This is to certify that the
dissertation entitled
Correlation of Stress, Strain, Morphological
Shifts and Permeation-Rate Changes in Polymer Films

presented by
 Scott Allan Morris

has been accepted towards fulfillment
of the requirements for
Ph.D. degree in Agricultural Engineering

Correybegenlind

Date Hour 20, 1992

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.

MSU is An Affirmative ActionEqual Opportunity Inetitution

Correlation of Stress, Strain, Morphological Shifts and Permeation-Rate Changes in Polymer Films.

By
Scott Allan Morris

A DISSERTATION
Submitted to
Michigan State University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Agricultural Engineering
1992

ABSTRACT

CORRELATION OF STRESS, STRAIN, MORPHOLOGICAL SHIFTS AND PERMEATION-RATE CHANGES IN POLYMER FILMS.

By
Scott Allan Morris

This study constructs a quantitative link between stress, strain, morphology changes and changes in the rate of permeation in a polymer film sample. The purpose of this is to provide a simple method of correlating mechanical input and performance changes in polymeric material using a series of simple tests rather than the repetitive construction and evaluation of prototypes.

A step-loading test fixture was devised to apply varying levels of stress to a cruciform film sample. An optimization scheme based on the COMPLEX algorithm was devised to determine the material constants of the polymer used in the material and a finite element model for viscoelastic materials was constructed to resolve the state of strain, thinning and change in free volume occurring in the sample material. Small Angle Light Scattering (SALS), and Scanning Electron Microscopy (SEM) were used to inspect the material for gross changes in morphology as a result of mechanical input. Finally, CO_{2} permeation was tested via the quasi-
isostatic method to check the film for changes in permeation rate.

The study revealed an increase of up to 20% in the rate of permeation in response to a small (less than 6\%) increase in free-volume and an even smaller (less than 1\%) amount of thinning in the sample. The correlation of these changes with a specific state of strain in the region tested represents a significant step forward since the stress-strain model may be used to resolve similar occurances in other structures made of the same material. More generally, the study represents the inititation of a modelling methodology which may be used to predict overall permeation changes in a particular structure before beginning prototype construction.

Copyright by SCOTT ALLAN MORRIS

Dedication

This work is dedicated to

Dr. Allan J. Morris
Frances M. Stearns-Morris
Pamela F. Morris
for their pertinacious support.

ACKNOWLEDGEMENTS

I would like to acknowledge the persistent and crucial support of Dr. Bruce Harte in the construction, funding and realization of this project. Thanks also to my major professor, Dr. Larry Segerlind, and the other committee members; Dr. John Gerrish and Dr. Gary Cloud, all of whom have made valuable and knowledgeable contributions to this study.

Other major contributors to this study are the A. H. Case Center for Computer-Aided Engineering and Manufacturing, and particularly Greg Fell and Fred Hall for their persistent good humor in the face of endless simple questions. At the Center for Electron Optics, Michigan State University, Stan Flegel and Peg Hogan are to be thanked for their help with the electron microscopy portion of the study. Dr. Dashin Liu, Department of Metallurgy, Mechanics, and Material Science, deserves thanks for his assistance with the vagaries of viscoelastic solid mechanics. Dr. Jack Giacin of the MSU School of Packaging donated crucial advice and equipment for the permeation analysis.

Beyond that, the entire staff, faculty and graduate student bodies of both the School of Packaging and the Department of Agricultural Engineering are to be thanked for providing a great place to "push the envelope" and for providing a tough act to follow. Also I would like to thank Edna for fielding many penetrating insights.

TABLE OF CONTENTS

Page
LIST OF TABLES x
LIST OF FIGURES xi
1.0 INTRODUCTION 1
2.0 OBJECTIVES 4
3.0 LITERATURE REVIEW 5
3.1 Mechanics and Viscoelasticity 5
3.1.1 Effects of Loading 9
3.1.2 Material response to a Single Step Function 10
3.1.3 Numerical Solutions of the Stress- Strain Equations 11
3.2 Optimization and Parameter Estimation 14
3.2.1 The Complex Method of Function Minimization 15
3.3 Gas Permeation in Deformed Polymer Films 17
3.4 Material Analysis 20
3.4.1 Scanning Electron Microscopy 20
3.4.2 Small Angle Light Scattering, Spherulite Size and Orientation 21
4.0 DERIVATION OF THE FINITE-ELEMENT FORMULATION 25
4.1 Derivation of the Material Constitutive Equations 25
4.2 Implementation of the Finite-Element Viscoelastic Solid Modelling Program 37
5.0 MATERIALS AND METHODS 39
5.1 Derivation of Material Properties Constants 39
5.2 Permeation Testing 45
5.3 Small Angle Light Scattering Analysis 50
5.4 Scanning Electron Microscopic Analysis 50
6.0 RESULTS AND DISCUSSION 51
6.1 Parameter Estimation Method Evaluation 51
6.2 Material Parameter Estimation 57
6.2.1 Error in Material Models andEstimated Parameters Due to LoadingHistory Deviations From the AssumedHeaviside Function60
6.3 Strain Within the Specimens 66
6.4 Permeation Changes in the Material 75
6.5 Small Angle Light Scattering Analysis 78
6.6 Scanning Electron Microscope Evaluation 81
7.0 SUMMARY AND CONCLUSIONS 84
7.1 Summary 84
7.2 Conclusions 85
8.0 RECOMMENDATIONS 86
APPENDIX A. PROGRAM LISTINGS 88
APPENDIX B. MATERIAL DEFLECTION DATA 174
APPENDIX C. PERMEATION DATA 179
BIBLIOGRAPHY 183

LI8T OF TABLES

Table 1. Parameter Estimation Evaluation Results. 54
Table 2. Material Parameter Estimation Results. 58
Table 3. VISCO1.FOR 90
Table 4. VISCO2.FOR 117
Table 5. P21.FOR 148
Table 6. P21a.FOR 167
Table 7. DUMERGE.FOR 168
Table 8. Documentation for Programs. 170
Table 9. Change in Position of Indeces at 100\% Loading. 176
Table 10. Change in Position of Indeces at 82% Loading. 177
Table 11. Change in Position of Indeces at 47\% Loading. 178
Table 12. Summary of Permeation Data at Various Loading Levels. 179

LIET OF FIGURES

Figure 1. Chart of Constitutive Equations (Flugge, 1968). 8
Figure 2. Response of a Three Parameter Solid to an Applied Step Loading. 12
Figure 3. Schematic of Small-Angle Light Scattering Apparatus. 22
Figure 4. The Experimental Arrangement for Photographic Light Scattering From Films (Stein and Rhodes, 1960). 23
Figure 5. Tensile Loading Fixture Diagram 40
Figure 6. Photograph of Biaxial Tensile Loading Fixture. 41
Figure 7. Diagram of Film Sample and Finite Element Grid Used for Material Parameter Estimation. 42
Figure 8. Permeation Cell Schematic. 46
Figure 9. Permeation Cell Used in the Study. 47
Figure 10. Permeation Cell With Film Sample Under Tension. 48
Figure 11. Finite Element Grid Used to Evaluate the Parameter Estimation Method. 52
Figure 12. Strain Gauge Load Cell. 61
Figure 13. Uniaxial Test Fixture With Load Cell Installed. 62
Figure 14. Load vs. Time in Tensile Testing Fixture. 64
Figure 15. General Sequence of Programs Used in Parameter Estimation and Material Response Calculations. 67
Figure 16. Finite Element Grid Used in Calculating Thinning and Changes in Free Volume. 68
Figure 17. Thinning Calculations for Film at 100\% Loading. 69
Figure 18. Thinning Calculations for Film at 82\% Loading. 70
Figure 19. Thinning Calculations for Film at 47\% Loading. 71
Figure 20. Calculated Change in Free Volume at 100% Loading. 72
Figure 21. Calculated Change in Free Volume at 82\% Loading. 73
Figure 22. Calculated Change in Free Volume at 47\% Loading. 74
Figure 23. Graph of Permeation Rate Versus Applied Load. 76
Figure 24. SALS H_{v} Pattern Before Applied Load. 79
Figure 25. SALS H_{v} Pattern After Applied Load. 79
Figure 26. SALS H_{f} Pattern Before Applied Load. 80
Figure 27. SALS H_{r} Pattern After Applied Load. 80
Figure 28. Photomicrograph of Film Before Deformation. 82
Figure 29. Photomicrograph of Film After Deformation. 83
Figure 30. Finite Element Grid Used in Parameter Estimation Evaluation Model. 175
Figure 31. Change of CO_{2} Concentration in Permeation Cell Versus Time at 100\% Loading. 180
Figure 32. Change of CO_{2} Concentration in Permeation Cell Versus Time at 100\% Loading. 181
Figure 33. Change of CO_{2} Concentration in Permeation Cell Versus Time at 100\% Loading. 182

1.0 INTRODUCTION

The use of barrier polymers in packages designed for long shelf-life products is increasing. With this increase comes the need for a quantitative assessment of the effects of stress and strain imposed during package manufacture, filling, and distribution on the gas-transport properties of a material. Mechanically induced changes in barrier properties can result in the reduced shelf-life of a packaged product, or the reduced efficacy of a pharmaceutical product even if there is no overt sign of deterioration. An improved understanding of the relationship between mechanical, morphological, and gas-barrier properties of materials will allow producers and users to optimize their use of these materials by obtaining desired barrier properties with lower volumes of more carefully engineered materials.

The relationships between loading, deformation, structural orientation, and changes in gas transport properties (diffusion and permeation) in polymers are poorly correlated. Some studies have characterized microstructural changes and changes in gas transport properties of highly crystalline polymers (Polycarbonate, PVC, and polyimide) under simple uniaxial tensile strain. These results often
conflict with existing theories of free-volume reduction, however, and do not apply to cases of multiaxial strain, nor to the semicrystalline polymers prevalent in the packaging industry such as PE and PP [0^{\prime} Brian et al.,1987; Smith and Adam, 1981; El-Hibri and Paul 1985].

Studies have been conducted to characterize changes in the crystalline/amorphous structure of deformed semicrystalline polymers in terms of an accurately measured state of strain. These studies did not consider the gas-transfer properties of the polymers. [Segula and Rietsch, 1985; Hendra et al., 1985; Burke and Weatherly, 1987; Pan et al., 1987; Schultz,1984].

Other investigators have attempted to correlate strain and gas transport properties, but they have only considered the strain field imposed on the samples in terms of simple uniaxial elasticity/plasticity relationships. They did not consider viscoelastic (time-dependent) relaxation effects, nor did they make an effort to characterize the resultant changes in morphology [Yasuda and Peterlin, 1974; Paulos and Thomas, 1980; El-Hibri and Paul, 1986; Morris and Lee, 1987].

The relationship between stress, strain, changes in morphology, and changes in gas transport properties is in need of a comprehensive, multifaceted study in order to approach mechanically caused barrier property change problems with the proper analytical tools. The significance of the quantitative understanding of this relationship reaches
beyond food and pharmaceutical packaging into the fields of: -Separation and purification operations (optimization of membrane structure during the fabrication of separator/filter cartridge structures. -Biomedical processes (such as dialysis and oxygenation via the strain modification of the requisite semipermeable membrane structures).
-Extended storage of whole blood/ blood
platelets (modification of the polymeric container for optimum gas transport) (NASA MSC-21157).

2.0 OBJECTIVES

This study was designed to determine the correlation between mechanical stresses, viscoelastic response, shifts in polymer morphology, and changes in gas-transport properties in the semicrystalline polymers used in packaging. A quantitative link between mechanical stress and shifts in the gas-barrier properties in these materials was to have been defined.

Specifically, the objectives of the study are:

1. To experimentally determine the viscoelastic properties of a material sample and apply the coefficients to a numerical model of the biaxially strained sample in order to predict the stress, strain and time relationships of the material.
2. To characterize changes, if any, in the morphology of the polymer.

3 To measure the gas-transport rate of the material before and after deformation.
4. To link the information gathered from the previous objectives into a comprehensive picture of the functional changes occurring in the polymer film as a result of two-dimensional mechanical stress.

3.0 LITERATURE REVIEW

3.1 Mechanics and Viscoelasticity

The primary quantities which are considered in the mechanics of materials are stresses, strains, and material properties. Stresses result from forces acting within the body being considered. Strains are the result of differential movements within the body, and are usually described in terms of percentage of a referential measure (eg. final length divided by original length in the linear case). Displacements are the movement of referential point(s) within the body relative to some external coordinate system and are related to strain.

The field of the analytical mechanics of deformable bodies is primarily concerned with the relationship of these three conceptual quantities, and constructs three broad classifications of families of equations to relate the quantities to one another: equilibrium conditions (or equations of motion for dynamic problems), kinematic relations, and constitutive equations. Equilibrium conditions are material independent, and define the stresses (or conditions of motion) acting on the body in question. Kinematic relations, which are also material-independent
relate the strains within a body to its displacements. The constitutive equations are material dependent and relate the stress and strain within the body. Since the materials may vary widely in their response, there are many types of constitutive equations falling into four broad categories; elastic, viscous, plastic, and viscoelastic.

Elastic materials may be defined as those materials which store energy without significant loss (as with a stretched metal spring), and stress is linearly proportional to strain. Viscous materials, by contrast, dissipate energy without significant energy-storage capacity (demonstrated by pouring water from one glass to another) and exhibit stress in proportion to strain rate. Plastic behavior combines the preceding two concepts in the following manner: A plastic material will store energy in an elastic fashion until the "yield point" is reached, after which the material begins to irreversibly deform without further energy storage. Plastic behavior usually does not account for the rate of strain on the material (Flugge, 1967).

Viscoelasticity is concerned with the study of the materials which have a stress-strain relationship with characteristics that do not exactly fit the concepts of plasticity, viscosity or elasticity. Viscoelastic materials can both store and dissipate energy in a manner where the rate of strain is dependent on the time-history applied stress. Viscoelastic constitutive equations are often
composed of both viscous and elastic equation elements (hence the term "visco-elasticity"), and the constitutive equations of these types of materials may be linear, with constant material coefficients, or non-linear (where the material coefficients contain terms which are a function of stress, strain, or their derivatives) (Ferry, 1980). In this study, for the sake of simplicity, the response of the material was assumed to be linearly viscoelastic.

For most constitutive equations arising from the study of deformable bodies, the two basic elements of viscoelastic models are the elastic spring element where

$$
\begin{align*}
\text { Stress } & =\text { Constant } \cdot \text { Strain } \\
\sigma & =E \cdot \varepsilon \tag{1}
\end{align*}
$$

(The constant in this equation is usually the elastic [Young's] Modulus, E). The viscous dashpot element used is

$$
\begin{align*}
\text { Stress } & =\text { Constant } \cdot \text { Strain Rate } \\
\sigma & =\text { constant } \cdot \hat{\varepsilon} \tag{2}
\end{align*}
$$

In fluid mechanics, the constant is often taken to be η, the viscosity coefficient relating shear stress and shear rate. The more complex material responses are often modelled by combinations of simple elements, some of which are reproduced in Figure 1.

The three-parameter solid is the constitutive model that

Figure 1. Chart of Constitutive Equations.
(Flugge, 1968)
will be used in this study since its compliance curve most nearly matches that of the types of polymers under consideration (Ferry, 1980), and it encompasses all of the preceding models in the table.

3.1.1 Effects of Loading

The type and degree of loading is critical in predicting the response of viscoelastic materials. Since the analytical solution of the constitutive differential equations is often accomplished using Laplace transforms loading regimes considered are usually those which can be constructed of the more common functions considered within the context of Laplace transforms: Dirac delta (spike) functions, Heaviside unit (stepped) functions and "ramp" functions. Superposition and the time-shift principles (the so-called t - and s-shifts) may be used to combine these functions to mimic many "real-world" situations (Speigel, 1965). In this study, the loading will be limited to a single step function.

3.1.2 Material Response to a Single Step Function.

The response of a three-parameter solid may be shown by solving the model's governing equation,

$$
\begin{equation*}
\sigma+p_{1} \delta=q_{0} \varepsilon+q_{1} \varepsilon \tag{3}
\end{equation*}
$$

using the Laplace Transform, this operation gives

$$
\begin{equation*}
\bar{\varepsilon}=\sigma_{0}\left(\frac{p_{1}+\frac{1}{\varepsilon}}{q_{0}+q_{1} s}\right) \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{\varepsilon}=\frac{o_{0}}{q_{1}}\left(\frac{p_{1} s+1}{g(\lambda+s)}\right) \quad \text { where } \frac{q_{0}}{q_{1}}=\lambda \tag{5}
\end{equation*}
$$

where σ_{0} is the initial step loading value. When rearranged and operated on by the inverse transform, the equation becomes

$$
\begin{equation*}
\varepsilon=\frac{\sigma_{0}}{q_{1}}\left[\frac{1}{\lambda}\left(1-e^{-\lambda t}\right)+p_{1} e^{-\lambda t}\right] \tag{6}
\end{equation*}
$$

Note that

$$
\begin{align*}
& \varepsilon\left(t=0^{+}\right)=\frac{\sigma_{0} p_{2}}{q_{1}} \tag{7}\\
& \varepsilon(t=\infty)=\frac{\sigma_{0}}{q_{0}}
\end{align*}
$$

which is illustrated in Figure(2).
3.1.3 Numerical Solutions of the Stress-Strain Equations

In all but the most simple geometrical configurations, the exact analysis of the state of stress and strain at a chosen point within the body to be considered verges on the impossible. Sections with irregular geometries, sharp corners, inclusions such as holes or slots, or boundary conditions that are less than ideal all render the analytical formulations of the states of stress and strain unsolvable in any practical sense (Cook \& Young, 1985).

Numerical methods are viewed as a means to closely approximate the solutions of the partial differential equations of stress and strain of the body to be analyzed. The finite difference method replaces the partial differential equation (PDE) and boundary condition terms with a system of equivalent difference equations. The solution of this system of simultaneous equations then yields the solution to the PDE at each node. This method is useful in

For a stepped load σ_{0} applied at time $t=0$
$\varepsilon_{\infty}=\frac{\sigma_{0}}{q_{0}}$

Figure 2. Response of a Three-Parameter Solid to an Applied Step Loading.
that the formulation is relatively simple. Unfortunately, the rectangular grid geometry for the points used in the analysis is simple as well-and inflexible (Ugural, 1981). Although it is possible to produce a mesh of triangular elements, or re-map them into circular or spherical coordinates, extremely irregular boundaries or unusual shapes will cause the model to match the spatial coordinates of the actual object very poorly (Paulsen, 1992).

The finite-element method, although burdened with a more difficult formulation, has the advantage of not being limited to a strictly rectangular or triangular approximation of the body's geometry. Rectangular and triangular elements may be mixed, curved elements may be produced (or closely approximated), and the dimensions of the elements may be allowed to vary in order to more closely approximate the geometry of the subject.

In the system used to model the viscoelastic response of the materials in this study, the finite element formulation also will be shown to conveniently accommodate the time-dependency of the material as well as the irregular boundary conditions of the test samples (Segerlind, 1984, Boresi and Sidebottom, 1984).

3.2 Optimization and Parameter Estimation

Determining the material coefficients for the defining differential equation of the three-parameter model is a troublesome aspect of the mechanics of viscoelastic materials for all but the simplest types of tests and sample geometries. There are several standard ASTM tests for these types of materials, but the results are quite simplified and are of limited use for the modelling of complex systems. A great deal of effort has been devoted to producing a good set of material coefficients for many types of constitutive models, both linear and nonlinear (Augl and Land, 1985) (Ferry, 1980). Most methods require simplified test protocols or sample geometries and may not return values that are useful in large-scale modelling of the two-dimensional films used in this study.

Investigators in the system optimization field have occasionally used finite element modelling to describe the objective function of the optimization scheme at hand (Jehle \& Mlejveck, 1990). The usual scheme in such optimization models is to computationally fit the material coefficients of the model so that the difference between the output of the model and a set of observed data, or desired outcomes, is minimized. This scheme, although computationally intensive, is useful in the optimization of a system that is too
complex to describe analytically, or does not possess the simple geometries so often used in standard measurement techniques. This method lends itself well to the problem at hand since the already developed finite element model can be used as the objective function. The data taken from optical measurements in existing test fixtures may be used as the data to be matched.

The method developed for this study was that of minimizing the difference between the finite element model's calculated values for strain and the experimentally observed strain data over a series of equally spaced time-steps. The advantage of this method, particularly in a biaxially stressed system, was that the material parameters can be retrofitted to the observed data without the need for additional testing equipment. Additionally, this method shows great promise for the analysis of material properties in other situations where the material is in some unusual configuration, is in use and may not be removed for analysis, or may only be studied via some non-contact methodology.

3.3.1 The Complex Method of Function Minimization

The Complex method, an extension of the Simplex method, is an efficient and versatile tool for finding global optima within the domain of possible solutions (Box, 1969). It
avoids some of the convergence problems which occur with simplex methods and may be used with almost any number of variables or type of objective function. It also has the notable advantage of being able to accommodate restrictions on both the limits of the estimated parameters and the regions to be considered feasible. It has the further advantage of not requiring the calculation of derivatives.

In operation, the Complex method randomly seeds a number of vertex points about the allowable domain of the function to be minimized (creating a complex polygon) and calculates the value of the objective functions at each of these points. The difference between these points is considered, and if the difference exceeds a preset parameter value then the vertex returning the lowest value is replaced by another point located a distance along a line located through the rejected vertex and the centroid of the complex polygon. This process repeats until the difference between the vertex points is less than the minimum (β). At this point, the centroid of the isoplethic polygon is considered to be the minimum (ringed, in a sense, by the vertices of the complex polygon), and the computation stops, returning the values of the parameters at the centroid, and the centroid objective function value.

3.3 Gas Permeation in Deformed Polymer Films

The rate of gas permeation through materials can be correlated to several phenomena which occur during the deformation process. The simplest is the result of changes in section thickness which occur as a material is strained (half the thickness yields roughly twice the permeation). In most polymers, however the processes which occur are much more complex, and the changes are not nearly as simple as with simple thinning phenomenon.

Under large strains, polymer films deform viscoelastically, changing their morphology from a mass of nearly random macromolecular chains to a well oriented series of parallel fibrils. Experimental research has shown that the fibrillar component of these oriented materials has a permeation rate that is orders of magnitude lower than that of the amorphous material surrounding it (Williams and Peterlin, 1971). From this, one may correctly assume that extensively orienting a film and creating a high fibril content will cause the permeation rate of the film to decrease drastically.

This phenomenon is commonly used in industry to tailor the permeation rates of polymer films to a specific application, and to reduce the amount of raw material needed to perform the barrier function of a particular package.

Currently, the most visible example of this method is in the polyethylene terpthalate (PET) bottles, used by the softdrink industry, which are oriented both axially and radially in order to retain carbonation for the required period of time. Careful manipulation of both the molding and orientation process during production has resulted in a substantial material reduction since the introduction of the bottle in the 1980's.

Under lesser strains, the material behaves much differently than in the large-strain orientation described above. Under small strains, polymer free-volume' and diffusion increase (provided that Poisson's ratio is less than 0.5, which is approximately the case for most organic polymers other than rubber) until a plateau is reached at relatively low levels of strain $(0.05<\varepsilon<0.20$ for polyethylene). The increase in free volume is accounted for in the small-strain equation for thinning

$$
\begin{align*}
\varepsilon_{z} & =-\frac{\mu}{E}\left(\sigma_{x}+\sigma_{y}\right) \tag{8}\\
& =-\mu\left(\varepsilon_{x}+\varepsilon_{y}\right)
\end{align*}
$$

(Gere and Timoshenko, 1984).

[^0]For a square area of material

$$
\begin{align*}
& x=y \\
& \mu=0.25 \tag{9}\\
& \varepsilon_{x}=\varepsilon_{y}=0.1 \\
& \varepsilon_{x}=-0.25(0.1+0.1)=-0.05
\end{align*}
$$

$$
\begin{align*}
\text { New Area } & =\left(x+\varepsilon_{x}\right) \cdot\left(y+\varepsilon_{y}\right) \\
& =(x+0.1 x) \cdot(y+0.1 y) \tag{10}\\
& =1.21(\text { Original Area })
\end{align*}
$$

New Thickness $=\left(z+\varepsilon_{z}\right)$
$=(z-0.5 z)$
$=(0.95 z)$
$=0.95$ (Original Thickness)
New Volume=(1.21 (Original Area) • 0.95 (Original Thickness) =1.14 Original Volume

Note that for large values of the elastic modulus, E, the effect is more pronounced to a limiting value equal to the ratio of new surface area to original surface area. Additionally E may be replaced with $E(t)$ by superposition to give a small-strain linear viscoelastic formulation (Flugge, 1968) with similar results.

After the "plateau" of maximum free-volume expansion has been reached, the aforementioned effects of orientation begin to dominate the system and permeation will drop off to well
below its unstrained value. Sorption steadily increases as well and appears to approach an asymptote as the levels of strain increase (Yasuda et al, 1964; Yasuda and Peterlin, 1974) .

The studies mentioned above consider the viscoelastic polymer in terms of an elastic-plastic model and do not account for the time-dependance of the material response in terms of any overall material constitutive model or system.

3.4 Material Analysis

3.4.1 Scanning Electron Microscopy

Scanning electron microscopy (SEM) is an often-used technique for the characterization of the surface structure of polymeric materials (Roulin-Maloney, 1990). The usual procedure utilizes either an as-produced surface or a surface created for the analysis (through cryomicrotomy or similar method) as the specimen over which a replicant surface is cast using a high resolution casting material. Often the surface to be examined is treated with some type of etchant such as p-xylene or chromic acid to increase the resolution of the differing regions within the distorted material (Jang et al, 1985, Hashimoto et al, 1976). Once the surface (or its replica) is prepared, the material is desiccated using critical point extraction to remove the
solvents and residual moisture which may contaminate the interior of the microscope. The surface to be examined is electroplated (to dissipate any charge that may be built up from the scanning electron beam), and an image may then be recorded.

Recent developments in scanning force electron microscopy (SFEM) and scanning tunnelling electron microscopy (STEM) have led to very high resolution of surface characteristics and have made quantifiable roughness measurements possible (Reiss et al, 1991; Howells et al, 1991). The equipment for these SFEM and STEM, however, was not available for use in this study. Although the surface profile information ws not be as good as with SFEM and STEM methods, the geometry and degree of asymmetry of the spherulites should have been accurately measurable.

