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ABSTRACT

A LINEAR HASHED MAIN MEMORY DATABASE IN A
NON-UNIFORM MEMORY
MULTI-PROCESSOR SYSTEM
By

Charles R. Severance

Data structures and algorithms are developed to implement a high performance
hashed main memory database on a multi-processor system with non-uniform memory
access (NUMA). Memory performance limitations of NUMA systems are characterized.
The memory performance of the BBN GP-1000 system is measured and reported. High
performance database control and database search structures are developed to minimize
the impact of the memory performance limitations of NUMA systems. The database per-
formance is analyzed on BBN GP-1000. Different designs for database control variables

and the performance of the designs are compared.
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CHAPTER 1

INTRODUCTION

1. Introduction

Computer systems with many parallel processors such as the BBN
Butterfly[BBN86] and the NCUBE[Ncu85] have become generally available in recent
years. These systems have been used for a number of different applications. One appli-
cation which may be well suited for implementation on these multi-processing systems is

a high performance main memory database.

These systems have a number of advantages which can be used when implementing
a main memory database. With a large number of processors, these systems can have
large amounts of real storage at relatively low cost. The aggregate transfer rate from
memory to the processors is very high. When multiple processors are used effectively,

the aggregate performance of a multi-processor system is very high.

Though the large memory size and aggregate performance are useful when imple-
menting a main memory database, certain architectural constraints make an efficient
implementation difficult. Although the memory is large, the access is non-uniform. A
processor is able to access a subset of the system memory at a very high rate of speed
while accessing the remaining memory is generally much slower. Databases need central
control information which is used to find all of the records. On a non-uniform memory
access (NUMA) architecture system, these central data structures may cause memory
access contention (or a memory "hot spot") to occur when these values are referenced
during every database operation. In this paper we present a design which minimizes the

effect of these architectural constraints while exploiting the NUMA architecture to



enhance performance.

1.1. Previous Work

Linear hashing as a search technique for databases was developed by W. Litwin
[Lit80]. The objective of linear hashing is to allow dynamic reorganization of a hashed
database as records are inserted or deleted while maintaining the ability to access records
in a single bucket access. Litwin developed linear hashing for a disk based system run-
ning with a single processor.

A standard hash function is used to "scatter" the records of a database based on the
key information in the record. Space will not be utilized effectively if the hash function
scatters the records too much. If the records are not scattered enough there will be colli-
sions which must be resolved using record chains or overflow buckets. These chains or
overflow buckets will degrade performance as additional bucket accesses will be
required.

Linear hashing allows the hash function to change gradually while the database is
being modified. Each change to the hash function only affects a small portion of the

database.

A solution for concurrent linear hashing was proposed by C. S. Ellis [Ellis87]. Con-
current linear hashing adds a locking protocol and extends the data structures allowing
concurrent access to the entire linear hashed file by multiple processors or multiple
processes on a single processor. Like linear hashing, concurrent linear hashing was

intended for a disk environment.

As commercially available large scale parallel processors have become available,
research into the use of these systems to implement database systems has started. The

work in [BaFr86] involves implementing a relational database on the Hypercube



architecture. The BBN Butterfly system was used to implement relational database
operations in [RoJa87]. The use of various search structures for database queries in main
memory was studied in [LeC86]. The work in [PrDa88] proposes the use of a multi-
directory scheme to minimize the number of key comparisons to find a record in a main

memory database while maintaining storage utilization.

The work in [KiSn83] explores a memory sharing network topology for NUMA sys-
tems and predicts the performance of the networks. The performance of the Butterfly
memory sharing network is measured in the presence of hot spots in [Thom86]. A gen-
eral evaluation of the memory bandwidth on the Butterfly memory system was done in
[Sev89].

1.2. Linear Hashing

In a simple hashed database, records are distributed into M buckets using a fixed

hash function as follows:
bucket = record_key mod M ;

Where record_key is an integer key value created by applying a hash function to the
actual key information in the original record. Beginning with an empty database, records
are inserted into the buckets based on the value for M. If a bucket has no space for a
record to be inserted it is called a collision. When a collision occurs, the record is placed
into an overflow bucket. When records are placed into the overflow buckets, two bucket
accesses are required to retrieve the record. In Figure 1.1 bucket B, has overflowed

requiring an overflow bucket.

Bucket chains can be of arbitrary length as the database becomes overloaded. As
these chains grow, the performance of record searches begins to suffer because records

are no longer accessed in a single bucket access. In a disk based system the number of



record_key

mod M

Disk Buckets By B, B, v By

Overflow
bucket

Figure 1.1 Simple hashed database with overflow buckets

bucket accesses are the primary performance limitation.

In order to solve the problem of overflow buckets, the database must be reorganized
and the hashing function must be modified. A simple approach would be to increase the
value for M and make another copy of the information using the increased value for M as
the hash function for the new database. The disadvantage of this technique is that the

entire database is inaccessible during this reorganization.

Linear hashing solves this problem by allowing the database size to grow dynami-
cally. Instead of using M buckets until they all overflow and then reorganizing the data-
base all at the same time, Linear hashing adds buckets one at a time in a linear fashion

beginning at bucket By,.



As buckets in the database overflow, buckets starting at bucket B are "split”". To
split bucket B;, bucket B;, s is created. Then the records in bucket B; are scanned and

re-hashed using the hash function:
newbucket = record_key mod (2*M)
Since the records being scanned are all in bucket B;, They satisfy the condition:
i :==record_key mod M

The new bucket which is computed using the 2*M hash value is either bucket B; or

bucket B;,)s because:

k mod M =i => k = nM+i for some integer n
If n is even then

n =2r for some integer r

This implies

k=2rM+i
k=rQM)+i

So

kmod 2M =i

If n is odd then

n = 2r+1 for some integer r
This implies

k=Qr+1)M+i
k=rQMM+M+i)

So

k mod 2m =i+m



Assuming that the record_key values are randomly distributed, approximately half of the
records will end up in the B; bucket and half of the records will end up in the B;, s

bucket.

In order to keep track of the splitting and allow the hash function to properly locate
the records in the buckets which have been split, a new variable is used. The variable P
indicates the next bucket to be split. Blocks less than P have been split and buckets P
and above have yet to be split. In order to properly locate the records in split buckets, the

hash function uses P to determine if the bucket has been split.
The dynamic hash function using P is as follows:

bucket = record_key mod M
if bucket < P
bucket = record_key mod (2 * M)

The initial hash calculation will only compute the correct bucket if the bucket has
not yet been split at the current value for M. If the bucket has been split the result of the
initial hash calculation will be less than M. Since the records in the split buckets have
been hashed using 2*M it is necessary to re-compute the proper bucket using 2*M to find
the proper bucket. The bucket as a result of this second computation may be the same as

the bucket computed in the first computation.

As records are inserted the database is re-organized by adding buckets in a linear
fashion and P is updated. The hash function adapts to the changing size of the database.
As records are deleted from the database and bucket loading falls under some criterion
the buckets are merged. Merging buckets "undoes" the effects of a split. The records
from buckets B; and B;, are rehashed using M and placed into bucket B;.

