

This is to certify that the

thesis entitled

Freeze Climatology of Michigan

presented by

Larry Jay Levitt

has been accepted towards fulfillment of the requirements for Agricultural Engin-M. S. degree in eering Technology

Fee V. Numberger Major professor

Date AUG. 21, 1981

0-7639

FREEZE CLIMATOLOGY OF MICHIGAN

Ву

Larry Jay Levitt

C/11/12

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Agricultural Engineering Department

ABSTRACT

FREEZE CLIMATOLOGY OF MICHIGAN

By

Larry Jay Levitt

Knowledge of the freeze climatology of Michigan, 1950 through 1979, was augmented by computing the probabilities of freezes during spring and fall for selected agricultural weather stations in western Michigan, a data network which had not been analyzed prior to this study. The agricultural weather network, which was established in 1962, necessitated the estimation of minimum temperatures from the longer-term climatological network by the statistical technique of linear regression. A computer program provided by the Michigan Department of Agriculture/Michigan Weather Service was used to generate freeze dates, assuming that the freeze dates were normally distributed.

Vertical temperature profiles were monitored in two grape vineyards near Texas Corners, Michigan during the spring months of 1978, 1979 and 1980 by copperconstantan thermocouples attached to an instrumentation tower. Graphs depicting the temperature inversion between 1.0 and 15.2 meters, and between 1.0 and 17.4 meters, are reported. A minimum temperature forecasting scheme developed by the National Weather Service for agricultural weather stations in western Michigan was evaluated. The 4 p.m. temperature, dew point, cloud cover, and anticipated 850 mb temperature trend were used to predict the Grand Rapids minimum temperature. This prediction served as a basis to establish a forecast for 25 agricultural weather stations in western Michigan, provided that an average difference between Grand Rapids and the station in question, for different synoptic conditions, had been determined. The technique was tested for 1977 and 1978, with the results indicating that the method is a useful guide for forecasting nocturnal minimum temperatures in western Michigan.

ACKNOWLEDGMENTS

This thesis was written in response to the Michigan grape industry's freeze problems, and they provided the financial support.

I would like to thank Dr. Dale Linvill, former Assistant Professor of Agricultural Engineering, Michigan State University, for initiating this project and coordinating the field research, and to whom I am grateful for introducing me to the discipline of agrometeorology. I would also like to express my appreciation to Dr. Jon Bartholic, assistant director of the Michigan Agricultural Experiment Station, and to Mr. Ceel Van Den Brink, advisory agricultural meteorologist (Agricultural Engineering/Entomology), Michigan State University, for their useful comments. Mr. John Jensensius kindly provided the data from the TDL Agricultural Weather Guidance. I am grateful to Mr. Gary Connors and Mr. Al Shields, Agricultural Engineering, Michigan State University, for their assistance with the vineyard instrumentation. Finally, the owners of the two vineyards in which the research was conducted, Mr. Peter Dragecivich and Mr. Del Kellogg, must be thanked for their endless cooperation.

ii

The source of the data for the agricultural weather stations was the individual records from the Cooperative Weather Observers, which are on file at the Agricultural Weather Office, Room 230, Natural Science Building, Michigan State University. The climatological data are published by the National Climatic Center (NCC) through their series entitled "Michigan Climatological Data" (MCD), and is available at the Agricultural Weather Service Office, Documents Center, Main Library, Michigan State University, and the Michigan Weather Service, Room 240 Nisbet Building, 1407 S. Harrison, East Lansing.

Finally, I would like to thank Dr. Fred Nurnberger, State Climatologist of Michigan (adjunct associate professor of Agricultural Engineering, Michigan State University), for his patience and forbearance while serving as the major professor.

TABLE OF CONTENTS

														Page
LIST C	OF	TAI	BLES	•		•	•	•	•	•	•	•	•	vi
LIST (OF	FIC	GURES	5		•	•	•	•	•	•	•	•	ix
LIST C	OF	SYI	MBOLS	5		•	•	•	•	•	•	•	•	xiii
INTROI	DUC	TIC	ON	•		•	•	•	•	•	•	•	•	1
LITERA	ATU	RE	REVI	EW	I	•	•	•	•	•	•	•	•	5
	1.]	Freez	e	C1	ima	tolo	gy	•	•	•	•	•	5
	2.	I	Freez	e	Pr	ote	ctio	n wi	th V	Vind	Mac	hines	•	8
			λ	т	~~	~ 10	1	~~~+	ь D-		-ion			
			A.	a	it	y wa Nigl	ht	eng c	.11 Ka	- •	- •	•	•	8
			в.	E F	'ru	rgy it	Bud	.gets	ot	Lea:	t and	d.	•	11
					1	•	Radi	atio	nar	ndtl	nen	otion	•	
						(of e	ffec	tive	e sky	Y			• •
					2	r	temp	erat	ure	•	• • i b l.	· ·	•	11
					2	•	late	nt h	eat	sem	SIDI	e anu		20
					3	. 1	Dete	rmin	atio	on o:	f le	af	•	
						ł	temp	erat	ure	•	•	•	•	21
					4	• 1	Requ	ired	ene	ergy	for	cold		2.2
			C	п	uh o]	prot	ecti	on	• • •		• • • • • •	•	23
			с.	र न	're	AC eze	Pro	tect	ion	i Mat	III		_	25
			D.	Ē	:mp	iri	cal	Mini	mum	Temi	oera	ture	•	23
				F	'or	eca	stin	g Fo	rmul	las	•	•	•	42
					F	orm	ulas	Ín	Grou	1 q	•	•	•	45
					F	orm	ulas	in	Grou	1p 2	•	•	•	47
					F	orm	ulas	in	Grou	3 ap	•	•	•	48
			Ε.	S	lem	i-En	mpir	ical	and	1 The	eore	tical		
				M	lin	imu	n Te	mper	atu	ce Fo	orec	asting	3	
			_	F	'or	mula	as	•	•	•	•	•	•	50
			F.	C	ur	ren	t Te	chni	ques	sof	Min	imum		
				Т	'em	pera	atur	e Pr	edic	ctio	n .	•	•	54
					H	ygr	omet	ric	Appı	coacl	n .	•	•	54
					G	rapl	nıca	Ap	proa	acn	•	•	•	55
					B	run	t an	d Re	utei	c's l	Form	ulas	•	55
					M	ult:	ıp⊥e	-Reg	ress	510n	Equ	ations	5	57

