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ABSTRACT

ENERGIES, POLARIZABILITIES, AND FORCES OF
INTERACTING MOLECULES AT LONG OR INTERMEDIATE RANGE

By
Ying Q. Liang

Collision-induced molecular phenomena are widely researched subjects. In com-
plement with other research, deriving new results to understand the nature and effects of
the interaction between molecules at long or intermediate range is the main goal of this
thesis.

By applying Rayleigh-Schrédinger perturbation theory, we have obtained the
molecular interaction energy to second order in terms of nonlocal polarizability densities.
The derivation also includes the effects of an applied field.

The nonlocal polarizability density a(r; r’, w) plays a central role in this research.
The polarizability density is a linear-response tensor that determines the electronic polar-
ization induced at point r in a molecule, by an external electric field of frequency w, acting
at r’. When a nuclear position in the molecule shifts infinitesimally, we find that the
change in a(r; r’, ) is connected to the same hyperpolarizability Baﬂy(r; r’,o,r”,0) that
describes the electronic charge distribution’s response to external fields, i.e.:

dag (@)ORY, = | drdr” dr B o(ri ¢, 0,77, 0) Z! Tg (v, R,

This is a generalization of the relationship between ¢'50tl3_{(0)/81?;10l and Bﬂﬁ(r; r,r’).

Due to establishment of the relationships between aowakla and BBY& we have

obtained new analytical results for the forces acting on nuclei in a molecule. For the first



time, we have proven the equivalence of forces from interaction energy calculations and
those obtained via the Hellmann-Feynman theorem, order by order. We are also able to
separate forces on nuclei in one of the interacting molecules (A) into those due to its
“own” electrons vs. forces due to the charge distribution of the collision partner, B.

By taking the long range limit of the new analytical results for forces acting on
nuclei in a molecule, we express the electrical shielding effects in interacting molecules
through nonlocal polarizability and hyperpolarizability densities. Intermolecular fields
are screened via the same tensors that describe shielding of external fields.

An explicit expression for the momentum distributibn of a particle in a one-
dimensional box is also included in this thesis. It is a result from my work as a teaching
assistant for the graduate course in quantum chemistry for several terms. The result cor-
rects misconceptions about the momentum distribution in several quantum chemistry text-

books.
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CHAPTER1

INTRODUCTION

This thesis is written so that each chapter is independent. However, there do exist
internal logical relations between these chapters.

We consider two molecules interacting at long or intermediate range in an applied
electro—static field. We assume that the intermolecular separation is sufficiently large that
the overlap of molecular wave functions is weak and we neglect exchange of electrons be-
tween molecules.

We focus our attention on the changes of energy and polarization of the system,
the forces acting on nuclei in each molecule, and the electrical shielding effects between
them.

By applying Rayleigh-Schrédinger perturbation theory [1] to the system in Chap- -
ter II, we obtain the changes of energy to second order in terms of nonlocal polarizability
densites. a(r; r’, ) is a linear-response tensor that determines the electronic polarization
induced at point r in a molecule, by an external electric field of frequency o, acting at r’,
which was introduced by Maaskant and Oosterhoff in a study of optical rotation in con-
densed media [2]. Hunt derived a simpler form suited for practical calculations in cases
when the field acting on a molecule is derivable from a scalar potential [3]). The nonlocal
polarizability density is discussed in Section 2.2. The results for energy changes in terms
of the nonlocal polarizability densities are summarized in Section 2.3. Besides the inter
action between applied field and each molecule, and the molecular pair interaction, there
are trinary interactions among the applied field and the molecules, associated with the

collision-induced dipole.



In Chapter I1I, it is shown that the change in frequency-dependent electronic polar-
izability densities due to shifts in nuclear positions depends upon the hyperpolarizability
density.

This generalizes the relation initially established by Hunt [4] in the case when ex-
ternal field is static. By generalizing the relationship to the frequency-dependent case, we
are able to give a new interpretation for integrated intensities of vibrational Raman bands
as well as new analytical results for van der Waals’ forces acting on nuclei in interacting
molecules [5].

Chapter IV gives analytical results for the induced forces acting on nuclei in inter-
acting molecules, in terms of nonlocal polarizability densities. We calculate these forces
both by direct differentiation of the interaction energy and by use of the Hellmann-
Feynman theorem [6]. By proving the equivalence order by order, we unify the two
approaches.

Chapter V discusses the electrical shielding effects in interacting molecules at long
range. By using the relationships initially established by Hunt [4] and generalized in
Chapter III, and taking the long range limit of the forces acting on nuclei in interacting
molecules obtained in Chapter IV, we prove that the same electrical shielding tensors de-
scribe not only the response to an external field, but also the response to local intermolec-
ular fields.

Lastly, Chapter VI discusses a simple but general problem in quantum mechanics:
the momentum distributions of a particle in a one-dimensional box. A simplified and ex-
plicit formula for this case is obtained and used to correct misconceptions in some quan-

tum chemistry textbooks.
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CHAPTER I

CHANGES OF ENERGY FOR INTERACTING MOLECULES AT

INTERMEDIATE RANGE IN AN APPLIED ELECTROSTATIC FIELD

2.1The Perturbation Energy

The perturbation Hamiltonian for molecules interacting at intermediate or long
range in an applied electrostatic field is

H = | pAM® pBr) T(r-r)drdr + | pAr) ¢e) dr + | pB(r) d(r) dr (1)
where pA(r) and pB(r) are the charge density operators for molecules A and B, respective-
ly; T(r-r?) = |r-r’|-}; and (r) is the scalar potential of the applied electrostatic field.
The external field FE*'(r) is

FX(r) = -V ¢(r), )

Assuming that the Rayleigh-Schrédinger perturbation theory [1] can be applied to
this case, we obtain the change of energy for the system to first order as

AED = | pAy®) T(r-r) pBy(r) dr dr’

+ | pAom) 0@ dr + [ pB(r) ¢(r) dr, 3)
where pAy(r) and pB (r) are the unperturbed charge densities of A and B, respectively.
The first term in Eq. 3 is the electrostatic interaction energy of the unperturbed charge
distributions of the pair, while the second and third terms are the electrostatic interaction
energies of the unperturbed charge distributions of molecules A and B with the external
field.

The change of energy for the system to second order is



AE®) = - T (ghgB |H kA gB) (kA gB |H IgAgB)/ BA-EN)

k#g
—Z (ghgB IH 1A B)(g* B IH 1ghgB)/ EP-ED)
g

-y (gAgB |H"kAjB>(kAjB IH'IgAgB)/[(EkA‘EgA)"'(EjB’EgB)]
jk#g

—-Idrdr'dr"dr"'z (g* IpAe) [A) (A IpAa) 1g2)/ @, -E ™

X p O(r’) |r r|-l P 0(" ) e ated

~far arar-ar £ (gB 10B) 1) (R 1pBa) |88/ BB -ED)
x pAy(r) |rj-r’|" pAyr~ ) le7 -]

~[drardrdr T (A pAr) [KAY (KA |pAr) IgA)

xZ’(g? pPar) I?")(jB lpB(r) 18B) /1B A-EM + B -E)]

x le-r [ tx|p-p |

~Jar driar 2 (gA 1pA®) [KA) (KA IpAE™) |gA)/ (B A-Eh)
X ¢(r)pB:(r’) | e - r*|-1 + complex conjugate

~Jararar 2 (g® pB) 18) (B IpBer) 16B)/ € -ED)
j

x O(r) pAyr?) |r*"-r’ |1 + complex conjugate

~Jdrar Z:(gh [pAr) [kA) (KA |pAGr) |gA)/ B A EM)
x ¢(:)¢(r’)

—~Jarar 27 (g8 1pB@) 18 ) (B 108G 16B)/ P -ED)

J
x O(r) O(r) .
4

The first three terms in Eq. 4 give the interaction energy of the pair in the absence
of the applied field. The first is the induction energy associated with the distortion of mol-

ecule A by the field due to the permanent charge distribution of B, the second is the



induction energy associated with the distortion of B, and the third is termed the dispersion
energy. The fourth and fifth terms give the interaction energy due to the applied field (to
the leading order), while the sixth and seventh terms represent the effect of the applied

field on each molecule.

2.2 The Nonlocal Polarizability Densities

Maaskant and Oosterhoff introduced the nonlocal polarizability densities in a
study of optical rotation in condensed media [2]. They gave the nonlocal polarizability
density in sum-over-states form, with each matrix element itself given as an infinite
series. Hunt (3] derived a simple form that permits practical calculations in cases when the
field acting on a molecule is derivable from a scalar potential.

The nonlocal polarizability density a(rg r’, ) is a linear-response tensor that
determines the electronic polarization induced at point r in a molecule, by an external
electric field of frequency , acting atr”.

The polarizability density for a molecule in the ground state has the form

®oa(r 1, @) = [1+C(0— -0)] 0 |Py(r) G(w) Py(r) 10), (5)
when the frequency  is off-resonance with molecular transition frequencies. C(w — -)
designates the operator for complex conjugation and replacement of ® by -, and

G(w) = (1 - ) (H - Ey- fioy! (1- ), (6)
where ) is the ground-state projection operator lo)y(¢o I

The electronic polarization PIM(r, ®) induced in a molecule by an external field
F(r, ®) depends on the polarizability density a(r; r’, ), the hyperpolarizability density
B(r; r’, ", r”*, ") and higher-order nonlinear response tensors

Pird(r ) = | dr’ a(r; r’, ©) - F(r’, ©)



+12 j_ww do’ | dr dr Birir,o-o,r",0):Fr,o-0)Fr”’, o)
+...

= Pind(r, ) + PIM(r )@ + . . ..
@)

where PiM(r, )M = dr a1, o) - F(r’, w). P"(r, m)® gives the electronic polar-
ization in a molecule by the external field to first order, and
Pde, )@ =12 [___~do’ [ dr'dr Brir’, 0- 0", 0) : FIr’, 0- 0) FE, o).
PiMd(r, )@ gives the second order term. B(r; r’, @ - ®°, r*", ®") is the hyperpolarizability
density; when ®” =0,
Baﬁy(r; r,or”’,0) = [1+Cw--n)x
| (ol P,(r) G(@) [P.(r™) - P.foo(l'")] G(w) Pg(r) l0)
+ (01 P,(r) G(®) [Pg(r) - P30(r)] GO) P(r ) |0)
+ (0|P,r) G(O) [P, (r) - P,X(r)] G(w) Py(r) 10)} .
®

2.3 Analytical Results for the Perturbation Energy in terms of Nonlocal Polarizabil-
ity Densities
We now rewrite the perturbation energy AE(?) in terms of the nonlocal polarizabil-
ity densities and obtain:
AE® =-Z (ghg® |H'1kA gB) (kA gB [H'|ghgP)/ B A -EgY
—kﬁg*‘g“ 114 ) (g B 11 1ghg®)/ &P - BgP)

g
-y (gAgB IH’IkAjB)(kAjB |H"gAgB)/[(EkA_E8A)+(EjB_EgB)]
jk#g
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=—122] dr dr'oA g(r, 1) FBoy @ FBog(r)
- 172 [ dr dr'aB 4, 1) FAuE) FAopr)
©o s3rr 3o LA vor s B o o s
—wartf™ do [ dr dridr-dr o g, 7, i0) aBLg(r, 1, IO T 4r, 1)
KTy fr"r)
~Jdrdr oA g(r, £)F T4r) FBg(r)
—[drar 0B 4(r, FIF,EE) FAG)
- 172 [ dr dr*oA g(r, PIF S (O)E ™)
- ‘B AF €x ext
1/2] dr dr'a® 4(r, ©)F, ) F™4r) ©)
where
FAo)= - drpAeE) Ty(r-17)
is the field in molecule B produced by the unperturbed charge distribution of molecule A
and By ()= drpByr) T(r-r)
is the field in molecule A produced by the unperturbed charge distribution of molecule B.
From Eq. 7, we can rewrite AE() in terms of the induced polarization in molecules A
and B:
AED=-172 [ dr PA @)D 7By (1)~ 172 [ dr PP ) 74 4 (1)

_ oo tderqnree oA vor s B (ner - :
h/41t2I0 do | dr drdrdr” o m‘S(r,r ,m))a_ﬁ(r I, i)

X Tws(r, r’)TB¢r", r’)
~Jar PA @M P (1) - [ ar PB 0D P (1)
~172] ar PASR (YD Fext (r) -172f dr PBeXt (D FX (1) (10)
where PA_(r)D=[ dr” a® 5(r, 1) FB0g(r) (11)

is the first order polarization of molecule A induced by the field due to the unperturbed

charge distribution of molecule B, while



Pt @O = [dr o (e, 1) FR y() (12)
is the first order polarization of molecule A or B induced by the applied field.