Note that although the hash function performs two computations on the hashed key

value to find the proper bucket for the key, the algorithm never accesses the wrong



bucket. Since the bucket accesses are the major cost in a disk based system, the addi-

tional computation has no significant impact on the performance.

The variable P is incremented each time the Bp bucket is split unless P is equal to
M-1. If P is equal to M —1 then P is set to zero and M is doubled. When the Bp and the
Bp .y bucket are merged, P is decremented unless P is zero. If P is zero, M is halved and

P is set to the new value of M —1.

With this approach, it is still possible that overflow buckets will be required since
only bucket Bp is allowed to split. When a collision occurs in a bucket which is not the

Bp bucket an overflow bucket is created and the Bp bucket is split.

Figure 1.2 shows an example database after records containing record_key values of
1 through 11 have been inserted. Each bucket has space for three entries and all the

buckets are full.

When a record with a hash_record_key value of twelve is to be inserted, the bucket
computation indicates that the record belongs in bucket By. Since bucket B already has
three records and P is zero, it will be split. Keys 0, 4, 8, and 12 are rehashed using 2*M
in the hash computation and distributed between buckets Bg and B 4. Figure 1.3 shows

the database after the split has been completed.

- 0. 4. l' 5’ 20 60 3' 7'
By B B2 B3

Figure 1.2 Example linear hashed database



M=4 P=1
. LS, 2,6, 3,7,
Disk Buckets| 0,8 9 10 1 4,12
jo Bl B2 53 By

Figure 1.3 Example linear hashed database after split

As a result of the split, an overflow chain has been avoided. The next bucket to be
split will be B;. P has been updated to reflect the next bucket to be split.

In Figure 1.4, a record with a hash_record_key of 14 is inserted into bucket B,
which cannot be split. An overflow bucket is created for the record and bucket B is
split. In Figure 1.5 a record with a hash_record_key of 18 is inserted into B,. B, is now
eligible to be split because P has advanced. B is split into B, and B ¢ removing the

overflow bucket.
M=4 P=2
2,6, 3,7,
0,8 1,9 10 1 4,12 5
B, B, B, B, B, B;
14
overflow

Figure 1.4 Linear hashed database with overflow bucket



Disk Buckets

buckets. A hash function will never be perfectly random so overflow buckets will always
be necessary. The objective of linear hashing is to access records in as close to a single

bucket as possible without wasting a great deal of memory.

M=4 P=3
2,10, 3,7
0,8 1,9 18 1 4,12 5 6, 14
By By BLz B, By Bs Bg

Figure 1.5 Linear hashed database with overflow bucket removed

This shows how the database re-organization can solve the problems of overflow

According to Litwin, linear hashing can provide access to records with an average

number of 1.03 bucket accesses while maintaining a storage utilization of 60%. To

accomplish a storage utilization of 90% the average number of bucket accesses per

record access rises up to 1.35 [Lit80].

Litwin proposed several algorithms for determining when to split the Bp bucket.
The simplest algorithm shown above is called "uncontrolled splitting”. Uncontrolled
splitting only splits the P bucket when a bucket has completely filled up. "Controlled
splitting” will split buckets based on a load factor. For example, a split might be trig-
gered when a record was inserted into a bucket which caused the bucket to be more than

75% full. Another approach [Scholl79] suggests that splitting should be done every fixed

number of insertions.
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1.3. Description of Concurrent Linear Hashing
The original linear hashing design did not have data structures or locking protocols
required to allow concurrent access by multiple processes on the same database.
C. S. Ellis proposed extensions to linear hashing which provide a high degree of

concurrency among processes executing find, insert, and delete. [Ellis8§7]

The primary extensions to the data structures were to add a lock to each bucket and
to add a level value to each bucket. M is related to the level value using the following

formula:
M = Initial_M *2{evel-1)
Level indicates the number of times a particular bucket has been split. Level is initially

set to one in all of the buckets. Level is incremented as buckets are split and decre-

mented as buckets are merged. The data structure for concurrent linear hashing is shown

in Figure 1.6.
M=4|P=0
Bucket Level 1 1 1 1
Bucket Lock none none none none
records records records records
Disk Buckets

By B, B, Bj

Figure 1.6 Concurrent linear hashed database
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When there are overflow buckets, the lock in the first bucket in the chain acts as the

lock for the entire chain.

Both the lock on the M and P variables and the locks in each bucket chain provide

read, write, and exclusive locking. The compatibility of locks is shown in Figure 1.7.

Figure 1.8 shows the locks which are required by each type of database operation on
both the bucket being affected and the M and P variables. Concurrency between the find,
insert, delete, and split depends on the fact that each database operation makes a separate
copy of the bucket from disk. A process could have a read lock on a bucket when per-
forming a find operation and another process could obtain a write lock to perform a
delete operation. This works because the first process has a separate memory copy of the

bucket which is not affected by the second process.

Existing Lock
Lock request Read Write Exclusive
Read Lock Yes Yes No
Write Lock Yes No No
Exclusive Lock | No No No

Figure 1.7 Bucket lock compatibility

Database Bucket Chain M and P
Transaction | Lock Needed | Lock Needed
Insert Write Read
Delete Write Read
Find Read Read
Split Write Write
Merge Exclusive Exclusive

Figure 1.8 Lock requirements for database transactions
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Splits and merge operations are single threaded because the split operation requires
a write lock on P and M and the merge operation requires an exclusive lock on these
variables. These two locks cannot be held simultaneously so only one process can be

splitting or merging at one time.

The level value in each bucket is used to recover from a situation where a database
reorganization occurs between the time a process reads the values for P and M and the

time a process obtains the lock on the bucket.

Figure 1.9 shows a time sequence where two processors are attempting to insert
records into the same bucket at the same time without using the level values in con-

current linear hashing.

The record will be inserted into the wrong bucket at fime =13 because P was
changed by processor A at time =10 while Processor B was waiting for the lock on the

bucket. This is solved by incrementing the level value in the bucket as the split is com-

pleted.
Time | M | P | Processor A Processor B
1 4 1 | Insertrec 17 Insert rec 21
2 Read P, M Read P, M
3 Compute bucket=1 Compute Bucket=1
4 Lock bucket=1
5 Wait for lock
6 Insert Record
7 Bucket has overflowed
8 Split Bucket into
9 buckets 1 and 5
10 4 2| P=2
11 Unlock bucket=1
12 Get lock bucket=1
13 Insert record(error)
14 Unlock bucket

Figure 1.9 Inserting a record into an incorrect bucket
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When a bucket is locked the initial hash computation must be checked using the
level value stored in the bucket. If the second computation indicates the incorrect bucket
has been locked the hash computation must be redone. This step is referred to as the

"rehashing loop".
The algorithm for the proper locking of a bucket chain is shown in Figure 1.10.

Figure 1.11 shows the time sequence which failed without the level value operating
properly.

