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ABSTRACT

FREE PERIODIC VIBRATIONS OF CONTINUOUS SYSTEMS GOVERNED
BY COUPLED NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

By

Tchuoc Weil Lee

A perturbation method for obtaining approximate solu-
tions of coupled nonlinear partial differential equations
is developed. The nonlinear partial differential equations
are first converted into a sequence of linear partial dif-
ferential equations, in which the zeroth order equation
corresponds to a homogeneous linear problem and can be
solved by the method of separation of variables. The
higher order equations correspond to inhomogeneous linear
problems and are solved by suitable eigenfunction expansions.

The method is applied to study the free periodic
vibrations of continuous systems such as beams, circular
membranes and circular plates with immovable boundary sup-
ports. One essential feature of all these governing equa-
tions of motion is that they incorporate effects of the
so-called second invariant of the middle surface strains
as well as that of the in-plane inertia. These effects are
usually neglected in more elementary nonlinear theories

(such as under the Berger's hypothesis) so that uncoupled
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Tchuoc Wei Lee
equations of motion will result. More accurate explicit
solutions for the frequency-amplitude relations, the in-
plane as well as the out-of-plane displacements are ob-
tained.

Numerical results are obtained using a CDC 6500
digital computer. Comparisons and discussions of these
results with those previously obtained using more elementary

ronlinear continuum theories are presented.
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I. INTRODUCTION

1.1. Historical Background

Problems of finite deflection of continuous systems
lead to nonlinear pariial differential equations. For ex-
ample, the governing equations of motion of an axisymmetric
circular plate executing large amplitude vibrations are a
pair of ‘coupled nonlinear partial differential equations.
The interaction between the middle surface forces in the
plane of the plate and the out-of-plane deflection is a
main source of the nonlinearity in the system.

This type of nonlinear problem seems to be first
recognized in 1910. Von Karman [1] extended the small de-
flection plate equation, introduced by Lagrange in 1810, to
include the straining of the middle surface of the plate.
He obtained the well-known pair of nonlinear partial dif-
ferential equations now bearing his name for plates under
static loadings. The difficulties presented in obtaining
solutions to this pair of coupled nonlinear equations have
led to approximations proposed by many researchers.

In 1955, Berger [2] suggested the neglect of the strain
energy due to the second invariant of the middle surface

strains. He solved the static uncoupled nonlinear
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2
differential equations for the problem of circular plates
under various boundary conditions.

Since then, the Berger's hypothesis has been used by
many researchers to solve nonlinear static problems as well
as dynamic problems. Nash and Modeer [3] studied the non-
Linear static problem of shallow shells. They also ex-
tended the Berger equations to non-linear vibrations of
plates. Sinha [4] investigated the static problem of uni-
formly loaded plates rested on elastic foundation. Wah [5]
solved the pair of uncoupled nonlinear equations of motion
for plates by a modified Galerkin method using a one term
approximation. Gajendar [6] followed the same method of
wWah and solved the problem of large vibrations of plates on
elastic foundations. Recently, Yen and Blotter [7] studied
free periodic vibrations of continuous systems governed by
nonlinear partial differential equations. Both the first
and second order approximations to the solutions of the
uncoupled nonlinear equations were obtained by a perturba-
tion method.”

The Berger's hypothesis in the dynamic case consists in
neglecting the strain energy due to the second invariant of
the middle surface strains as well as the in-plane inertia
of the system. Then the pair of nonlinear partial differ-
ential equations is uncoupled. Although it is fairly easy
to solve a single equation by the perturbation method or by
the Galerkin method, it should be pointed out that a satis-
factory justification of the Berger's hypothesis has not yet
been available in the literature.

*Many additional references on related works on beams, mem-
branes and plates may be found at the end of [7].
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3

1.2. Purpose of Investigation

To include the strain energy of the second strain in-
variant as well as the in-plane inertia effects in the
formulation of dynamic problems, it is necessary to solve
a pair of coupled nonlinear partial differential equations.
The purpose of this thesis is to develop a perturbation
method for solving this pair of coupled nonlinear partial
differential equations and to apply it to the study of free,
periodic vibrations of continuous systems, such as beam,
circular membrane, and circular plate, which are governed

by equations of the type mentioned above.

1.3. Organization of Report

In Chapter II, a method of solution of a pair of
coupled nonlinear partial differential equations is devel-
oped in general terms. This may be regarded as an extension
of the work carried out recently by Yen and Blotter [7]
from single norlinear partial differential equations to
coupled equations. A perturbation expansion is used to con-
vert the nonlinear partial differential equations into a
sequence of linear partial differential equations. The
zeroth order solution is that of the corresponding linear
problem and is well-known, or, say, can be obtained by the
method of separation of variables. The higher order re-
sults are solutions of the inhomogeneous linear problems

which are obtained by suitable eigenfunction expansions.
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The governing partial differential equations of motion
for the continuous systems studied here such as beam, cir-
cular membrane and circular plate are derived in Chapter III
using energy approach without the Berger's assumption. Both
first and second order approximations to frequency-amplitude
relations, longitudinal and transverse displacement are
then found by using the general expressions developed in
Chapter II.

Numerical results are obtained using a CDC 6500 digital
computer. It is found that usually the first few terms in
the eigenfunction expansions are sufficient to give satis-
factory results. These results are compared with those ob-
tained using Berger's approximation and are presented in
graphical form. Assessments and discussions of the results
are given in Chapter 1IV.

Chapter V contains the conclusions.
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II. METHOD OF ANALYSIS

2.1. Equations of Motion

Consider the free, undamped, large amplitude, periodic
motion of certain continuous systems governed by the follow-
ing pair of nondimensional coupled equations:

(i) an equation governing the out-of-plane or transverse

motion of the system

¥

L,n + - + £ a M(q,y,wz,g) =0 (2.1.1a)

2

(o7

T
(ii) an equation governing the in-plane or longitudinal

motion of the system

2
Lpy + w2 %;% + 2 B8 N(n,v,.w?2,e) =0 (2.1.1b)

where n = n(f{,v) and vy = y({,7) are the two dependent
functions of the independent variables ¢ and T. { is
the spatial variable which is assumed to be defined over
the domain from O to 1 and T is the time variable. ?

is a frequency parameter and ¢ 1is a small parameter which
is introduced into the problem either naturally or arti-
ficially. The coefficients o and £ are dependent upon
£. Ly and L, are two linear differential operators with

respect to ¢ of order 2m and 2n respectively. M and
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6
N are two nonlinear differential operators of order not
exceeding 2m and 2n respectively, and defined as

2m 2n

k 2 ] " i eeoo 1 " Mo oe
M(7,v.0?,2) = £(,n',m", ==, N I ,
@, 71, ¥, €) (2.1.2)
2m 2n

N(n:y:wZ,C) = g(q'ngnu',oo,'nnu ,y'y"'oooo'y“" .

w?, . ¥, ¢) (2.1.3)

where f and g are polynomials of finite degree in
W'ﬂ'fﬂ":"°°~:YrY':Y".;.og,aﬁ,ﬁ,i,c. The primes here denote
partial differentiation with respect to ({, and the dots
stand for partial derivatives with respect to .

It will be assumed that the linear operators L; and
L, are self-adjoint for every =+t 1in the space of func-

tions defined by the homogeneous boundary conditions:

Din(O,T) =0 i=1,2,...., k

(2.1.4a)
qu(l,T) =0 j = k+l,..... 2m .
5iy(0,r) =0 i=1,2,...,k'
i} (2.1.4b)
Djy(l,T) =0 j = k*'+1, . 2n :

where the D's and D's are linear differential operators,
of order less than 2m and 2n respectively, with respect
to the spatial variable (.

The periodicity and initial conditions are chosen as
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n(C.t) = n(g,t+2m) (2.1.5a)
y(g.t) = y(¢, t+27) (2.1.5b)
1(¢.0) =0 (2.1.6a)
y(£.0) =0 (2.1.6b)

This means that the system has zero initial velocities and
periodic motions are initiated by releasing the system from
rest in an as yet unspecified initial configuration.

Setting ¢ =0 in (2.1.1), the pair of coupled, non-
linear equations become linearized as

2

(o4

Lin + w? a% =0 (2.1.7a)
d2y
Loy + w? STz =0 (2.1.7b)

The corresponding linear solutions are easily found.

A method for solving the pair of coupled, nonlinear
equations (2.1.1) in the vicinity of a set of linear solu-
tions subject to the boundary conditions (2.1.4), periodic-
ity conditions (2.1.5), and the initial conditions (2.1.6)

will be presented in the next section.

2.2. Method of Solution

To solve the pair of coupled nonlinear partial differ-
ential equations (2.1.1) subject to the given boundary,
periodicity and initial conditions, the functions mn and
Y as well as w? are expanded into power series in ¢

as
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These expansions are

(2.1.1a) and (2.1.1b).

