
|
‘
l

.
2
3
;
?

k
.

.
l

A
»
!

i
n
n
.

‘
3
.

.

l
.
.
I
:

.
3
:
.
.
.
“
L

“
t
u
n
-
3
%

.
1

.
.

0
8
¢

\
.

.
1
5
.
:

9.
.

.
.
-

v
;

(
1
.
.
.
!

.
r

A
w
a
a
fi
fi

.
w
u
x
g
fl
fi
m
a

a
#
2
.
?

A
.

u
3

J
3
.
.

«
.
3
3
.

.
.
,

i
.

.
i
.
§
u
§
_
§
é

1
1
.

1
.
1
.
1
.
.
.
.
i
t
?

1

a
.
.
.

I
I
.

I
t
t
v
v
l

H
a
r
t

1
4
‘
0
1
5
1

A
I

‘
5
1
»
)
l
e

.
.
1
.

W
H
O
.
i
a
t
r
f
i

.
e
.
.
.

I
.
I
l
.
a

.
fi
i
v
l

.
4
.
.
.
)
I
t
:

4
.
,

:
‘
u
!
.
!
w
.

.
1
2
.
.
.
.
o
u
r
:

I
l
o
l
l
l
l
a
o
.
‘
.
a

5
‘

a
.
.
.

n
0
.

(5': MI

-1 A.

- nn'x 41"“

I rll’LQl‘

RSITYUBRM

’Illllllillu‘tlfillllmm\Ilugmj’l “
3 1293 00794 4

This is to certify that the

dissertation entitled

A Framework for Multiprocessor Performance

Characterization and Calibration

presented by

Arun K. Nanda

has been accepted towards fulfillment

ofthe requirements for

Ph.D. degree in Computer Science

hmtg \‘l by;
Major professor

Date 10/12/92

MSU is an Affirmative Action/Equal Opportunity Institution 0- 12771

l’ ‘1

LIBRARY

Michigan State

University

x I

PLACE IN RETURN BOX to remove thin checkout from your record.

TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE

 :Tl—j
MSU Is An Affirmative Action/Equal Opportunity Institution

emote”.-

A Framework for Multiprocessor Performance

Characterization and Calibration

By

Ann: K. Nanda

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

1992

ABSTRACT

A Framework for Multiprocessor Performance

Characterization and Calibration

By

Arun K. Nanda

In parallel programs using the shared-variable paradigm, run-time communica-

tion overhead manifests itself along three principal dimensions, namely, shared data

accesses (including memory contention, cache misses and non-local memory access

latencies), inter-process synchronization operations, and global barrier synchroniza-

tions. Performance measurements to quantify the rate at which communication costs

for an algorithm increases as more processors are used is integral to the study of an

algorithm’s efficiency and scalability. In this thesis, we explore the problem of per-

formance characterization of a multiprocessor in the context of the shared-variable

programming model with emphasis on characterizing the dynamic run-time behavior.

We have developed a hierarchical model to characterize multiprocessor system per-

formance using a multi-phase computation structure with concurrent asynchronous

execution within a phase. Two sets of system characterization parameters have been

proposed that completely describe the static and dynamic behavior of a given in-

put workload on a target multiprocessor system. The characterization parameters

are calibrated by experimental measurements on the input workload. A series of

loss functions are formulated to describe the performance degradation resulting from

static and dynamic overheads, thus providing realistic estimates of performance loss.

Since the characterization of performance is tied inextricably with the input work-

load, we have presented a flexible technique for benchmark workload generation, that

can be tailored to fit a user’s preference for selective workload characteristics. A fam-

ily of workload emulation kernels, namely, the MAD, SAD and BAD kernels, have

been designed to isolate and measure the incremental impact of memory contention,

critical sections and barrier synchronization on performance, repectively, to calibrate

the hierarchical performance model. We have demonstrated the applicability of the

system characterization methodology and the effectiveness of the workload emulation

kernels by evaluating the performance of several synthetic workloads on the Sequent

Symmetry and BBN TC2000 commercial multiprocessors.

The proposed methodology is independent of any particular architecture or appli-

cation. We believe that our approach to performance characterization will serve to

model performance with greater fidelity than exists in the current state of art, since it

incorporates the effect of both static and dynamic influences in a workload execution.

Since a shared-variable programming paradigm is only assumed with no assumptions

made about the organization of the shared address space, our framework can be used

equally effectively to evaluate multiprocessors that provide a physical shared memory

or highly-parallel systems that support a shared virtual memory.

Copyright © by

Arun K. Nanda

1992

To my parents

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my appreciation to those who

have contributed to the completion of this dissertation. I will always be indebted to

my advisor, Lionel Ni. He has been my mentor, my colleague, and my friend. His

guidance has helped me mature as a researcher, and his respect for my ideas has made

working with him very rewarding. I look forward to many fruitful interactions with

him in the future.

I am very grateful to the other members of my dissertation committee: Richard

Enbody, for his invaluable discussions on numerous occasions and comments to im-

prove the readability of this thesis, his perpetual willingness to listen to whatever I

had to say, be it research related or otherwise, and offer friendly advice; Abdol Es-

fahanian, for being my faculty advisor for two years, his critical suggestions on some

aspects of this thesis, and for his time and support; V. Mandrekar, for his continuous

encouragement and always accommodating me in his schedule at short notice.

I would like to thank the members of the Advanced Computing Research Facility

at Argonne National Laboratory, especially Dave Levine, for providing me access to

their computer systems and their help in arranging my special job scheduling requests.

My thanks to Honda Shing and Ten-Hwan Tzen for many enlightening discussions

on research issues.

A person cannot accomplish anything without the help and understanding of fam-

ily members. My mother’s constant encouragement, in spite of her personal hardships,

inspired me to do my best. My brother and sister always stood behind all my deci-

sions. My father- and mother-in-law offered their patient understanding throughout

the course of my doctorate work. I proudly share this accomplishment with them all.

Finally, my very special thanks to my wife Susmita, for sustaining me with her

continuous love and understanding, and spending many a sleepless nights with me

during my work to keep me company.

vi

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

1 INTRODUCTION

1.1 Multiprocessor Performance Evaluation

1.2 Survey of Benchmarks

1.2.1 Synthetic Benchmarks

1.2.2 Kernel Benchmarks

1.2.3 Application Benchmarks

1.3 Motivation and Problem Definition

1.4 Objective and Scope of Research

1.5 Thesis Outline

2 BACKGROUND

2.1 Multiprocessor Memory Organization

2.2 Limitations to Parallelism

2.2.1 Memory Access Contention

2.2.2 Spin Locks and Mutual Exclusion

2.2.3 Synchronization Barriers

2.3 Target System Architectures

2.4 Summary

3 PERFORMANCE CHARACTERIZATION METHODOLOGY

3.1 The Parallel Computation Model

3.2 Workload Characterization

3.2.1 The Unit Grain

3.2.2 Workload Classification

3.3 Experimental Framework

3.3.1 Measurement Structure

3.3.2 Workload Generation

vii

xi

(
0
(
1
)
m
e

10

10

14

20

21

21

24

25

31

38

40

45

46

47

50

51

53

55

55

59

3.4 Performance Characterization Parameters 60

3.4.1 Static Parameters 61

3.4.2 Dynamic Parameters 67

3.4.3 Performance Metrics 72

3.4.4 Aggregate Multiphase Performance 74

3.5 The Workload Emulation Kernels 75

3.5.1 Measurement of Incremental Overheads 76

3.5.2 Kernel Structure 78

3.5.3 Minimization of Experimental Errors 80

3.6 Summary 83

MAD KERNELS AND MEMORY ACCESS PERFORMANCE 85

4.1 Preliminary Studies 86

4.1.1 Workload Parameters 86

4.1.2 Quantities Measured 88

4.1.3 Memory Access Overhead Factors 88

4.1.4 Experimental Results 94

4.2 MAD Workload Parameters 97

4.2.1 Unit Grain Characterization 98

4.2.2 Output Metrics 102

4.3 Concurrent-Access Workloads 103

4.3.1 Homogenous Workloads 103

4.3.2 Heterogenous Workloads 111

4.4 Dual-Mode Access Workloads 114

4.5 Summary 115

SAD KERNELS AND SYNCHRONIZATION PERFORMANCE 117

5.1 Preliminary Studies 118

5.1.1 Synchronization Overhead Factors 119

5.1.2 Experimental Results 121

5.2 SAD Workload Parameters 130

5.2.1 Unit Grain Characterization 130

5.2.2 Output Metrics 132

5.2.3 Lock Implementations Studied 133

5.3 Exclusive-Access Workloads 137

5.4 Dual—Mode Access Workloads 144

5.4.1 Homogenous Workloads 144

5.4.2 Heterogenous Workloads 147

viii

5.5 Summary 150

6 BAD KERNELS AND BARRIER PERFORMANCE 152

6.1 BAD Workload Parameters 153

6.1.1 Phase Characterization 153

6.1.2 Output Metrics 154

6.1.3 Barrier Implementations Studied 155

6.2 Embarrassing Workloads 158

6.2.1 Scalability of Barrier Implementations 162

6.2.2 Balanced Load and Simultaneous Arrivals 162

6.2.3 Unbalanced Load and Staggered Arrivals 164

6.3 Dual-Mode Access Workloads 166

6.4 Summary 169

7 CONCLUSIONS 171

7.1 Research Contributions 171

7.2 Directions for Future Research 174

BIBLIOGRAPHY 176

ix

1.1

2.1

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

6.1

LIST OF TABLES

Performance level comparisons for three classes of multiprocessors . . 5

Summary of target system architectures 44

An example of weights assigned to different types of floating-point

operations to normalize their execution time to floating—point addition

time 53

Summary of average shared data access time tm 63

System characterization parameters 72

Application parameters used in the performance model 72

Summary of access degradation kernel measurements 79

Basic time measurements for the overhead factors model 90

Parameter settings for different workload types used in the preliminary

studies 95

Unit grain attributes for studying memory access behavior 99

Static characterization parameters for a homogenous workload with

M 2 128K, G; = G6 = (9m = (0/1,0,.<§',1),gc = ¢,g, = 45)........ 106

Actual execution times (M = N + 1,w = 500, a: = 50us) 128

Actual overhead times (M = N + 1,w = 500, x = 50us) 128

Unit grain attributes for studying synchronization behavior 131

Native lock support on each machine 134

Pseudo-code for the TAS lock 134

Latency of locks used in the SAD experiments 138

Half-performance lock factor c1/2 for different lock implementations . 139

Static characterization parameters for workloads used in incremental

overhead measurements 146

Workload parameters for studying barrier performance 153

1.1

1.2

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

4.4

4.5

4.6

4.7

LIST OF FIGURES

Performance measurement levels 4

Steps in the experimental performance characterization method . . . 17

Organization of memory hierarchy in shared-memory multiprocessors 23

Tree saturation as a result of hot spot accesses over a multistage inter-

connection network 27

Memory address interleaving techniques: (a) Fine interleaving with se-

quential assignment across modules (one bank per module); (b) Coarse

interleaving with sequential assignment within module (one bank per

module); (c) Mixed scheme with fine interleaving among banks of a

module and coarse interleaving among modules (multiple banks per

module) 29

Sequent Symmetry system architecture 41

BEN TC2000 system architecture 42

Structure of parallel program execution 49

Structure of a unit grain 52

Structure of a single computational phase 54

Structure of the measurement framework 56

Incremental measurement of dynamic overheads 77

The concurrent loop structure of the kernels 80

Normalized 90 percent confidence intervals for three workload mea-

surements on the Sequent Symmetry for Nrcpeat = 5,10, 20 82

Efficiency vs. N (M = 1,7» = 100,3: = 0) 96

Efficiency vs. N (M = N + 1,w = 100,3: = 0) 97

Creation of memory access patterns using attributes d and s 100

Effect of spatial distribution of memory access stream on performance 105

Effect of temporal distribution of memory access stream on performance107

Effect of contention for a memory location (hot-spot) on performance 108

Effect of length of computation on hot-spot write performance 109

xi

4.8 Effect of shared-data size on read performance 111

4.9 Random access performance expressed in MegaWARPS 112

4.10 Interaction between read and write memory—access streams 113

4.11 Effect of length of computation on interference between read and write

streams 114

5.1 Generic structure of program executed by every processor 119

5.2 Efficiency vs. N (M = N +1,w = 100,p = 0) 121

5.3 Efficiency vs. N (M = N + 1,1) = 0.1,2: = 30ps) 122

5.4 Efficiency vs. N (M = N + 1,0.) = 100,3: = 100113) 123

5.5 Efficiency vs. N (M = N + 1,w = 100,p = 0.3) 124

5.6 Overhead components vs. N (M = N + 1,w = 500,p = 0.1, a: = 30us) 126

5.7 Overhead components vs. :1: (M = N + 1,w = 500,p = 0.1) 127

5.8 Overhead components vs. p (M = N + 1,0.) = 500,3: = 50us) 129

5.9 Critical section structure 132

5.10 Pseudo-code for the MCS list-based queuing lock 136

5.11 Working of the MCS list-based queuing lock 137

5.12 Effect of frequency of CS on performance 141

5.13 Effect of non—CS to CS computation ratio on performance 143

5.14 Effect of non-CS to CS shared data access ratio on performance . . . 145

5.15 Incremental interference measured with stride of access .9 = 1 147

5.16 Incremental interference measured with stride of access 3 = 23 148

5.17 Impact of non-CS memory accesses on CS execution performance . . 149

5.18 Impact of CS spin-lock on non-CS memory accesses 150

6.1 Pseudo-code for a sense reversing centralized barrier 155

6.2 Pseudo-code for a distributed dissemination barrier 157

6.3 Time to achieve barrier vs. N 161

6.4 Time to achieve DSM barrier on the TC2000 163

6.5 Barrier performance of a perfectly balanced load 164

6.6 Barrier performance of an unbalanced load 165

6.7 Performance of staggered arrivals at the barrier 167

6.8 Cumulative interferences unit stride workload on the Symmetry . . . 168

6.9 Cumulative interferences unit stride workload on the TC2000 169

xii

CHAPTER 1

INTRODUCTION

The ever increasing need for faster and more powerful computers, coupled with the

advent of fairly cheap microprocessors, has prompted considerable interest in mas-

sively parallel processor systems. Computational power has reached a plateau at the

current state of technology for single processor systems [23], due to certain funda-

mental limits (i.e., the speed of light and the width of the atom) being approached.

In an effort to sustain increases in the peak speed of new computer systems so as to

bridge the discrepancy between computational needs and available computing power,

designers have turned to multiple processors, vector arithmetic units, and other ar-

chitectural innovations. Using a large number of low-cost processors for achieving

supercomputing performance is attractive indeed. Unfortunately, it is much more

difficult for a programmer or a compiler to take advantage of multiple processors

than of a faster clock speed. As a result, many machines with complex architectures

are able to deliver only a small fraction of their theoretical peak performance on all

but the most ideal problems.

The purpose of this dissertation research is to develop a flexible approach to char-

acterize multiprocessor systems for general purpose parallel programming that can

measure and quantify the expected losses in parallel execution performance and deter-

mine performance bottlenecks for any selected workload. The proposed methodology

provides a framework for customized benchmark workload generation and yields a

set of parameters which characterize the target system. These parameters spotlight

the strong and weak points of a machine and, hence, aid in the design of efficient

algorithms for it. It should be emphasized that it is not the intent of this thesis

to address the issue of performance prediction of application programs. We have

chosen the shared-memory programming model as the focus of our study. In this

model, processes communicate with each other through shared-variables residing in

globally accessible memory. The shared-memory programming model is widely be-

lieved to be easier to use than the message-passing model. The conceptual simplicity

of the shared-memory model derives from similarities with sequential programming.

Evidence in favor of the shared-memory model is the overwhelming dominance of

shared-memory multiprocessors for general purpose parallel programming, and the

considerable effort in software development designed to provide the illusion of shared

memory on multicomputers.

In this introductory chapter, we elaborate some of the pertinent issues in mul-

tiprocessor performance evaluation, provide a brief survey of the commonly used

multiprocessor benchmarks, and describe the objective and scope of this research.

1.1 Multiprocessor Performance Evaluation

The goal of computer performance evaluation is to identify opportunities for spe-

cific performance improvements throughout the life of a computer system and to

guide the design of more effective architectures. The requirements of target appli-

cations motivate the development of new systems; the development of novel systems

creates the need and the basis for performance evaluation research. Effective perfor-

mance evaluation of highly-parallel systems is essential because these systems must

function at the limits of their computing potential in order to meet the overwhelm-

ing demands of large scientific applications. However, analyzing the performance of

multiple-processor systems is a very complex task since many factors jointly deter-

mine system performance, and the modification of some factors affects others. Since

many different tradeoffs are involved, it is crucial to carefully tune various parameters

such that a system achieves its peak performance.

Traditionally, three common approaches are used to evaluate multiprocessor per-

formance: analytical, simulation and experimental [56]. All three approaches are

necessary because each has its own advantages and limitations. Analytical mod-

els are extremely powerful in the sense that they allow the analytical correlation

of performance with organizational parameters. However, their applicability is not

universal. In order to be tractable, they typically have to make many simplifying as-

sumptions about the architecture and application characteristics that may not reflect

an accurate representation of reality. For example, memory interference models for

multiprocessors based on queueing theory often assume a randomly distributed (both

in time and space) memory request stream. This assumption fails for many scientific

and engineering applications that exhibit very regular data access patterns. If vector

instructions are used to implement these codes they must exploit, and hence empha-

size, this regularity in the temporal and spatial distribution of requests. Simulations

can generally approximate reality more closely, but they are expensive to run and

still do not replace real measurements. Moreover, interactions may be present on a

real system that affect performance and are difficult to capture in a model.

The advantage of experimental performance analysis is, of course, that the per-

formance of the real system is obtained as opposed to the performance of a model

of the system. The drawback of such a solution is its experimental nature which

limits the number of codes analyzed and generally does not provide any methodology

for extrapolating the performance of an arbitrary code from the performance of the

benchmark codes. Furthermore, even when using very simple benchmarks, there is

no general method of correlating code characteristics with the performance observed.

Analytical and simulation modeling techniques find maximum applicability at the

system design phase where they facilitate prediction of system behavior long before

the actual hardware implementation. This helps in making judicious design decisions

that can avoid considerable investment of resources in an inefficient design. For

example, analytical models of processor—memory interconnection have been studied

in [86, 11, 18, 19]. Analytical models of application (or algorithm) execution on a

given architecture can also aid in asymptotic scalability studies [47, 42]. However,

hardware related parameters in such models need to be calibrated by experimental

measurements.

Owing to the diversity of architectural approaches of a multiprocessor, the develop-

ment of working models that can provide a true measure of the “actual” performance

of these machines under workloads of interest can be an extremely complex, if not

impossible, problem. Since a multitude of architectural and application parameters

jointly determine system performance and the modification of some factors affects

others, it is not feasible to construct an elegant yet tractable analytical model that

encompasses all performance effects. Nondeterminism present in parallel program

execution on multiprocessors introduces an additional degree of complexity into the

performance measurement phenomenon. The dynamic run-time behavior of multi-

processor programs is impossible to capture accurately in analytical models.

In the face of the above difficulties, empirical results are the only reliable perfor-

mance measures [29]. This has led to the use of benchmark programs to characterize

and evaluate parallel computer performance (benchmarking). Although benchmark-

ing is widely acknowledged to be a difficult and often controversial process [87, 97], it

also provides one of the few recognized means of acquiring useful performance infor-

mation about complex systems running complex tasks. The methodologies commonly

used in computer benchmarking and the associated pitfalls encountered are described

in [35].

Applications

,

I

I

l
: Hardware

I

I

I

I

.
-
-
-
-
-
-
-
-
-
-

Figure 1.1. Performance measurement levels

There are four levels in the hierarchy of performance measurements [85] as illus-

trated in Figure 1.1. The answer to the oft-asked question, “How fast is it?” depends

on the intended use of the performance data. At the lowest level lies the performance

of the hardware design. Determining this performance provides both a validation of

and directives for system software design. Only by understanding the strengths and

weaknesses of the hardware can system software designers develop an implementation

and user interface that maximizes the raw hardware potential available to the end

user. Given some characteristics of the available processing resources and the services

provided by the system software, users can develop algorithms that are best suited

to the computer system’s capabilities. Finally, the best mix of key algorithms will

maximize the performance of user applications.

A complete performance characterization requires not only an analysis of the sys-

tem’s constituent levels, it also requires both static and dynamic characterizations.

Static or average behavior analysis may mask transients that dramatically alter sys-

tem performance. A combination of static and dynamic characterizations is also

needed to understand the interactions between performance levels. Table 1.1 shows

a subset of the important performance measurements at three levels for three classes

parallel processing architectures.

Table 1.1. Performance level comparisons for three classes of multiprocessors

Level Vector Shared-memory Message-passing

processors multiprocessors multicomputers

Hardware Vector startup Memory contention Processor speed

Memory conflicts Network contention Communication

Memory-cache latency and

interaction bandwidth

System software Compiler Compiler OS support

Algorithm Vectorization Shared-memory access Communication

Inter-processor pattern

synchronization

Historically, benchmarking has been employed for system procurements. It will

certainly maintain its value in that arena as it expands to become the experimental

basis for a developing theory of supercomputer and multiprocessor performance eval-

uation. The number of benchmarks currently used is growing day by day. Every new

benchmark is created with the expectation that it will become the standard of the

industry and that manufacturers and customers will use it as the definitive test to

evaluate the performance of computer systems with similar architectures. A survey

of the common benchmarks in use today is provided in Section 1.2.

One of the key questions in benchmarking has to do with what kind of unit consti-

tutes the benchmark set. A number of general benchmarks such as Livermore Fortran

Kernels, NAS Kernels and the Linpack Benchmark have emerged during the past two

decades that are based on a collection of computation-intensive kernels extracted

from a. range of real application domains. Another benchmark called Whetstones, on

the other hand, is based on a collection of synthetic kernels. All these benchmarks

perform measurements at the “algorithms” level of Figure 1.1 and have one thing in

common—each component kernel in the benchmark is designed to stress a particular

aspect of system performance.

Discussions of benchmarking [35, 60, 117, 125] have lead to a growing recognition

that the most accurate information on a system’s aggregate performance is obtained

by making measurements on complete applications (applications-based benchmark-

ing). The underlying assumption here is that real engineering and scientific codes

stress and evaluate machines in a way that kernels and algorithms cannot. Efforts in

this direction include the Perfect, SPLASH and SLALOM benchmarks. Performance

measurements at the applications level capture and reflect the interactions that occur

within and between all the lower levels (Figure 1.1). Although this is indeed true,

these benchmarks provide useful measures of performance only to the particular set of

users that are represented by the benchmark applications. Because of the complexity

of designing a complete application program, when tests are done at this level rather

than on simpler units, the skill of the programmer may be a significant factor in the

performance. Some of the limitations with this approach are:

0 Complete applications are difficult to port to a new architecture. Unless the

existing applications are modified and tuned to the new architecture, they may

not yield optimal performance.

0 The software technology for writing parallel programs is immature. It is unclear

how well programs written with today’s constructs will represent those that

might be written in the future, and what the implications of this are for the

effectiveness of evaluation studies performed today.

0 The available programs might not represent the best parallelization of the prob-

lem they solve, but only one that is reasonable and convenient to implement.

More significantly, large-scale parallel processing may call for very different a1-

gorithms than those implemented on smaller machines today.

0 The relationships between applications and architectures take on new dimen-

sions with parallelism. The number of architectural variables is much larger,

making careful correlation of performance with code characteristics more diffi-

cult. -

Empirical studies based on carefully defined benchmark experiments at all the levels

in Figure 1.1 can provide a hierarchical path to a complete definition of system per-

formance by extending our understanding of the incremental contributions made by

architecture, technology, compilers, operating systems, algorithms, and programming

implementations of physical problems.

Finally, there is the question of appropriate metrics to represent multiprocessor

performance. A single figure of merit such as MIPS (Millions of Instructions Per

Second) is meaningless in the context of the diverse CPU architectures available to-

day. The single number metric MFLOPS (Millions of Floating point Operations Per

Second) is more appropriate for scientific computations, but yet insufficient. From

the end user’s standpoint, perhaps the desirable metric would be MRPS (Millions of

Results Per Second), although this metric would have no universal meaning. Usually,

different benchmark program measurements are summarized in order to find the “av-

erage” performance of a computer. How to calculate these averages has been one of

the most confusing issues in performance evaluation [41, 117]. Siegel et al. provide

a detailed discussion of other metrics used for multiprocessor performance in [115].

1.2 Survey of Benchmarks

Benchmarks are standard programs used to evaluate the performance of a wide range

of computer systems. What distinguishes a benchmark from an ordinary program

is a general consensus of opinion within the industry and research circles that the

benchmark exercises a computer well. Common benchmarks fall into one of sev-

eral categories. Synthetic benchmarks are small programs especially constructed for

benchmarking purposes with the underlying assumption that the average character-

istics of real programs can be statistically approximated by a small program. They

do not perform any useful computation. Kernel benchmarks are code fragments ex-

tracted from real programs in which the code fragment is believed to be responsible

for most of the execution time. Application benchmarks go with the assumption that

complete real applications stress and evaluate machines in a way that kernels and code

fragments cannot. The most important advantage of reducing benchmarks to kernels

is that they may be rapidly ported to new computer architectures, whereas porting

a mature application would need a lot more effort. However, complete applications

provide the most accurate indication of performance.

The field of multiprocessor benchmarking is still evolving and not yet mature.

The methodologies commonly used in supercomputer benchmarks and some of the

pitfalls encountered are examined by Dongarra et al. in [35]. Although there are a

wide variety of benchmarks available, some very site-specific, there is no consensus

yet on the most effective and acceptable multiprocessor benchmarks. We summarize

some of the more commonly used benchmarks in this section.

1.2.1 Synthetic Benchmarks

Whetstone. The Whetstone benchmark [27] was the first program in the literature

explicitly designed for benchmarking. It is a synthetic program constructed with

nine small loops each containing statements of a particular type (integer arithmetic,

floating-point arithmetic, “if” statements, calls, etc.). It uses mostly global data and

has a high percentage of floating-point operations. Most of its execution time is spent

in mathematical library functions. The benchmark results are reported as MWIPS

(mega Whetstone instructions per second).

Dhrystone. This is another synthetic benchmark [123] that consists of 12 procedures

included in one measurement loop with 94 statements. It contains no floating-point

operations and a considerable percentage of its execution time is spent in string

functions. Unlike Whetstone, it uses very little global data and emphasizes data

locality. The benchmark results are given in Dhrystones per second.

1.2.2 Kernel Benchmarks

Linpack. This is a numeric benchmark [33] with a high percentage of floating-

point operations and no mathematical functions at all. More than 75 percent of its

execution time is spent in a 15-line subroutine (called supy in the single-precision

version and daxpy in the double-precision version). The results of this benchmark

are reported in MFLOPS.

Livermore Fortran Kernels. Also called the Lawrence Livermore Loops, this

benchmark [88] consists of 24 kernels (inner loops) of numeric computations from

different areas of physical sciences. The individual loops range from a few lines to

about one page of source code. They contain many floating-point computations and

a high percentage of array accesses. The program computes MFLOPS rate for each

kernel, for three different vector lengths.

NAS Kernels. This benchmark program [10] consists of approximately 1000 lines

of Fortran code, organized into seven separate tests each containing a loop that it-

eratively calls a subroutine. The subroutines have been extracted from a variety of

computational fluid dynamics problems currently being worked on the NASA Ames

supercomputers. They all emphasize the vector performance of a computer system.

The performance is measured in MFLOPS.

10

1.2.3 Application Benchmarks

Perfect Benchmarks. Prompted by Kuck and Sameh’s proposal [69] and initiated

by a group of academic and industrial collaborators, the goals of this effort were to

define an applications-based methodology for supercomputer performance evaluation.

The Perfect Benchmarks [29, 17] consist of 13 programs drawn from a variety of

scientific and engineering fields with over 60,000 lines of Fortran source listing. The

methodology requires a set of baseline measurements followed by any number of

optimized measurements of each code.

SPLASH. Similar to the Perfect benchmarks, the Stanford Parallel Applications for

Shared-Memory (SPLASH) [116] is a suite of seven applications drawn from several

scientific and engineering problem domains. The applications are intended as a de-

sign aid for architects and software people working in the area of shared-memory

multiprocessing.

SLALOM. The SLALOM benchmark [5] solves a complete problem dealing with

“optical radiosity on the interior of a box”. It times input, problem setup, solution,

and output, not just the solution. It is the first benchmark based on fixed time rather

than fixed problem comparison.

SPEC Benchmarks. Probably the most important current benchmarking effort is

SPEC [120] — the systems performance evaluation cooperative effort. Its goal is to

collect, standardize, and distribute large application programs that can be used as

benchmarks. The SPEC suite consists of 10 benchmark programs. The results are

given as performance relative to a VAX 11 /780 using VMS compilers. A compre-

hensive number, the “SPECmark”, is defined as the geometric mean of the relative

performance of the 10 programs.

1.3 Motivation and Problem Definition

There are two distinct activities [110] in evaluating any computer that are often not

distinguished in practice: system characterization and performance evaluation. The

goal of system characterization is to obtain a set of parameters that fully describes

11

the system behavior at some level of abstraction. The characterization parameters

spotlight the strong and weak points of the system they represent. Performance

evaluation, on the other hand, is the measurement of some number of properties

during the execution of a given workload. The properties measured may be the total

execution time to complete some job steps, the utilization of system resources, the

amount of parallel execution overhead, etc. It is important to note that the results

depend on, and are only valid for, the workload used in the evaluation.

Accurate performance characterization of a computer is crucial to the design of

effective algorithms for the system as it offers information on the sensitivity of the sys-

tem to various workload attributes. By providing a validation suite for performance

trends, it can guide the selection of appropriate values and tuning of important algo-

rithmic parameters. Characterization of uniprocessor systems have been undertaken

in [103] using a low-level machine architecture model and in [110] using a higher-level

Abstract Fortran Machine model.

The performance characterization of a multiprocessor system introduces a num-

ber of new considerations due to the presence of interactions between concurrently

executing processes. Inter-process communication, synchronization and contention

for shared resources are the primary sources of interference that influence a concur-

rently executing process. Therefore, in addition to describing the static behavior of a

single processor in isolation, multiprocessor performance characterization must also

incorporate some mechanism to represent the dynamic execution behavior of multi-

ple processors in the presence of these interactions. Further, the magnitude of the

interference encountered is a function of not only the number of processors but also

the parallel program structure and behavioral characteristics.

The well-known Amdahl’s Law [4] is one of the earliest attempts to address the

fundamental issue of parallel program performance. He qualitatively described the

gross features of a typical performance spectrum arising in supercomputers. He con-

sidered the overall performance of a machine that has two modes of computing (one

relatively slow, the other relatively fast) as a function of the time spent in each mode.

12

Ware [122] quantified the idea in the following model of multiprocessor performance:

t,+t,
Speedup =m

8 P

(1.1)

where t, is the amount of time spent on serial parts of a program, t, is the amount

of time spent on parts of the program that can be executed in parallel, and p is the

number of processors used. The numerator in Eq. 1.1 denotes the execution time on a

single processor whereas the denominator denotes the execution time on p processors.

Buzbee [25] has pointed out that this model neglects the effect of multiprocessor

synchronization overhead. To correct this inadequacy, he proposed the additional

term 0(p) in the parallel execution time, which is usually a monotonically increasing

function. However, he did not suggest any method for quantifying 0(p). Gustafson

[54] has recently demonstrated that the assumptions underlying Amdahl’s Law are

inappropriate for the current approach to ensemble parallelism and has reformulated

the law. Gelenbe [48, 49] has given a set of formulae that provide insight into the

effective speedup of parallel programs by taking into account the capacity of a program

to use its parallel structure effectively.

A three parameter (roo,n1/2,sl/2) description, introduced by Hockney [61, 63],

characterizes the performance of vector multiprocessors in terms of its vector startup

overhead and multiple instruction stream synchronization overhead. The parameter

r00 is the asymptotic rate of the vector operation for large vectors, n1/2 is the vector

length at which half the asymptotic rate is achieved, and 31/2 is the amount of useful

arithmetic that could have been done during the time taken for synchronization.

These three parameters were measured experimentally on a 2-CPU CRAY X-MP

machine in [62].

All the above models ignore the dynamic effects of communication and synchro-

nization on parallel program execution. More recently, Zhang [127] has presented a

timing model based on a modified Ware model that incorporates the various shared-

memory multiprocessor program execution effects into the sequential time component

t, of Eq.1.1. He calibrated t, and tp using experimental measurements on some matrix

13

computations. Although this study demonstrates the various multiprocessor effects,

it does not offer any method to deduce system behavior under other workloads. An-

alytical models for predicting multiprocessor performance on iterative algorithms in

terms of the speed of the processor, memory and the interconnection network have

been developed in [121, 28]. Statistical models for synchronous parallel algorithms

have also been proposed in [84]. But these models do not include the effect of memory

contention as a result of access patterns and mutual exclusion synchronization effects.

An experimental characterization technique for multiprocessor memory system

behavior was developed by Gallivan et al. [45] using a set of “load/store” ker-

nels to define memory access patterns. This method was used to study the relation

of the Alliant FX/8 vector instruction set to its memory hierarchy. Although this

technique is very effective for observing the dynamic behavior of concurrent mem—

ory access streams, it is limited in scope and does not address the other sources of

performance degradation on a multiprocessor. Experimental study of memory access

contention has also been reported in [24]. Numerous comparative studies of multi-

computer/supercomputer performance on specific application programs exist in the

literature [34, 82, 57, 32]. These studies, although interesting to read, frequently

provide only anecdotal information.

Using standard benchmarks to evaluate machine performance is a widely used

practice. Considerable effort has been expended to develop benchmark suites, as de-

scribed in Section1.2, that are considered to reflect real workloads [69]. Although

benchmarking is an excellent vehicle for “performance evaluation” (as defined ear-

lier), there are a number of limitations to using it as an approach to “performance

characterization” :

0 Each benchmark is itself a mixture of characteristics, and doesn’t relate to a

specific aspect of machine performance.

0 They provide no insight as to which components of a given program workload

have the potential of being the bottlenecks and to what extent.

From the standpoint of the person engaged in the performance measurement activ-

14

ity, the use of a standard benchmark program suffers from one significant limitation—

the lack of control over the benchmark characteristics. Selecting any standard bench-

mark as the basis for performance evaluation automatically establishes an associated

program workload that is built into the benchmark structure. Hence, it is not pos-

sible to experiment with changing individual parameters in the workload that affect

performance so as to determine optimal settings for such parameters for a given ar-

chitecture/application combination. Such selective characterization of performance

along controlled performance dimensions is integral to the design and implementa-

tion of better algorithms. Upon identifying the most important parameters that have

significant influence on system performance, we need to develop a simple model to

understand and a method to quantify the incremental effect of each of the parameters

on performance when they are observed separately. The method should also provide

means for observing how different parameters interact. Based on these results, we

can identify critical parameters and recognize performance bottlenecks.

Essentially, what is needed is a performance evaluation and characterization

methodology that includes the following functional components:

0 A flexible benchmark workload generator that can be tailored to highlight the

performance of a system along selected dimensions.

0 A measurement framework that can incrementally capture and quantify both

the static and dynamic aspects of program behavior along the selected perfor-

mance dimensions.

0 A system characterization method that uses the measured quantities in a global

timing model to help predict performance trends.

