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ABSTRACT

A MIXED LINEAR MODEL WITH TWO-WAY CROSSED RANDOM EFFECTS

AND ESTIMATION VIA THE EM ALGORITHM

BY

Sang-Jin Kang

In the past two decades, there has been a prominent methodological

effort in educational statistics to develop analytical methods that

account for the multilevel characteristics of the educational data. As a

result, methodologists have developed estimation procedures appropriate

for nested multilevel data assumed normally distributed. One limitation

shared by all of the new multilevel analytic approaches is that they

apply only to those multilevel data which are purely 'hierarchical.

Although educational systems typically have hierarchical organizations-

students are grouped together for learning within classrooms, classrooms

within schools — very often the structure of a system is not a 'pure'

hierarchy. Students may belong to more than one group simultaneously. If

the data are nested within the cell of two cross-classified grouping

factors, we call it crossed multilevel data.

This study presented an appropriate statistical model for the

analysis of crossed multilevel data for general applicability. The

crossed multilevel model presented in this thesis allows us to consider

simultaneously the multilevel and crossed features of higher level units.

Such a model promises to increase the descriptive power and inferential



Sang-Jin Kang

advantages for both micro-and macro-parameters in the crossed multilevel

context. Research interests in this thesis were five fold: a) to

conceptualize the crossed multilevel model; b) to present estimation

theory for the model using the empirical Bayes viewpoint; c) to provide a

computational algorithm for parameter estimation using the EM algorithm;

d) to provide empirical evidences for the accuracy of the computing

algorithm; e) to present the application of the model; f) to provide the

substantive applicability of the model in educational research.

The conceptualization of the model was described via a crossed random

effects ANOVA model and by linking it to the crossed multilevel model.

Estimation theory was reviewed from an empirical Bayes viewpoint and the

computational procedure implemented via the EM algorithm. The accuracy

of the algorithm was tested using randomly generated data against the

standard statistical packages (SAS and BMDP) and via a simulation study.

An actual experimental data set was analyzed for illustration and the

substantive applicability of the model in educational research was

assessed.
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CHAPTER I

CONCEPTUALIZATION 0F CROSSED MULTILEVEL MODEL

W

In statistical analysis, a researcher needs to specify an

appropriate model that guides inquiry as well as describes the structure

of data as precisely as possible. Educational systems typically have

hierarchical organizations in which "units" at one level (e.g., students)

are "nested" within units at the next higher level (e.g., classrooms or

schools). These educational systems often produce inherently hierarchical

data. The problems of analyzing hierarchical data arise when. key

variables of interest are measured at different levels of an

organizational ‘hierarchy. The prime question for an appropriate

statistical model in this case is whether the model takes into account

the effects of variables measured at both the individual and the group

levels. Failure to account for hierarchies may lead to trouble in terms

of research validity and has been the core in methodological criticism of

educational research (see Cronbach, 1976; Burstein, 1980; Cooley, Bond, &

Mao, 1981; Raudenbush, and Bryk, 1988).

Despite such fundamental warnings, many analysts used single-level

models even if the key variables were measured at two different levels.

This mismatch between single-level models and the multi-level data often

leads the researchers to the analytic dilemmas in the choice of unit of

analysis. In most educational research, students are not randomly

assigned to groups such as classrooms or schools. The lack of
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2

independence of responses is further exacerbated by the fact that

students receive treatment as a group. When students share common

group histories, teachers, peer experiences, their responses will be

correlated.

In addition to the violation of statistical independence assumption,

hierarchical data usually produce variables of interest at both student

and group levels. Traditional linear models can account for only single

level variables and fail to accommodate the variables measured at both

levels which restricts model specification and appropriate inferences of

interest as a result. Moreover researchers may raise the questions

about how group processes (i.e . , some policy implementation) are

interrelated with the processes within the groups (1 . e . , student

behavior) when they have hierarchical data. These questions are hardly

answered by the classical linear models. Educational researchers have

long been concerned with multilevel issues. But traditional research

methods have not provided adequate tools with which to analyze data

arising in naturally occurring hierarchies.

New advances on model specification for multilevel data were made by

the methodologists who have advised researchers to formulate explicit,

multi-level models which enable testing of hypotheses about the effects

occurring within each level and interrelations among them (Burstein,

1980; Cooley, Bond,& Mao, 1981; Rogosa, 1978). A number of

methodologists, working independently, have developed estimation

procedures appropriate for hierarchical, or multilevel data assumed

normally distributed (Aitkin & Longford, 1986; Goldstein, 1986; DeLeeuw

& Kreft, 1986; Mason, Wong,& Entwisle, 1984; Raudenbush 8: Bryk, 1986).

They made a substantial methodological advances in two key reasons
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(Raudenbush , 1988) :

"First, such methods enable researchers to formulate and test

explicit statistical models for process occurring within and between

educational units. These models solve, in principle, the problem of

aggregation bias Second, these models enable researchers to

specify an appropriate error structure, including random intercepts and

random coefficients In most settings, appropriate specification of

error components solves the problems of misestimated precision which

have plagued hypothesis testing in nested unbalanced data sets."(p.86).

One limitation shared by all of the new multilevel analytic

approaches is that they apply only to those multilevel data structures

which are purely hierarchical. Although educational systems typically

have a hierarchical organization - students are grouped together for

learning within classrooms, classrooms within schools - very often the

structure of a system is not a "pure” hierarchy. Students may belong to

more than one group simultaneously. For example, all students are

members of neighborhoods as well as of schools and not all students in

the same neighborhood are in the same school and vice versa. Therefore

schools and neighborhoods in this case are crossed with different number

of students or no students within each cell classified by the two

factors. If such a classification of students is possible, again a

statistical model must reflect the crossed structure so that a researcher

may investigate the variables at both higher level units, neighborhoods

and schools. Because students are "nested" within cells of a

neighborhoods by schools cross-classification, the structure of data is

cross-classified as well as hierarchical. Also both neighborhood and

school effects are considered random because we can assume the two higher
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4

level units are randomly selected from larger populations of the two.

Goldstein (1987) called this "crossed-multilevel" structure while the

hierarchical data is "nested-multilevel".

For the analysis of crossed-multilevel data, a researcher ought to

pose a model that considers simultaneously both the multilevel and

crossed features of data. Many researchers implicitly worked on this

issue in the research on variance component analysis (Henderson, 1953;

Cunningham & Henderson, 1968; Hartley 5: Rao, 1967; Patterson 5: Thompson,

1971; LaMotte, 1973). The results from these researchers, however, are

applicable under restrictive conditions, as when no continuous group

variables are available, and there was no multilevel model formulation

which enables estimation of covariance components of micro-parameters

and testing the effects of crosslevel interactions in multilevel

contexts. Their results are limited to the estimation of variance

components.

Researchers working on multilevel models have already anticipated

the analysis of crossed-multilevel data in the view point of general

mixed model. Only a few computational attempts were made with simple

models. Lindley and Smith (1972) showed how Bayes estimation can be

applied to the analysis of crossed-multilevel data with a randomized

block design. But their attempt was limited to the case of balanced

design with one observation per cell. A more complete attempt was made

by Dempster, Rubin, and Tsutakawa (1981) in the example of "Professional

football scores" where the game scores were nested within offensive and

defensive effects of the teams involved in each game. These two

examples, however, do not lead directly to a general crossed-multilevel

model. Rather researchers need to understand these exemplary results as
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5

pointing to the possible emergence of a general model. Unfortunately we

do not have sudh a general crossed-multilevel model where any number of

fixed and random effects, in principle, can be estimated at both within

and between unit level along with the interaction effects for both

balanced and unbalanced designs.

Crossed-multilevel data are both common and poorly understood in

educational research. Consider a school testing program. Students in

each grade level receive multiple tests. Here students are nested within

the cell of grade levels by test forms; grade level effects and test

form effects are viewed as random; grade levels and test forms are

crossed. Again suppose schools have an annual testing program for

graduates. Students, in this case, are nested within schools as well as

years; school effects and year effects may be viewed as random; and both

schools and years are crossed.

Objectives

This research attempts to achieve six objectives corresponding to the

six chapters of the thesis:

1. Conceptualization of crossed-multilevel model is described in chapter

1 through two parts. The first part provides background information for

crossed multilevel model. The second part describes the mathematical

model for crossed multilevel analysis and considers the research

inquiries that it makes possible.

2- Estimation theory for the general crossed-multilevel model is

Presented via the empirical Bayes viewpoint for both general and mixed

linear models in chapter 2.

3- A computational algorithm is provided for the estimation of
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6

parameters in the posed model using the EM Algorithm (Dempster, Laird,

and Rubin, 1977) in chapter 3.

4. A computer program is developed in the Gauss language (version 2.0),

and accuracy of the algorithm is examined in chapter 4.

5. Application of the crossed multilevel model to real data set is

presented through illustration in chapter 5.

6. The properties of the estimators and value of the study is discussed

with summary in chapter 6.

b1 5 w t Mu eve o e

As mentioned, most educational research has tended to ignore the

nesting of individuals within groups and, instead, used single-level

models to analyze the multilevel data. This mismatch between single-

1evel models and multilevel data causes the following major problems.

W

Analyzing multilevel data with single-level models often leads the

researchers to the analytic dilemmas in the choice of unit of analysis.

Researchers have stated that significance tests based on individual-

level analysis are unacceptable, due to the violation of the independence

assumption when subjects receive treatments as a group, even if

individuals are randomly assigned to groups (Cronbach, 1975; Glass 6:

Stanley, 1970; Page, 1975; Aitkin, Anderson, & Hinde, 1981; Knapp, 1977;

Walsh, 1947). Inferences about individual behavior, such as individual

aChievement, based on group level analysis can cause aggregation bias

(Cronbach & Webb, 1975; Robinson, 1950; Hopkins, 1982). Some

investigators may choose separate analysis at each level in the hope that
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7

the convergent results of the two analyses would avoid the methodological

criticism. Raudenbush and Bryk (1988) have stated that this strategy

provides no guidelines on how to interpret the results when they diverge.

Cronbach (1976), Burstein (1980) and others have recognized that

“choice of unit of analysis" is the wrong question for analyzing

multilevel data because the variation at each level is potentially of

interest and ought not be ignored.

ou c o

In the multilevel contexts, the variables measured at different levels

need to be taken into account in the model specification. Educational

researchers are often interested in the association between school

organization and student achievement. Consider a school district that

implements a certain policy to improve student achievement. The effect

of the policy on student achievement may be different across students

due to the differences in student demographic backgrounds such as prior

achievement and motivation, variables defined at student-level. If such

student differences are ignored, one must assume the policy effects are

evenly distributed across the students regardless the differences of

student characteristics, which is h rdly acceptable. The effect of

school organizational variables, i.e. policy variables, may also tend to

be different across schools due to the differences of the contextual

conditions across the schools. For example, schools may differ in their

school climates such as principal leadership, staff cooperation, student

disorder, and in socioeconomic levels of the communities in which

schools are located.

Whenever we study the effect of organizational variables on students
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8

or teachers nested in the organization, we must adjust for confounding

effects that could occur at both the individual level and the

organizational level. Otherwise the estimates of the effects of the

organizational variables will be biased. The restriction of the

standard single-level linear model for the analysis of multilevel data

is that it does not simultaneously control the variables defined at

different levels.

as - ve nteractions

The effects of organizational variables may depend on variables

defined at different levels of the processes of the organization. For

example, the fast pacing of the curriculum is beneficial for high-

aptitude students but not for low-aptitude student (Gamoran, 1991), an

example of an aptitude-by-treatment interaction (Cronbach and Snow,

1977). Such interaction is a "cross-level interaction” (Bryk 6:

Raudenbush, 1989) in terms of the multilevel viewpoint because a

variable measured at higher level (i.e. pacing of the curriculum)

interacts with a variable measured at a lower level (i.e. student

aptitude).

Cross-level interaction effects may have important implications for

the formulation of scientific theories because the effects constrain the

generalizability of findings. Cronbach and Webb (1975) realized that the

characteristics of the classroom interacted with individual backgrounds.

Such interactions rendered the treatment effect unique in each study and

constrained the generalizability of a finding across the settings with

the treatment.

The lack of generalizability of organizational effects may often be



moan

”on

as

L y

SCH

swam

1‘. j

(r (.n
I

9 E
u

(
7

P
9
!

.
1
3

r
.
‘



9

found in the studies of school effects because the effect of a certain

policy or reform may depends on the characteristics of students or on

the contextual conditions of the schools. Traditional single-level

models do not allow the investigation of the cross-level interactions

because they must assume that effects are homogeneous across the groups.

duca e ea c and C o s d u leve ata

o t l v n e t

Consider the three educational research cases below which require the

analysis of crossed multilevel data.

Case 1. Assessment of School Effects A number of district

administrators want to diagnose the secondary high school education of

their districts and therefore implement an annual testing program for

the graduates. The administrators want to know whether the schools

provide stable education with good quality, (i.e. , excellence), in terms

of graduates test scores across the years. If the test scores of the

graduates are not stable across the years then they want to describe the

changes. The administrators also want to know how much the schools

differ in the test scores of the graduates. If the schools differ

substantially in test scores, then they hope to see what characteristics

of the schools are determinants of such differences. Another important

question is whether the effects of student background characteristics

are homogeneous across schools and years. Are outcomes more or less

equitably distributed in different schools? Is the equity of

distribution stable over time? Available data to the administrators in

this case are graduates test scores in each year, students demographic
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background variables, and school characteristics (e.g., school size,

teacher/student ratio).

Case 2. o a betwee t e school evels Again the

administrators want to get fundamental information about the schooling

systems of the districts. In schooling systems, children attending a

primary school may go to one of several secondary schools. The

administrators need information about what characteristics of the

elementary schools support the long-term progress of student achievement

at secondary high schools. They also need to know the characteristics of

the secondary high schools that have positive or negative effects on

achievement. The more interesting question may be what combination of

characteristics of the elementary and secondary schools supports student

achievement. Another question is how well schools of different types

serve children of different ethnic and social background. Available

data to the administrator are achievement test scores in elementary

schools and secondary schools, student background variables, and

characteristics of the schools at both levels.

Case 3-MW A Psychometrician wants to

evaluate a standardized achievement test that was developed as a power

test (Rudman & Raudenbush, 1987). Unlike a speed test, a power test is

supposed to be insensitive to the duration of test administration. It

is expected that examinees can not answer further questions correctly

after the prescribed test time because their knowledge would be

eXhausted after that elapsed time. Research hypotheses in this case are

Whether there are the effects of excess test time on examinees' test
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scores.

The psychometrician first blocks classrooms on background

characteristics and then randomly assigns classrooms to excess time

conditions. Hence children are nested within cells of a blocks-by-

treatment cross-classification. Both treatment and blocks are conceived

as random. Available data to the psychometrician are student

demographic variables, teacher characteristics, students' prior

achievement, and the standard test scores.

Analytical Comonalities

The design characteristics of the above three research cases share

four points. First, data of the all studies are basically multilevel. The

studies use the variables measured at both individual and at higher

levels. Second, the higher-level units of the studies are all considered

as random. In the first case, we consider the sample schools as

selected from the larger population and the years of the test

administration are also random. In the second case, the elementary

schools and secondary high schools are all considered as random. The

third case uses a randomized block design where the block effects are

typically viewed as random and the categories of different excess test

times are viewed as random as long as the researcher increases the number

of conditions.

Third, each study uses two kinds of higher level units and the two

factors are crossed. The first example shows that graduates are nested

within cells classified by the schools and years. In the second example,

students have dual membership of their elementary schools and secondary

high schools. The current organization of schools implies that primary
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schools will not be nested within secondary schools. Rather the two

factors will be crossed. The last example utilizes the block design

where the blocks are crossed with the categories of different time

allocations for testing.

Finally, the data in every case are unbalanced. In the first example,

the number of students are not the same across the years as well as

across the schools. This unbalanced character of the sample size may be

more serious in the second example. Students attending a secondary high

school do not come from all elementary schools. Again, the number of

students from each elementary school is different in each high school.

Therefore, in a natural situation, the numbers of students classified

into each elementary-by-secondary cell are unequal and there will be

many missing cells. A similar situation occurs in the third example. In

education, experimental studies usually use volunteers as the source of

data. The class sizes will vary, meaning that cell sizes will vary.

Also not every block may contain the same number of students.

In sum, each of the three studies has two crossed random factors

within which individuals are nested. Because the higher level units are

crossed and the lower level units are nested within cells in the two-way

classification of the higher level units, we call the data "crossed-

multilevel“ (Goldstein, 1987a). The appropriate model should then

consider simultaneously both the multilevel and crossed features of data.

The multilevel and crossed features require the specification of four

random effects in a model: random individual effects, random effects of

each of the two higher level units, and random interaction effects. In

addition, individual scores within each cell can be described as a

function of multiple individual characteristics; and some of the within-



13

cell effects vary significantly over rows and columns while the others

may vary only over rows.

e dva ta es 0 o-W C o sed ult eve Mode

The limitation of the current available multilevel models for the

analysis of crossed multilevel data is that those models have been

developed for the analysis of one-way nested data. Those models are

appropriate to the analysis of nested multilevel data, but only when one

level is purely nested within the other level. The nested multilevel

model allows estimation of covariance-components at each level.

For the analysis of crossed multilevel data, a model should

estimate the covariance components at each level but it should also

decompose the covariance-components at higher levels into three

components corresponding to specified random effects for two higher-

level units and for their interactions. The model should handle with

unbalanced data and covariates having either fixed or random effects.

We now consider the additional information obtainable from crossed-

multilevel models in connection with the previous three research

examples .

v - o o e ts decom tio

The crossed multilevel model allows specification of the

apprOpriate error terms in a model where schools and years are crossed.

