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ABSTRACT

THE APPLICATION OF SINGULAR PERTURBATION METHODS

TO OPTIMAL CONTROL PROBLEKS

IN FLIGHT MECHANICS

BY

YUNG-NAN HU

The use of singular perturbation methods in performance

Optimization problems in flight mechanics is investigated.

The thesis addresses three fundamental issues: modeling of

flight mechanics models in the singularly perturbed form.

boundary-layer instability associated with the use of open-

loop control, and the steering control problem of moving the

state of the system from a given initial state to a given

final state while minimizing a cost functional.

A normalization scheme for identifying the time-scale

properties of flight mechanics models is presented. Time-scale

properties must be identified before solutions can be obtained

using the singular perturbation method. It is shown that this

new scheme can rationalize identifying the flight vehicle's

dynamic equations in a singularly perturbed form.

The use of singular perturbation methods in airplane

performance optimization is evaluated. The evaluation is based

on a study of the minimum time interception problem using r-a

aerodynamic and propulsion data as a base line. Emphasis is

placed on the boundary-layer instability problem for real-time,

auto-pilot implementation. A feedback stabilization scheme is



YUNG-NAN HU

proposed to circumvent this instability problem.

In order to steer the state of a singularly perturbed

system from a given initial state to a given final state,

while minimizing a cost functional, a composite control

strategy is developed. The composite control comprises three

components: a reduced control and two boundary-layer controls.

The boundary-layer controls do not optimize cost functionals.

It is shown that application of this composite control results

in a final state which is 0(6) close to the desired state.

Moreover, the cost under the composite control is 0(a) close

to the optimal cost of the reduced control problem. Particular

attention is given to the minimum time-to-climb problem of an

aircraft in a vertical plane.
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I . INTRODUCTION



Many problems in science and technology require choosing the

best (or the optimal) solution among all the possible solutions.

In this second half of our present century one of the most challenging

and fascinating optimization problems is the analysis of optimal space

trajectories. It consists of finding the best trajectory, in some sense,

for the motion of a vehicle in a three-dimensional space. A general

optimization problem in three-dimensional atmospheric flight is a

difficult problem to solve. Realistic description of physical plants

to be controlled usually result in high—order mathematical models.

A straightforward application of the maximum principle always leads

to a two-point boundary value problem involving several arbitrary

parameters. Optimal control design for high-order systems is

computationally cumbersome not only because of high-order but also

because such systems invariably exhibit simultaneous slow and fast

dynamics which are described by "stiff" differential equations. Many

of the quasi-steady-state approximations made in the analysis of transport

aircraft and other low-performance vehicles are not valid for the

highly dynamic maneuvers typical of high-performance military aircraft.

Up to a recent time, to display explicity the characteristics of the

optimal controls, the different optimization problems considered were

reduced order problems. A reduced order model involves less variables

and renders the solution to the problem more manageable. Any high order

problem would require pure numerical technique for its solution and the

results obtained were restricted to a particular set of end conditions

for a specified aircraft model.



Experience in actual flights, as well as comparison between various

solutions in the analysis of the optimal control problem considered,

often display the fact that the improvement in performance is minimal

when the exact optimal trajectory is compared with a suboptimal one

obtained by a simple analysis. A simple analysis, if properly carried.out.

has the added advantage that the resulting solution obtained is close

to the optimal solution and hence can be used as a first guess

reference solution in any iterative procedure. A simple analysis for a

complex problem can be obtained in various ways depending on the

physical characteristics of the problem, but the ultimate objective is

always to reduce the order of the problem. If, in a problem, a certain

variable x varies slowly, then the steady-state approximation dx/dt-O

will provide an equilibrium relation which can be used to eliminate

one component of the state vector or one component of the control

vector. A more sophisticated approximation would involve a combination

of different state variables and the elimination of variables that are

insensitive to the optimization process. One such efficient technique

is the singular perturbation method and it is the subject of analysis

in this thesis.

Singularly perturbed systems and, more generally, multi-time-scale

systems, often occur naturally due to the presence of small "parastic"

parameters, typically small time constants, masses, etc., multiplying

time derivatives or, in more disguised form, due to the presence of

large feedback gains and weak coupling. The chief purpose of singular

perturbation approach to analysis and design is the alleviation of the



high dimensionality and ill-conditioning resulting from the interaction

of slow and fast dynamics. The multi-time-scale approach is asymptotic,

that is, exact in the limit as the ratio e of the speeds of the slow

versus the fast dynamics tends to zero. When e is small, approximations

are obtained from reduced-order models in separate time scales.

While singular perturbation methods, a traditional tool of fluid

dynamics and nonlinear mechanics, embraces a wide variety of dynamic

phenomena possessing slow and fast modes, its assimilation in control

theory is recent and rapidly developing. The methods of singular

perturbations for initial and boundary value problem approximations and

stability were already largely established in the 1960s, when they first

became a means for simplified computation of optimal trajectories.

Singular perturbation methods also proved useful for the analysis of

high-gain feedback systems and the interpretation of other model order

reduction techniques. More recently they have been applied to modeling

and control of dynamic networks and certain classes of large-scale

systems. This versatility of singular perturbation methods is due to

their use of time-scale properties which are common to both linear and

nonlinear dynamic systems.

The motivation for this thesis has been to deal with trajectory

optimization of singularly perturbed systems in atmospheric flight.

Time-scale properties must be identified before solutions can be

obtained by using singular perturbation methods. The first objective

of the present effort is to develop a systematic procedure to obtain

a singularly perturbed models in flight mechanics. Auto-pilot



implementation of the approximate open loop control obtained using

singular perturbations may cause boundary-layer instability when

unstable modes are present in the uncontrolled system. The second

objective of this thesis is to demonstrate this fact and emphasis is

placed on deriving a feedback stabilization scheme to circumvent this

instability problem. For the sake of steering the state of a singularly

perturbed system from a given initial state to a given final state while

minimizing a cost functional, a composite control approach is developed.

The composite control is calculated using reduced-order models in

different time scales. Thus, a great reduction in the on-board

computations is achieved.

A systematic procedure for the identification of time-scale

properties of a nonlinear flight mechanics model is first introduced in

Chapter 11. A normalization scheme is developed; based on this scheme a

singularly perturbed flight mechanics model is proposed. This scheme

does not require that an "exact" optimal trajectory to be known, the

dynamic state equations and the normalizing reference data are the only

information required. The application of singular perturbation methods

to trajectory optimization problems in flight mechanics is presented

in Chapter III. The use of singular perturbation methods for airplane

performance optimization is applied to.a minimum time-to-climb problem.

In this chapter, attention is focused on the boundary-layer instability

problem for on-line, auto-pilot implementation. A feedback stabilization

scheme is proposed to circumvent this boundary-layer instability

problem. In Chapter IV, we develop a composite control approach to steer



the state of a singularly perturbed system from a given initial state

to a given final state; while minimizing a cost functional. The

composite control comprises three components; a reduced control and two

boundary-layer control components. The boundary-layer controls do not

optimize cost functional as in earlier work. Asymptotic validity of the

composite control is established by showing that its application to the

singularly perturbed systems results in a final state which is O(¢)

close to the desired state, and the cost under this composite control

is 0(a) close to the optimal cost of the reduced control problem.

Finally, in Chapter V, we apply the composite control strategy to the

optimal maneuvers of an aircraft in a vertical plane. The objective

of this chapter is to demonstrate the performance of the composite

control on a typical problem of interest, namely, the minimum time-

to-climb problem.



In this chapter, we present a systematic procedure for the

identification time-scale properties of a nonlinear flight mechanics

model. A normalization scheme is developed in order to improve the

methods currently in use. Based on this scheme, a singularly perturbed

flight mechanics model is proposed. The model agrees, generally, with

previous time-scale studies of flight mechanics models.

11.1 HISTORICAL SURVEY

Many authors have discussed and illustrated the application of

singular perturbation methods [1-7] to the solution of high performance

trajectory optimization problems in flight mechanics. The principal

advantage cited is that they reduced the order of individual

integrations, so the computational burden is significantly reduced.

However, several authors like Kelley [2] and Washburn, et al.[7]

have observed that there is presently no rigorous and practical method

that can cast this COMPIOX nonlinear trajectory optimization problem

in a singularly perturbed form. For linear systems, analysis of

ting-seal. separation has been discussed by Chow and Kokotovic [8], and

by Syrcos and Sannuti [9]. The time-scale analysis of linear systems

can be applied to nonlinear systems but the determined properties will

only be valid locally. Moreover, linear analysis assumes that an optimal

trajectory of the ”exact” system is known (about which the linearization

is to be performed). For nonlinear systems, Kelley [2] has considered

transformations of state variables that reduce. system's coupling and



expose time-scale characteristics. The transformations involved,

however, are given by partial differential equations, making

this approach generally impractical for complex systems. Because of the

difficulties in the above approaches, almost all singular perturbation

analyses of aircraft trajectory optimization have relied on ad hoc

methods for the selection of time-scales, based on physical insight and

past experience. This procedure has been termed ”forced singular

perturbations” by Shinar [10].

In order to improve the ad hoc methods, Ardema and Rajan [11] have

proposed two methods for the time-scale separation analysis. Both

methods require knowledge of the state equations, bounds on the state

and control variables and what control problems are of interest.

We develop a new normalization scheme that can rationalize

identifying the flight vehicle's dynamic equations in a time-scale

separation form, using only normalizing reference data.

11.2 DEVELOPMENT OF THE SEVENTH-ORDER AIRCRAFT MODEL

In this section, we give a brief account of the derivation of the

equations of motion that are essential in the study of singularly

perturbed models in the next section. We follows Vinh's book [12], where

more details can be found. The motion of a vehicle considered as a point

mass flying over a sphreical, rotating earth, is defined by [12-14]

fflt) - position vector (2.1a)

‘V(t) - velocity vector (Z-lb)

m(t) - mass (2.16)



II. SINGULARLY PERTURBED MODELS IN FLIGHT MECHANICS



The total force of the flight vehicle is

F-Ti-Tmrm‘g‘ (2.2)

where T is thrusting force, A is aerodynamic force and m? is

gravitational force. The aerodynamic force can be decomposed into a drag

force D opposite to the velocity vector V and a lift force ‘1: orthogonal

to it.

By Newton's second law, with respect to an inertial system, we

obtain the vector equation

m__ -3? (2.3)

In writing equation (2.3) it is implicitly assumed that the rate of

change of mass with time is negligible. This assumption is not

explicitly stated in [12]. As it will be seen later on, it is justified

since m is much slower than V.

Consider a fixed coordinate system ox,Y,z, and another system oxyz

which is rotating with respect to the fixed system with angular velocity

w. Let B be any arbitrary vector with components Bx, By, and Bz along

the rotating axes. Then, the time derivative of B, taken with respect to

the fixed system is

dB dB dB -‘ -* “
x -. 4‘ z -* di dj dk

-dt 111.1—3.3+ k+s +3 +3 (2.4)  

a
l
e
»



By Possion's formula, the last three terms on the right-hand side of

(2.4) are

df' df' JE' __. a.

Bx 1?:— + By dt + 32 —dt (0 x B (2.5)

The first three terms on the right-hand side o£(2.4) can be interpreted

as the time derivative of the vector B.if the vector IZ-j; and k were

constant unit vectors. Hence, it is the time derivative of B with

respect to the rotating system oxyz. We denote it by

53‘ de -*- dB -*- de -*

TF'TIt—1+'EELj+—ci?_k <2-6>

and write (2.4) as

TIF'-'E'+"”‘B (2.7)

This is the formula for transforming the time derivative from fixed

system to rotating system.

The inertial reference frame OX1YIZ1 is taken such that O is the

center of the gravitational field of the spherical earth and the OXIY1

plane is the equatorial plane. The OXYZ reference is fixed with respect

to the earth with OZ coinciding with 021. It is assumed that the earth

is rotating with constant angular velocity'fi’directed along the Z-axis.
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The vector equation (2.3) is written with respect to the inertial

frame. In deriving the equations of motion, we should use the

earth-fixed axes OXYZ as the reference frame since it is a convenient

base to follow the motion of the vehicle. Hence, putting B -'?'in (2.7)

and taking its derivative, we have

a? a“? .- 2.

Tc ““3: ““‘r (2.8)

and

dV 3? 1 a? _. .
F-;?-+2wx-a—t—+wx(wxa (2.9)

where 5'13 constant

The vector equation (2.3) now becomes

r A A r A -‘

m—r-F-2mwa-mwxuox'fi (2.10)

at t

For convenience, we change the notation for the time derivative and write

this equation as

m-g--F-2ni3xV-m?3x(3x?)
(2.11)
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In this equation, V.is the velocity of the vehicle with respect to the

earth-fixed axes and the time derivative is taken with respect to these

axes .

Now, (2.11) and the kinematic equation

d?_aE_ _ V
(2.12)

constitute the vector equations for the position vector'f’and the

velocity vector V: They are equivalent to six scalar equations, three

of which are the kinematic equations and the other three are force

equations.

With respect to the earth fixed system OXYZ. (Fig.2.l) , the

position vector‘f’is defined by its magnitude r, its longitude 0,

measured from X-axis, in the equatorial plane, positively eastward, and

it latitude d, measured from the equatorial plane, along a meridian

positively northward.
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Y
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\\ .M

\ I g

Fig.2.]: Coordinate systems
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Let 1 be the angle between the local horizontal plane, that is the

plane passing through the vehicle located at the point M and orthogonal

to the position vector‘?) and the velocity vector V: The angle 1 is

termed the flight path angle and is positive when V is above the

horizontal plane (Fig.2.2). let p be the angle between the local

parallel of the latitude and the projection of Vion the horizontal plane

(Fig.2.2) . The angle u is termed the heading angle and is measured

positively in the right handed direction about the X-axis.

VERTICAL

'LAN‘

nomzoursL

PLAN!

 

 

  
Fig.2.2 Coordinate systems with aerodynamic forces

Let.i:‘3: and k be the unit vectors along the axes of a rotating

system oxyz such that the x-axis is along the position vector (Fig.2.2 ).

We then have

s- :1 (2.13)

and

i?- (VSINy)-i.+ (VCOSyCOSll’)? + (vcohsmwp)? (2.14)



13

We resolve all the vector terms in (2.11) and (2.12) into

components along the rotating axes oxyz. In order to take the time

derivative of the vectors‘? and V.in (2.11) and (2.12) with respect to

the earth-fixed system OXYZ using their components along the rotating

system oxyz, we need to evaluate the angular velocity a-of the rotating

axes. The system Oxyz is obtained from the system OXYZ by a rotation 0

about the positive Z-axis, followed by a rotation ¢ about the negative

yeaxis. Hence, the angular velocity a'of the rotating system Oxyz

is given by

n - (SIN¢-§%—)1 - (-—§%—)j +<C°S¢1F)k

We take the derivative of'f'as given by (2.13). Using the Possion's

formula for the derivative of i: and the above expression of 61 we have.

dt

- PETE-1?" (rCOSd %)T+ (r 531%)? (2.15)



l4

Identifying this equation with (2.14) yields three scalar equations

dr

 

'EE‘ ' VSINV
(2.16a)

do _ vcoszcosg

'Tfi? rcos¢ (2°16b)

vcos SIN
-§%— - Z P (2.16c)

These equations are the kinematic equations.

