solution must also be expressible

in elementary functions. An elementary function is a function composed

of polynomials, exponentials, and logarithms using only rational and

algebraic operations. The Risch algorithm is still in its infancy, but

the work of Cherry [1986] and Knowles [1986] continue to expand the

functions to which the algorithm is applied. Cherry extended the types

of elementary functions to include some logarithmic integrals and

Knowles extended Cherry's work to include some exponential integrals and



a broader class of logarithmic integrals. Ng [1977] describes proce-

dures based on the Risch algorithm as pattern recognition strategies.

Roach and Steinberg [1984] use symbolic manipulation in the area of

computational fluid dynamics. They report the ability of speeding up

code development time and the prospect of virtually error-free testing

of constitutive equations and difference forms.

Rand [1984] describes the application of a computer algebra program

for solving ordinary differential equations, finding eigensolutions to

eigenvalue problems, and solving some examples of boundary value

problems. Rand reports the application of computer algebra for finding

approximate solutions to differential equations that contain small

parameter by using perturbation methods. Mathematicians and engineers

have been interested in finding closed form expressions for summations.

Moenck [1977] describes a method using symbolic manipulation to express

the sum of a rational function as a rational function part and a

transcendental part involving derivitives of the gamma function.

Char, et. al., [1986] describes the application of computer algebra

to undergraduate mathematics curriculum. They have found it feasible to

offer courses in computer algebra to large groups of students. The

initial findings suggest the introduction of a computer algebra system

to undergraduates has met with limited success. They suggest more

powerful facilities for integration, a smooth interface to numerical

procedures, and a more user friendly interface.



1.2 Thesis Objectives

The first objective of this thesis is to use the computer algebra

system SMP [1983] to develop two computer algebra programs that calcu-

late symbolic temperature distributions, one for one-dimensional bodies

and the second program for two-dimensional bodies. A unified method of

solution based on Green's functions is developed. The symbolic solu-

tions generated by the programs are to be computationally efficient for

the whole range of dimensionless times.

The second objective is the generation of symbolic temperature

distributions for some heat diffusion problems using the programs men-

tioned above. Experience needs to be obtained with the capabilities and

limitations of such computer programs. The solutions to basic heat

transfer problems can be used as kernel functions in numerical tech-

niques such as finite element, finite difference, and boundary element

methods. The programs in this thesis are based on the Green's function

approach to heat transfer which implies a linear problem model.

Litkouhi [1982] shows the distributions developed by the linear Green's

function approach can be used in a numerical surface element method to

obtain distributions to more physically complex or nonlinear problems.

Some temperature distributions that are not available are also gener-

ated.

The third objective of this thesis is to investigate a new class of

applications of computer algebra systems to mathematical problems in

engineering. The programs and examples in this thesis are chosen from

heat transfer, but the computer algebra environment is not restricted to

the diffusion equation.
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The fourth objective of this thesis is to study the need for a

structure in the field of interest. Structure in a field of interest

means the availability of a formalism for the calculation of solutions

and a data base of pertinent information relating to the field. The

structure is important because cases with different parameters can be

treated with the same formalism. For example, the formalism for solu-

tion of a conduction heat transfer problem could be the application of

Fourier series analysis and the data base would include solutions to

fundamental ordinary differential equations and some basic integrals.

The fifth objective is an examination of the knowledge bases neces-

sary for efficient computation of solutions. Hayes-Roth, et. al.,

[1983] state that the knowledge base aid the efficiency of an expert

system by eliminating "blind alleys", eliminating repetitive calcula-

tions, and applying specific information about the problem.

A sixth objective is to use the new concepts of time partitioning

by Beck and Keltner [1984] to obtain symbolic solutions to heat transfer

problems that converge rapidly for the whole range of dimensionless

times. Efficient symbolic solutions can give valuable insight to the

physics of the solutions. An investigator can determine how the solu-

tion to a specific system would react to a change of input parameters

without re-calculating the solution over the entire domain of time and

space.

The final objective is to survey areas associated with mathematical

physics in engineering for the mathematical structure or formalism that

can effectively use the elements of computer algebra.



 

 

f
?
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1.3 Synopsis of the Thesis

This thesis is divided into six chapters. Chapter 1 is the intro-

duction and gives the motivation for studying heat diffusion using a

Green's function approach and computer algebra. Previous work and the

scope of the thesis are examined in Chapter 1.

Chapter 2 introduces the mathematical development and structure of

the Green' function approach to the solution of heat diffusion problems

that appear in this thesis. The partial differential equations and the

_associated boundary and initial conditions are examined. A procedure

for obtaining the Green's functions and a procedure for generating the

products of one dimensional Green's functions to obtain the Green's

functions for two and three dimensional cases in rectangular coordinates

are presented.

Chapter 3 describes a method for obtaining approximate expressions

for Green's functions in one dimension using the technique of Laplace

transforms. The expressions generated by this method converge quickly

for small times. Examples of Green's functions are given which examine

the effect of various boundary conditions for semi-infinite bodies.

Three example problems are examined for finite, one dimensional bodies

using various boundary conditions.

Chapter 4 describes a computer algebra program, called CANSS, that

calculates symbolic temperature distributions for semi-infinite and

finite bodies in one dimension. Various types of boundary conditions,

initial conditions, and volume energy heat sources may be applied to the

bodies using the CANSS algorithm. Three example problems are examined
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along with some important integrals that relate to one dimensional

problems. A flowchart/example is presented.

Chapter 5 describes a symbolic computer algorithm, called CANSSZD,

that generates symbolic temperature distributions for two dimensional

plates. Two example problems are examined along with some special

integrals that occur during the calculation. A discussion of time

partitioning in two and three dimensions concludes the chapter.

Chapter 6 presents the conclusions and summary. This chapter also

offer suggestions for the extension of this thesis.



CHAPTER 2

erunq'S FUNCTION FORMULATION

2.1 Introduction

This chapter traces the development of the Green's function ap-

proach to the solution of linear partial differential equations for heat

conduction. This approach has become an accepted solution technique due

to the recent work by Greenberg [1971], Ozisik [1980] and Beck [1984b],

and the previous work of Morse and Feshbach [1953]. These authors show

that the Green's function approach to the solution to heat conduction

problems offers both simplicity and structure and gives the engineer and

scientist an alternate approach for solving diffusion type problems.

The unifying structure implicit in the Green's function approach

provides an ideal testing vehicle for demonstrating the use of symbolic

computation.

The Green's function approach is simple because of the straightfor-

ward manner in which the boundary condition, initial condition and heat

generation terms of the solution are generated. The approach has struc-

ture due to the use of a single Green's function for the complete

solution.

Classical heat conduction theory states that the heat transfer

rate, q, is proportional to the temperature gradient in the medium, or,

~fll
q ari (2.1.1)

13
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where ri is a coordinate in the direction of the heat flow in the

medium. Inserting a constant of proportionality called the thermal

conductivity, k, the constitutive equation that describes the rate of

heat flow by conduction in the ri direction as,

q _ -k g¥ . (2 1.2)

1

One consequence of the above equation is that a thermal disturbance

on or in the medium is propagated everywhere instantaneously. The

constitutive equation is very accurate even though instantaneous diffu-

sion is unrealistic. Maxwell [1867] and, more recently, Vick and Ozisik

[1984] modified the constitutive equation by including a relaxation term

that includes some start-up time, d, for the initiation of heat flow.

The modified constitutive equation,

as__ 3.1
q + ¢ at k 3‘1 (2.1.3)

was first suggested by Maxwell to account for finite diffusion velocity

and shows that the spontaneous release of a finite pulse of energy

causes a thermal wave front to move through the body at a finite

velocity. The wave of thermal energy dissipates exponentially as it

moves through the medium, see Figure 2.1. Other researchers (Vernotte

[1958] and Chester [1963]) have used the modified constitutive equation

to account for thermal waves in their experiments with helium at tem-

peratures close to absolute zero.

This thesis will not concern itself with the property of the ther-

mal wave that moves through the medium. When the relaxation time o is

small, equation (2.1.3) reduces to equation (2.1.2) except for extremely

small real times or temperatures near absolute zero.
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The solutions to heat conduction problems using the Green's func-

tion approach is presented in Section 2.2. The partial differential

equations for multi-dimensional heat conduction are developed along with

the boundary and initial conditions. In Section 2.3, the concepts of

the time-reversed auxiliary Green's function are presented along with a

technique to determine the Green's function and multiplying Green's

functions to obtain multi-dimensional Green's functions. The structure

and formalism of the approach are discussed in Section 2.4. Section 2.5

summarizes and concludes this chapter.

2.2 Mathematical Derivation of'Heat Diffusion in a Body

2.2.1 d 0 da 0 di 0 s

The purpose of this section is to discuss the partial differential

equation and its boundary and initial conditions used to generate tem-

perature distributions in infinite, semi-infinite and finite bodies.

The partial differential equation that describes the transient, multi-

dimensional, linear heat conduction in cartesian coordinates is,

2

since). :21 16.1:
v 'r + k - 13 arj + 71' -a at (2.2.1)

2

The symbol V is the Laplacian operator defined as,

2

V - L- (2.2.2)
29

6r
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the symbol g(z,t) is the internal heat generated in the solid body and r

is the rectangular coordinate (i.e. x, y, or z). The boundaries are

assumed to be parallel to the rectangular coordinates. The symbols a

and k are the thermal diffusivity and conductivity, respectively, of the

solid body. The diffusion equation is nonlinear when the thermal dif-

fusivity or p Cp are functions of the temperature. Ozisik [1980, pg.

440] shows that for certain boundary conditions and restrictions, the

nonlinear equation can be transformed into a linear equation. For

example, if the thermal conductivity can be expressed as,

k - 1 + fllT (2.2.3)

and p C1) is expressed as,

p Cp - l + flzT, (2.2.4)

the diffusion equation is nonlinear. If the constants 81 and 82 are

equal, the diffusion equation can be transformed into a linear equation

by the Kirchhoff transformation and the thermal diffusivity becoming a

constant.

The term 8 3%“ represents energy carried by a convective flow in

j

the rj direction and the term 7T could represent generation that is

proportional to the local temperature. The terms 8 and 1 are constant.

In heat transfer analysis, the 7T term may also represent the effect of

side losses for a fin.

The nonhomogeneous boundary conditions that are applied to the

surfaces are written as,

11 fl _
k1 ani + (pcb)1 at + hiT fi(ri’t)’ (2.2.5)
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where the integer i represents the surface to which the boundary condi-

tion is applied and n1 is the outward pointing normal to the i-th

surface. The symbol h1 is the convection coefficient and fi(r1,t) is

the nonhomogeneous forcing function associated with the i-th surface.

The k1 symbol will represent the thermal diffusivity of the body, except

when a temperature condition is imposed on the surface, k1 is set equal

to zero.

An additional term, (pcb)1 gg', has been added to the traditional

boundary equation that takes into account a thin film occurring at the

i-th surface. It could represent a thin film of gold on a glass or

silicon substrate or (see Carslaw and Jaeger [1959, pg. 128]) a slab in

contact with a well stirred fluid. A laminar sublayer will form across

a boundary of a slab placed in a flow of fluid. If the flow velocity of

the sublayer can be considered constant, the sublayer can be considered

a thin film.

A thin film term acts to hold or store some energy. It is assumed

that the thickness of the thin film is small enough so that the tempera-

ture at the surface of the film is the same as the temperature at the

surface of the body. The term (pcb)1 represents the storage capacity of

the thin film at the i-th surface.

The initial condition necessary to complete the description for the

solution of equation (2.2.1) is,

T(r.0) - F(r). (2.2.6)

The heat conduction equation (2.2.1) in the rectangular coordinate

system with convection in a direction parallel to the rectangular coor-

_ dinate directions can be reduced to a more desirable form by defining a

new variable (see Ozisik [1980, pg. 75]), W(;,t), where
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51 51 52 fie

T(r.t) - Wir.t) expi-vt] exvlg; (x -'5' t)] exeig; (y - 5‘ t)] -

fie fie

exp[§; (2 -‘E- t)] (2.2.7)

substituting equation (2.2.7) into equation (2.2.1) yields,

2 we; is?!
v w + k - a at (2.2 8)

where,

51 1 52 52

8'(r.t) - g(r.t) expl-vti cuppa; (x - -2- t)] exp[-§; (y - T t)] .

B: s

exp[-§; (z - 5‘ t)] (2.2.9)

represents the heat generation in the solid body.

Equation (2.2.8) is easier to solve than equation (2.2.1), and it

represents a broad class of conduction problems that include convective

diffusion, heat generation and generation proportional to the local

temperature. The transformation given by equation (2.2.7) must be

applied to the boundary and initial condition as well as the heat con-

duction equation. Applying the transformation to the general boundary

condition, equation (2.2.5), yields,

2! as . _ .
k1 dn1+ (pcb)1 at + hiW fi(ri,t), (2.2.9)

where,

2

B. fl
. .41 ..i
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the new convection coefficient, and,

51 51 B2 52

fi - fi(ri’t) exp[-1t] exp[-§; (r1 - 5' t)] exp[-§; (r2 - §—'t)] .

fl: 5:

exp[-§; (r3 - 3‘ t)] (2.2.11)

represents the new forcing function.

The boundary conditions for a diffusion problem has been stated

previously as,

1T 11 _
k1 ani + (pcb)1 at + hiT fi(ri’t)° (2.2.12)

Five distinct classes of boundary conditions can be obtained from this

equation.

The first kind is when the temperature is prescribed condition at a

boundary, see Figure 2.2a,

T - fi(ri,t). (2.2.13)

Equation (2.2.13) can be obtained from equation (2.2.12) by letting ki =

0, (pcb)1 - 0, and h1 - l. The term fi(ri’t) is the prescribed tempera-

ture history at the boundary. If the temperature at the boundary is

zero, equation (2.2.13) on the boundary becomes the homogeneous boundary

condition,

T - 0. (2.2.14)

The temperature boundary condition is also called a Dirichlet condition.



 

 

T=T
o
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. Figure 2.2a

Semi-infinite Slab

With a Temperature Boundary

Condition.(X10).
.

  

 

 

Figure 2.21: ‘3 "' 90 L ---""x

Semi-infinite Slab

With a Heat Flux Boundary

Condition (X20). .1

 

 

   

Figure 2.2c

Semi-infinite Slab

With a.Convective Boundary

Condition (X30).
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The second kind of boundary condition (also called a Neumann

condition) is one in which the heat flow is prescribed, see Figure 2.2b,

fl ..k1 ani fi(r1,t), (2.2.15)

‘1

where f1(r1,t) is a prescribed heat flux. This equation is obtained

from equation (2.2.12) by letting h1 and (pcb)i equal zero.

If the heat flux at the boundary is zero, the boundary condition

becomes homogeneous and is referred to as being insulated,

31 _ 0.
(2.2.16)

ni r
i

A Robin condition or convective boundary condition occurs when

there is a linear combination of the temperature and the normal deriva-

tive of the temperature -- a boundary condition of the third kind; see

Figure 2.2c. The value of the thin film coefficient in equation

(2.2.12) is set to zero and the boundary condition equation becomes,

 

 

ii -k1 ani + h1 T fi(r1,t) (2.2.17)

r1

or,

L %I + 31 T - f"(r ,c) - L, (2.2.18)
n1 1

'1

hiL

where f"(ri,t) was previously defined, Bi - _k— is the Biot number for

the solid body at the i-th surface and L may be the thickness of the



 

    

body.

thermal

homogen

A .

exists

the sur

thin fi

gradiet

the hon

W

0
.
1
0
)

a
l
e
s

  

‘ihere

thin f

equal



23

body. The Biot number is the convective coefficient divided by the

thermal conductivity. If f”(r1,t) is zero, the boundary conditions is

homogeneous.

A boundary condition of the fourth kind, or Carslaw condition,

exists when a "thin" film with no convective heat loss is prescribed at

the surface of the thin film's outer boundary; see Figure 2.3a. The

thin film is assumed to have high conductivity therefore no temperature

gradient exists through the film. The value of h is set to zero and

 

 

i

the boundary condition equation (2.2.12) becomes,

21 a: _
k1 an, + (pcb)1 a: fi(r1,t) (2.2.19)

1‘1

or,

b

21' +‘_'£_’_1u_£1‘_21'_‘l (2220)
an k at k ’ ' ‘

i i i -

1"’1

where k1 is the thermal conductivity of the solid body and (pcb)i is the

thin film coefficient. This equation is homogeneous if fi<ri’t) is set

equal to zero.

The boundary condition of the fifth kind, or the Jaeger condition,

includes all of the terms in the boundary condition equation described

by equation (2.2.12), see Figure 2.3b. The term k1 is set to the ther-

mal conductivity of the solid body, the term hi is the convection

coefficient and (pcb)1 is the thin film coefficient. It is homogeneous

if f1(r1,t) is set equal to zero.

Another type of boundary condition that is considered will be

called a boundary condition of the zeroth kind. This boundary condition
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has no physical boundary, such as in the case of an infinite or semi-

infinite body; see Figure 2.4. The zeroth condition has also been

referred to as the natural condition.

The initial condition for the heat conduction equation,

T(r.0) - F(r). (2.2.21)

This concludes the description of the transient linear heat diffu-

sion equation that will be used in this thesis.

2.2.2 ' o u on

The purpose of this section is to generate the auxiliary Green's

function equation. This equation, when combined with the heat diffusion

equation, gives a formalism to the solution of heat diffusion for tem-

perature distribution.

The development of the auxiliary Green's function equation follows.

the work of Morse and Feshbach [1959], Ozisik [1980], and Beck [1984].

The auxiliary Green's function equation for heat diffusion is obtained

from the heat conduction equation model with an instantaneous heat pulse

source of unit strength. The boundary conditions for this auxiliary

problem are homogeneous and the solution to this auxiliary problem is

called the Green's function, G. The auxiliary Green's function equation

is,

a V26(;,t|;',r) + a; - 105(1- - 7) - 3% (2.2.22)

in the region R and t > r,
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(a) Semi-infinite Body (X20)
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Figure 2.4 A Semi-infinite Body and an Infinite Body.
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subject to the boundary conditions,

29. flfi _
k1 ani + (pcb)1 at + hIG 0 (2.2.23)

on the i-th surface,

and subject to the causality relationship,

C(r.t|r'.f) - 0 (2.2.24)

for t < r.

The physical interpretation of the Green's function is the response

of the system to a unit impulse of heat that occurs at some time 1 and

at some position.;'. The solution to the auxiliary problem is given the

symbol G(;,t|;',r) where I and t are the point and time of interest

respectively, 1' and r are the position and time of the impulse.

Equation (2.2.24) is called the causality relationship because it

expresses the relationship between the impulse, which occurs at time 1,

and the effect of the impulse, which can occur only after time 1. This

means that for times t < r or, mathematically, for times -t > -r , there

is no effect and the Green's function is zero.

The heat diffusion equation and the auxiliary Green's function

equation are parabolic in time due to the appearance of the first

derivative with respect to time. This means, for example, that a solu-

tion to the heat conduction equation, T(r,t), is not the same as the

solution T(r,-t). The diffusion equation and the auxiliary Green's

function equation are asymmetric in time; they can distinguish between

the past and future.

The Green's function also satisfies a reciprocity condition,
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G(:.t|r’.f) - G<r'.-rlr.-t). (2.2.25)

The function G(;',-r|;,-t) is the effect of a source at location 3 and

time -t at a point 1' and at time -r. The causality condition is still

true and the reciprocal function G(;',-r|;,-t) satisfies the time

reversed auxiliary Green' function equation,

2

a voc + u; - y) 5(c - r) - - 3%, (2.2.26)

2

where V0 is the Laplacian operator for the ;' coordinates. This

auxiliary Green's function now describes the development of the effect

of a source placed at position 1 and at time -t.

2.3 The Green's Function.Approach

2.3.1 c va 0 0 th G een' unct o A roach

The purpose of this section is to combine the heat diffusion and

the auxiliary Green's function to obtain a formalism for the solution of

heat diffusion problems for the temperature distribution. A general

expression for the solution to the heat conduction equation [0zisik,

1980] can be generated by combining the heat conduction equation and the

time-reversed auxiliary Green's function equation. Multiplying the heat

conduction equation (equation (2.2.8) with r replaced by r' and t re-

placed by r) by the Green's function, multiplying the time-reversed

auxiliary Green's function equation (equation (2.2.26)) by the tempera-

ture and subtracting gives,
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(szT-TV§G)+uL1'z‘L)'G-%8(;-;')6(t-r)T-;'a'('g—Tl.
a 87

(2.3.1)

This equation is integrated over the total region, R, with respect to r'

and r. The term r goes from 0 to t+¢, where e is arbitrarily small value

of time which will be made to approach zero. This yields,

t+e t+e

2 2

I I a ( G VOT - T VoG ) dv' dr + I I’% G g(;',r) dv' dr

r-O R 1-0 R

t+e

- T(r,t) - I’[ G T ] dv'. (2.3.2)

R 7-0

where dv' is an volume element in the region R. Rearranging the above

equation for the temperature distribution gives,

t+e t+e

T(r,t) - - I [ G T ] dv' + I Iii G g(;',r) dv' dr

R r-O r-O R

t+e

2 2

+ I I a ( G VOT - T VOG ) dv' d1. (2.3.3)

r-O R

The only term on the left hand side is the temperature distribution of

the body at location 1 and at time t. This equation is now examined

term by term.

The first term on the right hand side of equation (2.3.3) is,

t+e

-Jl[c'r] dv'. (2.3.4)

R r-O
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t-i-e

Evaluating - [c 'r] - - (o - c T|f_o) - + c TIM). The Green's

r-O

function evaluated at r-t+e is zero because the effect cannot begin

before the impulse. When 1 - 0, the temperature distribution, T(;,0),

is the initial temperature distribution, F(;). This term becomes,

Il-IMLdrm)mr>wu (21»

R

and is the effect of the initial distribution on the temperature dis-

tribution and is designated 11.

The second term on the right hand side of equation (2.3.3) is,

t+¢

I3 - I I § G(1,tl;',r) g(;',r) dv' dr. (2.3.6)

r-O R

This term is the effect of a distributed heat source, g(;,t), on the

temperature distribution and is designated I3.

The third term on the right hand side of equation (2.3.3) is,

t+e

2 2

r-O R

Green's theorem can be used to change the volume integral to a

surface integral so that,

t+e

2 2

I I a ( G VOT - T VOG ) dv' dr

r-O R
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t+e s

.. fl _ 2.9.
I E Ila ( C an, T a“: ) dSi dr, (2.3.8)

r-O i-l S1 r -ri r -r1

.0.
where the term a

“1

the boundary surface 81’ see Figure 2.5, where i-l,2,3,...,s, and s is

is differentiation along an outward drawn normal to

the number of boundaries.

The integrand of this integral can be expressed in terms of the

boundary conditions of the heat conduction equation and the auxiliary

Green's function equation. Multiplying the boundary condition equation

(2.2.12) by the Green's function, multiplying equation (2.2.23) by the

temperature and subtracting yields,

 

G21 _ 25L _5211‘3 fl 2c:_ 21
(an Tan ) k 6* k (Taf +667”

1 r'-r 1 r'-r 1 i

1 1

or, (2.3.9)

(Gm: 429. )_5£1'_“’G+ (“human
an1 ani R1 R1 67

r'-r1 r'-ri

(2.3.10)

Integrating over the surface S and the time, 1, for constant thermal

i

diffusivity and boundary conditions of the second through fifth kinds,

yields,

t+e s

11

I a (G an

r-O i-l S.

