


THESIS

lHlﬂ\l\ll\)lll\1\|W\\'|1!\Illl)l\W!lHl‘"ll’l\m\lﬁll

3 1293 00791 4

LIBRARY
""chlgan State
nlverslty

This is to certify that the

dissertation entitled

THE PEANO DeERIVATIVE S

presented by
!
HAJRUDIN  FeJZ\C

has been accepted towards fulfillment
of the requirements for

Ph D degree in M(I‘H"P"M&f‘l‘(s




PLACE IN RETURN Box to rem
ES return on or b

ove this checkout from your record.
TO AVOID FIN

ofore date due,




THE PEANO DERIVATIVES
by

Hajrudin Fejzi¢

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
Department of Mathematics

1992



Let |
has a k-
that fiz
The coe
k-th ore
but the

Let
by A 4
have <}
differen
derivat
sets 4,
they p
the firs
that {
Sho»\'n
P €anq

A
tives.
ordip,
tiveg

Path



ABSTRACT
THE PEANO DERIVATIVES
by
Hajrudin Fejzié

Let f be a function defined on an interval [a, ] and that k¥ € N. We say that f
has a k-th Peano derivative at z € [a, ] if there exist coefficents f;(z),..., fi(z) such
that f(mr+ k) = f(z) +hfi(z) + ...+ & fi(z) + h*ex(z, h) where limp_o ex(z, k) = 0.
The coeflicent fi(z) is called the k-th Peano derivative of f at z. The existence of a
k-th ordinary derivative, f(*)(z), implies the existence of fi(z) and fi(z) = f®¥(z),
but the converse is not true for k > 2.

Let A’ be the class of all derivatives, and let [A’] be the vector space generated
by A’ and O’Malley’s class B;j. S. Agronsky, R. Biskner, A. Bruckner and J. Mafik
have showed that every function [A’] has the form ¢’ + hk’, where g,h and k are
differentiable. They also proved that f € [A’] if and only if there is a sequence of
derivatives {v,} and closed sets {A,} such that U2 ;A, =R and f = v, on A,. The
sets A, and corresponding functions v, are called a decompositon of f. The question
they posed is whether every Peano derivative belongs to this class of functions. In
the first part of this thesis a positive answer to this question is given. Also it is shown
that for Peano derivatives the sets A, can be chosen to be perfect. Moreover it is
shown that every k-th Peano derivative is the composite derivative of the (k — 1)-th
Peano derivative relative to the sequence {A,}.

A. Bruckner, R. O’Malley and B. Thomson introduced the notation of path deriva-
tives. They showed that path derivatives have many of the properties possessed by
ordinary derivatives. In the second part of this thesis it is shown that Peano deriva-
tives are also ,path derivatives and hence they have all the properties possessed by

path derivatives. This gives another proof of the many properties possessed by Peano
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derivatives and also answers the question posed by the above authors.

The third part of this thesis shows that a k-th Peano derivative is a selective
derivative of the (k — 1)-th Peano derivative, and hence gives a positive answer to the
question posed by C. Weil regarding Peano and selective derivatives.

Finally the last pért of this thesis shows that these results are still true if we replace
Peano derivatives with generalized Peano derivatives, introduced by M. Laczkovich,

and studied by C. Lee.
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INTRODUCTION

The definition of the k-th ordinary derivative of a real valued function is iterative
in nature and thus easily comprehended if one initially understands what a first
derivative is. This nice feature can present a problem, however, because in order
to find the k-th derivative of a function f at a point z, one must know all the
previous derivatives, not only at z, but at every point in some neighborhood of z.
One type of generalized k-th order differentiation, having Taylor’s theorem as its
motivation, attempts to skirt this drawback. This kind of differentiation is called

Peano differentiation.

Definition 0.0.1 A function f is said to have a k-th Peano derivative at = if there
ezist numbers fy(z), fa(z),..., fi(z) such that

f(z+h) =f($)+hfn(-’v)+"~+%;(fk(x)+fk(w,h)) (1)

where ex(z,h) — 0 as h — 0. The number fi(z) is called the k-th Peano derivative of
f at z. It will be convenient to denote f(z) by fo(z). With this notation (1) becomes

k ki h*
flz+h) =) —fi(z) + Zrex(z h).
i J! !
This concept was presented in 1891 by the italian mathematician G. Peano. Peano
introduced this type of derivative, obtained a product rule, a quotient rule, and
pointed out that if a function f has an ordinary k-th derivative at z, f(*)(z), then it

must have a k-th Peano derivative at z and fi(z) = f*)(z). The converse is not true

for k > 2 as can be seen from the following example. Let
f(z) = =+ sin-i— for £ # 0 and f(0) = 0.

It is easy to see that fi(0) = 0 but f(*) at 0 doesn’t exist. Thus the k-th Peano
derivative is a true generalization of the ordinary k-th derivative although obviously

there is no difference for k = 1.
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In 1954 H. W. Oliver published the first extensive work devoted exclusively to
exhibiting properties of k-th Peano derivatives. (See [10].) He showed that such a
derivative has several of the properties known to be possessed by an ordinary deriva-
tive. Oliver established that if f; ezists for all  in some interval I, then fi is of
Baire class one; t.e., fi can be written as a pointwise limit of a sequence of continuous
functions (A). (Denjoy had obtained this result earlier in the more general setting
where f; is defined relative to a perfect set H.) Oliver also showed that f; must have
the Darbouz property; i.e., that for any interval [a,b] C I ify is a point between fi(a)
and fi(b), then there is c € (a,b) so that fi(c) = y (B), another property well known
and easily verified for ordinary derivatives. Moreover, he showed that if fi is bounded
above or below on some [a,b] C I, then fi is the ordinary k-th derivative of f on [a,b]
(C). In particular, this yields the monotonicity theorem which states that if fy > 0 on
[a,b], then fi_. is nondecreasing and continuous on [a,b] (D). Combining this with
the fact that f; is of Baire class one, it follows that fi is an ordinary k-th derivative
on an open, dense subset of I (E). R. J. O’Malley and C. E. Weil showed that if
f attains both values —M and M on some interval [a,b] C I, then there is an open
interval J C [a,b], on which fi = f*) and f*) attains both values —M and M on J
(F). (See [12].)

If g is an ordinary derivative on I, then for any open interval, (a,b), g~!(a,bd)
either is empty or has positive Lebesgue measure, a result first proved by Denjoy. A
function having this property is said to have the Denjoy property. Oliver showed that
fx possesses the Denjoy property on I (G). (See [10].)

Z. Zahorski proved that the following property is possessed by every ordinary

derivative.

Definition 0.0.2 A function g is said to have the Zahorski property if for each open
interval (a,b), for each z € g~(a,b), and for each sequence of intervals {I,} con-

verging to =, (The end points of the I, converge to = but = belongs to no I,.) with
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m(g~(a,b) N I,) = 0 for every n, implies lim, . 3;':—:}% = 0, where m(I,) denotes

Lebesgue measure of I, and dist(z,I,) denotes the distance between z and I, (H).

C. E. Weil showed that a k-th Peano derivative also has the Zahorski property,
and he introduced a property somewhat stronger that the Zahorski property, which

he called property Z. (See [18].)

Definition 0.0.3 A function g defined on an interval I is said to have property Z if
for every € > 0, each = € I, and each sequence of intervals {I,} converging to  such
that g(y) > g(z) on I, or g(y) < g(z) on I, for each n, we have

im MUY EL ¢ l9(y) —g(z)[ 2€}) _
n—oo m(]n) + dist(.’t, In) .

Weil showed that this property is strictly stronger than the Zahorski property, yet
still is possessed by every k-th Peano derivative.

In (3] the authors introduced the concept of a path derivative as a unifying ap-
proach to the study of a number of generalized derivatives. Namely since many other
generalized derivatives like approximate derivative, possess most of the properties
mentioned above that are possessed by Peano derivatives, the authors in [3] where
looking for a framework within which all of these derivatives could be presented.

The perspective they chose was to consider just those derivatives of a function F
at a point z which can be obtained as

VEE:, y—z y—<x

for appropriate choices of sets E;. One generalized derivative, then, differs from
another only by the choice of the family of sets {E, : z € R} through which the
difference quotient passes to its limit. For example, an approximately differentiable
function F permits a choice of sets {E; : z € R} so that each E, has density 1 at z;

for a Dini derivative each set may consist only of a sequence converging to z. This



framework includes any generalized derivative for which the derivative at a point is a
derived number of the function at that point. Since Weil has proved that fi(z) is a
derived number of fi_; at a point z, we see that this concept of path derivatives also
includes k-th Peano derivatives.

But in order to get some properties for path derivatives, like those possessed by
Peano or approximate derivatives, we require that the family of sets {E, : z € R}
satisfy various “thickness” conditions. These conditions relate to the “thickness” of
each of the sets E, and the way in which two of the sets intersect. The authors
proved that path derivatives with certain type of conditions imposed on the family of
sets {E; : z € R}, have many of the properties possessed by approximate and Peano
derivatives.

We will show that Peano derivatives are path derivatives with {E, : z € R} satis-
fying some of the intersection conditions introduced by the authors mentioned above.
This will give a positive answer to the question posed in [3]. In proving this assertion,
we won’t use any known results for Peano derivatives. So this can be regarded as
a new approach to studying Peano derivatives. Namely all of the properties (B),
(C), (D), (E), (F), (G) and (H), that we mentioned before, we will get for Peano
derivatives directly from the corresponding properties of path derivatives. The main

tool will be a decomposition of Peano derivatives which we will discuss next.



Let C be the family of all continuous functions on R, A the family of all differ-
entiable functions on R and A’ the family of all derivatives on R. If I' is a family of
functions defined on R, then by [I'] we denote the family of all functions f on R with
the following property: for each n € N there exist v, € I' and a closed set A, such
that f = v, on A, and U2, A, = R. In [1] (Theorem 2) it is shown that the following

four conditions are equivalent:
(i) There are g, h and k in A such that k', k' € [C] and f = ¢’ + hk'.
(ii)) There is a ¢ € A’ and ¢ € [C] such that f = ¢ + 9.

(iii) The function f € [A'].

(iv) There is a dense open set T such that f is a derivativeon T and f is a derivative

on R\ T with respect to R\ T.

The statement (ii) implies that [A’] is the vector space generated by A’ and [C].
In [1] (Theorem 3) it is shown that each approximate derivative, each approximately
continuous function and each function in B} = [C] belongs to the class [A’]. In [10]
O’Malley showed that for approximate derivatives, the sets A, from the definition of
[A'] can be chosen to be perfect. The following question is raised in [1]. “Does every
Peano derivative belong to [A]?”. We will give a positive answer to this question,

plus we will prove even more.

Definition 0.0.4 Let f be a function defined on R. If there ezist a function g, and
closed sets A,, n = 1,2,... such that U2, A, = R and g|'y (z) = f(z) for z € A,

then we say that f is a composite derivative of g.

We will prove that f; is a composite derivative of fi_; with respect to the sets

Pi1/n, where for € > 0, § > 0 we define

Ps = P(f,€,6) = {z : |ex(z, h)| < € for |h| < 8}.



These sets were first introduced by A. Denjoy. He showed that with respect to these
sets for 0 < l < i, ¢t =1,...,k -1, f; is an I-th Peano derivative of f;_;, with
(filp,)i-1(z) = fi(z) for z € P, where the (I — i)-th Peano derivative is computed
relative to Ps. Using different techniques, we are able to improve his result. Namely,
we show that the result also holds for the case ¢t = k. Since U2, P, = R, we have that
fi is a composite derivative of fi_,. This gives a positive answer to a question raised
by C. Weil. (See [19].) From this result it is easy to conclude that fi € [A’]. We just
need to recall the fact that for any function g defined on a closed set A, such that
at every point z € A, a derivative ¢’(z) computed relative to A exists, there exists a
function G differentiable at every point z € R so that G|4 = g and G'|4 = ¢'.

We can enlarge the sets P, so that they are perfect and that fj is still a composite
derivative of fi_; with respect to these perfect sets. Therefore one more property
possessed by approximate derivatives is also possessed by Peano derivatives.

Because every composite derivative is a Baire 1 function, we see that f; is a Baire
1 function. Although this property is very easy to establish for Peano derivatives, for
generalized Peano derivatives it is not so easy. We will discuss these derivatives in
Chapter IV, but using some techniques similar to those that we use for Peano deriva-
tives we will prove that generalized Peano derivatives are also composite derivatives
and therefore, they are Baire 1 functions.

Another immediate corollary is that fi is the approximate derivative of fi_; almost
everywhere. This result was first proved by Zygmund and Marcinkiewicz. (See [20]
page 75.) We will generalize their result showing that fi is the I-th approximate
Peano derivative of fi_; with (fi-1)(ap-1)(z) = fi(z) almost everywhere, where (ap—1)
denotes [-th approximate Peano derivative.

The sequence of sets {P,} satisfies the condition P, C P,4;. This fact together
with results already established will enable us to construct a system of paths {E, : z €

R} satisfying the I.C. property (as it was defined in [3]), so that f is a path derivative
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of fx_1 with respect to this system. Using an induction argument and known results
for path derivatives with such a system of paths, we get that Peano derivatives possess
properties (B), (C), (D), (E), and (G). Since there is a nonporous system of paths
{E: : z € R}, such that f; is the path derivative of fi_; with respect to that system,
(a fact established in [3]), we get that Peano derivatives possess also properties (F)
and (H).

Finally we show that there is a system of paths {E; : ¢ € R} satisfying the LI.C.
condition (as it is defined in [3]), with fi the path derivative of fx_; with respect to

that system. This implies that f; is the selective derivative of fi_,.

Definition 0.0.5 If for a given function F there is a function p of two variables

called a selection, satisfying p(z,y) = p(y,z) and p(z,y) € (z,y), so that

. F(p(z,y)) — F(z)
L p(z,y)—=z @)

exists, we say that F is selectively differentiable at x, and the limit in (2) we call the

selective derivative of F at the point z and denote it by F(z).

Selective differentiation was introduced by R. O’Malley. Motivation for introduc-
ing selective differentiation was the fact that approximate derivatives are selective
derivatives, which was proved by O’Malley. Showing that fi is a selective derivative
of fr_1 we give a positive answer to a question raised by C. Weil. (See [19].) So Peano
derivatives possess one more property possessed by approximate derivatives.

Generalized Peano derivatives were introduced by C. Lee. (See [9].) He showed
that every absolute Peano derivative on a compact interval is a generalized Peano

derivative. Absolute Peano derivatives were introduced by M. Laczkovich. (See [7].)

Definition 0.0.6 Let f be defined in a neighborhood of x. We say that the absolute
Peano derivative of f at x exists and is A (in symbols f*(z) = A) if there is a function

g, a nonnegative integer k, and a 6 > 0 such that

(2) g =fon(z—6,z+6) and (it) grwi(z) = A.
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Laczkovich showed that this concept is unambiguously defined, that if f* exists
on an interval, it is a function of Baire class one, it has the Darboux property, and if

f* is bounded above or below on an interval, then f* = f’ on that interval.