On the other hand, taking the derivative of the velocity vector

given by (2.12) and substituting it into the basic vector equation

(2.11) yields, after lengthy manipulation and some simplifications

[12], the three force equations

dV 1

d l V2
4 - — Q ~—v dc m FNcosp 50051 + r c051 (2.17b)

F SINfi 2

dd 1 N V

where the angle 3, which is the angle between the vector 1: and (Tn-17)

plane, will be refered to as the roll, or bank angle (Fig.2.2 ). The

term FT is the component of the combined aerodynamic and propulsive

' force along the velocity vector and FN is its component orthogonal to

the velocity in the lift-drag plane (Fig.2.3) which are
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F - TCOS(a,) - D 2 r - D (2.18a)
T

Pu - rsm(a,) + L 2 L (2.18b)

where a, is the thrust angle of attack;, and it is usually small enough

to justify the approximations indicated above.

 
Fig.2.3 Aerodynamic and propulsive forces
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For power flight, the mass of the vehicle is varying, and we have

the equation for the mass flow rate

€24 - - — T (2.19)

where T is the thrust magnitude and c is the specific fuel consumption

which is a characteristic of the engine.

The usual dynamic equations used in trajectory analysis of high

performance aircraft are considered as a point mass, constant gravity,

thrust aligned with velocity and flight over a flat earth (the model

we will use in next section). A flat earth model implies that the

gravitational field is uniform, that is. the vector g is constant in both

magnitude and direction (in spherical earth, g is function of r),

therefore, both the longitude 0 and the latitude o are small. We can

use the same procedure as in the case of a spherical earth to derive the

equations of motion when a simple flat earth model is used. We recall

the kinematic equations (2.16) and the force equations (2.17). They are

the equations to be simplified. The equation for the mass flow rate

(2.18) remains unchanged.

First, atmospheric flight operation is conducted in a relatively

thin layer of the atmosphere as compared to the radius of the earth. Let

h be the altitude of flight, and r0 be the radius of the earth. Then

r - ro + h (2.20)

and



17

r0 1‘o h h 2

c?- - —r-o—I+—E - 1 - (--r—0) ‘6’ (‘Ir-a) ' + ........ (2.21)

The acceleration of the gravity g(r) in spherical earth is inversely

propotional to the square of the distance r, that is

2

Soto

g(r) - —!— (2.22)

r

where subscript zero denotes the reference level, usually taken as the

sea level

Upon substituting (2.21) into (2.22), we have the acceleration of

the gravity

r r 2
g - g, [1 - 2(-;;) + 3(-;;) - + .......... (2.23)

1 4

Taking earth radius as ro - 6.37839 x 10 and h—9.49742x10

.3

meters, we have the ratio h/ro - 1.489 x 10 . Therefore, it is

appropriate to consider g as a constant. Next, in circular motion,

the centrifugal equals the gravitational acceleration and we have

2

V
C_;_. _ s (2.24)

where Vc is the circular speed along a circular orbit in the vacuum at

a distance r.

We consider the ratio
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V2 V2
_;q_ - _§;_

(2.25)

c

When the flight speed is small compared to the orbital speed, we

-——- << 1 (2.26)

With this simplification, equation (2.17) becomes

dV 1
-EE- - -6- FT ' gSIN7 (2-273)

v 31- - —1- ? cosp - cos I (2 27b)
dt m N 8 7 '

v d¢ FNSIN” (2.27c)

Tc ' _——mCOS'1

As we mentioned before, since the gravitartional field is uniform,

both the longitude 0 and the latitude d are small. Hence, taking

COSd - l, we can write the last two equations of kinematic equations

(2.16) as

d0 h
r0 -EE- - VCOSVCOS$<1 - -;; + - ............. ) (2.288)

r, 1g; - vcosysmwa - Jr‘— + - ............. ) (2.2%)
o

Neglecting the small term h/ro and considering that
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X - r00 (2.29s)

Y - ro¢ (2.2913)

h - r - ro (2.29c)

we can write (2.16) as

‘3? - vcosvcost (2.30a)

-§§- - vcosvsmu (2.30b)

“‘31:: "' V511"
(2.30c)

(2.27) and (2.30) together with (2.19) are the equations for flight over

a flat earth.

11.3 SINGULARLY PERTURBED MODEL

In this section, we present a normalization scheme for determining

mutiple time-scale properties of the flight mechanics model which was

derived in the previous section.

11.3.1 NORMALIZATION SCHEME AND COMPARISION WITH ARDEMA'S RESULTS AND

KELLEY'S ASSUMPTIONS

For convenience, we rewrite the equations of motion for flight over

a flat earth derived in previous section. They are
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_g_x_ - VCOSyCOS¢ (2.3la)
t

.33; - vcoswme (2.31b)

dh
T - VSIN‘Y

(231C)

.31.; - .53.;721. - ESIN‘Y (2.3ld)

.32;— - -§- ( Logs - cosv) (2.31e)

-.-r:- - e are

dm T
V II - c —g—-

(2'318)

The new variable, the specific energy E, defined by

2

V

E - 8h + ‘5' (2.32)

is often introduced; it can be used in place of either h or V as a state

variable in order to get better time-scale separation [15-16]. This fact

will be shown later on. From (2.31) and (2.32), the state equation for

E is

.315. - .7} mv. h) - D(a. v, to) (2.33)

2 -

where T is thrust, D - l/2(CD + "CLa°2)P°V se Kh is drag (n is induced

a

drag parameter see [13]) and a is angle of attack.
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We introduce the following dimensionless variables

~ x ~ Y ~ h
x--—, Y-—, h-—

RN RN hN

V E ~ m

17.77;, L's—N, m-—m;

(2.34)

- ~ t ~ T

g-Lo t-—r T-—

(N tN TN

i_L_ 1.

7% “can

where the subscript "N" stands for normalizing reference data; range R

is defined as R - (AX2 + AY2)1/2, f is defined as C - (T - D)/W°; W0 is

initial weight and n - L/W is load factor. It is important to point out

that T - D is a small quantity which can be represented as eA. We treat

it as a whole when we normalize it; this is a crucial point in our

scheme. Upon substituting (2.32) and (2.34) into (2.31), we obtain the

dimensionless equations of motion as

 

v

5%- - t" N Vcos-ycose (2.35a)

dt ”N

a? thN -
— - Vcosysxw (2.35b)

at R; -

t‘and5
-—- - VSIN7 (2.356)

at I?
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dE thN V ~
“2' ‘ ggn'Z’g

dt EN m

g .

.91. - _v_t_.N N - 511(7)

dt N m

t ~

_g;_ _ 3 NnN ( Lcosg - €057 )

dt N mV VnN

d¢ Etnnu LSIN
._:. - ___v__. ____42.

dt N EVc051

d5 Tutu ~
-:---C-T—T

dt 0

(2.35d)

(2.35e)

(2.35f)

(2.353)

(2.35h)

For easiness of comparison of time-scale properties, we introduce

a measure of relative speed. The speed of each variable is measured with

respect to the speed of one variable, For example , when the speeds are

measured relative to the speed of V, we obtain the following expressions

*
4
!

2

speed of R or V
- N duh")

speedofV W 1";-

 

speed of ii _ cTNVN _ 2p ( CTNhN )

speed of V gw° ° N

2

speed of E V
 

 

speed of V

speed of h _ _ 2“

speed of V 8“N '

(2.36s)

(2.36b)

(2.36c)

(2.36d)
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speed of 1 or w
 

_
(2.366)

speed of V “N

2

where p - v; /2ghN ; hence EN ughN + (VN /2 ) - (l + u)hNS .

Equations (2.36) give measures of state variable speeds for the

seventh-order model (2.31) according to the normalization scheme. It

will be shown later on that the time-scale separation properties are

highly dependent upon the aircraft mission (i.e., flight conditions).

In other words, changing flight conditions may cause state variables to

be in different time scales.

w e ' u ' : Now, let us

take the F-4C aircraft data as defined in Ardema and Rajan [11]

2 ,1 2

W0 - 16967Kg, s - 49.2m , c - 1.08hr , g - 9.8m/sec (2.37)

There are two options for choosing the normalizing reference data;

either the true maximum reference data or the typical reference

data (the region of interest). Both normalizing reference data are given

below

The maximum reference data are given by [11]

1/22 2 5

RN - Rmax - (AXmax + AYmax) - 12.2 x 10 m

VN - 590m/sec, hN - hmax - 25000m
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max

EN - Emax - hmax + T - 42760!!! (2.38)

T ' Do T

max max

(max - W0 - 52, nmax - 6, -—w:—- - 6

The typical reference data are given by [11]

5

RN - Rtyp - 6 x 10 m, VN - Vtyp - 340m/sec - speed of sound

2 (2.39)

 (N (typ We .43, nN 4.5, We .5

Substitution of these two normalizing reference data into (2.36), yields

the state variable relative speeds shown in Table 2.1

 

 

 

Speed

Variable

By maximum reference data By typical reference data

m .0108 -°°52

X,Y .0291 .0197

s .4320 -4759

v 1.0000 1.0000

h 1.4208 1.9660

7M 6.0000 4.5000

 

Table 2.1 Estimate, of state variables’ speeds for F-4C aircraft

by using the proposed normalization scheme
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From Table 2.1 we see that both choices of reference data give the

same general ordering of speeds from slow to fast. Inspection of the

numerical values of the relative speeds shows a clear clustering of

variables into time scales, with m, X and Y as slow variables and E, V,

h, 1 and t as fast variables. The variables in the slow group are slower

than those in the fast group by more than one order of magnitude. This

indicates that, for flight optimization problems, application of

singular perturbation methods can decompose the problem into two

lower-order problems. In particular, when h, V and 1 are the variables

of interest, one can approach the problem using a fourth-order model that

comprises h, V, 1 and o, with the option of using E in place of h or V.

In this fourth-order model, the slow variable m is treated as a fixed

parameter, which agree with practice. The slowness of m relative to V

justifies neglecting the rate of change of mass relative to the rate of

velocity in writing Newton's second law, which is a typical assumption

in the literature as we explained in the previous section. Within the

group of fast variables (E, V, h, 1, p), Table 2.1 shows other

possibilities of time scale separation. The energy E is slower than V

and h,which confirms that using energy in place of velocity or altitude

results in better time scale separation with E treated as a slow

variable relative to the rest of the group. This agrees with past

experience. Finally, Table 2.1 shows 1 and W as the fastest variables.

Actually, the speed of 0 depends on the order of magnitude of the bank

angle 5 because of the SINfi term on the right hand side of (2.35g). The

relative speed of u defined above assumes that SINfl will be of order



26

one. The case of small 3 will be considered later in this section. Let

us first compare with Ardema's results.

Ardema's results [11] are shown in Table 2.2. His Method 1

predicts an ordering of the speeds of state variables that generally

agrees with ours; the only exception is the heading angle p. Method 1

shows it to be the fastest variable of all (the speed is infinity),

which is a contradiction to past experience. His Method 2 indicates

that E, h, and V are very nearly of the same speed. which is another

disagreement with past experience.

 

 

 

,Speed

Variable

Method 1 Method 2

* A * A

X , Y .00049 .0140 .00013 .0394

E .00550 .1571 .00270 .8182

h .02300 .6571 .00290 .8788

V .03500 1.0000 .00330 1.0000

1 .09000 2.5714 .04400 13.3333

0 o a .05900 17.8788

Note: * is the original data from Ardema's paper

A for easiness of comparison with the resultscfi our scheme,

the speed of each variable is measured with respect to

V in both Method 1 and Method 2

 

Table 2.2 Estimates of state variables’epeeds for F-4C

aircraft by Ardema's two methods



27

Let us now consider the case of vehicles flying in steady flight

with small bank angle 8, the heading angle u in equation (2.35g) can

then be written as

_gg_ _ gthNSINflN i SINB
__ __ < . > (2.40)

dt VN VmCOS1 Slhfiu

 

where SINfl is normalized as SINfl/SINfiN. The relative speed in equation

(2.36e) will become

speed of fig
- SINfi (2.41)

speed of V “N N

Taking the same normalizing reference data as given in (2.38) and

o

(2.39), choosing the small bank angle as 3N - 5 - .087radian for both

normalizing reference data and substituting into (2.36), (2.41)

respectively, the results are shown in the Table 2.3

 

 

 

Speed

Variable

8y maximum reference data By typical reference data

m . .0108 .0052

X , Y .0291
.0197

E .4320
.4759 .

v .5229 -3922

v 1.0000 ‘-°°°°

h 1.4208 1.9660

1 7 5.0000 4-5000

 

Table 2,3 Estimates of state variables’speeds for F-4C aircraft

by using the proposed normalization scheme with

small bank angle



28

Both of the normalizing reference data show that the heading angle ¢

becomes slower when 5 is small.'which is in agreement with Kelley's

assumption [1].

11.3.2 ENERGY STATE MODELING

The use of energy as a state variable in place of altitude or

velocity has been behind many applications of singular perturbation

techniques to guidance and control (Kelley [17], Ardema [4]). The fact

that energy is a slower variable compared with altitude or velocity can

be explained using singular perturbation arguments. This was done in

Kokotovic, Khalil and O'Reilly [19] and will be recalled here.

Consider the case when B is so small (i.e. for flight in a vertical

plane) that m, X, Y and p are much slower than the other variables. Then

the dynamics of h, V and 1 can be described by the third-order model

.31;— - VSIN1 (2.42:0

-%¥— - g(eA - SIN1) (2-42b)

~33- - 1.1-...” (2.42.)

where 6A is the difference of thrust minus drag per unit weight; both

L and A are function of h, V and a. The system (2.42) has an equilibrium

manifold at e - 0, defined by 1 - 0 and L -WW. The manifold is

l-dimensional. This indicates that the system has a slow variable which
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is constant at e - 0 in the r-scale. A constant quantity at e - 0 in

r-scale is provided by the fact that without thrust and drag the energy

is conserved. Thus, multiplying (2.42a) by g and (2.42b) by V and adding

them together, we get at e - 0, for all r z 0 and all h, V and 1

db dV 1 2

8 ‘EE' + V '32- ' 0. gh + —f- V - constant (2,43)

‘ 2

Hence as our slow variable, we take E - gh + -%— V and obtain in

t-scale, where t - er

 

-§%- - gAV (2.44a)

c g: - g(eA - SIN1) (2.44b)

.91. .5. L 244t dt - V (1T'-COS1) ( . C)

Rewrite (2.44) as

 

dE V

dV _ ¢(T - o) _
6 1t— -————m 831111 (2 . 45b)

d1 _ L - WCOS1

6 -EE- my (2.45C)

This energy modeling confirms that using energy in place of either

h (or V) as a state variable yields a standard singularly perturbed
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model. Equation (2.45) will be used in Chapter 111.

11.3.3 A SEVENTH-ORDER SINCULARLY PERTURBED MODEL

We have seen that the normalization scheme of Section 11.3.1

produces measures of speeds of variables that are in agreement with past

experience and practice. In particular, we have seen that the slowness

of X and Y relative to V can be attributed to the smallness of (hN/RN)

which is typical. The slowness of m relative to V is due to the

smallness of (N and nNSINfiN, respectively. These findings will now be

used to write the equations of motion in the singularly perturbed form.

The seventh-order model will comprise the state variables of the

original model (2.31) except for h which is replaced by E. The singular

perturbation parameters are taken as

CTNhN

- 2.46
‘1 WOVN ( a)

.2 - $3. (2.46b)

£3 - nNsmpN (2.46c)

e‘ - (N (2.46d)

In view of our discussion above, and the numerical results of

Section 11.3.1, it is clear that

:1, e2 << 63, e,



31

Morever, depending on the smallness of EN, :3 may be much smaller than

c.. In some situations, :1 may be much small than £2. The seventh-order

model takes the singularly perturbed form of equation (2.47) below.

