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ABSTRACT
PHASE SELECTION IN THE K500 CYCLOTRON
AND THE DEVELOPMENT OF A NON-L INEAR
TRANSFER MATRIX PROGRAM
By

Bruce Forrest Milton

A method has been developed for the rapid calculation
of particle orbits in a cyclotron with spiral-shaped dees
The method uses second order matrix transfer methods and has
been implemented in the FORTRAN program "SOMA”. ( Second
Order MAtrix). SOMA has been checked against the slower
orbit integration program SPRGAPZ. A combination of SPRGAPZ
and SOMA has been used to investigate the phase selection
process in the Michigan State University K500 cyclotron.
'This study led to the désign of hardware necessary for phase
selection and the ancillary beam diagnostic equipment.
Finally SOMA calculations and the phase selection

calculations are compared to experimental results
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1. Introduction

At present the majority of accelerator studies at the
National Superconducting Cyclotron Laboratory are devoted to
two cyclotrons, the K500 and the K800. The K500 cyclotron
has been in operation since 1982, and is running a regular
schedule of experiments. The K800 is under construction and
is expected to begin testing with beam in 1987. In the case
of the K500 the effort is directed at improving beam quality
and intensity, while K800 work is devoted to more
fundamental design considerations. The two cyclotrons have
many similarities; size is their most obvious difference
The material reported here will be dealing only with the

K500. but in most cases is equally applicable to the K80O0.
The K500 cyclotron at Michigan State University1'2'3 is
a multi-particle, variable-energy machine. The bending limit

is K,_ =520 MeV, and the focusing Iimit is K, =160 MeV, where

b f
the energy Ilimit in MeV/u is either Kb(Q/A)2 or Ky (Q/A).
whichever i s smaller4. The compact magnet has a pill-box-

shaped yoke that completely encloses the cyclotron. The main
field is produced by two pairs of circular superconducting
coils located just beyond the extraction radius (see Figures

1-1 and 1-2). The flutter is created by three spiral-shaped
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Figure 1-1. Vertical section of the K500 cyclotron
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hills. The magnet gap on the hills is 6.54 cm. The RF

systems’6 consists of three dees located in the valleys
between the hills (where the magnet gap is 36”), and can be
operated over a frequency range of 9 MHz to 27 MHz. Figure
1-3 shows the range of energies and charge states that can
be accelerated. Originally the K500 ran with an internal
Penning lon Source (PIG), but as of March 1986 it has been

coupled to an Electron Cyclotron Resonance (ECR) ion

source7

The K500 cyclotron has several unique features that
make it an interesting case study. The high magnetic field
(Byg=3T to 5T) leads to a very compact magnet design, which
in turn leads to a small separation between turns of the
internal beam. The small size of the cyclotron necessitates
that all the attached hardware must be compact in nature, as
space is at a premium. The small magnet gap and the tight
spiral result in a median plane field with large gradients.
in general these features place stringent requirements on
any approximations that are made. Because the dees are
spiral shaped. the azimuth of the gap crossing is a function
of radius, consequently dealing appropriately with the gaps

adds an additional <complication to any orbit computation

routiness,
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Transfer matrix programsg'37 provide the ability to

compute many orbits in a relatively short time. This greatly
facilitates the investigation of bulk properties of the
beam. In addition, these codes are quite powerful for
simulating the output that would be obtained from a
diagnostic device such as a beam probe under different
operating conditions. Unfortunately none of the transfer
matrix codes available were suitable for use with the K500
cyclotron Dbecause of the spiral shaped dees, and the large
field derivatives, so the program SOMA (Second Order Matrix
Approximation) was developed. The design of this program
will be the subject of chapter 2.