											Page
METHODS AN	ID DAT	a co	LLEC	TION		•	•	•	•	•	62
1.	Freez	e Cl	imat	olog	У	•	•	•	•	•	62
2.	Viney	ard	Data	Col	lect	ion	•	•	•	•	65
3.	Minim	um T	empe	ratu	re H	orec	asti	ng	•	•	66
RESULTS	•	•	•	•	•	•	•	•	•	•	69
1.	Freez cultu	e Cl ral	imat Weat	olog her	y of Netw	E Sel vork	ecte Stat	ed Ag	ri- in		60
2	Michi	gan	•	•	•	•	•	•	•	•	69
2.	Viney	ard	Obse	rvat	ions	5	•	•	•	•	98
	Α.	Tem	pera	ture	Pro	ofile	es	•	•	•	98
	в.	Win	d-Ma	chin	еТ	rials	5	•	•	•	124
3.	Minim Selec	um T ted	empe Agri	ratu cult	re H ural	rorec Wea	asti ther	ng f Sta	or tion	S	
	in We	ster	n Mi	chig	an	•	•	•	•	•	129
SUMMARY AN	ND CON	CLUS	IONS		•	•	•	•	•	•	142
RECOMMENDA	ATIONS		•	•	•	•	•	•	•	•	145
APPENDICES	3										
APPENDIX A AND RAW PF	A. AC RODUCT	REAG VAL	E, Y UES	IELD FOR	(TC MICH	ONS), HIGAN	USE I GRA	ES (1 APES,	'ONS)	,	
1965-1976	•	•	•	•	•	•	•	•	•	•	148
APPENDIX E FOR THRUSI	B. ES C PER	TIMA HORS	TION EPOW	OF ER	WINI •)-MAC •	CHINE	E DES	IGN •	•	149
APPENDIX C CULTURAL W	C. FR VEATHE	EEZE R ST	STA ATIO	TIST NS	ics •	FOR •	THE •	AGRI •	- •	•	150
APPENDIX I MODEL .). TE	MPER •	ATUR	E-PR	OFII •	LE PF	REDIC •	TION	•	•	168
BIBLIOGRAF	РНҮ	•	•	•	•	•	•	•	•	•	175

i.

v

LIST OF TABLES

Table		Page
1.	Air Temperatures (Sheltered Thermometers) Endured for 30 Minutes or Less by Deciduous Fruits in Selected Stages of Development	2
	(Young, 1940)	3
2.	Total Counter Radiation at 0635 CST 8/31/53 O'Neill, Nebraska	12
3.	Some Reported Values of Constants in Brunt's Nocturnal Radiation Equation for Clear	16
		10
4.	Area of Occurrence of a Temperature Rise of At Least 10 Precent of the Inversion Strength	35
		55
5.	Types of Freezes, Frequency, and Associated Temperature Characteristics (Spring Months, 1963 Through 1966)	40
6.	Results of Some Freeze Protection Tests in California	41
7.	Agricultural Weather Stations in Michigan Used in TDL Agricultural Forecast Guidance	59
8.	Mean Absolute Errors for the Minimum and Maximum Air Temperature Model Output Stat- istics Equations When Tested On One Growing Season of Independent Data (April-October, 1976)	60
9.	Climatic Network Stations Used in the Construction of 30 Year Freeze Climatology for Michigan	70
10.	Complete Listing of Predictive Equations Calculated to Estimate Minimum Temperatures for Selected Agricultural Weather Stations	0 1
		71

Table

ì

11.	Results of Calculating the χ^2 Statistic for Use in Bartlett's χ^2 Test for the Homo- geneity of the Variances, for the Climato- logical Network, the Agricultural Weather Network, the Combined Climatological and Agricultural Set, a Climatological Subset, and the Combined Agricultural and Climat- ological Subset ($\alpha = .01$)	95
12.	Distribution of Approximate 1 to 15 Meter Temperature Inversions According to 1 Meter Temperature (1978-1980) (Texas Corners, Michigan)	98
13.	Weather Conditions at Grand Rapids for Selected Nights During the Spring of 1979 .	118
14.	Weather Conditions at Grand Rapids for Selected Nights During the Spring of 1980 .	119
15.	Comparison of the Minimum Temperatures at Grand Rapids, Kalamazoo, and the Vineyard for Nights When Significant Temperature Inversions Were Occurring	124
16.	Ambient Temperatures Observed Before and During Wind-Machine Operation at 15 Loca- tions (Minimum Temperature Thermometers at the 1½ Meter Level) in the Miller Vine- yard, South 6th Street, Near Texas Corners, MI, the Morning of May 4, 1979 (^O F)	126
17.	Average Difference in Minimum Temperatures Between the Indicated Station and Grand Rapids (April 15-June 15, 1967-1976)	133
18.	Frequency Distribution of Weather Condi- tions at Grand Rapids, Michigan According to Minimum Temperature (April 15 Through June 15, 1967-1976)	134
19.	Average Absolute Difference Between the Minimum Temperature Predictions Using the Soderberg Technique and the Observed Min- imum Temperature	135
20.	Comparison Between Minimum Temperature Forecasts Using the "Soderberg" Method Method and the "4 p.m. Dew Point" Method for Grand Rapids (1977 and 1978)	137

Table

.

