c . A 9 ~ .'_ ‘ I AS... - '! . Tat}. I ‘ go .. J .-._. ‘; ‘7."- 1 ‘2 . t m. 1' . ‘4. ‘31-; ,. .' ‘. Ev. . 511‘; am» {.3- r 3f. - I [[3 J1". '7 g. 74 ‘ 4. c .u 0| I ‘5» . s. . V. V: ‘ .l ”0? \ 5-} l; ‘ D 1. ' Hunt; 'l ~; 1 . C I t ‘ ., m. . - , , E}! sé‘jffikz 21:1 1-. '4‘" .{je'Ju :4' w u .31.! :. ,3 "a. g 3¥L5§(‘3.!:{8{. 92:. 0’ ; .sio'fii‘dp n‘;th ' ’ .9“.“[Q,¥: ':' '5'!” A. 4 1‘5"“. ”first 53:3 til-‘1‘fi'ifij. ! -.- '5L01§!o;§i':}§3;,‘rfl$& —".~: :35! o "4! ‘ a- ". . v .“;'..‘.:I y-M-I'm'uflra -.v. - — . a] .E: ;' Al“. .1: ‘ . , K '--‘ I L g 7 V' 0 oh v _ ‘o, _ 5"“: :u.‘:‘~-. ‘ r w ‘l..-.- ‘ 1', I. '1 u_. n. V . - ,l ‘f‘gfi‘fl w. H} , ‘ 'l u . ~ . ;~.-. (I ‘ ‘ Hm $3.45." W> '0 . . u. .f... ”WHEN ‘ I" ’ . : ' :5. . ,‘< .‘ ' 1,— 1, '.' ! 'f {a} \A _ 5 r .‘- ‘1' r ‘ L1“ 7 l '7 ‘ 3 ih’f.‘ ‘ '2}. 153% .r}; .1882 can, ‘1 w . 34:35" a 0,. - ‘ -: . ‘VI>. h I ‘ u‘ #13}; [AI ' {”90 ..'. 3!- ‘M o... 2... ac— L‘“. ‘~|.— . . m. c. g g-- . _~ ‘c-L‘ ,3 g: '5 ... N - —'.'. 13 , . .Jp—v- " ‘9 .123» ..,-, fl . “ -.--.' ' cg. "5.- “M‘un M ‘u n c .: i4, LI" 3". -» 41'. - m 1" A.“ .357 £223; " ‘, t, - ' '4 . . I $3— r‘., ‘Mifigfi‘ ‘ - . 1‘7"}: Jam‘- . , ff" < 331'? .. ,, fifggm,“ I}; f ”I m. - $53.? ._' ' . ‘ A . , . 4-3-8: , ‘ -. ,. -0“ .‘-“v 4- _ . m. ~HW ; . .— ‘ v.- ' ’N'v-l .1 o 9:: 3 o 7'570. . ,,, n I 5’: H ‘7 ‘ ‘ "13‘573'2 ‘° .. 55-." 0") «a _on ‘ , O (“E-1" "“~ .~ 1.4 .-- .. «.4 a; “5-13. — 4..., n 0.04. .222:- . .. ‘- ‘ O :9 L . I'd..‘“‘ ~. 3 . ~26? I w r I 11" ”“o .«o-n. 4... u": ”L: L. 'W «2 f1“: . “I '4 -. ‘-- :r s _ 4 « H I : g ? 'p'v‘" A}: Baffin . ‘ ‘ I .1}? ”2h... 333515.. "jo 353'}:ij J <. ‘ ‘ j,,§j\§"‘f:&.$€-‘?é;§) W‘- ’7 V-i‘ ‘quukaw-zmm z -. :35 r ‘~ *‘ ‘~‘-€."-:~.'-{*;4£y~t”>:3z .1" '2 . : .. . V. ‘93.”; 3'." 3.. l2. .1. ' .. Jéa . tr . .3 Link a 4.11:! 1525338.. ‘ *3 :l I: i “In . w I‘ . x? “ 7'15 1:3?" ' v ‘ ‘ .. -. 'UEXL' ' .1 . ‘ t. ~ 2.2291: x 5.1., . Q. J. " “E5233: '1‘ I 0. ‘v u. lififif‘ukq'h‘i . .t.‘ I t ‘34» n ‘ “Uzi" 11.4;- f {“5" ' r 'n.‘ '6 . =$kfi§dégrfi 21:57! . f : ~ - ,.. -‘v 1: A 1'! ' @551 “F." u .,:5'_{‘ '4 #4 . . , ; ‘97? -:~ ...‘u., A.“ - vi 3 ‘4 . . if .7, 4:4 1:: -t .f 1. mtg. , i' F4“ . I' . “v :1" ~ .3 ”1. -‘ {yq’g . ”,{13' " ~ .143.”- . n ‘1‘?“ )H ».,I . g f :2 11:2 .27 ' J ~’ ‘I‘ ' < 9:”,Ilfo)p..{: " . L'.,-’-'.[-¢‘I' to ”I; wrinkle. ' ".3; fl‘h d all lllljlfl"’ll§lllll$l lllllill ” ‘~: I ill” I l 3 796 8740 L;_'T‘nmu— 1 f". .....,,.n‘ "I i ‘wr-_—- _ :' 1 I! This is to certify that the thesis entitled OPTIMIZATION TECHNIQUES FOR ,URBAN HIGHWAY TRAFFIC $IGNALIZATION presented by Sugeng Setyawan has been accepted towards fulfillment of the requirements for Masters degree inCivil Engineering fléz-céém cs 731/4}: Major professor Date 4/3/89 / / 0-7639 MS U is an Affirmative Action/Equal Opportunity Institution MSU RETURNING MATERIALS: Place in 550E drop to LIBRARIES remove this checkout from “—- your record. FINES will be charged if booE is returned after the date stamped below. ' . JAN 1 1 19‘2— was; OPTIMIZATION’ IECEWIOUFS FOR UTWZN' 5705”]? IRAFTTC SIGNZIIZATIQN BY SUGENG SETYZMAN A IRESRS SUBMITIED T0 ‘HTCHTUZN' STZZE UNIVERSITY in partial fulfilllent of the require-eats for the Degree of MMSIER OF SCIENCE Departnent of Civil and Environnental Engineering 1988 ’“Uh’/;j) ABSIRACT OPTIMIZATION’ ZEQENTOUES F05 ”5355' 5105!]? ZRAFTIC SIGNZIIZZTTON By Sugeng' Setyauan Increasing construction costs which exceed revenues have forced traffic engineers to more closely fine tune the existing roadway facilities using various transporta- tion system management strategies. Among these stra- tegies, traffic signal coordination and optimization is recognized as one of the most cost effective and easi- est to implement strategies. Numerous computer packages are available to optimize and/or simulate existing or expected traffic flow condi- tions. However, few of these models have been introduc- ed to the developing countries where the need for op- timization is strong as financial constraints are one of their major problems. Techniques for using two traffic signal models were introduced in this study and the consistency between the models tested. Furthermore, the impacts of signal timing optimization were evaluated. Delays, stops and fuel consumptions were estimated for before and after optimization of signal timing plans, and the results were converted into highway user costs, so that the benefit of optimization could be determined. This study also identified the level of saturation in the traffic flow which limits the value to be gain- ed from the use of optimization models on a network. If 10 NY mum's 1'1'1' J!(9JKJVZ7JVHEAEI7(ZAIIZAVJ" I am deeply indebted to Dr. William 0. Taylor, Professor and Chairperson of the Department of Civil and Environmental Engineering, for his immeasurable guidance and assistance during this study. A sincere appreciation is expressed to the Petra Christian university in Indonesia which provided the possibility for my program of study. Special thanks also to the other members of my committee, Dr. Tho-as L. .Maleck, and Dr. Richard W. Lyles, for their enthusiasm and assistance. Finally, the support and understanding of my wife, Ellyana, and our children, Renata and Karina, in pro- viding the impetus and strength to complete this work are admired. Sugeng Setyawan TABLE 01' CONTENTS LIST OF TEBLES LIST’ OF .FTGEEES CHAPTER ONE : INTRODUCTION (II-FOONr-I HHHHH OEEPTER TWO : 11.1. 11.2. Background Traffic Signal Timing Optimization Models Available Study Objectives Outline Of The Study ENGINEERING Transportation And Traffic In The Developed Countries 11.1.1. U.S. Signal Timing Project Traffic Engineering In The Countries OEEPTER THREE : .MUDEI OVERVIEN III.1. TRANSYT-7F III.l.l. Model Description III.l.2. Input Required III.l.3. The Operation III.l.4. III.l.5. vi TEE STATE-OFrTEE-ART IN TEAEFIC - Engineering - Optimization - Developing Computational Algorithms Limitation and Other Features Page viii ix r—u-a OOHODNH 14 17 20 25 25 26 26 27 33 111.2. SOAP84 III.2.1. Model Description III.2.2. Input Required III.2.3. The Operation III.2.4. Computational Algorithms III.2.5. Limitation and Other Features 34 35 35 36 37 43 CHAPTER FOUR : TRANSIT-TP' AND SOAPBA CONSISTEMCY - TEST IV.l. 1V.2. IV.3. IV.4. OF THE .NDE’S Description of The Study Site Study Approach Results and Analysis of Performance - Measures Consistency Test of The Performance - Measures CHAPTER FIVE : EXAMTNINC THE IMPACTS OF SIGNAL - <<<< booms- OPTIMIZATION' Description of The Study Site Study Approach Results and Analysis Energy and Cost Evaluation CHAPTER SI! : CONCZUSIONS V1.1. V1.2. V1.3. APTTWDICES Appendix-1 Summary Future Development Transferability of U.S. Experience to - Indonesia TRANSYT-7F Optimization Run for Study - vii 45 46 48 51 56 58 59 70 73 75 76 Case-1, in Michigan Avenue, Lansing, Michigan Appendix-2 SOAP84 Simulation Run .of TRANSYT-7F - Optimal Timings for Study Case-I, in Michigan Avenue, Lansing, Michigan Appendix-3 Regression Analysis - Program in Basic Appendix-4 TRANSYT-7F Simulation Runs for The Study Case-II, in Cirebon, Indonesia Appendix-5 TRANSYT-7F Optimization Runs for The Study Case-II, in Cirebon, Indonesia 'RITERENCES LIST OF TMBLES Table 111.1. Reduction of Stops as a Function of Delay 1V.l. Relationship Between TRANSYT-7F and SOAP84 - Results 1V.2. The Effect of The Ratio of External to - Internal Link Volumes v.1 Benefit Estimated for Volumes of .308 viii 79 99 111 115 126 140 Page 32 52 54 71 Figure 111.1. 111.2. 1V.1. 1V.2. 1V.3. LIST OF FIGURES TRANSYT-7F Estimate of Delay Webster’s Model Delay Section of Arterial Under Study Traffic Flow Diagram for The Case Study Comparison of Performance Measures Network System of The Case Study Link-Node Diagram for The Case Study Network-wide Traffic Performance ix Page 32 39 46 50 57 60 61 (CJPQIJDUTIEUE’ (9JVHTHr .120f1!£?€2£7(7(71PJFCZAV' I. l . BACKGROUND Currently, the emphasis in transportation planning has been shifted from long term, capital intensive - construction projects, to shorter term, relatively low cost projects, which are designed to optimize the use of existing facilities. Such a trend places heavy con- sideration on ‘gransportation system Aganagement [tsm] as a part of the planning process and as a prerequisite for improvements to increase Vthe capacity and efficiency of transportation systems, in particular for urban traffic operations. The provision of improved traffic signal systems for control at heavily trafficked intersections and corr- idors is ‘by far the most common form of tam. In- efficient use of the transportation system results when traffic signals are installed without sufficient study. while the U.S. Manual on Uniform Traffic Control De- vices for Streets and Highways [25] discusses several warrants to justify traffic signal installations, the manual does not specify the operation of such signals. The by-products of inefficient use of traffic sig- nals include greater energy consumption, an increase in certain environmental impacts such as vehicle noise and emission levels, increased travel time and delay, higher accident rates, and less reliable service. The Federal Highway Administration forecasted that energy consumption could be conserved by 100,000 barrels of crude oil per day by optimizing the timing of the 130,000 coordinated, signalized intersections that current- ly exist in the U.S. urban streets. (211(2‘3 Thus, it is obvious that a signal optimization program could be one of the most cost effective strategies that can be implemented under tsm. I. 2. TRAFFIC SIGNAL TIMING OPTIIIIZATION In general, signalized intersections can be classi- fied into two major systems : (a) isolated signals, and (b) coordinated signal systems which consist of two or more intersections and streets that link those inter sections. For the analysis of isolated signal timing, Webster’s model represents one of the major advances in the development of optimizing signal timing. [‘1 [71 ‘31 Other analytical methods include the U.S. Highway Capacity Manual method [TRB Special-Report 209; ch.9], the Canadian Manual on Uniform Traffic Control Devices method, the Australian Road Capacity Guide method, the Average Loaded Phase Expanded [ALE] method, Bellis’s method, Failure-rate method, and the use of certain British and Swedish mo- dels. For coordinated signals, various manual and com- puter aided progressive signal system designs have been used with reasonable success on single arterial streets. In the case of signal network design, simplification was traditionally made by providing preferential treatment to one or more major arterials within the network, and after assigning favorable splits and offsets to these ar- terials, the remaining signals were forced to conform with the various restraints imposed by those major arte- rials. The manual solutions are subject to more human error, and are often cumbersome and time consuming. With the availability of the computer as a versatile ana- lytical tool, complex algorithms for signal timing design were developed, which represent significant pro- gress in the current state of the art. I. 3. MODELS A VA I LADLE A number of computer based optimization models have been demonstrated to be effective and reliable. Some of those are SOAP SOAP stands for the .QIGNML .QPEHATIONS and-‘ANZLYSIS EMCKAGES, developed by the University of Florida, for the Florida Department of Transportation, and the-Fede- ral Highway Administration. SOAP is a macroscopic ana- lysis program, which provides a method of evaluating and developing a wide-range of signal design alterna- tives for isolated intersections. SOAP is an optimization model which determines the solution for optimal cycle lengths, splits, phasing patterns, and left turn con- figurations for three or four legged intersections. Inputs include traffic flow per-approach, truck and bus composition, left turn data, signal related data, saturation flow rates, and progression related data. Basic outputs include delays, percent stops, percent saturation, maximum queue, left turn conflicts, and excess fuel con- sumption. The program is well written and easy to use. MMIBAND The .MMXIMUM’ BANDNIDTH, is a bandwidth optimization program which calculates signal settings on arterials and triangular networks. This program can handle as many as twelve signals efficiently. Inputs include the range of cycle lengths, the network geometry, traffic flows and their capacities, left turn patterns, queue clearance. times, and the allowable range of speeds. The output include a data summary report and the so- lution report of cycle time and bandwidths, selected phase sequencing splits, the offsets, travel time and speed on links. TEIAS The- .TRAFTIC lggPERLMENTAL and .ANZLYTICAL .