Definition 0.0.7 Let F be a continuous function defined on R, and let n € N. We
say that F is n-th generalized Peano differentiable at z € R, if there is a positive
integer q, and coefficients Fj(z), i = 1,...,n such that

9-1 —q+)
F(“’)(z + h) ZhJ (1') Zhﬁv FL;]_(it;' + h9tme gﬂ"(z,h) (3)
j=0 1=0

where limy_o cq+,,(:t h) =

Here Flgj(z) = F(z) = FO(z) and F(-)(z) = [* F(-i+1(t)dt; i.e. F(-9) is an
indefinite Riemann integral of the continuous function F(-7*1) for j = 1,...,q. Note
that the definitions of Fy(z),+=0,1,...,n and of e,[,ﬂ,,(a:, h) don’t depend on which
g-fold indefinite Riemann integral F(-9) of the continuous function F', is taken because
any two differ by a polynomial of a degree less than q. The above definition is the
same as the definition of (¢+n)-th Peano derivative of a function F(~9 at the point z.
Note that every n-th Peano derivative is also a n-th generalized Peano derivative, but
the converse is not true. Namely M. Laczkovich has constructed an absolute Peano
derivative on an interval which is not an ordinary Peano derivative of any order.

C. Lee showed that all properties (A), (B), (C), (D), (E), (F), (G), (H) and
Weil’s Z property are possessed by generalized Peano derivatives and in particular
they are possessed by absolute Peano derivatives. (See [8] and [9].)

We will take a different approach to studying generalized Peano derivatives than
that taken by C. Lee. Our approach will be similar to the one we used in studying
Peano derivatives, so many results that we established for Peano derivatives will hold
also for generalized Peano derivatives. In particular we will obtain that generalized

Peano derivatives are composite derivatives and hence belong to [A’]. Also we will



show that generalized Peano derivatives are path derivatives with respect to a bi-
lateral, nonporous system of paths satisfying I.I.C. condition. Therefore generalized

Peano derivatives are also selective derivatives.
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CHAPTER 1

Throughout this theses all the properties will be established for functions defined

on R. But it can be easily seen that R can be replaced by any connected subset of R.

1.1 Decomposition of Peano derivatives

Let C be the family of all continuous functions on R, A the family of all differentiable
functions on R and A’ the family of all derivatives on R. If I is a family of functions
defined on R, then by [I'] we denote the family of all functions f on R with the
property that for every n € N there exist v, € I' and a closed set A, such that
f = v, on A, and U2, A, = R. In [1] (Theorem 2) it is shown that the following

four conditions are equivalent:

(i) There are g, h and k in A such that A, k' € [C] and f = ¢’ + hk'.
(ii) There is a ¢ € A’ and ¢ € [C] such that f = ¢ + 3.
(iii) The function f € [A’].

(iv) There is a dense open set T such that f is a derivativeon T and f is a derivative

on R\ T with respect to R\ T.

The statement (ii) implies that [A’] is the vector space generated by A’ and [C].
In [1] (Theorem 3) it is shown that each approximate derivative, each approximately
continuous function and each function in B} = [C] belongs to the class [A”). The
main goal of this chapter is to show that every Peano derivative is in [A’]. We will
prove even more. Namely we will prove that every Peano derivative is a composite

derivative.

10
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Definition 1.1.1 Let f be a function defined on R. If there ezist a function g, and
for n € N there is a closed set A, with g|'y (z) = f(z) Vz € A, and U2, A, =R,

then we say that f is the composite derivative of g.

The following result due to Maiik says that every composite derivative is in [A].

(See [14].)

Theorem 1.1.2 Let a function g be defined on a closed set H. If ¢’ exists on H,
where g’ is computed relative to H, then there is a function G differentiable on R so

that Glg =g and G’y = ¢'.

O’Malley proved that every approximate derivative is the composite derivative of
its primitive. (See [11].) In this chapter we will prove that a k-th Peano derivative
is the composite derivative of the (k — 1)-th Peano derivative. Thus we will get that
every Peano derivative is in [A’], and hence possesses all the properties possessed by

functions in [A’]. We will start with an elementary lemma.

Lemma 1.1.3 For m € N we have

0 ifi=0,...,m—1
m! ifi=m
2(m+1)! fi=m+l.

(-1 (1) =

=0

Proof: Let Bi, = Tjo(~1)""i(7)j*. Then B =0, B} =1, and B} =1.
Now we will proceed by induction on m. Suppose

{ 0 ift=0,...,m—2
B _, =

m

(m=-1)! ift=m-1

2=lm! ift=m.

Note that BS, =(1—-1)"=0. Let 1 <i<m + 1. Sincei > 1, 0' = 0. Thus

By = myo(-1)i(35)

i=1
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m-1
= B ) 1y
Jj=0
m-1 ) i-1 _
= m E(—l)m-l'-’ (’"j‘l) Z (':l)jt—]-—r
=0 r=0
-1
= m) (i:l)B:.n——li- ", and by the induction hypothesis
r=0
0 fi—l<m-1
= mBRT} fi—l=m-—1
m((7)Brzi+ (7)Bp.,) fi-1=m
0 ifi<m
m(m(m — 1)+ 2im!) ifi=m+1
0 ifi=0,....m—1
= m! ifi=m
nm+1)! ifi=m+l -

Definition 1.1.4 The Riemann difference AT f(z) of order m of a real valued func-
tion f at a point z is defined by AT f(z) = T7to(—1)"? (';')f(:t + jt).

If f is continuous on R, then A,f(y) is continuous on R. This is the case if the

k-th Peano derivative f; exists on R.

The relationship between A™ and A**! is given by the following simple lemma.

Lemma 1.1.5

AT f(z) = AT f(z +1) - AT f(2).

Proof:

ATf(z +1t) - AT f(z) =
Z(—l)m-’( )f(z+(G+1) t)-z( 1) (") f(z + jt) =

Jj=0

f(z+ (m + 1)t) + 3(=1)m+1-3 (™) + (™) £z + 30+

Jj=1
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(=1)™*1 f(z) (since ()”‘) ("‘) ('""’1) it is equal to)
m+1 . .
= Y (=1 (") f(z + jt) = AP f(2). o
J=0
For the remainder of this chapter k will be a fixed positive integer greater than
1. If a function f at some point z € R has a k-th Peano derivative fi(z), then using

Lemma 1.1.3, we have the following formula for Riemman differences.

Lemma 1.1.8 Let f be a function defined on R. Let z € R be such that fi(z) ezists.
Then for0 <m <k

miigy 2 | 1@+ Do (= 1) (F)imen(2,5t) ifm =
akd )‘{ ETmo(-1)m (Nia(z, ) ifm>i
Proof:
APSE) = Y1 (5) e+ 0
= $ari(5) (U R + vete.sn)
= S ()it £ S () et

and by Lemma 1.1.3 we have
_ t™ fm(z) +t™ TTo(— 1)"‘"( )] em(z,jt) fm =1
- (- 1)""1( )] €z, Jt) ifm>:. o

The next theorem is an easy consequence of Lemma 1.1.6.

Theorem 1.1.7 Let f be a function defined on R such that fi exists for each z € R.
Then fy is a Baire 1 function.

Proof: For each n € N let g,(z) = n"A’é f(z). Then by Lemma 1.1.6 (applied

with m = i = k) we have lim, ., gn(z) = fi(z). It remains only to notice that each
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gn is a continuous function. Therefore f; is a pointwise limit of continuous functions;

i.e., fix is a Baire 1 function.

In order to prove that every Peano derivative is a composite derivative, we need
to construct a sequence of closed sets {A,} whose union is R, and with respect to
which fi is a composite derivative. The obvious candidate for a primitive is fi_;.
We will investigate a relationship among the Peano derivatives f; for: =1,...,k on

certain sets Pi(f,€,6) which are defined next.

Definition 1.1.8 Let ¢ > 0 and 6§ > 0 be given. Let

P = Pi(f,€,6) = {z : |ex(z, k)| < € whenever |h| < 8}.

These sets were first introduced by A. Denjoy. (See [5].) He proved that for
i=1,...,k—1and for 0 <! <1, f; is the (:—)-th Peano derivative of f; with respect
to the closure of these sets with the expected values; i.e., with (fi|p)-i(z) = fi(z)
for every £ € P. (He proved that the same conclusion holds if f is defined on some
perfect set H having finite index provided fi, computed relative to this set, exists
on H.) (See [5].) When f is defined on R so that fi exists on R (or fi exists on
a perfect set H), we will show that the result also holds for ¢ = k. First, using
different techniques than Denjoy used, we will prove his result. We begin with some

elementary formulas.

Formula 1.1.9 Let f be a function on R and let z € R. For l € N, suppose that
fi(z) ezists. Then for eacht € R

a-1(z,t) = t—ﬁ—f!f—l + te(z, t).
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Proof: The assertion follows directly from the definition of Peano derivatives. o

Formula 1.1.10 Let f be a function on R and let z,t € R. For |l € N, suppose that
fi(z) and fi(z +t) ezxist. Then

l

fir(z + ) = fisa(z) = thiz) = t (=17 () j'a(z, jt)+

i=1

-.

1

—1)!=1 (1) ey (a, 5t) -

J l

-1

S (=) () e (@ + t gt).

Jj=1

Proof:

By Lemma 1.1.5 Alf(z) = Al-'f(z +t) — Al f(2).
Applying Lemma 1.1.6 to both sides of above equality we get
]
tfi(z) + ¢ 3 (-1) (Di'elz, jt) =
j=1

-1
1 fia(e +8) + 271 (1)1 (151 e (2 o+ 4, t)

J

=0
-1
7 fiea() = £ L1 ()7 e (1),
)=

tl—l

Dividing both sides of the above equality by gives the desired formula.

Formula 1.1.11 Let f be a function on R and let z,t € R. Forl € N, suppose that
fi(z) and fi(z +t) exist. Then

I+1

filz +1) = filz) = Y (1) (1) ez, jt)+

=0

1 1
> (-1)' ({)i'a(=,5t) = 2o(=1)" (§) 'z + t, jt).

3j=0 j=0
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Proof:

By Lemma 1.1.5 Al f(z) = Alf(z +t) — Al f(2).

Applying Lemma 1.1.6 to both sides of the above equality we get
1+1

¢ (-1 () ez, jt) =
1=0

iz +t) +1 i(—l)‘-f ()i'alz +1.5t) -

t'fi(z) -t Z y=i (Ds'a(z, jt).

=0

Dividing both sides of the above equality by ¢/ gives the desired formula. 0

Formula 1.1.12 Let f be a function on R and let z,t € R. Forl € N, suppose that
fi(z) and fi(z +t) exist. Then

frle+8) = A=) _ pooy o Z’:(_l)l—:’ (D)i'alz, it)+

t fard

-— -1 .
5 (@) = file + 0) + (-1 (55 ez, ) - ez + ,30).

Proof: From Formulas 1.1.10 and 1.1.9 we get

l
fior(z + ) = filz) — thi(z) = t3(-1) (Di'e(z, jt) +

=0

l)f(—l):-l-f(’?)i"l( 4 4t ]t))

J=0

> (1173 (51 ( f'(z 0 4 jta(e+t Jt))

=0
Dividing both sides of the above equality by ¢, and applying Lemma 1.1.3 we get the

desired formula. O
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Theorem 1.1.13 Let f be a function defined on R such that f; ezists for each z € R.
There is a positive constant M such that Ve > 0 and 6 > 0 if z and y are in P with

|z — y| < 25, then

|fe(y) — fi(z)] < Me (1)
fk-l(y; : ik-l(-'”) — fi(z)| £ Me. (2)

Moreover for |h| < 6 1 =1,...,k fi and €(-,h) are bounded on P N [a,b] inde-
pendent of h, for any interval [a,b).

Proof: Let £ and y be in P such that |y — z| < %, and let t = y — z. Set
B=y* ( k j; . ) j*. Then the left hand sides of the equalities in Formulas 1.1.11
and 1.1.12 are bounded by 3Be and 3Be + 3Be*5! respectively. Hence (1) and (2)
follows for M = 3B !‘—121

Let [a, b] be any interval. From (1) we see that fi is bounded on P N [a,b]. From
Formula 1.1.9 (applied with [ = k) it follows that for |h| < & |ex—1(-, k)| is bounded
on PN [a,b] independent of h. Now from Formula 1.1.10 (applied with | = k) we see
that fi_, is bounded on P N [a,d], and again going back to Formula 1.1.9 (applied
with | = k—1) we see that for |h| < 6 |ex—2( -, k)| is bounded on PN|[a, b] independent
of h. Continuing we can deduce that there is a constant C so that |fi(y)| < C and

lei(y, h)| < C whenever y € PN [a,b], |h| <6and 1 <1< k. 5

The next theorem says that if we replace P by P, then the conclusion of Theo-

rem 1.1.13 still holds.

Theorem 1.1.14 Let f be a function defined on R such that f; ezists for each z € R.
Then P C P(f,3¢,6).
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Proof: Let z € P, and let {z,} € P be a sequence such that lim,_.,, r, = z. Let
[a, b] be such that {z,} C PN[a,b]. From Theorem 1.1.2 we see that f; for1 <1<k
is bounded on PN [a,b]. Therefore we can choose a subsequence {z,,} converging to
z such that for i = 1.k the sequence {fi(z,,)} is convergent. Let these sequences
converge to Fi(z), i =1,...,k respectively.

Let h with |[h| < é be given. Suppose that |h + z — z,,| < 6 for every j € N.
Therefore |ex(zn;, h+z—zn,)| < € so we can also suppose that this sequence converges.

(If not, then extract a convergent subsequence.) Denote its limit by E(h). Since

fi(zn,) exists,

3 (h+z —:::,‘))"‘l

f(z+ k) = f(zn,) + (h + 2 = 2n)) fi(2n,) +- fra(z5,)

(k-=1)
+(h+tz—za)(h+z—2,) (fk(:!"’) + €x(Tn; b+ — x,,])) . (3)
Letting ;7 — oo in (3) we get
k-1 T
f(x+h)= f(z)+ hFy(z)+--- + th-l(z) + h*1h (E'# + E'(h)) .

Since limy_o h(F—",},£2 + E(h)) = 0, by the uniqueness of Peano derivatives we have

Fi(z) = fi(z)for 1 <: < k-1 and

f"g’) + ez h) = F"k(!"”) + E(h). (4)
Since |E(h)| < ¢, from (4) we have that
D@ = BE)) _ B(h) - ex(, B < € 4 len(a B Q

The left hand side of (5) doesn’t depend on k so letting A — 0 in the right hand

Iul=)-Fiulz)

Finally this estimate and the formula e(z, k) = E(h).{.ﬂ_@k;!&iﬂ gives |ex(z, h)| <

side of (5) we get <e

2¢ < 3¢ for |h| < 6. Hence z € P(f,3¢,6) and the theorem is proved.
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In order to prove that Theorem 1.1.7 holds for ¢ = k, we need a formula that

involves more than two variables. We will derive a formula, (Theorem 1.1.17 below)

involving three independent variables. The proof of the formula is elementary, but

the formula itself is the crux in what follows.