Most of the time it is desirable to run the cyclotron
in a manner that gives the most extracted current. Of course
there are exceptions, and in many such cases it is desirable
to reduce the phase spread of the beam, thus improving the

time resolution of the beam, and reducing the loss of

internal beam on cyclotron components10. One such situation
is accelerator studies where the ability to observe distinct
turns is a major advantage. Phase selection of the internal
beam using the coupling between the horizontal and
longitudinal motions has been wused for many years. but

nevertheless every such system requires a detailed
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investigation of its feasibility. Such an investigation will
be presented in chapter 3. In the case of the K500 the
highly non-linear nature of the central region and the low
number of turns involved makes orbit tracking with a
numerical integration program the preferred choice. After
the central region, the transfer matrix code provides a
rapid method of tracking the selected beam to extraction.
This makes comparison of experimental results to
computations much faster.

In order to perform phase selection in the K500

cyclotron a rather intricate set of hardware was

constructed11. and this will be presented in chapter 4. This
hardware had to provide the necessary control functions

within the <constraints of the |imited space available and
the high magnetic field. As a result a large effort was put
into the construction and installation of the drive
mechanism. The construction of the viewer port (V.P.) probe
allowed for improved beam diagnostics which helped in
understanding the beam behaviour with the slits in place.
Also the V.P. probe drive made wuse of the gamma probe
convenient and easy . The ¥ probe allowed the direct
measurement of the internal beam's phase width, so it was

invaluable for observing the resuits of the phase slits
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In chapter 5 the results from a set of measurements of
orbit properties in the K500 cyclotron are presented. Most
of the measurements seek to confirm the computed magnetic
properties rather than discover unknowns. As will be seen
the agreement between running conditions and computations is
quite good. The measurements also confirm that the phase
selection system operates in a manner consistent with the

calculations of chapter 3.



2. SOMA: A Cyclotron Orbit Code Using Second

Order Transfer Matrices

2.1 Introduction

For many years computer programs for the design of
charged particle transport systems have made use of a matrix
algebra formalism. The procedure is based on the fact that
to first order the final conditions may be expressed as
simple integrals of a few particular first order
trajectories (matrix elements) characterizing a system. In
these codes; beam-line elements are represented by idealized
components for which the trajectories were derived
analytically. The programs then compute a transfer matrix
for the whole system by multiplying together the transfer
matrices for each of the elements in the system. The results
provide rapid physical insight into the design of systems,.
leaving ray tracing to final design confirmation, and the
computation of higher order effects. In a procedure

described by K. Brown12. this technique was generalized to

include second order effects in the very successful program

“"TRANSPORT". Some years ago a simple extension of the
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transfer matrix ideas in beamline codes was made to allow
them to be wused for the design of synchrotrons. Today
several matrix programs for synchrotron design exist that
correctly treat second and even higher order abberations

The extension to cyclotrons is more difficult since the
beam path does not consist of a set of discrete single
function elements, but rather a single, very complex
magnetic field. which varies as a function of radius and
therefore as a function of energy. The well known solution
to this problem is to compute the first order trajectories
around a closed yequilibrium) orbit, (EOQ), for a set of
energies spanning the —range of the cyclotron. Results of
this type of calculation are commonly expressed using the

variables Wy v, and v, (the orbital, radial and axial

focussing frequencies). Historically., as cyclotron running
time became more valuable, and computer time less expensive
it became increasingly popular to track orbits in the
appropriate magnetic field, in order to have a better
understanding of the beam behaviour. When only a small
number of orbits need to be tracked in order to understand
the overall properties of the system this technique proved
to be very valuable. In cases where many orbits need to be

fol lowed. the large amount of CPU time required to do the



11

numerical integration makes this procedure very demanding on
the available computer facilities. It was found that in
cases where bulk properties such as the radial-longitudinal
coupling are being investigated, a high degree of accuracy
in the individual orbits is not required. This meant that a
program that computed the transfer matrix elements and then
used them to determine the orbits of a large group of
particles, (each with different starting conditions) would
allow rapid investigation of these phenomena