M= Mer 7V °

collecting like powers of ¢,

results:
€93 Lino
Lavo
ct: Lymy
Lav:
s?: Lumg

+

Yo: W? = w2 and ¢ =0

® i
ng.t) = 2 eny
i=o0
m .
Y€, t) = Z €7 y.
PR 1
i=o
©
w = 3 g w?
. 1
i=o

Upon expanding f

(¢}

20 22
WoYer = ~WiYo

n
T].{_qu-’- T]E_T}u + -°+V1 y + Yifyl
"= 2= - . =
£ ., t 4+ W E + £f. + £
Y1 Y 1t 2 M1 5 Y1 Y
£ ]

and g

(2.2.1)

(2.2.2)

(2.2.3)

substituted into the pair of equations

about

as Taylor's series and

the following set of equations

(2.2.4a)
(2.2.4b)
(2.2.4c)

(2.2.44)

(2.2 .4e)



9

Layg + wdys = ’&370 - ®§71 - 15[T]1‘§Tl

+ qiéq, + qffn" +....+ Ylay + yiay,

+ 7;53/" to...t w?.auﬂ + qléﬁ + Y1§’V

+ g_] (2.2.4f)

where the notations £, fq, etc. mean that f, fﬂ' etc.

are evaluated at (Tg, Tos Mor-=++s Yor Y0r You ce-+r D,

fo, Yo, 0).

The set of equations can be solved recursively for the
unknowns Nye i and wﬁ, i=0,1,2,...., assuming that
Ny and Yy individually satisfy the boundary conditions as
given in equations (2.1.4), the periodicity condition (2.1.5)
and the initial condition (2.1.6). As usual, for i = 0,
the first two equations of the set are homogeneous and are
just the equations of motion in the linear theory as given
by (2.1.7). For i > 1, equations (2.2.4c), (2.2.44),....
have same homogeneous parts as the first two equations but
with inhomogeneous terms consisting of the lower order co-
efficients in the expansions (2.2.1) through (2.2.3). An
essential feature of the perturbation method to be developed
here consists in an eigenfunction expansion procedure for

solving these inhomogeneous equations for i+ Yi- and wi,

iz1.
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Let us first consider the homogeneous equations
(2.2.4a) and (2.2.4b). The equation for 17y can be
solved easily by the method of separation of variables.

It has periodic solutions of the form

Mo (C.1) = AV, ({)cos 1 (2.2.5)
@ = (2.2.6)
k=1,2,3,.........

where the constant A1 is a nondimensional amplitude

k
parameter. Vk(C) and Qﬁ are the k-th eigenfunction and

eigenvalue of the following problem:

2 -
LV, - Qv =0 (2.2.7)
DV, (0) =0, i=1,2,.....h (2.2.8)
D,v 1) =0, j =h+l,.....2m (2.2.9)

The orthogonality condition for the set of eigenfunctions

Vk(C) is

(2.2.10)

Ot

r(Lv (Q)v(elae = &

where r(¢{) 1is some weighting function and ékp the
Kronecker delta.
The equation for 7y, may have periodic solutions of

the form

Yo(L.t) = T (L)cos = (2.2.11)
wg = N7 (2.2.12)
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where FE is the f-th eigenfunction of the following

problems
2 =
Lzrz —,A£F£ =0 (2.2.13)
5irz(o) = 0, i=1,2,....,hn (2.2.14)
6jrg(1) =0, j =h'+l,....,2n (2.2.15)
and }\z is the corresponding eigenvalue. The orthogonality

cordition for the set of eigenfunctions FE(C) is

1

r r =9 2.
[ s (0rg(eac = &y, (2.2.16)
where s(f{) is some weighting function and & the

£q
Kronecker delta.

Now (2.2.6) determines the values of aﬁ. With one of
these values for aﬁ, the equation (2.2.4b) for vy, will
in general have no nontrivial solution satisfying its
periodicity and boundary conditions unless .AZ = Q;. It is

assumed here that
/ 2
/\; 70 (2.2.17)

£ =1,2,3,....

Therefore with the periodic solution (2.2.5) for 1o, one

has

Yo (L.,T) = O (2.2.18)

This implies that the oscillations take place primarily in
the transverse direction of the system.
The inhomogeneous equations (2.2.4c), (2.2.44),....,

yield the higher order terms that are demanded by nonlinear
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12
interactions with the zeroth order solution. For the equa-

tions for ul (1 2 1), solutions are sought in the form

(t,=) = O; O; A(i)V ( ) 2.2.199
n; (€. 2 2 Ap v (C)cos mr (2.2.199
m=op n=1 .

i=1,2,3,....

where the coefficients of expansion Aé;) are as yet to be

j& OI 1 - 1 2 '2 '2D

i.e. there is no V,(f)cos v in all 1q, for i Z1.

Similarly, for equations for Y (i 2 1), solutions
are sought in the form
v.(t.1) = (§ O; C(i)F (¢)cos mt (2.2.21)
i : meo p=1 Mmn 'n

: . i . .
where the coefficients of expansion Cén) are likewise yet
to be determined.
Now, to obtain the i-th order solution for 1, and

1

wi, the procedure consists of substiuting the n; series
giver in (2.2.19) into the et equation given in (2.2.4).

At this stage expressions for N5 in terms of Aég)l Y-

J
in terms of Cég) and w? are already known for j = i-1.

The orthogonality of both the spatial eigenfunctions and
(1)

trigonometric time functions is used to determine Amn

and ai. The same procedure is then applied to determine

. (i)
Y; 1in terms of Con
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In what follows, let us illustrate how to determine
the solution for PR and wi up to the second order
by equations (2.2.4). The process of solving subsequent
higher order equations can be carried as far as is desired,
but the results will not be presented.

Eaving determined 1, wg, and Yo as given in equa-
tions (2.2.5), (2.2.6) and (2.2.18), one can calculate £
and g 1in equation (2.2.4c) and (2.2.4d). Substituting

Ny (£.1) as given by (2.2.19) into (2.2.4c) yields

8
8

(Qi - szi)Aé;)Vn(C)cos mt =

1™
TIY

m

0 n-=-x
WiA  V, (L)cos T - af (2.2.22)

(1)

mn

To find aﬁ and A

, multiply each side of the above
equat.ion by r(C)Vq(Q)cos pt and integrate between limits
0 to 1 with respect to ¢ and between limits 0 and 27

with respect to 1. Using the orthogonality conditions one

obtains the following equation:

T
af r(C)Vq(C)cos pt dtdt

(2.2.23)

o, N

2 (1 : 11
Wg = PTIApg “Pix%%q’1p T T J

Setting p =1, @ = k, one determines the first order

frequency-amplitude relation as follows:

2 _ 1 ?27 -
wy = TR [ af r(C)v, (L)cos 1 dt AL (2.2.24)
1k 00 .

For p =m (m being some fixed integer other than 1), and

d = n (n being some fixed integer other than k), equation



(2.2.23) yields:

Al1) 1 "

mn T(02- m202)

1 2
/]
0 0

14

(1

A
mn

)

of r(g)vn(g)cos mt dtd¢ (2.2.25)

are determined provided

Upon substituting

as given by(2.2.21) into equation (2.2.4d), and

recalling that 7y has only trivial solution, it follows

Thus the amplitude parameters
) 2
that Q° - mzﬁi £ 0.
Let us now turn to equation (2.2.4d).

Y1(C.T)
that

@ @

m=0 n=i

Multiply both sides of the above equation

and integrate between limits 0 and 1

limits 0 and 27 for .

conditions. one determines

c(1) - 1
mrn (A 2-m20¢ )

1 2
[]
00

)

) 1
In t~he above expression, Cén

T

85 s(2)r,(¢)cos

5 (A2 - m2a2)el2)r (£)cos mr = -85

Making use of

(2.2.26)

by s(t)rg(g)eos pr
for ¢ and between
the orthogonality
mt d1d(l
(2.2.27)

is determined provided that

ﬁ\i - mzﬂi #Z 0. Thus, the first order nonlinear correction

for the k-th linear mode is completely determined as

= cg O; A(l)v (¢)cos mt (2.2.28)
" m=o n=1 " T
m#Z1, n#Kk
-5 % M) (¢) . (2.2.29)
Y1 = Con ' Tpll)cos mt (2.2

m=9 n=1
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The next or second order nonlinear correction for the
k-th linear mode shape and the corresponding frequency are
determined in a similar manner. The inhomogeneous terms on
the right hand side of equations (2.2.4e) and (2.2.4f) are
found with the known 7, wg, Yo: M1 wi, and vy;. Sub-
stituting n,(f,1) as given by (2.2.19) for i = 2 into

(2.2.4e) one obtains

S % (02 _ 20212 2) _ 2
s R (Qn m Qk)Amn Vn(C)cos mt = uQAlka(Q)cos T
m=0 n=1 )
@ ©
02 203 pzA(;)Vq(Q)cos pt - «[f. = = Aéé)v (¢)cos pt
p=1 q=1 ° " p=o g=1 4
o \av_ ()
+f . =z = A(”)——%E—— cos pT
® oo d2v_(c¢)
+fF , = = A(l)-——iig—— cos pt + ..
T] p:o q:l pq dc
_ (ee) o (1)
+ £ z z C I ()cos pt
Y p=0 q:l pPq q( ) P
_ a oo (1) ar (C)
+ £, = 2 C at cos pv +
y p.:o q:;'_ pq
+ 0PF , - F ?; O; pzA(l)V (¢)cos pt
1 ('DZ T] p=3 q=1 Pa g9
@
- E? > = pzcigé)—l"q(f;)cos pt + fr_] (2.2.30)
p:]‘_ q;l -

Multiplying (2.2.30) by r(c)vz(C)cos jt, integrating with
respect to ¢ from O to 1 and 1 from O to 27, and

using the orthogonality properties one obtains
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+f r(C)VZ(C)cos jt dr d¢g (2.2.31)

Se:ting j =1, § =k, and using the conditions of AE;) =0

for i =1, the second order frequency-amplitude relation is
, 1 1 7? _ ©© o (1) (c)
wy = £ 3 2 A V_({)cos pt
. @ @ 1) (¢)
+ £, = 2 A - cos pT

© @ azv_(c¢)
+ £, = = A(l) —d oS PT H eeenenn..
" p=¢ gq=1 P4 dg?