Lemma 1.1.15 Let 0 < s < k—1, z; € R and let a function f be defined on R,

having a k-th Peano derivative at z,. Then

Proof:

At‘f(zl)

Aif(z1)

Af(e) = Lo + 30 3-1y5 ()5

G fi(21) fl(‘tl)

I=3+1 j=0

£ 3(=1)~4 (2) *ex(e, it).

1=0

k
(-1 (2) (Z( oy 2o (Jt)*ek(z.,yt))

3=0 1=0

k
z—:( ll—](])‘zj lfl(-’l'l)_l_tk;)( 1)8-J(J)J ex(z1, jit)
Eg l)a-j(J) ltfl(ml) +tkz:( l)s—J(J)J €k($1,]t)

by Lemma 1.1.3

zz( 1)'-‘7()) ztfl(zl) +tk2( 1):—;(})] ek(zl,]t).

l=8 j=0
Applying Lemma 1.1.3 once more

tf,(:t])-{- Z Z( 1)0—;(}) ztfl(-’lfl)

I=s+1 j=0

t* 2( 1 '_’(,)J ex(z1,5t). g

=0

The next lemma gives a different formula for Af f(z,) when we suppose that the

k-th Peano derivative of a function f on R, exists at a point = # z;.
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Lemma 1.1.16 Let0 < s < k—1, 2, and z two points in R. Suppose that a function
f defined on R, has a k-th Peano derivative at z. Then

Proof:

A:f(xl)

u T

O -2 L0 ()i 2l |

=841 1=28+1

S (1 () (o1 — 2+ 0 eul 1 — 24 50

i(—l)"’ (1) }L..(zx -+ ]t)‘f'( z)

J=0 =0

z’:("l)'-J (J)(:tl -+ jt)kek(a:,a:l —z + jt)

S0 1 (& (e - 1) £+
)

S0

1=0

iﬁ: () (21— 2)-'t (Z( —1yi(); ) filz) |

1=0 1=0

(1 —z 4 jt)e(z,z1 — z + jt)

(1) () @1 — 2 + ez, 21 — 2 + jt)

=0

which by Lemma 1.1.3

ZE () (21 — 2)—'¢ (Z( 1y () ) filz) |

=35 1=3

X':(—l)"" (,)(3?1 —z + jt)Fe(z,z1 — = + jt)

=0

zk:(i)(l'l )t (E( 1)=3(2)j )fz(x)

I=s J—O
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Lemma 1.1.16 Let0 < s < k—1, z, and = two points in R. Suppose that a function
f defined on R, has a k-th Peano derivative at z. Then

At f(er) = 3o — )t A

L
= (1-s)

i Z'Z ()( m)"'t‘Z( 1)s—:(}) fl(-'c)

I=3+1 1=3+1 =0

Z( 1)’“’() 7, — z + jt)ke(z, 21 — T + j1).

Proof:
Al f(z1) = 0( 1)’—1()) (2?1 _x+Jt)lf‘( z)
Z_%( l)’—’ (J) T —T +]t) e(z, 21— + jt)
: T

- gerobEonr) 4
Zo( 1)'-J ())(3'1 -z +]t) ex(z, 71— T + jt)
S I—igi o fiz) )

= L2 (E-a (E( -1y )

S (1) () (21 - o+ it ez, — 2 + 1)

=0
which by Lemma 1.1.3

= ‘::E()(:v: z)-it (?;( —1y-i(2)j )f'(”)

l=s 1=3

z’:(—l)""j (;)(:::1 —z + jt)e(z, 71 — z + jt)

- S ()@ (E< 13 (2)j )f‘“

I=s 3=0
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l

d 1 lmigi b s—j(s .,-fl(:c)
> Y O@-2 tjgo(—l) (j)]T+

l=8s4+1 1=3+1

s
> (-1) (;)(.1:1 —z + jt)er(z, 2, — = + jt)
J=0

applying Lemma 1.1.3 once more yields

Ay f(z1) —z:( )21 — o) fz(x)+

I=s

u ! i [ s— fl( )
E E ()(a:l—z t'}:( 1) J(:) +
=841 t1=s+1

i:(—l)"’ (;)(931 —z 4 jt)*er(z, 2, — z + jt) =

’z—;(xl I—sta(iff 8))' +

Z E () 2 — 2) =3 (= 1)~ (2)° fr(-'r)

=s+1 1=s+1 =0

Z(—I)J-J (J)(:z:l —z+ jt)e(r,zy — +jt).0

7=0
Putting Lemmas 1.1.15 and 1.1.16 together we get a formula that is the crux of

the proof of Theorems 1.1.20 and 1.1.27.

Theorem 1.1.17 Let 0 < s < k—1, 0 # t and z, and z two points in R. Suppose
that for a function f defined on R fi(z,) and fi(z) ezist. Then

1‘1 _ z)l—a
fo(z1) - 2 — v filz) =

I=s )
s ) k (xl
071 3 Fe (ST A - s +
=0 l—a+l

S0 ()BT ey

i=0 te
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th-2 Z( 1)*- J(J)J ex(21, 1)

1=0

Proof: By Lemma 1.1.15 and Lemma 1.1.16

fuler) - z;( D f(a) =

I=s )
u I 1 l—l i—s -3 fl(z)
2,3, Qe e g ()
E( 1)*- (,) (z1 - itl"+ jt)kek(x,zl —z+jt)—

> Sy )i+ 2 -

=841 )—0

tk-s Z( 1)*-7 (})] ex(z1,7t) (changing the order of summation)
J=0

=) B B (Yoo L

r—a+l I=1

Z(_l)s-J(J) 2 ]'t' aft(xl)

3=0 1=s+1

i(_l)’_j(j) (21 z+]t)k6k(.’t,11 —.1:+jt)-—

=0 t*

e 3 (1) (5)* ex(1, 5t)

=0

s k .5 k T i
=30 () X Ht (Z_ (5)<__>'_,,(,,.) ff(xl)) *

7=0 i=s41 °° I=i

z.:(—l)"j (;) (21— + jt)kek(z, Ty — T+ jt) —

=0 e

=t (=1 (2) el )

=0

=) 3 e (SO s - aen) +

j=0 i=s+1 I=1
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i(—l)’-j (;)Mek(x, T — T+ jt) —

i=0 t
= Y (-1) (D) el it)- g

1=0

The following formula is the special case of Theorem 1.1.17 where t = z; — z.

Formula 1.1.18 Under the assumptions of Theorem 1.1.17 the following formula
holds:

fs(zl) -

] (2
S0 () 3 B -2~ (5 2D ) - ) +

7=0 i=s41 t I=¢

-Zio“”"" (3) (@1 — )2 (1 + j)rex(z, (21 — 2)(1 + )) -

(z1—z)** Z( 1)~ J(J)J ex(z1,5(21 — 7)).

The next theorem is a generalization of Theorem 1.1.13.

Theorem 1.1.19 Let z,z, € P(f,¢,6) with |z, —z| < ;. Then there is a constant

M not depending on € or § such that

f(z1) E ( x)l

I=s

——fi(z)| < |z, — zl""Mc

fors=1,... k.
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Proof: The proof is by induction on s. The case s = k follows from Theo-
rems 1.1.13 and 1.1.14. Suppose it is true for all s+ 1 <t < k. Therefore there is a

constant M; so that

z)l—t

fi(z1) ;z_“,( fi)

for t = s+ 1,...,k. Then Formula 1.1.18, Theorem 1.1.14 and the induction

< |z — z|**Me (6)

hypothesis (6) yield

fu(zr) - Z( — o) <

l—a

Z ()) —|x1 —z|"*|zy — 2| Mye +

J—O s—a+l

> (e —2l(1 4 )"+ (since PUf,,6) C P(f,36,6))
j=0

|2y — z|F-* X_;) (2)5*3¢ (since P(f,€,8) C P(f,3¢,8))

= |z; — z|**Me

where M is a constant that does not depend on ¢ or 6. The induction is complete as
is the proof.

Now we are ready to prove our main theorem.

Theorem 1.1.20 Let f be a function defined on R such that fi ezxists for each r € R.
Suppose 0 < s < k and 6§ > 0. Then f, is (k — s) times Peano differentiable with
respect to P(f,1,8) with the ezpected value; i.e., (fl5)k-s(z) = fi(z).

Proof: Let z € P(f,1,6)andlet 1 > ¢ > 0 be given. Then thereisa0 < n < é such
that |ex(x, k)| < e whenever || < . Let M be the constant from Theorem 1.1.19. Let
z; € P(f,1,6) so that |z, —z| < - Lett= (z1—=z)et. Thenforj =0,1,...,k—1

we have
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r,—z+Jt|=(1 + jet)|z, — z| < k|zy — 2| < n. Hence
lex(z, 21 — = + jt)| < € and

lex(z1,5t)| < 3. (Since P(f,1,6) C P(f,3,6) and klt| < k|z, — | <n<é.)

By Theorem 1.1.17

_ z)l—n

o(71) Z(xl fiz)| =

l=s

J};(—lr-" 0 zk:l e (3 =) - fian) +

i=s+ =3

-1 () B E I 2kt -

=0 te

th-e Z( 1) (J)] ex(z1,jt)| and by Theorem 1.1.19

7=0

fulz) - z:( )"'ﬁ( )| <

l=o

E ()) 'Izl —z|*” ’eTMIx, — z|

:=o+l

, 1+ 6l/k )
> (ke — 2l (—{i—llek(x,xl a4t

oy — 2*=*e 7 Eo( )i*lex(1,3t)| and by (8) and (9)

=
<3 () 3 3 Flov— ot M+ 3 ()l - |k-'(—‘iifl"-e +
or = 2T 5 ()% = e oM () 3 G+
jar — 2~ z () +0)teF + a1 — 23 z: ()it

Since € was arbitrary, we have that

L f=) - TE, G i)

z1€P, 517 (21 — )k
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Therefore the assertion of the theorem is proved.

Theorem 1.1.20, together with the simple observation that U, Pi(f,1,1/n) =R

has many applications.

Corollary 1.1.21 Let f be a function defined on R such that f; ezists for each z € R.

Then fi is the composite dertvative of fi_;.

Definition 1.1.22 A function f is said to have a k-th approrimate Peano derivative
at z if there exist numbers f,,(1)(T), fap2)(Z),- .., fap(k)(z) and a set V with density
1 at 0, such that

Bk
f(z+h) = f(z) + hfap)(2) + -+ + 77 fapr (2) + ex(2, h) (10)
where ex(z,h) 2 0asheV, h —0.

For k = 1 we have the definition of the approximate derivative.

Corollary 1.1.23 Let f be a function defined on R such that f; ezxists for each z € R.
Then f, is almost everywhere (k — s) times approzimately Peano differentiable with

the expected values; i.e., (f,)ap(k-s)(T) = fi(z) fors=1,...,k—1.

Proof: Let z be a point of density of P = Pi(f,1,1). By Theorem 1.1.20,
(folP)k=s(z) = fi(z). Since z is a point of density of P, we see that (f,)ap(k-s)
exists at z and equals fi(z). Finally the Lebesgue Density Theorem and the fact
that U, Pi(f,1,21) = R proves the corollary. o

The case s = k — 1 was proved by Zygmund and Marcinkiewicz. (See [20], page

77.) Corollary 1.1.23 can be regarded as a generalization of their result.
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Corollary 1.1.24 Let f be a function defined on R such that f; ezists for each z € R.
Then fi € [A’], and hence

(i) there are g, h and q in A such that b',q' € [C] and fx = ¢’ + hq/,
(1) there is a p € A’ and ¢ € [C] such that fy = ¢ + ¥,

(iit) there is a dense open set T such that fi is a derivative on T and f is a derivative

on R\ T with respect to R\ T.

We will end this chapter with a different decomposition of R into closed sets so

that fi is the composite derivative of fi_;.

Definition 1.1.25 Let f be a function defined on R such that fi exists for eachz € R
and let

k-1

H(f,M,6)={$: 2

k-1
fi(@) + Yo (=1)F17 (1) j*ex(, jt)| < M for |t] < 6)
7=0

where M and é are positive constants.

Lemma 1.1.26 Let f be a function defined on R such that f; ezists for each z € R.
Then for any 6 > 0 we have UG-, H(f, M, 6) = R.

Proof: The assertion follows from the fact that e(z, jt) is a continuous function

oftfor j=0,1,...,k-1. o

Theorem 1.1.27 Let f be a function defined on R such that f; exists for each z € R.
Then H = H(f,M,$) is closed and fi_, is differentiable on H relative to H with

Sie-1l'y(z) = fi(z), also |fr(z)| < 2M for every z € H.
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Proof: Let £ € H. Let 1 > ¢ > 0 be given. There is 0 < n < § such that

lex(z, k)] < € whenever |h| < n. Let r, € H so that |z, — z| < . Then for
t = (zn — z)e* we have |t| < 6 and |z, —z + jt| <7, for j =0,1,...,k — 1. By the

formula from Theorem 1.1.17 applied with s = k — 1

k-1
fiea(@n) = fira(@) = (2 = 2)fu(2) = £ (=14 (457) (o) +

k-1

ity (Tn — T+ JH)F )
g(_l)k 1 J(kjl)( = jt) (2, Tn — T + jt) —

t‘;( 1)67173 (1) 55 (fie(2a) + €x(2n, jt)).
By Lemma. 1.1.3 we have

fk—l(“’;: = i"-‘(‘t) ~ fi(z) = - t__ £ ; lfk(:c)+
T, — T+ jt)k .
Z( 1)k 1—1(" 1) (t" =T +_]3 k(2,20 — T + jt) — (11)

t k—1 k-1 ko1 (ot b |
5 (T ) + DD ()i edan ) | -

=0

(11) we have

fk—l(zn) - fk-l(l')

- 1 fula)l +

1k —
<€k

— fi(z)

k-1 k

(1 13 .
(5! “‘)lek(x £~z + )+
Jj=0

k-1

1
€k

k-1
fr(@a) + (=151 (1) s eu(2a, jt) |- (12)
J=0

Since |ex(z,zn — ¢ + jt)| < € and since z, € H(f, M, 6), the left hand side of (12)

is

<eik

| fe(2)| + Z (k 1) (1 +]ef)"e'l + et M.

Jj=
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Therefore if {z,} is a sequence in H converging to z, then

Se—1(2n) — fia(z)

In

— fi(z) = 0.

