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ABSTRACT

STOCHASTIC RESPONSE OF DECK ARCH BRIDGES

TO CORRELATED SUPPORT EXCITATIONS

By

Basheer Nmair Sweidan

Stochastic analysis to correlated support excitations was per—

formed on models of the 700 foot Cold Spring Canyon Bridge (CSCB) in

California, and the 1700 foot New River Gorge Bridge (NRGB) in West

Virginia.

A space-time earthquake ground motion model that accounts for

both coherency decay and seismic wave propagation is used to specify the

support motion. A random vibration approach combined with finite ele-

ments was used to develop expressions for the structural response. Three

types of excitations were considered at the supports: (1) fully corre-

lated support motion; (2) delayed excitation caused by wave propogation;

and (3) correlated excitation accounting for both wave propagation and

coherency decay. For each type of support motion, two seperate sets of

model parameters representing stiff and soft site conditions were con—

sidered.

The results of the study indicate that the effect of the spatial

variation of ground motion is very significant, especially on the in-

plane responses of axial forces, bending moments and vertical displace-

ments of the bridge. The ground motion parameters and seismic wave

velocity is found to substantially influence the responses of the two

bridges. The influence of different correlation models of ground motion

on the lateral responses was irregular and differs from one member to

another. The lateral displacements were not as greatly influenced as

the vertical displacements by the type of correlation of support excita—

tion. The response to the wave propogation effect and the more general



 

case (inclu

the most, a

Non

an earthqua

the respons



 

case (including wave propogation and coherency decay) were within 20% at

the most, and in general within 7% to 10% from each other.

Nonstationary response was also examined. It was found that for

an earthquake having a duration of strong shaking of 5 seconds or more,

the responses were close to those for stationary exctiation.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 LITERATURE REVIEW

Lifeline systems such as bridges and pipelines are part of the

very important infrastructures serving society. The ability of these

lifelines to function after an earthquake is of great importance.

The difference between lifeline systems and conventional

structures is that typical lifelines extends for large distances above

or under the ground surface. Because of this, they are very sensitive

to the spatial variation of earthquake ground motion, and their analysis

and design should take this into consideration.

The traditional method of analyzing structures under the effect

of ground motion is to perform time history analysis based on recorded

strong ground motion. For a long structure with multiple supports, the

variation of seismic ground motion due to travelling waves can be

accounted for by considering the recorded time history as the input

motion at one support, with the input motion at the other supports being

obtained by considering a delay in the arrival of the shear waves. This

deterministic approach, however, is only capable of representing

travelling waves, which is only one feature of realistic space-time

variation of ground motion.

A comprehensive deterministic study on the effect of unequal

seismic support motion was conducted on two steel deck arch bridges

(Dusseau and Wen, 1985). In that study the Cold Spring Canyon Bridge in

California and the New River Gorge Bridge in West Virginia were studied

to determine the effect of unequal support motion on the responses of

the two bridges. An outline of the conclusions of this study will be

presented in Chapter 4.
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In recent years, studies have been conducted on the response of

lifeline structures using stochastic models of ground motion. The

response of a suspension bridge subject to multiple support excitations

by means of random vibration theory was conducted by Abdel-Ghaffar

(1982). He found that the response values associated with correlated

multiple-support excitations are significantly different from those

obtained through the uncorrelated case.

In a study on the response of a burried pipline to random ground

motion, Hindy and Novak (1980) concluded that the lack of correlation of

seismic excitation could produce excessive stresses in the pipe. These

stresses depend on the degree of correlation of the excitation and its

frequency content.

The effects of spatially varying stochastic model of ground

motion on the responses of pipelines and bridges of various span lengths

in the longitudinal, lateral and vertical directions were also studied

by Harichandran and wang (1988), and also by Zerva and Wen (1988).

Based on these, the following conclusions can be made:

1. The assumption of perfectly correlated earthquake ground

motion is not always safe in the seismic evaluation of

pipelines.

2. The effect of differential ground motion is not significant

for typical single-span, simply supported bridges, and

assumming identical support excitations will lead to

conservative stress response estimates. The assumption of

perfectly correlated support motion is therefore a valid

approximation for spans up to 200 m.

3. The spatial variation of earthquake ground motion is

important for the analysis of indeterminate structures, and
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neglecting this can result in significant error in stress

estimation.

All the above mentioned studies indicate the importance of

considering the effect of spatial variations of earthquake ground motion

on the response of long structures.

1.2 OBJECTIVE AND SCOPE

In this study the models of two deck arch bridges, the Cold

Spring Canyon Bridge and the New River Gorge Bridge are examined under

the effect of partially correlated multiple support excitation. The

formulation of the equations of motions is developed using finite

element and random vibrations methods. The responses of the bridges are

obtained for different types of ground motion inputs, including those

commonly used in current practice. The responses of the bridges are

analyzed and compared to determine the worst type of ground motion that

induces the highest responses.

1.3 ORGANIZATION

 

A brief summary of the contents of each chapter is presented

here.

Chapter 2 covers in some detail the description of the two

bridges. The method used by Dusseau (1985) to obtain the one-plane

model is diSCussed in some detail, since this same model is used in this

work. Also, the chapter contains discussions about the local and global

coordinate system, transformations and stiffness matrices. A

description of the computer program used in the analysis is provided.

Chapter 3 presents the development of the equations of motions

using finite element and random vibration methods. Detailed

deriviations of the response components is presented. The model used
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for the cross spectral density function of the ground acceleration is

discussed.

In Chapter 4, results of fairly extensive analysis of the two

bridges are presented. The responses of the two bridges to different

types of ground motions are discussed in detail. The effects of

structural stiffness and shear wave velocity are studied. The

assumption that the ground motion constitute a stationary random field

is checked. A comparison between this study and the deterministic study

conducted by Dusseau and Wen (1985) is presented.

In Chapter 5, major conclusions of the results from this study

are summarized. the avenues in which future research in this area may

proceed are also discussed.
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CHAPTER 2

ARCH BRIDGES AND BRIDGE MODELING

This chapter contains a summary of description of the Cold

Spring Canyon Bridge (CSCB) and the New River Gorge Bridge (NRGB)

(Dusseau and Wen, 1985). Also, this chapter contains the procedure of

modeling the (CSCB) and (NRGB) into in-plane and out-of—plane models

(Dusseau and Wen, 1985), so that the reader of this dissertation will

have the full information to understand the models that are used to

analyze the two bridges.

The first section of this chapter discusses the basic features

of arch structures and their classification.

The second section describes the two deck arch bridges used in

this study, and includes the geometric parameters of the bridges and

their main structural components.

The third section discusses the type of finite element used in

the analysis, their stiffness matrices, and the local and global

coordinate systems.

The fourth section discusses the modeling of the two bridges as

two-dimensional planar structures.

2.1 ARCH BRIDGES

Arch Bridges made of steel and reinforced concrete have been

used in transportation networks throughout the world. With the use of

structural steel it is possible to economically construct long span arch

bridges ranging from a minimum of about 190 ft. to a maximum of about

1700 ft. With present high-strength steels and under favorable soil

conditions, spans of the order of 2000 ft. are feasible for economical

arch construction.
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Cross sections of the arch are designed for axial thrust,

bending moment and shear forces, with magnitudes depending on the

location of the pressure line (funicular polygon of applied loads). If

the pressure line coincides with the axis of the arch (as in uniformly

loaded parabolic arches), all cross sections are subject to compression

with no moment or shear. If the pressure line falls within the kern of

the section, there will exist thrust, bending moment and shear, but no

tension on the cross section. Finally, if the shape of the structure

differs from the pressure line, moment may become dominant.

2.1.1 CLASSIFICATION OF ARCH BRIDGES

Arch Bridges are classified as trussed or solid ribbed. If the

horizontal thrust is taken by structural ties between the reaction

points then the arch is referred to as a tied arch.

Arches are also classified according to the degrees of static

indeterminancy. A fixed arch in which rotation is prevented at the ends

is a three degrees indeterminate structure. A one-hinged arch is a two

degrees indeterminate structure. A two-hinged, and three-hinged arch is

a one and zero degrees indeterminate structure, respectively.

In addition arch bridges are classified as "deck construction"

when the arches are entirely below the deck, "through arch", when the

arch is entirely above the deck and the tie is at deck level, "half

through arch" when the deck is at some intermediate elevation between

springing and crown.

In this study we are concerned with the deck arch bridges,

because the mass of the bridge is concentrated in the deck at a high

elevation from the springing. This makes the deck arch bridges

extremely vulnerable to seismic ground motion relative to the other

types of arch bridges. Figure 2-1 shows a typical deck arch bridge.
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2.2 DECK ARCH BRIDGES USED IN THE STUDY

In this study two bridges were chosen: The Cold Springs Canyon

Bridge (CSCB) in California and the New River Gorge Bridge (NRGB), in

West Virgina, the worlds longest steel deck arch Bridge.

2.2.1 COLD SPRING CANYON BRIDGE

The Bridge is located about 13.5 miles North of Santa Barbara,

California. It is a two lane solid-ribbed steel deck arch bridge. All

major structural steel members are made of A373 steel which has a

minimum yield strength of 33 ksi. Figure 2-2 shows an elevation view of

the CSCB, while Figure 2-3 depicts a typical cross section. As shown in

Figure 2—2, the bridge consists of 19 panels with two of 46.5 feet

length, 13 of 63.64 feet length and four of 74.385 feet length, yielding

an over all length of 1217.8 feet. The two hinge arch consists of two

rectangular steel box girders spaced 26 feet apart and hinged at their

abutments. The arch has 11 panels of 63.64 feet length, yielding a

total arch span of 700 feet.

The configuration of the arch is based on a seventh degree

polynomial with the southern hinges being 46.48 feet above the northern

hinges and with the rise at the highest point of the arch being 144.5

feet above the northern hinges, seventh degree polynomial was used to

minimize dead load moments in the arch. This configuration also makes

the main span column heights symmetric about the center of the arch span

despite the overall deck slope of 6.64%.

The arch ribs are connected laterally by a system of crossframes

with one crossframe at each panel point and three crossframes spaced

equally between panel points. The ribs are also connected laterally by
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top and bottom lateral bracing which, along with crossframes and the

arch ribs, creates a box shaped cross-section with the arch ribs acting

as sides.

The columns located at panel points 2 to 5, 7 through 16, 18 and

19 are steel box sections with hinge connections at the top and bottom.

The towers at panel points 6 and 17 consist of steel box section columns

that are rigidly fastened at their bases and are connected laterally by

two steel box girders, intermediate struts, composite steel box girder,

and concrete slab at the top.

The deck consists of a 7 inch two-way reinforced concrete slab

which acts compositely with four longitudinal plate girder stringers,

the latter being supported by plate girder floorbeams. The deck is

divided into three continuous segments by hinged tower connections at

panel points 6 and 17, which provide a release for in plane bending

moment and warping bimoment at these points.

Between panel points 11 and 12, a system of cable x-bracing is

provided between the deck and the arch in the longitudinal direction,

and a system of cable v-bracing in the lateral direction.

2.2.2 THE NEW RIVER GORGE BRIDGE

The New River Gorge Bridge is a four lane, box truss, steel deck

arch carrying U.S. 19 over New River Gorge and Route 82 in West

Virginia. The principal material used in the bridge is ASTM A588 grade

A steel with a minimum yield stress of 50 ksi.

Figure 2-4 shows an elevation View of NRGB, while Figure 2-5 is

a typical cross-section. As shown in the figures, both the deck and the

arch in the NRGB are essentially box trusses consisting of four box

girder chords connected by lateral and vertical truss members. Each

panel in the deck is divided into 6 subpanels, while the arch panels are
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divided into 1% or 3 subpanels. The deck in the NRGB consists of four

panels in the north approach span, each of length 143.5 feet, five

panels in the south approach span, each of length 126.5 feet, and 14

panels in the main span, each of length 129.75 feet, yielding a total

bridge span of 3030.5 feet. The two hinged arch consists of 12 center

panels, each of length 129.75 feet, and two end panels, each of length

71.5 feet, yielding a total arch span of 1700 feet.

The configuration of the arch is based on a symmetric five

centered series of circular arcs which results in a maximum arch height

of 370 feet above the hinges. The deck and arch are connected at each

panel point in the main span by bents consisting of two box section

columns joined laterally by diagonal truss elements. Similar bents

connect the deck to concrete pedestals at each panel point in the north

and south approach spans. The approach span deck segments are isolated

from the main span deck segments by expansion joints at the top of bents

5 and 19. At these points, the bottom chords of the approach span deck

are pinned to the top of the bents while the bottom chords of the main

span deck are attached to the bents by rollers. Thus the expansion

joints provide deck axial force, bending moment and warping bimoment

releases at these points.

2.3 BEAM ELEMENT STIFFNESS MATRIX LOCAL AND GLOBAL COORDINATES

 

2.3.1 BEAM ELEMENT WITH WARPING AND SHEAR DEFORMATION

The Beam Element used in performing the random vibration

analysis of the two bridges includes the warping deformation (W.F. Chen

and T. Atsuta 1977). Each node has seven degrees of freedom:

Translations Ux U , and Uz’ rotations 0x, 93x and 0 2 and warping
’
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displacemern: 9w. The shear deformation is also included in the

stiffness matrix formulation. Figure 2—6 illustrates the beam element

and the local coordinate system. Also, a standard space truss element

with three translational degrees of freedom at each node is used to

model the truss members.

2.3.2 STIFFNESS MATRTX

The stiffness matrix used in this study (W.F. Chen and T. Atsuta

1977) includes the warping deformation, with some modification to

account for shear deformation. The non-zero entries of the stiffness

matrix are listed below.

E

 

 

K(3,3) = K(10,10) = if (2.1)

K(3,10) = K(10,3) = -%A (2 2)

12EI GK

K(4,4) = K(ll,ll) = 3W + %% “I; (2 3)

L

K(4,ll) = K(ll,4) = -K(4,4) (2.4)

4EIW 4

K(7,7) = K(14,14) = L + 56 GKtL (2.5)

6EIW 3
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G1 and G2 dimensionless shear constants with respect to y and x

coordinates.

If the warping moment of inertia is equal to zero then the

stiffness matrix will be the same as for the standard space frame

elements.

2.3.3 LOCAL AND GLOBAL COORDINATE AXES

Figure 2-7 illustrates the local and global coordinate system

used in the analysis. The transformation matrix formulation is based on

the K node method (W.Weaver Jr., and J.M. Care, 1965). This method was

the coordinates of a third point that lies in one of the principal

planes of the member but is not on the member axis itself. In this

study, the third point must lie in the x-z plane of the elements local

coordinate system, and it cannot lie on the centroidel z axes of the

element.

2.4 MODELING OF THE TWO BRIDGES

As mentioned earlier the Cold Spring Canyon Bridge in California

and the New River Gorge Bridge in West Virginia were studied. It was

very important that the models of both bridges have the fewest number of

degrees of freedom. It would have been very difficult from a

computational time point of view to study the probabilistic response of

the two bridges without having a model of the bridges with reduced

degrees of freedom. The so-called "one-plane—model" is used to

represent each bridge, and the structural parameters derived by Wen and

Dusseau (1985) for the two bridges were used. For completeness, the

next few sections give a summary of the method used by Wen and Dusseau

(1985) to model the two bridges, so that the reader will have a clear
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idea of the "one-plane-model" approach which was used in this study.More

detail is given in Dusseau (1985).

2.4.1 VERSIONS OF THE ONE—PLANE MODEL

The first version of the one-plane model is the "in-plane” model

and was used in the analysis of the two bridges in the X-Y plane for the

horizontal ground motion. Each node has two translational degrees of

freedom in the Global X and Y directions and one rotation about the

global Z axes.

The second version of the one-plane model is the "out-of—plane"

model and was used in the analysis of the two bridges in the lateral

direction. Each node has four degrees-of—freedom (d.o.f.): one

translational d.o.f. in the direction of the Z axis; two rotational

d.o.f.’s about the X and Y axes and one warping d.o.f.

2.4.2 ARCH AND DECK EQUIVALENT BEAM STIFFNESSES

To use the one~plane models for the NRGB and CSCB, it was

necessary to determine the equivalent beam stiffnesses for the arch and

deck components of both bridges. The stiffnesses of the deck for the

CSCB were based on the composite action of the concrete slab and steel

girders. To derive the equivalent beam stiffnesses for the arch of the

CSCB and both the arch and deck of the NRGB, special "cantilevered"

segments of the arch and deck components were analyzed by Dusseau

(1985).

Each cantilevered segment of arch or deck was one panel in

length and included all of the structural components in the actual

bridge. The member stiffnesses and lengths used in these cantilevered

segments were determined as follows: for the deck in the NRGB, three

cantilevered segments were selected to derive the equivalent bean
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stiffnesses that will represent the properties of all existing panels in

the deck; for the arch in the NRGB, the cantilevered segment near the

abutment was used to derive the equivalent beam properties of the

strongest section of the arch, and a segment at the crown of the arch

was used to represent the weakest section in the arch; for the CSCB

arch, average member stiffnesses and lengths in the end panels, in the

quarter point panels and in the crown were used to develop three

cantilevered segments, respectively.

Each cantilevered segment was "fixed" at one end and loads were

applied at the other end. For the CSCB arch which consists of two box

girders connected by lateral members, "fixing" one end of each

cantilevered segment meant preventing all translations and global z axis

rotations of the box girders at one end as shown in Figure 2-8a.

For the NRGB deck and arch, which each consist of four box girder chords

connected by lateral and vertical truss members, "fixing" one end of

each cantilevered segment meant preventing all translations of these box

girder chords at one end as shown in Figure 2-8b.

With one end "fixed", a series of equivalent beam loads were

applied to the free end of each cantilevered segment and the resulting

displacements were then used to determine equivalent beam stiffnesses.

For the CSCB arch assembly, which contains two box girders, forces and

moments equivalent to the desired beam end loads were applied at the

free ends of the box girder ribs, as depicted in Figures 2-8a and 2-9.

For the NRGB arch and deck assemblies, each of which has four box

girders chords, equivalent beam end loads were derived by applying point

loads to the free ends of the box girder chords as shown in Figures 2-8b

and 2-10.

After fixing the cantilevered section at one end and performing

the analysis due to different loading conditions at the other end, the
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Figure 2-8: Cantilevered Segment End Fixity.

(Excerpted from Dusseau (1985))
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Figure 2-10: NRGB Cantilevered Segment End Loads

(Excerpted from Dusseau (1985))
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fixed and loaded ends were reversed so that two sets of end

displacements were obtained. For the in-plane model the two sets of end

displacements were the same. For the out-of—plane model the two sets of

end displacements were different, and the equivalent straight beam

stiffnesses were based on the larger set of end displacements for both

bridges.

To determine the axial area of the equivalent beam element, an

axial force P was applied to the free end of each cantilevered segment

(see Figures 2—9a and 2-10a). Knowing the axial displacement due to

aspecified axial force, the area of an equivalent beam element is

calculated using the formula

A = —— (2.23)

where P is the applied force 6 is the calculated axial displacement.

Similarly, to determine the torsional constant Kt’ a torsional

moment Mx was applied to the free end of each cantilevered segment of

the NRGB and CSCB arches, where warping was ignored (see Figures 2-9b

and 2-10b). The resulting rotation Oz wasrmed to calculate the

torsional constant by the formula

M L

= ———z (2 24)
t Gez '

where G is the shear modulus.

In order to determine the out-of—plane shear area Ay for each

cantilevered segment, an equivalent beam shear force Py was applied to

the free end of each cantilevered segment (see Figures 2-9c and 2-lOc)

resulting in a translation Dp and a rotation RP. Similarly, an
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equivalent bending moment M2 was applied (see Figures 2-9d and 2-10d)

resulting in a translation Dm and a rotation Rm'

The two pair of flexibility equations that govern these two

types of loading are

P L3 P L

_ .X___ _l_
Dp — 3E1 + GA (2.25)

xx y

R = y— (2.26)

D = __ (2.27)

R =_ (2.28)

The two unknowns in the last four equations are IXX and Ay. Because of

the symmetry of the flexibility equations, (2.26) and (2.27) will yield

the same results, thus only equations (2.25), (2.26) and (2.28) need to

be solved in order to achieve equivalence. Letting the length of the

element be a variable equations (2.25), (2.26) and (2.28) yield a system

of three equations with three unknowns Ix , A and Lex’ where LeX is

X y

called the "effective" beam length with respect to out-of—plane motion.

Dividing equation (2.26) by (2.28) yields the following

expression for L .

.ex

2R MX

Lex = P R (2.29)

y m

Substituting (2.29) into (2.28) yields the expression for Ixx'

I =2R MZ/ (EP R2) (2.30)
xx p x y m

Finally, equation (2.25) yields the following expression for Ay.
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3E1
xx

P L3

A = P L / [a [n - —X——§§— ] ] (2.31)

Y Y ex P

Similar expressions for moment of inertia with respect to y axes

Iyy’ shear area AK and the in- plane “effective" beam length Ley were

obtained using similar procedures. The applied free end forces are

shown in Figures 2-9e, 2-9f, 2-lOe and 2-10f.

For the deck in the NRGB, where warping was not ignored, the

equivalent beam warping constant Iw and torsion constant Kt were

determined by applying an equivalent beam torque MZ to the free end of

each cantilevered segment (see Figures 2—9b and 2-10b), which resulted

in an axial rotation Rt and a warping displacement Wt. Then, a bimoment

Mw was applied (see Figures 2-9g and 2-lOg), resulting in a rotation Rw

and a warping displacement Mw'

The two pairs of stiffness equations that governs these two

types of loadings are

  
12EI GK 6E1

_ [ w 36 c] T _ [ w 3 (2_32)
+

L3 30 L

 

___r _é
L + 30 GKtIJ wt (2.33)

W + —3 GK w (2 34)
2 30 t w '

 
EIW

L + % GKtL] Mw (2.35)
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In these four equations, the two unknowns are KC and Iw. Because of

symmetry of stiffness equations, equations (2.33) and (2.34) will yield

the same results. Therefore, only equations (2.32), (2.33) and (2.35)

need to be solved to achieve equivalence. As in the case of bending, by

letting the length of the element L be a variable in equations (2.32),

(2.33) and (2.35), three equations in the three unknowns Kt’ Iw and Lew,

where Lew is the “effective" beam length with respect to warping and

torsion, were obtained.