2f , -E, = = p2 A(l)v (¢)cos pt
n p=1 g=1 Pd g

- s 32(1)
£. z q=1p Coq Fq(C)cos pT

+ Ecza r(c)vk(;)cos T dt at¢ (2.2.32)

For j =m, and £ = n, equation (2.2.31) yields

(2) 1 2 2, (1)
on _(Qi‘ngi) [wym2A > 7]
12T ®
1 E (1)
[ [ 1. = =&} 'V (f)cos pt
o o av_(¢)
+f, = Z A(l) __%E—_ cos pT
n p=0 g=1 pa
o 0o da2v_(¢)
+ £, = = A(l)———g;—— COS PT + coeeenens
@ o©0o
+f = = C(l)F (t)cos pt
Y peo go1 P4 @
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L@ @ (1)
- £, £ I p2c)' I (t)cos pt
Y p=1 q=1 pPa g
- m#1
+ £ Ja r(C)Vq(C)cos mt dtdl, (2.2.33)

n # Xk
Similarly, substituting vy,(¢,t) as given by (2.2.21)
into equation (2.2.4f) and using the results of (2.2.18),

it follows that

©
s 3 (/&2 - mzﬂi)C(Z)F (¢)cos mt
n mn ‘n
m=0 n=1
® o
=w? I = pzcé;)Fq(C)cos pT
p=1 g=t
@ @
- 1)
- plg. = Z allly (t)cos pt
N p= g=1 P2 ¢
© © 1)dvg (L)
+g., 2 = A(l)——%——— cos pT
® o dzy _(¢)
+g., X z A(l) -——iﬁ;—— COS PT + cevecoocns
N p=o q=1 P14t
® oo
+g = 3 C(I)P (t)cos pt
p=0 g=1 pa g
- @ O; (1) ar_(¢)
+g9,, 2 C COS PT + vococosn
V' p=o g=o P2 9%
@ oo
- 1
+ w92 -9 pzl q§1p2Aéq)vq(c)cos pT
- 9y DD pzc(l)F (¢)cos pt + g_] (2.2.34)
p:l q:l pq . €

Multiplying the above equation by s(C)FE(C)cos jT, inte-

grating with respect to ¢ and 1t over the interval (0,1)
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and (0,27), and using the orthogonality properties one

determines

- C (1)
+g. 2 z2cr'r (t)cos pt
peo qo1 9P ' d

_ ® @ ar_(¢)
+ g 2 2 C(l) —L— cos pt +

y‘ p=0 q=1
(e o)
+ wféwz -g. = o; pzA(l)V (¢)cos pt
N oy g1 P4 d
(e 9] (00
5. = = p2elt)
Y p=1 g=1 P4

Fq(c)cos pT
+ 5&]5 S(C)Fn(c)cos mt dtdlf (2.2.35)

Thus the second order nonlinear correction for the k-th

linear mode is given by

T T A
M2 = = % Ap. Vn(C)cos nmt, m#1, n#k (2.2.36)
m=0 n=<1
a a (2)
Y2 = = 2 Cpo rn(c)cos mT (2.2.37)
m=0 n<1

The complete solutions to the problem up to terms g2

can be written by adding the zeroth, first and second
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approximate solutions. The final results are explicit once
a knowledge of the spatial eigenfunctions of the associated
linear problem, along with the linear frequencies is avail-
able. Applications of the general results will be made to
problems involving structural elements such as beams, membranes,

and plates in the next chapter.
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III. EXAMPLES

3.1. Introduction

The energy method will be used here to derive the
equations governing the nonlinear behavior of continuous
systems such as beams, circular membranes and circular
plates without the Berger's hypothesis.

A continuous system possesses both the strain energy
and the kinetic energy for deflections of the same order
of magnitude as the thickness of a prismatic beam or a
circular plate. The strain energy is composed of that of

bending ard that of stretching, namely,

L 2., 2 \
v =§2l({ [(g—x‘;—’) +-§-e2]dx (3.1.1)

_ 12 1 2w
- 2(1—u)(H; e, + ;-%¥4%;¥))r drdé (3.1.2)

for a plate in axisymmetric motions. The strain energy
of a circular membrane in axisymmetric motions is due

solely to the stretching of its middle surface

21
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aTa
Eh 2
({ ({ {(Noeg + Ngoe + m[e -2(1-p)ey] Jr drdé (3.1.3)

In the above expressions, E 1is the elastic modulus of
the material, h the thickness, | the Poisson's ratio.
The origin of the x, z coordinate is located at the

left hand end of the beam. The x-axis coincides with the
median line and L is the undeformed length of the beam.
The z-axis is normal to the median line. S is the cross-
sectional area and I the second moment of area of the
beam. For the axisymmetric circular membrane and plate,
the origin of the r, z coordinate is at the center. The
r-axis coincides with the middle surface and a is the
radius. The z-axis is normal to the middle surface. Ny

and e, are, respectively, the initial stress and strain

Eh3
12(1-p.2)
rigidity of the plate. (Vz)2 is the biharmonic operator

of the membrance. D = denotes the flexual

defined as follows
\ 2 1 Q2 1
(v = GG iy (3.1.4)

The first strain invariant expressed in x, z and r, 2z

coordinate system is, respectively,

2
e = = + 2(SH) (3.1.5)
and
e =g+ gq (3.1.6)

where the strains in the radial and tangential directions
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are taken to be

ou , 1,0w,2
E:gr—+2( r) (3.1.7)
=4
_r (3'1.8)
Here u and w denote the components of displacement of
a point in the middle surface.

The second strain invariant for membrane and plate

with circular symmetry in r, z coordinate system is

ey = e €g = [g—"r‘ + 5(%"?’)212 (3.1.9)

r

It should be noted that there is no second strain invariant
in the case of beam because only the bending and stretching
in the x,z plane are considered in the expression (3.1.1).

The expression for the kinetic energy is

L
S Ju 2 dw 2
T = %—({ [(SP) + (57) dx (3.1.10)
for a beam, and
2T a 2 2
L S (%‘E’) Jr drde (3.1.11)
0 o -
for a membrane or a plate. 1In the above expressions, p

denotes the mass density per unit volume and t the time.
It is now possible to form the Hamilton's integral, N\,

for beam, membrane and plate, namely,

j\_: ! fF(utl wtl u, uxl w, wx, wxx)dth (3.1.12)
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N

]\_:

u, u., W, w_, wrr)dr de dt (3.1.13)

¢ W r

tl

te— ¢t
oW
© — o

F(ut
. |

Subscripts in the above expressions denote partial deriva-

tives and the integrand, F, is defined as

u u W, W W
t/ tl ’ xl ’ xl xx)

1 S
='§[pS(ui + wo) - EI(wix + = e2) (3.1.14)

for a beam,

’
Fkut' Wer W Upe Wo Wpo wrr)

h/, 2 2
= r{%(ut + wt) - [NOeO + Noe

2/1_LL (e - 2(1-n)ey )]} (3.1.15)

for a membrane, and

/
F\ut wtl u, url w, wr, wrr)
ph 2 2
= r[%r (ut + wt)
D 2 12 12 1
- 5[(‘72W) + ne e2—2(1-u)(33e2 + ?wrwrr)]} (3.1.16
for a plate.
According to Hamilton's principle
SN =0 (3.1.17)

The corresponding Euler equations expressed respectively

in x, z and 1r, z coordinate system are then
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m-%%t-%ggg;%,%g}-;: 0 (3.1.18)

%-%%-%%&:o (3.1.19)
and

%—%%&;—%gg—r\x%ggrr:o (3.1.20)

%E_%%‘f;_t_%?gﬁ_r=o (3.1.21)

By carrying out the differentiations, equation (3.1.18)
and (3.1.19) yield a pair of partial differential equations
of motion for beams vibrating at large amplitudes. Simi-
larly, equations (3.1.20) and (3.1.21) yield two pairs of
partial differential equations of axisymmetric motion for
circular membranes and plates. It should be pointed out
that all three pairs of partial differential equations in-
clude tre longitudinal inertia effects and the last two
pairs include also the so-called second invariant of the
middle surface strains. One characteristic feature of all
these sets of equations is that they are coupled and non-
linear. The method developed in Chapter II is then used
to obtain approximate solutions of these equations. Prob-
lems of beams, membranes and plates will be considered in

the next three sections.