Record 21 will properly be placed in bucket B s because the level in bucket B indi-
cates the record belongs in B 5. It is not possible to solve this problem by holding a lock
on M and P until a bucket lock was obtained because this would result in a deadlock
situation. Processor A would be waiting for the lock on the variables to update P at
time =10 while Processor B would be holding the read lock on the variables waiting for
the bucket lock at fime =5 which would not be available until Processor A finished the
insert operation.

bucket := record_key mod M;
if bucket < P
bucket = record_key mod (2 * M )

Lock_Bucket(bucket);
newbucket := record_key mod Initial M * (2 ** (level - 1))

while ( newbucket <> bucket ) do begin
Unlock_Bucket(bucket);
bucket := newbucket;
Lock_Bucket(bucket);
newbucket := record_key mod bucket_m
end;

Figure 1.10 Rehashing loop
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Time | M | P | Processor A Processor B

1 4 1 | Insertrec 17 Insert rec 21

2 Read P, M Read P,M

3 Compute bucket=1 Compute Bucket=1
4 Lock bucket=1

5 Wait for lock

6 Insert Record

7 Bucket has overflowed

8 Split Bucket into

9 buckets 1 and 5

10 4 [ 2| P=2

11 level(1]=2

12 level[S5] =2

13 Unlock bucket=1

14 Get lock bucket=1
15 Compute newbucket=5
16 Unlock bucket=1
17 Lock bucket=5

18 Compute newbucket=5
19 Insert

20 Unlock bucket=5

Figure 1.11 Inserting a record correctly using rehashing

Another solution to this problem is possible without using bucket levels. Instead the
processor must re-compute the bucket value using a fresh copy of P and M after the
bucket has been locked. [SeRoPr88]

The following section describes some of the problems with implementing con-
current linear hashing in a NUMA architecture system.

1.4. Motivation

The work by Ellis and Litwin is adequate for a disk based system but there are a
number of problems with the approaches which occur when linear hashing is imple-
mented as a main memory database on a multi-processor NUMA system. The first prob-
lem is the cost of accessing central variables such as M and P and the central locks asso-
ciated with those variables. In a multi-processor NUMA environment, access to a central

data structure may become a hot spot causing the performance gains to be minimized as
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the degree of parallelism is increased.

Database reorganization is single threaded in previous implementations of linear
hashing. This is a problem when a parallel system is continuously inserting records into
a database faster than the database can be reorganized. Even if a processor continuously
splits buckets, the database can never be re-organized fast enough to keep the load factor
within a reasonable bound. If database reorganization is single threaded the rate at
which the database can be reorganized is fixed regardless of the number of processors
performing database operations. Since record insertion is multi-threaded the aggregate
rate at which records are inserted will increase as processors are added. At some point
the aggregate rate of insertions will be higher than the rate at which the database can be

reorganized and the reorganization will continue to fall behind.

This thesis presents two new approaches to solve these problems. The problem of
access conflicts for central control variables is minimized through "retry logic" and distri-
buted data structures. Retry logic is an extension to the rehashing loop as proposed by
Ellis. The general concept of retry logic is to substitute costly central variables and locks
with distributed control variables and locks. Additional logic must be added to handle
the case where the database control variables are in an inconsistent state. Distributed
variables are nearly always consistent and in the case where the database control vari-

ables are inconsistent the retry logic detects the inconsistency.

The second technique is multi-threaded reorganization for linear hashed databases.
Extensions to the data structures and algorithms allow the bucket splitting and bucket
merging to operate in a multi-threaded manner. This way it is possible to maintain the
database load factor regardless of the number of processors performing continuous

inserts or deletes.
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Linear hashing with retry logic and multi-threaded reorganization is presented as a
solution to the need for a high performance hash based main memory database which can
handle very high continuous transaction loads. This type of database system is ideal for
use as temporary files in a relational database implementation or a database with dynamic

files.

Chapter 2 presents an overview of the GP-1000 memory system and shows perfor-
mance results for the NUMA memory system which relate to the design of a main
memory database on the GP-1000. Chapter 3 describes distributed linear hashing.
Chapter 4 describes the performance of the system as implemented on the BBN Butterfly

GP-1000. Chapter S presents the conclusion and points to areas of additional research.




CHAPTER 2

MEMORY PERFORMANCE OF A NUMA SYSTEM

2. Memory Performance of a NUMA System

In implementing a main memory database system it is important to understand the
underlying performance of the memory system. When using a Non-Uniform Memory
Access (NUMA) architecture it is even more important to understand the performance

characteristics of the various types of memory.

The BBN GP-1000 is a NUMA architecture system with up to 256 nodes connected
by a memory sharing network. Each processor can access the local memory on the pro-
cessor board or the memory on the boards of other processors. References to memory on
another processor are automatically routed through the memory sharing network.
Memory accesses are routed directly to the proper node without passing through any
intermediate nodes. Remote memory can be accessed as characters, words, or multi-
word DMA transfers. Each node is a 68020 processor with up to 4M of RAM. Local

memory access is about 10 times faster than remote memory accesses.
The logical layout of an individual GP-1000 node is shown in Figure 2.1.

Memory requests from the central processing unit are handled by the memory con-
trol unit. Requests for addresses in the local memory are fetched from the local on board
memory directly. Requests for addresses which are outside the board are routed to the
network interface unit. The network interface unit transmits the request to the correct
processor and waits for the reply. The network interface unit takes the information
received from the network and passes it back to the memory management unit to satisfy

the original request [BBP187].

17
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4MB local

memory

Memory Network _ switching
MC68020 == Comrol interface ~ network

Figure 2.1 Layout of GP-1000 node

Data requests from other processors are received by the network interface unit
which retrieves the requested information from memory and replies with the requested

information over the network.

The switch provides a data path from each node to every other node. .Memory refer-
ences and data do not flow through any intermediate processors as in hypercube architec-
tures. Each reference flows directly across the switch from the source processor to the
destination processor. The memory sharing network is a multi-stage network of 4 by 4
crossbar routers [BBTu88]. Memory references are routed through the memory sharing
network from crossbar to crossbar. Figure 2.2 shows a number of processors intercon-
nected using the switch. The average time for a remote memory read is 7 microseconds.
Of the 7 microseconds only 2 microseconds are used for the request to cross the switch
and the response to return across the switch. The remaining time is the processing time
for the request in the originating and destination nodes. The fact that the average request

causes switch traffic for only about 28% of the total time of the request tends to reduce
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the overall switch contention [BBTu88].

The impact of unrelated switch activity on the performance of a transfer between

two nodes has been shown to be negligible in [Thom86] and [Sev89].

The primary cause of delay which impacts the performance of an application occurs
when two processors are accessing remote memory on the same node simultaneously as
shown in Figure 2.2. Both CPU( and CPU, are simultaneously accessing the memory
on CPU ;. Only one request will be processed. The request which fails will be retried by
the original sending node after a delay. This memory contention occurs in the network
interface regardless of the addresses of the memory in the destination node. Simultane-
ous accesses to different memory locations on the same processor will still cause a colli-

sion and a retry.

When two messages "collide" in the switch, one message is passed through

Memory Switch
CPU, >l CPU,
Netwo!
Crossbar
CPU, — Routers CPU,
CPU, CPU,

Figure 2.2 Logical layout of the GP-1000 switch
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successfully and the other must be retried after a small delay. Two messages collide in
the switch when both messages must be routed through the same output port of one of the
crossbar switches. Figure 2.3 shows how two messages can pass through a network ele-

ment successfully at the same time and when a collision occurs.

