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ABSTRACT

FREE PERIODIC VIBRATIONS OF CONTINUOUS SYSTEMS GOVERNED

BY COUPLED NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

BY

Tchuoc Wei Lee

A perturbation method for obtaining approximate solu—

tions of coupled nonlinear partial differential equations

is developed. The nonlinear partial differential equations

are first converted into a sequence of linear partial dif-

ferential equations, in which the zeroth order equation

corresponds to a homogeneous linear problem and can be

solved by the method of separation of variables. The

higher order equations correspond to inhomogeneous linear

problems and are solved by suitable eigenfunction expansions.

The method is applied to study the free periodic

vibrations of continuous systems such as beams, circular

membranes and circular plates with immovable boundary sup—

ports. One essential feature of all these governing equa-

tions of motion is that they incorporate effects of the

so-called second invariant of the middle surface strains

as well as that of the in-plane inertia. These effects are

usually neglected in more elementary nonlinear theories

(such as under the Berger's hypothesis) so that uncoupled
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equations of motion will result. More accurate explicit

solutions for the frequency—amplitude relations, the in-

plane as well as the out—of-plane displacements are ob—

tained.

Numerical results are obtained using a CDC 6500

digital computer. Comparisons and discussions of these

results with those previously obtained using more elementary

nonlinear continuum theories are presented.
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I. INTRODUCTION

1.1. Historical Background

Problems of finite deflection of continuous systems

lead to nonlinear partial differential equations. For ex-

ample, the governing equations of motion of an axisymmetric

circular plate executing large amplitude vibrations are a

pair of coupled nonlinear partial differential equations.

The interaction between the middle surface forces in the

plane of the plate and the out-of-plane deflection is a

main source of the nonlinearity in the system.

This type of nonlinear problem seems to be first

recognized in 1910. Von Karman [1] extended the small de—

flection plate equation, introduced by Lagrange in 1810, to

include the straining of the middle surface of the plate.

He obtained the well-known pair of nonlinear partial dif—

ferential equations now bearing his name for plates under

static loadings. The difficulties presented in obtaining

solutions to this pair of coupled nonlinear equations have

led to approximations proposed by many researchers.

In 1955, Berger [2] suggested the neglect of the strain

energy due to the second invariant of the middle surface

strains. He solved the static uncoupled nonlinear
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differential equations for the problem of circular plates

under various boundary conditions.

Since then, the Berger's hypothesis has been used by

many researchers to solve nonlinear static problems as well

as dynamic problems. Nash and Modeer [3] studied the non-

linear static problem of shallow shells. They also ex—

tended the Berger equations to non-linear vibrations of

plates. Sinha [4] investigated the static problem of uni-

formly loaded plates rested on elastic foundation. Wah [5]

solved the pair of uncoupled nonlinear equations of motion

for plates by a modified Galerkin method using a one term

approximation. Gajendar [6] followed the same method of

Wah and solved the problem of large vibrations of plates on

elastic foundations. Recently, Yen and Blotter [7] studied

free periodic vibrations of continuous systems governed by

nonlinear partial differential equations. Both the first

and second order approximations to the solutions of the

uncoupled nonlinear equations were obtained by a perturba-

tion method.*

The Berger's hypothesis in the dynamic case consists in

neglecting the strain energy due to the second invariant of

the middle surface strains as well as the in—plane inertia

of the system. Then the pair of nonlinear partial differ-

ential equations is uncoupled. Although it is fairly easy

to solve a single equation by the perturbation method or by

the Galerkin method, it should be pointed out that a satis-

factory justification of the Berger's hypothesis has not yet

been available in the literature.

*Many additional references on related works on beams, mem-

branes and plates may be found at the end of [7].
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1.2. Purpose of Investigation

To include the strain energy of the second strain in-

variant as well as the in—plane inertia effects in the

formulation of dynamic problems, it is necessary to solve

a pair of coupled nonlinear partial differential equations.

The purpose of this thesis is to develop a perturbation

method for solving this pair of coupled nonlinear partial

differential equations and to apply it to the study of free,

periodic vibrations of continuous systems, such as beam,

circular membrane, and circular plate, which are governed

by equations of the type mentioned above.

1.3. Organization of Report

In Chapter II, a method of solution of a pair of

coupled nonlinear partial differential equations is devel-

Oped in general terms. This may be regarded as an extension

of the work carried out recently by Yen and Blotter [7]

from single nonlinear partial differential equations to

coupled equations. A perturbation expansion is used to con-

vert the nonlinear partial differential equations into a

sequence of linear partial differential equations. The

zeroth order solution is that of the corresponding linear

problem and is well-known, or, say, can be obtained by the

method of separation of variables. The higher order re—

sults are solutions of the inhomogeneous linear problems

which are obtained by suitable eigenfunction expansions.
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The governing partial differential equations of motion

for the continuous systems studied here such as beam, cir-

cular membrane and circular plate are derived in Chapter III

using energy approach without the Berger's assumption. Both

first and second order approximations to frequency-amplitude

relations, longitudinal and transverse displacement are

then found by using the general expressions developed in

Chapter II.

Numerical results are obtained using a CDC 6500 digital

computer. It is found that usually the first few terms in

the eigenfunction expansions are sufficient to give satis—

factory results. These results are compared with those ob-

tained using Berger's approximation and are presented in

graphical form. Assessments and discussions of the results

are given in Chapter IV.

Chapter V contains the conclusions.
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II. METHOD OF ANALYSIS

2.1. Equations of Motion
 

Consider the free, undamped, large amplitude, periodic

motion of certain continuous systems governed by the follow—

ing pair of nondimensional coupled equations:

(i) an equation governing the out—of-plane or transverse

motion of the system

I?
"

L17] +1? 2 + 5 c1 M(n,y,w2,g) = 0 (2.1.1a)

T0
/

(ii) an equation governing the in—plane or longitudinal

motion of the system

52y
T2 + {3. fl N(T],y,(b2,s:) = O (2.1.1b) 

LzY + “3

0
/

Where n = n(C,r) and y = y(C,T) are the two dependent

functions of the independent variables C and T. Q is

the spatial variable which is assumed to be defined over

the domain from 0 to 1 and T is the time variable. w2

is a frequency parameter and e is a small parameter which

is introduced into the problem either naturally or arti-

ficially. The coefficients a and B are dependent upon

C. L1 and L2 are two linear differential operators with

respect to C of order 2m and Zn respectively. M and
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N are two nonlinear differential operators of order not

exceeding 2m and Zn reSpectively, and defined as

2m 2n

2 u llll°°° I u (Tu/h

MINIYMD .3) 3 f(T]IT]'IT] I°°"IT] IYIY :V :°°°°:Y' I

wfi.fi.?.e) (2.1.2)

Lm 3L
g(n’n‘n"’ oooo'n""00°ly’y“' 0000'y5"I.°°‘

N(n.y.w2.c)

(0231,13) (2.1.3)

where f and g are polynomials of finite degree in

q,n',n",....,y,y',y",....,w¢,fi,§,c. The primes here denote

partial differentiation with reSpect to C, and the dots

stand for partial derivatives with respect to T.

It will be assumed that the linear operators L1 and

L2 are self—adjoint for every T in the space of func—

tions defined by the homogeneous boundary conditions:

Diq(0,r) - 0 1 = 1,2 ...... k.

(2.1.4a)

Djn(1 T) = 0 j = k+1, ..... 2m

Six/(0,1) = o 1 = 1,2,.. ,k'

L (2.1.413)

Djy(1,’r) - 0 j = k'+1,. . , 2n .

where the D‘s and 5's are linear differential operators,

of order less than 2m and Zn respectively, with respect

to the spatial variable C.

The periodicity and initial conditions are chosen as





WIC T) = n(C.T+2W) (2.1.5a)

Y(C 1) - Y(C.T+27) (2.1.5b)

fiIC 0) = 0 (2.1.6a)

'(I: 0)= 0 (2.1.6b)

This means that the system has zero initial velocities and

periodic motions are initiated by releasing the system from

rest in an as yet unspecified initial configuration.

Setting 8 = 0 in (2.1.1), the pair of coupled, non-

linear equations become linearized as

2

O
/

 

W
LIT] "I‘ (Dz 5T2 = 0 (2.1.73)

52y

Lzy + 002 5—1"; = 0 (2.1.7b)

The corresponding linear solutions are easily found.

A method for solving the pair of coupled, nonlinear

equations (2.1.1) in the vicinity of a set of linear solu-

tions subject to the boundary conditions (2.1.4), periodic—

ity conditions (2.1.5), and the initial conditions (2.1.6)

will be presented in the next section.

2.2. Method of Solution

To solve the pair of coupled nonlinear partial differ—

ential equations (2.1.1) subject to the given boundary,

periodicity and initial conditions, the functions n and

y as well as w2 are expanded into power series in e

as
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“3 i

n(C.T) = 2 e n (2.2.1)
-_ 1

1-0 .

(c ) 02° 'V IT — H C y
i=0 1 (2.2.2)

00 '

w2 = z slufi (2.2.3)
- 1

1:0

These eXpansions are substituted into the pair of equations

(2.1.1a) and (2.1.1b). Upon expanding f and 9 about

n = no, y = yo, w2 = mg and 5 = 0 as Taylor's series and

collecting like powers of e, the following set of equations

results;

to: Llno + (r3310 = 0 (2.2.4a)

Lzyo + (”3&0 = 0 (2.2.4b)

:1. qul + agfil : -a€fio - a? (2.2.4c)

LzYi + “SN: ‘ ‘QENO ‘ 52 (2°2-4d)

..2 . __ 2.. 2 -

v . Liflz + @022 " ‘Ubno ‘ @221 ‘ aIUifn

+ If ,+ I’ u + ...+ f + 'f ,
WI W W: W Y1 Y 71 Y

M" 2- .. - .. -

+ f " +....+<n f + f“ + f.
Vi y 1 ma U1 W 71 V

+ E ] (2.2.4e)
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L272 + w5V2 = "$270 ‘ ¢g71 - SIn1§n

+ '— , + "f " +....+ ' + " ,
”lgn U1 W 7’19Y Y19y

+ n— .... 2- .. — .. -

V19y" + + wlng + Ulgfi + Ilgv

+ <38] (2.2.4f)

83: —————————————————————————————————————————

where the notations f, f , etc. mean that f, fn, etc.

are evaluated at (n0, n5, n3,...., yo, y5, y3,...., mg,

Clo: 70: 0)°

The set of equations can be solved recursively for the

unknowns ni, Yi’ and mi, i = 0,1,2,...., assuming that

”i and Vi individually satisfy the boundary conditions as

given in equations (2.1.4), the periodicity condition (2.1.5)

and the initial condition (2.1.6). As usual, for i = 0,

the first two equations of the set are homogeneous and are

just the equations of motion in the linear theory as given

by (2.1.7). For i 2.1, equations (2.2.4c), (2.2.4d),....

have same homogeneous parts as the first two equations but

with inhomogeneous terms consisting of the lower order co-

efficients in the expansions (2.2.1) through (2.2.3). An

essential feature of the perturbation method to be developed

here consists in an eigenfunction expansion procedure for

2
solving these inhomogeneous equations for ni, yi, and wi'

i.: 1.
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Let us first consider the homogeneous equations

(2.2.4a) and (2.2.4b). The equation for No can be

solved easily by the method of separation of variables.

