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ABSTRACT

CORRELATION OF STRESS, STRAIN, MORPHOLOGICAL SHIFTS AND
PERMEATION-RATE CHANGES IN POLYMER FILMS.

By
Scott Allan Morris

This study constructs a quantitative 1link between
stress, strain, morphology changes and changes in the rate of
permeation in a polymer film sample. The purpose of this is
to provide a simple method of correlating mechanical input
and performance changes in polymeric material using a series
of simple tests rather than the repetitive construction and
evaluation of prototypes.

A step-loading test fixture was devised to apply varying
levels of stress to a cruciform film sample. An optimization
scheme based on the COMPLEX algorithm was devised to
determine the material constants of the polymer used in the
material and a finite element model for viscoelastic
materials was constructed to resolve the state of strain,
thinning and change in free volume occurring in the sample
material. Small Angle Light Scattering (SALS), and Scanning
Electron Microscopy (SEM) were used to inspect the material
for gross changes in morphology as a result of mechanical

input. Finally, CO, permeation was tested via the quasi-



isostatic method to check the film for changes in permeation
rate.

The study revealed an increase of up to 20% in the rate
of permeation in response to a small (less than 6%) increase
in free-volume and an even smaller (less than 1%) amount of
thinning in the sample. The correlation of these changes
with a specific state of strain in the region tested
represents a significant step forward since the stress-strain
model may be used to resolve similar occurances in other
structures made of the same material. More generally, the
study represents the inititation of a modelling methodology
which may be used to predict overall permeation changes in a

particular structure before beginning prototype construction.
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1.0 INTRODUCTION

The use of barrier polymers in packages designed for long
shelf-life products is increasing. With this increase comes
the need for a quantitative assessment of the effects of
stress and strain imposed during package manufacture,
filling, and distribution on the gas-transport properties of
a material. Mechanically induced changes in Dbarrier
properties can result in the reduced shelf-life of a packaged
product, or the reduced efficacy of a pharmaceutical product
even if there is no overt sign of deterioration. An improved
understanding of <the relationship between mechanical,
morphological, and gas-barrier properties of materials will
allow producers and users to optimize their use of these
materials by obtaining desired barrier properties with lower
volumes of more carefully engineered materials.

The relationships between 1loading, deformation,
structural orientation, and changes in gas transport
properties (diffusion and permeation) in polymers are poorly
correlated. Some studies have characterized microstructural
changes and changes in gas transport properties of highly
crystalline polymers (Polycarbonate, PVC, and polyimide)

under simple uniaxial tensile strain. These results often
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conflict with existing theories of free-volume reduction,
however, and do not apply to cases of multiaxial strain, nor
to the semicrystalline polymers prevalent in the packaging
industry such as PE and PP [O’Brian et al.,1987; Smith and
Adam, 1981; El-Hibri and Paul 1985].

Studies have been conducted to characterize changes in
the crystalline/amorphous structure of deformed semi-
crystalline polymers in terms of an accurately measured state
of strain. These studies did not consider the gas-transfer
properties of the polymers. [Segula and Rietsch, 1985; Hendra
et al., 1985; Burke and Weatherly, 1987; Pan et al., 1987;
Schultz,b1984].

Other investigators have attempted to correlate strain
and gas transport properties, but they have only considered
the strain field imposed on the samples in terms of simple
uniaxial elasticity/plasticity relationships. They did not
consider viscoelastic (time-dependent) relaxation effects,
nor did they make an effort to characterize the resultant
changes in morphology [Yasuda and Peterlin, 1974; Paulos and
Thomas, 1980; El-Hibri and Paul, 1986; Morris and Lee, 1987].

The relationship between stress, strain, changes in
morphology, and changes in gas transport properties is in
need of a comprehensive, multifaceted study in order to
approach mechanically caused barrier property change problems
with the proper analytical tools. The significance of the

quantitative wunderstanding of this relationship reaches
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beyond food and pharmaceutical packaging into the fields of:

-Separation and purification operations (optimization of
membrane structure during the fabrication of

separator/filter cartridge structures.

-Biomedical processes (such as dialysis and oxygenation
via the strain modification of the requisite
semipermeable membrane structures).

-Extended storage of whole blood/ blood
platelets (modification of the polymeric container for

optimum gas transport) (NASA MSC-21157).



2.0 OBJECTIVES

This study was designed to determine the correlation
between mechanical stresses, viscoelastic response, shifts in
polymer morphology, and changes in gas-transport properties
in the semicrystalline polymers used in packaging. A
quantitative link between mechanical stress and shifts in the
gas-barrier properties in these materials was to have been
defined.

Specifically, the objectives of the study are:

1. To experimentally determine the viscoelastic properties
of a material sample and apply the coefficients to
a numerical model of the biaxially strained sample
in order to predict the stress, strain and time
relationships of the material.

2. To characterize changes, if any, in the morphology of
the polymer.

3 To measure the gas-transport rate of the material
before and after deformation.

4. To link the information gathered from the previous
objectives into a comprehensive picture of the
functional changes occurring in the polymer film

as a result of two-dimensional mechanical stress.



3.0 LITERATURE REVIEW

3.1 Mechanics and Viscoelasticity

The primary quantities which are considered in the
mechanics of materials are stresses, strains, and material
properties. Stresses result from forces acting within the
body being considered. Strains are the result of differential
movements within the body, and are usually described in
terms of percentage of a referential measure (eg. final
length divided by original 1length in the 1linear case).
Displacements are the movement of referential point(s)
within the body relative to some external coordinate system
and are related to strain.

The field of the analytical mechanics of deformable
bodies is primarily concerned with the relationship of these
three conceptual quantities, and constructs three broad
classifications of families of equations to relate the
quantities to one another: equilibrium conditions (or
equations of motion for dynamic problems), kinematic
relations, and constitutive equations. Equilibrium
conditions are material independent, and define the stresses
(or conditions of motion) acting on the body in question.

Kinematic relations, which are also material-independent

5
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raelate the strains within a body to its displacements. The
constitutive equations are material dependent and relate the
stress and strain within the body. Since the materials may
vary widely in their response, there are many types of
constitutive equations falling into four broad categories;
elastic, viscous, plastic, and viscoelastic.

Elastic materials may be defined as those materials
which store energy without significant loss (as with a
stretched metal spring), and stress is linearly proportional
to strain. Viscous materials, by contrast, dissipate energy
without significant energy-storage capacity (demonstrated by
pouring water from one glass to another) and exhibit stress
in proportion to strain rate. Plastic behavior combines the
preceding two concepts in the following manner: A plastic
material will store energy in an elastic fashion until the
"yield point" is reached, after which the material begins to
irreversibly deform without further energy storage. Plastic
behavior usually does not account for the rate of strain on
the material (Flugge, 1967).

Viscoelasticity is concerned with the study of the
materials which have a stress-strain relationship with
characteristics that do not exactly fit the concepts of
plasticity, viscosity or elasticity. Viscoelastic materials
can both store and dissipate energy in a manner where the
rate of strain is dependent on the time-history applied

stress. Viscoelastic constitutive equations are often
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composed of both viscous and elastic equation elements (hence
the term "visco-elasticity"), and the constitutive equations
of these types of materials may be linear, with constant
material coefficients, or non-linear (where the material
coefficients contain terms which are a function of stress,
strain, or their derivatives) (Ferry, 1980). In this study,
for the sake of simplicity, the response of the material was
assumed to be linearly viscoelastic.

For most constitutive equations arising from the study
of deformable bodies, the two basic elements of viscoelastic

models are the elastic spring element where

Stress = Constant * Strain
1)
o= E-¢

(The constant in this equation is usually the elastic

[Young’s] Modulus, E). The viscous dashpot element used is

Stress = Constant * Strain Rate @)
g = constant * &

In fluid mechanics, the constant is often taken to be 7, the
viscosity coefficient relating shear stress and shear rate.

The more complex material responses are often
modelled by combinations of simple elements, some of which
are reproduced in Figure 1.

The three-parameter solid is the constitutive model that



Differential equation
Model Name
Inequalities
O vWWA -0 | elastic solid 0 = g
o- —{E -O | viscous fluid g =gt
o—AMA—{F—0 | Maxwell fluid o +pid = qut
O | Kelvin solid g =gee +qut

3-parameter
solid

g +P‘a. - q.‘ + q“

> P

Figure 1. Chart of Constitutive Equations.

(Flugge, 1968)
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will be used in this study since its compliance curve most
nearly matches that of the types of polymers under
consideration (Ferry, 1980), and it encompasses all of the

preceding models in the table.

3.1.1 Effects of Loading

The type and degree of 1loading is critical in
predicting the response of viscoelastic materials. Since the
analytical solution of the constitutive differential
equations is often accomplished using Laplace transforms
loading regimes considered are usually those which can be
constructed of the more common functions considered within
the context of Laplace transforms: Dirac delta (spike)
functions, Heaviside unit (stepped) functions and "ramp"
functions. Superposition and the time-shift principles
(the so-called t- and s-shifts) may be used to combine these
functions to mimic many "real-world" situations (Speigel,
1965) . In this study, the loading will be limited to a

single step function.
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3.1.2 Material Response to a Single Step Function.

The response of a three-parameter solid may be shown by

solving the model’s governing equation,

o+p, 6 = g,e+q,¢ (3)

using the Laplace Transform, this operation gives

?=o°( o ) (4)

or

?s%:(—-—-ﬁl;::) where -:—: = A (5)

where o, is the initial step loading value. When rearranged
and operated on by the inverse transform, the equation

becomes

e=%[% (1-e3t) + ple"“] (6)
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Note that

+) = %P1
e(t=0") o

(7)

e ( t=) s_q%

which is illustrated in Figure(2).
3.1.3 Numerical Solutions of the Stress-Strain Equations

In all but the most simple geometrical configurations,
the exact analysis of the state of stress and strain at a
chosen point within the body to be considered verges on the
impossible. Sections with irreqular geometries, sharp
corners, inclusions such as holes or slots, or boundary
conditions that are less than ideal all render the
analytical formulations of the states of stress and strain
unsolvable in any practical sense (Cook & Young, 198S5).

Numerical methods are viewed as a means to closely
approximate the solutions of the partial differential
equations of stress and strain of the body to be analyzed.
The finite difference method replaces the partial
differential equation (PDE) and boundary condition terms with
a system of equivalent difference equations. The solution
of this system of simultaneous equations then yields the
solution to the PDE at each node. This method is useful in



ANAN

6,

=1

M
€
t.
€0

0 t+

For a stepped load oy applied at time t=0

Figure 2. Response of a Three-Parameter Solid to an
Applied Step Loading.
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that the formulation is relatively simple. Unfortunately,
the rectangular grid geometry for the points used in the
analysis is simple as well--and inflexible (Ugural, 1981).
Although it is possible to produce a mesh of triangular
elements, or re-map them into circular or spherical
coordinates, extremely irregular boundaries or unusual
shapes will cause the model to match the spatial coordinates
of the actual object very poorly (Paulsen, 1992).

The finite-element method, although burdened with a
more difficult formulation, has the advantage of not being
limited to a strictly rectangular or triangular approximation
of the body’s geometry. Rectangular and triangular elements
may be mixed, curved elements may be produced (or closely
approximated), and the dimensions of the elements may be
allowed to vary in order to more closely approximate the
geometry of the subject.

In the system used to model the viscoelastic response
of the materials in this study, the finite element
formulation also will be shown to conveniently accommodate
the time-dependency of the material as well as the irregqular
boundary conditions of the test samples (Segerlind, 1984,
Boresi and Sidebottom, 1984).
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3.2 Optimization and Parameter Estimation

Determining the material coefficients for the defining
differential equation of the three-parameter model is a
troublesome aspect of the mechanics of viscoelastic
materials for all but the simplest types of tests and sample
geometries. There are several standard ASTM tests for these
types of materials, but the results are quite simplified and
are of limited use for the modelling of complex systems. A
great deal of effort has been devoted to producing a good
set of material coefficients for many types of constitutive
models, both 1linear and nonlinear (Augl and Land, 1985)
(Ferry, 1980). Most methods require simplified test
protocols or sample geometries and may not return values
that are wuseful in large-scale modelling of the
two-dimensional films used in this study.

Investigators in the system optimization field have
occasionally used finite element modelling to deécribe the
objective function of the optimization scheme at hand (Jehle
& Mlejveck, 1990). The usual scheme in such optimization
models is to computationally fit the material coefficients
of the model so that the difference between the output of the
model and a set of observed data, or desired outcomes, is
minimiied. This scheme, although computationally intensive,

is useful in the optimization of a system that is too
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complex to describe analytically, or does not possess the
simple geometries so often used in standard measurement
techniques. This method lends itself well to the problem at
hand since the already developed finite element model can be
used as the objective function. The data taken from optical
measurements in existing test fixtures may be used as the
data to be matched.

The method developed for this study was that of
minimizing the difference between the finite element model’s
calculated values for strain and the experimentally observed
strain data over a series of equally spaced time-steps. The
advantage of this method, particularly in a biaxially
stressed system, was that the material parameters can be
retrofitted to the observed data without the need for
additional testing equipment. Additionally, this method
shows great promise for the analysis of material properties
in other situations where the material is in some unusual
configuration, is in use and may not be removed for
analysis, or may only be studied via some non-contact

methodology.

3.3.1 The Complex Method of Function Minimization

The Complex method, an extension of the Simplex method,

is an efficient and versatile tool for finding global optima

within the domain of possible solutions (Box, 1969). It
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avoids some of the convergence problems which occur with
simplex methods and may be used with almost any number of
variables or type of objective function. It also has the
notable advantage of being able to accommodate restrictions
on both the 1limits of the estimated parameters and the
regions to be considered feasible. It has the further
advantage of not requiring the calculation of derivatives.

In operation, the Complex method randomly seeds a number
of vertex points about the allowable domain of the function
to be minimized (creating a complex polygon) and calculates
the value of the objective functions at each of these points.
The difference between these points is considered, and if the
difference exceeds a preset parameter value then the vertex
returning the 1lowest value is replaced by another point
located a distance along a line located through the rejected
vertex and the centroid of the complex polygon. This process
repeats until the difference between the vertex points is
less than the minimum (8). At this point, the centroid of
the isoplethic polygon is considered to be the minimum
(ringed, in a sense, by the vertices of the complex polygon),
and the computation stops, returning the values of the
parameters at the centroid, and the centroid objective

function value.
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3.3 Gas Permeation in Deformed Polymer Films

The rate of gas permeation through materials can be
correlated to several phenomena which occur during the
deformation process. The simplest is the result of changes
in section thickness which occur as a material is strained
(half the thickness yields roughly twice the permeation). 1In
most polymers, however the processes which occur are much
more complex, and the changes are not nearly as simple as
with simple thinning phenomenon.

Under large strains, polymer films deform visco-
elastically, changing their morphology from a mass of nearly
random macromolecular chains to a well oriented series of
parallel fibrils. Experimental research has shown that the
fibrillar component of these oriented materials has a
permeation rate that is orders of magnitude lower than that
of the amorphous material surrounding it (Williams and
Peterlin, 1971). From this, one may correctly assume that
extensively orienting a film and creating a high fibril
content will cause the permeation rate of the film to
decrease drastically.

This phenomenon is commonly used in industry to tailor
the permeation rates of polymer films to a specific
application, and to reduce the amount of raw material needed

to perform the barrier function of a particular package.
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Currently, the most visible example of this method is in the
polyethylene terpthalate (PET) bottles, used by the soft-
drink industry, which are oriented both axially and radially
in order to retain carbonation for the required period of
time. Careful manipulation of both the molding and
orientation process during production has resulted in a
substantial material reduction since the introduction of the
bottle in the 1980’s.

Under 1lesser strains, the material behaves much
differently than in the large-strain orientation described
above. Under small strains, polymer free-volume' and
diffusion increase (provided that Poisson’s ratio is less
than 0.5, which is approximately the case for most organic
polymers other than rubber) until a plateau is reached at
relatively 1low levels of strain (0.05 < € < 0.20 for
polyethylene). The increase in free volume is accounted for
in the small-strain equation for thinning

e,=-L (0,+0,)

(8)

=-p (e *e )

(Gere and Timoshenko, 1984).

'The "Free Volume" of a polymer may be thought of as the
volume of the void-free solid versus the space occupied by
the actual molecular chains comprising it. A long chain
polymer may be folded and bundled such that there is
sufficient space between the folds to allow the slow passage
of sufficiently small gas molecules.
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For a square area of material

p=0.25 9)
e,=¢,=0.1

e,=-0.25(0.1+0.1) =-0.05

New Area = (x+e,) *(y+e))
(x+0.1x) - (y+0.1y) (10)

1.21(0Original Area)

New Thickness = (z+e,)
=(z-0.52)
=(0.952)
= 0.95 (Original Thickness)
New Volume=(1.21 (Original Area) * 0.95 (Original Thickness)

=1.14 Original Volume

(11)

Note that for large values of the elastic modulus, E, the
effect is more pronounced to a limiting value equal to the
ratio of new surface area to original surface area.
Additionally E may be replaced with E(t) by superposition to
give a small-strain linear viscoelastic formulation (Flugge,
1968) with similar results.

After the "plateau" of maximum free-volume expansion has
been reached, the aforementioned effects of orientation begin

to dominate the system and permeation will drop off to well
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below its unstrained value. Sorption steadily increases as
well and appears to approach an asymptote as the levels of
strain increase (Yasuda et al, 1964; Yasuda and Peterlin,
1974).

The studies mentioned above consider the viscoelastic
polymer in terms of an elastic-plastic model and do not
account for the time-dependance of the material response in

terms of any overall material constitutive model or system.

3.4 Material Analysis

3.4.1 Scanning Electron Microscopy

Scanning electron microscopy (SEM) is an often-used
technique for the characterization of the surface structure
of polymeric materials (Roulin-Maloney, 1990). The usual
procedure utilizes either an as-produced surface or a
surface created for the analysis (through cryomicrotomy or
similar method) as the specimen over which a replicant
surface is cast using a high resolution casting material.
Often the surface to be examined is treated with some type
of etchant such as p-xylene or chromic acid to increase the
resolution of the differing regions within the distorted
material (Jang et al, 1985, Hashimoto et al, 1976). Once
the surface (or its replica) is prepared, the material is

desiccated using critical point extraction to remove the
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solvents and residual moisture which may contaminate the
interior of the microscope. The surface to be examined is
electroplated (to dissipate any charge that may be built up
from the scanning electron beam), and an image may then be
recorded.

Recent developments in scanning force electron
microscopy (SFEM) and scanning tunnelling electron
microscopy (STEM) have led to very high resolution of surface
characteristics and have made quantifiable roughness
measurements possible (Reiss et al, 1991; Howells et al,
1991). The equipment for these SFEM and STEM, however, was
not available for use in this study. Although the surface
profile information ws not be as good as with SFEM and STEM
methods, the geometry and degree of asymmetry of the

spherulites should have been accurately measurable.

3.4.2 Small Angle Light Scattering, Spherulite Size and

Orientation.

Small angle light scattering (SALS) is commonly used to
determine the degree and direction of orientation of many
types of materials. In its simplest form, the apparatus is
simply a highly collimated (preferably coherent) source of
monochromatic light which is passed through a polarizer then
through the material to be analyzed and through a second,

adjustable polarizer (analyzer) (Figures 3 and 4). In the
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< Polorizer

/M| Photographic
Film

N

Figure 4. The Experimental Arrangement for
Photographic Light Scattering From
Films (Stein and Rhodes, 1960).
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case of high molecular weight polymers, the spherulite size

may be estimated (using a HeNe laser with A=632.8 nm) as

R, = 4.08 / 4% 8in(6,/2) (12)

where R, = average radius of the spherulite and 0_, = maximum
scattering angle (Stein & Rhodes, 1969).

Orientation may be obtained by observing that the
drawing of the polymer will pull the polymer chains in both
the crystalline and amorphous regions of the polymer into an
oriented state which is most often compared to a series of
oriented rods. The scattering that occurs from this
fibrillar component will produce an bias in the scattering
pattern normal to the direction of orientation of the
polymer (Rhodes and Stein, 1961; Stein and Rhodes, 1960)
which may be used (when corrected for sample thickness) to
correlate the degree of orientation at the particular
sampling area to the rotation of the biased maximum.

The usual reason for attempting to measure these changes
in orientation is to observe any fibril formation or re-
formation which might be occurring in the polymer during
deformation. Since the onset of a decrease of permeation
rate is linked to this fibril formation, the determination of
the point at which these changes begin to occur will be
useful in the construction of an accurate predictive model

for permeation changes.



4.0 DERIVATION OF THE FINITE ELEMENT FORMULATION

Starting with the equilibrium equation

011'1+F1=0 i,j:1,213 (13,

and the viscoelastic constitutive equation

t
°1J'I(Guu(t‘t) )(ﬁ'g:—t))dt (14)
0

where

Guu’% [G,(t) -G, (¢)] 5115::1*%51 (€) [8;,0,,+8,,8,,]

i, J,. k, 1 =1, 2,3, 4

(15)

Using the general convolution notation, which states that for

any functions A’ and B/,

t
fa'(t-t)(”—;:‘l)dt = A'sB/ (16)
0

the viscoelastic constitiutive equation may be expressed as

035=Gijx1*Cx1 (17)
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where

Gljkl--;_ [Gz ( t) -61 ( t) ] auau*%G,_ ( t) [611611+61161k]

Rearranging the terms of equation (17) gives

y de,, (1)
oij'quu(t-t) T dt
]

(G, (£) -G, (£) ] a,,au(ﬁ%t‘_‘l)df

vk wlk

O Oy r

+

8e,, (v)
G, (£) [8,,8,,+8,,8,] (%—)dt

For equation (19a)

8 F i =Fy for j=k
8,5F15=Fy;  (=Fy)

-£r.,

a=1

Using the identity

equation (19a) becomes

(18)

(19a)

(19b)

(20)

(21)
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t
1[16,(6)-6,(£)18,8, (ﬂi‘—’)m
[]

ot
(22)
t
-1 - 3 (e, +e,,4e,,) )
3{[c;,(c) c,;(c)]au( = dt
Using the identities
€x1™C 1k .
symmetry
and producing the identity
(8:4851+3 118 53) Fiey=8 148 1, Fp 1 +8 118 1, Fyy
=8 148 13F 1 *8 1185 Fy
=8 +8 ,F.
1xF3x*041Fy) (24)
=8,y Fyy*+8,4Fyy
=(Fij+Fij)

allows (19b) to be rewritten as



c t
[} 1
2[6.(6) (8,48 ,4+8,,8,) E%l'i(l)'dt i ‘[Gl(t) ;'1 dt
[}
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combining (22) and (25) gives

C [ 4
o1 [16,(0)-6,(8)18,, “f’ + [ae _16:: &
! ]

)

which may be expressed in convolution notation as

Defining

and

04522 [G,(£) =G, (£) 18,y %e+g, (£) veyy

21o= z11=
€2:% €537
€= €5
010.
03..
03‘=
0‘.3

av,

€= T:
e = 5
v 3,
au,

Ces™ T:

(25)

(26)

(27)

(28)

(29)
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(27) can be written as

0,=A, *¢&
k k" " (30’
k,m=1°2°23°4"
where
[ 1(G,+2G,) 1(G,-G,) 1(G,-G,) 0
3 2 1 3 2 1 3 2 -1
1(G,+2G6,) 1(G,-G,) o©
[A]' 3 2 1 3 2 1 (31)
3(G,+2G,) ©
Sym. %Gi
Using the functional
I'II%GUu"u“u‘Fi*uxl dv-| (S=u,) da (32)
v

(Christensen, 1971) the solution to (32) may be found,
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provided that the following boundary conditions are
satisfied:

u,=Ai on B,

where B, is the boundary over which the tractions §S; are
specified, B, is the boundary where the displacements A are
specified, and n; describes the boundary unit normal vector
(positive outward). When the boundary conditions are
satisfied, the first variation, §I, vanishes and the solution
may be found by finding the stationary value of I.