Solving equations (2.32), (2.33) and (2.35) results in the

following expressions for Lew, KC and Iw'

= /—_— .Lew (_B + (132-4 AC) / 2A (2 36)

2
where A = (-Rm wt Mz) + (wIn Rt Mz) + (MW wt) (2.37)

B = ant MW Rt (2.38)

c = -15 MW R2 (2.39)
t

30MzLew (-3Rt+2WtLew)

t G(36Rt-3WtLew)(—3Rt+2WtLew)+(6Rt—3WtLew)(3Rt—4WtLew)

 
K (2.40)

2 2

(GKtLew) (3Rt-4WtLew)

Iw = (601:) (-3Rt+2WtLew) (2.41)
 

By deriving the beam equivalent stiffness and effective length

for all segments of the arch and deck, the equivalence between the real

bridge structure and the model is assured.
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As mentioned earlier, two cantilevered segments of the NRGB arch

were chosen to represent the strongest and weakest sections. The

stiffness of intermediate segments were calculated at segments midpoints

by using linear interpolation between the stiffnesses of the strongest

and weakest sections. The straight beam elements representing the end

panels in the NRGB arch were 1% subpanels in length, while the other

panels were 3 subpanels. For this case the equivalent lengths Lex, Ley

and Lew, which were calculated for the midpoints of the end elements,

were divided by two.

For the CSCB arch, the three cantilevered segments were based on

average member sizes and lengths over five of the eleven arch panels.

Thus, the stiffnesses for the straight beam elements representing these

five panels were taken to be the same as the values calculated for the

corresponding cantilevered segments. For the intermediate straight beam

elements, the stiffnesses were determined by linear interpolation.

2.4.3 MODELING OF THE DECK OF THE CSCB BRIDGE

Equivalent straight beam stiffnesses for the CSCB deck were

calculated based on the composite action of the four floor stringers and

the concrete roadway deck. Because there are four average floor

stringer cross-sections in the CSCB deck and hence four average deck

cross-sections, four sets of deck stiffnesses were calculated.

Since the roadway slab can be expected to crack under relatively

moderate loads, the first step in calculating the stiffnesses of the

four CSCB deck cross-sections was an estimation of the portion of the

cross-sectional area of the roadway slab that would be in compression

and thus contributing to overall deck stiffness at any given time.

Since the portion of the slab area in compression could be anything from

0 to 100%, a compromise value of 50% was chosen. This assumption
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coupled with a modular ratio of steel to concrete of 10, led to an

"effective" modular ratio of 20. Thus the area of concrete was reduced

by a factor of 20 and then used in conjunction with the areas of the

four floor stringers, the slab reinforcing steel and the deck laterals

to calculate the axial area, shear areas, moments of inertia and the

torsion constant for each deck cross-section.

In determining the warping constants for the equivalent deck

beams, each deck cross-section was first converted to a channel section

with the concrete roadway slab acting as the channel web and the outside

stringers acting as the channel flanges. The first step in this

conversion was to reduce the area of concrete by a factor of 20 and then

divide by 28 feet (the distance between the outside stringers) to get an

effective channel web thickness. Next, the average distance from the

center of the roadway slab to the bottoms of the floor stringers was

calculated and used as a channel flange width. Then, an effective

channel flange thickness was calculated by determining the thickness of

a rectangular flange moment of inertia equal to 1.33 times the moment of

inertia of one floor stringer. The factor of 1.33 was based on 100% of

the stiffness of one exterior floor stringer plus 33% of the stiffness

of one interior floor stringer. Finally, with all of the channel

dimensions determined, the values were substituted into the general

warping constant formula for a channel section and thus the warping

constants for the four deck cross-sections were determined.

The deck expansion connection at panel point 1 was modeled as

semi-rigid with global X axis translation, Y and Z axis rotations, and

Warping displacements of the deck, allowed at this point. The bearing

connection at panel point 20 was also modeled as semi-rigid but with

only Y and Z axis rotations and warping displacements allowed. The deck

joints at panel points 6 and 17 were modeled such that no Z axis moments
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or warping bimoments could be transferred between the approach span

decks and the main span deck.

2.4.4 MAIN SPAN COLUMN AND CABLE MODELING

Except for the columns at panel points 11 and 12, each pair of

main span columns at a given panel point were represented by a single

truss element in the CSCB models. Truss elements were chosen because

the columns in the CSCB (excluding the towers) are hinged at both top

and bottom. The cross-sectional area of these truss elements was taken

to be twice the cross-sectional area of one column.

The systems of columns and transverse cables (Figure 2-11) at

panel points 11 and 12 were each represented by a single beam element in

the CSCB models. A pair of truss elements representing one column and

one lateral cable as illustrated in Figure 2-12 were analyzed in two

dimensions. Loads Py and P2 were applied in turn at the free joint

resulting in translations Dy and Dz. The axial areas of the equivalent

beams at panel points 11 and 12 were determined using A=2PyL/(EDy) where

L is the distance between the arch and deck nodes at panel points 11 and

12 in the one plane models of the CSCB.

The moment of inertia about the global X axis, the shear area in

in the global 2 direction and the effective length were determined in

similar way as discussed in section 2.4.2.

2.4.5 CSCB APPROACH SPAN MODELING

 

The approach spans in the CSCB were represented by translation

and rotation springs. These springs were located at the centroid of the

deck at panel points 6 and 17. Because of the Z axis moment and the

bimoment releases in the deck at panel points 6 and 17. Because of the
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Z axis moment and the bimoment releases in the deck at panel points 6

and 17, no Z axis rotation springs or warping springs were needed at

these points to represent the approach spans.

The beam elements used to represent the approach span decks were

parallel with the global X axis and were of equal length. The moment of

inertia with respect to Y axis and the Z axis shear area were taken as

the represented segment properties. The other section properties were

represented as part of the stiffnesses of the translation and rotation

springs at panel points 6 and 17 as described below.

In order to derive the stiffnesses of the X and Y axis

translation springs and X axis rotation springs at panel points 6 and

17, the north and south approach spans were analyzed in their entirety

with the tower columns, tower struts and deck represented as beam

elements and the remaining columns represented as truss elements. The

centroid of the continuous beam that represented the deck in each

approach span was fastened to the tops of the columns using rigid

elements. Three loads were then applied in turn at the centroid of the

deck at panel point 6 in the south approach span and at panel point 17

in the north approach span. The first load applied was a force FX in

the direction of the global X axis, which resulted in a displacement Dx’

the second load was a Y direction force Fy which resulted in a

displacement Dy and the third load was a moment Mx about the global X

axis which resulted in a rotation ¢x'

The stiffnesses of the X and Y axis translation springs

representing each approach span were determined by Sx=Fx/Dx and

syaFy/Dy’ respectively. The stiffness of the X axis rotation spring was

calculated using RX=Mx/¢X. The X axis translation and rotation springs
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Figure 2-11: CSCB Lateral Cables. (Excerpted from Dusseau (1985))
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Figure 2-12: CSCB Cable Models. (Excerpted from Dusseau (1985))
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were represented by beam elements. The axial areas were calculated

L

using A="E—)—(, where L is the length of the beam element and was taken to

be 10 feet. The torsion constants were determined using Kt=(L Rx)/G

(L=lO feet).

To derive the stiffnesses of the Z axis translation springs and

y axis rotation springs at panel points 6 and 17, only the towers

(Figure 2-l3) were analyzed. First, a force F2 in the direction of

global Z axis then a moment My about the y axis were applied separately

resulting in a displacement D2 and a rotation qSy, respectively. Then

the z axis translation springs and the Y axis rotation springs were

determined using S =F /D and R =M /4S . The torsional constant about
2 z z y y y

the y axis of the beam element was determined using KT=(L Ry)/G, (L=lO),

while the axial area of the Z direction beam element was calculated by

the formula A=(lO Sz)/E' All other stiffness elements for the beam

elements representing the CSCB approach span were taken to be zero.

2.4.6 CSCB MASS DISTRIBUTION

 

The lumped nodal masses were based on the average dead weights

per foot (Merritt, F.S., 1972) of the bridge components. These average

dead load weights per foot are 3930 pounds, 5335 pounds and 210 pounds

for the arch, deck and columns, respectively. Portions of the CSCB

approach span deck, tower and column masses were lumped at the deck

nodes at panel point 6 for the south approach span, and at panel point

17 for the north approach span. For the north span, half of the deck

and tower masses and one-fourth of the column masses were lumped at
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Figure 2-13 CSCB Tower Elevation View. (Excerpted from Dusseau (1985)) 
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panel point 17 in the x and y directions. For the south approach span,

half of deck and tower masses and one—fourth of the column masses were

lumped at panel point 6 (Figure 2-2).

2.4.7 FINAL CSCB MODEL

The one-plane model of the CSCB is shown on Figure 2-14. The

equivalent beam elements of the arch and the deck are numbered from 1 to

11. The two truss elements representing the cables which transfer

longitudinal loads from the deck to the arch are labelled l and 2. Also

shown are the two deck moment releases resulting from the hinge

connection at the towers. Figure 2—15 shows the numbering used in the

finite element model. The stiffness properties of all the elements are

specified in Table 2-l. The listings for the lumped masses are shown in

Table 2-2.

2.4.8 FINAL NRGB MODEL

The same procedures were used to derive the one-plane model of

the NRGB. The equivalent beam elements of the deck and the arch are

numbered from 1 to 14 (see Figure 2-16). The two truss elements

representing the cables which transfer longitudinal loads from the deck

to the arch are labelled l and 2. The deck axial force and moment

releases resulting from the expansion joints at the ends of the main

span are also shown.

The numbering used in the finite element model is shown in

Figure 2-l7. The masses lumped at each node of the model are based on

the total weights of the arch, main span deck, approach span decks and

individual bents.

The lumped masses and the element stiffness parameters are

Specified in Tables 2—3 and 2-4.
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Table 2-1 Element Stiffness Parameters for CSCB

ASB AGXS AGYS I I KTS IWS
xx vv

Truss Elem 1 0.014 - - - —

0.014 - - — -

Column 3 0.667 - — - -

4 0.667 - - - -

5 0.667 - - - -

6 0.667 - - - -

7 0.667 - - - -

8 0.667 - - - -

9 0.667 - - - -

10

Deck 1 2.227 0.451 1.589 225.820 8.320 0.126 720.685

Member 2 2.201 0.451 1.551 225.820 7.631 0.126 702.852

3 2.167 0.451 1.528 219.204 7.435 0.126 683.990

4 2.167 0.451 1.528 219.204 7.435 0.126 683.990

5 2.167 0.451 1.528 219.204 7.435 0.126 683.990

6 2.167 0.451 1.528 219.204 7.435 0.126 683.992

7 2.167 0.451 1.528 219.204 7.435 0.126 683.992

8 2.167 0.451 1.528 219.204 7.435 0.126 683.992

9 2.167 0.451 1.528 219.204 7.435 0.126 683.992

10 2.201 0.451 1.551 222.521 7.631 0.126 702.852

11 2.227 0.451 1.589 225.821 8.320 0.126 720.685

12 0.667 0.000 0.021 274.624 0.000 1.604 0.000

13 0.667 0.000 0.021 274.624 0.000 1.604 0.000

14 0.009 0.000 1.540 220.602 0.000 3434.668 0.000

15 0.250 0.000 0.000 0.000 0.000 1.329 0.000

16 0.002 0.000 0.000 0.000 0.000 0.000 0.000

17 2.174 0.000 1.548 221.584 0.000 2017.002 0.000

18 0.250 0.000 0.000 0.000 0.000 1.329 0.000

19 0.017 0.000 0.000 0.000 0.000 0.000 0.000

20 4.752 2.810 0.382 997.029 57.039 33.047 0.000

21 5.549 2.811 0.342 1165.350 74.760 37.615 0.000

22 6.347 2.813 0.302 1333.680 92.481 42.183 0.000

23 5.960 2.818 0.282 1184.220 83.812 39.954 0.000

24 5.573 2.812 0.261 1034.750 75.143 37.725 0.000

25 5.187 2.812 0.241 885.285 66.474 35.496 0.000

26 5.573 2.812 0.261 1034.750 75.143 37.725 0.000

27 5.960 2.813 0.282 1184.220 83.812 39.954 0.000

28 6.347 2.813 0.302 1333.680 92.481 42.183 0.000

29 5.549 2.811 0.342 1165.350 74.760 37.615 0.000

30 4.752 2.810 0.382 997.029 57.039 33.047 0.000         
 

 
 





Table 2-2 ,Lumped Masses for CSCB

 

 

     
 

 

Node Mass Node Mass

8 62.429 23 10.619

12 11.977 24 7.587

13 8.358 25 10.643

14 10.886 26 8.474

15 8.507 27 10.730

16 10.731 28 8.874

17 8.201 29 10.886

18 10.643 30 8.764

19 7.439 31 11.977

20 10.619 35 25.166

21 6.876

22 6.919

Table 2-3 Lumped Masses for NRGB

Node Mass Node Mass

9 62.8167 10 70.5313

33 62.816 12 66.235

11 65.953 14 63.421

31 65.953 16 61.067

13 57.021 18 59.399

29 57.021 20 58.576

15 49.833 22 56.902

27 49.933 24 58.576

17 44.499 26 59.399

25 44.499 28 61.067

19 40.675 30 63.421

23 40.675 32 66.235

21 36.703 34 70.531

8 79.040 36 77.513     
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Table 2-4 Element Stiffness Parameters for NRGB

 

 

ASB AGXS AGYS IXX IW KTS IWS

Truss Members

1.956 - - - - _ _

2 1.956 - - - - - _

Beam Members

1 0.996 0.304 0.118 1304.52 80.654 12.804 82338

2 0.996 0.304 0.118 1304.52 80.654 12.804 82338

3 0.996 0.304 0.118 1304.52 80.654 12.804 82338

4 0.996 0.304 0.118 1304.52 80.654 12.804 82338

5 0.996 0.304 0.118 1304.52 80.654 12.804 82338

6 0.996 0.304 0.118 1304.52 80.654 12.804 82338

7 0.996 0.304 0.118 1304.52 80.654 12.804 82338

8 0.996 0.304 0.118 1304.52 80.654 12.804 82338

9 0.996 0.304 0.118 1304.52 80.654 12.804 82338

10 0.996 0.304 0.118 1304.52 80 654 12.804 82338

11 0.996 0.304 0.118 1304 52 80.654 12.804 82338

12 0.996 0.304 0.118 1304.52 80.654 12.804 82338

13 0.996 0.304 0.118 1304.52 80.654 12.804 82338

14 0.996 0.304 0.118 1304.52 80.654 12.804 82338

15 3.529 0.000 0.550 3459.72 0.000 0.000 0

16 3.437 0.000 0.587 3438.65 0.000 0.000 0

17 3.395 0.000 0.803 3201.43 0.000 0.000 0

18 4.061 0.000 0.792 3115.42 0.000 0.000 0

19 4.914 0.000 1.531 5805.94 0.000 0 000 0

20 5.922 0.000 0.182 2655.29 0.000 0.000 0

21 3.042 0.000 0.769 6020.25 0.000 3960.960 0

22 5.922 0.000 0.182 2655.29 0.000 0.000 0

23 4.914 0.000 1.531 5805.94 0.000 0.000 0

24 4.061 0.000 0.792 3115.42 0.000 0.000 0

25 3.395 0.000 0.803 3201.43 0.000 0.000 0

26 3.437 0.000 0.587 3438.65 0.000 0.000 0

27 3.529 0.000 0.550 3459.75 0.000 0.000 0

28 0.000 0.000 0.000 0.00 0.000 347.475 0

29 0.085 0.000 0.000 0.00 0.000 0.000 0

30 0.003 0.000 0.000 0.00 0.000 0.000 0

31 0.000 0.000 0.000 0.00 0.000 352.731 0

32 0.089 0.000 0.000 0.00 0.000 0.000 0

33 0.003 0.000 0.000 0.00 0.000 0.000 0

34 14.428 0.484 1.622 24946.80 9774.56 1355.360 0

35 13.836 0.482 1.537 23921.40 8823.50 1277.170 0

36 13.077 0.480 1.428 22608.40 7605.71 1177.040 0

37 12.366 0.478 1.327 21377.80 6464.36 1083.190 0

38 11.689 0.475 1.230 20206.30 5377.82 993.854 0

39. 11.036 0.473 1.136 19076.60 4329.99 907.700 0

40 10.399 0.472 1.045 17973.20 3306.59 823.553 0

41 10.399 0.471 1.045 17973.20 3306.59 823.553 0

42 11.036 0.473 1.136 19076.60 4329.99 907 700 0

43 11.689 0.475 1.230 20206.30 5377.82 993.854 0

44 12.366 0.478 1.327 31277.80 6464.36 1083.190 0

45 13.077 0.480 1.428 22608.40 7605.71 1177.040 0

46 13.836 0.482 1.537 23921.40 8823.50 1277.170 0

47 14.428 0.484 1.622 24946.80 9774.56 1355.360
0        
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2.5 LINSTRUC PROGRAM

The LINSTRUC Program was developed by Ralph A. Dusseau and

Robert K. Wen (1985) to perform the analysis of arch bridges subject to

unequal seismic support motions using time-history analysis. The

program has the following special features:

a. It uses a straight beam element with both shear and warping

deformation with "effective" member lengths. These effective

lengths were used to achieve equivalence between the stiffnesses of

beam elements in the model and in the real structure.

It has a "master" and "slave" node feature, which allows the user to

declare a displacement at a given node (slave) to be equal to the 4'

corresponding displacement at another (master) node. For example,

if node 21 is slave to node 26 with respect to X and Y translation

and Z rotation, then these displacements will be the same for the

two nodes, and a rotation at node 26 will not cause corresponding X

and Y translations at node 21. Thus slave nodes cannot be used to

create rigid links in the program.

It has a static condensation procedure that allows the user to

remove some nodal degrees-of-freedom before dynamic analysis.

2.5.1 FURTHER REDUCTION IN THE DEGREES-OF-FREEDOM

In the CSCB, the deck and arch are connected by two columns at

each panel point. Assuming that the axial deformation of these columns

are nominal and that the deck and arch cross-sections do not deform,

then the deck, the arch and the two columns at each panel point must

maintain a parallelogram configuration under all loads. Since the

columns in the CSCB are truss members which allow no shear transfer

between the deck and the arch, the pair of column at each panel point

were represented in the model by a single truss element. In order to   
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maintain the parallelogram configuration described above, it was

necessary to require the arch and deck nodes at each panel point to have

the same longitudinal X-axis rotation.

To further reduce the number of degrees-of-freedom in the bridge

models, the additional requirement that the arch and deck nodes at each

panel point have the same vertical Y-axis translation was imposed for

both the NRGB and CSCB models.
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CHAPTER 3

RANDOM VIBRATION ANALYSIS

3.1 FINITE ELEMENT FORMULATION OF EQUATIONS OF MOTION

The model of the two bridges are discretized into finite

elements as shown in Figure 3-1 and Figure 3-2. The equations of

motions of a multiple degree—of—freedom system subject to support motion

are

[M] {X} + [C] {in + [k] {X} = (0) (3.1)

where [M] = lumped or consistant mass matrix

[C] = damping matrix

[k] = stiffness matrix

{X}, {R}, (X) are the absolute displacements, velocity

and acceleration vectors

By partitioning the matrices [M], [C] and [k] such that the

entries of these matrices correspond to the partioning of {X} into the

free displacements (XF), and restrained displacements {XR}, the

equations of motion may be expressed as

mm] mm] {KR} [ORR] [CRF] {RR}

[MFR] [MW] up + [cm] [and DEF)

[km] [kRF] {XE} {0)

+ l‘kml [kFFl]]{XF)={01 <32)

47   
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where {XF}, {R }, {RF} are the absolute displacement, velocity and

F

acceleration vectors of free nodes

{XR}, {RR}, {XR} are the absolute displacement, velocity and

acceleration vectors of restrained (support) nodes due

to ground motion

{ }

Thus {X} ={XR} (3.3)

(XFl

The free nodal displacement vectors {XF) can be decomposed into

. d
pseudo—static {Xi} and dynamic (XF) components

(3.4)

Then, the total absolute displacement vector may be written in the

following form

{X} = {6%)} = {{XR} d} (3.5)

{x } s
F {XF) + (XFl

The pseudo-static displacements {XE} are the displacements of

the free structural nodes due to static support displacements (KR).

These are obtained from the static equilibrium equations of the

structure with no applied external loads, i.e.,
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0

0 } (3.6)

Taking the second system of equations (3 6), gives

[kFR] (XR) + [kFF] {Xi} = 0 (3.7)

and solving for {X3}, yields

{x3} = '[kpel [kFR] (XR) (3.8)

Substituting equation (3.5) into equation (3.2) yields

[[MRR] [MRFJ] { {KR} } + [[CRR] [CRFl]
s d

[MFR] [MFF] {XE} + {XE} [CPR] [OFF]

{RR} [kRR] [kRF] {XR} d
C U S

(X?) + {x2} + [kFR] [kFFl {XFT + {XFl

= {0) (3.9)

{0}

The second system of equation in (3.9) is
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+ [kFR] {XR} + [kFF] {XE} + [kFF] {x3} = {0) (3.10)

Separating the dynamic response from static response and using equation

 

(3.8) gives

[MFF] 1131 + [cm] 1131 + [k1,] (x3)

= [- MFR + [MFF] [kFFJ' [kFRll {xR)

+ [— [CFR] + [OFF] [kFFJ'1 [kFRJ] (xR) (3.11)

For stiffness proportional damping, for which [c1 = a [k], the

second term of the right hand side is equal to zero; and for other forms

of light damping it may be neglected. Thus, the final equations of

motions for the free displacements become

-d -d d

[MFF] (xF) + [cFF] (XE) + [kFF] {XF}  
-1 .

= [[MFF] [kFF] [kFR] — [MFR]] {XR} (3.12)

3.2 MODAL ANALYSIS AND NORMAL COORDINATES

 

Using normal coordinates, the dynamic displacements can be

eXpanded in terms of the undamped free vibration mode shapes; thus for

undamped harmonic free vibration the dynamic displacements may be

expressed as



 in whi<
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d .

F} = [n] {Y} el‘”t (3.13)

in which [T] = [($1} ($2) H.. (¢n}] is the matrix of mode shapes and

(Y) are the normal coordinates.