It has periodic solutions of the form

20(C,T) = Alka(C)cos T (2.2.5)

(1% = a: (2.2.6)

k = 1,2,3, .........

where the constant A1 is a nondimensional amplitude

k

parameter. vk(C) and Qi are the k—th eigenfunction and

eigenvalue of the following problem:

2 _

lek " @ka - 0 (2 .2.7)

Din(0) - 0, 1 = 1,2, .,h (2.2.8)

Dij(1) = 0, j = h+1,....,2m (2.2.9)

The orthogonality condition for the set of eigenfunctions

Vk(C) is

r(c)vk(c)vp(c)dc = ékp (2 2 10)

c
g
“
:

where r(C) is some weighting function and okp the

Kronecker delta.

The equation for yo may have periodic solutions of

the form

VOICIT) = F£(C)cos T (2.2.11)

as: =A2£ . (2.2.12)
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where P2 is the E—th eigenfunction of the following

problem:

LZFE - AZFE = 0 (2.2.13)

Birg(o) = o, i = 1,2,....,h' (2.2.14)

fijrg(1) = 0, j = h'+1,....,2n (2.2.15)

and [\Z is the corresponding eigenvalue. The orthogonality

condition for the set of eigenfunctions F£(C) is

1

F F = 0 . .g s(c) )(c) q(:)dc ,q (2 2 16)

where s(§) is some weighting function and 5 the

IQ

Kronecker delta.

Now (2.2.6) determines the values of w2 With one of0.

these values for a%, the equation (2.2.4b) for yo will

in general have no nontrivial solution satisfying its

periodicity and boundary conditions unless [\Z = 9:. It is

assumed here that

/\2 ¢ 9: (2.2.17)

Therefore with the periodic solution (2.2.5) for no, one

has

VOICIT) s 0 (2.2.18)

This implies that the oscillations take place primarily in

the transverse direction of the system.

The inhomogeneous equations (2.2.4c), (2.2.4d),....,

yield the higher order terms that are demanded by nonlinear
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interactions with the zeroth order solution. For the equa—

tions for ”i (i 3.1), solutions are sought in the form

.- I (i) Aqi(C,.) 2 2 Amn Vn(C)cos mr (2.2.19,

m-o n-1 .

1 = 1,2,3,

where the coefficients of expansion Aéi) are as yet to be

i.e. there is no Vk(C)cos r in all ni for 1.: 1.

Similarly, for equations for Vi (i.: 1), solutions

are sought in the form

(C ) = C? 03 C(i)P (C)cos m (2 2 21)
vi ’T- m:o n:1 mn n T ° °

1 = 1,2,3,....

. . a o i u o

where the coeff1c1ents of expan51on Cén) are likeW1se yet

to be determined.

Now, to obtain the i-th order solution for mi and

mi, the procedure consists of substiuting the ni series

given in (2.2.19) into the 81 equation given in (2.2.4).

At this stage expressions for nj in terms of A£g), y.

3

in terms of ng) and w; are already known for j __i—1.

The orthogonality of both the spatial eigenfunctions and

Au)
trigonometric time functions is used to determine mn

and mi. The same procedure is then applied to determine

7. in terms of C(l).
1 mn



 

v
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In what follows, let us illustrate how to determine

the solution for ni, Vi and m: up to the second order

by equations (2.2.4). The process of solving subsequent

higher order equations can be carried as far as is desired,

but the results will not be presented.

Having determined mg, mg, and yo as given in equa—

tions (2.2 5), (2.2.6) and (2.2.18), one can calculate f

and g in equation (2.2.4c) and (2.2.4d). Substituting

q.(t,i) as given by (2.2.19) into (2.2.4c) yields

8 8

,(Q: - mZQ:)Aé;)Vn(C)Cos m1 =

‘7.

rub

I
I
M

(
I
N

C :
3

wiAlka(C)cos T - of (2.2.22)

1

To find w2 and A( I
1 mn

, multiply each side of the above

equation by r(C)Vq(C)cos pr and integrate between limits

0 to 1 with respect to C and between limits 0 and 2?

with reSpect to 1. Using the orthogonality conditions one

obtains the following equation:

2

of r(C)Vq(§)cos pr drdfi

c
u
fi
m

2 . 1 . 1 1

(Qq p S7kIqu ULfiAlkékqélp I I

(2.2.23)

Setting p = 1, q = k, one determines the first order

frequency—amplitude relation as follows:

2 1 (2? _

ml - WA f df r(§)Vk(Q)cos 1 d1 dc (2.2.24)

1k 00 .

 

For p = m (m being some fixed integer other than 1), and

q = n (n being some fixed integer other than k), equation
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(2.2.23) yields:

A(1I = 1 1 2W 3 ( ) ( I d d 2 2 2

m“ WIQE- mzflfi) I I a r C Vn 4 cos mT T C I ° . 5)
 

Thus the amplitude parameters Aég) are determined provided

._2_22
that an m 9k # 0.

Let us now turn to equation (2.2.4d). Upon substituting

V1(C T) as given by(2.2.21) into equation (2.2.4d), and

recalling that yo has only trivial solution, it follows

that

CD CD

a 2 2 1 _ _

mic r§.(fi‘n - mznk)c( )rn(c)cos mT - -8g (2.2.26)

Multiply both sides of the above equation by s(C)Pq(C)cos p1

and integrate between limits 0 and 1 for C and between

limits 0 and 2v for r. Making use of the orthogonality

conditions, one determines

c‘l) = - 1 I 7” as s(c)r (c)cos m. did:

m ”(Ag—magi) 0 o n (2.2.27)

 

>1 , . .

In the above expression, Cén) lS determined prOV1ded that

fit: — mZQ; # 0. Thus, the first order nonlinear correction

for the k-th linear mode is completely determined as

- C; 0; A(1)V (§)cos m (2 2 28)
W ‘ r . .

1 m=o n-1 mn n

m # 1, n # k

V1

"
8
1
8

u
t
4
8

0
A

rn(c)cos mT (2.2 29)
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The next or second order nonlinear correction for the

k-th linear mode shape and the corresponding frequency are

determined in a similar manner. The inhomogeneous terms on

the right hand side of equations (2.2.4e) and(2.2.4f) are

v, 2 2
found W1th the known no, we, yo, n1, ml, and Y1. Sub-

stituting n2(:,r) as given by (2.2.19) for i = 2 into

(2.2.4e) one obtains

00 a) 2 \2) 2Y s _ 2 2 = .
f : (9n m 9kmmn Vn(C)cos mt QgAlka(C)COS T

m—o n-l

oo 03 oo on

+ w: 2 Z p2A(1)V (C)cos pr — u[f Z Z A(1)V (C)cos p1

p=1 q=1 Pq q p=o q=1 Pq q

_ co co dv (c)
+ f , Z Z A(l)——%E—— cos pT

W p=o q=1 Pq

o) oo d2V (Q)

~ f H 2 2 .A(1) ___Q§__ cos pr + ..

.11 pzo qzl pq d:

00 o:

+ f 2 E C(1)P (C)cos pr

7 p30 q=_ Pq q

_ CD 00 (1) df‘ (C)

+ f , 2 Z Cpq —-%Z—— cos p7 +

y p.10") qzi.

2% E a; 0?. 2A(1') (2;).4. (D —- "
V COS T1 0J2 T] p21 q:1 p Pq q p

_ (I) (I) (1) _

- f- 2 2 pZC r (C)cos pT + f 1 (2.2.30)
y p=1 q;1 pq q 8

Multiplying (2.2.30) by r(C)V£(C)cos jr, integrating with

respect to C from 0 to 1 and T from 0 to 27, and

using the orthogonality properties one obtains



 



/ 2 _ 2 2 (2) = (1)
‘92 j Qijz szikékflé + U.) j jg

IIM' 00 00 I) I)- —- f [f E Z A V C cos pr

W 0 o W P=0 q=1 pq q

CD 00 A(1).__J1£EZ cos p1 +

W p:—o q=1qu dCZ

[
8
8

02411.)+ fy p=0 q=l pq Fq(§)cos pr

_ a) a) (1) d? (C)

+ f i E 2 C —_%C— cos p1 + .....

Y p=0 q— 1 Pq

(D 00

+ wzf 2 - f 2 Z p2A(1)V (C)cos pr

1 (D p=1 q- pq q

7 p“. q 1p pq q

+ ff] a r(§)VZ(C)cos jT d1 d: (2.2.31)

Setting j = 1, Z = k, and using the conditions of A(k) = 0

for i = 1, the second order frequency-amplitude relation is

f f [f 2 z A

0 O T] p20 q:1 pq vq

 

VIC)COS p?