§LMULATION, was developed by the University of Texas Austin Center for Highway Research, for the Texas Department of High- ways and Public Transportation. This program has the ability to evaluate existing and proposed intersection designs for both geometric and traffic operations. TEXAS is a simulation model which provides quantifiable measures of changes in traffic operations from roadway geometry, driver and vehicle characteristics, intersection and lane control, flow conditions, and signal timing plans. PMSSER PROGRESS] ON ANAL YSI S an d §IGJVAL .5; YSTKM _L_' VAL (IA TION ,gpuriua, was developed by the Texas A and M University’s Texas Transportation Institute for the Texas Department of Highways and Public Transportation. PASSER provides a valuable tool for determining optimal splits, phases, and offsets, primarily for coordinating traffic signals along arterial highways. Basic inputs include the range of the cycle lengths, movement flows, saturation flows, left turn patterns, queue clearence times, the desired speeds, minimum green time, allocation of bandwidth by direction, cross street phase sequences, and link dis- tances. Outputs include cycle length, bandwidths, band speeds, a time-space diagram, delay, probability of queue clearances, offsets, splits, phase sequences, and volume over capacity ratios. SUE ISLMULATION' 0F .QRBAN’.§USES, is a special purpose model which has been developed by the Federal Highway Administration for evaluating the benefits of alternative bus stop location [near side, farside or midblock], and physical characteristics such as protected or unprotected lanes. This model was developed to provide transit operators with a tool for evaluating bus operations a- long an arterial as well as the effect of various bus stop strategies on their performances. TRANSIT The .QEAEFIC ‘QETWORK .STUDZ .ZOOL. The original TRAN— SYT was developed by Mr. Dennis I. Robertson of the Iransport and :fload lgesearch .Laboratory [TRRL], Crawthorne in the United Kingdom. TRANSYT is a major tool avail- able to traffic engineers for analysis and evaluation of alternative traffic control strategies. It is primarily used for optimizing the signalization on arterial and grid networks. The model has a hill climb optimization algorithm that varies the offsets and phase-lengths at each signal to locate the particular set of signal timings that minimize a Performance Index, which is a weighted -linear combination of stops and delays. Basic inputs include cycle lengths, phasing, performance index weights, lost time value, link lengths, either link travel times or speeds, link flows, turning movements and saturation flows. Basic link outputs include percent saturation, total travel, travel times, delays, rate of stops, maximum queue length, offsets and splits, plus the value of the performance index. Since the original model was introduced in 1968, numerous improve- ments have been made and a number of versions issued, some examples are - TRANSIT-6C TRANSYT-GC includes fuel consumption, the es- timation of emissions, demand response, a provision for priority links, and a more comprehensive measure of effectiveness. Users may determine the basis of optimization by weighting various variables. - TRANSIT-7F This is one of the recent versions avail- able to day with the North American no- menclature on input and output. ‘ It also produces a time space diagram and the es- timation of fuel consumption. A new revision will optimize the cycle length, and identify potential intersection blockages. - TWMNSYT‘E TRANSYT-B, the newest version which includes gap acceptance functions for left turns and a cycle search routine. The British govern- ment charges a fee, limiting the use of the program. SIGOP SIGOP stands for the traffic SIGNAL ‘QPTIMIZATIONe model. It is a powerful analysis and design tool. Con- ditions, such as the existing conditions, might be ana- lyzed in terms of a number of useful traffic engineer- ing measures. The signal timing may be optimized for cycle length, splits and offsets to minimize the ’disutility’ function. Comparison of the results of several alternatives enables the traffic engineer to eva- luate the relative effectiveness of the designs. The current version of SIGOP was developed by KLD Assoc., Inc. for the Office of Research, Federal Highway Ad- ministration. It can handle up to 150 intersections, multi-phase signals can be modeled as well.. Input includes arrival flows and saturation flows, the minimum green times, yellow times, special phase times, passenger car equivalent factors for trucks, buses, and turning vehicles, while the output include time-space dia- grams along selected arterials and links. NETSIM NETSIM is an abbreviation of the name of a model for traffic ‘ggzwonr .SLQWLATIONZ It was developed by KLD and Associates for the Federal Highway Administration. NETSIM was designed primarily to provide a powerful ana- lysis tool to test complex network problems. It is particularly useful for the analysis of dynamically con- trolled traffic signal systems with the highly variable nature of their operation. This simulation model can also evaluate several alternatives which are being con- sidered and provides a basis for a comprehensive analysis and identification of potential problems which could occur that would not show up in other models. The inputs include : the network geometry, arrival flows, :saturation flows, turning counts, traffic composition, and signal setting. Outputs include a variety of measures such as delay and stops, cycle failures for pretimed Signals, fuel consumption and level of’emissions. NETSIM. 10 simulates the performance of a network by using a microscopic, probabilistic model which incorporates car following, queue discharge, and lane switching algorithms. It has the capacity to handle 99 intersections, 160 links, and 1600 vehicles at a time. PRIERE PRIFRE is a reverse acronym for the fififlEflAYfiEEIORITY LANE model. This model was developed by the University of California Institute of Transportation Stu- dies at Berkeley, to improve the efficiency of freeway systems. The physical system considered by PRIFRE is a directional freeway with a priority lane reserved for high occupancy vehicles [HOV’s] and the on and off ramps to the freeway. PRIFRE can be used to ,evaluate various types of priority treatment of high occupancy vehicles, but its primary use is for the evaluation of freeway rather than signalized intersections. FWTOEP FREQ3P is an acronym for the gggranr OPTIMIZATION with .QUEUFINC, version q; control and IERIOPITY treatment. This model has been used frequently to evaluate alter- native priority entry control strategies at any or all entrance ramps to optimize freeway operations. It can ll be used to maximize an objective function such as passenger input or miles of travel. The physical system considered by this -model is a directional, urban freeway section and the associated ramps. The freeway section is described as a series of contiguous sections which are internally operationally homogenous. It was developed by the University of California Institute of Transportation Studies at Berkeley, and it is not proposed for signal- ized intersections. OTHER .NDDELS Recently, a number of advanced computer models for analyzing transportation corridors have been introduced. Models like ; EREOOPL, EFFOOPE, TRESCOT, TRANSFT—SC, and SLNTOL provide the capability for investigating demand, supply and control interaction for transportation cor- ridors. Such models are still in the process of development, testing and refinement, and won’t be con- sidered more in this study. I. 4. STUDY ODJECTIVES These computer models have been developed and cal- ibrated according to the conditions of the developed countries. Many of these factors are significantly different in developing countries. Thus, the models can 12 not readily be used by practicing engineers for solving many of the transportation management problems in the developing countries. The lack of use in these countries is also caused by many other reasons, for example - lack of computer hardware to run the models, - difficulties of obtaining the software program and model documentation, - non-familiarity with the existing models and their uses, - perception that use of models requires an expertise in traffic flow and higher mathe- matical theory, — a belief that computer models will not give practical results, Considering the beneficial use of such models in the U.S. and other developed countries, as well as remembering the ’optimization’ policy introduced by the Indonesian Directorat General of Highway, in 1979, this study was performed to determine the feasibility of using such models in Indonesia. Hence, the purpose of this study is primarily to demonstrate optimization techniques and analyze the possible impacts of using signal optimization models in Indonesia. 13‘ 1.5. OUTLINE OF THE STUDY Two models were selected for more detailed study, TRANSYT-7F and SOAP84 versions, and their consistency was tested on an arterial street in the city of Lansing, Michigan. The performance measures of the models were compared statistically to examine the differences, if any. Furthermore, the effectiveness of TRANSYT-7F was tested in an Indonesian network. The ’existing network was loaded with volumes equal to .105, .205, .305 and .405, where S is the street saturation flow. Then the improvements of signal timing optimization were measured, so that the benefits of the optimization could be quantified. (CZHQIJDUTHTUR' EPTVZ’:' EPITIE' Agdrhlfir1?-(217-ZE£Z£?-10 99 100 Table [11.]. Reduction of stops as a inaction of delay. The number number such Delay - seconds per vehicle /| / ITransyt model Degree of saturation , (Khnifbrm delay Figure III.l. of of vehicles stopped is simply equal vehicles delayed. However, if vehicles is small, only partial stops the are TRANSYT-7F estimate of delay to the delay to counted. 33 The recommended adjustment of these stops, based on an empirical study suggested by TRRL are shown in Table III.l. III.l.5. LIMITATIONS AND OTHER EEATURES TRANSYT-7F is sufficiently realistic, and extremely useful in designing the optimal signalization of many network configurations. However, care should be taken in order to use this model. TRANSYT-7F assumes all major 'intersections in the network are signalized, even though mid-block bottlenecks or other sign controlled inter- sections can be modelled. TRANSYT does not adequately model unprotected left turnning [movements. The fact that vehicles must wait for an acceptable gap in traffic in opposing link must be considered since this could reduce the rates of saturation flow, and cause increasing - delays and' stops in the traffic streams. Tanner’s curve and the approach introduced in the user’s manual [29] do not adequately represent the real world. TRANSYT—7F calculates average speed in the network by excluding links having zero distance [e.g. external links] and links that have been assigned zero delay and stop - weights [e.g. non-vehicular links]. This could of course significantly influence the results of optimization, since average speed is an important factor in estimating total travel time which is an independent variable' in the estimation of fuel consumption. The entering traffic 34 for any network, the dispersion, volumes, and the pro- portion of turns are considered to be uniform and constant,‘ which are not realistic over the entire period of analysis. Despite those several limitations, TRANSYT-7F is an extremely powerful tool for the practicing traffic engi- neer. It can be used to design larger networks by subdividing those into sections handled by the present program. It also uses a fairly realistic flow model without requiring outrageous run times. III.2. SOAPRU SOAP84, released by the Federal Highway Administra- tion in June 1985, is one of several versions of the .gignal .Qperation Apalysis .flackage. It developes signal control plans for any three or four legged isolated intersection. This program can evaluate a wide range of control alternatives including pretimed or multiphase actual control. SOAP determines the optimal cycle length and phasing, and provides several measures of effective- ness including delay, stops, fuel consumption, and volume over capacity ratio. Left turn configurations might also be programmed with seperate capacity calculation made for protected phases, unprotected phases and the clearance intervals. 