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ABSTRACT

DEVHDPMENTALAND SAUCYLIC ACID REGULATED EXPRESSION

OF THE ALTERNATIVE OXIDASE OF HIGHER PLANTS

BY

David Michael Rhoads

Alternative respiration was described sixty years ago as respiration that is

not sensitive to cyanide. But, to this day, the exact nature and function of

alternative respiration remains a mystery. Research in just the last 10 years has

provided a compelling argument that a terminal oxidase protein is involved. The

flow of electrons through the alternative pathway is much less energy conserving

than the electron flow through the cytochrome pathway. The purpose for such a

potentially "wasteful" pathway is a source of great controversy, which will only be

settled by future experimentation. Molecular-genetic analyses may provide new

ways to study the function of the alternative pathway in plant cell metabolism.

Chapter 2 of this thesis describes the first isolation and characterization of a

cDNA clone encoding an alternative oxidase protein. The sequence of this cDNA

has provided insight into the possrble structure of the protein that it encodes. It

has also provided a molecular probe with which to isolate genes from other

Species and investigate the regulation of expression of alternative oxidase genes.

The results presented in Chapter 3 show that the developmental and salicylic-acid-



directed increases in alternative pathway capacity are accompanied by the

accumulation of alternative oxidase proteins and transcripts in the appendix tissue

of Sauromatum guttatum Schott (an aroid plant that uses the heat generated by

the "lost" energy of alternative respiration to volatilize putrid compounds that

attract insect pollinators). Chapter 4 describes the isolation and analysis of a

genomic clone that corresponds to the cDNA and, therefore, encodes the putative

alternative oxidase precursor protein of S. guttatum. A highly conserved region of

the gene, which encodes a domain of the protein that is predicted to embed the

mature protein in the inner mitochondrial membrane, is contained in one of the

four exons. These data suggest that this region of the protein is functionally

important and was established early in its evolution. The promoter region of this

gene is of particular interest since the promoter region of other salicylic acid-

"responsive" genes have been analyzed. Chapter 5 shows the changes in

alternative oxidase expression and alternative pathway and cytochrome pathway

capacities in suspension cultured tobacco cells at various stages after subculturing

and following the addition of salicylic acid.
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CHAPTER 1: INTRODUCTION

CHARACTERIZATION OF THE

ALTERNATIVE RESPIRATORY PATHWAY

Plant thermogenesis was reported as early as 1778 when Lamarck

demonstrated that heat was produced during the flowering of some aroid plants

(referenced in 57). Garreau later linked this heat production to an increase in the

rate of oxygen consumption (referenced in 5 7). In the 1930’s van Herk

determined that this elevated rate of respiration associated with heat production

during flowering of the aroid species 53aromatum guttatum Schott (voodoo lily)

was not inhibited by cyanide (referenced in 45,57). These early studies using aroid

plants and similar studies by Genevois using sweet pea (referenced in 49) initiated

scientific interest in cyanide-resistant respiration, which is now commonly referred

to as alternative respiration.

Alternative respiration is insensitive to cyanide, azide, carbon monoxide,

and antimycin A. Azide, carbon monoxide, and cyanide inhibit cytochrome

pathway respiration by interfering with complex IV (see references 16,49 for

reviews of cytochrome pathway components and inhibitors). Antimycin A inhibits

Cytochrome pathway respiration by binding to a protein in complex III (16).

 



2

These inhibitors have been valuable in establishing that the alternative pathway

diverges from the cytochrome pathway after the ubiquinone pool (4,77,88). Some

evidence suggests that the cytochrome and alternative pathways interact with

different pools of ubiquinone in the mitochondrial membranes (2,32,62,75,80,83).

The alternative pathway is inhibited by iron-chelating compounds (49), disulfuram

(27) and propyl gallate (68,85). The most widely used inhibitors are the

hydroxamic acid derivatives, especially SHAM (salicylhydroxamic acid)(82).

SHAM inhibits the alternative pathway respiration and lipoxygenase activity

completely at a concentration of 1 mM, but does not inhibit cytochrome pathway

respiration below 2 mM (12).

The general nature of alternative respiration has, until recently, been a

source of great controversy (49). Cyanide-resistant respiration has been proposed

to be due to: 1) free radicals formed in mitochondrial membranes (49,78); 2)

lipoxygenase (49,68); 3) a protonmotive ubiquinone cycle (49,77) cytochrome b-,

(49); and 5) a discrete terminal oxidase (49,77). Several lines of evidence now

provide a compelling argument in favor of cyanide-resistant respiration occurring

via a discrete terminal oxidase (7), which is called the alternative oxidase. The

alternative oxidase has also been localized to the matrix surface of the inner

mitochondrial membrane (74). There have been numerous proposals (49,83,89)

concerning the composition of the alternative oxidase. Flavin has been proposed

as a cofactor (83); however, this seems unlikely since the affinity of mitochondrial

flavoproteins for 02 is too low and the kinetics of reoxidation ' are too slow (4,83). ,

Also, auto-oxidizable flavoproteins produce H202 (83,89), whereas the alternative
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pathway produces H20 (49,83,89). Nonheme iron (4,49,83) is an unlikely cofactor

since no clear electron paramagnetic resonance (EPR) signal from a nonheme

iron has been correlated with the presence of the alternative pathway (49).

Copper (83,89), is likewise an unlikely candidate because of the lack of a clear

EPR signal (63). Nevertheless, iron and copper cannot yet be ruled out

completely since it is possible that an EPR signal from one or the other is masked

(49,89) as in the case of coupled binuclear copper sites, designated as "type 3"

copper (33). The determination of the exact composition of the alternative oxidase

will, obviously, require a great deal more research.

PARTITIONING OF ELECI'RONS BETWEEN RESPIRATORY PATHWAYS

The partitioning of electrons between the alternative pathway and

cytochrome pathway must be regulated because this has significant consequences

for the physiology of the organism. The mechanisms to control the partitioning of

electrons between the two pathways can be divided into two general categories:

those that control the capacity of each pathway and those that control the degree

of engagement of each pathway.

The capacity of each pathway defined as the maximum number of electrons

that can flow through the pathway. The capacity of the cytochrome pathway (Vm)

is the rate of oxygen uptake sensitive to cyanide in the presence of SHAM using

an exogenously added substrate. The capacity of the alternative pathway (V,,,) is

measured as the rate of oxygen uptake sensitive to SHAM in the presence of
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cyanide using an exogenously added substrate. The necessity for SHAM to be

present in determining the capacity of the cytochrome pathway is debatable and

based on the argument of whether or not inhibition of the cytochrome pathway

results in increased electron flow through the alternative pathway (49,60,62).

Although it is generally accepted that inhibition of the alternative pathway by

SHAM does not cause an increase in electron flow to the cytochrome pathway

(and will not cause erroneous determination of alternative pathway capacity), this

assumption may not always be valid (60,62,99).

The factors that could influence the capacity of each pathway include: 1)

the amount of each component that is present in the mitochondria, which is

determined by transcription rates, RNA stability, and translation rates for protein

components and synthesis of cofactors associated with the components;

2) targeting of components to their proper locations in the mitochondria;

3) assembly of protein complexes; 4) interaction of the pathway components with

the proper electron donors and acceptors; and 5) the presence or absence of

pathway regulators.

The activity of the alternative pathway (v,.,) is the rate of 02 reduction that

is occurring via the alternative oxidase in vivo. The activity of the alternative

pathway is related to the capacity by the following relationship: v... = pV,,,. The

engagement of the pathway, p, is the portion of the alternative pathway capacity

that is being utilized and has values of 0 (no engagement) to 1 (full engagement).

Methods for measuring alternative pathway activity include: 1) the simple addition

of SHAM (to whole cells or tissues) and determination of the difference in the
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rate of 0; consumption before SHAM addition and the rate after SHAM addition

(60), assuming that inhibition of the alternative pathway does not divert electrons

to the cytochrome pathway; 2) the Bahr and Bonner method, which utilizes

titration with SHAM (1,12) and assumes that inhibition of the alternative pathway

does not result in an increase in electron flow to the cytochrome pathway (see

above), and that the cytochrome pathway is always engaged to its maximum

capacity (which has also been questioned [84,91]); and 3) the Lambowitz et a1.

method, in which the ATP/O ratios are determined for a given substrate in the

presence and absence of inhibitors of the alternative and cytochrome pathways

and used to calculate the fraction of electrons flowing through each pathway using

equations that take into account the different amounts of ATP produced by

electrons from different substrates flowing through each pathway (47,49).

Recently, a non-invasive method for measuring the engagement of the alternative

pathway was introduced (28). This method relies on the observation that the

alternative oxidase discriminates against 180 to a much greater extent than does

cytochrome oxidase (28).

The factors that could influence the in viva activity (or engagement) of the

alternative pathway include the presence or absence of inhibitors and activators of

the pathway, the identity of the substrates being oxidized (13,49,62), the physical

arrangement of the components of each pathway, and the reduction level of the

ubiquinone pool (2,11,19). Succinate (even in the presence of malonate, an

inhibitor of succinate dehydrogenase) and malate (even in the presence of

oxaloacetate, which inhibits malate oxidation) stimulate the rate of NADH
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oxidation via the alternative pathway above the levels predicted by simple addition

of the rates for the single substrates in Petunia bybn'da callus mitochondria and

potato tuber callus mitochondria (96). However, in mitochondria that poorly

oxidize NADH via the alternative pathway, this stimulation was not observed (96)

and succinate inhibits NADH oxidation via the alternative pathway in soybean

cotyledon mitochondria (13). In addition, malonate, which inhibits succinate

dehydrogenase because it is structurally similar to succinate, is not capable of

stimulating NADH oxidation via the alternative pathway (96). These observations

argue against the hypothesis that succinate and/or malate affect respiration via the

alternative pathway by interacting with the alternative oxidase (96).

Electrons from succinate may flow through the alternative pathway more

readily than electrons from NADH in the mitochondria from some sources, such

as wounded potato tuber slices (49,96); while electrons from succinate seem to

have little access to the alternative pathway in mitochondria from other sources,

such as corn and fresh potato tuber slices (49). These studies illustrate the

complex and poorly understood partitioning of electrons from different substrates

to the alternative and cytochrome pathways in various tissues of assorted plant

species. At least four hypotheses have been proposed to explain the observations:

1) there is a longer diffusion path between external NADH dehydrogenase and

the alternative oxidase than between succinate dehydrogenase and the alternative

oxidase (13,62); 2) there is a direct interaction between succinate dehydrogenase

and the alternative oxidase (13,62); 3) there is compartmentation of distinct

alternative oxidase pools (13,96); and 4) there is compartmentation of distinct
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quinone pools associated with different dehydrogenases and/or oxidases

(2,11,13,49,62,80,91). The actual situation in each plant mitochondrion may be a

specific combination of these various possibilities suited to the metabolism of the

cell in which the mitochondrion exists (13).

The partitioning of electrons to the alternative pathway may depend upon

the reduction level of the ubiquinone pool (2,11,19,91). It has been postulated

that the ubiquinone pool must be completely reduced before electrons will be

diverted to the alternative pathway (2). A second model postulates that the

partitioning of electrons is based upon the relative rate constants for the reactions

between reduced ubiquinone and the cytochrome and alternative oxidase (11,91).

In soybean cotyledon mitochondria, a quinone reduction level of 35-40% was

sufficient to allow engagement of the alternative pathway (19), which argues

against the first model. It must also be kept in mind that the reduction level of

the quinone pool itself depends on the relative rates of electron flow into and out

of the quinone pool, which depends on the substrate and the ADP level (18,19).

ALTERNATIVE PATHWAY 1N AROIDS

Since electron flow through the alternative pathway does not result in

proton translocation at complex III or complex IV (4,61,90), much of the potential

energy of the system is not conserved as chemical energy and is lost as heat (90).

Specific floral tissues of some aroid plants develop such a high level of the

alternative pathway that they become thermogenic (12,57,70). The day the
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inflorescence of the aroid species S. guttatum blooms (D-day), the capacity of the

alternative pathway in the appendix tissue is 300-600 natoms O/min/mg protein

and the temperature of the tissue increases about 9-12°C above ambient

temperature (23,70,72). In S. guttatum, the heat produced during blooming is

used to volatilize foul smelling compounds, such as indoles, which attract insect

pollinators (56). Other aroids have also been good sources of mitochondria with

which to study the alternative respiratory pathway. Mitochondria from Arum

maculatum and Symplocarpus foetidus (skunk cabbage) have been used

extensively for biophysical experiments (1,33,35,36,76,90) and in attempts to purify

the alternative oxidase (6,34,38).

Three mitochondrial proteins with apparent molecular masses 35-,

36-, and 37 kilodaltons (kD) strongly correlate with the alternative pathway in

S. guttatum (21). Several lines of evidence suggest that the alternative oxidase is

comprised of at least one of these proteins. The initial identification was made by

solubilizing the active mitochondrial proteins (20), followed by CM-Sepharose and

phenyl-Sepharose column chromatography to attain a 166-fold purified

preparation of the alternative oxidase activity (21). Mouse polyclonal antibodies

raised to this preparation inhibited alternative oxidase activity and

immunoprecipitated the 35-, 36- and 37 kD proteins which copurify with the

activity. Three distinct monoclonal antibodies were raised to the 36 kD protein:

the ADA monoclonal antibodies recognize all three proteins; the AOU antibodies

recognize primarily the 37 kD protein, but do recognize the 35- and 36 kD

proteins to a lesser extent; and the AOL antibodies recognize the 35- and 36 kD
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proteins primarily and the 37 kD protein to a lesser extent (22). The observation

that the three proteins are immunologically related is consistent with the

hypothesis that these three proteins are posttranslationally modified versions of a

single gene product. Secondly, the levels of the 35-, and 36 kD proteins

correspond to changes in the level of alternative oxidase activity at various stages

of development of the appendix tissue. The protein levels also increase after

application of salicylic acid, which is known to cause an increase in alternative

pathway activity and has been shown to be an endogenous "trigger" of

thermogenesis in appendix tissue (70, see below). In addition, the ADA

monoclonal antibodies recognize proteins in other tissues known to have high

levels of alternative pathway activity (21). At least two mitochondrial proteins in

specific tissues of all aroid plants investigated are also recognized by the ADA

monoclonal antibodies (21,22). Finally, the ADA monoclonal antibodies recognize

a protein that is correlated with alternative oxidase activity in Neurospora crassa

mitochondria (46). These data provide strong evidence that the 35-, 36- and

37 kD proteins are components of the alternative oxidase of S. guttatum.

ALTERNATIVE PATHWAY IN OTHER ORGANISMS

The alternative pathway has been studied in a variety of plants other than

aroids (3,4,84) as well as in algae (26,98), fungi (29,59,81,91,102), and "lower"

animals including a Paramecium and some of the brucei group of African

trypanosomes (8,83). The genetic studies using the fungus Neurospora have
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contributed to the identification of the branch point of the alternative pathway

(95 ), the identification of the alternative oxidase, and early hypotheses on the

location of the genes. A great deal of biochemical, biophysical, and physiological

work has been done with corn, mung bean, pea, potato, and soybean mitochondria

(14,31,39,49,65,84,86,_87,99). A single alternative oxidase protein that is recognized

by the AOA monoclonal antibodies has been identified in mitochondrial proteins

from specific tissues of potato (22), mung bean (22), tobacco callus (22), soybean

(39), and siratro (39). These results suggest that only one protein is required for

alternative oxidase activity. Also, cDNA clones encoding alternative oxidase

proteins have been isolated from potato (30), rice (R. Nickels and L. McIntosh,

personal communication), Arabidopsrls (D. 3611, personal communication), and

yeast (81). These data will provide information on the evolutionary conservation

of the alternative oxidase. The protein produced from the Arabidopsis cDNA

clone allows CN-resistant, SHAM sensitive respiration in E. 0011', indicating that a

single alternative oxidase protein is sufficient for alternative respiration (D. Still,

personal communication). Hansenula anomala may be a rich source of the

alternative oxidase (81) to be used for biophysical analysis.

The role of the alternative pathway in non aroid plants is unknown (45,84).

Over the years there have been many theories to explain the existence of the

(presumably) wasteful alternative pathway in the mitochondria of non-aroid higher

plants (45,reviewed in reference 84). It has been proposed that the pathway 4

developed as a protection against periodic bursts of cyanide in cyanogenic plants

(43,84), but this is generally disputed (48,84). Increased electron flow through the
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alternative pathway is implicated in response to environmental stresses such as:

wounding (15); pathogen attack, based on the observations of increased salicylic

acid levels in plants during pathogen attack (see below); and low temperatures

(10,45,54,55,86,87,94,101). While no direct evidence yet exists to support the idea

that thermogenesis is an adaptive response to low temperatures, many of these

studies support the hypothesis that respiration, at least in part through the

alternative pathway, may be involved with plant responses to lowered temperature.

Since leaf mitochondria preferentially oxidize glycine during

photorespiration, the alternative oxidase may remove excess NADH during this

process (24). Reoxidation of excess NADH generated during glycine oxidation in

isolated soybean mitochondria from greening cotyledons was mainly via the

alternative pathway (24). However, separate studies using pea or spinach leaf

mitochondria did not show a correlation between glycine oxidation and the

alternative pathway (18,25).

A second association between alternative pathway respiration and substrate

oxidation has been proposed for malate (49). In this scheme, excess reducing

power can be removed without control by the phosphate potential or the energy

charge by malate oxidation via malic enzyme and the alternative respiratory

pathway (49). Such an association has been observed (79,80), although the

interpretation of these data has been disputed (50).

The "energy overflow" hypothesis asserts that alternative pathway

respiration provides increased respiratory capacity when the cytochrome pathway

is saturated, allowing oxidation of cellular substrates in excess of those needed for
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growth, osmoregulation, storage as carbohydrate, or for ATP production (44,45).