00 oo d2V (C)
_ 1

+f,,z 2A()—-—‘L——cospT+ .........

p=o q-1 pq dC2



CDCI)

V 2 (1)
1 q:1p Cpq Fq(C)cos pr

+ fc]a r(C)Vk(C)cos T dr dc (2.2.32)

For j = m, and 2 = n, equation (2.2.31) yields

 

 

A(2) _ 2 12 2 [wim2A(1)]

mn (an-m 9k) mm

1 III" 00 m (1) ()[f 2 Z A V C cos pr

W(92~m20§) o o n p=o q=1 pq q

00 oo dV (C)

+ f , Z Z A(1) -—£%f—— cos pr

TI p=0 q=1 pg-

00 oo d2V (C)

+ f n Z Z A(1)———9;——-cos p1 + .........

CD 00

+ E. 2 2 C(1)P (§)cos pr

y p_o q_1 pq q

00 oo
2- 1‘

+ m f f 2 V 2 ( )

1 2 u p A V (C)cos p1
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- f CE 03 p2C(1)F (Q)cos p1

Y p=1 q=1 Pq q

_ m # 1

+ f‘]a r(§)v (§)cos mT deC, (2.2.33)

t q n # k

Similarly, substituting Y2(C,T) as given by (2.2.21)

into equation (2.2.4f) and using the results of (2.2.18),

it follows that

a) 00 2 2 2 (2)
2 Z (ftn - m 9kmmn P (C)cos mT

m=0 n=1

“0 00 (1)
= mi 2 Z pzc P (C)cos pT

p:1 q-zl pq q

- 0° 0° (1)
- B[g Z Z qu Vq(C)cos p1

+ g H 2 Z A 000000000

(I) 00 (1)

+ Q 2 E C P (C)cos pT

_ CD 00 (1) d? (C)

+ 9 . Z 2 C cos p1 + ........

p=o q=0 pq dc

+ wzéw? - g" é; 0; p2A(1)V (C)cos pT

’ 9y 2 Z pchq P (C)cos pT + gs] (2.2.34)

p=1 q=1 .

Multiplying the above equation by s(C)P£(§)cos jr, inte-

grating with respect to Q and T over the interval (0,1)
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and (0,2w), and using the orthogonality properties one

 

determines

2.

cl.) = naively]
('An"m 9k)

1 1 271' _ (I) (I) (1)

- Z Z A V

7T(.I\:'m2§2]2<) if of [gr] p=0 q=1 pq q(C)COS pT

 

_ 03 oo dv (C)

n pq dC
p=o q=1

0:) <1) d2V (C)

+ 5 M Z Z A(1)-—-Jl—-— cos p1 + .......

p=o q=1 pq dCZ

CD a) \
- 1;

+ g 2 2 C( 'F (§)cos pT

V p=o q=1 qp q

_ C0 00 df‘ (C)

+ g 2 2‘, (3(1) J—d COS p'r + .....

p=0 q=1 C

CD CD

2- - (1)
+ w, . - N Z Z 2A V s19 2 9n p=1 q=1P pq q(C)Co PT

g pZCé;)Fq(§)cos pT

+ §fi15 s(c)rn(g)cos m1 deg (2.2.35)

Thus the second order nonlinear correction for the k—th

linear mode is given by

0° 00 (2)
n2 = Z Z: Amn Vn(C)cos mT, m # 1, n # k (2.2.36)

m=o n=1

(I) (I) (2)

72 - Z Z: Cmn Pn(C)cos m1 (2-2-37)

m=o n=1

The complete solutions to the problem up to terms 52

can be written by adding the zeroth, first and second
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approximate solutions. The final results are explicit once

a knowledge of the spatial eigenfunctions of the associated

linear problem, along with the linear frequencies is avail-

able. Applications of the general results will be made to

problems involving structural elements such as beams,1myfiranes,

and plates in the next chapter.



 

.
4
.
:

.
l
r
‘
u
‘
v
v
“



III. EXAMPLES

3.1. Introduction
 

The energy method will be used here to derive the

equations governing the nonlinear behavior of continuous

systems such as beams, circular membranes and circular

plates without the Berger's hypothesis.

A continuous system possesses both the strain energy

and the kinetic energy for deflections of the same order

of magnitude as the thickness of a prismatic beam or a

circular plate. The strain energy is composed of that of

bending and that of stretching, namely,

2 2 \

[(3)721 +§le21dx (3.1.1)

for a beam and

2W a

3 f f {[(vzw2 +3522]
..0 O 1']

2(1)(—- + “ML—w) cum (3 1 2)_ "LL e2 —§—a-—r'—2 jI' I“ ' o .

for a plate in axisymmetric motions. The strain energy

of a circular membrane in axisymmetric motions is due

solely to the stretching of its middle surface

21
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aVa

V = f f {Noeo + Noe + 2 g?“ [e2-2(1—u)e2]}r drde (3.1.3)

o o ’

In the above expressions, E is the elastic modulus of

the material, h the thickness, u the Poisson's ratio.

The origin of the x, z coordinate is located at the

left hand end of the beam. The x—axis coincides with the

median line and L is the undeformed length of the beam.

The z-axis is normal to the median line. S is the cross—

sectional area and I the second moment of area of the

beam. For the axisymmetric circular membrane and plate,

the origin of the r, z coordinate is at the center. The

r—axis coincides with the middle surface and a is the

radius. The z—axis is normal to the middle surface. N0

and e0 are, respectively, the initial stress and strain

Eh3

12(1-u2)

rigidity of the plate. (‘72)2 is the biharmonic operator

of the membrance. D = denotes the flexual

defined as follows

  

\2 _ 52 1 5 52 1 5

(V2) _ (51:2 +ES-f)(ar2 +175?) (3'1°4)

The first strain invariant expressed in x, z and r,

coordinate system is, respectively,

2

e: CX_%E+_21.(§¥) (3.1.5)

and

e = 5r + 59 (3.1.6)

where the strains in the radial and tangential directions
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are taken to be

Bu 1 5w 2

€r=§;+-2-( r) (3.1.7)

_ u

Here u and w denote the components of displacement of

a point in the middle surface.

The second strain invariant for membrane and plate

with circular symmetry in r, z coordinate system is

e2 = arse : [37E +-;-(%¥) ]9r- (3.1.9)

It should be noted that there is no second strain invariant

in the case of beam because only the bending and stretching

plane are considered in the expression (3.1.1).in the x,z

The expression for the kinetic energy is

L
S Bu 2 aw 2

T =-%7 g [( t) + (5?) ]dx (3.1.10)

for a beam, and

ZW’ a 2 2

T = 9;) jug—LE1) + (3%) ]r drde (3.1.11)

0 0 ~

for a membrane or a plate. In the above expressions, p

denotes the mass density per unit volume and t the time.

It is now possible to form the Hamilton's integral, f\,

for beam, membrane and plate, namely,

t2 L

/\= f g F(ut, w dxdt (3.1.12)11 u W W WI I XI I X, XX)

+ t‘.

.24
.1.

and



24

[
0

f\= t’ wt, u, ur, w, wr, wrr)dr d9 dt (3.1.13)

fi
k
a
r
+

O
g
l
e

F(u

1 .

Subscripts in the above expressions denote partial deriva-

tives and the integrand, F, is defined as

F(ut, wt. u, u . w, w , wxx)

= 11 S(u2 + wz) — EI(w2 + §-e2) (3 1 14)
2 P t t xx I . ° '

for a beam,

Fallt, wt: up url wl wr! wrr)

9h 2 2
= r{2 (ut + wt) — [Noeo + Noe

. Eh 2
2(1_u2) ( ( u) 2)]} < )

for a membrane, and

F(ut, wt, u, ur, w, w , w )
r rr

_ r22. 2 2
— rLz (ut + wt)

D 2 12 12 1
- §[(‘72w) + EE-e2-2(1-u)(33e2 +varwrr)]] (3.1.16)

for a plate.

According to Hamilton's principle

5A=o (3.1.17)

The corresponding Euler equations expressed respectively

in x, z and r, z coordinate system are then
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gg-§?§%t-%£ggx+§gg%;=o (3.1.18)

33'-%;%E‘-§‘;55 :0 (3.1.19)

and

3%— 3E3%Z— 3;3%;+3%§%rr=0 (3.1.20)

§%_F.§F_t_ 375: :0 (3.1.21)

r

By carrying out the differentiations, equation (3.1.18)

and (3.1.19) yield a pair of partial differential equations

of motion for beams vibrating at large amplitudes. Simi-

larly, equations (3.1.20) and (3.1.21) yield two pairs of

partial differential equations of axisymmetric motion for

circular membranes and plates. It should be pointed out

that all three pairs of partial differential equations in-

clude the longitudinal inertia effects and the last two

pairs include also the so-called second invariant of the

middle surface strains. One characteristic feature of all

these sets of equations is that they are coupled and non—

linear. The method developed in Chapter II is then used

to obtain approximate solutions of these equations. Prob-

lems of beams, membranes and plates will be considered in

the next three sections.

3.2. Elastic Beams with Immovable Supports

Let us first consider the large amplitude, free, un-

damped, periodic vibrations of an elastic beam in the x, z-
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plane with an extensible median line. By (3.1.14) ,(3.1.18)

and (3.1.19) one has

éiy._ S 52w §_5w Bzu 5w 52w wBu 1 6w _

' 3.. 31 W + 13%? x37) 37%.. 5(3):) 11- 0

(3.2.1a)

S azu S azu S 5w 52w _

IW-fiiw+35§m-° (”'11”)

To nondimensionalize the equations, let us introduce the

following quantities:

' = E. - = E. C =.§

T) L V L’ L

(3.2.2)
2

- QKLZ —2 L
1.:th (‘02: E ’ ?\=(-IT1

is the radius of gyration of the cross

section and %- is the slenderness ratio of the beam.