The mode shape vectors {pi} are obtained by solving the undamped

free vibration equations of motion.

1d d _
[MFFl {XF} + [kFFl {XF} — {0} (3.14)

Substituting equation (3.13) into equation (3.14) yields the generalized

eigenvalue problems.

[[kFF] - [diag (12)] [MFFll [w] = [01 (3.15}

The solution of these equations yields the undamped natural frequencies

wj and mode shapes, {uj}, of the structure. Substituting

{x3} = [r] {Y} (3.16)

into equations (3.12) yields

[M [1] {Y} + [OFF] [11 {i} + [KFF] [1] (Y1
FF]

-1 " 3.17
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Multiplying equation (3.17) through by the transpose of the modal vector

[¢]T and making use of the orthogonality conditions

(u}T[M](u}—0
j FF k _

(¢j}T [cFFl {11k} = 0 for J 11 K (3.18)

T

yields the uncoupled model equations

M. Y. + CY. + k.Y. = F. (3.19)

J J J J J J J

where the scalor quantities

= T 3.20
Mj {ij [MFF] {ij} ( >

c. = (111}T [C 1 (1.} (3.21}

J J FF J

k. = (WT [k 1 (1.} (3.22}

J J FF J

-1 -

F, = (1,9 [[MFF] [kFF] [km] - [MFRJ] (xR} (3.23}

 



are the

Dividir

where 

lnp

rati

mat



55

are the generalized mass, damping, stiffness and excitation force.

Dividing equation (3-19) by Mj gives

.. . 2

Y. 2 . . Y. . Y. = c. _
J+ {JoJJ+oJJ J (324)

where

l_ T -1 . _ T "

cj = Mj (1,} [[MFF][kFF] [kFR] - [MFR]](XR) - (rj} (xR} (3.25)

El

2 (joj = Mj (3.26)

2 k.

w- = ‘l (3.27)
J Mj

T
- [MFRll (¢j} (3.28)

In practice it is common to assume typical values for the modal damping

ratios g. rather than to assemble the physical damping matrix [C]. It

J

is convenient to collect the modal participation factors {Fj) into a

matrix

— 3.29)[F] — [{F1} {F2} .... {Pn}] (

then, the right hand side of equation (3.24) may be written as

(3.30)
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The modal participation factor matrix [F] is of size r x n where

r is the number of restrained degrees—of—freedom and n is the number of

mode shapes considered in the analysis.

3.3 RANDOM VIBRATION ANALYSIS

For notational convenience, let

d

XF “ ud

S

XF _ us

and

XF = “F

u = u + u (3-31)

.th

u u and u are functions of time t. For the 1 degree of freedom,

5F’ d

the autocorretation function of the displacement is defined as

R (r) = E [u (t) u (t+r>]
(3.32)

u F. F.
F. 1 1

1

where T is time delay. Substituting equation (3 31) into equation

(3.32) yields

 

 



 

where
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RuFi(T) = E [[udi(t) + usi(t)] [udi(t + r) + udi(t + T)y

= E [ud.(t) ud.(t + 1)] + E [ud (t) us (t + 7)]

l l l l

+ E [uS (t) ud (t + 1)] + E [us (t) us. (t + 7)]

1 1 1 1

= Ru (7)+Ru u (r)+Ru u (r)+Ru (r) (3.33)

d. d. s. s. d. s.

1 1 1 1 1 1

where

Ru (T) is the autocorrelation of the dynamic component of the

i

displacements

Ru (T) is the autocorrelation of the static component of

Si

displacements

R (7) and R (r) are the cross correlation between

u u u u
s. d. d. s.
1 1 1 1

static and dynamic components.

For a stationary response

R (r) = R (-r) (3.34)

u U. U

d. s. s. .

1 1 1 1

The fourier transform of equation (3 33) yields the SPeCCral density 0f

the free displacements

 

 



 

 

For st;

Whe



+ S ud.(w) + Su u (w) (3.35)

s d (o) = s: (-w) (3.36)

where the asterisk denotes the complex conjugate. The variance of the

.th .
1 free displacement can be obtained by integrating equation (3.35)

00 00

a F = I Sud (w) dw + I S u (w) d(w)

i m 1 i -w 51 Si

so

+ 2 Re ] I S u (w) dw]

s.
—m 1 1

= 02 + 2 2u au + cov (us , ud.)
(3.37)

d. s. 1 1

1 1

Where Re [ ] denotes the real part of the argument

0 , 03 = variances of the pseudo-static and dynamic

s d.
1 1,

displacements for the 1th degree of freedom.

 

 



 

Usin

Std



cov (uS ,u.d ) = covariance between the static and dynamic

i i

displacements for the 1th degree of freedom.

3.3.1 THE VARTANCE OF DYNAMIC DISPTACFMFNTS

The autocorrelation function of the dynamic displacement for the

1th degree of freedom is defined as

R (T) = E [ud (t) ud (t + 1)] (3.38)

ud i i
i

Using the normal coordinates

) = [W] {Y}

or

= .. Y.
(3.39)

u ¢1J J

Substituting equation (3.39) into (3~38) gives

n n

Rud (T) = E ]E: uij Yj(t) E: uik Yk(t + 7)]

i j=1 k=1

Tl

3.40

2 11,3. 14111 E [196) Yk<t + 1}] < >

k:
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Where the index n is equal to the number of mode shapes considered in

the analysis.

The equation of motion for the jth mode corresponding to

equation (3.24) can be solved using Duhamel’s integral

w

. = . - . 3.41YJ(t) ] GJ(t a) hJ(€) d6 ( )

~CD

where hj(0) is the impulse response function for mode j. h (g) is the

response Yj in equation (3.24) due to an impulse excitation Gj=6(t),

where 6(t) is the Dirac delta function. The response for a general

excitation is given by the superposition integral in equation (3.41).

Substituting equation (3.41) into equation (3.40), yields

1'1 n 00 co

Rud (r) = E: E: uijuik E ] ] Gj(t - 91) hj(€1) dal ] Gk(t + r - 92)

i j—l k=1 -1 -1

hk (62) d 02] (3.42)

The impulse response function does not depend on time lag 7, thus

equation (3.42) becomes
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u

l 1 -oo .00

R (r) =

d. .

M
S

T
T
\
/
l
”

1

L
4 ||

Gk(t + 1 - 62)] d 91 dfiz (3.43)

Referring to equation (3.30), we can write the following

T

- = " — 3.44cj (c 11) {rj} {xR(s 91)} < >

T

Gk (t + r - 92) ={1‘k} {KR (t + ¢ - 192)} (3.45)

Then, from equation (3.43)

E [Gj(t - 91) ck(c + r — 92)]

r r

= E ]E: sz XR£(C ' 61) E: ka XRm(t + T ' 62)

m=li=1

T
T
\
’
1
”

H i
f
\
’
l
”

Prj ka E [XR£(t ‘ 91) XRm(t + T ' 92)]

1

r

, _ (3.46)

E: F23 ka RXRi XRm(T 02 + 01)
l m=lT

f
\
/
1
“
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Putting equations (3.43) and (3.46) together gives

n

Rudi (1)= Z

=1 T
M
”

r r oooo

2231M 46j ¢ikr2j ka

1£= m= -ooRx-R£Rm1 1

L
a
.

(3.47)6 l) hj(€l) hk(62) d 61 d 62

The spectral density function of the dynamic displacement for the 1th

degree of freedom is obtained through the fourier transform of the

autocorrelation function as follows

m

l - iw‘r
= —— 3.48Sudi(w) 2n -1 Rud (1) e d7 ( )

Substituting equation (3.47) into equation (3.48) gives

00

r 1 1111..
=1

r (0

E: I’bijwik 1“lljrmk ]

1113 on=1T
M
”

T
M
”

1H

L
_
J
.

-i 7

(1 — 0 + 61) hj(61) hk (92) e w dfil d02 dr (3.49)

2

with the change of variables

Equation (3.49) can be written in the form

 





1
S w = ‘—

d_< ) 2n ¢ij¢ik Ffljrmk

fi
T
F
\
/
l
”

T
f
\
’
1
5

T
F
\
/
l
”

i
f
\
/
l
”

1

' . -iw(7 + 9 - 6 )

dfil d02 d7

00r r

iwfi

E: E: I(13'1ka rfijrmk ] ] hj(61) e 1 dgl]

n

‘ l £=l m=l -w=1 T
T
\
/
l
”

L
4

CO co

-iw€ l_ -iw7
x ] J hk(62) e 2 c102:|]:21r I RXRfime(7) e d7] (3.50)

-(D

The impulse response function hj(0) and the frequency response function

Hj(w) are related through

dw (3.51)II

N a

‘
5

E

A

8
V

(
D

H
-

8

hj(€)

Hj(w) = ] hj(€) e_' dd (3.60)

Using equations (3.51), (3.60) and (3 48) we can write
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03

] hj(61) eiwal dol = Hj(-w) (3.61)

] hk(62) e'iwg2 dfiz = Hk(w) (3.62)

—l - (7) e'iwl d7 = 31 - (w) (3-63)

2“ -£ RiRfime XR£ XRm

Then, equation (3.50) takes the form

F
\
/
l
”r

sud (w) = E: ¢ij ¢ik Frj ka Hj('w) Hk(w)

i j =11
M
”

7
: 1
M
3

H
H2 m

XRZXRm

This equation represents the transfer relation between power spectral

density function of the stationary random excitation {XR} and the

response ud (t).

i

The variance of the free dynamic displacement response udi(t)

with zero mean is

(3.65)
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Substituting equation (3.64) into (3.65) gives

m

Ibijll’ik Pfij ka JHj("")Hk(“’)

Q

C
M

Q
.

1
M
3

7
:
. 1
1
M
”

1
1
M
”

2 mH

L
A
.

81 - (w) dw (3.66)

XRJZXRm

The modal frequency response function Hj(w) may be obtained from

equation (3.51), or more directly from the decoupled equations of

motions, equation (3.24), and has the form

1

2
2 (3.67)

(wj - w ) + 2i§jij

Hj (w) =

3.3.2 VARIANCES OF PSEUDO-STATIC DISPLACEMENT

 

The static displacements of the free nodes due to static support

motion is determined by equation (3.8)

S -1

s .
using the same notation for X: as in paragraph 3.3 (XF=Us)’ and letting

[A]= -[K [K for notational convenience, gives

FF]- FR]

_ (3.68)
{Us} — [A] {KR}
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[A] is an nxr matrix, where n is equal to the number of degrees-of-

freedom for the free nodes, and r is the restrained (support) degrees-

of—freedonL Each column in [A] represents the static displacements of

the free nodes due to a unit value of the corresponding support

displacement, while all other support displacement are zero. In other

words, the rth column represents the displacements of the free nodes due

th

to a unit static displacement of the r ground degree of freedom only.

Equation (3.68) can be written in scalar form as

I‘

usi= E: A12XR2 (3'69)

i=1

. . . .th
The autocorrelation function of pseudo-static displacements for the 1

degree of freedom previously defined in equation (3.33) is

Ru (1) = E [uS (t) us (t+1)]

s. i i
1

Using equation (3.69) gives

r r

Si i=1 m=l

-3.
£=1 m

irAim E [XR£(t) XRm(t+T)]

1
M
”
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(3.70)A. A. (1')
i2 1m RXRTXRm

2
c 1
1
M
”

M
”

E
! II
H

The spectral density function of the pseudo-static displacement is

obtained through the fourier transform of equation (3.70)

r r

S ( ) = E: E: A. A. S (w) (3.71)

us. w =1 lfl 1m XRTXRm

m=1

The spectral density function of support displacements SXRZX (w) is

related to the acceleration spectra through

3 (o) = —% s1 1 (m) (3.72)

2 Rm

Thus equation (3.71) can be written as

r r

1
su (o) = E: E: Ai, Aim 57 s1 1 (o) (3.73)

Si £=1 m=1 anxnm

. . .th d f

The variance of the pseudo-static displacement of the i agree 0

freedom is

r r °°

2 _1 - - d (3.74)

Cu = E: E: AifiAim I w4 S X (w) w

Si i=1 m=1 -1 XR£ Rm
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3.3.3 COVARTANCE OF PSEUDO-STATIC AND DYNAMIC DISPTACFMF‘NT

Using equations 3.33 the cross correlation of static and dynamic

displacements is

u u

s. d

1 1

R (T) = E [uS (t) ud-(t+1)]

. 1 1

From equation (3.39)

udi(t+1) = Ipinj(t+r)

From equation (3.69)

usi(t) = Aifi SR£(C)

Substituting equations (3.39) and (3.69) into (3.75) yields

1‘ n

Ru u (T) = E 2 A12 X'R,2<t) Z IflikYk<t+T>

1 1 i=1 k=1

r n

= Z Au ¢ik E [xR2(c) Yk(c+r)1

[=1 k=l

Substituting equation (3.41) into 3.76 yields

(3.75)

(3.76)
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r n Go

Rug ud (r) = E: E: A12 wikE [XR£(t) I Gk(t+r-€)hk(€)d€] (3.77)

‘ 2:1 k=l _m1 i

Using equation (3.45) gives

r 1'1 00 r

Ru “d (r) = E: E: AU2 ¢1k E[XR£(t) f E: ka XRm(t+T-€)hk(9)d6

5' i 2=1 k=1 11 —oo m:

CI.)

A12 ¢ik Pmk I E[XR£(t) XRm(t+¢-6)] hk(0)d€

-<DA
L
M
S

M
”

k
n 1
%

7‘
.)

E H
H

L
M
”

L
M
“ .. _ . 8

A12 ¢ik rmk I kaz XRm(T 9>hk(9)d€ (3 7 )

h L
M
”

5
"

'Consider f(r) = I RXR §Rm(T-€)hk(9)d0 (3.79)

2

The fourier transform of equation (3.79) is

00 co

1 " —iwr (3.80)

= —- -9 h 0)e dfldTfoo) 2" J JRXMXRmu > k(

w —w

Let 7-6 = T '

3.81
Then d7 = dr ’ ( )

Substituting equations (3.81) into equation (3.80) gives

 

 



  

Now,

equa

The



 

7O

f(w) = I h (6)d0 —l I " (T,)e-iw(r’+6)d
,

_m k 2" _w RXRfime T

= Jhk(6>e‘i“’9do 2‘; IRXRBHLRmU’) e-inIdr’

= H (w) s " (w)
(3_81)

k XRBXRm

Now, taking the fourier transform of equation (3.78) and considering

equation (3.81) we have

r n r

sus ud (w) = E: E: E: Ai£¢ikrmk Hk(w) SXRfime(w) (3.82)

1 1 i=1 k=l m=1

The covariance of pseudo-static and dynamic displacements is

r n r m

cov(us ,ud )= E: E: Ai£¢ikrmk I Hk(w) SXRg (m) (3.83)

l l 2=1 k=1 m=1 -m

In this equation, we have to express SXR " (w)dw through the spectrum

3 Rm

density function of the ground acceleration. Starting with

RXRngm(T) = E[XR£(t) me(t+r)] (3.84)

Differentiating twice with respect to 1 gives
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H

(r) = E [ (c) - (t+r)] (3.85)
RXRfime XR£ XRm

differentiating equation (3.84) once with respect to T gives

I

(r) = E [ (t) ’ <t+r>1
RxRflme XRz XRm

= E [xMu-r) Khan (3.86)

differentiating equation (3.86) again with respect to 7 yields

RXRfime(T) = -E [XMu-r) XRm<c)]

-E [XR£(t) XRm(t+r)] (3.87)

Comparing equations (3.85) and (3.87) shows that

RXR XRmm = E [xmm iRm(t+v)1=-E [XM<c>XRm(c+r)1 (3.88)

2

or

(T) = (T) = -R. . (T) (3.89)

Ram... Rem 31“me

Taking the fourier transform of equation (3.89) given

_5 (w) (3.90)

SXRfiéRm(w) = XRfime
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The autocorrelation function R. ' (r) can be expressed in the

xRfime

following form.

R. . (r) = I s. . (w) ein dw (3.91)

XszRm ‘” XR£XRm

Then

RXR k (r) = I -s. . (w)ei“’ dw (3 92)

2 Rm -m XRflme

The auto correlation function of support displacement is expressed as

(w) ein dw (3.93)

RXRRXRm(T) = I_@ SXR2XRm

Differentiating equation (3.93) twice with respect to 1 yields

CK)

.. _ _w2

RXRfime(T) _ J_w SXR2XRm

(w) ein dw (3.94)

Using equations (3.88), (3.91) and 3.94) show that

S (w) (3.95)2

88...”) = °’ 5812me

Also, from equation (3.72)
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1
S (w) = -; s- - (w)

XRXR a.)

1 Rlme

Then, from the above two equations, it shows that

s ((3)337 s.. .. (to)
(3.96)

XRJZme 822%

Now using, equation (3.90) yields

5 " (w)=—1—s.. .. (ca) (3.97)
XszRm “’2 1:112me

Substituting equation (3.97) into equation (3.83) gives

(0r n r

2 X Z X ‘1
”u u = AUZ wik 1‘ka Hk(w) [(0—2] s.. .. (to) do.) (3.98)

S' ‘1' =1 .00 XRJZXRmI
"

l
"

M

II
[
—
1

W H
H 5

Using the same procedure, it can be shown that the covariance of

dynamic and pseudo‘static displacement is

a)r

E -1
A. $. P J H (w)[-3] S" u (w)dw (3.99)

12 1k mk k w

R XRmm=1 -w 31
M
”

r

cov (udi'usi) = E:

i=1 k

3.3.4 THE VARTANCF OF DYNAMIC END FORCES

The eigenvectors represent the displaced shapes of the nodal

points for each mode in the global coordinate system. Each node had a

number of displacement vectors equal to the number of degrees of
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freedom. In order to calculate the element end forces, we need to

extract the values of the eigenvectors corresponding to the nodal

displacements at the two ends of the members and transform these values

to the local coordinate system through

} (3.100)

where {Dm} is the vector of nodal displacement in the local coordinate

system

[T] is the transformation matrix

{D } is the vector of nodal displacement in the global

G

coordinate systems.

The element end forces are then given by

_ (3.101)
(f) — [K]{Dm)

where {f} is the vector of element end forces [K] is the element of

stiffness matrix.

This sequence of operations is performed for all the

eigenvectors, or for the subset of them that are to be used in the

analysis. Finally, the variances of each end force may obtained as

described below.

. .th

Let F.. be the end force of the element correspond1ng to the 1

1

.th . .

degree of freedom of a given element and the J e1genvector. Fij 1s
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calculated by equation (1.105). The autocorrelation function of the 1th

dynamic end force is defined as

n T1

Rf f, (r) = E [ E: Fij Yj(t) E: Fik Yk (t+r)]

l l j=l k=1

F.. F1] ik E [Yj(t) Yk (t+1)]

1
M
:

(
.
1
.

7
;
.

1
M
”

1
M
5

7
“ 1
M
8

Fij Fik RYij (r) (3.102)
(
_
1
.

Using the same procedure as in section 3.3.1, it can be shown that the

variance of this end force is

a)

F

f
\
/
1
”

Hj(-w)Hk(w) S" u dw (3.103)F. F .F

1‘ 1k 2 mk I

J J -00 ZXRIH

n r

”Mi Z Z
1 . =1

n

3-1 =1 27
‘
.

II
'
—
I

In

3.3.5 THE VARTANCE OF STATIC END FORCES

To determine the static nodal displacements in the global

coordinates, we use equation (3.69)

(us) = [A]{XR)

We then determine the element end forces due to the movement of each

support in the local coordinate system in the same manner as expla1ned

earlier.
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Let Sij be the static end force of the element corresponding to

the ith degree of freedom of a given element and the jth degree of

freedom of ground motion.

. . .th
Then, the autocorrelation function of the 1 component of the

static end forces is defined as

r r

Rs.s.(7) = E [ E: Sifi XR£(t) E: Sim XRm (t+T)]

m=1£=1

r

E S” Sim E [XR}2(C) XRm(t+r)]

m:

r r

_ . 04

‘ E: E: 512 Sim RXszRm (T) (3 l )

=1

Using the same procedures as in section 3.3.2, it can be shown that the

variance of the ith pseudo—static end force of a given element is

CO

_1_

Sifisim I wa

m XR£XRm

r

02 = E: (w) dw (3.105)

Si =1

3 1
M
”

m
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3.3.6 THE COVARTANCF OF PSEUDO-STATIC AND DYNAMIC FORCES

The cross correlation function of pseudo-static and dynamic

forces is defined as

1' 1’1

Rsif.(T) = E [ E: Si2XR2 (t)
FikYk(t+1) ]

£=1 k=1

1'1

E: SifiFik E [XR£(t) Yk (t+r) ] (3.106)

=1P
a

||

1
M
“

7
;
.

Using the same procedure as in section 3.3.3, it can be shown that the

covariance between the pseudo-static and dynamic end forces is expressed

as:

r n r
co 1

L“ 1 n d 3.107
cov (Si’fi) = E: E: Si£Fikak I Hk(w)[w2 ]S (w) w ( )

£=1 k=l m=1 -m 2

3.3.7 SUMMARY

. .th

The variance of the displacement or rotation of the 1 degree

of freedom in the global coordinate system is expressed in the following

form

a = a + 02 + 2 COV (Us ,Ud )
L1 U i i

where
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1pij¢ikFflj Pmk J Hj(-w) Hk(w)SiR iRm(w) dw

-m
2

A
M
“

M
”

E H
H

a)r

.l

E: AifiAim I w4

=1

3" -

-w XR£XRm

(w) dw

r n

cov (us',ud‘)=E: E:

i 1 =1

2 k=1 m 1
M
”

-1
Ai P H (w) S" u (w)dw

Ipik mk I k [wZ ]

-m X‘RJZX'Rm

. .th . .
The variance of the 1 component of end forces for each finite

element is expressed in the following form

2

a = a + a + 2 cov (5., f.)

. . s. 1 1

i 1 1

where

(I)
r r

E: E: F.ijFikFZijki Hj(-w)Hk(w) Si n (w) dw<

=1 m=1 szRm

F
\
/
1
“n

02 =2
f.
1 . 1

J= 2

r

=E: $12Sim

m==1

k II
H

(w) dw

é
‘
-
—
>
8

8
'
—
I

V
x
i
x
.

