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ABSTRACT

APPLICATIONS OF HYDRODYNAMIC THEORY TO

MULTICOMPONENT LIQUID DIFFUSION

by Terence K. Kett

Hydrodynamic theory is applied to multicomponent diffusion

of non—electrolytes. Generalized equations are derived for the

flows, diffusion coefficients, and the phenomenological coefficients

for non—associating systems. Similar equations are derived for

associating systems but only for the simplest ternary cases where

either one component associates with itself to form dimers or where

two components associate with each other to form dimers. The theory

indicates that under the condition of constant partial molar volumes,

Onsager's reciprocal relations are valid for non-associating systems

and for the associating systems with the additional assumption that

the partial molar volume of the associated species is equal to the

sum of the partial molar volumes of the species making up the dimer.

Four ternary systems are studied in this investigation.

Experimental diffusion and phenomenological coefficients are

obtained using a Mach—Zehnder interferometric technique for the

systems dodecane—hexadecane-hexane and diethyl ether—chloroform—

carbon tetrachloride. Experimental data for the systems toluene—

chlor L brnmrL " r and acetone—benzene—carbon tetrachloride 



TERENCE K. KETT

were taken from the literature. Diffusion and phenomenological

coefficients for all four systems are also calculated from equations

derived from hydrodynamic theory. The coefficients obtained by the

two methods are compared and for the non-associating systems show

excellent agreement. For the acetone-benzene-carbon tetrachloride

system in which the actual associated species present is not clearly

known, reasonable agreement among the diffusion coefficients was

evident. The other associating system could not justifiably be

compared since satisfactory activity data was not availableo

Experimental evidence from this investigation verified

within the limits of experimental accuracy that Onsager's recipro—

cal relations are valid for non—associating systems. In addition,

it demonstrated the applicability of hydrodynamic theory to multi-

component diffusion. For associating systems where the degree of

association is not clearly known, it indicated that hydrodynamic

theory can be applied as a predictive theory in obtaining

reasonable multicomponent diffusion coefficients. Based on this

evidence, it can be concluded that hydrodynamic theory should play a

major role in describing multicomponent diffusion.
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INTRODUCTION

Throughout the last twenty years, interest has gradually

increased in the area of multicomponent diffusion. There is voluminous

. . . . 21

literature available on binary difquion that has built up Since Fick

presented his equation defining a diffusion coefficient. However, it

. 37,38 . . .
was not until Onsager presented equations describing the flux of

each component as the linear sum of every concentration gradient

multiplied by a diffusion coefficient that any reasonable attempt to

describe multicomponent liquid diffusion was made. Even so, no

reasonable experimental work in this area was introduced until Baldwin,

. . 3,22 . . . .
Dun10p, Fujita and Gosting in 1955 presented equations Similar to

Onsager's along with experimental techniques for obtaining the diffusion

coefficients. This was certainly a major contribution in this area

and furnished the impetus for renewed interest and consequent improve-

ments in multicomponent diffusion.

,19’21’23 have periodicallySince that time Gosting, et. a1.

developed improved experimental techniques with Optical methods

utilizing a Gouy interferometer. Burchard and Toor7 have also

adapted the diaphragm cell method to obtain the multicomponent

diffusion coefficients. With these methods, ternary diffusion data

have become increasingly available enabling the study of both electrolytic

and non-electrolytic multicomponent systems.7’1?"18’19’22’35’41’44’45’49



3

The equations presented by Baldwin, Dunlop and Costing des-

cribing multicomponent liquid diffusion for an N component system are

N—l ac.

=_v __l °=1 N-l l

where Ji is the one—dimensional flux of component i in moles/cm.2/sec.,

Dij is a diffusion coefficient in cm.2/sec., and BCj/Bx is the concen-

tration gradient of component j in the x direction in moles/cm.3/cm.

Concentration gradients are used because they render themselves more

easily to experimental measurement but in actuality the negative

gradient of chemical potential is considered the driving force for the

flows, Ji.

From irreversible thermOdynamic considerations, the flows

Ji are also related by the following expression

J = X L, Y. i = 1, ..., N — 1 (2)

where the Lij are phenomenological coefficients. If in these expres—

sions, both the fluxes Ji and the thermodynamic forces Yj are indepen—

dent and the sum of their products appears in the expression for the

rate of entropy production then under these conditions,28 the theory of

irreversible thermodynamics says that the Lij should satisfy the

following relations, known as Onsager's reciprocal relations, namely,

Lij = Lji (3)

A strong emphasis in most multicomponent diffusion studies

has been placed in trying to verify these reciprocal relations. This

verification has been conclusively shown in a number of cases such as



heat conduction in anisotropic crystals, thermoelectricity, electro-

kinetic effects, and e.m.f. and transference in electrolyte solutions.34

However, this verification has not been shown in isothermal diffusion

without some doubt because of the limitations in the eXperimental

techniques employed.

The phenomenological coefficients, Lij’ can be related to the

diffusion coefficients, Dij’ and therefore if the Onsager reciprocal

relations can be verified, the experimental quantities necessary to

describe diffusion will be reduced considerably. This explains the

interest in the verification. Up till now, verification has only

been possible by experimental means and; consequently, because the

experimental techniques have been of limited accuracy, question con—

cerning the verification has been justified.

In this research, hydrodynamic theory ofHartley and Crank27

is extended to multicomponent diffusion in non—electrolytes. Genera-

lized equations for the flows Ji are obtained in terms of concentra—

tion gradients, chemical potential gradients, and the forces Yj. In

addition, expressions for the phenomenological coefficients are

obtained in terms of the diffusion coefficients, Dij’ and in terms of

friction coefficients, 01. This theory shows that the reciprocal

relations are valid for non-associating liquid systems and this

is verified experimentally. In addition, experimental evidence

is provided which supports the hydrodynamic theory.



THEORY

Hydrodynamic Model
 

The hydrodynamic theory of'Hartleyand Crank27 considers

molecular diffusion of liquid solutions in a closed container. They

proposed that diffusion of a particular species could occur in two ways.

First, by random molecular motion and secondly by flow of the entire

medium itself. The latter Hartley and Crank called mass flow. Since

these two methods of movement of a species can occur at the same time,

both effects must be taken into account when experimentally studying

the overall diffusion process.

The interpretation of molecular motion in a liquid can best

be explained by assuming that the liquid molecules oscillate within a

cage or hole formed by its neighboring molecules. The molecule per-

forming this oscillatory motion, will occasionally acquire sufficient

energy to overcome the potential energy barrier of this hole and

migrate to another hole. Because of the energy required before a

molecule can make this jump, typically less than 1% of the total

number of molecules are undergoing this motion at any given time. It

can be seen, however, that in this way diffusion of a species is

occurring. This type of motion, often referred to as intrinsic

diffusion, can occur regardless of whether concentration gradients

exist or not. However, if a concentration gradient of a component



does exist, there will be a net movement of that component to reduce

the gradient.

The other means by which a particular species can flow from

one point in the container to another is by flow of the medium itself.

It is easy to see in the case of a liquid solution flowing continuously

through a container with open ends, such as a pipe, how a particular

species can move from one point to another. It is simply carried

along by the bulk solution itself. It was unfortunate that Hartley

and Crank referred to a "mass flow" as contributing to the overall

diffusion of a species since this implied the flow just described.

Actually this bulk motion referred to by Hartley and Crank can occur

in a closed container. In order to study molecular diffusion experi~

mentally, the system is closed to enable free diffusion to take place.

To obtain an understanding of how a flow of the medium takes

place in a closed container and how this contributes to the diffusion

of a species, consider a coordinate fixed reference plane somewhere in

the container. Now if there are different components in the solution,

the molecules will have different sizes and shapes. Hence when a com-

ponent of type ”i” migrates by molecular motion across this referent;

plane in the closed volume, an increase in volume necessarily occurs

unless there is a compensating flow back across the plane. This com—

pensating flow is what Hartley and Crank called the bulk motion and

what is referred to here as the flow of the medium.

Let us now look at the plane across which no net flow of

material is occurring. In the case of a pure liquid where all the



species are alike, the velocity of this plane relative to fixed coordi—

nates is zero. This follows because there would be just as many

molecules diffusing by hole migration (intrinsically) across a

coordinate-fixed plane in one direction as there would be in the opposite

direction. Thus for a pure liquid, any coordinate-fixed plane satisfies

the condition of no net flow across it.

The same analysis can be applied to a solution of uniform

concentration. The concentration of any component would be the same on

either side of a coordinate fixed plane located anywhere in the container.

Since the concentration is the same on either side, the number of

molecules of component i crossing the plane by hole migration would

be the sane as the number of component "1" molecules crossing in the

Opposite direction. The same applies to all the other components in

the solution. Hence, the plane across which no net flow occurs corres-

ponds to any coordinate fixed plane as long as the solution is uniform.

It follows that if the solution is not uniform, the velocity

of the plane across which no net flow occurs will not be zero relative

to fixed coordinates. In this case, the number of molecules of "i"

crossing a coordinate—fixed plane by hole migration will not be equal

to those migrating across in the opposite direction. The same follows

for the other components. Since each component will generally have a

different rate of migration, there will tend to be an accumulation on

one side of the coordinate fixed plane unless there is a compensating

flow back. Even.if the molar volumes of each component are the same,

there still will be build up if the rates are different. For nonuniform



solutions, only in the case of equal constant molar volumes and equal

rates of hole migration will the velocity of the plane across which

no net flow occurs be zero. In further discussions, this velocity

with respect to fixed coordinates will be referred to as the velocity

of the medium, v .

m,c

Hydrodynamic Flow Equations
 

If a molecule in solution is assumed to diffuse at a constant

rate, the sum of the forces acting on it must be zero. The driving

force per molecule and the resisting force per molecule must be equal

and opposite. The question arises as to what are these forces.

It is generally accepted that the driving force for diffusion

is the negative gradient of chemical potential, -Vui. Intuition says

that a particular component will diffuse in such a direction as to

reduce its gradient of concentration. In binary solutions this is the

case, but in solutions of 3 or more components this does not always

follow even though eventually the solution will become uniform through-

out. For example, if the velocity of the medium is greater than the

intrinsic rate of a particular component it is possible for the net

fIUX'Of that component to be in the opposite direction to its negative

gradient of concentration. Eventually the velocity of the medium slows

down as the concentration gradients decrease and the intrinsic rate of

the component surpasses it. Gibbs24 has shown that at equilibrium the

chemical potential should be the same throughout and hence a system not

at equilibrium always tends to equalize the chemical potential. This

 



applies whether a particular component is present in more than one

phase or whether it is present in various subsystems of one phase.

The negative gradient of concentration, introduced by Fick21 in

mathematically describing the diffusion process, is generally used in

diffusion equations because it lends itself more easily to experimental

measurement.

The resisting force for diffusion is a more controversial

subject; however, certain conclusions regarding its description can

4’25’39’45 indicatesbe drawn. The overwhelming experimental evidence

that it is proportional to the viscosity of the medium. Attempts have

also been made to correlate it to the radius or some power of the

radius of the diffusing molecule.4’20’31’39’45 Although indeed it has

been shown that the size of the molecule is a factor, no universal

relation to the size has been found. In addition, Bidlack4 has shown

that shape should be an important consideration. Based on these

observations let us define the resisting force as follows

=— N
F“ f1 ”“1111

= -o, u. 4

i,r , in i m ( )
9

where Fi,r is the resisting force per molecule of component i to

intrinsic diffusion, fi is a coefficient which is a function of the

size and shape of the diffusing molecule and includes effects of the

medium, n is the viscosity of the medium, N is Avogadro's number, ui,

is the velocity of species i with respect to the velocity of the

medium. The proportionality factor, oi = fiN will be referred to as the

friction coefficient of component i. The negative sign is a result of

the velocity of i being in the opposite direction to the force.



The driving force for diffusion as discussed earlier is given

by

Fi,d = "V“i (5)

where Fi d is the driving force for intrinsic diffusion of i and Vui

!

is the gradient of chemical potential Of component i. For one-

dimensional diffusion in the x—direction, equation 5 becomes

 

F. = - (6)

Since the driving force is equal and Opposite to the resisting force,

Sui

——=O.nU. (7)
3x 1 i,m

Multiplying both sides by Ci’ the concentration of i, and rearranging

gives

 

J. =C.U. =— (8)

- m

where Ji is the flux of component i with respect to the velocity Of the

medium (i.e., the intrinsic flux of i).

. . .th . .
The chemical potential of the i constituent may be written

as

o

“i - pi + RT ln a1 (9)

0 . . . .

where mi 18 a function Of T and P, R is the gas constant, and a1 is the

activity of i. At constant T and P, substituting equation 9 into

equation 8 yields



lO

  

 

C {8 ln 3, C.RT 3 In a. BC.
Jm = _ I i = _ 1 [ i __l

i o,n [ ax ] on k ac, ] [3x]
1 1 1

T,P T,P T,P

(10)

Jm = _ RT [3 1n a. sci,

i o.n L ac. 3x J
1 l

T,P T,P

In order to Obtain an expression for the velocity of the

medium with respect to fixed coordinates, vm,c, a volume flux balance

across a coordinate-fixed plane is made. If we consider the case where

the partial molar volumes Of each component are assumed constant and

the system is closed, then the volume flux across a coordinate fixed

plane must be zero. In other words every time a certain volume of

molecules diffuses across the plane, an equal volume of solution must

come back in order to keep the total volume constant. Since the system

is closed, the only way this could not happen is if the molar volumes

changed. However they are assumed constant, thus the volume flux

crossing the plane due to intrinsic diffusion plus the volume flux

crossing this plane due to the flow of the medium must be zero. That

is for an N—component system

I
I
M
Z

if? + v = 0 (11)
. i i m,c
i l

where F; is the partial molar volume. Since J? has units Of moles/mn.2/

sec. and V; has units of cm.3/mole, notice that vm c has units of

,

velocity, cm./sec.

Equation 11 applies only for the case of constant partial

molar volumes and a closed system. What about the case where the molar



11

volumes are not constant? Again, an expression for the velocity of

the medium relative to fixed coordinates, vm, , can be Obtained by

looking at a volume flux balance across a coordinate fixed plane. In

this case, however, there are three contributions. There is a flux of

volume due to the intrinsic motion relative to the medium, there is a

volume flux as a result of the flow Of the medium, and there is a

volume flux across this coordinate plane because the total volume is

changing. Physically what happens is that a certain volume Of material

diffuses across this plane due to intrinsic motion. As a result of

this, to relieve any hydrostatic pressure which might build up since

the system is closed, the medium itself flows back. However, because

of this diffusion, the concentrations have changed and thus if the

molar volumes are functions of concentrations, the total volume may

have changed thus producing a net volume flux across the coordinate

fixed plane. The net volume flux relative to a fixed coordinate plane

N

is given by '21 FgJ? + Vm,c which does not equal zero in this case but

1:

rather

— m

ViJi + Vm,c — VV,C (12)

I
I
M
Z

i l

where vV c is the net volume flux relative to fixed coordinates resulting

,

from the change in volume. It follows that vV c is the velocity of the

9

plane across which the net volume flux is zero.

From equations 11 and 12, expressions for vm c can be obtained.

3

These are
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—m

ViJi (13)<
2 II I

II
M
2

1

for the condition Of constant molar volumes and

- m
ViJi + VV,c (14)<

II I

II
M
2

i l

for the condition of varying molar volumes.

The diffusion process that is studied experimentally consists

Of both intrinsic diffusion and the flow of the medium. It is desirable

then to Obtain expressions for the overall diffusion flux relative to

fixed coordinates of each component. These are obtained by summing

both contributions. Hence

JC. = J”? + ON (15)
1 1 1m C

9

c
where Ji is the overall flux Of component i relative to fixed coordi—

nates. Most experimental data reported in the literature are considered

using overall fluxes relative to the velocity Of a plane across which

the net volume flux is zero, that is relative to vV C. Therefore

9

V m
= + —

Ji Ji Ci(vm,c VV,c) (16)

where J: is the total flux of i with respect to this volume flux plane.

From equation 14, it follows that equation 16 becomes

W? (17)
1 J J

<
:

S

I
I
M
Z

j

For the case of constant molar volumes, equation 16 becomes

JY = J? + C.v (l8)
1 1 1mc

9

and substitution of equation 13 into equation 18 gives the same result

as in the case of varying molar volumes. That is,
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i i i ' ° (17)j=l J J

Substituting equation 8 into equation 17 gives J: in the desired form.

 

C. Bu. C. N C.V. Bu.
V i 1 1 J J

J, = — —— + —— —l (19)

i o.n 8x n ._ 0. 8x

1 J-1 J

Throughout the rest Of this report, the superscript V will be dropped.

All fluxes, unless specifically designated, will refer to the volume

flux plane.

Current Flow Equations in Terms of Concentration Gradients
 

As mentioned earlier, the flow equations required to interpret

diffusion experiments are generally written in terms of concentration

gradients. For systems of two components, diffusion of either component

. . . . 21 . . .
is completely described by Fick s first law. For one-dunenSional

flow this law is

8C.

1
Ji=—DAB[—O;]t 1=A, B (20)

In this equation, Ji is the flux of component i, and (aCi/ax)t is the

concentration gradient, at position x and time t. The same diffusion

coefficient DAB applies to both components.

In systems with three or more components, the flow Of each

component depends not only on its own concentration gradient but also

on the concentration gradients of other components present. There is

9. . 3 .
interaction of the flows. As a result, Onsager first proposed a

description Of this case by expressing the flow of each component as
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the sum of every negative concentration gradient multiplied by a dif-

fusion coefficient. Thus for a system Of N components, his formulated

equations were

N .

J =— 2 D,,—-1 i=1,...,N (21)

2

with N2 diffusion coefficients, Dij' He then showed that only (N - l)

diffusion coefficients are necessary to describe the flows however.

This can easily be seen in the case Of a constant volume system. It

follows for a closed system that

C.V. = 1 (22)
1'1

ll
M
2

1 l

and if in addition the molar volumes are constant that

VJ. = 0 (23)
l 1 1

II
M
2

i

Equation 22 follows from a material balance on the system with each

CyVi factor representing the fraction of the total volume contributed

by canponent i. It is not necessary that the partial molar volumes be

constant for equation 22 to be valid. Equation 23 results from the

assumption of a closed volume system with no volume change on mixing

for which the net volume flux must be zero. From equation 22, the

number of terms in each flux equation can be reduced from N to N - 1.

Similarly with equation 23, one of the fluxes Ji can be elfininated from

equation 21. Thus there are N — 1 independent fluxes and N — l indepen—

dent concentration gradients for an N component system.

Baldwin, Dun10p, and Gosting3 therefore presented a set Of

flow equations for an N component system as follows
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3C.\N

J, =— 2 nil—fl i=1, ...,N (24)
i j=1 J x t

This set Of flow equations defines (N — l)2 diffusion coefficients,

Dij’ for a system Of N components, as required by Onsager's theory;

however, these coefficients differ from those defined by Onsager in

equation 21. They are related to certain combinations Of Onsager's

N2 coefficients. These combinations can easily be found by applying

equation 22 tO eliminate the concentration gradient Of the Nth compo-

nent in equation 21, and then comparing corresponding coefficients Of

like concentration gradients in equation 24. These relationships,

first Obtained by Dole,l4 are

iN 1 (25)C

II

C
?
)

|

<
<

2
I
L

I

G H .1
. ll

|
.
_
.
|

Z

I

where the Dij are the Onsager diffusion coefficients.

The preferred equations for describing multicomponent

diffusion are equations 24, since they are linearly independent and

contain gradients of the measurable quantity, concentration, not

chemical potential. Baldwin, Dun10p, Fujita, and Gosting3’22’23 in a

series of articles have discussed in detail various methods of

experimentally determining the diffusion coefficients, Dij’ for ternary

systems. Their techniques involve interferometric methods and the

utilization of resulting refractive index gradient curves. Some of

these techniques are adapted in this laboratory and are discussed in

the experimental section. Solution Of the describing equations is
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given in Appendix II. Burchard and Toor7 modified the diaphragm cell

to experimentally measure the ternary diffusion coefficients.