 

fig. — -.,(2..c,)1 (2.47a)
dt

-9§— - 62(2pc1)VCOS1COS¢ (2.47b)

dt

-2;- - e2(2uc1)VCOS1SIN¢ (2-47C)

dt

dt mVCOS1 N

dE 2 0 ~
—d—:- - £‘(T-f-Lp c1)—:—g (2.478)

t m

s .‘f

.21. - c,( ~ - SIN1) (2.47f)

dt m

.2}. - nN¢1(.E§g§E. - .EQEI.) (2.473)

dt mV VnN

2

where c1 - gtN/VN and p - VN /2ghN

Notice that this singularly perturbed form is expressed in the fastest

time scale and not the slowest time scale as it is customary in the

literature.

The fact that a model takes the singularly perturbed form
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8 - f(x, 2, u), X 6 R“, u c Rn

ez - g(x, z, u), 2 f Rm

or

if’ - ef(x, z, u), are R“, u e Rn

g: - g(x, z, u), z e Rm 

does not automatically mean that the system has a two-time scale

(2.48s)

(2.48b)

(2.49s)

(2.49b)

property. Additional assumptions are needed to ensure the two-time

scale property. Let us discuss these assumptions for the linear system

x - A11): + A122+ Blu

Upon setting 6 - 0, (2.50) reduces to

X - A11x+ A122 '1' Bl“

(2.50s)

(2.50b)

(2.51s)

(2.51b)

A typical assumption in the singular perturbation literature, e.g.

Kokotovic, Khalil and O'Reilly [19], is to require A22 to be

nonsingular. This assumption guarantees that (2.51) represents a

well-defined nth-order reduced model. It also guarantees that the system
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(2.50) has a two-time scale property in the sense that its n+m

eigenvalues cluster into n eigenvalues of order 0(1) and m eigenvalues

of order 0(1/4). If A22 is singular but [A22 Ba] has rank m, the

equation (2.51) will still yield a well-defined nth-order reduced model

by interchanging the roles of some components of z and u. This point

will be illustrated in Chapter IV. The eigenvalues of (2.50) will not have

m eigenvalues of order 0(l/c) in this case, but the use of feedback from

2 with coefficients of order 0(1) can locate m eigenvalues at locations

of order 0(l/e), see Khalil [35]. In summary, we can say that the linear

model (2.50) represents a standard singularly perturbed model if A,, is

nonsingular or if [A22 B2] has rank m and 2 can be measured for

feedback. The nonlinear model (2.48) will represent a standard

singularly perturbed model if its linearization about every point, along

a certain trajectory or in a certain set, satisfies the assumption A22

nonsingular or rank [A2, B2] - m.

' The singularly perturbed nature of the model (2.47) will be studied

by linearization. Let us recall that T - T(E, V), D - _%_chovzse-Kh and

L - -%-Chapovzse'm. Hence, 1 - T(E, V), E" - f(E, V. a) and

‘1'. - 1(2, ii, a). The lineraization of (2.47) with a and ,8 treated as

control variables is



9
'
9
-

(
1

where

 

r
<
l

o
n

<
1

 

53341

c4351

c4361

 371b

€ibii

‘sbci

eobsi

eobei

 L. b7:

53b42
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52324

62334

61315

53345

64355

54365

315

51310

52326

Czase

£3846

54350

6case

ave

52327

52337

63347

301

377   

r
<
l

F
1
1

<
1

(2.52)
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at

at av

2pc,Vc081cos¢. a3, - 2pc1COS1SIN¢, a3, - -2pc1VSIN1SIN¢

c istp a _ c at 1 SINg
. I T ’ ‘5 —' SIN

a VCOS1SINfiN a: EVCOSV N

at 1 SIN tstp

cl [ "'—T— ° SIN ' T ]

av mVCOS1 N EV COS1SINfiN

LSINpSIN1

1 ~_, 2

mVCOS 1SIN5N

._£.

a:

ass ' Ci

1
 

‘ '(f“91)‘;§'

- (.I_£_.¢1)%

.22;

at

3(Vc)

(2.53)
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a v as EV

a” ' “N911 COS _8_~_( ,1: ) C087 3 (in. 371 " 'S—PI'L “NC:

av v “N av VnN

bu - 4116117;- . bu - C: 2:; 500653511113" (2.54)

1... - ., Eggzismflu , b... - Tip—e; 3-S-

b¢1 - C1 ; ‘gg' . 'bvi ‘ “Nci‘gg' _£§%E. - b12 ‘ '“Nci ‘Egége'

When the parameters :1 to e‘ are small, equation (2.52) takes the

singularly perturbed form (2.50) with (m, K, Y, w, E) as slow variables

and (V, 1) as fast variables. We rewrite (2.52) in partitioned form as



>
4
1

5
1

#
4
1

“as“ t '

t
o
:

<
1

   
Consider the determinant

P

Cease

det

 

where a67 - -c1COS1 and

+ CL§Ve

ae7

V

«a»: - v2/2g)_§_y_

COS N

ave ‘ nNc1'—:—E' '-'

m J

1
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-
-
.
.
-
.
.
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.
r
-
-
-
.
.
-
-
.
.
-
-
-
-
-
-
-
_
-
-
-

' 54366377

1

8

) +

‘ 367316

-K(E - v2/2g)

  

 

m

)1

Y

V’

E

V

7

+ Ve'K(E '

v2

N

2>0

V

 
  

  

(2.56)

2

v /2g) 3°12:

_av
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0

Thus, for [1 |< 90 and small e, , the determinant (2.56) is positive

and the matrix is nonsingular. In other words, (2.52) is in a standard

~

singularly perturbed form, where m, i, Y, E, ¢ are slow variables and

V, 1 are fast variables. Neglecting the transinents of V and 1, equation

(2.52) can be reduced to the fifth order model

a
l
e
.

(
'
1

larger than e1, :2, (2.57) Can then be partitioned as

  

5215

e317

 

 

€419

eldl

62d3

‘2ds

‘sd1

‘4do

‘idz

‘2d4

‘2de

‘sds

eedio  
 

62324

62334

 

e216

Gale

E4110d   
'
4
1

F
”  

(2.57)

Now, if e, and e4are of the same order (in general it is) and much
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[a F ; 1 1 a F

2 x : x 2 x [a 7

d ~ 1 ..

dt Y I Y +

V E 0 6310 V cad, ‘sde B

X l - _

EJ : 0 6‘1“, E e‘d, e‘dli

4.. 7 5, ’

(2.58)

The matrix A“. is not nonsingular. but [A22 B,] has rank 2; hence

equation (2.58) still yields a well-defined third-order reduced model-

If e, is much smaller than e‘, we should partition (2.58) with

(E, R, Y, ‘6 ) as slow variables and E as a fast variable.

Finally, if :1 and :2 are of the same order, then ii, 31, Y are

grouped in the same time-scale. If e] is smaller than :2, again we can

partition the third—order model of (3, Y, Y) so that E is slower

than (it, 1).

The above linearization analysis confirms that the model (2.47)

is a well-defined singularly perturbed model with (V, 1) as the fastest

variables, followed by (V. E) and then by (i, Y, Y) as the slowest

variables. This generally agrees with our previous analysis.
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11.3.4 A FOURTH-ORDER SINCULARLY PERTURBED MODEL FOR STEADY LEVEL

TURNING PROBLEM AND COMPARISION WITH CALISE'S RESULTS

In this section, we consider a steady-level turning problem for

two-dimensional flight in the horizontal plane. In order to maintain

the flight in the horizontal plane, the bank angle 5 should satisfy

(see Fig;2.4)

LCOSfi - v (2.59)

  
Fig.2.4 Equilibrium of force in a coordinate turn

The motion can be adequately described by a fourth-order model

derived from the seventh-order model (2.31) by assuming constant mass,
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constant altitude and small flight path angle (1 3 0). Hence equation

(2.31c), (2.3le) and (2.3lg) can be dropped yielding the fourth-order

model

{1%- - vcosw (2.60a)

-%-:- - vsmw (2.6%)

.91.}. .. 11572.2. (2.60c)

43%- _ LSEQ
(2.60d)

In Calise's paper [6], he takes D as

2

D - quD + kL /qs (2,61a)

o

1 2

q - Tpv (2.61b)

2 2 2

L - L.n + W (2.61c)

where Ln is the component of total lift (L) in the horizontal plane,

i.e., Ln - LSINB, CD is the zero lift drag coefficient and k is the

o

lift induced drag coefficient.

'Upon substituting the normalization (2.34) into (2.60), the

dimensionless equations of motion are
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t V

.5?. - N N vcosm (2.62a)

dt RN

~ t V

.91. - N N VSIN¢ (2.62b)

dc RN

~ t g; .—

dV N N
.7 .. __‘7_ .5. (2.62c)

dt N m

dd gthNSINBN ESINfi
_.‘___ .. V . ~~

(2.62d)

dt N mVCOS1SINflN

The speeds relative to the speed of V are

v2

speed of X or Y N
~ - .______.

(2.63s)

speed of V gRNg’N

speed of p _ nNSINfiN (2 63b)
 

speed of V (N

Q2m2aria2n_si£h_§alissis_rssults= Let us choose the air-launched

Missile 11 as defined in Calise [6] which is a steady level turning

problem under the assumptions(of constant altitude, constant mass

and small flight path angle 7. The normalizing reference data

given by Calise are
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5

RN - 12.2 x 10 m, VN - 304.8m/sec

2 2

D - 1 pV2 sC + kLN - 939 99k - 25

T N Do 2 ° 3’ nN

(2.64)

TN - D

TN - 227312;, (N - T - 14.67. LN - WonN - 2272.523

2

'VN, o

rN - gnN - 379.2m, 8N - 80

other values needed are

2 3

W0 - 90.9kg, s - .016m , p - .876lkg/m

(2.65)

2

CDOI- 1.2, k - .02, g-9.8m/sec

These data are substituted in (2.62) and the results, given in

Table 2.4, show that (X,Y) are slow variables, while (0, V) are much

faster than (X, Y).

 

 

 

Variable 50820

by normalizing reference data

X ' y .00053

V 1.00000

9 1.67827

 

Table 2.4 Estimates of state variables’speeds for Missile II

in steady level turning flight by using the

proposed normalization scheme



44

Calise [6] classifies the speeds of variables as follow: (X, Y)

are in the same time scale and are the slowest variables, the heading

angle p is faster and the velocity V is even much faster than 0. The

nondimensional variable equations he obtained are shown below

 

ax
7t— - vcose

dY
71?- - vsmup

1'mm at _ _1_._

11;; T: v

1 ( rmin ) dV _ T - 0

{max RN dt “max 61118.3(

where rN - rmin - 3;!- , {max - Tmax /N and rmin is the

(2.66s)

(2.66b)

(2.66c)

(2.66d)

radius of curvature (see Fig.2.4) which is defined as a horizontal

arc (centre C, radius r).

Substituting the normalizing reference data given by (2.64) into

Calise's nondimensional equation (2.66) yields

dX
.32. - VCOS¢

dY

'3' " VSIW’

(2.67s)

(2.67b)

(2.670)
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av
.0003 71;- - T - D (2.67d)

Equation (2.67) shows that even in Calise's normalization, (p, V)

are in the same time scale and they are much faster than (X, Y) which

agrees with the conclusion of our normalization. It also shows that

Calise's assumption that V is much faster than u is not justified.

11.4 CONCLUDING REMARKS

A normalization scheme approach for time scale separation analysis

of nonlinear dynamic systems has been proposed. The main point of this

approach is the decomposition of a high order, nonlinear complex dynamic

flight vehicles systems into several (multiple) lower order systems in an

easy and globally valid way. The dynamic state equations and the

normalizing reference data are the only information required.

This approach was applied to a typical class of flight vehicles

dynamic equations. The numerical examples showed that the time scale

separation as computed by this approach generally agree with previous

practice and assumptions.



111. SINGULAR PERTURBATIONS 1N FLIGHT MECHANICS
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In this chapter, the application of singular perturbation

techniques (SPT) to trajectory optimization problems in flight mechanics

is discussed. It is emphasized that auto—pilot implementation of the

open loop control, derived using singular perturbation approximation,

may cause boundary-layer instability when unsatble modes are present

in the uncontrolled system. In other words, real-time implementations

generally require the optimal solution to be expressed in a feedback

form. The purpose of this chapter is to propose feedback stabilization

schemes. Linear and nonlinear feedback stabilization controls are used

to circumvent this instability problem.

111.1 USE OF SINGULAR PERTURBATIONS TO APPROXIMATE OPTIMAL TRAJECTORIES

In this section, we review the use of singular perturbation

techniques to approximate optimal trajectories in flight mechanics

problems. As an illustration, we obtain an approximate solution to the

aircraft minimum time-to-climb problem. Outer (reduced), boundary-layer

(inner) and composite solutions are shown.

Originally, the method of singular perturbations was applied in

initial value problems like Cole [20], Tihonov [21] and Wasow [22]. It

was first introduced into optimal control theory by Kokotovic and

Sannuti [35]. The two-point boundary value problems (TPBVP'S) arising

in optimal control were investigated by Chow [23] , Freedman and Granoff

[24], Vasile'va [25], Wilde and Kokotovic [26]. The singular

perturbation method was also applied widely to aircraft and missile

performance optimization problems as in Kelley [2, 3, l7],
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Ardema [4‘ 27], Calise [5, 6, 18, 28], Shiner et a1. [29. 30].

Washburn, et a1. [7] and. Chakvarty [46].

Two point boundary value problems,which arise in the application

of optimal control theory to nonlinear control problems in flight

mechanics, are known to be of a computational complexity prohibitive

practical applications, especally for on-board real-time implementation.

For this reason model order reduction concepts, i.e. neglecting fast

dynamics which are thought to have small effect on the solution

behavior, have received much attention in the past. One of the

pioneering methods is "energy state approximation" by Rutowski [15],

which has been applied in performance optimization of supersonic

aircraft by Bryson ,et al. [16]. The method, however, exhibits

undesirable features and may have considerable errors.

Considerable effort has been extended in searching for simplification

techniques to produce results which are meaningful and attainable at

reasonable cost. From the research of the past decade, singular

perturbation theory has emerged as the most promising approach to meet

the simplification goal. Application of singular perturbations to

various performance optimization problems in flight mechanics has been

reported by Kelley, Ardema, Calise, etc., in the papers cited above.
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111.1.1 SINCULARLY PERTURBED TRAJECTORY OPTIMIZATION

Consider the singularly perturbed system

3‘ - f(X. 2. t. c. u)
(3.1a)

22 - g(x, z, t, e, u)
(3.1b)

where X and z are n and m dimensional state vectors. and u is an

r-dimensional control vector. The small positive parameter c is

identified as a time scaling parameter whose presence increases the

system order. For e - 0, z ceases to be a state vector and the order of

system (3.1) reduces to n. The objective of the design is to find an

optimal control u(t) which takes the initial states x(t°) - x0,

z(to) - 2° to the final states x(tf) - xf, z(tf) - 2f while minimizing

the cost functioanl

t

f

J er V[x(t), z(t), u(t), e, t]dt (3.2)

1:o

The functions f, g, and V are assumed to be sufficiently differentiable

in all their arguments in an appropriately defined domain.

