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ABSTRACT

PHASE SELECTION IN THE K500 CYCLOTRON

AND THE DEVELOPMENT OF A NON-LINEAR

TRANSFER MATRIX PROGRAM

By

Bruce Forrest Milton

A method has been developed for the rapid calculation

of particle orbits in a cyclotron with spiral-shaped dees.

The method uses second order matrix transfer methods and has

been implemented in the FORTRAN program "SOMA". ( Second

Order MAtrix). SOMA has been checked against the slower

orbit integration program SPRGAPZ. A combination of SPRGAPZ

and SOMA has been used to investigate the phase selection

process in the Michigan State University K500 cyclotron.

'This study led to the design of hardware necessary for phase

selection and the ancillary beam diagnostic equipment.

Finally SOMA calculations and the phase selection

calculations are compared to experimental results.
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1. Introduction

At present the majority of accelerator studies at the

National Superconducting Cyclotron Laboratory are devoted to

two cyclotrons. the K500 and the K800. The K500 cyclotron

has been in operation since 1982. and is running a regular

schedule of experiments. The K800 is under construction and

is expected to begin testing with beam in 1987. In the case

of the K500 the effort is directed at improving beam quality

and intensity. while K800 work is devoted to more

fundamental design considerations. The two cyclotrons have

many similarities; size is their most obvious difference.

The material reported here will be dealing only with the

K500. but in most cases is equally applicable to the K800.

The K500 cyclotron at Michigan State University1‘2'3 is

a multi-particle. variable-energy machine. The bending limit

is K =520 MeV, and the focusing limit is K =160 MeV, where

b f

the energy limit in MeV/u is either Kb(O/A)2 or Kf(O/A).

whichever is smaller4. The compact magnet has a pill-box-

shaped yoke that completely encloses the cyclotron. The main

field is produced by two pairs of circular superconducting

coils located just beyond the extraction radius (see Figures

1-1 and 1-2). The flutter is created by three spiral-shaped
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Figure 1-1. Vertical section of the K500 cyclotron.
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hills. The magnet gap on the hills is 6.54 cm. The RF

systems'6 consists of three dees located in the valleys

between the hills (where the magnet gap is 36”), and can be

operated over a frequency range of 9 MHz to 27 MHz. Figure

1-3 shows the range of energies and charge states that can

be accelerated. Originally the K500 ran with an internal

Penning Ion Source (PIG). but as of March 1986 it has been

coupled to an Electron Cyclotron Resonance (ECR) ion

7

source

The K500 cyclotron has several unique features that

make it an interesting case study. The high magnetic field

(BO=3T to 5T) leads to a very compact magnet design, which

in turn leads to a small separation between turns of the

internal beam. The small size of the cyclotron necessitates

that all the attached hardware must be compact in nature. as

space is at a premium. The small magnet gap and the tight

spiral result in a median plane field with large gradients.

In general these features place stringent requirements on

any approximations that are made. Because the dees are

spiral shaped. the azimuth of the gap crossing is a function

of radius. consequently dealing appropriately with the gaps

adds an additional complication to any orbit computation

routinesa.
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Transfer matrix programsg'37 provide the ability to

compute many orbits in a relatively short time. This greatly

facilitates the investigation of bulk properties of the

beam. In addition, these codes are quite powerful for

simulating the output that would be obtained from a

diagnostic device such as a beam probe under different

operating conditions. Unfortunately none of the transfer

matrix codes available were suitable for use with the K500

cyclotron because of the spiral shaped dees. and the large

field derivatives, so the program SOMA (Second Order Matrix

Approximation) was developed. The design of this program

will be the subject of chapter 2.

Most of the time it is desirable to run the cyclotron

in a manner that gives the most extracted current. Of course

there are exceptions. and in many such cases it is desirable

to reduce the phase spread of the beam. thus improving the

time resolution of the beam. and reducing the loss of

internal beam on cyclotron components1o. One such situation

is accelerator studies where the ability to observe distinct

turns is a major advantage. Phase selection of the internal

beam using the coupling between the horizontal and

longitudinal motions has been used for many years. but

nevertheless every such system requires a detailed



7

investigation of its feasibility. Such an investigation will

be presented in chapter 3. In the case of the K500 the

highly non-linear nature of the central region and the low

number of turns involved makes orbit tracking with a

numerical integration program the preferred choice. After

the central region. the transfer matrix code provides a

rapid method of tracking the selected beam to extraction.

This makes comparison of experimental results to

computations much faster.

In order to perform phase selection in the K500

cyclotron a rather intricate set of hardware was

constructed“. and this will be presented in chapter 4. This

hardware had to provide the necessary control functions.

within the constraints of the limited space available and

the high magnetic field. As a result a large effort was put

into the construction and installation of the drive

mechanism. The construction of the viewer port (V P.) probe

allowed for improved beam diagnostics which helped in

understanding the beam behaviour with the slits in place.

Also the V.P. probe drive made use of the gamma probe

convenient and easy . The Z probe allowed the direct

measurement of the internal beam‘s phase width. so it was

invaluable for observing the results of the phase slits.
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In chapter 5 the results from a set of measurements of

orbit properties in the K500 cyclotron are presented. Most

of the measurements seek to confirm the computed magnetic

properties rather than discover unknowns. As will be seen

the agreement between running conditions and computations is

quite good. The measurements also confirm that the phase

selection system operates in a manner consistent with the

calculations of chapter 3.



2. SOMA: A Cyclotron Orbit Code Using Second

Order Transfer Matrices

2.1 Introduction

For many years computer programs for the design of

charged particle transport systems have made use of a matrix

algebra formalism. The procedure is based on the fact that

to first order the final conditions may be expressed as

simple integrals of a few particular first order

trajectories (matrix elements) characterizing a system. In

these codes; beam-line elements are represented by idealized

components for which the trajectories were derived

analytically. The programs then compute a transfer matrix

for the whole system by multiplying together the transfer

matrices for each of the elements in the system. The results

provide rapid physical insight into the design of systems.

leaving ray tracing to final design confirmation. and the

computation of higher order effects. In a procedure

described by K. Brown‘z. this technique was generalized to

include second order effects in the very successful program

”TRANSPORT". Some years ago a simple extension 0' the
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transfer matrix ideas in beamline codes was made to allow

them to be used for the design of synchrotrons. Today

several matrix programs for synchrotron design exist that

correctly treat second and even higher order abberations.

The extension to cyclotrons is more difficult since the

beam path does not consist of a set of discrete single

function elements. but rather a single. very complex

magnetic field. which varies as a function of radius and

therefore as a function of energy. The well known solution

to this problem is to compute the first order trajectories

around a closed (equilibrium) orbit. (ED), for a set of

energies spanning the range of the cyclotron. Results of

this type of calculation are commonly expressed using the

variables 0%. vr and v2 (the orbital. radial and axial

focussing frequencies). Historically. as cyclotron running

time became more valuable. and computer time less expensive.

it became increasingly popular to track orbits in the

appropriate magnetic field, in order to have a better

understanding of the beam behaviour. \Nhen only a small

number of orbits need to be tracked in order to understand

the overall properties of the system this technique proved

to be very valuable. In cases where many orbits need to be

followed. the large amount of CPU time required to do the
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numerical integration makes this procedure very demanding on

the available computer facilities. It was found that in

cases where bulk properties such as the radial-longitudinal

coupling are being investigated. a high degree of accuracy

in the individual orbits is not required. This meant that a

program that computed the transfer matrix elements and then

used them to determine the orbits of a large group of

particles. (each with different starting conditions) would

allow rapid investigation of these phenomena.

At TRIUMF (Vancouver, Canada) the first order transfer

matrix program "COMA"9 was developed based on these

principles. In this case the transfer matrix elements are

computed by the equilibrium orbit code "CYCLOPS"13 and

output at any number of azimuths. for a set of energies. The

minimum number of azimuths at which matrices are necessary

is determined by the number of accelerating gaps. These

matrix coefficients are then fed into COMA. and the program

selects a set of initial conditions for a set of particles

from a given distribution (see section 2.5). The initial

conditions are multiplied by the appropriate first order

- matrix thus determining the orbit parameters at the first

accelerating gap. At the gap a delta function model is used

to evaluate the energy gain of the particle. The conditions
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at this gap can then be multiplied by the appropriate matrix

to determine the conditions at the next gap, and so on. The

actual matrix coefficients used are determined by

interpolating between the values that were computed by

"CYCLOPS". and stored at a set of discrete energies. Tests

of ”COMA” in a TRIUMF magnetic field9 show that for static

runs in regions away from the stop bands. and with initial

displacements as large as 2.0 in. from the E0 the errors

were similar to the changes that occur when the Hunge-Kutta

step size is changed. In the case of accelerated orbits a

particle with an initial 0.25 in. radial amplitude had an

error of 0.001 in. after 165 turns. Checks which involved

passing through stop bands showed larger errors. but the

results were still usable.

The sucess of "COMA" suggested that such a program would

be very useful for accelerator studies at MSU. However two

major differences between TRIUMF and the MSU superconducting

cyclotrons prevented the direct use of "COMA". The more

obvious difference is the accelerating gaps. which follow a

spiral in the K500 and K800 cyclotrons. rather than the more

conventional radial line. This difference implies a more

complicated gap crossing routine. similar to the one

8
implemented in the program ”SPRGAPZ" . It also complicates
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the bookkeeping. as radial lines (used for output at a

constant angle) cross the accelerating gaps. The other

important difference is in the magnet structure. The K500

has a high field magnet (5T) with a 6.35 cm gap and a tight

spiral. while TRIUMF is a low field magnet ( 5T) with a 52.8

cm gap and modest spiral. The smaller magnet gap allows

larger azimuthal derivatives of the magnetic field. while

the tight spiral generates large radial derivatives. In a

transfer matrix program the first order matrix elements are

a function of the first derivatives of the magnetic field,

while the second order coefficients include terms involving

the second derivatives and so on. Thus the more rapidly

varying field allows the second order effects to be

significantly larger. in fact with initial displacements as

small as 0.010" there were significant differences between

the transfer matrix program and the orbit integration

routine (see 2.6). This was the motivation for developing a

transfer matrix code in which the second order effects were

included. It should be noted that a transfer matrix program

requires that the equilibrium orbit exists. if the magnetic

field contains large stop bands such as those that would

result if the first harmonic component of the field is large

in the region of vr=1.0 . then this would not be true. This



14

restricts the use of these programs to cases where resonance

crossings are fast and the field imperfections small. A

separate treatment for harmonic bump coils will be given in

section 2.7.

In the following sections the equations of motion of a

charged particle will be developed and then expanded about

the equilibrium orbit. After the method by which the

solutions to the first order differential equations are

found, has, been demonstrated. the second second order

contributions will be computed. Following this the effects

of the spiral gap shape will be discussed. Finally there

will be an outline of the routines used by SOMA. and some

comparison with an orbit integrating program.

The approach used to find the matrix elements is a

perturbation expansion. analogous to the Born aproximation

in quantum mechanics. First an exact solution is sought for

the case where the equations of motion (about the E0) are

linear. As is well known. the solutions to this can be found

by integrating the orbits of two rays. (displaced from the

E0). between the two points for which the transfer is

needed. Then the quadratic terms are added to the equations

of motion and treated as a perturbation. That is to say that

solutions are sought that are a combination of the exact

linear solutions (the eigenfunctions of the unperturbed
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case). As in the Born approximation the solutions are formed

using a Green‘s function. It will be shown in section 2.2.4

that the Green’s function in this case is very simple. It

should be noted that because the equations of motion are

truncated we no longer have a Hamiltonian and so the

solutions are not symplectic.

2.2 Calculation of Transfer Matrix Elements

2.2.1 Equations of Motion

The Hamiltonian with 9 as the independent variable. for a

charged particle in a magnetic field with median plane

. . 14

symmetry IS given by.

H - - r - l r A (2-1)

‘ pe b e

As is done in all the orbit programs currently in use at

NSCL. a length unit ”a” and a field unit ”b" are defined as.

a=clob b=m0ublq (2-2)

where ub=2nvrflh if vrf is the nominal RF frequency. m is

0

the rest mass. q is the particle charge. 0 is the velocity

of light in vacuum. and h is the harmonic number.\Ne then

take the momentum unit to be whole so that momenta are

expressed in units of length.
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Assuming that the magnetic field has median plane

symmetry. and is given in the median plane by B=B(r.6) then

to second order in 2, near the median plane:

- 1 2 828 1% 1 828

82- ' 8+ 2 Z (or2 + r r + r2 662 ) '

- a3
Br- - 2 ar’ (2-3)

- z 88

Be' ' r as

If the field. B. is divided by the field unit D such that

B(r.9) » B(r.9)/b.

then Hamilton’s equations yield.

 

 

 

.-gr- r.- d9 _

Ji pz- f-pi)

dpe z 2 2

pr = 56— = J(p -p 'pz) ' r 8z + Z 89 '

r p -

dz 2

z = —— 2-4
d9 lez-f-pi) ( )

dp .

.__z_ §,I_§_B_

pz ‘ d9 ‘ Z ( ' ar r as ) and

. dr 1 r
‘r=——= _

de lip pr-pz)

(where z = 1 + E/mocz).

The zero order solution to these differential equations is

known as the Equilibrium Orbit (EO). which. in a magnetic
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field having N sectors. and no imperfection. satisfies the

periodicity conditions.

r0(9 + 90) = r0(9). pro (.9 + 90) = pr0(9). 90 = 21r/N.

\Ne then wish to expand in terms of the diSplacements

(x,px.z, and p2 ) from the E0 where;

To simplify the results. we divide the equation for the

derivatives into terms of different order in the expansion

coefficients. As for notation. the digit in the subscript of

each term will refer to the order of that term. Also the

second order terms will be separated into those that depend

on x2 (as well as x px and p: ). and those that depend on

22. Thus the rxz contains the terms in the expansion of r

2
that depend on x . x px . and pi . The overall derivatives

using this notation are.

r' = r +r' + r’ + r’b 1 x2 22

y = v + t + I + v

Dr pro Dri prxz Drzz

z' = z} + zé

t = 1 + 1

Oz 921 922

T' = Tb +7} + Tkg + 722
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The results of expanding the equations 2-4 for the

derivatives in terms of x. px. z. and p2. and identifying

the orders of the various terms is given below. In each of

these equations. (which shall be labeled 2-5). where r or pr

appear on the right hand side of the equation. they refer to

the values of r or pr for the equilibrium orbit. Also the

equations will use p9 = (p2 - p30)“2 . the theta component

of the momentum for the E0. The zeroth order components are:

z_r
To = ;

pe

the first order terms are:

D 2

..1:_.Lx+r_Lp

De p3 X

e

p

. _L éfl
pr1- p px-(B+rar )X

9

2 L p1:

092

1-2(r§§._p_r.§_§)

92“ a as
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second order terms are:

 

 

 

2

2 r P D

_ E E f 2

”9 pa

r,_1rpl' 2

22‘ 2 pg pz '

. “11212-1 52 628 2
prx2 2 3 px 2 (2 or + r 5?? ) x

99

2

._1351,(628+1_a§+1 628)z2+1_9§zpz
przz‘ '2 p9 +2 or2 r or r2 892 pe 89

X rpr

22 = Dz ( 59 + p3 Ox )

e

as 828 EL 828 93 gg

p22 = z (or + r or2 pe arae ) x p3 as Z px

e

I p 1 2

T;(2= rXID+ Lr‘(13—)DZ

3 X 3 X

99 “9 p9

, 1 r

72:51793
De

The procedure for finding rO and pro is the same as that

.used in the equilibrium orbit codes "GENSPEO" and "CYCLOPS".

and is described in detail in reference 13. The method for
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finding the first and second order matrices will be

discussed in the next two sections.

2.2.2 First Order Matrix

In order to find the first order transfer matrices X and

2 as defined by.