Diffusion and Phenomenological Coefficient Expressions

Non—Associating Systems

It is desirable to obtain expressions for the Dij in terms of

the friction coefficients, Oi. Since experimental values of the Dij and

the Oi can be Obtained, a check would then be available on the hydro-

dynamic theory. These expressions will now be derived here.

Diffusion Coefficient Expressions - It is convenient to first

derive expressions for the Dij in terms Of the friction coefficients,

Oi, for the ternary case since the terms, equations, and algebraic

manipulations are less involved. From this, the generalization to N

components is easier to follow.

The flow equations for the ternary case from equation 24 are

J = _ D El _ D 8—.C_2

l 11 8x 12 8x

(26)

J = — D 3:]; _ D E

2 21 8x 22 3x

These equations are written in terms Of concentration gradients

and equations 19 in terms of chemical potential gradients. It would

be desirable to have both sets of equations in terms Of concentration

gradients because then, provided the equations are independent, the

coefficients of like terms could be equated.

For the ternary case, the flow equations for two of the

components from equations 19 are
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C1 — a“1 C1C2V2 a“2 C1C3V3 a“3
Jl=-—(l-C1Vl) a 3x + 3x

Oln X ozn O3n

_ _ (27)

C1C2Vl 3“1 C2 — 3“2 C203 3 3‘13

J2=—_T-—(1'V2C2)ax+ aOln x ozn O3n X

From the Gibbs—Duhem relation

8p Bu 3p
1 2 3

Cl 8x + C2 3x + C3 8x — O (28)

Therefore,

33 = _ 31 iii _ 3; 32 (29,
8x C3 3x C3 3x

For the constant volume system, equation 23 gives

le1 + J2V2 + J3V3 = O (30)

and therefore only two fluxes are independent. Substitution Of

equation 29 into equations 27 gives

J = - El[(l - V101) + V3C1]3“1 _ C1C2 :1 :2 8“2

l T) 01 03 3X T] 03 02 ax

_ _ _ _ (31)

J _ _ ClC2 Z§._ I}. aul — EZ.[<1 - V2C2) + V3C2] apz

2 n 03 01 8x n O2 03 3x

To convert the gradients Of the chemical potential to

gradients of concentration, use will be made Of the identity

8x,

if. = 2 (AL) (4) (32,
t . 3x. at.

J J l

where f = f(xl, x2, . , x )

and x1 = xi(tl, t2, , tm)
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At constant T and P, for the ternary case

 

  

  

 
 

(33)

The chemical potentials are functions of only two concentrations, Cl

and C2, because the third, C3, is not independent. This is evident

from equation 22 which for the ternary case is

ClVl + C2V2 + C3V3 = l (34)

Applying the identity equation 32 to equations 33 gives

)
Bul = aul 3C1 + Bul 3C2

8x BC 8x 3C 3x

1 c k 210
2 l

(35)

8n = auz 8C1 + (3U2 8C2

8x 8C 3x 8C 8x

1 C 2 C
2 l

which when substituted into equations 31 and rearranged yields

_ ”' " if F‘ " 1r 1_ cl (1 vlcl) V3Cl Sui] c102 v3 v2 Buz acl

Jl _ — h—' 0 + O BC + n 6—._ O_- SC_- “5;
1 3 1] 3 2 1

C2 C2
(36)

_ _ r
.3; (l VlCl) V3Cl apl ClC2 V3 V2 Buz 8C2

' n o + 0 ac + n B— _ 23— ac ax
l 3 2 3 2 2

C1 C1
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c102 V3 V1 3111 c2 (1 - V2C2) V3c2 {8112 ac

J2 = — O_-- O 5C—- + ——. O + O BC 3x
“ 3 1 ,, n 2 3 l 1 C

”2 2

(36)

_ clc2 y;- _ :1] aul + c_2 (1 - V2C2) + v3c2 3.2 ac

n O3 O1 802 c n O2 O3 3C2 C 8x

1 l

The chemical potential of the ith constituent can be written

as

O

Hi - “i + RT ln a1
(37)

O . . .
where pi is a function of T and P, R is the gas constant, and a1 the

activity. Therefore, at constant T and P

 

Bu Bln a

BC BC

1 C l C

2 2

8p aln a

__1 = RT 1

8C BC

2 C 2 C

l l

(38)

an aln a

___2 = RT __..__2.

3C 3C

1 C l C

2 2

8p aln a

3C BC

2 C 2 C

l l

Equating coefficients Of the corresponding equations 26 and 36 and sub—

stituting equations 38 yields the desired eXpressions for the diffusion

coefficients, D.

13
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RT (1 — VlCl) V3Cl Bln al V3 V2 aln a2

D11 = "' C1 0 + 0 ac + C1C2'_" "5_ ac
” 1 3 1 C 3 2 1 C

2 2

RT (1 VlCl) V3C1 Bln al V3 V2 Bln a2

D12 = —3' Cl 0 + 0 ac + C1C2 E—"'E— ac
1 3 2 c 3 2 2 c

1 1

(39)

RT V3 V1 a1n al (1 — VZCZ) V302 {Bln a2

D21 = ‘3' C1C2 E—" 3" ac + C2 0 + 0 ac
3 l 1 c 2 3 l 1 c

2 2

RT 3 1 a1n a1] (1 — V2C2) v3c2 {Bln a2

D22 = —F' Clcz 3—" 3" ac J + C2 0 + 0 ac
3 1 2 2 3 l 2

C1 C1

N Bu.

2 c ———- = 0 (40)
. 1 8x
i=1

therefore

auN N-l Ci Sui

73;; = ‘ X 6—7; (41>
i=1 N

The constant volume constraint is given by equation 23

N —

E J,V, = 0 (23)
. 1 1
i=1

Thus, there are only N - 1 independent fluxes and N — 1 independent

chemical potential gradients. Performing the same algebraic Operations

as was done for the ternary case gives the generalized flux equations
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c, (1 - V c.) c. an. N—l V‘ VI au.

J = — _l.[ 1 1 + 1 N:l 1 - 1- c,c, ——-—-—l ..J.

n n Oj 3x

1 (42)

The same procedure of converting chemical potential gradients

to concentration gradients has to be done so that the corresponding

coefficients can be equated.

From equation 22 it is obvious that one of the concentrations,

CN’ is not independent. Therefore

ui = f(Cl, C2, ..., CN—l) i = 1, ..., N (43)

and

an. N—l 8p. 8C, N—l 8C,

__l.= V __l. __l.= E u ._Ll

ax 5 ac, ax ,_ 1j ax

J-1 J c J-1

k

(44)

1 = l, 000, N-l

Ck - Cl 0°Cj_lC'+l°°°CN_l

Sui

where u,, = ———

13 3C.

3 c
k

Substituting equation 44 into equation 42, collecting the coefficients

Of the BCj/Bx, and equating these with those in equation 24 gives the

desired generalized expression for Dij

 D = —l- +
n O

C, (l — ViCi) CiVN p N—l Cick XE. XE

ij i ON ij

(45)
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Phenomenological Coefficient Expressions - It has been found in

almost all non—equilibrium situations where thermodynamic variables have

meaning that the thermodynamic theory of irreversible processes ’ 3 can

be applied successfully. Briefly this theory states that (l) the rate

at which entropy is produced within a system undergoing dissipative

processes can be written by

Ts = g JiXi (48)

where T is the absolute temperature, s is the rate of change Of entrOpy

created within the system per unit volume; Ji is the generalized flow

-2 —1 . . -2
such as matter (moles x cm. x sec. ),electric1ty (faradays x cm. x

—l -2 —l .
sec. ) or heat (cal. x cm. x sec. ); and X1 are the generalized

thermodynamic forces such as chemical potential gradients, temperature

gradients, and e.m.f's. (2) The flows Ji are related linearly to the

forces Xi by

J. = Z L. X. (49)

j

where Li' are phenomenological coefficients related to electrical

resistances, diffusion coefficients, or heat conductivities, etc.

(3) If the Ji and X1 are mutually independent, then the Lij satisfy the

2

following relations, 8 called the Onsager reciprocal relations, that is

Lij = Lji (50)

More details are given by Miller.33’34

It can be shown that the entrOpy production for ternary dif—

. l3 .

quion is
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3p 8p 3p

Ts=—J —1-J —2—J ——3 51

lax23x33x ()

However, only two of the fluxes and two of the chemical potential

gradients are independent. This is evident because of equations 30 and

29. If these equations are used to elhninate J and 3u3/8x in equation
3

51, one Obtains

Ts = JlYl + J2Y2 (52)

where

2 C.Vg an.

Y.=—Z <5..+—-1——l i=l,2 (53)
i . ij - 3x

J=l C3V3

and 6ij is the Kronecker delta. The linear relations according to

irreversible thermodynamics are therefore

J1 = L1111 + L1212

(54)

J2 = L2111 + L2212

and because the Ji as well as the Yi are independent, the Onsager

reciprocal relation L = L should be valid. This analysis was first

12 21

proposed by Miller33 who from this derived a sufficient condition for

which the reciprocal relations could be experimentally checked. This is

presented later.

If the Yi expressions are substituted into equation 52 and the

resulting equations rearranged, one gets

an Buz

1

J1 ‘ "(111“ + 112*) '§§" (1118 + 1126) ‘3E' (56)
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811 311

 

1 2

J2 ‘ ' (121“ + 122Y) ‘SE" (1218 + 122Y) “3;" (56)

where

C'V 0‘?

a = 1 + 11:1" B ='“f:—

C3V3 C3V3

(57)

c V, c'V

y=—-:— 6=l+ _

c3v3 03v3

Now by equating like coefficients Of the independent equations 31 and 56,

four linear equations are Obtained which can be solved for L

11’ L12’ L21

and L22. These equations are given below

L a + L y = El.[£3;:;XlElZ-+ 323;]

ll 12 n O1 O3

_ C1C2 V3 V2

L11B + 112‘S '6’ "E—
n 3 2

(58)

LQ+LY=EILC_Q:3__YA]

21 22 n O3 O1

c (1 - c ) V’c
_._g 2 2 3 2

L218 + L226 — n [————;;———-4————e]

03

Since we are interested in checking L12 and L21, only these phenomeno-

logical cross coefficients are Obtained.

These are

cl [(1 — V1C1) V3C1] clc2 V3 v2]

n O3 02

 

O O

L = 1 3 (59)

yB - a6
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 L =
(59)

From the definitions Of a, B, y, and 6 and equation 34,

1

Y8 - 05 = - —*:7' (60)

C3V3

Using equations 34, 57, and 60 in equations 59 and rearranging the

resulting expressions gives

  

—- —- —- - -2

L - L _ - C1C2V1(l — VlCl) C1C2V2(l - V202) + C1C2C3V3

12 ‘ 21 ' O ’ O (61)
1D 2T] 0 3T1

Thus, the hydrodynamic theory predicts that L12 = L21 for non-

associating ternary systems. It should be emphasized that in the

development presented here the condition Of constant molar volumes was

imposed on the system. HOpefully this condition, although appearing

necessary now, may be removed in some future work. An encouraging point

Of interest here is that no activity data are required in order to cal—

culate the phenomenological coefficients.

Miller33’34 has Obtained expressions for the ternary phenomeno-

logical coefficients, Lij’ in terms of the ternary diffusion coeffi—

cients, Dij' The method involves using equations 35 to Obtain equations

56 in terms Of concentration gradients. The resulting equation is then

compared to equation 26 giving eXpressions for the Dij in terms Of the

Lij' These equations are then solved for the Lij in terms Of the Dij'

These are
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aD12 - ch1

L12 =
ad — be

(62)

dD21 — b1)22

L21 =
ad - bc

where

c V’ an O V' an

a- 1+ 1_1][_1_ ...}; __2_
vc3v3 acl c c3 3 acl c

2 2

(63)

c V’ an c V" an

b = ~1:3- ——1- + 1 + —3:?- -—3-

c3v3 acl c3v3 ac1

C2 C2

and c and d are the same respectively as a and b except that (8/3Cl)C

2

is replaced by (a/acz)c .

l

Substitution of the expressions derived for the diffusion

coefficients in terms of the friction coefficients, Oi, (equations 39) into

equations 62 yields the same expressions obtained for the Lij in tenms

of friction coefficients (equation 61). This should follow since the

same principles are used. However, it does serve as a check on the

derivations performed in both methods.

The usefulness of equation 62 is apparent since it provides a

check on the hydrodynamic approach and on Onsager's reciprocal relations.

The diffusion coefficients can be Obtained experimentally by the methods

22’23 and Burchard and Toor.3 From them, theof Fujita and Gosting

phenomenological coefficients can be determined. Also, from equations

39 and equation 61, the diffusion coefficients and phenomenological
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coefficients can be Obtained using experflnentally determined friction

coefficients. Hence, by comparing the diffusion coefficients and by

comparing the phenomenological coefficients, the hydrodynamic approach

can be checked.

Also from equations 62, the condition from which the Onsager

reciprocal relations can be verified is Obtained. Simply by equating

L12 and L21, one obtains

aD12 + bD22 = CD11 + dD21 ; ad - bc # O (64)

This relation has been the basis up to this time for experimentally

checking the Onsager reciprocal relations.

For the case of N components, expressions for the phenomeno-

logical coefficients can be Obtained in a similar procedure to that used

for the ternary. Extending the analysis to a system Of N components and

using equations 23 and 41 one Obtains

N—1

J, = Z L ,Y, i = 1, ..., N-l (65)
i i=1 1] j

where

N—l Vflc an

Y, = — 2 a, +-:9—3: ——3- (66)

3 k=l 3k v c 3X
N N

Substituting equation 66 into equation 65 and collecting the

coefficients Of the (Buk/ax)'s, yields

N-l N—l V C an

Ji = E Z Li, 6'k +_':1—k 71:; i = l, ., N-l (67)

k=l j=l J 3 v c X



28

2

Now, equating coefficients of equations 42 and 67 gives (N — 1)

linear equations with (N - l)2 unknowns, the Lij' These equations are

N-l V,c c cc V V

2 L,,<Sk,+:_--1-—k =(sik3—k+—1—E 0—11-53; i,k=l, ...,N-l (68)
j=l 13 J VNCN kn n N k

Solving these equations for the cross-phenomenological coefficients

(Lij’ i # j), one Obtains

c.c. v. _ V, _ 1 N cic.ckV:

L,,=L,.=--il—1(1—v,c.)+—l(1-v,c,)+—E-——J— (69)
13 31 n Ci 1 i Oj J J n k Ok

k#i,j

i,j = l, ..., N-l; i # j

By looking at equation 69 for the binary, ternary, etc., it is evident

that a recursion formula exists. That is

C —2

M+l M 1CjCM+lVM+l
L.. = L.. +

13 13 OM+ln

 

(70)

where the superscripts M.and M+l refer to a system of M components and

to the same system with one additional component labelled with the

subscript M+l.

It can now be concluded that hydrodynamic theory predicts that

the Onsager reciprocal relations should be valid for non-associating

systems with any number Of components with constant molar volumes. It

should not be concluded that this implies that hydrodynamic theory only

applies for the case Of constant molar volumes nor should it be concluded

that hydrodynamic theory is applicable only to non-associating systems.
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Associating Systems

Non-associating systems canprise only a small percentage Of

the various systems encountered in industry or the laboratory. It would

therefore be desirable to apply the hydrodynamic model to associating

systems. The difficulty involved here is that the hydrodynamic model

deals with distinct particles present in the solution. Intrinsic

fluxes for a particular species are derived and the number Of friction

coefficients required is equal tO the number of unlike molecules

present. Thus, with non-associating systems, the number Of intrinsic

fluxes and friction coefficients is equal to the number Of canponents

added to form the system. If for example one component, call it A,

associates with itself there will be considerably more unlike species

present than if A does not associate (i.e., A-A, A—A-A, ..., An in

addition to just A monomers). In other words, even though only three

components are added there could be an infinite number Of actual

species present requiring an infinite number Of flow equations each

with an infinite number of terms.

It is only natural in trying to apply the hydrodynamic model

to multicomponent associating systems that a simple system be chosen

first. This would be a ternary system in which association occurs

between two molecules so as to form only dimers, thus introducing four

species instead Of three. There are two ways in which this is

possible: (1) if one component only associates with itself to form

dimers and (2) if two components associate with each other, but not

with themselves, to form dimers. Anderson successfully studied
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these two cases for binary systems in which only dinerization is known to

occur. Extension to ternary systems will now be given here.

Solutions Which Form a One:0ne Complex

Diffusion Coefficient Expressions — If the components added to

form the solution are labelled A, B, and C, and A and B fonn the onezone

complex, the four actual species present will be monomers Of A, B, and

C and the dimer AzB. Let us designate these actual species by l, 2, 3,

and 12 respectively.

From equations 8 and 14, the following relationship is true

   

m,c vV,c n 01 8x 02 3x 03 8x 012 EX

c V' an 0 V' an c V" au c V' an
v _ = ;L[ 1 1 1 + 2 2 2 + 3 3 3 + 12 12 12] (71)

The flux of component A relative to fixed coordinates is given by the

sum Of the contributions Of the intrinsic fluxes Of the monomer (1),

complex (12), and the flow Of the medium. Therefore, the flux JA

relative to the velocity of the plane across which the net volume flux

is zero is

m m

= + + + -

JA J1 J12 (C1 C12)(vm,c Vv,c) (72)

Similarly

J -Jm+Jm +(c +C )( - ) (73)
B ’ 2 12 2 12 Vm,c vv,c

From stoichiometry, it follows that

CA = C1 + 012

GB = c2 + c12 (74)

c = c
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where the subscripts A and B refer to the stoichiometric amounts Of A

and B added tO the system. Therefore equations 72 and 73 become

m

 

 

JA = JA + CA(Vm,c - VV,c)

(75)

J =Jm+C(v -v )
B B B m,c V,c

Substituting equation 71 into equations 75 and rearranging gives

C1 —- a“1 Vzcch a“2 V3C3CA 8“3 C12, —- a“12

JA=-—(1'Vlc>T+—‘T+ .x‘ ‘l_V12C)—3_—Oln x Ozn x O3n Olzn x

__ __ (76)

_ VlClCB Bu1 C2 —- an2 V3C3CB 3“3 C12, —- 8“12
J - -———-—-—-—-— -——(l — V C )-—-+ - (1 — V C )-—--
B Oln 8x Ozn 2 B 3x O3n 8x Olzn 12 B 8x

If the associating reaction can be described by an equilibrium

constant involving activities, one gets:

a

K = 12 (77)

a132

 

This combined with equation 37 can be used to Obtain a relation

between the gradients Of the chemical potential. This relation is

8“12 = all1 8“2

8x 8x + 3x (78)

 

Substituting this result into equations 76 gives

C __ C __ Bu

J =— 0—1(1-vch)+———12(1-v c)]—1

1n 012”

(79)

 
 

_ C12 —- V20ch 8“2 V3C3CA 8“3

12A on On

0 n(1'V C)-

12
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 J =

B o n 12CB) '

_.[ €12 Vlcch] aul

12 O

(1 -‘V
In 8x

(79)

(l - V C ) +---——(l — v c ) ———-
Ozn 2 B 012” 12 B 8x O3n 3x

From the Gibbs-Duhem relation we can Obtain

an 3p 3p Bu

1 2 3 12

C1 ax + C2 ax + C3 ax + C12 ax

 

= O (80)

Using equations 74 and 78, this becomes

3p 3p 8n

1 2 3

CA ax + CB ax + CO ax ‘ O (81)

With this relation, 3u3/8x can be eliminated from equations 79 to give

2

 

 
 

 
 

  

c c V'c an
- l -' l2 - 3 A l

J = - ———(1 — v c ) +--———(1 — v c ) + ]-———
A [Oln 1 A Olzn 12 A O3n ax

[L 2C2CA C12, —- V3CACB 8U2

- O + O ‘1 - V12CA) + O 8L 2n 12” 3n x

(82)

VlClCB C12, —- V3CACB 3“1

J = — - O + O \l — V12CB) + O 3B 1n 12” 3 x

c c Vc2 an
2 -' 12 -' 3 B 2

- ———(1 - v c ) + (1 - v c ) + ]-———
[Ozn 2 B Olzn 12 B O3n 3x

It is desirable at this point to Obtain expressions for the Dij

in terms Of the friction coefficients. Therefore, the chemical potential

gradients Of the actual species must be converted to gradients Of the
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stoichiometric concentrations in order to equate corresponding

coefficients.