The arguments in favor of and against this hypothesis will not be discussed since

they have been extensively reviewed elsewhere (17,44,45,84).

Finally, another hypothesis for the function of the alternative oxidase

asserts that the pathway allows a high rate of flux through the tricarboxylic acid

cycle for the continued production of carbon skeletons required for growth and

maintenance when the cytochrome pathway is inhibited by a high energy charge

(45,92) or by a lack of cytochrome pathway components (42,45). This hypothesis

implies that the cytochrome pathway must be saturated before the alternative

pathway is engaged. However, one study indicated a non-linear relationship of

quinone pool reduction with electron flow through the alternative pathway and

demonstrated that a quinone pool reduction of 35-40% was sufficient for the

engagement of the alternative pathway (19).

SALICYLIC ACID IN AROIDS

Salicylic acid has been shown to be an endogenous "trigger" of

thermogenesis in S. guttatum appendix tissue (70). Salicylic acid is produced in

the male floral region of the inflorescence and moves into the appendix beginning

early on D-1 and "triggers" thermogenesis at about noon of D-day (70,72). The

concentration of salicylic acid in the appendix increases from below 100 ng/g fresh

weight as late as D-2 to over 1.0 ug/g fresh weight on D-day (72). Salicylic acid

has also been shown to dramatically increase both the alternative pathway activity
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and the levels of the 35-, 36-, and 37 kD alternative oxidase proteins when it is

applied to S. guttatum appendix tissue sections (23). Prior to the application of

salicylic acid, the 37 kD protein is expressed at a moderate level in immature

appendix tissue (23). All three alternative oxidase proteins are present in great

abundance in the tissue sections following incubation in a phosphate-buffered

solution containing 1.0 mM salicylic acid (23). In addition, Raskin et a1. (72)

showed that light is required for salicylic acid to cause thermogenesis in appendix

tissue sections.

SALICYLIC ACID IN OTHER ORGANISMS

Application of salicylic acid (and some of its derivatives) induces flowering

in many species of the Lemnaceae family (9,37,40,41), in Impatiens balsamina

(64), and Pistia stratioles L. (69). However, the concentration and function of

endogenous salicylic acid in these organisms is unknown. The endogenous level of

salicylic acid is high in the heat-producing tissues of many plants during

thermogenesis and in the non-thermogenic flowers of Passiflora caerulea L. during

anthesis (71). The highest recorded concentration of endogenous salicylic acid is

found in the sporophst of male cones of Dioon eduIe, where it approaches 0.1

mg/g fi’esh weight during heat production (71). The highest level of salicylic acid

in a non-thermogenic plant is found in the leaves of Oryza sativa (rice), where it

ranges between 24 and 68 ug/g fresh weight depending on the cultivar (71).

Again, the function of the endogenous salicylic acid in these organisms has not
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been established. Addition of salicylic acid to high COz-grown Chlamydomonas

cultures in the log phase of growth also caused an increase in alternative pathway

capacity, but it is not known if salicylic acid functions as a regulator in vivo (26).

Salicylic acid may also be a messenger in systemic acquired resistance

(SAR) in tobacco plants infected with tobacco mosaic virus (TMV)(51,100) and in

cucumber plants infected with: 1) tobacco necrosis virus (TNV)(58); 2) the fungal

pathogen Colletotn’cbum lagenan'um (58); or 3) Pseudomonas syringae pv

synngae, a bacterial pathogen (73). TMV infection induces the accumulation of

pathogenesis related proteins (PR proteins)(66,100) and the transcripts that

encode them (5,51,52,53,97,100) in leaves of resistant tobacco plants. The level of

salicylic acid increases in the infected leaves and the upper, non-infected leaves of

a resistant tobacco plant that has been inoculated with TMV (51,100). Likewise,

the level of salicylic acid increases in the phloem of a cucumber plant following an

inoculation with C. Iagenarium, to which the plant has become resistant by initial

infection with TNV or C Iagenan'um (58). Furthermore, application of salicylic

acid to the leaves of TNV-resistant tobacco plants induces the accumulation of the

some of the acidic PR1 proteins (5,52,53,66,97,100), including PRla, and a glycine

rich protein (GRP8) and their corresponding transcripts (5,51,97,100). .

Accumulation of the transcripts corresponding to other "SAR genes" has also been

observed in primary and secondary leaves following inoculation with TMV or

salicylic acid (97). Therefore, salicylic acid appears to act in disease resistance by

regulating gene expression since application of salicylic acid has been shown to

cause the accumulation of pathogenesis related (PR) proteins, and their
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corresponding transcripts (51,66,97). The promoter regions of the genes encoding

GRP8 and PRla have been analyzed in order to identify salicylic acid responsive,

oils-acting sequence elements (67,93). Although some of the data on the region of

the PRla promoter that conveys salicylic acid responsiveness is contradictory, a

sequence motif found in both the PRla promoter and the GRP8 promoter has

been identified (67,93).

In summary, these data provide evidence that salicylic acid is involved in

SAR, at least in tobacco resistance to TMV. Therefore, identification of the

mechanism(s) by which salicylic acid regulates gene expression will be valuable in

understanding the role(s) of salicylic acid in various plant tissues, the physiology of

plant responses to pathogens, and the physiology of thermogenic tissues.
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ABSTRACT

Polyclonal and monoclonal antibodies, which recognize the 35, 36, and 37 kDa

alternative oxidase proteins of Sauromatum guttatum (Schott) were used to isolate

a cDNA clone, pAOSG81, from an S. guttatum cDNA expression library. A

fusion protein with an apparent molecular mass of 48 kDa was expressed from a

pUC119 derivative of pAOSG81 in E. coli cells and was recognized by the

monoclonal antibodies. When the in vitro translated and immunoprecipitated

products made from mRNA hybrid-selected by pAOSG81 were analyzed, a single

band corresponding to a protein with an apparent molecular mass of 42 kDa was

observed. DNA sequence characterization showed that pAOSG81 contains the

entire coding region of a protein with a calculated molecular mass of 38.9 kDa, a

putative 63 amino acid transit peptide, and a nine amino acid match to authentic

N-terminal sequence of the 36 kDa alternative oxidase protein. Analyses of the

deduced amino acid sequence indicate: 1) that the transit peptide is predicted to

form amphiphilic helices; and 2) that three regions of the processed protein are

likely to form transmembrane alpha-helices. We conclude from these data that

pAOSG81 represents a nuclear gene, aox1, encoding a precursor protein of one or

more of the alternative oxidase proteins of S. guttatum.
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INTRODUCTION

All higher plants that have been investigated, as well as many fungi, algae,

and some protists (1), contain two respiratory pathways: the cytochrome pathway

and the alternative pathway (2). The alternative pathway diverges from the

cytochrome pathway after the ubiquinone pool (3,4,5). Since electron flow

through the alternative pathway does not result in the formation of a proton

gradient at the cytochrome b-c, complex or at the cytochrome a-a, complex

(3,6,7), much of the potential energy of the system is not conserved as chemical

energy and is lost as heat. Some plant tissues that express a high level of the

alternative pathway are thermogenic (8). The role of thermogenesis in the

appendix tissue of the Aroid species Sauromatum guttatum Schott (voodoo lily) is

to volatilize foul-smelling compounds which attract insect pollinators (9).

However, the role of the alternative respiratory pathway in non-thermogenic

plants, and most other organisms, is problematic.

Alternative pathway respiration may function to increase respiration when

the cytochrome pathway is "restricted", allowing a high rate of flux through the

tricarboxylic acid cycle, thus producing carbon skeletons required for growth

(10,11). This hypothesis implies that the cytochrome pathway must be saturated

before the alternative pathway is engaged. However, a recent study indicated a

non-linear relationship of quinone pool reduction with electron flow through the

alternative pathway and demonstrated that a quinone pool reduction of 35-40%

was sufficient for the engagement of the alternative pathway (12). Increased
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electron flow through the alternative pathway has also been implicated in response

to low temperatures (13). While no direct evidence yet exists to support the idea

that alternative pathway thermogenesis is an adaptive response to low

temperatures, it has been proposed that increased respiration in response to low

temperatures may be required; possibly to prevent accumulation of torn'c

metabolites (14).

Three mitochondrial proteins with apparent molecular masses, as

determined on denaturing polyacrylamide gels, of 35-, 36-, and 37 kilodaltons

(kDa) strongly correlate with alternative oxidase activity in S. guttaturn (15).

Previous results also showed that a single monoclonal antibody recognized all

three of these polypeptides and was capable of inhibiting alternative oxidase

activity in vitro (16). Taken together, these data strongly indicate that the three

alternative oxidase proteins are closely related, possibly as post-translationally

modified versions of a single gene product. The same monoclonal antibody raised

to the S. guttatum alternative oxidase also recognizes this oxidase from

Neurospora crassa and has been employed to characterize mutants of the oxidase

in this organism (17). The structural component of the N. crassa alternative

oxidase is probably encoded by a single nuclear gene (18,19), thus lending support

to the hypothesis that the three proteins correlated with alternative oxidase in

S. guttatum are the products of a single gene.

Salicylic acid has been shown to increase alternative oxidase activity in

isolated S. guttatum appendix sections dramatically (20). The 37 kDa protein is

present in small amounts prior to the increase and all three polypeptides are
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present in great abundance in the tissue sections following a 20 hour incubation in

a solution of salicylic acid (21). These results suggest that de novo synthesis of

alternative oxidase is required for the increased activity in S. guttatum appendix

tissue, and that posttranslational modifications of the alternative oxidase may also

be needed (ie. for the appearance of the 35 kDa and 36 kDa proteins).

MATERIALS AND METHODS

Plant Material. Sauromatum guttatum Schott (voodoo lily) plants were

maintained in a glasshouse at 27°C : 4°C under long-day conditions, as previously

described (22). The day the appendix region of the spadix heats is referred to as

D-day (see ref. 9 for anatomy of S. guttatum inflorescence). Other developmental

stages of the plant are indicated as the number of days before or after D-day (D-l

being the day before and D+1 the day after D-day).

Isolation of Mitochondria. Mitochondria were isolated by a modification of the

procedure of Schwitzguebel and Siegenthaler (23). After the first centrifugation at

19600 x g for 10 minutes the mitochondrial pellet was resuspended directly in

reaction medium (250 mM sucrose, 30 mM MOPS, pH 6.8).

Antisera. Antibodies used were as follows: M13 polyclonal antibodies, which

recognize approximately 13 proteins on Western blots of total S. guttatum

mitochondrial proteins (14); M9 polyclonal antibodies, which only recognize the



30

35-, 36-, and 37 kDa proteins (15); and the AOA, AOU, and AOL monoclonal

antibodies (15). The AOA antibodies recognize all three polypeptides, AOU

antibodies recognize primarily the 37 kDa polypeptide, and AOL antibodies

recognize primarily the 35- and 36 kDa polypeptides (15).

Gel Electrophoresis, Immrmablotting, and Fluoragraphy. Sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE) of protein samples was

performed using the buffer system of Laemmli (24) as previously described (14).

Immunoblotting was done according to the procedure of Blake et a1. (25) except

that antibody incubations were for 1 hour at room temperature. After SDS-

PAGE, the gels were subjected to sodium salicylate fluorography using the

procedure of Chamberlin (26).

Protein Sequencing. The 36 kDa alternative oxidase protein was electroeluted

from polyacrylamide gel slices and SDS was extracted from the samples by the

procedure of Konigsberg and Henderson (27). The N-terminus of the protein was

sequenced following the procedure of Vandekerckhoue et a]. (28). However, the

first three amino acids were not identified.

Poly (A)+ RNA Isolation. Total RNA was isolated from frozen (in liquid N2)

S. guttatum appendices by the procedure of McIntosh and Cattolico (29), except

that the tissue was homogenized with a mortar and pestle, 0.015 M EDTA was

used in the extraction buffer, and the RNA was extracted three times with phenol,
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three times with phenol:chloroform:isoamyl alcohol (25:24:1, vol/vol), and three

times with chloroform. The poly (A)+ fraction was isolated using a poly U

Sepharose (Sigma, St. Louis, MO) column by the method of Cashmore (30).

In Vitro Translation of Poly (A)+ RNA and Immunoprecipitation. Poly (A)+

RNA and hybrid-selected RNA transcripts were translated in-vitro using a rabbit

reticulocyte lysate system (Promega, Madison, WI) with [35S]-methionine

(Amersham, Arlington Heights, IL) as the radioactive label. The protocol of the

manufacturer (Promega, Madison, WI) was used, except that 165 mM potassium

acetate and 1.05 mM magnesium acetate (final concentrations) were used in a 25

ul final reaction volume and incubations were done at 37°C. Specific in vitro

translation products were immunoprecipitated by the addition of M9 polyclonal

antibodies or preimmune antiserum and formalin-fixed Staphylococcus aureus cells

using a modification of the procedure of Anderson and Blobel (31) as described in

Hondred et a1. (32).

Isolation of cDNA (lanes. A S. guttatum cDNA expression library was

constructed in the EcoRI sites of lambda ZAPII (33) by Stratagene (La Jolla,

CA). Poly (A)+ RNA from the appendix of a D-day plant and a mixture of oligo

dT and random primers were used to synthesize the cDNA. Both M13 polyclonal

sera and a mixture of AOA, AOU, and AOL monoclonal antisera were employed

to screen the cDNA expression h’brary following Stratagene’s picoBlue

Immunodetection protocol. Inserts from phage isolates which produced proteins
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that were recognized by both polyclonal and monoclonal antisera were subcloned

by Stratagene’s excision procedure as described by Short et a]. (33). Small and

large scale phagemid isolation and subcloning into pUC119 were done using

standard procedures (34).

Hybrid Selection. Phagemids pAOSG81, pAOSG83, and pBLUESCRIPT (see

Results for descriptions) were used to select homologous RNA transcripts from

total poly (A)+ RNA by the procedure given in Maniatis et a1. (34). The selected

RNA was precipitated by addition of MgClz to 10 mM, KAc to 100 mM, and cold

ethanol to 67% (v/v) and incubation at -20°C.

kpression of Phagemid Inserts in E. coli. Liquid cultures of E. coli strain T61

cells containing phagemids pAOSG81-119, pAOSG81i-119, or pUC119 (see

Results for descriptions) were used for expression experiments. The insert of the

phagemid pAOSG81-119 is in-frame with the lacZ gene in pUC119 so that a

fusion protein was produced after addition of isopropyl-B-D-thiogalactopyranoside

(IPTG) to the growth media. After one hour of growth at 37°C in LB medium

(see 34 for description) containing 25-50 pg ampicillin/ml, IPTG was added to

experimental cultures to a final concentration of 25 ug/ml; no IPTG was added to

negative control cultures. Growth was continued for 8 hours, at which time the

cells were pelleted and resuspended in 30 ul of SDS-PAGE sample buffer (24).
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DNA Sequencing and Analysis. Single-stranded deletions of pAOSG81-119 and

pAOSG81i-119 were made using the procedure of Dale (35). Sequencing of the

phagemid inserts was done by the dideoxy method of Sanger et a1. (36) using

Sequenase® T7 DNA Polymerase (U.S. Biochemical Corporation, Cleveland,

OH). Protein sequence was deduced from the nucleotide sequence using the

Editbase DNA sequence analysis program. Helical wheel projections of the

deduced amino acid sequence were made according to von Heijne (37). The

structure prediction plot of the deduced amino acid sequences was made using the

Seqanal Predictor program (38), a modified version of the Chou-Fasman protein

secondary structure predictor program which is adapted for membrane proteins.

RESULTS

In Vitm Translation of Total Poly (A)+ RNA and Immunoprecipitatian. An in

vitro translation product with an apparent molecular mass of 42 kDa was readily

immunoprecipitated from total in vin’o translation products made from poly (A)+

RNA with the M9 polyclonal antibodies (Fig. 2-1A & 2-1B, lane 1), but not with

preirnmune antiserum (data not shown). The alternative oxidase proteins

previously identified (15) have apparent molecular masses of 35-, 36-, and 37 kDa,

suggesting that the 42 kDa protein is a nuclear-encoded precursor of one or more

of the alternative oxidase proteins.
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Isolation of cDNA Clones. After two rounds of screening, five plaques which

produced proteins that were recognized by both polyclonal and monoclonal

antisera were selected for further analysis. The inserts from these clones were

"rescued" as Bluescript phagemids. Phagemids from two of these putative

alternative oxidase clones were designated pAOSG81 and pAOSG83 and

contained inserts of 1400 base pairs and 1100 base pairs in length, respectively.

The inserts of pAOSG81 and pAOSG83 were subcloned into pUC119 and the

resulting vectors were designated pAOSG81-119, pAOSG83-119, and pAOSG81i-

119 (pUC119 containing the insert of pAOSG81 in an inverted orientation).

In VitmTranslatianandImmrmoprecipitatiananybrid Selected RNA.