The rest of this chapter will cover the performance of the memory and memory
sharing network on the GP-1000.
2.1. Experiment Details

A program was developed which allocated and referenced memory on the GP-1000
using different access patterns. The time and total memory transferred were recorded to
compute the total system wide memory bandwidth. The bandwidth of the memory was
measured on each processor and the total bandwidth for the entire system was accumu-

lated at the end of the run.

The primary factors which affect performance are the location of the memory and
the type of access being used. Memory location can be characterized as local memory,
remote scattered memory and remote hot spot memory. Remote hot spot memory is
when all of the processors are continuously accessing memory on one processor causing

maximum memory contention. The remote hot spot memory has the worst performance

Inputy — ——Output
Inputy —— ——Output
Inputy —— ——Output;
Inputy — ——Output 3

Figure 2.3 An individual crossbar in the switch network
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because it has maximum memory contention. Remote scattered memory scatters the
remote requests across all of the processors. Before each memory reference a random
processor is chosen and the memory on that processor is accessed. Remote scattered

memory should have low memory conflict.
A summary of the parameters which were tested is shown in Figure 2.4.

Each test was first run on a single processor and then on various numbers of proces-
SOrs.

2.2. Overall Memory Performance of the GP-1000

In the followi\ng performance figures the vertical axis is always the aggregate sys-
tem bandwidth in megabytes transferred per second. The horizontal axis is the number of
processors.

Figure 2.5 shows the effect of memory location on maximum memory bandwidth
by using a copy loop. Figure 2.6 eliminates the local memory information and changes

the scale to show more detail on the random and hot spot memory.

Test Parameters
Parameter Possible Value
Memory Type | Local Memory
Remote with random references
Remote with hot spot references

Transfer Style | Direct Memory Access (DMA)

Copy loop

Block Length 1-1000 words

Iterations Number of blocks to transfer
for each processor

Read Rate 0 - 100% Read access

remainder write access

Figure 2.4 Memory test parameters
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Figure 2.5 Effect of memory location on bandwidth
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Figure 2.6 Effect of memory location on bandwidth (enlarged scale)

These figures show that the overall bandwidth of local memory is much greater than
remote memory. Also hot spot memory has a fixed bandwidth of about 1.3 MB/sec
which cannot be increased regardless of the number of processors which are trying to
access the memory. This means that as more processors are trying to access the hot spot
memory the additional processors simply spend most of their time waiting for the
requests to be completed. This occurs because the network interface on the processor

which contains the hot spot variable is running at its maximum capacity. [Mill89]

Figure 2.7 compares the effect of memory access style on the overall bandwidth.
This was run with 64 byte transfers 50% read 50% write on random remote memory.
DMA holds about a three to one advantage when transferring blocks 40 bytes or larger to
and from remote memory. Below 40 byte blocks the DMA overhead causes the DMA

transfers to have poorer performance than a simple copy loop [Sev89, Mill89].
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Figure 2.7 Effect of transfer style on overall bandwidth

The important results which affect the design are: (1) Hot spot memory has fixed
bandwidth. As more processors access a hot spot the amount of time each processor
must wait increases reducing overall performance. (2) The overall memory bandwidth of
the local memory is very large. (3) The overall bandwidth for remote memory increases
as processors are added long as references are random. (4) DMA is effective in retriev-

ing blocks of data from remote processors.

In the implementation of a main memory database these results indicate that access
to central variables which can cause hot spots should be avoided whenever possible. The
use of local memory to cache global data structures will generally result in improved per-
formance. Randomly distributed memory references such as hashed searches are handled

well by the GP-1000 memory system.



CHAPTER 3

DISTRIBUTED LINEAR HASHING

3. Distributed Linear Hashing

The objective in distributed linear hashing is to provide control insuring database-
wide consistency while minimizing the requirement for shared database wide variables
and allowing multithreaded reorganization.

The linear hashing data structures are extended to improve performance in a main
memory database implementation. In linear hashing the records are distributed into
buckets which are normally stored on disk. In distributed linear hashing buckets are
replaced by directories. A record key hashed to select the particular directory for a record
and a second hash function is used to select the position within the directory. Figure 3.1
shows the structure of the directories and records. The pointers to all of the directories
are cached in each processor. Each entry in the directory points to the head of a record
chain. Collisions in a particular entry in the directory are resolved by adding the record to
a linked list of records for the entry. Collisions are tracked to determine the average
chain length for all of the chains which exist in the directory.

When a directory is split the data is not actually moved as in standard linear hash-
ing. The records are re-linked into the new directories using the stored key information

in each record. This reduces the memory contention during split operations.

Each directory is protected by a directory lock. The directory lock is a reader/writer
lock. Multiple processes can simultaneously access a directory for reading but only one
process can access a directory for writing. The directory locking protocol insures that a

request for a write lock will eventually be satisfied even if there are continuous readers in

25
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Directory pointers (cached in each processor)

\
\

Directory Lock
Dir M
Token

Entry count

Record count

_ key data

Figure 3.1 Main memory data structures

the directory. See Appendix B for details on the reader/writer locking operations.

The directories also contain the value for M which was used in the hash computa-
tion when placing the records into the directory during the most recent split or merge of
the directory. Once a directory has been locked, this value can be used to determine if a
particular record belongs in this directory regardless of the values of central control vari-

ables. This variable is equivalent to the level variable in concurrent linear hashing.

Dir_M is the only database-wide control variable which absolutely determines the
proper directory for a particular record at a particular instant of time. To find and lock
the proper bucket the central variables can be used as a "hint" or initial guess as to the
proper bucket. After the bucket is locked Dir_M must be checked to insure that the cal-

culation was correct.
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3.1. Retry Logic

The algorithm which finds and locks the proper bucket for a given key compensat-
ing for inconsistent control variables is called "retry logic". Initially the directory is
computed using the record key value and the current values of the control variables
without locking the control variables. The directory indicated by the computation is
locked. The proper directory is re-computed using the record key value and the value for
Dir_M stored in the directory. If this indicates a different directory, the directory is
unlocked and the second directory is locked. Once the second directory is locked the
proper directory is again recomputed using the Dir_M value in the second directory.

This process is repeated until the directory indicated using the Dir_M stored in the
directory is the directory which is currently locked.

When a process does not have a directory locked, any number of other database
operations executing on other processors may change the structure of the database caus-
ing a database control variable to become invalid for use in a hash computation. Once a
process has a directory locked, any number of database operations can execute changing
the structure of the database except for the structure of the records in the directory which

has been locked.

The distributed locks and distributed control variables stored in each directory sub-
stitute for centralized locks and control variables. The benefit of retry logic is that there
are no central variables or locks to cause hot spots. The additional cost of retry logic is
incurred when the incorrect directory is locked and additional directory locks are
required. The performance impact of retry logic is compared to the performance impact

of central variables in the performance analysis section.

Figure 3.2 shows the algorithm for locking a directory using retry logic to find the

proper directory for a key. This retry logic allows a process to use database control

s



dir_number := linear_hash(key, P, M);
dir_pointer := dir_lock(dir_number);
new_dir_number := key mod dir_pointer.Dir_M
while (new_dir_number <> dir_number) do begin
dir_unlock(dir_number);
dir_number = new_dir_number;
dir_pointer := lock_dir(dir_number);
new_dir_number := key mod dir_pointer.Dir_M
end

Figure 3.2 Pseudocode for finding the proper bucket

variables without locking the variables. The only requirement for retry logic to find the

proper bucket is that the Dir_M values accurately reflect the contents of the bucket.