From equation 22, we have

Clvl + CZVZ + C3V3 + C12V12 = 1 (83)

Therefore at constant T and P,

(84)

U2 = f(cl, C29 C12)

However, from the stoichiometric relations, equations 74, equations 84

can be written

(85)

Hence

Bul = aul BCA + aul BCB

8x 8C 8x 8C 8x

A C B C

B A

(86)

Buz = apz SCA + Buz 8GB

8x 8C 3x 3C 3x

A C B C

B A

For this system, equation 24 is

J = .1. fl - D Be
A AA 3x AB 8x

(87)

8C BC

J - -D A D -——-
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Substituting equations 86 into equations 82 and equating corresponding

coefficients with equations 87 gives the desired results.

2

C C C 3n

_ 1 _ - 12 _ - 3 A l

DAA — l:— (1 V CA) + O n (1 VlZCA) + -———] [—J

C

 

Oln l 12 O3n BCA

B

 

V'c c c V'c c an
2 2 A 12 —- 3 A B 2

c

  

 

  

 

  

 

 

 

2n 12n A O3n 3CA

B

c c V'c2 an
_ 1 _ —- 12 _ —- 3 A 1

DAB [—0n (1 VlCA) + O n (1 VlZCA) + O n] ——3C 1

1 12 3 B c

A

Vzcch C12 V3CACB 3“2

+ — O n + O n (l - V12CA) + O BC

2 12 3n B C

A

(88)

V1C1CB C12 V3CACB an1

DBA = ' o + o (1 V12CB) + 6 ac
1n 12 3n A

c
B

c c V'c2 an
2 —- 12 —- 3 B 2

4- -——— (1 - V c ) 4—-———— (1 - v c ) +-——-—-] -———
[Ozn 2 B Olzn 12 B 03n 30A

0
B

_ VICICB C12 —- V3CACB an1

DBB ' " + (1 ' VIZCB) 1'—_—___' '7?-Oln Olzn U3” 8 B C

A

C C V02 3_. __ u

+ [——3-(1 - vch) + -—lZ-(1 - vlch) + 3 B ] 352'

O2n O12n G3n B C

 

A
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It may appear that a considerable problem has been introduced

here because Of expressions like (Bul/BCA)CB. This would appear to

involve Obtaining activity data Of the actual species as a function Of

the stoichiometric quantities which could be a considerable problem.

However, it has been shown by Nikol'skii36 in general and by Prigogine

and Defay40 for a two—component mixture with association that the chemi-

cal potentials Of a component and the monomer Of that component are

equal. They Observed that this result depends in no way on any assump—

tion about the manner in which association occurs. Furthermore, it is

valid for both associated solutions and associated gases and only

. depends upon the assumption that the complexes are in thermodynamic

equilibrium with each other. Nikol'skii further stated that it is

valid for any equilibrium gaseous or liquid mixtures with any reactions

occurring in them. It follows from this that

“1 “A

(89)

“2 = uB

It should be recalled that from the Gibbs—Duhem equation one can Obtain

BuA auB Bu

CA ax + CB ax + CO ax = 0 (90)

In order for both equations 81 and 90 to be valid, the chemical potential

Of the species must equal the chemical potential of the component.

Activity Expressions Based on the Chemical Model - If activity

data are not available we are still faced with the problem Of finding

values for expressions Of the type (Bui/BCj)C . For associating

i
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systems, Dolezalekls’l6 first proposed the chemical model which states

that non-ideality in associated systems results purely from the com—

plexing to form other species. In other words, the actual species

present in the solution form an ideal solution. This Of course is

only an approximation but a reasonable one if the non-ideality is

mostly caused by the association. For the system under consideration

here, the monomers l, 2, and 3 and the dimer 12 should therefore form

an ideal solution according to the model. Furthermore, if it is

assumed that the associated species does not exist in the vapor and the

vapor is an ideal gas, then Raoult's law for species 1 says that

p:L = XlPI = aAPA (91)

where pl is the partial pressure, P the vapor pressure Of the pure

1

species, and aA the activity. Since P1 and PA are identical, aA must

equal X1, the mole fraction of monomer of A. This analysis can be

extended to the other species, therefore the following set of relations

relating stoichiometric and true quantities must hold

(92)

312 = X12

By Obtaining expressions for the true mole fractions in tenns Of the

stoichiometric quantities, values for (aul/acA)C = (apA/BCA)C etc.,

B B

can be Obtained. Details Of this are given in Appendix III.
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Since pure A and pure B have no associated species present and

are assumed to exist only in the monomer form, reasonable values for

Vi and Vé are the respective partial molar volumes Of the pure components

A and B.

Phenomenological Coefficient Expressions — It is of interest to

check on the Onsager reciprocal relations for this sfinplest associative

case. The rate Of entropy production is given by

 

11 = ’11 3§%" J2 3§%" J3 3%3" 12 8::2 (93)

Utilizing equations 78 and 81, equation 93 becomes

Ts=—(Jl+J12-§‘:J3)%-(J2+J12-:—:J3)% (94)

For this system, equation 23 is

JiVi + JiVé + JéVé + 112112 = 0 (95)

Eliminating J from equation 94 with equation 95 and rearranging gives

 

  

3

a " a " a a " a '—

. _ “1 CAVl “1 CBVl “2 “2 CBVZ “2 CAV2 a“1
Ts - —J -——-+- + - J ———-+--———--—-+--———--——-

1 3x C VI 3x C V. 3x 2 8x C V1 8x C V' 8x

c 3 c 3 c 3 c 3

“1 CAVlZ “1 8“2 CBV12 3“2
- J ——— + + +

3 ax c V' ax ax c V' ax

c 3 c 3

From stoichiometry

J1 = JA " J12

(97)

J = J - J
2 B 12
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Substituting equations 97 into equation 96 and rearranging yields

 
 

  

c V an O V an c V an c V an

T6 = —J 1 + A 1 __l.+._§_l.__2 _ J 1 + B 21 2 + A 2 1

A C V 3x C V 3X B C V 3X C V 3X

c 3 c 3 c 3 c 3

(98)

c an 0 an
A - - - 1 B —- —- —- 2

- J12[C V' ('Vi'V2+ 12) ax + C $— ("V1'V2+V12) ax ]

C 3 c 3

Now a reasonable assumption in accordance with the previous assumption

Of constant volume is that 612 = Vi + Vi. If this is the case, equation

98 becomes

 

c V' an c V' an O V' an O V' an

Té=-J 14.—Ll __];+__B_l__2__J #44. 14.1.24 (99)

A C V. 8x C V. 3x B C V. 3x C V. 3X

C 3 C 3 C 3 C 3

  

From the postulate of irreversible thermodynamics, the following

equations are valid.

  

 

  

CAVl 3“1 CBV1 3“2 CAV2 a“1 CBV2 3“2
J =—L l+———————+——-——-L —-——+ 1+ —

A AA c V' ax ‘ c V' ax AB c V' ax c V" ax
C 3 C 3 C 3 C 3

(100)

CAVl Bpl CBVl auz CAVZ aul CBV2 an2

J = —L 1 + ————- ———-+-————-——— - L ————-———-+ 1 + -———
B BA CV 3x C.V- SX BB C.V- BX CV X

c 3 C 3 c 3 c 3

and

LAB = LBA
(101)

Carrying out the multiplications in equations 100 and equating corres-

ponding coefficients with those in equations 82 and then solving the

resulting equations for LAB and LBA gives
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2 _

c c v c c v

——-l(1-Vch)+ 12(1—V120A)+ 3A]—B_l

O1n O12 03n 0 v
L = C 3

AB _ _1__

CCV3

V'c c c v c c c V’
[E 2 2 A + 12 (1 _ VlZCA) + 3 A B] 1 + A;l

O2n O12n °3” c v

_
c 3

_ ._l__

CCV3

(102)

Vac C(1-V C) Vcc CV
[_ lolnB + 12 O n12 B + 30AnB] 1 + B 2

L _ 1 12 3 ch3

BA 1

CCV3

c c V'02 C'V

[-—Z<l-VZCB)+-—12-<1—VIZCB)+ ”Jif-

O2n O12n 03n 0 v
_ c 3

_l;_.

CCV3

Simplification of these expressions gives

0 c V" c C'—

_ _-_i_li_l _- __Z_é_2 _-
LAB ' LBA ' oln (1 VlCA) ozn (l V203)

_. (103)

C c v c
A B 3 —- —- 12 -— -—

— O n (—1 + vch + 2GB) + 3——3-(1 - vlch)(1 - V1203)

3 12

Thus, if the assumption that V32 = Vi + V? is true, then the

hydrodynamic model for associating systems in which a 12 dimer is formed

predicts that Onsager's reciprocal relations are valid. It was
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attempted to demonstrate the validity of the reciprocal relations for

this associating system without using the above assumption, but such

attempts were unsuccessful.

Solutions in Which One Component Dimerizes

The method of obtaining the flow equations, diffusion coef-

ficients, and phenomenological coefficients is the same as that just

discussed for the case of a one:one canplex. For this reason, only the

important equations will be given here. The subscripts 1, 2, 3 and 11

will refer to the monomers of components A, B, and C and the A-A

complex respectively.

Diffusion Coefficient Expressions - Again, from equations 8

and 14, we have that

   
v - v = - -——--——-

m,c V,c n 0 3x 0 3x 0 3x 0 3x

CV7 311 CV 81: CV 2311 C \T 311

1[11 1+22 2+33 3+1111 11] (104)

1 2 3 11

The flows are given by

JA - Jl + ZJll + CA(vm,c VV,c)

(105)

m

JB — J2 + CB(Vm,c - VV,c)

From stoichiometry, it follows that

CA = C1 + 2Cll

CB = C2 (106)

CC=C3

The association reaction can be described by an equilibrium constant as

follows
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a

K =-—%1 (107)

a1

From the defining equation for the chemical potential (equation 37)

and equation 107, a relation between the gradients of chemical poten-

tial can be obtained. This is

Bu Bu

11 - 2 1 (108) 

8x - 3x

Also the Gibbs—Duhen relation and the stoichiometric relations com-

bined with equation 108 give

Bul Buz 3u3

CAE+CBE+CCK=O ”09>

Using equations 104, 105, 108 and 109, the flow equations become

 

 

 

c 20 czV an
1 —- 11 —- A 3 1

J=-—1-CV + 2-cv +———-—
A [oln ( A 1) olln ( A 11) o3n:] 8x

_ [_ CBCAVZ + CACBV3]an 2

ozn 03n 8x

(110)

J = — [— ClCBVl — 2C11CBVll + CBCAV3] Sul

B oln 011” o3n 8x

2

8

-[—C—B—(l-CBVV2V)+—3—CB] “2
o n o n "

2 3 3"

For this system, equation 22 is

CV +cV +cV +CV =1 (111)
1 1 B 2 C 3 ll 11

and this combined with the stoichiometry relations (equations 106)

enables us to write
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f(C C

at constant T and P.

Since equations 86 and 87 also apply to this system,

(112)

equation 86 can be substituted into equation 110 and the coefficients

compared to equation 87. This gives

 

 

 

 

 
 

 

 

- 2

C 20 V C Bu

1 —- ll - 3 A 1

D =—(l—CV)+——(2—CV)+ ]—
AA [oln A 1 011” A ll o3n BCA

C

B

— " a
+[ CACBVZ + CACBV3] “2

2 03n BCA c

B

Cl __ 2Cll __ V30: Bul

DAB=[on(l—CAV1)+On<2_CAV11)+0n BC
1 11 3 B C

A

+ [- CACBVZ + CACBV3] .3112

Ozn 03n . 3GB c

A

[ chBVl zcllCBVll CACBV3] [Bull

D = — ._ + ____..__

BA n

c

 

(113)
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D = [_ C1C13Vl _ 2C11CBV11 + CACBV3] 8“1

BB oln olln o3n aCB

C
A

(113)

2...

C C V Bu

-+ [-—4§ (1 C v2) + B 3 ] '55g

2 03n B C

A

Activities Based on the Chemical Model - If no dhner is

assumed to exist in the vapor, then pA = pl. If in addition the four

species form an ideal solution, then the following relations must hold

3B = az = X2 = YBXB

(114)

aC = a3 = X3 = YCXC

a11 = X11

It also follows that

an Bu

1 _ A

8x - 3x (115)

Also the fact that B and C do not associate means that

112 = LIB, 113 = 11C (116)

v2 = VB, v3 = vC (117)

G2 = CB’ 03 = 0c (118)

Phenomenological Coefficient Expressions — The rate of entropy

production is given by
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Bu 8p 8p 3p

1 2 3 11

T8 J1 ax J2 ax ' J3 ax J11 3x (119)

If it is assumed that

11 = 2Vl (120)

then using equations 108 and 109 and the relation

le1 + sz2 + J3V3 + JllVll = O (121)

equation 119 reduces to

C V' an C V' an

Té=_J l+..é_];_l+__B__l__2

A - 3x -' 8x

CCV3 CCV3
(122)

CAV2 Bul CBV2 BUZ

— J ----——-+ l +-——- = — J Y — J Y
B C V? 3x C V: 3x A A B B

C 3 C 3

From irreversible thermodynamics,

JA = LAAYA + LABYB

(123)

B LBAYA + LBBYB

J

Now, carrying out the multiplications indicated in equation 123 when

the substitutions are made for the Y's and equating coefficients

with equations 110, LAB and LBA can be obtained. They are

C C V C C v
_ 1 B 1 —- A B _ -—

LAB ' LBA ‘ ' Cln (l CAvl) 0B (1 CBVB)

__ __ (124)

2C C v C C v
11 B 1 —- A B C —- -—

' olln (2 CAV11) + oCn (l ' CBVB ’ CAVl)



45

Thus if the assumption that V11 = ZVi is true, then the

hydrodynamic model for systems in which one component dimerizes

predicts that Onsager's reciprocal relations should hold.



EXPERIMENTAL

Apparatus

The experimental diffusion coefficients for both binary and

ternary systems were obtained with an optical diffusiometer. Diffusion

took place in a glass—windowed cell immersed in a constant temperature

bath and was followed by measuring the refractive index of the solution

with a Mach-Zehnder interferometer.51 Two solutions of slightly

different concentrations were carefully flowed one on top of the

other into the cell and free diffusion allowed to take place. The

concentration was taken as the average of the two solutions. This set—

up was similar to the diffusiometer described by Caldwell, Hall, and

Babb8 and'is described in detail by Bidlack.4

A diagram and a photograph of the interferaneter system are

shown in Figures 1 and 2. The canponents were supported by ordinary

laboratory bench carriages located along a continuous rail composed of

three optical benches. These in turn were bolted to an I—beam mounted

on a concrete block to dampen outside disturbances and vibrations.

Monochromatic light from a Cenco quartz mercury arc lamp

source, filtered to isolate the 5461 2 green mercury line, was col—

limated and then split in amplitude by a half-silvered mirror (mirror

1). Half of the beam was refleCted to a full reflecting mirror

(mirror 2) and the other half passed through to a full reflecting

46
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mirror (mirror 3)° The two beams were then combined at a half-

silvered mirror (mirror 4). Constructive interference of the two

beams occurred when the path lengths 1—2—4 and 1-3—4 were equal or

differed by a whole multiple of the wavelength of the incident

light. The mirrors were so adjusted as to give straight, vertical,

parallel fringes.

The interference beam was arranged so that it could be

photographed directly by a camera. The camera consisted of a 3 foot

long aluminum tube of 3% inches diameter containing a lens with a 343

mm. focal length set in the end towards the interferometer. The lens

was focused on a type M, 3% x 4% inch Kodak plate located at the

opposite end. A lever mechanism on the plate holder enabled fourteen

successive exposures to be taken per plate. The magnification

factor of the camera was found to be 1.923.4

The diffusion cell was fixed in a water bath maintained at

25 i 0.030C by a thermoregulator. The water bath consisted of an

18 x 18 x 18 inch stainless steel tank covered with 3/4 inch plywood

and rested on the cement block without touching the interferometer.

Two 3% inch diameter optical flat windows were clamped and sealed

into the ends of the water bath and aligned to allow passage of the

light beams through the bath and the cell windows. Distilled water

was preferred over tap water since it did not cloud up as fast.

In Figures 3 and 4 are shown a photograph and a diagram of

the diffusion cell. The main body of the cell consisted of a B x 3%

inch slot cut into a stainless steel plate with two Optically flat



 

  

    
 

Figure 3. Photograph of the diffusion cell.
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Figure 4. Diagram of diffusion cell.
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windows clamped over the slot to form a sealed channel. The channel

was situated to allow both light beams to pass through it; thus, a

vertical concentration gradient in the solution across one of the

beams resulted in a fringe displacement pattern that was a direct

plot of refractive index versus distance. All parts of the cell

which would be in contact with the liquid solutions were stainless

steel or glass to enable the study of most corrosive liquids.

A framework was bolted to the cement block and positioned

above the bath so that the cell could be hung from the top and

immersed in the bath. Two small position pins were placed on the

framework to insure that the cell was always placed in the same

position.

The cell was provided with two inlets, one in the top and

one in the bottom, and two outlets directly across from each other

about one-third the way up the channel sides. Two solutions of

slightly different concentrations were then slowly flowed simul—

taneously into the cell, the denser solution through the bottom

inlet and the other through the top, and out the two outlets. A

sharp boundary was thus formed between the two layered solutions.

This boundary was located in the center of the lower beam. All the

valves were then closed and the solution allowed to diffuse freely.

Procedure for Experimental Run
 

1) The light source and water bath heater were first turned on.

2) The cell was then placed in a rack away from the rest of the

apparatus for convenience in filling.



3)

4)

5)

6)

7)
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All the cell valves except valve 2 were then closed and approxi-

mately 25 cc. of the.denser solution were placed in reservoir B.

Some of this solution was then allowed to flow into the cell

through valve 5 until the liquid level was % to % inches above

the outlets. Valve 5 was then closed.

Valve 4 was next opened slightly and liquid was forced into the

exit line by means of the filling syringe plunger until the

liquid level in the cell was just above the outlets. Valve 4 was

then closed and more solution from the reservoir was passed

through valve 5 into the cell as in step 3. More liquid was

forced into the exit line through valve 4 and the whole procedure

repeated until liquid dripped from the outlet line. This was done

to insure that liquid had filled the exit line as far as the tee.

Valve 4 was then closed.

The same procedure of adding liquid to the cell through valve 5

was repeated and exit valve 3 Opened. The filling syringe was

then used to force liquid into the exit line until the cell

liquid level was just above the outlet. At this point, valve 3

was closed°

Step 5 was repeated until the liquid flowed freely from the

exit line by means of a siphon.

A11 valves were then closed except valve 1 and 25 cc. of the less

dense solution was placed in the filling syringe. Valve 2 was

then slowly Opened so as to allow the solution to trickle down

the side of the cell channel and layer on top of the more dense

solution. The solution was allowed to flow this way with valve
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2 being opened more and more as the solution built up in the

cell. After the solution had overflowed up into reservoir A,

both valves 1 and 2 were closed.