1

wrfi )dS.dr
an 1

I i I

r -r. r -r.
1 1

 i
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Figure 2.5 A Description of Normals at the Surface of a Finite

Body.
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t+e s f (r' 7)

- a I E I '1'E1——' G(;,t|;',r) dSi dr

r-O i-l Si 1

s (p c b)

+ a} I "T—i c<;,t|;',0) F(r') dSi. (2.3.11)

1
1-1 31

The first term on the right hand side of equation (2.3.11) is the

effect of the boundary conditions on the temperature distribution and

will be designated as 14' The second term on the right hand side of

equation (2.3.11) is the effect of the thermal storage capacity of the

thin film on the temperature distribution of the solid body and is

designated 12.

For a boundary condition of the first kind, since G at the boundary

is zero, equation (2.3.8) becomes,

t+e s'

- - . 2L
I4 0 I E I fj(rj,r) an ‘ de dr. (2.3.12)

r-O j-l Sj j r'-rj

where s' is the number of boundary conditions of the first kinds.

Drawing together the four terms yields an expression for the tem-

perature distribution as,

T(r,t) - I1 + 12 + 13 + 14

- I C(r.tlr'.0) F(r') dv'

R

s

(pcb)

+ a E I -——E-——1 G(r,t|r' 0) F(r') d8

1
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t+€

+ I [fiandrn>yyn>w'm

r-O R

t+e s

f (r',r)

+ a I’ E I -1—E1——- G(;,t|;',r) dsi d1

r-O 1-1 s 1
i

(for boundary conditions of the second through fifth kinds)

t+e s'

. fig.
- a E I fj(rj,r) anj de (11'. (2.3.13)

r-O j-l SJ r'-rj

(for boundary condition of the first kind only)

The four terms on the right hand side of equation (2.3.13) describe

a formalism to be used to solve for the temperature distribution in a

body for boundary conditions of the second through fifth kind. The

first two terms represent the effect on the temperature distribution

caused by a nonzero initial condition. The third term represents the

effect caused by a volume energy source and the last two terms repre-

sents the effect caused by nonhomogeneous boundary conditions.

If a boundary condition of the zeroth kind occurs at a surface i=j,

the last two terms in equation (2.3.13) are omitted for that surface.

The temperature distribution in the one dimensional cartesian

coordinate x for a one dimensional slab is,

L

T(x,t) - I G(x,t|x',0) F(x') dx'

x'-0

2

p c b)

+ a E __—k__—i [G(x,t|x',0) F(x')]

(

1-1 1 x"x1
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t L

+ I I § G(x,t|x',r) g(x',r) dx' dr

r-O x'-0

s f (x'

a! E -1—-1——- C(x, tIx' ,r)x d7 .

r-O i-l

(for boundary conditions of the second through fifth kinds)

t s'

- a {I §f1(xj,,r) 39- dr, (2.3.14)

r-O 3-1anj 3-xj

(for boundary condition of the first kind only)

where L is the length of the slab in the x direction.

The temperature distribution in the two dimensional cartesian

coordinates x and y for a two dimensional plate is,

T(X.y.t) - I I C(X.y.tIX'.y'.0) F(x'.y') dx' dy' +

 

x' y'

(pckb)

6.3—i
[C(X'thlx':}".0)

F(x',y')]
+

i-l
x'-xi

Y 'Yi

t

I J. I§G(X,y,tlx',y1’7)
g(X',Y',T)

dA d? +

7'0 x' y'

t s fi(Xi,yi,r)

a I E ki C(x’y’tlx"y"')x'-xid'
,

1.0 1-1

Y'-yi

(for boundary conditions of the second through fifth kinds)

I

t S

- a I E ”1(x ,y. 7) %§— - - dr, (2.3.15)

,_0 1-1 J X' xjy' yj

(for boundary condition of the first kind only)
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23.2W

The objective of this section is to discuss some methods to deter-

mine the correct Green's function based on the boundary conditions.

There are many procedures for the determination of the Green's function.

One procedure, which will be discussed in the next chapter, is by the

method of Laplace transforms.. A second method, which produces results

similar to the Laplace transform method, is the method of images. Both

of these techniques produce Green's functions that are computationally

efficient at small dimensionless time. The third method, which produces

Green's functions that are computationally efficient at large dimension-

less times, is obtained by using the traditional method of separation of

variables.

The method of images requires the temperature in a finite or semi-

infinite body caused by a supply of heat at certain points, and the

removal of heat at other points. A supply of heat at a point is called

a source while the removal of heat at a point is called a sink. In a

one dimensional infinite body, the temperature distribution due to an

instantaneous heat pulse is,

T(x.x'lc.r) - Q [a a a (.-.)1-1/2 expt-(x-x'>2/<a «2 (t-rm.

(2.3.16)

where Q is the strength of the source, x' and r are the location and

starting time of the source, and x and t are the location and time of

interest. Multiplying this temperature distribution by pc and integrat-

ing over the entire infinite body yields,
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I ch dx' - Qpc I [a a a (c-r)]’1/2 exp[-(x-x')2/(4 a (t-r))] dx'

- Qpc. (2.3.17)

which shows the total amount of heat liberated in the infinite solid is

Qpc.

When the infinite body is bounded by planes, the bounding planes

can be considered to act as heat mirrors which reflect the sources and

sinks. The Green's function of a bounded body is simply the distribu-

tion of the original source plus the effects of these reflections, see

Figure 2.6. The method in Chapter 3 will give a technique for the

placement of the sources, sinks and correction terms for the positions

shown in Figure 2.6.

In his book on partial differential equations, Sommerfeld [1967]

describes the method of images for heat diffusion in a slab as a room

with parallel mirrors. This simulates a finite body of length L. A

light placed in the room will be reflected by both mirrors not once, but

in infinite repetition. The reflections of the light source are the

heat poles with a period 2nL where L is the distance between the mirrors

and n is an integer index. The summation of the poles yield the Green's

function for small dimensionless time. The reflections can be con-

Sidered to form background correction factors to the effect of the

source.

The method of images is restricted to systems that have boundaries

comPosedof straight lines. Other shapes may be considered but the

method may be applied only approximately.

A second approach that is frequently used to solve heat conduction

Prohlems is by using the separation of variables. This technique gives

Green's functions that are efficient for large times. The homogeneous
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heat conduction equation is solved using the separation of variables

technique, with homogeneous boundary conditions and an initial condi-

tion, F(z), and the solution is expressed in the form,

T(X3t) - J. 1((191' 3:) F(I') dV' 0 (203-18)

R

Since the Green's function solution for this case is,

T(I.t) - I G(I.I'It.0) F(I') dv'. (2.3.19)

R

and it follows that,

G(r.r'|t.0) - K(r.r'.t). (2.3.20)

Replacing t with t-r in K(;,;',t) gives the general Green's function for

solution to nonhomogeneous problems, G(;,;'|t,r).

It is important to note that to solve the nonhomogeneous problem

for temperature, the homogeneous problem for the Green's function is all

that is needed to be considered.

2.3.3 zzgggggg of Green'; Eugggigns

The purpose of this section is to show the combinations of Green's

functions that are mathematically possible for rectangular coordinates.

.A.unique feature of the Green's function approach to the solution

°f transient heat diffusion problems is the capability of multiplying

one dimensional Green's functions to obtain Green's functions for two
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and three dimensions in cartesian coordinates for boundary conditions of

the zeroth through third kinds. The development of this idea follows

the techniques of Ozisik [1980] and Beck and Yen[l984b].

In cartesian coordinates it is desired to prove,

C(X.y.2.tIX'.y'.z'.r) -

Gl(x,tlx',r) - G2(y,t|y',r) - G3(z,tlz',r). (2.3.21)

To prove this, the right hand side of equation (2.3.21) is substituted

into the auxiliary Green's function equation and the boundary conditions

and then compared to the equation of the individual coordinate equations

added together.

Substituting the right hand side of equation (2.3.21) into the

auxiliary Green's function equation (equation (2.2.26)) yields,

2 2 2

a c, a c, a G3

a G29: 2 + 0103 2 + C162 2

3x ay 82

361 6G2 6G3

- G26a 5;— + 6163 -3:_ + G162 -§:- -

6(x-x') 6(y-y') 6(z-z') 6(t-r). (2.3.22)

The one dimensional equations that describe G1, 62, and G3 are,

  

2

a 61 as
l 1 .<1 [ 6x2 - a a, ] - 6(x-x ) 6(t-r) (2.3.23)

  

2

2 5(y y ) 6(t 1) (2.3.24)
By a 61



 

 

Multi
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inf .
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2

6 G, 6G,

a [ az, - i af ] - 6(2-2') 6(t-r) (2.3.25)

Multiplying these three equations by G2G3, GIGS, and GIG2 respectively,

and adding gives,

2 2 2

a G, a G2 a G3

a G26: 2 + 6163 2 + C162 2

8x ay 62

ac, 3G2 8G3

- GzG, '5:' + GIGa -5; + G1G2 ‘3; -

c,c3 8(x-x') 6(t-r) + G163 6(y-y') 6(t-r) + 0,0, 6(z-z') 6(t-r).

(2.3.26)

The terms on the left hand side of equations (2.3.22) and (2.3.26) match

therefore it must be shown that the right hand terms of these equations

are equal. This means, for example, that,

0263 6(x-x') 8(t-r) - % 6(x-x') 6(y-y') 5(2-2') 6(t-r) (2.3.27)

Integrating equation (2.3.24) with respect to r from minus to plus

infinity ,

  

m 2 m

a G2 ac2

In [ 3y: - i 81 ] dr - 6(y-y') J. 6(t-r) d1 , (2.3.28)

Which yields ,

92 - 6(y-y') H(t-r). (2.3.29)
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When tflf, the left and right hand side of equation (2.3.27) are zero.

When t-r, G2 and G, act like unit step functions, H(t-r), multiplied by

functions independent on time. Therefore,

2

62G, - 6(y-y') 6(z-z') H (t-r). (2.3.30)

Substituting equation (2.3.30) in equation (2.3.27), integrating over

time yields,

I H (t-r) 6(t-r) dt - I 3 6(t-r) dt

11’ 1_ 3 - 3 _ (2.3.31)

t-f
 

The same procedure is used for the remaining terms on the right hand

side of equation (2.3.27) and results in,

3['% 6(x-x') 6(y-y') 6(z-z') 6(t-r) } -

6(x-x') 6(y-y') 6(z-z') 6(t-r), (2.3.32)

which completes the proof for the differential equation.

The boundary conditions must also be satisfied for the product

relationship to hold. The general boundary condition for boundary

conditions of the first, second and third kind is,

LG. _
ki ani + h1 G 0. (2.3.33)
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Substituting equation (2.3.21) in this expression gives,

ac1

or, dividing through by G2G3 gives,

ac1

k1 5;— + h1 G1 - 0, (2.3.35)

i

which is the same expression as equation (2.3.33). This proves that the

product relationship will hold for boundary conditions of the first,

second and third kind. 3

The general equation for boundary conditions of the fourth and

fifth kind is,

as. as _
k1 ani + (pcb)1 at + h1 c 0. (2.3.36)

Substituting equation (2.3.21) in this equation gives,

6G1

62G, 32:— i G1G2G3h1

8G1 6G2 6G3

i (pcb)1 G263 _az + GIG3 '3; + GIG2 '5? - 0 (2.3.37)

which cannot be reduced to the form of equation (2.3.36). Consequently,

the product relationship of the one dimensional Green's functions is not

valid for two or three dimensional diffusion problems when there are

boundary conditions of the fourth or fifth kinds.
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2.4 Formalism of the Green's Emotion Approach

The description of the temperature distribution based on the

Green's function approach, equation (2.3.13), provides a logical and

mathematical structure to the solution of heat diffusion problems. This

formalism is used to begin a structured data base of solutions based

solely on the geometry and the boundary condition types of the specified

problems.

The dictionary defines formalism as a rigorous adherence to recog-

nized forms. A mathematical formalism uses some basic "building blocks"

or functions in a structure to obtain analytical solutions. In the

Green's function approach, the basic "building blocks" are contained in

the data bases. Both data bases in the Green's function approach, the

Green's function data base and the integral data base, are finite and

analytical. This will restrict the capabilities of the method to a

finite number of cases, but the solutions will be analytical. The data

bases do no need to be analytical in general. For example, in the

integral data base, an integral that does not have a closed form could

be expressed in numerical form, but the solution based on the numerical

form will not be analytical.

The Green's function approach to heat diffusion problems relies on

the availability of Green's functions. A single Green's function is used

in each term on the right hand side of equation (2.3.13). Independent

of the initial condition and volume energy source, the Green's function

is determined from the boundary conditions. This suggests that a look-

up table or data base of Green's functions is important to the

formalism. Furthermore, a complete table of one dimensional Green's

functions for the cartesian coordinate system is available.
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Beck and Litkouhi [1984] have suggested a numbering system for

single and multi-dimensional Greens functions based on the types of

boundary conditions that occur on the surfaces of the body. Figure 2.7

shows the distinct number of cases for the Green's function for the one

dimensional rectangular coordinate system. For example, a one dimen-

sional slab with a boundary condition of the first kind at the left

surface and insulated on the right surface is designated as X12. The

numbering scheme allows the Green's functions to be manually and com-

puter catalogued and the effort necessary for locating the functions

will be the effort necessary to establish the catalogue number for the

specified problem. Figure 2.7 shows the distinct number of cases for

the Green's function for the rectangular coordinate system.

The numbering system proposed is important since the temperature

distributions obtained by the Green's function approach can be

catalogued and stored and need not be re-evaluated. The numbering

system uses the types of boundary conditions and determines a Green's

function that represents a plane, line, or point source that occurs at

some point x' in the slab (or on the boundary), and at some time r. Due

to the linearity of the problems, this function is then multiplied by

the forcing function and integrated over the boundary, area, and/or time

of interest.

Since all of the Green's functions for the six linear boundary

conditions have been catalogued, it is easy to calculate new solutions

by implementing the Green's function formalism. The convergence of the

new solutions is greatly improved over the solutions based solely on the

method of separation of variables or the method of Laplace transforms.

For small times, the Laplace transform method is most efficient.

For dimensionless times greater than 0.05, more terms are necessary in
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the Laplace transform series for convergence. At this point, by switch-

ing to the separation of variables function, convergence is retained and

the number of terms evaluated in the series remains small or at least

tractable.

The ability to use the product of Green's functions for multi-

dimensional temperature distributions is advantageous since the same

solution kernel may be programmed for one, two, or three dimensional

problems for boundary conditions of the zeroth, first, second, and third

kinds. The Green's function approach does not allow boundary conditions

of the fourth and fifth kinds for problems in two and three dimensions.

The great usefulness of the Green's function procedure is startling

due to the vast number of cases that are involved. The CANSS program

will treat heat conduction problems that deal with nonhomogeneous bound-

ary conditions of the zeroth through fifth kind, time and space

variation in the boundary conditions and initial condition, constant

volume energy sources, terms associated with fins, and terms associated

with flow.

The symbolic formalism of the Green's function approach permits the

Lase of either the small time Green's function or the large time function

LJn the solution to the stated problem. Time partitioning of the solu-

tion, as suggested by Beck and Keltner [1985] may be used effectively to

reduce the computational load.

Time partitioning for the solution of linear, transient diffusion

type equations uses a linear combination of two separate, but equivalent

EKpressions. One expression is obtained using a Laplace transform

technique and converges quickly when time is small; the other expression

can be obtained using the method of separation of variables and will

converge rapidly when the dimensionless time is large. Therefore, two

expressions are available for use, each having a region of dimensionless
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time for which it is best suited. The Green's function expressions can

be used to generate a solution that converges for any dimensionless time

by combining both the small and large dimensionless time expressions .

An example of the combined Green's function for a one dimensional

slab insulated on both boundaries is,

G(xL,xi,t*) -

i [4 1r 314/2 E (exp[-(2m+xL-x£)2/4t*] + exp[-(2m+xL+x£)2/4t*])

111—um

(2.4.1)

* *

for t small, and for large t is,

*

C(xL,x£,t ) - Constant

O

+ l 2 Eexp[ n21r2t*] cos[n ] cos[nzx'] (2 4 2)L J; «XL L . .

n-l

where xL and x1" are normalized with respect to L and t* - 91%)- . Note

L

that the exponential term converges rapidly to zero for small dimension-

less times in the small time expression and rapidly to zero for large

dimensionless times in the large time expression.

2.5 Su-ary

A formalism for solving simple, multi-dimensional, linear, tran-

Sient heat diffusion problems is presented in this chapter. This
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formalism consists of a multi-dimensional equation and a group of kernal

functions called Green's functions. The formalism allows the applica-

tion of six distinct types of boundary condition, and the facility for

handling nonhomogeneous initial conditions and volume energy sources.

The unique structure of the Green's function formalism and the

availability of the Green's functions themselves are ideal candidates

for symbolic solution. A simple transformation allows the formalism to

handle terms that include convective diffusion and temperature gener-

ation proportional to the local temperature.

Two methods are discussed to determine the Green's functions. A

third method will be described in the following chapter. These methods

provide a data-base form for cataloging the Green's functions.

Multiplying one dimensional Green's functions for certain combinations

of boundary conditions is shown.



Chapter 3

SHALL rm “'8 FUNCTIONS 0m USING IAPLACE TRANSFORMS

3 . 1 Introduction

Carslaw and Jaeger [1959] and Horse and Feshbach [1953]

demonstrate the use of the small time Green's functions, and Ozisik

[1980] summarizes the importance of these functions in their classical

heat transfer and physics texts. The small time functions permits

efficient investigation of transient thermal activity at very small

times. For small times, the heat conducting bodies are thermally semi-

infinite; that is, temperature changes are contained only in the region

of the body near the heated surface. The small time Green's functions

are particularly important in problems where the forcing functions

resemble instantaneous sources, such as in the areas of robotics,

e lectronics, and measuring energy deposition by pulsed lasers.

A limited group of small time Green's functions can be found in

the previously cited references, but no care was taken to organize these

functions. This chapter extends the work of Beck[l984] , Ozisik[1980],

and Horse and Feshbach[ 1954] by (a) organizing and systematizing the

small time solutions for boundary conditions of the first, second, and

third kind, and (b) generating additional small time functions for

fourth and fifth types of boundary conditions.

The boundary condition of the fourth kind involves a surface

film of finite heat capacity and the fifth kind involves a surface film

50
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but also has convective heat transfer at the outside surface of the

film.

The method for obtaining small time Green's functions incor-

porates a symbolic manipulation program called SMP [1983] for the

manipulation and evaluation of large algebraic expressions. The ability

of SMP to perform complicated algebraic manipulations and the necessity

of dealing with advanced mathematical constructs such as integration,

differentiation, factoring, and expansions, to name a few, is the prime

motivation for using SMP. The procedures written in the SMP language

have a generality not found in the traditional scientific numerical

programs (i.e. BASIC, FORTRAN, PASCAL) due to the ability of the program

to manipulate symbolic expressions, as well as the capability for

numerical evaluation.

Table 3.1 and Figure 3.1 show a comparison of the Green's func-

tion for a semi-infinite body versus a finite body at small times. The

location of the source is at coordinate x', the location of the point of

interest is the coordinate x, and the thickness of the finite body is L.

The symbol t is the time of interest and the symbol r is the time when

time source begins. Each body has a heat flux condition at the left

b<>undary and the finite bodies are insulated on the right side. The

diffusivity of the medium is constant and equal to one.

Figure 3.1 shows the semi-infinite body solution is a good

approximation to the finite body solution when the time is small and the

thickness of the body is large. It is not a good approximation when the

time becomes large or the thickness of the body is small. As the thick-

ness of the finite body increases, the Green's function for the finite

bOdies converge to the solution of the semi-infinite body, as expected.

The Green's function for the larger width bodies can be approximated at

Small times by the semi-infinite Green's function. The dependence of
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Table 3.1 Small Time for Finite and Infinite Body

Source at x' -

X20

L - o

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

time

.001

.005

.010

.025

.050

.100

.250

.500

.000

.000m
r
-
‘
0
0
0
0
0
0
0
0

.18261

.82649

.93495

.90875

.84596

.77522

.70583

.64080

.58090

.52604

.47584

.42983

.38757

.34862

.31262

.27924

.24820

.21924

.19216

.16676

L - 0.5

b
a
n
a
n
a
s
:
b
a
n
a
n
a
s
:
h
a
e
a
e
a
e
a
h
a
r
e
h
fi
h
a
h
d
r
d
r
d
h
i

0 .

X22

.18261

.83002

.96495

.99278

.99851

.99969

.99994

.99999

.00000

.00000

.00000

.00000

.00000

.00000

.00000

.00000

.00000

.00000

.00000

.00000 P
‘
P
‘
P
‘
h
‘
h
‘
h
‘
h
‘
h
‘
P
‘
P
‘
P
‘
P
‘
P
‘
F
‘
F
‘
P
‘
P
‘
P
‘
F
‘
h
‘

X22

L - 0.75

.18261

.82649

.93496

.90891

.84698

.77865

.71391

.65606

.60579

.56278

.52626

.49542

.46943

.44758

.42922

.41380

.40086

.38999

.38088

.37323

Table 3.2 Exponential as a Function of Time

0
0
0
0
0
0
0
0
0
0

LT expansion

e.1/4c

.00000

.00000

.00000

.00005

.00674

.08209

.36788

.60653

.77880

.95123 0
0
0
0
0
0
0
0
0
0

e-4/4t

.00000

.00000

.00000

.00000

.00000

.00005

.01832

.13534

.36788

.81873 0
0
0
0
0
0
0
0
0
0

SOV expansion

0
0
0
0
0
0
0
0
0
0

-4n t

e

.96129

.82087

.67383

.37271

.13891

.01930

.00005

.00000

.00000

.00000

Point of Interest at x - 0.25

P
‘
F
‘
F
‘
k
‘
h
‘
h
‘
h
‘
h
‘
P
‘
P
‘
P
‘
P
‘
F
‘
P
‘
F
‘
P
‘
h
‘
h
‘
h
‘
h
‘

X22

L - 1.0

.18261

.82649

.93495

.90875

.84596

.77523

.70587

.64094

.58129

.52689

.47747

.43264

.39199

.35516

.32178

.29154

.26414

.23932

.21683

.19645
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the thickness scale may be removed from consideration of the solution by

*

defining a non-dimensional time parameter, t , where,

t* 9‘§=11 . . (3.1.1)

Small and large time solutions can be combined to obtain solu-

tions that are computationally efficient for the total time region. The

solutions are split into time partitions for which the resulting solu-

tions may be evaluated. At early times, the transient solutions are

more efficiently represented by a summation of exponential functions

derived from the Laplace transform (LT) or the method of images. The

exponential terms generated by the Laplace transform technique are

functions of -Cn/t* where CIn is a function of m2 and increases in value

as the index m increases, and t* is the dimensionless time. As the

dimensionless time becomes small, the exponential terms rapidly ap-

proaches zero. For example, the first two typical exponential terms of

the summation derived by the Laplace transform technique for a one

dimensional slab, insulated on both boundaries, are shown in Table 3.2

-<1/4c*> and e'<“/4t*>.
under the LT heading, namely e Notice that for

c*< 0.05, the term e'(1/“‘*) is less than 0.0068 and for c*< 0.01 there

is no contribution out to the fifth decimal place. This means that as

the dimensionless time gets small, only the first few terms need be kept

for an accurate approximation. The additional terms may be dropped

2

without diminishing the accuracy of the computation. When m-2 (m =4),

4 a *
one additional term, e-( / t ), is also shown in Table 3.2. Five

decimal place accuracy is obtained for the sum of these two terms by

retaining only the first term when the dimensionless time is less than

0.1.
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The solutions derived using separation of xariables (SOV) are

more efficient at large times. Like the solutions found in the Laplace

transform technique, the solutions for the SOV method are functions of a

summation of exponential terms, but the exponential functions are typi-

cally functions of -Cnt* where t* is the dimensionless time. The value

Cn is a function of n2 and it increases in.value as the value of the

index n increases. As dimensionless time increases, these exponential

terms decrease rapidly towards zero. The first two typical exponential

2 * 2 *

terms, e-” t and e'A' t , of the summation found by using the SOV

method for a one dimensional slab with insulated boundary conditions,

are shown in Table 3.2 under the SOV heading. When t* > 0.500, the

2*

contribution of the first summation term, e-“ t , is less than 0.0072.

