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ABSTRACT

APPLICATIONS OF HYDRODYNAMIC THEORY TO

MULTICOMPONENT LIQUID DIFFUSION

by Terence K. Kett

Hydrodynamic theory is applied to multicomponent diffusion
of non-electrolytes. Generalized equations are derived for the
flows, diffusion coefficients, and the phenomenological coefficients
for non-associating systems. Similar equations are derived for
associating systems but only for the simplest ternary cases where
either one component associates with itself to form dimers or where
two components associate with each other to form dimers. The theory
indicates that under the condition of constant partial molar volumes,
Onsager's reciprocal relations are valid for non-associating systems
and for the associating systems with the additional assumption that
the partial molar volume of the associated species is equal to the
sum of the partial molar volumes of the species making up the dimer.

Four ternary systems are studied in this investigation.
Experimental diffusion and phenomenological coefficients are
obtained using a Mach-Zehnder interferometric technique for the
systems dodecane-hexadecane-hexane and diethyl ether-chloroform-
carbon tetrachloride. Experimental data for the systems toluene-

chlorobenzene-bromobenzene and acetone-benzene-carbon tetrachloride



TERENCE K. KETT

were taken from the literature. Diffusion and phenomenological
coefficients for all four systems are also calculated from equations
derived from hydrodynamic theory. The coefficients obtained by the
two methods are compared and for the non-associating systems show
excellent agreement. For the acetone-benzene-carbon tetrachloride
system in which the actual associated species present is not clearly
known, reasonable agreement among the diffusion coefficients was
evident. The other associating system could not justifiably be
compared since satisfactory activity data was not available.
Experimental evidence from this investigation verified
within the limits of experimental accuracy that Onsager's recipro-
cal relations are valid for non-associating systems. In addition,
it demonstrated the applicability of hydrodynamic theory to multi-
component diffusion. For associating systems where the degree of
association is not clearly known, it indicated that hydrodynamic
theory can be applied as a predictive theory in obtaining
reasonable multicomponent diffusion coefficients. Based on this
evidence, it can be concluded that hydrodynamic theory should play a

major role in describing multicomponent diffusion.
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INTRODUCTION

Throughout the last twenty years, interest has gradually
increased in the area of multicomponent diffusion. There is voluminous
literature available on binary diffusion that has built up since Fick21
presented his equation defining a diffusion coefficient. However, it
was not until 0nsager37’38 presented equations describing the flux of
each component as the linear sum of every concentration gradient
multiplied by a diffusion coefficient that any reasonable attempt to
describe multicomponent liquid diffusion was made. Even so, no
reasonable experimental work in this area was introduced until Baldwin,
Dunlop, Fujita and Gostings’22 in 1955 presented equations similar to
Onsager's along with experimental techniques for obtaining the diffusion
coefficients. This was certainly a major contribution in this area
and furnished the impetus for renewed interest and consequent improve-
ments in multicomponent diffusion.

,19’21’23 have periodically

Since that time Gosting, et. al.
developed improved experimental techniques with optical methods
utilizing a Gouy interferometer. Burchard and Toor7 have also
adapted the diaphragm cell method to obtain the multicomponent
diffusion coefficients. With these methods, ternary diffusion data
have become increasingly available enabling the study of both electrolytic

and non-electrolytic multicomponent systems,7’12’18’19’22’35’41’44’45’49



3
The equations presented by Baldwin, Dunlop and Gosting  des-
cribing multicomponent liquid diffusion for an N component system are

N-1 3C
Jg,=-) D 732 i=1, +.., N=-1 (1)

i j=1 ij
. . .o 2
where Ji is the one-dimensional flux of component i in moles/cm.”/sec.,
2
D'j is a diffusion coefficient in cm. /sec., and acj/ax is the concen-
i
. 3

tration gradient of component j in the x direction in moles/cm.” /cm.
Concentration gradients are used because they render themselves more
easily to experimental measurement but in actuality the negative
gradient of chemical potential is considered the driving force for the
flows, J,.

i

’ considerations, the flows

From irreversible thermodynamic

Ji are also related by the following expression
N-1

J, = ) L..Y, i=1, 0., N=1 (2)
where the Lij are phenomenological coefficients. If in these expres-
sions, both the fluxes Ji and the thermodynamic forces Y, are indepen-
dent and the sum of their products appears in the expression for the
rate of entropy production then under these conditions,28 the theory of
irreversible thermodynamics says that the Lij should satisfy the

following relations, known as Onsager's reciprocal relations, namely,

L., =1L,, (3)

A strong emphasis in most multicomponent diffusion studies
has been placed in trying to verify these reciprocal relations. This

verification has been conclusively shown in a number of cases such as



heat conduction in anisotropic crystals, thermoelectricity, electro-
kinetic effects, and e.m.f. and transference in electrolyte solutions.34
However, this verification has not been shown in isothermal diffusion
without some doubt because of the limitations in the experimental
techniques employed.

The phenomenological coefficients, Lij’ can be related to the
diffusion coefficients, Dij’ and therefore if the Onsager reciprocal
relations can be verified, the experimental quantities necessary to
describe diffusion will be reduced considerably. This explains the
interest in the verification. Up till now, verification has only
been possible by experimental means and; consequently, because the
experimental techniques have been of limited accuracy, question con-
cerning the verification has been justified.

In this research, hydrodynamic theory of Hartley and Crank27
is extended to multicomponent diffusion in non-electrolytes. Genera-
lized equations for the flows Ji are obtained in terms of concentra-
tion gradients, chemical potential gradients, and the forces Yj. In
addition, expressions for the phenomenological coefficients are
obtained in terms of the diffusion coefficients, Dij’ and in terms of
friction coefficients, oy This theory shows that the reciprocal
relations are valid for non-associating liquid systems and this
is verified experimentally. In addition, experimental evidence

is provided which supports the hydrodynamic theory.



THEORY

Hydrodynamic Model

The hydrodynamic theory of Hartleyand Crank27 considers
molecular diffusion of liquid solutions in a closed container. They
proposed that diffusion of a particular species could occur in two ways.
First, by random molecular motion and secondly by flow of the entire
medium itself. The latter Hartley and Crank called mass flow. Since
these two methods of movement of a species can occur at the same time,
both effects must be taken into account when experimentally studying
the overall diffusion process.

The interpretation of molecular motion in a liquid can best
be explained by assuming that the liquid molecules oscillate within a
cage or hole formed by its neighboring molecules. The molecule per-
forming this oscillatory motion, will occasionally acquire sufficient
energy to overcome the potential energy barrier of this hole and
migrate to another hole. Because of the energy required before a
molecule can make this jump, typically less than 1% of the total
number of molecules are undergoing this motion at any given time. It
can be seen, however, that in this way diffusion of a species is
occurring. This type of motion, often referred to as intrinsic
diffusion, can occur regardless of whether concentration gradients

exist or not. However, if a concentration gradient of a component



does exist, there will be a net movement of that component to reduce
the gradient.

The other means by which a particular species can flow from
one point in the container to another is by flow of the medium itself.
It is easy to see in the case of a liquid solution flowing continuously
through a container with open ends, such as a pipe, how a particular
species can move from one point to another. It is simply carried
along by the bulk solution itself. It was unfortunate that Hartley
and Crank referred to a ''mass flow'" as contributing to the overall
diffusion of a species since this implied the flow just described.
Actually this bulk motion referred to by Hartley and Crank can occur
in a closed container. 1In order to study molecular diffusion experi-
mentally, the system is closed to enable free diffusion to take place.

To obtain an understanding of how a flow of the medium tak:s
place in a closed container and how this contributes to the diffusion
of a species, consider a coordinate fixed reference plane somewhere in
the container. Now if there are different components in the solution,
the molecules will have different sizes and shapes. Hence when a com-
ponent of type "i'" migrates by molecular motion across this referenc:
plane in the closed volume, an increase in volume necessarily occurs
unless there is a compensating flow back across the plane. This com-
pensating flow is what Hartley and Crank called the bulk motion and
what is referred to here as the flow of the medium.

Let us now look at the plane across which no net flow of

material is occurring. In the case of a pure liquid where all the



species are alike, the velocity of this plane relative to fixed coordi-
nates is zero. This follows because there would be just as many
molecules diffusing by hole migration (intrinsically) across a
coordinate-fixed plane in one direction as there would be in the opposite
direction. Thus for a pure liquid, any coordinate-fixed plane satisfies
the condition of no net flow across it.

The same analysis can be applied to a solution of uniform
concentration. The concentration of any component would be the same on
either side of a coordinate fixed plane located anywhere in the container.
Since the concentration is the same on either side, the number of

molecules of component '"i" crossing the plane by hole migration would
be the same as the number of component "i'" molecules crossing in the
opposite direction. The same applies to all the other components in
the solution. Hence, the plane across which no net flow occurs corres-
ponds to any coordinate fixed plane as long as the solution is uniform.
It follows that if the solution is not uniform, the velocity
of the plane across which no net flow occurs will not be zero relative
to fixed coordinates. In this case, the number of molecules of "i"
crossing a coordinate-fixed plane by hole migration will not be equal
to those migrating across in the opposite direction. The same follows
for the other components. Since each component will generally have a
different rate of migration, there will tend to be an accumulation on
one side of the coordinate fixed plane unless there is a compensating

flow back. Even if the molar volumes of each component are the same,

there still will be build up if the rates are different. For nonuniform



solutions, only in the case of equal constant molar volumes and equal
rates of hole migration will the velocity of the plane across which
no net flow occurs be zero. In further discussions, this velocity
with respect to fixed coordinates will be referred to as the velocity

of the medium, v .
m,C

Hydrodynamic Flow Equations

If a molecule in solution is assumed to diffuse at a constant
rate, the sum of the forces acting on it must be zero. The driving
force per molecule and the resisting force per molecule must be equal
and opposite. The question arises as to what are these forces.

It is generally accepted that the driving force for diffusion
is the negative gradient of chemical potential, -Vui. Intuition says
that a particular component will diffuse in such a direction as to
reduce its gradient of concentration. In binary solutions this is the
case, but in solutions of 3 or more components this does not always
follow even though eventually the solution will become uniform through-
out. For example, if the velocity of the medium is greater than the
intrinsic rate of a particular component it is possible for the net
flux of that component to be in the opposite direction to its negative
gradient of concentration. Eventually the velocity of the medium slows
down as the concentration gradients decrease and the intrinsic rate of
the component surpasses it. Gibbs24 has shown that at equilibrium the
chemical potential should be the same throughout and hence a system not

at equilibrium always tends to equalize the chemical potential. This




applies whether a particular component is present in more than one
phase or whether it is present in various subsystems of one phase.
The negative gradient of concentration, introduced by Fick21 in
mathematically describing the diffusion process, is generally used in
diffusion equations because it lends itself more easily to experimental
measurement.

The resisting force for diffusion is a more controversial
subject; however, certain conclusions regarding its description can

4,25,39,45 indicates

be drawn. The overwhelming experimental evidence
that it is proportional to the viscosity of the medium. Attempts have
also been made to correlate it to the radius or some power of the

radius of the diffusing molecule.4’20’31’39’45

Although indeed it has
been shown that the size of the molecule is a factor, no universal
relation to the size has been found. In addition, Bidlack4 has shown
that shape should be an important consideration. Based on these

observations let us define the resisting force as follows

= -f N
F, fi nu,

= -o,nu, 4
i,r m 1™y (4)

’ >

where F,, is the resisting force per molecule of component i to
intrinsic diffusion, fi is a coefficient which is a function of the
size and shape of the diffusing molecule and includes effects of the
medium, n is the viscosity of the medium, N is Avogadro's number, ui,m
is the velocity of species i with respect to the velocity of the

medium. The proportionality factor, o, = fiN will be referred to as the

friction coefficient of component i. The negative sign is a result of

the velocity of i being in the opposite direction to the force.



The driving force for diffusion as discussed earlier is given

by
Fi,a =7y (5)
where Fi 4 is the driving force for intrinsic diffusion of i and vui
H
is the gradient of chemical potential of component i. For one-
dimensional diffusion in the x-direction, equation 5 becomes
oU .
= - -1
Fi,d X (6)

Since the driving force is equal and opposite to the resisting force,

Bui
- 3;—.= Oinui,m (7

Multiplying both sides by Ci’ the concentration of i, and rearranging

gives

C.
m _ _ i i
Ji = %% mT T o (8)

: m
where Ji is the flux of component i with respect to the velocity of the
medium (i.e., the intrinsic flux of i).
. . .th ) .
The chemical potential of the i~ constituent may be written

as

o
My T oMy + RT 1n a; 9)

o . . .
where My is a function of T and P, R is the gas constant, and a, is the
activity of i. At constant T and P, substituting equation 9 into

equation 8 yields
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C (0 1n a, C.RT (9 1n a, aC.
Jm = - = i 1 = _ 1 [ 1 -_1
i o.n ([ 9x on { 3C; ax
T,P T,P T,P
(10)
Jm _ RT [3 1n ai aci\
i o,n | ocC 3x J
T,P T,P

In order to obtain an expression for the velocity of the
medium with respect to fixed coordinates, Vm,c’ a volume flux balance
across a coordinate-fixed plane is made. If we consider the case where
the partial molar volumes of each component are assumed constant and
the system is closed, then the volume flux across a coordinate fixed
plane must be zero. In other words every time a certain volume of
molecules diffuses across the plane, an equal volume of solution must
come back in order to keep the total volume constant. Since the system
is closed, the only way this could not happen is if the molar volumes
changed. However they are assumed constant, thus the volume flux
crossing the plane due to intrinsic diffusion plus the volume flux

crossing this plane due to the flow of the medium must be zero. That

is for an N-component system

I~

VI"+v =0 (11)
p i m,C

i
where 6; is the partial molar volume. Since J? has units of moles/cm.z/
sec. and V; has units of cm.3/mole, notice that vm,c has units of
velocity, cm./sec.

Equation 11 applies only for the case of constant partial

molar volumes and a closed system. What about the case where the molar



11

volumes are not constant? Again, an expression for the velocity of
the medium relative to fixed coordinates, Vm, » can be obtained by
looking at a volume flux balance across a coordinate fixed plane. In
this case, however, there are three contributions. There is a flux of
volume due to the intrinsic motion relative to the medium, there is a
volume flux as a result of the flow of the medium, and there is a
volume flux across this coordinate plane because the total volume is
changing. Physically what happens is that a certain volume of material
diffuses across this plane due to intrinsic motion. As a result of
this, to relieve any hydrostatic pressure which might build up since
the system is closed, the medium itself flows back. However, because
of this diffusion, the concentrations have changed and thus if the
molar volumes are functions of concentrations, the total volume may
have changed thus producing a net volume flux across the coordinate
fixed plane. The net volume flux relative to a fixed coordinate plane
N
is given by .zl V;J? + Vm,c which does not equal zero in this case but
i=

rather

— _m
+ =
ViJi vm,c VV,c (12)

o~ =

i=1

where Vy.c is the net volume flux relative to fixed coordinates resulting
b

from the change in volume. It follows that Vi e is the velocity of the
’

plane across which the net volume flux is zero.

From equations 11 and 12, expressions for V.. can be obtained.
bl

These are
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v.a" (13)
1 1

<
]
1
LN o 4

for the condition of constant molar volumes and

- m
ViJi + VV,c (14)

<

]

I
2

i=1
for the condition of varying molar volumes.

The diffusion process that is studied experimentally consists
of both intrinsic diffusion and the flow of the medium. It is desirable
then to obtain expressions for the overall diffusion flux relative to

fixed coordinates of each component. These are obtained by summing

both contributions. Hence

I ="+cv (15)
1 1 1 m,C

b
C .
where Ji is the overall flux of component i relative to fixed coordi-
nates. Most experimental data reported in the literature are considered

using overall fluxes relative to the velocity of a plane across which

the net volume flux is zero, that is relative to VY o Therefore
’
\' m
Ji = Ji + Ci(vm,c - vV,c) (16)

where JZ is the total flux of i with respect to this volume flux plane.

From equation 14, it follows that equation 16 becomes

-
V.J. 17
s (17)

J. =J, - C,
1 1 1.
J

<
3
Il o~

For the case of constant molar volumes, equation 16 becomes

V=04 cy (18)
1 1 1 m,C

’

and substitution of equation 13 into equation 18 gives the same result

as in the case of varying molar volumes. That is,
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v.J, (17)

Substituting equation 8 into equation 17 gives JZ in the desired form.

C,odu, C, N C,V, du,
v _ i i i | i
J, = - —= — + —= (19)
i o,Nn 9x n .2 o, 09X

1 =1 73

Throughout the rest of this report, the superscript V will be dropped.
All fluxes, unless specifically designated, will refer to the volume

flux plane.

Current Flow Equations in Terms of Concentration Gradients

As mentioned earlier, the flow equations required to interpret
diffusion experiments are generally written in terms of concentration
gradients. For systems of two components, diffusion of either component
is completely described by Fick's21 first law. For one-dimensional
flow this law is

BCi

Ji=—DAB(KJt i=A,B (20)

In this equation, Ji is the flux of component i, and (BCi/Bx)t is the
concentration gradient, at position x and time t. The same diffusion
coefficient DAB applies to both components.

In systems with three or more components, the flow of each
component depends not only on its own concentration gradient but also
on the concentration gradients of other components present. There is

37,38

interaction of the flows. As a result, Onsager first proposed a

description of this case by expressing the flow of each component as



14

the sum of every negative concentration gradient multiplied by a dif-
fusion coefficient. Thus for a system of N components, his formulated

equations were
N 9C,
J=-ZD,—8}J{- i=1, ..., N (21)

with N2 diffusion coefficients, Dij' He then showed that only (N - l)2
diffusion coefficients are necessary to describe the flows however.
This can easily be seen in the case of a constant volume system. It
follows for a closed system that

N —

) €V, =1 (22)

. 11

i=1

and if in addition the molar volumes are constant that

VJ,. =0 (23)
1 1

I o~

i=1
Equation 22 follows from a material balance on the system with each
ciV; factor representing the fraction of the total volume contributed
by camponent i. It is not necessary that the partial molar volumes be
constant for equation 22 to be valid. Equation 23 results from the
assumption of a closed volume system with no volume change on mixing
for which the net volume flux must be zero. From equation 22, the
number of terms in each flux equation can be reduced from N to N - 1.
Similarly with equation 23, one of the fluxes Ji can be eliminated from
equation 21. Thus there are N - 1 independent fluxes and N - 1 indepen-
dent concentration gradients for an N component system.

Baldwin, Dunlop, and Gosting3 therefore presented a set of

flow equations for an N component system as follows
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3C .y

N
g, =- 73 D“[_l i=1, ..., N (24)
i =1 ij ath

This set of flow equations defines (N - l)2 diffusion coefficients,
Dij’ for a system of N components, as required by Onsager's theory;
however, these coefficients differ from those defined by Onsager in
equation 21. They are related to certain combinations of Onsager's
N2 coefficients. These combinations can easily be found by applying
equation 22 to eliminate the concentration gradient of the Nth compo-
nent in equation 21, and then comparing corresponding coefficients of
like concentration gradients in equation 24. These relationships,

first obtained by Dole,14 are

. i,j =1, ..., N -1 (25)

[w)
]
(W)
|
< <
Sl
e}

where the Dij are the Onsager diffusion coefficients.

The preferred equations for describing multicomponent
diffusion are equations 24, since they are linearly independent and
contain gradients of the measurable quantity, concentration, not
chemical potential. Baldwin, Dunlop, Fujita, and Gosting3’22’23 in a
series of articles have discussed in detail various methods of
experimentally determining the diffusion coefficients, Dij’ for ternary
systems. Their techniques involve interferometric methods and the
utilization of resulting refractive index gradient curves. Some of

these techniques are adapted in this laboratory and are discussed in

the experimental section. Solution of the describing equations is
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given in Appendix II. Burchard and Toor7 modified the diaphragm cell

to experimentally measure the ternary diffusion coefficients.