35 III.2.l. NUDEI DESCRIPTION The SOAP model, designed and written by the Univ. of Florida Transportation Research Center, is a deter- ministic, macroscopic, optimization program. It was written in Fortran IV on an IBM 370/165 computer system. The program requires 202 k bytes of computer memory. During its development phase, the program had‘ been run using IBM Fortran G, H-extended and WATF IV computers. The current version is ready to run on most IBM systems with some changes required for other systems. A version is also available for the BORROUGH computer. For the microcomputer version, the computational methodology is similar, but not identical to the methodology used in the original IBM version. SOAP84 reconciles only one set of design volumes, saturation flows, phase sequences, etc. This version deals with a maximum of 48 contiguous time periods, each with its own characteristics. Phasing optimization is accomplished by a multiple run, trial and error procedure. The complete phase sequence must be specified for SOAP84. III.2.2. INPUT REGUIRED 'The input data required include the traffic volumes, which are adjusted to reflect trucks and buses if any, 36 saturation flows per hour of green time given to each movement, the headway for each movement; the existing signal timing which includes minimum green time, cycle length, phasing, green time by movement, and all red time; the loss time due to starting and stopping of every movement; the growth factor to project future conditions at the intersection; left turns per cycle on clearance; peak-hour factor; speed; type of controller, pretimed or actuated control. III. 2. 3. THE OPERATION SOAP has the capability for design, analysis and evaluation. All of which can be accomplished by providing the input data previously described. To design signal timing, it is necessary to configure the intersection and input the appropriate data. SOAP then produces all legitimate phasing patterns. It internally analyzes each pattern and selects the one which can be executed using the minimum amount of green time. Cycle length is the most difficult design element to be determined, particularly when several control periods are being con- sidered. However, SOAP determines this quickly based on the traffic volumes, capacity and other parameters. A trial and error optimization procedure is done to find the cycle length which produces the minimum total delay, subject to constraints which govern the tolerable length 37 of the queue. To analyze the effects of various control strategies, a number of measures of effectiveness [MOE], are computed, including delay, stops, excess fuel con- sumption, degree of saturation, and left turn conflicts. Evaluation is done by comparing several alternative schemes. Comparisons can be produced automatically by SOAP or manually by the user. III.2.4. COMPUTATIONAL ALGORITHMS The algorithms used by SOAP for the calculation of the values of the MOE’s identified above are DELAY To estimate delay, SOAP utilizes Webster’s delay model for unsaturated flow under fixed time operations. The Webster’s model has three components, which are ex- pressed as the delay due to uniform arrivals, D1; random arrival, D2; and an adjustment factor, Da. The delay due to uniform vehicle arrivals, is D1 = C[ l - L ]2/2/[ 1 - L t X ] where cycle length [sec.], C II L = the proportion of green time given to 38 the movement [effective green time/cycle length], X 5 the degree of saturation of the movement or : approach flow [veh./sec.]/saturation- flow [veh./sec.] The component due to random arrivals, is D N =[le/[2*q}/[1-X] where q = approach flow [veh./sec.], and the other notations are the same as previously described. Then the adjustment factor is n. = [ - .65][C/q2]1’3 . XI2*5LJ which was derived empirically to provide a better mathematical fit to the field data. Webster’s delay increases infinitely as the degree of saturation X, approach 100 X, and reenters the finite realm’ from the negative side at values above 100 8. This is due to the [ l-X ] factor in the denominator of the second term. The upper limit on the useful range of ’X is generally in the neighborhood of 97.50 8. For the 39 region where the saturation is between 97.50 x to 100 X, delay is assumed to be constant at the value for X = 97.50 X ; I or 2.0 min./veh., whichever value is less. 0) 3+ I .~ ' '5 Useful range I r l K I ” I a. l / {g0 1&0 2&0 g .Degree of saturatipn g l W I l I a I Q l N l g- Q Figure III.2. Rebater’s model delay Great care must be taken in applying Webster’s equation under conditions of near or oversaturation. Webster’s delay model is plotted in Figure 111.2. For saturation in excess of capacity, the following formula is used Qr = T[q-L * S] where Q: = the number of vehicles not accomodated 40 during the green, T = time period [sec.], 8 '= saturation flow [veh./sec.], while the queue length at the end of the phase, 00, is calculated as the sum of 0b, the queue length at the beginning of the period, and Or. Therefore with these values,“ the total delay is D = T/2/[ 0b + 0r ]. In the case of actuated control, the problem is quite complex, and no reliable delay model exists. The approximation used in SOAP simulates a ’well timed’ actuated controller. The actuated control strategy is assumed to - distribute green time available in proportion to the demand on the critical approach; - minimize ’wasted’ time by terminating each green interval soon after the queue has been served. 1!? 67015 LEWUIE Cycle length is calculated by using Webster’s - 41 method as well. For fixe timed operation, the optimal cycle length is Co = [(1-5*1)+5]/(1 - y) where‘: 1 = total lost time due to starting and stopping critical movements, and y = the overall degree of saturation [i.e. the proportion of green time required for the traffic movement]. For actuated control, the cycle calculated is the ave- rage cycle length, which is determined as Ca = [ l.l*1 ]/[ 1- y ] In the low to moderate demand range, this value will always be smaller than Co. As the intersection appro- aches saturation, actuated control approaches fixed time control. EICRSS FUEL CONSUMPTION Fuel consumption is determined from the total of the percentages of stops and delay i.e 42 E=Es+Ed The excess fuel consumption due to stops is calculated as Es=fs*q*Ps where Es = gallons of fuel consumed due to stops, f. = fuel consumption rate [gal/stop], ,q = traffic volume [veh/hr], Ps = percent of stops, which is equal to the number of vehicles joining the queue while it is still discharging, all divided by the number of arrivals per- cycle, or 95 = [r*S]/C/[S ‘ V]. where r = red time [sec], S = saturation flow during green [veh/sec], Then, the excess fuel consumption associated with delay is Ea = fi* qt d/3600 43 where fl = fuel consumption rate per veh-hr of idling, d = average vehicle delay [sec/veh]. Llff THRN' CONFLICZS A conflict can occur when left turns are permissive, or not exclusively protected. The measure of effective- ness is described as the number of left turns which cannot be accomodated safely. The turning vehicles may cross traffic, if sufficient gaps in the oncoming traffic exist. Tanner’s model is used to calculate the effective left turning saturation flow. This model re- lates the opposing flow to left turn traffic. Given the opposing flow, the left turn saturation flow is taken from a curve and compared to the left turn demand. Excess demand is the number of left turn conflicts. III.2.5. LLHTZATIONS AND OIHRR ERATURES As described before, SOAP has the capability of design and analysis for any traffic control strategy, either pretimed or actuated operations. However, several limitations warrant notice. The optimization and analysis are obviously based on mathematical models which often 44 cannot take human behavior into consideration. The SOAP program does not exactly simulate the traffic in real world events. For instance, the combining of right turns with thru traffic presents a problem with the accurate estimation of the capacity. Some other problems include the incapability of analyzing closed loops, lack of wide- spread testing, and lack of validation of the platoon dispersion algorithm. (ZLZELI’Jfilflfl? 17(9l2£?: JWEZALAflSYJ71"-FKIP Ia; £9¢2£ll3£?47 C7¢9JV29LIESUTU§DRflCYJr .JTERSVZP I611? ifilil? .fl!Z2£?"£? TRANSYT-7F and SOAP84 are well accepted as produc- ing realistic results with nearly similar computational bases. Both are deterministic, macroscopic, time scan, simulation and optimization models based on simple sets of equations. They offer practical methods of signal timing which are easy to use. TRANSYT-7F is generally used for the traffic signals along an arterial or net- work of up to 50 nodes with approximately 250 di- rectional links, while SOAP84 provides a method of de— veloping signal control plans at isolated intersections. This would of course raise an intriguing question: can TRANSYT-7F and SOAP84 produce consistent results under the same traffic condition?. A positive answer could reflect favorably on both models. Therefore, it is the objective of this study to reveal the answer to this question. 17L]. DESCRIPTION' or IE? STUDY' SIZE In .the downtown area of Lansing, the capitol of the state of MICHIGAN, a section of Michigan Avenue was selected as the case study. Michigan Avenue carries two way traffic, two lanes in each direction, 12 ft width each, with a left turning lane between directions. 45 46 Parking is permitted on both sides of the road. I 5&1. | - I l. ‘fi [.9qu Eulern .HIglI School Hun!!! Put L— Fjgure IV.1. Section of arterial under study The section under study consists of seven coordinat- ed signalized intersections with 60 second cycle length, all are pretimed and operated in two phases. 17.2. STUDY' APPROACH The TRANSYT-7F program was first run to determine the optimal cycle length, splits, and systemwide per— formance with optimal settings corresponding to the 47 F “a '0 f" .ka ‘0 01 N. N fi WV Assam Nfia. "I , mass .2: Lek hmkfiwwb sum 2 s. e mm? e as .llmw E N“ Eu mm» 3 i New use x vw “SN 04k xtcNK 3:9: .mct. Pam: E E Ill 0 use. Em Illem m3 Realm: who: .. ® .. Qbfimwnvhq emu no.3 3: 3 m3. o 3.0 o 3m 93 22 x. x E: 2M we: 48 traffic flows at the observation period of 16.00 - 17.00 hours. The optimal setting times resulting from the TRANSYT-7F run then were specified‘ as inputs for the SOAP84 evaluation. The outputs generated by TRANSYT-7F and SOAP84 program are provided in the Appendix-l, and Appendix-2 respectively. Total delays, stops and fuel consumptions predicted by both models were selected as performance measures for testing of their consistency. Scatter plots and linear regression equations were established to determine the relationship patterns of performance measures esti- mated by both models. IV.3. RRSUZTS ANT ANZLYSIS 0F .RKRFORHMNCF .MTZSURFS Delay and stops are well recognized as very use- ful measures of effectiveness in a traffic control sys- tem. BIIAY SOAP utilizes Webster’s model to estimate the ave- rage delay per-vehicle. SOAP defines delay as the difference in average travel time through the intersection and the travel time for a vehicle which is not stopped or slowed down by a signal. Webster’s delay model was 49 modified by Mr. Robertson for use in the TRANSYT program to give more reasonable results, particularly for traffic volumes beyond the saturation point. TRANSYT and SOAP consider delay mostly as a waiting time in the queue caused by the red phase. Total delay is then defined by both models as the product of the average delays and the total intersection volumes. SIDES The proportion of vehicles stopped by the signal is also important. Stops are very significant factors in the estimation of both fuel consumption and potential accidents at a traffic signal. SOAP describes the pro- portion of vehicles stopped at a signal as equal to the number of vehicles in the queue at the beginning of the green time plus the number of vehicles which join the queue while the queue is still discharging, divided by the average number of arrivals per cycle. TRANSYT assumes, that vehicles which are delayed are also stopped, though this is not always the case in, the actual traffic flow. The problem of modelling this arises when vehicles do not actually stop. . TRRL con- siders that the short periods of delay can be expressed as a fraction of stops for vehicles affected. [see table III.l.] The total delay, stops, and fuel' con- sumption performances predicted by TRANSYT-7F and SOAP84 FUEL CONSUMP. - -[gaI/l)r] STOPS— ~ [percen t] URL! Y——[ veh “hr/hr] 50 50 40 1 30 . 