To obtain the necessary conditions for optimal control, we

introduce the Hamiltonian

1* T
H(x, z, ix, AZ, u, e, c) - - v + Ax f + AZ 3 (3.3)

where Ax and )2 are costate variables corresponding to x.and 2

respectively. The maximum principle implies that the costate variables

Ax and A: satisfy the equations
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Ax - - Vx H (3.4a)

eAz - - Vz H (3.4b)

while 1x(tf) and Az(tf) can not be a priori determined because the

terminal states are not free. The maximum principle also implies that

along an optimal trajectory

vu a - 0 (3.5)

Assuming that (3.5) uniquely defines u in terms of X, Z, Xx' and AZ,

substitution of u from (3.5) in the state and costate equations (3.1)

and (3.4), yields the form

x.- f(x, xx, z, 12, e, t) (3-58)

1 -x F(X. XX. 2. AZ. 6. t) (3.6b)

c2 - 8(x, XX, 2, AZ, 6, t) (3.6c)

€32 ' C(X. Ax' 2. dz. 6. t) (3-5d)

Equations (3.6) define a TPBVP of differential order of 2(n+m). We call

the solution of (3.6) the "exact solution", and the solution of the

system with e set to zero the "reduced" solution- It is obvious that in

general the reduced solution will not satisfy both initial and terminal

conditions. At least locally, the behavior of the reduced solution will

be radically different from that of the exact solution. In fact,
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the best that can be hoped for is that the reduced solution gives

a good approximation for fast variable 2 everywhere except near

z(to) - 20 and z(tf) - zf. The phenomenon of boundary-layers occurs

in all singular perturbation problems. In such problems, the solution

is sought in two (or in some cases, several) separate regions. In an

outer region the variables are relatively slowly varying and can be

approximated by the reduced solution, which does not generally satisfy

all boundary conditions. In an inner(boundary-layer) region, the

variables are relatively rapidly varying. They satisfy appropriate

boundary condition and converge asymptotically to the reduced solution.

W: The solution of the nonlinear

two-point boundary values problem (3.6) may be approximated by setting

5 - O in (3.6). This leads to a reduced problem (variable are denote by

the superscript °)

'0 O O O O

x - f(x 9 Ax, 2 v *2: o! t) (3'78)

'0 O O O 0

xx- wt, Ax, z , AZ, 0, c) (3.7b)

0 0 0 O

o - so: , Ax, z , AZ, 0, c) (3.7c)

0 0 O O

o - C(x , Ax, z , AZ, 0, c) (3.7d)

0 O

with boundary conditions X (to) ' x0 and x (tf) ' xf
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The solution of this reduced problem can be an 0(a) approximation for

original problem away from the boundary points. but it cannot satisfy

the initial and terminal conditions for z.

Boundary—layer (geroth-order inner) solution: The zeroth-order initial

(left) boundary-layer solution is carried out using a stretched time

scale

t'to

, _ ___?____
(3.8)

 
Substituting (3.8) into (3.6) and again setting c — 0 leads to the

following zeroth-order equations (variables in this initial

boundary-layer problem are denoted by superscript il)

 

11

.{E;_ - o , Xil(r) - constant - X0 (3.9a)

d‘il 11

dz11 11 11 11 11 11

‘37"' ' 5 (X0, Ax : z "Az ' O, to) . z (to) ' z0 (3.9c)

11

d) 11
2

Similarly, the zeroth-order terminal (right) boundary-layer equations

are formed by introducing the stretching transformation
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a- __ (3.10)

into equation (3.6) and setting 6 - 0, resulting in equations which are

similar to the initial boundary-layer equations (3.9) but in the reverse

direction (i.e. opposite sign), and with slow variables frozen at their

terminal values instead of initial values.

The reduced and boundary-layer solutions are combined according

to the formula

t'to o t't

) - z(co)1+[zu<f—-z - 2°(c) + [2‘1( 6
0

app 6 ) ' Z (tf)]

(3.11)

with similar expressions for A2 and u. The right-hand side of

(3.11) shows that near the initial point t - to, the solution

is approximated by the initial boundary-layer. Away from the boundaries,

it is approximated by the reduced solution. Near the terminal point

t - tf, it is approximated by the terminal boundary-layer. For x and Ax’

0 0

the formula (3.11) reduces to the reduced solutions X and Ax ,

respectively.

The accuracy of this approximation certainly depends on the value

of c. This zeroth-order approximation can be improved by the first-order

solution obtained by the method of "Matched Asymptotic Expansions "

(see [4]).

III.1.2 ILLUSTRATIVE EXAMPLE (A MINIMUM TIME-TO-CLIMB PROBLEM)

Let us consider the minimum time-to-climb (MTC) problem which is

defined as follows. Find a control m(t) that steers the nonlinear
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singularly perturbed system (see Section 11.3.2)

 

1: - Q51— (T - D) (3.12a)

ev - #731- - gSIN7 (3.12b)

,1 ._ L £30057 (3.12c)

from the initial state E(to) - Eo, V(to) - V0 and 1(to) - 1° to the

final state E(tf) - Ef, V(tf) - Vf and 1(tf) - free, while minimizing

tf.

The aerodynamics are recalled here as (see Section 11.3.1 and

II.3.3)

l 2 -Kh 7
D(a, V, h) - —2- (CD0+ nCLaa )pose V

(3.13)

2 -

L(a, V, h) - -%— CLaapOV se Kh

where a is the control variable, and T'- T(V, h).

Application of the maximum principle to the singularly perturbed

system (3.12), gives the necessary conditions
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f - gi (3.14a)

 

eV - egg - gSIN1 ‘ (3.14b)

c1 - L -m3cosy (3.14c)

(Leibniz-.. _ac_-_*_v__é_(_t_, (315.)
E as E 3 a v8 as :n as mV °

' an a a
:1 — - -——— - - gAE -§V(Vg) - :31 -—£—

 

v av v av

A7 a L - WCOSj

' “5- -gv( Vi ) (3.15b)

' an SIN1
e11 - - 17- Ang081 - *7‘&T' (3.15c)

an A_, _ '7
15;' 0, yields a -§nV(AEV + ‘A (3.16) 

v)

where C - (T - D)/W (see 11.3.1), and the Hamiltonian H is given by

 

~ - wcos
a - 1 + AE(V8§) + Av(¢g§ - gSINy) + 17( L mV 7 ) (3.17)

The reduced problem is given by

0

1°-0. 1°..w, *3'0'8"; (—<vc>)-—;—5(—->-o (3.13.1)
mxy 8V

0 0

E - V r a (3.18b)
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. A
o o o a: 0 1 a L o

A - -A Vg(-—- - ( ( a» 3.18

E E as m 6E mV ( c)

with the boundary conditions E(to) - E0 and E(tf) - Ef.

Since this system is autonomous, H - 0 is a constant of the motion, the

relations of (3.18a) and (3.17) lead to

o o 0 O 1

and the control law is given by

0

o 1

a - 7 7 . (3.19)

0 0

2(AEnV )

 

The reduced control (3.19) is the same as the control calculated

using the energy state approximation by Bryson et a1. [16]. This follows

from the well-posedness of the singularly perturbed control problem, as

shown in Section 6.3 of [19].

The left boundary-layer problem is given by

 

11
a: _ o - (3.20a)

11
dV 11

'E?" ' '331N7 (3.20b)

11 11 11
d L - woosv

'a¥" ' 11 (3.20c)



S6

 

11
dA

a _ o (3.21a)
37

11 11
d1 A 11 11
v 11 a 11 11 I - w o

‘37" ' '3‘2 “‘II(V g ) ' m a 11( L 1157 ) (3'21b)
av av v

11
d1 . . 11

7 _ i1 11 _ 11 C057
.37—- AV gCOSy A1 -&_;IT_- (3.21C)

with initial conditions Eil(ro) - £0, Vi1(ro) - V0 and 111(10) - 10

and the control law is

A11

_ 1
(3.22)2

2011:10,,11 )

il
a  

The right boundary-layer problem is similar to (3.20) and (3.21)

but in the reverse direction. The control law is

Air

air - 1. (3.23)
T

20érnvir )

 

To illustrate the solution, a numerical example is now considered.

The aircraft is "airplane 2" of [16]. The boundary conditions are

selected as

0

E0 - 1500000 ; Vo - .5 Mach ; 1° - 0

Ef - 5000000 ; Vf - 2.0 Mach ; 7f - free
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Combining the reduced solution, left boundary-layer and right

boundary-layer solutions together, gives the results of energy E,

velocity V and flight path angle 1 shown in Figs.3.1-3.3 respectively,

the flight trajectory (path) of the various solutions in the (h, V)

plane is also shown in Fig.3.4. The minimum time estimate by this SPT

approximation is 170 sec which is the time estimate on the slow manifold

(reduced solution) 60 sec plus time to dive (left boundary-layer) 60 sec

and to zoom (right boundary-layer) 50 sec (see Fig.3.4). It is important

to mention here that for this minimum time-to-climb problem, tf is

unknown (to be determined). In order to estimate tf, we solve

(i.e. integrate) the right boundary-layer in reverse direction until

it matches the slow manifold, then tf can be determined. The minimum

tf we obtained by this approximation is at about 5% error compared

with the exact solution obtained by using steepest descent (162 sec,

see [4, 16]). but singular perturbation approximation requires

substantially less computational cost. The approximate control which

is formed as

o 11 t ' to 0 t ' t o

aapp(t) - a (t) + [0 (—-¢———-) - 0 (to)] + [air('—f—e—) " 0 (Cf)]

is shown in Fig.3.5.
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Fig.3.5 Approximate control (aapp) for airplane 2

III.2 AUTO—PILOT IMPLEMENTATION

Optimal flight controls are dependent on many factors such as

aerodynamics, motor performance, system weight, operational constraints,

mission requirements, atmospheric conditions, and the index of

performance to be optimized. To establish best possible vehicle

performance it is necessary to determine or approximate the optimal

control solution. A separate but equally important issue is the real

time auto-pilot (on-board) implementation.

Recently, a number of flight mechanics optimization problems have

been solved using singular perturbation techniques and resulting in
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state-feedback control laws, suitable for on-board implementation

[18, 31, 32]. In the cited work feedback is introduced to reduce on-line

computations while improving accuracy. Calise [18] presents a partial

evaluation of the use of singular perturbation methods for developing

a computer algorithm for on-line optimal control. He expresses the

singular perturbation approximation of optimal control in feedback form

(near-optimal feedback control). Emphasis is placed on deriving a

solution in a form that minimizes on-board computational requirements

and improves accuracy. Visser and Shinar [31] introduce a first order

correction feedback control law to improve the accuracy of the

singular perturbation approximation for real time implementation.

Weston J; 31, [32] proposed a feedback control and discusses its auto-

pilot implementation. They linearize the fast boundary-layer system

about the reduced solution and obtain feedback control for boundary-

layer, where feedback coefficients are function of the slow variables.

No one investigated the use of feedback for boundary-layer stabilization.

We mentioned before that the use of open loop control via singular

perturbation approximation for on-line, auto-pilot implementation may

cause boundary-layer instability when unstable modes are present in the

uncontrolled system. This fact was demonstrated on a second-order

example in Wilde and Kokotovic [26]. This instability problem can be

overcome by using feedback control to stabilize the boundary-layer

system. In this section, we emphasize the role of feedback implementation

ixnstabilizing the boundary-layer dynamics and introduce such feedback

controls from boundary-layer stabilization viewpoint rather than from
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near-optimality viewpoint as in earlier work. We propose two feedback

stabilization scheme to circumvent this instability problem.

III.2.1 BOUNDARY-LAYER INSTABILITY PROBLEM

In order to investigate the phenomenon of boundary-layer

instability, let us illustrate it by considering the flight mechanics

model (3.12), the left boundary-layer equations are

dV
 dr - - gSIN1 - F1 (3.24s)

d L - WCOS

(1'2" " ""'—"‘"’mv7 ' F2
(3.2413)

The Jacobian matrix. evaluated along the reduced solution, is given by

    

— as, as, - _ T

""‘av T1 0 '8

as, as,

L 5" 31 J .8 ° _

where

1 -Kh 1 401 ”In C -Kh xv ) o
a "' Wachpose + Wap08V(e W— + be —8 >

The chacteristic equation of (3.25) is

2

S + ga - 0 (3-25)

The two roots are on the imaginary axis, so, this system does not

satisfy the requirement ReA(J)<O.
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Application of the approximate control aapp of the previous section

to the flight mechanics model (3.12), results in the trajectories shown

in Fig.3.6. This shows that the trajectory of the left boundary-layer

moves away from the slow manifold for real time on-line implementation.

But, for off-line calculation, the left boundary-layer is matched

to the slow manifold (see previous section) which illustrates the nature

of instability properties for on-line implementation.

10-
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Fig.3.6 Boundary-layer instability for airplane 2

III.2.2 FEEDBACK STABILIZATION

In order to stabilize the boundary-layer, two feedback

stabilization control laws are proposed: (a) a linear feedback control;

and (b) a nonlinear feedback control.
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(a). ,Lingg;_j§g§bggk_gggt§21: Let us consider the flight mechanics

problem and introduce the linear feedback stabilization control as

o o o _
aL-a -K1(V-V)-K2(y-1)

(3.27)

with feedback from fast variables V and 1. The feedback terms are

0 0
effective only on the boundary-layer because V - V and 1 - 1 are 0(a)

on the slow manifold.

Substituting (3.27) into boundary-layer system (3.24) yields the

Jacobian matrix

    

[— as, as1 [‘0 1

TV "a' 7'" " ' 5

J _ -
(3.28)

as, as,

7V- T; j ' “1" 4"" __
_ .1

whose characteristic equation is

e-Kh
2

l
s + 11,1, + g(a - km - o . where b ' Whack: V (3.29)

For asymptotic stability, we should choose k1 < a/b and K,>0.

Taking k1 - -2 and K1 - 5 for this problem, the simulation result is

shown in Fig.3.7. This shows that the linear feedback law indeed

stabilizes the boubdary-layer and follows the slow manifold closely.

With initial conditions sufficiently close to the slow manifold,

the auto-pilot will be able to follow the nominal path over the entire

range by using this linear feedback control law. But when the initial
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conditions are far away from the slow manifold, the trajectory will not

follow the nominal path any more. The resulting trajectories. shown in

Fig.3.8, illustrate the "local" nature of the linear feedback control.

’F .L..°— K.(v -v°)-K2(r-r°)

 LINEAR FEEDBACK SOLUTIOMHITH 0L)
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Fig.3.7 Boundary-layer stabilization (with linear feedback

stabilization control) for airplane 2

 



66

{ _ MIMI. PATH I

 V
E
L
O
C
I
T
Y
.

M
A
C
H

N
O
.