3.2. Elastic Beams with Immovable Supports

Let us first consider the large amplitude, free, un-

damped, periodic vibrations of an elastic beam in the x, z-
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plane with an extensible median line. By (3.1.14), (3.1.18)
and (3.1.19) one has

Qiy_ S 3%w _ S ow,d%u , dw J3w 32w du , 1,dw,\2.,_
"~ Swe " BT St T IS * Sk &)t Solex t2x) 1= 0
(3.2.1a)
S d2u S d%2u . S Jdw Jd2?w
Tox? "Erot? Proxoxd = O© (3.2.1p)

To nondimensionalize the equations, let us introduce the

following quantitiess:

- _w - _u _ X
n=q Y=L C=1
(3.2.2)
2
- 2 _
P N U W
E r’
1,1/, . . .
where (g) is the radius of gyration of the cross

section and % is the slenderness ratio of the beam.
Equations (3.2.1a) and (3.2.1b) then take the following
form

-Iv 2= T fTu L Taaom “n =! 1_1

Tome?n IRy s ) + (Y +30'2)] =0 (3.2.3a)
\Y' - @?Y + .n'RE = 0 (3.2.3b)

In order to obtain a perturbation solution of the above
pair of equations, the small parameter ¢ 1is now introduced
into the formulation of the problem through the following

change of variables:

no=en ¥ = ey (3.2.4)

The nordimensional equations of motion then become



T]IV + wZﬁ - 8?\(T]l.yl! + .qllyl + %e-rI'z'q") = 0 (3.2-5a)

-)\y" + 032:)7 - 87\]‘]"(]" =0 (3.2.5b)

A comparison of the above equations with (2.1.1a) and

(2.1.1b) shows that they are identical provided that

Li = 577 - a = -\ (3.2.6)
' " t " = 1" "no, 3 12..n
f(n M aY e Y E,) =Y + Y + EET] N (3-2-7)
and
o2
L, = -A W £ = -A (3.2.8)
g(y'» ") = n'" (3.2.9)

The corresponding linear equations are found by setting

¢ =0 in (3.2.5a) and (3.2.5b), namely,
o' + wiiip = O (3.2.10a)

Ao + w2Ye = O (3.2.10b)

The solutiion to equation (3.2.10a) is

Mo = A,y Vk(C)cos T

w? = Qi (3.2.11)

and the equation (3.2.10b) has only the trivial solution,
i.e.

Yo = O (3.2.12)
Let us consider perturbation in the neighborhood of the
first linear mode. By taking mng = A;1V;(f)cos T,

w2 =05, Yo =0 and ¢ = 0, one can calculate f and g
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as follows:

£F(M', ", vy, ¥t og) oW . . .=0 (3.2.13)
Mo-No:Yo:Yo:0

£

g(n', n") .= Azl’lviv'l'cos2 T (3.2.14)
Mo + Mo

Q
]

In view of equation (3.2.13) the first order frequency-
amplitude relation as given by equation (2.2.24) in

Chapter II follows as
2
w, =0 (3.2.15)

One also finds that all the amplitude parameters Aéi)
as given by equation (2.2.25) vanish identically. Con-
sequently,
(¢, ) =0 (3.2.16)
Upon substitution of g as given by equation.(3.2.14)
into equation (2.2.27) and integrating with respect to T,

the expansion coefficients Céi) are found to be

2
(1) _ Bu 3.2.17
Con = 2/\'121 I ‘( oo )
2
c (1) - I (3.2.18)
zn T 2 (A7 - 402) o
where
1
I =) v vy s dg (3.2.19)
0

and n 1is an interger equal to or greater than unity.
All other Cé;) are equal to zero.
The above results immediately lead to the first order

solution for the in-plane displacement



29

2n

N M8

il )= 3 () v elt) cos 20) r () (3.2.20)

1
To determine the second order approximation, deriva-
tives of the nonlinear functions f and g are needed.

These are:

fq“ =y, =0 3

ET]" = y(‘) =0

E,o = g \ (3.2.21)
Ey" = qé

=5 netng )

In: T Mo } (3.2.22)
én.. =1

Upon substitution of equation (8.2.21) into equation
(2.2.32) and integrating with respect to 11, the second
order frequency-amplitude relation is

AL ab
L2 ot ey Wy + vir

+ %Aflvizvi']r v,d¢ (3.2.23)

The amplitude parameters follow from equation (2.2.33)

©
(2) All )\[ 5 C( )+ — (1 n [kl
+ 2 a%vi%viir v dt, n2x1 (3.2.24)

8
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2

(2) Al!. } @ 1 (1) "ot 1 n
=" A[ =& C (vir_ + v.r")
3n 2 2 2 1 1
(Qn'991) o 9d=1 24 d 4
3 2 120 >
+ §'A11V1 Vllr Vn dc, nz>1 (3.2-25)
with all other Aéi) = 0. Thus the second order correction

for the transverse displacement is of the form of equation
(2.2.36) with the coefficients determined above.

Substituting (3.2.16) and (3.2.22) into (2.2.35), one
finds that the expansion coefficients Céi) vanish

identically. Consequently,

Y2 (L. T) =0 (3.2.26)

Thus the expansion coefficients for the first order
longitudinal displacement, the second order frequency-
amplitude relation, and the amplitude parameters for the
transverse displacement are readily obtained by evaluating
the irtegrals (3.2.19), (3.2.23), (3.2.24), and (3.2.25).
The integrands of all these integrals involve thé products
of three or four spatial eigenfunctions. It is, of course,
the boundary conditions such as hinged-hinged, clamped-
clamped or clamped-hinged that determine the set of allowed
eigenvalues and the corresponding eigenfunctions. A CDC
6500 digital computer is then used to perform the integra-
tions numerically. Several particular examples involving
immovable boundary conditions will be studied and the

numerical results will be discussed in the next chapter.
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3.3. Elastic Circular Membrane with Initial Tension and

Immovable Edge

Let us next consider the free, undamped, periodic,
axisymmetric vibrations of an elastic circular membrane
with initial tension and immovable edge. By equations
(3.1.15), (3.1.20) and (3.1.21) one obtains the following
pair of coupled nonlinear partial differential equations

of motion

1-,,.2 02w ., 1 0w, . 9d%w ow 32%u . 1+u Ju
Eh {NO(arz T T r) phatzl * 3?[5 2 r or
ow 2w 1 ,0w.2 02w _Jdu 1,3w,2 L
tSrape tEels) ) tor Gr e trul =0
(3.3.1a)
0%2u , 1 3u _u p(1-p2) 02y Oow 02w |, 1-y,0w,2
dr2 MY r E 3t2 @ Or 3r2 2r(§?) =0
(3.3.1b)

The above equations may be nondimensionalized so that the
membrane is of unit radius and the period of vibration is

fixed at 27 by introducing

- W - _u _r
nEa Vg ‘T3
(3.3.2)
_ a2 - No
T o= wt, w? = EE— w? eg = Eﬁ(l'“)

Equations (3.3.1a) and (3.3.1b) then take the form
‘ 2- 2 (,LY2: =1 /=m0 1+]l =1 el
(T+u)eo U0 = (1-u?)on + 0" (Y" + ZF= ' + 0'n" + 55 1

- - 1 -
+ 1" (7 +‘%Y+§ﬂ



(V7= 22)7 - (1-u)e2y + 7'7" + 372 7% =0 (3.3.3p)
where
2 1
V2=%?+E%E (3.3.4)

Per forming the following change of variables

orre firally obtains the two coupled, nonlinear, nondimen-

sional equations of motion

e 2 .
- T_—ﬁ- Vin o+ @i o= gioint (vt o+ TEE )+ (vt )
2 1
r 531 T s g )l =0 (3.3.6a)
1 2 1 " . " 1- .
- 12 (v —Zz)y+w2v-ﬁr(ﬂ'ﬂ +TET]‘2)=(2 |
3.3.6b

which are similar to the two equations of motion described

in Chapter II. The analogous quantities are

eo 2 1
L1='i__uv ‘ e (3.3.7)
1+ ! Wl
f(n:’ T]'l' Y. \/n Y",E) = T]|(Y" + CLL Yl) + M (y +%y)
Z ! 2 " 1 .3
+ 530" " + F) (3.3.8)
and
1 2 1 1
Ly = - 77 (V --c-z), B=-1% (3.3.9)
" - [ " 1_ [l
g(n'.n") = n'n" + EEE nt 2 (3.3.10)
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The corresponding linear equations are found by setting

e =0 in (3.3.6a) and (3.3.6b), namely,

€9

-T:LIV T]g*wqo:o (303.11a)

1 2 1 .
Tz (V- T2)ve + af¥o = 0 (3.3.11b)

Their solutions are then taken to be

o = Avs Vy (L)cos v

(3.3.12)
2 _ A2
Wy Ql
Yo = O (3.3.13)
It then follows from (3.3.8) and (3.3.10) that
E= £ 0% v, Y Y, @) = 0(3.3.14)

M0N0+ YorY0:Y0:0

g = g 3 = a2, (wyvy + ——Ev1 )cos27  (3.3.15)
; [ 3
Mo+ Mo

a
1"
Q
>
-
=

By (3.3.14), the first order frequency-amplitude relation

as given by equation (2.2.24) is
2
wa, =0 (3.3.16)

and tke amplitude parameters as given by equation (2.2.25)

are
(1)
Amn =0 (3.3.17)
I- thern follows that
n (€., 1) =0 (3.3.18)

Upon substitution of (3.3.15) into (2.2.27) and

integrating with respect to ¢ 1lead to



Zore o

e



34

(1) A%, N
COn 57{? I, nz>l1 (3.3.19)
n 4
2
(1) Ay N
= ' n>1 3.3.20
where
1
1= 2— vy o+ ——El; vi2)s I'_df, n2>1 (3.3.21)
o 17H ¢ n _

1 .
All other cén) are equal to zero. The first order radial
displacement is then

(¢ o]

yi (€, ) = X (Cé;) + C;;) cos 27T) Fn(C) (3.3.22)
n=1 . _

The second order result may be determined in a similar

manner. The following derivatives of f and g are first

evaluated.
£, =£f,=0
N n )
?y “Aqn % V; cos T
Ey' = Aﬂﬂ(lgg Vy + Vy)cos T P(3,3.23)
Ey” = Ajyq Vi cos T
3
- A'«'T 3 |3
£ == (3v,2v, +%v1 )cos3 1 /
and
g, = A11(V; + l%& Vi)cos T
n (3.3.24)
g . =Ayq Vi COS 7 ‘



