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Abstract

Multi-Channel Filtering Techniques for Texture Segmentation

and Surface Quality Inspection

By

Farshid Farrokhnia

This dissertation focuses on the multi-channel filtering approach to texture analysis.

We combine this biologically motivated approach with analytical and signal analysis

considerations to develop powerful, generally applicable texture analysis techniques.

First, a detailed texture segmentation algorithm is proposed that uses a bank of even-

symmetric Gabor filters to represent the channels. This representation is augmented

with a systematic filter selection scheme based on an intuitive least squares error

criterion. By introducing a nonlinear stage following the linear filtering operations,

a multi-scale ‘blob detection’ mechanism is created. ‘Feature images’ are then ob-

tained by computing the “energy” in a small neighborhood around each pixel, in each

‘response image’. These energy features capture the attributes of the blobs with-

out the need for extracting them. The texture segmentation experiments show that

these features can discriminate among a large number of textures, including some

artificially generated texture pairs with identical second- and third-order statistics.

Both unsupervised and supervised texture segmentation experiments are reported. In

the supervised segmentation experiments a feed-forward neural network is used, in

addition to several other classifiers.



We also develop a new technique to obtain an edge-based segmentation by com-

bining the magnitude responses of Canny edge detectors to the feature images. The

region-based and edge—based segmentation techniques each have certain weaknesses.

To eliminate these weaknesses we propose an integrated approach that combines the

region- and edge—based segmentations to produce a new, improved segmentation. The

integrated approach results in a truly unsupervised segmentation technique by elim-

inating the need for knowing the “true” number of texture categories.

Finally, we address a practical problem involving automated visual inspection

of the textural appearance of automotive metallic finishes. We address imaging and

preprocessing requirements and demonstrate that a multi-channel filtering technique

can be used to successfully characterize the finish texture. Two alternative meth-

ods for grading the degree of uniformity of the finish texture are developed. The

‘texture grading’ experiments show that there is a high correlation between the tex-

ture uniformity grade and the visual scaling of the finish samples by finish inspection

experts.
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Chapter 1

Introduction

In computer vision or image analysis, an important goal is to “summarize” mean-

ingful information in an image, that is otherwise distributed among a large number

of pixels. For example, significant research effort is directed toward extracting seg-

ments of an image that correspond to objects or other physical entities. For intensity

images, differences in average gray value alone are not always sufficient to obtain a

segmentation. Rather, one has to rely on differences in the spatial distribution of

gray levels of neighboring pixels —- that is, on differences in texture.

This dissertation focuses on a particular approach to texture analysis known as

the multi—channel filtering approach. This approach is inspired by the multi-channel

filtering theory of visual information processing in the early stages of the' human vi-

sual system. First proposed by Campbell and Robson [9], the theory holds that the

visual system decomposes the retinal image into a number of filtered images, each

of which contains intensity variations over a narrow range of frequency (size) and/or

orientation. In texture analysis, such a decomposition is intuitively appealing, be-

cause it allows us to exploit differences in dominant frequencies and orientations of

different textures. When combined with analytical and signal analysis considerations,

this biologically motivated approach has the potential to produce powerful, generally

applicable techniques for texture analysis. In this dissertation, we develop and evalu-

ate several such techniques for segmenting images on the basis of texture. We model

the ‘channels’ by a bank of even-symmetric Gabor filters, and propose an intuitive

least squares error criterion for filter selection.

Texture analysis also plays an important role in industrial quality inspection

problems. In many cases, the quality of a surface is best characterized by its texture.

Texture analysis techniques have been used for controlling the quality of paper in

paper-rolling mills [17], for detecting and classifying common surface defects in wood

[23], and for determining the degree of carpet wear [84]. In this dissertation, we

also address a practical problem involving automated visual inspection of automotive

metallic finishes. We demonstrate that a multi-channel filtering‘technique can be used



to successfully characterize the finish texture, and develop two alternative methods

for grading the degree of uniformity of the finish texture.

The remainder of this chapter discusses visual information processing in both

biological and artificial vision systems. We emphasize the role of texture in image

analysis or computer vision and give a taxonomy of texture analysis. techniques. We

conclude the chapter by providing an outline of the dissertation.

1.1 Vision in Man and Machine

It has been said that “a picture is worth a thousand words”. An estimated 75% of

information about our environment is obtained through our visual system [17]. With

increased reliance on visual information has come the need for visual information

processing systems that can ‘look at’ and ‘interpret’ various types of imagery. For

example, thousands and thousands of aerial reconnaissance images are taken everyday.

These images can not be screened and analyzed by human experts alone. In medical

applications, x-ray, ultrasound, or other kinds of imagery need to be processed and

analyzed quickly and reliably. Increased availability and affordability of electronic

imaging systems has made it possible to use image analysis techniques to address

these problems.

Another reason for the increasing interest in building machines that can pro-

cess and analyze images is for automation of visual inspection tasks. For industrial

products that require visual inspection, increased automation of production lines has

turned the inspection stage into a significant bottleneck. Within the next decade, as

much as 90% of all industrial visual inspection tasks might be performed by computer

vision systems [17]. Using human inspectors does have certain advantages. Humans

can adapt to changes in the inspection requirements or to new inspection tasks very

quickly. Human versatility and judgement, therefore, make strict and detailed spec-

ification of product requirements and tolerances unnecessary. However, humans are

usually affected by fatigue, psychological state, and monotony. Machine vision sys-

terns, on the other hand, can provide reliable decisions based on objective criteria

that are not expected to change. Also, many tasks that involve working in dangerous

environments, such as mines, can be done safely and more efficiently by robots that

are capable of analyzing visual information.

Although visual information is not necessary for all automated tasks, integrating



visual data does have advantages. Most mechanical systems — for example, gauging

and surface inspection systems — are being replaced by optical systems that are

much faster. In other applications, integration of visual data with data that is sensed

through other sensors, such as thermal or range imagery allows for building more

robust systems.

A distinction must be made between image processing and image analysis (or

computer vision.) Digital image processing, in general terms, refers to the processing

of a two-dimensional picture (or any two-dimensional data) by a digital computer. In

image processing operations, such as image restoration or enhancement, the output

is another image. Edge detection is another common image processing operation.

Such operations are also referred to as ‘low-level’ processing. This is because the

information contained in the image is still distributed among individual pixels. For

example, in an edge image each pixel is labeled as an edge or non-edge pixel. The

aim of image analysis, on the other hand, goes beyond such operations and involves

interpreting the content of the image. When edge pixels in an edge image are grouped

together as line segments, for example, one obtains a more compact and meaningful

representation. Similarly, grouping pixels into regions to obtain a meaningful seg—

mentation of an image results in a compact description of the image. Sophisticated

computer vision systems are expected to interpret or assign labels to regions or sur-

faces in images. Image analysis therefore involves tasks such as feature extraction,

segmentation, classification, and recognition. In these cases the output of the vision

system is usually a symbolic description of the input image.

Computer vision techniques invoke concepts from diverse fields such as optics,

digital signal processing, estimation theory, information theory, stochastic processes,

visual perception, pattern recognition, artificial intelligence, and computer graphics.

Computer vision is a rapidly evolving field with growing applications in science and

technology. This area holds the possibility of developing machines that can perform

many of the visual functions of human beings. While many theoretical and tech-

nological breakthroughs are required before we could build such sophisticated vision

systems, there is an abundance of vision applications that can be realized through

available algorithms and hardware.

In recent years, a major trend in computer vision research has been the integra-

tion of biological and psychological studies of vision and image analysis techniques.



  (a)

Figure 1.1: Simultaneous contrast phenomenon in human visual system. The per-

ceived luminance, i.e. the brightness, of an object is influenced by the luminance

of its background. A square block of constant gray-level of 128 (a) surrounded by

gray-level of 32, (b) surrounded by gray-level of 192.

Clearly, computer vision systems are not restricted to the limited range of the electro-

magnetic spectrum, called visible light, for input. Neither are they restricted to use

hardware or processing architectures similar to that of biological systems. However,

study of psychological and neurophysiological properties of visual systems in humans

and other living beings holds great potential for developing sophisticated algorithms

for image analysis. After all, many applications of computer vision involve developing

vision systems that can imitate human performance.

For example, it is known that two objects with different surroundings may have

identical luminance, but different brightness values [62, Sec. 6.2]. (See Figure 1.1.)

In other words, the perceived luminance, which we call brightness, depends on the

luminance of the surround. This phenomenon is called simultaneous contrast and is

caused by the fact that our visual system is sensitive to luminance contrast rather

than to absolute luminance values themselves. Such perceptual phenomena need to

be considered and incorporated in any computer vision system that is to behave like

humans. Psychophysical experiments, such as those by Campbell and Robson [9], and

Julesz and his co-workers [53, 56] have contributed a great deal to our understanding

of the mechanisms and properties of the human visual system.

As noted before, computer vision or image analysis involves tasks such as feature

extraction, image segmentation, and recognition that require interpreting the content



of an image. Image texture, which is the main subject of this dissertation, is one

of the richest sources of information for analyzing many images. Following sections

discuss different characteristics of image textures, texture analysis approaches, and

major texture analysis tasks.

1.2 What Is Texture?

Texture is an intrinsic property of all surfaces. Humans use texture features in an-

alyzing retinal images of a scene. This implies that texture is an easily understood

concept. However, it is very difficult to define texture in a concise mathematical

sense. A common definition of texture describes a basic local pattern that is repeated

in a nearly periodic manner over some image region. This definition is appropriate

for ‘macrostructure’ textures — textures whose underlying patterns can be easily

detected. This definition, however, does not apply to ‘microstructure’ textures —

textures whose underlying patterns are not obvious. Surprisingly, even the more ran-

dom looking textures seem to possess a distinctive property that is readily identified

by the human observer.

The lack of a comprehensive definition of texture really stems from the lack

of good understanding of texture and texture models. The proliferation of texture

analysis techniques over the last two decades was stimulated by lack of agreement as

to how texture should be measured.

Figure 1.2 shows some natural and artificial textures. Some textures, such as

that of a rough wall surface or canvas, are perceived because of the underlying physical

structure of the surface. Others, such as the texture of a checkerboard or ruled paper,

are perceived because of the design patterns or marks on the surface. In some cases,

a collection of objects is viewed as a single textural entity, as in the case of grass

or a brick wall. An important characteristic of texture is its dependence on spatial

resolution. For example, a tiled floor is perceived to have a nearly regular (cellular)

texture whose elements are the individual tiles. But, when attention is focused on a

single tile, one perceives the random texture of the tile.

We often correlate visual textures with tactile sensations such as smoothness,

coarseness, graininess. We also describe them with adjectives such as regular, direc-

tional, line-like, etc. Intuitively, developing computational measures that correspond
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Figure 1.2: Some natural and artificial textures. (a) ‘Straw matting’ (D55) from

the Brodatz album [7]. (b) ‘Bark of tree’ (D12) from the Brodatz album. (c) An

artificial texture generated from a Gaussian Markov random field model [14]. (d) A

synthetic texture [53].



to such perceptual attributes of textures is very appealing. Tamura et al. [86] devel-

oped six computational measures corresponding to coarseness, contrast, directionality,

line-likeness, regularity, and roughness. They compared their measures with psycho-

logical data on 16 natural textures. The rank correlations between their measures

and the visual judgements by human subjects were between 0.65 and 0.90.

Psychological experiments have shown that human beings are capable of dis-

criminating certain types of texture preattentively; that is, by viewing the texture for

a very short period of time so as to avoid detailed scrutiny by higher-level processes.

Most of these experiments made use of computer-generated patterns or textures which

were void of familiar cues. For example, Julesz and his co-workers used a large num-

ber of computer-generated texture pairs in their texture discrimination experiments

[52, 55, 57]. Such experiments have greatly contributed to our understanding of tex-

ture discrimination processes in the human visual system.

Haralick [43] emphasizes the interaction between tone (i.e., gray-level) and tex—

ture in an image. He points out that tone and texture are both present in the image

at the same time, but depending on circumstances one or the other may dominate.

When there is a large variation in the tonal primitives in a relatively small area in an

image, texture becomes the dominant property. Obviously, the amount of perceived

variation in the tonal primitives depends strongly on the size of the image area being

investigated. For example, in an extreme case where the area consists of a single pixel,

the texture property is completely suppressed. What characterizes image texture is,

therefore, the tonal primitives as well as the spatial relationships between them.

What is important about texture, therefore, is that it is the property of regions

or neighborhoods rather than individual pixels. The interaction between gray-levels

of neighboring pixels can therefore be used to characterize textures.

1.3 Texture Analysis: A Taxonomy

In this section we present a general classification of texture analysis approaches, and

describe them briefly. Several surveys of texture analysis techniques have appeared

in the literature. Haralick [43] compiled a comprehensive survey of statistical and

structural approaches to texture. Van Gool et al. [91] have also published a survey of

texture analysis techniques. Their survey emphasizes texture classification techniques;

texture segmentation techniques are covered only briefly. Our classification of existing



computational approaches to texture analysis consists of the following categories:

1) statistical approach, 2) structural approach, 3) model-based approach, and 4)

multi-channel filtering approach. While an unambiguous and exhaustive classification

of texture analysis techniques is impossible, we believe that the above categories

represent a compact and descriptive classification. In Chapter 2, we will review

multi-channel filtering techniques in more detail.

1.3.1 Statistical Approach

In the statistical approach to texture analysis, the image texture is represented by a

point or a pattern in the feature space, where the features are various statistics of the

gray level distribution in the image [62, Ch. 9]. Since texture is a property of image

regions, as opposed to individual pixels, these statistics try to capture the interactions,

or dependencies, among neighboring pixel values. Well-known examples are features

computed from gray-level co-occurrence matrices [43], and autocorrelation and power

spectrum features.

1.3.2 Structural Approach

Certain textures, in particular ‘man-made’ textures, possess a high degree of regu-

larity. Textures, such as one perceived on a brick wall, can be described by their

building blocks or primitives and their placement rules. This approach to texture

analysis is referred to as the structural approach [62, Ch. 9]. Either the primitives or

the placement rules, or both, may have a random component associated with them.

Given the primitives and their placement rules, one can generate samples of the tex-

ture. Unfortunately, extracting the primitives from a given texture is not an easy

task. This difficulty imposes a Serious limitation on the applicability of structural

approaches to practical problems.

1.3.3 Model-Based Approach

A third approach to texture analysis, viz. the model-based approach, has received a

great deal of attention in the recent years. Model-based techniques attempt to capture

the dependencies among neighboring pixel values by fitting an analytical function to

the textured image. Most model-based techniques treat texture as a realization of a



two—dimensional stochastic process, or a random field. Once an appropriate model of

a given texture has been found, the parameters of the model would completely specify

the texture. The ability to represent a texture with a small number of parameters

makes the storage and processing of texture images extremely efficient. Some of the

well-known model—based techniques for texture classification and segmentation are

based on Markov random field (MRF) models [3, 13, 24], mosaic models [1], and

fractals [59, 76].

1.3.4 Multi-Channel Filtering Approach

In this dissertation, we focus on a particular approach to texture analysis which

is referred to as the multi—channel filtering approach. The multi-channel filtering

paradigm in image analysis has received considerable attention in the past decade

[62, Ch. 6]. This paradigm is inspired by a multi-channel filtering theory for process-

ing visual information in the early stages of the human visual system. According to

the theory [9], the human visual system decomposes the retinal image into a number

of filtered images, each of which contains intensity variations over a narrow range of

frequency (size) and orientation. The psychophysical experiments that suggested such

a decomposition used various grating patterns as stimuli and were based on adapta-

tion techniques [9]. Subsequent psychophysiological experiments provided additional

evidence supporting the theory [28, 82].

In texture analysis, the multi—channel filtering approach is intuitively appealing,

because it allows us to exploit differences in dominant frequencies and orientations

of different textures. A decomposition of the original textured image based on fre-

quency is also in agreement with the need for a multi-resolution approach to texture

analysis. The need for processing images at different scales or resolutions is well rec-

ognized in image analysis and computer vision [71]. An important advantage of the

multi-channel filtering approach is that one can use simple statistics of gray values in

the filtered images as texture features. This simplicity is the direct result of decom-

posing the original textured image into several filtered images with limited spectral

information.

In Chapter 2, we will discuss, in more detail, the biological motivations and

analytical considerations for the multi-channel filtering approach, and survey existing

multi-channel filtering techniques for texture analysis.



10

1.4 Texture Analysis Tasks

Textural cues are essential for basic image analysis tasks such as image classification

and segmentation. In texture classification, the entire image is assigned to one of

several known categories, on the basis of its textural properties. A statistical approach

is often used to represent each image by a feature vector containing various texture

measures computed over the entire image. Texture segmentation, on the other hand,

involves identifying regions with “uniform” textures in a given image. Appropriate

measures of texture are needed in order to decide whether a given region has uniform

texture. Sklansky [85] has suggested the following definition of texture which is

appropriate in the segmentation context. “A region in an image has a constant

texture if a set of local statistics or other local properties of the picture are constant,

slowly varying, or approximately periodic.” Texture segmentation, therefore, has

both local and global connotations —— it involves detecting invariance of certain local

measures or properties over an image region.

Compared to texture classification, texture segmentation is a much more difficult

problem. In texture segmentation the number of texture categories that are present in

an image and the information about the size, shape, and number of textured regions

often are not known a priori. In fact, some texture segmentation problems have more

than one possible solution, and determining the “correct” segmentation depends on

the goal of the analysis and may require additional knowledge of the scene. Texture

segmentation may be achieved in one of two ways. A region-based segmentation is

obtained by identifying regions with homogeneous textures. This is usually done by

computing texture measures for each pixel (or block of pixels) and assigning pixels

with similar measures to the same texture category. An edge-based segmentation, on

the other hand, is obtained by detecting the boundaries between the textures.

In addition to image classification and segmentation, gradients of texture prim-

itives — density gradient, area gradient, and aspect-ratio gradient —— can be used to

estimate the orientation of a surface patch in the scene. That is, to extract three-

dimensional information from a two-dimensional image. This so called problem of

shape-from-texture is a difficult and challenging problem, because it requires that

both texture and the change (gradient) in texture be characterized simultaneously.

In a recent paper, Blostein and Ahuja [4] review the problem of shape-from-texture
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and propose a new technique that integrates extraction of texture elements with esti-

mation of surface orientation. Coggins and Jain [21] have explored the effect of texture

gradients on texture measures obtained using a multi-channel filtering technique.