Diffusion and Phenomenological Coefficient Expressions

Non-Associating Systems

It is desirable to obtain expressions for the Dij in terms of
the friction coefficients, o, Since experimental values of the Dij and
the o, can be obtained, a check would then be available on the hydro-
dynamic theory. These expressions will now be derived here.

Diffusion Coefficient Expressions - It is convenient to first

in terms of the friction coefficients,

derive expressions for the Dij

S for the ternary case since the terms, equations, and algebraic
manipulations are less involved. From this, the generalization to N
components is easier to follow.

The flow equations for the ternary case from equation 24 are

aC aC

_ 1 _ _2

I3 % 7 D11 Tox D1y %
(26)

J = - D a—(_:—:IL - D BC_Z

2 21 3% 22 Tox

These equations are written in terms of concentration gradients
and equations 19 in terms of chemical potential gradients. It would
be desirable to have both sets of equations in terms of concentration
gradients because then, provided the equations are independent, the
coefficients of like terms could be equated.

For the ternary case, the flow equations for two of the

components from equations 19 are
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€1 O N o A R T o L Wl
J1=-——(1-clvl)a + 3 + =
oqn X gpn o o3
— _ (27)
€10% 2y & = By Cy05V5 dug
Iy = x (1-VC) o d
o;n X aon X ogn 9
From the Gibbs-Duhem relation
du du du
1 2 3 _
Cl X + CZ X + C3 x 0 (28)
Therefore,
K T e B e (29)
X C3 ox C3 39X
For the constant volume system, equation 23 gives
lel + J2V2 + J3V3 =0 (30)
and therefore only two fluxes are independent. Substitution of
equation 29 into equations 27 gives
;.4 Y N Il W P A A T P
l n Ol 03 ex n 03 02 BX
_ _ _ _ (31)
;oo Clc2 Xé._ Xl aul _ EZ.[(I - V2C2) .\ V3C2] du,
2 n o3 0 [ox n 9y o3 | 9%
To convert the gradients of the chemical potential to
gradients of concentration, use will be made of the identity
Ly 2R ] (32)
ot > \oX. at,
J J 1
where f = f(xl, Xos eees xn)
and X, =

1= xi(tl, tz, N tm)
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At constant T and P, for the ternary case

= f(C,, C,)

] 1° 72
(33)

= f(Cl, c,)

Ho 2

The chemical potentials are functions of only two concentrations, Cl
and C2, because the third, C3, is not independent. This is evident
from equation 22 which for the ternary case is

C,V, +CV, +CVy =1 (34)

Applying the identity equation 32 to equations 33 gives

)
Bul ) Bul 301 . aul 802
9xX oC 90X aC X
1 C U 2 C
2 1
(35)
Buz ) Buz 8C1 N (auz 8C2
9x oC X aC 9x
1 C 2 C
2 1
which when substituted into equations 31 and rearranged yields
-7 v v v )
S e Vi€ .\ VaCil oM C.C V5 Vo |3u, 3C,
1 " |n o o aC A s FYon Tox
1 3 1 3 2 1
) )
(36)
— — — —

I DS R R e I s | B Y NS T
n ol 94 J 802 c nojog 9, 8C2 c 9x
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— \ — -
L c,c, V3 AR +.E% (1 -V, . V4C, auzl 3Cy
2 n 0g o ‘aclja n ‘ 02 0g BCI o 39X
¥2 2
(36)
— =\ \ ( = — ,
BEVINE ﬁ] L% (1 -VyC)) . V3cz] 3“2] )
n 03  0q 8C2JC n 9,y o3 802 A 9x
1 1
The chemical potential of the ith constituent can be written
as

o
ui = Hy 4+ RT 1n ai (37)

o, . .
where uy is a function of T and P, R is the gas constant, and a; the

activity. Therefore, at constant T and P

\
aul - o 31ln a;
3Cy aclJ

<y &)
ou 5ln a. )
aC aC
2 c 2 e
1 1
(38)
du 3ln a, )

il O ]
oC 3C

1JC 1.
2 2

[auz] - [aln a2]

3C 3C
2 C 2 C
1 1

Equating coefficients of the corresponding equations 26 and 36 and sub-

stituting equations 38 yields the desired expressions for the diffusion

coefficients, D,..
1]
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) _RT . (1 VlCl) N v3cl 3ln a; ‘e Xi ) XZ 3ln a,
11 n |1 o o aC 172 o 3C
1 3 1, 3 2 1,
L ) .
o RT . (1 VlCl) . V301 9ln a; ‘e YQ__ Yy 91n a,
12 n| ~1 o oy 3¢, 12(0y o, 3C,
L C Cc.4d
1 1
(39)
. _RI cc Xé._ Vi dln a; ' (1 - VZCZ) .\ V302 {Bln a,
21 n| 172/ o o aC 2 o o l 3C
3 1 1), 2 3 1),
2 2
Y Xé__ Xl. 31ln al] . (1 -7V,c)) . v,C, [aln a,
22 n | 172l o g aC J 2 o o l aC
3 1 2 ), 2 3 2 g
1 1T

For the case of N components, the Gibbs-Duhem relation is

N oy
) C.—— =0 (40)
. i 9x
i=1
therefore
By e o
x i=1 "N ¥
The constant volume constraint is given by equation 23
N —
) IV, = 0 (23)
. i'i
i=1

Thus, there are only N - 1 independent fluxes and N - 1 independent
chemical potential gradients. Performing the same algebraic operations

as was done for the ternary case gives the generalized flux equations
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’—l
(=
(3}
z?|z<|

9u,
—l
9X

]
oL

t (42)

i=1, ..., N-1

The same procedure of converting chemical potential gradients
to concentration gradients has to be done so that the corresponding
coefficients can be equated.

From equation 22 it is obvious that one of the concentratioms,

CN’ is not independent. Therefore

u, = £(C, C,, » Cy_y) i=1, ..., N (43)
and
IV N-1 ([3p. 3C N-1 aC
i _ v |Z* 1 Z n,. —L
x  .L, |ac, ox Lo Yij ax
i=1 {"73l; j=1
k
(44)
i=1l, ..., N-1
¢, = ¢ ,ﬂcj_leHMacN_l
where = Eﬁi
Hij aC,
Cx

Substituting equation 44 into equation 42, collecting the coefficients
of the BCj/Bx, and equating these with those in equation 24 gives the

desired generalized expression for Dij°

N ~ Ci (1 - ViCi) N CiVN N-1 Cick VN Vk
-1 b+ § 2k k
n ij K N %

ij o4 N
k#i

(45)
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Phenomenological Coefficient Expressions - It has been found in
almost all non-equilibrium situations where thermodynamic variables have
meaning that the thermodynamic theory of irreversible processes”’ 3 can
be applied successfully. Briefly this theory states that (1) the rate

at which entropy is produced within a system undergoing dissipative

processes can be written by

TS = Z J X, (48)
1

where T is the absolute temperature, $§ is the rate of change of entropy
created within the system per unit volume; Ji is the generalized flow
such as matter (moles x cm._2 X sec._lx electricity (faradays x cm._2 X
sec._l) or heat (cal. x cm.-2 X sec,_l); and Xi are the generalized
thermodynamic forces such as chemical potential gradients, temperature
gradients, and e.m.f's. (2) The flows Ji are related linearly to the

forces Xi by

J, = ) L_JX, (49)
3

where Li’ are phenomenological coefficients related to electrical
resistances, diffusion coefficients, or heat conductivities, etc.

(3) If the Js and X, are mutually independent, then the Lij satisfy the

i

following relations,28 called the Onsager reciprocal relations, that is

Lij = Lji (50)

More details are given by Miller.33’34
It can be shown that the entropy production for ternary dif-

fusion13 is
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QU au ou
1 3 2 _ 3 3

51
1 x 2 3x 3 (G

TS = = J

However, only two of the fluxes and two of the chemical potential
gradients are independent. This is evident because of equations 30 and

29. 1If these equations are used to eliminate J, and 3u3/8x in equation

3

51, one obtains

T$ = J,¥, + Y, (52)
where
2 C.V, )ou,
Y, =- ) |6, +—1=|=L i=1,2 (53)
i =1 ij cV 90X
J 3'3
and 6ij is the Kronecker delta. The linear relations according to
irreversible thermodynamics are therefore
1 =ttt oD
(54)
IR RS P PAP
and because the Ji as well as the Yi are independent, the Onsager
reciprocal relation L., =L should be valid. This analysis was first

12 21

proposed by Miller33 who from this derived a sufficient condition for
which the reciprocal relations could be experimentally checked. This is
presented later.

If the Yi expressions are substituted into equation 52 and the
resulting equations rearranged, one gets

ou Buz

— l_
Jp = m(@pge + Lygv) 5y (LB + 1,8 =3

1 (56)
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o Buz

1
Jp = = (Lo + Loy 5 = (LB + Loov) —o (56)
where
c.V c.V
C3V3 C3V5
(57)
c.V c.V
y =12 =142
C4V3 C4V5

Now by equating like coefficients of the independent equations 31 and 56,

four linear equations are obtained which can be solved for L

11° b0 oy
and L22. These equations are given below
Lo+ L .y = El {(1 _ Vlcl) + V3Cl]
11 12 n 9 o,
L..B + § = Elsz-{v3 Vzw
118l T s, TS,
{3 2
(58)
7 o )
L,a + L,y = Clc2 {zé-— Xl
21 22 n 93 011
c,f(1-v.c) V.
L,,B + L.,6 -2 22 32
21 22 n o, o4

Since we are interested in checking le and L21, only these phenomeno-
logical cross coefficients are obtained.
These are
C,r(l-v.c) V. c,C, [V, V
1 2
Bn—l[“‘;l—’f 31]_0,_1_2_ Bl

1 Oq n O3 9

L =

12 (59)

Y8 - aé
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L. = (59)

From the definitions of a, B, v, and & and equation 34,
1
Y8 - af = - —— (60)
C3V3
Using equations 34, 57, and 60 in equations 59 and rearranging the

resulting expressions gives

= = = = =2
Lo .. C1C2V1(l - Vlcl) clczvz(l - V2C2) . ClC2C3V3
12~ ~21 © o - (61)
lT'l o 2n 03n
Thus, the hydrodynamic theory predicts that L12 = L21 for non-

associating ternary systems. It should be emphasized that in the
development presented here the condition of constant molar volumes was
imposed on the system. Hopefully this condition, although appearing
necessary now, may be removed in some future work. An encouraging point
of interest here is that no activity data are required in order to cal-
culate the phenomenological coefficients.

Miller33’34

has obtained expressions for the ternary phenomeno-
logical coefficients, Lij’ in terms of the ternary diffusion coeffi-
cients, Dij' The method involves using equations 35 to obtain equations
56 in terms of concentration gradients. The resulting equation is then
compared to equation 26 giving expressions for the Dij in terms of the
Lij' These equations are then solved for the Lij in terms of the Dij'

These are
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aD12 - chl
Lo =7 —
ad - bc
(62)
dD,; - BDy,
Lo == —
ad - be
where
au c.V, oy
3 3 BC c C3V3 SCl c
2 2
(63)
. ¢V, [aulJ au2]
C3V3 BCl
)

and ¢ and d are the same respectively as a and b except that (a/acl)c
2
is replaced by (3/302)C

Substitution of the expressions derived for the diffusion
coefficients in terms of the friction coefficients, 0ys (equations 39) into
equations 62 yields the same expressions obtained for the Lij in temms
of friction coefficients (equation 61). This should follow since the
same principles are used. However, it does serve as a check on the
derivations performed in both methods.

The usefulness of equation 62 is apparent since it provides a
check on the hydrodynamic approach and on Onsager's reciprocal relations.
The diffusion coefficients can be obtained experimentally by the methods
of Fujita and Gostingzz’23 and Burchard and Toor.3 From them, the

phenomenological coefficients can be determined. Also, from equations

39 and equation 61, the diffusion coefficients and phenomenological
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coefficients can be obtained using experimentally determined friction
coefficients. Hence, by comparing the diffusion coefficients and by
comparing the phenomenological coefficients, the hydrodynamic approach
can be checked.

Also from equations 62, the condition from which the Onsager
reciprocal relations can be verified is obtained. Simply by equating

L12 and L21, one obtains

aD12 + bD22 = chl + dD21 ; ad - bc # 0 (64)

This relation has been the basis up to this time for experimentally
checking the Onsager reciprocal relatioms.

For the case of N components, expressions for the phenomeno-
logical coefficients can be obtained in a similar procedure to that used
for the ternary. Extending the analysis to a system of N components and

using equations 23 and 41 one obtains

N-il
J. = L. .Y, i=1, ..., N-1 (65)
i j=1 ij j
where
N-1 v.c, \osu
Y, = - Jls, + K|k (66)
3 k=1| 3k T | %
N°N

Substituting equation 66 into equation 65 and collecting the

coefficients of the (Buk/ax)'s, yields

N-1 N-1 V.C oy
Jy = } ) LoslSa :4—E' —gk 3y i=1, ..., N-1 (67)
k=1 =1 M % v )
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2
Now, equating coefficients of equations 42 and 67 gives (N - 1)

linear equations with (N - l)2 unknowns, the Lij' These equations are

N-1 v.c C c.c, (V. V
LoLg e, + === I P LR YL TTOE S N (7>
j=1 | ViCx 1K 0N "% %

Solving these equations for the cross-phenomenological coefficients

(Lij’ i # j), one obtains

c.c.rV. _ v, B LN cev
L,,=1L, =-—dI o—l(l—v.c.)+gl(1—v_c_)] += 7 == (69
ij ji n i ii 3 j n g Kk
k#1, ]

i,j =1, ..., N-1; i # j
By looking at equation 69 for the binary, ternary, etc., it is evident

that a recursion formula exists. That is

-2
c,c.C. .V

o.M AL (70)

1] 1] 0M+1n

where the superscripts M and M+l refer to a system of M components and
to the same system with one additional component labelled with the
subscript M+1.

It can now be concluded that hydrodynamic theory predicts that
the Onsager reciprocal relations should be valid for non-associating
systems with any number of components with constant molar volumes. It
should not be concluded that this implies that hydrodynamic theory only
applies for the case of constant molar volumes nor should it be concluded

that hydrodynamic theory is applicable only to non-associating systems.
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Associating Systems

Non-associating systems comprise only a small percentage of
the various systems encountered in industry or the laboratory. It would
therefore be desirable to apply the hydrodynamic model to associating
systems. The difficulty involved here is that the hydrodynamic model
deals with distinct particles present in the solution. Intrinsic
fluxes for a particular species are derived and the number of friction
coefficients required is equal to the number of unlike molecules
present. Thus, with non-associating systems, the number of intrinsic
fluxes and friction coefficients is equal to the number of components
added to form the system. If for example one component, call it A,
associates with itself there will be considerably more unlike species
present than if A does not associate (i.e., A-A, A-A-A, ..., An in
addition to just A monomers). In other words, even though only three
components are added there could be an infinite number of actual
species present requiring an infinite number of flow equations each
with an infinite number of terms.

It is only natural in trying to apply the hydrodynamic model
to multicomponent associating systems that a simple system be chosen
first. This would be a ternary system in which association occurs
between two molecules so as to form only dimers, thus introducing four
species instead of three. There are two ways in which this is
possible: (1) if one component only associates with itself to form
dimers and (2) if two components associate with each other, but not

with themselves, to form dimers. Anderson successfully studied
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these two cases for binary systems in which only dimerization is known to
occur. Extension to ternary systems will now be given here.
Solutions Which Form a One:One Complex

Diffusion Coefficient Expressions - If the components added to
form the solution are labelled A, B, and C, and A and B form the one:one
complex, the four actual species present will be monomers of A, B, and
C and the dimer A:B. Let us designate these actual species by 1, 2, 3,
and 12 respectively.

From equations 8 and 14, the following relationship is true

v - v = (71)

1 [Clvl dup  CVy duy  CgV5 dug GV, 8“12]
= + + +
m,cC V,c n

Gl 9% 02 oxX 03 9x 012 9x

The flux of component A relative to fixed coordinates is given by the
sum of the contributions of the intrinsic fluxes of the monomer (1),
complex (12), and the flow of the medium. Therefore, the flux JA

relative to the velocity of the plane across which the net volume flux

is zero is

m m
= + + -
NP CII A PV A ) (72)
Similarly
J.o= 30+ 0% + (C. +C..)( - ) (73)
B~ 27 Y12 27 %127 %Vn,e T Vv,e

From stoichiometry, it follows that

CA = Cl + C12

cB = c2 + 012 (74)
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where the subscripts A and B refer to the stoichiometric amounts of A

and B added to the system. Therefore equations 72 and 73 become

m

Ip =94 T Ca0n e~ Yy,
(75)
Jo=Jdr+c (v, -v, )
B B B' m,c V,c
Substituting equation 71 into equations 75 and rearranging gives
O PN BUAF o 7 W SO i/ Wi RN P L
= - —(1 - - (1 -
A oqn 1A% 3 gon 9x ogn X GqoN 127A7 3x
_ UGG ouy Gy o My VaCyCpdmy Gy o B
Jp = - (1 -V,C,) + - (1-V, ,Cc)—=
9qn ox o,n 2°B’ 9x gan 9x 919 127" 9x

If the associating reaction can be described by an equilibrium

constant involving activities, one gets:

(77)

(76)

This combined with equation 37 can be used to obtain a relation

between the gradients of the chemical potential. This relation is

ou ou ou
12 71 2
d0x  9x t 9x (78)
Substituting this result into equations 76 gives
- C C ou
1 = 12 = 1
S P SV =y S VlZCA)] ox
1 12
(79)
S ooy Vzcch:I g V3030 3
_olzn 127A 021'1 3x o3n X
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Jg =5 1268 -

S _ vlcch] auy
12

1-v o -
(79

ozn(l - VZCB) + olzn(l 12°B 3x T Ton ox

c _ c _ du, V,C.C. du
) [ 2 12, 7 . )] 2, '3%3% °M3
3

From the Gibbs-Duhem relation we can obtain

o ou ou ou
1 2 3 12
o ox v € Tx v 03 5t G125 °

0 (80)
Using equations 74 and 78, this becomes

ou ou ou
1 2 3 _
CA 0x + CB 9x + CC ox 0 (81)

With this relation, 8u3/3x can be eliminated from equations 79 to give

2

c C V.C%7 du
) 1 - 12 - 3°A 1
J =-|—@-V.,c)+—=1Q-V,.C)+ ]-———
A [oln 1°A clzn 12°A 03n ox
(V2% S0 - V3€pCp | 94
- oL -V 3
L o,n 12" 041 X
(82)
Vi1 . C1o V3CaC | 2¥y
Jp =~ o t ot VlZCB) + 5
1 12 3 X
C C v.c2q ou
2 - 12 - 3B 2
- |—£@1 -V.c) + (1-V..c) + ]-——-
[;2n 2B 012n 12°B c3n ox

It is desirable at this point to obtain expressions for the Dij
in terms of the friction coefficients. Therefore, the chemical potential

gradients of the actual species must be converted to gradients of the
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stoichiometric concentrations in order to equate corresponding
coefficients.