(x) =X<e.e.>(")
px 9f f ' px 9i

z z

() =Z(e.9.)()

pz 9f f ' pz 6|

we need two independent solutions. denoted (x1.px1) and

(x2.px2) to the equations for x .px and two solutions

denoted (21.pz1) and (22.p22) for the equations for z and

p . \Ne also require the correction. X. to the time

coordinate. (T). such that for a displaced orbit r a r + X.

For an orbit with initial displacements x(9i) and px(9i). X

will be given by.

X(9f) = X1(9f. 9i) x(9i) + X2(9f. 6i) px(9i)

were X1 and X are to be found. It proves most convenient to

2

choose the initial conditions.

x1(9i)

l

—
L

"
O

i Oxziei)



21(9i) ‘ ‘ p21 (95) = 0

because then.

F

x (9 ) x (9 )

9.) = 1 f 2 f

X(ef' ' px1(ef) px2(9f)

1 (9,) 22 (9f)

 
 

 

2(9 ,9.) =

f ' 921(9r) p22(ef)

x1 r p

Xi = Z [ E; + 3 0x1]

99

x2 r p

x2=}[6—é+ 3pX2]

”e

The values of x1,px1 etc. are computed by integrating the

first order equations (2-5) along the equilibrium orbit

between 9i and 9f. As in all our orbit codes. the

integration routine uses the Runge - Kutta method of Gill15.

with a step size of two degrees.

2.2.3 Second Order Matrix Elements

In the case of a first order transfer. where the final

conditions are given as linear functions of the initial

conditions. the results are exact solutions of the

differential equations obtained when the equations of motion
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are expanded to first order. \Nhen the final conditions are

given to second order in the initial conditions. the results

are an approximate solution to the differential equations

that are a result of a second order expansion. Inherent in

this difference is that the method of finding the second

order matrix elements must be different from that used to

find the first order elements. The approach outlined below

is similar to that used by K. Brown‘z. In this approach the

orbits are to be given as a second order Taylor expansion in

the initial displacements from the equilibrium orbit. It is

then required that. the expanded orbits satisfy a set of

differential equations that have been formed by expanding

the equations of motion to second order. For the first order

expansion coefficients this generates a set of first order

homogeneous. linear differential equations. For the second

order expansion coefficients the differential equations are

similar except that they are not homogeneous. The non-

homogeneous part of the equations has the form of a driving

function. Finally the second order coefficients are

evaluated via a Green 5 function integral containing the

driving function of the particular coefficient. and the

solutions of the homogeneous equations.



A convenient

the matrices

V(9) =

2(9

 
Inspection of

of the I'OWS

A .D and E as defined by.

X(9f.

f 1

the differential

of

eliminate carrying

Vx( 9) =

  

9.)(

ei)( (Z) )9 +otef.ei) vtei)

 

statement

X

Z

A and

these

x

(3)9
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of

- X1x(9i) +X2 px(9i) + E(9

D will

VZ( 9)

the problem i S

+ A(9f.9i) V(9i)

that

.Gi) V(9i)

identically zero.

>
<
>
<
1

 I
I
)

D

X

l
N

rows we define.

 

equations 2-5 shows

we

that

require

some

SO 10
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Thus the equations become.

XX

( px)e = Xt9.ei) ( px)9i + Ate.ei) Vx(9i)

Z Z

( pz)9 = 2(e.ei) ( pz)9i + 0(e.ei) Vz(ei) . (2-6)

X(9) = X99) x(9i) + XEG) px(9i) + E(9 .Gi) Vx(ei)'

The elements of matrices A and D are simply the second order

coefficients of a Taylor's expansion of the coordinates. If

the differential equations (2-5) are written in matrix

notation. then they become:

g_ x _ x

d9( px)e - Kie) ( px)9 + «(9) the)

g_ z _ X -
ddpge—umtpge+vagm (2n

%(e) = m1 x(e) + m2 px(9) + HG) VX(G)

where the elements of «,B. and 3 are tabulated in table 2-1.

If the equations (2-6) are substituted into the

differential equations (2-5). the result will be a

differential equation containing terms to second order in

the expansion coefficients. Proceeding in this manner. and

retaining only terms of second order or less. Vx(e) and

VZ(9) are



25

  

Li1 x8 + 2 X11 x12 xo pxo + Xi2 pic 2

x11 X21 *3 +(X11 X22 + X12 X21)"o px0 + X12 X229:0

Vx = x21 “5 + 2 X21 X22 xo px0 + X22 9:0

zit 23 + 2 211 212 20 D20 + Ziz ”:0

211 Z21 2: +(Z11 Z22 + 212 Z21)20 pzo +z12 Z22 ”:0

221 25 + 2 221 222 20 p20 + 222 ”:0

_ .i

and.

x11211x020+x11212x0pzo+x12211px020+ x122129xopzt;

v2 = X11221x020+x11222xopzo+X12221px020+ X122229110sz

X21211x020+X21Z12Xo°zo+X22211pxozo+ X222129110sz

X21221xozo+X21222xopzo+X222219x020+ Xzzzzszopzo  I.
d

where the subscript zero implies that the initial values of

the coordinate are to be used.

Continuing the substitution and collecting the

coefficients of the initial values (x0.px0 etc.) a

differential equation for each first and second order

coefficient is obtained. The result shows a systematic

pattern.

X11 = k11 X11 + k12 X21 X21 = k21 X11 + k22 X21

X =k X +k X X =k X +k X

12 11 12 12 22 22 21 12 22 22
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Table 2-1. The elements of the arrays a and B. These arrays

contain the coefficients of the displacements

(x.px etc.) found in the differential equations

 

2-5.

_ 2 3

0‘12 ‘ p I 99

_ 2 s
«13 _ 1 5 r p pr / pe

« = 5 r p / p3

16 r 6

as 1 aze

“21 ‘ ' 6r ' 2 ' 6r2

_ g 2 3
«23 - .5 p / De

_ 5,(_2628+1§§+1628,
o(24 - 6r r 6r r2 66

a _122
25 pe 66

0‘26 = ' 5 ’ pe

_ _ 3

as aze pr aze 93 as
B =—+r——.—- —— B — —-
21 6r 6r pe 6r66 23 pg 66

_ 3
ZZ—Zprlpe

D2

1 r r

)3 — — l—— ( 1 + 3 —* )

p3 p2
6 6

z 12r_r
6 - 3
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+ fa = k a + k a2n 1n

1n 11 1h 12

aZn = k21 ain + k22 a2n +f2n

where the f's are functions of the first order coefficients

and the elements of «. These driving functions are tabulated

in Table 2-2. A more compact statement of these results is.

g—éx -_- K(6) x g—e-Z=L(9) Z

(2-8)

9—A =K(6)A+F(6) 9—D=L(6)D+G(6)
d6 n n n d6 n n n

(2-9)

1 (9) 9 (9)

I:n‘e’ ‘ 1:19) G'n‘e) = 9319)

(2-‘10)

a (6) d (9)

An(6) — 3;:(9) Dnie) — d;:(6)

9— X = m a + m a + h

d6 n 1 1n 2 2n n

The equations in the first row are the differential

equations for the first order coefficients. the solutions of

which are already known from section 2.2.2 . The

differential equations for the second order terms An and On

are very similar in form to the first order equations.

except for the presence of a driving term (Fn or On). Since
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Table 2-2. The driving functions which appear in the

differential equations 2-9. The values of the «'3

and the B’s are listed in table 2-2.

f11 = “12 X11 X21 + “‘3 X21

f12 = “12 ( X11 X22 + X12 X21 ) + 2 “13 X21 X22

f13 = “12 X12 X22 + “13 X22

f14 = “16 Z21

f15 = 2“16 Z21 Z22

f16 = “16 222

f21 = “21 X21 + “23 X21

f22 = 2 “21 X11 X12 + 2 “23 X21 X22

f23 = “21 X22 + “23 X22

f24 = “24 221 + “25 Z11 Z21 + “26 221

f25 = 2 “24 211 212 + “25 ( 211 222 + 212 221)

+ 2 “26 Z21 Z22

f26 = “24 222 + “25 212 Z22 + “26 222

911 = 212 X11 Z21 + 314 X21 221

912 = 212 X11 222 + 214 X21 Z22

913 = 212 X12 Z21 + “14 X22 Z21



Table 2-2 (cont'd).

C
O

t
o

t
o

ll

b
e

m d

X

A d

h1 = “2 X11 x21 +

h2 = “2 ( X11 X22

h3 = “2 x12 X22

h4 ‘ “6 221

h5 = 2 “6 221 222

3
'

II

N

0
'
) N

m
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the driving terms are only functions of the first order

expansion coefficients (which are known). the solutions to

equations 2-9 can be found using a Green's function.

9

An(6) = I Fn(6') A(6.6') d6' . and (2-11)

0 .

Bn(9) = Gn(6') A(9.9') d6' . ' (2-12)

(
a
h
—
,
6
:

where A is the Green's function.

The solution for the second order expansion coefficients

of the time. T. are much simpler. since the right hand side

of equation 2-10 involves functions of the first order

expansion coefficients only. Thus.

de' . (2-13)

6

3(6) =[(m1a1n(6‘) +m2 a2n(6') +hn)

0 .

If the Green's function is known then the second order

matrix elements can be obtained by numerically integrating

equations 2-11 .2-12 and 2-13 . along the E0 at the same

time as the first order equations are being computed.

2.2.4 The Green‘s Function16

The problem requires the solution of.
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I
O
.

[1 -K(9)]An(9) =Fn(9)

0
.

(
D

where l is the unit matrix and K is either K or L as defined

in equation 2-7. The solution. X of the homogenous equation.

'
0
.

[l -K(9)]Xn(9)= 0

Q
.

d
)

is known. The Green's function must be a solution of;

'
0
.

[Id

0

- K(6)] An(6.6') = I 6(6‘6')

subject to the conditions.

A = O 6 < 6'

and A(G = 9'+6 ) = I.

Since A is a solution of the homogenous equation for e > 6‘

(or 6 < 6') it must be a linear combination of X. If Y(e )

is a matrix to be determined. then.

A(6 > 6') X(6) Y(6')

The boundary conditions at 6 = 6' give,

A(6 = 6 +6) = l = X(e') Y(6‘)

f. Y(6') = x"(e’)

:. A(6.6’) = X(6) x'1(e')

A(6) = x1119) X22(6) - X12(6) x2119) = 1 so.

X22‘9') ‘ x12(9')

x‘1(e') =

—Lx21<e') X1119 a
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2.3 Crossing the Accelerating Gaps17

\Nhen the equations for the matrix elements are integrated

along the equilibrium orbit they start and end on radial

lines that pass through the point where the E0 crosses the

gap. As a result when the displaced rays are transferred up

to the gap. the values for the displacements (x.px. etc.)

are the values along a radial line. In order to compute the

effects of the acceleration correctly. the values of r. pr

and r are needed at the point the displaced orbit crosses

the gap. Since the values of the orbit at this point are not

known. they must be estimated. Moving the displaced orbit

onto the gap first requires the calculation of 66 (see

Figure 2-1). which in turn requires the value of 6r. The

angle of the gap 69(r) is a given function of the form.

99(T) =90' @(r),

which has been input to the program. In our case the gaps

have been entered as a table. (GAPTH). of theta values at

equal ARg intervals in radius. A double three point

Lagrangian interpolation18 is used to find the first and

’second derivatives;

0
.

O
.

fi
L
D
a
)

I

$
2

0
. 1
\
)

.
L
.

I

Q

N
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”no 0

mspucsp 0mm ‘ 60 - ( )

6mm 1121-1

GAPTHaR /”“‘G*P

) ’ \ R=(IR+1)I:AR.

Rn .

so

R-IRtt-AR.

  
Figure 2.1. The geometry of the gap crossing correction. The

gap position is given at points Gapth(ir). 66 is

the angle through which the orbit must be moved.
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The required 669 corresponding to a 6r (unknown) can be

divided into first and second order components. as can 6r.

802

Using the Taylor expansion for 669. and 6r.

d6 d26

66 :d—rgar+1—96r2
g dr2

d6 1c126 .

3 ——9 (6r + 6r ) + — ___9 5r2 (2-13)
di’ 1 2 2 2 1

dr

6r-x+r’ 66+%r"662

: . . . 1 u 2
x f (r0 + x ) 661 + rO 662 + 2 r0 <561

where the zero subscript indicates the E0 value. Collecting

terms of the same order.

6r1 = x + r0 1

5r = f 69 + X' 59 +
n 2

2 r <561

1

0 2 1 2 0

If these values for 6r are then substituted into equation

(2-13) and the first order terms collected.
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so,

1 1 - r0 (d69/dr)

 

66

Now that the values of 661 and 6r1 have been determined.

it remains to find 6r2.

 

- 1 . l .. 2
6r2 _ r0 662 + x 661 + 2 r0 661

d6 1d26 2

592 = ——gdr 6r2 + 5 —9‘2 6T1

d r

d6 d6 1 2 1d26
_ , g _ n _ 9 2
_ dr r0 662 + dr (x 661 +2 rO 661) + 2 dzr 6r1

_ . 1 n 2 1 2 2 2
662 — (x 661 +2 rO 661)(d69/dr) + 2 6r1 (d eg/dr )

1- r6 (d6 / dr)

9

So, using the appropriate values for the derivatives gives.

 

XCX1

591 = 1 r' a

01

(x 66 +lr”662)ot+-1-6r (x
1201 1212

592 = 1 - r‘ a
01

The procedure for calculating the changes in each of the

orbit coordinates introduced by 66 follows the same method

used to find 6r. If q is any coordinate then.

q * q + 50

where.
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Table 2-3. The derivatives of the orbit coordinates

necessary for the calculation of the gap

correction. The symbol ”q” is any of the particle

parameters. The primes are differentiation with

respect to 6.

Q 00 Q1 “0

2

p 2 D L_E_
r r r

r r p / p —— x + ——%— p —— r‘ + 3 p’

r 6 p9 pe x pa 0 p9 r0

0 D
r 68 r . 66 .

pr pe- r B - p px (B+rar)x -p pr0 (B+rar) r0

6 6

z 0 r pZ / pe O

p
68 r 68

pz 0 z (r 6r ' p 66 ) 0
6

l r l . r .

T 2 r./ p6 p x + 3 pr px p ro + 3 pr pro

6 p9 6 p9
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6q 1 q' 66 + q" 662

N
l
-
b

1 1 _1_ ” 2

(Q0 + q1 ) 66 + 2 Q0 66

The values of the necessary derivatives are tabulated in

Table 2-3. In order to compute all these derivatives the

p

values of p - r B B + r fig and r 66 - —L §§ are

6 6r r 9 6

stored along with the other EO values when the transfer

matrices are being computed.

Now that the values of r.pr and T are known on the gap

the effect of the RF voltage can be computed. The

computation of the acceleration process is identical to that

used in the numerical integration code "SPRGAPZ". and is

described in detail in reference 8. It suffices here to say

\

that both the energy and pr are modified by this routine.

Before proceeding to perform the transfer up to the next

gap. the values of the displacements on a radial line are

again required. Since the energy has changed. so has the

equilibrium orbit. and thus this is not simply a reversal of

the previous process This time both the azimuth of the E0

and of the orbit are known. ie.

66 = 669 - 66EO
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This time the difficulty arises because the values of the

displacement from the E0. along the radial line. are not

known \Nhat is known is.

x9 = r9 - rO

px = prg ' pr0

zg and ng

The subscript "g" refers to the values on the gap. In the

following. coordinates without a subscript will be

understood to be evaluated on the radial line that passes

through the point at which the E0 crosses the gap. The

required corrections 6r and 6pr are.

As before.

6r = r‘ 66 + x' 66 +
1

0 2

n 2

r0 66

59 = 592 (2-14). ~ 1
r prO 66 + px 66 +

2 pr0

The displacements on the gap (which are known) are given by.

x = r -r = x +6r

g g 0

p = p - 9,0 = p +<Spr
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Putting these values for x and px into equations (2-14)

gives.