  ‘1r’ 1 1 1 I J I

0 20 ‘40 60 80 100 120

TIE. sec

Fig.3.8 Boundary-layer stabilization (with linear feedback

stabilization control) with initial disturbance

for airplane 2

(b). Non ’ ea ee back ontrol: In order to obtain nonlocal

boundary-layer stabilization, we use a nonlinear feedback control law.

let us rewrite the flight mechanics model (3.12) as

. 2

s - -¥-[T(E, V) - % pV25(CDo(V) + ”ammo. )1 (3.30a)

° 2 2

eV - -‘-§-[I(E, V) - 71— pV s(CDo(V) + "ammo. ] - gSINy (3.30b)

a} - ‘21? stchwm - .57. C051 (3.30c)
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The nonlinear feedback control law is chosen as

2w 2w 2WC081 2Wb'7

a ' z’ ’ 2 + 2 ‘ “"""T‘j

N pV sC (V ) pV 50 (V) v sC (V) ”Ssvcm V
B La E In p In

(3.31)

where b. is a positive constant and VB is the energy state

approximation solution [see 16] which is the same as the reduced

solution V0 we obtained from previous section III.1.2. Again, this

control is effective only on the boundary-layer because on the slow

a

manifold, “N is 0(a) close to a .

After substituting (3.31) into (3.30), the boundary-layer equations

are given by

 

.gg. - ‘ESINV - 31 (3.32a)

d1 _ g, 2 2 ,

-3;- VVYC (V )[v CLa(V) - VECLa(VE)]- b1 - F2 (3.32b)

E In E

We assume that vacLa(V) is monotonically increasing (in general

it 18): which implies that the first term on the right-hand side of

equation (3.3213) is a first-quadrant-third-quadrant function in (V - VE)°

Consider a Lyapunov function candidate

 

V-VE 1 2 2

V(V,1)-f [(V +x)C (V +x) -vc (V)]dx
0 (Vs + X)V;CM(VE) s 1.1 a s In a

+ (I - C051) (3.33)

Taking the derivative of v, we have
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d” I

dr - -b1SIN1 < 0 , for -x < 1 < x (3.34)

where dy/dr - 0 implies 1 - 0, V - VE' So, by Lasalle's theorem

[see 34], the equilibrium point (V - VE’ 1 - 0) is

asymptotically stable. Moreover, it was shown by Vasileva [25] and

Tihonov [21] that if the domain of interest is bounded and closed, then

the property of asymptotic stability for every fixed slow variable,

implies the property of asymptotic stability uniformly in the slow

variable. 80, this system is asymptotically stable uniformly in slow

0

solution VE (i.e. V ). Therefore, all the conditions of Tihonov theorem

[21] are satisfied.

The Jacobian matrix of the boundary-layer equation (3.32) is

  

”as, as,‘

_ __ - 7
av a1 [.0 5

as, as, . ’

L—av Ty _“ “b _  

where b is positive constant and

acmw)
' 2

E

and its characteristic equation is

2 I o

S + b S + a g - 0 (3,36)

All roots of (3.36) are in the open left-half complex plane.
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Fig.3.9 shows the simulation of the trajectory when the nonlinear

feedback control (3.31) is applied to the full singularly perturbed

system (3.30). The simulation shows that the nonlinear feedback control

law for on-line, auto-pilot implementation will also stabilize the

boundary-layer. Again, tests were performed with initial conditions

up to Mach number 1.5. The resulting trajectories are shown in Fig.3.10.

These show that the nonlinear feedback control law is able to control

the aircraft so that it approaches the neighborhood of the nominal path

for initial perturbations larger than those of the linear feedback

control. Notice, in particular, the trajectory starting at Mach number

1.5 and compare FigureS3.8 and 3.10. This comparision emphasizes the

nonlocal nature of the nonlinear feedback control vs the local nature

of the linear one.
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Fig.3.9 Boundary-layer stabilization (with nonlinear feedback

stabilization control) for airplane 2
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IV. STEERING CONTROL OF SINCULARLY PERTURBED SYSTEMS: A COMPOSITE

CONTROL APPROACH
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In this chapter, we develop a composite control approach to the

problem of steering the state of a singularly perturbed system from a

given initial state to a given final state, while minimizing a cost

functional. Asymptotic validity of the composite control is established

by showing that its application to the singularly perturbed system

results in a final state which is 0(a) close to the desired state.

Moreover, the cost under the composite control is 0(6) close to the

optimal cost of the reduced control problem. The performance of the

composite control is illustrated by examples.

IV.1 PROBLEM STATEMENT AND COMPOSITE CONTROL APPROACH

Consider the singularly perturbed system

i - f(x, 2, u, e, t) (4.1a)

(é - a(x, e, t) + A(x, e, t)z+ B(x, e, t)u + cg1(x, z, u, e,t) (4.1b)

where XeRn, zeR , ucRr and e is a small positive parameter. A control

u(t) is sought to steer the state x, z from an initial state x(t°) - x0,

z(to) - 2° to a terminal state x(tf) - xf and z(tf) - z , while

minimizing the cost functional

1:

f

J -] [V1(x, e, t) + zTV2(x, e, t)z+ uTR(x, e, t)u]dt (4.2)

t0

This problem will be studied under the following assumption

Assumption 4.1: The functions, f, a, A, B, g,,V,, V2 and R are assumed
 

to be sufficiently smooth in all their arguments, i.e. differentiable

a sufficient number of times, in a domain of interest. Furthermore,
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V1 and V, are positive semidefinite and R is positive definite in the

same domain. Other assumptions will be made later on.

This optimal control problem has been studied by many researchers;

see, for example, O'Malley [36],_Sannuti [37], Chow [23] and Kokotovic,

Khalil and O'Reilly [19]. In these studies, asymptotic approximations

of the optimal trajectories are obtained via analyzing the singularly

perturbed two-point boundary value problem that results from applying

the maximum principle. These asymptotic approximations have been

extensively used in flight mechanics problems; see, for example,

Kelley [3], Ardema [4], Calise [18] and Visser and Shinar [31].

We develop a composite control approach to the steering control

problem. Composite control of singularly perturbed systems has been

known in the context of stabilizing feedback control. It was first

introduced by Chow and Kokotovic [38] for linear systems and later

generalized to nonlinear systems by Chow and Kokotovic [39],

Suzuki [40] and Saberi and Khalil [41]. According to this approach, a

stabilizing feedback control is sought as the sum of two components.

The first component is a reduced control that stabilizes the reduced

system, obtained by setting 0 - 0 and eliminating fast variables

(2 in (4.1)). The second component stabilizes the boundary-layer system.

In our steering control problem, the composite control will be sought

as the sum of three components. The first one is the reduced control

which solves the simplified problem obtained upon setting 8 - 0. The

second component is a feedback component that stabilizes the boundary-

layer system. The third component is a right boundary-layer component
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that steerstimafast variable 2 from the reduced solution to the desired

terminal state zf. The three components are derived in the next section.

The proposed composite control is similar to that of Chow [23] in

that it comprises three components, but with different procedures of

calculating the boundary-layer components.In our method, the boundary-

1ayer controls ck) not optimize cost functionals as in Chow. The left

boundary-layer control is a feedback stabilizing control that ensures

boundary-layer stability, while the right boundary-layer control is the

well-known minimum energy control that steers the state of the linear

boundary-layer system to its target state. Our analysis does not involve

asymptotic analysis of the full optimal control. Therefore, our

assumptions are weaker than those of Chow.

IV.2 DERIVATION OF THE COMPOSITE CONTROL

IV.2.1 THE REDUCED CONTROL

The reduced (or slow) problem is obtained by setting e - 0 in

(4.l)-(4.2) and dropping the requirement z(to) ' zo, z(tf) - zf, that is

the reduced problem is defined as

‘0 0 0 0 0 0

x - f(x 9 Z s u 0 00 t) o x (to) -x09 x (tf) - xf (4°38)

0 O 0 0 0

0 - a(x , 0, t) + A(x , 0, t)z + a(x , 0, t)u (4.3b)

t

o f o o T o 0 o T o o

J - [V,(x , 0, t) + (z ) V2(X , 0, t)z + (u ) R(X , 0, t)u ]dt

to I (4.4)
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where the superscript "°" stands for the solution of the reduced

problem. For the reduced problem to be well-defined, we must be able

to use the algebraic equation (4.3b) to reduced the (n+m)-dimensiona1

o 0

state vector X , Z to an n-dimensional vector. A typical assumption

in the singular perturbation literature, e.g., Kokotovic, Khalil and

O'Reilly [19], is to require the matrix A(xo, 0, t) to be nonsingular.

This assumption, however, is not needed in the asymptotic analysis of

the two-point boundary-layer value problem associated with the full

problem (4.1) - (4.2). It is also restrictive and eliminates the

interesting problems that arise in flight mechanics. Therefore, we

make the following weaker assumption.

0 o

Assumption 4.2: The mx(m+r) matrix [A(x , 0, t) B(X , 0, t)] has m
 

linearly independent columns in the domain of interest.

0

This assumption implies that rank[A B]-m for all x and t, but not

vice-verse. A.weaker assumption would be to require rank[A B]-m, but

this would complicate the analysis. Assumption 4.2 guarantees the

existence of a permutation matrix P such that the first m

0

columns of [A B]P are linearly independent for all x and t, e.g.

0 0 o o

[A201, t) 3201. t)] - [A(x . 0. t) 801.0. t)]P (4.5)

o o _o

where A,(x , t) is nonsingular. Defining 2. and u by
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- o1 P -o q -0

z 2 P11 P12 2

- s 9 (4.6)

0 _o _o

_u _ _ u _ P21 P22 u

. 1 - ,

the algebraic equation (4 3b) can be rearranged as

o 20

o - a + [A B]PPT z - a + (A, 8,] (4.7)

o -0

u u

Hence, the reduced problem (4.3) - (4.4) can be rewritten as

-o — o -o _o o o 0

x-f<x.2.u.t). x(t,)-x.X<tf>-xf (4.8a)

o o -o o _o

0 - a(x , 0, t) + A,(x, t)z + B,(X , t)u (4.8b)

l- o —

O O -0 T _O T T

J- {V,(x.0.t)+[(z) (11)]?

t0
0

0 RO‘ . 0 t)

'-o'

2

P )dt (4.9)

-o I

L“.  

- o -0 -0 o -0 -0 -o -0

where f(x , z , u , t) - f(x , P11; + P12“ , P212 + P22“ , 0, t),and

0 o

A,(x , t) is nonsingular. Note that if A(X , 0, t) is nonsingular to
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start with, the permutation matrix P is taken to be the identity

matrix. Problem (4.8) - (4.9) satisfies the standard assumption of

o

nonsingularity of A,(X , t). Substitution of

-0 ,1 _0

into (4.8a) and (4.9) yields

-0 -o o _o o o

X - f (X , u , t) , x (to) - xo , x (cf) .xf

t

0 U," E o T o _o _o T o o

J - [Qo(x , t) + 2Do(x , t)u + (u) Root , t)fi ]dt

t0

where

-0 o -0 - 0 -1 -0 -0

f(xvuvt)-f(x1 'A2(a+32U),U, t)

- -1

- -l .1

Do - B§A2TM11A2 a ‘ M¥2A2 a

1' -1' -1 1' -'r T -1

Ro ' B252 M11A2 B2 ’ 3252 M12 ' M1252 B2 + M22

T T

M11 ' P11V2P11 +'P21RP21

T T

M12 ' P11V2P12 I P12RP22

(4.10)

(4.11)

(4.12)

(4.13)

(4.14s)

(4.14b)

(4.14c)

(4.14d)

(4.14e)
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and

11,, - 9?,V,s,, +9.}, R2,, (4.141)

The reduced control problem (4.11), (4.12) is formally correct in the

sense that its necessary conditions for optimality coincide with the

necessary conditions of the full problem (4.1) - (4.2) upon setting

6 - 0. This fact is shown in section 6.3 of Kokotovic, Khalil and

O'Reilly [19] for the reduced problem (4.8) - (4.9), which is the same

as the reduced problem (4.11) - (4.12). We assume that

Assumption 4.3: The reduced control problem (4.11) - (4.12) has a
 

_o 0

unique optimal solution u (t), X (t), which is continuously

o o -0

differentiable on [to, tf]. Once G (t) and X (t) are calculated, 2 (t)

0

can be obtained from (4.10), and the reduced control u (t) is given by

0 -0 -0

u - P212 + s,,., (4.15)

IV.2.2 BOUNDARY-LAYER STABILIZING CONTROL

A characteristic phenomenon of singularly perturbed systems is the

presence of boundary layers during which the fast variable 2 approaches

it reduced, or quasi-steady state trajectory. For this phenomenon to

take place, the boundary-layer system needs to be asymptotically stable,

see Kokotovic, Khalil and O'Reilly [19]. For the system (4.1) this will

be the case if the matrix A(X, O, t) is Hurwitz uniformly in xzand t,

i.e., ReA[A(X, 0, t)]s-c<0 for all X and t in the domain of interest.
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If this condition holds, application of the reduced control (4.15) to

the system (4.1) will result in trajectories of x, z and u which

0 o o

approach X , z and u after a boundary-layer. If A(x, 0, t) is not

Hurwitz, feedback must be used to stabilize the boundary-layer system.

It is important to notice that without feedback, the boundary-layer

will be unstable even when Opvn-loop boundary-layer corrections are

0 .

added to u . This fact was demonstrated on a second-order example in

Wilde and Kokotovic [26], and on a flight mechanics model in

Chapter III. The boundary-layer system is obtained by expressing (4.1b)

in the fast time-scale r - (t - t,)/c, t12to, and then setting 8 - 0.

It is given by

—SE- - a(x, 0, t) + A(X, 0, t)2 + 8(3. 0. t)u (416)

o o

where u - u + uF.and x, u and t are frozen at their values at t - t1.

Notice that the boundary-layer stability should hold along the reduced

trajectory and not only at the initial time to. If A(X, 0, t) is not

Hurwitz or it is Hurwitz but its stability properties are not adequate,

‘uF can be used to stabilize the system. Let us first shift the

equilibrium of (4.16) to the origin. The steady-state of (4.16), with

uF.- 0, is

0 o

0 - a(x, O, t) + A(X, 0, t)z + B(x, 0, t)u (4.17)

o

Substracting (4.17) from (4.16) and setting 2F,- 2 - z , we obtain
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sz

1;- - 10:, o, t)z, + a(x, o, t)uF (4.18)

with X and t treated as fixed parameters. The system (4.18) is a linear

system whose stabilizability is stated in the following assumption.

Assumption 4.4: The pair [A(X, 0, t) B(X, 0, t)] is stabilizable
 

uniformly in x and t in the domain of interest, e.g., there exists a

sufficiently smooth matrix K(x, t) such that

ReA(A(x, 0, t) + B(x, O, t)K(x, t)) < -c < 0 (4.19)

Thus, the boundaryjlayer stabilizing control is given by

uF.- K(x, t)zF - K(x, t)(z - 20) (4.20)

IV.2.3 RIGHT BOUNDARY-LAYER CONTROL

0

So far, we have derived the reduced control u and the boundary-

0

layer stabilizing control up. Application of u - u + “F to the

system (4.1), (4.1) will result in a trajectory x(t), z(t) that

o 0

approaches the reduced state X (t), Z (t) after an 0(eln-%-) boundary-

layer and then moves along it. At the terminal time tf, x(tf) and z(tf)

o 0

will be in an 0(8) neighborhood of x (tf) - xf and z(tf). Since z°(tf)

* 2f. in general, a terminal boundary-layer control ub should be added to

0

u + up" whose function would be to steer z(t) from an 0(8) neighborhood

of the desired state 2f. This motion will take place over a time
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interval [cf-A, tf], A>0. To derive ub, we consider the boundary-layer

0

system (4.16) with u - u + “F'+ ub and with t1 - tf, that is with x,

0 o o 0

z , u and t frozen at X(tf), Z (tf), u (tf) and tf, respectively.

