

This is to certify that the
thesis entitled
Development of an Intersection
Turning Movement Predictive Model
presented by

Bruce L. Floyd

has been accepted towards fulfillment of the requirements for
M.S. degree in Civil Engineering

Date $2 / 16 / 81$

OVERDUE FINES:
$25 \$$ per day per item
RETURNING LIBRARY MATERIALS:
Place in book return to remove charge from circulation records

INTERSECTION TURNING MOVEMENT PREDICTIVE MODEL

By

Bruce L. Floyd

A THESIS

Abstract

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Civil and Sanitary Engineering

1981

DEVELOPMENT OF AN INTERSECTION TURNING MOVEMENT PREDICTIVE MODEL

By

Bruce L. Floyd

An intersection turning movement estimation technique is developed using multi-variate regression analysis. The intersection is modeled by developing regression equations for the turning movements using the machine-counted ingressegress volumes as independent variables. A computer program written to develop and test the model using the necessary field collected data as input is described.

Using data collected from four intersections in Michigan, the regression theory is tested by developing actual intersection models. Analysis of these models shows the possibility of utilizing the regression technique as standard practice in turning movement estimation. The thesis concludes with an overall analysis of the theory and recommendations for future study.

I would like to express my sincerest gratitude to the numerous individuals in the Traffic and Safety Division and Computer Services Division, Michigan Department of Transportation and the College of Engineering, Michigan State University, who have aided me in completing this thesis. I would especially like to thank Dr. James Brogan, my advisor, and the other members of my committee, Dr. William Taylor and Dr. Adrian Koert for their assistance.

The views, conclusions, and recommendations contained herein are the author's and not necessarily those of the Michigan Department of Transportation. The author is solely responsible for data and analysis accuracy.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS ii
LIST OF TABLES v
LIST OF FIGURES ix
CHAPTER
ONE. INTRODUCTION 1
TWO. LITERATURE REVIEW 10
THREE. BASIC THEORY OF THE MODEL 15
PROBLEM STATEMENT 15
COUNTING ERROR 19
DATA COLLECTION PROCEDURES 20
MODEL BUILDING THEORY AND APPIICATION 23
THREE-LEGGED INTERSECTION MODEL THEORY 43
INTERSECTION TEST PROBLEM 46
FOUR. CASE STUDIES 61
FOUR-LEGGED INTERSECTION CASE STUDY 64
APPLICATION OF THE MODEL 73
LINCOLN-LUDINGTON COMBINED DATA MODEL 76
THREE-LEGGED INTERSECTION CASE STUDY 85
MAIN-FRONT COMBINED DATA MODEL 93
FIVE. CONCLUSIONS AND RECOMMENDATIONS 102
LIST OF REFERENCES 107
APPENDICES 109
A. TURNING MOVEMENT MODEL COMPUTER PROGRAM FLOW CHART AND LISTING 109
B. TEST PROBLEM INTERSECTION MODEL 170
C. FOUR-LEGGED INTERSECTION MODEL DATA 194
D. THREE-LEGGED INTERSECTION MODEL DATA 204

LIST OF TABLES

Table Page
1 Results of Test Model 48-49
2 Results of Lincoln-Ludington 6/74 Model 67-68
3 Results of Lincoln-Ludington 6/74 Model, Estimation of Lincoln-Ludington 7/76 Turning Movements 75
4 Results of Lincoln-Ludington Combined Data Model 78-79
5 Results of Lincoln-Ludington Combined Data Model, Estimation of Lincoln-Ludington 6/74 Turning Movements 81
6 Results of Lincoln-Ludington Combined Data Model, Estimation of Lincoln-Ludington 7/76 Turning Movements 82
7 Results of Lincoln-Ludington Combined Data Model, Estimation of Ford-Newburgh 5/76 Turning Movements 86
8 Results of Main-Front 10/75 Model. 89-90
9 Results of Main-Front 10/75 Model, Estimation of Main-Front 7/78 Turning Movements 92
10 Results of Main-Front Combined Data Model 94-95
11 Results of Main-Front Combined Data Model, Estimation of Main-Front 10/75 Turning Movements 96
12 Results of Main-Front Combined Data Model, Estimation of Main-Front 7/78 Turning Movements 97
13 Results of Main-Front Combined Data Model, Estimation of Grand River-Golf Club 2/77 Turning Movements. 100
Table
Page
B-1 Test Matrix (A), Ingress-Egress Manual Counts 170
B-2 Test Matrix (B), Ingress-Egress Machine Counts 171
B-3 Test Matrix (M), Ingress-Egress \%Error Matrix 172
B-4 Test Matrix (C), Adjusted Ingress-Egress Machine Counts 172
B-5 Test Matrix (D), Adjusted and Balanced Ingress- Egress Machine Counts. 173
B-6 Test Matrix (M1), Second Ingress-Egress \%Error Matrix 174
B-7 Test Matrix (T), Manual Turning Movement Counts. 175
B-8 Test Statistical Analysis Variable Relationship. 176-177
B-9 Test Statistical Analysis of Step-Wise Regression Step 1 178
B-10 Test Statistical Analysis of Step-Wise Regression Step 2 179
B-11 Test Statistical Analysis of Step-Wise Regression Step 3 180
B-12 Test Statistical Analysis of Step-Wise Regression Step 4 181
B-13 Test Statistical Analysis of Step-Wise Regression Step 5 182
B-14 Test Matrix (E), Regressions Coefficients Matrix 183
B-15 Test Statistical Analysis of Step-Wise Regression, Actual vs. Predicted Values 184
B-16 Test Matrix (F), Estimated Turning Movements 185
B-17 Test Matrix (TE), Turning Movement Estimation Error 186
B-18 Test Matrix (G), Estimated Ingress-Egress Movements 187
B-19 Test Matrix (H), Ingress-Egress \% Error. 188
TablePage
B-20 Test Matrix (P), \% Turning - Manual Counts 189
B-2l Test Matrix (PP), Estimated of Turning 190
B-22 Test Matrix (GGG), Chi-Square Ingress-Egress Estimation 191
B-23 Test Matrix (TTT), Chi-Square Turning Movement Estimation 192
B-24 Test Matrix (PPP), Chi-Square of Turning Estimation 193
C-1 Ingress-Egress Manual Counts, Lincoln- Ludington Intersection 194
C-2 Ingress-Egress Machine Counts, Lincoln- Ludington Intersection 195
C-3 Manual Turning Movement Counts, Lincoln- Ludington Intersection 6/74 196
C-4 Regression Coefficients Matrix, Lincoln- Ludington Intersection 6/74 197
C-5 Ingress-Egress Manual Counts, Lincoln- Ludington Intersection 7/76 198
C-6 Ingress-Egress Machine Counts, Lincoln- Ludington Intersection 7/76 199
C-7 Manual Turning Movement Counts, Lincoln- Ludington Intersection 7/76 200
C-8 Ingress-Egress Manual Counts, Ford-Newburgh Intersection 5/76 201
C-9 Ingress-Egress Machine Counts, Ford-Newburgh Intersection 5/76 202
C-l0 Manual Turning Movement Counts, Ford-Newburgh Intersection 5/76 203
D-1 Ingress-Egress Manual Counts, Main-Front Intersection 10/75 204
D-2 Ingress-Egress Machine Counts, Main-Front Intersection 10/75 205
D-3 Manual Turning Movement Counts, Main-Front Intersection 10/75 206
Table Page
D-4 Ingress-Egress Manual Counts, Main-Front Intersection 7/78 207
D-5 Ingress-Egress Machine Counts, Main-Front Intersection 7/78 208
D-6 Manual Turning Movement Counts, Main-Front Intersection 7/78 209
D-7 Ingress-Egress Manual Counts, Grand River-Golf Club Intersection 2/77. 210
D-8 Ingress-Egress Machine Counts, Grand River-Golf Club Intersection 2/77 211
D-9 Manual Turning Movement Counts, Grand River-Golf Club Intersection 2/77 212

LIST OF FIGURES

Figure Page
1 NETSIM - Turning Movement Input Form 2
2 Typical Machine Counter Configuration 4
3 Typical Vehicle Count Summary Sheet 6
4 Intersection Flow Notation 16
5 Ingress-Egress Counts - Matrix Format 21
6 Turning Movement Counts - Matrix Format 22
7 Linear Regression Model Theory 24-25
8 Regression Coefficients - Matrix Format 31
9 Linear Regression Matrix Equation 32
10 Typical Three-Legged Intersection 44
11 Typical Hand Count Volume Sheet 62
12 Typical Machine Count Volume Sheet 63
13 Lincoln Road and Ludington Road Intersection. 65
14 Ford Road and Newburgh Road Intersection 84
15 Main Street and Front Street Intersection 87
16 Grand River Ave. and Golf Club Dr. Intersection 99

Chapter One
INTRODUCTION

Highway engineers and planners often have a need to know the directional flow of traffic within a highway intersection. An American Association of State Highways and Transportation Officials (AASHTO) publication, for example, states that "The pattern of traffic movements at the intersections and volume of traffic on each approach, including pedestrians, during one or more peak periods of the day are indicative of the type of traffic control devices necessary, the widths of pavements required, including auxiliary lanes, and, where applicable, the degree of channelization needed to expedite the movement of all traffic." (1, p. 675)*

One key to understanding an intersection's flow characteristics is a knowledge of the vehicular turning movements at the intersection. Turning movements are thus a main ingredient in almost every traffic intersection study. For example, the Federal Highway Administration's network simulation model, NETSIM, (4) requires that either turning movement counts or turning percentages be given. This data is entered in "NETSIM Card 7 - Link Turning Movements", a copy of which is shown in Figure 1.

[^0]

Figure 1
NETSIM - Turning Movement Input Form

The signal optimization program, TRANSYT, (9) also requires intersection turning movement data in order to estimate link flows. Highway capacity analysis, signalization studies, conflict analysis, accident analysis and signalization phasing studies all require turning movement knowledge at the intersection under study. planners, as well as engineers, may use turning movement information in checking origin-destination studies and in network analysis. There is, therefore, a large demand for intersection turning movement information.

At the present time, relatively simple procedures are used by transportation agencies in collecting intersection turning movement data. In most cases, a crew of one or more people is dispatched to the intersection and a pneumatic tube or some other type of mechanical counter is placed at each entrance and exit of the intersection. Figure 2 shows a typical configuration. The machines then count the ingress and egress traffic of the intersection, typically for a 48 hour period with tabulations every 15 minutes. There are thus four counts per hour. At some time during the two days, usually during the $A M$ and $P M$ traffic peaks, crews hand count the turning movements within the intersection using a tally sheet or hand-held counter. These turning movement counts, like the machine counts, are tabulated every fifteen minutes. (The period of tabulation may vary from study to study or from agency to agency, but fifteen minutes is relatively standard.)

Figure 2
Typical Machine Counter Configuration

All of the data is tabulated in an intersection turning movement report. Figure 3 shows the graphic summary of one such report. This sheet gives the intersection description and location, the final counts of the total time studied, and when the counts were taken. Subsequent pages of the report give more specific information, such as the machine counts, 15 minute tabulations, any unusual incidents that occured during the study period, and so forth.

The method just outlined is labor intensive and thus costly. Since there are many users of intersection information, transportation agencies are hard pressed to keep up with the demand for information. If all requests are to be fulfilled within a reasonable time, a large labor force is required. If a large labor force cannot be hired because of budget limitations, a backlog of requests usually results.

Because of the long wait associated with obtaining intersection turning movement data, many users estimate this data or simply do without it. If a method can be developed by which intersection turning movement information can be estimated with sufficient accuracy three major benefits will result. First, more intersections can be studied at approximately the same cost of the present method. Thus, potential users who would like to have information, but do not request it because of the time delay or cost to their unit, will now be able to do so.

Figure 3
Typical Vehicle Count Summary Sheet

The time delay to users will be shortened because hand counts will be taken at only those intersections which require it. Second, the estimation should allow study of the intersection turning movements on a twenty-four hour basis. If a technique can be developed which does not require constant human attention, night-time operation studies, which are now generally cost prohibitive, can be made. Finally, if an estimation technique can be developed and applied to large volume intersections, little accuracy may be lost and the accident potential associated with hand-counting operations may be lessened. Therefore, if a method can be developed by which an accurate estimation of turning movements can be made quickly from the machine counts, the need for information may be met and the aforementioned benefits realized. This thesis developed just such an estimation procedure. The estimation technique was based on statistical analysis and utilizes a large computer for rapid processing.

The procedure which the thesis developed is outlined in Figure 4, on page 16, which shows a typical four-legged intersection in which U-turns are not allowed. The notation used throughout the study is shown in Figure 4 and is as follows:

The numbers represent the major compass directions:
$1=$ North or Northeast,
2 = East or Southeast,
3 = South or Southwest,
4 = West or Northwest.
$I=$ Ingress traffic, the total traffic entering the intersection from a particular direction (vehicles/time unit),

E = Egress traffic, the total traffic exiting the intersection to a particular direction (vehicles/ time unit),
$X_{I E}=$ The traffic entering from the I th direction and exiting to the E th direction (vehicles/ time unit)

As can be seen, the values of the turning movements, ($\mathrm{X}_{\text {IE }}$'s), are dependent on the values of the ingress and egress traffic (I's and E's). This research proposes that an estimation of any of the turning movements can be made from its relationship with the ingress and egress variables. A linear model was suggested as the first possible approach, with the dependent variables the individual turning movements and the independent variables the ingress and egress volumes. The following regression equation type was thus proposed:

$$
\begin{aligned}
x_{I E}= & b_{O_{I E}}+b_{I_{I E}}\left(I_{1}\right)+b_{2_{I E}}\left(I_{2}\right)+b_{3_{I E}}\left(I_{3}\right)(E q \cdot 1-1) \\
& +b_{4}\left(I_{4 E}\right)+b_{5_{I E}}\left(E_{1}\right)+b_{6_{I E}}\left(E_{2}\right) \\
& +b_{7_{I E}}\left(E_{3}\right)+b_{8_{I E}}\left(E_{4}\right)
\end{aligned}
$$

Where the $b_{\text {IE's }}$ are regression equation coefficients and the $I_{i} ' s$ and E_{j} 's are the ingress and egress volumes respectively. The basic objective of the thesis was to develop and test such a regression model using actual intersection data. The following procedure was used. First, a literature search was made to determine the present theoretical "state-of-the-art" of intersection counting procedures. The present field operations for collecting intersection data have already been described. The literature review thus focuses on recent efforts relating to the estimation of turning movements from flow volumes.

Second, a theory of the intersection model development is presented. This chapter explains how the proposed intersection model(s) were developed and tested and what results were expected. Analysis of expected error is also discussed in this chapter.

Third, in order to test the regression model, actual intersection data was used from previous traffic studies conducted by the Michigan Department of Transportation. The descriptions of these locations is given in the chapter on case studies. Both four-legged and three-legged intersections were studied.

Finally, conclusions and recommendations are presented. This chapter discusses how well the model(s) worked, what degree of error was present, and where future study should be directed.

Chapter Two
 LITERATURE REVIEW

A literature search produced little previous research on the subject of turning movement estimation from known ingress and egress movements. Most articles and publications reviewed assumed that turning movements at intersections were hand-counted. For example, according to the Institute of Transportation Engineer's "Transportation and Traffic Handbook": "Intersection counts are usually conducted manually. Low-volume intersections may be counted by one person, but heavier volumes are usually counted by a team of two or more observers." (2, p. 408).

Recent articles in "Traffic Engineering \& Control", however, discuss turning movement estimation. After a brief explanation of terms, a review of these articles will follow.

In this thesis and in the recent articles, the following definitions and constraints (using the notation of Figure 4, page 16) apply:

1) The only intersections considered for study are those in which storage, the retention of vehicles within the intersection, is not allowed. Thus, the sum of the ingress counts equals the sum of the egress counts:
$\sum_{i=1}^{4} \mathrm{Ii}=\sum_{j=1}^{4} \mathrm{Ej} \quad$ (Eq. 2-1)

If this is not the case for any collected data, the source of error must be identified, and the data "corrected" to satisfy this constraint.
2) The only intersections considered for study are those in which U-turns are not allowed. Therefore, equation (2-2) holds.
$\mathrm{X}_{11}=\mathrm{X}_{22}=\mathrm{X}_{33}=\mathrm{X}_{44}=0$ (Eq. 2-2)
3) A solution is a set of numeric values which are assigned by some method to the turning movement variables, X_{12}, X_{13}, X_{14}, and so forth.
4) A solution is defined as feasible if the values of X's are non-negative and meet the following constraints:

5) A symmetrical intersection flow is defined as one in which the ingress volume of any direction equals the egress volume to the same direction. Thus, $I_{1}=E_{1}, I_{2}=E_{2}, I_{3}=E_{3}$, and $I_{4}=E_{4}$.
6) A symmetrical intersection turning flow is defined as one in which $X_{i j}=X_{j i}$ for alli's and j's. Thus, $X_{12}=X_{21}, X_{13}=X_{31}$, and so forth.

The particular problem, as will be discussed in detail
in Chapter 3, to which other recent research and this thesis address themselves is that when only ingress and egress volumes (link flows) are known, there is no unique feasible solution. There is, instead, a finite set of feasible solutions. The goal of finding a technique to determine the most appropriate feasible solution is common to the other recent studies and this thesis.

Martyn Jeffreys and Michael Norman, British transportation consultants, have shown that using linear programming and matrix algebra, the finite set of solutions can be defined. (7) They also contend that as an intersection reaches saturation flow, the intersection flow matrix approaches symmetry. Given symmetrical flow, they develop techniques for finding a unique solution.
M.L. Marshall, a British planner in Dorset County, has shown that it is not necessary to count all turning movement flows, ($\mathrm{X}_{\mathrm{IE}}{ }^{\prime} \mathrm{s}$), in order to determine a unique solution. (8) He also explains that if probabilities are assigned to the correct number of turning movements, an estimated solution can be reached without any observers. These probabilities are to be assigned assuming an "a priori" knowledge of the intersection's behavior.

Ali Mekky, a lecturer at Alfateh University in Tripoli, has developed an iterative technique for updating an intersection flow matrix from a base year knowledge. (10) This technique involves using a Lagrangian equation which minimizes the distance between the base year turning movement matrix and the unknown turning movement matrix. The equation is solved iteratively using either the Furness method or the biproportionate method. H. VanZuylen has developed a similar technique using "a priori" probabilities of turning. (13) Again a Lagrangian equation is solved using an iterative process.

Finally, Norman, Hoffmann, and Harding describe three techniques that can be used to determine a unique feasible solution. (14) These techniques are non-iterative and are based on using "a priori" knowledge to change a nonconstrained flow matrix to a constrained flow matrix. These techniques are compared to an iterative technique, the Entropy-Maximization solution.

Although the goal of both previous research and this thesis is the same, the scope is quite different in nature. Whereas previous studies were attempting to solve the turning movement estimation problem primarily in order to update flow networks to be used in transportation planning, in this thesis the estimation technique was developed to fulfill a traffic operations need for turning movement information, such as for the NETSIM and TRANSYT computer programs mentioned earlier. Therefore, this thesis developed a technique that is much more specific in nature than previous research and therefore leads to several differences in the direction of future studies.