3.4.2 Small Angle Light Scattering, Spherulite Size and Orientation.

Small angle light scattering (SALS) is commonly used to determine the degree and direction of orientation of many types of materials. In its simplest form, the apparatus is simply a highly collimated (preferably coherent) source of monochromatic light which is passed through a polarizer then through the material to be analyzed and through a second, adjustable polarizer (analyzer) (Figures 3 and 4). In the

Figure 4. The Experimental Arrangement for Photographic Light Scattering From Films (Stein and Rhodes, 1960).
case of high molecular weight polymers, the spherulite size may be estimated (using a HeNe laser with $\lambda=632.8 \mathrm{~nm}$) as

$$
\begin{equation*}
R_{0}=4.08 / 4 \pi \sin \left(\theta_{m} / 2\right) \tag{12}
\end{equation*}
$$

where $R_{0}=$ average radius of the spherulite and $\theta_{\mathrm{m}}=$ maximum scattering angle (Stein \& Rhodes, 1969).

Orientation may be obtained by observing that the drawing of the polymer will pull the polymer chains in both the crystalline and amorphous regions of the polymer into an oriented state which is most often compared to a series of oriented rods. The scattering that occurs from this fibrillar component will produce an bias in the scattering pattern normal to the direction of orientation of the polymer (Rhodes and Stein, 1961; Stein and Rhodes, 1960) which may be used (when corrected for sample thickness) to correlate the degree of orientation at the particular sampling area to the rotation of the biased maximum.

The usual reason for attempting to measure these changes in orientation is to observe any fibril formation or reformation which might be occurring in the polymer during deformation. Since the onset of a decrease of permeation rate is linked to this fibril formation, the determination of the point at which these changes begin to occur will be useful in the construction of an accurate predictive model for permeation changes.

Starting with the equilibrium equation

$$
\begin{equation*}
\sigma_{i j, j}+F_{i}=0 \quad i, j=1,2,3 \tag{13}
\end{equation*}
$$

and the viscoelastic constitutive equation

$$
\begin{equation*}
\sigma_{i j}=\int_{0}^{t}\left(G_{i j k]}(t-\tau)\right)\left(\frac{\delta \varepsilon_{k i}(\tau)}{\delta \tau}\right) d \tau \tag{14}
\end{equation*}
$$

where

$$
\begin{gather*}
G_{i j k l}=\frac{1}{3}\left[G_{2}(t)-G_{1}(t)\right] \delta_{i j} \delta_{k l}+\frac{1}{2} G_{1}(t)\left[\delta_{i k} \delta_{j 1}+\delta_{11} \delta_{k l}\right] \tag{15}\\
1, j, k, 1=1,2,3,4
\end{gather*}
$$

Using the general convolution notation, which states that for any functions A^{\prime} and B^{\prime},

$$
\begin{equation*}
\int_{0}^{t} A^{\prime}(t-\tau)\left(\frac{8 B^{\prime}(\tau)}{8 \tau}\right) d \tau=A^{\prime} * B^{\prime} \tag{16}
\end{equation*}
$$

the viscoelastic constitiutive equation may be expressed as

$$
\begin{equation*}
\sigma_{i j}=G_{i j k l} * \varepsilon_{k l} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{1 j k 1}=\frac{1}{3}\left[G_{2}(t)-G_{1}(t)\right] \delta_{1 j} \delta_{k 1}+\frac{1}{2} G_{1}(t)\left[\delta_{j 1} \delta_{1 j}+\delta_{11} \delta_{j k}\right] \tag{18}
\end{equation*}
$$

Rearranging the terms of equation (17) gives

$$
\begin{align*}
\sigma_{i j} & =\int_{0}^{t} G_{i j k 1}(t-\tau)\left(\frac{\delta \varepsilon_{k 1}(\tau)}{\delta \tau}\right) d \tau \\
& =\frac{1}{3} \int_{0}^{t}\left[G_{2}(t)-G_{1}(t)\right] \delta_{1 j} \delta_{k l}\left(\frac{\delta \varepsilon_{k 1}(\tau)}{\delta \tau}\right) d \tau \tag{19a}\\
& +\frac{1}{2} \int_{0}^{t} G_{1}(t)\left[\delta_{1 k} \delta_{j 1}+\delta_{11} \delta_{j k}\right]\left(\frac{\delta \varepsilon_{k 1}(\tau)}{\delta \tau}\right) d \tau \tag{19b}
\end{align*}
$$

For equation (19a)

$$
\begin{array}{rlrl}
\delta_{i j} F_{i k} & =F_{j k} & & \text { for } j=k \\
\delta_{i j} F_{i j} & =F_{j j} & & \left(=F_{k k}\right) \tag{20}\\
& =\sum_{a=1}^{3} F_{i a} &
\end{array}
$$

Using the identity

$$
\begin{equation*}
\delta_{k 1}\left(\frac{\delta \varepsilon_{k 1}(\tau)}{\delta \tau}\right)=\delta_{k 1} F_{k 1} \tag{21}
\end{equation*}
$$

$$
\begin{align*}
& \frac{1}{3} \int_{0}^{t}\left[G_{2}(t)-G_{1}(t)\right] \delta_{1 j} \delta_{k 1}\left(\frac{8 \varepsilon_{k 1}(\tau)}{8 \tau}\right) d \tau \tag{22}\\
= & \frac{1}{3} \int_{0}^{t}\left[G_{2}(t)-G_{1}(t)\right] \delta_{1 y}\left(\frac{8\left(\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33}\right)}{\delta \tau}\right) d \tau
\end{align*}
$$

Using the identities

$$
\left.\begin{array}{l}
\varepsilon_{k 1}=\varepsilon_{1 k} \tag{23}\\
\delta_{i j}=\delta_{j 1} \\
\delta_{i j} F_{1 k}=F_{j k}
\end{array}\right] \quad \begin{gathered}
\\
\end{gathered} \quad \begin{aligned}
& \\
& j=k m m e t r y
\end{aligned}
$$

and producing the identity

$$
\begin{align*}
\left(\delta_{i k} \delta_{j 1}+\delta_{i 1} \delta_{j k}\right) F_{k l} & =\delta_{i k} \delta_{j 1} F_{k l}+\delta_{11} \delta_{j k} F_{k l} \\
& =\delta_{i k} \delta_{1 j} F_{1 k}+\delta_{11} \delta_{k j} F_{k l} \\
& =\delta_{i k} F_{j k}+\delta_{11} F_{j 1} \\
& =\delta_{k 1} F_{k j}+\delta_{11} F_{1 j} \tag{24}\\
& =\left(F_{i j}+F_{i j}\right) \\
& =2 F_{i j}
\end{align*}
$$

allows (19b) to be rewritten as

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{t} G_{1}(t)\left[\delta_{1 k} \delta_{i j}+\delta_{11} \delta_{j k}\right] \frac{\delta \varepsilon_{k 1}(\tau)}{8 \tau} d \tau=\int_{0}^{t} G_{1}(t) \frac{\delta \varepsilon_{i j}}{\delta \tau} d \tau \tag{25}
\end{equation*}
$$

combining (22) and (25) gives

$$
\begin{equation*}
\sigma_{i j}=\frac{1}{3} \int_{0}^{t}\left[G_{2}(t)-G_{1}(t)\right] \delta_{i j} \frac{\delta \varepsilon_{k k}}{8 \tau}+\int_{0}^{t} G_{1}(t) \frac{8 \varepsilon_{i j}}{\delta \tau} d \tau \tag{26}
\end{equation*}
$$

which may be expressed in convolution notation as

$$
\begin{equation*}
\sigma_{i j}=\frac{1}{3}\left[G_{2}(t)-G_{1}(t)\right] \delta_{i j} * \varepsilon_{k k}+g_{1}(t) * \varepsilon_{i y} \tag{27}
\end{equation*}
$$

Defining

$$
\begin{align*}
& \varepsilon_{1}=\varepsilon_{11}=\varepsilon_{x x}= \\
& \varepsilon_{2^{\circ}}=\varepsilon_{22}=\varepsilon_{y y}=\frac{\partial \sigma_{x}}{\partial_{x}} \tag{28}\\
& \varepsilon_{3^{\circ}}=\varepsilon_{33}=\varepsilon_{z x}= \\
& \varepsilon_{y}=\varepsilon_{y 2}=\varepsilon_{x y}=\frac{\partial \sigma_{z}}{\partial \partial_{z}} \\
& \varepsilon_{1}\left(\frac{\partial \sigma_{x}}{\partial y}+\frac{\partial \sigma_{y}}{\partial x}\right)
\end{align*}
$$

and

$$
\begin{align*}
& \sigma_{1^{\prime}}=\sigma_{11}=\sigma_{x x} \\
& \sigma_{2^{\circ}}=\sigma_{22}=\sigma_{y y} \tag{29}\\
& \sigma_{3^{\circ}}=\sigma_{33}=\sigma_{y z} \\
& \sigma_{4^{\circ}}=\sigma_{12}=\sigma_{x y}
\end{align*}
$$

(27) can be written as

$$
\begin{align*}
& \sigma_{k}=A_{k=m} * \varepsilon_{m} \tag{30}\\
& k, m=1^{\bullet}, 2^{\bullet}, 3^{\bullet}, 4^{\bullet}
\end{align*}
$$

where

$$
[A]=\left[\begin{array}{cccc}
\frac{1}{3}\left(G_{2}+2 G_{1}\right) & \frac{1}{3}\left(G_{2}-G_{1}\right) & \frac{1}{3}\left(G_{2}-G_{1}\right) & 0 \\
& \frac{1}{3}\left(G_{2}+2 G_{1}\right) & \frac{1}{3}\left(G_{2}-G_{1}\right) & 0 \\
& & \frac{1}{3}\left(G_{2}+2 G_{1}\right) & 0 \\
\text { Sym. } & & & \frac{1}{2} G_{1}
\end{array}\right]
$$

Using the functional

$$
\begin{equation*}
I=\int_{V}\left[\frac{1}{2} G_{1 j k l} * \varepsilon_{i j} * \varepsilon_{k l}-F_{1} * u_{i}\right] d V-\int_{b_{c}}\left(S * u_{i}\right) d A \tag{32}
\end{equation*}
$$

(Christensen, 1971) the solution to (32) may be found,
provided that the following boundary conditions are satisfied:

$$
\begin{align*}
\sigma_{i j} n_{j} & =S_{i} \text { on } B_{c} \tag{33}\\
u_{i} & =\Delta i \text { on } B_{u}
\end{align*}
$$

where $B_{\text {c }}$ is the boundary over which the tractions S_{i} are specified, $B_{i n}$ is the boundary where the displacements A_{i} are specified, and n_{j} describes the boundary unit normal vector (positive outward). When the boundary conditions are satisfied, the first variation, δI, vanishes and the solution may be found by finding the stationary value of I. The functional I may be discretized over the relevant region, as a set of subregions:

$$
\begin{align*}
& k=1^{\circ}, 2^{\circ}, 3^{\circ}, 4^{\circ} \quad \alpha=1,2 \tag{34}
\end{align*}
$$

where e represents the subregions. The displacements may be found via the matrix formulations (Zienkiewicz, 1971)

$$
\begin{align*}
\left\{\varepsilon^{\bullet}\right\} & =\left[B^{\bullet}\right]\{U\} \tag{35a}\\
\left\{U^{\bullet}\right\} & =\left[N^{\bullet}\right]\{U\} \tag{35b}
\end{align*}
$$

where [N] is the shape function matrix, $\{u\}$ are the elemental displacements, $\{U\}$ are the nodal displacements, [B°] is the matrix relating strains to nodal displacements, and $\left\{\epsilon^{\circ}\right\}$ is the strain vector.

Substituting the equations (35a) and (35b) into (34), integrating, then performing the convolution gives

$$
\begin{equation*}
I=\frac{1}{2}\{U\}^{T} *[K] *\{U\}-\{U\}^{T} * R \tag{36}
\end{equation*}
$$

where the stiffness matrix [K] and force vector \{R\} are, respectively,

$$
\begin{align*}
& {[K]=\Sigma\left[K^{\bullet}\right]=\sum_{\bullet=1}^{R} \int_{V}\left[B^{\bullet}\right]^{T}[A]\left[B^{\bullet}\right] d V} \tag{37}\\
& \{R\}=\sum\left\{I^{\bullet}\right\}=\sum_{\bullet=1}^{R}\left(\int_{V^{\bullet}}\left[N^{\bullet}\right]^{T} F^{\bullet} d V+\int_{B^{\bullet}}\left[N^{\bullet}\right]^{T}\left\{S^{\bullet}\right\} d A\right)
\end{align*}
$$

and [] represents the transpose of a matrix The first variation of (36) gives a result similar in appearance to the elasticity finite element formulation:

$$
\begin{align*}
8 I=\delta\{U\}^{T_{*}}[K] *\{U\}-\delta\{U\}^{T} *\{R\} & =0 \\
{[K] *\{U\}-\{R\} } & =0 \tag{38}\\
{[K] *\{U\} } & =\{R\}
\end{align*}
$$

From the preceding derivation the elasticity finite-element formulation

$$
\begin{align*}
{[K]\{\text { Displacement }\} } & =\{\text { Force }\} \tag{39}\\
{[K]\{U\} } & =\{F\}
\end{align*}
$$

then can be shown to have a corresponding time-dependent formulation,

$$
\begin{equation*}
[K] *\{U\}=\{R\} \tag{40}
\end{equation*}
$$

where (40) represents the integral

$$
\begin{equation*}
\int_{\tau=0}^{t}[K(t-\tau)] d\{u(\tau)\} d \tau=\{R(t)\} \tag{41}
\end{equation*}
$$

Discretization of (41) over n equally spaced time-steps

$$
\begin{equation*}
\sum_{m=1}^{n}\left[K\left(t_{n}-t_{m}\right)\right]\left\{\Delta U\left(t_{m}\right)\right\}=\left\{R\left(t_{n}\right)\right\} \tag{42}
\end{equation*}
$$

where $\left\{\Delta U\left(t_{m}\right)\right\}$ represents individual displacements from time t_{m} to t_{m+1}.

This formulation gives each displacement as a function of all previous displacements, plus a possible initial step displacement although this is often taken to be zero. The other individual components of equation (42) are [K] The stiffness matrix which contains spatial data and the viscoelastic modulii

$$
\begin{align*}
{[K] } & =\sum\left[K^{\bullet}\right] \\
& \left.=\sum_{\infty=1}^{n_{0}} \int_{V}\left[B^{\bullet}\right]\right]^{T}[A]\left[B^{\bullet}\right] d V \tag{43}
\end{align*}
$$

Where [B^{c}] is the shape function for element e and
[A] is the matrix containing the time dependent material properties derived from the material constitutive equations. The coefficients in [A] are

$$
\begin{align*}
& a_{11}=a_{22}=\frac{E(t)}{1-\mu^{2}} \\
& a_{12}=a_{21}=\frac{E(t) \mu}{1-\mu^{2}} \tag{44}\\
& a_{33}=\frac{a_{11}(1-\mu)}{2}
\end{align*}
$$

and $\{R(t)\}$ is the force vector at time t.
4.1 Derivation of Material Constitutive Equations

The three-parameter (Maxwell) model for viscoelastic solids, has the defining differential equation

$$
\begin{equation*}
\sigma+p_{1} \phi=q_{0} \epsilon+q_{1} \xi \tag{45}
\end{equation*}
$$

operating on (45) with the Laplace-transformed Heaviside unit step function

$$
\begin{align*}
\mathscr{L}\left[\sigma_{0} u(t)\right] & =\sigma_{0}(s) \\
& =\int_{0}^{\infty} \sigma_{0} u(t) e^{-s t} d t \tag{46}\\
& =\frac{1}{s} \sigma_{0} \\
& =\overline{\sigma_{0}}
\end{align*}
$$

produces the transformed differential equation

$$
\begin{equation*}
\left[\frac{1}{s}+p_{1}\right] \overline{\sigma_{0}}=\left[q_{0}+q_{1} s\right] \bar{\epsilon} \tag{47}
\end{equation*}
$$

From this, and the superposition principle, one may define a viscoelastic shear modulus (Flugge, 1968) which may be used in place of the elastic shear modulus in the material properties matrix of the finite element formulations

$$
\begin{equation*}
2 G(s)=\frac{\frac{1}{0}+p_{1}}{q_{0}+q_{1} s} \tag{48}
\end{equation*}
$$

The shear modulus may be expressed (after rearrangement and taking the inverse transform) as a function of three groups of coefficients:

$$
\begin{equation*}
G(t)=\frac{1}{2 q_{0}}\left[1-\left(1-\frac{p_{1} q_{0}}{q_{1}}\right) e^{\frac{-q_{0}(t)}{q_{1}}}\right] \tag{49}
\end{equation*}
$$

substituting

$$
\begin{align*}
& K_{1}=\frac{1}{2 q_{0}} \\
& K_{2}=\left(1-\frac{p_{1} \sigma_{0}}{q_{1}}\right) \tag{50}\\
& K_{3}=\frac{q_{0}}{q_{1}}
\end{align*}
$$

gives

$$
\begin{equation*}
G(t)=K_{1}\left[1-K_{2} e^{-K_{3}(t)}\right] \tag{51}
\end{equation*}
$$

It is worth noting that the value for $G(t)$ when $t=\infty$ is simply

$$
\begin{equation*}
G(\infty)=\frac{1}{2 q_{0}}=K_{1} \tag{52}
\end{equation*}
$$

This equation for $G(t)$ may be substituted into the general
equation for the elastic modulus

$$
\begin{equation*}
E=2 G(1+\mu) \tag{53}
\end{equation*}
$$

where Poisson's ratio, μ, is constant to give

$$
\begin{equation*}
E(t)=\left(K_{1}\left[1-k_{2} e^{-k_{3}(t)}\right](1+\mu)\right. \tag{54}
\end{equation*}
$$

which are used in the previously described material properties matrix [A] defined in (44).

4.2 Implementation of the Finite-Element Viscoelastic Solid Modelling Program

To implement the previously derived finite element method, the program VISCO2 was written in FORTRAN-88, and implemented on the Michigan State University Case Engineering Center VAX-8650 as well as the CRAY Y-MP4/464 at the National Center for Supercomputing Applications at the University of Illinois, Urbana-Champaign ${ }^{2}$.

The implementation of this method is rather straight forward since many of the components of the algorithm are taken directly from elasticity finite element formulations. The substantial difference is that the residual term must be calculated for each time-step, and is a function of all of the preceding time-steps. This particular version calculates many of the components of these terms at the beginning of the program, then holds them in memory arrays, so that the program is not constantly recalculating the same values for the residual term components.

It should be noted that the large number of residual terms generated to account for the stress/strain "history" of

[^1]the material demands a great deal of storage capacity. These requirements can be mitigated somewhat by the use of banded storage techniques and other data-compression algorithms, but the final result often remains memory intensive.

5.0 MATERIALS AND METHODS

5.1 Derivation of Material Properties Constants

The primary material used in this study was 1 mil cast polyethylene film (PW-242 "Flex-O-Film", Flex-O-Glass, Inc. Chicago, IL 60651). Actual thickness of the film was checked using a TMI 549 M micrometer (Testing Machines Inc. Amityville, NY) and was found to be .85 mil (0.00085"; 0.000216 cm) over all parts of the film.

Material properties were derived using a cruciform sample subjected to a stepped loading in a biaxial tensile fixture (Figures 5 and 6). The samples were marked with a non-interactive acrylic ink (Hunt Mfg. Co., Statesville, NC 28677) in a pattern to conform to the grid design selected for use with the P21.FOR and P21a.FOR software (Figure 7). This pattern was chosen as a compromise between minimizing the number of data points to be collected and conformity to the sample during deformation.

Since the practical limit for the finite element software is approximately 15% total strain, this limit was found by trial and error (using linear samples) to be approximately $2800 \mathrm{psi}(19.30 \mathrm{MPa})$ and was taken to be the limiting factor in the strain level applied to the film. The

Test Fixture Diagram

Figure 5. Tensile Loading Fixture Diagram.

Figure 6. Photograph of Biaxial Tensile Loading Fixture.

samples were then loaded to 47\%, 82\%, and 100% of maximum strain $(1316,2296$ and 2800 psi or $9.08,15.83$ and 19.30 MPa respectively). The choice of loading levels are a result of the standardized size of the dead-weights used to load the fixture's cross-beams. The deflection of the material was recorded against a background grid of $0.2^{n} \times 0.2^{n}(0.51 \times$ 0.51 cm) squares using a VHS format camcorder (Panasonic VHS Reporter) and then played back using the still-frame feature of an RCA-500 VCR. Data was recorded manually from the film markings and measurement grid previously described. The VHS format records images at $1 / 30 \mathrm{sec}$. intervals which allows the deformation history to be recorded over a span of 6 frames of tape (1/5 sec.). Since the start of the test was not synchronized with the frame recording of the camera, the exact start and end-points of the deflection history were taken by extrapolation.

Initial tests showed a significant amount of rebound in the film due to an- unknown factor in the test fixture. By experimenting with the mass distribution on the loading beams of the tensile fixture it was found that the rebound could be nearly eliminated by placing the dead-weights near the ends of the beams. This acted to reduce the amount of beam flexure and rebound during material deflection without affecting the level of load placed on the sample.

Once the data points had been recorded, the deflections were calculated and averaged, exploiting the symmetry present
in the test sample to minimize the calculation necessary to construct models for the mapping of strain fields.

5.2 Permeation Testing

Permeation testing was done using the quasi-isostatic method. A permeation cell was devised with extended clamping arms which can accommodate the sample held in the tensile fixture (Figure 8). Carbon dioxide flowed through the lower chamber of the cell at a regulated rate of approximately $50 \mathrm{cc} / \mathrm{min}$. The upper chamber of the permeation cell (figures 9 and 10) was ventilated with low pressure compressed air for a minimum of 60 minutes after the cell was clamped on the film specimen to allow the CO_{2} in the lower chamber to reach 100% concentration. At this point the upper cell was sealed and the headspace of the upper chamber was assayed at approximately seven minute intervals for CO_{2} concentration by analyzing 1 Cc. syringe-drawn aliquots of the headspace gas with a Carle 2153-B Gas Chromatograph and Spectra-Physics 2400 Computing Integrator.

The concentration values were plotted using the integrator's least-squares ${ }^{3}$ curve-fitting software, and the rate of increase ascertained in order to calculate the rate

[^2]

Permeation Cell
Figure 8. Permeation Cell schenatic.

Figure 9. Permeation Cell Used In the Study.

Figure 10. Permeation Cell With Film Sample Under Tension.
of permeation. A standard gas sample (5.05 $\boldsymbol{C O}_{2}$, $21.38 \mathrm{O}_{2}$, balance N_{2} : AGA Specialty Gasses, Maumee $O H$ 43537) was used to calibrate the detector response, but due to the availability of only the single concentration all calculations of permeation rate are done at that concentration in order to minimize error due to detector nonlinearity. The curve-fitting software gave the equation of the line plotting the rise in concentration versus time as

$$
\begin{equation*}
A x^{2}+B x+C=y \tag{55}
\end{equation*}
$$

where x represents time and y is the concentration at time x. The lesser root of the quadratic equation may be used to construct the point x^{\prime} at which the concentration passes through the standard value y^{\prime}

$$
\begin{equation*}
x=\frac{-2-\sqrt{B^{2}-4 A\left(C-y^{\prime}\right)}}{2 \lambda} \tag{56}
\end{equation*}
$$

The time-rate of concentration change is taken at this point as

$$
\begin{equation*}
D C / D t=D y / D x=2 \lambda x^{\prime}+B \tag{57}
\end{equation*}
$$

and used for permeation calculations.

5.3 Small Angle Light Scattering Analysis

Abstract

The Small Angle Light Scattering (SALS) analysis fixture was constructed such that material under tension in the tensile fixture could be analyzed. The Helium-Neon laser source produces a polarized beam of light which was used with an analyzer to record the H_{k} and H_{V} patterns photographically. The θ_{0} was measured against a grid on the projection screen and the μ_{v}, or rotation of the flare pattern, was measured using a slit photometer.

5.4 Scanning Electron Microscopic Analysis

Surface features of the film in both its unstressed and maximally stressed state were cast in the tensile fixture using Reprosil Type 1 light (L.D. Caulk Co., Milford DE 19963) and then a transfer casting was made using Spurr's epoxy resin (Klomparens et al, 1986). The replica was then sputter coated with gold, and examined in the JEOL-35 Scanning Electron Microscope (Center For Electron Optics, Michigan State University). The samples were checked for change of surface features at the center within the area of the sample covered by the permeation cell where the largest strains were predicted to occur.

6.0 RESULTS AND DISCUSSION

6.1 Parameter-Estimation Method Evaluation

Two parameter estimation programs, P21.FOR and p21a.FOR were written to extract material property constants from deflection data using tests with known levels of applied loads. The programs utilize the COMPLEX function minimization methods incorporating the VISCO2 finite element program as the objective function, attempting to minimize the difference between the deflection predicted by the finite element software and the "real world" deflection data.

In order to evaluate the accuracy and utility of the parameter estimation software P21.FOR and P21A.FOR, the previously-described finite element software used dummy material property constants to generate nodal deflection values as a substitute for observed data over an arbitrary 10 time-step period (figure 11). The parameter estimation software was then used to try and re-extract the original constant values. Records were kept of the number of function-evaluations required for the model to converge.

The effect of varying the operating parameters on the final accuracy of the returned estimate was ascertained

Figure 11. Finite Element Grid Used to Evaluate the Parameter Estimation Method.
(table 1). Different numbers of complex polygon vertices were used in the optimization scheme, and the value of β (the intrapolygonal variation of the vertex values, below which the model is assumed to have converged) was varied as well.

Table 1.
Parameter Estimation Evaluation Results

Table 1 (cont'd).

	Estimation of:	K_{2}
Upper Limit of Estimation:	1.0×10^{6}	$\mathrm{~K}_{3}$
Lower Limit of Estimation:	1.0×10^{2}	15.0
	Starting Value:	5.0×10^{4}

3 Vertices
β
10.0
5.0
2.5
1.0
0.5

4 Vertices

β

10.0
5.0
2.5
1.0
0.5

5 Vertices
β
10.0
5.0
2.5
1.0
0.5

6 Vertices

β

10.0
5.0
2.5
1.0
0.5

Nodal Error
at Centroid 0.060%
0.021
0.021
0.017
0.001

Number of Evaluations 99
102
102
Nodal Error at Centroid
1.125%
0.024
0.042
0.006

Number of
Evaluations 25 2.214% 59
0.113 75
0.056 86
0.051

92

Number of
Evaluations
54
85
0.003

91
107
112

Nodal Error
at Centroid
0.107%
0.189
0.189

154
0.036

187
.
. 001

Number of
Evaluations 128 138 147 176 201

As is shown by the tabulated values, the model returned a very accurate estimate of the data with relatively few evaluations of the finite element objective function and a very coarse model grid. It must be noted that the "error" value to be minimized is a sum of the errors of all points over all time-steps, and thus is extremely situation dependent. The simple study shown illustrates the relative efficiency of the method even when constraint values are used.