For t* greater than 0.250, five decimal place accuracy is obtained when

only the first term in the summation is retained.

Accuracy can be increased for both the LT and the SOV method at

any dimensionless time by including additional terms to their respec-

tive series. Inclusion of the additional terms not only increases the

accuracy of the solution, but unfortunately also increases the amount of

computation time necessary to arrive at the solution due to the time of

evaluation of the additional terms.

Table 3.2 shows for any dimensionless time, the second term in

the LT or SOV series is always numerically equal to or less than the

first term in the series. This means the first term will dominate the

solution if the appropriate series is chosen based on the time.

Retaining an infinite number of terms in either the SOV or LT methods

will yield an exact solution but the choice of series that results in

the most efficient method is dependent of the time.

The analysis methods used in heat transfer are typically the

iinite element (FE) method or the finite difference (FD) method and are
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numerical in nature. These numerical analysis methods generate informa-

tion at the locations designated by the resolution of both the spatial

grid size and the time step size. A smoothing function is used to

develop information at locations that differ from the spatial grid

points or at times that differ from the time step size. Very fine

temporal and spatial resolution are needed for solution convergence at

early times for FE and FD methods; therefore, at early times these

solution techniques are not efficient in the use of computer time.

The procedure for the small time Green's functions is useful in

the continuing research to develop the unsteady surface element (USE)

method [Keltner and Beck,l981], which is a method for solving linear

transient heat conduction problems. Solutions to certain basic tran-

sient heat conduction problems, called influence or kernel functions,

are used as building blocks to solve problems of complex geometry and

problems that deal with nonlinear boundary conditions in the USE method.

The small and large time Green's functions, along with a combination of

the small and large time Green's functions, can be used to generate the

influence functions in the USE method.

Section 3.2 of this chapter gives a mathematical statement of

the general linear transient heat conduction problem and the development

of the small time Green's funct terms of a one dimensional slab.

The objective of Section 3.3 is to examine some examples of Green's

functions for semi-infinite bodies. Section 3.4 gives examples of how

the small time Green's functions are developed for finite one dimen-

sional bodies. Section 3.5 is a summary of the chapter.
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3 . 2 lathe-atical Development of the Small Time Green's thction

The objective of this section is to develop a procedure to

generate small time Green's functions for one dimensional bodies with

boundary conditions of the zeroth through fifth kinds. The technique

uses the partial differential equation of heat diffusion, the associated

boundary conditions and Laplace transforms to generate an expression for

the Green's function that is accurate and efficient at small times. As

the dimensionless time approaches zero, the approximate solution goes to

the exact solution.

The partial differential equation for linear transient heat

conduction developed in Chapter 2 is, after the appropriate transforma-

tions,

V T + k - a at

 

in region R. (3.2.1)

The associated boundary conditions are,

3.12 21 _ '
ki an, + (p c b) at + hiT f1(ri,t), (3.2.2)

for'i-1,2,...,s, where the symbol 3 is the number of boundaries, and the

initial condition is,

"IQ-2.0) - F(r). (3.2.3)

The thermal conductivity, k, and the thermal diffusivity, a, are

2

Constant with position, time, and temperature, (;,t,T); V is the

Laplacian operator and n is an outward pointing normal.



be
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For a one dimensional slab without heat generation, i.e. g(;,t)

- 0, equation (3.2.1) reduces to,

2

L} -131 0 <x <L (3.2.4)
3x a at

The one dimensional transient heat conduction equation (equation

3.2.4) is satisfied by,

2

T - [4 « c:(t:-‘r)].1/2 e-(x-x') /(4 a(t-r)) (3.2.5)

which tends to zero when r a t at all points except x', where it goes to

infinity. This solution is called the temperature due to an instan-

taneous plane source through 2! and at time 1 and of strength unity per

unit area. It is the fundamental transient solution in a planar heat-

conducting body and is actually a Green's function. Since the

describing equation and boundary and initial conditions are linear, this

solution must be included in any solution to a planar region.

A solution, T(x,t), to the transient heat conduction equation

(equation 3.2.4) is required that goes to infinity at x - x' when r a

t, but is zero for every other value of x in 0 < x < L when r e t and

will satisfy the boundary conditions. The method of obtaining this

solution is similar to that given in Carslaw and Jaeger[1959, pp. 359-

360].

Let the solution for the instantaneous source at r - 0 and at x'

be equal to,

2

u - [4 11' a t1'1/2 e'(""") “4 a t). (3.2.6)
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The complete solution for the temperature, T, that satisfies the dif-

ferential equation and the boundary conditions is,

T - u + w (3.2.7)

Since T and u are described by the transient heat conduction equation, w

is also; hence w is given by the solution of a subsidiary equation,

2

2:}..iglé 0<x<L,t>0. (3.2.8)

The Laplace transformation of the subsidiary equation for w is,

- 2-

g—¥ - q w - 0 0 < x < L (3.2.9)

dx

2

for q - p/a (3.2.10)

0

and G - J e-pt w(x,t) dt (3.2.11)

t-0

Where p is the Laplace transform parameter.

A solution for w that is convenient for satisfying boundary

conditions as x -+ 0 and x _, L is of the form,

‘0 - D1 sinh(q x) + D2 cosh(q x) (3.2.12)

where D1 and D2 are constants determined from the boundary conditions

and sinh and cosh are the hyperbolic sine and cosine functions, which

are defined as,



 



60

sinh(qL) - % [ eqL - e‘qL ] (3.2.13)

and

cosh(qL) -'% [ eqL + e.qL ]. (3.2.14)

The Laplace transform solution for T is,

i - a + 5 (3.2.15)

-q|x-X'|

— a 52—3-L_- + D1 sinh(q x) + D2 cosh(q x)] (3.2.16)

subject to the boundary conditions,

521 + fiT - 0 when x - 0 or x - L (3.2.17)

where £1 - 0 for the Neumann condition

- hi/k for

2

- (p c b)1q /(p c) for

2

- hi/k + (p c b)iq /(p C) for

Setting k

(second kind)

the Robin condition

(third kind)

the Carslaw condition

(fourth kind)

the Jaeger condition

(fifth kind).

1 equal to zero will result in a boundary condition of

t:he first kind (Dirichlet) and causes £1 to go to infinity.

Substituting the solution T into these boundary conditions to

find the constants D1 and D2 for all the possible cases is a tedious and
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error-prone process when done by hand. The process is made more effi-

cient when symbolic manipulation is used. In SMP, the differentiation

operator D[$expr,{$x,$n,$pt}] forms the partial derivative of expression

$expr successively $n times with respect to coordinate $x, evaluating

the final result symbolically at the point $pt.

Differentiation of T with respect to x (for a one-dimensional

slab) is executed by using the differentiation operator D[T,{x,l,pt}]

where the location (pt) is set to zero or the thickness L. Applying the

two boundary conditions to the solution T results in two expressions and

two unknowns, D1 and 0,, as functions of sinh(qL) and cosh(qL).

Expressing the hyperbolic functions in terms of negative exponentials

and expanding the result in a series by the binomial theorem yields the

solution T as a summation of negative exponential terms.

The solution T is inverted term by term either by the Laplace

transform inversion theorem or, more simply, by a table of Laplace

transforms. Some important Laplace transforms that occur when using

this method can be found in Appendix A. Typically, a table of Laplace

transforms is all that is necessary for the inversion of T when only a

few of the terms in the series are retained.

As an example of the method, consider the X42 case, a one dimen-

sional slab with no heat generation, a nonconvective thin film boundary

condition at x - 0 and insulation at x - L. The transient heat conduc-

tion equation for this case is described in equation (3.2.4). The left

'boundary is described by equation (3.2.2) with h1 and f1(t) set to zero.

Trhe right boundary condition is described by equation (3.2.2) with h2,

(pcb)2, and f2(t) set to zero. Substituting the solution, equation

(3.2.16) for T into the left boundary condition yields,

-qx

(1 - C1qL)§q—L_ + 0, - 0qu 132 - 0 (3.2.18)
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substituting the solution into the right boundary condition yields,

E-q(L-x')

D1 cosh(qL) + D2 sinh(qL) - qu - 0 (3.2.19)

Using matrix notation gives,

M H D N
11 12 1 - _1_ 1 (3.2.20)

M21 M22 D2 29L N2

where M11- 1, M12- -Cqu, M21- cosh(qL), M22- sinh(qL),

N1- -(l-C1qL)e‘qx' and N2- e-q(L-x'). The determinant of the H.matrix

is equal to,

Determinant - sinh(qL) + Cqu cosh(qL). (3.2.21)

Expanding the hyperbolic functions using equations (3.2.13) and (3.2.14)

gives,

 

Determinant - 1‘222-3—ELEEl + Cqu i-qu : §-qL), (3.2.22)

or,

Determinant - % (1 + Cqu) eqL - % (1 - cqu) e‘qL, (3.2.23)

or,

qL (1'C1qL) -2qL
Determinant - % (1+Cqu) e 1 (3.2.24)

' (1+C.qL) e
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When 2qL is large, which is appropriate when time is small, the

second term in the brackets in equation (3.2.24) goes to zero and an

approximation to the determinant becomes,

Determinant - % (1+c,qL) eqL (3.2.25)

Cramer's Rule is used with the approximation to the determinant

(equation (3.2.25)) to solve the matrix equation (equation (3.2.20)) for

the constants D1 and D2.

_1_[‘_1fl" -q<2L+x') (”1‘11" -qx' _m—q“ -q<2L-x'>]
DI ' 2qL (1+c,qL) ° ‘ (1+c,qL) e + (1+C1qL) 3

(3.2.26)

D _ _L w) e-q(2L+X') + (_LE‘q—L) e-QX'+ 321.1; e-q(2L-x')

2 2qL (1+C‘qL) (1+Cqu) (1+C1qL)

(3.2.27)

Substituting D1 and D2 into the solution for T and expanding the

hyperbolic functions yield the Laplace transform Green's function, G,

for this case, which is,

I (1-C qL) v I

~ _ .1. -q(x-x ) ____l__ -q(X+x ) -q(2L-x-x )

Gx42 2qL [ e I (1+c,qL) e + e

(l'Cqu) - _ y _ _ I

+ m) ““2”" " ’ + e “2“ ’ I I (31-28)

and is valid for e.2qL being small. The term qL is large when time is

small.
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When equation (3.2.28) is expanded with partial fractions, the

coefficients of each term can be matched with a transform in a Laplace

table of transforms found in Appendix A.

The exponentials in the complete series (with no approximation

to the determinant) for boundary conditions of the first and second kind

have simple coefficients for the transforms that lead to solutions that

are valid for all times, but for large times, the solutions converge

slowly.

For the more complicated boundary condition of the third, fourth

or fifth kind, and for larger times with the first and second boundary

condition, the coefficients of the successive exponentials in the com-

plete series for the transforms become more complicated functions of

q2L2; hence only the first few terms of the series are readily used and

the solutions are valid for relatively small times. The coefficients

for the five types of boundary conditions are calculated by combining

the similar terms of the expansion. A general form is obtained below

for the small time Green's functions.

Only a few terms in the small time expressions need be generated

because the small time solution can be combined with the large time

(Fourier) solution to get a solution that is accurate and efficient for

any time. Beck and Keltner [1985] demonstrate this idea in a paper on

the time partitioning of transient heat conduction solutions. Time

partitioning of the Green's function allows the solution to transient

heat conduction problems to be more efficient since the number of terms

in the solution are tractable. The integration of a Green's function

with respect to time may have poor convergence properties when the

Green's function has not been properly partitioned.

Following the notation of Beck and Litkouhi [1985], the equation

below can be used for all cases for small times (large qL), XIJ, where I
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represents the boundary condition on the left side (1,2,3,4, or S) and J

represents the boundary condition on the right side (1,2,3,4, or S) of

the slab ,

~ _1. .1. -qu-x'l'

GXIJ(*'x"s) a 2qL °

-q(X+x') -q(2L-x-x')
+ A(aI) e + A(bJ) e

+ B(aI’bJ) [ e'q(2L+X'X') + e'Q(2L-x+x')] ] (3.2.29)

A maximum of five terms is retained for the small time solution.

The five terms in equation (3.2.29) represents the original source and

four sources or sinks closest to the original source term as shown in

Figure 3.2. The coefficients A(-) and B(-,-) are given below.

 

 

 

_1___9__
A(c) - 2qL - qL(qL + c) (3.2.30)

_ , .1. ..l.
2qL + qL+c (3.2.31)

qL-c

- 2qL(qL + c) (3.2.32)

_1_ c + d
B(c,d) - 2qL - (qL+c)(qL+d) (3.2.33)

(qL'C) (qL-d)

' 2qL(qL+c)(qL+d) (3'2'34)

If c # d, B(c,d) can be written as,

.1. std ..l_. ..l.

B(c,d) - 2qL + c-d [ qL+c - qL+d J (3‘2'35)

If c - d, B(c,c) can be written as,

B(c,c) - -1-- -3“L—- (3.2.36)
2

2qL (qL+c)
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+ additional reflection terms

‘(ZL-x'O-x')

_ ..{21.x ..x: ——————— x - 21.

////////////// , _ .
 

-—-x

f h

|x~x'|

.1. T ..

//.(..\_< ,5, ///////// “ '°

+ additional reflection terms

  

————————_——— x-oL

+ additional reflection terms

‘(2L+x - x')

— —————— - ————— x--2L

.(ZL-n-x-o-x')

+ additional reflection terms

Figure 3.2 Reflections of Sources and Sinks in a Finite Body
and the Locations of Additional Reflection Terms.
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The a and b values used in equation (3.3.29) are given by,

  

I J

a1 - a b1 - w (3.2.37)

83 - Bl b3 - 82 (3.2.39)

2 2 2 2

a, - Clq L b, - Czq L (3.2.40)

2 2 2 2

85 - B]. + Clq L b5 - 82 + Czq L (3.2.41)

where,

81 -T 132 -—k— (3.2.42)

(PCb)1 (pCb)2

c1 - (pen 0., - (ch) (3.2.43)

Equations (3.2.37) through (3.2.41) give the simplified version

of the coefficients A(-) and B(-,-) to be used in equation (3.2.29).

Table 3.3 gives a summary of the coefficients of e-q(x+x') for boundary

conditions of the first through fifth kinds and indicates the two types

of coefficients that need to be transformed.

The coefficient 5%: and the coefficient 75511—3) coupled with

the exponential term, each have a simple transform found in the table of

Laplace transforms in Appendix A. The symbol fl is a constant that

depends on the type of condition at the boundary. The Laplace Inversion

Theorem could be applied if the transform does not appear in the table

of Laplace transforms, but for small times, this is not necessary.

Table 3.4 is similar to Table 3.2 except it contains the coefficients

for e-q(2L-x-x').

Table 3.5 contains the coefficients for the two exponential

terms e-q(2L+x-x') and e-q(2L-x+x'). This table depends on the previous

two tables with the exception of nine coefficients. The nine coeffi-

cients that appear in Table 3.5 and do not appear in Tables 3.3 and 3.4
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Table 3.3 Coefficients of e-q(x+x')

I - 0 A - o

I - 1 A(31) ' ' 2::

I - 2 Mag) - 51..“

- - - _L _L
I 3 A(as) 2qL ‘I' QL+BI

-
_ .1. - ___1___

I 4 A(a‘) 2qL qL+l/C1

5 2qL 01(51'82) QL'SI qL-82

for C1 < 2%:

where, Si - 5%— [ -1 + (1 - 43101)1/2]

1

32 " 3%: -1 - (1 - 413,01)”2 }

Table 3.4 Coefficients of e-q(2L-x-x')

J - 1 A05!) _ - 5.3.1:

J .. 2 A(bz) - 531-:

- _ , .1. __1__

- - .1. _ ___1__.

J A A(b‘) 2qL qL+l/02

- _ _ .1. __1_ 1 - 1
J 5 A(bs) 2qL + (32(83-84) [qL-Ss qL-S‘ ]

for C2 < 2%;

where, 83 - 2%- [ -1 + (1 - 482C2)1/2 ]

2

S4 ' 5% I -1 - (1 - 4B,c,)1/2]
2
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Table 3.5 Coefficients of e-q(2L&x-x') and e-q(2L-x+x')

 

 

J - 0 J - l J - 2 J - 3 J - 4 J - 5

I - 0 0 0 0 0 0 0

I - 1 0 -A(a,) A(a,) -A(b,) -A(b,) -A(b5)

I - 2 0 -A(a,) A(a,) A(b3) A(b,) A(bs)

I - 3 0 -A(83) A(as) B(as,b3) B(as,b‘) B(as,b5)

I - 4 0 -A(a,) A(a4) B(a,,b3) B(a,,b,) B(a,,b5)

I - 5 0 -A(85) A(as) B(as ,bs) B(as,b‘) B(as,b5)

B + B

_ .1. ..1....3 _ ___1___
where B(a,,b3) 2qL + 31 _ 32 qL + 31 qL + B, , B, i B,

23,

' 5%: ‘ 2 . B1 ' B2

(qL + B1)

1 + 0,3,

_ _ _ ......._. , ___1.__

B(a4'b3) 2qL 1 - 0,3, I qL + 1/0, qL + B, I ' C131 ‘ 1

2/91

(qL + 1/C1)

 

B(a5,b3) - 5%: [ 1 + (31 + 52)[ 3;52 + (2-3,)(2-S,)] I

6,8: + (B, + 3,)

(qL+S,) s,(s2 - 5,)(2 - s,)J

 +

J 6,8: + (B, + 3,)

(qL+S,) S,(S, - 8,)(2 - 8,)

and where S, and S, are defined in Table 3.3 and C, < 1/4B,

 

 

C + C

B(a b ) - + -l--3' - --l--- c a c
" ‘ 2qL C, - C, qL + l/C, qL + 1/0, ’ 1 2

2/C,

_.1.._ ’ c _ C
‘qu 1 2

(qL + 1/C, )2

B(a b)- 1 + B 1

c ,5, [31+

(qL+s1) s1<s1 -s1)<2 - s1)
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Table 3.5 (cont.)

 

2

C S + B
+ 1 l 2 1

(QL+S:) 82(5‘ ‘ $2)(2 ‘ 82)

 

2

B(a b ) - —l— - (c, + c,)s, + (3‘ + B“) [ ..1._

5, 5 2qL (S,-S,)(S,-S,)(S,-S,) QL+SI

2

(C, + C,)S, + (B, + B,)

(51-52)(Sa-$2)(S1-52) I

2

(C, + C,)S3 + (B, + 8,) 1

- (S,-S,)(S,-S,)(S,-Sa) [ qL+83 I

2

(C, + c,)s, + (B, + B,) 1

- (31‘54)(S2'Se)(33‘34) I qL+S, ]

where S3 and S, are defined in Table 3.4 and,

 ..J...]

qL+S,

 

 

B, > 0, B, > 0, c, > 0, c, > 0, c, < l/4B,, 02 < 1/432

 

 

 

2

2(CIS, + 31 ' 2 C181)

B(a5,b5) - a]; - 2 [——L—2]

($2 ' SI) (qL + SI)

2

C S
+ 1 1 [ 1 ]

(S2 ' 3,) qL+S,

2

2(6:82 + B, ‘ 2 CI82)

- 2 {—1—2]
(82 ' SI) (QL + S2)

 

2

C S
+ 1 2 [ 1 ]

($1 ' 82) qL+82

for BI - 32 , C1 - C2 , and BIC! ‘ 1/4

B(a3,b,) - B(a,,b3)

 B, 4 B, , c, a c,

B(a3,bs) - B(as,b3)

B, ~ 3, , c, 4 c2 , s, » s3 , s2 4 s,

B(a‘,b5) - B(as,b‘)

B2 * B1 . C1 2 C2 . S1 2 33 . s2 2 S4
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are expanded and attached to the end of Table 3.5. Each of the nine

.1.

2qL’

2, where, as before, p depends on the condition at

coefficients can be expressed as a combination of the functions

(L+fi>'or
q mL+m

the boundary. Two of these coefficients have been previously discussed

and the third coefficient can also be found in the table of Laplace

transforms in Appendix A.

Equation (3.2.29), Tables 3.3, 3.4 and 3.5, and a brief table of

Laplace transforms are all that is necessary to determine an approxima-

tion to the small time Green's function for boundary conditions of the

first through fifth kinds. Table 3.6 gives the inverse Laplace trans-

forms for the terms that are included in Table 3.3.

The four locations nearest the original source, along with the

source's location, correspond to the locations of the exponential terms

that will lead to an approximate expression of the small time Green's

function. This procedure lends to itself a simple physical interpreta-

tion. Each term in the approximate series corresponds to the solution of

a related problem for an infinite slab, see Figure 3.2, and thus the

solution for the finite region can be interpreted as the effects of

adding sources and sinks to an infinite body. Since the coefficients of

equation (3.2.29) can always be written in terms of 5%: + additional

terms, the approximate solution to problems with boundary conditions of

the first through fifth kinds will include the solution for a slab that

is insulated at both boundaries. The choice of placing a source or sink

.1.

2qL

negative. A positive value for this term gives a source at the loca-

at a particular location depends on whether the term is positive or

tion. Any additional terms associated with the location represent the

effects of a boundary condition that is not insulated. Figure 3.2 shows
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Table 3.6 Inverse Laplace Transforms of A(-) e-qx

 

1 Waters

0 o

1 - L2 mm)
L

2 “5 EX(X.t.)

L

3 a? [ EX(X.t) - Bi ER(x,t,Bi) ]

4 - “5 [ EX(x.t) - CilER(x,t,Cil) ]

L

5 - :;'{ EX(x.t) - ci(s,l- 5,) [ ER(x,t,S,) - ER(x,t,S,) ] }

2

- u+*

mum) - [a x 31'1” e “t .x* ”1‘. . c* - %
L

* 2 * *

ER(x.t.u) - e'(x ) /(“t ) rerf [ * 1 2 + u (15‘3”2 ]

(4:: > /

2

* ‘k

where the function rerf(z) - ez erfc(z), t - dimensionless time, and x

is the normalized coordinate.
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the locations of the sources and sinks for a slab along with the loca-

tions of any additional terms that might occur for a boundary that is

not insulated.

The procedure may be extended to include more reflections of the

source by retaining the second term in equation (3.2.19) for the deter-

minant of matrix equation (3.2.20). A third term, C(c,d), appears in

the coefficient list of equation (3.2.29) and multiplies the reflection

- 0 _ __o
q(2L+x+x ) and e q(4L x x ).

locations e The coefficient C(c,d) is,

(qL-c)2 (qL-d) (qL-<1)2 (qL-c)
or

  

C(c,d) - (3.2.44)
2

2qL<qL+c> (qua) 2qL<qL+d)2<qL+c>

The third term, C(c,d), complicates the evaluation of the solution by

including additional terms and functions that are not easily trans-

formed. Recently, a paper dealing with the generalization and

application of Laplace transformation formulas in diffusion problems

[Shibata and Kugo, 1983] has eased the calculation for some of the

inverse transforms of the coefficient C(c,d), but for small dimension-

less times, the term C(c,d) is not necessary.

3.3 Green's Functions for Some Semi-infinite Cases in One Dimension

The objective of this section is to show the effects of boundary

conditions on some semi-infinite geometries. The Green's functions for

semi-infinite geometries are developed from the source solution and, for

boundary conditions of the first, second and third kinds, can be found

in Carslaw and Jaeger [1959].
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The basic building block Green's function for infinite and semi-

infinite bodies (called the source solution by Carslaw and Jaeger [1959,

p3- 50]) is.