2

6r = v 66 +-1 M662 + (-l-x ..1—2- p ) 66 -J-66 6r
0 2 pa 9 3 xg 9

p
6

r 2

—§— 66 6p

D6

6 - ' 66 + 1 " 662 [ EL - t B r 99 ] 66
Dr - pr0 2 pr0 + ' p9 pxg + 6r ) xg

p

+ [ -L 69 + ( B + r 92 ) 6r ] 66 .
pe r r

Rearranging these equations and identifying the derivatives

of x and leads to.

g pxg

Pr r 2

6r(1+-6—66)+(——;L-66)6pr=Ar

9 De (2-15)

6r (8 r 22) 66 (1 EL 66 ) 6 - A
‘ + 6r + ' pr ‘ or

where Ar and Apr are the values of 6r and 6pr respectively

if x9 and pxg are used in place of x and px. Equations

(2-15) are a set of linear equations in 6r and 6pr. the

solution to which is given by.

Dr
2

6r = [Ar - i —— Ar + L—B— Apr} 66] / DET

pe 9%
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6p = [Ap + { -L Ap + ( e + r as ) Ar: 66] / DET
r r pe r r

p2 68 r 2

DET = 1 - r 662 + ( B + r —— ) ——E— 662

32 r p“
6 6

It is necessary to retain all the terms so that if the

accelerating voltage is zero. moving onto and back off the

gap will not result in a change in the values of the

coordinates. Calculation of the changes in z and p2 follow

the same pattern. so:

62 = - p 66

De 2

5 _Z(.2§_E_r_22)59
pz _ 6r p9 66

62 — L 66 6 )- p ( 929 oz

6

6 - ( r fig - EL fig ) 66 ( z 62 )
p2 ' 6r pe 66 g

r f

62 + — 66 6p = — 66 p = A2

p z p 29
6 6

(.22,p_r_a_§)5952.5 _(,22-p_r§_§)592 _Ap
6r pe 66 p2 _ 6r pe 6 g - z

62 = [ Az - 1 66 Apz ] I OETZ



p

68 r 68

6pz = [ Apz - ( r 6r - pg 66 ) 69 62 ] / DETZ

DETZ _ 1 - L ( 1' LB. . _p._r is. ) 592

— pe 6r pe 66

The calculation of 67 is considerably simpler. because

there are no coupled equations. The correction to r is.

6T=T'66+r’66+16662
O 1

in which the only unknown value. 7} . depends on x and px.

¢‘ = —l— x + l—L p p = -l— (x - 6r) + 1—L p (P ' 50 )

1 De 3 r x De 9 3 r X9 r

D6 ‘36

_ l x + Li D p UL _ u p 6p

99 9 D3 1' X9 De D3 1' 1'

6 6

= ML, 14 p 5.,

19 D 3 r
6 p 9

So.

Once the corrections have been computed the substitution.

q * Q +5Q

is made. and everything is set to make the transfer to the

next gap.
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2.4 Program Algorithms

SOMA is designed to operate as a self-contained unit with

the exception of the magnetic field grid which must be

produced by a separate program (the grid is the same as that

used by SPRGAPZ and CYCLONE). At the beginning of each run

the program either computes the transfer matrix elements or

reads them in from a binary file produced'during a previous

run. If the matrices are to be computed then the magnetic

field and gap table are read in. Then the program searches

for equilibrium orbits using the procedure of Gordon and

Welton19 . for a set of specified energies. After each E0 is

found a search is made for the points at which the E0

crosses the gaps. and when found the values of r.pr and 6 at

these points are stored. A separate routine is then used to

integrate the equations of section 2.2 along the E0 from one

gap location to the next. The integration technique is again

a standard Runge-Kutta15. in the input stream it can be

specified whether first order elements or both first order

and second order elements are to be collected. The input can

also specify up to 10 fixed angles at which the transfer

matrix coefficients will be stored. Currently the fixed

angles must fall on a standard Runge-Kutta step. After this

procedure is repeated for all the selected energies. and if
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the main probe option is selected. a probe transfer matrix

is then computed for each energy. This is done by

integrating from gap 6 up to the track location. which has

been input as a table of r.6 values. Finally all the

transfer matrices are stored on binary files.

Once SOMA has an appropriate set of transfer matrices. it

then reads in the parameters common to all particles. This

includes the dee voltage. the locations of slits and probes.

and the set of transfer equations required. In fact several

options exist for the transfer as shown in Table 2-4.Care

should be taken when choosing options other than 1 and 6.

since these two are the only cases in which a complete

expansion to a given order is done. That is to say that case

Table 2-4. --The order of the various parts of the transfer

as a function of the input parameter N.

 

 

 

N x z

1 first first

nd . st . .

2 2 In x0,1 in 20 first

3 1st in x and 2 second

0 0

nd . st .

4 2 In x0. 1 In 20 second

nd . .

f5 2 in xoand 20 irst

nd .

6 2 in x and 2 second
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one is the first order solution. case 6 is the second order

solution. and all the others are a mixture of the two. For

example. if N=4 then the program uses exact median plane

equations of motion. allows x to couple into 2. but does not

couple 2 into x. Cases 2 through 5 are useful for

determining what terms are responsible for a given effect.

The next step is computing the starting conditions for

all the particles (up to 5.000 may be run) and storing them.

The various possible sets of starting conditions are

discussed in section 2.5 . Particles are then run one at a

time. each being run until it reaches a turn limit. an

energy limit. or a radius limit. whichever comes first.

At each gap a test is performed to determine if any

requested fixed angles fall between the current gap and the

next gap. If a fixed angle is found then the particle

parameters (x.px.z.p .r.r.p ) are computed for that angle

and stored. The fashion in which the parameters are stored

depends on what the fixed angle has been designated to

represent. After all the fixed angles found have been

computed. the program proceeds to compute the transfer to

the next gap. At the gap. the parameters (E.x.px.z.pz.r) are

updated as described in section 2.3. and the process repeats

itself as often as necessary, It should be noted that the



     

 

Figure 2-2.
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\ — — — EO'S

\ 11 STORED VALUES

0 mmapmnmn

CURRENT GAP

The result of a fixed angle crossing a gap. The

transfer matrices of the orbits labeled 1.2. and

3 are correct for a transfer from the current

gap to the fixed angle. while that for orbit 4

is not. In this case the orbit being calculated

would use the values stored for 1.2.3. and 4

when the interpolation is being done. and would

give an incorrect result.
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computations for the fixed angles in no way affect the

values at the gap.

There is a difficulty that occurs in the region where the

fixed angle crosses the accelerating gap. The problem arises

because the values of the matrix elements are found by

interpolating between values that are stored for fixed

energies. In Figure 2-2 one possible scenario is

illustrated. In this case the transfer matrices stored for

orbits 1,2. and 3 correspond to transfers from the current

gap to the desired fixed angle. but the one stored for orbit

4 is a transfer from the next gap to the fixed angle (see

arrows). If, as in this case. the interpolation for the

matrix elements on the orbit use the values for orbit 4 and

orbit 3 then the results will be incorrect. It should be

noted that' there are currently no structures in the K500

cyclotron that cross the accelerating gaps. Nevertheless the

program prints an error message when a transfer of this type

happens.

The fixed angles can be designated as one of two things.

either a flag or a probe. The flags themselves are divided

into two groups. intercepting and non-intercepting. At a

flag if the particle lies between the minimum and maximum

values for that flag. the orbit parameters are stored. If

the flag is intercepting then the particle IS considered
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removed from the beam. and the next particle is begun.

otherwise the run continues unchanged. After “all the

particles have been run the program will produce scatter

plots of any pairs of the orbit coordinates, at any of the

possible 20 flag locations. A slit can be described as 2

intercepting flags located at the same azimuth. For detailed

ray tracing the particle parameters at all gaps and azimuths

(or some combination thereof) can be printed out.

A probe consists of a differential and a main jaw. which

can have up to 3 axial divisions or 60 phase divisions. The

probe is considered to move outward in radial steps. Upon

finding the orbit parameters at the probe azimuth the

program determines in which steps the particle would give a

current reading. The requirements for this determination are

that the probe location does not intercept an earlier turn

of the same particle. but does intercept the the current

turn. For each bin that these requirements are met the bin

count is augmented by 1. There are 20,000 bins available to

be divided between the z (or 6) bins and the radial bins. At

the end of the run the probe bin values are written in a

binary file which can then be used as input to a plotting

routine.
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2.5 Starting Conditions

A transfer matrix program is used to run large groups of

particles, so the generation of starting conditions is of

great importance. As a result the program offers a variety

of methods. each with its own particular use. The input

routine has the ability to calculate the horizontal and

vertical eigen-ellipses. the accelerated equilibrium orbit

(AEO). and the average central phase. all at a given energy

known as the central energy. Any combinations of these

values can be used by the various routines used to generate

the starting conditions. or the values of these parameters

can be set in the input stream.

The simplest routine reads in the values E (energy).x.px

.z. and p2 on gap 1 for each particle. A similar but more

complicated routine reads in the values of E.r.pr.z. and p2

on gap 1. These two crude techniques are oriented towards

cases in which either specific orbits are being tracked. or

the initial conditions are being determined by another

program. The first technique can also be used to re-start a

previous run from the stored final conditions.

The next group of routines are those designed to generate

the starting conditions for a group of particles which fill

ellipses. The ellipses can be either eigen-ellipses or be
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input as a major axis. minor axis and a tilt. The center of

the x.p ellipse can be displaced from the equilibrium

x

orbit by either an amount determined to be the offset of the

AEO or by an amount given in the input stream. In all these

cases a specified interval of phase is divided into equal

steps, and each starting phase is given an ellipse to be

filled using one of the technrques discussed below.

In chapter 5 a special input routine is used. In this

case it was desired to run a set of particles which matched

the conditions at the exit of the central region. In Figure

2-3 the energy and the displacements x and px for a group of

particles which were run outwards from the spiral inflector

for seven turns with the program CYCLONE are shown. Each of

the rays run would in effect be a central ray for a given

phase. In each frame the solid line is a function of the

form noted in that frame. It can be seen that with

appropriate choice of the slope. the linear approximation

for x and px is quite good.\Nhen using this special routine.

instead of keeping the displacements in x and px for the

center of the x-px ellipse. and the starting energy. the

same for all starting phases. the coefficients of these

functions can be input to SOMA and it will use them to
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calculate the ellipse center and the initial energy for each

starting phase.

In the other ellipse-type routines the starting energy

can be randomly distributed about the central energy if

desired. In all of these cases the ellipse can either be

uniformly populated. or randomly populated. The most

convenient choice is to populate the ellipse being studied

uniformly. and to populate randomly the other ellipse, (eq.

uniformly populate the x-px ellipse and randomly populate

the z-pz ellipse), to get an idea of the spread caused by

the coupling. Uniformly populating both ellipses implies a

large number of particles. The random population is produced

using a standard random number generator to select x and px

values between 0 and the ellipse maximum. Then the program

checks to see if the coordinates fall within the ellipse

proper. and if not it selects new values for x and px. until

they do. The uniform population is done by assigning a

square of fixed area to a point which is located at the

center of the square. Points are placed in phase space until

no more squares will fit into the ellipse.
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2.6 Comparison of SOMA with SPRGAPZ

In this section the results of median plane calculations

with the program SOMA will be compared with the results

obtained with the orbit integration code SPRGAPZ. The tests

discussed are only a sample of the many checks preformed.

The program SPRGAPZ integrates the exact median plane

equations of motion, and the linearized z motion equations.

This allows the coupling of the x motion into the z motion.

but not the z motion into the x motion. In the following

section comparison of the z motion will be done with the

program SPRGAPZ4 which uses equations for the vertical

motion that are valid to fourth order in 2. There are three

areas from which one expects to generate differences between

SOMA and SPRGAPZ. The most obvious source is the transfer

matrices themselves. As the transfer matrix technique is an

approximation of a given order there will be contributions

from the higher order terms. In this case it is expected

that the error would be proportional to the next term in the

Taylor expansion. In Figure 2-4 the differences after one

turn (without acceleration) are shown. As in all the figures

involving comparisions of orbits between SPRGAPZ and SOMA

the differences are plotted against a measure of the initial

displacment from the E0. In each a set of rays lying on the

boundry of an eigen-ellipse was run. and the maximum
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1 TURN STATIC
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Figure 2-4. Differences between SOMA and SPRGAPZ as a

function of the initial displacements from the

E0. Each ray was run one turn without

acceleration. The initial conditions of each ray

are such that it falls on the boundry of an

eigen-ellipse of area (0.2)f2 mm-mrad. The

stability region ends around f=150.
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difference for each ellipse was plotted. The area of the

eigen-ellipse was 0.2f2 mm-mrad. If the expansion is done to

first order the error function goes as (5.6E-6)f2. At this

radius. (16"). an emittance of 5 mm-mrad corresponds to a

maximum orbit center displacement of 0303". If the expansion

is taken to second order the the error is proportional to

(1.6E-8)f3, in other words the errors are third order in x.

In the first order case the results are exactly the same as

that found if the first order equations of motion are

integrated numerically. Note that this is not true for the

second order case where the solution is to second order in

the exact first order solution. not an exact solution of the

non-linear differential equation.

There is also a difference generated by the interpolation‘

of the matrix elements when the orbit's energy lies between

the stored values. In Figure 2-5 the differences between

SPRGAPZ and SOMA are plotted for different interpolation

step sizes. For each step size a ray was run whose energy

was exactly halfway between two stored values. (the worst

possible case). The initial condition of the ray was a

displacement of 0.003". and the results are plotted after

one turn without acceleration. At this energy (11 MeVi a

step size of .2 Mev results in differences of less than a
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tenth of a mil. Larger step sizes lead to much larger

errors.

The third source of differences is the gap crossing

routine. These are the hardest to measure as they only occur

when the accelerating voltage is on. so both of the other

two effects will be present at the same time. The situation

is also confused by an uncertainty in the location at which

the orbit crosses the gap. Since the final orbit is not

sensitive to small variations in the gap position this

uncertainty is only a problem when looking at specific

values on a gap. In Figure 2-6 the differences after 100

turns with acceleration are shown as a function of the

initial displacement from the E0. These differences are the

sum of all three sources of error. As can been seen in the

figure the differences for first and second order do not

have different slopes as they did in Figure 2-4. This is

mostly caused by the fact that accelerated orbits are always

displaced from the EC. so even the F=0 ray has a displacment

of at least 0.02” from the E0 at many points. There are also

errors caused by the gap crossing routine. which are

seperate from those caused by the expansion technique. A

comparison of a first order transfer with first order gap

crossings. and a first order transfer with second order gap

crossings is also shown in Figure 2-6 . This illustrates
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that the orbits are relatively insensitive to the gap

position. Those differences that do occur, arise because of

differences in the energy gain as shown in Figure 2-7. In

this figure the the difference in energy is plotted for the

same rays as shown in Figure 2-6. For the rays of small

initial emittances the error is 5 parts in 107. which is the

same magnitude as the round-off error. The difference in x

for a ray which is initially 30 mils from the E0 (e=5mm-

mrad) after 100 turns. is only 1 mil in x and pX combined.

certainly adequately small unless ray tracing is being done.

2.7 Treatment of Harmonic Field Bumps20

As shown by M.M. Gordon35 the perterbations of the radial

oscillations due to asymetric accelerating kicks. can be

duplicated using an equivalent field bump. It is therefore

reasonable to assume that the effects of the field bump can

be represented by making appropriate changes in pr (and p2)

at each of the 6 accelerating gap locations. That is to say

the field bump is to be represented by a series of delta

functions. such that.

b(r.9) = I uk(r) ale-ek(r)). k=1.2 ..... 6.
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The values of the uk(r) can be chosen to give the

appropriate first and second harmonic bumps. while

suppressing all 3N components.

Using equations 2-4 we find that the appropriate momentum

kicks must be such that.