Equations (3.2.1a) and (3.2.1b) then take the following

form

—IV . a; . " ’a; ... -31 ll 1-

W - wzn + bin (V' 1 n'n ) + n (v + 53'2)] 1 0 (3 2 3a)

1?? - a?) + ;,'fi“ : o (3.2.3b)

In order to obtain a perturbation solution of the above

pair of equations, the small parameter s is now introduced

into the formulation of the problem through the following

change of variables:

a = an . 3 = EV (3°2°4)

The nondimensional equations of motion then become
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U
+ 0.211 — 81(1):)" + q")- +3—511'2nu) = o (3.2.5a)

_)\y" + 0323’, _ Ekq'n" : O (3.2.5b)

A comparison of the above equations with (2.1.1a) and

(2.1.1b) shows that they are identical provided that

The

The

and

Let

4

L1 = 3%? , a = -% (3.2.6)

(n'IWHIV‘I XII, E.) _ nlyll + quay: +gen12nn (3.2.7)

52

L2 = -113E; E>= -1 (3.2.8)

9(1'. n") = n'n" (3.2.9)

corresponding linear equations are found by setting

0 in (3.2.5a) and (3.2.5b), namely,

qfiv + 3330 = o (3.2.10a)

-1y3 + w§§o = o (3.2.10b)

solution to equation (3.2.10a) is

no = A1k Vk(C)cos T

w2 = 9: (3.2.11)

the equation (3.2.10b) has only the trivial solution,

Y0 = 0 (3.2.12)

us consider perturbation in the neighborhood of the

first linear mode. By taking no = A11V1(C)cos T,

91, yo = 0 and a = 0, one can calculate f and §
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as follows:

E
f(T]'I Tl"! Ya: Y": E ) I u I H = 0 (302013)

flatflotYoflolo -

9(n', n") ' = Ailviv'l'cos2 T (3.2.14)

30,36

L
Q II

In view of equation (3.2.13) the first order frequency—

amplitude relation as given by equation (2.2.24) in

Chapter II follows as

w = 0 (3.2.15)

One also finds that all the amplitude parameters Aéi)

as given by equation (2.2.25) vanish identically. Con-

sequently,

W1(C: T) = 0 (3.2.16)

Upon substitution of 5 as given by equation (3.2.14)

into equation (2.2.27) and integrating with respect to 7,

the expansion coefficients Céi) are found to be

 

 

2

(1) All 3 2 17Con = Z/\g I ( . . )

2

C(1) All I (3 2 18)

2n ’2<A"£—4ai> .'°

where

1

I = f xvi v; s rn dc (3.2.19)

0 .

and n is an interger equal to or greater than unity.

1

All other Cén) are equal to zero.

The above results immediately lead to the first order

solution for the in-plane displacement
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31(c. r) = :1 (egg) + egg) cos 2.) Pn(§) (3.2.20)

To determine the second order approximation, deriva—

tives of the nonlinear functions f and g are needed.

These are:

 

En. = y3 = O \

fn“ = y; = O

fv' — n; > (3.2.21)

Ev" = n6

E. = 3‘ 35233 ,

93‘ = ”3 } (3.2.22)

6”” = 3;

Upon substitution of equation (3.2.21) into equation

(2.2.32) and integrating with respect to T, the second

order frequency-amplitude relation is

1 a)
.2 = _ - (1) 1 (1) u I 1 II

“E x) Lqil <C0q +'§C2q )(Vqu + Vqu)

+ 9A2 ‘2 ” d 3 2 23- §'11V1 V1]r V1 C ( ' ° )

The amplitude parameters follow from equation (2.2.33)

1 (D

{2) A11 g‘ (1) 1 (1) I I II

A\ = fM~C +-C v" +VI‘

w W. .=‘ «q 2 23 1‘ ..>

+- g— Aiiv‘12v'1']r vn dC. n _>_ 1 (33-24)



 

2

(2) All If (I) 1 (1) I n

- M 2 - c (v r + v I‘ )
3n 2 2 2 1 1

(an—991) o q=1 q q

+gAilvizv'l'1r Vn dc, n : 1 (3.2.25)

with all other Aéi) = 0. Thus the second order correction

for the transverse displacement is of the form of equation

(2.2.36) with the coefficients determined above.

Substituting (3.2.16) and (3.2.22) into (2.2.35), one

finds that the expansion coefficients Céi) vanish

identically. Consequently,

72(Cn) = 0 (3.2.26)

Thus the expansion coefficients for the first order

longitudinal displacement, the second order frequency—

amplitude relation, and the amplitude parameters for the

transverse displacement are readily obtained by evaluating

the integrals (3.2.19), (3.2.23), (3.2.24), and (3.2.25).

The integrands of all these integrals involve the products

of three or four spatial eigenfunctions. ~It is, of course,

the boundary conditions such as hinged-hinged, clamped-

clamped or clamped—hinged that determine the set of allowed

eigenvalues and the corresponding eigenfunctions. A CDC

6500 digital computer is then used to perform the integra—

tions numerically. Several particular examples involving

immovable boundary conditions will be studied and the

numerical results will be discussed in the next chapter.
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3.3. Elastic Circular Membrane with Initial Tension and

Immovable Edge
 

Let us next consider the free, undamped, periodic,

axisymmetric vibrations of an elastic circular membrane

with initial tension and immovable edge. By equations

(3.1.15), (3.1.20) and (3.1.21) one obtains the following

pair of coupled nonlinear partial differential equations

of motion

 

 

 

 

 

l-uz 83w 1.5w gig; 5w gig 1+H Bu

Eh [N0(5r2 + r '51?) - phatz] 537% 2 + r '5?

5w 52w 1. 8w 52w Bu 1 5w 2 u _

”($5.2 2r(§;)1+3r2[r+2(r>+?u1-°

(3.3.1a)

azu l Bu _ E _ 9(1-(12) 5% 5w 52w L11. 5w 2

3.2+]: r .2 E 5.2”???“ 2J5) '0

(3.3.1b)

The above equations may be nondimensionalized so that the

membrane is of unit radius and the period of vibration is

fixed at 2v by introducing

- ._ W - _ u __ r

*1 * 2: , V - a ' C - a
(3.3.2)

_ 932 _ NO

Equations (3.3.1a) and (3.3.1b) then take the form

. 2_ 2 (U2: -' _" 41+ -' -l-li

(1+u)eo V'n - (1-u ) n + n (v + C v + n n + fiz'n

_ 1 _

+71 / +‘%Y+'§fl
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2 — \ 2 -'-’N - -'

( -%2>v- (1—u2)wzy+nn +:_21_C_£n2 =0 (3-3o3b)

where

62 1

Performing the following change of variables

5:8” , §=ev (3.3.5)

one finally obtains the two coupled, nonlinear, nondimen-

sional equations of motion

2 5 1+.

_ __._... .4. .2 _ __5. I II __E I II I E

Luvnvw 1_‘2'H[T](Y +1; v)+n(v +CY)

. 2 1 .

+ 3(3ql T)" + C 1.13)] = 0 (3.3.63)

1 2 1 v. a I .' 1— l

"fiflv -Ez)v+wzv-f;2'(nn +—§%n'2)=0

(3.3.6b)

which are similar to the two equations of motion described

in Chapter II. The analogous quantities are

e0 2 1

L1 = -i_—uv , a: —1_’L_L-2- (3.3.7)

' H i 'I I M 1+ l‘ I. I

f(Tl'IT1:YuV.-Y:€)=U(Y+_‘CHY)+W(Y+%Y)

£1 2 H 1 '3

+ é(3q' T] + E T] ) (3°3-8)

and

1 2 1 1

L2=-j:p'(V -E2)» B=-fi2 (3.3.9)

II .. I II 1— -

9(n'ln ) - n n + U" n'2 (3.3.10)
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The corresponding linear equations are found by setting

8 = o in (3.3.6a) and (3.3.6b), namely.

 

e0 2 ..

1 2 1 u

- 1-(1:2 (V _ E2))0 + 0533/0 = 0 (3°3°11b)

Their solutions are then taken to be

We = A11 V1 (C)COS T

(3.3.12)

2 _ 2
mo 01

It then follows from (3.3.8) and (3.3.10) that

f = f(n'. n“. y. 7'. v". a) ' H a u = 0(3.3.14)

WOIUOIY0:Y0:YOIO

i = gin”. n") ‘ n = A§.(vivf + l§%v;2)coszT (3.3.15)

30:30

By (3.3.14), the first order frequency—amplitude relation

as given by equation (2.2.24) is

2
w = 0 (3.3.16)

and the amplitude parameters as given by equation (2.2.25)

are

A(1) - o (3 3 17)
mn ‘ ° '

I: then follows that

31(C, T) = 0 (3.3.18)

Upon substitution of (3.3.15) into (2.2.27) and

integrating with respect to r lead to z
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(1) A11 > 1C0n EKQ'I, n...1 (3.3. 9)

n .

2

(1) _ A11 >

- I n _ 1 (3.3.20)

2n 2mg; 49")
1

where

1
1 I I II 1_- g

I = f l-uz (V1V1 + 7% V12)s Pn dc, n : 1 (3.3.21)

0 .

All other C£i> are equal to zero. The first order radial

displacement is then

(C T) = 0; (C(l) +C(1) cos 21') I" (C) (3 3 22)
Y1 ’ ‘ on an n ° °

n=1 . .

The second order result may be determined in a similar

manner. The following derivatives of f and g are first

evaluated.

 

E , -~ E ,, == 0 )

n W

E) :Ali 1% V: COS T

.. ' +v II

fy, = A11(123=v£ + V1)cos 1 )(3.3.23)

E)” = All Vi COS T

— A3! a I

f = —§;-’3V12V1 + %-V1 )cos3 T j

and

6“. = A11(V; + lEE‘V1)COS T (3 3 24)

g . = A1] V1 cos T ‘
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By the first order amplitude parameter results (3.3.17),

substituting (3.3.23) into the general expression given by

equation (2.2.32) and integrating with respect to time,

one obtains the second order frequency-amplitude relation as

 

1 (I)

2 _ _ 1 (1) .1 (1) .2 '
wz — 1_u2 g {qil (coq + 2 c2q )[C vqu

, (1+)! VI + II . + VI ..

+ g-A§1(3vi2vf +~% v13)}r v1 dc (3.3.25)

The second order amplitude parameters follow from the

general expression given by equation (2.2.33)

 

 

(1) _ A11 1 (1) 1 (1) u u
— 2 + -C -—

Aln (Q: - a?) g 1:37{q=1 (Coq 2 2q )[C Vqu

1+ . I II I I II

+ (—E-Li-v1 + v1)Fq + Vqu]

3 2 :2 u 1 .3
+ g A} 1(3V1 V1 + 2" V1 )}I' Vn dc: n > 1 (3 °3 ‘26)

(2) A11 } 1 OD 1- (1) E; ', = 4 —:—§-{ 2 -c [ v1?