From Eq. 9, we know that when two molecules interact with each other, there is
not only the electrostatic interaction between their unperturbed charge distributions (in
first order), but also the interaction between the induced charge density of one and the un-
perturbed charge distribution of the other (the first and second terms in Eq. 9, induction
energy). Furthermore, there is a dispersion interaction between the two molecules, which
comes from the fluctuations of the charge distributions of A and B, a purely quantum
effect (the third term in Eq. 9, dispersion energy). When the molecules interact with an
applied field, the external field affects the electrostatic and induction interactions between
them, via the same polarizability density (the sixth and seventh terms in Eq. 9). The
applied field acts on the interacting molecules not only directly with each, but also indi-
rectly on one through the other. An alternative point of view is: each of the interacting
molecules not only directly responds to the external field, but also does so indirecly
through the other. For example, the field produced by the unperturbed charge distribution
of B induces in A a polarization which interacts with the applied field (the fourth term in
Eq. 9). An alternative point of view is: the applied field induces in A a polarization which
interacts with the field produced by the unperturbed charge density of B. The same also

happens for B (the fifth term in Eq. 9). We call this kind of interaction trinary.
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CHAPTER III

CHANGES IN ELECTRONIC POLARIZABILITY DENSITIES DUE TO
SHIFTS IN NUCLEAR POSITIONS,
AND
A NEW INTERPRETATION

FOR INTEGRATED INTENSITIES OF VIBRATIONAL RAMAN BANDS

Abstract:

The nonlocal polarizability density o(r; r’, @) is a linear-response tensor that
determines the electronic polarization induced at point r in a molecule, by an external
electric field of frequency ®, acting atr”. This work focuses on the change in o(r; r’, ®)
when a nuclear position shifts infinitesimally. We prove directly that the electronic charge
distribution responds to the change in Coulomb field due to the nucleus via the same hy-
perpolarizability density that describes its response to external fields. This generalizes a
result established previously for the static (@ = 0) polarizability density. The work also
provides a new interpretation for the integrated intensities of vibrational Raman bands: it
proves that the intensities depend on the hyperpolarizability densities and the dipole prop-

agator.

11
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3. 1. Introduction

The nonlocal polarizability density a(r; r’, w) gives the w-frequency component of

the polarization induced at pointrin a moiecule by an external electric field F(r’, o) acting
at the point r’, within linear response [1-5]. This property reflects the distribution of po-
larizable matter within the molecule; it represents the full response to external fields de-
rived from scalar potentials of arbitrary spatial variation. Thus a(r; r’, ®) is a fundamental
molecular property. It has applications in theories of local fields and light scattering in con
densed media [3,6], and in approximations for dispersion energies [4], collision-induced di-
poles, and collision-induced polarizabilities [S,7] of molecules interacting at intermediate
range. Recently, Hunt [8] has shown that a(r; r’, 0) also determines the net field F! acting
on nucleus I of a molecule in a static, external field F(r):

F! = FO+F®RY +[ drar’ TRL D) - a(r; £, 0)- F(r) + ..., )
where FI() is the field at nucleus I in the absence of the external perturbation, and
Taﬁ(Rl’ r) is the dipole propagator, i.c., TaB(RI' r)=V, Va( IRI-r|-1). Specializing Eq.
(1) to the case of a uniform external field leads to an expression for the linear electric field
shielding tensory! [9-15] in terms of a(r; r’, 0). Further, the nonlocal polarizability density
determines the derivative of the molecular dipole moment with respect to the position of
each of the nuclei: If Z!is the charge on the Ith nucleus, then [8]

Rl = Z18. 5 + 2! [ drdr” & (r; ¢, 0) T,h(r", RY. V)
This work focuses on the changes in the frequency-dependent molecular polariz-

ability density when a nucleus shifts infinitesimally. The results are important because of
the roles of the polarizability density noted above. In addition, the theory yields the deriv-

atives of th polarizability aaﬁ((o) with respect to the normal mode coordinates q,,, which
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determine the integrated intensities of vibrational Raman bands, within the Placzek approx-
imation [16]. Earlier Hunt [8] has shown that the derivative of the static polarizability
aaaB(O)/aRI,Y is related to the nonlinear response tensor B(r; r’, 0, r**, 0). This accounts
for the connection between the polarizabil_ity derivative and the quadratic electric field
shielding tensor (cf. Ref. 15).

The purpose of this work is to prove that the relation between aaaB(r; r’, O)IGRIY
and the nonlinear response tensors generalizes to the frequency-dependent case. The anal-
ysis in Ref. 8 employs the electrostatic Hellmann-Feynman theorem [9,17], and therefore
does not apply to o(r; r’, ®) with @ # 0. A new approach is needed to prove the generali-
zation. In this work, we have used direct differentiation to evaluate aaaﬂ(r; r, n))lalll7 .

For the derivative of the total polarizability o(w), we obtain

darg (@)/ART, = [ drdr”dr Bas®: T 0,1, 0) 2! Tg (e, RD. A3)
This result yields physical insight into the change in polarizability (at frequency w) that
results from an infinitesimal shift in the position of nucleus I. The molecule responds to
the change in the Coulomb field of the nucleus via its hyperpolarizability density
B(r; r’, , r”’, 0). All of the quantum mechanical influences are contained within B, and
the remainder of the calculation is classical. Eq. (3) also provides the basis for a new in
terpretation of integrated Raman band intensities, without requiring that aaﬂ(w) be

approximated by its zero-frequency limit.
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3.2 Nonlocal Polarizability Densities and Polarization Induced by External Fields

The electronic polarization Pi™(r, w) induced in a molecule by an external field
F(r, ®) depends on the polarizability density a(r; r’, ), the hyperpolarizability density
B(r; r’, ®’, r”’, ") and higher-order nonlinear response tensors:

P o) = [ dr’ ofr; r’, ) - F(r’, )

+12)___ " do’ | arar Brr,o-o,r,o):
Fr',o-o)Fr”, o)
+.... 4)

The polarization PI™(r, ©) is related to pi™(r, w), the induced change in electronic charge
density in the field F(r, o), by

V. PM(r, ©) = - pind(r, w), ' (5)
and the same relationship holds for the polarization and charge density operators, P(r) and
p(r) respectively.

The polarizability density for a molecule in the ground state has the form

@@ 1, 0) = [1+C(@ - -0)] (0 |Py(r) G@) Pg(r) 10).(6)
when the frequency  is off-resonance with molecular transition frequencies. C(® — -0)
designates the operator for complex conjugation and replacement of w by -, and

G(w) = (1- pg) M -Ey-ha)! (1- py), )
where g, is the ground-state projection operator 10)(0 | . It should be noted that the
nonlocal polarizability density completely determines the electronic charge redistribution
linear in a perturbing field F(r, ), and not simply the dipolar component. Integration of
a(r; r’, o) over all space with respect to r and r” gives the dipole polarizability o(); but

o(r; r’, ®) also determines all of the higher-multipole, linear-response tensors [5].
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The hyperpolarizability density B(r; r’, ", r**, @) gives the polarization induced
atr bythe iowest-ordcr nonlinear response to a field of frequency ®” acting atr” and a field
of frequency w”“ acting atr”’. Integrating BWr; r,o,r”, 0" withrespecttor, r’, and
r’" over all space yields Bam(m’, ® "), while moment integrals of Baﬂy(r; r,o,r,o”)
give all of the third-order higher multipole susceptibilities.

For the proof to be given here, we require the hyperpolarizability density
BaB r;r’, @, r”’, 0), which has the form

By 1> @, 1™, 0) = [1+Clo - -w)]

({01 P,(r) G(e) [P(r™) - P,2r*)] G(w) Py(r) [0)
+(0[Py(r) G@) [Pg(r) - Py¥(r )] GO) Pr)0)
+(0IPr") G(0) [P (r) - P,2r)] G(w) Py(r) 10)} .
®)
Eq. (8) is derived by analogy with Eq. (43b) in Ref. 18. For compactness, we have used the
notation Paoo(r) = (ol Pa(r) |0}, and similarly for wa(r') and P_Yoo(r”). Damping has
been neglected in Eq. (8).

From Eq. (4), if a molecule is placed in a static external field F5(r), its reaction to
an additional external field F®(r, ) [19] can be characterized by the effective polarizability
density a(r; r’, ; FS), given by

of(r;r’,; FS) = o(r; r’, o; F$ =0)

+ [ dr~ Br;r’, o, r,0)-FSr")
+.... )
The permutation symmetry of the P hyperpolarizability density has been employed to

obtain this result.
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3.3 Change in Polarizability Density due to an Infinitesimal Shift in Nuclear Position

A shift SRl in the position of nucleus I in a molecule changes the nuclear Coulomb
field acting on the electrons. In this section, we prove directly that the resulting change in
polarizability density is determined by the same hyperpolarizability density Baﬁy(r; r,o,
r’’, ") that fixes the response to external fields. Specifically, we show

darg (r; ', @YARY, = [ dr*” By s(ri v, 0,17, 0) 2! Ty (v, R, (10)
where Z' is the charge on nucleus I and Ty (r*, R) is the dipole propagator.

The proof in this section is based on direct differentiation of the polarizability den-
sity aaﬁ(r; r’, ®) with respect to RI,{ . From Egq. (6),

d0t,q(r; 7, )R, = [1 +C( - -0)] x

[(20/3RL, |P,(r) G(w) Py(r) |0)

+ (0 |P(r) aG(o))/Z)Rl_r Pa(r) [0)

+ (0 |P(r) G(w) Pg(r) [30/RY, ) ]. (11)
To convert Eq. (11) into Eq. (10), we first take the derivative of the ground state

with respec to an arbitrary parameter 1 in the Hamiltonian,

|a0/am ) =- G(0) oH/an [0). (12)
We also require the derivative of the operator G(w):
9G(w)/on = - G(w) 3(H - Eg¥an G(w)
+ 0o 9H/N G(0) G(w) + G(w) G(0) IH/AM @ - (13)

Specializing Eqgs. (12) and (13) to the case n} = RlY gives the derivatives in Eq. (11).

The change in the Hamiltonian due to the shift SRIY is given by

JH/OR! = far 7 v Ir-RU per). (14)

where VIY denotes BIE)RIY . Eq. (14) for aH/E)RIY can be rewritten in terms of the polariza-
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tion operator P(r) by using Eq. (5) for P(r) and p(r), integrating by parts with respecttor,

and using
I-1 _ I I]-1
Vo le-RI1 = -V [e-RIL | (15)
This gives
I _ _ ss 1 , s0 I
QHOR! = - | ar”Z! Py ) Tgr R . (16)

Togcﬁncr, Eqgs. (8), (11)-(13) and (16) prove Eq. (10) for aaﬁ¢n r, m)/BRIa.
Equivalently, the polarizability density a® 0-3(‘ r; r’, ®) for the molecule perturbed by an
infinitesimal shift of nucleus I satisfies Eq. (9), with F5(r") replaced by &f I (r*9), the infin-
itesimal change in the Coulomb field of nucleus I, due to its displacement by SR This
shows that the molecule responds via to the change in the Coulomb field of nucleus I via
the same hyperpolarizability density that governs its response to external fields.

Integrating Eq. (10) over all space with respect tor and r” gives the Eq. (3) for the
derivative of the electronic polarizability am(m) with respect to Rla. Clearly the derivative
of the polarizability aap(w) with respect to the normal mode coordinate q, is

dat,g(w)/3q, = I dox,q(@)/AR, AR g, . (17)
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3.4 Discussion

This work has shown that the derivatives of the polarizability density with respect
to nuclear coordinates depend upon the dipole propagator and the hyperpolarizability den-
sity B(r; r’, ’, r’’, 0); the density B yields the lowest-order nonlinear response to imposed
fields, on integration. Thus, we have generalized the relationship between static linear and
nonlinear response tensors [8] to the frequency-dependent case.