In this research, we address the above problem and present a new approach to selective

performance evaluation and characterization for multiprocessor systems.

15

1.4 Objective and Scope of Research

The goal of this research is to explore the use of algorithm characteristics as an

abstraction that can help in designing benchmark sets that measure the effect of those

parameters which most significantly influence multiprocessor performance. The final

objective of such an exercise is to evolve a “system characterization” of the system

under test that can effectively guide the design of efficient algorithms. The impact

of changing algorithmic parameters on algorithm performance can be predicted and

validated using the characterization data suite. Knowledge of expected performance

degradation of a multiprocessor program in advance, before actually writing it, helps

support an efficient design and implementation methodology. The insight thus gained

helps users (and eventually compilers) understand why a given computation runs

slowly and how to redesign the algorithms to optimize performance.

We have focused on evaluations at the algorithm level, which means that the types

of conclusions that may be drawn relates to how well the structure of an algorithm

matches the capabilities of an architecture. Thus, the evaluations at this level do

not address the question of how the algorithm fits into a complete task. However,

algorithms are more often readily available than complete tasks, and solutions to

complete applications are often constructed from a library of key algorithms. It will

therefore be of interest to understand what is being learned from architecture evalua-

tions performed at the algorithm level. Our approach will be to propose abstractions

by which this sort of evaluation can be facilitated. The objective is to make more sys-

tematic the way in which benchmark sets are selected. The approach proposed in this

research is intended to complement applications-based benchmarking as a method for

performance evaluation.

We have restricted the scope of our studies to multiprocessors supporting a shared

address space. The hardware architecture of the machine need not furnish a com-

mon shared-memory. The underlying programming model is assumed to be one using

shared-variables. This programming model is widely used and is evident from the over-

whelming dominance of shared-memory multiprocessors for general purpose parallel

16

programming both in the commercial and academic sectors. Examples of commercial

multiprocessors include the Encore Multimax, the Sequent Balance and Symmetry,

and the BBN GP1000 and TC2000 systems; among research prototypes are the NYU

Ultracomputer [51], the IBM RP3 [104], and the Illinois Cedar [44] machines. Fur-

thermore, a considerable effort in software development is designed to provide the

illusion of shared memory on multicomputers [26, 20, 79, 78, 108, 40, 22]. By re-

stricting our attention to a given class, we filter out some of the strong differences,

allowing ourselves to understand the performance within a class more precisely.

The execution time of a task on a multiprocessor may be nondeterministic on

account of queueing delays due to contention for shared resources such as memory or

communication channels, or to data-dependent computation times. Variations in exe-

cution times generally result in synchronization delays where one task has to await the

completion of other tasks. These synchronization delays are inherent in the structure

of the algorithm and limit the potential speedup of the parallel algorithm over a serial

algorithm. We distinguish between implicit and explicit synchronizations. Implicit

synchronization is caused by the contention for shared resources (shared memory, crit-

ical sections). Algorithms exhibiting only implicit synchronizations have been called

asynchronous [71]. Explicit synchronization mechanisms are normally used to enforce

precedence relations in synchronized algorithms. This thesis specifically addresses the

effect of implicit synchronizations in parallel algorithm execution.

Communication cost, synchronization overhead and the contention for shared re-

sources are recognized as the main sources of overhead present in multiple-processor

systems. The performance of a parallel program using shared-variables and exhibiting

only implicit synchronizations is strongly influenced along three major dimensions:

the distribution of shared-data over the memory hierarchy and the concurrent mem-

ory reference patterns to access them, mutually exclusive access to shared-data to

preserve consistency, and the presence of global synchronization barriers. Along each

performance dimension, the behavior of a given program is a complex function of a

number of architectural as well as application parameters. It is important to be able

to isolate and determine the effects of each of these components on overall system per-

17

formance. By increasing our ability to measure the pieces, combine their effects, and

relate their contributions to architectural and algorithmic characteristics, we enhance

our ability to model and predict performance in complex systems.

As discussed earlier, standard benchmark programs are not suitable for performing

the task of system characterization since we cannot isolate the eflects of each of the

three performance factors when executing the benchmark workload. Although they

provide good indication of the overall system performance, a user does not have any

control on the benchmark characteristics. We need a flexible benchmark workload

generator and a systematic measurement methodology to capture the incremental

contribution of each performance factor to the total parallel execution overhead. We

Experimental Performance

Characterization

. \

V

O

0' o

.0.
'

a
_Q ° ' 9

Computation Benchmark Characterization

model ‘ workload parameters and

selection ,' generation calibration

Benchmark Workload

workload execution and

characterization measurement

Figure 1.2. Steps in the experimental performance characterization method

have developed an experimental performance characterization method based on the

18

construction of synthetic executable workloads. These workloads have the advan-

tage that they can be made parametric and hence flexible in representing workload

characteristics. Although they have the disadvantage of possible lack of realism at

the applications level, they can be made to reflect the algorithm characteristics quite

accurately [121]. Our characterization technique consists of five distinct steps (Fig—

ure 1.2):

1. Parallel computation model selection.

To be universally applicable, the system characterization measurements must

be based on a uniform model of execution so that the results of an experiment

can be related to previous and future experiments. We consider a class of

structured multi-phase [91] iterative algorithms as our basis for characterizing

multiprocessor performance. Many engineering and scientific applications are

most frequently characterized as being highly iterative and adhere to this phase-

and-transition model.

2. Benchmark workload characterization.

The benchmark workload characterizer uses a hierarchical approach to construct

a variety of artificial workloads of interest using the parameters that most in-

fluence the behavior of concurrent program execution. At the lowest level, it

uses a single grain of computation, called a unit grain, as the unit of parallel

workload specification. The unit grains are assembled into the multi-phase par-

allel computation structure at a higher level thus incorporating the algorithmic

component into the workload.

3. Benchmark workload generation.

Assigning appropriate values to the attributes used to characterize a unit grain

creates synthetic workloads that are used as benchmarks for the characterization

process. Values assigned to the attributes may be constant quantities thus

creating invariant deterministic unit grain characteristics, or the attributes may

be treated as random variables of known probabilistic distributions thereby

producing stochastic unit grain behavior. The unit grain attributes are varied

19

in a controlled fashion to create parameter families that systematically traverse

the input parameter space.

4. Workload execution and performance measurement.

A family of workload emulation programs has been developed that use the

workload specification to mimic the execution behavior of an actual program

that would demonstrate the same workload characteristics. Three sets of such

emulation programs have been designed corresponding to the three major per-

formance dimensions described earlier; each measures and quantifies the perfor-

mance degradation resulting from overheads along its associated dimension.

0 Memory Access Degradation (MAD) kernels measure the overheads result-

ing from memory contention while accessing shared-data.

o Synchronization Access Degradation (SAD) kernels measure the overheads

resulting from synchronization operations and mutually exclusive access to

shared-data.

o Barrier Access Degradation (BAD) kernels measure the overheads result-

ing from the presence of synchronization barriers in parallel program exe-

cution.

The measurement framework allows for observation of interference between both

homogenous and heterogenous concurrent processes.

5. Performance characterization parameters.

Two performance metrics, unit grain efliciency and interference, are introduced

to measure the relative performance of a workload as the number of parallel

processes increases. The performance of a given workload as the number of

processors vary is completely described by a set of six parameters — three

constants (R00,c1/2,f1/2) and three functions (z/Jm(N),¢,(N),¢b(N)).

The usefulness of this methodology lies in its ability to selectively assess and char-

acterize a shared-memory multiprocessor using synthetic benchmarks whose char-

acteristics can be controlled by the person performing the evaluation. This is of

20

great practical importance to computer manufacturers as well as system and applica-

tion programmers alike. For researchers, it is an important exercise if lessons are to

be learned, particularly in the area of scalability. From a computer manufacturer’s

viewpoint, its use lies in evaluating a new system as soon as a prototype is running,

using the measured values to determine performance bottlenecks and making architec-

tural refinements. The measurements also provide performance data for competitive

bidding. The goal for system and application programmers, on the other hand, is

understanding how the characteristics of an algorithm relate to the constraints of

an architecture. Further, most compilers for multiprocessor systems available today

which feature automatic vectorization and/or parallelization incorporate explicitly or

implicitly an econometric model of the processor for which they are targeted [112].

This model is used to evaluate when particular optimization choices should be invoked.

The performance data obtained can be used to calibrate such models accurately.

1 .5 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, an overview of the

organization of shared-memory multiprocessors is presented. The factors that limit

parallelism on these machines along the three performance dimensions discussed in

the previous section are examined in detail. A summary of the architectural features

of the multiprocessor systems used for our experiments is also provided. The perfor-

mance characterization framework and its components are described in Chapter 3. In

Chapter 4, the use of the MAD kernels to evaluate the performance of shared-memory

accesses and quantify the losses in parallelism due to memory contention is addressed.

In Chapter 6, the study of performance losses due to inter-process synchronization

using the SAD kernels is presented. The measurement of the impact of synchroniza-

tion barriers on parallel execution performance using the BAD kernels is described in

Chapter 6. Finally, Chapter 7 summarizes the major contributions of this research

and provides directions for future research.

CHAPTER 2

BACKGROUND

Although multiprocessor systems do hold the potential for solving problems with vast

computational requirements, it is by no means obvious that a particular algorithm will

perform well on a given machine. Access to common memory is one of the key factors

in the performance of shared-memory multiprocessors. Large-scale multiprocessors

can encounter significant performance degradation due to a number of factors related

to memory sharing. Contention for shared resources such as interconnection networks,

memory modules and shared-variable locations, serialization of execution due to mu-

tually exclusive access to shared-writable data, and synchronization barriers are all

factors that limit the performance of parallel program execution on shared-memory

multiprocessors. It is important to understand how these performance penalties de-

pend on the various architecture and algorithm design parameters.

In this chapter we review the shared memory organization, the primary factors

limiting parallel execution performance and the techniques used to reduce the impact

of contention in shared-memory multiprocessors. A summary of the architectural

features of the multiprocessor systems used in our experiments is also given.

2.1 Multiprocessor Memory Organization

In multiprocessors with global shared memory, parallel memory modules must be

used to provide sufficient bandwidth for the processors. Furthermore, a suitable

interconnection network must establish the effective sharing of the memory modules

21

22

between the processors. Memory access latency can become a critical problem in large

systems when the distance between parts of the system is such that the time required

for data transfer is excessive. In small-scale multiprocessors such as the Alliant FX/8

[102] and the Sequent Symmetry [80], all processors are attached to a single bus which

connects them to a global memory. Memory latency is reduced by associating private

caches with each processor. Cache coherence is enforced by protocols relying on a

fast broadcast mechanism.

For large-scale multiprocessors, a single bus fails as an effective interconnect as its

fixed bandwidth limits its scalability. Technology limitations make it too expensive

to provide full hardware connectivity between all processors and memory modules.

Therefore, large-scale multiprocessors are built with intermediate connectivity using

interconnects such as multi-stage interconnection networks as in the BBN TC2000 [15]

and the IBM RP3 [104] systems, point-to—point connections as in the Intel Touchstone

DELTA [64], and hierarchical interconnects as in the Kendall Square Systems KSRl

[66] and the DASH multiprocessor [77]. Since broadcasting for cache coherence on

these interconnects is cumbersome, larger systems either provide cache consistency

using a directory-based protocol (as in the DASH project) or provide caching in

a restricted fashion under software control (as in the BBN TC2000 and IBM RP3

systems).

One solution to the memory latency problem on large multiprocessors is to build

a system in which not all memories are equally distant from all processors, thus

allowing data of special interest to a particular processor to be profitably located near

it. Distributing a variety of memories around the system (hierarchical organization)

can minimize the average data access time and thereby improve system performance.

Other approaches to reducing memory latency where the interconnection network

itself is a component of the memory hierarchy have been explored in [90]. The number

of shared memory modules has a great impact on memory contention. If the number

of memory modules is less than the number of processors, memory contention will

occur if all processors issue a shared memory request at the same time.

Multiprocessor systems differ in their design as to how the shared memory mod-

23

Global Memory

..........................

..........

...........

L Global Interconnection Network

[Local interconnection] I Local interconnection

processor node processor node

Figure 2.1. Organization of memory hierarchy in shared-memory multiprocessors

ules are distributed over the memory hierarchy and how they provide hardware and

software so that each processor sees a single address space in this hierarchy. Typically,

a memory module is either local, meaning that it attaches to one processor, or global,

meaning that it is only accessible by sending requests through the interconnection

network. A request from a processor to its local memory does not cause any network

traffic. This kind of memory organization is depicted in Figure 2.1. Such a memory

organization is motivated by price/performance reasons similar to the cache/main

memory hierarchy prevalent in uniprocessors. Note that in small-scale multiproces-

sors, the memory local to each processor includes only its cache. Each processor node

in Figure 2.1 could also be a cluster of nodes with each node having access to some

local memory and cluster-global memory in addition to the system-global memory

modules represented by G. The Illinois Cedar [44] system, for instance, has such a

cluster organization.

Local memory modules (such as M in Fig. 2.1) can be divided further into shared

24

and private modules. Shared memory modules are accessible by all processors,

whereas a private memory module is accessible only by the processor to which it

is attached. Global memory modules (such as G in Fig. 2.1) are implicitly shared and

private memory modules are implicitly local. Consequently, there are three types of

memory modules: local/private, local/shared, and global/shared. For example, the

BBN TC2000 has only local/shared memory modules, and the IBM RP3 can be set

up to have both local/private and local/shared memory modules.

Private memory provides a means for reducing network traffic. Allocating private

data structures to private memory means that requests for such data structures do

not cause network traffic and occur with minimum latency. However, memory latency

incurred in accessing shared data structures depends on where the data is located with

respect to the requesting processor. The location-dependent variation in the latencies

of shared-memory modules results in a non-uniform memory access time thus making

the issue of data distribution over the memory hierarchy a critical consideration for

performance. As an example, a remote memory access takes four times longer than a

local memory access on the BBN TC2000. Architectures such as the KSRI support

dynamic migration of data to the point of demand.

2.2 Limitations to Parallelism

Communication, synchronization and contention for shared resources are recognized

as the three primary sources of overhead in parallel program execution on multiple-

processor systems. We consider only multi-phase asynchronous parallel algorithms

constructed using the shared-memory programming model in this research. Since

all communication between concurrent processes in such algorithms occurs through

globally shared variables, the memory conflicts encountered in accessing the shared

variables is critical to overall performance. The amount of memory contention, and

the consequent performance degradation, depends not only upon the characteristics

of the memory hierarchy and the distribution of shared-data over the hierarchy, but

also on the characteristics of the data reference patterns and the interaction between

25

the two.

To ensure the consistency of concurrent updates to shared data, conflicting ac-

cesses must be protected within critical sections. In other words, a fundamental form

of synchronization necessary for asynchronous parallel algorithms is mutual exclu-

sion. Another form of synchronization commonly used by multi-phase algorithms

to demarcate the individual phases is barrier synchronization. Barriers enforce the

arrival of all participating processes at a point before any one of them can proceed

further. Both critical sections and barriers induce sequential components into the

execution profile of an asynchronous parallel algorithm thus resulting in loss of par-

allelism. Moreover, inefficient implementations of the mutual exclusion and barrier

operations (in hardware or software) could also lead to performance degradation. In

the following paragraphs, we discuss how each of these potential sources of loss in

parallelism is affected by design choices and what techniques have been developed to

minimize their impact.

2.2.1 Memory Access Contention

Distance is one reason for memory reference delays. A second reason is contention,

which consists of both network contention and memory contention. Multiprocessor

applications usually require shared data areas appropriately distributed over the mem-

ory modules. Memory conflicts may occur when two or more processors attempt to

gain access to a shared resource along the processor—to—memory path simultaneously.

The effect of memory conflicts, referred to as memory interference, may decrease the

execution rate of the processors. We describe below the factors that cause memory

access conflicts and contribute to performance penalties.

Contention for processor—to—memory path

Processors executing concurrently contend not only for memory, but also for the path

to memory. There are three principal ways of interconnecting processors and mem-

ory modules: bus, crossbar and multistage network. The bus, by its very nature,

provides a common route shared between all processors to gain access to a global

26

memory space, thus enforcing sequential-access to the shared memory. The high-

performance bus systems of today (e.g., the Sequent System Bus [114], the Encore

Nanobus [38]) employ a split-transaction protocol whereby multiple memory access

requests are pipelined onto the bus before a single memory transaction proceeds to

completion. As a result, the bus capacity can be fully utilized if the memory refer-

ence pattern can constantly keep the bus busy. The data transfer capacity between

processors and memories is determined by the bandwidth of the bus, and is therefore

constant. This limits the number of processors that can be usefully incorporated into

such a system, and hence fixes an upper limit on performance. Crossbars scale up

linearly in terms of performance, but their major shortcoming is the cost and size

which is proportional to the square of the number of interconnected components.

Multistage networks provide multiple parallel paths to memory, but processors

may contend for paths through the network. Such paths consist of switches at each

stage of the network and links between switches in different stages. The switches of a

multistage network may be blocking or nonblocking. Blocking switches have buffers

to hold messages waiting while some other message is using the switch. Nonblocking

switches reject all but one of the conflicting requests so that no queues are formed.

This distinction has important implications for system performance as shown by sim-

ulation studies conducted as part of the IBM RP3 project. These studies [105] show

that small nonuniformities in memory reference patterns can lead to severe degrada-

tion of overall system performance due to some memory modules becoming hot. Such

nonuniform patterns resulted in a phenomenon called tree saturation, where traffic to

the hot memories queued up in the switches and interfered with all other traffic. This

saturation effect propagates back through the network, as shown in Figure 2.2, fan-

ning outward from the hot memory module in a tree-like fashion. This problem can be

partially resolved by combining networks [105, 75]. On the other hand, nonblocking

switches, by rejecting all but one of the conflicting memory requests, avoid the phe-

nomenon of tree saturation [119] so that degraded performance is experienced only by

the processors that access the hot memories. Thus, the design and implementation of

the interconnection network have a profound effect on the processor—to—memory-path

27

Processors Multi-stage switch network Memories

P v E: E} '9' [:3 E 7 = M

p M - M = = 2:”. = M

P 'g' = — = v = M

P Z“: ”L1! = ”LA! = M

P v = l = =- = l 7 "°‘:
ul-I‘HMHHN t_. ”9°

P {3 7; = v = M

P [AS ’A t: a a M

Cl Queue - Saturated queue

El Switch buffer I Saturated buffer

Figure 2.2. Tree saturation as a result of hot spot accesses over a multistage inter-

connection network

delay experienced by memory accesses in large-scale multiprocessor systems.

Contention for memory module

Even if the interconnection network meets the bandwidth requirements of the

processor-memory traffic, memory contention can still cause a problem if the

processor-memory traffic concentrates on a small number of memory modules. There-

fore, it is essential to consider how data structures are allocated to the shared memory

modules. A memory module can service only one request at a time (assuming multi-

port memories are not used). This causes multiple simultaneous requests to the same

memory module to be serialized resulting in loss of parallelism.

Memory address interleaving is a technique [73, 99] used to reduce the effective

memory access time and, hence, increase memory bandwidth by attempting to dis-

tribute the concurrent memory request streams from multiple processors evenly across

multiple memory banks. Two broad classes of interleaving schemes used are modulo-

28

interleaving and random-interleaving. In the former scheme, a word with physical

address ,6 is mapped to the bank address 3 (modulo M), where M is the number

of memory modules (assuming a single bank per memory module) and is called the

degree of interleaving. The address format and address distribution for such fine

interleaving is shown in Figure 2.3(a).

Usually processors access memory in the form of blocks (or cache lines if processor

cache is present). With fine interleaving, the transfer of each word requires the

establishment of its own path from the processor to each memory module. In order

to maximize the amount of data transferred from a memory module during an access,

many of the multiprocessors today increase the granularity of interleaving from a

single word to several consecutive words, say g (equal to the cache line size). Thus,

every successive block of g words are now interleaved across the memory modules

instead of a single word, as shown in Figure 2.3(b). If multiple banks are used

per memory module, then addresses can be finely interleaved across the banks of a

memory module and consecutively among modules (shown in Figure 2.3(c)). Each

module can now transfer a block at a time thus increasing memory bandwidth. This

kind of coarse interleaving works quite well when most reference sequences address

successively numbered memory modules.

If the ratio between the time required to issue a request and the time required to

service a request is r, then a factor of f = min(M, r) increase in memory performance

is obtained by allowing all the memory modules to operate in parallel. However, when

the sequence of addresses does not access successive memory modules, as is the case

in many scientific applications, then the gain in performance can be significantly

less. The random interleaving techniques [107, 124, 74, 98] attempt to overcome

this drawback by employing various methods to randomize the consecutive memory

addresses issued by a processor. Most of these approaches involve logical operations

on carefully selected address bits to effect the randomization.

Address skewing is yet another technique [55] that has been used in improving the

memory bandwidth in applications involving arrays. In these methods, the starting

positions in memory of successive rows of an array are displaced relative to one another

29

— — r— —l T T "—3" T
0 1 2 3

1 5 9 13

4 5 6 7 2 6 10 14

T T T T LT T T T
I - Memory Controller - I L - Memory Controller - I

Memory address distribution Memory address distribution

I Offset I Module number I I Module number I Offset I

Address Format Address Format

(8) (b)

module module module module

0123 8910111617181 242227

4567 1211415 20212223 282 31

I - - Memory Controller - I I

Memory address distribution

[Module number I Offset 1 Bank# I

Address Format

(C)

Figure 2.3. Memory address interleaving techniques: (a) Fine interleaving with se-

quential assignment across modules (one bank per module); (b) Coarse interleaving

with sequential assignment within module (one bank per module); (c) Mixed scheme

with fine interleaving among banks of a module and coarse interleaving among mod-

ules (multiple banks per module)

30

by a fixed distance (skewed) such that several subvectors of the array can be accessed

without conflict.

The ratio of the memory cycle time to the interconnection network cycle time is

a critical factor in the service demand placed on the memory modules. Address and

data buffers are, sometimes, used locally in each memory module to hold pending

memory requests thus eliminating them from the contention for the interconnection

network. Buffering is also used so that transient nonuniformities which occur in some

access patterns do not degrade performance [55]. The depth of buffering provided at

each module determines the extent to which memory access performance suffers.

Contention for memory location

In multiprocessor with a single address space, there are situations in which many

processors must access a single memory location. One typical example is the case of

memory locations holding synchronization variables like mutual exclusion locks which

are used to ensure exclusive access to a shared data or to a critical section of code.

If many processors need to access the resource controlled by the lock at about the

same time, there is a high degree of contention for the memory location of the lock

due to the highly repetitive access to the lock caused by busy-wait spinning [6, 52].

Depending on the implementations used for the busy-waiting mechanism, differing

degrees of memory and interconnection network contention may result introducing

performance bottlenecks that become markedly more pronounced as architectures

scale.

Both hardware and software techniques have been explored to reduce the im-

pact of such contentions for a shared memory location. Proposals for multistage

interconnection networks that combine concurrent accesses to the same memory lo-

cation [109, 104, 51], software combining techniques [126], multistage networks that

have special synchronization variables embedded in each stage of the network [65],

and special-purpose cache hardware to maintain a queue of processors waiting for the

same lock [76, 50] are among the many hardware solutions suggested for this problem.

Software solutions for scalable synchronization in shared-memory multiprocessors us-

31

ing carefully designed data structures and their appropriate placement in the memory

hierarchy have also been implemented and tested [6, 52, 89].

Maintenance of data coherence

Memory incoherence (inconsistent copies of data) is another serious problem in mul—

tiprocessors with global memory and memory (or cache) that is local to each cluster

or processor. The coherence problem is caused by the existence of replicated copies of

a shared memory block at different levels of the shared memory hierarchy. This can

introduce inconsistency if special arrangements are not provided to detect when one

copy is modified. Note that inconsistency can occur only for shared, writable mem-

ory blocks. Read-only or nonshared data can always be safely cached or replicated

without precautions. Many multiprocessor systems (such as the Encore Multimax,

the Sequent Symmetry) provide additional hardware to automatically enforce data

coherency among multiple shared copies of a datum.

Stenstrém [118] has surveyed a number of proposed cache coherence schemes for

maintaining data consistency in shared-memory multiprocessors. The two most popu—

lar approaches are the snoopy cache protocols that rely on a broadcast interconnection

medium such as a bus, and directory-based protocols [3] used on other general intercon-

nection networks. The data coherency mechanism may add an overhead component

to the access time of shared-writable data thus degrading performance.

2.2.2 Spin Locks and Mutual Exclusion

Synchronization is a fundamental concept in parallel programming because it pro-

vides the basis for cooperation of tasks in a program and controls access to shared

resources. In the shared-variable programming model, processors communicate by

sharing data structures. Since each processor has equal access to the shared memory,

some method for ensuring mutual exclusion—the logically atomic execution of oper-

ations (critical section) on a shared data structure—is required. Consistency of the

data structure is guaranteed by serializing the operations done on it. Synchronization

constructs can be divided into two classes: blocking constructs that deschedule wait-

32

ing processes, relinquishing the processor to do other work, and busy-wait constructs

in which processors repeatedly test shared variables to determine when they may

proceed. Busy-wait synchronization is preferred over scheduler-based blocking when

scheduling overhead exceeds expected wait time, when processor resources are not

needed for other tasks, or when blocking is inappropriate or impossible (for example

in the kernel of an operating system).

One of the most widely used busy-wait synchronization constructs is a spin lock.

Spin locks provide a means for achieving mutual exclusion and are a basic build-

ing block for synchronization constructs with richer semantics, such as semaphores

and monitors. Spin locks are ubiquitously used in the implementation of parallel

operating systems and application programs. Since pure software mutual exclusion

is expensive [72], virtually all shared-memory multiprocessors provide some form of

hardware support for making mutually exclusive accesses to shared data structures.

This support usually consists of instructions that atomically read and then write a sin-

gle memory location. Atomic instructions serve two purposes. First, if the operations

on the shared data are simple enough, they can be encapsulated into single atomic

instructions [59]. Mutual exclusion is directly guaranteed in hardware. If a number

of processors simultaneously attempt to update the same location, each waits its turn

without returning control back to software. Second, if the critical section requires

more than one instruction, then a spin lock is used to guard the critical section and

atomic instructions are used to arbitrate between simultaneous attempts to acquire

the lock. If the lock is found busy, then waiting is done in software.

Spin locks are generally employed to protect very small critical sections, and may

be executed an enormous number of times in the course of a computation. Unfortu-

nately, simple approaches to busy-waiting tend to produce large amounts of memory

and interconnection network contention thus exhibiting very poor performance. With

an ill-designed spin lock, spinning processors can slow other processors doing useful

work including the one holding the lock by consuming communication bandwidth.

As a consequence, the overhead of busy-waiting synchronization, referred to as lock

interference, is widely regarded as a serious performance problem.

33

When many processors busy-wait on a single synchronization variable, they cre-

ate a hot spot that is the target of a disproportionate share of the network traffic.

Pfister and Norton [105] showed that the presence of hot spots can severely degrade

performance for all traffic in multistage interconnection networks, not just traffic due

to synchronizing processors. Agarwal and Cherian [2] have investigated the impact

of synchronization on overall program performance by simulations of benchmarks

on a cache coherent multiprocessor. Their study indicates that memory references

due to synchronization cause cache line invalidations much more often than non-

synchronization references. In order to alleviate these performance concerns, modern

multiprocessors generally incorporate sophisticated atomic operations into their archi-

tectures, permitting faster and more efficient implementation of synchronization prim-

itives. Particularly common are "various Fetch-And-Q operations [67] which atomi-

cally read, modify, and write a memory location. Fetch-And-d) operations include

Test-And-Set, Fetch-And-Store (swap), Fetch-And-Add, and Compare-And-Swap.

More recently, there have been proposals for multistage interconnection networks

that combine concurrent accesses to the same memory location [51, 104, 109], multi-

stage networks that have special synchronization variables embedded in each stage of

the network [65], and special-purpose cache hardware to maintain a queue of processes

waiting for the same lock [50, 76]. The principal purpose of these hardware primitives

is to reduce the impact of busy waiting. Several software techniques developed of late

have also achieved a similar result. By distributing the synchronization data struc-

tures over the shared-memory hierarchy appropriately, it can be ensured that each

processor spins only on locally accessible locations, locations that are not the target

of spinning references by any other processor. All software approaches to efficient

spin lock implementation have adopted this philosophy in one form or the other. The

implication of these software techniques is that efficient synchronization algorithms

can be constructed in software for shared—memory multiprocessors of arbitrary size.

Special-purpose synchronization hardware can offer only a small constant factor of

additional performance for mutual exclusion [89].

We describe briefly several spin lock implementations that have been proposed.

34

Each lock implementation uses a hardware supported atomic operation to invoke

mutual exclusive access to the shared lock variable. However, they differ in the

frequency with which the shared lock variable is polled, and the amount of network

traffic generated as a result of busy-waiting.

Simple Locks

The simplest mutual exclusion lock employs a polling 100p to access a shared variable

that indicates whether the lock is held. Based on what operation is used to poll the

shared lock variable there are two possible implementations:

0 Spin on Test-And-Set: Each processor to repeatedly executes a

Test-And-Set instruction until it succeeds at acquiring the lock. The principal

shortcoming of the test-and-set lock is contention for the shared lock variable.

Each waiting processor accesses the single shared flag as frequently as possible,

using relatively expensive read-modify-write (Test-And-Set) instructions. The

result is degraded performance not only of the memory bank in which the lock

resides but also of the processor-memory interconnection network.

0 Spin on Read (Test-And-Test-And-Set): Fetch-And-d> instructions can be

particularly expensive on cache-coherent multiprocessors since each execution

of such an instruction may cause many remote invalidations. To reduce this

overhead, waiting processors poll with read requests during the time that the

lock is held. As a result, spinning is done in the cache without consuming bus or

network cycles. Once the lock becomes available, some fraction of the waiting

processors detect that the lock is free and perform a test-and-set operation of

which exactly one attempt succeeds.

Collision Avoidance Locks

The primary factor responsible for the poor performance of the simple lock approaches

is the high degree of collisions among concurrent lock acquisition attempts. Thus, if

each waiting process delays an amount of time before rechecking and attempting to

35

obtain the lock, then the number of unsuccessful Test-And-Set instructions and the

resulting reads by other waiting processes can be reduced. There are two possible

variations:

0 Delay-after-release: This variation waits for the lock to be released before

delaying. If some other processor acquires the lock during this delay, then the

processor can resume spinning; if not, then the processor can try the test-and-

set, with a greater likelihood that the lock will be acquired. Polling for the

lock release is only practical for systems with per-processor coherent caches.

On other systems, processors would consume communication bandwidth if they

were to spin reading memory while waiting for the lock to be released.

0 Delay-between-reference: An alternative approach is to insert a delay be-

tween successive polls of the lock. This can be used on architectures without

coherent caches or with invalidation-based coherence to limit the communica-

tion bandwidth consumed by the spinning processors.

The mean delay can be set statically or dynamically using exponential backoff

techniques (similar to the Ethernet exponential backoff for CSMA networks) to adapt

to varying conditions.

Ticket Locks

Ticket locks reduce the number of Fetch-And-Q operations to exactly one per lock

acquisition. They ensure FIFO service by granting the lock to processors in the

same order in which they first requested it. The lock consists of two counters, one

containing the number of requests to acquire the lock, and the other the number

of times the lock has been released. A processor acquires the lock by performing a

Fetch-And-Increnent operation on the request counter and waiting until the result

(its ticket) is equal to the value of the release counter. Contention due to polls of

the release counter can be reduced by introducing a delay on each processor between

consecutive probes of the counter. In this case, however, exponential backoff is clearly

a bad idea. Since processors acquire the lock in FIFO order, overshoot in backoff by

36

the first processor in line will delay all others as well, causing them to backoff even

farther. Experiments conducted by Mellor-Crummey and Scott [89] suggest that a

reasonable delay can be set proportional to the difference between a newly-obtained

ticket and the current value of the release counter (proportional backoff).

Tournament Locks

Another approach to reducing contention for a single shared lock variable is to have

a tree of locks of radix b and height h. The tree forms a tournament wherein winners

of leaf lock contests become contestants at the next level. The winner of the root

lock has permission to enter the critical section protected by the tree of locks. Each

process uses its process identity to choose a random path from the root to a leaf

lock. The process may contend only for locks along that path. While every process

may contend for the root lock, the number of processes eligible to contend for a lock

decreases by the radix of the tree at each level (b") as we proceed towards the leaves.

Thus, contention at the leaf locks can be made arbitrarily small as the number of

leaves approaches the number of processes.

Queuing Locks

In a queue lock, each arriving processor enqueues itself and then spins on a separate

flag. When the processor finishes with the critical section, it dequeues itself and

nudges the next processor in the queue. This permits the hand-off of the lock to

be free of contention. The trick is for each processor to use an atomic operation to

obtain the address of a location on which to spin. This class of locks is characterized

by FIFO ordering of lock acquisitions and, if the spin location of each processor is

selected properly, then, a constant bound on the number of network transactions per

lock acquisition.

The best implementation varies somewhat among architectures. With distributed-

write cache coherence, processors can all spin on a single counter. To release the lock,

a processor simply writes its sequence number into the counter. Each processor’s

cache is updated, directly notifying the next processor in line with a single network

37

transaction. With invalidation-based coherence, each processor should wait on a flag

in a different cache block. Only two bus or network transactions (an invalidation and

a read miss) are needed to signal the next processor in line. Similarly, on a multistage

network without coherent caches, each flag should be placed in a separate memory

module.

Based on the data structure chosen for the queue of spinning processors, the

queuing locks can be classified as array-based or list-based.

e Array-based queuing locks

o List-based queuing locks

Anderson [6] has developed an array-based method of queuing busy-waiting proces-

sors in shared memory that requires only a single atomic operation per execution

of the critical section. The queue is implemented as a circular array of flags on

which busy-waiting processors can spin. Each arriving processor does an atomic

Fetch-And-Increment to obtain a unique sequence number, which determines a lo-

cation in the array (flags) on which it can spin thus enqueuing itself. When a

processor finishes with the lock, it taps the processor with the next highest sequence

number; that processor now owns the lock. Since processors are sequenced, no atomic

read-modify-write instruction is needed to pass control of the lock. A similar array-

based queuing lock has also been proposed by Granuke and Thakkar [52].

A queuing lock wherein the queue of spinning processors is structured as a linked-

list was devised by Mellor-Crummey and Scott [89]. Their technique works equally

well, requiring a constant number of network transactions per lock acquisition, on

machines with and without coherent caches. It requires an atomic Fetch-And-Store

(swap) instruction and benefits from the availability of the Compare-And-Swap in-

struction. Without Conpare-And-Swap, the guarantee of FIFO ordering of lock ac-

quisitions is lost introducing the theoretical possibility of starvation, although the

lock acquisitions are likely to remain very nearly FIFO in practice.

38

2.2.3 Synchronization Barriers

In addition to the spin-lock, barrier synchronization is the other most important

mechanism for coordinating parallel processes. A barrier defines a logical point in the

control flow of an algorithm at which all processes must arrive before any is allowed

to proceed further. Barriers are commonly employed when an algorithm consists

of several distinct stages, each of which has internal parallelism but which must be

performed in strict sequence without overlap. A barrier is clearly one of the most

deleterious forms of synchronization, since it requires in effect that every process

communicate with every other process. Additionally, since all processes must wait at

the barrier until the last arrives, the effects of fluctuations in process execution time

or imperfect load balancing are maximized.