I 6pr(k) = -r b

p

as 4.219.
2592(k) =2[ l' r' p 59]

9

b = g1sin(9) + h1cos(9) + gzsinl29) + h2cos(29).

where g1.h1.g2 and h2 are the measured bump components at

this r. VVe therefore define q(,w<. and w( such that at gap k

the impulses are;

p
r

éprlk) = -r uk . and 602(k) = z r vk + zfpe wk

so:

E uk6(9-9k) = g1srn(9)+h1cos(9)+g25in(29)+h2cos(29)

99 - AH 99 - EH
2 vkaie-ek) dr‘Sln(9)+dr‘COS(G)+dr28ln(29)+ 2cos(29)
k dr

E wk6(9-Gk) = h1sin(G)-g1cos(9)+2h25in(29)-292cos(28)

Using orthoganality these three equations give us four

linear equations for each of u.v. and w. The 3N harmonics

can be surpressed by requiring that the Sum of the even k
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terms and the sum of the odd k terms are zero. and thus

there are six equations for six unknowns In matrix notation

the linear system to be solved is,

      

'sin(61) sin(92) ...... sin(66)1 Tu1 v1 W11 '9‘ dg1/dr h1 '1

008(01) 005(92) ...... cos(66) u2 v2 w2 h1 dh1ldr -gl

sin(291) sin(292) .... sin(296) U3 v3 w3 = v 92 dgzldr 2h2

cos(29,) 003(292) .... cos(296) U4 v4 w4 h2 dh2/dr -2g2

1 0 1 0 1 0 U5 v5 W5 0 0 0

I0 1 0 1 0 1 j _06 v6 wsj Lo 0 o J

SOMA uses the IMSL. (International Mathematical and

Statistical Libararies INC). subroutine LEQIF to solve this

system of equations at each radius value at which a bump

profile has been given. The values of uk.vk and WR are

stored in a table at the beginning of the run. Each time an

orbit crosses a gap. (k). the program interpolates in the

table to find the values for uk.vk.wk at the orbit radius.

and then computes the impulses.

6p = -r u

r R’

Dr
ODZ=Z(TVk+b—Wk)

9

Figure 2-8 shows a typical example of an orbit calculated

with SPRGAPZ and SOMA In this case the orbit begins on the
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B1 =0.018 ¢1 = 180°
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Figure 2-8. A sample precession cycle as calculated by

SPRGAPZ and SOMA for a field with a first

harmonic. The orbit began on the E0.
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ED for E=4 MeV and then the bump causes it to precess. VVhen

run with a wide varity of initial conditions. and different

bump magnitudes the results were always qualitatively the

same as those shown in Figure 2-8.

2.8 Vertical Motion

In order to observe the non-linear z-motion offered by

SOMA a simple comparision case was run. A set of 64 rays was

formed from all the possible combinations of eight rays

located on the perimeter of the vertical eigen-ellipse with

emmitance of 75 mm-mrad, and eight rays located on the

perimeter of a 35 mm-mrad eigen-ellipse in the horizontal

plane. The magnetic field was the same 12C3+ 3O MeV/u field

used before. so the emittances correspond to a final

emittance at extraction (30 MeV/u) 0f 62:30 mm-mrad and 5x Z

14 mm-mrad. The same rays were also run with the code

SPRGAPZ436 which correctly treats the magnetic field to

fourth order in 2 (ie. the equations of motion have terms of

fourth order in 2). All particles were run for 300 turns

(field geometry was for a 500 turn total). so most of the

acceleration region is covered.

In Figure 2-9 are shown the results from both the SOMA

and SPRGAPZ4 runs In both cases the points all lie very
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near the eigen-ellipse, and the spread due to the different

x-p values is approximately j"0.02" on an ellipse with a

half major axis of 0.2". The fact that this spreading is

very similar in both cases indicates that the contribution

of the 23 term in SPRGAPZ4 is very small. since it is not

included in SOMA. There is however a small difference in the

amount of rotation around the ellipse boundry in the two

cases which leads to a possible combined z.pz error of

0.026". This is probably again caused by the poor EO closure

on the spiral gaps. If SOMA is run without the x motion

coupling into the z. (N=5 in Table 2-4), then the 8 points

in each group become one as would be expected.



3.0 A Computational Examination of Phase

Selection in the K500 Cyclotron

3.1 Introduction

Phase Selection is generally used in cyclotrons when it

is desired to (achieve single turn extraction and its

associated benefi1521. Although we may wish to take

advantage of single turn extraction eventually . our initial

goal is to achieve. separated turns over most of the

acceleration region so that detailed accelerator studies can

be carried out. As shown in Figure 3-1, the high magnetic

field in the K500 cyclotron leads to a turn separation which

is rather small compared to the turn width associated with

the phase spread. If one also includes the spatial extent of

the beam (the x.px size) then it is apparent that with the

:150 phase width transmitted by the central region. distinct

turns would be observable only for the first few inches. If

on the other hand the phase width were reduced to i 20.

separated turns would be observable for all of the

acceleration process and beam centering c0uld be

determined. Centering is of great practical importance

66
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Figure 3-1. Plots of simple estimates of the turn separation

and turn widths associated with different phase

widths. The turn separation (solid curve) is

estimated using ARzAE'R/Z'E while the full width

of a turn with a given Ad is found using

AR=(A6)2'RI4.
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because it reduces phase oscillations, minimizes the

effects of non-linearities and makes extraction much less

22
sensitive to the dee voltage . Separated turns also allow

the measurement of the radial focusing frequency vr . and.

with an induced coherent oscillation. the axial frequency

Phase selection in cyclotrons is performed by taking

advantage of the coupling between the radial (r.pr) and

longitudinal (E-d) motions of the particlesza. Figure 3-2

gives a typical plot of radius versus starting time. Note

the horseshoe shape. with the peak occurring at the starting

time corresponding to the largest average energy gain per

turn up to that point. The shape of this curve is a direct

consequence of the cos(¢) dependence.(where d is the average

phase). of the energy gain. In the case of an axially

injected beam it is possible to populate all the starting

phases that will clear the posts in the central region. VVhen

running with an internal ion source this is not necessarily

true as the source to puller voltage is used to pull ions

from the source and thus the density of ions will be

dependant on the starting tune.\Nith the flexibility offered

by an axial injection system it is pOSSibIe to deSign the
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resulting from the c03(¢) dependence of the

energy gain.



7O

central region to allow only the desired portions of the

curves in Figure 3-2 to survive the first turn.

At the center of the horseshoes in Figure 3-2 there is

no radial dispersion with phase. On the other hand. on

either the leading or trailing edges, the radius is strongly

dependent on the phase. As we wish to separate particles

with different phases on the basis of the radius differences

this feature will be very much needed. (In section 3-4 there

will be a discussion of how the slope of the curves can be

modified). Given that we require a one-to-one correspondence

between radius and phase. it will be necessary to insure

that only one side of the horseshoe is p0pulated.lNhen the

beam is axially injected into the K500 the particles with a

starting time of 'ro=250O have the largest energy gain per

turn in the middle of the cyclotron. ie. by the time they

reach 15” they are at the center of the horseshoe. Also the

particles with 70:260O have the least centering error at

15". so it would be advantageous to populate the starting

phases between 2500 and 260°. The process of selecting which

starting times are populated will be referred to as "coarse

selection”, since lit will limit the phase width in the

machine to :100. while the more careful selection at 7" will

be referred to as "fine selection".
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Figure 3-3.

 
 

Electrode structure for the K500 first harmonic

central region using a PIG source. Four orbits

are shown corresponding to starting times (from

outermost at 0:00 to innermost). 70:230.240.250.

and 260 degrees. The peak electric field between

the source and puller is achieved at 10:270. A

slit is located on the 00 hill extension of the

center plug allowing easy installation and

removal. This slit removes all particles whose

starting times do not fall between 230 and 250

degrees.
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3.2 Coarse Selection

The first stage of the phase selection process is a

coarse selection made near the center of the machine where

the large turn separation allows the installation of a slit

with a large enough frame to avoid the possibility of

undesired phases passing outside the frame. If such a system

were designed to transmit only 200 of phase the situation

illustrated in Figure 3-2 would be single valued. In Figure

3-3 such an aperture is shown for the first harmonic central

region using a Penning Ion source. In this figure we have

superimposed 4 orbits on a median plane section of the

central region electrode structure. The four rays have

0 O 0

starting times .70 .of 230 .240 .250 . and 260° and an

initial x=px=0. As shown. only the 2400 and 2500 rays pass

through the slot formed by a U shaped block mounted on the

hill portion of the center plug. (2300 almost does). (By

locating the slit on the center plug it can be removed and

inserted by pulling the center plug. a considerably easier

task than raising the magnet cap.) Since a To of 2700

corresponds to the peak electric field in the source-to-
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Figure 3-4. The electrode structure for the first harmonic

central region with axial injection. The window

frame attached to the dummy dee following the

puller is used to neutralize the coupling

between the first and second dees. Five orbits

are shown corresponding to starting times of

2300 (outer-most at window).240°.250°.260°. and

270° (inner-most). By narrowing the radial width

of the window it will be easy to remove those

starting times lying outside 245° to 260°.
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puller gap it is unlikely that many ions outside the 230°-

260° range shown can enter the first turn. In the case of

later starting times (towards 270°) there is insufficient

time to cross the source-to-puller gap, and for the earlier

times there is insufficient electric field to pull the ions

from the source. The solution in the case of an axially

injected beam is quite different as shown in Figure 3-4 for

a first harmonic mode. In this central region the RF

coupling between dees is neutralized by a window frame

structure mounted on the dummy dee which screens one dee

from another. By enlarging the radial extent of the vertical

sections of this frame it can also be used to select a group

of starting times. in this case between 245° and 260°. “Nth

\

this particular central region the r =250° ray has the least

0

centering error at 15". whereas. in the PIG case best

centering occurred for the ray with 10:2400. In both cases

the phase spread transmitted by the narrow slit is

approximately 1 10° around the "centered" orbit.
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-------------- Inflector entrance

inflector exit (from x-space)

------ inflector exit (from y—epace)
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RF time differences for particles on the

boundary of a 1000 mm-mrad phase space with

respect to the central ray. The dotted line

indicates the difference at the entrance of the

inflector. The solid and dashed lines show the

differences at the inflector exit. The abscissa

is just an arbitrary parameter around the

boundary of the phase space.
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3.3 Phase Selection for Axially Injected Beams

Conventional wisdom would say that a phase selection

system is not necessary when the beam is being axially

injected. since the beam can be pre-bunched before entering

the cyclotron. In fact we do use a buncher located just

before the entry into the cyclotron yoke. but there is a

fair amount of de-bunching of the beam as it traverses the

yoke2°and inflector. This debunching is illustrated in

Figure 3-5. where the difference in starting times is

plotted as a function of particle number. (There are 8

particles distributed around the perimeter of an ellipse.)

As the bunched beam will have a phase spread in the

neighborhood of ten degrees the beam entering the cyclotron

will again have a phase spread of thirty degrees: the only

difference now is that the buncher phase is another

adjustable parameter. In the case of the axially injected

beam there is a further concern that the non-linearities in

the spiral inflector will produce a distorted phase space

which could make phase selection difficult. To reduce this

effect we can work with a small beam spot. It was found that

if the analysis System in the beam transport system was used

to select a beam with an emittance of 250 mm-mrad

(unnormalized). that after the strong focusing that takes
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place during the yoke traversal. the beam spot size at the

entrance to the inflector would be 1 mm in diameter. The gap

in the inflector is 4 mm. so a 1 mm beam should pass through

sufficiently far away from the electrodes to avoid serious

non-linearities. (See Figure 3-6, a plot of x-px at the exit

of the inflector.) To insure that the spot size at the

entrance of the inflector is indeed 1 mm in diameter the

collimator at the inflector entrance could be replaced with

one that has a 1 mm hole instead of the usual 4 mm. In cases

where the beam intensity from the ECR ion source is high.

this will still leave sufficiently large beam currents to

run experiments. So far as distortions are concerned the

only remaining question is whether or not the electric

fields on the first few turns would distort {he phase space.

In Figure 3-7 we show the results when a group of eight rays

populating the perimeter of the ellipse shown in Figure 3-6

are accelerated forward 3 turns using the Program CYCLONE25.

This program integrates the equations of motion in the

measured magnetic field and in an electric field which has

been computed with a relaxation code. For each ray several

different starting times were run. so the values of R and Pr

at the final position are plotted as a function of the

average phase on the last turn. By interpolating to get the



Figure 3-7.
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The B and Pr plotted for a group of rays that

started on the perimeter of the ellipse shown in

figure 3-6. after 3 turns. as functions of their

average phase. In the middle frame the results

of interpolating to find each ray at an average

phase of -4° is shown. Note the ellipse shows no

distortion.
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TURN NUMBER

Radius difference ri-r at 9:840 vs turn number

0

for a family of central rays. Ray 0 leaves the

source at 70:2350. the others at the times

labeled on the plot. At turn 33 a bar of :.02

inches is shown to give an idea of the radius

variation expected from the r.pr distribution

around the central ray.
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FI.Pr values for the particles with the same average phase we

get the ellipse shown in Figure 3-7, which is almost

distortion free. as desired. The use of particles with the

same average phase is particularly important since these are

the particles which will have the same energy gain per turn

and therefore they will all arrive at the deflector with

almost the same energy. Also by using this grouping of the

particles one avoids an apparent distortion which is

actually due to the energy dependence of R and Pr'

3.4 Fine Selection

Upon leaving the central region the beam is well

behaved and has a phase width of approximately 20°. It

§

. . . 0
remains to .reduce this 20° to something of the order of 4

0. As is apparent in Figure 3-8. at this level of phaseor 5

selection the radius spread due to the phase is comparable

to the beam spot size. so the interaction between these two

must be taken into account. To achieve the best possible

selection one would like to place the next set of
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Figure 3-9. A reprsentative K500 phase curve determined

using the standard procedures The arrow is

located at the radius of the fine selection

system.
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obstructions where 0. defined by2°z

Q=IAR)/IA¢) , (3-1)

AB = 8(02) - 5(01) A0 = a - a

is a maximum. At the same time it is advantageous to do the

selection as near as possible to the center of the machine.

where the beam energy is low. so as to reduce the possible

activation of the cyclotron components. At any given radius

the AR term in equation 3-1 is a result of two separate

effects. First there is the change in radius associated with

the energy difference between two particles with different

phases. It can be shown2°. that a good first order

approximation for the energy difference is.

r

AE 3 - Ad J sind dE

and the resulting radial difference is given by.

AR =
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From these equations it can be seen that the maximum value

of 0 would be obtained when Jsind is a maximum. Figure 3-9

shows a representative phase curve and the JsinddE for the

K500 cyclotron. At 7” the integral of sind is large but is

not at a maximum. Increasing the value of the integral at 7”

would entail sharpening the initial drop in the phase curve.

which would lead to a quite different phase history for the

inner part of the machine. The phase curve shown in the

figure has been chosen to meet several important criteria.

First the large initial positive phase is chosen to gain

electric focusing in the first few turns. The negative

excursion and subsequent rise back to zero, which is

centered about 6". is a result of tailoring the field so

that v2 at 6.5" does not become too small. At this radius

the energy is too large for there to be much electric

focusing. but the flutter is not yet at a maximum. so a

small gradient is added to the field to raise the vertical

focusing. At the same time the initial fall-off of the phase

curve (inside 2") is determined primarily by the iron

geometry of the cyclotron and thus is not easily changed

with the trim coils. It will be shown below that with a

phase curve determined by these criteria (such as that shown

in Figure 3-9) the Q will be sufficiently large at the phase
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Figure 3-10. A schematic of how a single post can act

manner similar to a slit. The inner edge of

post scrapes off those particles with too large

a radius. while the outside scrapes off those

with too low a radius on the next turn

dotted region is the surviving beam while

cross hatched region is the removed beam
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slit location. Since this process also produces a magnetic

field with good values of vr and v2. trim coil power. and

the integral of sind at extraction (near zero). it will be

used in the subsequent calculations.