3n (9: _ 90%) 0 1 u q=1 2 2g C q

1+ . , " I I u
a" (‘TLL' V1 1" V1)Fq + Vqu]

_- 1 2 I II 1 t3\ >
...9. E. A11(3V1V1 + E V1 /} r Vn dC’ n _ 1 (3 03 027)

2

All other Aén) are equal to zero.

The second order transverse displacement is then

00

- _ v (2) ) £2 (2) ) 3 3 3 28)32(CvT) - n22 A1n Vn(C COST'+ n=1 A3n Vn(C cos T ( . .
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In view of (3.3.16), (3.3.17), and (3.3.24), one con-

cludes that equation (2.2.35) gives

C(2) = 0 (3.3.29)
mn V

Consequently,

720;, I) = 0 (3.3.30)

A representative example of a circular membrane with

a clamped immovable edge will be studied in the next

chapter.

3.4. Elastic Circular Plate with Immovable Edge

Let us finally consider the free, undamped, periodic,

axisymmetric vibrations of an elastic circular plate of

radius a with immovable supports at the outer rim. By

equations (3.1.15), (3.1.20) and (3.1.21)

1 Bu ow 52w 1 5w 2

'WW) D Traffic?! r E+$§F+§E(5?H

62 a 1 a 2

+ vii-5% +1 + Eva—11> n = 0 (3.4.13

2 l. _ 1- 2 azu §y_52w 1’“ §w_2 _

(V —r2)u E W+ar5757+ 2r(or) _0 (3'4°1b)

Nondimensionalizing this pair of coupled nonlinear partial

differential equations of motion in the same manner as was

done previously, namely,

’ —.E " = E. g _.£
T] — a ' y a ’ D _ a

(3.4.2)

_, 4... 2 _

1mm, wzzagiwz’ (212%)
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equations (3.4.1a) and (3.4.1b) become

2- 2 - -' -u 1+ -I -I-H 1 -I2

-(Vn) -wzn+%[1(v +7Ev+nn +5771)

—II —I _ 1 _‘2

+ .1 h .3, +51. )1 (3.4.3.)

2 1 ’ 2 “I-" 1- -I

MV -Ez)y-wzy+Mnn +*§%nz)=0 (3.4.313)

Let us now introduce the perturbation parameter 8

through the following change of variables

5- cn: §= a) (3.4.4)

The pair of nondimensional, governing equations of motion

in a final form used to obtain solutions is

4 1+ .
V n + 0023 - eMn'h" + 7& 7') + n"(v' + if 7)

J

1 3

+‘% (BHIT‘u +1.1]. )] = 0 (3.4.53)

The identification of equations (3.4.5) with (2.1.1)

becomes evident if one lets

N

2 (E) a )2 , CL —)\ (3.4.6)1

FEE-+333

f(.q:’ T1", y, ya! y", E) : Tll(yl0 +%yl) + nu(yl +‘LEL'Y)

+ 3 (33‘3" + 'jén'a) (3'4”)

and

L2 = -%(V .. 31:), B = _ x (3.4.8)
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I II - I II 1- I

9(3 . n ) - n n +'-§% 1 2 (3-4-9)

Setting 5 = o in (3.4.5a) and (3.4.5b) yields the

following linear equations of motion

4 2..

2 1 "

"MV ‘ :2) Yo + 0333’0 = 0 (3-4-10b)

The solution of which is taken as

30 = A11V1(C)COS T '\

r (3 .4.11)

$2 = 02 “I
o 1

YO : 0 (3.4.12)

i.e. perturbations in the vicinity of the first linear

mode are considered. Thus f and 6 can be evaluated as

follows:

E = f(n'. n".- 7. y'. y", 3) . .. ' .. = 0 (3.4.13)

WOIWolYoIYo.0
.

- = ' ”l - u = 2 v'v" +-12E v'2 s2 7 3.4.14g 9“] I 7] TIOITIO A1111 1 2C 1 )CO ( )

 

In view of (3.4.13), equations (2.2.24) and (2.2.25)

then yield reSpectively

mi = 0 (3.4.15)

1)
A = 0 (3.4.16)

It follows that

31(c.1) = 0 (3.4.17)
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Upon substituting (3.4.14) into (2.2.27) and inte-

grating with respect to T, one obtains

 

(1) - A31 > 1 3 4 18)Con - Z—I-C: I I n _ ( . .

2

(1) All >
c 2 .47- 1 , n._ 1 (3.4.19)

21‘- 2(An - 491) .

where

1

_ “ I gs 1— I2

I - f )(viv1 + —§%év1 ) s rn dc, n 2.1 (3.4.20)

0 .

All other Céi) are equal to zero.

The first order result for the radial displacement

then follows as

00 (1)
“(CH0 = Z (c “

n=1

+ C(1)

on 2n cos 21) Fn(C) (3.4.21)

To determine the second order solution, the following

derivatives of f and g are evaluated.

 

f . == E .. = 0 \
W W

— = .. E II

fy A11 C V1 cos T

1 E

f). = A11(—+E‘E' V; + V£)COS T >(3 .4.22)

fy" = Allvi cos T

A2 1

E8 =-j%l (3Vizvi + Z'V13)COS3 T J

éna' A11(V; + liE'Vikos T

(3 .4 .23)

 

Q”. = Allv; cos T
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Inserting equation (3.4.22) into (2.2.32) and upon

integrating with respect to T, the second order frequency-

amplitude relation follows as

)
1

_ _- (1

A f 2 {(COOq

o q=1

'1"? 1 II I ..

+x—gi v. + v1) Pg; + V1111]

+%A11(3v12v1 +-%-Vi3)}r vldg (3.4.24)

Similarly, the amplitude parameters for the second

order correction are obtained from equation (2.2.33)

 

 

(2) _ A11 1 CD (1) 1 (1) .2 -A _ f A{ Z (c + —C )[ V1?
in (9% _ 92) o q=1 oq 2 2q C q

+ (lifi v1 + v1)ré + virg]

2 1 II I

+‘g'A11(3V12V1 + 2 V13)}r VndC: n > 1 (3°4°25)

.(2) A11 1 00 1 (1).3 'A = fx{ 2 —-c [ v1?
a; 2 2 2

1 + I H | I II

+ (—EE V1 + v1)rq + vqu]

+ é-Ai1(3V1V: + %-V13)}r VndC. n-1 1 (3-4o25)

1311 other Aéi) are equal to zero.

The second order result for the transverse displacement

tflen follows as

CD

Th2 (C T) = mi Aii) Vn(C)cos T + ZHAg: (c)cos 31 (3.4.27)

2 n==1vn
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In view of (3.4.15), (3.4.16), and (3.4.23), equation

(2.2.35) yields

C(z) = 0 (3.4.28)
mn .

It follows that

72(CIT) = 0 (3.4.29)

An illustrative example for a circular plate with

specific immovable boundary conditions will also be pre—

sented in the next chapter.



IV. NUMERICAL RESULTS AND COMPARISON STUDIES

4.1. Introduction

In the preceding chapters, general expressions for

frequency-amplitude relations as well as for the mode

shapes of vibrations for a wide class of nonlinear vibra—

tion problems have been presented. These expressions apply

to beams, circular membranes and circular plates subject

to a variety of boundary conditions. In this chapter,

problems with specific boundary conditions are solved.

When the boundary conditions are given, the spatial

eigenfunctions Vk, Pn and the corresponding eigenvalues

9:. f\: appearing in the general expressions are there—

fore known. As is noted previously, the determination of

the frequency—amplitude relations and of the coefficients

of the series expansions for the mode shapes of vibrations

is then reduced to the evaluation of integrals involving

such known eigenfunctions. The integrals are evaluated

numberically on a CDC 6500 digital computer. The computer

program proceeds as follows: ‘

The interval of integration (0,1) is divided initially

into NP = 10 equal intervals and a six~point Newton-Cotes

formula is applied to each of the NP subdivisions. A

42
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sum over NP represents an approximation to the desired

integral over (0,1). NP is then doubled and the process

repeated until the relative error between two approximations

is less than or equal to 10-6.

An additional subroutine is required for calculating

Bessel functions which arise as the spatial eigenfunctions

of the circular membrane and the circular plate problems.

This subroutine was obtained from the Program.Library of

Michigan State University Computer Laboratory.

Numerical results are presented in the next three

sections. These results are then discussed and compared

with those previously obtained by solving single nonlinear

partial differential equations.

44?. Beams with Various Boundary Conditions

Prismatic beams with immovable supports as described

in Section 3.2 are considered here for hinged—hinged,

clamped-clamped, and clamped-hinged boundary conditions.

Let us first consider a beam having both ends hinged.

The transverse displacement, the bending moment, and the

longitudinal displacement are zero at either end. The

boundary conditions then follow as

Tl(O,T) :- T]"(0,T) = 0

., (4.2.1)

T] (111') = T)" (1.1:) = 0 .

7(0.T) 7(1,T) = 0 (4.2.2)
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The differential equation (2.2.7) together with boundary

conditions (4.2.1) are identical to that of the Euler-

Bernoulli beam. By the orthogonality condition (2.2.10)

with r(§) = 1, the normalized transverse spatial eigen-

functions and its corresponding eigenvalues are

Vk(C) = J2 sin kw: ‘

n: = (5k)4 = (kv)4 )(4.2.3)

k = 1,2,3, ...... J 

Also, the differential equation (2.2.13) together with

boundary conditions (4.2.2) are identical to that of a beam

executing longitudinal vibrations. By the orthogonality

condition (2.2.16) with s(c) = 1, the normalized longitudinal

spatial eigenfunctions and their corresponding eigenvalues

are

 

rn(g) =nf2 sin nWC \

f\: = 1(nw)2 >(4.2.4)

n = 1,2,3, ..... a

. . 2 . .