Anticipating that x(tf) will be within 0(8) of xf, we freeze X at Xf

instead of x(tf). Thus, the right boundary-layer model is given by

_%§_ _ a(xf, o, tf) + A(x , o, t)z +-B(x , o, c)[

0 0

u (cf) + x(xf, cf)(z - z (tf)) + uh]

- a(xf, 0, tf) + H(Xf, cf): + B(xf, 0, tf)[uo(tf) -

O

x<xf. cf): (cf) + “81 (4.21)

where a - (t - tf)/¢ and H - A + BK. Equation (4.21) has equilibrium at

0 0

z - 2 (cf), Defining 2b - z - z (tf), we obtain

dz

.339 - H(xf, tf)zb + a(xf, o, t)ub (4.22)

The right boundary-layer control problem is to move zb from:b - 0 at

o

a - -A/8 to 2b - 2f - z (tf) at a - 0. Since the system (4.22) is

linear, the solutuion of this steering control problem is well-known,

e.g., Chen [42]. It requires the following assumption

Assumption 4.5: The pair [A(xf, 0, t) B(Xf, O, t)] is controllable.

Since H - A + BK, controllability of (A, B) implies controllibility of

(H, B) for any matrix K. The minimum energy control that moves zb from

zb(-A/8) - 0 to zb(0) - 2f - 20(tf) is given by (Chen [42])
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-aH T -1 HA/
ub(a) - BT(e ) W (A/€)(Zb(0) - e ezb(-A/¢)) (4.23)

where the controllability Grammian W(A/8) is given by

0 ' A/e

- - T

W(A/8) :l. e OHBBT(e ”H)Tda 3,. e*388T(e*")dA (4.24)

A/e . 0

In (4.23) and (4.24) the arguments of H(Xf, tf) and B(xf, 0, tf) are

omitted for convenience. Due to the Hurwitz property of H, the matrix

W(A/8) may be approximated by W; - W(°). i.e.,

wm/e) - u(o) -f 8*H88T(em)Td1

A/e

9 u(w) - E(A/8) (4.25)

where

"E(A/8)" I]. Ke‘°*dx s -§-e'°A/‘ - 0(8) (4.26)

A/8

Moreover, eHA/e is 0(8). Thus, ub can be approximated by

- - 0

ubm - 8% “WW 1(«nonf - 2 (cf)) (4.27)

where W(o) satisfies the algebraic Lyapunov equation

T
HW(o) + u(omT + BB - o (4.28)

In the t time scale, ub is given by

(t - t)H/8

ub(t) - 3T(0 f )TW'1(oo)(zf - zo(tf)) (4.29)
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It is important to notice that ub(t) is indenpendent of the constant A.

It depends only on the final time tf. If tf is known, the expression

(4.29) can be calculated and inplemented from the initial time to. Due

to the exponential term exp((tf-t)H/8), the expression (4.29) will be

effective only in an 0(8ln(1/8)) neighborhood of tf. The final time t

f

will be known if tf is fixed to start with. When tf is free, it should

0

be estimated. Let tf be the final time determined from the solution of

o

the reduced problem. Then tf can be taken as tf - tf + 6(8) where 6(8)

satisfies

 
I13%““)“/‘)TW‘1<«»)(zf - z°<cf)) - cm (4.30)

  

It can be shown that 6(8) - 0(8ln(l/8)), hence 5(€)*0 as 8+0.

The composite control is taken as

0

uc-u-1-ufi.+u.b

— u° + K(x, t)[Z - z°(t)] +8T(x. o. c)[exp((cf - t)u(xf. tfveHT

w'l<«»)<zf - z°<tf>) (4.31)

IV.3 ASYMPTOTIC VALIDITY OF THE COMPOSITE CONTROL

Asymptotic validity of the composite control is established by the

following theorem

IHEQB£fl_&,1: Suppose that Assumptions 4.1 - 4.5 hold and that the

composite control (4.31) is applied to the singularly perturbed system
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*

(4.1). Then, there exsits 8 >0 such that for all 8 6 (0, 6*]

x(tf) ' Xf - 0(5) (4.32)

  

z(tf) - zf - 0(8)
(4.33)  

 

 

o o

J(uc) - J (u ) -O(8)
(4.34)

 

 

  

The theorem states that application of the composite control (4.31) to

the singularly perturbed system (4.1) results in a final state which

is 0(6) close to the desired final state and a cost which is 0(8)

close to the optimal cost of the reduced control problem.

2129:: Consider the singularly perturbed system (4.1) under the

composite control

. o

x - f(x, 2, u + uF + ub, 8, t) (4.35a)

82 -a (x, 8,t)+A (x, 8, t)Z+B (x, 8, t)(uo +UF+Ub)

+ 8g1(x, z, u, 8. t) (4.35b)

t

f

J 2,. [V1(x, 8, t) + va,(X, 8, t)z + uTR(X, 8, t)u]dt (4.36)

to

0 .

where x, z, u are functions of t and u - uc - u + “F‘+ ub is

established by (4.31).During the proof we will need to use the property
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that over the time interval (to, cf] the full solution (X(t),z(t),u(t))

exists and is bounded. This follows from the existence of the reduced

solution (Assumption 4.3) and the closeness of the full and reduced

solution for sufficiently small 8. This closeness, however, is to be

established in the midest of the proof. Therefore, we cannot start by

assuming the boundness of the full solution. To circumvent this problem

we take a large enough compact set S; defined by S - {x,z,u| “x" sr,

"zllsr, |u| 5r) and let T - minttf, first exist time from S). All

analysis will be done over the time interval [to, T] for which the full

solution is bounded. Then we will show that r can be chosen large enough

such that, for sufficiently small 8, the first exist time from S will

be greater than tf. Since f and g, are continuous function of x, z,

and.u, this implies that f and g, are bounded by a constant which is

function of r. Let us introduce the quantities

o 0

8a - a(x, 8, t) - a(x , 0, t), 6,A - A(x, 0. t) - A(x , 0, t)

0 0

6A -A(x.c.t)-A(X.0.t).5.B-B(x.o.t)-B(x,o,c) (4.37)

0

6B -B(x,8,t)-B(x,0,t)

and

d - z(t) - zo(t) (4.38)

Substition of (4.37) and (4.38) into (4.35b), yields
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82 - (6a + 6A2 + 6Bu + 61Azo + 61Buo + 631(X, z, u, 8, t)) + a(xo, 0, t)

o 0 o o

+ A(x , O, t)z + B(x , 0, t)u + [A(x, O, t) +

B(x, 0. t)K(X. t)I¢ + B(x, 0. t)ub (4.39)

a(é - 8°) - .3 - a(x. c)¢ + B<x°. 0. t)ub + e4. + :4, (4.40)

o 0

where Al - A1(t) - 6a + 6A2 + sBu + 61A 2 + SlBu , A2 - A2(t) -

g1(x, z, u, 8, t) - 2° and H(x, t) - A(x, o, t) + K(x, t)B(x, 0, t)

From Assumptions 4.1 - 4.5, we have

ReA(H(x , 0, t)) S -6 < 0 , for all t 6 [to, T] (4.41)

S 1 , for all t c [to, T] (4.42)

  

llH(x , 0, t)

.%E.H(x , 0, c) 5 fl , for all t 8 [to, T] (4.43)

    

Under (4.41) - (4.43), there exist positive constant a1 and R, such that

the transition matrix of equation (4.40) satisfies (see [19])

'°1(t ' to)/€

l|¢(t, to)” 5 K19 , for all t 8 [to, T] (4.44)

Now, applying the variation of constants formula to



86

equation (4.40) yields

t

¢(t) ' ‘PCC. t°)¢(t°) + 4"] ‘NC. 0320‘ (T). 0. f)U-b(f)df

t:0

t
C

+ if out, 1')A1(r)dr +f T(t, r)A (r)dr (4.45)

e t:0 t:0 2

t

H Moll 5 HM toll II well + + Hm. nuuw m. o. 81..."...
t30

t t

1 .i..[ ”8(8, r)“ ”A1(r)”dr + I ]|¢(c, r)”” A,(r)||dr

t5o to

(4.46)

By Lipschitz property of a , A and B , and the boundedness of the

solution we have

[[A1II'II53 + 6A2 + 61Azo + 6Bu + 61Buo"

5 ll‘a || +"5“” ||2||+||51A|l H20H+H53H [I“I[+|I513|I ”no”

-“a (x, 8, t) - a (3:0, 0, t)”+ “A (x, e, t) - A (x0, 0, t)u” z”

+ "A(x. O, C) ' A(Xo. 0: t)" ”20" +

”B (x, e, t) - B (xo. 0. t>|||| uII + H1301. °- t) - B(xo' 0' t)Hlluoll
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41.... .... - .83. .. .. + . (1°. ., .. - . <x°. 0.1:)“ +

“A (x. 8. t) - A (xo, 8, t) +A (x0, 6, c) - A (x0, 0, t)]lllz”+

]]A(x, o, c) - A(xo. 0. t)” H 20” + “B(x, o, c) - a(xo, o, t)” H “0"

+HB(1,., t) - B (:80, e, t) + B (x0. 6. t) - 3 (x01 0' t>|||lull

S <3.le - x0l|+ (32‘ (4.47)

where the constants C1, i - l, 2, 3, ..... we use in (4.47), and later

on, are all dependent on r.

Substitution of (4.47) and (4.29) into (4.46), yields

1:

H(t - t)/8

||¢<t>|| sllo<t. c.)|||| ¢<to>|| + {- t Hm. r>|||| n 8T<e f )T-

0

t

w‘Hzf - 2;)”(17 + “0(t, r)“ (IIA2(r)|| + c,)a. +

t0

1'.

1 o

-;:I;0I[0(t, r)" C1]|x(r) - x (7)" dr

5 K e + -?- K,e K e dr

9 ‘01(t ' t:0)/¢ 1ft 'al(t ’ T)/‘ or 'a1(tf ' 7)/€

to

t -a(t - r)/8

if x,«. 1 c,dr+

t0

C, t -al(t - r)/8 o

-;- K,e ]|x(r) - x (1)” dr

to
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, -a,(t - co)/¢ K1K” -a.,(1:f - t)/8 -a,(t - c,)/e «1,0;f - toy.
- K e 'I" T(e - e e )

8K,C, -a1(t - to)/£

+ 1 - e ) +

a,

01 ‘ -a,(t - r)/e o (4 48)
T Kle “x(r) - X (1)“d‘r '

t0

whereIIA,u+ C, 5 C3

 

o ‘al(t ' to)/€ -01(tf ' t)/C

[[¢(t)II-||2(t) ' Z (t)“ s C,€ + Kee + K7e

C K t -a (t - r)/8 0

+ 1 1J{. e 1 I|x(T) - x (T)” d? for all t 6 [to, T]

8 to

(4.49)

We also have

  I'll“r“> + “W” 

l|u(t) - u°(t)“ - uo(t) + uF(t) + ub(t) - u°(t)

Sllur<t>ll+llnb<t>ll

- "K(x. t)(zm - z°(t»|| +||ubm||

s|]1<(x, t)””z(t) - 20(8)" +"ub(t)" (4.50)

Upon substituting (4.49) into (4.50), we obtain
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'0 (t - t )/8 - (t - t

|]u(t) - uo(t)“ 5 C38 + Kse 1 o + K,e a, f )/6

C t a (t r)/8 '- ' o

+ 7—5] e 1 "x(r) - X (0” of (41-51)

to

for all t 8 [to. T]

Now, let

H(t) - x(t) - x°(t)
(4.52)

using (4.35s) and (4.3a), we have

a - 1 - 1° - f(x, 2, u, 8, t) - f(xo, so, uo, 0, t) 9 5f (4.53)

Integrating both sides of (4.53) yields

1:
t

[.§.}Lfl .. ”(c) - ”(to) -.[C 6f(r)dr (4-54)

to o

o

Noting that u(to) - x(to) - X (to) - 0. equation (4.54) yields

1:

#(t) -I 6f(r)dr

(4.55)

t
o

The Lipschitz property of f in all its arguments and the boundedness of

the solution for t 8 [to, T] implies

C

|l#(t)" SUI; (Cv|lfi(r)“ + C.|I¢(r)[|+ C,|]u(r) - “0(7)" + c10¢)d,

0

(4.56)
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Substituting (4.49) and (4.51) into (4.56), we obtain

t CH t ' -a,(r - a)/8

||p(t)lls 0,}I “p(r)|]dr + -;—:/P e ”u(a)” dadr

to to to

t -a,(r - to)/€ t -a,(tf - r)/8

+ 012 e . dr + C,, e dr + C146

tto o

(4.57)

The second term on the right-hand side of (4.57) can be written as

0,, ‘t f -a,(r - a)/8

-——- (e llu<a>H da)dr -

t to to

t t

f f ‘01“ ‘ 0)/6

e , dr H140)” d0 '

1-0a -to 1'

C

 

1

t

Ci: t 'a1(t ' 0)/¢

1: t <1 ‘ e >Ilu<a>uda s
0

‘a:' ||“(°)||d” (4.58)
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The third and forth terms on the right-hand side of (4.57) satisfy the

inequalities, respectively,

 

t -a,(r - to)/8

C12 e dr 5 8C,,/a1 (4.59)

to
‘

‘ -a=,<cf - n/e

c,

Substituting (4.58)-(4.60) back into (4.57), we obtain i

 

t C11 t c12 261s

llfl<t>l| S 07 ”4(1)” or + T ]|p(a)]]da +e(c,, + -;— + a )
t 1 t0 1 1

O

t

- C158 + C,:/‘ l]p(r)” dr (4.61)

to

In equation (4.61), C158, C1,, are nonnegative constants and

||p(r)” is a nonnegative valued continuous function. By Bellman-

Gronwall inequality we obtain

t
o .

“(Kt)“ -]|x(t) ' x (CHI 5 Cis‘exPj and”

to

C10(t - to)

-0158e S 011‘ (4.62)

substituting (4.62) back into (4.49), yields
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o '01(t - to)/€ -a,(tf - t)/8

||¢(t)H -]|z(t) - z (c)|| s 0,. + Koe + x73 1

C K It -a (t - 1) 8

1 ‘f e 1 / C178dr

t

 

6

0

-a1(t - to)/8 -a,(tf - t)/8

- C46 + Kse + K7e +

__ [1 - e 1 (4.63)
“1

Rewrite (4.63) as

o -a,(t - to)/€ -a,(tf - t)/8

ll¢(t)H -||Z(t) - z (t)||s C186 + Kae + K76 ,

for all t 8 [to, T], (4.64)

Similarly, substitution of (4.62) into (4.51), yields

0 -a,(t - t°)/8 -a,(tf - t)/8

Ilu<t> - .. <t)||sc..c+ x3. + K.e

for all t e [80, T], (4.65)

Now, let us show that X, 2, u, are bounded by r. We writellxll as

o o o 010(t ' to)

||x|| s||x ]l +]|x - x I] s K, + 8 C,5e (4-65)
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0

where X is the reduced solution which is bounded by some constant,

0 I *

say K,. For any r > K3, and t1 6 [to, T] there exist 8 > 0 such that

* . '

every 8 < 8 ,[IXJIS r, for'every t e [t0, t,]. For example, for r - 2 K3,

* * v

8 can be taken as 8 - K3/C15exp(C15(t1 - to)). Similarly, z and u

are bounded by r.

From the above discussions we see that r can be chosen large enough

such that for sufficiently small 8 the trajectory does not leave the

compact set S for t 8 [to, tf]. This implies that T - tf.