21.	Frequency Distribution of the Absolute Error of the Soderberg Prediction Method During 1977 and 1978 for Grand Rapids (Percentages of Total for Each Type of Temperature Change are Given in Paren-	
	theses)	138
22.	Comparison Between the Average Absolute Error Using the MOS Forecast and the Soderberg Forecast for Selected Agricul- tural Weather Stations in Western Mich-	1 2 0
	igan (April Through June, 1978)	139
23.	Correlation Coefficient of the Minimum Temperatures at Selected Agricultural Weather Stations in Michigan as Compared	
	With Grand Rapids, Michigan	141

LIST OF FIGURES

i.

Figur	e	Page
1.	Schematic Presentation of the Energy Flux Densities Emitted and Received by a Hor- izontal Leaf and By a Sphere. (Source: Businger, 1965)	13
2.	Ratio of Long-Wave Sky Radiation (R) to the Black-Body Radiation oT ⁴ Corresponding to Air Temperature as a Function of Air Temperature as Screen Height. (Source: Businger, 1965)	19
3.	Typical Air Flow Pattern Showing Direction of Air Movement Around the Turning Jet Based on Visual Observations and Temper- ature Patterns. (Source: Reese and Gerber, 1969)	29
4.	Isotherms at the 5-Foot Level Before Starting the Wind Machine. (Source: Reese and Gerber, 1963)	30
5.	Isotherms at the 5-Foot Level with the Wind Machine Operating. (Source: Reese and Gerber, 1963)	31
6.	Isotherms at 5-Foot Level with Wind Machine Operating. (Source: Reese and Gerber, 1963)	32
7.	Area Influenced By Wind Machines of Different Thrusts (Source: Crawford, 1965)	36
8.	The Area of Protection of 1, 2, 3, and 4 ^O F That Can Be Expected at the Indicated In- version Strengths When Leaves Were Not Present on Trees. (Source: Reese and Gerber, 1969)	38
9.	The Area of Protection of 1, 2, 3, and 4 ^o F That Can Be Expected at the Indicated In- version Strengths When Leaves Were Present on Trees. (Source: Reese and Gerber,	20
		39

ix

Figure

10.	Extent and Duration of Turbulence Created by the Wind Machine. (Source: Gerber and Busby, 1962)	43
11.	Locations of Stations Used in Freeze Climatology Study (1950 through 1979) .	71
12.	50% Probability Date of Last 20 ⁰ F in the Spring (1950 through 1979)	72
13.	50% Probability Date of First 20 ⁰ F in the Fall (1950 through 1979)	73
14.	50% Probability Date of Last 24 ⁰ F in the Spring (1950 through 1979)	74
15.	50% Probability Date of First 24 ⁰ F in the Fall (1950 through 1979)	75
16.	5% Probability Date of Last 28 ⁰ F in the Spring (1950 through 1979)	76
17.	50% Probability Date of Last 28 ⁰ F in the Spring (1950 through 1979)	77
18.	95% Probability Date of Last 28 ⁰ F in the Spring (1950 through 1979)	78
19.	5% Probability Date of First 28 ⁰ F in the Fall (1950 through 1979)	79
20.	50% Probability Date of First 28 ⁰ F in the Fall (1950 through 1979)	80
21.	95% Probability Date of First 28 ⁰ F in the Fall (1950 through 1979)	81
22.	Length of 28 ⁰ F Growing Season, Days (1950 through 1979)	82
23.	5% Probability Date of Last 32 ⁰ F in the Spring (1950 through 1979)	83
24.	50% Probability Date of Last 32 ⁰ F in the Spring (1950 through 1979)	84
25.	95% Probability Date of Last 32 ⁰ F in the Spring (1950 through 1979)	85
26.	5% Probability Date of First 32 ⁰ F in the Fall (1950 through 1979)	86

Figure

.

27.	50% Probability Date of First 32 ⁰ F in the Fall (1950 through 1979)	87
28.	95% Probability Date of First 32 ⁰ F in the Fall (1950 through 1979)	88
29.	Length of 32 ⁰ F Growing Season, Days (1950 through 1979)	89
30.	Inversion Strength (O F) When 1 m Temp \leq 45°F	100
31.	Temperature (^O F) at 1 m When Inversions of $\geq 1^{O}F$ Were Occurring	101
32.	Vineyard Temperature Profile on April 16- 17, 1979 at Texas Corners, Michigan. Grand Rapids Wind Speed, Wind Direction, and Cloud Cover Indicated at Top	102
33.	Vineyard Temperature Profile on April 17- 18, 1979 at Texas Corners, Michigan. Grand Rapids Wind Speed, Wind Direction, and Cloud Cover Indicated at Top	103
34.	Vineyard Temperature Profile on April 18- 19, 1979 at Texas Corners, Michigan. Grand Rapids Wind Speed, Wind Direction, and Cloud Cover Indicated at Top	104
35.	Vineyard Temperature Profile on April 19- 20, 1979 at Texas Corners, Michigan. Grand Rapids Wind Speed, Wind Direction, and Cloud Cover Indicated at Top	105
36.	Vineyard Temperature Profile on April 22- 23, 1979 at Texas Corners, Michigan. Grand Rapids Wind Speed, Wind Direction and Cloud Cover Indicated at Top	106
37.	Vineyard Temperature Profile on April 30- May 1, 1979 at Texas Corners, Michigan. Grand Rapids Wind Speed, Wind Direction, and Cloud Cover Indicated at Top	107
38.	Vineyard Temperature Profile on May 1-2, 1979 at Texas Corners, Michigan. Grand Rapids Wind Speed, Wind Direction and Cloud Cover Indicated at Top	108
39.	Vineyard Temperature Profiles on May 3-4, 1979 at Texas Corners, Michigan. Grand Rapids Wind Speed, Wind Direction, and Cloud Cover Indicated at Ter	100
	crow cover indicated at top	T03