From equation 22, we have

ClVl + 02V2 + C3V3 + C12V12 = 1 (83)
Therefore at constant T and P,
My = £(Cp, Cyy Cpp)
(84)
My = £(Cp, Cos Cpp)

However, from the stoichiometric relations, equations 74, equations 84

can be written

Wy = f(CA, CB)
(85)
My = f(CA, CB)
Hence
\ \
aul } aul BCA N aul BCB
X aC ox aC 9x
&g L Blg
B A
(86)
\ ( A
8u2 ] Buz SCA . 8u2 SCB
9x aC 90X aC oxX
AJC BJC
B A
For this system, equation 24 is
s oo S, %
A AA 93x AB 9x
(87)
aC oC
J, = =D -4 - D B

B BA 9x BB 9x
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Substituting equations 86 into equations 82 and equating corresponding

coefficients with equations 87 gives the desired results.

2
c c v.c27 [su
% 2 38 1
Dpn = [;1n (1-V,6) + 55 (1 -V,0) +—5 } [ac ]
C

12 3" A
B
Vololy  Cpo V3C,Cp7 [ 24,
ot o G-Vt | e
2 12 3 A
C
B
Cc c 7.c27 (0
DAB = [o - a- l A) + g x a- 12 A) + 2 A] 321
1" 12" 93N B
C
A
VCly  Cypo V4C,Cp (4,
et o V) o e
2 12 3 B,
A
(88)
%% S - VaCals | [PH1
Dpp = [- 5 + oy (1 - V0 3C
1" 12" 93N A
c
B
2
C C ou
2 — 12 V3Cy 2
+|— @@ -V,C) +——=(1- ) + ]—
[ozn 2B olzn 12 B 03n BCA
c
B
[ V%% G 3%y 3y
Ppg = |~ + @ -V, + === |5,
Ulrl 01271 o3n BBC
A
- 2
C c du
N [ 2 (1 Ty + ‘12 7,00 + V3% ] 2
02n 012n o3n 9 B c

A
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It may appear that a considerable problem has been introduced

here because of expressions like (3u /BCA)C . This would appear to

1 B

involve obtaining activity data of the actual species as a function of
the stoichiometric quantities which could be a considerable problem.
However, it has been shown by Nikol'skii36 in general and by Prigogine
and Defay40 for a two-component mixture with association that the chemi-
cal potentials of a component and the monomer of that component are
equal. They observed that this result depends in no way on any assump-
tion about the manner in which association occurs. Furthermore, it is
valid for both associated solutions and associated gases and only
depends upon the assumption that the complexes are in thermodynamic
equilibrium with each other. Nikol'skii further stated that it is

valid for any equilibrium gaseous or liquid mixtures with any reactions

occurring in them. It follows from this that

o BN

(89)
1-12 = UB
It should be recalled that from the Gibbs-Duhem equation one can obtain
BuA BuB Buc

CAa ox 7% x TS 5x - O (90)

In order for both equations 81 and 90 to be valid, the chemical potential

of the species must equal the chemical potential of the component.
Activity Expressions Based on the Chemical Model - If activity

data are not available we are still faced with the problem of finding

values for expressions of the type (Bui/BC . For associating

)
3¢
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systems, Dolezalekls’16 first proposed the chemical model which states
that non-ideality in associated systems results purely from the com-
plexing to form other species. In other words, the actual species
present in the solution form an ideal solution. This of course is
only an approximation but a reasonable one if the non-ideality is
mostly caused by the association. For the system under comsideration
here, the monomers 1, 2, and 3 and the dimer 12 should therefore form
an ideal solution according to the model. Furthermore, if it is
assumed that the associated species does not exist in the vapor and the

vapor is an ideal gas, then Raoult's law for species 1 says that

=X P, =a,P (91)

where Py is the partial pressure, P. the vapor pressure of the pure

1

species, and a, the activity. Since Pl and PA are identical, a, must
equal Xl’ the mole fraction of monomer of A. This analysis can be

extended to the other species, therefore the following set of relations

relating stoichiometric and true quantities must hold

(92)

By obtaining expressions for the true mole fractions in terms of the

stoichiometric quantities, values for (aul/BCA)C = (auA/BCA)C etc.,
B B

can be obtained. Details of this are given in Appendix III.
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Since pure A and pure B have no associated species present and
are assumed to exist only in the monomer form, reasonable values for

V1 and V2 are the respective partial molar volumes of the pure components
A and B.
Phenomenological Coefficient Expressions - It is of interest to

check on the Onsager reciprocal relations for this simplest associative

case. The rate of entropy production is given by

T8 = -3, % -, aai;‘; -3, 3—:}3; -7, 3:}1(2 (93)
Utilizing equations 78 and 81, equation 93 becomes

Té=-(J1+J12-2—§J3)%-(J2+J12-z—2~]3)i:'§ (94)
For this system, equation 23 is

JiVi + JéVz + J3V3 + Jlévlz =0 (95)

Eliminating J, from equation 94 with equation 95 and rearranging gives

3
9 V. 9 V. 9 2 V.
- ul CAvl Ul CBVl uz Buz CBVZ 8u2 CAVZ Bul
T8 = -J + + -3J + +
1 9x cv 9x cV X 2 9x cCV 9x c7 X
c3 c3 c'3 c3
5 _ - (96)
M1 CaVag My My CRVy, O,
- J + + +
3 9x cV 9x ox T ax
c3 c'3
From stoichiometry
J1 =94 "
97)
J, =J_ - J

2 B 12
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Substituting equations 97 into equation 96 and rearranging yields

c,V,) du; C.V. 3 C.V,)ou, C,V, 3y
Té=_JA[(1+A_1] 1, 81 2:I_JBH1+32] 2, a2 1]

ox - X - 9X 9x
| T, CVs CV, CVs
(98)
- C oM C ou
A = = = 1 B, = — — 2
-1 cT (V =Vt =5 * e (V=4 9) = }
L CeVs V3

Now a reasonable assumption in accordance with the previous assumption

of constant volume is that Vlz = Vl + VZ' If this is the case, equation

98 becames

c v
TS = —JA[[I + 4L

Bul s CBVl Buz:l_ S [CAV2 3u1 .
X C v 9x B cv

CV ou

B 2 2
™ 1+ ](99)
c3 c3

= 9xX
Cc¥3

CcVs

From the postulate of irreversible thermodynamics, the following

equations are valid.

v ) v b -0 v v ) D
CAVl Bul CBV1 auz CAVZ aul CBVZ 81.12
J, = -L 1+ + L, | ——+ 1+ —|=
A AA cV X Ly 90X ABf g ox cV J axJ
c'3/ c'3 - -C'3 c'3
(100)
v ) 7 - - bry 7 ) -
.. CaVyp]ary | Cg¥p dmy CaVp 311 CgVs |31y
= -L 1+ + -L | ——+ |1+ —|==
B BA cvV X cV X BB cV o0X cvV J 9xX
c 3/ Cc3 - - C'3 c3 -
and
LAB = LBA (101)

Carrying out the multiplications in equations 100 and equating corres-
ponding coefficients with those in equations 82 and then solving the

resulting equations for LAB and LBA gives
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— 2 _—
C o v.cc1c. ¥
—2 (1-7c,) + 12 - T,,0,) + —é—é]-lifl
9N 912" o3N CoVs
L. =
A o1
CcVs
v.c.C C v.,c.C c, V.
[} 2°2°a , _“12 7,00 + 3CA B] ]+ AL
gyn 912" o3 cCV
_ c'3
I
Ccs
(102)
v.c.C c.,(1L-V,.,c.) V.c,cC c.V
[_ 101nB L, 12 . n12 B 30AnB} L4 B2
o 1 12 3 AN
BA 1
CcV3
C C V‘cz c.V
[——2-( 1-v,cp) + 12 - Vi,Cp) * REa ]-J%fé
gn 012" °3" Jcv
_ c'3
1
Vs
Simplification of these expressions gives
c.C.V. c.C.V
_ __1B1 = _T2°A2 =
Ly = Lpa = o 1 -v,c) o (1 -V,Cp)
— (103)
c.C.V C
A"B'3 = - 12 - —
“ o CLAEVIC, HVCh) o (1= V500 (1 =V Cp)
3 12
Thus, if the assumption that V., = V. + V, is true, then the

12 1 2

hydrodynamic model for associating systems in which a 12 dimer is formed

predicts that Onsager's reciprocal relations are valid. It was
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attempted to demonstrate the validity of the reciprocal relations for
this associating system without using the above assumption, but such
attempts were unsuccessful.
Solutions in Which One Component Dimerizes

The method of obtaining the flow equations, diffusion coef-
ficients, and phenomenological coefficients is the same as that just
discussed for the case of a one:one complex. For this reason, only the
important equations will be given here. The subscripts 1, 2, 3 and 11
will refer to the monomers of components A, B, and C and the A-A
complex respectively.

Diffusion Coefficient Expressions - Again, from equations 8

and 14, we have that

m,cC v,c n 9y ox S, 9x Oq Ix o] ax

C,V, du; CV, du, C.V,du, C .V . 3
v -y =i[11 1, 922 %% Y3 ¥y Cufn 11J (106)
11

The flows are given by

JA = Jl + 2J11 + CA(Vm,c vV,c)
(105)
J. = J0 +C (v -v, )
B 2 B 'm,c V,c
From stoichiometry, it follows that
CA = C1 + 2C11
CB = C2 (106)
€% =9

The association reaction can be described by an equilibrium constant as

follows
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a
11 (107)

K = ;E—
1
From the defining equation for the chemical potential (equation 37)

and equation 107, a relation between the gradients of chemical poten-

tial can be obtained. This is

ou oy
11 1
ax 2 X (108)

Also the Gibbs-Duhen relation and the stoichiometric relations com-

bined with equation 108 give

aul auz Bu3
Cax 7% 5x "% 3x - © (109)

Using equations 104, 105, 108 and 109, the flow equations become

- C 2C V., 7 ou
1 = 11 - A3 1
J =-|— (1 -C,V + — (2 -CV + —_—
A [0 ( A 1) o1qn ( A 11) o3n] X
GGV, CACBV3} o1y
- |- +
i 02n 03n X
(110)
T C1CsV1  261305Vyy . chAVBJ 3uy
B i oyn 911" SRy ox
= 2
Cs _ VaCs 1 2,
- |7 (1 - CBVZ) + <N T;
2 3
For this system, equation 22 is
clvl + CBV2 + CCV3 + Cllvll =1 (111)

and this combined with the stoichiometry relations (equations 106)

€nables us to write
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= £(C,, C,)

1 A’ B

(112)

My = £(Cy Cp)
at constant T and P.

Since equations 86 and 87 also apply to this system,
equation 86 can be substituted into equation 110 and the coefficients

compared to equation 87. This gives

= 2
C 2C V,C ou
1 - 11 e 3°A 1
D =|l—— (1-CV,)) +——— (2 -C,V.,) + ]——
AA [oln Al olln A1l 03n BCA
C
B
CACBV2 CACBV3 auz
+ - a,n + a.n aC
2 3 Ac
B
¢, _ 2C,; _ 730[2\ 3uy
DAB=[0—? A-Cvp +5—= @-¢Vip+== |=
1 11 3 B c
A
(113)
. [ ) CACBV2 . CACBVB] 8U2
02n o3n BCB ;
A

a.n g..n a,n

I [_ C.CV1 ) 2C11C8V11 . CACBV3:l aul
BA 1 11 3 Al

2_

C C.V au

B - B3 2

“{czn (1 - Cpvy) + — n] [ac ]
3 c
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oo {‘_ ©1%%1  %1%'n1 . CuCgV3 } duy
BB oln olln 03n

(113)

2_
~ C C.V ou
B = B 3 2
—= - + —=
+ [ p— (1 CBVZ) oon ] 5C ]
- 2 3 c

Activities Based on the Chemical Model - If no dimer is

assumed to exist in the vapor, then Py =P If in addition the four

1°

species form an ideal solution, then the following relations must hold

ag = 3y = X, = vg¥p
(114)
3¢ =33 = X3 = vXg
311 =%
It also follows that
oy ou
1 _ A
X 9x (115)
Also the fact that B and C do not associate means that
Wy =Wps Mg = M, (116)
V2 = VB’ V3 = VC (117)
0, = Ops 03 = 0. (118)

Phenomenological Coefficient Expressions - The rate of entropy

production is given by
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ou du ou ou
. 1 2 3 11
Ts=-J % T "7 T T T T (119)
If it is assumed that
s _ T )
11 2V1 (120)
then using equations 108 and 109 and the relation
lel + J2V2 + J3V3 + J11V11 =0 (121)
equation 119 reduces to
CV.)ou, CV. du
T = - J 1+ Al L + -2 1 2
A = ox T ox
Vs €3
(122)
CAV2 aul CBV2 8u2
-J, | — —+ |1+ — =-JY -JY
B cV X cV X AA BB
c3 c3
From irreversible thermodynamics,
Jo = Taa¥a * Lag¥s
(123)
Jg = Lpa¥a * Lpp¥s

Now, carrying out the multiplications indicated in equation 123 when
the substitutions are made for the Y's and equating coefficients

with equations 110, L and LB can be obtained. They are

AB A
Cc.C.V c.C.V
_ _ 1°B'1 _.v, _ _ABB =
Lag = Lpy = o N (1 -Cyvyp) o (1 - CxVp)
_ _ (124)
2C..C.V C.CV
11°B'1 - AB'C - -
T T . (2 - CAVll) + (1 - CgVp ~ CAVl)

11 OCT]
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Thus if the assumption that v

11~ ZVl is true, then the

hydrodynamic model for systems in which one component dimerizes

predicts that Onsager's reciprocal relations should hold.



EXPERIMENTAL

Apparatus

The experimental diffusion coefficients for both binary and
ternary systems were obtained with an optical diffusiometer. Diffusion
took place in a glass-windowed cell immersed in a constant temperature
bath and was followed by measuring the refractive index of the solution
with a Mach-Zehnder interferometer.51 Two solutions of slightly
different concentrations were carefully flowed one on top of the
other into the cell and free diffusion allowed to take place. The
concentration was taken as the average of the two solutions. This set-
up was similar to the diffusiometer described by Caldwell, Hall, and
Babb8 and is described in detail by Bidlack.4

A diagram and a photograph of the interferometer system are
shown in Figures 1 and 2. The camponents were supported by ordinary
laboratory bench carriages located along a continuous rail composed of
three optical benches. These in turn were bolted to an I-beam mounted
on a concrete block to dampen outside disturbances and vibrations.

Monochromatic light from a Cenco quartz mercury arc lamp
source, filtered to isolate the 5461 )3 green mercury line, was col-
limated and then split in amplitude by a half-silvered mirror (mirror
1). Half of the beam was refleéted to a full reflecting mirror

(mirror 2) and the other half passed through to a full reflecting

46
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mirror (mirror 3). The two beams were then combined at a half-
silvered mirror (mirror 4). Constructive interference of the two
beams occurred when the path lengths 1-2-4 and 1-3-4 were equal or
differed by a whole multiple of the wavelength of the incident
light. The mirrors were so adjusted as to give straight, vertical,
parallel fringes.

The interference beam was arranged so that it could be
photographed directly by a camera. The camera consisted of a 3 foot
long aluminum tube of 3% inches diameter containing a lens with a 343
mm. focal length set in the end towards the interferometer. The lens
was focused on a type M, 3% x 4% inch Kodak plate located at the
opposite end. A lever mechanism on the plate holder enabled fourteen
successive exposures to be taken per plate. The magnification
factor of the camera was found to be 1.923.4

The diffusion cell was fixed in a water bath maintained at
25 + 0.03°C by a thermoregulator. The water bath consisted of an
18 x 18 x 18 inch stainless steel tank covered with 3/4 inch plywood
and rested on the cement block without touching the interferometer.
Two 3% inch diameter optical flat windows were clamped and sealed
into the ends of the water bath and aligned to allow passage of the
light beams through the bath and the cell windows. Distilled water
was preferred over tap water since it did not cloud up as fast.

In Figures 3 and 4 are shown a photograph and a diagram of
the diffusion cell. The main body of the cell consisted of a 4 x 3%

inch slot cut into a stainless steel plate with two optically flat
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Figure 3. Photograph of the diffusion cell.
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glass solution reservoirs
made from 50 cc. syringes

TR

— fil}ing
syringe
valve 2 valve 1
cell cell
window — |— "] body
1 n
1_ v
\‘ valve 4
/' valve 3
boundary //4
sharpening
slits
siphon &lve 5

Figure 4. Diagram of diffusion cell,
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windows clamped over the slot to form a sealed channel. The channel
was situated to allow both light beams to pass through it; thus, a
vertical concentration gradient in the solution across one of the
beams resulted in a fringe displacement pattern that was a direct
plot of refractive index versus distance. All parts of the cell
which would be in contact with the liquid solutions were stainless
steel or glass to enable the study of most corrosive liquids.

A framework was bolted to the cement block and positioned
above the bath so that the cell could be hung from the top and
immersed in the bath. Two small position pins were placed on the
framework to insure that the cell was always placed in the same
position.

The cell was provided with two inlets, one in the top and
one in the bottom, and two outlets directly across from each other
about one-third the way up the channel sides. Two solutions of
slightly different concentrations were then slowly flowed simul-
taneously into the cell, the denser solution through the bottom
inlet and the other through the top, and out the two outlets. A
sharp boundary was thus formed between the two layered solutions.
This boundary was located in the center of the lower beam. All the

valves were then closed and the solution allowed to diffuse freely.

Procedure for Experimental Run

1) The light source and water bath heater were first turned on.
2) The cell was then placed in a rack away from the rest of the

apparatus for convenience in filling.
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4)

5)

6)

7)
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All the cell valves except valve 2 were then closed and approxi-
mately 25 cc. of the denser solution were placed in reservoir B.
Some of this solution was then allowed to flow into the cell
through valve 5 until the liquid level was % to % inches above
the outlets. Valve 5 was then closed.

Valve 4 was next opened slightly and liquid was forced into the
exit line by means of the filling syringe plunger until the
liquid level in the cell was just above the outlets. Valve 4 was
then closed and more solution from the reservoir was passed
through valve 5 into the cell-as in step 3. More liquid was
forced into the exit line through valve 4 and the whole procedure
repeated until liquid dripped from the outlet line. This was done
to insure that liquid had filled the exit line as far as the tee.
Valve 4 was then closed.

The same procedure of adding liquid to the cell through valve 5
was repeated and exit valve 3 opened. The filling syringe was
then used to force liquid into the exit line until the cell
liquid level was just above the outlet. At this point, valve 3
was closed.

Step 5 was repeated until the liquid flowed freely from the

exit line by means of a siphon.

All valves were then closed except valve 1 and 25 cc. of the less
dense solution was placed in the filling syringe. Valve 2 was
then slowly opened so as to allow the solution to trickle down
the side of the cell channel and layer on top of the more dense

solution. The solution was allowed to flow this way with valve
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2 being opened more and more as the solution built up in the
cell. After the solution had overflowed up into reservoir A,
both valves 1 and 2 were closed.

8) The two reservoirs were then filled to approximately equal
liquid levels with the appropriate solutions, remembering to
always place the more dense in reservoir B.

9) At this point the cell was placed in position in the water
bath. The reservoir valves, valves 1 and 5, were then opened
one full turn followed slowly by valve 3 until the rate of
flow from the exit line was one drop every 8 seconds. The
opposite outlet valve, valve 4, was then slowly opened until
the combined exit flow rate was one drop every 4 seconds.

It was important to maintain balanced flow rates into both
halves of the cell as well as through both outlets.

10) When the boundary had formed satisfactorily, valves 3 and 4
were closed followed as soon as possible by valves 1 and 5.
The timer was then started and pictures taken at various times
during the run. A series of exposures taken for one run are

shown in Figure 5.