35

By the first order amplitude parameter results (3.3.17),
substituting (3.3.23) into the general expression given by
equation (2.2.32) and integrating with respect to time,

one obtains the second order frequency-amplitude relation as

2 _ 1 ¢ {cg (C( + 1 (1 Loylp
Wy = 1-.2 ({ q=1 0oq 2 T2q C 1'q

1+ ] " ' [T
+ (—EE Vi o+ VIITG + Vil

+ %'A§1(3V12VI +~% v;2)3r vy dt (3.3.25)

The second order amplitude parameters follow from the

general expression given by equation (2.2.33)

>
—
[
i
>
bt
[
—

1 '
- 63) liuz{ 2 (Coq) * ﬁc(l))[ﬁ Vil
Ly, 0 q-l

+ (li}i vy + vf)ré + vir&]

1

+% 11(3 V4 V1 +ZVi3)}r Vn ac, n>1 (3,3.26)

. 1 (6 o)
(2) = R1a f 1 ) { I (1) ViF
3n (@2 - 90%) o 17%° ‘g=a 2 2q ' [¢ q

+ (—1’rUL Vi + V1)Ty + Vilg)

1 v 1
+gh (3V1V1 + T

v

vi>)}rv_df, nz1 (3.3.27)

2
All other Aén) are equal to zero.
The second order transverse displacement is then
o

)= = al?) ) S al2) (¢) 3t (3.3.28)
nz(C.1) = n:2 Al Vn(C cos T + .2, Pan v, )cos 371 3.
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In view of (3.3.16), (3.3.17), and (3.3.24), one con-

cludes that equation (2.2.35) gives

c(2) =g (3.3.29)
mn
Consequently,
v2(¢, 1) =0 (3.3.30)

A representative example of a circular membrane with
a clamped immovable edge will be studied in the next

chapter.

3.4. Elastic Circular Plate with Immovable Edge

Let us finally consider the free, undamped, periodic,
axisymmetric vibrations of an elastic circular plate of
radius a with immovable supports at the outer rim. By

equations (3.1.15), (3.1.20) and (3.1.21)

2 .2 h 02 1+“ o) dw 02 1
-(V'w) -%——t%‘f—ﬂy[—z‘ St * S5 of +E_(§Vrl)
+ﬁ¥_[éﬁ+ u+_( 211 = 0 (3.4.1a)
or€ cr
1 1-,2 - 2
(v? - L0 - R(—ELlW %Wg_g 1_2%(3—‘;’) =0 (3.4.1b)

Nondimensionalizing this pair of coupled nonlinear partial
differential equations of motion in the same manner as was

done previously, namely,

n = E g =~l—1- z’ —£.
Tl - a ’ y a ’ D - a
. (3.402)
- - 2
T = wh o, w? = E%E—w? , A= 12(%)
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equations {3.4.1a) and (3.4.1b) become

2_,2 - —tomn 140 =, =e=e 1 =,
-(V ' n) - w0+ 27 (v +—C&V +0'7" + 57 7'%)
-0 -1 - 1 —|2
+ G Y 3] (3.4.3a)
2 1 = = =1 =n 1-1 =
MUT - F2)y - @® ¥+ AE +—2-%n2)=0 (3.4.3p)

Let us now introduce the perturbation parameter ¢

through the following change of variables
n = oen . Y = ey (3.4.4)
The pair of nondimensional, governing equations of motion

in a final form used to obtain solutions is

4 . 1+
T+ ofn - el (v SEE )+ oty 4 Y)

3
+5 (Bt + % ')l =0 (3.4.5a)
2 1 \ VRS : " 1— ] —
MV - F2)y + @Y - eNMintn +—&2cﬂ ) =0 (3.4.5p)

The identification of equations (3.4.5) with (2.1.1)

becomes evident if one lets

N

-» (3.4.6)

(8

o
+
il

Qo
e

R m . " 1 . " |
£t vy vt e) =t SR ) et (v )

b - n " _1 '3 4
€ (3 [N + n ) (3. .7)

—312-) . B = = A (3.4.8)
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[ " - [T 1- [
g(n's ") = n'n +—2%12 (3.4.9)

0 in (3.4.5a) and (3.4.5b) yields the

]

Setting ¢

following linear equations of motion

4 2
YV o + WonNo = O (3.4.10a)

2

1 ,
AV - Ez) Yo + @iy = O (3.4.10b)

The solution of which is taken as

Mo = Az1Vi({)cos 1 w
! (3.4.11)
wz = Qi /‘
Yo = O (3.4.12)
i.e. perturbations in the vicinity of the first linear

mode are considered. Thus f and g can be evaluated as

follows:
E=fy'y " v, vy ¥, e)f, ,, , =0 (3.4.13)
T]OIT]OI.YOIYOIO .
g = v,ont) W= a2 iyt oy 1ol 2 2 ..
g9 g(n r M Tl('):rlo All-(V]_Vl + zc Vi )COS . (3.4.14)

In view of (3.4.13), equations (2.2.24) and (2.2.25)

then yield respectively

of =0 (3.4.15)
AISI;) = 0 (3.4.16)

It follows that

n{f.7) =0 (3.4.17)
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Upon substituting (3.4.14) into (2.2.27) and inte-

grating with respect to T, one obtains

(1) . Al > 1 3.4.18)
Con = §7tz I, n = (3.4.
2
(1) _ A1g >
o = —— I, n>1 (3.4.19)
2 2 (AL - 407)
where
.
_ T 1- 1 2
I = [ 2(V,V, + —5% Vi) s T df, n21 (3.4.20)
G .

All other Cé;) are equal to zero.

The first order result for the radial displacement

then follows as

(1)

L)y c;;) cos 27) T_ (L) (3.4.21)

ne.mn = I (

To determine the second order solution, the following

derivatives of f and g are evaluated.

£E,=£f,=0 \
N N
EY = Ali %Vlll cOs 7T
= _ 1+ ' "
fy' = A11(—7E Vy + Vy)cos T } (3.4.22)
fy" = Ay1Vy COS T
A2 1
- - 11 120 1 3
£, T o (3vy vy + T VvV, )cosd ¢ J

éq,- A11(V; + lEE Vi)cos T
(3.4.23)

§n" = Allv;. CcOs T



40
Inserting equation (3.4.22) into (2.2.32) and upon

integrating with respect to 11, the second order frequency-

amplitude relation follows as

o2 L@ (1) (1)
-~ [ 2z {(c + ) [ vy Tq
K 0o a=1  °4 2 :
1 + ' 1) ' "
HTFE VL o+ VY T+ Ty
3 1 13
8 A11(3V1 V1 + -C— Vi )}r Vldc (3 .4 .24)

Similarly, the amplitude parameters for the second

order correction are obtained from equation (2.2.33)

(2) _ __ P11 LR (1) L1 (1)
A - J‘ }\{ > (c + =C )[ Vll“'
in (2 - 02) | q=1 °4 272q 7L q
+ (li& vy + ViDL + vir']
q q

2 " ]
+ 223,87y + % vi®))lr v.at, n>1 (3.4.25)

A(2) _ A1y

1 1
IR
an («‘Q?l - 99?) °

(e o]
z = c(l)[E Vil

2 T2q "¢ q
1“‘“ [ " [ ] "
+ ( r Vi ? Vl)fq + V1Pq]

+ 2 A%, (3vivy + % vi®)Jr v.d, nZ1 (3.4.26)

A1l other Aéi) are equal to zero.

The second order result for the transverse displacement

then follows as

a

2 (2)
M= {(C,1) = nz AEn) Vn(C)cos T + Z Aan

n(z;)cos 37 (3.4.27)
2 n=1i
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In view of (3.4.15), (3.4.16), and (3.4.23), equation

(2.2.35) yields

CrSui) = 0 (3.4.28)

It follows that
yz(g,r) =0 (3.4.29)

An illustrative example for a circular plate with
specific immovable boundary conditions will also be pre-

sented in the next chapter.



IV. NUMERICAL RESULTS AND COMPARISON STUDIES

4.1. Introduction

In the preceding chapters, general expressions for
frequency-amplitude relations as well as for the mode
shapes of vibrations for a wide class of nonlinear vibra-
tion problems have been presented. These expressions apply
to beams, circular membranes and circular plates subject
to a variety of boundary conditions. 1In this chapter,
problems with specific boundary conditions are solved.

When the boundary conditions are given, the spatial
eigenfunctions Vi Fn and the corresponding eigenvalues
Qi, f\i appearing in the general expressions are there-
fore known. As is noted previously, the determination of
the frequency-amplitude relations and of the coefficients
of the series expansions for the mode shapes of vibrations
is then reduced to the evaluation of integrals involving
such known eigenfunctions. The integrals are evaluated
numberically on a CDC 6500 digital computer. The computer
program proceeds as follows: |

The interval of integration (0,1) is divided initially
into NP = 10 equal intervals and a six-point Newton-Cotes
formula is applied to each of the NP subdivisions. A

42
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sum over NP represents an approximation to the desired
integral over (0,1). NP is then doubled and the process
repeated until the relative error between two approximations
is less than or equal to 107°.

An additional subroutine is required for calculating
Bessel functions which arise as the spatial eigenfunctions
of the circular membrane and the circular plate problems.
This subroutine was obtained from the Program Library of
Michigan State University Computer Laboratory.