G I '1/2 v 2
(x,x It,r) - [a « a(t-r)] exp[-(x-x ) /(a a(t-f))]. (3.3.1)

This function represents a unit impulse occurring at time r and

at position x'. In an infinite or semi-infinite medium the impulse has

an effect on the medium.a long time after the impulse is generated.

This effect is shown in the figures below.

Figure 3.3 is a plot of the Green's function of a semi-infinite

body normalized with respect to the position of the point of interest

for boundary conditions of the zeroth, first, and second kind. The

impulse occurs at x'-O and r-O. One curve is the function l/J(4t*),

which is the leading coefficient of the Green's function for an infinite

body, where the symbol t* is the dimensionless time. The Green’s func-

tion for an infinite medium, represented by n - O, is, as expected,

about one half the value the leading coefficient curve except at small

dimensionless times because the impulse can move in two directions.

When n - l, which means that there is a boundary condition of the first

kind occurring at the surface of a semi-infinite body, the Green's

function is zero for all times. This means the effect of an impulse at

the surface of a body with a boundary condition of the first kind at

that surface is zero.

When n - 2, which means a boundary condition of the second kind

occurs at the surface of a semi-infinite body, the curve is twice the

value of the infinite curve after a dimensionless time of five. The

boundary condition of the second kind reflects the impulse which is the
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cause for the doubling. All of the curves, except when n - l, converge

very slowly as the time increases.

Figure 3.4 is a plot of the Green's function for a one dimen-

sional, semi-infinite body with a convective boundary condition (X30) at

the surface, normalized with respect to x'. The three curves show the

effect of increasing the Biot number on the Green's function. The

l/Sqrt(4 t*) curve is shown for reference. If the Biot number is very

small, the Green's function approaches the Green's function for an

insulated case (X20) as expected. As the Biot number increases, the

Green's function decreases until it becomes zero, which represents a

boundary condition of the first kind.

Figure 3.5 is a plot of the Green's function for a semi-infinite

body in one dimension with a nonconvective thin film at the surface

(X40) and normalized with respect to x'. The three curves represent the

effect of increasing the Carslaw number, C which is the thermal1.

storage capacity of the thin film divided by the thermal storage

capacity of the solid. When the thermal capacity of the thin film

approaches zero, the Green's function approaches the Green's function

for an insulated body (X20).

Figure 3.6 are the Green's functions, normalized with respect to

the source location, x', for various positions of interest and dimen-

sionless times. Curves for an infinite medium (Figure 3.6a, X00) and a

semi-infinite medium with boundary conditions of the first (Figure 3.6b,

X10) and second kind (Figure 3.6c, X20) are shown. An important feature

of these plots is the shape of the Green's function at very small times.

Notice for t* < 0.05, the shape of the curves are independent of the

type of boundary condition that occurs at the surface when the location

of the source and the point of interest coincide.
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Another important feature of these curves is the difference

between the curves when the time is not small and the point of interest

is at the surface (x - 0). For boundary conditions of the first kind

(X10), the Green's function is zero for all times. The Green's function

for the zeroth boundary (X00) is one half the Green's function for a

boundary condition of the second kind (X20). The result is expected and

it has been shown previously.

Figures 3.7a, 3.7b, and 3.7c show the Green's functions for a

semi-infinite body, normalized with respect to x', with a boundary

condition of the third kind on the surface (X30). The three plots

represent the Biot number increasing by factors of ten from 0.1 to 10.

When the Biot number is small, the X30 Green's function approach the

Green's function for a boundary of the second kind (X20), as expected.

When the Biot number is large, the X30 Green's function approaches the

Green's function for a boundary condition of the first kind (X10).

Similar conclusions can be observed from Figures 3.8 and 3.9

which are the Green's functions for a semi-infinite body with boundary

conditions of the fourth (X40) and fifth (X50) kind occurring at the

surface with various parameter values.

3.4 Small Time Green's Functions for Finite Bodies

The objective of this section is to use the general results of

Section 3.2 to generate approximate Green's functions that are accurate

and efficient at small times.

Two example problems will be discussed in this section. Both

problems involve a one dimensional slab with constant thermal conduc-

tivity, k, constant thermal diffusivity, a, and no heat generation. The
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transient heat conduction equation that describes this case is given in

equation (3.2.4). If r i 0 in the following expressions, substitute for

the time t the value (t - r). The first example has insulated boundary

conditions on both sides (Figure 3.10a) and the second example has a

nonconvective thin film (Figure 3.10b) at x - 0 and is insulated at x -

L. The first example is called a X22 case since it has boundary condi-

tions of the second kind on either side, while the second example is

called a X42 case since it has a boundary condition of the fourth kind

on the left boundary and is insulated on the right boundary.

3.4.1 WISH).

For a slab insulated on both boundaries (X22), the coefficients

from Tables 3.3, 3.4 and 3.5 are,

-_L __i_
A[0] 2qL and B[0,0] 2qL

since a, - 0 and b2 - 0. Adding the five terms of the Laplace transform

solution for small times for the Green's function, equation (3.2.29)

gives an approximate solution of the form,

~ _ L _1_ -qu-x'| -q(x+x') -q(2L-x-x')
6X22 a [ 2qL ( e + e + e

+ e-q(2L+x-x')+ e-q(2L-x+x') ) ] (3.4.1)

Using a table of Laplace transforms (Appendix A) or Table 3.6

for the inversion of these types of Laplace transform gives an ap-

proximation to the small time Green's function for the X22 case as,
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2 2

Gx22(x.x'|t,0) 7%. [4 t (a t/L2)]-1/2 [e'(xL'xf.) /(4 a V, )

2 2

+ e'(Xfoi)2/(4
a t/Lz) + e'(2'xL'xi)

/(4 a t/L )

2 2 2 2

+ e'(2+"L“L) /(4 " t/1‘)+ e’(2"‘L+"L) “4 a VI“ )] (3.4.2)

_ x
where xL L'

2

If the dimensionless time (a t/L ) is less than 0.1, this func-

tion is accurate to five decimal places. The Fourier or long time

Green's function to the X22 case from Beck [1986] is,

6x22(x,x' It, 0) - %[ l + 2glem2xHat/Lcos(m « x/L) cos(m x x'/L) ]

(3.4.3)

A plot of the number of terms necessary for convergence to within

0.00001 versus dimensionless time (a t/Lz) is shown in Figure 3.11 for

the X22 case when the point of interest and the location of the source

term are both at the left boundary. Notice that as the dimensionless

time gets small, the number of terms in the small time solution goes

down, while the number of terms in the long time solution goes up. By

keeping the dimensionless time less than 0.025, the number of terms in

the LT method is reduced to three. When the Green's functions are

transformed into real time and used in the formalism to determine tem-

perature distributions, the integration over 1 is possible. Additional

terms leads to integration over 1 that are in closed form.
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3.4.2 51ah_Hish_s_Qarslas_Laft_Baundarx_§sndi&isn_and

For the X42 case, the coefficients from Tables 3.3, 3.4, and 3.5

are,

A[a ] _ .1. - --l-—-
4

2qL (qL+1/Cg)

_1_ ____l___
B[a,,bg]

' 2qL ' (qul/Cl)

Adding the five terms to get an approximate Laplace transform solution

gives,

- _ - _ ] -q(x+x') -q(2L+x-x') -q(2L-x+x')

Gx42 Gx22 (qL+l/C,) [ ° + e + 9

(3.4.4)

where 0x22 is the Laplace transform of the Green's function of the X22

case. The additional three terms represent the reflections of the

images of the sources located at (x+x'), (2L + x - x'), and (2L -

x + x'). Using a table of Laplace transforms (Appendix A) for the

inversion of these types of Laplace functions gives an approximation to

the small time Green's function for the X42 case as,

I _ _2 I _1... I '1
GX42(x’x It,0) G L EX[x+x ,t] + LC, ER[x+x ,t,C, ]

x22

- 2 EX[2L+x-x',t] + -l— ER[2L+x-x',t,C;1] - ; EX[2L-x+x',t]
L LC, L

+ -1- ER[2L-x+x',t,c;1] (3.4.5)

LCI
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+ +

where, EX[x+,t+] - [a x c+]'1/2 ex /4t .

+ +2 _

ER[x+,t+,P] - ex P + t P erfc[ x+/./4 t+ + P J t+ ]

2

and x+- x/L, t+- a t/L .

This solution is accurate to five decimal places for dimension-

2

less time (at/L ) less than 0.1.

The Fourier solution to the X42 case from Beck [1986] is,

° #9,,22m=/L

2 - (l/L) [t +§1[; Xm(x) Xm(x') ] ] (3.4.6)

m-l

where, Xm(x) - cos(fimx/L) - (flmC,) sin(flmx/L) (3.4.7)

No - 1 + C, (3.4.8)

Nm - ((BmC,)2 + C, + 1)/2 (3.4.9)

fimcot(fim) + 1/C, - 0 (3.4.10)

Equation (3.4.5) converges rapidly when (at/L2) > 0.025. Small

and large time Green's functions for the Carslaw number equal to 0.10

are shown in Table 3.7. The small time solution is composed of the

small time solution for the X22 case plus six additional terms. It is

important to notice that as the dimensionless time gets small, the

number of terms in the small time solution goes down, while the number

of terms in the long time solution goes up.



98

Table 3.7 X42 Case Cl - 0.10

Small and Large Time for Various Number of Terms

 

 

 

 

 

 

 

     

Approximate Number Number

Dimensionless time small time of Large time of

Green's terms Green's terms

function function

8.92062 1 5.64245 4

0.001 7.23578 4 6.87825 8

7.23578 8 7.16274 12

3.98942 1 4.86146 4

0.005 5.23157 4 5.22249 8

5.231524, 8 5.23150 12

2.82095 1 4.18044 4

0.010 4.27584 4 4.27565 8

4.27584 8 4.27583 12

1.26157 1 2.32323 4

0.050 2.32326 4 2.32326 8

2.32326 8 2.32326 12

0.89206 1 1.70582 4

0.100 1.70582 4 1.70582 8

1.70582 8 1.70582 12

0.39894 1 0.93720 4

0.500 0.84412 4 0.93720 8

0.91489 8 0.93720 12
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3.5 Summary

A method for generating and organizing the small time Green's

functions is given for boundary conditions of the first through third

kind, and extended to two additional boundary conditions called the

fourth (Carslaw) and fifth (Jaeger) kinds. The small time Green's

functions developed.here can be formed into fundamental building blocks,

called influence functions, since they are the response of the system to

a unit point source. The small time Green's function can be used in

conjunction with the large time Green's function to generate a Green's

function that is efficient at both small and large times. The

availability of symbolic software makes the procedure for finding the

small time Green's function both attractive and efficient.

The following equation and Table 3.8 are a summary of the small

time Green's function for boundary conditions of the zeroth through

fifth kind for dimensionless time less than 0.025.

GXIJ(x,tIx',r) - [41ra(t-1')].1/2

[_ .12 _ :+ ,12 _(21_ _ ,12

[ e 4a(t-r) + M e 4a(t-r) + N e 4a(t-r) ]

+ i [ - M 01 ER(x-x',t-r,01) - N 92 ER(2L-x-x',t-r,92)

 

 

E:
+ 1/2 { $2 ER(X+X',t-T,Sz) ' S1 ER(X+X'9t-fvsl) }

(I'ABIC1)

E2

‘2' 1/2 { S‘ ER<2L'X‘X',t‘T,S‘) ' S3 ER(2L‘X'X' 9t'7183) }]y

(3.5.1)

where ER(-,-,o) and Si are defined in Table 3.6.
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2

5 0.025Table 3.8 Small time Green's functions for a(t-1)/L
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CHAPTER 4

TRANSIENT ONE DIHENSIONAL CANSS PROGRAM

4.1 Introduction

A program that solves linear, transient heat diffusion problems

in the cartesian coordinate system for a variety of boundary conditions,

initial conditions, and heat generation terms in one dimension is

presented in this chapter. The program includes infinite, semi-infinite

and finite slab geometries. The boundaries of the slabs are restricted

to be parallel to the cartesian coordinate axes. The program will

calculate temperature distributions of nonlinear problems for certain

combinations of physical properties as shown in Chapter 2.

The one dimensional computer algebraic, numeric, and symbolic

solution program, (CANSS), is compiled in a computer algebraic software

system called the symbolic manipulation program (SMP). SMP [1983] is

one of a group of computer software programs designed to analyze simple

or complex mathematical problems interactively or in batch mode. A

partial list of other programs that manipulate expressions and symbols

is MACSYMA [The MATHLAB Group, 1985], MAPLE [Char, et. al., 1985],

REDUCE [Hearn, 1985] and mu-MATH [mu-MATH, 1985].

The one dimensional CANSS program is comprised of a main proce-

dure, which directs the overall analysis of the indicated problem, and a

group of specialized sub-procedures or libraries. The sub-procedures

101
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contain functions for developing the small and large time Green's func-

tions and include provisions for treating the boundary and initial

conditions and the volume energy source terms. Moreover, integration

of special functions is accomplished using the sub-procedures. The

temperature distributions developed by the CANSS algorithm cover the

entire range of dimensionless time.

The CANSS program runs on a DEC MicroVax under the VMS operating

system. This device is a virtual memory machine with approximately

eight megabytes of main memory. One element of a one dimensional sym-

bolic calculation of a temperature distribution uses about 30 to 40 CPU

seconds.

Section 4.2 of this chapter explains in detail the input and

operation to the CANSS algorithm. Section 4.3 shows results of three

one dimensional problems solved using the CANSS program. Section 4.4

describes some integrals that occur during the solution of one dimen-

sional problems. Section 4.5 describes time partitioning in the one

dimensional case. Section 4.6 is a flowchart/example of the logic of

the CANSS program. Section 4.7 summarizes the chapter.

4.2 One Dimensional CANSS Program

The one dimensional CANSS program is designed to generate sym-

bolic temperature distributions that are rapidly convergent for small

and large dimensionless times in a infinite, semi-infinite, and finite

‘SIab. The one dimensional slab may have non-homogeneous boundary condi-

tIions of the zeroth through fourth kind occurring on the surfaces that

are functions of time but not functions of position. The slab may have
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an initial condition that is a function of the spatial coordinate and a

volume energy heat source that is a constant in time and space.

The forcing function applied to the boundaries are of the form,

n/2
fi(t) - Ci t , (4.2.1)

where n - -l, 0, 1, 2, ..., i-l is for the left hand boundary and i-2 is

for the right hand boundary. Equation (4.2.1) allows the forcing func-

tions on the boundary of a one dimensional slab to be functions of time,

constant or zero depending on the value of the constants C1 and n.

The initial condition is a function of the spatial coordinate

only and is restricted to polynomials in the CANSS program. It is noted

that the CANSS program can solve some problems that have initial condi-

tion that are transcendental and of the form,

F(x) - To sin(w x/L) or To cos(m x/L), (4.2.2)

where To is a constant temperature and the coordinate x is normalized

with respect to the length of the slab, L. In the case of a semi-

infinite or infinite slab, the coordinate x is normalized by a unit

measure of length.

The volume energy heat source is constant in both position and

time. The heat source must be constant because many of the solutions to

the integrals necessary to solve non-constant heat sources that are a

function of time or position are not available.

Tzeng and Beck [1985] describe a numbering system data base to

solutions of heat diffusion. The numbering system is used to catalog

solutions and in a numerical program to evaluate new solutions. A short
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summary of the numbering system parameters used in this thesis is ex-

cerpted and shown in Table 4.1.

The first set of parameters in the numbering system give the

boundary condition types at the surfaces of the body. The second set of

parameters gives the time variation of the boundary condition. The

initial condition is described along with additional parameters for heat

generation, fin type terms, etc. The examples discussed in the next

section show how the numbering system is applied to heat conduction

problems.

Applying this system to the CANSS program yields distinct cases

for four semi-infinite slabs (X10 ... X40) and ten finite slabs (X11 -

X44). The four distinct semi-infinite cases are allowed five types of

time variation on the boundary (BO ... B4), four types of initial condi-

tions (T0,T1,T2,T6), and two types of volume energy heat sources

(G0,G1). The ten distinct finite cases are allowed five types of bound-

ary condition on each side (BO ... B4), four types of initial conditions

(T0,T1,T2,T6), and two types of volume energy heat sources (G0,G1). The

CANSS program will give closed form expressions for over two hundred

(204) distinct problems in heat diffusion. These cases do not include

the superposition of solutions due to the linearity of the diffusion

problem.

The fact that many types of convolution integrals are not avail-

able analytically is the limiting factor for all non-homogeneous terms

in the analytical Green's function approach for obtaining temperature

distributions. The ability of the CANSS integration algorithm of recog-

‘nizing and symbolically solving the integrals is crucial to the solution

of the problem. Many integration procedures are included in the inter-

nal SMP integrator, but due to the complex convolution nature of the

Green's function approach, the internal SMP integrator may not calculate
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Table 4.1 Key for Heat Conduction Data Base

(Excerpted from Tzeng and Beck [1985])

Boundary Conditions (Rectangular Coordinates)

Infinite Boundary Condition

T - f(t) (Dirichlet Boundary Condition)

fig - f(t) (Neumann Boundary Condition)

k fig hT - f(t) (Robin Boundary Condition)

k ii + (pcb) gE - f(t) (Carslaw Boundary Condition)

k g: + hT + (pcb) %% - f(t) (Jaeger Boundary Condition)

Time Variation of the Boundary Condition

f(t) - 0

f(t) - To (Constant)

f(t) - Tot (Linear)

f(t) - Totn (Integer Polynomial)

f(t) - Totn/2 (Rational Polynomial)

Initial Condition

f(x) - 0

f(x) - To (Constant)

f(x) - Tox (Linear)

f(x) - Toxn (Integer Polynomial)

f(x) - Toxn/2 (Rational Polynomial)

Step Change in f(x)

f(x) - Tosin(C x) or Tocos(C x) (Transcendental)

Heat Generation Source Term

g(X.t) - 0

8(X1C) - Go
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the indicated integrals. In such cases, the integrals can be numeri-

cally evaluated.

Special integration functions have been added to the SMP program

by means of a library of integration which resides in an external file

called gngdimiint and is called by the main CANSS program to assist the

internal SMP integrator. The internal SMP integrator is invoked when an

integral is not evaluated by the external CANSS integrator. The in-

tegral is returned to the user if it is not evaluated by either the

CANSS external integrator or the SMP internal integrator. The procedure

is halted until a solution to the integral is found. If the user can

evaluate the unknown integral, the solution is placed into the external

CANSS integration procedure and the problem is restarted.

The one dimensional CANSS program begins with the loading of

external procedures that query the user for information regarding the

right and left boundary condition. These procedures set up the geometry

for the description and calculation of the Green's function. Also, the

procedures that query the user for the initial condition and the volume

energy heat source are loaded.

Two assumptions are made at this point of the algorithm. The

partition time, t1, which is defined as the dimensionless time when the

convergence characteristics of the small time Green's function require

more than three reflection terms, is set to 0.025. The value of the

partition time may be increased up to 0.10 if boundary conditions of the

third and fourth kinds are not applied to the boundaries. The second

assumption is that the forcing functions for all the boundary, initial,

and volume energy term begin at time 1 - 0.

The first step in generating a temperature distribution for a

slab is to determine the left and right boundary conditions thus

describing the correct Green's function. The one dimensional CANSS
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algorithm allows the user to choose from five type of boundary condi-

tions; boundary conditions of the zeroth through the fourth kind. The

boundary condition of the fifth kind is not included in the one dimen-

sional CANSS algorithm because specific numerical conditions must be met

and the solution will not be symbolic.

The next step in the algorithm is the input of the initial

condition. The initial condition condition in the CANSS algorithm, by

definition, is only a function of position. For some problems, the

initial condition may be composed of functions of sines and cosines

where the argument is a function of position. The heat generation term

is input next and must be a constant.

The program has the information necessary to develop a tempera-

ture distribution for the body. The conditions of the problem are

displayed to the user and a library of small and large time Green's

function is loaded. The small and large time Green's function for the

stated problem are completely described by the boundary conditions and

displayed for the user. The Green's functions are infinite summations,

but, the summation sign is not available for display in the CANSS en-

vironment at this time.

The summation for the small time Green's function goes from

minus infinity to plus infinity. Only the most dominant terms of the

series (n - 0,:1) are retained because of the way the time is parti-

tioned. The summation of the large time Green's function begins at one

and goes to plus infinity. Again, only the most dominant terms of the

summation series (m - l,2,3,...,N) will be retained due to the way in

which the time is partitioned. The number N is always less than ten

with proper time partitioning.

An additional equation called an eigencondition must be solved

for each term in the large time temperature distribution to obtain the
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eigenvalue. This means an additional function must be solved for each

term in the large time solution. Mikhailov, et. al., [1983] considers

the safe and efficient calculation of the eigenconditions for the eigen-

values to be tricky, and in many cases, avoided and ignored. A Newton-

Raphson iterative procedure may be used to estimate the eigenvalues from

the eigencondition but, for boundary conditions of the third, fourth,

and fifth kinds, the iteration process adds additional calculations and

decreases the efficiency of obtaining the temperature distributions. An

additional problem with the Newton-Raphson iteration process is the

choice of the initial guess. The eigenconditions are functions of

transcendental functions and the appropriate initial guess is critical

for obtaining the eigenvalue. Beck [1986] lists some procedures for

estimating or approximating a good guess for the eigenvalues in heat

transfer problems.

The number of terms in the small time Green’s function is kept

small because the integration of certain convolution integrals in time

is difficult or not possible for some terms in the series. The large

time Green's function allows integration on convolution integrals for

all terms in the series but will typically need an additional calcula-

tion of the eigencondition for the eigenvalues.

Once the Green's functions for small and large time have been

determined, the CANSS routine begins to direct the integration of the

four terms in equation (2.3.14) that will lead to the temperature dis-

tribution. The integrands of the integrals are checked against the

external CANSS integrator and a temperature distribution is generated.

If the external CANSS integrator can not recognize or match the in-

tegrand, the internal SMP integrator is tried. If both integrators

fail, the procedure halts because the integration cannot be performed in

the CANSS environment and the integral is returned to the user for
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evaluation. A list of special integrals included in the CANSS program,

but not readily available, is provided in Appendix B.

The user must decide at this point if the integration is pos-

sible, and if so, extend the CANSS external integration library to

include the new integral. The procedure is then restarted from the

beginning. When a solution is presented, it is a function of the posi-

tion and time and has convergent expressions for small and large times.

The temperature distribution is not exact when only a few of the terms

in the appropriate series are retained but it is accurate to within four

decimal places of the exact distribution. This should be sufficient for

most applications.

The one dimensional CANSS program treats the infinite and semi-

infinite geometries as special cases. The infinite and semi—infinite

problems have only one form of the solution and are not time parti-

tioned. There are no convergence problems and the solutions to the

infinite and semi-infinite geometry problems are exact. The small time

solutions for the finite cases reduce to similar expressions as for the

semi-infinite body for small times.

4.3 One Dimensional CANSS Examples

Three example problems solved by the CANSS program are presented

in this section. The first example is a semi-infinite slab with a

constant heat flux, qo, at the surface x-0. There is no internal heat

generation in the body and the initial temperature condition is zero.

The Green's function for this problem is assigned the number X20 because

of the boundary condition of the second kind on the left hand side of_

the body and a natural or zeroth boundary condition on the right hand
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side; see Figure 4.1a. Beck and Litkouhi [1985] and Tzeng and Beck

[1985] define a numbering system that assigns the number XZOBlTO to the

solution of the example.

The second example problem is a finite slab with a constant heat

flux on the left surface, qo, and a constant temperature, To, on the

right boundary; see Figure 4.lb. The initial condition is a transcen-

dental function of the space variable x and no heat is generated in the

slab. The Green's function is assigned the number X21 and the solution

is assigned the number X2lBlOT6.