This computation-intensive type of parameter estimation becomes slow as the number of nodes in the objective function model increases, so the software was implemented on the Cray Y/MP 4-464 supercomputer at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign. The results of these trials indicated that with the parallel processor environment available the computation time shrunk by several orders of magnitude (from tens of minutes to less than three seconds).

The software is extremely efficient at estimating simpler cases such as elastic (time-independent) deformation. Although many simpler methods exist for some elastic problems, this method may find use in evaluating unknown materials of unusual geometry.

6.2 Material Parameter Estimation

The film used in this study was evaluated at three different load levels (the 100\%, 82\% and 47\% levels described in section 5.1) using the biaxial tensile fixture. Although the fixture is capable of axially independent loading of a sample, the small amount of material available for the study confined the tests to regimes where both axes' were loaded at the samelevel simultaneouly. Initial tests showed that the entire deflection of the material occurred within approximately one fifth of a second (6 frames of videotape) and no further deformation was recorded over periods of up to a week. As will be subsequently shown, this is due to the load-time history of the material.

Data taken from the video record (Appendix B) was normalized and converted into displacement files for use with the parameter estimation software P21.FOR and P21A.FOR. Results of the material parameter-estimation are shown in Table 2.

Table 2.
Material Parameter Estimation Results

Loading	K_{1}	K_{2}	\mathbf{K}_{3}
100%	43335	136323	5.55
Error	5.63%		81.10%
82%	53742	142661	12.51
Error	4.15%		79.18%
47%	40473	155974	96.02
Error	4.72%		40.41%

It should be noted that this parameter estimation method was designed for use where the time history of the material would be a significant factor in the results of the rest of the test (eg. that the permeation testing would occur before the material had reached an equilibrium level of deflection). In this particular case, all of the strain occurred over such a short time period and other material measurements occurred

[^3]after such a relatively long time period, that the timedependency of the material is almost irrelevant. A parameter-estimation method of this complexity would be a much more efficient analytical tool for a material which exhibits much slower deformation time history (on the order of days or weeks).

Abstract

6.2.1 Error in Material Models and Estimated Parameters Due to Loading History Deviations From the Assumed Heaviside Function

Since the tensile testing fixture used with a material with an extraordinarily short deformation history is essentially an impact loading device, the assumption that the load onset in the sample forms a perfect step-function becomes somewhat questionable since the load in a perfectly elastic (undamped) system forms an oscillator with a load amplitude twice that of the dead weight loading, and a system which is overdamped to the point of not exceeding the applied load will show a load onset more closely akin to a ramp function. Both of these conditions violate the assumptions upon which the material model is based, and call the validity of the parameter estimation method into question.

In order to check the load vs. time curve of the film in the test fixture, a strain gauge load cell was fabricated (Figure 12) and put in series with one of the test fixture tension cables (Figure 13). The output of the strain gauge was conditioned with a Daytronic 3170 Strain Gauge Conditioner and displayed on a Hewlett-Packard 54504A Digital Oscilloscope. The load vs. time history for the first 500 milliseconds of loading was measured at each of

Figure 12. Strain Gauge Load Cell

Figure 13. Uniaxial Test Fixture With Load Cell Installed
the three loadings used in the study.
The loading was shown to be a ramp of approximately 90ms. duration (nearly one-half of the information recording period used for parameter estimation), with a peak load value approximately 25\% higher than the dead-weight loading of the beams, and with a significant relaxation (Figure 14) ${ }^{5}$.

The effects of these deviations from the assumed load vs. time curve on the estimated values for the material constants are worth noting more for their implications in the method than for this particular study. Since the deflection of the material used in this study occurs over such a short period of time and since the K_{1} value thus dominates the material model, the error in the K_{1} estimate may be corrected directly as a function of the peak loading value. In the case of an experiment with deformation occurring over a more substantial length of time, the $K_{\mathbf{2}}$ and K_{3} variables become more significant, and the error induced in these coefficients may become more significant as well. It may be that for an extended load-time relationship the "ramping" and relaxation would constitute a fairly small component of the overall time history of the material; the major cause for concern would be, once again, error in the K1 estimate caused by the peak loading being larger than the

[^4]
static level on the beam.
A solution to the problems caused by the real-world loading history compared with the "perfect" Heaviside step-function would be to incorporate matching variable loading conditions in the finite-element models used as objective functions in the parameter- estimation method and as a modelling method for the strained film. It is unclear, however, at what point the deviation from the assumptions necessary for the development of the material model will begin to affect the accuracy of the analysis. A more practical solution might be to redevelop the material model using a ramp loading function, a combination of ramp and Dirac spike functions, or some other (more accommodating) model rather than a step loading function.

6.3 Strain Within the Specimen

Finite element simulations of the test specimen were constructed and run to ascertain the state of strain in the film, particularly within the region tested for permeation and morphology changes (Figures 15 and 16). The values returned by the material parameter estimation experiments were used as the material constants in previously described VISCO2.FOR software.

The model returned values which were then plotted to give an estimate of the state of strain and change of free volume occurring within the material at the time of measurement. This model provides a good "map" of the area of interest in terms of strain and change of volume, and the change of volume and thinning during the three loading regimes is plotted in Figures 17 to 22.

As the figures clearly illustrate, there is an increase in the free volume of the material in the region of the specimen where the permeation testing took place.

Figure 15. General Sequence of Programs Used in
Parameter Estimation and Material Response
Calculations

Figure 17. Thinning Calculations for Film at 100% Ioading.
(All values are in percent.)

Figure 18. Thinning Calculations for Film at 82% Loading.
(All values are in percent.)

Calculated Change in Free Volume at 47% Loading.
(All values are in percent.)
Figure 22.

6.4 Permeation Changes in the Material

The permeation rate of three different samples of the material were measured at three different strain levels each. The relatively small degree of strain occurring in the sample suggests that there would be a marked increase in the rate of permeation, and this was shown to be the case. Additionally the increase was not linear (Figure 23) but the increase was monotonic with increasing strain.

These findings are of considerable interest, since the permeation rate of a material apparently can increase by at least 20% due to small loads in what might be considered the "elastic" range of the material. Although this increase is ostensibly limited by the onset of fibrillar orientation in the material, there is still the potential for this phenomenon to be of interest in the engineering of polymeric material structures, either in the construction of a safety factor where barrier properties are the foremost concern, or in the manipulation of a polymeric film to the desired permeation specifications.

The curvlinear nature of the increase in permeation suggests that the nature of the mechanism by which the permeation increases in the polymer is either extremely sensitive to changes in free volume, or that there is some

threshold level within the material above which the material has a much higher level of permeation. In the latter case, the permeation increase within the material tested would vary as the threshold-exceeded area increases, giving an approximately second-order permeation curve with a biaxially loaded sample.

6.5 Small Angle Light Scattering Analysis

The Small Angle Light Scattering (SALS) method used to test the film for changes in orientation showed that the material had a distribution of spherulites on the order of $5 \mu \mathrm{~m}$ which were oriented in the "machine direction ${ }^{6 n}$ of the film. This low level of orientation is to be expected due to the stresses applied to all films during production. Unfortunately, even the largest strain applied to the material failed to show any appreciable difference in orientation direction or magnitude (as shown by the direction and degree of extension of the "flare" in the pattern in the photographs) between the strained and unstrained specimens in either the H_{f} (polarizers crossed) or H_{v} (polarizers parallel) configurations (Figures 25 to 28). This was expected from the small-strain model which suggests that the changes which occur in the material are due solely to freevolume changes in the structure in the polymer rather than the formation of morphological artifacts which would significantly alter the optical activity of the material.
${ }^{\text {GMachine direction refers to the direction in which the }}$ material is rolled up on a spool or otherwise transported through processing machinery. Almost all materials show some degree of structural orientation along the machine direction unless the process has been designed to eliminate these.

6.6 Scanning Electron Microscope Evaluation

The electron photomicrographs of the surface features of unstrained and maximally strained film showed no significant changes in the surface features of the film between the strained and unstrained state (Figures 29 and 30). Again, this is to be expected from a phenomenon which does not alter the morphological nature of the material. The apparent difference in surface texture is largely due to the difficulty in focusing the SEM on an almost featureless surface.

An interesting observation to be made from these photomicrographs is the existance of what appear to be "pores" in the material, although these do not change with the strain in the material and may or may not be artifacts of the replicating process.

Figure 28. Photamicrograph of film before deformation.

7.0 SUMMARY AND CONCLUSIONS

7.1 Summary

The preceeding study developed a numerical model of the mechanics of deformable solids to estimate the thinning and free-volume changes that occur as a polymer film sample is stretched under a "stepped" loading regime. A tensile testing fixture was developed to load the film to various degrees of tensile stress, and to measure the movement of index marks applied to the test samples for the elucidation of material property constant estimates for use in the numerical models. The tensile fixture was also used to hold the stressed film for measurement of permeation and changes in optical activity once the loading was applied to a sample.

A permeation cell was modified for use with the abovementioned tensile tester to measure the CO_{2} permeation rate at the center portion of the film sample. Further testing of the center region of the sample was accomplished using a Small Angle Light Scattering apparatus developed specifically for the study, and by casting film surface replicas for analysis by Scanning Electron Microscope.

With these tests and methods, it has been shown that the linkage between applied force and changes in permeation can
be quantified, with a much better understanding of the specific changes that are occurring in the sample.

7.2 Conclusions

It is clear that a large change of permeation is possible with relatively small dimensional changes, as predicted in the literature and shown in this study. Further, the changes may be correlated to a close estimate of the state of strain, thinning and volume change of the material at the time of permeation although the exact microstructural mechanism by which these changes occur is not elucidated by the analytical methods used here.

The utility of this type of analysis is immediately apparent; it is now possible to predict the changes in permeation occuring within a polymer film structure under mechanical loading without construction of a prototype and without testing beyond that which is necessary to ascertain a few simple material properties.

Extension of the fundamental principles underlying this study--the construction of a quantitative linkage between mechanical input and barrier property changes--should allow more rapid, and therefore more cost-effective, design and development of materials, production processes and structures using these materials.

8.0 RECOMMENDATIONS

The study described here has proven the feasibility of the linkage of several types of studies to produce a clearer picture of the circumstances surrounding the changes in permeation in strained material. To be a more practical engineering tool several improvements are in order:

The collection methodology with which the materialproperty data was obtained must be improved. The method has the potential to be quite accurate, but it is hampered by the inaccuracy and error-producing tedium of visual measurements and the low resolution of the video system used. A highspeed imaging and digitization system would be very useful.

A better understanding of the changes in strained polymer structure is necessary. Since gross structural changes are not occurring within the polymer, a more sensitive measure of the changes occurring (such as wideangle X -ray scattering) may provide additional information.

A more robust tensile strain fixture is necessary if high-speed deformations are to be studied since the one used in this study exhibited a great deal of secondary motion when activated.

A load-deformation time history needs to be recorded to give a more accurate picture of the load response of the
film, and perhaps a more complex material model is in order to accomodate the less than ideal load-time history produced by the equipment used.

APPENDIX A

Program Listings
This appendix contains listings for the following main programs and (limited) supporting documentation:
VISCO1.FOR
VISCO2.FOR
P21. FOR
P21a.FOR
DUMERGE.FOR
File Input Format for VISCO1.FOR and VISCO2.FOR
Additional File Input Format for P21.FOR and P21a.FOR

Table 3. VISCO1.FOR

PROGRAM VISCOI.FOR

declare common statements
DOUBLE PRECISION K(8,8)
DOUBLE PRECISION INVRS(200,200) DOUBLE PRECISIOW KINV 200,200)

COMHOW/MUM/NUMELS
COMNOW/NNBLOCK/MUNNODES
DOUBLE PRECISIOW R(200)
COMNOW/RBLOCK/R
DOUBLE PRECISIOM COEFF(6)
COWНW/COEFFBLOCK/COEFF
COMNON/IDIMBLOCK/IDIM

COMHON /NTS/MMBEEROFTIMESTEPS
DOUBLE PRECISION TIMSTART, TIMINCR
DOUBLE PRECISION NOOX(200), NOOY(200)
COWHON/NODE/MCOX, MOOY
INTEGER EI(325),EJ(325),EK(325),EM(325)
COMMOW/ELNODES/EI, EJ, EK,EM
DOVBLE PRECISIOW MASTERK $(200,200)$ COMNOW/BI GK/MASTERK

DOUBLE PRECISION A(3,3)
COMHOW/ABLOCK/A
INTEGER MUMSPYK
COMNOW/WS/MLMSTART, NUMSTOP
INTEGER IBDY(200)
COMNOW/IBINDX/IBDY
DCUBLE PRECISIOW BVAL(200)
COMNOW/BOUNDVAL/BVAL
IMTEGER MUMBDY
COMッON/BOY/MMMBOY
INTEGER IDPLUS 1
COMNOW/IDP/IDPLUS1
DOUBLE PRECISIOM KPAST $(200,200)$
COWHON/KPASTBLOCK/KPAST

91

Table 3 (cont'd)

```
    DOUBLE PRECISION DELU(200)
    INTEGER IROW(200),JCOL(200), JORD(200)
    COMMON/I JJ/I ROW, JCOL , JORD
    DOUBLE PRECISIOW KZERO(200,200)
    COWHON/KZ/KZERO
    DOUBLE PRECISION Y(200)
    COMHON/WYE/Y
    DOUBLE PRECISION FINALK(200,200),LASTR(200)
    COMMON/ENDO/FINALK,LASTR
        SAVE
    100
        FORMAT (A)
            IF (NFE .EQ. 1) THEN
            URITE (*,100)' ********** PARAVISCO 1 m
            ENDIF
C
```



```
C OPEN FILES
C This block of commends opens, labels, and numbers the appropriate files for
C use by VISCO1 with the exception of the series of files needed for [K(t)]
C storage, as those are created as needed.
    OPEN (3, FILE='GENERAL_DATA', STATUS= 'OLD')
    REWIMD 3
    OPEN (9, FILE='BOUNDARIES', STATUS= 'OLD')
    REWIND }
```



```
C READ IN INITAL DATA
C This reads in some of the necessary parameters to operate some of
c the arrays used in this program.
READ (3,*)NUMELS,NumberOfNodes
            MMNODES=NumberOfNodes*2
            NODCOUNT =NUNNODES
            MMNN=NUMNODES
READ (3,*)(COEFF(I),I=1,6)
READ (3,*)NUNBEROFTIMESTEPS
READ (3,*)NUNSTART,NUNSTOP
READ (3,*)TIMSTART,TIMINCR
```

CALL MAKEARRAYS(IT)
130 FORMAT (12,15X,012.6)
IF ((MFE .EQ. 1) .OR. (NPRNT .GE. 1)) THEN
WRITE (*,100) COEFFICIENT VALUE'DO J=1,6
MRITE (*,130)J,COEFF(J)
ENDOO
enoif
C Read in the known boundary conditions
C from the 'boundaries.dat file:
IF (MFE .EQ. 1) THEN
WRITE (*,100)'
WRITE (*,100) ' NUMBER OF KNOWN DISPLACEMENT VALUES: ${ }^{\prime}$
ENDIF
READ (9,*) NUMBOY
IF (NFE .EO. 1) THEN
LRITE (*,*) NUMBDY
WRITE (*,100)'
WRITE (*, 100) ' DIRECTION INDICATOR: $x=1 \quad y=0^{\prime}$
WRITE (*,100) , NOOE DIRECTIOW VALUE'
ENDIF
DO $\{=1$, NUMBDY
READ $(9, *)$ IBMDX, IDIR, BVAL(I)
If (NFE .EQ. 1) THEN
URITE (*,*) IBNDX,IDIR,BVAL(I)
URITE (${ }^{*}, 100$) ${ }^{\prime}$
ENDIF
C IDIR: $X=1 \quad Y=0 \quad$ FOR 2-D PROBLEMS
IBDY(1)=(IBNDX*2)-IDIR
ENDDO
CLOSE (9)
C * Once arrays are ready, construct the series of [K(t)] values.
C for all of the timesteps in the problem.
IF (NFE .EQ. 1) THEN
LRITE (*, 100)' STORING [K] MATRICES FOR '
ENDIF
DO 5 , $N T=0$, MUMBEROFTIMESTEPS
IF (NFE .EQ. 1) THEN
URITE (*,101)' TIMESTEP=1,NT
ENDIF
format (A,12)
CALL MAKEA(NT,TIMINCR,TIMSTART)
C $1 \quad 0$
CALL MAKESHAPES(MASTERK, NUMNODES)
C
00
0
CALL STOREMASTERK(NT,MASTERK, NUMNOOES)

5 CONTIMUE

C * Solve the time-dependent problem, once all of the $\mathbf{W C J}$ volues are
C reedy and stored.
MWPLUS $1=$ NUMNODES +1
IDIM=NUMNODES- NUMBOY
IDPLUS1=1DIM+1
CALL SOLUTIOW(MMMNOOES,NNPLUS1,KZERO, IDIM, IDPLUS1,FIMALK, C LASTR,KINV)

WRITE (*,100) ' SOLUTION COMPLETED!11!!'
URITE (*,100) ',
CLOSE (3)

END
C

c
SUBROUTINE MAKEARRAYS(IT)
C This subroutine sets up the indexed array of node and element values used C by the [K] generation loops.

INTEGER NODNO, IELNO
COMNON/MUM/NUMELS
DOUBLE PRECISIOW NOOX(200),NOOY(200)
COWHOW/NODE/MOOX,NCOY
INTEGER EI(325),EJ(325),EK(325),EM(325)
COWNON/ELNODES/EI,EJ,EK,EM

OPEN (4, FILE='ELEMENT_DATA', STATUS= 'OLD')
REWIND 4
C Create an array of indexed $x \& y$ values associated with each node
100 FORMAT (A)
IF (NFE .EO. 1) THEN
WRITE(*,100) NODE X Y'
ENDIF
20 CONTINUE
READ (4,*) MOONO
IF (NOONO .EQ. -1) GO TO 23
READ ($4, *$) NOOX(NOONO), NOOY(NOONO)
IF (NFE .EQ. 1) THEN
WRITE (*,*) MOONO,NOOX(NOONO),NOOY(NOONO)
EMDIF
© 0 10 20

23 IF (NFE .EQ. 1) THEN
URITE (*, 100) ' ' ELEMENT
URITE (*, 100)
c
EMDIF
24 CONTINUE

* Produce an index of nodal values associated with each element

READ (4,*) IELMO
IF (IELMO .EQ. -1) GO TO 25
READ (4,*) EI(IELNO), EJ(IELNO), EK(IELNO), EM(IELNO)
IF (MFE .EQ. 1) THEN
WRITE (*。*) IELNO,EI(IELNO),EJ(IELNO),EK(IELNO),EM(IELMO)
EMDIF
co 1024
25 COWtIMUE
RETURM
END

C \qquad

c

SUBROUTINE MAKESHAPES(MASTERK,NUMNODES)
DOUBLE PRECISIOW MASTERK(NUMNODES, NUMNODES)
DOUBLE PRECISION K(8,8)
COMHOW/MUM/NUMELS
INTEGER EI(325),EJ(325),EK(325),EM(325)
COMNOW/ELNOOES/EI,EJ,EK,EM
FORMAT (A)
IEIGHT=8
C -This Subroutine through each of the elements and cusing the proper c subroutine) develops an elemental [k] matrix to be added into the [K] vie c the MERGEK subroutine.

C * Put the two together and route to appropriate calculation of [k] for
C each element then add the value for that element into the global [K]
C But first, the MASTERK must be cleared from the last time-step.
DO II=1, NUMNODES
DO JJ=1, NUMNODES
MASTERK (II, JJ) $=0.000$
EMDDO
ENDDO
C Proceed to assemble next MASTERK
DO 30, IE Lement 1 , NUMELS
IF (EM(IElement).EO.0) THEN
C
CALL TRIANGLELEM(IElement, K) GO TO 27
ENDIF
C
Call souarelem(IELEMENT,K)
27 continue
c
00
CALL MERGEK(K, IE (ement, MASTERK, NUMNODES)
6 Note that MERGEK merges the element's [K] value into the comiow masterk ()
C and does not return any value.
30 CONTINUE

RETURN
END
c \qquad

```
C I O
    SUBROUTINE TRIANGLELEM(IElement,K)
    DOUBLE PRECISION K(8,8)
    DOUBLE PRECISION NOOX(200),NOOY(200)
    COMMON/MODE/NODX,NOOY
    IMTEGER EI(325),EJ(325),EK(325),EM(325)
    COMNON/ELNOOES/EI,EJ,EK,EM
    DOUBLE PRECISION A(3,3)
    CONHON/ABLOCK/A
    DOUBLE PRECISION XI,XJ,XK,XM,YI,YJ,YK,YM,BI,BJ,BK,CI,CJ,CK
    DOUBLE PRECISION }X(3),Y(3),B(3,6),C(6,3),AR2,SUM
C This subroutine uses the brute-force calculations in TRIANCLECALC
C to produce a [k] for the selected element.
100 FORMAT (A)
C montwntu
    TH=1.000
C *********
    XI=#OOX(EI(IE ( ement))
    XJ=NOOX(EJ(IE (ement))
    XK=NODX(EK(IE l ement))
    YI=NODY(EI(IElement))
    YJ=NODY(EJ(IEl ement))
    YK=NODY(EK(IE lement))
    x(1)=x1
    x(2)=xJ
    X(3)=XK
    Y(1)=YI
    Y(2)=YJ
    Y(3)=YK
```



```
C
C * Wat follows is from "Applied Finite Element Analysis"-
```

C What follows is from "Applied Finite Element Analysis" -
C * Larry J. Segerlind, J Wiley \& Sons, 1984 *
C - P. 347
C - P. 347


```
C CLEAN HOUSE:
\(D O \quad I=1,8\)
\(D O \quad J=1,8\)
\(K(1, J)=0.000\)
EEDDO
ENDDO

\(D O \quad 1=1,3\)
\(D O J=1,6\)
\(B(1, J)=0.000\)
\(C(J, J)=0.000\)
ENDDO
ENDDO
C genERATE the (B) mATRIX
```

```
    B(1,1)=Y(2)-Y(3)
    B(1,3)=Y(3)-Y(1)
    B(1,5)=Y(1)-Y(2)
    B(2,2)=X(3)-X(2)
    B(2,4)=X(1)-X(3)
    B(2,6)=X(2)-X(1)
    B(3,1)=B(2,2)
    B(3,2)=B(1,1)
    B(3,3)=B(2,4)
    B(3,4)=B(1,3)
    B(3,5)=B(2,6)
    B(3,6)=B(1,5)
    AR2=X(2)*Y(3)+X(3)*Y(1)+X(1)*Y(2)-X(2)*Y(1)-X(3)*Y(2)-X(1)*Y(3)
C MATRIX MULTIPLCATION TO OBTAIN C = {BT}[A]
    DO I=1,6
    DO J=1,3
        c(i, J)=0.000
        DO L=1,3
        C(1,J)=C(1,J)+B(L,I)*A(L,J)
        ENDDO
    EMDDO
    ENDDO
C matrix multiplication to obtain [k] Where
C [K]= [BT)[A](B)= (C)(B)
    DO 27 1=1,6
    DO 27 J=1,6
        SUN=0.000
        DO 28 L=1,3
        SUM=SUM+C(I,L)*B(L,J)
        K(1,J)=SUM*TH/(2.000*AR2)
        CONTINUE
C RETURN [K]
RETURM
END
C
```



```
C
    SUBROUTINE SOUARELEM(IE (ement, k)
        DOUBLE PRECISION k(8,8),C(6)
        DOUBLE PRECISION NODX(200),NODY(200)
        COMHON/NODE/NODX,NOOY
        DOUBLE PRECISION A(3,3)
        COWHON/ABLOCK/A
        DOUBLE PRECISION MA,8
        INTEGER EI(325),EJ(325),EK(325),EM(325)
        COMHON/ELNODES/EI,EJ,EK,EM
        DOUBLE PRECISION XI,XJ,XK,XM,YI,YJ,YK,YM
C This subroutine uses the brute-force calculations in souARECALC
C to produce a [k] for the selected element.
100 FORMAT (A)
    XI=NODX(EI(IE (ement))
    XJ=NOOX(EJ(IEl ement))
    XN=NOOX(EM(IE L ement))
    YI=NODY(EI(IE Ement))
    YJ=NODY(EJ(IEl ement))
    YM=NODY(EM(IElement))
    M=0.500*DSQRT(( (XM-XI)**2.000)+((YM-YI)**2.000))
    B=0.5DO*DSQRT(((XJ-XI)**2.0DO)+((YJ-YI)**2.000))
    C(1)=(A(1,1)*AA)/(6.000*B)
    C(2)=(A(1,1)*B)/(6.000*AA)
    C(3)=A(1,2)/4.000
    C(4)=A(3,3)/4.000
    C(5)=(A(3,3)*AA)/(6.000*B)
    C(6)=(A(3,3)*B)/(6.000*AA)
C O I
    CALL RECTANGLECALC (C,k)
    RETURN
    EMD
C
```



```
    SUBROUTINE MERGEK(K,IElement,MASTERK,NUMNODES)
    DOUBLE PRECISION MASTERK(NUMNODES,NUMNODES)
    COMHON/WUM/MLMELS
    DOUBLE PRECISIOW K(8,8)
    INTEGER SK(8)
    INTEGER EI(325),EJ(325),EK(325),EM(325)
    COMNON/ELNODES/EI,EJ,EK,EM
100
FORMAT(A)
C -This Subroutine adds the [K] for some element into the global [K]
C for some time-step.
C -MasterK is Global [K] for a given time step.
C -IEL Contains the node-list for the element.
C -NEL Number of elements.
    SK(1)=2*EI(IELEMENT)-1
    SK(2)=2*EI(IELEMENT)
    SK(3)=2*EJ(IELEMENT)-1
    SK(4)=2*EJ(IELEMENT)
    SK(5)=2*EK(IELEMENT)-1
    SK(6)=2*EK(IELEMENT)
C This skips the EM for the triangular element to avoid
C SK(7) and SK(8) =-1 and MERGEs the SQUARE el ement.
IF (EM(IELEMENT).NE.0) THEN
SK(7)=2*EM(IELEMENT)-1
SK(8)=2*EM(IELEMENT)
DO 15, 1=1,8
            DO 10,J=1,8
                MASTERK(SK(1),SK(J))=MASTERK(SK(1),SK(J))+K(1,J)
    CONTINUE
contimue
ELSE
C This is the MERGE routine for the TRIANGULAR element occurrs.
DO 35, I=1,6
    DO 30, J=1,6
        MASTERK(SK(1),SK(J))=MASTERK(SK(1),SK(J))+K(1, J)
    CONTINUE
contimue
ENDIF
RETURN
END
C
```