E
x
.

P
g

q

H
.

H

H
F
\
/
1
H

. ;i
Fiksifirmk J Hk (—w) [ 2 (w) dw

-w w ] 8%R2XRm

F
\
/
1
“n

cov (si’fi)= E:

k=1 2 L
M
“

5 ll H

All the above mention notations were previously identified.
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3.4 THE INPUT MOTION

In order to solve this problem using the probabilistic approach

we must have a mathematical model for the acceteration spectrum of the

ground motion S~ - (w). For stationary excitation, the displacement

XszRm

and velocity spectrum are related to the acceleration spectrum by

equation (3.72) and (3.95), respectively.

The ground motion model used in this study is that proposed by

Harichandran and Vanmarcke (1986). The model considered the spatial as

well as the temporal variation of earthquake ground motion, and was

based on the analysis of recordings made by the SMART-1 seiSmograph

array in Lotung, Taiwan. In this model the cross spectral density

function between the acceleration of two locations A and B is expressed

as

s- .. - s- (w) p (v, f -2—;’) 6 '1—31 (3.108)

xAxB x

where

- -2
p(u,f) - A exp[a§%%)(l-A+aA)]+(l-A)exp[;?%) (1-A+aA)] (3.109)

f b -8 (3 110)
0(f) - k [1 + (ES) ]

.

A. a, k, f0 and b are model parameters where typical values are shown in

Table 3-1 (Harichandran 1988). The function p(V,f) wiflithese

parameters are plotted in Figure 3-3(a) and (b).
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S (w)- istiw auto spectral density function of ground
X

acceleration.

u - seperation between locations A and B

f — Linear frequency

v - apparent wave propogation velocity in the direction AB.

The functional form suggested by Claugh and Penzien (1974) is used for

S~(w):

x

s (w) = [Hl(w)|2 |H2(w)l2 30 (3.111)
x

where [Hl(w)|2 is the Kanai—Tajimi spectrum function and has the form

 

 

2 2
{1+4/8 [w/w ] )

2 g g

”g g ”g

and

4

(w/w )
2 f

IH2(w)| = 1 _9 2]2 + 452 [ _fl ]2 (3.113)

[ _ “f f “f

in which cog, pg, 0) f p fand S are model parameters that can be

estimated by fitting the above function to observed acceleration

Spectra. Two acceleration spectra with the parameters given in

Table 3-2 were used in this study. These spectra are plotted in

Figure 3-4 . Ground motion 1 has a wide excitation frequency range and

is characteristic of motion recorded on rock, while ground motion 2 has

a narrow excitation frequency range is charactertistic of motion on

soil. For the values of S given in Table 3—2, the variances of ground

0

acceleration (area under the spectrum in equation (3.111) are 2n gal
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for all the events. The variances of ground displacements Sx(w) which

is related to the acceleration spectrum. S (w), through

X

l
S (w) = —— S» (w)

X wa X

7 7
are l.O9(lO)- and A.09(10)_ m2 for spectra 1 and 2, respectively.

Note that although the normalized acceleration spectra have the same

total power for both events, the corresponding displacement spectra have

substantially different total power as depicted in Figure 3-5.

3-5 COMPUTATIONAL PROCEDURES.

The LINSTRUC computer program (Dusseau l985) was modified so

that it can be used on the VAX/VMS. The program was used to obtain the

overall stiffness and mass matrices. The computational procedures that

was used is summarized here.

1. Compute the eigenvalues and the eigenvectors using the

generalized Jacobi method (Bathe, K.J. 1982).

2. Calculate matrix [A] using equation (3.8). In the case of CSCB,

[A] is a 58 x 2 matrix. The entry Aij is the free nodal

displacement at mode i due to a unit support displacement at j.

3. Calculate the entries of the modal participation factor matrix

[P] using equation (3.28).

«J

4. Calculate the integrals J Hj(-w)Hk(w) S~ " (w)dw and store the

X112
C0

results in a 34 x 34 x 2 x 2 array. (The integrations were done

using the IMSL subroutine "DCADRE").
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(1)

Calculate the integrals I 7]: S“ ~- (0)) doc and store the

-0. ‘0 XR12me

results in 4 X 4 or 2 x 2 arrays depending on the number of

moving supports.

a:

2

-<=0 (0 XR£XRm

the results in a 34 x 2 x 2 array.

Calculate the integrals J-Hk (-w) [5;] Sn -_ (w) dw and store

Calculate the variances of dynamic and static displacements, and

the covariance between the static and dynamic displacement, using

equations (3.66), (3.74) and (3.99).

Calculate the variances of members end forces using the following

sequence of operations:

a. For nodes i and j of each element extract the corresponding

static and dynamic displacements from matrix [A] and from the

eigenvectors. For each element the number of displacement

sets of the static components is equal to the number of moving

supports. For the dynamic component the number is equal to

the mode shapes considered in the analysis.

b. Transform the end displacements to the local coordinate, then

determine the members end forces and store them in an array.

For the static component the array is of r x q where r is the

number of moving supports, and q is the number of degrees

of freedom for nodes i and j, in this case 14. For the

dynamic component the array is of order n x q, where n is the

number of mode shapes.
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c. To calculate the variance of the dynamic, static and the

covariance of static-dynamic components use equations (3.103),

(3.105) and (3.107), respectively.

d. To calculate the total response use equation (3.37).

Table 3—1: Model Parameters for p(v,f)

  
 

Model Parameter Ground Motion 1 Ground Motion 2

A 0.626 0.355

Double a 0.022 0.086

Exponen— k 19700 23100

tial 5

0.5
fo(HZ) 2.02

b 3.47 2.35     
 

Table 3-2: Model Parameters for Autospectra

 

  
  

Model Parameter Ground Motion 1 Ground Motion 2

wg(rad/s) 20.22 5.05

Double fig 0.53 0.62

Filter wf(rad/S) 5.45 6.41

fif 0.46 0.27

So(gal.32) 0.0957 0.3068

i________________________
___________    
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Figure 3-3: The Coherency Function p(u,f). (a) Ground Motion 1;

(b) Ground Motion 2.
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Figure 3-4: Spectra of Ground Acceleration Using Estimated Parameters.
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Figure 3-5: Spectra of Ground Displacement Using Estimated Parameters.
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3.6 NONSTATIONARY RESPONSE

The theory developed until now is valid only for stationary

excitation. Earthquake acceleration amplitudes, however, initially grow

from zero, then have a steady phase and eventually decay. The

excitation is therefore nonstationary. For a single degree-of—freedom

system with undamped circular natural frequency on and damping ratio fl,

the response may not attain its stationary state for very small values

of fiwn or small durations of strong shaking. For a multi-degree—of—

freedom system, each modal response grows at a different rate, with

higher modes having large natural frequencies attaining stationarity

more quickly. The rate at which the total response grows depends on how

much the lower modes contribute to the overall response. If the lower

modes do not contribute significantly, then the total response may

attain stationarity rather quickly. For the arch bridges considered in

this study, the first few modes have long periods (low frequencies) and

therefore may not reach stationary conditions for short earthquakes. It

is therefore of interest to compute the transient response of the

bridges due to nonstationary excitation.

In most earthquake engineering applications it is reasonable to

account for nonstationarity in the amplitude of the ground accelera-

tions, while the frequency content may be assumed not to change with

time. For these cases the ground accelerations may be written as

N(t) = A(t)Z(t) (3.114)

in which Z(t) is a stationary process, and A(t) is a temporal modulating

function. Various forms have been suggested for A(t) based on the

fitting of modulating functions to measured accelerograms. The response
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of the generalized displacement for the jth mode may then be expressed

as

t ..

Y(t) = J hj(t - T)A(T)X(T)dT (3.115)

0

where hj(t) is the impulse response function of the jth mode. For

frequency domain analysis, it is convenient to define a "time-dependent

frequency response function“, as

t .

H.(w,t) = I h.(t - T)A(T)eledT (3.116)

J O J

To evaluate the response variance at a given time t, the function

Hj(w,t) can be substituted for the normal frequency response function

Hj(w) in the expressions for the stationary response. The main

difficulty in this is that while Hj(w) has a closed form expression,

Hj(w,t) cannot easily be expressed in closed form for any A(t).

However, a closed form expression can be derived for Hj(w,t) if A(t) is

the unit Heaviside function

This corresponds to an excitations that suddenly starts at time t=0 with

stationary intensity, and is not the same as stationary excitation.

Gasparini and DebChaudhury (1980) considered structural response

to two modulating functions A(t) using a time domain approach. The
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first modulating function grew linearly from zero, then was steady and

finally decayed linearly to zero, while the second began suddenly (like

the Heaviside function) but decayed linearly to zero after some time.

As would be intuitively expected, the initial growth of the response

differed for the two modulations, but they gradually approached the same

stationary value and began to decay as soon as the excitations started

to decay.

The present study is concerned more with comparing the relative

differences in the responses due to different models of multiple support

excitation, and not so much with finding absolute response variances.

Thus the exact form used for A(t) is not very crucial, and the use of a

Heaviside modulating function is sufficient to assess the effect of

transient modal responses.

For the Heaviside modulation, the closed form expression for

Hj(w,t) is (Lin 1963)

Hj(w,t) = Hj(w) 1 - exp(-wjfijt)exp(-iwt)[cos wjdt

(w.fi.+iw)

+ —J-J— sin (.0. t (3.117)
wjd Jd

The transient responses in this study are computed by replacing

H(w) in the results derived in Section 3.3, with the expression for

H(w,t) given in equation (3.117).
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CHAPTER 4

ANALYSIS RESULTS

4.1 MODAL ANALYSIS

The Generalized Jacobi method was used to solve the eigenvalue

problem for both bridges. All mode shapes and frequencies were

extracted and considered in obtaining the response values of the two

bridges for the in—plane and out-of—plane models.

4.1.1 CSCB MODE SHAPES AND NATURAL PERIODS

The first four modes for the in—plane model of the CSCB are

shown in Figure 4-1. The first mode has a natural period of 2.32

seconds and is a full wave vertical motion of the deck and the arch.

The second mode is a 1% wave of vertical motion for the deck and the

arch with a natural period of 1.19 seconds. The third mode has a

natural period of 0.65 seconds and is characterized by large two full

waves of vertical motion of the deck and the arch. Finally, the fourth

mode has a natural period of 0.63 seconds and is characterized by large

two full waves of vertical motion for the arch and the deck and a

moderately large longitudinal translation of the deck.

Figure 4-2 illustrates the first four modes for the out-of—plane

model of the CSCB. The first mode has a natural period of 2.67 seconds

and is a half wave lateral motion of the deck and the arch. The second

mode has a natural period of 1.54 seconds and is characterized by a

large full wave lateral motion of the deck with a small lateral half

wave motion of the arch. The third mode has a natural period of 1.01

seconds and is characterized by a large 1% wave lateral motion of the

deck accompanied by a small half wave lateral motion of the arch.

Finally, mode four has a natural period of 0.69 seconds and is
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characterized by a large half wave lateral motion of the arch

accompanied by a moderately large two wave lateral motion of the deck.

W

The first four modes for the in-plane model of the NRGB are

depicted in Figure 4-3. The first mode has a natural period of 4.18

seconds and is a full wave vertical motion of the deck and the arch.

Mode two is a 1”: wave vertical motion of the deck and the arch with a

natural period of 2.00 seconds. The third mode has a natural period of

1.43 seconds and represents a two wave vertical motion of the deck and

the arch. Finally, mode four is characterized by large horizontal

motions of the deck toward the center of the bridge. This latter mode

has a natural period of 1.21 seconds and also exhibits a small vertical

deck and arch motion in the form of 111 waves.

Figure 4-4 illustrates the first four modes for the out-of—plane

model of the NRGB. The first mode has a natural period of 6.78 seconds

and is a half wave lateral motion of the deck and the arch. Mode two

has a natural period of 3.48 seconds and is a full wave lateral motion

of the deck accompanied by a small full wave lateral motion of the arch.

The third mode has a natural period of 2.40 seconds and is characterized

by a large 1’»: wave lateral motion of the deck and a small 1;: wave

lateral motion of the arch. Finally, mode four has a natural period of

1.89 seconds and is characterized by a large two full wave lateral

motion of the deck accompanied by a small full wave lateral motion of

the arch.
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Figure 4-1: CSCB In-Plane Modes (Excerpted from Dusseau (1985))  
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Figure 4-3: NRGB ln-Plane Modes (Excerpted from Dusseau (1985))
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4.2 MODELS OF GROUND MOTION

The three specialized coherency models of ground motion

considered in this study are the following:

Case 1:

Case 2:

Case 3:

Fully correlated ground motion. In this case we assumed that

the supports of the bridges are moving identically. This

corresponds to the current practice of designing bridges for

earthquake ground motion. For this case the term

p(v,f=§$)e-le/Vin equation (3.108) is equal to one.

Wave propogation case. In this case we assumed that there is

no loss of coherency between the support excitations, but there

is a time delay corresponding to the time required for the

seismic waves to travel from one support to another. For this

case the term p(v,f) in equation (3.108) is equal to one.

The general case of ground motion. In this case, the wave

propogation factor as well as the frequency-dependent spatial

correlation function p(y,f) were considered in the ground

motion model.

In each case two different sets of ground motion parameters

were used to study the responses of the two bridges (see Tables

3-1 and 3-2). Note that although the variances of ground

acceleration corresponding to the two sets of parameters were

normalized to be the same, the variances of ground

displacements are different.

4.3 ANALYSIS RESULTS

As mentioned earlier, each bridge has two models; the in-plane

model and the out-of-plane model. For the in-plane model the ground

motion acceleration was applied in the global X-axis direction. For
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each element, the variances of bending moments, shear and axial forces

were obtained. Also, the variances of nodal rotations and displacements

in the global coordinate system were determined.

For the out-of—plane model, the ground motion was applied in the

global Z-axis direction. The corresponding variances of member end

forces, nodal displacements and rotations were determined.

For the CSCB Bridge models only, the ground acceleration was

additionally applied to the support of the approaching span to study the

effect of that on the response of the CSCB.

Throughout this chapter the following symbols are used:

a: - The variance of member shear forces in the direction of

z

local x-axis.

2 . .
0F - The variance of aXial forces.

2

2 . . . .
0F - The variance of shear forces in the direction of local

y

y-axis.

2 . . .
UM - The variance of bending moment about local X-aXlS.

x

2 . .
GM - The variance of torSional moment.

2

2 . . .
GM - The variance of bending moment about local y—aXis.

y

2 . .
GM — The variance of warping moment.

w

2

0*(W), 03(H), a:(G) - The variances of any member end forces resulting

from the wave propogation case (Case 2), fully correlated case (Case 1)

and general case (Case 3) of ground motion, respectively.
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4.3.1 RESPONSE COMPONENTS OF CSCB AND NRGB

As discussed earlier in chapter 3, the variance of the total

response consists of three components; the variance of the dynamic

component, the variance of the static component and the covariance

between the static and dynamic components. The relative contributions

of response components were found by dividing the variance of a specific

response by the variance of the total response. In CSCB Bridge, for the

first set of ground motion parameters (ground motion 1), the relative

contributions of dynamic and static components are shown in Tables 4-1

and 4-2. For the second set of parameters (ground motion 2) the same

relative contributions are shown in Tables 4-4 and 4-5. The relative

contributions of the covariance between the dynamic and static

components for both ground motions are shown in tables 4—3 and 4-6,

respectively.

Those tables show that the dynamic component of the response is

the dominant one and represents more than 96% of the total response for

most elements, except the bracing members. For the general correlation

case of ground motion 1, the relative contributions of the dynamic and

static variances and the covariance of the axial forces in longitudinal

bracing are 78%, 8% and 12%, respectively. For ground motion 2, the

same relative contributions listed in the same order are 65%, 11% and-

23%. This indicates the relative sensitivity of the bracing members to

statically applied support displacements, since they transfer the forces

between the deck and the arch.

The variance of the static component represents the bridge

response due to a pseudo-static application of differential support

motion. In this case the inertia forces of the bridge mass do not

contribute to the increase of the bridge response. The variance of the

 

  





 

Table 4-1 Relative Contributions of the Dynamic Components of CSCB

98

Members End Forces to the General Case of Ground Motion 1.

 

 

   

 

 

 

       

NODE I NODE J

ElemEntS UZFXEG) azedG) aszéG) azdeG) aZdeG) aZMvdG)

(3&0) azFéG) azmgc) (flags) azFéG) UZM‘SG)

Bracing

Elements

79.8 79.8

2 77.7 77.7

Deck

Elements

1 99.3 100.3 78.9 99.3 100.3 99.3

2 97.4 100.3 99.3 97.4 100.3 92.2

3 98.6 100.3 92.2 98.6 100.3 96.5

4 100.1 100.2 96.5 100.1 100.2 105.5

5 98.6 100.2 105.5 98.6 100.2 102.4

6 95.6 100.8 102.4 95.6 100.8 101.8

7 101.7 101.3 101.8 101.7 101.3 99.0

8 102.0 101.4 99.0 102.0 101.4 100.9

9 100.1 101.4 100 9 100.1 101.4 101.2

10 98.5 101.4 101.2 98.5 101.4 101.3

11 101.3 101.4 101.3 101.3 101.4 91.5

Arch

Elements

20 96.5 100.3 78.4 96.5 100.3 96.5

21 99.0 100.3 96.5 99.0 100.3 93.1

22 100.6 100.3 93.1 100.6 100.3 95.9

23 98.7 100.3 95.9 98.7 100.3 105.8

24 98.6 100.3 105.8 98.6 100.3 102.6

25 96.7 100.0 102.6 96.7 100.0 101.7

26 101.5 99.8 101.7 101.5 99.8 99.0

27 101.7 99.7 99.0 101.7 99.8 100.5

28 100.2 99.8 100.5 100.2 99.8 101.7

29 100.4 99.8 101.7 100.4 99.8 100.8

30 100.8 99.8 100.8 100.8 99.8 91.2
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Table 4-2 Relative Contributions of the Static Components of CSCB

Members End Forces to the General Case of Ground Motion 1.

 

 

   

 

 

 

   

NODE I NODE J

Elements azFxéc) 02Fzéc) aszéc) azFxéc) azegG) UzMyéc)

“zFim azréc) ”2M$G) ”21146) ”ZFEG) ”Zr/him

Bracing

Elements

1 7.90 7.90

2 9.50 9.50

Deck

Elements

1 0.05 0.01 11.25 0.05 0.01 0.05

2 1.80 0.01 0.05 1.80 0.01 2.13

3 0.13 0.01 2.13 0.13 0.01 1.84

4 0.01 0.01 1.84 0.00 0.01 4.35

5 0.25 0.01 4.35 0.25 0.01 0.32

6 0.57 0.07 0.32 0.57 0.07 1.00

7 0.43 0.22 1.00 0.43 0.22 0.23

8 0.39 0.20 0.23 0.39 0.20 0.05

9 0.00 0.18 0.05 0.00 0.18 0.05

10 0.00 0.18 0.05 0.00 0.18 0.05

11 0.20 0.17 0.05 0.20 0.17 0.36

Arch

Elements

20 0.79 0.01 11.87 0.79 0.01 0.79

21 0.35 0.01 0.79 0.35 0.01 1.73

22 0.04 0.01 1.73 0.04 0.01 2.20

23 0.08 0.01 2.20 0.08 0.01 4.19

24 0.28 0.01 4.19 0.28 0.01 0.37

25 0.35 0.00 0.37 0.35 0.00 0.29

26 0.34 0.01 0.93 0.34 0.01 0.29

27 0.23 0.01 0.29 0.23 0.01 0.02

28 0.05 0.01 0.02 0.05 0.01 0.11

29 0.02 0.00 0.11 0.02 0.00 0.05

30 0.05 0.00 0.05 0.05 0.00 1.60
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Table 4-3 Relative Contributions of the Static-Dynamic Components of

CSCB Members End Forces to the General Case of Ground Motion

1.

 

 

   

 

 

 

       

NODE I NODE J

Elements 2 2 2 2 2 2

a Fxéc) a Fzéc) a MyéG) a Fxéc) a FzéG) a MVéG)

”214(6) ”ZFEG) ”Zr/his) ”216(6) ”ZFEG) ”21656)

Bracing

Elements

12.28 12.28

2 12.77 12.77

Deck

Elements

1 0.68 0.35 9.84 0.68 0.35 0.68

2 0.78 0.30 0.68 0.78 0.30 5.67

3 1.22 0.27 5.67 1.22 0.27 1.70

4 0.15 0.25 1.70 0.15 0.25 9.84

5 1.12 0.24 9.84 1.12 0.24 2.69

6 3.78 0.85 2.69 3.78 0.85 2.76

7 2.10 1.55 2.76 2.10 1.55 0.80

8 2.36 1.55 0.80 2.36 1.55 0.93

9 0.08 1.55 0.93 0.08 1.55 1.28

10 1.28 1.56 1.28 1.28 1.56 1.66

11 1.62 1.60 1.66 1.66 1.60 7.03

Arch

Elements

20 2.75 0.28 9.77 2.75 0.28 2.75

21 0.69 0.29 2.75 0.69 0.29 5.14

22 0.59 0.29 5.14 0.59 0.29 1.86

23 1.25 0.30 1.86 1.25 0.30 10.03

24 1.11 0.29 10.03 1.11 0.29 2.94

25 2.97 0.04 2.94 2.97 0.04 2.61

26 1.82 0.22 2.61 1.82 0.22 0.72

27 1.94 0.22 0.72 1.94 0.22 0.53

28 0.27 0.22 0.53 0.27 0.22 1.80

29 0.40 0.22 1.80 0.40 0.22 0.81

30 0.81 0.22 0.81 0.81 0.22 7.17

 

 





 

 

   

 

 

 

       

Table 4-4 Relative Contributions of the Dynamic Components of CSCB

Members End Forces to the General Case of Ground Motion 2.