A processor typically performs the following three steps at a barrier:

1. Marks itself as present at the barrier (entry phase).

2. Waits for all other participating processors to arrive at the barrier.

3. After all participating processors have arrived, it proceeds past the barrier (exit

phase).

Many algorithms exist for performing barrier synchronization in software [81, 21,

58]. Careful implementation of some of these algorithms are found to scale well

to large-scale multiprocessors without the contention for synchronization operations,

referred to as barrier interference, becoming a significant problem [89]. Barrier algo-

rithms can be distinguished [8] by three features: the depth of the barrier (linear or

logarithmic), the barrier scheduling mechanism (static or dynamic), and the type of

exit phase (symmetric entry and exit phases, or broadcast exit).

Linear barriers are most commonly implemented using centralized counters to

keep track of the number of processors that have arrived at the barrier. Each pro-

cessor incurs a fixed amount of overhead accessing the shared counter, so the total

overhead of such barriers is linear in the number of processors. Logarithmic barriers

include the software combining tree barrier [126], the butterfly barrier [21] and the

39

dissemination barrier [58]. In the butterfly and dissemination barriers, synchronizing

P processors is accomplished in [log2 P] stages of [P/2] two-processor synchroniza-

tions each. In a tree barrier, groups of processors synchronize with each other, and

one processor out of each such group goes on to synchronize with the next higher level

group, and so on. Although in a logarithmic barrier each processor performs 0(log P)

synchronization operations (versus 0(1) for the linear barrier), these synchronizations

can be overlapped in machines with parallel processor—memory networks, resulting in

total barrier overhead that is only logarithmic in the number of processors. In bus—

based machines, linear barriers are more efficient than logarithmic barriers because

fewer total bus accesses need to be performed (assuming the bus is the limiting factor

on performance).

In statically scheduled barriers, processors update synchronization variables in an

order predefined at compile or load time, whereas in dynamically scheduled barriers,

processors proceed in the order that they arrive at the barrier. Therefore, dynami—

cally scheduled barriers require either explicit software locks (such as Test-And-Set),

or more complex atomic read-modify-write operations such as Fetch-And-Add. Stat-

ically scheduled barriers do not incur the overhead of software locks, but also cannot

take advantage of the “skew” in processor arrival times where some processors can

start synchronizing early.

In the entry phase of a barrier, processors report their arrival by updating some

shared state information. In the exit phase, processors exit the barrier after determin-

ing that all other processors have arrived. Separate entry and exit phases are required

if the barrier is to be reused, in order to properly reinitialize the synchronization vari-

ables. In barriers with symmetric entry and exit phases, similar operations are used in

both phases. In barriers with broadcast exit, the last processor to complete the entry

phase broadcasts this information to all other processors. Barriers with broadcast

exit are more efficient than symmetric barriers because they require fewer memory

operations on shared variables. However, they also require more local storage at each

processor.

Many research efforts have also focused on hardware barrier synchronization tech-

40

niques on the premises that a 0(log P) growth in synchronization delay of software

approaches prevents the exploitation of fine-grain parallelism. The Burroughs Corp.

proposal for the Flow Model Processor (FMP) [83] included the first detailed de-

scription of a hardware implementation of barrier using the equivalent of a massive

“AND” gate. Another scheme developed in [106] consists of a hardware module with

bit-addressable registers R(i), (i = 1,2,...,P), one associated with each of P pro-

cessors, an enable switch, logic to test for all zeroes (all processors have reached the

barrier), and a barrier register BR. The “fuzzy” barrier scheme of [53], also sup-

ported in hardware, is basically a delayed barrier firing mechanism where the actual

wait may occur several instructions after a processor indicates that it has encountered

a barrier. In all these schemes, all physical processors in the machine were considered

to be involved in each barrier synchronization. More recently, the “barrier MIMD

architectures” proposed in [100] support an arbitrary subset of the processors to be

barrier synchronized.

2.3 Target System Architectures

We have used two shared-memory multiprocessors with very different shared memory

organizations, namely a 26-node Sequent Symmetry S81 and a 45-node BBN TC2000,

to illustrate our experimental characterization methodology. Two older generation

systems, a 24-node Sequent Balance 21000 and a 96-node BBN GP1000, were also

used in some of our early experiments. These systems were selected more because of

the convenience of access than anything else. Of these, the BBN GP1000 system is

installed at Michigan State University whereas the remaining systems are installed

at the Advanced Computing Research Facility of the Argonne National Laboratory.

In this section, we briefly describe and compare the salient features of these sys—

tem architectures that are relevant to the interpretation of the experimental results

obtained.

The Sequent Symmetry S81 [114] is a bus-based shared-memory multiprocessor,

belonging to the Uniform Memory Access (UMA) class, and, containing from 2 to 30

41

 S...-------- -b-----------

Dual-processor board Dual-processor board

Figure 2.4. Sequent Symmetry system architecture

processors packaged on dual-processor boards and upto 240 Mbytes of main memory.

Each processor subsystem consists of an Intel 80386/80387 CPU/FPU combination

and a 64~Kbyte 2-way set-associative cache. Cache coherence is enforced by using a

write-invalidate copy-back caching policy on a cache line that is 16 bytes long. It can

contain upto six memory modules, each consisting of a memory controller board and

8 or 16 Mbytes of memory. It can also, optionally, contain a memory expansion board

with 24 Mbytes of memory on it. When the system contains a pair of equal-sized

memory subsystems, alternate 32-byte address blocks are interleaved between the

two modules. The Sequent System Bus (SSB) forms the heart of the system’s global

interconnection network. All the processor and memory subsystems along with other

device interfaces are directly connected to the bus. The system bus operates at 10

MHz (1 cycle = 100 ns). It can carry 64 bits of data with address and data being

time multiplexed on the bus. Multiple bus transactions are pipelined so that the bus

throughput can be maximized. The bus is rated at a peak data transfer rate of 53.3

Mbytes/second. The Symmetry provides an atomic Fetch-And-Store operation but

no Conpare-And-Swap operation.

The BBN TC2000 [14] is a large shared-memory multiprocessor that belongs to

42

Processor function board Processor function board
------------- '-------------

. .

n.

'
-
-
-
-
-
-
-
‘

'
-
-
-
-
-
-
-

1

switch

[I interface II IIswitcinterface [I

------r-----4 ..L... -----J

I Butterfly Switch I

Figure 2.5. BBN TC2000 system architecture

the Non-Uniform Memory Access (NUMA) class due to the distributed nature of its

shared memory modules. It is built using Motorola 88100 RISC processors. These

processors reside on a function board that also has a MC88200 Cache and Memory

Management Unit (CMMU) 16 Kbytes each of instruction and data cache, 4 or 16

Mbytes of memory, and a switch interface. The function boards are interconnected

by a multistage switching network so that they can access each other’s address space.

The network consists of 8x8 crossbar bidirectional switches arranged in a logs N-

column butterfly interconnection pattern, where N is the number of processor nodes.

Every remote memory reference, is sent out over the switching network, but local

memory access is performed over a direct path bypassing the network. This causes a

remote memory access to incur a higher latency in comparison to a local access.

A route specifies a complete and exact path through the switch. A reply to a

given request is also returned along the same path. If a conflict occurs at any stage

in the network, due to the access paths of two or more concurrent requests crossing

each other, then the switch selects exactly one request at random to proceed and

43

rejects all others, which must be retried at a later time. Thus, the switches are non-

blocking in nature. Alternate paths between function boards may exist depending

on configuration size. Use of these alternate paths helps reduce congestion within

the switch. However, on the TC2000, the switch interface selects a given route for

an initial message before its first transmission into the switch, and does not change

that route during any retries of the message. Different paths may be used by separate

initial messages, but not by separate retries. There were two alternate paths available

on the system to which we had access. All shared-data, by default, are not cached

on the TC2000. A user can choose to selectively cache shared—data and manage its

coherency explicitly. The TC2000 provides a Fetch-And-Store operation via the

near instruction.

The earlier generation Sequent Balance 21000 system [113] is also a bus-based

global memory multiprocessor, much as the Symmetry, based on the NS32000 se-

ries microprocessor. The bus supports multiple pipelined memory requests. Cache

consistency is maintained by write-through with invalidation scheme. An additional

feature present on the Balance, that was later removed from the Symmetry, is a dedi-

cated lock memory (called Atomic Lock Memory or ALM) connected to the bus that

supports process synchronization primitives. However, the overhead of accessing the

ALM is sufficiently high that applications on the Balance may use spin-locking based

on xchg, the exchange-with-memory instruction supplied by the processor [7].

The BBN GP1000, a generation older than the TC2000, is also a NUMA mul—

tiprocessor [13] based on the Butterfly switch multistage interconnection network.

It incorporates upto 256 processor nodes each containing a Motorola 68020 CPU,

4 Mbytes of memory and a MC68851 paged memory management unit for virtual

memory processing. The network is composed of 4 stages of 4x4-switches. Memory

accesses over these switches is handled much the same way as on the TC2000.

The architectural features of the systems on which our experiments were conducted

are summarized in Table 2.1.

44

' Table 2.1. Summary of target system architectures

[TFgature II Sequent SymmegI BBN TC2000

No. of Processors

Processor Type

Clock Cycle Time

Memory Size

Data Cache Size

' Cache Line Size

Cache Coherence

IN Network

Peak IN Bandwidth

Operating System

Timer Resolution

26

Intel 80386

62.5 ns

32 MB

64 KB/proc

16 bytes

copy back

Bus

53.3 MB/sec

DYNIX B3.1.2

1 us

45

Motorola 88100

50 ns

720 MB (16 MB/proc)

'N/A

N/A

N/A

2-col 8x8-switch MIN

38 MB/sec/channel

nX OS release 2.0.6

1 as

Feature JISequent Balance 1 1 BBN GPlOOO l

No. of Processors

Processor Type

Memory Size

Data Cache Size

Cache Line Size

Cache Coherence

IN Network

Peak IN Bandwidth

Operating System

Timer Resolution

24

NS32000

16 MB

8 KB/proc

8 bytes

write-through

Bus

26.7 MB/sec

DYNIX

1 us

96

Motorola 68020

384 MB (4 MB/proc)

N/A

N/A

N/A

4-col 4x4-switch MIN

32 Mbits/sec/channel

Mach 1000

62.5 as

45

2.4 Summary

Efficient access of shared data is the single most important factor in the performance of

parallel program execution on shared-memory multiprocessors. The effective memory

access latency is determined by the hierarchical organization of the shared memory

modules and the distribution of data over this hierarchy. Contention for the network,

memory modules and memory locations can all increase the memory reference delay.

Data coherence mechanisms for replicated data can also contribute to increased la-

tency due to additional network traffic generated. The performance of asynchronous

parallel algorithms on multiprocessors is also influenced by the use of spin-locks for

enforcing mutual exclusion and barriers. Not only do these forms of synchronization

introduce a sequential bottleneck, but an inefficient implementation of these primi-

tives can have a significantly detrimental effect on other shared memory accesses.

In this chapter, we have enunciated the various factors that contribute to the

performance degradation of asynchronous parallel algorithms on multiprocessors using

the shared-variable programming model. The observation and quantification of these

overheads is the object of our performance characterization study.

CHAPTER 3

PERFORMANCE

CHARACTERIZATION

METHODOLOGY

The execution performance of a parallel program using shared-variables depends on

static characteristics of the underlying algorithm such as computation granularity,

computation-to-communication ratio, data reference patterns and fixed synchroniza-

tion costs. In addition, performance is also influenced by run-time overheads incurred

during parallel execution from three primary activities, namely, resource contention

during concurrent accesses to shared data, mutually-exclusive access to shared data,

and synchronization barriers. This overhead is a function of the dynamic run-time

behavior of the system. It is added to the execution time in the form of processor

latencies and busy waits. As overhead increases, the amount of parallelism that can

be exploited decreases. An accurate and complete performance characterization of

multiprocessor program execution must take into account not only the static system

behavior, but its dynamic behavior as well. Furthermore, it is important to be able

to isolate and measure the effect of each component on overall system performance.

By increasing our ability to measure the pieces, combine their effects, and relate their

contributions to architectural and algorithmic characteristics, we enhance our ability

to model and predict performance in complex systems.

46

47

In this dissertation, we have developed a hierarchical performance characteriza-

tion technique that relies on experimental calibration. The method is based on the

construction of synthetic executable workloads. These workloads have the advantage

that they can be made parametric and hence flexible in representing workload char-

acteristics. Our technique consists of five distinct steps as shown in Figure 1.2 of

Chapter 1:

0 parallel computation model selection,

0 benchmark workload characterization,

e benchmark workload generation,

0 workload execution and performance measurement, and

0 performance characterization.

In this chapter, we describe each of these activities leading to the system charac-

terization objective. The characterization parameters obtained represent the static

performance of a machine as well as different aspects of dynamic interaction between

the machine architecture and the application structure.

3.1 The Parallel Computation Model

Theobjective of this thesis is to develop a set of parameters that characterize the

static and dynamic performance of a shared-memory multiprocessor, and obtain quan-

titative measures for these system characterizers in the context of a certain class of

algorithms based on the shared-variable computational paradigm. The quantification

of the characterization parameters is performed through experimental measurements

on the target machine for a selected set of workloads.

To be universally applicable, the system characterization measurements must be

based on a uniform model of execution for parallel computations so that the results

of an experiment can be related to previous and future experiments. Besides, in

the development of a parallel program on a shared memory system, it is natural to

48

first deal with the software structure of the program and then with the algorithmic

parameters that determine computational efficiency (for example, task granularity,

distribution of shared data and their access patterns, frequency of synchronization,

length of critical sections, etc.). We use a hierarchical model to characterize and

measure the incremental impact of software structure, hardware resource contention,

lock contention and synchronization barriers on the absolute rate of computation as

well as the relative computational efficiency.

Parallel algorithms can be classified based on the structure of their task graphs

[91]. Experience shows that most parallel algorithms belong to one of only a small

number of classes [46]. Examples of classes of task graphs are those representing asyn-

chronous, multilevel partitioned, multiphase, and pipelined parallel algorithms. We

use a phase and transition model of program execution with a multi-phase task struc-

ture as the basis of our system characterization methodology. A parallel computation

is viewed as a sequence of computational phases separated by global synchronization

points (or barriers) (as shown in Figure 3.1). The computation and communication

patterns and, hence, the program behavior are well defined within a phase, but may

change from one phase to the next. Many scientific and engineering problems adhere

to this model in practice. Application examples represented by this computational

structure include the parallel PDE solver using the synchronous Jacobi method, par-

allel FFT, molecular-motion computations, weather prediction models, etc.

Each phase is comprised of a collection of asynchronous tasks without any explicit

synchronization constraints among them. They may, however, synchronize implicitly

as a result of hardware resource contention during shared-data accesses and software

resource (such as locking semaphores) contention during mutually exclusive access

to critical regions of code. Computations developed according to the popular SPMD

(Single Program Multiple Data) parallel programming paradigm fit this task structure

well. At a lower level, a task may correspond to one more iterations of a parallel

DOALL loop construct [70] executing concurrently on a single processor. The iterations

of a DOALL loop are data independent and, therefore, can be assigned to different

processors and executed in any order. Parallelism at a higher level can be exploited

Phase2

Figure 3.1. Structure of parallel program execution

by high level spreading of large-grain tasks.

We focus attention on the class of structured iterative algorithms with multiple

phases. Within a phase the computation, shared data access and synchronization

patterns are very regular for each iteration. Frequently in these applications, the

computation can be uniformly distributed among processors thus assigning equal

amount of work with identical characteristics to each processor. Therefore, if we

assume that each process performs a series of identical iterations within a phase, then

the overall multi-phase performance of the complete application can be extrapolated

from measurements performed at the iteration level [92]. Since all iterations are

identical, we will measure the performance behavior of a single loop iteration when

executing concurrently with other identical iterations.

In Figure 3.1, assume that there are v computational phases. Assume that phase It:

is comprised of w, identical iterations on each processor and the number of processors

employed (degree of parallelism) is Ni. If t}... is the time it takes to complete one

50

iteration on processor i during phase k, then the total time to complete w). iterations

on processor i is given by with. since all iterations are identical. Hence, the time Th

required to complete phase k of computation is a function of Ni and is given by

TkUVk) = lggfikfwktkd = wk '1'???va = wktk

where t), is the effective iteration time for phase k. At the end of each phase, all

processes must wait for the slowest process among them before they can continue.

The time spent in waiting for the last process to arrive is already accounted for in

the phase execution time Tk(Nk). However, the additional time penalty needed to

broadcast the event of the arrival of the last process at the barrier contributes to the

total execution time. This time, Tba,,(Nk), depends not only on the number N], of

processors involved in the barrier, but also on the implementation and the method

used to busy-wait for the arrival of the last process. If all the sequential components

of the parallel program execution, such as creation of parallel processes etc., can be

represented by the single time component Tug, then the total execution time T of the

computation is given by

T = Tgcq + 2(Tkuvk) 'l' Tbarr(Nk)) = Tseq 'l’ 2(wktk 'l‘ Tbarr(Nk))

k=l k=l

Using this model, if the per-iteration execution time tk and the barrier performance

Tb", can be accurately characterized for a given workload for varying degrees of

parallelism Nk, then the overall performance of the computational workload can be

estimated.

3.2 Workload Characterization

System characterization (to distinguish it from benchmarking) is a set of experiments

that isolate and measure the performance response of a system to controlled work-

load inputs. These responses describe the system and determine its performance.

The accuracy of the system characterization depends closely on the type of work-

51

loads chosen for selective assessment and how well they represent the measurement

objective. Having chosen a multi-phase program structure at the algorithm level, we

next concentrate on defining the program characteristics within a phase.

3.2.1 The Unit Grain.

Measurement data about the behavior of real workloads on shared memory multipro-

cessors are scarce (examples are [1], [30], [37] and [12]). Hence a broad but abstract

model of workload specification is adopted for system characterization. It allows the

exploration of performance over a wide spectrum of assumptions about data sharing,

locality of reference, and inter-process synchronizations.

It has been shown [121] that the performance of a parallel system in the short

term—during one iteration—for example, can also be used to model long term per-

formance. We model the computation in a single process (or thread of activity),

which is part of the parallel workload, as a sequence of loop iterations that may be

random or deterministic. Each such loop iteration represents a single grain of compu-

tation, called a unit grain and denoted as G in Figure 3.1. The sequence of iterations,

therefore, represents a string of grains constituting the execution profile of a single

processor in a parallel program. The unit grain is the fundamental level at which all

performance measurements are taken.

Each unit grain G is further assumed to be composed of exactly three granules:

shared-memory access, local computation and synchronization (Figure 3.2). A shared-

memory granule, denoted as gm, is concerned with accessing globally shared data

needed for the computation. Most often, access to globally shared data within this

granule would be in concurrent—read mode, since writes to shared data must be prop-

erly guarded within critical sections in order to preserve memory access consistency.

In situations where concurrent writes are legitimate and consistency preserving, how-

ever, gm could include writes to shared data. A local computation granule, denoted as

gc, represents the portion of the execution grain that performs CPU bound compu-

tation using only process private data. We assume that any shared data needed for

the computation is first retrieved into a process private area (possibly internal reg-

52

.0...

-
-
-
-
-
-
’

NLOCK

CS: Critical Section
 ‘

-
-
-
-
-

e

8

Figure 3.2. Structure of a unit grain

isters or processor cache) before being used. A synchronization granule, denoted as

9,, represents inter-processor synchronization in the form of mutual exclusion (using

locking semaphores) to access critical sections of code wherein updates to write-shared

data are performed. It could also represent synchronization operations such as event

post/wait for synchronous algorithms. This granule imposes an ordering restraint

on the otherwise concurrent execution of a multiprocessor application. Using this

decomposition, the unit grain G is defined to be a 3—tuple of granules.

G = (gmgmga)

A special characterization called null characterization, and denoted by g.- = 43, is

reserved to indicate that granule g.- is absent from the unit grain. Any component

granule in the definition of G can be null, reflected by the alternate bypass paths

shown around each granule in Figure 3.2.

We will characterize the unit grain G by choosing an appropriate characterization

for each of its component granules. The choice of attributes needed to characterize

each granule depends upon what aspect of the multiprocessor system performance

53

is under study and the level of abstraction at which the analysis is to be carried

out. For example, if the speed of floating-point operations were of interest, then the

computation granule gc could consist of an appropriate floating-point expression(s),

whereas the granule gm could simply be specified as a memory access frequency, and

the granule g, made null. The hardware execution times of the different floating-point

operations selected for the computation in gc can be normalized to addition time by

assigning suitable weights to each type of floating-point operation. An example set

of weights for a sample machine are shown in Table 3.1.

Table 3.1. An example of weights assigned to different types of floating-point opera-

tions to normalize their execution time to floating-point addition time

Floating-point Normalizing

operation weight

+3 —r * 1

/,suar 4

EXP, SIN, etc. 8

IF (X .REL . Y) I

Similarly, the absolute performance of synchronization primitive could be mea-

sured by using null characterizations for gm and gc, while characterizing g, with the

relevant details of the implementation of the synchronization primitive.

3.2.2 Workload Classification

Using the 3—granule decomposition of the unit grain, a single phase of computation

in our multi-phase program structure can now be represented as shown in Figure 3.3.

Each task (assigned to a separate processor) processes a string of Z unit grains before

synchronizing at a global barrier. Granule 9,, contains the meaningful computations

performed by a task and hence represents the operations whose overall rate should

be maximized. Based on whether the granules gm and g, are present in the unit grain

START

. l

l

l

l

o e o '

m“ -exclusion

- --b

P1 P2

-

1"

END

Figure 3.3. Structure of a single computational phase

definition, the range of workloads represented by this technique can be categorized

into four broad classes based on the mode of concurrent accesses to shared data.

A. Embarrassing workloads. All computation in these workloads is performed

within granule gc with no shared-data access or inter-process synchronizations

(9171 = 45,90 = ¢)

B. Concurrent-access workloads. In addition to computation performed within gc,

processes also access shared data concurrently in gm (gm 74 45,9, = (b). As

an example, processes may perform local computations while accessing shared

data in concurrent read-only mode. Concurrent write-sharing is also permissible

as long as the write operations performed on the shared data are consistency

preserving.

C. Exclusive-access workloads. In workloads belonging to this class, processes ac-

cess shared data only in exclusive mode, i.e., in a mutually exclusive fashion,

55

inside g, in addition to performing local computation in gc (gm = d), g, 75 925).

There is no concurrent sharing of any global data in this class. Write-sharing

of data between processes that requires mutually exclusive updates to ensure

data integrity belongs to this workload class.

D. Dual-mode access workloads. This is the most general class in that both con-

current sharing as well as exclusive sharing of global data is allowed in addition

to local computation (gm at d), g, 76 9b).

Workloads designed according to each of the classes above can be used to either mea-

sure a system’s performance along a particular dimension or the interactions between

different performance dimensions. This provides a means of observing how different

factors affecting performance interact. Based on these results, one can identify critical

parameters and recognize performance bottlenecks.

3.3 Experimental Framework

The definition of the unit grain provides a unit of workload specification for the com-

putational activity in a single process (or a single thread of control). Our objective is

to measure not only the static characteristics of the execution of a specified workload

but also the dynamic characteristics that result from the run-time interactions be-

tween concurrent processes. In other words, we would like to be able to observe and

quantify the loss in performance that results from the interference between concur-

rently executing grains. The program characteristics of the interfering grains may be

identical (homogenous) or non-identical (heterogenous). With this objective in mind,

the measurement structure selected for the experimental study of the interference

behavior is now described.

3.3.1 Measurement Structure

In order to fulfill our goal of observing the interference between a set of simultaneously

executing homogenous or heterogenous grains under varying degrees of parallelism,

56

we have established an experimental structure for our measurements (see Figure 3.4)

that consists of:

0 one test processor (called Po),

0 a variable number, N, of competitor processors (called P1, P2, ..., PN), and

e a number, M, of data elements that are shared by the test and competitor

processors.

The test processor Po executes a unit grain called the test grain and denoted by

G; = (gfn, gg, gj). Each competitor processor executes a unit grain called the competi-

tor grain and denoted by G6 = (gfn, g§, gj). Every competitor processor, P1, ..., PN,

executes an identical copy of the competitor grain Ge simultaneously. The number

of competitor processors, N, can be varied to control the degree of parallelism and,

hence, the extent of interference among the concurrent grains.

BARBIER >

.....................
....................

...................... 5
°

test

processor competitor

processors

Figure 3.4. Structure of the measurement framework

57

We also make the following assumptions for all our experimental measurements:

0 The number of concurrently competing processes in our framework is less than or

equal to the maximum number of available processors Nmax, i.e., N +1 S Nmar.

e A process once created and attached to a processor remains stationary, i.e.,

process migration is not allowed.

0 The execution of a process is nonpreemptive.

The first assumption ensures that all the processes in a given workload are simultane-

ously active on different processors thus participating in shared resource contention

resulting in the worst-case runtime overheads. Throughout this thesis, therefore, the

terms process and processor are used interchangeably. The second assumption helps

eliminate the context-switch overhead that would entail from process migration. The

third assumption precludes any unexpected program behavior due to unpredictable

process preemptions. Further, all measurements are performed on a quiescent system

thus enabling us to ascribe reasons for the observed losses with greater confidence.

The second aspect of the grain interactions that needs to be controlled is the size

of the shared-data space within which all the grains interact. This is accomplished by

assigning a suitable value to M. The structure of the shared data is assumed to be

a one—dimensional array consisting of M elements and distributed over the memory

modules in the shared address space in some predetermined fashion. This view of

the shared data is justified by the fact that any higher dimensional data structure

will ultimately be translated into a one-dimensional sequence of memory addresses

for the purpose of storage. A hot-spot scenario results from setting M = 1.

The set of input parameters to the experiment, I, can now be consolidated and

written as

I: {N,M,Gt,GC}

Note that by setting G; = Ge, we can create a homogenous workload; or by using

different characterizations for Gt and Gc (Gt 75 Ge), we can create a heterogenous

58

workload. Homogenous workloads are used to characterize the loss in processing ef-

ficiency ensuing from runtime overheads when multiple identical processes cooperate

to achieve a common goal (as in SPMD style computations). On the other hand,

heterogenous workloads are used to characterize the interaction between unrelated

processes (the test and competitor grains in this case). The interference in the ex-

ecution of a process of interest (the test grain) due to the simultaneous execution

of multiple “non-related” processes (the competitor grains) can be observed. By

varying N, the performance degradation under varying degrees of parallelism can be

measured.

For a given set I = {N,M,G1,Gc} of input parameters, the average execution

time per unit grain for processor Pk (denoted by ’17,) is given by (refer to Figure 3.4)

_ Tfk _ Ti
T

k Nitr

, k = 0,1,...,N.

The effective unit grain execution time Tc;(N) for a concurrent workload with N

competitor processes active is recorded for each experiment performed. The value

recorded for TG(N) is different for homogenous and heterogenous workloads given

that the purpose behind the two types of workloads is diflerent.

For homogenous workloads:

For heterogenous workloads:

With these definitions, it is obvious that a null characterization of the test grain

(i.e., G; = (¢,¢,¢)) is meaningless for both types of workloads. However, a null

characterization may be used for G6 for heterogenous workloads.

We also define the uncontested execution time of a granule g,-, denoted by Ty..(0),

as the time required for the unit grain G with g,- as the only non-null component

granule in it to complete its execution when executing alone on a multiprocessor (no

interference from other grains). The uncontested execution time of a unit grain is

59

the sum of the uncontested execution times of its component granules. Using this

definition, and the fact that Tg,=¢,(0) = 0, we can write

Tm = T9m(0) when G=(gm,¢,¢)

To = Tg.(0) when G=(¢,gc,¢)

T, = Tg,(0) when G=(¢,¢,9.)

T = Ta(0) when G=(gm,9c,g.)

= Tm+Tc+Ts

where Tm, Tc, 7', and r are the uncontested execution times of gm, gc, g, and G,

respectively.

3.3.2 Workload Generation

With a suitable selection of attributes characterizing the unit grain, the workload

model parameters contained in I allow a wide range of workload behaviors to be

represented. If all the points in the parameter space of I were to be tested, it would

result in an overwhelming number of experiments. This would not only be extremely

time consuming to be practically feasible, but also make it impossible to draw con-

clusions. Hence, a systematic method is adopted for traversing the input parameter

space by the creation of parameter families wherein a family of related behaviors is

obtained by fixing all but one parameter. The parameters in I that remain fixed

within a parameter family are said to be anchored. The changing parameter, say X,

within a family is denoted by X. If attribute y of grain G,- is varied, then the changing

parameter is denoted by G;(y).

Using this convention, 11 = {N,M,Gt,Gc}, for example, denotes a parameter

family wherein M, G; and G; are anchored while the number of competitor processes

N is varied. Similarly, 12 = {N, M, Gt(s), Ge} denotes a parameter family wherein

N, M and G6 are anchored while the attribute s of G; is varied.

Assigning constant values to each attribute in the characterization of G creates an

60

instance of the unit grain. The resultant tuple is called a characterization instance of

G. If a study of the deterministic execution behavior of the workload represented by

G is desired, then the value assigned to each of the characterization attributes may

be interpreted as invariant quantities, resulting in an invariant G from one iteration

to another. On the other hand, treating each attribute value to be the mean of a

known probabilistic distribution transforms the corresponding attribute into a random

variable thus permitting a study of the stochastic execution behavior of the workload.

For the probabilistic characterization of input workloads, any input parameter X can

be associated with a spread factor f (denoted by X [f]), 0 S f S 1, causing X to

become uniformly distributed in the interval [(1 — f)X, (1 + f)X] In other words,

an input parameter specification of the form X[f] is equivalent to X being selected

from a uniform distribution over the interval [(1 — f)X, (1 + f)XI

X[f] E U[(1- f)X,(1+ f)Xl

3.4 Performance Characterization Parameters

It has been recognized for years that the single parameter Mflop/s (megaflops) is in-

adequate to measure the performance of a multiprocessor system, because it takes no

account of the communication, synchronization and resource contention overhead in-

herent in the parallel execution of multiple processes. More recently, a two-parameter

(r00, 31/2) description has been used [61] to characterize the floating-point performance

in MIMD computing that is based on measuring the importance of the overhead of

synchronizing multiple instruction streams. The parameter r00 denotes the asymp-

totic floating-point performance as Mflop/s whereas 31/2 indicates the amount of use-

ful arithmetic that could have been done during the time taken for synchronization.

In a similar spirit, a three-parameter (r00, 711/2, 31/2) description of MIMD vector com-

puters [62] has also been used that incorporates, in addition to the synchronization

overhead 31/2, the vector startup overhead in terms of n1fl. However, the parameters

used in these characterizations assume that the overheads are constant quantities

61

thus accounting for only the static overheads encountered. The variation of program

performance with the number of processors and the associated dynamic overheads

caused by run-time interactions between processes cannot be accurately captured by

such static parameters only.

In this dissertation, we develop a hierarchical performance model to describe the

performance of the multiphase program structure used as the basis of our studies.

Each level in the hierarchy provides a measure of the fraction of total processing

power that is lost due to inefficiencies at that level. In doing so, each level furnishes

a set of parameters that characterizes the importance of overhead factors that limit

performance at that level. The hierarchical performance model integrates the charac-

terization parameters from each level into a composite framework that describes the

net performance of a system as its ideal potential performance degraded successively

by overheads encountered at each level of the hierarchy.

The lowest level in the hierarchy, the granule level, focuses attention on each

component granule of the unit grain. The effect of the static distribution of work

among the granules on computational performance is captured by the three static

parameters (R00, f1/2,c1/2) measured at this level. Measurements at the next higher

level, the grain level, quantify the overheads that result from run-time interactions

between concurrent instruction streams as a function of the number of interfering

processes. The influence of these overheads on overall performance is described by

the two dynamic parameters (wm(N),tb,(N)). At the highest level, the phase level,

the loss in performance due to global synchronization at the end of each phase is

observed and quantified using the dynamic parameter wb(N).

3.4.1 Static Parameters

The decomposition of the unit grain G into the three component granules (gm, gc, g,)

signifies the division of the total work performed within a unit grain into communi-

cation, computation and synchronization components. The granule gc performs all

the meaningful computation, whereas the time spent within the granules gm and g,

represents communication (through shared variables) and synchronization (mutual

62

exclusion) overheads, respectively. The relative proportion of time spent in each of

these granules during execution determines the maximum rate at which the compu-

tation in gc can progress. The static parameters characterize the dependence of a

multiprocessor performance on the static overheads inherent in the algorithm design

resulting from communication and synchronization.

Assume that the computation performed within a unit grain can be expressed in

terms of a number of basic computation units (BCUs). A BCU may simply represent

a single floating-point operation at one extreme, or it may represent a very large

computational block involving many number of floating-point operations at the other

extreme. In other words, the amount of computation that a BCU is chosen to repre-

sent is a matter of the level of abstraction at which the computational performance

is of interest. Stated another way, a single BCU produces a single result of interest

and the rate of BCU execution determines the rate at which results are generated.

Let the unit grain G contain a total of c BCUs distributed between gc and g,. Also,

let the unit grain G contain a total of m shared data references distributed between

gm and g,. The synchronization in g, is assumed to be mutually—exclusive access to

a critical section guarded by a pair of lock/unlock operations.

For a given workload (i.e., a given characterization instance of G), define

tm = the average time per shared data access,

tc = the average time per BCU,

t, = the average time per synchronization operation.

The value of tm depends not only on the hardware characteristics of the shared

memory, but also on the distribution of shared data over the memory hierarchy and

their‘access patterns imposed by the application algorithm. In the case of UMA

(Uniform Memory Access) multiprocessors with no caches, where all memory is global

and equidistant from all processors, the shared data access time tm is equal to the time

tglow to access a data item in global memory. If per-processor caches are present on

a UMA multiprocessor (e.g., Sequent Symmetry), then the shared data access time

63

is governed by the proportion h of cache hits exhibited by the shared data access

pattern. If teach: denotes the time to fetch a data item from the cache and tgloba, to

fetch it from the global memory, then tm is given by

tm : htcache + (1 _ h)tglobal-

In the case of NUMA (Non-uniform Memory Access) multiprocessors, all memory

is not equidistant from all processors thus exhibiting different access latencies for

different levels in the memory hierarchy. Let tum; and inmate respectively denote the

times to access a data item from processor local and remote memory modules, and r

denote the proportion of shared data accesses that go out to a remote memory module.

Assuming that no per-processor cache is present (e.g., IBM RP3), the average access

time tm is given by

tm : rtremote + (1 _ r)tlocal-

If per-processor caches are present (e.g., BBN TC2000) and h denotes the proportion

of cache hits, then tm is given by

tm = htcache + (1 _ h)[rtremote + (1 " r)tlocal]-

The average shared data access times for the different memory organizations are

summarized in Table 3.2.