1.5 Outline of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we discuss

biological motivations and analytical considerations for a multi-channel filtering ap-

proach to texture analysis, and survey the existing techniques. Chapter 3, describes

the main components of our proposed texture segmentation algorithm. The choice of

filter parameters, filter selection, computation of texture features, and the procedure

used to integrate the feature images are described. We report both unsupervised and

supervised texture segmentation experiments. In Chapter 4, we combine our region-

based texture segmentation technique with an edge-based segmentation technique

to eliminate the need for knowing the exact number of texture categories. Auto-

mated visual inspection of metallic finish texture is described in Chapter 5. Finally,

in Chapter 6, we summarize the results and contributions of the thesis and discuss

future research directions.



Chapter 2

Multi—Channel Filtering

2.1 Biological Motivations

In psychophysim, early attempts to model the human visual system focused on its

overall input/output characteristics [62, Sec. 4.3]. To measure its “transfer function”,

for example, sinusoidal (sine—wave) gratings with different spatial-frequencies were

used as visual stimuli1 (Figure 2.1). Optical systems are often characterized by their

modulation transfer function (MTF), which is determined by comparing some quan-

titative measurement of the input with that of the output. For sinusoidal gratings, a

common measure is contrast, C, which is defined by

C = [max — 1min

[max + 1min ’

where I...“ and 1min, respectively, are the maximum and minimum intensities of the

grating. Thus, one way to define the MTF of the human visual system is

output contrast
 H(u) =

input contrast °

Unfortunately, it is not possible to measure the output contrast! The practical alter—

native is to use a psychological measurement known as contrast sensitivity. Experi-

mentally, the contrast sensitivity is measured as follows [62]. The subject views the

stationary sinusoidal gratings on a display which allows him/her to vary the contrast

without changing the average intensity. For each frequency u, the threshold con—

trast C¢(u) necessary to barely distinguish the grating from a uniform illumination is

measured. The contrast sensitivity function (CSF) is then defined as:

1

CSF(u) =m

Figure 2.2 shows a typical CSF. Clearly, the CSF is an oversimplified, “black box”

representation of the human visual system. Nonetheless, it serves as a useful qual-

itative measure of the sensitivity of the human visual system to visual patterns of

 

lSpatial-frequencies are commonly given in cycles per degree of visual angle, although cycles per

centimeter of test pattern or cycles per millimeter on the retina may be used.
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Figure 2.1: An example of sinusoidal Figure 2.2: A typical contrast sensitiv-

gratings used as stimuli in the measure- ity function for the human visual sys-

ment of contrast sensitivity function. tem. (Redrawn from Campbell and Rob-

son [9].)

different frequencies.

The evidence for multiple ‘channels’, as opposed to a single channel, in the

human visual system comes from psychophysical as well as psychophysiological ex—

periments. Campbell and Robson [9] proposed that the visual system decomposes

the retinal image into a number of filtered images, each of which contains intensity

variations over a narrow range of frequency (size) and orientation. The psychophys-

ical experiments that suggested such a decomposition used various grating patterns

as stimuli and were based on adaptation techniques [9].

Other experiments verified the frequency and orientation tuning properties of

certain cells in the visual cortex of some mammals. De Valois et al. [28], for example,

recorded the response of simple cells in the visual cortex of the Macaque monkey to

sinusoidal gratings with diflerent frequencies and orientations. It was observed that

each cell responds to a narrow range of frequency and orientation only. Therefore, it

appears that there are mechanisms in the visual cortex of mammals that are ‘tuned’

to combinations of frequency and orientation in a narrow range. These mechanisms

are often referred to as ‘channels’ and are appropriately interpreted as band-pass

filters.

More recently, Beck et al. [2] reported psychophysical experiments on texture

segmentation using patterns containing squares with different gray levels or different
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colors. They conclude that the results of their experiments “support the argument

that the higher order processes in texture segregation have access to information

corresponding to the outputs of the spatial frequency channels”.

Earlier experiments aimed at characterizing the channels focused on measuring

the center frequencies and the frequency and orientation bandwidths of the channels.

Several functional characterizations of channels in the frequency domain evolved from

these experiments [38, 83]. More recent characterizations, however, have been largely

based on psychophysiological data. In particular, some filter characteristics have been

obtained by fitting band-limited functions to the receptive field profiles of simple cells

in the visual cortex of some mammals [25, 70, 95]. In signal processing and systems

theory terminology, a receptive field profile can be interpreted as the impulse response

of a cell.

2.2 Analytical Considerations

The significance of frequency (size) and orientation cues for analyzing textures moti-

vates the following view of the problem of texture analysis. Texture analysis, in the

early stages, relies on local frequency and orientation measurements.

Once we accept this view, the question becomes “how do we measure it?” For

simplicity, we present our analysis in one-dimensional space. The extension to two-

dimensions is usually straightforward since it can be viewed as one-dimensional fre-

quency estimation along different orientations. The l-D analysis, therefore, can read-

ily be extended to 2-D. Let s(x) be the 1-D textured “image”. To further facilitate

our analysis, let us assume that s(x) is continuous and may have infinite extent.

Fourier decomposition (transform) of s(x) provides one way to represent its

frequency content.

5(a) = [+00 s(x)e-J'~’m dx (2.1)

However, Fourier transform estimates the frequency globally. As seen in its definition,

each frequency is influenced by s(x) at all x values. That is, we can not tell the

location from which the frequencies come. For texture analysis tasks, such as texture

segmentation, we are interested in the frequency content in small regions around each

pixel. One way to localize the estimation of frequencies is to use a window Fourier
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transform, which is defined by

+00

Sw(u, C) = / s(x) w(x — C) e‘flm‘” dx , (2.2)

-00

where w(x) is a low-pass function. When w(x) is a Gaussian function, the window

Fourier transform is referred to as a Gabor transform [36]. The notion of localized

frequency measurement is closely related to combined space-frequency image repre-

sentations. Porat and Zeevi [79] have provided a thorough analysis of image repre-

sentation using Gabor elementary functions (GEF). Bovik [5] addresses optimality

criteria for channel filters, where each “narrow-band” filter is expressed as the prod-

uct of an equivalent low-pass filter with a complex sinusoidal plane wave. As a result,

the filtering operations are reminiscent of window Fourier transforms. Also, Reed

and Wechsler [80] use a different “spatial/spatial-frequency” representation, based

on Wigner distribution, to study the texture segmentation and clustering/grouping

problems.

The ability to localize frequency estimation comes at the expense of more com-

plexity. In particular, window Fourier transforms do not result in an orthogonal

decomposition of s(x). Computing such decompositions, therefore, is not straightfor-

ward [68]. Daugman [27] has proposed a neural network architecture for computing

optimal coefficients in arbitrary two-dimensional transforms.

It is well known in signal analysis that there is a trade-off between the effective

width of a localized signal (pulse) in the time domain and its bandwidth in the

frequency domain [45]. Signals with short durations in the time domain will have large

bandwidths in the frequency domain, and vice versa. The bandwidth and duration

of a signal can be defined in several different ways. However, the inverse relationship

between duration and bandwidth applies irrespective of these definitions [45, p. 40].

This inverse relationship implies a trade-off between spread or “uncertainty” of a

localized signal in the time and the frequency domains.

A similar trade-off applies to two-dimensional signals. The uncertainty principle

[26] relates the detection and localization performance of a filter. Texture analysis

tasks such as segmentation require simultaneous measurements both in the spatial

and the spatial—frequency domains. High resolution in the spatial-frequency domain is

desirable because it allows us to make finer distinctions among different textures. On

the other hand, accurate localization of texture boundaries requires high resolution

in the spatial domain.
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In a window Fourier transform, the effective width and bandwidth of the basis

functions are determined by the window function w(x). A Gaussian window function

minimizes the joint uncertainty in the time and the frequency domains [36]. Texture

analysis considerations, therefore, point to Gabor transform (decomposition) as the

ideal means of frequency estimation. In the context of texture segmentation, however,

smaller width for basis functions with higher spatial-frequencies will result in better

localization of the texture boundaries. This suggests that the widths of the basis

functions should be inversely proportional to their frequency. In other words, they

should have a constant bandwidth on the logarithmic scale. When this is the case,

the window Fourier transform becomes a wavelet transform [67, 68] defined as follows.

Sw(u, C) = [:0 s(x) fiw(u (x - C)) e’fl’mx dx. (2.3)

In Chapter 3, we pr0pose a texture segmentation algorithm that models the ‘channels’

by a set of two-dimensional Gabor filters. It will be shown that the filters constitute

an approximate orthogonal basis for a wavelet transform, with the Gabor function as

the wavelet.

2.3 Existing Techniques

The main issues involved in the multi-channel filtering approach to texture analysis

in general, and texture segmentation in particular, are:

1. functional characterization of the channels and the number of channels,

2. extraction of appropriate texture features from the filtered images,

3. the relationship between channels (dependent vs. independent),

4. integration of texture features from different channels to produce a segmenta-

tion, and

5. segmentation method (region-based vs. edge-based).

Different multi-channel filtering techniques that are proposed in the literature vary

in their approach to one or more of the above issues.

In this section, we survey existing multi-channel filtering techniques. Our em-

phasis is on various characterizations of the ‘channels’ and on texture segmentation
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algorithms. The background developed in this chapter will set the stage for present-

ing our proposed texture segmentation algorithm in Chapter 3, which uses a bank

of Gabor filters. In Chapter 5, we use isotropic frequency-selective filters [19, 20]

to analyze textural appearance of metallic finishes. Gabor filters and the isotropic

frequency-selective filters are both described in this section.

Earlier multi-channel filtering techniques used the spatial-frequency domain

characterization of the channels based on psychophysical and psychophysiological

data. Faugeras [33] used the spatial-frequency domain characterization of the chan-

nels by Sakrison [83], which consisted of bandpass filters with both frequency- and

orientation-selective properties. The modulation transfer function2 (MTF) of these

filters, in polar coordinates, is given by

H(f30) = Hr(f) Ha(6), (24)

where

”rm = {Li—fit“,

110(0) = exp{_%w}+ex
p{__1_(9—00

—7r)2},

 

b 2 b

f0 and 00 determine the center radial frequency and orientation of the filter. w and

b, on the other hand, determine the radial and angular bandwidths, respectively.

Faugeras computed the texture features by taking the sixth-order norm of the

pixel values in a filtered image and then averaged them over the entire image. He

chose the sixth-order norm because it contains “information about the phase” in the

input image, and because it offers a good compromise between too much averaging of

details (corresponding to the Euclidean norm) and the ability to detect isolated noise

spikes (corresponding to the infinity norm). Faugeras used a total of 27 filters - three

radial frequencies and nine orientations. He showed the potential of these features by

constructing texture classification experiments, but he did not give any algorithm for

texture segmentation.

Coggins [19] used a different set of filters that are also specified in the spatial-

frequency domain. Each filter has either frequency-selective or orientation-selective

 

2The modulation transfer function of a filter specifies the amount by which it modulates the

magnitude of each frequency component of the input image.
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property only. The MTFs of the frequency-selective filters are given by

‘f 2 2_ 2

H(u,v)=exp{—%(ln u +1; In“) }
0'1

 

(”i”) # (070) a (2'5)

where p is the center radial frequency and 01 determines the bandwidth of the filter.

Note that these filters are defined on a logarithmic scale. The MTFs of the orientation-

selective filters, on the other hand, are given by

H(u.v) = exp{--;--4$—)} (um) ¢ (0,0). (2.6)
02

where

. v v

A(u,v) : Min {Han-1(5) — a], | tan"1(;) — (a + W)]} .

Here, 0 5 tan“(-) < 1r, (1 (in radians) is the center orientation, and 02 determines

the orientation bandwidth of the filter. The value of MTFs at (u, v) = (0, 0), for both

types of filters, was set to 1. So the mean gray value of each filtered image was the

same as that of the input image.

The filter set used by Coggins [19] and Coggins and Jain [20] contained four

orientation-selective filters tuned to 0°, 45°, 90°, and 135°. The number of frequency-

selective filters in the filter set depended on the size of the image array. For a 128 x

128 image array, for example, they used six frequency-selective filters with center

frequencies at 1, 2, 4, 8, 16, 32, and 64 cycles/image. Two examples of these filters

are shown in Figure 2.3. Coggins and Jain demonstrated the utility of these filters

for texture classification and segmentation. For texture classification, they use the

average absolute deviation (AAD) from the mean gray value of each filtered image as

texture features. The AAD feature for filtered image ok(x, y) is computed as follows:

1 N,- NC

N N Z Z |0k(a, b) .- gk it (27)

" C a=1 b=l

 

fk=

where N, and Nc are the number of rows and columns of the image array, and g). is

the mean gray value of the filtered image3. Clearly, the number of texture features

used depends on the number of filters, since there is one AAD feature corresponding

to each filtered image.

 

3As pointed out earlier, the mean gray value (gt) of each filtered image is the same as that of

the input image.



        
   
  
  
            

 

M3s”on".i;;;;" n

33M$§¢ “0";ghfihfi

1 0 0 0 0 0 \\\\\\\\\\Q?‘0......0:0,,”II/III,”If,I

l , '1 [[1135]\\\\\\ ”3""(I{I’ll/I,:1 \\\\\\\\\

,nIf’ III "" 34'"‘4.. ".3:“‘\\\\§\\‘\\\‘:‘\.

,flfllgl

   
'Il'o'oon

"00.00;."

ll"?”:0. ”z”.

0 00000

N\\\\

:9‘z‘“\‘\s\i

ozozozzzg‘n‘3

   

 

25111,,I’ll::Iz

2,?

51

1 00000

 

(b)

Flgure 2 3 Examples of spatial filters used by Coggins and Jain [20]. The origin

(u,v) = (0,0) is at (r, c) = (32, 32). (a) A frequency-selective filter tuned to radial

frequency of 16 cycles/image. (b) An orientation-selective filter tuned to 0°
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Coggins and Jain use the AAD features also in their texture segmentation algo-

rithm. However, instead of averaging over the entire image array, the AAD feature

is computed over small overlapping windows around each pixel and is assigned to

the center pixel. This local averaging process results in one ‘feature image’, ek(.r, y),

corresponding to each filtered image, ok(x,y). That is,

ek(~'v,y) = ri— Z I ok(a,b) — a I. (2.8)
(0.5)6Wzy

where WW is an M x M window centered at location (x,y). The collection of feature

images, therefore, defines one feature vector (pattern) for each pixel in the original

image. The following two-step procedure is used to obtain a segmentation. First, a

pattern clustering algorithm is used to group a small subset of these patterns into a

given number of clusters, and a generic label is assigned to patterns in each cluster.

These labeled patterns are then used as ‘training patterns’ to classify all patterns

(pixels). Coggins [19] and Coggins and Jain [20] successfully applied this algorithm

to segment images containing natural as well as artificial textures. Jain [48] demon-

strated the ability of the algorithm to segment images that contained artificially

generated texture pairs with identical second- and third-order statistics.

More recently, a number of texture segmentation algorithms have been pro-

posed that use two-dimensional Gabor filters. A Gabor function consists of a sinu-

soidal plane wave of some frequency and orientation, modulated by a two-dimensional

Gaussian envelope. A “canonical” Gabor filter in the spatial domain is given by

1 x2 31’ .
h(x,y) = exp ——§- :5 + :2- cos(27ruox + (15) , (2.9)

r y

where uo and 43 are the frequency and phase of the sinusoidal plane wave along

the x-axis (i.e. the 0° orientation), and at and 0,, are the space constants of the

Gaussian envelope along the x- and y-axis, respectively. A Gabor filter with arbitrary

orientation, 00, can be obtained via a rigid rotation of the x-y coordinate system.

These two-dimensional functions have been shown to be good fits to the receptive

field profiles of simple cells in the striate cortex [70, 25].

As a spatial filter, we are interested in the frequency- and orientation-selective

properties of a Gabor filter. These properties are more explicit in the frequency

domain representation of a Gabor filter. With 43 == 0, the Fourier transform of the
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Gabor function in (2.9) is real-valued and is given by

2 2 2 2

11...): A (“d-é l—‘"5") +331} +exp{-% l—‘“°’ +317“),
(2.10)

where 0,, = 1/27roz, 0,, = 1/21roy, and A = 27roxay. Figure 2.4 shows an even—

symmetric Gabor filter and its MTF, in a 64 X 64 array.

An important property of Gabor filters is that they simultaneously achieve op-

timal joint localization, and hence resolution, in both the spatial domain and the

spatial-frequency domain. Gabor [36] showed that one-dimensional Gabor functions

uniquely achieve the lower bound of the uncertainty relationship Ax Au 2 1/47r,

where Ax and Au are the effective width and bandwidth of the signal in the one-

dimensional spatial domain and the spatial-frequency domain, respectively (measured

by the square root of the variance of the energy functions). Daugman [26] extended

this result to two-dimensional Gabor functions, by showing that they uniquely achieve

the lower bounds in the uncertainty relationships Ax Au 2 1/47r and Ag Av Z 1/47r.

Here, Ax and Ag are the eflective widths in the spatial domain, and Au and Av

are the bandwidths in the spatial-frequency domain. Texture analysis tasks such as

segmentation require simultaneous measurements both in the spatial and the spatial-

frequency domains. The above optimum property suggests that the Gabor filter is

an ideal “tool” for analyzing textures. (See Section 2.2.)

Turner [90] used a set of Gabor filters and demonstrated their potential for

texture discrimination. The filters had four different frequencies, four orientations,

and two quadrature phase pairs for each combination of frequency and orientation ~—

a total of 32 filters. The filters were generated in the spatial domain. The spatial

extent of all the filters was the same — they all had identical, circularly symmetric,

Gaussian envelopes. The coefficients of each filter function were adjusted so that the

mean gray value of each filtered image was zero. The input image was convolved by

each filter function to obtain 32 filtered images. For computational efficiency, the

convolution results were computed every 16"h pixel in a row or column only, with the

result being assigned to all the pixels in a 16 x 16 block.