Since most of the authors of previous studies are planners, their research reflects transportation planning needs. They are searching primarily for a reliable but inexpensive procedure to update traffic network flows so that they can be used for planning purposes. This goal has led them to develop iteration techniques similar to the "gravity" model to determine a solution. The time base is generally one year. Errors due to counting or to
minor changes in traffic operations are not studied since they are assumed not to be significant.

The research in this thesis, because its scope is directed towards intersection operation, differs from previous research in the following ways:

1) Tabulations were taken at shorter intervals, in order to describe variations in intersection behavior more accurately.
2) Because of the shorter tabulation period, machine count error and operations error must be described and compensated for.
3) The intersection model should be able to detect changes in intersection flow using only machine counts.
4) Collection of several tabulations will provide a data base for a linear regression technique, rather than using an iterative technique such as the gravity model which uses one set of data.
5) Last, and most important, the linear regression technique should become a basis for developing "standard" estimation models. Data from intersections never before studied would be input into these models and the "best fitting" turning movement estimations used.

In the next chapter, the theory of the linear regression technique is fully described with a sample problem. References to previous research will be made where appropriate.

Chapter Three

BASIC THEORY OF THE MODEL

In this chapter the basic theory of building a linear regression model of intersection flow is discussed. First, the basic problem of turning movement estimation is analytically stated. Second, the problem of counting error is discussed and treated. Third, a step-by-step explanation of the model building technique is given for a four-legged intersection. Then, the theory of a thirdlegged intersection as a special case is presented. Finally, test data is used to build an actual intersection turning movement model.

PROBLEM STATEMENT
The basic notation and assumptions presented in the first two chapters are the basis for the problem statement. The notation shown in Figure 4 is used. The basic intersection equations, as given in Chapter Two are:

Il	X12	+	X13	+	X14	(Eq. 3-1)
I2	X21	+	X23	+	X24	(Eq. 3-2)
I3	X31	+	X32	+	X34	(Eq. 3-3)
I4	X41	+	X42	+	X43	(Eq. 3-4)
E1	X21	+	X31	+	X41	(Eq. 3-5)
E2	X12	+	X32	+	X42	(Eq. 3-6)
E3	X 13	+	X23	+	X43	(Eq. 3-7)
E4	X14	+	X24	+	X34	(Eq. 3-8)
I1	$+\mathrm{I}_{2}+$	3	I4	El	$+\mathrm{E}_{2}$	(Eq. 3-9)

Figure 4
Intersection Flow Notation

The degrees of freedom equals the number of unknowns, (Xij, the turning movements), minus the number of independent equations, (Equations 3-1 through 3-8), plus the number of redundancies, (Equation 3-9). For the fourlegged intersection, there are 12 unknowns, 8 independent equations and 1 redundancy. Therefore, there are 5 degrees of freedom for the model's system equations; that is, the system is indeterminate by five unknown variables.

The matrix form of the independent equations is:

(Eq. 3-10)
As shown, even if the ingress and egress volumes are known, it is impossible to obtain a unique solution. However, if five non-redundant turning movements are known, the equation has a unique solution. This was alluded to by Marshall. (8) Labor can thus be reduced if only the necessary number of movements are hand-counted.

The number of possible solutions to the matrix equation is finite, since Xij can vary only between 0 and Ii
or Ej, whichever is less. Thus, using knowledge of the previous performance of the intersection, or of a similar type intersection, it should be possible to estimate the most probable solution to the turning movement matrix. As was stated in Chapter 1 , this thesis suggests that a linear regression approach for estimating turning movements is an appropriate one. The proposed linear regression equation is:

$$
\begin{aligned}
\mathrm{xij} & =b_{0}+b_{1}\left(I_{1}\right)+b_{2}\left(I_{2}\right)+b_{3}\left(I_{3}\right) \\
& +b_{4}\left(I_{4}\right)+b_{5}\left(E_{1}\right)+b_{6}\left(E_{2}\right) \\
& +b_{7}\left(E_{3}\right)+b_{8}\left(E_{4}\right)
\end{aligned}
$$

(Eq. 3-11)
Where: $\mathrm{b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \ldots . \mathrm{b}_{8}$ are the regression coefficients developed by a step-wise linear regression subroutine, Xij is the unknown turning movement count from direction i to direction $j, ~ I i$ is the ingress count from direction i, and $E j$ is the egress count to direction j during time T. Turning movement estimation will be made for the individual fifteen minute time periods and for the overall time period studied. These estimations have two distinct purposes. The estimation of the individual time periods will reflect the degree of variance or non-linearity in the model. The overall estimation, however, can be useful, even if the linear regression equations do not accurately estimate the individual time period turning movements. Therefore, there are two types of model verification tests. First, there are chi-square tests which test the goodness-
of-fit of the model. Then, there are tests of the performance of the model in estimating the overall turning movements. The estimation of the overall turning movement percentages is the most important output of the model since the NETSIM and TRANSYT computer programs do not allow variance in the turning movement percentage input. In other words, a single value for each turning movement is required for these programs. If the intersection operates differently during other time periods, more NETSIM or TRANSYT computer runs have to be made.

COUNTING ERROR
Errors in machine counts from which ingress and egress volumes are obtained may result from several causes:

1) Improper placement of the tube on the pavement,
2) Inherent machine error,
3) Multiaxle vehicles, since machine counts assume 2 axles per vehicle, and
4) Driver behavior, such as deliberate attempts to avoid the counter.

A thorough investigation of machine count error would be a time-consuming study in itself. Therefore, the following assumptions are made in this study:

1) Errors due to improper placement are so large that they are easily detected,
2) Inherent machine error is negligible,
3) The majority of machine error is due to multiaxle vehicles and driver behavior, and
4) Machine count error within an intersection does not change significantly over time.

The major constraint on the model is thus the assumption that the machine count error does not significantly change over time. If this is not true, the model may not be able to detect the change and therefore will give results with large unknown errors. This hypothesis will be tested in the thesis.

DATA COLLECTION PROCEDURES

First, base data is collected at a subject intersection. This data includes manual counts of the turning movements and of the ingress-egress movements for "n" time periods of 15 minutes. The data also includes machine counts of the ingress-egress movements for the same studied time periods. The hand counts, which are assumed in this study to be error-free, were inserted in Matrix (A) shown in Figure 5. In this figure, the rows are time periods for which the counts are tabulated and the columns are the specific ingress-egress volumes, using the notation of Figure 4. The machine counts are inserted into another matrix, Matrix (B) with the same format.

To construct a turning movement model, the turning movements must be hand-counted. The counts are tabulated in Matrix (T) as shown in Figure 6. The rows, again, are the time periods and the columns are the individual counts.

Figure 5
ingress-egress counts - matrix format

Figure 6

MODEL BUILDING THEORY AND APPLICATION

To develop the linear regression model, this thesis will use the theory outlined in Figure 7. There are basically five main blocks: data collection, error measurement and adjustment, regression analysis, model verification, and model acceptance. Data collection has already been explained in Chapter 1 and in this chapter. The data tabulations, Matrices (A), (B), and (T) are the basis for building an intersection turning movement model.

Comparing the hand-counted ingress-egress volumes, Matrix (A), to the machine counts in Matrix (B), the mean percentage error and standard deviation for each movement is calculated as follows:

(Eq. 3-12)

(Eq. 3-13)

Figure 7
(cont'd.)
(Eq. 3-14)

$$
\frac{\sum^{\circ} e_{E j}}{}=\frac{\sum_{t=1}^{n} \frac{E j(t) m-E j(t)}{E j(t)} \times 100}{n}
$$

(Eq. 3-15)

$$
\begin{aligned}
& S^{{ }^{8} e_{E j}} \\
& \frac{\sum^{n}}{t=1} \frac{E j(t) m-E j(t)}{E j(t)} \times 100^{2}-n\left(\overline{\% e_{E j}}\right)^{2} \\
& n-1
\end{aligned}
$$

where:

$$
\begin{aligned}
& \mathrm{S}_{\overline{8 e_{\mathrm{Ej}}}=}=\text { the standard deviation for the mean percentage } \\
& \text { error for egress to direction } j, \\
& n \quad= \text { the number of time periods studied. }
\end{aligned}
$$

The assumption is made that the errors are non-time dependent and normally distributed about a mean value. Based on this assumption, the machine counts are increased or decreased by the mean percentage error so that the mean percentage error is approximately zero for all movements, the adjusted counts form a new matrix, Marrix (C), using the following equations: (Eq. 3-16)

$$
\begin{aligned}
& c_{t l}= b_{t l}-b_{t l} \times \frac{8 e_{I l}}{100} \text { for } 1 \leq \ell \leq 4 \\
& \text { (Eq. 3-17) } \\
& c_{t l}=b_{t I} \quad b_{t l} \times \frac{{ }^{\circ} e_{I}(1-4)}{100} \text { for } 5 \leq \ell \leq 8
\end{aligned}
$$

where: $c_{t l}=$ the numerical entry in the t th row and 1 th column of Matrix (C), and

$$
\begin{aligned}
b_{t l}= & \text { the numerical entry in the } t \text { th row } \\
& \text { and } l \text { th column of Matrix }(E) .
\end{aligned}
$$

Even though the mean percentage machine error is now distributed about zero, there is still another constraint which must be met. Since this mdoel assumes that the time period for tabulated counts is 15 minutes, it also assumes that this period is long enough so that there is
negligible storage within the intersection. Therefore, the model must meet the following constraint:
(Eq. 3-18)

$$
\sum_{i=1}^{4} \quad I_{t_{i}}=\sum_{j=1}^{4} \quad E_{t j} \text { for each } t=1,2,3, \ldots n
$$

Each row in Matrix (C) is thus balanced to meet this constraint. This balancing forms Matrix (D). The balancing technique assumes that the error is distributed proportionally among the counts during the particular time period under consideration. The following formulas are used:
(Eq. 3-19)

$$
\begin{equation*}
R_{t}=\sum_{i=1}^{4} \quad I_{t_{i}}-\sum_{j=1}^{4} \quad E_{t j} \tag{Eq.3-20}
\end{equation*}
$$

$$
d_{t 1}=c_{t 1}-\frac{R t}{2} \quad \frac{c_{t 1}}{4} \quad \text { for } 1 \leq \ell \leq 4
$$

$$
t=1 \quad t i
$$

(Eq. 3-21)

$$
d_{t l}=c_{t l}+\frac{R t}{2} \quad \frac{c_{t l}}{4} \text { for } 5 \leq \ell \leq 8
$$

where: $\quad R_{t}=$ balance error for the t th row, $d_{t l}=$ the numerical entry in the t th row and 1 th column of Matrix (D), and
$c_{t l}=$ the numerical entry in the t th row and 1 th column of Matrix (C).

The adjusted and balanced machine counts of Matrix (D) are compared to the hand-counted ingress-egress volumes of Matrix (A) using Equations 3-12 through 3-15. The mean percentage error should be zero for all ingress and egress volumes. The more the mean percentage errors deviate from zero, the less successful the error adjustment. If the deviations from zero are unacceptable to the model builder, the error-adjustment process can be iterated until acceptable deviations are obtained. The intersection data can also be studied for time-varying dependence or for any violations of the machine count assumptions stated in this chapter. The level of tolerable deviation from zero mean percentage error is dependent upon the users' needs. In this study, the error process is iterated if the absolute value of any of the mean percentage errors is greater than five percent. The iterative process is cut off when the acceptable tolerance is reached or after five unsuccessful iterations. If the adjustment process is unsuccessful, the data should be reexamined.

Assuming that the error adjustment has been successful, the hand-counted turning movements, Matrix (T), and the balanced and adjusted machine counts, Matrix (D), are used in regression analysis. The regression equation for each of the 12 dependent variables (the turning movements) is of the form:

$$
\begin{aligned}
X_{I E}= & b_{0}+b_{1} I_{I E}+b_{2} I_{I E}+b_{3} I_{I E} \\
& +b_{4} I_{I E} I_{4}+b_{5_{I E}} E_{1}+b_{6_{I E}} E_{2}+b_{7_{I E}} E_{3}+ \\
& b_{8}{ }_{I E} E_{4}
\end{aligned}
$$

The coefficients are calculated using a step-wise linear regression computer program (11), and are placed into a 9 x 12 matrix, Matrix (E), as shown in Figure 8. The model is tested by multiplying Matrix (E) and Matrix (D^{*}) as shown in Equations 3-23 and 3-24, (Figure 9). Matrix (D*) is Matrix (D) with a column of dummy l's added. The dummy l's are the coefficients of the intercepts. Matrix (F), the estimated turning movement counts, is the result.

Figure 8
Regression Coefficients - Matrix Format

Figure 9
Linear Regression Matrix Equation
(Equation 3-24)

$$
\begin{array}{ccc}
(D *) & \times \quad(E) \quad(F) \\
n \times 9 & 9 \times 12 \quad n \times 12
\end{array}
$$

Comparing the actual turning movement matrix, Matrix (T) and the estimated turning movement matrix, Matrix (F) creates the turning movement percentage error matrix, Matrix (TE). The following formula is used:
(Eq. 3-25)

$$
T E_{t l}=\left(F_{t l}-T_{t 1}\right) / T_{t 1} \times 100
$$

where: $\mathrm{TE}_{t l}=$ the turning movement percentage error in the t th row and the 1 th column of Matrix (TE),
$\mathrm{F}_{\mathrm{tl}}=$ the estimated turning movement in the t th row and the 1 th column of Matrix (F), and
$T_{t l}=$ the actual turning movement in the t th row and 1 th column of Matrix (T).

The mean and standard deviation of the turning movement percentage error is computed for each Xij. These are measures of how well the model is calibrated. The means and standard deviations would equal zero if the model were perfect. The further from zero means are, the more imperfect the model.

Applying the intersection equations, Equations 3-1 through 3-9, estimated ingress-egress volumes can be computed from the estimated turning movements contained in Matrix (F). The results are placed in Matrix (G).

Comparing Matrix (D), the adjusted and balanced machine counts, with Matrix (G), the estimated ingressegress counts, an error matrix, Matrix (H), is computed using the following equation:
(Eq. 3-26)

$$
H_{t l}=\left(G_{t l}-D_{t l}\right) / D_{t l} \times 100
$$

where: $H_{t l}=$ the percentage error in the t th row and l th column in Matrix (H).
$G_{t l}=$ the estimated ingress or egress movement in the t th row and l th column in Matrix (G), and
$D_{t l}=$ the adjusted and balanced machine count in the t th row and l th column in Matrix (D).

The mean error and standard deviation are also computed and are shown in the last two rows of Matrix (H). The mean values of Matrix (H) provide another verification check of the model. The closer to zero the means and standard deviations of error matrix, the better fitting is the model. The estimated turning movements matrix, Matrix (F), can be adjusted to reduce the mean errors of Matrix (H).

For each value $X_{\text {IE }}$ of Matrix (F), there is an error from the I component and an error from the E component. The values of the (F) Matrix are adjusted to give a new (F) Matrix by the following equation:

$$
F_{t l} \text { new }=F_{t l} \text { old }+\left(I_{i} G D E / 3\right)+\left(E_{j} G D E / 3\right)
$$

(Eq. 3-27)
where: $F_{t l}$ new $=$ the new value for the t th row and 1 th column of the new Matrix (F),
$F_{t l}$ old $=$ the old value for the t th row and l th column of the new Matrix (F),
$I_{i} G D E=$ the error in $I i$ between the (D) and (G) matrices $=\operatorname{Ii}(D)-\operatorname{Ii}(G)$, $i=1$ when $1=1,2,3$ $i=2$ when $1=4,5,6$ $i=3$ when $1=7,8,9$ $i=4$ when $1=10,11,12$, and
$E_{j} G D=$ the error in $E j$ between the (D) and (G) matrices $=\mathrm{Ej}(\mathrm{D})-\mathrm{Ej}(\mathrm{G})$, $j=1$ when $1=4,7,10$ $j=2$ when $1=1,8,11$
$j=3$ when $l=2,5,12$
$j=4$ when $1=3,6,9$.

From the new (Fl) matrix, new (Gl) and Hl) matrices are computed. For this study the process is repeated until all mean values of $(H(n))$ are less than 5.00% in absolute value or a maximum of five iterations is reached. The next validation test of the model calibration is the comparison of the actual and estimated percent turning matrices. The percent turning of the handcounted data is placed in Matrix (P) and is calculated as
follows:
(Eq. 3-28)

$$
P_{t l}=\left(T_{t l} / \sum_{l=k}^{k K} T_{t l}\right) \times 100
$$

where: $P_{t l}=$ the percent turning in the t th row and
1 th column of Matrix (P), and
$T_{t l}=$ the number of turning in the t th row and 1 th column of Matrix (T),

$$
\begin{array}{ll}
\text { if } l=1,2,3 & k=1, \\
\text { if } 1=4,5,6 & k=4, \\
\text { if } 1=7,8,9 & k=7, \\
\text { if } 1=10,11,12 & k=10,
\end{array}
$$

The mean percentage turning and the standard deviation are computed and placed in the last rows of Matrix (P). Matrix $(P P)$ is the estimated turning percent matrix and is computed in the same manner as Matrix (P) except using Matrix (F) instead of Matrix (T).

The closer the estimated percentages are to the actual percentages, the better the model is. The maximum allowable magnitude of error is a choice of the model builder. However, since these values are a primary output of the model, as described in Chapter 1 (for the NETSIM computer program), careful consideration should be given to their acceptance. For this study, the model is considered acceptable if the estimated error percentages are not more than 2%.

The final validation tests are chi-square tests for the goodness-of-fit of the turning movement estimation, the percent turning movement estimation and the ingressegress estimation. (3)

The general form of the chi-square test is:
(Eq. 3-29)
2
$X \quad=\sum_{i=1}^{n} \frac{\left(0_{i}-E_{i}\right)^{2}}{E_{i}}$
where:

$$
\begin{aligned}
x^{2}= & \text { the total chi-square value, } \\
O_{i}= & \text { the observed or estimated value for } \\
& \text { cell } i \text {, and } \\
E_{i}= & \text { the expected or actual value for cell } i .
\end{aligned}
$$

This test measures how well the model's output fits the actual intersection performance and is, therefore, an important test of linear fit for an intersection. Since the cells are the time periods and are considered independent, the degrees of freedom for the test equals the time period sample size. The autocorrelation coefficients and the residuals can be checked to determine the degree of time dependence.