Purity of Materials

The chemicals hexane, dodecane, hexadecane, and carbon
tetrachloride were obtained in the purest forms available from
Matheson, Coleman, and Bell, Co. The hexane and carbon tetrachloride
were spectroquality and the dodecane and hexadecane were 99+%

(olefin free) quality. The chemicals diethyl ether and chloroform
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were purchased from the Malinkrodt Chemical Co. and were analytical
reagent grade. The chloroform contained a slight impurity of
ethanol used as a preservative. This affected the density slightly
but showed no noticeable change in the refractive index. The
measured values of density and refractive index were compared with
those listed in the literature and were found satisfactory. These

values are given in Table 1.

Calculations

Calculation of Concentrations and Viscosities

In determining concentrations, various predetermined
amounts of each component were weighed out together, and the density
of the resulting solution measured with a pycnometer. From the
known amounts and the density of each solution, the concentrations
were calculated. Volumes calculated on the basis of densities of
the pure components agreed within 0.15% of the measured volumes but
were lower than the measured values in all cases. The very small
differences were an indication of the constancy of the molar volumes.

For systems in which the diffusion coefficients had been
experimentally determined by others, concentrations were calculated

using the given mole fractions according to the following equation

C, = —— i=1,2,3 (125)

T OX,V,
j=l J J
Viscosities of the solutions were experimentally determined

using a Cannon-Fenske type viscometer. Kinetic energy effects were

taken into account by using an equation of the form



57

Table 1. Comparison of physical constants with

previous recorded data.

Chemical Density at 25 °c Refractive index at 25 °C
d )
(g/cc)
This Work Reference This Work Reference
42 42

Hexane 0.6550 0.6549 1.3727 1.3723
Dodecane 0.7450 0.7451 1.4196 1.4195
Hexadecane 0.7698 0.7699 1.4324 1.4325
Carbon Tetrachloride 1.5850 1.5845 1.4570 1.4576
Chloroform 1.4740 1.4795 1.4426 1.4422

Diethyl Ether 0.7075 0.7077 1.3500 1.3499



58

velogt-—2 (126)
o 2

where K1 and K2 are experimental constants determined using liquids
of known viscosity and t is the time. The viscosities for the
systems reported by other sources when not given were calculated
according to the following relationship
3
Inn= ) X, lnn, (127)
. i i
i=1
where Xi is the mole fraction of i and ni is the viscosity of pure i.
Reduced Second Moment
The fringe pattern obtained by the diffusiometer for each

exposure may be considered as a plot of the refractive index versus

distance in the cell because the displacement of the fringes is pro-

portional to the refractive index

|
difference. It is also true that
n -n =k(@G. -3 ) (128)
X, X 1 X, Xy
where nx is the refractive index

i
at X, and jX is the number of
i
x:
fringes up to the point x,. J
1 fringes

From equation 128, kl = An/J
where J is the total number of
fringes and An is the total

refractive index difference

across the boundary. It is

desired to obtain a plot of
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(3n/ax)t versus x for each exposure, since it is the second moment
of the refractive index gradient curve that is required. If we
look at the center regions of the exposure (near x = 0), it is
noticed that any curvature in the fringes is small. From equation
128, it follows that the refractive index difference across one

fringe is k Hence in the center regions of an exposure a

1
reasonable value for the refractive index gradient can be obtained

by measuring the distance between two fringes. Thus

k
(%) e (129)
t .o X + x j+1 j
2
where xj and xj+l are the distances to fringe j and j+1 respectively

and (Bn/ax)t is the refractive index gradient at x = ( + xj)/2.

*541
In the outer regions of the exposure (x >> 0, x << 0),
the curvature of the fringes is more pronounced and therefore
equation 129 is not a good approximation. In these regions, tan-
gents to the fringes give more accurate values of the refractive
index gradient. The tangent at these points gives 3y/9x not 3n/5x,
therefore a relation between 3y and 9n is necessary. This can be
obtained by measuring the distance in the y direction between a

specific number of fringes. This provides a proportionality

constant, k2

Yy = ¥
K, = 22 (130)
%
where Aj is the number of fringes between Y, and e Using equation

128, equation 130 becomes
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An = — Ay (131)

=)

where tan O’x is the measured tangent of any fringe at point x, on
i

therefore

k
= fl tan O
X, 2
i

(132)

X,
1

the exposure and where 0 is the angle measured between the tangent
line and the x axis.

The values x and y which are measured off an exposure are not
the actual distances but rather magnified distances. The camera which
records the fringe pattern at various time intervals has a magnification
factor, M = 1.923, hence x = xm/M where X is the measured distance and

x is the actual distance. On this basis, equations 129 and 132 are

Mk
an ) ] - 1 (133)
ox t{x + x 3me *i41,m - *j,m
G+1,m j,m t T 1
2M
Mk
on - - L ean o (134)
ox 9X k
t)x m 2 X
_m t _m
M M
The definition of the rth moment is given by
4o
IS S Y
oonk T[]

where An is the total refractive index difference across the initially
sharp boundary. In terms of measured quantities this definition

becomes

——-) dx (136)
m
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From the expressions for the refractive index gradients used
in the numerical integrations, equations 133 and 134, and the defini-
tion of the rth moment, it can be seen that the proportionality
constant kl cancels. Thus in evaluating the moments, the constant kl
is not required. It is obvious then that any value chosen for kl

will not affect the results. If kl is chosen as unity in evaluating

the refractive index gradients, then

T 9n T [an
i (—a;)t dx = {w(a_x;) dx_=fn=1lJ=1J (137)
t

J can easily be evaluated from each exposure within *0.2 fringes.
Therefore, since it can also be calculated numerically from equation
137, a check on the numerical calculations is provided.

For the case of kl = 1, calculation of the value of X at

the initially sharp boundary can be obtained from
+oo
_1 on
xc’m =3 / X (Bxh) dxm (138)

Notice that the choice of the origin of x used in determining the

measured x values will give a different value of x o' It is shown
b

in Appendix II that if X, m is taken as the origin, then m = 0.
’

This of course follows from equation 138. Since the moments and the
diffusion equations are derived on the basis of X, = 0, the values of

x used in the determination of m2 must be equal to (xm - x m)/M
Cy

where X is the measured value of x based on any starting point, X m
’
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is the value of X at the boundary based on the same starting point,

and M is the magnification factor. The expression for m, is therefore

)2(%:—-) ax_ (139)
s

1 ’}w
m, = —5— (x -x
2 M2J ‘e M c,m

The reduced second moment D, is defined by

2m

m

D, =2 (140)

2m 2t

In actuality a perfectly sharp boundary will not be formed so that t

will not equal the measured time, tm. Rather

t = t + At (141)
m corr.,

Hence equation 140 should be

)
Dom = 2(t_ + ¢t ) (142)
m corr.

Rearrangement of equation 142 gives

= D t + D_At (143)
2m m 2m COrr.

22

2
Therefore, a plot of m2/2 versus tm should give a straight line of
slope, D2m’ and intercept DZmAtcorr. The slope gives the desired
value of the reduced second moment, and the intercept provides the
time correction, Atcorr From the latter, the absolute time of
diffusion can be determined using equation 141.

Plots of the second moment versus the measured time for the

systems studied are given in Figures 12, 13, and 14 of Appendix VI.
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It can be seen that they are linear in accordance with equation 143.
Tabulations of the time corrections, A%orr.’ obtained from these
curves are given in Table 15 also in Appendix VI. For convenience
the second moments at the various measured times of each run are also
provided in Table 14 of Appendix VI.

Reduced Height-Area Ratio

The reduced height-area ratio is defined by

2
D, * o) (144)
)
zmt[ a—n)}
X
t
max
In terms of measured quantities this becomes
) (k1)
= (145)
A 2 on 2
4mtM t———) }
oxX
e

max

Again it can be seen from the expressions for the measured refractive
index gradients (equations 133 and 134) that kl cancels and hence k1
can be taken as unity in the calculations.

Since there are no minima and only one maximum in the
measured refractive index gradient: curve, DA can be obtained by simply
finding the maximum of the measured refractive index gradient curve
and substituting this value into equation 145. This maximum which
can be obtained either numerically or graphically, decreases as the
absolute time, t, increases.

Differential Refractive Index Constants

1.3,19,22,23

It was assumed by Gosting, et. a and this

author that the total refractive index change across the boundary, An,
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could be expressed by the equation

An = RlACl + RZACZ (146)

where Ci represents the concentration in moles/liter and Ri is the
differential refractive index increment of component i. Division of

equation 146 by ACi, gives
— = R, + R, —/ (147)

Thus, values of Rl and R2 could be obtained from the intercept and
slope of a plot of An/ACl versus ACZ/Acl'

An can be determined either by direct refractive index

measurements or from equation 128

An = k_J (128)

Based on several runs performed in this laboratory, kl was found to
be 2.10 x 10_5 refractive index units/fringe. To obtain this value
larger concentration differences, and thus larger An values, were
used so as to minimize errors in refractive index measurements. The
J values, total fringes, could be obtained directly from the
exposures.

It should be pointed out that in the determination of the

ternary coefficients, only the ratios of R, and R, are used. There-

1 2
fore a value of kl is not needed since it cancels in the ratios. The
1 1
following equation can therefore be used to calculate an Rl and R2

from which the correct ratios can be determined.
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AC
AT ! a2
—— = R, + R, — (148)
acy 1 2 ac;
where
- R . R
1 2
RisEi==", R, == (149)
1k 27k
and
'
R R
o S R_l (150)
R, 2

The latter method is considered more accurate because of the limita-
tions in the refractive index measurements. With small initial
concentrations difference chosen to minimize errors resulting from
variation of Dij’ V;, and Ri with concentration, the An values are
naturally quite small. In fact, they were in the neighborhood of
0.0005 to 0.0010 indicating that small errors in a refractive
index measurement could cause large percentage errors in An. The J
value, being a strong indicator of refractive index difference, was
considered a more accurate measure of An.
Diffusion Coefficients

The method used in this laboratory of experimentally
determining the diffusion coefficients Dij of a ternary system was
very similar to the method outlined by Fujita and GOSting.22 In
both methods a refractive index gradient curve at various times
during free diffusion is obtained. Using these curves, reduced

second moments and reduced height-area ratios are calculated. Plots

of the reduced second moments and of the reciprocal square root of
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the reduced height-area ratio are then made against the refractive

index fraction of one of the components, o This refractive index

1
fraction is defined by
%7 L R AchﬁCé AC (151)
An 1771 2772
The slopes and intercepts at o = 0 and o = 1 of these plots are then

used to calculate the ternary diffusion coefficients.
The linear equations of the reduced second moment, D2m’ and
of the reciprocal square root of the reduced height-area ratio,

l/Jﬁz, with o, are

1
D2m = I2m + SZmal (152)
1
—_— = +
i IA SAal (153)
A

where S2m and SA are the slopes and I2m and IA are the intercepts at

@ = 0. The intercepts at a; = 1, L2m

slopes and intercepts by the following relations

and LA’ are related to these

L = I + S (154)

L = I + S (155)

The ternary diffusion coefficients in terms of these slopes and inter-

cepts are

LZmIASZm
Dyl + Lo/ Toy gl + 5,
D, = - (156)
S

2m




67

1j
D,, = : (157)
2m
Ry
D, = R_l (12m - DZZ) (158)
it
Pa 7w, T = Ppp) (159

where ‘Dij‘ , the determinant of the ternary diffusion coefficients, is
given by

oyl = DygDpy = Dyplyy (160)

The [Dijl is determined from the cubic equation
2
S57)3 Som 2 (Sm
( |Dij|) + [Izm -1, ?J (4 Dijl) - -SA— =0 (1l61)

The development of these equations and the solution to the
describing equations for diffusion are given in Appendix II. A
computer program to solve for the roots of equation 161 is given in
Appendix V.

Friction Coefficients

Values of the friction coefficients, Lrp for the systems
dodecane-hexadecane-hexane, toluene-chlorobenzene-bromobenzene, and
acetone-benzene-carbon tetrachloride were calculated from mutual
diffusion of the binaries at infinite dilution and from self diffusion

data of each component. Values of the friction coefficients for the

system diethyl ether-chloroform-carbon tetrachloride were determined
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by Wirth.47 For the hydrocarbon system values were determined more
exactly using tracer techniques. The necessary diffusion data are
provided in Tables 11 and 12. Since the parameter RT/oi always
appeared together in the calculations, this value was determined for
each component rather than o, itself. The relationship used in this

calculation was

RT _ X.D.n.
g, 11 1
1

3
o .
+ Z XjDij”j i=1,2,3 (162)
J
341
where Di is the self diffusion coefficient of component i in cm.z/sec.,
Dij is the mutual diffusion coefficient of the i-j binary at infinite

. . . 2 . . . .
dilution of component i in cm. /sec., n; is the viscosity of pure i

2 . .
in dynes x sec./cm.”, and X, is the mole fraction of component 1 at

i
which the diffusion coefficients were measured.

It should be pointed out that equation 162 is more applicable
to non-associating systems since the friction coefficients correspond
to actual species. With associating systems where there may be more
than three species present, the friction coefficients obtained do
not correspond to actual species. Rather they are empirical factors
for each stoichiometric component. They would therefore give less
reliable values for the diffusion and phenomenological coefficients
calculated from them.

The parameter RT/oi for the hydrocarbon system was obtained

from tracer techniques according to the equation

RT _ % (163)
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where D* is the tracer diffusion coefficient, n is the viscosity of
the solution, and o is the friction coefficient of the tagged
species. The concentrations in the tracer runs were the same as
those at which the ternary diffusion coefficients were determined.
Details on the derivation of equation 163 are given in Appendix I.
This procedure could be applied to other non-associating systems if
the components could be obtained in tagged form.
Activity Data

Dodecane (1) - Hexadecane (2) - Hexane (3) - Activity
data at 20°C for the hydrocarbon binaries hexane-dodecane and hexane-
hexadecane were obtained from Bronsted and Koefoed.5 Since they
concluded that the system exhibited regular solution behavior, the
activity data for the ternary system were obtained by a Van Laar

fit.43 The equations used were

2
(C3vBy3 + CoA 57By5)

T 1n Yl

3
(CjAj3 + Cq + Cparg)
(164)
— 2
(C1A14VBy; + C3/By5)
T 1n Yy =

+C, +C,A )2

(CjA13 + Cg + Cohyg

where Aij and Bij are constants obtained from the binaries and Ci is
the concentration of i. These constants are tabulated in Table 19 of
Appendix VI. Further details on the derivation of required activity
expressions are given in Appendix III.

Diethyl Ether (A) - Chloroform (B) - Carbon Tetrachloride (C) -

Activity data for this system was calculated on the basis of the
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associated chemical model proposed by Wirth47 and Anderson. ’
According to their model, diethyl ether and chloroform form a one:one
complex and this together with the uncomplexed monomers and the inert
carbon tetrachloride species form an ideal solution. The vapor is
assumed to be ideal with none of the dimer complex present.

From this model the activities of the species are given by
equations 92

a, =3; =X = v X,

ag = a, =X, = ¥

(92)
ac T a3 7 X3 7 Y%
319 = Xy

where Yy is the activity coefficient. Details on the determination of

X1 X, X3, and X., and of (api/aci)c are given in Appendix III.

h|
Acetone (1) - Benzene (2) - Carbon Tetrachloride (3) - Activity

1> 722 12
data at 45°C for the acetone-benzene and acetone-carbon tetrachloride
binaries are given by Brown and Smith5 and for the benzene-carbon
tetrachloride binary by Christian, et. al.9 These have been fitted
to two term Margules equations50 and extended to the ternary by the
method of Wohl.47 The equations used were

3 2 2
Cplny, = Czl:Alch + 26, (Ay; - AlZﬂ + Cy | ApsCp + 2C,(Ag) - A13)}

+ C2C3 [CT(A21 + A13 - A32) +2Cl(

—

>

31 ~ 213 (165)

+ 203(A32 - zcl)

-

= By3) = Cpp3(Cp




71

3 2 ) 2 _
Cp In vy = €4 [A23CT + 2C, (A4, A23)} +C) [A21CT +2C,(a), A21%

+ clc3 I:CT(A32 + A21 - Al3) + 2C2(A12 - A21) (165)

+ 20, (A)3 — Agp) = Cpos(Cp - 202)]
where

1
C = (A21 -A+A - A, +A

123 = 2 12 T A3 T Ay Ay, - Ay) (166)

and Ci is the concentration of i and the Ai' are the binary coefficients.
These coefficients are listed in Table 19. Details of the development

of the expressions for (aui/SCj)C are given in Appendix III. The
i

activity constants determined by Yon and Toor50 are given in Table 19
of Appendix VI.
Toluene (1) - Chlorobenzene (2) - Bromobenzene (3) - This

system was assumed to be ideal so that for all three components

a, = X, (167)

Error Analysis of Experimental Method

The accuracy in determining binary diffusion coefficients
with this apparatus was found to be *1% by Bidlack,3 He obtained
diffusion coefficients for seven aqueous sucrose solutions and
compared them with those reported by Gosting and Morris. Diffusion
coefficients for aqueous sucrose solutions obtained by this author
also were within *17 of those listed.

It is difficult to specify the accuracy in determining

ternary diffusion coefficients. The reason for this is the lack of
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reliable ternary data to compare to. The accuracy of the ternary
data that are available in the literature is not given for this same
reason, only the precision is generally discussed and sometimes not
even that. In determining experimental ternary diffusion coefficients
in this laboratory, the accuracy is not limited by the apparatus but
rather by the readings taken from the photographic plates and in the
method of calculations themselves., Because of the former, it is

expected that values obtained for the reduced second moment, D o’ and

2

for the reduced height-area ratio, D,, can be no better than *1%.

A’

The precision of the data obtained in this laboratory was
determined by calculating the variance and confidence limits of the
slopes and intercepts of the reduced second moment and reduced height-
area ratios. These are listed in Table 2. It was found that the
95% confidence limits on the slopes were considerably larger than
the intercepts. The limits on the intercepts in all cases amounted
to less than *.95%7 of the actual value used. The limits on the
slopes varied from *1.6% to *6%, with the average deviation being
approximately *3%.

The 95% confidence envelope for each of the least squares
fit can be obtained from Table 3. The 95% confidence limits of the
ordinate values (D2m and ll/ﬁz'values) were found to vary from
+0.1% to *17% of the least squares line through the points.

The variances of the ordinate values were determined

according to the equation
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Table 2. Variances and 957 confidence limits of the
slopes and intercepts of the D2m vs. oy and

l//lt Vs, a

curves.
1

Dodecane - Hexadecane - Hexane

Variable Variance 95% Confidence Value used in
Limits calculations
5 1.39x10714 +1.12x1077 1.192x107°
855 4.31x1071° +6.32%107° 0.149%107°
I, 1.98 £1.34 2,923x10°
sy 0.61 £0.75 -0.244X102

Diethyl Ether - Chloroform - Carbon Tetrachloride

Variable Variance 95% Confidence Value used in
Limits calculations
I 3.21x10" % +5.35x107° 0.716x107°
85 4.89x10714 +2,10x1077 1.391X107°
I 1.42 1,13 2.890x102
N 21.6 4,42 -0.725x10%

. Al



-1.134
-0.239
0.176
1.352
-2.416
3.599
1.257

1.002
0.623
1.317
1.150
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Table 3. Confidence limits of D2m and l//ﬁ;.

Dodecane (1) - Hexadecane (2) - Hexane (3)

5
DszlO

0.984
1.203
1.197
1.411
0.835
1.710
1.388

Diethyl Ether (1) - Chloroform (2) -

D, X10°
m

2

2.113
1.585
2.577
2.303

Confidence }imits

of DZmXIO

.938
.380
121

I+ I+ 1+ 1+ I+ I+ 1+
oMK OOOO

Confidence limits
of Dsz107

.044
.840
.617

I+ 1+ I+ I+
[eNeNoNe]

N
[e)}
~

1//52

324.7
300.6
283.2
256.0
350.3
206.9
261.9

Confidence limits

of l/fﬁ;

v N

e e o

s

1+ 1+ 4+

oONMNNOOO K
. . .