NODE I NODE J

Elements 2 2 2 2 2 2

a deG) a deG) a MvdG) a dec) a deG) a Mde)

2

‘7 161G) ”ZFEG) “2169C” ”21:59 02mm) 021636)

Bracing

Elements

66.9 66.9

2 64.1 64.1

Deck

Elements

1 98.6 101.2 72.5 98.6 101.2 98.6

2 83.7 101.0 98.6 83.7 101.0 90.8

3 97.3 100.9 90.8 97.3 100.9 87.0

4 100.2 100.8 87.0 100.2 100.8 112.3

5 95.3 100.7 112.2 95.3 100.7 103.8

6 92.5 102.5 103.8 92.5 102.5 104.3

7 105.7 104.3 104.3 105.7 104.3 98.3

8 103.2 104.1 98.3 103.2 104.1 102.5

9 100.2 104.0 102.5 100.2 104.0 101.4

10 92.0 103.8 101.4 92.0 103.8 102.9

11 102.9 103.8 102.9 102.9 103.8 89.4

Arch

Elements

20 94.3 101.6 72.7 94.3 101.6 94.3

21 92.5 101.7 94.3 92.5 101.7 92.0

22 101.4 101.7 92.0 101.5 101.7 85.8

23 98.0 101.8 85.8 98.0 101.8 112.2

24 94.8 101.7 112.2 94.8 101.7 104.1

25 94.3 100.2 104.1 94.3 100.2 104.1

26 105.5 98.6 104.1 105.5 98.6 98.6

27 102 8 98.6 98.6 102.8 98.6 101.4

28 100.9 98.6 101.4 100.9 98.6 101.9

29 102.2 98.7 102.0 102.2 98.7 101.3

30 101.3 98.6 101.3 101.3 98.6 89.5
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Table 4-5 Relative Contributions of the Static Components of CSCB

Members End Forces to the General Case of Ground Motion 2.

 

 

  

 

 
 

 

NODE I NODE J

Elements ”zrxéc) azeéc) ”2Myéc) UZFXéG) ”zeéc) ”széc)

02F£G) azFéc) ”2M$G) 02F§c) azFéG) ”2M$G)

Bracing

Elements

10.41 10.41

2 12.32 12.32

Deck

Elements

1 0.06 0.03 12.02 0.06 0.03 0.06

2 10 30 0.02 0 06 10 30 0.02 1 80

3 0.18 0.02 1 80 0.18 0.02 4 80

4 O 00 0.01 4.79 0.00 0.01 5 61

5 0.53 0.01 5.61 0.53 0.01 0 32

6 0 77 0.13 0.32 0 77 0.13 1.07

7 0.85 0.40 1.07 0 85 0.40 0.45

8 0.37 0 36 0.45 0.37 0.36 0 10

9 0.00 0.32 0.10 0.00 0.32 0.04

10 0.87 0.29 0.04 0.87 0.29 0.46

11 0.46 0.27 0.46 0.46 0 27 1.48

Arch

Elements

20 0.87 0.05 12.20 0.87 0.05 0.87

21 1.85 0.06 0.87 1.85 0.06 1.41

22 0.07 0.07 1.41 0.07 0.07 5.51

23 0.08 0.07 5 51 0.08 0.07 5 20

24 0.65 0.07 5 20 0.65 0.07 O 36

25 0.47 0.00 0.36 0 47 0.00 1 01

26 0.76 0.03 1.01 0.76 0.03 0.51

27 0.23 0.03 0.51 0.23 0.03 0.03

28 0.12 0.03 0.03 0.12 0.03 0.09

29 0.09 0.03 0.09 0.09 0.03 0.06

30 0.06 0.03 0.06 0.06 0.03 1.48         
  
 





 

Table 4-6 Relative Contributions of the Static-Dynamic Components of

CSCB Members End Forces to the General Case of Ground Motion
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2.

NODE I NODE J

Elements OZFXSG) OzeéG) UZMVSG) azFxéG) UzeéG) azMyéG)

UZBEG) UZFEG) ‘72ng” ”zFic) 021%” ”21416)

Bracing

Elements

22.73 22.73

2 23.61 23.61

Deck

Elements

1 1.30 1.22 15.46 1.30 1.22 1.30

2 5.96 1.03 1.30 5.96 1.03 7.45

3 2.49 0.89 7.45 2.49 0.89 8.21

4 0.21 0.81 8.21 0.21 0.81 17.86

5 4.18 0.74 17.86 4.18 0.74 4.15

6 6.72 2.60 4.15 6.72 2.60 5.32

7 6.54 4.69 5.32 6.54 4.69 1.30

8 3.59 4.46 1.30 3.59 4.46 2.59

9 0.21 4.28 2.59 0.21 4.28 1.48

10 7.19 4.14 1.48 7.19 4.14 3.40

11 3.40 4.04 3.40 3.40 4.04 9.12

Arch

Elements

20 4.79 1.67 15.08 4.79 1.67 4.79

21 5.60 1.74 4.79 5.60 1.74 6.61

22 1.52 1.77 6.61 1.52 1.77 8.65

23 1.95 1.82 8.65 1.95 1.82 17.42

24 4.56 1.81 17.42 4.56 1.81 4.51

25 5.25 0.23 4.51 5.25 0.23 5.10

26 6.25 1.35 5.10 6.25 1.35 0.86

27 3.07 1.37 0.86 3.07 1.37 1.46

28 1.03 1.36 1.46 1.03 1.36 2.05

29 2.30 1.32 2.05 2.30 1.32 1.39

30 1.39 1.33 1.39 1.39 1.33 8.99        
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dynamic components represent the structural response to dynamically

applied differential support motion where the inertia forces come into

play. The inertia forces will mainly be generated in the vertical

direction as well as in the horizontal direction resulting in a much

higher response of the bridge members

The difference in the relative contribution of the bracing member

responses due to different ground motion parameters can be justified as

follows. Although the variance of ground motion acceleration for the

two sets of parameters was the same, the variance of ground displacement

was higher in ground motion 2 than in ground motion 1. This difference

in ground displacements causes the observed increase in the variance of

the static response and in the covariance between static and dynamic

responses.

4.3.2 IN-PLANE RESPONSE OF THE CSCB

 

As mentioned earlier, three cases of ground motion correlation were

used to study the responses of the bridges. Each case has two different

sets of parameters (ground motions 1 and 2). Thus the CSCB was analyzed

six times for the in-plane response.

A comparison of the bridge responses due to the three correlation

cases was carried by dividing the variance of the members responses due

to fully corrtelated and wave propogation cases by the corresponding

variances of responses of the general case. For this part of the study,

the goal was to establish the correlation model of ground motion that

will generate the highest structural response of the CSCB.

Tables 4-7 and 4—8 show the results of this part of the study. The

entries in the tables that are shown as "-", indicate that the compared

values are zero. For the deck members we notice that the axial forces

were the highest in the fully correlated case where the movement of the
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Table 4-7 Normalized In-plane CSCB Responses - Ground Motion 1

Elements Shear force Fx Axial force Fz Moment My

0F (w) of. (H) 0F (w) 012:, (H) a; (w) a; (H)

x X z z Y J

a; (G) 012;. (G) of, (G) a; (G) 05, (G) 051 (G)

x x z z y y

Deck

Elements

1 1.01 0.14 0.98 1.23 1.01 0.14

2 1.14 0.08 0.98 1.24 0.94 0.60

3 1.04 0.21 0.98 1.24 1.09 0.09

4 0.98 0.11 0.98 1.26 1.00 0.63

5 1.09 0.03 0.97 1.26 1.00 0.07

6 0.92 1.61 0.97 1.28 0.96 0.10

7 1.09 0.02 0.97 1.29 0.98 0.70

8 0.94 0.16 0.97 1.29 1.10 0.08

9 1.04 0.24 0.97 1.30 0.95 0.12

10 1.14 0.08 0.97 1.30 1.00 0.17

Bracing

Elements

0.97 0.95

Arch

Elements

20 1.00 0.14 1.16 0.015 1.00 0.14

21 1.14 0.06 1.16 0.012 0.94 0.10

22 1.07 0.22 1.16 0.01 1.09 0.09

23 1.00 0.08 1.16 0.01 0.99 0.63

24 1.10 0.03 1.16 0.01 1.00 0.08

25 0.92 1.60 1.16 0.008 0.93 0.11

26 1.10 0.03 1.16 0.01 0.96 0.72

27 0.97 0.11 1.16 0.01 1.10 0.08

28 1.06 0.24 1.16 0.01 0.93 0.12

29 1.14 0.06 1.16 0.03 0.99 0.16

30 0.99 0.16 1.16 0.06 - ~    
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Table 4-8 Normalized In-plane CSCB Responses - Ground Motion 2

 

 

  

 

 

 

   

Elements Shear force Fx Axial force Fz Moment My

012:. (w) 012:. (H) or; (w) of, (H) a; (w) a; (H)

x x z z y

of. (G) 012:. (G) of. (G) a: (G) a; (G) a; (G)

x x z z y y

Deck

Elements

1 0.96 0.1 0.98 1 26 0.95 0.1

2 1.06 0 28 0.98 1 26 0.94 0.05

3 0 97 0.17 0 98 1 26 0.97 0.19

4 0 95 0.05 0.98 1 26 0.97 0.54

5 0 97 O 04 0.98 1.27 0.96 0.04

6 0.97 1.35 0 98 1 29 0.42 0.07

7 0.98 0.03 0.98 1 32 0.91 0.93

8 0.93 0.07 0 98 1 31 1.00 0.12

9 0.93 0.24 O 98 1 31 0.95 0.05

10 1.05 0.23 0 98 1 31 0.93 0.13

Bracing

Elements 0.99 0.76

0 98 0 74

Arch

Elements

20 0.93 0.09 1 10 0.03 0.95 0.09

21 l 04 0.16 1 10 0.03 0.94 0.05

22 0.97 0.23 1 10 0.023 0.97 0.19

23 0.95 0.04 1 10 0.02 0.97 0.52

24 0.97 0.05 1 10 0.015 0.96 0.05

25 0 96 1 39 1.10 0.01 0.92 0.07

26 0.98 0.04 1.10 0.01 0.91 0.87

27 0 94 0.05 1 10 0.01 1.00 0.13

28 0 94 O 32 l 10 0.01 0.94 0.05

29 1 04 0 13 1 10 0.01 0.94 0.10

30 0 94 0 10 1 10 0.01 — -
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supports are identical. The increase in the variances of the axial

forces with respect to the general case ranged from 23% to 30% for

ground motion 1, and 26% to 31% for ground motion 2. The second worst

case was the general correlation case where the deck experienced a 2% to

3% increase in axial force responses with respect to the wave

propogation case for both ground motions.

The variances of shear forces and bending moments developed in the deck

members were the highest in the wave propogation case where the deck

members experienced a 1% to 15% increase over the general case. For the

fully correlated case, the response of shear forces and bending moments

ranged from 8% to 25% of the response in the general case for most of

deck member, with a few members having a 63% to 70% increase of that

response.

For the arch members the variances of the axial forces were the

highest in the wave propogation case, where the variances of the axial

forces were 16% and 10% higher than the variances of the general case

responses for ground motions l and 2, respectively. In the fully

correlated case, the variances of axial forces ranged from 11% to 23% of

the response in the wave propogation case. For ground motion 1, the

variances of shear forces and bending moments were higher in the wave

porpogation case by 6% to 15% in comparison with the general case, but

for ground motion 2, the general case responses were higher by a maximum

of 6% compared to the wave propogation case. In the fully correlated

case, the variances of the shear forces and bending moments ranged from

6% to 87% of the corresponding variances in the general case of ground

motion.

These results indicate that for the deck members, the worst case of

ground motion for axial force response was the fully correlated one.

For the arch members the worst case is the wave propogation case. The
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bending moments developed in the deck members in the fully correlated

case are very small relative to the other two cases. The same occured

in the arch members. Consequently, we can deduce that the fully

correlated case generated the highest axial force responses in the deck.

Intuitively this is expected since the supports are moving identically

resulting in inertia forces in the horizontal direction that have the

same phase. In the wave propogation case, there is a phase shift in

support motion resulting in smaller axial forces and larger bending

moments and shear forces. The general case of ground motion will have a

phase shift and loss of coherency between the support motions, resulting

in responses similar to the wave propogation case.

For the arch members it is clear that the wave propogation case of

ground motion is the worst, resulting in higher responses, especially in

the arch axial forces. This shows the sensitivity of long arch

structures to dynamically applied differential support motion or dynamic

pinching. The dynamically applied support motion will generate inertia

forces in the horizontal and vertical directions. These inertia forces

coupled with the sensitivity of arch structures to differential support

motion will generate the highest response in the arch members.

The response of the axial bracing members in the longitudinal

direction was the highest in the general correlation case. The

difference in response between the wave propogation and general case was

3% at most. The response in the fully correlated case was 6% and 25%

less than the response in the general case for ground motions 1 and 2,

respectively. The reason for that difference in response is that the

variance of ground motion displacement is higher for ground motion 2.

The higher the support displacement, the larger the longitudianl force

that has to be transferred from the deck to the arch.
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The vertical displacements of CSCB resulting from the two ground

motions, and the comparison between the displacements from different

ground motion correlations are shown on Figures 4-5 through 4-9.

Figures 4-5 and 4-6 show the normalized vertical displacements of ground

motion 1 and 2, respectively. The normalization was done by dividing

the variances of vertical displacements for each case of ground motion

correlation by the maximum value of displacement. Figure 4-5 shows that

in the general case of ground motion the maximum displacement occurs at

the middle of the bridge. Meanwhile for the wave propogation and fully

correlated ground motions the maximum displacement occurs at the one

third points. In the fully correlated ground motion the variance of

the vertical displacements at midspan is very small. In ground motion

2, as shown on Figure 4-6, the maximum vertical displacements in the

general and wave propogation occur at midspan point of the bridge. The

response to fully correlated ground motion 2 is similar to the one for

ground motion 1. Figures 4-7 and 4-8 show the comparisons between the

variances of vertical displacements due to the three cases of ground

motion correlation. The mormalization was done by dividing the

variances of displacements resulting from the wave propogation and the

fully correlated cases of ground motion by the corresponding

displacements from the general case. Both figures indicate that the

vertical displacement from the wave propogation and the general case are

very close to each other and are much higher than the resulting

displacements from the fully correlated case of ground motion. Figure

4-9 shows the comparison of the vertical displacements of ground motions

1 and 2. The comparison was done by dividing the variance of the

displacement from ground motion 1 by the corresponding variance of

ground motion 2 for all ground motion correlations. The figure shows

that the ratios in the wave propogation and the general cases are very
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Figure 4—5: Normalized Variances of CSCB Vertical Displacements for

Ground Motion 1. (a) General Case; (0) Wave Propogation

Case; (c) Fully Correlated Case.
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Figure 4-6: Normalized Variances of CSCB Vertical Displacements for

Ground Motion 2. (a) General Case;

Case; (c) Fully Correlated Case.
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Figure 4-9: CSCB Ratios of Variances of Ground Motion 1 to Ground

Motion 2 for the Three Cases of Ground Motion.

close to each other. It also shows that the displacements are higher in

ground motion 1 and that the ratio is changing along the span of the

bridge. Meanwhile, the ratio in the fully correlated ground motion is

almost constant along the span of the bridge.

4,3,3 IN-PLANE RESPONSE OF NRGB

The comparison of the bridge responses to the three correlation

cases of the two ground motions are summarized in Tables 4-9 and 4-10.

For the deck members, the variances of axial forces corresponding to the

1
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fully correlated case were 66% to 100% higher than the other two cases.

The variances of shear forces and bending moments were the highest in

the wave propogation case. The normalized variances of bending moments,

shear and axial forces were higher than the corresponding values for the

CSCB responses. The lowest values of shear forces and bending moments

occured in the fully correlated case.

The responses of the arch members indicate that the highest

variances of bending moments, shear and axial forces occured in the wave

propogation case. The second highest responses were in the general

case, and the lowest were in the fully correlated case. The variances

of axial forces in the wave propogation case were about 20% and 800%

higher than the responses in the general and fully correlated cases of

ground motion, respectively.

The most evident difference in the responses of the two bridges is

the response of the longitudinal bracing. For the CSCB, the variances

of the axial forces were close to each other for ground motion 1, but,

for ground motion 2, the variances of axial forces corresponding to the

fully correlated case were about 25% less than the responses to the

other two correlation cases of ground motion. For the NRGB, the

variances of axial forces in the longitudinal bracing were the highest

in the fully correlated case. The variances were 82% to 100% higher

than those in the general and wave propogation cases of ground motion 1.

For ground motion 2, the variances of axial forces due to fully

correlated excitation were 44% to 78% higher than the variances due to

the general and wave propogation excitations.

The differences in longitudinal bracing responses for the CSCB and

NRGB were caused by the differences in their deck longitudinal force

transfer mechanism. The CSCB deck has one expansion joint at the south

abutment and a pin connection at the north abutment as shown in Figure
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Table 4-9 Normalized In-plane NRGB Responses - Ground Motion 1

 

 

  

 

 

 

      

Elements Shear force Fx Axial force Fz Moment My

012:, (w) a; (H) a: (w) 0F (H) of, (w) a; (H)

x z Z J L.

of. (G) of. (G) of. (G) a? (G) ,2, (G) a; (a)
x x z z y y

Bracing

Elements

1 0.91 1.82

2 0.83 2.02

Deck

Elements

1 1.19 0.27 1.09 1.66 1.19 0.27

2 1.14 0.54 1.09 1.66 1.17 0.35

3 1.22 0.37 1.09 1.66 1.16 0.73

4 1.18 0.86 0.85 2.03 1.22 0.21

5 1.09 1.03 0.85 2.03 1.07 0.87

6 1.19 0.39 0.85 2.03 1.14 0.66

Arch

Elements

34 1.18 0.29 1.19 0.15 1.18 0.29

35 1.10 0.63 1.19 0.13 1.13 0.45

36 1.21 0.15 1.19 0.11 1.12 0.38

37 1.14 0.48 1.20 0.08 1.04 0.92

38 1.22 0.11 1.20 0.07 1.07 0.95

39 0.68 2.69 1.20 0.06 1.20 0.1

40 0.86 2.18 1.20 0.06 0.93 1.19  
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Table 4-10 Normalized In-plane NRGB Responses - Ground Motion 2

 

 

  

 

 

 

      

Elements Shear force Fx Axial force Fz Moment My

a: (w) of. (H) of. (w) of, (H) E, (w) of, (H)
x x z z y y

of. (G) of. (G) oi (G) a? (G) ,2, (G) of, (G)
x x z z y y

Bracing

Elements

0.99 1.43

2 0.92 1.78

Deck

Elements

1 1.11 0.08 0.98 1.80 1.11 0.08

2 1.09 0.33 0.98 1.80 1.11 0.21

3 1.12 0.09 0.98 1.80 1.09 0.32

4 1.11 0.33 0.92 1.98 1.12 0.05

5 1.09 0.33 0.92 1.98 1.08 0.46

6 1.12 0.10 0.92 1.98 1.10 0.38

Arch

Elements

34 1.11 0.16 1.12 0.02 1.11 0.16

35 1.06 0.47 1.12 0.02 1.09 0.35

36 1.12 0.07 1.12 0.02 1.07 0.28

37 1.09 0.37 1.12 0.02 1.12 0.04

38 1.09 0.31 1.12 0.02 1.06 0.65

39 1.13 0.03 1.12 0.02 1.06 0.75

40 0.78 3.20 1.12 0.02 1.12 0.12

41 0.92 2.28 1.12 0.02 1.01 0.93  
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4-10. The deck longitudinal force will be mainly transferred to the

support through the north abutment, and a little portion will be

transferred to the arch through the bracing.

In the response of the NRGB arch, the normalized variances of shear

forces and bending moments were relatively higher than for the CSCB arch

responses.

This can be related to the rise to span ratio. For the NRGB the

rise to span ratio is 0.22. For the CSCB the ratio is 0.21 for the

south hinge and 0.14 for the north hinge. Thus, the NRGB will respond

more in bending than the CSCB bridge.

The vertical displacements of NRGB resulting from the two ground

motions and the comparison between the different correlations of support

excitations are shown as Figures 4-11 through 4-15. Figures 4-11 and

4-12 show the normalized vertical displacements for ground motion 1 and

2, respectively. The normalization was done by dividing the variances

of vertical displacements for each case of ground motion correlation by

the maximum value of displacment. Figure 4-11 and 4-12 show that the

maximum vertical displacments of the general and wave propogation cases

occur at the one third span points. The minimum vertical displacements

occurs in the middle of bridge span. For the fully correlated ground

motion the maximum vertical displacement occurs at points close to the

middle of the bridge, where the vertical displacement are very small.

Figures 4-13 and 4-14 show the comparison between the variances of

Vertical displacements due to the three cases of ground motion

correlation. The normalization was done by dividing the wave

propogation and fully correlated cases of ground motion by the

corresponding displacements from the general case. Both figures

indicate that the vertical displacements resulting from the wave

propogation case were slightly higher than the displacements from the
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general case for the two ground motions. The figures also show that the

displacements form the fully correlated case of ground motion is much

smaller comparing with the other two ground motion correlations.

Figure 4-15 shows the comparison of the vertical displacements of

ground motions 1 and 2. The comparison was done by dividing the

variances of the displacements from ground motion 1 by the corresponding

variance of the displacement of ground motion 2 for all ground motion

correlations. The figure shows that the ratio of the wave propogation

and the general case are very close. It also shows that the

displacements are higher in ground motion 2 by about 200% comparing with

ground motion 1. For the fully correlated ground motion the difference

between the two ground motions is not as high as in the other two cases.

This difference in response between ground motions l and 2 is related to

the frequency content of the ground motion.

4.3.4 OUT OF PLANE RESPONSE OF THE CSCB AND NRGB

Tables 4-11 and 4-12 show comparisons of the CSCB responses to the

three correlation cases of ground motions l and 2, respectively. The

study of the responses Show that the bridge members responded

differently to different ground motions. For some members the highest

response was in the wave propogation case, for others it was either

in the general or fully correlated case. Thus, it was difficult to

predict which is the worst case for the out-of—plane response of the

arch members or a group of members.