Because of the retry logic it is not necessary to split or merge directories in strict
linear order. A number of directories can be split simultaneously as long as the value for
Dir_M stored in each directory is maintained properly. With extensions to the definition
of the split and merge operations multi-threaded database reorganization is possible.

3.2. Multi-threaded Reorganization

In concurrent linear hashing and sequential linear hashing, P always indicates the
next bucket to be split, the bucket being split, or the bucket being merged. If a merge
operation or a split operation was in progress, P always points to the directory being split
or merged. Because P points to the directory being split or merged until the operation is
complete database reorganization is single threaded. When a split or merge operation is
required in distributed linear hashing P is moved before the merge or split operation is

started.

Moving P before the actual split or merge operation is started allows the basic data-
base re-organization to be multi-threaded. P can point to a directory which has been split

at the current level of M or a directory which has not been split at the current level of M.
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The actual directory pointed to by P depends on whether or not the last operation was a
split or merge.

Certain database operations such as doubling the value for M must have a lock on
the P directory Dp before proceeding. A central lock to protect P which would cause
memory contention. This implementation uses a distributed lock created by adding a sin-

gle bit to each directory. This flag is called the TOKEN flag as shown in figure 3.3.

Only one directory has the TOKEN flag set at any one time. A process must have
the directory lock in the directory with the TOKEN flag set to begin a directory split,
directory merge, modify P or move the TOKEN.

Distributed linear hashing extends the split operations and merge operations to han-
dle the case where a split or merge is not necessary. A process can detect if a directory
has been split by comparing Dir_M in the directory to the current value for M. When a
split is not necessary, the TOKEN is moved to the right but the directory is not split

because it already is split at the current value for M. This provides some control over

M=4 / P=2

Dir M| 8 8 4 4 8 8 4 4

Token| O 0 1 0 0 0 0 0

Records| 0,8

1,9, | 2.6, 3-71- 4,12 | 5,13

17,25|10,14 | 11,15

By B B,y B3 By Bs Bg Bq

Figure 3.3 Distributed linear hashed database
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wasted splits and merges when record inserts are interspersed with record deletes. The
TOKEN can be moved by successive directory underflows and overflows without actu-
ally performing any physical splits or merges.
3.3. Distributed Index Computation

The retry logic removes the need to provide locks on the database control variables.
Without locks the database control variables are essentially "hints" rather than exact
values. From a performance point of view the more accurate the database control vari-

ables are the less the retry logic will execute.

There are three techniques which can be used to maintain these database control
variables. The simplest and most accurate is to simply have a single copy of the variable
shared by all of the processors. Another technique is to have a copy of the variable on
each processor with a global pointer to each local copy to allow the local copies to be
updated. The third technique is to maintain the database control variable independently
on each processor based on the information available to each processor. Combinations of
these techniques can also be used. Figure 3.4 summarizes the advantages and disadvan-

tages of each technique.

%n%l Most accurate Hot spot at glg%

usage levels
Distributed | Access cost is low | Update cost is high
Local Access cost is low | Least accurate
Update cost is low

Figure 3.4 Comparison of techniques for database control variables
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3.4. Maintaining M

The distributed technique was chosen for maintaining M as M is seldom updated.
When M is doubled or halved during database reorganization, the processor changing M
must go through each of the processors and update each processor’s local copy of M.
When a process intends to split the Dy,_; directory, instead of moving P to the right one
directory, P is set to zero and the M values are doubled. To double the M values a pro-
cessor must hold the directory lock on the TOKEN directory and the TOKEN directory
must be the Dy,_; directory. To halve the values for M the process must have the lock on
directory D ¢ and the TOKEN flag must be set in the directory. Since only one directory
is allowed to have the TOKEN flag set at one time, the update of the M values can only
be performed by a single process. During the period when the M values are being

updated, it is possible for a processor to use the incorrect value of M.

The data structure for M is shown in Figure 3.5. This technique for maintaining the
values for M uses a very small amount of memory bandwidth compared to the memory
requirements for a shared value for M. The values are only updated when the value for
M is doubled or halved as the result of extensive database reorganization. In a typical
run M is modified in one out of 50000 database operations.

3.5. Maintaining P

Choosing the technique for maintaining P is more complicated. Maintaining P as a
distributed variable is not feasible because during periods of inserts and deletes P is
changed quite frequently. It is possible to maintain an approximation to P independently

in each of the local processors.
To maintain P independently, each processor examines the value for the Dir_M in

each directory and compares it to the value for M. If the directory number is higher than

the processor value for P and the Dir_M is 2*M the directory has been split and the local
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POINTERS_TO_LOCAL_DATA (One for each processor)
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Figure 3.5 Data structure for distributed M

copy of P is too low and is set to the number of the current directory. If the directory
number is lower than the processor value for P and the Dir_M is the same as M, then P is
too high, the directory has been merged and the local copy of P is set to the number of
the current directory.

In Figure 3.6 the local copy of P is too low because there have been a number of
splits causing the global value for P to move to the right while the local copy of P was
not updated. When the processor uses the local value for P there will only be a problem
with keys which are hashed into buckets between the local P and the global P. In addi-
tion on the average only half of the records will be hashed improperly in the buckets
between the local P and the global P. For records which hash into buckets below local P
the hash computation would produce the same results if the local P was used in the com-
putation or the global P was used. In the same way records in buckets from global P up

to M —1 will be hashed properly using either value for P.

An important cost of maintaining P in each of the processors is the number of
incorrect hashes which will occur because the local copies of P are out of date. In the

next section the cost of this technique for maintaining P is compared with using a global
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correct hash 50% retry Correct hash
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Figure 3.6 Maintaining local copies of P

value for P for each hash computation.




CHAPTER 4

PERFORMANCE ANALYSIS

4. Performance Analysis

This chapter discusses the performance of the distributed linear hashing system
implemented on the BBN GP-1000 under the Chrysalis operating system.

The overall performance of the system at large numbers of processors is analyzed.
The performance impacts of design decisions for database control variables and the
effectiveness of the database organization are analyzed.

4.1. Experiment Details

The goal in measuring the performance of the implemented system was to measure
the maximum continuous throughput of the database system. The performance measure-
ment does not include (1) operating system overhead to initialize each processor, (2) time
to open the database on each processor, (3) time to close the database on each processor

or (4) operating system overhead when terminating the tasks on each processor.

The only segment which was measured was the time spent during continuous data-

base operations as shown in Figure 4.1.

System Database Database Closing System
Initialization | Initialization Operations Database Termination
time ->
Figure 4.1 Experiment details
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The total aggregate database operations per second were measured while varying
the number of processors. Under ideal conditions, the total number of operations per
second should increase linearly as the number of processors are increased. Total number
of operations per second was chosen over speedup because it shows the speedup but also
allows quantitative comparison between different types of runs on the same graph.