The second source of radius variation with phase is

centering. \Nhen particles cross the initial gap between the

source and the puller the energy they gain is significantly

larger than their initial energy. thus their total energy at

the exit from the first dee is very sensitive to the voltage

present on the dee at the time of crossing. Since the dee

voltage is a function of phase the energy will be strongly

dependent on the phase of the particle. In the K500

cyclotron the details of the central region require that the

phase at the first gap crossing be different from zero.

otherwise the radius spread could be made small by running

near 10:2700. As seen in Figure 3-4 the variation in energy

leads to a large difference in radius at the exit of the

first dee. From this gap onward the percentage change in

energy at a gap crossing decreases. Soon all the particles

have similar rigidities. but the differences in radii

remain. so each starting phase will have a different orbit

center. All the particles begin their trajectory at the same

point (the source exit). so as the orbits precess about the



88

equilibrium orbit. there will be approximately two locations

per turn at which the orbits are all at the same radius. In

the K500 the fine selection will be done at two locations,

120° apart (but on the same turn). If the phase dependent

centering were arranged such that the radii were either

dispersed or focussed at one slit location. they would not

be at the other location. Phase dependent centering is

extremely sensitive to the central region geometry. so the

best method of studying it is direct orbit integration. the

results of which will be discussed below.

In Figure 3-8 we plot the radius differences ri-r0 at a

fixed azimuth, where r is the ray which leaves a Penning

0

Ion Source at T0=235° ( the results for an axially injected

beam are qualitatively the same). At the radius of turn 33

(approximately 7") there is a space between trim coil number

2 and trim coil number 3, so at this radius in the center of

the hill a 112” diameter access hole passes from the liner

through the pole and exits on the magnet cap. To preserve

the magnetic Symmetry there are six such holes but because

of the space requirements of the system only two of them are

usable. one on hill A and the other on hill B. As can be

seen in Figure 3-8 the Q at this turn is quite good ( for

particles near To :235° ). while the turn separation is
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still about 100 mils (see Figure 3-1) and the energy is only

606 of the extraction energy. Included in this figure is a

bar of i .02 inches. which is intended to give an indication

of the radius variation expected from the x.px distribution

around the "central ray”.

The 100 mil ( 100”) turn separation at this radius is

insufficient to allow the insertion of a slit. but will

allow the insertion of a post between turns. Although posts

are less common than slits they have been used at other

laboratorie52° with good results. In principle. after two

turns the post has had the same effect on the beam as a

slit. so long as the size of the post is such that it

scrapes beam from both the turn before it and the turn after

it. as modelled in Figure 3-10. In this mode of operation

the high radius particles are scraped from turn ”n” on the

inner edge of the blade and the low radius particles from

the turn "n+1” on the outer edge of the blade.\Nith vr 31.01

the composition of the beam at turn "n+1" is little changed

from that at "n" and the post has removed the high and low

radii from the successive turns just as a slit would from a

single turn.

A more detailed analysis of the selection

process.involving the x.px spread of the beam, is presented



Figure 3-11. Radius

time
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plotted as a function of the starting

for turns 32.33 and 33 for the PIG

geometry in the upper sequence and for turns 29

through 32 in the lower plot for the ECR

geometry. Associated with each central ray is a

set of 8 rays that populate the circumference

of a .02 inch radius circle in R.Pr space. From

left to right: the first one shows the

situation at 0:84 before the blades are

inserted. the next one shows the situation

after a 60 mil blade has been inserted at 84°

and the third shows the effect of inserting a

second

frames

9:2040.

around

space

blade at 0:2040. The following three

give the the analogous situation at

Note that the final phase width is

4 degrees and the full 0.02 inch phase

around the central time survives. The

rays with different R.Pr values have a starting

phase that gives them the same energy gain per

turn as the central ray with which they are

associated. thus the horizontal label is

actually a measure of the energy gain per turn.
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Figure 3-12.

   
0.09

R (in) R (in)

A simple demonstration of why two slits are

required to do a careful phase selection. Shown

are two bundles of rays with a one degree phase

difference. Note that at the first azimuth it

is impossible to remove all of one phase

without affecting the other phase. After the

particles have traveled 120° in azimuth they

have executed a thifd of a betatron oscillation

as highlighted by the cross marking the same

ray in both frames. As the shading demonstrates

it is now possible to remove almost all of the

unwanted phase. In this particular example the

two phases are sufficiently close together that

a small amount (the unshaded portion) of the

unwanted phase passes the second slit.
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in Figure 3-11. In this figure we have plotted the radius

against a pseudo starting time for three successive turns at

the location of the phase slit holes. The horizontal label

is referred to as a pseudo starting time because the actual

starting times for rays with different values of r.pr have

been adjusted27 so that all rays with the same horizontal

label will have the same energy gain per turn. In the first

and fourth (numbering from left to right) the situation is

shown with both slit mechanisms retracted. In the second and

fifth frames the results are shown after a 60 mil blade has

been inserted at an azimuth of 840 (upper slit mechanism).

It can be seen that this blade provides most of the phase

selection desired. but it is still necessary to eliminate

those unwanted particles whose betatron oscillations have

placed them at the same radius as particles with a desired

phase. To do this final cleaning up operation a second slit

is required. At this radius in the K500 the radial focusing

frequency vr is close to 1.0. After the azimuth has changed

by 120° those particles whose large x components moved them

towards the radius of the desired phases will now have moved

away from the desired phases. as illustrated in Figure 3-12.

In the figure two bundles of rays that differ in phase by
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Figure 3-13.

PHI AVERAGE (degrees)

The radius plotted at the azimuth of the lower

slit as a function of average phase (a good

measure of the energy gain per turn) for a

distribution of particles which pass through

the first turn slit. In this run the first and

second harmonics are present in the magnetic

field. so it should be compared to figure 3-10

where the particles were run in a field that

had perfect three fold Symmetry. Four different

turns are plotted. In the first frame on the

left no slits are present. In the middle frame

the upper slit has been inserted. and in the

final frame both slits are inserted.
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one degree are plotted. As the shading demonstrates, with

two slits it is possible to remove almost all of one phase

(to the right of the line) while n0t removing any of the

particles whose phase is one degree different. In this

example the two phases are sufficiently close together that

a small amount (the unshaded portion) of the unwanted phase

passes the second slit. The closer the phase of a bundle is

to the desired phase, the larger the unshaded region

becomes. (In other words. more of the horizontal phase space

associated with that phase passes the slit.) It is the

particles in the unshaded area which eventually produce the

sloping sides of the gaussian-like peak seen in a beam

current versus phase plot. In the third and sixth frames of

Figure 3-11 the result of placing such an obstruction at an

O

azimuth of '204 (lower slit mechanism) is shown. The group

of rays present in the final turn has a phase spread of :20

around the chosen central phase. By correctly tailoring the

phase curve and the RF frequency, the particles with the

central phase will have the maximum energy (within a given

turn) at the outer radii of the machine. In chapter 5 these

computations will be compared to experimental results.
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3.5 Further Considerations

The discussion up to this point has made use of orbits

which were computed in a magnetic field having perfect three

fold symmetry. In actuality there are small. but nonetheless

important, first and second harmonic components in the K500

magnetic field. \Nhen the imperfections are present. care

must be taken to center the beam if a truly well defined

beam (a primary goal of phase selection) is to reach the

extraction radius. At the radius of the phase slits the

strongest controls on the beam centering are the relative

dee voltages and the relative dee phases. At the same time

the dee voltage can be used to fine tune the position of the

turns relative to the posts. The technique would then be to

provide a reasonably centered beam at the posts by using the

relative dee voltages and phases. and the tight positioning

(fine adjustment only) by using the average energy gain per

turn (sum of the dee voltages). The centering at the posts

cannot be perfect. as it is desirable to obtain the best

centering at a higher radius where the turn number is

larger. This centering is achieved by using the center bump

coil. In the case of the K500 there is not complete freedom

to set the bump coil since it should be set to values which
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reduce the first harmonic in the region of the vr = 1.

resonance at 5.5".

In the case of a main field for a particle with a

charge-to-mass ratio of 0.25 and a final energy of 25 MeV/n.

a center bump setting of 81:12.1G ¢,=-7O.2O meets these

criteria. \Nhen orbits are run in this field the selection

process is not significantly changed as can been seen in

Figure 3-13 where data similar to that in Figure 3-11 is

shown. In fact those differences that do occur between the

case plotted in Figure 3-13 and that in Figure 3-11 can be

attributed to the different phase curve used in the two

cases. This highlights the need to optimize the phase curve

and the starting phase (by positioning the first turn slit)

and the size of the posts. The next Figure (3-14) continues

the calculation in a field of three fold symmetry the rest

of the way out to the deflector entrance. This shows that at

least in principle. single turn extraction can be achieved

in the K500 cyclotron when running in first harmonic mode.

To achieve single turn extraction. however. much work is

needed to verify the stability of the various systems. and

to determine the correct centering conditions at the

resonances near extraction. The phase curve and frequency
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Figure 3-14.

26. 48 26.5 2 26.56

R (inches)

R plotted versus Pr for turns 507 and 508 at 9

= 336. corresponding to the entrance to the

electrostatic deflector Pr has been divided by

mob to express it in inches The shaded area

corresponds to a possible location of the

deflector septum. This plot shows-that single

turn extraction of the resulting beam should be

possible. The energy Spread of this group is

less than 6 parts in 104.
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need to be tailored carefully as well by using the procedure

28
described by Gordon .



4. Phase Selection Hardware and the VP Probe

4.1 Introduction

During 1985 hardware was constructed to perform the

experiments discussed in chapter 5. All of this equipment

was constructed for general operational use on the K500

cyclotron. These components fall into two groups: those

concerned with phase selection only, and those oriented

towards general beam diagnostics. In the second group is the

viewer port probe that has proven to be a valuable every day

diagnostic device. In the first group is the hardware

required to accomplish phase selection as described in

chapter 3.

4.2 Phase Selection Hardware

As described in chapter 2. phase selection in the K500

cyclotron requires two small tungsten blades to be inserted

between turns 32 and 33 on successive hills. Easy insertion

and removal of the blade from the beam chamber and

adjustability of the slit position (to accomodate different

orbit patterns) were seen to be desirable features of a

phase selection System. Also. since the lifetime of the

100
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blades was uncertain, a large effort was expended on

developing the ability to change blades with minimum

disruption of cyclotron operation. This last feature would

also allow for adjustment of blade size (by changing the

blades), which is analogous to changing the slit size in a

conventional system. Access to the median plane on the hills

consists of two. half inch diameter holes located near the

center of hills "A" and ”B" (see Figure 1-2) at a radius of

7 038". The hole on hill A (9:83.50) emerges on the upper

pole cap. while the other (9=203.50) emerges on the lower

cap. This requirement is imposed by the relative locations

of the center plug gate valves.

The features required are realized by mounting a one

inch long tungsten blade (pin) off-center in a small copper

cap that is bolted onto the end of a forty inch long

stainless steel shaft traversing the magnet poles. Since the

pin is located off-axis, rotating the shaft in the access

hole results in the desired adjustability in the pin 5

radius (and an unimportant change in its angle). Moving the

shaft up and down by one inch will move the blade in and out

of the beam chamber. while pulling the shaft all the way out

will allow changing the blades. In actuality the shaft is

two concentric stainless steel tubes set up in a spray tube



RF LINER

102

meg“ PIN

 

 

\QAJ.’

 

TRIM Cbll.\

POLE TIP

Figure 4-1.

 

 
The end of the shaft

cyclotron. The

in a copper cap

rapid pin change.
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‘x/END PLUG
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SHAFT TUBE

WATER SUPPLY

\

tiNER TU§_E_

 
at the median plane of the

sixty-two mil tungsten pin

intercepts the unwanted beam. The pin is mounted

water cooled so the

cooled.

which is easily removed for

Note: the copper end plug is

tungsten will be indirectly
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configuration (as shown in Figure 4-1) so that the beam end

of the shaft is water cooled. This feature indirectly cools

the tungsten blade which will intercept the unwanted beam.

Control of these functions is provided by a mechanism

located between the center plug and the dee stem on the pole

cap at the exit of the access hole. The access hole lies

beneath the flared portion of the dee stem spinning; the

limited space available requires the compact and intricate

device shown in Figure 4-2. It can be seen in this figure

that the mechanism consists of two major groups of parts.

those below the bellows which are rigidly fixed to the pole

cap. and those above which are moved up and down on a pair

of rails by the pneumatic cylinder. It is this one inch of

bellows motion that allows the shaft to move so that the

blade can be inserted into. or retracted from. the beam

chamber.

Located at the top of the moving section is the

rotating water manifold. Inlet water surrounds the shaft in

the small chamber formed by the first two coaxial O-rings.

passing through the four radial holes in the shaft to reach

the center tube. The water returns from the tip between the

inner and outer tubes. flowing out through another set of 4

radial holes into the the small chamber formed by the second

and third O-rings Just below the third O-ring the shaft



 

 

 

 

Figure 4-2.
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diameter is reduced to form a shoulder which rests on the

worm gear. \Nhen the thrust plug screw is tightened this

shoulder and the ball bearing in the thrust plug trap the

shaft axially so the shaft must travel in and out with the

action of the air cylinder. A key on the shaft just below

the shoulder mates with a keyway in the worm gear; turning

the worm gear Causes the shaft to rotate. On the opposite

side of the worm. a second worm gear is mounted on a servo

potentiometer, providing information about the rotational

position of the shaft. The driving worm is driven by a motor

mounted three feet away on the dee stem support beam. Torque

is transmitted from motor to worm gear by flexible drive

cable. This system was chosen so that there would be

sufficient room to shield the synchronous motor from the

high magnetic field.

The ability to change the blades with the minimum

disruption of cyclotron operation requires removing the

shaft without raising the cap or otherwise breaking high

vacuum. The blade-changing operation begins by removing the

thrust plug. exposing a set of threads in the top of the

shaft. Removing the two copper patches in the dee stem

spinning allows a rod to be passed through the spinning and

threaded into the the top of the shaft Pulling on this rod

draws the shaft out of the cyclotron. while the sliding seal
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Figure 4-3. The lower phase slit hole before the trim coil

leads were moved.
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O-ring maintains the vacuuni VVhen the piston is in the

retracted position the bellows forms a lock chamber

sufficient to accomodate the pin and cap assembly. The ball

valve can then be closed using a 1/4" drive rachet wrench to

turn the the brass ball valve coupling one quarter turn.

Once the valve is closed the shaft can be retracted the rest

of the way. Insertion is accomplished by reversing these

operations.

The parts below the ball valve form the mount for the

rest of the assembly. The base flange is threaded so that it

screws onto the tube which separates the liner vacuum from

the main vacuunL VVhen fully threaded on. it also compresses

the O-ring making the liner vacuum seal. To prevent this

flange from backing off, screws pass through 4 of the 12

clearance holes in it and thread into the pole cap. The

redundant clearance holes were necessary since the point at

which the threads on the liner tube would bottom out was

unknown. Above the base flange is the ball valve body. which

is also the support for the guide rails. Since the guide

rails must have the correct orientation relative to the dee

stem, all orientations were made possible by having the

bolts holding the ball valve body to the base plate pass

through thirty-degree-wide clearance slots to pick-up four

of the twelve available threaded holes in the base plate
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4.3 Installation of the Phase Slit Hardware

The photograph in Figure 4-3 shows the lower phase slit

hole before installation of the hardware. As can be seen in

this figure and in Figure 4-4, some trim coil leads passed

through the space required by the phase slit drive. This

would not have been true had the leads conformed to the

designed configuration. Therefore the first part of the

installation process was devoted to re-routing the errant

leads. To facilitate this operation both the upper and lower

center plugs were removed. Next the center plug extensions

and the gate valves were removed. After removal of the the

hill extensions. the center plug liners were unbolted and

pulled out as far as the dee spinnings would allow. about

six inches. This disassembly exposed the flare fittings on

trim coil #1. and improved the access to the fittings on

some of the other trim coils. In all cases the leads were

either cut or unsoldered at the transitions between the 1/4"

and 3/8” copper tube. In those cases where the feed-throughs

were exposed. the flare fittings were undone and the segment

of 1/4” line was re-manufactured. For trim coils #3 and #4

on the upper cap and trim coil #4 on the lower cap. the

feed-through lies beneath the dee stem spinning. Here. with

the cut end free. the leads were bent using the modified

pliers shown in Figure 4-5. During this operation care was



 

Figure 4-5. The special pliers built to allow bending those

leads which were trapped under the dee stem

spinning. Mch a little care they could be used

to move the leads without crimping the lead or

putting force on the feed-through
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taken to apply as little force to the feed-throughs as

possible, because they are known to be fragile.)Nith a

little practice this bending technique proved to be quite

efficient and simple. After the bending was complete the

leads were re-insulated. the transitions were soldered

together. and the leads water tested. At this point we also

cleaned all the feed-throughs and repaired any damaged

insulation on any of the other coils. (This work seems to

have removed a short that existed in lower trim coil #1.)