Tables 4—12 and 4-14 show comparisons of the NRGB responses for the

three correlation cases of ground motions l and 2, respectively. The

conclusions that can be drawn from the NRGB responses are the same as

the ones for the CSCB responses.
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Figure 4-11: Normalized Variances of NRGB Vertical Displacements for

Ground Motion 1. (a) General Case; (b) Wave Propogation

Case; (c) Fully Correlated Case.
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4-12: Normalized Variances of NRGB Vertical Displacements for

Ground Motion 2. (a) General Case; (b) Wave Propogation

Case; (c) Fully Correlated Case.
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Figure 4-13: NRGB Normalized Variances of Vertical Displacements of

Ground Motion 1 With Respect to the General Case.
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Figure 4-14: NRGB Normalized Variances of Vertical Displacements of

Ground Motion 2 With Respect to the General Case.
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Figure 4-15: NRGB Ratios of Variances of Ground Motion 1 to Ground

Motion 2 for the Three Cases of Ground Motion.

The lateral displacements of CSCB resulting from the two ground

motions and the comparison between the displacement from different

correlations of ground motion are shown on Figures 4-16 through 4—20.

Figures 4-16 and 4-17 show the normalized lateral displacements of

thearch and the deck for ground motion 1 and 2, respectively. The

normalization was done by dividing the variances of lateral

diSplacements for each case of ground motion correlation by the maximum

value of displacement. Figures 4-16 and 4-17 indicate that the maximum

lateral displacements in CSCB occur at points close to the midspan point
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Figure 4-16: Normalized Variances of CSCB Lateral Displacements for

Ground Motion 1. (a) Fully Correlated Case; (b) General

Case; (c) Wave Propogation Case.





1.1

125

 

 

 

   

 

  
 

 

  
 

 

 
 

 

 

 
 

 

U) . .

OF- Deck

LIJ .
BIL—T3 0.6 4

42 O-O‘ ' l I I I I I I T I

gm 2 3 4 5 6 7 8 91011121314

01% 1 1

O y I f ' 'Arch

Q 4 .Z!) 0.61A

O 0.0 v . . v . . 4 . . . . 4

1 2 3 4 5 6 7 8 9 10 11 12 I3 14

BRIDGE PANEL POINTS

(0)

1.1 T . .

OE.) Deck

LUZ 0.6‘ -

EL” 00

«IE ‘234567891011121314

50 1 1
O; . . I I I I I I Y . 'Arch

Z(i') 0.6'1A7

O 0.0 v . 1 . . . . T . . . v

1 2 3 4 5 6 7 8 9 10 11 12 13 14

BRIDGE PANEL POINTS

(b)

1.1 . . .

BE 0 Deck

BE '6‘.
-‘J 010 I V I I I I I I I V I I

<5 ‘ 2 3 4 5 6 7 8 9 IO 11 12 13 14

02:0

CZ); 1.1 r T 7 'Arch

(L) 0.6‘ ‘

O 0.0 v , . . . . . . . . Y

‘ 2 3 4 5 6 7 8 9 IO 11 12 13 14

BRIDGE PANEL POINTS

(C)

Figure 4-17: Normalized Variances of CSCB Lateral Displacements for

Ground Motion 2. (a) Fully Correlated Case; (b) General

Case. (c) Wave Propogation Case.
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Figure 4-18: CSCB Normalized Variances of Lateral Displacements of

Ground Motion 1 With Respect to the General Case.





127

 

 

   

 

 

   

15 I I I I I I I I I I I I

2’ 1.4— 02 (WI/02 (C).——02 (FD/U: (G) —

Eff 1.2- f. \ s

133 1.1- /\ _

2
OLIJ 0.9-1 / \l \ M. \—

KJJE’ 0.84 f v _

283 0'5“ / I
‘55 0.5—

% 0.3—

2 0.24
Deck

0-0‘ 1 1 f 1 1 1 1 1 1 1 1 1

2 3 4 6 6 7 8 9 1O 11 12 13 14

BRIDGE PANEL POINTS

1.5 1 1 1 1 1 l 1 1 1 1 1

_’ 1_4_ a; (W)/og (o),____o: (HI/0: (G) -

<1

mm 1.2-
_

F— r-~.

L132 1 1— \ -

5L” 'of. 0.9— Ae// J —

uJQ) O.8- / ‘

N31
:10. 0-6~ ‘

$3 0.5— -

C) 0.3-1 _

2 0.2— a
A h

0.0 1 1 1 1 1 1rc1 1 1 1 1 T

‘ 2 3 4 5 6 7 8 9 1O 11 12 13 14

BRIDGE PANEL POINTS

Figure 4-19; CSCB Normalized Variances of Lateral Displacements of

Ground Motion 2 With Respect to the General Case.
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Table 4-11 Normalized Out-of-plane CSCB Responses - Ground Motion 1

 

 

    

 

 

Element TV Mx Mz MW

2 2 2 2 2 2 2 2

0 (W) 0 (H) U (W) 0 (H) 0 (W) U (H) U (W) 0 (H)

F F M M M M M M

V V X x z z w w

2 2 2 2 2 2 2 2

0 (G) 0 (G) U (G) U (G) U (G) 0 (G) 0 (G) U (G)

F F M M M M M M

y y x x z z w w

Deck

Elements

1 O 81 1 52 1.07 1.02 0 80 l 31 - -

2 0 71 1 51 1.33 0.88 l 30 O 71 1.15 0.98

3 0 89 1 20 1.01 0.95 1 10 1.25 l 10 1.00

4 1.08 1.19 1.12 1.64 O 79 1.46 1.13 0.89

5 0 75 1.56 0 99 1.21 0 73 l 32 1.05 1.17

6 1 04 O 70 2.67 0.43 O 86 1.09 O 98 1.25

7 0 90 0.92 1.06 0.84 0.89 1.08 1 17 0.81

8 0 72 1.24 O 62 1.23 1.18 O 79 O 88 0.87

9 0.95 0.91 0 71 0.80 1.22 O 77 1 21 0.86

10 1.11 0.82 1.38 0.75 1.03 0.97 0.98 0.92

11 l 10 0.89 1.02 0.95 0 82 1.06 1.12 0.89

20 1 24 0.91 1.09 O 99 1.22 O 92

21 l 24 0 90 1.60 0 68 1.10 0 99

22 1.10 O 97 1.10 1 00 O 99 1 O7

23 1.07 1 37 0 88 1 10 1.14 0 91

24 1.09 0 88 0 92 1 05 1.11 1 06

25 l 21 0.13 1.41 0.40 0.97 1 57

26 1 30 0.85 0.91 0.98 0.75 1 39

27 0 79 l 23 0.91 l 04 O 82 0.86

28 0 84 O 81 1.03 0 87 1.18 0.83

29 l 28 0 81 1.72 0 56 0 88 0 99

30 1 ll 0 80 1.05 1 00 1.09 O 91           
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Table 4-12 Normalized Out-of-plane CSCB Responses - Ground Motion 2

 

 

   

 

 

          

Elements I‘v Mx Mz Mw

2 2 2 2 2 2 2 2

U (W) 0 (H) 0' (W) U (H) 0 (W) 0 (H) U (W) 0 (H)

F F M M M M M M

V V X x z z w w

2 2 2 2 2 2 2 2

a (G) a (G) a (G) a (G) a (G) a (G) a (G) 0 (G)

F F M M M M M M

y y X X z z w w

Deck

Elements

1 0 88 1.72 1.02 1.06 0.98 1 55 - -

2 0.92 2.07 1.01 0.67 0 98 0 55 1.02 0.95

3 1.01 1.37 1.01 1.18 O 88 0 83 1.01 0.93

4 0 99 0.92 0.97 1.04 0 85 1 72 1 01 0.85

5 0 88 1.53 0.95 1.12 O 95 1 80 0.98 1.03

6 1.04 0 74 0.94 0.95 1.03 1 35 O 93 1.15

7 0.99 l 24 1.01 0.85 1.02 1 30 1.00 0.74

8 0.99 1.63 0.99 1.32 l 01 0 63 1.01 0.95

9 1.03 1.15 1.02 0.95 0 98 0.60 1.02 0.91

10 1.03 0 74 1.03 0.63 0 94 1.05 1.02 0.89

11 0.99 0 75 1.03 1.01 O 96 1.46 l 04 0.90

Arch

Elements

20 1 02 0 75 1.02 0.92 1.02 O 81

21 1.02 0 77 1.02 0 43 1.02 1 01

22 1.02 O 98 1.02 1 06 l 01 l 14

23 1.02 l 17 1.01 1 34 1 01 O 86

24 1 01 0 88 1 01 1 20 1 01 O 94

25 l 02 0 22 O 96 O 35 1 01 1.35

26 1 02 0 84 1 02 l 21 1.01 1.19

27 l 01 1 04 1.02 1.22 1.02 0 97

28 1.03 0.93 1.04 0.92 1 02 0.88

29 1.03 0.75 1.04 O 38 1.02 1.06

30 1.02 0 76 1.02 0 85 1.03 0 94

 
  

 

 



 

-‘fl
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Table 4-13 Normalized Out-of-plane NRGB Responses - Ground Motion 1

 

 

 

 

 
   

      

Elements l‘v Mx Mz MW

2 2 2 2 2 2 2 2

a (W) a (H) a (W) a (H) a (W) a (H) a (W) a (H)

F F M M M M M M

V Y x x z z w w

2 2 2 2 2 2 2 2

a (G) a (G) a (G) a (G) a (G) a (G) 0 (G) a (G)

F F M M M M M M

y y x x z z w w

Deck

Elements

1 1 01 0 97 1.01 0 92 1.01 0.97 1 03 0.87

2 0 91 1 89 1.03 0.92 0.97 1.27 1.00 1 04

3 1 00 0 91 1.05 0.88 1.00 1.08 1.03 0 84

4 l 00 0.98 0.99 0 92 1.00 0.69 1 02 0 97

5 O 99 1 19 1.01 0 94 0.99 0 61 0.99 0 86

6 0 99 1 04 0.99 1 14 0.96 l 58 1.05 1 27

7 1 01 1.33 1 14 1.35 1.05 1.70 1 13 1 70

8 0 94 1.75 1 11 1.40 1.02 1.33 1 04 1 21

9 0 78 1.44 0 93 1.22 1.02 0 59 0 93 O 96

10 1.04 1.05 0 94 1.02 0.69 1 23 0.84 1 22

11 1.12 0 74 0 92 1.02 0.94 1 19 1.13 0.69

12 0 89 1.13 0 98 1 01 1.04 1.01 0 91 1.15

13 0 98 1 70 O 99 0.97 0.99 1.25 0 99 0.96

Arch

Elements

34 1.05 0.86 1.00 1.00 1.00 0.96

35 1 05 0.88 1 03 1 00 1.05 0 87

36 1 02 0.90 1 04 0 88 1.05 0 89

37 1.05 0.83 0 99 0.93 1.04 0.95

38 1 06 0.78 1 03 1.16 1.01 1.06

39 1 05 0.88 1 02 1 03 0.97 1 65

40 0 92 0.63 1 12 0 38 0.85 2 37

41 1 01 0.65 1 04 0 47 0.99 1 48

42 0 95 1.04 0 92 1.20 0.89 l 23

43 l 02 0.79 1.09 0.97 0.84 1.24

44 1 09 0.81 0.95 0 99 0.93 1.09

45 0 89 1.07 0 78 1 31 0.95 1.01

46 0 93 1.04 0.99 1.03 0.95 1 02

47 0 95 1.00 1 01 0.98 0.93 1 05 J  
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Table 4-14 Normalized Out-of-plane NRGB Responses - Ground Motion 2

 

 

 

 

   
 

       

Elements I‘V Mx Mz Mw

2 2 2 2 2 2 2 2

a (W) a (H) a (W) a (H) a (W) a (H) a (W) a (H)

F F M M M M M M

V v x X z z w w

2 2 2 2 2 2 2 2

a (G) a (G) a (G) a (G) a (G) a (G) a (G) a (G)

F F M M M M M M

y y x x z z w w

Deck

Elements

1 1.01 0.98 1.01 0 89 1.01 0.98 1.02 0.83

2 0.86 2.40 1.02 0 89 0.95 1.40 0.97 1 31

3 0 99 1.12 1.04 0 89 1.01 1 05 1.05 0 53

4 1.01 0.82 0.97 0 95 0.98 0 99 0.99 1 21

5 1 00 1.12 1.03 0 93 1.01 O 63 1.03 0.72

6 0 97 1.27 1.00 1 23 0.95 1 77 1.02 1.26

7 0 99 1 51 1.06 1 15 0.96 1.98 0.94 2 61

8 0 82 2 70 1.05 1 17 0.95 1.49 1.05 0 90

9 0 82 l 96 0.93 1 44 1.00 0.65 0.96 0 93

10 1 04 0 86 0.98 0 99 0.74 2 21 0.83 1 85

11 1 05 O 63 0.91 1 32 1024 1 04 1.09 0 38

12 0.88 1 56 0.94 l 20 1.00 1 01 0.87 1 66

13 0.95 l 84 0.99 0 95 0.96 1 36 1.00 0 92

14 0.98 1 02 1.00 0 93

Arch

Elements

34 1.04 0 86 1 00 0 98 1.00 1 00

35 1.04 0 88 1 03 0 94 1.03 0 88

36 1.01 1 04 1.02 1 01 1.03 0.93

37 1.05 0 66 0.97 1.11 1.02 1.03

38 1.06 0 64 1 02 1.03 0.99 1 29

39 1.04 0 85 1 03 0 97 0.91 2 12

40 1.05 0 14 1 O8 0 23 0.72 3 64

41 1.05 0 22 1.06 0.31 0.89 1 91

42 0.97 1 11 0.97 1.19 0.83 1.80

43 1.04 0 65 1 06 0 72 0.88 1.47

44 1.04 0.69 0 91 1 30 0.93 1.23

45 0.89 1.42 0 84 1 71 0.96 1.09

46 0.93 1.19 0.98 1.02 0.96 1 14

47 0.95 1 11 0.99 0.99 J 0.93 1.19
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for all ground motion cases. The reason behind that is due to the fact

that CSCB is not symmetric.

Figures 4-18 and 4—19 show the comparison of the lateral

displacements of ground motion 1 and 2 for the arch and the deck. The

comparison was done in the same way as for the in-plane response of

CSCB.The figures indicate that the lateral displacements were not

greatly influenced by the different ground motion cases. The lateral

displacement for the three cases were within 10-15% from each other for

most of bridge panel points.

Figure 4-20 shows the comparison of the lateral displacements of

ground motion 1 and 2. The comparison was done in the same way as for

the in-plane response. The figure indicates that the lateral

displacements were larger in ground motion 1 by about 20%.

The lateral displacement response of NRGB is shown in Figures 4-21

Through 4—25. Figure 4—21 shows that the maximum displacement in the

fully correlated case of ground motion 1 occured at midspan. In the

other two cases, the maximum displacements in the deck occured at points

closed to the supports. In the arch the maximum displacements occured

at midspan. The maximum lateral displacements in ground motion 2

occured at one quarter points in the three cases of ground motion in

both the arch and the deck as shown in Figure 4-22. Figures 4-23 and

4-24 show that the maximum lateral displacements for the arch and the

deck occured in the fully correlated case of ground motion. Figure 4—25

shows that the lateral displacements are about 1.5 times higher in

ground motion 1 than in ground motion 2.
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Figure 4-22: Normalized Variances of NRGB Lateral Displacements for

Ground Motion 2. (a) Fully Correlated Case; (b) General

Case. (c) Wave Propagation Case.
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Figure 4-23: NRGB Normalized Variances of Lateral Displacements of

Ground Motion 1 With Respect to the General Case.
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Figure 4-24: NRGB Normalized Variances of Lateral Displacements of

Ground Motion 2 With Respect to the General Case.
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4.3.5 THE EFFECT OF GROUND MOTION PARAMETERS

As mentioned earlier, two sets of characteristic ground motions

were used to analyze the responses of the CSCB and NRGB. The parameters

characterizing these ground motions are shown in Tables 3—1 and 3-2.

For both models the variances of ground acceleration (area under the

spectrum) are equal, but the variance of ground displacement in ground

motion 1 is larger than the variance in ground motion 2.

The comparison between the CSCB and NRGB out-of—plane and in-plane

responses for the three correlation cases of ground motions 1 and 2 are

shown in Tables 4-15 through Table 4-26. Tables 4-15 to 4-17 show the

comparisons of the in-plane responses of CSCB to the three correlation

cases of support motion in ground motions l and 2. The tables show that

the CSCB responses were much higher in ground motion 1 in the three

cases of support motion correlation. The axial forces in the arch were

more than 6 times higher than the response in ground motion 2. The

axial forces in the deck were about 65% higher in ground motion 1. The

variances of shear forces and bending moments in most members were

higher in ground motion 1. The increase in response ranged from 16% to

400%. For some members the shear forces and bending moments Were higher

in ground motion 2.

The results of the CSCB response to the out—of—plane ground motion

are shown in Tables 4-18 to 4-20. The responses of the arch members

to three correlation cases are higher in ground motion 2. The members

experienced an increase in end force response ranging from 5% to 87%.

The response of the deck members was not uniform. For some members

ground motion 1 generated the highest response, while for others it was

ground motion 2.
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Table 4-15 In-plane CSCB Responses to the General Case:

Ratio of Ground Motion 1 to Ground Motion 2 Responses

Elements Shear Force Fx Axial Force Fz Bending moment Mv

0%. (cl>/a§ (<22) of. (op/of. (CZ) .734 (69/0?4 (G2)
x X z z y y

Bracing

Elements

1.14

2 1.12

Deck

Elements

1 1.04 1.76 1.04

2 4.96 1.73 0.73

3 1.22 1.70 2.25

4 0.82 1.66 1.11

5 1.85 1.62 0.85

6 1.16 1.61 0.93

7 1.73 1.61 1.71

8 0.81 1.58 1.69

9 1.51 1.55 0.69

10 3.82 1.53 1.12

11 1.12 1.51 -

Arch

Elements

20 0.95 6.05 0.95

21 4.52 6.10 0.70

22 1.55 6.16 2.16

23 0.87 6.20 1.07

24 2.03 6.23 0.85

25 1.17 6.10 0.94

26 1.92 5.94 1.55

27 0.87 5.94 1.68

28 1.95 5.93 0.67

29 3.61 5.90 0.98

30 0.98 5.86 —      
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Table 4-16 In-plane CSCB Responses to the Wave Propogation Case:

Ratio of Ground Motion 1 to Ground Motion 2 Responses

Elements Shear Force Fx Axial Force Fz Bending moment Mv

of. (1111/03 (112) of. (119/of. (112) of4 (119/of4 (112)
x x z z y y

Bracing

Elements

1.12

2 1.10

Deck

Elements

1 1.11 1.75 1.11

2 5.36 1.72 0.73

3 1.32 1.68 2.54

4 0.85 1.64 1.14

5 2.08 1.60 0.89

6 1.11 1.60 0.96

7 1.94 1.60 1.84

8 0.82 1.56 1.86

9 1.67 1.53 0.69

10 4.14 1.51 1.20

11 1.20 1.49 -

Arch

Elements

20 1.01 6.35 1.01

21 4.98 6.41 0.70

22 1.71 6.46 2.43

23 0.92 6.51 1.09

24 2.29 6.54 0.89

25 1.12 6.41 0.97

26 2.15 6.25 1.64

27 0.90 6.26 1.85

28 2.20 6.24 0.66

29 3.95 6.22 1.03

30 1.03 6.19 —     
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Table 4-17 ln-plane CSCB Responses to the Fully Correlated Case:

Ratio of Ground Motion 1 to Ground Motion 2 Responses

 

 

 

 

 

Elements Shear Force Fx Axial Force Fz Bendina moment Mv

of. (Hp/cf. (H2) 0% (Hp/0% (H2) of; (Hp/of; (H2)

x x z z y y

Bracing

Elements

1.42

2 1.40

Deck

Elements

1 1.55 1 72 1.55

2 1.40 1 70 1.39

3 1 52 1 67 1.11

4 1 76 1 64 1.30

5 1 35 1 61 1.38

6 1.37 1.60 1.36

7 1.40 1.58 1.28

8 1 7o 1 55 1.10

9 1 50 1 53 1.43

10 1 34 1 52 1.51

11 1 51 1 50 -

Arch

Elements

20 1.54 2 83 1.54

21 1.65 2 64 1.41

22 1.47 2 31 1.10

23 1.83 1 93 1.30

24 1.37 1 57 1-35

25 1.35 1 53 1'29

26 1.38 4 61 -

27 1.79 6 89 1.09

28 1.46 6 95 1.44

29 1.61 6 83 1.52

30 1.52 6 53 -  
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Table 4-18 Out-of-plane CSCB Responses to the General Case:

Ratio of Ground Motion 1 to Ground Motion 2 Responses

 

 

  

 

 

Elements FV Mx Mz Mw

2 2 2 2

a (G) U (G) 0 (G) 0 (G)

F 1 M 1 M 1 M l

V X z w

2 2 2 2

a (G ) a (G ) a (G ) a (G )

F 2 M 2 M 2 M 2

y x z w

Deck

Elements

1 1 35 1.26 1 00 1.18

2 1 29 0.97 0.79 1.12

3 O 89 2.08 1 21 1.11

4 O 65 1.81 1 10 1.22

S 1.01 1.07 0 73 0.98

6 1 43 0.40 0 79 0.94

7 1.06 1.09 1 01 1.45

8 O 78 2.64 O 95 1.13

9 1.16 2.29 0 71 1.13

10 1 27 1.00 0 81 1.20

11 1 04 1.25 1 20 -

Arch

Elements

20 1.03 1.06 1.03

21 1.05 0.79 1 20

22 1 55 1.20 1 20

23 1.59 1.23 1.06

24 1 17 1.20 l 33

25 1.71 0.85 1 66

26 1.07 1.23 1 86

27 1 69 1.18 1.66

28 1.85 1.23 1.08

29 1.08 0.79 1 20

30 1 14 0.96 1 21        
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Table 4—19 IOut-of-plane CSCB Responses to the Wave Propogation Case:

Ratio of Ground Motion 1 to Ground Motion 2 Responses

 

 

 

 

Elements FY MX Mz Mw

2 2 2 2

a (W ) 0 (W ) 0' (W ) U (W )

F 1 M 1 M 1 M 1

. .2 X Z w

2 2 2 2

a (W ) a (w ) a (w ) a (w )

F 2 M 2 M 2 M 2

y x z w

Deck

Elements

1 1.26 1.32 O 83 -

2 1 00 1.28 0.67 1.32

3 O 71 2.08 0.98 1.22

4 O 71 2.10 1.13 1.25

5 O 86 1.12 0.85 1.32

6 1.43 1.11 O 62 1.03

7 0.97 1.15 0.69 1.10

8 0.57 1.66 1.17 1.26

9 1.07 1.61 1.19 1.34

10 1.37 1.34 0.79 1.09

11 1.16 1.24 O 69 1.30

Arch

Elements

20 1.26 1.14 1 24

21 1.28 1.24 1.29

22 1.67 1.27 1.18

23 1.64 1.07 1.21

24 1.27 1.10 1.46

25 1.87 1.24 l 59

26 1.36 1.10 1 38

27 1 32 1.05 1.34

28 1 51 1.22 1.25

29 1.35 1.31 1.04

30 1.23 1.00 1.27       





 

145

Table 4-20 Out:of-p1ane CSCB Responses to the Fully Correlated Case:

Ratio of Ground Motion 1 to Ground Motion 2 Responses

 

 

  

 

 

Elements Fy MX Mz Mw

0% (H1) ”51 (H1) ”121 (H1) UM (H1)
Y X z w

2

0F (H2) “121 (H2) ”12 (H2) ”12 (H2)
y X Z w

Deck

Elements

1 1.19 1.21 0.85 -

2 0 94 1.27 0.65 1 22

3 O 78 1 68 1.19 1.20

4 O 84 2 87 1.03 1.16

5 1.03 1.15 O 81 1 39

6 1 35 1.15 0.60 1.07

7 O 79 1.09 0.66 1.03

8 0.59 2.46 1.26 1 34

9 0.92 1.93 1 21 1.08

10 1.40 1.18 O 66 1.16

11 1 24 1.18 O 59 1.19

Arch

Elements

20 1.26 1.14 1.18

21 1 24 1.26 1.18

22 1.54 1.13 1.13

23 1.85 1.02 1.13

24 1.18 1.06 1 50

25 1 07 0.99 l 93

26 1 10 1.00 2.17

27 l 99 1.00 1.46

28 1.60 1.18 1.03

29 1.17 1.16 1.13

30 1.21 1.14 1.19      
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Table 4-21 In-plane NRGB Responses to the General Case:

Ratio of Ground Motion 1 to Ground Motion 2 Responses

 

 

 

 

 

Elements Shear Force Fx Axial Force Fz Bending moment My

of. (cg/of. <92) oi: (cg/4%w (62> afi (cg/of1 <02)

x x z z y y

Bracing

Elements

0.91

2 1.02

Deck

Elements

1 0.49 1.61 0.49

2 o 62 1.61 0.49

3 o 50 1.61 0.69

4 0 80 0.75 0.46

5 0 74 0.75 o 57

6 o 51 0.75 o 53

7 o 63 0.48 o 46

8 o 63 0.48 o 53

9 0.51 0.80 0 58

10 0 77 0.80 0.46

Arch

Elements

34 0.45 0.46 0.45

35 0.67 0.45 0.52

36 0.43 0.45 0.56

37 0.52 0.45 0.43

38 0.51 0.45 0.51

39 0.45 0.45 0-59

40 0.89 0.45 3.:2

41 0.78 0.45 .