8) The two reservoirs were then filled to approximately equal

liquid levels with the appropriate solutions, remembering to

always place the more dense in reservoir B.

9) At this point the cell was placed in position in the water

bath. The reservoir valves, valves 1 and 5, were then opened

one full turn followed slowly by valve 3 until the rate of

flow from the exit line was one drOp every 8 seconds. The

opposite outlet valve, valve 4, was then slowly Opened until

the combined exit flow rate was one drop every 4 seconds.

It was important to maintain balanced flow rates into both

halves of the cell as well as through both outlets.

10) When the boundary had formed satisfactorily, valves 3 and 4

were closed followed as soon as possible by valves 1 and 5.

The timer was then started and pictures taken at various times

during the run. A series of exposures taken for one run are

shown in Figure 5.

Purity of Materials
 

The chemicals hexane, dodecane, hexadecane, and carbon

tetrachloride were Obtained in the purest forms available from

Matheson, Coleman, and Bell, Co. The hexane and carbon tetrachloride

were spectroquality and the dodecane and hexadecane were 99+%

“Blefin free) quality. The chemicals diethyl ether and chloroform
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were purchased from the Malinkrodt Chemical Co. and were analytical

reagent grade. The chloroform contained a slight impurity of

ethanol used as a preservative. This affected the density slightly

but showed no noticeable change in the refractive index. The

measured values of density and refractive index were’compared with

those listed in the literature and were found satisfactory. These

values are given in Table l.

Calculations
 

Calculation of Concentrations and Viscosities

In determining concentrations, various predetermined

amounts of each component were weighed out together, and the density

of the resulting solutiontneasured with a pycnometer. From the

known amounts and the density of each solution, the concentrations

were calculated. Volumes calculated on the basis of densities of

the pure components agreed within 0.15% of the measured volumes but

were lower than the measured values in all cases. The very small

differences were an indication of the constancy of the molar volumes.

For systems in which the diffusion coefficients had been

experimentally determined by others, concentrations were calculated

using the given mole fractions according to the following equation

X.

C = —-————1 i = 1,2,3 (125)

XV.
J JI

M
O
)

j-

Viscosities Of the solutions were experflnentally determined

using a Cannon-Fenske type viscometer. Kinetic energy effects were

taken into account by using an equation of the form
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previous recorded data.

Chemical

Hexane

Dodecane

Hexadecane

Carbon Tetrachloride

Chloroform

Diethyl Ether

Density at 25 0C

This Work

0.6550

0.7450

0.7698

1.5850

1.4740

0.7075

d

(g/CC)

Reference

42

0.6549

0.7451

0.7699

1.5845

1.4795

0.7077

Comparison of physical constants with

This Work

1.3727

1.4196

1.4324

1.4570

1.4426

1.3500

“1)

Refractive index at 25 OC

Reference

42

1.3723

1.4195

1.4325

1.4576

1.4422

1.3499
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”1:“-.. (126)
p 2

where K1 and K2 are experimental constants determined using liquids

of known viscosity and t is the time. The Viscosities for the

systems reported by other sources when not given were calculated

according to the following relationship

3

1n n = Z x, 1n n, (127)

i=1 1 1

where Xi is the mole fraction of i and ”i is the viscosity Of pure i.

Reduced Second Moment

The fringe pattern obtained by the diffusiometer for each

exposure may be considered as a plot of the refractive index versus

distance in the cell because the displacement of the fringes is pro—

portional to the refractive index

difference. It is also true that [__.

x

n - n = kl(jx - jx ) (128)

2 X1 2 1 y

 

        
where nx is the refractive index

i  
at xi and jx is the number of

i  
Jfringes up to the point x,.

1 fringes

From equation 128, k1 = An/J

where J is the total number of

l

.
\

fringes and An is the total

refractive index difference

across the boundary. It is

           
desired to obtain a plot Of
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(an/ax)t versus x for each eXposure, since it is the second moment

of the refractive index gradient curve that is required. If we

look at the center regions of the exposure (near x = 0), it is

noticed that any curvature in the fringes is small. From equation

128, it follows that the refractive index difference across one

fringe is k Hence in the center regions of an exposure a1.

reasonable value for the refractive index gradient can be obtained

by measuring the distance between two fringes. Thus

k

(‘33) 2 35—47;.— (129)
3 t x. +x. j+1 j

x = .311_1

2

where xj and xj+1 are the distances to fringe j and j+1 respectively

and (Sn/8x)t is the refractive index gradient at x = (xj+l + xj)/2.

In the outer regions of the exposure (x >> O, x << 0),

the curvature of the fringes is more pronounced and therefore

equation 129 is not a good approximation. In these regions, tan—

gents to the fringes give more accurate values of the refractive

index gradient. The tangent at these points gives ay/ax not an/ax,

therefore a relation between By and an is necessary. This can be

Obtained by measuring the distance in the y direction between a

specific number Of fringes. This provides a prOportionality

constant, k2

y ' y
2 1k2 =

(130)

43'

where Aj is the number of fringes between y2 and yl. Using equation

128,equation 130 becomes
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An = -—-Ay (131)

1%).
where tan 0.x is the measured tangent of any fringe at point xi on

i

therefore

k1

x, k2

1

tan 0 (132)

X.

1
  

the exposure and where O is the angle measured between the tangent

line and the x axis.

The values x and y which are measured Off an exposure are not

the actual distances but rather magnified distances. The camera which

records the fringe pattern at various time intervals has a magnification

factor, M = 1.923, hence x = xm/M where xIn is the measured distance and

x is the actual distance. On this basis, equations 129 and 132 are

 

 
 

 

Mk

9-3 = M ——3“ = 1 (133)

EX t x + x 3xm x’+l m — X‘ m
-j+l,m j,m t J 9 J9

2M

an — 22;— - ——l-tan 01 (134)

3x 3x k I

t x m 2 x

_B t .31

M M

The definition of the rth moment is given by

+m

- .1 r ‘22mr — An {00 x ax t dx (135)

where An is the total refractive index difference across the initially

sharp boundary. In terms of measured quantities this definition

becomes

 

1 +.. a

m = f x (41—) dxm (136)
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From the expressions for the refractive index gradients used

in the numerical integrations, equations 133 and 134, and the defini-

_ th . . .
tion of the r moment, it can be seen that the proportionality

constant kl cancels. Thus in evaluating the moments, the constant k1

is not required. It is Obvious then that any value chosen for kl

will not affect the results. If k1 is chosen as unity in evaluating

the refractive index gradients, then

ma—n +°°a
ax dx=f (41—) dxm=An=k1J=J (137)

3

t -m xm

 

t

J can easily be evaluated from each exposure within 10.2 fringes.

Therefore, since it can also be calculated numerically from equation

137, a check on the numerical calculations is provided.

For the case of k1 = 1, calculation Of the value of xm at

the initially sharp boundary can be Obtained from

+00

_ 1_ an

x — J I xm (-——) dxm (138)

Notice that the choice of the origin of x used in determining the

measured x values will give a different value of x m' It is shown

9

in Appendix II that if xC m is taken as the origin, then m1 = 0.

9

This Of course follows from equation 138. Since the moments and the

diffusion equations are derived on the basis of xC = 0, the values of

x used in the determination of 1112 must be equal to (xm — x m)/M

C:

where xm is the measured value of x based on any starting point, xC m

9
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is the value of xm at the boundary based on the same starting point,

and M is the magnification factor. The expression for 1112 is therefore

+00

_ l _ 2 8n

m2 _ 2 1 (Km Xc,m) (3x ) dxh (139)

M J —w m t

The reduced second moment D2m is defined by

m

2

2m 2t

In actuality a perfectly sharp boundary will not be formed so that t

will not equal the measured time, tm. Rather

t = t + At (141)

m corr.

Hence equation 140 should be

In2

D2m = 2(t + At ) (142)

m C0rr.

 

Rearrangement of equation 142 gives

= D t + (143)
“12
'r— D At

2 2m m 2m corr.

Therefore, a plot of m2/2 versus tm should give a straight line of

slope, D2m’ and intercept DZmAtcorr. The slope gives the de31red

value of the reduced second moment, and the intercept provides the

time correction, Atcorr From the latter, the absolute time of

diffusion can be determined using equation 141.

Plots of the second moment versus the measured time for the

systems studied are given in Figures 12, 13, and 14 of Appendix VI.
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It can be seen that they are linear in accordance with equation 143.

Tabulations of the time corrections, zuéorr , obtained from these

curves are given in Table 15 also in Appendix VI. For convenience

the second moments at the various measured times of each run are also

provided in Table 14 of Appendix VI.

Reduced Height—Area Ratio

The reduced height-area ratio is defined by

 

2

0A 5 (An) (144)

an 2

4nt[ 31:1]

t

max

In terms of measured quantities this becomes

 

2

(k J)
D = 1

(145)

A 2 an 2

4TrtM l: (—-——) ]

3x

1“ t

Again it can be seen from the expressions for the measured refractive

index gradients (equations 133 and 134) that kl cancels and hence k1

can be taken as unity in the calculations.

Since there are no minima and only one maximum in the

measured refractive index gradient curve, DA can be obtained by simply

finding the maximum of the measured refractive index gradient curve

and substituting this value into equation 145. This maximum which

can be obtained either numerically or graphically, decreases as the

absolute time, t, increases.

Differential Refractive Index Constants

3,19,22,23
It was assumed by Costing, et. a1 and this

author that the total refractive index change across the boundary, An,
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could be expressed by the equation

An = RlACl + RZAC2 (146)

where Ci represents the concentration in moles/liter and Ri is the

differential refractive index increment of component i. Division of

equation 146 by ACi, gives

An _ 2

AC1 — R1 + R2 BC: (147)

Thus, values of R1 and R2 could be obtained from the intercept and

slope of a plot of An/ACl versus ACZ/ACl.

An can be determined either by direct refractive index

measurements or from equation 128

An = R J (128)

Based on several runs performed in this laboratory, k1 was found to

be 2.10 x 10.5 refractive index units/fringe. To Obtain this value

larger concentration differences, and thus larger An values, were

used so as to minimize errors in refractive index measurements. The

J values, total fringes, could be obtained directly from the

exposures.

It should be pointed out that in the determination of the

ternary coefficients, only the ratios of R and R are used. There—
1 2

fore a value of k1 is not needed since it cancels in the ratios. The

I I

following equation can therefore be used to calculate an R1 and R2

from which the correct ratios can be determined.
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AC

AJ ' ' 2

— = R + R — (148)
ACl 1 2 A01

where

v R 1 R
l 2

R =— , R =— (149)

1 k1 2 k1

and

l

R R

_} = E1 (150)

R2 2

The latter method is considered more accurate because Of the limita—

tions in the refractive index measurements. With small initial

concentrations difference chosen to minflnize errors resulting from

variation of Dij’ VA, and Ri with concentration, the An values are

naturally quite small. In fact, they were in the neighborhood of

0.0005 to 0.0010 indicating that small errors in a refractive

index measurement could cause large percentage errors in An. The J

value, being a strong indicator of refractive index difference, was

considered a more accurate measure of An.

Diffusion Coefficients

The method used in this laboratory of experimentally

determining the diffusion coefficients D,, of a ternary system was

13

very similar to the method outlined by Fujita and Gosting.22 In

both methods a refractive index gradient curve at various thmes

during free diffusion is obtained. Using these curves, reduced

second moments and reduced height—area ratios are calculated. Plots

of the reduced second moments and of the reciprocal square root of
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the reduced height—area ratio are then made against the refractive

index fraction of one of the components, al- This refractive index

fraction is defined by

 

‘11 = RlACl: R ACRl-lA-CR AC (151)
An 1 l 2 2

The slopes and intercepts at a1 = 0 and a1 = l of these plots are then

used to calculate the ternary diffusion coefficients.

The linear equations of the reduced second moment, D2m’ and

of the reciprocal square root of the reduced height-area ratio,

l//§;. with a are
1

D2m = 12m + SZmal (152)

1

-—=I+S/5_ A Aal (153)

A

where 82m and SA are the slopes and 12m and IA are the intercepts at

a1 = 0. The intercepts at a1 = l, L2m

slopes and intercepts by the following relations

and LA, are related to these

L = I + S (154)

L = I + S (155)

The ternary diffusion coefficients in terms of these slopes and inter—

cepts are

L I S

2m A 2m
IDijl + Lzm/lDijl + ———SA

Dll = — (156)

S

2m
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I2 LASZ

|D_,|+I /|D,,| +————-—m1“
13 2m 13 SA

 
D22 = s (157)

2m

Rz
D12 = EZ-(Izm — D22) (158)

R1

D21 = R—2 (LZm - D11) (159)

where lDijl’ the determinant Of the ternary diffusion coefficients, is

given by

1Dij| = D111122 ' D121121 (160)

The lDijl is determined from the cubic equation

2

y— 3 S2m 2 s2m
(I-Dij|) + IZm-IAq (VIDij|) — q =0 (161)

The development of these equations and the solution to the

describing equations for diffusion are given in Appendix II. A

computer program to solve for the roots of equation 161 is given in

Appendix V.

Friction Coefficients

Values of the friction coefficients, oi, for the systems

dodecane—hexadecane—hexane, toluene—chlorObenzene—bromobenzene, and

acetone—benzene—carbon tetrachloride were calculated from mutual

diffusion of the binaries at infinite dilution and from self diffusion

data Of each component. Values of the friction coefficients for the

system diethyl ether—chloroform—carbon tetrachloride were determined
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by Wirth.47 For the hydrocarbon system values were determined more

exactly using tracer techniques. The necessary diffusion data are

provided in Tables 11 and 12. Since the parameter RT/oi always

appeared together in the calculations, this value was determined for

each component rather than Oi itself. The relationship used in this

calculation was

0

ijnj 1,2,3 (162)1
4
'

II

3

-—=X,D_n, + Z X,D
l i i . J

J

j...

2
where Di is the self diffusion coefficient of canponent i in cm. /sec.,

Dij is the mutual diffusion coefficient of the i—j binary at infinite

dilution of component i in cm.2/sec., ni is the viscosity of pure i

2 . .
in dynes x sec./cm. , and X is the mole fraction of component i at

i

which the diffusion coefficients were measured.

It should be pointed out that equation 162 is more applicable

to non—associating systems since the friction coefficients correspond

to actual species. With associating systems where there may be more

than three species present, the friction coefficients Obtained do

not correspond to actual species. Rather they are empirical factors

for each stoichiometric component. They would therefore give less

reliable values for the diffusion and phenomenological coefficients

calculated from them.

The parameter RT/oi for the hydrocarbon system was obtained

from tracer techniques according to the equation

-—— = D n (163)
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where D* is the tracer diffusion coefficient, n is the viscosity of

the solution, and O1 is the friction coefficient of the tagged

species. The concentrations in the tracer runs were the same as

those at which the ternary diffusion coefficients were determined.

Details on the derivation of-equation 163 are given in Appendix I.

This procedure could be applied to other non-associating systems if

the components could be obtained in tagged form.

Activity Data

Dodecane (l) — Hexadecane (2) — Hexane (3) - Activity

data at 200C for the hydrocarbon binaries hexane—dodecane and hexane-

hexadecane were obtained from Bronsted and Koefoed.5 Since they

concluded that the system exhibited regular solution behavior, the

activity data for the ternary system were obtained by a Van Laar

fit.43 The equations used were

2

T In Y _ (03’313 + C2A23'312)

1 2
(C1A13 + c3 + C2A23)

 

(164)

--— 2

(ClAl3/B21 + C3'Bz3)

)2

1A13 + C3 + C2123

 

T 1n 7
2

(C

where Aij and Bij are constants obtained from the binaries and C1 is

the concentration of 1. These constants are tabulated in Table 19 of

Appendix VI. Further details on the derivation of required activity

expressions are given in Appendix III.

Diethyl Ether (A) — Chloroform (B) - Carbon Tetrachloride (C) -

Activity data for this system was calculated on the basis of the
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associated chemical model proposed by Wirth47 and Anderson. ’

According to their model, diethyl ether and chloroform form a onezone

complex and this together with the uncomplexed monomers and the inert

carbon tetrachloride species form an ideal solution. The vapor is

assumed to be ideal with none of the dimer complex present.

From this model the activities of the species are given by

equations 92

A 1 l A A

aB = a2 = X2 = YBXB

(92)

aC = a3 = X3 = YCXC

a12 _ X12

where Y is the activity coefficient. Details on the determination of

X X X3, and X and of (api/aci)c are given in Appendix III.

J

Acetone (l) — Benzene (2) — Carbon Tetrachloride (3) — Activity

1’ 2’ 12

data at 45°C for the acetone—benzene and acetone—carbon tetrachloride

binaries are given by Brown and Smith5 and for the benzene—carbon

tetrachloride binary by Christian, et. a1.9 These have been fitted

to two term Margules equations50 and extended to the ternary by the

method of Wohl.47 The equations used were

3 _ 2 2
CT 1n yl — CZI:A12CT + 201(A21 - Alzfl -+ C3 [A13CT + 201(A3l -A13%

+ c2c3[CT(A21 + Al3 - A32) +2C1(A3l - A13) (165)

+ 2C3(A32 ' A23) ' C123(CT ’ zcli]
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3 _ 2 2 _

CT 1“ Y2 ‘ C3 [1123111 1 2C2(‘132 ' A23)] + C1 [A2101 + 2C2(‘112 A213]

+ C103 [CT(A32 + A21 - A13) + 2c2(A12 - A21) (165)

1' 2C1(1‘13 ’ A31) ' C123(111 ' 2%)]

where

C =

123 (166)N
I
H

(A21 ' A12 1' A13 ’ A31 + A32 ’ A23)

and Ci is the concentration of i and the Ai' are the binary coefficients.

These coefficients are listed in Table 19. Details of the develOpment

of the expressions for (aui/acj)c are given in Appendix III. The

1

activity constants determined by Yon and ToorSO are given in Table 19

of Appendix VI.

Toluene (l) - Chlorobenzene (2) — Bromobenzene (3) - This

system was assumed to be ideal so that for all three components

a. = X. (167)

Error Analysis of Experimental Method
 

The accuracy in determining binary diffusion coefficients

with this apparatus was found to be 11% by Bidlack.3 He Obtained

diffusion coefficients for seven aqueous sucrose solutions and

compared them with those reported by Costing and Morris. Diffusion

coefficients for aqueous sucrose solutions obtained by this author

also were within 11% of those listed.

It is difficult to specify the accuracy in determining

ternary diffusion coefficients. The reason for this is the lack of
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reliable ternary data to compare to. The accuracy of the ternary

data that are available in the literature is not given for this same

reason, only the precision is generally discussed and sometimes not

even that. In determining experfinental ternary diffusion coefficients

in this laboratory, the accuracy is not limited by the apparatus but

rather by the readings taken from the photographic plates and in the

method of calculations themselves. Because of the former, it is

expected that values obtained for the reduced second moment, D , and

2m

for the reduced height—area ratio, D can be no better than i1%.A’

The precision of the data Obtained in this laboratory was

determined by calculating the variance and confidence limits of the

lepes and intercepts of the reduced second moment and reduced height-

area ratios. These are listed in Table 2. It was found that the

95% confidence lfinits on the slopes were considerably larger than

the intercepts. The limits on the intercepts in all cases amounted

to less than 1.95% of the actual value used. The limits on the

slopes varied from 11.6% to 16%, with the average deviation being

approximately 13%.

The 95% confidence envelope for each of the least squares

fit can be Obtained from Table 3. The 95% confidence limits of the

ordinate values (D2m and l//fi; values) were found to vary from

i0.l% to 11% of the least squares line through the points.

The variances of the ordinate values were determined

according to the equation
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Table 2. Variances and 95% confidence limits of the

vs. a andslopes and intercepts of the D l

lf/BX-vs.