Phagemids pAOSG81, pAOSG83, and pBLUESCRIPT were used to select

homologous transcripts from total poly (A)+ RNA isolated from D-day appendix

tissue. Upon in vitro translation of the selected RNA, SDS-PAGE, and

fluorography, several diffuse bands representing proteins of widely distributed

molecular masses were observed (Fig. 2-1A). These bands probably represent

proteins translated from poly (A)+ RNA that bound nonspecifically to the

nitrocellulose paper since they are present in all lanes. However, in the lanes

corresponding to pAOSG81 and pAOSG83 a very abundant protein with an

apparent molecular mass of 42 kDa was observed (Fig. 2-1A, lanes 2 & 3). This

protein was not observed among the in vitro translation products from RNA

selected by vector DNA alone (Fig. 2-1A, lane 4) and it comigrated with the

protein made from total poly (A)+ RNA that was also immunoprecipitated with
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Figure 2-1. Products from in vitro translation of hybrid-selected poly (A)+ RNA

(Panel A) which could also be immunoprecipitated with M9 polyclonal antibodies

(Panel B). Panel A: total poly (A)+ RNA and hybrid-selected poly (A)+ RNA

transcripts were translated in vitro in the presence of [355]-methionine. The

products were seperated by SDS-PAGE and visualized by fluorography. Lane 1;

total poly (A)+ RNA translated in vitro and immunoprecipitated (see Materials

and Methods) to indicate the position of the 42 kDa protein. The remaining lanes

contained only products translated in vitro from RNA selected by the following

phagemid samples: Lane 2, pAOSG81; Lane 3, pAOSG83; and Lane 4,

pBLUESCRIPT. Panel B: total poly (A)+ RNA and hybrid selected poly (A)+

RNA transcripts were translated in vitro, immunoprecipitated, and visualized by

fluorography (see Materials and Methods). The in vitro translation products were

made from the following RNA samples proir to immunoprecipitation: Lane 1;

total poly (A)+ RNA, Lane 2; pAOSG81 selected poly (A)+ RNA, Lane 3;

pAOSG83 selected poly (A)+ RNA, and Lane 4; pBLUESCRIPT selected

poly (A)+ RNA.
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M9 polyclonal antisera (Fig. 2-1A, lane 1).

Fluorography of an SDS-polyacrylamide gel demonstrated that the 42 kDa

protein translated from poly (A)+ RNA selected by phagemids pAOSG81 and

pAOSG83 could also be immunoprecipitated by the M9 polyclonal antibodies (Fig.

2-1B, lanes 2 & 3). These data indicate that clones pAOSG81 and pAOSG83

encode a 42 kDa protein that is immunologically related to the 35-, 36-, and 37

kDa alternative oxidase proteins.

Expression of Plasmid Inserts in E coli. Fig. 2-2, lane 2 shows that the AOA

monoclonal antibodies recognize the protein encoded-by pAOSG81-119 when it is

expressed in E. coli The protein has an apparent molecular mass of about 48

kDa, and was not expressed in uninduced cells (Fig. 2-2, lane 3), in cells that

contained only pUC119 (Fig. 2-2, lane 4), or in cells that contained pAOSG81i-

119, which has the insert from pAOSG81-119 inverted relative to the lacZ gene

(data not shown). The increased size of the polypeptide arose as a result of

cloning. A portion of the cDNA for 3011:], a region which does not encode protein

in the isolated gene, was inserted in such a manner so that it is now "in frame"

and recognized as coding sequence behind the lacZ gene. DNA sequence analysis

later showed that pAOSGSl-119 is predicted to express a fusion protein of 44,794

Da and consist of 21 amino acids of B-galactosidase, 24 amino acids now encoded

by the 5’ non-coding region of the insert, and the 349 amino acids of the precursor

alternative oxidase protein.
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Figure 2-2. Western blot of the 48 kDa alternative oxidase/B-galactosidase fusion

protein expressed in E. coli. Cell cultures containing phagemids were grown in

the presence or absence of IPTG. An equal number of cells from each culture

were pelleted, solubilized, and seperated by SDS-PAGE. The proteins were

transferred onto nitrocellulose paper and detected using AOA monoclonal

antibodies and alkaline-phosphatase conjugated goat anti-mouse IgG. Lane 1;

total mitochondrial proteins from S. guttatum appendix tissue. The remaining

lanes contained proteins from E. coli cultures grown in the presence (Lanes 2 &

4) or absence (Lane 3) of IPTG and which contained the following phagemids:

Lane 2; pAOSG81-119, Lane 3; pAOSG81-119, Lane 4; pUC119.
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DNA Sequence Analysis. The insert of pAOSG81-119 contains an open reading

frame of 1047 base pairs which encodes a deduced polypeptide sequence of 349

amino acids (Fig. 2-3) with a calculated molecular mass of 38,931 Da. There is

also a nine amino acid match between the deduced amino acid sequence of

pAOSG81-119 and N-terminal amino acid sequence data that had been previously

obtained using gel-purified 36 kDa alternative oxidase protein. Because of some

ambiguity in protein sequencing, it was not possible to determine the specific N-

terminal amino acid. However, the sequencing data do indicate that Ala-64 is the

most likely N-terminal amino acid, and our analyses are based upon this

assumption. The nine amino acid match begins at Leu-67 of the protein deduced

from pAOSG81, as indicated in Fig. 2-3. If the first 63 amino acids of the

deduced protein were removed during import into the mitochondria, then the

mature protein would contain 286 amino acids and have a calculated molecular

mass of 32,200 Da and a calculated isoelectric point of about 6.6, which is in

relative agreement with the observed isoelectric point of 7.2-7.3 (39). Helical

wheel projections of the putative transit peptide of the protein deduced from the

sequence of pAOSG81 indicate that this region of the protein is capable of

forming segments of amphiphilic helices (data not shown). Three adjacent regions

of the deduced protein are predicted to be in alpha helical conformations and are

likely to be membrane spanning as determined by the statistical Rao-Argos

protein structure analysis program (Fig. 2-4). These three regions are as follows:

a region from amino acids 171 to 202 (numbering based on the unprocessed

Protein), a region from amino acids 207 to 228, and a region from amino acids
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233 to 262. Furthermore, between these regions of predicted helical conformation

there are regions which are predicted to form turns in the protein backbone (40).

DISCUSSION

We have isolated a cDNA clone, pAOSG81, representing a S. guttatum

nuclear gene, which we have called aoxI, encoding a precursor alternative oxidase

protein with a calculated molecular mass of 38.9 kDa and an apparent molecular

mass of 42 kDa. The fusion protein expressed from pAOSGSl in E. coli has an

apparent molecular mass of 48 kDa and was recognized by monoclonal antibodies

to the alternative oxidase proteins. The observation that the 42 kDa precursor

protein is nuclear-encoded is consistent with the results of Bertrand et a1. (41),

which indicate that a single nuclear gene encodes the alternative oxidase in

Neurospora crassa. Our results do not rule out the possibility that there is more

than one gene encoding the alternative oxidase in S. guttatum. However, this is

unlikely since 1) it appears that a single 42 kDa protein was immunoprecipated

from the products made in vitro from total poly (A)+ RNA (Fig. 2-1A & 2-1B,

lane 1); 2) transcripts of a single size were homologous to the insert of pAOSGSl

on Northern blots of total RNA from S. guttatum appendix tissue (data not

shown); and 3) Southern blots of genomic DNA probed with pAOSG81 also

indicate that the nuclear gene, am], is present in a single copy (data not shown).

It is also possible that one of the alternative oxidase proteins is encoded by the

mitochondrial genome. However, this is likewise unlikely since cycloheximide (an
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Figure 2-3. Nucleotide and deduced amino acid sequence of the insert of

pAOSG81-119. Both strands of the insert of pAOSGSl-119 were sequenced by

making unidirectional, single-stranded deletions of pAOSGSl-119 and pAOSG81i-

119 and sequencing by the dideoxy chain termination method. The triangle

indicates the assumed start codon and first amino acid of the protein. The open

box indicates the region of the deduced amino acid sequence which matches the

amino acid sequence previously obtained by chemical sequencing. The first in-

frame stop codon is indicated by the star.
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Figure 24. Secondary structure prediction for the protein deduced from the

nucleotide sequence of the insert of pAOSGSl-119. The solid line represents the

values obtained using the Seqanal Predictor program. The dashed line represents

the values obtained using the Chou-Fasman program. Abscissa indicates amino

acid position starting from the first amino acid of the putative precursor protein.

Ordinate indicates P, with a window of 15 amino acids (52).
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inhibitor of cytoplasmic translation but not of mitochondrial translation) blocks

expression of the alternative oxidase proteins in S. guttatum appendix tissue

sections which were treated with salicylic acid (Rhoads and McIntosh, in

preparation). This raises the intriguing possrbility that the 35-, 36-, and 37 kDa

proteins are all posttranslationally-modified products of the 42 kDa protein.

From the nucleotide sequence of pAOSGSl and the amino acid sequence

of the 36 kDa alternative oxidase protein we determined that the N-terminus of

the 36 kDa protein is internal to the amino acid sequence of the 38.9 kDa protein

deduced from the nucleotide sequence, though the exact site of processing is not

clear since the exact N-terminal amino acid of the 36 kDa protein was not

determined from the sequencing. The putative transit peptide possesses many

properties which are common to previously described mitochondrial transit

peptides (42). It has a high content of amino acids considered to be either alpha

helix formers (a total of 28) or neutral (a total of 22) relative to the number of

helix breakers (a total of 13). The transit peptide also has regions that are likely

to form amphiphilic helices and it has a net positive charge. Similar to many

other transit peptides of mitochondrial proteins, there is a high abundance of the

amino acids Ala, Leu, Arg, and Ser and with low abundance of Asp, Glu, Ile, and

Lys (42). These data are consistent with the hypothesis that the 42 kDa protein is

a precursor of one or more of the alternative oxidase proteins with a 63 amino

acid transit peptide which is removed as the protein is transported into the

mitochondria.
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It has been shown that the alternative oxidase of another member of the

Aroid family, Arum maculatum, is associated with the inner surface of the inner

mitochondrial membrane (43). Analysis of our sequence data indicates that the

region of the 42 kDa alternative oxidase precursor protein that is most likely

associated with the mitochondrial membranes of S. guttatum is between amino

acids 108 to 199. This region contains three stretches of amino acids which are

predicted to form transmembrane alpha helices.

There have been numerous proposals (44,45,46) concerning the identity of

the higher plant alternative oxidase. Flavin has been proposed as a cofactor (46);

however, this seems unlikely since the affinity of mitochondrial flavoproteins for

02 is too low and the kinetics of reoxidation are too slow (3,46). Also, auto-

oxidizable flavoproteins produce H202 (45,46), whereas the alternative pathway

produces H20 (44,45,46). Nonheme iron (3,44,46) is an unlikely cofactor since no

clear electron paramagnetic resonance (EPR) signal from a nonheme iron has

been correlated with the presence of the alternative pathway (47). Copper

(44,45), is likewise an unlikely candidate because of the lack of a clear EPR signal

(48). Nevertheless, iron and copper cannot yet be ruled out completely since it is

possrble that an EPR signal from one or the other is masked (44,46) as in the case

of coupled binuclear copper sites, designated as "type 3" copper (49). ' Since there

is little precise structural data on the active sites of enzymes containing these

cofactors, the deduced amino acid sequence of the alternative oxidase of

S. guttatum does not allow us to draw many conclusions about possible cofactors

of this enzyme. However, we can conclude from the sequence that this protein



48

alone does not contain consensus iron-sulfur protein sequence motifs which form

Cys ligands in the 4Fe-48 ferredoxins and the 2Fe-28 type of ferredoxins (50,51).

It has also been proposed (45) that the alternative oxidase itself may

transfer electrons directly from ubiquinone to oxygen and that it may, therefore,

contain a ubiquinone binding site. Since the structures of quinone binding sites

are still unknown, we cannot determine, on the basis of deduced protein sequence

alone, if the alternative oxidase protein encoded by pAOSG81 contains such a site.

The isolation of an alternative oxidase cDNA clone is a new step toward

answering questions concerning the role of the oxidase in higher plants and other

organisms. While the mechanism and function of the alternative oxidase cannot

be deduced in the absence of more biochemical and physiological data, it is now

possible to use the gene to investigate the developmental regulation of alternative

pathway appearance in S. guttatum and other higher plants. We intend to explore

the role of the alternative oxidase in non-thermogenic plants through genetic

manipulations that produce plants modified in their expression of the alternative

oxidase.
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ABSTRACT

Alternative respiratory pathway capacity increases during the development of the

thermogenic appendix of a voodoo lily inflorescence. The levels of the alternative

oxidase proteins increased dramatically between D-4 (four days prior to the day of

anthesis) and D-3 and continued to increase until the day of anthesis (D-day).

The level of salicylic acid in the appendix is very low early on D-l, but increases to

a high level in the evening of D-1. Thermogenesis occurs after a few hours of

light on D-day. Therefore, the initial accumulation of the alternative oxidase

proteins precedes the increase in salicylic acid by 3 days, indicating that other

regulators may be involved. A 1.6-kb transcript encoding the alternative oxidase

precursor protein accumulated to a high level in the appendix tissue by D-1.

Application of salicylic acid to immature appendix tissue caused an increase in

alternative pathway capacity and a dramatic accumulation of the alternative

oxidase proteins and the 1.6-kb transcript. Time course experiments showed that

the increase in capacity, protein levels, and transcript level corresponded precisely.

The response to salicylic acid was blocked by cycloheximide or actinomycin D,

indicating that de novo transcription and translation are required. However,

nuclear, in vitro transcription assays indicated that the accumulation of the 1.6-kb

transcript did not result from a simple increase in the rate of transcription of 30x].
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INTRODUCIION

All higher plants examined contain two pathways for mitochondrial electron

flow: the cytochrome respiratory pathway and the alternative respiratory pathway

(Bendall, 1958; Bendall and Bonner, 1971). The alternative pathway diverges

from the cytochrome pathway after the ubiquinone pool (Bendall and Bonner,

1971; Rich and Moore, 1976; Storey, 1976). Therefore, electron flow through the

alternative pathway is not coupled to ATP synthesis at the two sites of proton

gradient formation (complex III and complex IV) that are downstream of the

ubiquinone pool (Storey and Bahr, 1969; Moore and Bonner, 1982). The energy

of electron flow through the alternative pathway is not conserved as chemical

energy, but is lost as heat (Storey and Bahr, 1969). Specific floral tissues of some

aroid plants develop such a high level of the alternative pathway that they become

thermogenic (Meeuse, 1975; Day et al., 1980; Raskin et al., 1987). The day the

inflorescence of the aroid species voodoo lily blooms (D-day), the capacity of the

alternative pathway in the appendix tissue is 300-1000 natoms O/min/mg protein

and the temperature of the tissue increases about 9-12°C above ambient

temperature (Raskin et al., 1987). Immature appendix tissue (8 to 2 days prior to

blooming, D-8 through D-2) has a relatively low alternative pathway capacity, 50-

100 natoms O/min/mg protein. In voodoo lilies, the heat produced during

blooming is used to volatilize foul smelling compounds, such as indoles, which

attract insect pollinators (Meeuse, 1966). The role of the alternative pathway in

non aroid plants is unknown (Lambers, 1985).
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The appearance of three antigenically related mitochondrial proteins with

apparent molecular masses of 35-, 36-, and 37 kD strongly correlates with the

activity of the alternative oxidase, the terminal oxidase of the alternative

respiratory pathway, in voodoo lily appendix tissue (Elthon and McIntosh, 1987).

A 42 kD protein that is a putative precursor of all three of these alternative

oxidase proteins has been identified (Rhoads and McIntosh, 1991). Since only the

42 kD protein was immunoprecipitated from products made by in vitro translation

of total voodoo lily RNA, it is likely that the 35-, 36-, and 37 kD proteins are past-

translationally modified products of the 42 kD protein. A cDNA clone,

pAOSGSl, corresponding to the nuclear gene, aaxI, encoding the 42 kD protein

has been isolated and characterized (Rhoads and McIntosh, 1991).

Salicylic acid has been shown to be an endogenous "trigger" of

thermogenesis in voodoo lily appendix tissue (Raskin et al., 1987). Salicylic acid is

produced in the male floral region of the inflorescence and moves into the

appendix beginning early on D-1 and "triggers" thermogenesis at about noon of D-

day (Raskin et al., 1987, 1989). The level of salicylic acid in the appendix

increases from below 100 ng/g fresh weight as late as D-2 to more than 1.0 ug/g

fi'esh weight in the evening of D-1 (Raskin et al., 1989). Salicylic acid has also

been shown to dramatically increase both the alternative pathway activity and the

levels of the 35-, 36-, and 37 kD alternative oxidase proteins when it is applied to

voodoo lily appendix tissue sections (Elthon et al., 1989b). Prior to the application

of salicylic acid, the 37 kD protein is constitutively expressed and is present at a

moderate level in immature appendix tissue. All three alternative oxidase proteins
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are present in great abundance in the tissue sections following incubation in a

phosphate-buffered solution containing salicylic acid. In addition, Raskin et al.

(1989) showed that light is required for salicylic acid to cause thermogenesis in

appendix tissue sections.

Salicylic acid may be involved in flowering in many plant species (Raskin,

1992) and in systemic acquired resistance (SAR) in others (Malamy et al., 1990;

Métraux et al., 1990; Rasmussen et al., 1991). Furthermore, and the endogenous

level of salicylic acid is very high in a few species of higher plants, including rice

(Raskin et al. 1990). However, the pathway by which salicylic acid is produced

and the mechanisms by which salicylic acid acts remain unknown. Therefore,

identification of the mechanism(s) by which salicylic acid regulates gene expression

in voodoo lilies will be valuable in understanding the role(s) of salicylic acid in

various plant tissues, the physiology of plant responses to pathogens, and the

physiology of thermogenic tissues.

MATERIALS AND METHODS

Plant Material Voodoo lily (Sauromatum guttatum) plants were maintained as

previously described (Elthon and McIntosh, 1987). The day the inflorescence

blooms and the appendix tissue of the spadix heats is referred to as D-day (for

anatomy see Meeuse, 1966). Other developmental stages of the plant are

indicated as the number of days before or after D-day (D-l being the day before

and D+1 the day after D—day). Between the time the inflorescence begins to
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develop and the end of D-2, the inflorescence is referred to as "immature."

SaliqlicAcidandInhibitorTreatmentafT’nsueSections. At8AM (time 0) of

D-6, D5, or D-4 the appendix tissue of a voodoo lily plant was cut into 1.0-1.5 cm

sections. Sections were placed into 10 mL beakers containing 1.0 mL of

phosphate buffer (10 mM KHZPO, and 50 ug/mL streptomycin) and a drop of

buffer was placed on top of each section.