The chi-square value for ingress-egress estimation is computed from Matrices (D) and (G) for each movement for each time period and placed in Matrix (GGG) using the following equation:
(Eq. 3-30)

$$
\mathrm{GGG}_{\mathrm{tl}}=\frac{\left(\mathrm{G}_{\mathrm{tl}}-\mathrm{D}_{\mathrm{tl}}\right)^{2}}{D_{t 1}}
$$

where:

$$
\begin{aligned}
\mathrm{GGG}_{\mathrm{tl}}= & \text { the chi square value for the } t \text { th row and } \\
& \text { the } 1 \text { th column of Matrix (GGG), } \\
G_{t l}= & \text { the estimated ingress or egress volume } \\
& \text { for the } t \text { th row and the } 1 \text { th column of } \\
& \text { Matrix (G), and } \\
D_{t l}= & \text { the adjusted and balanced ingress or } \\
& \text { egress volume for the } t \text { th row and } 1 \text { th } \\
& \text { column of Matrix }(D) .
\end{aligned}
$$

The total chi-square values are computed using the following formulas:
(Eq. 3-31)

$$
x^{2} I_{1}=\sum_{t=1}^{n} \quad G G G_{t l} \quad \text { for } 1 \leqq 1 \leqq 4
$$

where:

$x^{2} \quad=$	the total chi-square value for the
	$I_{1} \quad$ ingress from direction 1.

where:

$$
\begin{aligned}
x^{2}(1-4)= & \text { the total chi-square value for the } \\
& \text { egress to direction (1-4). }
\end{aligned}
$$

The level of confidence at which the estimation is accepted is obtained from a chi-square distribution table, (3, pages 600-601) using n, the number of time periods as the degrees of freedom. Note that the balanced and adjusted counts are used in this test in order to measure the error introduced by the linear regression model. If the model is perfect, the chi-square value for each movement will equal zero.

The chi-square values for the turning movements are computed in same manner using Matrices (F) and (T) as follows:
(Eq. 3-33)

$$
\mathrm{TTT}_{t l}=\frac{\left(\mathrm{F}_{t 1}-T_{t l}\right)^{2}}{T_{t 1}}
$$

where:

$$
\begin{aligned}
\mathrm{TTT}_{\mathrm{tl}}= & \text { the chi-square value for the } t \text { th row } \\
& \text { and the } 1 \text { th column of Matrix (TTT), } \\
\text { Ftl }= & \text { the estimated turning movement for the } \\
& t \text { th row and the } 1 \text { th column of Matrix (} F \text {), } \\
& \text { and } \\
\mathrm{T}_{\mathrm{tl}}= & \text { the actual turning movement for the } t \text { th } \\
& \text { row and the } 1 \text { th column of Matrix }(T) .
\end{aligned}
$$

The total chi-square values are computed using the following formula:
(Eq. 3-34)

$$
x_{x_{i j}}^{2}=\sum_{t=1}^{n} \quad T T T_{t l}
$$

where:
2
$\begin{aligned} X \quad x_{i j}= & \text { the total chi-square value for turning } \\ & \text { movement from the ith direction to the } \\ & j \text { th direction. }\end{aligned}$

If the model would estimate each turning movement for each time period perfectly, the chi-square value would
equal zero in all cases. In a similar fashion, the chisquare values for the turning movement percentages are calculated using Matrices (P) and (PP) as follows:

$$
P P P_{t l}=\frac{\left(P P_{t l}-P_{t l}\right)^{2}}{P_{t l}}
$$

(Eq. 3-35)
where:

$$
\begin{aligned}
\mathrm{PPP} \quad= & \text { the chi-square value for the } t \text { th row and } \\
& \text { the } 1 \text { th column of Matrix }(P P P), \\
P_{t l}= & \text { the estimated turning movement percentage } \\
& \text { for the } t \text { th row and } 1 \text { th column of } \\
& \text { Matrix }(P P), \text { and } \\
P_{t l}= & \text { the actual turning movement percentage for } \\
& \text { the } t \text { th row and } 1 \text { th column of Matrix }(P) .
\end{aligned}
$$

The total chi-square values are computed using the following formula:
(Eq. 3-36)

where:
2
$X=$ the total chi-square value for the $\mathrm{x}_{\mathrm{ij}}{ }^{\text {turning movement percentage from the } i \text { th }}$ direction to the j th direction.

If the model's estimated turning movement percentages are exact, the chi-square values are zero. The level of confidence of acceptance is determined by the chi-square
distribution table using the number of time periods as the degrees of freedom.

If the model is validated by all the tests, the error matrix(ices), Matrix (M), and the regression coefficients matrix, Matrix (E), are stored for future use. Any new machine count data is placed in a new Matrix (B). The model's error matrix(ices), Matrix (M), is (are) applied, giving an adjusted machine count matrix, Matrix (C). Matrix (C) is balanced giving an adjusted and balanced matrix, Matrix (D). The new Matrix (D) is multiplied by the model's regression coefficients matrix, Matrix (E), which produces the estimated turning movement matrix, Matrix (F). An estimated ingressegress matrix, Matrix (G), is computed from Matrix (F). Matrix (D), the balanced and adjusted machine counts, and Matrix (G), the estimated ingress-egress counts, are compared, giving an error matrix, Matrix (H). A chisquare test is also performed using Matrices (D) and (F), producing Matrix (GGG). From these two matrices, the user can determine if the intersection has changed significantly since the model was developed. The larger the mean percentage errors in Matrix (H) or the chisquare values are, the more variance has developed that is not explained by the model. Matrix (F) can be adjusted, as was discussed previously in order to attempt to reduce the Matrix (H) error.

If the model is validated only by the overall performance tests, but not by the chi-square tests, the user may still be able to retain and use the model. However, the model cannot be relied upon to give an actual estimation for any particular time period, but may be suitable for an estimation of overall performance for several time periods.

A FORTRAN computer program was written which builds and stores an intersection turning movement model and can apply it to new data. A flow diagram and listing can be found in Appendix A. The model building computer program has a statistical output option for the evaluation of the step-wise linear regression. This output includes the covariance matrix, the correlation matrix, total sum of squares, the improvement of unexplained variance for each step, analysis of variance, and a t-test value. The user can trigger this option and analyze any of the turning movement regression equations.

THREE-LEGGED INTERSECTION MODEL THEORY
The basic theory of the three-legged intersection is similar to that of the four-legged intersection. In fact, a three-legged intersection is simply a special case of a four-legged intersection. Figure 10 shows a normal three-legged intersection where there is no southern leg. The direction of the missing leg is arbitrary, but for this discussion the intersection of

Figure 10
Typical Three-legged Intersection

Figure 10 will be used. The same theory applies regardless of which leg is missing. All previous assumptions and constraints on the four-legged intersection also hold for the three-legged case.

Since the southern leg is missing, the following equation holds: (Eq. 3-37)

$$
I_{3}=E_{3}=x_{13}=x_{23}=x_{43}=x_{31}=x_{32}=x_{34}=0
$$

The following intersection equations also now hold:

$I_{1}+I_{2}+I_{4}=E_{1}+E_{2}+E_{4}$,	(Eq. 3-38)
$I_{1}=X_{12}+X_{14}$	(Eq. 3-39)
$I_{2}=X_{21}+X_{24}$	(Eq. 3-40)
$I_{4}=X_{41}+X_{42}$	(Eq. 3-41)
$E_{1}=X_{21}+X_{41}$	(Eq. 3-42)
$E_{2}=X_{12}+X_{41}$	(Eq. 3-43)
$E_{4}=X_{14}+X_{24}$	(Eq. 3-44)

There are 6 unknowns, 6 independent equations and 1 redundancy. Therefore, there is 1 degree of freedom. Thus, if one turning movement count is known and the ingress-egress volumes are known, the intersection is determinate. The matrix form of the independent equation is:

A linear regression approach, using knowledge of previous performance, was used exactly like the fourlegged intersection. Therefore, the equations, which are simply the special case of the four-legged theory just discussed, are not presented here. To build the model, hand-counted intersection data and machine-counted intersection data were used. The ingress-egress machine counts were adjusted and balanced. The regression equations were developed and turning movements are estimated. The model was checked and accepted or rejected. If accepted, the model was stored for future use.

INTERSECTION TEST PROBLEM
To better illustrate the linear regression model building process, intersection test data was used to build an example model. The input and output data are found in Tables B-1 through B-24 in Appendix B, and will be referred to in the following step-by-step explanation.

As in the case studies of the next chapter, only a summary table will be presented in the text. The summary table for the test problem is presented in Table 1 on the next two pages.

First, the intersection field data was collected. The hand-counted ingress-egress counts are placed in Matrix (A) as shown in Table B-1. The machine counts of the ingress-egress movements were placed in Matrix (B) as shown in Table B-2. The hand-counted turning movements were placed in Matrix (T) as shown in Table B-7. The headings show the movements using the notation of Figure 4, with the time periods numbered in the left column. These three matrices are the necessary input data for the computer program.

Using Equations 3-12 through 3-15, the error matrix, Matrix (M), is computed. To illustrate the calculation of the mean percent error matrix, the error for I_{1} during the first time period, $(t=1)$, is as follows:

$$
{ }^{{ }^{8} e_{I_{1_{1}}}}=\frac{132-125}{125} \times 100=5.60 \%
$$

where: 132 is the entry of the first column and first row of Matrix (B). It is the machine count for I_{1} for time period 1 , and

125 is the entry of the first column and first row of Matrix (A). It is the actual count for I_{1} for time period 1.

TABLE 1
RESULTS OF TEST MODEL

TABLE 1
(CONT'D)

	X_{12}	x_{13}	X_{14}	X_{21}	x_{23}	X_{24}	X_{31}	X_{32}	X_{34}	x_{41}	X_{42}	X_{43}
MEAN :	: 0.7	-0.2	1.5	-0.7	2.6	1.8	0.4	1.6	3.5	9.5	0.6	-2.7
STAN:	: 16.3	11.7	22.4	15.3	29.0	18.0	11.1	28.9	24.4	70.7	20.0	17.0
(P) ACTUAL TURNING MOVEMENT PERCENTAGE												
	X_{12}	X_{13}	X_{14}	X_{21}	X_{23}	X_{24}	X_{31}	X_{32}	X_{34}	$\mathrm{X}_{4} 1$	X_{42}	x_{43}
MEAN :	: 25.7	57.4	16.9	30.7	13.4	55.8	66.2	19.2	14.6	25.2	62.7	12.1
STAN:	: 5.2	7.2	5.6	21.7	2.9	22.3	13.4	8.7	7.6	20.0	19.9	2.9
(PP) ESTIMATED TURNING MOVEMENT PERCENTAGE												
	X_{12}	X_{13}	X_{14}	X_{21}	X_{23}	X_{24}	X_{31}	X_{32}	x_{34}	X_{41}	X_{42}	$\mathrm{X}_{4} 3$
MEAN :	: 25.7	57.5	16.8	30.6	13.1	56.2	66.7	18.8	14.6	25.4	63.0	11.6
STAN:	: 4.0	6.3	4.9	21.8	1.5	22.3	12.9	8.1	6.9	20.7	20.7	2.4
(TTT) CHI-SQUARE TEST TURNING MOVEMENT ESTIMATION												
	x_{12}	x_{13}	X_{14}	x_{21}	x_{23}	x_{24}	x_{31}	x_{32}	X_{34}	x_{41}	x_{42}	x_{43}
TOTAL												
ARE TEST TURNING MOVEMENT PERCENTAGE EStimation												
	X_{12}	X_{13}	X_{14}	X_{21}	X_{23}	X_{24}	X_{31}	X_{32}	X_{34}	X_{41}	x_{42}	X_{43}
$\begin{aligned} & \text { TOTAL } \\ & \text { CHISQ } \end{aligned}$	Q 2.6	3.2	8.7	4.8	14.9	4.6	4.2	21.1	9.0	19.8	10.7	8.1

If this calculation is made for all 20 time periods, then summed and divided by 20 , as per Equation $3-12$, the result is ${\overline{8} e_{I_{1}}}$, which is 2.09%, as entered in Matrix (M), found in Table B-3, first column and first row. The standard deviation for the percent error in I_{1}, as calculated with Equation 3-13 is 15.28\%. To summarize, from Matrix (M), we know that for the ingress movement from the North, I_{1}, the machine count is on the average 2.09% high with a standard deviation of 15.25% for the egress movement to the North, E_{1}, the machine count is, on the average, 3.62% high with a standard deviation of 15.73\%, and so forth. Matrix (M) is an important model matrix and is also found in the sumary, Table 1.

To adjust the machine count error so that the mean percent error is approximately zero, Equations 3-16 and 3-17 are used. This produces Matrix (C), the adjusted counts matrix, as shown in Table B-4. To illustrate the calculation of Matrix ((C), the adjustment calculation for $I l$ for the first time period is as follows:

$$
C_{11}=132-132 \times \frac{-2.09}{100}=129.34
$$

(rounded to 129)
where: 132 is the machine count for I_{1} for the first time period, column 1 and row 1 in Matrix (B), and

$$
\begin{aligned}
& -2.09 \text { is the mean percent error for } I_{1} \text {, as } \\
& \text { is shown in column } 1 \text { and row } 1 \text { of Matrix (M). } \\
& \text { The negative error means that the movement was } \\
& \text { undercounted due to machine insensitivity or } \\
& \text { vehicles missing the tube. }
\end{aligned}
$$

The adjustment is made on all the machine counts, making the mean percent error approximately zero for all ingress-egress variables.

Next, the counts are balanced for each time period, using Equations 3-19, 3-20, and 3-21. This satisfies the constraint that there is no storage in the intersection, that is, that the sum of the ingress volumes equals the sum of egress volumes for each time period. The adjustment for I_{1} for the first time period is as follows: First, the constraint error is calculated:

```
4
\Sigma I I = 129 + 58 + 100 + 80= 367,
```

$i=1$

$$
\sum_{j=1}^{4} E_{j}=157+74+68+65=364
$$

$$
R_{1}=\sum_{j=1}^{4} E_{j}{ }^{4} \sum_{\substack{i=1}}^{I_{i}}=367-364=3,
$$

where:

$$
\begin{array}{lll}
\sum & I_{i} & \text { is the sum of the ingress counts for } \\
i=1 & & \begin{array}{ll}
\text { time period } 1 \text { in Matrix } & \text { (C), and }
\end{array} \\
\sum_{j=1}^{4} & E_{j} & \begin{array}{l}
\text { is the sum of the egress counts for } \\
\\
\\
\end{array}
\end{array}
$$

The adjustment for $I_{1}(t=1)$ for Matrix (D) is calculated next:

$$
\text { Il }(t=1)=129-3 / 2(129 / 367)=\begin{aligned}
& 128.47 \\
& \text { (rounded to } 128) \text {, },
\end{aligned}
$$

where: 129 is the adjusted count for I_{1} for time period 1 in Matrix (C), 367 is the sum of the ingress counts for time period 1 in Matrix (C), and 3/2 is $R / 2 ;$ since one half of the error is adjusted with the ingress and one half with the egress.

The completed Matrix (D) is shown in Table B-5. From Matrix (A) and Matrix (D) a new error matrix, Matrix (M1), is calculated and shown in Table B-6. Matrix (M1) shows that the mean percent errors of Matrix (D) are not greater than 5.00\%. Therefore, the adjustment procedure has been successful.

To illustrate the statistical output that is available from the computer program, only the linear regression
equation using X_{12} is used, since the output is quite lengthy. The output for the other eleven equations have the same format. This output is optional for the user and can be used to analyze and validate the linear regression equations. Tables B-8 through B-13 contain the data from the X_{12} equation.

Table B-8 gives the means, the standard deviations, the covariance matrix, and the correlation matrix of the dependent variable X_{12} and the eight independent variables. The total sum of squares error is also shown.

Tables B-9 through B-13 show the step-by-step analysis of variance for the regression analysis. The stepwise linear regression computer program is very similar to the one described by Neter and Wassermann (11, pages 382-386). The procedure used in this study's program is a forward selection one, since once an independent variable has entered the equation, it cannot be removed. For a variable to be allowed into the equation it must explain at least 0.1% of the remaining sum of squares error.

Each step of the regression can be studied to see if the parameters need to be changed. The procedures for analyzing linear regression are explained in detail by Neter and Wassermann (ll). Intense statistical analysis of the linear regression equations is not done in this study, since the main objective was to demonstrate the feasibility of such a model. However, any statistical
value which indicates the lack of fit for the model, or is abnormal in any way, is presented and discussed. The final regression equation for turning movement X_{12}, as shown in Table $\mathrm{B}-14$, is:

$$
\begin{aligned}
X_{12}= & 7.84385+0.13931 I_{1}+0.11028 I_{4} \\
& +0.12895 E_{1}-0.05258 \mathrm{E}_{3}-0.14424 \mathrm{E}_{4}
\end{aligned}
$$

(Eq. 3-46)
After all the dependent variables have undergone the regression procedure, there are twelve regression equations with twelve sets of coefficients. These coefficients are shown in Matrix (E) in Table B-l4. Table B-l5 contains the estimated values for X_{12} using the regression equation and the data of Matrix (D). The residuals, the standard model error, and the r value are also given. The residuals can expose any timevarying dependency or any lack of normalcy error, as described by Bhattacharyya and Johnson. (3)

Multiplying Matrix (D) and Matrix (E) with Equation 3-24 gives the estimated turning movements matrix, Matrix (F), shown in Table B-16. Comparing the estimated turning movements with the hand-counted turning movements by using Equation 3-24 gives the turning movement error matrix, Matrix (TE), shown in Table 1 and in Table B-17. From Matrix (TE), the first validation check can be made. The only mean error greater than 4% is from X_{41}.

Most of its error comes from a 300% error in time period 15. If the turning volumes are low, the percent error can be very large. For example, for X_{41}, time period 15, the estimated count from Matrix (F) is 8. The actual count from Matrix (T) is 2, thus giving a 300\% overcount. Therefore, with this high error explained, we can accept the validation check.

Using the basic intersection equations, Equations 3-1 through 3-9, Matrix (G), the estimated ingress-egress volumes, are calculated using Matrix (F). Matrix (G) is shown in Table B-18. Using Equation 3-26, Matrix (G) is compared to the adjusted and balanced ingress-egress counts that entered the regression subroutine. The percent error calculation is similar to the other error calculation. For example, the count in Matrix (D) for $I_{1}(t=1)$ is 128; in Matrix (F) it is 130. Therefore, the percent error in this movement for this time period is:

$$
\frac{130-128}{130} \times 100=1.22 \%
$$

The percent error is calculated for all movements and forms Matrix (H) shown in Table B-19.

The second validation check is to look at the mean \% errors of Matrix (H), as shown in Table 1 . These mean errors are all less than 5.00\%. In fact, they are all less than 2.00\%. Therefore, the second validation check is acceptable.

The third validation check is the comparison of the estimated percent turning with the hand-counted percent turning. Matrix (P), shown in Table 1 and in Table $\mathrm{B}-20$, shows the hand-counted percent turning as calculated by Equation 3-28, using Matrix (T). Matrix (PP), as shown in Table 1 and Table B-2l, gives the estimated percent turning as calculated by Equation 3-28 using Matrix (F) instead of Matrix (T).

As an example of the calculation of the percent turning matrices, X_{12} of for the first time period for Matrix (P) will be used. Looking at Matrix (T), X_{12} is 40 for the first time period. The sum of the turning movements from the North is $\mathrm{X}_{12}+\mathrm{X}_{13}+\mathrm{X}_{14}=40+55$ $+30=125$. Therefore, the percent turning for X_{12} for time period 1 in Matrix (P) is:

$$
{ }^{\circ} \mathrm{P}_{\mathrm{X}_{12}}=40 / 125 \times 100=32.00 \%
$$

as is shown in Matrix (P). Matrix (PP) is calculated in the same way, using Matrix (F).

Comparing the mean values of Matrix (P) with those of Matrix ($P P$), we can see that there is less than 1.00% difference. Therefore, this validation is acceptable. The model can be accepted for overall performance. Next, the chi-square tests for goodness-of-fit are made.