Numerical results are presented in the next three
sections. These results are then discussed and compared

with those previously obtained by solving single nonlinear

partial differential equations.

4.2. Beams with Various Boundary Conditions

Prismatic beams with immovable supports as described
in Section 3.2 are considered here for hinged-hinged,
clamped - clamped, and clamped-hinged boundary conditions.

Let us first consider a beam having both ends hinged.
The transverse displacement, the bending moment, and the
longitudinal displacement are zero at either end. The

boundary conditions then follow as

n0,t) = q"(O,T) =0
. (4.2.1)
q(l,-'f‘) =n"(@@1,7) =0 )

¥(0.1t) = y(1,7) =0 (4.2.2)
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The differential equation (2.2.7) together with boundary
conditions (4.2.1) are identical to that of the Euler-
Bernoulli beam. By the orthogonality condition (2.2.10)
with r () =1, the normalized transverse spatial eigen-

functions and its corresponding eigenvalues are

Vk(C) =2 sin knt

932( = (Bk)4 = (kTr)4 (4.2.3)

k=1,2,3,......

Also, the differential equation (2.2.13) together with
boundary conditions (4.2.2) are identical to that of a beam
executing longitudinal vibrations. By the orthogonality
condition (2.2.16) with s({) = 1, the normalized longitudinal

spatial eigenfunctions and their corresponding eigenvalues

are

Pn(C) =2 sin nnt \
N2 = 2(nm)? (4.2.4)
n=11,2,3, .....

2 .
Substituting of V,q, Qi, r, and j\n into equations

(3.2.17), (3.2.18) and integrating with respect to ( give

respectively
1 2
céz) = - 52 a3 (4.2.5)
c§;) = - T — V2 a2, (4.2.6)

16(1- °— )
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with all other cé;) being equal to zero. It is seen

that Cé;) depends on the parameter A\ which is defined

2

as (%) . Numerical results of these two coefficients are

given in Table 4.2.1 as a function of % .

Table 4.2.1. Numerical values of the expansion coeffici-

1
ents ng) and Céé) of hinged-hinged beams*

L cé3) cf3’

40 -0.27768 -0.27940
80 -0.27768 -0.27811
120 -0.27768 -0.27787
160 -0.27768 -0.27779
200 -0.27768 -0.27775

*
All values multiplied by Ail.

The second order frequency-amplitude relation is found
from equation (3.2.23) to be

2 =2l rOOE A1) (4.2.7)
where

F(\) = 2(7r§—x)( -%—17'2) +% (4.2.8)
and

By = T.

Numverical results of F()\) over a range of % are shown

in Table 4.2 .2.
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Table 4.2.2. Numerical values of F(A) of hinged-hinged
beams .

40 80 120 160 200

H

F(A) 0.99897 0.99974 0.99989 0.99994 0.99996

Two other beam examples of practical interest are
a beam having both ends clamped and a beam clamped at one
end (¢ = 0) and hinged at the other end (¢ = 1). The
transcendental equation for the eigenvalues of the clamped-

clamped beam is

cosh B cos g =1 (4.2.9)
and the transcendental equation for the eigenvalues of the
clamped-hinged beam is

tanh B = tan B (4.2.10)

The normalized transverse spatial eigenfunctions and their
corresponding eigenvalues for. both cases follow in the form

. cosh Bk - cos Bk
Vk(Q) = cosh g, L - cos BkC - sinh B, - sin Bk(sinh Bkc

- sin Bkc)

Qi = (Bk)4 (4.2.11)

Numerical values of Bk for both end conditions are tabu-

lated in [8].
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As the boundary conditions for the longitudinal dis-
placement here are the same as in the hinged-hinged beam
case. The normalized longitudinal spatial eigenfunctions
Fn and their corresponding eigenvalues f\g remain the
same as those given in equation (4.2.4).

After substituting V;, Qi, r, and f\i into (3.2.17),
(3.2.18) and performing the integrations on the computer
the results of the first nine expansion coefficients for
both cases are given in Tables 4.2.3 through 4.2.6.

One may note that in the hinged-hinged and the clamped-
clamped cases, the product of the derivatives, vivf, in
equation (3.2.19) is anti-symmetrical about the mid-section
of the beam and that the shapes sin 27f, sin 47{, etc. are
also anti-symmetrical about this mid-section. By constrast
the shapes sin 7{, sin 37(, etc. are symmetrical about the
mid-section. It is then obvious that coefficients like
céi)‘ CO;), ey céi), cé;), ..., etc. must vanish for
these two cases. For the case of clamped-hinged beam, of
course, these symmetry considerations are no longer appli-
cable.

Using equation (3.2.23) one obtains the second order

frequency-amplitude relation as

2
of =38t rO0 (& ALy) (4.2.12)

where
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1 (o)
- 8 (1) 1 (1) T
F(A) = - [ s (c + 35C )(V,D
o [;BfA§1 q=1 °4 2729 g
. ron 3 12_0
+ V]_F )+ T V1 V1]V1 dc (4.2.13)
q B1
and
By = 4.7300408 (4.2.14)
for clamped-clamped,
By = 3.9266023 (4.2.15)

for clamped-hinged end conditions. It is to be noted

that the integration of (4.2.13) involves a series. A
sufficient number of longitudinal spatial eigenfunctions
must be taken to insure convergence. Tables 4.2.7 and

4.2.8 show how closely the truncated series represents the
function F(\) for different values of N where N repre-
sents the number of terms used in the truncation.

With the information of F()A) from Table 4.2.2 for
hinged-hinged, 4.2.7 for clamped-clamped, and 4.2.8 for
clamped-hinged beams, nonlinear frequency-amplitude rela-
tions including the second order corrections are now in

the form

w2 = <b(2) [1 + % F (>) (% £ All)zl (4.2.16)

Blotter [7] and Evensen [9] have studied nonlinear
vibrations of beams with various end conditions using a
single nonlinear partial differential equation. Before
one compares (4.2.16) with the corresponding results of

Blotter and Evensen, it will be of interest to rederive
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Table 4.2.7. Convergence of F(A) of clamped-clamped beams.

N\

F(A

L 3 6 9

by
40 0.30235 0.30196 0.30196
80 0.30266 0.30227 0.30227
120 0.30271 0.30233 0.30232
160 0.30273 0.30235 0.30234
200 0.30274 0.30236 0.30235

Table 4.2.8. cConvergence of F(A) of clamped-hinged beams.

N

D F(2) 3 6 9

r
40 0.56483 0.55496 0.55485
80 0.56687 0.55701 0.55689
120 0.56723 0.55737 0.55726
160 0.56735 0.55750 0.55738
200 0.56741 0.55756 0.55744
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their equation of motion using the energy approach, so as

to see what simplifications have been made. Application

of equations (3.1.16) and (3.1.17) to (3.1.12) yields

d2w d2w ow de Q4w _

-pS a—t; + ES(e SxZ t Sx 'x) - EI ~wd 0 (4.2.17)
2

-png;‘+Es§—i=o (4.2.18)

When the longitudinal inertia term is neglected, equation
(4.2.18) becomes

-0 (4.2.19)

Thus, e 1is independent of x. It is recalled that the

first strain invariant, e, is defined as

e =, =4 Ly (3.1.5)

X

In view of the assumed constancy of e with respect to x,
it is possible to multiply by dx and integrate over the

length of the beam to finrd

L L d L L
u 1,0w,2 1% Qw2 4.2.20
f edx = f [g; + —2-(&) ]Jdx = u| + Ef(g;) dx ( )
() 0 0 o
The vanishing of u at the boundary leads to
L
1 ow, 2
e =3 | (5) ax (4.2.21)
0 ,
Equation (4.2.17) now becomes
O4w 03w c2w
EI1 T —/™5 + pS =0 4.2.22
ox* ox2 P Al ( )

where the total axial tension in the beam is defined as
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L
r(e) = B2 7 (§¥)%ax (4.2.23)
: |

Equation (4.2.22) is exactly the same equation of motion
used by Blotter and Evensen. It was Woinowsky-Krieger [10]
who first established this equation using the balance of
forces approach and studied the effect of axial force on
the vibration of hinged bars.

It must be pointed out that the single equation of
motion (4.2.22) results as the consequence of neglecting
both the effects of longitudinal inertia and that of the
first spatial derivative of the first strain invariant.
This theory yields only the total axial force of the beam
by equation (4.2.23). To determine the distribution of the
axial force in the longitudinal direction, the displacement
u cannot be ignored. It is necessary to return to the full
pair of coupled nonlinear partial differential equations
of motion as given by (3.2.1a) and (3.2.1b).

The frequency-amplitude relationships as given by
(4.2.16), along with those of Blotter and Eveﬁsen, are
shown in Figures 4.2.1 through 4.2.3. 1In these figures A

is related to A,;; by

A = All I Vl (4.2.24)

Imax

All these curves show the same feature that the nonlinear
frequencies increase with increasing amplitudes. It is to
be stressed that the results of Blotter and Evensen do not

depend on the slenderness ratio % while the results of
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Blotter and Evensen's
uncoupled equation result

@
Do
»

1.2

Nonlinear-Linear Frequency Ratio

1 1 1 1 1

0 0.4 0.8 1.2 1.6 2.0

Nondimensional Amplitude E%é

Figure 4.2.1. Frequency-amplitude curves for hinged-hinged
beams .
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Blotter and Evensen's
uncoupled equation result

40

L
r

Figure 4.2.2.