For the time course experiments, one set of sections at each time point was

incubated in phosphate buffer alone and one set in phosphate buffer containing

1.0 mM salicylic acid. The portion of the appendix remaining on the plant until

the inflorescence bloomed is referred to as the D-day tissue sample. Application

of calorigen served as a positive control for the induction of the accumulation of

the alternative oxidase proteins (Raskin et al., 1987). Calorigen, a crude extract of

the male floral region of the inflorescence, was prepared as described by Raskin

et a1. (1987).

For the inhibitor experiments, actinomycin D (60 ug/mL final

concentration; Sigma), an inhibitor of transcription, was added to one of four sets

of sections and cycloheximide (15 ug/mL final concentration; Sigma), an inhibitor

of translation by 808 ribosomes, was added to a second set. After 2 hr of

incubation at room temperature, salicylic acid was added (1.0 mM final

concentration) to the two experimental sets of sections and the positive control

set. The negative control set was incubated in phosphate buffer for the duration .

of the experiment. The beakers were covered and incubated at room temperature
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for an additional 22 hr.

For the nuclear, in vitro transcription experiments, six to eight sections

from all along the length of an appendix were incubated in phosphate buffer for

24 hr while other sections from the same appendix were incubated in phosphate

buffer containing 1.0 mM salicylic acid.

Isolation of Mitochondria and Respiration Assays. Mitochondria were isolated by

a modification of the procedure of Schwitzguebel and Siegenthaler (1984) as

described previously (Rhoads and McIntosh, 1991). The oxygen content of air-

saturated water was estimated according to Estabrook (1987). Respiration rates

were measured as oxygen uptake using a Rank Brothers (Cambridge, UK) oxygen

electrode. The capacity of the alternative pathway was measured in 1.0 mL of

reaction medium (250 mM sucrose, 30 mM 3-(N-morpholino)propanesulfonic acid

(Mops), pH 6.8) at 25 °C with 1 mM NADH as the substrate. Carbonylcyanide p-

trifluoro-methoxyphenylhydrazone (FCCP) was added to 0.5 uM after NADH in

order to diminish the electrochemical gradient prior to measurement of the

pathway capacity (Elthon et al., 1986). The capacity of the alternative pathway

was taken as the rate of oxygen uptake sensitive to 1 mM salicylhydroxamic acid

in the presence of 1 mM KCN (Elthon et al., 1987). The capacities were

standardized by dividing each value by the total amount of protein in the reaction

(which is directly proportional to the number of mitochondria in the assay). The

amount of total protein in each sample was determined by the procedure of

Larson et al. (1986).
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Gel Electrophoresis, Immunoblotting, and Antisera. SDS-PAGE and

immunoblotting were performed as described previously (Elthon et al., 1987).

Antibodies used were the AOA monoclonal antibodies raised to the 36 kD

alternative oxidase protein of voodoo lily, and which recognize all three alternative

oxidase proteins of voodoo lily (Elthon et al., 1989a). Since the same amount of

total mitochondrial protein was loaded onto each lane of each polyacrylamide gel,

the protein detected on protein blots represents the proportion of total

mitochondrial proteins that constitutes the alternative oxidase proteins.

Plasmid Insert Isolation and Radiolabeh'ng. The 1400-hp EcoRI insert of

pAOSG81 (Rhoads and McIntosh, 1991) was purified by as described in Maniatis

et al. (1989) except that the elution buffer was 10 mM Tris-HCl, pH 7.5, 0.1 mM

EDTA, 0.05% SDS, and 0.3 M LiCl and the insert was electrophoresed through

two successive polyacrylamide gels. The purified fragment was resuspended to a

concentration of 60 ng/ul in Tris-EDTA. The purified inserts were used to make

DNA radiolabeled with a-nP-dATP (Amersham Corporation) by the random

primer method (Feinberg and Vogelstein, 1983). Specific activity of the DNA

probes was routinely about 107 cpm/ug template, as determined by the sodium

phosphate wash method (Maniatis et al., 1989).

RNA Isolation and Blots. Total RNA was isolated from frozen (in liquid N2)

voodoo lily appendix tissue by the procedure of McIntosh and Cattolico (1978) as

described by Rhoads and McIntosh (1991. RNA was separated on agarose gels
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containing formaldehyde as described by Ausubel et al. (1987), and transferred to

nitrocellulose (Schleicher & Schuell, Keene, NH) as described by Maniatis et al.

(1989). All RNA blots were probed with radiolabeled DNA made using the

purified insert of pAOSG81 as described above. Hybridization was done under

high-stringency hybridization conditions as described by Maniatis et al. (1989).

Autoradiography using Kodak diagnostic film XAR-S was used to view the

hybridization results as described by Ausubel at al. (1987). The amount of

radiolabeled probe that hybridized to each sample was determined using a

Phospholmager (Molecular Dynamics, Sunnyvale, CA). Since each lane of each

RNA blot contained the same amount of total RNA, the amount of hybridized

probe detected represents the proportion of total RNA that constitutes the

alternative oxidase transcript.

Isolation of Nuclei and In Vitro Transcription. Nuclei were isolated following

method 11 of Luthe and Quatrano (1980a) except that the discontinuous gradients

contained 25, 50, and 80% (v/v) Percoll layers, all on top of a 2.0 M sucrose

cushion and the centrifugation for the washesiwas done at 1100g. Most of the

nuclei were found at the interface between the 80% Percoll and 2.0 M sucrose

layers as determined by fluorescence microscopy of a 50/50 (v/v) mixture of nuclei

and stain [20 mg/mL 4’,6-diamidino-2-phenylindole (DAPI), 0.1X phosphate-

buffered saline, 0.05% (w/v) sodium azide, 90% (v/v) glycerol]. Nuclei were

isolated from the appendix tissue of voodoo lily plants on D-6, D-5, D4, or on D-

day. In a separate experiment, tissue sections from a D-6 plant were incubated
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for 24 hr in phosphate buffer or in phosphate buffer containing 1.0 mM salicylic

acid. Nuclei were then isolated from the appendix tissue sections. In vitro RNA

synthesis was performed essentially as described by Luthe and Quatrano (1980b).

The final concentrations of ATP and GTP were both 0.5 mM, 3-5 uL of a-32P-

UTP (20 mCi/mL, 800 Ci/mmol) was used in each synthesis, and the final volume

wasZOO uL

Isolation of In Vitro Synthesized RNA. After the in vitro synthesis, RNase-free

DNase I was added to a final concentration of 0.5 ug/uL and the mixture was

incubated at 26°C for 5 min. An equal volume of proteinase K mix (200 ug/mL

proteinase K, 2% SDS, 10 mM EDTA, 20 mM Tris-HCl pH 7.4, and 200 ug/mL

yeast tRNA) was added to each sample and the samples were incubated at 37°C

for 30 min. Each sample was extracted twice with an equal volume of

phenol/chloroform/isoamyl alcohol (25:24:1[v/v]). The RNA was precipitated twice

using ammonium acetate and ethanol as described by Maniatis et al. (1989) and

resuspended in 50 uL of STE (100 mM NaCl, 10 mM Tris-HCl, pH 8.0, 1.0 mM

EDTA). NaOH was added to a final concentration of 0.2 N, and the RNA was

incubated on ice for 10 min, followed immediately by the addition of 1 M Hepes

to a final concentration of 0.25 M. The RNA was ethanol precipitated and

resuspended in 50 uL of Tris-EDTA. The total number of counts in each RNA

sample was determined by the sodium phosphate wash method (Maniatis et al.,

1989). To compare gene expression at different developmental stages, we used

the same number of total counts per minute of the RNA made from immature
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appendix tissue nuclei as the number of total counts per minute of the RNA made

from the D-day appendix tissue nuclei. To compare gene expression in salicylic

acid treated and untreated tissue, we used the same number of total counts per

minute of the RNA made from untreated appendix tissue nuclei as the number of

total counts per minute of the RNA made from the nuclei from the salicylic acid-

treated appendix tissue.

Hybridintian of In Vitro Synthesimd RNA to DNA Probes. The unlabeled DNA

samples used to determine the levels of the specific transcripts produced by in

vitro transcription in isolated nuclei are as follows: 1) the single-stranded form of

the phagemid pAOSG81, corresponding to the antisense of the 1.6-kb alternative

oxidase transcript; 2) a single-stranded form of phagemid p25SSGlO; and 3)

denatured pSAc3 DNA (a generous gift of Dr. R. B. Meagher). Phagemid

pZSSSGIO is a cDNA clone that has been partially sequenced and corresponds to

a voodoo lily 258 nbosomal RNA gene based on the observation that it has >90%

sequence similarity to bases 846 to 1982 of the rice 25S rRNA gene (Takaiwa at

al., 1985). Plasmid pSAc3 is a genomic clone that represents a soybean actin gene

(Shah at al., 1982). The DNA samples were denatured and applied to a

nitrocellulose membrane as described by Ausubel et al. (1987). Prehybridization,

hybridization, and washing conditions were essentially as described by Ausubel et

al. (1987), except that 50 mM sodium phosphate was used instead of potassium

phosphate, 25 ug/mL of salmon sperm DNA, and 1X Denhardt’s solution (1X

Denhardt’s solution is 0.02% Ficoll, 0.02% polyvinylpyrrolidone, and 0.02% BSA)
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were used in the prehybridization and hybridization solutions, and 12.5% dextran

sulfate was used in the hybridization solution. Hybridization was performed at

42°C for 72 hr and the filters were washed 4 times in 2X SSC (1X SSC is 0.15 M

NaCl, 0.015 sodium citrate) containing 0.1% (v/v) SDS for 5 min at room

temperature and once in 0.1X SSC containing 0.1% (v/v) SDS for 5 min at 50°C.

The amount of radiolabeled RNA that hybridized to each probe was visualized by

autoradiography (Maniatis at al., 1989).

RESULTS

DevelopmentalEpressionaftheAlternativeridaseGeneafVoodoaLily.

Figure 3-1A shows that the 37 kD alternative oxidase protein was constitutively

expressed in the appendix tissue and was present at about the same level in the

appendix on D-5 and D-4 (lanes 1 and 2). The level increased significantly by 10

AM of D-3 (lane 3) and reached a peak on D-day (lane 6). The levels of the 35-

and 36 kD proteins were very low in the appendix tissue at D-5 and D-4 (lanes 1

and 2) and increased dramatically by 10 AM of D-3 (lane 3). The levels

continued to increase steadily on D-2 (lane 4) and D] (lane 5), and were the

highest on D-day (lane 6). It is interesting to note that the levels of the

alternative oxidase proteins were already fairly high by D-3, even though

thermogenesis does not occur until about noon on D-day.

Figure 3-lB shows that the 1.6-kb alternative oxidase transcript

accumulated to a very high level in the appendix tissue of the voodoo lily
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Figure 3-1. Developmental Expression of the Alternative Oxidase Proteins and

Transcript in Voodoo Lily Appendix Tissue. Panel A: Immunoblot of total

mitochondrial proteins from a single voodoo lily appendix at different days during

inflorescence development: D-5, lane 1; D-4, lane 2; D-3, lane 3; D-2, lane 4; D-l,

lane 5; D-day, lane 6. Mitochondria were isolated at 10 AM each day and assayed

for alternative pathway capacity. The mitochondrial proteins (30 pg per lane)

were separated by SDS-PAGE, transferred to nitrocellulose, and probed with the

AOA monoclonal antibodies. Alternative pathway capacity in natoms O/min/mg

protein of each mitochondrial sample is indicated at the bottom. Apparent

molecular masses in kilodaltons are indicated to the left. Panel B: RNA blot of

total RNA from a second appendix. All RNA was isolated from the appendix

tissue at 10 AM of each day during inflorescence development: D-2, lane 1; D-l,

lane 2; D-day, lane 3. The RNA (10 pg per lane) was separated by formaldehyde-

agarose gel electrophoresis and transferred to nitrocellulose. The radiolabeled

probe was made from the purified insert of pAOSG81. Transcript lengths in

kilobases are indicated to the left.
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inflorescence by 10 AM of D-l (lane 2). Comparatively little of the 1.6-kb

transcript was present at 10 AM of D-2 (lane 1). The level of the 1.6—kb

alternative oxidase transcript, relative to the total RNA of the appendix tissue, was

significantly higher at 10 AM of D-day (lane 3) than it was at 10 AM of D-1

(lanes 2).

Time Course ofSalicylicAcidInducedAlternative OxidaseEtprenion. Figure 3-2

shows that the capacity of the alternative pathway in immature appendix tissue

sections treated with salicylic acid reached a peak by about 16 hr after salicylic

acid application. The capacity was slightly lower by 24 hr after application.

Quantitatively the capacity at the 16 hr time point was almost three higher than

the capacity at time 0, and the capacity decreased about 20% by the 24 hr time

point.

Figure 3-3A shows that the levels of the alternative oxidase proteins,

particularly the 35- and 36 kD proteins, at each time point corresponded to the

alternative pathway capacity (compare to Figure 3-2). A slight increase in the

levels of the 35- and 36 kD proteins, compared to a time 0 and negative control,

was observed as early as 5 hr after salicylic acid application (D. M. Rhoads and L.

McIntosh, unpublished results). The peak in the accumulation of the proteins

always occurred by 16 hr after salicylic acid application (lanes 16- and 16+), as did

the peak in the capacity. Qualitatively, the levels of the proteins remained

constant between the 16 and the 24 hr time points (lanes 24— and 24+), although

the capacity usually decreased slightly (Figure 3-2).
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Figure 3—2. Time Course Graph of Alternative Pathway Capacity in Response to

Applied salicylic acid. Voodoo lily appendix tissue sections were incubated in

phosphate buffer (triangles and broken line) or buffer plus 1.0 mM salicylic acid

(circles and solid line). Mitochondria were isolated at each time point, and the

capacity was determined using a Rank Brothers oxygen electrode. Results are

averages of three experiments.
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Figure 3-2. Time Course Graph of Alternative Pathway Capacity in Response to

Applied salicylic acid. Voodoo lily appendix tissue sections were incubated in

phosphate buffer (triangles and broken line) or buffer plus 1.0 mM salicylic acid

(circles and solid line). Mitochondria were isolated at each time point, and the

capacity was determined using 3 Rank Brothers oxygen electrode. Results are

averages of three experiments.
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Figure 3-3B shows that the accumulation of the 1.6-kb alternative oxidase

transcript corresponded precisely to the accumulation of the alternative oxidase

proteins. Transcript accumulation above the control level was apparent by 4 hr

after the application of salicylic acid (lanes 4- and 4+). The accumulation was

increased by the 8 hr time point (lanes 8- and 8+). The highest level of the

transcript was reached by 16 hr after salicylic acid application (lanes 16- and

16+), and the peak level was maintained until at least 24 hr after the application

(lanes 24- and 24+). Lanes D5 and D0 of Figure 3-3 show the level of the

alternative oxidase transcript that was present at D-5 and D-day, respectively. It is

interesting to note that the amount of the 1.6-kb transcript was slightly higher at

time 0 (lane D5) than in the negative control at the 4 hr time point (lane 4»).

Furthermore, the level of the alternative oxidase transcript increased steadily over

the course of the experiment rather than rapidly at a specific time point.

Inhibition of the Efiectl of Applied Salicylic Acid. Figure 3-4A shows that

application of salicylic acid to immature (D-4) appendix tissue sections for 24 hr

induced the accumulation of the alternative oxidase proteins, particularly the 35-

and 36 kD proteins (lane 2), relative to the amount present in untreated tissue

sections (lane 1). The accumulation of the proteins was significantly blocked by

incubating the tissue sections for 2 hr in a cycloheximide solution (lane 4) or for 2

hr in an actinomycin D solution (lane 3) prior to the addition of salicylic acid for

22 hr. Slightly more of the 35- and 36 kD proteins was present in the sample

treated with actinomycin D than in the sample treated with cycloheximide. This



71

Figure 3-3. Time Course of Accumulation of Alternative Oxidase Proteins and

Transcript after Salicylic Acid Application. Panel A: Immunoblot showing the

levels of the alternative oxidase proteins at specific time points after salicylic acid

application. Voodoo lily appendix tissue sections were incubated in phosphate

buffer (-) or buffer plus 1.0 mM salicylic acid (+) or buffer plus calorigen (lane

C). Mitochondria were isolated from the tissue sections from a D-4 plant at time

0 (lane D4) or at 8 hr (lanes 8- and 8+), 16 hr (lanes 16- and 16+), 24 hr (lanes

C, 24-, and 24+), or 48 hr (lanes 48- and 48+) after the application of salicylic

acid. The capacity of the alternative pathway was determined. The mitochondrial

proteins from each sample (30 pg per lane) were separated by SDS-PAGE,

transferred to nitrocellulose, and probed with the AOA monoclonal antibodies.

Panel B: RNA blot showing the level of the 1.6-kb alternative oxidase transcript

at specific time points after salicylic acid application. Tissue sections from a D-S

plant were frozen in liquid N; at time 0 (lane D5); 4 hr (lanes 4- and 4+), 8 hr

(lanes 8- and 8+), 16 hr (lanes 16- and 16+), or 24 hr (lanes 24- and 24+) after

salicylic acid application; and at 10 AM of D-day (lane DO). Total RNA was then

isolated, separated by formaldehyde-agarose gel electrophoresis (10 pg per lane)

and transferred to nitrocellulose. The radiolabeled probe was made from the

purified insert of pAOSG81.



72

A
D408 8161624244848

-+ —+-+-+

37kD +—-.——-.--—-"' r?

3
m

+
4
-

I
O

+
0
9

I
8

+
3

'
5
‘
:

+
2
3

1.6kb+-‘- '0 . . .



73

would be expected if actinomycin D did not completely inhibit transcription.

Figure 348 shows that application of salicylic acid to immature (D-4) appendix

tissue sections for 24 hr induced the accumulation of the 1.6-kb alternative oxidase

transcript (lane 2) relative to the level of the transcript found in untreated tissue

sections (lane 1). Again, the accumulation of the 1.6-kb transcript was blocked by

preincubation in either cycloheximide (lane 4) or actinomycin D (lane 3).