Table 3.2. Summary of average shared data access time tm

[Memory I no per-processor cache I with per-processor cache I

UMA tglobal htcache + (1 — h)tglobal

NUMA rtremote + (1 — r)tlocal htcache + (1 —' h)[rtremote + (1 — r)tlocal]

The value of tc depends upon the composition of the BCU. For instance, suppose

that the rate of floating-point operations were of interest. Let a single BCU consist of

64

a total of n arithmetic operations each involving a different number of floating-point

operations. If the n operations can be classified into t types such that there are n,-

arithmetic operations of type i that require w; floating-point operations, then the

BCU time tc can be expressed in terms of the time tf, to perform a single floating-

point operation as

t t

to = anwgtfp where Zn,- = n.

i=1 i=1

The value of t, is determined by the particular implementation chosen for the

locking primitives. If flock and twice]. represent the latencies of the locking primitives,

then

ts = tlock + tunlock-

Using the characteristic times tm, tc and t, of a given workload, and the unit grain

parameters c and m, the single processor (no interfering processors) execution time

TG(0) of the unit grain G can be expressed as follows.

TG(0) = r = etc + mtm + t,. (3.1)

Since a total of c BCUs are computed, we find the average BCU computation rate

per processor, R(0), as a function of the grain parameters to be

 12(0) = 3 c= . .2

r ctC + mtm + t, (3)

With a little rearrangement of the above expression, the average computation rate

R(0) can also written as

Roe
12(0) = 1 £2 22 (3.3)

f c

where:

tm ts C

Roozt—, f1/2——, C1/2——, and f:—

The value R00 provides a measure of the asymptotic (i.e., maximum) performance

in BCUs/second per processor. The degradation of performance from this peak is de-

termined by the amount of computational work performed per shared data reference,

65

here measured by f, the computation granularity c, and the static parameters f1/2

and CI”. The half-performance memory factor, f1 ,2, measures the memory bottleneck

in terms the amount of lost work that could have been done during the time of the

shared data access, whereas the half-performance lock factor, c1,2, measures the lost

work due to synchronization. Hence, they signify the cost of shared data access and

synchronization in a currency that has a known value to the programmer.

The significance of the half-performance factors become apparent if we consider a

unit grain G with only one kind of overhead in it. For instance, if the synchronization

granule g, is absent from G, then r, = 0 => t, = 0 => c1,2 = 0. This results in the

average computation rate 8(0) given by

R

R(0)=1+ fr/z/f.

It can be seen from the above expression that for f = fl l2, half the asymptotic per-

formance R00 is obtained. Thus fl); is the minimum computation-to—communication

ratio necessary to achieve half the asymptotic performance.

Similarly, if the shared-memory access granule gm is absent from G, then Tm =

0 => tm = 0 => f1/2 = 0. This results in the average computation rate R(0) given by

Roo

3“” = 117,7

Once again, as before, it can be seen that c1/2 is the amount of work in a unit grain

that is necessary to achieve half of the asymptotic performance.

We characterize the static performance of a multiprocessor system in terms of the

3—parameter description (R00, f1 /2, c1/2)' The values of R00, f1]; and 61/2 are likely to

depend on hardware and application characteristics as the discussion on tm, t6 and

t, earlier in this section illustrated. The parameters (R00, f1/2, (31/2) have been chosen

for system characterization rather than the original timing parameters tm, t0 and

t,, because they are more directly related to facts about a problem that are known

to a computer user. The parameters f1/2 and 61/2 provide a user with a yardstick

with which to compare the computation—to—communication ratios and computation

66

granularities that occur in his problem, and Rec provides a target with which to

compare the actual performance of his program.

Eq. 3.3 gives the functional form of the approach of the average computation

rate to the maximum R00 as the computation granularity c and the computation—to—

communication ratio f change. The functional form of this approach to the asymp-

totic will occur repeatedly in the subsequent discussion of performance, and we define

it as the loss function

1

1+x°

 loss(x) = (3.4)

The expression for the average computation rate in Eq. 3.3 can then be written as

R(0) = Rooloss(f/f1/2 + C/Cl/g) (3.5)

which shows how the peak performance is degraded by memory bottleneck (first term)

and inadequate granularity (second term).

We can now express the uncontested single-processor execution time of the unit

grain in terms of the static characterization parameters as

TG(0) = T = Rgol(c + mf1/2 + Cl/g), (3.6)

and the individual timing parameters as

tc = 12;}, tm = Rggfm, t, = 123cm.

Values of (R00, f1 /2, c1 /2) can be obtained by fitting a set of measurements of r for

different combinations of c and m to Eq. 3.6. As Eq. 3.6 represents an equation in three

unknowns, a set of three measurements of r with linearly-independent combinations

of c and m should, in theory, be sufficient to solve for the unknown parameters.

67

3.4.2 Dynamic Parameters

If the concurrent execution of processes, represented by unit grains, on diflerent pro-

cessors were ideal (i.e., no mutual interference), then the net computational rate

achieved with N competitor processors would be (N + 1)R°o. However, in practice,

parallel execution of cooperating processes involves contention for shared resources

in hardware (memory modules, interconnection network, etc.) and software (shared

lock variables). The result is runtime overheads that are dynamic in nature which

degrade the asymptotic performance further beyond the inefficiencies introduced by

the static parameters (R00, f1/2, c1 ,2). It is important to know the computation cost

of these dynamic overheads, because this will influence the way in which a particular

program is organized for parallel execution (i.e., how it is parallelized).

The multiphase algorithm structure chosen for our studies is assumed to ex-

hibit asynchronous behavior (i.e., only implicit synchronizations) of parallel processes

within a phase and global barrier synchronizations between phases. As discussed ear—

lier, there are three overhead dimensions that exert a critical influence on the perfor-

mance of such application structures, namely, overhead due to contention for shared

data and memory, overhead due to access of mutually-exclusive critical sections, and

overhead due to synchronization barriers. The measurement of the incremental contri-

bution of each of these factors to the total overhead helps identify critical parameters

in the workload and recognize potential performance bottlenecks.

The incremental overheads resulting from memory contention and shared lock

contention are characterized by measuring the interference among concurrent grains

within a phase. In other words, the performance degradation is observed at the grain

level. The incremental overhead due to synchronization barriers is obtained from

experimental measurements at the phase level. Each overhead component for a given

workload is characterized by an interference factor expressed as a function of N, the

number of competing processes.

68

Grain level characterization

Barring the loss in efficiency due to the relative proportions of the granule lengths, the

ideal parallel execution performance of a unit grain G in the absence of any external

interference is given by its uncontested execution time T0(0) = r. If the asynchronous

execution of concurrent unit grains within a phase were free of mutual interference,

then the execution time per unit grain would still remain as 7. However, this ideal

performance is hampered by two factors: memory interference and lock interference.

Memory interference results from contention for shared hardware resources along

the processor—to—memory path, contention for memory modules and the overheads

of maintaining data coherence across the memory hierarchy (e.g., cache coherence).

Lock interference results from contention for a shared lock variable and the queuing

delay ensuing from enforcing the mutual exclusion semantics.

The total execution time of 3 unit grains (Figure 3.3) within a phase with N

other interfering grains present, T(N), is given by its ideal execution time T(0) = tr

augmented by memory and lock interference overheads. In other words,

T(N) = [T + Om(N) + 0,(N), (3.7)

where 0m(N) and 0,(N) are, respectively, the extra overheads due to memory and

lock interference. If the corresponding average overheads per unit grain are denoted

by Gm(N) = Om(N)/€ and G,(N) = 0,(N)/Z, then Eq. 3.7 can be rewritten as

OM 04M). (3..)T(N)=tr(1+——+—
T 7'

We define two grain-level dynamic characterization parameters incremental mem-

ory interference (115,.) and incremental lock interference (1b,) as follows:

umuv) = o..(N) O’iN)
 and ¢,(N) = (3.9)

T

The memory interference wm(N) for a given workload varies with N, and depends

69

upon the distribution of shared data objects over the memory hierarchy and the

memory reference patterns. Similarly, the lock interference w,(N) also varies with N,

and depends on the implementation of the locking primitives, the frequency of critical

section access and the amount of computation performed in between consecutive

critical section operations. The total execution time from Eq. 3.8 can be expressed

in terms of the dynamic characterization parameters as

T(1V) = 37(1 + ¢m(N) + ¢,(N)). (310)

Given that there are c BCUs computed per unit grain and t unit grains executed

per processor within a phase, the total number of BCUs computed within a phase is

(N + 1)t’c as there are (N + 1) processors executing concurrently. Hence, the effective

BCU rate with N competitor processes active, R(N), is given by (using Eq. 3.10)

(N +1)€c (N +1)c/1'

R N = —— = . 3.11

() T(N) 1+ am) + z/2.(N) ()

Substituting the rate c/r from the granule level expression in Eq. 3.3, we get

N 1 R00
R(N) = (+ l (3.12)

(1+ f1/2/f + 61/2/C)'(1+ RAM-N) + ¢s(N)).

The computation rate R(N) can also be expressed in the functional form of the

loss function defined earlier as

R(N) = (N +1)Roo loss(f/fllz + C/CI/z) loss(wm(N) + l/Js(N)) (3.13)

which shows how the peak performance is degraded by the static (first loss term) and

the dynamic (second loss term) overheads.

The average unit grain execution time, TG(N), with N competitor processes

present can be expressed in terms the system characterization parameters defined

70

so far as follows.

Ta(N) = 12;.‘(c + min + 01/2)'(1+ ¢m(N) + um» (3.14)

The dynamic parameters wm(N) and ¢,(N) for a given workload can be obtained by

experimental measurements at the grain level to determine the increase in the average

execution time per unit grain G.

Phase level characterization

In addition to the increase in unit grain latencies caused by memory and lock in-

terference, the effective BCU computation rate per phase is further decreased due to

additional overhead of barrier synchronization at the end of a phase. If the additional

latency due to the barrier with N competitor processes is given by 05(N), then the

total time to complete a phase, T(N), with 3 unit grains per processor is obtained by

augmenting Eq. 3.10.

T(N) = 37(1 + ¢m(N) + ¢.(N)) + 05(N)

m1 + ¢m(N) + ¢.(N)) (1+ ,7 CM)
(1+ ¢m(N) + ¢.(N))

) (3.15)

We define the phase-level dynamic characterization parameter incremental barrier

interference (tbb) as follows:

MN) = ON”. (3.16)
T

The barrier interference tbb(N) for a given workload varies with N, and depends upon

the implementation of the barrier and the degree of load imbalance within the phase

preceding the barrier. Using this definition of barrier interference, the execution time

of a single phase can then be expressed as

T(N) = («1+ ¢m(N) + ¢.(N))(1+ WNW) (3.17)

71

where

~ _ WAN)

MN) ‘ 1+ ¢m(N) + ¢.(N)'

The modified parameter tbb(N) can be interpreted as the incremental barrier overhead

normalized with respect to the actual unit grain execution time Tg(N) under con-

tention conditions, as opposed to being normalized with respect to the uncontested

unit grain time TG(0).

The effective BCU rate per phase including the barrier and with N competitor

processes active, R(N), can then be computed from Eq. 3.17 as

T(N) (1+ ftp/f + 01/2/C)'(1+ ¢m(N) + ¢.(N)) - (1 + JAM/6)

 12(1v) =

Expressing the net per-phase computation rate R(N) in the loss functional form,

we get

R(N) = (N +1)Roo loss(f/fr/z 'l' 0/01/2)

loss(tbm(N) + u.(1v)) (osmium/e). (3.18)

which shows the net performance as the peak performance degraded by all the char-

acterization (both static and dynamic) parameters.

The total execution time per phase, T(N), with N competitor processes active

then becomes (in terms the system characterization parameters)

T(N) = R;‘(c + mft/z + c1/2)'(1+ ¢m(N) + ¢.(N)) - (1 + ¢b(N)/€)- (3-19)

The dynamic parameter wb(N) for a given workload is obtained by experimental

measurements at the phase level to determine the increase in execution time of the

phase on account of the barrier being present.

The system characterization parameters described in the previous paragraphs

quantify the losses in performance that result from the static characteristics of an

algorithm and the dynamic overheads overheads encountered at run-time. For a

72

Table 3.3. System characterization parameters

Type I Parameter Description I

Static R00 Asymptotic computation rate (BCUs/s)

parameters f1/2 Half-performance memory factor

c1/2 Half-performance lock factor

Dynamic ¢m(N) Incremental memory interference

parameters w,(N) Incremental lock interference

wb(N) Incremental barrier interference

given workload, the system characterization parameters (summarized in Table 3.3)

help relate the expected performance of the workload to the application parameters

(summarized in Table 3.4) as a function of the employed parallelism N (or degree of

interference) .

Table 3.4. Application parameters used in the performance model

Warameter Description I

Number of BCUs per unit grain

Number of shared-data accesses per unit grain

Number of unit grains per processor per phase

Degree of interference (#of processors = N + 1) 2
&
3

o

3.4.3 Performance Metrics

The performance measurements taken at either the grain or phase level in our ex-

perimental framework are quantified using the fundamental metric called cumulative

interference and denoted by \P(N). This measure answers the question: how much

longer is the expected execution time T(N) of the given workload in a conflicting

situation compared to its expected conflict-free execution time T(O). This results in

73

the following definition of the cumulative interference measure.

T(N) - T(0) _ T(N) — (r

T(O) — [1'

 \P(N) = (3.20)

For measurements performed at the grain level, T(N) = [Tg(N) where Tg(N) is the

average unit grain execution time. Substituting this in Eq. 3.20, one can see that

Tg(N)—T.

1.
‘II(N) '2 (3.21)

In other words, the cumulative interference \Il(N) for measurements performed at the

grain level can be inferred from the average execution times per unit grain. It is

apparent that \II(N) Z 0 always.

For grain level experimental measurements, we also define a second metric called

unit grain efl‘iciency, denoted as 6(N), that measures the relative performance of the

unit grain in the presence of contention with respect to its uncontested execution

time. It is given by the following ratio.

N = 3.22a) Tam) ()

Combining equations 3.21 and 3.22 it can be seen that

{(N) — ——1 (3 23)

_1+MN) '

The value of 6(N), 0 < 6(N) S 1, for a given point in the performance space expresses

the extent of deterioration of a unit grain performance as a result of conflicts. A

value of {(N) = 1 indicates no degradation at all implying that the concurrently

executing unit grains in the workload do not suffer any mutual interference. This

is, obviously, the ideal situation for achieving the best possible utilization of the

processing resources for a group of concurrent tasks. The cumulative interference for

this ideal case is ‘II(N) = 0.

74

3.4.4 Aggregate Multiphase Performance

The usual parameter that is used to compare the performance of algorithms is the

speedup, which is defined as S(N) = T(l)/T(N) where T(l) and T(N) are respec-

tively the times for the algorithm to run on one and N processors. Using the rate of

work notation used in our study, speedup can be written as

anS(N) = R(1)'

However, the value of the speedup alone cannot be used to compare the execution

time of two algorithms unless the value of T(l) is the same in both cases. Put another

way, speedup is the execution speed measured in arbitrary units which change from

algorithm to algorithm if T(l) changes. It is quite possible in the comparison of two

algorithms, for the algorithm with the worst speedup to execute in the least time,

if the T(l) for the worst algorithm is the greater. We prefer therefore to measure

performance in absolute units (for example, BCUs per second), which is the variable

R(N). It should always be remembered that the objective of algorithm development

is to reduce the execution time T(N) (i.e., increase R(N)) which is not necessarily

the same as increasing the speedup. An algorithm with the greater speedup in some

sense uses the parallel hardware more intensely (e.g., there are fewer idle processors),

but it does not necessarily execute in the least time.

Since a program, in our study, is an ensemble of multiple phases (Figure 3.1), the

aggregate performance of the program may be characterized by the performance of its

component phases. The performance of each phase, in turn, is characterized by the

static parameters (R00, f1 l2, 01,2) and the dynamic parameters (wm(N), t/J,(N), wb(N))

for the workload within that phase and follows the performance model elaborated

earlier in this section.

The net computation rate of a program is simply the total number of BCUs

computed, W, divided by the total computation time, T(N). Note that T(N) depends

on the multiprocessor used, but W is constant for a given problem. Similarly, the

computation rate of an individual phase k is R), = wk/Tk where wk is the total number

75

of BCUs computed by phase k and T1, is the total time required by phase k. The net

rate of the program containing v phases is

2w).
(2 = l < k < vRn t 2T1:

or, it can also be written as

w

Rnet=2'—g: ISkSU.

Rs

Thus, the net computation rate of a program is the weighted harmonic mean of

the computation rates of the component phases (not the arithmetic average of the

rates). Note that the weights are the total computation work of each phase.

3.5 The Workload Emulation Kernels

Once an appropriate characterization for the unit grain has been selected, we have a

method of specifying different workloads of interest by assigning suitable values to the

grain attributes and the input parameters. What is needed is an emulation program

that uses the workload specification to mimic the execution behavior of an asyn-

chronous program that would demonstrate the same characteristics, namely, memory

reference and synchronization patterns. The Memory Access Degradation (MAD),

Synchronization Access Degradation (SAD), and Barrier Access Degradation (BAD)

kernels are a family of such emulation programs. As we are only interested in measur-

ing the concurrent execution conflicts of the given workload, no real computation need

be performed by the emulation programs, Their only purpose is to mimic the usage

of shared resources of the specified workload keeping intact the timing relationships

between the different components of the computational structure.

Each kernel is written to use a set I of input parameters and generate a set of

performance measures, <I>(I), of interest by executing the the emulated workload in a

controlled experiment. Each experiment represents a point in the performance space

76.

of the system.

Access Degradation Kernel: I ———> <I>(I)

It should be emphasized that these kernels are different from standard benchmarks.

They are not parts of “real” computations like the Livermore loop kernels. The key

attribute of these kernels is that they are programs that do not perform any useful

computation, but rather, they are programs that model the computation, memory

access and synchronization structure of a class of workloads of interest. They generate

synthetic loads that are designed to stress a particular aspect of the target system.

The usefulness of this approach lies in the fact that:

e The measured performance is not tied to any specific application. The user

can design selective workloads, using the workload characterization technique

provided, to generate a system characterization of interest.

0 A collection of such kernels can be used to quantify and compare the perfor-

mance of existing, new, or experimental architectures.

0 They are simple and, hence, the interpretation of the observed behavior in terms

of the kernel structure is easy.

3.5.1 Measurement of Incremental Overheads

The static system characterization parameters (R00, f1/2,c1/2) can be measured by

timing the single-processor execution of a unit grain defined by a given input work-

load, and fitting the measured data to the timing model for uncontested execution

time dictated by Eq. 3.6. The key purpose of the workload emulation kernels (MAD,

SAD and BAD) is to facilitate the measurement of the incremental contribution of dy-

namic overheads along the three focal performance dimensions—memory contention,

lock contention and barrier synchronization—for a given input workload. In other

words, the kernels help calibrate the dynamic system characterization parameters

(t/Jm, 1b,, tbb) as functions of N and hence characterize the dynamic behavior of a given

77'

workload. The incremental measurement relationship between the three kernels is

shown in Figure 3.5.

single processor Ideal “nit grain

execution 95mm”

granule incremental memory interference

Memory Access

performance

workload incremental lock interference

Mutual exclusion

performance

 SAD kernels

phase . . .

incremental barrier interference

BAD kernels —> SYnChfonization barrier

performance

Figure 3.5. Incremental measurement of dynamic overheads

The kernels are executed in the order MAD —+ SAD --1 BAD for a given workload.

The MAD kernels measure the run-time overheads arising only due to contention for

shared memory; the SAD kernels measure the cumulative overheads arising due to

memory as well as lock contention; and the BAD kernels capture the total cumulative

overheads. Each kernel is coded so as to eliminate from its own measurements the

incremental contention overhead measured by its successor kernel.

Each kernel computes the fundamental metric cumulative interference \II(N), as

defined in Eq. 3.20, by timing the execution of a given workload with varying number

of competitors N. Let us denote the cumulative interference measured by the MAD,

SAD and BAD kernels as \Ilm, \II, and W5, respectively; and the workload execution

time measured with N competitors as Tm““(N), T‘°d(N) and Tb““(N), respectively.

78

Then from the definition of \II (Eq. 3.20), we can derive the expression for incremental

memory interference u... from the MAD kernels as

_ Tm“‘(N) — T(O) _ 0..(N) _ (MN)

“(All " T(O) ‘T ‘ ‘77"
 = umuv). (3.24)

Similarly, for the SAD kernels we have

TT(N) - T(O) (T“’“(N) - T'"“(N)) + (Tm°d(N) - T(0))

MN) T(O) E T(O)

_ o.(1v) + 0,..(N) _ O.(N) + c“)...(1v) _
_ [T = 1' = fl’mUV) +¢,(N).

Therefore, the incremental lock interference w, can be computed from the following

expression.

PAN) = ‘1’.(N)- tMW) = WAN) - 111,,(N) (3-25)

The cumulative interference measured by the BAD kernels is given by

T"°“(N) - T(O) (Tb°“’(N) - T’°"(N)) + (T‘°“(N) — T(0))

T(O) T(O)

03(N) MN)
[7' + \I’sUV) E 7- + WAN)

‘I’b(N)

Therefore, the incremental barrier interference ‘l/Jb can be computed as

PAN) = (WAN) - \D,(N)). (3-26)

The workload level at which experimental evaluation is performed and the metrics

computed by each of the kernels is summarized in Table 3.5.

3.5.2 Kernel Structure

This section describes the program structure of the access-degradation kernels and

their relationship with the experiment control parameters. As seen from Figure 3.4,

every participating processor executes a unit grain (test or competitor), specified by

79

Table 3.5. Summary of access degradation kernel measurements

Workload Measurement Barrier Metrics

processed by level present? computed

I-proc execution granule no R00, [1,2, c1/2

MAD kernels unit grain no \Ilm, w".

SAD kernels unit grain no ‘11,, w,

BAD kernels phase yes \Ilb, wb

the input parameters I, repetitively. Each processor executes a concurrent loop as

shown in Figure 3.6. All processors are synchronized at a barrier at the beginning to

ensure that they start executing their assigned grains at the same time. Two distinct

iterative regions can be identified in this concurrent loop. The code to emulate the

unit grains specified by I is enclosed within the inner loop with i as its loop control

variable, and is repetitively executed Nit, number of times. In reality, we unrolled

this loop to reduce the loop overhead per iteration. The additional code delimited by

the two invocations to the read_clock() function is what we call an observation.

The outer loop with k as its loop control variable constitutes an experiment. Thus

an experiment consists of a set of observations (controlled by the variable Nrepcat). All

the observations in an experiment are assumed to be statistically independent. The

final step in an experiment consists of computing the arithmetic mean and variance

of the sample of recorded observations. The sample mean is used as the observed

measure of performance, <I>(I), for the input parameter set I. Confidence intervals are

computed for each set of observations to ensure that the variation between extremes

is within reasonable limits.

The length of each observation run, Ni", and the size of an experiment sample,

Nam“, are selected based on the resolution of the clock available on the target system,

the overhead of the timing function and the overhead of the loop control statements.

The choice of suitable values for these two control parameters is crucial to the mini-

mization of experimental error and the confidence interval of the measured quantities

[111]. A more detailed discussion of the dependence of experimental errors on these

80

Concurrent Loop

{

for (k s O; k < Nrepeat; k++)

{

kernel_specific_inltialization();

barrierl):

t1 - read_clock();

for (l - O; i < Nitr; i++)

body of test/competitor grain

}

t2 - read_clock();

runtime[k] - (t2 - t1) /Nitr;

}

oompute_sample_stats (Nrepeat, runtime);

Figure 3.6. The concurrent loop structure of the kernels

control parameters is provided in the next section.

3.5.3 Minimization of Experimental Errors

One of the important considerations of the experimental system characterizer is to

control the accuracy and exactitude of the measurements. In this section, we dis—

cuss the sources of variability in the measurements and illustrate the importance of

the control variables N“, and Nrepea} in minimizing experimental errors and hence

confidence intervals.

Referring to Figure 3.6 we see that the time recorded in each observation Oj also in-

cludes the execution time of the loop control code that controls the test (F0Roverhead)

and the overhead incurred by the timer routine (Coverhead). These have to be sub-

tracted from each observation Oj. These measurements have their own variance and

the subtraction of these overheads increases the variance of our measurements. The

81

mean value 0 of a sample of observations is

A 1 ”repeat

0 = 0'

Nrepeat E J

and its variance

2 1 Nrepeat 0 0 2

a o = ———-—— -—

Nrepeat - 1 12:; (J)

Now the mean value of each experiment is the time it takes to execute the body

of the test/competitor grain Nu, times, plus the overhead of the timing function

A

0 : Nitr(T + FORoverhead) + Coverhead

where I" is the mean time it takes to execute once the body of the test /competitor

grain. We can compute this value and the variance with the equations

A

0 - Coverhead

_ FORoverhead
T =

Nitr

and

2 2

_ 0' 0 + 0' Coverhead

_ N?

rtr

0'2T + 02F0Roverhead

Looking at the above equations we can see that there are four factors affecting

the magnitude of variance: the resolution of the timing function; the variance of

our observations; the variance of the execution time of the timing function; and the

variance of the FOR control statements. If the execution time of each observation is

such that we have

Oj >> Cresolution + Coverhead + FORoverhcad

then the only factors that affect our measurements are the dispersion of our observa—

tions.

We have two ways of reducing the variance of our results and therefore the size of

the confidence intervals—increasing the length N“, of an observation and increasing

ll].

82

Nrepeat = '5

i I I

. Ml
Nrtr l J

1000 I : M2

I

10000 ‘

|

100000 —J——

l l l

-0 3 -0 2 -0 l 0 0 1 0 2 0 3

Nrepeat = 10

T I F

Nitr l /M1

1000 I : M2

I M3

1

10000 '

|

100000 I];

l l l

-0 3 -0 2 -0 1 0 0 1 0 2 0 3

Nrepeat = 20

I I I

1000 I < M2

10000 —__—I

|

100000 T

l l t

-0 3 -0.2 —0 l 0 0.1 0.2 0.3

Figure 3.7. Normalized 90 percent confidence intervals for three workload measure-

ments on the Sequent Symmetry for Nrepeat = 5,10, 20

83

the sample size ancat. It is important to know the values for N“, and Nrcpm that will

give a small standard deviation in our measurements. These values are system depen-

dent. In Figure 3.7 we show the normalized 90 percent confidence interval of three

workload measurements (indicated as M1, M2 and M3) on the Sequent Symmetry

S81 multiprocessor system. The workload measurements were performed for values

of N“, = 1000, 10000 and 100000. We also obtained measurements for Nrcpm = 5,10

and 20. The confidence intervals for I" are obtained using the Student’s t distribution

and the standard error of II as follows:

1; t—gi(021-.)1/2 T+L§(0'2T)1/2

T Nrepeat I T Nrepeat

and the normalized confidence intervals are

_t_9_5_(0'2T)1/2 .t_95_(0'2T)1/2

T Nrepeat I T Nrepeat

We can see that for a fixed value of Nrepeat the confidence interval of our mea-

surements decrease as the time of the measurement (controlled by Na.) increases.

We obtained acceptable results on the Sequent Symmetry for Nrcpeat = 10 and

N“, = 100000.

3.6 Summary

In this chapter, we developed a comprehensive experimental performance character-

ization methodology for shared memory multiprocessors based on measurement of

the static and dynamic overheads that arise during program execution. The run-

time interference along three principal performance dimensions have been considered,

namely, memory contention, lock contention and synchronization barriers. A paral-

lel computation structure with multiple phases separated by global synchronization

barriers and asynchronous balanced task execution within each phase has been se-

lected as the basis of the performance characterization study in this dissertation.

A hierarchical workload characterization technique using the abstraction of a unit

84

grain has been proposed for the flexible and parametric specification of workloads

of interest. Three static parameters (R00, f1/2,c1/2) and three dynamic parameters

(¢m(N), ¢,(N), 1/25(N)) were defined to describe the static and dynamic behavior of

a given input workload as a function of the number N of processes competing for

shared resources. The structure and semantics of of three kernel families — MAD,

SAD and BAD — was presented to facilitate the measurement of the static and the

dynamic parameters. Finally, the primary sources of experimental errors and means

to minimize them were also discussed.

CHAPTER 4

MAD KERNELS AND

MEMORY ACCESS

PERFORMANCE

On large-scale multiprocessors, access to common memory is one of the key per-

formance limiting factors due to the significant overheads that may be encountered

related to contention for access to shared memory modules. The shared memory per-

formance depends not only on the characteristics of the memory hierarchy itself, but

also upon the characteristics of the memory address streams and the interaction be-

tween the two. The factors that cause memory access conflicts and the architectural

solutions adopted to minimize contention were discussed in Chapter 2. Quantitative

assessment of the contention overheads for different types of memory access workloads

promotes a better understanding of the performance of systems as they scale in size

and use newer memory technologies.

The MAD kernels and the related experimental framework described in this chap-

ter provides an effective testbed for characterizing the shared memory performance

for a variety of memory access workloads. Experimental measurements are performed

at the unit grain level with multiple unit grains executing the specified workload in

parallel without a global synchronization barrier. The performance metrics are com-

puted on a per-unit-grain basis. The MAD kernels can be used in isolation to perform

85

86

a detailed evaluation of the sensitivity of a shared memory organization to various

memory access parameters; or they can be used in conjunction with the SAD and

BAD kernels, within the hierarchical framework described in Chapter 3, to character-

ize the incremental loss in performance for a given workload resulting from memory

access conflicts.

4.1 Preliminary Studies

The performance studies described in this section were designed and aimed at a pre-

liminary investigation of the performance degradation experienced by multiprocessors

as a result of contention for shared memory resources. Three commercial multipro—

cessors were used as the target systems in the study: a 96-node BBN GP1000 (called

BBN-1), a 32-node BBN TC2000 (called BBN—2) and a 24-node Sequent Balance

21000 (called Balance). The architectural features of these systems were described in

Chapter 2. The performance measurements taken were used to quantify two major

sources of overhead in shared memory accesses, namely, non-local access latency and

waits due to access conflicts. An analytical model for these overhead factors was

formulated to explain and corroborate the observed behavior [96].

Parallel execution performance degradation in the presence of synchronization

locks were also a subject of these preliminary investigations. The presence of lock-

based mutual exclusion operations introduces two additional sources of runtime over—

heads, namely, locking latency and waits due to lock conflicts. The experimental

results from input workloads containing lock-based mutual exclusion operations are

reported in Chapter 5 (Section 5.1). The observed performance losses solely due to

memory access conflicts using workloads with no lock accesses are presented in this

section.

4.1.1 Workload Parameters

The unit grain abstraction is used as the fundamental unit of input workload spec-

ification. A very simple parametric workload model is used to create a variety of

87

program behaviors. A unit grain G is characterized by three attributes; G = (c, m, x).

The attribute c defines the number of local computational operations, including local

memory access, performed by a process between consecutive accesses to a critical

section (defined to be a unit grain). This parameter controls the computational load

of each processor. Similarly, the attribute m defines the number of shared data ref—

erences, not mutually-exclusive, made by a process between successive accesses to

critical sections. The attribute a: specifies the amount of time (in p secs) spent by

a process within each critical section. This attribute is specified as an absolute time

duration to highlight the influence of critical section length on performance. Since

memory contention overheads are the focus of the study described in this section, a

value of a: = 0 is used.

In addition to the unit grain attributes two more parameters, N and M, are used

to specify global characteristics of the workload. N specifies the number of com-

petitor processes interfering with the execution of any grain whereas M specifies the

number of shared data objects used by the concurrent processes. The M objects are

assumed to be evenly distributed over the available shared memory modules. Thus,

the complete input workload specification includes the six parameters (N, M, c, m, 2:).

For notational convenience we define two derived parameters in terms of the basic

input parameters described above. First, the granularity w = c + m of a program

is defined to be the total number of operations performed between synchronization

points (e.g., critical sections). Second, the shared-access fraction p = m/(c + m) is

the fraction of total operations devoted to shared data accesses.

In each execution of a unit grain, a processor performs to operations, each operation

being a local computation or shared data access in the proportion dictated by p. Each

shared data reference consists of a read followed by a write to the shared data location.

This is done to force the reference to actually go out to shared memory even in the

presence of data caching. If a: 76 0, then the processor acquires a lock and enters the

critical section for a duration of 33;; secs. Only homogenous workloads, with every

participating processor executing an identical copy of the unit grain G, are used in

these preliminary studies. In other words, the workload unit G is “replicated” on all

88

the N + 1 processors involved.

4.1.2 Quantities Measured

For each workload specified by a set of input parameters, a corresponding set of timing

data that essentially consists of the effective execution time per unit grain, TG(N), is

generated. The two performance metrics computed for each workload are unit grain

efficiency (5) and overhead factor (6) defined as follows:

_ Tam) _ TGUV) - TG(0)

a) — TG(N) and 9 — TG(0) '

Because of the replicated workload used, this definition of efficiency 6 of running a

program on a parallel architecture can also be interpreted as the ratio of the actual

speedup achieved to the ideal speedup achievable on that architecture.

The loss in efficiency is attributable to two key overheads arising from shared

data accesses —— non—local access latency and waiting time due to access conflicts.

The first kind of overhead is an important factor for a non-uniform organization

of memory hierarchy (NUMA multiprocessors). The second type of overhead is a

result of contention for hardware resources during shared data access. If we denote

the overhead time due to non-local memory latency as 0;, and the overhead due to

hardware contention as 00, then we can rewrite the expression for overhead factor 9

O _ TG(N) — TG(0) _ 01+ 0c

— Tam) _ Tam)

:ol'i'oc

which gives the normalized overhead components 0; (latency factor) and (96 (con-

tention factor).

4.1.3 Memory Access Overhead Factors

In this section, we formulate a mathematical model to describe the behavior of con—

current unit grain execution and the resulting overheads. To facilitate the brevity of

expression, we define some basic cycle times that characterize the program execution

89

on each system. All subsequent execution and overhead times will be expressed in

terms of these fundamental time units. Define

tc 2 avg. time per local computation operation,

ta = avg. time per local memory access,

t, 2 avg. latency per remote memory access,

tw = avg. waiting time per remote memory access due to contention,

t“, = avg. time to execute the lock primitive without contention,

tu; 2 avg. time to execute the unlock primitive without contention.

The time to denotes the basic time required to access a local data object. The

time t; denotes the additional latency component incurred in accessing a remote data

object. In the BBNs, the t; component is non-zero since a remote memory reference

goes out on the interconnection network whereas a local reference does not. Thus, in

the absence of contention, the time for a remote memory access on the BBNs is given

by to + t;. However, in the Balance, the bus latency is subsumed in the basic memory

access time ta since it is an integral component of the memory access time. There is

no additional delay incurred by “remote” references, since local and remote memories

are indistinguishable, thus giving t, = 0. The time tw denotes the additional delay

over and above the components to and t1 caused as a result of contention among

concurrent memory accesses. Note that all the times defined above (except tw) are

constant being the characteristic of the underlying hardware/operating system and

do not depend on the workload. The values of t“, and tug include the overhead of

function call. A comparison of these fundamental unit times for the three systems

under consideration is shown in Table 4.1.

The remaining term tw, however, is dependent on the memory reference pattern

and the communication bandwidth of the interconnection medium. It embodies the

queueing delay experienced by a memory reference that must traverse the intercon-

nection medium to be serviced. This delay arises from the interference between

concurrent memory references at the destination memory module as well as on the

90

Table 4.1. Basic time measurements for the overhead factors model

LSystem [I tc(ps) [ta(ps)] t1(ps) I tug +tu1(ps) [

BBN-l 10.12 2.18 3.42 71.83

BBN-2 1.49 0.71 1.43 28.62

Balance 37.22 10.85 0.00 83.18

network. We need to obtain an expression for tu, that reflects its dependence on the

workload. Several earlier works have modeled memory interference for MINs using

Markovian models [18] and probabilistic analysis [19, 101]. Similar work done for

analyzing contention in bus-based systems include [86, 31, 43].