4.2. Performance impact of distributed control variables

This section examines the performance impact of the choice of storage for the data-
base control variables as described in section 3.3. The following implementations are
compared: (1) central P and central M protected by central locks, (2) distributed M with
central P without any central locks and (3) distributed M with independent copies of P in
each processor without any central locks. Implementations 2 and 3 use retry logic to sub-

stitute for the central lock.

The performance of the three implementations when performing continuous read
operations is shown in Figure 4.2. This shows that the implementation using central data
structures protected by central locks improves in overall performance until about 10
nodes. Then the overhead of the hot spots caused by these central data structures begins
to dominate the computation and performance stops improving. The performance of
another main memory file system on the Butterfly shows similar performance. The
BBN-RAM file system [BBRf86] performance levels off after 15 nodes doing continuous
activity.

The implementation using central P and distributed M without using locks to protect
the values maintains linear performance up to 40 nodes. The elimination of the central
locks and the central value for M reduces the hot spot memory accesses by 75%. In the
implementation using locks each database operation accesses the lock twice and the

values for P and M. In the implementation using central P there is only a single access
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per operation. However the performance is still impacted by the single hot spot access at
high levels of parallelism.

The implementation using independent copies of P in each processor has the best
performance at high levels of parallelism. This implementation never accesses a central
variable during the read operations so it is only limited by the performance of the
memory sharing network under random memory access patterns. The performance is
still improving at 80 processors.

In the read performance the implementation using independent copies of P is the
superior implementation. However read operations do not modify the database. Data-
base reorganization requires access to central information and also causes the indepen-

dent copies of P in each processor to become invalid causing retry logic.

140000 —
Record length=10
120000 —
Chain length=2.0 Independent P
100000 —
Read 80000 — o
Operations Central P
per Second 60000 —
40000 —
2 7] Central locks
o A A
1B | | | | 1 | ] I [} T
0 10 20 30 40 50 60 70 80 90 100
# of Nodes

Figure 4.2 Read performance of different implementations
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Figure 4.3 shows the performance of the different implementations when perform-
ing continuous insert operations and database reorganization. In this figure the imple-
mentation using central control variables and central locks maintains performance
improvement until 15 processors where memory conflicts limit any additional perfor-

mance improvement.

The performance is much closer for inserts than reads when comparing the perfor-
mance of the implementation using central P with the implementation using independent
P. At 50 nodes and below the implementation using central P without locks performs as
well and at times performs better than the independent P implementation. Above 50
nodes the independent P implementation continues to increase performance while the

central P implementation performance begins to level off.

100000
Record length=10 Independent P
80000 — Chain length=2.0
Insert 60000 Central P
Operations
per Second 40000 —
20000 —
....... Central locks
ol AT T
| T T I | T ] T T 1 T
0O 10 20 30 40 50 60 70 80 90 100
# of Nodes

Figure 4.3 Insert performance
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There are several reasons for this performance. Insert operations are inherently
slower because they include database reorganization. This delays the point that memory
contention becomes a performance bottleneck. The hot spot memory has fixed
bandwidth regardless of the number of processors and if each processor is accessing the
hot spot less often it will take more processors to reach the maximum bandwidth for the
hot spot. The database reorganization makes use of the central variables to control the
database reorganization. When performing inserts even the independent P implementa-
tion will have to access central data structures during reorganization causing some
memory contention. Because the database is being reorganized the value for P is chang-
ing causing the independent copies of P to become inaccurate increasing the time spent
in retry logic.

The percentage of database insert operations requiring an additional bucket lock
because of retry logic is shown in Figure 4.4 for both the independent P implementation
and the central P implementation. The implementation with the central locks is not
shown because there are no retries required for the central lock implementation. The per-
centage of retries required when using a central value for P without locking P is very
small. At 80 processors 3 out of 1000 bucket accesses will have to be retried because the
value for P is inaccurate. The implementation using independent P has a retry percen-
tage ranging from 4% to 7%. This is an additional overhead for each database operation

on the average which will have an impact on the performance.

Unlike the overhead of the central data structures, the overhead of retry logic does
not cause hot spot access. Since retry logic only uses the bucket locks and bucket locks
are randomly distributed among the processors the retry logic causes additional random
memory references. The bandwidth of random memory references increases as the

number of processors are increased. The overhead of retry logic has an impact on each
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Figure 4.4 Retry percentage for various control strategies

processor but as the number of processors are increased the overhead per processor
remains fixed and allows the overall system performance to improve as additional pro-
cessors are added. The cost of central data increases for each processor as processors are
added to the point where the access to the central data structure dominates the entire

computation causing overall performance to level off.

The i'emaining performance figures are using the independent technique for main-
taining P.
4.3. Performance of the overall system

The implemented system has been tested under continuous insert operations, con-

tinuous read operations, and continuous delete operations to determine the overall system

capabilities for the independent P implementation.
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Figure 4.5 shows that read only operations have the highest performance because no
retry logic is required, no database reorganization is required and no memory allocation
is required. Both insert and delete operations perform database reorganization. Delete is
faster than insert because memory deallocation is simpler than memory allocation.

4.4. Performance of Database Reorganization

The performance figures include database reorganization for insert and delete opera-
tions. Under continuous delete or insert loads the database is being reorganized continu-
ously to maintain the desired maximum allowed chain length. Distributed linear hashing
allows this database reorganization to be performed in a parallel fashion. This allows the
reorganization to keep up with the incoming operations. Figure 4.6 compares the actual

chain length with the multi-threaded implementation with the chain length for single

140000 —
Record length=10
120000 — Read

Chain length=2.0

100000 —

Operations
per Second

1 T 1 T 1T T T T 7T 1
0O 10 20 30 40 s0 60 70 80 S0 100

# of Nodes

Figure 4.5 Comparison of inserts, deletes and reads
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threaded continuous reorganization. Both implementations are trying to maintain a max-

imum chain length of 2.0 records.

The multi-threaded database reorganization is able to maintain the desired chain
length regardless of the number of processors. The single threaded implementation can-
not keep up with the required reorganization above 10 processors.

40 —
Chain length=2.0
304  Record length=10
Average .
chain length 20 — Single threaded
10 4
Multi-threaded
0] T
| | | ] | | ! | | ! T
0 10 20 30 40 S0 60 70 80 90 100

# of Nodes

Figure 4.6 Chain length control using multi-threaded reorganization



CHAPTER 5§

CONCLUSION

Distributed linear hashing is shown to be a useful tool for implementing a main

memory database on a NUMA architecture system. Algorithms are developed which

— =

make minimal use of centralized variables or locks. Distributed techniques are used for
protection, consistency, and reorganization. The additional fixed overhead of the retry
logic for these distributed techniques is small compared to the cost of accessing central h

data structures at high levels of processors.

Multithreaded reorganization is introduced to handle database reorganization at

high levels of continuous transactions without falling behind or requiring maintenance
processes.
A practical main memory database system can be implemented on a general pur-

pose NUMA architecture system providing excellent overall performance and good real

time performance.

The process of taking a parallel processing database implementation designed for a
disk environment and implementing the system in main memory required is not straight-
forward. The overall performance of the main memory system may be dominated by
some portion of the operation which in a disk based system is considered to be negligi-
ble.