The third example problem is a finite slab with heat flux a

c 1/2
function of the square root of time on the left surface, qo (E ) , and

o

a temperature condition equal to zero on the right hand side; see Figure

4.1c. The initial temperature is zero and there is no volume energy

heat source in the slab. The Green's function for this case is X21.

The solution is assigned the number X21B30T0.

4.3.1 Semi-infinite Example ProbLem (XZOBLTO)

The mathematical description of the semi-infinite problem is,

2

fl—% - 1 Q1 , for x > 0 and t > 0, (4.3.1)

0 at

6x

where,

- 3% - qo , for t > 0, (4.3.2)

x-0



111

 

Figure 4.1a

Semi-infinite Body

With Constant Heat Flux

on the Surface (XZOBlTO).
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T(x,0) - 0 , for x > 0. (4.3.3)

Carslaw and Jaeger [1959, pg. 75, #6] show the exact solution to

be,

1 2
2 qo (at) /

v(x,t) - ____k___— ierfc[ 3'72327 ]. (4.3.4)

The CANSS program returns the temperature distribution,

T(x,t) - Lfl—L (1:"‘)1/2 Gamma[l] IErfc[ Z—XL; , 1 ]. (4.3.5)

,/t

*

In the CANSS program, t is the dimensionless time, -%, and the symbol

L

xL is the dimensionless position, i.

The symbolic solution from the CANSS routine matches the solu-

tion found in Carslaw and Jaeger exactly since Gamma[1] - F(l) - l and

IErfc[y,l] - ilerfc(y) - ierfc(y). A plot of the dimensionless tempera-

ture distribution in the semi-infinite slab is shown in Figure 4.2.

This figure shows the temperature decreases at a specific time when the

point of interest is moved into the body. The effect of the heat flux

is felt instantaneously at all points in the semi-infinite slab, though

when the point of interest is far from the source at the boundary, the

effect is insignificant.

The repeated integrals error function are important in heat

diffusion problems because they appear often. The integral of the error

On 0

function, 1 erfc, is

inerfc(y) - I in'lerfc(£) d5, (4.3-6)

Y
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for n - 1,2,3..., and ioerfc(y) - erfc(y), where erfc(o) is the com~

plementary error function. Integrating equation (4.3.6) by parts and

letting n-l yields,

2

Y

ilerfc(y) - ierfc(y) - £7;— - y erfc(y). (4.3.7)

A general recurrence relationship for the integral error func-

tions [Carslaw and Jaeger, 1959] is,

.n .n-2 n-1
2 n 1 erfc(y) - 1 erfc(y) - 2 y i erfc(y). (4.3.8)

A plot of the integral error function, inerfc(y), as a function of n and

y is shown in Figure 4.3. The integral error functions approach zero

quickly as the argument y increases and the order of the index n in-

creases. Solutions to heat transfer problems which contain integral

error functions tend to converge quickly.

4.3.2 Finite Slab with aiTranscendental Initial Condition (X21B10T6)
 

The second example problem is a finite slab of length, L,

without heat generation. The slab has a constant heat flux, qo, at the

boundary x - 0 and a constant temperature of zero at x - L. The initial

condition of the slab is a periodic function of space. The mathematical

description of this case is,

o
;

r
-
i

, for 0 < x < L and t > 0, (4.3.9)
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where,

- 31 - qo , for c > 0, (4.3.10)
x

x-O

T(L,t) - 0 , for t > 0, (4.3.11)

and,

T(x,0) - Tocos(« x/L) , for 0 < x < L. (4.3.12)

The temperature distribution from the CANSS routine for this

case is composed of two parts. The first portion, denoted X21B10T0, is

the effect of the non-homogeneous boundary condition on the temperature

distribution. It is composed of a small time function, which is ac-

curate when the dimensionless time is less than the partition time, t1,

and a large time function, which is accurate when the dimensionless time

of interest is greater than the partition time. The small time tempera-

ture distribution is,

qoL * 1 2 ” |o.5 (2 n + xL)|

T(x,t) - 2 [ -k— ] (t ) / F(l) E IErfc[ (t*)1/2 , 1 ].
 

n--w

(4.3.13)

while the large time temperature distribution is,

 

q L m [0.5 (2 n + x )[

T(x,t) - 2 [ -%f-] (651/2 r(1) E IErfc[ L , 1 ]

(cf 1/2

90

+ 2 [ _k_ ]

n--m

l
"

E Cos[(m - 0.5)n xL]

m-1
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2 2 2 2

g-(m - 0.5) 1 cf _ e-(m - 0.5) x c*
 

2 2 , (4.3.14)

a (m - 0.5)

where xL is the position of interest normalized with respect to the

length of the slab. The index n in equations (4.3.13) and (4.3.14) need

not extend from minus infinity to plus infinity. Only three terms are

necessary (n - -l, 0, 1) for the distribution to converge when the

partition time is chosen correctly. The index m in equation (4.3.14)

may be kept small (m s 10) for efficient calculation of the temperature

distribution at large times.

The second term in the solution to the temperature distribution

(X21T6) is caused by the non-zero initial condition. Time partitioning

is not always needed for the initial condition. The second term, gener-

ated by the initial condition, is,

co 2 2*

2 To E e-(m ' 0'5) " t Cos[(m - 0.5)« x] .

m-l

(4.3.15)C—[rflh—iz-m- 7.12;]

The temperature distribution of the slab is determined by adding

either equation (4.3.13) or (4.3.14) to (4.3.15) depending on whether

the dimensionless time is greater than or less than the partition time.

The temperature distribution of the second example problem has not been

previously determined. The temperature distributions of the slab for

equations (4.3.13) and (4.3.14) are plotted in Figure 4.4a for the

appropriate dimensionless time. The partition time is set to 0.10 and

splits the region into two areas for problems with boundary conditions

of the first and second kind.
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Equation (4.3.15) is plotted in Figure 4.4b for the constant To

90L

- _k- so that both curves can be plotted on the same scale. The tem-

perature distributions for the boundary source (Figure 4.4a) look

similar to the distributions for the semi-infinite case in Figure 4.2

but the temperature distributions in Figure 4.4a converge to a steady

state temperature due to the imposed boundary conditions.

Figure 4.4c shows the temperature distribution in the slab when

the boundary condition solution is added to the initial condition solu-

90L

tion and To - -k—' The nature of the initial condition solution's

effect is quickly damped as the time increases.

The temperature distribution in Figure 4.4c when the location of

the point of interest is at fo 1 shows a small error. The exact solu-

tion at the point xL- 1 should be zero but the graph shows a value of

0.0036. The error occurs when the small time function is required to

calculate the approximate solution without regarding the effect of the

boundary on the right hand side. Since the point of interest is the

boundary on the right hand side the small time function picks up a small

amount of error because additional terms in the small time series become

significant. The approximation at this boundary can be readily improved

by reducing the value for the partition time or adding more terms to the

small time series.

4.3.3 Finite Slab With a Boundagy Condition a Function of the

S u r Root 0 Time X B30 0

.The third example, denoted X21B30T0, is a finite slab of length,

L, with no heat generation, zero as the initial condition, heat flux a

function of the square root of time on the left boundary and temperature
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set to zero on the right hand boundary; see Figure 4.1c. The mathemati-

cal description of this case is,

2

fi-§ - 1 i1 , for 0 < x < L and c > 0, (4.3.16)
6x a at

where,

-k g1 - qo(t/to)l/2, for t > 0, (4.3.17)
x

x-O

T - 0 , for t > 0, (4.3.18)

and,

T(x,0) - 0 , for 0 < x < L. (4.3.19)

The constant to is an arbitrary unit of time.

The partitioned temperature distribution cannot be calculated by

the CANSS program in closed form. The integral expression for the

temperature at small dimensionless times that remains is,

(I)

qo L * I0.5 (2 n + xL)I

T(x,t) - 4 [ * ] F(l.5) t E IErfc [ * 1/2 , 2 ]

k Jto (t )

  

n--m

(4.3.20)

and for large dimensionless times is,

2

-(2n+xL)

00 t .

‘1 L l 1 4 A

T(x’t) ' [ o * ] { Jr 2 I (J ' ”U2 6 /A ‘u
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2 2 *

-(« (m-.5) t1)
Q cos(«(m-.5) ) e

+ [ 2 E XL
3 3

m-l t (m-.5)

[ («(m-.5)) (c* - cf)”2 - Daw[«(m-.5)(t*- cf)1/2 ] ] },

(4.3.21)

where Daw(-) is the Dawson integral and is discussed in the next sec-

tion, t: is the dimensionless partition time, and t* is the

dimensionless time of interest.

The integral in the large time expression for the temperature

distribution has not been evaluated in closed form. Many approaches may

be used to evaluate this integral approximately. The most significant

approach for evaluating the integral in a symbolic context is to define

the integral as a new function. This new function would be evaluated

for all values of the parameters and would become a well known function.

The exponential integral function, En(z), is an example of defining an

integral that cannot be expressed in closed form and is considered a

well known function.

Another approach for the evaluation of the temperature distribu-

tion at small times is to approximate the unknown integral using

numerical integration. The solution will be dependent on the specific

parameters associated with the problem. Since the solution can be

partitioned in time, the integral in the large time expression can be

evaluated using a small number of terms in the infinite series.

A third approach for the solution of the integral in the large

time expression is to approximate the forcing function over the range of

integration for small times. Figure 4.5 plots the forcing function f(r)

' (T/to)1/2 from the third example problem for a time of interest
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greater than the partition time. The small time portion of the forcing

function could be approximated by a constant value of the function

averaged over the range of integration or more accurately by a linear

function. A closed form for the solution of the small time integral can

be found for a constant or linear forcing function.

The small time portion of the solution may be approximated using

only the first three terms (n - -l, 0, l) of the series when the dimen-

sionless time is small. The n - 0 term will dominate the solution at

small times. The index m, for large times, will also remain small

because the first few terms of the large time series will dominate the

solution.

The large time expression for the temperature distribution

represents a new solution that has not appeared in the literature pre-

viously. The second term in the large time solution for temperature

distribution will represent the total solution when the partition time

is set to zero. This solution is exact but needs many terms in the

series to converge.

4.4 Same Integrals Used in.0ne Dimensional Problems

The objective of this section is to discuss two types of in-

tegral functions that occur during the calculation of the temperature

distribution of a one dimensional slab. These integrals are the Dawson

integral and an integral which occurs calculating large time solutions.

4.4.1 The Dawson Integral
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The Dawson integral, F(x), discussed and analysed by Dawson

[1898], was first analysed in heat diffusion problems by Gordon and

Miller [1931] and is of the form,

x

F(x) - e"x I eu du. (4.4.1)

u-

The Dawson integral can be approximated for all ranges of its

argument as a function of the confluent hypergeometric function.

Lebedev [1965, pg. 20] shows the Dawson integral satisfies the linear

differential equation,

F'(x) + 2 x F(x) - 1, (4.4.2)

with the initial condition, F(O) - 0. When a series expansion of F(x)

is substituted in equation (4.4.2) and the coefficient of similar powers

of the argument x are collected, the expansion yields,

F(x) - (-l)m 2m x2m+l

1-3-0-(2 m + l)‘

m-O

 

-m < x < co (4.4.3)

Equation (4.4.3) can be expressed as,

m 2m

C-llm 2 x

“’0 ' x E 1-3---(2 m + 1)' (“'4'“)
 

m-O

which is a form of the confluent hypergeometric function, @(1,-,-),

3
F(x) - x ¢(l,2,-x2). (4.4.5)
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The properties of the confluent hypergeometric function can be found in

Abramowitz and Stegun [1964, Chapter 13].

The Dawson integral provides the solution to one dimensional

diffusion equations for finite bodies when the non-homogeneous forcing

function on a boundary is a function of the square root of time. A plot

of the Dawson integral versus its argument is shown in Figure 4.6. A

disadvantage of this integral is its slow convergence as the argument

gets large but since a difference in time is needed, the difference

converges quickly. The temperature distributions obtained for finite

bodies with boundary conditions a function of time to the one half power

or, more generally, to the 3 power, where n is an odd index, have not

been previously discovered and represent a new type of solution. The

argument to the Dawson integral is a function of the eigenvalue of the

diffusion problem that increases in value as more terms are added to the

series. This helps the solution convergence.

When the forcing function is t1/2, t3/2,..., t<2n-1)/2, the

Dawson integral is involved and it is divided by the eigenvalue to an

odd power other than one. The general equation to be solved is,

t-t1

In(t,t1) - I 1(2 n - 1)/2 exp( - flza(t-r)/L2 ) d7 .

r-0

for n - 0, l, 2, .... (4.4.6)

When n - O, the solution of the integral is,

_fi. .13. '1/2 1828' * *1/2

a 5m 0 flm

(4.4.7)



 

0
.
6

.
I

.
l

.
.
1

0
.
5
-
1

0
.
4
-
1

1
’
0
0

0
.
3
-
1

0
.
2
-
1

0
.
1
"
]

 

128

 

0
.
0

I
I

I
I

I
r

r

O
1

2
3

x

F
i
g
u
r
e

4
.
6

D
a
w
s
o
n

I
n
t
e
g
r
a
l
.

 

r-S'I'



129

at
* a E 1

where t - 2 and t1 - “—3 .

L

The general solution to equation (4.4.6) when n - 1, 2, 3,

is,

2 2 .122111 2 * 2 * * 122311

In(t,t1) _ [ _L_; ] [ _L_; ] 2 e-flmtl [ flm (t - t1)]

a fim a fim

- (2n-l) In_1(t,t1) (4.4.8)

4.4.2 A n a te On D me oble s

An exponential integral that occurs in solving the one dimen-

sional heat diffusion problem using a large time Green's function

approach when the forcing function is a function of time raised to an

integer power is presented in this section. The general form of this

integral is,

t'tl

2 2

Zn(t,t1) - I 7“ exp( - fima(t-r)/L ) dr , (4.4.9)

r-O

where n - 0, l, 2, ..., flm is the eigenvalue associated with the

eigencondition, and t1 is the boundary partition time between small and

large times.

As an example, consider the case of n - l,

t-t1

Zl(t,t1) - I 1 exp( - flza(t-r)/L2 ) dr , (4.4.10)

r-O



130

may be written as,

2 * t‘ti 52 21

-B t m 2
21(t,t1) - e m r e L dr , (4.4.11)

r-O

*

where t - 2—% . Integrating by parts, letting,

L

[92%
u - r and dv - e m L dr

2 2 21
1 5m 2

du - dr and v - [ 2 ] e L d1

a flm

yields,

1
"

2a=_r.

t-tl — I eflIn 2 dr ].

r-O r-O
 

(4.4.12)

Performing the indicated operations gives,

 

(4.4.13)

* * O 0

where t and t1 have been described in the prev1ous sect1on. The number

of terms necessary for this expression to converge to six decimal place

accuracy is three.
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A general expression for the solution of integrals of the type

in equation (4.4.9) is the recursion relation,

2 2 n -fi2t* 2 * * n

Zn(t,t1) -[-L—2] [L2] e m1 [5m (t-t1)]

a 5m a 6m

- n zn_1(t,c,) ] (4.4.14)

where,

2 -fiztf -fl t*
20(c,c1) - {-11—2 [e m -e m ] (4.4.15)

a flm

While the general expression for the integral in equation

(4.4.9) does not represent a new type of solution, it does allow the

expression to be presented in a compact form and is easy to program.

4.5 Time Region Partitioning for One Dimensional Problems

Solutions to linear, transient heat conduction problems in the

cartesian coordinate system must be split into solutions that are con-

vergent for the dimensionless times that are specified. The lack of a

convergent solution causes an unnecessary use of computation resources.

A "tuned" solution, one which is optimized for speedy convergence

characteristics, is much preferred over a solution that converges

slowly, i.e., required hundreds or even thousands of terms.

The solutions to heat diffusion problems for temperature dis-

tributions in cartesian coordinate systems can be tuned readily using

the Green's function approach. The solutions using the Green's func-

tion approach will be tuned for small and large times because the
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Green's function for heat diffusion problems have already been placed in

the convergent form for small and large times.

The Green's function solutions are generated for one dimensional

cartesian coordinate systems, but it has been shown in Chapter 2 that

the one dimensional Green's functions may be multiplied together to

obtain multi-dimensional Green's functions for certain boundary condi-

tions. This creates some minor adjustments in the procedure to

partition the dimensionless time for the spatially multi-dimensional

solutions which wiil be discussed in the next chapter.

In a one dimensional problem of heat diffusion, the dimension-

less time where both the small and large time Green's function yield

acceptable convergence rates will be called the partition time, tf,

where the star (*) denotes dimensionless time. There exists a Green's

function solution that is tuned for convergence for each time parti-

tioned region. In the one dimensional case, the two time regions are

separated by the partitioning time, cf, such that in the small time

region,

*

t -t1_<.r 5:, (4.5.1)

*

O s r < t - t1, (4.5.2)

*

where t is the dimensionless time of interest, see Figure 4.7. The

integration of the Green's function for times that fall in the region of

small time is,
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*

t

* * * *

Is - I GFS dr for t - t1 5 r S t , (4.5.3)

* * *

T -t -t1

and the integration of the Green's function for times that fall in the

large time region is,

* * 'k

*

I2 - I GFS dr + I GFL dr for 0 S r < t - t1, (4.5.4)

* * * *

f -t ’t1 7 -0

where GFS and GFL are the small and large time Green's functions respec-

tively that have been integrated over the surfaces or volume of the body

and include forcing functions that are functions of time. Of particular

interest is that the small time Green's function is quickly convergent '

for dimensionless times at or close to zero but slowly convergent for

large times.

Due to the choice of ti, the integral Is is quickly convergent.

The large time Green's function converges very slowly when the time, t*,

approaches zero, but since the time integration of the second term on

the right hand side of I! does not involve zero or a time close to zero

by the definition of cf, the integral converges quickly. It is noted

that for constant forcing functions, and if the time of interest is

*

greater than the partition time, t1, the first integral on the right

'hand side of 12 becomes a constant and needs to be calculated only once.

14.6 One Dimensional CANSS Flowchart/Example
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This section contains the flowchart/example for the one dimen-

sional CANSS program. The example problem is a finite body, insulated

on the right hand side, zero as the initial temperature, and zero as the

volume energy heat source. The left hand boundary has a linear heat

flux of the form q - qot. The symbol <CR> means carriage return.

Section 1 of Appendix C shows the input and output from running

this example.

0 Di ion CANSS Flowcha t

Flowchart Enter Explanation

Start <"canss.prg"<CR> Begin program while in SMP

Program

The subroutines exp.int,

Load grab.int and the external

subroutines CANSS integration routines are

loaded.

Display <CR> A banner is displayed that

Environment defines the CANSS environment

Load the left and right

Load <CR> boundary input conditions. The

B.C.,I.C.,& initial condition and heat

HG terms generation input routines are

loaded and note special values.

Input 2<CR> Input the left boundary

LB Qo<CR> condition(0-4), constants, and

Condition 1<CR> the index on the time variable

Input 2<CR> Input the right boundary

RB 0<CR> condition(0-4), constants, and

Condition 0<CR> the index on the time variable

Input 0<CR> Input the initial condition.

Initial 0<CR> Type constants and polynomial

Condition power of coordinate x.



Input

Source

Display

Status

Load

GF

Library

Generate

GF

Calculate

small

boundary

solution

Calculate

large

boundary

solution

Calculate

initial

condition

solution

Calculate

volume

source

solution

STOP

4.7 Summary

0<CR>

0<CR>

<CR>

<CR>

<CR>

<CR>

<CR>
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Input the volume energy source

term as a constant.

Display the description of the

problem.

Load the Green's function

library.

Calculate the Green's function

based on boundary conditions

for small and large times.

Calculate and display the small

time boundary solution.

Calculate and display the large

time boundary solution.

Calculate and display the

initial condition solution.

Calculate and display the

volume energy source solution.

End calculation and display

calculation time in CPU sec.

A one dimensional program for the symbolic solution of transient

heat diffusion problems is presented in this chapter. Three example

problems have been examined and checked against known solutions when

possible. Some integrals that occur during the calculation of the

temperature distribution have been examined. The importance of time
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partitioning for one dimensional problems is discussed. A flowchart of

the one dimensional CANSS algorithm is presented.



CHAPTER 5

TRANSIENT TWO DIMENSIONAL CANSSZD PROGRAHL

5.1 Introduction

The computer algebraic, numeric, and symbolic system called

CANSSZD calculates temperature distributions for transient, two dimen—

sional heat diffusion problems using a Green's function approach. The

program CANSSZD is written in the language of SMP [1983] and generates a

symbolic solution for the temperature distribution in a homogeneous

plate having boundary conditions of the zeroth, first or second kind on

any surface. A distinctive feature of the two dimensional CANSSZD

program is the ability of the program to allow nonzero, but constant,

boundary conditions to cover only part of a surface. The remaining

portion of the boundary condition at the surface is set to zero.

Special forms of nonlinear problems can be addressed for certain com-

binations of the physical parameters as was shown in Chapter 4.

The Green's function approach to the solution of the temperature

distribution for linear, transient heat diffusion problems in two dimen-

sions leads to integrals that have not previously been discovered or

integrals that are not well known. These integrals are discussed later

in this chapter or appear in Appendix B. Again, for certain combina-

tions of physical parameters, nonlinear problems may be solved for

temperature distribution.
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Many of the integrals to be evaluated for two dimensional

problems are found in Appendix B of this thesis. Typically, the in-

tegrations of a one dimensional system provide integrals that are not

well known but have been studied extensively. The two dimensional

systems generate integrals that are not well known and have not been

studied as extensively.

Most temperature distributions for two dimensional heat diffu-

sion problems that appear in references and textbooks are left as a

function of an integral on time. Ozisik [1980], Carslaw and Jaeger

[1959] and other references generally avoid generating explicit, closed

form two dimensional temperature distributions and leave the distribu-

tions in terms of integrals. This is due to the complexity of the

evaluation of the integrals in closed form. The two dimensional CANSSZD

program returns functions that are recognizable and can be evaluated.

The CANSS2D two dimensional program solves the integrals and presents

the temperature distribution in terms of partitioned dimensionless time

so that the temperature distribution for each time region converge

quickly.

The Laplace transform technique, developed in Section 3.2,

produces Green's functions that are accurate and efficient at small

dimensionless times. Green's functions expressed in terms of Fourier

expansion and developed using the separation of variables technique for

finite bodies (see Churchill and Brown [1978]) can involve infinite

series that converge slowly at small times. In many cases, the tempera-

ture distributions obtained using the Green's functions developed by the

‘Laplace transform technique involve integrals that are unfamiliar, have

‘not been evaluated, or not been tabulated.

The Laplace transform approach is used in this thesis to deter-

Inine unknown integrals caused by the convolution of time. Arpachi

"II 
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[1966] describes the theory of convolution integrals in his text of

conduction heat transfer. Doetch [1961] relates the convolution in-

tegral to an effect (forcing function) multiplied by a weighting

function (Green's function). The individual integrands in the integral

are transformed into Laplace transform space, multiplied together, then

inverse Laplace transformed. Typically, all that is necessary for the

inverse Laplace transform is a short table in Appendix A.

A description of the CANSSZD algorithm for obtaining temperature

distribution in a plate and the flowchart for the CANSSZD algorithm are

presented in Section 5.2 of this chapter. Two example problems solved

using the CANSSZD program are discussed in Section 5.3. Some integrals

that arise from the calculation of temperature distribution in two

dimensional problems are reviewed in Section 5.4. Two and three dimen-

sional time partitioning is discussed in Section 5.5. Section 5.6

summarizes this chapter.