The functional I may be discretized over the relevant

region, as a set of subregions:

o-1

=% % f (ex*Apey) dV- )3 f (uS+F') dv- )3 f (ug'+s.’) dA
o=1 o=1
ve ve 3: (3‘)

k=1°,2°,3°%,4° «=1,2

where e represents the subregions. The displacements may be

found via the matrix formulations (Zienkiewicz, 1971)

{e?} = [B°] {1} (35a)
{u®} = [N°] (U} (35b)



£
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where [N] is the shape function matrix, {u} are the

elemental displacements, {U} are the nodal displacements,

(B°] is the matrix relating strains to nodal displacements,

and {e°} is the strain vector.
Substituting the equations (35a) and (35b) into (34),

integrating, then performing the convolution gives

I=1(U}7+ (K] + (U} - (U} TR (36)

where the stiffness matrix [K] and force vector {R} are,

respectively,

(K] =Elk) =L [ (B*17(a] (8] aV
ve

(37)
(R} =X {r ) =.)_51( [vermredvs [ (Nel7(s ) dA)
ve B®

and [ )T represents the transpose of a matrix

The first variation of (36) gives a result similar in

appearance to the elasticity finite element formulation:
8I=3{U}T*[K] «{U} -8 {U} T+ (R} =0
(K] ={U}-{R} =0 (38)
[K] = {U} ={R}

From the preceding derivation the elasticity finite-element
formulation
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[K] {Displacement} = {Force}
(K] {U}={F}

(39)

then can be shown to have a corresponding time-dependent

formulation,

[K] *»{U}={R} (40)

where (40) represents the integral

t
[ (K(t-t))d{u(z)}de={R(L)} (41)

t=0

Discretization of (41) over n equally spaced time-steps

Y [K(t,-t) ] {AU(E) Y= {R(E,)) (42)
m=l

where {AU(t,)} represents individual displacements from time
t. to t.,.

This formulation gives each displacement as a function
of all previous displacements, plus a possible initial step
displacement although this is often taken to be zero. The
other individual components of equation (42) are ([K] The
stiffness matrix which contains spatial data and the

viscoelastic modulii
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(K] =Y (K]
n, (43)
=Y. [ (81714 [B*)dV

o~1 ve

Where [B°] is the shape function for element e and

(A] is the matrix containing the time dependent material
properties derived from the material constitutive equations.
The coefficients in [A] are

E(t)

1-p2

an%f%&,ﬁ (44)

a,,=a;,"

_ay,(1-p)
33 —é_—-

and {R(t)} is the force vector at time t.
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4.1 Derivation of Material Constitutive Equations

The three-parameter (Maxwell) model for viscoelastic

solids, has the defining differential equation

o+p,&=q,e+q,¢ (45)

operating on (45) with the Laplace-transformed Heaviside unit
step function
Llogu(t)]=0,(s)

sfoou(t:) e *tdt

A (46)
'%oo
=9,
produces the transformed differential equation
[+P,]0,=[@+qy s8] € (47)

From this, and the superposition principle, one may define a
viscoelastic shear modulus (Flugge, 1968) which may be used
in place of the elastic shear modulus in the material

properties matrix of the finite element formulations
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1
rika! (48)

2G(s8) =
dotd, S

The shear modulus may be expressed (after rearrangement

and taking the inverse transform) as a function of three

groups of coefficients:

-@(t) (49)
G(t) =2L% 1—(1-1;;2)9 @

substituting
=1
2q,
=(1-2% (s0)
K=(1 o )
=%
@
gives
G(t) =K, [1-K,e ™" (51)

It is worth noting that the value for G(t) when t = o

is simply

G() K, (52)

[}
“l
-

This equation for G(t) may be substituted into the general
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equation for the elastic modulus

E = 2G(1+p) (53)

where Poisson’s ratio, u, is constant to give

E(t) = (K, [1-k,e™B] (1+p) (54)

which are used in the previously described material

properties matrix [(A] defined in (44).
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4.2 Implementation of the Finite-Element Viscoelastic Solid

Modelling Program

To implement the previously derived finite element
method, the program VISCO2 was written in FORTRAN-88, and
implemented on the Michigan State University Case Engineering
Center VAX-8650 as well as the CRAY Y-MP4/464 at the National
Center for Supercomputing Applications at the University of
Illinois, Urbana-Champaign?.

The implementation of this method is rather straight
forward since many of the components of the algorithm are
taken directly from elasticity finite element formulations.
The substantial difference is that the residual term must be
calculated for each time-step, and is a function of all of
the preceding time-steps. This particular version calculates
many of the components of these terms at the beginning of the
program, then holds them in memory arrays, so that the
program is not constantly recalculating the same values for
the residual term components.

It should be noted that the large number of residual

terms generated to account for the stress/strain "history" of

2 The code for VISCO2 is included as part of Appendix A
as is an earlier version, VISCOl, which uses disk memory to
store the residual matrices, and is usable (although very
slow) on smaller computers.
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the material demands a great deal of storage capacity. These
requirements can be mitigated somewhat by the use of banded
storage techniques and other data-compression algorithms, but

the final result often remains memory intensive.



5.0 MATERIALS AND METHODS

5.1 Derivation of Material Properties Constants

The primary material used in this study was 1 mil cast
polyethylene film (PW-242 "Flex-O-Film", Flex-O-Glass, Inc.
Chicago, IL 60651) . Actual thickness of the film was
checked using a TMI 549 M micrometer (Testing Machines Inc.
Amityville, NY) and was found to be .85 mil (0.00085";
0.000216cm) over all parts of the film.

Material properties were derived using a cruciform
sample subjected to a stepped loading in a biaxial tensile
fixture (Figures 5 and 6). The samples were marked with a
non-interactive acrylic ink (Hunt Mfg. Co., Statesville, NC
28677) in a pattern to conform to the grid design selected
for use with the P21.FOR and P2l1a.FOR software (Figure 7).
This pattern was chosen as a compromise between minimizing
the number of data points to be collected and conformity to
the sample during deformation.

Since the practical 1limit for the finite element
software is approximately 15% total strain, this limit was
found by trial and error (using linear samples) to be
approximately 2800 psi (19.30 MPa) and was taken to be the
limiting factor in the strain level applied to the film. The

(39)
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Test Specimen
Supported Clamp
-+ >
" Teasion Cables//

Test Fixture Diagram

Figure 5.

Tensile Loading Fixture Diagram.
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Figure 6. Photograph of Biaxial Tensile
Loading Fixture.
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samples were then loaded to 47%, 82%, and 100% of maximum
strain (1316, 2296 and 2800 psi or 9.08, 15.83 and 19.30 MPa
respectively). The choice of loading levels are a result of
the standardized size of the dead-weights used to load the
fixture’s cross-beams. The deflection of the material was
recorded against a background grid of 0.2" x 0.2" (0.51 x
0.51 cm) squares using a VHS format camcorder (Panasonic VHS
Reporter) and then played back using the still-frame feature
of an RCA-500 VCR. Data was recorded manually from the film
markings and measurement grid previously described. The VHS
format records images at 1/30 sec. intervals which allows the
deformation history to be recorded over a span of 6 frames of
tape (1/5 sec.). Since the start of the test was not
synchronized with the frame recording of the camera, the
exact start and end-points of the deflection history were
taken by extrapolation.

Initial tests showed a significant amount of rebound in
the film due to an-unknown factor in the test fixture. By
experimenting with the mass distribution on the loading beams
of the tensile fixture it was found that the rebound could be
nearly eliminated by placing the dead-weights near the ends
of the beams. This acted to reduce the amount of beam
flexure and rebound during material deflection without
affecting the level of load placed on the sample.

Once the data points had been recorded, the deflections

were calculated and averaged, exploiting the symmetry present
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in the test sample to minimize the calculation necessary to

construct models for the mapping of strain fields.
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5.2 Permeation Testing

Permeation testing was done using the quasi-isostatic
method. A permeation cell was devised with extended clamping
arms which can accommodate the sample held in the tensile
fixture (Figure 8). Carbon dioxide flowed through the lower
chamber of the cell at a regulated rate of approximately
50cc/min. The upper chamber of the permeation cell (figures
9 and 10) was ventilated with low pressure compressed air for
a minimum of 60 minutes after the cell was clamped on the
film specimen to allow the CO, in the lower chamber to reach
100% concentration. At this point the upper cell was sealed
and the headspace of the upper chamber was assayed at
approximately seven minute intervals for CO, concentration by
analyzing 1 cc. syringe-drawn aliquots of the headspace gas
with a Carle 2153-B Gas Chromatograph and Spectra-Physics
2400 Computing Integrator.

The concentration values were plotted using the
integrator’s least-squares® curve-fitting software, and the

rate of increase ascertained in order to calculate the rate

31t should be noted that the least-squares fit is used
as a matter of convenience since it was part of the
integrator software. The actual curve is more closely
defined by an exponential time curve [ ¥=C/(1-e*)], but for
the purpose of rate determination either will suffice.
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Figure 9. Permeation Cell Used
In the Study.
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Figure 10. Permeation Cell With Film

Sample Under Tension.
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of permeation. A standard gas sample (5.05 % CO,, 21.3% O,,
balance N,: AGA Specialty Gasses, Maumee OH 43537) was used
to calibrate the detector response, but due to the
availability of only the single concentration all
calculations of permeation rate are done at that
concentration in order to minimize error due to detector non-
linearity. The curve-fitting software gave the equation of

the line plotting the rise in concentration versus time as

Ax? + Bx +C = y (55)

where x represents time and y is the concentration at time x.
The lesser root of the quadratic equation may be used to
construct the point x’ at which the concentration passes

through the standard value y’

x = -3-/3% - 4 A(C-y)) (S"

2A

The time-rate of concentration change is taken at this point

as

Dc/Dt = Dy/Dx = 2A x' + B (57)

and used for permeation calculations.
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5.3 Small Angle Light Scattering Analysis

The Small Angle Light Scattering (SALS) analysis fixture
was constructed such that material under tension in the
tensile fixture could be analyzed. The Helium-Neon laser
source produces a polarized beam of light which was used with
an analyzer to record the H, and H, patterns photographically.
The 0, was measured against a grid on the projection screen
and the pu,, or rotation of the flare pattern, was measured

using a slit photometer.
5.4 Scanning Electron Microscopic Analysis

Surface features of the film in both its unstressed and
maximally stressed state were cast in the tensile fixture
using Reprosil Type 1 light (L.D. Caulk Co., Milford DE
19963) and then a transfer casting was made using Spurr’s
epoxy resin (Klomparens et al, 1986). The replica was then
sputter coated with gold, and examined in the JEOL-35
Scanning Electron Microscope (Center For Electron Optics,
Michigan State University). The samples were checked for
change of surface features at the center within the area of
the sample covered by the permeation cell where the largest

strains were predicted to occur.



6.0 RESULTS AND DISCUSSION
6.1 Parameter-Estimation Method Evaluation

Two parameter estimation programs, P21.FOR and p2la.FOR
were written to extract material property constants from
deflection data using tests with known levels of applied
loads. The programs utilize the COMPLEX function
minimization methods incorporating the VISCO2 finite element
program as the objective function, attempting to minimize the
difference between the deflection predicted by the finite
element software and the "real world" deflection data.

In order to evalﬁate the accuracy and utility of the
parameter estimation software P21.FOR and P21A.FOR, 1:'he
previously-described finite element software used dQummy
material property constants to generate nodal deflection
values as a substitute for observed data over an arbitrary 10
time-step period (figure 11). The parameter estimation
software was then used to try and re-extract the original
constant values. Records were kept of the number of
function-evaluations required for the model to converge.

The effect of varying the operating parameters on the

final accuracy of the returned estimate was ascertained

51
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Estimation Method.
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(table 1). Different numbers of complex polygon vertices
were used in the optimization scheme, and the value of 8 (the
intrapolygonal variation of the vertex values, below which

the model is assumed to have converged) was varied as well.
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Table 1.

Parameter Estimation Evaluation Results

Number of Elements: 4
Number of Nodes: 9

Estimation of: K,
Upper Limit of Estimation: 1.0x10°
Lower Limit of Estimation: 1.0x10?
Starting Value: 5.0x10*

3 Vertices
8 Nodal Error
at Centroid
0.0 0.240%
5.0 0.002
2.5 0.002
1.0 0.002
0.5 0.002

Nodal Error

0.0 0.082%
5.0 0.074
2.5 0.003
1.0 0.008
0.5 0.004

Nodal Error
B at centroid
0.0 0.001%
5.0 0.003
2.5 0.003
1.0 0.002
0.5 0.003

Nodal Error
8 at centroid
0.0 0.063%
5.0 0.029
2.5 0.008
1.0 0.003
0.5 0.000

Number of

30
38
38
38
38

Number of

38
56
64
75

Number of

56
56
62
89
93

Number of

81
89
99
111
126
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Table 1 (cont’d).

Estimation of: K, K,
Upper Limit of Estimation: 1.0x10° 1.0
Lower Limit of Estimation: 1.0x10? 15.0
Starting Value: 5.0x10* 12.0
3 Vertices
g Nodal Error Number of
at Centroid Evaluations
10.0 2.214% 25
5.0 0.319 59
2.5 0.113 75
1.0 0.056 86
0.5 0.051 92
4 Vertices
8 Nodal Error Number of
at Centroid Evaluations
10.0 1.125% 54
5.0 0.024 85
2.5 0.042 91
1.0 0.006 107
0.5 0.003 112
5 Vertices
Nodal Error Number of
B at centroid Evaluations
10.0 0.107% 99
5.0 0.189 102
2.5 0.189 102
1.0 0.036 154
0.5 0.005 187
6 Vertices
Nodal Error Number of
B at Centroid Evaluations
10.0 0.060% 128
5.0 0.021 138
2.5 0.021 147
1.0 0.017 176
0.5 0.001 201
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As is shown by the tabulated values, the model returned
a very accurate estimate of the data with relatively few
evaluations of the finite element objective function and a
very coarse model grid. It must be noted that the "error"
value to be minimized is a sum of the errors of all points
over all time-steps, and thus is extremely situation
dependent. The simple study shown illustrates the relative
efficiency of the method even when constraint values are
used.

This computation-intensive type of parameter estimation
becomes slow as the number of nodes in the objective function
model increases, so the software was implemented on the Cray
Y/MP 4-464 supercomputer at the National Center for
Supercomputing Applications at the University of Illinois at
Urbana-Champaign. The results of these trials indicated that
with the parallel processor environment available the
computation time shrunk by several orders of magnitude (from
tens of minutes to less than three seconds).

The software is extremely efficient at estimating
simpler cases such as elastic (time-independent) deformation.
Although many simpler methods exist for some elastic
problems, this method may find use in evaluating unknown

materials of unusual geometry.
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6.2 Material Parameter Estimation

The film used in this study was evaluated at three
different load levels (the 100%, 82% and 47% levels described
in section 5.1) using the biaxial tensile fixture. Although
the fixture is capable of axially independent loading of a
sample, the small amount of material available for the study
confined the tests to regimes where both axes’ were loaded at
the samelevel simultaneouly. 1Initial tests showed that the
entire deflection of the material occurred within
approxihately one fifth of a second (6 frames of videotape)
and no further deformation was recorded over periods of up to
a week. As will be subsequently shown, this is due to the
load-time history of the material.

Data taken from the video record (Appendix B) was
normalized and converted into displacement files for use with
the parameter estimation software P21.FOR and P21A.FOR.
Results of the material parameter-estimation are shown in

Table 2.
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Table 2.
Material Parameter Estimation Results

136323

81.10%

142661

155974 96.02

40.41%

It should be noted that this parameter estimation method
was designed for use where the time history of the material
would be a significant factor in the results of the rest of
the test (eg. that the permeation testing would occur before
the material had reached an equilibrium level of deflection).
In this particular case, all of the strain occurred over such

a short time period and other material measurements occurred

‘Note that the errors referred to in table (1) are the
average absolute cumulative deviation of all points over all
timesteps relevant to that parameter estimation run. The K,
parameter is derived from a single timestep as previously
explained, and the K, and K; parameters are derived from 6
timesteps. Further, the error in K, is carried through into
the estimation run for K, and K; so these values may seem
high.
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after such a relatively long time period, that the time-
dependency of the material is almost irrelevant. A
parameter-estimation method of this complexity would be a
much more efficient analytical tool for a material which

exhibits much slower deformation time history (on the order

of days or weeks).
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6.2.1 Error in Material Models and Estimated Parameters Due
to Loading History Deviations From the Assumed

Heaviside Function

Since the tensile testing fixture used with a material
with an extraordinarily short deformation history is
essentially an impact loading device, the assumption that the
load onset in the sample forms a perfect step-function
becomes somewhat questionable since the load in a perfectly
elastic (undamped) system forms an oscillator with a load
amplitude twice that of the dead weight loading, and a system
which is overdamped to the point of not exceeding the applied
load will show a load onset more closely akin to a ramp
function. Both of these conditions violate the assumptions
upon which the material model is based, and call the validity
of the parameter estimation method into question.

In order to check the load vs. time curve of the film in
the test fixture, a strain gauge load cell was fabricated
(Figure 12) and put in series with one of the test fixture
tension cables (Figure 13). The output of the strain gauge
was conditioned with a Daytronic 3170 Strain Gauge
Conditioner and displayed on a Hewlett-Packard 54504A
Digital Oscilloscope. The load vs. time history for the

first 500 milliseconds of loading was measured at each of
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the three loadings used in the study.

The loading was shown to be a ramp of approximately
90ms. duration (nearly one-half of the information recording
period used for parameter estimation), with a peak load value
approximately 25% higher than the dead-weight loading of the
beams, and with a significant relaxation (Figure 14)3.

The effects of these deviations from the assumed load
vs. time curve on the estimated values for the material
constants are worth noting more for their implications in
the method than for this particular study. Since the
deflection of the material used in this study occurs over
such a short period of time and since the K, value thus
dominates the material model, the error in the K; estimate
may be corrected directly as a function of the peak loading
value. In the case of an experiment with detorﬁation
occurring over a more substantial length of time, the K, and
K; variables become more significant, and the error induced
in these coefficients may become more significant as well.
It may be that for an extended load-time relationship the
"ramping” and relaxation would constitute a fairly small
component of the overall time history of the material; the
major cause for concern would be, once again, error in the K1

estimate caused by the peak loading being larger than the

5It should be noted that the curves shown are smoothed
significantly from the actual data which showed significant
electronic noise as well as resonance data from the tensile
fixture cables.
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static level on the beam.

A solution to the problems caused by the real-world
loading history compared with the "perfect" Heaviside
step-function would be to incorporate matching variable
loading conditions in the finite-element models used as
objective functions in the parameter- estimation method and
as a modelling method for the strained film. It is unclear,
however, at what point the deviation from the assumptions
necessary for the development of the material model will
begin to affect the accuracy of the analysis. A more
practical solution might be to redevelop the material model
using a ramp 1loading function, a combination of ramp and
Dirac spike functions, or some other (more accommodating)

model rather than a step loading function.
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6.3 Strain Within the Specimen

Finite element simulations of the test specimen were
constructed and run to ascertain the state of strain in the
film, particularly within the region tested for permeation
and morphology changes (Figures 15 and 16). The values
returned by the material parameter estimation experiments
were used as the material constants in previously described
VISCO2.FOR software.

The model returned values which were then plotted to
give an estimate of the state of strain and change of free
volume occurring within the material at the time of
measurement. This model provides a good "map" of the area of
interest in terms of strain and change of volume, and the
change of volume and thinning during the three 1loading
regimes is plotted in Figures 17 to 22.

As the figures clearly illustrate, there is an increase
in the free volume of the material in the region of the

specimen where the permeation testing took place.



67

GENERAL SEQUENCE OF PROGRAMS

‘ Material Deflection Dnu)

Suased
Displacement
Data

D)

K,

K. Estimsate
(Elastic Constant)

lp2s.F o

Estisate of Material Constants
Ky, Ka, K3)

Material Deflection
Calculations

Change in Thickness

AREA.FOR and Free Voluse

Figure 15. General Sequence of Programs Used in
Parameter Estimation and Material Response
Calculations
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Figure 20. Calculated Change in Free Volume at 100% Loading.

(All values are in percent.)
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6.4 Permeation Changes in the Material

The permeation rate of three different samples of the
material were measured at three different strain levels each.
The relatively small degree of strain occurring in the sample
suggests that there would be a marked increase in the rate of
permeation, and this was shown to be the case. Additionally
the increase was not linear (Figure 23) but the increase was
monotonic with increasing strain.

These findings are of considerable interest, since the
permeation rate of a material apparently can increase by at
least 20% due to small loads in what might be considered the
"elastic" range of the material. Although this increase is
ostensibly limited by the onset of fibrillar orientation in
the material, there 1is still the potential for this
phenomenon to be of interest in the engineering of polymeric
material structures, either in the construction of a safety
factor where barrier properties are the foremost concern, or
in the manipulation of a polymeric film to the desired
permeation specifications.

The curvlinear nature of the increase in permeation
suggests that the nature of the mechanism by which the
permeation increases in the polymer is either extremely

sensitive to changes in free volume, or that there is some
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threshold level within the material above which the material
has a much higher level of permeation. In the latter case,
the permeation increase within the material tested would
vary as the threshold-exceeded area increases, giving an
approximately second-order permeation curve with a biaxially

loaded sample.
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6.5 Small Angle Light Scattering Analysis

The Small Angle Liéht Scattering (SALS) method used to
test the film for changes in orientation showed that the
material had a distribution of spherulites on the order of
sum which were oriented in the "machine direction®® of the
film. This low level of orientation is to be expected due to
the stresses applied to all films during production.
Unfortunately, even the largest strain applied to the
material failed to show any appreciable difference in
orientation direction or magnitude (as shown by the direction
and degree of extension of the "flare" in the pattern in the
photographs) between the strained and unstrained specimens in
either the H; (polarizers crossed) or H, (polarizers
parallel) configurations (Figures 25 to 28). This was
expected from the small-strain model which suggests that the
changes which occur in the material are due solely to free-
volume changes in the structure in the polymer rather than
the formation of morphological artifacts which would
significantly alter the optical activity of the material.

Machine direction refers to the direction in which the
material is rolled up on a spool or otherwise transported
through processing machinery. Almost all materials show some
degree of structural orientation along the machine direction
unless the process has been designed to eliminate these.
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6.6 Scanning Electron Microscope Evaluation

The electron photomicrographs of the surface features of
unstrained and maximally strained film showed no significant
changes in the surface features of the film between the
strained and unstrained state (Figures 29 and 30). Again,
this is to be expected from a phenomenon which does not alter
the morphological nature of the material. The apparent
difference in surface texture is 1largely due to the
difficulty in focusing the SEM on an almost featureless
surface.

An interesting observation to be made from these
photomicrographs is the existance of what appear to be
"pores" in the material, although these do not change with
the strain in the material and may or may not be artifacts of

the replicating process.
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7.0 SUMMARY AND CONCLUSIONS

7.1 Summary

The preceeding study developed a numerical model of the
mechanics of deformable solids to estimate the thinning and
free-volume changes that occur as a polymer film sample is
stretched under a "stepped" loading regime. A tensile
testing fixture was developed to load the film to various
degrees of tensile stress, and to measure the movement of
index marks applied to the test samples for the elucidation
of material property constant estimates for use in the
numerical models. The tensile fixture was also used to hold
the stressed film for measurement of permeation and changes
in optical activity once the loading was applied to a sample.

A permeation cell was modified for use with the
abovementioned tensile tester to measure the CO, permeation
rate at the center portion of the film sample. Further
testing of the center region of the sample was accomplished
using a Small Angle Light Scattering apparatus developed
specifically for the study, and by casting film surface
replicas for analysis by Scanning Electron Microscope.

With these tests and methods, it has been shown that the

linkage between applied force and changes in permeation can
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be quantified, with a much better understanding of the

specific changes that are occurring in the sample.
7.2 Conclusions

It is clear that a 1large change of permeation is
possible with relatively small dimensional changes, as
predicted in the 1literature and shown in this study.
Further, the changes may be correlated to a close estimate
of the state of strain, thinning and volume change of the
material at the time of permeation although the exact
microstructural mechanism by which these changes occur is not
elucidated by the analytical methods used here.

The utility of this type of analysis is immediately
apparent; it is now possible to predict the changes in
permeation occuring within a polymer film structure under
mechanical loading without construction of a prototype and
without testing beyond that which is necessary to ascertain
a few simple material properties.

Extension of the fundamental principles underlying this
study--the construction of a quantitativé linkage between
mechanical input and barrier property changes--should allow
more rapid, and therefore more cost-effective, design and
development of materials, production processes and structures

using these materials.