The chi-square test for the ingress-egress estimation is calculated using Equation 3-30. The chi-square value for time period 1 for I is calculated as follows:

$$
\text { GGG }_{11}=\frac{(130-128)^{2}}{128}=0.02
$$

where:
GGG $_{11}=$ is the value of the chi-square test for the first row and first column of Matrix (GGG), Table B-22,
$130=$ the value of the first row and first column of Matrix (G), Table B-18. It is the estimated ingress volume from the north for the first time period,

128 = the value of the first row and first column of Matrix (D), Table B-5. It is the adjusted and balanced machine count of the ingress volume from the north for the first time period.

The chi-square values for the other time periods and other movements are calculated in the same manner and placed in Matrix (GGG) shown in Table B-22. The total chi-square value is calculated for each movement, using Equations 3-31 and 3-32, and is shown in Table 1 as well as Table B-22.

The chi-square test for the turning movement estimation is calculated using Equation 3-33. The chisquare value for time period 1 for X_{12} is calculated as follows:

$$
\mathrm{TTT}_{11}=\frac{(41-40)^{2}}{40}=0.03
$$

where:

The chi-square values for the other time periods and other movements are calculated in the same manner and placed in Matrix (TTT) shown in Table B-23. The total chi-square value is calculated for each movement using Equation 3-34 and is shown in Table 1 as well as Table B-23.

The chi-square test for the turning movement percentage estimation is calculated using Equation 3-35. The chi-square value for time period 1 for X_{12} is calculated as follows:

$$
P_{P P}^{11}=\frac{(31.5-32.00)^{2}}{32.0}=0.01
$$

where: $P_{P P} 11=$ is the value of the chi-square test for the first row and first column of Matrix (PPP), Table B-24,
$31.5=$ the value of the first row and first column of Matrix (PP), Table B-21. It is the estimated turning volume percentage for X_{12} for the first time period,
$32.0=$ the value of the first row and first column of Matrix (P), Table B-20. It is the actual turning volume percentage for X_{12} for the first time period.

The chi-square values for the other time periods and other movements are calculated in the same manner and placed in Matrix (PPP) shown in Table B-24. The total chi-square value is calculated for each movement using Equation 3-36 and is shown in Table 1 as well as Table B-24.

The summary table, Table l, is used to check the chi-square tests. For this model, the degrees of freedom is the number of time periods studied, which in this case
is 20. The maximum chi-square value for the ingressegress estimation, Matrix ($G G G$), is 34.2 for I_{1}. The The level of confidence for acceptance of this value is less than 5.00%. The maximum chi-square value for the turning movement estimation is 25.2 for X_{41}. The level of confidence for acceptance of this value is less than 25\%. The maximum chi-square value for the turning movement percentage is 21.1 for X_{32}. The level of confidence for acceptance of this value is less than 50%. Therefore, the chi-square shows that the model is an unacceptable estimator for these variables for individual time periods, but is valid for estimating average percent turning.

In the next chapter, the intersection model theory described in this chapter is used to build intersection models using actual data. The results is analyzed to see if this theory is valid in practice.

Chapter Four

CASE STUDIES

In this chapter intersection turning movement models developed with actual field data, using the theory described in the previous chapter and data from previous studies conducted by the Michigan Department of Transportation will be discussed. Selected candidate locations were chosen to develop and test the models. The procedures for data collection used by the Department are similar to those described in Chapter 1. Figure 11 shows a typical hand-counted volume summary sheet. Figure 12 shows a typical machine count volume sheet. Note that the counts are tabulated in fifteen minute time periods.

Despite the large amount of collected data available, only two intersection data sets were acceptable for study. The reasons for unacceptability are many:

1. Straight-through counts were not made,
2. Machine(s) failed during the study,
3. Hand-counts were not taken at the same time as the machine counts,
4. Volumes are so low that they cannot be studied without large error,
5. There was an accident or some other disruption during the study period,

Figure 11
Typical Hand Count Volume Sheet

Figure 12

6. There was only one set of data at the study intersection. Two sets of usable data are needed, one to build the model, and the other to test the model.

Of the two intersections with acceptable data for study, one is three-legged and the other is four-legged. Each was studied separately using the following procedure:

1. A model is developed, verified, and accepted using the older data set,
2. The machine counts of the newer data set are used with the model to estimate the turning movements during its study period,
3. The results are compared with the actual turning movements to see how well the model works,
4. Combining both sets of data, another intersection model is created,
5. The combined model is tested with a similar intersection's data set.

Using two sets of data and a set from another intersection allows analysis of the effects of change in machine count error and operation upon the model.

FOUR-LEGGED INTERSECTION CASE STUDY
The four-legged candidate location is the Lincoln Road (US-2, US-41, M-35) at Ludington Road (US-2, US-41) intersection in Escanaba, Michigan. Figure 13 shows the

Figure 13
Lincoln Road and Ludington Road Intersection
geographic location of this intersection in Michigan's Upper Peninsula. The intersection is in an urban environment in downtown Escanaba, and was studied twice, in June, 1974 and July, 1976. These two data sets meet the requirements for intersection model study as discussed in previous chapters.

Both Lincoln Road and Ludington Road are five-lane with exclusive left-hand turning lanes. The intersection is signalized with no turning prohibitions and no turn phasing. The first set of data was collected June 10, 1974 between 7:00 AM and 9:00 AM; and June 11, 1974 between 7:00 AM and 9:00 AM, 11:00 AM and 2:00 PM, and 3:00 PM and 5:00 PM. The second set of data was collected at this intersection on July 21, 1976, between 11:00 AM and 1:00 PM , and 2:00 PM and 6:00 PM . Thus, there are nine hours of study from the first data set, and six hours of study from the second data set.

Appendix C contains the input and output data in the creation and application of the intersection model based on the June, 1974 Lincoln and Ludington intersection data. The input data is Matrix (A), the hand-counted ingressegress movements; Matrix (B) is the machine-counted ingressegress movement; and Matrix (T) is the hand-counted turning movements, Table C-3. Table 2 on the next two pages contains the summary results for this model.

TABLE 2

RESULTS OF LINCOLN-LUDINGTON 6/74 MODEL

TABLE 2
(CONT'D)

X_{12}	X_{13}	X_{14}	X_{21}	X_{23}	X_{24}	X_{31}	X_{32}	X_{34}	X_{41}	X_{42}	X_{43}	
MEAN:	0.6	0.1	0.1	3.0	10.3	1.9	0.1	$* * *$	2.4	0.0	0.3	-1.0
STAN: 14.8	13.8	15.2	20.6	77.9	27.7	8.7	$* * *$	36.5	15.0	13.9	30.8	
(P) ACTUAL TURNING MOVEMENT PERCENTAGE												

	X_{12}	X_{13}	X_{14}	X_{21}	X_{23}	X_{24}	X_{31}	X_{32}	X_{34}	X_{41}	X_{42}	X_{43}
MEAN :	28.2	49.6	22.1	46.8	13.9	39.3	75.8	15.3	8.8	40.3	45.3	14.4
STAN:	6.1	7.1	7.2	10.0	4.7	9.3	6.5	6.3	3.6	9.4	9.4	4.2
(PP) ESTIMATED TURNING MOVEMENT PERCENTAGE												

	X_{12}	X_{12}	X_{14}	X_{21}	X_{23}	X_{24}	X_{31}	X_{32}	X_{34}	X_{41}	X_{42}	X_{43}
MEAN :	28.3	49.7	22.1	47.9	13.4	38.7	76.7	15.1	8.3	40.6	45.6	13.8
STAN:	5.1	6.2	7.3	10.9	3.0	8.3	5.5	4.8	2.2	7.8	8.2	3.4
(TTT)	CHI-S	QUARE	TEST	TURN	VING M	MOVEME	ENT ES	TIMA	ION			
	x_{12}	X_{13}	X_{14}	X_{21}	x_{23}	X_{24}	X_{31}	X_{32}	X_{34}	$\mathrm{X}_{4} 1$	X_{42}	X_{43}
TOTAL												
CHISQ	21.3	28.7	20.0	37.2	51.8	55.9	16.5	***	26.5	19.9	18.0	19.6

The error matrix, Matrix (M) is shown in Table 2. Most intersections have multi-axle vehicles traveling through them. Therefore, an overcount or positive error is expected. The intersection is typical of this positive error except for the ingress from the east, I_{2}. This error has a mean of -5.11% and a standard deviation of 26.99\%. This abnormal error can be caused by the machine or by driver behavior. Since the standard deviation is much larger than for the other movements, a time-varying cause would be suspected. The model builder, when confronted by such a value may desire further testing, and/or new data. Since this data is the only available data, it will be used in this thesis for illustration. As will be explained in the concluding chapter, problems such as machine count inconsistency show the need for further research.

It is also important to note the large size of all the standard deviations. This makes it extremely difficult to estimate accurately any single 15 minute turning movement count. For example, if it is assumed that the machine count error is distributed normally, then for I_{1} approximately one-third of the counts will be either more than 18.17% overcounted or more than 1.33% undercounted. The machine counts are adjusted and balanced to form Matrix (D). Matrices (D) and (T) then enter the linear regression program as described in the previous
chapter. Matrix (E), Table C-4, contains the regression coefficients.

In analyzing the regression coefficients, it can be seen that the intercepts are not zero. These coefficients should be zero, since if there are no ingress-egress volumes there can be no turning movements. However, the linear regression model developed in this thesis, like other linear regression models is valid only within the range of values of the independent variables upon which the model is built. Since none of the regression models built in this thesis has low values, the extension of the linear regression equation to zero values cannot be expected to give a valid solution. This does not invalidate the model, since the regression equation should give correct estimates using intersection volumes in the range upon which the model is built. Therefore, an intersection model developed with medium volumes should not be expected to give correct estimations at very low or very high volumes. More discussion of this problem is given in the next chapter.

Secondly, the signs of the coefficients are not unrealistic because of the interrelation between the ingressegress variables. In the X_{12} equation, for example, all of the ingress coefficients are positive and all of the egress coefficients are negative. However, if any egress movement increases by 1 , an ingress movement must increase
by 1. Therefore, the relationship of the dependent variable, the turning movement, can be either negative or positive with any of the independent variables, the ingress-egress movements. This topic will also be discussed in further detail in the final chapter. The estimated turning movements, Matrix (F) are produced by multiplying Matrices (D) and (E). The estimated turning movements are compared to the handcounted turning movements to produce the error matrix, Matrix (TE). The means and standard deviations of Matrix (TE) are summarized in Table 2. This provides the first model validation check. Except for X_{23} and X32, all of the errors are under 5.00\%. The extremely large error found in X_{32} and the 10.3% mean error in X23 are due to the small turning volumes which produce large percentage errors, as was the case in our test problem of Chapter 3. With this explanation, this model check is accepted.

Using the basic intersection equations, (Equations 3-1 through 3-9), Matrix (G), the estimated ingressegress volumes, is computed from Matrix (F). Comparing Matrices (G) and (D), the error Matrix (H) is computed and shown in Table 2. This matrix provides the second validation check. All of the mean errors are under 3.00\% except I_{2}. The 10.23% mean error comes primarily from the 290.42% error during time period 9. Looking
back at the collected data for I_{2} for the time period 9, the actual ingress volume from Matrix (A) is 31 and the machine count from Matrix (B) is 7. This has caused the abnormal machine count error in Matrix (M) and the high mean error for I_{2} in Matrix (H). Now the model builder must decide whether to delete the data from time period 9, accept the data as it is, or to reject the entire data set and collect new data. This study shall proceed with the data as it is, keeping in mind this source of error. This demonstrates the value of the validation checks and shows that the model analyst must understand the basic principles of the model building procedure.

Using Equation 3-28, Matrix (P), the percent turning matrix, is computed using Matrix (T). Matrix (PP), the estimated turning matrix, is also computed from Matrix (F) using Equation 3-28. The means and standard deviations from these two matrices are summarized in Table 2. They provide the third validation check. Since none of the estimated mean values is greater than 2.00% in error from the actual mean values, the validation check is accepted. The model can be accepted as an estimator for the combined performance of several time periods.

The chi-square tests are made using Equations 3-30 through 3-36, producing Matrices (GGG), (TTT), and (PPP), which are summarized in Table 2. Because of the very large chi-square values, the model's ability to estimate
individual turning movements and turning movement percentages must be rejected. All of the chi-square values for the ingress-egress estimation can be accepted at a 0.995 confidence level, with degrees of freedom equal to 24 , except I_{2}. The very high chi-square value of I_{2} can be attributed to the abnormally high standard deviation of the machine count error of I_{2}. This demonstrates the effect that the machine count error can have on the model building process. Thus, the model must be rejected as an accurate estimator of turning movements during individual time periods. In this study, however, Matrices (M) and (E) are stored in the computer as the basic model, which will be used with the second set of data.

APPLICATION OF THE MODEL
Any new machine counts taken are adjusted by Matrix (M), and balanced, forming a (MODEL) Matrix (D). This Matrix (D) is multiplied by Matrix (E) forming a (MODEL) Matrix (F). From (MODEL) Marrix (F), an (MODEL) Matrix (G) is computed. (MODEL) Matrix (H) is created by comparing (MODEL) matrices (D) and (G). A chisquare test is performed on the ingress-egress estimation using (MODELS) Matrix (D) and (MODEL) Matrix (F), creating a (MODEL) (GGG). Matrices (GGG) and (H) give the only two validation checks for the performance of the model. A (MODEL) Matrix (PP) is computed from
(MODEL)Matrix (F). If the validation checks are accepted, the turning movement percent estimation is accepted and can be input for NETSIM or some other computer program. This is precisely what was done with the July, 1976 data collected from the Lincoln and Ludington intersection. The computer input can be found in Appendix C and a summary is given in Table 3 on the next page. The handcounted ingress-egress movements and the hand-counted turning movements were collected and used in this study. Normally they would not be available. Tables c-5, C-6 and $C-7$ show Matrices (A), (B), and (T) of the 1976 study. Matrix (B) enters the model, is adjusted by model's Matrix (M), and is balanced to form (MODEL) Matrix (D). Comparing Matrix (M) of the model, with the 1976's error matrix in Table 3, we can see a large change in the mean errors of I_{1}, I_{2}, I_{3} and E_{3}. The effects of this change in error will be evaluated at the end of this model production run.
(MODEL) Matrix (D) is multiplied by the regression coefficients matrix, Matrix (E) producing the estimated turning movements for the 1976 study, (MODEL) Matrix (F). Looking at the mean values of (MODEL) Matrix (H), in Table 3, there are two values greater than 5.00% in absolute value. However, they are approximately 5.00\%, I_{1} being 5.31% and I_{1} being -5.78\%. The chi-square test for the ingress-egress estimation is made with the results in (MODEL) Matrix (GGG) in Table 3. With the degrees of

TABLE 3
RESULTS OF LINCOLN-LUDINGTON 6/74 MODEL ESTIMATION OF LINCOLN-LUDINGTON 7/76 TURNING MOVEMENTS

freedom equal to 24 , all of the values of the chi-square can be accepted at a confidence level of at least 0.90 except I which was rejected in the original model building. Whether to accept these two checks requires the judgment and needs of the model analyst.
(MODEL) Matrix (PP) is computed next. If the model production data is accepted, this matrix is the primary output. Matrix (P), which will not normally be available, was computed for the 1976 data. The means and standard deviations of these two matrices are summarized in Table 3. Comparing Matrix (P) with Matrix (PP), the largest error in the mean values is an approximate 7.5\% overestimation is the percent turning of X_{24}, and X_{41}. Since the operation of the intersection changed little, as shown by comparing Matrix (P), 1974 data, with Matrix $(\mathrm{P}), 1976$ data, this error comes primarily from the difference in the machine count error. However, the error in the percent turning estimation is not large considering the magnitude of the change in the machine count error. The two mean values in (MODEL) Matrix (H), also indicated there would be some error in the estimation.

LINCOLN-LUDINGTON COMBINED DATA MODEL
The two data sets collected at the Lincoln and Ludington intersection were combined to form one data set from which a model was built. Table 4 on the next two pages gives a summary of the results of this model.

The error matrix, Matrix (M) shows the machine count error for the combined model. Matrix (TE) shows that only X_{32} has an estimation error greater than 5.00\%. This is due, as was the case previously, to small volumes giving a large percent error. With this fact in mind, the first validation check is accepted.

Looking at Matrix (H), only the mean value of I_{2} is greater than 5.00\%. The reason is, again, the data from time period 9 from the first set (1974). Note, however, that the mean values of Matrix (H) are much closer to 0 . This should be the case if the sample size increases, and the sum of squares error does not increase due to non-linearity of operation. Again, with this fact in mind, the second validation check may be accepted. Comparing the actual percent turning, Matrix ($P P$), with the estimated percent turning, Matrix (P), in Table 4, there is less than 1.00% difference. Therefore, this validation check is accepted.

The summary of the chi-square test matrices, (GGG) (TTT), and (PPP), are found in Table 4. Because of the very large values of the total chi-square for (TTT) and (PPP), the ability of the model to estimate turning movements and turning movement percentages is rejected. The chi-square values for the ingress-egress estimation is unacceptable for I_{1} and I_{2}. This was the case for the previous model. Since the first model's data is included

TABLE 4
RESULTS OF LINCOLN-LUDINGTON COMBINED DATA MODEL

$\begin{array}{ll}\text { II } & \text { O } \\ & \text { H } \\ & \text { - }\end{array}$

$$
\begin{array}{cc}
m \quad & \infty \\
\underset{\sim}{\infty} \underset{\sim}{\infty} \\
0 \\
0 & n \\
1
\end{array}
$$

N	0
\boldsymbol{O}	0

0

$$
\begin{array}{ll}
m & \infty \\
\boldsymbol{H} & \dot{H} \\
& \dot{H}
\end{array}
$$

TABLE 4
(CONT'D)

	X_{12}	X_{13}	X_{14}	X_{21}	X_{23}	X_{24}	X_{31}	X_{32}	X_{34}	X_{41}	X_{42}	X_{43}
MEAN :	: 0.8	0.6	0.5	2.0	13.9	1.6	0.4	***	4.5	0.5	1.2	5.9
STAN :	: 15.8	13.0	17.3	16.8	67.3	25.3	10.9	***	40.5	15.8	16.1	40.9
(P) ACTUAL TURNING MOVEMENT PERCENTAGE												
	X_{12}	X_{13}	X_{14}	X_{21}	X_{23}	X_{24}	X_{31}	X_{32}	X_{34}	X_{41}	X_{42}	X_{43}
MEAN :	: 25.5	51.5	23.1	46.2	14.7	39.1	75.8	14.6	9.6	42.0	44.1	13.9
STAN:	: 6.5	6.6	6.4	8.3	4.6	8.0	5.6	5.3	3.5	8.2	7.9	4.6
(PP) ESTIMATED TURNING MOVEMENT PERCENTAGE												
	X_{12}	X_{13}	X_{14}	X_{21}	X_{23}	X_{24}	X_{31}	X_{32}	X_{34}	X_{41}	X_{42}	X_{43}
MEAN :	: 25.5	51.8	22.8	46.7	14.6	38.7	76.6	14.3	9.2	42.0	44.6	13.4
STAN:	: 6.2	5.4	5.5	7.4	1.9	7.1	4.6	4.0	2.4	5.4	5.9	2.2
(TTT	CHI-S	QUARE	TEST	TURN	ING M	MOVEME	ENT ES	TIMAT	ION			
	X_{12}	X_{13}	X_{14}	X_{21}	X_{23}	X_{24}	X_{31}	X_{32}	X_{34}	X_{41}	X_{42}	X_{43}
TOTAL												
CHISQ	Q 45.2	52.4	49.4	54.3	***	94.6	48.7	***	52.6	42.1	39.2	74.1
	X_{12}	X_{13}	X_{14}	X_{21}	X_{23}	X_{24}	X_{31}	X_{32}	X_{34}	X_{41}	X_{42}	X_{43}
TOTAL												

in the combined data model, the same variables in (GGG) had high chi-square values.