20 1 SOAP84 10 . e—us : TRANSYT-7F 0 v v v v v fir 16' 57 87 89 92 91 90 NODE NUMBER 20 16 1 1.? 8 4 SOAP84 4 ‘ —. : TRANSYT-7F 0 . . . T . r f 16' 6'7 87 89 92 91 90 NODE NUMBER 100 80 ‘ 6'0 . 40 < 0—0 SOAP84 20 0 V v r v v 16 67 87 89 92 91 90 N005 NUMBER Figure IV.3. Comparison of performance measures 51 programs are shown in Figure IV.3. [7.4. CONSISIENCY IE5! or IE3 .RERFORMMNUF’ MTZSURES As stated earlier, TRANSYT-7F and SOAP84 were de- veloped for different purposes. TRANSYT-7F is primarily used for analyzing traffic signals along an arterial or a network, while SOAP84 is a model for analyzing iso- lated intersections. Therefore, it would be 'reasonable if in some cases their estimation of the performance measures would be different. However, their reliability will be enhanced if they generate consistent results under similar traffic conditions. In this case, the regression equations were first established to determine the relationship patterns for the performance measures generated by both models un- der similar traffic conditions. The linear regression equations presented in Table IV.1. indicate that the results for total delay and stops generated by both models were strongly correlated. Within the conditions investigated in this study, TRANSYT-7F and SOAP84 produced compatible results in terms of the estimation of delay and staps. However, if we consider the fuel consumption performances predicted in this study, they seem significantly different. The bases of computing fuel consumption are obviously different between these models. 52 N. 0. E. .' - REGRESSION EQUATION CORREL. S. S. E. COEF., [R]. Tot. del. STDEL = .69640 + .95 TTDEL .97 1.52 Stops SSTOP = 30.66364 + .59 TSTOP .96 3.64 Fuel cons. SFCON = 3.69637 + .60 TFCON .62 7.70 Table IV.l. Relationship between TRANSYT-7F and SOAP84 results NOTE STDEI = SOAP84 total delay. TIDEL = TRANSYT-7F total delay. SSTOP = SOAP84 total uniform stops. TSTOP = TRANSYT-7F total uniform stops. SFCON = SOAP84 total fuel consumption. TFCON'= TRANSYT-7F total fuel consumption. TRANSYT-7F generates the total gallons of fuel consumed by all vehicles based on exprimental studies. A stepwise multiple regression analysis was used which 53 resulted in the following equation : [41(291 F = kl * TT + k2 * TD + k3 t TS where ; F = gallons of fuel consumption per-hour. TT = total travel per-hour. TD = total delay. T8 = total stops. k1, k2, k3, are coefficients of regression. SOAP84 on the other hand, estimates only the total fuel consumption due to idling delays and accele- rations from stopped positions. Therefore, it would be reasonable if the estimation from SOAP84 is lower than that estimated by TRANSYT-7F. However, this will not always be the case. At node # 16 for example, [see Figure IV.3.], because of a high level of saturation, SOAP84 produces a high value of the estimation of' fuel consumption. TRANSYT-7F also poses a problem in the es- timation of fuel consumption. The calculation of the average speed which excludes the contribution of ex- ternal links will give different results for the deter- mination of total travel for intersections with various ratios of external to internal link volumes but the same total volume. The effect of the ratio of external to internal link volumes on fuel consumption estimation 54 are shown in Table IV.2. LINK VOLUHT FUEL CONS. [GZL/HF] NW :.EIIERNZL : INZERNZI :.RATIO : TWINSYT-7F : SOZPBV : R1710 : 99 43 1,921 .02 26.71 10.16 .39 - 90 206 1,999 .10 19.10 14.57 .76 92 274 1,736 .16 19.64 14.11 .72 91 411 1,962 .21 30.12 19.45 .61 67 1,221 1,564 .79 36.42 27.50 .76 97 1,410 1,545 .91 . 45.06 29.66 .66 16 2,394 693 3.49 26.45 33.23 1.26 Table IV.2. The effect of the ratio of external to internal link volumes. (IIZZLI’Jnlflfi? .FZI'PGEV .: 1?}?2LAIJCAEIUNQ9' ifllll? .Iwuuuus¢7urms (917' AFLII?JVD!JE (21’1PJEAIJCZZAIJPJFCLAI The' optimization of traffic signal settings for a particular network are determined by a given set of roadway geometrics [supply variables], and the traffic patterns [demand conditions]. If either the supply or demand changes significantly, the existing signal timings may not be optimal, and retiming signals might be desired. The most important issues addressed in the maintenance of signal timing are - level of congestion under existing traffic conditions; and - the magnitude of traffic growth in the future. In a heavily trafficked network, small increases in traffic volume might offset the benefits of signal optimization. 0n the other hand, a network consisting of light traffic might be able to accomodate the in— creasing traffic volume without significant effect. This chapter addresses the magnitude of the traffic impacts likely to be caused by the increasing traffic, and to evaluate alternative policies for managing it whenever needed. 55 56 7.1. DESCRIPTION' or rat STUDY’ $118 A network in a suburban area of the city of Cirebon, Indonesia, was selected as the case study for the following reasons — the availability of traffic signal timing data; - the possibility of facing serious traffic signal problems caused by the increasing traffic volume in the future under the existing signal timings; and - learning the beneficial impacts of signal timing optimization, by applying TRANSYT-7F directly to an Indonesian Network. This network is located near Cirebon harbor which gives a specific meaning to its traffic. The study area includes four signalized intersections, all of which are pretimed and operated in two phases. The street system operates two way traffic, which consists of one or two 10 ft width lanes in each direction. No parking is permitted on the street. The business activities in the downtown area, and the potential of new developments in the city is expected to increase the traffic volumes, which will affect the traffic pat- tern throughout the network, and could create a serious 57 level of congestion. ”abidjn Dr. 2. 000 ft +——+ street width not to scale Figure V.l. Network system of the case study For this particular network, two issues will addressed - how sensitive is the existing signal timing to the increasing traffic volumes throughout the network; and - what is the maximum level of traffic that can be accepted with signal timing opti- mization, before major design changes, and 58 other TSM measures would be considered. A simple' way to examine the network sensitivity to in- creasing traffic is to assume incremental networkwide traffic volume, then measure the performances before and after optimization, by using the TRANSYT model. 7.2. STUDY APPROACH TRANSYT-7F runs in this study were performed for two kinds of submodels - a submodel that simulates, at macro level the performance with existing signal - timings; and - an optimization submodel that seeks the - ’best’ signal settings. The ’best’ signal setting, as previously described, was chosen based on a performance index - a weighted sum of stops and delays. TRANSYT input data characterize network geometry [road sections, intersections, and the saturation flows], signal timing parameters [cycle lengths, phasings, and minimum pedestrian timings if any], and the traffic volumes. For the purpose ' of this study, traffic volumes were varied sequentialy as a proportion of the sa- 59 turation flow, 5, to the values of : .105, .205, .305, and .405, for both simulation and optimization runs. The turning traffic was assumed to be 20 percent of the total volumes, for either left or right turn flows. The direct outputs of TRANSYT include delay and stops along with. the optimized signal settings. The values of the saturation flows were determined by considering the street geometries, percentage of trucks and the turning volumes. [221 To measure the impacts .of these changes, TRANSYT system performance was con- verted into highway user costs and direct energy con- sumption. While the assumption that volumes increase uniformly throughout the network _might not be realistic for design purposes, it nevertherless provides the first cut estimation of. the impacts at a sketch planning level. An alternative way to determine. the frequency of retiming could be by monitoring traffic growth through systematic traffic counts, observe the operation of the intersections, identify the problems, and then apply the TRANSYT model to evaluate the need for installation of new timings. V. 3. RESULTS AND ANAL 751 S To code the data for TRANSYT—7F runs, an illus- tration of the link-node diagram is presented in ’ Fig. v.2. TRANSYT-7F simulation runs were first performed 60 for the existing signal timings. Traffic flows were varied in the order of : .105, .205, .305, and .405 [4031‘ [3031‘ ,I I. {407/ \ [307/ {405/ ‘1 I’ [305] [[4011V[/301] [203] 151?Z?1?JV19 .r (::> 2 node number ::'[207/ [205]‘ [...]; link number I [103/ «lg/L :\[107 it [101/ Figure V.2. Link-node diagram for the case study 61 Figure V.3. Network-wide traffic performance *-- : sinulation run 150. A-—A : optinization run T” E \\ g $ a m is \. . 100* x a N Q o h E c 5* a 3 O E 50‘ 'H e s A 0 10 20 .30 40 50 9/5 [a] total unifbrn delay vs q/5 [veh-br/br] To ta] random delay, 62 1000‘: 500 1 .__.. : sinulatjon run A-—A : optinization r 'n o .10 .20 .30 .40 .50 q/5 [b] Total randal delay vs q/S fveb-br/br] Total delay, 63 1000“ 500* .___. : sinulation run ~___‘ : optinization run [c] Total delay VS 9/ S .50 [sec/veh] _Avorage delay, 64 400* 3001 200 + 100+ .___. : silulation run a___‘ : optjnization run [d] Average delay VS 9/5 .50 10/Veb/hr] Total unifor. stops, 65 ~———o : silulatjoa run m___‘ : optilizatjon run 1500+ A 1000« 500< 0 10 20 .30 40 .50 9/5 [e] Total unifbrn stops vs q/S [gal/hr] Total fuel consumption, 66 1000‘ 500‘ ~———- : sinulation run a___¢ : optimization run [f] Total fuel consunption VS .50 9/5 [Ii/hr] Average speed, 67 -———~ : sinulation run 5.... : optinization run 30« \ \ A 20f 101 a )0 20 30 4o 9/5 [g] Average speed vs q/S 68 1000‘: .—. : sinulation run 5—... .‘ optilization run ac m .b q ‘H m u a 2 3 5004 'h L. 1) Q. o 0 10 20 30 40 .50 [11] Perfor-ance index vs 9/5 69 where S is the street saturation flow. The optimization runs then were conducted to seek the optimal signal settings for the same variation of traffic flows. The conplete outputs generated by both subnodels are presented in APPENDIX-4. Figure v.3. a, b, c, d, e, f, g, and h, illustrate the systemwide performances predicted by both submodels. The optimization run for volume variations of .105 and .205, does not significantly affect the traffic performance. However, as volumes increase to .305, the network experiences congestion problems. Some links begin to be over- saturated. For the traffic volumes of .405, the number of oversaturated links are dramatically increased and the network becomes sensitive to any additional traffic volumes. For example, an additional traffic volume from .105 to .205, would result in an increased average delay of [(16.83 - 13.42)/(13.42) t 100 x] = 25.41 x, but as the volume increases to .305, the average delay in- creases to [(103.28 - 16.83)/(16.83) * 100 X] = 513.67 X, a significant increase in terms of average delay !. The intersection performance for the existing signal timing at traffic volumes greater than or equal to .405 deteriorates rapidly, as the number of critical intersections increases rapidly. For traffic volumes of .405 all of the intersections become oversaturated. Signal timing optinization could considerably improve the 70 intersection performance as illustrated in Figure v.3. However, the benefit of optimization diminishes when the overall traffic volume increases to more than .405. Though improvements exist compared to the existing con- dition performance under similar traffic volumes, the level of service at the intersection drastically de- creases. Total stops also increase, and the optimal cycle length is relatively long. The degree of satura- tion remains above 85 X, which means the intersections would still be critical !. [31 Thus, unless such traffic growth could be avoided throughout the system, or other changes in travel behavior occured, another TSM strategy would be needed. 