At TRIUMF (Vancouver, Canada) the first order transfer

matrix program "COMA"g was developed based on these

principles. In this <case the transfer matrix elements are

computed by the equilibrium orbit code ”CYCLOPS"13

and
output at any number of azimuths., for a set of energies. The
minimum number of azimuths at which matrices are necessary
is determined by the number of accelerating gaps. These
matrix coefficients are then fed into COMA, and the program
selects a set of initial conditions for a set of particles
from a given distribution (see section 2.5). The initial
conditions are multiplied by the appropriate first order
A matrix thus determining the orbit parameters at the first

accelerating gap. At the gap a delta function model is used

to evaluate the energy gain of the particle. The conditions
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at this gap can then be multiplied by the appropriate matrix
to determine the conditions at the next gap, and so on. The
actual matrix coefficients used are determined by
interpolating between the values that were computed by

"CYCLOPS”, and stored at a set of discrete energies. Tests

of "COMA” in a TRIUMF magnetic field9 show that for static
runs in regions away from the stop bands, and with initial
displacements as large as 2.0 in. from the EO the errors
were similar to the changes that occur when the Runge-Kutta
step size is <changed. In the case of accelerated orbits a
particle with an initial 0.25 in. radial amplitude had an
error of 0.001 in. after 165 turns. Checks which involved
passing through stop bands showed larger errors, but the
results were still usable.

The sucess of "COMA” suggested that such a program would
be very wuseful for accelerator studies at MSU. However two
major differences between TRIUMF and the MSU superconducting
cyclotrons prevented the direct use of "COMA”. The more
obvious difference is the accelerating gaps, which follow a
spiral in the K500 and K800 cyclotrons, rather than the more
conventional radial line. This difference implies a more
complicated gap crossing routine, similar to the one

implemented in the program ”SPRGAPZ“s. It also complicates
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the bookkeeping, as radial lines (used for output at a
constant angle) <cross the accelerating gaps. The other
important difference is in the magnet structure. The K500
has a high field magnet (5T7T) with a 6.35 cm gap and a tight
spiral, while TRIUMF is a low field magnet (.5T) with a 52.8
cm gap and modest spiral. The smaller magnet gap allows
larger azimuthal! derivatives of the magnetic field, while
the tight spiral generates large radial derivatives. In a
transfer matrix program the first order matrix elements are
a function of the first derivatives of the magnetic field,
while the second order coefficients include terms involving

the second derivatives and so on. Thus the more rapidly

varying field allows the second order effects to be
significantly larger. In fact with initial displacements as
small as 0.010" there were significant differences between
the transfer matrix program and the orbit integration

routine (see 2.6). This was the motivation for developing a
transfer matrix code in which the second order effects were
included. It should be noted that a transfer matrix program
requires that the equilibrium orbit exists. |f the magnetic
field contains Jlarge stop bands such as those that would
result if the first harmonic component of the field is large

in the region of Vr=1'0 . then this would not be true. This
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restricts the use of these programs to cases where resonance
crossings are fast and the field imperfections small. A
separate treatment for harmonic bump coils will be given in
secfion 2.7.

In the following sections the equations of motion of a
charged particle will be developed and then expanded about
the equiliprium orbit. After the method by which the

solutions to the first order differential equations are

found has been demonstrated, the second second order
contributions will be computed. Following this the effects
of the spiral gap shape will be discussed. Finally there
will be an outline of the routines used by SOMA, and some

comparison with an orbit integrating program.

The approach wused to find the matrix elements is a
perturbation expansion, analogous to the Born aproximation
in quantum mechanics. First an exact solution is sought for
the case where the equations of motion (about the EQ) are
linear. As is well known, the solutions to this can be found
by integrating the orbits of two rays. (displaced from the
EQ) . between the two points for which the transfer is
needed. Then the quadratic terms are added to the equations
of motion and treated as a perturbation. That is to say that
solutions are sought that are a combination of the exact

linear solutions (the eigenfunctions of the unperturbed
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case). As in the Born approximation the solutions are formed
using a Green's function. It will be shown in sect;on 2.2. 4
that the Green’s function in this case is very simple. It
should be noted that because the equations of motion are
truncated we no longer have a Hamiltonian and so the

solutions are not symplectic.