8.0 RECOMMENDATIONS

The study described here has proven the feasibility of
the 1linkage of several types of studies to produce a clearer
picture of the circumstances surrounding the changes in
permeation in strained material. To be a more practical
engineering tool several improvements are in order:

The collection methodology with which the material-
property data was obtained must be improved. The method has
the potential to be quite accurate, but it is hampered by the
inaccuracy and error-producing tedium of visual measurements
and the low resolution of the video system used. A high-
speed imaging and digitization system would be very useful.

A better understanding of the changes in strained
polymer structure is necessary. Since gross structural
changes are not occurring within the polymer, a more
sensitive measure of the changes occurring (such as wide-
angle X-ray scattering) may provide additional information.

A more robust tensile strain fixture is necessary if
high-speed deformations are to be studied since the one used
in this study exhibited a great deal of secondary motion when
activated.

A load-deformation time history needs to be recorded to
give a more accurate picture of the load response of the
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film, and perhaps a more complex material model is in order
to accomodate the less than ideal load-time history produced

by the equipment used.



APPENDIX A

Program Listings



This appendix contains listings for the following main

programs and (limited) supporting documentation:

VISCO1l.FOR

VISCO2.FOR

P21.FOR

P2la.FOR

DUMERGE. FOR

File Input Format for VISCOl1l.FOR and VISCO2.FOR

Additional File Input Format for P21.FOR and P2la.FOR
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Table 3. VISCOl1l.FOR

PROGRAM VISCO1.FOR

DECLARE COMMON STATEMENTS
DOUBLE PRECISION K(8,8)

DOUBLE PRECISION INVRS(200,200)
DOUBLE PRECISION KINV(200,200)

COMMON/NUM/NUMELS
COMMON/NNBLOCK/NUMNOOES

DOUBLE PRECISION R(200)
COMMON/RBLOCK/R

DOUBLE PRECISION COEFF(6)
COMMON/COE F FBLOCK/COEFF

COMMON/ 1DIMBLOCK/IDIM

COMMON /NTS/NUMBEROFTIMESTEPS
DOUBLE PRECISION TIMSTART, TIMINCR

DOUBLE PRECISION NODX(200),NODY(200)
COMMON/NODE/NQDX ,NODY

INTEGER E1(325),EJ(325),EK(325),EM(325)
COMMON/ELNODES/E1 ,EJ, EK, EM

DOUBLE PRECISION MASTERK(200,200)
COMMON/B1GK/MASTERK

DOUBLE PRECISION A(3,3)
COMMON/ABLOCK/A

INTEGER NUMSPYK
COMMON/NS/NUMSTART , NUMSTOP

INTEGER 1BDY(200)
COMMON/ 1BINDX/18DY

DOUBLE PRECISION BVAL(200)
COMMON/BOUNDVAL /BVAL

INTEGER NUMBDY
COMMON/BDY/NUMBDY

INTEGER 1DPLUS1
COMMON/1DP/10PLUS1

ODOUBLE PRECISION KPAST(200,200)
COMMON/KPASTBLOCK/KPAST



91

Table 3 (cont’d)

DOUBLE PRECISION DELU(200)
INTEGER IROW(200),JCOL(200),JORD(200)
COMMON/1JJ/1ROM, JCOL , JORD

DOUBLE PRECISION KZERO(200,200)
COMMON/K2/KZERO

DOUBLE PRECISION Y(200)
COMMON/WYE/Y

DOUBLE PRECISION FINALK(200,200),LASTR(200)
COMMON/ENDO/F INALK, LASTR

SAVE
100  FORMAT(A)

IF (NFE .EQ. 1) THEN
WRITE (*,100)’ wasswnne®  PARAVISCO 1 eerRREREEy

ENDIF

c AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

c OPEN FILES
c
C This block of commands opens, labels, and numbers the appropriate files for
C use by VISCO1 with the exception of the series of files needed for (K(t)]
C storage, as those are created as needed.
OPEN (3, FILE=’GENERAL_DATA’, STATUS= ‘OLD’)
REWIND 3
OPEN (9, FILE=’BOUNDARIES’, STATUS= ‘OLD’)

REWIND 9

c AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAARNAAAAANAAAAAAANAAAAAAAANANAAA

c READ IN INITAL DATA
C This reads in some of the necessary parameters to operate some of
¢ the arrays used in this program.

READ (3,*)NUMELS,NumberOfNodes

NUMNODE S=NumberOfNodes*2
NODCOUNT=NUMNODES

NUMN=NUMNODES

READ (3,*)(COEFF(I1),I=1,6)

READ (3,*)NUMBEROFTIMESTEPS

READ (3,*)NUMSTART,NUMSTOP

READ (3,*)TIMSTART, TIMINCR
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CALL MAKEARRAYS(IT)
130 FORMAT (12,15X,012.6)
IF (C(NFE .EQ. 1) .OR. (NPRNT .GE. 1)) THEN

WRITE (*,100) ’ COEFFICIENT VALUE'
00 J=1,6

WRITE (*,130)J,COEFF(J)

ENDDO

ENDIF

c Read in the known boundary conditions
c from the ’‘boundaries.dat file:

IF (NFE .EQ. 1) THEN

WRITE (*,100)’ '

WRITE (*,100) * NUMBER OF KNOWN DISPLACEMENT VALUES:'’
ENDIF

READ (9,*) NUMBDY

IF (NFE .EQ. 1) THEN

WRITE (*,*) NUMBDY

WRITE (*,100)’ '

WRITE (*,100) ’ DIRECTION INDICATOR: X=1 Y=0’

WRITE (*,100) ’ NODE DIRECTION VALUE'
ENOIF

00 I=1,NUMBDY
READ (9,*) IBNDX, IDIR, BVAL(I)

IF (NFE .EQ. 1) THEN

WRITE (*,*) IBNDX,IDIR,BVAL(I)
WRITE (*,100)’ '

ENDIF

C IDIR: X=1 Y=0 FOR 2-D PROBLEMS
1BDY(1)=(CI1BNDX*2)-IDIR
ENDDO
CLOSE (9)

C * Once arrays are ready, construct the series of [K(t)] values.
c for all of the timesteps in the problem.

IF (NFE .EQ. 1) THEN

WRITE (*,100)/ STORING [K) MATRICES FOR ’
ENDIF

DO 5,NT=0, NUMBEROFT IMESTEPS

IF (NFE .EQ. 1) THEN

WRITE (*,101)’ TIMESTEP=/ NT

ENDIF

101 FORMAT (A,12)

CALL MAKEA(NT,TIMINCR,TIMSTART)

c 1 0
CALL MAKESHAPES( MASTERK,NUMNODES)

: 0 0 o
CALL STOREMASTERK(NT,MASTERK,NUMNODES)
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5 CONTINUE

C * Solve the time-dependant problem, once all of the (K] values are
C ready and stored.

NNPLUS 1=NUMNODES+1
1D IM=NUMNODES - NUMBDY
I0PLUS1=1DIM+1

CALL SOLUTION(NUMNODES ,NNPLUS1,K2ERO, IDIM, IDPLUS1, FINALK,
C LASTR,KINV)

WRITE (*,100) ’ SOLUTION COMPLETED!!ItY!
WRITE (*,100) ' ¢

CLOSE (3)
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c AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAAAAANAAAA

SUBROUTINE MAKEARRAYS(IT)

C This subroutine sets up the indexed array of node and element values used
C by the [X] generation loops.

INTEGER NODNO, IELNO
COMMON/NUM/NUMELS

DOUBLE PRECISION NODX(200),NODY(200)
COMMON/NODE /NODX ,NOOY

INTEGER EI1(325),EJ(325),EK(325),EM(325)
COMMON/ELNODES/EI ,EJ,EK,EM
OPEN (4, FILE=’ELEMENT_DATA’, STATUS= ‘OLD’)
REWIND &
C * Create an array of indexed x & y values associated with each node

100 FORMAT (A)
IF (NFE .EQ. 1) THEN
WRITE(*,100) * NODE X Y’
ENDIF

20 CONTINUE

READ (4,*) NODNO
IF (NODONO .EQ. -1) GO TO 23
READ (4,*) NODX(NODNO), NODY(NODNO)

IF (NFE .EQ. 1) THEN
WRITE (*,*) NODNO,NODX(NODNO),NODY(NODNO)
ENDIF

GO 1O 20

3 IF (NFE .EQ. 1) THEN

WRITE (*,100) * '
WRITE (*,100) ’ ELEMENT 1 J K
"l

ENDIF

26 CONT INUE
* Produce an index of nodal values associated with each element

READ (4,*) IELNO
IF (IELNO .EQ. -1) GO TO 25
READ (4,*) EICIELNO), EJCIELNO), EKCIELNO), EM(IELNO)

IF (NFE .EQ. 1) THEN
WRITE (*,*) 1ELNO,EI(CIELNO),EJCIELNO),EKCIELNO),EMCIELNO)
ENDIF

GO TO 24
25 CONTINUE

RETURN
END
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c AAAAAAAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAMMMAMMAMAAA

c
SUBROUTINE MAKEA(NT,TIMINCR, TIMSTART)

DOUBLE PRECISION TIMEVAL,TIMINCR,TIMSTART
DOUBLE PRECISION A(3,3)
DOUBLE PRECISION COEFF(6)
DOUBLE PRECISION G1,G2,8,C,D
COMMON/COEFFBLOCK/COEFF
COMMON/ABLOCK/A

100 FORMAT (A)

101 FORMAT (A,12)

C Calculate the value of the timestep in seconds:

TIMEVAL=(NT*TIMINCR)+TIMSTART

[ WRITE (*,*) TIMEVAL

c WRITE (*,100) *

c GO TO 30

C This Subroutine computes the values for E and MU at some time-step NT. It
C utilizes a 3-parameter exponential decay model for the elastic modulus and
C Poisson’s ratio. The COEFF array contains the necessary coefficients.

EM=COEFF(1)+COEFF(2)*DEXP(-1.0D0*(COEFF(3)*TIMEVAL))
PR=COEFF(4)+COEFF(5)*DEXP(-1.0D0*(COEFF(6)*TIMEVAL))

C This part takes the E and MU values for the current time value
C end returns the [A] matrix for that time value.

40 B=EM/(1.000-(PR**2.000))

AC1,1)=B

A(2,2)=8
A(3,3)=B*(1.000-PR)/2.0D0
A(1,2)=PR*B
A(2,1)=A(2,1)
A(1,3)=0.00

A(2,3)=0.00

A(3,1)=0.00

A(3,2)=0.00

WRITE (*,100) [A] MATRIX VALUES’

DO IROW=1,3
DO JCOL=1,3
WRITE (*,*) IROM, JCOL,ACIROM, JCOL)
ENDDO

ENDDO

o000 0 [g]

50 CONTINUE

RETURN
END
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c AAAAAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAI\AA AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

SUBROUTINE MAKESHAPES(MASTERK, NUMNODES)

OOUBLE PRECISION MASTERK(NUMNODES, NUMNODES)
DOUBLE PRECISION K(8,8)

COMMON/NUM/NUMEL S

INTEGER EI(325),EJ(325),EK(325),EM(325)
COMMON/ELNODES/E1 ,EJ ,EK,EM

100 FORMAT (A)
IEIGHT=8
C -This Subroutine through each of the elements and (using the proper
¢ subroutine) develops an elemental (k] matrix to be added into the [K] via
¢ the MERGEK subroutine.

C * Put the two together and route to appropriate calculation of [k] for
C each element then add the value for that element into the global [X)
C But first, the MASTERK must be cleared from the last time-step.
DO I1=1,NUMNODES
DO JJ=1,NUMNODES
MASTERK(I1,JJ)=0.0D0
ENDDO
ENDDO
C Proceed to assemble next MASTERK

DO 30, IElement=1,NUMELS
IF (EM(IElement).EQ.0) THEN

c 0 1
CALL TRIANGLELEM(IElement,K)
GO TO 27
ENDIF
c 0 1
CALL SQUARELEM(IELEMENT,K)
27 CONTINUE
c 0 0

CALL MERGEK(K, IElement +MASTERK , NUMNODES )

C Note that MERGEK merges the element’s K] value into the COMMON MASTERK()
C and does not return any value.

30 CONT INUE

RETURN
END
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c AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN

c 1 0
SUBROUTINE TRIANGLELEM(IElement, K)

DOUBLE PRECISION K(8,8)

DOUBLE PRECISION NODX(200),NODY(200)
COMMON /NODE /NODX , NODY

INTEGER EI(325),EJ(325),EK(325),EM(325)
COMMON/ELNODES/E! ,EJ ,EK,EM

DOUBLE PRECISION A(3,3)
COMMON/ABLOCK/A

DOUBLE PRECISION XI,XJ,XK,XM,YI,YJ,YK,YM,BI,8J,8K,CI,Cd,CKX
DOUBLE PRECISION X(3),Y(3),8(3,6),C(6,3),AR2, SUM

C This subroutine uses the brute-force calculations in TRIANGLECALC
C to produce a [k) for the selected element.

100 FORMAT (A)

C weravene
TH=1.000

C weetdwen

XI1=NODX(EI(IElement))
XJ=NODX(EJ(IElement))
XK=NODX(EK(IElement))
Y1=NODY(EI(IElement))
YJ=NODY(EJ(IElement))
YKsNODY (EK(IElement))

X(1)=x1I
X(2)=XJ
X(3)=XK
Y(1)=Yl
Y(2)=YJ
Y(3)=YK

c AR ERRANNRRARARAR RN RARARAAARRAA A A AN AR NAANR AT RTATONEANED
c L ]

C * What follows is from "Applied Finite Element Analysis®
C* Larry J. Segerlind, J Wiley & Sons, 1984

cC* P. 37

C VMR AR AR AR AR N RS RR A AR AR AN RN A AN AR A AR AN AAN IR AR AAANINN AT TORATTOES

L2 2R 2N J

C CLEAN HOUSE:

00 1=1,8

00 J=1,8
K(1,4)=0.000

ENDDO

ENDDO

00 1=1,3
00 J=1,6
B(1,J)=0.000
€(J,1)=0.000
ENDDO
ENDDO

C GENERATE THE (B) MATRIX
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8(1,1)=Y(2)-Y(3)
8¢1,3)=Y(3)-v(1)
B(1,5)=Y(1)-Y(2)
B(2,2)=X(3)-X(2)
B(2,4)=X(1)-X(3)
B(2,6)=X(2)-X(1)
8(3,1)=8(2,2)
8(3,2)=8(1,1)
8(3,3)=8(2,4)
B(3,4)=8(1,3)
B(3,5)=8(2,6)
8(3,6)=8(1,5)

ARZEX(2)*Y(3)+X(3)*Y(1)+X(1)*Y(2)-X(2)*Y(1)-X(3)*Y(2)-X(1)*Y(3)
C MATRIX MULTIPLCATION TO OBTAIN C = (BT)(A}

00 I=1,6
00 J=1,3
€(1,4)=0.000
00 L=1,3
CCI,J)=CCT, d)+B(L, 1)*ACL,J)
ENDDO
ENDDO
ENDDO
C MATRIX MULTIPLICATION TO OBTAIN [K] WHERE
C  [Ki= (BT)[AI(B) = (C)(B)

DO 27 1=1,6
DO 27 J=1,6
SUM=0.000
00 28 L=1,3
28 SUM=SUM+C(I,L)*B(L,J)
K(1,J)=SUM*TH/(2.000*AR2)
rig CONTINUE

C RETURN [K]

RETURN
END
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c LY T LV V VY VYV VY L LLLY YV Y VY VVYVVVVVVYVVVIVVVVVIVIYYVVVVVVVVVIVIVVVVVVVVVVVVVVVVVY

c I 0
SUBROUTINE SQUARELEM(1Element, k)
DOUBLE PRECISION k(8,8),C(6)

DOUBLE PRECISION NODX(200),NODY(200)
COMMON/NODE /NODX , NODY

DOUBLE PRECISION A(3,3)
COMMON/ABLOCK/A

DOUBLE PRECISION AA,B

INTEGER E1(325),EJ(325),EK(325),EM(325)
COMMON/ELNODES/EI ,EJ ,EK,EM

DOUBLE PRECISION XI,XJ,XK,XM,YI,YJ,YK,YM

C This subroutine uses the brute-force calculations in SQUARECALC
C to produce a [kl for the selected element.

100 FORMAT (A)

XI=NODX(EI(IELement))
XJ=NODX(EJ(IElement))
XM=NOOX (EM(IE Lement))
YI=NODY(EI(IElement))
YJ=NODY(EJ(IElement))
YM=NODY (EM(IElement))

AA=0.5D0*DSQRT(((XM-X1)**2.0D0)+((YM-YI)**2,000))
8=0.5D0*DSQRT(((XJ-X1)**2.0D0)+((YJ-YI)**2.000))

CC1)=(A(1,1)*AA)/(6.000*B)
C(2)=(A(1,1)*B)/(6.000*AA)
C(3)=A(1,2)/4.000
C(4)=A(3,3)/4.000
C(5)=(A(3,3)*AA)/(6.0D00*B)
CC6)=(A(3,3)*8)/(6.000*AA)

c 01l
CALL RECTANGLECALC (C, k)
RETURN
END
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c AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN

SUBROUTINE MERGEK(K, IElement,MASTERK, NUMNODES)
DOUBLE PRECISION MASTERK(NUMNODES,NUMNODES)

COMMON/NUM/NUMEL S
DOUBLE PRECISION K(8,8)
INTEGER SK(8)

INTEGER EI(325),EJ(325),EK(325),EM(325)
COMMON/ELNODES/E1 ,EJ,EK,EM

100 FORMAT(A)

-This Subroutine adds the [K] for some element into the global [X]
for some time-step.

-MasterK is Global [K) for a given time step.

-1EL Contains the node-list for the element.

-NEL Number of elements.

[z N s NeNa Nyl

SK(1)=2*EI(1ELEMENT)-1
SK(2)=2*EI (1ELEMENT)
SK(3)=2*EJ(IELEMENT)- 1
SK(4)=2*EJ(IELEMENT)
SK(5)=2*EK(IELEMENT)-1
SK(6)=2*EK(IELEMENT)

c This skips the EM for the triangular element to avoid
c SK(7) and SK(8) = -1 and MERGEsS the SQUARE element.

IF (EMCIELEMENT).NE.O) THEN

SK(7)=2*EM(IELEMENT)-1
SK(8)=2*EM(IELEMENT)

D0 15,1=1,8
DO 10,4=1,8
MASTERK(SK(1),SK(J))=MASTERK(SK(1),SK(J))*+K(1,J)
10 CONTINUE

15 CONT INUE
ELSE
C This is the MERGE routine for the TRIANGULAR element occurrs.
20 00 35,1=1,6
DO 30,J=1,6

MASTERK(SK(1),SK(J))=MASTERK(SK(1),SK(J))+K(I,J)
30 CONT INUE
35 CONT INUE

ENDIF

RETURN
END
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c AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAAAAAAN

SUBROUTINE RECTANGLECALC(C, k)
DOUBLE PRECISION C(6),K(8,8)

100 FORMAT (A)

C This subroutine returns a brute force solution to the calculation of the
C (K] metrix for the RECTANGULAR element. Ugly but fast.

K(1,1)=2.000*(C(1)+C(6))
K(1,2)=C(3)+C(4)
K(1,3)=-2.000*C(1)+C(6)
K(1,4)=C(3)-C(4)
K(1,5)=-1.000*(C(1)+C(6))
K(1,6)=-1.000*(C(3)+C(4))
K(1,7)=C(1)-2.000*C(6)
K(1,8)=-1.000*C(3)+C(4)

K(2,1)=K(1,2)
K(2,2)=2.000%(C(2)+C(5))
K(2,3)=-1.000*C(3)+C(4)
K(2,4)=C(2)-2.000*C(5)
K(2,5)=-1.000*(C(3)+C(4))
K(2,6)=-1.000*(C(2)+C(5))
K(2,7)=C(3)-CC4)
K(2,8)=-2.000*C(2)+C(5)

K(3,1)=K(1,3)
K(3,2)=K(2,3)
K(3,3)=2.000*(C(1)+C(6))
K(3,4)=-1.000*(C(3)+C(4))
K(3,5)=C(1)-2.000*C(6)
K(3,6)=C(3)-C(4)
K(3,7)=-1.000*(C(1)+C(6))
K(3,8)=C(3)+C(4)

K(4,1)=K(1,4)
K(4,2)=K(2,4)
K(4,3)=K(3,4)
K(4,4)=2.000*(C(2)+C(5))
K(4,5)=-1.000*C(3)+C(4)
K(4,6)=-2.0D00*C(2)+C(5)
K(4,7)=C(3)+C(4)
K(4,8)=-1.000*(C(2)+C(5))

K(S,1)=K(1,5)
K(5,2)=K(2,5)
K(5,3)=K(3,5)
K(5,4)=K(4,5)
K(5,5)=2.000*(C(1)+C(6))
K(5,6)=C(3)+C(4)
K(5,7)=-2.000*C(1)+C(6)
K(S,8)=C(3)-C(4)

K(6,1)=K(1,6)
K(6,2)=K(2,6)
K(6,3)=K(3,6)
K(6,4)=K(4,6)
K(6,5)=K(5,6)
K(6,6)=2.000*(C(2)+C(5))
K(6, 7)=-1.000*C(3)+C(4)
K(6,8)=C(2)-2.000%C(5)

K(7,1)=K(1,7)
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K(7,2)=K(2,7)
K(7,3)=K(3,7)
K(7,4)=K(4,7)
X(7,5)=K(5,7)
K(7,6)=K(6,7)
K(7,7)=2.000*(C(1)+C(6))
K(7,8)=-1.000%(C(3)+C(4))

K(8,1)=K(1,8)
K(8,2)=K(2,8)
‘(813)‘K(3'8>
K(8,4)=K(4,8)
K(8,5)=K(5,8)
K(8,6)=K(6,8)
K(8,7)=K(7,8)
K(8,8)=2.000*C(2)+2.000*C(5)

RETURN
END

..............................................................................
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100

45

50
55

SUBROUTINE STOREMASTERK(NT,MASTERK,NUMNODES)

STORE the values for [K(t)] in a unique file, once the values have been
calculated.

DOUBLE PRECISION MASTERK(NUMNODES,NUMNODES)
COMMON/NUM/NUMELS

COMMON/RBLOCK/R

CHARACTER*15 FILENAME

FORMAT (A)

WRITE (FILENAME,45)/KNUMBER’ ,NT
FORMAT(A, 12)

OPEN (10,FILE=FILENAME, STATUS=’NEW’)

DO 55, 1=1,NUMNODES
DO 50, J=1,NUMNODES
WRITE (10,*)MASTERK(!,J)
CONTINUE
CONTINUE

CLOSE(10)

RETURN
END
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SUBROUTINE SOLUTION (NUMNODES,NNPLUS1,KZERO, IDIM, IDPLUS1, FINALK,
C LASTR,KINV)

DOUBLE PRECISION KINTER(200,200)

DOUBLE PRECISION KZERO(NUMNODES,NNPLUS1)
DOUBLE PRECISION FINALK(IDIM,IDPLUS1)
INTEGER NRC

COMMON/NUM/NUMELS
COMMON/RBLOCK/R
COMMON/BDY/NUMBDY

COMMON /NTS/NUMBEROFTIMESTEPS
DOUBLE PRECISION R(200),FINALR(200)
DOUBLE PRECISION DELU(200)
DOUBLE PRECISION LASTR(200)
DOUBLE PRECISION KINV(IDIM,IDIM),VECTOR(200)
DOUBLE PRECISION Y(200)
100 FORMAT (A)
This subroutine retrieves the appropriate

values for [K(t)], [/\U] et. and steps through the appropriate sets of
solutions. But first the [K(0)] values must be retieved.

o000

OPEN (12,FILE='KNUMBERO’, STATUS=/0OLD’)

DO I=1,NUMNODES
DO J=1,NUMNODES
READ (12,*) KZERO(I,J)
ENDDO

ENDDO

DO NT=1,NUMBEROFTIMESTEPS

C Retrieve the current (R) vector’s value

c 0 0
CALL FINDR(NT,NUMNODES)
C NOTE: Because of a glitch in VMS-FORTRAN (R) is passed via
c a common statement.
C Subtract the stresses from the previous timesteps
c I o] (o} 0 0 0

CALL SUBRESIDUAL(FINALR,NT,KINTER)

C Account for the known boundary conditions
Cc 0 0 (] 0] 0 I | {
CALL BYVAL(NUMBDY,NUMNODES,KZERO, FINALR, IDIM,LASTR, FINALK,
C IDPLUS1,0)

NOTE: FINALK is the augmented matrix containing the remaining
simultaneous equations to be solved.