Contention Time on the BBNs

We use the result derived by Patel [101] using probabilistic analysis for Delta networks.

The derived results apply to a p—stage MIN using k x k switching elements. A memory-

access-cycle (MAC) is defined to be the time interval from the initiation of a memory

request to the completion of the request. No distinction is made between read and

write cycles in the analysis. The primary assumptions on which this analysis is based

are as follows.

(i) The memory references generated by each processor are independent of each

other.

(ii) The memory references are uniformly distributed over all the memory modules.

(iii) All the k” potential processors (since the system consists of a p-stage MIN with

k X k switches) in the system participate in the memory workload creation.

If each processor generates memory requests at the rate of 1' requests per MAC, then

for any input line of a switch in stage-1 of the MIN, the probability

Pr[a request arrives during a MAC] = r

91

The first two assumptions are satisfied by our performance measurement frame-

work, where r is determined by the processor workload. However, since only 12. = N+1

processors (out of the total capacity It") participate in generating memory requests,

the effective request rate at each stage-1 switch must be changed in assumption (iii).

Assume that any processor in the system could be selected to participate with equal

probability. Now, for any switch input at stage-1, we have

Pr[input is active] = n/k”

Pr[a request arrives during a MAC I input is active] = r

Pr[a request arrives during a MAC | input is not active] = 0

By using Bayes’ formula [39], we obtain

Pr[a request arrives during a MAC] = r = (1%) - r

Thus, 1" becomes the effective request rate at each input line of stage-1 switches. Using

the new effective request rate, the probability PA that an arbitrary memory request

is accepted by the MIN (from [101]) is given by

r k” r
p _ _P = _ _P

A r n r

where

73—1 k .

7‘,‘=1—(1— k) androzr (4.1)

We do not have a closed form solution for PA, but plots [101] of PA vs. network size

(k?) indicate that PA decreases logarithmically as the network size increases.

On the BBN system, a memory conflict is essentially a conflict at the output line

of a switch in the last stage of the MIN. Hence, it is accounted for by the switch

contention analysis. The average number of wasted memory cycles per request, w, is

easily computed by noting that a request that is rejected i times consecutively before

,

"m

"A, l

V I v

M_

92

being accepted waits for i cycles.

to = :t(1-PA)iPA = l—PA n 1‘
 = _ . _ _ 1

i=0 PA kp ’10

Hence, the average waiting time per request due to contention is

n r

tw= ta t = —-——l to t 4.2w<+o (kw)(+,) ()

Independent, uniformly distributed references are not, however, an accurate model

in the presence of global locks, even if all non-lock references are uniformly distributed.

Hence, the expression above will not apply accurately in situations with a single

“spike” or hot-spot in the memory reference pattern. The hot spot case is analyzed

later in this chapter in Section 4.3.

Contention Time on the Balance

We use the result derived by Das and Bhuyan [31] using probabilistic analysis for

multiple—bus multiprocessors. The derived results hold for a system with n processors,

M memory modules and B buses. We have adapted the expressions for the special

case of a single bus system (B = 1) such as the Balance. Again, no distinction is

made between read and write cycles as for the BBNs, and the analysis is based on

the following assumptions.

(i) The bus operation is synchronous, i.e., all requests are issued at the beginning

of the bus cycle.

(ii) The bus is circuit-switched, i.e., the bus is held for the entire duration of a

memory access.

(iii) The requests generated during a bus cycle are random and are independent of

each other.

(iv) The requests issued in successive cycles are independent of each other.

93

The fourth assumption is unrealistic because a rejected request will indeed be

resubmitted in the next cycle. However, this assumption leads to simpler analysis,

and it does not result in a substantial difference in the actual results [18]. Let r

be the probability with which a processor generates a request in every bus cycle.

The probability that there is at least one request for a memory module M5, when 12

processors participate, is given (from [31]) by

r n

X-1“(1‘7w‘)

The number of memory services requested in a cycle is a Binomial random variable

with parameters M and X. Hence, the expected number of memory requests received

per cycle is MX. Since only one of these requests can be accepted by the bus, the

probability PA that an arbitrary request is accepted can be written as PA = 1/MX.

Now, using an argument similar to that for the BBNs, the average number of wasted

bus cycles per request, w, can be computed as

l—PA 7‘ n

= Z —1'—' ’—

w PA (M) M(1 M)

Therefore, the average waiting time per request due to contention is

tw = wtbu, = ((M — 1) — M (1 — 1%)”) tbu, (4.3)

where tbu, is the bus cycle time (100 ns for the Balance). Note that all the terms

in Eq. 4.3, except n, are constant for a given system and workload. The value of

n = N+1 varies according to the input parameters specified. It should also be noted

that since successive memory requests on the Balance are pipelined onto the bus, the

above equation only provides an upper-bound for the contention time.

Overhead Factors

Recall that TG(0) was used as the unit of normalization in the definition of 9. We

can express Tg(0) = r in terms of the workload parameters and the basic time units

94

Tg(0) = r = ctc+mta+x = w(1—p)tc+wpta+x

Note that we have not added the terms (tuc + tut) in the above expression since

an application with a single process does not need the service of a lock to exclusively

access a shared resource. We can now express the overhead factors in terms of the

time units defined earlier.

Latency Factor.

For the Balance, since there is no distinction between local and remote memory,

there is no additional overhead incurred by remote accesses. The bus latency con-

stituent of the memory access time is subsumed in the basic memory access time ta.

Hence, there is no additional latency overhead, resulting in 9; = 0.

In the case of the BBNs, the latency overhead is contributed by those shared-

data references that are sent out on the interconnection network. Every iteration

contains m references to shared-data, each involving two accesses (read/write), and

one shared access each for acquiring and releasing the lock. Converting the shared-

memory reference count in terms of time, we obtain

0] (2m + 2)“ 2(wp + 1)t1

01 = — = —— = (4.4)

1' 'r w(1— p)tc + wpta + a:

Contention Factor.

The contention overhead is contributed by all shared—data references (in both the

BBNs and the Balance). Using the same arguments as for latency factor above, we

obtain the following result for contention factor for the BBNs as well as the Balance.

Q _ (2m + 2)tC _ 2(wp + 1)tu,
ac = _

r r w(1— p)tc + wpta + a:

 (4.5)

4.1.4 Experimental Results

During the course of our experimentation, more than two hundred input parameter

sets were tested. Each parameter set was constructed by varying the input parameters

according to one of the workload forms shown in Table 4.2. The range of parameters

95

was selected with the goal of observing the sensitivity of 5 and O to diflerent types

of workloads. The data presented in this section are only a few excerpts from the

workloads created to measure pure memory contention characteristics [95] with no

synchronization. Data corresponding to workloads (C and D) with synchronization

in the unit grain are reported in Section 5.1 of Chapter 5.

Table 4.2. Parameter settings for different workload types used in the preliminary

studies

[Workload [N [M [w [p [a:(ps) [

A 0 to max 1 100 0.0 to 0.4 0

B 0 to max M = N + 1 100 0.0 to 0.4 0

C 0 to max M = N + 1 100,500 0.0 to 0.4 0 to 100

D max M = N + l 500 0.1 to 0.4 0 to 150

Value of max chosen based on the number of processors available.

Workload A

This workload represents an extreme case in that it creates a “hot-spot” memory

access pattern by forcing all processes to continually access a single memory module.

The effect of a hot-spot on the efficiency 6 is shown in Figure 4.1 for two different

values of shared-access fraction p.

As can be seen from Figure 4.1, the efficiency drops by more than 50% at N = 20,

p = 0.1 for the BBN systems. The performance degradation becomes even more

pronounced as the values of N and p increase. On the other hand, the Balance is not

affected as much by the hot-spot, since the entire shared-memory of Balance forms

one indistinguishable unit. As long as the mean time between requests is greater than

or equal to the memory-access-time ta, there is no contention at the memory module

and the Balance is able to service the requests efficiently.

Obviously, the deterioration in execution speed in the case of BBN-1 and BBN-2 is

primarily due to the increasing contention overhead 0c. The expression for to (Eq. 4.2),

96

I f I a l f

balance (p = 0.1) -e-—

1 __ __ __~ bbn—l (p = 0.1) 'O— .1

bbn-2 (p = 0.1) +—

0 8 balance (p = 0.4) -O— _

’ bbn-l (p = 0.4) -o—

bbn-2 (p = 0.4) 4—

5(N) 0.6 - ~

0.4 - -*

0.2 - -‘

0 1 M 1 l 1 fii

0 10 20 30 40 50 60

No. of competitors (N)

Figure 4.1. Efficiency vs. N (M = 1,0) = 100,1: 2' 0)

however, fails to explain the phenomenon as it is based on the premise that shared

references are uniformly distributed over the memory modules. An explanation for

the observed behavior is found from [105], a communication bandwidth analysis done

for the RP3 system. It shows that the effective bandwidth of the network reduces

drastically in the presence of a memory “hot-spot”. This is true even when the

fraction of total memory references directed at the hot-spot is as low as 1%. The

severe degradation in bandwidth occurs due to the Tree Saturation E'flect described

in Chapter 2, which not only deteriorates the access time for the hot-spot references,

but penalizes other references as well.

Workload B

This workload highlights the hardware overhead characteristics of each architecture.

Figure 4.2 shows the trend in efficiency as the number of processors executing con-

currently is varied. Since at = 0 in this case, all the overhead is due to communication

latency and contention in hardware. Clearly, both 01 and 0c depend on the shared-

access fraction p and increase linearly with p as indicated by Eqs. 4.4 and 4.5. For

97

(18

{(N) 0.6

balance (p = (LIV-Ae—

0.4 bbn-l (p = 0.1) 4— -

bbn-2 (p = 0.1) +—

0.2 ' balance (p = 0.4) Q— -

bbn-l (p = 0.4) -0—

0 1 1 1 b - =

0 10 20 30 40 50 60

No. of competitors (N)

Figure 4.2. Efficiency vs. N (M = N + 1,00 = 100,3 2 0)

the Balance, 0; = 0 and, again, the loss in efficiency is little. Notice that for the

BBNs, 5 drops initially but remains relatively flat for higher values of N. This is due

to the fact that as N increases, the number of memory modules also increase and the

data references get redistributed uniformly over the memory modules. The efficiency

curve for BBN-2 drops off faster than the than the corresponding curve for BBN-1.

This can be inferred by examining the expression for tc (Eq. 4.2). The factor (n/ kp)

in this equation signifies the fraction of the network capacity that is occupied. For a

given value of N, this factor is larger for the BBN-2 (k = 8,p = 2) than for BBN-1

(k = 4, p = 4), thus yielding a larger value for tC for BBN-2. However, the relatively

flat shape of the curves for higher values of N points to the fact that the systems can

be utilized better by using a larger number of processors to compensate for the loss

in efficiency due to latency and contention.

4.2 MAD Workload Parameters

The major consideration in memory system design for multiprocessors is that the

memory bandwidth must match the memory demand of the processors. The effec-

98

tiveness of the memory design in meeting this goal depends not only on the organiza-

tion of the memory hierarchy, but also on the distribution of the shared data in the

hierarchy, the memory reference pattern of the program, and the locality of memory

references. In addition to temporal locality and spatial locality of references, parallel

computing also makes a new type of locality, called processor locality, desirable. To

keep high processor locality, unnecessary interleaving of references by more than one

processor to the same memory data should be avoided.

It is clear that the workload used to evaluate the memory performance can have a

strong influence on the results. For example, a (perhaps artificial) workload exhibiting

little or no locality of reference will tend to favor a very simple processor—memory

interconnection network built out of fast, dumb switches over a network with smarter,

slower switches. Hence, the selection of appropriate workloads of interest is of prime

importance to the success of the experimental study.

4.2.1 Unit Grain Characterization

The domain of the parameter space for investigating the shared-memory performance

is prohibitively large. Unfortunately, measurement data about the behavior of real

workloads are scarce. So, it is not possible to make performance comparisons using “a

typical, real workload”. Therefore, we adopt a flexible parametric model of unit grain

characterization that facilitates the exploration of performance over a wide spectrum

of memory access workloads. The attributes selected for the unit grain should help

probe the memory system systematically by creating diverse sets of memory address

streams to determine its sensitivity to the different workload characteristics. These

workloads not only measure the sustained memory bandwidth under different memory

demands, but also highlight potential bottlenecks. The unit grain characterization

selected for this purpose is summarized in Table 4.3.

Characterization of gm:

The shared-memory access granule gm is characterized by a 4—tuple of attributes:

gm = (p, d, s, m). The first attribute, p, simply indicates the probability of a shared

99

Table 4.3. Unit grain attributes for studying memory access behavior

EGranule] Attribute Meaning [

common N number of competitor processors

M number of shared data elements

p probability of write access to shared memory

gm d initial distance of concurrent address streams

s stride of memory access

m number of shared memory accesses per granule

96 c number of basic computation units (BCUs)

g, (p non—existent

data reference being a write access. In other words, p = 0 implies that all accesses

are reads, and p = 1 implies all accesses to be writes. As mentioned earlier, writes

to shared data by multiple processors are typically performed within critical sections

in a mutually exclusive fashion unless the concurrent writes are guaranteed to be

consistency preserving.

The next attribute, d, determines the initial disposition of the concurrent memory

reference streams emanating from the processes executing in parallel. It denotes

the distance between the starting addresses of shared data access of each processor

expressed as number of shared data elements. In other words, if there are M shared

data elements in all, then the processor P,- begins its string of memory accesses with

element i x d (modulo M). Thus, if the shared data elements are accessed with

regular stride, then the attribute d can be used to stagger the starting addresses of

multiple processors in any desired fashion. For instance, a value of d = 0 causes all

participating processors to begin their shared data access with the 0‘“ element.

The attribute 3 represents the stride of shared data access from one memory ac-

cess to the next, thus defining the spatial distribution of the memory request streams.

By manipulating the access stride, the effect on performance of the mapping strate-

gies used to assign elements of an array to the memory banks at a given hierarchy

can be evaluated. Depending on how the shared data elements are distributed over

the memory hierarchy, using different access strides will cause the memory request

100

transactions to traverse over different components of the processor—to—memory inter-

connection. Figure 4.3 illustrates the use of the attributes d and 3 together to create

a variety of memory access patterns for both one-dimensional and two-dimensional

shared data structures.

M

M

(a) One-dimensional data access

POP1P2P3 POP1P2P3

d=8.s=l d=8,s=9

(Assume column-major storage)

(b) Twodimensional data access

Figure 4.3. Creation of memory access patterns using attributes d and s

101

Finally, the attribute m denotes the number of memory accesses to be performed

within a single memory-access granule. The value of m determines the granularity

of shared data access within a grain. The main purpose of changing this attribute is

to control the density of memory requests, thus highlighting the interaction between

request bursts and idle periods.

Characterization of gc:

Since all the computation within granule gc operates purely on processor private data

out of a private memory space (assumed to be available locally), by our definition, the

computation granule does not alter the memory interference behavior of the shared

data access stream as it is external to the processor. Its only influence is setting

the memory access rate and, hence, the temporal distribution of the shared data

references. So we have characterized the computation granule gC by simply a I—tuple

consisting of a delay count: 96 = (c). The attribute c represents the number of

computational steps performed within a unit grain, and is expressed in terms of a

“basic computation unit” (BCU). The basic unit of computation chosen for granule

9c is a simple delay loop with a loop count of 1. Alternate BCUs such as a single

floating-point computation could be used to highlight the floating-point performance.

Characterization of gs:

As only the shared memory access performance is of interest here, the null charac-

terization was chosen for the synchronization granule, i.e., g, = ¢. When the MAD

kernels are used in the hierarchical performance framework of Figure 3.5 to measure

the incremental overheads due to memory contention, a non-null characterization of

9. could be used. The handling of a workload with g, 5:5 <15 by the MAD kernels is

described in Section 4.4.

Using the individual granule characterizations, the definition for the unit grain G

can be written as the 3—tuple of tuples.

G = ((p,d,s,m), (C), ‘15)

102

Both homogenous and heterogenous workloads can be created by selecting different

attribute values for G; and Ge.

4.2.2 Output Metrics

The metric used to observe the trends in the memory contention performance of

an input workload, as a function of the degree of interference N, is the unit grain

efficiency {m(N) as defined by Eq. 3.22. A value of {n.(N) = 1 would seem to indicate

that the concurrent memory access streams are independent of each other and do not

encounter any conflicts at all. A value of £m(N) < 1 reflects significant conflicts with

the competitor processes leading to extremely high access latencies.

The cumulative memory interference \Ilm(N) can be computed from {m(N) using

Eq. 3.23. Also, from Eq. 3.24, it is known that the incremental memory interference

wm(N) is equal to \Ilm(N) in the case of the MAD kernels. Therefore, we have the

following relationship between the efficiency and interference measures.

1€m(N)

‘I’mUVl -m— : ¢m(N)-

It should be emphasized that the efficiency metric is a measure of the relative

performance of a workload with N competitors as compared to its performance 'with

no competitors. Similarly, the interference metric is also a relative measure in that

it presents the net contention overhead as a fraction of the uncontested unit grain

execution time, i.e., the number of unit grains that could have been processed during

the time lost due to overheads. Thus both the measures are scaled in terms of the

uncontested unit grain time T. The implication of this for two workloads with identical

absolute contention performance (i.e., same net overheads) is that the one with the

larger amount of work per unit grain (i.e., larger 7') will be adjudged as the more

efficient of the two.

103

4.3 Concurrent-Access Workloads

Concurrent-access workloads, with no lock-based synchronization within the unit

grain (i.e., g, = 43), were designed and used [93] to characterize the impact of concur—

rent memory reference patterns on the shared memory performance. The increased

access latencies observed in this case are purely due to access conflicts in hardware and

the overhead of maintaining the consistency of replicated data over the memory hier-

archy. The workloads have been employed to measure and compare the performance

of the Sequent Symmetry and the BBN TC2000 systems.

The shared data, with M elements, were allocated using the shmallocO call on

each machine. On the Symmetry, the data elements are interleaved across the memory

modules with a interleaving granularity of 32-bytes. On the TC2000, the shared data

use shared, uncached memory. If the system is configured with interleaved memory,

then the shared data is interleaved. However, since the current version of the nX

operating system does not support interleaving, the shared data is scattered across

the allocated cluster instead.

We conducted experiments using a number of parameter families. Each family was

designed to measure the effect of a particular grain attribute on the resultant con-

tention and, hence, unit grain efficiency. The spectrum of input parameters included

both homogenous and heterogenous settings. The heterogenous parameter families

were particularly useful in revealing the interactions between concurrent read and

write streams, especially on cache-based systems such as the Symmetry.

4.3.1 Homogenous Workloads

In these experiments, the attributes for the test and competitor grains were set to be

identical, i.e., G: = Gc. Thus, the resultant performance degradation when concur-

rent grains with identical execution behavior compete was measured.

104

Spatial Distribution

By manipulating the stride s of shared-data access, and by choosing a value of M

large enough to cause a complete sweep of all the memory modules, the effectiveness

of the interleaving of the main memory system is probed. Changing the value of s, in

effect, creates different spatial distributions of the memory access stream generated

by each process. In Figure 4.4, the efficiency of both read and write accesses is shown.

The observed efficiency £m(N) of a given workload provides a measure of the potential

increase in the memory bandwidth for that workload by a factor of (N+ 1)£m(N). By

examining the input parameters, it can be seen that all processors start their access

from the shared-data element 0 (since d = 0) and perform subsequent accesses with

identical strides. For read access, the Symmetry scales fairly for s = 0, 2. However, for

s 2 4, every access to a shared-data element results in a cache-miss (since the cache

line length is 16) forcing a memory read transaction over the bus. The bus, therefore,

begins to saturate at N = 14. For write access, a stride of 0 causes repeated writes

to the same location by all processes. This results in heavy cache-invalidation traffic

on the bus in addition to severe memory module contention. This is reflected by a

steep drop in the efficiency of the grain as early as for N = 2. For other stride values,

there is still cache-invalidation traffic on the bus, although not as severe as the s = 0

case, since every process writes to the same data locations in sequence. Hence, the

memory bandwidth saturates (reflected by the extremely low value of £m(N)) right

at the outset with N = 6. However, by distributing the writes so that all processes

do not trace the same sequence of addresses, the write performance could be much

improved. The TC2000 scales well for both reads and writes for all strides except

3 = 0, which is effectively a hot-spot scenario [119].

The static characterization (R00, f1/2) of the memory access performance for var-

ious stride values appears in Table 4.4. The parameter C1/2 = 0 since there is no

synchronization granule present in the concurrent-access workloads. The access pat-

terns selected have the attribute d = 0 implying that all processors start with the first

shared data element and trace the exact same sequence of elements in their respective

memory reference streams (except in the random stride case). The standard unit of

105

Read Access Write Access

I I I I I

l 1

0.8 0.8

{...(N) 0.6 £m(N)0.6

0.4 0.4

0.2 0.2

0 L 1 1 1 1 0 ‘

0 4 8 12 16 20 0 4 8 12 16 20

No. of competitors (N) No. of competitors (N)

(a) Sequent Symmetry

Read Access Write Access

I I I T I T I I I I I I I

l - l

0.8 - s = 0 -><—-[0.8

s = 2 +-

_ s = 4 -°—s§m(N) 0.6 s = 8 Q_ Em(N)0.6

s = 16 -°—
0.4 f- 3 ___ 23 _._'* 0.4

0.2 *- ‘ 0.2

0 l l I l I l l l 0 I l I l l l l 1

048121620242832 048121620242832

No. of competitors (N) No. of competitors (N)

(b) BBN TC2000

N, M = 128K, G, = Gc(p=0/1,d =0,§,m =1,c=0)

Figure 4.4. Effect of spatial distribution of memory access stream on performance

106

computation chosen for granule 9c is a simple delay loop with a loop count of 1. The

much higher value of the parameter R00 for the BBN TC2000 is a consequence of its

RISC instructions compared to the CISC instructions of the Sequent Symmetry as

well as its faster clock rate.

Table 4.4. Static characterization parameters for a homogenous workload with

M =128K,G¢ = Gc = (gm = (0/1,0,.§’,1),gc = ¢,g, = (1)).

Stride of Sequent Symmetry BBN TC2000

Access R00 = 0.6 x 106/second R00 = 4.9 x 106/second

Memory Read Memory Write Memory Read Memory Write

(3) f1/2 f1/2 f1/2 f1/2

0 0.052 0.066 11.45 11.71

1 0.288 0.150 11.47 10.75

2 0.520 0.432 11.48 10.75

3 0.777 0.753 11.48 10.76

4 1.002 1.060 11.49 10.76

6 1.012 1.053 11.50 10.76

8 1.037 1.076 11.50 10.77

16 1.032 1.083 11.53 10.80

23 1.030 1.089 11.56 10.83

random 1.267 1.295 13.31 12.68

The f;/2 parameter for all access strides is much higher for the BBN TC2000

pointing to the fact that there is a large disparity between the computation and

shared memory access speeds on that system. Another interpretation of this fact is

that for a given target rate of computation, a much larger computational granularity

per shared data access is necessary on the TC2000 as compared to the Symmetry.

Also noticeable in Table 4.4 is the fact that f1/2 is relatively insensitive to the stride

of access 3 on the TC2000. This is a consequence of the absence of data caching thus

necessitating a majority of the data accesses to go out over the network incurring

the worst—case latency. On the other hand, the parameter f1/2 on the Symmetry is

relatively lower for s = 0, 1, 2, 3 than for higher values of s. This is as a result of some

107

of the data accesses being satisfied by the cache for s < 4. For 3 2 4, every access

results in a cache-miss as the cache line size is 16 bytes on the Symmetry.

Sequent Symmetry

0.4 -

N =10 o

0.2‘ N = 20 o -

0 l L l l

0 2 4 6 8 10

No. of computation steps (C)

67, M = 128K, G, = Gc(p= 0/1,d= 2,3 =16,m =1,c= 0)

Figure 4.5. Effect of temporal distribution of memory access stream on performance

Temporal Distribution

The variation of the density of memory requests of each processor is accomplished by

altering the number of computation steps performed within the computation granule

gc. This corresponds to a shared memory access followed by a subsequent interval

of c units of delay with no memory access. Figure 4.5 shows the improvement in

unit grain efficiency that is achieved as a consequence of increasing the length of ye

on the Symmetry. The effect is particularly striking for write operations, since the

intervening computational delay without any bus accesses provides sufficient time for

the cache-invalidation traffic on the bus to reach quiescence.

108

Memory Hot Spot

The interference profiles generated by setting M = 1 is indicative of the performance

of the execution grain under severe contention (hot spot) conditions. In these ex-

periments, the processors not only contend for the global interconnection network,

but also for a single shared-data item. This performance is depicted in Figure 4.6.

The write performance on the Symmetry degrades severely. The reads on Symme-

try cache the shared-data item on the first access, and operate out of the cache

on subsequent accesses, thus exhibiting no degradation. However, writes to a sin-

gle location by multiple processors cause the shared location to bounce between the

processor caches (ping-pong effect) thus generating an overwhelming amount of cache-

invalidation traffic causing bus saturation. This is apparent from the extremely low

value of {m = 0.025 with just 3 processors executing concurrently, i.e., N = 2.

(a) Sequent Symmetry (b) BBN TC2000

I I I T I I I I I I I I

1 1 read 4*“

write +-

0.8 0.8 -

£m(N)0.6 {m(N)0.6 .

0.4 0.4 -

0.2 0.2 -

0 I 0 1 1 1 1 1 1 1 1

0 4 8 12 16 20 0 4 8 12 16 20 24 28 32

No. of competitors (N) No. of competitors (N)

1x7, M: 1, G. =Gc(p=0/1,d=0,s =0,m =1,c=0)

Figure 4.6. Effect of contention for a memory location (hot-spot) on performance

On the TC2000 both reads and writes exhibit a severe bottleneck. To analyze

the performance of hot-spot accesses, we resort to the expression for the maximum

109

(a) Sequent Symmetry (b) BBN TC2000

I I r I

N = 10 '9—

1 .- N = 20 +— . 1

0.8 0.8

5,..(N) 0.6 {m(N) 0.6

0.4 0.4

0.2 0.2

0 1 1 1 1 0 7 J 1 1 1 1 1 1 1 1

0 2 4 6 8 10 0 10 20 30 40 50 60 70 80 90100

No. of computation steps (C) No. of computation steps (c)

N,M=1,Gt=Gc(p=1,d=0,s=0,m=1,5)

Figure 4.7. Effect of length of computation on hot-spot write performance

network throughput per processor as derived in [105]. The asymptotic maximum

value rm” of per-processor network throughput as determined by the hot spot access

request rate is given by

1

rm” =1+h(P—1)
 (4.6)

where P is the number of processors (it is assumed that there are an equal number

of memories), r is the number of network packets emitted per processor per switch

cycle (0 S r S 1), and h is the fraction of memory references directed at the hot spot

(i.e., each processor emits packets directed at the hot spot at a total rate of rh).

Using the unit grain attributes, the net memory request rate per processor is given

by r’ = m/r. If tm denotes the network switch cycle time, then the memory request

rate per processor per switch cycle becomes r = mtw/r. For the workload shown

in Figure 4.6(b), P = N + 1 and all accesses are to the hot spot making h = 1.

The maximum per-processor request rate, therefore, is limited to rm” = 1/(N + 1)

using Eq. 4.6. In other words, the following constraint should be satisfied to prevent

110

network saturation.

mtm 1 r

<——— => N l<

r -N+1 + "mt“,

 r: (4.7)

Since m = 1 and r = tm (tm being the average memory access time) for the workload

of Figure 4.6(b), the limiting value of N is given by N + l S tm/tm. As can be seen

from the figure, the network begins to be saturated at N = 18.

Figure 4.7 shows the improvement in the efficiency of writes to a hot spot resulting

from an increase in the length of computation c within a unit grain. The increased

computation time on the Symmetry allows the cache-invalidation traffic to subside

between consecutive hot spot writes. On the TC2000, increasing c results in a larger

value of r = etc + mtm in Eq. 4.7 thus increasing the limiting value of N at which

network saturation sets in.

Size of Shared Data

By manipulating the size M of shared data, all memory references on the Symmetry

can be kept in the cache, or made to flush cache on each pass through the shared-

data. The TC2000, on the other hand, does not cache shared data. However, varying

the shared-data size on the TC2000 revealed some interesting facts. The efficiency

{m was observed to behave identically for values of M from 1 through 4. Progressive

improvement in (m was observed for each increment of 4 in the value of M (Figure 4.8).

This would imply that the scattering of shared-data by the system across cluster

memory modules was done in chunks of 4 elements (i.e., 16 bytes). Thus, going from

M = 4 to M = 16 (and so forth) increases the number of memory modules, for which

the processors contend, from 1 to 4 (and so forth) leading to a decrease in contention.

Random Memory Access

Most multiprocessor memory organizations are designed to use special techniques

(such as memory interleaving, skewing) to maximize the performance of uniform

memory-access patterns. But the performance of the memory hierarchy under condi-

111

BBN TC2000

I I I I I I I I

1 ~_ _ ‘ -

0.8 - -1

{m(N)o.6 - -

04 [- c : r _

M = 4 -e— C : 3

0.2 ~M = 16 .._ _ , , ..
M .._.. 64 +_ ‘ ' ' : : : : a

0 = 256 +1" 1 1 1 1 1 1

0 4 8 12 16 20 24 28 32

No. of competitors (N)

-o

N, 112,0, = Gc(p=0,d=1,s =1,m =1,c=0)

Figure 4.8. Effect of shared-data size on read performance

tions that do not display such uniformities in memory access is also of interest. So,

we measured the memory bandwidth under random access conditions, expressed as

Words Accessed Randomly Per Second (WARPS), to quantify this performance. This

is done using a homogenous workload consisting of only memory-access granules gm

and varying its stride attribute s randomly. The results of these tests are presented

in Figure 4.9. The read and write performance on the TC2000 are comparable and

appear to scale reasonably with the number of processors. The read performance on

the Symmetry scales (for the number of processors used in the experiment), but the

writes begin to show saturation at around 13 processors. This difference is, again,

due to the extra cache-invalidation traffic injected into the bus as a result of writes

to shared—data.

4.3.2 Heterogenous Workloads

Using a heterogenous workload, we have investigated the interactions that occur be-

tween concurrent read and write memory access streams. In particular, we demon-

strate using the following two scenarios:

112

in: Same Dunc 13px 17px 21px

Irina-m.

Figure 4.9. Random access performance expressed in MegaWARPS

(a) Case 1: the test grain performs read (write) accesses to shared data with uni-

form stride, while the competitor grain performs write (read) accesses with

random stride,

(b) Case 2: the test grain performs read (write) accesses to shared data with uni-

form stride, while the competitor grain performs write (read) accesses to a single

shared (hot spot) location.

The grain efficiencies for both these cases is shown in Figure 4.10.

Performance on the Symmetry, when G, performs read accesses, steadily deterio-

rates. It is markedly worse for Case 2 due to the heavy invalidation traffic generated

by the competitor grains while repeatedly writing to one shared location. When Gt

executes write accesses on the Symmetry, Case 2 corresponds to the competitor pro-

cessors operating out of their private caches thus causing no bus traffic and memory

contention. Hence, virtually no degradation is experienced by the test grain. The

interference from the competitor grains on the TC2000 is fairly small in both cases,

owing to the much higher bandwidth of the multistage network and the non-blocking

switches used.

The improvement in execution efficiency of G, on the Symmetry, for Case 2 above,

as a result of introducing computational delay is shown in Figure 4.11. Again, the

cache-invalidation traffic on the bus reaches quiescence during the computational

0.8

§m(N) 0.6

0.4

0.2

0.8

{m(N) 0.6

0.4

0.2

0

Test grain: READ

I I I I I

 Casel -9-‘

Case2 *—

I

 l l l l l

0 4 8 12 16

No. of competitors (N)

20

113

0.8

5,...(N) 0.6

0.4

0.2

(a) Sequent Symmetry

Test grain: READ

I I I j I I I I

I l

” Casel -6—-

Case2 *— l l l l l l l l

0 4 8121620242832

No. of competitors (N)

0.8

§m(N) 0.6

0.4

0.2

0

(b) BBN TC2000

N, M = 128K, Gt 91$ Gc (described in text)

Test grain: WRITE

I I I I I

- Casel '9-u

Case2 *—

l l l l l

0 4 8 12 16 20

No. of competitors (N)

Test grain: WRITE

I I I I I

ITT

I l

- Casel +-

Case2 -°—

L L l l l

0 4 8121620242832

No. of competitors (N)

 l l I

Figure 4.10. Interaction between read and write memory-access streams

114

Sequent Symmetry

I I I I I f I I I

1'- : =¢:?"q—.__:==

0.8b

d

§m(N)o.6- -

04'-
N=5-6— -4

N=10-°—

02 N=15‘*_ .

1 N=20'°—

01 I I I I I J i J

0 10 20 30 40 50 60 70 80 90 100

No. of computation steps (c)

1?, M: 128K, G.(p=o,d=0,s =4,m =1,c=0),Gc(p=1,d=0,s =0,m=1,é)

Figure 4.11. Effect of length of computation on interference between read and write

streams

delay, resulting in faster execution time. The amount of computation necessary for

a given N to restore the execution efficiency to a requisite level can be determined

from this characterization graph. For example, a value of c = 20 is needed with 10

competitors to reach an efficiency of 0.9, whereas a value of c = 50 is needed with 20

competitors to reach the same level of efficiency.

4.4 Dual-Mode Access Workloads

Workloads consisting of concurrent accesses to shared data (granule gm 94 (p) as well

as exclusive access to shared data within critical sections (granule g, aé g6) can be used

to characterize the combined degradation of performance resulting from memory and

lock contention. The MAD kernels, for such dual-mode access workloads, measure

the incremental overhead (and therefore incremental interference) resulting from the

dynamic nature of pure memory access conflicts. The overheads arising from the

locking semantics of the critical section access is precluded from the measured per-

115

formance degradation by transforming the shared lock variable in 9, into private lock

variable and replicating it into each processor’s local memory during the execution

of the MAD kernels. This leaves the memory contention behavior for shared data

accesses intact, but eliminates the performance losses due to lock contention (which

depends upon the implementation of the locking primitives) and queuing delay for

mutually-exclusive critical section access. The lock contention and queuing delay

characteristics are measured by the SAD kernels.

The incremental interference charcterization studies, including both memory and

lock interference, for dual-mode access workloads are presented in Chapter 5.

4.5 Summary

The performance of the shared memory organization of a multiprocessor depends not

only on the characteristics of the memory hierarchy itself, but also upon the character-

istics of the memory address streams and the interaction between the two. The MAD

kernels described in this chapter provide an effective testbed for characterizing the

shared memory performance for a variety of memory access workloads. These kernels

were employed to measure and compare the performance of the Sequent Symmetry

and the BBN TC2000 multiprocessors.

The static characterization parameter R00 for the TC2000 was much higher than

the Symmetery on account of its simpler RISC instruction set and faster clock rate.