5.2 Transient Two Dimensional CANSSZD Program

The objective of this section is to present a program that will

calculate the temperature distribution in a two dimensional body. A

flowchart/example of the CANSSZD program appears at the end of this

section.

5.2.1 CANS Pro am

CANSSZD is a computer program designed to generate two dimen-

sional symbolic temperature distributions in a homogeneous plate using
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symbolic manipulation. The temperature distributions symbolically

calculated by the algorithm are partitioned with respect to time. The

numerical evaluation of the temperature distribution expressions are

quickly convergent in each time region. No heat generation is allowed

in the plate and the initial temperature of the plate is constant at

zero. Only constant boundary conditions of the zeroth, first, or second

kind may occur at the surfaces of the plate. The describing partial

differential equation is given in equation (3.2.4) and the boundary

conditions are given in equations (2.2.11) and (2.2.13).

The non-homogeneous portion of the boundary condition may extend

to any percentage of the surface length but the boundary cannot have a

mixed condition. This means, for example, a boundary condition of the

first kind cannot coexist with a boundary condition of the second kind

on the same surface. The products of Green's functions that include

boundary conditions of the fourth and fifth kinds are not allowed in the

Green's function method for two dimensional bodies as was shown in

Chapter 2.

The temperature distributions are generated by the Green's

function approach described in Chapter 2, equation (2.3.15), where both

the initial condition and volume energy heat source are zero. The

equation for the temperature distribution is,

(
'
1
‘

S

 

fi(xi.yi.r)

T(x,y,t) - a I I k1 G(x,y,t|x',y',r)x,_x dSi dr.

1-0 S1 i-l y'-yi

(for boundary conditions of the second kind)

t s'

- a I I E f.(x!,yi,r) fig dS. dr, (5.2.1)

. J J J anj x'-x

r-O Sj J-l y,_yg
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(for boundary conditions of the first kind)

where s is the number of Robin conditions and s' is the number of

Dirichlet conditions on the boundaries of the plate. The boundary

condition of the zeroth kind is automatically included in equation

(5.2.1).

The CANSSZD program for obtaining temperature distributions of

spatially two dimension plate problems begins by loading five external

files. The names of procedures that accompany the SMP program begin

with capital letters and are underlined. The names of procedures with a

lower case letters and underlined were written by this author.

The first two external files loaded help simplify expressions so

that the integration routines do not waste time expanding or searching

through expressions. The Rengxnlg external file of SMP performs re-

placements on terms that involve exponentials and logarithms. The

g;ab,in§ file removes constants from expressions so that the integration

routines do not need to parse through full expressions.

The next external file loaded by the CANSS2D routine is called

ex 'nt. It contains the procedures used to integrate the forcing

functions over space. The fourth file loaded in the CANSSZD algorithm

is the temporal integration procedure called 22d.int. This file con-

tains procedures to calculate the integration with respect to the time

variable. When an integral is not recognised by the external integra-

tion routines over space or time, the internal SMP integrator is

invoked.

Some constants are loaded along with some mathematical rules

that define properties of the transcendental functions. A banner is

displayed defining the environment for which the program is run.

 

1
.
5
.
1
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The first step in calculating the temperature distribution in

the plate is to describe the boundary conditions. The CANSSZD algorithm

can use boundary conditions of the zeroth, first and second kinds that

have a forcing function which is either zero or a constant. The input

data routine also asks for the length of the plate in the x and y direc-

L

tion and calculates the aspect ratio (r+ - L!) for the plate. The

x

aspect ratio is important in describing the partition times for each of

the three time regions and will be discussed in a following section.

The input routine also queries the user for the forcing function placed

on each boundary based on the type of boundary condition that occurs on

the surface. The CANSSZD routine has all the information necessary to

describe the temperature distribution for the stated problem.

The CANSS2D program begins the calculation of temperature dis-

tribution by deciding if the two dimensional problem is actually a

special case of a one dimensional problem. This may occur when a bound-

ary condition is semi-infinite. A special routine is loaded to handle

problems with boundary conditions of the zeroth kinds. This problem may

not be strictly two dimensional depending on the boundary conditions on

the other surfaces.

If the problem is not a special case, the Green's functions data

base is loaded and the appropriate Green's function for the three time

regions are calculated and displayed. The next step is to integrate

each of the Green's function with respect to the spatial variables and

display the results for the three time regions. The pattern that is

used in the integration is 1) check the integral against the external

CANSS2D integration library and if a match is not found, 2) let the SMP

internal integrator operate on the integral and if a solution is not

obtained, 3) return the integral to the user for further evaluation.
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The CANSSZD program will generate closed form solutions for cases as-

sociated with the limitations placed on the boundary and initial

conditions, and the volume energy heat source.

The last calculation step is to generate the temperature dis-

tribution for the appropriate time region by integrating with respect to

time. The temperature distribution is displayed and the program stops

and displays the calculation time in CPU seconds. A flowchart of the

CANSSZD is shown in the next section and includes the input to the

example problem of a partially heated plate examined in the next sec-

tion.

5.2.2 Tw ens o a S owcha t Exam 1e

This section contains a flowchart/example of a two dimensional

plate partially heated on one side. The input and output from the

CANSSZD program is shown in Section 2 of Appendix C.

F wc art Enter Explanation

Start <"cansde.prg"<CR>

Program

Load The subroutines for the Green's

Subroutines function, grab.int, exp.int and the

external integration routines are

loaded.

Display <CR> A banner is displayed that defines the

Banner environment for 2-D problems.

Display <CR> Give the default values and define

Defaults some constants.



Enter

Boundary

Condition

Numbers

Display

GF Number

Input

Lengths

Input

Bottom

Forcing

Function

Input

Left

Forcing

Function

Input

Top

Forcing

Function

Input

Right

Forcing

Function

Load

2-D

Routine

Display

Small-Small

GF

Display

Small-Large

GF

Display

Large-Large

GF

Calculate

2<CR>

2<CR>

1<CR>

1<CR>

1<CR>

2<CR>

y<CR>

n<CR>

Qo<CR>

0<CR>

.5<CR>

y<CR>

y<CR>

<CR>
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Enter the types of boundary condition

for the bottom, left, top, and right

sides.

Display the Green's function number

for this problem.

Input the length of the plate in the

x and y direction.

Input the forcing function on the

bottom of the plate. For zero, type y

Input the forcing function on the

left side of the plate. For zero,

type y.

Input the forcing function on the

top of the plate. For zero, type y.

Input the forcing function on the

right side of the plate. For zero,

type y.

Check for BC of zeroth kind. Load

appropriate subroutine.

Display the two dimensional Green's

function for the small-small time

region.

Display the two dimensional Green's

function for the small-large time

region.

Display the two dimensional Green's

function for the large-large time

region.

Calculate the spatial integration for
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Spatial <CR> the three time regions.

Integration <CR>

Calculate <CR> Calculate the temporal integration for

Temporal <CR> the three time regions.

Integration <CR>

STOP Stop program and display the

calculation time in CPU seconds.

  
5.3 Two Dimensional CANSSZD Examples

Two example problems of the two dimensional CANSSZD algorithm

are presented in this section. The first example problem is a plate

with an aspect ratio of 1/2. A constant heat flux and temperature occur

on two of the four boundaries (X21B10Y21B01T0); see Figure 5.1a. The

second example problem is a a plate insulated on the bottom and with

zero temperature on the top and right hand side. The left boundary has

a constant heat flux over half the boundary and insulated otherwise

(X228(l,0)0Y22T0), see Figure 5.1b.

5.3.1 A Two Dimensional Plate with Heating

The first example problem solved using the CANSSZD program is a

plate with a constant heat flux, qo, on the left surface, a constant

temperature, To, on the upper surface, insulated on the bottom and

having the temperature on the right hand side zero; see Figure 5.1a.

The aspect ratio of the plate is 1/2 or the length of the plate in the y

direction is L and the length of the plate in the x direction is 2L.

1}“; terms x and y, which represent distances in the x and y direction,
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///////////////

Figure 5.1a Thin Plate With Heat Flux and

Temperature Conditions

[y = 2L 

\
\
\

1
l
:
\
\

T.YEL—

   
 

/////

Figure 5.1b Partially Heated Thin Plate
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are made dimensionless in the CANSSZD algorithm by dividing by the

respective lengths of the plate in the x and y direction. The Green's

function for this problem (X21Y21) is split into three convergent ex-

pressions for three regions of dimensionless time.

The third expression of the temperature distribution, the part

applicable when the dimensionless times for the x and y direction are

considered large, is examined first because an analytical solution is

available. Beck [1984a, pg. 1242] has obtained an analytical solution

for the temperature distribution to be,

  

co co 0 fl x fl y

T(x,y,t) - a E E [ 1 ' e-at[ ] ] (308(fi ) COS(—II':‘-) e

m—l n-l

n 5 2 q L

$31) 2 {4 To -° (~1)m - B 0k }, (5.3.1)

(3m + 4 fin) m n

where the term flm is an eigenvalue and m is the summation index for the

Green's function in the x direction, the term fin is the eigenvalue and n

is the summation index for the Green's function in the y direction. The

term a is the thermal diffusivity and k is the thermal conductivity of

the plate. The term [o], when the length of the plate in the x direc-

tion is 2L and the length in the y direction is L, is given by,

[.1 -[§%]2+[%] (5.3.2)

*

The CANSSZD algorithm splits the dimensionless time t into

*

three regions. In the third region, t2 is defined as the dimensionless

*

partition time between the second and third time region and t is the

dimensionless time of interest. A description of the partition times

 

1
m
-
‘
r
1
-
-

_
‘
1
‘
fl
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for two and three dimensional heat diffusion problems is given later in

this chapter.

The thermal conductivity and the thermal diffusivity default to

one in the CANSSZD program and give the change in temperature distribu-

tion in the third time region as,

” ° fl qL fix fly
AT(x,y,t) - 8 E E { 2 To En (-l)In - Eg— } cos(Emi) cos(‘E‘) .

m n

m-l n-l

 

' e

3w2 + 4 a2)n -

('1) [ e 2 m n (s 3.3)

* 2 2

m<g+459

2 2

mm+ag>

*

If the dimensionless partition time t2 is set to zero, the

temperature distribution from Beck and from the CANSSZD program match

exactly.

In the second time region, the change in temperature distribu-

tion that is efficient for times greater than the dimensionless

* *

partition time t1 and less than the dimensionless partition time t2 is

given as,

m+n+l B y

qoL a m (-D cost?)

AT(X.y.t)- T E E 2 A

n-l m--o fin

 

I3 B '4fifl

{ [ erfc(23n(tf)1/2 -(;$93/2> - erfc(Zfln(t*)l/2 -(;$?I/2)] e “ m°

1

  

l9 3 453

+ [ erfc(23n(cf)1/2 + m° ) - erfc(Zfin(t*)1/2 +( m: )] e “ m° }

C

(cf)1/2 * 1/2
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m m B YTo (_1)m+n+1 cos(_1£_) *

+ .5 E E B [ coshe(t ’fln’flm+)

n-l m--w n

* * *

+ coshe(t ’fin’fim-) - coshe(t1,fln,flm-) - coshe(t1,fln,flm+) ].

(5.3.4)

where the term fin - x (n - 0.5) is the eigenvalue in the y direction.

The terms fimo - 0.5 (2 m + xL), fim+ - 0.5 (2 m + xL + l), flm- - 0.5 (2 m

+XL - l), and,

mmcoshe(t,fln.fimi)
_ l; [ e 29 mi erfc[ 3 (t )1/2 2.1/2]fin

(t)

25 5 +' * fl 2 fl
- g nx. m L] , fit [L]

2 erf°[ fin<t ) +(t*>1/2 e n erfc (6‘)”2 1

(5.3.5)

The term coshe(-,-,-) will be examined more closely in the next section.

The term qo is the constant heat flux, L is the length of the

plate in the y direction and k is the thermal diffusivity. The most

dominant terms in the summations are m - l and n - O. The term fin is

the eigenvalue for the large time Green's function in the y direction.

The term flmi can be thought of as similar to an eigenvalue for the small

time Green's function in the x direction. The term 3m: is not an eigen-

Value.

When the dimensionless time in both the x and y direction is

small the temperature in the first time region is,

q L co co

T(x.y.t) - 2—ok— E E (-1)m+“-

m--m n--w
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2 *
* 1/2 -fi /t 5

LE-L-- e mo [ erf( ‘2: ) ' erf( .2; ) ]

{ J; <c*)1/2 (6‘)“2

a a2+4f 52+4;
+ -E2 [ expi( l _m2__;___ni ) - expi( 1, mo * n- ) ]

t t

fimo fimo fimo fimo

* fimo [ ”((t*)1/2' 2 p ) “((t* 1/2' 2 B + ) ]

To °° °° fl 23 19 2fi+_ §§(1)m+n[a(_39_’_119) H(_mo’ ‘10)],

a m—-¢ n--m (t*)1/2 Bm+ (t*)1/2 5m‘

(5.3.6)

where the function H(-,-) is discussed by Litkouhi [1982] and in

Appendix B. The symbols fino - 0.5 (2 n - yL + l), fin+ - 0.5 (2 n + yL +

1), fln- - 0.5 (2 n + yL - l), and the term expi(-,-) is the exponential

integral. The exponential integral is defined in Abramowitz and Stegun

[1964] as,

-Xt

 

expi[n,x] - En(x) - I e

l

n dt. (5.3.7)

(1

Other symbols in the temperature distribution equation, when the

dimensionless times for the x and y direction are considered small, have

been defined previously. The convergent equations for the change in

temperature distribution in the first and second time region have not

been previously investigated.

5.3.2 A Partially Heated Plate



152

The second example of the CANSSZD program, see Figure 5.1b, is

for a plate with zero temperature on the top and right hand side, insu-

lated on the bottom, a heat flux, qo, applied to the lower half of the

left hand side and insulated on the top half of the left hand side. The

aspect ratio for this case is two.

The temperature distribution in the plate for the first time

region generated by the CANSSZD program (when the dimensionless time in

the x and y directions is small) is,

qL m w

T(x,y,t) - 53; E E <-1>”+“

m--w nF-m

 

2

* 1/2 -a /c 23 26 _
{ iE—1-—- e m° [ erf( -;9f72) - erf( -;EI72)]

JR (t) (t)

fl 2+4fi2 fl2+4fi2

+ _E_ [ expi( 1, mo * n+ ) - expi( 1’_E2__;___B; ) ]

t t

l9 B l9 l9

+ 5 [ H( -mQ——-, -—mQ- - H( —99——-, m° ) ] . . (5.3.8)

m° (t*)1/2 2 fin- (331/2 2 fin+

The terms 5n+ - 0.5 (2 n + yL + %) and 3n_ - 0.5 (2 n + yL - %) for this

problem and flmo has been defined in the previous example.

The change in temperature distribution for the second time

region generated by the CANSSZD program, where one dimensionless time is

large and one is small, is,

5 x

.J1_)

L [ coshe(t*,flm,2 fin-)
 

AT(x,y,t) -

N
I
H

qoL m a (-l)n cos(

7))
m-l n--m fl

2

m
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+ coshe(t*,flm,2 fin+) - coshe(tt,fim,2 fln+) - coshe(tf,fim,fln_) ],

(5.3.9)

where the term Bm is the eigenvalue for the x direction, the terms fin:

were described in the previous time region and coshe(t*,fim,flni) will be

described in the next section.

The change in temperature distribution for the third time region

generated by the CANSS2D program, when both dimensionless times are

 

large, is,

... a, fix fly fl

qoL cos(—%—) cos(ifli) sin(zn)

AT(x,y,t) - 16 -k_ E 2 2 2 .

mpl npl fin (4 fim + fin)

- e

* 2 2 * 2 2

[ -t2(fim + fin/h) -t (am + fin/a) ]
e . (5.3.10)

The change in temperature distribution when the time in the x

and y direction are considered large is shown in Table 5.1 for the

position x - % and a partition time t2 - 0.8.

5.4 Two Dimensional Integrals

Three integrals that often appear in calculating the temperature

distribution in two dimensional diffusion problems are presented in this

section. The first integral examined occurs in the calculation of

temperature distribution in the first time region. The next integral

occurs in the calculation of the temperature distribution in second time

region. The two integrals are difficult to solve and evaluate because



154

Table 5.1 Dimensionless Change in Temperature From Equation

(5.3.10) When the Partition Time Is Set to 0.1 and

the x Coordinate Is Set to L/2.

Position time - 1.0 time - 1.5 time - 2.0

y

0.0 3.482508-4 6.68336E-4 7.36753E-4

0.1 3.47147E-4 6.66239E-4 7.34445E-4

0.2 3.438463-4 6.59963E-4 7.27537E-4

0.3 3.38373E-4 6.49553E-4 7.16078E-4

0.4 3.30769E-4 6.35082E-4 7.001488-4

0.5 3.21092E-4 6.16653E-4 6.79859E-4

0.6 3.09412E-4 5.94393E-4 6.55349E-4

0.7 2.95815E-4 5.68458E-4 6.26788E-4

0.8 2.80399E-4 5.39023E-4 5.94368E-4

0.9 2.632733-4 5.06288E-4 5.58306E-4

1.0 2.445548-4 4.70470E-4 5.18841E-4

1.1 2.24369E-4 4.31803E-4 4.76228E-4

1.2 2.02851E-4 3.90537E-4 4.30743E-4

1.3 1.80138E-4 3.46933E-4 3.826728-4

1.4 1.56373E-4 3.012623-4 3.32315E-4

1.5 1.31703E-4 2.53807E-4 2.79982E-4

1.6 1.06275E-4 2.048558-4 2.25991E-4

1.7 8.02387E-5 1.54700E-4 1.70667E-4

1.8 5.37464E-5 1.03638E-4 1.14338E-4

1.9 2.694948-5 5.19707E-5 5.73369E-5

2.0 0.00000 0.00000 0.00000
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of the types of functions involved and the appearance of the convolution

of time. Other special integrals which may occur in two dimensional

problems are given in Appendix B.

5.4.1 A e ra me e o ne

An integral that often occurs when the dimensionless time in the

x and y direction is small and the coordinates xL and yL are normalized

with respect to the lengths Lx and Ly is,

 

erfc( ) dr (5.4.1)

r-O J (t") J4a(t-r)/Ly2

t 2 40 L 2

1 'J g- L/< (c-r)/ x > Y1.

1

Dimensionless groups used to eliminate the convolution on time

are defined to be,

+

x x y r
w _ L X _ L ’ Y _ L

J4a(t-r)/Lx2 J4at/Lx2 Jaat/Lx2

+ . . .

where (r ) is the aspect ratio. The integral I1 becomes,

 

w 2

“ e.w Y
I1 - 2/t X I 2 erfc( _i_ w ) dw , (5.4 2)

w
w-X

where t is the time of interest. Litkouhi [1982, pg. 123] has shown

that this integral can be written as,
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_ { _ _x2 Y 2 2

I1 - 2 J: Jr ierfc(X) - e erf(Y) - _ E,(x + Y )
 

+ J; x H( Y,-§— }, (5.4.3)

where H(-,-) is an integral discussed by Litkouhi and obtained from a

text by Rosser [1948]. When X - 0, integral I1 becomes,

1, - 2 J? { erfc(Y) - -€E—- E,( Y2 ) }. (5.4.4)

1?

A plot of the integral when X - 0 is shown in Figure 5.2. This figure

shows the immediate effect on the temperature distribution of the in-

tegral at the surface Y - 0 as time increases. As the point of interest

is moved deeper in the body (i.e. Y - 0.25), the effect on the distribu-

tion is smaller and rises slower.

When Y - 0, integral 11 becomes,

1, - 2 j? { J; ierfc(X) }. (5.4.5)

A plot of this function is shown in Figure 5.3. This figure shows the

effect of the integral on the temperature distribution as the time

increases. Due to the nature of the ierfc function, a small increase in

the argument to the function leads to a large decrease in the value of

the function.

5.4.2 Two Integrals in Time Region Two
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Two integrals that often occur in two dimensional problems when

the dimensionless time in one direction is small and in the other direc-

tion large are,

 

t*

2 c
- 2

I2 - I e 0,0 erfc( _ ] do , (5.4.6)

o-cf J9

and,

t*

2 2

I, - I 9‘1/2 e'(C1 9 + Cz/o) d0, (5.4.7)

o-cf

where 0 - Q—i%;11 is the convoluted time variable and C1 and C2 are

L

constants.

The solution to the integral 12 is found in Cho [1971] to be,

2 0 J9 J0
1

-C2 C2 t*

- 2 e 1 erfc( -— ) ] * . (5.4.8)

By defining a new function coshe(t,C1,Cz) to be,

- - C2

coshe(t,C1,C2) - 1 2 [ e 2 Cl C” erfC(C1Jt - 7; )

2 c1

 

02

C2 erfc(Cljf + 7:

2 c

- e2 C1 ) - 2 e'C1 t erfc( 7% ) ], (5.4.9)
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the integral I2 may be written in compact form as,

* *

12 - coshe(t ,C1,C2) - coshe(t1,C1,C2). (5.4.10)

Two plots of the coshe function versus dimensionless time for

various values of the constants C1 and 02 are shown in Figures 5.4 and

5.5. Figure 5.4 plots the coshe function when the value of the

parameter C1 - g. This value corresponds to the first eigenvalue of a

Green's function for a X21 case. The difference between any two values

of dimensionless time is positive. The difference between two values of

the coshe function decreases as the value of the parameter, C2, in-

creases.

Figure 5.5 plots the coshe function when the value of the first

parameter C1 - x. This value corresponds to the first eigenvalue of a

Green's function for a X22 case. This figure shows the coshe function

decreases rapidly as the parameter C1 is increased. Additional eigen-

values are not necessary for computations involving the coshe function.

A summary of the coshe function is:

 

l) t + 0 coshe(0,C1,C2) 4 0

2) t 4 w coshe(m,C1,C2) + 0

3) C1 # 0

4) C1 + m coshe(t,w,C2) * 0

2

e-Clt

5) C2 4 0 coshe(t,C1,0) * - 2

C1

6) C2 4 m coshe(t,C1,w) 4 0.
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The solution of the next integral, 13. which appears regularly

in the second time region can be found in Abramowitz and Stegun [1964,

pg. 304] to be,

c c t
Jr 2C1C2 .3. '2C1C2 —3 113 - 2 C; e erfc(C1/0 + Jo) + e erfC(2C1/9 + J9) 6-t*

(5.4.11)

The solutions to both integrals, I, and 13. include a term that

may cause numerical instability of the total solution. The term,

C2

82c1c, erfc(C1/9 + 7;), (5.4.12)

may not be easy to evaluate due to the positive argument in the exponen-

tial function. The complementary error function can be approximated for

large values of the argument ( > 1.7 ) and is,

02 2 2

erfc(Cljo + J6) fr e e

   

1 l 3 ]

-

+

. ... ’

[ (C1/9 + C2/j0) 2(01/9 + C2//0)3 4(C1/9 + C2/J9)5

(5.4.13)

No approximation is necessary when the argument to the com-

plimentary error function is small ( < 1.7 ).
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5.5 Time Partitioning in.Two and.Three Dimensions

The time partitioning scheme for two or three dimensional heat

diffusion problems is more complicated than for a one dimensional heat

diffusion problem because the dimensionless time variables for the

additional coordinates are not equivalent unless the lengths of the

sides of the plate are equal.

The CANSSZD program for a two dimensional plate bases the dimen-

sionless time on the x-coordinate length of the plate. This choice is

arbitrary and need not be followed in general. The generalized dimen-

sionless time for the plate is,

c - 2 . (5.5.1)

In the y-direction, the dimensionless time based on the length in the y

direction is,

t - 2 . (5.5.2)

Defining an aspect ratio (r+) as,

(r+) - L /L (5 5 3)y X, . .

the generalized dimensionless time in the y-direction can be written as,

*

t -t (r) . (55.4)
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The time region is split into three components. When the aspect

ratio (r+) is greater than one, see Figure 5.6a, the first time region

is defined as the XSYs region because the Green's function for this

area, in both the x and y direction, are for small time. The dimension-

less time goes from zero to tlx' The second time region, XIYS, is when

the Green's function in the x-direction is for large times and the

Green's function in the y-direction is for small times. The time region

for region 2 goes from tlx to t2x' The third time region is valid for

times greater than tgx and is designated XlYg. Both the Green's func-

tions, in the x and y direction, for the third region are based on the

large time.