For the first example, the crossed multilevel model can estimate a

within-cell variance, 02, and between-cell covariance components. The

between-cell covariance-components are decomposed into the three parts;

one is the covariance matrix for school residual effect, say fa’ the
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other is for year residual effect, say 1 and for the residualb’

interaction effect between schools and years, rc.

With these covariance components we could get various intra-unit

correlations which inform us of the proportion of the total observed

variance that lies within cells, between rows, between columns and

between cells. We could also do a statistical test of the significance

of random variation for each effect. These two pieces of information,

the intra-unit correlations and the xz-test, provide us both practical

and statistical information about further model specification. For

example, the presence of a large intra-school correlation informs us that

a large percentage of variation of the student scores lies among schools.

The significant results of a x2-test for school residual dispersion

effect, ’a’ informs us that there still remains a significant random

residual effect not explained by the school characteristics in the model.

Similar information is obtainable for the analyses of the two other

examples.

n e ec s

We return now to the case in which primary and secondary schools

are crossed. A major difference between the nested multilevel model and

crossed multilevel model is that crossed multilevel model captures the

crossed features of the two higher level units while the nested

multilevel models do not.

Because the crossed multilevel model allows the specification of

random interaction effects of the two higher level units, primary and

secondary schools in the second example, it produces estimates of the

covariance components of random interaction effects of the two higher
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level units. The presence of substantial random interaction effects

tells us that certain primary school effects depend upon the secondary

school attended; or, equivalently that the effects of attending a

particular secondary school depend on the primary school attended. If

we find a significant interaction effect of a particular primary school

characteristic and a particular secondary school characteristic on

student achievement, then the effect of the involved school

characteristic can't be generalized to the entire schooling system.

3 t tica recision

Imagine that a researcher has applied a nested-multilevel model to

analyze multilevel data with a two-way classification. He has performed

the analysis as a compromise because a crossed-multilevel model was not

available. The nested-multilevel model specifies a single error term

for higher level units. There are, however, three error sources in the

higher level units: two higher level units (e.g., schools, years) and

their interactions.

The estimates of higher level covariance components in his analysis

are then the sum of the three covariance components from each error

source. In the multilevel contexts, the estimates of fixed and random

effects are the functions of covariance components at both individual

and group levels. Nested multilevel models use the sum of covariance

components of the higher level units for parameter estimation without

knowing the size of covariance components from each error source.

Although the exact functional relationship between the nested and

crossed multilevel models regarding the parameter estimation is not

clear to the author at this point, the author suspects the precision of
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the parameter estimation may be sub-optimal when the nested multilevel

model is applied to the analysis of crossed multilevel data. Consider

the case in which primary and secondary schools are crossed. Again

suppose we are estimating the fixed effects of primary and secondary

school characteristics. Then nested multilevel model uniformly applies

the sum of covariance components for estimating the fixed effects of

both primar and secondary schools while the size of covariance

components pertinent to each higher level units are different.

Crossed multilevel models allow specification of the error terms

precisely for the analysis of nested data with two-way classification

and properly decomposes the covariance components at higher level.

Hence it uses the decomposed covariance components at higher level for

parameter estimation of the model.

et 0 o 0 ice Res a c o C as d leve de

Standard texts on experimental design provide methods for simple

crossed random effects models in which a single random component is

associated with each cell in a fully balanced two-way cross-

classification (see, for example, Kirk, 1982). However, as in the above

examples, the interesting designs in education will typically be

substantially unbalanced. For example, many cells in a neighborhood-by-

schools cross-classification will be empty or small; and enrollments

will vary in a schools-by-time cross-classification.

Researchers working on variance component analysis have . tried to

elaborate models in order to meet various conditions (Henderson, 1953;

Cunningham & Henderson, 1968; Hartley 6: Rao, 1967; Patterson & Thompson,

1971; LaMotte, 1973). The results from these researchers, however, are
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applicable under restrictive conditions, as when no continuous group

variables are available and their results are limited to the estimation

of variance components.

Harville (1977) reviews methods of variance components estimation

based on maximum likelihood for unbalanced designs with crossed random

factors. However, although these methods are appropriate for variance

components, they do not allow covariance components, which will often be

of interest in ducation. For example, regression coefficients

describing the relationship between social background and achievement

may vary across schools or neighborhoods, or across time.

Lindley and Smith (1972) showed how Bayes estimation can be applied

to the analysis of crossed-multilevel data with a randomized block

design. But their attempt was limited to the case of balanced designs

with one observation per cell. Dempster, Rubin, and Tsutakawa (1981)

provided numerical results in the example of "Professional football

scores” where the game scores were nested within offensive and defensive

effects of the teams involved in each game. Dempster et al. provided

maximum likelihood estimates using the EM algorithm and explained the

empirical Bayes estimation theory. These two examples are useful;

however, they do not lead directly to the general crossed multilevel

model.

Multilevel methodologists anticipated the analysis of crossed-

multilevel data in the viewpoint of the general mixed model. In this

stream, Goldstein (1987b) outlined a procedure based on iterative

generalized least squares for statistical estimation in crossed-random

covariance components. He, however, supplied no computational strategy.
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e o-Wa os ve de

In this section, the two-way crossed-multilevel model is

conceptualized and formulated. In order to promote the conce tual

understanding of the crossed-multilevel model, we first consider

crossed-random effects ANOVA model and formulate the crossed multilevel

model from the ANOVA model. Then the general crossed multilevel model

will be presented in two forms: matrix form, and no-subscript form.

e o-Wa Crossed Random feet OVA ode

Suppose a researcher wants to investigate the effects of schools

and neighborhoods on students' achievement. He may first select J

schools and obtain the information about students' K residential areas.

The framework of this design shows; a) students are nested within the

cells of a schools-by-neighborhoods cross-classification, b) school

effects on students achievement are random, c) neighborhood effects are

random.

From this description, we may estimate some or all of the following

effects; a) random main effects of schools, b) random main effects of

neighborhoods, c) fixed effects of school characteristics, d) fixed

effects of neighborhood characteristics, e) random interaction effects

(school by neighborhood), and f) fixed interaction effects (fixed

school-by-fixed neighborhood predictors).

If we consider just the random effects, we can specify a statistical

model as below

Y -p+a+b+c +e

ijk j k jk (1'1)izjk
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for i - 1,2,..., - l,2,...,Jk, k - 1,2,...,Kj; and Y is ith

njk’ J ijk

student score in school j in neighborhood k; p is grand mean of all

j is random effect of school j; bk is

random effect of neighborhood k; cjk is random interaction effect

between school j and neighborhood k; and finally e1. jk is a random

error. The notation "izjk" means student i is nested in school j and

students in the population; a

neighborhood k. The subnotation of the cell size, njk’ the number of

schools, Jk’ and the number of neighborhood, Kj’ imply the design

characteristics which allow unbalanced and incomplete data. Since all

2
effects are random, we have a series of assumptions: a - N(0, a a);

2 . 2 .

bk - N(0, ob ), cjk - N(0, ac ), ei:jk

assumptions of Equation (1.1). The effects of aj, bk’ cjk’ and e

J

~ N(0, aez) are all required

izjk

are mutually independent.

Equation (1.1) considers only the random effects. Random main

effects may or may not be of central interest for the inquiry of a

researcher. A researcher interested how much of the variance among

students' scores is attributable to the differences among schools and

neighborhoods, may use this model for analyzing data from the above

design.

Very often, researchers inquire about the effects of school and

neighborhood characteristics on student achievement and how students

scores in a school differ across neighborhoods. Equation (1.1),

assuming all predictors are centered around their means, can be

elaborated into the model below in this case:

Yijk - p + fllxlj + u3 + fi2x2k + vk + fi3x3jk + 'jk + ei:jk (1.2),
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where 81 is fixed effect of school characteristic, X1 (e.g., school

size); 82 is fixed effect of a neighborhood characteristic, X2

(e.g.,community SES level); and [33 is the fixed effect of the

interaction between X1 and X2. Assuming X

the random school effect, a
J 9

Thus u is a residual random- X + u .

J a, 11 J J

school effect after accounting for the fixed school effect, 51x11.

1, X2, and X3 are orthogonal,

in Equation (1.1) is decomposed into two

parts in Equation (1.2); a

Similarly, the random neighborhood effect, bk’ and interaction effect

cjk of Equation (1) are also decomposed into two parts respectively; bk

- 8 X + v , and c - B X + it . This model needs assumptions for

2 2k k jk 3 3jk jk

2 2 2

the random terms. u:l - N(0, au ), vk - N(0, av ), ”jk - N(0, a,r ), and

2

e - N(0, 0e ). Other alternative model specifications are possible

ijk

if a researcher has different aims of inquiry. For example, a researcher

may utilize covariates with students level variables, say x4ijk (e.g.,

prior achievement) centered around the mean of group jk. Then the

student level random error can be decomposed into two parts; e 1. jk -

+ where 84 is the fixed effect of student prior

fi4x4ijk fizjk’

achievement level, X4. Whatever model a researcher poses, the model

tells us that all specified effects in the model need to be estimated.

We call Equation (1.1) a crossed-random effect ANOVA model which can

be understood as multilevel model because it takes into account the

contributions from group level units (the a], bk’ cjk) and individual

effect, ei'jk' Equation (1.2) is also considered as a multilevel model

because there are two kinds random terms; uj , vk, and trjk are group

level residuals and e is individual level residual. These two

i:jk

models show the basic features of crossed-random effect models and how
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we specify a model of interest. Because these two models incorporate

both individual and group level random effects, we can get considerable

information from the random effect dispersion matrix through variance

decomposition.

d s e o a an V ce eco os ti n

Equation (1.2) contains four fixed parameters; p, 51’ 82 , B3 and

the random variables; u Here we assume the model is

j’ Vk’ 'jk ' ei:jk'

additive and that the four random variables are mutually independent

each other.

The variance of Yijk’ for given fixed effects, is

2+02+02+02,

and the conditional covariance between students' score within the cell

of school by neighborhood is

' 2 .
Cov (uj+vk+1rjk+e1:jk,uj+vk+1rjk+e i:jk) - au v 1r

Hence the correlation is given by definition,

2 2 2 2 2 2

p-(au +0V +a1r)/(au +av +01r +08)

which we can consider "intra-cell" correlation. This correlation itself

shows the proportion of between-cell variances over the total variance.

Thus it tells us the proportion of variance attributable to variation

between cells of school-by-neighborhood.
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Again the conditional covariances for students in different schools

but the same neighborhood is

2
Cov(uj+kaxjk+ei:jk, u'j+vk+« jk+e i:jk) - av

and for students in different neighborhood but the same school is

I I I 2

c°v(uj+vk+fljk+ei:jk’ uj+v k+fl jk+e i:jk) au

From these covariances we can get two more "intra-unit"

correlations; the "intra-neighborhood" correlation,

2 2 2 2 2

p - av / (au +0v +0,r +ae )

and the intra-school correlation

2 2 2 2 2
p - au / (au +0v +0,r +0e ).

Again each intra-correlation shows the ‘proportion. of total variance

between students which is due to the differences between neighborhood or

between schools respectively.

Now we have all necessary information to form the full dispersion

matrix, V, for total sample. The full variance-covariance matrix, V,

contains cell matrices of school j and year k where there are n
, ij' jk

students. We can form these cell matrices which can be classified into

four types. The first type of cell matrices represent the variance-

covariance matrices for those students in the same school and
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neighborhood. These matrices take the diagonal positions of the full

matrix, V. This matrix contains the variances of students within a cell,

au2+av2+ax2+aez, as the diagonal elements, and the covariances,

auz-i-avz-raxz , as the off-diagonal elements. For off-diagonal block

matrices of the full matrix of V, there are three kinds of block

matrices. One represents the blocks which consider the students in the

same school but in the different neighborhood. In this case all elements

are ouz. The other one represents the students in the same neighborhood

but different schools. This block contains av2 in all elements. The

last type of block matrices are for those students who have different

neighborhood and school membership. This last type of matrices are null.

Thus the full matrix, V, has somewhat complex structure, but is

composed of only four kinds of block matrices; one kind of diagonal block

matrices and three kinds off-diagonal block matrices.

u t ev Mo u io

The crossed random effects ANOVA model presented at the previous

section is now reformulated into the crossed-multilevel model. Such

reformulation will show the logic of crossed-multilevel modelling.

W

Recall the Equation (1.1) which reflects the research design where

students are nested within the cells of a schools-by-neighborhoods

cross-classification and both schools' and neighborhoods' effects are

random. Since Equation (1.1) has a hierarchical structure, it can be

represented into two stage formulae in terms of within-cell and between-
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cell models. The within-cell model is

Y1
jk - fljk + eijk (1.3)

where the individual score, Yijk’ is composed of the average score of

the cell classified by jg; school and kg; neighborhood plus an

individual effect eijk - N(0, 02). Equation (1.3) is the traditional

regression model with no predictors in the model except that fijk is

allowed to vary randomly. Thus we pose between-cell model to explain

the variation of the regression coefficients in the within-cell model.

The mean score of a cell, fljk’ can be decomposed into the grand mean, p,

across all cells plus the effects of school j, neighborhood k, and their

interactions. Thus the between-cell model is specified as

-p+a+b+c (1.4)

”3k J k 1k

where u is the grand mean of all cell means, a is the effect of school

J

j, b is the effect of neighborhood k, c is the effect of cell jk.
k jk

Since the effects of school, neighborhood, and their interactions are

all random, the distributional assumptions are; a

J

b)’ and cjk - N(0, rc). If we substitute the Equation (1.4) into the

Equation (1.3) we get the Equation (1.1), crossed random effect ANOVA

~ N(0, fa), bk - N(0,

T

model. So the two models are identical.

Here the random factor a.1 reflects the variation of cell means that

is attributed to the effect of a school. Thus ,a is understood as a

true parameter variance due to differences between schools. A similar

meaning is applied to the Tb and 'c' Using this crossed-multilevel
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model we can get various information. First we can test the hypothesis

that H0: p - 0 (i.e. the grand mean is zero), but it is not usually of

interest in this model. We also pose hypotheses about the parameter

variances as well. The null hypotheses are: var(aj) - 0; var(bk) - 0;

and var(c - 0.

Jk’

mama

The basic rationale of model specification of crossed-multilevel

model for each study is the same as in the other available multilevel

models (i.e. H M). First, we examine the variability among students in

the hierarchical structure via the base model. Second, we specify the

within-cell model only to reduce the within-cell variation and no

predictor variables are used at between-cell model. In this stage we can

determine whether the effects of the within-cell variables (i.e.,

student variables) are random or fixed across the higher level units by

examining the intra-unit correlations of each within-cell slope. If the

intra-unit correlations of a certain within-cell slope is close to zero

then we can fix the effect of that predictor and the within-cell model

become a mixed linear model. Third, after completion of the within-cell

model specification we start the specification of between-cell model in

order to identify variability among higher level units as a function of

between-unit variables. The criterion of the model specification is a

coe det a o , R2, which has similar meaning in the

regression analysis. While R2 means the proportion of the explained

variation by a model given the total observed variation in regression

analysis, the R2 in crossed-multilevel model is obtained based on the

true parameter variances. Therefore the meaning of R2 in this case is
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that the proportion of explained true variance by a model given the

total parameter variances from the model based on no predictors.

Suppose we complete the model specification via the above three

steps and have a final model where two within cell variables are

employed but one of them has fixed effect, i.e. pretest score, while the

intercept is random across the groups and the remaining student variable

(e.g., SES level) has random effects across the schools only. Again

suppose one school variable (e.g., school size) and one neighborhood

variable (e.g., crime rate) are identified as an significant predictors

in the final model. By using matrix form, the within-cell model is

ij - xjk Bjk + ejk (1.5)

I- r- - r- T

Y1 i 1 x11 x21 [ 50 ] e1
- 51 +

52 JR

LYndjk _1 x1n indjk _en‘jk      

where ij is a vector of students' posttest scores, xjk is the matrix of

student predictors where X1 is students SES level and X2 is the pretest

scores that have fixed effects. Since the within-cell model has both

fixed and random effects it is a mixed linear model itself. In the

following between-cell model we need to model the within-cell parameters,

the 8's, as a function of the group level variables. The between-cell

model is
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”3k ‘ “1k r

8 l w w w 0 0 0 F 1 -

[pg] - [o 0102 03lw10] 182

52 jk o o o o o o 1 jk 702

703

710

711

. 720.1

+ Rjk aJ + 631‘ bk + Tjk cjk

1 o a 1 [ b 1 + 1 [ c l

+ 01 [a2 L o 0 k 0 0 3“

oo jk o jk o jk

(1.6)

Here fijk is a vector of within cell parameters; ij is the matrix of

group level variables; 1‘ is the matrix of fixed effects of group level

predictors; Rjk’ cjk’ and Tjk are the selection matrices for random

residual effects; aj, bk’ and cjk are the random residual effect vectors

with distributions aJ - N(0, ra), bk - N(O, 1b), cjk

An interesting feature of the above Equation is the presence of Rjk'

cjk’ and Tjk’ which serve for identifying the residual random effects.

If the all three within-cell parameters, ,80, [31, fiz, are random across

- N(0, re).

the schools and neighborhoods including the interactions between the two

factors, then the three selection matrices, Rjk’ Cjk’ and Tjk’ are all

identity matrices with the dimension of the number of within-cell

parameters. If one represents the between-cell model in a scalar form,

one will see how the within cell parameter, 132, has a fixed effect.

These three selection matrices are useful for a practical purpose.

Analysts may need to set some particular residual effects to zero to fix

the relevant variable effects on outcome. If the three selection

matrices are null, then analysts are assuming that the within-cell

slopes are all fixed and the crossed-multilevel model become the
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standard ordinary least squares regression equation with single variance

component, 02.

Another interesting feature of Equation (1.6) is the format of ij

which shows a different set of predictors for each within-cell slope.