7.4. ENZRUY' AND COST .EKALUATTQN As was illustrated in Figure V.3., a signal ti- ming optimization would improve the network performance for increasing traffic volumes under certain values of traffic flow. If we consider the case where traffic volumes increase to .305, the delay would be reduced by [(358.03 - 54.75)/(358.03) * 100 X] = 84.71 X, Total stops would be increased by [(9104.40 - 9439.80)/(9104.40) * 100 X] = 3.68 X, while total travel time could be re- duced by [(498.51 - 195.24)/(498.51) * 100 X] = 60.84 X. Fuel consumption would be conserved by [(512.22 - 292.01) /(512.22) t 100 X] = 42.99 X, and the average speed would 71 be increased by [(11.47 - 29.3l)/(11.47) * 100 X] = 155.54 X. Furthermore if we assume that this condition occurs on- ly in ‘the afternoon peak period, a simple estimation of benefits could be illustrated in Table v.1. [11(31 By assuming that this condition would occur for two hours per day, and 300 work-days per year, then the total 'annual benefit would be U.S. $ 535,380. CONSERVATION : [5] UWTT'COST : [3] COST : - delay saved [hrs] : 303.28 2.00 606.56 - stops saved [vpb] : ~335.40 .0016 ~ .54 - fuel saved [gins] : 220.21 1.30 286.27 - [$1 TDTML 005T : 892.30/pk-br Table v.1. Benefit estimated for volumes of .305 The contribution from fuel consumption alone would account for U.S. $ 171,800. Furthermore, if we assume that the saving during the morning peak period are 75 percent of the afternoon peak, and the savings in the midday are 50 percent of those in the afternoon peak, 72 then the total annual benefit from fuel saving only could be U.S. $ 386,500.; an attactive alternative to be considered!. Similarly, for the traffic flows of .40S, the annual benefit from savings of fuel consump- tion alone would be U.S. $ 644,500. CZLZZLI’JHlEfl? AVJFJYE' (7(21VZ7151723JFCZAK57 VI. 1 . SUMMARY Total delay, stops and fuel consumption forecasted by TRANSYT-7F were compared with the results generated by SOAP84 in this study. The results for delays and stops were similar and consistent with what was expect- ed. The linear regression equations presented in table IV.1. indicate that the results were strongly correllat- ed. In the case of fuel consumption, TRANSYT-7F produced some-what higher values than those forecasted by SOAP84. This can be explained by the difference in basic computational procedure for fuel consumption in both models. TRANSYT-7F is used mainly for analyzing the signalization along an arterial street or a network. Therefore it includes the traffic flow between the nodes. SOAP84 only considers the fuel consumption at isolated intersections. One exception to these results is shown at node 16, where the total fuel consumption predicted by SOAP84 is higher than that predicted by TRANSYT-7F. This can be explained by the formulation of delay for both models, since fuel consumption is a linear function of delay. SOAP84 utilizes the Webster’s model, which overestimates delay for high values of the degree of saturation. TRANSYT-7F uses a modified Webster’s equation, and does not increase as 73 74 rapidly as the level of saturation increases. After we recognize the limitation of Webster’s model, the results from node 16 are easily understood. As the case study of the CIRBBON Network illus~ trated, TRANSYT-7F can be used for assessing the impacts caused by increasing traffic flows. Such evaluations are useful and can provide an indication of when traffic signal retiming would be warranted. Signal optimization is a low cost alternative for expediting traffic flow, reducing highway user costs and energy consumption. TRANSYT-7F offers the analyst the advantage of assessing impacts networkwide, instead of intersection by in- tersection. Several other positive features of the TRANSYT-7F program include - The traffic flow model traces flow patterns from link to link and incorporates a pla- toon model to allow one to study the effects of 'vehicular dispersion. This is particularly important where there is mixed vehicle traffic. - The versatility of the optimization process in which both offsets and splits can be ma- nipulated sequentially, and - The consideration of both uniform and random delay to traffic in a signal network, thus considering both system coordination and the 75 capacity effects. VI. 2. rm” M an opus”! Based on the experiences gained in this study, some particular problems will be addressed in using com- puter models for traffic operation analysis in future model enhancements and developments. Those are: STMNTARIZATTON’ or IE? INPUT .0414 Both models use similar input data, however each model uses different coding schemes which must be mastered by the user. This may confuse the unfamiliar users. Unnecessary effort and confusion could be reduced subs- tantially by the development of a common input data coding scheme which can be shared by several traffic signal models. PTWSONFL IRAINING More training is obviously required in the preparation of inputs and the mechanics of execution of various programs. Understanding how to interpret the output is also re- quired to ensure the potential benefits of the models. .NZINIENANCI It the resources VI. 3. TRANSFERAIILITY 01' U. S. The development lysis has recent been is natural capability of computer neficial alternatives any other strongly influence conclusion. third world However, developments, current sidered. great difference resulting from some may limit the direct In Indonesia, the beginning of the areas . wasting of greatly. world market price proven 76 to of permit. progress expect any achieved models to be for the models be one of considered. country, policy, in different this order patterns and exists where by improvement as time the U.S. the most For Indonesia, money constraints could be an to transferability motorization has adopt trends in traffic of results. such must of and EXPERIENCE TD INDONESIA in traffic operation cost attractive advanced be patterns, environmental factors, grown rapidly especially in the OPEC country, government recent years, 1970’s, Even-though Indonesia is an energy will increase the Particularly in these oil has dropped drastically, the. subsidy where 77 conservation of domestic consumption is important. The operation of mixed-traffic in the roadways, which is- uncommon in the U.S., needs specific conside- ration as well. Vehicles operate in various speeds which effects the capacity of the roadway, the smooth- ness of flow, and the pattern of traffic flows. Driver behavior, which is different from that in the U.S., could result in different traffic charac- teristic which need to be carefully studied. ‘ The fac- tors effected might be ; the average speed, the value of headway, the conversion factors into passenger car units, etc. Pedestrian behavior, government regulations, techno- logy of public transportation, communication systems, and some other factors could significantly effect the traffic patterns which need to be carefully studied. By consi- dering these kind of factors, and adjusting them wisely, the models may still be useful, and the benefit of using them can be achieved. A PPEND I CE S 78 APPENDIX—.1 TRANSYT-7F OPTIMIZATION RUN FOR STUDY CASE-I, IN MICHIGAN A VENUE, LANSING, MICHIGAN 79 o o o o o o o o o o o o o o m. o. .e maezus aoaou xmoa<==eH= seamen“ "Nu ammosmsma use sumomzommc o.N zo.m=m> «mm. .uzan v um .o2 99\.Nm ..o> .o2 ..os ..o> 2a.. 29o22. .o2 .299 .02 2:220 ....22.. 9:22. a2.29 ....22.. 9:22. =2oomm ....22.. 9:22. 9m2.. ....-..2 .«909 .92. 22.. 22.. 22o2 m22.. .mon ..92. .>92. .>92. ..92. .o2 2299 .o2 .92oo .2.2.2 ..2-..< 2a.... .2<.2<> 92<9m Nao2 ne2292. \9Nm22o 22oz .2 .o2 99\.2m ..o> .oz 99\.2m ..o> .02 ..o. ..o. 20.. 29e2m. .02 .299 .o2 Namao ....22.. 9:22. 22.29 ....22.. 9222. 2200.2 ....22.. 9:22. 9m2.. ....-..2 .<9o9 .9o2 m22.. .momm ..92. .s92. .s92. ..92. .o2 .299 .02 .92oo .z.2.:-.mnnmuuk:acewwu>-un«.m2> 9229a .;.N.o2 .22o ..92. o.92. N92. N92. .92. 292. m92. «92. N92. N92. .92. 92. ..N .92.... .o2 .299 .o2 2..=o. ......... ...... .... ......... ...... ..... ........ .92m02m2 No .momme mzo.9<2=a .2s2292. \9Nm..o mnoz .22u 22.. <92. e2.2.9 2...0292co w. m. e. N. N. .. o. m N N m m e N N . "22.2.. allmoz~xmh A<.H!\mmulllz=m "adhnh zzmu mm zonhoummm92~ IIIIIIIIIIIIIIIIII o £32 O O O O mm ON 9ONO on O. MONO O ON OON. O mm OOm 9ONm mm em OONO mm NN .ONm O mm9 OOVN O O O O mm NOO achm mm .9 .Obm O wOO. OOVN O O O O O O O O O O O NV OOv. .m .02 99\Omm .40) .02 ..OO ..O> scan OOOOO ....22.. 9:22. 92.29 ....22.. 9:22. 9200mm ....22.4 9222. 9m2.h .2AOIOHI A<909 .902 @22HA .momm .>92. .>92. .>92. .9200 .2.2.2 ONOIAA< 3°..m9 .n<.2<> <9o ..92. O.92. O92. O92. 992. O92. n92. v92. N92. N92. .92. 92. km: “amazon 0 s u s s s o s o u u o o o s s u s s u s s s s I s 0 u u o o s s s o s 0 o o . o s a s u c s Ahzmommm mo smuumv “2°HPmmazu <9 .02 99\OLm ..O> .oz 99\Omm ..o> .02 .AO> ..O> 30.2 NOMOO ....22.. 9:22. 92.29 ....22.. 9:22. Ozoumm ....22.. 9:22. 9m2.h .IOOIO.! .<909 .9OS m22.. .momm .>92. .>92. .>92. .9200 .2.2.! Ommtae< 3°..m> .n¢.2<> <9o ..92. O.92. O92. O92. 992. O92. O92. v92. N92. N92. .92. 92. man “Ann—0a . o s o o c o a c ..... n s a o ooooooooooooo u o o v . s o ...... o o s Afizmumml mo .muuwv wzo~azMFZH . <9<..2xmm.---222 OOO OOO OO9N O 2902a. 22.. n . A>92H 92<9m on .9N.OA> \9mmhuo OO9N OO9N Omh. OO9. O O 2902M. 22.. N . .>92. 92<9m mm .92.0.> \9mmhmo n OOOO 9000 mOmO .Omm .62 22.. mm mm .02 mnoz .02 maoz 9O .02 HOG: N NN .mm 2N .2. 0N .9. 2N .0. .229 .02 .2<0 02.. o NN ..N .N .0. .299 .02 .2<0 02.. \ O .f N. .NN W .299 .02 02.0 02.. 2°.9omm2m92. IIIIIIIIIIIIIIIIII O NN .NN 0N ... 2N .0. 0N .NN 2N .NN NN .9N 0N .mN 2N .mN . .299 .02 02.0 02.. o NN .VN .N .NN .299 .02 02.0 02.. 0 N. .NN mm>9 .02 O292. 20..29 .n .92. .N O90 00 090 mm. m9 ..0> .<909 v N .992. OON. oovN OON. OOVN oov. oov. 20.2 .992. .o<.2<> . 92. .22 OON. OOVN OON. oovN oov. oov. 20.. .9 .n<.2<> No .92. O O O o O mm 09 9oom O O O O O O mm oom 9oom O O O no n. mONm mm O. NONm O mom mONm mm ov MONO mm .9. .ONm O O O O O O o O o O 0 o o 0 O o o o O ..0> .02 99\Omm ..0> .02 99\omm ..0> .02 ..0> ....22.. 9:22. 02.29 ....22.. 9222. 020020 ....22.. 9:22. 902.. .l.nlo.2 . <992. .2.2.2 O22»..< <92m92. <9 .02 99\Omm ..0> .02 99\omm ..o> .02 ..0> o2.=9 ....22.. 9:22. ozoomm ....22.. 9:22. 9m2.h .2.nno.2 <902 m22.. .woum .992. .2.2.2 oun:..< <9<.~2\mmHII|2OO "OABHH ZOOO .23: mnzb 2H A>z< an .m:OO2OAEEOO oz—nanquO mxznd "v Oz< mmnoz 6 no AmzU :POOO: Ole mm9h< OOOOOOOOL NO OOH: m>OO< OOH O .Ommozcm OH ha .hOLzH m<3 v OL>F OOh OOOO <-III who: Ih .02 szg szA xzma xzna :zHA :zmq xznq az~a xzna szO ulna azna xzma name OB .oz 99\:Lm .Oo> .oz bh\Onm .40: .Oz .AO> .AO> 30am Ohozma .oz Om>h .oz mOOOO ....xzug bOmz~ OOHOF ....zzha hsmzu Ozoomm ....szO 9=L2~ memu .samuOHZ AOZ mxz—O .momm A>92H A>th O>Pz~ w>th .oz mm>h .02 .9200 .2H2H2 OmOuAAc 304AO> .O<~O<> bmo -Pz~ Oavzu mez— Okz— . 692— O92“ OHZM vezu mazu Naz~ ~P2n 92“ km: .hm.OA> .oz mm>e .oz OAOOOO ................. ....... ...... ........ ... ..... . Ahzxommk mo .mommv m20~hOOEZH \hmmhho OOOZ OO<.H2\mmHIII2OO "unhnh ZOOA Om zOHPOOmOmbzu llllllllllllllllll O i. £35 0.0n OOOu bOO~ OOO~ VOO~ NOO— Aommv A=\hmoO Ozoomm OO .. V0.000N Ov.vm O~.Ob~ VO.VVO VO.hN~ VO.~OO~ N.m~ 0.0~ O.m v.nN 0.0~ O.~N AuQ\=m>vAxg\=m>O Aau=\=m>v A=m>\ommv macaw xo< NN.O" em. NM.~ ON.O em. NN.O Ah OOO OOPo hmmn OOH OZHOO Imam>m was OOannhmO abab>wzm.v mo. mm. mm. mm.> A=\=:=m>v zoaz<= :zomuza >VA=\H!I=O>O mzuh Ah~>nh~mzmm OOO>O m.~m~ v.mN~ H.ON~ 0.0N~ 0.0NH 0.0N~ fi.VN~ N.¢N~ O.vN~ O.bN~ 0.0N~ O.bN~ ¢.bN~ 0.0N~ 0.0n~ 0.0N~ N.Nn~ 0.0n~ O.hv~ 0.0b~ N.OO~ xOOz~ mozOu OOO>O N.NON ~.NON N.NON n.OON 0.0m~ ~.OON 0.00~ 0.00~ 0.00~ n.NON N.NON b.NON O.NON O.vON N.mON n.OON O.6ON 0.00N N.m~N «.mmN n.0mN A¢=\aOA=\=m>O am>\ommv Ammmamv Acumv macaw >< gnaw mgo>o O AOOZHBBOO A<.~!\mm_inlz:2 Hubsh>mzO~ O.NN NO.~ VN. OO.~ NO.~ OO. ~O OOVa OO~ MONO HONO ON Nb. O A H. AOFb v5.5O 0.0N OO. NO. 0O. OO. OO. ON OOvH Ob - HONO b.O~ u at N~.OO Auhv V0.00~H O.m~ O0.0 OO.~ OO.b NN.ON N0.0~v OO u x<2 munN OOHO OO 50. HO H Auov ON.ON N.b v~. OO. on. NO. bO.bH O OON~ Hr OO~O bO~O OO -.N~ ~O Ou AuOv Vb.OOm 0.0~ cm.N O". ON.N . HO.h N0.00~ OO OOvN OOO 60~O OOAO OO 5N. cc O Anne V0.0 0.0 VO. OO. vO. Ofi. Om.e m OONH ON OOuO Oo—O OO OO.N~ ov O Axum OO.va 0.0 NO.N Om. ON.N On.O bN.~ON OO OOON NOO~ OO~O OO~O ON OO.H O A v AROO OO.mv~ b.OO Ov.~ an. OO.~ Ov.~ OO. ~O OOvm chm nOmO ~O~O ON OO.N O A O AabO O~.OON v.ON ON.N Om. OO.~ Om.N OO. OO OOVA hON ~O~O O.~H u Hm O~.O~ flame OO.vOO m.O V0.0 VO. OH.O OO.NH O0.0VN NO u xvv m.O O~.N HN. QO.~ O~.N OO. OO OOvN OOO bOOO OOOO NO VO. HO O Axon vv.O~ O.v 50. OO. bO. Nv. OO.N~ b OONH NO OOOO OOOO NO vN.N~ HO 5 Abe VO.~ON v.O eb.~ ON. Ov.~ ~G.O v~.ONN NO OOvN NOO OOOO OOOO vN O~.~ O A N AaOh O0.00 N.ON OO. OO. OO. OO. OO. Om Oova Add OOOO "OOO vN 90. O A N ARON Om.Oh 0.0N Ob. OO. Nb. Ob. OO. um OOoH OO nOOO O.m u an ~5.0N AROH O0.00N O.n 60.H Om. —O._ A0.0~ N~.6OO ~O u ~<8 GOO— OOOO VO NO. «N O AabN ON.O O.m NO. OO. NO. N~. Av.O v OON~ OM OOOO hOOO vO ~O.