For a given frequency and orientation, the filtered images om (x, y) and ok,2(x, y),

corresponding to a pair of filters with quadrature phase relationship, were combined

to obtain a “phase insensitive” response, ok(x,y):

0mg) = [(0r,1(x.y))’ +(o.,,(.,y))2]1/2 (2.11)
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Figure 2.4: (a) An even-symmetric Gabor filter in the spatial domain. The ra-

dial frequency and orientation are 8 cycles/image-width and 0°, respectively. (b)

Corresponding MTF. The origin is at (r,c) = (32,32).
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This combination of pairs of filtered images transformed the initial 32 filtered images

into 16 ‘response images’. In order to demonstrate the effectiveness of the Gabor

filters in texture discrimination, Turner summed up these response images to obtain

a single response image. A difference in the mean values of this ‘total response’

in different texture regions was taken as evidence of discrimination. In some cases,

however, the difference in the mean values could only be revealed by adding a subset

of response images rather than all of them.

By summing up the response images, Turner was actually performing a very

crude feature extraction. However, adding the components of two feature vectors

may result in similar values, even though individual components are very different.

Turner’s scheme falls short of producing a segmentation; it only demonstrates the po-

tential of Gabor filters to obtain features that are capable of discriminating textures.

The texture segmentation algorithm proposed by Bovik and his co—investigators

[6, 18] also uses Gabor filters. Like Turner [90], these authors also combine pairs of

filtered images corresponding to filters with quadrature phase relationship. A more

compact filter representation is used, however, where each filter pair is treated as a

single complex Gabor filter. The real part of each complex filter is an even-symmetric

Gabor filter (i.e., a5 = 0) and the imaginary part is an odd-symmetric Gabor filter

(i.e., 43 = 1r/2). By linearity, the real and imaginary parts of each filtered image are

responses to a pair of (real) Gabor filters with quadrature phase relationship.

Bovik et al. also combine the responses to each pair of filters (i.e., the real

and imaginary parts of the response to a complex filter) to obtain a single response.

Instead of using the Euclidean norm, however, they use the sum of absolute values.

That is,

0143,31) =| 0k.1(~’v,y) I + 10k.2($»3/) | (2-12)

These responses are then smoothed by a Gaussian weighted window “to counteract

the effects of leakage and noise”. The spread or space constant of this Gaussian

filter is chosen to be slightly wider than the spread of the Gaussian envelope of the

corresponding Gabor filter. This smoothing operation, however, can be interpreted

as computing a measure of local energy using a weighted averaging window. We will,

therefore, refer to these smoothed response images as feature images.

In their segmentation examples, Bovik et al. apply a peak-finding algorithm to

the power spectrum of the image in order to determine the center frequencies of the

appropriate Gabor filters. In addition, a “limited amount of human intervention” is
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used in determining the parameters of the Gabor filters. For example, for strongly

oriented textures, the most significant spectral peak along the orientation direction

is used. For periodic textures, on the other hand, the lower fundamental frequency is

chosen.

The segmentation algorithm of Bovik et al. is based on the assumption that

each texture has a distinct narrow range of frequencies, which is not present in other

texture categories. The algorithm produces a region-based segmentation by labeling

each pixel with the index of the complex Gabor filter which has the maximum response

at that pixel. Using the indices of the filters as labels implies that the number of

texture categories is constrained by the number of complex Gabor filters that are used.

(If k filters are used then [C labels are possible.) The algorithm, therefore, requires

knowing the true number of texture categories, as well as their distinct narrow ranges

of frequencies.

Tan and Constantinides [87] have used Gabor filters with quadrature phase rela-

tionship for texture classification and segmentation. Like Turner [90] they use (2.11)

to obtain the response in each channel. For texture classification, a fixed set of Gabor

filters tuned to one of four radial frequencies and one of four orientations is used.

The mean and the standard deviation in each response image is used as texture fea-

tures. For texture segmentation, on the other hand, the number of Gabor filters and

their center frequencies are determined by identifying spectral peaks in the spatial-

frequency domain. An edge-based segmentation is then obtained by “intensity gradi-

ent calculation” in each channel followed by “channel grouping”, “thresholding” and

“edge thinning”. The paper [87] does not give the details of these stages. However,

“channel grouping” appears to involve adding the responses of a gradient operator

in different channels. The edge-based segmentation is obtained by thresholding this

‘total’ gradient response and thinning the resulting binary image.

Another texture segmentation algorithm that uses a set of Gabor filters is pro-

posed by Perry and Lowe [77]. The filters have three frequencies (or scales, to use

their terminology) corresponding to periods of l, 2, and 4 pixels; eight orientations:

0, 30, 45, 60, 90, 120, 135, and 150 degrees; and two phases: 0, and 90 degrees. A

procedure similar to that of Bovik et al. is used to obtain a set of feature images.

Instead of using the feature vectors that are defined by these responses, however, they

define two new feature vectors, based on the original feature vector, in an attempt to

obtain a “more compact representation”.
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The first new feature vector is obtained as follows. First, the sum of all filter

responses for all orientations are determined for each scale (frequency). The scale

with the largest sum value is designated as “max scale”. The responses of orientation

filters with “max scale” and the “max scale” value itself form the first new feature

vector. The other new feature vector is “a more compact version” of the first new

feature vector and again emphasizes the orientation features. We must note that

these new feature vectors are computed at “grid points” that are few pixels apart

and, therefore, represent small blocks of pixels. The typical size of the blocks is 8 x 8.

A distance measure is defined for neighboring grid points by comparing their

feature vectors“ . An iterative procedure is then used to obtain a segmentation as

follows. The procedure begins by detecting “seed regions” using an initial threshold on

distance. Each seed region is then represented by the mean vector of its components.

A small threshold value is used in the beginning, which, as expected, results in over-

splitting of less uniform regions. In subsequent iterations, however, the threshold

values are allowed to increase depending on a measure of uniformity of each region.

This relaxation of threshold value allows the algorithm to recover from possible over-

fragmentation. The procedure is stopped after a prespecified number of iterations

(about 20). The authors give only three segmentation examples, but do not discuss

the effect of different threshold values.

Malik and Perona [65, 66] have proposed a texture segmentation algorithm that

also uses a bank of linear filters. As the functional form for the filters (channels),

Malik and Perona choose the Gaussian derivative model proposed by Young [95].

These functional forms are shown by Young to be good fits to cortical receptive

field profiles. Both radially symmetric difference of Gaussians (DOG) filters, and

directionally tuned difference of offset Gaussians (DOOG) filters are used. DOG

filters are assumed to model non-oriented simple cells, while DOOG filters model

bar-sensitive simple cells. Following the filtering operation each filtered image is half-

wave rectified to obtain a set of “neural” responses. These responses are smoothed

using spatial averaging. They also use a nonlinear inhibition stage to model the

“intracortical inhibition”. Texture boundaries are then detected by combining the

responses of the Canny edge detector [10] applied to the resulting images.

 

“We note that the authors use two different feature vectors at each grid point, which play different

roles in computing the distance between two grid points. However, for simplicity, we will refer to a

feature vector for each point.
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An important advantage of the multi-channel filtering approach, as seen in the

above examples, is that one can use simple statistics of gray values in the filtered

images as texture features. This simplicity is the direct result of decomposing the

original image into several filtered images with limited spectral information. In con-

trast, texture features that are based on the statistics of the gray-level distribution in

the given image, such as gray-level co-occurrence features [43], are usually very com-

plicated and also lack physical interpretation. As an example, consider an application

where rotation invariant texture features are needed. In the multi-channel filtering

approach, such features can be obtained using the isotropic frequency-selective filters

of Coggins and Jain [20]. (See Figure 2.3). Most other techniques for extracting

rotation invariant features, such as that proposed by Kashyap and Khotanzad [58]

which uses a “circular symmetric autoregressive model”, are less intuitive and require

more complicated operations.

2 .4 Summary

In this chapter, we discussed biological motivations as well as analytical considera-

tions for the multi-channel filtering approach to texture analysis. In texture analysis,

a decomposition of the textured image based on frequency (size) and orientation is

intuitively appealing, because size and orientation are strong properties of most natu-

ral and artificial textures. Furthermore, these properties are general enough to allow

discriminating a large number of textures.

We emphasized the interpretation of multi-channel filtering as localized fre-

quency estimation, and its relationship to combined space-frequency representations.

We also discussed the importance of joint localization in the space and spatial-

frequency domains, in the context of texture segmentation. Accurate localization

of the texture boundaries calls for using filters with smaller width at higher frequency

channels. Also, for a given width in the spatial domain, a two-dimensional Gabor

filter has the smallest possible bandwidth in the spatial-frequency domain. These

arguments favored a wavelet transform (decomposition) interpretation of the multi-

channel filtering operations, with the Gabor function as the wavelet.

We identified the main issues involved in the multi-channel filtering approach

to texture segmentation and presented a survey of the existing techniques. One

limitation of these techniques is the lack of a systematic method for determining
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appropriate filter parameters. Furthermore, only limited segmentation results have

been provided in the literature. Bovik et al. [6], for example, apply their segmentation

technique only to images containing at most two textures. In Chapter 3, we address

these limitations and propose a new multi—channel filtering technique that uses a bank

of even-symmetric Gabor filters to model the channels.



Chapter 3

Texture Segmentation Using

Gabor Filters

In this chapter, we present a multi-channel filtering technique for texture segmentation

that uses a bank of Gabor filters to characterize the channels. Figure 3.1 shows an

overview of the texture segmentation algorithm. The organization of this chapter is

as follows. The choice of the parameters of the Gabor filters in the initial filter set and

a systematic filter selection scheme are described in Section 3.1. In Section 3.2, we

describe how texture features are computed from filtered images. Section 3.3 describes

the process of integrating the feature images to obtain an unsupervised segmentation.

Supervised texture segmentation experiments using a feed-forward neural network

and several other classifiers are reported in Section 3.4. Section 3.5 concludes with a

summary and a general discussion.

3.1 Characterizing the Channels

In our texture segmentation algorithm, we represent the channels with a bank of two-

dimensional Gabor filters. The spatial and spatial—frequency domain representations

of a ‘canonical’ Gabor filter were given in (2.9) and (2.10). Psychophysical and

psychophysiological studies of biological visual systems have provided us with some

clues for appropriate bandwidth of the channels. However, the choice of the radial

frequencies and .the amount of overlap between the channels remains unclear. Like

Turner [90] and Perry and Lowe [77], we model the channels with a fixed set of Gabor

filters. However, our choice of filter parameters results in a filter set that preserves

almost all the information in the input image.

3.1.1 Choice of Filter Parameters

Our filter set consists of even-symmetric Gabor filters. In the spatial-frequency do-

main, these filters are completely specified by their MTF (see (2.10)). In addition to

28
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Figure 3.1: An overview of the texture segmentation algorithm.
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radial frequency and orientation, the frequency bandwidth B, and orientation band-

width B9 of a spatial filter are also of interest. For the Gabor filter defined by (2.10),

the half-peak magnitude bandwidths are given by

 

 

_ 110 + (2111 2)1/2O'u

B, — log2 (U0 _ (21n2)1/2au ,and (3.1)

1/2

B9 = 2 tan"1 (am?) a”) , (3.2)
o

where B, is in octaves and B9 is in degrees. (The frequency bandwidth, in octaves,

from frequency f1 to frequency f2 is given by log2(f2/f1).)

We implement each even-symmetric Gabor filter by direct sampling of the MTF

in (2.10). Details of the implementation are provided in Appendix A. We use four

values of orientation 00: 0°, 45°, 90°, and 135°. For an image array with a width of

Nc pixels, where Nc is a power of 2, the following values of radial frequency uo are

used:

Ni, 2J5, N5, m, and (NC/4)\/2 cycles/image-width

Note that the radial frequencies are 1 octave apart. The above choice of radial fre-

quencies guarantees that the passband of the filter with the highest radial frequency,

viz. (NC/4)\/2 cycles/image-width, falls inside the image arrayl. We let the orienta-

tion and frequency bandwidths of each filter be 45° and 1 octave, respectively. Several

experiments have shown that the frequency bandwidth of simple cells in the visual

cortex is about 1 octave [78]. Figure 3.2 shows the filter set used for segmenting

256 X 256 images.

Psychophysical experiments show that the resolution of the orientation tuning

ability of the human visual system is as high as 5°. Therefore, in general, finer

quantization of orientation will be needed. The restriction to four orientations is

made for computational efficiency in the current implementation of the algorithm,

and is sufficient for discriminating many textures. The total number of Gabor filters

in the filter set is given by 4 log2(Nc/2). For an image with 256 columns, for example,

a total of 28 filters can be used — 4 orientations and 7 radial frequencies. For some

textures, however, filters with low radial frequencies (e.g., lx/2 and 2J2 cycles/image-

width) are not very useful, because these filters capture spatial variations that are

 

1In psychophysics, frequencies are expressed in cycles per degree of visual angle subtended on

the eye. The frequencies in cycles/image-width can be converted to cycles/degree if the width of

the image in degrees of visual angle is known.
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Figure 3.2: The filter set in the spatial-frequency domain (256 X 256). There are a

total of 28 Gabor filters. Only the half-peak support of the filters is shown.

too large to explain textural variations in an image. Therefore, we do not use these

filters, in the texture segmentation experiments.

In order to assure that the filters do not respond to regions with constant in-

tensity, we have set the MTF of each filter at (u, v) = (0,0) to zero. As a result each

filtered image has a mean of zero. Furthermore, the FFT algorithm that is used to

perform the convolutions requires that the dimensions of the input image be powers

of two. When this requirement is not met, the input image can be padded by zeros

to obtain a rectangular image with appropriate dimensions.

The set of filters used in the algorithm results in nearly uniform coverage of

the spatial-frequency domain (Figure 3.2). A decomposition obtained by the filter

set is nearly orthogonal, as the amount of overlap between the filters (in the spatial-

frequency domain) is small. One way to demonstrate this property is through recon-

struction of an image from the filtered images. Figure 3.3 shows two 128 X 128 images

and their reconstructed versions. The original images are shown in the top row. The

reconstructed images, obtained by adding all 24 filtered images are in the bottom

row. After adding all the filtered images, the gray values were linearly mapped to

0 — 255 interval.

From a signal analysis point of view, our filter set constitutes an approximate
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Figure 3.3: Examples demonstrating the advantage of nearly uniform coverage

of the spatial-frequency domain by the filter set. (a) ‘Wood grain’ (D68) from

the Brodatz album [7]. (b) ‘Mandrill’. Top row: original images. Bottom row:

reconstructed images. Both images are 128 X 128.
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orthogonal basis for a wavelet transform, with the Gabor function as the wavelet.

(See Section 2.2.) Intuitively, a wavelet transform can be interpreted as a band-

pass filtering operation on the input image. The Gabor function is an admissible

wavelet; however, it does not result in an orthogonal decomposition. This means

that a wavelet transform based on the Gabor wavelet is redundant [67]. The filtering

operations using the filter set can be interpreted as computing the wavelet transform

of the input image at selected spatial-frequencies (frequency and orientation pairs).

The ability to reconstruct good approximations of the input image from the filtered

images demonstrates that the filter set forms an almost complete basis for the wavelet

transform.

Figure 3.4 shows examples of filtered images for an image containing ‘straw

matting’ (D55) and ‘wood grain’ (D68) textures from the photographic album of

textures by Brodatz [7]. To maximize visibility, each filtered image has been scaled

to full contrast. (Note that this scaling does not affect the relative differences in the

strength of the responses in different regions.) The ability of the filters to exploit

differences in frequency (size) and orientation in the two textures is evident in these

images. The differences in the strength of the responses in regions with different

textures is the key to the multi-channel approach to texture analysis.

3. 1 .2 Filter Selection

We now describe a systematic filter selection scheme which is based on an intuitive

least squares error criterion. Using only a subset of the filtered images can reduce the

computational burden at later stages, because this directly translates into a reduction

in the number of texture features.

Let s(x,y) be the reconstruction of the input image obtained by adding all the

filtered images. (We have demonstrated that s(x,y) is a good approximation of the

original input image.) Let §(x,y) be the partial reconstruction of s(x,y), obtained

by adding a subset A of filtered images. That is,

§(x,y) = 2 new), (3.3)

16.4

where rJ-(x,y) is the jth filtered image. The error involved in using §(x,y) instead of
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(h) 0)

Figure 3.4: Examples of filtered images for the ‘D55-D68’ texture pair (128 X

256). (a) Input image. (b—e) Filtered images corresponding to Gabor filters tuned

to 16 J2 cycles/image-width. (f—i) Filtered images corresponding to Gabor filters

tuned to 32 J2 cycles/image-width. All four orientations — 0°,45°,90°, and 135°

—— for each frequency are shown.
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s(x, y) can be measured by

SSE = Z [s(x,y) — s(x,y)]2 . (3.4)

any

The fraction of intensity variations in s(x,y) that is explained by §(x,y) can be

measured by the coeflicient of determination2 (COD)

SSE
2 — _—

R — 1 SSTOT’ (3.5)

where

SSTOT = Z [s(x,y)]z. (3.6)

12.3:

Note that s(x, y) has a mean of zero, since the mean gray value of each filtered image

is zero.

The motivation behind the filter selection scheme is to use only a subset of

filtered images that together explain a “significant” portion of the intensity variations

in s(x,y). We determine the “best” subset of the filtered images (filters) by the

following sequential forward selection procedure [30]:

1. Select the filtered image that best approximates s(x, y), i.e. results in the highest

R2 value.

2. Select the next filtered image that together with previously selected filtered

image(s) best approximate s(x,y).

3. Repeat Step 2 until R2 Z 0.95.

Since adding all filtered images gives s(x, y), the value of B2 when all filters are used

is 1.0. A minimum value of 0.95 for R2 means that we will use only as many filtered

images as necessary to account for at least 95% of the intensity variations in s(x, y).

Note that the above sequential forward selection scheme is not optimal. Determining

the best subsets of filtered images requires examination of all possible subsets of all

possible sizes. An exhaustive search, however, is computationally prohibitive.

An important point to bear in mind is that the least squares error criterion

in (3.5) only reflects convergence in the mean of s(x,y) and §(x,y). A large R2

value, therefore, does not necessarily guarantee a good fit at every point. If there

are texture categories in the input image that occupy very small portions of the

 

2The terminology used here is borrowed from linear regression analysis.
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image, it is recommended that a larger minimum value for R2 (e.g., 0.99) be used.

Figure 3.5 illustrates the filter selection results for the ‘D55-D68’ texture pair shown

in Figure 3.4(a). Based on the forward selection procedure, only 13 filters, out of a

total of 20, explain more than 95% of the intensity variations.