Attempt a solution:

o 060 oo

WRITE (*,100) / SIMULT CALLED, DEL-(U) VALUES FOLLOW’
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CALL SIMULT(IDIM,FINALK,DELU,1.0D-25,1, 1DPLUSY,Y)
Store the results, AFTER re-inserting known boundary conditions.
CALL STOREDELU(DELU,NT,NUMNODES)
Print the results
CALL PRINTDELU( )
ENDDO

RETURN
END
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SUBROUTINE FINDR(NT,NUMNODES)
DOUBLE PRECISION R(200)
COMMON/NUM/NUMEL S
COMMON/NS/NUMSTART ,NUMSTOP
COMMON/RBLOCK/R

CHARACTER*15 FILENAME
C This subroutine develops the value of (R) for timestep number NT (actusl
C time value of TIMEVAL(NT) seconds) and readies it for the subtraction of the
C residual stress values.

100 FORMAT (A)

IF (NT.GE.NUMSTART .AND. NT.LE.NUMSTOP) THEN
NN=1

ELSE
NN=0

ENDIF

This spplies a stepped input between NUMSTART and NUMSTOP time intervals
which requires the availability of RNUMBER1 and RNUMBERO files. A Dirac
spike hag the same value for NUMSTART and NUMSTOP. Other input shapes
may be created by modifying the values of the function and letting
NN=NT during the relevant time-frame.

o000 0

WRITE (FILENAME,S50)’RNUMBER’,NN
50 FORMAT (A,12)

OPEN (20,FILE=FILENAME, STATUS='OLD’)
REWIND 20

0O I=1,NUMNODES
READ (20,*)R(I)
ENDDO

WRITE (*,100)'

WRITE (*,50) ' {R) VECTOR FOR TIMESTEP’,NT
WRITE (*,100) NODE X

WRITE (*,100)’

\ &

o000

DO ID=1,NUMNODES, 2
JD=ID+1
NNUM=JD/2
c WRITE (*,*) NNUM,R(ID),R(JD)
ENDDO

CLOSE(20)

RETURN
END
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c

101
100

a3

0 I 1 1 1 1
SUBROUTINE SUBRESIDUAL(FINALR,NT,KINTER)

This subroutine subtracts the residual force, from previous timesteps
from the current (R} value.

COMMON /1DIMBLOCK/IDIM
COMMON /NNBLOCK /NUMNODES
COMMON/NUM/NUMELS

COMMON /NTS/NUMBEROFTIMESTEPS
COMMON/IBINDX/18DY

COMMON/BDY /NUMBDY
COMMON/RBLOCK/R
COMMON/KPASTBLOCK/KPAST

INTEGER 1BDY(200),NUMNODES

DOUBLE PRECISION DU(200),DUMMY(200)

DOUBLE PRECISION R(200),RESID(200),FINALR(200)
DOUBLE PRECISION RINTER(200),DUINTER(200)
DOUBLE PRECISION KPAST(200,200)

DOUBLE PRECISION KINTER(IDIM, IDIM)

DOUBLE PRECISION SUM

CHARACTER*15 FILEDELU
CHARACTER*15 FILEKNUM

FORMAT (A,12)
FORMAT (A)

WRITE (*,101) ’ TIMESTEP NUMBER’,NT
TEND=NT-1

00 80,120, IEND

mlTE (',101)I ARANARRNRNNN Y l:l'l

WRITE (*,100)’ -(x] * ou)’
WRITE (FILEDELU,70) ‘DELUFILE’,!
J=NT-1

WRITE (FILEKNUM,75) ‘KNUMBER’,J
WRITE (*,*) J,!I

FORMAT(A, 12)
FORMAT(A, 12)

OPEN (12,FILE=FILEDELU, STATUS=‘0LD’)
OPEN (15,FILE=FILEKNUM, STATUS='OLD’)

REWIND 12
REWIND 15

DO L=1,NUMNODES
DO M=1,NUMNODES
READ (15,*)KPAST(L,M)
ENDDO
ENDDO

READ (12,*)(DU(CKK),KK=1,NUMNODES)

CLOSE (12)
CLOSE (15)
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DIAGNOSTIC OF FILE-READ KPAST AND DU

Collapse the [KPAST] and (DU) matrices according to the boundary

WRITE (*,100) * OUTPUT OF READ VALUES OF [KPAST]
WRITE (*,100) * ID Jo KPAST (1D,JD)’

DO 1D=1,NUMNODES
DO JD=1,NUMNODES
WRITE (*,*) 1D, JD,KPAST(ID,JD)
ENDDO
ENDDO

DO ID=1,NUMBDY
WRITE (*,101) * BOUNDARY AT ROW:’,IBDY(ID)
ENDDO

WRITE (*,100) ' 1D bU(ID)
DO 1D=1,NUMNODES

WRITE (*,*) ID,DUCID)
ENDDO

conditions associated with the (DU)’s timestep index.

Do (DU} first, producing (DUINTER):

Then
This
Rows

Then

IFLAG=0
DO I1=1,NUMNODES
IF (I1 .EQ. IBOY(IFLAG+1)) THEN
WRITE (*,101) ' SKIPPING DU ROW',II
IFLAG=1FLAG+1
ELSE
DUINTERCIT-1FLAG)=DUCIT)
WRITE (*,101) * COPYING DU ROW’,11
WRITE (*,101) ' TO DUINTER ROW’,1I-IFLAG
WRITE (*,*) DUCII)

WRITE (*,100) 1D DUINTER(ID)’

DO ID=1,IDIM
WRITE (*,*) ID,DUINTER(ID)
ENDDO

[KPAST] producing (KINTER].
is @ nested sort similar to the BYVAL() subroutine.
first:

1FLAG=0
DO 1I=1,NUMNODES
IF (11 .EQ. IBDY(IFLAG+1)) THEN
IFLAG=1FLAG+1
ELSE

columns:
WRITE (*,100) ’ MYSTERY GLITCH, NUMNODES IS’
WRITE (*,*) NUMNODES
WRITE (*,100) JJ, JFLAG, IBDY(JFLAG+1)
JFLAG=0
DO JJ=1,NUMNODES

AS READ’
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WRITE (*,*) JJ,JFLAG, IBDY(JFLAG+1)

IF (JJ .EQ. IBDY(JFLAG+1)) THEN
JFLAG=JFLAG+1
ELSE
KINTER(II-IFLAG,JJ-JFLAG)=KPAST(II,JJ)
ENDIF
ENDDO

ENDIF
ENDDO
DIAGNOSTIC OF COLLAPSED KPAST AND DU MATRICES (KINTER AND DUINTER)

WRITE (*,100) * OUTPUT OF VALUES OF [KINTER] AND (DUINTER)’
WRITE (*,100) * 1D Jo KINTER (1D,JD)’

DO 1D=1,I1DIM
DO JD=1,IDIM
WRITE (*,*) ID,JD,KINTERCID, D)
ENDDO
ENDDO

WRITE (*,100) ID DUINTER(ID)’

DO ID=1,IDIM
WRITE (*,*) ID,DUINTER(ID)
ENDDO

Multiply [KINTER] by (DUINTER) to produce a "compressed® (RINTER)
CALL SQUARBYCOL(CIDIM,KINTER,DUINTER,RINTER)

DIAGNOSTIC OF RINTER
WRITE (*,100) ' AFTER SQUARBYCOL:'
WRITE (*,100) * 10 RINTERCID)’
DO ID=1,IDIM
WRITE (*,*) ID,RINTER(ID)
ENDDO

“Unpack® the (RINTER) values into the appropriate rows of (RESID)
IFLAG=0
DO I1=1,NUMNODES
IF (II .EQ. IBDY(IFLAG+1)) THEN

If this is a "deleted" row, regenerate the (RESID(II)) value from the
appropriate row and column of [KPAST] and (DU)

WRITE (*,100) ’ REGENERATION CHECK OF KPAST VALUES’
WRITE (*,100) * 1D Jo KPAST (10,J0)’

DO ID=1,NUMNODES
DO JD=1,NUMNODES
WRITE (*,*) ID,JD,KPAST(ID,JD)
ENDDO
ENDDO

SUM=0.000
WRITE (*,100) ’ IBDY (IFLAG+1) KK SUM  KPAST ou’
DO KK=1,NUMNODES
SUM=SUM+KPAST (1BDY(IFLAG+1),KK)*DU(KK)
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c WRITE (*,*) IBDY(IFLAG+1),KK,SUM,KPAST(IBOY(IFLAG+1),KK),DUCKK)
ENDDO

RESID(I1)=SUM

c WRITE (*,101) ' REGENERATED R VALUE FOR R:’,II
c WRITE (*,*) RESID(1I)

IFLAG=IFLAG+1
ELSE
1f not, copy the value from (RINTER) and subtract the necessary

coefficients (which are carried through from the solution of the
system of compressed equations).

o000

RESID(II)=RINTER(II-IFLAG)

DO LL=1,NUMBDY
RESID(I1)=RESID(II)+KPAST(II,IBDY(LL))*DUCIBDY(LL))

ENDDO

C Finally, subtract the residual terms generated for this series of
C arrays from the original force vector (R)

WRITE (*,100) ' (R) VECTOR JUST BEFORE SUBTRACTION’
DO ID=1,NUMNODES

WRITE (*,*) 1D,R(ID)
ENDDO

WRITE (*,100) ' N R(N) RESID(N)’

[« Xz Nzl o000 (2]

DO N=1,NUMNODES
R(N)=R(N)-RESID(N)
c WRITE (*,*) N, R(N), RESID(N)
ENDDO

80 CONTINUE

C Copy whatever is left into (FINALR) for return from the subroutine.

DO N=1,NUMNODES
FINALR(N)=R(N)
ENDDO

RETURN
END
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SUBROUTINE STOREDELU(DELU,NT,NUMNODES)
DOUBLE PRECISION DELU(200)
CHARACTER*15 FILEDELU

C This subroutine stores the calculated values of (/\U) in individual files

COMMON/NUM/NUMELS

INTEGER 1BDY(200)
COMMON/IBINDX/1BDY

DOUBLE PRECISION BVAL(200)
COMMON/BOUND VAL /BVAL

DOUBLE PRECISION DUMMY(200)

INTEGER NODEHALF ,NNUM
Reingert known boundary values in the (DELU) array.
NOTE the (DUMMY) vector is the "“unpacked" solution

o000

at the particular time-step.
1FLAG=0

DO 11I=1,NUMNODES
IF (11.EQ.IBDY(IFLAG+1)) THEN
DUMMY ( 11)=BVAL(IFLAG+1)
IFLAG=1FLAG*1
ELSE
DUMMY (11)=DELU(T1-1FLAG)
ENDIF
ENDDO

C Truncate very small values to avoid underflow errors:

DO KK=1,NUMNODES
IF (DABS(DUMMY(KK)) .LE. 1.00-24) THEN
DUMMY (KK )=0.C00
ENDIF
ENDDO

IF (NT.NE.O) THEN
c WRITE (*,100) * STOREDELU RUN '’
100 FORMAT (A)

WRITE (FILEDELU,85)'PARADELUFILE’ ,NT
85 FORMAT(A,12)

OPEN(22,FILE=FILEDELU,STATUS='NEW’)
C Write to appropriate file.

DO I=1,NUMNODES

WRITE(22,*)DUMMY (I )
ENDDO
CLOSE(22)

135 FORMAT (12,014.6,014.6)
IF ((NFE .EQ. 1) .OR. (NPRNT .GE. 2)) THEN

C Screen output for instant gratification.
WITE (*,100)’

vector which also contains the known boundary conditions

WRITE (*,85) ' DISPLACEMENT VALUES FOR TIMESTEP’,NT
WRITE (*,1C0) ’ VALUES LESS THAN 1.0D-25 ARE STORED AS 0.000’

WRITE (*,100) ' NODE bX
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DO 1D=1,NUMNODES, 2

JO=1D+1

NNUM=(JD/2)

WRITE (*,*) NNUM,DUMMY(ID),DUMMY(JD)
ENDDO
ENDIF

ENDIF
WRITE(*,100)/ **

RETURN

END
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SUBROUTINE BYVAL(NUMBDY , NUMNODES ,MASTERK,
C FINALR,IDIM, LASTR,FINALK, IDPLUST,LSIG)

DOUBLE PRECISION MASTERK(NUMNODES,NUMNODES)
DOUBLE PRECISION FINALK(IDIM,IDPLUS1)

INTEGER 1BDY(200)
COMMON/1BINDX/1BDY

DOUBLE PRECISION BVAL(200)
COMMON/BOUNDVAL /BVAL

DOUBLE PRECISION FINALR(200)
DOUBLE PRECISION LASTR(200)
DOUBLE PRECISION TEMP

This subroutine takes the appropriate boundary conditions from the
IBDY (indexed list of ROWS which have known boundary conditfons)
and BVAL (the values associated with the known boundary conditions)
and substitute the proper values into the MASTERK array at each
time step. Note that the boundary conditions are not time-

dependent in this version.
100 FORMAT (A)

[N NxNsNeNgl

C ZERO OUT THE APPROPRIATE ROWS I[N [MASTERK]) AND (FINALR)

DO I=1,NUMBDY

DO J=1,NUMNODES
MASTERK(IEDY(I),J)=0.0D0

ENDDO
FINALR(1BDY(1))=0.000

ENDDO

C SUBTRACT THE APPROPRIATE VALUES FROM THE (FINALR) VECTOR AND ZERO OUT THE
C APPROPRIATE COLUMNS IN [MASTERK]

DO I=1,NUMBDY

DO J=1,NUMNODES
FINALR(J)=FINALR(J)-MASTERK(J, IBDY(I))*BVAL(I)
MASTERK(J, 18DY(1))=0.0D0

ENDDO

ENDDO

C NOW, RESTRUCTURE T'HE ARRAY SO THAT THE “ZERO"™ ROWS AND COLUMNS ARE
C ELIMINATED, AND THE FINAL ARRAYS OF (K] AND (R) ARE PROPERLY DI-
C MENSIONED.
C FIRST, (R):

IFLAG=0
c WITE (*,100) ' I, [FLAG’

DO I1=1,NUMNODES
IF (I1.EQ.IBDY(CIFLAG+1)) THEN
IFLAG=1FLAG*+1
ELSE
LASTR(1I1-1FLAG)=FINALR(II)
ENDIF
ENDDO

c WRITE (*,177) ¢ 1, FINALR(I), LASTR(I)’
DO I=1,1D1%
c WRITE(*,™) I,FINALR(I),LASTR(I)

[, ]
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C ** RRARAAARAAANNRRAARRRNNA AR RRNAAR RO dE

C THEN [MASTERK]:
c FIRST ROWS...

IFLAG=0
DO I1=1,NUMNODES
IF (11.EQ.IBDY(IFLAG+1)) THEN
IFLAG=1FLAG+1
ELSE

C 'ﬁ*uesrso COLUMN SORTH*XA*kkkkhRARAv kA kR ARl

JFLAG=0
DO JJ=1,NUMNODES
IF (JJ.EQ.IBDY(JFLAG+1)) THEN
JFLAG=JFLAG+1
ELSE
FINALK(!!-1FLAG, JJ-JFLAG)=MASTERK(II, JJ)
ENDIF
ENDDO

c'""m.t****t'mu*«'attttttt-ttt

ENDIF
ENDDO

€ ...AND FINALLY AUGMENT [FINALK) WITH (LASTR) FOR RETURN AND SOLUTION.

DO JJ=1,1D1M
FINALK(J., 1DPLUS1)=LASTR(JJ)
ENDDO

RETURN
END
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SUBROUTINE SIMULT(N,A,X,EPS, INDIC,NRC,Y)

DOUBLE PRECISION Y(200),A(N,NRC),X(200)
DOUBLE PRECISION EPS,PIVOT,DETER,AlJCK,SIMUL

INTEGER INDIC,NRC,N
INTEGER [ROW(200), JCOL(200), JORD(200)

FROM “APPLIED NUMERICAL METHODS", B.CARNAHAN, H.A.LUTHER,
J.0. WILKES. J.WILEY & SONS,NEW YORK, 1969
CHAPTER S, p.276
NRERAASARRARAANAY O IRECTORY OF VARIABLES ®¥#weaadtdrwtrdwdwd
N NUMBER OF ROWS IN A
A AUGMENTED MATRIX OF COEFFICIENTS
X VECTOR OF SOLUTIONS
EPS MINIMUM ALLOWABLE MAGNITUDE FOR A PIVOT ELEMENT
INDIC  COMFUTATIONAL SWITCH FOR SOLUTION TYPE
(+1 FOR NO INVERSE RETURNED)
NRC COLUMN DIMENSIONS FOR THE MATRIX [A] (N+1)

AREANRNRRRRRR AN XA A XA RRTRAARRA AN RARRNAAAARAARAANRNNEEOANNOR

OOOOOOOOO00O00

100 FORMAT (A)

n=1
NPLUSM=NRC

C BEGIN ELIMINATI PROCEDURE

DETER=1.0NPN
DO 9 K=1,%

C CHECK FOR A TON-<‘4LL PIVOT ELEMENT

IF (DABS(3’ " <)).GT.EPS) GO TO S
WRITE (*,100) ’ PIVOT TCO SMALL...I1 QUIT!!

C NORMALIZE THE PI.2T ROW

] KP1=K+1
DO 6 J=KP? “"LUSM

6 ACK, d)=A(K, ) /A(K,K)
ACK,K)=1.C"1

C ELIMINATE THE K(T4) COLUMN ELEMENTS EXCEPT FOR THE PIVOT

Do 9 I1=1,~
IF (1.EQ.x .7R. A(!,K).EQ.0.0D0) GO TO 9
DO 8 J=KP!,*'“LUSM

8 ACLd)=ACT, 2 -ACT,K*A(K, J)
ACL,K)=0.""
9 CONTINUE

C WRITE THE SOLUT'"N VECTOR INTO (X) FOR RETURN
00 II=1,N
XCII)=A(1!,v°0)
ENDDO

C THAT’S ALL FOLX™...

RETURN
END
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SUBROUT INE SQUARBYCOL (ISPEC, SQUARE,COL ,RESULT)

C Multiplies [SOUARE]) by (COL) and produces (RESULT).
C Note that there i< no safety check on dimensions here.

DOUBLE PP-7'SION SOQUARE(ISPEC,ISPEC)
DOUBLE PRFC!SION COL(ISPEC),RESULT(ISPEC)

100 FORMAT (A)

C=1SPEC

DO 1D=1, ISPEC
A=COL(1™)
DO JD=1,1°PEC
B=SQU:"": iD,JD)
ENDDO

ENDDO

OoOOO0O0O0

A=COL(1)
B=SQUARE( ", '

C Clean House

DO Ix1,1577"
RESULT(1)=0.000
ENDDO

C Do the nasty

DO IROW=1,'°"EC
DO ICCL=", ISPEC
c IF (DABS(S.UARE(IROW,ICOL)*COL(ICOL)) .LE. 1.00-26) GO TO 20
RESULT(IROW)=RESULT(IROW)+SQUARE ( IROW, ICOL )*COL(CICOL)
20 CONT N 'L
ENDDO
ENDDO

RETURN
END
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Table 4. VISCO2.FOR

PROGRAM VISCO2.FOR

Note that the format has been compressed to fit the margin requirements for publication.

Cc
c //\ VISCO 2 c /7 \ V1.7
c [/ \ COPYRIGHT Scott Morris
c /" \ Michigan State University, 1989-1992 c
C THIS SOFTWARE IS NOT FOR USE IN
APPLICATIONS OTHER THAN C RESEARCH AND EDUCATION/DEMONSTRATION. IT MAY BE FREELY C

DISTRIBUTED ON THE CONDITION THAT THE ENTIRE PROGRAM IS C DISTRIBUTED WITHOUT CHANGE AND WITHOUT
CHARGE .

Cc

c

Cc

C Variable Directory (UNSORTED):

C TIMVAL(N) The value in seconds of timestep n.

C NUMELS The number of elements.

C NumberOfNodes The number of actual nodes in model.

C NUMNODES The number of nodes * 2 (used as counter for loops in 20
c model throughout the program)

C COEFF The coefficients of the equation describing the time-
C decay of the physical constants.

C NODX(n)

C NOOY(n) The x,y spatial coordinates of node (n).

C EI(n)

C EJ(n)

C EK(n)

C EM(n) The nodes i,j,k,m asociated with element (n).

C MASTERK The (K) produced for a given timestep.

C A The A matrix used in the construction of (K].

C IFLAG Signals the type of (r) values to use.

C NUMSTART The timestep number at which a STEP input starts
C NUMSTOP The timestep number at which a STEP input stops
C TH Material thickness for 2-D problem

C R(t) Force vector at timestep t

C NUMBEROFTIMESTEPS

C FINALK

C LASTR

C KZERO

C KPAST Residual force vector

LT T T T T T T e EFFLUVIA ettt atdtd ittt dthdddv A vt ededn

print/m-ebzm_ps <filename> if the C.Itoh printer is not working
" =ebl162_imagen <filename> for HD printout
show queue eb...... gives printer stack-up.
FORTRAN/LIST <FILENAME>
LINK <FILENAME>
LINK <FILENAME>.obj,IMSL/LIB
To dump output to a file:
DEFINE SYSSOUTPUT <FILENAME>
DEASSIGN SYSSOUTPUT
To MERGE two files:
COPY <filel1>,<file2> <destinationfile>/LOG

(2] OO0 0




OO0 OOOO0O0
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Table 4 (Cont’qd).

Note that the 1/0 convention applies to each subroutine as an independant
entity. From this, in a subroutine, values come in (1) and others are
returned (0).

Subroutines which call another subroutine: When the call is made, values
are sent out (0) and others return to the caller (1). This is similar

to double-entry bookkeeping in that there should be a match between | and 0O
designations throughout the program.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAA

DECLARE COMMON STATEMENTS
INCLUDE ’ KSTORE.FOR’
DOUBLE PRECISION K(8,8)

COMMON/NUM/NUMELS
COMMON/NNBLOCK/NUMNODES

DOUBLE PRECISION R(200)
COMMON/RBLOCK/R

DOUBLE PRECISION COEFF(6)
COMMON/COE F FBLOCK/COEFF

DOUBLE PRECISION TH
COMMON/THICKBLOCK/TH

COMMON/ 1D 1MBLOCK/ 1D IM
COMMON /NTS/NUMBEROFT IMESTEPS
DOUBLE PRECISION TIMSTART, TIMINCR

DOUBLE PRECISION NODX(200),NODY(200)
COMMON/NODE/NODX ,NODY

INTEGER EI(325),EJ(325),EK(325),EM(325)
COMMON/ELNODES/E1 ,EJ EK,EM

DOUBLE PRECISION MASTERK(200,200)
COMMON/BIGK/MASTERK

DOUBLE PRECISION A(3,3)
COMMON/ABLOCK/A

INTEGER NUMSPYK
COMMON/NS/NUMSTART , NUNSTOP

INTEGER 1BDY(200)
COMMON/1BINDX/1BDY

DOUBLE PRECISION BVAL(200)
COMMON /BOUNDVAL /BVAL

INTEGER NUMBDY
COMMON/BDY /NUMBDY

INTEGER IDPLUS1
COMMON/ IDP/1DPLUS1
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DOUBLE PRECISION KPAST(200,200)
COMMON/KPASTBLOCK/KPAST

INTEGER IROW(200),JCOL(200),JORD(200)
COMMON/1JJ/1ROM, JCOL , JORD

DOUBLE PRECISION KZERO(200,200)
COMMON/KZ/KZERO

DOUBLE PRECISION Y(200)
COMMON/WYE/Y

DOUBLE PRECISION FINALK(200,200),LASTR(200)
COMMON/ENDO/FINALK, LASTR

INTEGER IBANDWIDTH
COMMON/ 1B8W/ 1BANDWIDTH

INTEGER ISTORFLAG
COMMON/ISF/1STORFLAG

SAVE

100  FORMAT(A)

ml"’e (t'1W)l WRRRRATANE vISCO 2 L2 22020224 ] [
WRITE (*,100)’ vi.7 ¢

WRITE (*,100)’ SCOTT MORRIS '’

WRITE (:,:gg)' Michigan State University 1991 4
WRITE (*,100)’ '

—————————————————————————————————————————————————————————————————————————————
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAAAAAAAAAAAAAAAAAAAAAAAAAAAA

OPEN FILES
This block of commands opens, labels, and numbers the appropriate files for
use by VISCO1 with the exception of the series of files needed for (K(t)]
storage, as those are created as needed.
OPEN (3, FILE=’GENERAL_DATA’, STATUS= ‘OLD’)
REWIND 3
OPEN (9, FILE=’BOUNDARIES’, STATUS= ’OLD’)

REVIND 9

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN

c

c

c READ IN INITAL DATA

C This reads in some of the necessary parameters to operate some of
c the arrays used in this program.