Here, W1, W2, and W3 are the school size, crime rate, and their

interactions of the jkgh cell respectively. Because the within-cell

slope, 82, has no group level variation, it has been fixed and no group

level predictors are included in the matrix of group level variables.

Thus the model has great flexibility in model specification by allowing

a different set of predictors for each within-cell slope.

The above between-cell model is a multivariate model because there

are multiple outcome variables (B's) for each cell, jk. If we combine

the two equations by substituting the Equation (1.6) into the Equation

(1.5), the model becomes

Yjk - xjk ij I‘ 4» X8le a.j + ijk bk 4- chk cjk + ejk (1.7)

where Xa X Equation (1.7) is
jk " xijjk; x'bjk ' xjkcjk; cjk ' xjijk'

considered as a mixed linear model where the first term of the right

hand side is a fixed portion and and remaining terms are all random.

e as eve o

The crossed random effect ANOVA model and reformulation of it into

the crossed multilevel model presented above explicitly describes the

design characteristics of the data and allow specification of

appropriate error structures that solve the problem of misestimated

precision. We shall now see a general form of crossed-multilevel
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model. To make the presentation concrete, suppose again that we wish to

estimate a regression equation for each of many cells classified by

schools and neighborhoods. Our aim is to discover whether these

regression equations differ across the cells and , if they' do, to

explore the reasons why they vary. To the extent that these regression

parameters do vary, we want to ask: what school and neighborhood

characteristics are associated with variation in these regression

coefficients? To investigate this kind of problem we formulate a

multilevel model which is composed of two submodels: a within-cell model

and a between—cell model. The parameters of the within cell model are

conceived as outcome variables in a between cell model. After

formulation of multilevel model we will see how the model can be viewed

as a special case of general mixed linear model.

The presentation of crossed multilevel model is ordered in two forms

according to its generalization: 1. matrix form with subscript 2. no

subscript form.

wts

The regression formulas provided in the previous section are useful

for seeing the exact structure of the equations. The formulation of a

general model expands notation and facilitates derivation of the

estimation formula.

We first write the within-cell model which corresponds to the

equation (1.5) as

ij - xjkfljk + ejk’ (1.8)
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T .
where ij - [Yljk’ ’Ynjk] is an njk by 1 vector of achievement

scores;

T

pjk - [flOjk’ ’fipjk’ ’fir-ljk] is an r by 1 vector of micro

parameters;

T
ejk - [eljk’ ’enjk] is the njk by 1 vector of random errors assumed

normally distributed with a mean vector of zero and dispersion matrix

ijk;

and

jk xlljk ° ' ° xr-1,1jk

_1 xlnjk . . . xr-l,njk"  

The between-cell model in matrix notation corresponding to the

equation (1.6) is

fijk - ijy + Rjkaj + Cjkbk + Tjkcjk (1.9)

T T T T

where 1 - [10 ,...,1p ""’1r-1 ] and

T T
7p - [7p0’1pa1""7pas’7pbl’""7pbt’7pc1"'"7pcu] . The elements of

1PT are the parameters capturing the structural relationship between the

p 3h within-cell slope and the predictor variables of schools,

neighborhoods and their interactions.

T
"arl-l]j and a1 - N(0,ra),

T

0"°"br2-l]k and bk - N(0,r

a - [ao,..

J

b-[b
k b);
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c and c - N(0,rc).- [c c 1 T
jk O""’ r3-1jk jk

The dispersion matrices 'a’ rb, and re are all full symmetric matrices

with the dimension of r1, r2, and r3 which reflect the number of micro-

parameters that vary randomly across the schools, neighborhoods and

school-by-neighborhood interactions respectively. The matrix of group

level variables is

p

  

”3k ' 1 “Oalj"'w0cujk

0

l wpalj . . 'wpcujk

O

- 1 wr-lalj ' ' 'wr-lcujk‘

The elements of W are somewhat complex, because the predictors are
jk

chosen form a variety of resources; schools, neighborhoods and the

interactions of the two macro units. For example, the first element,

WOalj’ means that it is the value of first school characteristic, atal,

school j, predicting the intercept of within-cell model, ,80. The design

characteristics of ij allows a different set of predictors for each

within-cell slope.

Rjk is a random school effect indicator matrix with the dimension of

r x r1, where r is the number of all micro parameters and r1 is the

number of micro parameters that vary randomly across the schools. Cjk

is a random neighborhood effect indicator matrix with the dimension of

r x r2, where r2 is the number of micro parameters of within-cell model

that vary randomly across the neighborhoods. '1‘jk is a interaction

random effects indicator matrix with the dimension of r x r3, and r3 is
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the number of randomly varying micro parameters across the cells.

ij becomes a partitioned matrix with block diagonal structure where

the row vectors are stacked along the main diagonal. 1 is constructed of

subvectors, one for each of the r outcomes. The subvectors are "stacked"

on top of each other. The total number of elements of 1 is F, where F- E

Fp and F? - 1 + 3p + tp + up for p - 0,...,r-l, and sp is the number of

fixed row effects predicting p th within cell slope, flpjk; tP is the

number of fixed column effects predicting fipjk; up is the number of

fixed interaction effects predicting flpjk'

The between cell model is a multivariate model because there are "r"

outcome variables for each cell, jk. Because we allow a different set of

predictors for each within cell slope, fipjk’ we need to note FpflFp, for

5p and 8p,.

a w u b t

To further simplify notation and subsequent presentation of estimation

formulas, we now rewrite the general crossed multilevel models without

subscripts. This presentation is useful in two ways: First, it provides the

matrix structure of the crossed multilevel model. Second, using the model

without subscripts, it is easy to present estimation method. The within

cell model becomes

Y - Xfi + e, e - N (0, e) (1.10)

where Y - [Y11T, ,deilT,

a - [p11T, ... .fiinlT.

e - [e11T, ,eJK?]T, and
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X - Diag [xjk] - X11 0

xjk

O

. XJKJ

The between cell model is

p-w1+Ra+Cb+Tc, (1.11)

T T T T

where 1 - [1o ’ ... ,1p , ... '7r-1 ] ,

T T T
W - [W11 , ... ,WJK ] ,

T T T
a - [31 , , , . ,aJ ] , and a ~ N( 0, 08),

T T T
b - [b1 , , , . ,bK ] , and b - N( 0, 0b),

T T T
c - [c11 , . . . ’cJK ] , and c - N( 0, 0c),

where 0a - subdiag(ra), 0b - subdiag(r and 0c - subdiag(rc).
b)!

R - Rjk O MR where Rjk are always r x r1

elements of a single '1' and all other elements are zero. As noted earlier

matrices where each column has

the elements of 'ls' in Rjk indicate the presence of random effects of

within cell slopes. MR is G x J matrix which determines the row membership

of a cell; ”G” is the total number of cells with data and ”J" is the total

number of row groups, that is schools. The operator ” G ” means Kronecker

product. C - Cjk a MC where MC is G x K matrix which determines the column

membership of a cell. T - TJk e MT, where MT is G x G identity matrix.
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Ge e a xed ea ode

If we substitute the between-cell model (Equation 1.11) into the within-

cell model (Equation 1.10), we obtain the single model

Y - XW1 + XRa + XCb + XTc + e

This model can be restated in simpler notation as

Y - XW1 + Xla + X2b + X3c + e (1.12),

The new matrices of X1 to X3 represent the XR, XC, and XT. This combined

model can be reformulated into general mixed linear model as

Y - A101 + A202 + e, (1.13)

T
where A - [X W], 01 is 1, A2 - [xlIXZIX - [aT, b , cT]T, and e is the

1 31' ”2

same as defined previously. The author will use these two models, Equation

(1,12) and (1.13), for the presentation of estimation theory in chapter two.



CHAPTER I I

EMPRICAL BAYES ESTIMATION OF RANDOM EFFECTS IN

THE CROSSED MULTILEVEL MODEL

Wan

At present, the estimation theories contributing to crossed

multilevel data may be classified in two research streams. The first

stream may be viewed as classical variance component analysis which

started as early as the 19303. In this stream the researchers attempted

to estimate various random effects ANOVA or ANCOVA models. Graybill

(1961) extensively treated the estimation problems for the constants and

variances in the linear model with balanced designs and demonstrated the

optimality properties of the classical analysis of variance procedures.

In the case of 'unbalanced factorial and nested data' , there may be four

subgroups of estimation methods. They may be labeled, 1) Method of

Moments (Henderson, 1953; Searle and Henderson, 1961; Cunningham and

Henderson, 1968), 2) MIVQUE or MINQUE (Harville, 1969; LaMotte, 1970;

Rao, 1972), 3) Maximum Likelihood (Hartley and Rao, 1967; Harville,

1977), 4) Restricted Maximum likelihood (REML) (Patterson and Thompson,

1971; 1974; Harville, 1977).

These four methods are currently implemented in standard statistical

packages, such as SAS and BMDP but all are limited to the estimation of

variance components. Numerical applications are available under mixed

ANOVA or ANCOVA models which do not allow continuous group-level

variables (see BMDP,1985,pp413-435).

The more general approach for hierarchically nested data was made in

the second research stream. Researchers in this stream use the term of

35
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'multilevel analysis' because they attempt to estimate both micro— and

macro-parameters. There are several researchers who developed estimation

methods independently. Lindley and Smith (1972) derived Bayesian

estimates for the hierarchical linear model; Smith (1973) compared

Bayesian and least squares estimates for' hierarchical linear' model;

Dempster, Laird, and Rubin (1977) established the EM algorithm for ML

estimation for covariance components models; Longford (1985) developed

the Fisher scoring algorithm for ML estimation of covariance components

in multilevel mixed linear models; Goldstein (1986) developed an

iterative generalized least squares estimation; Laird and Ware (1982),

Strenio, Weisberg, and Bryk (1983), Mason, Wong, and Entwisle (1984), and

Raudenbush and Bryk (1986) developed. approaches to estimation ‘using

empirical Bayes estimation method via EM algorithm.

These methods have been widely applied for the analysis of

hierarchically nested data and can be considered as candidate methods for

the analysis of crossed multilevel model. This thesis follows the flow

of empirical Bayes estimation using the EM algorithm for the numerical

analysis of crossed multilevel model. While the Bayesian theory

formulates a prior density for the variance and covariances, the

empirical Bayes theory uses maximum likelihood point estimates of the

variance and covariances of the prior that maximize their' marginal

posterior distribution (Efron and Morris, 1975). The term empirical Bayes

came from the fact that it uses empirical data to estimate the variance

and covariance parameters.

For the application of empirical Bayes estimation, the EM algorithm

produces the ML estimates of parameters by substituting the expected

complete data sufficient statistics into the formula for complete-data ML
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estimation of the parameters. The present chapter discusses how

empirical Bayes estimation theory can be applied to the estimation of

crossed multilevel model. The next chapter presents computational EM

formulas for obtaining ML estimates of the parameters. Here, I will

describe Bayesian estimation theory for the model given the known fixed

effects, variances, and covariances. Then in chapter 3 I will show how

EM algorithm can be used for estimation of crossed multilevel model.

The Bayesian Model with Known Covariances

Using the notation and results of Raudenbush (1988), the Bayesian

linear model takes the form of general linear model,

Y-A6+e, e - N(0, W) (2.1),

where Y is N by 1 vector of outcomes;

A is N by P matrix of predictors;

6 is P by 1 vector of parameters;

e is N by 1 vector of random errors.

The critical difference between the classical linear model and the

Bayesian model lies on the conception of the parameters, 9. The

conception of the parameters in classical linear model can be summarized

as follows:

1) 9 is a fixed unknown; 2) we compute O as our estimate based on the

sample of data; 3) if we replicate the same study many times, the 8

values computed will vary with a mean of 9 and a dispersion var(G) and

the distribution of 0 is called the sampling distribution; 4) we use the
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sampling distribution of 8 for the inferences about 9.

In the Bayesian point of view, the parameters, 6, of Equation (2.1)

themselves have a general linear structure in terms of other quantities

which they call hyperparameters (Lindley, & Smith, 1972). Therefore all

parameters of 9 are viewed as random and hyperparameters are viewed as

fixed. Since 9 is random, we may propose its distribution,

9 - N( é , o) (2.2).

The Bayesian views this as our prior distribution of 9 and the prior

distribution represents our state of knowledge on 6 (Smith, 1973).

Therefore our prior knowledge about the location of the parameter vector

is 9, and the precision of this knowledge is measured by 0-1.

In the context of Bayesian estimation, the prior distribution of

parameters is assumed to be known, and the posterior distribution of

parameters given the data and prior parameters needs to be found. The

procedure for finding the posterior distribution involves Bayes theorem,

which states that the posterior density function f(6|Y) is proportional

to the product of two independent density functions: the likelihood

L(Y|9) and the prior distribution P(9). Hence the posterior density

function is,

f(6|Y) a L(Y|6)P(6) (2.3).

Bayes theorem incorporates the prior information of the parameters and

the observed information from the sample. The right hand side of
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Equation (2.3) can be easily seen as joint probability density function

of observed data Y and prior information of 9. Under the assumption of

known dispersion matrices, B and 0, the joint normal distribution of the

data, Y, and the parameter 6 is

f(Y,6) - L(Y|6)P(9) (2.4)

- clexp[-1/2(Y-Ae)Tw'1(Y-Ae)1c2exp[-1/2(e-é)To'1(e-é)1

where C1 and 02 are normalizing constants for the two normal densities.

Thus the posterior distribution of 6 is proportional to the joint normal

density function.

T -1 - T -1 -

f(6IY) « exp[-1/2(Y-A9) w (Y-A6)] exp[-1/2(8-6) o (9-9] (2.5).

*

Equation (2.5) determines 6 , the posterior mean of 6, and the dispersion

D * Th 1e. at S

f(9IY) « exp[-1/2 (e-e*)ne*’1(e-e*)], (2.6)

where 9* - 06*(0'16 + AIW'IY) (2.7)

and D9* - (0-1 + ATi-IA)-1. (2.8)

Estimation dheory for the Bayes linear model is presented in

Lindley’ and Smith (1972) and. Dempster, Rubin, and.‘Tsutakawa (1981).

Bayesian inferences are based on these posterior estimators from which

we can get point estimates and intervals.
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The Bayesian theory presented above requires known variances and

covariances in order to get posterior means and dispersion matrices for

parameters under consideration. In the empirical Bayes method, the

parameters are estimated from the joint normal posterior distribution

given the ML estimates or other consistent point estimates of the hyper-

parameters for their' unknown 'values. This empirical Bayes estimation

method is applied in the EM algorithm, where the ML estimates of

hyperparameters defined through empirical Bayesian methods are used for

finding the expected complete data sufficient statistics which in turn

are used for ML estimation of the parameters (Dempster, Laird, and Rubin,

1977).

The name EM_elge;1§hm comes from the characteristics of an iterative

routine which cycles through an Expectation step and a Maximization step

at each iteration. The expectation step finds the posterior expectation

of the sufficient statistics based on the 'complete data' given the

'observed data' and current estimates of parameters. The Maximization

step then uses the expected sufficient statistics to produce an estimated

values of unknown parameters under estimation. These two steps cooperate

to increase the likelihood function of the estimated parameters.

To make the procedure of EM algorithm concrete, consider a linear

model with a sample size of n and we want to estimate the variance

components of the model as,

Y’- X5 + e,

where Y is a n by 1 vector of observations;

X is a n by p matrix of predictor variables;
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fl is a p by 1 vector of regression coefficients;

e is a n by 1 vector of random error, and the distributional

assumption is e - N (0, 02I) and p - N(6, F) as a prior.

The EM algorithm uses the expected value of sufficient statistics of the

complete data conditioned on observed data and current estimates of

parameters as a proxy for the summary statistics of "complete data". The

'complete data" consist of Y and the true values of parameters, here fl

and e. By employing the assumption of having complete data, we estimate

the sufficient statistics of complete data by the conditional expectation

as E(e'eIY,021) in E-step, where e'e is the complete data sufficient

statistics, Y is the observed data, 021 is the current estimate of 02 at

the i331 iteration. The term 'I' can be read as 'given the data of'.

Suppose we have a vague prior on 8. Then the variance components of F

become infinitely large and P-l-eO and the Equation (2.9) become the

functionally same model as a standard linear model. Hence we pose the

conditional distribution of 8 given the data as

21 - N(fii. V) (2.10)plY,a

where pi - (x'X)'1x'Y

v - a21(x'X)'1.

The sufficient statistic is then
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E(e'e|Y,021) - E[(Y-Xfi)'(Y-Xfi)IY,021] (2.11)

- El (Y-xaiwi-xm ' (Y-Xfliflifii-Xfi) b.0211

- (Y-xnb'w-xisi) + aim-pirx'xw-fi‘)Iran]

- SSres + tr[X'XVar(fllY,021)]

- SSres + tr(X'X)021(X'X).1 - SSres + p021

The result of Equation (2.11) is the proxy of the sufficient statistics

for the complete data. In the M-step we simply get maximum likelihood

estimates of 02 as

02(i+1) - [SSres + p021]/n (2.12).

2(i+1)

The resulting value of o is then used as input for the next E-step.

A

The reader will notice that if the current estimate 021 - SSres/(n-p),

then 62(i+1)- SSres/(n—p) also. Indeed, if 621 differ from SSres/(n-p),

the iteration will nevertheless converge to that estimate.

For the use of EM algorithm, there remains a choice between two

likelihood functions for ML estimation of variances and covariances,

which is labeled as MLF and MLR (Dempster, Rubin, and Tsutakawa, 1981).