Approximate Method

Again, let rj(x,y) be the jth filtered image, and R,-(u,v) be its discrete Fourier

transform (DFT). The amount of overlap between the MTFs of the Gabor filters in

the filter set is small. (See Figure 3.2.) Therefore, the total energy E in s(x, y) can

be approximated by

E "at: Z Ej, (3.7)

i=1

where

Ej = 2 [13(1), 31)]2 = Z IRJ-(u,v)|2. (3'8)

and n is the total number of filters (typically 20). Now, it is easily verified that for

any subset A of filtered images,

2 '6A E '
R2 z -’—-—i. 3.9E ( )

An approximate filter selection then consist of computing E,- for j = 1, - - - ,n. These

energies can be computed in the Fourier domain, hence avoiding unnecessary inverse

DFTs. We then sort the filters (channels) based on their energy and pick as many

filters as needed to achieve R2 Z 0.95. Computationally, this procedure is much

more efficient than the sequential forward selection procedure described before. The

inclusion of filters (channels) with higher energy is intuitively appealing. On the

other hand, if an input image does not contain frequency components that fall in the

passband of a Gabor filter, then that filter will not be very useful for discriminating

the textures in the image.

3.2 Computing Feature Images

An important goal of the research in texture analysis is to develop a set of texture

measures (features) that can successfully discriminate arbitrary textures. Here, we
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Figure 3.5: (a) Filter selection by reconstruction for the ‘D55—D68’ texture pair.

Note that 13 filters alone, out of a total of 20, account for at least 95% of inten-

sity variations in the original textured image. (b) Filter selection by approximate

method. This method calls for using 15 filters, which include the 13 filters in (a).
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present one such set which captures the attributes of “blobs” detected in the Gabor

filtered images.

Psychophysical studies of texture perception suggest that preattentive texture

discrimination may be explained by differences in the attributes of a few conspicu-

ous local features, called textons [55]. Some features identified as textons include

elongated blobs (e.g., rectangles, ellipses, line segments) with specific colors, angular

orientations, widths, and lengths; line segment terminators (end-of-lines); and line

segment crossings. Julesz and his co-investigators [54, 55] demonstrate the ability

of textons to predict and to explain texture discrimination in numerous artificially

generated texture pairs. The main criticism of the texton theory has been that it does

not describe how textons are extracted from natural (grayscale) textured images.

Voorhees and Poggio [93] have proposed an algorithm for extracting blob textons

from grayscale images by using a Laplacian of Gaussian (LOG) operator followed by

thresholding at a small positive value and using morphological operations. Differences

in the statistical distribution of attributes of the blobs, such as contrast, orientation,

width, length, area, and area density, in small windows are then used to detect texture

boundaries. Tuceryan and Jain [89] have used a similar approach to extract texture

primitives that they call “tokens”. Voorhees and Poggio contend that line segment

crossings and terminators are not textons, and that texture discrimination can be

explained using blob textons only. As recognized by the authors, their segmentation

algorithm does not address the problem of determining the appropriate scale(s) for

detecting the blobs. As we will see, the multi-resolution nature of our segmentation

algorithm offers one possible solution to this problem. Furthermore, the computation

of texture features in our approach does not require extraction of explicit texture

primitives such as textons or tokens.

Several investigators have speculated on the possible relationship between Gabor

filters and texton detection [18, 90]. However, no clear procedure has been set forth

that describes how Gabor filters act as texton detectors or how texton attributes

are captured by them. Our feature extraction scheme, which involves a nonlinear

stage, provides a more clear explanation of the purported role of Gabor filters as blob

detectors. Some of the experiments (see Section 3.3.3) support the position taken by

Voorhees and Poggio [93] that differences in the attributes of blob textons alone can

explain texture discrimination.

We use the following procedure to compute features from each filtered image.
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First, each filtered image is subjected to a nonlinear transformation. Specifically, we

use the following bounded nonlinearity

1_ e—2at

where a is a constant. This nonlinearity is similar to the sigmoidal activation function

’t/J(t) = tanh(a t) = (3.10)

used in artificial neural networks [63]. In our experiments, we have used an empirical

value of a = 0.25 which results in a rapidly saturating, threshold-like transformation.

As a result, the application of the nonlinearity transforms the sinusoidal modulations

in the filtered images to square modulations and, therefore, can be interpreted as

a blob detector. However, the detected blobs are not binary, and unlike the blobs

detected by Voorhees and Poggio [93] they are not necessarily isolated from each

other. Also, since each filtered image has a zero mean and the nonlinearity in (3.10)

is odd-symmetric, both dark and light blobs are detected.

Instead of identifying individual blobs and then measuring their attributes, we

capture their attributes by computing the average absolute deviation (AAD) from

the mean value in a small window around each pixel in the ‘response images’ (at the

output of nonlinear stages). This is similar to the ‘texture energy’ measure that was

first proposed by Laws [61]. Formally, the feature image €j($, y) corresponding to the

filtered image rj(x,y) is given by

e.(m.y) = ri— 2: |¢(rj(a.b))l. (3.11)
(a,b)eW,,

where M) is the nonlinear function in (3.10) and ny is an M X M window centered

at the pixel with coordinates (x,y).

The size, M, of the averaging window in (3.11) is an important parameter. More

reliable measurement of texture features calls for larger window sizes. On the other

hand, more accurate localization of region boundaries calls for smaller windows. This

is because averaging blurs the boundaries between textured regions. Furthermore,

using Gaussian weighted windows, rather than unweighted windows, will minimize

distortions due to the Gibbs phenomenon. Gaussian-weighted windows are also likely

to result in more accurate localization of texture boundaries. Therefore, for each

filtered image we use a Gaussian window whose space constant a is proportional to

the average size of the intensity variations in the image. For a Gabor filter with center

radial frequency uo this average size is given by

T = Nc/uo pixels, (3.12)
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where Nc is the width (number of columns) of the image.

We found a = 0.5J2T to be appropriate in most of the segmentation experi-

ments. Note that although we use different window sizes for different filtered images,

they are all specified by a single parameter — the proportionality constant. When

computing the texture features for pixels near the image boundary we assume that

the image is extended by its mirror image — often referred to as even reflection

boundary condition [22]. Figure 3.6 shows feature images corresponding to filtered

images shown in Figure 3.4.
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(h) (I)

Figure 3.6: Feature images corresponding to filtered images in Figure 3.4. A a =

0.5J2T was used for the Gaussian averaging windows.
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3.3 Unsupervised Texture Segmentation

Having obtained the feature images, the main question is how to integrate features

corresponding to different filters to produce a segmentation. Let’s assume that there

are K texture categories, Cl, . . .,CK, present in the image. If our texture features

are capable of discriminating these categories then the patterns belonging to each

category will form a cluster in the feature space which is “compact” and “isolated”

from clusters corresponding to other texture categories. Pattern clustering algorithms

are ideal vehicles for recovering such clusters in the feature space.

A segmentation algorithm based on clustering pixels using their associated fea-

ture vectors alone suffers from an important shortcoming — it does not utilize the

spatial (contextual) information. In texture segmentation, neighboring pixels are very

likely to belong to the same texture category. One possible approach to incorporate

this contextual information is to use a relaxation labeling technique. That is, first

obtain an initial labeling by clustering patterns in the feature space, and then enforce

the spatial constraints using relaxation [47]. Instead, we propose a simple method

that incorporates the spatial adjacency information directly in the clustering process.

This is achieved by including the spatial coordinates of the pixels as two additional

features (see Figure 3.1). The spatial coordinates of pixels have been used by Hoffman

and Jain [46] for segmentation of range images. The inclusion of spatial coordinates in

the computation of the distance between feature vectors encourages neighboring pix-

els to cluster together. As a result, over-fragmentation of otherwise uniform texture

regions is avoided.

In our texture segmentation experiments we have used a square-error clustering

algorithm known as CLUSTER [49]. The algorithm iterates through two phases.

Phase 1 (the K-means pass) creates a sequence of clusterings containing 2, 3, - - - , km”

clusters, where km”. is specified by the user. Phase 2 (the forcing pass) then creates

another set of clusterings by merging existing clusters two at a time to see if a better

clustering can be obtained. After each pass through phase 1 and phase 2, the square

errors of the clusterings are compared with the square errors of the clusterings that

existed before that pass. (Each new clustering is compared with the old clustering

having the same number of clusters.) If any of the square errors are smaller than

before, another pass through phases 1 and 2 is initiated. This continues until the

square error cannot be decreased.
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3.3.1 How Many Categories?

Determining the number of texture categories that are present in an image is a difficult

problem. Relative indices provide a means of comparing clusterings with different

number of clusters and deciding which clustering is “best”. In our segmentation

algorithm we rely on the modified Hubert (MH) index, proposed by Dubes [32]. For

a given clustering, the MH index is computed as follows. Let L(i) be the label function

L(i) = I if pattern i is in cluster I,

and dM the Euclidean distance between cluster centers p and q. Define

YUJ) = dL(i),L(j)-

The (normalized) MH index is then given by:

l "'1 n . . . .

MH: “XIX: Z [X(i,])—m,][Y(z,J)—my] /3x3yv (3°13)

i=1 j=i+l

where X(i , J ) is the Euclidean distance between patterns i and j, n is the total number

of patterns, M = n(n ; 1)/2, and

1 n-l n 1 n—l n

m..- = — X(M) m =— YOU)

‘NIEETjEEEI y ‘A{i=ljg§;1

n—l n n-l n

s: = —Z 2 X203) —m: s:=—l-Zj Z Y’(i.j) —m.’,.
M i=1 j=i+l M i=1 j=i+l

The MH index is, therefore, the point serial correlation between the entries of X and

Y matrices. Unusually large values of MH suggest that corresponding entries in the

two matrices are close to each other. Intuitively, the cluster centers are assumed to be

the true representation of the texture categories, and any deviations from the centers

are assumed to be due to errors in measurements and distortions. Note that the MH

index will be 1 for the trivial clustering in which each pattern is an individual cluster

and is not defined for the clustering in which all patterns are in the same cluster.

The “true” number of texture categories is estimated as follows. First a se-

quence of clusterings is obtained using the CLUSTER algorithm. We assume km“

is known, or can be reliably estimated, and plot MH(k) for k = 2, - - - , km“. When

the data contain a strong clustering, MH(k) first increases and then levels off, and a

“significant” knee is formed at the true number of clusters. The following intuitive
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justification for this behavior is suggested by Dubes [32]. Suppose the true number

of clusters is lc". The clusterings with k > k" will then be formed by breaking the

true clusters into smaller ones. As a result, the correlation between the entries of

X and Y matrices will be high. The clusterings with k < lc" clusters, however, will

be formed by merging the true clusters, hence reducing the correlation. Therefore,

assuming that our texture features provide strong discrimination between different

texture categories, we should see a significant knee in the plot of MH(lc) at the true

value of lc.

A major difficulty with clustering indices is that it is hard to determine the

significance of an observed index. In our segmentation experiments, the significant

knee in the plot of the MH(k) is determined visually. When such a knee is hard

to identify, we will simply assume that the “true” number of texture categories is

known a priori. In Chapter 4, we will propose an alternative, integrated approach to

eliminate the need for knowing the true number of texture categories.

Some implementation details must be explained. Prior to clustering we normal-

ize each feature to have a mean of zero and a constant variance (2 10.0). When

used as additional features, the row and column coordinates are normalized in the

same way. (Feature images with very small variances (< 10“) are simply discarded.)

This normalization is intended to avoid domination of features with small numerical

ranges by those with larger ranges”. Clustering a large number of patterns becomes

computationally demanding. The following two-step grouping of pixels is, therefore,

adopted for computational efficiency. First, we cluster a small randomly selected sub-

set of patterns into a specified number of clusters. Patterns in each cluster are given

a generic category label that distinguishes them from those in other clusters. These

labeled patterns are then used as training patterns to classify patterns (pixels) in the

entire image using a minimum distance classifier.

3.3.2 Performance Evaluation

The lack of appropriate quantitative measures of the goodness of a segmentation

makes it very difficult to evaluate and compare different texture segmentation algo-

rithms. A simple criterion that is often used is the percentage of misclassified pixels.

 

3For a study of standardization strategies in cluster analysis, see the recent article by Milligan

and Cooper [73].
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This criterion, however, has certain disadvantages. For example, it often does not

reflect the ability of the algorithm to accurately locate the boundaries. By changing

the locations of misclassified pixels in the vicinity of a boundary we can make the

boundary “look” less (or more) accurate, and still have the same percentage of mis-

classified pixels. Despite such drawbacks, we use this simple criterion, because it is

the only general and practical criterion that is currently available.

3.3.3 Experimental Results

We now apply our texture segmentation algorithm to several images in order to

demonstrate its performance. These images are created by collaging subimages of

natural as well as artificial textures. We start with a total of 20 Gabor filters in

each case. Each filter is tuned to one of the four orientations and one of the five

highest radial frequencies. For an image with a width of 256 pixels, for example,

4J2, 8J2, 16J2, 32J2, and 64J2 cycles/image-width radial frequencies are used. We

then use our filter selection scheme to determine a subset of filtered images that

achieves an 1?.2 value of at least 0.95 (see Section 3.1.2).

The number of randomly selected feature vectors that are used as input to the

clustering program is proportional to the size of the input image. For a 256 X 256

image, for example, 4000 patterns are selected at random, which is about 6% of the

total number of patterns. This percentage is used in all the following experiments.

The segmentation results are displayed as gray-level images, where regions belonging

to different categories are shown with different gray levels.

Figure 3.7 shows the segmentation results for the ‘D55-D68’ texture pair. Only

13 Gabor filters (texture features) are used. As seen in the two-category segmenta-

tion, the two textures are successfully discriminated and the boundary between them

is detected quite accurately. The segmentation with pixel coordinates included as

additional features was essentially the same and is not shown here. The plot of the

modified Hubert index versus number of texture categories for this image is shown in

Figure 3.8. The curve levels off at k = 2, with MH(2) z 0.9 — strong evidence for

the two-category segmentation.

Figure 3.9(a) shows a 256 X 256 image (‘GMRF-4’) containing four Gaussian

Markov random field (GMRF) textures. These textures have been generated using

non-causal finite lattice GMRFs [14] and can not be discriminated on the basis of their
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Figure 3.7: (a) The ‘D55-D68’ texture Figure 3.8: The plot of the MH index ver-

pair. (b) Two-category segmentation ob- sus number of clusters (texture categories)

tained using a total of 13 Gabor filters. for the ‘D55—D68’ texture pair.

mean gray value. In Figure 3.9 we show the segmentation results for this image. The

difference between segmentations in Figures 3.9(b) and (c) shows the improvement

due to inclusion of pixel coordinates as additional features in the clustering algorithm.

The plot of MH(k) is shown in Figure 3.10. The curve levels off at k = 4, following

a “significant” knee. The high value of MH index at k = 4 (z 0.80) also strongly

supports the four-category segmentation.

Figure 3.11(a) shows another 256 X 256 image (‘Nat-5’) containing natural tex-

tures D77, D55, D84, D17, and D24 from the Brodatz album. Only 13 Gabor filters,

out of a total of 20, are used. The five-category segmentation of this image is shown

in Figure 3.11(b). As seen in Figure 3.12, the plot of MH(k) is not helpful for deciding

the true number categories.

Figures 3.13 and 3.14 summarize the segmentation results for a 512 X 512 image

(‘Nat-16’) containing sixteen natural textures, also from the Brodatz album. Again,

it is difficult, if not impossible, to decide the true number of texture categories using

the plot of MH(k). Nonetheless, assuming that we know the true number of texture

categories, we have shown the 16-category segmentation.
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(b) (C)

Figure 3.9: (a) A 256 x 256 image (‘GMRF-4’) containing four Gaussian Markov

random field textures. (b) Four-category segmentation obtained using a total of

11 Gabor filters. (c) Same as (b), but with pixel coordinates used as additional

features.
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Figure 3.10: The plot of the MH index versus number of texture categories for the

‘GMRF-4’ image shown in Figure 3.9(a).

The filter selection (with a threshold of 0.95 for R2) indicated that only 14 filtered

images are sufficient. However, the resulting segmentations were not very good. The

16-category segmentation in Figure 3.l3(b) is obtained using all 20 filtered images

(and the pixel coordinates). Compared to previous examples where each texture

category constituted about 1 /2 or 1/4 of the image, in this example each category

occupies only 1 /16 of the image. Recall that the fitting criterion in our filter selection

scheme is computed globally over the entire image. A larger threshold for B“ should,

therefore, be used if any texture category is expected to occupy only a small fraction

of the image.
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(b)

 

Figure 3.11: (a) A 256 x 256 image (‘Nat-5’) containing five natural textures (D77,

D55, D84, D17, and D24) from the Brodatz album. (b) Five-category segmentation

obtained using a total of 13 Gabor filters and the pixel coordinates.
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Figure 3.12: The plot of the MH index versus number of texture categories for the

‘Nat-5’ image shown in Figure 3.11(a).
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Figure 3.13: (a) A 512 x 512 image (‘Nat-16’) containing sixteen natural textures

(row 1: D29, D12, D17, D55; row 2: D32, D5, D84, D68; row 3: D77, D24, D9, D4;

row 4: D3, D33, D51, D54) from the Brodatz album (b) 16-category segmentation

obtained using a total of 20 Gabor filters and the pixel coordinates.
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Figure 3.14: The plot of the MH index versus number of texture categories for the

‘Nat-16’ image shown in Figure 3.13(a).

Figures 3.15 and 3.16 summarize the segmentation results for a number of tex-

t ure pair images that have been used in the psychophysical studies of texture percep-

tion. The two textures in the ‘L and +’ texture pair have identical power spectra.

The textures in the ‘Even-Odd’ texture pair [57] have identical third-order statistics.

(The ‘Even-Odd’ nomenclature comes from the fact that, in the two textures, any

2 X 2 neighborhood contains either an even or an odd number of black (or white)

pixels.) The textures in the ‘Triangle-Arrow’ and ‘S and 10’ texture pairs [57], on

the other hand, have identical second-order statistics. The ‘Even-Odd’ and ‘Triangle-

Arrow’ textures are two counter-examples to the original Julesz conjecture that tex-

ture pairs with identical second-order statistics cannot be preattentively discriminated

[56]. While the first three texture pairs in Figure 3.15 are easily discriminated, the

‘S and 10’ texture pair is not preattentively discriminable.