2.2 Calculation of Transfer Matrix Elements
2.2.1 Equations of Motion

The Hamiltonian with 8 as the independent variable. for a
charged particle fn a magnetic field with median plane

. . 14
symmetry is given by,

r A (2-1)

o|-—=

As is done in all the orbit programs currently in use at

NSCL, a length unit "a” and a field unit "b” are defined as

a=club b=moub/q (2-2)
where ub=2vvrf/h if Vg is the nominal RF frequency, my iS

the rest mass. g is the particle charge. ¢ is the velocity
of light in vacuum. and h is the harmonic number. We then

take the momentum unit to be nbcla so that momenta are

expressed in units of length.
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Assuming that the magnetic field has median plane
symmetry, and is given in the median plane by B=B(r,8) then

to second order in z, near the median plane:

. 1 .2 ,8%8  123B 1 a%B

B, - B+ 2 ¢? (ar2 * T ar Y T2 362 )
- 3B

B.S -z 5, . (2-3)
- Zz a8

B - T 30 -

If the field. B, is divided by the field unit b such that
B(r.8) - B(r.8)/b,

then Hamilton's equations yield,

r=-d—é: rpl’ .
2 2 ~2\
9O WP T Y
dp
' 8 o ,
P, = gg = YP7-pPL-p3) - T B, +2 BG'
r p :
dz V4
-2 . iy 2-4
? =498 = u(pTpi-pd (2-4)
dp '
oz B r' 3B
P, =gs =203 "7 se) « and

-‘
1
01Q
@i
1

=

The zero order solution to these differential equations is

known as the Equilibrium Orbit (EO). which. in a magnetic
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field having N sectors, and no imperfection, satisfies the
periodicity conditions

ro(e + 90) = r0(9) + Pro (9 + 90) = pro(e). 90 = 2w/ N.

We then wish to expand in terms of the displacements

(x,px.z, and pz ) from the EO where;

To simplify the results, we divide the equation for the
derivatives into terms of different order in the expansion
coefficients. As for notation, the digit in the subscript of
each term will refer to the order of that term. Also the
second order terms will be separated into those that depend

on x2 (as well as x p, and pi ), and those that depend on

z2. Thus the ry2 contains the terms in the expansion of r

that depend on x2, x pX , and pi . The overall derivatives

using this notation are,

r' = rH +ry + r' + r'
b 1 X2 22
v o + , + D' +D"
Dr PO P 1 Drxz Drzz
Z' = 2y + 232
= ) +
pz pzl pzz

T = T +TY + T 2 + T!
0 1 x 2 22
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The results of expanding the equations 2-4 for the

derivatives in terms of x, p_., z, and pz. and identifying

X
the orders of the various terms is given below. In each of

these equations, (which shall be labeled 2-5)., where r or pr

appear on the right hand side of the equation, they refer to

the values of r or P, for the equilibrium orbit. Also the

equations will use pa = (p2 - p’fo)”2 , the theta component

of the momentum for the EO. The zeroth order components are

TY = :
Po

the first order terms are

Bt A 0
Pg 0l X
)
p
. _r . 2B
prI- ppx (B+rar )X
9
z L p
1:
Py ' 2
Z g o(r 28 Proes,
Pt = ) 20
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second order terms are:

2 r p2 p
. _ P 3 "r 2
"x2= 3 X Py "2 ( 5 ) Py
Po Po
rae L LI
22 2 pg P
.. _.1p% 2 1 ., 2B 228 2
prx 2 3 px (2 ar T ar? ) x
Po
2
Lo rPz 0 2%8 18 1 228 2, 1 3Bz
Prz2= "3 pe *2 3rZ Y v ar T 72 32 /%t pe 90 z
X r P,
zh = =
3 p, ( Py + 3 P, )
<]

i p, 1 r p
T = xp o+ 2L (43 p2
3 x 3 X
Pa Py P3
' 1 r 2
"'2=2 3pZ
Pg

The procedure for finding r_ and p__ is the same as that

~used in the equilibrium orbit codes "GENSPEO” and "CYCLOPS".

and is described in detail in reference 13. The method for
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finding the first and second order matrices will be

discussed in the next two sections.