Nuclear, In Vitro Transcription. Figure 3-5A shows that nuclear, in vitro

transcription of the voodoo lily rRNA gene(s) occurred in nuclei isolated from D-6

appendix tissue (slot 11), but in vitro synthesis of the alternative oxidase transcript

was very low in the nuclei isolated from appendix tissue at this stage of

development (slot 12). Figure 3-SB shows that in vitro transcription of rRNA

gene(s) also occurred in nuclei isolated from D-day (mature) appendix tissue (slot

M1), but in vitro synthesis of the alternative oxidase transcript was very low in

these nuclei as well (slot M2). Figure 3-5C shows that in vitro transcription of

rRNA gene(s) (slot C1) and the actin gene(s) (slot C2) occurred in nuclei isolated

from control D-4 tissue, but in vitro synthesis of the alternative oxidase transcript

was very low in these nuclei (slot C3). Finally, Figure 3-5D shows that in vitro

transcription of rRNA gene(s) (slot D1) and the actin gene(s) (slot D2) also

occurred in nuclei isolated from D-4 tissue treated with salicylic acid, but that in

vitro synthesis of the alternative oxidase transcript was very low in these nuclei as

well (slot D3).
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Figure 3-4. Inhibition of Salicylic Acid Induced Expression of Alternative Oxidase

Proteins and Transcript. Panel A: Immunoblot of the salicylic acid induced

expression of the alternative oxidase and inhibition of expression. Tissue sections

from a single voodoo lily appendix from a D-4 plant were incubated for 24 hr as

follows: in phosphate buffer, lane 1; in buffer containing 1.0 mM salicylic acid,

lane 2; in buffer plus actinomycin D for 2 hr followed by the addition of salicylic

acid for 22 hr, lane 3; in buffer plus cycloheximide for 2 hr followed by the

addition of salicylic acid for 22 hr, lane 4. Mitochondria were isolated after the 24

hr incubations and the capacity of the alternative pathway was determined for

each sample. For the protein analysis, the mitochondrial proteins from each

sample (30 ug per lane) were separated by SDS-PAGE, transferred to

nitrocellulose, and probed with the AOA monoclonal antibodies. Alternative

pathway capacity in natoms O/min/mg protein of each mitochondrial sample is

indicated at the bottom. The results are representative of four experiments.

Panel B: RNA blot of the salicylic acid induced expression of the alternative

oxidase and inhibition of expression. The tissue sections from a separate appendix

from a D-S plant were treated as follows for 24 hr: in phosphate buffer, lane 1; in

buffer containing 1.0 mM salicylic acid, lane 2; in buffer plus actinomycin D for 2

hr followed by the addition of salicylic acid for 22 hr, lane 3; in buffer plus

cycloheximide for 2 hr followed by the addition of salicylic acid for 22 hr, lane 4.

Total RNA from each sample (10 pg per lane) was separated by formaldehyde-

agarose gel electrophoresis and transferred to nitrocellulose. The radiolabeled

probe was made from the purified insert of pAOSGSl. Results are representative

of two experiments.
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Figure 3-5. Nuclear, in vitro Transcription Assays. Panel A: Radiolabeled RNA

made from D-6 nuclei was hybridized to nitrocellulose-bound, single-stranded

DNA probes corresponding to the antisense strand of pZSSSGlo, slot 11; or

pAOSG81, slot 12. Panel B: Radiolabeled RNA made from D-Day nuclei was

hybridized to nitrocellulose-bound, single-stranded DNA probes corresponding to

the antisense strand of pZSSSGIO, slot M1; or pAOSG81, slot M2. Panel C

Radiolabeled RNA made from nuclei from untreated D-4 appendix tissue was

hybridized to nitrocellulose-bound, single-stranded DNA probes corresponding to

the antisense strand of pZSSSGlo, slot C1; pAOSG81, slot C2; or a double-

stranded, denatured I-IindIII-MspI fragment of pSAc3, slot C3. Panel D:

Radiolabeled RNA made from nuclei from salicylic acid treated D-4 appendix

tissue was hybridized to nitrocellulose-bound, single-stranded DNA probes

corresponding to the antisense strand of pZSSSGIO, slot SAl; pAOSG81, slot 8A2;

or a double-stranded, denatured HindIII-Mspl fragment of pSAc3, slot 8A3.

Nuclei isolated from the appendix tissue of a single voodoo lily plant on D-6 and

on D-day were used for the experiment yielding the results shown in Panel A and

Panel B. Nuclei isolated from appendix tissue sections of a single D-4 voodoo lily

plant were used for the experiment yielding the results shown in Panel C and

Panel D. The sections for Panel C were incubated in phosphate buffer for 24 hr,

while the sections for Panel D were incubated in buffer plus 1 mM salicylic acid

for 24 hr.
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DISCUSSION

In the appendix tissue of the voodoo lily inflorescence, salicylic acid is an

endogenous signal that "triggers" an increase in the capacity of alternative

respiratory pathway, which results in thermogenesis (Meeuse, 1966; Raskin et al.,

1987). The levels of the alternative oxidase proteins, particularly the 35- and

36 kD proteins, present at each day (from D-5 until D-day) in the development of

the inflorescence corresponded to the level of the alternative pathway capacity.

The level of the 1.6-kb transcript, which encodes the 42 kD alternative oxidase

precursor protein, increased from a relatively low level at 10 AM on D-2 to a high

level on D-1. The level of the 1.6-kb transcript remained high until at least 10

AM of D-day, when the level of each of the alternative oxidase proteins was

highest and when thermogenesis of the appendix tissue is approaching a peak

(Raskin et al., 1987, 1989). However, Raskin et al. (1989) have demonstrated that

salicylic acid begins to appear in the appendix tissue early on D—l, but does not

reach a peak until late in D-1 or during theudark period between D-1 and D-day.

Taken together these data indicate that the capacity of the alternative

pathway and the levels of the alternative oxidase proteins in the appendix tissue

begin to rise relatively early in the development of the inflorescence (D-3), when

the level of salicylic acid is, presumably, quite low. In contrast, the amount of the

1.6-kb transcript is relatively low until at least 10 AM of D-1, at which time there

is a dramatic increase in the level. This increase may correspond to the

appearance of salicylic acid in the appendix tissue. We have not determined the
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level of salicylic acid in the appendix tissue used for this these experiments, but

the peak in the salicylic acid level usually occurs late on D-1 (Raskin et al., 1989).

The basal level (Fig. 3-3, lane D5) of the transcript probably accounts for the

constitutive expression of the 37 kD protein and allows for the steady rise in the

accumulation of the 35- and 36 kD proteins. We have not determined if the level

of the 1.6-kb transcript changes between D-5 and D-2.

Because the accumulation of the alternative oxidase proteins in developing

appendix tissue seems to precede the dramatic rise in the salicylic acid levels

observed by Raskin et al. (1989), it is possible that the developmental regulation

of expression of the alternative oxidase gene, aoxI, of voodoo lily appendix tissue

is controlled by one or more additional regulators, not by salicylic acid alone.

salicylic acid may then act as a light-induced (Raskin et al., 1987, 1989) "booster"

of the transcript and protein levels at the critical time of D-1 through D-day so

that thermogenesis occurs at precisely the proper time. The developmental

experiments and the time course studies indicate that the accumulation of the

alternative oxidase transcript is the first step in the dramatic burst of alternative

pathway capacity between D-1 and D-day, which results in thermogenesis.

Therefore, it is likely that salicylic acid functions at the level of transcript

accumulation.

Applied salicylic acid causes immature appendix tissue sections to become

thermogenic between 16 and 24 hr after application. We have demonstrated that

thermogenesis is accompanied by an increase in the capacity of the alternative

pathway, which peaks at 16 hr after application. The accumulation of the
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alternative oxidase proteins, which began as early as 5 hr after the application of

salicylic acid, also peaked at 16 hr and remained essentially constant until 24 hr

after application. The level of the 1.6-kb alternative oxidase transcript began to

rise by about 4 hr after the application of salicylic acid, continued to rise to a peak

at 16 hr after the application, and remained essentially constant until 24 hr. Thus,

the time course for increase in alternative pathway capacity, the time course for

the accumulation of the alternative oxidase proteins, and the time course for the

accumulation of the transcript coincided precisely. Furthermore, these results

agree with a developmental time course in which salicylic acid, released from the

male floral region on D-l, "boosts" the levels of the alternative oxidase transcript

and proteins, resulting in thermogenesis at about noon on D-day. In addition,

these results demonstrate that salicylic acid alone (in lighted conditions) was

sufficient to cause these changes.

It is difficult to derive a clear picture of how salicylic acid regulates the

accumulation of the alternative oxidase proteins in the mitochondria of the

appendix tissue from the inhibitor data presented here. It is possible that the

effects of cycloheximide are due to the inhibitor simply blocking the synthesis of a

protein(s) involved in general translation or a protein(s) involved in general

transcription. Likewise, it is possible that actinomycin D blocks the transcription

of a gene(s) whose product(s) is involved in general translation or transcription.

Although we do not know the components of the salicylic acid signal transduction

pathway that are eliminated by cycloheximide and/or actinomycin D, it is clear that

both de novo transcription and de novo translation are required for the
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accumulation of the alternative oxidase transcript and proteins. If the inhibitors

are not having general effects, then it appears that salicylic acid is affecting the

accumulation of the 1.6-kb alternative oxidase transcript because actinomycin D

does block the accumulation of the transcript when salicylic acid is present.

The nuclear, in vitro transcription data presented indicate that the rate of

transcription of 30x1 was the same at D-6 and D-day. Likewise, nuclear, in vitro

transcription assays using nuclei isolated from untreated, immature (D-5) appendix

tissue and sections from the same appendix treated with salicylic acid for 24 hr

indicate that the rate of transcription of am] was the same in the treated tissue

and the untreated tissue. It is possible that the level of detection of the nuclear,

in vitro transcription assays was not sensitive enough to detect the levels of the

alternative oxidase transcript produced in these tissues. However, this possibility

seems unlikely because the amount of the transcript is extremely high in the

appendix tissue at D-day and after treatment with salicylic acid. Furthermore, the

rate of transcription of 30x1 may increase at a specific time in the development of

the appendix and at a specific time after the application of salicylic acid, and we

may not have isolated nuclei from the appendix tissue at one of these specific

times.

Based on the data presented, there are several possible mechanisms by

which salicylic acid is regulating the expression of the alternative oxidase proteins

and the capacity of the pathway. Because salicylic acid does induce an

accumulation of the 1.6-kb alternative oxidase transcript, we assume that this is

the ultimate purpose of salicylic acid in regulating the alternative pathway in the
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appendix tissue. However, this does not eliminate the possibility that salicylic acid

also regulates the accumulation of the alternative oxidase proteins in the

mitochondria by increasing the production of an unidentified protein(s) involved in

transport of the precursor protein to the inner mitochondrial membrane.

Alternatively, salicylic acid may cause a stabilization of the 1.6-kb transcript by

binding to a protein that stabilizes the 1.6-kb 30x1 transcript or initiating a

complex series of events that eventually results in a stabilization of the aox]

transcript. Any of these mechanisms would be inhibited by both actinomycin D

and cycloheximide if the protein(s) involved must be made by de novo

transcription and translation. A putative, soluble salicylic acid-binding protein in

tobacco has recently been identified (Chen at al., 1991). It is possible that this

protein is involved in some pathway leading to a response to salicylic acid in

tobacco.

Finally, it is likely that a complex mechanism accounts for the salicylic acid

regulation of the alternative respiratory pathway. However, once the mechanism

is elucidated, it will be very interesting to determine if salicylic acid regulates the

expression of other proteins in other higher plants, such as the PR and SAR

proteins in tobacco and cucumber, via the same mechanism.
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ABSTRACT

We have isolated and characterized a genomic clone, lAOSGl1, corresponding to

aoxI, which encodes the 42 kD alternative oxidase precursor protein of

Sauromatum guttatum Schott. The sequence of AAOSGll revealed that aox]

consists of four exons separated by three short introns. Exon three contains the

region of 801:] that: 1) is highly conserved in the corresponding genes of potato,

rice, and yeast; and 2) encodes a region of the deduced protein that is predicted

to form two transmembrane a-helices, which are predicted to embed the mature

protein in the inner mitochondrial membrane. Southern blot analysis of restriction

endonuclease digested genomic DNA, indicated that 30x1 is a single, nuclear-

encoded gene in S. guttatum. We have determined the transcriptional start site of

am] using nuclease protection and primer extension experiments. Comparison of

the putative promoter region of aox1 to promoters of PRla and GRP8 revealed

some sequence similarity.
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INTRODUCTION

The alternative and cytochrome respiratory pathways exist together in the

mitochondria of higher plants, fungi, algae, and protista (10,40). If electrons flow

through the cytochrome pathway, a proton gradient is established at three sites

along the pathway (3,41,24). The potential energy of the proton gradient is used

to produce chemical energy in the form of ATP (25). If electrons flow through

the alternative pathway, a proton gradient is formed from, at most, one site

(3,35,41). Therefore, the partitioning of electrons between the two pathways must

be regulated because it may have significant consequences on cellular energy

metabolism (18,40).

The energy of electron flow through the alternative pathway that is not

coupled to proton gradient formation is released as heat (22). Some plant tissues

that express a high level of the alternative pathway are thermogenic (29). The

role of thermogenesis in the appendix tissue of the Aroid species Sauromatum

guttatum Schott (voodoo lily) is to volatilize foul-smelling compounds which attract

insect pollinators (21). The appearance of three mitochondrial proteins with

apparent molecular masses of 35-, 36-, and 37 kD correlates with the activity of

the alternative oxidase, the terminal oxidase of the alternative respiratory pathway,

in S. guttatum appendix tissue (4). A 42 kD protein that is a putative precursor of

all three of these alternative oxidase proteins has been identified and a cDNA

clone, pAOSG81, corresponding to the nuclear gene, aox1, encoding the 42 kD

protein has been isolated and characterized (33). One of the factors that may
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determine the alternative pathway activity (the actual rate of 02 reduction that is

occurring via the alternative pathway in vivo) is the amount of the alternative

oxidase present in the mitochondria. The amount of alternative oxidase in the

mitochondria may be determined, in part, by the level of expression of the

corresponding gene(s). We demonstrated that the level of the alternative pathway

capacity (the maximum rate of 02 reduction of the pathway in isolated

mitochondria) in developing S. guttatum appendix tissue correlates well with the

levels of the 35- and 36 kD alternative oxidase proteins (6,34) and the level of the

1.6 kb alternative oxidase transcript (34). The accumulation of the transcript may

be due to an increase in the rate of transcription of aox] or an increase in the

stability of the transcript (34). Previous work failed to show an increased rate of

transcription of 301:] (34). However, since these results are not direct proof that

RNA stability is the mechanism by which the transcript accumulates, it is possible

that an increase in the rate of transcription of 30x1 does play a role in the

transcript accumulation.

Salicylic acid is an endogenous "trigger" of thermogenesis in voodoo lily

appendix tissue (29). Salicylic acid is produced in the male floral region of the

inflorescence and moves into the appendix beginning early on D-1 and "triggers"

thermogenesis at about noon of D-day (29,30). Raskin et al. (30) showed that

light is required for salicylic acid to induce thermogenesis in appendix tissue

sections. Salicylic acid induces an increase in alternative pathway capacity in

S. guttatum appendix tissue by causing an accumulation of the alternative oxidase

transcript, resulting in an accumulation of the alternative oxidase proteins (34).
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Salicylic acid may also be a messenger in systemic acquired resistance

(SAR) in tobacco and cucumber (19,20,31,46). Salicylic acid may act in disease

resistance by regulating gene expression since application of salicylic acid caused

the accumulation of pathogenesis related (PR) proteins, including PR1a and a

glycine rich protein (GRP) called GRP8, and their corresponding transcripts in

tobacco leaves, which have increased levels of salicylic acid following innoculation

of certain pathogens (19,26,45). The promoter regions of the genes encoding

GRP8 and PR1a have been analyzed in order to identify salicylic acid responsive,

cis-acting sequence elements (27,43). One study indicated that only the first 300

basepairs (bp) of the 5’-upstream region of PR1a gene were sufficient to allow the

increased expression of a reporter gene (B-glucuronidase gene) in transgenic

tobacco plants following infection with tobacco mosaic virus (TMV) or application

of salicylic acid (27). A separate study indicated that the first 643 bp were

required for an increase in expression of the same reporter gene in transgenic

tobacco (43). However, a sequence motif found in both the PR1a promoter and

the GRP8 promoter has been identified (42).

Salicylic acid may participate in thermogenesis in aroids and the response

to pathogen attack in tobacco and cucumber by regulating the expression of

(apparently) unrelated genes, am] and the PR genes. Therefore, identification of

the mechanism(s) by which salicylic acid regulates gene expression will be valuable

in understanding the role of salicylic acid in various plant processes. In this paper

we report on the identification and characterization of am], the salicylic acid

"responsive" gene encoding the alternative oxidase of S. guttatum.
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MATERIAIS AND METHODS

Plant Material and Salicylic Acid Treatment. Sauromatum guttatum Schott

(voodoo lily) plants were maintained in a glasshouse at 27°C : 4°C under long-

day conditions, as previously described (4). D-day is the day the inflorescence

blooms and the appendix tissue of the spadix heats (see reference 21 for

description). Other developmental stages of the plant are indicated as the number

of days before or after D-day (D-1 being the day before and D+ 1 the day after

D-day). Between the time the inflorescence begins to develop and the end of day

D-2, the inflorescence is referred to as "immature". For the salicylic acid

treatment experiments, appendix tissue of a S. guttatum plant was cut into 1.0-1.5

cm sections. Sections were placed into each of two 10 ml beakers containing 1.0

ml of phosphate buffer (10 mM KHzPO4 and 50 ug/ml streptomycin). Salicylic

acid was added to a final concentration of 1.0 mM to one beaker and a drop of

buffer or buffer plus salicylic acid was placed on top of each section.