With the shared data uniformly distributed over the available memory modules, the

static parameter f1/2 was insensitive to the stride of data access on the TC2000 in the

absence of caching. However, on the Symmetry, f1/2 was related to the proportion of

the data references satisfied by the cache for a given stride of access. The Symmetry,

being a bus-based machine, displayed limited scalability in memory performance due

to the bandwidth saturation of the bus. The onset of saturation was much faster

when writes to shared-data were performed due to the additional cache-invalidation

and write-back traffic on the bus. The degradation in performance was most severe

when continuous writes to a single shared location were performed. On the other

116

band, the TC2000 with a multistage network interconnection, was more tolerant

to increasing bandwidth demands from the concurrent grains and displayed better

scalability as long as the shared-data was distributed relatively evenly across the

available memory modules. Performance degradation in the presence of memory hot-

spots was quite severe for reads and writes alike. The read and write performance

were always comparable on the TC2000.

The MAD kernels can be used either independently to perform a detailed eval-

uation of the sensitivity of a shared memory organization to various memory access

parameters; or they can be used in conjunction with the SAD and BAD kernels to

isolate the incremental overhead contribution of memory access conflicts from the to-

tal performance loss experienced by an input workload. The MAD kernels have also

been used at Oak Ridge National Laboratory to perform a preliminary investigation

[36] of the memory access performance of the new KSRl multiprocessor from Kendall

Square Research.

CHAPTER 5

SAD KERNELS AND

SYNCHRONIZATION

PERFORMANCE

On shared-memory machines, processors communicate by sharing data structures. To

ensure the consistency of shared data structures, processors perform simple operations

by using hardware-supported atomic primitives, and coordinate complex operations

by using synchronization constructs and conventions to protect against overlap of

conflicting operations. Inter-processor synchronization can become a significant per-

formance limiting factor on large-scale multiprocessors. For the class of asynchronous

multi-phase algorithms considered in this dissertation, the most prevalent form of

synchronization construct used within a phase is the critical section that must be ac-

cessed in a mutually-exclusive manner. Entry into critical sections is usually guarded

by spin locks and may be executed an enormous number of times in the course of a

computation. Quantitative assessment of the synchronization performance of a com-

bination of given workload and spin-lock implementation provides valuable insight

into the scalability of the synchronization technique to large-scale multiprocessors.

The critical factors affecting spin lock performance and the various design imple-

mentations commonly used have been discussed in Chapter 2. The impact of critical

section synchronization and the spin lock implementation used on the overall perfor-

117

118

mance of a workload is our focus in this chapter. The SAD kernels and the related

framework are presented as an effective testbed to characterize the synchronization

performance of a multiprocessor for a variety of workloads and spin lock implementa-

tions. The SAD kernels can be used in isolation to evaluate the sensitivity of a chosen

synchronization method to various workload parameters; or they can be used in con—

junction with the MAD and BAD kernels, as per the hierarchical model presented in

Chapter 3, to characterize the incremental loss in performance for a given workload

resulting from synchronization overheads.

5.1 Preliminary Studies

The performance studies described in this section are a part of the same suite of

preliminary studies described in Section 4.1. The results presented here describe the

parallel execution performance degradation in the presence of synchronization locks.

Besides the latency and contention overhead factors arising due to memory contention

described in Section 4.1, the presence of lock-based mutual exclusion operations in-

troduces two additional sources of runtime overheads, namely, locking latency and

waits due to lock conflicts. Developing a model for the lock related overheads and

measuring them for an input workload is the subject of this investigation.

The parameters used to specify input workloads are (N, M, c,m, :c), which have

the same semantics as described in Section 4.1. However, a: 74 0 for the workloads used

in these studies. An identical copy of the generic program based on these parameters,

whose structure is illustrated in Figure 5.1, is executed by each processor. The LOCK

and UNLOCK routines were implemented by us using the low-level locking primitives

provided on each system. Furthermore, the LOCK routine was instrumented to count

the amount of delay incurred by the invoking processor before acquiring the lock. This

data was used to compile the total queuing delay encountered by a workload due to

lock contention. The two performance metrics computed for each workload are unit

grain efi‘iciency (5) and overhead factor (6) as before.

 smarts-sagas“
':‘-§:::E=é:§-&c&fsozx ‘.sassitiaéé

Figure 5.1. Generic structure of program executed by every processor

5.1.1 Synchronization Overhead Factors

In addition to the memory access overhead factors defined in Section 4.1, the loss

in workload efficiency also includes the lock related factors, namely, the software

overhead of executing the LOCK/UNLOCK routines and the queuing delay due to

lock contention. If we denote the software execution overhead time 0,, and the

queuing delay due to lock contention as Oq, then the expression for the total overhead

factor 9 can now be written as

6 _ TG(N) -TG(0) _ 01+0c+0.+0q

— Tam) — Tam)

=01+0c+03+0q

which gives the two new normalized overhead components 0, (software factor) and

0,, (lock factor). Using the definitions of 6 and 9, it can easily be verified that

1 1

1+6 —1+(01+9.+0,+0.)

6 = (5-1)

which provides an indication of the trend in efficiency 6 as the overhead factor 9

varies.

120

Software Factor.

The pure software overhead arising out of a call to the LOCK and UNLOCK

routines is a constant for a given system and a given implementation of these routines.

O. in: + M
08 = — =

r w(1-p)tc+wpta+:c

 (5.2)

Lock Factor.

This overhead arises from the contention for a global shared lock and the conse-

quent queueing delay to acquire the lock. Let q denote the probability that at any

instant of time, a process P,- is executing in region-II of Figure 5.1 (in the absence

of any lock contention). Note that a process in region-II could be in one of three

possible states: waiting to acquire the lock, executing in the critical section or trying

to release the lock. We can express the probability q as the proportion of the iteration

time spent by process P,- in region-II.

q _ a: + 2tw + (tn: + tul)

w(1— p)t. + 2(wp +1)(t. +t1 H...) + x + (ta. + tux)

 (5.3)

Since the workload of all the concurrent processes in our model is identical, the

probability q is the same for all of them. Now, let W be the number of processes

already in region-II when process P.- arrives at region-II. It is clear that W is a

Binomial random variable with parameters N and q, i.e., W ~ B(N,q), since there

are N other processors contending for the critical section. Hence, the expected number

of processes in region-II when P,- arrives is given by

E[W] = Nq

As the implementation of our locking protocol assigns the lock to processes in a

FCFS fashion, the process P.- must wait for E[W] processes before it can acquire the

lock. Thus, the average waiting time for the lock is given by

Oq = E[W] ' (.15 + tw +tu1)

121

We can now express the lock factor as

0 _ Oq _ Nq($+tw+tu1)

q — T(l) _ w(l—p)tc+wpta+a:

 (5.4)

5.1.2 Experimental Results

Once again, the workloads were created as per the parameter variations shown in

Table 4.2. The performance data presented in this section correspond to the workload

types B, C and D that include a non-empty critical section (:6 74 0) in the unit grain.

I I I I I I

—‘
A d
v v

0-8 balance (a: = Ops) -e— ..

bbn-l (:1: = Ops) ..—

bbn-2 (:1: = 0118) 4‘— -{(N) 0.6 A
balance (x = 50/18) *-
bbn-l (x = 50118) '0- 10.4 ..
bbn—2 (a: = 501”) "‘—

o.2 -

d

0 1 l l g l FT

0 10 20 30 4° 5° 60
No. of competitors (N)

Figure 5.2. Efficiency vs. N (M = N + 1,w = 100,p = 0)

Workload B

Figure 5.2 illustrates the effect of introducing synchronization points into the program

workload, where the synchronization occurs through a globally shared lock. Notice

that even in the absence of any other shared-data reference (p = 0), the efficiency

drops by more than 50% in the BBN-1 and the BBN-2. This, once again, vindicates

122

the existence of the hot—spot problem on the BBNs — the shared lock being the

hot-spot site in this case. The dominant contributon to total overhead was found to

be from 0,,. From Eq. 5.4, it can be seen that 0,, increases linearly with N, but the

bulk of the delay in the expression emanates from tw for a hot-spot lock reference.

The Balance, once again, does not suffer a significant loss in efliciency from the the

globally shared lock.

Workload C

The size of critical sections in parallel programs is usually kept small to alleviate the

queueing delays at the critical section entry points. Since critical sections introduce

serialization bottlenecks into an otherwise parallel program, the granularity of the

computation performed in parallel between these synchronization points must be

appropriately selected to compensate for the synchronization overhead. Otherwise,

the effective speedup gained from parallelization is sacrificed.

I l I

balance (a: = 100) -e—

1 _ bbn—l (w = 100) -O— _

\ bbn-2 (w = 100) +—

0 8 ' balance (w = 500) -O—

' o bbn—l (w = 500) -o— -

bbn—2 (w = 500) +-

£(N) 0.6 - 1

0.4 r _

0.2 - 1

0 1 1 1 1 1 1

0 10 20 30 4o 50 60

No. of competitors (N)

Figure 5.3. Efficiency vs. N (M = N +1,p = 0.1, :1: = 30ps)

Figure 5.3 shows how efficiency is affected when the program granularity is changed

123

from w = 100 to w = 500. As can be seen from the graph, the efficiency improves for

all the three systems when granularity is increased, keeping other parameters fixed.

At N = 20, the increase in efficiency is approximately 24% for the Balance, 48%

for the BBN-1 and 36% for the BBN-2. A key reason for this improvement can be

ascribed to the fact that process executions get staggered in region-I (Figure 5.1),

thus reducing the probability that the arrival of two processes at the critical section

coincide. Examining Eq. 5.3 for this probability q, it can be seen that an increase in w

increases the denominator thus yielding a smaller value of q. That, in turn, produces

a smaller 9,, in Eq. 5.4.

I I M I

balance (p= 0.0) -e—

1 ‘ bbn-l (p= 0.0) -o— -

Q , bbn-2 (p= 0.0) +—

08 balance(p=0.2)-O—

' bbn-l (p = 0.2) -o— ‘

bbn-2 (p = 0.2) +—

£(N) 0-6 balance (p = 0.4) -O- ‘

61111-1 (p = 0.4) ..—

0.4 bbn-2 (p = 0.4) + _

002
\

q

0 1 1 1 1 1

0 10 20 30 40 50 60

No. of competitors (N)

Figure 5.4. Efficiency vs. N (M = N + 1,1» = 100,:6 = 100ps)

Figure 5.4 illustrates the loss in efficiency due to increased contention as N in-

creases for three different values of shared-access fraction p. In the case of the Balance,

increasing p leads to greater contention for the bus bandwidth, thus yielding a higher

value of the contention factor 06. Hence, a steady decrease in efficiency is observed

as p is increased. In the BBNs, however, the additional deterioration in efficiency by

increasing the value of p from zero to a positive quantity is not so striking. This,

124

once again, points to the fact that the performance degradation due to the shared

lock hot-spot when p = 0.0 still remains the dominant cause for overhead at p = 0.2

and p = 0.4.

I I r

balance (:1: = Ops) -e—

bbn—l (a: = Ops) -o— -

bbn-2. = i i :1: = 0ps) +—

' balance (a: = 30ps) -o— _

bbn—l (:1: = 30ps) +—

alance :1: = 100psj -o— ‘

0.8

{(N) 0-6 b (

bbn-l (:1: = 100ps) -o—

0.4 - bbn-2 (a: = 100ps) -11-— -

0.2 - \ -
"\\

0 I I L I I I

0 10 20 30 40 50 60

No. of competitors (N)

Figure 5.5. Efficiency vs. N (M = N + 1,w = 100,p = 0.3)

The influence of critical section length on the overall efficiency of a program work-

load is plotted in Figure 5.5. The efficiency suffers on all the three systems as the

critical section length .r is increased. Increasing the value of :1: results in a process

having to wait for the shared lock for a longer time on the average, as indicated by

Eq. 5.4. However, in the BBNs, the extent of loss in efficiency in going from :1: = 0

to :1: = 30 is far more significant than that from :1: = 30 to :1: = 100. An increase in 0,,

proportional to 2:, as predicted by Eq. 5.4, does not explain this non-uniformity. The

additional overhead, that causes this non-uniform behavior, is due to the introduction

of a memory hot-spot at the site of the shared lock for the critical section.

125

Workload D

This workload was designed to study the effect of the input parameters on the indi-

vidual overhead components. Figure 5.6 plots the individual overhead factors for the

three systems as the degree of concurrency (N) is varied under a fixed shared-access

fraction (p) and critical section length (2:). As explained earlier, the software over-

head is a fixed and constant quantity. The latency factor 01 also remains fixed here

as it depends only on the proportion of shared accesses p. The 0c and 0,, components

increase steadily with n for all the three systems, as predicted by Eqs. 4.2 and 5.4.

For small critical section lengths, a process spends a greater proportion of its time

in region-I of Figure 5.1 and, hence, the execution profile of the concurrent processes

gets evenly distributed in region-I. However, as :1: increases, the lock factor 0,, begins

to dominate as shown in Figure 5.7. This is an outcome of the two-fold effect that the

critical section duration has on 0,, in Eq. 5.4. An increase in the length of the critical

section not only increases the a: term, but also leads to an increase in the probability

q. In fact, as the hardware technology gets faster (i.e., tc, ta and t1 become smaller),

the value of q increases even more for a given computational granularity w (Eq. 5.3),

further accentuating the 0., component. This fact is apparent from the 0,, curve for

BBN-2 which uses a faster technology. To compensate for the decrease in tc, to and

t1, the computation granularity w must be increased to prevent an increase in the

value of q. On the Balance, the unit times tC and to are very large causing the term

w(l — p)tc + 2(wp + 1)(ta + tw) in the denominator of Eq. 5.3 to overwhelm :1: in the

range under consideration. This results in an extremely small value of q thus making

9., negligible. The influence of :1: on 0c is only in as much as the creation of a hot-spot

effect at the global lock on the BBNs.

Figure 5.8 shows the individual overhead components on the three systems as a

function of the shared-access fraction p. Observe that the lock factor, 9,, is the largest

overhead component on the BBNs, whereas the contention factor, 96, is the largest on

the Balance. The presence of a separate dedicated bus for shared lock access in the

Balance segregates the contention for lock access from those for other shared-memory

access. Increased number of shared-memory accesses, as dictated by increasing p,

126

(a) Balance (b) BBN-2

I I I I I I I I I I

0.04 '- -‘ -‘

-]

0.03 [- '-

0.02
_.

0.01

0 0. L

0 5 10 15 20 25 0 5 10 15 20 25

No. of competitors (N) No. of competitors (N)

(c) BBN-l

I I I I r n

0 10 20 30 40 50

No. of competitors (N)

Figure 5.6. Overhead components vs. N (M = N + 1,6) = 500, p = 0.1, :c = 30ps)

127

leads to greater contention for the system bus bandwidth and a consequent increase

in 0c. Changing the value of p also changes the fraction of time spent by a process in

region-I (Figure 5.1). The exact nature of this change on any system is governed by

the relative measures of tc and ta+t1 on that system. Also, note that the normalization

factor TG(0), too, depends on the value of p. If tc > ta-l-th then increasing p results in

a smaller proportion of time in region—I and a smaller value of TG(0). The results are

just the opposite if tc < ta + t1. Hence, the interpretation of the plots in Figure 5.8

is closely related to the ratio of the computational to memory-access speeds of the

individual systems.

I I F I I

4.0 - .1

3'0 ' 611-2 (N = 20)

0

q 2.0 r ‘l

bn-l (N = 60)

1.0 .1

0.0 ‘71: 3]: I ibalancedN = 20) :1:

0 30 60 90 120 150

Critical section length (:L'ps)

I I I I I

0.5 '- .1

0.4 -

0c -

i 1 * balalnce (N =40)

0 30 60 90 120 150

Critical section length (mp3)

Figure 5.7. Overhead components vs. a: (M = N + 1,10 = 500,p = 0.1)

All the performance figures presented so far have been normalized quantities.

However, in order to provide a feel for the absolute speed of each system, we also

enumerate some real execution times. Table 5.1 shows the unnormalized values for

execution times as p varies with a fixed parameter setting of M = N + 1 = 20,

w = 500 and a: = 50ps. It immediately reveals that the BBN-2 has the fastest and

the Balance has the slowest execution times of the three systems. Table 5.2 documents

the unnormalized overhead times corresponding to the same workload as represented

in Table 5.1. The software overhead time, 0. = tug + tut, is not included in this table.

128

It is a fixed quantity for a given system and can be found from Table 4.1.

Table 5.1. Actual execution times (M = N + 1,1» = 500,12 = 50ps)

BBN-1 (N = 60) BBN-2 (N = 20) Balance (N = 20)

P TG(0) TGUV) 6 TG(0) TGUV) E Tam) TG(N) E

(#8) (#8) (#8) (#8) (#8) (#8)

0.1 4627.6 11289.6 0.41 789.7 2115.2 0.37 17748.0 18303.5 0.97

0.2 4208.9 11756.3 0.36 770.8 2199.8 0.35 16086.2 16834.0 0.95

0.3 3815.3 11843.3 0.32 766.1 2256.3 0.34 14494.5 15287.5 0.95

0.4 3455.3 11906.2 0.29 744.9 2273.7 0.33 12984.4 13849.3 0.94

Table 5.2. Actual overhead times (M = N + 1,6) = 500, :1: = 50ps)

BBN-1 (N = 60) BBN-2 (N = 20) Balance (N = 20)

p 01 0c Oq 01 0c 0,, 0: 06 09

(#8) (#8) (#8) (#8) (#8) (#8) (#8) (#8) (#8)

0.1 371.2 1040.4 5178.3 138.2 114.5 1043.2 0.0 367.6 104.8

0.2 742.4 1357.2 5375.8 276.4 221.2 901.7 0.0 537.4 127.3

0.3 1113.6 1605.7 5236.6 414.6 170.5 875.5 0.0 567.9 142.3

0.4 1484.8 1888.9 5005.2 552.8 238.7 707.7 0.0 661.9 119.8

129

(a) Balance (N = 20)

I I I I

0.10 -'
..

0.08 -
..

O hd
9 .1

fac‘tordlo6 _
0C

0.04 "’ //
-

0.02 '- 0 -

fi— 9

0.00 #54:.- z Lia—_—

0 0.1 0.2 0.3 0.4

Shared-access fraction (p)

(b) BBN-1 (N = 60)

I I I I

3.0 -
.1

2.5 - 9 -

Ovhd 2-0 ’ ‘

1.0 -
-*

0'5 7 W3?
"

0.0 - * 4 9.

0 0.1 0.2 0.3 0.4

Shared-access fraction (p)

(c) BBN-2 (N = 20)

I I I I

2.5 "
..

2.0 ' U)1 AG "

Ovhd 1 5 - M

-‘

factors '

1.0 - MN),
_

0.5 -
.1

44%0c

0.0 i A 4ar—

0 0.1 0.2 0.3 0.4

Shared-access fraction (p)

Figure 5.8. Overhead components vs. p (M = N + 1,1» = 500, :1: = 50ps)

130

5.2 SAD Workload Parameters

Although the performance model presented in Chapter 3 can be adapted to evalu-

ate any synchronization mechanism, the form of inter-processor synchronization in

granule g, chosen for the class of algorithms under consideration in this thesis is the

critical section (CS). The critical section is guarded by a pair of LOCK/UNLOCK op-

erations (Figure 5.9), implemented as spin locks, to ensure mutual exclusion. Besides

the performance of a spin lock implementation itself (i.e., latency and throughput),

an important criterion for any lock-based synchronization mechanism in the presence

of many competing processors is the impact it has on other components of grain

execution and vice versa. This mutual interference can be acutely detrimental to

application performance when execution of the code within a critical section is pro-

longed as a result of interference from other concurrent operations, which in turn

causes the serial bottleneck to become more pronounced leading to a greater number

of spinning processors waiting for the lock to be released. The family of SAD kernels

are designed to measure this mutual interference as well as the performance of the

spin lock implementation itself.

5.2.1 Unit Grain Characterization

As was the case for the MAD kernels, due to the scarcity of data on real workloads,

a flexible parametric model of unit grain characterization is again chosen. The at-

tributes selected for the unit grain should help not only in evaluating the selected

spin lock implementation, but also in measuring the waiting time on account of lock

contention and the interference between code executed within and outside of the crit-

ical section. The unit grain characterization selected for this purpose is summarized

in Table 5.3.

Characterization of gm:

The same four-attribute characterization of the shared—data access granule gm as

used for the MAD kernels is chosen for the study of the synchronization behavior

131

Table 5.3. Unit grain attributes for studying synchronization behavior

[Granule] Attribute Meaning]

common N number of competitor processors

M number of shared data elements

p probability of write access to shared memory

gm d initial distance of concurrent address streams

s stride of memory access

m number of shared memory accesses per granule

gC c number of basic computation units (BCUs)

c, number of computation steps in CS

g, m, number of memory accesses in CS

p, probability of a write access in CS

with the SAD kernels. Therefore, gm = (p, d,s,m) where the attributes have the

same semantics as discussed for the MAD kernels.

Characterization of gc:

The single-attribute characterization of the computation granule gc as used for the

MAD kernels is also chosen here. Therefore, 9C 2 c where the attribute c has the

same meaning as in the case of the MAD kernels.

Characterization of g3:

Two factors related to the synchronization operation that have a significant influence

on the speed of execution of a unit grain are the frequency and length of the criti-

cal section. Since the durations of the granules gm and g6 indirectly determine the

frequency of occurrence of the synchronization granule, we characterize gm with a 3-

tuple of additional attributes necessary to control the duration of the critical section

and the shared-data access pattern within it.

93 = (cs, maps)

132

Shared Duh

READ. "-le

Shared Dan

WRITE:
P:"a

Figure 5.9. Critical section structure

The value of the attribute c, indicates the number of computational steps per—

formed within the critical section, using processor private data, expressed in exactly

the same delay unit as in gc. This time interval is marked by the fact that there is

no access to the shared-memory, and thus no contribution to the global interconnec-

tion network traffic, by the processor executing the granule. The attributes m, and

p, together define the nature of memory accesses performed from within the critical

section. The total number of shared memory references within the critical section is

given by m,, while p, indicates the fraction of these references to shared data that

are write operations. All the shared data accesses within this granule are assumed to

go out over the global interconnect thus contributing to network traffic.

Using the individual granule characterizations, the definition for the unit grain G

can be written as the 3—tuple of tuples.

G = ((P, (1,317”), (C): (Caamsapsn

5.2.2 Output Metrics

The metric used to observe the trends in lock contention and the serialization loss due

to synchronization for an input workload, as a function of the degree of interference

133

N, is the unit grain efi‘iciency {,(N) as defined by Eq. 3.22. A value of {,(N) = 1

would seem to indicate that the concurrent processes do not mutually interfere at

all. Furthermore, the relative disposition of the computation performed within and

outside the CS is such that mutually-exclusive accesses to the CS do not result in

any waits. A value of {,(N) < 1 reflects considerable lock contention and execution

serialization to access the CS.

The cumulative lock interference \P,(N) can be computed from {,(N) using

Eq. 3.23. Also, from Eq. 3.25, it is known that the incremental lock interference

1b,(N) is equal to the difference of \Ilm(N) and \P,(N) for a given workload. Therefore,

we have the following relationship between the efficiency and interference measures.

1—€,(N)

MN) = €.(N)

In the case of exclusive-access workloads, since concurrent shared memory accesses are

non-existent (gm = 63), there is no incremental memory interference, i.e., wm(N) = 0,

thus making 1b,,(N) = \P,(N). For dual-mode access workloads, both the incremental

overhead components would be present.

It should be emphasized that the efficiency metric is a measure of the relative

performance of a combination of workload and spin lock implementation with N

competitors as compared to its performance with no competitors. Therefore, al-

though suitable for characterizing the behavior of a given spin lock implementation

with respect to the different workload parameters, it does not facilitate an effective

comparison between two different implementations. The absolute unit grain execution

times, Tg(N), should be used instead for this purpose.

5.2.3 Lock Implementations Studied

We have chosen three spin lock implementations on each of the target systems studied.

The first one is the native LOCK/UNLOCK operations provided on each system

(referred to as the NAT lock) to support parallel programming. This support is in

the form of function calls in a parallel programming library as shown in Table 5.4.

134

Table 5.4. Native lock support on each machine

Procedure Sequent Symmetry BBN TC2000

InitLock s-lock.init (lock) lock 1.; CLEAR

GetLock s.lock (lock) UsLock (lock,de1ay)

ReleaseLock s.unlock (lock) UsUnlock (lock)

The other two implementations selected represent somewhat two extremes of busy-

waiting efficiency. The test-and-test-and-set lock (referred to as the TAS lock) spins by

reading the shared lock variable until it becomes free, and then attempts a test-and-set

operation to acquire the lock. The simple pseudo—code for it is listed in Table 5.5. On

machines with coherent caches, the spin on read eliminates interconnection network

traffic. But upon release of the lock, several spinning processors rush to grab the

lock simultaneously thus inundating the interconnect with test-and-set requests. This

problem is especially acute on systems with invalidation—based cache coherence where

the flood of invalidations as a result of the test-and—set operations cause the shared-

lock location to bounce from one processor cache to another before quiescence sets

in. This effect has also been called the ping-pong eflect. On architectures without

coherent caches, even the spin on read generates heavy network traffic in addition

to creating a memory hot-spot. The TAS and NAT implementations are almost

identical on the Symmetry. But on the TC2000, NAT incorporates a fixed delay

between consecutive polls of the shared lock variable by a processor unlike TAS.

Table 5.5. Pseudo-code for the TAS lock

Procedure Implementation

InitLock lock :- CLEAR

GetLock while (lock 1. BUSY or test-and_set (lock) I BUSY)

Releaselock lock :8 CLEAR

135

The last spin lock implementation chosen is a list-based queueing lock devised

by Mellor-Crummey and Scott [89] (referred to as the MCS lock) with the following

characteristics:

— guarantees FIFO ordering of lock acquisitions;

— spins on locally-accessible flag variable only; and

— works equally well (requiring only 0(1) network transactions per lock acquisi-

tion) on machines with and without coherent caches.

Figure 5.10 shows the algorithm for this lock. Each processor using the lock

allocates a Qnode record containing a queue link and a boolean flag. Each processor

employs one additional temporary variable during the GetLock operation. Processors

holding or waiting for the lock are chained together by the links. Each processor spins

on its own locally-accessible flag. The lock itself contains a pointer to the Qnode record

for the processor at the tail of the queue (or the value nil if the lock is not held). Each

processor in the queue holds the address of the record for the processor behind it ——

the processor it should resume after releasing the lock. Compare-And-Swap enables

a processor to determine if it is the only processor in the queue, and if so remove

itself correctly, as a single atomic action. The spin in GetLock waits for the lock to

become free. The spin in ReleaseLock compensates for the timing window between

the Fetch-And-Store and the assignment to predecessorT .next in GetLock. Both

spins are local to the processor.

Figure 5.11, parts (a) through (e), illustrates a series of GetLock and ReleaseLock

operations. The lock itself is represented by a box containing an ‘L’ in it. The other

rectangles are Qnode records. A box with a slash through it represents a nil pointer,

and non—nil pointers are shown as directed arcs. The state of each processor in the

queue (R: running, B: blocked, E: exiting from critical section) is indicated along

with its identification within each Qnode record. In (a), the lock is free. In (b),

processor 1 has acquired the lock and is running. In (c), two more processors have

entered the queue and are blocked spinning on their locked flags. In (d), processor

1 has completed and has changed the locked flag of processor 2 so that it is now

136

type Qnode = record

next : TQnode;

locked : Boolean;

end;

type Lock = TQnode;

{ Parameter ”Q” below points to a Qnode record allocated in shared memory

locally accessible to the invoking processor}

procedure GetLock (L : TLock; Q : TQnode)

QT.next := nil;

predecessor : TQnode :2 Fetch-And-Store (L, Q);

if predecessor # nil then {queue was non-empty}

QT.locked := TRUE;

predecessorT.next := Q;

while QT.locked = TRUE do; {spin}

procedure ReleaseLock (L : TLock; Q : TQnode)

if QT.next = nil then {no known successor}

if Compare-And-Svap (L, Q, nil) then

return; {returns if and only if it swapped}

while QT.next = nil do; {spin}

QT.nextT.locked := FALSE;

Figure 5.10. Pseudo-code for the MCS list-based queuing lock

137

running. In (e), processor 2 has completed and has unblocked processor 3. If no

more processors enter the queue in the immediate future, the lock will return to the

situation in (a) when processor 3 completes its critical section.

pointer l

(a)

(d)

(C) (6)

Figure 5.11. Working of the MCS list-based queuing lock

We emphasize that we have deliberately chosen only a few spin lock implementa-

tions for the purpose of demonstrating the effectiveness of the evaluation methodol-

ogy. There are a number of other spin-lock implementations available in the literature

[6, 89]. Our selection should not be construed as a definitive indication of their relative

merits.

5.3 Exclusive-Access Workloads

Exclusive-access workloads, with synchronization in the form of lock-based mutually-

exclusive access to a critical section within the synchronization granule g,, were de-

signed and used [94] to characterize the impact of serialization of execution, and

138

lock latency and contention on a shared memory multiprocessor performance. The

increased unit grain execution times observed in this case are purely due to the soft-

ware overhead of executing the locking primitives, serialization of access to the CS,

and lock contention. The workloads have been employed to measure and compare the

performance of three lock implementations on the Sequent Symmetry and the BBN

TC2000 systems.

Table 5.6. Latency of locks used in the SAD experiments

Spin Lock Sequent Symmetry BBN TC2000

Lock Local I Lock Remote

NAT 7.4 ps 4.3 ps 12.1'ps

TAS 6.1 ps 1.8 ps 8.0 ps

MCS 10.1 ps 8.6 ps 15.8 ps

An important fundamental criterion for any lock implementation is its latency——

the time it takes to acquire and release it in the absence of competition. Table 5.6

shows this measure for the locks used in our study. On the TC2000, since a dichotomy

in the memory hierarchy exists, the latency of the lock depends on its location with

respect to the processor invoking it. Thus, the latency when the lock is situated in a

processor’s local memory and a remote memory are shown under the columns “Local”

and “Remote”, respectively. The results presented in this section pertain to the case

of the shared-lock being remote to all processors. The half-performance lock factor

61/2 for the various lock implementations is given in Table 5.7. Once again, the large

disparity between processor speed and lock access latency on the TC2000 is reflected

by its high values of CIp.

A critical section synchronization enforces a serialization of execution on the par-

ticipating processors, thus causing a loss of parallelism. Since only one processor can

execute in the CS at any time, all other processors waiting for mutually exclusive

access to the CS spend time idling, wasting potentially productive computational cy-

139

Table 5.7. Half-performance lock factor 61/2 for different lock implementations

Spin Sequent Symmetry BBN TC2000

Lock (R00 = 0.6 x 106/second) (Rm = 4.9 x 106/second)

Type c1); Lock Local 61/2 [Lock Remote c1/2

NAT 4.45 21.07 59.31

TAS 3.67 8.82 39.22

MCS 6.08 42.16 77.45

cles. Further, the implementation technique used for the spin lock guarding the CS

can also adversely impact performance beyond what is dictated by serialization due

to excessive lock contention and interconnection network traflic generated [6]. The

net execution efliciency {,(N) observed for a combination of input workload and spin

lock implementation is a result of both of the above factors. Let us suppose that the

net observed efficiency can be decomposed into two factors as follows:

{1(N)=O(N)°fl(N)

where a(N) represents the loss in parallel work due to serialization of CS access, and

B(N) represents the loss in performance due to lock implementation considerations.

The factor a(N), called structural efficiency, signifies the influence of the unit grain

structure on the overall synchronization performance. The factor ,6(N), called spin

lock efficiency, on the other hand, signifies the impact of the spin lock implementation

methodology on the overall synchronization performance.

The efficiency component B(N) is difficult to quantify analytically since it is a

complex function of the runtime interactions occuring between concurrent processes.

However, we can derive an approximate relation for a(N) for the case of determinis-

tic homogenous workloads. For now, let us assume that spin lock implementation is

100% efficient, i.e., [3(N) = 1. This implies that {,(N) = oz(N). For a homogenous

workload, since all the N + 1 processors are executing identical unit grains, they will

soon become “skewed” so that they attempt their CS access at different times. Thus,

140

there will be no CS contention if N processors have time to complete their g, granule

while the (N + 1)“ is processing granules gm and ye, that is, if rm + rc Z Nr,. Oth-

erwise, contention occurs and the waiting time for each unit grain is Nr, — (rm + Tc).

Hence, the unit grain execution time is given by

TG(N) = Tm + Tc '1' To '1' tqueuc

where

Nr.— “rm-l-rc ifrm+rc<Nr,

tqueuc = () (5.5)

1 otherwise

It should be noted that if concurrent memory accesses are present in the granule gm,

then the overhead due to memory access contention is not included in the total unit

grain time. In other words, memory accesses in gm are assumed to be conflict-free

for this derivation. The MAD kernels measure the extent of performance degradation

due to memory access contention. If we define the serialization ratio /\ as

)1 = T’" + 7° (5.6)

Ts

then the structural efficiency can be expressed using Eqs. 5.5 and 5.6 as

l-fl if)1 < Na(N)= Tm+Tc+Ts = NH (57)

TG(N) 1 if)1 2 N

In reality, the spin lock implementation will not be 100% efficient. Therefore, if we

remove this restriction, then the net unit grain execution efficiency can be expressed

as

(fifipmquA<N

MN) HAZN
53(N) = (5'8)

Expressing {,(N) in this form highlights the synchronization losses as being a con-

sequence of two distinct effects: the serialization loss given by a(N) and determined

by the characteristics of the algorithm and hardware speed; and the lock contention

141

loss B(N) determined by the spin lock implementation characteristics.

Experiments were conducted using a number of homogenous parameter families,

each family designed to measure the effect of a particular grain characteristic on

the resultant contention and the consequent unit grain efficiency. In particular, the

impact of the frequency of synchronization and the serialization ratio were evaluated.

All processors contend for a common lock and the CS guarded by it. In the case of

the TC2000, the lock is remote to all processors.

Frequency of synchronization

The probability that a processor arriving at the CS finds it busy, thus incurring

a queueing delay, is proportional to the frequency, 1/(1'c + 7,), with which the CS

is accessed [96]. The computation granularity re between synchronization points

required to restore the loss in efficiency due to synchronization is measured for varying

degrees of parallelism N. The result is plotted in Figure 5.12.

Sequent Symmetry BBN TC2000

I I I I I MCS . j I I I fl I I

c=160 NAT *

l TAS o 1

0.8 - 0.8

£.(N) 0-6 {.(N) 0-6

0.4 - 0.4

0.2 - 0.2

0 1 ‘ ‘ l ' 0 " ‘

0 4 8 12 16 20 0 4 8 12 16 20 24 28 32

No. of competitors (N) No. of competitors (N)

FLM = 128K,G. = 0.19.. = 11,9. = (6,9. = (0.60))

Figure 5.12. Effect of frequency of CS on performance

142

Examining the workload used in Figure 5.12, we see that the serialization ratio is

given by A = ctc/t, = c/c1/2. The computation granularity c required to obtain 100%

structural efficiency, using Eq. 5.7, is given by

c 2 NCl/g is required for a(N) = 1.

The value of 61/2 for the three locks used is given in Table 5.7. A further increase in

granularity is required to compensate for the spin lock efficiency B(N). As is evident

on the Symmetry, the grain efficiency improves by increasing the granularity from

c = 40 to c = 160. The performance of NAT and TAS are almost identical due

to their identical implementation. For values of N S 4, a granularity of c = 40 is

sufficient to maintain close to perfect efficiency. However, a much higher granularity

of c = 160 is needed for greater values of N. The additional cache-invalidation traffic

on the bus in the case of NAT and TAS account for their lower efficiency compared

to MCS.