READ (3,*)NUMELS, NumberOfNodes
NUMNODES=NumberOfNodes*2
NUMN=NUMNODES

READ (3,*)(COEFF(1),1=1,6)

READ (3,*)NUMBEROFTIMESTEPS

READ (3,*)NUMSTART , NUNSTOP

READ (3,*)TIMSTART, TIMINCR

READ (3,*)ISTORFLAG

CALL MAKEARRAYS

o L
C  CONSTANT THICKNESS TERM:
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TH=1.000
c T s s Lo Ll o

WRITE (*,100) * COEFF 1 --> 6’
00 J=1,6

WRITE (*,*)J,COEFF(J)

ENDDO

CLOSE (3)

C Read in the known boundary conditions from the ‘boundaries.dat file
WRITE (*,100)’ ¢
WRITE (*,100) ’* NUMBER OF KNOWN DISPLACEMENT VALUES:’
READ (9,*) NUMBDY
WRITE (;,z) NUMBDY
WRITE (*,100)’
WRITE (*,100) ’ DIRECTION INDICATOR: X=1 Y=0’
WRITE (*,100) ’ NODE DIRECTION VALUE'’

DO I=1,NUMBDY

READ (9,*) IBNDX, IDIR, BVAL(I)
WRITE (*,*) 1BNDX,IDIR,BVAL(I)
WRITE (*,100)’ *

C IDIR: X=1 Y=0 FOR 2-D PROBLEMS

1BDY(1)=(1BNDX*2)-IDIR
ENDDO
CLOSE (9)

C * Once arrays are ready, construct the series of [K(t)] values.
c for all of the timesteps in the problem.

WRITE (*,100)’ STORING [K] MATRICES FOR '
DO 5,NT=0,NUMBEROFTIMESTEPS
CALL MAKEA(NT,TIMINCR,TIMSTART)

c 1 o
CALL MAKESHAPES( MASTERK,NUMNQDES)

c 0 0 0
CALL STOREMASTERK(NT,MASTERK,NUMNODES)

5 CONTINUE

C * Solve the time-dependant problem, once all of the (K] values are
c ready and stored.

NNPLUS 1=NUMNODES+1

IDIM=NUMNODES -NUMBDY

IDPLUS1=1DIM+1

CALL SOLUTION(NUMNODES,NNPLUS1,K2ERO, IDIM, IDPLUS1, FINALK,

C LASTR)
WRITE (*,100) ’ SOLUTION COMPLETEDIIII!’

sSTOP
END
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c AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAAAAANAAAAAAAAAAAAAAAAAA

SUBROUTINE MAKEARRAYS

C This subroutine sets up the indexed array of node and element values used
C by the [K] generation loops.

INTEGER NODNO, IELNO
COMMON/NUM/NUMEL S

DOUBLE PRECISION NODX(200),NODY(200)
COMMON/NODE/NODX , NODY

INTEGER E1(325),EJ(325),EK(325),EM(325)
COMMON/ELNODES/E! ,EJ,EK,EM

INTEGER I1BANDWIDTH
COMMON/ 184/ IBANDWIDTH

INTEGER 1SUB(4)

OPEN (4, FILEs'ELEMENT_DATA’, STATUS= /OLD’)
REVIND 4

C * Create an array of indexed x & y values associated with each node

100
110

20

r2

FORMAT (A)
FORMAT (A,12)

WRITE(*,100) * NODE X A\
CONT INUE
READ (4,*) NODNO
IF (NODNO .EQ. -1) GO TO 23
READ (4,*) NODX(NODNO), NODY(NODNO)
IRlTEZ((,",') NODNOQ, NODX(NODNO) , NODY (NODNO)
T0

WRITE (*,100) '
WRITE (*,100) ' ELEMENT 1 J K
[ I

CONT INUE

* Produce an index of nodal values associated with each element

READ (4,*) IELNO
IF (IELNO .EQ. -1) GO TO 25
READ (4,") EICIELNO), EJCIELNO), EK(IELNO), EMCIELNO)

C BANDWIDTH CALCULATION

c

1SUB(1)=EICIELNO)
1SUB(2)=EJ(IELNO)
1SUB(3)=EK(IELNO)
ISUB(4)=EM(CIELNO)

IS IT A TRIANGULAR ELEMENT?

IF (EMCIELNO).EQ.0) THEN
KOUNT=3

ELSE
KOUNT=4

ENDIF

C FIND THE LARGEST AND SMALLEST NODE NUMBER IN ELEMENT IELNO



122

IMAX=0
ININ=0

00 JJ=1,KOUNT
IF (ISUB(JJ).GT.IMAX) IMAX=ISUB(JJ)
ENDDO
IMIN=IMAX
DO JJ=1,KOUNT
IF (ISUB(JJ).LT.IMIN) IMIN=ISUB(JJ)
ENDDO
C CALCULATE ELEMENTAL BANOWIDTH
INTBW=( (IMAX-IMIN)+1)*2
C IS IT THE LARGEST IN THE GRID??
IF (INTBW.GT.IBANOWIDTH) IBANDWIDTH=INTBW
C END OF BANDWIDTH CALCULATION
WRITE (*,*) IELNO,EICIELNO),EJCIELNO),EKCIELNO),EMCIELNO)

GO TO 24
25 CONTINUE

WRITE (*,110) ' BANDWIDTH=’, IBANDWIDTH

RETURN
END
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c AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN

c

100
101
102
c

o000 (2]

o0 O 0Oo0

NONOO o

SUBROUTINE MAKEA(NT,TIMINCR, TIMSTART)

DOUBLE PRECISION TIMEVAL,TIMINCR,TIMSTART
DOUBLE PRECISION A(3,3)

DOUBLE PRECISION COEFF(6)

DOUBLE PRECISION G1,G2,8,C,D

COMMON/COEFFBLOCK/COEFF
COMMON/ABLOCK/A

FORMAT (A)
FORMAT (A,12)
FORMAT (A,12,D012.4,A)
Calculate the value of the timestep in seconds:

TIMEVAL=(NT*TIMINCR)+TIMSTART

WRITE (*,102) ’ TIMESTEP’ ,NT,TIMEVAL,’ Sec’

BEEANRERNR AR RN R RANAN AR RN EEAARANNA NIRRT ATT ANV NR AV V OO N NI TOD

This Subroutine computes the values for E and MU at some time-step NT. It
utilizes a 3-parameter exponential decay model for the elastic modulus and
Poisson’s ratio. The COEFF array containg the necessary coefficients.

ELM=COEFF(1)+COEFF(2)*DEXP(-1.000*(COEFF(3)*TIMEVAL))
write (*,*) ELM
PR=COEFF(4)+COEFF(5)*DEXP(-1.000*(COEFF(6)*TIMEVAL))

Note that most models hold MU constant, so that COEFFS & COEFF6 are
usually 0.

AR AAAAA RN A RN AAAN A AN RAANNRR RN AR RAN RN AN AN CA N OO ND

This part takes the E and MU values for the current time value
and returns the [A) matrix for that time value.

8=ELM/(1.000-(PR**2.000))

AC1,1)=8

A(2,2)=8
A(3,3)=8*(1.000-PR)/2.000
AC1,2)=PR*8
A(2,1)=A(2,1)
A(1,3)=0.00

A(2,3)=0.00

A(3,1)=0.00

A(3,2)=0.00

WRITE (*,100) ' [A] MATRIX VALUES’

DO IROW=1,3
DO JCOL=1,3
WRITE (*,*) IROW,JCOL,ACIROMW,JCOL)
ENDDO

ENDDO

CONTINUE

RETURN
END
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c AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN

SUBROUTINE MAKESHAPES(MASTERK , NUMNODES)

DOUBLE PRECISION MASTERK(NUMNODES, NUMNODES)
DOUBLE PRECISION K(8,8)

COMMON/NUM/NUMELS

INTEGER EI(325),EJ(325),EK(325),EM(325)
COMMON/ELNODES/EI ,EJ,EK,EM

100 FORMAT (A)
IEIGHT=8
C -This Subroutine through each of the elements and (using the proper
¢ subroutine) develops an elemental [k] matrix to be added into the (K] via
¢ the MERGEK subroutine.

C * Put the two together and route to appropriate calculation of (k] for
C each element then add the value for that element into the global (K]

C But first, the MASTERK must be cleared from the last time-step.

DO I1=1,NUMNODES
DO JJ=1,NUMNODES
MASTERK(11,4J)=0.000
ENDDO
ENDDO

c ARAANEVAARRENREAR A RARANRARAAAARR N AR RA AT ANRNRERAAANNEA RO ONS
C Proceed to assemble next MASTERK

00 30, 1Element=1,NUMELS
IF (EM(IElement).EQ.0) THEN

c 0 1
CALL TRIANGLELEM(IElement,K)
GO 10 27
ENDIF
c 0 I

CALL SQUARELEM(IELEMENT,K)
27 CONT INUE

C wowanendddd® MERGES Kel into [K(t)] BRRNARAAARANNN R AN I NS

c 0 0
CALL MERGEK(K,IElement,MASTERK, NUMNODES)

C Note that MERGEK merges the element’s [K) value into the COMMON MASTERK()
C and does not return any value.

30 CONTINUE

RETURN
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c LYLYLY VY VVVVVVIVVVVYVIVYYYYYYYVYYYVYYVYVY LYY VY VYN el lalala LY VY VNV VYV Ll

c

1 0
SUBROUTINE TRIANGLELEM(IElement, K)

DOUBLE PRECISION K(8,8)

DOUBLE PRECISION NODX(200),NODY(200)
COMMON/NODE /NODX , NODY

INTEGER EI(325),EJ(325),EK(325),EM(325)
COMMON/ELNODES/EI ,EJ ,EK,EM

DOUBLE PRECISION TH
COMMON/THICKBLOCK/TH

DOUBLE PRECISION A(3,3)
COMMON/ABLOCK/A

DOUBLE PRECISION XI,XJ,XK,XM,YI,YJ,YK,YM,BI,BJ,BK,CI,CJd,CK
DOUBLE PRECISION X(3),Y(3),8(3,6),C(6,3),AR2, SUN

C This subroutine uses the brute-force calculations fn TRIANGLECALC
C to produce a [kl for the selected element.

100

c
c

FORMAT (A)

WRITE (*,100) ’ DUMP IN TRIANGLELEM’
WRITE (*,*) IELEMENT, EICIELEMENT), EJCIELEMENT), EK(IELEMENT)

XI=NODX(EI(IElement))
XJ=NODX(CEJ(IE lement))
XK=NODX(EK(IE Lement))
YI=NODY(EI(IE lement))
YJ=NODY(EJ(IELement))
YK=NODY(EK(IE lement))

X(1)=X1
X(2)=XJ
X(3)=xK
Y(1)=Y1l
Y(2)=YJ
Y(3)=YK

c AR AERNAE RN N RRAAR AR AN NN A ARRAARAAAAA NN A R AN DR A VIV NTTRTARONRD

c.

C * uhat follows is from "Applied Finite Element Analysis®
C* Larry J. Segerlind, J Wiley & Sons, 1984
cC* P. 347

L3R 2R 2N ]

C Lo e a2 A D AR R 2 DIl gl L e i ]

C CLEAN HOUSE:

Do 1=1,8

00 J=1,8
K(1,J)=0.000

ENDDO

ENDDO

00 1=1,3
00 J=1,6
B(I,4)=0.000
€(J,1)=0.000
ENDDO
ENDDO
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C GENERATE THE (B) MATRIX

8(1,1)sY(2)-Y(3)
8¢1,3)=Y(3)-Y(1)
8(1,5)=v(1)-v(2)
8(2,2)=X(3)-X(2)
8(2,4)=X(1)-X(3)
8(2,6)=X(2)-x(1)
8(3,1)=8(2,2)
8(3,2)=8¢1,1)
8(3,3)=8(2,4)
8(3,4)=8(1,3)
B(3,5)=8(2,6)
B(3,6)=8(1,5)

AR25X(2)*Y(3)+X(3)*Y(1)+X(1)*Y(2)-X(2)*Y(1)-X(3)*Y(2)-X(1)*Y(3)
C MATRIX MULTIPLCATION TO OBTAIN C = (BT)}([A)

00 1=1,6
DO J=1,3
€(1,4)=0.000
0O L=1,3
CCI1,d)=CCT,J)+BCL, 1)*ACL, )
ENDDO
ENDDO
ENDDO
C MATRIX MULTIPLICATION TO OBTAIN [K) WHERE
C  (K)= (BT)[AI(B) = (C)(B)

00 27 1=1,6
DO 27 J=1,6
SUM=0.000
00 28 L=1,3
28 SUMsSUM+C([,L)*B(L,J)
K(1,J)=SUM*TH/(2.000*AR2)
27 CONTINUE

C RETURN [K]

RETURN
END
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c Ll L LYV Y VY Y VN Y LY VYV VY Y LYY Y Y VY Y Y Ll Y YV VVVVVVVYYYVVVVIVVVVVVIVYYYYY YV

c 1 o
SUBROUTINE SQUARELEM(IE L ement, k)
DOUBLE PRECISION k(8,8),C(6)

DOUBLE PRECISION NODX(200),NODY(200)
COMMON/NODE /NODX , NODY

DOUBLE PRECISION A(3,3)
COMMON/ABLOCK /A

DOUBLE PRECISION AA,B

DOUBLE PRECISION TH
COMMON/THICKBLOCK/TH

INTEGER EI(325),EJ(325),EK(325),EM(325)
COMMON/ELNODES/EI ,EJ, EK,EM

DOUBLE PRECISION XI,XJ,XK,XM,YI,Yd,YK,YM

C This subroutine uses the brute-force calculations in SQUARECALC
C to produce a [k] for the selected element.

100 FORMAT (A)

XI=NODX(EI(IE Lement))
XJ=NODXCEJ(IElement))
XM=NODX(EM(IElement))
YI=NODY(EI(IElement))
YJ=NODY(EJ(IE Lement))
YM=NODY(EM(IElement))

AA=0,5D0*DSQRT (((XM-X1)**2.000)+((YM-YI)**2,000))
B=0.5D0*DSQRT (((XJ-X1)**2.000)+((YJ-YI)**2.000))

CC1)=TH*((AC1, 1)*AA)/(6.0D0*B))
C(2)=TH*((A(1,1)*B)/(6.0D0*AA))
C(3)=TH*(A(1,2)/4.000)
C(4)=TH*(A(3,3)/4.000)
C(5)=TH*((A(3,3)*AA)/(6.000*B))
C(6)=TH*((A(3,3)*B)/(6.0D0*AA))

c 0t
CALL RECTANGLECALC (C,k)
RETURN
END
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c AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN

SUBROUTINE MERGEK(K, IElement,MASTERK, NUMNODES)
DOUBLE PRECISION MASTERK(NUMNODES, NUMNODES)

COMMON/NUM/NUMELS
DOUBLE PRECISION K(8,8)
INTEGER SK(8)

INTEGER EI1(325),EJ(325),EK(325),EM(325)
COMMON/ELNODES/E! ,EJ,EK,EM

100 FORMAT(A)

-This Subroutine adds the (K] for some element into the global [K]
for some time-step.

-MasterK is Global (K] for a given time step.

-1EL Contains the nnde-list for the element.

-NEL Number of elements.

OO0 060O

SK(1)=2*EI (IELEMENT)-1
SK(2)=2*EI (IELEMENT)
SK(3)=2*EJ(IELEMENT)-1
SK(4)=2*EJ(ICLEMENT)
SK(S)=2*EK(IELEMENT)-1
SK(6)=2*EK(IELEMENT)

c This skips the EM for the triangular element to avoid
c SK(7) and SK(8) = -1 and MERGEs the SQUARE element.

IF (EMCIELEMENT).NE.O) THEN

SK(7)=2*EM( |ELEMENT)-1
SK(8)=2*EM( | SLEMENT)

C wettdtRttwdtaw Merge into [K(t)] SAeAtttandvttdtdveedddttny

DO 15,1=1,2
00 10,J=:,8
MASTERK (<K (1),SK(J))=MASTERK(SK(1),SK(J))I+K(I,J)
10 CONTINUE

15 CONTINUE
ELSE
C This is the MERGE routine for the TRIANGULAR element occurrs.
20 D0 35,1=1,6
DO 30,J=1,%

MASTERK (SK(1),SK(J))=MASTERK(SK(I),SK(J))+K(1,J)
30 CONTINUE
35 CONTINUE

ENDIF

RETURN
END
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c AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAAAAAAN

SUBROUTINE RECTANGLECALC(C,K)
DOUBLE PRECISION C(6),K(8,8)

100 FORMAT (A)

C INCORPORATE SOME KIND OF THICKNESS TERM HERE!! 1!
C This subroutine returns a brute force solution to the calculation of the
C [K] metrix for the RECTANGULAR element. Ugly but fast.

KC1,1)=2.000%(C(1)+C(6))
K(1,2)=C(3)+C(4)
K(1,3)=-2.000*C(1)+C(6)
K(1,4)=C(3)-C(4)
K(1,5)=-1.000*(C(1)+C(6))
K(1,6)=-1.007*(C(3)+C(4))
KC1,7)=CC1)-2.000%C(6)
K(1,8)=-1.001"C(3)+C(4)

K(2,1)=K(1,2)
K(2,2)=2.0D0*(C(2)+C(5))
K(2,3)=-1.000*C(3)+C(4)
K(2,4)=C(2)-2.7D0*C(S)
K(2,5)=-1.007*(C(3)+C(4))
K(2,6)=-1.000+*(C(2)+C(5))
K(2,7)=C(3)-T(4)
K(2,8)=-2.0n"+C(2)+C(5)

K(3,1)=K(1,3?
K(3,2)=K(2,3:
K(3,3)=2.00"*(C(1)+C(6))
K(3,4)=-1.07 "=/ (3)+C(4))
K(3,5)=C(1)-._. DO*C(6)
K(3,6)=C(3)-" ")
K(3,7)=-1.00 ~(C(1)+C(6))
K(3,8)=C(3)+"..+)

K(4,1)=K(1,4°
K(4,2)=K(2,"
K(4,3)=K(3,¢.
K(4,4)=2.0D0" "' "(2)+C(5))
K(4,5)=-1.0" *713)+C(4)
K(4,6)=-2.01 *(2)+C(5)
K(4,7)=C(3)-C(4)
K(4,8)=-1.00""(C(2)+C(5))

K(S,1)=K(1,>
K(5,2)=K(2, "
K(5,3)=K(3,"
K(S5,4)=K(4,"
K(5,5)%2.00° " 1)+C(6))
K(5,6)=C(3) )
K(5,7)=-2.00 “(1)+C(6)
K(5,8)=C(3)-" %)

K(6,1)=K(1,~"
K(6,2)=K(2,¢
K(6,3)=K(3,"
K(6,4)=K(4, -
K(6,5)=K(5,~ "
K(6,6)=2.00" 1 C(2)+C(5))
K(6,7)=-1.07 "*C(3)+C(4)
K(6,8)=C(2) ~."D0*C(5)
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K(7,1)=K¢1, 7>

K(7,2)=K(2, "

K(7,3)=K(3, )
K(7,4)=K(4,7)

K(7,5)=K(5, 7>

K(7,6)=K(6, " :
K(7,7)=2.00" """ (1)+C(6))
K(7,8)=-1.00" " 1C(3)+C(4))

K(8,1)=K(1,8)
K(8,2)=K(2,":
K(8,3)=K(3,* "
K(8,4)=K(4,?)
K(8,5)=K(5,"
K(8,6)=K(6,8)
K(8,7)=X(7,¢)
K(8,8)=2.00""(2)+2.000*C(5)

>THICKNESS i "CTOR HERELLERIRORRLRIDNNND

..............................................................................
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c AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAAAAAALNAAAAAAALAAAAAAANINAAAAAAAAAANAANAN

SUBROUTINE STOREMASTERK(NT,MASTERK,NUMNODES)
c STORE the values for [K(t)] in a unique file, once the values have been
c calculated.

INCLUDE ’ KSTORE.FOR’

DOUBLE PRECISION MASTERK(NUMNODES,NUMNODES)

COMMON/NUM/NUMEL'S

INTEGER IBANDWIDTH
COMMON/1BW/ I BANDWIDTH

CHARACTER*15 FILENAME

C Note that this or!y stores the diagonal and upper values of the [K)
C wmatrix. IF IT AIN'T SYMMETRICAL IT’S GONNA BE!!

100 FORMAT (A)

c WRITE (*,100)’ TEST DUMP BEFORE STORAGE IN STOREMASTERK’
c DO IT=1,NUMMATES

c DO JT=1,N'""“"DES

c WRITE (*, " °) IT,JT,MASTERK(IT,JT)

c ENDDO

[ ENDDO

150 formet (I13,i3,2'2.4)

c shddaddadssx Tolumn Matrix Storage Conversion weswes
TCOUNTER=1
DO 55, IROW=", ' IMNODES

IF (CIROW: !*ANDWIDTH).GE.NUMNODES) THEN
MAXCOL ="' "*iNDES

ELSE
MAXCOL=""""'-IRANDWIDTH-1

ENDIF

DO 50, ICOL - n0W, MAXCOL
c WRITE (*,*) N7, ICOUNTER, IROM, ICOL
STOREDK(NT, ' "~''NTER )=MASTERK( IROW, 1COL)
ICOUNTER=IC™ ' ."ER+1

50 CONTINUE
S5 CONT INUE
C #wwwaw® END OF COLUMN-MATRIX STORAGE ROUTINE wetewwas

RETURN
END
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c AAAAAAAAAAAAAAAAAA - A AAAAAAAAAAAAAAAAAAAAAAAAAAAALAAAAAAAAAAAANAAANAAAAAAAAAAAA

SUBROUTINE SOLUTION (NUMNODES,NNPLUS1,KZERO, IDIM, IDPLUST, FINALK,
C LASTR)

INCLUDE ’ KSTORE.FOR'

DOUBLE PRECISION KINTER(200,200)
DOUBLE PREC!S!ON KZERO(NUMNODES,NNPLUS1)
DOUBLE PRECIS:!ON FINALK(IDIM, IDPLUSY)
INTEGER NRC

COMMON/NUM /ti et g

COMMON/RBLOCK /R

COMMON/BDY /Nt '™aNY

COMMON/1BW/ IRANDWIDTH

COMMON /NTS/NUMBEROFTIMESTEPS

DOUBLE PREC!SINN R(200), FINALR(200)
DOUBLE PREC!3:!2N DELU(200)

DOUBLE PREC < '~N LASTR(200)

DOUBLE PREC!<'~N Y(200)

100 FORMAT (A)

c This subroi~i~~ retrieves the appropriate
[ values for ' ")), [dU] etc. and steps through the appropriate sets of
[ solutions. 5u: first the [K(0)]) values must be retieved.
NT=0
c BERNRRARNRRA 4 ¢ ¢ r e A A AR RARARAARARAARARAAAARANIARNVEN ARV NNR
c This unpack< '-~ (K] matrix from the appropriate column
c of the STO™ "' "!Mc COLUMN) array.
WRITE (*,*> * '0ONES, I1BANDWIDTH
ICOUNTER=1
DO IROW=1,N!:uNDES
IF (CIRO':- " "NDWIDTH).GE .NUMNODES) THEN
MAXCOL-" " *."DES
ELSE
MAXCOL ="+ !BANDWIDTH-1
ENDIF
c WRITE (*,1°™ ' MaxcoL’
c WRITE (*,*) = «"nNL
DO ICOL=" - ,"'1AXCOL
c WRITE (*%,17  «  sexwwndndy
KZERO( '~ ', 'C7L)=STOREDK(NT, ICOUNTER)
KZERO('"~ " ,!2CW)=KZERO(IROW, ICOL)
ICOUNT "= "~ NTER+1
c WRITE (*,17 * """, 1COL,KZEROCIROW, ICOL)

ENDDO
ENDDO
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-
wn
o

format (I3,i3,e12.4)
write (*,100) ' test dump after retrieval routine in SOLUTION’

DO 11=1,NUMNODES
DO JJ=1,NUMNODES
WRITE (*,150) 11,4d,KZEROCIT,Jd)

(2] O O0O00O000 (2]

Retrieve the (R) vector’s value

NOTE: Because of a glitch in VMS-FORTRAN (R) is pessed via
a common statement.

o0

DO NT=1,NUMBEROFTIMESTEPS

c 0 0
CALL FINDR(NT,NUMNODES)

C Subtract the stresses from the previous timesteps
c 1 0 0 0 0 0
CALL SUBRESIDUAL(CFINALR,NT,KINTER)
C Account for the known boundary conditions
Cc ] 0 0 0 ] 1 |
CALL BYVAL(NUMBDY, NUMNODES ,KZERO, FINALR, IDIM,LASTR, FINALK,
C IDPLUS1,0)

NOTE: FINALK is the sugmented metrix containing the remaining
simul taneous equations to be solved.