2m

0 curves.
1

Dodecane — Hexadecane - Hexane

Variable Variance 95% Confidence Value used in

Limits calculations

12m 1.39x10"14 11.12x10‘7 1.192x10‘5

32m 4.31x10'15 ~:6.32x10'8 0.1492110"5

IA 1.98 11.34 2.923x102

sA 0.61 :0.75 -0.244x102

Diethyl Ether — Chloroform - Carbon Tetrachloride

Variable Variance 95% Confidence Value used in

Limits calculations

12m 3.21x10'15 5.351110"8 0.716X10_5

32m 4.89x10’14 ~_~2.10x10'7 1.39.1x10'5

1A 1.42 :1.13 2.89ox102

sA 21.6 :4.42 -0.725x102

A_
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Table 3. Confidence limits of D2m and l//§X.

Dodecane (l) - Hexadecane (2) — Hexane (3)

01 Dsz105 Confidence limits l//BX’ Confidence limits

of 02 x10 of 1/75‘
m A

-l.134 0.984 10.938 324.7 $1.12

-0.239 1.203 10.380 300.6 £0.45

0.176 1.197 10.121 283.2 10.14

1.352 1.411 10.612 256.0 -0.73

-2.416 0.835 il.737 350.3 12.07

3.599 1.710 12.012 206.9 12.40

1.257 1.388 10.553 261.9 10.66

Diethyl Ether (l) — Chloroform (2) - Carbon Tetrachloride (3)

5
61 Dan10 Confidence limits 1/75Z' Confidence limits

of D2 X10 of l/Vv—-
m A

1.002 2.113 :0.044 218.8 10.09

0.623 1.585 :0.840 243.3 11.76

1.317 2.577 10.617 193.9 11.30

1.150 2.303 10.267 203.4 10.56
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N 2
V _

2 é (Y1 Y1)

se(yi) = (168)

N - 2

where s:(yi) is the variance of yi, N is the number of data points

used in the least squares fit, Yi is the ordinate value calculated

from the constants of the least squares fit, and y1 is the ordinate

value used in determining the least squares fit. The N — 2 degrees

of freedom result from the use of two quantities, the slope and

intercept of the least squares line, which are calculated from the

data.

The variances of the lepe and intercept were calculated

from the following relations:

 

 

2

2 Se(yi)

s (slope) = (169)
e N

V (x —§E>2
9 i
1

2

2 Se(yi)

s (intercept) = ——————— (170)
e

N

where

N

2x

_ i 1

x ___
(171)

N

The 95% confidence limits were calculated according to the

relation

95% confidence limits on 2 = £0.95 52(2) (172)
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where z is a dummy variable.

These equations and error analysis are discussed by Mickley,

Sherwood, and Reed.32



RESULTS AND DISCUSSION

Theoretical
 

Hydrodynamic theory predicts that the Onsager reciprocal

relations are valid for non—associating systems in which the molar

volumes are constant. This latter constraint was experimentally

maintained by choosing the initial concentration differences as

small as possible. An attempt was made to apply hydrodynamic theory

to multicomponent associating systems by considering the two simplest

cases where association results in a dimer. It was found that

Onsager's reciprocal relations would again be valid but with the

additional assumption that the molar volume of the dimer be equal to

the sum of the molar volumes of the species associating to form the

dimer. This assumption was reasonable but not rigorously valid.

It was also found that Miller's equations for the

phenomenological coefficients reduced to those derived from the

hydrodynamic approach. This was especially encouraging because

Miller's equations contain activity expressions but the hydrody—

namic equations do not. Activity data for ternary and higher

order systems, like diffusion data for these systems, is difficult

to obtain and up till now has been a major deterrent in verifying

Onsager's reciprocal relations. It was mentioned previously, that

Miller's condition for verifying Onsager's reciprocal relations was

77
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derived from his expressions for the phenomenological coefficients.

Since these contained activity terms, they also appeared in the

condition used for testing the reciprocal relations. It should

also be pointed out that the expressions for the diffusion coef—

ficients obtained by the hydrodynamic approach do contain activity

terms. When these expressions are substituted into Miller's equations

for the phenomenological coefficients, the activity terms drop out.

Experimental
 

The systems dodecane-hexadecane—hexane and diethyl ether-

chloroform—carbon tetrachloride were experimentally studied in this

laboratory, while the systems toluene-chlorobenzene-bromobenzene and

acetone-benzene—carbon tetrachloride were experimentally studied

7’41 The hydrodynamic model was applied to all fourelsewhere.

systems and the reciprocal relations tested when possible.

In the derivation of the equations used to determine

experimental diffusion coefficients with optical methods, it was

assumed that the dependence of refractive index on the two indepen—

dent concentrations could be adequately represented by the first

three terms of a Taylor expansion (equation II—l6, Appendix II).

This is a critical assumption since it relates refractive index

measurements, which are the basis of optical methods, to the

concentrations. Thus, it is important before any confidence in the

experimental ternary diffusion coefficients is possible, that the

reliability of this assumption be checked. Fortunately, the trend

has been in all systems studied that this assumption is valid. By
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subtracting the two Taylor expansions representing the refractive

index of the two initial solutions used in a run and then rearranging,

one obtains

-——- = R + R -—— (147)

as was shown in the experimental section. Therefore, provided the R1

and R2 are independent of concentration, a plot of An/ACl versus

ACZ/ACl should be linear. Since the initial concentration differences

are small, the assumption of constant R1 and R2 is reasonable. For

both systems studied experimentally in this laboratory, such plots

exhibited linear behavior. This is shown in Figures 6 and 7.

Non—Associating Systems
 

Dodecane—Hexadecane-Hexane

The basis of the optical method in determining the diffusion

coefficients other than that just discussed is that the reduced

second moment, D and the reciprocal square root of the reduced

2m’

height-area ratio, l/VDA, be linear with the refractive index

fraction, 0 It is from the intercepts and slopes of these curves10

that the ternary diffusion coefficients are calculated. For the

system dodecane (1) — hexadecane (2) — hexane (3), these curves are

given in Figures 8 and 9. It can be seen that linear behavior does

occur. The lepes and intercepts of these curves for this hydro-

carbon system are presented in Table 16 of Appendix VI. The ternary
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0.014-

An

AC

0.004.

  
-OeOl ' l f I ' 1

-l.l -0.9 -0.7 -0.5 -0.3 -O

ACz/ACl

 

Figure 6. Determination of the differential refractive

index increments, R1 and R2,

dodecane (l) - hexadecane (2) — hexane (3).

for the system
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-0.008-

-0.010.‘

-00012 c

 
 
 

-0 0014 ‘

An/ACl

—O o 016 d

-0.018,

_00020 I I ' I Fl I

-l.l —O.5 0.1 0.7 1.3 1.9 2.5

ACZ/ACl

Figure 7. Determination of the differential refractive index

increments, R1 and R2, for the system diethyl ether (1) -

chloroform (2) — carbon tetrachloride.
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007 -

I A llfi

-2.5 -1.5 -O.5 0.5 1.5 2.5 3.5

 

Figure 8. Linear relation of the reduced second moment, D , versus
2m

the refractive index fraction of dodecane, a for the
1,

system dodecane (1) — hexadecane (2) - hexane (3).
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Figure 9.

-0.5 0.5 1.5 2.5

Linear relation of the reciprocal square root of the

reduced height-area ratio, l/VEZ, versus the refract-

ive index fraction of dodecane, a for the system
1,

dodecane (1) — hexadecane (2) — hexane (3).

3, 5
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diffusion coefficients obtained from these slopes and intercepts

along with the phenomenological coefficients calculated from these

diffusion coefficients are given in Table 5.

In determining experimental diffusion coefficients and

phenomenological coefficients based on the hydrodynamic model,

experimental or predictive friction coefficients were required.

For the hydrocarbon system, these were obtained both ways. This

fulfilled two purposes: (1) to obtain accurate values of the

friction coefficients thus placing more confidence on the diffusion

and phenomenological coefficients calculated from them and (2) to

check on the predictive method of calculating friction coefficients.

Values of the friction coefficients calculated by both methods are

given in Table 4. Comparison shows that the predicted friction

coefficients compared quite favorably with those obtained experi—

mentally by tracer methods. The poorer agreement of the friction

factor for hexadecane was probably caused by error in estimating

the self diffusion coefficient of the hexadecane. The lack of

self diffusion data for hydrocarbons higher than decane is evident

from Figure 16. The fact that the molar volumes of the hydro—

carbons differed considerably and that friction coefficients for

the same component calculated from the infinitely dilute binary

diffusion coefficients and self diffusion coefficients differed

appreciably indicated that the effects of the other components

were strong. Under these conditions, the predictive method for

non-associating systems would be the poorest. With this in mind,

the agreement between the experimental and predicted friction
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Table 4. Comparison of the estimated and the experimentally

determined friction coefficients for the system

(RT/ol)X107

dynes

Estimated Tracer

(Equation 162)

1.089 1.118

dodecane (1) - hexadecane (2) - hexane (3)

X1 = 0.350 X2 = 0.317

(RT/02)X107 (RT/o3)x107

dynes dynes

Estimated Tracer Estimated Tracer

(Equation 162) (Equation 162)

1.062 0.848 1.899 1.873
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Table 5. Comparison of experimental diffusion and phenomeno-

logical coefficients with those calculated from

friction coefficients for the system dodecane (1) -

hexadecane (2) - hexane (3)

O

T = 25 C

X1 = 0.350 X2 = 0.317

5 5 5 5
DlleO Dl2X10 D2leO D22X10

(cm2/sec) (cmg/sec) (cm2/sec) (cm2/sec)

Expt. Calculated Expt. Calculated Expt. Calculated Expt° Calculated

Est. Tracer Est. Tracer Est. Tracer Est. Tracer

0.968 1.082 1.115 0.266 0.270 0.386 0.225 0.209 0.167 1.031 1.123 0.971

5 5
L12 X RT X 10 L21 X RT X 10

Experimental Calculated Experimental Calculated

Est. Tracer Est. Tracer

-0.453 —0.538 40.465 -0.444 -0.538 =0.465
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coefficients under the least applicable conditions provides

reasonable confidence in the predictive method.

The diffusion and phenomenological coefficients calculated

from the friction coefficients (equations 39 and 61) are given in

Table 5. In comparing the values obtained by Optical methods to

those predicted from hydrodynamic equations it can be seen that

there is good agreement. In fact, the agreement of L12 and L21

appears to be better than that found by other authors on other

systems. This conclusion may not be justified, however, since no

comparison between the accuracy of experimental methods can be made.

The hydrodynamically obtained values are well within the expected

accuracy of the experimental values.

The agreement of the experimental L and L and the

12 21

12 = L21 obtained from the friction

coefficients indicates that Onsager's reciprocal relations are valid.

agreement of these with the L

Toluene-Chlorobenzene-Bromobenzene

Experimental diffusion coefficients were obtained by

Burchard and Toor7 using a modification of the diaphragm cell tech—

nique. Based on the fact that this apparatus gives less accurate

binary values than the apparatus used in this laboratory, it is

reasonable to assume that the ternary diffusion coefficients are

less accurate than those obtained in this laboratory.

This system was assumed ideal and on this basis phenomeno-

logical coefficients were determined from the diffusion coeffi-

cients given by Burchard and Toor. Friction coefficients were

obtained by the predictive method. The fact that the molar volumes
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were almost equal and that the friction coefficients calculated

from the infinitely dilute binary diffusion coefficients were

approximately equal, indicated that reasonable values of the

friction coefficients could be expected.

Table 6 lists the diffusion and phenomenological coef-

ficients. Excellent agreement between the hydrodynamically obtained

values and experimental values can be seen from a comparison.

Except for very few cases, the values obtained from friction coef-

ficients were well within the 95% confidence limits. Reasonable

agreement between the experimental L12 and L21 is evident and these

agree favorably with those obtained from the hydrodynamic approach.

Based on the results, this author feels that Onsager's reciprocal

relations are verified for this system.

Associative Systems
 

Diethyl Ether—Chloroform-Carbon Tetrachloride

For this system plots of the reduced second moment, D2m’

and the reciprocal square root of the reduced height-area ratio,

1//?;, against the refractive index fraction, 01, are presented in

Figures 10 and 11. It can be seen that these curves exhibit the

linear behavior predicted by the experimental equations, 152 and

153. The $1Opes and intercepts of these curves are given in Table

16 of Appendix VI and the resulting experimental diffusion and

phenomenological coefficients are presented in Table 7.
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Figure 10. Linear relation of the reduced second moment,

D2m’ versus the refractive index fraction of

diethyl ether, 01, for the system diethyl

ether (1) - chloroform (2) - carbon tetra-

chloride (3).
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the refractive index fraction of diethyl ether,

01, for the system diethyl ether (1) - chloro-

form (2) — carbon tetrachloride (3).
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Table 7. Comparison of experimental diffusion and phenom-

enological coefficients with those calculated from

friction coefficients for the system diethyl ether(l)-

chloroform (2) - carbon tetrachloride (3)

T = 25 00

X1 = 0.25 X2 = 0.25

5 5 5 5
DllX10 D12Xlo D21X10 D22X10

Expt. Calc. Expt. Calc. Expt. Calc. Expt. Calc.

2.06 2.76 —0.31 —0.34 0.23 —0.42 2.11 2.23

L X RT X 105 L X RT X 105

12 21

Experimental Calculated Experimental Calculated

-0.709 -0.824 0.209 -0.824
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The necessity of having reliable activity data is clearly

brought out here. No experimentally determined ternary activity

data were available for this system. As a result, the associated—

model of Wirth47 and Andersonl’ was assumed here. This model says

that there are four species in solution, the monomers of all three

components and the associated dimer of diethyl ether and chloroform.

In addition, the model assumes that these four species together form

an ideal solution thus assuming that all non—ideality in this

solution is caused by the association. For the diethyl ether—

chloroform binary, the above model was found by Andersonl’2 to be

quite good. The importance of assuming that the species form an

ideal solution is that then activity data for the components can be

obtained without experimentally measuring pressures, etc. The

required ternary activity expressions were calculated in Appendix

III.

The experimental diffusion coefficients were assumed to

be reliable. However, the phenomenological coefficients, calculated

from the diffusion coefficients and the required activity expressions,

were far from equal. The friction coefficients used to calculate

diffusion coefficients were determined by Wirth47 and were assumed

to be reasonable. These diffusion coefficients did not compare

favorably with the experimental diffusion coefficients. It can be

seen that reasonable agreement exists between the D12 and D22

respectively, but this was considered fortuitous.

There were two possible reasons for this disagreement

assuming that the experimental work was satisfactory: (1) that the



94

hydrodynamic approach as applied to associating systems was not

correct and/or (2) that the activity data obtained assuming the

chemical model was incorrect. It is highly likely that only the

latter was the cause. This belief is based on the fact that the

vapor-liquid equilibrium data and the mutual diffusion data of the

carbon tetrachloride—chloroform binary were not ideal. According

to the chemical model, this binary should be ideal since no

association has been detected. The equilibrium and diffusion data

are presented by Wirth.47 It was admitted by Wirth that the

diffusion data may not be reliable since difficulties in duplicating

it were encountered. In any case, it can easily be seen from his

data, that the general trend was far from ideal. If ideal, a plot

of DAB” versus mole fraction gives a straight line but this plot

was quite curved especially in the region towards pure chloroform.

The fact that difficulties of duplication were experienced may also

reflect the non—idealities of the system. Since the ternary

chemical model, assumed to calculate activities, considered this

binary as ideal, it is quite reasonable to assume that the acti—

vities calculated from this model are in error.

The purpose of studying this system was two-fold, to

check the ternary chemical model and the applicability of the

hydrodynamic theory as applied to associating systems. It can be

concluded from this study that the proposed ternary chemical model

is incorrect. Since the validity of the model, or at least partial

validity, is necessary in order to experimentally verify the
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applicability of the_hydrodynamic approach, no justifiable conclu-

sions on the latter can be drawn.

Acetone-Benzene-Carbon Tetrachloride

This system can be classified as an associated system

but the actual species present are difficult to predict. However,

since experimental data had been collected and activity data for

all three binaries were available, it was hoped that some use of

the system as a check on the hydrodynamic theory could be made.

To do this, the system was treated as a non—associating

system and friction coefficients calculated for each component

from binary and self diffusion data. These friction coefficients

are not coefficients for any particular species but rather overall

factors prOposed to give approximate diffusion coefficients for

any system. In this sense, friction coefficients calculated in

this way serve as a predictive method of obtaining multicomponent

diffusion data. In any case, if the hydrodynamic theory could

lead to an approximate or predictive method of determining reason—

able multicomponent diffusion coefficients, it would certainly

provide some faith in the theory.

Friction coefficients were obtained according to

equation 162 and the values are recorded in Table 17 of Appendix

VI. From these, the ternary diffusion and phenomenological

coefficients were obtained and are given in Table 8 along with the

experimental values obtained by the diaphragm cell technique. It

is evident that indeed the values do compare favorably and are

certainly of the right order of magnitude. It is quite possible
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Table 8. Comparison of experimental diffusion and phenom-

enological coefficients with those calculated from

friction coefficients for the system acetone (1) -

benzene (2) - carbon tetrachloride (3)

O

T = 25 C

5 5 5 5
X1 X2 DllX10 D12X1O D21X10 D22X10

Expt. Cale° Expt. Calc. Expt. Calc. Expt. Cale.

.30 0.35 1.887 1.731 -0.213 -0.274 -0.037 -0.029 2.255 2.226

.15 0.15 1.598 1.532 -0.058 -0.176 -0.083 -0.113 1.812 1.731

.15 0.70 1.961 2.200 0.013 -0.131 -0.149 -0.251 1.929 2.072

.70 0.15 2.330 2.366 -0.432 -0.485 0.132 0.146 2.971 3.236

.09 0.90 3.105 2.499 0.550 -0.071 -0.780 —0.410 1.860 2.065

.24 0.75 3.069 2.268 0.603 -0.180 -0.638 -0.059 1.799 2.352

.49 0.50 2.857 2.263 0.045 —o.365 -0.289 0.253 2.471 2.884

.74 0.25 3.251 2.702 -0.011 -0.563 —0.301 0.252 2.896 3.493

.895 0.095 3.475 3.162 -0.158 -0.691 0.108 0.122 3.737 3.905

X X L X RT X 105 L X RT X 105
1 2 12 21

Experimental Calculated Experimental Calculated

0.30 0.35 -0.283 -0.280 -0.286 -0.280

0.15 0.15 -0.026 —0.041 -0.036 -0.041

0.15 0.70 -0.216 -0.277 -0.243 -0.277

0.70 0.15 -0.461 -0.475 —0.437 -0.475

0.09 0.90 -0.230 -0.230 -0.252 —0.230

0.24 0.75 -0.594 -0.567 -0.604 -0.567

0.49 0.50 -1.068 -0.974 —1.072 —0.974

0.74 0.25 -0.969 -0.943 -O-975 -O~943

0.895 0.095 -0.498 —0.517 -0.496 -0.517
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that they are within the experimental accuracy of the method. Only

in the case where the concentration of one of the three components

is almost zero do the predicted values show any appreciable discrep—

ancy. Better agreement occurs between the main diffusion coefficients,

D and D but the cross diffusion coefficients are in the right

11 22’

order of magnitude, and close in comparison, when one considers that

they are much smaller and more subject to experimental error. Sur-

prisingly close agreement among the phenomenological coefficients

was also obtained.

The fact that this predictive method produced reasonable

results is encouraging and indicates that hydrodynamic theory can

be applied to multicomponent associating systems with some success.

It should be cautioned that the associating system studied was not

a particularly strong associating system and thus poorer agreement

could be expected in more highly associative systems.



CONCLUSIONS

It can be concluded from this study that hydrodynamic theory

should play an important role in describing multicomponent liquid

diffusion. It predicts that Onsager's reciprocal relations should be

valid for non-associating systems of any number of components.