OB ONRE &~
oW

o))

.

Carbon Tetrachloride (3)

1//DA

218.8
243.3
193.9
203.4

Confidence limits
of 1/%52

[o) 3N}

OoOH+HKFEO
WO
o

I+ I+ I+ I+

o)}
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N 2

L (O -y
2 i
s*(y,) = (168)
e 1 N_z

where si(yi) is the variance of Yy N is the number of data points
used in the least squares fit, Yi is the ordinate value calculated
from the constants of the least squares fit, and v is the ordinate
value used in determining the least squares fit. The N - 2 degrees
of freedom result from the use of two quantities, the slope and
intercept of the least squares line, which are calculated from the
data.

The variances of the slope and intercept were calculated

from the following relations:

2
) s (vy)
s (slope) = ——m————— (169)
e N -2
b o(x, - x)
;1
2
2 se(yi)
s (intercept) = ——— (170)
e
N
where
N
) x
—-— i 1
X = (171)
N
The 95% confidence limits were calculated according to the
relation

95% confidence limits on z = *0.95 sz(z) (172)
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where z is a dummy variable.

These equations and error analysis are discussed by Mickley,

Sherwood, and Reed.32



RESULTS AND DISCUSSION

Theoretical

Hydrodynamic theory predicts that the Onsager reciprocal
relations are valid for non-associating systems in which the molar
volumes are constant. This latter constraint was experimentally
maintained by choosing the initial concentration differences as
small as possible. An attempt was made to apply hydrodynamic theory
to multicomponent associating systems by considering the two simplest
cases where association results in a dimer. It was found that
Onsager's reciprocal relations would again be valid but with the
additional assumption that the molar volume of the dimer be equal to
the sum of the molar volumes of the species associating to form the
dimer. This assumption was reasonable but not rigorously valid.

It was also found that Miller's equations for the
phenomenological coefficients reduced to those derived from the
hydrodynamic approach. This was especially encouraging because
Miller's equations contain activity expressions but the hydrody-
namic equations do not. Activity data for ternary and higher
order systems, like diffusion data for these systems, is difficult
to obtain and up till now has been a major deterrent in verifying
Onsager's reciprocal relations. It was mentioned previously, that

Miller's condition for verifying Onsager's reciprocal relations was

77
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derived from his expressions for the phenomenological coefficients.
Since these contained activity terms, they also appeared in the
condition used for testing the reciprocal relations. It should

also be pointed out that the expressions for the diffusion coef-
ficients obtained by the hydrodynamic approach do contain activity
terms. When these expressions are substituted into Miller's equations

for the phenomenological coefficients, the activity terms drop out.

Experimental

The systems dodecane-hexadecane-hexane and diethyl ether-
chloroform-carbon tetrachloride were experimentally studied in this
laboratory, while the systems toluene-chlorobenzene-bromobenzene and
acetone-benzene-carbon tetrachloride were experimentally studied

elsewhere.7’41

The hydrodynamic model was applied to all four
systems and the reciprocal relations tested when possible.

In the derivation of the equations used to determine
experimental diffusion coefficients with optical methods, it was
assumed that the dependence of refractive index on the two indepen-
dent concentrations could be adequately represented by the first
three terms of a Taylor expansion (equation II-16, Appendix II).
This is a critical assumption since it relates refractive index
measurements, which are the basis of optical methods, to the
concentrations. Thus, it is important before any confidence in the
experimental ternary diffusion coefficients is possible, that the

reliability of this assumption be checked. Fortunately, the trend

has been in all systems studied that this assumption is valid. By
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subtracting the two Taylor expansions representing the refractive
index of the two initial solutions used in a run and then rearranging,
one obtains

An ACZ
ZEI = R1 + R2 ZEI (147)

as was shown in the experimental section. Therefore, provided the Rl

and R2 are independent of concentration, a plot of An/ACl versus

ACZ/ACl should be linear. Since the initial concentration differences
are small, the assumption of constant Rl and R2 is reasonable. For

both systems studied experimentally in this laboratory, such plots

exhibited linear behavior. This is shown in Figures 6 and 7.

Non-Associating Systems

Dodecane-Hexadecane-Hexane
The basis of the optical method in determining the diffusion
coefficients other than that just discussed is that the reduced

second moment, D, , and the reciprocal square root of the reduced

2m
height-area ratio, l/VDA, be linear with the refractive index

fraction, o It is from the intercepts and slopes of these curves

l(\
that the ternary diffusion coefficients are calculated. For the

system dodecane (1) - hexadecane (2) - hexane (3), these curves are
given in Figures 8 and 9. It can be seen that linear behavior does

occur. The slopes and intercepts of these curves for this hydro-

carbon system are presented in Table 16 of Appendix VI. The ternary
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0.0l""‘
An
ACl
0.00+4
-0.01 Y T T T T '
-1.1 -0.9 -0.7 -0.5 -0.3 -C
ACZ/AC1

Figure 6. Determination of the differential refractive

index increments, R, and R2, for the system

1
dodecane (1) - hexadecane (2) - hexane (3).
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-0.008 —

-0.010 4

-0.012

-0 0014 -

An/ACl

-0.016

-0,018

-0.020 T T T T T I
-1.1 -0.5 0.1 0.7 1.3 1.9 2.5

AC2/AC1

Figure 7. Determination of the differential refractive index
increments, Rl and R2, for the system diethyl ether (1) -

chloroform (2) - carbon tetrachloride.
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109

0.7 T L
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

Figure 8. Linear relation of the reduced second moment, D2m’ versus

the refractive index fraction of dodecane, « for the

1’
system dodecane (1) - hexadecane (2) - hexane (3).
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255
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195
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Figure 9.

-0.5 0.5 1.5 2.5 3.5

Linear relation of the reciprocal square root of the
reduced height-area ratio, l//ﬁz, versus the refract-
ive index fraction of dodecane, a1, for the system

dodecane (1) - hexadecane (2) - hexane (3).
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diffusion coefficients obtained from these slopes and intercepts
along with the phenomenological coefficients calculated from these
diffusion coefficients are given in Table 5.

In determining experimental diffusion coefficients and
phenomenological coefficients based on the hydrodynamic model,
experimental or predictive friction coefficients were required.
For the hydrocarbon system, these were obtained both ways. This
fulfilled two purposes: (1) to obtain accurate values of the
friction coefficients thus placing more confidence on the diffusion
and phenomenological coefficients calculated from them and (2) to
check on the predictive method of calculating friction coefficients.
Values of the friction coefficients calculated by both methods are
given in Table 4. Comparison shows that the predicted friction
coefficients compared quite favorably with those obtained experi-
mentally by tracer methods. The poorer agreement of the friction
factor for hexadecane was probably caused by error in estimating
the self diffusion coefficient of the hexadecane. The lack of
self diffusion data for hydrocarbons higher than decane is evident
from Figure 16, The fact that the molar volumes of the hydro-
carbons differed considerably and that friction coefficients for
the same component calculated from the infinitely dilute binary
diffusion coefficients and self diffusion coefficients differed
appreciably indicated that the effects of the other components
were strong. Under these conditions, the predictive method for
non-associating systems would be the poorest. With this in mind,

the agreement between the experimental and predicted friction
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Table 4. Comparison of the estimated and the experimentally

determined friction coefficients for the system

(RT/ol)x1o7
dynes
Estimated Tracer

(Equation 162)

1.089 1.118

dodecane (1) - hexadecane (2) - hexane (3)

T=25"7C
Xl = 0.350 X2 = 0.317
(RT/og)XlO7 (RT/c3)x1o7
dynes dynes
Estimated Tracer Estimated Tracer

(Equation 162) (Equation 162)

1.062 0.848 1.899 1.873
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Comparison of experimental diffusion and phenomeno-
logical coefficients with those calculated from
friction coefficients for the system dodecane (1) -

hexadecane (2) - hexane (3)

T=25"7C
Xl = 00350 X2 = 0-317
5 > > >
X10
DlleO DlQXlO D21 D22XlO
2 2 2 2
(cm®/sec) (cm/sec) (cm®/sec) (ecm®/sec)
Expt. Calculated Expt. Calculated Expt. Calculated Expt. Calculated

Est. Tracer

0.968 1.082 1.

Est. Tracer Est. Tracer Est. Tracer

115 0.266 0.270 04386 0.225 0.209 0.167 1.031 1.123 0.971

5 5
le X RT X 10 L21 X RT X 10
Experimental Calculated Experimental Calculated
Este. Tracer Est. Tracer
-OQL"53 '00538 -00465 -O.Ll-)-ﬂl- -Oo 538 -00465
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coefficients under the least applicable conditions provides
reasonable confidence in the predictive method.

The diffusion and phenomenological coefficients calculated
from the friction coefficients (equations 39 and 61) are given in
Table 5. In comparing the values obtained by optical methods to
those predicted from hydrodynamic equations it can be seen that
there is good agreement. In fact, the agreement of L12 and L21
appears to be better than that found by other authors on other
systems. This conclusion may not be justified, however, since no
comparison between the accuracy of experimental methods can be made.
The hydrodynamically obtained values are well within the expected
accuracy of the experimental values.

The agreement of the experimental L., and L and the

12 21

12 = L21 obtained from the friction

coefficients indicates that Onsager's reciprocal relations are valid.

agreement of these with the L

Toluene-Chlorobenzene-Bromobenzene

Experimental diffusion coefficients were obtained by
Burchard and Toor7 using a modification of the diaphragm cell tech-
nique. Based on the fact that this apparatus gives less accurate
binary values than the apparatus used in this laboratory, it is
reasonable to assume that the ternary diffusion coefficients are
less accurate than those obtained in this laboratory.

This system was assumed ideal and on this basis phenomeno-
logical coefficients were determined from the diffusion coeffi-
cients given by Burchard and Toor. Friction coefficients were

obtained by the predictive method. The fact that the molar volumes
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were almost equal and that the friction coefficients calculated
from the infinitely dilute binary diffusion coefficients were
approximately equal, indicated that reasonable values of the
friction coefficients could be expected.

Table 6 lists the diffusion and phenomenological coef-
ficients. Excellent agreement between the hydrodynamically obtained
values and experimental values can be seen from a comparison.
Except for very few cases, the values obtained from friction coef-
ficients were well within the 95% confidence limits. Reasonable
agreement between the experimental le and L21 is evident and these
agree favorably with those obtained from the hydrodynamic approach.

Based on the results, this author feels that Onsager's reciprocal

relations are verified for this system.

Associative Systems

Diethyl Ether-Chloroform-Carbon Tetrachloride
For this system plots of the reduced second moment, D2m,

and the reciprocal square root of the reduced height-area ratio,

1/VDA, against the refractive index fraction, o,, are presented in

1
Figures 10 and 11. It can be seen that these curves exhibit the
linear behavior predicted by the experimental equations, 152 and
153+ The slopes and intercepts of these curves are given in Table

16 of Appendix VI and the resulting experimental diffusion and

phenomenological coefficients are presented in Table 7.
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Figure 10. Linear relation of the reduced second moment,

D2m’ versus the refractive index fraction of

diethyl ether, o for the system diethyl

l’
ether (1) - chloroform (2) - carbon tetra-

chloride (3).
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0.5 0.7 0.9 1.1 1.3
*1
Figure 1ll. Linear relation of the reciprocal square root

of the reduced height-area ratio, l/VDA, versus
the refractive index fraction of diethyl ether,
a1, for the system diethyl ether (1) - chloro-
form (2) - carbon tetrachloride (3).
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Table 7. Comparison of experimental diffusion and phenom-
enological coefficients with those calculated from
friction coefficients for the system diethyl ether(l)-

chloroform (2) - carbon tetrachloride (3)

T=25"C
Xl = 0.25 X2 = 0.25
> > > >
DlleO DlQXlO DnglO D22Xlo
Expt. Calc. Expt. Calc. Expt. Calc. Expt. Calc.
2.06 2.76 -0.31 -0.3k 0.23 -0.kh2 2.11  2.23
L._XRT X lO5 L.. XRT X lO5
12 21
Experimental Calculated Experimental  Calculated

-0.709 -0.824 0.209 -0.824
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The necessity of having reliable activity data is clearly
brought out here. No experimentally determined ternmary activity
data were available for this system. As a result, the associated-
model of Wirth47 and Andersonl’2 was assumed here. This model says
that there are four species in solution, the monomers of all three
components and the associated dimer of diethyl ether and chloroform.
In addition, the model assumes that these four species together form
an ideal solution thus assuming that all non-ideality in this
solution is caused by the association. For the diethyl ether-
chloroform binary, the above model was found by Andersonl’2 to be
quite good. The importance of assuming that the species form an
ideal solution is that then activity data for the components can be
obtained without experimentally measuring pressures, etc. The
required ternary activity expressions were calculated in Appendix
ITI.

The experimental diffusion coefficients were assumed to
be reliable. However, the phenomenological coefficients, calculated
from the diffusion coefficients and the required activity expressions,
were far from equal. The friction coefficients used to calculate
diffusion coefficients were determined by Wirth47 and were assumed
to be reasonable. These diffusion coefficients did not compare
favorably with the experimental diffusion coefficients. It can be
seen that reasonable agreement exists between the D12 and D22
respectively, but this was considered fortuitous.

There were two possible reasons for this disagreement

assuming that the experimental work was satisfactory: (1) that the
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hydrodynamic approach as applied to associating systems was not
correct and/or (2) that the activity data obtained assuming the
chemical model was incorrect. It is highly likely that only the
latter was the cause. This belief is based on the fact that the
vapor-liquid equilibrium data and the mutual diffusion data of the
carbon tetrachloride-chloroform binary were not ideal. According
to the chemical model, this binary should be ideal since no
association has been detected. The equilibrium and diffusion data
are presented by Wirth.47 It was admitted by Wirth that the
diffusion data may not be reliable since difficulties in duplicating
it were encountered. In any case, it can easily be seen from his
data, that the general trend was far from ideal. If ideal, a plot
of DAB“ versus mole fraction gives a straight line but this plot
was quite curved especially in the region towards pure chloroform.
The fact that difficulties of duplication were experienced may also
reflect the non-idealities of the system. Since the ternary
chemical model, assumed to calculate activities, considered this
binary as ideal, it is quite reasonable to assume that the acti-
vities calculated from this model are in error.

The purpose of studying this system was two-fold, to
check the ternary chemical model and the applicability of the
hydrodynamic theory as applied to associating systems. It can be
concluded from this study that the proposed ternary chemical model
is incorrect. Since the validity of the model, or at least partial

validity, is necessary in order to experimentally verify the
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applicability of the hydrodynamic approach, no justifiable conclu-
sions on the latter can be drawn.
Acetone-Benzene-Carbon Tetrachloride

This system can be classified as an associated system
but the actual species present are difficult to predict. However,
since experimental data had been collected and activity data for
all three binaries were available, it was hoped that some use of
the system as a check on the hydrodynamic theory could be made.

To do this, the system was treated as a non-associating
system and friction coefficients calculated for each component
from binary and self diffusion data. These friction coefficients
are not coefficients for any partiéular species but rather overall
factors proposed to give approximate diffusion coefficients for
any system. In this sense, friction coefficients calculated in
this way serve as a predictive method of obtaining multicomponent
diffusion data. In any case, if the hydrodynamic theory could
lead to an approximate or predictive method of determining reason-
able multicomponent diffusion coefficients, it would certainly
provide some faith in the theory.

Friction coefficients were obtained according to
equation 162 and the values are recorded in Table 17 of Appendix
VI. From these, the ternary diffusion and phenomenological
coefficients were obtained and are given in Table 8 along with the
experimental values obtained by the diaphragm cell technique. It
is evident that indeed the values do compare favorably and are

certainly of the right order of magnitude. It is quite possible
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Table 8. Comparison of experimental diffusion and phenom-
enological coefficients with those calculated from
friction coefficients for the system acetone (1) -

benzene (2) - carbon tetrachloride (3)

o}

T =25 "C
5 5 5 5
X x2 DlleO D12Xlo DnglO D22XlO
Expt. Calc. Expt. Calc. Expt. Calc. Expt. Calc.
.30 0.35 1.887 1.731 -0.213 -0.27% -0.037 -0.029 2.255 2.226
.15 0.15 1.598 1.532 -0.058 -0.176 -0.083 -0.113 1.812 1.731
.15 0.70 1.961 2.200 0.013 -0.131 -0.149 -0.251 1.929 2.072
.70 0.15 2.330 2.366 -0.432 -0.485 0.132 0.146 2.971 3.236
.09 0.90 3.105 2.499 0.550 -0.071 -0.780 -0.410 1.860 2.065
24 0.75 3.069 2.268 0.603 -0.180 -0.638 -0.059 1.799 2.352
49 0.50 2.857 2.263 0.045 -0.365 -0.289 0.253 2.471 2.88k4
74 0.25 3.251 2.702 -0.011 -0.563 -0.301 0.252 2.896 3.493
.895 0.095 3.475 3.162 -0.158 -0.691 0.108 0.122 3.737 3.905
X X L. X RT X 105 L . XRT X 1o5
1 2 12 21
Experimental Calculated  Experimental Calculated
0.30 0.35 -0.283 -0.280 -0.286 -0.280
0.15 0.15 -0.026 -0.041 -0.036 -0.041
0.15 0.70 -0.216 -0.277 -0.243 -0.277
0.70 0.15 -0.461 -0.475 -0.437 -0.475
0.09 0.90 -0.230 -0.230 -0.252 -0.230
0.24 0.75 -0.594 -0.567 -0.60k -0.567
0.k49 0.50 -1.068 -0.97k4 -1.072 -0.97k
0.7k 0.25 -0.969 -0.943 -0.975 -0.943
0.895 0.095 -0.498 -0.517 -0.496 -0.517
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that they are within the experimental accuracy of the method. Only

in the case where the concentration of one of the three components

is almost zero do the predicted values show any appreciable discrep-
ancy. Better agreement occurs between the main diffusion coefficients,

D and D but the cross diffusion coefficients are in the right

11 22°
order of magnitude, and close in comparison, when one considers that
they are much smaller and more subject to experimental error. Sur-
prisingly close agreement among the phenomenological coefficients
was also obtained.

The fact that this predictive method produced reasonable
results is encouraging and indicates that hydrodynamic theory can
be applied to multicomponent associating systems with some success.
It should be cautioned that the associating system studied was not

a particularly strong associating system and thus poorer agreement

could be expected in more highly associative systems.



CONCLUSIONS

It can be concluded from this study that hydrodynamic theory
should play an important role in describing multicomponent liquid
diffusion. It predicts that Onsager's reciprocal relations should be
valid for non-associating systems of any number of components.
Furthermore, it leads to generalized equations which enable the cal-
culation of diffusion coefficients for quaternary and higher order
non-associating systems from friction coefficients, which can be
accurately obtained directly from tracer measurements, and activity
data. The number of tracer rumns required is equal to the number of
components in the system. Calculation of diffusion coefficients in
this way would eliminate the laborious and time-consuming techniques
now available and provide data for systems of higher order than
ternary. Such data, currently not available, would be extremely
useful in considering multicomponent mass flow problems.

Experimental evidence obtained in this study verifies the
Onsager reciprocal relations for non-associating systems within the
limits of experimental error. In addition, it demonstrates the
validity and applicability of hydrodynamic theory to liquid diffusion,
These conclusions were based on the fact that good agreement between

the diffusion and phenomenological coefficients obtained by optical

98
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methods and those obtained from friction coefficients was found for the
non-associating systems studied.