Attempt a solution:

O 6060 00

WRITE (*,100) ’/ SIMULT CALLED, DEL-{U) VALUES FOLLOW’

CALL SIMULT(CIDIM, FINALK,DELU,1.00-25,1, IDPLUS1,Y)

C Store the results, AFTER re-inserting known boundsry conditions.
CALL STOREDELU(DELU,NT,NUMNODES)

C Print the results

c CALL PRINTDELU( )

ENDDO

RETURN
END
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c AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAARNAAANAAARAAAAAAAAAAAAAAAAAAAAAAAANAA

SUBROUTINE FINDR(NT, NUMNODES)
DOUBLE PRECISION R(200)
DOUBLE PRECISION VAL

INTEGER INDEX,IDIR

COMMON/NUM/NUMEL S
COMMON/NS/NUMSTART , NUMSTOP
COMMON/RBLOCK/R

CHARACTER*15 FILENAME

C This subroutine develops the value of (R) for timestep number NT (actual
C time value of TIMEVAL(NT) seconds) and readies it for the subtraction of the
C residual stress values.

100

an

FORMAT (A)

IF (NT.GE.NUMSTART .AND. NT.LE.NUMSTOP) THEN
NN=1

ELSE
NN=0

ENDIF

WRITE (FILENAME,S50)’RNUMBER’ NN
FORMAT (A,12)

OPEN (20,FILE=FILENAME, STATUS=’OLD’)
REWIND 20

WRITE (*,100) * FILENAME:’
WRITEC*, 100) FILENAME

Set the whole vector to 0.000

DO I=1,NUMNODES
R(1)=0.000
ENDDO

Read the non-zero values of R from the appropriate file
Remember: x=1, y=0

READ (20, *)NUMRVAL
WRITE (*,100)

DO J=1,NUMRVAL
READ(20,*) INDEX,IDIR,VAL
NEWINDEX=( INDEX*2)-IDIR
R(NEWINDEX)=VAL

© WRITE (*,*) INDEX, IDIR, VAL, NEWINDEX

IF (NT .LE. 2) THEN
WRITE (*,100)’ '

WRITE (*,50) ’ {R) VECTOR FOR TIMESTEP/, NT

WRITE (*,100) * NODE X
WITE (*,100)’ ¢
ENDIF

This applies a stepped input between NUMSTART and NUMSTOP time intervals
which requires the availability of RNUMBERT and RNUMBERO files.
spike has the same value for NUMSTART and NUMSTOP.
may be created by modifying the values of the function and letting
NN=NT during the relevant time-frame.

A Dirsc

Other input shapes

\ &



DO 1D=1, NUMNODES, 2
JO=1D+1
NNUM=JD/2
IF (NT .LE. 2) THEN
WRITE (*,*) NNUM,R(ID),R(JD)
ENDIF
ENODO

CLOSE(20)

RETURN
END

136
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c LYY YV V Y VVVVVYVVVIIYLYLVVVEVVVVVIVIVVLYVVVVVVVVVY VLYYV YY YLV VYV e aaalaalalat

c

101
100

o 1 1
SUBROUTINE SUBRESIDUAL(FINALR,NT,KINTER)

This subroutine subtracts the residual force, from previous timesteps
from the current (R) value.

INCLUDE ’ KSTORE.FOR’

COMMON /1DIMBLOCK/IDIM
COMMON/NNBLOCK/NUMNCDES
COMMON/NUM/NUMELS

COMMON /NTS/NUMBEROFTIMESTEPS
COMMON/ 1BINDX/1BDY
COMMON/BDY/NUMBDY
COMMON/RBLOCK/R
COMMON/KPASTBLOCK/KPAST
COMMON/ 18W/ 1BANDWIDTH

INTEGER IBANDWIDTH
INTEGER 1BDY(200),NUMNODES

DOUBLE PRECISION DU(200),DUMMY(200)

DOUBLE PRECISION R(200),RESID(200), FINALR(200)
DOUBLE PRECISION RINTER(200),DUINTER(200)
DOUBLE PRECISION KPAST(200,200)

DOUBLE PRECISION KINTERCIDIM,IDIM)

DOUBLE PRECISION SUM

CHARACTER*15 FILEDELU
CHARACTER*15 FILEKNUM

FORMAT (A,12)
FORMAT (A)

WRITE (*,100) ¢ IDIM IN SUBRESIDUAL’
WRITE (*,*) IDIM

WRITE (*,101) * TIMESTEP NUMBER’ NT
NTPLUS1=NT+1
1END=NT-1

------------- Retrieval Loop *etewaddsateas
00 80,1=0, 1END
JaNT-]
ss4+* This extracts [K(t)] from the appropriate column of
the STOREDK(TIME, Element) array.
ICOUNTER=1
DO IROW=1,NUMNODES
IF (CIROM+IBANDWIDTH).GE.NUMNODES) THEN
MAXCOL =NUMNODES
ELSE
MAXCOL = IROW+IBANOWIDTH- 1
ENDIF

DO ICOL=IROM, MAXCOL
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KPAST(1COL , IROW)=STOREDK(J, ICOUNTER)
KPAST(IROW, 1COL )=KPAST(1COL , IROW)
ICOUNTER=ICOUNTER+1

c ARANNAAAANRNOANR End of [K(t)l Extraction veswswaadws

50 format (13,i3,e12.4)
write (*,100) ’ test dump after retrieval routine IN subresidual’

DO I1=1,NUMNODES
DO JJ=1, NUMNODES
WRITE (*,150) 11,4J,kpast(lI,JJ)
ENDDO
ENDDO

[z N Ne Nz Ny) [ B

RARRt  (QJ(T)) EXTraction STttt tstetestesteteen
WRITE (*,100) ' I KK DELUSTORED(I,KK)"
DO KK=1, NUMNODES
DU(KK)=DELUSTORED (I,KK)
c WRITE (*,*) I,KK,DELUSTORED(I,KK)
ENODO

o0

c L] End of extraction wreestwwwesteew

C Collapse the [KPAST] and (DU) matrices according to the boundary
C conditions associated with the (DU)’'s timestep index.

C Do (DU) first, producing (DUINTER):

1FLAG=0
DO Il=1,NUMNODES
IF (11 .EQ. IBDY(CIFLAG*1)) THEN
IFLAG=1FLAG+1
ELSE
DUINTERCII-IFLAG)=DU(CII)
ENDIF
ENDDO

Then [KPAST) producing [KINTER).
This is a nested sort similar to the BYVAL() subroutine.
Rows first:

anon

IFLAG=0
DO 11=1,NUMNODES
IF (I1 .EQ. IBDYCIFLAG*1)) THEN
IFLAG=]FLAG+1
ELSE

C Then columns:
JFLAG=0

DO JJ=1,NUMNGDES
IF (JJ .EQ. IBDY(JFLAG+1)) THEN

JFLAG=JFLAG*1
ELSE
c WRITE (*,100) * 11 IFLAG ) JFLAG’
c WRITE (*,*) I1,IFLAG,Jd, JFLAG
KINTERCI1-1FLAG, JJ-JFLAG)=KPAST(I1, JJ)
ENDIF

ENDDO
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ENDIF
ENDDO
WRITE (*,100) ’ BEFORE SQBYCOL’
WRITE (*,101) ’ IDIM = /,IDINM
00 JJ=1,10IM
WRITE (*,*) JJ,DUINTER(JJ)
DO KK=1,IDIM
WRITE (*,*) JJ,KK,KINTERCJJ,KK)

Multiply [KINTER) by (DUINTER) to produce a “compressed® (RINTER)
CALL SQUARBYCOL(IDIM,KINTER,DUINTER,RINTER)
WRITE (*,100) ’ AFTER SQAREBYCOL CALL -COMPRESSED-'’
DO NN=1,NUMNODES

WRITE (*,*) NN,RINTER(NN)
ENDDO

"Unpeck®” the (RINTER) values into the appropriate rows of (RESID)
IFLAG=0
DO II=1,NUMNODES

IF (11 .EQ. IBOY(IFLAG+1)) THEN

If this is a “deleted® row, regenerate the (RESID(II)) value from the
appropriate row and column of [KPAST) and (DU)

SUM=0.000
DO KK=1,NUMNODES
IF ( DU(KK) .LE. 1.00-25) DU(KK)=0.000
SUM=SUM+KPAST (1BOY (I FLAG+1),KK)*DU(KK)
ENDDO

RESID(II)=SUM
IFLAG=IFLAG+1
ELSE

If not, copy the value from (RINTER) and subtract the necessary
coefficients (which are carried through from the solution of the
system of compressed equations).

RESID(II)=RINTERCII-IFLAG)

DO LL=1,NUMBDY
RESIDCIT)=RESID(I1)+KPAST(I1,1BDY(LL))*DUCIBDY(LL))
ENDDO

Finally, subtract the residual terms generated for this series of
arrays from the original force vector (R)

ENDIF

ENDDO

write (*,100) / in subresidual’

write (*,100) ’ n rcn) resid(n)’
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0O N=1,NUMNOOES
c WRITE (*,*) N,R(N),RESID(N)
R(N)=R(N)-RESID(N)
ENDDO

80 CONTINUE

C Copy whatever is left into (FINALR) for return from the subroutine.

write (*,100) ¢ at end of sub resid. '/
write (*,100) ’ n r(n) finalr(n)’
DO N=1,NUMNODES

write (*,*) N,R(N),FINALR(N)
ENDDO

o0OnNOn

DO N=1,NUMNODES
FINALRCN)=R(N)
ENDDO

RETURN
ENO

WTE IR
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c AAAAAAAAAAAAAAAAAAAAAAAAAAAAAANALAAAANAALAAAANAAAAAAAAAANAAAAANANAANAAAARNAAANAAAAAAAANAAN

SUBROUTINE STOREDELU(CDELU,NT,NUMNODES)
INCLUDE ’ KSTORE.FOR’

DOUBLE PRECISION DELU(200)
CHARACTER*1S FILEDELV
C This subroutine stores the calculated values of (/\U) in individual files

COMMON/NUM/NUMELS

INTEGER 1BDY(200)
COMMON/1BINDX/18DY

DOUBLE PRECISION BVAL(200)
COMMON/BOUNDVAL /BVAL

INTEGER ISTORFLAG
COMMON/ 1SF/ISTORFLAG

DOUBLE PRECISION DUMMY(200)

INTEGER NODEHALF , NNUM
Reinsert known boundary values in the (DELU) array.
NOTE the (DUMMY) vector is the “unpacked® solution
vector which also contains the known boundary conditions
at the particular time-step.

o000

1FLAG=0

DO 11=1,NUMNODES
IF (11.EQ.IBDY(IFLAG*+1)) THEN
DUMMY (11)=BVAL(IFLAG+1)
IFLAG=1FLAG*1
ELSE
DUMMY (11)=DELUCI1-1FLAG)
ENDIF
ENDDO

C Truncate very small values to avoid underflow errors:
DO KK=1,NUMNODES
IF (DABS(DUMMY(KK)) .LE. 1.0D-15) THEN
DUMMY (XK )=0.000
ENDIF
ENDDO

IF (NT.NE.O) THEN

c WRITE (*,100) ’ STOREDELU RUN '
100 FORMAT (A)
C \Write to appropriate array column.
DO I=1,NUMNODES
DELUSTORED(NT,1) = DUMMY(I)
ENDDO
C Screen output for instant gratiﬂcatién.

85 FORMAT (A,12)
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WRITE (*,100)’ '

WRITE (*,85) ’ DISPLACEMENT VALUES FOR TIMESTEP’,NT

WRITE (*,100) ’ VALUES LESS THAN 1.00-15 ARE STORED AS 0.000’
WRITE (*,100) ’ NODE 0X oy’

DO 1D=1,NUMNODES, 2

JO=1D+1

NNUM=( JD/2)

WRITE (*,*) NNUM,DUMMY(ID),0UMMY(JD)
ENDDO

This stores the (dU) vectors to disk for use with parameter
estimation software. Note that there are two format statements
since some compilers won’t add in the leading 0 to the appended
filename call.

FORMAT (A,I1)
IF (ISTORFLAG .EQ. 1) THEN
IF (NT .LT. 10) THEN
WRITE (FILEDELU,86)’DELUFILE’ ,NT
ELSE
WRITE (FILEDELU,85)’DELUFILE’ ,NT
ENDIF

OPEN(22, FILEsFILEDELU, STATUS=/NEW' )
DO Is1,NUMNODES
WRITE(22, *)DUMMY(1)
ENDDO
ENDIF

ENDIF

WRITE(*,100)7 **/
RETURN
END
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AAAAAAAAAAAAAAAAAAAAAAAAAAAANAAAAAAAAAAA

SUBROUTINE BYVAL(NUMBDY , NUMNODES , MASTERK,
FINALR, IDIM, LASTR, FINALK, IDPLUS1,LS1G)

DOUBLE PRECISION MASTERK(NUMNGDES, NUMNODES)
DOUBLE PRECISION FINALK(IDIM,IDPLUS1)

INTEGER 18DY(200)

COMMON/ 1BINDX/18DY

DOUBLE PRECISION BVAL(200)
COMMON/BOUNDVAL /BVAL

DOUBLE PRECISION FINALR(200)
DOUBLE PRECISION LASTR(200)
DOUBLE PRECISION TEMP

This subroutine takes the appropriate boundery conditions from the
1BDY (indexed List of ROWS which have known boundary conditions)
and BVAL (the values associated with the known boundary conditions)
and substitute the proper values into the MASTERK array at each
time step. Note that the boundary conditions are NOT time-
dependent in this version.

FORMAT (A)

C ZERO OUT THE APPROPRIATE ROWS IN [MASTERK] AND (FINALR)

DO I=1,NUMBDY

DO J=1,NUMNODES
MASTERK(1BDY(1),J)=0.000

ENDDO
FINALR(C1BDY(1))=0.000

ENDDO

C SUBTRACT THE APPROPRIATE VALUES FROM THE (FINALR) VECTOR AND 2ERO OUT THE
C APPROPRIATE COLUMNS IN (MASTERK])

(2] aonon

DO I=1,NUMBDY

DO J=1,NUMNODES
FINALR(J)=FINALR(J)-MASTERK(J, 1BDYCI))*BVAL(I)
MASTERK(J, 18DY(1))=0.000

ENDDO

ENDDO

NOW, RESTRUCTURE THE ARRAY SO THAT THE “ZERO™ ROWS AND COLUMNS ARE
ELIMINATED, AND THE FINAL ARRAYS OF [K] AND (R) ARE PROPERLY DI-
MENSIONED.

FIRST, (R):

1FLAG=0
DO II=1,NUMNODES
IF (11.EQ.IBDY(IFLAG+1)) THEN
IFLAG=1FLAG+1
ELSE
LASTRCII-IFLAG)=FINALRCII)
ENDIF
ENDDO

c

C THEN [MASTERK]:

c

FIRST ROWS...
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1FLAG=0
DO 11=1,NUMNODES
IF (11.EQ.IBDY(IFLAG+1)) THEN
IFLAG=IFLAG+1
ELSE

C ***NESTED COLUMN SORT

JFLAG=0
DO JJ=1,NUMNODES
IF (JJ.EQ.IBOY(JFLAG*1)) THEN
JFLAG=JFLAG+1
ELSE
FINALK(CII-1FLAG,JJ-JFLAG)=MASTERK(11,JJ)
ENDIF
ENDDO

[oagdedbd bbb b b bt

ENDIF
ENDDO

C  ...AND FINALLY AUGMENT [FINALK] WITH (LASTR) FOR RETURN AND SOLUTION.

DO JJ=1,1DINM
FINALK(JJ, IDPLUS1)=LASTR(JJ)
ENDDO

RETURN
END
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c AAM‘MMAAAAAAAAAAAAMAMAAAAAAAAAMAAAAAMAMAAAAAAAAAAAAA

SUBROUTINE SIMULT(N,A,X,EPS, INDIC,NRC,Y)

DOUBLE PRECISION Y(200),A(N,NRC),X(200)
DOUBLE PRECISION EPS,PIVOT,DETER,AlJCK,SIMUL

INTEGER INDIC,NRC, N
INTEGER IROW(200),JCOL(200), JORD(200)

FROM “APPLIED NUMERICAL METHODS®, B.CARNAHAN, H.A.LUTHER,

J.0. VILKES. J.WILEY & SONS,NEW YORK, 1969
CHAPTER 5, p.276

whR A dddsaeewaaww DIRECTORY OF VARIABLES Wweweswwssawsnwse
N NUMBER OF ROWS IN A
A AUGMENTED MATRIX OF COEFFICIENTS
X VECTOR OF SOLUTIONS
EPS MINIMUM ALLOWABLE MAGNITUDE FOR A PIVOT ELEMENT
INDIC  COMPUTATIONAL SWITCH FOR SOLUTION TYPE
(+1 FOR NO INVERSE RETURNED)
NRC COLUMN DIMENSIONS FOR THE MATRIX [A] (N+1)

oOOO0ONOO0ONO0O0O

100 FORMAT (A)

=1
NPLUSM=NRC

C BEGIN ELIMINATION PROCEDURE

DETER=1.000
00 9 K=1,N

C CHECK FOR A TOO-SMALL PIVOT ELEMENT
c WRITE (*,*) N,K,A(K,K), EPS
IF (DABS(A(K,K)).GT.EPS) GO TO §
WRITE (*,100) ’ PIVOT TOO SMALL...I1 QUITI’

WRITE (*,100) ' ERROR TRAPPED IN SUBROUTINE -SIMULT-’
STOP

C NORMALIZE THE PIVOT ROW

5 KP1=K+1
DO 6 J=KP1,NPLUSM

6 A(K, J)=A(K, J)/A(K,K)
ACK,K)=1.000

C ELIMINATE THE K(TH) COLUMN ELEMENTS EXCEPT FOR THE PIVOT

DO 9 I=1,N

IF (1.EQ.K .OR. A(I,K).EQ.0.000) GO TO 9
DO 8 J=KP1,NPLUSM

8 ACL,J)=A(1,4)-A(1,K)*A(K,J)
A(1,K)=0.000
9 CONTINUE

C WRITE THE SOLUTION VECTOR INTO (X) FOR RETURN
00 11=1,N
XCI11)=ACII,NRC)
ENDDO

C THAT’S ALL FOLKS...

RETURN
END
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c AAAAAAAAAAAAAAAAAAAALAAAAAAAAAAAAAANAALNANAANALALLPLAAAAAAANAAAAAAAAAAANAAAAN

SUBROUTINE SQUARBYCOL ( ISPEC, SQUARE, COL ,RESULT)

C Multiplies [SQUARE] by (COL) and produces (RESULT).
C Note that there is no safety check on dimensions here.

100

DOUBLE PRECISION SQUARE(ISPEC, ISPEC)
DOUBLE PRECISION COL(ISPEC),RESULT(ISPEC)

FORMAT (A)

VODOO FORTRANELEIRERENENE
This stuff gets around a sunspot factor in VMS FORTRAN

C=ISPEC
A=COL(1)
B=SQUARE(1,1)

C Clean House

DO I=1,ISPEC
RESULT(1)=0.000
ENDDO

C Do the nasty

20

DO IROW=1,ISPEC
DO ICOL=1,ISPEC
IF (DABS(SQUARE(IROW, 1COL)*COL(ICOL)) .LE. 1.00-20) GO TO 20
RESULT(IROW)=RESULT( IROW)+SQUARE ( IROM, ICOL)*COL(ICOL)
CONT INUE
ENDDO
ENDDO

RETURN
END
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Table 5. P21.FOR

PROGRAM P21.FOR

c C PROGRAM FOR ’'SMART’ GLOBAL OPTIMIZATION
c C INITALIZE VARIABLES:

C perincl.for here

DOUBLE PRECISION CL(50), CU(50), FF(90), PPL(20)
DOUBLE PRECISION RR(90, 30), WPEN(50), XC(30), XX(90, 30)
DOUBLE PRECISION XXOLD(30)

DOUBLE PRECISION ALPHAP, BETA, DELTA
DOUBLE PRECISION Z, ZXC

INTEGER IC, ICM, ICMI, IEV1

INTEGER I1EV2, IEV3, 1IS, 10PT, 1GAMMA
INTEGER IT, ITMAX, 1Z, IZRQ

INTEGER 12XC, JC, JI, JJ

INTEGER JZ, KOUNT,KK1, NALT, NC
INTEGER NCMPLX, NFE, NINPS, NLEG
INTEGER NRUN, NS, NSEG, NSTK

INTEGER NUMTIMSTEPS, NV, NPRNT

COMMON/AAA/ALPHAP, BETA, DELTA, IGAMMA
COMMON/BBB/IC, ICM, ICMI, IEVY
COMMON/CCC/1EV2, 1EV3, 1IS, 10PT
COMMON/DDD/1T, ITMAX, 12, IZRQ
COMMON/EEE/12XC, JC, JI, 44
COMMON/FFF/JZ, KOUNT,KK1, NALT, NC
COMMON/GGG/NCMPLX, NFE, NINPS, NLEG
COMMON/HHH/NRUN, NS, NSEG, NSTK
COMMON/I11/NV, Z, 2XC, NPRNT, NUMTINSTEPS

COMMON/JJJ/CL, CU, FF, PPL, RR, WPEN, XC, XX, XXOLD

DOUBLE PRECISION TH
COMMON/THICKBLOCK/TH

INTEGER IARG
NFE=0

c R o el g g i a2 il d 2l

C CONSTANT THICKNESS TERM:

Th=1.000
o e )

12 NCMPLX = 1

100 FORMAT (A)
110 FORMAT (A,I12)
115 FORMAT (12,D12.3,012.3,D012.3)
WRITE (*,100) ' PARAM2 '
WRITE (*,100) ' Parameter Estimation Program ’
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Table 5 (Cont’d).