Our work also gives a new expression for the second derivative of the dipole with
respect to nuclear coordinates, for a molecule in any nuclear configuration. From Eq. (2)
for auB/aRIa and Eq. (10),

., /oR' 3RYy = Z1Z) [ dr ar”dr~ Byse(r: 1", 0,17, 0) Teg(r™, RY) To (v, R

+ 208y [ drdr og(r v, 0) Tlg o, RY),

(18)
whcreTJam(r, R) = - v,V VY(lr- R’ |-1). (T tensors of odd orders are odd in the
difference between the two arguments r and R’). A shift in the position of nucleus I from
R!'to Rl + 8RI changes the field at point r, due to nucleus I, from

fl ) = -V Zi(Ir-R! |
fo 1@+l (0)+12 81 @) +... = -V Z(Ir-RU )+ ZI T o(r, RY) 8RY,

+12 ZIT g (r, R) 8R'; SRL +....

(19)
Thus the first term on the right in Eq. (18) represents the nonlinear response (via p) to the
changes in the nuclear Coulomb field at r* and r**, while the second term represents the
linear response (via o) to the second variation in the field atr’. Extensions of this analysis

to find higher derivatives of the dipole and to find second and higher derivatives of the sus-
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ceptibilities are straightforward. Immediate uses of the results from this work are concep-
tual rather than computational. Applied to single-molecule polarizabilities, our work pro-
vides a new physical interpretation for integrated intensities of vibrational Raman bands,
by showing that the band intensity depends on the response of the molecule to the change
in Coulomb fields of the nuclei, via the B hyperpolarizability density. For interacting mol-
ecules with nonoverlapping or weakly overlapping charge distributions, induction and dis-
persion energies, collision-induced dipoles and collision-induced polarizabilities are all
related to the single-molecule polarizability densities. Thus, Eq. (10) determines in part the
nuclear-coordinate dependence of these properties.

For computational purposes, methods of finding the required components of
o(r; r’, 0) are known (see Refs. S and 7, and references therein), and methods of approxi-
mating B(r; r’, , r’, 0) are currently under development. With information on
B(r; r’, o, r”’, 0), it should be possible to identify the regions of the electronic charge dis
tribution that make the principal contributions to the vibrational Raman band intensities
for isolated molecules; and this would facilitate tests of atom- or group-additivity approx-
imations. The dipole propagator tensors appearing in aaﬁy(m)/ania weight the regions
nearest to nucleus I. This tends to support additive approximations, prbvidcd that

B(r; r’, @, r’, 0) is largest for small |r-r*land |r-r~|
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CHAPTER IV
FORCES ON NUCLEI IN INTERACTING MOLECULES

Abstract:

When the charge overlap between interacting molecules or ions A and B is weak or
negligible, the first-order interaction energy depends only upon the molecular positions,
orientations, and the unperturbed charge distributions of the molecules. In contrast, the
first-order force on a nucleus in molecule A as computed from the Hellmann-Feynman
theorem depends not only on the unperturbed charge distribution of molecule B, but also
on the electronic polarization induced in A by the field from B. At second order, the inter-
action energy depends on the first-order, linear response of each molecule to its neighbor,
while the Hellmann-Feynman force on a nucleus in A depends on second-order and non-
linear responses to B. One purpose of this work is to unify the physical interpretations of
interaction energies and Hellmann-Feynman forces at each order, using nonlocal polariz-
ability densities and connections that we have recently established among permanent mo
ments, linear response, and nonlinear response tensors.

Our theory also yields new information on the origin of terms in the long-range
forces on molecules, through second order in the interaction. One set of terms in the force
on molecule A is produced by the field due to thé unperturbed charge distribution of B and
by the static reaction field from B, acting on the nuclear moments of A. This set origi-
nates in the direct interactions between the nuclei in A and the charge distribution of B. A
second set of terms results from the permanent field and the reaction field of B acting on

the permanent electronic moments of A.
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This set results from the attraction of nuclei in A to the electronic charge in A itself, polar-
ized by linear response to B. Finally, there are terms in the force on A due to the perturba-
tion of B by the static reaction field from A; these terms stem from the attraction of nuclei
in A to the electronic charge in A, hyperpolarized by the field from B.

For neutral, dipolar molecules A and B at long range, the forces on individual
nuclei vary as R3 in the intermolecular separation R, at long range; but when the forces
are summed over all of the nuclei, the vector sum varies as R*. This result, an analogous
conversion at second order (from R0 forces on individual nuclei to an R7 force when
summed over the nuclei), and the longrange limiting forces on ions are all derived from

new sum rules obtained in this work.
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4.1 Introduction

When molecules A and B interact, the net force F! on nucleus I in molecule A is the
sum of the force F1(9 on I in the absence of molecule B and an interaction-induced force
AF!. The interaction-induced force is related to the AB interaction energy AE by

AF! = —9AE/oR! , )
where Rlis the position of nucleus I. Throughout this work, we use the Bom-Oppenheimer
approximation: we determine the forces on the nuclei as functions of the nuclear coordi-
nates, fixed within individual calculations but not restricted to the equilibrium configura-
tion. The electronic state is the fully perturbed ground state of the AB pair in the specified
nuclear configuration.

For molecules with weak or negligible charge overlap, the first-order interaction
energy, denoted by AE(D), is determined completely by the molecular positions, the orien-
tations, and the unperturbed charge distributions of molecules A and B. In contrast, the
first-order interaction-induced force AFX(1) on nucleus I in molecule A, obtained directly
from Eq. (1), depends not only on the interaction of that nucleus with the unperturbed
charge distribution of B, but also on interaction-induced changes in the electronic charge
distribution of A.

At second order in the A-B interaction, the induction energy AE(Z)ind is determined
entirely by the first-order, linear response of each molecule to the ﬁc_ld of its neighbor. Yet
the associated induction force AFI(Z)ind on nucleus I in molecule A does not originate solely
in the first-order perturbed charge distributions of A and B. Instead, AFI®), ; also depends
on the hyperpolarization of the electronic charge in A by the field from B, and on the

second-order change in the electronic charge density of A due to linear response to the



perturbed charge distribution of B.

The results stated above appear counter-intuitive, although they are fully consis-
tent with the Hellmann-Feynman theorem [1, 2] applied to compute forces on nuclei in
interacting molecules, given the electronic charge distributions. One purpose of this paper
is to connect the physical interpretations of interaction energies and Hellmann-Feynman
forces, order by order. We allow for the possibility that A and B may be ionic. An impor-
tant component in the analysis is the inter-relation that we have recently established among
permanent moments, linear response, and nonlinear response tensors [3, 4].

In Sec. 4.2, we use nonlocal polarizability densities to find AFI(), AE@),_, and
AF!@)._ .. The polarizability density tensors give the polarization produced at one point in
a molecule due to the application of an external field at other points [3-12], and thus repre-
sent the distribution of polarizable matter throughout the interacting molecules. Quantum
mechanical definitions for these tensors are given in Sec. 4.2. Earlier, it has been estab-
lished that the nonlocal polarizability density determines the derivatives of the molecular
dipole with respect to nuclear coordinates [3], and that the first hyperpolarizability density
determines the derivatives of the polarizability with respect to nuclear coordinates [3, 4].
In each case, the molecule responds to the change in Coulomb field due to an infinitesimal
shift in nuclear position via the same susceptibility density that determines its response to
external fields.

Our approach, based on nonlocal polarizability densities, holds even when low-
ordér, point-multipole models break down, provided that overlap and exchange between
molecules A and B are minimal; for example, our analytical results apply to planar mole-

cules in "sandwich" configurations and to long, chain-like molecules in configurations

i x- o
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where appreciable charge overlap could be produced by rotation of either molecule. Our
approach includes the direct effects of overlap on the electrostatic and inductive interac-
tions, but it does not account for modifications of the classical interactions due to electron
exchange or charge transfer between A and B. Overlap damping effects on dispersion
energies have been studied extensively at this level of approximation [9, 12-27].

In Sec. 4.3, we take the long-range limits of the forces AFI!) and AFI(Z)ind, and
express the results in terms of the field and field gradients due to molecule B, together
with the screening tensérs that represent the effects of electronic redistribution in mole-
cule A [28-44]. We then sum over all nuclei in molecule A in order to find the total force
on molecule A. In the process, we resolve a problem connected with the Hellmann-
Feynman interpretation of the long-range forces. For specificity, we focus on the long-
range forces on neutraldipolar molecules A and B: The lowest-order, long-range force on
an individual nucleus in A varies as R-3 in the separation R between A and B--but when
this force is summed over all of the nuclei in A, the R-3 component must drpp out, leaving
an R"4 force on the entire molecule, to leading order. Since the summation runs over
nuclei only, elimination of the R-3 component is not a simple charge cancellation effect.

At second order, the leading term in the force AFIa(z)ind on an individual nucleus
in A depends in part on the attraction of the nucleus to the second-order perturbed elec-
tronic charge distribution of molecule A, and thus it varies as R6--but when the force is
summed over all nuclei in molecule A, the result must vary as R7. The elimination of the
R-3 and R terms in the forces on molecule A follows from new sum rules that we derive
in this work. The sum rules apply to integrals involving polarizability densities and dipole

propagators from points in the electronic charge distribution to the nuclei, summed over



the nuclei.

In Sec. 4.3, we also analyze the long-range, interaction-induced forces on molecule
A into components originating in the interaction with the perturbed electronic charge dis-
tribution of A, or with the charge distribution of B, and we obtain new results at both first
and second order. At first order, the interaction-induced force can be written as a sum of
two sets of terms. One involves the net charge on all of the nuclei in A, and the nuclear con-
tributions to the dipole, quadrupole, and higher moments, while the other involves the net
electronic charge and the electronic contributions to the permanent charge moments. We
~ show that all of the terms in AFA()_ containing the nuclear charge or nuclear moments of
A result from the direct interaction between the nuclei in A and the unperturbed charge dis-
tribution of molecule B; the terms in AFA()_ containing permanent electronic moments of
A result from the attraction of the nuclei to the electronic charge on A, perturbed to first
order by interaction with B.

At second order, the induction energy AE(2), , is determined by the static "reaction
fields" acting on molecules A and B. To lowest order, the static reaction field at A is the
field resulting from the polarization of B by the permanent charge and moments of A
(similarly for the reaction field at B). We show that interactions of A nuclei with the
polarized charge distribution of B appear directly in the force, as terms involving reaction
field effects on the nuclear moments of A. We also show that force terms involving reac-
tion field effects on the electronic moments of A stem from the attraction of the A nuclei
to the second-order, linear change in the electronic charge density of A itself. Finally,
there are terms in the interaction-induced force on molecule A that are associated with the

reaction field at B. These contain linear response tensors on A. We show that these terms
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stem from the attraction of nuclei in A to the electronic charge of A, hyperpolarized by the
field from B.

At second order, the total interaction energy for molecules at long range is the sum
of the induction energy AE®), 4 discussed above and the dispersion energy AE@ ;. The
dispersion (van der Waals) energy results from dynamic reaction field effects, due to cor-
relations of the spontaneous, quantum mechanical fluctuations in charge density on the
interacting molecules. Previously, we have analyzed dispersion forces using nonlocal
polarizability densities [45], and the results are summarized briefly below. Through second
order in the molecular interaction, the total interaction-induced force is obtained by adding
the forces AFI(1) and AF!(2),_, determined in this work to the dispersion force found earlier.

We have shown that the dispersion force on molecule A results entirely from the
attraction of nuclei in A to the dispersion-induced change in the electronic charge distribu-
tion on A [45]. In Ref. 45, a direct perturbative approach is used to find the dispersion terms
in the charge densities of molecules A and B, through second order in the interaction. The
polarization of A due to dispersion depends on the frequency-dependent hyperpolarizabil-
ity density of A and the polarizability density of B, taken at imaginary frequencies. Sepa-
rately, the nonlocal polarizability density theory gives the dispersion energy: Spontaneous
fluctuations in the polarization of molecule A produce a field that polarizes B nonlocally.
The induced polarization of B gives rise to a reaction field at A, with a resultant energy shift
that depends on correlations of the fluctuating polarization of A at two points. Via the fluc-
tuation-dissipation theorem, the correlations are connected to the imaginary part of the non-
local polarizability density of A. The total dispersion energy is obtained by adding the

energy shifts due to the reaction field effects at A and B, and then it is cast as an integral
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(over imaginary frequencies) of the product of the polarizability densities of the two inter
acting molecules. Comparison of the dispersion force on a nucleus in A evaluated by
differentiating the dispersion energy vs. that calculated from the dispersion-induced change
in the polarization of A establishes the origin of the dispersion force.