Consider the general mixed Bayesian model as

Y - A191 + A292 + e,

[:1 - Ni {:1 .1: :11
and e - N(0. V)

The MLF method treats 61, w, and T as fixed parameters to be estimated.
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To achieve such estimation requires the conditional distribution

f(82|Y,61,‘F,T). In contrast, the MLR method treats w and T as fixed

parameters to be estimated. To achieve such estimation requires

f(91,92IY,i,T). In this thesis, I have chosen the MLF approach.

Consider the general mixed linear model as Equation (1.13), which was

Y - A191 + A262 + e,

where the A161 is the fixed part and remaining right hand side of the

equation is random part. To obtain the conditional density of 62 given

Y, 91, W, and T, the model is modified as,

d - A292 + e,

where d - Y - A161 (Dempster, Rubin, 6: Tsutakawa, 1981). Then the

equation ‘become a general Bayesian. model which enables us to find

posterior means and dispersion. matrix of 9 using Bayesian. method
2

presented in the previous section in this chapter.

e a u ati o sed u t ve Mod

In order to use EM algorithm, we need to formulate the crossed

multilevel model into the general Bayesian form of' Equation (2.1).

Recall the combined model Equation (1.12) was

Y - XW1 + Xla + X2b + X3c + e

and the mixed linear model, Equation (1.13), was
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Y - A181 + A292 + e.

Since these two models are equivalent, we can posit the following

identities.

A1 _ [xv] (2.13)

A2-[x1 ' x2 |x31

and

61 - 1

62 - [aT | bT | CT].

The related assumptions are that the fixed and random parameters are

independent and that the random parameters, a, b, and c, are also

independent. We change the general mixed linear model into the model

with only random parameters such as

d - A292 + e (2.14),

where d - Y - A191 and the distributional assumptions on the new outcome

variable is

d ~ N (0 , A TA + W) (2.15)

Other terms of the model (2.14) keep the same distributional assumptions

as the mixed model.

In order to make the equivalent crossed multilevel model, we also

Change the model (2.14) into;
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d - x1e + xzb + x3c + e (2.16),

where d - Y - XW1 and the distributional assumption is

T T T 2

d - N (0 , Xloaxl + inbxz + x3ocx3 + a I) (2.17)

Now, the models (2.16) and (2.14) are equivalent.

Jo o l D str b t o

The necessary step for posterior estimation is the specification of

joint normal distribution of the modified model.

The expected mean vector of the dependent variable is

E(d) - E(A292 + e) - 0

and the expected mean vector of the parameter is

E(62) - 0.

The variance of outcome vector is

T
Var(d) - AZTA2 + i

and the parameter variance is

Var(62) - T.

The covariance between 'd' and '62' is

Cov(d, 62) - Cov(A262 + e, 62) - AZT'

Hence, the joint normal distribution is

T
d _ 0 AZTAZ + w AZT

N T (2.18)

92 0 , TA2 T

The equivalent distribution of the crossed multilevel model can be
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obtained by substituting A and T with their corresponding terms. Hence

2

'd‘ ' '0' ’xnxT+x XT+X0XT+021X0 x xo"
1 a 1 20b 2 3 c 3 1 a 20b 3 c

a ' N o o x T o o 0
a1 a

T
b o obx2 0 ab 0

c o o x T o o o
- - - . ~ - c 3 c - ~

        

P ste or st ibutio o arameter

Having specified the joint normal distribution of modified crossed

multilevel model, we now need to get the posterior distribution of the

parameters, a, b, and c. By using the definitions of (2.13) and by

applying the posterior estimation method, we now can pose the posterior

distribution of parameter vector of the modified version of the Bayesian

model. Then we translate the results into the terms of crossed

multilevel model using the identities defined before. The posterior

distribution of the parameter given the data is

- * *

62Id,T,W N (92 , ”92 ) (2.20),

where

* * T -1
92 - D92 A2 w d (2.21)

and

T -1 -1 -1
032 - (A2 0 A2 + T ) (2.22)

Equations of (2.21) and of (2.22) show that the posterior distribution

of parameters requires the prior information of the parameters; W, T, and

9 Here we assume that the information of the W, T, and 81 are known.1.
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I will first show the posterior dispersion matrix and then move on to

the posterior mean of parameter vector in the crossed multilevel model.

0 e t 0 ar te S

Equation (2.22) is now rewritten in terms of crossed multilevel

model,

T 2 -1 T T

X1 X1 + a 08 X1 X2 X1 X3 -1

* 2 T T 2 -1 T

D92 - 0 X2 X1 X2 X2 + a 0b X2 X3 (2.23).

T T T 2 -1

X3 X1 X3 X2 X3 X3 + a Do

To derive the inversion of the above matrix, the following definitions

are useful.

x TX + 020 '1 x Tx 311 312
+ 1 l a l 2

B ' T T 2 -1 ' 21 22 (2'2“)
x2 x1 x2 x2 + 0 ab 3 B

T

B - T -

x2 x3 B2

T 2 -1
U - X3 X3 + 0 0c

With these definitions we say

* 3+ B -1

D _ (2.25)

92 3T 0 .

The advantage of this representation is that we can now apply the

partitioned matrix inversion method since (2.25) is partitioned in two-

by- two form. The results of the inversion (Searle, 1982) is
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* H-l -(GH-1)T

D - (2.26)

92 -(GH 1) U 1 + CH 1GT ,

where H - 8+ - BU-IBT

c - U'IBT.

Equation (2.26) requires the two inverted matrices, U.1 and H4. The

dimension of U.1 is determined by the number of columns of the matrix

X But the 'H' matrix has two-by-two partitioned form again. We apply3.

the same inversion method as applied for (2.25). For the inversion of

the 'H' we use the definitions at Equation (2.24) and rewrite it into

simpler notation as

311 - B U'la T 312 - B U'IB T H n
1 1 1 2 11 12

H - 321 - B U'la T 322 - B U'ls T - H H (2.27)
2 1 2 2 21 22

_1 H11 H12 -1 all H12

“an H - - (2.28)

n n H21 H22

21 22

11 -1 -1
where H - (H11 - H12H22 H21)

12 111 -1
H - -H H12H22

22 -1 -1 111 -1 -1 -1

H ' H22 + (“22 "21)H ("12“22 ) °r ("22 ' H21H11 "12) °

Once we get the inverted matrix 'H', we can apply the results to the

inversion of the matrix (2.26). From (2.26) we have
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p H11 H12 _H1181U-1_leBZU-1 .

* 2 21 22 21 -1 22 -1
D92 - a H H -H 310 -H BZU (2.29)

U-l+U'1[81TH11B1+B2TH2181

(Symmetric) T 12 T 22 -1
L +31 H 152+];2 H 152 ]U j

*

Now the task is to reexpress the each block of D82 in terms of the

crossed multilevel model. The Equation (2.29) shows that the solutions

of each block are linked each other. Thus more compact notation for the

matrix (2.29) is useful.

v11 v12 V13

Let D - a v21 v22 v23 (2.30).

v31 v32 v33

Using the definitions at Equations of (2.24) and (2.27), and by

collecting the results of Equations (2.26) through (2.29), we can obtain

the following results :

11 -1 -1 -1

‘V11." H ' (“11 ' H12H22 H21) ' (H11 ' Ga) (2'31)

12 111 -1 T T -1

v12 " H " '“ H12‘122 ' "’11 x1 MX2H22

22 -1 -1 11

v22 " H '"22 + ("22 "21)H

T -1

(“12"22 )

-1 -1 T x T -1

' H22 + H22 x2 Mlell 1 Mx2H22

1 -1 -1

°’-' (“22 ' H21H11 H12) ' (“22 ‘ Cb)

T T -1
v13 .. «(vllx1 X3 + v12X2 X3)U
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v23 ' "(V21X1Tx3 + "22"213‘3)”.1

v33 - U'1 - (v13TX1TX3 + v23Tx2Tx3)U'1

v-vT v-vT

21 12 ' 31 13

where H11 - xlTMx1 + 0208-1,

H22 ' szsz + 020b-1’

M - I - x3TU'1 3,

Ga ' xlTMx2322-1x2TMx1'

c - x T 'lx Tux .
b 2 Mxlull 1 2

We need to note that the two terms H11 and H22 are subdiagonal matrices

and their inversions are easily obtainable. The complexity of these

computation can be reduced if we note the fact that each component is

the function of other components. Hence once we have information of U-1,

-l
22 , we can get v11 which serves for the estimation of v12 which,

in turn, serves for the computation of v13, and so on.

and H

o te 0 Mean 0 e e Ve 0

Having obtained the posterior dispersion matrix of the crossed

multilevel model, we now consider the posterior expectation. Recall the

Equation (2.21) which was

*

Assuming we have the estimates of 91 and we have D62 , the matrix

operation become straitforward.
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Concerning the dispersion matrix, recall the assumptions for the

crossed multilevel model in which the column, row, and interaction

effects are mutually independent. In other words, the proposed prior

dispersion matrix has block diagonal form where (Ia, (lb, and 0c are at

its diagonal position. 08, ab, and 0c are also block diagonal matrices

with submatrices of re, and rc at their diagonal position. These'b’

three submatrices are full matrices with dimension of r1, r2, and r3 and

they take the diagonal position of 08, 0b, and 0c respectively. However

the posterior dispersion matrix which can be obtained after data

observation is not block diagonal. The off diagonal submatrices, v12,

v13, and v23, are not null. We need to use the obtained full matrix of

s

062 for posterior estimation of the parameter vector as the equation

(2.21).

The equation (2.21) become as follow.

* T T T
a vnx1 + vux2 + v13X3

* T T T
92 - b* - v21X1 + v22X2 + v23X3 d (2.32)

* T T T
c v31Xl + v32X2 + v33X3

where X1, X2, and X3 terms reflect the data of the predictors classified

as column, row, and their interaction variables respectively. To

simplify the results of Equation (2.32), we need to first expand the

results, using the operational results of Equation (2.31), and simplify

them by noting the interrelationship of the submatrices of Equation

(2.31). After a somewhat complicated operation of the relevant

submatrices, we can arrive the following results.
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‘1’

b*

" V22Qb'

* -1 T * *

c -u x3 [d -(X1a +X2b )1,

'r 'r -1 T
where Qa - x1 Md - x1 £21122 x2 Md,

1' T -1 T
ob - x2 Md - 12 10111111 11 Md.

All terms included in Equation (2.33) are previously defined at Equation

(2.31).



CHAPTER III.

COMPUTING ESTIMATES OF CROSSED MULTILEVEL MODEL PARAMETERS

This chapter will present the technical aspects of implementing

crossed multilevel analysis. The author will show how the EM algorithm

provides the estimates of crossed multilevel model.

Mgdel

The model defined for MLF estimation was

d - A292 + e,

where d - Y - A161;

92 N(0, T);

e - N(0, i)

with appropriate dimension. 61 is fixed parameter while 62 is

considered as random. The corresponding crossed multilevel model is

d - Xla + X2b + X3

‘where d - Y - XW1

c + e,

a - N(0 , 0 )

a

b - N(0 , 0b)

c - N(0 , 0c)

and. e ~ N(0 , 021).

As before, the following definitions are useful to link the above two

models;

T T T T
Al-XW, A2-[X1|X2|x3],61-1,62 -[a |b |c].
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The error, e, is an N by 1 vector which is stacked from the top with all

within cell error vectors, ejk’ which are uncorrelated across the cells.

The within cell errors are njk by 1 vectors where the njk elements are

also independent. Therefore the dispersion matrix, W, is a N by N

diagonal matrix which composed of the dispersion matrices of all non-null

cells. Hence the dispersion matrix of each cell is 021 and the overall

dispersion matrix is

  

Pozlnll 1

0

VP - - 021,

0

_ 02anK .

where N - E E njk - 2 n8.

The random parameter variance matrices, Oa’ 0b, and 0c are both

diagonal block matrices with submatrices of ’a’ Tb’ and fc at their

diagonal position across the row, column units and their interactions.

The three submatrices, r and re, are of full matrices with the

a’ fb’

dimensions of the number of within-cell random slopes across the row,

column units and their interactions as stated in chapter I.

s ete ata

In the empirical Bayes method, random effects are estimated given

the ML estimates of the fixed unknown parameters. In ML estimation, the

logic of EM algorithm is to use the expected ‘value of sufficient

statistics of the 'complete data' given the observed data and the

previous estimates of these fixed parameters as a substitute for the
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summary statistics of 'complete data', and perform ML estimation based on

the assumption that we had observed the complete data. In our case, the

complete data consist of the outcome variable Y and the true values of

random effects, 62 and e. The fixed unknown parameters include 02, 'a’

'b’ 'c’ and 1. By employing the assumption of having the complete data,

ML estimation can be simple to derive.

To find the complete data sufficient statistics, I will first use the

joint likelihood function of the complete data and parameters for MLF

estimation and then translate the results in terms of the crossed

multilevel model. Given the model defined at Equation (2.14) and (2.15)

and by referencing the Equation (2.4), the joint density function of the

parameters and the complete data is

£(d,ezlel,T,w) - f(d|e T,w) f(92|el,T,w) (3.1),

-l/2

2961’

1.1) - [<2«)NI*|1

-1/2

Where f(dle eXP[(-1/2)(d-A262)Tfl-1(d-A262)],

2'91'

{(92|91,T,w) - [(2«)F|T|]
T -l

exp[('1/2)(92 T 62)]'

The term, F, in the second equation on the right hand side of Equation

(3.1) is the total number of elements of 62. Hence the log-likelihood

function will be

L a (-1/2)(3-A292)Tw'1(3-A292) - (1/2)92TT'192

A

‘where d - y - A 9 and 9 - (AITAI)-1A1T(Y - A282). Let e - d-A 6

1 l 1 2 2'

From the above complete data log-likelihood, we see that 8T8 and 9262T

are the sufficient statistics for 02 and the variance components T. Also

T

A1 Y and AlTAZG2 are the sufficient statistics for 61.

Having obtained the set of complete data sufficient statistics of the
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. “T“ 'r T
modified baye51an model; (e e, 6262 , and A1 A292), we now need to

translate them in terms of the crossed multilevel model. Concerning the

term, 92621., we know that 62 is a vector of random effects as

T T T T T T

92 - [a1 ,. ,aJ Ib1 ,. . .,bK |c11,...,cJK ],

T .
and aj - [an’ . . . , ar1-1,j]’

T .

bk ' [bOk’ ' ' ' ' br2-l,k]’

c T - c T — [c c ]
jk g Og’ ' ' ° ’ r3-l,g ’

for j -I1q...,J rows; k - l,...,K columns; and (jk) - g - l,...,G cells

classified by the jg; row and RE column; where r1 is the number of

within-cell slopes that are random across the row units; r2 is the number

of within-cell slopes that are random across the column units; r3 is the

number of random within-cell slopes regarding the cells classified by

row and column units. Under the assumptions that the rows, the columns

and their interaction effects are mutually independent and that each row

unit is independent from other row units, each column unit is

independent from other column units of complete data and, given the row

and column effects, the cell is independent from other cells, the

sufficient statistics we need for random residuals are;

:2 a.a T, 2 b b T, 2 c c T (3.5)
J J k k g 3

Now it become trivial to get the ML estimator of T as

-J'12aaT (3-5)'
N
)

-l T
- K 2 bkbk'

5
)

O
‘
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A A A A

Concerning the terms of eT e, where e - d - A262 and d - Y-Alél,

A

we use the cell level notations of the vector e and use the identities

between the Bayesian and crossed multilevel model. Then the sufficient

statistic for 02 of complete data is

A TA A T

2 2 eJk ejk - 2 2 [djk - (lekaj + x2jkbk + ijkcjk)]

x [djk - (lekaj + x2jkbk + x3jkcjk)]'

(3.7)

Then the ML estimator of 02 is

A

02 - (l/N) 2 2 ejkT ejk (3.8).

Finally the sufficient statistics of the estimator of 61 are AITY and

AltAZGZ' the corresponding cell-level expression for AITAZG2 in

crossed-multilevel model is

T T T

A1 jk A2jk e23k ' “3k xjk (xljkaj + x2jkbk + x3jkcjk)'

A

Then the equation 81 - (AlTAl)-1A1T(Y - A262) can be rewritten in

computational form in terms of crossed multilevel model as

7 - (2 2 wjk xjk X31331.) (2 2 wjk X31. 39,. - 3 E “3k xjk (X13133

+ x2jkbk + X3chjk)) (3-9)‘

.Equation (3.9) shows that the complete data sufficient statistics for

testimating the fixed effects of the crossed multilevel model are;
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T T 1' T T T
22 wjk xjlc ij, 22 wJk xjk xljkaj, 22 wjk xJk ijkbk,

22 w T T (3.10)
31: xjk x3jkcjk'

Having found the complete data sufficient statistics for ML

estimation of r 'c’ and 02 and 1, we need to obtain the expected
a’ rb’

values of the complete data sufficient statistics conditioned on the

observed incomplete data Y and the estimates of the parameters. The EM

algorithm then uses the values of the conditional expectation of the

complete data sufficient statistics as the proxy of the complete data

sufficient statistics for ML estimation of parameters. The following

sections will show the EM formulas for parameter estimation.

9*

Eu_E2rmula_f2r_Estimatinz_£he_£ixed_£ersmeter ( 1 )

As noted at prior section, the complete data sufficient statistic for

T
1 is the term A1 A292. If we have

complete data we can directly apply the value of AITAZGZ for ML

estimation. Since the actual data is not complete, the EM algorithm uses

estimating the posterior value of 6

the following conditional expectation to get the substitute for the

complete data sufficient statistic for ML estimation as

T 2 'r *
A1 A2E[62|T, a , 91, d] - A1 A262 (3.11),

where the right side of 'I' includes incomplete data 'd' and the

current estimates of T, 02,and 81. Since A1, A2 are given, the

posterior expectation applies only to 6 . Therefore the result of (3.9)
2

ata-

is A1TA262 , where 62 is the posterior mean of 6 as presented at
2

chapter two. Once we have the estimates of 02, T, and 1, we can obtain
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* 'k

62 from Equation (2.33) and then the estimate of the fixed parameter 1

is

T T T T *
ij xjk ij - 2 2 ”3k x.Jk (xljkaj

* + x (3.12).