This work shows the KDL file system has excellent performance under continuous
database operations. Higher level work has been done [Wolb89] using the KDL file sys-
tem as a tool to implement parallel projection. The system has shown excellent perfor-

mance in this application as well. It is expected that the file structure will perform well

42
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on selection, join, and non-key search operations based on the results of the projection

implementation.

Distributed linear hashing has superior performance to previous implementations of
parallel linear hashing [SeRoPr88] because of the increased use of distributed data struc-

tures.

FUTURE WORK

The performance of linear hashing database reorganization should be studied to
determine the effect on chain length because only the P directory can be split. Extensible
hashing allows the directory which is overflowing to split. This has the advantage of
maintaining the chain length with less variation but the retry cost will be higher because
P cannot be used to make the initial hash computation more accurate. Other forms of

distributed hashing should be investigated.

Distributed linear hashing should be implemented on a variety of other multi-
processor systems such as the NCUBE, Hypercube, or Sequent. The design choices for
the techniques used to maintain the database control variables may be quite different on

each of these architectures.

Additional high level database operations should be implemented using the KDL
file system. Selection and join should perform well using the KDL file system. The sys-
tem has been designed to perform high speed non-key searches using all of the parallel

resources of the system.



APPENDIX A

KDL-RAMFILE SYSTEM DOCUMENTATION

This documentation describes the application programmer interface to the KDL-
RAMFILE system as implemented on the Butterfly. The first section is the calling
sequences for the routines. The second section is a simple example of the use of the

KDL-RAMFILE system.
SUBROUTINE SPECIFICATIONS

The following is a list of the routines in the KDL-database system in alphabetical

order.

InitKDLSystem(),

Must be called after the Uniform System has been initialized and before

KDL _create is called.

KDL close(kd_od);
KD _ODES *kd_od;
Closes the open KDL file. Must be called for each open descriptor when database

activity is finished on a processor.

KD_CDES *KDL _create(file);
char *file;
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Creates the global data structures for the KDL system. The parameter is ignored.
This must be called once on a single processor to create each KDL file. The return value

for KDL _create is the input to the KDL _open routine.

KDL dumpout(kd_cd);
KD _CDES *kd_cd;

Dumps out the entire database. Should only be used on small databases.

KDL _insert(kd_od, rec_buf.keyval);
KD _ODES *kd_od;

char *rec_buf;

KEY keyval;

Inserts the specified record in the database. Returns non-zero if an error occurs dur-
ing the insert such as duplicate key if duplicate key processing was requested. The key-
val parameter contains the key for the record. The rec_buf parameter contains RECLEN
data bytes for the record. The keyval is stored in the database along with the record

information so it is not necessary to include the keyval in the rec_buf parameter.

KD_ODES *KDL_open(kd_cd,prot);
KD _CDES *kd_cd;
int prot;

Opens the KDL database for reading and inserting in a particular processor. The
first parameter is the descriptor returned by the KDL _create routine. The prot parameter
specifies if the file should be opened read-write or read only. Once one processor has

opened a file readonly, no other processor can open the file read-write until all of the
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processors with the file open madoﬂy have closed the file. The advantage of opening the
database readonly is that the directory locks can be bypassed because no processor has

write access to the file.

KDL read(kd_od, rec_buf, keyval);
KD_ODES *kd_od;
char *rec_buf;
KEY keyval;
Returns the data stored in the record at keyval. Returns non-zero error if the record

does not exist.

KDL _statprint(kd_cd);
KD _CDES *kd_cd;

Prints out internal statistics information on what has been done in the database since
the KDL _create. This routine will print out the internal KDL performance information.
Information included is the total time between the KDL _create and KDL _statprint, aver-
age number of inserts per unit time, average number of times reads had to traverse a

record chain, etc.
This information can be used to tune the performance of the system.
SetKDLConfig(param, value);

int param,

int value;
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Sets the tunable values as specified in Figure A.1. This routine must be called after

the Uniform System has been initialized. This routine must be called prior to any

KDL _create calls. Any calls to this routine after the KDL _create call will not affect the

files which have already been created. InitKDLSystem will reset all values to their

defaults. SetKDLConfig can also be called between KDL _create calls to set different

parameter values for different KDL files.

KDL Parameters
Parameter Description Default
INDBLOCK Size of each directory. Should be a prime number. 61
SPLITVAL The maximum average chain length allowed in a directory before 2.00
splitting the P directory.
INITIALM Initial number of directories. 128
MAXBLOCK | Maximum number of directories in database. 16K
DATBLOCK | As records are added, the KDL 8192
system requests a large block of memory from the Uniform
System and puts the records into the block. This number
must be larger than a record and should be from 10 to
1000 times the size of a record.
RECLEN The record size for fixed length records. 60
SUPDUPS TRUE to suppress duplicate keys. FALSE
This option causes a performance degradation because as records
are inserted existing records must be searched. When SUPDUPS is
TRUE, it implies SORTCHAIN.
SORTCHAIN | TRUE if chains are to be sorted FALSE
within each index entry. Primarily used with SUPDUPS.

Figure A.1 Configurable Parameters



EXAMPLE USAGE

/* This is a simple demonstration of the use of the KDL RAMFILE.
Charles Severance - Michigan State University. */
#include <us.h>
#include "x5.h"
main() {
KD_CDES *kd_cd;  /* Create descriptor */
KD_ODES *kd_od;  /* Open descriptor */
KEY hash_keyval,;
char rec_buf[50];
/* Initialize the Uniform System */
InitializeUs() ;
/* Initialize the KDL System and change some defaults */
InitKDLSystem();
SetKDL Config(RECLEN,30);
SetKDLConfig(SPLITVAL,1.46);
/* Create and open a KDL Ramfile */
kd_cd = KDL _create("testdatabase");
/* Optionally generate additional tasks on other nodes. KDL _open
may be called once on each node for each KDL file. */
kd_od = KDL _open(kd_cd,KD_OPEN_RW);
/* Insert, read, and delete a record */
hash_keyval = 1234;
sprintf(rec_buf,"record information");
err = KDL _insert(kd_od,rec_buf,hash_keyval);
err = KDL _read(kd_od,rec_buf,hash_keyval);
err = KDL _delete(kd_od,hash_keyval);
KDL _close(kd_od);




APPENDIX B

PSEUDOCODE FOR KDL RAMFILE SYSTEM

This appendix shows the pseudocode for selected portions of the algorithm for dis-

tributed linear hashing.

In the implementation there are several important points to note. The only time glo-
bal variables are accessed is in the éplit and merge routines. For a normal split or merge,
the variable GLOBAL_P is accessed once and changed once. If M is doubled or halved,
the processor doubling M must update all of the values for M in each processor. This is a
time consuming activity but it is seldom performed and only after extensive database re-
organization so updating the distributed copies of M is a very small part of the operation.
The cost of updating the distributed copies of M is small compared with the cost of

accessing a central variable for M.

If a processor cannot lock the P directory for a split or merge or "misses the token",
the processor does not wait. This insures that the insert and delete operations will not be
slowed down waiting for a split to complete. The split or merge will be deferred until

some other transaction when the directory is not busy.

The merge operation is very similar to the split operation in terms of the data and
computing requirements. Previous implementations required different levels of locking

for merge and split operations giving preference to the split operation.