Hydrodynamic theory applied to simple ternary associating
systems in which only dimers are formed indicates that Onsager's
reciprocal relations are valid provided the molar volume of the dimer
can be considered as the sum of the molar volumes of the species
associating to form the dimer. An attempt to describe an associating
system by the chemical model which states that the actual species in
solution form an ideal solution was not satisfactory. Since termary
activity data were not available and since the model would have
predicted the missing activity data, the reciprocal relations for
associating systems could not be experimentally verified.

It was found that for associating systems of unknown
association reasonable diffusion data could be obtained by treating
the system as non-associating and calculating friction factors for
each of the chemicals added to form the system. In this way, the
hydrodynamic approach served as a useful predictive method. It should
be noted however that the predicted data would probably be less

reliable in more highly associated systems.



FUTURE WORK

Theoretical

An important area opened up in this study was the appli-
cation of hydrodynamic theory to associating systems. It would be
worthwhile to try to obtain generalized expressions for the fluxes,
diffusion coefficients, and phenomenological coefficients in terms
of friction coefficients for systems in which there might be dimers,
trimers, tetramers, etc., in various combinations among the compo-
nents. In addition, it is hoped that the hydrodynamic theory can be
applied to the simplest associating systems such that the assumption
concerning the molar volume of the associating species would not be
necessary in order to show that Onsager's reciprocal relations are
valid.

A further area of development would be with systems in
which the kinds of associated species are not known. It was found
in this study for the system acetone-benzene-carbon tetrachloride
that using overall friction coefficients for a component gave
reasonable diffusion coefficients. Maybe refinement in this area
could produce an improved predictive method for associating systems
by combining hydrodynamic theory and binary diffusion data.

A critical factor in using hydrodynamic theory is the

calculation of friction coefficients. A better understanding of the

100
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effects of composition is certainly needed. Improved methods of
determining their values for associated systems at various composi-

tions would also be helpful.

Experimental

There is considerable room for improvement in this area.
To obtain ternary diffusion data, time-consuming calculations and
lengthy experimental work is required. Considerable error is
introduced in the method of calculations which uses the slopes and
intercepts from a plot of slopes from other curves and involves
differences of small numbers in the same order of magnitude.
Improved techniques in taking measurements from the photographic
plates are also desirable. The improvement in the experimental
area of multicomponent diffusion is not needed so much in the
apparatus but rather in the application of the apparatus.

It seems almost ludicrous to speak of development in
experimental techniques with quaternary systems when the techniques
in ternary systems are not yet well developed, but such data could
be extremely useful in checking the hydrodynamic predictions
presented in this study for higher order systems. Activity data
are a very limiting factor in multicomponent diffusion since they
are required and yet are not sufficiently available. In the last
few years, more and more ternary data have become available and
even some quaternary data have been reported. However, most of
these are not collected at constant temperature but rather at

constant pressure. It is suggested that careful consideration be
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given to the systems chosen before any experimental diffusion work
is performed to see that adequate activity data are available. It
would of course be convenient if activity data could be collected

in conjunction with the multicomponent diffusion studies.



APPENDIX I

Determination of Friction Coefficients

The crux of the hydrodynamic method is obtaining reliable

values of the friction coefficients, o

For the non-associating

case, these can be obtained directly by tracer techniques.

In tracer diffusion, the concentration is uniform throughout

the system and, as a result, the velocities of all reference planes

relative to fixed coordinates are zero. That is

Thus, equation 16 reduces to

* C* Bu*
N S S
i 1 ofn axX
i

where the superscript * refers to the tagged species.

(I-1)

(1-2)

Substituting

for chemical potential from equation 37, equation I-2 becomes

*
dln a.
i

RT
n 9x

e e ok

which can be rearranged to give

*

*
% RT 41ln a, 3C,
i

J B = -
1

3|

*
Oin dln C, 9x

.
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(I-3)

(1-4)
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The tracer diffusion coefficient which is measured is defined by

%* *
J., = -D, — (I-5)
1 1

Therefore, by comparing equations I-4 and I-5, the measured diffusion

*
coefficient Di is

*

% RT 9ln a,

D, = —(/—

* (I-6)
oin 9ln C

e sk

If we make the reasonable assumption that the physical properties of

the labeled species are the same as the unlabeled species, then

o = 0, (1-7)

For the case of tracer diffusion,

*

dln a,
= 1 (1-8)

%I

dln C,

H

Therefore, from equations I-6 and I-8

" RT
Di = @ (1I-9)
and hence
D*n
o, = i (1-10)
RT

Thus, by tagging each component separately and keeping the concentra-

tions the same as those at which diffusion coefficients, D_,, are

13
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measured, all of the friction coefficients can be determined. If there
are N components, N tracer runs would of course be required to obtain
the N friction coefficients.

If tagged species are not available, reasonable values of
the friction coefficients can be obtained from the infinitely dilute
mutual diffusion coefficients of the binaries and the self diffusion
coefficients of the binaries and the self diffusion coefficients of

the pure components. Hartley and Crank27 and others have shown that

X X dln a

RT | "A B A
D = —|—=+ —=| — (I-11)
AB n OB UA dln XA

where DAB is the mutual diffusion coefficient. of the A-B binary. At

infinite dilution of component A, equation I-11 becomes

o RT
D - (I-12)
AB OAnB
and therefore
RT
OA = D° (I-13)
AB"B

where DZB is the mutual diffusion coefficient of the A-B binary at

infinite dilution of A and g is the viscosity of pure B. In a

ternary system, two such values of o, can be obtained from the A-B

and A-C binaries; similarly, for 9 and O

Another value of the friction coefficient can be obtained

from the self diffusion coefficient, D,, of the pure component.

i

Again, Hartley and Crank27 and others have shown that
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(I-14)

In summary, if self diffusiom data and binary data at
infinite dilution in each component are available, several values for
each oi can be obtained. These values will be reasonably constant if
the friction coefficient is independent of the other species present.

A reasonable value of oy is therefore a weighted avérage based on

mole fraction. Thus,

RT N RT
Oi, pred. = Dini + jzl Do n Xj i=1, ..., N (1I-15)
i3]
j#i
where o, is the predicted friction coefficient.
i,pred.

Determination of Oi in associated systems has been described

by Wirth47. This method also involves tracer techniques.



APPENDIX II

Solution to the Ternary Diffusion Equations and the

Experimental Determination of the Diffusion Coefficients22

Solution to the Diffusion Equations

The flow equations for a ternary system can be obtained from

equation 26. They are repeated here for convenience.

1 2
J, = -D ., ——-D , B —=
1 11 12
(1I1-1)
P B
2 21 22

To obtain the equations for one-dimensional diffusion in a three-
component system, it is first assumed that the diffusion coefficients
are all independent of concentration and and that no volume change
occurs on mixing. These conditions can be approached experimentally
by keeping the concentration differences across the initial boundary
sufficiently small. By making a material balance on a differential
volume element of the diffusion solution, the desired relations are

then obtained. These are

oC SZC 82C
1, 2, 2%
St 11 3x2 12 3x2

(11-2)
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’C, a%c a’c,
— = Dby Tz T Py (11-2)
ot X X

in which Cl and C2 are the concentrations of any two components and

are functions of position x and time t. Dll and D22 are the main dif-
fusion coefficients which are generally on the order of mutual diffusion
coefficients in binaries, and D12 and D21 are the cross-term diffusion
coefficients which are considerably smaller than the main coefficients.
For free diffusion a sharp boundary is formed at t = 0 between solutions

A and B which are above and below respectively the position x = 0. As

a result, the initial conditions for the two components (i = 1,2) are

cC. = C, - 1uCc./2 x>0, t=0
1 1 1
- (11-3)
C. = C, + aC.,/2 x <0, t=20
i i i
and the boundary conditions are
c. > C, - AC./2 X >4o, t >0
1 1 1
_ (I1-4)
C, » C, + aC./2 X > =, t >0
i i i

Here E; is the mean concentration of each component and ACi is the con-
centration difference of each component across the diffusing boundary.

They are defined as follows

c, = i (1I-5)

(1I1-6)

It is well known that under these initial and boundary

conditions, a new variable, y, may be introduced to reduce equations
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II-2 to a set of ordinary differential equations. The new variable y

is given by

X
= — (11-7)
(2vt )
and the set of ordinary differential equations obtained is
dc dzc d2C
_Zy—l=Dll_21+D12_2——2
dy dy d’y
(11-8)
dc a%c a’c
'zy—2=D21'Tl+D22_22
dy dy dy
In addition, equations II-4 - II-6 reduce to
AC,
c. -~ Ei - 1 y » to
* 2
(I1-9)
AC
C. > C. + —j_. y > -
i i 9

The details in solving equations II-8 and II-9 for the con-
centrations of the components are given by Fujita and Gosting.22 The

desired exact solutions which they obtained are

+ i
c, = cl+1<lq>(/§ y) +K1<1>(/5j ¥)
(1I-10)
pa— + —
C, = C, +Ko(/o, y) +Ke(/o_y)
in which
2 q _2
o(q) = — [e % dq (11-11)
/10
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and where
o =4%|H+E+ [(H )%+ AFG] &
+ (II-12)
- 2 s
o =%|H+E- [(H—E)+4FG

(o, - E)A, - FLC (o_ - E)AC; - FAC

2 - 2
K, = K. =
1 2(°,-°9) 1 2(0_-0)
(11-13)
- - - H)AC, - GAC
o (o, - H)AC, - GACy i (o_ JAC, - GAC,
2 2(0+ -0)) 2 2(0_ - 0+)
and
D D D D
E = 11 .G = 21 . om - 22 . F = 12 (11-14)
|D, | | D, ] |Dy 4] | Dyl
ij J h| J
;Dij| = DllD22 - D12D21 (II-15)

It should be noted that the equations for each component concentration
are a linear combination of two probability integrals plus a constant
term, with the characteristic of each term depending on ACl, ACZ’ and
the four diffusion coefficients.

Determination of Diffusion Coefficients

In order to derive equations applicable to experimental
techniques utilizing optical methods for studying free diffusion, it
is assumed that the dependence of refractive index, n, on the two
independent concentrations can be represented by the first three terms

of a Taylor series. That is,

n = n_ + R,(C- Cl) + Ry(C, - C (I1-16)

)
C 2
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where R1 and R2 are the differential refractive index increments

defined by

. [an(cl,cz)]
1 9Cy T,P,C

2 p—
€;=C» ¢ =6y

(II-17)
- [an(cl,cz)]
2 9C, T,P,C

and n_ is the refractive index of a solution in which the solute con-
C

centrations are Ei and Eé. Rl and R2 are assumed to be independent of

concentration. Again, selecting small initial concentration differences

1 _ = _
C;=C1»Cy =6y

ol

justified this assumption. It follows from equation II-16 that the

total change in refractive index across the boundary may be written as

on = R_AC, + R,AC

18C4 248G, (1I1-18)

For convenience component fractions on the basis of refractive index are

defined by

R.AC,
¢ = —2x_ 1 (I1-19)
Z RiACi
1

It therefore follows from equation II-18 and II-19 that

g a, = 1 (I1-20)
For optical methods, it is desired to obtain the refractive

index, n, as a function of x and t. This can be done by substituting
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equations II-10 into equation II-16. The desired refractive index

distribution expression which results is then

n=n +28|r /5 y) +T oo v) (I1-21)
ol 2 + + - -
where
_ 2 + +
T = o Re¥p + RyKY)
(11-22)
I = = (RK + RKD
- An 11 272
From the defining equations for F+ and T_, it can be shown that
r, +r_ =1 (11-23)
The reduced height-area ratio is defined by
(an)?
D, = (11-24)

e[

Substitution of the maximum value of the first derivative of equation

2
max
II-21 into equation II-24 yields

= /o, + T /o (11-25)

+ 7+ -

3 -
>

Substituting equations II-13 into equations II-22 and making use of the

relation @ + a, = 1, equation II-13 becomes
1
75: = IA + SAal (1I1-26)
A
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where

H+ (R,/R)F - E - (R,/R.)G
s - 178, 2Ry (11-27)
A /o, + Vo

Vo+o + E - (Rl/RZ)F
I, = - (I1-28)
A /z+/c_

Thus a plot of l//ﬁz versus o, should produce a straight line with

slope SA and intercept IA at a, = 0. Another useful relation is the
intercept at al = 1. This intercept, call it LA’ is given by
vo+o_ + H - (RZ/Rl)G
LA = IA + SA = (11-29)
Vo+ + Vo_

It should be pointed out that equation II-26 gives two

equations involving the four unknowns D , and D2 since E,

11° P12° Do1 2

F, G, H, s and 0_ are expressions involving only the four diffusion
coefficients. Rl and R2 can be experimentally determined. Therefore
the slope, SA’ and intercept, IA, are functions of the diffusion
coefficients and Rl and R2.

Obviously, two more independent equations involving the
diffusion coefficients are necessary. These can be found from the
reduced second moment of the refractive index gradient curves.

th
The r  moment of the refractive index gradient curve,

(an/ax)t versus x, is defined by

m o= — | xF %3) dx r=0,1,2,... (11-30)
-00 t
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and the reduced rth moment, Drm’ is defined by

m
D = L (II-31)
rm 2t

Differentiation of equation II-16 with respect to x and sub-
stitution of the result into equation II-30 yields
2 +oo aC
m o= = ) R [ £ (—1) dx (11-32)
An | i
i=1 t

r ox

=00

. . t .
To facilitate the derivation, an r h moment of each concentration

gradient curve is defined as follows:

Ri }m r aCi
(m)., = — X (———) dx (I1-33)
r'i An o 9x ¢
so that
m_ + mo, = m (I1-34)

It should be emphasized that only m is a measurable quantity however.
Now differentiating equation II-33 with respect to time and

then inverting the order of differentiation with respect to t and x

gives
d(m_) R, += oC
—ri _ i / N2 I e § dx (1I-35)
9xX \ot
dt An - XJ .

These operations are permissible whenever the derivatives,

11,29
E(sci/ac)x/ax] ¢ and E(aci/ax)t/agj < 2re both continuous. By
means of the continuity equation for a constant volume system, which

says that
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oC, oJ
1 = _|—1 (II-36)
ot N 9xX ¢

the fluxes Ji can be introduced. Substituting equation II-36 into

equation II-35 and integrating once the right hand side by parts, gives

d(m ). rR, +o _ [
r’i _ Lo ¥ 1 (5;% dx (II-37)
dt bn - * /e

since for free diffusion, (8Ji/ax)t is zero at the limits x = *«,
Remembering that Ji is also zero at x = *», another integration by

parts gives

d(m ), r(r - 1)R, +=
—r: _ _ 1 i xr-z J. dx (11-38)
dt An - +

Recalling the assumption that the diffusion coefficients are indepen-
dent of concentration, we now substitute equation II-1 into equation
II-38 and integrate the resulting equations to obtain expressions for

the moments.

d(m ), r(r - )R, 2 + aC.
ri_ i Di' [ r-2 (ETJ) dx
dt An =1 e * e
(1I-39)
2
=r(r - 1) jZl(Ri/Rj) D, (Mr_z)j

This equation is seen to be a recursion formula relating the time
derivative of any evenlmoment (r) to a sum of the next lower (r - 2)
even moments, and the time derivative of any odd moment to a sum of
the next lower odd moments. Obviously its use depends on determining

values for (mo)j and (ml)j.
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Integration of equation II-33 for r = 0 and substitution of

equation II-19 gives an expression for (mo)j.

(m), = oa, (11-40)

Remembering that Jj = 0 at x = t», integration of equation II-38 for

r = 1 gives

d(m,),
i . (1I-41)
dt

indicating that the first moment of each concentration gradient curve
is zero. Since it doesn't change with time, the first moment must
correspond with the position of the initially sharp boundary. In our
experiments the origin (x = 0) is chosen as the position of the

initially sharp boundary, therefore

(m)), = 0 (I1-42)

The fact that (ml)j = 0 means that all the odd moments are zero; hence,
as long as the diffusion coefficients, Dij’ and the refractive index
increments, Ri’ are independent of concentration, the refractive index
gradient curve should be symmetrical about the position of the sharp
initial boundary. This is indicated for a typical run in Figure 15
of Appendix VI.

Expressions for the even moments can be obtained from
equation II-39. Substituting equation II-40 and r = 2 gives the

second moment expression of component j.

(m )Di a, i=1,2 (11-43)

2
2)i = 2t Z (R;/R Ky

=1 1
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Expanding equation II-43 and substituting equation II-34 gives the

relation

R R

- 2 1 -
m, = 2t [(Dll + R, Dydoy + (D, + R, Dlz)az] (II-44)

Utilizing equation II-20 and rearranging, equation II-44 becomes
(I1I-45)

where D2m is by definition the reduced second moment and the slope,

SZm’ and intercept, I2m’ are

R2 Rl
S T P TR P21 7 P22 TR, P12 (11-46)
Rl
IZm = D22 + ngz (I1-47)
The intercept at a; = 1, L2m is given by
L2m = I2m + S2m = Dll + (RZ/Rl)DZI (11-48)
Equation II-45 indicates that a plot of D2m versus o,

should give a straight line with the slope, SZm’ and the intercepts

at o, = 0, IZm’ and at o

1 =1, L2m’ all being functions of the

1
diffusion coefficients. Therefore, if at least two experimental runs
are made at the same average concentration but with different

initial concentration differences, values of the slopes and intercepts
from plots of l//ﬁ; versus o. and D o Versus a would enable deter-

1 2 1
mination of the diffusion coefficients.
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It is desired to obtain expressions for the diffusion
coefficients in closed form in terms of the slopes and intercepts.

First of all, from equations II-27 and II-48 we can obtain the

relation
2
|Dijl (D + Dy, + 2J|Dij|) - (8, /5,)" =0 (11-49)
where |Dij| = det Dy = D10y = Dyplyy

Similarly, combining equations II-27, II-28, II-47, and II-48 gives

D,y D,y =1, = IA(S2m/SA) - /|Dij| (11-50)

Elimination of (D11 + D22) from equations II-49 and II-50 leads to a
cubic equation in VIDijl from which ‘Dijl can be determined either

numerically or graphically., This cubic equation is

W1 [1 - 1,(5,,/8) | (/1D - (s, /807 =0 (II-51)

Also combination of equations II-47 and II-48 with the definition of
|Dij| gives

I b+ L D _ = |D | + I L (I1-52)
2m 11 2m 22 ij 2m 2m

The value of ]Dijl is known from equation II-51, therefore D,; and D,,
can be obtained from the linear equations II-50 and II-52 to yield

/s

+
D41+ Lo/ TP441 + LonlaSom (11-53)

1 - S

2m
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IDijl + IZm ‘Dijl + I2mLASZm/SA

Dy, = S

(11-54)
2m

Substitution of these expressions for D11 and D22 into equations II-47

and II-48 permit the evaluation of D12 and D21 respectively.