Figure

40.	Vineyard Temperature Profile on April 30- May 1, 1980 at Texas Corners, Michigan. Grand Rapids Wind Speed, Wind Direction, and Cloud Cover Indicated at Top	110
41.	Vineyard Temperature Profile on May 6-7, 1980 at Texas Corners, Michigan. Grand Rapids Wind Speed, Wind Direction, and Cloud Cover Indicated at Top	111
42.	Vineyard Temperature Profile on May 8-9, 1980 at Texas Corners, Michigan. Grand Rapids Wind Speed, Wind Direction, and Cloud Cover Indicated at Top	112
43.	Vineyard Temperature Profile on May 9-10, 1980 at Texas Corners, Michigan. Grand Rapids Wind Speed, Wind Direction, and Cloud Cover Indicated at Top	113
44.	Vineyard Temperature Profile on May 14, 1980 at Texas Corners, Michigan. Grand Rapids Wind Speed, Wind Direction, and Cloud Cover Indicated at Top	114
45.	Vineyard Temperature Profile on May 14-15, 1980 at Texas Corners, Michigan. Grand Rapids Wind Speed, Wind Direction, and Cloud Cover Indicated at Top	115
46.	Vineyard Temperature Profile on May 15-16, 1980 at Texas Corners, Michigan. Grand Rapids Wind Speed, Wind Direction, and Cloud Cover Indicated at Top	116
47.	Minimum Temperature (^O F) for Non-Advection Nights When Cloud Cover at 4 p. m. Ranges from 0 Through 5/10. Data from April 15 through June 15, 1967 through 1976	131
48.	Minimum Temperatures (^O F) for Non-Advec- tion Nights When Cloud Cover at 4 p. m. Ranges from 5/10 to 10/10. Data from April 15 through June 15, 1967 through	
	1976	132

LIST OF SYMBOLS

ï

a	regression constant in hygrometric formulas
Α	area influenced by a wind machine
α	level of significance
b	regression constant in hygrometric formulas
в	coefficient of mass transfer
С	heat capacity per unit horizontal area of a leaf
C _F	thrust coefficient of a wind machine
C _P	power coefficient of a wind machine
c _s	specific heat of the soil
c _v	soil heat capacity per unit volume
° ₀	constant in soil temperature profile equation
x ²	chi-square statistic
đ	effective leaf diameter
d _{wm}	diameter of wind machine propeller
D	damping depth
е	vapor pressure
e _a	vapor pressure of the air
e _l	vapor pressure of the leaf
E	net outgoing radiation
ε	emissivity

٤s	emissivity of the surface
f(Y)	density function for a normal random variable Y
F	thrust of the wind machine
Fe	latent heat flux density
^F h	sensible heat flux density
F _H	convective heat flux
FP	required energy to maintain plant at the minimum tolerable temperature
(F _n) _{sky}	net radiation above the leaf
(F _n) surface	net radiation above the surface
G	counter radiation from the atmosphere
Υ	ratio of longwave sky radiation to black body radiation from surface
Г	dry-adiabatic lapse rate (temperature)
ſs	lapse rate (temperature) at sunset
h	relative humidity
^h r	derivative of Stefan-Boltzmann equation for radiative flux
^h t	coefficient of heat transfer
k	von Karman's constant
К	thermal conductivity
ĸ _H	exchange coefficient
ĸ _n	constant according to cloud type
K _s	thermal diffusivity of the soil
L	latent heat of vaporization
λ	eddy conductivity
λ_{max}	wavelength at which the earth emits maximum black-body radiation

;

N	revolutions per minute of wind machine propeller
PW	percent water in the soil on a volume basis
r	correlation coefficient
R	total longwave radiation under a couldless sky
R _N	net radiation
^R n(o)	net radiation from the soil surface
R _{N(a)}	radiation balance of the air
R _w	specific gas constant for water vapor
ρ	density of the air
°в	bulk density of the soil
°s	density of the soil (dry bulk density)
S(O)	soil heat flux
s(0) _n	flux of terrestrial radiation (n tenths of clouds)
s(0) ₀	flux of terrestrial radiation (clear skies)
S(\vec{Y})	estimated standard deviation
s ²	sample variance of the freeze statistics
σ	Stefan-Boltzmann constant
σn	standard deviation of the normal distribu-
σ _y	standard deviation of the minimum temper- ature at Grand Rapids
σ ²	population variance of the freeze statistics
t	time
т	absolute temperature (^O K) of a black body

;

Ta	air temperature at screen height
т _А	average soil temperature
т _b	radiating temperature of black copper plate facing the ground
Td	dew point temperature
Тe	effective sky temperature
Tl	leaf temperature
^T LAKE	lake temperature
T _m	minimum temperature forecast
Tmt	minimum tolerable leaf temperature
Τ _R	air temperature at 150 cm
Ts	surface temperature
Tt	radiating temperature of black copper plate facing the sky
^т х	maximum air temperature
т _w	wet bulb temperature
Τ _z	temperature at height z
T*	Lumley-Panofsky scaling temperature
^T xi	maximum soil temperature for the day at $i = 0, 5, 10, 20$ and 50 cm
^T ni	minimum soil temperatures for the day at $i = 0, 5, 10, 20$ and 50 cm
Θ	potential temperature
ిం	potential temperature at a chosen reference level
ū	mean wind speed
U. *	friction velocity
μ	mean frost date

.

v _d	number depending on d
V _H	variable depending on h
w	$2\pi/P$, where P is the period
x	climatological station
У	minimum temperature
Y	agricultural weather station
Y _{m-d}	difference between the minimum temperature and the evening dew point
Ŷ	sample mean
Z	height in the atmosphere
dT/dZ	temperature profile gradient
dU/dZ	wind profile gradient

i.

INTRODUCTION

The grape industry of Michigan is an important segment of the state economy. People who rely upon grapes for all or part of their livelihood include over 1000 farm families, 400 to 500 processor and winery employees, and potentially 2000 to 3000 seasonal part-time employees (Michigan Grape Cooperative).