42 0.45 0-45 0-51   
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Table 4-22 In-plane NRGB Responses to the Wave Propogation Case:

Ratio of Ground Motion 1 to Ground Motion 2 Responses

 

Elements Shear Force Fx Axial Force Fz Bending moment My

 

of. (119/of. (112) oi (wp/afi 012) of1 (wp/af4 (W2)
x x z z y y

 

 

 

Bracing

Elements

0.84

2 0.92

Deck

Elements

1 0.53 1.79 0.93

2 0.65 1.79 0.52

3 0.55 1.79 0.74

4 0.84 0.70 0.50

5 0.75 0.70 0.57

6 0.54 0.70 0.56

7 0.62 0.52 0.50

8 0.62 0.52 0.53

9 0.54 0.75 0.59

10 0.77 0.75 0.50

Arch

Elements

34 0.48 0.49 0-48

35 0.69 0.49 0 53

36 0.46 0.48 0-59

37 0 54 0.48 0.47

38 0 53 0.48 0 50

39 0.48 0.48 0-59

40 0.77 0.48 0.49

41 0.73 0-48 0 54

42 0.48 0.48 0 51     
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Table 4-23 In-plane NRGB Responses to the Fully Corrleated Case:

Ratio of Ground Motion 1 to Ground Motion 2 Responses

 

 

 

 

 

Elements Shear Force FX Axial Force Fz Bendinv moment My

0% (Hp/0% (H2) 0:? (Hp/oi (H2) afi (Hp/of4 (H2)
x x z z y y

Bracing

Elements

1.15

2 1.15

Deck

Elements

1 1.61 1.49 1.61

2 1.00 1.49 0.82

3 1.89 1.49 1.53

4 2.07 0.77 1.83

5 2.28 0.77 1.09

6 1.87 0.77 0.92

Arch

Elements

34 0.81 2.48 0 31

35 0.89 2.28 0 65

36 0.93 2.00 0 76

37 0 93 2.00 0 76

38 0 78 1.50 0 72

39 1 57 1.32 0 74

40 O 74 1.23 '  
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Table 4-24 Out-of-plane NRGB Responses to the General Case:

Ratio of Ground Motion 1 to Ground Motion 2 Responses

 

 

 
 

 

 

     

Elements Fy MX Mz MW

2 2 2 2

0(6) 0(9) 0(0) 0(8)

F l M 1 M l M 1

Y X z w

2 2 2 2

0(0) 0(C) 0(G) 0(6)

F 2 M 2 M 2 M 2

y X Z w

Deck

Elements

1 0.66 0.85 0.66 0.83

2 1.01 0.87 0.86 0.99

3 0.65 0.89 0.92 1.22

4 0.81 1.42 0.96 1.44

5 0.98 2.30 0.78 1.83

6 O 83 1.92 1.03 2.70

7 1 32 2.42 1.18 3.61

8 l 79 2.31 1.05 2.13

9 0.94 2.08 0.81 2.02

10 0.85 2.37 1.27 1.77

11 0.78 1.45 0.84 1.12

12 0 75 1.10 0.80 1.11

13 O 84 0.84 0.79 0.81

14 O 72 0.82 - -

Arch

Elements

34 0.82 0.78 1.19

35 0.74 0.75 0.66

36 1.76 0.70 0.61

37 1.51 0.86 0.70

38 0.87 1.19 0.93

39 1.34 0.75 1.19

40 0.97 0.75 1.45

41 1.13 0.75 1.21

42 1.47 0.78 1.12

43 0.86 1.06 0.77

44 1.56 0.92 0.65

45 1.99 0.83 0.69

46 0.84 0.79 1.30

47 0.91 0.78 0.89
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Table 4-25 'Out-of-plane NRGB Responses to the Wave Propogation Case:

Ratio of Ground Motion 1 to Ground Motion 2 Responses

 

 

 

 

Elements Fv Mx Mz MW

2 2 2 2

0 (W) 0 (W) U (W) a (W)

F 1 M 1 M l M 1

47—_ X Z W

2 2 2 2

a (W) a (W) a (W) a (W)

F 2 M 2 M 2 M 2

y x z w

Deck

Elements

1 0.66 0.86 O 66 0 84

2 1.07 0 88 O 88 1.02

3 0.67 0.89 0 91 1.19

4 0.81 1.45 O 98 1.47

5 0.97 2.27 0 76 1.75

6 0.85 1.89 1 04 2 78

7 1.46 2 62 1.29 3.62

8 2.08 2 43 1.13 2.12

9 0.90 2.09 0.83 1.95

10 0.85 2.27 1.17 1.79

11 O 84 1.46 0.77 1.15

12 O 76 l 14 0.83 1.16

13 O 87 O 84 0 82 O 80

Arch

Elements

34 O 83 0.78 1.19

35 O 75 0.75 0.68

36 1 78 O 72 0.62

37 1.51 0 87 0.72

38 0.87 1 21 0.95

39 1.36 0 74 1.26

40 O 89 0 76 1.71

41 1.08 0.73 1.35

42 1.45 0.75 1.21

43 0.85 1.08 0.73

44 1.65 0.96 0.65

45 1.99 0.77 0.69

46 O 84 0 79 1.30

47 0.91 O 80 0.89       
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Table 4-26 Out-of-plane NRGB Responses to the Fully Correlated Case:

Ratio of Ground Motion 1 to Ground Motion 2 Responses

 

 

 

 

Elements Fv Mx Mz Mw

012:. (H1) 0; (H1) 0; (H1) 051 (H1)

2 X Z W

6127 (H2) 0131 (H2) 0; (H2) 0M (H2)

y x z w

Deck

Elements

1 0.65 0.89 0.65 O 88

2 O 80 0.90 0 78 O 79

3 0.53 0.88 O 94 1.94

4 0 97 1.16 1 54 1.15

5 1 04 2.34 0 77 2.19

6 0.69 1.78 O 92 2.72

7 1.17 2.83 1.01 1 97

8 1.16 2.75 0.93 2.88

9 0.69 1.78 0.73 2.07

Arch

Elements

1.16

0.66

0.58

0.64

0.77

0.92

0.95       
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Table 4-27: CSCB and NRGB In-Plane and Out-Of-Plane Frequencies of The

First Twelve Modes

CSCB in-plane CSCB out-of-plane

mgradgsec) fiiflgl mgradgsecz f Hz

2.71 0.43 2.30 0.36

5.27 0.84 3.74 0.59

9.73 1.55 5.54 0.88

9.93 1.58 8.87 1.41

14.6 2.33 9.31 1.48

15.3 2.44 10.03 1.60

21.8 3.47 15.72 2.50

28.9 4.60 19.64 3.13

29.9 4.76 23.80 3.78

36.8 5.80 24.54 3.91

44.5 7.08 31.62 5.03

50.9 8.10 34.41 5.47

NRGB in—plane NRGB out-of-plane

1.50 0.24 0.92 0.15

3.14 0.50 1.80 0.29

4.38 0.70 2.62 0.42

5.21 0.82 3.32 0.53

5.57 0.88 3.98 0.63

5.97 0.95 4.74 0.75

7.30 1.16 5.69 0.90

8.37 1.33 6.84 1.09

10.11 1.61 7.12 1.13

10.95 1.74 7.43 1.18

12.38 1.97 7.62 1.21

12.69 2.02 8.67 1.38
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The comparison of the NRGB In-plane responses to the three

correlation cases of ground motions l and 2 are shown in Tables 4-21 to

4-23. The tables clearly show that the highest responses of the bridge

occurs due to the general and wave propogation cases of support

excitations in ground motion 2. For the fully correlated case, the

highest response occured in ground motion 1.

The out-of-plane response of the NRGB to the three correlation

cases with ground motions l and 2 are shown in Tables 4-24 to 4-26. The

responses of the arch members show that the highest responses occured

due to ground motion 2. For the deck members the response in general

was the highest in ground motion 1 with some members for which the

highest response occured due to ground motion 2.

The in-plane response of the NRGB and CSCB for ground motions l and

2 are determined by their frequency content. The natural frequencies of

the first twelve modes of the CSCB and NRGB in-plane and out—of—plane

models are shown in Table 4—27. If we compare the first 12 natural

frequencies of the in-plane model of the CSCB with the normalized

autospectrum of ground acceleration (Figures 3-3), it can be seen that

the area enclosed between the autospectrum and the frequency range from

O to 40 Hz is much larger in ground motion 1 than in ground motion 2.

Consequentely, ground motion 1 will contribute to a higher in-plane

response of the CSCB.

For the NRGB, the first 12 natural frequencies ranging from 0.24 to

2.12 Hz. Those frequencies are very close to each other. Also, one can

see that the corresponding values of the normalized autospectrum are

higher for ground motion 2 than for ground motion 1 (Figure 3-3). Thus,

a higher response of the NRGB will result due to ground motion 2. The
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same conclusions can be made for the out-of—plane response of the CSCB

and NRGB.

The in-plane displacement response of the CSCB and NRGB (Figures

4-5, Through 4-9, and Figures 4-11 through 4-15) indicate that larger

displacements resulted from ground motion 2. As mentioned in Chapter 3

; the variance of ground displacement is higher in ground motion 2.

Thus, the responses of element end forces is governed by the frequency

content of the ground motion, and the displacement response is governed

by the displacement of the ground motion.

The out—of—plane displacement responses are shown in Figures

4—16,through 4-25. The figures show that the displacements resulting

from ground motion 2 were higher at the ends of both bridges. The

reason for this behavior could be due to the fact that the lateral

stiffnesses of the bridges are not as high as the in—plane stiffnesses.

Thus, the ground motion displacements will be effective at both ends of

the two bridges, but at the middle of the bridges the frequency content

of the ground motion will play a bigger role.

4.3.6 THE CSCB RESPONSE DUE TO TWO SUPPORT MOTION VERSUS FOUR

SUPPORT MOTION

In this section, additional support motions were considered at the

north and south supports of the approaching span of the CSCB as shown on

Figure 4-26. This was done to study the effect of the additional

support motion on the CSCB in-plane and out-of—plane responses.

Tables 4-28 and 4-29 show the normalized values of in-plane responses of

the CSCB due to the three correlation cases of ground motions 1 and 2,

respectively, when four support excitations are considered. Comparing

Tables 4-7 and 4-8 with 4-28 and 4-29. We can see that the general
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a) Ground Motion Applied to Four Supports
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Figure 4-26: Two support Motion Vs. Four Support Motion
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behavior did not change, except that the normalized values of axial

forces resulting from fully correlated ground motion were higher when

the ground motion was applied to four supports.

Tables 4-30 and 4—31 show the normalized values of the out-of—plane

response of the CSCB due to the three correlation cases for ground

motions 1 and 2, respectively. The general behavior is not different

from the case with two support motion. In some members the normalized

values were higher for the 4 support excitation.

Tables 4~32 and 4-33 compare the responses of the CSCB when two and

four support motions are considered for the general correlation case of

ground motions 1 and 2, respectively. The tables show that except for

the increase in the deck axial forces by 7% and 9% and a decrease in

bracing axial forces by 10% and 18%, ground motions 1 and 2,

respectively. The responses for two and four support motions are within

2-3% from each other.

4.3.7 THE EFFECT OF INCREASING THE BRIDGE STIFFNESS ON THE

RESPONSE COMPONENTS

As mentioned earlier, the total variance of the responses consists

of three components; the variance of the dynamic component, the variance

of the static component and the covariance of static and dynamic

components. In Tables 4-1 through 4-6, it can be seen that at a given

stiffness of a structure, the dynamic component are dominant, and the

contribution of static and static-dynamic components is minor.

In this part of the study, the influence of the structural

stiffness is examined. For this purpose, the stiffness of the CSCB

members were increased, and the relative contribution of each component

was monitored. The stiffness was increased by multiplying each member
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Table 4-28 Normalized In-plane CSCB Responses to Four Support Motion-

Ground Motion 1

 

 

 

  

 

 

Elements Shear force Fx Axial force Fz Moment My

2 2 2 2 2

(W) U (H) 0 (W) 0 (H) (W) a (H)

F F F F M M

x x z z y y

2 2 2 2 2

(G) 0 (G) 0 (G) 0 (G) (G) 0 (G)

F F F M M

x x z z y y

Deck

Elements

1 1.01 0.15 0.94 1 34 1.01 0.15

2 l 14 0.08 0.94 1 34 0.94 O 10

3 l 04 O 21 0.94 1 35 1.09 O 09

4 0.98 0.11 0.94 1 35 0.98 0.67

5 1 09 0.03 0.94 1 36 1 00 0.07

6 0.87 1 80 0.94 1 37 0.95 0 10

7 1.09 0.02 0.94 1 39 0.96 0.71

8 0 94 0.16 0.94 1 39 1 10 0.08

9 1.03 0.24 0.94 1 39 0.94 0 12

10 1.14 0.08 0.94 1.39 1.00 O 17

11 l 00 0.17 0.94 1.39

Arch

Elements

20 1.00 0.14 1.16 0.01 1 00 0.14

21 1.47 0.06 1.16 0.01 0 93 0.10

22 1.07 0.22 1.16 0 00 l 08 0.09

23 0.99 0.09 1.16 0 00 0 98 0.67

24 1.10 0.03 1.16 0 00 1 00 0.08

25 0 86 1.80 1.16 0.00 0 95 0.10

26 1 10 0.03 1.16 0.00 O 94 0.74

27 0.97 0.11 1.16 0.00 1 10 0.08

28 1.06 0.25 1.16 0 00 0.93 0.12

29 1.14 0.06 1.16 0 00 0.99 0.16

30 0.99 0.16 1.16 O 01 - -         

 





 

Table 4-29 Normalized In-plane CSCB Responses to Four Support Motion

Ground Motion 2
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Elements Shear force Fx Axial force Fz Moment My

2 2 2 2 2 2

(W) 0 (H) 0 (W) 0 (H) (W) a (H)

F F F F M M

x x z z y y

2 2 2 2 2 2

(G) U (G) a (G) a (G) (G) U (G)

F F F F M M

x x z z y

Deck

Elements

1 0.45 0.10 0.96 1 36 0.95 0.10

2 1.05 0.29 0.96 l 34 0.94 0.05

3 0.96 0.17 0.96 1.37 0.96 0.18

4 0.95 0.05 0.96 1.37 0.97 0.58

5 0 97 0 04 0.95 1 36 0.96 0.04

6 0 94 1.48 0 96 1.41 0.91 0.06

7 0 97 0.02 0 96 1.45 0.89 0.95

8 0.92 0.07 0 96 1 44 1.00 0.12

9 0.93 0.24 0 96 l 44 0.94 0.05

10 1.06 0.23 0 96 1.44 0.93 0.13

11 0.93 0.13 0 96 1.43

Arch

Elements

20 0.95 0.09 1.10 0.03 0.95 0.09

21 1.03 0.16 1.10 0.02 0.94 0.05

22 0.97 0 24 1.10 0.02 0.96 0.19

23 0 95 0.04 1.10 0.01 0.97 0.56

24 0 97 0.05 1 10 0.01 0.96 0.05

25 0.94 1 51 1 10 0.00 0.91 0.07

26 0.98 0.04 1 10 0.00 0.88 0.88

27 0.93 0.05 1.10 0.00 1.00 0.13

28 0.93 0.33 1 10 0.00 0.94 0.05

29 1.05 0.13 l 10 0.00 0.93 0.10

30 0 93 O 10 l 10 0.00 - -
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Table 4-30 Normalized Out-of-plane CSCB Responses to Four Support

Motion-Ground Motion 1

 

 

 

  

 

  

 

 

 

 

      

Elements Fy Mx Mz Mw

2 2 2 2 2 2 2 2

0 (W) 0 (H) 0 (W) <7 (H) U (W) 0 (H) U (W) 0 (H)

F F M M M M M M

__1___ __X___ X x z z w w

2 2 2 2 2 2 2 2

0 (G) a (G) 0 (G) U (G) a (G) a (G) U (G) U (G)

F F M M M M M M

y y x x z z w w

Deck

Elements

1 0.86 1.60 1 04 1.02 O 96 1 59 — -

2 0 90 1.98 1 01 0.70 O 91 O 51 1 O4 0 92

3 O 97 1 72 1.03 0.96 O 82 0 91 1 02 O 94

4 0 92 1 13 O 98 1.42 O 83 1.51 1.01 O 84

5 O 80 1 70 0 93 1.17 0 92 1 83 0.96 1 13

6 1 04 O 78 O 96 0.14 1 O4 1 58 0 91 1 16

7 0 99 1 O7 1 01 0.83 1.04 1 45 1 02 O 71

8 0.90 1 81 0 89 1.72 1.05 O 72 O 98 1.00

9 1.06 1 14 0 96 1.05 1 00 0.63 1 05 0.78

10 1.07 0 82 1.04 0.59 O 88 0.83 0.99 O 95

ll 1 01 O 79 1.07 1.00 0 87 l 38 1.07 O 86

Arch

Elements

20 1.01 0 77 1.05 0.95 1.03 O 82

21 1.02. O 78 1.03 0.46 1.05 O 97

22 1 02 0.93 1.06 0.98 l 04 1 11

23 1.04 1.28 1.03 1.33 1.00 0 85

24 1.02 O 84 1.00 1.22 0.99 1 01

25 0.98 0 12 0.92 0.28 1 03 1 64

26 1.06 0.71 1.03 1.17 0 96 1 74

27 0 96 1.46 1.05 1.23 O 96 1 04

28 0.99 0 96 1.06 0.90 1 O4 0 77

29 1.05 O 69 1.06 0.35 l 01 1 14

30 1.01 O 75 1.02 0.98 1 07 0.91                
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Table 4-31 Normalized Out-of—plane Responses to Four Support Motion

-Ground Motion 2

 

 

 

 

    

   
 

 

 

                 
     

Elements Fy Mx Mz Mw

2 2 2 2 2 2 2 2

U (W) U (H) 0 (W) U (H) 0 (W) 0 (H) 0 (W) 0 (H)

F F M M M M M M

__X___ __1___ X X z z w w

2 2 2 2 2 2 2 2

0 (G) 0' (G) 0 (G) a (G) 0 (G) 0 (G) a (G) 0 (G)

F F M M M M M M

y y X X Z Z w w

Deck

Elements

1 O 90 1.70 1 01 1.10 0 97 1 64 — —

2 O 92 2.26 l 00 0.72 0 99 0 58 1 01 0.99

3 1 00 1.65 1 01 1.22 0 92 O 80 1 01 0.95

4 1 00 1.06 0.97 1.05 O 88 1 74 1 00 0.91

5 0 9O 1 61 0.96 1.16 0 94 2 11 0.97 1.11

6 1 02 O 85 0.96 0.14 1.02 1 71 0 94 1.15

7 O 99 1.42 1.00 0.87 1.01 1.57 l 00 0.75

8 0.96 2.13 0 98 1.38 1.03 O 65 1.00 1.00

9 1.03 1.38 1 01 0.95 O 99 0 60 1.01 0.95

10 1.05 0.78 1 02 0.66 0 93 1 15 1.01 0.91

11 1 OO 0 75 1.03 1.02 0.93 1 87 1.03 0.92

Arch

Elements

20 1 01 O 80 1.01 0.91 1.01 0 86

21 1 01 0.83 1 01 0.46 1 01 1 05

22 1 00 1.05 l 02 1.08 1 01 1 14

23 1 01 1.16 1 00 1 36 1 00 O 92

24 1 00 O 92 0.99 1 27 O 99 1 O4

25 1 00 0 23 0.95 O 36 1 00 1 43

26 1 02 0 86 1.00 1 27 1.01 1 21

27 1.01 1 04 1.01 1.24 1.00 1 03

28 1.02 0 96 1.03 0.92 1.01 O 92

29 1.02 O 78 1.03 0 39 1.02 1.08

30 1 01 0 79 1 03 0.39 1.02 1.08
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Table 4—32: Ratio of In-plane CSCB Responses with Four Support Motion

in the General Case to the Responses with Two Supports

Motion-Ground Motion 1

 

 

 

 

 

 

Elements

2 2

a (G)(4 supports) a (G)(4 Supports) a (G)(4 Supports)

F F M

X Z L

2

a (G)(2 supports) a (G)(2 Supports) a (G)(2 Supports)

F F M

x z y

Bracing

Elements

0.89

2 0.87

Deck

Elements

1 1 02 1.09 1 02

2 1.01 1.08 1.00

3 1.03 1.08 1.00

4 1.02 1.07 1 O6

5 1.01 1.07 1 O3

6 l 13 1.07 O 98

7 0.99 1.07 1 02

8 0.99 1.07 0.99

9 1 01 1.07 0.99

10 1.00 1.07 1.01

11 1.01 1.07

Arch

Elements

20 1.01 0.99 1.01

21 1.01 0.99 1.00

22 1.03 0.99 0.99

23 1.02 0.99 1.06

24 1 01 0.99 1.03

25 l 12 0.99 O 98

26 0.99 1.00 1 02

27 0.99 1.00 0.99

28 1.02 1.00 0.99

29 1.00 1.00 1.00

30 1.00 1.00 -  
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Table 4-33: Ratio of In-plane CSCB Responses with Four Support Motion

in the General Case to the Responses with Two Support

Motion-Ground Motion 2

 

 

 

 

 

Elements

2 2

a (G)(4 supports) a (G)(4 Supports) a (G)(4 Supports)

F F M

x z Y

2 2

a (G)(2 supports) a (G)(2 Supports) a (G)(2 Supports)

F F M

x z y

Bracing

Elements

0.83

2 0.80

Deck

Elements

1 1.01 1.08 1.01

2 1.01 1.08 1.00

3 1.03 1.08 1.00

4 1.02 1.08 1.07

5 1.01 1.08 1.03

6 1 09 1.09 0.98

7 0.99 1.10 1.02

8 0.99 1.09 1.00

9 1.01 1.09 0.99

10 1.00 1.09 1.00

11 1.01 1 09 -

Arch

Elements

20 1 01 0.99 1.01

21 1.01 0.99 1.00

22 1.04 0.99 0.99

23 1.01 0.99 1.07

24 1.01 0.99 1.03

25 1.09 0.99 0.98

26 0.99 0.99 1.02

27 0.99 0.99 1.00

28 1.02 0.99 0.99

29 1.00 0.99 1.00

30 1.00 0.99 0.99     
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stiffness by the same factor. Five members were studied and the results

are shown in Figures 4-27 through 4-31. All figures indicate that at

the initial bridge stiffness, the main response contribution came from

the dynamic component and the other two components were very small. By

increasing the stiffness, the variance of the static component starts

increasing and at one point it becomes equal to the dynamic component.