SUBROUTINE RECTANGLECALC(c, k) DOUBLE PRECISION C(6),K(8,8)

C This subroutine returns a brute force solution to the calculation of the
C [K] metrix for the RECTANGULAR element. Ugly but fast.

```
K(1,1)=2.000*(c(1)+C(6))
    K(1,2)=C(3)+C(4)
    K(1,3)=-2.000*C(1)+C(6)
    K(1,4)=C(3)-C(4)
    K(1,5)=-1.000*(C(1)+C(6))
    K(1,6)=-1.000*(C(3)+C(4))
    K(1,7)=C(1)-2.000*C(6)
    K(1,8)=-1.000*C(3)+C(4)
    K(2,1)=K(1,2)
    K(2,2)=2.000*(C(2)+C(5))
    K(2,3)=-1.000*C(3)+C(4)
    K(2,4)=C(2)-2.000*C(5)
    K(2,5)=-1.000*(C(3)+C(4))
    K(2,6)=-1.000*(C(2)+C(5))
    K(2,7)=c(3)-c(4)
    K(2,8)=-2.000*C(2)+C(5)
    K(3,1)=K(1,3)
    K(3,2)=K(2,3)
    K(3,3)=2.000*(C(1)+C(6))
    K(3,4)=-1.000*(C(3)+C(4))
    K(3,5)=C(1)-2.000*C(6)
    K(3,6)=C(3)-c(4)
    K(3,7)=-1.000*(C(1)+C(6))
    K(3,8)=C(3)+C(4)
    K(4,1)=K(1,4)
    K(4,2)=K(2,4)
    K(4,3)=K(3,4)
    K(4,4)=2.000*(C(2)+C(5))
    K(4,5)=-1.000*C(3)+C(4)
    K(4,6)=-2.000*C(2)+C(5)
    K(4,7)=C(3)+C(4)
    K(4,8)=-1.000*(C(2)+C(5))
    K(5,1)=K(1,5)
    K(5,2)=K(2,5)
    K(5,3)=K(3,5)
    K(5,4)=K(4,5)
    K(5,5)=2.000*(C(1)+C(6))
    K(5,6)=C(3)+C(4)
    K(5,7)=-2.000*C(1)+C(6)
    K(5,8)=C(3)-c(4)
    K(6,1)=K(1,6)
    K(6,2)=K(2,6)
    K(6,3)=K(3,6)
    K(6,4)=K(4,6)
    K(6,5)=K(5,6)
    K(6,6)=2.000*(C(2)+C(5))
    K(6,7)=-1.000*C(3)+C(4)
    K(6,8)=C(2)-2.000*C(5)
    K(7,1)=K(1,7)
```

$K(7,2)=K(2,7)$
$K(7,3)=k(3,7)$
$K(7,4)=K(4,7)$
$K(7,5)=K(5,7)$
$K(7,6)=K(6,7)$
$K(7,7)=2.000^{*}(C(1)+C(6))$
$K(7,8)=-1.000^{*}(C(3)+C(4))$
$K(8,1)=K(1,8)$
$K(8,2)=K(2,8)$
$K(8,3)=K(3,8)$
$K(8,4)=K(4,8)$
$K(8,5)=K(5,8)$
$K(8,6)=K(6,8)$
$K(8,7)=k(7,8)$
$K(8,8)=2.000^{*} C(2)+2.000^{*} C(5)$
RETURN
END

C


```
            SURROUTINE STOREMASTERK(NT,MASTERR,NUMNODES)
C STORE the values for [K(t)] in a unique fite, once the values have been
C calculated.
    DOUBLE PRECISION MASTERK(NUMNODES,NUMNOOES)
    COMHON/NUM/NUMELS
    COHMON/RBLOCK/R
    CHARACTER*15 FILENAME
100 FORMAT (A)
WRITE (FILENAME,45)'KNUMBER',NT
45 FORMAT(A,12)
    OPEN (10,FILE=FILENAME, STATUS='NEW')
    OO 55,I=1,NUMNODES
        DO 50, J=1, NUMNODES
        MRITE (10,*)MASTERK(l,J)
        CONTINUE
    CONTINUE
    CLOSE(10)
    RETURN
C
EMD
```

```
C
        SUBROUTINE SOLUTION (NUMNOOES,NNPLUSI,KZERO,IDIM,IDPLUSI,FIMALR,
    C LASTR,KINV)
        DOUBLE PRECISION KINTER(200,200)
        DOUBLE PRECISION RZERO(NUMNODES,NNPLUS1)
        DOUBLE PRECISION FINALK(IDIM,IDPLUS1)
        INTEGER NRC
        COMMON/NUM/NUMELS
        COHHON/RBLOCK/R
        COMMON/BDY/NUMBDY
    COMWON /NTS/NUMBEROFTIMESTEPS
        DOUBLE PRECISION R(200),FINALR(200)
        DOUBLE PRECISION DELU(200)
        DOUBLE PRECISION LASTR(200)
        DOUBLE PRECISION KINV(IDIM,IDIM),VECTOR(200)
        DOUBLE PRECISION Y(200)
100 FORMAT (A)
C This subroutine retrieves the appropriate
C values for [K(t)], [/\U] et. and steps through the eppropriate sets of
    solutions. But first the [K(O)] values must be retieved.
    OPEN (12,FILE='KNUMBERO', STATUS='OLD')
    DO I=1, NUMNODES
        DO J=1,NUMNOOES
        READ (12,*) KZERO(1,J)
        ENDDO
        ENDDO
        DO NT=1,NUMBEROFTIMESTEPS
C Retrieve the current {R} vector's value
C O O
        CALL FINDR(NT,NUMNODES)
C NOTE: Because of a glitch in VMS-FORTRAN {R) is passed via
C common statement.
C Subtract the stresses from the previous timesteps
C 1 0 0 0 0 0
    CALL SUBRESIDUAL(FINALR,NT,KINTER)
C Account for the known boundary conditions
C 0 0 0 0 0 0 0
            CALL BYVAL(NUMBDY,NUMNODES,KZERO,FINALR,IDIM,LASTR,FIMALK,
        C IDPLUS1,0)
C WOTE: FIMALK is the augmented matrix containing the remaining
C simultaneous equations to be solved.
C Attempt a solution:
C WRITE (*,100) ' SIMULT CALLED, DEL-(U) VALUES FOLLON'
```

CALL SIMULT(IDIM,FINALK,DELU,1.00-25,1,IDPLUS1,Y)
C Store the results, AFTER re-inserting known boundary conditions.
CALL STOREDELU(DELU,NT,NUMNOOES)
C Print the results
C CALL PRINTDELU()
EMDOO RETURM
END

C \qquad


```
SUBROUTINE FINDR(NT,NUMNODES)
DOUBLE PRECISION R(200)
COMmON/NUM/NUMELS
COMHON/NS/NUNSTART, NUMSTOP
COMHON/RBLOCK/R
CHARACTER*15 FILENAME
C This subroutine develops the value of (R) for timestep mumer MT (actual
C time value of TIMEVAL(NT) seconds) and readies it for the subtraction of the
C residual stress values.
100 FORMAT (A)
IF (NT.GE.NUMSTART .AND. NT.LE.NUMSTOP) THEN
NN=1
ELSE
NN=0
ENDIF
C This epplies a stepped input between NUMSTART and MUNSTOP time intervals
C which requires the availability of RNUMBER1 and RNUMBERO files. A Dirac
C spike has the same value for NUMSTART and NUMSTOP. Other input shapes
C may be created by modifying the values of the function and letting
C NNaNT during the relevant time-frame.
MRITE (FILENAME,50)'RNUMBER',NN
FORMAT (A,I2)
OPEN (20,FILE=FILENAME, STATUS='OLD')
REWIND 20
DO IE1, NUMNODES
READ \((20, *) R(1)\)
ENDDO
C WRITE (*,100)'
C WRITE (*,50) (R) VECTOR FOR TIMESTEP',NT
C WRITE (*,100) '
NODE \(X \quad Y\) '
WRITE (*,100)' '
DO ID=1,NUMNOOES, 2
\(J D=1 D+1\)
MNUN \(=\) JD/2
C WRITE (*,*) NNUM,R(ID),R(JD)
ENDDO
CLOSE(20)
RETURN
END
C
``` \(\qquad\)


```

    SUBROUTINE SUBRESIDUAL(FINALR,NT,KINTER)
    C This subroutine subtracts the residual force, from previous timestepe
C from the current (R) value.
COMNON /IDIMBLOCK/IDIM
COMHON/NNBLOCK/NUMNOOES
COMHON/NUM/NUMELS
COWWON /NTS/NUMBEROFTIMESTEPS
COMHON/IBINDX/I BDY
COWHON/BDY/NUMBDY
COMHON/RBLOCK/R
COWHOW/KPASTBLOCK/KPAST
INTEGER IBDY(200),NUMNODES
DOUBLE PRECISION DU(200),DUMMY(200)
DOUBLE PRECISION R(200),RESID(200),FINALR(200)
DOUBLE PRECISION RINTER(200),DUINTER(200)
DOUBLE PRECISION KPAST(200,200)
DOUBLE PRECISION KINTER(IDIM,IDIM)
DOUBLE PRECISION SUM
CHARACTER*15 FILEDELU
CHARACTER*15 FILEKNUM
101 FORMAT (A,I2)
100 FORMAT (A)
C WRITE (*,101)' TIMESTEP NUMBER',NT
IEND=NT-1
DO 80,I=0,IEND
C WRITE (*,101)' *************> I=1,I
C WRITE (*,100)', -[K] * ', [DU}'
WRITE (FILEDELU,70) 'DELUFILE'.I
J=NT-I
WRITE (FILEKNUM,75) 'KNUMBER'.J
C WRITE (***) J,I
70 FORMAT (A, 12)
75 FORMAT (A, I2)
OPEN (12,FILE=FILEDELU, STATUS='OLD')
OPEN (15,FILE=FILEKNUM, STATUS='OLD')
REWIND 12
REWIND }1
DO L=1,NUMNOOES
DO M=1,NUMNODES
READ (15,*)KPAST(L,M)
ENDDO
ENDDO
READ (12,*)(DU(KK),KK=1,NUMNODES)
CLOSE (12)
CLOSE (15)

```

C DIAGMOSTIC OF FILE-READ KPAST AND DU


```

C
WRITE (*,*) IBDY(IFLAG+1),KK,SUM,KPAST(IBDY(IFLAG+1),KK),DU(KK)
ENDDO
RESID(II)=SUM
C WRITE (*,101)' REGENERATED R VALUE FOR R:',II
C WRITE (*.*) RESID(II)
IFLAG=IFLAG+1
ELSE
C If not, copy the value from (RINTER) and subtract the necessary
C coefficients (which are carried through from the solution of the
C system of compressed equations).
RESID(II)=RINTER(II-IFLAG)
DO LL=1,NUMBDY
RESID(II)=RESID(II)+KPAST(II,IBDY(LL))*DU(IBDY(LL))
ENDDO
C Finally, subtract the residual terms generated for this series of
C arrays from the original force vector (R)
ENOIF
ENDDO
C WRITE (*,100)' (R) VECTOR JUST BEFORE SUBTRACTION'
C DO ID=1,NUMNODES
C WRITE (***) ID,R(ID)
C ENODO
CWRITE (*,100)'N N R(N) RESID(N)'
CC
DO N=1,NUMNODES
R(N)=R(N)-RESID(N)
WRITE (*,*) N, R(N), RESID(N)
ENODO
80
CONTINUE
C Copy whatever is left into (FINALR) for return from the subroutine.
DO N=1,NUMNODES
FINALR(N)=R(N)
ENODO
RETURN
END
C

```

```

    SUBROUTINE STOREDELU(DELU,NT,NUMNODES)
    DOVBLE PRECISION DELU(200)
    CMARACTER*15 FILEDELU
    C This subroutine stores the calculated values of (/\U) in individual files
COMNON/NUM/NUMELS
IMTEGER IBDY(200)
COHHON/IBINDX/IBDY
DOUBLE PRECISION BVAL(200)
COMHOW/BOUNDVAL/BVAL
DOUBLE PRECISION DUMMY(200)
INTEGER NODEHALF,NNUM
C Reinsert known boundary values in the {DELU) array.
C NOTE the (DUMMY) vector is the "unpacked" solution
C vector which also contains the known boundary conditions
C at the particular time-step.
IFLAG=0
DO ll=1, NUMNODES
IF (II.EQ.IBDY(IFLAG+1)) THEN
DUMMY(11)=BVAL(IFLAG+1)
IFLAG=IFLAG+1
ELSE
DUMMY(||)=DELU(II-IFLAG)
ENDIF
ENDDO
C Truncate very small values to avoid underflow errors:
DO KK=1,NUMNODES
If (DABS(DUMMY(KK)) .LE. 1.00-24) THEN
DUMMY (KK)=0.000
ENDIF
ENDDO
C IF (NT.NE.0) then storedelu run ,
FOO FORMAT (A)
85 FORMAT(A,12)
OPEN(22,FILE=FILEDELU,STATUS='NEW')
C Write to appropriate file.
DO I=1,NUMNODES
WRITE(22,*)DUMMY(I)
ENODO
CLOSE(22)
135 FORMAT (12,014.6,014.6)
IF ((NFE .EO. 1) .OR. (NPRNT .GE. 2)) THEN
C Screen output for instant gratification.
WRITE (*,100)' '
URITE (*.85)' DISPLACEMENT VALUES FOR TIMESTEP',NT
WRITE (*,100)' VALUES LESS than 1.00-25 ARE STORED AS 0.000'
WRITE (*,100) ' NODE DX DY'

```

DO ID=1, NUMNODES, 2
\(J D=10+1\)
NMM \(=(J D / 2)\)
LRITE (*,*) NNUM, DUMMY(ID), DUMMY(JD)
EMODO
EMDIF
ENDIF
C \(\operatorname{WRITE}(*, 100)^{\prime * * 1}\) RETURN
END
C

sUBROUTINE BYVAL(NUMBDY, NUMNODES, MASTERK,
C FIMALR,IDIM,LASTR,FINALK,IDPLUSI,LSIG)
DOUBLE PRECISION MASTERK(NUMNODES, NUMNODES)
DOUBLE PRECISION FINALK(IDIM,IDPLUS1)

INTEGER IBDY(200)
COMNOW / IBINDX / IBOY
DOUBLE PRECISION BVAL(200)
COMMON/BOUNDVAL/BVAL
DOUBLE PRECISION FINALR(200)
DOUBLE PRECISION LASTR(200)
DOUBLE PRECISION TEMP
C This subroutine takes the appropriate boundary conditions from the C IBOY (indexed list of ROWS which have known boundary conditions) C and BVAL (the values associated with the known boundary conditions) \(C\) and substitute the proper values into the MASTERK array at each C time step. Note that the boundary conditions are not timeC dependent in this version.

100 FORMAT (A)
C ZERO OUT THE APFROPRIATE ROWS IN [MASTERK] AND [FINALR\}
```

DO I=1,NUMBDY
DO J=1,NUMMODES
MASTERK (IEDY(I),J)=0.000
EMDDO
FIMALR(IGOY(I))=0.000
ENDOO

```

C SUBTRACT THE APPROPRIATE VALUES FROM THE (FINALR) VECTOR AND ZERO OUT THE C APPROPRIATE COLURNS IN [MASTERK]
```

DO I=1,NUMBDY

```
DO \(\mathrm{J}=1\), NUMNODES
 FIMALR (J) =FINALR (J)-MASTERK (J,IBDY(I))*BVAL (I)
 MASTERK (J, ISDY(I)) \(=0.000\)
 ENODO
ENDDO
C MON, RESTRUCTURE T'AE ARRAY SO THAT THE "ZERO" ROWS AND COLUNNS ARE
C ELIMIMATED, AND T:E FINAL ARRAYS OF [K] AND (R) ARE PROPERLY DI-
C MENSIONED.
C FIRST, (R):
Iflag \(=0\)
C WRITE (*,100), 11, IFLAG'
DO II=1, NUMNODES
 IF (II.EO.IBOY(IFLAG+1)) THEN
 IFLAG =IFLAG+1
 ELSE
 \(\operatorname{LASTR}(1!-I F L A G)=F I N A L R(I I)\)
 EMDIF
ENDDO
VRITE (*, 1nn), 1, FINALR(I), LASTR(I)'
C DO \(1=1,101\) i
c MRITE(**) I,FINALR(I),LASTR(I)

\section*{c \\ EMODO}

C \(\begin{gathered}\text { ** }\end{gathered}\)
C THEN OMASTERKI:
C FIRST ROWS...

FLAG=0
DO II=1, NUMNODES
If (II.eq.iboy(iflag+1)) then IFLAG=1FLAG+1
ELSE
C ***NESTED COLUMN SORT***********************
JFLAG=0
DO JJ=1, NUMNDDES
If (JJ.EQ.IRDY(JFLAG+1)) THEN
\(J F L A G=J F L A G+1\)
ELSE
FINALK(!!-IFLAG,JJ-JFLAG)=MASTERK(II,JJ)
ENDIF
ENDDO

ENDIF
ENODO

C ...AND FINALLY AUJGMENT [FINALK] WITH (LASTR) FOR RETURN AND SOLUTION.
DO JJ=1, 101 M
FINALK (J1, IOPLUS1) \(=\) LASTR (JJ)
EMDOO
RETURN
END

C

```

    SUBROUTINE SIMULT(N,A,X,EPS,INDIC,NRC,Y)
    DOUBLE PRECISION Y(200),A(N,NRC),X(200)
    DOUBLE PRECISION EPS,PIVOT,DETER,AIJCK,SIMUL
    INTEGER INDIC,NRC,N
    INTEGER IROW(200),JCOL(200),JORD(200)
    C FROM "APPLIED NUMERICAL METHODS", B.CARNAHAN, H.A.LUTHER,
C J.O. WILKES. J.WILEY \& SONS,NEW YORK,'1969
CHAPTER 5, p. }27

```

```

C N NUMRER OF ROWS IN A
C A AUGMENTED MATRIX OF COEFFICIENTS
C X VECTIR OF SOLUTIONS
C EPS MINIMUM ALLOWABLE MAGNITUDE FOR A PIVOT ELEMENT
C INDIC COHFUTATIONAL SWITCH FOR SOLUTION TYPE
(+1 FOR NO INVERSE RETURNED)
NRC COLUMN DIMENSIONS FOR THE MATRIX [A] (N+1)
********************************************************************)
100 FORMAT (A)
M=1
NPLUSM=NRC
C BEGIN ELIMINATI":
DETER=1.0nn
DO 9K=1,N
C CHECK FOR A TON-: 'GLL PIVOT ELEMENT
IF (DABS(决,<)).GT.EPS) GO TO 5
WRITE (*,100)' PIVOT IOO SMALL...I QUIT!'
C NORMALIZE THE PIUJT ROW
K KP1=k+1
DO 6 J=KP`, \becauseRIUSM     6 A(K,j)=A(K,j)/A(K,K)     A(K,K)=1.[-n C ELIMIMATE THE K(IH) COLUMN ELEMENTS EXCEPT FOR THE PIVOT     DO 9 I=1, :     IF (I.EQ.K .OR. A(I,K).EQ.O.ODO) GO TO }     DO }8\mathrm{ J=KP!,":LUSM 8 A(I,J)=A(!, !-A(!,K)*A(K,J)     0 }\quadA(I,K)= C WRITE THE SOLUTINY VECTOR INTO (X) FOR RETURN DO II=1,N X(1!)=A(1!,N`C)
ENDDO
C THAT'S ALL FOLK`...
RETURN
END

```

SUBROUTINE SQUARBYCOL (ISPEC,SQUARE,COL,RESULT)
C Multiplies [SOUARE] by (COL) and produces (RESULT).
C Note that there is no safety check on dimensions here.
DOUBLE PP:?'SION SOUARE(ISPEC,ISPEC)
DOUBLE PRFCISION COL(ISPEC),RESULT(ISPEC)
100 FORMAT (A)
C VOOOO FORTP^N!!!!!!!!!!!!
C=1SPEC
C \(D O\) ID=1,ISPEC
C \(\quad A=C O L\) (I. \()\)
C \(D O\) JD \(=1,1\)-PEC

C ENDDO
C ENOOO
\(A=\operatorname{COL}(1)\)
B=SQUARE! . .•

C Clean House
DO \(I=1,1 S^{5}=?\)
RESULT (1) \(=0.000\)
ENDDO
C Do the nasty
DO IROW=1, : SOEC
DO ICOL=?, 1SPEC
C IF (DABS (S: JAKE (IROW, ICOL)*COL(ICOL)) .LE. 1.00-26) 60 TO 20 RESUL (\((I R O W)=R E S U L T(I R O W)+S Q U A R E(I R O W, I C O L) * C O L(I C O L) ~\)
20
CONTI:':
ENDDO
ENDDO
RETURN
END

Table 4. VISCO2.FOR

PROERAM VISCO2.FOR

Note that the formet hee been compreseed to fit the mergin requirements for publication.

\section*{Table 4 (Cont'd).}
```

Wote that the 1/0 convention applies to each subroutine as an independant
entity. From this, in a subroutine, values come in (1) and others are
returned (0).
subroutines which call another subroutine: then the call is made, values
care sent out (0) end others return to the caller (1). This is similar
c to double-entry bookkeeping in that there should be a motch between I and 0
C designetions throughout the progrem.

```


```

c
dECLARE COMOW STATEMENTS
INCLUDE ' KSTORE.FOR'

```
 DOUBLE PRECISION K(8,8)
 COMHON/NUM/WUMELS
 COWHON/NNBLOCK/MUNNODES
 DOUBLE PRECISIOW R(200)
 COHNOW/RBLOCK/R
 DOUBLE PRECISION COEFF(6)
 COMNOW/COEFFBLOCK/COEFF
 DOUBLE PRECISION TH
 COMHOW/THICKBLOCK/TH
 COMmOW/IDIMBLOCK/IDIM
 COMNON /NTS/MUMBEROFTIMESTEPS
 DOUBLE PRECISION TIMSTART, TIMINCR
 DOUBLE PRECISION NOOX(200),NODY(200)
 COWHON/NODE/MOOX,NODY
 INTEGER EI(325),EJ(325),EK(325),EM(325)
 COMHON/ELNODES/EI, EJ, EK,EM
 DOUBLE PRECISIOW MASTERK \(\mathbf{2 0 0 , 2 0 0)}\)
 COMHON/BIGK/MASTERK
 DOUBLE PRECISION A(3,3)
 COMHON/ABLOCK/A
 IMTEGER MUNSPYK
 COMOW/NS/MUNSTART, MUNSTOP
 INTEGER IBDY(200)
 COMHON/IBINDX/IBDY
 DOUBLE PRECISION BVAL(200)
 COMHON/BOMNDVAL/BVAL
 IMTEGER MUMBDY
 COMNON/BDY/NUMBDY
 IMTEGER IDPLUS1
 COMOW/IDP/IDPLUS1
```

            DOUBLE PRECISIOM KPAST(200,200)
            COWWON/KPASTBLOCK/KPAST
            INTEGER IRON(200), JCOL(200), JORD(200)
            COMHON/I JJ/I ROW, JCOL , JORD
            DOUBLE PRECISIOW KZERO(200,200)
            CONHON/KZ/KZERO
            DOUBLE PRECISION Y(200)
            COMNHON/WYE/Y
            DOUBLE PRECISION FIMALK(200,200),LASTR(200)
            COMMON/ENDO/FIMALK,LASTR
            INTEGER IBANDWIDTH
            COMNOW/IBW/I BANDWIDTH
            INTEGER ISTORFLAG
            COMMON/ISF/ISTORFLAG
                    SAVE
    FORMAT(A)

```

```

            VRITE (*.100)' V1.7'
            URITE (*,100)'
            URITE (*,100)'
                    COTT MORRIS .
                        Michigan State University }199
    ```

```

C
C

```

```

C OPEN FILES
C This block of commends opens, labels, and numbers the appropriate files for
C use by VISCO1 with the exception of the series of files needed for [K(t)]
C storage, as those are created as needed.
OPEN (3, FILEE'GENERAL_DATA', STATUS= 'OLD')
REWIND 3
OPEN (9, FILE='BOUNDARIES', STATUS= 'OLD')
REWIND }
C

```

```

C READ IN INITAL DATA
C This reads in some of the necessary parameters to operate some of
c the arrays used in this program.
READ (3,*)MMMELS, NumberOfNodes
MUNNODES=NumberOfNodes*2
MMNN=NUNNODES
READ (3,*)(COEFF(I),I=1,6)
READ (3,*)MMMBEROFTIMESTEPS
READ (3,*)NUHSTART,MUNSTOP
READ (3,*)TIMSTART,TIMINCR
READ (3,*)ISTORFLAG
CALL MAKEARRAYS

```
\(T H=1.000\)