Substituting of V1, 9:, Pn and j\n into equations

(3.2.17), (3.2.18) and integrating with respect to C give

 

respectively

1 2

C32) : -1—7é-‘J—2 A11 (4.2.5)

_ F 2
egg) - - W2 J2 A11 (4.2.6)

16(1— §—-)
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with all other Céi) being equal to zero. It is seen

that Cég) depends on the parameter I which is defined

2

as (E) .r Numerical results of these two coefficients are

given in Table 4.2.1 as a function of %~.

Table 4.2.1. Numerical values of the expansion coeffici-

1

ents C52) and Céé) of hinged-hinged beamsf

 

 

 

{:- 43 4?

40 -0.27768 -O.2794O

80 -O.27768 -O.27811

120 -0.27768 —O.27787

160 -O.27768 —O.27779

200 -O.27768 -0.27775

 

*-

All values multiplied by Ail.

The second order frequency—amplitude relation is found

from equation (3.2.23) to be

§=§oimwéAnf wan)

where

F”) = 2(7T:_>\)(?\ - '3' ”2) +2 (4'23)

and

61 = W.

Numverical results of F(x) over a range of %- are shown

in Table 4.2.2.



46

Table 4.2.2. Numerical values of F(k) of hinged—hinged

beams.

 

 

%- 4o 80 120 160 200

 

F(%) 0.99897 0.99974 0.99989 0.99994 0.99996

 

Two other beam examples of practical interest are

a beam having both ends clamped and a beam clamped at one

end (Q = O) and hinged at the other end (Q = 1). The

transcendental equation for the eigenvalues of the clamped—

clamped beam is

cosh 6 cos B = 1 (4.2.9)

and the transcendental equation for the eigenvalues of the

clamped—hinged beam is

tanh B = tan B (4.2.10)

The normalized transverse spatial eigenfunctions and their

corresponding eigenvalues for.both cases follow in the form

 

Vk(C) = cosh Bk: - cos BkC - sinh Bk _ sin Bk(sinh Bk:

9: = (5k) (4.2.11)

k

Numerical values of Bk for both end conditions are tabu—

lated in [3].
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As the boundary conditions for the longitudinal dis—

placement here are the same as in the hinged-hinged beam

case. The normalized longitudinal spatial eigenfunctions

Fn and their corresponding eigenvalues f\: remain the

same as those given in equation (4.2.4).

After substituting V1, 0:, Fn and ft: into (3.2.17),

(3.2.18) and performing the integrations on the computer

the results of the first nine expansion coefficients for

both cases are given in Tables 4.2.3 through 4.2.6.

One may note that in the hinged-hinged and the clamped-

clamped cases, the product of the derivatives, vivf, in

equation (3.2.19) is anti—symmetrical about the mid-section

of the beam and that the shapes sin ZFC, sin 4WC, etc. are

also anti-symmetrical about this mid-section. By constrast

the shapes sin WC, sin 3WC, etc. are symmetrical about the

mid-section. It is then obvious that coefficients like

1 .
C31), C03), ...., céi), Cég), ...., etc. must vanish for

these two cases. For the case of clamped—hinged beam, of

course, these symmetry considerations are no longer appli-

cable.

Using equation (3.2.23) one obtains the second order

frequency-amplitude relation as

2

.2 = 3 s1 Fmé A1.) (4.2.12)

where
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1 OO

.. 8 (1) (1)
F7\ -- E c +—c VF

( ) i [96%Ai. q=1 ( °q 2 2g )( 1

, I" 3 12"

+ V1Fq)+ 4 V1 V1:IV1 dC (4'2'13)

1

and

61 = 4.7300408 (4.2.14)

for clampednclamped,

51 = 3.9266023 (4.2.15)

for clamped—hinged end conditions. It is to be noted

that the integration of (4.2.13) involves a series. A

sufficient number of longitudinal spatial eigenfunctions

must be taken to insure convergence. Tables 4.2.7 and

4.2.8 show how closely the truncated series represents the

function F(%) for different values of N where N repre-

sents the number of terms used in the truncation.

With the information of F(x) from Table 4.2.2 for

hinged-hinged, 4.2.7 for clamped-clamped, and 4.2.8 for

clamped-hinged beams, nonlinear frequency-amplitude rela-

tions including the second order corrections are now in

the form

2

(02 = 00(2) [1 + 3 8(1) $52111) 1 (43-16)

Blotter [7] and Evensen {9] have studied nonlinear

vibrations of beams with various end conditions using a

single nonlinear partial differential equation. Before

one compares (4.2.16) with the corresponding results of

Blotter and Evensen, it will be of interest to rederive
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Table 4.2.7. Convergence of F(k) of clamped—clamped beams.

 

 

  

 

 

 

( >NF A
E. 3 6 9

r

40 0.30235 0.30196 0.30196

80 0.30266 0.30227 0.30227

120 0.30271 0.30233 0.30232

160 0.30273 0.30235 0.30234

200 0.30274 0.30236 0.30235

Table 4.2.8. Convergence of F(x) of clamped-hinged beams.

( )NF A
E. 3 6 9

r

40 0.56483 0.55496 0.55485

80 0.56687 0.55701 0.55689

120 0.56723 0.55737 0.55726

160 0.56735 0.55750 0.55738

200 0.56741 0.55756 0.55744
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their equation of motion using the energy approach, so as

to see what simplifications have been made. Application

of equations (3.1.16) and (3.1.17) to (3.1.12) yields

82w 52w 8w 5e 84w _
_pS SEE+ES(6W+ X X.) - EI SF— 0 (4.2.17)

2

-pS S:%-+~ES 33-: 0 (4.2.18)

When the longitudinal inertia term is neglected, equation

(4.2.18) becomes

%§= 0 (4.2.19)

Thus, e is independent of x. It is recalled that the

first strain invariant, e, is defined as

e = 5X = 3% + $43—32 (3.1.5)

In view of the assumed constancy of e with respect to x,

it is possible to multiply by dx and integrate over the

length of the beam to find

L L 5 L L
u 1 8w 2 1 5w 2 4.2.20)

f GdX = f [5; + ..2—(675) ]dX = u + '2-f(~5;) dX (

0 0 0 o

The vanishing of u at the boundary leads to

L
1 5w 2

e = 12"]: f (5;) dX (4.2.21)

0 .

Equation (4.2.17) now becomes

84w 02w 82w
EI -— ‘- T -——— + S = 0 14.2.22

8x4 8x2 9 5t§ ( )

where the total axial tension in the beam is defined as
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L

T(t) = g—ff f (31:32-de (4.2.23)
0 .

Equation (4.2.22) is exactly the same equation of motion

used by Blotter and Evensen. It was Woinowsky—Krieger [10]

who first established this equation using the balance of

forces approach and studied the effect of axial force on

the vibration of hinged bars.

It must be pointed out that the single equation of

motion (4.2.22) results as the consequence of neglecting

both the effects of longitudinal inertia and that of the

first spatial derivative of the first strain invariant.

This theory yields only the total axial force of the beam

by equation (4.2.23). To determine the distribution of the

axial force in the longitudinal direction, the displacement

u cannot be ignored. It is necessary to return to the full

pair of coupled nonlinear partial differential equations

of motion as given by (3.2.1a) and (3.2.1b).

The frequency-amplitude relationships as given by

(4.2.16), along with those of Blotter and Evensen, are

shown in Figures 4.2.1 through 4.2.3. In these figures A

is related to A11 by

A = A11 | v1 (4.2.24)
lmax

All these curves show the same feature that the nonlinear

frequencies increase with increasing amplitudes. It is to

be stressed that the results of Blotter and Evensen do not

depend on the slenderness ratio %- while the results of
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1.6-

Blotter and Evensen's

uncoupled equation result

1.4-4

.5
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I1:200
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£=40
<? r

l l l l l

0 0.4 0.8 1.2 1.6 2.0 2.

 Nondimensional Amplitude LEA

Figure 4.2.1. Frequency—amplitude curves for hinged-hinged

beams.
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Blotter and Evensen's

uncoupled equation result

 

Figure 4.2.2.
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Nondimensional Amplitude LEA

Frequency-amplitude curves for clamped—

clamped beams.
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Figure 4.2.3. Frequency-amplitude curves for clamped-

hinged beams.
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(4.2.16) do. In all three cases, results based on (4.2.16)

are shown for %-= 200, representing a thin beam and for

%-= 40, representing neither a thin nor a thick beam. It

is to be noted that for small %- values, curves based on

the more accurate analysis lie below those of Blotter and

Evensen. It is interesting to note also that Blotter and

Evensen's results coincide with those of the present analy—

sis only for beams with large slenderness ratio (%-2:200).

This fact can also be established analytically as follows.

For large I, the expansion coefficients for the longitudinal

displacement of a hinged—hinged beam as given in equations

(4.2.5) and (4.2.6) can be approximated by

2

03;) = cg) = - {gfz A11, (4.2.25)

Also, F(x) as given in equation (4.2.8) approaches unity.

The second order frequency-amplitude relation of a hinged-

hinged beam as given in equation (4.2.7) becomes

9: =§6§<If A...)2 (42-26)

which is identical with Evensen‘s expression.

On the basis of the above discussion, the following

conclusion can therefore be drawn;

It is reasonable to neglect the longitudinal inertia

effect and to assume the first strain invariant independent

of the spatial variable of the beam only for slender beams

vibrating transversely principally.
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4.3. Clamped Circular Membrane with Initial Tension
 

As an example for circular membranes with initial ten—

sion and immovable edge, let us consider a circular membrane

clamped at the boundary Q = 1. This implies that both the

transverse and the radial displacements at the rim are zero.

The boundary conditions are therefore

n is bounded as Q-—> 0+

(4.3.1)

"1(1IT) = 0

y is bounded as C —+ 0+

(4.3.2)

7(1)?) = 0

By the orthogonality condition (2.2.10) with the

weighting function r(§) equal to C. the normalized

transverse spatial eigenfunctions and their corresponding

eigenvalues satisfying the differential equation (2.2.7)

and the boundary conditions (4.3.1) follow as

vk(c) =3-{3—7 J0(j C) .
.1 30k 0k

e0

9: = 1 _ L1j:k
)(4.3.3) 

 1,2,3, .....k
A

where J0(jokC) and J1(j0k) are the Bessel functions of

the first kind, of order zero and order one respectively.

j0k is the k—th positive zero of J°(j0k) = 00
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Similarly by the orthogonality condition (2.2.16) with

the weighting function s(C) equal to C, the normalized

radial spatial eigenfunctions and their corresponding

eigenvalues satisfying the differential equation (2.2.13)

and the boundary conditions (4.3.2) are

_ J2 .
1"n(C)-m Jib1n C)

/\2 = -l—7-j2 (4 3 4)
n 1-0‘ in ' ’

n = 1,2,3 ......

where j1n is the n—th positive zero of J1(j1n) = 0.