T T* -l

1 - (2 2 ij X.jk xjkwjk) [2 2

*

+ x2jkbk Bjkcjk )1

0 st matin t e arameter Variances

If the data is complete then the sufficient statistic is 2a to
a T

JJ

get ML estimates of 18. With EM algorithm, the data are incomplete. Thus

jT Finding thiswe substitute E[£ a aJTId, W, 1, 1] for 2 a a

J J

conditional expectation directly follow from the standard theory. The

dispersion of aj, Var(a ), is defined as,

J

) - E(a a T) - E(a )T
JJ ”(8

Var(a (Searle, 1982).

J J J

This may be restated into a more useful form,

E(a a T) - E(a )T

JJ ”3‘“
).+ Var (a

J J J

This equation is for unconditional expectation. It is the analogue for

conditional expectation given the 'incomplete data' Y and current

estimates of (18, 'b’ re, 02, and 1), so the expectation is

2 * *T 2T

E(Z ajaj Id,ra, 'b’ 'c’ a , 1) - 2 a1 aJ + a 2 vlljj (3.13).

vllj j are the matrices taken from the diagonal position of v11 at

equation (2 . 31) .

*

The maximization step for the estimation of 'a is accomplished by
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*

the simple operation. The complete data ML estimator of fa is,

* *

a T + 022 v

* -l

'a 'J ‘2 8.1 j 1133)
(3.14).

*

This completes one iteration for estimating fa . The posterior estimates

* *

of other two estimates, 'b and re , are presented at equation (3.15) and

(3.16) below;

* -1 * *T 2
rb - K ( 2 bk bk + a 2 v22kk) (3.15)

* -1 * *T 2

Tc - G (22 cjk cjk + a 22 v33jkjk)° (3-16)

v22kk and v33jkjk are the matrices taken from the diagonal positions

of v22 and v at Equation (2.31) respectively.
33

The procedure used to derive the equations (3.15) and (3.16) is the same

*

as the one for fa . The iterative routine for estimating the Var(GZJk) is

* * *

now explicit. r , r and r consist the Var(e . ) as known variances

a b c 23k

for next iteration of the EM computation, where

V 6 T*ar( k) - - r

2J

  

The posterior estimation given the known variances was provided in

chapter two. We plug the estimated variances from the previous iteration

(Equation. 3.14, 3.15, 3.16) into the given 'variances to obtain the

sufficient statistics at next iteration (E-step). The new ML estimates

follow easily (M-step).
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st t n W - Va iance \I!

The within cell errors, e31" are uncorrelated across and within the

cells. Therefore the variance matrix, ‘1', is a N by N diagonal matrix with

off— diagonals of zero. Because the errors are uncorrelated, the

variance estimates of each cell can be computed separately and the

estimation procedure is the same across the G cells. The G parallel

estimates are then arranged along the diagonal of \I! to complete the

matrix estimate.

In order to compute sufficient statistics, we first write down a

model for e . The model is
jk

ejk - djk - A2jk92jk (3.17),

where djk - ij - Aljkel with the dimension of nJk by 1. A2jk’ 92jk are

the same as before except the notation of cell indicators of the

subscripts. Then the complete data sufficient statistic for 02 is

T a
. . ‘ T

2 ejk ejk ' 2 2 (djk ' A2jk 92jk) ( jk ‘ A2jk 92jk)'

where djk - ij - A191.

)3 (3.18)

The resulting quantity of Equation (3.18) is a scalar. The expected

value for a scalar quadratic is

T T

E (eJk ejk) - E(ejk) E(ejk) + tr[Var(eJk)] (3.19)

(Searle, 1982 ,p . 355) .

As we discussed earlier, the EM algorithm uses the conditional

expectation at E-step. Hence the posterior estimation of the sufficient
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statistic has the same form of (3.18) except the notations of posterior

estimates as

2
T , 91) - E(ejk*)TE(ejk*) + tr[Var(ejkId, T, a , 61)]

jk
E(e 2ejkld’ T, a

(3.20).

We now need each term of the right hand side of equation (3.20). By

using the analogues between the unconditional and conditional

expectation, and the identity (3.17), we have

2 *

E(ejkld, T, a , 91) - d.
3k ' A2jk92jk (3'21)’

*

where 921k is the posterior mean of erk'

hand side of equation (3.20) is rewritten as

The second term in the right

2

Var(djk - Azjkezjkld, T, a , 91).

2

This is the same as Var(-A2jk621k|d, T, a , 61) because djk is given

data that means constant. Hence we have

Var(e Id T 02 e ) - - A Var(e Id T 02 e )A T (3 22)
jk ’ ’ ’ 1 2jk 2jk ’ ’ ’ 21 2jk '

v11 v12 v13 l

2 2

where Var(ezjkld, T, a , 91) - a v21 v22 v23

- v31 v32 v33 ~'
  

whose component matrices had been defined from Equation (2.30) through

(2.31). The expression of (3.22) can be more computationaly convenient

form if we consider the property of trace to yield,
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2 T T 2
tr(A kVar(62jkId, T, a , 91);;21k ) - cr(A2jk A2kVar(82jkId, T, a , 91))

23

(3.23).

Equation (3.20) can then be shown to be

2 * T d *

T' a ' 91) ' (djk ' A2jk621k ) ( jk ’ A2jk92jk )

T 2
+ tr(A2jk AzjkVar(ezjkId, T, a , 91)).

T

E(ejk ejkldjk’

This equation can be translated back to the crossed multilevel form as

E(e T e Id , T, 02, 7) - [d. - (x a * + x b * + x c *)]T
jk jk jk 3k 131:3 2jk k 31k jk

[djk ' (xljkaj* + x2jkbk* + x3jkcjk*)]

xlTx1 x1sz x1Tx3 v11 v12 v13

+ tr 02 szx1 szx2 x2Tx3 v21 v22 v23 (3.24).

x3Tx1 x3sz x3Tx3 3k v31 V32 v33

Having obtained the conditional sufficient statistic, the ML estimator

of 02 is easily followed at the M-step as,

02* - (l/N) 2 E E(ejkT ejkldjk’ r, 02, 1).

*

The resulting estimates of 02 will be used as a known variance for the

next EM iteration. At this point, we have completed one iteration of

EM algorithm.

The EM algorithm described so far does not require an evaluation of

the likelihood function. But as the iterative routine of EM algorithm
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produces successive values of estimates, it will be useful to monitor the

progress of the algorithm by evaluating the likelihood at each iteration.

If there is no change between the likelihood with the estimates at one

iteration and the likelihood at the next iteration, then we can say the

results converge and decide to stop the iteration. I will show the

likelihood function for the MLF estimation and then present the log-

likelihood function for the crossed multilevel model.

Qbservgd Data Likelihood for the MLE Estimation

The derivation of the observed data likelihood is logically simple if

we note the relationship among the several probability density functions

in equation (2.3) which can ‘be rewritten for the marginal density

function of 'Y',

f(Y) - f(YI9)f(9)/f(9|Y) (3.25)

where f(Y) is the marginal probability density function of Y;

f(GIY) is the posterior density function of 9 given Y;

f(YIG) is the likelihood of Y given a;

f(9) is the prior density function of 8.

The above equation is based on general Bayesian model stated at equation

(2.1).

In the modified Bayesian mixed model, we consider (91, T, W) to be

the parameters and d - Y - A161 as the data, hence all density functions

are conditioned on (91,T,w) and the equation (3.25) is now restated as

f(d|91, T, w) - f(d|92,T,w,el) f(ele,w,el) / f(ezld,T,w,e (3.26)1)
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where f(dlel, T, i) is the marginal probability density function of the

data 'd' given (91mg); f(dl62,T,i!,61) is the likelihood of the data

given (92333.61); f(82IT,VI',91) is the prior density function of 62

given (T,i,61); f(ezld,T,61) is the posterior density function of 6

2

given the data 'd' and the parameters (T,i,91).

By noting the general form of the density functions from Equation

(2.4) and from Equation (2.6) and by substituting the relevant terms for

the modified Bayesian model in appropriate manner we can specify the each

of the right hand side functions of Equation (3.26). The two numerator

functions are;

N -1 2 T -1

f(d|92,T,w,el) - [(23) lwl] / exp[(-1/2)(d - A262) 1 (d - A292)]

(3.27)

f(ele.v.el> - I(2«)'1/21F|T|'l/zexp{(-1/2)(92TT'192)1 (3.28)

and the denominator function is;

f(ezld, T, w .91)

-1 ZIP -1 2 *

- [(2> /1FIDQ§I / epr(-1/2)(e2 - 92*>H0921<92 - 92 )1

(3.29)

* T -1 -1 -1 T -1 T -l -1 -l
where 62- (A2 i A2 + T ) A2 0 d, and D92*- (A2 T A2 + T )

These three equations from (3.27) to (3.29) hold for all 92, therefore

*

if we evaluate Equation (3.27) at 62-92 , we can obtain more simplified

equations since the only remaining term from the equation (3.29) will be
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-1/2 after eliminating the constant terms. The resulting equation isIvegl

then

f(dlel.r.w) - [<2«>N|*ll'l/Zlbegll/ZITI’l/zexpt<-1/2)s<ez*>1

(3.30)

h s e * d A e * w'1 d A e * e *TT'le *
" ere ( 2 ) ' ( ' 2 2 ) ( ' 2 2 ) + 2 2

T -l * * T -l -l T -l

- d i (d - A262 ) (by using 92 -(A2 W A2+T )A2 8 d)

Equation (3.30) is the likelihood we seek.

Log-likelihood for the Crossed Multilevel Model

Given the Equation (3.30), the log-likelihood function is

LLF(81,T,02Id) -(-1/2)1og|w| + 1/2logIDez*| - l/2logITI - 1/2S(92*)

(3.31)

In order to translate this log-likelihood in terms of the crossed-

multilevel model, let us consider the four terms; le, ITI, ID82I' and

3(62*). First we consider the equivalence, i-azI, in crossed

multilevel model as noted at chapter 2. Thus

2
loglil - Nloga . (3.32)

The ‘prior parameter ‘variance T is the 'block. diagonal. with the

submatrices of cell-level dispersion matrices, 'a’ 'b’ and 'c that have

dimensions of r1, r2, and r3 respectively. Hence the dimension of T is

(Jr + Kr + Gr Therefore the log of the determinant of T is the sum
1 2 3"

of all diagonal terms as

 



thr'

5

as

The}:

The .
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logITI - Jloglral + Kloglrbl + Gloglfcl. (3.33)

*

For the determinant of posterior dispersion matrix D92 which is a

three-by-three partitioned full matrix, we represent the matrix into two

by two partitioned matrix and obtain the determinant of the whole matrix

as

 

 

[ v v v
11 12 13

* 2 I I (2“1“K1'2"Gr3)I d22 d23 I

lDez I ' ” v21 v22 v23 ' 0 d d I

v v v 32 33

31 32 33 (3.34),

Pv V

11 12
where d22 - v v ]

. 21 22 '

PV

13 T
d23 - v J d32 - d23 ,

23 '

d33 ' v33“

The second term of the right hand side of the Equation (3.34) is then

122 23 d
(3.35)

' Id22|ld33'd32d22 23I
  

32 33

l
d

-1 -

'|V11IIV22’V21V11 v12"d33’d32d22 23"

Equation (3.35) can be simplified more by using the previous results of

Equations of (2.26) and (2.31) in chapter 2. Using the Equation (2.31),

we can obtain

1I
-1 -

Iv22'V21V11 V12| ' IH22



68

where H22 is the block diagonal matrix with dimension of Krz. Again

using the Equation (2.26) we get

-1 -1
Id «1231 - IU I.33'd32d22

where U is the block diagonal matrix with dimension of Gr3. Finally

at -

8(92 ) - dTi' 1(d - A292*) can be replaced with

* T T * * * 2

8(82 ) - 22[djk djk-djk (leka:l +x2jkbk ”(311‘ch )]/a (3.36).

9:

By substituting logl‘lll, longe‘fi’I, logITI, and 8(62 ) of Equation (3.31)

with Equation (3.32) through (3.36), we arrive the final form of log-

likelihood function for the crossed multilevel model.

2
LLF(02, T, alld) - (Jr1+Kr +Gr3-N)loga -(Jlog|raI+KlogIrbl+Gloglrcl)

2

-1 -1 T
+ 1°8|V11l+21°8'322k I-i-XXloglUJk I-[ZEdJk dJk

1‘ * at 'k 2

- mdjk (xljkaj+x2jkbk ”(311‘ch )]/a (3.37).

The EM algorithm evaluates the log-likelihood at each iteration to

monitor the progress of the algorithm. The deviance, say 6, between the

log-likelihood at ith iteration and its value at (i+l)1:_h iteration will

be computed at each iteration. A value of 6 close to zero indicates

that the log-likelihood at the ith iteration to be very small in

comparison with its value at (ii-1);}; iteration. The actual EM iteration

will stop at 65k, where k is predetermined level.
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CHAPTER IV

CHECKING THE ACCURACY OF THE COMPUTING ALGORITHM

The author develOped the computer program, "Crossed Multi-Level

(CML) algorithm," that provides estimates derived from the crossed

multilevel model using Gauss (version 2.0) language. The program is

designed to use sufficient statistics of the cross-product matrix as

input data and to perform thousands of calculations over numerous

iterations of the EM algorithm. It is also designed to analyze data

under general crossed multilevel modelling. Therefore an accuracy check

based on hand calculation of all equations in numerous situations would

be unreasonably demanding and quite unreliable.

An alternative reliable way is to utilize already available computer

programs, such as SAS and BMDP, that support some special cases of the

crossed multilevel analyses and to use simulation methods for other cases

of the model. This approach for checking accuracy of the algorithm is

reasonable in two points. First, the computer program performs MLF

estimation of the EM algorithm which produces maximum likelihood

estimates as noted earlier. Some standard packages, such as SAS and BMDP

allow maximum likelihood estimation for variance components models in

which only an intercept of regression model at the cell level can be

specified as random and all other regression coefficients have to be

fixed. The author decided to compare the estimates between the programs

presented in this thesis and the standard packages under the assumption

these standard packages produce true maximum likelihood estimates when

the crossed multilevel model has a random intercept. For the analysis

69
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of crossed multilevel model with multiple random slopes in the within-

cell model, a covariance components model, I used a simulation method to

see if the program recovers the known parameter values.

The procedure for checking the accuracy of the program is organized

in Table l. The first column of the table lists the crossed multilevel

models from the simplest case to the most complicated. The second column

of table 1 tells us how the computational results were confirmed to be

accurate .
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Table 1. Procedure for checking the accuracy of the algorithm

 

Models Empirical Evidence

 

d andom ects nova

Within-cell model:

Yijk ' fijk + eijk

Between-cell model:

fijk - 10 + aj + bk + cjk

compared to SAS

V nce Co onents Mode I

Within-cell model:

Y + e

ijk ' 53k ijk

Between-cell model:

fljk ‘ 70 + 11W1jk + 72w23k

+ aj + bk + cjk

C, Variance Components Model II

Within-cell model:

Yijk ' fiOjk + fllxlijk + eijk

Between-cell model:

”031: " 70 + 71"131: + 72w2j

+aj+bk+cjk

va e o ode

Within-cell model:

Yijk " fiOjk I filjkxijk + eijk

Between-cell model:

503k " 700 + 701w1jk + 1'02"’2jk

+ aOJ + b0k + chk

compared to BMDP

compared to BMDP

simulation study

+ a + b + c

5131c " 71o 13 1k ljk
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Model A to model C represent the variance components models because

there are only variances to be estimated. Thus the resulting estimates of

variance components are all scalars. Model D is the covariance

components model in which the two random within-cell slopes are

correlated and the resulting parameter variance-covariance matrices are

all two-by-two full matrices. The SAS (see SAS User's Guide, 5th Ed.,

chapter 41) program was used to obtain the maximum likelihood estimates

of the posed models of A. BMDP (see BMDP Manual, Vol. 2., general mixed

model analysis, pp.ll44-llS3) was used for estimating the model B where

two group level predictors are involved and the model C where a fixed

effect covariate is involved at individual level, an analysis which SAS

cannot perform.

The common features of variance-components models in BMDP and SAS lie

in the point that they are experimental in nature. The fixed effects sum

to zero and the random effects are assumed to be sampled from normal

populations with zero means. Although BMDP supports the model with fixed

effects covariates at the individual level, SAS requires that all

predictors in the model are the group level categorical variables and

provides only the estimates of variance components even if fixed effects

predictors are in the model. The algorithm for the crossed multilevel

model presented in this thesis does not require the predictors in the

model to be constrained as class or discrete variables. Because no

available computer program allows the estimation of a crossed multilevel

model with continuous variables in the model, the author selected the

model with discrete variables only for computational comparison. Later

at chapter 4 of this thesis, a crossed multilevel model with a continuous

covariate in the model will be estimated.
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In the case of model D, I conducted simulation analyses for balanced

data, since no computer programs are available for estimation of crossed

multilevel model when it has multiple random slopes. The simulation

method is somewhat judgemental because one should decide the number of

replications of the simulation. The current computer program for the

crossed multilevel model involves complicated computation and takes a

long time for computation. So the author decided to use relatively large

size data, N-8400, but limited the replications to twenty times. For the

unbalanced data of model D, another simulation analysis would be better

for checking the accuracy of the program. However, I analyzed one

unbalanced data set that originated from an already used balanced data

and compared the results to the balanced case in the hope that if the two

results were close enough, then the algorithm is believed to analyze the

unbalanced data properly.