Let z € H, {z,} a sequence in H so that z, — z and let 0 # |t| < §. Then (11)

yields
e[ E=Lp )+I§( 1)k-1-3 (k1) (20 = 2 +j) i) || <
5 fi(z .=0— ; 7 ex(z, 2, —z+jt) || <
p k-1 - 1)k=1-3 (k=1Y ;% 4
—fel(za) + g- )1 () ew(zan i) | | +
|fi-1(zn) = fi-1(z) = (zn — 2) fi(z)]| <
IHIM + | feo1(2n) — fiza(2) = (20 — 2) fi(2)]. (13)

Letting n — oo the left hand side of (13) becomes

k-1 N k1o (k=1) ok ,
t{— fk(x)+§o(-1) (+31)* ex(z, t)

while the right hand side of (13) is |t|M. Hence z € H.
That |fi(z)| < 2M on H follows from Definition 1.1.25 taking t = 0.

Theorem 1.1.27 and Lemma 1.1.26 combine to say that f; is the composite deriva-
tive of fi_1, a result that we already established. But this can be regarded as a
simpler proof of that result, because the only tool we used was a special case of The-

orem 1.1.17, whose proof is even more elementary than the proof of Theorem 1.1.17.

On the other hand the sets H(f, M, §) are already closed.



CHAPTER II

2.1 Peano and path derivatives

We will start this chapter with the notion of a path derivative that was introduced

in [3].

Definition 2.1.1 Let z € R. A path leading to = is a set E; C R such that z € E,
and z is a point of accumulation of E.. A system of paths is a collection E = {E, :

z € R} such that each E, is a path leading to z.

Definition 2.1.2 Let F: R — R and let E = {E, : = € R} be a system of paths. If

. Fy)—F(z) _
Wi y—s IO

is finite, then we say that F is E-differentiable at z and write Fg(z) = f(z). If F
is E-differentiable at every point z, then we say simply that F is E-differentiable; we

call F an E-primitive and f an E-derivative.

Definition 2.1.3 Let E = {E, : ¢ € R} be a system of paths.(If E has any of these
properties at each point, then we say that E has that property.)
E is said to be bilateral at = if x is a bilateral point of accumulation of E..

E 1is said to be nonporous at = if E, has left and right porosity 0 at z.

The basic definition of porosity of a set E at z from the right (left) is the value
limsup,_ o4 l(z,r, E)/r , where I(z,r, E) denotes the length of the largest interval
contained in the set (z,z+r)N(R\ E) ((z—r,z)N(R\ E)). Porosity 0 at z means

both right and left porosity 0. Note that a nonporous system is necessarily bilateral.
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Definition 2.1.4 Let E = {E. : z € R} be a system of paths. E will be said to
satisfy the condition listed below if there is associated with E a positive function 6 on
R so that whenever 0 < y — z < min{é(z),é(y)}, the sets E, and E, intersect in the

stated fashion:

i) intersection condition I.C.: E. N E, N [z,y] # 0;
ii) internal intersection condition I.1.C.: E, N E, N (z,y) # 0;

iii) erternal intersection condition E.I.C.:

E.NE,N(y,2y—2)#0and E.NE,N(2z —y,z)# 0

We will prove that for every k-th Peano derivative fi there is a nonporous bilateral
system of paths E satisfying I.C. and I.I.C. conditions, for which f; is the E-derivative
of fi_1. In this chapter we will prove that E satisfies only the I.C. condition. To
show this first we will prove the following theorem due to Maiik. (See [13].)

Theorem 2.1.5 Let k € N, z € R. Suppose that a function f has a k-th Peano
derivative at z. Define P(y) = 5 ,(y — J:)”—'&ﬂ (y€R). Lete >0, n > 0. Then
there is a 6§ > 0 such that if I is a subinterval of (x — 6,z + 8), j an integer with
0 < j < k and if either f) < PU) on I or f) > PG on I, then m({y € I :
f9(y) = PO(y)| 2 ely — 2l*3}) < 5+ (m(I) + d(z,T)). (Here m denotes Lebesgue

measure and d(z,I) denotes the distance from z to I.)

In order to prove Theorem 2.1.5 we need two lemmas.

Lemma 2.1.8 Let f be a monotone differentiable function on a bounded interval I.
Lete >0, >0 andlet m{z € I : |f'(z)| > €} > . Then there is an interval J C |
such that m(J) = /4 and that |f| > ¢3/4 on J.
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Proof: We may suppose that f' > 0 on I. Let (a,b) be the interior of I. There is
a c € [a,b] such that f < 0on (a,c) and f > 0on (c,b). Set B={z € I: f'(z) > €}.
Ifm(BN(cb)) > F/2and if z € (b— (/4,b), then f(z) > [F f' > e-m(BN(c,z)) 2
€-(m(BN(cb)) - (b—=z)) 2 €-(8/2 - B/4) = e8/4. f m(BN (a,c)) 2 B/2, then,
analogously, f < —ef/4 on (a,a + 3/4).

Lemma 2.1.7 Let I be a bounded interval and let j be a natural number. Let g be
a function such that either ¢) >0 on I orgl) <0onl. Lete >0, B> 0 and let
m{z € I: |gU)(z)| > €} > B. Then there is an interval J C I such that m(J) = B/47
and that |g| > €B7 /4’1 on J.

Proof: The assertion follows by induction from Lemma 2.1.6.

Proof of Theorem 2.1.5:
Let g = f — P, and let a = 4't"+k There is a § > 0 such that for each

y € (z — 6,z + 6) we have
3*alg(y)| < en*ly — z|*. (1)

Now let I be a subinterval of (z — 6,z + ) and let j be an integer, 0 < j < k.
Let B = {y € I:|g¥)(y)| > ely — z|¥-7}, B = Im(B). Suppose that § > 0. Let
C = B\ (z - B,z + B). Now |g\))| > ¢8%*-9) on C and m(C) > B. If either ¢g\) > 0
on I or g¥) < 0 on I, then by Lemma 2.1.7, there is an interval J C I such that
m(J) = B/4’ and that

1 -1
> - k-3 .31 — — B3k g
012 Legts. = Legt on @)
Together (1) and (2) yield (38)* < n*|y—=z|* for every y € J. Hence m(B) < nd(z, I).

O



33

Definition 2.1.8 A real valued function f defined on an interval I is said to have
the intermediate value property if whenever x, and z; are in I, and y is any number
between f(z,) and f(z2) , there is a number z3 between z, and z, such that f(z3) = y.

A function having the intermediate value property is called a Darbouz function.

It is known that a k-th Peano derivative, fi, is a Darboux function. Also it
is known that if f; is bounded either from above or below, then the k-th ordinary
derivative, f(¥) exists with the obvious equality, f*) = f,. In the next theorem we
will only assume that these two properties hold for any /-th Peano derivative where
0 <1< k—-1. We know that any continuous function is Darboux, so for k =1 the

above assumptions trivially hold.

Theorem 2.1.9 Let k,l € N, with l < k —1. Assume for each function g defined on
an interval I having an l-th Peano derivative, g, on I, g; is Darbouz and if g > 0
on I then g = g) on I. Suppose f is a function defined on R so that f, ezists for
each ¢ € R. Then there is a bilateral nonporous system of paths E = {E. : z € R}
satisfying the I.C. condition such that fi is the E-derivative of fy_,.

We will need some lemmas before we prove this theorem.

Lemma 2.1.10 Suppose that the assumptions of Theorem 2.1.9 hold. Then for every
€> 0 and n > 0 there is a 6 > 0 such that if I is a closed subinterval of (x — 6,z + 6)

with = not in I such that

=Sl oz e 3)

for all y € I, then m(I) < nd(z,1).

Proof: Let 6 be chosen according to Theorem 2.1.5 applied with 5 replaced by
m = n/(1 +n) and with j = k — 1. Let I be as above, and let g(y) = f(y) —



34

y""‘-f('ﬁ%} - (y- x)"&é}’l. Then g has a (k — 1)-th Peano derivative and gi_1(y) =
fe-1(y) = fr-1(z) = (y — =) fe(z). So by assumptions gi_, is a Darboux function. By
(3) lgk-1(y)] = €ly — z| on I. Since z is not in I, |gk—1(y)| > 0 on I and since gi_,
is a Darboux function, we have either gx_; > 0 on I or —gx_; > 0 on I. Hence by
the assumptions, gi_; is the (k — 1)-th ordinary derivative of g on I. Therefore f is
(k—1) times ordinarily differentiable on I and by the uniqueness of Peano derivatives,
f*-1) = f,_; on I. Now we can apply Theorem 2.1.5 with j = k — 1, which gives
that m(7) <y - (m(I) + d(z,I)). Hence m(I) < nd(z,I). o

Next we will prove a lemma using ideas from the proof of 3.6.1 in [3].

Lemma 2.1.11 Under the assumptions of Theorem 2.1.9, for each point x € I there

is a path E. leading to  and nonporous at x so that

lim Se-1(y) = fi-1(z)

VEE:, y—z y—=z

= fi(z).

Proof: For each € > 0 let §(¢) be as in Lemma 2.1.10 applied with n = ¢/2 and let
{61} be a sequence so that 0 < § < 6(1/!) and 6141 < 81/2. Set

B = (=)0 Oy > te: (P28 ey <y

It is certainly true that

i @) = (@)

VEEL,y—z y—z = fi(2).
(Although this assertion is true if z is not a point of accumulation of EZ, in fact we
will prove that E! is nonporous from the right at z.)
Suppose E! is porous from the right at . Then there must exist a number

1/2 < 8 < 1 and a sequence of numbers h; | 0 with [z + 6hj,z + )N E, = 0

for every index I. Choose an integer lp larger that (1 — 8)-! (i.e. so that if | > [,
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then 1 — 1/l > ) and let j, be the first index for which k;; < §,. Fix ! so that
6141 < hj, < 6, and note that I > [,.

Since hj, < & < 6(1/1), by Lemma 2.1.10, there must be a point z with z + h;,(1—
1/1) £ z £ = + hj, such that IW - fk(:c)l <1/l

We then have the inequalities,

12+6l+2<$+';-61+1 <z+061+151+0h,~° <x+(1—l/l)h,-° §z$x+hjo.

fk-x(lg:ik-l(’) _fk(z)l < 1/l and z + 142 < z, so

z € E.. But also z + 0h;, < z < z + hj,, s0 z € [z + Ohj,,z + h;,]. This contradicts

From this, then, we see that

the fact that E.N[z+0hkj,z+ h;] = @ for all j. Similarly we define a path E” leading
to z that is nonporous from the left at . The path E; = E. U E has the desired

properties. o

Now we are ready to prove Theorem 2.1.9.

Proof: Foreach r € R let E’ be a path satisfying the conclusions of Lemma 2.1.11.
We will define the system of paths E = {E; : ¢ € R} as follows:

For z € Rlet E, = E_U P(f,1,6(z)) where é(z) is such that z € P(f,1,6(z)).
That E is nonporous (therefore bilateral) follows directly from Lemma 2.1.11. Also
Lemma 2.1.11 and Theorem 1.1.19, imply that f;_, is E differentiable with
fi-1g(z) = fi(z) for every z € R. It remains to prove that E satisfies the intersection
condition I.C.. We will prove that for any two distinct points z and y, E.NE,N[z,y] #
@ which is stronger than the I.C. condition.

Let z and y be any two distinct points. If 6(z) < é(y), then
P(f,1,6(y)) C P(f,1,6(z)) and hence y € E,. If §(z) > é(y), then
P(f,1,6(z)) C P(f,1,6(y)) and hence z € E,. Therefore E;N E, N [z,y] # 0. Hence
E satisfies the I.C. condition. This completes the proof of the theorem .
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Now we will prove that we can drop the assumptions concerning the arbitrary
function g from Theorem 2.1.9. In order to do that we list some theorems from (3]

about path derivatives.

Theorem 2.1.12 Let E = {E; : « € R} be a system of paths that is bilateral and
satisfies the I.C. condition. If f is an ezact E-derivative and is Baire 1, then f has

the Darbouz property.
Proof: This is Theorem 6.4 in [3]. 5

Theorem 2.1.13 Let E = {E, : ¢ € R} be a system of paths that is bilateral and
satisfies the I.C. condition. If F'y > 0 on [a,b], then F is nondecreasing on the

interval [a, b].

Proof: See 4.7.1 in [3].

Theorem 2.1.14 Let E = {E,; : z € R} be a system of paths and suppose F is

monotonic. If E is nonporous at a point z, then

Flg(z) = F'(x) and Fg(z) = F ().

Proof: See Theorem 4.4.3 in [3]. o

Theorem 2.1.15 Let f be a function defined on R and let k € N. Suppose fi(z)
ezxists for each z € R. Then there is a bilateral nonporous system of paths E = {E; :

z € R} satisfying the I.C. condition such that fi is the E-derivative of fi_,.
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Proof: The proof is by induction on k. For k = 1 there is nothing to prove.
Let 1 <1 < k-1, and let a function g defined on some closed interval I have a
[-th Peano derivative on I. Suppose the assertion of the theorem is true for every
1 < j £ k-1, and every function h defined on some closed interval J, so that A;
exists on J. (Note that we can restrict ourselves only to closed subintervals because
we can always extend h to R so that h; exists on R. For example if J = [a, ], then, we
can define h(y) = Tl_o(y — z)' L for y € (—00,a) and h(y) = Ti_o(y — z)'£Y) for
y € (b,00).) By Theorem 1.1.7 g; is a Baire 1 function. By the induction hypothesis
and Theorem 2.1.12, ¢; is a Darboux function. Suppose that g; > 0 on I. Again by
the induction hypothesis but now using Theorem 2.1.13, g;_; is nondecreasing on I.
By Theorem 2.1.14 g;_, = g1 on I. Also there is an a such that gy —a > 0 on 1.
Let h(z) = g(z) — a(f'_—_ll)!. Then hi_; = gi-1 — a and hence hi_; > 0 on I. Proceeding
as before hj_, = hi_; on I. This implies g;_, = gi—1 on I. Continuing in this fashion

one can deduce that g(!) exists on I. Now we can apply Theorem 2.1.9.

Corollary 2.1.16 Let f be a function defined on R such that fi exists for each z € R.

Then fi is a Darbouz function.
Proof: The assertion follows directly from Theorems 2.1.15, 2.1.12 and Theo-
rem 1.1.7.

Definition 2.1.17 A perfect road of a function f at a point z is a perfect set P such
that

(1) z is a bilateral point of accumulation of P

(2) f|P is continuous at z.

The assertion of the next corollary follows directly from the properties of Baire 1,

Darboux functions. (See [2].)
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Corollary 2.1.18 Let f be a function defined on R such that fi erists for each z € R.
Then

(1) For each z, there ezist sequences z, / z and y, \, = such that fi(z) =
limn—ooo fk(xn) = hrnn-‘oo fk(yn)-

(2) For each z

fi(z) € [lizrlligffk(z),lim sup fi(2)] N [lizgglffk(z),lim sup fi(2)]-

22—~ Z—T

(8) For each real number a, the sets {fir < a} and {fi > a} have compact compo-

nents.
(4) The graph of fi is connected.
(5) The function fi has a perfect road at each point.
(6) Each of sets {fx < a} and {fi > a} is bilaterally c-dense in itself. ( See [2].)