According to the Michigan Agricultural Reporting Service, Michigan grape yields have been highly variable over the past 15 years. Grape production has ranged from 71,500 tons (4.3 tons per acre) in 1965 to 14,500 tons (0.9 tons per acre) in 1976. In the last 10 years, the raw product value of the grape commodities often exceeded 8 million dollars. Appendix A contains data from the Agricultural Reporting Service indicating acreage, yield, uses, and raw product values. Grape production has often been adversely affected by frost and the occurrence of freezes during the spring.

Few published accounts of the cold temperature and freeze hazards to the horticulture industry of Michigan exist. The Michigan Freeze Bulletin (1965) describes the cold hazard to fruits, farm crops, and

vegetable production in Michigan. This publication contains tables of the probability of selected temperatures occurring during spring and fall for 85 locations in Michigan. From the probability tables in this work, one may infer the cold hazard to any crop grown provided one is aware of the cold tolerance of the plant or fruit.

The statistics that are available from the Michigan Freeze Bulletin (1965) show some degree of freeze and cold temperature hazard to all agricultural areas of the state. The critical threshold temperature varies among plant species and is different for parts of the same plant. Gerber and Hashemi (1965) found that the freezing point of citrus leaves also varied with time of season. Hendershott (1962) deduced from observations in a portable freeze chamber that the critical temperature for citrus fruit is near 28°F, citrus leaves near 20-22°F, and small twigs and branches near 20[°]F. The air temperatures (in shelters at the 5-foot level) that may be endured for 30 minutes or less by deciduous fruits were reported by Young (1940), and are listed in Table 1. He specified three stages of development: buds closed but showing color, full bloom, and small green fruits.

The methods of protecting plants from cold include effective use of natural heat sources. The soil heat flux can be modified by irrigating before the freeze, clean cultivation, and forced harvesting. These passive

TABLE 1

AIR TEMPERATURES (SHELTERED THERMOMETERS)

END	URED	FOR	30	MINUTE	ES OR	LESS	BY	DECIDUOUS	FRUITS
I	N SE	LECTE	2D S	TAGES	OF D	EVELOI	PMEN	T (YOUNG,	1940)

	STAGE OF DEVELOPMENT					
FRUIT	Buds Closed But Showing Color	Full Bloom	Small Green Fruits			
Apples	25 ⁰ F	28 ⁰ F	29 ⁰ F			
Peaches	25	27	30			
Cherries	28	28	30			
Pears	25	28	30			
Plums	25	28	30			
Apricots	25	28	31			
Prunes, Italian	23	27	30			
Almonds	24	26	30			
Grapes	30	31	31			
Walnuts, English	30	30	30			

SOURCE: Brooks, Physical Microclimatology (1960)

practices increase the soil thermal conductivity and heat storage capacity, which increases the heat flux at night and thereby minimizes the rate of cooling. In contrast, active methods modify the nocturnal microclimate by the use of heat, freezing water, man-made fog, foam, or by employing wind machines to increase the turbulence and enhance the heat flux to the surface.

Successful applications of man-made fog for freeze protection is a current development, having only

been reported during the last 10 years (approximately). In particular, an atomization method has been found that efficiently produces droplets of 10 to 20 μ m diameter, and at a high enough rate to saturate the atmosphere and produce a stable fog in the lower 10 m of the atmosphere (Mee and Bartholic, 1979). The energy requirement for the atomization method is quite noteworthy, in that 100 times less energy is required than if heaters were used to obtain comparable results.

Bartholic and Brand (1979) have demonstrated that foam insulation for freeze protection may increase lowgrowing crop temperatures by 10[°]C. Difficulties in applying foam over a large area in a short time span, as well as the cost of the foam agents, have limited its use.

Regardless of whether an active or passive cold protection method is chosen, an accurate prediction of minimum air temperature coupled with quantitative knowledge of the nocturnal temperature inversion will aid the grower in deciding whether or not to employ protective practices.

The purpose of this work is to establish the freeze climatology for various agricultural weather stations, report the results of microclimate monitoring in two grape vineyards, and evaluate an empirical minimum temperature forecasting scheme for agricultural weather stations in western Michigan.

LITERATURE REVIEW

1. Freeze Climatology

The purpose of this section is to discuss probabilities of occurrence of minimum temperatures computed at selected agricultural weather stations in western The probable dates of the last occurrence in Michigan. the spring and the first occurrence in the fall for the five temperature thresholds of 20, 24, 28, 32, and 36^oF are shown in Tables Cl-Cl7 (Appendix C). This allows for computation of the growing season, which is important when determining the adaptability of various cultivars to different climates. Knowledge of the probability of freezes enables the fruit farmer to make management decisions concerning frequency of spring freezes and the effect of delaying harvest in the fall. Many other agricultural experiment stations have published research of this nature, e. g. Nevada (Sakamoto and Gifford, 1960), Indiana (Schaal et al., 1961), and Iowa (Shaw et al., 1954).

Thom and Shaw (1958) discussed at some length their rationale for assuming that the freeze series was random in contrast to a linear trend, and normally distributed. A freeze series consists of the sequence of

dates of annual occurrence of last spring or first fall freeze dates, with the sensor exposed roughly five feet above the ground. They applied the auto correlation test, and formulated an acceptance region surrounding zero based upon the number of observations in their series. As these coefficients were very small, they assumed that their freeze dates were random when evaluating its frequency distribution. Calculating kurtosis and skewness statistics and hypothesizing the existence of an acceptance region (Geary-Pearson test), they concluded that the freeze data may be represented by a normal distribution.

The interpretation of a freeze in meteorology considers that an effect produced by a critical value is also produced by any temperature lower than that value. Thus, a t-degree freeze is the occurrence of a minimum temperature of t degrees or lower.