¢ VN m “av. V0.00~ v.N MO. _~. Nv. OO.m ON.OO Oe OOON OOb bOOO OOOO «O On.HN OO~ v AuO~ OO.va O.m OO. VN. uh. O0.0~ Ov.v_O ~O OOVN OOOu OOOO HOOO NN vv. O A H AxOb OO.mn e.ON em. ~O. mm. on. OO. O~ OOv— Ov ~OOO 0.0N n ma O0.0¢ AuOO V0.0va b.O— Nb.m~ v~.~ OO.N~ NO.~n ve.OOO «b. u a<2 OOON " OubO OO ”O. O A N AubO Va.Ob 0.0N OO. NO. OO. OO. OO. ON OON~ OO~ OubO OObO OH OO. O A N AROO O0.05 m.ON 60. no. VO. 50. OO. ON OONH O- OOhO OObO ~O ON. OOH O Axon O0.0 ~.O NO. OO. NO. 6n. -.O N OON~ Ou OObO bObO HO O0.0~ OO~ b AuOc V0.00N 0.0~ vO.H Ma. HO.H ~n.- OO.~nn uO OOvN OVO bObO OObO ~O nv. Ob O Aumv O0.0~ b.O OO. OO. OO. ON. OO.p v OON~ vN OOhO OObO aO O0.0~ Ob Ha ANOV V0.00V 0.0 ON.N vm. NO.N Nv.O~ Ov.OON 6O OOQN NOO . OObO OObO Om OO.b O A OH AR~O OO.vOO N.ON ON.O HO. Nb.v ON.O OO. #9 OOON Oub NObO nObO Om OO.m O A O Abe V0.000 O.~N OO.N an. eh.N OO.N OO. Ov OOON OOv HOhO 0.0N u an Nv.Om AflbO vv.NhO~ h.ON O0.0~ ON.N NO.N~ OM.ON nv.~nn OO u x1! OOhN NubO NO mn.n Ob N Anne OV.OO 0.0 cm. OO. an. O~.N ON.vO On OONn QOH NHbO OObO on MO.~ O A N AuOb OO.bO v.~N Oh. VO. up. Oh. OO. um OONn ONu OObO hObO NO Oh.O~ Ob NH Aaem ON.bO¢ O.NN OO.m OO.~ OO.N OH.O Ob.NO~ OO OON~ NOO bOhO OOhO NO bn.~ ON a au~m O0.00 O.b Om. OO. hm. OO. O~.h~ ON OON~ ~O~ OObO OObO NO Nb.v ON O AXNO O0.00~ v.O Nv.~ O". NO.“ vo.m mm.bO Ov OOvN NOO OONO HObO en ~N.N~ O A VN AOOO Vb.~OO 0.0n flv.O OO.~ OO.b Av.O OO. OO OObO OOO— uObO ". 87 Ommem no OOU>O OZOOOO OO IIIOOZNZAF aczcum O<.~2\OO~3II2OO "hhlh>mzOOF2H ho hmOOEZH z< ho um Zuahnk maaox mazuao . a > a " mm>s g<>mmaz~c N _ "Auzmv emaz~o m ~ ~ " manta: a<>=mpz~° V‘UMIW >' .AOmth no hmo :msm>mc mzo azoomm um ---mozazua a<.~:\mm_-uuz=m unusa>mzv A=m>\ommv A=\=-=m>v A=\=-=m>v Aaxsuzuav Au\=-=m>v Auxuxuxm>v amazn xamzoo macaw ><=a ammmm muz<4ma :onz< gmv 88 Ommhm me OOU>O Ozoomm OO )- Q'lfllfl nOOO > N Vb nN Ou n r OO O c N .u ~O OOOO hOOO OOOO > u O\OO~ OO OO H .UOO Ob u hOOthO " u:~>ot m::_aa " mama ammatna IIIOOzmzme 4<20~O O<.H!\OOHIIIZOO "hhlb>mz. vaO VQIOIO ’- OnhO OObO OOFO "OhO > N OO On —m n OObO uObO OO On On 08'“). NVIDD >' O O .a pm OOhO bObO OONO OObO a a O\OO~ GO 50 ~ .u OO NmbO hObO OObO OObO a\aa# mm a. .OOO NO u humuhOO ” otuaOt m::~ao u amae amammazna H3...: amO Ozoomm OO IJIOOZHITF A<.H!\OOHIIIZOO nhb|h>mz OONO 304k xC Ozoomm OO .OAgOA<2OOZV OOOOO h<flh OA<>HOO< A O I < O O < H O "n m A a b O m L OO. 3 O A h xmaz~ u r ON“OOObOOvONnOOObOOvONuOOOhOOvONAOOOhOOGNNH III+ IIIIIIIII + IIIIIIIII + lllllllll + IIIIIIII OOOOO-HuuuuununuunnuuunuHNHOOOOOOOOOOOOOOO OOOOO----~HumanMNHNMANMHOOOOOOOOOOOOOOO OOOOOHHNHHHHHHHNHHNHH~HHHHHHOOOOOOOOOOOOOOO OOOOOHNHHMHHHNAnmnnmunmMANHHOOOOOOOOOOOOOOO OOOOOHHNHHHHHHHuHunHHHH-~HHOOOOOOOOOOOOOOO OOOOO~HunmannnHHHHmamamannnmooooooooooooooo OOOOO~HumannmnnumnuuuHNHHNMHOOOOOOOOOOOOOOO OOOOO-~HHH-mHananHHHHHOMHNOOOOOOOOOOOOOOO OOOOONHHHOHHHHHananOHH~HHNHHOOOOOOOOOOOOOOO OOOOO OOOOOOOOO OOOOO OOOOOOOOO OOOOO OOOOOOOOO OOOOO OOOOOOOOO OOOOO OOOOOOOOO OOOOO OOOOOOOOO OOOOO OOOOOOOO OOOOO .OOOOOOOO OOOOO OOOOOOOO OOOOO OOOOOOOO OOOOO OOOOOOOO OOOOO OOOOOOOO OOOOO . OOOOOOOO OOOOO OOOOOOOO mmmmm OOOOOOOO .Hgm O\=O> OObN Ice“ x42 . OOO~ =z~u .OOOOOOHZOO OOPOC! MOP Oh ONFOOHO< .OOOIOOOBOL .ZOOOO zO OOOOBOHOO< HWO+ I P > O z < O h v O «Inmuzuzne O<.H2\OO_IIIZOO uhhlh>mz~homhhm OZHA mas Oh :hmmth: OOH .OOO Oz< szOO m>upomhhm OZOIO Smm>m OOO<2 x+cv OOOP OO¢~ 30:: x OOvu scam ac: HOOO mama O no mao>o Ozoomm OO sllmozHZNB u<.H:\mmHunnZOO “h5us>mz OOON 30:5 x OOON toga x oaea mama m aava :oaa amt . moNa azmn a ON~OOO>OOQNN~OOObOOemN~OOObOOvON~OOObOOVONH lil+l|llillll+ lllllllll + lllllllll +|||I|llll HHHHNHHHHuH—Hunnmmmnnnun“uncooooooooonnunun ~HH-HHH-HHH~HHMHHH~HH--OOOOOOOOOO~HH-H ONOOOObOOvNN~OOObOOvnNNOOObOOvnNaOOOhOOvnNu III+II:IIIIII+II||IIIII+IIIIIIIII+II IIIIIII OununuuumunnunnuuuuunnunununuumuHOOOOOOOOOO OnmmnnHhumannHannanunnnnmnnnnunanOOOOOOOOO 93 OO. NNuOOObOOVONmOOObOOvON~OOObOOVONaOOObOOvONA 111+ IIIIIIIII + IIIIIIII 1+ lllllllll + IIIIIIIII Humnuuuoooooocoooooooooooom Humannuuuuuuumu m nunumOOOOOOOOOOOOOOOOOOOn -~HOOOOOOOOOOOOOOOOOOO~ MNHOOOOOOOOCOOOOOOOOOO~ nuOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOO xuozu .egm mmmbm Ov O\=O> OOQN OAU>O OZOOOO OO mmm mmm IOAL ad! nunnnnnnnunu ~H-H-~H~ FOO: azu: OO. mezu NNNOOObOOVNNuOOObOOVNN~OOOhOOvnNNOOOhOOVON: 111+ lllllllll +111111111+ IIIIIIIII + lllllllll mannanuOOOOOOOOOOOOOOOOOOOHHHnmuumuumumunun nnuuunuooooooooooooooooooo~nHannan-~n-~n~ magnumnOOOOOOOOOOOOOOOOOOOHHH-~H---HHH~ nunnmnnOOOOOOOOOOOOOOOOOOOHwan“Hunumnuunnnn nuHunmuooooooooooooooooooouuunuuunmuuununuu mannaumooooooooooooooooooo~nn~H--m-~n-~ muuuunHOOOOOOOOOOOOOOOOOOONHaununununuuuunu annummnooooooooooooooooooonnuuHunnunanmunmu .ham OOOOOOOOOOOOO OOOOOOOOOOOOO OOOOOOOOOOOOO OOOOOOOOOOOOO OOOOOOOOOOOO OOOOOOOOOOOO OOOOOOOOOOOO OOOOOOOOOOOO OOOOOOOOOOOO OOOOOOOOOOOO OOOOOOOOOOOO OOOOOOOOOOOO OOOOOOOOOOOO OOOOOOOOOOOO OOOOOOOOOOOO OOOOOOOOOOOO :\:O> OOVN SOON x<2 OOO— nan: O 111OOz~x~h 4<20Hm A<~OOHO< NOE mom ZOO zo~h<.~:\OO_1112:O uu>1h>mzOO9NN~ 111+ 111111111 + 111111111 + 111111111 + 111111111 OOOOOOOOOO--------u-~OOOOOOOOOOOOO OOOOOOOOOOunumununuumununuu-~OOOOOOOOOOOOO ooaaoaaaoonnn ananmammamm—nooooooooaaoaa ooaaaoaooannnnnnn manna—nannooooooaoooaoo oaoaaaooaonan nannnnnnnnaooooooaooaoa oaoaaooooonnnnnnn nnnnnnnoooooooaooaoo aoaaaoaoaona annnnnnnooaaooaoooaao aoooaooooannnnnan mananoooooooaoaooa aooaaoammm n annnnnnoaaooaoaoaaoo aaaoaooooannnnnnn nanooooaooooaooo oaaaoommmm nannnoooooooaooaao oooooooamonmnann anoooaooaaooooo aaaaommmmm annnooooo coco oaoaoommmmnnnnnn noooaooooooaoo oaoammmmmm anaoo oao ooaaomammamnnnnn aooo oaaoooao oaa amamma o ooaammmmmm manna aao oaoaoooo aa mammm . , aoaammmamm Nam a - ooooooo mammm oammammamm man oooaaoo mammm mammmmamm an oooaoa mammm mmmmmmmmm a ooao mammm mmmmmmma . mammm mamaamam mammm mamaamam mammm mmmmmmmm mammm mamaamam mammm mmmmmmmm mammm mammmmmm mammm mmmmmmmm mammm mmmmmamm mammm mamaamam .anm N\:aa aavN mama m aaoN mama ant mama aznm O uhb1h>Oz OOQN 30am xCI bONO Ola: ~O. xmazu .BAL I\OO> OOQN 30am xU OZOUOO OO IIIOOznxuh A<.~!\OO_1112:: ONAOOObOOvnN—OOObOOvON:OOObOOQONuOOObOOVON: ONuOOObOOQONAOOOhOOvONnOOObOOVONnOOObOOQONA 111+ 111111111 + 111111111 + 111111111 + 111111111 111+ 111111111 + 111111111 + 111111111 + 111111111 HHmHOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOHmamaamam HAHHOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOnnun—nwuu nHHnOOOOOOOOOOOOOOOOOOOOOOOOO OOO---H~ nunuOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOHMn-n~n~ anHOOOOOOOOOOOOOOOOOOOOOOOOO mmm mama—n uanHOOOOOOOOOOOOOOOOOOOOOOOOOOOOmO Hnmunnuu mOOOOOOOOOOOOO OOOOOOOOOOO Om ~H~nn aHmHOOOOOOOOOOOOOOOOOOOOOOOOOOOOOm mammm OOOOOOOOOOOOO OOOOOOOOOO mm Human aHHaOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO an OOOOOOOOOOO OOOOOOOOO Om ~ HHnHOOOOOOOOOOOOOOOQOOOOOOOOOOOOOO 0000000000 000000000 Om HmHOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO COOOOOOOO OOOOOOOOO Om HOOOOOOOOOOOOOOOOOOOOOOOOOO OOO OOOOOOOO OOOOOOOO mm OOOOOOOOOOOOOOOOOOOOOOOO mmm OOOOOOO OOOOOOOO mm OOOOOOOOOOOOOOOOOOOOOOO mmm OOOOOO OOOOOOO mm OOOOOOOOOOOOOOOOOOOOO MOO OOOOO OOOOOO mm OOOOOOOOOOOOOOOOOOOO mmm 0000 000000 Ow OOOOOOOOOOOOOOOOOOO mmm 000 000000 Om OOOOOOOOOOOOOOO OOO 0 000000 mm OOOOOOOOOOOOO OOO OOOOO Om OOOOOOOOOO mmm OOOO mm 006 mmm 0000 mm OOO 0000 mm mmm 000 mm OOO OOO Om OOO 00 mm mmm . 00 mm mm mm mm VO. mez~ .BOL O\=m> OOVN IOAO x<2 hOOO lz—O Ov. XOOZH .Fam O\=O> OOQN 3045 x<2 OOOO OZuA uhb1h>mzcmk~ 111‘ 96 OO. NO. .OOOOOOOOO OOOOOOOOOOOOOOOOOOO mammm . HuHHOOOO OOOOOOOOO OOOOOOOOOOOOOOOOOO OOOOO -HOOOO OOOOOOOOO O OOOOOOOOOOOOOO OmOOO "HHOOOO OOOOOOOOO OOOOOOOOOOO OOOOO mm OOOOOOOOO OOOOOOO OOOOO OOOOOOOOO .OOOOO mmmmm OOOOOOOOO OOOO OOOOO OOOOOOOOO O OOOOO OOOOOOOOO mammm OOOOOOOOO OOOOO OOOOOOOOO OOOOO OOOOOOOOO OOOOO OOOOOOOOO OOOOO OOOOOOOOO OOOO Ommwmmmm Ommm XOOZM .kam =\=O> OOQN 30A: x OOvN toga aO Ozoomm OO 111OO2~2~9 O<.~!\OOH1112:O "u519>mzOOQON~ NNHOOOFOOQONHOOOhOOVON~OOObOOvON~OOO>OOvnN~ 111+ 111111111 + 111111111 + 111111111 + 111111111 111+ 111111111 + 111111111 + 111111111 + 111111111 H-OOOOOOOOOOOO OOOOOOOOOOOO--~HHHH-~ nuuOOOOOOOOOOOOOOOOOOOOOOOOOOOOaunnunamnmnn HHOOOOOOOOOOOOO OOOOOOOOOHHOOOH~H~HO HHHOOOOOOOOOOOOOOOOOOOOOOOOOOOOhamamma:mama nnHOOOOOOOOOOOO OOOOOOOO--~HH~H-H anOOOOOOOOOOOOOOOOOOOOOOOOOmOmm nmnnmmhunnu HHHOOOOOOOOOOOO meoooooummumnuuuuuu nuHOOOOOOOOOOOOOOOOOOOOOOOOOmmm Huuuunnnmn HH~OOOOOOOOOOOO OOOOOOOONMOHHHNHHHHH HmHOOOOOOOOOOOOOOOOOOOOOOOOOOmO -H~H~H~ NHHOOOOOOOOOOO memwoooumumuuunmnun uHaOOOOOOOOOOOOOOOOOOOOOOOOOmOm Huuuuuu HMHOOOOOOOOOOO OOOOOOOO-H----~ HnHOOOOOOOOOOOOOOOOOOOOOOOOmmmO nunn MHOOOOOOOOOOOO OOOOOOOO—-~H-HHHH~ anHOOOOOOOOOOOOOOOOOOOOOOOOOOOO unuu Nauooooooooooo OOOOOOOO ummnmm mHnOOOOOOOOOOOOOOOOOOOOOOOOOOOO nan NHHOOOOOOOOOO OOOOOOOO H umuOOOOOOOOOOOOOOOOOOOOOOOmmmOO mun -OOOOOOOOOO OOOOOOOO ~—nOOOOOOOOOOOOOOOOOOOOOOOOmOOO Hun HOOOOOOOOO OOOOOOOO HuHOOOOOOOOOOOOOOOOOOOOOOOOOOOO . mm OOOOOOOOO OOOOOOO unuOOOOOOOOOOOOOOOOOOOOOOOOOOO _ an OOOOOOO . OOOOOOO HHHOOOOOOOOO - .OO OOOOOOOOO ,..-- I an OOOOOO OOOOOOO ”HHOOOOOOO OOOOOOOO H OOOOO OOOOOOO O OOOOOO OOO OOOOOOO O OOOOOO OO OOOOOOO O OOOOOO O OOOOOO OOOOOO OOOOOO OOOOOO OOOOOO OOOOOO OOOOOO OOOOOO OOOOOO OOOOOO OOOOOO OOOOOO NOOZM .ham =\:O> OOVN 3OAh x OOVN 300h x<2 OOnO sang NN~OOO>OO¢NN~OOOhOOVNN~OOO>OOVON~OOO§OO¢ONm 111+ 111111111 + 111111111 + 111111111 + 111111111 OOOOOOOOOOOOOOOOOOOOOOOOOHHunmannhunnnuOOOO OOOOOOOOOOOOOOOOOOOOOOOOOHHunununuumunuoooc OOOOOOOOOOOOOOOOOOOOOOOOOnnunnnunnunnnnoooo OOOOOOOOOOOOOOOOOOOOOOOOOuHnmuuuununu~HOOOO OOOOOOOOOOOOOOOOOOOOOOOOOnnannnnannmnnnoooo OOOOOOOOOOOOOOOOOOOOOOOOOHHmHHHHHNNHN:nOOOO OOoOOOOOOOOOOOOOOOOOOOOOOnHunmunnunm-~OOOO OOOOOOOOOOOOOOOOOOOOOOOOOHamamma“:H~HOHOOOO OOOOOOOOOOOOOOOOOOOOOOOOOnH~HHHH-~ununoooo MNmoOOhOOQNNHOOOhOOvNNAOOObOO¢ON~OOObOO¢MN~ 111+ 111111111 + 111111111 + 111111111 + 111111111 oooooooooooooOOOOOOOOOOOOnHunnnnnnmnnmnoooo OOOOOOOOOOOOOOOOOOOOOOOOOmHumHuunumnmuHOOOO oooooooooooooooooooooOOOO~unuHHNHHunnnuoooo OOOOOOOOOOOOOOOOOOOOOOOOOumununnunmuuuuoooo OOOOOOOOOOOOOOOOOOOOOOmmm ununnnhnnnnnoooo OOOOOOOOOOOOOOOOOOOOOOOOO munnuununmuoooo OOOOOOOOOOOOOOOOOOOOOOOOO unnmnoooo OOOOOOOOOOOOOOOOOOO OOOOO nun—HOOOO OOOOOOOOOOOOOOOOOOO OOOOO NHHHOOOO 97 OLOPO me bOOO OOOO m: O2< 230: OLOBO me OOOHO Ov OOO>O Ozoomm OO hO~O OO—O &: O2< 23o: OOU>O OZOUOO OO mau>o OZOOOO OO 111O02~znk A<20~O A<.m!\OO_1112:: “mb1h>O2<:sH maNa maNa maan mann mamn mama mama mamm mama mama am ANm ma at: :maa ma at: 23am ma at: :maa ma azn :maa ma a:< :maa ammm .a: :anmonmna mn a:nm<:mamnn manna azna ammo a:na am<.~!\OO_1112:: nmh1b>O2~kUOth :2ma OOP Oh :hOOhuO: OOH .OOOIOOOFOh .:<:PO< e02 .Om: O2< ZOOOO O>~hUOuLO OIOOO I<:O<~O OOHOOOO BOO: OOH "OPOZO .OOOPO no Ohuz: 2n OA<.H!\OO_1L12:: ”ub1h>O2<:b~ 98 .OOO no :2: 111 who: Z<:OO:L 111O a a a a a a a a a a a a a a an Amm ammm .a: ammo :onmnzatmmm amaa aznaa amamm no mammm azooam ma ---mozntnm a<:anm mammamm< amm moa :am zanmnmatnmmo111Haataxammxaan.nt\am_11-:am ummmmmznm: azanmaamna amon :n aam mmm :onmaamma ma tn :aama 111 Ama:~\ma:mn m m L L :40 mO> Olms .02 O20009003 O2000BOOI .a::g O2:OO:9:02 N .O2 92OZO>OI .OOOH O2:OO:8:02 m .O2 82:2000! usmmxm OH 902 OOZOOO< OO< O92OEO>OI 52mIOAAO: OOH "02m2:<3 nu» HZOSSOO 40: BO: AOO BOO mOO BOO an: 9:: O < Om O:hmOn O " O.N N.N O.N N.N O.N N.N O.N N.N O.v ><80< m2 ON OO OOhm OOOm 2mOOOu O n 1111111111111111 ++++1++++1111 1111 1111 1111 1111 1111 1111 1111 1111 1 11111111 "1111 hzmxtoo HO! ROI AOO 90: :OO hOO OO2 9:2 O < OH OOOO .02 O O O O E O m 2 m L < O O mamaammammmmmmumnmmmammammnmammmmma«a.»an:an».a...a...«an.aan»an.»ama»«aamammm».mammammmmmmmmummmummummmmmummmmmmmmnmummmmmnmmmm nmNauNaN Aaaaa "mamzaa aa m < 2 < O 2 O m B < O O L O A < 2 O H O OOOm .mzam. "mmO a:m2m NOO: 0.0v Any Au: Au: Au: Au: O O: O :m v O: O O: N O: O z m n mm a mm a an N am N ma O O 2 O O O O O xxx: xxxx m :m .O:O ... Ohoz nun h:m2m O02m2ma 0.0 O.v I'|l|'ll""‘l'"l'-'-I'|"||ll"'-"'l|l"I'II"|I|'I""'I'||'|"' O490h Om\ OOO