Hunt [45] proved a conjecture by Feymhan about the origin of forces between atom
in S states [1], and generalized it to molecules of arbitrary symmetry. Feynman originally
suggested that [1]:

"The Schrédinger perturbation theory for two interacting atoms at a separation R,

large compared to the radii of the atoms, leads to the result that the charge

distribution of each is distorted from central symmetry, a dipole moment of

order 1/R7 being induced in each atom. The negative charge distribution of each

atom has its center of gravity moved slightly toward the other. It is not the interac-

tion of these dipoles which leads to van der Waals’ force, but rather the attraction
of each nucleus for the distorted charge distribution of its own

clectrons that gives the attractive 1/R/ force.”

Prior to Hunt’s work, this conjecture had been proven by Hirschfelder and Eliason [46; see
also 47], for the particular case of two hydrogen atoms, both in the 1s state. Hunt [45] pro-
vided the first explicit, general proof, and resolved two problems associated with the con-
jecture. First, the dispersion-induced change in charge density and the dispersion dipole
both depend on nonlinear response tensors [10, 48-51] for molecules interacting at long
range, while the dispersion energy and thus the dispersion forces depend on linear response
[9, 12-27, 52], to leading order. The required connection between linear and nonlinear
response is provided by our recent proof that the hyperpolarizability density determines the
changes in the polarizability when nuclei shift [3, 4]. Second, while the dispersion dipole
varies as R7 for distinct, nonoverlapping atoms A and B in S states, the dispersion-induced

change in charge density actually varies as RS, Therefore Feynman’s electrostatic inter-

pretation would predict an R dispersion force in the absence of additional constraints.
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A sum rule on the frequency-dependent hyperpolarizability density B(r, r’, r*’; i®, 0) [45]
eliminates the net attraction of the nuclei to the RS component of the electronic charge dis-
tribution. This result is particularly striking for noncentrosymmetric molecules [45]. For
these species, the long-range dispersion dipole varies as R-6, while the net dispersion force
varies as R™7, as for heteroatoms. The rationale behind Feynman’s conjecture fails--yet the
electrostatic interpretation of the dispersion forces still holds, because of the sum rule on
B(r,r’, r’"; im, 0). This work is related to an electrostatic force theory based on the
Hellmann-Feynman theorem, which has been developed by Nakatsuji and Koga [S3; see
also 54, 55] and applied to the special case of interactions between two atoms. Within this
theory, a density matrix analysis is used to decompose the forces on nuclei into distinct
terms, and only two forces--the atomic dipole (AD) force and the extended gross charge
(EGC) force--act between atoms at long range. The atomic dipole force on the nucleus of
atom A results from the polarization of A induced by interaction with B [53]. It corre-
sponds to the attraction of the nucleus of A to the electronic polarization PA_(r)® (with n
> 1), in our approach (see Sec. 4.2). The extended gross charge force results from electro-
static interactions of the nucleus in A with the electrons and nucleus of atom B [53];

it corresponds to the force due to the charge distribution pBo(r) and the polarization
PB_(r)®™ (with n > 1). We find the force on a nucleus in A in terms of PA_(r)() and pBy(r)
at first order in the A-B interaction, and in terms of PAa(r)(z) and PB_(r)(!) at second order.
This is consistent with the electrostatic force theory. Our approach differs from that in Ref.
53, however, since we use nonlocal polarizability densities to derive PAa(r)(“) and
PB_(r)™ and thus to deduce the forces, while Nakatsuji and Koga have givén the AD and

EGC forces in terms of density matrix elements that are not further specified, in general.
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Based on the density-matrix analysis, Nakatsuji and Koga [53] have concluded that the
electrostatic force theory of long-range interactions is "quite different from -the traditional
energetic theories in both theoretical and interpretative views." This conclusion also con-
trasts with our work. By use of relations we have recently derived among permanent
moments, polarizability densities, and hyperpolarizability densities [3, 4], our work unifies
the theories.This work is related in an indirect way to the incorporation of induction effects
into density functional theory, carried out by Harris [56]. Our approach yields the mean-
field interaction energy in terms of the unperturbed charge densities and the induced polar-

ization, computed from the polarizability densities.
4.2 Forces on Nuclei in Interacting Molecules

In this section, we find the interaction-induced forces on nuclei in a pair of mole-
cules A and B from the perturbation series for the interaction energy AE, and we establish
the physical interpretation of the forces. The forces are determined for fixed nuclear con-
figurations. The unperturbed electronic states of the A-B system are taken as direct prod
ucts of states 6n A with states on B, under the assumption that overlap between the charge
distributions of molecules A and B is weak or negligible. AE is expanded as a series in the
perturbation VAB [9, 12-27], given by

VAB = [ pAr) pB(r) Ir-r*| 1 drar o)
where pA(r) and pB(r") are the molecular charge density operators:
pA(r) =Zed(r-r) +ZZ'3(r-R) ;(3)
the sumjc:vcr j runs over the electrons assigned to molecule A, with position operators rp

and the sum over I runs over nuclei in A with charges Z and positions RL,
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The interaction energy AE()), taken to first order in VAB, depends upon the perma-
nent charge densities pAo(r) and pBO(r’) of the unperturbed A and B molecules:
AED = [ pAe) pByr) lr-¢ |1 drdr . @)
For a nucleus I in molecule A, the force AF! (1) derived from AE(!) has two components:
the first results from the change in the nuclear charge density of A when nucleus I shifts,
while the second is due to the change in the permanent electronic charge density p°Ao(r) of
molecule A (unperturbed by interactions with B) due to an infinitesimal shift of nucleus I:
A O = — [ 3p*Ayr)ARL pB) lr-r |1 drar’
-7 [ 35 - RH@R!, pByr) Ir-r |1 drdr” . (5)
The derivative of p®A(r) with respect to R!_ satisfies
AR = [ arZ! VI [r-RI| x
‘f’[(gA |peAr) 1kp ) (ky |poAC™) g )
+ (8 19°Ar™) [ky ) (Ky 1p°A() lga) 1/ (Eg-Ey)

(6)
where Vla denotes differentiation with respect to Rla and it operates only on |r**-RI|-,
The prime on the summation indicates that the sum runs over the excited electronic states

|k A ) of the unperturbed A molecule, omitting the ground state lg A )- The energies of the
ground and excited states are Eg and E;;; and p®A(r) is the electronic charge density operator
for A. Eq. (6) shows that the derivatives of the permanent charge density with respect to
nuclear coordinates depend upon a molecular susceptibility. This observation is significant
for the subsequent analysis.
The electronic charge density operator pé(r) is connected to the electronic polarization

operator P®(r) used in defining the nonlocal polarizability density by
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V.P(r) = - pS(r) . @
In sum-over-states form [9, 10], the nonlocal polarizability density aab(r, r’) satisfies

Gogl ) = (1+ P (g 1P k) (k 1Po(r) lg)/ By -Ep s ®
where paB permutes the operators P"’a(r) and Peb(r’). The value of aaB(r, r)is
unchanged by substituting the full polarization operator P(r), including nuclear terms, for
the electronic polarization operator P(r).in Eq. (8). The nonlocal polarizability density
aaB(r, r’) represents the distribution of polarizable matter throughout a molecule, because
it gives the polarization P (r) induced at point r by the application of a static external field
fB(r’) at another point r”. Eq. (6) is equivalent to the following statement about the elec-
tronic polarization- in terms of aab(r, r’): When a nucleus shifts infinitesimally within a
molecule, the electrons respond to the change in the nuclear Coulomb field via the same
nonlocal polarizability density aap(r, r°) that describes the response to an external field.

Use of Egs. (6)-(8) and integration by parts [57] transforms Eq. (5) for the force on
nucleus I in molecule A into

AR M) = Z! [®R! -1 )IRT-r|3 pBy(r) dr’

+ 2t TaY(RI’ r”) GABY(r, r) (x-p - r’B) le-r |3 pByr) drdr d(rg’)'

Here TGY(RI, r*)is the dipole propagator, defined by T,4(r, ") = V, Vg lr-r’|-1. The
Einstein convention of suMaﬁon over repeated Greek indices is followed in Eq. (9) and
below.

To lowest order in the A-B interaction, the polarization PAY(r”)(l) induced in mol-

ecule A by the permanent charge distribution of B satisfies



PAMC YD = [ oA, 0) g -1p) |r-r |3 pByrydrdr’ (10)
The Born symmetry condition [10]
Oog(r ) = &g, (r', 1) (11)

holds for the nonlocal polarizability density. From Egs. (10)-(11), Eq. (9) is equivalent to

AH O = ZI [ ®RL -r)IRI-r|-3 pByr) dr’

+ 2 [ T, R, ey PA D dr. (12)

Eq. (12) for AF!_(!) s identical to the lowest-order Hellmann-Feynman result; i.c.,
it gives the force obtained directly from the charge distributions pB(r") and ApA(N(r).
Since it has been derived here from AE(1) in Eq. (4) via Eq. (1), we have proven that the
energy-based theory and the electrostatic force theory give identical results for the interac-
tion-induced force at first order, despite apparent differences in physical content. The
interaction energy AE(!) depends exclusively on the permanent charge distributions of the
unperturbed molecules A and B, and not on the changes in the charge densities of A or B
induced by interactions. From Eq. (12), though, the resultant force AF! (1) exerted on
nucleus I in molecule A depends on the electronic polarization induced in A by B. Thus
Egs. (1), (4), and (12) establish a new connection between pure electrostatic and induction
effects. One key step in the proof involves relating linear response tensors--such as
aap(r, r°) or the charge-density susceptibility contained implicitly in Eq. (6)--to the deriv-
atives of the permanent electronic charge density with respect to nuclear coordinates [3, 4].
A second key step relies on the Born symmetry of the nonlocal polarizability density [10].

At second order in VAB, the interaction energy is a sum of iﬁduction and dispersion
terms. Induction effects are classical, stemming from the polarization of each molecule by

the field of the permanent charge distribution of the other. In contrast, dispersion effects
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(van der Waals attractions) are purely quantum mechanical, resulting from correlations
between the spontaneously fluctuating charge distributions of molecules A and B [9, 12-
27). Within second-order perfurbation theory, AE@ is obtained as a sum over states

| mA nB ) of the A-B pair, excluding | gA gB). Consequently, AE® splits into three sets
of terms, one with excited states confined to molecule A, a second with excited states con-
fined to B, and a third with excited states on both molecules. The sum of the first two sets
gives the induction energy, as analyzed below. The third set gives the dispersion (van der
Waals) energy; in Ref. 45, dispersion forces have been analyzed using nonlocal polarizabil-
ity .dcnsi.ties.

The induction energy AE@, | depends on the polarizability densitics of A and B,
and on the fields FA(r) and B (r) due to the permanent charge distributions of the un
perturbed molecules A and B.

AE®y = —172 [ drdr” a5 1) FBou @) FBg(r)

- 122 [ drdr” aBg(r, 1) FAu@ FApe) . (13)
Eq. (13) is derived as follows: Terms in AE®@ with excitations confined to molecule A are:
AED,= -3 (ghgB | VAB |KA gB) (kA gB |VAB |gAgB)/(E, - E))
=-[ar :rfdgr”dr”’Z' (A 1pA® |kA) (KA [pAr™) 1gA)/ (B, - Ep
x pBO(r’k) lr-r7 11 pBye=) Ie -] . (14)
With Eq. (8) for the nonlocal polarizability density, successive integrations by parts [57]
yield the first term in Eq. (13), and the second term is obtained by interchanging the roles
of molecules A and B.