```

VRITE (*,100) COEFF 1 -. 6'

```
\(00 \mathrm{~J}=1,6\)
WRITE (* *) \(\mathrm{H}, \operatorname{COEFF}(\mathrm{d})\)

ENDDO
close (3)
C Read in the known boundary conditions from the 'boundaries.dat file URITE (*, 100)' \({ }^{\prime}\)
 LRITE (*',100) - MMBER OF KNOWN DISPLACEMENT VALUES:'
 READ (\(9, *\)) MMBSDY
 LRITE (\({ }^{(*)}\)) MMEPOY
 WRITE (*, 100)' \({ }^{\prime}\)
 WRITE (\(*, 100\)) ' DIRECTION IMDICATOR: \(x=1 \quad y=0\),
 WRITE (*,100) MODE DIRECTION VALUE'
 DO IE1, MMACDY
 READ \((9, *)\) IBNDX, IDIR, BVAL(I)
 WRITE (*,*) IBNDX,IDIR,BVAL(I)
 WRITE (*, 100)' '
C IDIR: \(X=1 \quad Y=0 \quad\) FOR 2-D PROBLEMS
 IBDY(1) \(=(1 B M D X * 2)-\) IDIR
 EMDDO
 CLOSE (9)
C* Once arrays are ready, construct the series of [K(t)] values.
C for all of the timestepe in the problem.
 WRITE (*,100)' STORING [K] MATRICES FOR \(\cdot\)
 DO 5,NT=0, MMBEROFTIMESTEPS
 CALL MAKEA(NT,TIMINCR,TIMSTART)
C \(1 \quad 0\)
 CALL MAKESHAPES(MASTERK, MUMNODES)
C 0 O 0
 CALL STOREMASTERK(NT,MASTERK, MUMNODES)
5 COntimue
C. Solve the time-dependent problem, once all of the \([\mathrm{K}]\) values are
C ready and stored.
 NKPLUS \(1=\) NUMNOOES +1
 IDIM = NUMNCOES - MUMBDY
 IDPLUS1=IDIM+1
 CALL SOLUTIOW(NUMNODES, NNPLUS1, KZERO, IDIM, IDPLUS1, FIMALK,
 C LASTR)
 WRITE (*, 100) ' SOLUTION COMPLETEDIIIII'
 STOP
 END
C
```

c
SUBROUTINE MAKEARRAYS
C This subroutine sets up the indexed array of node and element values used
C by the [K] generation loops.
INTEGER WOONO,IELMO
COMMOW/MMN/MUMELS
DOVBLE PRECISION WOOX(200),MOOY(200)
COWHOW/MODE/NOOX,NOOY
INTEGER EI(325),EJ(325),EK(325),EM(325)
COMNOW/ELMODES/EI,EJ,EK,EM
INTEGER IBANDWIDTH
COMNOW/IBW/IBANDHIDTH
INTEGER ISUB(4)
OPEN (4, FILE='ELEMENT_DATA', STATUS= 'OLD')
REWIND 4
C Create en array of indexed x\& y values associated with each node
100 FORMAT (A)
110 FORMAT (A,I2)
20 CONTINUE
NRITE(*,100) NODE X YI
READ (4,*) NODNO
IF (NODNO .EQ. -1) CO TO 23
READ (4,*) NODX(NODNO), NODY(MODNO)
WRITE (*,*) NODNO,NODX(NODNO),NODY(MODNO)
CO TO 20
23 MRITE (*.100)',
WRITE (*.100) ELEMENT \ J K
C
CONTIMUE

* Produce en index of nodal values associated with each element
READ (4,*) IELNO
IF (IELNO .EQ. -1) CO TO 25
READ (4,*) EI(IELNO), EJ(IELNO), EK(IELMO), EM(IELNO)
c BANDWIDTH CALCULATION
ISUB(1)=EI(IELNO)
ISUB(2)=EJ(IELNO)
ISUB(3)=EK(IELNO)
ISUB(4)=EN(IELNO)
C IS IT A TRIANGULAR ELEMEMT?
IF (EM(IELMO).EQ.0) THEN
KOUNT=3
ELSE
KOUNT=4
ENDIF
IMAX $=0$IMIN $=0$DO $J J=1$,KOUNTIf (ISUB(JJ).GT.IMAX) IMAX=ISUB(JJ)
ENDOO
IMIN=IMAX
DO JJ=1,KOUNT
IF (ISUB(JJ).LT.IMIN) IMIN=ISUB(JJ)
ENDDO
C calculate elemental banduidth
IMTEIF $=($ (IMAX-IMIN) +1 )*2
C is it the largest in the gridit
IF (INTBW.GT.IBANDWIDTH) IBANDWIDTH=INTBW
C END OF BANDHIDTH CALCULATION
WRITE (*.*) IELNO,EI(IELNO),EJ(IELNO),EK(IELMO),EM(IELNO)
CO TO 24
25 CONTINUE
MRITE (*,110) ' BANDWIDTH=',IBANDWIDTH
RETURN
ENO
C

```
c
 SUBROUTINE MAKEA(NT,TIMINCR,TIMSTART)
 DOMBLE PRECISION TIMEVAL,TIMIMCR,TIMSTART
 DOUBLE PRECISIOW A(3,3)
 DOUBLE PRECISION COEFF(6)
 DOUBLE PRECISIOW G1,G2,B,C,D
 COWHOW/COEFFBLOCK/COEFF
 COMHON/ABLOCK/A
 FORMAT (A)
101 FORMAT (A,12)
101 FORMAT (A,12)
C Calculate the value of the timestep in seconds:
 TIMEVAL=(NT*TIMINCR)+TIMSTART
 VRITE (*.102) ' TIMESTEP',NT,TIMEVAL.' Sec'
```



```
C This Subroutine computes the values for \(E\) and MU at some time-step WT. It C utilizes a-parameter exponential decay model for the elastic modulus and
C Poisson's ratio. The COEFF array contains the necessary coefficients.
\(E L M=\operatorname{COEFF}(1)+\operatorname{COEFF}(2) * \operatorname{DEXP}(-1.000 *(\operatorname{COEFF}(3) * T I M E V A L))\)
write (*,*) ELM
PR=COEFF \((4)+\operatorname{COEFF}(5) * \operatorname{DEXP}\left(-1.000^{* *}(\operatorname{COEFF}(6) * T I M E V A L)\right)\)
C Note that most models hold MU constant, so that COEFF5 \& COEFF6 are
C usually 0 .
```



```
C This part takes the \(E\) and MU values for the current time value
\(C\) and returns the [A] matrix for that time value.
40 B=ELM/(1.000-(PR**2.000))
\(A(1,1)=B\)
\(A(2,2)=B\)
\(A(3,3)=B *(1.000-P R) / 2.000\)
\(A(1,2)=P R * B\)
\(A(2,1)=A(2,1)\)
\(A(1,3)=0.00\)
\(A(2,3)=0.00\)
\(A(3,1)=0.00\)
\(A(3,2)=0.00\)
C write (*,100) ([a] matrix values'
C DO IRON=1,3
```



```
C ENODO
50 continue
RETURM
END
c
``` \(\qquad\)

\section*{C}

\section*{SUBROUTIME MAKESHAPES(MASTERK,MUMNODES)}

DOUBLE PRECISION MASTERK (NUMWCDES,MMMNODES)
DOUBLE PRECISION K(8,8)
COMHON/MUM/NUMELS
INTEGER EI(325),EJ(325),EK(325),EM(325)
COWHON/ELNODES/EI,EJ,EK,EM
format (a)
IEIGHT=8
C -This subroutine through each of the elements and (using the proper
c subroutine) develops an elemental [k] matrix to be added into the [K] via c the MERGEK subroutine.

C* Put the two together and route to appropriate calculation of [k] for
C each element then add the value for that element into the global [K]
C But first, the MASTERK must be cleared from the last time-step.
DO II=1, MUMNODES
DO JJ=1, NUMNODES
MASTERK (II, JJ) \(=0.000\)
EMDDO
ENDDO

C Proceed to assemble next MASTERK
DO 30, IE Lement 1 , NUMELS
If (EM(IElement).EQ.0) THEN
c
CALL TRIANGLELEM(IElement, K) CO TO 27
ENDIF
C
CALL SQUARELEM(IELEMENT,K)
27 continue

c
00
CALL MERGEK (K, IEL ement, MASTERK, MUMNODES)
C Note that MERGEK merges the element's [K] value into the COMmON MASTERK()
C and does not return any value.
30 continue

RETURN
EMD

C \(\qquad\)

```

C I O
suBROUTINE TRIANGLELEM(IElement,K)
DOUBLE PRECISION K(8,8)
DOUBLE PRECISION NOOX(200),NODY(200)
COMNON/WODE/NODX,NODY
INTEGER EI(325),EJ(325),EK(325),EM(325)
COMNON/ELNOOES/EI,EJ,EK,EM
DOUBLE PRECISION TH
COMMON/THICKBLOCK/TH
DOUBLE PRECISION A(3,3)
COMNON/ABLOCK/A
DOUBLE PRECISION XI,XJ,XK,XM,YI,YJ,YK,YM,BI,BJ,BK,CI,CJ,CK
DOUBLE PRECISION X(3),Y(3),B(3,6),C(6,3),AR2,SUN
C This subroutine uses the brute-force calculations in TRIANGLECALC
C to produce a [k] for the selected element.
100 FORMAT (A)
c NRITE (*,100) ' DUMP IN TRIANGLELEM'
c WRITE (*,*) IELEMENT, EI(IELEMENT), EJ(IELEMENT), EK(IELEMENT)
XI=NOOX(EI (IE (ement))
XJ=MOOX(EJ(IEl ement))
XK=NOOX(EK(IE (ement))
YI=NODY(EI(IEl ement))
YJaNOOY(EJ(IE (ement))
YK=NODY(EK(IE (ement))
X(1)=XI
x(2)=xJ
X(3)=XK
Y(1)=YI
Y(2)=YJ
Y(3)=YK
C (丁)
C \# *
C * What follows is from "Applied finite Element Analysis"
C * Larry J. Segerlind, J Wiley \& Sons, 1984
C* P. 347

```

```

C CLEAN HOUSE:
DO \=1,8
DO J=1,8
K(1,j)=0.000
ENDDO
ENDDO
DOI=1,3
DO J=1,6
B(1,J)=0.000
C(J.1)=0.000
ENDDO
ENDDO

```
```

C GEMERATE THE (B) MATRIX

```
\(B(1,1)=Y(2)-Y(3)\)
\(B(1,3)=Y(3)-Y(1)\)
\(B(1,5)=Y(1)-Y(2)\)
\(B(2,2)=X(3)-x(2)\)
\(B(2,4)=x(1)-x(3)\)
\(B(2,6)=X(2)-x(1)\)
\(B(3,1)=B(2,2)\)
\(B(3,2)=B(1,1)\)
\(B(3,3)=B(2,4)\)
\(B(3,4)=B(1,3)\)
\(B(3,5)=B(2,6)\)
\(B(3,6)=B(1,5)\)
AR2 \(=X(2) * Y(3)+X(3) * Y(1)+X(1) \star Y(2)-X(2) \star Y(1)-X(3) \star Y(2)-X(1) \star Y(3)\)
C MATRIX MULTIPLCATION TO OBTAIN C \(=\) [BT)[A]
\(001=1,6\)
DO \(\mathrm{J}=1,3\)
\(C(1, j)=0.000\)
DO \(L=1,3\)
\(C(1, J)=C(I, J)+B(L, 1) * A(L, J)\)
EMDDO
EMDDO
EMDDO
C matrix multiplication to obtain [k] where
C \([K]=(B T)[A](B)=\{C)(B)\)
DO \(271=1,6\)
DO 27 J=1,6
Sull 0.000
\(0028 \quad L=1,3\)
\(28 \quad \operatorname{SUN}=S(M+C(I, L) * B(L, J)\)
\(K(1, J)=S U M * T H /\left(2.000^{*} A R 2\right)\)
27 CONTINUE
C RETURN [K]
RETURN
END
C \(\qquad\)
C ..... 10SUBROUTINE SQUARELEM(IElement, \(k\) )DOUBLE PRECISION \(k(8,8), C(6)\)
DOUBLE PRECISION NODX(200), NOOY(200)
COMHON/WODE/NODX,NODY
DCUBLE PRECISION A(3,3)
COMKON/ABLOCK/A
DOUBLE PRECISION AA,B
DOUBLE PRECISION TH
COMNOW/THICKBLOCK/TH
INTECER EI(325),EJ(325), EK(325),EM(325)
COMHON/ELNODES/EI,EJ,EK,EM
DOUBLE PRECISION XI,XJ,XK,XM,YI,YJ,YK,YM
C This subroutine uses the brute-force calculations in sounrecalcC to produce a [k] for the selected element.
100 FCRMAT (A)
XI =NODX(EI(IE ( ement))
XJ=HOOX(EJ(IElement))
XN=NODX(EM(IEl ement))YI \(=N O D Y(E I(I E(\) ement))YJ=NODY(EJ(IE (ement))YMaNODY(EM(IEl ement))
M=0.500*DSQRT ( ( \((X M-X I) * * 2.000)+((Y M-Y I) * * 2.000))\)B=0.500*DSORT ( ( \(X J-X I) * * 2.000)+((Y J-Y I) * * 2.000))\)
\(C(1)=T H^{*}\left((A(1,1) \star A A) /\left(6.000^{*} B\right)\right)\)
\(C(2)=T H^{\star}\left((A(1,1) \star B) /\left(6.000^{*} A A\right)\right)\)
\(C(3)=T H^{*}(A(1,2) / 4.000)\)
\(C(4)=\) TH \(^{\boldsymbol{*}}(A(3,3) / 4.000)\)
\(C(5)=T H^{*}\left((A(3,3) * A A) /\left(6.000^{*} B\right)\right)\)
\(C(6)=T H^{*}\left((A(3,3) * B) /\left(6.000^{*} A A\right)\right)\)c0 I
CALL RECTANGLECALC ( \(C, k\) )
RETURN
EMD
c \(\qquad\)

SUBROUTINE MERGEK (K, IE Lement ,MASTERK, NUMNODES)
DOUBLE PRECISION MASTERK (NUMNODES, MUMNODES)
COMION/MUN/NUMELS
DOUBLE PRECISION K(8,8)
IMTEGER SK(8)
IMTECER EI(325),EJ(325),EK(325),EM(325)
COMHON/ELNODES/EI,EJ,EK,EM
100
FORMAT(A)
C - This Subroutine adds the [K] for some element into the global [K]
C for some time-step.
C -Masterk is Global [K] for a given time step.
C -IEL Contains the nnde-list for the element.
C-NEL Number of elements.
SK(1)=2^EI(IELEMENT)-1
\(\operatorname{sK}(2)=2 \star E 1(I E L E M E N T)\)
EK(3) \(=2 \star E J(\) IELEMENT \()-1\)
SK(4) \(=2 \star E J(I E L E M E N T)\)
SK(5)=2*EK(IELEMENT)-1
SK(6) \(=2\) *EK (IELEMENT)
C This skips the EM for the triangular element to avoid
C SK(7) and SK(8) \(=-1\) and MERGEs the square element.
IF (EM(IELEMENT).NE.0) THEN
\[
\operatorname{SK}(7)=2^{\star E M}(: \text { ELEMENT })-1
\]

SK(8)=2*EM (IELEMENT)

DO 15, \(1=1,8\) DO 10, \(J=:, 3\) MASTERK (CK (I) , SK ( \(J\) ) ) =MASTERK (SK (I) ,SK ( \((\mathrm{d}))+K(I, d)\) CONTINUE
10
15 CONTINUE
15
ELSE
C This is the MERGE routine for the TRIANGULAR element occurrs.
\(20 \quad D 035,1=1,6\) DO 30, J=1,5 \(\operatorname{MASTERK}(S K(I), \operatorname{SK}(J))=\operatorname{MASTERK}(S K(I), \operatorname{SK}(d))+K(I, d)\) CONTINUE
CONTINUE

\section*{EMDIF}

RETURM
END
c \(\qquad\)

C
```

SUBROUTINE RECTANGLECALC(C,k)
DOUBLE PRECISION C(6),K(8,8)
FORMAT (A)
C IMCORPORATE SOME KIND OF THICKNESS TERM HEREI!I!

```
```

K(1,1)=2.000*(C(1)+C(6))

```
K(1,1)=2.000*(C(1)+C(6))
K(1,2)=C(3)+C(4)
K(1,2)=C(3)+C(4)
K(1,3)=-2.000*C(1)+C(6)
K(1,3)=-2.000*C(1)+C(6)
K(1,4)=C(3)-C(4)
K(1,4)=C(3)-C(4)
K(1,5)=-1.000* (C(1)+C(6))
K(1,5)=-1.000* (C(1)+C(6))
K(1,6)=-1.00?*(C(3)+C(4))
K(1,6)=-1.00?*(C(3)+C(4))
K(1,7)=C(1)-2.000*C(6)
K(1,7)=C(1)-2.000*C(6)
K(1,8)=-1.00:C(3)+C(4)
K(1,8)=-1.00:C(3)+C(4)
K(2,1)=K(1, 2)
K(2,1)=K(1, 2)
K(2,2)=2.000*(C(2)+C(5))
K(2,2)=2.000*(C(2)+C(5))
K(2,3)=-1.000*C(3)+C(4)
K(2,3)=-1.000*C(3)+C(4)
K(2,4)=C(2)-2.ODO*C(5)
K(2,4)=C(2)-2.ODO*C(5)
K(2,5)=-1.0C\cap*(C(3)+C(4))
K(2,5)=-1.0C\cap*(C(3)+C(4))
K(2,6)=-1.00)*(C(2)+C(5))
K(2,6)=-1.00)*(C(2)+C(5))
K(2,7)=C(3)-C(4)
K(2,7)=C(3)-C(4)
K(2,8)=-2.0 }~*C(2)+C(5
K(2,8)=-2.0 }~*C(2)+C(5
K(3,1)=K(1,3)
K(3,1)=K(1,3)
K(3,2)=K(2,3)
K(3,2)=K(2,3)
K(3,3)=2.00 n*(C(1)+C(6))
K(3,3)=2.00 n*(C(1)+C(6))
K(3,4)=-1.0! \cdots.C(3)+C(4))
K(3,4)=-1.0! \cdots.C(3)+C(4))
K(3,5)=C(1) - . DO*C(6)
K(3,5)=C(1) - . DO*C(6)
K(3,6)=C(3)\cdots...)
K(3,6)=C(3)\cdots...)
K(3,7)=-1.0r - (C(1)+C(6))
K(3,7)=-1.0r - (C(1)+C(6))
K(3,8)=C(3)+!...)
K(3,8)=C(3)+!...)
K(4,1)=K(1,4
K(4,1)=K(1,4
K(4,2)=K(2,
K(4,2)=K(2,
K(4,3)=K(3,4
K(4,3)=K(3,4
K(4,4)=2.00 \cdots'.(2)+C(5))
K(4,4)=2.00 \cdots'.(2)+C(5))
K(4,5)=-1.0r\cdots(3)+C(4)
K(4,5)=-1.0r\cdots(3)+C(4)
K(4,6)=-2.0}0+\cdots(2)+C(5
K(4,6)=-2.0}0+\cdots(2)+C(5
K(4,7)=C(3)+C(.)
K(4,7)=C(3)+C(.)
K(4,8)=-1.0 0- (C(2)+C(5))
K(4,8)=-1.0 0- (C(2)+C(5))
K(5,1)=K(1, }\mp@subsup{}{}{\prime
K(5,1)=K(1, }\mp@subsup{}{}{\prime
K(5,2)=K(2,
K(5,2)=K(2,
K(5,3)=K(3,
K(5,3)=K(3,
K(5,4)=K(4,
K(5,4)=K(4,
K(5,5)=2.00 }\quad\cdots(1)+C(6)
K(5,5)=2.00 }\quad\cdots(1)+C(6)
K(5,6)=C(3) 
K(5,6)=C(3) 
K(5,7)=-2.0}\cdot:(1)+C(6
K(5,7)=-2.0}\cdot:(1)+C(6
K(5,8)=C(3)-r.4)
K(5,8)=C(3)-r.4)
K(6,1)=K(1,r
K(6,1)=K(1,r
K(6,2)=K(2,4
K(6,2)=K(2,4
K(6,3)=K(3,
K(6,3)=K(3,
K(6,4) =K(4,
K(6,4) =K(4,
K(6,5)=K(5,
K(6,5)=K(5,
K(6,6)=2.0C\cdots (C(2)+C(5))
K(6,6)=2.0C\cdots (C(2)+C(5))
K(6,7)=-1.0: - + ( 3)+C(4)
K(6,7)=-1.0: - + ( 3)+C(4)
K(6,8)=C(2) ` . '`0*C(5)
```

K(6,8)=C(2) ` . '`0*C(5)

```
C This subroutine returns a brute force solution to the calculation of the
C [K] matrix for the RECTANGULAR element. Ugly but fast.

131
```

K(7,1)=K(1,7)
K(7,2)=k(2,i)
K(7,3)=k(3,i)
K(7,4)=K(4,7)
K(7,5)=K(5,7)
K(7,6)=K(6,
K(7,7)=2.00 \cdots(c(1)+C(6))
K(7,8)=-1.0 \cdots (C(3)+C(4))
K(8,1)=K(1,8)
K(8,2)=K(2,?
K(8,3)=K(3,
K(8,4)=K(4,8)
K(8,5)=K(5,?
K(8,6)=K(6,8)
K(8,7)=K(7, \Omega)
K(8,8)=2.00
C PTHICKNESS ;`CTOR HERE|||||||||||l||
RETURN
END
C

```

```

 GUBROUTINE STOREMASTERK(NT,MASTERK,MUMMODES)
 C STORE the values for [K(t)] in a unique file, once the values have been
C calculated.
IMCLUDE ' KSTORE.FOR'
DOUBLE PRECISION MASTERK(NUMNOOES,NUMNODES)
COMNON/NUM/NUMELS
IMTEGER IBANOWIDTH
COMHON/IBW/IBANDWIDTH
CHARACTER*15 fILENAME
C Note that this on!y stores the diagonal and upper values of the [K]
C matrix. IF IT AIN'T SYMMETRICAL IT'S CONMA BEII
100 FORMAT (A)
C WRITE (*.100)' TEST DUMP BEFORE STORAGE IM STOREMASTERK'
C DO ITEI,NUMNORES
C DO JT={,N,\cdotsMDES
MRITE (*.:``) IT,JT,MASTERK(IT,JT)
ENDDO
ENDDO
50 format (13,i3, ©'2.4)
C Column Matrix Storage Conversion mateme
ICOUNTER=1
DO 55,1ROW=?,N'MNODES
IF ((IROW+!?ANDWIDTH).GE.NUMNOOES) THEN
MAXCOL = :M,MODES
ELSE
MAXCOL ='\cdots':-IRANDWIDTH-1
ENDIF
00 50,ICOL = ?!OW,MAXCOL
C WRITE (*,*) NT, ICOUNTER, IRON, ICOL
STOREDK(NT,' ~N'NTER)=MASTERK(IRON,ICOL)
ICOUNTER=IC\cap!':YER+1
50 CONTINUE
55 CONTIMUE

```

```

 RETURN
 END
 C

```
```

C
SUBROUTINE SOLUTION (NUMNODES,NNPLUSI,KZERO,IDIM,IDPLUSI,FIMALR,
c LASTR)
IMCLUDE ' KSTORE.FOR'
DOUBLE PRECISION KINTER(200,200)
DOUBLE PREC!SION KZERO(NUMNODES,NNPLUSI)
DOUBLE PRECIS:ON FINALK(IDIM,IDPLUSI)
INTEGER NRC
COHMON/MUM/AM"MS!S
COWNON/RBLOCK/R
COWMON/BDY / N! !Mg\Y
COMNOW/IBW/IGSNOWIDTH
COMNON /NTS/NUMREROFTIMESTEPS
DOUBLE PREC:SION R(200),FINALR(200)
DOUBLE PREC:S:ON DELU(2OO)
DOUBLE PREC:`:`N LASTR(200)
DOUBLE PREC!S:`v Y(200) FORMAT (A) C This subrourins retrieves the appropriate C values for : .)], [dU] etc. and steps through the appropriate sets of C solutions. Ex: first the [K(0)] values must be retieved. NT=0 C * *) C This unpack , hn [K] matrix from the appropriate column C Of the STO ...!ME,COLUMN) array. WRITE (*,*: `OnES, IBANDWIDTH
ICOUNTER=1
DO IROW=1, N:MNODES
IF ((IRO':':\MO:NIDTH).GE.NUMNODES) THEN
MAXCOL - `...DES ELSE MAXCOL = ! -!!+!BANOWIDTH-1 EMDIF C WRITE (*,1m), MAXCOL' C WRITE (***!`*`OL DO ICOL=' - .'IA MCOL C C WRITE (*,1r ` mNW,ICOL,KZERO(IROW,ICOL)
ENDDO
ENDDO

```
```

C ********** END OF UNPACKING ROUTINE **************
150 format (13,i3,e12.6)
C write (*,100)' test dmap after retrieval routine in SOLUTIOW'
C DO II=1,NUNWCOES
C DO JJ=1,NUNWCDES
MRITE (*,150) 11,JJ,KZERO(II,JJ)
EMDDO
Em00O

```

```

C Retrieve the (R) vector's value
C MOTE: Because of a glitch in WWS-FORTRAN (R) is passed via
C a common statement.
DO NT=1,MUMBEROFTIMESTEPS
C 0 0
CALL FINDR(NT,NUNNODES)
C Subtract the stresses from the provious timestepe
C 1 0 0 0 0 0
CALL SUBRESIDUAL(FIMALR,MT,KINTER)
C Account for the known boundary conditions
C Clllllllllllllll
CALL BYVAL(MUMBDY,NUNNOOES,KZERO, FIMALR,IDIM,LASTR, FIMALK,
C IDPLUS1,0)
C MOTE: FIMALK is the ougmented motrix containing the remoining
C simultaneous equations to be solvad.
C Attempt a solution:
C Lrite (*,100) ' SImult called, del-{U) values follow'
CALL SIMULT(IDIM,FIMALK,DELU,1.00-25,1,IDPLUS1,Y)
C Store the results, AFTER re-inserting known boundary conditions.
CALL STOREDELU(DELU,NT,MUWNODES)
C Print the results
C CALL PRINTDELU()
ENDDO
RETURN
EMD
c