(7) Each of sets {fx < a} and {fi > a} is bilaterally dense in itself.

Definition 2.1.19 Let E = {E; : z € R} be a system of paths and F a function
on R. We say that F' has the monotonicity property relative to E if for any interval
[a,8] the conditions Ff(z) ezists a.e. in [a,b] and Fg(z) > a a.e. in [a,b] (resp.
Fp(z) < a) imply that the function F(z) — az (resp. ar — F(z) ) is nondecreasing
on [a,b].

Theorem 2.1.20 Let E = {E, : ¢ € R} be a system of paths and let F be a function.
If E is bilateral and satisfies the intersection condition, and F is E-differentiable, then

F has the monotonicity property relative to E.
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Proof: See Theorem 6.6.1 in [3].

Corollary 2.1.21 Let f be a function defined on R such that fi ezxists for each z € R.
Let [a,b] be an interval, and a be any constant. If fi > a (or fi < a) on [a,b), then

a) fr-1(z) — az (ax — fi_1(x) ) is nondecreasing and continuous on [a, b]
b) f® ezists and f(*) = fi on [a,}].
Proof: The assertion follows directly from Theorems 2.1.15, 2.1.20 and 2.1.14.

Corollary 2.1.21 was first proved by Oliver in [10] and Corominas in [4]. See also
Verblunsky [15].

Definition 2.1.22 Let f be a function defined on R. If for any interval (a,b),
f(a,b) # 0 implies m({z : f(z) € (a,b)}) > 0, then we say that f has the Denjoy
property.

Theorem 2.1.23 Let E = {E; : = € R} be a system of paths and let F be an
E-differentiable function that has the monotonicity property relative to E. If Ff, is
Darbouz Baire 1, then Fy has the Denjoy property.

Proof: This is Theorem 6.7 in (3].

Corollary 2.1.24 Let f be a function defined on R such that f; exists for each z € R.
Then fi has the Denjoy property.

Proof: The assertion follows directly from Theorems 2.1.15, 2.1.20, 2.1.23 and
Corollary 2.1.16.

Corollary 2.1.21 first was proved by Weil in [17].
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Theorem 2.1.25 Let E = {E, : z € R} be a nonporous system of paths satisfying
the intersection condition. Suppose that F is an E-differentiable function with Fg
Baire 1. If F attains the values M and —M on an interval Iy, then there is a

subinterval I of Iy on which F is differentiable and F' attains both values M and

-M.

Proof: This is Theorem 8.1 in [3].

A n immediate consequence of Theorems 2.1.25 and 2.1.15 is the following corollary

first proved by O’Malley and Weil in [12].

Corollary 2.1.26 Suppose fi(z) ezists for all T in Iy and let M > 0. If fi attains
both M and —M on Io, then there is a subinterval I of Iy on which fi = f*) and

T %> attains both M and —M on I.

This corollary has some nice and immediate applications. The reader is referred

to [12] for the details and proofs.



CHAPTER III

In Chapter I we have shown that for any k-th Peano derivative, fi, defined on
R, there is a countable decomposition {H,} of R into closed sets and a sequence of
differentiable functions {v,} so that for each n € N, v/,|y, = fi. In [10] O’Malley
showed that the same holds for approximate derivatives. Moreover he proved that
for any approximate derivative there is a decomposition of R into perfect sets with
the above property. In this chapter we will show that the same holds for Peano
derivatives. Also we will show that any k-th Peano derivative, fy, is a path derivative
of fi_1 with respect to a system of paths that is bilateral, nonporous and that satisfies
the internal intersection condition I.I.C.. This will enable us to give a positive answer
to the question posed by C. Weil, regarding the relationship between Peano and
selective derivatives, (See [19].) namely, the last result of this chapter is that fi is a

selective derivative of fi_;.

3.1 Relationship between f; and fi_,;

We will begin this section with a very well known lemma.

Lemma 3.1.1 Let n € N and let f and g be functions on R having n-th Peano
d e rivatives f,(z) and g.(z) at some point x. Then the function fg has n-th Peano
deriwvative at = and

(f9)a(2) = X (3) fi(2)gn-i(2)-

§=0

Proof: Let z € [a,b] be such that f,(z) and g,(z) exist. Thus the following
formuylas hold

41
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f(z+h) = f(z)+ hfi(z) + - + L fa(z) + h en(z, b)
g(z + k) =g(z) + hor(z) + - -+ + Lgn(z) + h en(z, k)

where €,(z, k) and &,(z, k) tend toward 0 as h — 0. Then

fla+haz+m) =3 B s~ 1 fil@) ginile) |

ar e S U F 1)'
h"e,.(z h)g(z + b) + h"en(z, h)(f(z + b) = ea(z, ) =

Z }:()f.(x )9i-i(z) + h"el(z, h)

J_O 1=0

where €, (z,h) = €.(z, h)g(z + h) + &(z, h)(f(z + k) — €.(z, b))

Since obviously lims_q €, (z, k) = 0 we have
n

(f9)a(z) exists and (fg)u(c) = Y- (7) fi(2)gn-i ()

3=0

Lemma 3.1.2 Let f and g be functions on R such that the n-th Peano derivative,

Ja(2), and the n-th ordinary derivative, g™ (z), ezist at some point x. Then

(- 1) (%) (f99)n-i(2) = fa(2)g(2)-

Jj=0

Proof: By Lemma 3.1.1

E( 1) (?)(£99)n-j(2) =

z_%( (e )z: (") F(2) (0D gt (2) =
g(—l)f ) E (") fi()g™(z) =

n n—t

2 L1 () (7)) fil@g ) =

=0 j=0
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331 (7) ()0 =
g (':) 2(_1)1’ (n;i)fi(z)g(n—i)(z) —

fa(@a(@) + T (2)(1 = 1™ fi(2)g™(2) = fua(2)g(2)

1=0

Lemma 3.1.3 Let H be a continuous function in an interval [a,b] containing y.
Suppose that H is n times Peano differentiable at each z € [a,b] and that H, is m
times Peano differentiable at y. Then H is (n + m) times Peano differentiable at y,

and H(,.+,,.)(y) = (Hn)m(y)'

This lemma was first proved by Corominas in [4]. We will use ideas of his proof
to prove this lemma, but before we give the proof we need some other properties of
Peano derivatives that are known. The following definitions and Lemma 3.1.5 are due
to Oliver. (See [10]). We will give a simpler proof of Lemma 3.1.5, than is given in
[10].

Definition 3.1.4 If f has an n-th Peano derivative at each point of an interval
[a,d], we say that f satisfies the mean value theorems M¥, k =0,1,...,n—1 (or that
f € Mk), if for each z and z + h € [a,}], there is an z' between z and = + h such

that:
e+ )~ fle) = hen(e) =~ @) _ 0
(n=F)!

When n = 1 and k£ = 0, we have the ordinary mean value theorem for first
derivatives. The mean value theorem (Lemma 3.1.5 below) is that if f, exists on

some interval [a,b], then f € MX k=0,1,...,n - 1.
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The special case of M* when the left hand side of (1) equals 0, we refer to as
Rolle’s Theorem, RX. In the usual manner, M* follows from R by adding a suitable
polynomial to f. If f has an n-th Peano derivative on [a,b] and if y and y + h are

given in [a, b], for each z € [a, b] we set

fely+0) - T30 i) (2 —y)”

9(=) = f(=) - o] (n — k)! nl
It follows immediately that
hn—k—
gk(y + h) — gk(y) — hgesa(y) —--- — mguq(y)

i.e., that g satisfies the hypothesis of RX; and that

fily + k) — T3k 5 fi(y)
g,,(l') = fn(‘r) - h"""/(n _ k)' .

Applying the conclusion of RX to g, i.e., replacing x by z’ and g,(z') by 0, the
conclusion of M¥ follows for f.

It is also possible to deduce RX, k = 0,1,...,n — 2, from R*-! and M}_,,
follows. We may write

il +b) = fu(e) — - — 25 faca(2) — iy S (2)
hn=Fk [(n — k)!

=0

in the form
Selz+h) = fi(2) == BT fna(2)
Rn—k=T(n—k-1)! - fn—l(m) _

h/(n — k)

and replace the first ratio, using M%_,, to obtain f,_;(z") — fa_1(z) = 0 for some z”

between z and z + h. We use R?~! to deduce from this last equation the existence of

x' between z and z” for which f,(z’) = 0, the conclusion required by Rk.

Lemma 3.1.5 Letn € N and let f be a function defined on some interval [a, b] so that
fn ezists on [a,b]. Then f, satisfies the mean value theorems M*, k =0,1,... ,n—1,
on [a,b].
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Proof: The proof is by induction on n. Since the assertion holds for n = 1, the
remarks before the lemma show that the induction will be completed by proving
f € R*-1. So it is enough to prove that if f,_i(z + k) = fn._1(z), then there is an z’
between z and z + h for which f,(z') = 0.

We may assume h > 0, because a proof for the case A < 0 is similar. If f,
is positive on [z,z + k], then, by Corollary 2.1.21, f(*) exists and hence by Rolle’s
Theorem for derivatives there is an z’ between z and z + h so that f(")(z') = 0.
Similarly if f, is negative. If f, takes on both positive and negative values, then since

f is Darboux, f, attains the value zero. The induction is complete.

Now we are ready to prove Lemma 3.1.3.

Proof: For each z € [a, b] let

(o — gy ) § i )it0)

T(z) = H(z) - Y-z~ 1) =2 Y) @

=0 i=1 (n + 1)' .
Then T(y) = Ty(y) = -+ = Taua(y) = 0, Ta(2) = Ha(z) = Elo(z — y)' H=pd
and T,(y) = (Tu)i(y) = -+ = (Tn)m(y) = 0. Since T € MY, for each z € [a, b] there
is a ¢; € [a,b] between z and y such that
7(@)= TV ), )
Since T (y) = (Tu)1(y) = - - - = (Tn)m(y) = 0, we have
Ta(z) = (z — y)"em(y,z — y) where en(y,2 —y) 5 0asz — . (4)

Combining (3) and (4) we get

T(z) = (z — y)™*" %em(y,% ).

Now (2) becomes

H@) = (e - 9y 4 3o gy T 4 o g2 - )

=1
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where e, .. (y,z—y) = %em(y,c, —y) — 0 as z — y. This proves that H,,,.(y)

exists and equals (Hyn)m(y) - o

Lemma 3.1.8 Let f be defined in an interval [a,b] containing 0. Suppose that the
k-th Peano derivative of f at 0 ezists, and that the l-th Peano derivative of f ezists
on [a,b], where k and | are positive integers with | < k — 1. Also suppose that
f(0) = f1(0) =--- = fi(0) = 0. Let g(y) = y~*~". Then the function h defined by

h(y) = () f)ev) - (1) /0 ' F)g (B dt + -+

OO [ [ g at--das fory #0,

and h(0) =0 has an l-th Peano derivative on [a,b].

Moreover
o ={ %t 20

Proof: By assumption f(y) = y*ex(0,y). Consequently all of the above integrals
are integrals of continuous functions. Hence h is well defined. Moreover for y # 0,
y € [a,b) Hly) = J¥ f52--- [F f(t)g®)(t)dt---dz, ¢ =1,...,1is i times ordinarily
differentiable and H()(y) = f(y)g")(y) for ¢ = 1,...,I. By Lemma 3.1.1, fg is
| — 1 times Peano differentiable at y. Therefore by Lemma 3.1.3, H is | times Peano
differentiable at y and Hi(y) = (H9)i_i(y) = (f(¥)9")(y))-i)- Hence h is I times

Peano differentiable at y and
' . I .
hi(y) = 2(=1Y (})(F)0-n(v)
=0

and by Lemma 3.1.2, hi(y) = fi(y)g(y).
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It remains to prove that h;(0) exists and that A;(0) =0. Fory # 0
h(!l) { N [ -1 .
o =7 ()v'ex(0,y) + (k I)(l)/0 t1,(0,8)dt + - - - +
Vv [T2 L]
(/c-z)(k-1+1).--(k-1)(;)/0 /0 /0 e;,(O,t)dt---da:g}.

h(y)
Hence ‘l,l_r.rtl) y = 0. Therefore h(0) = h;(0) =--- = hi(0) = 0.5
Now suppose that f has an I-th Peano derivative in an interval [a, b] containing

z, and that fi(z) exists. Consider a function

T(y)=f(y)—f(:t)—(y—x)fl(x)_..._(y_z)k%

and its translate G(t) = T(z + t). Then G satisfies the hypothesis of Lemma 3.1.6
and by that lemma the function H defined by

H(y) = ())Gw)9() - (1) /0” G(t)g'(t) dt +-- -+
_1)1(:) Avl)zz_-,[)za G(t)g"(t)dt---dz, fory#0

and H(0) = 0 has an I-th Peano derivative on « — [a,b]. Moreover by the same

_[SY ify#0
lemma,Hz(y)—{ ‘0 ify=0.

But Gi(t)=Ti(t +z) = filt + =) — fi(z) = tfiqa(z) —--- — t""z!kﬂ_-f%. Therefore we

have proved the following theorem.

Theorem 3.1.7 Suppose that a function fdefined on an interval [a,b] containing a
point z has an l-th Peano derivative on [a,b] and a k-th Peano derivative at x, where

® <1< k. Then the function F defined on [a,b] by

5 g O N A
F(y) _ { l(y) Z y_z)}l_f l+]( ) lfy # T
0 ify==c

ts an [-th Peano derivative.
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Corollary 3.1.8 Suppose that a function f defined on an interval [a,b] containing
a point z has a (k — 1)-th Peano derivative on [a,b] and k-th Peano derivative at z.
Then there ezists a perfect set P C [a,b] of positive measure such that z is a bilateral
point of accumulation of P and

lim Se-1(y) = fr-1(z)

vEP, y—z y—=<c

= fi(z).

Proof: The function F from Theorem 3.1.7, applied with ! = k —1 is a (k — 1)-th
Peano derivative and hence Baire 1, Darboux and has the Denjoy property. Therefore,
by Corollary 2.1.18 there is a perfect set H such that F is continuous at  with respect
to H. Since F has the Denjoy property there is a perfect set P of positive measure,
containing H, so that F' is still continuous at £ with respect to P. The set P satisfies

the assertion of the corollary. o

3.2 Peano derivatives and Property Z

Property Z was introduced in [18] by Weil. He proved, that fi has the property Z at
every point of R. In [13] Matik gives a different proof of this fact. Moreover he proved
there that a k-th approximate Peano derivative has property Z. Also he generalized
this result to an assertion which when specialized to k-th Peano derivatives is the

following theorem.