WRITE (*,100) ' Copyright 1991/
WRITE (*,100) Scott Morris ’
WRITE (*,100) / Michigan State University /
15000 CONTINUE
15001 10PT = 1
NRUN = 1
ICMI = 0
NALT = 0
NSTK = 0

c C WPEN(I) 1S WEIGHT GIVEN TO PENALTY I IN FUNCTION

15028 KOUNT = 0

C 4400000000000 0 00000000000 00000t

C READ IN THE PARAMETRIC DATA

c e r s ssrss s s s e e r ra s s s s d
OPEN (14,FILEs’par_est’,STATUS='old’)
REWIND 14
READ (14,*) NC,NS,NV, TMAX,BETA, 1GAMMA
READ (14,%) NUMPAR
READ (14,*) NUMTIMSTEPS

READ (14,*) NPRNT
WRITE (*,100) ’ Parameter indeces and limits:’

WRITE (*,100) ’ NI CL(I) )
write (*,110) ' numpars’, numpar
DO I=1,NUMPAR

write (*,110) / 1=/, |

READ (14,*) NI,CL(NI),CU(NI), XX(1,NI)

WRITE (*,115) NI,CL(NI),CU(NI),XX(1,NI)
END DO

Y

¢ 7 NoTE THAT DELTA VALUE 18 FIXE
I

© T umersoso ) -
PRPEtvesdobtudsoson

15200 CONTINUE

IC = NC - NS

XXC1,N1)’
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1ARG=1199999

do sw=1,10

dump=ran(iarg)
enddo

15400 DO 12 = 2,NV
15410 DO J2 = 1,NS
write (*,100) ’ line 15410’
15420 RR(1Z, J2) = ran(iarg)
write (*,100) ’ line 15420’
END DO
15430 continue
END DO
write (*,100) ’ line 15430’

15450 WRITE (*,100)’ PARAMETER VALUES FOR THIS RUN’

WRITE (*,100)’ NS NC NV ITMAX?
15460 WRITE (*,*)NS,NC,NV, I TMAX

WRITE (*,100)’  ALPHAP BETA 1GAMMA DELTA’
120 FORMAT (D12.2,3x,012.2,17,012.2)
15470 WRITE (*,120) ALPHAP, BETA, IGAMMA, DELTA

WRITE (t..) ]

WRITE (*,100)’ Parameter Estimation Routine’

WRITE (*,100)’ Subroutine trace:’

WRITE (*,100)’ /
15520 GO TO 15535
c 'R EEREEREEEKIE I I I I B B B B B B B B B B B 3 I I A J
c IR EEEEREEENNEIE I N I B B B B B 38 3 B B B B I
c CALL MAIN SUBROUTINE
15535  CALL LINE15700
[4 'EEEEREERKEIEE I I I 2 B B 3 B B I B 3 3 3 I I B A J
[ R I X IR BB B BE BE BE K BE BE BE BE BE BN BE AR BN BN BN BN BN BN J

15540 IF (CIT - ITMAX) .LE. 0) THEN
GO TO 15550
ELSE
GO TO 15660
END IF

15550 0O JZ = 1,NS
XXCIEV1,JZ) = XC(J2)
END DO

15552 11§ = IEVY

C ANV ANARR SRR AN AREN AN RN RCES

CALL FUNC

WRITE (*,100) ’
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15553 WRITE (*,100) * VALUE OF THE FUNCTION AT THE CENTROID=’
WRITE (*,*) FFC(IEV1)

WRITE (*,100) ' ’
15555 WRITE (*,100) ’ COODINATES OF THE CENTROID’
15556 DO J2 = 1,NS

WRITE (*,100) ’ INDEX VALUE'’
15557 WRITE (*,*) JZ, XC(J2)

END DO

WRITE (*,100) ¢ /
15559 WRITE (*,100) ’ BEST NON-CENTROID VALUE OF THE FUNCTION =’
WRITE (*,*) FF(IEVR)

WRITE (*,100) ’ *
15560 WRITE (*,100) * BEST NON-CENTROID X VALUES’
15590 DO JZ = 1,NS
WRITE (*,100) '/ INDEX VALUE’
15600 WRITE (*,*) JZ,XX(IEVZ2, J2)
15620 continue
END DO

15630 WRITE (*,175)’ NUMBER OF ITERATIONS=’,IT
175  FORMAT (A,13)
WRITE (*,175)’ FUNCTION EVALUATIONS=’,NFE

15650 IF (FFCIEV1) .GE. FF(IEV2)) THEN

DO JZ = 1,NS
XX(1,J2) = XC(J2)
END DO

GOTO 15691
ELSE

00 JZ = 1,NS
XX(1,J2) = XX(IEVZ,JZ)
END DO

GOTO 15691
END IF

15660 WRITE (*,175) ' THE NUMBER OF ITERATIONS HAS EXCEEDED’,ITMAX
15665 WRITE (*,100) ’ PROGRAM TERMINATED PREMATURELY. Evaluations:’
WRITE (*,*) NFE

15690 IF (IT .GE. 0) THEN
1EV3 = 1

DO ICM = 2,NV
IF (CFFCIEV3) - FF(ICM)) .LE. 0.0) THEN
1EV3 = ICM
END IF
END DO

WRITE (*,100)’ THE BEST FUNCTION VALUE YET IS’
WRITE (*,*) FFCIEV3)
WRITE (*,100) ' Parameters associated with this best point:’

DO JC = 1,NS
WRITE (*,100)’ 1EV3 Jc Xx¢ )’
WRITE (*,*)IEV3, JC,XX(IEV3, JC)

END DO

D0 JJ = 1,NS

XX(1,JJ) = XXCIEV3,Jd)
END DO
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END IF
15691 WRITE (*,100) &+ wewwaas o
WRITE (*,100) * END OF ESTIMATION RUN'
WRITE (*,100) ' Ty .
99999 END

SUBROUTINE LINE15700
3000OO0XXAXXNKXXXXX X000

MAIN SUBROUTINE STARTS HERE

o000 [z X 2]

C parincl.for here

DOUBLE PRECISION CL(50), CU(50), FF(90), PPL(20)
DOUBLE PRECISION RR(90, 30), WPEN(50), XC(30), Xx(90, 30)
DOUBLE PRECISION XXOLD(30)

DOUBLE PRECISION ALPHAP, BETA, DELTA
DOUBLE PRECISION Z, 2XC

INTEGER IC, ICM, ICMI, 1EV1
INTEGER 1EV2, IEV3, I1S, I10PT, IGAMMA
INTEGER IT, ITMAX, 12, 1ZRQ

INTEGER I2XC, JC, JI, JJ

INTEGER JZ, KOUNT,KK1, NALT, NC
INTEGER NCMPLX, NFE, NINPS, NLEG
INTEGER NRUN, NS, NSEG, NSTK

INTEGER NUMTIMSTEPS, NV, NPRNT

COMMON/AAA/ALPHAP, BETA, DELTA, 1GAMMA
COMMON/BBB/IC, ICM, ICMI, IEV1
COMMON/CCC/IEV2, 1EV3, 11S, 10PT
COMMON/DDD/IT, ITMAX, 12, 1ZRQ
COMMON/EEE/12XC, JC, JI, 4J
COMMON/FFF/JZ, KOUNT,KK1, NALT, NC
COMMON/GGG/NCMPLX, NFE, NINPS, NLEG
COMMON/HHH/NRUN, NS, NSEG, NSTK
COMMON/111/NV, 2, 2XC, NPRNT, NUMTIMSTEPS

COMMON/JJJ/CL, CU, FF, PPL, RR, WPEN, XC, XX, XXOLD

100  FORMAT (A)
WRITE (*,100) * (15700)’
15700 CONTINUE

15715 KSTK = 0
NFE = 0
15730 1T = 1
15740 KODE = 0
15750 IF ((NC - NS) .LE. 0) THEN
GO TO 15770
ELSE
GO TO 15760
END IF

15760 KOOE = 1
15770 CONTINUE

15780 DO II = 2,NV
15790 DO IV = 1,NS
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15800 Xxx(11,1v) = 0.000
END DO
END DO

15820 DO 11 = 2,NV
15830 DO IV = 1,NS
15840 118 = 11
15850 CONTINUE
15860 XX(CII, IV) = CLCIV) ¢ RR(II, IV) * (CUCIV) - CL(IV))
15870 continue
END DO

15880 kX1 = 11
15890 CONTINUE

C YOSV ATRRRR R AR R AR AR RN AR e * i

c CHECK CONSTRAINTS
15895 CALL LINE16700

C SRR ARTA AR AR RTINS A AN AN A A AR AR AN SRR AR AR AN RR AR Y

15900 IF ((I1 - 2) .LE. O) THEN
GO TO 15910
ELSE
GO TO 15970
END IF

15910 IF CIPRINT .NE. 0) THEN
GO TO 15920
ELSE
GO TO 15990
END IF

15920 WRITE (*,100) ’COORDINATES OF INITIAL COMPLEX’
15940 10 = 1

15945 DO IV = 1,NS
15950 WRITE (*,100) Xx(i0, 1V)
15955 continue

END DO

15970 IF (IPRINT .NE. 0) THEN
GO TO 15975
ELSE
GO TO 15990
END IF

WRITE (*,100) ' 11 Iv XxX(Ii1,1v)y’
15975 DO IV = 1,NS
15980 WRITE (*,*) II, IV, XX(CII, 1V)
15985 continue

END DO
15990 continue

END DO
16000 KX1 = NV

16010 DO IIS = 1,NV

16020 CONTINUE
16025 NFE = NFE + 1

c Lo a gt d 22l g

CALL FUNC
c FERREARAERTAN AR RR R TR IR R AR DD
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16030 continue
END DO

16040 KOUNT = 1
16050 1A = 0
16060 IF CIPRINT .NE. 0) THEN
GO TO 16070
ELSE
GO T0 16110
END IF

16070 WRITE (*,100) ’VALUES OF THE FUNCTION’
WRITE (*,100) ’ IV FFCIV)!
16080 DO 1V = 1,NV
16090 WRITE (*,*) IV, FF(IV)
16100 continue
END DO
16110 1EVY = 1

16120 DO ICH = 2,NV
16130 IF (CFFCIEV1) - FFC(ICM)) .LE. 0.0D0) THEN
GO TO 16150
ELSE
GO TO 16140
END IF

16140 1EVY = ICM
16150 continue
END DO

16160 1EV2 = 1

16170 DO ICM = 2,NV
16180 IF ((FF(IEV2) - FF(ICM)) .LE. 0.0) THEN
GO TO 16190
ELSE
TO 16200
END IF

16190 IEV2 = ICM
16200 continue
END DO

16210 IF (CFFCIEV2)-(FFCIEV1)+BETA)) .LT. 0.0) THEN
GO TO 16240
ELSE
TO 16220
END IF

16220 KOUNT = 1
16230 GOTO 16260

16240 KOUNT = KOUNT + 1
16250 IF ((KOUNT - IGAMMA) .LT. 0) THEN
GO TO 16260
ELSE
GO TO 16600
END IF
16260 CONTINUE
Lo L T )

C COMPUTE CENTROID
16265 CALL LINE17000
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c Lad a4 d a4 g a4 4 g g g gl

16267 IF (IT .LE. (2 * NV)) THEN
ALPHA = 1.6
ELSEIF (((2 * NV) .LT. IT) .AND. (2 * NV) .LE. (&4 * NV)) THEN
ALPHA = 1.3
ELSEIF ((4 * NV) .LT. IT) THEN
ALPHA = 1
END IF
16268 IF (KOUNT .GT. O) THEN ALPHA = .8
16269 IF (IALPH .EQ. 0) THEN ALPHA = ALPHAP

16271 IF (NSTK .LT. 1) GO TO 16275
16272 DO JJ = 1,NS
16273  XXOLD(JJ) = XX(CIEV1, JJ)
END DO

16274 KSTK2 = 0
16275 DO JJ = 1,NS
16280 XX(IEV1, JJ) = (1.000 + ALPHA) * (XC(JJ)) - ALPHA * (XX(IEV1, JJ))
16285 continue

END DO
16290 11S = JEV1
16300 CONTINUE
c c“Ec‘ mst“lutsﬁ.ﬁ*tii‘.ti'."“.ﬁ
16305 CALL LINE16700

c Lo a ettt d it s R E Ll t g tl]

16310 CONTINUE
16315 NFE = NFE + 1

Cc COMPUTE FUNCTION®** A4 # thtd d dkdtr v dd

CALL FUNC
c B L L L L NN,
16320 IEVR = 1

16330 DO ICM = 2,NV
16340 IF (C(FFCIEV2) - FF(ICM)) .LE. 0.0) THEN
GO TO 16360
ELSE
GO TO 16350
END IF

16350 1EV2 = ICM
16360 continue
END DO

16370 IF (CIEV2 - 1EV1) .NE. 0) THEN
GO TO 16450
ELSE
GO TO 16380
END IF

16380 KSTK = KSTK + 1
110  FORMAT (A,12)

IF (KSTK .GE. 8) THEN
WRITE (*,100) ’ HELPY I'‘M STUCK! -ERROR TRAP AT 16380-'
WRITE (*,100) ’ KSTK >6/
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sTOP
ENDIF

NSTK = NSTK + 1
16381 IF ((NSTK .LT. 3) .AND. (KSTK .GE. 6)) THEN
WRITE (*,100) ’ JUMPING OUT AT LINE 16381’/
GO TO 16600
END IF

16382 1IF ((NSTK .GE. 3) .AND. (KSTK .GE. 6) .AND. (KOUNT .LT. 2)) THEN
KSTK2 = KSTK2 + 1

IF (KSTK2 .GE. 2) THEN
WRITE (*,100)’ JUMPING OUT AT LINE 16382’
GO TO 16600

END IF

1EV3 = 1

00 ICM = 2,NV
IF (CFFCIEV3) - FFC(ICM)) .LE. 0.0) THEN
IEV3 = ICM
END IF
END DO

DO JJ = 1,NS
XC(JJ) = XXCIEV3, JJ)
WRITE (*,*) XC(JJ)
XXCIEV1, JJ) = XXOLD(JJ)
END DO
KSTK = 0
WRITE (*,100) ’* REPLACING CENTROID BY BEST POINT’
GOTO 16275
END IF

16385 DO JJ = 1,NS
16390 XXCIEV1,Jd) = (OXCIEVT, JJ) + XC(JJ)) /7 2.000)
16400 continue

END DO

16410 11S = IEV1
16420 CONTINUE

C SRR ERARARANAANA NN NN O NN AN RN AR OR

c CHECK CONSTRAINTS
16425 CALL LINE16700

C SRR ARRARRARAANAANEAN RN R AN ARY

16430 CONTINUE
16435 NFE = NFE + 1

C VAR ARNARARN AN R A AR ANRA AN AN SRR ARS

CALL FUNC

c REVARAARRANEANEAARARRORANEA NN AAD

16440 GOTO 16320
16450 KSTK = 0
16460 IF CIPRINT .NE. 0) THEN
GO TO 16470
ELSE
GO TO 16580
END IF
180 FORMAT (A,I3)
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16470 WRITE (*,180) ’ ITERATION NUMBER’,IT
16490 WRITE (*,100) * COORDINATES OF CORRECTED POINT'

16500 DO JC = 1,NS

16510 WRITE (*,100) ' XX( )=/
WRITE (*,*) IEV1,JC, XX(IEV1,JC)
END DO

16520 WRITE (*,100) ' VALUES OF THE FUNCTION’

16525 DO IIS = 1,NV
16530 WRITE (*,100) ' FF( )=’
WRITE (*,*) 1IS,FF(1IS)

END DO
16540 WRITE (*,100) ' COORDINATES OF THE CENTROID’
16550 DO JC = 1,NS
16560 WRITE (*,100) ' XC(C )=’
WRITE (*,*) JC,XC(JC)
END DO
16580 IT = IT + 1
16590 IF (CIT - ITMAX) .LE. 0) THEN
GO TO 16110
ELSE
CONT INVE
END IF

16600 END

c 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700

c D s e e e
SUBROUTINE LINE16700
c e e S o

C parincl.for here

DOUBLE PRECISION CL(50), CU(50), FF(90), PPL(20)
DOUBLE PRECISION RR(90, 30), WPEN(50), XC(30), Xx(90, 30)
DOUBLE PRECISION XXOLD(30)

DOUBLE PRECISION ALPHAP, BETA, DELTA
DOUBLE PRECISION Z, 2XC

INTEGER IC, ICM, ICMI, IEVA

INTEGER 1EV2, 1EV3, 1IS, 10PT, 1GAMMA
INTEGER IT, ITMAX, 12, IZRQ@

INTEGER 12XC, JC, J1, JJ

INTEGER JZ, KOUNT,KK1, NALT, NC
INTEGER NCMPLX, NFE, NINPS, NLEG
INTEGER NRUN, NS, NSEG, NSTK

INTEGER NUMTIMSTEPS, NV, NPRNT

COMMON/AAA/ALPHAP, BETA, DELTA, 1GAMMA
COMMON/8BB/1C, 1CM, ICMI, 1EV1
COMMON/CCC/I1EV2, 1EV3, 11S, 10PT
COMMON/DDD/1T, 1TMAX, 1Z, 1ZRQ
COMMON/EEE/12XC, JC, JI, JJ
COMMON/FFF/JZ, KOUNT,KK1, NALT, NC
COMMON/GGG/NCMPLX, NFE, NINPS, NLEG
COMMON/HHN/NRUN, NS, NSEG, NSTK
COMMON/IT1/NV, 2, 2XC, NPRNT, NUMTIMSTEPS
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COMMON/JJJ/CL, CU, FF, PPL, RR, WPEN, XC, XX, XXOLD

100 FORMAT (A)
WRITE (*,100) ’ (16700)’

16700 CONTINUE
16720 XT = 0

16740 DO IV = 1,NS
16750 IF (OXXC1IS, IV) - CL(IV)) .LE. 0.0) THEN
GO TO 16760
ELSE
GO TO 16790
END IF

16760 XX(I11S, IV) = CL(IV) + DELTA
16780 GOTO 16810
16790 IF (CCUCIV) - XX(IIS, 1V)) .LE. 0.0) THEN
TO 16800
ELSE
GO TO 16810
END IF

16800 XX(I1S, IV) = CU(IV) - DELTA
16810 continue
END DO

16820 IF (KODE .LE. 0) THEN
GO TO 16960
ELSE
GO TO 16830
END IF

16830 NN = NS + 1
16840 DO IV = NN,NC
16850 CONTINVE

L
c CALL CONSTRAINT SUBROUTINE
16855 CONTINUE

WRITE (*,100) ’ CONTRAINT ACCESS FAILED.
c CALL CONSTR

C tettttdRddRtdRtdaRade A bl )

16860 IF (C(XX(IIS, IV) - CLCIV)) .LT. 0.0) THEN
GO TO 16880
ELSE
GO TO 16870
END IF

16870 IF (C(CUCIV) - XX(CIIS, IV)) .LT. 0.0) THEN
GO TO 16880
ELSE
GO TO 16940
END IF

16880 IEV1 = [IS

16890 KT = 1
16900 CONTINVE

I s )
c COMPUTE CENTROID
16905 CALL LINE17000

PARAN/ 16855/
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C WA ARAEAR AR AR AR AR AR AN R AR TNV EAS

16910 DO JJ = 1,NS
16920 XXCI1S, JJ) = ((XXCIIS, JJ) + XC(JJ)) /7 2.000)
16930 continue
END DO
16940 continue
END DO
16950 IF (KT .LE. 0) THEN
GO TO 16960
ELSE
GO TO 16720
END IF

16960 END

c AREVRAREANNRRNARRER AN AR RNV AN RARREI AN AR AR OR

SUBROUTINE LINE17000

s T T TN e o
SUBROUTINE TO COMUPUTE CENTROID

o0

C pearincl.for here

DOUBLE PRECISION CL(50), CU(50), FF(90), PPL(20)
DOUBLE PRECISION RR(90, 30), WPEN(50), XC(30), XX(90, 30)
DOUBLE PRECISION XXOLD(30)

DOUBLE PRECISION ALPHAP, BETA, DELTA
DOUBLE PRECISION 2, 2xC

INTEGER I1C, ICM, ICMI, IEVY

INTEGER IEV2, IEV3, IIS, I0PT, IGAMMA
INTEGER IT, ITMAX, 1Z, IZRQ

INTEGER 12XC, JC, JI, JJ

INTEGER JZ, KOUNT,KK1, NALT, NC
INTEGER NCMPLX, NFE, NINPS, NLEG
INTEGER NRUN, NS, NSEG, NSTK

INTEGER NUMTIMSTEPS, NV, NPRNT

COMMON/AAA/ALPHAP, BETA, DELTA, I1GAMMA
COMMON/BBB/IC, ICM, ICMI, IEV1
COMMON/CCC/IEV2, 1EV3, 11S, 10PT
COMMON/DDD/IT, ITMAX, 12, IZRQ
COMMON/EEE/12XC, JC, JI, JJ
COMMON/FFF/JZ, KOUNT,KK1, NALT, NC
COMMON/GGG/NCMPLX, NFE, NINPS, NLEG
COMMON/HHH/NRUN, NS, NSEG, NSTK
COMMON/ITI/NV, 2, ZXC, NPRNT, NUMTIMSTEPS

COMMON/JJJ/CL, CU, FF, PPL, RR, WPEN, XC, XX, XXOLD
100 FORMAT(A)

WRITE (*,100) ’ (17000) Centroid Computation’
17000 CONTINUE

17020 DO 1V = 1,NS
17030  XC(IV) = 0.000
17040 DO IL = 1,KK1
17050  XCCIV) = XCCIV) + XX(CIL, IV)
END DO
17060 RK = KK1
17070  XCCIV) = (XCCIV) - XXCIEVY, IV)) / (RK - 1.000)
END DO

17080 END
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SUBROUTINE FUNC

Cc LA 44 L4

C parincl.for here

DOUBLE PRECISION CL(50), CU(50), FF(90), PPL(20)
DOUBLE PRECISION RR(90, 30), WPEN(50), XC(30), Xx(90, 30)
DOUBLE PRECISION XXOLD(30)

DOUBLE PRECISION ALPHAP, BETA, DELTA
DOUBLE PRECISION Z, 2XC

INTEGER IC, ICM, ICMI, IEVA

INTEGER IEV2, 1EV3, IS, IOPT, IGAMMA
INTEGER IT, ITMAX, 1Z, IZRQ

INTEGER 12XC, JC, J1, 4J

INTEGER JZ, KOUNT,KK1, NALT, NC
INTEGER NCMPLX, NFE, NINPS, NLEG
INTEGER NRUN, NS, NSEG, NSTK

INTEGER NUMTIMSTEPS, NV, NPRNT

COMMON/AAA/ALPHAP, BETA, DELTA, IGAMMA
COMMON/BBB/IC, ICM, ICMI, IEV1
COMMON/CCC/IEV2, 1EV3, 1S, 10PT
COMMON/DDD/IT, ITMAX, 1Z, 1ZRQ
COMMON/EEE/12XC, JC, JI, JJ
COMMON/FFF/J2, KOUNT,KK1, NALT, NC
COMMON/GGG/NCMPLX, NFE, NINPS, NLEG
COMMON/HHH/NRUN, NS, NSEG, NSTK
COMMON/111/NV, Z, 2XC, NPRNT, NUMTIMSTEPS

COMMON/JJJ/CL, CU, FF, PPL, RR, WPEN, XC, XX, XXOLD
c KSTORE.FOR here

c // THIS GIVES A 0-># OF TIMESTEPS ARRAY
DOUBLE PRECISION STOREDK(0:50,10000)
COMMON /KSTOR/ STOREDK

OOUBLE PRECISION DELUSTORED(0:50,500)
COMMON /DUSTORE/ DELUSTORED

COMMON /NTS/ NUMBEROFTIMESTEPS

DOUBLE PRECISION DIFF

DOUBLE PRECISION DATAVALUE (50,500)
INTEGER NODCOUNT

CHARACTER*15 CURRENTFILE

100 FORMAT(A)
110 FORMAT(A, 13)
M FORMAT(A,11)

WRITE (*,100) ¢ »/

WRITE (*,100) & w*=/

WRITE (*,100) ¢ wwws

WRITE (*,110) ’ zs=zas Function Evaluation ss==s=’ NFE
WRITE (*,100) *

18020 CONTINUE

C SRRARERAARANERAAAANR AN AN RA AR RN RAARRDRAR
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130

161

CALL PARAVISCO2 (NODCOUNT)

* Note that NODCOUNT is returned into the subroutine fren -
» PARAVlsoo to be used in the function wuluntion.