Compared to our previous examples, the observed values of the MH indices for

these artificially generated texture pairs are low (z 0.6). Moreover, while the plot of

the MH index for the ‘Triangle-Arrow’ texture pair levels off at lc = 2, it is not easy to

judge the behavior of the curve for other texture pairs. Nonetheless, assuming that the

true number of categories is two, we obtained the two-category segmentation of each

image (Figure 3.15). Our algorithm appears to perform as predicted by preattentive

texture discrimination by humans -— the algorithm successfully segments the first
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Table 3.1: Percentage of pixels misclassified in the segmentation results.

I Input Image _Misclassified(‘70)

name I size [ # categories I without inc] I with (r,cl l

 

 

 

 

 

 

 

 

 

 

 

 

D03-D17 128 x 256 2 J T 0.97 0.94

D03-D68 128 x 256 2 1.07 1.04

D17-D77 128 x 256 2 0.89 0.81

D55—D68 128 x 256 2 0.61 0.58

GMRF-4 256 x 256 4 2.68 1.78

Nat-5 256 x 256 5 4.87 2.96

Nat-16 512 x 512 16 12.85 7.47

L and + 256 X 256 2 2.21 2.21

Even-Odd 256 x 256 2 3.05 2.60

Tri-Arr 256 X 256 2 6.12 5.20       
 

three texture pairs, but fails to do so for the ‘S and 10’ texture pair.

The texton theory of Julesz associates the preattentive discrimination of the

‘Triangle—Arrow’ texture pair to the difference in the density of termination points

[55]. The successful discrimination of this texture pair by our algorithm supports

the position taken by Voorhees and Poggio [93], that differences in the attributes

of blobs detected in the filtered versions of textures alone can explain the observed

discrimination.

Table 3.1 gives the percentage of misclassified pixels for the segmentation ex-

periments reported here. As seen in this table, there is a clear advantage in using the

pixel coordinates (spatial information) as additional features.
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Figure 3.15: (cont’d.).
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Figure 3.16: The plot of the MH index versus number of texture categories for the

texture pair images shown in Figure 3.15. (a) The plot for ‘L and +’. (b) The plot

for ‘Even-Odd’. (c) The plot for ‘Triangle-Arrow’. (d) The plot for ‘S and 10’.
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3.4 Supervised Texture Segmentation

In Section 3.3, we assumed that the texture categories were unknown and relied

on a clustering algorithm to identify them. In many instances, such as in remote

sensing or medical applications, one has access to previously collected data with

known categories. In others, data with known category labels can be obtained from

the image itself — for example with the help of a human expert. In our texture

segmentation technique, when such training data are already available, we can replace

the clustering stage with a classifier.

Motivated by the biological plausibility of neural network classifiers, we will

use a feed-forward network as our main classifier. To assess the performance of

the feed-forward network we compare its performance with classifiers used in pattern

recognition literature. Specifically, we use the minimum Euclidean distance, minimum

Mahalanobis distance, and k-nearest neighbor (k-NN) classifiers.

In the following supervised texture segmentation experiments, the training data

are obtained by randomly sampling the feature images. The randomly sampled pat-

terns make up about 6% of the total number of patterns. (This fraction is the same

as that used in Section 3.3 when a small randomly sampled subset of patterns was

clustered to identify the texture categories.) For a 256 X 256 image, for example,

4000 patterns are used. The performance of the classifiers is reported as percentage

of misclassified pixels. The method of error estimation is essentially a “hold out”

method — we use about 6% of the patterns to train the classifier, then use the entire

patterns, including the training patterns, to test it.

3.4.1 Segmentation Using a Neural Network Classifier

Several papers have appeared in the literature that address texture segmentation by

neural networks [69, 94]. One might question the biological plausibility of the clus-

tering algorithm used to obtain the segmentations in Section 3.3. However, there are

reasons to believe that biological systems are capable of carrying out such clustering

' or grouping operations [11]. Computational models of the brain are largely charac-

terized by highly interconnected information processing units. This computational

paradigm is known as massively parallel computers, connectionist architecture, or

neural networks [40].
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An important characteristic of neural networks is their learning capability. The

supervised pattern classification capability of neural networks have been demon-

strated by many researchers. In this section, we will use feed-forward networks along

with the back—propagation training algorithm to carry out supervised texture seg-

mentation experiments.

A feed-forward network may be regarded as a mapping from the input space to

the output space. In this application, the input consists of texture features. Therefore,

there are as many input units as features. Furthermore, there are as many output

units as texture categories. In addition, one or more hidden layers usually are used

between the input and output layers. Figure 3.17 shows a feed-forward neural network

with one hidden layer.

Networks with no hidden layers, known as perceptron, have been studied and

used extensively. However, the set of mappings from input to output that can be

carried out by these networks is restricted [74]. Adding one or more hidden layers

allows for an internal representation(s) to be formed, which in turn enables the net-

work to carry out arbitrary mappings from input patterns to output patterns. In

fact, a feed-forward neural network with only two hidden layers, linear output nodes,

and sigmoidal nonlinearities, can perform complex nonlinear mappings [64].

Training a feed-forward neural network, using a set of training patterns, is equiv-

alent to finding a set of weights for all the links (connections), such that the proper

output unit is activated for the corresponding input pattern. Several algorithms for

‘training’ neural networks have been proposed and their utility for pattern classifi-

cation has been demonstrated. For example, Rumelhart et al. [81] have proposed a

network training algorithm based on error propagation known as the back-propagation

or generalized delta rule.

Although there are some guidelines for the minimum number of hidden layers,

similar guidelines for number of units in each layer are not available. In our exper-

iments, we use a single hidden layer consisting of 10 units. For our simulations, we

have used the back—propagation routines in the Rochester Connectionist Simulator

(RCS) [39]. The training is stopped after a prespecified number of training cycles.

More specifically, the performance under a small number (10) and a larger number

(100) of training cycles is studied.

Figures 3.18—3.22 show several examples of supervised texture segmentation us-

ing the feed—forward neural network in Figure 3.17. The filters used in each case
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Figure 3.17: The feed-forward neural network used in our supervised texture seg-

mentation experiments. The network has a single hidden layer with 10 units.

account for 95% of the intensity variation captured by an initial filter set with 20

filters. (See Section 3.1.2.) Table 3.2 lists the percentage of misclassified pixels when

only 10 training cycles are used. Table 3.3 shows the results for 100 cycles. Even

with a small number of training cycles, the feed-forward network’s performance is

impressive.
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Table 3.2: Percentage of misclassified pixels using a feed-forward neural network

classifier. Only 10 training cycles were used in each case.

I Input Image I Misclassified (%) I
 

 

 

 

 

 

 

 

 

 

     

_:—:l_::lwithrec

D03-D17 128 X 256 2 1.32 0.80

D03-D68 128 X 256 2 0.89 1.49

D17-D77 128 X 256 2 0.63 0.50

D24-D09 128 X 256 2 5.41 4.41

D55-D68 128 X 256 2 1.80 0.78

GMRF-4 256 X 256 4 2.92 1.75

Nat-5 256 X 256 5 5.64 4.54

Nat-16 512 X 512 16 12.77 8.43

L and + 256 x 256 2 3.39 3.61

Even-Odd 256 X 256 2 3.07 1.29

Tri-Arr 256 X 256 2 2.88 2.93   
 

Table 3.3: Percentage of misclassified pixels using a feed-forward neural network

classifier. 100 training cycles were used in each case.

 

 

 

 

 

 

 

 

 

 

 

 

     

Input 11238

m . .izefi # categories
D03—D17 128 X 256 2 1.11 0.99

D03-D68 128 X 256 2 1.02 1.20

D17-D77 128 X 256 2 0.60 0.78

D24-D09 128 X 256 2 4.29 3.19

D55-D68 128 X 256 2 0.93 0.79

GMRF-4 256 X 256 4 2.77 1.65

Nat-5 256 X 256 5 3.73 2.75

Nat-16 512 X 512 16 7.32 5.67

L and + 256 X 256 2 3.32 3.02

Even-Odd 256 X 256 2 0.83 0.84

Tri-Arr 256 X 256 2 2.78 2.95   
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(a). . .. ,_ (b)

Figure 3.18: (a) The ‘Even-Odd’ texture pair (256 x 256). (b) Supervised segmen-

tation obtained using a feed-forward neural network. (Number of training cycles 2

100.)

 

(a)

 

Figure 3.19: (a) The ‘GMRF-4’ image (256 x 256) containing four Gaussian Markov

random field textures. (b) Supervised segmentation obtained using a feed—forward

neural network. (Number of training cycles = 100.)
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Figure 3.22: (a) The ‘Nat-16’ image (512 X 512) containing sixteen natural textures

(row 1: D29, D12, D17, D55; row 2: D32, D5, D84, D68; row 3: D77, D24, D9, D4;

row 4: D3, D33, D51, D54) from the Brodatz album. (b) Supervised segmentation

obtained using a feed-forward neural network. (Number of training cycles = 100.)
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(b)

Figure 3.22: (cont ’d.)
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3.4.2 Comparison with Other Classifiers

How does the feed-forward neural network classifier in Section 3.4.1 compare with

commonly used classifiers in the pattern recognition literature? To answer this ques-

tion on a quantitative basis we carried out supervised texture segmentation exper—

iments using a number of commonly used classifiers. We will briefly describe each

classifier. The reader may refer to [30] for more details.

To classify a new pattern, the k-nearest neighbor classifier first determines the lc

nearest training patterns. It then assigns the pattern to the class that is most heavily

represented in the Is nearest neighbors. In addition to k-NN classifiers we will consider

two other conventional classifiers also: the minimum Euclidean distance classifier [30]

and the minimum Mahalanobis distance classifier. The latter is also known as Fisher’s

classifier [50]. We used the minimum Euclidean distance classifier in Section 3.3 in

our two-step clustering. (There, we referred to it simply as the minimum distance

classifier.) The following experiments will allow us to evaluate possible advantages of

using a different classifier in step 2.

For the k-NN classifier, no training is required, but the storage requirement is

large. Also, classification of test patterns is computationally expensive. Determining

the I: nearest neighbors of a test pattern, in general, requires computing its distance

from all of the stored training patterns. However, fast algorithms for searching near-

est neighbors are available. Fukunaga and Narendra [35], for example, have proposed

a branch and bound algorithm for computing k-nearest neighbors. An alternative

approach is to reduce the number of training samples by selecting a representative

subset. The condensing technique proposed by Hart [44] is only one of the many reduc-

tion techniques. When combined with such preprocessing techniques, the complexity

of the k-NN classifier compares quite favorably with other classifiers [30]. In our im-

plementation of the k-NN classifier we did not use any preprocessing. However, for

computational efficiency, the Manhattan (city block) distance measure, rather than

the usual Euclidean distance, is used. Three different values of k: 1, 3, and 5 are

tried. Since the performance of all three classifiers was essentially the same, only the

results for the 3-NN classifier are reported here.

Tables 3.4, 3.5, and 3.6 show the percentage of misclassified pixels for different

segmentation experiments. For easier comparison, Figures 3.23 and 3.24 show the

same data as scatter plots. The image numbers on the horizontal axis correspond
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Table 3.4: Percentage of misclassified pixels using the minimum Euclidean distance

classifier.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Image _ Misclaisified (%)

name size # categorTes I without (r:c) [ with (r3—

D03-D17 128 X 256 2 0.94 0.90

D03-D68 128 X 256 2 0.98 0.96

D17-D77 128 X 256 2 0.92 0.82

D24-D09 128 X 256 2 9.48 7.15

D55-D68 128 X 256 2 0.63 0.60

GMRF-4 256 X 256 4 2.59 1.75

Nat-5 256 X 256 5 4.44 2.85

Nat-16 512 X 512 16 9.20 6.19

L and + 256 x 256 2 1.97 1.97

Even-Odd 256 X 256 2 2.20 1.95

Tri—Arr 256 X 256 2 5.47 4.68       
to the row numbers in the tables. So, for example, image number 8 refers to the

‘Nat-16’ image which contains sixteen natural textures. Clearly, the 3-NN classifier

outperforms the minimum distance classifiers. It also outperforms the feed-forward

neural network used in Section 3.4.1. However, it took more than four days of CPU

time on a Sune4/390 to obtain the segmentation for the ‘Nat-16’ image. As pointed

out before, preprocessing techniques can be used to reduce computational complexity

of the Ic-NN classifier. Note that, in most cases, the performance of the feed-forward

neural network classifier has improved when the number of training cycles is increased

to 100. It is very likely that using a larger number of training cycles, e.g. 500 cycles,

will further improve its performance.

In the two-step clustering scheme in Section 3.3 we used the minimum distance

classifier in the second step. The supervised texture segmentation experiments in

this section suggest using other classifiers. For example, the minimum Mahalanobis

distance classifier, or the k-NN classifier in conjunction with the condensing technique,

may result in better segmentations.
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Table 3.5: Percentage of misclassified pixels using the minimum Mahalanobis dis-

tance classifier.

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

; Inpjut Irgge IJ Misclassified (%)

rifle I size r [ # categoE without (r,c)] with (r,c)

DfisTnn 128: 256 2 i 0.70 0.63

D03-D68 128 X 256 2 0.82 0.81

D17-D77 128 X 256 2 0.62 0.55

D24-D09 128 X 256 2 2.89 2.91

D55-D68 128 X 256 2 0.72 0.45

GMRF-4 256 X 256 4 1.97 1.51

Nat-5 256 X 256 5 2.82 2.39

Nat-16 512 X 512 16 5.41 3.37

L and + 256 X 256 2 1.26 1.26

Even-Odd 256 X 256 2 0.88 0.75

Tri-Arr 256 X 256 2 2.35 2.49     
 

 

Table 3.6: Percentage of misclassified pixels using the 3-NN classifier. Classification

errors for 1-NN and 5-NN were essentially the same.
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Input Image ‘ [ Misclassified (%) I]

| name ] size ] # categories ] without (r,c) ] with (r,c)J

D03-D17 128 X 256 2 0.37 0.35

D03-D68 128 X 256 2 0.57 0.53

D17-D77 128 X 256 2 0.42 0.38

D24-D09 128 X 256 2 0.65 0.63

D55-D68 128 X 256 2 0.39 0.45

GMRF-4 256 X 256 4 1.48 1.07

Nat-5 256 X 256 5 1.17 1.12

Nat-16 512 X 512 16 1.23 1.23

L and + 256 X 256 2 0.82 0.81

Even-Odd 256 X 256 2 0.45 0.48

Tri-Arr 256 X 256 2 1.87 1.50     
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Figure 3.23: Percent misclassified pixels for various classifiers. Here, the (row, col)

coordinates of pixels are not used.
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Figure 3.24: Percent misclassified pixels for various classifiers. Here, the (row, col)

coordinates of pixels are used as additional features.
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3.5 Summary

In this chapter, we presented a multi-channel filtering technique for texture segmenta-

tion. The channels were represented with a fixed set of Gabor filters and a systematic

filter selection scheme was proposed, which is based on reconstruction of the original

image from the filtered images. As a result, unlike some of the existing techniques,

our segmentation algorithm does not require any knowledge of the frequency content

of textures in the input image. Both unsupervised and supervised texture segmen-

tation experiments were conducted and the ability of the “texture energy” features

to discriminate among various textures was demonstrated. In'particular, we demon-

strated the ability of the segmentation technique to discriminate artificially generated

texture pairs with identical second- and third-order statistics.

The filtering and feature extraction operations in the algorithm account for

most of the required computations. However, these operations can be performed in

parallel, regardless of the number of filters. The use of a nonlinear transformation

following the linear filtering operations has been suggested as one way to account

for the inherently nonlinear nature of biological visual systems [29]. We argued that

the localized filtering by the Gabor filter set followed by a “squashing” nonlinear

transformation can be interpreted as a multi-scale blob detection operation.

One of the limitations of the texture segmentation algorithm is the lack of a

criterion for choosing the value of a in the nonlinear transformation. In the exper-

iments, we used a fixed empirical value. Also, the algorithm assumes that different

channels are independent from each other. However, there is psychophysical and

physiological evidence indicating inhibitory interactions between different spatial fre-

quency channels [29]. Some researchers have incorporated such interactions in their

texture segmentation algorithms [8, 66]. Feature selection or extraction from the ini-

tial pool of features is computationally desirable, and may result in more accurate

segmentations. Allowing inhibitory interactions among the channels is shown to have

the potential to reduce the effective dimensionality of the feature space [8].

For unsupervised texture segmentation, we tried to use the plot of the modified

Hubert index versus number of texture categories. In most cases, however, it was

assumed that the true number of categories is known a priori. In the following

chapter we will propose an integrated approach that combines the current region-

based segmentation technique with an edge-based technique. The integrated approach
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requires only a reliable upper bound for the number of texture categories.

In the Supervised texture segmentation experiments a feed—forward neural net-

work was used. Some of the architectures for neural networks are capable of unsu-

pervised classification. One example, is the “self-organizing” and “self-stabilizing”

architecture proposed by Carpenter and Grossberg [11]. An attempt was made to

use the ART2 architecture [12] as a substitute for the square-error clustering algo-

rithm that was described in Section 3.3. However, the experiments were discontinued

because the initial experimental results were not promising.



Chapter 4

Integrating Region— and Edge-

Based Texture Segmentations

The texture segmentation technique proposed in Chapter 3 results in a region-based

segmentation, as it assigns pixels with similar texture properties to the same region.

One of the disadvantages of our region-based segmentation is the need for knowing the

“true” number of texture categories ahead of time. In fact, this drawback applies to

all region-based techniques. Another method of discriminating regions with different

textures is to detect the boundaries between them. The output of a boundary detection

operation is commonly referred to as an edge-based segmentation. The knowledge of

the true number of texture categories is not necessary for obtaining an edge-based

segmentation, where the presence of an edge point is determined locally based on a

measure of disparity across the (unknown) boundaries.

In this chapter, we describe a new technique that produces an edge-based seg-

mentation by combining the magnitude responses of feature images to a common

edge detector. As we will see, an important limitation of an edge-based segmentation

is that, in practice, the region boundaries are not closed. Some postprocessing is,

therefore, required to obtain closed regions. In contrast, the region boundaries in a

region-based segmentation are always closed. An integrated approach that combines

the advantages of the two methods could result in a better segmentation. We propose

one such integrated approach and demonstrate its effectiveness.