2.2.2 First Order Matrix
In order to find the first order transfer matrices X and

Z as defined by,

X(ef.ei) (

Z(Gf . 8)) (

we need two independent solutions, denoted (x1,px1) and

(x to the equations for x'.p’ and two solutions

2' Py2) Py
denoted (21,pz1) and (22'p22) for the equations for z' and

p’ . We also require the correction, X, to the time

coordinate, (), such that for a displaced orbit 7 - 7 + X.

For an orbit with initial displacements x(ei) and px(ei)' X

will be given by,

X(ef) = X1(9f. Gi) x(Gi) + xz(ef. Bi) px(Qi)

were X1 and X, are to be found. It proves most convenient to

2
choose the initial conditions,

x1(9i)

|
—
O

I
(@)

X0 84)
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I
o

z,(8;) (9.)

z1 i

[
—
O

0

]
—

z,(9;) P, (8))

because then,

-
x, (9,) X, (0,)

X(0p.0,) = | (0 b (ef)
x1 f X2 f

zZ, (6,) z, (0,)

9.) 1 f 2 f

Z(ef it pz1(ef) pzz(ef)

Xi =3 [ 5=+

X, =Y [ = +

The values of Xy P,y €1C. are computed by integrating the

first order equations (2-5) along the equilibrium orbit

between ei and ef. As in all our orbit «cndes. the

integration routine uses the Runge - Kutta method of Gill's.

with a step size of two degrees.

2.2.3 Second Order Matrix Elements

In the <case of a first order transfer. where the final
conditions are given as linear functions of the initial
conditions. the results are exact solutions of the

differential equations obtained when the equations of motion
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are expanded to first order . When the final conditions are
given to second order in the initial conditions, the results
are an approximate solution to the differential equations
that are a result of a second order expansion. Inherent in
this difference is that the method of finding the second
order matrix elements must be different from that used to

find the first order elements. The approach outlined below

is similar to that used by K. Brown‘z. In this approach the

orbits are to be given as a second order Taylor expansion in
the initial displacements from the equilibrium orbit. It is
then required that. the expanded orbits satisfy a set of
differential equations that have been formed by expanding
the equations of motion to second order. For the first order
expansion <coefficients this generates a set of first order
homogeneous, linear differential equations. For the second
order expansion coefficients the differential equations are
similar except that they are not homogeneous. The non-
homogeneous part of the equations has the form of a driving
function. Finally the second order coefficients are
evaluated via a Green's function integral containing the
driving function of the particular coefficient. and the

solutions of the homogeneous equations.
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A convenient statement of the problem is that we require
the matrices A .D and E as defined by,

X

X
( px)ef = X(ef.ei)( px)ei + A(8,.8,) V(e,)
(%), =2(6,,8)( 2), +0D(8,.8.) V(8,)
pz Of - f' i pZ Gi | I i

X(@¢) =X, x(8,) +X, p (08;) + E(8 .8;) V(8,)

where,
F2
X px
Py
X z
V(8) = X pZ
Px 4
px pz
22
b4 pZ
2
_pz Je

Inspection of the differential equations 2-5 shows that some
of the rows of A and D will be identically zero, so to

eliminate carrying these rows we define,

x2 ] x z ]

X Py X pz
v.(e = |p2 V,(8) = o,

22 px pz 2]

z p, - -

Ei Joe
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Thus the equations become,

X X
( px)e = X(8.8,) ( px)ei + A(B,8,) V (8,
4 4
( pz)‘9 = 2(0.0,) ( pz)ei +D(6.8,) V,(8,) . (2-6)

X(8) = X(‘G) X(Oi) + X&G) px(ei) + E(8 .ei) vx(ei).