The 1974 data was run through the combined model in the first production run, (MODEL). The 1976 data was run through the combined model in the second production run, (MODEL2). The results are in the summaries of Tables 5 and 6. Since the data of these two sets are embedded in the model, it should accurately estimate the turning movements and the percent turning for both sets.

Looking at (MODEL) Matrix (H), only the mean value of I_{2} is greater than 5.00\%. This is true, again, because of time period 9. Comparing the estimated turning percent matrix, (MODEL) Matrix (PP) with the actual percent turning matrix Matrix (P), Table 5, there is less than 2.00\% difference in the mean values. This is exceptionally good for a production run. Looking at (MODEL2) Matrix (H), Table 6, the only value greater than 5.00% is I_{1}. The model will iterate without changing the percent turning, as was described in the previous chapter. The iterated values are important if you are interested in specific turning movements. They are not shown in the appendix. Comparing the estimated turning percent matrix, (MODEL2) Matrix ($P P$), with the actual percent turning matrix, Matrix (P), in Table 6, there is less than 2.00% difference in mean values. This is a considerably better estimation than was given by the first model, as should be expected. The chi-square tests for ingress-egress

RESULTS OF LINCOLN-LUDINGTON COMBINED DATA MODEL ESTIMATION OF LINCOLN-LUDINGTON 6/74 TURNING MOVEMENTS

TABLE 6

RESULTS OF LINCOLN-LUDINGTON COMBINED DATA MODEL ESTIMATION OF LINCOLN-LUDINGTON 7/76 TURNING MOVEMENTS
(M) \% ERROR

	I_{1}	I_{2}	I_{3}	I_{4}	E_{1}	E_{2}	E_{3}		${ }_{4}$
MEAN :	: $\quad-5.37$	4.21	17.82	1.57	5.57	-1.77	6.42	5.8	
STAN:	: 9.01	14.54	12.42	10.91	8.83	6.71	10.81	10.6	
(H) INGRESS-EGRESS ESTIMATION ERROR									
	I_{1}	I_{2}	I_{3}	I_{4}	E_{1}	E_{2}	E_{3}		4
MEAN :	: 6.52	-3.54	-2.08	-0.25	1.02	1.03	-0.69	1.4	
STAN:	: 4.02	5.76	2.83	4.73	2.51	2.35	4.20	3.8	
(GGG) CHI-SQUARE TEST FOR INGRESS-EGRESS ESTIMATION									
	I_{1}	I_{2}	I_{3}	I_{4}	E_{1}	E_{2}	E_{3}		${ }_{4}$
TOTAL CHISQ	L 19.2	15.1	3.5	4.8	2.8	1.2	6.1	3.	2
(P) ACTUAL TURNING MOVEMENT PERCENTAGE									
	X_{12}	X_{14}	X_{21}	X_{24}	X_{31}	x_{32}	X_{41}	X_{42}	X_{43}
MEAN :	: 21.354	224.5	45.21	. 038.8	75.9	13.410	744.5	42.3	13.1
STAN:	: 4.84	64.7	4.8	. 15.9	4.2	3.3	15.1	4.5	5.0
(PP) ESTIMATED TURNING MOVEMENT PERCENTAGE									
	$\mathrm{X}_{12} \quad \mathrm{x}$	$3 \mathrm{X}_{14}$	X_{21}	$23 \quad \mathrm{X}_{24}$	X_{31}	X_{32}	${ }_{4} \quad \mathrm{X}_{41}$	X_{42}	X_{43}
STAN:	: 3.84	13.9	5.1	. 5 .0	2.8	2.0	03.0	3.6	1.9

estimation, Matrix (GGG), has, as did the combined model, high values for I_{1} and I_{2}, and acceptable values for the other movements.

The combined model was tested using a third set of data collected at a different intersection. This intersection is Ford Road (M-153) at Newburgh Road in Westland, Michigan. This intersection's location in western Wayne County is shown in Figure 14. Ford Road is a four-lane highway with no exclusive turning lanes. Newburgh Road, which runs north-south, is two-lane with no turn lanes. The intersection is in an urban area and is signalized with no turn phasing. Intersection data was collected on May 10, 1976 from 2:00 PM to 6:00 PM and on May 11, 1976 from 7:00 AM to 9:00 AM. This data was placed in Matrices (A), (B), and (T) as is shown in Tables C-8, C-9 and C-10 respectively.

The actual error matrix, Matrix (M), Table 7, shows a high consistant overcount in all directions. The error, except for I_{3}, is approximately 10% greater than the error matrix of the combined model. This should cause some error in the results, but as seen with the first model it should not be extremely large. The machine count data from Ford and Newburgh intersection was run through the combined model in the third production run, (MODEL3). The results are found in Table 7. Looking at (MODEL3) Matrix (H), it is apparent that the model is inappropriate to the data set. There is a large error in I_{1} of 50.46%. This error is consistant

Figure 14
Ford Road and Newburgh Road Intersection
throughout the data as shown by the low standard deviation. There is also a mean error of -11.34 in I_{2}, and a mean error of -17.05 in I_{3}. The chi-square values of the ingress-egress estimation, Matrix (GGG) are extremely high for I_{1}, I_{2}, and I_{3}. The model based on analysis of ingress-egress estimation, is not suitable and the results should be rejected. Comparing the estimated turning percent matrix, (MODEL3) Matrix (PP), with the actual turning percent matrix, Matrix (P), in Table 7 , the conclusion of the ingress-egress estimation analysis is shown to be correct. The estimation error varies from 1. 30% to as high as 28.5\%, (X_{31}). An estimation error of 28% would generally be unacceptable. Therefore, from Matrices (H) and (GGG), the model analyst would conclude that either another model is needed or more data study should be made.

THREE-LEGGED INTERSECTION CASE STUDY
The three-legged intersection case study is Main St. at Front St. in downtown Niles, Michigan. The location of this intersection is shown in Figure 15. All three legs of the intersection are four-lane with no exclusive turn lanes. The intersection is signalized with no turn phases. The first set of data was collected October 8, 1975 from 2:00 PM to 6:00 PM and on October 9, 1975 from 7:00 AM to 8:00 AM. The second set of data was collected July 10, 1978 from 2:00 PM to 6:00 PM and on July 11, 1978 from 7:00 AM to 9:00 AM.

TABLE 7

RESULTS OF LINCOLN-LUDINGTON COMBINED DATA MODEL ESTIMATION OF FORD-NEWBURGH 5/76 TURNING MOVEMENTS
(M) \% ERROR

Figure 15
Main Street and Front Street Intersection

The first set of data was used to create the turning movement model shown in Appendix D with a summary in Table 8. Looking at the error matrix, Matrix (M), there are very high Matrix (M), there are extremely high errors for all move-errors for all movements except E_{4}, which is undercounted by a mean of 9.61\%. An analyst should immediately be concerned about such large error, since it shows either large machine inaccuracy or a need to look at the intersection to reevaluate the assumption that there is no storage. However, in studying other threelegged intersections not presented in this thesis, large machine count error has been a typical characteristic. The model has to reiterate in order to reach mean error of less than 5.00% for all movements. Thus, the finished model will have two error matrices. The turning movement estimation error, Matrix (TE), Table 8 , shows all mean values less than 2.00\%. Thus, the first check is acceptable. The second check, however, of Matrix (H), Table 8, shows large and consistent error in E_{2} and in E_{4}. This can best be explained by the large compensation necessary to force a mean value of approximately zero for the machine counts. The model should be rejected at this point. It will continue to be used, however, as an illustration. Comparison of the estimated turning percent error, Matrix (PP), with the actual turning movement percent error shows that the model is calibrated for its base data. However, it is unlikely the model

TABLE

RESULTS OF MAIN-FRONT 10/75 MODEL

TABLE 8
(CONT'D)
(TE) TURNING MOVEMENT ESTIMATION ERROR

	X_{12}	X_{14}	X_{21}	X_{24}	X_{41}	$\mathrm{X}_{4} 2$
MEAN:	0.5	-0.2	0.2	0.0	0.9	1.3
STAN:	14.1	15.4	10.7	17.8	23.2	23.6
(P) ACTUAL TURNING MOVEMENT PERCENTAGE						
	X_{12}	X_{14}	X_{21}	X_{24}	X_{41}	X_{42}
MEAN:	58.6	41.4	52.3	47.7	28.6	71.4
STAN:	7.0	7.0	7.7	7.7	8.1	8.1
(PP) ESTIMATED TURNING MOVEMENT PERCENTAGE						
	X_{12}	X_{14}	X_{21}	X_{24}	X_{41}	X_{42}
MEAN :	58.9	41.1	52.5	47.5	28.2	71.8
STAN:	5.7	5.7	7.3	7.3	6.1	6.1
(TTT) CHI-SQUARE TEST TURNING MOVEMENT ESTIMATION						
	X_{12}	X_{14}	X_{21}	X_{24}	X_{41}	X_{42}
TOTAL						
CHISQ	20.6	15.9	10.5	19.6	11.7	37.3
(PPP)	-SQUA	TEST	N ING	EMEN	RCENT	EST
	X_{12}	X_{14}	X_{21}	X_{24}	X_{41}	$\mathrm{X}_{4} 2$
TOTAL						

will be a good estimator for other data. Matrix (F) was iterated to try and reduce the error in Matrix (G) to less than 5.00% for all mean values. It was unsuccessful in five iterations.

Although the Main-Front model was unacceptable, and should have been rejected, it was stored. The second set of data was input into the model. The results are found in Table 9. Note that the error matrix of the second set of data, Matrix (M), is very different than the model's error matrix. Analyzing (MODEL) Matrix (H), there are four unacceptably high mean error values. Comparing the estimated turning movement percent matrix, (MODEL) Matrix (PP) to the actual turning movement percent matrix, Matrix (P), Table 9, the model did much better than expected. The X_{12} and X_{14} are approximately 7.00% in error. The other movements are less than 2.00% in error. Comparing the two actual turning movement percent matrices in Tables 8 and 9 , show that the actual operation of the intersection did not change significantly. Therefore, the model building technique presented in this thesis may be less sensitive to changes in machine count error than it is to changes in operation. This may be why the model performed as well as it did, even though the machine count error changed significantly.

The chi-square values of Matrix (GGG) in Table 9 are unacceptably high and should have indicated that the estimation obtained from the model would be inaccurate.

TABLE 9
RESULTS OF MAIN-FRONT $10 / 75$ MODEL ESTIMATION OF MAIN-FRONT $7 / 78$ TURNING MOVEMENTS
(M) \% ERROR

	X_{12}	X_{14}	X_{21}	X_{24}	X_{41}	X_{42}
		61.8	38.2	55.2	44.8	25.1
MEAN :	7.1	7.1	7.2	7.2	9.3	9.3
STAN :						
(PP) ESTIMATED TURNING	MOVEMENT					
	PERCENTAGE					

[^1](PP)

The fact that the estimations of percent turning were accurate show the need for development of an accurate error estimator. This is discussed in the next chapter.

MAIN-FRONT COMBINED DATA MODEL
The two data sets were combined and used to create a combined intersection model. Table 10 contains a summary of the model's output. The error matrix, Matrix (M), shows large machine count error, except for E_{4}, which has an undercount mean of 2.08\%. All of the standard deviations are high. The first validation check of Matrix (TE) shows that all of the mean error values are less than 5.00\%. As with the previous model, there is unacceptable ingress-egress estimation error, Matrix (H). Even the combined data model would be rejected with this second validation check. However, in comparing the estimated percent turning, Matrix (PP), to the actual percent turning, Matrix (P), the error is less than 1.00% for all values.

As with the four-legged intersection combined model, both sets of data were run through the three-legged combined model. The old data was the first production run, (MODEL 2). The results are in Tables 11 and 12.

In brief, the combined model did very well in estimating the percent turning. In both cases, the estimations were less than 1.00% in error from the actual mean percent turning, despite large Matrix (H) and Matrix (GGG) errors.
(M) \% ERROR

	I_{1}	I_{2}	I_{4}	E_{1}	E_{2}	E_{4}
MEAN :	: 34.05	15.19	26.68	13.88	26.14	-9.61
STAN:	$: \quad 15.67$	16.72	20.85	15.09	24.49	14.99
(H) INGRESS-EGRESS ESTIMATION ERROR						
	I_{1}	I_{2}	I_{4}	E_{1}	E_{2}	E_{4}
MEAN :	$: \quad 5.76$	6.69	3.10	5.63	16.43	-7.21
STAN:	: $\quad 12.54$	15.51	9.88	20.53	12.66	4.06
(GGG) CHI-SQUARE TEST FOR INGRESS-EGRESS ESTIMATION						
	I_{1}	I_{2}	I_{4}	E_{1}	E_{2}	E_{3}
TOTAL						
CHISQ	Q 54.4	92.5	19.2	68.4	144.6	33.5

(TE) TURNING MOVEMENT ESTIMATION ERROR
MEAN:
STAN :
(P) A

MEAN :
STAN :
(PP)

MEAN:
STAN :
(TTT)

NOI $W W W I \amalg S G$
X_{12}
3.1
STAN: $\quad 20.4$ MEAN :

GפVLNGDYGd LNAWG
ESTIMATED

$$
\begin{array}{r}
X_{14} \\
1.0 \\
17.7
\end{array}
$$

$$
\begin{array}{r}
X_{21} \\
53.9 \\
7.5
\end{array}
$$

X^{1}
$x^{\text {N }} \underset{\sim}{\text { mio }}$

$$
\begin{array}{r}
x_{24} \\
46.1 \\
7.5
\end{array}
$$

\[

\]

(TTT) CHI-SQUARE TEST TURNING MOVEMENT ESTIMATION
(PP) EStimated turning movement percentage

MEAN :
STAN :
MEAN :
STAN:

TOTAL
CHISQ
(PPP)

$$
\begin{array}{r}
x_{12} \\
60.3 \\
7.1
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{r}
X_{42} \\
74.1 \\
4.5
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
6^{\bullet} \varepsilon \\
8^{\circ} 09 \\
2 \tau_{X}
\end{array}
\end{aligned}
$$

X_{12}

X_{14}
88.145 .1
$70.275 .4 \quad 62.1$ 166.4
X_{42} 45.5
20.9109 .7

X_{14} 40.149 .2
X_{1}
X_{24}
X_{42}
$X_{24} \quad X_{41}$
X_{21}

TEST
CHI-SQUARE
X_{12}
CHISQ

TABLE 11
RESULTS OF MAIN-FRONT COMBINED DATA MODEL ESTIMATION OF MAIN-FRONT 10/75 TURNING MOVEMENTS
(M) \% ERROR

	I_{1}	I_{2}	I_{4}	E_{1}	E_{2}	E_{4}
MEAN	34.05	15.19	26.68	13.88	26.14	-9.61
STAN:	15.67	16.72	20.85	15.09	24.49	14.99
(H) INGRESS-EGRESS ESTIMATION ERROR						
	I_{1}	I_{2}	I_{4}	E_{1}	E_{2}	E_{4}
MEAN :	-0. 23	13.73	-1.72	2.17	17.07	-8.62
STAN:	8.56	15.56	6.84	11.25	9.89	2.94
(GGG)	CHI-SQUARE	TEST	FOR I	NGRESS	-EGRESS	ESTIMATION
	I_{1}	I_{2}	I_{4}	E_{1}	E_{2}	E_{4}
TOTAL						
CHISQ	Q 13.7	54.1	4.7	16.2	58.1	18.2
(P) ACTUAL TURNING MOVEMENT PERCENTAGE						
	X_{12}	X_{14}	X_{21}	X_{24}	X_{41}	X_{42}
MEAN:	58.6	41.4	52.3	47.7	28.6	71.4
STAN:	7.0	7.0	7.7	7.7	8.1	8.1
(PP) ESTIMATED TURNING MOVEMENT PERCENTAGE						
	X_{12}	X_{14}	X_{21}	X_{24}	X_{41}	X_{42}
MEAN :	58.8	41.2	52.8	47.2	27.9	72.1
STAN:	3.4	3.4	6.7	6.7	4.0	4.0

RESULTS OF MAIN-FRONT COMBINED DATA MODEL ESTIMATION OF MAIN-FRONT 7/78 TURNING MOVEMENTS

(M) \% ERROR

	I_{1}	I_{2}	I_{4}	E_{1}	E_{2}	E_{4}
MEAN	8.65	20.52	-7.85	8.69	3.18	4.20
STAN:	: 21.91	34.46	13.82	26.74	36.44	10.33
(H) INGRESS-EGRESS ESTIMATION ERROR						
	I_{1}	I_{2}	I_{4}	E_{1}	E_{2}	E_{4}
MEAN :	$: \quad 10.74$	0.82	7.11	8.52	15.91	-6.03
STAN:	: 13.28	13.06	10.34	25.77	14.77	4.52
(GGG)) CHI-SQUARE	E TEST	FOR I	NGRESS	-EGRESS	ESTIMATION
	Il	I2	I4	E1	E2	E4
TOTAL						
CHISQ	Q 40.7	38.4	14.5	52.2	86.5	15.3
(P) A	ACTUAL TURNI	ING MOV	VEMENT	PERCEN	TAGE	
	X_{12}	X_{14}	X_{21}	X_{24}	X_{41}	X_{42}
MEAN :	$: \quad 61.8$	38.2	55.2	44.8	25.1	74.9
STAN:	: 7.1	7.1	7.2	7.2	9.3	9.3
(PP)	ESTIMATED T	TURNING	MOVEMENT PERCENTAGE			
	X_{12}	X_{14}	X_{21}	X_{24}	X_{41}	X_{42}
MEAN :	62.5	37.5	54.9	45.1	24.1	75.9
STAN:	: 3.5	3.5	5.3	5.3	4.2	4.2

The combined model was tested using a third set of data collected at a different intersection. This intersection is Grand River Avenue at Golf Club Drive just east of Howell, Michigan. Its location is shown in Figure 16. Grand River Avenue is four-lane with no turning lanes. Golf Club Drive is a suburban two-lane with very low volumes. The intersection is not signalized. Data was collected at this intersection February 22, 1977 from 2:00 PM to 6:00 PM and on February 23, 1977 from 7:00 AM to 9:00 AM.