R

- 2 _ _
D, = R, (I, - D,,) (II-55)
Ry
D)y = & @y =~ Dyyp) (I1-56)



APPENDIX III
Determination of Activity Expressions aui/BCj

It was shown previously that for a ternary system there are
four terms of the type Bui/BCj that are required to determine the

diffusion coefficients Dij and to check the Onsager reciprocal

relation with Miller's33’34 condition., These are
du 3ln vy 1 1 v
1 -RT | —2| +Rrr|—-—]1--2 (III-1)
aC aC C C =
1), 1), 1 T v,
2 2
du 9ln vy 1 V.
1 - T | —2 _RT| —|1--2 (111-2)
aC 3C C =
2)q 2 ) T Vs )
1 1
au 31ln vy 1 v
2| - gr 2l _grr|—|1--2 (I1I-3)
3C; aC; Cr v
! )
‘c, c, 3
auz* 31n v, 1 1 VZ
— =Rl |——| +RT|—-+—|1-—= (I11-4)
3C a3C C C =
2)¢ 2 ), 2 T v,
1 1

It is obvious that in order to obtain expressions for aui/acj, expres-
sions for 91ln yi/BCj are required. Most activity data can be correlated

in terms of In Y; SO that the latter expressions can be obtained.
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Dodecane (1) - Hexadecane (2) - Hexane (3) - This system was
fitted to the ternary Van Laar equations using the binary Van Laar
constants Aij and Bijo Binary activity data for the systems hexane-
dodecane and hexane-hexadecane were available.4 To obtain the constants
used in the Van Laar equations, only data on two binaries are needed

since the following relations between the constants apply.

1
Ai' = A i,j = 1,2,3; i#j (I11I-5)
J ji
Aii = 1 (I11-6)
VBij = - VBjiAij i,j = 1,2,3; i#j (111-7)
B B B
2202 A2 - o (111-8)
12 22 32
Aik
Aij = A i,j,k = 1,2,3; i#j#k (III-9)
jk

From the binaries, values for A and B are obtained. Care must be taken
to designate the right subscripts to A and B. As a check, the sub-
scripts can be determined in the correct order if the relative magni-
tudes of the Van der Waals' constants, a and b, are known. For
example, if the relative magnitude of bi/bj and A are greater than
unity, then the subscripts are ij. The corresponding B value obtained
in binary Van Laar fit is then assigned the same subscripts.
The ternary equations used are
(C3C

2
13 T Cohy3Cq))

(C1A13 + 03 + C2A23

Tlny, =- (I1I-10)

)2



122

2
(C,A,.C.. + C.C...)

T ln Y. = - 1713721 3723 (111-11)
(CiA 5 + Cq + CA

)2
13 3 2723

where Ci is the concentration of component i, and Aij and Cij are
constants. The Cij are defined in terms of the binary Bij as follows

C;y = or /'Ej- (111-12)
It was found for this case that all the binary B values were negative
which when substituted into the ternary Van Laar equations 164 yielded
a factor of iz, where i is the imaginary index, in the numerator. This
explains the minus sign in equations III-10 and III-11,

In the case of the value of B, it should also be noted that
it occurs in the multicomponent equation as a square root, and this
immediately raises the question of whether the value is positive or
negative. This question can be answered on the basis of the relative
magnitudes of JZ;/bi where a and b are Van der Waals constants. If,
for example, (/;;]bi - /;;7bj) is positive, then /EI; is taken as
positive and /EEI as negative. The term /Z;/bi corresponds to the
square root internal pressure of the liquid. Thus polar compounds
which have high internal pressures would be expected to have high
values of this group, while compounds of low polarity would be
expected to have low values. From the tabulation of as, bi and /;;/bi
listed in Table 18 of Appendix VI for various hydrocarbons, it can
be seen that ai increases, bi increases, and /Z;/bi decreases as the

carbon number increases. These observations were used in determining
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the sign of Cij° The values of Aij and Cij are given in Table 19 also
in Appendix VI,

To obtain equations III-1 - III-4, the partial derivatives of
equations III-10 and III-1l must be taken with respect to Cl at
constant C, and with respect to C, at constant C,. These, after sim-

2 2 1

plification and use of equation 34, are

dln Yl 2(C3C13 + C2A23012) Vl
Tl—5—| = 2| ‘13 =
1 C2 (C1A13 + C3 + C2A23) V3
(I11-13)
A RN B e £ }
1375 | Tl 7 G ¥ k)
1o vy 2(C3Cy3 + Cyhp3Cyp)
T175c B 2 | P23%12
2 C (C1A13 + C3 + C2A23)
1 (I1I-14)
vo 2, o V2] C%s * GAa%))
SR R ICUPE T

8C2 8Cl

3ln vy 9ln Yo
Expressions for T | —/—— and T | —/——— can be obtained from
o1 €,
equations III-12 and III-13 respectively by interchanging subscripts

1 and 2.

Diethyl Ether (1) - Chloroform (2) - Carbon Tetrachloride (3) -
For this system, the model of Wirth47 and Andersonl’2 which assumes
that ether and chloroform form a 1:1 complex was used. The model says

that only four species exist in solution: the monomers (unassociated

species) of ether and chloroform, the inert species CCla, and the
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ether-chloroform dimer. These four form an ideal mixture; thus,
according to the model, any non-ideality of this system is attributed
to the association of ether and chloroform with each other.

It was shown previously that

a = X

A 1
aB = X2
(92)
a; = X4
a1 = ¥y,

where the subscripts A, B, C refer to the stoichiometric quantities
of ether, chloroform, and carbon tetrachloride respectively and the
sub-scripts 1, 2, 3, and 12 refer to the actual species present.
Therefore it is desired to obtain expressions for the mole fractions
of the actual species in terms of the stoichiometric concentrations.
This would enable the determination of the 351ln ai/aCj expressions.
The equilibrium constant for the association reaction is

given by
K = —%= (III-15)

Wirth47 found K = 2.73.

Because of stoichiometry, the following relations exist,

CA = C1 + C12

C = C, + C (I11-16)






and from these,

in terms of the

12

Defining Xiz as

o
X12 -
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the mole fractions of the actual species can be found

stoichiometric quantities.

‘1

We have

C1 + C2 + C3 + C12

¢, Cg ~ C1
Cl + C2 + C3 + Clz CA + CB + CC - C12
c, C

Cl + C2 + C3 + C12

12
c, +Cc, +C, -C

follows

C12

CA + CB + C

C

Equations III-17 become

Xy~ X1
o]
1 - x3,
(o]
Xp ~ Xy,
(o]
1 - x,
X
(o]
1 - X7,
(o]
X12
1 -3x°

(I11-17)

(I11-18)

(I11-19)
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With these substitutions, equation III-15 becomes

(o] (o]
x° (1 - x°))
K = 12 12 (1I1-20)

(o] (o]
(X, - X)) (X - Xp))

which can be used to eliminate X’ in equations III-19 to give

12
< - (2XA - 1) + K(ZXA + XC -1) + 9
1 I+K(XC+1)+¢
< - (2XB -1) + K(ZXB + XC -1) + 9
2 l+K(XC+1)+d>
(II1-21)
2X (K + 1)
X, = ¢
3 1+K(XC+1)+<I>
1+K(1-X)-2¢
X,, = £
12 1+ K(XC + 1) + 9o
where
1
2 2
6 = ﬁg(l - X) + 1) - 4K XK + 1ﬁ (111-22)

Notice that if K = 0 (i.e., no association), ¢ 1 and equations III-21

reduce to X, = X,, X, = X, X3 = X, and X;, = 0.

In terms of stoichiometric concentrations, Xl and X2 become

i (ch - cT) + K(cA - cB) + ¥
1 cT + K(cT + cC) + vy

(11I-23)
i (ch - CT) + K(cB - CA) + ¥
2 cT + K(cT + cc) + vy
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4
2
where Yy = l:E((CT - CC) + CTJ - ACACBK(K + l)J
Therefore
3ln a 1 (oK v .
A 1 A
=— |==| = + = +
{ 5C X ac,] (L+=+K+¥))
B 1 A . \
CB CB C
(I1I-24)
VA VA ! 2
-|2C, -~ Cp +K(C, - Cp) + ¥ 1-—=+K1-2— +vy [|/&})
\ \Y
C C
9ln a 1 [ 9X V. .
Y I R Y (-1 + = - K + v.)2
aC X aC - B
B 1 B \'
CA CA C
(III-25)
Vﬁ V£ ! 2
—ZCA—CT+K(CA—CB)+‘{’ l—v—+Kl—2€— +‘¥B /(Xl)\)
C C
where
A= CT + K(CT + CC) + v (II1-26)
, Y \ l ( — VA
VY = |—— = — - - — -
A 3CA 7y 2 [K(CT CC) + CT] x |[K+1 v 4CBK(1 + K)
), .
Cs ¢ (111-27)
' oY ) 1 B VB
‘PB = ﬁ = 7% 2 [K(CT - CC) + CT] x [K+ 1 - v— - 4CAK(1 + K)
x c, k - c (I1I-28)
dln aB 9ln a
The and |———— are the same as equations III-24 and
aC aC
| B CA A CB

III-25 respectively except that every A is replaced by B and vice versa.
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Acetone (1) - Benzene (2) - Carbon Tetrachloride (3) - This
system was fitted to Wohl's ternary equations using binary constants
Aij and a ternary constant Cijk obtained from the binaries.50 The

ternary expressions for 1ln Y1 and 1ln Y, are given by equations 165

and 166. The respective partial derivatives of 1n , are
oln v 1 v.) c.V
Y I 2 o1 _ _ 31
3c, ] = [C3] Cy {AIZ 1 + 208y, AlZ{] 2= [A13CT +
C T 3" 3
2
+ 20 (. - A +c2|a - " + 2(Ay, - AlL)
131 13 3( 713 7 31 T 713
3
Vi
+C,Cy [(A21 + Apy - Ay (1 - 57) + 2(Ay; - Ap,) (11I-29)
v v c.V
-1 - A .21 -
2(— ) (B39 = Ay3) + Cpyy (1 t = )] = [CT(AZl t A3 - Agy)
V3 Vs V3

3. lnyl Vl
+2C)(Ag) = A)p) + 265(A3, = Ay0) - € oa(Cp - 20| - —3 (l - —-)
c v
T 3
oln v, 1 v
= = |—| |2c, |A,.C. + 2C.(A., - A +ca -2
3¢ 3 2 |#A12%7 1891 ~ Ay 2812 -
2 c v
c T 3
1
(11I-30)
v 2C.V
2 2 3V2
+ - cumem —_ —— -
C3by5 @ V') = [AlBCT + 2, (ay; A13)]

3 3
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V2 V2 Y
* 0% [(AZI t A3 T Ay (l - ——) 227 (Agp = Byy) - 0123(1 - -T)
N v \'
3 3 3
Vé
+ I:C3 - C2 _V— [CT(AZI + A13 A32) + 2C1(A31 - A13) (I11-30)
3
3 1n Yy Vé
T 20383y ~ Ayy) = Cpp3(Cp - 20PN - —g— |1 - =
C \
T 3
3ln Y, 3ln Yo
Similar expressions can be obtained for TR and
2 C1 C2

by taking the appropriate partial derivatives of equation 165.
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APPENDIX IV

Fortran Program to Calculate the Reduced Second Moment, D2m

This program obtains the refractive index gradient curve
for each exposure and from this calculates the number of fringes, J,

the centroid, x , and the second moment, m Using these values

c,m 2°

of m, and the measured time for each exposure, the reduced second

2

moment, D2m’ and time correction, t , are calculated. The tan-

corr.
gent method is used at the ends of each exposure to obtain the refrac-
tive index gradients while the difference between fringes 1is employed
in the center regiomns.

The gradients in the center regions are fitted to a
quadratic, AX2 + BX + C, in an attempt to obtain the best maximum.
By obtaining a smooth curve by the least squares technique, it is
thought that a more reliable maximum can be obtained. It was found
that extensive scatter would give unreliable maxima by this tech-
nique but would not affect the values of x calculated at which the
maxima actually occur.

Areas under curves were obtained by summing the areas
calculated under various regions of the curves. At each end of the

curve, the points were fitted to a quadratic and the area obtained

by integrating the resulting quadratic equation. In the center
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region, the area was obtained by using the trapezoidal rule between

each adjacent point. This latter technique was very reasonable since

the points were so close together in this region. Calculated areas

agreed very well with those obtained graphically.

Loading, fortran evaluation, and set-up on the Control

Data Corporation'’s 3600 computer require approximately 45 seconds

for this program. Execution time for one run with an average of 5

exposures per run is approximately 3 seconds. Thus in one minute,

the computer is capable of calculating 5 runs.

[eNeoNoNoNoNoNoNoNoNesNeoNoNe!

LA ]

o B

10
11
12

Fortran Program for CDC 3600

PROGRAM CALCD2M

DIMENSION RUN(20),DN(100),X(100),Y(100),T(15),SECMOM(15),D2M(15),
1XR (100),XL(100) ,THETA(100) ,RAD(100) ,BETA(100) ,XN2(100) ,XM(100)
CONST = THE MAGNIFICATION FACTOR. FOR THIS CASE IT IS = 1.923
NRUNS = THE NUMBER OF PLATES EVALUATED

J = THE NUMBER OF EXPOSURES EVALUATED

T = THE EXPERIMENTALLY MEASURED TIME IN SECONDS WHICH HAS PASSED
UP TO THE PARTICULAR EXPOSURE BEING EVALUATED

M = THE NUMBER OF DATA POINTS FOR THE PARTICULAR EXPOSURE EVALUATED
DN = THE DERIVATIVE OF THE REFRACTIVE INDEX WITH RESPECT TO THE
MEASURED DISTANCE.

DELN = THE TOTAL REFRACTIVE INDEX CHANGE, CALCULATED NUMERICALLY,
ACROSS THE BOUNDARY

XCENT = THE CENTROID OF THE REFRACTIVE INDEX GRADIENT CURVE. IT
IS = THE FIRST MOMENT OF THE CURVE

SECMOM = THE SECOND MOMENT OF THE REFRACTIVE INDEX GRADIENT CURVE
FORMAT (8F10.5)

FORMAT (I3)

FORMAT (*-*,*THE NUMERICALLY INTEGRATED VALUE FOR THE TOTAL REFRAC
1TIVE INDEX CHANGE ACROSS THE BOUNDARY IS -%*)

FORMAT (*0*,30X, E13.7)

FORMAT (F10.4)

FORMAT (*0*,*THE CALCULATED CENTROID OF THE GRADIENT OF THE REFRAC
1TIVE INDEX CURVE IS -%)

FORMAT (*0*, *SECOND MOMENT*, 5X, *TIME IN SECONDS*,10X,*D2M*)
FORMAT (*0*, E13.7, 6X, F10.4, 10X, E13.7)

FORMAT (*0*,*THE RESULTS OF THE LEAST SQUARES ANALYSIS ARE -%)
FORMAT (*0*,5X,*D2M*,17X,*INTERCEPT*,10X,*ACTUAL INITIAL TIME%*)



13
14
15
16
17
18
19
101
102
103
1000
1001

35

36

37

70

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
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(%0*,E16.9,5X,E16.9,15X,F10.4)

(%1% ,*HERE ARE THE RESULTS FOR RUN NO. 21 4)
(10F5.3)

(* *,E13.6,2X,E13.6,8X,E13.6)

(* *,5X,%X*, 14X, *DN/DX*,6X,*((X - XCENT)XX2 X DN/DX)*)
(%0%,5X, *XMAX*, 9X, *MAX DN/DX*)

(*0*,2X, E13.6, 2X, E13.6)

(1615)

(314)

(2F10.7)

(*0%,5X,* A *,10X,* B *,10X,* C *)
(*0*,1X,E13.6,2X,E13.6,2X,E13.6)

READ 5, CONST
READ 2, NRUNS

READ 101, (RUN(I), I = 1,NRUNS)
DO 40 NO = 1, NRUNS
PRINT 14, RUN(NO)

READ 2, J

READ 2, NSQ

READ 103, CONV1, CONV2
DO 20 L = 1,J

READ 5, T(L)

READ 102, N1, N2, N3
M=DNL+N2+N3-1

ML =M-1

READ 1, (X(I), I = 1,N1)
READ 1, (THETA(I), I = 1,N1)
READ 1, (XN2(I), I = 1,N2)
READ 1, (BETA(I), I = 1,N2)

READ 1, (XM(I), I = 1,N3)
DO 35 II = 1,N2

III

=Nl +N3 -1+1I

THETA(III) = BETA(II)
RAD(III) = THETA(III) * 3.1416/180

DN(III
X(I1I)

)

= TANF (RAD(III))/CONV2
= XN2(II)

DO 36 16 = 2,N3
N=Nl+1I6-1
= 1.0/ (XM(1I6) - XM(I6 - 1))

DN(N)
X(N) =

(XM(1I6) + XM(I6 - 1))/2.0

DO 37 IIl = 1,N1
RAD(III) = THETA(III) * 3.1416/180

DN(II1) = TANF(RAD(II1l))/CONV1l
DO 70 I7 = 1,M
Y(I7) = DN(I7)
M2 =M-2% (NSQ - 1)
NSQ2 = 2 * (NSQ - 1)
NSQ3 =M-4% (NSQ -1) +1
= 0.0
= 0.0
SXY 0.0
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31

32

60

20
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SX2 = 0.0

SX3 = 0.0

SX4 = 0.0

SYX2 = 0.0

DO 80 J4 = NSQ2, M2
SX = SX + X(J4)

SY = SY + Y(J4)

SXY = SXY + X(J4) * Y(J4)
SX2 = SX2 + X(J&)**2
SX3 = SX3 + X(J4)**3
SX4 = SX4 + X(J4&)*%4

SYX2 = SYX2 + Y(J4) * X(J&)**2

DET =NSQ3*SX2*SX4 - SX**2%SX4 -NSQ3*SX3%%2 — SX2%*3 + 2,0%SX3*SX2%
18X

A = (SYX2*(NSQ3*SX2- SX**2) - SX3*(NSQ3*SXY- SX*SY) + SX2*(SXY*SX
1-SX2*SY)) /DET

B = (SX4*(NSQ3*SXY- SX*SY) - SYX2*(NSQ3*SX3- SX2%SX) + SX2* (SY*SX3
1 - SX2%SXY))/DET

C = (SX4*(SX2*%SY - SX*SXY) - SX3*(SX3*SY- SXY*SX2) + SYX2*(SX3*SX
1 - SX2%*2))/DET

XMAX = -B/(2 * A)

YMAX = A * XMAX**2 + B * XMAX + C

PRINT 1000

PRINT 1001, A, B, C

PRINT 18

PRINT 19, XMAX, YMAX

CALL AREANUM (X,XR,XL,Y,AREA,NSQ,M,M6,A,SX,SY,SX2,SX3,5X4,
1SYX2,DET,B,C,J1,M1,J3,NSQL)

DELN = ARFA

PRINT 3

PRINT 4, DELN

DO 31 I2 = 1,M

Y(I2) = X(I2) * DN(I2)

CALL AREANUM (X,XR,XL,Y,AREA,NSQ,M,M6,A,SX,SY,SX2,SX3,SX4,
1SYX2,DET,B,C,J1,M1,J3,NSQl)

XCENT = AREA/DELN

PRINT 6

PRINT 4, XCENT

DO 32 I3 = 1,M

Y(I3) = (X(I3) - XCENT)**2 % DN(I3)

PRINT 17

DO 60 I9 = 1,M

PRINT 16, X(I9), DN(I9), Y(I9)

CALL AREANUM (X,XR,XL,Y,AREA,NSQ,M,M6,A,SX,SY,SX2,SX3,SX4,
1sYX2,DET,B,C,J1,M1,J3,NSQl)

SECMOM(L) = AREA/(CONST*%2 * DELN)

D2M(L) = SECMOM(L)/(2.0 * T(L))

CONTINUE

PRINT 9

DO 33 14 = 1,J
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33  PRINT 10, SECMOM(I4), T(I4), D2M(I4)

SX = 0.0

SY = 0.0

SZ = 0.0

SXY = 0.0

DO 34 I5 =1,J

SX = 8X + T(IS)