The c1); values for all the three locks on the TC2000 are very high necessitating

a very large computation granularity to make up for the structural efficiency factor

a(N). For the range of c considered in Figure 5.12, the a(N) factor dominates the

synchronization performance on the TC2000 thus yielding efficiency curves propor—

tional to 1 /(N + 1) for all three lock types. A granularity of c = 100 is not sufficient

compensation for any of the locks even with N = 2. However, c = 300 restores the

efficiency to l for MCS and NAT with N g 4, and for TAS with N S 6.

Serialization ratio

Another important factor governing the performance of an application on a multipro-

cessor is its serialization ratio A as given by Eq. 5.6. The length of the CS, 7,, denotes

the amount of time for which the shared lock is held thus affecting the number of

spinning processors waiting to access the CS, and A determines the amount of wait

before the CS can be accessed. The serialization ratio A can be varied by changing

the relative amount of computation and shared data accesses performed within and

143

outside the CS. In Figure 5.13, the variation in grain efficiency is shown as a function

of the length of communication in CS (c,) for a fixed length of computation (c).

Sequent Symmetry (C = 120) BBN TC2000 (C = 300)

7 MCS 0 I I l I I

NAT *

1 ! TAS o 1 [- -

‘ = 10

0.8 A 0.8 - 4

l

{,(N) 0.6 ~ {.(N) 0.6,

0.4 d 0.4

0.2 -[0.2

0 0

0 2 4 6 8 10 12 14 0 5 10 15 20 25 30

Length of computation in CS (0,) Length of computation in CS (c,)

1?, M = 12811201 = G.(g.. = may. = (6.61»)

Figure 5.13. Effect of non-CS to CS computation ratio on performance

For the workload used in Figure 5.13, the serialization ratio is given by

A = etc/(t, + c,t,) = c/(c, + Cl/g). The computation granularity c required to obtain

100% structural efficiency, using Eq. 5.7, is given by

c 2 N(c, + Cl/g) is required for a(N) = 1.

A further increase in granularity is required to compensate for the spin lock efficiency

MN)

On the Symmetry, the grain efficiency decreases with an increase in the CS length.

For N = 10, the MCS lock is a little less efficient for low CS lengths. This can be

attributed to its higher latency compared to the other two spin-locks. However, for

higher values of N, lock contention becomes the dominant factor and MCS outper-

forms the others. On the TC2000, MCS consistently performs better than the other

144

two locks for a given N due to its constant number of network accesses per lock

acquisition. For the value of c and the range of c, considered for the TC2000 in

Figure 5.13, the a(N) factor dominates the synchronization performance. The NAT

and TAS locks exhibit almost identical performance.

5.4 Dual-Mode Access Workloads

Dual-mode access workloads, with both gm and g, granules present, are used for

characterizing the relative contributions of memory contention and synchronization

to the total performance degradation. Measurements were performed on the Sequent

Symmetry and the BBN TC2000 systems. The shared data, with M elements, were

allocated using the shmallocO call on each machine. On the Symmetry, the data

elements were interleaved across the memory modules with a interleaving granularity

of 32-bytes; on the TC2000, they were scattered across the allocated cluster.

5.4.1 Homogenous Workloads

In these experiments, identical attributes were used for the test and competitor grains.

All processes contend for a common lock and the CS guarded by it. On the BBN

TC2000 system, the lock is located remote to all processors.

Serialization ratio

In Figure 5.13 the serialization ratio A was varied by changing the relative number

of computation units processed within and outside the CS. A similar effect is also

accomplished by varying the number of shared data accesses within the CS (m,) with

respect to the number of accesses outside (m). However, in the latter case, the shared

data accesses within the CS may also encounter additional memory access conflicts

resulting in longer CS duration. This case is shown in Figure 5.14.

On any machine, all the lock types should experience the same structural ef—

ficiency a(N) for a given number of competitors N, since it is proportional to

A = mtm/(t, + m,t,,,) = m/(m, + t,/tm), and depends only on the unit grain char-

145

Sequent Symmetry BBN TC2000

I I I I I I MCS . r I I I I 1

NAT *

1 ~ TAS o 1 - 4

0.8 - 0.8 -

{,(N) 0.6 - {.(N) 0.6 -

0.4 -* 0.4 -(

0.2 d 0.2 n

0 1 1 1 1 1 1 0 7

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

No. of memory accesses in CS (m,) No. of memory accesses in CS (m,)

19,114 = 128K, G. = G,(gm = (0,64K[1.0],4,48),gc = ¢,g, = (0,16,, 1))

Figure 5.14. Effect of non-CS to CS shared data access ratio on performance

acteristics. Hence, the observed differences in the unit grain efficiency {,(N) of the

different spin locks can be attributed to the lock efficiency factor [3(N) and interfer-

ence between the shared data accesses performed within and outside the CS.

On both systems, the grain efficiency decreases with an increase in the number of

shared data accesses within the CS. At m, = 0, the performance difference is entirely

due to the efficiency of the spin lock implementations. As m, increases, the memory

access contention encountered by each access within the CS effectively increases the

CS length. On the Symmetry, the MCS lock performs better than the other two for

high degree of contention (N = 20) because of its higher lock efficiency factor fl(N).

On the TC2000, the effect of the higher efliciency fl(N) for the MCS lock is more

pronounced at m, = 0 for high degree of contention (N = 30). The increase in the

CS length with an increase in m, causes the structural efficiency a(N) to reduce thus

causing the MCS lock performance to approach that of the other implementations.

146

Incremental Overheads

The gross unit grain execution time in the presence of competitor grains includes in

it an overhead component due purely to memory contention during shared data ac-

cesses, and another due to critical section synchronization. As discussed in Chapter 3,

the incremental magnitude of the shared data access and synchronization overhead

components for a given workload can be measured and characterized in a hierarchi-

cal fashion with the help of the MAD and SAD kernels, respectively. The isolation

of the memory contention overhead was described in Section 4.4. Figures 5.15 and

5.16 show the cumulative interferences \Ilm(N) and \II,(N) measured for two different

workloads differing only in the stride of shared data access (i.e., the s attribute).

Each interference is shown for two different spin lock implementations, namely, the

TAS and MCS locks described earlier. The static characterization parameters for the

two workloads are tabulated in Table 5.8.

Table 5.8. Static characterization parameters for workloads used in incremental over—

head measurements

Multiprocessor Roo f1/2 f1); C1/2 c1/2

System (s = l) (s = 23) (TAS lock) (MCS lock)

Symmetry 0.6 X 106/second 0.288 1.030 3.67 6.08

TC2000 4.9 x 106/second 10.75 10.83 39.22 77.45

For the workload shown in Figure 5.15, a stride of 1 is used for data accesses. On

the Symmetry, this results in 3 out of 4 accesses being satisfied by the cache thus

placing a very low demand on the system bus. This is reflected by an extremely low

value of ‘1’," even for large N. On the TC2000, the butterfly switch is able to sustain

the bandwidth demand for N S 18. For higher N, switch contention results in a

larger memory interference \Ilm. On both machines, the MCS lock exhibits a much

slower growth rate in the synchronization overhead owing to its lower interconnection

network demand.

147

Sequent Symmetry BBN TC2000

T I I I I MCS. IIMIFII

TAS o 9.0

8.0

7.0

6.0

Cum 5.0

Interf.

4.0

3.0

2.0

1.0

. 0.0

0 4 8 12 16 20 0 4 8 12 16 20 24 28 32

No. of competitors (N) No. of competitors (N)

9.0 1-

L
L

Cum.

Interf.

N, M = 128K, G. = (g... = (0,64K[1.0],1,32),gc = (16),g, = (1,2,o.5))

Figure 5.15. Incremental interference measured with stride of access 3 = 1

The workload in Figure 5.16 uses a stride of 23 to access shared data. This causes

a cache miss for every access on the Symmetry leading to heavier bus contention

and consequently a higher value of \Ilm. On the TC2000, stride 23 accesses do not

behave any differently than stride 1 accesses as all memory references go out over the

butterfly switch for either strides. The MCS lock again exhibits a slower growth rate

of overhead compared to the TAS lock.

The incremental interferences zbm(N) and z/J,(N) can be computed from the mea-

sured values of ‘1'," and \Il, using the relations 3.24 and 3.25 respectively.

5.4.2 Heterogenous Workloads

Using a heterogenous workload, we have explored the interactions that occur between

concurrent execution of code within and outside the critical section. In particular,

we investigated the following two situations:

(a) Impact of memory accesses done outside the CS in prolonging the length of the

CS by interfering with shared data accesses within the CS, and

148

Sequent Symmetry BBN TC2000

I I I I I MCS . I m I I I I I

9 0 - ~ TAS o 9.0 -

8 0 P - 8 0 l"

7.0 - -' 7.0 r

6.0 '- 6.0 '-

ggg. 5.0 - 12:3. 5.0 r

4.0 - 4.0 '-

3.0 '- 3.0 r

2.0 - 2.0 r

1.0 r 1.0 -

0.0 l l 1 1 0.0 ,

0 4 8 12 16 20 0 4 8121620242832

No. of competitors (N) No. of competitors (N)

N,M = 128K, 0. = (gm = (0,64K[1.0],23,32),g, = (16),g, = (1,2,0.5))

Figure 5.16. Incremental interference measured with stride of access 3 = 23

(b) Impact of the spin lock accesses to enter the CS on memory references external

to the CS.

Figure 5.17 depicts the results of the test described in case (a) above. In this exper-

iment, the test processor P0 is the only one executing the CS (granule 9,) whereas all

competitor processors perform only memory accesses (granule gm). Since the shared

lock location itself encounters no contention, the observed degradation in performance

can be ascribed purely to the memory access conflicts that occur between shared-data

access within and outside the CS. Hence, all the spin-lock implementations exhibit

comparable performance. The efficiency remains close to 1 on the TC2000 due to the

much higher bandwidth of its switching network.

An important measure of synchronization performance is the additional amount

of interconnection network traffic caused by multiple processors attempting to syn-

chronize, and the impact of this traffic on the execution of the other components

of a unit grain. This measure was obtained by recording the performance of a test

grain composed of only shared memory accesses (granule gm) when competing with

grains comprised of only critical section accesses (granule g,). The results are shown

149

Sequent Symmetry BBN TC2000

I I a I I MCS "— I I I I I I I

NAT *-

1 .. TAS '9—

0.8 .1

£.(N) 0.6 - ~ {.(N) 0.6 - -

0.4 *- -(0.4 P -

0.2 '- '- 0.2 - -

0 1 1 1 1 1 0 1 1 1 1 1 1 1

0 4 8 12 16 20 0 4 8 12 16 20 24 28 32

No. of competitors (N) No. of competitors (N)

NaM =128KaGt = (gm = ¢agc = ¢ags = (018,05»,

Gc = (g... = (0, 64K[1.0],4,48),gc = 8,9. = ¢)

Figure 5.17. Impact of non-CS memory accesses on OS execution performance

in Figure 5.18.

As expected, the MCS spin-lock outperforms the other two by a significant mar-

gin on the Symmetry for values of N Z 2 due to its constant number of network

accesses per lock acquisition, thus contributing minimal additional bus traffic. Each

competitor grain competes with the test grain for the use of the bus three times (refer

to Figure 5.10) during each CS access: to fetch the lock queue header, to attach itself

at the end of the queue, and to release the lock to the next processor in line. The

critical point at which the bus usage by Gc interferes with G1 occurs at N = 12 as

evident from the sudden drop in test grain efficiency at that point. On the TC2000,

the NAT and TAS spin lock traffic interferes with other shared-data access causing

a decrease in the grain efficiency. The extent of degradation is not as marked as for

the Symmetry due to the higher bandwidth of its interconnect.

150

Sequent Symmetry BBN TC2000

1-2 I I I I I MCS"-1-2’II I—I I I I

NAT +-

1 TAS -O—

0.8

£3(N) 0'6 £,(N) 0'6 '- T

0.4 0.4 - ~

0.2 0.2 - -‘

0 1 1 1 L L 0 1 1 1 1 1 1 1

0 4 8 12 16 20 0 4 8 12 16 20 24 28 32

No. of competitors (N) No. of competitors (N)

N, M = 128K, G1 = (gm = (0,64K[1.0],4,20),gc = 45.9. = c5),

Ge = (gm = ¢agc = ¢aga = (0’ 0,0»

Figure 5.18. Impact of CS spin-lock on non-CS memory accesses

5.5 Summary

Synchronization among concurrent processes to access critical sections of code in a

mutually-exclusive manner leads to loss in parallel performance as a result of serial-

ization of execution. The synchronization overhead incurred is not only a function

of the ratio of the amount computation performed outside and inside the CS (serial-

ization ratio), but also of the implementation characteristics of the spin lock used to

guard the critical section. The SAD kernels described in this chapter provide an effec-

tive means of characterizing the synchronization performance under varying workload

conditions. These kernels were employed to measure and compare the performance

of three spin lock implementations (TAS, NAT, MCS) on the Sequent Symmetry and

the BBN TC2000 multiprocessors.

The MCS lock has the highest uncontested latency. However, it induces the least

amount of interconnect contention. For cases in which competition is expected, the

MCS lock is the best implementation of choice. The TAS lock has the least latency,

but its performance deteriorates rapidly with contention. The performance of the

151

TAS lock can be improved by exponential backoff between successive poll of the lock

variable [2], although this case has not been evaluated here. The NAT lock on the

TC2000 does delay between polls for a fixed amount of time (i.e., it is not adaptive).

This could result in the release of a busy lock going unnoticed for some time because

of the waiting processors being in the middle of the polling delay.

The SAD kernels can be used either independently to evaluate the efficiency and

scalability of the implementation of synchronization primitives; or they can be used

in conjunction with the MAD and BAD kernels to isolate the incremental overheads

resulting from inter-process synchronization and lock access contention from the total

performance loss experienced by an input workload.

CHAPTER 6

BAD KERNELS AND BARRIER

PERFORMANCE

A barrier defines a logical point in the control flow of an algorithm at which all

processes must arrive before any is allowed to proceed further. They are commonly

employed when an algorithm consists of several distinct stages, each of which has in-

ternal parallelism but which must be performed in strict sequence without overlap. A

barrier is clearly one of the most deleterious forms of synchronization, since it requires

in effect that every process communicate with every other process. Additionally, since

all processes must wait at the barrier until the last arrives, the eflects of fluctuations

in process execution time or imperfect load balancing are maximized.

The key factors in the performance of a barrier implementation were discussed

in Chapter 2. Quantification of the overheads arising from barrier synchronization

for a variety of workloads helps assess not only the scalability of a particular barrier

implementation to large multiprocessors, but also the loss in execution parallelism.

The BAD kernels presented in this chapter can be used in isolation to evaluate and

compare the performance of different barrier implementations; or they can be used in

conjunction with the MAD and SAD kernels, as per the hierarchical model presented

in Chapter 3, to characterize the incremental loss in performance for a given workload

resulting from barrier synchronization.

152

153

6.1 BAD Workload Parameters

The synchronization barrier separates adjacent phases of the multi—phase computa-

tion structure selected as the basis of our performance studies. The presence of the

barrier increases the completion time of a phase by adding the time to execute the

barrier. Moreover, it also forces all processors to wait for the slowest among them

thus accentuating the worst-case performance. To incorporate the effects of barriers

into our characterization of the aggregate performance of a workload, measurements

are performed at the level of a phase of computation.

6.1.1 Phase Characterization

A single phase consists of a number of concurrent processes executing a string of

unit grains and terminating at a global synchronization barrier. Hence, the param-

eters necessary to characterize a phase of computation must include: (1) a set of

attributes to describe the behavior of the concurrent unit grains within the phase, (2)

the number of unit grains executed by each processor in the phase, and (3) the choice

of a particular type of barrier implementation. The parameters used in the barrier

performance studies are summarized in Table 6.1.

Table 6.1. Workload parameters for studying barrier performance

[Granule I Attribute Meaning]

N number of competitor processors in a phase

common M number of shared data elements

2 number of unit grains per processor per phase

p probability of write access to shared memory

gm d initial distance of concurrent address streams

s stride of memory access

m number of shared memory accesses per granule

96 c number of basic computation units (BCUs)

c, number of computation steps in CS

9, m, number of memory accesses in CS

p, probability of a write access in CS

154

As is evident from Table 6.1, the attributes describing the unit grain behavior are

the same as used for the SAD kernels with the additional parameter 2 representing the

the length of the task executed by each processor. If the total work to be performed

within a phase, say W unit grains, is perfectly parallelizable among P processors

in a homogenous setting, then the amount of work performed by each individual

processor is given by l = [W/P]. The consolidated set of input parameters I to the

experimental framework (described in Section 3.3), therefore, now becomes

I = {NiMiliataac},

where the test and competitor unit grains are characterized by the 3—tuple of tuples

G = ((p, d, s, m), (c), (c,, m,,p,)).

6.1.2 Output Metrics

The metric used to quantify the overhead of barrier synchronization and the conse-

quent increase in the phase execution time for an input workload, as a function of

the degree of interference N, is the cumulative barrier interference \Ilb(N) as defined

by Eq. 3.20. In other words, if T(N) denotes the total time to complete executing a

phase with N competitor processes contending for resources, then

WN) = T(N%(:))T(0) : T(Ne); [1"

When N = 0, there is only one processor operating thus making the barrier syn-

chronization redundant. Therefore, the measured execution time for a workload with

N = 0, i.e., T(0), does not include the barrier overhead thus yielding T(0) = [7' used

in the expression above. The incremental barrier interference ‘l/Jb(N) can be computed

from the measured values of \Ilb(N) and \Il,(N) for a given workload as dictated by

Eq. 3.26.

A value of \Ilb(N) = 0 would indicate the barrier as an idealized entity which

consumes no resources and induces no interference with the processes executing within

155

a phase. In reality, however, a barrier does consume resources, and this will have a

major effect on performance. Although \Ilb(N) > 0 for a non-ideal barrier, judicious

design choices can help minimize this interference. It should be noted that since \Ilb(N)

expresses the barrier overhead encountered in terms of an abstract normalization

unit, namely T(O), it is a suitable metric for comparing performance only when the

same reference workload is used as the basis. For performance comparisons across

workloads, the absolute time measure T(N) should be used instead.

shared count : integer := P; { number of processors synchronizing }

shared sense : Boolean := True;

processor private local-sense : Boolean :2 True;

procedure CentralBarrier()

locaLsense :2 not local_sense; { Each processor toggles its own sense }

if Fetch-And-Decrement (&count) = 1 then

count := P;

sense := local.sense; { Last processor toggles global sense }

else

repeat until sense = local.sense;
Figure 6.1. Pseudo-code for a sense reversing centralized barrier

6.1.3 Barrier Implementations Studied

We have chosen two barrier implementations on each of the target systems studied to

demonstrate the utility of the BAD kernels. The first is a centralized implementation

of the barrier (referred to as the CNT barrier), where each processor updates a small

amount of shared state to indicate its arrival and then polls that state to determine

156

when all of the processors have arrived. Most barriers are designed to be used repeat-

edly (to separate the phases of an algorithm). In the most obvious formulation, each

instance of a centralized barrier begins and ends with identical values for the shared

state variables. Each processor must spin twice per instance; once to ensure that all

processors have left the previous barrier and again to ensure that all processors have

arrived at the current barrier.

The number of references to the shared state variables can be reduced and one of

the two spinning episodes can be eliminated by “reversing the sense” of the variables

(and leaving them with different values) between consecutive barriers [58]. The re-

sulting code is shown in Figure 6.1. Arriving processors decrement count and wait

until sense has a different value than it did in the previous barrier. The last arriving

processor resets count and reverses sense. Consecutive barriers cannot interfere with

each other because all operations on count occur before sense is toggled to release

the waiting processors.

The potential drawback of centralized barriers is the spinning that occurs on a

single, shared location. Because processors do not in practice arrive at a barrier

simultaneously, the number of busy-wait accesses will in general be far above the

minimum. On broadcast-based cache-coherent multiprocessors, these accesses may

not be a problem. The shared flag (or sense variable) is replicated into the cache

of every waiting processor thus causing local spinning without any network traffic.

This shared variable is written only when the barrier is achieved, causing a single

broadcast invalidation of all cached copies.

On machines without coherent caches, however, or on machines with directory—

based caches without broadcast, busy-wait references to a shared location may gener-

ate unacceptable levels of memory and interconnection contention. For such classes of

machines, Hengsen, Finkel, and Manber [58] have proposed a “dissemination barrier”

(referred to here as the DSM barrier) that yields a much more efficient pattern of

synchronization. In round k (counting from 0) with P processors participating, pro-

cessor i signals processor (i + 2") mod P. Synchronization is not necessarily pairwise

and requires only [log2 P] synchronization operations on its critical path regardless

157

of P. The flags on which each processor spins are statically determined, and no two

processors spin on the same flag. Each flag can therefore be located near the processor

that reads it leading to local-only spinning.

type Flags = record

myflags : array [0..1] of array [0..LogP] of Boolean;

partnerflags : array [0..1] of array [0..LogP] of TBoolean;

end;

processor private parity : integer := 0;

processor private sense : Boolean := True;

processor private localflags : Tflags;

shared allnodes : array [0..P-1] of flags;

{ allnodesfi] is allocated in shared memory locally accessible to processor i. }

{ 0n processor i, localflags points to allnodes[i]. Initially allnodes[i].myflags[r][k]

is False for all i, r, k. Ifj = (i + 2") mod P, then for r = 0,1:

allnodes[i].partnerflags[r][k] points to allnodesfj].myflags[r][k]. }

procedure DisseminationBarrier()

for instance : integer := 0 to LogP-l do

localflagsT .partnerflags [parity] [instance] T := sense;

repeat until localflagsT.myflags[parity] [instance] 2 sense;

if parity = 1 then

sense := not sense;

parity := 1 - parity;

Figure 6.2. Pseudo-code for a distributed dissemination barrier

Figure 6.2 presents the dissemination barrier. Alternating sets of variables are used

in consecutive barrier episodes for each signaling operation, thus avoiding interference

158

without needing two separate spins in each operation. Sense reversal is also used to

avoid resetting variables after each barrier. The parity variable controls the use of

alternating sets of flags in successive barrier episodes. The shared allnodes array

would be scattered statically across the memory banks on a machine with distributed

shared memory and no coherent caches.

6.2 Embarrassing Workloads

The class of embarrassing workloads (refer to Section 3.2) are used to measure the

performance effects attributable purely to barrier synchronization. Since no shared

data accesses nor inter-processor synchronizations are present within the unit grain

(i.e., gm = 65, g, = (b), the concurrent processes within a phase execute independently

of each other. Any observed losses in performance can be ascribed entirely as the

result of global barrier synchronization.

Synchronization barriers impose two kinds of performance penalties on the runtime

behavior of an algorithm. The first, which is in some sense irreducible, is due to

fluctuations in the time taken by the processors to complete their share of the work

within a phase. The second kind of penalty results from the use of resources by

the barrier, and in particular the contention for shared resources. The consequences

of fluctuations in the execution time or the unbalanced workload distribution are

maximized as a result of the wait for the last processor to complete its work.

If the barrier itself is considered as an idealized entity which consumes no re-

sources, the execution time of the phase can be determined analytically, as Kruskal

and Weiss [68] have shown. If there are P processors (note that in terms of our work-

load parameters, P = N +1) that begin their work simultaneously, and the time

each takes has the mean p and standard deviation 0, then the time at which the last

processor completes its work, Tp, is given by

Tp =p+o(/210gP. (6.1)

159

The approximation is especially good for a Gaussian distribution function but is valid

more generally as shown in [68].

In reality, the barrier execution does consume resources and computational cy-

cles. The time to achieve the barrier, T5,", consists of two distinct components [16]:

the entry phase time, Tam,” during which processors report their arrival; and the

exit phase time, Ta“, during which processors exit after determining that all other

processors have arrived. There are two cases to consider:

1. A balanced load is one for which the variance in arrival times is less than the

overhead incurred at the entry phase. An extreme case is the perfectly balanced

load for which a = 0 in which case all processors arrive at the barrier simulta-

neously. The barrier overhead in this case is the time for all P simultaneously

arriving processors to traverse the entry and exit phases.

Tbarr(P) = Tentry(P) + Texit(P) (62)

2. An unbalanced load is one for which the variance in arrival times is greater than

the time required for the entry phase. An extreme case occurs when the last

processor to arrive at the barrier finds that all other processors have completed

the entry phase. In this case, the barrier overhead is given by the last processor

to complete its entry and all P processors to exit.

Tbarr(P) = Tcntry(1) + Tea-“(19) (63)

The total time to complete a phase of execution, T(P), can be expressed as the

sum of the effects of unbalanced load (Eq. 6.1) and barrier overhead.

T(P) = p + m/Zlog P + Tb,,,(P)

If the total performance penalty resulting from barrier synchronization is denoted as

160

05(P), then

05(P) = o(/2log P + T5,".(P).

It is clear that the cumulative barrier interference \Ilb(N) is proportional to 05(P).

Using Eqs. 6.1, 6.2 and 6.3, and the fact that a = 0 for a balanced load, the overhead

function can be written, for a balanced load, as

0b(P) = T,,.1,,,(P) + Tm-1(P), (6.4)

and for an unbalanced load as

01(P) = a(/2log P + T,,,,,.,(1) + T,,.-,(P). (6.5)

The time to complete the entry and exit phases for the two barrier implementa—

tions selected (CNT and DSM) can be expressed in terms of the timing of the basic

operations involved. For the CNT barrier, the entry phase entails that each of the P

processors atomically decrement the count variable, each decrement operation requir-

ing a time of tatomgc. The entry phase of the DSM barrier, on the other hand, requires

each arriving processor to signal its arrival only to its first round synchronization

partner, the pairwise synchronization round needing a time of t,,-g,,,1. Therefore, the

time for the entry phase can be expressed as follows.

Ptatomgc for the CNT barrier

Tentry(P) = (6.6)

t,,-g,,,1 for the DSM barrier

Similarly, the exit phase of the ONT barrier consists of the last arriving processor

writing to the sense flag to toggle its status (requiring time Lon-1,), and the changed

status of sense being read by the P — 1 waiting processors (each read requiring time

tn“). The exit phase of the DSM barrier goes through the remaining (logP — 1)

rounds, the first round having been performed in the entry phase, of pairwise signaling

161

to complete the barrier. Thus, the exit phase time can be expressed as follows.

for the CNT barrier

for the DSM barrier

twrite + (P — 1)tread

(log P — 1)t,,'gna1

Tezit(P) = (6.7)

The equality in the Eqs. 6.6 and 6.7, in reality, should read “proportional to” for

accuracy. However, the constant of proportionality is not important for the discussion

at hand and, hence, has been treated as unity. It should also be noted that the values

of tum-1, and in“ used in the expressions for the CNT barrier are not constants for

machines without coherent caches, and are determined by the hot spot access latency

for that system with the variable sense being the hot spot site. Similarly, t,,-g,m(used

for the DSM barrier may involve 0(1) network transactions if parallel accesses over

the interconnection are possible (such as on a MIN), or 0(P) network transactions

on serial interconnections (such as on a bus).

Sequent Symmetry BBN TC2000

120 I r I I 7000 I T I I I

100 _ CNT *- 6000 1 CNT +—

80 5000

T(N) ,0 ._ T(N)4°°°
(#8) (#3) 3000

40

2000

20
1000

0 l l l J l 0

0 4 8 12 16 20

0 4 8121620242832

No. of competitors (N) No. of competitors (N)

NCM =o,e = 0,01: Gag... = 8,9. = 8,11. = 8)

Figure 6.3. Time to achieve barrier vs. N

162

6.2.1 Scalability of Barrier Implementations

In large-scale multiprocessors, the number of interconnection network accesses per

processor to achieve the barrier increases sharply as collisions in the network cause

processors to repeat accesses. This observation is especially true for centralized bar-

rier algorithms, like CNT, implying that they will not scale well to large numbers of

processors. Algorithms that restrict spinning to locally-accessible memory, like the

DSM, are much more amenable to scaling for large numbers of processors. Our mea-

surements confirm this conclusion. Figure 6.3 shows the time T(N) to achieve barrier,

with no computation at all in the unit grains, for the two barrier implementations

chosen.

On the TC2000, the time to achieve a CNT barrier increases more than linearly

in the number of participants. Since the Butterfly switch does not provide hardware

combining, at least 2P — 1 accesses to the barrier state are required (P to signal

arrivals, and P — 1 to discover that all have arrived). The DSM barrier, on the other

hand, proceeds through only [logz P] rounds of synchronization that leads to a stair-

step curve (shown in Figure 6.4 for clarity). The time to achieve a barrier with this

algorithm scales logarithmically with the number of processors participating.

The performance on the Symmetry differs sharply from that on the TC2000 for

two principal reasons. First, it is acceptable on the Symmetry for more than one

processor to spin on the same location; each obtains a copy in its cache. Second, no

significant advantage arises from distributing writes across the memory modules; the

shared bus enforces an overall serialization. The DSM barrier requires 0(P log P)

bus transactions to achieve a P-processor barrier, whereas the CNT barrier requires

only 0(P) transactions. Consequently, the CNT barrier scales better than the DSM

barrier on the Symmetry.

6.2.2 Balanced Load and Simultaneous Arrivals

A balanced workload exhibits a variance in processor arrival times at the barrier

that is much less than the overhead incurred at the barrier. A perfectly balanced

163

DSM Barrier

T(N)

(#8)

 0 l l I L I l I

0 4 8 12 16 20 24 28 32

No. of competitors (N)

NaM = 0,6 =01Gt = 66(g‘m = ¢1gc = ¢iga = (J5)

Figure 6.4. Time to achieve DSM barrier on the TC2000

load with a constant execution time on each processor (i.e., o = 0) induces the

maximum overhead at the entry phase of a linear barrier, since simultaneously arriving

processors contend for access to the shared barrier state and must be serialized. A

slightly increased fluctuation level can, indeed, benefit performance [9]. This occurs

because the presence of fluctuations can reduce the queue length at the barrier entry

critical section by spreading out arrival times and causing some processors to start

synchronizing early.

Figure 6.5 shows the barrier performance of a perfectly balanced workload with

a constant number of computation steps (c = 1000) executed per processor between

barriers. The overhead curves observed for this workload are a result of the dominant

effect of the barrier overhead on performance as given by Eq. 6.4. The overhead

05(P) incurred is obtained by combining Eqs. 6.4, 6.6 and 6.7.

Ptatomic + twrite + (P - 1)trcad for CNT

011(P) =

(log P)t,,-g,,al for DSM

The higher overhead for DSM on the Symmetry is a direct consequence of the

164

Sequent Symmetry BBN TC2000

0.09 I r r I r 35 I I I I I I I

0.08 CNT '0—
30 " CNT ‘0— ""

0.07 1- DSM -e—
DSM .9.

0.06 25 7

.05
20 .1

(MNE 1111(N)
.04 15 a

0.03 ~ 10 .

0.02 -‘

0.01 . 5 “

0 1 1 1 1 1 0

0 4 8 12 16 20 0 4 8 12 16 20 24 28 32

No. of competitors (N) No. of competitors (N)

N,M = 0,e =1,G1= G,(gm = 8,9. = (1000),g, = 45)

Figure 6.5. Barrier performance of a perfectly balanced load

P bus transactions required in each tag“), due to the serial nature of the bus, thus

needing a total of Plogz P bus accesses. In comparison, CNT requires only 2P bus

accesses. Thus, the performance of DSM and CNT remain comparable for up to

log2 P S 2 (i.e., P S 4) beyond which the higher logP factor for DSM causes the

performance curves to diverge. In contrast, DSM on the TC2000 requires a total

of only log P network transactions as the Butterfly switch permits parallel accesses,

whereas CNT must perform P atomic operations serially followed by P accesses to a

hot spot location. The hot spot accesses result in extremely high latencies for twm,

and tr,“ for N Z 18. This is evident from the significant difference in overheads for

DSM and CNT for N Z 18.

6.2.3 Unbalanced Load and Staggered Arrivals

In an unbalanced workload, processors arrive at the barrier in a staggered fashion. The

variance in processor arrival times is greater than the time required to synchronize

at the barrier. This results in the variance in arrival times to dominate observed

performance. Figure 6.6 shows the barrier effects on an unbalanced workload in which

each processor performs c computation steps randomly selected from an Uniform

distribution over the interval (0, 2000].

0.9 I

Sequent Symmetry

0.8

0.7

I I

BBN TC2000

35 I I I I I I I

30 '- CNT *—

DSM '9—

25

0.6 ~

0.5 - - 20

‘11:.(N) ‘I’b(N)
0.4 - ‘ 15

0.3 .. 10

0.2 CNT -0- -

0.1 DSM -G- J 5 -

0 L l l l l 0

0 4 8 12 16 20 0 4 8 12 16 20 24 28 32

No. of competitors (N) No. of competitors (N)

N,M = 0,! =1,G1= Gc(gm = ¢,g, = (1000[1]),g, = 45)

Figure 6.6. Barrier performance of an unbalanced load

The total performance penalty 05(P) for an unbalanced load is given using Eqs.

6.5, 6.6 and 6.7.

0 (P) 0V 21081 + tatomic + twrite + (P _ 1)tread for CNT

b =

O'\/210g] + (10g P)t,{gnal for DSM

The standard deviation 0 of a random variable uniformly distributed over the interval

[a,b] is given by (b — a)2/ 12. For the workload used in Figure 6.6, the standard

deviation of the computation times is thus given by

a _ 2000 t _ 2000 R_,

—\/T§ °_\/1—2 °°

where t, is the time per computation step. Since t, = 1/R,-,,fty is much larger on the

166

Symmetry (refer to Table 4.4), the effect of the variance in arrival times predom-

inates thus rendering the difference in the barrier overheads as insignificant. The

DSM and CNT, therefore, exhibit almost identical behavior of 05 (and hence ‘11,)

on the Symmetry. The dominance of the arrival fluctuations is evident by observing

that \I'b(20) = 0.049 for the CNT barrier for a balanced workload with c = 1000 (Fig-

ure 6.5); but it makes a quantum jump to \Ilb(20) = 0.86 for an unbalanced workload

with the same mean (Figure 6.6). A similar increase can also be noted for the DSM

barrier. On the TC2000, however, the value of a is not large enough to overshadow

the difference in the DSM and CNT barrier overheads. The effect of 0, therefore, is

observed as a slight increase in the value of ‘Ilb(N).

To isolate and highlight solely the eflect of the barrier overhead (the terms

T,,,¢W(1) + Ten-,(P) in Eq. 6.5) in an unbalanced load, we measured the barrier perfor-

mance of a heterogenous workload in which the test processor executes a number of

computation steps far in excess of those executed by the competitor processors, i.e.,

G¢(c) >> G,(c). Also, G,(c) is made to vary randomly over an uniformly distributed

interval to emulate the staggered arrivals. By the time the test processor Po arrives

at the barrier, all other processors have already completed their entry phase and are

waiting. The performance for this case is shown in Figure 6.7.

The broadcast-based cache-invalidate operation in Tent”, of the CNT barrier on

the Symmetry results in a constant overhead (tatomgc + tum-1,) incurred by the test

processor Po. For CNT on the TC2000, Po has to compete with the N processors

already spinning on the sense variable to toggle it thus incurring a high tum-1, latency.

The DSM barrier on both machines, however, requires Po still has go through the

log P rounds of synchronizations thus exhibiting essentially the same overhead as for

a balanced load.