The range of critical temperatures that will cause freezing damage to plants will depend upon the crop and its stage of development. It has been speculated that the young shoots and flower clusters of grapes are more sensitive to freeze than any other commercially grown fruit in Michigan (Michigan Freeze Bulletin, 1965). This is because temperatures of 30°F or lower may cause considerable damage if growth has begun. All growing shoots may be killed at temperatures of 26°F. Nevertheless, the extent of damage to the plant depends upon the duration of exposure to the critical temperature. A grape

bud exhibits apical dominance; that is, a secondary shoot may emerge from the same stem, resulting in a partial crop if the primary bud is killed.

Terminology often encountered in freeze studies includes hoar-frost, white frost, and black frost. Hoarfrost is synonymous with frost, referring to the interlocking matrix of ice crystals that form on exposed objects. A white frost is a particularly heavy coating of hoarfrost that is deposited by sublimation. This is to be distinguished from black frost, in which no ice crystals may be seen, but plant tissues are injured.

A white frost, by insulating the plant from further cold and by releasing the latent heat of fusion, may only result in modest damage to the plant. The internal freezing of vegetation that is associated with a black frost is indicative of the dew point being lower than ambient temperature. There is no latent heat of fusion released to offset the drop in temperature and, therefore, this is the most damaging type of frost.

Meteorologists define two distinct types of freezes based upon the physical process involved, the radiation freeze and the advection freeze. The radiation freeze is most often encountered in Michigan, as typified by high pressure systems moving in from the northwest. The clear, dry, and low wind speed conditions are conducive to the formation of temperature inversions near the ground. The advection freeze that occasionally occurs is associated

with cold fronts; it is this type of freeze, with the accompanying winds and cloud cover against which a wind machine is useless. If the cold front passes during the day and the skies clear later that evening without the winds subsiding, a "radiation-advection" freeze is said to occur.

2. Freeze Protection with Wind Machines

A. Long Wavelength Radiation at Night. Solar radiation will be reflected and scattered by the atmosphere and absorbed by the earth's surface, which becomes a source of longwave radiation. The total energy radiated by any object above a temperature of absolute zero will be proportional to the fourth power of the temperature of the radiating surface, as stated in the Stefan-Boltzmann law:

$$R = \varepsilon \sigma T^4$$
 (2.1)

where T is the abolute temperature in ${}^{O}K$, σ is the Stefan-Boltzmann constant $(7.92 \times 10^{-11} \text{ cal cm}^{-2} ({}^{O}K)^{-4} \text{ min}^{-1})$, and ε is the emissivity. Assuming that the average temperature of the earth's surface is $287^{O}K$, the Wien displacement law indicates that most of the radiation is emitted in the infrared spectral region with a peak at 10 µm:

$$\lambda_{\max} = 2897/T \tag{2.2}$$

Almost all of the sun's radiation is encompassed by short wavelengths from 0.15 μ m to 4.0 μ m, with maximum emission at 0.5 μ m. Most of the radiation emitted by the

earth's surface is in the infrared region from 4 μ m to 50 μ m. Infrared radiation is emitted during the day as well as the night.

During the night, without contributions from the direct solar beam, its diffuse components, or short wave reflected radiation, the long wavelength balance is

 $-R_{N} = \sigma T^{4} - G \qquad (2.3)$ where R_{N} is the net radiation, and G is the counter radiation from the atmosphere.

Except for thin cirrus, clouds will radiate in the manner of black bodies according to the temperature of their base or top. For example, clouds at 0° C will be a source of 0.44 cal cm⁻² min⁻¹ that is radiated downward towards the earth (Gates, 1965).

The clear night sky possesses semi-transparency to longwave infrared radiation, in which the minor atmospheric constituents, water vapor, carbon dioxide, and ozone, selectively absorb and emit energy. Absorption spectra for these gases as a function of wavelength also indicate the range in which they will radiate. Water vapor displays a sharp absorption band at 2.7 μ m, and broad absorption bands at 6.3 μ m, and also beyond 22 μ m. Carbon dioxide has its only significant absorption bands at 2.8 μ m, 4.3 μ m, and 14.9 μ m, contributing about 1/6 of the counter radiation (Geiger, 1965). This gas is uniformly mixed throughout the atmosphere; its flux of radiation would be a nearly constant contribution. Water

vapor and carbon dioxide reradiate their captured energy to space and back to earth at a lower temperature than the ground. Beyond about 14 μ m, the atmosphere gradually takes on opaque characteristics, tending towards a condition where all radiation is absorbed.

The spectral range of 8 to 14 μ m is often referred to as a "window" in which absorption is approximately 10%, and is of major importance in considering the nocturnal radiation balance. The atmosphere radiates less energy downwards as a result of this phenomenon, accounting for the surface cooling at night as net radiation is negative.

Emissivity is the fraction of the total black body radiation intensity emitted or absorbed by a layer or column, and varies according to the specified amount of gas. It usually increases as one descends in the atmosphere, as a corollary to the rise in the gas concentration. The widths of the absorption bands for water vapor, ozone, and carbon dioxide are directly related to the number of collisions that the gas molecules undergo per unit of time, and will, therefore, be proportional to the total air pressure.

To properly synthesize this knowledge with respect to infrared radiation, the "true depth" of a given gas must be substituted for its counterpart, "corrected optical depth." The true depth is the length of a column of pure gas at standard temperature (288^OK) and pressure. If this value is multiplied by the ratio of the mean pressure

of the layer to standard sea level pressure (1013.25 mb), the corrected optical depth for water vapor is obtained. Emissivities as a function of path length and temperature are reported by Sellers (1965).

Conceptually, every layer of the atmosphere plays a role in the counter radiation of energy to the earth's surface, which exceeds that to space (except near the poles). A good deal of this counter radiation will originate in the lowest 100 meters of the atmosphere, which is warmer than the upper layers, which serves as the source of the upward flux. A rather unique set of observations as deduced from an early-morning sounding conducted during the 1953 O'Neill, Nebraska micrometeorology experiments is reported in Table 2. Approximately 90% of the counter radiation emanates from the lowest 800 to 1600 meters of the atmosphere (Sellers, 1965).