Furthermore, it leads to generalized equations which enable the cal—

culation of diffusion coefficients for quaternary and higher order

non-associating systems from friction coefficients, which can be

accurately obtained directly from tracer measurements, and activity

data. The number of tracer runs required is equal to the number of

components in the system. Calculation of diffusion coefficients in

this way would eliminate the laborious and time-consuming techniques

now available and provide data for systems of higher order than

ternary. Such data, currently not available, would be extremely

useful in considering multicomponent mass flow problems.

EXperimental evidence obtained in this study verifies the

Onsager reciprocal relations for non-associating systems within the

limits of experimental error. In addition, it demonstrates the

validity and applicability of hydrodynamic theory to liquid diffusion.

These conclusions were based on the fact that good agreement between

the diffusion and phenomenological coefficients obtained by optical

98
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methods and those obtained from friction coefficients was found for the

non-associating systems studied.

Hydrodynamic theory applied to simple ternary associating

systems in which only dimers are formed indicates that Onsager's

reciprocal relations are valid provided the molar volume of the dimer

can be considered as the sum of the molar volumes of the species

associating to form the dimer. An attempt to describe an associating

system by the chemical model which states that the actual species in

solution form an ideal solution was not satisfactory. Since ternary

activity data were not available and since the model would have

predicted the missing activity data, the reciprocal relations for

associating systems could not be experimentally verified.

It was found that for associating systems of unknown

association reasonable diffusion data could be obtained by treating

the system as non-associating and calculating friction factors for

each of the chemicals added to form the system. In this way, the

hydrodynamic approach served as a useful predictive method. It should

be noted however that the predicted data would probably be less

reliable in more highly associated systems.



FUTURE WORK

Theoretical
 

An important area opened up in this study was the appli—

cation of hydrodynamic theory to associating systems. It would be

worthwhile to try to obtain generalized expressions for the fluxes,

diffusion coefficients, and phenomenological coefficients in terms

of friction coefficients for systems in which there might be dimers,

trimers, tetramers, etc., in various combinations among the compo-

nents. In addition, it is hoped that the hydrodynamic theory can be

applied to the simplest associating systems such that the assumption

concerning the molar volume of the associating species would not be

necessary in order to show that Onsager's reciprocal relations are

valid.

A further area of develOpment would be with systems in

which the kinds of associated species are not known. It was found

in this study for the system acetone-benzene-carbon tetrachloride

that using overall friction coefficients for a component gave

reasonable diffusion coefficients. Maybe refinement in this area

could produce an improved predictive method for associating systems

by combining hydrodynamic theory and binary diffusion data.

A critical factor in using hydrodynamic theory is the

calculation of friction coefficients. A better understanding of the

100
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effects of composition is certainly needed. Improved methods of

determining their values for associated systems at various composi—

tions would also be helpful.

Experimental
 

There is considerable room for improvement in this area.

To obtain ternary diffusion data, time-consuming calculations and

lengthy experimental work is required. Considerable error is

introduced in the method of calculations which uses the lepes and

intercepts from a plot of slopes from other curves and involves

differences of small numbers in the same order of magnitude.

Improved techniques in taking measurements from the photographic

plates are also desirable. The improvement in the experimental

area of multicomponent diffusion is not needed so much in the

apparatus but rather in the application of the apparatus.

It seems almost ludicrous to speak of development in

experimental techniques with quaternary systems when the techniques

in ternary systems are not yet well developed, but such data could

be extremely useful in checking the hydrodynamic predictions

presented in this study for higher order systems. Activity data

are a very limiting factor in multicomponent diffusion since they

are required and yet are not sufficiently available. In the last

few years, more and more ternary data have become available and

even some quaternary data have been reported. However, most of

these are not collected at constant temperature but rather at

constant pressure. It is suggested that careful consideration be
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given to the systems chosen before any experimental diffusion work

is performed to see that adequate activity data are available. It

would of course be convenient if activity data could be collected

in conjunction with the multicomponent diffusion studies.



APPENDIX I

Determination of Friction Coefficients

The crux of the hydrodynamic method is obtaining reliable

values of the friction coefficients, oi. For the non—associating

case, these can be obtained directly by tracer techniques.

In tracer diffusion, the concentration is uniform throughout

the system and, as a result, the velocities of all reference planes

relative to fixed coordinates are zero. That is

v = v = 0 (1—1)

 

* C* 3 *

* m i ui

Ji - Ji - - * -——- (1—2)

oin 3x

where the superscript * refers to the tagged species. Substituting

for chemical potential from equation 37, equation 1-2 becomes

1 *

C. aln a.

.1 RT ——-—l (1—3)

0.0 8x

1

 

which can be rearranged to give

X
-

1

RT oln a, BCi

 

<1—4)

X
-
H

J; = - *

1

oin aln C. ax

H

103
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The tracer diffusion coefficient which is measured is defined by

7‘: 7:

Jo = - DO (1-5)

1 1

Therefore, by comparing equations I-4 and I—5, the measured diffusion

1

coefficient Di is

3
(
-

RT Bln a,

 

(1-6)U

H
1

u

1
1
4

1

0,0 Bln C.

1 P

If we make the reasonable assumption that the physical properties of

the labeled species are the same as the unlabeled species, then

1

0, = 0 (I—7)

1

For the case of tracer diffusion,

>1
-

aln a,

= 1
(1-8)1

H

81n C.

H

Therefore, from equations I-6 and I-8

 

* RT

Di = 0.0 (1—9)

1

and hence

1

Dan

1

01. = -- (I-10)

RT

Thus, by tagging each component separately and keeping the concentra—

tions the same as those at which diffusion coefficients, D. , are

11
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measured, all of the friction coefficients can be determined. If there

are N components, N tracer runs would of course be required to obtain

the N friction coefficients.

If tagged species are not available, reasonable values of

the friction coefficients can be obtained from the infinitely dilute

mutual diffusion coefficients of the binaries and the self diffusion

coefficients of the binaries and the self diffusion coefficients of

the pure components. Hartley and Crank27 and others have shown that

D = B: :(A + £1; —_alnaA (I-ll)

AB Tl OB GA Bln XA

where DAB is the mutual diffusion coefficient.of the A—B binary. At

infinite dilution of component A, equation I—ll becomes

 

 

0 RT

D =

(1‘12)

AB OAnB

and therefore

RT

0A = D0 (I-13)

ABnB

where DZB is the mutual diffusion coefficient of the A—B binary at

infinite dilution of A and n is the viscosity of pure B. In a

B

ternary system, two such values of 0A can be obtained from the A-B

and A—C binaries; similarly, for 0B and 0C.

Another value of the friction coefficient can be obtained

from the self diffusion coefficient, D1’ of the pure component.

Again, Hartley and Crank27 and others have shown that
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(I-l4)
 

In summary, if self diffusion data and binary data at

infinite dilution in each component are available, several values for

each 01 can be obtained. These values will be reasonably constant if

the friction coefficient is independent of the other species present.

A reasonable value of Oi is therefore a weighted average based on

mole fraction. Thus,

  

RT N 'RT

01. pred. = Dini + j=1 Do 0 X3 1 = 1' °°°’ N (1-15)

13 j
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where 0, is the predicted friction coefficient.

i,pred.

Determination of 0i in associated systems has been described

by Wirth47. This method also involves tracer techniques.



APPENDIX II

Solution to the Ternary Diffusion Equations and the

. . 2
Experimental Determination of the Diffusion Coeffic1ents 2

Solution to the Diffusion Equations
 

The flow equations for a ternary system can be obtained from

equation 26. They are repeated here for convenience.

J = ...D BELL—D fl

1 11 8X 12 3X

(II-1)

J = — D 301 _ D 3C2

2 21 8x 22 8x

To obtain the equations for one-dimensional diffusion in a three-

component system, it is first assumed that the diffusion coefficients

are all independent of concentration and and that no volume change

occurs on mixing. These conditions can be approached experimentally

by keeping the concentration differences across the initial boundary

sufficiently small. By making a material balance on a differential

volume element of the diffusion solution, the desired relations are

then obtained. These are

  

(II—2)
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(II-2)
  

at 8x 8x

in which C1 and C2 are the concentrations of any two components and

are functions of position x and time t. D11 and D22 are the main dif-

fusion coefficients which are generally on the order of mutual diffusion

coefficients in binaries, and D12 and D21 are the cross—term diffusion

coefficients which are considerably smaller than the main coefficients.

For free diffusion a sharp boundary is formed at t = 0 between solutions

A and B which are above and below respectively the position x = 0. As

a result, the initial conditions for the two components (i = 1,2) are

c. = 01 — AC,/2 x > 0, t = 0
1 i i

__
(II—3)

C, = C. + AC,/2 x < 0, t = 0

i 1 i

and the boundary conditions are

C. + .C, - AC,/2 x + +w, t > 0
i i i

__ (II-4)

C, + C, + AC./2 x + -w, t > 0
i 1 1

Here Ci is the mean concentration of each component and ACi is the con—

centration difference of each component across the diffusing boundary.

They are defined as follows

__ (C.) + (C.)
C, = i A i B (II-5)

1 2

 

AC = (C ) - (C )
i 1 B 1 A (II-6)

It is well known that under these initial and boundary

conditions, a new variable, y, may be introduced to reduce equations
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II—2 to a set of ordinary differential equations. The new variable y

is given by

x

= __
(II-7)

(2/t )

and the set of ordinary differential equations obtained is

 

dC d2C d2C

' 2y ——l'= D11 7'2;'+ D12'—2"g
dy dy d y

(II—8)

dC dzC d2C

2 1 2

’ 2y __—'= D21 2 + D22 "—__'
dy dy dy

In addition, equations II—4 — II-6 reduce to

AC.
—- i

C. 4" C, -' _ y ++oo

1 1
2

(II-9)

AC

C. "> C. + '—i y —,‘> -oo

1 i 2

The details in solving equations II—8 and II—9 for the con—

centrations of the components are given by Fujita and Costing.22 The

desired exact solutions which they obtained are

... + _

c1 - C1 + K10(/E: y) + K19(/0: y)

(II—10)

_ + _.

02 - 02 + K2¢(/0: y) + K29(/3: y)

in which

2 q _ 2

9(q) = — j e ‘1 dq (II-11>

/F 0
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and where

V 1

0=1/2H+E+ [(H-E)Z+4FG]l5

1 1 (II-12)

0=1/2H+E- [(H-I~:)2+4FG]Li

7 1

(9+-E)401-FAC

  
(0_ — E)AC1 - FAC

 

 

 

 

  
 

2 — 2
K = K =
1 2(0+ _ 0_) 1 2(0_ 0+)

(II-l3)

_ _ —H C —GCK+ = (0+ H)Ac2 GACl K_ = (o_ )4 2 4 1

2 2(0+ — 0_) 2 2(0_ - 0+)

and

D D D D

E = '11 , G = 21 , H = —2‘-2—— , F = 12 (II-l4)

lD-l lDll lDi-l lDi-l
1J J J J

lDij' ' D11D22 ' D12D21 (11—15)

It should be noted that the equations for each component concentration

are a linear combination of two probability integrals plus a constant

term, with the characteristic of each term depending on.ACl, AC2, and

the four diffusion coefficients.

Determination of Diffusion Coefficients

In order to derive equations applicable to experimental

techniques utilizing optical methods for studying free diffusion, it

is assumed that the dependence of refractive index, n, on the two

independent concentrations can be represented by the first three terms

of a Taylor series. That is,

n = n_ + R1(C-Cl) + 112(02-0 ) (II-l6)
C 2
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where R1 and R2 are the differential refractive index increments

defined by

R :4 [an(cl,cz)]

1 8C1 1,2,0
2 _ .—

C1 ‘ Cl’ 2 2

(II—l7)

R .: [an(cl,cz)]

2 3C2 T,P,C

and n;_is the refractive index of a solution in which the solute con-

C

centrations are Ci and Ci. R1 and R2 are assumed to be independent of

1 _ _' _

C1 ’ C1’ C2 ' 2

0
I

concentration. Again, selecting small initial concentration differences

justified this assumption. It follows from equation II—l6 that the

total change in refractive index across the boundary may be written as

An = RlACl + RZAC2 (II—18)

For convenience component fractions on the basis of refractive index are

defined by

R,AC,

a1 = ___1___}_ (II—l9)

Z RiACi

1.

It therefore follows from equation II-l8 and II-19 that

ml 02 = l (II—20)

For optical methods, it is desired to obtain the refractive

index, n, as a function of x and t. This can be done by substituting
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equations II—lO into equation II-16. The desired refractive index

distribution expression which results is then

 

n = n +-§E-[r (975— y) + r 0(/3—'yfl (II—21)
'6 2 + + - -

where

_ 2 + +

F+ ' An (R1K1 + R2K2)

(II—22)

r = LL.(R K + R K")
— An 1 l 2 2

From the defining equations for P+ and F_, it can be shown that

F+ + F- = 1 (II-23)

The reduced height-area ratio is defined by

(An)2

DA = 2 (II—24)

4wt (22). 3x t

max

Substitution of the maximum value of the first derivative of equation

II-21 into equation II-24 yields

= r /3- -+ r_/E' (II-25)
+ + —3
0

1
1
>

Substituting equations 11-13 into equations II-22 and making use of the

relation 01 + 02 = 1, equation II-13 becomes

1

E- = IA + SAOLl (1.1-26)

A
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where

H + (R /R )F — E — (R /R )C
S = l -2 2 1 (II—27)

A 73; -+ VE—

 

Vo + E - (R /R )F

1A = + —.__ 1 2 (II—28)

/0+ + VET-

 

Thus a plot of l/Vfi; versus a should produce a straight line with
1

slope S and intercept IA at a = 0. Another useful relation is the

A 1

intercept at a = 1. This intercept, call it Ll is given by
A,

V0 0 + H — (R /R )G

+ - 2 1

LA = IA + sA = (II-29)

70+ + 70

 

It should be pointed out that equation II—26 gives two

equations involving the four unknowns D , and D since E,

11’ D12’ D21 22

F, G, H, 0+, and 0_ are expressions involving only the four diffusion

coefficients. R1 and R2 can be experimentally determined. Therefore

the 31Ope, SA’ and intercept, IA, are functions of the diffusion

coefficients and R1 and R2.

Obviously, two more independent equations involving the

diffusion coefficients are necessary. These can be found from the

reduced second moment of the refractive index gradient curves.

th

The r moment of the refractive index gradient curve,

(an/3x)t versus x, is defined by

00

1 r r 8n _

nr _ An 3 x (3x)t dx r — 0,1,2, .. (II-30)

-m



114

and the reduced rth moment, Drm’ is defined by

m

D 1 —£ (II—31)
rm 2t

Differentiation of equation II—l6 with respect to x and sub—

stitution of the result into equation II—30 yields

2 +00 BC

m = :1. 2 R1 f xr (——i) dx (II—32)

= ' t

. . . . th .
To fac111tate the derivation, an r moment of each concentration

gradient curve is defined as follows:

Ri Tm r 3Ci

(m ). E -—- x (-—-J dx (II—33)

r 1 An _m 3x t

so that

mr1 + mr2 = mr (II-34)

It should be emphasized that only mr is a measurable quantity however.

Now differentiating equation II-33 with respect to time and

then inverting the order of differentiation with respect to t and x

gives

d(m ) R, +00 3C

—————ri = -—3‘— [ xr [2— (——i) dx (II-35)

dt An —w x t

These Operations are permissible whenever the derivatives,

. 11,29
E3(8Ci/3t)x/8x] t and E(3Ci/3x)t/3tj x are both continuous. By

means of the continuity equation for a constant volume system, which

says that
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3C. SJ.

1 _ _ __l. (II-36)

at t 3x t

the fluxes Ji can be introduced. Substituting equation II—36 into

equation II—35 and integrating once the right hand side by parts, gives

(II-37)

d rR, +oo SJ,

in}: = —-3; f xr—l (4) dx

3x t

dt An —m

since for free diffusion, (BJi/Bx)t is zero at the limits x = 1m.

Remembering that Ji is also zero at x = 1m, another integration by

parts gives

d(mr)i r(r — l)Ri +m r

._____— = _ f x J, dx (II-38)

dt An -m

 

Recalling the assumption that the diffusion coefficients are indepen-

dent of concentration, we now substitute equation II-l into equation

11-38 and integrate the resulting equations to obtain expressions for

the moments.

 

d(m ), r(r - 1)R, 2 +00 3C,

r 1 = 1 2 D.. f r—2 (3 3) dx

dt An j=l 13 -.. X t

(II—39)

2

= r(r - 1) j£1(Ri/Rj) Dij (Mr_2)j

This equation is seen to be a recursion formula relating the time

derivative of any even moment (r) to a sum of the next lower (r — 2)

even moments, and the time derivative of any odd moment to a sum of

the next lower odd moments. Obviously its use depends on determining

values for (mo)j and (ml)j.
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Integration of equation II—33 for r = 0 and substitution of

equation II-l9 gives an expression for (mo)j.

(m ) = d. (II—40)

Remembering that Jj = 0 at x = 1w, integration of equation II-38 for

r = 1 gives

d(m ).

___1_.1 = 0 (II—41)

dt

indicating that the first moment of each concentration gradient curve

is zero. Since it doesn't change with time, the first moment must

correspond with the position of the initially sharp boundary. In our

experiments the origin (x = 0) is chosen as the position of the

initially sharp boundary, therefore

). = 0 (II-42)

The fact that (ml)j = 0 means that all the odd moments are zero; hence,

as long as the diffusion coefficients, Dij’ and the refractive index

increments, Ri’ are independent of concentration, the refractive index

gradient curve should be symmetrical about the position of the sharp

initial boundary. This is indicated for a typical run in Figure 15

of Appendix VI.

Expressions for the even moments can be obtained from

equation II-39. Substituting equation II—40 and r = 2 gives the

second moment expression of component j.

(m2), = 2t .2 011/ij1 0. 1 = 1,2 (II-43)

j J
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Expanding equation 11-43 and substituting equation II—34 gives the

relation

R2 R1
m2 = 2t [(1311 + E; D21)OL1 + (D22 + E; D12) 07,2] (II-44)

Utilizing equation II-20 and rearranging, equation II—44 becomes

(II-45)

where D2m is by definition the reduced second moment and the lepe,

SZm’ and intercept, IZm’ are

R2 R1

S2n = D11 + RIDZl ‘ D22 ’ EZ'D12 (II-46)

R1

12m = D22 + Ré-Dlz (II-47)

The intercept at 01 = 1, L2m is given by

L2m = 12m + 32m = D11 + (R2/R1)D21 (II-48)

Equation II—45 indicates that a plot of D2m versus 01

should give a straight line with the slope, S , and the intercepts

2m

at d = O, I , all being functions of thel , and at a =l,L
2m 1 2m

diffusion coefficients. Therefore, if at least two experimental runs

are made at the same average concentration but with different

initial concentration differences, values of the 310pes and intercepts

from plots of l// X versus a and D versus a would enable deter-

1 2m 1

mination of the diffusion coefficients.
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It is desired to obtain expressions for the diffusion

coefficients in closed form in terms of the slopes and intercepts.

First of all, from equations II-27 and II—48 we can obtain the

relation

2
lDijI (D11 + 022 + 28013.7) — (Szm/SA) — 0 (II—49)

where IDijl = det Dij = 011022 - D12D21

Similarly, combining equations II-27, II—28, II-47, and II-48 gives

D + D = I11 22 2m - IA(SZm/SA) — /|Dij| (II-50)

Elimination of (D11 + D22) from equations II-49 and II-50 leads to a

cubic equation in V'DijI from which IDijI can be determined either

numerically or graphically. This cubic equation is

3 2 2 _
(/IDij|) + [12m — 1A(32m/sA)] (/|Dij|) — (Szm/SA) — 0 (II-51)

Also combination of equations II—47 and II-48 with the definition of

lDijl gives

I D + L D = |D l + I L (II-52)

2m 11 2m 22 ij 2m 2m

The value of lDijl is known from equation II-51, therefore D11 and D22

can be obtained from the linear equations II-SO and II—52 to yield

= _IDij| + LZm Dijl + LZmIAS2m/SA (II-53)

11 32m
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lDijl + I2m IDij' + I2mLASZm/SA
 D22 = S (II-54)

2m

Substitution of these expressions for D11 and D22 into equations 11-47

and II-48 permit the evaluation of D12 and D21 respectively.