Isolation of Mitochondria and Respiration Assays. Mitochondria were isolated as

described previously (4). Respiration rates were measured as oxygen uptake using

a Rank Brothers (Cambridge, UK) oxygen electrode. The oxygen content of air-

saturated water was estimated according to Estabrook (7). The capacity of the

alternative pathway was measured in 1.0 mL of reaction medium (250 mM

sucrose, 30 mM 3-(N-morpholino)propanesulfonic acid [Mops], pH 6.8) at 25 °C

with 1 mM NADH as the substrate. Carbonylcyanide p-trifluoro-
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methoxyphenylhydrazone (FCCP) was added to 0.5 uM after NADH in order to

diminish the electrochemical gradient prior to measurement of the pathway

capacity (4). The capacity of the alternative pathway was taken as the rate of

oxygen uptake sensitive to 1 mM salicylhydroxamic acid (SHAM) in the presence

of 1 mM KCN (4). The amount of total protein in each sample was determined

by as described previously (4).

Gel Eectrophorecia, Immunoblotting, and Antisera. Sodium dodecyl sulfate

polyacrylamide electrophoresis (SDS-PAGE) and immunoblotting were performed

as described previously (4). The antibody used was the AOA monoclonal

antibody raised to the 36 kD alternative oxidase protein of voodoo lily, and which

recognize all three alternative oxidase proteins of voodoo lily (5 ). Since the same

amount of total mitochondrial protein was loaded onto each lane of each

polyacrylamide gel, the protein detected on protein blots represents the

proportion of total mitochondrial proteins that constitutes the alternative oxidase

proteins.

Plasmid Insert Isolation and Radiolabeling. The 1400-bp EcoRI insert of

pAOSG81 (33) was purified by as described in Sambrook et al. (37) except that

the elution buffer was 10 mM Tris-H01, pH 7.5, 0.1 mM EDTA, 0.05% SDS, and

0.3 M LiCl and the insert was electrophoresed through two successive I

polyacrylamide gels. The purified fragment was resuspended to a concentration of

60 ugly] in Tris-EDTA and was used as a template to make DNA radiolabeled
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with a-nP-dATP (Amersham Corporation) by the random primer method (8).

Specific activity of the DNA probes was routinely about 107 chug template, as

determined by the sodium phosphate wash method (37).

RNA Isolation, Blots, and Autoradiography. Total RNA was isolated from frozen

(in liquid N2) S. guttatum appendix tissue as described previously (33). RNA was

separated on agarose gels containing formaldehyde as described (1) and

transferred to nitrocellulose (Schleicher and Schuell, Keene, NH) as described in

Sambrook et a1. (37). RNA blots were probed with radiolabeled DNA made using

the purified insert of pAOSG81. Hybridization was done under high stringency

hybridization conditions (37). Autoradiography using Kodak diagnostic film XAR-

5 (Eastman Kodak Company, Rochester, NY) was used to view the hybridization

results (1).

Genomic DNA Isolation and Southern Blot Analyst. S. guttatum plants were

grown in the dark for 24 h prior to genomic DNA isolation. Genomic DNA was

isolated from S. guttatum leaves by the procedure of Ausubel et a1. (1). Southern

blotting was performed according to the procedure of Sambrook et a1. (37) using

10 ug per lane of restriction endonuclease digested genomic DNA and

radiolabeled DNA probes made using the insert of pAOSG81, as described above.

Isolation of Genomic (Jones and Subcloning. A library of the genomic DNA

partially digested with Sau3A was constructed in the Barn HI site of lambda
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EMBL3 vector by Stratagene (LaJolla, CA). Library screening and all subcloning

were performed according to the procedures of Sambrook et al. (37). The 2.2

kbp Nco I fragment (see Figure 4—3 for location of sites) and the 2.9 kbp

Bam HI/Sal I fragment were subcloned from lGAOSGll into pUC119 to form

pGAOSG-N22 and pGAOSG-B829, respectively. The 2.3 kbp Sma I/Sac I

fragment from lGAOSGll was subcloned into pBluescript (Stratagene, LaJolla,

CA) to form pGAOSG-S823.

DNA Sequencing and Analysis. Sequencing of the inserts of phagemids

pGAOSG-N22 and pGAOSG-B829 was done by the dideoxy method of Sanger et

al. (38) using Sequenase® T7 DNA Polymerase version 2.0 (US. Biochemical

Corporation, Cleveland, OH). Primers for sequencing and primer extension

experiments were made in the laboratory of Dr. C. S. Sommerville or the

Michigan State University Macromolecular Facility. All sequence analysis was

performed using the EDITBASE DNA sequence analysis program.

SynthesisofRadiolabeledTramuiptsandMappingofaaxImRNAwithRNase.

Radiolabeled transcripts used to map the 5’ end of the mRNA encoding the

42 kD alternative oxidase protein were synthesized in vitro by the procedure of

Sambrook et al. (37). The template used for synthesis was an I digested

pGAOSG-SSZ3 (see Fig. 4-3 for location of sites). T7 RNA polymerase was used

to synthesize a 544 nucleotide transcript that contained 10 bases of pBluescript

sequence, 173 bases of sequence of pGAOSG-SS23 that is the same as the 5’ end
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of the insert of pAOSGSl, and 361 bases of pGAOSG-SS23 preceding the first

base that corresponds to the 5’ end of the insert of pAOSG81. The radiolabeled

transcripts were hybridized to 10 ug of total S. guttatum RNA isolated from D-day

appendix tissue and digested with RNase T1 (BRL, Gaithersburg, MD) and

RNase A (Sigma Chemical Co., St. Louis, MO) following the procedure of

Sambrook et al. (37). Radiolabeled RNA protected from digestion was analyzed

by electrophoresis through a 7% (w/v) polyacrylamide sequencing gel and

autoradiography. The products of the sequencing reactions using primer FDRS2-

4, which corresponds to bases 1349 to 1366 of the insert of AGAOSGl1, were

loaded into adjacent lanes as markers. Each of these products (DNA) migrates

through the sequencing gel at the same rate as an RNA molecule that is 5%-10%

shorter (37).

Primer Etension Mapping of 8:21 mRNA. Primer extension mapping of the

aoxI transcript was done by the procedure of Sambrook et a1. (37) using a 25 base

oligonucleotide, called PE-25, of the sequence 5’-GGTACGGGGACGTGACI‘GA

GCI‘GCC-3’, corresponding to the complementary strand of bases 118 to 142 of

AGAOSGll and, therefore, complementary to the 30x1 transcript. Products of

the primer extension were analyzed by electrophoresis through a 7% (w/V)

polyacrylamide sequencing gel and autoradiography.



REULTS

Salicylic Acid-Regulated Expression of the Alternative Oxidase. The alternative

pathway capacity and the amounts of the 35- and 36 kD alternative oxidase

proteins are increased by 5 h following the application of salicylic acid to day D-5

S. guttatum appendix tissue sections (Fig. 4-1A, lane 2) as compared to the levels

before salicylic acid application (lane 1). The capacity and amount of each of the

three alternative oxidase proteins are greatly increased by 24 h following salicylic

acid addition (lane 3). The amount of the 1.6 kb alternative oxidase transcript

increased by 4 h following salicylic acid addition to day D-S appendix tissue (Fig.

4-1B, lane 2) as compared to the amount present before salicylic acid application

(lane 1). The amount of the transcript is greatly increased by 24 h following

salicylic acid (lane 3).

Southern Blot Analyfi to Determine Gene Copy Number. The copy number of

alternative oxidase genes was determined by Southern blot analysis of S. guttatum

genomic DNA digested with various restriction endonucleases. Figure 4-2 shows

that single DNA fragments were detected when genomic DNA digested with 5

either Barn HI (lane 1), Hind III (lane 3), Nco I (lane 4), Sal I (lane 7) or Xba I

(lane 8) was probed with radiolabeled DNA made using the insert of pAOSG81.

Two bands were detected when the genomic DNA was digested with either

Eco RI (lane 2), Pst I (lane 5), or Sac I (lane 6). Based on the sequence of

AGAOSGl1, there should not be two bands recognized by the probe when
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genomic DNA is digested with EcoRI. We can only explain this as an error in

fidelity in the production of clone lGAOSGll. All other bands agree with the

sequence data. Southern blot data obtained using genomic DNA digested with

Cla I, Hinc II, Kpn I, Nde I, and Sa] I also agreed with the sequence data (data

not shown).

Sequence of amI. Figure 4-3 shows a schematic diagram of the exon/intron

structure of 30x1 deduced from the sequence of AGAOSGll and the locations of

key restriction endonuclease recognition sites. The sequence of the phagemid

subclones, pGAOSG-N22 and pGAOSG-BS29, derived from genomic clone

AGAOSGI1, revealed that 30x1 is organized as four exons separated by three

short introns (Fig. 4-4). Exon 1, exon 2, exon 3, and exon 4 are 452 bp, 133 bp,

493 bp and approximately 570 bp in length, respectively. They are separated by

intron 1, intron 2, and intron 3, which are 117 bp, 79 bp, and 119 bp in length,

respectively. Exon 3 contains the entire region of 30x1 that is highly conserved

among the alternative oxidase cDNA clones from potato (11), Hansenula anomala

(36), and rice (Dr. L McIntosh and R. Nickels, personal communication). This

region of 30):] encodes a region of the deduced protein that is predicted to form

two transmembrane a-helices (33). The putative TATA box with the sequence

TATAAA is located at bases -32 to -27. Two putative CAAT boxes are at bases -

83 to -79 (CCCAT) and at bases -67 to ~62 (CAAAAT). Many cis-acting

transcriptional elements (see 12,14, and 15 for descriptions) were identified in the

promoter of am], but only the potential zinc finger (GATA) and GT-l/GT-2
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Figure 4-1. Immunoblot and RNA blot analysis of salicylic acid induction of

alternative oxidase expression. Panel A: Total mitochondrial proteins were

separated by SDS-PAGE and transferred to nitrocellulose. The immunoblot was

probed with the AOA monoclonal antibody. The mitochondrial proteins were

from D-5 S. guttatum appendix tissue sections before application of salicylic acid

(lane 1), following incubation in phosphate buffer containing 1.0 mM salicylic acid

for 5 h (lane 2), and 24 h following salicylic acid application (lane 3). Alternative

pathway capacity in natoms O/min/mg protein is indicated at the bottom of each

lane. Protein relative molecular masses in kD are indicated at the side. Panel B:

Total RNA (10 pg per lane) was electrophoresed through 1.2% (w/v) agarose-

formaldehyde gels and transferred to nitrocellulose. The blot was probed with

radiolabeled DNA made using the insert of pAOSG81 by the random primer

method and hybridization that occurred at high stringency was detected by

autoradiography. The RNA samples were from appendix tissue from a D-5

S. guttatum appendix tissue sections before application of salicylic acid (lane 1),

following incubation in phosphate buffer containing 1.0 mM salicylic acid for 4 h

(lane 2), and 24 h following salicylic acid application (lane 3). Transcript length in

kilobases is indicated at the side.
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Figure 4-2. Southern blot analysis of genomic DNA. S. guttatum genomic DNA

(10 pg) was digested with individual restriction endonucleases, electrophoresed

through a 0.7% (w/v) agarose gel, and transferred to nitrocellulose. The blot was

probed with radiolabeled DNA made using the insert of pAOSG81 by the random

primer method. Hybridization at high stringency was detected by autoradiography.

The DNA samples were digested with the following restriction endonucleases:

Barn HI (lane 1), Eco RI (lane 2), Hind III (lane 3), Nco I (lane 4), Pst I (lane 5),

Sac I (lane 6), Sal I (lane 7), and Xba I (lane 8). DNA marker sizes in base pairs

are indicated to the side.
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(GTGG) target sequences were identical to the consensus sequence of each (Fig.

4-3). Regions with sequence similarity to the following classes of promoter

elements were identified: bZIP (TGACG, GACGTG, CACGTG, GACGTG), at

bases -695 to -689 (matched 5/6 bases), bases -195 to -190 (5/6), bases -152 to -147

(5/6), and bases -57 to -51 (5/6); HLH (CAGGTGC), -1281 to -1275 (6/7); heat

shock (GAAnnTTC), at bases -1446 to -1439 (7/8), bases -1183 to -1174 (7/8),

bases -1064 to -1057 (7/8), bases -1043 to -1036 (7/8), bases -860 to -853 (7/8),

bases -597 to -590 (7/8), bases -265 to -258 (7/8), and bases -161 to 154 (7/8); and

SV40 (GTGGA/I‘MMG), at bases -606 to -599 (7/8) and bases -139 to -132

(7/8). Sequences similar to each of the "boxes" identified in the promoter of the

gene encoding the small subunit of ribulose bisphosphate carboxylase (RBCS)

were also detected: Box I at bases -1458 to -1446 (10/13), bases -903 to -897 (6/7),

bases -759 to -753 (6/7), bases -366 to -360 (6/7), bases -278 to -271 (6/7), and

bases -117 to -111 (6/7); Box 11 at -138 to -128 (10/14); Box 11* at bases -234 to -

223 (9/12); Box 111 at bases -378 to -369 (8/10); Box IV at bases -806 to -797

(8/10), bases -784 to -775 (8/10), bases -634 to -624 (8/10), and bases -99 to -90

(8/10); and Box V at bases -611 to -601 (8/11) and bases -109 to -99 (8/11). A

region of the am] promoter, from base -524 to base -468 can be aligned with

the -50 to +1 regions the PR1a and GRP8 promoters (42) as follows:

“1 '526 GTlTl‘ltTl-Tm'AT-'01Mt1’AT-mtm-tTABTMATC-MTITC-Tc-A 468

=1=1== 11111 1=11111= =111====111111=111=111
an -54 rr-urecnrrm-Aru-u-cnrm-mac-cc-1mmm-mnmc-A +1

1 1 =1111111 1 111111 1111 111111 111111111
n1. ~56 cr-mrmummcrc-curm-----rac-ccrreeucrmrcrmrr-rrcu +1

in which capital letters in the 30x1 sequence dots between the sequences indicate .

bases that are present in either the GRP8 sequence or the PR1a sequence and
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Figure 4-3. Schematic diagram of genomic clone AGAOSGll. Exons are shown

as open boxes, introns as filled boxes, the untranscribed regions as lines, and the

arms of the lambda phage as hatched boxes. The positions of recognition sites of

the following restriction endonucleases are shown: Bam HI, indicated as B; Nco I,

N; Sac I, S; Sal I, Sa; Sma I, Sm; and an I, X.
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Figure 4-4. Nucleotide and deduced amino acid sequence of the aox] gene of

S. guttatum. The sequence of cDNA clone pAOSG81 is shown in capital letters.

The transcription start site (+1) is marked by a bent arrow. The putative TATA

box, potential CAAT boxes, and other potential cis-acting transcriptional elements

are underlined or overlined and discussed in the text.
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lines between sequences indicate nucleotides that are present in all three

sequences. In addition, the 30x1 promoter has three regions that have sequence

similarity to the -689 to -643 region of the PR1a promoter and the promoter of

GRP8. These regions are bases -146 to -134 (10/13), bases -139 to -128 (10/11),

and bases -442 to -457 (11/16).

Mapping of 80:1 mRNA Using RNase. A large amount of the 544 nucleotide,

radiolabeled transcript was made by the in vitro system (Figure 4-5, lane 6). The

largest fragment of the 544 nucleotide transcript that is protected from RNase

digestion by hybridization to the aox] transcript was about 200 nucleotides in

length (lane 5). The transcriptional start site that corresponds to a fragment of

this size is base +1 of lGAOSGl1, which is marked with a bent arrow in Figure

4-4. The other bands present in lane 5 correspond to RNA molecules of about

199, 198, 185, 173, 172, 171, 169 and 129 nucleotides.

Primer Eaten Mapping of 8:21 mRNA. A large amount of primer PE-25 was

end labeled with a-32P and that there may have been some contamination with

oligonucleotides of about 50 nucleotides in length (Figure 4-6, lane 6). The most

abundant product made by primer extension was 142 nucleotides (lane 5) and

corresponds to a transcription start site at base + 1 of lGAOSGll, which is

marked with a bent arrow in Figure 44. Bands corresponding to products of

about 141, 138, 91, 90, and 89 nucleotides were also detected.
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Figure 4-5. RNase protection mapping of the 5’ end of the 30x1 transcript. An in

vitro synthesized, 544 nucleotide transcript was hybridized to 10 pg of total RNA

from D-day appendix tissue and digested with RNase T1 and RNase A.

Radiolabeled RNA samples were analyzed by electrophoresis through a 7% (w/v)

polyacrylamide sequencing gel and autoradiography. A protected fragment of

about 200 nucleotides (lane 5) is indicated by an arrow. The undigested,

radiolabeled probe transcript (lane 6) is also indicated by an arrow. Sequencing

products made using the single stranded form of phagemid pGAOSG-BSZ9 and

primer FDR52-4 (lanes 1-4) were used as size markers. The positions of some of

the sequencing products are indicated in DNA base pairs at the side. Each of

these products (DNA) migrates through the sequencing gel at the same rate as an

RNA molecule that is 5%-10% shorter (37).
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Figure 4—6. Primer extension mapping of the 5’ end of the 30x1 transcript.