Numerical values of j0k and j1n have been calcu—

lated and tabulated in [11].

Upon substituting equations (4.3.3) and (4.3.4) into

(3.3.19) and (3.3.20), and performing the integrations on

the computer, one obtains the first order expansion coef-

ficients for the radial displacement. The results of the

first nine coefficients are tabulated as a function of ea

in Tables 4.3.1 and 4.3.2.

From equation (3.3.25), the second order frequency—

amplitude relation follows as

2 — 2 All 2
db - db F(e0)(JZ%) (4.3.5)

where



T
a
b
l
e

4
.
3
.
1
.

N
u
m
e
r
i
c
a
l

v
a
l
u
e
s

o
f

t
h
e

e
x
p
a
n
s
i
o
n

c
o
e
f
f
i
c
i
e
n
t
s

C
(
'

m
e
m
b
r
a
n
e
s

w
i
t
h

a
n
y

i
n
i
t
i
a
l

s
t
r
a
i
n
.
*

1

o
n

)
o
f

c
l
a
m
p
e
d

c
i
r
c
u
l
a
r

  

n
1

2
3

4
5

 

6
8

9

 

C
m
o
n

0
.
2
9
3
4
5

-
0
.
0
2
7
5
1

-
0
.
0
0
6
3
7

—
0
.
0
0
2
5
6

-
0
.
0
0
1
2
9

-
0
.
0
0
0
7
5

-
0
.
0
0
0
4
7

—
0
.
0
0
0
3
2

-
0
.
0
0
0
2
2

 

*
-

A
l
l

v
a
l
u
e
s

m
u
l
t
i
p
l
i
e
d

b
y

A
3
1
.

T
a
b
l
e

4
.
3
.
2

.
N
u
m
e
r
i
c
a
l

v
a
l
u
e
s

m
e
m
b
r
a
n
e
s
.
*

1’

C
I

f
.

.
J
.
.
.

o
f

t
h
e

e
x
p
a
n
S
l
o
n

c
o
e
f
f
i
C
i
e
n
t
s

a
n
)

o
f

c
l
a
m
p
e
d

c
i
r
c
u
l
a
r

   

1
0
0
.

 0
.
2
9
9
5
9

0
.
3
6
9
0
4

1
.
6
2
4
0
3

-
1
2
.
1
6
0
0
3

-
0
.
2
7
9
9
4

-
0
.
0
1
5
0
6

-
0
.
0
0
1
4
4

-
0
.
0
2
7
6
8

-
0
.
0
2
9
3
0

0
.
0
3
6
4
1

0
.
0
3
9
6
1

0
.
0
7
0
7
2

0
.
0
0
5
3
8

0
.
0
0
0
4
6

—
0
.
0
0
6
3
9

-
0
.
0
0
6
5
6

-
0
.
0
0
7
2
1

-
0
.
0
0
7
4
6

-
0
.
0
0
8
9
8

0
.
0
0
3
3
4

0
.
0
0
0
2
3

-
0
.
0
0
2
5
6

-
0
.
0
0
2
6
0

-
0
.
0
0
2
7
4

—
0
.
0
0
2
7
9

-
0
.
0
0
3
0
8

0
.
0
0
3
6
8

0
.
0
0
0
1
6

—
0
.
0
0
1
2
9

-
0
.
0
0
1
3
1

-
0
.
0
0
1
3
5

—
0
.
0
0
1
3
7

-
0
.
0
0
1
4
5

0
.
0
1
1
9
0

0
.
0
0
0
1
3

—
0
.
0
0
0
7
5

-
0
.
0
0
0
7
5

-
0
.
0
0
0
7
7

—
0
.
0
0
0
7
8

-
0
.
0
0
0
8
1

-
0
.
0
0
3
4
1

0
.
0
0
0
1
1

-
0
.
0
0
0
4
7

—
0
.
0
0
0
4
7

-
0
.
0
0
0
4
8

-
0
.
0
0
0
4
8

-
0
.
0
0
0
5
0

-
0
.
0
0
1
1
2

0
.
0
0
0
1
0

-
0
.
0
0
0
3
2

—
0
.
0
0
0
3
2

-
0
.
0
0
0
3
2

-
0
.
0
0
0
3
2

-
0
.
0
0
0
3
3

-
0
.
0
0
0
5
7

0
.
0
0
0
1
0

-
0
.
0
0
0
2
2

—
0
.
0
0
0
2
2

-
0
.
0
0
0
2
3

—
0
.
0
0
0
2
3

—
0
.
0
0
0
2
3

-
0
.
0
0
0
3
5

0
.
0
0
0
0
9

 

A
l
l

v
a
l
u
e
s

m
u
l
t
i
p
l
i
e
d

b
y

2

A
1
1
.

60



1 1 1 00 (I) 1
We ) - “—22— {-—- >3 (c e-

\ 0 (141))301 (f A31} q=1 oq 2

. (13.3 v . .23.).q

+ 3(3V5.2vu + % V13)]C V) dc

(4.3.6)

Table 4.3.3 shows how closely the truncated series repre-

 

 

 

  

The ratio

as

a? : $2
« (All 2

)Jéo)]

sents the function F(e0) with the Poisson“s ratio u

equal to 0-3.

Table 4.3.3. Convergence of F(eo) of clamped circular

membranes.

7 N

F(eo) 3 6 9

e0

0.01 0.35245 0.35225 0.35223

0.1 0.34164 0.34144 0.34141

0.4 0.14744 0.14724 0.14722

0.5 2.27625 2.27605 2.27602

1 0.43980 0.43960 0.43957

10 0.40288 0.40292 0.40289

100 0.40046 0.40034 0.40032

From equation (2.2.3). the frequency—amplitude relations

including terms up to 52 are given by

(4.3.7)

of the nonlinear to the linear period then follows
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max

*-

1% = 3 1 1 (4.3.8)

[ ...0) 2 £2
1 + 2 JAB.—

L 1V1 Imax) J90)

where

A = A11 |V1| (4.3.9)

Equation (4.3.8) again shows that the nonlinear frequencies

increase (nonlinear periods decrease) with increasing

amplitudes.

Chobotov and Binder [13} have obtained the pair of

coupled nonlinear equations of motion for an axisymmetric

clamped membrane with initial tension by summing the changes

in the membrane forces due to radial and transverse dis-

placements in the respective directions. Without consider—

ing the effects due to the radial inertia term, a perturba—

tion procedure and the Ritz—Galerkin technique was employed

to solve approximately the pair of coupled nonlinear par-

tial differential equations. Their results can be used for

the purpose of comparison with the present analysis. Also,

it is interesting to investigate how the Berger's hypothesis

will effect these results. Upon neglecting terms containing

the second strain invariant e2, equation (3.1.15) is

modified as follows

“[Non + N108 + {Ell—w 82]) (463.10)
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Application of equations (3.1.20) and (3.1.21) to (4.3.10)

 

 

yields

2 __ £11 a2W Eh a. 2 @317 Be ‘ _

V w N. 327 + (14.2)... L. V w 2.. 5:1 - o 9-3-11)

-,2 22 ‘

_ pilE ) :11 g5; : 0 (403.12)

When the radial inertia term is negleCted. equation

(4.3.12) becomes

g; = 0 (4.3.13)

Thus, the first strain invariant. e. is independent of r.

It is recalled that e for an axisymmetric membrane is

defined as

.2 -
it}. 1. Mgr) .. .11;

e = a: (3.1.6)

Multiplying both sides of equation (3.1.6) by rdrde and

integrating over the area. one obtains

a

a x .

2 1 ,1w 3
e = —2 ru + —2 frvE-w; dr (4.3.14)

3 o a CI"

The vanishing of u at the boundary leads to

1 a 3:2
e = a? g r(§¥) dr (4.3.15)

In View of equations (4.3.13) and (4.3.15), equation

(4.3.11) now becomes uncoupled as follows

:¥-+ Eh v2w f r<5w)2 dr = 0 (4.3.16)

(l-LLZ )N032

 

Z
/
l
O
/

vw-%

Although (4.3.16) is much easier to solve than the fully



64

coupled pair of equations (3.3.1), the hypothesis that the

term containing e2 in equation (3.1.15) may actually be

neglected lacks a physical justification. It is expected

that, for a more accurate calculation of the membrane

stresses from the displacements. the pair of coupled non—

linear partial differential equations as given by equations

(3.3.1a), (3.3.1b) instead of (4.3.11) and (4.3.12) must

be employed.

Numerical results for the ratio of the nonlinear to

the linear period are plotted in Figure 4.3.1 versus the

dimensionaless amplitude (fi-). With initial strain eo

less than 0.487, the curves lie above those of Chobotov and

Binder. It is seen that, as eo becomes small, they ap-

proach the latter. Physically, this is fairly easy to

justify. The results of Chobotov and Binder were obtained

on neglecting the radial inertia term. Since e0 = 0.1,

say, corresponds to an axisymmetric membrane with a small

initial strain. The contribution of the radial inertia term

in equation (3.3.6b) is thus negligible. This fact can be

established as follows. For small initial strain. the ex—

pansion coefficients C(1) for the radial displacement as
2n

given in equation (3.3.20) can be approximated by

2

(1.) = All .. __ l1)

c2n 2 if: 1 — can (4.3.17)

Thus the results for the ratio of the nonlinear to the

linear period obtained by (4.3.8) are found to be reasonably
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Ratio of nonlinear to linear period vs.

nondimensional amplitude for clamped

circular membranes with initial strain.
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coupled equations result

e0 = 100
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result
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close to those of Chobotov and Binder. On the other hand,

the curves for eO greater than 0.478 lie below those of

Chobotov and Binder. This is because, as ea becomes large,

say, e0 = 100, the expansion coefficients Cég) for the

radial displacement change sign (see Table 4.3.2) and can

be approximated by

C(l) = -§-—:2-1 (4.3.18)

The function F(e0) as given by (4.3.6) does not seem to

be sensitive to the variations of the large initial strain

(see Table 4.3.3). Thus the differences between the results

obtained by (4.3.8) and those of Chobotov and Binder are

about 2.5 per cent.