B. Energy Budgets of Leaf and Fruit.

1. Radiation and the notion of effective sky temperature. The purpose of this sub-section is to acquire an understanding of the interrelationships between physical processes at the earth-air interface (i. e., radiation, convection, and evaporation) and the plant. Factors that determine leaf temperature are summarized at the end in an equation that expresses its energy budget. The leaf temperature may fall below air temperature, and it is imperative to consider this in regard to freeze protection. Characterizing the magnitude of this difference

TABLE 2)
---------	---

Percent				Originating Below
9.3				0.1 m
15.9				0.4
20.3				0.8
25.8				2.0
35.0				6.0
44.6				20.0
58.9				100.0
74.6				400.0
84.8				1000.0
98.5				4000.0
******	SOURCE:	Physical	Climatology,	by Sellers (1965)

TOTAL COUNTER RADIATION AT 0635 CST 8/31/53 O'NEILL, NEBRASKA

may serve as criteria in determining the amount of energy needed for freeze protection and the suitability of various types of freeze-protection equipment.

A model leaf and a sphere to represent its young fruit are shown in Figure 1, with the longwave radiative flux density that it receives from the sky being σT_e^4 , where T_e is the "effective sky temperature," and from the earth's surface $\varepsilon_s \sigma T_s^4$, where T_s is the surface temperature and ε_s is the emissivity of the surface. The emissivity of water, soil, and natural surfaces varies between .71 and .96 (Brooks, 1959); infrared spectrometer determinations of

Sky radiation

a leaf's emissivity in the 10 μ m region was .97 (Gates and Trantaporn, 1952). However, assuming that the leaf exhibits black-body behavior for longwave radiation and maintains a uniform temperature, it will emit a radiative flux density of σT_1^4 in either direction, T_1 being leaf temperature. Simplifying by setting the emissivity of the surface equal to one, the net radiation F_n above the leaf is:

$$(F_n)_{sky} = \sigma(T_1^4 - T_e^4)$$
 (2.4)

and

$$(\mathbf{F}_{n})_{\text{surface}} = \sigma(\mathbf{T}_{s}^{4} - \mathbf{T}_{1}^{4})$$
(2.5)

Businger (1965) aptly describes the effective sky temperature (T_e) as the critical variable in the energy budget of the leaf or fruit. This parameter has been correlated with air temperature and/or relative humidity (Brunt, 1939; Goss and Brooks, 1956; Swinbank, 1963). The parameter may be mathematically defined by:

$$T_e^4 = \gamma T_a^4$$
 (2.6)

where T_a is the air temperature at screen height, and γ is a dimensionless coefficient of the ratio of longwave sky radiation to black-body radiation from the surface. It is occasionally referred to in the literature as "effective emissivity."

The downward longwave radiation has been estimated in the past by the construction of Elasser radiation charts for cloudless nights (Brooks, 1952). Researchers who have taken an in-depth look at longwave radiation from clear skies cite two reasons for not using the charts for agricultural purposes. They claim that detailed information of both the distribution of water vapor and temperature in the atmosphere is necessary, which cannot be approximated with sufficient accuracy from distant radiosonde observations (Gates, 1965; Goss and Brooks, 1956; Swinbank, 1963).

Consequently, many people have endeavored to express the intensity of longwave radiation received at the ground from a clear atmosphere. This was originally postulated as an exponential expression by Angstrom, but Brunt's expression was simpler and gained wide acclaim (Brunt, 1939):

$$R/\sigma T^4 = a + b \sqrt{e}$$
 (2.7)

where R is the total longwave downcoming atmospheric radiation under a cloudless sky, T^4 is the outgoing black body radiation, and e is the mean monthly local vapor pressure in millibars.

Some reported values of constants in Brunt's nocturnal radiation equation for clear skies appear in Table 3. Many of the correlation coefficients are high, but there is a wide range in the values of a and b. This may be attributed to difficulties with instruments, variations of observational techniques, and the manner of specifying the vapor pressure. The Brunt formulation was later modified by assuming a fixed relationship between vertical optical depth of water vapor, and incorporating

|--|

and the second se					
Researcher	Location			Correlation Coefficient	Range of e (mb)
Dines	England	0.52	0.065	0.97	7-14
Asklof	Sweden	0.43	0.082	0.83	2-4
Angstrom	Algeria	0.48	0.058	0.73	5-15
Boutaric	France	0.60	0.042	-	3-11
Ramanathan and Desai	India	0.47	0.061	0.92	8-18
Brunt	England	0.55	0.056	0.95	7-14
Anderson	Oklahoma	0.68	0.036	0.92	3-30
Angstrom	California	0.50	0.032	0.30	-
Eckel	Austria	0.47	0.063	0.89	-
Goss and Brooks	California	0.66	0.039	0.89	4-22

SOME REPORTED VALUES OF CONSTANTS IN BRUNT'S NOCTURNAL RADIATION EQUATION FOR CLEAR SKIES

SOURCE: Goss and Brooks, 1956)

the pressure dependency of the absorption coefficients of water vapor and observed vapor pressure.

Further investigation by Swinbank (1963) revealed that R can be predicted "to a high degree of accuracy" from the low level air temperature alone. He examined the correlation between R and black-body radiation at the corresponding screen temperature T_a . Analyzing two different sets of observations over a range of temperatures and humidities, a correlation of 0.99 was found. The correlation between R and σT_a^4 was also 0.99, and the regression equation he obtained was:

$$R = -17.09 + 1.195 T_a^4$$
(2.8)
where R is in milliwatts cm⁻² and T_a is in ^OK.

An alternative formulation which fits the observations with equivalent accuracy, and is better founded physically, is:

$$R = 5.31 \times 10^{-14} T_a^6$$
 (2.9)

Either expression will provide an estimate of R in terms of T_a with an error of less than 0.5 mw cm⁻².