Primer extension was performed using oligonucleotide RDR22-7, which is

complementary to the 30x1 transcript and corresponds to bases 1661 to 1685 of

lGAOSGll. The products of primer extension (lane 5), the unextended

oligonucleotide primer (lane 6), and products of sequencing reactions using the

same primer and the single stranded form of phagemid pGAOSG-SSZ3 were

analyzed by electrophoresis on a 7% (w/v) polyacrylamide gel and

autoradiography. DNA molecule sizes in base pairs are indicated at the side. The

most abundant primer extension product (142 nucleotides) is indicated by an

arrow.
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DISCUSSION

The amount of alternative oxidase present in plant mitochondria is one of

the factors that will determine the partitioning of electrons between the alternative

and cytochrome pathways. The data presented here indicates that alternative

pathway capacity and the amounts of the 35- and 36 kD alternative oxidase

proteins were increased by 5 h following salicylic acid application to immature

S. guttatum appendix tissue. The amount of the 1.6 kb alternative oxidase

transcript increased by 4 h following salicylic acid application. It is likely that the

expression of the alternative oxidase in S. guttatum appendix tissue is affected by

salicylic acid at the level of transcript accumulation (34). In order to better

understand this regulation, we have isolated a genomic clone corresponding to

am], which encodes the 42 kD alternative oxidase precursor protein. Three lines

of evidence suggest that this gene is the only expressed alternative oxidase gene in

S. guttatum appendix tissue and is present in a single copy in this organism: 1)

single DNA fragments were detected on Southern blots when genomic DNA was

digested with several different restriction endonucleases; 2) a single, 1.6 kb

transcript is detected on RNA blots; and 3) a single, 42 kD protein is

immunoprecipitated from products made by in vitro translation of poly (A)+ RNA

from appendix tissue (33).

The war] gene is organized as four exons that are separated by three short

introns. One interesting feature of this gene structure is that exon 3 contains the

entire region of ear] that: 1) is very highly conserved among several higher plant
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species, including potato (11) and rice (R. Nickels and L McIntosh, unpublished

results), and yeast (36); and 2) encodes the region of alternative oxidase protein

that is predicted to embed the protein in the inner surface of the inner

mitochondrial membrane (33). Each intron begins with GU and ends with AG, a

pattern typical of eukaryotic introns (2). Each intron is AU-rich, a characteristic

of dicots (9), and contains the YURAY sequence common to introns of higher

plants (13).

We have mapped the 5’ end of the am] transcript by RNase protection

and primer extension experiments. The results from each of these suggest that

the first base of the 30x1 transcript corresponds to the adenine marked as base

+ 1 on Fig. 4-4, which is 14 bp upstream of the 5’ end of the start of the match

with pAOSG81. The smaller RNA fragments that appear in the RNase protection

experiment may be due to multiple transcription start sites that are not detected

by RNA blot analysis due to the transcripts differing by a small number of

nucleotides. Alternatively, the bands could have resulted from imperfect

conditions during the RNase digestion, which could result in slight separation of

the strands at the ends. The primer extension experiment also showed multiple

products that are shorter than the main product. These products may have

resulted from premature termination of reverse transcription. The first base of

the proposed TATA box is 32 bases from the start site, which is the distance often

observed for the TATA box of a higher plant gene transcribed by RNA

polymerase II (44). The most likely CAAT site occurs at bases -67 to -62, which

agrees with the position of the CAAT site of other plant genes (44).
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Several sequence regions in the promoter of 30x] are similar to the plant

transcription elements that have been identified (see references 12,14,15,17,28 for

element descriptions), but only the potential zinc finger and GT-l/GT-Z target

sequences were identical to the consensus sequence of each of these cis-acting

regulatory elements. Regions with sequence similarity to the following classes of

promoter elements are located in the promoter of am]: bZIP, HLH, heat shock,

and SV40. Since light is required for applied salicylic acid to cause thermogenesis

in immature S. guttaturn appendix tissue sections (30), it is interesting to note that

several regions were identified that are similar to the "boxes" of the light-regulated

RBCS promoter (16). A region of the am] promoter, from base -524 to base -

468 can be aligned with the -50 to +1 regions the PR1a and GRP8 promoters

(42). In addition, the 80):] promoter has three regions that have sequence

similarity to the -689 to -643 region of the PRla promoter and the promoter of

GRP8. It is possible that one or more of these regions plays a role in the

potential salicylic acid controlled regulation of these genes. The polyadenylation

site of the am] transcript is not known and cannot be accurately deduced from

the sequence of AGAOSGl1.

In summary, our results are consistent with the hypothesis that salicylic acid

"triggers" thermogenesis in S. guttatum appendix tissue by causing, at least in part,

an increase in the accumulation of the 1.6 kb 30x1 transcript, which results in

increased accumulation of the 35- and 36 kD alternative oxidase proteins and

increased capacity of the alternative pathway. Accumulation of the 1.6 kb

transcript may be through an increase in transcription rate or an increase in RNA
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stability.

Salicylic acid may play a role in SAR by causing an accumulation in the

transcripts encoding certain PR and SAR genes, although relative transcription

rates have not been determined for these events. The promoters of PR1a and

GRP8 have been analyzed to determine regions that are important for salicylic

acid directed gene regulation. It may now be possible to use IlGAOSGll to: 1)

identify any protein(s) that may interact with the am] promoter in nuclei of

S. guttatum appendix tissue; and 2) determine the regions of the 30x] promoter

that may be responding to salicylic acid using a transgenic system. Results from

such experiments may be useful in determining the general mechanism by which

salicylic acid regulates gene expression
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ABSTRACT

In suspension cultures of NT1 tobacco (Nicotiana tabacum L cv. bright yellow)

cells the cytochrome pathway capacity increased between day 3 and day 4

following subculturing, reached the highest level observed on day 7, decreased

significantly by day 10, and was at the same level on day 14. Both alternative

pathway capacity and the amount of the 35 kD alternative oxidase protein

increased significantly between day 5 and day 6, reached the highest point

observed on day 7, remained constant until day 10, and decreased by day 14. The

highest points of the alternative and cytochrome pathway capacities and the

largest amount of the 35 kD protein were attained on the day cell cultures

reached a stationary phase of growth. Addition of salicylic acid to cell cultures on

day 4, caused a significant increase in alternative pathway capacity and a dramatic

accumulation of the 35 kD protein by 12 hours. The capacity and the protein

level each reached the highest point observed by 16 h after salicylic acid addition

and the cytochrome pathway capacity was at about the same level at each time

point. The accumulation of the 35 kD protein was significantly decreased by

addition of actinomycin D one hour before salicylic acid and was blocked by

addition of cycloheximide. These results indicate that de novo transcription and

translation were necessary for salicylic acid to cause the maximum accumulation of

the 35 kD protein.



125

INTRODUCTION

The regulation of electron flow between the alternative and cytochrome

respiratory pathways in higher plants may be important in determining the overall

carbon balance of plant cells (8,23). If electrons flow through the cytochrome

pathway, a proton gradient is established from three coupling sites (complex I,

complex III, and complex IV) along the pathway (1,14,24). The potential energy

of the proton gradient is used to produce chemical energy in the form of ATP

(reviewed in reference 15). If electrons flow through the alternative pathway, only

complex I can contribute to establishing a proton gradient, but this depends on the

substrate being oxidized (1,20,25). The energy of electron flow that is not used to

produce ATP in the alternative pathway is released as heat, which is used in the

reproductive physiology of the aroid plants such as the species Sauromatum

guttatum Schott (12,13). The role of the alternative pathway in non-aroid plants is

not yet defined (8,23).

The appearance of three mitochondrial proteins with apparent molecular

masses of 35-, 36-, and 37 kD strongly correlates with the activity of the alternative

oxidase, the terminal oxidase of the alternative pathway, in S. guttatum appendix

tissue (2). These proteins are believed to be posttranslationally modified products

from a single, nuclear-encoded precursor protein (18). A monoclonal antibody

that recognize all three alternative oxidase proteins of S. guttatum was prepared

and named AOA monoclonal antibody (3). This antibody also recognizes a single,

putative alternative oxidase protein of 35 kD in tobacco and a single
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mitochondrial protein from other non-aroid higher plants (2,3). A 42 kD protein

that is a putative precursor of all three proteins has been identified (18). A

cDNA clone, pAOSG81 corresponding to the gene, 30):], encoding the precursor

protein has been isolated and characterized (18).

Salicylic acid is an endogenous "trigger" of thermogenesis in S. guttatum

appendix tissue (16). Raskin et al. (17) also showed that light is required for

salicylic acid to "trigger" thermogenesis in appendix tissue sections. We previously

used pAOSG81 and the AOA monoclonal antibody to study the developmental

regulation of alternative oxidase expression and the expression of the alternative

oxidase after application of salicylic acid in S. guttatum appendix tissue sections

(19). Salicylic acid caused an increase in alternative pathway capacity in

S. guttatum appendix tissue by causing an accumulation of the alternative oxidase

transcript, which leads to an accumulation of the alternative oxidase proteins in

the mitochondria (19).

We are now establishing a system to study the regulation of the two

respiratory pathways using suspension cultures of NTl tobacco cells. Alternative

pathway capacity increases and a 35 kD alternative oxidase protein accumulates in

these tobacco cells when they are transferred from the normal growth temperature

of 30°C to 18°C (26) or when antimycin A, an inhibitor of the cytochrome

pathway, is added to the culture medium (27). We report here on the

developmental regulation of alternative oxidase expression and cytochrome and

alternative pathway capacities in NT] cells and on the effects of exogenous

salicylic acid on the capacities and expression of the alternative oxidase.
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MATERIALS AND METHODS

Tobacco Giltures. Suspension cultures of tobacco (Nicotiana tabacum L. cv.bright

yellow) cells were grown in batch culture in LS medium (10) containing 0.2 pg/ml

2,4-D on a rotary shaker at 150 rpm and 30°C under heterotrophic conditions. In

order to determine the cell density of a culture, a 5 mL aliquot was removed and

the cells were pelleted at 1876:; in a Beckrnan RT6000B centrifuge. The

supernatant was carefully removed, and the packed cells were weighed. The cell

density was calculated as the grams of cells per 100 mL of grth medium and

given as a percentage. The cell cultures were subcultured to a final density of 4%

(w/v). The day following subculturing is referred to as day 1, the second day as

day 2, and so on.

Salicylic Acid and Inhibitor Treatment of Stupension Cultured Cells. For the time

course experiments, salicylic acid was added to a final concentration of 1.0 mM to

day 3 or day 4, and the cultures were then grown under normal conditions for 2 h,

4h,8h, 12h, 16h,20h,24h,and48h.

For each inhibitor experiment, actinomycin D (50 pg/mL final

concentration; Sigma, St. Louis, MO), an inhibitor of transcription, was added to

one of four cultures and cycloheximide (100 pg/mL final concentration; Sigma, St.

Louis, MO), an inhibitor of translation by 808 ribosomes, was added to a second

culture. After one hour of incubation at 30°C, salicylic acid was added (1.0 mM

final concentration) to the two cultures containing the inhibitors and the positive
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control culture. The cultures were incubated at 30°C for an additional 15 h. The

negative control culture was grown under normal conditions for 16 h and each

experiment was started on day 3.

For each concentration experiment, salicylic acid was added to final

concentrations of 1.0 mM, 100 pM, 10 pM, or 1.0 pM to independent cultures.

The cultures were incubated at 30°C for 16 h after addition of salicylic acid and

experiments were started on day 3 or day 4.

Isolation of Mitochondria and Respiration Assays. Suspension cultured cells were

washed twice in fresh growth medium at room temperature. Mitochondria were

isolated by a modification of the procedure of Schwitzguebel and Siegenthaler (22)

as previously described (18). The cells were disrupted in a commercial blender by

three bursts of 3 s each. Respiration rates were measured as oxygen uptake using

a Rank Brothers oxygen electrode and 1.0 mL of reaction medium at 25 °C. The

oxygen content of air-saturated water was estimated according to Estabrook (5).

Capacities of the cytochrome and alternative pathways were determined as

described by Elthon et al. (2). The capacity of the alternative pathway is the rate

of oxygen uptake that is sensitive to SHAM in the presence of KCN. The

capacity of the cytochrome pathway is the rate of oxygen uptake that is sensitive

to KCN in the presence of SHAM. Total respiratory capacity is the sum of the

alternative and cytochrome pathway capacities plus residual respiration

(respiration in the presence of SHAM and cyanide), which was very low in the

suspension cultured tobacco cells. The amount of total protein in each sample
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was determined by the procedure of Larson et al. (9).

Gel Ebctropharesis, Immrmoblotting, and Ant'uera. Sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting were

performed as previously described (2). The antibody used was the AOA

monoclonal antibody, which was raised to the 36 kD alternative oxidase protein of

S. guttatum. This antibody recognizes all three alternative oxidase proteins of

S. guttatum as well as putative alternative oxidase proteins from other higher

plants, including tobacco (2,3).

RESULTS

Growth of Suspension Cultured Tobacco (blls. Figure 5-1 shows a grth curve

for the suspension cultured NT] tobacco cells following subculture. The cell

density increased by a factor of 1.5 each day from day 1, when the density was

about’8%, until reaching a density of about 68% and a stationary phase at day 7.

The cells remained in this stationary phase (at a density of about 70%) until at

least day 14.

Respiratory Pathway Capacities During Growth ofSuspension Culture Tobacco

Cells. Changes that occurred in the capacities of the cytochrome and alternative

pathways, measured in isolated mitochondria, during the grth of the suspension

cultured tobacco cells are shown in panel A of Figure 5-2. The cytochrome
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Figure 5-1. Growth curve for suspension cultured NTl tobacco cells. Cell density

of each culture was determined by removing a 5 mL aliquot, pelleting the cells,

removing the supernatant, and weighing the packed cells. The cell density,

calculated as the grams of cells per 100 mL of growth medium, was plotted as a

function of the number of days after subculturing. Results are averages from four

experiments.
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pathway capacity increased rapidly between day 3 and day 4, and continued to

increase until it reached the highest level observed on day 7. The capacity

decreased between day 7 and day 10 and was at about the same level on day 14 as

it was on day 10. The capacity of the alternative pathway was relatively high the

day after the cells were subcultured, but decreased rapidly between day 1 and

day 3. The capacity then increased rapidly between day 5 and day 6, reached the

highest observed level on day 7, was at the same level on day 10 as it was on

day 7, and decreased by day 14. Panel B of Figure 5-2 shows that the net result

was that the percentage of the total respiratory capacity (see Materials and

Methods for definition) of the cells that was attributable to the alternative

pathway increased from 12% on day 5 to 36% on day 7.

DevelopmentalRegtdationofAltemativeridaseExpressioninSmpension

Cultured Tobacco Cells. Figure 5-3 shows that the amount of the 35 kD

alternative oxidase protein in the mitochondria used for the capacity

measurements (Fig. 5-2) increased dramatically between day 6 (lane 5) and day 7

(lane 6), increased slightly between day 7 and day 10 (lane 7), and decreased

substantially by day 14 (lane 8). This pattern parallels the changes that occurred

in the capacity of the alternative pathway during the grth of the cells (Fig. 5-2)

and the dramatic increase occurred at the same time that the cells were

approaching the stationary phase of growth.
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Figure 5-2. Respiratory pathway capacities of suspension cultured NT1 tobacco

cells. Mitochondria were isolated at each time point, and the capacities were

determined using a Rank Brothers oxygen electrode. Panel A: The capacity of the

alternative pathway (solid circles) and the cytochrome pathway (solid triangles)

were plotted as functions of the number of days after subculturing. Panel B: The

percentage of the total respiration that was attributable to the alternative pathway

was plotted as a function of the number of days after subculturing. Results are

averages of three experiments.
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Figure 5-3. Immunoblot showing accumulation of tobacco alternative oxidase at

various times following subculturing. Mitochondria were isolated from suspension

cultured NT1 tobacco cells at various times after subculturing and the respiratory

pathway capacities were determined (see Fig. 5-2). The mitochondrial proteins

(100 pg) were separated by SDS-PAGE, transferred to nitrocellulose, and the

alternative oxidase proteins were identified using the AOA monoclonal antibody

(3) and alkaline phosphatase linked to a secondary antibody. Lane 1: S. guttatum

mitochondrial proteins; lane 2: day 3 NT1 tobacco mitochondrial proteins; lane 3:

day 4; lane 4: day 5; lane 5: day 6; lane 6: day 7; lane 7: day 10; lane 8: day 14.

Mitochondria were isolated from S. guttatum appendix tissue as previously

described (18) and used as a positive control (lane 1). Protein molecular masses

in kilodaltons are indicated at the side. Results are representative of four

experiments.
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TimeComseafSalicylicAcidInduceanngesinRespiratoryPathway

Capacities. Panel A of Figure 5-4 shows that the capacity of the alternative

pathway, measured in isolated mitochondria, remained relatively constant through

8 h after the addition of salicylic acid to a day 3 culture. The capacity then

increased dramatically between 8 h and 12 h after salicylic acid addition, continued

to increase until it reached the highest observed level at 16 h, decreased between

16 h and 20 h, and was at the same level at the 48 h time point as it was at the

20 h time point. During this experiment, the capacity of the cytochrome pathway

did not increase as it did in the cultures that did not contain salicylic acid (Fig. 5-2,

Panel A). Panel B of Figure 5-4 shows that the net result of the salicylic acid-

induced changes in the capacities was that the percentage of total respiratory

capacity (see Materials and Methods for definition) of the cells that was

attributable to the alternative pathway increased from 22% before salicylic acid

was added to a maximum of 53% at the 16 h time point.

Salicylic Acid Induced Accumulation of Alternative Oxidase. The increase in the

accumulation of the 35 kD alternative oxidase protein in the mitochondria used to

determine the respiratory pathway capacities (Fig. 5-4) is shown in Figure 5-5.

The amount of the protein remained relatively low until about 8 h (lane 6) after

addition of salicylic acid to 1.0 mM. The amount of the protein was dramatically

higher at 12 h than at 8 h (lane 7), was at a slightly higher level by 16 h (lane 8),

was at a decreased level by 20 h (lane 9), was at about the We level at 24 h

(lane 10), and was at a lower level at 48 h (lane 11).
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Figure 5-4. Time course of salicylic acid effects on alternative and cytochrome

pathway capacities. Salicylic acid was added to 1.0 mM to cell cultures on day 3.