The induction force on nucleus K in molecule A is determined by the derivative of

the polarizability density aAaB(r, r’) and by the derivative of the field F A (r) with respect
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to the coordinates of K. In Refs. 3 and 4, we have shown that the derivative of the polariz-
ability density with respect to RK depends on the hyperpolarizability density

Ba.py(r' r’,r”), a nonlinear response tensor that gives the polarization P_(r) induced at r
by the concerted action of static electric ﬁcldsfb(r’) and fy(r"). Explicitly, the static
hyperpolarizability density is given by [58, 59]

Bopy(r-rr) = K2 PapyZ (e [Po() Im) [(m |Pg) In)-3pq (8 IPy(r) lg)]

x (n [Pgr) lg)/ (g 0pg) (15)
where the operator @ afy Benerates the sum of terms obtained by permuting P, (r), Pp(r 9y
and PY(r") in the expression that follows, and E, — Eg = Ho)mg. In terms of Bamxr, r,r”),
the derivative of the polarizability density is [3] |

dat5(r, rYORK; = [ dr Bogyr 7', r ) ZK T, RK) | (16)
As noted above, when a nucleus shifts, the electrons respond to the change in the nuclear
Coulomb field via the same tensor that describes response to an external field. Response
via ﬁaay(r, r’, r’") to an applied field, acting together with the change in the nuclear Cou-
lomb field, yields a net effect that is linear in the applied field; and thus it determines the
nuclear-coordinate dependence of “ab(r’ r).

The static B-hyperpolarizability density has the permutation symmetry:

Baﬂy(r’ r,r’) = Bmfr, r’r) = ByBa(r'”' r,r). 17
From Egs. (1), (13), and (16),
AFK @, = 172 [ drardr BA g (r, 1, 1) ZKT (e, RK) 78 (1) FB0p(r)

+ [ drdr oB gr, 1) 3F AL (IERK, FAGK) . (18)
The derivative of the field due to molecule A with respect to the coordinate of nucleus K in

A satisfies
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IF A MPRK, = [ dr [, - 1) lr-r7|-3 3pAy(r)/aRK, ]
+ 7K VKe (g - RKa) |r - RK|-3
=-] dr dr” [ Vg (r - T'g) lr-r|-3
x 7K VKS V"7 lr-- RK|-1 aABY(r’, rvl
+ ZK VKe (t, - RKa) |r-RK[3, (19)
where V‘p denotes differentiation with respect to r’B, and similarly for V",{ . From Egs.
(17)-(19), we obtain
AFK @, = 112 | drdrar ZK T, RK, 1) BA 5" 1, 1) FB0o(r) FBoe(r)
+ [ drdrdr-dr ZKT ey(RK’ ) “Ays("m’ r)
X Tga®”, 1) @B, 1) FA()
+ Jardr ZXT (RK, 1) 0B 4, 1) FAp() - (20)
Eq. (20) has a simple physical interpretation in terms of the electronic polarization induced
in B at first order, and the polarization induced in A at second order in the A-B interaction:
At first order, the polarization induced in B by the permanent charge distribution of A is
given by Eq. (10), or equivalently by
PB,0M = [ aBgr,r) FAQrYar” . @D
At second-order in the A-B interaction, there are two contributions to the polarization
induced in A: (i) linear response to the field due to the induced polarization of B, pB n(r)(l),
and (ii) nonlinear response to the field ¥ Bom(r) due to the permanent charge distribution of
B. Hence
PAa(r)(z) = | drdrdr aAaﬁ(r’ r) Tﬂy(r" r) aBﬁ(r", ry ona(rm)
+ 172 [ drde” BA g (., 1) FBg(r) FB.07) 22)
Thus, from Eqgs. (20)-(22),
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AFK @, = [ ar ZKT (RK, r) [PA (@ + PB @D] . 23)

As given in Eq. (13), AE®), , depends solely on the linear response of each mole-
cule to the field from the unperturbed (zeroth-order) charge distribution of the other-—-but as
shown in Egs. (21)-(23), the associated force on nucleus K in molecule A depends on the
nonlinear response of A to the permanent charge distribution of B, and on the linear
response of A to the induced polarization of B (as well as the linear response by B to A).
This is a consequence of the connection between linear and nonlinear response in Eq. (16),
the permutation symmetry of the hyperpolarizability density in Eq. (17), and Egs. (6) and
(11).

Eq. (23) for AFK @), is identical to the second-order Hellmann-Feynman result;
thus it establishes the identity of the energy-based theory and the electrostatic force theory
at second order. In Eq. (23), the force on nucleus K due to the nonlinear term in PAa(r)(z)
(i.e., the term containing BA) arises from the dependence of aAaﬂ(r, r") on the position of
K; the force due to the linear-response term in PA_(r)@) arises from the dependence of
peA,(r") on the position of K; and the force due to PBa(r)(’) results directly from the de
pendence of the nuclear Coulomb field on the position of K. It is also interesting to com-
pare Eq. (23) with the corresponding result for the dispersion force on nucleus K,
Aan(z)disp. The dispersion force on a nucleus K in A contains no contributions from the
polarizatiqn of B [45]; it results solely from the attraction of K to the dispersion-induced
change in the electronic charge distribution of A, and this depends upon the hyperpolariz-

ability density of molecule A.
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4.3 The Long-Range Limit, and New Sum Rules for Polarizability and Hyperpolariz
ability Densities
In the long-range limit, for a pair of molecules with charges ZA and ZB, permanent
dipoles pA and uB, and permanent quadrupoles 8A and @3, the force on the entire A mol-
ecule, taken to first order in the A-B interaction, simplifies to [60]
FA) = _ZAT 7B 4+ ZA Tyg uls’3 _7B Tos uAB —13 ZA Topy GBB‘Y
+ WA Ty uB. - 173 Z8 Togy®py + - » (24)
with the T tensors taken as functions of the vector (RA - RB) between molecular origins,
here and below; T_(r, r)= Vu lr-r7|1, Taﬂ has been defined following Eq. (9), and
Topyr.r) =V, Vg V, |r-r”|-1. Atsecond order in the interaction, the long-range lim-
iting force on a pair of neutral dipolar molecules is [60]
FA@), do = aAﬁfY Tgs uB8 Toe "Be + “Bm Tgs pAs Toe uAe ’ @5)
to order R7 in the separation between molecular centers. For ions A and B, to order R
the net induction force is [60]
FA@ g, o = @y Tg Z2 T, Z8 + By Ty ZA T, ZA
= oAy (Ty s + Top Ty ) ZB 1By
+ @By (Ty Ty + Tog Tys) ZA A,
+ 1B AA S (Tp Ty + Ty Tyg) ZB 28
— 1BABG s (TgTyg + Tg Tg) ZAZA + ..., (26)
where AAB.\G is the dipole-quadrupole polarizability, a linear response tensor that deter-
mines the dipole induced by a uniform field gradient, and the quadrupole induced by a
uniform field [60]. It is not obvious how the results in Egs. (24)-(26) emerge from the

polarizability density theory developed in Sec. 4.2. For example, the result for FA(‘)a
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from Eqgs. (10) and (12) depends on the polarizability density of molecule A, as well as the
permanent charge distribution of B; and the result for AFK @, , from Eqgs. (21)-(23)
depends on the hyperpolarizability of A. One purpose of this section is to prove that the
forces AFK (1) and AFK (@, ; in Eqgs. (12) and (23) take on the long-range limiting forms
in Eqgs. (24)-(26), when summed over nuclei K. In the process, we gain new information
on the physical origin of terms in Egs. (24)-(26). We also derive new sum rules that apply
to aaﬂ(r, r’)and Baﬁy(r’ r’,r’’), in broad analogy to the Thomas-Reiche-Kuhn sum rule
[61] for oscillator strengths.
To first order in the A-B interaction, the induced force AFKG(I) on nucleus K
satisfies
AFK ) = _7ZK [ T ®RK.r) pBy(r)dr’
-zK| TogRE-r) ahy (v, 1) Tr - 1) pBy(r) dr dr'dr™ .27)
To find the long-range limit, it is convenient first to expand r’ about the origin RB in mol-
ecule B. This yields
Apxa(x) - 7K Ta(RK _RB)ZB 4+ ZK Ta.B(RK -RB) uBB
=13 Z¥ T,g (RX-RP) OBy + ..
- ZX[ T pRX-r) oAg (r, 1) T,(r - RB) ZB drar”
+ ZK [ T gRX-r") ofg (r", 1) T o(r - RB) uB drar”
=173 ZX[ T gRK-r) oAy (r, /) 5, (r- RB) @B drdr™ + o~
Next, we expand the T tensors in the integrands about r = RK. This gives @
AFKa(l) - 7K (aaB ) Yl(aB) [ TB(RK -RB)ZB — Tm(RK -RB) p1;7
+13 TpRX-RE) BB 5 + ... ]

—7K oK K_RrB - -RBy B
ZR ¢X gy [ TgR¥ -R%) Z8 — Tp (RX-RP) pB5 + ... ]
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-zZK xKam[TM(RK-RB) ZB +...1, (29)

where
Fop = - J T (RK-1) oA g, r)drdr (30)
Kopy = | Tos®K-0) ahgg(r,r) (" - RK) drar 31)
and
Kops =12 ] T ®RE-r)aA g r) (- RE), (¢ -RS)zdrdr . (32)

Equivalently, in terms of the long-range field ¥ B a(RK) at RK due to molecule B, the field
gradient _‘TB'aB(RK), and its gradient 73”037(RK), Eq. (29) for the force on nucleus K is

AFK D = ZK Bpg - Y€ ) FRGRK) + ZK 0K g, 7B RK)

+ Z5¢K s T2 ps®S) — . (33)

The tensor yKaB is the standard Sternheimer shielding tensor for nucleus K [3, 28-44]: If
molecule A is placed in a uniform, applied electric field #°, electronic charge redistribution
induced by the applied field changes the effective field at the nucleus from #¢ to (1 - ¥K) -
F¢, to firstorderin #°. Thus YK is the electric-field analogue of the chemical shift tensor.
The relationship in Eq. (30) between the nonlocal polarizability density, the dipole propa-
gator, and the shielding tensor ¥ has been proven in Ref. 3 (for related work, see Refs. 34,
40, and 62). Electronic charge redistribution in a nonuniform applied field differs from that
in a uniform field, and the tensors ¢KaBy [63] and KKOIBVS reflect the corresponding modi-
fications of the shielding, due to the nonuniformity of the field at RK.

In order to obtain the long-range force on the entire molecule A, we return to Eq.
(28), expand the T tensors about RK=RAandr= RA, and sum over nuclei K. In earlier
work, we have derived a condition on integrals of the polarizability density and dipole

propagators for neutral molecules [3]; as modified for species which may have a non-zero
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net charge, that condition is:

ZA8,q = ZK ZK [ T, R¥, 1) ah yr,rdrdr (34)
where Z®A is the total electronic charge in molecule A. The sum rule in Eq. (34) is derived
by considering the ground-state expectation value of the commutator between the momen-
tum operator p,, and the dipole uB (see [61]). New sum rules can be derived starting from
the commutators of p , with higher electronic moments, e.g., 9y defined by

Iy = Ty - (35)
where the sum runs over the electrons j, and r; gives the electronic position relative to the
origin RA. The ground-state expectation value of the commutator [Py qB?] is

(g |lpg agyl |2} = WA e, Byg + (W) Sy By - (36)
In Eq. (36), u® denotes the electronic part of the ground-state dipole, relative to RA, Since |

the ground-state expectation value of the momentum operator vanishes, g | [Py qm] Ig)

also satisfies

(g lipg ag) |£)=Z"[(g Ipg Ik)(k lag, Ig)-(g lag, Ik)(k Ip, 1£)]
k

=2i ImZ"(g llp,, Hyl |k)(k Iq,37 lg)/ €y -Ep 37)
k
where Im denotes the imaginary component of the expression that follows. Matrix ele-
ments for the commutator between pmj for the jth electron and the unperturbed Hamiltonian

H,, are determined by the force on the jth electron; and
N
(g | Ipy, Hol |k)=iﬁ(g|?l;F1*Jalk), (38)
. =1
where FI™J denotes the force on electron j due to nucleus I, and the sum runs over all N

nuclei. Eq. (38) holds because the sum over electrons j of the force due to the other elec-

trons i # j vanishes (cf. [3]).
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The matrix elements for the net force on the electrons can also be cast in terms of the matrix
elem;:nts for the electronic charge density operator as:

(g IZZ P lk) = (g |- Z! [ arp(r) v, (R-el ) k) . (39)
With Egs. (;;, (36)-(39), the relation oflthc operator dgy to the polarization operator via

agy = | ar' [P, + POITS T, (40)
and an integration by parts, we obtain the new sum rule:

i ZK [ T sRE, 1) [0Ag@ r) (F,-RA) + aA§Y(r, r) (g - RAg) Jdr dr’

= pCAY Sop + peAB By - (41)
From an analogous proof, with gy replaced by the third-moment operator t’m defined by

tByS = ef.}rﬂjrﬁrsj = f dr [PB(r’)r Yr'8 + P_{(r’)r13 r's+ Ps(r’)rBry] ,
42)
and the commutation relation

(8 Py tgys) 18) = WD [O°58,5 + O%55 8, + €% 8;]
+(1/3i) q, (8043 875 + 8(“8'38 + 5a8 SBY) , (43)
we obtain a second new sum rule,
T ZK [ T, RX, 1) (oA 1) (7, - RA) (g - R
+ ahy 1) (g -RA) (5 - RAY
+ oA, 1) (g - RAY) (", - RA) 1 dr dr’
= 23[ 64, Sup + 9°A55 Sory + GCABYSWB]
+13 ¢4, (Bpp 85 + BpyBp5 + 85585y - (44)
where 6°A and qA are determined with RA as the origin. With the sum rules in Egs. (34),
(41), and (44), the net long-range force on molecule A, obtained by summation of the forces
in Eq. (28) over the nuclei K, reduces to Eq. (24). This is consistent with physical expec-

tations. In addition, the work above makes it possible to draw a new conclusion about the



nature of the first-order induction force at long range. If the charge, dipole, and quadrupole
of molecule A are split into their electronic vs. nuclear contributions, Z¢A, uA, and 6°A
vs. ZM, uMA and @A, then the first-order induction force on molecule A can be recast as
FAD = —Z"AT 7B + Z"A Top uBB -ZB Top uﬂAp -1/3 ZnA Togy 63'3M
+ u“AB TaBYuBY° 1/3 ZB Topy 9"‘%7 + ..
—Z¢A Ta 7B 4 7eA TaB p'Bﬁ -7B Tu,B u_e:Aﬂ -1/3 ZeA TGB‘Y eBBy
+ peAB TaBYu'BY- 173 7B Topy G‘Am + ... (45)
From our analysis in Egs. (27), (28), and (34)-(44), we conclude: each of the terms in Eq.
(45) that contains the nuclear charge, dipole, or quadrupole moment on A originates in the
direct interactions of the nuclear charge on A with the unperturbed charge distribution of
B; each of the terms that contains the permanent electronic charge, dipole, or quadrupole
moment on A originates in the attraction of the nuclei on A to the electrons on A, perturbed
to first order by the interaction with B.
Next, we consider the long-range limit of the second-order induction force
FAQ, o For neutral, dipolar molecules, expansion of Eqs. (21)-(23) as above and elimi-
nation of terms that contain ZA or ZB leaves
FAD), =sz‘</2 J dr dridre T, ®K, 1) BA a7 1)
X [ To Tgp KBy BBy + Top Tap BB BB, ) - RAY
=13 Toq Taa W80 €85 + Tony Taa B, 12, (- RAY
— 13T, Ty nB €8+ .. ]
+ZI:( ZK [ dr dr'dr-dr TR, r) el gr, 1) o g, 1)
x [ Tgq Tgy uAﬂ ~ T Tanx uAn ' .-RB)

A (4r _RA
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= Toon Tog Hq @ -RBY + ... ]
+ E ZK [ drar B g, 1) x [T,, Tgy b4 + 13T, Ty, 64,
~ Yea Tbmc “’An (r - RBx) + Teal TBn “’A'n (Rxl B RAX)
= T Taq WA @ -RBD + .. 1, (46)
complete to order R7 in the A-B separation. The R terms in Eq. (46) and the terms con-

taining GAkor GBM vanish for neutral molecules because of the sum rule in Eq. (34) and

the sum rule for the B hyperpolarizability [45],

K 307" K . A veo _
zl:(z [ dr dridr Ty ®RK, r)BA (", r,r) = 0. (47)
With the additional sum rule contained in Eq. (41), and the results [10]
B - - ~B
0B g = | drdr 0B g(r. 1) 48)
and [45)

12 12<: ZK | dr dridr” Ty, r) BA 5067, 1, 1) (1 - RA))

+ 1/12 ZK[ drdridr” T RK, r)BAL (71 r) (@5 - RAD

=172 [0A 5 Spe + aAcm 85l » (49)
Eq. (46) reduces to Eq. (25), as required.

If FAQ), ;  is written as a sum of three terms, 3, S,, and 35, where

3y = aBg, Tps i T 14 (51)
and

then the analysis above provides a new physical interpretation, which is distinct for each
term. (It should be noted that the electronic part of the dipole ueAe appears in 3,, while the

nuclear part u“-“e appears in $5; the factor uAa appearing in both 3, and 3 is the total



46

dipole of molecule A.) The term 3, originates in the attraction of the nuclei in A to the
electronic charge distribution of A, hyperpolarized by the permanent dipolar field from
molecule B. The term 3, also stems from the attraction of the nuclei in A to the electronic
charge distribution of A, in this case perturbed by linear response to the dipole induced in
B by the permanent dipole of A. Finally, the term 34 reflects the direct attraction of nuclei
in A to the first-order perturbed charge distribution of molecule B, PB_(r)()) in Eq. (21)

A similar analysis holds for interacting ions A and B. To obtain results complete to
order RS, we use [10]

A gy = 32 [ ardr[af @ r) @g-RA) + oA (rr) (7, -RA)

~238g, a5 (r 1) (5-RAD T, (53)

and two new sum rules for the B hyperpolarizability density, derived next. We use Eqs.
(15), (38), (39), and (42); we also use

(g | pgy gl In)= Z°[(g Ipy lm)(m lug In)= (g lug Im)(m Ipy In)]

- (g lugle) (g lpg In), (54)

the analogous relation for ( g | [Py tﬂﬁ] In), the fact that ( g | [Py pB] | n ) vanishes for
any n # g, and (assuming for simplicity that the molecular states are real)

(mlp, In) ==(nlp, Im). (55)
Together, these results yield

EA | ardrar TeoRE, 1) PALg 1) Ty Tgy (1 -RAD @ -RAD

- i/(3ﬁz)TaT5M2;[(g [P, tgp,d In)¢n Iy )
+ (8 g In)(n 1ty d 1)1/ g - (56)

From the analogue of Eq. (43) for transition matrix elements of the commutator [pe, tﬁM],

and the sum-over-states expression for A [60],

By
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AG-BY = };".’[(g IGBY In)(n lua lg) + (g I"‘a in){(n |Gﬂ7 |g)]/ﬂ(o,,8 , (57
we obtain
2 zf | drdrar T, ®X, r) BAup® 1) T, Tpy, (1 - RA) (7 - RAY

A
=23T TBye A (58)

afy
The final sum rule is obtained similarly, using transition matrix elements of [Py qm] in

place of [p,, tBYG]’ and using Eq. (40) for gy : itis
K s K .-~ RA ” _RA - _nA
¥ Z¥ [ ardrar TE¢(R L P BAYp® T Top Ty (1 -RAD () - RAY

=23T TBY (59)

afy -
With Egs. (47)-(49), (53), (58); and (59), for interacting ions A and B, we finally obtain the
net long-range force FA@), 4 on A as a sum of terms $°;, 37, and S°3, where
3°) = aftg, Ty ZB T, ZP — ahy ( Ta Tys + Top Tys) Z2 185
+ IBAR s (TgTos + Teg T)ZBZ8 + ., (60)
8, = “BBY Ty ZA Toy Z°A — 113 ABM (Tg T + Top To) ZA ZeA
+ oLBﬁY T3 Toys ZA peAs + aBBY Tos Tys pAszZeA + L, (61)
and
33 = oBy Ty ZAT, ZM — 13 AB; S (Tp Ty + Tog Tyg) ZAZMA
+ 08 Tp Tog ZA uM5 +08p T g TiguAZM + .. (62)
371,37, and 3”3 add to give FA(Z)ind oI Eq. (26), as required. Asa significant new result
from our analysis, we can explain the physical origin of each of the terms 37}, 35, and 3“3
separately. The interpretation is analogous to that for the net forces on interacting neutral
molecules. Terms in 3, contain linear response tensors of molecule A; they originate in

the attraction of nuclei in A to the perturbed electronic charge distribution of A, hyperpo-

larized by interaction with the permanent moments of B. This interpretation reflects the
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deep connection between linear and nonlinear response; Eq. (16) gives one example.
Terms in 37, contain the reaction field effects on the electronic charge and moments of A;
these all originate in the attraction of nuclei in A to the perturbed electronic charge distri-
bution on the same molecule--but in this case, the perturbation is produced by the field and
field gradients due to the polarization induced in B, rather than the permanent polarization
of B. Just as the interpretation of the first term relied on the connection between linear and
nonlinear response [3, 4], the interpretation of 3 "> uses a similar connection between per-
manent moments and linear response tensors [3]. Finally, terms in 3°; contain the reaction
field effects on the nuclear charge distribution in A. These originate in the direct attraction
of nuclei in A to the perturbed charge distribution of B.
4.4 Discussion and Summary

In this chapter, we have unified the seemingly disparate physical interpretations of
Hellmann-Feynman forces on nuclei in interacting molecules vs. the forces obtained direct-
ly from interaction energies. Our results at first order are derived in Egs. (4)-(12) of Sec.
4.2. They follow from two key relations: the connection between susceptibility densities
and the derivatives of the permanent charge density with respect to nuclear coordinates [3],
and the Born symmetry of the nonlocal polarizability density [10]. At second order, the
results follow from the connection between linear and nonlinear response tensors contained
in Eq. (16) [3, 4], the connection between permanent moments and linear response tensors
[3], and the permutation symmetry of the hyperpolarizability density, Eq. (17). This is
proven in Eqgs. (13)-(23) of Sec. 4.2.

In Sec. 4.3, we have derived the lowest-order force on a nucleus in molecule A in

terms of shielding tensors [3, 28-44] and the field and field gradients at the nucleus due to
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molecule B. In this section we have also derived new sum rules applicable to the polariz
ability and hyperpolarizability densities. Each of the new sum rules involves the dipole
propagator from a point in the electronic charge distribution to the nuclear position RK,
multiplied by the charge on nucleus K, and summed over nuclei. Our sum rules on the
polarizability density aaﬂ(r, r’), Egs. (41) and (44), have been derived from ground-state
expectation values of the commutator of p with the second and third charge-moment oper-
ators qg, and t5: It should be noted that the commutator of p with the charge moment of
order n depends on the moment of order (n-1). The momentum operator p is the generator
of infinitesimal translations, and the origin-dependence of the charge moment of order n is
determined by all lower-order moments. New sum rules applicable to the hyperpolarizabil-
ity density BaBY(r’ r’, r”’), Egs. (58) and (59), have been derived starting from transition
matrix elements of the commutators of p with charge moments. In general, the sum rules
connect integrals of aaa(r, r’) and the dipole propagator with permanent charge moments,
while they connect integrals of Baﬁy(r, r’,r’") and the dipole propagator to linear response
tensors.

With the sum rules, we have obtained the long-range limiting results for the forces
on molecule A at first and second order in the interaction. This analysis provides new
information about contributions to the long-range force: If we split the charge, dipole, qua-
drupole, and higher moments on molecule A into their electronic and nuclear parts, then the
first-order interaction-induced force FA()_ can be separated into two sets of terms, one
dependent on the nuclear moments of A and the other on the electronic moments of A, as
in Eq. (45). All of the terms in FA(I)a that contain nuclear moments stem from the direct

interactions between the nuclei in molecule A and the unperturbed charge distribution of
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molecule B, while all of the terms in FA(l)a that contain electronic moments originate in
the interaction between the nuclei in A and the electronic charge distribution of A itself,
polarized by B. It is important to note that the terms in the second set depend upon the per-
manent (unperturbed) electronic moments of A--yet they represent effects due to the polar-
ization of A by 3, as determined by linear response tensors of A. Our interpretation is pos
sible because of the sum rules derived for aaB(r, r).