R2
D12 = i (1.2m - D22) (II-55)

R1

I)21 = i— (L2m ' D11) (“'56)



APPENDIX III

Determination of Activity Expressions ani/acj

It was shown previously that for a ternary system there are

four terms of the type Gui/3Cj that are required to determine the

diffusion coefficients Dij and to check the Onsager reciprocal

33,34
relation with Miller's condition. These are

   

anl ain yl 1 1 V1

—,—— =RT———”—'- +RT —-—1—— (III-1)
ac so 0 c —

1 c l c 1 T V3
2 2

80 Bln Y 1 V-

--1— = RT ————3L - RT -—- 1 - i (III—2)
8C2 30 c —

c 2 c T V3
1 1

Eu aln y 1 V.

2
__._._ = RT ————2 — RT —— 1 - A (III-3)
ac 80 c -

1 c 1 c T v3

2 2

anz aln yz 1 1 72

—— = RT —— + RT — - — 1 - — (III-4)
8C2 8C2 c C —

c c 2 T v3

1 1

It is obvious that in order to obtain expressions for Gui/8C,, expres—

J

sions for Bln yi/SCj are required. Most activity data can be correlated

in terms of 1n Yi so that the latter expressions can be obtained.

120
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Dodecane (1) - Hexadecane (2) — Hexane (3) — This system was

fitted to the ternary Van Laar equations using the binary Van Laar

constants Aij and Bij° Binary activity data for the systems hexane—

dodecane and hexane-hexadecane were available.4 To obtain the constants

used in the Van Laar equations, only data on two binaries are needed

since the following relations between the constants apply.

 

1

Aij = 2:i- 1,] = 1,2,3; 1%] (III-5)

Jl

Aii = 1 (III-6)

VBij = - VBjiAij i,j = 1,2,3; i#j (III-7)

B B B

V113 +3/fl .../1611 = 0 (In-..
12 22 32

Aik

Aij = A.k i,j,k = 1,2,3; i#j#k (III-9)

J

From the binaries, values for A and B are obtained. Care must be taken

to designate the right subscripts to A and B. As a check, the sub-

scripts can be determined in the correct order if the relative magni-

tudes of the Van der Waals' constants, a and b, are known. For

example, if the relative magnitude of bi/bj and A are greater than

unity, then the subscripts are ij. The corresponding B value obtained

in binary Van Laar fit is then assigned the same subscripts.

The ternary equations used are

2

(C3013 + C2A23C12)

(ClAl3 + C3 + C2A23)

 T 1n Y1 = - (III-10)
2
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2

(C A C + C C )
T ln Y2 = _ l 13 21 3 23 2 (III—11)

(ClA13 + 03 + 021123)

where Ci is the concentration of component i, and Aij and Cij are

constants. The C , are defined in terms of the binary Bij as follows

13

+

C.. = or V B.. (III—12)

1.] 13

It was found for this case that all the binary B values were negative

which when substituted into the ternary Van Laar equations 164 yielded

a factor of 12, where i is the imaginary index, in the numerator. This

explains the minus sign in equations III-10 and 111—11.

In the case of the value of B, it should also be noted that

it occurs in the multicomponent equation as a square root, and this

immediately raises the question of whether the value is positive or

negative. This question can be answered on the basis of the relative

magnitudes of /;;/bi where a and b are Van der Waals constants. If,

for example, (/E;7bi — /;;/bj) is positive, then VB;; is taken as

positive and VB}; as negative. The term /E;/bi corresponds to the

square root internal pressure of the liquid. Thus polar compounds

which have high internal pressures would be expected to have high

values of this group, while compounds of low polarity would be

expected to have low values. From the tabulation of ai, b1 and /a;/bi

listed in Table 18 of Appendix V1 for various hydrocarbons, it can

be seen that ai increases, bi increases, and VEEYbi decreases as the

carbon number increases. These observations were used in determining
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the sign of Cij° The values of Aij and Cij are given in Table 19 also

in Appendix VI.

To obtain equations III—l — III-4, the partial derivatives of

equations 111-10 and III—11 must be taken with respect to Cl at

constant C and with respect to C at constant C . These, after sim-

2 2 l

plification and use of equation 34, are

 

 

 

 

 

 

T 81n yl _ 2(c3c13 + 021123012) c :1—

8C1 —(CA +c+CA)2 137
c2 1 13 3 2 23 3

(III—13)

+ A _.31 (C3C13 + C2A23C12) ]

13 73 (0114.13 + c3 + 02.0.23)

31“ *1 2(C3013 + C2A23C12)

T ac = 2 ‘A23C12
2 C (C1A13 + C3 + C2A23)

1 (III-l4)

+ C .Z2,+ A _ Xg_ (C3C13 + 02A23012)

13 V 23 V (01.413 + c3 + 021123)

3 3

aln y 81n y

Expressions for T —Efi?—_— and T -1R?_—. can be obtained from

2 cl 1 02

equations 111—12 and III—13 respectively by interchanging subscripts

1 and 2.

Diethyl Ether (l) - Chloroform (2) - Carbon Tetrachloride (3) -

For this system, the model of Wirth47 and Andersonl’2 which assumes

that ether and chloroform form a 1:1 complex was used. The model says

that only four species exist in solution: the monomers (unassociated

species) of ether and chloroform, the inert species CC14, and the
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ether—chloroform dimer. These four form an ideal mixture; thus,

according to the model, any non-ideality of this system is attributed

to the association of ether and chloroform with each other.

It was shown previously that

3A = X1

aB = X2

(92)

a0 = X3

312 = X12

where the subscripts A, B, C refer to the stoichiometric quantities

of ether, chloroform, and carbon tetrachloride respectively and the

sub—scripts 1, 2, 3, and 12 refer to the actual species present.

Therefore it is desired to obtain expressions for the mole fractions

of the actual species in terms of the stoichiometric concentrations.

This would enable the determination of the Elm ai/aCj expressions.

The equilibrium constant for the association reaction is

given by

K = -———- (III-15)

Wirth47 found K = 2.73.

Because of stoichiometry, the following relations exist,

CA = C1 + C12

CB = C2 + 012 (III-16)

C = C
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and from these, the mole fractions of the actual species can be found

in terms of the stoichiometric quantities. We have

 
 

  

  

 

 

x = Cl _ CA ‘ C12

1 C1 + C2 + C3 + C12 CA + CB + CC - C12

x _ C2 _ CB ‘ C12

2 C1 + C2 + C3 + C12 CA + CB + CC — C12

(III-l7)

x _ C3 _ C0

3 C1 + C2 + C3 + 012 CA + CB + CC - C12

X = C12

12 CA + CB + CC - C12

Defining X12 as follows

C

o 12
X =

(III-18)

12 CA+CB+CC

Equations III-17 become

0

X _ XA—XIZ

l _ o

l X12

0

KB X12

X2 = o

l X12

(III-19)

XC

X3 = o

l — X12

0

X12

X12 _ o

1 - X
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With these substitutions, equation III-15 becomes

0 O

x (l-X)
K = 12 12 (III-20)

O O

(X. - X129. - X12)

 

which can be used to eliminate X0 in equations III—l9 to give

 

 

 

 

12

x = (2XA - l) + K(2XA + XC - l) + 9

1 1 + K(XC + 1) + 9

x = (2XB - l) + K(2XB + XC — l) + 9

2 1 + K(XC + 1) + 9

(III—21)

2X (K + 1)

X = C

3 1 + K(XC + 1) +-9

l + K(l - X ) — 9

X = C '

12 l + K(XC + 1) + 9

where

1/
2 2

9 = fi§(l - XC) + P) — 4XAXBK(K + Ii] (III—22)

Notice that if K = 0 (i.e., no association), 9 1 and equations III-21

reduce to X1 = XA’ X2 = XB, X3 = XC’ and X12 = 0.

In terms of stoichiometric concentrations, X and X become

 

 

1 2

X = (2CA - CT) + K(CA - CB) + w

1 CT + K(CT + CC) + w

(III—23)

X _ (20B - CT) + K(CB — CA) + w

2 CT + K(CT + CC) + W



127

1
/2

2

where ‘1’ — [@(CT - CC) + CT) - 4CACBK(K + 1)]

                

Therefore

alna 1 8X V .

A =——-—i = (l+—é\‘-+K+‘¥)1
3C X 3C. —' A

B 1 A . V

CB CB C

(III-24)

VA VA ' 2

2CA-‘-CT+K(CA-CB)+‘P 1-_—+K1-2_—_—+‘PA /(Xl>\)

V V

C C

alna 1 3X V .

A =————]; = (-l+—B--K+\y))\
3C X 3C - B

B 1 B V

CA CA C

(III—25)

VB VB ' 2

- 2CA—CT+K(CA-CB)+‘¥ l-%—+K1-2-V—+‘PB /(Xl)\)

C C

where

A = CT + K(CT + CC) + W (III-26)

, 81 V

9 - —— =—l.— 2|:K(C -C)+C]x K+1-—-4‘- —4CK(1+K)
A 30A 2‘? T C T 17- B

cB
C (III-27)

, 89 1 VB

C C (III—28)

A

Bln aB Sln aB

The --—- and -—-—- are the same as equations 111-24 and

8C BC

B CA A CB

   

III—25 respectively except that every A is replaced by B and vice versa.
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Acetone (l) - Benzene (2) - Carbon Tetrachloride (3) — This

system was fitted to Wohl's ternary equations using binary constants

Aij and a ternary constant C obtained from the binaries.50 The

ijk

ternary expressions for 1n Y1 and 1n Y2 are given by equations 165

   

and 166. The respective partial derivatives of 1n 1 are

Bln Y 1 V" C V.

1 _ __. 2 _._1 _ _ .1111

301 ] ” ‘03] C2 [A12 1 + 2("“21 AlZi] 2 V' [213CT +

C T 3' 3

2

+ 2C (A — A ) + C2 A 1 - Vi + 2(A A )

l 31 13 3 13 V. 31 - l3

3

V1

+ C2C3 [(A21 + Al3 - A32) (1 — £71 + 2(A31 - A13) (III-29)

v V" c'V

._1 _ .11 _._2_1 _2( ) (A32 A23) + c123(1-+__ 1] __ [CT(A21 + A13 A32)

3 V3 V3

<

+

2C1(A31 ’ A13) + 2C3(A32 ' A23) ' C123(CT _ zclfl " 4 (1 _VV)

   

Bln y, l 2 v2

80 _ ‘3' 2C2 [dich + 2C1(A21 ' A12} + C2A12(1 ’1:—

1 3

(III-30)

V” 20 v
2 2 3 2

+C —— —
-

3A13 G V') —- [513CT + 2C1(A31 A13)]
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<
I

|N
<1

|

)]

U
.
)

U
»
)

U
.
)

V
2

+ [c3 - c2 -V_] [CT(A21 + A13 — A32) + 201m31 - A13) (III-30)

3

3 1n Y1 V;

+ 2C3(15‘32 A23) C123(CT 201) " C4 1 ’ V

 

3C BC

aln y2 31n Y2

Similar expressions can be obtained for -—————— and -—-——-

2 Cl 1 C2

by taking the apprOpriate partial derivatives of equation 165.
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APPENDIX IV

Fortran Program to Calculate the Reduced Second Moment, D2m

This program obtains the refractive index gradient curve

for each exposure and from this calculates the number of fringes, J,

the centroid, x , and the second moment, m Using these values

c,m 2'

of m and the measured time for each exposure, the reduced second

2

moment, D2m’ and time correction, t , are calculated. The tan—

corr.

gent method is used at the ends of each exposure to obtain the refrac—

tive index gradients while the difference between fringes is employed

in the center regions.

The gradients in the center regions are fitted to a

quadratic, AX2 + BX + C, in an attempt to obtain the best maximum.

By obtaining a smooth curve by the least squares technique, it is

thought that a more reliable maximum can be obtained. It was found

that extensive scatter would give unreliable maxima by this tech-

nique but would not affect the values of x calculated at which the

maxima actually occur.

Areas under curves were obtained by summing the areas

calculated under various regions of the curves. At each end of the

curve, the points were fitted to a quadratic and the area obtained

by integrating the resulting quadratic equation. In the center
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region, the area was obtained by using the trapezoidal rule between

each adjacent point. This latter technique was very reasonable since

the points were so close together in this region. Calculated areas

agreed very well with those obtained graphically.

Loading, fortran evaluation, and set-up on the Control

Data Corporationfls 3600 computer require approximately 45 seconds

for this program. Execution time for one run with an average of 5

' exposures per run is approximately 3 seconds. Thus in one minute,

the computer is capable of calculating 5 runs.

Fortran Program for CDC 3600

PROGRAM CALCD2M

DIMENSION RUN(20),DN(100),X(100),Y(100),T(15),SECMOM(15),D2M(15),

lXR(lOO),XL(lOO),THETA(100),RAD(100),BETA(100),XN2(100),XM(100)

CONST = THE MAGNIFICATION FACTOR. FOR THIS CASE IT IS = 1.923

NRUNS = THE NUMBER OF PLATES EVALUATED

J = THE NUMBER OF EXPOSURES EVALUATED

T = THE EXPERIMENTALLY MEASURED TIME IN SECONDS WHICH HAS PASSED

UP TO THE PARTICULAR EXPOSURE BEING EVALUATED

M = THE NUMBER OF DATA POINTS FOR THE PARTICULAR EXPOSURE EVALUATED

DN = THE DERIVATIVE OF THE REFRACTIVE INDEX WITH RESPECT TO THE

MEASURED DISTANCE.

DELN = THE TOTAL REFRACTIVE INDEX CHANGE, CALCULATED NUMERICALLY,

ACROSS THE BOUNDARY

XCENT = THE CENTROID OF THE REFRACTIVE INDEX GRADIENT CURVE. IT

IS = THE FIRST MOMENT OF THE CURVE

SECMOM = THE SECOND MOMENT OF THE REFRACTIVE INDEX GRADIENT CURVE

1 FORMAT (8F10.5)

FORMAT (I3)

3 FORMAT (*-*,*THE NUMERICALLY INTEGRATED VALUE FOR THE TOTAL REFRAC

lTIVE INDEX CHANGE ACROSS THE BOUNDARY IS -*)

FORMAT (*O*,30X, E13.7)

FORMAT (FIO.4)

FORMAT (*0*,*THE CALCULATED CENTROID OF THE GRADIENT OF THE REFRAC

1TIVE INDEX CURVE IS —*)

9 FORMAT (*O*, *SECOND MOMENT*, 5X, *TIME IN SECONDS*,1OX,*D2M*)

lO FORMAT (*O*, E13.7, 6X, FIO.4, 10X, E13.7)

11 FORMAT (*O*,*THE RESULTS OF THE LEAST SQUARES ANALYSIS ARE -*)

12 FORMAT (*O*,5X,*D2M*,17X,*INTERCEPT*,10X,*ACTUAL INITIAL TIME*)

0
0
0
0
0
0
0
0
0
0
0
0
0

N
O
\
U
1
-
L
\
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14

15

16

17

18

19

101

102

103

1000

1001

35

36

37

70
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FORMAT (*0*,E16.9,5X,E16.9,15X,F10.4)

FORMAT (*1*,*HERE ARE THE RESULTS FOR RUN NO. *14)

FORMAT (10F5.3)

FORMAT (* *,E13.6,2X,E13.6,8X,E13.6)

FORMAT (* *,5X,*X*,14X,*DN/DX*,6X,*((X — XCENT)XX2 X DN/DX)*)

FORMAT (*0*,5X, *XMAX*, 9X, *MAX DN/DX*)

FORMAT (*0*,2X, E13.6, 2X, E13.6)

FORMAT (.1615)

FORMAT (314)

FORMAT (2F10.7)

FORMAT (*0*,5X,* A *,lOX,* B *,10X,* C *)

FORMAT (*O*,1X,E13.6,2X,E13.6,2X,El3.6)

READ 5, CONST

READ 2, NRUNS

READ 101, (RUN(I), I = 1,NRUNS)

DO 40 N0 = 1, NRUNS

PRINT 14, RUN(NO)

READ 2,

READ 2,

J

NSQ

READ 103, CONVl, CONV2

DO 20 L = 1,J

READ 5, T(L)

READ 102, N1, N2, N3

N1

= M

M:

Ml

READ 1,

READ 1,

READ 1,

READ 1,

READ 1,

D0 35 II

= N1 + N3 - 1 + II

THETA(III)

RAD(III)

III

DN(III)

X(III)

DO 36 I6 =

= N1

DN(N)

X(N) =

DO 37 111 =

RAD(III)

DN(IIl)

D0 70 I

Y(I7)=

M2= M

0

0

=0

+ N2 + N3 - l

- 1

(X(I): I =

(THETA(I),

(XN2(I), I

(BETA(I), I

(XM(I), I

l,N2

,Nl)

2)

,N2)

1.N3)

)

1

N

ll
I
l
l
-
I
F

,N1

1,

1

= BETA(II)

= THETA(III) * 3.1416/180

= TANF(RAD(III))/CONV2

= XN2(II)

2,N3

+ I6 - l

1.0/(XM(I6) - XM(I6 — 1))

(XM(I6) + XM(I6 - 1))/2.0

1,N1

= THETA(III) * 3.1416/180

= TANF(RAD(IIl))/CONV1

= 1,M

DN(I7)

2 * (NSQ - 1)

* (NSQ - 1)

-4*(NSQ-1)+l

7

<
3
<
3
t
§
r
o
l

00
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31

32

60
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SX2 = 0.0

SX3 = 0.0

SX4 = 0.0

SYX2 = 0.0

DO 80 J4 = NSQ2, M2

SX = SX + X(J4)

SY = SY + Y(J4)

SXY = SXY + X(J4) * Y(J4)

SX2 = SX2 + X(J4)**2

SX3 = SX3 + X(J4)**3

8X4 = 8X4 + X(J4)**4

SYX2 = SYX2 + Y(J4) * X(J4)**2

DET =NSQ3*SX2*SX4 — SX**2*SX4 -NSQB*SX3**2 — SX2**3 + 2.0*SX3*SX2*

18X

A = (SYX2*(NSQ3*SX2- SX**2) - SX3*(NSQ3*SXY- SX*SY) + SX2*(SXY*SX

l—SX2*SY))/DET

B = (SX4*(NSQ3*SXY- SX*SY) — SYX2*(NSQ3*SX3- SX2*SX) + SX2*(SY*SX3

1 - SX2*SXY))/DET

C = (SX4*(SX2*SY — SX*SXY) - SX3*(SX3*SY— SXY*SX2) + SYX2*(SX3*SX

1 - SX2**2))/DET

XMAX = -B/(2 * A)

YMAX = A * XMAX**2 + B * XMAX + C

PRINT 1000

PRINT 1001, A, B, C

PRINT 18

PRINT 19, XMAX, YMAX

CALL AREANUM (X,XR,XL,Y,AREA,NSQ,M,M6,A,SX,SY,SX2,SX3,SX4,

ISYX2,DET,B,C,J1,M1,J3,NSQI)

DELN = AREA

PRINT 3

PRINT 4, DELN

DO 31 I2 = 1,M

Y(Iz) = X(IZ) * DN(IZ)

CALL AREANUM (X,XR,XL,Y,AREA,NSQ,M,M6,A,SX,SY,SX2,SX3,SX4,

ISYX2,DET,B,C,J1,M1,J3,NSQI)

XCENT = AREA/DELN

PRINT 6

PRINT 4, XCENT

DO 32 I3 = 1,M

Y(I3) = (X(I3) — XCENT)**2 * DN(I3)

PRINT 17

DO 60 I9 = 1,M

PRINT l6, X(I9), DN(I9), Y(I9)

CALL AREANUM (X,XR,XL,Y,AREA,NSQ,M,M6,A,SX,SY,SX2,SX3,SX4,

lSYX2,DET,B,C,J1,M1,J3,NSQ1)

SECMOM(L) = AREA/(CONST**2 * DELN)

D2M(L) = SECMOM(L)/(2.0 * T(L))

CONTINUE

PRINT 9

DO 33 14 = 1,J
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33 PRINT 10, SECMOM(I4), T(I4), D2M(14)

= O O

= O. O

= O O

SXY= 0.0

D0 34 I5 = 1,3

SX = SX + T(IS)

SY = SY + SECMOM(15)/2.0

52 = $2 + T(15)**2

34 SXY = SXY + T(I5) * SECMOM(15)/2.0

SLOPE = (SX *SY - J *SXY)/(SX**2 - J * sz)

CEPT = (SY - SLOPE * SX)/J

TINIT = -CEPT/SLOPE

PRINT 11

PRINT 12

PRINT 13, SLOPE, CEPT, TINIT

4O CONTINUE

END

SUBROUTINE AREANUM (X,XR,XL,Y,AREA,NSQ,M,M6,A,SX,SY,SX2,SX3,SX4,

18YX2,DET,B,C,J1,M1,J3,NSQl)

DIMENSION X(lOO), XR(100), XL(100), Y(lOO)

AREA = 0.0

NSQl NSQ - 1

D0 100 I = 1,NSQ

100 XL(I) = X(I) - X(l)

M6 = M - NSQ

DO 110 I = M6,M

110 XR(I) = X(M) — X(I)

= Y(2)/XL(2)**2

AREA = AREA + (A/3.0)*XL(2)**3

=Y(M-1) /XR(M-l)**2

AREA = AREA + (A/3.0)*XR(M—l)**3

SX 0 0

SY 0 O

SXY -

SX2

SX3

SX4 .