0 a e

The author produced the all data sets to estimate the posed models

through random generation using the Gauss programs. To explain the

models and data used. for accuracy check, following, definitions are

useful:

1. Design characteristics:

J - number of macro units for rows (e.g. schools);

K - number of macro units for columns (e.g. neighborhoods);

G number of cells classified by the two sets of macro units;

n - number of observations of each cell;

N - total sample size.
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2. Model characteristics

Yijk - outcome score of person i in the cell classified by jth row and

kth column units;

flqjk - qth random regression slope of a cell classified by jth row and

kth column units;

2 .
eijk - random effect of person i of cell jk. ejk - N(O, a ),

1 - fixed effect of a parameter;

aJ - random effect of jth row units, a - N(0, ra);

J

bk

cjk - random interaction effect of jth row and kth column units,

b - random effect of kth column units,k ‘ N(ov fb);

cjk-N(O,rc).

a d f e ov

Model A is a crossed random effects ANOVA model. The design

characteristics are: J-lO, K-l4, 6-140, “F10, N—l400. The

distributions from which the values of random effects selected are: a -

J

N(0, l6), bk ~ N(0, 25), c - N(0, 36), and e - N(0, 100). The fixed
jk ijk

parameter value was assigned as 1 - 10. The fixed effect, 1, and the

random parameters at the higher level, a1, bk’ and cjk constituted the

data for each cell mean, fijk' fljk and the individual random effect, eijk

together produced the outcome values, Y Using Y two analyses
ijk' ijk’

were performed using ML estimation of SAS and the algorithm developed by

the author.

For the analysis of’ unbalanced. data, fifteen. cells of' data. were

arbitrarily selected out. Hence the design characteristics are changed

as: J-10, K-l4, g-125, n-10, N-1250. The model is the same as in the

balanced case. Table 2 shows the computational results of the CML
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algorithm in comparison with the results of the ML estimation of SAS

program.

Table 2. Computational comparison between SAS program and the CML

algorithm for crossed random effect ANOVA

 

 

 

Covariance components SAS CML algorithm

Balanced Data

fa 37.287992 37.287925

fb 29.999248 29.999221

fc 31.867203 31.867350

02 94.260318 94.260317

1 12.671820 12.671820

Unbalanced Data

fa 40.036423 40.036586

'b 36.3315730 36.315495

fc 30.811034 30.811064

02 94.260322 94.260317

1 12.799353 12.804980

 

The two sets of results clearly show that two programs produced

identical estimates. One thing to note in Table 2 is that the variance

components analysis of the SAS program does not produce the estimates of

the fixed effects, 1, which is the grand mean of the sample in Model A,

so I obtained the observed grand mean to check the accuracy of the

estimates of fixed effects, 1, of the CML algorithm.
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e o o t o e

Model B is the typical 'variance components model for' which. most

classical research on variance components have centered (see Searle and

Henderson, 1961; Rao,l972; Hartley and Rao, 1967; Harville 1977). The

design characteristics and model characteristics of the data used for the

accuracy check are the same as the case of Model A except for the two

macro variables in Model B. The two macro variables, lek and szk, are

dummy variables defined on rows and columns respectively. They are coded

0 for the first half units and l for the remaining units respectively.

Although BMDP provides the estimates of the fixed effects in the model,

the parameters are estimated under a general mixed ANOVA model. The

corresponding variance components model for model B that BMDP uses is

Y - p + a (4.1),ijk 1 + am + aJ + bk + cjk + eijk

where Y is the outcome value of student 1 in jkth cell; p is the grand

ijk

mean; a1 is the fixed effect of W1, the macro variable defined on row

units; fin is the fixed effect of W2, the macro variable defined on column

units; aj, bk’ cjk’ and eijk are the random effects as in the crossed

multilevel model. In Equation (4.1), the fixed effects parameters, ,1,

a1, and fim are not the same as 10, 11, and 12 in Model B. An alternative

‘way to check the accuracy of the estimated fixed effects of CML algorithm

is to compute the predicted mean values of the groups classified by the

two group-level variables using the estimates of the fixed effects from

the two programs. The design matrix of the variance components model in

BMDP, whose columns are the orthogonal contrasts, and the dummy coding of

the fixed effects variables in the crossed multilevel model enable us to
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compute the predicted group means from the two analyses. I will first

show the computational comparison of the variance components and then

move to the case of the fixed effects.

The computational results for the estimates of the variance

components from BMDP and crossed multilevel algorithm for balanced and

unbalanced data are appeared at Table 3.

Table 3. Computational comparison for the estimates of variance

components between BMDP program and the CML algorithm for Model B.

 

 

Covariance components BMDP CML algorithm

Balanced Data

'a 12.665 12.665328

fb 28.111 28.111434

7c 31.879 31.879463

02 94.260 94 260318

 

1a 12.266 12.239884

rb 34.666 34.696003

rc 31.070 31.080777

62 94.260 94.260289

The first panel of Table 3 shows that the results from each program

are identical. For the results from the analysis of unbalanced data, the

results are virtually identical but the differences among the estimates,

.03 for parameter variances and .0001 for within-cell variance, are a

little larger than those of balanced case.

The computational comparisons for the estimates of the fixed effects
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Table 4. Computational comparison for the estimates of the fixed effects

between BMDP and CML algorithm for Model B (Balanced case)

 

 

 

 

BMDP CML

u “1 fim 10 11 12

12.672 -4.909 -l.109 6.653551 9.818753 2.217782

Group Codes Predicted Group Means

W1 W2 BMDP CML

0 0 p+a1+flm- 6.654 10- 6.654

1 0 p+a1-flm-16.472 10+1I-l6.472

0 1 p-a1+fimf 8.871 1o+12- 8.871

1 l p-al-fimf18.690 10+11+12-l8.690

 

Table 5. Computational comparison for the estimates of the fixed effects

between BMDP and CML algorithm for Model B (Unbalanced case)

 

 

 

 

BMDP CML

u 01 flm 10 11 12

12.717 -5.098 - .911 6.480460 10.322841 1.667013

Group Codes Predicted Group Means

W1 W2 BMDP CML

0 O p+al+fimf6.709 10-6.48O

l O u+al-fimfl6.904 10+11-16.803

0 l p-a1+fimf8.530 1o+12-8.l48

l l p-al-fim-18.725 10+11+12-18.470
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are appeared in Table 4 for the balanced case and in Table 5 for the

unbalanced case.

The first panels of Table 4 and TableS shows the estimated values of

the fixed parameters and the second panels of the tables show the

computational comparisons of the predicted group means obtained from the

estimated fixed effects from the two programs. The equations of the

second panel shows that the predicted mean values of the groups

classified by the two group level variables are obtained using the design

matrix in BMDP and the dummy coding of the variables in CML algorithm.

The results show that the predicted mean values of the groups classified

by the group level variables, W and W are virtually the same in both
1 2’

balanced and unbalanced case.

WW

Model C is a more complicated type of variance (components model

that has fixed effect variables at both levels of units. SAS cannot

analyze the data using this model because SAS allows only group level

predictors in model specification and the predictors should not be

continuous (see SAS User's Guide, chapter 41). BMDP can perform the

analysis of this model but it also constrains the group level predictors

not to be continuous. In order to compare the computational results,

the author coded the individual level covariates, as zero, one,

xlijk’

and two (a linear contrasts) and kept the coding systems for group level

predictors as before. The sample size of each cell was increased as n-20

because the model has a within-cell covariate.

The design characteristics for the balanced case are then: J-lO,

K-l4, G-l40, n-20, N-2800. The chosen random effect distributions are



80

the same as before. For the analysis of unbalanced data, fourteen cells

were arbitrarily selected out and the resulting design characteristics

are: J-lO, K-14, G-126, n-20, N-2520. The computational results for

variance components from BMDP and CML algorithm are presented at Table 6.

Table 6. Computational comparison for variance components between BMDP

and CML algorithm for Model C.

 

Covariance components BMDP CML algorithm

 

Balanced Data

 

r8 13.565 13.565323

7b 17.402 17.402192

rc 25.609 25.609418

02 140.532 140.53248

Unbalanced Data

in 12.569 12.565704

fb 14.497 14.501222

Tc 26.852 26.853643

02 140.532 140.53247
 

Table 6 shows that the two sets of results from each program are

equivalent. The results of covariance components of balanced case are

closer each other than those of the unbalanced case.

Concerning the estimates of the fixed effects, the variance

components model that BMDP uses is

Yijk - p + fllxijk + a1 + 5m + a3 + bk + cjk + eijk (3.38),

where pl is the fixed effect of the characteristic of student 1 in jkgh
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cell, and all other terms are the same as in model B. As in the case of

model B, BMDP uses the design matrix for estimating the fixed effects, y,

al, and pm, thus those fixed effects parameters are different from CML

algorithm that estimates the regression coefficients in terms of general

linear model.

Table 7 and Table 8 show the computational comparisons for fixed

effects between the BMDP and the CML algorithm.

Table 7. Computational comparison for the estimates of the fixed effects

between BMDP and CML algorithm for Model C (Balanced case)

 

 

 

 

BMDP CML

' “ “1 pm ‘31 70 71 72 ‘91

12.185 .113 .207 7.363 12.505 -.414 -.225 7.363

Group Codes Adjusted Group Means (after covariate)

W1 W2 BMDP CML

O 0 p+a1+flmf12.505 10-12.505

l 0 p+al-fim-12.09l 1o+11-l2.09l

0 l p-a1+fimf12.279 1o+12-12.279

l l u-al-flm-18.865 10+11+12-18.865
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Table 8. Computational comparison for the estimates of the fixed effects

between BMDP and CML algorithm for Model C (Unbalanced case)

 

 

 

 

BMDP CML

#4 9:1 13m 181 10 11 12 BI

12.215 -.029 .286 7.363 12.583 -.686 .084 7.363

Group Codes Adjusted Group Means (after covariate)

W1 W2 BMDP CML

0 0 p+a1+fimfl2.472 1o-l2.583

l 0 p+a1-fim-ll.900 1o+11-ll.897

0 l p-a1+fim-l2.530 10+12-12.668

l l p-al-fim-ll.958 1O+11+12-ll.982

 

The first panels of Table 7 and Table 8 show the estimated values of

the fixed parameters and. the second. panels of' the tables show’ the

computational comparisons of the predicted group means after accounting

for the effect of the fixed effect of individual covariate. The

equations of the second panel show that the adjusted mean values of the

groups classified by the two group level variables are obtained using the

design matrix in BMDP and the dummy coding of the variables in CML

algorithm. The results show that the two sets of adjusted group means

are virtually the same in both balanced and unbalanced case.

v nce o 5 0d

Model D has two random within-cell parameters and the variation of

the two parameters across the macro units was explained with different

sets of predictors. The two within-cell parameters are not necessarily

independent. Hence the resulting dispersion matrices, 'a’ 1b, and 'c’
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are no longer scalars, rather they are all two by two full matrices.

Standard statistical packages cannot analyze data under this kind of

covariance components model. Since there is no available computer

program for the Model D, the author conducted a simulation study to check

the accuracy of the computational results for balanced data. For the

complete accuracy check of the program performance, the number of

replications of analyses should be large enough, for example ten

thousands times, which is unreasonably demanding for the present thesis

work. As a compromise, the author decided to conclude that the algorithm

works properly if the results show sensible evidence of accurate results.

The number of replications of analysis was limited to twenty times but

the sample size was taken large enough, N-8400, in order to compensate

for the small number of replications. The design characteristics for the

simulation data are: J-l4, Kr20, G-280, n930, N-8400. The distribution

of the individual random effects are designated as e - N(0, 49). For

ijk

the group level random effects regarding fiOjk’ the distributions are: aOJ

- N(0, 16), b0k - N(0, 25), COjk - N(0, 36). The other set of

distributions of the group level random effects regarding pljk are: a

13 '

N(0, 9), b1 ~ N(0, 4), c ~ N(0,16). The fixed parameter values were
k ljk

assigned as: 700 - 110 - 10, 701 - 5, and 102 - 3. The group level

predictors, lek and szk, are all dummy variables coded zeros and ones.

The within-cell random effect covariate, has the values of zero,
xlijk’

one, and two.

The preassigned parameter values are now compared with the mean values

of the estimates obtained through twenty replications of analysis. Table

9 shows the results.
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Table 9. Computational comparison between the preassigned parameter

values and the average values of the estimates from twenty simulations.

 

 
 

 

Covariance Parameter Estimates

components values Mean SD Min Max

62 49 49.09 .72 47.54 50.14

'0a 16 16.97 7.80 5.75 38.39

70b 25 23.82 9.31 8.12 36.57

70c 36 37.84 3.63 32.00 44.22

1 9 7.70 3.82 3.19 15.32
la

71b 4 4.52 2.21 1.70 8.52

71c 16 15.96 1.64 13.26 20.35

 

Fixed effects

100 10 9.96 3.52 3.10 15.23

701 5 3.47 3.09 -2.47 11.14

702 3 3.50 2.92 -4.05 7.50

110 10 9.99 1.21 7.33 12.32
 

Table 9 shows first that the mean values of the estimates are all

reasonably close to the preassigned parameter values. Second, all the

preassigned. parameter values fall within the limit of’ one standard

deviation from the mean estimates. Third, the 02, f0c’ and flc are

closest among the covariance components because these parameters are

estimated with the large sample sizes, they are N-8400, G-280. Other

estimates of the covariance components are not as close to the parameter

values as are 02 r or 'lc’ due to the insufficient sample sizes such
0c

as J-l4, K-20. Fourth, for the fixed effects, the mean value of 110

which is the mean. of' within-cell slopes, is closest to the
£11k!

parameter value and has high precision, SD-l.21. Generally speaking, the
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slopes have less variation than does the intercept. The results of the

fixed effect estimation support this fact. These four characters of the

results establish that the CML algorithm produces sensible results for

Model D even if the replications of the analysis were limited to twenty

times.

For the analysis of unbalanced data, I first built the data by

selecting out, using a random digit table, the data of 30 cells from an

already used balanced data set. Hence the design characteristics are;

J-l4, K-20, G-250, n—30, N-7500, but the model characteristics and the

preassigned parameter values are the same as in the balanced case. Table

10 show the results of the analysis that compared to the balanced case

and the preassigned parameter values.
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Table 10. Computational comparison beWeen the preassigned parameter

values and the results of the analyses of the balanced and unbalanced

data.

 

Parameters Parameter Estimates

values Balanced Data Unbalanced Data

 

Randqm effects

a

 

49 49.504685 49.152115

'0a 16 38.388547 23.765979

70c 25 17.432644 18.404436

71a 9 11.717677 5.432532

flb 4 6.440947 6.959900

'1c 16 18.057778 13.437822

Fixed effects

100 10 14.881167 10.308522

101 5 2.130050 3.770741

102 3 -l.010730 1.931768

110 10 12.318740 10.085683

 

Table 10 shows that two sets of estimated values have some differences

from the preassigned parameter values. These differences occurred

because the estimates were obtained from the single samples of the

population with the preassigned parameter values. Similarly the

differences between the two sets of estimates of the balanced and the

unbalanced data are attributable to the fact that the observation was

taken from one sample of data. If we replicate the attempt to make an

unbalanced data set from the same balanced data and compute the mean

values of the estimates from the analyses of the unbalanced data, then

the two sets of estimates would be closer. Nevertheless, we can see

some patterns of the results in Table 10 as we found in Table 9. The
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estimates of 02 show the closest values to the parameter values and, both

balanced and unbalanced cases show little differences, because the

estimates were taken from the large sample size of 8400 and 7500

respectively. The estimates of '0a and rla show somewhat large

differences from the preassigned parameter values as well as between the

two data cases, because they were taken from the sample size of J-l4.

The overall information of Table 10 is that the distribution of the

estimated values are centered on their parameter values in either cases.



CHAPTER V

ILLUSTRATION

In this chapter, crossed multilevel analysis is illustrated. by

reanalyzing the data collected by Rudman and Raudenbush (1987). The

experience with the crossed multilevel analysis will enhance our

understanding on the logic of model specification and answer the

following questions:

1. What parameters can be estimated ?

2. How are the hypothesis tested ?

3. How are the results interpreted meaningfully ?

at d t

Rudman and Raudenbush's (1987) study of the effects of excess

testing time on test scores provides the data for illustration. The

purpose of the study was to assess the influence of providing excess

testing time on standardized reading comprehension test scores. The

test was not intended to be a speed test, but rather a power test. The

time limit of the standardized test has been determined by the "90 %

criterion." Using this criterion, testing time is the time elapsed

until 90 8 of the examinees complete the item analysis edition of the

instrument. The assumption underlying the procedure is that the 90 8

completing the test had arrived at correct answers to many of the items

and had used informed guessing on the remainder. It is also assumed that

the remaining 10 8 who had not completed the test would merely employ

random guessing of given more time. Hence more time would not translate

88
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into mean test score gains. If the test results are sensitive to the

provided excess time it becomes important to discover the optimal

testing time by estimating the functional form of the relationship

between excess time and test scores for the susceptible test. Moreover,

such tests may be sensitive to variations in test adminstration

procedures and hence would have impact on decisions on student placement

in advanced classes, promotion to a higher grade, teacher awards, or

other recognitions because of their class' higher test scores.

Sample and Qegigg

In the original study, 29 5th grade teachers from 16 of the 33

elementary schools in the Lansing school district in Michigan

volunteered to serve as participants in the study. However data could

be collected for only 23 of these classrooms. These 23 fifth grade

classrooms supplied usable data for 471 pupils. The data set contains

both demographic characteristics (including ethnicity, sex, eligibility

for free lunch, etc.), and test scores, pretest scores (including

reading subtest scores and total reading scores).