We have also obtained new information about the origin of contributions to the
second-order force AFAC(Z)M on the entire molecule A at long range. Each of the terms
that contains a linear response tensor on molecule A stems from the attraction of nuclei in
A to the component of the electronic charge distribution in A that has been hyperpolarized
by fields from the permanent charge distribution of B. A second set of terms in AFA, 2, 4
represents the interactions of the reaction field at A with the electronic moments of A.
Thesc terms result from the attraction of nuclei in A to the electronic charge density of A,
perturbed linearly, at second order by molecule B. The final set of terms in AFAg(z)ind rep-
resents the interactions of the reaction field at A with the nuclear moments of A; and this
set stems from the direct interaction between nuclei in A and the first-order polarized
charge distribution of B.

For the specific case of two neutral, dipolar molecules A and B, the lowest-order,
interaction-induced forces on individual nuclei vary as R-3 at long range, as shown by
expansion of Eq. (27). The lowest-order force on the entire A molecule varies as R4,
however, due to the sum rule in Eq. (34). This is not a simple charge cancellation effect,
because the force on the entire A molecule is obtained by summing over the nuclei only;

the net force on the electrons vanishes in the (perturbed) ground state. At second
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order force on nuclei in A stems from their attraction to the second-order perturbed charge
distribution of A--yet this force varies as R/, rather than R because of the sum rules in
Egs. (34) and (47).

'fhe results obtained here hold the potential for computational applications, in
analyzing intramolecular cbntributions to the net forces on nuclei in interacting molecules,
and in analyzing collision-induced vibrational transitions. The polarizability density
aab(r, r’) can be computed with pseudo-state techniques [24], or via connections we have
found [9] to auxiliary functions used in computing overlap-damped dispersion energies
[21-25]. Related methods of computing the hyperpolarizability density Baﬁy(r' r,r’),
density-functional ﬁethods, direct perturbative approaches, and analytic differentiation
techniques [64] are under investigation for computational tractability. At present, the new
results from this work are important principally for the physical interpretation they offer

for the forces on nuclei in interacting molecules.
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CHAPTER V
ELECTRIC FIELD SHIELDING EFFECTS IN INTERACTING MOLECULES

5.1 Chemical Shift and Electric Field Shielding at Nuclei
In nuclear magnetic resonance (NMR), the local magnetic field at a nucleus in a molecule
is not exactly the applied one, rather

B, = (8,5~ ) B3, (1)
where B < is the applied field, G is called the shielding tensor or chemical shift. This is
because the applied field induces a current in the electrons of the molecule, which produce
an extra contribution in addition to the applied field [1].

Similarly when a molecule is placed in an applied electric field, according to
Fowler and Buckingham [2], the local field acting on nucleus I satisfie#:

Fl,=FO +(3,5-Yp) F + 172 ¢! 5, Fy F, + 16 M1 g Fy F, F;

+153 312 Rig 8, + 32 RL 85— R Bp, + VI g ) Fy
+1/3§10m51=ﬂ Fg+..e) )

where 'y[, ¢I, 'nl, v, CI,. .. are response tensors, FB is the P component of the applied field
at the molecular origin, and Fg, is the field gradient at the molecular origin, while FO_
represents the electric field at nucleus I in the absence of external fields. Usually ! is
called the dipole electric shielding tensor and ¢! the quadratic dipole shielding tensor. This
is because the applied electric field distorts the electron cloud around the nuclei in the

molecule, which produces an extra contribution in addition to the applied field.
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5.2 Relationships Between Electric Field Shielding Tensors, Dipole Derivatives,
Polarizability Derivatives and Nonlocal Polarizability Densities

The relationship

g/aR, =Z! (3,5~ Vo) ?3)
between the electric field shielding tensor ’y‘aa, and the derivative of the dipole with
respect to the coordinate of nucleus I, auB/aRIa, was established by Sambe [3], Epstein
[4], Lazzeretti and Zanasi [5,6], and Wolinski, ez al [7]. Fowler and Buckingham [2] gen-
eralized the theory to treat molecules in nonuniform fields and to allow for nonlinear
response to the applied field. The generalization provides a new relation between Raman
(and hyper-Raman) intensities and higher ofdcr shielding tensors; e.g. :

ot ORL, =20 @

There are also relationships between derivatives of the quadrupole moment and
quadrupole polarizabilities and the shielding tensors for molecules in a uniform field
gradient [2, 8-11].

By use of nonlocal polarizability densities to analyze electronic charge redistribu-
tion in a molecule, Hunt [12] finds new expressions for ‘y‘as and ¢Iaby in terms of nonlo-
cal polarizability densities:

Yop=—ldrar T (RLr) aAp (1, 1) = (85 dgaRY, )/ Z!
or auﬁ/akla =ZI (8043 - ‘Y‘GB )

= ZByp+ [drdr T (RL r) oy (£, 1)) )

Oy =) dr dr'de T s(RL r) Bgg (r, 1", 1) = dag ORI, / Z!

or  dag /AR = Z! [drdr'dr T (RL 1) Byg (r.r',r7) ©)

where Z!is the charge on nucleus I, and Tuﬂ (r,r’) is the dipole propagator:
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Toa(r.r') =Tog(r-r)=V Vy(lr-r | @)
am( r’, r) is the nonlocal pdlarizability density and Bsm( r’’, r’,r) is nonlocal hyper-
polarizability density. In all equations, the Einstein convention of summation over repeat-
ed Greek indices is employed.

Equation 5 gives an important new physical insight into the change in the molecu-
lar dipole moment that results from an infinitesimal shift in nuclear position. The electron-
ic charge distribution responds to the change in field via the same nonlocal polarizability
density a( r, r”) that determines its reaction to an external field; and this response changes
the electronic component of the molecular dipole.

Equation 6 explains the connection between ¢laﬂy and aam/anla; the effective
polarizability of an electronic charge distribution in a perturbing field can be expanded as
a series in the field, with a leading correction term that depends linearly on the perturbing
field and the nonlocal hyperpolarizability density B(r**, r’, r).

These relationships give the possibility not only to find new results for the forces

acting on nuclei, but also to find the electrical shielding effects in interacting molecules.
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5.3 Electric Field Shielding Effects in Interacting Molecules
New analytical results for forces on nuclei in interacting molecules have been given
in terms of nonlocal polarizability densities, in Chapter I'V.
To first order in the A-B interaction, the induced force AFK (1) on nucleus K in
molecule A satisfies
AFK () = — zK | T,RK-r) pByr)dr’

-ZK| TogRX-r) oAy (r, ) T, (r- rpByr) drdrdr”  (8)
where ZK and RK are the charge and position of nucleus K, respectively, T, TpTeg - - -
are propagator tensors, aA(r’, r) is the nonlocal polarizability density of molecule A, and
pBo is the unperturbed charge density of molecule B.

The second order induced force AFK @, ; on nucleus K is:
AFK @, = 172 | drdriar ZK T, RX,r) BA, 4@\ r, 1) faoq(r) FBop(r)

+ [ drdrdrdr ZK TJRK, r’) aAﬁ(r”', r

X Taa(®™, 1) 0B g(r, 1) FAG(")

+ [ ardr Z8 T, RK, 1) & g(r, 1) FAYE) - ©)
where BAm(r", r, r’) is the nonlocal hyperpolarizability density, ¥ Ao is the field
in molecule B produced by the unperturbed charge distribution of molecule A, and ¥ Bo is
obtained by exchanging A, B in the above statement.

By taking the long-range limit .of AFK (D and AFK @), we prove that

intermolecular fields are screened via the same shielding tensors introduced in Sec. 5.1.



To find the long-range limit, it is convenient first to expand r”in T and T,{ about
the origin RB in molecule B. This yields

AFKa(l) =- 7K Ta(RK_ RB) ZB 4 7K Taﬂ(RK'RB) uBB

-113 ZK Tap',{(RK-RB) e*’lw + ...

_ 7K K_pr VoA (pr” .rB)7B .

Z fTaB(R r) oAy (', ) T,(r - RB)ZB drar
K K_pr1ogA . _mrBy B .
+ ZK[ T gRK- 1) afg (r", 1) T,gr - RB) pBy drdr

~153 Z8[ T p®K-r") afy (", 1) T g (r - RB) OBy, drar” +...

(10)
where  ZB= | pBy(r") dr’ (zB= 0, for neutral molecules) (11)
uBy=J pBy(r) - RB)gdr, (12)
p B
and :
68, =172 | pByr) 3 (- RB)g (r"-RB) - | r-RB |25 1" 13)

Then by expanding r in the T tensors about RK, one obtains:
AFK D) =-ZK @ - K o) [Ty(RX - RB) ZB — Ty RX-RP) B,

+ 1/3TBY8(RK-RB) e"y5 +...1]

—ZK MK gy [ Tg,RX-RB)ZB — Ty (RK-RP)uB5 + ... ]

_7K K

Z KKW[TM(R -RB)ZB + ]

= Z%@gp - op) FP0sRY)

+ 280 oy FR0 R |

+ 28K g5 FB0 s ®E) + ... (14)
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where ¥ g = - | T RK - 1) A o(r, 1) dr dr” (4] (15)

Mogy = | Tos®K- ) atsg(r,r) ¢ - RK), dr dr” [13] (16)

KKogs = 12 | ToeRE -1 0 g, 1) ¢ - RX), (" - R)5dr ar, (17

730B(RK) =—TB(RK- RB)ZB + TBY(RK- RB) p.B,!-1/3 TW,(RK -RB) eﬁﬁ»f ...(18)

fBO’B Y(RK) =Ty Y(RK_RB) 7B 4 TBYS(RK' RB) B, - -
and

BO"M(RK) =-TW(RK -RB)ZB 4+ .. (20)

The first order induced force AFKG(‘) on nucleus K in molecule A at long range

all comes from the screened field due to the unperturbed charge distribution of molecule B
(the net charge ZB, permanent dipole uB, quadrupole 6B, ...). Due to the electronic charge
redistribution in molecule A, however, the effective field acting on nucleus K in A is not
the total field of #B; instead, it is (1 - ¥X).FB,) for the linear response to #B,, Itis AK:
#B,’ for the linear response to the gradient of B, «K:.#B8" for the linear response to
the gradient of the gradient of ¥ Bo. That is, the tensors AX [13] and X reflect the modi
fications of the shielding, due to the nonuniformity of the field at RK-

Similarly, for the second order force AFKe(z)im ,weexpandr and r’in molecule
A about the nuclear position of RK:
FBoa®) = FELRE) + (-RK)5 787 s(RK) + 172 (r-RK) (r-RK)5 7B~ s(RK) + ..

1)

FBog®) = FBYRK) + (r-RK)5 FB 3 (RK) + 172 (r"-RK) (r-RK)5 78775 ((RK) + ..

(22)
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and we define:

FByr ) = | drdr Ty (e, 1) @B g(r, 1) FAG(r). 23)
Eq. 23 gives the reaction field from molecule B, due to its response to the field ¥ AOB(r .

Then the first term in Eq. 9 becomes:

172 [ drdridr ZK T R¥, r) BA 40", 1, 1) FBoo(r) FBog(r)

=172 [ drar'ar” ZXT(RK, 1) BA (™", 1, 1) FB (RK) £ B RK)

+] drarar ZKT K, £) BA o, 1) (r-RK); 7B (RK) 7B (RK)

+..,

=12Z%K g 7B RK) FBLRK)

+ 13 ZXEK o5 FBLRK) 7B (RK)

+.., (24)
where ¢K is the quadratic dipole shielding tensor defined in Eq. 6 and
cxeaﬂs =3f drdr’dr” TCY(RK, r BAWB('.”’ r,r) (r-RK);, LK is also a response tensor.

The second term in Eq. 9 becomes:
| drdridrdr ZK TR, 1) oA (07, 1) Too (6, 1) 0B g, 1) FAG(r)

~f drdr ZKT tY(RK’ £ “Ays(""" r) 738'"("”)

=- ZK (¥ 5 PP RE) - MK g5 FBga™RK) - kK 05 7B pas™RF)- ]

(25)

where YK , AK, xK are the same as defined in Eq. 15, 16, 17 respectively.