The elements of matrices A and D are simply the second order
coefficients of a Taylor's expansion of the coordinates. |If
the differential equations (2-5) are written in matrix

notation. then they become:

lQ

X X
g8l p e = K& (5 )g + al®) V,(8)
d , 2z _ X i
FTL pz)e-uen (px)e+ﬁ<e> v,(8) (2-7)
O —m, x(e) +m, b (8) + J(O) V(0

where the elements of « B, and Y are tabulated in table 2-1.

| f the equations (2-6) are substituted into the
differential equations (2-5). the result will be a
differential equation containing terms to second order in

the expansion coefficients. Proceeding in this manner, and

retaining only terms of second order or less. vx(e) and

vz(e) are ,
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&%1 g+ 2 Xyq Xyp xg Py * Xi5 Pig |

Xqq Xaq Xg *(Xqy Xop + Xyp X)) Xg Pug + Xyp XppP%0
Ve = X34 X0 * 2 Xpy X5 Xg Py *+ X5p Pig

2y 25 + 2 200 2y, 2, Py + 25, Po,

Zyy Zyy 25 H(Zyy Zyy + Zyp 2020 Pug +Zy, 255 Ph

25y 20 * 2 25y Zyy 25 Pyg *+ 25y Pog

L -
and,

X1 124 1%020*% 1121201 0+X; 221 1Py %0 X12Z42P 0P 20
Vo = Ki1%21%0%0 % 11%22%0P 20 %12%21Px0%0" *12%22Px0"20

X21211%0%0"%21%12%0P20"%22%11Px0%0* X22%12Px0Pz0

X21221%0%0"%21%22%0P20%%22%21Px0%0" *22%22Px0P20

where the subscript zero implies that the initial values of
the coordinéte are to be used
Continuing the substitution and collecting the

coefficients of the initial wvalues (xo.pXo etc.) a

differential equation for each first and second order

coefficient is obtained. The result shows a systematic
pattern.

X117 Kyq Xyq + Ky Xy, X1 = Kaq Xyq *+ Ky X5y

X = k X + k X X = k X + Kk X

12 11 %42 12 %22 22 21 %42 22 %22
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Table 2-1. The elements of the arrays « and B. These arrays
contain the <coefficients of the displacements
(x,px etc.) found in the differential equations

2-5.
2 3
%o = P° 1 Py
— 2 5
a13 =1.57rp pr / pe
_ 3
Xg =31 P 1 Py
3B 1 3B
%4 =" 3r " 2 " ar?
_ . 2 3
%Xp3 = S pT /Py
« = .5r (933 1 %8 + 1 933 )
24 ~ ar roar r2 230
1 2B
Aye = = wg
25 pe 98
% = - -5 1 Pg
- _ 3
Bip =11 pg Big = v P 1 Py
3B 328 Pr 228 p2 8B
By, = -+t =7 - — B, . = =
21 ar ar pe 3ra0 23 pg a8
_ 3
¥, ¥ p, ! Py
02
1 r
Y3 = 3 1~§ (1 +3—)
Py K
Yo = » LL
6 3
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al =k a

1n 11 + f

+ k aZn in

in 12

ay, = Koy ay, * kpp 35, +foy

where the f's are functions of the first order coefficients
and the elements of « These driving functions are tabulated

in Table 2-2. A more compact statement of these results is

dox - K(O) X g z-19 2
(2-8)
9 A -K(B) A + F (8) 9 p - L(8) D+ G (8
de n n n dg " n n n
(2-9)
f,.(8) g,.(8)
Fo(0) = ,;:(9) G (8) = g;:(e)
(2-10)
a, (8) d, (9)
Al ®) = a;:(e) Dp(®) = d;:(e)
a_ J_ =m,6 a + m, a + h
de “n 1 in 2 2n n