When the aspect ratio is less than one, see Figure 5.6b, a

change in the Green's function occurs in the second time region. The

Green's function in the x-direction is for small times and in the y-

direction is for large times, or XsYi.

* *

Once a partition time is chosen, the values of t 1x and t2x may

be calculated. These values depend on the aspect ratio and the boundary

condition applied to the plate. When the aspect ratio is greater than

one, see Figure 5.6a,

* *

tlx - c, (5.5.5)

and,

* * +2

t2x - t1 0 (r ) , (5.5.6)

*

where t1 is the dimensionless partition time. The partition time is

defined as the time when the small time Green's function can be ex-

pressed with less than four reflection terms.
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When the aspect ratio is less than one, see Figure 5.6b,

-k 9: 2

tlx - t, - (r+) , (5.5.7)

and,

* *

t2x - t1. (5.5.8)

When the aspect ratio is equal to one, i.e. the plate is square,

* * *

tlx - t2x - :1, (5.5.9)

and only two time regions appear.

The time regions for the three dimensional case follow in the

same manner as the two dimensional case. For three dimensional cases,

it is convenient to make the assumptions that the direction of the

shortest length of the body is in the x direction, the next shortest

length is in the y direction, and the longest length is in the z direc-

tion. Assigning these coordinate directions leads to the following

three relationships for the aspect ratios,

£1 +
L - (r >yx > 1. (5.5.10)

x

Lz +

L— - (r )zx > 1, and (5.5.11)

x

L

.2._ +
L (r )zy > 1. (5.5.12)
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If, for example, the partition time in the x direction is

defined to be 0.1, and the lengths of the body in the x, y and z direc-

tion respectively are Lx - l, L.y - 2, and L2 - 4, the aspect ratios for

+ + +
the previous equations are (r )yx - 2, (r )zx - 4, and (r )z - 2.

Y

Choosing the x direction as the characteristic dimension yields,

2 - 0.1 , (5.5.13)

as the definition of the partition time. When the time in the charac-

teristic direction is 0.1, the associated time in the y and z direction

2 2

L L- - - 1gl%_rl _ 21%_Ll _g _ a 2 T -§ - 0.1 (Z) - 0.025, (5.5.14)

L L L L L
y y x x y

and,

L2 L2
21%;11 _ 5-1 _§ - 21%:Ll -32 - 0,1 (‘%g) - 0.00625 (5.5.15)

L L L L L
2 Z X X Z

This means that when the time based on the characteristic direction x

forces the program to switch the x direction Green's function from small

to large time, the local time in the other two directions are still

small and the small time Green's functions are appropriate. A descrip-

tion of this example is shown in Figure 5.7. Notice that no more than

four time regions may appear for the three dimensional problems. The

number of time regions is reduced by one if the length of two of the

sides of a three dimensional body are equal. If the three dimensional

body is square, only two time regions appear.
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5.6 Summary

A program that successfully generates symbolic temperature

distributions for plate geometries for three types of boundary condi-

tions is presented. Two example problems were chosen and calculated by

the CANSSZD algorithm. Some parts of the two example problems appear in

the literature and the CANSS2D program matches the analytical solutions

exactly. Some integrals that appear in the calculation of the tempera-

ture distribution of a two dimensional plate are discussed extensively.

The concept of time partitioning in two or three dimensions is dis-

cussed.



CHAPTER 6

SUMMARX’AND CONCLUSIONS

6.1 Summary

A computer algebra program called SMP is applied to transient heat

diffusion problems using a Green's function approach to obtain analyti-

cal temperature distributions in one and two dimensions. The method

restricts the describing partial differential equation, initial condi-

tion, boundary conditions, and volume energy heat source to be linear.

The symbolic algorithm is written in the SMP programming language for

the cartesian coordinate system.

The Green's function approach is an ideal candidate for computer

algebra programs. The formalism for the approach, developed in Chapter

2, relies on the complex mathematical concepts of differentiation and

integration. The CANSS programs applies the symbolic integration and

differentiation procedures that are internal to SMP and that have been

developed for this thesis to the Green's function formalism and calcu-

lates symbolic temperatures. The computer aids the calculation by

repeated application of the Green's function and the integration

knowledge base to the formalism described in Chapter 2.

The Green's function approach operates on transient, linear, multi-

dimensional heat diffusion equations and is developed in Chapter 2. The

boundary conditions are linear and include the traditional boundary

170
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conditions of the first, second and third kinds. Three additional

boundary condition types are discussed in this chapter. The three

addflflonal types of boundary conditions are a boundary condition of the

zeroth'kind, or a "natural" condition, a boundary condition of the

fourth kind, a non-convective thin film condition, and a boundary condi-

tion of the fifth kind, a convective thin film.

A major difficulty of the Green's function approach is obtaining

Green's functions for small dimensionless times that converge quickly.

A new analytical technique for generating Green's functions efficient

for small times is given in Chapter 3. An equation and a group of

tables are presented in Chapter 3 to generate the Laplace transformed

small time Green's functions. A small table of Laplace transforms

(Appendix A) is used to transform these functions back into real time.

The Green's functions that are efficient for large times are

developed by the use of the separation of variables technique and have

been investigated in many texts and papers for boundary conditions of

the first, second and third kinds.

The effect of different types of boundary conditions on the surface

of a semi-infinite body in one dimension is described in Chapter 3.

Boundary conditions of the zeroth, first and second kinds are examined

and boundary conditions of the third, fourth, and fifth kinds with

«different values of their associated properties are examined. The

figures show that when the location of the source and point of interest

< the Green'scoixuzide and.the dimensionless time is small (t*_ 0.05),

function is the same for all boundary conditions.

.A one dimensional program called CANSS which uses the techniques of

the Green's function method to generate symbolic temperature distribu-

tions for a variety of boundary conditions, initial conditions and

'volinme energy heat sources is presented in Chapter Four. Three one
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dimensional example problems are examined. The first example problem is

well documented and the CANSS distribution matches the known solution

exactly. The second and third example problems have not been examined

previously and represent new solutions. Two types of integrals that

appear during the calculation of the one dimensional temperature dis-

tribution, called the Dawson and convoluted exponential integral are

examined. The efficient evaluation of these integrals are described and

shown in the figures.

Sixteen distinct cases of the geometry can be accessed by the CANSS

program. Boundary conditions that are functions of polynomials in time

(i.e. l, t, t2...), initial conditions that are functions of the spatial

coordinates (i.e. l, x, x2...), and volume energy heat sources that are

polynomials in both time and space can be split up by superposition,

calculated independently, and added to obtain temperature distributions

because of the linearity of the Green's function approach.

Time partitioning of the one dimensional problems is necessary for

the efficient evaluation of the temperature distribution. The dis-

cussion and figures in Chapter Four describe the method to be used for

partitioning the time variable and suggests the point of time for the

partition. A flowchart for the one dimensional CANSS routine is

presented.

Symbolic temperature distributions for problems in two dimensions

using the Green's function approach are presented in Chapter Five. A

symbolic algorithm called CANSS2D calculates the temperature distribu-

tion boundary conditions of the zeroth, first, and second kind. The

solutions to many two dimensional problem in the literature and texts

are often left in terms of the initial functions, but the CANSSZD

program calculates the symbolic solutions in terms of the coordinates

and an appropriate range of time. There are a minimum of ninety three
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distinct cases for the CANSSZD program. This number is lower than

actually possible because the forcing function on the boundaries may

extend over any portion of the surface which would lead to an infinite

number of cases handled.

Two example problems are presented in Chapter Five. The symbolic

temperature distribution for a portion of the first example can be found

in the literature. The temperature distribution output from the CANSSZD

program matches the known distribution exactly. New expressions for the

efficient calculation of temperature distribution are calculated for the

small and medium time ranges. These solutions have never appeared in

the literature.

The second example problem in Chapter 5 shows the strength of the

CANSS2D program. Exact temperature distributions are generated for a

plate with only partial heating occurring at one surface. None of the

solutions for this case have appreaed in the literature.

Two integrals that often appear in calculating the solutions to two

dimensional problems are presented. Each integral is described and

examined to obtain solutions that are efficient.

Time partitioning in two and three dimensions is explained and the

technique used in the CANSSZD program is shown in some figures. Some

insight to the extension of the time partitioning method is given for

three dimensional problems.

6 .2 Conclusions

The use of a symbolic manipulation program to generate a knowledge

based expert system is a new development for a computer algebra system.
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The SMP language was used to develop a knowledge base of Green's func-

tions and integrals to be used in conjunction with two programs called

CANSS and CANSSZD. A numbering system associated with the Green's

functions [Beck and Litkouhi, 1983] has been used extensively by the

CANSS program based on the Green's function formalism. The numbering

system eliminates the need in the CANSS program for calculation of the

appropriate Green's function based on the problem geometry and boundary

conditions The Green's function data base contains all the possible

combinations of one dimensional cartesian Green's functions. The

strength of the CANNS program is not in the controlling program, but in

the knowledge bases over which it has control.

A symbolic manipulation program operates well in an problem en-

vironment which includes a rigid structure. The mathematical formalism

of the Green's function approach is particularly appropriate for use in

a computer algebra system. The symbolic manipulation program takes

advantage of the structure by eliminating the need for calculating the

appropriate Green's function from the homogeneous Green's function

equation. Instead, a data base of Green's functions is used to deter-

mine the Green's function. Also, a small data base of integrals is

included that keeps the program from searching through extensive exter-

nal libraries, wasting memory space and computer time.

It is important to note here that the smaller the data base, the

faster the calculation of the temperature distribution. In most computer

algebra systems, any defined function, such as a Green's function, is

loaded into the memory and retained until the system is halted or the

definition is removed. This extra baggage has a detrimental effect on

the speed of the calculations because larger pieces of memory will be

swapped to the storage device. The number of page faults (the number of

times the memory is filled and must be dumped to a storage device) can



175

become enormous if a check is not kept on the data base size. For

example, in the CANSS environment, the Green's function data base is

split into three libraries. Each library can be loaded into the CANSS

program but since all the definitions are not necessary, a large amount

of dead storage is not carried with the program and swapped in and out

of memory core .

Computer algebra programs can also be useful for calculations that

do not include a broad class of problems. SMP was use to calculated and

collect coefficients from the partial fraction expansion. These cal-

culations are straightforward, but are very repetitious and tedious when

performed by pencil-and-paper. The probability of human error in these

computations is high when done by hand but low when delegated to a

computer algebra program.

The advantage of using SMP over other computer algebra software is

the small amount of memory initially allocated loading the program. For

small and simple problems, many users may interact with SMP simul-

taneously. The kernel of functions in SMP is small when compared with

other computer algebra systems. External files, which contain special

functions and procedures written in the SMP language, are only loaded

when necessary. This causes the SMP basic kernel of functions to grow

by adding to the memory and storage, thus slowing down the calculation

speed.

The program SMP is written in the C language which makes it port-

able to many hardware systems. Other computer algebra systems are

written in the computer language LISP and are machine and hardware

dependent.

SMP has a very poor user interface. The natural form of equations

is two dimensional, but SMP can input only strings of text. This weak-

ness in the user interface is common to all computer algebra systems and
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nmch work is necessary to strengthen the area. Some recommendations

regarding the computer algebra user interface are given later in this

chapter.

Most computer algebra software developers claim a simple yet effec-

tive language for their system. For many simple problems, the

interactive nature of the software is direct and efficient. When it is

necessary to program complicated problems in mathematical physics, the

interactive language may retard the progress of the solution to the

problem. This is due to the lack of a debug function that could catch

major flaws in the input of the procedures and functions.

Good program documentation is essential for developing functions

and procedures in new programming languages. Documentation of the

capabilities of computer algebra systems and, most importantly, limita-

tions of the program are poorly described. The documentation available

for computer algebra systems typically consists of a library of func-

tions available to the user. A few vague examples of simple functions

are examined in the reference guide and for simple or small problems,

this type of documentation is sufficient.

Examples of well documented procedures written in the SMP language

cannot be found in the SMP reference guide or primer. The SMP reference

and primer direct the user to poorly documented external files in the

SMP library for instruction. This may be compared to learning French

armed with only a dictionary and a simple set of phrases. The structure

and intent of a command may be different from what is expected even

though the words may be correct.

The use of computer algebra software for the analysis of problems

in heat transfer is appealing because of the ability of the software to

obtain symbolic solutions. Numerical solutions to heat transfer
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pmoblems are acceptable as long as the solution at a particular coor-

dinate and time is desired. Even so, numerical instabilities of the

method may cause the numerical solutions to deviate or, in a worse case,

to oscillate from the correct solution.

The computer algebra program CANSS can be useful identifing areas

in conduction heat transfer problems that cannot be solved in closed

form. Identification of these areas can lead to detailed examination of

the types of integrals which must be evaluated to obtain symbolic solu-

tions.

The new concept of time partitioning is used to optimize the sym-

bolic temperature distributions calculated by the two CANSS programs.

These symbolic solutions are quickly convergent for the time regions of

interest. This is the first application of the time partitioning scheme

introduced by Keltner and Beck [1985] for symbolic temperature distribu-

tions.

Expert systems using computer algebra systems are best suited for

fields that exhibit narrow, specialized domains. Almost every technical

area can benefit from the use of computer algebra based on this descrip-

tion. For example, the field of acoustics is a narrow, specialized

domain of a broad class of wave mechanics. Sommerfield [1949, Section

27, Appendix II] shows the Green's function approach can be applied to

problems in acoustics and results in a formalism that is similar to the

formalism for heat transfer described in this thesis. The Green's func-

tions for the wave equations can be cataloged and stored in a knowledge

base. Special integrals that occur during the calculation of the solu-

tions may also be stored in the knowledge base. The formalism and the

knowledge base can lead to an expert system for wave equation problems

in acoustics.
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A floppy disk containing the CANSS and CANDDZD programs can be

obtained from the author. All libraries, procedures and sub-procedures

can be loaded to a VAX/VHS microcomputer and run with SMP.

6.3 Recs-lendations

l. The small time Green's function method should be applied to

other orthogonal coordinate systems such as the radial, spherical, and

elliptical systems. The approximations in the radial coordinate system

are similar to the approximations made in the cartesian coordinate

system except the functions that are approximated are different. Care

must be exercised in the application of the Green's function approach to

other coordinate systems. In the radial coordinate system for example,

only a limited number of one, two, and three dimensional cases

can use the Green's function formalism because of the differences in the

partial differential equations between the rectangular and radial coor-

dinate systems. A data base of small and large time Green's functions

need to be calculated for the radial coordinate system. Beck [1986] is

continuing to catalog small and large time Green's functions for rectan-

gular, radial, and spherical geometries for various boundary conditions.

2. The kernel or influence functions developed in the small

time Green's function approach should be applied in unsteady surface

element [Keltner and Beck, 1981] and finite element methods. In the

unsteady surface method, small time Green's functions are particularly

important because they allow calculations at small and large times are

made speedily. The small time influence functions developed can be used

as accurate trial functions in finite element methods which will improve
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the convergence of the solution. Green's function based influence

functions can be used for trial functions for non-linear problems. The

efficiency of both numerical procedures will be enhanced through the use

of functions that are defined for specific ranges of time.

3. The integration procedures used in SMP should be extended to

recognize and include more functions. The work of Cherry [1985] and

Knowles [1986] in the area of symbolic integrators should be examined

closely and incorporated into the internal SMP integration routines.

Their work extends the algorithm of Risch [1969] to include specified

logarithmic and exponential functions.

4. The two dimensional CANSS program should be extended to

include additional types of boundary conditions, initial conditions, and

volume energy heat sources. An additional boundary condition that can

be readily applied to the CANSSZD program is the boundary condition of

the third kind. Initial conditions that are polynomial and transcenden-

tal function can be investigated. Volume energy heat sources that are

functions of the spatial coordinates and time can be examined.

5. The one dimensional CANSS program should be extended to

include boundary conditions of the fifth kinds, convective thin films.

Due to the non-symbolic nature of the Green's functions associated with

boundary conditions of the fifth kinds, more variables will be gener-

ated, which will cause a shortage of storage space, and greatly slow

down the calculation of the temperature distribution.

6. The Green's function approach to the solution of heat diffu-

sion problems is not serial but parallel. The formalism and linearity
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of the method allows each piece of the solution to be calculated inde-

pendently. Each processor in the parallel computer could be assigned a

portion of the problem and independently and simultaneously execute the

operations necessary for the solution. The SMP program has anticipated

the move into parallel processing by including functions that takes

advantage of the parallelism.

7. A major flaw in computer algebra systems is the inability of

the program to interface with the user. Equations are two dimensional

objects with structure but computer algebra system treat them as strings

of text. A user interface in needed for both the input and output that

can make use of bit-mapped video screens, menus, and a mouse. Bit-

mapped displays allow the user to point and pick objects such as

equations and portions of equations. Also, bit-mapped screens can draw

the special symbols that appear in mathematical equations. Draw down

menus can speed the input of complicated expression by drawing mathe-

matical symbols, along with the mathematical operation, to the input

line.

8. Output expression display should make use of windows or

horizontal scrolling. The expressions generated by a typical computer

algebra problem are, in many cases, longer than the 80 characters avail-

able on a normal video screen. Windows would allow the user to split

the input or output expressions into small portions. Horizontal scroll-

ing would be an alternative method of displaying large output

expressions.

9. An on-line status area is recommended for computer algebra

systems. The on-line status area can inform the user of the complexity
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of a calculation by indicating the amount of time in the calculation,

the amount of storage space and memory used by the calculation, and an

indication of the progress of the calculation.

10. When an integral in the CANSS environment is not evaluated,

it may represent a new type of function. Numerical integration could

completely describe the unknown integral. The new expression for the

unknown could be entered into the integration procedures of the CANNS

environment and the solution could be determined.

11. A data base of convolution type integrals associated with

diffusion problems is recommended. The Risch-base integration proce-

dures cannot evaluated these integral at the present time. Computer

algebra systems can use their expertise in handling Laplace transforms

and inverse Laplace transforms to begin this data base.

12. The output of symbols and equations from the computer al-

gebra systems should be in a form that is natural to the investigator.

The computer algebra output should be able to generate symbols such as

integral signs, summation signs, and partial derivitive symbols to name

a few. More work using the graphical capabilities of bit-mapped screens

is necessary for the natural output of symbolic expressions.
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APPENDIX.A

LAPLACE TRANSFORHS FOR SHALL‘TIHES

A short table of Laplace transforms is given below. See Abranowitz

and Steguns [1959, pp. 1021-1026] for a comprehensive table of Laplace

 

 

  

  

transforms.

f(s) F(t)

l

s 1 (A.1)

1: t (A.2)

s

—(—)-PV (v > 0) tV-l (A.3)
sl/

1 -at

s + a e
(A.4)

l at

s _ a e (A.S)

ls l 2 a Daw

- (a ft) (A 6)
S + a? F(1/2) t1/2 r(1/2)

l 2 a
Daw(a ft) (A.7)

/s (s + a2) F(l/Z)
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-a/s

-a/s

e

Js

 

-a/s

 

e

./s (b + J5)

e-a‘lS3

s (b + J8)
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i-az/(a c)
a

2 2
r(1/2) t3/

E-a2/<4 t)

r(1/2) c1/2

2

-b t + a b a

e erfc( sz—E) + b/t ]

 

1 a

erfc[ J(4 t) ]

2

-b t + a b

e

O
W
H
‘

erfc( 7?%_E) + b/t ]

(A.8)

(A.9)

(A.lO)

(A.11)



APPENDIX.B

SOME USEFUL INTEGRALS

8.1 Introduction

The purpose of this Appendix is to collect and present special

integrals important in diffusion problems. Many of the integrals found

in this appendix are used in the CANSS programs. A definition that

appears in following sections is,

-(x-x'22

K(x-xv,t-r) - K(-x+x',t-r) _ (4 I a (t T))-1/2 e4am: - T)

(3.1)
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8.2 Integration Over Space with Respect to x' for Small Tine Functions

3.2. Int E uat'on

b

I K(x-x',t-r) F(x') dx' - I K(-x+x',t-r) F(x') dx'

b

a

F x'

6(xo-x')

1

a;

L

a

Integral

K(x-xo,t-r), a < xo < b, otherwise zero

(3.2)

  

N
I
H

erfc[ x - b ] - erfc[ x - §4* ] }

{ (40 (ti-THU2 (4a (t-r))1/2

(8.3)

  

_x_ erfc( x ' b ] - erfc[ x ' é ] }

2 L (4a (c-r>>1/2 (no <t-r>>1/2

+ 2.94% { K(X’a,t'7) - K(X'b,t‘7) }

L

(3.4)

 

erfc[ x - b ] - erfc[

{ (4a (t-r))1/2

 J}(4a (t-r))1/2

+ 23—L%;11 { (x + a)K(x-a,t-T) - (X + b)K(X'b't’7) }

L

(8.5)
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8.2.2 Integral Equation

 

  

b b

I K(x+x',t-r) F(x') dx' - I K(-x-x',t-r) F(x') dx'

a a

F x' Integral

6(xo-x') K(x+xo,t-r), a < xo < b, otherwise zero

(8.6)

L{ {-J—L J [ 1}
l erfc - erfc

2 (4a (t-r>>L/2 (4a mm”2

(8.7)

x' x x + b x + a

-— ‘-— erfc[ ] - erfc( ' ] }

L 2 L (4a (t-r)>L/2 (ha (c-¢))L/2

+ 2L.i_12=;f_l{1((x+a,t:-r) - K(x+b,t-T) }

L

(8.8)

  

{ erfc[ x +§1 2] - erfc( X + b 1 2] }

(4a (t-r)) / (4a (t-r)) /

+ Lg-L%;Ll { (x - b)K(x+b,t-r) - (X ' a)K(X+a't'T) }L

(8.9)
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8.3 Exponential and Error Integrals

8.3.1 Inte x n

 

n Ingggzél

-3 (a «)1/2 [ 7i— ierfc(C Ja) - 7%— ierfc(C Jb) ]

(8.10)

-1 (7r/C2)1/2 [ erfc(C Ja) - erfc(C lb) ]

(8.11)

2 2

o -L; [ e‘c a - e'C b ] (3.12)

C

2 a

1 [ -1% e'C 0 + -1% erfc(C J0) ]

C 2C 9=b

(3.13)

3/2 3/2 2 a

3 [ [ ;_27_ + i‘; ] e.C 0 + 21% erfc(C J0) ]

2 C C 4C 9-b

(8.14)
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Inte r res on

b
2

I on/2 e-c /9 do

a

Integral

(1r/C2)1/2 [ erfc(C/Jb) - erfc(C/Ja) ]

(8.15)

(a «)1/2 [ (b)L/2 ierfc(C jb)

- (3)1/2 ierfc(C Ja) ] (3.16)

2 b

[ 03/2 e’c /9 + 2 c2 J(«o) ierfc(C/JO) ]

u
m
v

0-a

(8.17)

2

1%. [ 03/2 (3o - A.c:2)e'C /9 + 4 C4 /(«0) ierfc(C//9> ]

(8.18)

b

0=a
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8.3.3 Inte ress’on

b 2 2

I on/2 e-c1 o -c,/o do

a

n Integral

-3 11‘ e201C2 erfc(C J0 + 23)

202 1 J0

C2 b

- e-2c,c, erfc(C1/0 - 73) ] (3.19)

0-a

C

A. 2C1C2 _2
-1 2C1 e erfc(C1/9 + J0

C2 b

+ e-2C1C2 erfc(C1/0 - 73) ] (8.20)

0-a

O 13‘ ezclczerfc(C 0 + SE)
461 1 0

C2 b

+ eO2C1C2 erfc(Clfl - 5‘) ] (8.21)

6-a

11_ 1 20 0 C2

1 2 "' - C2 e L 2 erfc(C1/0 + -)

2c 2c1 19

1

C2

+ [ 5%: - c2] e-2c,c, erfc(c,/e - 73)

2 2 a

+ 2 ff e-c19 ‘ Cz/a ] (3.22)

6-b
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30 C
2 2 CC 2

IE; [ [ C2 + -;3 - 2E- ] e2 1 2 erfc(C1/0 + 7;)

2C1 4C1 2

BC C

2 3 2 -2C C 2

+ [ C2 + “—3 - ——— ] e 1 2 erfc(Cljfi - “)
401 2C1 J6

a
2 2

12[_L+2,Cl]e-c.o 'C2/9]

0-b

(8.23)
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8.3.4 Inte ra Ex ression

b

n
I 0 erfc(C 9) d0

a

n I e a

b b 2 2

-1 [ £n(6) erfc(co) ] + 29 I £n(0) e'C 9 do

O-a "

a

(3.24)

o % [ ierfc(C a) - ierfc(C b) ] (3.25)

1 b

1 ——3 [ erf(C 0) - 2 0 C ierfc(C 0) ]

AC 0-a

(8.26)
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8.3.5 Int a e ion

b

I a“ erfc(C/J0) do

a

.___n___ te a1

b

[ erfc(C/la) - 2 c/o ierfc(C/JG) ]

0-a

(8.27)

2 2

[ 2; erfc(C/J0) + 29311 ierfc(C/Jfi)

c 3 1/2 -cz/0 b
- 3 (6 /n) e ]

0-a

(8.28)
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B 3.6 .Lntezrel_£32re§sign

b

I an” erfc(c,/o + c2/Jo) do

a

 

___£L__. _lstesral_

0 [ ‘1; [ erfc(C1J9 + C2/Jfl) + e-4C1C2

AC,

11 . aerfc(C1/0 - Cz/Jfl) ] + C ierfc(C1/0 - Cz/Jfl) ]

1 6-b

(3.29)

2 2 1 -(c2 - c2)o
(c1 - c3) 2 2 [ 2 e 1 3 erfc(Cljo + cz/jo) do

2(c1 - c3)

0

- (1 + 51) e‘2(c1 ' C3)C? erfc(C3/0 + cz/Jo) d9
2

c b
+ (1 - 5%) e’2(C1 + C3)C2 erfc(C3/6 - cz/Ja) do ]

6-a

(8.30)
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8.4 Integration Over Time for Some Error Function Integrals

An integral which occurs often in two dimensional problems is,

I - 51; I w'3 erfc[x w] erfc[y w] dw (3.31)

w-1/(4at)1/2

Integrating this equation by parts, letting,

v - erfc[x w] erfc[y w]

du - w-3dw

yields,

.J._[ -2 J”
I - w erfc[x w] erfc[y w]

a “ 1/(4at)1/2

x -2 2
_ _ w exp[-(xw) ] erfc[y w] dw

za/«w-l/(4at)1/2

_ __1:_ w-2 exp[-(yw)2] erfc[x w] dw (8.32)

Za/w w-l/(4at)1/2

Note that the first and second integrals in the above equation has the

same form but different parameters.