Frequency-amplitude curves for clamped-
clamped beams.

- | 1 1 l
.4 0.8 1.2 1.6 2. 2.4
Nondimensional Amplitude Efé
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Blotter and Evensen's
uncoupled equation result

L | ] | L

Figure 4.2.3.

0.4 0.8 1.2

.6
. . . €A
Nondimensional Amplitude

r

Y

Frequency-amplitude curves for clamped-
hinged beams.
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(4.2.16) do. 1In all three cases, results based on (4.2.16)
are shown for % = 200, representing a thin beam and for

% = 40, representing neither a thin nor a thick beam. It

is to be noted that for small % values, curves based on

the more accurate analysis lie below those of Blotter and
Evensen. It is interesting to note also that Blotter and
Evensen's results coincide with those of the present analy-
sis only for beams with large slenderness ratio (%-::200).
This fact can also be established analytically as follows.
For large A, the expansion coefficients for the longitudinal

displacement of a hinged-hinged beam as given in equations

(4.2.5) and (4.2.6) can be approximated by

c§;> = cz(;) = - 7 V2 a?, (4.2.25)

Also, F(A) as given in equation (4.2.8) approaches unity.
The second order frequency-amplitude relation of a hinged-

hinged beam as given in equation (4.2.7) becomes

2 2

3 _4,L
w, =g 51(; Ayy) (4.2.26)

which is identical with Evensen's expression.

On the basis of the above discussion, the following
conclusion can therefore be drawn:

It is reasonable to neglect the longitudinal inertia
effect and to assume the first strain invariant independent
of the spatial variable of the beam only for slender beams

vibrating transversely principally.



58

4.3. cClamped Circular Membrane with Initial Tension

As an example for circular membranes with initial ten-
sion and immovable edge, let us ccnsider a circular membrane
clamped at the boundary ¢ = 1. This implies that both the
transverse and the radial displacements at the rim are zero.

The boundary conditions are therefore

n is bounded as [ — O,

(4.3.1)
(1,7) =0

Y 1is bounded as ( — 0+
(4.3.2)
y(1,7; =0
By the orthogonality condition (2.2.10) with the
weighting function r({) equal to ¢, the normalized
transverse spatial eigenfunctions and their corresponding
eigenvalues satisfying the differential equation (2.2.7)

and the boundary conditions (4.3.1) follow as

(¢) = —¥2 "

% (8) = 57557 To o) ~
2 _ €0 2
S T T -0 Jox 1(4.3.3)
k =1,2,3,.....

Vg
where Jo(jokC) and Jl(jok) are the Bessel functions of
the first kind, of order zero and order one respectively.

jox 1is the k-th positive zero of Jo(Jgy) = O-
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Similarly by the orthogonality condition (2.2.16) with
the weighting function s(¢) equal to ¢, the normalized
radial spatial eigenfunctions ard their corresponding
eigenvalues satisfying the differential equation (2.2.13)

and the boundary conditions (4.3.2) are

N2 .
F = " i J1
L(¢) 520, (3., ¢) \
2 _ 1 2
N = 17 14, 5(4.3.4)
n=1,2,3,.....
J/
where j_ = is the n-th positive zero of Ji(j1n) = 0.
Numerical values of jok and jin have been calcu-

lated and tabulated in [11].

Upon substituting equations (4.3.3) and (4.3.4) into
(3.3.19) and (3.3.20), and performing the integrations on
the computer, one obtains the first order expansion coef-
ficients for the radial displacement. The results of the
first nine coefficients are tabulated as a function of g
in Tables 4.3.1 and 4.3.2.

From equation (3.3.25), the second order frequency-

amplitude relation follows as

2 _ 2 A., 2
W, = wg F(eo)(325) (4.3.5)

where
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1 1.1 @ (+) .1 (1)
Fleg) = - ~———3u —— 3= (c +5C 2 v,r
\=0 (1‘+'Ll)301 ({{A?J q=s ( 0q 2 “2qg )[C 1 q
+ (3-2& V. o+ Vv )IéI + Ve
+ %(3vi2v§ + % vi®)e v, dt (4.3.6)

Table 4.3.3 shkows how closely the *runcated series repre-
sents the function F(ey) with the Poisson's ratio u

equal to 0.3.

Table 4.3.3. Convergence of F(ep,, of clamped circular

membranes .
N

F(eg) 3 6 9

€o

0.01 0.35245 0.35225 0.35223
0.1 0.34164 0.34144 0.34141
0.4 0.14744 0.14724 0.14722
0.5 2.27625 2.27605 2.27602
1 0.43980 0.43960 0.43957
10 0.40288 0.40292 0.40289
100 0.40046 0.40034 0.40032

From equation (2.2.3), the frequency-amplitude relations

including terms up to ¢2 are given by

tA Ly 2

a2 = a2 [1 + F(eq) Jee—) ] (4.3.7)
(1] .

0

The ratio of *he rnonlirear to the linear period then follows

as
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= (4.3.8)

[; X F(e,) ( a \2 :l7§
L lvllaax Neg

T 1
T

where
A=Ay Vi ooy (4.3.9)

Equation (403u8) again shows that *nhe nonlinear frequencies
increase (nonlinear periods decrease) with increasing
amplitudes.

Chobotov and Rinder [13' have obtained the pair of
coupled nonlinear equations of motion for an axisymmetric
clamped membrane with initial tension by summing the changes
in the membrane forces due to radial and transverse dis-
placements in the respective directions. Without consider-
ing the effects due to the radial inertia term, a perturba-
tion procedure and the Ritz-Galerkin t.echnique was employed
to solve approximately the pair of coupled nonlinear par-
tial differential equations. Their results can be used for
the purpose of comparison with the present analysis. Also,
it is interesting to investigate how rthe Berger's hypothesis
will effect these results. Upon neglecting terms containing
the second strain invariant e,, equation (3.1.15) is

modified as follows

-[Noeo + Noe + -é__E_}l.-— e2] } (403010)
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Applicatior of equations (3.1.20) arnd (3.1.21) to (4.3.10)

yields

2 _.Ella?w Eh - 3 é_‘fae .
VW T N aef T (1-.2 )N, © Viwt =-S5 1 =0 (4.3.11)

_p(1-u%) c2u _ ce
E aes

M
~
|

=0 (4.3.12)

When the radial inertia term is neglecrad. equation

(4.3.12) beccmes

% =0 (4.3.13)
Thus, the first strain invarian*, e, is independent of r.

It is recalled that e for an axisymmetric membrane is

defined as

(0%

. ¢ i
e = 3% + (:W) + % (3.1.6)

X

(ST

Multiplying both sides of eguation {3 1.6) by rdrdé and

integratirg over the area. cone obtairs
a
2 z
e = gz ru 0 2 f v“‘ dr (‘403 .14)

The vanishing of u at the boundary leads to

e = = 7 r(-a-;) dr (4.3.15)

In view of equations (4.3.13) and (4.3.15), equation

(4.3.11) now becomes uncoupled as follows

viv - g2

Y Eh 2
N 2

2 .
+ 7w r{=—) dr = 0 4.3.16
)Noaz \Y, ({ \5?} ( )

2
t (1-u2

Although {4.3.16) is much easier to solve than the fully



64

coupled pair of equations (3.3.1), the hypothesis that the
term containing ey in equation (3.1.15) may actually be
neglected lacks a physical justification. It is expected
that, for a more accurate calculation of the membrane
stresses from the displacements. tre pair of coupled non-
linear partial differential equations as given by equations
(3.3.1a), (3.3.1b) instead of (4.3.11) and (4.3.12) must
be employed.

Numerical results for the ratio of the nonlinear to

the linear period are plotted in Figure 4.3.1 versus the
£A
ey

less than 0.487, the curves lie above those of Chobotov and

dimensionaless amplitude With initial strain e
Binder. It is seen that, as ey becomes small, they ap-
proach the latter. Physically, this is fairly easy to
justify. The results of Chobotov and Rinder were obtained
on neglecting the radial inertia term. Since ey = 0.1,
say., corresponds *to an axisymmstric membrane with a small
initial strain. The contribution of the radial irertia term
in equation (3.3.6b) is thus negligible. This fact can be
established as follows. For small initial strain. the ex-
pansion coefficients C(l) for tre radial displacement as

2n

given in equation (3.3.20) can be approximated by

2
1 Ag (
Cﬁn) = 5—%:7 I = Cé;) (4.3.17)
n \

Thus the results for the ratio of the nonlinear to the

linear period obtained by (4.3.8) are found to be reasonably
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Ratio of nonlinear to linear period vs.
nondimensional amplitude for clamped
circular membranes with initial strain.
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close to those of Chobotov and Binder. On the other hand,
the curves for e, greater than 0.478 lie below those of
Chobotov and Binder. This is because, as e, becomes large,
say, e = 100, the expansion coefficients Céi) for the
radial displacement change sign (see Table 4.3.2) and can

be approximated by

(1) Aiqq
C = - —1I 4.3.18
2n 891 ( )

The function F(e,) as given by (4.3.6) does not seem to
be sensitive to the variations of the large initial strain
(see Table 4.3.3). Thus the differences between the results
obtained by (4.3.8) and those of Chobotov and Binder are

about 2.5 per cent.