\Nith the trim coil leads in the proper locations. the

phase slit base plate could be screwed on and the center

plug liner re-installed. thus restoring the liner vacuum.

Next came the task of making the access holes in the dee

stem spinning and spinning flanges. Location of these holes

was accomplished with the special tooling fixture shown in

Figure 4-6.\Nhen the rod with the sharpened point was passed

through the pole to the median plane. striking this rod with

a hammer created a locating mark on the spinning. Using a

right angle drill and a 19/32” bit. a hole was drilled

perpendicular to the surface of the spinning and centered on

the punch mark. Using a hand file. the hole was enlarged in

the vertical direction so that an oval shaped hole was

formed which would allow a 9/16” shaft to pass thrOugh

freely. The holes in the upper flange were drilled with a



Figure 4-6.
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The fixture used for locating the hole in the

dee stem spinning. The other end of the

indicator shaft was at the median plane so it

could be tapped with a hammer to mark the

spinning with the sharpened point. The drill

bushings provided alignment of the clearance

hole and the two threaded holes for mounting the

air cylinder on the hex flange.
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portable drill press. while the lower ones were made with a

hand drill motor. In both cases the drill was guided by the

drill bushings in the locating fixture.

In order that the half-inch shaft might pass freely

through to the median plane, the bead formed where the liner

tube is welded to the liner was cleaned up with a

combination of oversized hand reamers and a file.\Nith this

work complete. the drive mechanisms could be mounted and the

shafts installed.

After the motors were installed it was found that

there was excessive wind-up in the flexible drive cables.

This difficulty was resolved by changing to a larger

diameter drive cable and improving the alignment of the worm

gear and the worm. “Nth these modifications the drive

performed quite well.

To calibrate the position of the pin. the fixture shown

in Figure 4-7 is used. By placing the U shaped slot over the

dowel pin in the dee locating fixture and rotating the phase

slit shaft until the cap fits onto the the end of the shaft.

the location of zero degrees can be found.

The complete installation of the phase slits excluding

the drive cable modification and alignment took close to two

weeks to complete Over half of that time was devoted to re-

routing the trim coil leads



 

   

Figure 4-7.
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of the
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Figure 4-8. The lower drive mechanism installed. See text

for a description.
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4.4 Construction of the Viewer Port Probe

During commissioning of the K500 cyclotron. a

relatively simple two jaw radial probe was installed in the

extraction region. The success of this device led to a

decision to construct a more sophisticated model which could

be removed under vacuum and would increase the travel from

4" to 12". After extensive design and assembly work in 1985

such a device was installed on the cyclotron in November of

that year.

Figure 4-9 is a schematic view of the probe as

constructed. During. normal operation the lower table is

locked in the innermost position and the upper table (a

precision slide table) is moved in or out with a ball screw

driven by a stepping motor. In this 'running‘ condition the

moving vacuum seal is provided by the stainless steel

bellows mounted between the front plate and the upper table.

To remove the probe the lower table is driven to its outer

limit so that the end of the guide tube is in the lock

chamber. and then the gate valve is closed. During this

operation a pair of viton O-rings separated by a floating

spacer ring (all labeled sliding O-ring in Figure 4-9)

provides the vacuum seal. This division of seals means that

the bulk of the time (during regular probe travel) the

bellows are used. but for changing the probe. when the
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travel is 40". the O-rings are used. The lower table is

mounted on Thomson pillow blocks. and driven by a ball screw

attached to a synchronous motor. A complete probe change can

be accomplished in half an hour. making repairs and

modifications relatively simple.

Another important feature of this design is the ability

to accept any probe that meets the following simple

requirements: that it match the bolt pattern on the plate.

and that the maximum diameter from the plate inwards be

5/8". The length of the probe from the mounting flange to

the tip may be anything from 45.5" to 59.325”. Presently

four different probes have been constructed. The first of

the tested designs is shown in Figure 4-11. The object here

was to provide isolated water and electrical circuits within

the limited space It also provided fairly good positioning

of the tungsten jaws to ensure the correct differential

lengths. Unfortunately the Kovar feed-throughs were poor

thermal conductors. consequently after beam hit the probe

for any length of time the temperature of the jaws rose

dramatically and eventually the feed-throughs became

electrical conductors. The design currently in regular use

is shown in Figure 4-12. This one is the same as that

orginally used with the 4" drive but with length changed

Also the jaws are now a single piece of molybdenum whiCh
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should improve the cooling while at the same time reducing

the possibility of producing alpha emitters. One of the

other probes developed is being used as the target for the

radioactive beam experiments of M. Mallory et 3.39

4.5 The Gamma probe

The fourth probe. which has been constructed for use in the

VP probe drive. is designed to measure the phase of the

beam. This is to be done by detecting the gamma rays

generated from the beam striking the probe tip with a PIN

diode located just behind the probe tip. A schematic of the

phase probe is shown in Figure 4-13. At the exit of the

probe the signal is again amplified. and then sent to the

control room. In the control room the signal is fed into a

constant fraction discriminator (CFD). The output of the CFD

is then used as the start signal for a time-to-amplitude

conveter (TAC). The stop signal for the TAC is a pulse

generated at every second positive zero crossing of the RF

signal. Dividing the stop signal by two means that all the

features in the time spectrum will appear twice. 360O apart.

This then gives an immediate calibration between channels

and degrees of phase. without any worry about cable length.

The TAC output is digitized using a multichannel analyser
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Figure 4-13. A schematic drawing of the phase probe. The PIN

diode is used to detect gamma rays produced

when the beam strikes the probe tip. The small
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located near the probe tip so the count rates

are high and the source is distinct from the

background.
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for a preset length of time. A sample output is shown in

Figure 4-14.

If the peak width in a spectrum. such as that in Figure

4-14. is to be attributed to the phase width of the beam. it

is necessary to measure the time resolution of the PIN

diode. This proved to be more difficult than expected.

because the diode's small size resulted in too low a count

rate for a coincidence measurement.lNhat was done. was to

measure the rise time of the diode when pulsed with a fast

laser. These measurements concluded that the rise time was

better than 500 ps. In Figure 4-15 the time spectrum of the

external beam. as measured with the PIN diode. is compared

to a measurement of the same beam made with a BaF detector.

The time resolution of the BaF was known to be better than

300 ps. and the two detectors produced very similar results.

Given that the gamma probe can make a reliable determination

of the phase. it can be used to measure the phase width of

the beam between 20" and extraction. As well it can be used

to measure changes in the phase as a function of radius. but

the determination of the absolute value of the phase will

need to be done with a different technique. such as

frequency detuning.
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5. Experimental Results

5.1 Frequency Detuning

The phase history of the beam is a very sensitive

function of the magnetic field, thus an independent measure

of the phase would verify the procedures used to compute the

magnetic field. Several methods are available to measure the

phase. but the frequency detuning method first proposed by

Garren and Smith31 is the most straightforward. The

separated longitudinal equation is.

'i
. _ . 2vh Eb - _

Sin 0 _ Sin 00 + —EE J ( u 1 )dE (5 1)

O

. 2wh

=Sln ¢0+6—E—'F(E)

isr

= 90 'where. F(E) J ( u) 1 )dE

0

and 6E is the energy gain per turn.

Since F(E) depends only on the energy and not the initial

value of the phase (00). the width of the beam in sin olEl

is constant when equation 5-1 is valid. If the phase of any

part of the beam reaches : 900. it decelerates inward to
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the machine center and is lost. If the central ray of the

beam reaches 900 at a given radius this can be observed on

an integrating probe as a reduction of the beam current to

half amplitude at that radius.

Rewriting the longitudinal equation for a new RF

frequency w’ gives.

(w'- 9b)
2 h

+ a; “b { F(E) + E L (5-2) 
Sin¢'(E) = Sin¢(E)

where ¢'(E) is the phase obtained with the new RF frequency.

and ¢(E) is the phase at the operating frequency 0%.

Defining the frequencies w; and w. as the frequencies which

drive sino to +1 and -1 respectively. equation 5-2 becomes.

 

 

 

2”(“h - uh) I '

+1 =Sin¢(E) + (F(E) +51
6E db

2n(ui - ufi) ‘ ’

-1 = sin¢(E)-+ 65 w i F(E) + E r

0

Let 6+ = (on - u%) I “b and we find the expression for sino

is.

sin¢(E) = (:1 2gE + 6+ sin¢0)/(1 + 6:).

. . . . 32
USing this formulation instead of the more common
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2 db - uE(r) - u{(r)

uu(r) - u{(r)

 

sin¢(r) =

means that the phase can be found at radii for which either

“i or “i cannot be found. The trade-off is that the energy

gain per turn 6E must be known.

Ideally. determination of the phase using this method

requires only that the machine parameters (RF voltage.

magnetic field etc.) are stable in time. In practice however

there are several limitations. First of all the centering of

the beam affects the results by shifting the radius at which

the half intensity is observed. As is well known it is not

. .. 33

pOSSlble to center the beam at all radii at once . so

usually the best centering is reserved for the large radii

where the turn density is greatest. In the K500 even this is

not possible. because. in order to minimize beam losses

during the resonance crossings at the outer radii. it is

necessary to run with the beam off center for most of the

machine34. Another difficulty arises because the main probe

in the K500 is a complicated set of train cars that travel

on a spiral shaped track located on the center of one of the

hills (see Figure 1-1). Because of its complex nature.

determining the exact location of the probe is difficult. so

the position read out can be wrong in some places by as much



 

1.0 -— I I I I I g

~ 53 IleV/A ‘30“ 4

L + MEASURED -

- - COMPUTED -

. .

0.5 l—
_.

I- -I

 

   
 

A P

3 l—-

e :

E
.

L- _.

- -i

-l.o : 1 4 J l l I L l l 1 l l J I. #1 l L I l l I l L 1d

0 5 10 15 20 25

I! I... (inches)

1.0 L—T—r r I I I I I r I I I I I l I I T I l T T I fir r—

- 35 MeV/A “N“ -

- + MEASURED -

- —- COILPUTED -

- COMPUTED-0.1 mp .-

o.5 — f.-

P

S l"-
a b

m -

    
R prob- (inches)

Figure 5-1. The calculated and measured phase curves for two

different magnetic fields. The dashed curve for

the N5+ case is the calculated phase curve when

the mail coil currents are changed by 0.1 Amps.
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as 0.5”. If the phase curve changes rapidly, as it does at

large radii, the frequency required to drive the phase to

900 becomes a constant. For example in Figure 5-1b the of

for radii larger than 26.0" will be a constant because the

current will always be lost at 25.0"

In Figure 5-1 the results of measurements in two

separate .magnetic fields is shown. The agreement in both

cases is quite good. except for a sharp bump in the N5+

case. Either this discrepancy is caused by a probe

calibration error or it is a result of a change in the main

field. During this particular run the main coils currents

drifted by as much as 0.1 amperes. as the lead temperatures

changed. Unfortunately the problem was not detected until

late in the run so there is no way of determining when it

happened. Since the data was taken in sequence it is

possible that the bulk of the excursion took place as data

between 14" and 12” were being collected. The dotted Curve

in the figure is the phase curve if the coil currents are

reduced by 0.1 Amps.

5.2 Phase Selection

The previous chapters have discussed the phase

selection hardware and how it is intended to achieve its
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goals. In this section experimental results of a test run of

the phase slits will be presented. As described in 3.2 the

coarse selection is done with a slit located on the dummy

dee 'between the puller and the second dee ("C" dee). The

only way the aperture of this slit can be changed is to

raise the cap, which is a one day job. As a result it is

difficult to compare directly beam conditions with and

without the small slit. In Figure 5-2 the output from the

gamma probe. collected when the coarse selection slit was in

place. is shown. This can be compared with the computed

results in Figure 5-3. The computation was done by tracking

particles through the axial injection system and around the

first turn in the cyclotron. The initial beam filled the

available aperture and any particle which hit either the

inflector (including the collimator) or a dee post was

removed from the beam. This calculation predicts that the

phase width after the first turn would go from 430 to 140

(ffiNHM) when the narrow slit is installed. This is in

excellent agreement with the )-probe measurement done at

extraction radius (Figure 5-2). that gave a result of 14.80.

Figure 5-4 is shown for reference. It gives the results of a

calculation similar to that shown in Figure 5-3. but with

the collimator aperture reduced to lnmi VVith a 1 mm

collimator the starting emittance is reduced to 25v mm-mrad
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as was discussed in section 3.3. At the time of the test run

(when the first turn slit was installed) there was an

alignment difficulty with the spiral inflector and so it was

not possible to run the reduced emittance case. but in the

future it may be possible to do so.

\Nith the coarse selection in place the differential

traces (Figure 5-5) showed a much more pronounced turn

pattern than usual. The large periodic structure is a result

of a coherent oscillation. In Figure 5-6 the computer

program SOMA has been used to estimate what a probe plot

would be like. given the calculated orbits. For this case it

was assumed that the phase width was 14° and the starting

conditions were an eigen-ellipse. The area of the ellipse

was chosen to be 100v at the inflector entrance. and the

center of the ellipse was located using the prescription of

Figure 2-3. The computed and measured turn patterns are

similar in all aspects: 1) the turn spacing is the same.

indicating that the energy gain per turn is close to the

calculated value, 2) the space between turns is reduced in

the same regions. 3) the region of bunched turns due to the

coherent oscillations occur at similar radii. The last point

indicates that most of the centering error is induced by the

central region (in the calculation the centering error iS

built into the initial conditions). since the field used in
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the computations does not contain the imperfection

harmonics. Attempts to center the beam with the center bump

usually result in large beam losses. probably from the

reduced stability region which results when the bump coil is

not cancelling the first harmonic at v = 1.

r

As described in section 3.4 the fine selection is

accomplished with a pair of tungsten posts whose positions

are adjustable. If proper selection is to take place. one

must find the locations at which the posts lie between

turns. Figure 5-7 shows the measured and calculated current

distributions at the upper post azimuth. The arrows in the

figure show optimal post locations. The computations were

done with the program SOMA. using the differential probe

option with the probe width equal to the post thickness. The

measured points were obtained by placing the main probe at

310." and recording the current as a function of slit

position. Since the only possible loss mechanism is the

post. the current lost must be the current hitting the post.

The values for the lower slit are shown in Figure 5-8. The

reduced amplitude variation at this location is caused by

the increased turn width at this azimuth. The plots of

Figure 3-10 show that at the lower slit position (6:2040)

the radius changes much more rapidly With phase. than at
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9:840, and so the turns are more smeared. The poor agreement

between measured and calculated results for the lower

mechanism at smaller radii is a result of an encoder error

(later measurements indicated the device is non-linear).

Another method of determining the optimum location for

the posts is to look at the gamma probe data. The Z-probe

output for two different positions of the upper slit is

shown in Figure 5-9. “Nth the upper slit at 71 (arbitrary

display unit) the beam is being split by the post. As the

post is moved to 125. more of the earlier phases survive the

post and some of the later ones are removed.lNhen the upper

post is in position 125 the beam is being scraped from the

outside of one turn and the inside of the next turn as it

should.

The phase width with the upper slit at 125 is compared

to no slits in Figure 5-10. Mch the post at this location

the lfiNHM was 5.20. The same procedure was then followed for

the lower slit. The reduced turn separation at 9:204 (lower

slit) made placing this slit a more difficult task. but it

could be used to reduce the shoulders on the peak in Figure

5-10. as can be seen in Figure 5-11. The phase width with

both slits inserted was 4.20 (FWHmM. Table 5-1 compares the

beam current on beam stop 0 (after extraction) with and

3

without the slits Re-examing the calculations of chapter a
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it would appear that if the lower post had a smaller

diameter. the phase width could remain the same but the

amount of beam surviving both posts would increase.

In Figure 5-9 the main peak is accompanied by tails on

either side and this substantially increases the full width

of the peak. As may be noticed these tails were not

predicted by the computations shown in chapter 3. During the

experiment the initial emittance was 1000 mm-mrad. while the

calculations assumed a starting emittance of 25w mm-mrad. To

see if this increase in emittance could account for the

fails a SOMA calculation was preformed. The calculation

began at turn 8 with a phase width of 200 and an emittance

of 26.5 mm-mrad. As seen in Figure 5-3. when 1007 mm-mrad is

run with the small first turn slit. the slit also acts to

eliminate some of the horizontal emittance. To simulate this

effect the dashed curve in Figure 5-3 was used as a

weighting factor for the different starting times. Figure

5-12 compares the result of weighting the SOMA output to the

measured phase width. As can be seen the weighting results

in a very close agreement with the experimental data. Again

using this weighting procedure the calculation was preformed

with the upper slit in two different locations. These

results are presented in Figure 5-13 In both cases the

calculations predict the locations and relative heights
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Table 5-1 The phase width and the extracted beam current at

beam stop 0 for different combinations of slits.

SLITS PHASElNIDTH CURRENT AT 880

Coarse only 14.80 46 nA

Upper at 125 5.20 20 nA

Lower at 121 20 nA

PSU=125. PSL=125 4.20 10 nA

The calculations shown in Figure 3-10 suggest that the

phase widths should be 7.50 (FWD for the upper slit alone

and 4.50 when both the posts are inserted. which is in good

agreement with the 5 2” and 4.2 obtained experimentally.
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Figure 5-14. A differential probe trace taken during a 22N8+
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installed. The radial focussing frequency can

be determined from the coherent oscillation

which is visible as the large amplitude

oscillations.
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Figure 5-15. The radial focusing frequency as calculated

with the equilibrium orbit code. and the values

obtained from differential probe traces. The

horizontal bars indicate the region over which

the value of vr was averaged. The vertical bars

indicate the possible error in determining the

number of turns in a precession cycle.
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5.3 Radial Focusing Frequency

The differential probe plots of Figure 5-14 show a

large coherent oscillation. This coherent oscillation is

produced by the initial centering error mentioned in section

5.2. The radial focusing frequency is related to the number

of turns in a cycle. N . by:

As can be seen in Figure 5-14 the number of turns in a cycle

cannot be counted directly, because beyond 10." the spacing

between turns is comparable to the thickness of the

differential wire on the probe. Since we do know the

relationship between energy and radius. we can estimate the

number of turns in a cycle using.

 

E2 - E1

Nr = 3(q/A)Vdee Cos(¢) ' (5'3)

Given in Figure 5-15 is the computed vr versus radius for

the 22Ne8+ 35 MeV/A field. along with the experimental

values. The horizontal bars indicate the radial interval

over which the number of turns is calculated. and the

vertical bars indicate the error in the average vr value

arising from the possible error in determining the radii.

Each data point is determined by measuring the radius of the
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beginning of a precession cycle and the radius of the end of

the cycle. Then an equilbrium orbit program is used to

determine the energies for the two radii. and the average

value of 003(0) in this range.

5.4 Axial Focusing Frequency

The head of the main probe is divided into three equal

vertical sections. each 0.25" high. For these measurements a

large coherent oscillation is induced by placing a .455"

shim under the spiral inflector. thus moving the position at

which the beam exits the inflector off the median plane.

Plotting the current on each of the sections as the probe is

drawn outwards gives a profile of the vertical position of

the beam spot. In Figure 5-16 the current on the center and

lower jaw are plotted over a 10" radial range. As can be

seen in the figure the current moves back and forth between

the two jaws. The negative values of the current result when

electrons are knocked from the jaw. since the electron

trapping system is only effective on the sum of the three

jaws. From plots such as Figure 5-16 the number of vertical

oscillations over a radial range can be determined. The

number of turns in the same range can be determined using

equation 5-3. The number of turns in a Complete cycle of the

axial motion is related to the focusing frequency;
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N M
|
A

N=1. ifv<
V

The result of these measurements in the 14N4+ 20 MeV/A field

is shown in Figure 5-17 along with the computed values. The

horizontal bars give the radial range over which the average

value of v2 is found. while the vertical bar gives the error

which arises from incorrectly estimating the number of

cycles in the radial range.
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the inflector 0.445”.

lower jaw of

of radius. A

2 by raising

 

I I I I I I I I I I I I I I I I I I I I I I I I I I

1.0 :— “N“ 20 NOV/A

0.8 3-

_ 0.6 :-

3 I

0.4 '—

0.2 _—

0.0 - l l I l l 1 l I J. l I l l l l l l J l l l l I I l

 

"
1
1
1
1
1
1
1
1
1
1
1
1
1
'
1
1
1
1
1
1
1
1
1
1
1
1
1
1

 l 1
 

0 5 10 15 2O 25

R"... (Inches)

Figure 5-17. The values of the axial focusing

computed by the equilibrium orbit

values obtained from probe traces such as

one shown in Figure 5-14.The ho

indicate the region over which th

was averaged. The vertical bars

possible error in determining

turns in a precession cycle.

frequency as

code. and the

the

rizontal bars

e value of vz

indicate the

the number of



6. Conclusions

If the sucess of a computer program lay solely in its

speed, then SOMA will be a huge sucess. In a run such as

those done to produce the plots shown in chapter 5. 300

particles were accelerated for approximately 90 turns. using

a total CPU time of 15 min. By comparison, a rule of thumb

for the orbit integration code SPRGAPZ is, 1 minute to run

one particle 100 turns. That is to say a similar run with

SPRGAPZ would have used approximately 270 minutes of CPU

time. a factor of 18 increase. Of course speed is not the

only determining factor. For example flexibility is of great

importance. Currently SOMA has several 30phisticated input-

output (IO) routines. that make the handling of large

numbers of particles much easier. The bookkeeping alone

would make an orbit integration code run with 300 particles

a tedious task. A case in point is the probe option; it

reduces the problem of determining the patterns that would

be exhibited if there were a given set of orbit conditions.

to a trivial problem. mfltrt the orbit codes previously

available. this was a difficult undertaking. and it seemed

154



155

as if one could never run enough particles to get a truly

smooth curve.

As with all new programs SOMA will need constant

upgrading for some time, as users request more specific

features. As mentioned in section 2.6 the equilibrium orbits

as calculated between gaps do not close perfectly. and this

could be improved by adding an extra iteration to the E0

search. Last, but not least. the IO routines could use some

cosmetic improvements. In particular. software needs to be

developed for the plotting of the calculated probe traces.

as the present system is cumbersome and slow.

A transfer matrix program such as SOMA lends itself to

the study of several sets of phenomena . two that come to

mind immediately are an investigation of beam conditions

that lead to better extraction. and an investigation of

centering. Obviously for the centering study SOMA will not

be useful for the first few turns. and care must be taken

when displacements are large. Nevertheless centering often

takes over 50 turns. and is phase dependant. so the

increased speed of SOMA would be useful. It may also be

possible to use SOMA. along with other programs. to

determine the centering error from a probe trace. The

situation for extraction studies is very similar. Again a
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large number of particles needs to be run since the radial-

longitudinal coupling is very important. Also the region of

interest (the two resonance crossings), requires close to

100 turns, so the turn number times the number of particles

is very high.

The results presented in section 5.2 show basic

agreement with the computations. which Suggests that the

calculations presented in chapter 3 could be expanded upon

using SOMA. The programs also show that with the correct

operating conditions it is possible to achieve a narrow

phase width. Combined. the computations and the experiments

show that phase selection in the K500 is feasible. Naturally

this leads one to wonder about the possibility of single

turn extraction. which Figure 3-13 suggests is theoretically

possible. In practice it will require considerable effort.

For example the small, slow oscillation of the main coil

currents in time must be reduced if sufficient stability is

to be maintained. At the same time a large effort is needed

to reduce the centering error which appears to arise from

the central region. On the mechanical side. these studies

could be made considerably easier if the main probe were

improved. in particular. correctly calibrating the probe.

reducing the vertical bounce as the probe moves. and

improving the electron traps on the Jaws. are all things
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that would make probe data more reliable. From a practical

point of view. if the phase selection system is to be useful

for beams other than those produced in copious amounts by

the 'ECH. the transmission into the cyclotron has to be

improved. Separated turns (and single turn extraction) would

be helped significantly by reducing the initial emittance.

Perhaps this can be done by reducing the inflector

collimator to 2 mm in diameter, but again this would result

in unacceptably low beam currents unless the transmission

improves.

It is probably fair to say. that in most cases the

computed values are more easily interpreted than the

measured ones. but often ignore important machine

conditions.\Nhen it comes to making measurements in the K500

it can be very difficult to achieve repeatable results. so

there will always be a need for both computational and

experimental studies of the K500. Now that the basics of

phase selection are understood and confirmed. it is hoped

that much further progress towards single turn extraction

can be made.
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APPENDIX l

SOMA INPUT

The input and output to SOMA has been distributed among

many FORTRAN IO units in order to simplify modifications.

The primary input file (unit 5) contains most of the program

switches and the cyclotron parameters. Other information

such as the magnetic field. harmonic bumps, and the spiral

locations are on separate files. Table 7-1 gives a complete

listing of all the IO units used by the program and a short

description of the information kept on each one.

The first line of the unit 5 file must contain the

values of the two logical variables LMATRICES and LPROBE. in

that order. If LMATRICES is true then the run begins by

calculating the transfer matrices requested on unit 11.

otherwise the program attempts to read the transfer matrices

from units 51 and 52. VVhen LPROBE is true then the program

will either calculate or read in (again depending on the

value of LMATRICES) the transfer matrices for the main

probe. Fo|IOWlng this first line are any number of lines

containing the values of various input parameters. Each line

158



159

 

Table 7-1. The input-output units used by SOMA.

Unit Description

INPUT

5 input parameters

11 initialization of transfer matrix computation

12 initial conditions

13 spiral locations

14 harmonic field bump data

44 magnetic field

OUTPUT

30 orbit parameters of particles which hit flags

31 printout at constant theta

33 probe output (binary)

34 printout at gap locations

35 printout at end - for restart

BOTH

51 gap to gap matrices (binary)

52 constant theta matrices (binary)

53 main probe matrices (binary)



160

begins with the number (between 1 and 50) of the input

parameter being set. All input parameters have default

values so only those differing from the default need be

entered. The parameters may appear in any order and the list

is terminated by a "-1”. The input parameters divide into

three groups. Those with ID numbers 1 through 9 give the

descriptions of the probes and flags to be used. The

parameters 10 through 34 are all single entry real numbers

while 35 through 50 are single integer values. so this last

group contains most of the switches.

Input parameter number 2 is used to indicate the number

of flags to be described. Immediately following the line

which began with a ”2” there must be one line containing the

values of; 9 ITYPE RMIN.RMAX. for each flag. The flag isf !

assumed to be located at angle 9f and is only in effect when

the orbit radius lies between RMIN and RMAX. The flag angle

must have a transfer matrix. but many flags can share the

same matrix if they have the same azimuth. Up to 20 flags

may be requested. There are three types of flags. The first

type (ITYPE :1) is called a transparent flag. In this case

when the orbit radius lies inside the flag. then the orbit

parameters are saved but the orbit is unaffected. If lTYPE

is 2 then the flag is opaque. in which case when RMIN <
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R(ef) < RMAX then the orbit parameters are saved. the

particle is considered lost. and the program proceeds to the

next particle in the input distribution. VVhen ITYPE=3 then

the orbit parameters at 9f are recorded on unit 31 whenever

the particle radius lies inside the flags range.

A line beginning with a 3 contains information on the

snapshots to be produced at the end of the run. A snapshot

is a scatter plot of any two of the possible 9 orbit

parameters. A snapshot will be produced for the initial

conditions. the final conditions. and all flags of types 1

and 2. For each snapshot desired a pair of integers are

given. with the first integer specifying the orbit parameter

to be put on the horizontal axis. and the second doing the

Table 7-2. -- The ID codes for each of the parameters that

are saved.

 

 

 

lD Parameter Description

1 r orbit radius

2 pr radial component of the momentum

3 2 vertical position

4 p2 vertical component of the momentum

5 T time

6 E energy

7 x displacement in radius from the E0

8 p displacement in pr from the E0

9 b = PGAV average of the phase at the last 6 gaps
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same for the vertical axis. The labeling of the various

parameters is given in Table 7-2. For example the line

"3.1.2.9.1." would produce scatter plots of pr vs r and r vs

B at the run’s conclusion.

The ”4" line provides the description of the probes to

be considered during the run. A maximum of two probes. one

radial and the other the main probe are allowed. The

parameters on the ‘4 card’ are;

4.NP.Ri.R .AR.IBIN.ABIN.ADIFF.9.THICK.
f

Probe information will be accumulated between Riand Rf. with

a bin size of AR. IBIN determines if a second parameter is

to be binned as well. If IBIN=1 no other binning is done.

\Nhen IBIN is 2. z is binned and when lBlN=3 the phase is

binned. ABIN is the bin size for the z or phi bins (up to 60

phi bins are available).\Nhen NP is 1 the probe is radial

and it is located at an azimuth a. On the other hand if NP=2

the main probe matrices are used and 9 is ignored. The

parameters ADIFF and THICK give probe head dimensions as

shown in Figure 7-1.

The various possible initial conditions discussed in

section 2.5 are selected using parameter 42. A value of 2

for this parameter runs the restart option. In this case
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Figure 7-1. A schematic drawing of a probe head. as defined

in SOMA. The two dimensions. AIDIFF and THICK.

are input in inches.
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unit 12 contains a line for each particle to be started. The

format of these lines is;

d,r.pr,E.T.d.d.Z.pz(10X.3f12.5.f12.6.f12.3.4f8.4)

where d is a dummy variable. A file which meets these

requirements is produced on unit 35 at the end of each run.

\Nhen lP(42)=1 the program expects the initial conditions to

have been generated by a separate program and stored on unit

12. The unit 12 file should contain one line for each

particle to be run. with the following format:

Energy,x.px.z.pz.¢ (6f12.5).

Table 7-3 shows the remaining possiblities for parameter 42.

each of which gives a different method for calculating the

initial ellipses.

Table 7-3. -- The source of the initial ellipse values as

determined by parameter #42.

 

 

 

 

lP(42) X-PX ellipse ZoPZ ellipse

3 calc. eigen-ellipse calc. eigen-ellipse

4 calc. eigen-ellipse input

5 input calc. eigen-ellipse

6 input input

The eigen-ellipses are computed for an E0 energy equal to

the central energy. P(28). The definitions of the various

ellipse parameters are given in Figure 7-2. The X-Px ellipse
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P:

 

 

 
Figure 7~2. An illustration of the meaning of the various

initial ellipse parameters. See text for an

explanation of how they are input to SOMA.
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center (x0 and pxo) can be set in three different manners.

If IP(48)=IP(45)=0. then the values of X0 and pxo will be

P(30) and P(31) respectively. If lP(48)=O and lP(45)=1 then

the program will calculate the AEO for a particle starting

with the central energy, P(28). The AEO is found by running

3 particles for one turn with acceleration. A linear fit is

then used to determine the starting condition which will

result in the x.px values remaining the same after one turn.