```

```

 EUBROUTINE FIMDR(NT,MMMNODES)
 DOUBLE PRECISIOW R(200)
 DOUBLE PRECISION VAL
 IMTEGER INDEX,IDIR
 COMMON/MMH/MMELS
 COMNON/NS/MUNSTART, MMHSTOP
 COMNOW/RBLOCK/R
 CHARACTER*15 FILEMAKE
 C This subroutine develope the value of (R) for timestep muber NT (actual
C time value of TIMEVAL(NT) seconds) and readies it for the subtraction of the
C residual stress values.
100 FORMAT (A)
IF (NT.GE.MUNSTART .AND. MT.LE.MUNSTOP) THEM
NN=1
ELSE
MNN=0
ENDIF
C This epplics a stepped input between MUMSTART and MMNSTOP time intervals
C which requires the availebility of RMMMBERI and RMMNBERO files. A Dirac
C spike has the same value for MUNSTART and MUNSTOP. Other input shapes
C may be created by modifying the values of the function and letting
C MN=NT during the relevant time-frame.
WRITE (FILENAME,50)'RMUMBER',NM
FORMAT (A,12)
OPEM (20,FILE=FILEMANE, STATUS='OLD')
REWIND 20
C WRITE (*,100) ' FILEMAME:'
c WRITE(*,100) FILEMAME
C Set the whole vector to 0.000
DO I=1,MUNNOOES
R(1)=0.000
ENDDO
C Read the non-zero values of R from the appropriate file
C Remember: x=1, y=0
READ (20,*)MUNRVAL
WRITE (*,100)
DO J=1,MUMRVAL
READ(20,*) INDEX,IDIR,VAL
NEWINDEX=(1NDEX*2)-IDIR
R(NEWINDEX)=VAL
WRITE (***) INDEX, IDIR, VAL, NEWIMDEX
ENDDO
IF (NT .LE. 2) THEN
URITE (*.100)'
WRITE (*,50) ' (R) VECTOR FOR TIMESTEP',NT
WRITE (*,100) NONE X,
WRITE (*.,100)'
ENDIF

```
DO ID=1, MUMWCDES, 2\(J D=10+1\)
MMNFJD/2
            IF (NT .LE. 2) THEM
            WRITE ( \({ }^{(*)}\) ) WNUN,R(ID),R(JD)
ENDIF
ENDDO
CLOSE(20)
RETURN
END
C

```

C
SUBROUTINE SUBRESIDUAL(FIMALR,MT,KINTER)
C This subroutine subtracts the residual force, from provious timestepe
C from the current (R) value.
INCLUDE ' KSTORE.FOR'
COMNON /IDIMBLOCR/IDIM
COHNOW/NNBLOCK/MUNNCDES
COMNON/NUM/MUNELS
COHHON /NTS/WUNBEROFTIMESTEPS
COMHON/IBINDX/I IBYY
COMNON/BDY/NUMBDY
COMNON/RBLOCK/R
COMNOW/KPASTBLOCK/KPAST
COHMOW/IBW/IBANDWIDTM
INTEGER IBANDWIDTM
INTEGER IBOY(200),NMNNODES
DOUBLE PRECISIOW DU(200),DUNMY(200)
DOUBLE PRECISIOW R(200),RESID(200),FIMALR(200)
DOUBLE PRECISION RINTER(200),DUINTER(200)
DOUBLE PRECISION KPAST(200,200)
DOUBLE PRECISIOW KINTER(IDIM,IDIM)
DOUBLE PRECISION SUM
CHARACTER*15 FILEDELU
CHARACTER*15 FILEKMM
101 FORMAT (A,12)
100 FORMAT (A)
WRITE (*,100) ' IDIM IM SUBRESIDUAL'
WRITE (*,*) IDIM
WRITE (*,101) ' TIMESTEP MUMBER',NT
MTPLUS1=NT+1
IEND=NT-1

```

```

 DO 80,I=0,IENO
 J=NT-1
 C This extracts [K(t)] from the appropriate column of
C the STOREDK(TIME, Element) array.
ICOUNTER=1
DO IRON=1,MUNNCDES
IF ((IROW+IBANDNIDTH).GE.MUNNODES) THEN
MAXCOL =MUMNODES
ELSE
MAXCOL=1ROM+IRANDWIDTH-1
ENDIF
DO ICOL=IROW,MAXCOL

```
KPAST(ICOL, IROW)=STOREDK ( J, ICOUNTER) KPAST(IRON, ICOL) =KPAST(ICOL, IROW) ICOUNTER=ICOUNTER+1
EMDDO
```

ENDDO


```
150 format (13,i3,e12.4)
C write (*,100)" test duap after retrieval routine IM subresidual'
C DO IIE1,MUNMODES
C DO JJ=1,MUNWODES
        WRITE (*,150) II, dJ,kpast(II, JJ)
        EMDOO
    ENDDO
```



```
CWRITE (*,100) I I KK DELUSTORED(I,KK)'
    DO KK=1,MUMNCDES
    DU(KK)=DELUSTORED (I,KK)
    LRITE (*,*) I,KK,DELUSTORED(I,KK)
        ENDDO
C End of extraction (
C Collapse the [KPAST] and (DU) matrices according to the boundary
C conditions associated with the CDU3's timestep index.
C DO (DU} first, proctucing CDUINTER):
    IFLAG=0
    DO II=1, MUMNODES
        IF (II .EQ. IBDY(IFLAG+1)) THEN
        l FLAG=IFLAG+1
        ELSE
            DUINTER(II-IFLAG)=OU(II)
        ENDIF
        EMDOO
C Then [KPAST] proctucing [KINTER].
C This is nested sort similar to the BYVAL() subroutine.
C Rows first:
IFLAG=0
DO II=1, MMNNODES
    IF (II .EQ. IBDY(IFLAG+1)) THEN
        IFLAG=IFLAG+1
    ELSE
C Then columas:
JFLAG=0
DO JJ=1, MUNNODES
IF (JJ .EQ. IEDY(JFLAG+1)) THEN JFLAG=JFLAG+1
ELSE
C NRITE ( \({ }^{(100)}\) - 11 IFLAG JJ JFLAG'
C WRITE (*, \({ }^{*}\) ) II, IFLAG, Jd,JFLAG
KINTER(II-IFLAG,JJ-JFLAG)=KPAST(II, JJ)
ENDIF
ENDDO
```

EMDIF
EMDDO
LRITE (*, 100) ' BEFORE SOBYCOL'

```
    URITE (*,101)' IDIM = ',IDIM
    DO JJ=1,IDIM
    WRITE (*,*) Jd,DUINTER(JJ)
    DO KK=1,IDIM
        VRITE (*,*) JJ,KK,KINTER(JJ,KK)
    ENDDO
    ENDDO
C multiply [KINTER] by (DUINTER) to procuce a "compressed" [RIMTER)
    CALL SOUARBYCOL(IDIM,KINTER,DUIMTER,RIMTER)
c LRITE (*.100) ' AFTER SQAREBYCOL CALL -COMPRESSED-1
c DO NN=1,NUNNODES
c WRITE (*.*) NN,RINTER(NN)
c ENDDO
C munpack" the (RINTER) values into the appropriate rows of (RESID)
    IFLAG=0
    DO II=1, NUNNOOES
    IF (II .EQ. IBOY(IFLAG+1)) THEN
C If this is a woletedm row, regenerate the (RESID(II)) value from the
C appropriate row and column of [KPAST] and [DU]
```

```
                SUN=0.000
```

 SUN=0.000
 DO KK=1,MUNNODES
 DO KK=1,MUNNODES
 IF (DU(KK).LE. 1.00-25) DU(KK)=0.000
 IF (DU(KK).LE. 1.00-25) DU(KK)=0.000
 SUM=SUM+KPAST(IBDY(IFLAG+1),KK)*OU(KK)
 SUM=SUM+KPAST(IBDY(IFLAG+1),KK)*OU(KK)
 ENDDO
 ENDDO
 RESID(11)=SUM
 RESID(11)=SUM
 IFLAG=1FLAG+1
 IFLAG=1FLAG+1
 ELSE
 ELSE
 C If not, copy the value from (RINTER) and subtract the necessary
C If not, copy the value from (RINTER) and subtract the necessary
C coefficients (which are carried through from the solution of the
C coefficients (which are carried through from the solution of the
C system of compressed equations).
C system of compressed equations).
RESID(II)=RINTER(II-IFLAG)
RESID(II)=RINTER(II-IFLAG)
DO LLE1,MUMBDY
DO LLE1,MUMBDY
RESID(II)=RESID(II)+KPAST(II,IBDY(LL))*OU(IBDY(LL))
RESID(II)=RESID(II)+KPAST(II,IBDY(LL))*OU(IBDY(LL))
ENDDO
ENDDO
C Finally, subtract the residual terme generated for this series of
C Finally, subtract the residual terme generated for this series of
C arrays from the original force vector (R)
C arrays from the original force vector (R)
ENDIF
ENDIF
ENODO
ENODO
c write (*,100)' in subresidual!
c write (*,100)' in subresidual!
c write (*,100) ' n r(n) resid(n)'

```
c write (*,100) ' n r(n) resid(n)'
```

```
DO M=1, MMNCOES
C WRITE (***) W,R(N),RESID(N)
    R(N)=R(N)-RESID(N)
    ENODO
80 CONTIMUE
```

C Copy whatever is left into (FIMALR] for return from the subroutine.
C write (*,100) at and of sub resid.
$c \quad$ write (*, 100) ${ }^{\prime} n \quad r(n) \quad f i n a l r(n)^{\prime}$
c
\mathbf{c}
\mathbf{c}
DO M=1, NUNNCOES
write (*,*) M,R(W),FIMALR(W)
EMDDO
DO M=1, Munncoes
FIMALR(N) $=$ R(N)
Emodo
RETURN
C
ENO
\qquad


```
    SURROUTINE STOREDELU(DELU,MT,MUMNODES)
    IMCLLDE ' KSTORE.FOR'
    DOUBLE PRECISION DELU(200)
    CMARACTER*15 FILEDELU
C This subroutine stores the calculated values of (/\U) in individual files
            CONHON/MUM/MMMELS
            INTEGER IEDY(200)
            COMMON/IBINOX/IBOY
            DOUBLE PRECISIOW BVAL(200)
            COWHOW/BOUNDVAL/BVAL
            INTEGER ISTORFLAG
            COMNON/ISF/I STORFLAG
            DOUBLE PRECISION DUMYY(200)
            INTEGER MODEHALF,MMUN
C Reinsert known boundary values in the (DELU) array.
C WOTE the (DUMWY) vector is the nunpeckedm solution
C vector which also containe the known boundary conditions
C at the particular time-step.
IFLAG=0
    DO II=1,MMNMODES
        IF (II.EQ.IBDY(IFLAG+1)) THEN
            DUMMY(II)=BVAL(IFLAG+1)
            IFLAG= I FLAG+1
        ELSE
            DUNY(II)=OELU(II-IFLAG)
        ENDIF
    ENDDO
C Truncate very small values to avoid underflow errors:
    DO KK=1, NUMNODES
    IF (DABS(DUMNY(KK)) .LE. 1.00-15) THEN
                DUMYY(KK)=0.000
            ENDIF
        EMODO
    C ###******************FOR ALL NON-2ERO TIMESTEPS*******************
        IF (NT.ME.0) THEN
    C write (*,100) ' storedelu rum '
    100 FORMAT (A)
C Write to appropriate array colum.
    DO I=1,MMNOOES
        DELUSTORED(NT,1) = DUNMY(I)
    EMODO
C Scroen output for instant gratification.
FORMAT (A,12)
```

WRITE (*, 100)'
WRITE (*,85) " DISPLACEMENT VALUES FOR TIMESTEP!,NT
WRITE (*, 100) ' VALUES LESS THAN 1.00-15 are STORED AS 0.000
WRITE (*, 100) ' WODE DX DY'
DO ID=1, MUMNCDES, 2
$J D=10+1$
MMMV (JO/2)
URITE (*,*) MMNN,DUNWY(ID),DUNAY(JD)
ENOOO
C This stores the (d) vectors to disk for use with parameter
C estimation software. Note that there are two format statements
C since some compilers won't add in the leading 0 to the appended
c filename call.
86 FORMA ($A, 11$)
IF (ISTORFLAG .EO. 1) THEM
If (NT .LT. 10) THEN
WRITE (FILEDELU,86)'DELUFILE',MT
ELSE
WRITE (FILEDELU,85)‘DELUFILE',WT
ENDIF
OPEN(22,FILE=FILEDELU,STATUS='MEW')
DO I=1, MUMNODES
WRITE(22,*)DUWY (I)
EMDDO
ENDIF
ENDIF

CRITE(*, 100)' **"
RETURN
END
C


```
            SUBROUTINE BYVAL(MMNBDY,MMMCDES,MASTERK,
    C FIMALR,IDIM,LASTR,FIMALK,IDPLUS1,LSIG)
        DOUBLE PRECISION MASTERK(MMMNODES,MMNNODES)
        DOUBLE PRECISION FIMALK(IDIM,IDPLUSI)
        IMTEGER IEDY(200)
        COMHON/IBINDX/IBDY
        DOUBLE PRECISION BVAL(200)
        CONHOW/BOUNDVAL/BVAL
        DOUBLE PRECISION FIMALR(200)
        DOUBLE PRECISION LASTR(200)
        DOUBLE PRECISION TEMP
C This subroutine takes the eppropriate boundary conditions from the
C IBDY (indexed list of ROWS which have known boundary conditions)
C and BVAL (the values associated with the known boundary conditions)
C and substitute the proper values into the MASTERK array at each
C time step. Note that the boundary conditions are NOT time-
C dependent in this version.
100 FORMAT (A)
C ZERO OUT THE APPROPRIATE ROWS IN GMASTERK] AND (FIMALR)
DO I=1, MUMBDY
DO J=1,MUNNODES
        MASTERK(IBOY(I), J)=0.000
EMDDO
    FIMALR(IBDY(I))}=0.00
EMDOO
```

C sustract the appropriate values fron the ffimalr) vector and zero out the C APPROPRIATE COLUNNS IN GMASTERK]

```
    DO IE1,MMMBDY
    DO J=1,NUNNODES
        FIMALR(J)=FIMALR(J)-MASTERK(J,IBDY(I))*BVAL (I)
        MASTERK(J,IBOY(I))}=0.00
    EWDDO
    ENDDO
C NOW, RESTRUCTURE THE ARRAY SO THAT THE MZERON RONS AND COLUNWS ARE
C ELIMIMATED, AND THE FIMAL ARRAYS OF [K] AND (R) ARE PROPERLY DI-
C MENSIONED.
C FIRST, (R):
    IFLAG=0
    DO II=1,MMNODES
        IF (II.EQ.IBDY(IFLAG+1)) THEM
            IFLAG=1FLAC+1
        ELSE
            LASTR(1I-IFLAG)=FIMALR(II)
        EMDIF
EMDDO
```

C FIRST ROWS...

```
```

 IFLAG=0
 DO II=1,MMMNODES
 IF (11.EQ.IBOY(IFLAG+1)) TMEM
 IFLAG=I FLAG+1
 ELSE
    ```

```

 JFLAG=0
 DO JJ=1, MummCOES
 IF (JJ.EO.IBOY(JFLAG+1)) THEN
 JFLAG=JFLAG +1
 ELSE
 FIMALK(II-IFLAG,JJ-JFLAG)=MASTERK(II,JJ)
 EWDIF
 ENODO
    ```

```

 ENDIF
 ENODO
 C ...AND FIMALLY AUGMENT [FIMALK] WITH (LASTR] FOR RETURN ANO SOLUTIOW.
DO JJ=1,IDIM
FIMALK(JJ,IDPLUS1)=LASTR(JJ)
EMODO
RETURN
ENO
c

```

```

 SURROUTINE SIMULT(N,A,X,EPS,INDIC,MRC,Y)
 DOUBLE PRECISION Y(200),A(N,NRC),X(200)
 DOUBLE PRECISIOM EPS,PIVOT,DETER,AIJCR,SIMUL
 INTEGER INDIC,NRC,M
 INTEGER IROW(200), JCOL(200), JORD(200)
 C FROM MAPPLIED MUMERICAL METHODS`, B.CARMAHAN, H.A.LUTHER,
J.O. WILKES. J.WILEY \& SONS,MEW YORK, 1969
CHAPTER 5, p. }27
*****************)
M MUNBER OF ROWS IN A
A AUGMENTED MATRIX OF COEFFICIENTS
X VECTOR OF SOLUTIONS
EPS MINIMMM ALLOWABLE MAGNITUDE FOR A PIVOT ELEMENT
INDIC COMPUTATIONAL SWITCH FOR SOLUTION TYPE
(+1 FOR MO INVERSE RETURNED)
NRC COLUNN DIMENSIONS FOR THE MATRIX [A] (N+1)
100 FORMAT (A)
N=1
NPLUSN=NRC
C BEGIM ELIMIMATION PROCEDURE
DETER=1.000
DO }9\textrm{K}=1,
C CHECK FOR A TOO-SMALL PIVOT ELEMENT
C WRITE (*,*) N,K,A(K,K),EPS
IF (DABS(A(K,K)).GT.EPS) CO TO 5
MRITE (*,100) ' PIVOT TOO SMALL...I OUITI'
WRITE (*,100) ' ERROR TRAPPED IN SUBROUTINE -SIMULT-'
STOP
C MORMALIZE THE PIVOT ROW
5 KP1=K+1
DO 6 J=KP1,NPLUSM
6 A(K,J)=A(K,J)/A(K,K)
A(K,K)=1.000
C Elimimate the $\mathrm{K}(\mathrm{th})$ column elements except for the pivot
DO }9\mathrm{ I=1,N
IF (I.EQ.K .OR. A(1,K).EQ.0.000) CO TO }
DO }8\mathrm{ J=KP1,NPLUSM
8 A(1,d)=A(1,J)-A(1,K)*A(K,J)
A(1,K) =0.000
CONTINUE
C LRITE THE SOLUTION VECTOR INTO (X) FOR RETURN
DO II=1, M
$X(11)=A(11, N R C)$
ENDDO
C THAT'S ALL FOLKS...
RETURN
END

```
```cSUBROUTIME SOUARBYCOL (ISPEC, SOUARE,COL,RESULT)
```

C multiplies [square] by (col) and produces (RESULT].
C Mote that there is no safety check on dimensions here.
DOUBLE PRECISION SOUARE(ISPEC,ISPEC)

```DOUBLE PRECISIOW COL(ISPEC),RESULT(ISPEC)
```

100 FORMAT (A)
C VODOO FORTRAMIIlllllllll
C This stuff gets around a sunepot factor in Wis FORTRAM
C=ISPEC
A=COL(1)
B=SCuARE(1,1)
c Clean Howse
DO I=1, ISPEC

```RESULT(I) \(=0.000\)
 EMDDO
C Do the nasty
 DO IRON=1,ISPEC
 DO ICOL=1,ISPEC
 IF (DABS(SQUARE(IRON,ICOL)*COL(ICOL)) .LE. 1.00-20) CO TO 20
 RESULT(IROW)=RESULT(IROW)+SOUARE(IROU, ICOL)*COL (ICOL)
 CONTINUE
 ENODO
 EMODO
 RETURN
 EMO
```



## Table 5. P21.FOR

PROGRAM P21.FOR
C PROGRAM FOR 'SMART' GLOBAL OPTIMIZATIOW
C IMITALIZE VARIABLES:
C parincl.for here
DNUBLE PRECISIOM CL(50),CU(50), FF(90), PPL(20)
DOUBLE PRECISION ALPHAP, BETA, DELTA
DOUBLE PRECISION 2. 2XC
INTEGER IC, ICM, ICNI, IEVI
INTEGER IEV2, IEVS, IIS, IOPT, IGAMM
INTEGER IT, ITMAX, IZ, IZRQ
INTEGER \ZXC, JC, Jl, JJ
INTEGER JZ, KOUNT,KK1, NALT, NC
INTEGER NCMPLX, NFE, NINPS, NLEG
IMTEGER NRUN, MS, NSEG, MSTK
INTEGER NUNTIMSTEPS, NV, WPRNT
COMMON/ANA/ALPHAP, BETA, DELTA, ICNMM
CONMON/BBB/IC, ICN, ICHI, IEVI
COM%ON/CCC/IEV2, IEV3, IIS, IOPT
COMMON/DDD/IT, ITMAX, IZ, IZRQ
COMNON/EEE/IZXC, JC, JI, JJ
COMMON/FFF/JZ, KOUNT,KK1, MALT, MC
CON%ON/GGG/NCMPLX, NFE, NINPS, NLEG
CONHON/HHH/NRUN, NS, NSEG, NSTK
COMNON/III/NV, Z, ZXC, WPRNT, MUNTIMSTEPS
COMMON/JJJ/CL, CU, FF, PPL, RR, WPEM, XC, XX, XXOLD
DOUBLE PRECISION TH
COMHON/THICKBLOCK/TH
INTEGER IARG
NFE=0

```

```

C CONSTANT THICKNESS TERM:
TH=1.000

```

NCMPLX =
100 FORMAT (A)
110 FORMAT (A.12)
115 FORMAT (12,D12.3,D12.3,012.3)
 WRITE (*,100) ! PARAM2 !
 WRITE (*,100) ' Parameter Estimation Program '
```


## Table 5 (Cont'd).

```
MRITE (*,100) ' Copyright 1991'
WRITE (*.100) ' Scott Morris '
WRITE (*',100) , Michigan State University'
contimue
 IOPT = 1
 MRUN = 1
 ICNI =0
 MALT =0
 MSTK =0
C C UPEN(I) IS WEIGHT GIVEN TO PEMALTY I IN FUNCTIOW
15028 KOWT =0
C +
C READ IM THE PARAMETRIC DATA
```



```
OPEN (14,FILE='par_est',STATUS='old') REWIND 14
READ (14,*) NC,NS,NV,ITMAX,BETA,IGAMA
READ (14,*) MUNPAR
READ (14,*) NUMTIMSTEPS
READ (14.*) MPRWT
WRITE (*,100) ' Parameter indeces and limits:' WRITE (*,100)' WI CL(1) CU(1) XX(1,M1)'
write (*,110)' numparz', numer
DO \(I=1\), NUMPAR
write (*,110) ' \(1=1,1\)
READ (14,*) WI,CL(N1),CU(NI), XX(1,NI)
WRITE (*,115) WI,CL(NI),CU(NI),XX(1,NI)
END DO
```

$\qquad$

```
DELTA=1.00-4
```



```
C wote that delta value is fixed
```



```
CLOSE (14)
```



```
CALL LIME15050
```



```
15200 contimue
IC = NC - NS
```


## 1ARG=1199999

```
do mave1,10
 dmprren(iarg)
 enddo
```

15400 DO $12=2, N V$	
15610	DO d2 = 1,NS
15420	RR(12, 22$)=$ ren(iarg)
	urite (*,100) ' line 15420
	END DO
15430	contimue
	END DO
	write (*.100) ' line 15430'


15450	WRITE (*.100)'	PARAMETER	VALUES FOR MS	THIS RUN' NV	ITMAX ${ }^{\prime}$
15460	WRITE (*, *)NS,   URITE (由, 100)'	NC, NV, ITMAX   ALPHAP	BETA	ICNMM	DELTA'
120	FORMAT (012.2,3x,012.2,17,012.2)				
15470	WRITE ( ${ }^{*}, 120$ ) ALPHAP, BETA, IGAMMA, DELTA   WRITE (*, ") '   WRITE ( $*, 100$ )' Parameter Estimation Routine'   WRITE (*, 100)' Subroutine trace:'   WRITE (*, 100)'				

15520 ©0 TO 15535

```
C
```



```
C CALL MAIN SUBROUTINE
15535 CALL LINE15700
```


15540 IF ( (IT - ITMAX) .LE. 0) THEN
CO TO 15550
ELSE
GO TO 15660
END If

15550	$D O$ JZ $=1, N S$
	XX(IEVI, JZ) $=X C(J Z)$
	END DO

15552 IIS = IEV1


CALL FUAC

WRITE (*, 100) ' '

```
15553 write (*,100) ' VALUE OF the functiON at the CEwTROID=`
 WRITE (***) FF(IEVI)
 WRITE (*, 100) ''
15555 WRITE (*,100) ' COODIMATES OF TWE CEWTROID'
15556 DO JZ = 1,NS
 MRITE (*,100) ' VNDEX VALUE'
15557 WRITE (*,*) JZ, XC(JZ)
 END DO
 WRITE (*,100) ',
15559 WRITE (*,100) ' BEST MON-CENTROID VALUE OF THE FUNCTION ='
 WRITE (*.*) FF(IEV2)
 MRITE (*,100) ',
15560 WRITE (*,100) ' BEST MON-CENTROID X VALUES'
15590 DO JZ = 1,NS
 WRITE (*.100) ' ImDEX Value'
15600 URITE (***) JZ,XX(IEV2, JZ)
15620 continue
 END DO
15630 WRITE (*,175)' MUNBER OF ITERATIONS=',IT
175 FORMAT (A,13)
 WRITE (*,175)' FUNCTION EVALLUTIONS=',MFE
15650 IF (FF(IEV1) .GE. FF(IEV2)) THEN
 DO JZ = 1,NS
 xx(1,JZ)= XC(JZ)
 ENO DO
 COTO 15691
 ELSE
 DO JZ = 1,MS
 XX(1,JZ) = XX(IEV2,JZ)
 END DO
 COTO }1569
 EMD IF
15660 WRITE (*,175)' THE NUMBER OF ITERATIONS HAS EXCEEDED',ITMAX
15665 WRITE (*,100) ' PROGRAM TERMIMATED PREMATURELY. Evaluntions:'
 URITE (*,*) NFE
15690 IF (IT .GE. O) THEN
 IEV3 = 1
 DO ICM = 2,NV
 IF ((FF(IEV3) - FF(ICN)) .LE. O.0) THEM
 IEV3 = ICM
 END IF
 EMO DO
 WRITE (*,100)' the best function value vet is'
 WRITE (*,*) FF(IEV3)
 URITE (*.100) ' Parameters associated with this best point:'
 DO JC = 1,NS
 WRITE (*,100)' IEV3 JC XX()'
 WRITE (*,*)IEV3,JC,XX(IEV3, JC)
 END DO
 DO JJ = 1,MS
 XX(1,JJ)= XX(IEV3,JJ)
 EMD DO
```