From equation (4.62), we have proved that the slow variable x

satisfies

0 .

IIX(t) - x (t)|| 5 K16 - 0(8) , for all t 8 [80, cf] (4 57)

This implies that

H x(tf) - x°(8f)]]- 0(8) (4.68.)

where x°(tf) - xf

Now, let us rewrite (4.35b) as

8z(t) - a (X, 8, t) + B (x, 8, t)uo(t) - B (x, 8, t)K(x, t)zo(t) +

8g,(x, z, u, 8, t) + (A (x, 8, t) + B (x, 8, t)K(X, t))z(t) +

B.(X, 8, t)ub(t) (4.69)
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The transition matrix of (4.69) can be written as (see Kokotovic, Khalil

and O'Reilly [19], page 230)

¢<to') _ eH(X(t))(t - T)/€ + €¢1(t’ r) (4 70)

where ]|¢(t, r)]] 5 Ke-a(t ' T)/8

Hence,

I:

if f H(X(tf))(tf " f)/6

t

z(tf) - 0(tf, to)z(to) + e e g,(r)dr +

O

t 11 t ))(t - TV‘
If fe (X( f f B (x(r), 8, r)ub(r)dr +

t

6

0

Cf cf

f V’Mtf. T)g,(r)dr + f ¢1(tf1 ’93 (x(T). 6. 7)ub(r)dr

C

Co o

(4.71)

where

o o

g, - a + B u - B K: + 8g1 - g,(x, z, u, 8, t)

(4.72)

H-A. +Bl<

and

§(tfn to)z(to) ' 0(5)

‘8

.l. ¢,(tf, r)g,(r)dr - 0(8) (4.73)

to

I:

€V1(tf. T)B (3(7). 6. T)ub(r)df - 0(6)

f.
O
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Equation (4.71) can be rewritten as

z(tf) - 0(6) + T

C

If f H(x(tf))(tf - r)/8

e g2(tf)dr '2'

t
O

C

1 f H(X(tf))(tf ' T)/6

T e [82(7) ‘ 82(tf)]d' 'I'

t
0

t

]_ r feH(X(tf))(tf - T)/6

8 to
32(x(tf). 6. t)u.b(r)dr +

Lftfemxufnaf - f)/€

t
O

[8,[(x(r), 8, c) - B,(x(tf), 8, t)]ub(r)df (,_74)

The norm of the third term on the right-hand side of (4.74) can be

written as

 

  

   

1 ts H(x(tf))(tf - 1')/8

T e (32(7) - 82(tf))d S

to

tf H<x(cf))<tf - r)/e
.l:/’ [e ]l82(7) ' 82(tf)||d1 (4-75)
6 to

We want to show that g, is Lipschitzian in "t" with constant independent

of "8". Let us rewrite g, as
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o

82 ' a (X. t. 6) + B (X. t. €)Uo(t) - B (x, t, 8)K(x, t)z (t) +

(31(x, 2, u, 8, t) (4.76)

since x, z, and u are sufficiently smooth and differentiable,

we have

I

|[x(8,) - x(8,)|| s K ”t, - c,”

]|z(c,) - 2m)“ 51"” c, - 8,” (4.77)

E

“w won a)?” =2 - mu

With. 04.77), the first term on the right-hand side

of (4.76) is Lipschitzian in "t" with constant independent of "8”,

which is

lla (x(tz). t2. 8) - a (x(t1). t,, 8)” s d,||x(t,) - x(tIHIT

dsllts ’ t1”

- K1||t=2 - t1“ (4.78)

Similarly, the second and third terms on the right-hand side of (4.76)

are Lipschian in "t" with constant independent of "8”. The g, in the

fourth term can be written as
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Il81<x(t.). z(tg). u(cz). ., c2) - g,(x<c,), z(c,), u(tl), ., t1)"<

d,]]X(8,) - x(8,)||+ d.]]2<c2) - 2(t,)]|+ d,|]u(8,) - u(8,)|| +

.,,

 

t, - t1”

Substituting (4.77) into (4.79), we obtain

l|81(x(t2). z(tz). u(tz). 8, t2) - 81(x(t,), 2(81), u(81), 8, 814|<

L

8

 

 |c.-t.||

(4.79)

(4.80)

Hence, 8g1 is also Lipschitzian in "t" with constant independent of "8".

This shows that g, is Lipschitzian in "t" with constant independent

of "8". Equation (4.75) can now be written as

   

 

I:

f H(XUZ ))(t ' T)/6

1] . f f (g...) - 8.85).). s
to

‘8 H(x(t ))(t - r)/
.L 8 f f 6 (Cf - T) (If

. .0 u n

t
if fKe‘a(tf ’ T)/€ (cf - f)df

t

tf -a(tf - r)/€

ILKe ((t - f)/e)dr

t f
0
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(tf‘to)/€

-f KLe-a'\AdA - 0(8) (4.81)

0

Similarly, the fifth term on the right-hand side of (4.74) can also be

shown to be O(€)- Equation (4.74) now become

1 cf H(X(tf))(tf - r)/e '
z(tf) ' 0(5) + -;- e g,(tf)dr +

t
O

E

1 “8 H<x<tf))<cf - r>/e

e B (x(tf))ub(r)dr

t
O

H(x(tf))(tf " t0)/6 -1
- 0(8) - [I - e ]H (x(tf))g2(tf) + 2f - 2°(tf)

(4.82)

Rewrite (4.82) as

-1

z(cf> - 0(8) - H (x(tf))[a (x(tf>> + B <x<cf>>u°<cf> + A (X(cf>)z°<cf) +

-1

eg.<cf)1 + H <x<cf>)tA <x<cf>) + B (x(cf)>x<cf>lz°<cf) + zf -

z(tf) - 0(8) + 20(tf) + zf - 20(tf) - zf + 0(8) (4.83)

Hence

  

z(tf) - 2f H - 0(8) (4.84)
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The cost function of this nonlinear system is recalled as

t

f

J —I [V,(x, 8, t) + zTV,(x, 8, t)Z+ uTR(X, 8, t)u]dt

to

tf ‘

-f L(X, 2, u, 8, t)dt (4.85)

to

and

cf
0 o o 0

J -I L(X , z , u, 0, t)dt (4.86)

to

s1nce||x||s r,||z]|s r,]]u|]s r, the Lipschitz property of L implies

||L(x, z, u) - 1(30, 2°, u)" s K(I]X(r) - xo(r)” +]|u(r) - u°(r)” +

||z(r) - z°(r)|| (4.87)

Therefore,

tf

||J(uc) - J(u°)” s ||L(x, z, u) - L(x°, 2°, u°)]]dr

to

t

f o o

Sf K([I3(t) - X (t)||+||u(t) - u (t)||+

t0

||z(r) - 20(t)” )dt (4.88)

After substituting (4.62), (4.64) and (4.65) into (4.88), we obtain

0 tf -a,(t - to)/8 -a,(tf - t)/8

“ J(uc) - J(u )“ 5 (K38 + K,e + K109 )dt

to

- o(,) (4.89)

which proves the theorem.
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IV.4 NUMERICAL EXAMPLES

In order to demonstrate the performance of the composite control,

two numerical examples are presented in this seetion, one of them is an

interception. problem in.the horizontal plane treated in Visser and

 

Shinar [31] , the other one is a linear example. r

Example 4.1

Consider an interception problem in the horizontal plane; the nonlinear

equations of motion are (see [31]) E

—d-R— - V cos». - V smn - x) R(t ) - R a(r ) - R (4 908)
dt E P ’ ° °’ f f '

d 1

7,4,7:— - - Ttvgsmv - vpsmn - x)] . 10:.) - 1.. (4.901»

d

871%— - u , x(to) - xo (4.906)

In Fig.4.l the geometry of the pursuit is depicted, where R is range

between the two airplanes, VB and VP the target and pursuer velocity

respectively.

 
 

 
FIG.4.1 Interception geometry in the horizontal plane
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The actual rate of turn of the pursuer is controlled by -l$usl. Capture

is determined by

R(tf) - Rf , tf < w ' (4.91)

The objective of the pursuer is to minimize a performance index

‘8
2

J -I (1 + pu )dt (4.92)

t
0

It is important to notice that in [31] the constraint: on the control u

is taken care of by a penalization term in equation (4.92), e.g., it

was not explicity considered in solving the optimal control problem.

The composite control is derived below.

Ihg_;ggug§g_§gn§121: The reduced problem is obtained by setting 8 - 0

in (4.90c), which yields

0

u - o , implies [o 1] X - o (4.93)

which is not a standard singularly perturbed form, but satisfies

Assumption 4.2. Hence, there is a constant permutation matrix P such

        

that q _ q i .

7 7 o o

0 1 0 l x u

[o 1] - [1 0] (4.94)

O 0

b1 0.1 _1 0] Lu . L x

W:The boundary-layer System is

obtained by (left boundary-layer)
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‘73? _ u
(4.95)

the boundary-layer stabilizing control is given taken as

uF- -K(x - x0) , K > 0 (4.96)

where K is chosen properly in order to satisfy the constraint -1Susl.

In this example, the final time tf and the terminal conditions

of X(tf) are not specified. Hence, we do not need right boundary-layer

0

control ub to steer x(t) from x (t) to the desired state xf. The

composite control is taken as

o o

uc - u + uF.- - K(x - x ) , K > 0 (4.97)

The boundary conditions and fixed parameters are summarized in

Table 4.1 [31]

 

Initial flight path angle 10 - 40

Initial azimuth angle x0 - -450

Initial normalized range R, - 1.0

Final normalized range Rf - .1333

Speed ratio Vs/Vs - .6

Performance index weighting

parameter p - 2

 

Table 4.1 Boundary conditions and parameters for Example 4.1
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Figs.4.2 - 4.3 show the range R, the flight path angle 1 and

azimuth angle x time histories for a value of 8 - .1 when the

composite control (4.97) is applied to the system (4.90).

This shows that the capture time tf obtained by using the composite

control is t - 2.13 which is very close to the exact solution
f

tf - 1.942, ($88 [31]). The composite control uc time histories

is also shown in Fig.4.4. Table 4.2 summarized some numerical results

for several values of 8.

N
A
N
G
(
(
N
O
N
N
A
L
I
I
E
D
I

 
  

TINEINORNALIZEOI

Fig.4.2 Range time histories (with composite control)

for a value of 8 - .1
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A
N
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L
E
.

r
e
d
i
s
n

 
  _‘ .0 1 1 1 1 1

0.0 0.5 1.0 1.5 2.0 2.5

TIHE(NORNALIZED)

Fig.4.3 Azimuth angle and flight path angle time histories

(with composite control) for a value of 8 - .l

 

 

 

  

‘ ucx-x(x-x°). p.89

0.0 -

-0.5'

-' .o 1 1 l 4 l

0.0 0.5 1.0 1.5 2.0 2.5

TIN£(NORNALIZEO)

Fig.4.4 Composite control time histories
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and n J

, with with t sol with

composite contra! ”a“ 501. callous“! “"1"“ ' census control 5"" sol.

.10 -.085 .8323 2.130 1.9.; 2.053 2.082

.15 -.885 .8883 2.135 1,” 2.158 2.106

~20 -.885 .8596 2.200 2.033 2.205 2-255 .'

-25 -.885 .8738 2.230 2,077 2.395 2.388

-30 -.885 .8880 2.280 2.121 2.528 2.889

.35 -385 .8965 2.366 2"“ 2.654 2.6"

.80 .335 .9078 2.378 2.2" 2.805 2.707

.85 -.885 .9190 2.885 2.2.. 3.038 2.808

.50 -.885 .9320 2.890 2.2,. 3.158 3.033

 

 
Table 4.2 Comparision of exact and composite control

solutions

Example 4.2

Consider the linear system

2 - z (4.98a)

8z - -x.+ z + u (4.98b)

which is a special case of (4.1) with A,;Il (not Hurwitz). It is desired

to steer the state from x(O) - z(O) - 0 to x(l) - 1, 2(1) - 0.

Ihg_zgdg§gg_§9n;;glz The reduced control problem is defined by

a} .. x - u , x°(0) - o, x°(1)- 1 (4.99)
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and the reduced control is given by

u°(t) - -.3l3e(1 ' t) (4.100)

0 -

u - -K(z - z ) - -K(Z - .157e( t + 1) - .157e(t + 1)) , x > o
F

(4.101)

0

where z is obtained from reduced solution

Bishtshssndarx;laxsr_ssntrsl= The right boundary-layer model is given

by

dz 0 0 0 0 .

.33. - -x + z + u - -x + z + [u - K(z - z ) + ub] (4-102)

Defining zb - z - 20, we obtain

dzb
.

V - (1 - K)Zb + ub (4-103)

By using the minimum energy control (see(4.23))and the controllability

Grammian W (see(4.28)),the right boundary-layer control ub is given by

ub - 8‘t ' 1)/‘ w‘1[zf - zo(tf)] - B(t ' 1)/‘ 2(0 - 1.317)

- -2.634e(t ' 1)/‘ (4.104)

The composite control is taken as
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° (1 - t)_ _ _ (-t + 1) _ (t + 1) _
uc u + uF + ub .3l3e e )- K(z - .157e

2.634e(t ' 1)/‘ (4.105)

Application of the control (4.105) to the system brings

(x(t), z(t)) to within 0(8) from the target point (1, 0), for

sufficiently small 8. To get a better feeling for the deviation from

the target point we calculate (x(l), 2(1)) for 8 - .1, .05, and .01

(see Table 4.3). Fig.4.5 shows the trajectory of x(t) and z(t) for a

value of 8 - .01. The results confirm that the final point is within

an 0(8) neighborhood of the target. If 10 % error is tolerable, then

8 - .05 is small enough for the control to be successful. If 2 8 error

is tolerable then 8 - .01 is small enough. The results also show that

in this example, for 8 - .1 the error might not be tolerable.