Panel A: The capacities of the alternative (solid circles) and the cytochrome

pathways (solid triangles) were plotted as functions of the number of hours after

salicylic acid addition. The solid circle surrounded by a circle and the solid circle

surrounded by a square represent alternative pathway capacity measured in

uninduced cells at the 24 h time point and the 48 h time point, respectively. The

solid triangle surrounded by a circle and the solid triangle surrounded by square

represent cytochrome pathway capacity in untreated cells at the 24 h time point

and the 48 h time point, respectively. Panel B: The percentage of the total

respiration that was attributable to the alternative pathway was plotted as a

function of the number of days after subculturing. The solid circle surrounded by

a circle and the solid circle surrounded by a square represent the percentage of

total respiration attributed to the alternative pathway at 24 h and 48 h time points,

respectively. Results are averages of three experiments.
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Figure 5-5. Immunoblot showing the time course of salicylic acid induction of

increased alternative oxidase accumulation. Salicylic acid was added to 1.0 mM to

cell cultures on day 3. Mitochondria were isolated at each time point, and the

respiratory pathway capacities were determined (see Fig. 5-4). The mitochondrial

proteins (100 pg) were separated by SDS-PAGE, transferred to nitrocellulose, and

the alternative oxidase proteins were identified using the AOA monoclonal

antibody (3) and alkaline phosphatase linked to a secondary antibody.

Mitochondrial proteins were from the following sources; lane 1: day 3 suspension

cultured tobacco cells as time zero control; lane 2: day 4 as control; lane 3: day 5

as end point control; lane 4: cells treated for 2 h; lane 5: cells treated for 4 h;

lane 6: cells treated for 8 h; lane 7: cells treated for 12 h; lane 8: cells treated for

16 h; lane 9: cells treated for 20 h; lane 10: cells treated for 24 h; lane 11: cells

treated for 48 h. Protein molecular mass in kilodaltons is indicated at the side.

Results are representative of three experiments.
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thibitionofSalicylicAcidInducedAccmnulationofAlternafive Oxidase. Figure

5-6 shows that the accumulation of the alternative oxidase protein between the

time when salicylic acid was added (lane 2) and 16 h after addition (lane 4) was

decreased by the addition of actinomycin D (lane 5) 1 h prior to salicylic acid and

blocked by addition of cycloheximide (lane 6) 1 h prior to salicylic acid.

SahcylicacidConcenu'afionReqlmedforIncreaseinAltemafiveridaseand

Capacity. Addition of salicylic acid to 1.0 mM (lane 3) for 16 h caused an

increase in the capacity and accumulation of the 35 kD alternative oxidase protein

(Figure 5-7). Addition of salicylic acid to 100 pM (lane 4) also caused a slight

increase in alternative pathway capacity (data not shown) and a slight increase in

the accumulation of the 35 kD alternative oxidase protein above the control level

(lane 4). However, addition of salicylic acid to 10 pM (lane 5) or 1 pM (lane 6)

for 16 h did not result in a significant increase in alternative pathway capacity

(data not shown) or in an accumulation of the protein that was greater than that

of the negative control (lane 2).
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Figure 5-6. Immunoblot showing inhibition of salicylic acid induced increase in

alternative oxidase expression. Actinomycin D (lane 5) or cycloheximide (lane 6)

was added to day 3 suspension cultured cells. One hour later salicylic acid was

added to 1.0 mM to the cultures, which were then incubated under normal growth

conditions for 16 h. For positive control samples salicylic acid alone was added.

Mitochondria were isolated after each treatment and the respiratory pathway

capacities were determined. The mitochondrial proteins (100 pg) were separated

by SDS-PAGE, transferred to nitrocellulose, and the alternative oxidase proteins

were identified using the AOA monoclonal antibody (3) and alkaline phosphatase

linked to a secondary antibody. Mitochondrial proteins were from the following

sources; lane 1: S. guttatum appendix tissue; lane 2: untreated day 3 cells as a

time zero control; lane 3: untreated day 4 cells; lane 4: salicylic acid treated cells;

lane 5: actinomycin D and salicylic acid treated cell culture; lane 6: cycloheximide

and salicylic acid treated cell culture. Mitochondria were isolated from

S. guttatum appendix tissue as previously described (18) and used as a positive

control (lane 1). Protein molecular masses in kilodaltons are indicated at the side.

Results are representative of two experiments.
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Figure 5-7. Immunoblot showing alternative oxidase accumulation caused by

various concentrations of salicylic acid. Salicylic acid was added to the cells to a

final concentration of 1.0 mM (lane 3), 100 pM (lane 4), 10 pM (lane 5), and

1.0 pM (lane 6) and the cells were grown under normal conditions for 16 h.

Mitochondria were isolated after each treatment and the respiratory pathway

capacities were determined. The mitochondrial proteins (100 pg) were separated

by SDS-PAGE, transferred to nitrocellulose, and the alternative oxidase proteins

were identified using the AOA monoclonal antibody (3) and alkaline phosphatase

linked to a secondary antibody. Mitochondrial proteins were from the following

sources; lane 1: untreated day 3 cell culture as a time zero control; lane 2:

untreated day 4 cells; lane 3: 1.0 mM salicylic acid treated cells; lane 4: 100 pM

salicylic acid treated cells; lane 5: 10 pM salicylic acid treated cells; lane 6: 1.0 pM

treated cells. Protein molecular mass in kilodaltons is indicated at the side.

Results are representative of two experiments.
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DISCUSSION

The data presented here demonstrate that the capacities of both the

alternative and the cytochrome pathway, measured in isolated mitochondria,

varied greatly over the growth cycle of suspension cultured cells of Nicotiana

tobaccum L cv bright yellow. Specifically, the cytochrome pathway capacity

increased dramatically between day 3 and day 4 after subculturing, while

alternative pathway capacity increased dramatically between day 5 and day 6. The

capacities of both pathways their highest observed levels on day 7, which is the

day the cell cultures reached a stationary phase of growth. However, the net

result of the changes in the capacities of the pathways was that the percentage of

the total respiratory pathway that was attributed to the alternative pathway

increased significantly as the cells approached and reached the stationary phase of

growth. In contrast, another study, using the N. glutinosa L cells, showed that the

level of the alternative pathway was greatest during the lag and log phases of

growth (6). The capacity measurements presented by Horn and Mertz used whole

cells and measured alternative pathway capacity as O; uptake that was sensitive to

SHAM only; not in the presence of cyanide (6). The difference between the

results presented here and the results of Horn and Mertz (6) may be due to the

use of different lines of suspension cultured tobacco cells. Our protein

immunoblot data indicated that the level of the 35 kD alternative oxidase protein

of the NT1 tobacco cells coincided with the pathway capacity throughout the

growth cycle. Each increased dramatically between day 5 and day 6 and reached

the highest level observed on day 7.
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We have not measured the amount of sucrose at the various stages of the

grth of the culture cells, but we assume that the amount was much lower at the

stationary phase than it was in the early stages. Based on this assumption, the

data presented here are contradictory to the overflow hypothesis (8), which

postulates that the alternative pathway is most active when there is a supply of

carbohydrate that exceeds the demand. Indeed, it seems illogical that the culture

cells would partition electrons to the alternative pathway, with the inherent

decrease in energy conservation, when the carbon supply is becoming limited. In

this case, it may be a way for the cells to slow their growth during periods of

decreased carbohydrate supply. When the alternative pathway was increased by

the addition of salicylic acid, the density of the cells after 24 h of growth was 23 i

4%, compared to 33 z 2% for the control cultures. We do not know if the slight

decrease in grth was caused by an increase in alternative pathway respiration or

the presence of salicylic acid in the medium.

Salicylic acid may play a role in systemic acquired resistance (SAR) in

tobacco (11,30). Chemicals that mimic the effects of salicylic acid are being

actively pursued as possible agents for crop protection (28,29). Studies to

determine the efiect of salicylic acid upon 'the regulation of expression of the

alternative oxidase will add to our understanding of the consequences of increased

levels of salicylic acid and salicylic acid-mimicking chemicals in plant cells. In the

experiments presented here, 1.0 mM salicylic acid caused a dramatic accumulation

of the 35 kD alternative oxidase protein in suspension cultures of tobacco cells.

The amount of the protein increased dramatically between 8 h and 12 h following
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the addition of salicylic acid to the growth medium. The greatest accumulation

occurred 16 h after the addition of salicylic acid. It is interesting to note that a

very similar time course was observed for the response of S. guttatum appendix

tissue to salicylic acid application (19). As in the experiments using S. guttatum

appendix tissue, the increased protein accumulation in the tobacco cells coincided

with a striking increase in the capacity of the alternative pathway. The capacity of

the cytochrome pathway in these tobacco cells remained unchanged. Therefore,

the percent of the total respiratory pathway that was attributed to the alternative

pathway increased greatly. Since cytochrome pathway capacity increased in

control culture cells during the same time, it seems that salicylic acid caused an

inhibition of the normal, developmental increase in cytochrome pathway capacity.

Again, a similar phenomenon occurs during the development of the appendix

tissue of S. guttatum (4). While the capacity of the alternative pathway increases

dramatically as the appendix tissue becomes thermogenic, the capacity of the

cytochrome pathway is greatly decreased (4). The connection between the

presence of salicylic acid in the observed effect on cytochrome pathway capacity in

these systems remains unknown.

In an attempt to dissect the mechanism of regulation of the expression of

alternative oxidase in suspension cultured tobacco cells, we have demonstrated

that actinomycin D significantly decreased the salicylic acid-directed accumulation

of the 35 kD protein in the mitochondria of these cells. In addition, cycloheximide

completely inhibited the accumulation of the protein. These data indicate that de,

nova transcription and translation were necessary for salicylic acid to cause an
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increase in the accumulation of the 35 kD alternative protein in suspension

cultured tobacco cells. The observation that actinomycin D greatly inhibited the

accumulation of the protein is consistent with the theory that salicylic acid

regulates alternative oxidase expression in tobacco cells at the level of

transcription.

We have also demonstrated that a concentration of 100 pM salicylic acid

caused a slight increase in alternative pathway capacity (data not shown) and a

slight increase in the accumulation of the 35 kD alternative oxidase protein, but

that concentrations of 10 pM or less did not cause any significant increases. By

comparison, Kapulnik et al. (7) reported that a salicylic acid concentration of only

20 pM was sufficient to increase alternative pathway capacity in whole cells of

Nicatiana tobaccum cv. Xanthi-nc. Since we do not know the efficiency with

which salicylic acid is taken up by the suspension cultured tobacco cells and

directed to its place of action, it is difficult for us to draw any conclusions from

our results. Furthermore, all our cultures were grown in the dark, leaving the

possiblity that a light component may be required for salicylic acid to have a full

effect, as is the case in S. guttatum appendix tissue (17).

This is the first thorough investigation of the developmental and salicylic

acid induced changes in the respiratory pathway capacities and alternative oxidase

expression in isolated mitochondria of suspension cultured tobacco cells. Future

experiments will focus on identifying the changes in metabolism and cell growth

resulting from increased and decreased alternative oxidase expression in order to

learn more about the function of the alternative oxidase in higher plant cells.
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SUMMARY OFTHESIS

The major goals of my research project were to isolate cDNA and genomic

clones encoding the alternative oxidase of Sauromatum guttatum and to study the

developmental and salicylic acid induced expression of the alternative oxidase in

S. guttatum. The research expanded to encompass the developmental and salicylic

acid induced expression of alternative oxidase in suspension cultured tobacco cells.

CHAPTER 2: ISOLATION OF A cDNA CLONE ENmDING

THE ALTERNATIVE OXIDASE OF SAUROIHATUIKGUTTATW

TheResults

The first major achievement from my thesis research was the isolation of a

cDNA clone encoding an alternative oxidase protein of S. guttatum. This work

benefitted greatly from p the prior isolation of polyclonal and monoclonal antibodies

that recognize only the 35-, 36-, and 37 kD alternative oxidase proteins on

immunoblots of total mitochondrial proteins from S. guttatum. This cDNA clone

has already been used to: 1) study the developmental and salicylic acid induced

expression of the alternative oxidase in S. guttatum (CHAPTER 3); 2) isolate a
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genomic clone of the alternative oxidase gene, aaxI, of S. guttatum

(CHAPTER 4); and 3) isolate alternative oxidase cDNA clones from several other

higher plants. The identification of a single, 42 kD product of in vitro translation

that is immunoprecipitated by polyclonal antibodies, supports our hypothesis that

the 35-, 36-, and 37 kD alternative oxidase proteins are post-translationally

modified products of a single, nuclear-encoded protein.

The isolation of the cDNA clone encoding an alternative oxidase protein of

S. guttatum has provided a tool for the isolation of alternative oxidase cDNA

clones from other organisms. The comparison of the sequence of these various

cDNA clones will provide information about the evolution of the alternative

oxidase gene.

GIAPTER 3: DEVEDPWTALAND SALICYLIC ACID

REGULATION OF ALTERNATIVE OXIDASEWONIN

SAUROMQTUMGUTTATUM

TheResults

Exploring the salicylic acid regulation of the alternative respiratory pathway,

and, to some extent, the cytochrome pathway was the most interesting aspect of
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my thesis research. This research provided evidence that salicylic acid regulates

the expression of the alternative oxidase in S. guttatum by causing an increase in

the accumulation of the 1.6 kb transcript. However, the mechanism resulting in

this accumulation remains a mystery and an exciting area of research. Research

on pathogenesis related proteins indicates that the transcripts for many of these

proteins accumulate following salicylic acid application. Analysis of transgenic

plants containing constructs with the promoters of each of these genes fused to

reporter genes is consistent with the hypothesis that salicylic acid acts at the level

of transcription. Thus, it is attractive to hypothesize that salicylic acid functions at

the level of transcription to regulate alternative oxidase expression. However, the

research in this thesis provides no direct evidence to support this hypothesis.

TheFuture

One way of attempting to prove this hypothesis would be to create

transgenic tobacco plants containing a construct with the promoter region of the

S. guttatum alternative oxidase gene, 30):], fused to a reporter gene. These

transgenic plants could be sprayed with salicylic acid and analyzed to determine if

there is increased accumulation of the transcripts of the reporter gene.

Alternatively, the existence of a protein that binds to the promoter region may be

confirmed by using nuclear extracts mixed with a DNA corresponding to the

promoter region, followed by gel retardation assays. The binding of a protein in

the presence of salicylic acid, but not the absence, would support this hypothesis.
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Another hypothesis to explain the accumulation of the alternative oxidase

transcript is that salicylic acid causes an increase in the stability of the alternative

oxidase transcript. In order to investigate this hypothesis it would be helpful to: 1)

establish an in vitro assay system to analyze the rate of transcript degradation; and

2) construct individual vectors to produce transcripts consisting of individual

regions of the 1.6 kb alternative oxidase transcript fused to transcripts that are

stable in the in vitro system.

CHAPTER 4: ISOLATION AND CHARACTERIZATION OF A

GENOMIC CLONE CONTAINING THE SAUROMATUM

GUTTATWALTERNATIVE OXIDASE GENE AOXI

TheResults

The S. guttatum alternative oxidase gene, 30x1, is a single copy gene that

consists of four exons separated by three short introns. Exon 3 contains the

region of the deduced precursor protein that is predicted to form two

transmembrane helices. It is likely that this arrangement has some evolutionary

significance in terms of protein structural and/or functional domains. The

promoter of aaxl has sequences that resemble previously identified promoter

elements that are associated with transcriptional regulation resulting from various

stimuli. More importantly, the promoter contains sites with homology to sites of

other promoters that convey salicylic acid responsiveness to their respective genes.
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The Future

The significance of the putative promoter elements present in the aaxl

promoter may be determined directly by "dissection" of the promoter and analyses

using transgenic tobacco plants. Isolation of genomic clones encoding the

alternative oxidase of other organisms may assist in the determination of the

evolutionary significance of the structure of am].

CHAPTER 5: CYTOCHROME AND ALTERNATIVE PATHWAY

RESPIRATION IN TOBACG): EFFECTS OF SALICYLIC ACID

TbResults

The capacity of the alternative pathway at various time points during the

growth of suspension cultures tobacco cells was determined. The results indicate

that both the cytochrome pathway capacity and the alternative pathway capacity

reach the highest level observed as the cells enter the stationary phase of growth.

These results are inconsistent with the "overflow" hypothesis, which postulates that

the alternative pathway is most active when there is a supply of carbohydrate that

exceeds the demand. For these cells it may be a way for the cells to slow their

growth during periods of decreased carbohydrate supply. Salicylic acid caused an

increase ' in the alternative pathway capacity and increased expression of the 35 kD

alternative oxidase protein in these cells. Even if salicylic acid is not a normal, in
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viva regulator of the pathway in these cells, this result is important since the level

of salicylic acid rises in tobacco leaf cells following inoculation of some pathogens.

This will be useful information for researchers who are considering the use of

salicylic acid mimicking chemicals as agents to increase the resistance of plants to

pathogens.

The Future

The suspension cultured tobacco cells may prove to be a useful model

system for studying the function of the alternative respiratory pathway in higher

plants. Comparison of cell cultures with high alternative oxidase expression (by

fusion of an alternative oxidase cDNA clone to an "inducible" promoter) to cell

cultures with lowered expression (by production of anti-sense alternative oxidase

transcripts) and cell cultures with normal expression may provide information

regarding the contribution by alternative pathway respiration to whole cell.

Furthermore, the suspension cultured tobacco cells may be a used as a model

system to study the mechanism of salicylic acid regulation of alternative oxidase

expression, alternative pathway capacity, and cytochrome pathway capacity in

higher plants.
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