The design of the study involved first, creation of seven blocks

based on mean pretest scores each containing four classrooms from the

original 29 classes. Four treatment groups ‘were established, each

represent testing-time allotments defined by having 0, 5, 10, or 15

minutes excess time to complete the test. Within each of the seven

blocks, classrooms were assigned at random to one of the four

treatments. One remaining class was added to one of the classes of

which the class size was only five. Therefore there are 22 cells of

data in two-way classification. The data were well suited to a
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polynomial trend analysis. The sample sizes in the design are presented

 

 

 

at Table 11.

Table 11. Design and Sample Sizes

Excess Time

None 5 Min 10 Min 15 Min Overall

Block 1 - - - 24 24

Block 2 19 22 27 18 86

Block 3 28 23 20 - 71

Block 4 24 - 24 24 72

Block 5 22 ‘ 22 23 21 88

Block 6 25 20 15 - 60

Block 7 21 13 l7 19 70

Overall 139 100 126 106 471

 

If the sample had included 28 classrooms, the design would have been

a balanced randomized block design (Kirk, 1982, chapter 6) with seven

blocks and four treatments. In the study, however, six cells were missing

and the sample sizes of the cells classified by the seven blocks and four

treatments are not the same. The original study (Rudman and Raudenbush,

1987) used "the least squares solution” (see Searle, 1971) by applying a

series of regression models with increasing complexity, and computed the

reduction in residual variation on each step. This approach solves the

inter-correlation of the main and interaction effects caused by the

unbalanced character of the data. However, the amount of variation

assigned to each effect will depend on the order of its inclusion. The

interpretation of hypothesis testing is also conditional to the order of
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its inclusion (Searle, 1971). In addition, the two crossed-factors are

considered to have fixed effects in that study. However, the blocks

are typically considered as having random effects and the excess time

effects are viewed as random also because they are considered as a sample

from the population of the excess testing times. Again classrooms are

nested within the cells classified by the blocks and treatment groups.

Hence the design reflects crossed multilevel data.

na s's

The general strategy for crossed multilevel analysis can be

summarized in three steps: 1. examining variability among students in

the hierarchical structure (base model), 2. examining variability among

students within the cell, here classroom, classified. by 'blocks and

treatment groups (within-cell model specification), 3. identifying

variability as a function of group level variables (between—cell model

specification).

W

In the first stage of model specification we examine variability of

the data where students are nested within the cells, classrooms,

classified by the blocks and treatment groups. Addleman (1970) stated

two analytical principles related to the data structure. The first one

may be considered as a general principle in experimental design, that is

" The design and analysis of experiments should take into account all

of the major sources of variability that are expected to influence the

responses (p.l,095).'
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Second, since students are nested within classrooms, both experimental

unit (classrooms) error and the observational unit (individual) error

should be included in the model (p. 1,097). With these classical

conceptions of model specification, we can see that the present design

reflects four sources of variability of students scores; individual

differences, block differences, treatment group differences, and the

interactions from different combinations between the blocks and the

treatment groups. The errors from individual differences are the

observational unit errors because the data were taken from the individual

scores. The errors from the classroom differences are the experimental

unit errors because the classrooms are the units that are randomly

assigned to the cells of two-way classification.

In the multilevel conceptions, the observational unit errors are

specified under the within-cell model and the experimental unit errors

are specified under the between-cell model where the errors are

decomposed into three parts. We first pose the within cell model as

Yijk ' fijk + e1:31:

for i - l, ..., “31‘ student in the classroom that belongs to block j, j

- l, ..., 7, and treatment group k, k - l, ..., 4. Yijk is the test

score of student 1 in the classroom jk. fijk is a mean test score of

students in classroom jk, and eizjk is an individual effect of student

1 nested within ”z" the classroom jk. It is assumed that ei:jk is

normally distributed within each treatment by block with mean 0 and

constant variance 02. The within-cell model is a traditional
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regression model with no predictors in the model except class
pjk’

means.

Thus we pose between-cell model to examine variability of the

classroom means, fljk’ The between-cell model is

70 + aj + bk + cjk'fijk

Each class mean score, becomes the outcome variable which is a
fijk’

function of the grand mean, 10, plus the jt_h, block effect, a the kth
j!

treatment effect, bk’ and the effect of interaction between jth block

and kth treatment group. The distributional assumptions of the three

error terms are; a - N(0, fa); bk - N(0, 7b); and c - N(0, 7c). The

J

three error terms are mutually independent. Hence the variance of class

mean scores, parameter variance, is Var(fljk) - fa + fb + 'c’ which is

the total variance attributable to the differences of the classrooms.

The full results for this model are reported in Table 12.
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Table 12. Results of crossed multilevel analysis of base model

 

Fixed Effects Estimates SE t

 

10 41.535 .459 90.569

 

Covariance Components

 

Within-cell variance

02 99.059

Between-cell variance

Overall 1 r

a b c

5.221 0.901 1.667 2.647

-21n(maximum likelihood) 3515.8118

 

Table 12 shows the estimation. results of' both fixed. effect, 10

(intercept), and the covariance components. These estimates are maximum

likelihood estimates since the CML model uses MLF estimation method of

EM algorithm. For the fixed effect, 10 (intercept), we can test the

hypothesis, H0: 10 - 0, but it is not of interest at this point. The

intercept is the grand mean of all classroom mean scores.

The critical point in Table 12 is decomposition of the between-cell

variance into three parts; fa , 'b’ 'c' The total observed variance is

Var(Y 2 + fa + r + 'c - 104.28. The between-cell variance is

ijk) " a b

5.221 and the within-cell variance is 99.059. We can compute various

intra-unit correlations using the decomposed covariance components.

First, we can estimate the proportion of variance that lies within- and

between- classrooms. About 95 t of the observed variance is at

individual level. Only 5 t of the observed variance is attributable to

the differences among classroom memberships. Classical-single level

models, i.e., regression or ANOVA, do not provide the parameter variance.



95

Nested-multilevel models such as ML2 or HLM provide the parameter

variance but the analysis of variance components would stop here. The

crossed multilevel model allows further decomposition of the variance.

We would like to know what proportion of the variance lies between blocks

or treatments or their interactions. Seventeen percents of the parameter

variance and one percent of the observed variance reflects variation

among blocks. About 32 % of the parameter variance is attributable to

the treatment group differences. Again 51 8 of the parameter variance

and 2.5 8 of the observed variance reflect random interaction effects,

which means the variation among students with different classroom

membership after taking out the effect of blocks and treatment.

Kang and Raudenbush (1988) performed a comparison between a classical

analysis and HLM using the same data. In that study the observed variance

was decomposed as 02-98.73 and 1-5.5397. The two estimates are virtually

the same as the estimates in Table 12. An interesting point is that the

parameter variance from HLM analysis is the sum of the three variance

components at macro level. With the HLM analysis we don't know the

proportion of the parameter variance that is solely attributable to the

differences among treatment group memberships of students. The tiny

differences among the estimates from HLM and CML analysis may be caused

by two things. One thing is that HLM uses MLR estimation which is

equivalent to REML (Patterson and Thompson, 1971; 1974; Harville, 1977)

but CML uses MLF estimation which produce ML estimates. The other thing

is rounding errors when the two programs compute the estimates.

In sum, the crossed multilevel analysis provides all necessary

information regarding variance decomposition of the base model and

guides further model specification. Having decomposed the covariance
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components, we now move our interest to account for variability of the

student scores at each level. We first attempt to account for the

individual level variance.

W h - o e a

As shown in Table 12, about 95 8 of the observed variance lies at the

individual level within each classroom. To account for the variation we

need to identify the covariates from individual level variables. In the

original study (Rudman & Raudenbush, 1987), the best single covariate

proved to be the total reading pretest, r-.75. Only one covariate was

needed because other likely covariates, (e.g. ethnicity, sex, parent

education) were not significantly related to the outcome after adjusting

for the effects of the best covariate. The traditional single-level

analysis, as in the original study, treats the effects of individual-

level variables as fixed, which implies that the effects of the

individual characteristics on the outcome variable are constant across

the all classrooms, blocks, and the treatment conditions. However we

don't know whether the effects of the chosen covariate on students' test

scores are constant across the all classrooms. The effects of the

covariate may work differently across the classrooms. Suppose certain

teachers provide individual teaching for the students who need remedial

study after the pretest, but some other teachers do not. Then the

correlations between the posttest scores and pretest scores may vary

across the classes. The correlations of the two test scores of the

classes with remedial teaching would be smaller than those of the other

classes. Therefore we first examine the variation of the covariate

effects across the classes, and specify it as having a random effect. We
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pose the within-cell model as

Yijk ' pOjk + pljk(Tread)ijk + ei:jk'

The variable code ”Tread" indicates total reading pretest scores. Note

the effect of the covariate, has subscripts in the model, which
flljk’

allows the parameter to have different values across the classes. The

between-cell model does not need any predictors at this moment, but we

need to present a pair of equations because the two within-cell

parameters are specified as random. The between-cell models are

+ aoj + b0k + cOjk

+ alj + b1k + cljk

503k ' 700

”13k ' 710

where aOJ - N(0, roe). 11

Tla)’ b1k - N(0, 'lb)’ cljk - N(0, 71c). The random effects

b - N(0,
'08), 0k " N(09

70b), c0jk Similarly a

- N(0,

within each between-cell equation are mutually independent. However the

two outcome variables, pOjk and £11k, are not necessarily independent of

each other. Thus the random effects within each macro unit, for example

an and alj’ are correlated across the two equations, and resulting

covariance components at macro level will be two by two full matrices.

The results of estimating this crossed multilevel model are shown at

Table 13.
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Table 13. Results of crossed multilevel analysis with random slopes at

within-cell model

 

 

Fixed Effects Estimates SE t

700 12.093 1.19576 10.114

110 . 3848 .01516 25. 3826

 

Covariance Components

 

Within—cell variance

02 42 .474

Between-cell variances

Overall r r r

a b c

9 . 2207 - . 1025 2 .4059 - .0123 l . 8698 - .0405 4. 9500 - .0497

. 0016 8 . 346E- 5 . 0010 . 0006

- 21n(likelihood) 3122 . 8877

 

The major concern of this analysis was to see whether the covariate,

Tread, has a fixed or random effect. The results of Table 13 clearly

shows the slope of the covariate does not vary so much across the blocks,

118-8.346E-5; the treatment groups, 71 -.0010; and the interactions,

b

rlc-.0006. We can test the hypotheses, H0: Var(alj) - Var(blk) -

Var(cljk) - 0 with the likelihood ratio test by using the values of

-21n(likelihood). It is known that the statistic, -21n(L1/L2), has an

asymptotic x2 distribution, where L1 is the maximum likelihood value of a

less complex model and L2 is the value of a more complex model and the

degrees of freedom of x2 statistic is the difference of the number of

parameters to be estimated in each model. Hence the deviance between the

two values of -2ln(likelihood) will have x2 distribution with the

difference of the number of parameters between the two models as the

degrees of freedom. The number of parameters of the model in Table 13

is twelve, while only five parameters were estimated in the model of
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Table 12. The deviance between the two values of -2ln(likelihood) is

392.9241 which is large enough to reject the x2 statistic with seven

degrees of freedom. Therefore we reject the composite null hypotheses,

- 0, Var(a )- Var(blk) - Var(ch) - 0. We, however, do not know

“0‘ 110 13

which particular hypotheses are rejected given the all posed hypotheses.

To identify the significant effects by using the loglikelihood ratio

test, we need to specify another model that has fewer parameters.

Table 13 shows that the within-cell variance has been reduced from

99.059 to 42.474 by virtue of the covariate. Concerning the fixed

effects, the average slope of the covariate across the all cells is

.3848. There are other results regarding the within-cell intercept,

pOjk’ but the intercept is meaningless because the covariate was coded

with its raw scores.

Results shown at Table 13 reveal some characteristics of the crossed

multilevel model. Traditional variance components models and single-

level models that are available through SAS or BMDP can't perform this

analysis, , where multiple random within-cell parameters are modeled with

appropriate error terms. Under classical variance components models, all

covariates must have fixed effects and estimation of random effects is

limited to variance components.

The difference between nested and crossed multilevel analysis is

again shown at Table 13. While crossed multilevel analysis partitions

the covariance components into three matrices, 'a’ 'b' and fc’ nested

multilevel analysis, however would provide the overall matrix only. In

Table 13, both overall and the three separate variance-covariance

matrices show that the sizes of the variance of the covariate effect are

small. Hence both analyses may agree to fix the effect of covariate in
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this case. However when the overall parameter variance of the covariate

is substantial, a nested multilevel analysis would provide no information

about which macro units cause the substantial size of parameter variance

while crossed-multilevel model identify what particular random effect

among macro units are significant. Thus the crossed multilevel model

provides clear guide for further model specification.

Although the sizes of the variances of the covariate is small, we

still need to test the significance of the variance components by fixing

the effects of the covariate to get: a deviance of ~21n(likelihood)

between the model of Table 13 and the new model with fixed covariate

effects. Thus the second between-cell model is cancelled and the within-

cell model become

Yijk - fiOjk + £1 (Tread)ijk + eijk

and the between-cell model has only one equation as

+ a + b + c
fiOjk-7OO 03 0k Ojk’

The new results of the analysis are shown at Table 14.
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Table 14. Results of crossed multilevel analysis with a fixed within

 

 

cell slope

Fixed Effects Estimates SE t

100 12.2879 1.2044 10.2029

61 .3826 .0153 25.055

 

Covariance Components

 

Within-cell variance

02 43.0875

Between-cell variances

Overall 1 r r

a b c

2.984 1.1102 1.2682 .6058

-2ln(likelihood) 3125.2379

 

Table 9 shows a highly significant (t-25.055) covariate effect. The

within-cell variance at Table 12 was 99.059 but it was reduced to 43.0875

here. About 57 8 of the within-cell variance was accounted by the

covariate. The overall between-cell variance was also reduced from

5.2205 to 2.984. The last line of Table 14 shows that -2ln(likelihood)

is 3125.2379 and the deviance between the values in Table 13 and Table 14

is 2.3502. The x2 statistic with six degrees of freedom is 12.59 at 5 8

significance level. Hence we do not reject the null hypotheses, H '0°

Var(alj) - Var(blk) - Var(cljk) - 0 and decide to fix the effects of the

covariate across the blocks, treatment groups and the block-by-treatment

interactions.

The parameter variance estimates, Var(flojleread), become

conditional variances. They measure the amount of variability remaining

among the class means. Raudenbush and Bryk (1986) used a measure of

model performance, R2 as in regression, by comparing it to the
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unconditional parameter variance estimates from the first stage.

Equivalent measures can be used for crossed multilevel model. Hence the

proportion of explained parameter variance by the model is

R2* - Var(fljk) - Var(fljkl Tread) _ 5.2205-2.984 _ 428

Var(fijk) 5.2205

  

About 43 8 of the parameter variance was explained by the model or the

covariate in this case. The R2* presented above is never less than the

one obtained through OLS estimation because the OLS estimates, fijk’

include true parameter value plus sampling error as 31k - fijk + elk but

the EM estimates, is true parameter value. In the previous study
Bjk!

(Kang and Raudenbush, 1988) the within-cell variance was 43.22, the

overall parameter variance was 2.915, and the total 01.8 between-cell

variance, Var(B was 10.987. Based on these statistics, the proportionJk).

of explained parameter variance by HLM is 42.4 8 and by regression

approach is 23.9 8. It clearly shows that both multilevel models are

more reliable than the classical regression model in terms of the

coefficient of determination (R2). It also shows that the parameter

variance from nested multilevel analysis is the sum of the three

covariance components at macro-level variances in crossed multilevel

model. The nested multilevel model cannot identify the separate error

sources in the model in crossed multilevel contexts.

Having completed the specification of the within-cell model, we now

need to identify the variability among classrooms as a function of
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between-classroom variables .

- e de f a

The general principle for modelling strategy for the statistical

model specification is to build a parsimonious model. In the crossed

multilevel model, the x2 statistic which is the deviance of the-

2ln(maximum likelihood) and which allows us to test a composite

hypothesis, serves as a criterion for model specification. .Available

group level predictors in the original study (Rudman and Raudenbush,

1987) were linear trend of the blocks, and the polynomial trends

variables (linear, quadratic, and cubic) of the treatment groups. The

linear trends of the blocks and treatment groups were significant in that

study after examining all possible sets of predictors. In the present

study, the author decided to use only the polynomial trends variables of

the treatment groups for illustration purpose. By using the predictors

taken from one dimension of two-way classification, we are able to see

changes of each covariance component at the group level.

We first pose the model with all polynomial trends variables and

then take out the nonsignificant predictors from the model. The within-

cell model is the same as before.

Y1
+ 61(Tread)

jk ' flOjk ijk.+ eizjk

but the between-cell model includes the predictors as

fiOjk - 100 + 701(L1n)jk + 102(Quad)jk + 103(Cub)Jk + aOJ + b0k +

COjk’
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where Lin - linear trend, Quad - quadratic trend, and Cub - cubic trend

of the treatment effects variables. All other notations are the same as

before.

The results of the analysis of the above crossed multilevel model are

shown at Table 15.

Table 15. Results of crossed multilevel analysis with both within- and

between- cell variables.