   

U 8-.JIJEINI-U-KU-
.ISIEXH-IOI)-.l‘

37ilpll'l1]

-2.636EIP((t-I)/8
) , K-Z, 0‘.0I

1.0 1-

'

l

0.5 »

I

o o
l

‘l
1

L
A

0.0 0.2 0.8 0.8 0.8 1,0

11‘

Fig.4.5 State trajectory (with composite control) for

a value of 8 - .01
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8=.l 8 =.os 8 8.0]

x(l) .7500 .9120 _ .9730

2(1) .1520 .0200 .0036

 

Table 4.3 The target point (x(l), z(l)) for 8 - .1,

.05 and .01

 



V. APPLICATION OF THE COMPOSITE CONTROL TO MANEUVERS IN A

VERTICAL PLANE
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In this chapter, we apply the composite control strategy to the

optimal maneuvers of an aircraft in a vertical plane. The system model

will be represented in the singularly perturbed form (4.1) of Chapter IV

via a change of variables and state feedback. One of the examples of

interest is the minimum time-to-climb problem which is treated in

Section III.1.2.

v.1 COMPOSITE CONTROL

The equations of motion for flight in a vertical plane are given by

(see (2.44) of Chapter II or (3.12) of Chapter III)

2 2

“3%“ - %[1(a, V). - g—pv s(CDo(V) + u(vmhww >1

- f(E. V, 1. a, 6. t) (5.13)

2 2

. d: - 735-1102. V) - é—pv s<cD°m + a(vwhwm >1 -831N1

- -851N1 + 681(3. V. 1. a. e. t) (5.1b)

(% - fistcmwm - {—0051 (5.18)

A control a(t) is sought to steer the state E(to) - E0, V(to) - V0,

1(to) - 10 to a terminal state B(tf) - Ef, V(tf) - Vf, 1(tf) - 1f;

while minimizing the cost functional
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t

J - I;f [(E, V, 1, a, e, t)dt (5.2)

The model (5.1) is in the singularly perturbed form but it is not in the

form (4.1) of Chapter IV since (5.1b) and (5.1c) are nonlinear in the

fast variables V and 1. Our first task is to use state transformations

and feedback to bring the model (5.1) into the form (4.1). In other words

we want to linearize the boundary-layer system. We introduce the new

variable

Z - -gSIN1

instead of the variable 1. Taking the derivative of Z, we obtain

62 - '8C081 . 61

substitution of (5.1c) into (5.4) yields

2 2

' 2

£2 - - -§— 1%- stCIa(V)COS‘7 . a + .5. cos 1

Furthermore, assuming that C081 . cha(v) >0. ‘we set

1

2

2 {-5- C0821 - u]

gi- fi-stcmwmos’y

a(t) -

After substituting (5.6) back into (5.1a), (5.1b) and (5.5), the

system (5.1) becomes

(5.3)

(5.h)

(5.5)

(5.6)
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{‘13:— - 7‘3”“. v> - -1fpv2s[cDO<V) + a(V)Ch(V) -a2]}

- f(E, V, 2, u, 6, t) (573)

e d: - EVE-{T(E, V) - -]2'-pV25[CDO(V) + n(V)CLa(V). a2], + z

- z + eg,(s, v, z, u, e, c) (5.7b)

e—g-EZ- - u (5.7c)

 
which is of the form (4.1) and

t

J - Icing, v, z, u, e, t)dt (5.8)

We suppose that the cost (5.2) is such that (5.8) is of the form (4.2),

i.e., quadratic in V, Z and u. The composite control can now be derived

as in Chapter IV.

Ihg_zg§u§gg_§2n§zglz The reduced problem is given by

0 o o

E - f(E , V , O, O, O, t) (5.9a)

o

O - Z (5.9b)

o

O - u (5.9c)

o o

with boundary conditions E (to) - £0, E (tf) - Ef and

o t o o

J -Itf1(r~: , v , o, o, o, t)dt (5.10)

0
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The algebraic equations (5.9b) and (5.9c) can be written as

_ 1 P -

      

o f q

0 1 0 V 0

o .

z _ (5.11)

0 0 l o O

which is not a standard singularly perturbed form since (5.11) does not

0 a

have a unique root in z and V, but it satisfies Assumption 4.2. Hence,

there is a constant permutation matrix P such that

        

II F. I.0-

Po 1 0 r0 0 17 o o 1.1 v

0

o 1 o o 1 o z -

0

_o o 1._1 o 0‘ _1 o 0__u‘

_ __.o.

o 1 o u

0

z -o (5.12)

1 o 0 °
1.. —Lv.    

o

This permutation has the meaning of using the velocity V as the control

variable in the reduced problem.

W:The left boundary-layer System is

£613— -z-c;1 (5.13a)

—§E ' “r ' “2
(5.1313)
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The Jacobian matrix of (5.13) is

  
 

 

ac1 ac1 ‘1 ' 1 '—

‘5V' ‘52‘ o
J _ - (5.14)

ac ac o o
2 2 L _

'5V' az 53
L _ _ 

whose characteristic equation is

s _ o (5.15)

 
The two roots are zero, so, this system does not satisfies the

requirement ReA(J)<O. In order to stabilize the boundary-layer, uF.is

chosen as

0

u - -b1(V - v ) - b22 , b1>0, b2>0 (5.16)
F

o

This control is not active on the slow manifold (e.g., at V - V and

1 - 0).

Ihg 11gb; boundary-layer control: The right boundary-layer system is

given by

____ _ z (5.17a)

dz b °
‘33’ - . 1(v - v ) - b22 + ub (5 17b)

where ub is only effective during the right boundary-layer. Equation

~ 0

(5.17) can be rewritten by setting V - V - V as
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of:
‘5- '- Z (5.18a)

.31.} — 1,17 - 5,2 + ub (5.1%)

The right boundary-layer problem is to move V and 2 from V - 0, Z - O

_ o 0

at a - -A/e to V - Vf - V (cf), 2 - Zf - Z (tf) - Zf at a - O. The

solution of this steering control 11b is

H(t: - t)/¢ 2 o
T f -

u'b .. B (e )TW 10”) [Li] - [Vo(tf)] ] (5.19)

where H - [421 422] . B - [2]. and $10») .fenBBeT(“1)de

0

The composite control ac(t) is taken as

2

a - 2 1 {-5—Cosz‘y - (1.10 + uF + ub)] (5.20)

‘Efi'stcm(V)COS-y

0

After substituting u - O, uF.and ub into (5.20), the composite

control ac is rewritten as

 

2
“(C - t)

ac - 2 1 {'é'cosz7 + b1(V ' V0) + bzz - BT(e f /‘)P

fq-stCmeosy

W'l 2f 00

(o)[ vf - V (tf) ]}
(5.21)
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v.2 APPLICATION OF THE COMPOSITE CONTROL TO THE MINIMUM TIME-TO-CLIMB

PROBLEM

One of the interesting problems of optimal maneuvers of an aircraft

in a vertical plane is the minimum time-to-climb (MTC) problem. This

problem has been extensively studied in the literature because of the

obvious interest in performance and climbing techniques of modern

fighter aircrafts . For example, Bryson, Desai and Hoffman [16]

used energy-state approximation in performance optimization of

supersonic aircraft. Kelley [45] proposed optimum zoom climb techniques

in 1959. and Kelley'and.Ede1baum [1] proposed energy climb, energy turn

and asymptotic expansion in 1970- Ardema [4] solved the minimum

time-to-climb problem by singular perturbations and matched asymptotic

expansions.

In this section, we apply the composite control ac,which has been

obtained in the previous section,to this specific maneuver problem in a

vertical plane. In order to illustrate the solution, two numerical

examples are now considered. The first example is ”airplane 2" of [16]

which is the same model treated in Section III.1.2. The second example

is "airplane l” which is also considered in [16]. The model is given

by the nonlinear singularly perturbed system equation (5.1).
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Example 5.1

Given the nonlinear singularly perturbed system equation. (5.1) for

”airplane 2", and all the areodynamic parameters data are given in [16]

it is desired to steer the state of the system from the initial state

0

E(t°) - 1500000 , V(to) - .5 Mach and 1(to) - O to the final state

B(tf) - 5000000 . V(tf) - 2.00 Mach and 7(tf) - free, while

minimizing tf

It is important to mention here again that for this minimum time-

to-climb problem, tf is unknown (to be determined). In order to obtain

the right boundary-layer control ub (see equation (5.17)), we need to

estimate tf apriori. This problem can be circumvented by solving (i.e.,

integrating) the right boundary-layer solution in reverse direction

off-line until it matches the slow manifold, then tf can be determined.

In this particular example tf - 170sec-

The composite control ac is applied to the system equation (5.22),

and the resulting energy E, Velocity V, flight path angle 1 and flight

trajectory (path) are shown in Figs.5.l-5.4, respectively. In Fig.5.2,

it is seen that this composite control steers the state of the aircraft

to a final stste (2.06 Mach and altitude 79733 FT) which is about 3%

error relative to the given final velocity (2.00 Mach), and about .333%

error relative to the given final altitude (80000 PT). The total error

is about 3.333% which is O(¢) close to the desired state. The comparison

of the composite control do with the approximate control “app which is

obtained by off-line singular perturbation approximation of the optimal

trajectories (see Section III.1.1) is also shown in Fig.5.5.
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Fig.5.3 Flight path angle time history for

airplane 2 with composite control
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Fig.5.4 Flight trajectory for airplane 2 with

composite control
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Fig.5.5 Comparison of the approximate control and

composite control

In order to demonstrate the composite control strategy, we choose

twelve different boundary conditions (the values are chosen such that

no saturation occurs), and we use the same airplane 2 as an example. The

simulation results are summarized in Table 5.1, which shows that this

composite control indeed steers the system from the initial state to a

final state which is 0(a) close to the desired final state.
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case INITIAL POINT TERMINAL POINT FINAL POINT canon c

( L) (gig)

h—azooorr h-lOOOOOFT h-99590FT h-.41§

1 v-.5u v-2.au v-2.ssu V-6.7. 19o

h-azooorr h-eoooorr h-aoazzrr h-1.37I

2 V-.5M v-1.ou v-1.osan v—5.a. 103

h-60000FT h-BOOOOFT h-79100FT h-1.125i

3 v-1.ou V-2.0M V-2.11M V-5.5‘ 145

- - -53 000 -

h-SOOOOFT h-IOOOOOFT h-100876PT h-.876t

a v-2.on v-2.4N v-2.a1zn v.5. Ioo

h—azooorr h-80000 h-79733FT h-.333t

5 v-.5n v-2.on v-2.osu v-31 170

h-6000OFT h-lOOOOOFT h-99950FT h—.05.

6 v-1.ou v-2.au v-2.asn V-2.5§ 160

h-lOOOOOPT h-azooorr h-aaooorr h-2.38!

7 v-2.an V-.5H v-.53u v-a. 185

h-80000PT h-azooorr h—a1eoorr h-.68t

a v-2.on V-.5M v-.5zn via. 160

h-GOOOOFT h-azooorr h-hl700PT h-.71!

9 v-1.on v-.5u V-.528H v-5.s. 9s

2

h-IOOOOOFT h-60000PT h-599OOFT h-.l7§

1o v-2.au v.1.on v.1.osu v-e. Isa

h-aoooorrr h-aoooorr h-61aoorr h-2.33§

11 v-2.on v.1.on V-1.05H v-s. 140

h-lOOOOOFT n-aoooorr h-SOIOOFT h-.1250

12 v-2.au v-2.ou 1 v-2.15n a v-7.5. 39

2

Table 5.1 The simulation results of minimum time-

to-climb with composite control for

airplane 2 under various boundary

conditions

A characteristic phenomenon of singularly perturbed systems is

that, in general, the reduced solution does not satisfy all boundary

conditions. It satisfies only a projection of the boundary conditions

on the slow manifold, i.e., boundary conditions on the slow variables.

Changes in boundary conditions of the fast variables that do not change

the boundary conditions of the slow variables will not effect the

reduced solution. In order to demonstrate this phenomenon, let us take
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cases 5 and 8 as examples. First, we keep the same initial conditions

and change the terminal conditions of the fast variables to Vf - 2.65

Mach and hf - 20000 FT in Case 5. Second, we change the initial

conditions of the fast variables to V0 - 2.65 Mach and ho - 20000 FT

and keep the same terminal conditions as in Case 8. In both cases the

boundary conditions on energy are unaltered. Simulation results are P

shown in Fig.5.6 and Fig.5.7, respectively. The results show

different behaviors of boundary-layers but the slow manifolds remain
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Fig.5.6 Flight trajectory of Case 5 under modified

version (change terminal boundary conditions)

for airplane 2 with composite control
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MODIFIED VERSION (CHANGE INIIIAL CONDITIONS)
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Fig.5.7 Flight trajectory of Case 8 under modified

version (change initial boundary conditions)

for airplane 2 with composite control

Example 5.2

Consider the same nonlinear singularly perturbed system (5.1) for

"airplane 1". It is desired to steer the state of the system from

V(to) - .38 Mach, E(to) - 89921 secz, h(to) - 0, 7(to) - O

to the final state Vth) - 1.00 Mach, E(tf) - 2576000 secz,

h(tf) - 65600 FT, 1(tf) - free, whilezminimizing tf. This example

is different from the previous one in two aspects. First, the path

for "airplane l" exhibits a discontinuity in velocity (a zoom dive),

which is not present in "airplane 2" . Second, for this take off

example, it is necessary to consider the constraint
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v s (2191/2 (5.23)

where V s (21:)1/2 insures h z 0. In general, we have to consider this

constraint all the time during the entire trajectory except when the

trajectory is far away from h - 0(586 previous example 5-1)-

The composite control ac is applied to this "airplane 1"

system equation (5.1) and all the aerodynamic parameters data are given

in [16]. The resulting flight path trajectory is shown in Fig.5.8. It

is seen that this composite control steers the state of the aircraft

to a final state (1.03 Mach and altitude 63177 FT) which is about 3%

error relative to the given final velocity (1.00 Mach), and about 3.7%

error relative to the given final altitude (65600 FT). The total error

is about 6.7% which is O(¢) close to the desired state. The time

estimate on this composite control path is 260 sec from h - 0, V'- .38

plus. 40 sec dive and 55 sec zoom, the total time is 355 sec. Use of the

energy-state approximation (see [16]) gives the total time 377 sec. The

time computed by using steepest descent is 332 sec (see [16]). The

flight trajectory which was obtained by Bryson ,et a1. [16] “31118 33913)“

state approximation for this "airplane 1" exhibits a discontinuity in

velocity (a zoom dive) near Mach number 1, 1.2, 1.8 which may cause

considerable errors.
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VI . CONCLUS IONS
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In this thesis three topics related to nonlinear singularly

perturbed optimal control problems were discussed. The results of the

analysis were illustrated by the optimal maneuvers of an aircraft in‘a

vertical plane which is based on a minimum time intercept problem. The

contributions of the thesis are:

(l). A normalization scheme for the time-scale modeling of dynamic'

systems arising in flight mechanics has been proposed. This scheme is

based on the dynamic state equations and the normalizing reference data.

It is relatively easy to apply, and is an improvement over the ad hoc

methods currently in use. This scheme has been applied to a typical

class of aircraft flight dynamics problems. Numerical examples showed

that the time-scale separations as computed by this scheme generally

agree with previous practice and assumptions. V

(2). Application of singular perturbation techniques to trajectory

optimization problems in flight mechanics has been studied. It has

been demonstrated that for auto-pilot implementation, the open loop

control results in a boundary-layer instability. This instability

problem has been circumvented by using feedback stabilization schemes.

(3).. A composite control approach has been proposed to steer the

state of a singularly perturbed system from a given initial state to a

given final state, while minimizing a cost functional. Asymptotic

validity has been proved by showing that its application to the

singularly perturbed system results in a final state which is O(¢) close

to the desired stste and the cost under the composite control is 0(a)
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close to the optimal cost of the reduced control problem. Our analysis

does not involve asymptotic analysis of the full optimal control,

therefore our assumptions are weaker than earlier assumptions.

Application of the composite control strategy to maneuvers of an aircraft

in a vertical plane has also been discussed. The attractiveness of the

composite control approach has been demonstrated on the minimum time-to-

climb problem.

Further work should address the following points. First, the

multiple-time-scale modeling procedure of Chapter II should be validated

using real data of high-performance aircrafts.Second, for relatively

large value of e, the composite control will have to be corrected to

account for 0(a) terms that have been neglected throughout the

derivations. To account for O(¢) terms the slow and fast models will

have to be corrected by including higher-order terms and the effect of

boundary conditions will be corrected by including higher-order terms. -

Also the effect of the fast control on the slow subsystem will have to

be taken into consideration. Another possible extension of the results

of this thesis is the application the composite control strategy to

minimum fuel climb, minimum time turn and maximum range glide problems.

Until now it has been applied only to minimum time-to-climb problem.

These seem to be challenging problems and are left for future research.
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