Theorem 3.2.1 Let j and k be integers, 1 < j < k. Let z € R and let f be a
function such that fi(z) ezists. Define P(y) = 5 o(y —a:)‘ﬁ}!£l fory€R. Lete >0,
n > 0. Then there is a 6 > 0 with the following property: If I is a subinterval of
(z — 8,z + 8) such that f; ezists on I and that |f;(y) — PU)(y)| > ely — z|*~7 for all
y € I, then m(I) < nd(z,I).
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For the special case of k-th Peano derivatives, the proof of Matik’s result is simpler
than for approximate k-th Peano derivatives. Moreover the proof given here concludes
the case 1 < j < k —1 as a consequence of the case j = k. The case j = k, using

Theorem 3.1.7, is an immediate consequence of property Z for Peano derivatives.

Proof of Theorem 3.2.1: Case j = k. Let g(y) = f(y) — P(y), and let § > 0 be
such that

o)l < eyt (5

Let I be a subinterval of (z — 6,z + §) such that

lgx(y)| > efory € I. (6)

By the Darboux property, either gi(y) > € on I, or gx < € on I. By Corollary 2.1.21,

g*) exists on I, and hence by Lemma 2.1.7, there is a subinterval J of I such that

o 2 e 20 ©

Combining (5) and (7) give m(I) < |y — z| for every y € J. Therefore m(I) <
i - (m(I) + d(z,I)), hence m(I) < 5 - d(z,I).

Case j < k. By Theorem 3.1.7, the function h;(y) = f:_z;, Y1 for y # z and
h;(z) = 0, is a j-th Peano derivative, and by what was just proved, for any € > 0 and
n > 0 there is a 6 such that whenever I is a subinterval of (z — é, z + §) and such that
|hj(y) — hj(z)| > € for y € I, then m(I) < n-d(z,I). This is exactly the claim of the

theorem for j < k.

This theorem enables us to prove the following analogous of Theorem 2.1.15.

Theorem 3.2.2 Let k € N and let f be a function defined on R with fi(z) ezisting
for all z € R. Then for each integer 1 < r < k — 1 there is a bilateral nonporous
system of paths E = {E, : = € R} satisfying the I.C. condition such that

- —'-1(!‘_’)1
fi(z)= lim f+(y) 2520 fr+1(-"")

VEEs, y—z (y - :c)"'
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The proof of this theorem is similar to the proof of Lemma 2.1.11 and Theo-
rem 2.1.9. Proof:

Let € > 0 and let é(¢€) be the § from Theorem 3.2.1 applied with n = ¢/2. Let {6/}
be a sequence so that 0 < § < 6(1/1) and 641 < 6;/2, and define the set E’ by

oo _ k-r-1 iﬂ)i
E.={z}ulJ{z >z + bi42: S(2) E(:i )= fr4i(2) - fi(z)| < 1/1}.
=1

It is certainly true that

fulz)= lim fr(y) — k_r-l St‘,f_).’.frﬂ(z)

VEE} y—z (y — )k-r

Now we will prove that E. is nonporous on the right at z. Suppose not. Then
there must exist a number 1/2 < 8 < 1 and a sequence of numbers k; | 0 with
(z+0h;,z+ h;)N E. = @ for every index I. Choose an integer [y larger that (1 —8)-!
(i.e. so that if I > ly, then 1—1/1 > ) and let jo be the first index for which k;, < §,.
Fix [ so that é;41 < hj, < é, and note that | > I,.

Since k;, < & < §(1/1), by Corollary 3.1.8 there must be a point z with  + (1 —
1/0)k;, < 2 <z + hj, such that

2) — k—r—1 (z—z)7 vt
fr( ) Ziz_x)k- f+ ( ) —fk(z)

<1/l

We then have the inequalities,

z+5,+2<z+%5,+1<z+06,+1§z+0h,-°<z+(l—l/l)h,~o <z<z+h.

Kk=r=1 ‘x-:g
From this we see that ’f'(z)_z’Fz‘"x)‘_’,' i) _ fi(z)| <1/l and £ + é142 < 2 s0

z € E.. But also z + 0hj, < 2 < z + hj,, s0 z € [z + Oh;,,z + h;;]. This contradicts
the fact that E. N[z +60k;,z+ k;] = O for all . Similarly we define a path E” leading
to z that is nonporous from the left at z.

For each z € R we will define the system of paths E = {E, : z € R} as follows:
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Forz € Rlet E, = EL U EZ U P(f,1,6(z)) where é(z) is such that z € P(f,1,6(z)).
E is nonporous (therefore bilateral) follows from the fact that E. U E is nonporous
at z, also Theorem 1.1.19 and what we proved in the first part assure us that

fr(y) - i Ly-Tfﬂfrﬁ(I)

=0

fi(z) = lim

yEEn Y~ (y — z)*
for every z € R. It remains only to prove that E satisfies the intersection condition
I.C.. We will prove that for any two different points z and y, E. N E, N [z,y] #
which is stronger than the 1.C. condition.
Let z and y be any two different points. If é(z) < é(y), then P(f,1,6(y)) C
P(f,1,6(z)) and hence y € E;. If §(z) > é(y), then P(f,1,6(z)) C P(f,1,6(y)) and
hence z € E,. Therefore E; N E, N [z,y] # . Thus E satisfies the I.C. condition.

This completes the proof of the theorem . 4

3.3 Peano and selective derivatives

Recall the sets

k-
2

where M € N , from Definition 1.1.25. In Chapter I we showed that these sets are

H(f,M,1) = {z:

k-1
i) + (=147 (45) i es(, 30)| < M for el < 1)

closed, their union is R, and that with respect to these sets fi_; differentiates to
fi(z) and |fi(z)] < 2M for z € H(f,M,1). (See Theorem 1.1.27.) We have seen
several applications of this decomposition. Now we will prove that these sets can be
enlarged so that they are perfect, and that still with respect to these enlarged sets,
fr-1 differentiates to fi.

Let y € H(f, M, 1) be an isolated point of H(f, M,1). Then thereisal > §(y) > 0
so that (y — 28(y),y +26(y)) N H(f,M,1) = {y}. Let P, be a perfect set containing

y so that y is a bilateral point of accumulation of P, satisfying

R [ 1C) Se-1(y)

z€Py, z—y zZ—y

= fi(y)
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and

frB) = feall) _ | <1 torevery s € B,

Corollary 3.1.8 assures the existence of P,. If P, N (y+ 35,y +3) #0 ,forn €
Z \ {-1,0}, then by the Baire category theorem there is a perfect set Qn.(y) C
PyN(y+ 37,y + ) there is M, (y) € N with Qu(y) C H(f, Ma(y),1). Let
Q= U @nE-81)y+86)u{y},  andlet
n€Z\{-1,0}

Hy = H(f,M,1)U{Q, : y € H(f,M,1), y is isolated in H(f, M,1)}

Theorem 3.3.1 Hy is a perfect set, and fi_, is differentiable on Hpy relative to Hyy
with (fe-1|n,, ) (z) = fi(z), for each x € Hy.

Proof: By the construction of H)s we see that no point is an isolated point. Note
that each Q, is perfect and that Q, N Q, = 0 if y,z € H(f, M, 1) are two different
isolated points of H(f, M,1). Let {z,} be a sequence in Hys such that lim,_ 2z, = 2.
If z, € H(f,M,1) for infinitely many n, then z € H(f,M,1) since H(f,M,1) is
closed. Assume z, not in H(f, M,1) for each n € N. Then for each n € N there is
an isolated point y, € H(f, M,1) such that z, € Q,,. If there are only finitely many
diffexent y,, then 2, € @, for infinitely many n. Since Q, is closed, z € Q, C Huy.
Assmme there are infinitely many different y,,. Since |z, — yn| < 6(yn) < 1, and since
im0 Zn = z, there is a subsequence {z,,} of {2,} such that {y, } converges. Let
Y = limjco yn;- Then y € H(f,M,1) and it follows that z = lim;_. 2., = y. So
2z € Hyy. Therefore Hys is closed.

Now if £ € Hp is an isolated point of H(f, M, 1), then clearly fi_; at z relative
to Hpy, exists and is equal to fi(z). If z € Q, for some y € H(f, M, 1) where y is an
isolated point of H(f, M,1), then there is n € Z so that z € Q.(y) C H(f, Ma(y),1)
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and by the fact that there are two numbers a < b so that (a,b) N Hy = Qn(y), we
see that f]_, at z relative to Hp exists and is equal to fi(z).

Finally let z € H(f, M, 1), and = not an isolated point of H(f, M, 1).
Let € > 0 be given. Then there is ¢ > > 0 so that

Se-1(y) = fe-a1(z)

y—z —fk(:c)<e

whenever y € H(f,M,1) and |y — z| < .

Let y be an isolated point of H(f, M,1) and let z € Q, with |z — z| < /2. Since
ly — 2| < 6*(y) < é(y) and |y — z| > 26(y), we have /2 > |z — 2| 2 |z —y| - |y — 2| >
26(y) — 8(y) = 8(y)- Hence |y —z| < |y — 2| + |z — 2| < 8(y) + n/2 < n.

Thus

P ) - (B2 - i) 122

(fk-l(zz —fals) _ fk(y)) =L+ 22 (Ay) - fule))| <

fk-l(y3 : ik—l(z) _ fk(z)' Il - % +

BorlD) = Feasle) _ g |22+ |22 e + Lo <
M) 6(y) | 6%(y)

(1 50) 1+ g <

2 + 6(y)(1 + 4M) < 2¢ + %(1 +4M)

and since e was arbitrary we have that f;_;, at z relative to Hy exists and equals
fi(@). o

We end this chapter showing that a k-th Peano derivative is a path derivative of
the (k —1)-th Peano derivative with a system of paths satisfying the I.I1.C. condition.
As a corollary to this result we will obtain that a k-th Peano derivative is a selective

derivative of the (k — 1)-th Peano derivative.
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To define the system {E, : ¢ € R} of paths with respect to which a given k-th

Peano derivative, fi, is the path derivative of fi_;, we begin with some notation.

Notation For z,y € R let §(z,y) = min{1, J“—;’-l} Forz € Rand M € N let
R. =U{P,N[y,y + 6*(z,y)) : y € H(f,M,1) and y is right isolated
from H(f,N,1) for N € N} and let
L. =U{P,N(y— 6*=,y),y]: y € H(f, M,1) and y is left isolated
from H(f,N,1) for N e N}.

Definition 8.3.2 Let z € R. If there is an M, € N such that = is a bilateral point of
accumulation of H(f, M;,1), then let

E,=Hy UR.UL,.

If z is a right isolated point of H(f, M, 1) for every positive constant M but there
is an M, so that = is a left point of accumulation of H(f, M,,1), or if  is a left
isolated point of H(f, M,1) for every positive constant M but there is an M, so that
z 13 a right point of accumulation of H(f, M,,1), let

E.,=Hy,UP,UR;UL,.

Finally if x ts an isolated point of H(f, M, 1) for every positive constant M then
let M, =1 and let

E,=Hym,UP,UR;UL,.

Definition 3.3.3 Let E be the system of paths {E, : z € R}.

Lemma 3.3.4 Let k € N and let f be a function defined on R such that fi(z) ezists
Vz € R. Then E is bilateral and satisfies I.1.C. condition.
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Proof: Clearly E is bilateral. We will prove a stronger condition than L.I.C. .
Namely we will prove that for any two points z and y E. N E, N (z,y) # 0. Let
z < y be any two points. Suppose M, < M,. If = is a right point of accumulation of
H(f,M.,1)Cc H(f,M,,1), then E. N E, N (z,y) # 0.

If z is a right isolated point of H(f, M,,1), then by choice of M;, z is a right
isolated point of H(f, M,1) for every M € N and z € H(f, M,,1). Thus

0 # P.N[z,z + 6*(z,y)) N (z,y) C E:NE, N(z,y).

If M; > M, and if y is a left point of accumulation of H(f, M,,1) C H(f, M.,1)
then E. N E, N (z,y) # 0.

If y is a left isolated point of H(f, M,,1), then by an argument similar to the
above E, N E, N (z,y) # 0. Therefore E satisfies the I.I.C. condition.

O

Theorem 3.3.5 Let k and f be as in Lemma 3.8.4. Then fi_, is E differentiable
with fi,_1)e(z) = fi(z).

Proof: Let £ € R, and € > 0 be given. Then there is an ¢ > 5 > 0 such that

fe-1(y) = fuaa(z)

y—

— fk(x) <E€

whenever |y — z| < n and y € H(f,M;,1) or y € P.. Let z € E, be such that
|z —z| < 1. If z € P, for some y € H(f, M,1) such that y is an isolated point
of H(f, M,1) from either left or right, and for every positive constant M, then 1 >
lz—z| 2 |z —y|l - |y — 2| = 26(z,y) — 8(z,y) = 6(z,y). Therefore |y — x| <
ly — 2] + |z — 2| < 6(z,y) + n/2 < n. Hence

Se=1(y) = fim1(z)
y—=z

— fi(z)| <€ (8)
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Thus
Je-1(2) = fi-1(2)

z2—-T

— fi(z)

y—z z—z

(fk—l(y) - fk—l(x) _ fk(z’)) y— x+

(f,,_,(z) — fisa(y) _ ,k(y)) =Y 4 22V () - fula))

zZ—y r =z

<

fear(y) = fiaa ()
y—z

- fk(x)‘ ,1 - E‘%I +

fe-1(2) = fi-1(y)
z—y

z—yl
z_.

— fi(y)

+ :’ ::I (Ifx()] + | Fe()))-

By (8), Theorem 1.1.27 and the relationship among z, y and z, the above inequality

is

2 2 2
Sf(l+6(z’y)) 1-6(x’y)+6(1’y)4M,S

é(z,y) é(z,y) ~ 4(z,y)

% + 6(z,y)(1 + 4M,) < 2¢ + 3(1 +4M,)

and since € was arbitrary we have that fi,_,)g(z) exists and equals fi(z). g

Corollary 3.3.6 Let k and f be as in Lemma 3.3.4. Then fi is a selective derivative
of fe-1.

Proof: Let a selection p(z,y) be defined as follows:
If z <y let p(z,y) = 2z, where 2 is any point in E, N E, N (z,y), if z = y, let
p(z,z) = z. Then for fixed point zo we have

lim Je-1(p(20,y)) = fr-1(z0) — lim Jr-a1(z) - fk-1($o).

y=oo P(zo0,y) — o 2=%o z—Io

Since z € E; we have that the above limit exists and equals fi(x0). o




CHAPTER IV

4.1 Decomposition of Generalized Peano derivatives

Definition 4.1.1 Let F be a continuous function defined on R, and let n € N. We
say that F is n-th generalized Peano differentiable at x € R, if there is a positive
integer q, and coefficients F;)(z), i = 1,...,n such that for each h € R

F(=q+3) F
F(-Q)(x + h) Z(:)hJ (.1:) ZO Q+J( Li(j;' + potn ﬂn(%h) (1)
= =

where lim,_o e!ﬂ,n(z, h) = 0.