These initial conditions are then run and the process

. . -8

repeats untll the closure ls better than 10 or 10

iterations have been made. which ever comes first. The final

method of setting x0 and pxo is to make them a function of

the initial phase. If lP(48)=1 then unit 12 contains one

line which i&

a1. b1. a2. b2 (4f12.5).

Then

x0: 31 + (fl - ¢r) 32.

px0 - D1 + (6 - ¢ ) b2.

E = Ecen cos(¢ - fir).

where. Ecenz P(28) central energy.

d = P(29) reference phase.
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A full ellipse is started for each value of the phase (a).

where the phase. d. is:

¢ = ¢ + i r Afl. i=0,n¢-1.

where.

do = P(27). ao = P(26). and n¢ = IP(41).

\Nhen IP(44)=1 then 6) is calculated. The calculation is

performed using;

 

Sin(¢1)= sin(¢0) + 1) dE

so d1 is the phase at E = E . when do is the phase at the

first energy EO at which transfer matrices are stored. The

new value for do (to be used as described above to determine

the starting phases) is computed to be:

$0 = ¢1 - P(26)*|P(41)/2.

so that the phase group is centered about the phase given by

an E0 code.

Table 7-4 contains a listing of the input parameters 10

through 50 and their default values. It should be noted that

the RF frequency is.

wrf=h(1+e) Loo. lf, cooquo/m.
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where e is the frequency error and h is the harmonic number.

Parameters 16.17.18 are a.b.+ respectively for the X-Px

ellipse. while 20.21.22 are the same for the Z-PZ ellipse.

The area per point (#24) is the area assigned to each

particle in the uniform distribution. so there are

approximately nab/P(24) particles populating the ellipse.

The number of transfer equations (#39) is explained in Table

2-4. VVhen IP(40) is zero the Z-PZ ellipse is uniformly

populated. If it is one then the X-Px ellipse is uniformly

populated. and a value of 2 causes both ellipses to be

uniformly populated. Those ellipses not uniformly populated

will be randomly populated. IP(46) is used to stop the

printing of the initial particle parameters in the log file

(unit 6). IP(47) determines whether the gap correction is

done to first or second orden

Unit 11 is read whenever transfer matrices are to be

calculated. The five lines in this file contain;

Ei.AE.NE

NVANGLE

TH ANGLE(i). i=1.N_ANGLE

N_EOU

q.BO.NSEC.NR.NSWI
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Matrices will be computed for the energies.

E = Ei + AE ' i. i=0.NE-1.

N_ANGLE is the number of fixed angles for which transfer

matrices will be calculated. Up to 10 fixed angles may be

requested. The next line contains the azimuths of the fixed

angles. and these must fall on a regular 20 Hunge-Kutta

step.\Nhen N EOU is 1 only the first order transfer matrices

are computed and stored. but when N-EOU=2 the full second

order transfer matrices are calculated. The final line gives

the particle charge in units of e. the central field. the

number of sectors. and the number of radius values at which

the field is stored. If MSW/is non-zero the magnetic field

is assumed to have a header which is concluded by an end of

file mark.

The magnetic field is input on unit 44. This file

begins with a header of up to 10 lines. concluded by an end-

of-file mark. Following this is the magnetic field values in

a regular r.e grid. The data is stored so that theta varies

most rapidly. The theta step size is one degree and there

120 theta values if NSEC=3 and 360 theta values if NSEC=1.

The input format is 8F9.5 and there are NR radius values

beginning at R=0.0" and increasing in 0.5" steps.
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The gap locations are given on unit 13. The first

record is.

NRGP,RO.AR (l5.2F10.5).

The gaps themselves are given in the subsequent records as a

table of angles.

61(80). 92(R0) (2F12.5)

91(RO+AR).92(RO+AR)

etc.

(NRGP entries in the table).

61 is the entrance to dee1 and 92 is the exit (gap2). It is

assumed that there are 3 dees evenly spaced around the

machine. so 6 gaps are defined. The 6 vs R function for a

gap is assumed to be linear between data points (a spiral in

real space) for the purpose of interpolation and

differentiation. There must be at least two r values. and

any orbit to be computed must be between the r limits of the

gap table. It is advisable to keep the table interval small

enough that large discontinuities in the derivative are

avoided. There is no restriction on the value of 6. but the

following 8 values must satisfy these conditions:

62(r) >e(r) +10O
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I 9(r+Ar) - 6(r) I < 90°.

These limits ensure that no two spiral lines fall in the

same integration step. and there is no +/- 3600 ambiguity in

the 'table. Note that in most cases. a table with only two r

values would require more than a 900 difference in

successive theta values. Gap print-outs are done at the

gaps;

IG = IGO +|DG x i. i=0.ng-1

where.

IGO= IP(37). IDG=IP(36). and ng=lP(38).

These print-outs appear on unit 34. and if a large number of

particles are run this file can become extremely large.

\Nhen IP(49) is different from zero then the program

expects information about the harmonic field bumps to be

located on unit 14. The file should contain:

(4F9.5)

RO.AR.NR (2F.|5)

BUMP1(i) i=1.NR (8F9.5)

BUMP2(i) i=1.NR (8F9 5)

where b1 and d1 are the amplitude and angle of the first

harmonic bump. and b2 and d2 are the same but for the second

harmonic bump. The bump field will be speCIfied at the

radial positions:
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Table 7-4. The input parameters 10 through 50. that are

entered on unit 5. The default values are in

brackets.

PARAMflO) DEE VOLTAGE (KV) 0.00000 ( 50.00000)

PARAM(11) HARMONIC NUMBER 1.00000 I 1.00000)

PARAMI12) FREQUENCY ERROR 0.00000 ( 0.00000)

PARAM(13) PHASE ERROR OF DEE1 IN DEGREES 0.00000 ( 0.00000)

PARAMI14) PHASE ERROR OF DEE2 IN DEGREES 0.00000 ( 0.00000)

PARAM(15) PHASE ERROR 0F DEE3 IN DEGREES 0.00000 ( 0.00000)

PARAM(16) x RADIUS 0F ELLIPSE (INCHES) 0.01071 ( 0.01000)

PARAM(17) Px RADIUS OF ELLIPSE (INCHES) 0.01071 ( 0.01000)

PARAMIla) TILT OF x-Px ELLIPSE (DEG) 0.00000 ( 0.00000)

PARAM(19) AREA OF X-PX ELLIPSE (MM-MRAD) 9.14804 ( 5.00000)

PARAM(20) z RADIUS 0F ELLIPSE (INCHES) 0.01071 ( 0.01000)

PARAM(21) Pz RADIUS OF ELLIPSE (INCHES) 0.01071 ( 0.01000)

PARAMI22) TILT OF z-Pz ELLIPSE (DEG) 0.00000 ( 0.00000)

PARAMI23) AREA OF z-Pz ELLIPSE (MM-MRAD) 9.14804 I 15.00000)

PARAMI24) AREA PER POINT (IN**2) 0.00500 ( 0.00500)

PARAM(25) +/- % DELTA E 0.00000 ( 0.00000)

PARAM(26) INCREMENT IN PHASE (DEG) 1.00000 ( 1.00000)

PARAMI27) PHASE OF FIRST GROUP (DEG) 0.00000 ( 0.00000)

PARAM(28) CENTRAL ENERGY (MEv) 0.00000 ( 0.00000)

PARAM(29) REFERENCE PHASE (DEG) 0.00000 ( 0.00000)

PARAMI30) DELTA x (IF 45=0) 0.00000 ( 0.00000)

PARAMI31) DELTA PX (IF 45=0) 0.00000 ( 0.00000)

PARAMI35) NUMBER OF TURNS 50 ( 100)

PARAMI36) SPACING BETWEEN GAP PRINTS 1 ( 1)

PARAM(37) INITIAL GAP PRINT ( 1)

PARAM(38) NUMBER OF GAP PRINTS 1 ( 0)

PARAMI39) NUMBER OF TRANSFER EQUATIONS 6 ( 6)

PARAM(40) IF 0 THEN z-Pz UNIFORM 1 ( l)

PARAM(41) NUMBER OF PHI GROUPS 1 ( 1)

PARAM(42) INPUT DATA TYPE 1 ( 3)

PARAMI43) RANDOM NUMBER SEED 249279641 ( 249279641)

PARAM(44) IF NE 0, CALC PHI INITIAL 0 ( 0)

PARAMI45) IF 1 THEN USE ACCEL E0 0 ( 0)

PARAM(46) IF 1 SUPRESS INITIAL PRINT 0 ( 0)

PARAM(47) ORDER OF GAP CORRECTION 2 ( 2)

PARAM(48) IF 1 READ ELLIPSE CENTER 0 ( 0)

PARAMI49) IF 1 USE FIRST HARM. BUMP 1 ( 0)

FINAL VALUE OF RANDOM NUMBER SEED WAS 249279641
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R = R0 + i I AH i=0.NR-1.

The product b1: BUMP1(i) should give the first harmonic

component of the field at the radius step i in kilogauss.

 



APPENDIX ll

ORBIT CODE PARAMETERS

Chapter 2

All tests were run in a K500 magnetic field trimmed for

12 4+ .

30 MeV/u C . The central field was 80:34.50535 kG . and

the RF voltage was Vdee=60.4 kV. The field had perfect 3

fold symmetry and the RF frequency was equal to B \Nhen not0'

specified test runs began at E=11.0 MeV/u. All tests with

acceleration began with ¢=0.0 . The 2 motion study began at

E=5.0 MeV/u and ran for 300 turns.

Chapter 3

The PIG cases were run in the K500 30 MeV/u 1204+ field

with 80:34.50535 kG and Vdee=60.4 kV. The ECR case studies

16 4+

were done in a K500 field for 25 MeV/u O with

80:42.20057 kG. and Vdee=73.06 kV. Except where noted. the

magnetic fields had perfect three fold symmetry.
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Chapter 5

Comparision to the experimental results in section 5.2

was done in a K500 field for 20 MeV/u 12N4+. which has

80:33.3192 kG. Vdee= 51.5 kV. and 3 fold symmetry. The

initial phase width was ~180 to 2° at E=0.38717 MeV/u. The

centering conditions using the technique of Figure 2-3 are.

x =-0.034 - 0.0033(¢-¢r)
0

px0= +0.030 - 0.0061(¢-¢r)

E = Ecencos(d-¢r)

¢r=-13.0°

Ecen= .38717 MeV/u.

The relative densities of the different starting times was

determined using Figure 5-3 for the case of 100W initial

emittance and a small first turn sliL



REFERENCES



REFERENCES

H.G. Blosser, ”The Michigan State University

Superconducting Cyclotron Program ”.IEEE Trans. NS-

gngL.2040(1979).

H.G. Blosser and F. Resmini, ”Progress Report on the 500

Mev Superconducting Cyclotron". IEEE Trans. NS-

26(3).3653(1979).

M.L. Mallory. "Initial Operation of the MSU

Superconducting Cyclotron". IEEE Trans. NS-30(4).

2061(1983).

H.G. Blosser. 9th Int. Conf. on Cyclotrons and their

Appl.. G. Gendreau. ed.. Les Editions de Physique 147.

(1981)

J. Riedel. ”RF Systems".IEEE NS-26g2). 2133(1979).

J. Riedel, "Three Phase RF Systems for Superconducting

Cyclotrons". IEEE Trans. N§;§Q. 3452(1983).

F; Marti. to be published in the procedings of the 11th

Int. Conf. on Cyclotrons and their Appl.. Tokyo (1986).

M.M. Gordon. ”Effects of Spiral Electric Gaps in

Superconducting Cyclotrons." NIM. 169.327(1980)_
—

176



10.

1L

12.

13.

14.

15.

177

C.J. Kost and G.H. Mackenzie. "COMA a Linear Motion

Code for Cyclotrons,” IEEE N§;gg, 1922(1975).

J.C. Collins. "Phase Selection Mechanisms in lsochronous

Cyclotrons Producing High Resolution Beams". Ph.D.

thesis. Michigan State University. 1973. pg. 1.

B.F Milton et al.. "Design of Beam Phase Measurement and

Selection System for the M.S.U. K500 Cyclotron". Proc.

10th Int. Conf. on Cyclotrons and their Appl.. F. Marti

ed.. 55.(1984).

K.L. Brown. "A First and Second Order Matrix Theory for

the Design of Beam Transport Systems and Charged

Particle Spectrometers.” Adv. in Particle Phy. 1.

67.(1967).

M.M. Gordon, ”Computation of Closed Orbits and Basic

Focusing Properties for Sector Focused Cyclotrons and

the Design of 'CYCLOPS‘”. Particle Accelerators. 16.

39(1984).

P. Kramer, H.L. Hagedoorn and N.F. Verster. "The Central

Region of the Phillips AVF Cyclotron". Proc. of the CERN

Cyclotron Conference 193.(April 1963).

S. Gill. "A Process for Step-by-Step Integration of

Differential Equations in an Automatic Digital Computing

Machine". Proc. Cambridge Philos. Soc.. 7.96(1951)



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

178

M.M. Gordon. "Green's Function for the Mathieu-Hill

Equation”, internal NSCL memo. June 1985.

M.M. Gordon. "Notes for 2 Order Transfer Matrix Code".
nd

internal NSCL memo. 1986.

R.E. Berg. ”Precise Methods for Pre-Calculation of

Cyclotron Control Settings”. Ph.D. Thesis. Michigan

State University. 43 (1966).

M.M Gordon and T.A \Nelton, ORNL-2765 (1959).

M.M. Gordon. ”Possible Treatment of Field Bump Effects

\Nithin a Transfer Matrix Code". internal NSCL memo. Feb

2 1986.

M.M. Gordon. ”Single Turn Extraction” IEEE Trans. NS;

13(4).48 (1966).

Loc. Cit. 10. pg. 12.

Ibid. pg. 3

F. Marti. "Design of the Axial Injection System for the

NSCL Cyclotrons" IEEE Trans. NS-32(5).2450(1985).

T.l. Arnette. "Program CYCLONE”. Michigan State

University internal report (1966).

Loc. Cit. 10. pg. 43.

\N.B. MHlson et al.."Beam Diagnostics and Improvements at

TAMVEC". IEEE Trans. NS-18I2).299(1971).



28.

29.

30.

31.

32.

33.

34.

35.

179

M.M. Gordon. "Canonical Treatment of Accelerated Orbits

in Sector-Focused Cyclotrons” Part. Accel. 12.13(1982).

Loc. Cit. 20. pg. 51.

M.M. Mallory. to be published. in the procedings of the

11th International Conf. on Cyclotrons and Their Appl.

Tokyo (1986).

Garren and Smith. "Diagnosis and Correction of Beam

Behavior in an lsochronous Cyclotron". Proc. of the Int.

Conf. on Sector Focused Cyclotrons and Meson Factories.

Cern. April 1963.

R.E. Berg. "Precise Methods for the Pre-Calculation of

Cyclotron Control Settings", Ph.D. Thesis, Michigan

State University. 1966. pg. 86.

Ibid. pg. 87.

F Marti et al. ”Effect of Orbit Centering and Magnet

Imperfections on Beam Properties in a Superconducting

Cyclotron",Proc. 10th Int. Conf. on Cyclotrons and their

Appl.. F. Marti ed.. 46,(1984).

M.M. Gordon. "Perturbation of Radial Oscillations in

Superconducting Cyclotrons Due to Asymetric Dee Voltages

and Phases". IEEE Trans. NS-30.2439(1983).



36.

37.

180

M.M. Gordon and v. Taivassalo. ”The z4 Orbit Code and

the Focusing Bar Fields Used in Beam Extraction

Calculations for Superconducting Cyclotrons”. NIM 5247.

423(1986).

D.A. Johnson and H.G. Blosser, "Computor Program for

Tracking of Linear Cyclotron Orbits". Michigan State

University Internal Report MSUCP-4(1960).

 



EUNnICHIan smt IV. LIBRARIES

I I III III III IIIIIIIII IIIIIIIIII IIIIIIIIIIIIIIIIII
31293007997046

 