The intersection data was input into the combined model as the third production run, (MODEL 3). This input is in Tables $C-7, C-8$ and C-9. The output summary is in Table 13. Two differences between the model intersection and the Grand River-Golf Coub intersection are worth noting. The machine count error is significantly different and the operation is very different. The volumes on Golf Club Drive are very low as shown in Table c-7. The mean values of (MODEL 3) Matrix (H) show very large error in I_{1} and E_{1}. The estimations produced from the combined model would be rejected on this basis. In comparing the estimated percent turning, (MODEL 3) Matrix (PP), to the actual percent turning, Matrix (P), Table 13, there is estimation error as high as 19\%. The difference in operation and in machine count error was displayed in (MODEL 3) Matrix (H), and proved to be correct. The combined model was not appropriate for this intersection.

Figure 16
Grand River Ave. and Golf Club Dr. Intersection
(M) \% ERROR

	I_{1}	I_{2}	I_{4}	E_{1}	E_{2}	E_{4}
MEAN :	: 7.44	10.52	4.45	5-2.21	-4.34	19.8
STAN:	: 20.63	39.77	710.47	720.77	11.95	34.4
(H) INGRESS-EGRESS ESTIMATION ERROR						
	I_{1}	I_{2}	I_{4}	E_{1}	E_{2}	E_{4}
MEAN :	: 580.908	$8.03-$	-3.82 5	500.10	41.42-	2.34
STAN:	: 261.707	7.34	1.884	452.32	21.64	3.03
(GGG)) CHI-SQUARE	E TEST	F FOR I	INGRESS	-EGRES	S EST
	I_{1}	I_{2}	I_{4}	E_{1}	E_{2}	E_{4}
TOTAL						
CHISQ	Q ***	26.0	5.8	791.2	353.7	3.3
(P) ACTUAL TURNING MOVEMENT PERCENTAGE						
	X_{12}	X_{14}	x_{21}	X_{24}	X_{41}	X_{42}
MEAN :	: 16.3	83.7	2.2	97.8	9.6	90.4
STAN:	: 10.0	10.0	2.1	2.1	5.2	5.2
(PP) ESTIMATED TURNING MOVEMENT PERCENTAGE						
	X_{12}	X_{14}	X_{21}	X_{24}	X_{41}	X_{42}
MEAN :	: 37.8	62.2	21.7	78.3	20.7	79.3
STAN:	$: \quad 7.8$	7.8	3.1	3.1	1.5	1.5

This concludes the case studies of the turning movement model theory. In the last chapter, conclusions resulting from these case studies will be presented in detail, as well as recommendations for future study.

Chapter Five

CONCLUSIONS AND RECOMMENDATIONS

The basic purpose of this thesis was to develop an an intersection turning movement modelling technique using linear-regression theory. This chapter presents the conclusions from the study and makes recommendations for future research.

This research has shown that linear regression theory can be used to build an intersection turning movement estimation model. It is important to note that two types of estimation can be made after a predictive model is built. The model can either estimate turning movements for an individual time period or it can estimate the overall turning movements for a sample of individual turning movements. The latter is generally more useful since it is rare that there is interest in one small period of the day. If this is the case, it would generally be more feasible to hand-count turning movements for the short period of time. However, overall turning movement estimation is necessary to many users, as was explained previously.

The linear regression modelling technique demonstrated in this thesis proved to be unsuccessful in accurately estimating turning movements for individual time periods.

This was true due to two factors. First, the machine count error, in general, had very large standard deviations, which caused a large amount of unexplained variance. When the machine count errors vary greatly from time period to time period, it is almost impossible to accurately estimate turning movements. The second factor is the non-linear behavior of the intersection operation. The linear regression models were more successful in estimating turning movement percentages of the overall samples input into them. Because of the inaccuracies due to machine count error and non-linear behavior just mentioned, this type of overall performance may be the only appropriate estimation function of a linear regression technique. Even these estimations were somewhat inaccurate when the operation of the intersection changed significantly. Therefore, once a model is built, its most useful function may be to help monitor the intersection and detect significant changes in turning movements using only machine traffic counters.

From the study of the three-legged intersections, it can be concluded that the linear regression theory may not be appropriate for this type of intersection for the following reasons:

1) Machine count error at three-legged intersections appears to be larger and more unpredictable than at four-legged intersections,
2) Three-legged intersections, in general, have one leg with much smaller volumes than on the other two legs,
3) With a degree of freedom of only one, it may be more economical to have one person manually count some turning movements at the intersection than to try to build an estimation model.

It is recommended that the study of the regression technique to estimate turning movements from machine counts be pursued further. The lack of data which meets the criteria set forth previously is a major hindrance to future study. It may be worth the effort for a transportation agency to collect future intersection data so as to meet the criteria, enabling the data to be used in future turning movement estimation research.

The effect of machine count error upon turning movement estimation needs to be studied vigorously since, regardless of the estimation technique under study, machine count error has a major effect on accuracy. This effect must be studied further and its effect mitigated. If a technique is to be developed which can estimate turning movements from machine counts at an intersection never before studied, a method of estimating machine count error must be developed. It is also important to detect any changes in machine count error because of changes in traffic mixture, for example, more trucks.

Although the ingress-egress estimation matrix, Matrix (H) and the chi-square matrix, Matrix (GGG), were used as an indication of model performance, further research is needed to provide an accurate estimator of model performance. Since the estimated ingress-egress volumes should equal the volumes entering the linear regression, it should be possible to calibrate the information in Matrices (H) and (GGG), so as to indicate how accurate the model is in estimating turning movements from new data. Research is also needed to calibrate the "acceptance variables" such as the chi-square tests to meet the user's accuracy requirements.

Further research is needed to determine the cause and to measure the magnitude of the non-linear behavior of intersections. The linear regression model theory assumes fairly constant flow into and from the intersection. Time varying flow may cause some of the non-linear behavior. For example, if there are heavy turning volumes in one direction during the AM peak and heavy turning volumes in the other direction during the PM peak, linear regression may not be appropriate. The linear regression theory used in this thesis assumes that the independent variables are non-interacting. $(3,11)$ This assumption is clearly violated since there is a definite relationship expressed in Equation 2-9, namely that the sum of ingress volumes equals the sum of the egress volumes. Further study of the effect of the non-independence of the
"independent" variables is strongly recommended.
Further research may be useful in low-volume intersection turning movement estimation, but the linear regression theory presented in this thesis would probably not be appropriate. At low volume intersections, the arrivals are generally Poisson or Erlang distributed for fifteen minute time periods. The assumptions made in this study about machine count error would then probably not be valid. $(5,6)$

This research provides the skeleton upon which accurate intersection turning estimation can be built. If the proposed research proves fruitful, the following future operation is envisioned. In the computer, the machine count error estimation program and several standard turning movement models would be stored. Machine counts would be taken at an intersection under study. The machine count error would be estimated and placed in an error matrix, Matrix (M). The machine count tapes would be fed directly into the computer into a Matrix (B). The computer would estimate the turning movements using all of the standard models. The estimates with the least ingress-egress error, Matrix (H), would be used. The model analyst, generally a traffic technician, would have the results in a very short time, and be able to verify or reject the estimates. The output could be used to achieve all the benefits described previously.

LIST OF REFERENCES

1. American Association of State Highway and Transportation Officials, A Policy on Design of Urban Highways and Arterial Streets, 1973, Washington, D.C.
2. Baerwald, John E., Editor, Transportation and Traffic Engineering Handbook, Prentice-Hall, Inc., Englewood, New Jersey, 1976.
3. Bhattacharyya, Gouri K. and Richard A. Johnson, Statistical Concepts and Methods, John Wiley \& Sons Inc., New York, 1977.
4. Federal Highway Administration (FHWA), Volume 4, User's Guide, NETSIM Model, April, 1977, Final Report, No. FHWA-RD-77-4, Washington, D.C.
5. Gerlough, Daniel L. and Frank C. Barnes, Poisson and other Distributions in Traffic, Eno Foundation for Transportation, Saugatuck, Connecticut, 1971.
6. Greenshields, Bruce Douglas and Frank Mark Weida, Statistics with Applications to Highway Traffic Analyses, Second Edition, Eno Foundation for Transportation, Saugatuck, Connecticut, 1978.
7. Jeffreys, Martyn and Michael Norman, "On Finding Realistic Flows at Road Junctions.", Traffic Engineering \& Control, January, 1977, pp. 19-21, 25 .
8. Marshall, M.L., "Labour-Saving Methods for Counting Traffic at Three- and Four-arm Junctions.', Traffic Engineering \& Control, April, 1979, pp. 159-162.
9. Michigan Department of State Highways and Transportation, TRANSYT/5 User's Manual, unpublished, Lansing, Michigan, 1977.
10. Mekky, Ali, "On Estimating Turning Flows at Road Junctions.", Traffic Engineering \& Control, October, 1979, pp. 486-487.
11. Neter, John and William Wassermann, Applied Linear Statistical Models, Regression Analysis of Variance and Experimental Designs, Richard D. Irwin, Inc., Homewood, ILL., 1974.

LIST OF REFERENCES

(Continued)
12. Norman, M., N. Hoffmann, and F. Harding, "NonIterative Methods for Generating a Realistic Turning Flow Matrix for a Junction.", Traffic Engineering \& Control, December, 1979, pp. 587-589.
13. Van Zuylen, Henk J., "The Estimation of Turning Flows on a Junction.", Traffic Engineering \& Control, November, 1979, pp. 539-541.

APPENDICES

APPENDIX A
 TURNING MOVEMENT MODEL COMPUTER PROGRAM FLOW CHART
 AND LISTING

Flow Chart of Creating an Intersection Turning Movenant
Mode 1

Matrix (A) - Hand
Counted Ingress and
Egress Volumes

Flow Chart of Using An Existing Turning Movement Model

00003500
0
0
0
0
0
0 0
0
0
0
0
0 00008000090

 0000000000000000000000000000000000

~~

566 IF (HEREO4) GO TO 341 WRITE (8.937) FO4CUT GO 1099	
341	IF(HEREO3) GO TO 342 HRIIE (8.937) FO3CUT
	GO 1099
342	IF(HEFEO6) GO TO 343
	WRITE (8,937) F06CU
	GO 1099
343	CHANGE(G.H

cor. 23900 0
0
0
0
0
0.
0. cor24100

$\operatorname{cor} 3 C 700$
$\cos 3 C 800$ 00
OU
M
č
0.0
0 005うをj0う

$\operatorname{con} 34100$ 0
0
M
M
0 oor 34300

+25x,* MACHINE COLNTS**1)	
	IF(ILEG.EQ.227)GC TO 410
	WPITE (7.1001)
	GO 10409
410	IF(LEC.E0.1)WFITE(7.4100)
	IF (LEG.EQ.2)WFITE (7,4101)
	IF (LEG.EQ.3) WFITE(7,4102)
	IF(LEG.E0.4)WFITE(7,4103)
409	DO ES K=1, IA
65	WRITE (7,2000) K, (C(K.L), L=1, JA)
	IF(ADFMAL) GO TO 456

こコこコココココココココ

ゴゴゴゴゴゴゴゴゴ
$\leadsto M M M M M M M M M M M$

デミベざ気

[^2]

 $\begin{array}{lllllllllllllllllllllllllllllllll}0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0\end{array}$

 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
 م 0 O C 0

∞ m ∞

0000000000000000000000000000000000

0000000000000000000000000000000000

\cdots	\square	\bigcirc	\sim	\cdots	\sim	\cdots	\cdots	\cdots	-	∞						
5	5	5	5	5	8	8	5	5	8	8	8	8	5	8	5	8
01	\square	\cdots	σ	\cdots	m	N	s	\square	\checkmark	\square	iv	civ	\cdots	\cdots	m	\cdots
-	\cdots	M	m	\pm	5	\cdots	\square	N	N	\cdots	\pm	-	\cdots	N	N	m
x	x	x	\times	\times	x	\times	x	\times	\times	x	x	x	x	x	\times	x

m	\cdots	M	M	M	m	N	\sim								
W	لـ	ω	山	W	لـ	لـL	U	W	W	لـ4	山	W	W	لس	لـ

\checkmark	8	5	8	E		5	5	5	5	${ }^{5}$	E	\mathfrak{V}	5	E	E
-	\cdots	\cdots	-	\cdots	\boxminus	\ldots	\leftharpoondown	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	\sim
$\$$	$\$$	\leqslant	$\$$	\leq	\leqslant	\leqslant	\leq	\leq	\leqslant		\leq	4	\mathbb{T}	\leq	$\$$
0	$\boldsymbol{\square}$	0	$\boldsymbol{\square}$	c	0	0	$\underset{\sim}{\square}$	∞	0	0	$\boldsymbol{\pi}$	∞	$\boldsymbol{\sim}$	\propto	α
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+4	1	1	4	4	4	1.	4	L	L	4	4	4	\boxed{L}	4	4
∞	0	0	\square	N	\cdots	s	\bigcirc	0	N	∞	a	0	\cdots	N	m
0	0	\cdots	\square	\cdots	N	N	N	N							
N	N	N													
0	10	\checkmark	\bigcirc	0	0	c	0	\checkmark	10	10	1	6	c	0	c

ㅇㅇㅇ

IF(TLEG.EQ.198)CALL STPRG (M,NN,[D,XBAR,ICX,PCT,ASTEF,ANS.

ㅇㅇㅇ

응ㅇㅇㅇ엉

ㅇㅇㅇ

$\times 32$	$\times 34$	$\times 42$
$\times 31$	$\times 34$	$\times 41$
$\times 21$	$\times 24$	$\times 41$
$\times 21$	$\times 23$	$\times 31$
$\times 34$	$\times 41$	$\times 42$

C**	*********************	$\begin{aligned} & \operatorname{corg} 8700 \\ & \text { COC9880 } \end{aligned}$
	COMPUTE MATRIX < D 1>	*cor9esoo
		$00<99100$
574	DO $95 \mathrm{~K}=1.14$	COC9S<00
	D1 ($K, 1$) $=1$	coc. 9300
	DO $95 \mathrm{~L}=1$, JA	conc9 9400
95	D1($K, L+1)=0(K, L)$	COC95500
	WRITE (7,1000) THEJOB,MATRIX(10)	cor95600
C	DO $169 \mathrm{~K}=1$ - IA	COC9 9700
C 169	WRIIE (7,2002) K. (O1 $^{(K, L), ~ L=1, d A+1) ~}$	cor9s800
C2002	FORMAT ($/, 3 \mathrm{X}, 12,1 \mathrm{H}), 9 \mathrm{X}, 11,2 \mathrm{X}, 8(15,3 \mathrm{X})$)	corg9900 co10cc0
		CO10C10t
		0010 C 200
		CO10C 300
COMPUTE HATRIX <F>		- 00100500
C***C010C600		

$\times 32$
$\underset{\times}{m}$

m	N	\cdots	\cdots
\times	-	x	\pm
\times	\times	\times	\times

IF(TLEG•EQ.227)GC TO 4724

NONC=ACNO+1
499
IF(NORNAL) GOTO 362

∞
∞

$005 ? 260$

 0000000000000000000000000000000000

 $E 3$
$E 2$
$E 2$ $\begin{array}{lll}14 & \text { E1 } & \text { E } \\ 14 & \text { E1 } & E 2 \\ 13 & E 1 & E 2\end{array}$ $M N N M$

$0013 C 000$
00130100
$C 013 C 200$ N 0013 C 300 co130400 0013 C500 00130500
0013060 CO130600 0013 C800 COSJELOS COSJEIOJ
OOJIEIOO.
 $00 E I E I O$
$00 \geq I E I O$
0
 ज 옹․ 0
M
m
0
 м M n M 0
M
M
0
0
 0
N
M
0
0 0
N
心
心

0 | 0 |
| :---: |
| $\substack{0 \\ \text { N } \\ \text { M } \\ 0 \\ 0 \\ \hline}$ | 0132600

in
\sim

00を9ち100

PPP（ICH3．ICH2）$=((\operatorname{PP}(I C H 3 . I C H 2)-P(I C H 3 . I C H 2)) * * 2) / P(I C H 3 . I C H 2)$ CHISO（ICH2）$=$ CHISG（ICH2）+ PPP（ICH3，ICH2）
い
2
2
2
2
0
0
N～
\qquad

n

7858
∞
∞
0
0
m
0
0
\sim
127

\footnotetext{
888 WRITE (8, 1902$)$
1902 FORMATC/:" HA

$\operatorname{IF}($ FD $) 77.77 .76$
$\operatorname{IF}(A N S(5)-(A N S(3)$

ぺへ

$\underset{\omega}{\omega}$

0	\sim	M	\checkmark
0	0	0	\cdots
\checkmark	\checkmark	\checkmark	\checkmark

00173500 8

 OOES 1100
 $0176=00$ $C O 17 \in \leq 00$
$C C 17 \in 400$

 00932100 $00 \angle 9 \angle 100$: O | 0 |
| :---: |
| 0 |
| 0 |
| 0 |

112	ANS（9）$=\mathrm{XBAK}(\mathrm{MY})$	$\begin{aligned} & 0018 \leq 700 \\ & 0018 \leq 800 \end{aligned}$ $0018 \leq 500$
	DO $115 \mathrm{I}=1$ ， NL	C018400
	$K K=L(1)$	00184100
	$\operatorname{ANS}(9)=\operatorname{ANS}(9)-\mathrm{B}(\mathrm{I}) *$ XBAR（KK）\％INIERCEPT	CC184く00
	$I J=N *(K K-1)+K K$	CC184300
114	S（I）＝AAS（8）＊SORT（D（IJ））x S（I）IS PARTIAL FEGRESSICA COEFFICIENT	C0184400
	T（I）$=$ B（I）／S（I）\％T（I）IS COMPUTEL T－VALUE Of CCEff／Stcera	CC184500
	IF（NOPFT－EG．1）GO TO 115	00184600
	W只ITE（7，815）L（I）．S（I）	C0184700
815		CO184E00
	－＂，FE．5）	C0184500
	WRITE（7．820）ANS（9）	CO185600
820	FORMATC	CO185100
		CC185200
115	CONIINUE	$0018 \leq 300$
		C0185400
C＊＊＊＊	＊＊＊	00185500
C＊	PEFFCGM A RECUCIION TO ELIMINATE THE LASt Variable entered	－C0185600
C＊＊＊＊＊		C0185700
		OC185とつO
	IP $=\mu *(\triangle E W-1)$	C0185500
	DO $130 \mathrm{I}=1 \mathrm{~m}$	COIBECOO
	$\mathrm{I} \mathrm{J}=\mathrm{I}-\mu$	COIBE100
	$I K=A E W-M$	CC18Eく00
	$I P=I P+1$	CO18Eこ0C
	IF（LL（I））130，120，120	CC18E400
120	DO $12 \mathrm{E} J=1, \mathrm{M}$	C018E500
	$I J=I J+\mu$	C018E600
	$I K=I K+M$	C018E700
	If（LL（J））126．122，1こ2	CO18EEOO
122	IF（J－NEW）124，126，1̌4	CCibesoo
124	$D(I J)=C(I J)-D(I P) * D(I K)$	CO187COO