    zoaaomaoaa oaa zaxaa< a: aaaom max mmmcma :xm m\z a aa m azacnhmml az=0nhw¢m Aneummm m9=2ut am away .amO . .hhuq az=On=h=0u .hhma GZDOmaamoz "hmuxm OH 902 nmzamm< mud mhzmtm>ox am: but dam ham dam saw a 1111111111111111 ++++1++++1111 1111 1111 1111 1111 111 "2:: vmm< m! A m 0 < I D < L an: N N H N N new VN Non GNQ N.N m.N N.N O.N N.N a ma ON on an: Ana hum Adm ham m n m > A < z < w v N .02 hzm2m>02 .0: hzmxm>02 .o .c .c .o comm A m Lo\mma moamommoma camo . .ahmu azacahmcm .hhma azaonnhacw .amah nz=ONNB=Om .hhma azaonmhmoz NM'@ .02 hzulu>02 .Oz hzmxu>OS .Oz HZMIM>OI .0: hamlmacl .. use: and "hmnxu OH 902 amtamw< mm< muzmtmbcl clutoAAOh nah "oszm<3 Q.» .11 .1 P'...‘ """"""""" -++*+'+‘1+*Iunlrl far-ll" I---‘ |."‘1 Ir"! -.Iloll'l ""1-lll)lm 1----.u1- . ‘i:|u~ "It' ill... a.N 0 «oz: h< .u>< a! mN cm N.N a.N on ma NN Gama am cantmh" on — comm no aom~ N.N o.v a coma on car" coma hzmztoo an: an: dam ham dam ham an: an: a “z: vmmhnoa u moamma m ma n ma m ma m ma .N ma a ma maomo aaam mmm aa< o\> mammamm mama .am amma .am mammm maamm "mamma< a: acmom ma\ mmmama m\m m\z a02 N .02 hzmzm>02 "human 09 so: antamm< mm< MHZNZN>08 02H30AAOh NIB " azmxzou am! an! emu ham dam ham a 1111111111111111 ++++1++++1111 1111 1111 1111 1111 111 2:: vmm<0m Nmzz Nmzz h< .m>< n2 hzmzxoo an: . 1111111111111111 ++++1++++1111 1111 1111 1111 1111 111 an: an: N Am mN com“ A comm mb coma a.N N.N o.v mm a coma coma oamn en: ha: a .. “902 in» ‘ Gauzudt an» d an am<0 .08 n lam" av mozmaomm" we 00 canine" no human v¢ 00>Pn0u NV ><30 m mama: nz=0n9m m1 az=0nnh=0m 0 30> NZHH .0: nz=0n29m02 Bowman mommo mm... m. mama 0 < m m a m r A < z < m z 0 a h < I u m 0 A < z 0 H w v 107 ”hmmxm 0h 90: nmxamm< 33¢ whzmlu>08 .0m<0 canlnh .Bbma azaonnaaom .hhmn azaonnamcz v N 80mm nuh0m200 nhozma uao>0 . .0: azutm>08 .02 hzm2m>0! .. who: nun OIHIOAHON was ”Gluzmdl Qua mmmxxoo am: mmm amm mmm amm mmm amm mm: m a ma mmao .am 1 u 1111111111111111 ++++1++++1111 1111 1111 1111 1111 1111 1111 1111 111111 11111111 "1111 ...... “mmm omaaom ammz a mmm“ mm a m m mommmamm“ on H mm mN coma om omaxama em a N N mama" No a a a N a a coma ommmaoaaao" Nm N am mom NN Nmoa vma mNN mama mm mzmaoau an a N.N N.N N.N N.N a.N N.N N.N N.N o.v mammamm“ an a o mm mm a coma om aommzoo“ av N ammm ma .m>< a: mN mm mama coma mammm“ me a 1111111111111111 ++++1++++1111 1111 1111 1111 1111 1111 1111 1111 1111 1 11111111 "1111 mmmsxoo am: mmm amm mmm amm mmm amm mmm m < ma ammo .om .mmmm mmm mm mmama mmm: mammamm on. N.aa o. aa.va N.Nm mm.m " mma " moamma m ma n mm a ma N ma N ma a ma maomo aaam mmm aa< oxa xmzaaax mama .am amma .am Naomm ma 0<0 00> 0<0 00> 0<0 00> 0209 .02 020009002 020009m<0 0200009000 0200009002 000000 .00<0 020209 2000 00900200 090200 macro ... 0902 an» .9000 0200009000 .9000 0200009002 "900x0 09 902 0020mm< 02¢ m92020>02 9202200 003 902 000 900 000 900 a 111111111111 1111++++1++++1111 1111 1111 1111 1111 1111 200 000000 0022 a 9 9 n N N a H N n N 0 " ON 000 N0 N00 000 " a.N N.N m.N N.N 0.N N.N " . 0 00 a 0022 9< .0>< 02 0N 00 a 1111111111111111 ++++1++++1111 1111 1111 1111 1111 1111 9202200 002 902 000 900 000 900 A 0 0 < 0 0 < 0 m H m 9 A < 2 < v .02 92020>02 N .02 92020>02 020200000 009 "02020<2 uni amm mmm m a ma mmao mom a mmm".mm mommmammu cm Nm «N mama om mmamama Nm mama“ Nm a coma ommmaoaaao“ am mm mama om mmmaoaa om muN N.N m.v mammamm“ mm mm a mama mm aommmoo" mm coma coma mammm“ mm 002 902 0 < 00 00<0 .02 2 0 H 9 < 0 0 0 0 0 0 2.0 H 0 v lfllO +++ 000 0009 020000 00009200020 000000 02 "0302 0000 +++ +++ mom aaom ac mmm +++ “ 020” 00 n 1111111111111111 ++++1++++1111 1111 1111 1111 1111 1111 1111 1111 1111 1 11111111"1111 9202200 002 902 000 900 000 900 002 902 0 ¢ 00 00¢0 .02 .0000 029 90 90020 0002 0020209 vv. 0.00 0. 90.V0 0.00 99.0 " 90¢2200 0.N9 0.9N "0.00 0 0. vv. 0.00 0. 90.00 0.00 99.0 u009010000 any Any 000 A00 A00. 000 00000 .02 00000 009¢0 00000 A00>0 00¢00 any 0000100>v " 000000 0 20 m 00 v 00 0 00 N 00 0 00 00090 0¢00 000 00¢ 0\> 20200¢2 9000 .00 0000 .00 00090 >¢000 H000>0¢2¢ 0 2 0 2 0 9 0 ¢ 2 0 0 0 0 0 0 2 0 > 0 9 0 0 0 0 0 0 0 0 0 0 0 0 ¢ 0 2 0000 0.N 0202 90. q. 0. 0N. 0.00 00. a 9000 0000 NV. N.00 00.0 0.00 09.0 a 0009 02 0002 0.N 0202 90. 0.0 0. 00. N.N0 00. a 9000 2200 00. 0.00 00.0 0.00 90.0 . 0009 00 0202 0N. N.N 0v.0 m.Nm 90. a 0009 00 0000 0N. 0.0 0N.0 0.00 09. a 0009 02 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 11111111111111111111111111111111 0 00 m 00 v 20 0 20 N 00 0 00 0>0\20> 2009009000 009<0 00000 A00>0 A0¢00 0&0 0000120>0 u092020>02 92029<009 2009 9000 0\> 20200¢2 9000 000 0000 000 00090 >¢000 0 0 2 0 0 0 0 0 0 0 0 2 0 > 0 9 0 0 0 0 0 0 0 0 0 0 0 0 ¢ 0 2 90020 0020209 0.0 0.0 N 9 9 0 00209000 200 000¢00 0022 "0 0022 9¢ .0>¢ 02 0¢909 00\ 000¢00 2\0 0\2 0¢00 0099 00909 02¢ .02 200 02¢2 200900000920 0209 9000 00200000 0000009200 >0¢2200 2009¢00¢>0 02¢ 200000 A 0 0 ¢ 0 0 ¢ 0 0 0 0 9 0 ¢ 2 ¢ 0 2 0 0 9 ¢ 0 0 0 0 0 ¢ 2 0 0 0 v REGRESSION ANALYSIS - PROGRAM IN BASIC 111 1312 1 REM [SS/RECR-AN.BAS/CN99/APPENDIx-3] 2 REM BUI 03-86 3 REM ‘ 4 REM VARIABLES 5 REM B(I) ESTIMATED COEFFICIENTS 6 REM B1 ESTIMATED CONSTANT 7 REM C(I,J) MULTIPLE CORRELATION COEFFICIENTS 8 REM E SUM SQUARE OF ERRORS 9 REM F FISHER TEST 10 REM M TOTAL NUMBER OF VARIABLES 11 REM N NUMBER OF PERIODS OF OBSERVATION 12 REM R(I) »RESIDUAL VALUES 13 REM R2 CORRELATION COEFFICIENT 14 REM S(I,J) VARIANCE-COVARIANCE MATRIX 15 REM V(I) VECTOR OF STANDARD ESTIMATED ERRORS 16 REM X(I,J) MATRIX OF INPUT VALUES 17 REM 2(1) ESTIMATED Y-VALUES 18 REM 19 REM 20 PRINT : PRINT : PRINT 30 PRINT "MULTIPLE LINEAR REGRESSION" 40 pRINT Itiiiit*fititttfittttttttittt” 50 PRINT : PRINT : PRINT 60 INPUT "NUMBER OF VARIABLES? "1H: PRINT 7o INPUT ”NUMBER OF OBSERVATIONS? ":N: PRINT Bo DIN AS(H),X(N,N),X1(M),S(N,H),82(N,H),s3(fl,n) 90 DIM B(M),Y(N),R(N),V(N),C(N,N) 100 FOR I-I TO N: PRINT "NAME OF VARIABLE i":I:" ": 110 INPUT A$(I): NEXT I: PRINT 120 FOR I-1 TO M 130 PRINT "DATA GATHERED FOR VARIABLE ”:A$(I):":" 140 FOR J-1 To N 150 PRINT"- OBSERVATION 6'1J: TAB( 14): 160 INPUT X(I,J) 170 NEXT J 180 PRINT 190 NEXT I 200 REM MEAN, STANDARD DEVIATION. 210 FOR I-1 To n:T-0:FOR J-I TO N 220 T-T+X(I,J) 230 NEXT J 240 X1(I)=T/N 250 NEXT I 260 FOR I-I TO H:FOR K-l TO M 270 81-0 280 FOR J-l TO N 290 81-81 + (X(I,J) - X1(I)) * (X(K,J) - X1(K)) 300 NEXT J 310 S(I,K)-81/(N-1) 320 S(K,I)-S(I,K) 330 NEXT X,I 340 Nl-H-l 350 FOR J-l T0 N1: FOR K-l TO M1:SZ(J,K)=S(J+1,K+1): NEXT K,J 360 FOR I-I TO H1: FOR J-l T0 N1 370 IF I< >J GOTO 400 380 83(I,J)-1 39o GOTO 410 400 S3(I,J)-O 410 NEXT J,I 420 60808 1330 1313 430 REM CALCULATE THE COEFFICIENTS 3(1) 440 FOR I-I TO M1 450 B(I)-o 460 FOR J-1 TO El 470 B(I)-B(I)+S(1,J+1)*82(J,I) 480 NEXT J,I 490 81-0 500 FOR I-1 TO X1:Bl-81+X1(I+1)*B(I):NEXT I 510 Bl-X1(1)-Bl 520 REX R2, ESTIMATIONS, SEE, F-TEST, CORRELATION 530 S3-0 540 FOR I-l TO N: Y(I)-o 550 FOR J-2 TO M: Y(I)-X(I)+B(J-1)*X(J,I): NEXT J 560 Y(I)-Y(I)+BI 570 R(I)-X(1,I)-Y(I) 580 S3-S3+R(I)*2 590 NEXT I 600 8(1,1)-(N-1)*S(1,1) 610 R2-(S(1,1)-S3)/S(1,1) 620 IF R2-1 GOTO 640 630 F-(RZ/H1)/((1-R2)/(N-H)) 640 E-SQR(s3/(N-X)) 650 FOR J-1 TO X1 660 V(J)-E*SQR(82(J,J)/(N-1)) 670 NEXT J 680 S(1,1)-S(1,1)/(N-1) 690 C(1,1)-1 700 FOR J-z TO K 710 C(J,J)-1 720 Jl-J-l 730 FOR I-1 TO J1 740 C(I,J)-S(I,J)/SQR(S(I,I)*S(J,J)) 750 C(J,I)-C(I,J) 760 NEXT I,J 770 FOR I-l TO M 780 S(I,I)-SQR (S(I,I)) 790 NEXT I 800 REM OUTPUT 810 PRINT : PRINT : PRINT 820 PRINT "CORRELATION MATRIX" 330 p31”? "fitttfittiitttttiiii" 840 FOR I-1 To M: FOR J-1 TO M 850 IF IX THEN 1420 PP-Sz(X,X) FOR J-1 TO M1 S2(X,J)-52(X,J)/PP 83(K,J)-83(X,J)/PP NEXT J IF I-X GOTO 1470 PP-SZ(I,K) FOR J-l TO M1 82(I,J)-82(I,J)-52(K,J)*PP 83(I,J)-S3(I,J)-83(K,J)*PP NEXT J NEXT I NEXT X FOR I-I TO M1: FOR J-l To M1: 52(I,J)=S3(I,J): NEXT J,I RETURN ": FN A(R2) FN A(SQR(R2)) APPENDIX-4 TRANSYT- 7F SIMULATION RUNS FOR THE S TUB Y CASE-I I , IN CIRKBON, INDONESIA 115 116 Natl : - Simulation runs were established for traffic volune variation of .105; .205; .305; and .405. - A set of output is presented for traffic - volune of .305. - Only the system-wide performances are presented for traffic volunes of .105; .208; and .405. 117 o o zuzam ongozm onamm mm ma O.N zohwmm> o o o o o o a o o o o H a" Av apozma moeoa .oz maonzms Swan :uam>m Sczmmsxu swamSm mmozm o o o o a o o o o v m N A N Am mm>e .oz amumzhaao an o» muaoz no sang aco\mmmem om no zazaxon< masozma mao>o moa aama >9So mm>a .oz. novomm nocmma a<~a~z~ aaasao Roam zumzo smog Luau anew mao>o ~ mom as_mmm>~z= zmpzuo sommoa<=om .cz Ne\cmm .Nc> .cz aaxcmm .NON .cz .Nca .Nc> :cNu xaosz .cz NNNN .cz mcmco ....nzNN acmzN cmNma ....NzNN NamzN czccmm ....NzNN ecmzN NNNNN .uNcucN: N Ncc Ncx mszN .mcmm NNNzN N>NzN N>N2N N>NzN .cz NNNN .cz .Nzcc .zNzN: cmN-NN< :cNNN> .NcNm<> ezmmazN may no :cm map + . .... 0222:; +++ mam +++o c c c c c c N m mN N m oN N cN N NN NNN NNc>c NNNzN cNazN mNzN NNzN NezN chN nszN chN NazN NNzN NNzN azN Nam .NN.cN> .cz NNNN .cz Nchcc .................. ..... ........................ Nazmcmmm No .mcmmc mchacmcc N<>NmNzN \Nmmuhc mccz cm .oz NNchm .Nc> .cz Na\ccm .Nc> .oz .Nc> .Nc> :cNN .zaozuN .cz NNNN .cz mcmco ....NzNN NchN cmNze ....szN ecczN czccmm ....NzNN NchN NNNNN .NNN-cN: NN2N N>N2N NSNzN .cz NNNN .cz .Nzcc .zNzN: cumuNN< chNN> .NcNN<> Nacam mccz cmmmazN map No :cm use + . + cam—:33 +++ mnn +++o c c c c c c N m mN N m oN N c N NN Nm NNONO NNNzN cNazN mNzN mNzN NazN chN opzN vszN NazN NNzN NezN azN nun .NN.cN> .cz NNNN .c: Nchcc ............................................... Nezmcmmm mo .mommc mchuNmNzN \Nmmunc Nccz cmh .oz a= mom H<20Hm othmeu nah no 23m onh .oz hh\amm .No> .oz hh\nmm .Ao> .oz .AO> .Ho> 30am abozma .oz mm>h .oz manna ....szq BDLZH an=& ....szu FDQZH 9200mm ....szA hamzH hmmHm .zan1aHz acaOh .HOZ mszA .momm A>92H H>82H A>92H A>th .oz mm>e .0: .9200 .IHsz ammuaq< IONHN> .u Pm<9m mnoz nmU HthH cthH mth mth hth mth msz wth thH thH thH th mmm .am.nd> .oz nm+b .oz mamaon ...................... ........ ................. Akzmommm mo .mommv mzonhmszH \hmmhho uaoz au .oz hs\amm .aO> .oz h&\amm .ao> .oz .NO> .AO> 30am zkozmq .oz mm>b .02 mamao ....zzHa bzle anzh ....mzHA BDLZH 9200mm ....zqu hamzH hmmHu .xqmlon AOI mquH .momm A>sz A>92H H>sz A>th .oz mm>a .02 .9260 .ZHsz ammuHA< toqamr .nch<> hzchw mnoz nmo HthH onzH msz mszH bszH mth mszH VBZH szH thH thH th an: .hk.:d> .02 mars .oz menace ............................................... Aezmommm mo .mommv mon9=wsz \hmwhbo mac: nm<0 mzHa NN:N\NNSN ANA:\NN>V N=m>\cmmc whHou Ozoomm NO .22: mth 2H H>z< ON. HxNh vv.von Nauzxzm>c macaw :mchzc Nmv 6.6H b.OH O.NH o.mH O.NH m.NH m.NN N.NH N.OH N.OH H.th «.omm >< OO.bH vO.v OO.¢ Om.e ON.N mm.OH «O.N O¢.v vm.v 50.0 bQ.QmH NH.H NN.N 6H.Nm HN.om Nm.hNH mv.N mv.N mw.om ON.Nv NN.NOH NO.NmN Hv.OON Namaxommv N=\=1=m>v H=\=u=m>v >< achOh aH hm.mH NH. HO.H mH. HH.N NN.mm NN.O NN.NN ow.m NN.vNH NN.NH NH. ON.N NH.. ON.N NN.mm ve.m vb.mN mm.N H=\=n=m>v IOoz<¢ IEONHZO >om< mmh zH amammH mmOmzVA:\HZISN>O N=\=-=m>c >v mxHh unadmh adboe - x1! OQGN OONN Ohm OONN Ohm OOmN Ohm OOON Ohm x1! OOON OONH ONN OONN Obm OOON Ohm OONN Ohm xVH:\=m>v um>mz¢th mm< ummnh .amaomhmn mzommm oz .hamzH mmaa<> ZOHHz< othaamn .zam ZOHB9 Om<0 1 30A“ um\> mom aconm othmem mmh no 2:: onb Ou4u> mom Hmz BOO Adonm OZHBNHNO OOH LO ZOO ZOHHB .Oz IOHHOHOHO NO OInhdZOOhA< NOH OOL A< IOHHOOOHO ZIOO 2H ZMOOO +++ NNZONNBIOIOO MO NCO 4<20Hm othmem mzh LO 2:: ZOHHmz\cmmc N=\=-=mcv Nzxcuzccc N=\=I=N>c N:\=-=c>c N=\N:I=c>c chzN :chcc Ncccm >< Ncccc Ncccc Ncccc Nccce Ncacc c AmszN NN< cchchzN NNcccc ch: :NNNNNV u N; NN.NN NRNc NN.NcN N.NN Nc.c cc. cN.N NN.NN cc.Ncc cN u xcx chN A c c NN NN.cN ch N Nacc NN.NcN c.NN NN. Nc. cc. cc.N cN.cNN cN cch cNN Ncc c NN NN.N c A N AaNc NN.NNN N.NN cc.N Nc. Nc.N cc.N cc. cN chN cNN ccc c NN NN.N c A N AANc NN.NNN N.NN cc.N Nc. Nc.N cc.N cc. cN ccmN cNN Ncc c NN NN.NN ccc N «N ON.NNN N.NN cc. Nc. mc. cc.N cc.NcN cN chN cNN Ncc c u NN cc.NN NuNc ON.NNc N.cN Nc.c cc. cc.N NN.cN NN.NNN cN u xc: cch A N c NN NN. c A N NuNc NN.NN c.NN cc. Nc. cc. Nc. cc. cN chN cNN NcN N NN Nc.NN ch N AnNc NN.NNN N.NN cc. Nc. cc. cc.c cN.cNN cN cch cNN NcN N NN Nc.N c A N AuNc NN.NNN N.NN cc.N Nc. Nc.N cc.N cc. cN cch cNN NcN N NN cN.c NcN c NNN NN.NNN N.NN NN.N Nc. NN.N cc.c NN.NcN cN cch cNN NcN N N NE cc.cN ANNc cc.NNc c.cN Nc.c NN. cm. NN.cN Nc.Ncc Nc u NcA=Nm=N>v Nuux\=ccc N=N>\ONNN N=\=:=N>c N=\=I=NSNN=\N:I=NSN ANN chzmccA=\=N>c chch chzcc NNNccccc Ncmco cc Ncccm Nchc NchN zcczcc zmchzc Nch Nucccc NcN cc :ch cz cz cmczc Nccc ccccc zccc N NcN chcNN cchmNNc was No 2:: chchczNN---NNN=c\ch\3Nz.Nc\NNO---z=N ANN-N>N2z< LH .hmOLmz O>O=< m:& 2H OmzmmH mmumz onbz< OZHPOAOO .zam zo~hH Omc acczN :cczcc macaw chNc uczcxcccccc chc :chNzc Ncccc Ncecc N NE Nc.cc NaNc Nc.chN c.cN NN.N NN NN.NN ch c NuNc ON.NcN N.NN NN.N NN Nc.c c A N NucN ON.Ncc N.NN Nc.N NN Nc.c c A c NNcN ON.Ncc N.NN Nc.N NN Nc.cN Ncc c Namc NN.NcN N.NN NN.N ” NN Nc.cc Nacc Nc.cch c.cN cc.c NN NN.N c A N ANN» cc.NcN c. NN.N NN NN.NN ch N NANN Nc.ccc c.cN NN.N NN Nc.c c A N NaNc NN.Ncc m. cc.N NN NN.NN NcN N Nacm NN.NNc .NN NN.N u NN NN.NN Nxcc NN.Nch NN Nc.cN cc NN. c A N Ach NN.cN_ m cc. cc Nc.cN Ncc c Nucc ON.NNN N NN.N NN cc.cN NcN c Aacc NN.Ncc cN NN.c NN NN.NN NcN c NuNc Nc.ch NN Nc.c n Nc NN.NN AANc N.NcNN NN Nc.c cc NN.N c A c NuNc cc.ch N NN.N cc cc.N c A c Nch Om.ch N NN.N NN N.NN NcN c Accc ON.NNc cN Nc.c NN cc.N c A c Aacc NN.NNN cN cc.N Ncmmc N=\c NNA=\=N>N N=N>\ccmc cccsz chzcc Nchcmcc ccccc cc Ncccc Nchc Ncccc mmczc chc Nccco Nccc ch :cchzc ccczccc ........ NNNNN cc NNONO czcccm Nc cN. .ZOO OOOH ZN A>z< LO .POOLOO O>OO< O29 NN.OH ><4OO OO< >\ommv H OO. ON.N OH. NO.N OH. ON.N ON. ON.N OH. NO.N OO. NN.O 9H. vo.H ON. ON.N vH. NN.N OH. ON.N OO.N NO.N OO. OO. OO. ...NH OO. NN.N cm. Oc.N NO.N bv.b OO. NN.H OO. NN.— OO. ON.N em. 60.H H=\=I=m>v zoOzc >mzN >NV Nc.cch Nc.NNc OO. OO. OH.OHO H0.00N OO. Ov.th OO. NQ.OON O0.00HH OO. OH.OHO N0.00N Nv.OON N¢.OON OO. OO. Ne.OON OO. Nb.NN N=\=I=mcc >cN=\=mcc OOON OOON OOON OOON OONH OOON OOON OOON. OONH OOON OOON OOON OOON OOON OOON OONH OO.NNH N=\=:=ccc OZHB Om> OOL O onbz< OthOOOO .ZOO onhP OO OOL NmzNz :cc cczc_m cz_Nm_xc ch cc 2:: zc_N\cmmq Azuzuzccc A=\=-=ucv A=\=-=mcc A=\=-=mcc A=\~:I=mcv xmczu zcmzoc mchn N< cVA=a\=c>c Acu=\=ucc Azccuccm. A=\=.=c>c A=\=.=m>VA=x_z-=ccc Aav A=\=cccA=\=ucv zcmzc; NNcccccc mcmco cc mchm Ncccc NcNCN zcczcx :xccAz: crcN cu>z< cchchc .zcc zc_NN~NOO>~23 OONZOO =0OOONO OOLOOO>OO O.N ZOHOOO> I < O O O O L 2 O a N < N 's O O O O O O O O O H On No ONOZOO OONO OOOZ ON>N .oz OAOn=O> OOOm IONNNO A<2OONNO ZONONO OOOZN .O: OONHIHNOO NO ON OOOOz ho Nmuq . OOO mOzO NOO H OH NON NH O ICON Ath toaAON .O On a HNzH NZH NOO ONO OOON ONO OOON ONO OOON . OON OON~ .Ao> loam ONz~ O>Nz~ 30aau> .O Nu H ANz— NzH mmm O O O O O O O O O O O O ON QNH NOV ON VNH OOe ON NNO Nov O O ON ON NON ON ONO OON ON NNO NON O O ON VN— NO~ ON an OOH ON cNN "OH O .m .oz NN\OLO .OO> .oz NN\O&O .AO> .Oz .AO> OOOOO ....mth N=L2~ OONON ..-.mzHa NOLZH OzOOOm ....zznq NOAZM human .OAOIOH! O= OOZHO .OOOO AONZH .NZOO .Zmzuz OOOIOO< “MF2H .oz NNxOLm .qo> .Oz thcmm .OO> .oz .OO> OOOOO ....OZNA NOL2~ OONON ....OZNA NOLZH Ozocmw ....szO NOLzH NOO—u .OOOIONS OZ Oxzma .OOOO A>NzH .9200 .anwt OOOIOO< GMPZH \Nmmuuo O O OOON O OPOZOO Oahu .N H O>Nzn NO \Nmmhho NON ON NON ch NN ANN ch mN Ac" .cN cN Am~ .cz NNNN .cz xzcc . cmco mama c N NN Ac“ N ~N ANN .cz mNNN .cz mccz cm .oz ea\aam .No> .oz «p\amm .No> .oz .No> .No> mamac ....azNN samzN amst ....szN eamzN azoomm ....NzNN aamzN smmNn .anunN: Nox mszN .momm N>azN N>azN .ezoo .zNzN: ammuNN< :oNNNN u NNNzN cNazN mszN mazN NazN mszN mezN .vszN nezN NazN NazN “Am—don o . u a a a a o o o u o a c o c o o u a . c u u u u u . o a o a u o o o n o . o u . . . o s . Aazmommm mo omommv ”ZOHF‘G=Q d<>GMPZH .oz Ns\=;m .No> .oz ee\=mm .No> .oz .No> .No> mamao ....szN paazN amsz ....NzNN eamzN ozoomm ....zzNN samzN emmNm .mNm-nN: Noz mszN .momm N>azN N>azN .azoo .xNzN: ammuNN< :oNNm> o NNazN oNazN mszN mazN NezN mazN mazN vazN NazN NazN NezN mgmH—o: . a a n a o a o ...... a o a u o c o a n uuuuuu o u n c o o u n a o ...... a - Abzmommm mo .mommv MZOHB‘m—Jn A<>~MFZH OON OZHIHN Ahz~ .O d Nzn hm: OON" OOON OOON OOON 30am .N NzH mmm ¢ OONv O O OOOO ONOZNO Oz~a N N ONNzH NO \Nmmmho O OONv O OOON Ohuzma xzua ' N H O>Nz~ NOe .oz ama .oz a=a .oz =N\o:mv Na::NmN Noam: ::N<::NN NNoNo on. u:»: :o: o2:zNN Nc:< ::N 2N :::mwN mmc‘mmmz ozNz:<2 N :o N :o: oszNN chon ::N :o 2:: 2oNNz< :N .m:o:2:NNNo: uzN::NozNV w:2NN mN :z: mmaoz v :o N OON O2~2~N aO2\o:mv N:\:-::>N NO Nv NN A OZMN O>N N:><:N 2 OON DantmN OOz: :::2N z:mzoo m:on ::::m :o:«2:o:::: N::: ::o:N2: NNN:N\::>N Nau2\:m>v N::>\o:mv 2No2NN z:mzoo NNNo<:< ........ NN.N NN.NN ::.N: :N. NN.N NN.NN mN. N:.m . NN.N :N. No.n NN.N mN. NN.N NN.NN NN.N NN.:N :N.m« :N. NN.N «N.N :N. NN.N NN.NN mN. NO.N NN.N :N. ON.N :«.mN NN.N NN.N NN.N: :N. NN.N «N.N :N. NN.N NN.NN :N. NN.N mo.mN :N. N:.N NN.NN NN.N NN.ON NN.NN mN. NO.N NN.N :N. NO.N NN.N :N. NN.N NN.NN :N. :N.: «N.N N:\::::>V zo:2<: 2:o:Nz: :zNN N:N:\N2:::>N N OO OO OO OO OO N OO OO ON ON ON H OO OO OO OO OO OO OO OO OO OO a<1 OOON OOON OOON OOON ac: OON~ OOON OOON OOON x<2 OONA OOON OOON OOON xNH>~NHOZON OOUNU SONONO OON mmNutuNmO NNINNOzcme .OOO Ow OOVN ONO ,ONO ONO ONO OOON OON ONO ONO ONO OOON OON ONO ONO ONO OOON ONO ONO ONO OON Na: N:\:NNVN:\::NV 30am NOO Oov NOV HOV NON OON NON "ON NON OON NON HON NON OOH NOu NON O: O oachcaN rwN:nvaN «reuc1rv HHHHF‘ 92 name NOO: O AmOzHNNON O Ooh OZHZNN A<20HO OON no ZOO ZONNwz NONE O<>OONO~O N A AOOOO NOOONOHO N OOONUONOON2~ C. to u. no to O. ONONO vN mqu>o OZOUOO Ov ON. um\> OON onutmh eczema OON NO ZOO OO~NO2OON2~ mo NOOON2H z< he an Zuzent Oqa01 NOOHOO N N N N u OONN a<>Omhz~O N m NN.OON NON2~O v N N a N OOOSOO O<>OONOHO .OOmNz~ no NOO2 OON UZHIMN OOZ::N2N: N N "N.2:V N:N2Nc mN m mN “NommvzpozuN NNNzN: N N N u :::2:2 N<>::N2N: « zoNNumm::N2N ON. nO\> OON OZNIHN O::N2N: N N "N.N:N N:«Nm :m«::: on :« :\::N "Na: mozNNNmm 2N:: :« :N :« ”Au: :NozNN NNNzN: :N m :N "Aommv:NozNN N>NzNo N N N " :::2:2 N<>::N2N: 135 OOOBO VN O O NO OZ< ZIOO OOO>O OZOOOO Ov N. nO\> Och A(chm UZHBOHNO OON ho ZOO ZO~h OON AdZOnO OZHNOHNO OON ho ZOO OOHN< ZOOHOOOOO ZOOO OH ZOOOO +++ "OZOnOOONZOO OACOO O .25.: mmmmmwmsmmmmwmmmmmmmmmmmmmmmmammm:mmmNN.N...mmmmmmmmmmmmmNmmmmmmwmmsmmmmmwmmmmmmmmmNmmmmmwmm :2. a... OONO OOON OOOOOOOO QUAD“... humid... OON....» OOOQOOOO OO....OOO O.” O .NO OOON OO OOOQOOOO OOOOOOOO OOOOIOOO OOOOOOOO OOON“... OOOOOOOO OOQOM N h. a ”MNNNN--------Nmmmmmmw--------mm::.... -....NNNN--------Nmmmmmmm---- ........ ....mm.. a . OOOo Ozoomm OH OH. nm\> mom AmZv A=m>\ommv A=\=-=mOO Azxzuam>O A=\=-=O>O A=\=-OOOO A=\O:-=mOO. mezO zOszO macaw >< OOOOO OOOOO OOOOO OOOOO Owv mmmam ON OOONO Ozoomm ON OO. um\> OOO OOzOOm uzOOOONm was OO 2:: zOOaOA=O\=O>O Aau=\=m>v A=OO\OOOO A=\=|=m>v A=\=:=mOOn=\Nx-OOOO Any AO\=O>OA=\=O>O OOOzOO :Omzoo NOOOOOOO mOmOo NO macaw OOONO O NOO Omzh OO<0 >O Oweu Emma OOH oznms Imbm>m OOH mmmemhmo h>|e>mzP~>~9Hmzmm mao>u .omm mm u Obozmg wqo>o bmmm 138 OOOBO ma OOO>O OZOOON ON ON. um\> OON OZHZHH ANZv A=m>\ummv A=\=-=m>v anxaumm>v AO\=-=O>O AO\=-=NOO AaxuxuamOO NOOzO :Omzoo macaw >< OO Ozoomm ON ON. nw\> OOO OZHZHB OOZOON NOB OO ZOO ZOHthHZOBOOuIIHONOO\ONF\ZPZ.HO\ONHuInZOO unsub>mZVAZO\=O>O Anu=\ON>O AOO>\OONV A=\OION>O AO\=|=O>VA=\HZIOO>V Auv AO\ON>VAO\OO>V OZ OPOZOO ZONZOO >9~O< IIIIIIII >O OZOOON ON ON. um\> OOO OZHIOH ONZ u HO ON.NNN Axum Oc.mmON cc N0.0m ch ON ANON Oc.mcm cc NN.NN O A ON Aapm O..cNOO cc ON.NO O , ON Auum O~.c_O_ cc ON.NO Occ ON “ON ON.O~O_ u HO ON.cO_ “ONO O0.00NN cc NN.O O , NO Auum OO.cmc cc O0.00 ccm ON Acmm Oc.NOm cc ON.NO O A ON Aubm O~.c_ON cc cm.cN OON cN ARON ON.NOO u ON NO.Nc. ANNO ON.mOcN cc NN.O O , NO ANNO Om.cmc cc OO.NO mcc ON ANOO NN.OON cc NN.NN NON ON Aamm ON.NOO cc NN.NN OON NN ANNO OO.OOO~ u NO NO.NO Name Om.mocN cc NN.NN O A ON AuNm ON.c~O. cc ON.NO O A ON Aabm OO.cOOO cc OO.cN OON ON AuOO OO.NNO cc NN.O O , NH “arm Om.cmc Aommv Azxcov oz Oeozmg xOszO OONOOOOO NONOO No NOOOO OOON «OOON «v A=O\=O>OA=O\=N>O wOmOo Nh. Nummxzm>v A=m>xommv macaw OUO Ozoomm mm '0 Axmm Vu.mb~v_ NN.ON N~.NvH NO.Nv OO.mm Aa-=\=m>v A=u>\ommv A=\=a=m>O A=\=u=u>v A=\=-=m>O macaw NOONO NOOOO :OOOOzO OcOmO >< Ochoa OOOOO OONON ANZZOA OO< OZHOOAOZH mawv N AaxmsONOO A A O.NNN OSOF O> NO.N~O~ Nm u N.Ow NN.O VO.N ON.N NN.O OO. Nm O.NN ON.N Nb.N N0.0 N0.0N Om.vvm NO N._N O0.0H Nb.N NN.b O0.0~ OO. Nm N.ON NN.N NN.N HO.m Ov.VN NN.ONO NO N.ON ~v.mN "N.Om .Ob.¢N NN.NOH NO.NNNN NO u N.OV NN.O ON.N ON.N NO.N OO. Na O.NN ON.N" NN.N hb.b «N.Ov NN.ONNO NO N.ON NO.N NO.N Vb.m mm.VN NN.Obm Nm O.NN N0.0H NN.N ON.N eb.ON NN.ONO Nm N.ON ON.vN ~5.0A NN.NN Nv.OO NN.ONO Nm u N.ON O0.0~ NN.N NN.N O0.0~ OO. NO N.ON O0.0~ NN.N NN.N O0.0~ OO. NO 0.0N NN.O NN.N O0.0 OO.¢N NN.OhO Nm N.Ov NN.O em.N NN.N NN.O OO. NO A=\=»=OOO OcOOO Ocean zOOzOO :OOOOzO szO x<2 OOON OOON OOON OOON x< IIIIIIII > OOL OZOIHH AOZvfia\=m>v Omacma Ocm No :OOO OOOm NOV NOV Nov Hoe NON OON NON HON NON NON NON HON NOO OOO NOH “Om OZ ????? NNNNN MMMMN Flu-CHAN OZ OZHO OOOZ O O REFERENCES 140 1?}?JFZ?JEI?JVZ?JTEV 1. ’A .Mhnua] on fiber Benefit Analysis of Highway' and Bus Transit Improvements’, American Association of State' Highway and Transportation Officials, Washington D.C. 20001, 1977. Courage, Kenneth., (Microcomputer Applications in Traffic Engineering”, Transportation Research Record 932, pp. 13 - 16, Transportation Research Board, Washington D.C. 20418, 1983. Deakin, Elizabeth R., et a1., ’Assessing’ the Traffic Impacts of'rransportation and Land.Deve1qpment Scenarios’ , Transportation Quarterly, vol. 39, No. 4, October 1985, pp. 605 - 626. Dudeck, Gerald R., et a1.,’IWMNSYT-7F and.NFTSLM'Canparjson of.Estimated and Simulated Perfbrmsnce Data’, ITE Journal, August 1983, pp. 32 - 34. Gibson, David., ’Available canputer .Mbdels for Traffic Operation Analysis’, Transportation Research Board, Special Report 194, Washington D.C. 20418, 1981, pp. 12- 22. Homburger, Wolfgang 8., et a1., ’thdhmentals of traffic- Ehgineering’, [11“I edition], Institute of Transportation Study, University of California Berkeley, California 94720, 1984. Hamburger, Wolfgang 8., et a1., ’Transportation and Traffic Engineering' Ehndbook’, [2nd edition], Institute of Transportation Engineers, Prentice-Hall, Inc., Englewood Cliff, New Jersey 07632, 1982. Kell, James R., et a1., {Mbnual of’fraffic Signal Desigh’, Institute of Transportation Engineers, Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632, 1982. May, Adolf D. Jr., et a1., ’Develqpments in Traffic Signal systcmr’, Transportation Research Circular, Transportation Research Board, Washington D.C. 20418, 1984. 141 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 142 ’thional Signal Tiaing' Optinisation Projects’, Federal Highway Administration, Office of Traffic Operations, Washington D.C. 20590, 1982. Nemeth, Zoltan A., et a1., ’NFISLM’ and SOAP a Test of Coqpatibility“, ITE Journal, October 1982, pp. 38 - 41. Paquette, R., et 81., ’Transportation Engineering”, John Wiley and Sons, Inc., New York, 1982. Pignataro, L. J., ’Traffic Engineering Theory and.Practice’ , Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632, 1973. Powel, James L., ’Network .Evaluation using’ ZRAMSKT’, ITE Journal, July 1982, pp. 13 - l7. ’Signal Operations Analysis Package - Executive Sunnary’ , University of Florida, Transportation Research Center, FHWA Implementation Package 78-4, January 1978. ’Signal Operations Analysis Package - l., Chaputational Methodology’, University of Florida, Transportation Research Center, FRWA Implementation Package 78-4, January 1978. ’Signal Operations Analysis Package - 2., user’s Mbnual’ , University of Florida, Transportation Research Center, FHWA Implementation Package 78-4, January 1978. Tarnoff, P. J., et a1., ’Selecting'fraffic Signal Control at Individual Intersections’, NCHRP Report 233, June 1981. ’Traffic Control Devices and Traffic Signal Systens’, Transportation Research Record 881, Transportation Research Board, Washington D.C. 20418, 1982. ’Iraffic Engineering'Practices in Developing Countries, an Informational Report’, ITE Technical Council Committee 4A-20, Institute of Transportation Engineers, ,Washington D.C. 20024-2729, 1985. 21. 22. 23. 24. 25. 26. 27. 28. 29. 143 ’Traffic Signal Undernisation’, Institute of Transportation Engineers, Technical Notes, April 1981. Transportation Research Board, ’Dignuay’ capacity .Mnnual’, TRB Special Report 209, Washington D.C. 20418, 1985. Transportation Research Board, ’Zbe Applications of traffic Si-ulation.Mbdels’, TRB Special Report 194, Washington D.C. 20418, 1981. U.S. Department of Transportation, Federal Highway Administration, Office of Research and Development, ’Dandbook of‘ Conputer .Mbdels fbr Traffic Operations Analysis’, Technology Sharing Report, FHWA-TS-82-213, Washington D.C. 20590, December 1982. U.S. Department of Transportation, Federal Highway Administration, ’Manual on Onifbr- Traffic Cbntrol Devices fbr Streets and Dignvays’, U.S. Government Printing Office , Washington D.C. 20402, 1978. U.S. Department of Transportation, Federal Highway Administrations, ’SOAPBU - Data Input.Mnnager’, Implementa tion package, FHWA-IP-85-8, Washington D.C. 20590, Jan. 1985. ~ U.S. Department of Transportation, Federal Highway Administration, ’SOAPBZ - user’s .Hnnual’, Implementation Package, FHWA-IP-85-7, Washington D.C. 20590, January 1985. Wallace, Charles E., ’At Last A IRANSYT .Mndel Designed fbr A-erican Traffic Engineers’, ITE Journal, August 1983, pp. 28 - 31. Wallace, Charles R., et a1., ’IRAMSYTNIF User’s .Nnnual’, University of Florida, Transportation Research Center, Prepared for the Federal Highway Administration, Office of Traffic Operation, Washington D.C., 1983 (Revised). HICHIGRN STATE UNIV. LIBRRRIES IIIllllllllHHIIHIIHHHIWIHIIIW\IIIIWIIMHNIWI 31293007958740