The third term in Eq. 9 is:

J ar dr ZK T RK, 1) 0B o1, 1) FApg(r)

- ZK fBem(RK) (26)
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ComBining Eq. 24, 25, 26,
AFK @4
=+ ZK [y~ ep) FBE™RX) + MK g5 FB 35 ™(RK) + kK 05 7B 5™ (RK) + .. ]
+12Z% K 5 7B (R¥) 7By RK)
+1BZK K o5 7B, (RK) 7B755(RK)
+ oy 27)
Equation 27 shows how the field due to neighboring molecules and the reaction field are

screened at second order in the molecular interaction.
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CHAPTER VI

QUANTUM THEORY OF THE MOMENTUM DISTRIBUTIONS

FOR A PARTICLE IN A ONE-DIMENSIONAL BOX

A particle in a one-dimensional box is a widely used model system which appears
in many textbooks of quantum mechanics [1-8] and quantum chemistry [9-13] as well as in
the Journal of Chemical Education [14]. In most cases, however, it has been discussed
only with regard to the position distributions of the particle. In this work, we emphasize
the momentum distributions for which we obtain a simplified and explicit expression.

We point out the nénc_:lassical features of the momentum distributions, and show that the
distribution bifurcates from unimodal to bimodal as the quantum number increases.

Asis well known, quantum mechanics not only describes physical systems, such as an
elementary particle in motion, but also specifies what an observer can know about the sys-
tem. The limits on observations come from the famous uncertainty principle.

For a particle in a one-dimensional box, it is easy to solve the Schrédinger equation
to obtain the wave function exactly. This model problem vividly demonstrates the princi-
ples of quantum mechanics, such as the uncertainty principle, and the connection between
the space representation and momentum representation of the wave function [4].

The time-independent Schrédinger equation for a particle of mass m in a one-
dimensional box of length a is:

d?¥(x) /dx? + 8x?mE/M2¥(x) = 0 (0<sx<a) (1)
Here W(x) is the wave function, h is Planck’s constant, and E is the energy. The wave

function satisfies the boundary conditions ¥(0) = ¥(a) = 0.
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The normalized solutions are
¥ (x) = V2/a sin(nmx/a), ‘ )
where n=1,2,3, ...
The quantized energy levels obtained naturally from the boundary conditions are
E = h*n¥8ma’n=1, 2, 3, ... 3)
Figure 1 shows the probability densities ¥ (x) W, (x) for the position of the particle in
the first several energy eigenstates.

Clearly the motion of a quantum particle in a box is very different from the classical
motion. In a stationary state, the quantum particle cannot have any energy except the quan-
tized values. In an energy eigenstate, the particle appears in various positions of the box
with definite probabilities and there are special points (nodes) where ¥ (x) = 0 and the prob-
ability density to observe the particle drops to zero. Quantum mechanically, a standing
probability wave is set up in the box [9]. When the energy quantum number n becomes
large, the position distribution in the box becomes uniform. It approaches the classical
limit of constant probability density in the box.

The average value of the position for the particle is
<x>p=]_ " ¥p(x) x ¥p(x) dx =2 /a [ ®x sin*(nmx/a) dx = a /2. @)
The average value of x2 is
<x2>n = f_““ W (x) x2 ¥, (x) dx
=2/a] ®x?sin*(nrx/a) dx = (a/2nm)2(4n?nf3 -2). Q)

Thus the root-mean-square deviation of the position for the particle is

Ax =V <x5 - <x >,2 =(a/2nm)V(n’"2/3 -2). (6)



67

The momentum distribution of a particle in a box is also very different from classical
expectations. From a classical point of view, the particle should have a definite value of the
momentum due to conservation of energy. Since E = p2/2m, therefore p = +V2mE. Classi-
cally, the particle moves forward and backward in the box with constant speed.

Quantum mechanically, the energy eigenstate ¥, (x) = *1‘2-/—3 sin (nmtx/a) is not an
eigenstate of the momentum operator, because
pV2/a sin(anx/a) = -i(2m)d/dx [V2/a sin (nrcx/a)]
=-i(h/2r) (nr/a) V2/a cos (nxx/a)
# po V2/a sin (nmx/a). )
This means that the outcome from a momentum measurement for the particle cannot be pre-
dicte with certainty.
From the expression
¥, (x) = V2/a sin (nxx/a) = -i/N2a[exp(inmx/a)-exp(-inmx/a)]

(0<sx<a) ®
it can be shown that the wavefunction inside the box is a superposition of traveling waves
with equal and opposite momentum. However, it would be incorrect to jump to the con-
clusion that the state ¥(x) consists of two eigenstates of momentum operator with the
same weighting factor, and therefore, the particle moves forward and backward uniformly
in the box with a definite absolute value of the momentum Ipl = p, = nh/2a [9-11]. This is

identical to the classical point of view about the motion of a particle in a box.
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The function exp(ti2npx/h) is an eigenstate of momentum operator when it is valid
for all x, without spatial limitation. Only when a particle moves in free space can its

momentum take on a definite value. This is easy to show [4]:

If a particle moves with a definite momentum py , its wave function in the momentum

representation is

D(p) = 8(p-p); 9
Then by Fourier transformation, the wave function in the position representation is
¥(x) = 1¥h |___* 8(p-po) exp(2mipx/h) dp = 1/Nh exp(2mipyx/h). (10)
The probability density to find the particle within the infinitesimal range dx about x is
p(x) =| ¥(x)| = 1/h = constant . (11
This means that the particle can be found anywhere in space with the same probability.
That is to say, if the momentum of a particle is fixed, its position is totally unknown.
In the opposite case, if a particle is fixed in space at x = x, its wave function in the
position representation is
¥(x) = 8(x-x ); (12)
Then by Fourier transformation, in the momentum representation the wave function is
@(p) = INh [_” 8(x-x Jexp(-2mipx/h) dx = 1/Vh exp(-2ripx /h). (13)
Hence the probability density to find the particle with a momentum in the infinitesimal
range dp about p is

p(p) 5 () - 1/h = constant. (14)
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This means that the particle has equal probability to be observed with any momenmni value
(relativistic effects are neglected). In other words, when the position of the particle is
fixed, its momentum is totally unknown.

Between these two extremes, a particle in a one-dimensional box is spatially con
strained (in the interval 0 < x <a). The function ¥(x) = exp (tinnx/a) for 0 < x < a, but
¥(x) = 0 otherwise, is not an eigenstate of momentum operator. The actual momentum dis-
tribution is found by transforming the energy eigenstate from the position representation to
the momentum representation by Fourier transformation [6,15]:

Dp(p) = (1Wh) [ ¥y(x) exp (-2mipx/h) dx

= (1) [ 2 (V2/a) sin(nmx/a) exp(-2mipx/h) dx
= (-i/N2ah) [ [exp(inmx/a)-exp(-innx/a)] exp(-2mtipx/h) dx
= (Vh/27%a) po/(pp2-p?) [1-(-1)exp(-2xipa/h)]
(Vh/2nZa) py 2 i sin(pan/h) exp(-inpa/m)/(py2-p?)  (n even)
(2% Pp 2cos(pan/h) exp(-inpa/h)/(p,2-p?) (n odd)
where p,=nh/2a,n=1,2,3, .. . (15)

Equation 15 gives an explicit, simplified expression for the wave function in the
momentum representation, from which it is easily seen that the wave functions are
amplitude-modulated and n-dependent also.

The corresponding probability densities to observe the momentum in the infinites-

imal range dp about p are
sz(P)=(2h/a7t2) P 22k3i112(p1!:a/h)/(p2 -p2)2, (n even, n = 2k)
Pox.1(P) = (2Wan?) pZyy cosX(pram)/(p?y 1-p2). (n odd, n = 2k-1)

(16)

wherek=1,2,3,..
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Figure 2 shows the momentum probability densities for the particle in the first
several energy eigenstates. This figure and Eq. 16 show clearly that there is a nonzero
probability density to obtain many values other than ==nh/2a in a measurement of momen-
tum for the particle in state n. This is very different from the classical behavior.

C. Cohen-Tannoudji, B. Diu, and F. Lalog, have analyzed the momentum probabi-
lity density of a particle in a box in their textbook Quantum Mechanics [1]. In their expres-
sions for the momentum wave functions and probability densities, they keep two terms sep-
arate as “diffraction functions” and this leads to a valuable physical interpretation of the
momentum probability density distributions. But they did not simplify the expressions to
the more explicit forms of our Eq. 15 and 16.

From Eq. 16, one can easily find all the maxima and minima of the momentum
distribution. From dp(p) /dp = 0, the conditions for the maxima are

cot (par/h)= -2 (ph/ax) / (p2 5 -p?) (neven, p#py),

tan (pan/h)=2 (ph/ax) /@% 2.1-p?)  (nodd, p*poy.p). (7
These equations can be solved numerically (see remark 3, below.)

The minima of the momentum distributions occur when p(p) =0, i.e. when

sin(par/h) = 0, (neven,p#pp)

and cos(par/h) =0 (nodd, p+pp). (18)
The separation between typical minima in the momentum distribution is obviously
n-independent and equals h/a.

We make several observations:
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1. The momentum distribution of a particle in a box gives a definite probability for
observing values of p other than those corresponding to the eigenenergies of the particle.
It is very interesting to note that, in analogy with the nodes in the position distribution of
the particle (points in space where the particle has zero probability density to be found), the
momentum distributions also have some zeroes at special values of the momentum. In even
n states (n=2k), the particle cannot have the momentum values of p =/ h/ a, where 1 #k,
while in odd n states (n= 2k-1), momentum values of p = (2 I-1)h/2a (1 # k) cannot be mea
sured. We could also regard the momentum wave function as a standing wave set up in the
momentum space but it is amplitude-modulated.

2. The momentum of the particle in an eigenstate averages to zero due to the sym-
metry of momentum distribution: p(p) is an even function of p, so

<p>p=1__"ppy @ dp=]__" ¥, (x)(-ih2x d/dx) ¥p(x) dx=0. (19)
The probability densities at zero momentum are

Pu(0)>=0, (n=2k)

Pu.1(0)=8a/(2k-1* hw®.  (n=2k-1) (20)
In even n states, one cannot observe the particle with zero momentum (the probability is
zero), while in odd n states, one does observe zero momentum of the particle with a certain
probability. Surprisingly, in state ¥,(x) (n=1), the most probable momentum is zero, rather
than P= h/2a. When odd n becomes larger, the probability of finding the particle with zero
momentum decreases.

The mean value of p? is given by

<p>p=l__"ppp @) dp=]_ " ¥ (x)¢ihv2r d/dx)? ¥y(x) dx = (nh2a¥ (1)

Thus the root-mean-square deviation of the momentum is



Ap= V<p*>, - <p>p 2 =nh/2a. (22)
Combining Eq. 22 with the root-mean-square deviation of the position for the particle, one
obtains a result consistent with the uncertainty principle:

Ap Ax = (nh/2a)(a/2nT)N(n2I/3 -2) > W4T, (23)

3. The probability density at p = 1 p,, is a constant (n-independent):
lim p(p)=a/2h (24)

P—Pp
We note that the most probable momentum is not + p, when the particle in state ¥,(x).

Instead, by numerical calculations (Eq. 17) we find the following values for the most prob-

able momentum p,, in different states:

1 0.000
2 1.675
3 2.790
4 3.845
5 4.950
10 9.985

From Fig. 2, it can be seen vividly that the distribution of the momentum for the particle
bifurcates from a single peak (in the n=1 state) to two separate peaks near p =+ p,, (for all
states n 2 2). The most probable value of the momentum for the particle is n dependent.
Only when n becomes large, does the probability density p(p) reach its maximum at
Pm=xp,. This can be proven by taking the limit for dp(p) /dp when p—p:

lim dp(p) /dp e< 1/n. 25)
PPy

We note that p(1p,) is n independent. This matches the classical description.
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Figure 6.1 The position probability densities of a particle in a one-dimensional box;

n indicates the energy levels of the particle (not to scale).
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Figure 6.2 The momentum probability densities of a particle in a one-dimensional box;

n indicates the energy levels of the particle (not to scale).
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