6.3 Dual-Mode Access Workloads

In accounting for the effect of variance in the arrival times of processors at a barrier

in Eq. 6.1, it was assumed that the the fluctuations in the execution time of each

167

Sequent Symmetry BBN TC2000

0-035 IIII 40IIIIIII

35 CNT *—

DSM '9—

30

25

WAN) 20

 0 l l I L 0

0 4 8 12 16 20 0 4 8 12 16 20 24 28 32

No. of competitors (N) No. of competitors (N)

NaM : Oil =11Gt =(gm = ¢igc : (1000):.93 = ¢)1

Ge = (9m = 43191: = (300lll)aga = 43)

Figure 6.7. Performance of staggered arrivals at the barrier

processor were incidental in the computation itself. The effects of memory conflicts,

contention for other hardware resources or other interprocessor interactions were ig-

nored due to the nature of the embarrassing workloads. Therefore, the computation

times of all processors could be treated as independent identically distributed random

variables (i.i.d’s) with mean p and variance 0.

However, if fluctuations in the barrier arrival times are present as a result of

planned interactions between processors during the phase, such as contention in reg-

ular reference patterns to shared data and mutual exclusion at critical sections, then

the assumption of independence between processors no longer holds. The situation

thus becomes more complex and the effect of fluctuations is best characterized exper-

imentally. The dual-mode access workloads are used for this purpose.

The same workloads as used in Section 5.4 to measure the incremental overhead

components associated with memory access contention and CS synchronization are

used here again to observe the incremental overhead resulting from barriers. The

cumulative interference values \Ilm, \II, and ‘11), as measured by the MAD, SAD and

168

CNT Barrier DSM Barrier

12 I I I I I 12 fl I I I f

MCS e

TAS o 10

8

Cum. Cum. 6

Interf. Interf.

4

2

0

0 4 8 12 16 20 0 4 8 12 16 20

No. of competitors (N) No. of competitors (N)

N,M =128K,e =1,G.=(gm = (0,64K[1.0],1,32),g, = (16),g, = (1,2,0.5))

Figure 6.8. Cumulative interferences unit stride workload on the Symmetry

BAD kernels respectively for the same workload are plotted in Figure 6.8 (for the

Symmetry) and Figure 6.9 for the TC2000. The workload with unit stride (s = 1) is

used. For each barrier implementation, the cumulative barrier interference \Ilb(N) is

measured with the TAS and MCS locks used, in turn, for the critical section.

Since I = 1 for the workload used, the difference between the III), and \II, curves

directly measure the incremental barrier interference 1b,. In other words,

tMN) = \111,(N) - \I'.(N)

in Figures 6.8 and 6.9. On the Symmetry, both CNT and DSM barriers display com-

parable values for the cumulative and hence incremental barrier interference. This is

as a result of the predominance of the effect of barrier arrival fluctuations discussed

in the previous section. Both TAS and MCS lock workloads experience similar in-

creases in the total overhead on account of the barrier. It is also noteworthy that for

low values of N < 12 the incremental barrier interference 1/21,(N) is the single largest

source of runtime overheads.

169

CNT Barrier DSM Barrier

200 I I I I I I I 25 I I I I I I I

180 MCS c

160 TAS o 20 F -

140
‘1’5

120 15 - -1

8‘12"}. 100 E1331.
80 10 r -*

60 , —. '

40 5 - , = " if ‘P‘ u

20 M " _ (11,,

0 0 ’ ’- 1"“

0 4 81216202428

No. of competitors (N)

32

0 4 8121620242832

No. of competitors (N)

N,M =128K,€ =1,G. = (gm = (0,64K[1.0],1,32),g, = (16),g, -_— (1,2,0.5))

Figure 6.9. Cumulative interferences unit stride workload on the TC2000

On the TC2000, the incremental barrier interference 1b.,(N) is far worse for the

CNT barrier than for DSM. The primary reason behind this dismal performance is

two-fold: first, the last arriving processor at the ONT barrier must contend with the

N processors already present for access to the “sense” flag to toggle its state; second,

the continuous spins on the barrier sense flag flood the interconnection network with

busy-wait traffic thus interfering with the memory accesses performed within the unit

grain. The effect of the busy-waits is further accentuated in the performance of the

TAS lock workload for large N due to the combination of two spinning instances,

namely, within the TAS lock and within the CNT barrier. With the DSM barrier,

however, the incremental barrier penalties experienced by both TAS and MCS lock

workloads are comparable.

6.4 Summary

Synchronization barriers impose two kinds of performance penalties on parallel al-

gorithm performance: overhead of barrier execution, and maximization of load im-

170

balance losses. The overhead of barrier execution includes the contention for shared

resources by the barrier code. Two barrier implementations were studied on the Se-

quent Symmetry and TC2000 multiprocessors — a centralized sense-reversing barrier

(CNT) and a tree-like dissemination barrier (DSM). If independent network transac-

tions can proceed in parallel on a machine, then the critical path length is 0(log P)

for the DSM, but 0(P) for the CNT. On an interconnection that serializes network

transactions, the logarithmic factor will be dominated asymptotically by the linear

(or more) total number of network transactions.

The DSM barrier was observed to be more suitable on the distributed8memory

TC2000 system, whereas CNT performed better on the cache-coherent Symmetry

system. In the DSM barrier, no network transactions are due to spinning, so inter-

connect contention is not a problem. The ONT, on the contrary, maximizes memory

contention and hot spots caused by synchronization on machines without coherent

caches. The performance of CNT on distributed-memory machines without coherent

caches can be improved by adaptive backoff strategies between polls of the sense flag.

However, their scalability is limited on large-scale systems, as the number of network

accesses per processor increases sharply as collisions in the network cause processors

to repeat accesses [2].

The CNT barrier enjoys one additional advantage over DSM: it adapts easily to

differing numbers of processors. If the number of processors participating a barrier

changes from one barrier episode to another, the log-depth DSM barrier would require

internal reorganization, possibly swamping any performance advantage obtained in

the barrier itself. Changing the number of processors in the CNT entails no more

than changing a single constant.

The BAD kernels can be used either independently to evaluate the efficiency and

scalability of the implementation of a barrier mechanism; or they can be used in con-

junction with the MAD and SAD kernels to isolate the incremental overheads incurred

as a result of synchronization barriers from the total performance loss experienced by

an input workload.

CHAPTER 7

CONCLUSIONS

The increasing complexity of multiprocessor systems necessitates the development of

accurate techniques to characterize their behavior under a variety of workload condi-

tions so that efficient algorithms can be designed to effectively utilize the machine and

reasonable performance expectations established. This thesis proposes a hierarchical

model to characterize multiprocessor system performance and develops techniques to

measure and calibrate the parameters of the model. In this chapter, we summarize

the salient contributions made by this research and present interesting avenues for

possible future research.

7.1 Research Contributions

The run-time overhead of communication on multiprocessors can significantly limit

the amount of program parallelism that can be exploited. In programs using the

shared-variable paradigm, communication manifests itself along three principal di-

mensions, namely, shared data accesses (including memory contention, cache misses in

cache-coherent machines and non-local memory accesses in hierarchical or distributed

memory machines), inter-process synchronization operations, and global barrier syn-

chronizations. As more processors are added, the communication costs of algorithms

increase. It is the rate at which these costs increase that determines an algorithm’s

efficiency and scalability. Measurements must be made to quantify the impact of

such run-time overheads on the overall performance of a system for specific algo-

171

172

rithms/applications.

We have developed a system characterization methodology based on a hierarchi-

cal approach using a multi-phase computation structure to describe the static and

dynamic behavior of program execution on a multiprocessor. We maintain that the

characterization of performance is tied inextricably to the input workload used and,

therefore, should depend significantly on the user’s needs and preference for selec-

tive workload characteristics. We have presented a flexible technique for benchmark

workload generation that can be tailored to highlight specific aspects of performance.

The workload generator is based on the definition of a unit grain that allows a user

to identify the most significant factors influencing performance and use them as the

characterization attributes for the unit grain.

Two sets of system characterization parameters have been proposed to completely

describe the behavior of a given input workload on a target multiprocessor system.

The first set, involving the three static parameters (R00, f1/2, c1”), describes the max-

imum asymptotic performance possible and the expected performance degradation as

a result of static overheads in the input workload. The second set, consisting of the

three dynamic parameters (wm(N), 1b,(N), 1/25(N)), describes the run-time overheads

resulting from dynamic interactions between concurrent processes along the three

performance dimensions mentioned earlier as a function of execution parallelism. We

have also presented a series of parameterized formulae that relate the quantitative

characteristics of a workload to a realistic estimation of its performance via the system

characterization parameters.

We have developed a family of workload emulation kernels that allow one to

study the interaction of the different factors identified in an input workload and

measure the incremental influence of each factor on performance. The measured

data is used to calibrate the system characterization parameters described above.

The MAD kernels, designed to calibrate the memory contention parameter tbm(N),

provide a testbed for the investigation of multiprocessor memory system performance

under a variety of memory reference patterns. The SAD kernels, used to calibrate

the synchronization parameter 1/2,(N), facilitate the evaluation of the implementation

173

efficiency of synchronization operations based on spin locks and their sensitivity to

algorithm characteristics. The BAD kernels, used to calibrate the barrier parameter

¢5(N), allow us to explore the efficiency of a barrier implementation and the losses

accruing from barrier synchronization. We demonstrated the applicability of the

system characterization methodology and the effectiveness of the workload emulation

kernels on the Sequent Symmetry and BBN TC2000 commercial multiprocessors in

studying the performance of several synthetic workloads.

We believe that our approach to performance characterization will serve to model

performance with greater fidelity than exists in the current state of art, since it in-

corporates the effect of both static and dynamic influences in a workload execution.

Further, the proposed methodology is independent of any particular multiprocessor

architecture or application. Only a shared-variable programming paradigm is as-

sumed, but no assumptions are made about the organization of the shared address

space. Hence, our framework can not only be used to evaluate multiprocessors that

provide physical shared memory, but also possible highly-parallel designs in the future

supporting shared virtual memory over scalable interconnection networks.

Limitations of the Approach

Although the approach presented in this thesis can be successfully applied to charac-

terize the performance of a wide variety of multiprocessor workloads, it has several

limitations.

0 The parallel processes in the workload are assumed to be statically assigned to

processors with no run-time migration. Hence, the overhead of dynamic load

balancing strategies, adopted on many multiprocessors, is not modeled.

o It is assumed that processes are assigned only one per processor with the total

number of processes being less than the number of physical processors available.

Although this is an accurate reflection of the structure of parallel programs on

systems on which process creation and destruction are too expensive to be done

frequently, many parallel machines have begun to support the implementation

174

of “light-weight processes” (or threads) that may time-share a single processor.

If such parallel threads are used, then our model does nor account for the

context-switch overheads associated with managing the threads.

0 The model has limited applicability to heavily data-dependent parallel applica-

tions. For algorithms with data-dependent branches, probabilistic models are

more appropriate. Although our workload generator allows the use of stochastic

parameter values, the reliability of the measured performance will depend on

the accuracy with which the the probability distributions chosen for workload

parameters represent the real algorithm characteristics.

7.2 Directions for Future Research

The performance models and experimental results presented in this thesis establish a

foundation for future study, but need to be extended in several ways.

Algorithms that exhibit essentially asynchronous execution of concurrent processes

within a phase (only implicit synchronization in the form of mutually-exclusive access

to a critical section are present) are considered in our performance studies. The

unit grain based workload models should be expanded to include a larger variety of

workload characterizations. For example, other forms of shared memory inter-process

synchronizations such as those with explicit event post/wait or message send/receive

semantics should be investigated. Also, the performance of alternate abstractions of

the basic computation unit (BCU), such as a complex floating-point expression or a

fundamental matrix operation, should provide interesting insight into the computing

performance of a machine. In the same light, program models other than the multi—

phase structured iterative algorithms studied here can be selected as the basis of

system characterization.

Only a single memory access stream emanating from each processor was con—

sidered, since most available general-purpose multiprocessor systems provide only a

single physical path from processor to memory. However, to include vector processors

with multiple processor—memory paths in the scope of the proposed methodology, the

175

workload generation techniques can be adapted to provide multiple memory access

streams and the performance model augmented to reflect the corresponding change.

The other most popular programming model, besides the shared-variable

paradigm, uses message passing for inter—process communication and is normally used

on distributed-memory multicomputers. The extension of our proposed framework to

address the performance issues in the message-passing programming paradigm and

characterize the behavior of message-passing workloads would, in some sense, impart

a degree of completeness to the performance characterization methodology.

Finally, a particularly challenging proposition, in this respect, is the building of

an integrated system characterization and application performance estimation en-

vironment. It would allow common performance experiments to be performed on

different multiprocessor systems to characterize them and use the repository of data

gathered, in conjunction with an application analyzer, to enable accurate estimation

of application execution performance on a target architecture.

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

BIBLIOGRAPHY

A. Agarwal and A. Gupta. Memory reference characteristics of multiproces-

sor applications under Mach. In Proceedings of the 1988 ACM SIGMETRICS

Conference, pages 422 - 433, 1988.

Anant Agarwal and Mathews Cherian. Adaptive backoff synchronization tech-

niques. In Proceedings of the International Symposium on Computer Architec-

ture, pages 396 -— 406, May 1989.

A. Agarwal et al. An evaluation of directory schemes for cache coherence. In

Proceedings of the 15th Annual International Symposium on Computer Archi-

tecture, pages 280 —- 289, 1988.

G.A. Amdahl. Validity of the single processor approach to achieving large-scale

computing capabilities. In AFIPS Conference Proceedings, volume 30, pages

483 - 485, 1967.

Ames Research Laboratory. The SLALOM Benchmark, 1992.

Thomas E. Anderson. The performance of spin lock alternatives for shared

memory multiprocessors. IEEE Transactions on Parallel and Distributed Sys-

tems, 1(1):6 — 16, 1990.

Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy. The per-

formance implications of thread management alternatives for shared-memory

multiprocessors. IEEE Transactions on Computers, 38(12):1631 — 1644, De-

cember 1989.

NS. Arenstorf and H.F. Jordan. Comparing barrier algorithms. Technical Re-

port 87-65, ICASE, NASA Langley Research Center, Hampton, VA, September

1987.

T.S. Axelrod. Effects of synchronization barriers on multiprocessor perfor-

mance. In Parallel Computing 3, pages 129 - 140. North-Holland, 1986.

176

177

[10] D.H. Bailey and J.T. Barton. The NAS kernel benchmark program. Technical

report, NASA Technical Memorandum 86711, August 1985.

[11] F. Baskett and A. J. Smith. Interference in multiprocessor computer systems

and interleaved memory. Communications of the ACM, 19:327 - 334, June 1976.

[12] SJ. Baylor and RD. Rathi. A study of the memory reference behavior of

engineering/scientific applications in parallel processors. In Proceedings of the

1989 International Conference on Parallel Processing, volume 1, pages 78 - 82,

1989.

[13] BBN Advanced Computers Inc., Cambridge, Massachusetts. Overview of the

Butterfly GP1000, November 1988.

[14] BBN Advanced Computers Inc., Cambridge, Massachusetts. TC2000 Technical

Product Summary, November 1989.

[15] BBN Advanced Computers Inc., Cambridge, Massachusetts. Inside the TC2000

Computer, 1990.

[16] C.J. Beckmann and C. Polychronopolous. The effect of barrier synchronization

and scheduling overhead on parallel loops. In Proceedings of the 1989 Interna-

tional Conference on Parallel Processing, volume 2, pages 200 — 204, 1989.

[17] M. Berry. The Perfect Club benchmarks: Effective performance evaluation of

supercomputers. The International Journal of Supercomputer Applications, 3:5

- 40, 1989.

[18] DP. Bhandarkar. Analysis of memory interference in multiprocessors. IEEE

Transactions on Computers, C-24:897 — 908, September 1975.

[19] Laxmi N. Bhuyan. An analysis of processor-memory interconnection networks.

IEEE Transactions on Computers, C-34:279 — 283, March 1985.

[20] R. Bisiani and M. Ravishankar. PLUS: A distributed shared-memory system.

In Proc. 17th Intl. Symp. on Computer Architecture, pages 115-124, 1990.

[21] ED. Brooks. The butterfly barrier. Int. Jour. of Parallel Programming,

15(4):295 — 307, 1986.

[22] R. Bryant, P. Carini, H. Chang, and B. Rosenburg. Supporting structured

shared virtual memory under Mach. In Proc. USENIX Mach Symposium,

November 1991.

178

[23] W.H. Burkhardt. Aspects of multiprocessor systems. In Proceedings of the

COMPEURO ’87 Conference, pages 99 - 105, 1987.

[24] Ingrid Y. Butcher and Margaret L. Simmons. Measurement of memory access

contentions in multiple vector processor systems. In Proceedings of the Super-

computing ’91 Conference, pages 806 - 817, November 1991.

[25] B.L. Buzbee. The efficiency of parallel processing. Computer Design, June 1984.

[26] A. Cox and R. Fowler. The implementation of a coherent memory abstraction

on a NUMA multiprocessor: Experiences with PLATINUM. In Proc. 12th ACM

Symp. on Operating System Principles, pages 32—44, Dec. 1989.

[27] H.J. Curnow and RA. Wichmann. A synthetic benchmark. The Computer

Journal, 19(1):43 — 49, 1976.

[28] Zarka Cvetanovic. Performance Analysis of Multiple-Processor Systems. PhD

thesis, University of Massachusetts, Amherst, Department of Computer Science,

May 1986.

[29] George Cybenko, Lyle Kipp, Lynn Pointer, and David Kuck. Supercomputer

performance evaluation and the Perfect benchmarks. Technical Report 965,

University of Illinois at Urbana-Champaign, Center for Supercomputing Re-

search and Development, Urbana, IL, March 1990.

[30] F. Darema-Rogers, G.F. Pfister, and K. So. Memory access patterns of parallel

scientific programs. In Proceedings of the 1987 ACM SIGMETRICS Conference,

pages 46 — 58, 1987.

[31] Chita R. Das and Laxmi N. Bhuyan. Bandwidth availability of multiple-bus

multiprocessors. IEEE Transactions on Computers, C-34z918 - 926, October

1985.

[32] U. Detert and G. Hofemann. CRAY X-MP and Y-MP memory performance.

In Parallel Computing 17, pages 579 - 590. North-Holland, 1991.

[33] J.J. Dongarra. The Linpack benchmark: An explanation. In Supercomputing

First International Conference Proceedings, Athens, Lecture Notes in Computer

Science 297, pages 456 - 473, 1987.

[34] J.J . Dongarra and A. Hinds. Comparison of the Cray X-MP/4, Fujitsu VP-200

and Hitachi S-810/20: An Argonne perspective. Technical Report ANL-85-19,

MCS Division, Argonne National Laboratory, Argonne, IL, October 1985.

179

[35] J.J . Dongarra, J. Martin, and J. Worlton. Computer benchmarking: Paths and

pitfalls. IEEE Spectrum, 24(7):38 - 43, July 1987.

[36] Thomas H. Dunigan. Kendall Square multiprocessor: Early experiences and

performance. Technical Report ORNL/TM-12065, Oak Ridge National Labo-

ratory, Oak Ridge, March 1992.

[37] J. Eggers and RH. Katz. A characterization of sharing in parallel programs and

its applicability to coherency protocol evaluation. In Proceedings of the 15th

International Symposium on Computer Architecture, pages 373 - 382, 1988.

[38] Encore Computer Corporation. Multimaa: Technical Summary, 1986.

[39] W. Feller. An Introduction to Probability Theory and Its Applications, volume 1.

New York: Wiley, 1957.

[40] B. Fleisch and G. Popek. Mirage: A coherent distributed shared memory design.

In Proc. 12th ACM Symp. on Operating System Principles, pages 211—223,

December 1989.

[41] Philip J. Fleming and John J. Wallace. How not to lie with statistics: The cor-

rect way to summarize benchmark results. ACM Computing Practices, 292218

- 221, March 1986.

[42] Ian Foster, William Gropp, and Rick Stevens. The parallel scalability of the

spectral transform method. Technical report, MCS Division, Argonne National

Laboratory, Argonne, IL, January 1991.

[43] KT. Fung and RC. Torng. On the analysis of memory conflicts and bus con-

tentions in a multiple microprocessor system. IEEE Transactions on Computers,

C-27:28 — 37, January 1979.

[44] D. Gajski et al. Cedar construction of a large scale multiprocessor. Technical

Report UIUCDCS-R-83—1123, University of Illinois, Department of Computer

Science, February 1983.

[45] K. Gallivan, D. Gannon, W. Jalby, A. Malony, and H. Wijshoff. Experimentally

characterizing the behavior of multiprocessor memory systems: A case study.

IEEE Transactions on Software Engineering, 16(2):216 — 223, February 1990.

[46] ER Gehringer, D.P. Siewiorek, and Z. Segall. Parallel Processing: The Cm‘“

Experience. MA: Digital, Bedford, 1987.

180

[47] E. Gelenbe. Asymptotic processing time of a model of parallel computation. In

Proc. of Nat. Comp. Conf., Las Vegas, NV, November 1986.

[48] E. Gelenbe. Multiprocessor Performance. New York: Wiley, 1989.

[49] E. Gelenbe. Multiprocessor performance and the activity set model of program

behavior. In J .L. Delhaye and E. Gelenbe, editors, High Performance Comput-

ing, pages 121 — 132. Amsterdam, The Netherlands: North-Holland, 1989.

[50] J .R. Goodman, M.K. Vernon, and P.J. Woest. Efficient synchronization primi-

tives for large-scale cache coherent multiprocessors. In Proceedings of the Third

International Conference on Architectural Support for Programming Language

and Operating Systems, pages 64 - 75, April 1989.

[51] A. Gottlieb, R. Grishman, C.P. Kruskal, K.M. McAuliffe, L. Rudolph, and

M. Snir. The NYU Ultracomputer — designing an MIMD shared memory parallel

computer. IEEE Transactions on Computers, C-32(21):175 — 189, February

1983.

[52] Gary Graunke and Shreekant Thakkar. Synchronization algorithms for shared

memory multiprocessors. IEEE Computer, pages 62 - 69, June 1990.

[53] R. Gupta. The fuzzy barrier: A mechanism for the high speed synchronization

of processors. In Third Int. Conf. on Architectural Support for Programming

Languages and Operating Systems, pages 54 - 63, April 1989.

[54] J.L. Gustafson. Amdahl’s law re-evaluated. Communications of the ACM,

31:532 - 533, 1988.

[55] D.T. Harper III and J.R. Jump. Vector access performance in parallel memories

using a skewed access scheme. IEEE Transactions on Computers, C-36(12):1440

— 1449, December 1987.

[56] P. Heidelberger and S. Lavenberg. Computer performance evaluation method-

ology. IEEE Transactions on Computers, C-33:1195 — 1220, December 1984.

[57] J. Helin and K. Kaski. Performance analysis of high-speed computers. In

Proceedings of the 1989 Supercomputing Conference, pages 797 -— 808, 1989.

[58] D. Hensgen, R. Finkel, and U. Manber. Two algorithms for barrier synchro-

nization. Int. J. Parallel Program, 17(1):1 — 17, 1988.

181

[59] M. Herlihy. Impossibility and universality results for wait-free synchronization.

In Proceedings of the Seventh Annual ACM Symposium on Principles of Dis-

tributed Computing, pages 276 - 291, 1988.

[60] RH. Hill. The art of benchmarking. The Spang Robinson Report on Supercom-

puting and Parallel Processing, (3), 1989.

[61] R.W. Hockney. Performance characterization of the HEP. In J.S. Kowalik,

editor, MIMD Computation: HEP Supercomputer and its Applications. Cam-

bridge: MIT Press, 1985.

[62] R.W. Hockney. (romnl[2,31/2) measurements on the 2-CPU CRAY X-MP. In

Parallel Computing 2, pages 1 - 14. North-Holland, 1985.

[63] R.W. Hockney. Parameterization of computer performance. In Parallel Com-

puting 5, pages 97 —- 103. North—Holland, 1987.

[64] Intel Corporation. A Touchstone DELTA System Description, 1991.

[65] D.N. Jayasimha. Distributed synchronizers. In Proceedings of the 1988 Inter-

national Conference on Parallel Processing, pages 23 - 27, 1988.

[66] Kendall Square Research. KSRI, 1992.

[67] C.P. Kruskal, L. Rudolph, and M. Snir. Efficient synchronization on multi-

processors with shared memory. In Proceedings of the Seventh Annual ACM

Symposium on Principles of Distributed Computing, pages 218 — 228, 1986.

[68] C.P. Kruskal and A. Weiss. Allocating independent subtasks on parallel proces-

sors. In Proceedings of the 1984 International Conference on Parallel Processing,

pages 236 — 240, 1984.

[69] David J. Kuck and Ahmed H. Sameh. A supercomputing performance evalua-

tion plan. Technical Report 692, University of Illinois at Urbana-Champaign,

Center for Supercomputing Research and Development, Urbana, IL, June 1987.

[70] DJ. Kuck et al. Dependence graphs and compiler optimizations. In Proceedings

of the 8th ACMSymposium on Principles ofProgramming Languages, pages 207

— 218, January 1981.

[71] H.T. Kung. Synchronized and synchronous parallel algorithms for multiproces-

sors. In J.F. Traub, editor, Algorithms and Complexity: New Directions and

Recent Results. New York: Academic, 1976.

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

182

L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Com-

puter Systems, 5(1), 1987.

D.H. Lawrie and CR. Vora. The prime memory system for array access. IEEE

Transactions on Computers, 31(5):435 — 442, May 1982.

D. Lee. Scrambled storage for parallel memory systems. In Proceedings of the

International Symposium on Computer Architecture, pages 232 — 239, 1988.

G. Lee, C.P. Kruskal, and DJ. Kuck. The eflectiveness of combining in shared-

memory parallel computers in the presence of “hot-spots”. In Proceedings of the

1986 International Conference on Parallel Processing, pages 11 — 12, August

1986.

J. Lee and U. Ramachandran. Synchronization with multiprocessor cache. In

Proceedings of the International Symposium on Computer Architecture, pages

27 — 37, May 1990.

D. Lenowski et al. The directory—based cache coherence protocol for the DASH

multiprocessor. In Proceedings of the 17th Annual International Symposium on

Computer Architecture, pages 148 - 159, May 1990.

K. Li and P. Hudak. Memory coherence in shared virtual memory systems. In

ACM Transactions on Computer Systems, pages 321—359, November 1989.

K. Li and R. Schaefer. A hypercube shared virtual memory system. In Proc.

Intl. Conf. on Parallel Processing, pages 125—131, 1989.

T. Lovett and S. Thakkar. The Symmetry multiprocessor system. In Proceedings

of the 1988 International Conference on Parallel Processing, pages 303 - 310,

August 1988.

RD. Lubachevsky. Synchronization barrier and related tools for shared memory

parallel programming. In Proceedings of the 1989 International Conference on

Parallel Processing, volume 2, pages 175 — 179, August 1989.

O. Lubeck, J. Moore, and R. Mendez. A benchmark comparison of three su-

percomputers: Fujitsu VP-200, Hitachi S-810/20 and Cray X-MP/2. IEEE

Computer, 18, December 1985.

S.F. Lundstrom. Applications cosiderations in the system design of highly con-

current multiprocessors. IEEE Transactions on Computers, C-36(11):1292 —

1309, November 1987.

183

[84] S. Madala and J .B. Sinclair. Performance of synchronous parallel algorithms

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

with regular structures. IEEE Transactions on Parallel and Distributed Sys-

tems, 2(1):105 — 116, January 1991.

Allen D. Malony. Performance Observability. PhD thesis, University of Illinois

at Urbana—Champaign, Department of Computer Science, October 1990.

M.A. Marsan and M. Gerla. Markov models for multiple-bus multiprocessors.

IEEE Transactions on Computers, C-31:239 - 248, March 1982.

J.L. Martin. Performance evaluation: Applications and architectures. In Second

International Conference on Supercomputing, pages 369 — 373, May 1987.

PH. McMahon. The Livermore Fortran kernels: A computer test of the floating-

point performance range. Technical Report UCRL-53745, Lawrence Livermore

National Laboratory, December 1986.

John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable syn-

chronization on shared-memory multiprocessors. ACM Transactions on Com—

puter Systems, 9(1):21 — 65, February 1991.

HE. Mizrahi, J .L. Baer, D. Lazowska, and J. Zahorjan. Extending the memory

hierarchy into multiprocessor interconnection networks: A performance analy-

sis. In Proceedings of the 1989 International Conference on Parallel Processing,

volume 1, pages 41 — 50, August 1989.

J. Mohan. Performance of Parallel Programs: model and analyses. PhD thesis,

Carnegie-Mellon University, Pittsburg, Department of Computer Science, July

1984.

Arun Nanda and Lionel M. Ni. Benchmark workload generation and perfor-

mance characterization of multiprocessors. In Proceedings of the Supercomput-

ing ’92 Conference, November 1992.

Arun Nanda and Lionel M. Ni. MAD kernels: An experimental testbed to study

multiprocessor memory system behavior. In Proceedings of the 1992 Interna-

tional Conference on Parallel Processing, August 1992.

Arun Nanda and Lionel M. Ni. SAD kernels: A software tool to evaluate syn-

chronization behavior of multiprocessors. In Proceedings of the 1992 Computer

Science and Applications Conference, September 1992.

184

[95] Arun Nanda, Honda Shing, Ten-Hwan Tzen, and Lionel M. Ni. A replicate

workload framework to study performance degradation in shared-memory mul-

tiprocessors. Technical Report MSU-CPS-ACS-l8, Michigan State University,

Department of Computer Science, January 1990.

[96] Arun Nanda, Honda Shing, Ten-Hwan Tzen, and Lionel M. Ni. Resource

contention in shared-memory multiprocessors: A parameterized performance

degradation model. Journal of Parallel and Distributed Computing, 12:313 —

328, July 1991.

[97] K.W. Neves and H.D. Simon. Supercomputer performance evaluation: Bench-

marking applications on supercomputers. In Second International Conference

on Supercomputing, pages 374 — 379, May 1987.

[98] A. Norton and E. Melton. A class of boolean linear transformations for conflict-

free power-of-two stride access. In Proceedings of the 1987 International Con-

ference on Parallel Processing, pages 247 — 254, August 1987.

[99] W. Oed and O. Lange. On the effective bandwidth of interleaved memories in

vector processing systems. IEEE Transactions on Computers, C-34(10):949 -

957, October 1985.

[100] M.T. O’Keefe and HG. Dietz. Hardware barrier synchronization: Static Barrier

MIMD (SBM) and Dynamic Barrier MIMD (DBM). In Proceedings of the 1990

International Conference on Parallel Processing, volume 1, pages 35 - 46, 1990.

[101] J.H. Patel. Performance of processor-memory interconnections for multiproces-

sors. IEEE Transactions on Computers, C-30z771 - 780, October 1981.

[102] R. Perron and C. Mundie. The architecture of the Alliant FX/8 computer. In

Spring COMPCON ’86, pages 390 — 393, March 1986.

[103] B.L. Peuto and L.J. Shustek. An instruction timing model of CPU performance.

In Proc. Fourth Annual Symp. Comput. Architecture, volume 5, pages 165 -— 178,

March 1977.

[104] G. Pfister, W.C. Brantley, D.A. George, S.L. Harvey, W.J. Kleinfelder, K.P.

McAvliffe, T.A. Melton, V.A. Norton, and J. Weiss. The IBM research parallel

processor prototype (RP3): Introduction and architecture. In Proceedings of the

1985 International Conference on Parallel Processing, pages 764 — 771, August

1985.

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

185

G.F. Pfister and V.A. Norton. Hot-spot contention and combining in multistage

interconnection networks. IEEE Transactions on Computers, C-34z943 — 948,

October 1985.

C. Polychronopolous. Compiler optimizations for enhancing parallelism and

their impact on architecture design. IEEE Transactions on Computers, C-

37(8):991 — 1004, August 1989.

Ram Raghavan and John P. Hayes. On randomly interleaved memories. In

Proceedings of the Supercomputing ’90 Conference, pages 1 - 10, November

1990.

U. Ramachandran, M. Ahamad, and M.Y.A. Khalil. Coherence of distributed

shared memory: Unifying synchronization and transfer of data. In Proc. Intl.

Conf. on Parallel Processing, volume 11, pages 160—169, August 1989.

RD. Rettberg, W.R. Crowther, P.P. Garvey, and RS. Tomlinson. The Monarch

parallel processor hardware design. IEEE Computer, pages 18 — 30, April 1990.

Rafael H. Saavedra-Barrera, Alan J. Smith, and Eugene Miya. Machine charac-

terization based on an abstract high-level language machine. IEEE Transactions

on Computers, 38:1659 — 1679, December 1989.

RH. Saavedra-Barrera. Machine characterization and benchmark performance

prediction. Technical Report UCB/CSD 88/437, University of California,

Berkeley, June 1989.

RC. Scarbourough and HG. Kolsky. A vectorizing FORTRAN compiler. IBM

Journal of Research and Development, 30(2), March 1986.

Sequent Computer Systems Inc. Balance 8000 System Technical Summary,

1984.

Sequent Computer Systems Inc. Symmetry Technical Summary, 1987.

Leah J. Siegel, Howard J. Siegel, and Philip H. Swain. Performance measures

for evaluating algorithms for SIMD machines. IEEE Transactions on Software

Engineering, SE-8(4):319 - 330, July 1982.

J.P. Singh, W. Weber, and A. Gupta. SPLASH: Stanford parallel applications

for shared-memory. Technical report, Computer Systems Laboratory, Stanford

University, CA, 1991.

186

[117] James E. Smith. Characterizing computer performance with a single number.

ACM Computing Practices, 3121202 — 1206, October 1988.

[118] Per Stenstrom. A survey of cache coherence schemes for multiprocessors. IEEE

Computer, pages 12 — 24, June 1990.

[119] R. Thomas. Behavior of the Butterfly parallel processor in the presence of

memory hot spots. In Proceedings of the 1986 International Conference on

Parallel Processing, pages 46 - 50, 1986.

[120] J. Uniejewski. SPEC benchmark suite: Designed for today’s advanced systems.

SPEC Newsletter, 1, 1989.

[121] Dalibor F. Vrsalovic, Daniel P. Siewiorek, Zary Z. Segall, and Edward F.

Gehringer. Performance prediction and calibration for a class of multiproces-

sors. IEEE Transactions on Computers, 37:1353 — 1364, November 1988.

[122] W.H. Ware. The ultimate computer. IEEE Spectrum, pages 84 — 91, March

1982.

[123] RP. Weicker. Dhrystone: A synthetic systems programming benchmark. Com-

munications of the ACM, 27(10):1013 - 1030, October 1984.

[124] S. Weiss. An aperiodic storage scheme to reduce memory conflicts in vector

processors. In Proceedings of the International Symposium on Computer Archi-

tecture, pages 380 — 385, 1989.

[125] J. Worlton. Understanding supercomputer benchmarks. Datamation, pages 121

- 129, 1984.

[126] RC. Yew, S.N. Tzeng, and D.H. Lawrie. Distributing hot-spot addressing in

large-scale multiprocessors. In Proceedings of the 1986 International Conference

on Parallel Processing, pages 51 - 58, August 1987.

[127] Xiaodong Zhang. Performance measurement and modeling to evaluate various

effects on a shared-memory multiprocessor. IEEE Transactions on Software

Engineering, 17(1):87 - 93, January 1991.

ICHIGRN STRTE UNIV.

lllll[ll[Ill][MIMI][I][I][lllllllllllllll