SY = SY + SECMOM(I5)/2.0
SZ = SZ + T(I5)**2

34  SXY = SXY + T(I5) * SECMOM(I5)/2.0
SLOPE = (SX *SY - J *SXY)/(SX*%2 - J * SZz)
CEPT = (SY - SLOPE * SX)/J
TINIT = -CEPT/SLOPE
PRINT 11
PRINT 12
PRINT 13, SLOPE, CEPT, TINIT
40  CONTINUE
END
SUBROUTINE AREANUM (X,XR,XL,Y,AREA,NSQ,M,M6,A,SX,SY,SX2,SX3,SX4,
1SYx2,DET,B,C,J1,M1,J3,NSQl)
DIMENSION X(100), XR(100), XL(100), Y(100)

AREA = 0.0
NSQl = NSQ -
DO 100 I = NSQ

100 XL(I) = X(I) - X(1)
M6 = M - NSQ
DO 110 I = M6,M

110 XR(I) = X(M) - X(I)

= Y(2)/XL(2)**2
AREA = AREA + (A/3.0)*XL(2)**3
= Y(M-1) /XR(M-1)**2

AREA = AREA + (A/3.0)*XR(M-1)**3
SX = 0.0
SY = 0.0
SXY
$X2
SX3
SX4
SYX2 = 0.0
DO 200 J2 = 2,NSQ
SX = SX + X(J2)
SY = SY + Y(J2)

0.0
0.0
0.0
0.0

o
o
o

| |

SXY = SXY + X(J2) * Y(J2)
SX2 = SX2 + X(J2)*%*2
SX3 = SX3 + X(J2)**3
SX4 = SX4 + X(J2)**4

200 SYX2 = SYX2 + Y(J2) * X(J2)**2
DET = NSQl*SX2*SX4 - SX**2%SX4 -NSQl*SX3*%%2 - SX2%%3 + 2.0*%SX3%SX2*
1SX
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A = (SYX2%(NSQ1*SX2- SX**2) - SX3%(NSQ1*SXY- SX#SY) + SX2*(SXY*SX
1-SX2*SY)) /DET
B = (SX4*(NSQ1*SXY- SX*SY) - SYX2*(NSQl*SX3- SX2*SX) + SX2*(SY*SX3
1 - SX2*SXY)) /DET
C = (SX4*(SX2%SY - SX*SXY) - SX3*(SX3*SY- SXY*SX2) + SYX2*(SX3#SX
1 - SX2%%2)) /DET

300 AREA = AREA + (A/3.0)*(X(NSQ - 1)**3 - X(2)**3) + (B/2.0)*(X(NSQ -
1 1)*%%2 - X(2)%*2) + C*(X(NSQ - 1) - X(2))

SX = 0.0

SY = 0.0

SXY = 0.0
SX2 = 0.0
SX3 = 0.0
SX4 = 0.0
SYX2 = 0.0

DO 700 I2 = 1,NSQl
J2 = M - NSQ + I2

SX = SX + XR(J2)

SY = SY + Y(J2)

SXY = SXY + XR(J2) * Y(J2)
SX2 = SX2 + XR(J2)#*%2

SX3 = SX3 + XR(J2)**3

SX4 = SX4 + XR(J2)**4

700 SYX2 = SYX2 + Y(J2) * XR(J2)#**2
DET =NSQl*SX2*SX4 - SX**2%SX4 — NSQL*SX3**2 — SX2%*3 + 2,0%SX3%SX2
1*SX
A = (SYX2*(NSQl*SX2- SX**2) - SX3%(NSQl*SXY- SX*SY) + SX2*(SXY*SX
1-SX2*SY)) /DET
B = (SX4*(NSQ1*SXY- SX*SY) - SYX2*(NSQl*SX3- SX2*SX) + SX2*(SY*SX3
1 - SX2*SXY))/DET
C = (SX4*(SX2*SY - SX*SXY) - SX3*(SX3*SY- SXY#SX2) + SYX2*(SX3*SX
1 - SX2%%*2))/DET
J1 = M- NSQ + 2
ML =M-1
AREA = AREA + (A/3.0)*(XR(J1)**3-XR(M1)**3) + (B/2.0)*(XR(J1)**2
1 - XR(M1)*%2) + C*(XR(J1) - XR(M1l))
J3=J1-1
DO 500 J = NSQ1,J3
500 AREA = AREA + (1.0/2.0)*(Y(J) + Y(J+1))*(X(J+1) - X(@J))
RETURN
END
'RUN, 1,1200



APPENDIX V
FORTRAN PROGRAM TO SOLVE FOR /lDijl

This program utilizes the Newton-Raphson method to obtain
a root to a polynomial and then factors this root by synthetic
division in a subroutine. A root to the resulting polynomial
(which is of one less degree than the previous) is again obtained
by the Newton-Raphson method and is factored out by synthetic
division. This is repeated until only a linear equation remains.

This program obtains only real roots. If both imaginary
and real roots are present, the real roots are determined first
and then the computer cycles until the designated time limit is
reached.

This program can be generalized to an Nth order polynomial
by simply reading in all the coefficients of the polynomial rather

than calculating them, as was done here for convenience.

Fortran Program for IBM 1800

// JOB
// FOR PRTS
*I0CS (CARD, 1443 PRINTER)
*NONPROCESS PROGRAM
DIMENSION A(50), B(50), C(50)
1 FORMAT (I2)
2 FORMAT (4E13.6)
3 FORMAT (' COEFFICIENTS OF POLYNOMIAL OF DEGREE 'l12,2X,'(STARTING
1WITH THE HIGHEST POWER OF X) ARE')

136
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4 FORMAT (5X, E13.6)

5  FORMAT ('0', ' ROOT NUMBER ' I2,1X, ' IS ' E13.6)
6  FORMAT (' NEW COEFFICIENTS AFTER DIVIDING OUT ABOVE ROOT ARE')
READ (2,1) N
NlL=N+1
READ (2,2) SA, CTA, S2M, CT2M
A(1l) = 1.0
A(2) = CT2M - CTA * S2M/SA
A(3) = 0.0
A(4) = —(S2M/SA)**2

WRITE (3,3) N
DO 14 I = 1,N1
14  WRITE (3,4) A(I)

c N IS DEGREE OF POLYNOMIAL
c P = POLYNOMIAL EVALUATED AT X
C DP = DERIVATIVE OF P EVALUATED AT X

READ (2,1) NRTS
DO 12 J = 1, NRTS
X = 0.000001
10 CALL SYND (A,B,C,X,P,DP,N,N1)
XPRE = X
X = XPRE - P/DP
IF (1.0E-11 - ABS (X- XPRE)) 10, 11, 11
11  WRITE (3,5) J,X
WRITE (3,6)
DO 13 I = 1,N
WRITE (3,4) B(I)
13 A(I) = B(I)

N=N-1
12 Nl =N+1
CALL EXIT
END
// FOR SYND

*NONPROCESS PROGRAM
SUBROUTINE SYND (A,B,C,X,P,DP,N,N1)
DIMENSION A(50), B(50), C(50)

B(1) = A(1)
DO 8 I =2, N1
8 B(I) = A(I) + X * B(I - 1)
c(1) = B(1l)
DO9I=2,N
9 C(I) = B(I) + X * Cc(I - 1)
P = B(N1)
DP = C(N)
RETURN
END
// XEQ PRTS

*CCEND
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Table 9.

Component

Hexane
Dodecane
Hexadecane
Toluene
Chlorobenzene
Bromobenzene
Diethyl Ether
Chloroform
Carbon Tetra-
chloride
Acetone
Benzene

Molecular

Weight

86.17
170.33
206 4k

92.13
112.56
157.02

Th.12
119.39

153.84
58.08
78.11

*
Reference 50

Reference 42

138

Physical properties of the pure components.

Temper- Measured Molar
ature Viscosity Volume
OC cp cc/mole
25 0.296 131.6
25 1.338 228.6
25 3.031,  29k.1
30 0.515,  107.k
30 0.713, 106.0
30 0.985 102.8
25 0.217 104.7
25 0.542 80.7
25 0.890 97.12
25 0.308 73.99
25 0.597 89.40

Measured
Refractive
Index

1.3727

1.4196

1.4324#
1.14-9)4'0#
1.5576
1.3500
1.4k

1.4570
1.3566
1.4981
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Table 10. Initial concentration differences.

Dodecane (1) - Hexadecane (2) - Hexane (3)

o

T =25 "C
El = 1.615 62 = 1.46k4 63 = 1.533 moles/liter
Run No. a AC- ACo

. (mole%/l.) (moles/1.)
154 -1.134 -0.120 0.134
155 -0.239 -o.0185 0.057l
157 0.176 o.0168 o.ou67
158 1.352 o.o788 -o.0122
160 -2.416 0.156 -0.131
161 3.599 0.128 -0.0548
162 1.257 o.o7l6 -0-0087

Diethyl Ether (A) - Chloroform (B) - Carbon Tetrachloride (C)

o)

T =25 "C
Cy = 2.646 Cy = 2.653 Cq = 5-309 moles/liter
Run No. o AC AC
L (moleé/l.) (moleg/l.)
175 1.002 -o.086u o.ooo6
176 0.623 -o.ou8l -0.1315
178 1.317 -0.0629 0.0683
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Table 1l. Binary diffusion data at infinite dilution.

Binary system Temperature ngXlO5 D(i)anleO7

(i dilute in j) °c cme/sec dynes
Hexane in Dodecane 25 l.ko 1.91
Hexane in Hexadecane 25 0.85 2.58
Dodecane in Hexane 25 2.74 0.81
Dodecane in Hexadecane 25 0.49 1.47
Hexadecane in Hexane 25 2.21 0.66
Hexadecane in Dodecane 25 0.67, 0.90
Chlorobenzene in Bromobenzene 30 1.36, 1.34
Chlorobenzene in Toluene 30 2.36, 1.22
Bromobenzene in Chlorobenzene 30 1.76* 1.26
Bromobenzene in Toluene 30 2.27, 1.17
Toluene in Chlorobenzene 30 1.80, 1.28
Toluene in Bromobenzene 30 1.41# 1.39
Acetone in Carbon Tetrachloride 25 1.70# 1.52
Acetone in Benzene 25 2.75# 1.64
Benzene in Carbon Tetrachloride 25 1.38# 1.2k
Benzene in Acetone 25 4.23# 1.30
Carbon Tetrachloride in Benzene 25 1.90# 1.13
Carbon Tetrachloride in Acetone 25 3.57 1.10

*
Reference 7

7

Reference 12
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Table 12. Self diffusion data.

Component Temperature D(.)leO5 ngX ny XlO7
°c cm/sec dynes
Hexane 25 h.o1 1.25
Dodecane 25 0.87% 1.20
Hexadecane 25 O.Sli 1.67
Toluene 30 2.60 1.34
Chlorobenzene 30 1.79 1.28
Bromobenzene 30 l.23b l.21
Acetone 25 4.77b 1.47
Benzene 25 2.16 1.29
Carbon Tetrachloride 25 1.32 1.18
Chloroform 25 o4k 1.32
Diethyl Ether 25 8.73 1.96

& obtained from a plot of self diffusion coefficient versus
carbon number for various hydrocarbons (Figure 16, Appendix VI)

o reference 30






Table 13.

Run No.

154
155
157
158
160
161
162

Diethyl Ether (A) - Chloroform (B)

Run No.

175
176
178
179

ratio, D
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A? data.

Dodecane (1) - Hexadecane (2) - Hexane (3)

-1.134
-0.239
0.176
1.352
-2.416
3.599
1.257

C, = 2.646

1.002
0.623
1.317
1.150

C,

=
]
N
w
(@]

5
DszlO

0.984
1.203
1.197
1.411
0.835
1.710
1.388

T = 25 °%C

2.653

D2leO

2.113
1.585
2.557
2.303

C.

= 1.533

DAXIO

0.947
1.107
1.247
1.526
0.815
2.335
1.467

5

C. = 5.309

C

DAXlO

2.184
1.765
2.711
2.509

5

Reduced second moment, DZm’ and reduced height-area

moles/liter

1//17;

324.7
300.6
283.2
256.0
350.3
206.9
261.9

- Carbon Tetrachloride (C)

moles/liter

1/@

218.8
243.3
193.9
203.4
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Table 14. Second moment, m,, data.

Second Moment

m2 X 10

(cn®)

0.832
1.163
1.434
1.887

0.636
0.917
1.209
1.356

0.955
10388
1.959
2.536

0.820
1.032
1.370
1.546
1.825
2.377

00631
1.010
1.326
1.517

Dodecane - Hexadecane - Hexane

2

Run No. 154

Run No. 155

Run No. 157

Run No. 158

Run No. 160

Measured Time
t
m
(secs)

305
L85
605
8h5

125
2l5
365
Lps5

oks
Lps5
665
905

125
185
305
365

665

125
365
545
665
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Table 14. (continued)

Second Moment Measured Time
2

m, é 10 tm

(em®) (secs)
Run No. 161

1.350 125

1.776 oks

2.198 365

2.571 L85

3.h41k 725
Run No. 162

1.026 185

1.213 2l5

1.k497 365

1.867 L85

2.363 665

Diethyl Ether - Chloroform - Carbon Tetrachloride

Run No. 175
0.901 125
1.h427 245
1.972 365
2.459 485
2.948 605
3441 725

Run No. 176
1l.272 305
1.660 Lp5
2.080 545
2.662 725
3.224 905
3.725 1085

Run No. 178
0.801 65
1.123 125
1.509 185
1.786 oLs5
2.735 Lp5
3.278 545

3.577 605
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Table 14. (continued)

Run No. 179
Second Moment Measured Time

m. X 102 t

2 o m

(em”™) (secs)
0.926 125
1.200 185
2.010 365
2.260 Lo5
2.925 545

3.380 665
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Table 15. Time correction, Amcorr, data.

Dodecane - Hexadecane - Hexane

Run No.

corr

(sec)

154 115.3
155 137.6
157 154.0
158 174.6
160 254 .4
161 2724
162 185.0

Diethyl Ether - Chloroform - Carbon Tetrachloride

Run No. Ot
corr
(sec)
175 93.6
176 103.8
178 100.1

179 4.6






3.5

3.0

2.5

2.0

1.5

100

0.5

0.0

147

Second moment, m, X 102

158

-300

T
-100

! | I T
100 300 500 700

measured time, tm’ in seconds

Figure 12.

Second moment versus the measured time for the

system dodecane (1) - hexadecane (2) - hexane (3).
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Figure 13. Second moment versus the measured time for the

system dodecane (1) - hexadecane (2) - hexane (3).
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Figure 14, Second moment versus the measured time for the
system diethyl ether (1) - chloroform (2) -

carbon tetrachloride (3).
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Table 16. Data used to calculate the experimental

ternary diffusion coefficients

(0]

T=25C

Dodecane (1)~

oot

292.3,

-2&.45

267.85
1.192
0.1k9
1.341

X10 0.939
0.01091
0.01803
1.615
1.46k

1.533

Diethyl Ether(l)-
Chloroform(2)-
Carbon Tetrachloride(3)

289.05

3
216.52

-72.5

0.716
1.391
2.107
L.ho1
-0.01143
-0.00253
2.646
2.653
5.309
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Table 17 (continued)

Diethyl Ether (A) - Chloroform (B) - Carbon Tetrachloride (C)

T =25 °C
EA 2.646 moles/liter
EB 2.653 moles/liter
EC 5.309 moles/liter
612 0.880 moles/liter
n 0.573 cp.
a/RT 0.631
b/RT 0.025
c¢/RT 0.025
d/RT 0.55k4
(RT/ol)xm7 1.956 dynes
(RT/ce)XlO7 1.322 dynes
(RT/03)X107 1.174 dynes
(RT/olE)XlO7 0.896 dynes

K 2.73
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Figure 15. Typical refractive index gradient curve
(run no. 160) at various times during

diffusion.
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Table 18. Van der Waals constants, a and b, for

various hydrocarbons

Hydrocarbon a b a/b
literoatm liter/mole (atm)%
2
mole
ethane 5.489 0.06380 36.7
propane 8.664 0.08445 35.0
butane 1k.47 0.1226 31.0
pentane 19.01 0.1460 29.9
hexane ok.39 0.1735 28.4
heptane 31.51 0.2107 26.6

octane 37.32 0.2368 25.8



Table 19.

Dodecane (1) - Hexadecane (2) - Hexane (3)

i3

12
21
13
31
23
32

Acetone (1) - Benzene (2) - Carbon Tetrachloride (3) T =

ij

12
21
13
31
23
32
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activity equations.

LY

1J
0.9815
1.0188
1.0521
0.9505
1.0717

1j

0.49
0.39
0.98
0.69
0.10
0.11

Activity constants used in the ternary

T =25
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Figure 16. The product of absolute temperature and the reciprocal
of the self diffusion coefficient versus carbon number

for several hydrocarbons.



NOMENCLATURE

Aij constant used in Van Laar and Wohl equations
a; Van der Waals constant, 1iter2atm/mole2
a; activity of component i
Bij constant used in Van Laar binary equations
b, Van der Waals constant, liter/mole
Ci concentration of component i, moles/cm3
Cr total concentration, moles/cm3
13 constant used in Van Laar ternmary equation
Cijk constant used in Wohl ternmary equation
DA reduced height-area ratio
Di self diffusion coefficient of i, cmz/sec
D: tracer diffusion coefficient, cmz/sec
D2m reduced second moment
DAB mutual diffusion coefficient, cmz/sec
Dij binary diffusion coefficient at infinite dilution, cmz/sec
Dij multicomponent diffusion coefficient, cm2/sec
Dij Onsager diffusion coefficient, cm2/sec
Fi,d driving force for diffusion of species i
Fi,r frictional resisting force to diffusion of species i
fi friction coefficient of species i
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intercept (at a, = 0) of the reciprocal square root of

1
reduced height-area ratio curve

intercept (at oy =0) of the reduced second moment curve
total number of fringes on an exposure

flux of i relative to the coordinate of the plane across

which the net volume flux is zero, moles of i/cm.zlsec.

flux of i relative to a coordinate-fixed plane
flux of i relative to the medium

flux of i relative to the coordinate of the plane across
which the net volume flux is zero

tracer diffusion flux

fringe number

association equilibrium constant
viscosity measurement constant

proportionality constant between refractive index
difference and fringe number

proportionality constant between an increment of measured
distance and fringe number

intercept (at a, = 1) of the reciprocal square root of

1
the reduced height-area ratio curve

intercept (at a; = 1) of the reduced second moment curve
phenomenological coefficient

magnification factor, 1.923

rth moment of the refractive index gradient curve

th . .
r  moment of component i of the refractive index gradient
curve

Avogadro's number

refractive index
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gas cons tant

differential refractive index constant of component i

differential refractive index constant of component i
based on total fringes

slope of the reciprocal square root of reduced height-
area ratio curve

slope of the reduced second moment curve

rate of internal entropy production per unit volume
variance of z

absolute temperature

actual time

time correction

velocity of species i relative to the velocity of the
medium, cm./sec.

partial molar volume of i, cm.3/mole
velocity of the medium relative to fixed coordinates

velocity of the plane across which the net volume flux
is zero relative to fixed coordinates

mole fraction of i

distance along direction of diffusion

centroid of the refractive index gradient curve
independent force for diffusion in constant volume system
distance perpendicular to the direction of diffusion
defined variable = x/(2/t)

refractive index fraction of i

activity coefficient of i

Kronecker delta
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n viscosity

0 angle formed by the tangent to the refractive index
curve, degrees

Hy chemical potential of i

uij partial derivative of ui with respect to Cj
v kinematic viscosity

o4 friction coefficient of i (oi = Nfi)
Subscripts

A refers to stoichiometric quantity of A

i refers to arbitrary component or species
m refers to measured values

1 refers to true quantity of A

2 refers to true quantity of B

11 refers to true quantity of AA complexes

12 refers to true quantity of AB complexes
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