APPENDIX B

TEST PROBLEM

INTERSECTION MODEL

TABLE B-1
TEST MATRIX (A)
INGRESS-EGRESS MANUAL COUNTS

TIME	I 1	12	13	14	E1	E2	E 3	$E 4$
PEF.								
1)	125	75	99	74	163	80	75	55
2)	105	53	97	38	127	54	63	49
3)	95	84	84	51	129	71	68	46
4)	108	67	59	32	95	49	82	40
5)	107	66	70	44	114	60	76	37
6)	164	110	113	100	187	102	111	87
7)	167	110	121	95	193	110	101	89
ع)	191	139	164	98	235	119	123	115
9)	177	113	119	118	178	122	126	101
10)	149	144	137	107	218	97	118	104
11)	157	252	122	24 C	116	244	169	242
12)	111	234	117	205	90	213	125	239
13)	116	161	117	136	90	155	115	170
14)	78	166	144	19 E	109	207	88	180
15)	72	183	101	154	76	161	96	177
16)	110	217	125	162	116	174	118	206
17)	106	164	91	222	80	237	100	166
18)	147	218	112	25 C	96	257	149	225
19)	119	158	133	217	98	238	121	170
20)	114	177	141	237	100	6	118	185

TABLE B-2

TEST MATRIX (B)
INGRESS-EGRESS MACHINE COUNTS

time	I 1	12	[3	14	E1	E2	E 3	$E 4$
PER.								
1)	132	63	109	82	168	75	71	66
2)	126	68	96	37	135	57	72	55
$3)$	96	58	89	$4 E$	127	66	63	44
4)	113	62	71	37	105	53	88	38
5)	105	86	67	45	118	54	73	39
6)	160	120	136	99	199	100	124	97
7)	153	115	145	101	213	108	110	99
8)	156	144	17 ?	95	240	113	113	113
9)	125	126	129	107	185	115	119	100
10)	137	125	149	10?	208	93	118	94
11)	174	252	130	240	125	215	219	245
12)	151	234	129	205	117	225	156	237
13)	96	161	54	136	83	149	92	157
14)	89	166	155	19 E	91	205	107	176
15)	82	183	129	154	1.09	166	105	194
16)	118	257	139	193	144	203	131	226
17)	55	150	94	217	84	253	88	140
18)	143	232	113	260	95	293	148	205
19)	143	203	155	259	110	312	138	190
20)	12?	198	141	230	98	267	127	173

TABLE B-3

TEST MATRIX (M)
INGRESS-EGRESS \%ERROR MATRIX

	11	12	13	14	E1	E 2	E 3	E4
ZMEAN								
ERFOR	2.09	3.62	7.92	2.34	6.81	1. 63	4.86	1.46
STAN.								
CEV.	15.28	15.7 2	10.45	2.19	13.36	10.26	12.90	9.44

TABLE B-4
TEST MATRIX (C)
ADJUSTED INGRESS-EGRESS MACHINE COUNTS

$\begin{aligned} & \text { TINE } \\ & \text { PER. } \end{aligned}$	I 1	12	13	14	E1	E2	E 3	E4
1)	129	58	100	80	157	74	68	65
2)	123	66	88	36	127	56	68	54
3)	94	56	$\varepsilon 2$	45	118	65	60	43
4)	111	60	65	36	98	52	84	37
5)	103	83	62	44	110	53	69	38
$6)$	157	116	125	97	185	98	118	96
7)	150	111	134	99	199	106	105	98
8)	153	139	159	97	224	111	108	111
¢)	122	121	119	104	172	113	113	99
10)	134	120	137	111	194	91	112	93
11)	170	243	120	234	116	211	208	241
12)	148	226	119	200	109	221	148	234
13)	94	155	87	13?	77	147	88	155
14)	87	160	143	191	85	262	102	173
15)	80	176	119	15 C	102	163	100	191
16)	116	248	128	188	134	200	125	223
17)	93	145	87	212	78	249	84	139
18)	140	224	104	254	89	288	141	202
19)	14.0	196	143	253	103	307	131	187
20)	119	191	130	225	91	263	121	170

TABLE B-5
TEST MATRIX (D)
ADJUSTED AND BALANCED INGRESS-EGRESS MACHINE COUNTS

$\begin{aligned} & \text { TIME } \\ & \text { PER. } \end{aligned}$	11	12	13	I 4	$E 1$	E2	E 3	E4
1)	128	57	100	8 C	158	74	68	65
2)	122	65	87	36	128	57	69	55
3)	96	57	83	$4 E$	116	64	59	43
4)	111	60	65	$3 E$	98	52	84	37
5)	99	80	60	42	114	55	72	40
6)	157	116	125	97	185	98	118	95
7)	152	112	135	10 C	196	105	103	96
8)	154	140	160	97	222	111	107	111
9)	126	125	123	108	167	110	110	96
10)	134	120	137	10 C	194	92	113	93
11)	172	245	121	236	116	210	207	240
12)	150	229	12 C	$20 ?$	108	218	146	230
13)	94	155	$\varepsilon 6$	132	78	147	88	155
15)	83	181	122	155	99	159	97	186
16)	116	248	128	188	134	290	125	222
17)	94	146	88	214	77	246	83	136
18)	140	223	104	254	89	289	141	202
19)	140	195	142	252	103	308	132	188
20)	118	188	128	221	93	267	123	173

TABLE B-6
 TEST MATRIX (M1)
 SECOND INGRESS-EGRESS \%ERROR MATRIX

TABLE B-7

TEST MATRIX (T)
MANUAL TURNING MOVEMENT COUNTS

TEST STATESTICAL ANALYSIS VARIABLE RELATIONSHIP

9り・を01	8800EE－	L0＇8 \％－	15＊20\＆－	£8・ワを	22・サして－	96＊ 19	66＊ 29 －	7L098．
88•OE－	85＊8E5	$26^{\circ} \mathrm{E} 615$	$18^{\circ} \mathrm{CSL7}$	89 ${ }^{\circ}$ T 201	－2 2 －009ヶ	$19^{\circ} 888$	ع $L^{\circ} 6517$	Sヶ＊TS
10＊8－	$26^{\circ} \mathrm{E} 51$	89° サ91し		＜8＇ $21-$	£ $6^{\circ} 6881$	£E•LL	OS＊OLLI	21＊285
15＊30E－	$18 \cdot 0514$	9でてをLI	$\varepsilon 0^{\circ} 2269$		－ 10° サ\＆ 19	$88^{\circ}<78$	S 9° S8£	25•12
88・クを	$89^{\circ} 1201$	L8＊ $21-$	ع 2＊ $2281-$	－68・ヶ【 6I		－ $11^{\circ} \angle 25$	\＆ $9^{\circ} \mathrm{E} 61-$	クク・てS9
で・ケ13－	22＊0094	を5＊ 68 ¢	LO＊ $0^{\text {cI9 }}$		－0E・サワ9 5	96•688	98•2をご	LE＊IS
$96^{\circ} 19$	190888	$\varepsilon \varepsilon \cdot L \angle 力$	$88^{\circ} 198$	$\angle I^{\circ} \angle L S$	96＊688	ヶ1＊ 681	17＊8£8	ヶ8＊¢¢ ¢
66＊ $293-$	EL＊6517	$05^{\circ} 0215$	$59^{\circ} 5857$	ع9＊ع6L－	98＊2をで	じ・8を8	C L°－ 666	Sサ・0クワ
¢1＊9をし	5ヶ・【5	$22^{\circ} \mathrm{E}$ S	25° I2	ササ・259	LE•ISE	ヶ3＊EE	らヵ・号サ	23＊589
$21 \times$	43	［ 3	23	13	71	E I	21	I I
							X1甘1VW 33	NVIYヤADJ
1I・つI	＜2• 13	$\boldsymbol{\Sigma 1 \cdot ク \Sigma ~}$	$0 S^{*} 18$	9 1° を	$\boldsymbol{E l} \mathbf{I}^{\mathbf{L}}$	$6 I^{\circ}<2$	£ $2 \cdot \Sigma 9$	SI•92
$21 \times$	43	\｛］	23	13	71	EI	21	11
							NOII甘I＾ 30	OYVONYIS
SZ・マ	56•121		$\mathcal{S E} \mathcal{E} \mathcal{S I}$	$50 \cdot 825$	S2•6EI	Sl＊ZIT	S6＊カワ	09^{\bullet} \＆
$2 I X$	73	［］	23	13	71	ε I	21	11
							530	

TABLE B-8
(CONT 'D)

TABLE B-9
TEST STATISTICAL ANALYSIS OF STEP-WISE REGRESSION
STEP 1
1112.3854
0.0000
0.5659
1112.3854
0.56588
5
1
18
853.3646
47.4091
0.75225
23.4635
6.88543
0.1749
9.85978

TABLE B-10
TEST STATISTICAL ANALYSIS OF STEP-WISE REGRESSION
STEP 2

TABLE B-11
TEST STATISTICAL ANALYSIS OF STEP-WISE REGRESSION STEP 3
496.8393
278.8102
0.1418
1490.5180
0.75824
4
3
16
475.2320
29.7020
0.87077
16.7275
5.44995
0.1272
12.29917

TABLE B-12
TEST STATISTICAL ANALYSIS OF STEP-WISE REGRESSION
STEP 4

TABLE B-13

TEST STATISTICAL ANALYSIS OF STEP-WISE REGRESSION
STEP 5

$$
310.5069
$$

$$
\begin{array}{r}
7.5501 \\
0.00388 \\
1552.5347
\end{array}
$$

$$
\begin{aligned}
& \underset{\sim}{\infty} \\
& \infty \\
& \stackrel{\infty}{\circ} \\
& \dot{0}
\end{aligned}
$$

$$
29.5154
$$

$$
0.88870
$$

$$
\begin{aligned}
& \text { n } \\
& 0 \\
& \sim \\
& \sim \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{array}{lll}
\vec{\infty} & 0 & n \\
N & N & \infty \\
\cdots & N & \underset{\sim}{n} \\
\dot{J} & 0 & \infty \\
\dot{n} & \dot{0} & \dot{N}
\end{array}
$$

TABLE B-15

TEST STATISTICAL ANALYSIS OF STEP-WISE REGRESSION ACTUAL VS. PREDICTED VALUES
$x 12$

TIME
PER.
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)

PREDICTED
40.000 CC
31.000 CO
32.00060
26.00050
35.00000
45.00000
50.000 CO
53.00000
45.000 CO
32.00000
29.000 0
20.00000
26.00000
26.00000
$14.000=0$
19.000 CO
28.00000
34.000 CO
32.00000
28.000 CO

STANDARD EFPOR <MODEL \# $1>$ IS

ACTUAL	FESIUUAL
41.92196	-1.92196
$37.755 C 3$	-2.75503
31.94451	0.05509
36.16165	-4.16165
31.41365	3.58695
44.36254	0.63746
46.05971	3.94029
46.98644	6.01356
39.21218	5.78782
43.20118	-11.20118
27.28937	1.71063
24.20321	-4.20321
18.57067	7.42533
26.79321	5.20679
17.33815	-3.33815
23.42329	-2.42329
36.48793	3.48793
$3 C .28571$	-2.36329
34.36302	-1.22677

$$
5.43281 \quad R=6
$$

TABLE B－16

TEST MATRIX（F）

ESTIMATED TURNING MOVEMENTS

$\underset{\underset{x}{N}}{N}$	
$\underset{\underset{x}{x}}{\vec{x}}$	
$\stackrel{N}{\aleph}$	
$\underset{\sim}{N}$	－－－のNーかMMーNNNNMポM
$\underset{\times}{m}$	
$\underset{\underset{\sim}{x}}{\sim}$	
$\underset{\sim}{\sim}$	
$\underset{\sim}{\sim}$	
$\frac{ \pm}{x}$	
$\underset{x}{\underset{x}{m}}$	
$\underset{x}{\sim}$	

TEST MATRIX（TE）
TURNING MOVEMENT ESTIMATION ERROR

$\begin{aligned} & M \\ & J \\ & \times \end{aligned}$	
$\begin{aligned} & N \\ & \mathbf{x} \end{aligned}$	
	11 11 1
$\vec{~}$	ம冂00mNNさNNさめNmononmo
	$11 \sim 1010$
$\stackrel{\square}{2}$	
x	
$\underset{\sim}{N}$	T
	1 i in in
\vec{M}	
	11
	1
$\underset{\sim}{x}$	
$\stackrel{\sim}{\sim}$	
	のMoonamoomnoseoonoao
	111
\vec{N}	
	1 ！ 1 M
こ	
	1111
	UnO－ravovinnoonnmommm
\cdots	
\times	111
\cdots	
	1111
	迷

TABLE B-18

TEST MATRIX (G)
ESTIMATED INGRESS-EGRESS MOVEMENTS

TIME	11	12	13	14	E 1	E2	E 3	E4
PER.								
1)	139	78	94	80	159	84	77	62
2)	109	63	90	3?	126	51	69	54
3)	100	63	86	48	123	64	67	43
4)	106	64	71	4 C	104	59	78	40
5)	118	76	66	45	117	59	86	43
6)	165	117	115	94	190	102	111	92
7)	162	114	128	95	200	104	104	91
8)	170	127	151	89	226	101	107	103
9)	150	123	118	109	178	117	111	94
10)	163	120	128	102	206	104	113	90
11)	157	247	117	241	113	238	171	240
12)	120	221	121	19ϵ	91	212	127	228
13)	79	155	91	132	67	146	88	156
14)	73	166	135	191	96	207	90	172
15)	79	183	122	159	96	165	95	187
$16)$	124	227	129	184	121	193	129	221
17)	104	147	91	210	81	238	100	133
18)	134	207	108	244	83	275	137	198
19)	125	181	141	238	107	282	119	177
20)	$11 ?$	175	129	214	99	250	115	166

TABLE B-19

TEST MATRIX (H)

INGRESS-EGRESS \% ERROR

\% TURNING - MANUAL COUNTS

TABLE B-21

TEST MATRIX (PP)

ESTIMATED \% TURNING

TABLE B-22

TEST MATRIX (GGG)
CHI-SQUARE INGRESS-EGRESS ESTIMATION

TIME	I 1	12	13	14	E 1	E2	E3	E4
PER.								
1)	0.02	5.41	0.35	0.00	$0 . C 1$	1.13	1.06	C. 19
2)	1.50	0.16	0.08	0.22	0.65	0.66	0.00	C. 01
3)	0.19	0.59	0.02	0.11	0.36	0.03	0.98	C. 03
4)	C. 20	0.28	0.45	0.37	0.? 6	0.80	0.42	C. 16
5)	2.99	0.21	0.62	0.15	0.67	0.26	2.26	C. 23
6)	C. 37	0.01	0.37	0.10	0.14	0.15	0.39	C. 12
7)	0.62	0.02	0.43	0.27	$0 . C 9$	0.01	0.01	C. 30
8)	1.58	1.24	0.56	0.76	$0 . C 6$	0.90	0.00	58
$9)$	3.73	0.05	0.18	0.01	0.E6	0.46	0.01	C.03
10)	5.22	0.00	0.62	C. 0.0	$0 . E 7$	1.46	0.00	C. 09
11)	1.34	0.02	0.11	0.10	0.07	3.28	7.56	C.0n
12)	7.49	0.27	0.00	0.25	3.00	0.18	2.94	6.02
13)	2.76	0.00	0.24	0.00	1.E6	0.01	0.00	C. 01
14)	2.20	0.46	0.21	0.04	0.58	0.02	2.05	C. 12
15)	C. 16	0.01	0.00	0.12	0.18	0.23	0.05	C. 01
16)	0.58	1.89	0.01	0.11	1.44	0.23	0.15	6.00
17)	C. 94	0.00	0.12	0.09	0.16	0.27	2.98	C.08
18)	0.25	1.28	0.16	0.37	0.39	0.67	0.12	C.09
19)	1.73	1.11	0.01	0.86	0.17	2.33	1.33	C. 64
20)	0.29	0.97	0.01	0.25	0.40	1.10	0.51	C.

total
CHISO $34.2 \quad 14.0 \quad 4.6 \quad 4.2 \quad 10.8 \quad 14.1 \quad 22.8 \quad 3.8$
TEST MATRIX (TTT)
CHI-SQUARE TURNING MOVEMENT ESTIMATION

APPENDIX C

FOUR-LEGGED INTERSECTION

MODEL DATA

TABLE C-1
INGRESS-EGRESS MANUAL COUNTS
LINCOLN-LUDINGTON INTERSECTION 6/74

time	11	12	13	14	E 1	E2	E 3	E4
PEF. I2 ES								
1)	125	75	99	74	163	80	75	55
2)	105	53	97	38	127	54	63	49
3)	95	84	84	51	129	71	68	46
4)	108	67	59	32	95	49	82	40
5)	107	66	70	44	114	60	76	37
6)	116	68	95	44	127	72	82	42
7)	85	52	45	31	77	50	52	34
8)	96	52	42	37	74	52	63	38
9)	78	31	71	42	110	30	41	41
10)	43	24	64	35	85	30	21	30
11)	67	24	72	50	97	45	40	31
12)	104	45	160	93	210	60	95	37
13)	77	41	72	58	81	54	54	59
14)	63	43	46	61	73	39	45	56
15)	78	47	91	$5 ?$	102	67	45	55
16)	85	53	79	65	101	61	71	49
17)	108	95	74	77	124	93	70	67
18)	122	103	77	72	136	92	90	56
19)	97	98	95	71	142	82	66	71
20)	127	125	109	8 2	170	97	81	96
21)	170	132	122	112	191	125	134	87
22)	108	96	82	70	137	91	69	59
23)	144	121	97	10?	162	95	119	89
24)	$15 ?$	109	131	89	175	111	113	82
25)	168	141	116	102	171	145	118	94
26)	¢ 7	101	81	68	129	99	52	65
27)	136	131	¢ 8	81	157	86	100	93
28)	123	102	69	69	134	99	68	62
29)	158	114	94	70	152	89	104	91
$30)$	131	122	97	84	161	79	89	105
31)	162	110	96	85	144	93	113	103
32)	152	140	97	82	161	94	108	108
33)	163	131	119	99	165	128	125	94
$34)$	151	125	$\varepsilon \varepsilon$	8 \&	152	88	104	108
35)	$17 ?$	143	115	11 C	187	107	130	116
36)	144	134	95	95	150	90	115	113

TABLE C-2

INGRESS-EGRESS MACHINE COUNTS
 LINCOLN-LUDINGTON INTERSECTION 6/74

TIME	I 1	12	13	14	E1	E2	E 3	E 4
PEF.								
1)	132	60	109	82	168	75	71	66
2)	126	68	96	37	136	57	72	55
3)	96	58	89	46	127	66	63	44
4)	113	62	71	37	105	53	88	38
5)	105	86	67	45	118	54	73	39
6)	99	58	97	37	129	63	65	43
7)	115	83	57	32	96	64	63	39
8)	101	71	41	35	73	54	65	40
9)	98	7	71	41	105	33	46	45
10)	49	18	73	37	95	29	20	30
11)	72	29	83	62	108	46	46	34
12)	115	26	177	90	219	62	95	41
13)	83	32	82	62	90	58	58	62
14)	69	25	49	54	78	37	46	58
15)	84	27	89	54	98	60	43	55
16)	104	45	91	75	119	70	76	61
17)	111	68	88	82	128	96	68	67
18)	119	85	85	72	138	90	79	55
19)	120	118	94	76	150	85	76	89
20)	132	106	124	9 C	182	98	76	100
21)	178	105	126	10?	186	116	130	82
22)	118	98	96	76	154	99	71	65
23)	140	118	105	100	147	84	112	88
24)	169	129	160	9 C	209	119	117	97
25)	169	129	116	101	168	142	112	86
26)	119	108	92	68	140	112	63	78
27)	143	127	87	82	156	84	105	87
28)	143	136	85	67	136	104	72	70
29)	170	109	100	77	163	90	110	94
30)	141	110	107	8 \&	178	81	86	114
31)	178	116	103	85	141	9 e	118	107
32)	163	141	108	87	174	93	103	109
$33)$.	156	119	128	104	176	130	121	100
34)	155	142	55	9 E	164	78	100	109
35)	173	111	123	99	190	102	128	116
36)	168	161	107	93	161	90	126	115

TABLE C-3

MANUAL TURNING MOVEMENT COUNTS LINCOLN-LUDINGTON INTERSECTION 6/74
 PER.