Read the array of “real world* dats into DATAVALUE(TIMESTEP, INDEX)

WRITE (*,100) * IN FUNC ; NUMBEROFTIMESTEPS, NODCOUNT’
WRITE (*,*) MEROFTINESTEPS NODCOUNT

IF (NFE .EQ. 1) THEN
DO NT=1,NUMBEROF T IMESTEPS

IF (NT .LT. 10) THEN
WRITE (CURRENTFILE,111)’datafile’ NT
OPEN (16,FILE=CURRENTFILE, STATUS=’old’)

ELSE
WRITE (CURRENTFILE,110)’datafile’ NT
OPEN (16,FILE=CURRENTFILE, STATUS=’old’)

ENDIF

REWIND 16

DO I=1,NODCOUNT
READ (16,*) DATAVALUE(NT,I)
END DO

WRITE (*,100) ’ LOADED DATA FROM FILE’
WRITE (*,100) CURRENTFILE
CLOSE (16)
END DO
ENDIF

DIFF=0.000
Note that DATAVALUE is the historical value for the x or y displacement
from the DELUFILE, and the program takes DELU(n) directly from the
PARAV]SC02 version of VISCO1.for.
WRITE(*,100) ’ Data Comparison:’
WRITE (*,100) * NT 1 DATAVALUE(NT, 1) DELUSTORED(NT, 1)’
DO NT=1,NUMBEROFTIMESTEPS
WRITE (*,100) ¢+
DO I=1,NODCOUNT
THIS SKIPS THE TRIVIAL VALUES OF “REAL™ DATA
wurite (*,*) NT,1,DATAVALUE(NT,I),DELUSTORED(CNT,1)
IF (DATAVALUE(NT,I) .GE. 1.00-8) THEN
DIFF=DIFF+(-1.002*DABS( (DATAVALUE(NT,I)
c -DELUSTORED(NT, 1) )/DATAVALUE(NT,1)))
ENDIF
END DO
END DO
FFCI11S)=DIFF
FORMAT (A,12,A,D8.2,A)

WRITE (*,130) * DIFF’,1IS,’ =/ DIFF,’ X’
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CLOSE (6)
END
C Rttt snatetetaswawe *
SUBROUTINE LINE15050
(o e D L ol e

C parincl.for here

DOUBLE PRECISION CL(50), CU(50), FF(90), PPL(20)
DOUBLE PRECISION RR(90, 30), WPEN(50), XC(30), XX(90, 30)
DOUBLE PRECISION XXOLD(30)

DOUBLE PRECISION ALPHAP, BETA, DELTA
DOUBLE PRECISION Z, ZXC

INTEGER IC, ICM, ICMI, IEV1

INTEGER IEV2, IEV3, 11S, 10PT, IGAMMA
INTEGER IT, ITMAX, 1Z, IZRQ

INTEGER IZ2XC, JC, JI, JJ

INTEGER JZ, KOUNT,KK1, NALT, NC
INTEGER NCMPLX, NFE, NINPS, NLEG
INTEGER NRUN, NS, NSEG, NSTK

INTEGER NUMTIMSTEPS, NV, NPRNT

COMMON/AAA/ALPHAP, BETA, DELTA, 1GAMMA
COMMON/BBB/IC, 1CM, ICMI, IEV1
COMMON/CCC/IEV2, 1EV3, 11S, 10PT
COMMON/DDD/IT, ITMAX, 12, 1ZRQ
COMMON/EEE/12XC, JC, JI, JJ
COMMON/FFF/JZ, KOUNT,KK1, NALT, NC
COMMON/GGG/NCMPLX, NFE, NINPS, NLEG
COMMON/HHH/NRUN, NS, NSEG, NSTK
COMMON/111/NV, Z, ZXC, NPRNT, NUMTIMSTEPS

COMMON/JJJ/CL, CU, FF, PPL, RR, WPEN, XC, XX, XXOLD

100  FORMAT (A)
110  FORMAT (A,13)
WRITE (*,110) ’/ NUMBER OF VERTICES=’,NV
15055 IF (NV .LE. NS) THEN
WRITE (*,100) * ERRORI=I~I~| NV MUST EXCEED NS!i1’
STOP
ENOIF

15060 WRITE (*,110)’ ITMAX=’,ITMAX
15065 WRITE (*,110)’ IPRINT=’,IPRINT
15070 IF (CIPRINT .LT. O) .OR. (IPRINT.GT.1)) THEN
WRITE (*,110) ’ IPRINT must be either 0 or 1. It is’,IPRINT
WRITE (*,100) ’ This is a non-fatal error.’
ENDIF
15072 IPEN = 1

ALPHAP = 1.3
IALPH = 1

15100 CONTINUE
15105 1ALPH=1

15107 IF (IALPH .EQ. 1) WRITE(*,100) ’ VARIABLE ALPHA’
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15109 IF C(IALPH .EQ. 0) THEN
WRITE (*,100) ’ STATIC ALPHA VALUES'
ELSE
IF C(IALPH .NE. 1) WRITE (*,100) ’ ALPHA PROBLEM AT LINE 15105’
END IF

15120 1GAMMA = 4
99999 END

€ Dot % % e X X o X oA
[l + v 400000 svasbbossssbd NANANC NN NN NN NN AN NN AN AN NGOG NN N NGNS

SUBROUTINE PARAVISCO2(NODCOUNT)

C perincl.for here

DOUBLE PRECISION CL(50), CU(50), FF(90), PPL(20)
DOUBLE PRECISION RR(90, 30), WPEN(50), XC(30), XX(90, 30)
DOUBLE PRECISION XXOLD(30)

DOUBLE PRECISION ALPHAP, BETA, DELTA
DOUBLE PRECISION 2, ZXC

INTEGER IC, ICM, 1CMI, IEV1
INTEGER 1EV2, 1EV3, 11S, 10PT, 1GAMMA
INTEGER 1T, ITMAX, 12, IZRQ

INTEGER 12XC, JC, JI, JJ

INTEGER JZ, KOUNT,KK1, NALT, NC
INTEGER NCMPLX, NFE, NINPS, NLEG
INTEGER NRUN, NS, NSEG, NSTK

INTEGER NUMTIMSTEPS, NV, NPRNT

COMMON/AAA/ALPHAP, BETA, DELTA, 1GAMMA
COMMON/BBB/IC, ICM, ICMI, IEVA
COMMON/CCC/IEV2, 1EV3, 11S, 10PT
COMMON/DDD/IT, ITMAX, 12, IZRQ@
COMMON/EEE/I2XC, JC, JI, JJ
COMMON/FFF/JZ, KOUNT,KK1, NALT, NC
COMMON/GGG/NCMPLX, NFE, NINPS, NLEG
COMMON/HHH/NRUN, NS, NSEG, NSTK
COMMON/I1I/NV, Z, ZXC, NPRNT, NUMTIMSTEPS

COMMON/JJJ/CL, CU, FF, PPL, RR, WPEN, XC, XX, XXOLD

c DECLARE COMMON STATEMENTS
DOUBLE PRECISION K(8,8)

DOUBLE PRECISION INVRS(200,200)
DOUBLE PRECISION KINV(200,200)

COMMON/NUM/NUMEL S
COMMON/NNBLOCK/NUMNODES

DOUBLE PRECISION R(200)
COMMON/RBLOCK/R

DOUBLE PRECISION COEFF(6)
COMMON/COEFFBLOCK/COEFF
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COMMON/1DIMBLOCK/IDIM

COMMON /NTS/NUMBEROFTIMESTEPS
DOUBLE PRECISION TIMSTART, TIMINCR

DOUBLE PRECISION NODX(200),N0DY(200)
COMMON/NODE /NODX , NODY

INTEGER E1(325),EJ(325),EK(325),EM(325)
COMMON/ELNODES/E! ,EJ,EK, EM

DOUBLE PRECISION MASTERK(200,200)
COMMON/B1GK/MASTERK

DOUBLE PRECISION A(3,3)
COMMON/ABLOCK/A

INTEGER NUMSPYK
COMMON/NS/NUMSTART , NUMSTOP

INTEGER 1BDY(200)
COMMON/IBINDX/18DY

DOUBLE PRECISION BVAL(200)
COMMON/BOUNDVAL /BVAL

INTEGER NUMBDY
COMMON/BDY /NUMBDY

INTEGER 1DPLUS1
COMMON/1DP/1DPLUS1

DOUBLE PRECISION KPAST(200,200)
COMMON/KPASTBLOCK/KPAST

DOUBLE PRECISION DELU(200)
INTEGER IROW(200),JCOL(200),JORD(200)
COMMON/1JJ/1ROW, JCOL , JORD

DOUBLE PRECISION KZERO(200,200)
COMMON/KZ/KZERO

DOUBLE PRECISION Y(200)
COMMON/WYE/Y

DOUBLE PRECISION FINALK(200,200),LASTR(200)
COMMON/ENDO/FINALK,LASTR

SAVE
100  FORMAT(A)

IF (NFE .EQ. 1) THEN

WRITE (t'100)l AARRNREDE PARAVISCO 2 ANRBARENNNE
WRITE (*,100)’ ’

WRITE (*,100)/ General Model Parameters for the’
WRITE (*,100)’ Function Evalustion’

ENDIF
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AAAAAAAAAAAAAAAAAAAAAAAAAAANAAAAAAAAAAAALAAAAAAAAAAAALAAAAAAAAAAAADAAAANAAAANN

OPEN FILES

This block of commands opens, labels, and numbers the appropriate files for
use by VISCO1 with the exception of the series of files needed for [K(t)]
storage, as those are created as needed.

OO0 0

OPEN (13, FILE=’general_data’, STATUSs ‘old’)
REWIND 13

OPEN (19, FILE='boundaries’, STATUS= ‘old’)
REWIND 19

c

C AR AR R AR R AR AR AR AR AR AR A A AR AR A AR A AR AR AR AR AR AR AR A AR AR A A A A AR A RA AR AR AR A RAR AR RRA
c READ IN INITAL DATA

C This reads in some of the necessary parameters to operate some of

¢ the arrays used in this program.

READ (13,*)NUMELS, NumberOfNodes

NUMNODES=NumberOfNodes*2
NODCOUNT=NUMNODES

NUMN=NUMNODES

READ (13,*)(COEFF(I),1=1,6)

READ (13,*)NUMBEROFTIMESTEPS

READ (13,*)NUMSTART,NUMSTOP

READ (13,*)TIMSTART,TIMINCR

CLOSE (13)

c ---------------------------------- LA A A a4 4 ) g ) L L
C HERE’S THE SPLICE TO GET THE XX(IIS,n) VALUES INTO THE PROGRAM!!

COEFF(2)=XX(11S,1)
COEFF(3)=XX(11S,2)

WRITE (*,100) ’ COEFF 1 2 3
WRITE (*,*) COEFF(1), COEFF(2),COEFF(3)

bttt Rt R dtRt RN Rs CND OF SPLICE wewsw badado bbb 4 44 g bk

CALL MAKEARRAYS
101 FORMAT (A,12)
130 FORMAT (10X,12,13x,012.3)
140 FORMAT (A40,13)
150 FORMAT (10Xx,13,10x,13,10X,012.6)

IF ((NFE .EQ. 1) .OR. (NPRNT .GE. 1)) THEN

WRITE (*,100) ' COEFFICIENT VALUE'
DO J=1,6

WRITE (*,130)J,COEFF(J)

END DO

ENDIF
Read in the known boundary condftions

from the ’boundaries.dat file:
IDIR: X=1 Y=0 FOR 2-D PROBLEMS

o000

READ (19,*) NUMBDY

IF (NFE .EQ. 1) THEN
WRITE (*,100)’
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WRITE (*,140) ' NUMBER OF KNOWN DISPLACEMENT VALUES:’,NUMBDY
WRITE (*,100)’ '
WRITE (*,100) * DIRECTION INDICATOR: X=1 V=0’

WRITE (*,100) '/ NODE DIRECTION VALUE’
ENDIF

141 FORMAT (8X%,13,8x,12,10x,012.3)
DO I=1,NUMBDY

READ (19,*) IBNDX, IDIR, BVAL(I)

IF (NFE .EQ. 1) WRITE (*,141) IBNDX, IDIR,BVAL(I)
1BDY(1)=(IBNDX*2)- IDIR
END DO

CLOSE (19)

WRITE (*,100)’
C * Once arrays are ready, construct the series of [K(t)] values.
c for all of the timesteps in the problem.
IF (NFE .EQ. 1) WRITE (*,100)’ STORING [K] MATRICES FOR ’
00 5,NT=0,NUMBEROFTIMESTEPS
IF (NFE .EQ. 1) THEN
WRITE (*,101)/ TIMESTEP #’ ,NT
WRITE (*,100)'
ENDIF
CALL MAKEA(NT,TIMINCR,TIMSTART)

C 1 0
CALL MAKESHAPES( MASTERK,NUMNODES)

c 0 0 o
CALL STOREMASTERK(NT,MASTERK, NUMNODES)
5 CONTINUE

C * Solve the time-dependant problem, once all of the [K] values are
c ready and stored.

NNPLUS 1=NUMNODE S+1
1D IM=NUMNODES - NUMBDY
IDPLUS1=IDIM+1

CALL SOLUTION(NUMNODES,NNPLUS1,KZERO, IDIM, IDPLUS1, FINALK,
C LASTR)

END
c

wweadéNote that the rest of the program is the same as VISCO2
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Table 6. P2la.FOR

PROGRAM P21a.FOR
Note that for P21a.FOR the following modifications are mede to the code:
[ s s s s s e a e e S e e o d
C READ IN THE PARAMETRIC DATA
C 44444ttt bbbt 44444 44 44 000004

OPEN (14,FILE='Elastic’,STATUSs’old’)
REWIND 14

READ (14,*) NV,ITMAX,BETA,1GAMMA

c --------------------------- w *he e

C The number of parameters is fixed at 1 for the elastic problem.
NUMPAR=1
NC=1
NS=1

NUMT IMESTEPS=1

BENARERARARANAAANRAAARAAAAAAAARAVREORNANENNIARN ANV O OO IOD
c

The other modification necessary is:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN

c READ IN INITAL DATA
C This reads in some of the necessary parameters to operate some of
c the arrays used in this program.

READ (13,*)NUMELS, NumberOfNodes

NUMNODES=Numbe rOfNodes*2
NODCOUNT=NUMNODE'S

NUMN=NUMNODES

READ (13,*)(COEFF(1),1=1,6)

READ (13,*)NUMBEROFTIMESTEPS

NUMBEROFT IMESTEPS=1

READ (13,*)NUMSTART, NUMSTOP

READ (13,*)TIMSTART,TIMINCR

CLOSE (13)

c e RNAERBR AR bbb h kbbb RRRd
C HERE’S THE SPLICE TO GET THE XX(I1S,n) VALUES INTO THE PROGRAM!!

COEFF(1)=XX(11S,1)
COEFF(2)=0.000
COEFF(3)=0.000

c"“m“'ﬁ.t'tt**ﬁ END OF SPLICE
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Table 7. DUMERGE.FOR

PROGRAM DUMERGE

INTEGER IDUM(10)
INTEGER NUMELS, NUMNODES, NTS

DOUBLE PRECISION DDATA(10)
DOUBLE PRECISION RDATA

DOUBLE PRECISION SUMDATA (2000)
CHARACTER*15 FILEA,FILEB

OPEN (20, FILE=’GENERAL DATA’, STATUS= ’‘OLD’)
REWIND (20)
READ (20,*) NUMELS,NUMBEROFNODES
NUMNODES=NUMBEROFNODES#*2
READ (20, *) (DDATA(K) ,K=1,6)
READ (20, *)NTS
CLOSE (20)

50 FORMAT(A)
51 FORMAT(A,I1)
52 FORMAT(A,I2)

C CLEAN HOUSE

DO KL=1,NUMNODES
SUMDATA (KL)=0.0D0
ENDDO

DO II=1,NTsS

IF (II.LT.10) THEN
WRITE (*,51) / FILE NUMBER /,II
WRITE (FILEA,51) ‘DELUFILE’,II
ELSE
WRITE (*,52) ’ FILE NUMBER ’,II
WRITE (FILEA,S2) ‘DELUFILE’,II
ENDIF

OPEN (22, FILE=FILEA, STATUS=’OLD’)

DO LL=1,NUMNODES
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Table 7 (Cont’d).

READ (22,*) RDATA
SUMDATA (LL) =SUMDATA (LL) +RDATA
ENDDO
ENDDO

OPEN (24, FILE='/SUMDELU’, STATUS=’/NEW’)

DO JJ=1,NUMNODES
WRITE (24,*) SUMDATA (JJ)
ENDDO

WRITE (*,50) ’ COPIED’

CLOSE (22)

CLOSE (24)

WRITE (*,50) ’ ALL DONE CREATING FILE SUMDELU'’
WRITE (*,52) ’ FILES SUMMED:’,NTS

END
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Table 8. Documentation for programs.

The general form for the data and element files is:

**** For the <General Data.dat> data file:

NUMELS NUMNODES

C1C2C3ChCS5Co
NUMBEROFTIMESTEPS
NUMSTART  NUMSTOP
TIMSTART TIMINCR

e For the <Element_Data.dat> Data File:

1 NODX(1) NODY(1) <----- These are the x,y coordinates for the
2 NODX(2) NODY(2) nodes.

n NODX(n) NODY(n)

1 EIC1) EJ(1) EK(1) EM(1) <--- These are the nodes which meke up
2 EI(2) EJ(2) EK(2) EM(2) each element. For a trisngular

. . . . . element, the EM( ) value should be
e . . . . 0 Cinteger).

n EI(n) EJ(n) EK(N) EM(N)

L] For the <Boundaries.dat> data file:
NUMBDY
IBNDX IDIR BVAL(IBNDX) \

IBNDX  IDIR BVAL(IBNDX) |===> NUMBDY rumber of times
IBNDX  IDIR BVAL(IBNDX) /

IBNDX The node at which the boundary condition is known
>>>>>>>THESE MUST BE IN SEQUENTIAL ORDER! !} <<<<<
IDIR Direction of Displacement:

X=1
Y=0

BVAL(IBNDX) Displacement Value

Note that the index system obviates the need for sequential
ordering of the bounday conditions EXCEPT that due to a bug

in the program, the “1* IDIR **MUST** precede the “0" IDIR for any
node which has two known boundary conditions.

hbaieied For the <rnumber_.dat> file:
** Remember X =1 and Y = 0
NUMRVAL
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Table 8 (Cont’d).

INDEX IDIR VAL

INDEX Node rumber
IDIR Direction code (see above)
VAL Force value
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The File PAR_EST.DAT
required for using P21.F is:

NC NS NV ITMAX BETA IGAMMA
NUMPAR

NUMTIMSTEPS

NPRNT

NI1 CL(NI1) CU(NI1) XX(1,NI1)
NI2 CL(NI2) CU(NI2) XX(1,NI2)

. . .
. . .
o . .

L] L] L]

Where

NPRNT Print level during function evaluation
0 - Prints nothing after first evaluation
1 - Prints new coefficients after first run

2 - (1) plus displacement values
NUMPAR Number of parameters to be estimated
NC Number of Constraints
NS Number of Search Variables
NV Number of Vertices
ITMAX Maximum Number of Iterations
BETA Model Parameter (Convergence Criteria)
IGAMMA Model Parameter
NIn Numerical Index for Parameter n
CL(NIn) Lower Constraint for Parameter n
CU(NIn) Upper Constraint for Parameter n

XX(1,NIn) Best Guesstimate of Parameter n
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The File Elastic.DAT
required for usingg p21a.F is:

NV ITMAX BETA IGAMMA

NPRNT

NI1 CL(NI1) CU(NI1) XX(1,NI1)

Where

NPRNT Print level during function evaluation
0 - Prints nothing after first evaluation

1 - Prints new coefficients after first run
2 - (1) plus displacement values

NV Number of Vertices

ITMAX Maximum Number of Iterations

BETA Model Parameter (Convergence Criteria)

IGAMMA Model Parameter

NIn Numerical Index for Parameter n (n=1 for all
elastic data)

CL(NIn) Lower Constraint for Parameter n

CU(NIn) Upper Constraint for Parameter n

XX(1,NIn) Best Guesstimate of Parameter n



APPENDIX B

Material Deflection Data
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Note that the symmetry of the sample was exploited to
simplify the parameter estimation process. The 1/4 grid
(Figure 31) deflection points are listed below.



175

(6)

(5)

(4)

1 3 (3)

(1)
(2)

Figure 30. Finite Element Grid Used in Parameter
Estimation Evaluation Model.
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Table 9.

Change in Position of Indeces at 100% Loading.

Timestep
Point Xy (¢} 1 2 3 4 S 6
1 x o) 0.0656 0.1517 0.1862 0.2687 0.3173 0.3563
1y [o] 0.0000 0.0000 0.0000 0.0000 0.0000 (o]
2 x [o] 0.0862 0.1243 0.2197 0.2829 0.3129 0.3563
2y 0] 0.0000 0.0000 0.0000 0.0000 0.0000 (o]
3 x [¢] 0.0796 0.0606 0.0967 0.1435 0.1895 0.1813
3y o] 0.0409 0.0944 0.0947 0.1159 0.1432 0.1375%
a x [o] 0.0437 0.0799 0.1113 0.1631 0.1638 0.1813
ay [o] 0.0000 0.0000 0.0000 0.0000 0.0000 [0}
S x (o] 0.0596 0.1020 0.1267 0.1837 0.1861 0.2013
5 y [o] 0.0569 0.1100 0.1393 0.1919 0.2452 0.2516
6 x o 0.0000 0.0000 0.0000 0.0000 0.0000 o
6 y ! [o] 0.0000 0.0000 0.0000 0.0000 0.0000 (o]
7 x o] 0.0000 0.0000 0.0000 0.0000 0.0000 o}
7y o] 0.0701 0.1521 0.2013 .2791 0.3210 0.3563
8 x 0 0.0243 0.087S 0.0902 0.1260 0.1187 0.1375
8 y ! o 0.0570 0.0778 0.1167 0.1608 0.1959 0.1813
9 x o] 0.0000 0.0000 0.0000 0.0000 0.0000 o]
9 vy [¢] 0.0952 0.1558 0.2273 0.2412 0.3108 0.3563
10 x o] 0.0000 0.0000 0.0000 0.0000 0.0000 [o]
10 y ] 0.0730 0.075%0 0.1033 0.1592 0.1917 0.1813

Position of Index Mark at 100% Ioading.
Values in Inches.
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Table 10.

Change in Position of Indeces at 82% Loading

(=]

0000000000 O0DO0O0DOOO0OO0O0OO

0.0652

0.1141 0.1773
0.0000 0.0000
0.0852 0.1080

0.2199
0.0000
0.2010
0.0000
0.1302
0.1075
0.1497
0.0000
0.1243
0.1654
0.0000
0.0000
0.0000
0.2301
0.0692
0.1366
0.0000
0.196S
0.0000
0.1526

0.2699
0.0000
0. 2487
0.0000
0.1708
0.09880
0.1782
0.0000
0.1672
0.1750
0.0000
0.0000
0.0000
0.2753
0.1311
0.1540
0.0000
0.2508
0.0000
0.1541

Postion of Index Marks at 82% lLoading.

All values in Inches.

0.2873
o
0.2873
o
0.1632
0.1021
0.16832
o
0.142S
0.1836
o
(4]
o
0.2873
0.1021
0.1832
o
0.2873
(o]
0.1632



[ONON

COVVLOODNNOOOVUNE >PWWNN= -

XWX X XN X X X XK XX

178
Table 11.

Change in Position of Indeces at 47% Loading.

o

0000000000000 O0O0O0O0OOOO

OOOOOOOOOOOOOO0.0.0

Tinestep

2 3
0.1094 0.1036
0.0000 0.0000
0.0620 0.0976
0.0000 0.0000
0.0729 0.0879
0.0309 0.0839
0.0767 0.0628
0.0000 0.0000
0.0582 0.0540
0.0505 0.0711
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.10448 0.1224
0.0492 0.084a4a
0.0463 0.090a
0.0000 0.0000
0.1073 0.1119
0.0000 0.0000
0.0622 0.0773

0.1190

Position of Index Marks at 47% loading.

All Values in Inches.

0.0989
0.1077
(o]
[¢]
0
0.1793
0.0731
0.1031
(o]
0.1793
[o]
0.1031



APPENDIX C

Permeation Data
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Table 12. Sumary of Permeation Data at Various

Loading levels.
Loading: (o} 2794 2303 1323 Psi.
(o] 1930 1583 906 N/cm?

Percent of
Maximum Load: 0% 100% 82% a47%

Quadratic
Coefficients:

A: -0.00162 -0.00133 -0.00160 -0.00151
B: 0.33586 0.36331 0.35602 0.34411
C: 0.35710 0.45182 0.55308 0.45553

Correlation

Coefficent: 0.9965 0.9973 0.9947 0.9885
Coeftficient of
Determination: 0.9931 0.9970 0.9947 0.9885
Standard Time: 20.4 18.3 18.7 19.7 min.
dC/sdt at
Standard Time: 0.2681 0.3146 0.2962 0.2842 %/min.
Permeation
Rate: 0.94141 1.1045 1.0396 0.9977
Change: (o] +17.36% +10.47% +6.02%

4
Cm®/min/m? /mm/Atm

F
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Figure 31. Change of CDZ Concentration in Permeation Cell
Versus Time at 100% Loading.
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Figure 32. Change of CD2 Concentration in Permeation Cell
Versus Time at 82% Loading.
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Figure 33. Change of CDZ Concentration in Permeation Cell
Versus Time at 47% Loading.
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