Beyond that point by increasing the stiffness further, the static

component becomes the major contributor to the response and the dynamic

component keeps decreasing until it's contribution becomes very small.

The relative contribution of the covariance of static and dynamic

components is different from one member to another. What was noticed is

that if the member response is sensitive to static displacement, the

covariance component is higher. Also, it was noticed that the static

component of axial forces increases faster than the other components

such as bending moments.

The figures indicate that the stiffness can be increased by a large

factor before the static response becomes significant. This implies

that for bridges of this type, the static response is not expected to be

significant. Only bracing members responses have a noticeable static

component for a moderate increase in stiffness.

4.3.8 THE EFFECT OF WAVE VELOCITY ON THE RESPONSE OF THE TWO BRIDGES

In literature the central frequency of ground motion is calculated

using one of the following formulas

Iw S(w) dw

01 = (4.1)

Zn I S(w) dw
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___ ______________ (4.2)

425(6) dw 0.5

01 =21

" I S(w) dw

WTIere 53(w) is the spectral density function of ground motion

acceleration and has the form

w W

wIw. 354241 [1.o.[./.,I2]2+..WII
S(w) =

 

Using the ground motion 1 the values of 01 calculated by equations

(4.1) and (4.2), are found to be 5.71 Hz and 10.77 Hz’ respectively.

For ground motion 2 those values are 2.25 Hz and 5.61 Hz. By choosing

different wave velocity in equation (3.108) and investigating the

responses of some deck and arch members, a study on the effect of

seismic wave velocity was conducted.

Figure 4-32 shows the responses of axial forces and bending moments

in CSCB arch members No. 20 and 26 as a function of wave velocity. The

figure indicates that the bending moments and axial forces are much

higher at low velocity and have a periodic behavior. Both responses

tend to approach a unique level with increasing wave velocity.

Figure 4-33 shows the responses of axial forces and bending moments

in CSCB deck members No. 2 and 7. The figure shows that the axial force

in deck members increases with the increase of wave velocity, but the
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bending moments decreases, and both responses are approaching a unique

level.

Figures 4-34 and 4—35 show the axial forces and bending moments in

NRGB arch members No. 34, 40 and 47 as a function of wave velocity.

Both responses in all the three members show that they are decreasing

with increasing the wave velocity and tend to approach a unique level.

The same conclusion can be drawn from Figure 4-36, where the

bending moment responses is depicted for NRGB deck members No. 2, 7 and

12.

Figures 4—37 and 4—38 show the axil force responses in longitudinal

bracing members in CSCB and NRGB, respectively.

Figure 4-37 shows that the wave velocity has no effect on the axial

force responses in CSCB, while it procuces a slight increase in NRGB

response.

4.3.9 NONSTATIONARY RESPONSE OF THE CSCB AND NRGB

 

To determine whether the CSCB and NRGB will reach their stationary

response during strong ground motions of normal duration (10—15 sec),

the variances of responses in both bridges were calculated at one and

five seconds after the beginning of strong ground motion. The ground

acceleration was assumed to start at time zero with its full stationary

intensity (i.e., a Heaviside temporal modulating function was assumed).

The results were compared against the stationary responses of the two

bridges. The calculations were performed by replacing the frequency

response function (equation 3.67) by the "time—dependent frequency

response function" (equation 3.117).

Tables lI-34 and 4-35 show the response ratios of the CSCB and NRGB

at one and five seconds relative to the stationary response. The tables
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indicate that the responses of the CSCB and NRGB are very close to

their stationary values after about five seconds of strong shaking.

These results indicate that considering only the stationary

response is reasonable for both bridges. The reason for this is that

the first few modes, which have long periods and would therefore be

expected to have slowly growing responses, do not contribute signifi-

cantly to the overall responses. If we compare the in-plane frequencies

of the CSCB and NRGB (Table 4—27) with the normalized acceleration

spectra (Figure 3-4), it can be seen that the first two modes for the

CSCB and the first five modes for the NRGB have frequencies lower than

the dominant excitation frequencies of the ground acceleration.

4.4 COMPARISON BETWEEN DETERMINISTIC AND RANDOM VIBRATION STUDIES

The relative response between fully correlated and wave propagation

excitations Were obtained by Dusseau (1985) using deterministic

analysis, and in this study using random vibration analysis. These are

compared here.

It should be noted that there were some differences between the

input excitations used in the two studies. Dusseau used scaled versions

of the Caltech B1 and B2 simulated accelerogram, while in this study

normalized ground acceleration I and 2 with the parameters given in

Tables 3-1 and 3-2 were used. The frequency content of ground motion 1

is similar to that of the B1 record, and hence the comparisons are only

made for these excitations.

Although the acceleration spectrum of the Bl record is similar to

that of ground motion 1, there may be significant differences in the

ground displacements. The filter used to attenuate low frequencies of

the ground acceleration spectrum in the random vibration study
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Table 4-34: Ratios of the CSCB Responses at One and Five Seconds to the

Stationary Responses.

2 2 2

a (NON) a (NON) a (NON)

x z 1

Elements

2

0 (ST) 0 (ST) 0 (ST)

F M

x z v

t=lsec t=Ssec t=lsec t=Ssec t=lsec t=Ssec

Bracing

0.66 1.0

2 0.66 1.0

Deck

Elements

0.29 0.99 0.63 0.99 0.63 0.95

6 0.52 0.96 0.60 0.99 0.30 0.96

Arch

Elements

20 0.47 0.96 0.78 0.99 0.47 0.96

25 0.51 0.95 0.78 0.99 0.30 0.95

Table 4-35: Ratios of the NRGB Responses at One and Five Seconds to the

Stationary Responses.

0 (NON) a (NON) a (NON)

M

x Z 2

Elements

2

0 (ST) 0 (ST) 0 (ST)

F

x 2 v

t=lsec t=Ssec t=lsec t=Ssec t=lsec t=Ssec

Bracing

0.52 0.92

2 0.60 0.94

Deck

Elements

0.27 0.95 0.48 0.94 0.52 0.97

10 0.33 0.92 0.18 0.99 0.26 0.93

Arch

Elements

34 0.24 0.94 0.57 0.96 0.24 0.94

40 0.48 0.88 0.55 0.95 0.12 0.93       
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(IH2(w)|2) in equation (3.111) has a significant effect on the dis-

placement spectrum. Therefore similar acceleration spectra do not

necessarily have similar displacement spectra. The ground displacement

affects the pseudo-static responses but not the dynamic responses. In

the bridges studied, the contribution of the static response to the

total response is small (about 10 to 12% at most in the bracing elements

and much smaller in the other elements), and therefore any differences

in the ground displacements between the deterministic and random

vibration studies is not expected to contribute significantly to the

total responses (except perhaps to the bracing elements).

The apparent wave velocity along the length of the bridge also

differed slightly for the results compared here: Dusseau used 1706 m/s

and 853 m/s while this study used 1000 m/s. The effect of increasing

velocity from 1000 m/s to 1706 m/s in the random vibration analysis was

found to give similar tendencies, and therefore this difference in the

velocities in not very important for the purpose of the comparisons.

To compare the results of both studies, we can only look at the

response of the NRGB and CSCB under Bl-Bl, Bl-Bl', and BI-Bl” loading

conditions of the deterministic study, where Bl-Bl represents fully

correlated excitations, and Bl-Bl' and Bl-Bl" represent wave propogation

cases with seismic wave velocities of 1706 m/s and 853 m/s, respective-

ly. The results from these cases are compared to the responses of fully

correlated wave propogation cases in this study. The results are

discussed for bracing, deck and arch members, and also the vertical

displacements.

l. Bracing: In the deterministic study (see Tables 4-9 through 4-12

in Dusseau (1985)) the axial forces in the CSCB bracing were
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105.2, 97.3 and 121.8 Tons for loadings Bl-Bl, Bl-Bl', and B1-

31“, respectively. Decreasing the wave velocity from 1706 m/s to

853 m/s, the axial forces increased from 97.3 Ton to 121.8 Ton.

These results are compared with the ground motion 1 results of

this study. From Table 4-7 (of this study) it can be seen that

the difference in the bracing response to the fully correlated

and wave propogation cases is negligible. The influence of wave

velocity on the CSCB bracing response was minimal as shown in

Figure 4-37. Since the static response contributes about 10% to

the bracing response, the difference in the ground displacements

between the two studies (as pointed out earlier) may be the

reason for the observed differences.

. Deck members: In the deterministic study, the stress in the deck

element near the center were 15.18, 13.53 and 17.04 ksi (see

Tables 4-9 through 4—12 in Dusseau (1985)). In this study, the

combined normal stresses due to axial forces and bending moments

were not computed. However, based on the results for varying

velocity, (see Figure 4—33 in this study) the axial force

decreases slightly with decreasing wave velocity, but the bending

moment increases with decreasing velocity. Figure 4-33 shows

that when the velocity reduces from w to 1706 m/s, the bending

moment does not change much but the axial force decreases. This

corresponds to the decrease in stress from 15.18 to 13.53 ksi in

the deterministic study. However, as the velocity decreases

further to 853 m/s, the axial force reduces a little more while

the bending moment increases sharply, which would give a higher

combined stresses.

. Arch members: The stresses in the arch elements at the abutment

(see Tables 4-9 through 4-12 in Dusseau (1985)) were 9.78, 15.40
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and 19.06 ksi for loadings Bl-Bl, Bl-Bl', and Bl-Bl", respective-

ly. These results have the same behavior as in this study, but

the ratios of responses between wave propogation and fully

correlated excitation is larger in this study.

4. Vertical displacements also have the same tendencies in the two

studies, but again the ratios between wave propogation and fully

correlated excitation are larger in this study.

5. The main difference between the CSCB and NRGB responses is in the

response of the bracing elements. The results in both studies

confirm that the bracing axial force response is much higher in

the fully correlated case of ground motion.

Some of the differences between the two studies may be due to the

differences in the input ground motion acceleration and displacement

models. The fact that the deterministic analysis was only one sample of

the excitation process, which may produce lower or higher responses than

the average, is also expected to contribute to these differences.

 

 





CHAPTER 5

SUMMARY AND CONCLUSIONS

W

The research conducted here was to study the effect of spatial

variation of earthquake induced ground motion on the response of (The

New River Gorge Bridge (NRGB), and Cold Springs Canyon Bridge (CSCB)).

The equations of motion were developed using the finite element

technique and the random vibration approach.

In order to perform this study, a suitable ground motion model

is required. In this study a space-time ground motion model proposed by

Harichandran and Vanmarcke (1986) is used. In this model the ground

acceleration are assumed to constitute a homogeneous random field. The

point spectral density function of the ground acceleration, is therefore

assumed to be the same at all spatial locations. The correlation

between the accelerations at two different points is characterized by

the coherency function p(y,f) and the phase due to the time delay caused

by wave propagation is accounted for by an exponential function

exp(—iwu/v).

In this study three cases of ground motion models were used.

Case 1 is the fully correlated ground motion in which all the support

points are moving identically. This assumption is not realistic for

long span bridges, but it is the current practice of designing. Case 2,

is the wave propogation model where only the wave travelling effect is

considered with no coherency loss. Case 3, is the general case of

ground motion model where the travelling wave effect as well as the

correlation between the acceleration at two different points which is

characterized by a coherency function are considered.
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Each case of ground motion has two different sets of fitting

parameters. Those cases of ground motion were applied in the horizontal

direction and the responses of the two bridges were determined and

analyzed.

5.1.1 MODELS OF THE CSCB AND NRGB

The models used in this study are the ones obtained by Dusseau

and Wen (1985) who studied the same two bridges using the deterministic

approach to analyze the response of the bridges under unequal seismic

support motion. Using those models made the task of analyzing the two

bridges much easier because, they transformed the two bridges from a

structure with hundreds of d.o.f. to a structure with less than 100

d.o.f.

5.1.2 CSCB IN-PLANE RESPONSE

The CSCB in-plane responses were determined for the three cases

of ground motion. The deck axial forces were the highest in the fully

correlated case, meanwhile the bending moments and shear forces were

minimum. The deck bending moment was maximum in general and wave

propogation case. The most striking difference is the response of the

bridge's arch to the general and wave propogation cases comparing with

the response to the fully correlated case. The difference in the

response between the wave propogation and the general case was about 7%

in bending moments and shear forces, and about 16% in axial forces where

the wave propogation response was higher than the general case response.

The arch axial forces response in the wave propogation case was 4 to 6

times higher than in the fully correlated case, meanwhile the bending

moment and shear forces were about 2 to 4 times higher.
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The longitudinal bracing response in ground motion 1 was very

close in all three cases of ground motion. In ground motion 2, the

highest bracing response was in the general case followed by the wave

propogation case and fully correlated case, respectively. The

difference between the wave propogation and the general case was very

small and both were about 25% higher than the fully correlated case

response. The vertical displacement in both the general and wave

propogation cases were close to each other and both were about 3 to 10

times higher than the response in the fully correlated case.

The responses of ground motion 1 comparing to ground motion 2

were much higher, and this can be explained by the frequency content of

ground motion.

5.1.3 NRGB IN-PLANE RESPONSE

The deck axial forces were the highest in the fully correlated

case of ground motion, where the axial forces were about 66% to 100%

higher than the axial response in the general and wave propogation

cases. The deck bending moments responses were the highest in the wave

propogation case, where they were about 19% higher than the general case

response, and about 73% to 400% higher than the fully correlated case

response.

The arch responses were the highest in the wave propogation

case, where the axial forces response was about 2.7 to 4.4 times higher

than the response in the fully correlated case. The responses in the

wave propogation and the general case of ground motion were within 20%

of each other in ground motion 1, and within 12% in ground motion 2.

The response of the longitudinal bracing was the highest in the

fully correlated case of ground motion. In comparison with the general

case of ground motion the bracing axial forces in the fully correlated
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case were about 80% to 100% higher in ground motion 1, and 44% to 78%

higher in ground motion 2. The bracing axial forces in wave propogation

and general cases of ground motion were within 10% to 17% in ground

motion 1 ,and within 8% in ground motion 2.

The responses of ground motion 1 is about 50% less than the

responses in ground motion 2. This can be explained by the frequency

content of ground motions l and 2.

The vertical displacement was the highest in the wave

propogation case at 1/3 points of the span. The displacements in the

wave propogation and general cases were very close and both were in

about 10 times higher than the vertical displacements in the fully

correlated case of ground motion.

5.1.4 NRGB AND CSCB OUT—OF-PLANE RESPONSE

The study of the out—of—plane responses of both bridges shows

that the members responded differently to different ground motion

correlation. For some members the highest response was in the wave

propogation case, for others it was the general or fully correlated

case. Thus it was difficult to predict what is the worst case of ground

motion.

For NRGB the maximum lateral displacement occured in the fully

correlated case. The displacements in the wave and general cases were

close the each other. The maximum lateral displacements occured at the

ends of NRGB, and that was more evident in ground motion 2 where the

variance of ground displacement is higher.

The lateral displacements of CSCB show that the three cases of

ground motion had similar effect on the out—of—plane response.
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5.1.5 RELATIVE CONTRIBUTION OF RESPONSE COMPONENTS

The variance of total response consists of three different

components; the variance of dynamic component, the variance of static

component and the covariance of pseudo-static and dynamic components.

It was found that the dominant component is the dynamic one. The two

other components could be ignored when the stiffnesses of the structure

is normal.

By increasing the stiffness of the two bridges the static

component starts increasing to a point where it becomes equal to the

dynamic component. By increasing the stiffness more, the static

component continues its increase and the dynamic component continues its

decrease until it becomes negligible.

5.1.6 THE EFFECT OF SEISMIC WAVE VELOCITY

By choosing different wave velocities and calculating the

responses of the two bridges, it was noticed that the responses of the

two bridges were decreasing with the increase of wave velocity except,

the axial forces in the deck of CSCB where they were increasing. Also,

it was noticed that the wave velocity did not affect the response in the

longitudinal bracing of CSCB, while increasing the velocity caused

slight increase in the NRGB longitudinal bracing response. The decrease

in response with increasing velocity can be related to the fact that the

wave propogation effect decreases with the increase of velocity.

5.1.7 NONSTATIONARY RESPONSE OF CSCB AND NRGB

It was found that the responses of both bridges reach the

stationary state response in about five seconds. Consequently, the

assumption that the ground motion constitute a stationary random field

is a valid one when the duration of strong ground motion is more than 5
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seconds. The reason that both bridges reach the stationary response in

that short period of time is due to the fact that the first modes do not

contribute significantly to the response of both bridges.

5 . 2 CONCLUSIONS

This study of the response of NRGB and CSCB to differential

support excitation illustrates that it is very important to consider the

spatial variation of earthquake ground motion in the analysis of such

S tructures .

l.

The following conclusions are made based on this study.

The most important component of the structural response of

both bridges is the variance of the dynamic component. The

variance of the static and the covariance of static and

dynamic components could be ignored when the structures is

not stiff. For stiff structures the variance of static

componenets and the covariance of static and dynamic

component must be considered in the analysis. This

conclusion is true for a structure with the same end fixity

conditions. For different conditions a study must be

performed.

The most important effects of the differential support

exictation is the substantial increase in arch axial forces

and bending moments. The increase of the arch axial forces

is much higher than the increase of bending moments.

Comparing with the fully correlated case of ground motion,

the wave propagation case increases the axial forces in the

arch by 6 to 10 times, meanwhile the increase of bending

moments was 2 to 4 times. The responses due to wave

propogation and general cases of ground motion were close to

 

 





 

 

 

 

 

189

each.cnfl1er in most cases with a maximum difference of 20% in

some cases.

The vertical displacements in the two bridges were high and

close to each other in the wave propogation and the general

case of ground motion“ In the fully correlated case of

ground motion the vertical displacements were very small

comparing with the other two cases.

The lateral displacements of the two bridges were the highest_

in the fully correlated case of ground motion. But in all

three cases of ground motion the difference iJIILateral

displacements was not far away from each other.

The response of the two bridges is very dependent on the

parameters of ground motion which eventually influence the

frequency content of ground motion models. For example the

axiaJ_:Eorces in.CSCB increased by 6 times when changing from

ground motion 1 to ground motion 2, but in the NRGB the axial

forces decreases by about 50% . Of course, these results are

also related to the structural frequencies.

The seismic wave velocity has a very important effect on the

response of long structures. .At low*wave velocity the

responses of the two bridges were high and periodic, but with

increasing wave velocity the responses decreased and

approached a unique value.

Both bridges will reach the stationary values of response

during a strong ground motion of five seconds or more.
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w

The scope for future research in this area is quite wide. Some

of the main points that need to be addressed are as follows:

1. Other steel deck arch bridges, and other types of long span

bridges need to be studied, so that we can generalize the

findings, and study the different parameters that affect the

differential excitation on the structural response.

2. Perform non-linear random vibration analysis on steel deck

arch bridges to better and more in depth understand the

structural behavior.

3. The numerical results of the random vibration analysis is as

good as the model of ground motion. So, more studies should

be directed towards the modeling of ground motion on

different site conditions and different ground motion

intensities.
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