In the multi-channel filtering approach, there are two fundamentally different

ways in which the integration can take place.

1. Integration takes place separately in different channels. The resulting segmen-

tations are then combined to obtain the final segmentation.

2. A single edge-based segmentation is first obtained, then integrated with a

region-based segmentation.

The multidimensional nature of texture representation tells us that the information

71
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from all channels should be used simultaneously to obtain a segmentation. That is,

the information from a single channel is often insufficient to discriminate different

textures or to properly measure the disparity across the boundaries. As a result, the

second approach appears to be more plausible.

4.1 Edge-Based Segmentation

Detecting texture boundaries requires simultaneous consideration of spatial variations

in all feature images. The idea is to combine the “evidence” for texture edges in

different feature images to obtain a single measure of edge strength at each point.

One example of this approach is the method proposed by Khotanzad and Chen [60].

Our edge-based segmentation technique is similar to that of Malik and Perona [66].

The multi-dimensional edge detection is performed as follows. First, we apply

the Canny step edge detector [10] to each feature image. The implementation of

the Canny edge detector used in our experiments uses the efficient approximation of

the optimal detector by the first derivative of a Gaussian. Only one detector with

appropriate operator width is used for each feature image. (The Canny edge detector,

in its general form, uses several operator widths whose outputs are then combined

using the ‘feature synthesis’ method.) The width of the operator 0 is adapted to

each feature image. In our experiments we have used a = x/2 T, where T = Nc/uo

is the average size of the intensity variations detected by the corresponding Gabor

filter. The reason for using different operator widths for different feature images is

that the step edges in different feature images have different widths — those in lower

frequency channels tend to be wider. '

Each feature image is normalized to have a mean of zero and a constant standard

deviation (= 30). Again, this normalization is intended to avoid domination of fea-

tures with smaller numerical ranges by those with larger numerical ranges. Only the

magnitude response of the Canny edge detector is computed for each feature image,

the nonmaximum suppression and the hysteresis thresholding [10] are not performed.

Figure 4.1 shows examples of Canny magnitude images for the ‘D55-D68’ texture

pair. These magnitude images correspond to feature images shown in Figure 3.6.

To obtain a single ‘total’ magnitude image, the Canny magnitude responses

corresponding to individual feature images are summed, point-by-point. Similarly,

the gradient images, one along the x-axis and one along the y-axis, are summed
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to obtain ‘total’ gradient images. At this point, the nonmaximum suppression and

hysteresis operations are applied to the total magnitude image to obtain an edge-

based segmentation.

4.1.1 Experimental Results

Figure 4.2 illustrates the edge-based segmentation for the ‘D55-D68’ texture pair.

Figure 4.2(b) shows the total magnitude response of the Canny edge detector, ob-

tained by adding the magnitude responses of 13 feature images. Lighter gray values

in this image indicate higher edge strengths. Figure 4.2(c) shows the edge image

obtained by nonmaximum suppression and hysteresis thresholding. The low and high

threshold values were 0.5 and 0.8, respectively.

Other examples of edge-based segmentation are given in part (c) of Figures 4.5

through 4.8. In Section 4.2 we describe how these edge-based segmentations can be

used in an integrated segmentation technique. Here we will give a second example

to demonstrate the shortcomings of our current edge-based segmentation technique.

This example is shown in Figure 4.3 and involves a 256 x 256 image with five natural

textures.

As seen in (Figure 4.3(b)), the total magnitude response for some true texture

boundaries is much stronger than others. The primary reason is that some texture

boundaries have a strong response in several feature images, while some others enjoy

a strong response in only a few feature images. Adding the magnitude responses

in different channels has some desirable consequences. In particular, it helps sup-

press noise and allows evidence for a boundary in different channels to accumulate.

Unfortunately, as seen in this example, some true texture boundaries are enhanced

more than others. Using adaptive hysteresis thresholding should alleviate some of

these problems. However, it is our belief that a different method of combining the

magnitude responses is needed.

4.2 Integrated Approach

The general principle of integration or fusion of information from different sources is

well recognized in the computer vision community. Several techniques for simulta-

neously utilizing the region and edge information in image segmentation have been
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(d) (e)

 

(h) (i)

Figure 4.1: Canny magnitude images corresponding to feature images shown in

Figure 3.6. A a = \f2T was used for the Canny edge detectors.
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(b) (C)

Figure 4.2: An example illustrating the edge-based segmentation technique. (3)

Input image (‘D55—D68’). (b) Total Canny magnitude response to 13 feature images.

(c) Edge-based segmentation.

proposed [16, 41, 72, 75]. A similar integrated approach to texture segmentation, how-

ever, has not been emphasized. The multidimensional nature of texture segmentation

makes either of the region- and edge-based segmentations complicated, making an in—

tegrated approach even more formidable. As we will see, an integrated approach need

not necessarily be overwhelming. A proper integration method should suppress the

weaknesses and emphasize the strengths of the region- and edge-based segmentation

techniques. A

The integration of the region-based and the edge-based segmentations is carried

out as follows. Jain and Nadabar [51] have applied a similar integration technique

to segmentation of range images. First, using the estimated upper bound km” for

the number of texture categories, a segmentation is obtained using the algorithm

described in Section 3.3. Suppose the true number of categories (clusters) is Ic‘. The

segmentation (clustering) with km“, (> k’) categories is always formed by breaking

some of the true clusters. Therefore, assuming that our texture features provide

strong discrimination between different texture categories, the false splitting of regions

will occur within true segments only, not across them. The algorithm described in

Section 4.1 is used to obtain an edge-based segmentation (an edge image). For the
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(C) (0')

Figure 4.3: An example demonstrating some of the shortcomings of the current

edge-based segmentation technique. (11) Original input image. (b) Total Canny

magnitude response to 13 feature images. (c) Edge-based segmentation. The low

and high hysteresis thresholds were 0.5 and 0.8, respectively. (d) Edge-based seg-

mentation. The low and high hysteresis thresholds were 0.5 and 0.7, respectively.
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Canny edge detector, we use 0.5 and 0.8 for the low and high thresholds of the

hysteresis, respectively. These relatively low threshold values may generate a large

number of spurious edges. However, a perfect edge image is not crucial for the purpose

of integration. What is important is that we minimize the likelihood of missing true

edges.

Now, in the over-segmented image, for each border between pairs of regions, we

compute the fraction of border sites that “coincide” with an edge point in the edge

image. We refer to this fraction as hit-ratio h. The coincidence is determined by

examining a small rectangular neighborhood centered at the border site. The typical

neighborhood size used in our experiments was 5 x 10. The longer dimension of this

rectangular neighborhood is along the local orientation of the border site. We have

only considered the 0° and 90° orientations. The border site between two adjacent

pixels, one with label 11 and the other with label 12, is said to have a 0° orientation

if the pixels are to the east and west of each other. The 90° orientation is formed by

pixels to the north or south of each other.

The boundaries in the over-segmented image that do not correspond to true

texture boundaries are expected to have a low h value. A threshold h; is used to

decide whether the border between two regions should be preserved. The typical 12,

value used in our experiments was 0.5. That is, when the hit-ratio is below 0.5 the

border is removed and the corresponding pair of regions are merged. As we will see in

the following examples, segmentation results are identical for a wide range of values

for threshold ht. This indicates the robustness of the integration technique. That is,

the integration is not sensitive to noise, because false borders are eliminated even at

low values of ht (e.g., 0.25). On the other hand, true boundaries are preserved even

at high values of ht (e.g., 0.75).

4.2.1 Experimental Results

As our first example we will apply our integration method to the ‘D55-D68’ texture

pair in Figure 4.4(a). A region-based segmentation assuming a maximum of four

texture categories is shown in Figure 4.4(b). The edge-based segmentation is shown

in Figure 4.4(c). The segmentation after integration is shown in Figure 4.4(d). The

same segmentation is obtained for all h; 6 (012,069). The integration result for

another image containing two GMRF textures (‘GMRF-2’) is illustrated in Figure 4.5.



78

 

(C) (01)

Figure 4.4: Region- and edge-based integration results for the ‘D55-D68’ texture

pair (128 X 256). (3.) Original input image. (b) Four-category region-based segmen-

tation (over-segmented). (c) Edge-based segmentation. ((1) New segmentation after

integration.

  
(b)

 

(C) (d)

Figure 4.5: Region- and edge-based integration results for the ‘GMRF-2’ image

(128 X 256). (a) Original input image. (b) Four-category region-based segmenta-

tion (over-segmented). (c) Edge-based segmentation. (d) New segmentation after

integration.
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(b)

  
(C) (d)

Figure 4.6: Region- and edgebased integration results for ‘D 17~D77’ texture pair

(128 X 256). (a) Original input image. (b) Four-category region—based segmenta-

tion (over-segmented). (c) Edge-based segmentation. ((1) New segmentation after

integration.

In this case, the correct segmentation is obtained for all h; 6 (033,089).

Figure 4.6 shows similar results for the ‘D17-D77’ texture pair. Here, identical

segmentation is obtained for all h, 6 (023,089), indicating that the integration

method is highly robust. Figure 4.7 illustrates the integration method on a 256 X 256

image with one natural texture embedded in another (‘D84 in D68’). Again, correct

segmentation is obtained for all h; 6 (032,095). Identical segmentations for a wide

range of values for threshold ht indicates that the integration is highly robust.

Figure 4.8 shows the integration results for the ‘GMRF-4’ image containing four

GMRF textures. Correct segmentation is obtained for all h; E (0.31,0.69). Note

that the edge-based segmentation is far from perfect. Nonetheless, by combining the

imperfect information from two sources, the integration technique is able to produce

the correct segmentation.

Finally, in Figure 4.9, we show the integration result for the ‘Nat-5’ texture. In

order to extract all true edges, hysteresis thresholds of 0.5 and 0.7 are used, rather

than 0.5 and 0.8 which were used in all the previous examples. (See discussion in

Section 4.1.1.) Also, instead of a 5 x 10 window, a larger .9 X 18 window is used. With
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these parameters, the correct segmentation is obtained for all h; E (0.32,0.65).

4.3 Summary

In this chapter, we presented an edge-based segmentation technique. The segmenta-

tion technique detects texture boundaries by combining the magnitude responses of

feature images to the Canny edge detector. We then proposed an integrated approach

that combines the strengths of the region- and edge-based segmentations. The inte-

grated approach allowed us to do away with the need for knowing the true number

of texture categories, and resulted in a truly unsupervised segmentation technique.

When applying the hysteresis thresholding to the total magnitude image, we

used relatively low threshold values. By doing so, we allowed for more spurious

edges, but minimized the likelihood of missing true texture edges. As a result, the

edge-based segmentations in most of the examples were far from perfect. Nonetheless,

combining imperfect information from two sources, the integration technique was able

to produce the correct segmentations. The robustness of the integration method is

reflected in identical segmentation results for a wide range of the threshold ht on

hit-ratio.

The edge-based segmentation technique, in its current form, has certain limita-

tions. We showed that, in some cases, adding magnitude responses in different chan-

nels may enhance some true texture boundaries more than others. Consequently,

when magnitude responses from different channels are added together, in addition

to noise, some true texture boundaries are also suppressed. It is our belief that a

different method of combining the magnitude responses is needed.
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(C) (d)

Figure 4.7: Region- and edge-based integration results for the ‘D84—in-D68’ (256 x

256). (9.) Original input image. (b) Four-category region-based segmentation (over-

segmented). (c) Edge-based segmentation. (d) New segmentation after integration.
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(C) (0‘)

Figure 4.8: Region- and edge-based integration results for the ‘GMRF-4’ image

(256 x 256). (11) Original input image. (b) Six-category region-based segmenta-

tion (over-segmented). (c) Edge-based segmentation. (d) New segmentation after

integration.



 
(C) (d)

Figure 4.9: Region- and edge-based integration results for a 256 x 256 image contain-

ing five natural textures (‘Nat-5’). (8.) Original input image. (b) Seven-category

region-based segmentation (over-segmented). (c) Edge-based segmentation. ((1)

New segmentation after integration.



Chapter 5

Texture Analysis of Automotive

Finishes

In recent years, there has been a growing emphasis on machine vision and its appli-

cations in manufacturing processes. To achieve higher speed and increased reliability,

machine vision systems are being used with increasing frequency to perform various

inspection tasks. For example, visual inspection of mass-produced printed circuit

boards, integrated circuit chips, and photomasks in electronics industry is an impor-

tant area where machine vision techniques are used [15, 42].

Since in many cases the quality of a surface is best characterized by its texture,

texture analysis plays an important role in automated visual inspection of surfaces.

The texture of a paper, for example, controls its printability. This is because, the

random fiber distribution on the surface of the paper affects the contact area between

paper and the printing medium. Texture analysis techniques are, therefore, useful in

controlling the quality of paper in paper-rolling mills [17]. As part of an automated

lumber processing system, Conners et al. [23] used texture analysis techniques to

detect and classify common surface defects in wood.

Visual inspection of product appearance, as assessed by the customer, is another

important area where texture analysis techniques have proved to be useful. For

example, Siew et al. [84] used textural features to determine the degree of carpet

wear. In the food industry, textural appearance is an important factor in determining

product quality [37].

In this chapter, we describe a problem involving automated visual inspection of

automotive metallic finishes. The appearance of metallic finishes, which are primarily

used in the automotive industry, isaffected by their color as well as their visual

texture. One of the factors that determines the acceptability of the finish is the

degree of “uniformity” of its visual texture. Our goal is to find quantitative measures

that capture the characteristics of the metallic finish texture, hereafter called simply

finish texture. We use a multi-channel filtering technique to compute texture features

84
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that are used to grade the uniformity of metallic finish samples.

The organization of this chapter is as follows. In Section 5.1, we describe metallic

finish and various factors that affect its appearance. We also describe the psycho-

metric experiments which were designed to grade the degree of uniformity of finish

textures. In section 5.2, we address image acquisition and preprocessing requirements.

Section 5.3 describes the multi-channel filtering technique that is used to characterize

the finish texture. The functional form of the ‘channels’ (filter functions) and the

choice of filter parameters, as well as the definition of texture features are discussed.

In Section 5.4, we propose two alternative ways to grade the degree of uniformity of

finish texture. Finally, we conclude with a summary and a general discussion of the

results in Section 5.5.

5. 1 Metallic Finish

The sparkle and color directionality appearances of metallic automotive finishes are

due to metal particles such as aluminum flakes that are added to the paint. The non-

uniform distribution of position and tilt angle of these flakes within the paint film

give rise to a visual texture which consists of patterns of light and dark color regions.

The distribution of the flakes, and hence the perceived finish texture, is influenced by

various parameters of the paint itself, and by various paint application parameters

such as pot pressure, air pressure, gun distance, and rheology treatment. Ideally, we

would like the finish texture to ‘look’ uniform. Judging the degree of uniformity of a

finish texture, however, is a rather subjective process. Even finish inspection experts,

among themselves, tend to have different opinions of uniformity.

Over the years, finish inspection experts have adopted various terms to describe

the appearance of metallic finishes. Two frequently used terms are ‘mottle’ and

‘blotchy’ which appear to make up two potential components of uniformity. Mottle-

ness refers to a pseudo-random positioning of metallic flakes that creates an accidental

patterning effect. The size of these patterns is usually on the order of a millimeter.

Blotchiness, on the other hand, refers to the non-uniformity characterized by irregu-

larly spaced areas of color change. The size of these irregularities is usually on the

order of an inch.

Metallic finish samples used in our experiments consist of metal panels that
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are painted under various settings of paint application parameters. Different set-

tings of these parameters give rise to finish textures with different degrees of texture

“uniformity”. Specifically, two sets of finish samples are analyzed in the following

experiments: the light blue set (LBLUE) and the medium blue set (MBLUE). There

are 13 4” X 6” (about 10 cm X 15 cm) panels in each set. Panels in each set vary in

paint application parameters (flash time, gun distance, and air pressure) as well as in

the grade (size) of the aluminum flakes.

A group of paint technicians were asked to judge the uniformity of finish sam-

ples in each set. First, 10 observers were asked to rank the panels from most to least

uniform. The rank order average was then used as initial ranking in a paired compar-

ison experiment. Each panel was compared to eight other panels nearest to its rank

order. For example, the panel with rank order 7 was compared to panels with rank

orders 3, 4, 5, 6, 8, 9, 10, and 11. The pairs were presented, in random order, to four

observers. Each observer was asked to select the more uniform panel from the pair

shown. Each observer performed the comparisons 10 times. Using the results of the

paired comparisons, a preference frequency matrix was constructed for each set. (The

(i, j) entry in a preference frequency matrix shows the number of times the panel in

row i was preferred over the panel in colurrm j.) Ordinal scale values for the panels

were then obtained using a scaling technique [88, Ch..4]. The resulting ‘visual scale

values’ are given in Tables 5.1 and 5.2.

In another visual scaling experiment, a panel of 10 paint technicians were asked

to grade the finish samples in each set along other visual components that might

be related to the perceived uniformity of the finish. These components are ‘mottle’,

‘flake-size’, and ‘blotchy’. Each technician was asked to place the panels on a scale

of 1 to 10, for each of the above components, with 10 indicating severe mottle effect,

extremely coarse flake-size, or severe blotchy effect. Since the observers had no ref-

erence samples to define their base lines, significant individual biases in the resulting

values are possible. The rank order of the scale values, on the other hand, are less

likely to suffer from these individual biases. The mean rank values for each of the

visual components are given in Tables 5.1 and 5.2. Our goal is to develop quantitative

measures of finish texture that ‘explain’ these subjective data.
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Table 5.1: Visual scale values for texture uniformity, mottle, flake-size, and blotchy

appearance of panels in the LBLUE set.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

ml Uniformity Mottle Blotchy I

1 3.02493 5.71604 4.80 5.8452

2 0.21339 8.61112 4.65 9.4642

3 3.62269 3.79093 11.10 3.0198

4 2.14104 5.90562 6.10 7.3358

5 2.42717 5.63374 7.75 7.2702

6 1.32080 8.00890 8.10 8.7932

7 1.04008 8.38379 5.25 9.7165

8 3.36581 3.17102 2.25 3.9988

9 0.24747 9.20337 6.60 9.6850

10 4.80362 3.34307 9.85 3.3227

11 0.00000 9.89626 11.30 11.8894

12 1.39585 6.65147 3.45 7.3092

13 4.28204 2.51435 9.80 3.3501
 

 
Table 5.2: Visual scale values for texture uniformity, mottle, flake-size, and blotchy

appearance of panels in the MBLUE set.