Here Fig(z) = F(z) = FO(z) and F(-))(z) = [* F(-#1)(t)dt; i.e. F(-9 is an
indefinite Riemann integral of the continuous function F(-7+1) for j =1,...,q. Note
that the definition of F;)(z),¢ =0,1,...,n and of c!,"l.,,(:c, k) don’t depend on which ¢-
fold indefinite Riemann integral, F(-9), of the continuous function F, is taken because
any two differ by a polynomial of a degree less than q. The above definition is the
same as the definition of (g + n)-th Peano derivative of a function F(-9) at a point
z. Therefore by Lemma 3.1.3 the coefficients Fj;)(z), i = 1,...,n don’t depend on g,
either. The coefficient Fi,(z) is called the n-th generalized Peano derivative of the
function F at the point z. For the remainder of this chapter n will be a fixed positive

integer, and F will be a continuous function defined on R.

Definition 4.1.2 For g € N, let A, be the set of all z € R so that (1) holds, and for
€>0,6>0 let

Py = Py(c,8) = {z € A : |efha(z, )] < ¢, for|h| < 6}. (2)

57
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Note that if z € A,, then z € A, for every p > ¢. Also z € A, iff F(-9) has an
(g + n)-th Peano derivative at z with (F(-9)g,,(z) = Fiy(z).

Lemma 4.1.3 For q < p, P,(¢,6) C P,(e{232L6).

p+n)?

Proof: Let z € P(¢,6). Then z € A, and for t € R

~-q+J)
F- ")(a: +1) = ZtJF (:z Z jati F[J](x)' + t9+n¢ E,q-ln(x,t)- (3)
=0 J=0 ( + )

Integrating both sides of (3) from 0 to k we get

FGo (g 4 h) — F&-(g) =

F( q9 J)(x

. Fi; ()
it +14j bl +n ld]
S R e e

Thus z € Ag41. By the remark after Definition 4.1.1, we have
h
pati+n [q+nl‘]H (z,h) =[) $atne qun(z,t)dt (4)

and since z € Py(¢,6) for 0 # |h| < § from (4) we have

|h|e+14n

[hl
n +1 n — -
|h|7+1* I‘c[;q-l-nll(xahﬂ </9 tt e dt = Cq T n

Hence lef;’fﬂlll(z, h)| < €/(g + n + 1) whenever |h| < §. Therefore

P,(,8) C Pyt ( (-(i:—_’:)'l),.s) .

The general result follows by induction.

Definition 4.1.4 Forz € A, and fori=1,...,n, define e.[,ql,—(:r,h) by

(—q+3)
F(-Q)(x + h ZhJF (z) z: ) Xag) F[i( ;' + hatic qu'(z h) (5)
3=0
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Note that q[ﬁ,-(:c, h) doesn’t depend on which ¢-fold indefinite Riemann integral, F(-9),
of F'is taken.

The following formula follows directly from Definition 4.1.4.

Formula 4.1.5 Let z € A;. Then fori € N with2 <1 < n we have

¢ F[;](.’l:)
(g+2)!

[a]

€qri-1(,1) = + tc,[,"l,.(z,t).

Recall Lemma 1.1.3, Definition of Riemann difference A}" f(z) and Lemma 1.1.4
from Chapter I.

Lemma 4.1.8 For m € N the following holds:

m ) ) 0 ifi:O,...,m—l
Y (=D)mi(7)i = {

3=0

m! ifi=m

2m+1) ifi=m+1

Definition 4.1.7 For any function f defined on R the Riemann difference AT f(z)
at a point z, of order m is defined by

m

AT f(z) = Y (1) (7) f(= + 5t).

=0

The relationship between A" and A**! is given by the following assertion.

Lemma 4.1.8 For any function f defined on R, for any m € N and t € R we have

AT () = AT f(z +t) — AT f(2).
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Lemma 4.1.9 Let z € A,. Then foreachi =1,...,n

AP FI(z) =

{7+ By (2) + 1947 DI (1) (7)o@, t) i m =
14 T (—1)rtmi () j4 (2, jt) if m > i.

Proof:

q+m
Ag*‘"‘F("’)(z) = E (_1)q+m—j (4+jm) F(“’)(a: +jt)
J=0

9+m

= Yo (=1 () (Z(m'

§=0

F(Q)()

>0 + G !;’l.-(z,jt))
Zt

,F( q+l)($) "i':"( 1) q+m—j (Q+m)] +
=0 3=0
F (a:) : .
tq+l U] q+m—J g+m q+l+
z-:o (q +1)! ,z_%( 1) (% )i

. q .
g+ z (_1)q+m~1 (q-;m)]qh E;ll'(x jt)
Jj=0

which by Lemma 4.1.6, is equal to
to4m By (2) + 97 SO (< 1)rime () jorm el (2, 58) i m =
tq+t Eg:'rn( 1)q+m-1 (q-l;m)]qﬂ [q] (:t,]t) ifm > 1. O

Formula 4.1.10 Letz,z +t € A, and let 1 €N with1 < i <n. Then

g+i+1

Fa(z +1) - Fy(z) = 2 (- 1)q+t+l-—1 (9+'+1) satig [q] 1 (z, jt)+

j=0

g+ g+

Y (-1) g+i-j (q-i-t) q+i Lq*l.‘(z ity =Y (- —1)aHi- (q+:) i [q] 1 (z +1,5t).

J=0 j=0
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Proof: By Lemma 4.1.8,

AP (z) = ATHFED (2 + 1) - ATHFCI(2), (6)

Applying Lemma 4.1.9, with m = ¢ + 1 to the left hand side

and with m = i to the right hand side of (6) we get
g+i+1

ot Z (_1)q+s+1—1 (q+;+l) Jqg+i qu,(.t jt) =
J=0
. . q+‘- . .
tq+'F[,'](:t +)+ g+ Z(_l)q+:-1 (q:-u) -q+i gﬂ'(z +t,jt) —
=0
g+s
19+ Fg(z) — t7+ S (=1)7+- (q+:) q+i [ql ) (z, jt).

7=0

Dividing both sides by t7** gives the above formula. 5
Theorem 4.1.11 For any interval [a,b], Fi is bounded on Py(e,8) N [a,b].

Proof: Let [a, b] be an interval. Let z, y € P,(¢,6)N[a, b], so that for t = y —z we
have |t| < §/(q+n+1),and let B = ©=i17+" (*+7#1) jo+». Then the right hand side of
Formula 4.1.10 applied with ¢ = n, is bounded by 3Be. It follows that F},) is bounded
on Py(¢,6)N|[a,b]. From Formula 4.1.5 (applied with ¢ = n) it follows that for |k| < 6,
Ie,[,qln_l( -, h)| is bounded on Py(¢,6) N [a,b]. Now from Formula 4.1.10 (applied with
t = n — 1) we see that Fj,_y) is bounded on P,(¢,6) N [a,b], and again going back
to Formula 4.1.5 (applied with i = n — 1) we see that for |k| < 6, |c£"ln_2( -, h)| is
bounded on P,(¢,6) N [a,b]. Continuing we can deduce that there is a constant C so
that |Fiy(z)| < C for 1 <i < n, for z € Py(¢,6) N [a, b].

Let z € P,, and let {z,.} be a sequence in P,(¢,§) such that limpy.co Tm = z.
Choose p > g such that z € A,. Let [a,b] be such that {z,,} C P,(¢,6) N [a,b]. From
the first part of the proof we see that for 1 < i < n, Fi;) is bounded on Py(¢,6)N|a, b].
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Therefore we can choose a subsequence {z,} converging to z such that {F;(zm;)}

converges for each 1 < ¢ < n. Let these sequences converge to Gi(z), it = 1,...,n
respectively.

Let |h| < 6, and, as we may, suppose that |h+z — 2, | < § for every j € N. Since

; € Py(€,6), by Lemma 4.1.3 we have |ep+,,(1:m1,h +T—zIn)| <€ "p::! Thus we

may also suppose that the sequence e,,+,,(xm j»h+T—2zn ) converges. Denote its limit

by E(h). Now letting j — oo in the formula

p(-p)(z +h) = F("’)(xm)) +(h+z- -'cm,)F("’“)(zm,) 4.4
(h+z—zm)
p!

+(h +z - l'm))p+n (

(h +z— Tm, )p+n—l
(p+n-1)

Fig)(zm,) +--- +

F'["](me)
(p+n)!

F‘["—ll(x"h )+

+ e[,ﬂ,,,(xmj, h+z-— .’tm)))

we get
p—-1 h 4 r+1

F("’)(:c +h)= Z — F-rHi)(g ) + h_FIOI("’) +

—G +---4
25 7 e

hptnt ptn [ _Cn (x)

Since %(5))? + E(h) is bounded, by the uniqueness of Peano derivatives from (7)
we have Gi(z) = Fjg(z) for 1 <i<n-1and

Gn(z)
~(p+n)

+ E(h). (8)

Since |E(h)| < EZ: ;', from (8) we have that

Fi(=) = Ga(®)| _ i _ il (o mi < £ZED! L 1l (o
| = 1E®) = (e h)l < e H @R (9)

The left hand side of (9) doesn’t depend on k so letting A — 0 in the right hand

side of (9) we get
Fn)(z) — Ga(x)
(p+n)!

(g +n)!
= (p+n)

(10)
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Finally from the first part of the proof we know that there is a constant C, so that
| Finj(¥)| < C, for y € Py(€,6) N [a,b]. Since limj_.oo Finj(zm,) = Gn(z), |Ga(z)| < C.
Hence by (10) | Fis)(z)| < e(¢+n)!+C. Note that the bound on Fi,)(z) doesn’t depend
on the choice of p.

If , and z are two different points in Ay, then since Fiuj(y) = (F(-9)g4a(y) for
y € A,, we have a formula for generalized Peano derivatives similar to the one in The-
orem 1.1.17. We will use this formula only for the case s = k — 1 in Theorem 1.1.17. W

For the sake of completeness, we will state this formula for generalized Peano deriva-

[ = X

tives as Theorem 4.1.12 below, and we will give a proof of this theorem not recalling

the corresponding result for Peano derivatives; i.e. Theorem 1.1.17. J

Theorem 4.1.12 Let z, z, € A, such that z # z, and t # 0. Then

Finyj(z1) = Flnyy(z) Fy(z) = t g+n-1

-z 1—Z 2

n-1 n
Hz (=1yrsn=i=i (vtn=t )(x, —z+ Jt)” ol
j te+n-1(z; — r) €+n

F‘[n](z) +

(z,z1 — z + jt) —
j=0

t q+n— F ! —1)9tn—1-j (g+n-1) ;q+n [q] .
2 [n](xl)+ z ) ( j )] 5q+n($171t) .

I —z 1=0

To prove this theorem we will need two technical lemmas.

Lemma 4.1.13 Let z, € A,. Then for any t

Ag‘f'n—lF(-Q)(xl) = tq.”n_lF’[n—l](x])-*-

q+n-1

t"*"q++F[n](x1) F 197 Y (=1)rtn-1-d (q+n— )]q+n la) Az, ).

=0
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g+n-1 ) F(=a+) (g
Ag+n—lF(—q)($l) — z: (_1)q+n—l-—3 (q+;-l) (Z(Jt I ( 1)+
7=0
LI Fiy(x1)
t g+l - UN\—"1/ mz t q+n Mn ,t )
lgo(.’ ) ( + I)' +( ) €+ (.’L'] )
g-1 fq4n-1 (-a+)
E ( Z (- 1)Q+n—1-1 (q+n- )] ) tlF ' (21) +
1=0 7=0 I
n [qtn-1 . F, (171) .r'
(_l)q+n—l-—1 q+n-—1 Jq+l tq+l [ + 7.
(% (r-r)je ) v i) L,
g+n-1 ) (4l ‘
D (=1)7+ 1 () i e, ) |
By Lemma 4.1.6, the above is equal to u ‘
+n—-1
(7471 Ry (1) + 75— Fia (1) +
q+n-1 ) (@l
gatn J.Z__(:) (_1)q+n—1-1 (q+7;- )Jq+n 9 (o1, t)-g

Lemma 4.1.14 Let z, x, € A,. Then for anyt

A;H'n—l F(_Q)(xl) = tq.’.n—l}?[n—l](x) +

+n-—1
tq+"—l(.‘t1 _ .’L’)F[,.](JI) + tq-l-'lq—;——F[n](:L') +
q+n-1
T (=)t (1) (2 — 2 4 ) (2,7 - 2 4 1),
j=0
Proof:
g+n-1
AP FC(z) = 3 (1) () PO 4o — a4 t)
1=0
q+n-1

— E (_1)q+n-—l—j (q+1;—1) .

3=0



65

(qz;::(:tl -z +]t)’ -9t + Z(zl T+ jt q+l( [l-]i 1;

(21— 7 + jt)"*"e !:’l,.(z z -z + Jt))

g+n-1

= ;) (=1)9tn-1- (q+?—1) (E(zl -+t

)z F(- q+l)(x)

n . Fin(z
Y(z—z+ Jﬂ”'ﬁ) +

=0
q+n-1 ] ]
Y (m)T (0T (3 — 2 4 jt) e (2,7 — 2 + t).
=0
Since
q+n-1 q-l F( q+l)(z)
-1 q+n-—l—J +n- .’L' —z+ tl____ +

n

2(1'1 -z +jt)q+’ [l]( ,)

=0

q+n-1 q-1 | F(_,,.H)
Z ( 1 q+n—1—j (q+n 1) ( ()(1:1 _ z)l—a(jt)a . ($)+
j=0 =0 s=0 :

n g+l F (:t)
q+! _ q+i-s i1)? U]

q-1 1 F(—q-H) q+n-1 )

— EZ ( )(1‘1 l —3ys i () Z (_1)q+n—l—] (q+;—l)ja +
1=0 s=0 : J=0

n g+l F g4+n-1

EE(HI) —z) q+l sys q[l-]*. l)' Z (=1)7+n- 1—J(q+n 1)1

=0 s=0

by Lemma 4.1.6 the above is equal to
n q+l Fm(‘t) q+n-1

E Z ("'.”)(z, x)q+l—. ‘(q+1' Z (=1)9#n-1 —J(+n 1)],.

I=n~1 s=q+n-1
Applying Lemma 4.1.6 once more it is equa.l to

g+n-1
2

194" Fi_y)(2) + 7771 (21 — 2) Fipy(2) + 19" Fiu(@).

This completes the proof. 4

Proof of Theorem 4.1.12: The proof follows directly from Lemma 4.1.13 and
Lemma 4.1.14.
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Finally we are ready to prove the main result of this Chapter.

Theorem 4.1.15 Suppose for each ¢ € R F is n-th generalized Peano differentiable
at z. Then Fi,_y) is differentiable on P, = P (¢, 8) relative to P, with

Finlp, (2) = Fluy().