1)	40	55	30	47	10	18	80	12	7	36	28	10
2)	31	51	23	29	8	16	77	10	1 C	21	13	4
3)	32	49	14	45	13	26	E 6	12	ϵ	18	27	
4)	26	71	11	35	6	26	45	11	3	15	12	
5)	35	59	13	33	11	E2	64	4	c	17	21	
6)	38	64	14	42	9	17	¢ 8	16	11	17	18	
7)	32	39	14	29	8	15	≥ 6	4	5	12	14	
8)	28	47	21	30	8	14	29	10	3	15	14	
9)	21	31	26	15	6	10	64	2	5	31	7	
10)	10	18	15	12	1	11	52	8	4	21	12	
11)	18	31	18	13	1	10	62	7	3	22	20	
12)	17	69	18	30	3	12	139	14	7	41	29	23
13)	13	38	26	14	7	20	51	8	13	16	33	
14)	11	31	21	9	7	27	$\underline{2}$	0	E	26	28	
15)	21	37	20	15	4	¢ 8	¢ 5	19	7	22	27	
16)	20	44	21	17	15	E1	56	16	7	28	25	12
17)	40	48	20	43	14	2 8	53	12	9	28	41	
18)	33	67	22	54	17	$\underline{2}$	59	16	2	23	43	
19)	24	45	28	52	12	34	69	17	5	21	41	
20)	38	51	38	62	18	45	ع 2	14	12	26	45	12
21)	54	95	21	53	23	56	¢ 3	19	16	45	52	16
22)	38	54	16	5 ?	6	38	58	19	5	27	34	
23)	43	74	30	47	26	48	76	10	11	39	45	19
24)	49	79	24	47	19	43	92	24	15	36	38	15
25)	62	88	18	56	19	E 6	$\varepsilon 0$	26	16	35	57	11
26)	40	29	28	53	15	33	EO	17	4	16	42	
27)	41	71	24	58	17	c 6	E 0	15	13	39	30	1
28)	47	47	29	60	13	く9	45	20	4	29	32	
29)	41	86	31	52	10	52	70	16	ε	30	32	
36)	32	63	36	45	14	E 3	76	15	ϵ	40	32	12
31)	39	81	42	39	18	53	76	12	ε	29	42	1
32)	38	79	35	59	16	E 5	$\epsilon 8$	21	ε	34	35	1
33)	42	96	25	59	17	55	76	29	14	30	57	1
34)	35	64	52	57	19	49	¢ 7	14	7	28	39	2
35)	44	87	41	55	26	E2	\& 8	14	$1 ?$	44	49	1
36)	30	80	34	49	18	E7	72	11	12	29	49	1

 いMOONKHON NanONNGMON

TABLE C-5

INGRESS-EGRESS MANUAL COUNTS LINCOLN-LUDINGTON INTERSECTION
7/76

time	11	12	13	14	E 1	E2	E 3	$E 4$
PEF.								
1)	138	99	97	79	14 C	78	109	86
2)	138	116	106	79	189	78	106	66
3)	149	78	90	8 ?	147	85	97	71
4)	158	106	123	84	182	89	129	71
5)	192	147	130	89	212	98	163	85
6)	164	110	113	100	187	102	111	87
7)	167	110	121	95	193	110	101	89
8)	191	139	164	98	235	119	123	115
9)	177	113	119	118	178	122	126	101
10)	149	144	137	107	218	97	118	104
11)	132	111	110	91	184	75	111	74
12)	142	107	117	104	197	91	87	95
13)	186	118	134	95	199	109	119	106
14)	215	146	112	97	187	99	149	135
15)	175	112	100	8 ?	153	95	117	105
16)	172	121	123	108	193	90	122	119
17)	176	122	126	9 C	189	93	114	126
18)	137	92	94	95	153	89	102	74
19)	2.14	152	80	11 C	160	104	149	143
20)	214	116	105	105	166	85	168	121
21)	223	157	129	122	221	89	196	125
22)	183	126	117	95	177	86	141	121
23)	159	87	87	75	142	68	115	87
24)	139	91	107	65	157	51	104	90

TABLE C-6
INGRESS-EGRESS MACHINE COUNTS
LINCOLN-LUDINGTON INTERSECTION 7/76

TIME	I 1	12	13	14	E1	E2	E 3	E4
PER.								
1)	137	111	136	83	179	83	108	93
2)	140	102	112	80	183	72	114	64
3)	143	103	117	99	173	95	113	80
4)	168	100	153	76	187	83	124	76
5)	189	150	126	85	205	91	188	88
6)	160	120	136	95	199	100	124	97
7)	153	115	145	101	213	108	110	99
8)	156	144	173	99	240	113	113	113
9)	125	126	129	107	185	115	119	100
10)	137	125	149	10?	208	93	118	94
11)	138	126	160	110	216	79	120	76
12)	140	117	131	110	210	95	102	106
13)	163	126	144	81	205	103	119	112
14)	198	142	156	92	187	108	150	126
15)	160	134	123	94	184	91	120	131
16)	169	120	135	105	185	83	130	116
17)	16 ¢	106	144	112	200	100	129	121
18)	161	130	107	120	178	88	147	87
19)	203	124	104	97	165	89	163	152
20)	181	129	129	$10 ¢$	182	87	169	126
21)	204	156	137	111	215	87	206	102
22)	162	111	130	106	171	77	132	143
23)	156	99	107	72	148	63	117	108
$24)$	131	81	117	62	15?	53	114	106

TABLE C-7

MANUAL TURNING MOVEMENT COUNTS
LINCOLN-LUDINGTON INTERSECTION 7/76

TABLE C-8
INGRESS-EGRESS MANUAL COUNTS FORD-NEWBURGH INTERSECTION 5/76

TIME	I 1	12	13	14	E 1	E2	E 3	E4
PER.								
1)	94	191	1 C 3	168	100	192	108	156
2)	99	172	111	152	88	182	96	168
$3)$	107	214	141	212	123	236	120	195
4)	83	169	95	165	98	169	90	155
5)	145	216	134	187	127	223	133	199
6)	132	252	120	202	113	210	163	220
7)	130	157	131	167	116	192	127	150
8)	153	228	137	227	130	246	155	214
9)	160	263	156	257	141	284	173	238
10)	110	207	116	172	108	186	130	182
11)	156	239	99	198	89	228	143	232
12)	159	242	205	254	194	241	194	231
13)	162	266	158	202	142	220	194	232
14)	160	243	190	256	165	270	188	226
15)	180	312	159	20?	144	237	202	271
$16)$	110	217	125	162	116	174	118	206
17)	106	164	91	222	80	237	100	166
18)	147	218	112	250	96	257	149	225
19)	119	158	123	217	98	238	121	170
20)	114	177	141	237	100	266	118	185
21)	122	151	91	215	93	220	115	151
22)	91	155	100	171	84	187	91	155
23)	84	134	93	169	80	191	75	134
24)	83	149	88	123	78	140	81	144

```
TABLE C-9
    INGRESS-EGRESS MACHINE COUNTS
FORD-NEWBURGH INTERSECTION 5/76
```

IIME	11	12	13	14	E1	E2	E 3	E4
PER.								
1)	95	190	107	181	113	201	114	146
2)	125	207	132	171	107	227	120	190
$3)$	119	228	142	299	122	241	127	200
4)	128	235	127	209	112	238	138	191
5)	153	241	129	190	130	224	142	204
6)	153	283	128	224	142	249	178	220
7)	169	236	167	228	149	262	170	211
8)	160	257	158	265	137	263	171	230
9)	151	240	137	220	133	240	162	218
10)	132	234	138	226	134	235	162	202
11)	151	260	188	235	158.	282	162	232
12)	190	270	156	247	169	231	195	230
13)	169	275	179	218	151	278	200	225
14)	153	253	191	242	173	237	178	239
15)	178	307	151	205	162	224	195	264
16)	118	257	139	192	144	203	131	226
17)	95	150	94	217	84	253	88	140
18)	143	232	113	260	95	293	148	205
19)	143	203	155	259	110	312	138	190
20)	122	198	141	230	98	267	127	173
21)	139	140	99	227	97	231	123	131
22)	85	160	98	168	79	203	93	140
23)	84	165	114	194	89	241	80	153
$24)$	104	178	116	163	104	194	97	150

APPENDIX D

THREE-LEGGED INTERSECTION

MODEL DATA

TABLE D-1
 INGRESS-EGRESS MANUAL COUNTS MAIN-FRONT INTERSECTION IO/75

TIME	11	I?	14	E1	E2	$E 4$
PEf.						
1)	94	84	50	57	72	99
2)	97	89	53	8 ?	71	85
3)	99	100	57	72	74	109
4)	129	110	57	74	81	132
5)	120	111	73	31	107	116
6)	98	79	58	62	88	85
7)	113	121	102	81	128	125
8)	90	105	81	$6 ?$	94	119
9)	116	110	84	84	108	118
$10)$	131	133	¢ 8	100	100	152
11)	97	74	49	61	73	86
12)	104	121	E?	83	78	127
13)	150	128	63	76	126	139
14)	143	129	75	88	109	150
15)	89	110	65	7 C	96	98
16)	119	105	56	69	74	137
17)	36	44	24	34	33	37
18)	52	45	35	$3 E$	49	47
19)	65	63	92	39	109	72
20)	77	64	109	57	117	76

TABLE D-2
INGRESS-EGRESS MACHINE COUNTS
MAIN-FRONT INTERSECTION 10/75

TIME	11	12	14	E1	E2	E4
PER.						
1)	134	88	$\in 8$	6ϵ	110	85
2)	137	114	67	96	87	84
3)	142	118	91	85	110	109
4)	167	126	80	84	81	103
5)	141	108	85	84	111	100
6)	143	97	78	75	110	91
7)	178	122	121	79	130	111
8)	120	123	93	7 E	130	97
9)	186	106	92	8 C	120	96
10)	182	140	92	10?	122	106
11)	146	118	94	$9 ?$	123	91
12)	117	120	ε \&	78	119	99
13)	167	143	73	8 ?	107	151
14)	164	140	77	87	14 C	115
15)	125	130	78	74	103	106
16)	140	113	72	71	124	98
17)	43	69	31	5 C	48	24
18)	60	50	38	42	68	49
19)	97	76	114	50	111	82
20)	100	69	120	6 ?	119	75

TABLE D-3
MANUAL TURNING MOVEMENT COUNTS
MAIN-FRONT INTERSECTION 10/75

TIME	$\times 12$	$\times 14$	$\times 21$	$\times 24$	$\times 41$	$\times 42$
PER						
1)	58	36	43	41	14	36
$2)$	54	43	58	31	25	28
$3)$	59	40	50	50	23	34
$4)$	74	46	52	58	22	35
$5)$	66	54	61	50	20	53
$6)$	53	45	47	32	15	43
$7)$	63	50	59	62	22	78
$8)$	61	29	47	58	16	65
$9)$	65	51	57	53	27	57
$10)$	90	41	71	62	29	59
$11)$	56	41	44	30	17	32
$12)$	70	34	64	57	19	44
$13)$	69	81	58	70	18	45
$14)$	89	54	68	61	20	55
$15)$	43	46	55	55	15	50
$16)$	83	36	51	54	18	38
$17)$	24	12	31	13	3	21
$18)$	29	23	27	18	9	26
$19)$	33	32	24	39	15	77
$20)$	39	38	27	37	30	79

TABLE D-4
INGRESS-EGRESS MANUAL COUNTS MAIN-FRONT INTERSECTION 7/78

$\begin{aligned} & \text { TIME } \\ & \text { PER. } \end{aligned}$	11	12	14	$E 1$	E2	E4
1)	114	105	85	85	133	82
2)	110	128	76	90	139	85
3)	105	106	105	$7 ?$	154	89
4)	103	135	71	83	116	110
5)	124	122	87	101	129	103
6)	124	131	66	9 C	124	107
7)	103	115	85	73	134	96
8)	144	120	92	85	156	115
9)	104	134	73	89	130	92
10)	129	118	90	8 ?	151	103
11)	131	112	99	$7 E$	152	114
12)	123	134	95	91	141	120
13)	162	129	74	100	133	132
14)	108	138	68	95	107	112
15)	104	120	78	94	124	84
16)	87	111	72	8 ?	110	77
$17)$	42	46	23	44	40	37
18)	61	56	76	49	87	57
19)	58	61	¢ 8	38	114.	55
20)	76	64	143	74	154	55
21)	73	77	82	54	114	64
22)	87	68	71	56	120	50
23)	80	83	55	58	101	59
24)	91	66	72	54	115	60

TABLE D-5

INGRESS-EGRESS MACHINE COUNTS
MAIN-FRONT INTERSECTION 7/78

TIME	11	12	14	E 1	E2	E4
PEF.						
1)	144	150	76	105	133	98
2)	167	144	80	99	120	69
3)	180	127	73	101	133	110
4)	146	128	85	64	175	115
5)	168	134	\& 7	43	113	105
6)	144	125	63	44	139	112
7)	121	153	76	54	153	117
8)	104	150	93	101	134	109
9)	63	58	69	101	152	94
10)	116	103	84	87	115	96
11)	142	155	90	95	124	133
$12)$	136	112	87	97	113	116
13)	155	120	86	102	130	127
14)	112	123	67	99	106	109
15)	111	109	71	112	120	90
16)	83	134	81	81	109	73
17)	46	92	33	43	101	36
18)	59	98	51	$5 ?$	107	58
19)	66	99	73	60	91	59
20)	88	83	97	83	108	61
21)	79	91	69	7 C	103	63
22)	87	109	60	72	99	51
$23)$	82	95	42	77	104	64
24)	102	101	65	$7 ?$	120	71

TIME	$\times 12$	$\times 14$	$\times 21$	$\times 24$	$\times 41$	$\times 42$
PER						
$1)$	71	43	66	39	23	62
$2)$	80	30	73	55	17	59
$3)$	64	41	58	48	15	90
$4)$	65	38	63	72	20	51
5)	79	45	64	58	37	50
$6)$	78	46	70	61	20	46
$7)$	60	43	62	53	11	74
$8)$	88	56	61	59	24	68
$9)$	73	31	73	61	16	57
$10)$	90	39	54	64	29	61
$11)$	78	53	51	61	25	74
121	69	54	68	66	23	72
$13)$	92	70	67	62	33	41
$14)$	64	44	70	68	25	43
$15)$	63	41	77	43	17	61
$16)$	59	28	62	49	21	51
$17)$	21	21	30	16	14	19
$18)$	25	36	35	21	14	62
$19)$	40	18	24	37	14	74
$20)$	43	33	42	22	32	111
$21)$	46	27	40	37	14	68
221	62	25	43	25	13	58
$23)$	53	27	51	32	7	48
$24)$	55	36	42	24	12	60

TABLE D-7
INGRESS-EGRESS MANUAL COUNTS
GRAND RIVER-GOLF CLUB INTERSECTION 2/77

TIME	II	I2	I	EI	E2	E4
PER						
1)	24	149	161	18	149	167
2)	13	151	142	17	132	157
$3)$	17	123	169	15	158	136
$4)$	13	141	188	19	176	147
5)	20	170	250	31	228	181
$6)$	22	79	144	14	138	93
$7)$	20	76	253	24	240	85
8)	10	119	143	18	129	125
9)	19	200	243	29	225	208
$10)$	21	161	158	26	135	179
$11)$	15	193	163	$2 ?$	143	205
$12)$	15	188	180	35	155	193
$13)$	20	191	192	46	160	197
$14)$	16	132	132	31	109	140
$15)$	13	173	121	26	101	180
$16)$	14	140	118	24	96	152
$17)$	12	45	77	4	76	54
$18)$	14	55	86	4	84	67
$19)$	17	83	108	4	108	96
$20)$	21	159	125	3	124	178
$21)$	12	97	123	2	120	104
$22)$	17	73	93	2	94	87
$23)$	17	99	88	6	84	114
$24)$	16	118	100	6	97	131

TABLE D-8
INGRESS-EGRESS MANUAL COUNTS GRAND RIVER-GOLF CLUB INTERSECTION 2/77

time	11	12	I 4	E 1	E2	E4
PEF.						
1)	27	143	153	19	132	169
2)	14	153	151	15	125	164
3)	14	144	171	$1 ?$	131	173
4)	16	140	209	22	189	158
5)	19	136	217	27	178	164
E)	14	179	170	14	162	196
7)	23	169	213	17	181	189
8)	13	169	196	$2 E$	162	198
9)	19	146	234	29	180	162
10)	18	169	156	21	146	187
11)	21	204	178	21	130	245
12)	14	211	190	30	147	227
13)	24	216	207	42	146	241
14)	17	201	136	37	110	210
15)	18	191	134	24	96	217
16)	14	132	128	25	87	154
17)	17	35	77	4	77	57
18)	13	46	92	4	87	64
19)	13	66	118	$\underline{7}$	87	95
20)	27	139	130	$\underline{3}$	120	180
21)	13	91	125	E	117	117
22)	21	63	96	$?$	92	92
23)	16	95	96	ϵ	81	121
24)	16	115	93	4	97	151

TABLE D-9
MANUAL TURNING MOVEMENT COUNTS GRAND RIVER - GOLF CLUB INTERSECTION $2 / 77$

TIME	$\times 12$	$\times 14$	$x<1$	$\times 24$	$\times 41$	X42
PER.						
1)	4	20	2	147	16	145
2)	2	11	5	146	12	130
3)	3	14	1	122	14	155
4)	5	8	2	139	17	171
5)	4	16	5	165	26	224
6)	4	18	4	75	10	134
7)	5	15	6	70	18	235
8)	3	7	1	118	17	126
9)	5	14	6	194	23	220
10)	0	21	3	158	23	135
11)	0	15	3	190	20	143
12)	1	14	9	176	26	154
13)	3	17	11	180	25	157
14)	1	15	7	125	24	108
15)	2	11	4	169	22	99
16)	0	14	2	138	22	96
17)	2	10	1	44	3	74
18)	2	12	0	55	4	82
19)	4	13	0	83	4	104
20)	2	19	0	159	3	122
21)	4	8	1	96	7	118
22)	3	14	0	73	2	91
23)	2	15	0	99	6	82
24)	2	14	1	117	5	95

[^0]: *Numbers refer to The List of References

[^1]: X_{42}
 $\stackrel{0}{2 \cdot 02}$

 $\begin{array}{lll}\mathrm{N} & 0 & m \\ \times & 0 & \circ \\ 0 & \end{array}$

 MEAN :
 STAN :

[^2]:

