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ABSTRACT

ENERGIES, POLARIZABILITIES, AND FORCES OF

INTERACTING MOLECULES AT LONG OR INTERMEDIATE RANGE

By

Ying Q. Liang

Collision-induced molecular phenomena are widely researched subjects. In com-

plement with other research, deriving new results to understand the nature and effects of

the interaction between molecules at long or intermediate range is the main goal of this

thesis.

By applying Rayleigh-Schrodinger perturbation theory, we have obtained the

molecular interaction energy to second order in terms of nonlocal polarizability densities.

The derivation also includes the effects of an applied field.

The nonlocal polarizability density o.(r; r’, cu) plays a central role in this research.

The polarizability density is a linear-response tensor that determines the electronic polar-

ization induced at point r in a molecule, by an external electric field of frequency to, acting

at r’. When a nuclear position in the molecule shifts infinitesimally, we find that the

change in 0t(r; r’, (o) is connected to the same hyperpolarizability BM" r’, 0), r”, 0) that

describes the electronic charge distribution’s response to external fields, i.e.:

acwmyakla = I dr dr’ dr” 5515‘" r’, m, r”, 0) 21 “rage", R1).

This is a generalization of the relationship between BaBY(O)/8R1a and [3375“; r’, r”).

Due to establishment of the relationships between BGIMBRIG and [3575’ we have

obtained new analytical results for the forces acting on nuclei in a molecule. For the first



time, we have proven the equivalence of forces from interaction energy calculations and

those obtained via the Hellmann-Feynman theorem, order by order. We are also able to

separate forces on nuclei in one of the interacting molecules (A) into those due to its

“own” electrons vs. forces due to the charge distribution of the collision partrrer, B.

By taking the long range limit of the new analytical results for forces acting on

nuclei in a molecule, we express the electrical shielding effects in interacting molecules

through nonlocal polarizability and hyperpolarizability densities. Intermolecular fields

are screened via the same tensors that describe shielding of external fields.

An explicit expression for the momentum distribution of a particle in a one-

dimensional box is also included in this thesis. It is a result from my work as a teaching

assistant for the graduate course in quantum chemistry for several terms. The result cor-

rects misconceptions about the momentum distribution in several quantum chemistry text-

books.
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CHAPTER I

INTRODUCTION

This thesis is written so that each chapter is independent. However, there do exist

internal logical relations between these chapters.

We consider two molecules interacting at long or intermediate range in an applied

electro-static field. We assume that the intermolecular separation is sufficiently large that

the overlap of molecular wave functions is weak and we neglect exchange of electrons be-

tween molecules.

We focus our attention on the changes of energy and polarization of the system,

the forces acting on nuclei in each molecule, and the electrical shielding effects between

them.

By applying Rayleigh-Schrodinger perturbation theory [1] to the system in Chap— ~

ter 11, we obtain the changes of energy to second order in terms of nonlocal polarizability

densities. 0t(r; r’, co) is a linear-response tensor that determines the electronic polarization

induced at point r in a molecule, by an external electric field of frequency to, acting at r’,

which was introduced by Maaskant and Oosterhoff in a study of optical rotation in con-

densed media [2]. Hunt derived a simpler form suited for practical calculations in cases

when the field acting on a molecule is derivable from a scalar potential [3]. The nonlocal

polarizability density is discussed in Section 2.2. The results for energy changes in terms

of the nonlocal polarizability densities are summarized in Section 2.3. Besides the inter

action between applied field and each molecule. and the molecular pair interaction, there

are trinary interactions among the applied field and the molecules, associated with the

collision-induced dipole.



In Chapter 111, it is shown that the change in frequency-dependent electronic polar-

izability densities due to shifts in nuclear positions depends upon the hyperpolarizability

density.

This generalizes the relation initially established by Hunt [4] in the case when ex-

ternal field is static. By generalizing the relationship to the frequency-dependent case, we

are able to give a new interpretation for integrated intensities of vibrational Ramarr bands

as well as new analytical results for van der Waals’ forces acting on nuclei in interacting

molecules [5].

Chapter IV gives analytical results for the induced forces acting on nuclei in inter-

acting molecules, in terms of nonlocal polarizability densities. We calculate these forces

both by direct differentiation of the interaction energy and by use of the Hellmann-

Feynman theorem [6]. By proving the equivalence order by order, we unify the two

approaches.

Chapter V discusses the electrical shielding effects in interacting molecules at long

range. By using the relationships initially established by Hunt [4] and generalized in

Chapter III, and taking the long range limit of the forces acting on nuclei in interacting

molecules obtained in Chapter IV, we prove that the same electrical shielding tensors de-

scribe not only the response to an external field, but also the response to local intermolec-

ular fields.

Lastly, Chapter VI discusses a simple but general problem in quantum mechanics:

the momentum distributions of a particle in a one-dimensional box. A simplified and ex-

plicit formula for this case is'obtained and used to correct misconceptions in some quan-

tum chemistry textbooks.
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CHAPTER II

CHANGES OF ENERGY FOR INTERACTING MOLECULES AT

INTERMEDIATE RANGE IN AN APPLIED ELECTROSTATIC FIELD

2.1The Perturbation Energy

The perturbation Hamiltonian for molecules interacting at intermediate or long

range in an applied electrostatic field is

H' = A pA(r) me T( r - r3 dr dr' + l er> Am dr + A me ¢<r> dr .(1)

where pA(r) and pB(r) are the charge density operators for molecules A and B, respective-

ly; T( r - r’) = I r - r’ I"; and ¢(r) is the scalar potential of the applied electrostatic field.

The external field Emu) is

13%) = —V ¢(r), (2)

Assuming that the Rayleigh-Schrodinger perturbation theory [1] can be applied to

this case, we obtain the change of energy for the system to first order as

AB“) = l pAo(r) T( r - r) 9300') dr dr’

+ A pAo(r) ¢<r>dr+ 1 p30 (r) ¢<r> dr. (3)

where pAo(r) and p30 (r) are the unperturbed charge densities of A and B, respectively.

The first term in Eq. 3 is the electrostatic interaction energy of the unperturbed charge

distributions of the pair, while the second and third terms are the electrostatic interaction

energies of the unperturbed charge distributions of molecules A and B with the external

field.

The change of energy for the system to second order is



A50): _ 2 (gAgB |H'|kAgB)(kAgB IH’lgAgB)/(EkA’EgA)
katg

‘1}:‘(gAgB IH’lgAJ’BHgAJB AH'ISAEBV‘EJB'EzB)
m

—2 (gAgB IH'IkAjBXkAjB IH’lgAgB)/[(EkA-E3A)+(Ej3-EgB)]

j.k¢8

=-Idrdr’dr’"dr”2 (gA lpA(r) lkAXRA IPA“7 'gAWEk '53A)

xpBo(r’)|r- r"B’|1po(r’”’)|r -r’”'l1

—l drdr’dr”dr”’.22’<gB lpB(r) |j3><jB lpB(r”) law/(BABE?)

pr0(r’) lrJ-r’|°l pA0(r”’) lr”-r”’|‘l

-l drdr'dr"dr”’2’(gA lp"(r) “(A)”:A |pA(r’) lg“)

.52ng Ime IliBHjB IpB(I'"') IgB>/[(E.A-EAA)+(EjB-EAB)A

><|r-r’l'1xlr”-r’”|'l

—l drdr’dr”2’(gA lpA(r) Mm:A lpA(r”) lgA)/ (E.I AEA“)

x ¢(r)p30(r’) I r” - r’ I'1 + complex conjugate

— A dr dr'dr" 2' < gB lme IjB > (AB lpB<ro lgB >/ (E,-B - ES“)

1'

x ¢(r) pA0(r’) I r” - r’ I'1 + complex conjugate

-ldrdr'2'(gA IpA(r) IrcA‘\)(1cA lpA(I") lgM/(EkA-Eg")

k

x ¢(r)¢(r’)

-Adrcnr'>:'<gB Ime IjBHJ’B lme |g3)/ (EAR-Es“)

J

X ¢(r) ‘90") 4)

(

The first three terms in Eq. 4 give the interaction energy of the pair in the absence

of the applied field. The first is the induction energy associated with the distortion of mol-

ecule A by the field due to the permanent charge distribution of B, the second is the



induction energy associated with the distortion of B, and the third is termed the dispersion

energy. The fourth and fifth terms give the interaction energy due to the applied field (to

the leading order), while the sixth and seventh terms represent the effect of the applied

field on each molecule.

2.2 The Nonlocal Polarizability Densities

Maaskant and Oosterhoff introduced the nonlocal polarizability densities in a

study of Optical rotation in condensed media [2]. They gave the nonlocal polarizability

density in sum-over-states form, with each matrix element itself given as an infinite

series. Hunt [3] derived a simple form that permits practical calculations in cases when the

field acting on a molecule is derivable from a scalar potential.

The nonlocal polarizability density a(ri r’, m) is a linear-response tensor that

determines the electronic polarization induced at point r in a molecule, by an external

electric field of frequency (1), acting at r’.

The polarizability density for a molecule in the ground state has the form

awe; r’, m) = [1 + C((o -—> 40)] < o I Pa(r) G(m) PB(r’) lo ), (5)

when the frequency a) is off-resonance with molecular transition frequencies. C((o —9 -(r))

designates the operator for complex conjugation and replacement of to by -(0, and

G(m)=(1- 600) (H - Bo - Am»-1 (1 - too). (6)

where 500 is the ground-state projection operator I 0 ) ( 0 l.

The electronic polarization Pind(r, (0) induced in a molecule by an external field

F(r, (0) depends on the polarizability density a(r; r’, to), the hyperpolarizability density

B(r; r’, (0’, r”, 0)”) and higher-order nonlinear response tensors

Pi“d(r, to) = I dr’ a(r; r’, (1))° F(r’, to)



+1/2 Loo” dm’ l dr’dr” an; r’, m- (0’, r”, (0’) : F(r’, (o- (0’) F(r”, to’)

+... .

= Pi“d(r, (0)“) + Pind(r, (0)“) + . . . .

(7)

where PM“, (0)“) =I dr’ a(r; r’, (u) - F(r’, to). Ph‘d(r, (0)“) gives the electronic polar-

ization in a molecule by the external field to first order, and

Pind(r, (0)0) = 1/2 Loo” dto’ I dr’ tit” 50': r’, m - (0’, r”, m’) : F(r’, co - w’) F(r”, m’).

Pind(r, (0)“) gives the second order term. B(r; r’, O) - m’, r”, (0’) is the hyperpolarizability

density; when (0’ = O,

Bamm r’, to, r”, 0) = [1 + C((o —> -m)] x

{( o | Pam 0(a)) [Pytro - Pymtro] Gtw) P30") l0)

+ < o l Pa(r) 0(0)) [pan-3 - 93mm] G(O) Pym l0)

+ (o I Pym 0(0) [ram - Pam(r)] can) pan-3 I 0)} .

(3)

2.3 Analytical Results for the Perturbation Energy in terms of Nonlocal Polarizabil-

ity Densities

We now rewrite the perturbation energy AEQ) in terms of the nonlocal polarizabil-

ity densities and obtain:

AE(2)=—2 (gA gB IH'IkAgBHkA g3 IH’lgAgBHaEkA-ESA)

-k.2alw(g"gB IH’lgAJ’BMgAJ’B III’lg“‘g‘3>/(E,-B 4533)

J¢8

—2: (gAgB IH’IkAJ'i><kAjB IH'IgAnguEkA-Eg‘)HEAR-£33»

11kt:
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= — 1/2 I dr dr’aAaBu. r) flour) 78030")

- 1/21 dr dr'aBaBu. r') rA0atr) erfltr')

- h/4n2A0°° doc I dr dr’dr”dr”’ “A03“, r’”, im) 013150”, r’, im)Ta5(r, r’)

x T570”, r’”)

-l dr dr’ “Aafiu’ r’)Fame) flog“?

- I dr dr’ <13ch. r3Fa°“(r) onBu)

— 1/2 I dr dr’aAuBU, r’)Fa°x‘(r)FBc’“(r’)

— 1/2l dr dr’aB043(1), r')r=a¢’“(r) FBCWr) (9)

where

7A0a(r)= ~l dr’pAom Ta( :- - r)

is the field in molecule B produced by the unperturbed charge distribution of molecule A

and f30a(r)= J dr’pBoo') Ta( r - r)

is the field in molecule A produced by the unperturbed charge distribution of molecule B.

From Eq. 7, we can rewrite AEQ) in terms of the induced polarization in molecules A

and B: ‘

A5<2>= —1/2 I dr Mm“) 730m— 1/2 1 dr Page“) 7" onto

_ 0° , n u, A 0,. B n ,-
h/41c2l0 dmldrdrdr dr a “Boar ,rm)a16(r ,r,rw)

x Task, r’)TpY(r”, r’")

—A dr PAa(r)<l> Fe"t am - l dr PBa(r)<1>Fwa(r)

—1/2! dr PAexta(r)(l> Fm an) .12! dr PBexta(r)(1) Fe" cl(r) (10)

where PAa(r)(1)= l dr’ “Aug“, r’) rBoBm (11)

is the first order polarization of molecule A induced by the field due to the unperturbed

charge distribution of molecule B, while



ch‘a(r)(l) = l dr’ awn, r’) Fext Ba) (12)

is the first order polarization of molecule A or B induced by the applied field.

From Eq. 9, we know that when two molecules interact with each other, there is

not only the electrostatic interaction between their unperturbed charge distributions (in

first order), but also the interaction between the induced charge density of one and the un-

perturbed charge distribution of the other (the first and second terms in Eq. 9, induction

energy). Furthermore, there is a dispersion interaction between the two molecules, which

comes from the fluctuations of the charge distributions ofA and B, a purely quantum

effect (the third term in Eq. 9, dispersion energy). When the molecules interact with an

applied field, the external field affects the electrostatic and induction interactions between

them, via the same polarizability density (the sixth and seventh terms in Eq. 9). The

applied field acts on the interacting molecules not only directly with each, but also indi-

rectly on one through the other. An alternative point of view is: each of the interacting

molecules not only directly responds to the external field, but also does so indirecly

through the other. For example, the field produced by the unperturbed charge distribution

of B induces in A a polarization which interacts with the applied field (the fourth term in

Eq. 9). An alternative point of view is: the applied field induces in A a polarization which

interacts with the field produced by the unperturbed charge density of B. The same also

happens for B (the fifth term in Eq. 9). We call this kind of interaction trinary.
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CHAPTER III

CHANGES IN ELECTRONIC POLARIZABILITY DENSITIES DUE TO

SHIFTS IN NUCLEAR POSITIONS,

AND

A NEW INTERPRETATION

FOR INTEGRATED INTENSITIES OF VIBRATIONAL RAMAN BANDS

Abstract:

The nonlocal polarizability density or(r; r’, to) is a linear—response tensor that

determines the electronic polarization induced at point r in a molecule, by an external

electric field of frequency to, acting at r’. This work focuses on the change in a(r; r’, (1))

when a nuclear position shifts infinitesimally. We prove directly that the electronic charge

distribution responds to the change in Coulomb field due to the nucleus via the same hy-

perpolarizability density that describes its response to external fields. This generalizes a

result established previously for the static (or = 0) polarizability density. The work also

provides a new interpretation for the integrated intensities of vibrational Raman bands: it

proves that the intensities depend on the hyperpolarizability densities and the dipole prop-

agator.

ll



12

3. 1. Introduction

The nonlocal polarizability density a(r; r’, (1)) gives the (1)-frequency component of

the polarization induced at point r in a molecule by an external electric field F(r’, 0)) acting

at the point r’, within linear response [1-5]. This property reflects the distribution of po-

larizable matter within the molecule; it represents the full response to external fields de-

rived fiom scalar potentials of arbitrary spatial variation. Thus a.(r; r’, (1)) is a fundamental

molecular property. It has applications in theories of local fields and light scattering in con

densed media [3,6] , and in approximations for dispersion energies [4], collision-induced di-

poles, and collision-induced polarizabilities [5,7] of molecules interacting at intermediate

range. Recently, Hunt [8] has shown that or(r; r’, 0) also determines the net field FI acting

on nucleus I of a molecule in a static, external field F‘(r):

F1 = FRO) + F°(RI) +l dr dr’ T(RI, r) - a(r; r’, 0) - F°(r’) + , (1)

' where FRO) is the field at nucleus 1 in the absence of the external perturbation, and

Taflml, r) is the dipole propagator, i.e., Taflml, r) = Va VB ( I RI - r H). Specializing Eq.

(1) to the case of a uniform external field leads to an expression for the linear electric field

shielding tensor71 [9- 15] in terms ofa(r; r ’, 0). Further, the nonlocal polarizability density

determines the derivative of the molecular dipole moment with respect to the position of

each of the nuclei: If ZI is the charge on the Ith nucleus, then [8]

aha/6R1 2.215043 +21 ldrdr am;r;r,1‘0) (r, R1). (2)

Th1s woiic focuseson the changes1n thefrequency ependent molecular polariz-

ability density when a nucleus shifts infinitesimally. The results are important because of

the roles of the polarizability density noted above. In addition, the theory yields the deriv-

atives of th polarizability (1043(0)) with respect to the normal mode coordinates qv, which



l3

determine the integrated intensities of vibrational Raman bands, within the Placzek approx-

imation [l6]. Earlier Hunt [8] has shown that the derivative of the static polarizability

BOLCLB(O)/E)RI7 is related to the nonlinear response tensor 50'; r’, 0, r”, 0). This accounts ,

for the connection between the polarizability derivative and the quadratic electric field

shielding tensor (cf. Ref. 15).

The purpose of this work is to prove that the relation between Baas“; r’, 0)]8RI7 '

and the nonlinear response tensors generalizes to the frequency-dependent case. The anal-

ysis in Ref. 8 employs the electrostatic Hellmann-Feynman theorem [9,17], and therefore

does not apply to a(r; r’, m) with a) at O. A new approach is needed to prove the generali-

zation. In this work, we have used direct differentiation to evaluate Bataan; r’, (ID/31111.

For the derivative of the total polarizability (1(0)), we obtain

BaBY(m)/3R‘a = I dr dr’ dr” awe; r’, (o, r”, 0) 2I 754"", RI). (3)

This result yields physical insight into the change in polarizability (at frequency to) that

results from an infinitesimal shift in the position of nucleus 1. The molecule responds to

the change in the Coulomb field of the nucleus via its hyperpolarizability density

B(r; r’, (u, r”, 0). All of the quantum mechanical influences are contained within B, and

the remainder of the calculation is classical. Eq. (3) also provides the basis for a new in

terpretation of integrated Raman band intensities, without requiring that (105(0)) be

approximated by its zero-frequency limit.
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3.2 Nonlocal Polarizability Densities and Polarization Induced by External Fields

The electronic polarization Pind(r, (1)) induced in a molecule by an external field

F(r, (1)) depends On the polarizability density a(r; r’, to), the hyperpolarizability density

[3(r; r’, 03’, r”, to”) and higher-order nonlinear response tensors:

Pind(r, (1)) = I dr’ a(r; r’, (1)) - F(r’, to)

+ 1/2 Loo” dw’ I dr’ dr” [3(r; r’, (o - 0)’, r”, (0’) :

F(r’, a) - (0’) F(r”, m’)

+ . (4)

The polarization Pind(r, to) is related to pind(r, to), the induced change in electronic charge

density in the field F(r, to), by

V - Pindtr. m) = - pimtr. co). ' <5)

and the same relationship holds for the polarization and charge density operators, P(r) and

p(r) respectively.

The polarizability density for a molecule in the ground state has the form

“an“; r’, to) = [1 + C((o -+ -(o)] ( o lPa(r) 6(a)) PB(r’) lo ),(6)

when the frequency a) is off-resonance with molecular transition frequencies. C(to -9 ~03)

designates the operator for complex conjugation and replacement of (.0 by -m, and

6(0)) = (1 - too) (H - 150- mo)" (1 - too). (7)

where 500 is the ground-state projection operator I 0 ) ( 0 I . It should be noted that the

nonlocal polarizability density completely determines the electronic charge redistribution

linear in a perturbing field F(r, 0.)), and not simply the dipolar component. Integration of

0t(r; r’, to) over all space with respect to r and r’ gives the dipole polarizability (1(a)); but

or.(r; r’, to) also determines all of the higher-multipole, linear-response tensors [5].
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The hyperpolarizability density B(r; r’, (o’, r”, or”) gives the polarization induced

at r bythe lowest-order nonlinear response to a field of frequency 0)’ acting at r’ and a field 4

of frequency to” acting at r”. Integrating Bah“; r’, (u’, r”, to”) with respect to r, r’, and

r” over all space yields [3 ((1)’, to”), while moment integrals of Bap-(m r’, w’, r”, to”)
a 7

give all of the third-order higher multipole susceptibilities.

For the proof to be given here, we require the hyperpolarizability density

Barfly“; r", to, r”, 0), which has the form

Bony“; r’, a), r”, 0) = [1 + C(tu —+ -0))] x

{( o | Pa(r) 6(a)) [Pym - P700(r”)] 6(a)) PB(r’) l0)

+ ( o l Pa(r) 6(0)) (950-) - PBOOh- )1 0(0) P70“) | o )

+ ( o I P7(r”) (3(0) [Pa(r) - Pawn» 6(a)) Pfl(r’) I o )} ’.

(3)

Eq. (8) is derived by analogy with Eq. (43b) in Ref. 18. For compactness, we have used the

notation Puma) = ( 0 I Pa(r) I 0 ), and similarly for Pfloo(r’) and P700(r”). Damping has

been neglected in Eq. (8).

From Eq. (4), if a molecule is placed in a static external field Fs(r), its reaction to

an additional external field F(r, to) [19] can be characterized by the effective polarizability

density a°(r; r’, to; F5), given by

ae(r; r’, 0); F) = a(r; r’, to; F3 = 0)

+ I dr” B(r; r’, (u, r”, 0) . F5(r”)

+ . (9)

The permutation symmetry of the B hyperpolarizability density has been employed to

obtain this result.
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3.3 Change in Polarizability Density due to an Infinitesimal Shift in Nuclear Position

A shift 5RI in the position of nucleus I in a molecule changes the nuclear Coulomb

field acting on the electrons. In this section, we prove directly that the resulting change in

polarizability density is determined by the same hyperpolarizability density Ba Y(r; r’, 0)’,

r”, m”) that fixes the response to external fields. Specifically, we show

acme; r’, cu)/aR1a = I dr 5518‘" r’, to, r”, 0) 2I The", R1), (10)

where ZI is the charge on nucleus I and T5a(r”, R1) is the dipole propagator.

The proof in this section is based on direct differentiation of the polarizability den-

sity “0130.; r’, (u) with respect to RI? . From Eq. (6),

Bataan; r’, (tn/8R17 = [l + C(co —-> -o))] x

[ ( 30/3187 Irma) G(to) PB(r’) Io )

+ (0 Iran) ileum/31?}1r 95m I o )

+ (o IPa(r)G((o) PB(r’) 130181117) 1. (11)

To convert Eq. (11) into Eq. (10), we first take the derivative of the ground state

with respec to an arbitrary parameter 1] in the Hamiltonian,

lac/an) =-o(0) aH/an IO). (12)

We also require the derivative of the operator 6(a)):

86(w)/8n = - G(w) 3(H - 130an 6(0))

+ pearl/an (3(0) G(to) + G(tu) 0(0) art/an too . (13)

Specializing Eqs. (12) and (13) to the case n = R17 gives the derivatives in Eq. (11).

The change in the Hamiltonian due to the shift 8R17 is given by

art/aidY = I dr zI VIY Ir - R1 l-1 p(r). (14)

where V17 denotes B/BRIT Eq. (14) for arr/3R1? can be rewritten in terms of the polariza-
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tion operator P(r) by using Eq. (5) for P(r) and p(r), integrating by parts with respect to r,

andusing

I -l _ I I -l
Valr-Rl --VaIr-RI . . (15)

Thisgives

1 _ _ n I . u 1

arr/aRY- I dr 2 P5(r')Tfi(r ,R). (16)

Together, Eqs. (8), (11)-(13) and (16) prove Eq. (10) for 8am“; r’, (ID/3R1“.

Equivalently, the polarizability density “6043“; r’, to) for the molecule perturbed by an

infinitesimal shift of nucleus I satisfies Eq. (9), with Fs(r”) replaced by 8f I r”), the infin-

itesimal change in the Coulomb field of nucleus 1, due to its displacement by 8R1. This

shows that the molecule responds via to the change in the Coulomb field of nucleus I via

the same hyperpolarizability density that governs its response to external fields.

Integrating Eq. (10) over all space with respect to r and r’ gives the Eq. (3) for the

derivative of the electronic polarizability (157(0)) with respect to Rla. Clearly the derivative

of the polarizability (1043(0)) with respect to the normal mode coordinate qv is

aaafl((r))/aqv = 2 BaaB((o)/3RIY only /aqv. ' (17)
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3.4 Discussion

This work has shown that the derivatives of the polarizability density with respect

to nuclear coordinates depend upon the dipole propagator and the hyperpolarizability den-

sity B(r; r’, (0’, r”, 0); the density B yields the lowest-order nonlinear response to imposed

fields, on integration. Thus, we have generalized the relationship between static linear and

nonlinear response tensors [8] to the frequency-dependent case.

Our work also gives a new expression for the second derivative of the dipole with

respect to nuclear coordinates, for a molecule in any nuclear configuration. From Eq. (2)

for auB/aala and Eq. (10),

day/812103319B = zI zJ I dr dr’ dr” awn: r’, o, r”, 0) rash-'3 R’) T5a(r’, R1)

+ 218,, I dr dr’ case; r’, 0) TJMu-z R1),

(18)

where Time, R1) = - Va VB VY( l r - R1 H). (r tensors of odd orders are odd in the

difference between the two arguments r and R’). A shift in the position of nucleus I from

RI to RI + 5RI changes the field at point r, due to nucleus 1, from

fla(r) = - VaZ‘( Ir - R1 I")

fto f1a(r) + 8f1a(r) + 1/2 82f1a(r) + = - Va 21 ( Ir - R1 l-1)+ 21 TaB(r’ R1) 8111‘3

+ 1/2 zI Timur, RI) 8R‘B 6R1? + .

(19)

Thus the first term on the right in Eq. (18) represents the nonlinear response (via B) to the

changes in the nuclear Coulomb field at r’ and r”, while the second term represents the

linear response (via a) to the second variation in the field at r’. Extensions of this analysis

to find higher derivatives of the dipole and to find second and higher derivatives of the sus-
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ceptibilities are straightforward. Immediate uses of the results from this work are concep-

tual rather than computational. Applied to single-molecule polarizabilities, our work pro-

vides a new physical interpretation for integrated intensities of vibrational Raman bands,

by showing that the band intensity depends on the response of the molecule to the change

in Coulomb fields of the nuclei, via the B hyperpolarizability density. For interacting mol-

ecules with nonoverlapping or weakly overlapping charge distributions, induction and dis-

persion energies, collision-induced dipoles and collision-induced polarizabilities are all

related to the single-molecule polarizability densities. Thus, Eq. (10) determines in part the

nuclear-coordinate dependence of these properties.

For computational purposes, methods of finding the required components of

a(r; r’, 0) are known (see Refs. 5 and 7, and references therein), and methods of approxi-

mating B(r; r’, a), r”, 0) are currently under development. With information on

B(r; r’, to, r”, 0), it should be possible to identify the regions of the electronic charge dis

tribution that make the principal contributions to the vibrational Raman band intensities

for isolated molecules; and this would facilitate tests of atom- or group-additivity approx-

imations. The dipole propagator tensors appearing in dragon/3R1“ weight the regions

nearest to nucleus 1. This tends to support additive approximations, provided that

B(r; r’, to, r”, 0) is largest for small Ir - r' I and Ir - r” I.
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CHAPTER IV

FORCES ON NUCLEI IN INTERACFING MOLECULES

Abstract:

When the charge overlap between interacting molecules or ions A and B is weak or

negligible, the first-order interaction energy depends only upon the molecular positions,

orientations, and the unperturbed charge distributions of the molecules. In contrast, the

first-order force on a nucleus in molecule A as computed from the Hellmann-Feynman

theorem depends not only on the unperturbed charge distribution of molecule B, but also

on the electronic polarization induced in A by the field from B. At second order, the inter-

action energy depends on the first-order, linear response of each molecule to its neighbor,

while the Hellmann-Feynman force on a nucleus in A depends on second-order and non-

linear responses to B. One purpose of this work is to unify the physical interpretations of

interaction energies and Hellmann-Feynman forces at each order, using nonlocal polariz-

ability densities and connections that we have recently established among permanent mo

merits, linear response, and nonlinear response tensors.

Our theory also yields new information on the origin of terms in the long-range

forces on molecules, through second order in the interaction. One set of terms in the force

on molecule A is produced by the field due to the unperturbed charge distribution of B and

by the static reaction field from B, acting on the nuclear moments of A. This set origi-

nates in the direct interactions between the nuclei in A and the charge distribution of B. A

second set of terms results from the permanent field and the reaction field of B acting on

the permanent electronic moments of A.
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This set results from the attraction of nuclei in A to the electronic charge in A itself, polar-

ized by linear response to B. Finally, there are terms in the force on A due to the perturba-

tion of B by the static reaction field from A; these terms stem from the attraction of nuclei

in A to the electronic charge in A, hyperpolarized by the field from B.

For neutral, dipolar molecules A and B at long range, the forces on individual

nuclei vary as R'3 in the intermolecular separation R, at long range; but when the forces

are summed over all of the nuclei, the vector sum varies as R4. This result, an analogous

conversion at second order (from R‘6 forces on individual nuclei to an R'7 force when

summed over the nuclei), and the longrange limiting forces on ions are all derived fiom

new sum rules obtained in this work.



24

4.1 Introduction

When molecules A and B interact, the net force F1011 nucleus I in molecule A is the

sum of the force FRO) on I in the absence of molecule B and an interaction-induced force

AFI. The interaction-induced force is related to the AB interaction energy AE by

AFICt = - aAE/aala , (1)

where RI is the position ofnucleus 1. Throughout this work, we use the Born-Oppenheimer

approximation: we determine the forces on the nuclei as functions of the nuclear coordi-

nates, fixed within individual calculations but not resn'icted to the equilibrium configura-

tion. The electronic state is the fully perturbed ground state of the AB pair in the specified

nuclear configuration.

For molecules with weak or negligible charge overlap, the first-order interaction

energy, denoted by AB“), is determined completely by the molecular positions, the orien-

tations, and the unperturbed charge distributions of molecules A and B. In contrast, the

first-order interaction-induced force AFIm on nucleus I in molecule A, obtained directly

from Eq. (1), depends not only on the interaction of that nucleus with the unperturbed

charge distribution of B, but also on interaction-induced changes in the electronic charge

distribution of A.

At second order in the A-B interaction, the induction energy AE(2)ind is determined

entirely by the first-order, linear response of each molecule to the field of its neighbor. Yet

the associated induction force AFI(2)ind on nucleus I in molecule A does not originate solely

in the first-order perturbed charge distributions ofA and B. Instead, Mimi“ also depends

on the hyperpolarization of the electronic charge in A by the field from B, and on the

second-order change in the electronic charge density of A due to linear response to the



perturbed charge distribution of B.

The results stated above appear counter-intuitive, although they are fully consis-

tent with the Hellmann-Feynman theorem [1, 2] applied to compute forces on nuclei in

interacting molecules, given the electronic charge distributions. One purpose of this paper

is to connect the physical interpretations of interaction energies and Hellmann—Feynman

forces, order by order. We allow for the possibility that A and B may be ionic. An impor-

tant component in the analysis is the inter-relation that we have recently established among

permanent moments, linear response, and nonlinear response tensors [3, 4].

In Sec. 4.2, we use nonlocal polarizability densities to find AFIU), AEmind, and

Alfie)“. The polarizability density tensors give the polarization produced at one point in

a molecule due to the application of an external field at other points [3-12], and thus repre-

sent the distribution of polarizable matter throughout the interacting molecules. Quantum

mechanical definitions for these tensors are given in Sec. 4.2. Earlier, it has been estab-

lished that the nonlocal polarizability density determines the derivatives of the molecular

dipole with respect to nuclear coordinates [3], and that the first hyperpolarizability density

determines the derivatives of the polarizability with respect to nuclear coordinates [3, 4].

In each case, the molecule responds to the change in Coulomb field 'due to an infinitesimal

shift in nuclear position via the same susceptibility density that determines its response to

external fields.

Our approach, based on nonlocal polarizability densities, holds even when low-

order, point-multipole models break down, provided that overlap and exchange between

molecules A and B are minimal; for example, our analytical results apply to planar mole-

cules in "sandwich" configurations and to long, chain-like molecules in configurations
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where appreciable charge overlap could be produced by rotation of either molecule. Our .

approach includes the direct effects of overlap on the electrostatic and inductive interac-

tions, but it does not account for modifications of the classical interactions due to electron

exchange or charge transfer between A and B. Overlap damping effects on dispersion

energies have been studied extensively at this level of approximation [9, 12-27].

In Sec. 4.3, we take the long-range limits of the forces AFIO) and Mimi“, and

express the results in terms of the field and field gradients due to molecule B, together

with the screening tensors that represent the effects of electronic redistribution in mole-

cule A [28-44]. We then sum over all nuclei in molecule A in order to find the total force

on molecule A. In the process, we resolve a problem connected with the Hellmann-

Feynman interpretation of the long-range forces. For specificity, we focus on the long-

range forces on neutraldipolar molecules A and B: The lowest-order, long-range force on

an individual nucleus in A varies as R'3 in the separation R between A and B--but when

this force is summed over all of the nuclei in A, the R’3 component must drop out, leaving

an R' 4 force on the entire molecule, to leading order. Since the summation runs over

nuclei only, elimination of the R'3 component is not a simple charge cancellation effect.

At second order, the leading term in the force AFIGQ)“ on an individual nucleus

in A depends in part on the attraction of the nucleus to the second-order perturbed elec-

tronic charge distribution of molecule A, and thus it varies as R'6--but when the force is

summed over all nuclei in molecule A, the result must vary as R7. The elimination of the

R‘3 and R’6 terms in the forces on molecule A follows fi'om new sum rules that we derive

in this work. The sum rules apply to integrals involving polarizability densities and dipole

propagators from points in the electronic charge distribution to the nuclei, summed over



the nuclei.

In Sec. 4.3, we also analyze the long-range, interaction-induced forces on molecule

A into components originating in the interaction with the perturbed electronic charge dis-

tribution of A, or with the charge distribution of B, and we obtain new results at both first

and second order. At first order, the interacrion-induced force can be written as a sum of

two sets of terms. One involves the net charge on all of the nuclei in A, and the nuclear con-

tributions to the dipole, quadrupole, and higher moments, while the other involves the net

electronic charge and the electronic contributions to the permanent charge moments. We

' show that all of the terms in AFAU)“ containing the nuclear charge or nuclear moments of

A result from the direct interaction between the nuclei in A and the unperturbed charge dis-

tribution of molecule B; the terms in AFAO)‘ll containing permanent electronic moments of

A result from the attraction of the nuclei to the electronic charge on A, perturbed to first

order by interaction with B.

At second order, the induction energy AEmind is determined by the static "reaction

fiel " acting on molecules A and B. To lowest order, the static reaction field at A is the

field resulting from the polarization of B by the permanent charge and moments ofA

(similarly for the reaction field at B). We show that interactions of A nuclei with the

polarized charge distribution of B appear directly in the force, as terms involving reaction

field effects on the nuclear moments of A. We also show that force terms involving reac-

tion field effects on the electronic moments of A stem from the attraction of the A nuclei

to the second-order, linear change in the electronic charge density of A itself. Finally,

there are terms in the interaction-induced force on molecule A that are associated with the

reaction field at B. These contain linear response tensors on A. We show that these terms
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stem from the attraction of nuclei in A to the electronic charge of A, hyperpolarized by the

field from B.

At second order, the total interaction energy for molecules at long range is the sum

of the induction energy AEmind discussed above and the dispersion energy AE(2)disp' The

dispersion (van der Waals) energy results from dynamic reaction field effects, due to cor-

relations of the spontaneous, quantum mechanical fluctuations in charge density on the

interacting molecules. Previously, we have analyzed dispersion forces using nonlocal

polarizability densities [45], and the results are summarized briefly below. Through second

order in the molecular interaction, the total interaction-induced force is obtained by adding

the forces AF“) and M10)“, determined in this work to the dispersion force found earlier.

We have shown that the dispersion force on molecule A results entirely from the

attraction of nuclei in A to the dispersion-induced change in the electronic charge distribu-

tion on A [45]. In Ref. 45, a direct perturbative approach is used to find the dispersion terms

in the charge densities of molecules A and B, through second order in the interaction. The

polarization of A due to dispersion depends on the frequency-dependent hyperpolarizabil-

ity density of A and the polarizability density of B, taken at imaginary frequencies. Sepa-

rately, the nonlocal polarizability density theory gives the dispersion energy: Spontaneous

fluctuations in the polarization of molecule A produce a field that polarizes B nonlocally.

The induced polarization ofB gives rise to a reaction field at A, with a resultant energy shift

that,depends on correlations of the fluctuating polarization ofA at two points. Via the flue-

tuation-dissipation theorem, the correlations are connected to the imaginary part of the non-

local polarizability density of A. The total dispersion energy is obtained by adding the

energy shifts due to the reaction field effects at A and B, and then it is cast as an integral
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(over imaginary frequencies) of the product of the polarizability densities of the two inter

acting molecules. Comparison of the dispersion force on a nucleus in A evaluated by

differentiating the dispersion energy vs. that calculated from the dispersion-induced change

in the polarization ofA establishes the origin of the dispersion force.

Hunt [45] proved a conjecture by Feynnian about the origin of forces between atom

in S states [1], and generalized it to molecules of arbitrary symmetry. Feynman originally

suggested that [1]:

"The Schrodinger perturbation theory for two interacting atoms at a separation R,

large compared to the radii of the atoms, leads to the result that the charge

distribution of each is distorted from central symmetry, a dipole moment of

order l/R7 being induced in each atom. The negative charge distribution of each

atom has its center of gravity moved slightly toward the other. It is not the interac-

tion of these dipoles which leads to van der Waals’ force, but rather the attraction

of each nucleus for the distorted char e distribution of its own

electrons that gives the attractive 1/R force."

Prior to Hunt’s work, this conjecture had been proven by Hirschfelder and Eliason [46; see

also 47], for the particular case of two hydrogen atoms, both in the 1s state. Hunt [45] pro-

vided the first explicit, general proof, and resolved two problems associated with the con-

jecture. First, the dispersion-induced change in charge density and the dispersion dipole

both depend on nonlinear response tensors [10, 48-51] for molecules interacting at long

range, while the dispersion energy and thus the dispersion forces depend on linear response

[9, 12-27, 52], to leading order. The required connection between linear and nonlinear

response is provided by our recent proof that the hyperpolarizability density determines the

changes in the polarizability when nuclei shift [3, 4]. Second, while the dispersion dipole

varies as R'7 for distinct, nonoverlapping atoms A and B in 8 states, the dispersion-induced

change in charge density actually varies as R'6. Therefore Feynman’s electrostatic inter-

pretation would predict an R’6 dispersion force in the absence of additional constraints.
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A sum rule on the frequency-dependent hyperpolarizability density B(r, r’, r”; in), 0) [45]

eliminates the net attraction of the nuclei to the R'6 component of the electronic charge dis-

tribution. This result is particularly striking for noncentrosymmetlic molecules [45]. For

these species, the long-range dispersion dipole varies as R'6, while the net dispersion force

varies as R'7, as for heteroatoms. The rationale behind Feynman’s conjecture failsuyet the

electrostatic interpretation of the dispersion forces still holds, because of the sum rule on

B(r, r’, r”; in), 0). This work is related to an electrostatic force theory based on the

Hellmann—Feynman theorem, which has been deve10ped by Nakatsuji and Koga [53; see

also 54, 55] and applied to the special case of interactions between two atoms. Within this

theory, a density matrix analysis is used to decompose the forces on nuclei into distinct

terms, and only two forces--the atomic dipole (AD) force and the extended gross charge

(EGC) force--act between atoms at long range. The atomic dipole force on the nucleus of

atom A results from the polarization ofA induced by interaction with B [53]. It corre-

sponds to the attraction of the nucleus of A to the electronic polarization PAa(r)(“) (with n

> 1), in our approach (see Sec. 4.2). The extended gross charge force results from electro-

static interactions of the nucleus in A with the electrons and nucleus of atom B [53];

it corresponds to the force due to the charge distribution pBo(r) and the polarization

PBa(r)(“) (with n > 1). We find the force on a nucleus in A in terms of PAa(r)(1) and p30(r)

at first order in the A-B interaction, and in terms ofPAa(r)(2) and P3a(r)(1) at second order.

This is consistent with the electrostatic force theory. Our approach differs from that in Ref.

53, however, since we use nonlocal polarizability densities to derive PAa(r)(“) and

PBa(r)(“) and thus to deduce the forces, while Nakatsuji and Koga have given the AD and

EGC forces in terms of density matrix elements that are not further specified, in general.
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Based on the density-matrix analysis, Nakatsuji and Koga [53] have concluded that the

electrostatic force theory of long-range interactions is "quite difi’erent from the traditional

energetic theories in both theoretical and interpretative views." This conclusion also con-

trasts with our work. By use of relations we have recently derived among permanent

moments, polarizability densities, and hyperpolarizability densities [3, 4], our work unifies

the theories.This work is related in an indirect way to the incorporation ofinduction effects

into density functional theory, carried out by Harris [56]. Our approach yields the mean-

field interaction energy in terms of the unperturbed charge densities and the induced polar-

ization, computed from the polarizability densities.

4.2 Forces on Nuclei in Interacting Molecules

In this section, we find the interaction-induced forces on nuclei in a pair of mole-

cules A and B from the perturbation series for the interaction energy AE, and we establish

the physical interpretation of the forces. The forces are determined for fixed nuclear con-

figurations. The unperturbed electronic states of the AB system are taken as direct prod

nets of states on A with states on B, under the assumption that overlap between the charge

distributions of molecules A and B is weak or negligible. AB is expanded as a series in the

perturbation vAB [9, 12-27], given by

vAB = I pA(r) pB(r’) Ir-r'l-l drdr’ , (2)

where pA(r) and pB(r’) are the molecular charge density operators:

pA(t-) =2: e 8(r - rj) +2: zI 8(1- - R1) ;(3)

j 1

the sum over j runs over the electrons assigned to molecule A, with position operators rj,

and the sum over I runs over nuclei in A with charges ZI and positions RI.
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The interaction energy AB“), taken to first order in V“, depends upon the perma-

nent charge densities pA0(r) and pBO(r’) of the unperturbed A and B molecules:

AB“) = I pAo(r) pBO(r’) Ir - r’ I’1 dr dr’ . (4)

For a nucleus I in molecule A, the force AFIQ“) derived from AB“) has two components:

the first results from the change in the nuclear charge density of A when nucleus I shifts,

while the second is due to the change in the permanent electronic charge density p°A0(r) of

molecule A (unperturbed by interactions with B) due to an infinitesimal shift of nucleus 1:

Apia“) = - I 3p°A0(r)/3Rla pBo(t-') | r - r’ 1'1 dr dr’

— zI I 85(r - RIVER!“ pBo(t-') Ir - r’ 1'1 dr dr’ . (5)

The derivative of p°A0(r) with respect to RIm satisfies

ap°A0(r)/8Rla = I i dr” 21 Vla Ir” - R1 I-1 x

fut. Ipwr) loom IpWr') let)

+ (gA Ip°A(r") IkAHkA Ip°A(r) ISA) 1/(Eg-Ek).

(6)

where VI0L denotes differentiation with respect to Rlm and it operates only on I r” - RI I '1.

The prime on the summation indicates that the sum runs over the excited electronic states

I kA ) of the unperturbed A molecule, omitting the ground state I gA ). The energies of the

ground and excited states are E8 and Bk; and p‘A(r) is the electronic charge density operator

for A. Eq. (6) shows that the derivatives of the permanent charge density with respect to

nuclear coordinates depend upon a molecular susceptibility. This observation is significant

for the subsequent analysis.

The electronic charge density operator p°(r) is connected to the electronic polarization

operator P°(r) used in defining the nonlocal polarizability density by
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V - Pe(r) = - p°(r) . (7)

In sum-over-states form [9, 10], the nonlocal polarizability density mafia, r’) satisfies

aag(r.r’) = (1+ 60045)}:(8 |P°a(r) |k><k lasso-3 |g>/<E,-E,). (8)

where so 0-3 permutes the operators P‘a(r) and PeB(r’). The value of mafia, r’) is

unchanged by substituting the full polarization operator P(r), including nuclear terms, for

the electronic polarization operator P°(r). in Eq. (8). The nonlocal polarizability density

ans“, r’) represents the distribution of polarizable matter throughout a molecule, because

it gives the polarization Pa(r) induced at point r by the application of a static external field

9’B(r’) at another point r’. Eq. (6) is equivalent to the following statement about the elec-

tronic polarization. in terms of mafia, r’): When a nucleus shifts infinitesimally within a

molecule, the electrons respond to the change in the nuclear Coulomb field via the same

nonlocal polarizability density mafia, r') that describes the response to an eitternal field.

Use of Eqs. (6)-(8) and integration by parts [57] transforms Eq. (5) for the force on

nucleus I in molecule A into

AFIaa) = 21 I (R10L - r’a) I R1 - r’ 1'3 pBO(r’) dr’

+ zI I Tayrtl, r”) crime, r”) (rA - r’B) Ir — r’ l-3 pBO(r’) dr dr’ d5):

Here Tommi, r”) is the dipole propagator, defined by Task, r’) = Va VB Ir - r’ I ’1. The

Einstein convention of summation over repeated Greek indices is followed in Eq. (9) and

below.

To lowest order in the A-B interaction, the polarization PA,(r')(1) induced in mol-

ecule A by the permanent charge distribution of B satisfies



PA (3(1) = I “Arli(r”’ r) (r5 - r’B) Ir - r’ I ’3 pBo(r’) dr dr’ (10)

The Born symmetry condition [10]

«we. r) = «306’. r) (11)

holds for the nonlocal polarizability density. From Eqs. (10)-(11), Eq. (9) is equivalent to

AFIaa) = ZI I (R101 - r’a) I RI - r’ 1'3 p30(r’) dr’

+ zI I rayrrl, r”) PAY(r”)(1) dr”. (12)

Eq. (12) for AFIam is identical to the lowest-order Hellmann-Feynman result; i.e.,

it gives the force obtained directly from the charge distributions p30(r’) and ApAm(r”).

Since it has been derived here fiom A130) in Eq. (4) via Eq. (1), we have proven that the

energy-based theory and the electrostatic force theory give identical results for the interac-

tion-induced force at first order, despite apparent differences in physical content. The

interaction energy AB“) depends exclusively on the permanent charge distributions of the

unperturbed molecules A and B, and not on the changes in the charge densities ofA or B

induced by interactions. From Eq. (12), though, the resultant force AF‘am exerted on

nucleus I in molecule A depends on the electronic polarization induced in A by B. Thus

Eqs. (1), (4), and (12) establish a new connection between pure electrostatic and induction

effects. One key step in the proof involves relating linear response tensors-such as

(10450, r’) or the charge-density susceptibility contained implicitly in Eq. (6)-to the deriv-

atives of the permanent electronic charge density with respect to nuclear coordinates [3, 4].

A second key step relies on the Born symmetry of the nonlocal polarizability density [10].

At second order in V”, the interaction energy is a sum ofinduction and dispersion

terms. Induction effects are classical, stemming from the polarization ofeach molecule by

the field of the permanent charge distribution of the other. In contrast, dispersion effects
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(van der Waals attractions) are purely quantum mechanical, resulting from correlations

between the spontaneously fluctuating charge distributions of molecules A and B [9, 12-

27]. Within second-order perturbation theory, AEQ) is obtained as a sum over states

I mA nB ) of the A-B pair, excluding I gA gB ). Consequently, AEa) splits into three sets

of terms, one with excited states confined to molecule A, a second with excited states con-

fined to B, and a third with excited states on both molecules. The sum of the first two sets

gives the induction energy, as analyzed below. The third set gives the dispersion (van der

Waals) energy; in Ref. 45, dispersion forces have been analyzed using nonlocal polarizabil-

ity densities.

The induction energy AEmind depends on the polarizability densities of A and B,

and on the fields fA()(r) and 7300‘) due to the permanent charge distributions of the un

perturbed molecules A and B.

unwind = — 1/2 I dr dr’ “Acta“, r’) $800!“) rfiofla')

- 1/2 I dr dr’ cinema, r’) float“) mam . (13)

Eq. (13) is derived as follows: Terms in AEQ) with excitations confined to molecule A are:

AE(2)A= —E (gAgB IVAB lkA gB)(kA g3 IVAB IgAgB>/(Ek_Eg)

= - I at ifi"dr"'£’ < gA IpAm I1:A > < kA I We) lgA > / (B, - 15,)

x p30(r'k) Ir - r’ I ’1 p300”) I r” - r’” I ‘1 . (14)

With Eq. (8) for the nonlocal polarizability density, successive integrations by parts [57]

yield the first term in Eq. (13), and the second term is obtained by interchanging the roles

of molecules A and B.

The induction force on nucleus K in molecule A is determined by the derivative of

the polarizability density aAaBO‘, r’) and by the derivative of the field ona(r) with respect
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to the coordinates of K. In Refs. 3 and 4, we have shown that the derivative of the polariz-

ability density with respect to RK depends on the hyperpolarizability density

Bum“, r’, r”), a nonlinear response tensor that gives the polarization Pa(r) induced at r

by the concerted action of static electric fieldsYB“) and 9'7“”). Explicitly, the static

hyperpolarizability density is given by [58, 59]

timer-2m = 5'2 omits lPa(r) |m>1<m IPptr) |n>-8m..<g IP50") 13)]

x (n IP,(r’) |g)/(comg(o,.g) . (15)

where the operator so 0437 generates the sum of terms obtained by permuting Pa(r), PB(r '),

and Pyr”) in the expression that follows, and Em — E3 = mums. In terms ofBum“, r’, r”).

the derivative of the polarizability density is [3] '

and“, r’)/3RK8 = I dr” Bwr, r’, r”) ZK Tfi(r”, RR) . (16)

As noted above, when a nucleus shifts, the electrons respond to the change in the nuclear

Coulomb field via the same tensor that describes response to an external field. Response

via Busy“, r’, r”) to an applied field, acting together with the change in the nuclear Cou-

lomb field, yields a net effect that is linear in the applied field; and thus it determines the

nuclear-coordinate dependence of “04503 r’).

The static B«hyperpolarizability density has the permutation symmetry:

BaBY(r, r’, r”) = Baffin, r”, r") = Bm(r.”, r’, r) . (17)

From Eqs. (1), (13), and (16),

AFKAOAM = 1/2 I dr dr’ dr” 5AM" r’, r') 21‘ Tfi(r”, RK) 9'30”) $30300

+ I dr dr’ «Beau, r') arA0a(r)/aRK€ flop“) . (13)

The derivative of the field due to molecule A with respect to the coordinate of nucleus K in

A satisfies
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ayA‘\(,m(r-)/ali1<e = I dr’ [ (ra - r’a) Ir - r’ | '3 8p“0(r’)/3RKA]

+ 2" VKA (ra- Rx“) Ir - RKI'3

= — I dr’dr”[V’B(ra-r’a) Ir-r’I’3

x zK VKe V”7 I r” - RK I '1 «Afiyr’, r”) l

+ 2“ VKe (ta-Rx“) Ir- RKI'3 , (19)

where V"3 denotes differentiation with respect to r’fi, and similarly for V”? . From Eqs.

(17)-(19), we obtain

AFKAO)ind = 1/2 I dr dr’dr” zK T€Y(RK, r”) Mme", r, r’) yawn) $3060")

+ I dr dr’dr”dr”’ 2K TeymK' rm) aAfiu’”, r”)

x T8a(r”’ r) aBaB(r, r’) 9'A03(r’)

+ I dr dr’ 2“ Tm(RK, r) otBaB(r-, r’) #03") . (20)

Eq. (20) has a simple physical interpretation in terms of the electronic polarization induced

in B at first order, and the polarization induced in A at second order in the A-B interaction:

At first order, the polarization induced in B by the permanent charge distribution ofA is

given by Eq. (10), or equivalently by

Imago“) = I (130,303 r) erBo-i dr' . (21)

At second-order in the A-B interaction, there are two contributions to the polarization

induced in A: (i) linear response to the field due to the induced polarization ofB, P3a(r)(1),

and (ii) nonlinear response to the field 7300a) due to the permanent charge distribution of

B. Hence

PAa(r)(2) ____ I dr’dr”dr”’ “A043“, r’) T570“, r”) “315“”, r’”) fAOSOW’)

+ 1/2 I dr’dr” bAafiyr, r’, r”) $30300 yBOYh-o . (22)

Thus, from Eqs. (20)-(22),
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AFKAQAM = I dr zK rmm", r) [ Mao-)0) + pBamU) 1 . (23)

As given in Eq. (13), [Emma depends solely on the linear response of each mole-

cule to the field from the unperturbed (zeroth-order) charge distribution of the other-but as

shown in Eqs. (21)-(23), the associated force on nucleus K in molecule A depends on the

nonlinear response of A to the permanent charge distribution of B, and on the linear

response of A to the induced polarization of B (as well as the linear response by B to A).

This is a consequence of the connection between linear and nonlinear response in Eq. (16),

the permutation symmetry of the hyperpolarizability density in Eq. (17), and Eqs. (6) and

(1 1).

Eq. (23) for AFKAGAM is identical to the second-order Hellmann-Feynman result;

thus it establishes the identity of the energy-based theory and the electrostatic force theory

at second order. In Eq. (23), the force on nucleus K due to the nonlinear term in PAa(r)(2)

(i.e., the term containing BA) arises from the dependence of “AaB(r’ r’) on the position of

K; the force due to the linear-response term in PAa(r)a) arises from the dependence of

p°A0(r’) on the position of K; and the force due to PBa(r)(1) results directly from the de

pendence of the nuclear Coulomb field on the position of K. It is also interesting to com-

pare Eq. (23) with the corresponding result for the dispersion force on nucleus K,

AFKg(2)disp° The dispersion force on a nucleus K in A contains no contributions from the

polarization of B [45]; it results solely from the attraction of K to the dispersion-induced

change in the electronic charge distribution of A, and this depends upon the hyperpolariz-

ability density of molecule A.
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4.3 The Long-Range Limit, and New Sum Rules for Polarizability and Hyperpolariz

ability Densities

In the long-range limit, for a pair of molecules with charges ZA and 23, permanent

dipoles [IA and A43, and permanent quadrupoles 9A and 93, the force on the entire A mol-

ecule, taken to first order in the A-B interaction, simplifies to [60]

FMI)Cl = _ 2A Ta ZB + 2A TaB “13'3 _ 23 Tap RAB _ 1,3 zA TaBy 9315‘!

+ “AB TGBYuBY- 13 2B ramo"m + , (24)

with the T tensors taken as functions of the vector (RA - RB) between molecular origins,

here and below; Ta(r, r’) = Va Ir - r’ I ‘1, T043 has been defined following Eq. (9), and

Tam“, r’) = Va Vfl V7 I r - r’ I]. At second order in the interaction, the long-range lim-

iting force on a pair of neutral dipolar molecules is [60]

FA(2)ind’ a = “Am T135 #35 Tom ”Be + “8131 T135 l1A5 Tine “A8 . (25)

to order R'7 in the separation bean molecular centers. For ions A and B, to order R“

the net induction force is [60]

FA(2)ind' a = “ABA! TB zB 1‘sz + (1337 TB zA TmzA

- “Amati '1"ms + ragga)? 1135

+ aBBY(TBTW5 + r‘AA'rA)zAu")8

+ 13 MM ( '1‘,3 rm + '1"043 r75 ) 2B 2B

- 1/3ABB’16(TBTM5 + “1*A31‘AA)2A2A +... , (26)

where AAB.)6 is the dipole-quadrupole polarizability, a linear response tensor that deter-

mines the dipole induced by a uniform field gradient, and the quadrupole induced by a

uniform field [60]. It is not obvious how the results in Eqs. (24)-(26) emerge from the

polarizability density theory developed in Sec. 4.2. For example, the result for FA“)Cl
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from Eqs. (10) and (12) depends on the polarizability density of molecule A, as well as the

permanent charge distribution of B; and the result for AFKEQ)“ from Eqs. (21)-(23)

depends on the hyperpolarizability of A. One purpose of this section is to prove that the

forces AFKam and AFKEQ)“, in Eqs. (12) and (23) take on the long-range limiting forms

in Eqs. (24)-(26), when summed over nuclei K. In the process, we gain new information

on the physical origin of terms in Eqs. (24)—(26). We also derive new sum rules that apply

to “01303 r’) and Bum“, r’, r”), in broad analogy to me Thomas-Reiche-Kuhn sum rule

[61] for oscillator strengths.

To first order in the A-B interaction, the induced force AFKam on nucleus K

satisfies

AFKam = - zK I Ta(RK - r’) pBo(r’) dr’

- 2“ I '1‘me - r”) «AW-'3 r) rye - r') pBO(r’) dr dr’dr” .(27)

To find the long-range limit, it is convenient first to expand r’ about the origin RB in mol-

ecule B. This yields

AFKaU) =_ 2K Ta(RK _ RB) ZB + ZK Twat“ _ RB) ”BB

. — 1/3 zK TOMRK- RB) 9337 +

— zKI TwatK - r") aAmfl'", r) rye - RB) zB dr dr”

+ zKI Tua(RK - r”) aAmu”, r) T75“ - R3) [.138 dr dr”

- 1/3 ZKI TaB(RK - r”) aApYfl‘”, r) Tfiér - R3) (31358 dr dr” 2.2%).

Next, we expand the T tensors in the integrands about r = Rx. This gives

AFKaa) =._ ZK (Sufi , YKafl) [ TB(RK _ R3) 23 _ Tmmx , R13) 113-,

+1/3TW(RK- R1593” + ...]

_ K K K_ B _ _ B Bz 80:64ka R)zB TwatK R)u5+...]
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—zK ttKaBAATWmKthB +...] , (29)

where

YKob = — I TaY(RK-r)aAw(r,r’)drdr’ , (30)

“’1‘an = I Ta5(RK-I‘)GA5A3(PJ")(r’-RK)7drdr’ , (31)

and

Rims = 1/2 I rang-r) aA€B(r, r’) (r’- RK)Y(r’-RK)5drdr’ . (32)

Equivalently, in terms of the long-range field fBa(RK) at RK due to molecule B, the field

gradient fB’aBmK), and its gradient 9'3”afiY(RK), Eq. (29) for the force on nucleus K is

AFKOJD = 2“ (6,4, - fig) r3501") + zK exam 73],,(11‘)

+ 2K «Kw?6 13"W(RK) - . (33)

The tensor YKaB is the standard Stemheimer shielding tensor for nucleus K [3, 2841]: If

molecule A is placed in a uniform, applied electric field are, electronic charge redistribution

induced by the applied field changes the effective field at the nucleus from fe to (1 - yx) -

f", to first order in are Thus 1‘“ is the electric-field analogue of the chemical shift tensor.

The relationship in Eq. (30). between the nonlocal polarizability density, the dipole propa-

gator, and the shielding tensor .,x has been proven in Ref. 3 (for related work, see Refs. 34,

40, and 62). Electronic charge redistribution in a nonuniform applied field differs from that

in a uniform field, and the tensors ¢Kafly [63] and KK(1516 reflect the corresponding modi-

fications of the shielding, due to the nonuniforrnity of the field at RK.

In order to obtain the long-range force on the entire molecule A, we return to Eq.

(28), expand the T tensors about RK = RA and r = RA, and sum over nuclei K. In earlier

work, we have derived a condition on integrals of the polarizability density and dipole

propagators for neutral molecules [3]; as modified for species which may have a non-zero
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net charge, that condition is:

eA ~._ K K A , 'z Sufi-2x2 Irma: ,r)aA(r,r)drdr , (34)

where Z“A is the total electronic charge in molecule A. The sum rule in Eq. (34) is derived

by considering the ground-state expectation value of the commutator between the momen-

tum operator pa and the dipole up (see [61]). New sum rules can be derived starting from

the commutators of pa with higher electronic moments, e.g., q!37 defined by

qu = e E rm- rv- , (35)

where the sum runs over the electrons j, and rj gives the electronic position relative to the

origin RA. The ground-state expectation value of the commutator [pw thl is

I = e e
(gllpangpllg) (NOLAYSGBHMWBSW. (36)

In Eq. (36), [1° denotes the electronic part of the ground-state dipole, relative to RA. Since

the ground-state expectation value of the momentum operator vanishes, ( g I [pw gm] I g )

also satisfies

(a “120,.qu |g>=2’[(g lpa |k>(k lqg, lg)-(g 'qu |k>(k Iva Ian

R

= 21 info; IIPa.Ho] |k><k MA,Y |g>/(E,-E,) (37)

where Irn denotes the imaginary component of the expression that follows. Matrix ele-

ments for the commutator between paj for the jth electron and the unperturbed Hamiltonian

H0 are determined by the force on the jth electron; and

N

(gllp,.Hol |k>=ir<g|§lsr1elalrg (33)

. = J

where FIT! denotes the force on electron j due to nucleus 1, and the sum runs over all N

nuclei. Eq. (38) holds because the sum over electrons j of the force due to the other elec-

trons i t j vanishes (cf. [3]).
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The matrix elements for the net force on the electrons can also be cast in terms of the matrix

elements for the electronic charge density operator as:

(g l2): PHI“ hr) = (g l-Z 21 I drp(r) Va(IRI-rI'1) IR). (39)

With Eqs. (8;, (36)-(39), the relation ofIthe operator ([81 to the polarization operator via

(13.! = I dr’ [Pfi(r") r’7 + PY(r’) rB’] , (40)

and an integration by parts, we obtain the new sum rule:

2 2K I rafimK, r) [ aASBm r’) (r'Y - RAT) + aA5Y(r, r’) (r’B - RAfi) 1 dr dr’

K

= CAYSOIB + ueAB 50ft . (41)

From an analogous proof, with qA37 replaced by the third-moment operator $16 defined by

tl315 = efjrBJ-rfirsj = I dr [PB(r’)rYr 5 + P7(r’)r[3 r 5+ P5(r’)rBrY] ,

(42)

and the commutation relation

(gllpadggl lg)=(211/3i)le¢,gbml3 + 93,560!y + cameras]

+(1l/3i)qas (5043 875 + 5075135 + 8‘15 83?) , (43)

we obtain a second new sum rule,

2 2K I rmmK, r) [ otAABu, r’) (r’Y - RAY) (r’5 - RAA)

+ (IAWO', r’) (r'B - RAB) (r’5 - RAE)

+ otAAan, r’) (r’B - RAB) (r’y - RA?) 1 dr dr’

= 2/3 [ 96% 25043 + 96"” 5m + 9““Sufi]

+ 1/3 qug (599 516 + swat38 + 805 65?) , (44)

where 6"“ and q“ are determined with RA as the origin. With the sum rules in Eqs. (34),

(41), and (44), the net long-range force on molecule A, obtained by summation ofthe forces

in Eq. (28) over the nuclei K, reduces to Eq. (24). This is consistent with physical expec-

tations. In addition, the work above makes it possible to draw a new conclusion about the
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of molecule A are Split into their electronic vs. nuclear contributions, 2"", 1.1“, and 9““

vs. Z“, 11'“, and 9“, then the first-order induction force on molecule A can be recast as

FAG)“ = - z"A Ta zB + z“ TaB “BB — zB 1‘043 “MB - 1/3 2“!) Tam6357

4» “M13 TaB‘luBY— 1/3 ZB Tab-y 9““fly +

- ch Ta 23 + ZeA TaB uBA _ ZB Tali ueAp _ 1,3 zeA Ta!” 98131

+ 11“,, raw1137- 1/3 zB ram Br + . (45)

From our analysis in Eqs. (27), (28), and (34)-(44), we conclude: each of the terms in Eq.

(45) that contains the nuclear charge, dipole, or quadrupole moment on A originates in the

direct interactions of the nuclear charge on A with the unperturbed charge distribution of

B; each of the terms that contains the permanent electronic charge, dipole, or quadrupole

moment on A originates in the attraction of the nuclei on A to the electrons on A,perturbed

to first order by the interaction with B.

Next, we consider the long-range limit of the second-order induction force

FA(2)ind,a' For neutral, dipolar molecules, expansion of Eqs. (21)—(23) as above and elimi-

nation of terms that contain 2" or ZB leaves

FWAMA =2KzK/2 I dr dr’dr” Twmx, r”) Mme", r, r’)

x [Tom Tm 113“ ttBA + '1"cm TBA): 11"“ 113,513A - RAA)

'— 13 Tom TBAK ”Bu 631x + Tam: TBA “Bu ”Bi. (r1: ' RAK)

-1/3 TanxrmuBA 9an + 1

+2?( zK I dr dr’dr”dr”’ Tfl(RK, r’”) aAAu'", r”) “Bap“, r’)

x 1 T8“ TB“ 11A“ — T8“ T5,“ uA,‘ (r’K - R3,)

A ~ A
*1/3T5oTplut 9A).: + TsoxTan“ n“ 33“ l.)
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— TM T1311 AtA1r| (rA- R3,) + 1

+ 12‘: zK I drdr’ aBaBO', r’) x [Tea 1.13).qu +1/3 rm TA,m 9A,“

— ea Tan “A“ (fix ' RBK) + Tea}. TBn “All (Rx). ' RAI)

— rm TB" 11A11 (r7A - REA) + 1 , (46)

complete to order R'7 in the A-B separation. The R‘6 terms in Eq. (46) and the terms con-

taining 9Akor 93M vanish for neutral molecules because of the sum rule in Eq. (34) and

the sum rule for the B hyperpolarizability [45],

K . n K . A u _
213(2Idrdrdr Tum,r)[3A5a(r-,r,r')-o. (47)

With the additional sum rule contained in Eq. (41), and the results [10]

B _ ’ Ba up .. Idrdr a 043mm. (48)

and [451

in It: zKI dr dr’dr” TAE(RK, r”) Mme", r, r’) (rn - RA“)

+ vi): zKI drdr’dr” rAeatK, r”) aAAna(r-", r, r’) (r8 - RA5)

= 1/2 [ct‘fi1L6 8m + (1AM 582] , (49)

Eq. (46) reduces to Eq. (25), as required.

HFA(2)in¢a is written as a sum of three terms, 31, 32, and 33, where

3, = otAAY T135 “Ba Tm u"e , (50)

82 = “BB? T58 “A5 Tm ”6A8 9 (51)

and

83 = (lam TBS 11% Tom unAe , (52)

then the analysis above provides a new physical interpretation, which is distinct for each

term. (It should be noted that the electronic part of the dipole 11"“: appears in 32, while the

nuclear part LIME appears in 83; the factor LIAS appearing in both 82 and 83 is the total
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dipole of molecule A.) The term 81 originates in the attraction of the nuclei in A to the

electronic charge distribution of A, hyperpolarized by the permanent dipolar field from

molecule B. The term 32 also stems from the attraction of the nuclei in A to the electronic

charge distribution of A, in this case perturbed by linear response to the dipole induced in

B by the permanent dipole of A. Finally, the term 33 reflects the direct attraction of nuclei

in A to the fu'st-order perturbed charge distribution of molecule B, PBa(r)(1) in Eq. (21)

A similar analysis holds for interacting ions A and B. To obtain results complete to

order R'6, we use [10]

MM37 = 3/2 I dr dr’ 1 otAay (r, r’) (r'l3 — RAB) + «AA (r, r’) (r’Y - RAT)

— 2/3 i3!37 a4“, (r, r’) (r’a - RAE) 1 , (53)

and two new sum rules for the B hyperpolarizability density, derived next. We use Eqs.

(15), (38), (39), and (42); we also use '

(g I [pa.ug]|n)= gut Ipa’lmxm In, In>- (g In, Im><m In, |n>l

-(g|ug|g>(g|pa|n). (54)

the analogous relation for( g I [pm tfifi] In), the fact that ( g I [1)“. LLB] I n ) vanishes for

any n ¢ g, and (assuming for simplicity that the molecular states are real)

(mlpa|n>=-(n|pa|m>. (55)

Together, these results yield

A): 2K I dr dr’dr” Te¢(RK, r”) Mme", r, r’) Tarm (r'A - RAA) (r’K - RAA)

= i/(3rzlra'rmpzl'1ug lipstml |n><n In, lg)

+(glllaIanIIPertBMlIg)]/(1)ng. (56)

From the analogue of Eq. (43) for transition matrix elements of the commutator [p8, tle1’

and the sum-over-states expression for A [60],
a.By
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Aa,,,,=§'t<gleg,ln><nmale)+<g|ua|n><nlem|g)l/umng. (57)

weobtain

2 zKI drdrdr" TA(RK, r’A’)BWe"r,r’) rarBAK(r'A-RAA)(r'K-RAK)

A
= 2/3 T0LTWE A (58)

9.137 ‘

The final sum rule is obtained similarly, using transition matrix elements of [pa, qm] in

place of [pa, tflfi], and using Eq. (40) for qm; it is

2 2K I drdrdr 3‘A(R, r”) 5AM)(r”, r, r’)TMrs”-AR111)“ R41)

= 2/3 T”TBA (59)
0:137 ‘

With Eqs. (47)-(49), (53), (58), and (59), for interacting ions A and B, we finally obtain the

net long-range force FA(2)M’G on A as a sum of terms 55 '1. 3 ’2. and S '3. where

._ A B B_ A BB
31‘“BYTBZ Tmz am(TBTaye+TaBT-16)Z 1,15

. A . a B
+ l/3A [3.315(TBTcn6 + TdBTyS)Z Z + , (60)

. _ 13 A A_ a ' A A
Sz—aBYTBZ Tot-12¢ l/3A 3.78(T5Ta75+TaBTyS)Z 2°

+ «BBYTB Tm,5 2A itiAAsuothT043 r15 ALASZCA + , (61)

and

. _ a A nA__ a A M

+ (135? TB rW5 2A unA5 + “391T04; T15 11A, 2M + . (62)

S ’1, S ’2, and 3 ’3 add to give FA(2)ind,a in Eq. (26), as required. As a significant new result

from our analysis, we can explain the physical origin ofeach of the terms 3 '1, S ’2, and 3 ’3

separately. The interpretation is analogous to that for the net forces on interacting neutral

molecules. Terms in S ’1 contain linear response tensors of molecule A; they originate in

the attraction of nuclei in A to the perturbed electronic charge distribution of A, hyperpo-

larized by interaction with the permanent moments of B. This interpretation reflects the
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deep connection between linear and nonlinear response; Eq. (16) gives one example.

Terms in S ’2 contain the reaction field effects on the electronic charge and moments ofA;

these all originate in the attraction of nuclei in A to the perturbed electronic charge distri-

bution on the same molecule--but in this case, the perturbation is produced by the field and

field gradients due to the polarization induced in B, rather than the permanent polarization

of B. Just as the interpretation of the first term relied on the connection between linear and

nonlinear response [3, 4], the interpretation of 3 ’2 use: a similar connection between per-

manent moments and linear response tensors [3]. Finally, terms in 3 ’3 contain the reaction

field effects on the nuclear charge distribution in A. These originate in the direct attraction

of nuclei in A to the perturbed charge distribution of B.

4.4 Discussion and Summary

In this chapter, we have unified the seemingly disparate physical interpretations of

Hellmann-Feynman forces on nuclei in interacting molecules vs. the forces obtained direct-

ly from interaction energies. Our results at first order are derived in Eqs. (4)-(12) of Sec.

4.2. They follow from two key relations: the connection between susceptibility densities

and the derivatives of the permanent charge density with respect to nuclear coordinates [3],

and the Born symmetry of the nonlocal polarizability density [10]. At second order, the

results follow from the connection between linear and nonlinearresponse tensors contained

in Eq. (16) [3, 4], the connection between permanent moments and linear response tensors

[3], and the permutation symmetry of the hyperpolarizability density, Eq. (17). This is

proven in Eqs. (13)-(23) of Sec. 4.2.

In Sec. 4.3, we have derived the lowest-order force on a nucleus in molecule A in

terms of shielding tensors [3, 28-44] and the field and field gradients at the nucleus due to
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molecule B. In this section we have also derived new sum rules applicable to the polariz

ability and hyperpolarizability densities. Each of the new sum rules involves the dipole

propagator from a point in the electronic charge distribution to the nuclear position RK,

multiplied by the charge on nucleus K, and summed over nuclei. Our sum rules on the

polarizability density mafia, r’), Eqs. (41) and (44), have been derived from ground—state

expectation values of the commutator of p with the second and third charge-moment oper-

ators qt37 and tfiyfi’ It should be noted that the commutator of p with the charge moment of

order it depends on the moment of order (n- l ). The momentum operator p is the generator

of infinitesimal translations, and the origin-dependence of the charge moment of order n is

determined by all lower.order moments. New sum rules applicable to the hyperpolarizabil-

ity density Bum“, r’, r”), Eqs. (58) and (59), have been derived starting from transition

matrix elements of the commutators of p with charge moments. In general, the sum rules

connect integrals of mafia, r’) and the dipole propagator with permanent charge moments,

while they connect integrals of Bab-1(r’ r’, r”) and the dipole propagator to linear response

tensors.

With the sum rules, we have obtained the long-range limiting results for the forces

on molecule A at first and second order in the interaction. This analysis provides new

information about contributions to the long-range force: If we split the charge, dipole, qua-

drupole, and higher moments on molecule A into their electronic and nuclear parts, then the

first-order interaction-induced force FAG)“ can be separated into two sets of terms, one

dependent on the nuclear moments ofA and the other on the electronic moments of A, as

in Eq. (45). All of the terms in FAQ)“ that contain nuclear moments stem from the direct

interactions between the nuclei in molecule A and the unperturbed charge distribution of
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molecule B, while all of the terms in PAW“ that contain electronic moments originate in

the interaction between the nuclei in A and the electronic charge distribution ofA itself,

polarized by B. It is important to note that the terms in the second set depend upon the per-

manent (unperturbed) electronic moments ofA--yet they represent effects due to the polar-

ization ofA by is, as determined by linear response tensors of A. Our interpretation is pos

sible because of the sum rules derived for aaB(r’ r’).

We have also obtained new information about the origin of contributions to the

second-order force AFAg(2)ind on the entire molecule A at long range. Each of the terms

that contains a linear response tensor on molecule A stems from the attraction of nuclei in

A to the component of the electronic charge distribution in A that has been hyperpolarized

by fields from the permanent charge distribution of B. A second set of terms in AFAe(2)ind

represents the interactions of the reaction field at A with the electronic moments of A.

These terms result from the attraction of nuclei in A to the electronic charge density of A,

perturbed linearly, at second order by molecule B. The final set of terms in AFAgmind rep-

resents the interactions of the reaction field at A with the nuclear moments of A; and this

set stems from the direct interaction between nuclei in A and the first-order polarized

charge distribution of B.

For the specific case of two neutral, dipolar molecules A and B, the lowest-order,

interaction-induced forces on individual nuclei vary as R'3 at long range, as shown by

expansion of Eq. (27). The lowest-order force on the entire A molecule varies as R4,

however, due to the sum rule in Eq. (34). This is not a simple charge cancellation effect,

because the force on the entire A molecule is obtained by summing over the nuclei only;

the net force on the electrons vanishes in the (perturbed) ground state. At second
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order force on nuclei in A stems from their attraction to the second-order perturbed charge

distribution of A--yet this force varies as R'7, rather than R’6 because of the sum rules in

Eqs. (34) and (47).

The results obtained here hold the potential for computational applications, in

analyzing intramolecular contributions to the net forces on nuclei in interacting molecules,

and in analyzing collision-induced vibrational transitions. The polarizability density

(10430; r’) can be computed with pseudo-state techniques [24], or via connections we have

found [9] to auxiliary functions used in computing overlap.damped dispersion energies

[21-25]. Related methods of computing the hyperpolarizability density B04370" r’, r”),

density-functional methods, direct perturbative approaches, and analytic differentiation

techniques [64] are under investigation for computational tractability. At present, the new

results from this work are important principally for the physical interpretation they offer

for the forces on nuclei in interacting molecules.
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CHAPTER V

ELECTRIC FIELD SHIELDING EFFECTS IN INTERACTING MOLECULES

5.1 Chemical Shift and Electric Field Shielding at Nuclei

In nuclear magnetic resonance (NMR), the local magnetic field at a nucleus in a molecule

is not exactly the applied one, rather

Bk":m = (5018 - cup) B “‘B , , (1)

where B m is the applied field, 0 is called the shielding tensor or chemical shift. This is

because the applied field induces a current in the electrons of the molecule, which produce

an extra contribution in addition to the applied field [1].

Similarly when a molecule is placed in an applied electric field, according to

Fowler and Buckingham [2], the local field acting on nucleus I satisfies:

Fla = P(O)cl + (5043 — 71043)]:13 + 1/2 (JimM Pl3 FY+ 1/6 1129,5133 1:Y F5

+1/3 (3/2 R1l3 5m + 3/2 R17 5643 - R1a5m+ vIaBy) F57

+1/3C10W5F‘5 135+ , (2)

where 11, ()1, 111, V1, C1,. . . are response tensors, F‘3 is the B component of the applied field

at the molecular origin, and P,57 is the field gradient at the molecular origin, while Bola

represents the electric field at nucleus I in the absence of external fields. Usually 1‘ is

called the dipole electric shielding tensor and (b1 the quadratic dipole shielding tensor. This

is beCause the applied electric field distorts the electron cloud around the nuclei in the

molecule, which produces an extra contribution in addition to the applied field.

56
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5.2 Relationships Between Electric Field Shielding Tensors, Dipole Derivatives,

Polarizability Derivatives and Nonlocal Polarizability Densities

The relationship .

dug/8R1“ = zI (5an - Jinn) (3)

between the electric field shielding tensor 71,18, and the derivative of the dipole with

respect to the coordinate of nucleus 1, Bus/3R1“, was established by Sambe [3], Epstein

[4], Lazzeretti and Zanasi [5,6], and Wolinski, et al ['7]. Fowler and Buckingham [2] gen-

eralized the theory to treat molecules in nonuniform fields and to allow for nonlinear

response to the applied field. The generalization provides a new relation between Raman

(and hyper-Raman) intensities and higher order shielding tensors; e.g. :

aritB_/8RI0L = 21(1)!0457 ‘ (4)

There are also relationships between derivatives of the quadrupole moment and

quadrupole polarizabilities and the shielding tensors for molecules in a uniform field

gradient [2, 8-11].

By use of nonlocal polarizability densities to analyze electronic charge redistribu-

tion in a molecule, Hunt [12] finds new expressions for “ab and (Mam in terms of nonlo-

cal polarizability densities:

y'afl = - Idr dr’ Tm( R1, r ) aABY( r’, r) =(6a3 - Bus/3R1“ ) / 21

or Bun/3R1“ = zI (5&3 - up)

= zI [8,143 + 1dr dr’ ray RI, r ) otABY( r’, r )1 (5)

(Plum = i dr dr’drT’Ta5( RI, r) [35370, r’, r”) = Bow/8R1“ / ZI

or Dorm/BRIcf 21 I dr dr’dr’Ta5( RI, r) (353% r, r’, r”) (6)

where ZI is the charge on nucleus 1, and TMS ( r , r’ ) is the dipole propagator:
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TaB(r,r’)=Tafl(r-r’)=VaVfl(lr-r’ 14) (7)

(13% r’, r ) is the nonlocal polarizability density and B554 r”, r’, r) is nonlocal hyper-

polarizability density. In all equations, the Einstein convention of summation over repeat-

ed Greek indices is employed.

Equation 5 gives an important new physical insight into the change in the molecu-

lar dipole moment that results from an infinitesimal shift in nuclear position. The electron-

ic charge distribution responds to the change in field via the same nonlocal polarizability

density a.( r, r’) that determines its reaction to an external field; and this respOnse changes

the electronic component of the molecular dipole.

Equation 6 explains the connection between (plum and WERIG: the effective

polarizability of an electronic charge distribution in a perturbing field can be expanded as

a series in the field, with a leading correction term that depends linearly on the perturbing

field and the nonlocal hyperpolarizability density B(r”, r’, r).

These relationships give the possibility not only to find new results for the forces

acting on nuclei, but also to find the electrical shielding effects in interacting molecules.
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5.3 Electric Field Shielding Effects in Interacting Molecules

New analytical results for forces on nuclei in interacting molecules have been given

in terms of nonlocal polarizability densities, in Chapter IV.

To first order in the A-B interaction, the induced force AFKam on nucleus K in

molecule A satisfies

AFKGO) = _ ZK j Tami: _ r’) p30(r’) dr’

— zK I 1‘“me - r”) «AMP; r) r7( r - r)pBo(r-) dr dr’dr” (8)

where ZK and RK are the charge and position of nucleus K, respectively, T, TwT , . . .

are propagator tensors, aA(r”, r) is the nonlocal polarizability density of molecule A, and

p30 is the unperturbed charge density of molecule B.

The second order induced force Exec)“, on nucleus K is:

AFK8(2)ind = 1/2 I dr dr’dr” zK TJRK, r”) BANG”, r, r’) 73%(r) yBoBu')

+ I dr dr’dr”dr”’ 2K T”(RK, r...) “Ase(""’ r”)

x Tana”, r) (13030, r’) fAOB(r’)

+ I dr dr’ zK Tw(RK, r) otBaBa, r’) aerflm . (9)

where flAwu”, r, r’) is the nonlocal hyperpolarizability density, on is the field

in molecule B produced by the unperturbed charge distribution of molecule A, and 9'30 is

obtained by exchanging A, B in the above statement.

By taking the long-range limit of AFKGU) and AFK£(2)M , we prove that

intermolecular fields are screened via the same shielding tensors introduced in Sec. 5.1.



To find the long-range limit, it is convenient first to expand r’ in Ta and T7 about

the origin RB in molecule B. This yields

AFKaO) =_ 2K TamK_ RB) 23 + 2K TflfimK- RB) “BB

-1/3 2“ TQMRK-RB) 93131 +

_ K K_ . A u _ B B u

z Irwm not Br" ,r)TY(r R )z drdr

K K, , A ~ _ n 3 u
+ Z ITaB(R r’)a I)?" ,r)T_fi(r R )u 5 drdr

-1/3 zKI TaB(RK-r”) otAm(r-", r) Tssér'RB) (3‘35e drdr” + ,

(10)

where 23: I pBO(r’) dr’ (23: o, for neutral molecules) (11)

113 =I p%(r)(r'-RB) dr'. (12)
B B .

and -

9337:1/2 I pBO(r’)[3(r’-RB)B(r’-RB)1-Ir’-R3125m]dr’. (13)

Then by expanding r in the T tensors about Rx, one obtains:

AFKJD = — 21%).,B - 16,911me - RB) zB - Twat“ - R”) u“,

+ 1/3'1‘W(RK-R1593v5 + ...]

—zK Axum [TMRK-RBnB ,- “1",1'5(RK-RB).nB5 + ...]

-zK«Raw;yrmfimx-R13)zB + ...]

= 2“ (Sup - #04,) matrix)

+ 21‘ xKeith TBO'Br‘RK)

+ 2“ “Kenya $30"W(RK) + . I (14)
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where 1“”= — I '1‘me -r-)otAfin, r’)drdr [4] (15)

“up? = I Ta5(RK-r) aASB(r,r’)(r’-RK)7dr dr’[13] (16)

trK0M =1/2 I Tm(RK-r) GAEBO', r’) (r’-RK)Y(r’-RK)5drdr’, (17)

B K ._ K_ B B K, B B _ K_ B
9r73mm )- TB(R R )z + TBY(R R )tt 7 ”311375“ R )9375+...(18)

’B‘RK)=-r RB)zB+T (RK-R'mtB -
BARK 1378 5 (19)

and

fBo’MRK) = - T5,,(RK RB) 23+ (20)

The first order induced force AFKGO)on nucleus K in molecule A at long range

all comes from the screened field due to the unperturbed charge distribution of molecule B

(the net charge 23-, permanent dipole 113, quadrupole 93, ...). Due to the electronic charge

redistribution in molecule A, however, the effective field acting on nucleus K in A is not

the total field of $30; instead, it is (1 - 119530 for the linear response to 9'30. It is 1K:

:rBo’ for the linear response to the gradient of $30 , 1:19.730” for the linear response to

the gradient of the gradient of $30. That is, the tensors AK [13] and KK reflect the modi

fications of the shielding, due to the nonuniformity of the field at RK°

Similarly, for the second order force Exam“, , we expand r and r’ in molecule

A about the nuclear position of RK:

$30016) = 73a(RK) + (r-RK)5 fB’05(RK) + 1/2 (r-RK)Y(r-RK)5 fB”aY5(RK) +

(21)

23056) = 235(RK) + (r’-RK)5 YB’Ba(RK) + 1/2 (r’-RK)Y(r’-RK)5 yB"W(RK) +

(22)
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and we define:

figure) = I dr dr' Tgac". r) «Page. r) erfitr). (23)

Eq. 23 gives the reaction field from molecule B, due to its response to the field ifA03(r ').

Then the first term in Eq. 9 becomes:

1/2 I dr dr’dr” ZK Tam“. r”) BARN”. r. r? 230““) $3050?

= 1/2 I dr dr’dr” 2K TEY(RK, r”) BAwu", r, r’) :rBa(RK) fBB(RK)

+ I or drdr" 2K Twat“. r') BAmgfl”. r. r) ( r-R‘K)5 flaw") 731353"

+ ,

= 1/2 zKoK m5 73am“) $330119

+ 1/3 thKwB, 73am“) faggot“)

+ , (24)

where ex is the quadratic dipole shielding tensor defined in Eq. 6 and

CKeaBS = 3 I dr dr’dr” T€Y(RK, r”) BAWB(r"’ r, r’) ( r-RK)5, CK is also a response tensor.

The second term in Eq. 9 becomes:

I dr dr’dr”dr’” 2K Tfl(RK, r’") aAfifl’", r”) T500”, r) otBaBu, r’) onflh)

= I d1,”dr... ZK Tam“. (,3 “A150,... I...) 7Bsm("'7

= - 2K 1 f1, flat-(BK) - #4,, ragga-(Rx) - xK,a35rB"aB,~‘(RK)- 1

(25)

where 1" , AK, KK are the same as defined in Eq. 15, 16, 17 respectively.

The third term in Eq. 9 is:

I dr dr’ 2“ Tw(RK, r) aBaBO‘, r’) yAOBh)

= 2“ fBe'WRK) (26)
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Combining Eq. 24, 25, 26,

AFKg(2)ind

=+ 2K [(5043 — #85) yBammK) + #835 fB’Ba'“(RK) + terBsgrB"a55re-(RK) + 1

+1/2 2K 6K eaB yBamK) 735m“)

+ 1/3 zK €11,135 rBamK) rB'Bgtkl‘)

+ , (27)

Equation 27 shows how the field due to neighboring molecules and the reaction field are -

screened at second order in the molecular interaction.
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CHAPTER VI

QUANTUM THEORY OF THE MOMENTUM DISTRIBUTIONS

FOR A PARTICLE IN A ONE-DIMENSIONAL BOX

A particle in a one-dimensional box is a widely used model system which appears

in many textbooks ofquantum mechanics [1—8] and quantum chemistry [9-13] as well as in

the Journal ofChemical Education [14]. In most cases, however, it has been discussed

only with regard to the position distributions of the particle. In this work, we emphasize

the momentum distributions for which we obtain a simplified and explicit expression.

We point out the nonclassical features of the momentum distributions, and show that the

distribution bifurcates from unimodal to bimodal as the quantum number increases.

As is well known, quantummechanics notonly describes physical systems, such as an

elementary particle in motion, but also specifies what an observer can know about the sys-

tem. The limits on observations come from the famous uncertainty principle.

For a particle in a one-dimensional box, it is easy to solve the Schrodinger equation

to obtain the wave function exactly. This model problem vividly demonstrates the princi-

ples of quantum mechanics, such as the uncertainty principle, and the connection between

the space representation and momentum representation of the wave function [4].

The time-independent Schrr'idinger equation for a particle of mass m in a one-

dimensional box of length a is:

d2‘1’(x) /dx2 + 81t2mFJh2‘I’(x) = o (o s x s a) (1)

Here ‘I’(x) is the wave function, h is Planck’s constant, and E is the energy. The wave

function satisfies the boundary conditions ‘I’(0) = ‘I‘(a) = 0.
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The normalized solutions are

Wntx) =67; sin(nmda). ’ (2)

where n=1, 2, 3,

The quantized energy levels obtained naturally from the boundary conditions are

E = h7'n2/8ma2 n=1, 2, 3, (3)

Figure 1 shows the probability densities ‘I‘n(x) ‘I'n(x) for the position of the particle in

the first several energy eigenstates.

Clearly the motion of a quantum particle in a box is very different from the classical

motion. In a stationary state, the quantum particle cannot have any energy except the quan-

tized values. In an energy eigenstate, the particle appears in various positions of the box

with definite probabilities and there are special points (nodes) where ‘I’(x) = 0 and the prob-

ability density to observe the particle drops to zero. Quantum mechanically, a standing

probability wave is set up in the box [9]. When the energy quantum number n becomes

large, the position distribution in the box becomes uniform. It approaches the classical

limit of constant probability density in the box.

The average value of the position for the particle is

< x >n = I...” ‘I’n(x) x ‘I’n(x) dx = 2 la I0 ‘1 rt sin2(mtx/a) dx = a / 2. (4)

The average value of x2 is

<x2>n = Log” ‘I‘n(x) x2 ‘Pn(x) dx

=2 la lo a x2 sin2(n1tx/a) dx = (al2n1t)2(4n21r2/3 -2). (5)

Thus the root-mean-square deviation of the position for the particle is

 

Ax =V:xz>n- <x >112 =(a/2nrt)\/(n21t2/3 -2). (6)
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The momentum distribution of a particle in a box is also very different from classical

expectations. From a classical point of view, the particle should have a definite value of the

momentum due to conservation of energy. Since E = p2/2m, therefore p = flim—E. Classi-

cally, the particle moves forward and backward in the box with constant speed

Quantum mechanically, the energy eigenstate ‘I’n(x) = 3/27a sin (ntrx/a) is not an

eigenstate of the momentum operator, because

MEI—a sin(mcx/a) = -i(h/2n)d/dx 14271 sin (nu/an

=-i(h/21t) (nu/a) \IZ-li-l cos (mat/a)

it p0 4273 sin (nrtx/a). (7)

This means that the outcome from a momentum measurement for the particle cannot be pre-

dicte with certainty.

From the expression

‘I’n(x) = v27; sin (nrtx/a) = -w2£[exp(innx/a)exp(-mrtx/a)]

(0 S x S a) (3)

it can be shown that the wavefunction inside the box is a superposition of traveling waves

with equal and opposite momentum. However, it would be incorrect to jump to the con-

clusion that the state ‘I’n(x) consists of two eigenstates of momentum operator with the

same weighting factor, and therefore, the particle moves forward and backward uniformly

in the box with a definite absolute value of the momentum lpl = pH = nh/Za [9-11]. This is

identical to the classical point of view about the motion of a particle in a box.
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The function exp(:ti21tpx/h) is an eigenstate ofmomentum operator when it is valid

for all x, without spatial limitation. Only when a particle moves in free space can its

momentum take on a definite value. This is easy to show [4]:

If a particle moves with adefinite momentump0 , its wave function in the momentum

representation is

¢(P) = 5(P'Po); (9)

Then by Fourier transformation, the wave function in the position representation is

‘P(x) = 1/‘15 I...” 5(P-Po) CXP(21tiPx/h) dp = lNh exp(21tipox/h). (10)

The probability density to find the particle within the infinitesimal range dx about x is

p(x) =I ‘I’(x)| 2: l/h = constant. (11)

This means that the particle can be found anywhere in space with the same probability.

That is to say, if the momentum of a particle is fixed, its position is totally unknown.

In the opposite case, if a particle is fixed in space at x = x0. its wave function in the

position representation is

‘I’(x) = 8(x-xo); (12)

Then by Fourier transformation, in the momentum representation the wave function is

¢(p) = 1N1:Loo” 8(x-xo)exp(-2uipx/h) dx = l/‘Jli exp(-21tipx0/h). (13)

Hence the probability density to find the particle with a momentum in the infinitesimal

range dp about p is

P(P) =4 <I>(p)l 2= 1/h = constant. (14)
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This means that the particle has equal probability to be observed with any momentumvalue

(relativistic effects are neglected). In other words, when the position of the particle is

fixed, its momentum is totally unknown.

Between these two extremes, a particle in a one-dimensional box is spatially con

strained (in the interval 0 S xS a). The function ‘P(x) = exp (:tinrtx/a) for 0 S x S a, but

‘I’(x) = 0 otherwise, is not an eigenstate of momentum operator. The actual momentum dis-

tribution is found by transforming the energy eigenstate from the position representation to

the momentum representation by Fourier transformation [6,15]:

¢,,(p) =(1NB') I...” ‘I’n(X) exp (zaps/h) dx

= (INK) (,3 («Iz/a) siren/a) expt-znipx/h) dx

= (Win) Ioa [CXP(in1tx/a)-CXP(-in1txla)] eXp(-21tipx/h) dx

= (W) Pn/(Pnz-PZ) [1-(-1)“eXP(-21tiPa/h)]

(W)pn 2 i sin(Pafi/h) ¢XP(-i1tpa/h)/(Pn2'P2) (11 even)

-(W) Pn 2008(Pau/h) cXP(-i1tpa/h)/(Pn2-P2) (n odd)

where pn=nhl2a, n=l,2,3, .. . (15)

Equation 15 gives an explicit, simplified expression for the wave function in the

momentum representation, from which it is easily seen that the wave functions are

amplitude-modulated and n-dependent also.

The corresponding probability densities to observe the momentum in the infinites-

imal range dp about p are

021((P)=(2h/3JC2) P 22ksin2(pna/h)/(p22k-p2)2, (n even, n = 2k)

p2k-l(p) = (2h/a1t2) p22k_lcos2(prta/h)/(p22k_l-p2)2. (n odd, n = zit-1)

(16)

where k =1, 2, 3,
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Figure 2 shows the momentum probability densities for the particle in the first

several energy eigenstates. This figure and Eq. 16 show clearly that there is a nonzero

probability density to obtain many values other than tab/28 in a measurement of momen-

tum for the particle in state 11. This is very difl'erent from the classical behavior.

C. Cohen-Tannoudji, B. Diu, and F. Laloe, have analyzed the momentum probabi-

lity density of a particle in a box in their textbook Quantum Mechanics [1]. In their expres-

sions for the momentum wave functions and probability densities, they keep two terms sep-

arate as “diffraction functions” and this leads to a valuable physical interpretation of the

momentum probability density distributions. But they did not simplify the expressions to

the more explicit forms of our Eq. 15 and 16.

From Eq. 16, one can easily find all the maxima and minima of the momentum

distribution. From dP(P) ldp = 0, the conditions for the maxima are

cot (pan/he -2 (uh/an) / (p2 as?) (n even. p... p2,),

tanrpart/h)=2 (Pb/310K132 zit-1112) (nodd. P‘leell (17)

These equations can be solved numerically (see remark 3, below.) i

The minima of the momentum distributions occur when p(p) = 0, i.e. when

sin(part/h) .= 0, (11 even, p1: pa)

and cos(patt/h) = 0. (n odd, pit pn). (18)

The separation between typical minima in the momentum distribution is obviously

n-independent and equals h/a.

We make several observations:
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l. The momentum distribution of a particle in a box gives a definite probability for

observing values of p other than those corresponding to the eigenenergies of the particle.

It is very interesting to note that, in analogy with the nodes in the position distribution of

the particle (points in space where the particle has zero probability density to be found), the

momentum distributions also have some zeroes at special values of the momentum. In even

n states (n=2k), the particle cannot have the momentmn values of p = l h/ a, where 1 it k,

while in odd n states (n= 2k-1), momentum values of p = (2 l-l)h/2a (l at k) cannot be mea

sured. We could also regard the momentum wave function as a standing wave set up in the

momentum space but it is amplitude-modulated.

2. The momentum of the particle in an eigenstate averages to zero due to the sym-

metry of momentum distribution: p(p) is an even function of p, so

< p >n = I_°°°°p pn (p) dp = I...” ‘11,, (x)(-ih/Zrt d/dx) \Pnot) dx=0. (19)

The probability densities at zero momentum are

Farm): 0, (n = 2k)

p2,.1(0)=8a/ (2k-l)2 hltz. (n = 2k-1) (20)

In even n states, one cannot observe the particle with zero momentum (the probability is

zero), while in odd n states, one does observe zero momentum of the particle with a certain

probability. Surprisingly, in state ‘I',(x) (n=l), the most probable momentum is zero, rather

than p1: h/Za. When odd n becomes larger, the probability offinding the particle with zero

momentum decreases.

The mean value of p2 is given by

< p2 >n = I_.,°°p2 pn (p) dp = L,” ‘Pn(x)(-ihf21t curls)2 and) dx = (uh/2a)2 (21)

Thus the root-mean-square deviation of the momentum is



 

Ap= @n-¢>n2=m (22)

Combining Eq. 22 with the root-mean-square deviation of the position for the particle, one

obtains a result consistent with the uncertainty principle:

Ap Ax = (mam/zoom) 2 h/4n. (23)

3. The probability density at p = :l: Pn is a constant (n-independent):

lim P(P)= am! (24)

P—Wn

We note that the most probable momentum is not :1: Pn when the particle in state ‘I’,(x).

Instead, by numerical calculations (Eq. 17) we find the following values for the most prob-

able momentum pm in different states:

3 pm (one)

1 0.000

2 1.675

3 2.790

4 3.845

5 4.950

"lo 9.985

From Fig. 2, it can be seen vividly that the distribution of the momentum for the particle

bifurcates from a single peak (in the n=l state) to two separate peaks near p = :1: Pn (for all

states 11 2 2). The most probable value of the momentum for the particle is n dependent.

Only when 11 becomes large, does the probability density p(p) reach its maximum at

pm 5 :1: pa. This can be proven by taking the limit for (19(1)) /dp when p—rpn:

limdp(p) /dp .. Mn. (25)

an .

We note that p(ipn) is n independent. This matches the classical description.



Acknowledgments

This work grew out of problem sets in (EM 991, Selected Topics in Quantum Chemistry

taught by Prof. K. L. C. Hunt. The authors thank Prof. K. L. C. Hunt and Dr. V. Sethura-

man for interesting discussions. YQL is grateful for a research assistantship, supported

through NSF Grant CHE-9021912 to KLCH, and for a Summer Alumni Research Fellow-

ship, from the Department of Chemistry, Michigan State University.



74

References

1. Cohen-Tannoudji, C., Diu, B., Laloe, F., Quantum Mechanics, John Wiley & Sons, 1977.

2. Merzbacher, E., Quantum Mechanics, John Wiley & Sons, 1970.

3. Landau, L. D. and Lifshitz, E. M. Quantum Mechanics (3rd ed.), Pergamon Press Inc.,

1977. '

4. Dirac, P. A. M., The Principles of Quantum Mechanics (4th ed.), Oxford University

Press, 1958.

5. Kramers, H. A., Quantum Mechanics, Interscience Publishers, Inc., 1957.

6. Feynman, R. P.and Hibbs, A. R., Quantum Mechanics andPath Integrals, McGraw-Hill,

1965.

7. Schiff, L. 1., Quantum Mechanics (3rd ed.), McGraw—Hill, 1968.

8. Shamkar, R., Principles ofQuantum Mechanics, Plenum Press, 1980.

9. McQuarrie, D. A., Quantum Chemistry, University Science Books, 1983.

10. Atkins, P. W., Molecular Quantum Mechanics, Oxford University Press, 1970.

11. Hanna, M. W., Quantum Chemistry (3rd ed.), University Science Books, 1981.

12. Lowe, J. P., Quantum Chemistry (student ed.), Academic Press, 1978.

13. Levine, I. N., Quantum Chemistry (3rd ed.), Allen & Bacon, Inc., 1983.

14. For example, see Volkamer, K. and Lerom, M. W., J. Chem. Educ. 1992, 69, 100;

El-Issa, B. D., J. Chem. Educ. 1986, 63, 761; Miller, G. R., J. Chem. Educ. 1979, 56, 709.

15. Arfken, G. Mathematical Methods for Physicists (3rd ed.), Academic Press, Inc.,

1985.



75

 

 

 

 

   
 

"=10

n:

N-

A

X
v

C

.9:

II +

3'?

V: "=2

O.

”=1

A l A l n l n l

0.0 0.2 0.4 0.0 0.0

X(a)

1.0

Figure 6.1 The position probability densities of a particle in a one-dimensional box;

n indicates the energy levels of the particle (not to scale).
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Figure 6.2 The momentum probability densities of a particle in a one-dimensional box;

11 indicates the energy levels of the particle (not to scale).



Figure 6.1 The position probability densities of a particle in a one-dimensional

box; n indicates the energy levels of the particle (not to scale).

Figure 6.2 The momentum probability densities of a particle in a one-dimensional

box; 11 indicates the energy levels of the particle (not to scale).
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