2

1.When e0 = 0.487, it can be shown that J\: = 49

The expansion coefficient Céi> for the radial displace—

ment becomes unbounded because the provision 1k: - mzfli # 0

fails. Physically, this means that the frequency of the

radial oscillation induced by transverse motions approaches

to that of the purely radial oscillation of the membrane.

The coefficients of the radial displacement become very

large. This case must be treated by a modified perturba—

tion method and will not be considered here.

The results obtained by neglecting the effects of the

second strain invariant and the radial inertia are found

to be reasonably close to that from the present analysis

only when e0 is near unity.
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4.4. Circular Plate with Clamped Edge
 

In this section the problem of a circular plate with

clamped edge is considered as an illustrative example of

Section 3.4. The pair of coupled nonlinear partial dif—

ferential equations of motion including the effects of the

so—called second strain invariant as well as the radial

inertia term is given by equations (3.4.5a) and (3.4.5b).

The boundary conditions are

 

n is bounded as C —+ 0+ ~

q(1 T) = 0 )(4.4.1)

T)‘(1,T) = O i

y is bounded as Q —+ 0

+ 1

y(1,T) = O J.

The differential equation (2.2.7) together with the boundary

conditions (4.4.1) yield the follOWing transcendental

equation for the eigenvalues:

. J ( .

31(5) + OPB)11(6)= 0 (4.4.3)

onfi

where Jn and In are the Besel and the modified Bessel

functions of the first kind. The subscript n refers to

the order of these functions. By the orthogonality condi-

tion (2.2.10) with the weighting function r(§) equal to

C, the normalized transverse Spatial eigenfunctions and

their corresponding eigenvalues are



 

. J (B .3

vkm = c [Jomkm - 3:751]? I.(ekc)1 x

9i = 5i >(4.4.4)

k = 1,2 3 ..... J

where the normalized constant C is defined as

C =. J? (4.4.5)

2 2 J2(BB)k I2 yz

[31(Bk) + ZJQ-(Bk) — 10(Bk)1(fik)]

 

Numerical values of Bk have been calculated and tabulated

in [14].

The differential equation (2.2.13) together with the

boundary conditions (4.4.2) yield the following tran-

afihdental equation for the eigenvalues:

J1(j) = 0 (4.4.6)

By the orthogonality condition (2.2.16) with the

weighting function s(§) equal to Q, the normalized

radial Spatial eigenfunctions and their corresponding

eigenvalues are

 

;. _ J2 . . .

Pnké) -m J1.(31n C.) x

/\: = ijin )(4.4.7)

n = 1,2,3,.... J

Upon introducing equations (4.4.4) and 4.4.7) into

(3.4.18) and 3.4.19), and performing the integrations on

the computer, one obtains the first order expansion
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coefficients for the radial displacement. The results of

the first nine coefficients are tabulated as a function of

g and u, in Tables 4.4.1 and 4.4.2.

From equation (3.4.24), the second order frequency—

amplitude relations follow as

2 _ 2 a . 2

(D2 — (1)0 F(}—]' 5 LLJMII (4 04 08)

where

a 1 1 1 0:) ' (1) 1 (1) LL 1F _i = _ s ! 2 1C . + _ .—

(-—1+}i vi + v: )1“ + v{1‘"]
C ' q q

n‘ "7' :3

+ %(3V12V1 + % V]; )1 CV1 dz; (4'4'9)

Table 4.3.3 shows how closely the truncated series repre-

sents the function F(%nu).

Using equation (2.2.3) and recalling that A is

.2

equal to 12(%) , the frequency—amplitude relations up to

terms including 52 are given by

(1)2 = a): (1+ 12F(§.u)(% £1A13) 1 (4.4.10)

~

The ratio of the nonlinear to the linear period then follows

 

as

1T*

E = ‘ y" (4.4.11)

a 2 .

1 12“?” ’a A)2+ ‘ —-e
2 \

lvllmax .h

where

(4 .4 .12)
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Table 4.4.3. Convergence of F(% u) of clamped circular
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plates. .

N

a .

NF”) 3 6 9

.3

h

n20.1

10 0.02908 0.02905 0.02905

100 0.02913 0.02910 0.02910

ue0.2

10 0.03031 0.03028 0.03028

100 0.03035 0.03032 0.03032

u:0.3

10 0.03129 0.03127 0.03127

100 0.03133 0.03130 0.03130

u30.4

10 0.03204 0.03202 0.03202

100 0.03207 0.03205 0.03205

 

Wah [53 and Blotter [7] have both studied nonlinear

vibrations of circular plates using the Berger's hypothesis.

Their results along with those calculated from equation

(4.4.11) are plotted in Figures 4.4.1 through 4.4.4. The

curves again reveal the general feature that the nonlinear

periods decrease with increasing amplitudes. It should be

noted that the results of the present analysis are displayed

in terms of the Poisson's ratio u. whereas those of Wah

and Blotter are independent of this ratio. This is because

the last term (l—u)Dw w in equation (3.1.16) has no con-
rrr

tribution to the equation governing the transverse motion of
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the clamped circular plate. The neglecting of the second

strain invariant of the middle surface leads their ratios

of the nonlinear to the linear period to be independent of

u. In addition, the term corresponding to the radial

inertia is ignored, their first strain invariant is con-

stant throughout the plate. This yields only the approxi-

mate sum of the membrane stresses. To determine the varia-

tions of the membrane stress in the radial direction, the

pair of coupled nonlinear partial differential equations

as given by (3.4.1a) and (3.4.1b) must then be used.

The ratio 2-= 100 represents a very thin circular
h

plate while %-= 10 corresponds to a plate that is neither

too thin nor too thick. The frequency-amplitude relations

do not seem to be sensitive to the variations of this ratio.

This fact is seen in Table 4.4.3. Also, the results of

Wah and Blotter do not depend on this ratio. 'The curves

for clamped plates with %-= 10 and %-= 100 are undistin-

guishable and are plotted in Figures 4.4.1 through 4.4.4.

For u equal to 0.1, 0.2, or 0.3, they lie above those of

Wah and Blotter. For u equal to 0.4, they lie above

those of Wah but below those of Blotter. The periods ob—

tained by Blotter are reasonably close to the present ones

only when the Poisson's ratio u is near 0.3 to 0.4.



V. SUMMARY AND CONCLUSIONS

In this thesis a method of solution of two coupled

nonlinear partial differential equations is presented. It

is one form of the perturbation technique. The pair of

coupled nonlinear partial differential equations are first

converted into a system of linear partial differential

equations. The linear equations are then solved recur-

sively using the method of eigenfunction expansions. The

method is an extension of the one used in [7] for single

partial differential equations and is motivated by the fact

that many vibration problems for continuous structures are

actually governed by coupled nonlinear partial differential

equations, unless simplifying assumptions are made. -Equa-

tions governing free vibrations of nonlinear continuous

systems such as beams, circular membranes and circular

plates are derived by means of Hamilton's principle. This

results in equations that are both coupled and nonlinear

and are of the type considered here. Using the method

developed, approximate solutions for frequency-amplitude

relations, out-of-plane as well as in-plane displacements

up to second order are then obtained.

It is shown that, in general, uncoupling of these

equations of motion is achieved by neglecting the effects

79
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of both the second invariant of the middle surface strains

and the in—plane inertia. With the availability of the

present results obtained from the solutions of the coupled

equations, it is possible to assess the accuracy and valid—

ity of the various previously published results, especially

those contained in [7], on beams, circular membranes and

circular plates obtained from solving simplified, uncoupled

equations of motion.

In the case of elastic beams with large slenderness

ratio. the frequency-amplitude relations predicted by [7]

are identical to those of the present analysis, while small

deviations exist in the case of moderately thick beams

(%—= 40). Thus there is a maximum error of only 0.027 per

cent for hinged-hinged beam (see Figure 4.2.1), a maximum

error of only 0.014 per cent for clamped-clamped beam (see

Figure 4.2.2), and a maximum error of only 0.081 per cent

for clamped—hinged beam (see Figure 4.2.3). These observa-

tions tend to confirm the correctness of the assumptions of

[7].

In the case of the elastic clamped membrane with small

initial strain, say e0 = 0.1 or smaller, the results agree

with those of Chobotov and Binder. For large initial strain,

say e0 = 100 or larger, there is a difference of 2.5 per

cent. For e0 between 0.4 and 0.5, the results deviate

substantially from those of Chobotov and Binder. The present

perturbation method does not apply. The results obtained
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by using Berger's assumption are found to be reasonably close

to that of the present analysis only when e0 is near

unity.

In the case of the thin elastic clamped plate, the

results of [7] do not depend on the Poisson's ratio nor the

ratio of fin while the results of the present more accurate

analysis do. The periods predicted by [7] are reasonably

close to the present ones when the Poisson‘s ratio u is

near 0.3 to 0.4. For u equal to 0.1, there is a maximum

error of 1.07 per cent.

The present work represents an extension of [7], in

which the same perturbation method was applied only to a

single nonlinear partial differential equation. The method

is extended here to solve pairs of coupled nonlinear partial

differential equations. It is rather remarkable that such

an extension is accomplished without requiring too greater

an effort than that required for solving single nonlinear

partial differential equations. The pair of coupled non-

linear partial differential equations enable us to take

into account the second invariant of the middle surface

strains as well as the effects of the in—plane inertia of

the continuous systems and thus lead to more accurate results.

Whereas the nonlinear frequency—amplitude relationships

obtained here do not seem to deviate substantially from

those previously obtained using simplified theories in gen—

eral, it is clear, however, that solutions of the coupled

equations do reveal more information on the motions of the
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continuous systems, such as that on the radial displace—

ments and the distributions of the in-plane stresses in

the radial direction.
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