 

 

Fixed Effects Estimates SE t

100 12.3233 1.2079 10.20

101 .5728 .1342 4.27

102 -.0670 .3049 -.22

103 .0158 .1383 .11

61 .3824 .0153 25.02

 

Covariance Components

 

Within-cell Variance

2

0 42.9445

Between-cell Variances

Overall 7 r r

a b c

1.39728 1.08924 .01114 .2970

-21n(likelihood) 3116.4663

 

The results shows that the x2 value of the log-likelihood ratio test

is 8.77 with three degrees of freedom, but x2 value at 5 8 significance

level is 7.82. So the composite hypotheses, H - 0 is
0‘ 101 ' 102 ' 703

rejected. The first panel of Table 10 shows the results of t-test for

the fixed effects and the fixed effects of quadratic and of cubic trends
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effects are not significant in predicting the variation of within-cell

intercept. So these two predictors ‘will be dropped in. next. model

specification. The residual parameter variances are reduced by virtue

of the predictors at group-level. But the residual parameter variance

of the random block effect, fa' shows the least change because the

employed predictors are mainly supposed to account for the random

treatment effects. One notable result in Table 15 is that the within-

cell variance was not changed by the effects of the group level

predictorsc This is because the group level variables predict the

variation of the responses only at group level.

Since we know only the linear effect of the treatment is significant

in predicting the variation of within-cell intercept, we pose the final

crossed multilevel model. The within- and the between—cell models are

Yijk ' fiOjk + fi1(Tread)ijk + ei:jk

+ a + b + c

fiOjk ' 100 + 701(L1“)jk Oj 0k Ojk'

The results are shown at Table 16.
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Table 16. Results of crossed multilevel analysis of the final model

 

 

Fixed Effects Estimates SE t

100 12.30087 1.20408 10.21

101 .57793 .13336 4.33

61 .38256 .01526 25.07

 

Covariance Components

 

Within-Cell Variance

2

0 42.9431

Between-Cell Variances

Overall 1 r r

a b c

1.4134 1.1045 .0113 .2976

-21n(likelihood) 3116.5100

 

Table 16 shows that the estimated fixed effect of the linear trend

is .578 and the change of the -2ln(likelihood) is almost zero. The

classical interpretation of the estimated effects in regression analysis

can be used for the fixed effects in the crossed multilevel model, that

is the average change of outcome scores for one unit change of linear

trend variable is .578. The linear trend variable was coded as; group 1

- -3; group 2 - -1; group 3 - 1; group 4 - 3; in the study. Hence the

expected mean change of reading test scores for 5 minutes excess testing

time is the twice of the coefficient which becomes 1.156.

Concerning the covariance-components at macro level, we found the

size of the variances at both within- and between—cell levels was not

changed a lot after deleting the two non-significant trends effects.

Comparison of the results with the results of Table 14 tells us that the

within-cell variance was not affected by the effect of the linear trend
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variable which is from treatment groups, but the magnitude of residual

parameter variance of random treatment effects were reduced from 1.268

to .0113. Hence about 99 8 of the random treatment effects were

accounted by the linear trend variable.

We can compute the coefficient of determination for parameter

variance here. The proportion of the explained parameter variance by

the model is

2* Var(fijk) - Var(fijkl Tread,Lin) 5.2205 - 1.4134

R — - - .729

Var(fijk) 5.2205

  

About 73 8 of the parameter variance was explained by the model.

Based on this results regarding fixed effects, we could conclude as

in the original study: 1. Test designers should consider more precise

methods of setting testing time limits, 2. tests which are sensitive to

variations in the procedures of administration should not be used for

high-stakes decisions unless the procedures can be carefully monitored

(Rudman and Raudenbush, 1987, p.14) .



CHAPTER VI

CONCLUSION

5mm

Educational systems typically ‘have hierarchical organizations in

which "units" at one level are "nested" within units at the next higher

level. These educational systems often. produce 'hierarchical data.

There have been many controversies over results found through traditional

statistical analyses. .As Cronbach (1976) and others emphasized, many

educational studies have used inappropriate analyses, including many

important evaluation studies. A number of methodologists have developed

multilevel models with estimation procedures appropriate for multilevel

data. Although these multilevel models have made substantial

methodological advances in analyzing multilevel data, they apply only to

those multilevel data structures in which each lower-level unit belongs

to only one unit at the next higher level. In many cases, however, the

structure of a system is not so simple. Students may belong to more than

one group simultaneously. For example, we could cross-classify students

both by the school they attend and by the neighborhood they live in. We

call this kind data as "crossed multilevel data."

Despite the recognition of a need for an appropriate multilevel

model analyzing crossed multilevel data, a major difficulty has been

constrained by existing technologies such as one-way nested multilevel

models, variance components models, and OLS regression models. This

thesis has now expanded the multilevel techniques to include the two-way

crossed multilevel model. The major products of this thesis are five

things :

108
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l. A crossed multilevel statistical model has been presented in

general form.

2. The Empirical Bayes estimation procedure has been adapted to the

estimation of the crossed multilevel model.

3. A computing algorithm (the CML algorithm) for numerical analysis

of crossed multilevel data has been developed using the Gauss

language.

4. The accuracy of the computing algorithm has been tested in

reasonably comprehensive situations of crossed multilevel

modelling both for balanced and unbalanced data sets.

5. The application of the crossed multilevel model to real

data set was learned through illustration.

In chapter one, the issues of crossed multilevel analysis in

educational research were identified and the statistical model for

crossed multilevel analysis was presented. The problems of existing

statistical models for analyzing crossed multilevel data resulted because

those models can't specify the error terms from all sources in crossed

multilevel contexts. Traditional single level models, such as

regression models, fail to incorporate the error sources from multilevel

structure. Such a limitation of the models leads researchers to have an

enforced choice of either individual level or group level analysis.

Because the observations within a group are not independent, significance

tests based on individual level analysis are not acceptable, due to the

violation of independence assumption. Dependencies among observations

cause over-estimation of the precision which is a function of sample size

and intra-class correlations. The group level analysis does not violate

the independence assumption but cannot use individual variables in the

model. Inferences about individual behavior (e.g., individual student

achievement) based.<u1 group level analysis can cause aggregation bias.

The limitation of classical statistical analysis is further exacerbated
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when researchers raise the inquiries about how the process in higher

ev u t (e.g., organizational treatment) influence theW

[Lowe]; leve], units (e. g., students achievement). The effect of treatment

at the organization level on the individual students may be different due

to the differences of students backgrounds. Traditional analysis must

assume that the organizational treatment effects on individual behavior

are homogeneous, which is hardly acceptable.

The currently available nested multilevel models virtually solve

these problems when they are applied for the analysis of one-way nested

multilevel data. Those nested multilevel models, however, are not

appropriate for the analysis of crossed multilevel data because the

models specify only one group-level error term, while crossed multilevel

data have three error sources, two sets of macro units plus their

interactions, at the group level. Application of nested multilevel model

for the analysis of crossed multilevel data would produce large variance,

T, at group level which will be the sum of three group level variances, T

- Ta + r + 'c’ obtainable from a crossed multilevel model. The exact
b

functional relationship between nested multilevel and crossed multilevel

models regarding the group level precision is not clear to the author at

this point. It will be a interesting study to investigate the

significance tests when a nested multilevel model is used for the

analysis of a crossed multilevel data. One thing we know is that the

nested multilevel model does not identify the all error sources of the

crossed multilevel data at group level.

Inquiries into the use of the crossed multilevel model have begun

with several concrete examples. In the case of school effects studies,

many schools can be examined for multiple time points in a single crossed
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multilevel analysis if the observed students are different across the

time periods. Furthermore, the crossed multilevel model allows the

estimation of random interaction effects which can't be achieved through

the existing nested multilevel models. Significant random interaction

effects constrain the generalizability of the research findings and lead

us to identify what particular fixed effects of group characteristics are

interactively at work.

In chapter two, the empirical Bayes estimation method using EM

algorithm was adapted for the crossed multilevel model. The essential

idea of the estimation theory is twofold: First, the crossed multilevel

model is viewed as a case of general mixed linear model, which enables us

to build the identities between the two models. The general mixed linear

model can be modified into either a Bayesian model or a linear model.

Then Bayesian estimation method and generalized least squares method were

*

utilized for the estimation of random, 62 and D9*, and fixed parameters,

61*, respectively.

Second, the MLF method of EM algorithm was used for finding ML

estimates of variance and covariances. In EM algorithm, the most complex

computation is to obtain the posterior dispersion matrix which requires

1a: - - -

matrix inversion, D - (A'i A + T 1') 1. The advantage of MLF over MLR

9

method for computing the posterior dispersion matrix of crossed

multilevel model is that the dimension of the matrix to be inverted is

smaller in MLF (3 x 3 partitioned matrix) than in MLR (4 x 4 partitioned

matrix).

Based on the estimation method presented in chapter two, chapter

three provides actual computational EM formula which have been used for

the CML computer program. In chapter four, the accuracy of the
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performance of the CML algorithm was examined through reasonably

comprehensive evaluations and all the resulting estimates were virtually

identical to in; estimates computed from either standard packages (SAS,

BMDP) where those programs apply or simulations. The study provided the

evidence confirming the accuracy of the algorithm.

In chapter five, the use of crossed multilevel model was illustrated

by applying the model to the analysis of actual experimental data. The

experience with the crossed multilevel model brought up insights about

the logic of model specification, hypothesis testing, parameters to be

estimated, and the interpretation of the findings. It also showed that

the use of the crossed-multilevel model in crossed-multilevel contexts

has advantages over single-level models in the estimation of covariance

components, inference on the hypothesis testing, and the coefficient of

determination (R2). The basic procedure of model specification consists

of three steps. The first step is to examine variability of the observed

outcome variable with respect to the crossed multilevel structure. We

call the model for this purpose the h§§e_mggel since no predictors are

included in the model. Using the base model, we obtained variance—

covariance components estimates at both the individual and group levels.

This decomposition of the observed total variance enables us to obtain

three intra-unit correlations: intra-cell, intra-block, and intra-

treatment. The classical single-level models do not allow the

estimation of parameter variance and the OLS estimate of the group-level

variance is contaminated with sampling-errors. Nested-multilevel models

provide the parameter variance but cannot decompose the parameter

variance into the three components.

Having examined the decomposition of the variances and covariances,
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we tried to explain the process within each classroom through within-

cell model specification. The power of crossed multilevel model in this

step is that the model clearly shows what effects of individual

characteristics are random across what particular macro factors.

Classical-single level models always assume that the effects of

individual characteristics are constant across all macro units, which is

hardly acceptable. Nested-multilevel models allow the effects of

individual characteristics to vary across the macro units but they cannot

identify what particular macro factors, among the three in crossed-

multilevel contexts, are the source of variation of the slopes at

individual level. In our example, the effect of total pretest score

(Tread) showed little variation across the all three macro factors;

treatment groups, blocks, and the classrooms classified by the blocks and

treatment groups. Thus we decided to fix the effect of the variable.

Finally, group level variables were examined in order to identify the

variability of the observed outcome score as a function of group level

variables. In this step, I examined the treatment variables to show the

changes of parameter variances between the blocks, 'a’ and the treatment

groups, fb' It clearly showed that the parameter variance pertinent to

blocks, fa’ did not change for blocks when we used the variables of

treatment characteristics in the model. Thus we could know that the

treatment variables mainly explain the variability of the outcome values

across the treatment groups.

As many multilevel methodologists anticipated the emergence of a

general crossed multilevel model, we now have the model. The crossed

multilevel model presented in this thesis, however, is not yet completed

for those audiences who want to use it. The limitations and the expected

necessary future work for this model are now considered.
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Mic—rm

Co a o t

Complexity of computing estimates of crossed multilevel model come

from the three facts: First, the crossed multilevel model uses the

variables at both micro and two sets of macro units. Because the CML

algorithm is designed to use the model for general applicability, the

algorithm allows estimation for a wide range of models with various

combinations of predictors at both levels as in chapter three. These

complex model characteristics and general applicability of the model make

the algorithm nearly 1000 lines long in Gauss language. If we consider

that Gauss, unlike the fortran, is a matrix operation oriented program

language, we could imagine the complexity of computation.

Second, the crossed multilevel model can be applied for experimental

data as well as for large scale survey data such as national data sets.

For the analysis of large scale data, computation using the whole data

matrices is not always possible due to the limitation of virtual memory,

especially in micro computers. An alternative way is to compute the sum

of squares and cross-products of each cell separately and recapture the

necessary statistics based on computed cell statistics. This unit by

unit computation approach cause the program complex but useful for

computation of large scale data sets. Although computation is complex,

this computational strategy allows us to perform the crossed multilevel

analysis using micro computers of 386, AT, and even XT.

Although more work will enable us to improve the efficiency of

performance of the CML algorithm, the final version would still

definitely be complex. The current CML algorithm was written with Gauss



115

language (version 2.0) so it can be used only for micro computers with

appropriate math-coprocessors. The Gauss software (version 2.0) allows

matrix inversion up to a 90 X 90 matrix, which enables us to use a fairly

large data set. Increasing popularity of micro computer use for

computation would increase the use of the crossed multilevel analysis,

but we still need to have the algorithm for mainframe computer.

2 ens t v t to ssum tions

Empirical Bayes estimation requires the assumption that data and

the prior distribution of the random effects are normal. Although the

distribution of outcome measures can be examined, the prior distribution

of parameter effects is actually unknown. The sensitivity of results to

violations of this assumption are not known.

a r t n or

The current version of CML algorithm is not an efficient one at this

points. It reads the sufficient statistics multiple times at each

computational step because it involves the computational components for

each set of macro units along with their interactions. Simplification of

the program is possible with more experienced computer programming.

Additional work needed for the program is to include all necessary test

statistics. The current program allows us to estimate the fixed effects

parameters with significance tests and the variance-covariance components

at each level. ‘Various other test statistics, for example confidence

intervals need to be added in the program and these are expected to be

done very soon.
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One strong advantage of empirical Bayes estimation is that it can

decompose the within-cell parameter variance into true and sampling

variances. For example, 8 where the outcome is the OLS
jk " fijk + ejk’

estimate of a cell coefficient, is the true coefficient value and51k

ejk is a sampling error. Then Var(B

1+7

(a

jk) - Var(fljk) + Var(ejk)

b+fc) + v, where the left hand side of the equation is the observed

parameter variance and Var(fljk) is the true parameter variance and

Var(e k) is the sampling variance. At this point, the CML algorithm

J

produces only the true parameter variances, r 'c and within-cell
a’ ’b’

variance, 02. The importance of this decomposition of true and sampling

variance of the observed within-cell parameters lies in the points that

we could compute the reliability, p - Var(fijk)/Var(3jk), of the

estimation of within-cell parameters and could compare the performance of

EB estimation and traditional OLS estimations and obtain the technical

properties of EB estimates. EB estimators were known as ”shrunken

estimators”,i.e., estimators shrunken toward their unconditional grand

mean (unconditional) or their conditional grand mean (conditional)

(Rubin,l98l; Strenio, 1981; Raudenbush, 1984). This property of EB

estimator can be proved by using the decomposition of the observed

parameter variance into true and sampling variance.

Finally the CML algorithm is not user friendly. More technical

programming work is necessary for the popular use of the algorithm.

.9 -:-: ., . -: ed ... _ -v- :1d - e- y- , -v- ,..- :

The crossed multilevel model in this thesis is the expansion of a

nested multilevel model that shares the same modelling strategies,

hypothesis testing , and the interpretation of the findings. These
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similarities encourage us to combine the two models. To denote the

possibilities, let me consider the simple case in which the crossed

multilevel model can work like the nested multilevel model. In nested

multilevel model, the base model is

2

YJ fij + ej e:1 - N(0, a I) (within-group model)

fij - 10 + uj uj - N(0, r) (between-group model)

The within-group model shows a vector of outcome scores within jth group

is a group mean, 81, plus random errors, e Each group mean, 81, is thej'

function of a grand mean, 10, and the random effect of the group, uj.

Consider now the base crossed multilevel model,

2
e -N(0,oI

Jk )

+ a + b + c a ~ N(0, fa), bk - N(0,j - N(0, rc)

'b)' cjk

The evident difference between the two models is that crossed multilevel

model has two subscripts, macro row units j and macro column units k,

and the cells, jk, classified by the two sets of macro units. The

relationship between the two models regarding the parameter variances is

r - fa + 'b + 'c' Suppose the within-cell parameter, pjk’ does vary

only across the macro row units, so 'b - Tc - 0, then we would fix the

effects of column and the cell units on the within-cell parameters as

zeros. In this case the model become

- N(0, 021)ij- pjk+ ejk ejk

fljk - 10 + a:] a:I - N(0, fa).
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So the within-cell parameter has only one random effect defined on rows.

In this new model, fljk - fij and e - e also fa - 1. Thus the base

Jk J’

nested model and the new crossed multilevel model become identical.

Since the CML algorithm is developed for general applicability, it

supports the model above. A distinction between the nested multilevel

and crossed multilevel model aries when we have longitudinal data sets

or time-series data. Consider a number of students are observed across

the multiple time points. The design may be viewed two-way crossed

(student j and time k) design with one observation in each cell. But

the observations across the times are not independent. While the nested

multilevel model views the design as an oneway nested design, multiple

observations are nested within students, and so allow the dependencies of

the observations, the crossed multilevel model treats the multiple

observations, time k, as macro units and considers them as independent.

So the crossed multilevel model can't analyze the data appropriately.

Similar problem arise when we have longitudinal data. Suppose many

schools are observed through multiple time points using the same samples

of students from each school. The design of this data may be viewed as

two way cross-sectional, the schools (row macro units), the time points

(column macro units). But the column units are not independent because

observations are taken from the same sample at different time points.

The crossed multilevel model assumes the two sets of macro units are all

independent. The 3-level nested multilevel model handles this

longitudinal data because it considers the multiple observations nested

within students which are also nested within schools at a time point

(see, Raudenbush, 1989). The difficulty of the integration of the two
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models stems from the fact that the crossed multilevel model uses the

time points as macro units but the 3-level nested multilevel model

considers the time points as the micro units nested within each student.

If an algorithm allows the transition of ndcro- and macro-units in its

configuration of data, there may be a way to integrate the two models.

But we need to have a comprehensive comparison of the characteristics of

the two models to improve our understanding about the combination of the

two models .
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