EMD IF

```
15691 LRITE (*,100) ' *******************!
 MRITE (*,100) ' END OF ESTIMATION RUW'
 LRITE (&,100), (
99999 END
```



```
C XX
 SUBROUTINE LINE15700
C XXX
```



```
C MAIN SUBROUTINE STARTS MERE
C perincl.for here
 DOUBLE PRECISION CL(50), CU(50), FF(90), PPL(20)
 DOUBLE PRECISION RR(90, 30), WPEN(50), XC(30), XX(90, 30)
 DOUBLE PRECISIOM XXOLD(30)
 DOUBLE PRECISION ALPHAP, BETA, DELTA
 DOUBLE PRECISIOM 2, 2XC
 INTEGER IC, ICN, ICNI, IEVI
 INTEGER IEV2, IEV3, IIS, IOPT, IGAMMA
 INTEGER IT, ITMAX, 12, 12RQ
 INTEGER IZXC, JC, JI, JJ
 IMTEGER JZ, KOUNT,KKI, NALT, MC
 INTEGER NCMPLX, NFE, NINPS, NLEG
 INTEGER NRUN, NS, NSEG, MSTK
 INTEGER NUNTIMSTEPS, NV, MPRNT
 COMNON/AMN/ALPHAP, BETA, DELTA, ICANMA
 COMNON/BBB/IC, ICN, ICMI, IEVI
 COMHON/CCC/IEV2, IEV3, IIS, IOPT
 COMNON/DDD/IT, ITMAX, IZ, IZRO
 COMHON/EEE/IZXC, JC, JI, JJ
 COMMON/FFF/JZ, KOUNT,KK1, MALT, NC
 COMHON/GGG/NCMPLX, NFE, NINPS, NLEG
 COMHON/HHH/NRUN, NS, NSEG, NSTK
 COMNON/1II/NV, Z, 2XC, NPRNT, MMNTIMSTEPS
 COMNON/JJJ/CL, CU, FF, PPL, RR, WPEN, XC, XX, XXOLD
100 FORMAT (A)
 WRITE (*.100) ' (15700)'
15700 CONTIMUE
15715 KSTK = 0
 NFE =0
15730 1T = 1
15740 KODE = 0
15750 IF ((NC - NS) .LE. O) THEN
 ED TO 15770
 ELSE
 CO TO 15760
 END IF
15760 KOOE = 1
15770 CONTIMUE
15780 DO 11 = 2,NV
15790 DO IV = 1,NS
```

```
15800 xX(II,IV) = 0.000
 END DO
 END DO
15820 DO II = 2,NV
15830 DO IV = 1,MS
15840 l1S = 11
15850 COWTIMUE
15860 XX(II, IV = CL(IV) + RR(II, IV) * (CU(IV) - CL(IV))
15870 continue
 END DO
15880 KK1 = 11
15890 CONTIMUE
```



```
C
 CHECK CONSTRAINTS
15895 CALL LINE16700
```



```
15900 IF ((11 - 2) .LE. 0) THEN
 GO TO 15910
 ELSE
 GO TO 15970
 END IF
15910 IF (IPRINT .ME. 0) THEN
 GO TO 15920
 ELSE
 CO TO }1599
 END IF
15920 LRITE (*,100) 'COORDINATES OF IMITIAL COMPLEX'
15940 10 = 1
15945 DO IV = 1.NS
15950 WRITE (*,100) XX(10, IV)
15955 continue
 EMD DO
15970 IF (IPRINT .ME. 0) THEN
 GO TO 15975
 ELSE
 CO TO 15990
 END IF
 WRITE (*,100)' II IV XX(II,IV)'
15975 DO IV = 1,NS
15980 WRITE (*,*) II, IV, XX(II, IV)
15985 continue
 END DO
15990 continue
 END DO
16000 KKR1 = MV
16010 DO IIS = 1,NV
16020 contimue
16025 MFE = NFE + 1
```



```
 CALL FUNC
```



```
16030 contimue
 END DO
16040 KOWNT = 1
16050 IA = 0
16060 IF (IPRINT .NE. 0) THEN
 GO TO 16070
 ELSE
 CO TO 16110
 END IF
16070 LRITE (*,100) 'VALUES OF THE FUNCTION'
 WRITE (*,100)' IV FF(IV)'
16080 DO IV = 1,NV
16090 LRITE (*.*) IV,FF(IV)
16100 contímus
 END DO
16110 IEV1 = 1
16120 DO ICM = 2,NV
16130 IF ((FF(IEV1) - FF(ICN)) .LE. O.000) THEN
 OO TO 16150
 ELSE
 CO TO 16140
 EMD IF
16140 IEV1 = ICM
16150 contimue
 END DO
16160 IEV2 = 1
16170 DO ICM = 2,NV
16180 IF ((FF(IEV2) - FF(ICN)) .LE. O.0) THEN
 CO TO 16190
 ELSE
 CO TO 16200
 END IF
16190 IEV2 = ICM
16200 contímue
 END DO
16210 IF ((FF(IEV2)-(FF(IEV1)+BETA)) .LT. O.0) THEN
 CO TO }1624
 ELSE
 GO TO 16220
 END IF
16220 KOWNT = 1
16230 соTO 16260
16240 KOUNT = KOUNT + 1
16250 IF ((KOUNT - IGAMMA) .LT. O) THEN
 CO TO 16260
 ELSE
 CO TO 16600
 END IF
16260 CONTINUE
```



```
C CONPUTE CENTROID
16265 CALL LIME17000
```



```
16267 IF (IT .LE. (2 * NV)) THEN
 ALPHA = 1.6
 ELSEIF (C(2 * WV) .LT. IT) .AND. (2 * WV) .LE. (4 * WV)) TMEN
 ALPHA = 1.3
 ELSEIF ((4 * NV) .LT. IT) TMEN
 ALPHA = 1
 EMD IF
16268 IF (KOUNT .GT. 0) THEN ALPHA = .8
16269 IF (IALPH .EQ. O) THEN ALPHA = ALPHAP
16271 IF (NSTK .LT. 1) CO TO 16275
16272 DO JJ = 1,NS
16273 XXOLD(JJ) = XX(IEV1, JJ)
 END DO
16274 KSTK2 = 0
16275 DO JJ = 1,MS
16280 XX(IEV1, JJ) = (1.000 + ALPHA) * (XC(JJ)) - ALPHA * (XX(IEV1, JJ))
16285 continue
 END DO
16290 IIS = IEV1
16300 contimue
C CHECK CONSTRAINTS*******************
16305 CALL LINE16700
C **
16310 CONTIMUE
16315 MFE = NFE + 1
C COMPUTE FUNCTION**********************
 CALL FUNC
```




```
16320 IEV2 = 1
16330 DO ICM = 2,NV
16340 IF ((FF(IEVZ) - FF(ICM)) .LE. O.0) THEN
 GO TO 16360
 ELSE
 CO TO 16350
 END IF
16350 IEV2 = ICM
16360 contimue
 EMD DO
16370 IF ((IEV2 - IEV1) .NE. 0) THEN
 CO TO 16450
 ELSE
 CO TO 16380
 END IF
16380 KSTK = KSTK + 1
110 FORMAT (A,12)
 IF (KSTK .GE. 8) THEN
 mRITE (*,100) ' HELPI I'M STUCKI -ERROR TRAP AT 16380-1
 WRITE (*,100) ' KSTK >6'
```

```
 STOP
 EmDIF
 MSTK = MSTK + 1
16381 IF ((NSTK .LT. 3).AND. (KSTK .GE. 6)) THEM
 Mrite (*,100) (Jumping OUT AT LIme 16381'
 CO TO 16600
 END IF
16382 IF ((NSTK .GE. 3) .AND. (KSTK .GE. 6) .AND. (KOUNT .LT. 2)) THEM
 KSTK2 = KSTK2 + 1
 IF (KSTK2 .GE. 2) THEN
 WRITE (*,100)' JUWPING OUT AT LINE 16382'
 CO TO 16600
 EmD If
 IEV3 = 1
 DOICN=2,NV
 IF ((FF(IEVS) - FF(ICM)) .LE. O.0) THEN
 IEV3 = ICM
 EMD IF
 END DO
 DO JJ= 1,MS
 XC(JJ) = XX(IEV3, JJ)
 WRITE (*,*) XC(JJ)
 XX(IEV1, JJ) = XXOLD(JJ)
 END DO
 KSTK=0
 WRITE (*,100) ' REPLACING CENTROID bY best POINT'
 COTO 16275
 END IF
16385 DO JJ = 1,MS
16390 XX(IEV1,JJ) = ((XX(IEV1, JJ) + XC(JJ)) / 2.000)
16400 contimus
 EMD DO
16410 IIS = IEVI
16420 CONTINUE
C ********************************
C CHECK CONSTRAINTS
16425 CALL LINE16700
```



```
16430 CONTIMEE
16435 NFE = NFE + 1
C ***********************************
 CALL FUNC
C *************************************
16440 GOTO }1632
16450 KSTK = 0
16460 IF (IPRINT .NE. 0) THEN
 GO TO }1647
 ELSE
 GO TO 16580
 EmD IF
180 FORMAT (A,13)
```

```
16470 WRITE (*.180) ' ITERATION MMMBER',IT
16490 WRITE (*.100) ' COORDIMATES OF CORRECTED POINT'
16500 DO JC = 1,NS
16510 WRITE (*,100) ' XX()=1
 WRITE (***) IEV1,JC,XX(IEV1,JC)
 END DO
16520 WRITE (*,100) ' VALUES OF THE FUNCTIOW'
16525 DO IIS = 1,NV
16530 WRITE (*,100) ' FF()=0
 WRITE (*,*) llS,FF(IIS)
 END DO
16540 Write (*,100) ' COORDINATES OF THE CEMTROID'
16550 DO JC = 1,NS
16560 WRITE (*,100)' XC()='
 WRITE (*.*) JC,XC(JC)
 EMD DO
16580 IT = IT + 1
16590 IF ((IT - ITMAX) .LE. O) THEN
 CO TO 16110
 ELSE
 cowtimue
 EMD IF
16600 EMD
C 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700
```



```
 SUBROUTINE LINE16700
c
```



C parincl.for here

```
DOUBLE PRECISIOW CL(50), CU(50), FF(90), PPL(20)
DOUBLE PRECISIOM RR(90, 30), UPEM(50), XC(30), XX(90, 30)
DOUBLE PRECISIOW XXOLD(30)
DOUBLE PRECISIOW ALPHAP, BETA, DELTA
DOUBLE PRECISIOW 2, 2XC
IMTEGER IC, ICN, ICMI, IEVI
INTEGER IEV2, IEV3, IIS, IOPT, IGNMM
INTEGER IT, ITMAX, 12, I2RO
INTEGER IZXC, JC, JI, JJ
IMTEGER JZ, KOWNT,KK1, MALT, MC
IMTEGER MCMPLX, MFE, WIMPS, NLEG
INTEGER MRUN, WS, WSEG, MSTK
IMTEGER MUNTIMSTEPS, NV, MPRNT
COM%ON/AMN/ALPHAP, BETA, DELTA, IGNMMA
COMMON/BBB/IC,ICH, ICNI, IEV1
COMOON/CCC/IEV2, IEV3, IIS, IOPT
COMMOW/DDD/IT, ITMAX, 12, I2RQ
COM%N/EEE/I2XC, JC, JI, JJ
COMNOW/FFF/JZ, KOUNT,KK1, MALT, MC
COMNON/GGG/NCMPLX, NFE, WINPS, NLEG
COMNON/HHH/NRUN, NS, NSEG, WSTK
COWHON/III/NV, 2, ZXC, NPRNT, MUNTIMSTEPS
```

```
 COMHON/JJJ/CL, CU, FF, PPL, RR, WPEM, XC, XX, XXOLD
100 FORMAT (A)
 NRITE (*.100) ' (16700)'
16700 CONTIMUE
16720 KT = 0
16740 DO IV = 1,NS
16750 IF ((XX(IIS, IV) - CL(IV)) .LE. 0.0) THEM
 C0 10 16760
 ELSE
 CO TO 16790
 END IF
16760 XX(IIS, IV) = CL(IV) + DELTA
16780 COTO 16810
16790 IF ((CU(IV) - XX(IIS, IV)) .LE. O.0) THEM
 OO TO 16800
 ELSE
 GO TO 16810
 END IF
16800 XX(IIS, IV) = CU(IV) - DELTA
16810 continue
 EMD DO
16820 IF (KODE .LE. 0) THEN
 CO TO 16960
 ELSE
 OO TO 16830
 END IF
16830 MN = MS + 1
16840 DO IV = NN,NC
16850 CONTIMUE
C ********************************
C CALL CONSTRAINT SUBROUTINE
16855 CONTIMUE
 WRITE (*,100) ' CONTRAINT ACCESS FAILED. PARAM/16855'
C CALL CONSTR
```



```
16860 IF ((XX(IIS, IV) - CL(IV)) .LT. O.0) THEN
 CO TO 16880
 ELSE
 CO TO 16870
 END IF
16870 IF (CCU(IV) - XX(IIS, IV)) .LT. 0.0) THEN
 CO TO 16880
 ELSE
 CO TO 16940
 END IF
16880 IEV1 = IIS
16890 KT =1
16900 CONTIMES
```

```
C COMPUTE CENTROID
16905 CALL LINE17000
```



```
16910 DO JJ = 1,NS
16920 XX(IIS, JJ) = ((XX(IIS, JJ) + XC(JJ)) / 2.000)
16930 continue
 END DO
16940 continue
 END DO
16950 IF (KT .LE. 0) THEN
 CO TO 16960
 ELSE
 CO TO 16720
 END IF
16960 END
```



```
 SUBROUTINE LINE17000
```



```
C SUBROUTIME TO COMUPUTE CENTROID
C parincl.for here
 DOUBLE PRECISIOW CL(50), CU(50), FF(90), PPL(20)
 DOUBLE PRECISIOW RR(90, 30), WPEN(50), XC(30), XX(90, 30)
 DOUBLE PRECISIOW XXOLD(30)
 DOUBLE PRECISION ALPHAP, BETA, DELTA
 DOUBLE PRECISIOW 2, ZXC
 INTEGER IC, ICN, ICMI, IEVI
 INTEGER IEV2, IEV3, IIS, IOPT, IGAMMA
 INTEGER IT, ITMAX, IZ, IZRQ
 INTEGER 12XC, JC, JI, JJ
 INTEGER JZ, KOUNT,KK1, NALT, NC
 INTEGER NCMPLX, NFE, NINPS, MLEG
 INTEGER NRUN, MS, NSEG, WSTK
 INTEGER NUNTIMSTEPS, NV, MPRNT
 COMHON/AMA/ALPHAP, BETA, DELTA, ICAMA
 COM%N/BBB/IC,ICM, ICMI, IEV1
 COWHON/CCC/IEV2, IEV3, IIS, IOPT
 COMMON/DDD/IT, ITMAX, 12, IZRO
 COMHON/EEE/IZXC, JC, JI, JJ
 COMMON/FFF/JZ, KOUNT,KK1, MALT, MC
 COMHOW/GGG/NCMPLX, NFE, WINPS, WLEG
 COMMON/HHH/NRUN, NS, NSEG, NSTK
 COMOW/III/NV, Z, 2XC, NPRNT, MUNTIMSTEPS
 COMNON/JJJ/CL, CU, FF, PPL, RR, WPEN, XC, XX, XXOLD
 FORMAT(A)
 WRITE (*,100) ' (17000) Centroid Computation'
17000 CONTINUE
17020 DO IV = 1,NS
17030 XC(IV) = 0.000
17040 DO IL = 1,KK1
17050 XC(IV) = XC(IV) + XX(IL,IV)
 END DO
17060 RK = KK1
17070 XC(IV) = (XC(IV) - XX(IEVI, IV)) / (RK - 1.000)
 END DO
17080 END
```


## SUBROUTIME FUNC

C parincl.for here


C KSTORE.FOR here

DOUBLE PRECISION STOREDK(0:50,10000)
COMHON /KSTOR/ STOREDK
DOUBLE PRECISION DELUSTORED (0:50,500)
COMMON /DUSTORE/ DELUSTORED

COMNON /NTS/ MMMBEROFTIMESTEPS
DOUBLE PRECISION DIFF
DOUBLE PRECISIOW DATAVALUE $(50,500)$
INTEGER NCOCOUNT
CHARACTER* 15 CURRENTFILE
100 FORMAT(A)

110 FORMAT(A,13)
$111 \operatorname{FORMAT}(\mathrm{~A}, 11)$
URITE (*, 100) ' *'
WRITE (*, 100) •**!
WRITE (*,100) 0 ***!

WRITE (*, 100) 1 ,
18020 continue

CALL PARAVISCO2 (NOOCOUNT)


```
C Note that MODCOUNT is returned into the subroutine fram*
C PARAVISCO to be used in the function evaluation.
```



```
C Read the array of mreal worldm data into DATAVALUE(TIMESTEP,IMDEX)
C VRITE (*,100) ' IN FUNC ; MUMBEROFTIMESTEPS,NODCOUNT'
c URITE (*.*) MMMBEROFTIMESTEPS,MODCOUNT
 IF (NFE .EQ. 1) THEN
 DO NT=1,MUMBEROFTIMESTEPS
 IF (NT .LT. 10) THEN
 URITE (CURRENTFILE,111)'datafile',NT
 OPEN (16,FILE=CURRENTFILE, STATUS='old')
 ELSE
 WRITE (CURRENTFILE,110)'datafile',NT
 OPEN (16,FILE=CURRENTFILE, STATUS='old')
 EMOIF
 REWIND 16
 DO I=1,NODCOUNT
 READ (16,*) DATAVALUE(NT,1)
 END DO
 MRITE (*.100) ' LOADED DATA FROM FILE'
 WRITE (*,100) CURRENTFILE
 ClOSE (16)
 END DO
 EMDIF
 DIFF=0.000
C Note that DATAVALUE is the historical value for the x or y displecement
C from the DELUFILE, and the program takes DELU(n) directly from the
C PARAVISCO2 version of VISCO1.for.
C WRITE(*,100) ' Data Comparison:'
C MRITE (*,100) ' NT I DATAVALUE(NT,I) DELUSTORED(NT,I)'
 DO NT=1,NUNBEROFTIMESTEPS
 WRITE (*.100) '
 DO I=1,NODCOUNT
C THIS SKIPS THE TRIVIAL VALUES OF mREAL" DATA
C write (***) NT,1,DATAVALUE(NT, 1),DELUSTORED(NT, 1)
 DIFF=DIFF+(-1.002*DABS((DATAVALUE(NT,
 C -DELUSTORED(NT,I))/DATAVALUE(NT,I)))
 ENDIF
 END DO
 END DO
 FF(IIS)=DIFF
 FORMAT (A,12,A,D8.2,A)
 WRITE (*,130)' DIFF',IIS,' =',DIFF,' X'
```

CLOSE (6)
END

C Wintor

C perincl.for here
DOUBLE PRECISION CL(50), CU(50), FF(90), PPL(20)
DOUBLE PRECISIOW RR(90, 30), LPEN(50), XC(30), XX(90, 30)
DOUBLE PRECISIOW XXOLD(30)
dOUBLE PRECISION ALPHAP, BETA, DELTA
DOUBLE PRECISIOW 2, 2XC
INTEGER IC, ICN, ICMI, IEVI
INTEGER IEVZ, IEV3, IIS, IOPT, IGNMA
INTEGER IT, Itmax, IZ, IZRQ
INTEGER IZXC, JC, JI, JJ
INTEGER J2, KOUNT, KKi, NALT, NC
IWTEGER NCMPLX, NFE, NINPS, NLEG
INTEGER NRUN, MS, NSEG, MSTK
INTEGER MUMTIMSTEPS, NV, MPRNT
COMNON/ANA/ALPHAP, BETA, DELTA, IGAMMA
CON世N/BBB/IC, ICM, ICMI, IEV1
COMNO/CCC/IEV2, IEV3, IIS, IOPT
COMHON/DDD/IT, ITMAX, 12, IZRQ
COMMON/EEE/IZXC, JC, JI, JJ
COMHOW/FFF/JZ, KOUNT,KK1, MALT, WC
COMWON/GGG/NCMPLX, NFE, MIMPS, MLEG
COMON/HHH/MRUN, WS, MSEG, MSTK
COMNON/III/NV, 2, 2XC, NPRNT, MUNTINSTEPS
COMON/JJJ/CL, CU, FF, PPL, RR, WPEN, XC, XX, XXOLD

100 FORMAT (A)
110 FORMAT (A,13)
WRITE (*,110) ' NUMBER OF VERTICES=',NV
15055 IF (NV .LE. NS) THEN
WRITE (*, 100) ' ERRORI~I~I-I NV MUST EXCEED MSIII'
STOP
EMDIF
15060 WRITE (*, 110)' ITMAX=', ItMAX
15065 WRITE (*, 110)' IPRINT=', IPRINT
15070 IF ((IPRINT .LT. O) .OR. (IPRINT.GT.1)) THEN
WRITE (*,110) ' IPRINT must be either 0 or 1. It is',IPRINT
WRITE (*, 100) ' This is an-fatal error.'
ENDIF
15072 IPEM = 1
ALPHAP $=1.3$
IALPH $=1$

15100 CONTIMNE
$15105 \quad$ IALPH=1
15107 IF (IALPH .EQ. 1) WRITE(*, 100) ' VARIABLE ALPHA'

```
15109 IF (IALPH .EQ. 0) THEN
 WRITE (*.100) ' STATIC ALPHA VALUES'
 ELSE
 IF (IALPH .NE. 1) WRITE (*,100) ' ALPHA PROBLEM AT LIME 15105'
 END IF
15120 ICNMM = 4
99999 EMD
C %%%
```



```
C % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%
SUBROUTINE PARAVISCO2(NOOCOUNT)
C perincl.for here
```

```
DOUBLE PRECISION CL(50), CU(50), FF(90), PPL(20)
```

DOUBLE PRECISION CL(50), CU(50), FF(90), PPL(20)
DOUBLE PRECISION RR(90, 30), WPEN(50), XC(30), XX(90, 30)
DOUBLE PRECISION RR(90, 30), WPEN(50), XC(30), XX(90, 30)
DOUBLE PRECISION XXOLD(30)
DOUBLE PRECISION XXOLD(30)
DOUBLE PRECISION ALPHAP, BETA, DELTA
DOUBLE PRECISION ALPHAP, BETA, DELTA
DOUBLE PRECISION Z, ZXC
DOUBLE PRECISION Z, ZXC
INTEGER IC, ICM, ICMI, IEVY
INTEGER IC, ICM, ICMI, IEVY
INTEGER IEV2, IEV3, IIS, IOPT, IGAMMA
INTEGER IEV2, IEV3, IIS, IOPT, IGAMMA
INTEGER IT, ITMAX, IZ, IZRQ
INTEGER IT, ITMAX, IZ, IZRQ
INTEGER IZXC, JC, JI, JJ
INTEGER IZXC, JC, JI, JJ
INTEGER JZ, KOUNT,KKI, NALT, NC
INTEGER JZ, KOUNT,KKI, NALT, NC
INTEGER NCMPLX, NFE, NINPS, NLEG
INTEGER NCMPLX, NFE, NINPS, NLEG
INTEGER NRUN, NS, NSEG, NSTK
INTEGER NRUN, NS, NSEG, NSTK
INTEGER NUNTIMSTEPS, NV, MPRNT
INTEGER NUNTIMSTEPS, NV, MPRNT
COMNON/AMA/ALPHAP, BETA, DELTA, IGANMA
COMNON/AMA/ALPHAP, BETA, DELTA, IGANMA
COMMON/BBB/IC, ICM, ICMI, IEVI
COMMON/BBB/IC, ICM, ICMI, IEVI
COMMON/CCC/IEVZ, IEV3, IIS, IOPT
COMMON/CCC/IEVZ, IEV3, IIS, IOPT
COMNON/DDD/IT, ITMAX, IZ, IZRO
COMNON/DDD/IT, ITMAX, IZ, IZRO
COMMON/EEE/I2XC, JC, JI, JJ
COMMON/EEE/I2XC, JC, JI, JJ
COMMON/FFF/JZ, KOUNT,KK1, MALT, NC
COMMON/FFF/JZ, KOUNT,KK1, MALT, NC
COMMON/GGG/NCMPLX, NFE, NINPS, NLEG
COMMON/GGG/NCMPLX, NFE, NINPS, NLEG
COMMON/HHH/NRUN, NS, NSEG, NSTK
COMMON/HHH/NRUN, NS, NSEG, NSTK
COMMON/III/NV, Z, ZXC, NPRNT, MUNTIMSTEPS
COMMON/III/NV, Z, ZXC, NPRNT, MUNTIMSTEPS
COMNON/JJJ/CL, CU, FF, PPL, RR, WPEN, XC, XX, XXOLD

```
COMNON/JJJ/CL, CU, FF, PPL, RR, WPEN, XC, XX, XXOLD
```



```
C
DECLARE COMMON STATEMENTS
DOUBLE PRECISION K(8,8)
DOUBLE PRECISION INVRS \((200,200)\)
DOUBLE PRECISION KINV(200,200)
COMHON/MUN/MUAELS
COMHON/NNBLOCK/NUMNODES
DOUBLE PRECISION R(200)
COMHON/RBLOCK/R
DOUBLE PRECISION COEFF(6)
COMHON/COEFFBLOCK/COEFF
```

```
COMMOW/IDIMBLOCK/IDIM
COMNON /NTS/MMMBEROFTIMESTEPS
DOUBLE PRECISION TIMSTART, TIMINCR
DOUBLE PRECISION NOOX(200),MCOY(200)
COMHOW/WCOE/MCOX,NOOY
INTEGER EI(325),EJ(325),EK(325),EM(325)
COMHOW/ELNODES/EI,EJ,EK,EM
DOUBLE PRECISION MASTERK(200,200)
COMHOW/BIGK/MASTERK
DOUBLE PRECISION A(3,3)
COHMOW/ABLOCK/A
INTEGER MUNSPYK
COMNON/WS/WUMSTART,NUMSTOP
INTEGER IBDY(200)
COWOW/IBINDX/IBDY
DOUBLE PRECISION BVAL(200)
COMHON/BOUNDVAL/BVAL
INTEGER MUMBDY
COWHON/BDY/NUMBDY
INTEGER IDPLUS1
CONHOW/IDP/IDPLUS1
DOUBLE PRECISION KPAST(200,200)
COMHOW/KPASTBLOCK/KPAST
DOUBLE PRECISION DELU(200)
IMTEGER IROU(200),JCOL(200),JORD(200)
COWHOW/I JJ/IROW, JCOL, JORD
DOUBLE PRECISION KZERO(200,200)
COMHOW/KZ/KZERO
DOUBLE PRECISION Y(200)
COMNOW/WYE/Y
DOUBLE PRECISION FINALK(200,200),LASTR(200)
COMHON/EMDO/FINALK,LASTR
SAVE
```

    URITE (*,100)' ********* PARAVISCO 2 *************
    URITE (*,100)' '
    WRITE (*'100),
    General Model Parmmeters for the'
    LRITE (*,100)' Function Evaluation'
    ```

\section*{ENDIF}

c This block of commands opens, labels, and numbers the appropriate files for c use by viscoi with the exception of the series of files neoded for [k(t)]
```

C storage, as those are created as needed.
OPEN (13, FILE='general_data', STATUS= 'old')
REMINO }1
OPEN (19, fILE='boundaries', STATUS= 'old')
reuino 19
c
c c READ IN INITAL DATA
C This roade in some of the necessary paramiters to operate some of
c the arrays used in this program.
REND (13,*)NUMELS,NumberOfNodes
wunwOOES=NumberOfNodes*2
MOOCOUNT=NUMNODES
MMNN=NUMHOOES
REND (13,*)(COEFF(I),I=1,6)
READ (13,*)MUMBEROFTIMESTEPS
REND (13,*)NUMSTART,NUMSTOP
REND (13,*)TIMSTART,TIMINCR
ClOSE (13)
c **************************************************************
c here's the splice to get the xx(ils,n) values into the procranil
COEFF(2)=XX(IIS,1)
COEFF(3)=XX(IIS,2)
WRITE (*,100) COEFF 1 2 30
WRITE (*,*) COEFF(1), COEFF(2),COEFF(3)

```

```

    CALL makEARRAYS
    101 FORMAT (A,12)
130 FORMAT (10X,12,13X,012.3)
140 FORMAT (A4O,13)
150 FORMAT (10X,13,10x,13,10X,012.6)
IF ((NFE .EQ. 1) .OR. (NPRNT .GE. 1)) THEN
WRITE (*,100)' COEFFICIENT VALUE'
DO J=1,6
WRITE (*,130)J,COEFF(J)
END DO
ENDIF
C Read in the known boundary conditions
C from the 'boundaries.dat file:
C IDIR: }X=1\quadY=0 FOR 2-D PROBLEMS
READ (19,*) NUMBOY
IF (NFE .EQ. 1) then
WRITE (*,100)',

```
```

        WRITE (*.140) ' NUMBER OF KNOMN DISPLACEMENT VALLES:',MMMBDY
        MRITE (*.100)' '
        MRITE (*,100) ' DIRECTION IMDICATOR: }x=1\quady=0
        VRITE (*.100) NODE DIRECTION VALUE'
        ENDIF
        FORMAT (8x,13,8x,12,10x,012.3)
        DO I=1,MMMBDY
        READ (19,*) IBNDX, IDIR, BVAL(I)
        IF (NFE .EQ. 1) WRITE (由,141) IBNDX,IDIR,BVAL(I)
        IBDY(I)=(IBNDX*2)-IDIR
        ENO DO
        CLOSE (19)
    URITE (*.100)' '
    C O Once arrays are ready, construct the series of [K(t)] values.
C for all of the timesteps in the problem.
IF (NFE .EQ. 1) WRITE (*.100)' STORING [K] MATRICES FOR '
DO 5,NT=O,MUMBEROFTIMESTEPS
IF (NFE .EQ. 1) THEN
WRITE (*,101)' TIMESTEP \#',NT
WRITE (*.100)' '
ENDIF
CALL MAKEA(NT,TIMINCR,TIMSTART)
C
C
CALL MAKESHAPES( MASTERK,MUNNOOES)
CALL STOREMASTERK(NT,MASTERK,MMNODES)
5 CONTINUE
C * Solve the time-dependant problem, once all of the [K] values are
C ready and stored.
NNPLUS1=NUMNODES+1
IDIM=NUMNODES-NUMBDY
IDPLUS1=IDIM+1
CALL SOLUTION(NUMNODES,NNPLUS1,KZERO,IDIM,IDPLUSI, FIMALK,
C LASTR)
END
C
**Note that the rest of the program is the same as viscO2

```

\section*{Table 6. P21a.FOR}

\section*{PROGRAM P21a.FOR}

Note that for P21a.FOR the following modifications are made to the code:
C \(+4+++++++4+++++++++++++++++++++4+\)
C READ IN THE PARAMETRIC DATA

OPEN (14,FILE='Elastic',STATUS='old')
REWIND 14
READ (14,*) NV,ITMAX,BETA, IGAMMA

C The numer of parameters is fixed at 1 for the elastic problem.
MMPAR=1
NC=1
MS=1
NUNTIMESTEPS=1

The other modification necessary is:

\section*{C READ IN INITAL DATA}

C This reads in some of the necessary parameters to operate some of \(c\) the arrays used in this program.