Substuting u - x w in the first integral of equation (8.32),

the integral can be written as,

K
N

m

2

II - —:5 x2 I u‘2 e'u erfc[u/p] du (3.33)

" x
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where X2 - x2/(4at), Y2 - y2/(4at), and p - x/y or X/Y.

Litkouhi [1982] shows that this integral can be expressed as,

- 2

II - 2:2 x2 [ 2% ierfc[X] - e’x erf[Y]/X

In

_1_ 2 2 .. -<p w)2
- _ 81(X + Y ) + 2p I e erf[w] dw ] (8.34)

p/« x

The second integral in equation (8.32) can also be placed in the form of

equation (8.34) as,

2

III - 2:3 Y2 [ 1% ierfc[Y] - e'Y erf[X]/Y

/«

2 2 2 2 m -(w/p)2
- _ EI(X + Y ) + E I e erf[w] dw } (8.35)

1l'

Y

Litkouhi replaces the integrals in equations (8.34) and (8.35)

with a function called H(-,-) which is examined in a text by Rosser

[1948]. The solution to the following four integrals below use a

similar technique and functions.
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t

Ierf[ —3—] erf[ —'Y-—] dr -

-0 J4 a (t-r) J4 a (t-r)
1.

2 1 erfc(X) erfc(!) erfc(X) ggfch)

t - - +
2 2 2 2

[ X ierfc(X) + Y ierfc(Y) ]

- [x zerfc(X,Y) + Y zerfc(Y,X) ]//Z (8.36)

t

I erfC[ :] erfc[ 121—'4] dr -
-0 J4 a (t-r) J4 a (t-r)

1'

2 t erfc(X) erfch)

2

- [ X zerfc(X,Y) + Y zerfc(Y,X) ]/J; (8.37)

 

Q

2

where X - _§_ , Y'- ':E:- , zerfc(X,Y) - X I u'1 e.u erfc(xig)du

J4at J4at X

— -x2 Y 2 2 -

or zerfc(X,Y) - Jn ierfc(X) - e erf(Y) - : EI(X + Y ) + Jw X H(Y,X/Y)

«

and where H[-,-] is the integral discussed in Litkouhi [1982] and Rosser

[1948].
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E

Jr erf[ t] erf[ __1__] dr -

-o 14 a (t-r) 14 a (t-r)
T

2 4 4

2 t 2 - 8 (i erfc(X) + 1 erfc(Y) ) + ——L)———(—lerfcX “erfc Y

2 2

(1 +§ ) zerfc(X,Y) - (1 +1; ) zerfc(Y,X)

=
I
I
I
>
<

§
l
l
h
<

J

2 2 2 2 2 2

+X7X [(x +Y)3,(x +Y)-e'(X+Y)]

2 2

+ -—l- [ X e.x erf(Y) + Y e.Y erf(X) ]

(8.38)

 

2 e fc er c Y
2 t 4

2 2

- é (l+‘§)zerfc(X,Y) - E (1+§)zerfc(Y,X)

Jr Jn

2 2

2 2 2 2 _

+ ¥[(X+Y)E,(X+Y)-e(x+y)]

2 2

+ 1_ [ X e.X erf(Y) + Y e.Y erf(X) ]

6 Jr

(8.39)

where X, Y, zerfc(X,Y), and H(X,Y/X) have been defined on the previous

page.
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3.5 Some Integrals for Small Tile Green's Functions

C

I r“ K(x,t-r) dr - 3%; r( g + 1 ) (4 c)(“+1)/2 in+lerfc[ --i¥i—-— ]

 

  

 

r O (luzt)1/2

n - 1-,o,1,2,... (3.40)

t n 2:;

I r“ 315311 K(x,t-r) dr - 2—33 r( g + 1 ) c 2 .

L L
r-O

1/2 | I | I

{ [ 33% ] in+3erfc[ x 1 2 J + in+2erfc[ x 1 2 ] }

x (Aac) / (act) /

n--2,-1,0,1,2,... (3.41)

t E;

I r“ erfc[ lxl 1/2 ] - r( 3 + 1 ) (4c) 2 in+2erfc[ -—-i§if7§ ]

r-O (4a(c-r)) (hat)

n--1,0,1,2,... (3.42)

t

1/2

I K(w,t-r) dr - [ :t ] ierfc[ lwl 1/2 ]

r-t-At (40 At)

(3.43)

t t 1/2 W2

2 I a(t-r) K(w,t-r) dr - I [ 2L£:Ll ] eéa(t-r) d7

r-t-At 13C-At
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3 1/2 w

-—w—[erfc[—v yew—:1 [1- ...H
6 0 (ha At)1/2 « w w

(3.44)

t

I erfc( w ] dr - A At 12erfc[ jg ]

r_t_At (4a(t-1))1/2 (4a At) 1/2

(3.45)

t

I (t-r) erfc[ Y ] dr -

r-t-At (4a(t"))1/2

2 2 w 4 w
A(At) { i erfc[ ] - 4 i erfc[ ] (8.46)

1/2 (4a At)1/2

(4a At)

2

t W

I [ a w 1/2 ] eha(t-r) dr - erfc[ -——J3d-——']
3

T_t_At [4n (a(t-r)) 1 (4a At)1/2

 

 

(8.47)



A!!IIDIX C

CAISS AID CAIBSZD PIDGIAI llalPLlS

Welcome to Paul Zang's version of SMP.

SMP 1.5.0

28-FEB~1987 13:sa:a9.os

qullz: <‘canss.prg'

The CANSS procedure takes about 30 seconds to load!!!!

Please wait a moment ......

The [zang.smp.c2d]grab.int function is loaded.

The [zang.smp.c2d]exp.int library is loaded.

The CANSS utilities are loaded.

ccccccccc AA N N ssssss 535353

c AA rm N s s

c A A u u N s s

c AAAAA u n u ss 55

c A A u an s s by

ccccccccc A A u N 3555555 sssssss p. H. Zang

This procedure will calculate the temperature distribution in a one

dimensional slab that has boundary conditions of the first through

fourth kind at any surface. Constant heat generation may occur

and the initial temperature of the slab is a polynomial function of x.

Press (Enter) or <Return> key to continue:

The CANSS left boundary input routines are loaded.

The CANSS right boundary input routines are loaded.

The CANSS IC & HGT and Status are loaded.

The CANSS function to generate CF‘s is loaded.

NOTE

Small dimensionless time is defined as being < 0 025

Assume the forcing functions on the surfaces begin at tau - O

200
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Press <Enter> or <8eturn> key to continue:

Left Boundary Condition

What type of boundary condition do you have:

- Semi-infinite Condition

Temperature Condition

- Heat Flux Condition

- Convective

Non-convective Thin Film

u
s
e
r
—
O

I

>

I

Enter : 2

Form: dT/dx - constant*time‘(n/2) n - -l,0.l.2....

Enter the constant value.Qo

Enter the value for n. n can equal -l.0.1,2.... 1

Right Boundary Condition

What type of boundary condition do you have:

- Semi-infinite Condition

- Temperature Condition

Heat Flux Condition

- Convective

- Non-convective Thin Filmb
e
a
r
e
r
-
I
O

0

Enter : 2

Form: dT/dx - constant*time‘(n/2) n - -l.0.l.2....

Enter the constant value 0

Enter the value for n.O

Initial Condition
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The initial condition term is constant with respect to time.

Form :: F(x) - Constant * x“$n . where Sn - positive integer.

Enter the constant value for the initial condition.0

Enter the value for $n.0

Enter the constant value for the heat generation.0

Status of the CANSS routine at this time.

You are dealing with the X( 2 2 ) case.

The initial condition is equal to 0

The heat generation is constant and equal to 0

Loading the [zang.smp.gflibs]eigen.con library.

Hang on.... This takes about l0 seconds!!

Press <Enter> or <Return> key to continue:

Loading the [zang.smp.gflibs]gfld.lib library.

Hang on.... This takes about 30 seconds!!

The [zang.smp.gflibs]gfld.lib library is loaded!!

The small time Green's function is ::

2

«0.25 (2nn + x - xp) -O.25 (2nn + x + xp)

0 5(Exp[ --------------------- ] + Expl --------------------- ])

theta theta

theta Lx Pi °

The large time Green's function is ::

l + 2Cos[mm x Pi] Cos[mm xp Pi] Exp[- mm theta Pi ]

oooooooooooooooooooooooooooooooooooooooooooooooooooo

Press <Enter> or <Return> key to continue:

integral 8 3

The integral of 0 is not in the library.

we will try the internal integrator.

The small time boundary solution is 2:

2 0.5(2nl + x)

Atl Lx Qo Gammall.5] IErfC[ ------------ .2]

0.5
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0.5

alpha k

NOTEzz hi or n2 are summation indexes that may go from

minus infinity to plus infinity.

Press <Enter> or <Rsturn> key to continue:

0.5

The integral of tau is not in the library.

We will try the internal integrator.

The integral of 0 is not in the library.

we will try the internal integrator.

The large time boundary solution is ::

0.5

-DawsonsInt[ml Pi (-tl + t2) 1

2 2

* Exp[- ml t1 Pi ]

2Cos[ml x Pi] ( --------------------------------

ml Pi

2 2 0.5

2 + Epr- ml tl Pi ] (-tl + t2) )

Lx Qo ( ------------------------------------------------------

2 2

ml Pi

1.5

. 0.666667 t1 + 0.666667 t2 )

0.5

alpha k

NOTEz: ml or m2 are summation indexes that may go from 1 to infinity.

Press <Enter> or <Return> key to continue:

The integral of 0 is not in the library.

We will try the internal integrator.

The initial condition solution is 2: 0

NOTE:: ml or m2 are summation indexes that may go from 1 to infinity.

Press <Enter> or <Return> key to continue:

The integral of O is not in the library.

we will try the internal integrator.

The small time solution for the heat generation term is: 0

NOTE:: nl or n2 are summation indexes that may go from

minus infinity to plus infinity.

Press <Enter> or <Return> key to continue:

Err[6l.35.0]

31(2]:: <end>
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welcome to Paul Zang's version of SHP.

SMP 1.5.0

28-FEB-l987 13:59:01.05

el[l]:: <'canss2d.prg'

Loading the XRepexplg external file...

Loading the [zang.smp.c2d]grab.int external file...

The {zang.smp.c2d]grab.int function is loaded.

Loading the [zang.smp.c2d]exp.int external file...

The [zang.smp.c2d]exp.int library is loaded.

Loading the [zang.smp.c2d122d.int external file...

Loading the [zang.smp.z]de.int library

The [zang.smp.c2d122d.int library is loaded.

ccccccccc AA N N 555335 555555

c A A NN N s s

c A A N N N s s

c AAAAA N N N ss 55

c A A N NN s s by

ccccccccc A A N N 5555555 sssssss p. N. Zang

This procedure will calculate the temperature distribution in a two

dimensional plate that has boundary conditions of the first or

second kind at any surface. No heat generation will occur in the plate

and the initial temperature of the plate is zero. You may either use a

constant forcing function at the surfaces or zero at the surfaces. The

forcing functions may extend to any percentage of surface length.

Press (Enter) or (Return) key to continue:

Some values must be given before we can continue. The default values

of the constants are:

thermal conductivity (k) - 1

thermal diffusivity (alpha) - 1

NOTE

Small dimensionless time is defined as being < 0.025

Assume the forcing functions on the surfaces begin at tau - 0

Do you wish to use the default values? (Y or N)

Enter : y
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Now we determine the boundary conditions. The options are ::

- Semi-infinite boundary

1 - Temperature Condition (Dirichlet)

2 - Heat Plux Condition (Neumann)

"What type of condition occurs on the bottom? (O.l.2)'2

"What type of condition occurs on the left side? (0.1.2)'2

"What type of condition occurs on the top? (0.1.2)'l

”What type of condition occurs on the right side? (0.1.2)'l  
This is the X( 2 1 )Y( 2 l ) case

This is the input data routine. You will be asked

to enter the length of the plate in the x and y

direction. Then you will be asked to input the

forcing function that occurs at the boundaries.

Please continue .....

 

What is the length of the plate in the xodirection?l

What is the length of the plate in the y-direction?2

Is the forcing function on the bottom zero?

Enter : y

Is the forcing function on the left side zero?

Enter : n

What is the value of the heat flux forcing function

on the left side of the plate?

Forcing function on this surface - Qo

Where does it start? Dimensionlessly (0 - l) - 0

Where does it and? Dimensionlessly (0 - l) - .5

Is the forcing function on the top zero?

Enter : y

Is the forcing function on the right side zero?

Enter : y

Loading the [zang.smp.gflibs]gf.lib library.

The [zang.smp.gflibs]gf.lib library is loaded!!

see*eeeeeeeeeee*********************ee**e***********e*eeeeeeeeeeee

mink
**

** You have chosen a two-dimensional problem **
**

**

w***e*eweeeeeeeeeeeeeeeeeeeeeeeeeeeeeee******e********************

We begin by setting up the 2-D Green's function for time region 1.

2

nl + n2 -0.25 (2nl + x)

0-5 ('1) Q0 Exp[ ---------------- ]

theta
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2 2

- (2n2 + y - yp) - (2n2 + y + yp)

* (Expi ----------------- l + val ----------------- 1)

theta theta

(0. -------------------------------------------------------------- ,0.0)

theta Pi

The GP for time region 1 is completed

Begin setup of GP for time region 2.

n2 2 2

(~l) Qo Cos[x Pi (-0.5 + ml)] Expl-theta Pi (-0.5 + ml) ]

2 2

- (2n2 + y - yp) - (2n2 + y + yp)

* (EXPI ----------------- l + Espl ----------------- ])

theta theta

{0. ------------------------------------------------------------ ,0.0)

0.5 0.5

theta Pi

The GP for time region 2 is completed

Begin setup of GP for time region 3.

{0,200 Cos[x Pi (-0.5 + ml)] Cos[0.5y P1 (-0.5 + m2)] Cos{0.5yp Pi (-0.5 +

m2)]

2 2 2 2

* Exp[-theta Pi {-0.5 + ml) ] Epr-O.25theta Pi (-O.S + m2) 1. 0.0)

The GP for time region 3 is completed

Now we have finished entering the data. We move to integration

over space...

Now I am calculating the spatial integration for region 1....

2

n1 + n2 -0.25 (2nl + x)

0.25 (-l) 00 Exp[ ---------------- ]

theta

-0.5(l - hn2 - 2y) 0.5(1 + an2 + 2y)

* (Erfc[ ------------------ ] - Erfc[ ----------------- l)

0.5 0 5

theta theta

0 5 0.5

theta Pi

Finished with region 1!!!

Now I am calculating the spatial integration for region 2....

n2 2 2

0.5 (-1) Q0 Cos[x Pi (-0.5 + ml)! Exp[-theta Pi {-0.5 + ml) 1

-0.5(l - AnZ — 2y) 0.5(1 t hn2 r 7y)

* (Erfcl ------------------ ] - Erfc[ ----------------- })

0.5 0.5
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theta theta

Finished with region 2!!!

Now I am calculating the spatial integration for region 3....

2 2

4Qo Cos[x 21 (-0.5 + ml)] Cos[0.5y 91 {-0.5 + .2)] Exp[-theta Pi (-0.5 + ml)

1

2 2

* Exp[-0.25theta Pi (-0.5 + m2) ] Sin[0.25Pi (-0.5 + m2)]

Pi (-0.5 + m2)

Finished with region 3!!!

Here is the temperature for time region 1 ...

nl + n2 0.5 0.5

0.25 (-l) Q0 (2 cl Pi

2

-0.S(l - 6n2 - 2y) -0.25 (2nl + x)

oErfI ------------------ ] Exp[ ---------------- 1

0.5 tl

ti

e ( ..............................................

0.5

Pi

2

0.25 (2nl + x)

0.5Expi[l, ---------------

ti

(1 AnZ

2

0.25 - 2y)

+ -------------- ]

CI

0.5

tl Pi

0.5(2nl + x) -(2nl + x)

0.5HH[ ------------ , ------------ 1

0.5 l - 4n2 - 2y

:1

* (2nl + x)

4. ................................

0.5

 



2CH3

0.5(2nl + x)

+ lErfcl ------------ l)

0.5

tl

0.5 0.5

- 2 ti Pi

2

0.5(1 + an2 + 2y) -0.25 (2nl + x)

-Erf[ ----------------- ] Exp[ ---------------- ]

0.5 (:1

t1

* ( .............................................

0.5

Pi

2

0.25 (2nl + x)

0.5Expi[l. ---------------

t1

(1 + An2

2

0 25 + 2y)

+ -------------- ]

tl

* (2nl + x)

0.5

tl Pi

0.5(2nl + x) 2n! + x

0.5HH{ ------------ . ------------ 1

0.5 l + hn2 + 2y

tl

* (2nl + x)

+ ................................

0.5

tl

0.5(2nl + x)

+ lErfc[ ------------ )))

0.5

cl

0.5

Pi

More is the temperature for time region 2

n2

0.5 (-l) Qo Cos[x Pi {-0.5 + ml)]

-0.5(1 - An2 - 2y) 2 2

-(-Erfc[ ------------------ ] Expl-tl Pi (-0.5 o ml) g

0.5

:1

.0.5(1 - An2 - 2y) 0.5
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- 0.5Erfc[ ------------------ + :1 91 (.o.s + ml)]

0.5

t1

e Exp[-P1 (-0.5 + m1) (1 - 4n2 - 2y)!

0.5(l - hn2 - 2y) 0.5

+ 0.58rfc( ----------------- + tl Pi (-0.5 + ml))

0.5

tl

* Exp[Pi (~O.5 + ml) (1 - én2 . 2y)])

* ( ...............................................................

2 2

Pi (-0.5 + ml)

-0.S(l - 6n2 . 2y) 2 2

-Erfc[ ------------------ I Exp[-t2 Pi (-O.5 + ml) ]

0.5

t2

~0.S(l - an2 - 2y)

- 0.5Erfc[ ------------------

0.5

t2

0.5

+ t2 Pi (-0.5 + m1)!

* Exp[-Pi (-0.5 + ml)

* (l - anZ - 2y)]

0.5(1 - an2 - 2y)

+ 0.5Erfc[ .................

0.5

t2

0.5

+ t2 Pi (-0.5 + ml)]

* Exp(Pi (-0.5 + ml) (1 . 4n2 - 2y)]

Pi (-0.5 9 ml)

0.5(1 + AnZ + 2y) 2 2

-Erfc[ ----------------- ] Epr-tl Pi (-0.5 + ml) ]

0.5

tl

-O.S(l + An2 + 2y)

+ 0.5Erfc( ------------------

0.5

tl

0.5

+ tl Pi (-O.S + ml)]

* Exp[-Pi (-0.5 + ml)
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* (l + anZ + 2y)]

0.5(1 + hn2 + 2y)

- 0.58rfcl -----------------

0.5

tl

0.5

+ tl Pi (-0.5 + ml)]

* ExplPi (-0.5 + .1) (1 + 4n2 + 2y)!

P1 (-0.5 + ml)

0.5(1 + 4n2 + 2y) 2 2

~Erfc[ ----------------- ] Epr-tZ Pi (-0.5 + m1) ]

0.5

t2

-0.5(l + an2 + 2y)

+ 0.SErfc[ ------------------

0.5

:2

0.5

+ t2 Pi (.0.5 + m1)]

* Exp(-Pi (-0.5 + ml)

* (l + hn2 + 2y)]

0.5(1 + bn2 + 2y)

- 0.SErfc[ -----------------

0.5

t2

0.5

+ t2 Pi (-0.5 + ml)]

* Exp[Pi {-0.5 + ml) (1 + 6n2 + 2y)]

Pi (~0.5 + ml)

Here is the temperature for time region 3 ...

aQo Cos[x Pi (-0.5 + ml)] Cos[0.5y Pi (-0.5 + m2)]

2 2 2 2

* (.txp{c2 (- Pi (-0.5 + ml) - 0.25 Pi (-0.5 + m2) )1

2 2 2 2

+ Exp[t3 (- Pi (-0.5 + ml) - 0.25 Pi (-0.5 + m2) )1)

* Sin[0.25Pi (00.5 + m2)]

Pi (-O.5 + m2) (- P1 (-0.5 + ml) - 0.25 Pi (-0.5 + m2) )

DDD....DDDDD ...... DDDDDDats’ all folks'!!!!!!
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