2
1°

When e, = 0.487, it can be shown that J\i = 4Q
The expansion coefficient Céi) for the radial displace-
ment becomes unbounded because the provision j\i - mzﬂi #0
fails. Physically, this means that the frequency of the
radial oscillation induced by transverse motions approaches
to that of the purely radial oscillation of the membrane.
The coefficients of the radial displacement become very
large. This case must be treated by a modified perturba-
tion method and will not be considered here.

The results obtained by neglecting the effects of the
second strain invariant and the radial inertia are found

to be reasonably close to that from the present analysis

only when ey 1is near unity.
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4.4. Circular Plate with Clamped Edge

In this section the problem of a circular plate with
clamped edge is considered as an illustrative example of
Section 3.4. The pair of coupled nonlinear partial dif-
ferential equations of motion including the effects of the
so-called second strain invariant as well as the radial
inertia term is given by equations (3.4.5a) and (3.4.5b).

The boundary conditions are

n 1is bounded as ( — 0+

n(1.7) =0 (4.4.1)
1'(1,7) =0

Y 1is bounded as ( — O

+ ]

y(1,t) =0 J

The differential equation (2.2.7) together with the boundary
conditions (4.4.1) yield the following transcendental

equation for the eigenvalues:

3. (B) +%2'}/‘—g'§'11(6) =0 (4.4.3)
o\ _
where J. and I are the Besel and the modified Bessel
functions of the first kind. The subscript n refers to
the order of these functions. Ry the orthogonality condi-
tion (2.2.10) with the weighting function r(f{) equal to

€, the normalized transverse spatial eigenfunctions and

their corresponding eigenvalues are
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. Jo(By)
v (L) = C [3o(B L) - 337—5]1‘:,— To (R t)] x
Q% = By r(4.4.4)
k=1,2,3, ..., y

where the normalized constant C is defined as

c = V2 (4.4.5)

SHEN /:
[ri(ak) + 23¢(By) - ;%@l]:—) If(ﬁk):[

Numerical values of Bk have been calculated and tabulated
in [14].

The differential equation (2.2.13) together with the
boundary conditions (4.4.2) yield the following tran-

scendental equation for the eigenvalues:
J.{(j) =0 (4.4.6)
Ry the orthogorality condition {(2.2.16) with the
weighting function s({) equal to (., the normalized
radial spatial eigenfunctions and their corresponding

eigenvalues are

oy N2 _ \
FnkC) _J‘zijj‘ni Jj'(thn C) h
A2 = a3t \(4.4.7)
n=1.2,3..... J

Upon introducing equations (4.4.4) and 4.4.7) into
(3.4.18) and 3.4.19), and performing the integrations on

the computer, one obtains the first order expansion
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coefficients for the radial displacement. The results of
the first nine coefficients are tabulated as a function of
T and u in Tables 4.4.1 and 4.4.2.

From equation (3.4.24), the second order frequency-

amplitude relations follow as

2 _ 2 e L2
w, = W, F(-E, W)MAT g (4.408)
where
a 1 1 1 @ (1) .1 (1),
F(=.u) = - . ( + = B
(1) Iy ({x 2 q§1 (Coq' * 3 C,q )7 Vily
AL vl s v+ vir'
g q q
+ 2(3vi2vy + % vi®)) ey, at (4.4.9)

Table 4.3.3 shows how closely the truncated series repre-
sents the function F(%,u)°

Using equation (2.2.3) and recalling that A is
equal to 12(%)2, the frequency-amplitude relations up to

terms including 2 are given by
2
w? = wf'; (1 + 12F(F,u)(F = Bez)) (4.4.10)

The ratio of the nonlinear to the linear period then follows

as
1
T*
E = 5 j/2 (4.4.11)
+ \_' £
l 1|r2nax *h
where
A =Ry |Vy| (4.4.12)
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Table 4.4.3. Convergence of F(%,u) of clamped circular

plates.
N
a .

F(H,u) 3 6 9
a
h
u=0.1

10 0.02908 0.02905 0.02905
100 0.02913 0.02910 0.02910
w=0.2

10 0.03031 0.03028 0.03028
100 0.03035 0.03032 0.03032
w=0.3

10 0.03129 0.03127 0.03127
100 0.03133 0.03130 0.03130
w=0.4

10 0.03204 0.03202 0.03202
100 0.03207 0.03205 0.03205

Wah [5' and Elotter [7] have both studied nonlinear
vibrations of circular plates using the Berger's hypothesis.
Their results along with rthose calculat‘ed from equation
(4.4.11) are plotted in Figures 4.4.1 through 4.4.4. The
curves again reveal the general feature that the nonlinear
periods decrease with increasing amplitudes. It should be
noted that the results of the present analysis are displayed
in terms of the Poisson's ratio . whereas those of Wah
and Blotter are independent of this ratio. This is because

the last term (l—u)Dwrw in equation (3.1.16) has no con-

rr

tribution to the equation governing the transverse motion of
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Figure 4.4.2.
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Figure 4.4.3.
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the clamped circular plate. The neglecting of the second
strain invariant of the middle surface leads their ratios
of the nonlinear to the linear period to be independent of
L. In addition, the term corresponding to the radial
inertia is ignored, their first strain invariant is con-
stant throughout the plate. This yields only the approxi-
mate sum of the membrane stresses. To determine the varia-
tions of the membrane stress in the radial direction, the
pair of coupled nonlinear partial differential equations
as given by (3.4.1a) and (3.4.1b) must then be used.

The ratio % = 100 represents a very thin circular
plate while % = 10 corresponds to a plate that is neither
too thin nor too thick. The frequency-amplitude relations
do not seem to be sensitive to the variations of this ratio.
This fact is seen in Table 4.4.3. Also, the results of
Wah and Blotter do not depend on this ratio. The curves
for clamped plates with % = 10 and % = 100 are undistin-
guishable and are plotted in Figures 4.4.1 through 4.4.4.
For u equal to 0.1, 0.2, or 0.3, they lie above those of
Wah and Blotter. For u equal to 0.4, they lie above
those of Wah but below those of Blotter. The periods ob-

tained by Blotter are reasonably close to the present ones

only when the Poisson's ratio u 1is near 0.3 to 0.4.



V. SUMMARY AND CONCLUSIONS

In this thesis a method of solution of two coupled
nonlinear partial differential equations is presented. It
is one form of the perturbation technique. The pair of
coupled nonlinear partial differential equations are first
converted into a system of linear partial differential
equations. The linear equations are then solved recur-
sively using the method of eigenfunction expansions. The
method is an extension of the one used in [7] for single
partial differential equations and is motivated by the fact
that many vibration problems for continuous structures are
actually governed by coupled nonlinear partial differential
equations, unless simplifying assumptions are made. - Equa-
tions governing free vibrations of nonlinear continuous
systems such as beams, circular membranes and circular
plates are derived by means of Hamilton's principle. This
results in equations that are both coupled and nonlinear
and are of the type considered here. Using the method
developed, approximate solutions for frequency-amplitude
relations, out-of-plane as well as in-plane displacements
up to second order are then obtained.

It is shown that, in general, uncoupling of these
equations of motion is achieved by neglecting the effects

79
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of both the second invariant of the middle surface strains
and the in-plane inertia. With the availability of the
present results obtained from the solutions of the coupled
equations, it is possible to assess the accuracy and valid-
ity of the various previously published results, especially
those contained in [7], on beams, circular membranes and
circular plates obtained from solving simplified, uncoupled
equations of motion.

In the case of elastic beams with large slenderness
ratio, the frequency-amplitude relations predicted by [7]
are identical to those of the present analysis, while small
deviations exist in the case of moderately thick beams
(% = 40). Thus there is a maximum error of only 0.027 per
cent for hinged-hinged beam (see Figure 4.2.1), a maximum
error of only 0.014 per cernt for clamped-clamped beam (see
Figure 4.2.2), and a maximum error of only 0.081 per cent
for clamped-hinged beam (see Figure 4.2.3). These observa-
tions tend to confirm the correctness of the assgmptions of
[71.

In the case of the elastic clamped membrane with small
initial strain, say eg = 0.1 or smaller, the results agree
with those of Chobotov and Binder. For large initial strain,
say eo = 100 or larger, there is a difference of 2.5 per
cent. For ey between 0.4 and 0.5, the results deviate
substantially from those of Chobotov and Binder. The present

perturbation method does not apply. The results obtained
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by using Berger's assumption are found to be reasonably close
to that of the present analysis only when e, is near
uni<y .
In the case of the thin elastic clamped plate, the
results of [7] do not depend on the Poisson's ratio nor the

ratio of h

a .
; while the results of the present more accurate

analysis do The periocds predicted by [7] are reasonably
close to the present ones when the Poisson's ratio u 1is
near 0.3 to 0.4. For u equal to 0.1, there is a maximum
error of 1.07 per cent.

The present work represents an extension of [7], in
which the same perturbation method was applied oniy to a
single nonlinear partial differential equation. The method
is extended here to solve pairs of coupled nonlinear partial
differential equations. It is rather remarkable that such
an extension is accomplished without requiring too greater
an effort than that required for solving single nonlinear
partial differential equations. The pair of coupled non-
linear partial differential equations enable us to take
into account the second invariant of the middle surface
strains as well as the effects of the in-plane inertia of
the continuous systems and thus lead to more accurate results.

Whereas the nonlinear frequency-amplitude relationships
obtained here do not seem to deviate substantially from
those previously obtained using simplified theories in gen-
eral. it is clear, however, that solutions of the coupled

equations do reveal more information on the motions of the
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continuous systems, such as that on the radial displace-
ments and the distributions of the in-plane stresses in

the radial direction.
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