READ (13,*)NUMELS, NumberOfNodes NUMNODES=NumberOfNodes*2

NOOCOUNT = NUMNODES
NUMM = NUMNODES
READ (\(13, *\)) (COEFF (1), \(1=1,6\))
READ (13,*)NUMBEROFTIMESTEPS
MMBEROFTIMESTEPS \(=1\)
READ (13,*)NUMSTART,NUMSTOP
READ (13.*)TIMSTART,TIMINCR
CLOSE (13)

C H
C here's the splice to cet the xx(ils,n) values into the procranil

COEFF(1)=XX(IIS,1)
COEFF (2) \(=0.000\)
\(\operatorname{CoEFF}(3)=0.000\)

Table 7. DUMERGE.FOR
```

    PROGRAM DUMERGE
    INTEGER IDUM(10)
    INTEGER NUMELS,NUMNODES,NTS
    DOUBLE PRECISION DDATA(10)
    DOUBLE PRECISION RDATA
    DOUBLE PRECISION SUMDATA(2000)
    CHARACTER*15 FILEA,FILEB
    OPEN (20, FILE='GENERAL_DATA', STATUS= 'OLD')
    REWIND (20)
        READ (20,*) NUMELS, NUMBEROFNODES
        NUMNODES=NUMBEROFNODES*2
    READ (20,*)(DDATA (K),K=1,6)
    READ (20,*)NTS
    CLOSE (20)
50 FORMAT (A)
51 FORMAT (A,I1)
52 FORMAT (A,I2)
C CLEAN HOUSE
DO KL=1,NUMNODES
SUMDATA (KL) =0. ODO
ENDDO
DO II=1,NTS
IF (II.LT.10) THEN
WRITE (*,51) ' FILE NUMBER ',II
WRITE (FILEA,51) 'DELUFILE',II
ELSE
WRITE (*,52) ' FILE NUMBER ',II
WRITE (FILEA,52) 'DELUFILE',II
ENDIF
OPEN (22, FILE=FILEA, STATUS='OLD')
DO LL=1,NUMNODES

```

Table 7 (Cont'd).
```

        READ (22,*) RDATA
        SUMDATA (LL) =SUMDATA (LL) +RDATA
    ENDDO
    ENDDO

```
 OPEN (24, FILE='SUMDELU', STATUS='NEW')
 DO JJ=1, NUMNODES
 WRITE (24,*) SUMDATA(JJ)
 ENDDO
 WRITE (*,50) ' COPIED'
 CLOSE (22)
 CLOSE (24)

WRITE (*,50) ' ALL DONE CREATING FILE SUNDELU'
WRITE (*,52) ' FILES SUMMED:',NTS

END

Table 8. Documentation for programs.
```

The general form for the data and element files is:

```
```

**** For the <General_Data.dat> data file:

```
```

**** For the <General_Data.dat> data file:

```
 mumels mamodes
 C1 C2 C3 C4 C5 C6
 MUMBEROFTIMESTEPS
 MUMSTART MUNSTOP
 TIMSTART TIMINCR
**** For the <Element_Data.dat> Data File:
 1 MOOX(1) MOOY(1) <-----These are the \(x, y\) coordinates for the
 2 moox(2) moor(2) nodes.
 - • -
 n moox (n) wooy (n)
 1 EI(1) EJ(1) EK(1) EM(1) <-.- These are the nodes which make up
 2 EI(2) EJ(2) EK(2) EN(2) each element. For a triangular
 - element, the EMC) value should be
 - \(i(n) \operatorname{ci}(n)\) (Integer).
 n EI (n) Ej(n) EK(n) EM(n)
For the <Boundaries.dat> data file:
 mmboy
 \(\begin{array}{lll}\text { IBNDX } & \text { IDIR } & \text { BVAL(IBNDX) } \\ \text { IBNDX } & \text { IDIR } & \text { BVAL(IBNDX) } \\ \text { IBNDX } & \text { IDIR } & \text { BVAL(IBNDX) }\end{array}\)
 IBNDX The node at which the boundary condition is known
 >>>>>>>THESE MUST BE IM SEQUENTIAL ORDERIII<<<<<<
 IDIR Direction of Displacement:
 \(x=1\)
 \(Y=0\)

BVAL(IBNDX) Displacement Value
Note that the index system obviates the need for sequential ordering of the bounday conditions EXCEPT that due to a bug in the program, the "1" IDIR **MUST** precede the "On IDIR for any node which has two known boundary conditions.
*** For the <rnumber_.dat> file:
** Remember \(X=1\) and \(Y=0\)
MUMRVAL

171

Table 8 (Cont'd).
INDEX IDIR VAL

IMDEX Node number
IDIR Direction code (soe above)
VAL Force value
```

The File PAR EST.DAT
required for using P21.F is:

```

NC NS NV ITMAX BETA IGAMLMA
NUMPAR
NUMTIMSTEPS
NPRNT
\begin{tabular}{cccc}
NI1 & CL(NI1) & CU(NI1) & XX(1,NI1) \\
NI2 & CL(NI2) & CU(NI2) & XX(1,NI2) \\
\(\cdot\) & \(\cdot\) & \(\cdot\) & \(\cdot\) \\
\(\cdot\) & \(\cdot\) & \(\cdot\) & \(\cdot\) \\
\(\cdot\) & \(\cdot\) & \(\cdot\) & \(\cdot\)
\end{tabular}

\section*{Where}
```

NPRNT Print level during function evaluation
0 - Prints nothing after first evaluation
1 - Prints new coefficients after first run
2 - (1) plus displacement values

```
NUMPAR Number of parameters to be estimated
NC Number of Constraints
NS Number of Search Variables
NV Number of Vertices
ITMAX Maximum Number of Iterations
BETA Model Parameter (Convergence Criteria)
IGAMMA Model Parameter
NIn Numerical Index for Parameter \(n\)
CL(NIn) Lower Constraint for Parameter \(n\)
CU(NIn) Upper Constraint for Parameter \(n\)
XX(1,NIn) Best Guesstimate of Parameter \(n\)
The File Elastic.DATrequired for usingg p2la.F is:
NV ITMAX BETA IGAMMA
NPRNT
NI1 CL(NII) CU(NI1) XX(1,NI1)
Where
NPRNT Print level during function evaluation
0 - Prints nothing after first evaluation
1 - Prints new coefficients after first run 2 - (1) plus displacement values
NV Number of Vertices
ITMAX Maximum Number of Iterations BETA Model Parameter (Convergence Criteria) IGAMMA Model Parameter
NIn Numerical Index for Parameter \(n\) (\(n=1\) for all
elastic data)CL(NIn) Lower Constraint for Parameter \(n\)CU(NIn) Upper Constraint for Parameter \(n\)XX(1,NIn) Best Guesstimate of Parameter \(n\)

\section*{APPENDIX B}

\section*{Material Deflection Data}

Note that the symmetry of the sample was exploited to simplify the parameter estimation process. The \(1 / 4\) grid (Figure 31) deflection points are listed below.

Figure 30. Finite Element Grid Used in Parameter Estimation Evaluation Model.

176
Table 9.
Change in Position of Indeces at 100\% Loading.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Timestep} \\
\hline Point: & \(x y\) : & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & x & 0 & 0.0656 & 0.1517 & 0.1862 & 0.2687 & 0.3173 & 0.3563 \\
\hline 1 & \(y\) : & 0 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 \\
\hline 2 & x : & 0 & 0.0862 & 0.1243 & 0.2197 & 0.2829 & 0.3129 & 0.3563 \\
\hline 2 & y & 0 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 \\
\hline 3 & x & 0 & 0.0796 & 0.0606 & 0.0967 & 0.1435 & 0.1895 & 0.1813 \\
\hline 3 & y & 0 & 0.0409 & 0.0944 & 0.0947 & 0.1159 & 0.1432 & 0.1375 \\
\hline 4 & x & 0 & 0.0437 & 0.0799 & 0.1113 & 0.1631 & 0.1638 & 0.1813 \\
\hline 4 & y & 0 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 \\
\hline 5 & x : & 0 & 0.0596 & 0.1020 & 0.1267 & 0.1937 & 0.1861 & 0.2013 \\
\hline 5 & \(y\) & 0 & 0.0569 & 0.1100 & 0.1393 & 0.1919 & 0.2452 & 0.2516 \\
\hline 6 & x : & \(\bigcirc\) & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 \\
\hline 6 & \(y\) ! & 0 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 \\
\hline 7 & x : & 0 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 \\
\hline 7 & \(y\) & 0 & 0.0701 & 0.1521 & 0.2013 & 0.2791 & 0.3210 & 0.3563 \\
\hline 8 & \(x\) : & 0 & 0.0243 & 0.0875 & 0.0902 & 0.1260 & 0.1187 & 0.1375 \\
\hline 8 & : & 0 & 0.0570 & 0.0778 & 0.1167 & 0.1608 & 0.1959 & 0.1813 \\
\hline 9 & \(x\) : & 0 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 \\
\hline 9 & \(y\) : & 0 & 0.0952 & 0.1558 & 0.2273 & 0.2412 & 0.3108 & 0.3563 \\
\hline 10 & \(x\) : & 0 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 \\
\hline 10 & \(y\) & 0 & 0.0730 & 0.0750 & 0.1033 & 0.1592 & 0.1917 & 0.1813 \\
\hline
\end{tabular}

Position of Index Mark at 1008 Loading.
Values in Inches.

Table 10.

\section*{Change in Position of Indeces at 828 Loading}

Postion of Index Marks at 828 Loading.
All Values in Inches.

Table 11.
Change in Position of Indeces at 47\% Loading.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Timestep} \\
\hline Point: & & xy : & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline & 1 & x & 0 & 0.0533 & 0.1094 & 0.1036 & 0.1220 & 0.1513 & 0.1793 \\
\hline & 1 & \(y\) : & 0 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 \\
\hline & 2 & x : & 0 & 0.0400 & 0.0620 & 0.0976 & 0.1415 & 0.1764 & 0.1793 \\
\hline & 2 & \(y\) & 0 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 \\
\hline & 3 & x & 0 & 0.0514 & 0.0729 & 0.0879 & 0.0694 & 0.1220 & 0.1031 \\
\hline & 3 & y & 0 & 0.0439 & 0.0309 & 0.0839 & 0.0638 & 0.1049 & 0.0731 \\
\hline & 4 & x & 0 & 0.0199 & 0.0767 & 0.0628 & 0.0994 & 0.0975 & 0.1031 \\
\hline & 4 & y & 0 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 \\
\hline & 5 & x & 0 & 0.0253 & 0.0582 & 0.0540 & 0.1065 & 0.1175 & 0.0989 \\
\hline & 5 & \(y\) & 0 & 0.0566 & 0.0505 & 0.0711 & 0.0887 & 0.1002 & 0.1077 \\
\hline & 6 & x & 0 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 \\
\hline & 6 & y & 0 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 \\
\hline & 7 & x & 0 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 \\
\hline & 7 & y & 0 & 0.0740 & 0.1044 & 0.1224 & 0.1585 & 0.1966 & 0.1793 \\
\hline & 8 & x & 0 & 0.0502 & 0.0492 & 0.0844 & 0.0958 & 0.0903 & 0.0731 \\
\hline & 8 & y & 0 & 0.0339 & 0.0463 & 0.0904 & 0.1071 & 0.1020 & 0.1031 \\
\hline & 9 & x & 0 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 \\
\hline & 9 & \(y\) & 0 & 0.0340 & 0.1073 & 0.1119 & 0.1299 & 0.1570 & 0.1793 \\
\hline & 10 & x & 0 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 \\
\hline & 10 & \(y\) & 0 & 0.0233 & 0.0622 & 0.0773 & 0.1146 & 0.1190 & 0.1031 \\
\hline
\end{tabular}

Position of Index Marks at 478 Loading.
All Values in Inches.

\section*{APPENDIX C}

\section*{Permeation Data}

Table 12. Summary of Permeation Data at Various Loading Levels.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Loading: & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2794 \\
& 1930
\end{aligned}
\] & \[
\begin{aligned}
& 2303 \\
& 1583
\end{aligned}
\] & \[
\begin{array}{r}
1323 \mathrm{P} \\
906 \mathrm{~N}
\end{array}
\] & \begin{tabular}{l}
Psi. \\
\(\mathrm{N} / \mathrm{Cm}^{2}\)
\end{tabular} \\
\hline Percent of Maximum Load: & 0x & 100x & 82x & 47x & \\
\hline Quadratic Coefflcients: & & & & & \\
\hline A : & -0.00162 & -0.00133 & -0.00160 & -0.00151 & \\
\hline B : & 0.33586 & 0.36331 & 0.35602 & 0.34411 & \\
\hline C: & 0.35710 & 0.45182 & 0.55308 & 0.45553 & \\
\hline Correlation Coefficent: & 0.9965 & 0.9973 & 0.9947 & 0.9885 & \\
\hline Coefficient of Determination: & 0.9931 & 0.9970 & 0.9947 & 0.9885 & \\
\hline Standard Time: & 20.4 & 18.3 & 18.7 & 19.7 & min. \\
\hline \(d C / d t\) at Standard Time: & 0.2681 & 0.3146 & 0.2962 & 0.2842 & (\(\mathrm{x} / \mathrm{min}\). \\
\hline Permeation Rate: & 0.9411 & 1.1045 & 1.0396 & 0.9977 & \\
\hline Change: & 0 & +17.36x & +10.47x & +6.02x & \\
\hline & \(3 / m i n / m m^{2}\) & /Atm & & & \\
\hline
\end{tabular}

Figure 31. Change of \(\mathrm{CO}_{2}\) Concentration in Permeation Cell Versus Time at 100\% Loading.

COEFFICIENTS OF LERST SOURRES FIT TO A QUADRATIC EQUATION
\(K A=-.0016222 \quad K B=0.2560284 \quad K C=0.5530775\)
CORRELATION COEFFICIENT OF \(X Y\) PAIPS \(=0.3973468\)
COEFFICIENT OF DETERMINATION = 9.9947807

Figure 32. Change of \(\mathrm{CO}_{2}\) Concentration in Permeation Cell Versus Time at 82\% Loading.

- OEFFICIEATS OF LEAST SRUARES FIT TO R DUADRATIC EQUATION
\(K A=-.0015185 \quad K B=0.244115 \quad K C=0.4555388\)
CORRELATION COEFFICIENT OF \(X-Y\) PRIRS \(=0.9942745\)
COEFFICIENT OF DETERMINATION =0.3885818

Figure 33. Change of \(\mathrm{CO}_{2}\) Concentration in Permeation Cell Versus Time at 47\% Loading.

BIBLIOGRAPHY

Allcock, H.R. and Lampe, F.W. 1981. Contemporary Polymer Chemistry. Prentiss-Hall: Englewood Cliffs, NJ. p. 436445.

Augl, J.M. and Land, D.J. 1985. A Numerical Approach for Obtaining Nonlinear Viscosity Parameters of Polymeric Materials and Composites. J. App. Polymer Sci. 30:4203.

Boresi A. P. and Sidebottom O. M. 1985. Advanced Mechanics of Materials. John Wiley \& Sons: New York. p.644-647.

Box, M. J., Davies, D., and Swann, W.H. 1969. Non-Linear Optimization Techniques. ICI Monograph No.5. Oliver \& Boyd: Edinburgh UK.

Burke, P.E. and Weatherly, G.C. 1987. Uniaxial Roll-Drawing of Isotactic Polypropylene Sheet. Polymer Engineering and Science 27:518.

Chen, T. W. 1991. Superposition Principle in Small Angle Light Scattering at High Frequency. J. App. Physics. 70(2):1031.

Christensen, R. M. 1967. Theory of Viscoelasticity. Academic Press: New York. p.1-32.

Cook, R. D. and Young, W. C. 1984. Advanced Mechanics of Materials. Macmillan Pub. Co.: New York. p.508.

DeBaerdemaker, J. G. 1975. Experimental and Numerical Techniques Related to the Stress Analysis of Apples Under Static Loads. Ph.D. Dissertation, Michigan State University.

El-Hibri, M.J. and Paul, D.R. 1985. Effects of Uniaxial Drawing and Heat-Treatment on Gas Sorption and Transport in PVC. J. App. Polymer Sci. 30:3649.

El-Hibri, M.J. and Paul, D.R. 1986. Gas Transport in Poly(vinylidene Fluoride): Effects of Uniaxial Drawing and Processing Temperature. J. App. Polymer Sci. 31:2533.

Ferry, J.D. 1980. Viscoelastic Properties of Polymers, \(3^{\text {d }}\) ed. J. Wiley \& Sons: New York. p.130-167.

Flugge, W. 1967. Viscoelasticity. Blaisdell Pub. Co.: Waltham MA. p.1-21.

Gere, R. and Timoshenko, B. 1984. Mechanics of Materials. PWS Engineering: Boston p.304.

Hashimoto, T. et al 1976. Superstructure of High-Density Polyethylene Film Crystallized From Stressed Polymer Melts as Observed by Small-Angle Light Scattering. Polymer 17:1075.

Hashimoto, T. et al 1976. Deformation Mechanisms of Hard Elastic Polyethylene Films. Polymer 17:1063.

Hendra, P.J., Taylor, M.A., and Willis, H.A. 1985. Plastic Deformation in Linear Polyethylene. Polymer. 26:1501.

Howells et al. 1991. Enhanced Effects with Scanning Force Microscopy. J. App. Physics 69(10):7330.

Jang, B.Z.et al., 1985. Crazing in Polyethylene. Polymer Engineering and Science 25(2):98-101.

Jehle, U. and Mlejvek, H.P. 1990. Application and Implementation of Approximate Explicit Models in Optimum Structural Design. Computer methods in Applied Mechanics and Engineering 83(100):33.

Klomparens, K.L. et al. 1986. Procedures of Transmission on Scanning Electron Microscopy for Biological and Medical Science. Ladd Research Industries: Burlington VT. p.112-114

Kuester, J.L. and Mize, J.H. 1973. Optimization Techniques With Fortran. McGraw-Hill: New York.

Lyon, R.E. and Farris, R.J. 1984. Thermodynamic Behavior of Solid Polymers in Uniaxial Deformation. Polymer Engineering and Science. 24:908.

Manetsch, T.J. 1989. Towards Efficient Global Optimization in Large Dynamic Systems-The Adaptive Complex Method. Department of Systems Science, Michigan State University, East Lansing MI, 48826.

Morris, S.A. and Lee, J. 1987. The Effects of Tensile Strain on the Performance of High-Barrier Retortable Pouch Material. J. Packaging Technology. 1:194.

NASA MSC-21157. Keeping Blood Platelets Healthy During Storage. Reprints available from NASA STI Facility, Manager TU Division, POB 8757, Baltimore MD 21240-9985.
\(0^{\prime}\) Brian, K.C., Koros,W.J., and Husk, G.R. 1987. Influence of Casting and Curing Conditions on Gas Sorption and Transport in Polyimide Films. Polymer Engineering and Science. 27:211.

Pan, S.J., Tang, H.I., Hiltner, A., Baer, E. 1987. Biaxial Orientation of Polypropylene by Hydrostatic Solid State Extrusion Part II: Morphology and Properties. Polymer Engineering and Science. 27:869.

Paulsen, C.W. 1992. Product Design on a P.C.. Sound \& Vibration, January. p 58.

Paulos, J.P. and Thomas, E.L. 1980. Effect of Postdrawing on the Permeability of Gases in Blown Polyethylene Film. J. App. Polymer Sci. 25:15.

Reiss et al. 1991. Scanning Tunnelling Microscopy on Rough Surfaces--Quantitative Image Analysis. J. App. Physics. 70(1):523.

Rhodes, M.B. and Stein, R.S. 1969. Scattering of Light from Assemblies of Oriented Rods. J. Polymer Science: Part A-2. 7:1539.

Roulin-Maloney A. C. ed. 1991. Fractography and Failure Mechanisms of Polymers and Composites. Elsevier Applied Scientific Pub.

Seguela, R. and Rietsch, F. 1986. Tensile Drawing Behavior of a Linear Low-Density Polyethylene: Changes in Physical and Mechanical properties. Polymer. 27:532.

Segerlind, L. J. 1984. Applied Finite Element Analysis. John Wiley \& Sons: New York. p. 1-3.

Schultz, J. M. 1984. Microstructural Aspects of Failure in Semicrystalline Polymers. Polymer Engineering and Science. 24:770.

Smith, T. L. and Adam, R. E. 1981. Effect of Tensile Deformations on Gas Transport in Glassy Polymer Films. Polymer. 22:299.

Speigel, M.R. 1965. Schaum's Outline of Theory and Practice of Laplace Transforms. Schaum's Outline Series. McGrawHill: New York. p. 1-35.

Stein, R.S. and Rhodes, M.B. 1960. Photographic Light Scattering by Polyethylene Films. J. App. Physics 31:1873.

Stein, R.S. and Rhodes, M.B. 1961. Light Scattering Study of the Annealing of Drawn Polyethylene. J. App. Physics 32:11.

Ugrual, A. C. 1981. Stresses in Plates and Shells. McGraw-Hill: New York. p.106-139.

Williams, J.L. and Peterlin, A. 1971. Journal of Polymer Science, Polymer Physics Edition. 9:1483.

Yasuda, H. and Peterlin, A. 1974. Gas Permeability of Deformed Polyethylene Films. J. App. Polymer Sci. 18:531.```

[^0]: 'The "Free Volume" of a polymer may be thought of as the volume of the void-free solid versus the space occupied by the actual molecular chains comprising it. A long chain polymer may be folded and bundled such that there is sufficient space between the folds to allow the slow passage of sufficiently small gas molecules.

[^1]: 2 The code for VISCO2 is included as part of Appendix A as is an earlier version, VISCO1, which uses disk memory to store the residual matrices, and is usable (although very slow) on smaller computers.

[^2]: ${ }^{3}$ It should be noted that the least-squares fit is used as a matter of convenience since it was part of the integrator software. The actual curve is more closely defined by an exponential time curve $\left[Y=C_{f}\left(1-e^{+k}\right)\right]$, but for the purpose of rate determination either will suffice.

[^3]: Note that the errors referred to in table (2) are the average absolute cumulative deviation of all points over all timesteps relevant to that parameter estimation run. The \mathbf{K}_{1} parameter is derived from a single timestep as previously explained, and the K_{2} and K_{3} parameters are derived from 6 timesteps. Further, the error in K_{1} is carried through into the estimation run for K_{2} and K_{3} so these values may seem high.

[^4]: St should be noted that the curves shown are smoothed significantly from the actual data which showed significant electronic noise as well as resonance data from the tensile fixture cables.