The equations in the first row are the differential

equations for the first order coefficients, the solutions of

which are already known from section 2.2.2 . The
differential equations for the second order terms An and Dn
are very similar in form to the first order equations.

except for the presence of a driving term (Fn or Gn)‘ Since
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Table 2-2. The driving functions which appear in the
differential equations 2-9. The values of the ao's
and the B's are listed in table 2-2.

fyg = %yp Xy Xpy + Qi3 X5,

Fra = %42 ( Xyq Xgp + Xyp X540 ) + 2 &g X5 X55

fia = %qa Xy Xpp + %43 X3,

fia = % 23

Fis = 2% %24 %22

fi6 = %6 232

fay = %y Xiy + Ay X5,

Fap = 2 5y X4y Xyp + 2 %55 X5y Xy,

fag = %y Xjp + %y X5y

fog = %4 234 * %5 Zyy Zpy * g 23,

Fag = 2 %y 24y Zyp *+ %5 (244 255 + 245 25)
* 2 %5 254 2y

fag = %4 Zip * %5 Zyp Zyp * %g 2o

12 721 “14 722 T21



Table 2-2 (cont’'d).

«Q
N
n

I

oo
N
-

x
-—
—

+

«Q
n
N

I

o
n
-

b4
—
N

N
n

ho = 2, ( X4y Xy5
hy = 75 X453 %55

_ 2
hy = Xg 234
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the driving terms are only functions of the first order
expansion coefficients (which are known), the solutions to

equations 2-9 can be found using a Green's function.

8
An(e) I Fn(e') A(B.8') d8' , and (2-11)
5 .

9
Bn(B) I Gn(G') A(B,0'") de" (2-12)
0

where A is the Green's function.

The solution for the second order expansion coefficients
of the time. 7. are much simpler, since the right hand side
of equation 2-10 involives functions of the first order

expansion coefficients only. Thus,

]
zn(e) = f (m1 a1n(9') + m2 a2n(9') + hn )y de' . (2-13)
0 .

If the Green's function is known then the second order
matrix elements can be obtained by numerically integrating
equations 2-11 ,2-12 and 2-13 , along the EO at the same

time as the first order equations are being computed.

2.2.4 The Green's Function16

The problem requires the solution of



31

IQ.

[ K(8)] A (8) =F_(8)

Q
[e2]

where | is the unit matrix and K is either K or L as defined

in equation 2-7. The solution, X of the homogenous equation,

lo.

[ - K(9)] xn(e) = 0

Q
@D

is known. The Green's function must be a solution of;

IQ.

[1 T K(8)] An(e.e') =1 8(6°68")

@

subject to the conditions,

AN=086 <68
and A(6 = 8" +¢ ) = |I.
Since A is a solution of the homogenous equation for 8 > 8°
(or B8 < 8'") it must be a linear combination of X. If Y(8")
is a matrix to be determined, then,

A(B > 08'") = X(0) Y(8')
The boundar} conditions at 8 = 8' give,

ANB =8 +€e) = 1| = X(8') Y(8")

coovie) = x (e

S NB.8') = X(8) x'1(e')

ACB) = X, (8) X 5(8) - X, 5(8) X,,(8) =1 so.
Xp(87) - Xyol87)
x Yoy =
-Lx21(e') x11(e'1
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2.3 Crossing the Accelerating Gaps17

When the equations for the matrix elements are integrated
along the equilibrium orbit they start and end on radial
lines that pass through the point where the EO crosses the
gap. As a result when the displaced rays are transferred up

to the gap, the values for the displacements (x.px. etc.)

are the values along a radial line. In order to compute the

effects of the acceleration correctly, the values of r, p

and T are needed at the point the displaced orbit crosses
the gap. Since the values of the orbit at this point are not
known, they must be estimated. Moving the displaced orbit
onto the gap first requires the calculation of 88 (see
Figure 2-1), which in turn r<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>