SYX2 = 0.0

DO 200 J2 = 2 ,NSQ

SX = SXX+ X(J2)

SY = SY + Y(J2)

"
l
l

O
C
D
C
D
C
D
0

O
O
O
O

SXY = SXY + X(JZ) * Y(J2)

SX2 = SX2 + X(J2)**2

SX3 = SX3 + X(J2)**3

SX4 = SX4 + X(J2)**4

200 SYX2 = SYX2 + Y(JZ) * X(J2)**2

DET = NSQ1*SX2*SX4 - SX**2*SX4 -NSQ1*SX3**2 - SX2**3 + 2.0*SX3*SX2*

lSX
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A = (SYX2*(NSQ1*SX2— SX**2) - SX3*(NSQ1*SXY- SX*SY) + SX2*(SXY*SX

1—SX2*SY))/DET

B = (SX4*(NSQl*SXY— SX*SY) - SYX2*(NSQl*SX3— SX2*SX) + SX2*(SY*SX3

1 - SX2*SXY))/DET

c = (SX4*(SX2*SY — SX*SXY) - SX3*(SX3*SY- SXY*SX2) + SYX2*(SX3*SX

1 - SX2**2))/DET

300 AREA = AREA + (A/3.0)*(X(NSQ - 1)**3 - X(2)**3) + (B/2.0)*(X(NSQ -

1 1)**2 - X(2)**2) + C*(X(NSQ - 1) - X(2))

SX = 0.0

SY = 0.0

SXY =

SX2

SX3

SX4

SYX2 = 0.0

DO 700 12 = 1,NSQ1

O

0

O.

0

0 G
O
O
D

J2 = M - NSQ + 12

SX = SX + XR(J2)

SY = SY + Y(J2)

SXY = SXY + XR(J2) * Y(J2)

SX2 = SX2 + XR(J2)**2

SX3 = SX3 + XR(J2)**3

SX4 = SX4 + XR(J2)**4

700 SYX2 = SYX2 + Y(J2) * XR(J2)**2

DET =NSQ1*SX2*SX4 - SX**2*SX4 - NSQ1*SX3**2 — SX2**3 + 2.0*SX3*SX2

1*SX

A = (SYX2*(NSQl*SX2- SX**2) - SX3*(NSQ1*SXY- SX*SY) + SX2*(SXY*SX

1-SX2*SY))/DET

B = (SX4*(NSQ1*SXY- SX*SY) - SYX2*(NSQ1*SX3- SX2*SX) + SX2*(SY*SX3

1 - SX2*SXY))/DET

C = (SX4*(SX2*SY - SX*SXY) — SX3*(SX3*SY- SXY*SX2) + SYX2*(SX3*SX

1 - SX2**2))/DET

J1 = M - NSQ + 2

M1 = M - 1

AREA = AREA + (A/3.0)*(XR(Jl)**3-XR(M1)**3) + (B/2.0)*(XR(J1)**2

1 — XR(M1)**2) + C*(XR(J1) - XR(M1))

J3 = J1 - 1

DO 500 J = NSQI,J3

500 AREA = AREA + (1.0/2.0)*(Y(J) + Y(J+1))*(X(J+1) - X(J))

RETURN

END

'RUN,1,1200



APPENDIX V

FORTRAN PROGRAM TO SOLVE FOR /|Dij|

This program utilizes the Newton—Raphson method to obtain

a root to a polynomial and then factors this root by synthetic

division in a subroutine. A root to the resulting polynomial

(which is of one less degree than the previous) is again obtained

by the Newton—Raphson method and is factored out by synthetic

division. This is repeated until only a linear equation remains.

This program obtains only real roots. If both imaginary

and real roots are present, the real roots are determined first

and then the computer cycles until the designated time limit is

reached.

This program can be generalized to an Nth order polynomial

by simply reading in all the coefficients of the polynomial rather

than calculating them, as was done here for convenience.

Fortran Program for IBM 1800
 

// JOB

// FOR PRTS

*IOCS(CARD, 1443 PRINTER)

*NONPROCESS PROGRAM

DIMENSION A(50), B(50), C(50)

1 FORMAT (I2)

2 FORMAT (4E13.6)

3 FORMAT (' COEFFICIENTS OF POLYNOMIAL OF DEGREE '12,2X,'(STARTING

1WITH THE HIGHEST POWER OF X) ARE')

136
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14

10
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FORMAT (5X, E13.6)

FORMAT ('0', ' ROOT NUMBER ' 12,1X, ' IS ' E13.6)

FORMAT (' NEW COEFFICIENTS AFTER DIVIDING OUT ABOVE ROOT ARE')

READ (2,1) N

N1 = N + 1

READ (2,2) SA, CTA, 82M, CT2M

A(l) 1.0

A(2) CT2M - CTA * szM/SA

A(3) 0.0

A(4) -(SZM/SA)**2

WRITE (3,3) N

DO 14 I = 1,N1

WRITE (3,4) A(I)

N IS DEGREE 0F POLYNOMIAL

P = POLYNOMIAL EVALUATED AT X

DP = DERIVATIVE OF P EVALUATED AT X

READ (2,1) NRTS

DO 12 J = 1, NRTS

X = 0.000001

CALL SYND (A,B,C,X,P,DP,N,N1)

XPRE = X

X = XPRE - P/DP

IF (1.0E-11 - ABS (X- XPRE)) 10, 11, 11

WRITE (3,5) J,X

WRITE (3,6)

DO 13 I = 1,N

WRITE (3,4) B(I)

A(I) = B(I)

N = N - 1

N1 = N + 1

CALL EXIT

END

// FOR SYND

*NONPROCESS PROGRAM

SUBROUTINE SYND (A,B,C,X,P,DP,N,N1)

DIMENSION A(50), B(50), C(50)

B(l) A(l)

DO 8 = 2, N1

B(I) A(I) + X * B(I — 1)

C(1) B(l)

DO 9 = 2, N

C(I) B(I) + X * C(I — l)

P = B(Nl)

DP = C(N)

RETURN

END

H
II
H

II
II

// XEQ PRTS

*CCEND
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EXPERIMENTAL DATA
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Component

Hexane

Dodecane

Hexadecane

Toluene

Chlorobenzene

Bromobenzene

Diethyl Ether

Chloroform

Carbon Tetra-

chloride

Acetone

Benzene

Molecular

weight

86.17

170.33

226.44

92.13

112.56

157.02

74.12

119-39

153.84

78.11

*

Reference 50

Reference 42

138

Physical properties of the pure components.

Temper- Measured Molar

ature Viscosity Volume

OC cp cc/mole

25 0.296 131.6

25 1.338 228.6

25 3.031% 294.1

30 0.515* 107.4

30 0.713* 106.0

30 0.985 102.8

25 0.217 104.7

25 0.542 80.7

25 0.890 97.12

25 0.308 73.99

25 0.597 89.40

Measured

Refractive

Index

1.3727

1.4196

1.4324#

1.492407%

1.5221#

1.5576

1.3500

1.4422

1.4570

1.3566

1.4981
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Table 10. Initial concentration differences.

Dodecane (1) - Hexadecane (2) - Hexane (3)

T = 25 0C

‘01 = 1.615 '02 = 1.464 ‘03 = 1.533

Run NO. a1 (mo1gg/l.)

154 -1.134 -O.120

155 -0.239 -0.0185

157 0.176 0.0168

158 1.352 0.0788

160 -2.416 0.156

161 3.599 0.128

162 1.257 0.0716

Diethyl Ether (A) -

O

T = 25 0

CA = 2.646 CB = 2.653 CC = 5.309

Run No. 0 AC

1 (moleé/l.)

175 1.002 -O.0864

176 0.623 -0.0481

178 1.317 -0.0629

179 1.150 -0.0568

moles/liter

AC2

(moles/l.)

0.134

0.0571

0.0467

-O.0122

-O.131

-O.OS48

”O o 0087

Chloroform (B) - Carbon Tetrachloride (C)

moles/liter

ACB

(moles/1.)

0.0006

-O.1315

0.0683

0.0334



Table 11.

Binary system

(i dilute in j)

Hexane in Dodecane

Hexane in Hexadecane

Dodecane in Hexane

Dodecane in Hexadecane

Hexadecane in Hexane

Hexadecane in Dodecane

Chlorobenzene in Bromobenzene

Chlorobenzene in Toluene

Bromobenzene in Chlorobenzene

Bromobenzene in Toluene

Toluene

Toluene

Acetone

Acetone

Benzene

Benzene

in

in

in

in

in

in

Chlorobenzene

Bromobenzene

Carbon Tetrachloride

Benzene

Carbon Tetrachloride

Acetone

Carbon Tetrachloride in Benzene

Carbon Tetrachloride in Acetone

*

Reference 7

#
Reference 12
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Temperature

Binary diffusion data at infinite dilution.

*
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Table 12. Self diffusion data.

Component Temperature DC.)jX105 DIJX ni X107

OC cm /sec dynes

Hexane 25 4021 1025

Dodecane 25 0.87: 1.20

Hexadecane 25 0.51b 1.67

Toluene 30 2.60 1.34

Chlorobenzene 30 1.79 1.28

Bromobenzene 30 1.23b 1.21

Acetone 25 4.77b 1-57

Benzene 25 2.16 1.29

Carbon Tetrachloride 25 1.32 1.18

Chloroform 25 2.44 1.32

Diethyl Ether 25 8.73 1.96

a obtained from a plot of self diffusion coefficient versus

carbon number for various hydrocarbons (Figure 16, Appendix VI)

reference 30



 



Table 13.

ratio, 0

Reduced second moment, D

A,

142

data.

2m

Dodecane (l) - Hexadecane (2) — Hexane (3)

Run No.

154

155

157

158

160

161

162

—l.134

-0.239

0.17 6

1.352

-2.416

3.599

1.257

2

0.984

1.203

1.197

1.411

0.835

1.710

1.388

Diethyl Ether (A) - Chloroform (B)

Run No.

175

176

178

179

2.646

1.002

0.623

1.317

1.150

T 25

2

°C

.653

2

2.113

1.585

2.557

2.303

D X10
m

D X10
m

E

5

= 1.533

DAXlO

0.947

1.107

1.247

1.526

0.815

2.335

1.467

5

and reduced height-area

moles/liter

1ND;

324.7

300.6

283.2

256.0

350.3

206.9

261.9

- Carbon Tetrachloride (C)

E = 5.309
C

5
DAXlO

2.184

1.765

2.711

2.509

5

moles/liter

1M:

218.8

243.3

193.9

203.4
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Table 14. Second moment, m2, data.

Dodecane - Hexadecane - Hexane

Second Moment Measured Time

m X 102 t

2 2 m

(cm ) (secs)

Run No. 154

00832 305

1.163 485

1.434 605

1.887 845

Run No. 155

0.636 125

0.917 245

1.209 365

1.356 425

Run No. 157

0.955 245

1.388 425

1.959 665

2.536 905

Run No. 158

0.820 125

1.032 185

1°370 305

1.546 365

1.825 485

2.377 665

Run N0. 160

0.631 125

1.010 365

1.326 545

1.517 665
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Table 14. (continued)

Second Moment Measured Time

m X 102 t
2 2 m

(cm ) (secs)

Run No. 161

1.350 125

1.776 245

2.198 365

2.571 485

3.414 725

Run No. 162

1.026 185

1.213 245

1.497 365

1.867 485

2.363 665

Diethyl Ether - Chloroform - Carbon Tetrachloride

Run No. 175

0.901 125

1.427 245

l~972 365

2.459 485

2.948 605

3.441 725

Run N0. 176

1.272 305

1.660 425

2.080 545

2.662 725

3.224 905

3.725 1085

Run No. 178

0.801 65

1.123 125

1.509 185

1.786 245

2.735 425

3.278 545

3.577 605
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Table 14. (continued)

Run No. 179

Second Mement Measured Time

m X 102 t

2 2 m

(cm ) (secs)

0.926 125

1.200 185

2.010 365

2.260 425

2.925 545

3.380 665
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Table 15. Time correction, At r’ data.
COT

Dodecane - Hexadecane - Hexane

Run No. Am

corr

(sec)

154 115.3

155 137.6

157 154.0

158 174.6

160 254.4

161 272.4

162 185.0

Diethyl Ether - Chloroform - Carbon Tetrachloride

Run N0. Am

corr

(sec)

175 93.6

176 103.8

178 100.1

179 74.6
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Table 16. Data used to calculate the experimental

ternary diffusion coefficients

0

T = 25 C

Dodecane(l)-

Hexadecane(2)-

Hexane(3)

292.30

-24.4

5

267.8
5

1.192

0.149

1.341

X10 0.939

0.01091

0.01803

1.615

1.464

1.533

Diethyl Ether(l)-

Chloroform(2)-

Carbon Tetrachloride(3)

289.05

-72.53

216.52

0.716

1.391

2.107

4.401

-0.01143

-0.00253

2.646

2.653

5.309
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Table 17 (continued)

Diethyl Ether (A) - Chloroform (B) - Carbon Tetrachloride (C)

T = 25 0C

6A 2.646 moles/liter

CB 2.653 moles/liter

CC 5.309 moles/liter

_12 0.880 moles/liter

0 0.573 cp.

a/RT 0.631

b/RT 0.025

c/RT 0.025

d/RT 0.554

(RT/ol)X107 1.956 dynes

(RT/o2)X107 1.322 dynes

(RT/o3)X107 1.174 dynes

(RT/012)X107 0.896 dynes

K 2.73
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Figure 15. Typical refractive index gradient curve

(run no. 160) at various times during

diffusion.



Hydrocarbon

ethane

propane

butane

pentane

hexane

heptane

octane

154

Table 18. Van der waals constants, a and b, for

various hydrocarbons

a

. 2

liter atm

mole2

5.489

8.664

14.47

19.01

24.39

31.51

37.32

b

liter/mole

0.06380

0.08445

0.1226

0.1460

0.1735

0.2107

0.2368

a/b

(atm)

36.7

35-0

31.0

29.9

28.4

26.6

25.8

n
\
"
'



Table 19.

Dodecane (l) - Hexadecane (2) - Hexane (3)

i3

12

21

13

31

23

32

155

activity equations.

A..

10

0.9815

1.0188

1.0521

0.9505

1.0717

0-9331

Activity constants used in the ternary

2-0937

-2.1136

-3.7004

3.6066

-5.8491

5.6502

Acetone (1) - Benzene (2) - Carbon Tetrachloride (3) T

13

12

21

13

31

23

32

C

123
: 0010

13

0.49

0.39

0.98

0.69

0.10

0.11

25
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Figure 16. The product of absolute temperature and the reciprocal

of the self diffusion coefficient versus carbon number

for several hydrocarbons.
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NOMENCLATURE

constant used in Van Leer and Wohl equations

Van der Waals constant, literzatm/mole2

activity of component i

constant used in Van Laar binary equations

Van der Waals constant, liter/mole

concentration of component i, moles/cm3

total concentration, moles/cm3

constant used in Van Laar ternary equation

constant used in Wohl ternary equation

reduced height-area ratio

self diffusion coefficient of i, cmz/sec

tracer diffusion coefficient, cmz/sec

reduced second moment

mutual diffusion coefficient, cmz/sec

binary diffusion coefficient at infinite dilution, cmz/sec

multicomponent diffusion coefficient, cm2/sec

Onsager diffusion coefficient, cmz/sec

driving force for diffusion of species i

frictional resisting force to diffusion of species i

friction coefficient of species i

157
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intercept (at a» = 0) of the reciprocal square root of

1

reduced height—area ratio curve

intercept (at 01 =0) of the reduced second moment curve

total number Of fringes on an exposure

flux of 1 relative to the coordinate of the plane across

which the net volume flux is zero, moles of i/cm.2/sec.

flux of i relative to a coordinate-fixed plane

flux of 1 relative to the medium

flux of i relative to the coordinate of the plane across

which the net volume flux is zero

tracer diffusion flux

fringe number

association equilibrium constant

viscosity measurement constant

proportionality constant between refractive index

difference and fringe number

proportionality constant between an increment of measured

distance and fringe number

intercept (at a = 1) of the reciprocal square root of
l

the reduced height—area ratio curve

intercept (at a1 = 1) of the reduced second moment curve

phenomenological coefficient

magnification factor, 1.923

rth moment of the refractive index gradient curve

th . .
r moment Of component 1 of the refractive index gradient

curve

Avogadro's number

refractive index
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gas constant

differential refractive index constant of component i

differential refractive index constant of component i

based on total fringes

slope of the reciprocal square root of reduced height-

area ratio curve

slope of the reduced second moment curve

rate of internal entropy production per unit volume

variance of z

absolute temperature

actual time

time correction

velocity of species i relative to the velocity of the

medium, cm./sec.

partial molar volume of i, cm.3/mole

velocity of the medium relative to fixed coordinates

velocity of the plane across which the net volume flux

is zero relative to fixed coordinates

mole fraction of i

distance along direction of diffusion

centroid of the refractive index gradient curve

independent force for diffusion in constant volume system

distance perpendicular to the direction of diffusion

defined variable = x/(Z/E)

refractive index fraction of i

activity coefficient of i

Kronecker delta



 



Subscripts

11

12

viscosity

160

angle formed by the tangent to the refractive index

curve, degrees

chemical potential of i

partial derivative of “i with respect to Cj

kinematic viscosity

friction coefficient of i (01 = Nfi)

refers

refers

refers

refers

refers

refers

refers

t0

t0

to

to

t0

to

to

stoichiometric quantity of A

arbitrary component or species

measured values

true quantity of A

true quantity of B

true quantity of AA complexes

true quantity of AB complexes
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