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

] Panel Uniformity Mottle I Flake-Size Blotchy |

1 1.10309 6.35 5.40 4.70

2 0.60587 10.10 4.25 8.85

3 2.32165 5.70 12.40 6.05

4 2.03682 3.85 5.00 3.80

5 0.00000 11.20 8.05 11.25

6 1.35577 9.30 8.05 7.95

7 1.11753 5.40 4.55 8.05

8 1.77176 3.75 4.10 5.90

9 0.12917 9.05 5.35 9.10

10 3.42172 5.20 11.75 4.40

11 2.28994 5.35 11.85 4.80

12 0.43111 7.65 3.95 6.95

13 0.85181 8.10 6.30 9.20      
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5.2 Image Acquisition and Preprocessing

Although there are some general guidelines for lighting and imaging setups, every

machine vision application has its own unique peculiarities that have to be dealt with

individually. A crucial issue in any imaging problem is the selection of an appropriate

light source(s) that highlights features of interest. The lighting geometry, i.e. relative

positions of light source, camera, and the object, is equally important.

We have experimented with various types of light sources and concluded that

directed lighting — as opposed to diffused lighting - is more appropriate for high-

lighting the texture of the finish. The specular nature of the metallic finish poses a

great challenge in achieving uniform illumination. In general, imaging metallic and

specular objects are much harder than imaging lambertian objects.

A common technique for dealing with the problem of specular reflections is to

use a pair of polarizing filters. The first filter (the polarizer) is used to polarize the

light source. The object is then viewed through the second, cross polarized, filter (the

analyzer). Since specular regions do not alter the polarization of the incident light,

the reflected light from these regions is blocked by the analyzer. The reflected light

from truly diffuse regions, on the other hand, is depolarized and partially passed by

the analyzer. This technique, however, proved to be unsuitable to our application.

The reason was that almost all the reflected light from the surface of the panel was

blocked by the analyzer. This resulted in a significant loss of detail and contrast in

the acquired images. We encountered a similar problem when we tried to use dulling

spray to cut down the specularity of the finish‘.

In order to alleviate the problems arising from specular nature of the metallic

finish, we were forced to reduce the size of the area on the panel surface that is

being imaged. The relatively high image resolution required for analyzing the finish

texture also dictated using high magnifications, and hence imaging a small area on

the panel surface. Our current imaging setup is shown in Figure 5.1. We use a single

light projector to illuminate the finish sample (panel). To minimize the illumination

variations, we keep the angle between the axis of the camera and the axis of the light

projector as small as possible. Note that too small an angle will result in a very large

specular reflection into the camera. A value between 15° to 20° was found to be a

 

1Dulling sprays have been used by professional photographers for eliminating the glare on shiny

surfaces.
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Figure 5.1: The imaging setup used for acquiring images from finish samples. The

main components of the setup are a Mole-Richardsonlight projector and a Panasonic

CCD camera with a 90 mm macro lens.

good compromise.

The maximum resolution of the human eye is estimated to be about 60 cycles

per degree of visual angle [29]. Assuming a standoff of 0.5 meter, this value translates

into 0.073 mm per individual receptor. The resolution of images obtained using our

imaging setup is 0.08 mm/pixel which is close to the above value. We acquired

several images from each panel by shifting the panel with respect to a fixed position

of the camera and the light projector. The image data base used in the following

experiments contains eight 256 X 256 images from each panel in each of the two sets.

Each image, therefore, corresponds approximately to a 2.06 cm wide by 1.54 cm high

(about 0.81” X 0.61”) physical area”. Figure 5.2 illustrates the physical location of

the images taken from a given panel.

 

1’Note that the physical area is not a square, because the CCD camera used for acquiring the

images has a 4:3 aspect ratio. The resolution indicated here is along the horizontal direction. The

resolution in the vertical direction is slightly higher (by a factor of 4/3).
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Figure 5.2: Multiple imaging from a given panel. The resolution of acquired images

is close to the maximum resolution of the human eye.

5.2.1 Preprocessing

We use a number of preprocessing operations to compensate for non-uniform illumi-

nation of the panels. These operations include an ‘image subtraction’ stage where the

(smoothed) image of the “background” is subtracted from the original image. If the

intensity variations inherent to the light source itself, or due to the position of the light

source, were known, one could compensate for the resulting non-uniformities in the

illumination by subtracting these variations from the acquired images. In practice,

these variations can be approximated by an intensity image of the “background”. We

obtain the background image by imaging an unpainted metal panel. The background

image is smoothed to suppress the fine texture of the unpainted metal panel.

Figure 5.3 shows the gray level histograms of two finish samples, one with fine

and the other with coarse aluminum flakes. Both histograms are highly symmetric

and have a similar shape (they both look like a Gaussian distribution). However, the

histogram of the finish sample with coarse aluminum flakes is wider than the other.

Such differences in the gray level distribution is caused by variations in lighting, as well

as by differences in paint factors such as color and the grade (size) of the aluminum

flakes. Further preprocessing is needed in order to compensate for such variations.
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(a) ' (b)

Figure 5.3: Two examples demonstrating differences in the histograms of the ac-

quired images. (:1) Histogram of a finish sample with fine aluminum flakes. (b)

Histogram of a finish sample with coarse aluminum flakes.

Histogram equalization operations (also known as histogram flattening or prob-

ability equalization) are often used to remove differences in the first-order statistics

of images. Histogram equalization algorithms achieve this goal by reassigning pixel

gray levels so that the population of pixels with a given gray level (or a small range

of gray levels) is the same for each gray level (or range of gray levels). However, the

similarity in the shapes of the histograms for different finish samples suggests that

a linear scaling of the gray levels should be sufficient for suppressing differences in

the first-order statistics of the acquired images. The effective width, or spread, of a

histogram can be measured in several different ways. We use the average absolute

deviation (AAD) from the mean value for this purpose. Let s(x,y) be the acquired

image. The AAD measure is then given by

1 N. Nc

f0=m§l§ l3(avb)_gla (5-1)

where N, and Nc are the number of rows and columns, and g is the mean gray level

in the image. Image normalization is achieved by dividing the gray levels in each

acquired image by its AAD measure.

In Section 5.3, we will use the AAD measure in (5.1) to compute texture features

in the filtered images. There we will show that the above image normalization can be
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applied equivalently to texture features obtained by processing the original image.

5.3 Characterization of Finish Texture

We characterize the textural appearance of the metallic finish by using a multi-channel

filtering technique. In this section, we describe the functional form of the channels,

the choice of the filter parameters, and the definition of texture features. We will use

the resulting texture features as input to the texture grading methods described in

Section 5.4.

5.3.1 Filter Functions and Parameters

Metallic finish textures do not possess significant orientation tendencies, i.e. they

are practically isotropic. Even-symmetric Gabor filters used in our texture segmen-

tation algorithms have both frequency- and orientation-selective properties. Instead

of using Gabor filters, therefore, in this application, we characterize the channels by

isotropic frequency-selective filters that originated with Coggins [19]. The modulation

transfer function (MTF) of these filters is defined in (2.5), which is repeated here for

convenience.

 

(um) # (0,0),
01

,/ 2 2_ 2

H(u,v)=exp{-%(ln u +1; lnp) },

Again, )1 is the center radial frequency and 01 determines the bandwidth of the filter.

Note that these filters are defined on a logarithmic scale.

We use 01 = 0.275 for all filters. This results in a bandwidth of about one octave

which is close to the estimated bandwidth of simple cells in the mammalian visual

cortex. (See Section 3.1.) Also, we set the value of MTFs at (u, v) = (0,0) to zero so

that the mean gray values of the filtered images are zero. (That is, we block the DC

component.)

We address the problem of determining the appropriate values for the center

frequencies of the filters by considering a large, but finite, number of center frequen-

cies. Specifically, we consider a set of filters whose center frequencies are one half

octave apart. The number of the filters considered depends on the size of the input

image. For a 256 X 256 image, for example, we shall consider a total of fourteen

frequency-selective filters tuned to 1, 1 J2, 2, 2J2, 4, 4J2, 8, 8x/2, 16, 16 x/2, 32,
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(e) (f) I (g) V I (h)

Figure 5.4: (a) A 256 x 256 image of a metallic finish sample. (b — h) Filtered

images corresponding to frequency-selective filters with center frequencies at 4, 8,

16, 16 J2, 32, 32 J2, and 64 cycles/image-width.

32 x/2, 64, and 64x/2 cycles/image-width. This choice of center frequencies for the

filters provides a nearly uniform coverage of the spatial-frequency domain. Any sig-

nificant range of spatial-frequencies in the input image should, practically, fall in the

passband of one of these filters. In Section 5.4, we will describe procedures that allow

us to determine which subset of filters is best suited for a given set of finish samples.

The filtering operations are again carried our using a fast Fourier transform

(FFT). Figure 5.4 shows an image of a finish sample along with some of the filtered

images. The ability of the filters to exploit differences in spatial-frequency (size) is

evident in these filtered images.

5.3 .2 Texture Features

The texture features are defined as the average absolute deviation (AAD) in the

filtered images. The texture feature I, for the j‘h (zero mean) filtered image r_,-(z,y)

is computed as follows.

1 N, N;

fj = W2 Z |r,-(a,b) I, (5-2)

C a=l b=l
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where N, and Nc are the number of rows and columns in the image. Each filtered

image is, therefore, ‘summarized’ by one feature, and there are as many features as

filtered images. With a total of ten filters, for example, we will have ten texture

features, resulting in a ten-dimensional feature vector for each image. These feature

vectors will be used in grading the texture uniformity of panels using texture grading

schemes described in Section 5.4.

In Section 5.2.1, we described an image normalization operation. This normal-

ization can be achieved equivalently by dividing each texture feature by the AAD

measure in the input image defined by (5.1). Formally, the normalized feature f;

corresponding to texture feature fj is then given by

fizfj/foa i=17"',14a

where f0 is the AAD measure of the input image. In the following sections, for

convenience, we will refer to the normalized texture features as f1, f2, etc. Also, we

will not use features f1 and f2 in the grading experiments. These features correspond

to filters that respond to very slow intensity variations. Such variations, however, are

very likely to result from variations in the lighting rather than from finish texture.

5.4 Grading Finish Texture Uniformity

How can the above texture features be used to ‘grade’ the degree of uniformity of the

finish texture? In this section, we propose two alternative grading schemes to achieve

this goal.

5.4.1 Reference-Based Grading

Our first grading scheme can be summarized as follows. Given a set of panels, we

use a few panels with extreme appearances as ‘reference panels’. These reference

panels are, in a sense, our training samples. Since finish samples with highly uniform

or highly non-uniform finishes are easier to identify, these reference panels can be

selected with very high confidence. In our experiments, we typically use the two

panels with lowest visual scale values and the two panels with the highest visual scale

values in each set. Table 5.3 lists the least- and most-uniform panels for the LBLUE

and the MBLUE sets. Using the feature vectors corresponding to images from these
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Figure 5.5: Illustration of reference-based grading in a two-dimensional .feature

space. The mean feature vector f' of the panel to be graded is shown as ‘x’.

four panels we construct a least-uniform and a most-uniform ‘reference cluster’. We

then assign a texture uniformity grade to each panel based on the “distances” of its

mean feature vector to these reference clusters.

Formally, let f,- denote the feature vector for the 2"11 image from a panel. We

represent each panel by its mean feature vector

_ 1 n

f = :1: 2 fi, (5.3)

where n is the number of images taken from a panel. In our experiments n = 8.

Let do and d1 be the distances between the mean feature vector f and the least-

uniform and most-uniform clusters, respectively. (See Figure 5.5.) The distance of

a point from a cluster (of points) can be defined in several different ways. Here, we

simply use the Euclidean distance between the point and the centroid (mean) of the

cluster3. We define the texture uniformity grade ’7 for the panel by the following

ratio.

do

do + d1

Note that 7 lies between 0 and 1. A value of 7 close to 1 indicates that the corre-

(5.4) ’7:

sponding panel can be classified as uniform.

To get an idea of the discrimination provided by individual features, we show

the box plot of the patterns in the reference clusters. These plots for the LBLUE

and MBLUE sets are given in Figures 5.6 and 5.7, respectively. In the box plot, the

horizontal line inside a box marks the location of the median. The box contains the

 

3We also experimented with the Mahalanobis distance measure. Since the grading results were

essentially the same, we only report the results based on the Euclidean distance.
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Table 5.3: Panels that were used as references when grading the finish texture

uniformity of the LBLUE and the MBLUE sets. Each set contains 13 panels.

  _7

  

  

  

 

 

Set ] Reference P5513 ]

No. Abb. Name Least-Unif. Most-Unif.

1 LBLUE 2, 9 10, 13

MBLUE 5, 9 10, 3      

middle half of the data. The extent of the whiskers reflects a confidence interval for

the median, and outlying points (outliers) are plotted individually. One interesting

observation to be made in these plots is the general “behavior” or “trend” in the

feature values. Patterns from the most-uniform reference cluster have smaller fea-

ture values at lower frequencies (features f3 through f9) than the patterns from the

least-uniform reference cluster. The opposite situation is true at higher frequencies

(features f10 through f14). This observation is consistent with the physical inter-

pretation of the frequency-selective filters —— less uniform finish textures are richer

in low frequency components (have larger spatial variations in intensity) than more

uniform finish textures, and vice versa.

Feature Selection

Which subset of the texture features should we use when grading a given set of panels?

Recall that there is a one-to-one correspondence between the texture features and the

filters. Selecting a subset of features, therefore, is equivalent to selecting a subset of

filters. Here we describe feature selection experiments that are based on maximizing

the rank correlation between the visual scale and the texture uniformity grade given

by (5.4). The rank correlation is given by

  

r: ‘7de RXS‘ _ S) = ?=‘ R‘S‘ " ”(mi-1y (5.5)

\/Zi=1(
Ri- R)2 ?=1 (Si _ S)?

n(n132-1)
7

where R,- and S,- are, respectively, the rank of texture uniformity grade 7,- (among

7’s) and the rank of visual scale value v,- (among v’s), and n is the total number of

panels. Note that unlike correlation, which measures the linear association, the rank

correlation measures the monotone association between two sets of data.
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Figure 5.6: Box plot of reference patterns used in grading the texture uniformity

of panels in the LBLUE set. There are 16 patterns in each cluster. The “a” and

“b” suffixes indicate least—uniform and most-uniform clusters, respectively.
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Figure 5.7: Box plot of reference patterns used in grading the texture uniformity

of panels in the MBLUE set. There are 16 patterns in each cluster. The “a” and

“b” suffixes indicate least-uniform and most-uniform clusters, respectively.
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Our feature selection procedure can be summarized as follows. Using a texture

grading scheme we assign a texture grade to each panel in a given set. We then

compute the rank correlation between the texture grade and the visual scale value.

We repeat this procedure for every subset of texture features. We then choose the

feature subset that results in the highest rank correlation as the “best” feature subset.

Starting with all 12 texture features (corresponding to filters with 2 through

64 J2 cycles/image-width center frequencies) we performed exhaustive feature selec-

tion. The best feature subsets for the LBLUE and the MBLUE sets of panels, along

with the corresponding rank correlations, are given in Tables 5.4 and 5.5, respectively.

As expected, occasionally, there were ties between different feature subsets. These

ties were resolved based on the direct correlation between the texture grade and the

visual scale value. That is, we chose the feature subset with a higher correlation.

The highest rank correlation for the LBLUE set is is 0.98, and is achieved by

feature subsets {f5, f14} and {f5, f12, f14}. The highest rank correlation for the

MBLUE set, on the other hand, is 0.91 and is achieved by feature subset {f3, f7, f10, fl 1}.

Even though, the LBLUE and MBLUE sets of panels have different colors, one would

expect that the best feature subsets for both sets of panels to be the same. By

comparing the feature subsets of size 4 for both sets of panels, we looked for a com-

mon subset that could be used for grading both sets of panels. The feature subset

{ f3, f7, f9, f11} results in a rank correlation of 0.95 for the LBLUE set and 0.89 for

the MBLUE set. Therefore, although the “best” feature subsets for the two sets of

panels are not the same, there does exist a feature subset which results in acceptable

performance for both sets.
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Table 5.4: Results of reference-based grading of finish texture uniformity for the

LBLUE set. This table shows the “best” feature subsets of size 1—7 and correspond-

ing rank correlations between texture grade and visual scale.

Size Best Subset Rank rrelation

0.91

0.98

0.98

0.97

0.97

0.96

0.96 

Table 5.5: Results of reference-based grading of finish texture uniformity for the

MBLUE set. This table shows the “best” feature subsets of size 1—7 and correspond-

ing rank correlations between texture grade and visual scale.

,
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5.4.2 Regression-Based Grading

Now we propose a different approach to relate the visual scale values for finish texture

uniformity to the texture features. This alternative grading scheme is based on the

classical linear regression model. Unlike our previous texture grading scheme, which

uses only the panels with extreme appearance qualities as ‘training’ samples, in the

following regression-based grading scheme we will use all the panels in a given set for

estimating the parameters of the regression models.

In the regression model, we treat the visual scale for texture uniformity as the

dependent variable, and the texture features computed from the filtered images as

independent (or predictor) variables. Specifically, let v be the visual scale for a panel

and f.- be the texture features associated with the panel. (Recall that texture fea-

tures for a panel are obtained by averaging the texture features for all eight images

corresponding to the panel.) Then the linear regression model is given by

v=a+Ah+an+m+Afl+a we

where 6 accounts for random measurement error or the effects of other variables not

explicitly considered in the model. We estimate the regression coeflicients, 3,, using

the method of least squares. Let the least square estimates of these coefficients be

80, 61, . . . , 8,. Then the predicted visual scale values are given by

é=3o+31f1+32f2+~-+Brfr. (5-7)

The quality of the fit can be measured by the coeflicient of determination (COD)

which is given by

sse

192:1— 

sstot ’ (5.8)

where sse = 2;;102, - 13,-)2, sstot = zy=1(vj — t7)2, and n is the total number of

observations. This quantity is an indicator of the proportion of the total variation

in the v,- explained by predictor variables. In the process of deciding which subset

of features explains the visual scale values better, we will compare regression models

with different number of predictors. In order to be able to compare these models with

one another, we use the adjusted coefficient of determination which is given by

Reel—.ZiZZ/‘E’Jffy (5.9)

where p is the total number of parameters (including flu) in the fitted model [31].
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Model Selection

In the following experiments, we continue to use the texture features computed from

images normalized by their AAD measure. Although examining the regression models

corresponding to all possible subsets of features is computationally demanding, the

required computations in this case were not prohibitive. The “best” regression model,

and hence the “best” feature subset, is determined as follows. First, we determine

the best regression model for a given size of the feature subset. The criterion for best

model is to maximize the COD (R2). Among these feature subsets, the subset with

the highest adjusted COD (1‘?2 ) is singled out as the best model. This model can
adj

then be used for grading (predicting) the degree of uniformity of finish texture for

future samples.

Tables 5.6 and 5.7 show the feature subsets of size 1 through 7 from the set

{ f3, . . . , f14} that give the best regression models for the ‘LBLUE and MBLUE sets,

respectively. As seen in Table 5.6, for example, the adjusted COD first tends to

increase as more variables are included, but it begins to flatten when more and more

variables are used. Note that the number of samples used for estimating the regression

coefficients is small (12 or 13). The estimated coefficients for regression models with

a large number of independent variables is, therefore, not very reliable. Also, our

reference-based grading scheme indicated that a feature subset of size 4 results in

acceptable performance. We will, therefore, consider models with no more than 4

independent variables.

Based on the above constraints, the best regression model for the LBLUE set is

found to be

i) = 13.859 — 1.5315 f3 + 3.1389 f4 — 2.1269 f5 — 0.4014 f8 (5.10)

The best regression model for the MBLUE set, on the other hand, is found to be

ii = 82.9490 — 3.3293 f7 + 3.3342 f3 — 1.4469 f10 - 0.9514 f“ (5.11)

Note that the best regression models for the LBLUE and the MBLUE sets are not

the same. Looking for a common regression model that gives acceptable performance

for both sets of finish samples, we found the feature subset {f3, f4, f6, f13}. The

corresponding regression model has a COD of 96.93% for the LBLUE set and 88.60%

for the MBLUE set. We may, therefore, use the same subset of features for grading

both sets of panels.
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Table 5.6: Results of regression-based grading of finish texture uniformity for the

LBLUE set. This table shows selected variables (texture features) for regression

models with 1—7 variables and corresponding coefficients of determination.

Size Best Subset

83.27

89.91

95.77

97.44

.1

98.47

98.22 

Table 5.7: Results of regression-based grading of finish texture uniformity for the

MBLUE set. This table shows selected variables (texture features) for regression

models with 1—7 variables and corresponding coefficients of determination.

Size
.

52.18

64.46

77.47

89.99

94.71

95. 4

96.88 

Grading Examples

Since there are only a small number of panels in each set we have to use all of them

for parameter estimation. If we had more panels in each set, we could have used

a subset of them to estimate the parameters of the regression model and use the

rest to validate the model. An alternative strategy is to obtain a regression model

by using the samples in one set and then use the model to predict the visual scale

values for another set. We have to remember, however, that since each set of panels

was evaluated separately, the visual scale values for the two sets are not on the same

scale. In fact, the range of visual scale values for the LBLUE set is wider than that
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Table 5.8: Grading MBLUE set using regression model for LBLUE set. Correlation

= 0.87, Rank Correlation = 0.88.

P No. ct

1.10

0.61

2.32

2.04

0.00

1.36

1.12

1.77

0.13

3.42

2.

0.43

0.85

1

2

3

4

5

6

7

8

9

 
of the MBLUE set (see second columns in Tables 5.1 and 5.2). Therefore, the rank

correlation between predicted and actual visual scale values is perhaps a more suitable

figure of merit than the direct correlation between them.

In the following two grading examples, we used the feature subset {f3, f4, f6, f13}.

Using the visual scale values for texture uniformity for panels in the LBLUE set, we

first estimated the parameters of the regression model. We then obtained the pre-

dicted visual scales for panels in the MBLUE set using this model. The actual and

predicted visual scale values are tabulated in Table 5.8. The correlation and rank

correlation between predicted and actual scales are 0.87 and 0.88, respectively.

Similarly, we used the visual scale values for panels in the MBLUE set to esti-

mate the parameters of the regression model. We then obtained the predicted visual

scale values for panels in the LBLUE set. The results are given in Table 5.9. The

correlation and the rank correlation between predicted and actual scales are 0.76 and

0.74, respectively. These results indicate that our regression-based grading scheme is

fairly robust.
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Table 5.9: Grading LBLUE set using regression model for MBLUE set. Correlation

= 0.76, Rank Correlation = 0.74.

  

  

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel No. J Actual ValErPredicted Value ]

1 3.02 1.40 E

2 0.21 -0.75

3 3.62 1.78

4 2.14 -0.44

5 2.43 1.28

6 1.32 0.80

7 1.04 0.25

8 3.37 0.38

9 0.25 0.88

10 4.80 2.56

12 1.40 0.78

13 4.28 3.11     
5.4.3 Mottle, Flake-Size, and Blotchy Components

We now consider additional visual scale values that rank the appearance of the finish

samples along other components. In this section we will use the linear regression

setting described to obtain best regression models explaining mottle, flake-size, and

blotchy components of the appearance of the metallic finish samples. Our criterion

for the best regression model is also the same — i.e., to maximize R3,,

Tables 5.10 and 5.11 give the best feature subsets of size 1 through 7 that result

in the best regression models, for the LBLUE and MBLUE sets, respectively. The

best feature subsets for the LBLUE and the MBLUE sets are {f3, f4, f6, f9} and

{f3, f4, f5, f13} and they explain 97.50% and 85.49% of the variations in the visual

scales for mottle appearance, respectively. Based on these experiments, the best

regression model explaining the mottle component of panels in the LBLUE set is

i} = —12.61 + 2.0233 f3 — 2.9597 f.; + 1.6562 f6 + 0.5511 f9 (5.12)

The best regression model for the MBLUE set, on the other hand, is

0 = -149079 + 4.713 f3 — 13.042 f4 + 9.861 f5 + 2.309 f13 (5.13)
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The feature subsets resulting in the best regression models explaining the ‘flake-

size’ component of finish appearance of panels in the LBLUE and MBLUE sets are

given in Tables 5.12 and 5.13, respectively. Similar results for ‘blotchy’ components

of finish appearance are given in Tables 5.14 and 5.15.
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Table 5.10: “Best” feature subsets of size 1—7 from the set {f3, . . . , f 14} explaining

the visual scales for the ‘mottle’ component of finish texture appearance for panels

in the LBLUE set.

73.72

91.84

95.06

96.07

98.15

99.13

99.62 

Table 5.11: “Best” feature subsets of size 1—7 from the set {f3, . . . , f 14} explaining

the visual scales for the ‘mottle’ component of finish texture appearance for panels

in the MBLUE set.

 

 

  

  

  

 

 

 

 

 

Size Best Subset_ R2 %TRim

1 _ [{7} 47.92 43.19

2 {f7,f14} 69.26 63.12

3 {f3, f4, f5} 78.85 71.80

4 {f3, f4, f5, {13} 85.49 78.23

5 {f8, f9, f12, £13, {14] 89.18 81.45

6 {f3, f8, f9, f12, £13, {14] 91.76 83.52

7 {f3, f8, f9, f11,f12, £13, {14]} 94.70 87.29     
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Table 5.12: “Best” feature subsets of size 1—7 from the set {f3, . . . , f14} explaining

the visual scales for the ‘flake-size’ component of finish texture appearance for panels

in the LBLUE set.

 

Table 5.13: “Best” feature subsets of size 1-7 from the set {f3, . . . , f 14} explaining

the visual scales for the ‘flake-size’ component of finish texture appearance for panels

in the MBLUE set.

40.63

67.93

69.40

80.20

91.69

98.93

99.00

 

 

 

 

 

 

 

 

 

      

Size I Best Subset 1 4R2 % I Rid,- %]

1 — ' ‘{f3}' 62.38 58.96

2 {f3,f8} 89.58 87.50

3 {f3, f4, is? 93.34 91.13

4 {f7, f8, f10, {12] 94.09 91.14

5 {f6,t7,f8,f10,f12] 96.07 93.27

6 {f6, {7, f8, f10, £11, {12} 96.36 92.72

7 {f4,f6,17,18,f10,f11,f12] 96.67 92.02
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Table 5.14: “Best” feature subsets of size 1—7 from the set {f3, . . . , f14} explaining

the visual scales for the ‘blotchy’ component of finish texture appearance for panels

in the LBLUE set.

 

Table 5.15: “Best” feature subsets of size 1—7 from the set {f3, . . . , f 14} explaining

the visual scales for the ‘blotchy’ component of finish texture appearance for panels

in the MBLUE set.

76.42

87.95

95.60

96.62

98.79

99.21

99.51

  
#—

  

 

 

 

  

 

 

 

 

I Sizje ;Bwt Subset I R2 % R33 %

1 ' {f7} 34.52 28.57

2 If7,f14} 70.87 65.04

3 {f7,f12,f14} 72.57 63.43

4 {f7,f12,f13,f14] 75.28 62.92

5 {f8,f10,f12,f13,f14] 83.93 72.45

6 {f7,f8,f10,f12,f13,f14] 90.60 81.20

7 {f3, f8, f9,f11,f12, f13,f14]} 91.81 80.33     
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5.5 Summary

In this chapter, we addressed a practical problem where texture analysis is required.

The problem involved automated visual inspection of the textural appearance of au-

tomotive metallic finishes. We addressed imaging and preprocessing requirements

and demonstrated that a multi-channel filtering technique can be used to successfully

characterize the finish texture. We also developed two alternative methods for grad-

ing the degree of uniformity of the finish texture. Our ‘texture grading’ experiments

showed that there is a high correlation between our texture uniformity grade and the

visual scaling of the finish samples by finish inspection experts.

Non-uniform illumination of the panels due to their specular nature, and resolu-

tion requirements forced us to acquire multiple images from small areas on the panel

surface. Clearly, it is more desirable to have a single image acquired from the entire,

or a significant portion, of the panel surface. When judging the appearance of a fin-

ish sample, human observers are more likely to base their judgment on simultaneous

examination of the entire panel. Currently, the resolution of most 2-D sensors are

limited to 1024 X 1024 pixels. For imaging larger areas, therefore, one will need to

scan the panels with a 1-D sensor array (along with a linear light source).

The filtering and feature computation operations can be performed in parallel,

regardless of the number of filters. Therefore, a fast, real-time implementation of our

grading techniques is possible. Moreover, our grading experiments showed that only

a small number of filters is sufficient. The results of our feature selection experiments

indicate that using a small number of features is not only possible, but also leads

to improved performance. Moreover, these results indicate that a common feature

subset can give acceptable performance across different sets of metallic finish samples.

In our texture grading experiments, we represented each finish sample by the

mean feature vector for all eight images from the panel. This representation assumes

that the variation of texture features across images are negligible. However, when

grading texture uniformity, the variation of texture features across the panel could be

a good indicator of degree of uniformity of finish texture. That is, larger variations

would indicate that the texture is less uniform. This approach to grading finish

texture uniformity should be examined.



Chapter 6

Conclusions and Future Research

Texture analysis has been an active research area in computer vision for more than

two decades, and has proved to be a very difficult problem. This difficulty largely

stems from the diversity of natural and artificial textures, which makes a universal

definition of texture impossible. Compared to other approaches, the multi-channel

filtering approach to texture analysis is more general and applies to a larger class

of textures. This generality is a direct consequence of reliance on basic attributes

of frequency (size) and orientation, and the inherent multi-resolution nature of the

approach.

In this dissertation, we presented several multi-channel filtering techniques. Ma-

jor contributions have been:

1. A detailed methodology for modeling the ‘channels’ by even-symmetric Ga-

bor filters, and a systematic filter selection scheme based on an intuitive least-

squares criterion.

2. A simple but general methodology for extracting texture features using a non-

linear transformation and local “energy” computation.

3. Incorporating spatial adjacency information in the region-based texture seg-

mentation algorithm.

4. An edge-based texture segmentation technique based on combining the “evi-

dence” for texture boundaries in different feature images.

5. Integrating the region- and edge-based texture segmentation algorithms and

eliminating the need for knowing the “true” number of texture categories.

6. Application of a multi-channel filtering technique to automated visual inspection

of automotive metallic finishes.

7. Reference-based and regression-based methodologies for grading the degree of

uniformity of metallic finish texture.

111
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We reported both unsupervised and supervised texture segmentation experi-

ments. In the supervised segmentation experiments we used a feed-forward neural

network, in addition to several other classifiers. The texture segmentation experi-

ments showed that our texture features can discriminate among a large number of

textures, including some artificially generated texture pairs with identical second- and

third-order statistics.

One limitation of our definition of texture features is the lack of a criterion

for deciding the optimal value of a, which controls the severity of the threshold-

like nonlinear transformation in (3.10). In the texture segmentation experiments,

we used a fixed empirical value. However, the optimal value of a is likely to be

different for different channels, and for different images. One should consider using

the statistical properties of the input image and the filtered images to estimate the

optimal values [10, 92]. Also, we assume that different channels are independent

from each other. However, there is psychophysical and physiological evidence for

inhibitory interactions between different spatial-frequency channels [29]. Allowing

inhibitory interactions among the channels is shown to have the potential to reduce

the effective dimensionality of the feature space [8].

Our texture segmentation techniques are only applicable to textured images.

They are unable to discriminate between (nearly) uniform gray-level regions. How-

ever, in real world images, both textured regions as well as regions with nearly uniform

gray levels are often present simultaneously. An extension of the current techniques

that allows handling such images would be highly desirable. A simple approach would

be to add low-pass Gaussian filters with different cutoff frequencies to the original

Gabor filter set. Note that these low-pass filters can be viewed as Gabor filters with

zero center frequencies. However, we would like to point out that, in some appli-

cations, it might be desirable to separate nearly-uniform (untextured) regions from

textured regions. Figure 6.1(a) shows the top view of a scene with a notebook (tex-

tured cover) and two flat “tub blocks” with different colors — pink and blue. As

seen in Figure 6.1(b), the algorithm successfully separates the textured region from

untextured regions. Such a property may also be useful for separating text from

“non—text” in automated document analysis applications [34]. When viewed at an

appropriate resolution, the text forms a distinct texture of its own, allowing it to be

discriminated from photographs and other non-text items in the document image.

In its current form, the edge-based texture segmentation technique in Chapter 4
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(b)

Figure 6.1: (a) A 256 x 512 image of a scene containing both textured and untex-

tured objects. (b) Two-category segmentation obtained using a total of 16 Gabor

filters and the pixel coordinates.
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has certain limitations. The process of adding the magnitude responses of different

channels enhances some texture boundaries more than others. This is particularly

true when there are a large number of textures in the image. An adaptive hysteresis

thresholding, rather than the current global thresholding method, may alleviate this

problem. However, we believe that a different method of combining the magnitude

responses should be investigated.

In Chapter 5, the regression-based method for grading the degree of uniformity

of metallic finish texture is more rigorous than the reference-based method. This

method, however, requires more training data. In the experiments, we used the finish

samples from one set to estimate the parameters of the regression model and used

samples from the second set to validate it. Further evaluation of the regression-based

grading method using larger sets of finish samples is recommended.

In addition to improvements/extensions suggested in the previous paragraphs,

we have identified the following future research problems in texture analysis in general,

and in multi-channel filtering approach in particular.

0 A multi-channel filtering approach for estimating the orientation of a textured

surface patch. Almost all existing shape-from-texture methods require extract—

ing isolated texture primitives, e.g. blobs. Using the existing, or a similar defini-

tion of texture features we should be able to measure texture gradients without

the need for extracting isolated primitives.

0 Considering the survival value of some perceptual processes for animals and

the human being, it seems very likely that some processes, including texture

perception, are biologically adapted to solve specific visual tasks that arise in

the natural environment. The feasibility of encoding higher-level knowledge

of the scene, for example shape of the regions or boundaries, in the low-level

texture processing must be explored.

0 Color vision has become an active research area in computer vision. Integrating

texture and color information, therefore, is another potential research area in

texture analysis.



Appendix



Appendix A

Generating Filter Functions

In this appendix we describe the implementation of the Gabor filters used by our

texture segmentation algorithm. We perform the filtering operations through mul-

tiplication in the Fourier domain, rather than through convolution. Therefore, we

implement each Gabor filter by sampling its Fourier transform. This direct imple-

mentation is faster than sampling the spatial domain representation of the filter and

then computing its DFT. Furthermore, direct sampling in the Fourier domain avoids

possible distortions due to aliasing.

In order to generate a filter function in a rectangular array, prior to sampling,

one must scale the Fourier transform of the 2-D function along one of the axes. This

can be demonstrated as follows. Let C(u, v) be the DFT of a discrete realization of a

2-D function, g(.r,y), in an N, X Nc array, where N, and N, are the number of rows

and columns, respectively. That is,

use vy

C(uw) = 2: gm) exp{—J2vr(7v—c- F3} , (M)

where u is in cycles/image—width and v is in cycles/image-height. We can rewrite

(A.1) as follows.

, u +v’

C(uw ) = 2}: 908,9) exp {—J 2r17V—Ii)} , (A2)
a: y C

where v’ = (NC/N,)v. Here, both u and v’ are in cycles/image—width. Thus, a

discrete realization of an even-symmetric Gabor filter in an N, X Nc array is obtained

by uniformly sampling the following continuous function.

 

 

Hat) = ex, {_é [(212392 + «wall/3v) ll+

ex, I-% [(u :30)? +((N./01:r.)v) l (4.3)

Note that the center radial frequency of this Gabor filter is no cycles/image-width

and its center orientation is 0. A Gabor filter with center orientation of 00 is ob-

tained by a rigid rotation of (A3) prior to sampling. Also, note that the choice of
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cycles/image-width as the unit for measuring the frequency is arbitrary and that one

can use cycles/image-height as well. Similar scaling applies to the direct implementa-

tion of other filter functions in the spatial-frequency domain, including the isotropic

frequency-selective filters used in Chapter 5.
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