Proof: Let z € P,. Thereisa p > ¢q so that z € A,. Let 1 > ¢ > 0 be given.
There is 0 < n < 6 such that |cp+n(z k)| < € whenever |h| < 5. Let {z,} be a

sequence in P, converging to z, so that |z,m — z| < S-. By Theorem 4.1.11, there is

n’

a constant C so that |Fi,(zm)| < C, for every m € N. Let t = (z,n — :c)e'ii—n. Then
lijt] < 6 and |z — x + jt| <7, for j =0,1,...,9 + n — 1. Therefore

|cp+n(x T, —z+jt)| <€ (11)
and by Lemma 4.1.3,
|e[,fln(:tm,jt)| < eforevery j=0,1...,p+n —1 and for every m € N. (12)

Since z,, € Ap, the formula from Theorem 4.1.12 gives

1‘1[,,_1](.’13".) - F'[n—l](z)

-1
= o) Fa)| < €7 EEE T R (o) +
pin-1 +n
w1\ (1 +ge7#7)P
E (p+1 l)( .;’gin—l) |€p+n(z Iy — I +]t)| +
=0
i |Ptn— = +n=1-j (p+n=1) ;p+n [r] ;
enn —2—-—F[,.](:c,,.) + Y (=1t () e (i, )| -
=0
By (12) and (11) together with Theorem 4.1.11 the above is
I—I—P+n gy +n-1 S Y
< e P2 R () + Eo (P*371) (1 + jemm)rtnesm +
J—
_ p+n-1
ﬁ,r_;ﬁ{p+n pn-l, "3 (1) o+ }
j=0
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Since ¢’ was arbitrary we have

Fin_1)(zm) — Fin_y)(2)

$m—$

— Fiy(z) = 0as z,, € P, z,n — .

Now for the general case let {z,,} be a sequence in P, such that z,, — z. Let y,, € P,
be such that |ym — zm| < L|zm — z| and that

F[n—l](ym) - F‘[n—ll(xm)

Ym — Tm

By what was just proved, there is such a sequence y,,. By Theorem 4.1.11, there is a

constant C' such that |Fj;(zm)| < C for every m € N. This and (13) give

F'[n—l](ym) - F'[n—l](zm)

< .
Ym — Tm sC+1 (1)
Now
F'[n—l](z:) - ::[n—l](x) _ F[,,](x) — F‘[n-l](z:) - F.[n—l](ym) ITm — ym+
m = m = ym :L'm -
F[,.-]](ym) - F[n—l](x) Ym — ITm — Ym
{ — Fa(=) ¢ T— — Fn(a)—
So by (14)
FocEn) = o) _ )| <
[ —
1 Fn— (ym) - Fn-l (.’E) 1 1
C+1)— +|n=t) =127 Fg(e)|(1+ =) +C—.
(€ +1) + |Temnltm) =] w0+ el )

Finally since z,, = z, ym — z. But y,, € P,, and hence by the first part

F[n-l](ym) - F[ﬂ—ll(z)
Ym — T

— Fip(z) — 0. (16)

Therefore by (15) and (16)

F[n-l](zm) - F[n-ll(‘r)

T — I

— Fiyy(r) 2 0as z, E_P_.,, Tm — Z.

This completes the proof.
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Lemma 4.1.16 For each € > 0, U2, UZ_, P,(¢,1/m) =R.

q=0
Proof: The assertion follows from Definition 4.1.2.

Corollary 4.1.17 Suppose for each z € R F is n-th generalized Peano differentiable

at x. Then Fi, is a composite derivative of Fi,_,).

Corollary 4.1.18 Suppose for each z € R F is n-th generalized Peano differentiable

at . Then F},) is an approrimate derivative of Fi,_y) a.e..

Corollary 4.1.19 Suppose for each z € R F is n-th generalized Peano differentiable
at z. Then Fj,) € [A]'.

Corollary 4.1.20 Suppose for each z € R F is n-th generalized Peano differentiable
at x. Then Fi, is a Baire 1 function.

That Fi, is a Baire 1 function, was proved in [9]. The proof in that paper is not
as simple as the proof for Peano derivatives. Corollary 4.1.20 gives another proof of

this assertion.

4.2 Generalized Peano, path and selective derivatives

Next we will show that the following analogy of Theorem 2.1.9, holds for generalized

Peano derivatives.

Theorem 4.2.1 Letl € N with | < n — 1. Assume for each function g defined on
a closed interval I having an l-th generalized Peano derivative, gy, on I, g is a
Darbouz function and if gyy > 0 on I, then gy = g() on I. Suppose Fi ezists on R.
Then there is a bilateral nonporous system of paths E = {E, : ¢ € R} satisfying the
L.C. condition such that Fiy) is the E-derivative of Fi,_y).
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We will need some lemmas before we prove this theorem.

Lemma 4.2.2 Under the assumptions of Theorem 4.2.1 for every € > 0 and n > 0

there is a § > 0 such that if I is a closed subinterval of (z — 6,z + 6), z is not in I

with

Fin-1)(y) = Fin-1)()
— - F[,,](:L') Z € (17)

for all y € I, then m(I) < nd(z,1).

Proof: Let § be chosen according to Theorem 2.1.5, applied with 5 replaced by
m = n/(1 + n) and with j = n — 1. Let I be as above, and let g(y) = F(y) —
y""f%':‘;l_’l% —(y - a:)"ﬂ'—‘n!(ﬁ). Then g has an (n — 1)-th generalized Peano derivative
and gfo(y) = Fio-1)(¥) — Fia-1)() = (y — 2)Fy(z). So by assumptions glo_y is
Darboux. By (17) |gn-1)(¥)| > €|y — z| on I. Since z is not in I, |gjn_1)(y)| > O for
y € I and since g|,_y) is Darboux, we have either gj,_1j > 0 or —g{»_;) > 0 on I. Hence
by the assumptions, g[,_y is an (n — 1)-th ordinary derivative of g on I. Therefore
F i3 (n — 1) times ordinarily differentiable on I and by the uniqueness of generalized

Peano derivatives, F("~1) = Fj,_;; on I. Now we can apply Theorem 2.1.5, withn = k

and j = n — 1, which gives m(I) < n, - (m(I) + d(z, I)). Hence m(I) < nd(z,I). o

The statement and the proof of a next lemma follow line by line the corresponding
Lemma 2.1.11 for Peano derivatives. So we will only state the lemma and omit the

proof.

Lemma 4.2.3 Under the assumptions of Theorem 4.2.1, for each point z € I there

is a path E, leading to z and nonporous at = so that

lim F‘[n—l](y) - F'[n-l](z) — F‘[n](x)

yEE:,y—z y—z
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Lemma 4.2.4 Let m <1 be two positive integers and let € > 0. Then

1 1
Pm(ea ;) C })I(f, 7) .

Proof: By Lemma 4.1.3,

P (e, l) C P, i), and by the Definition 4.1.2
m m

1 1
PI(C, ;n_) c Pl(e’ 7) (]

Now we are ready to prove Theorem 4.2.1.

Proof: For each z € R let E’. be a path satisfying the assertions of Lemma 4.1.9.
We will define the system of paths E = {E; : z € R} as follows:

For z € R let E, = E' U P,(1,1/m) where m is a positive integer such that
¢ € Pn(1,1/m). That E is nonporous (therefore bilateral) follows directly from
Lemma 4.2.3. Also Lemma 4.2.3 and Theorem 4.1.15, assure us that Fi,_1) is E
differentiable with Fi,_y)|5(z) = Fin)(z) for every z € R. It remains only to prove
that E satisfies the intersection condition I.C.. We will prove that for any two different
points z and y, E; N E, N [z,y] # @ which is stronger than the 1.C. condition.

Let z € P,(1,1/m) and y € P(1,1/1) be any two distinct points. If m < [, then
by Lemma 4.2.4 P,,(1,1/m) C Py(1,1/1) and hence z € E,. Similarly if m > [, then
y € E,. Therefore E; N E, N [z,y] # 8. Hence E satisfies the 1.C. condition. This

completes the proof of Theorem . o

Next we indicate that we can drop the assumption concerning the arbitrary func-
tion from Theorem 4.2.1. The proof of that assertion follows line by line the proof
of Theorem 2.1.15, which is a corresponding result for Peano derivatives. So we will

only state the result.
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Theorem 4.2.5 Let F be a continuous function defined on R so that Fi,) ezists on
R. Then there is a bilateral nonporous system of paths E = {E: : z € R} satisfying
the 1.C. condition such that Fi,) s the E-derivative of Fin_y).

Now using properties of path derivatives we get the following corollaries:

Corollary 4.2.8 Under the assumptions of Theorem {.2.5 Fi) is Darbouz.

Corollary 4.2.7 Let F be as in Theorem 4.2.5, let [a,b] be an interval and a € R.
If Fin) 2 a (or Fip < a) then

a) Fu_y(z) — az (az — Fja_1)(z) ) is nondecreasing and continuous on [a, b]

b) F™ ezists and F(") = F,,) on [a,b].

Corollary 4.2.8 Under the assumptions of Theorem 4.2.5 Fin) has the Denjoy prop-
erty.

Corollary 4.2.9 Suppose Fi,)(z) ezists for all z in Io and let M > 0. If Fj,) attains
both M and —M on I, then there is a subinterval I of Io on which Fin) = F™ and
F™ qttains both M and —M on I.

We end this chapter showing that every generalized Peano derivative Fj,) is a
selective derivative of Fi,_;). The idea is very similar to the one that we used for

Peano derivatives.
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Definition 4.2.10 Let P, be a set containing y so that y is a bilateral point of ac-

cumulation of P,

lim F[n—l](z) - F[n-l](y)

2€Py, z—y z—y

and

Fin1)(2) = Fia-y)(y)
z2—-y

— Fio)(y)| £ 1 for every z € P,.

Theorem 4.2.5 assures the existence of P,.
To define the system {E, : z € R} of paths with respect to which a given n-th
generalized Peano derivative, Fi,), is the path derivative of F{,_,), we begin with some

notation.

Notation For z,y € R let é(z,y) = min{1, J—”—;—’l} Forz € Rand M € N let
R. =U{P,N[y,y+ 6*(z,y)) : y € Pm(1,1/M) and y is right isolated
from Pn(1,1/N) for N € N} and let
L. =U{P,N(y - 8*z,y),y): y € Pmu(1,1/M) and y is left isolated
from Pn(1,1/N) for N e N}.

Definition 4.2.11 Let z € R. If there is an M, € N such that z is a bilateral point
of accumulation of Pp,(1,1/M.), then let

E, = Pp.(1,1/M,)UR, UL,.

If z is a right isolated point of Pp(1,1/M) for every positive constant M but there
is an M, so that z is a left point of accumulation of Pag,(1,1/M.), or if z is a left
isolated point of Pp(1,1/M) for every positive constant M but there is an M, so that
T is a right point of accumulation of Py, (1,1/M.), let

E. =Py, (1,1/M,)UP,UR, UL,.
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Finally if z is an isolated point of Pp(1,1/M) for every positive constant M then

let M. =1 and let
E. =Py, (1,1/M;)UP,UR, UL,.

Definition 4.2.12 Let E be the system of paths {E; : z € R}.

Lemma 4.2.13 Let n € N and let F be a function defined on R such that Fi,)(r)
erists Vz € R. Then E 1is bilateral and satisfies I.1.C. condition.

Proof: Clearly E is bilateral. We will prove a stronger condition than LI.C. .
Namely we will prove that for any two points z and y E. N E, N (z,y) # 0. Let
T < y be any two points. Suppose M, < M,. If z is a right point of accumulation of
Pum,(1,1/M;) C Ppm,(1,1/M,), then E. N E, N (z,y) # 0.

If z is a right isolated point of Py (1,1/M.), then by choice of M,, z is a right
isolated point of Py (1,1/M) for every M € N and z € Pu,(1,1/M,). Thus

0# P,ﬂ[:t,x+62(z,y))ﬂ (Iay)c EInEvn(xsy)'

If M, > M, and if y is a left point of accumulation of P, (1,1/M,) C P, (1,1/M;)
then E. N E, N (z,y) #0.

If y is a left isolated point of Py, (1,1/M,), then by an argument similar to the
above E; N E, N (z,y) # 0. Therefore E satisfies the I.I1.C. condition.

Theorem 4.2.14 Let F be a continuous function defined on R so that Fi,) erists at
every point € R. Then Fi,_,) is E differentiable with F[’n_lw(z) = Fin)(7).

Proof: Let z € R, and € > 0 be given. Then there is an € > n > 0 such that
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F[n-ll(y) - F[n-ll(x)
y—=z

whenever |y — z| < n where y € Pp,(1,1/M;) or y € P;. Let z € E; be such

— Fa)z)| < € (18)

that |z — z| < 1. If z € P, for some y € Pp,(1,1/M;) such that y is an isolated
point of Py(1,1/N) from either left or right, and for every positive constant N,
then 2 > |z —z| > |z —y| — |y — 2| > 26(z,y) — é(z,y) = 6(z,y). Therefore
ly —z| <ly — 2| + |z — 2| < é(z,y) + n/2 < 5. Hence by (18)

Ip[n—l](y) - F’[n—ll(x) _
y—I

Fiy(z)| < e (19)

Thus
Fin_1)(2) = Fjn_y)(2)

Z2—

— Fi(z)

Fi,._ — Fin_n(z -z
y—z z—z

z

- Fo) 222 + 22 Foo) - Fia(a)

<

T z

(F(n-ll(z) — Faq)(y)
z—-y

Fin-l](y) — 'F[n-l](z)
y—<x

1 - 2=Y
zZ2—T

— Fiuy(z)

+

Fin_1)(2) = Fin_y)(y)
z2—y

;::|(|Flﬂl(¢)| + | Fim(y)1)

z—

By (19), Theorem 4.1.11 and the relationship between points z, y and z we get the

above inequality

6%(z,y)
é(z,y)

<el+ 8(z,y) = b(z,y)

2 + 8(z,y)(1 +4M) < 2¢ + 2(1 +4M)

where M is a constant from Theorem 4.1.11. Since ¢ was arbitrary we have that

Fi._yg at T exists and equals to Fi,)(z) g
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Corollary 4.2.15 Let F be a continuous function defined on R so that Fi,) ezists at
every point € R. Then F,) is a selective derivative of Fi,_,).

Proof: Let a selection p(z,y) be defined as follows:
If z < ylet p(z,y) = 2z, where z is any point in E; N E, N (z,y), if z = y, let
p(z,z) = z. Then for fixed point zo we have

iy Fn-11(P(20,9)) = Fnoni(o) _ 1. Fin-1)(2) = Fin-nj(20)

V=0 p(zo0,y) — %o z—Zo P

Since z € E, we have that the above limit exists and equals Fi,)(z0). g
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