If a split (or merge) operation notices that a directory has already been split (or

merged) the TOKEN is simply moved and no re-organization is done. This takes much
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" less resources than a split or merge and will often occur if deletes are interspersed with
inserts. This reduces the amount of database thrashing when there are interspersed
inserts and deletes. The implementation of the directory locks insures that a process
requesting an exclusive lock will eventually get access to the directory regardless of the
number of readers attempting to lock the directory. This occurs because the process
requesting the exclusive lock blocks other readers while waiting for the read locks to be
cleared.




51

Pseudocode:
Global Shared Data

int NUMPROC; /* Set to the number of processors */
int GLOBAL_P
int *GLOBAL_DISTM_POINTER[NUMPROC];

Local Data For each Processor

int DIST_M;
int LOCAL_P;

/**********t#***#**********###**#*****************************************l

lock_dir_retry_logic(key,locktype)
int key;
{ /* Beginning of routine lock_dir_retry_login */
dir_number = linear_hash(key,DIST_M,LOCAL_P);
dir = lock_dir(bucket_number,locktype);
update_ LOCAL_P(dir_number,dir->DIR_M);
newdir_number = key mod dir->DIR_M,;
while(newdir_number != dir_number ) { /* Retry logic */
unlock_dir(dir_number);
dir_number = newdir_number;
dir = lock_dir(dir_number,locktype);
update_LOCAL_P(dir_number,dir->DIR_M);
newdir_number = key mod dir->DIR_M;
} /* End while. Now we have the proper directory locked for the specified key */
} /* End of routine lock_dir_retry_logic */

/********t*****i**t*****#*****#***********#*******************************/

/* This routine implements the local technique for maintaining P. */

update_LOCAL_P(dir_number,dir_number)
int dir_number, dir_number;
{ /* Beginning of routine update_LOCAL_P */
if ( dir_number > LOCAL_P and dir_number >= (DIST_M * 2) ) {
LOCAL_P = dir_number;
}
if ( dir_number < LOCAL_P and dir_number <= DIST_M ) {
LOCAL_P =dir_number;
}
} /* End of routine update_LOCAL_P */

/******t*******#**************#*******************************************/
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lock_dir(dir_number,locktype)

int dir_number;

int locktype;

{ /* Beginning of routine lock_dir */
dir = locate_dir(dir_number);
Lock(dir->exclusive_lock);
if ( locktype == exclusive ) {

/* Wait until all read locks have been released */
}
return(dir);
} /* End of routine lock_dir */

/****##**#**************************#*************************************l

insert(key,data)
int key;
char data(];
{ /* Beginning of routine to insert a record */
dir = lock_dir_retry_logic(key,exclusive);
/* Now the directory is searched and the record is inserted. While the
lock is held in the directory, we have exclusive access to the directory. */
unlock_dir(dir->number);
if ( overflow ) splitQ;
} /* End of routine to insert a record */

/*#‘***************#*******#**##****##**‘********#****#*****#**#*t********/

delete(key)
int key;
{ /* Beginning of routine delete */
dir = lock_dir_retry_logic(key,exclusive);
/* We have exclusive access to the directory. The directory is searched and
the record is deleted.*/
unlock_dir(dir->number);
if (underflow ) merge();
} /* End of routine delete */

/**********************#***********t**************************************/

read(key, data)
int key;
char data[];
{ /* Beginning of routine read */
dir = lock_dir_retry_logic(key,read)
dir->read_locks++; /* Set the read lock */
unlock_dir(dir->number);
/* We now have a read lock on the directory. No process can get exclusive access
to the bucket but other processes can get additional read access. The
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directory is searched and the record is read if it exists. */
dir->read_locks--; /* Release the read lock */
} /* End of routine read */

/***********#*****‘****#*‘****t***********************#****#**************/

split()
{ /* Beginning of routine split */

dir = lock_dir_retry_logic_no_wait(GLOBAL_P,exclusive);

if ( dir is busy ) return;

if ( dir->TOKEN == FALSE ) { /* missed the TOKEN */
unlock_block(dir->number);
return;

)

/* Now we have the real TOKEN directory. One thing that is guaranteed as long as

we hold the lock on the TOKEN directory is that our value of DIST_M will not change.

Before the directory is split we move the TOKEN to allow further splits to

be multi-threaded. */

dir->TOKEN = false;  /* First clear the TOKEN flag */

old_DIST_M = DIST_M;

if ( dir->number == (DIST_M - 1) ) {
DIST_M =DIST_M *2;
/* Update each processor’s copy of DIST_M (including the local processor)*/
GLOBAL_P=0;

} else {
GLOBAL_P++;

}

newdir = locate_dir(GLOBAL_P);

newdir->TOKEN = TRUE; /* TOKEN is moved so the next split can operate */*

if ( dir->DIR_M == (old_DIST_M * 2) ) { /* Bucket is already split */
unlock_dir(dir->number);
return;

}

highdir = lock_dir(dir->number+dir->DIR _M,exclusive);
/* Now we rehash all of the chains in the original directory and distribute them between
the original directory and the high directory (empty). This distribution is accomplished by
using dir->DIR_M * 2 to compute the proper directory for the record. */
dir->DIR_M = (dir->DIR_M) * 2 ;
newdir->DIR_M = dir->DIR_M;
rehash(dir,newdir);
unlock_dir(dir);
unlock_dir(highdir);
} /* End of routine split */

/*************************************************************************l
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/* The merge code is very similar to the split code. The primary difference is in the
direction of the TOKEN and the use of M / 2 in place of M * 2. */

merge()
{ /* Beginning of routine merge */

dir = lock_dir_retry_logic_no_wait(GLOBAL_P,exclusive);

if ( dir is busy ) return;

if ( dir->TOKEN == FALSE ) { /* missed the TOKEN */
unlock_block(dir->number);
return;

)

/* Now we have the real TOKEN directory. One thing that is guaranteed as long as

we hold the lock on the TOKEN directory is that our value of DIST_M will not change.

Before the directory is split we move the TOKEN to allow further splits to

be multi-threaded. */

dir->TOKEN = false; /* First clear the TOKEN flag */

old_DIST_M = DIST_M;

if ( dir->number =0) (
DIST M =DIST_M /2;
/* Update each processor’s copy of DIST_M (including the local processor)*/
GLOBAL_P =DIST_M-1;

} else {
GLOBAL_P--;

)

newdir = locate_dir(GLOBAL_P);

newdir->TOKEN = TRUE; /* TOKEN is moved so the next merge can operate */*

if (dir->DIR_M == (0ld_DIST_M/ 2) ) { /* Bucket is already merged */
unlock_dir(dir->number);
return;

)

highdir = lock_dir(dir->number+dir->DIR _M,exclusive);
/* Now we rehash the chains from both directories and move them into the lower directory.
This is accomplished by re-hashing the records using dir->DIR_M /2
to compute the proper directory for the record. */
dir->DIR_M = (dir->DIR_M) /2 ;
newdir->DIR_M = dir->DIR_M;
rehash(dir,newdir);
unlock_dir(dir);
unlock_dir(highdir);
} /* End of routine merge */
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