The emission of longwave radiation by the atmosphere is influenced by the 6.3 μ m water vapor absorption bands. The total area under the black body distribution curve varies as the fourth power of the temperature; however, monochromatic emission varies with a higher power of the temperature for wavelengths shorter than the modal (peak), and with a lower power for wavelengths longer than the modal. The 6.3 μ m water vapor absorption band is on the short wavelength side of the 300^OK black body spectral distribution, whose modal emission is at 10 μ m. The strong temperature influence of this band shows that the dependence of the total emission of radiation by the atmosphere upon the sixth power of the temperature is reasonable from a physical standpoint.

In conclusion, the excellent correlation showing the dependence of R on T may be explained by the characteristics of the absorption spectra of water and carbon dioxide. Perhaps it is an indication that there is always enough water vapor in the lower troposphere to cause the water vapor bands to emit as black bodies. The component of R due to carbon dioxide, because of the intense absorption exhibited by the gas at atmospheric concentrations, will originate at a level close to the surface at a temperature very nearly equal to T_a . Therefore, the contribution of R from water vapor may be conceived as being a function of T_a . The depth of the surface layer that is necessary to contain sufficient water vapor to cause full radiation in the relevant wave bands may be shallow enough so as to differ very little from the surface temperature T_c .

Nevertheless, other observations of γ versus temperature seem to show lower correlations. In Figure 2, γ is plotted as a function of temperature for four sets of observations. There is a large scatter of points, supposedly due to variations in both temperature and humidity near the earth's surface.

It is important to note that relatively few observations were recorded in the vicinity of 0° C. (This was also true for Swinbank's data.) From this data, one may infer that γ would average about 0.7 for a typical freeze night. During most evenings, γ will gradually increase with decreasing temperature. This is also due to the relatively greater downward radiation as a response to the

vertical temperature gradient in the lower atmosphere.

2. Transfer of sensible and latent heat. Some degree of convection will always occur around leaves, regardless of the prevailing wind conditions. The sensible heat flux density to the air immediately surrounding the leaf may be expressed by:

$$F_{h} = h_{+}(T_{1} - T_{a})$$
(2.10)

where h_t is the coefficient of heat transfer, which depends upon wind speed, size, and shape of the leaf, T_a is the air temperature, and T_1 is the leaf temperature (Businger, 1965).

The latent heat flux density may be similarly expressed by:

$$F_{e} = \frac{L\beta}{R_{w}T_{a}}(e_{1}-e_{a})$$
(2.11)

where L is the latent heat of vaporization, β is the coefficient of mass transfer, R_w is the specific gas constant for water vapor, e_1 and e_a are vapor pressures at the leaf surface and of the surrounding air, respectively (Businger, 1965).

If the surface of the leaf is wet, the vapor pressure at the surface will be equal to the saturation vapor pressure at the leaf temperature. When this happens, both the coefficient of mass transfer β and coefficient of heat transfer h will be a function of wind speed and shape of the leaf. Therefore the ratio β/h will be constant for a range of temperatures and pressures used in the psychrometric equation $(6.3 \times 10^{-5} \text{ cm}^2 \text{ dyne}^{-1} \text{ C})$. The heat transfer coefficient is often incorporated in the dimensionless Nusselt number hd/k, and expressed as a function of Reynolds number vd/v, where d is the effective leaf diameter, k is the thermal conductivity of the air, v is wind speed, and v is the kinematic viscosity of the air.

3. Determination of leaf temperature. The energy balance of a leaf requiring freeze protection can be formulated theoretically by considering a single horizontal leaf (Figure 1). The derivation that follows is primarily due to Businger (1965), with additional information from Raschke (1960), Gerber and Harrison (1964), and Gerber and Martsolf (1979). A simple equation for the energy budget of a leaf may be stated by assuming that the temperature of the leaf is uniform, and that the heat capacity per unit horizontal area is C:

-
$$(F_n)_{sky}$$
 + $(F_n)_{surface}$ - $2F_h$ - $2F_e$ = $C\frac{dT_1}{dt}$ (2.12)

The leaf temperature has a controlling influence over each of the heat-transfer processes. Convection and conduction are proportional to the temperature difference between plant and environment; radiation loss in the infrared varies with temperature raised to the fourth power. The saturation vapor pressure of water is approximately an exponential function of temperature. Because of these relationships, the energy balance equation is

transcendental; i. e., it cannot be solved as it stands.

Raschke (1960) initially solved the energy-balance equation by equating a linear function with a vapor-pressure function (exponential function), and graphically displaying each function in order to find the point of intersection, which gives the temperature of the leaf. Raschke (1960) found a guicker method to obtain the leaf temperature by invoking certain mathematical approximations in considering the temperature difference between the leaf and the air. The key assumption in applying this method is that the curves of the radiation and vapor pressure as a function of temperature (in a small range) can be approximated by their tangents at the T_a. Radiative transfer may be calculated by first assuming that the leaf and air temperatures are equal, and then incorporating a correction factor to account for the difference in leaf and air temperature. This consists of the product of the tangent of the radiation-temperature curve and the difference in leaf and air temperature. For differences in temperature of less than 5°C, the first term of a Taylor's series may be an adequate approximation to the tangent of the radiation-temperature curve (Gerber and Harrison, 1964):

$$R_{N} = R_{N(a)} - 2(dR_{N}/dT)(T_{a}-T_{1})$$

$$R_{N} = 2h_{r}(T_{a}-T_{1})$$

$$h_{r} = dR_{N}/dT = 4\sigma T_{a}^{3}$$
(2.13)

where h_r is the derivative of the Stefan-Boltzmann equation for radiative flux, and has the dimensions of a heattransfer coefficient, and $R_{N(a)}$ is the radiative balance when the leaf temperature equals the air temperature.

Equation 2.12 is usually combined with equations 2.4, 2.5, 2.6, 2.10, and 2.11, yielding:

$$4\sigma T_{a}^{3}(\gamma T_{a}+T_{s}-2T_{1}) + 2h(T_{a}-T_{1}) + \frac{2L\beta}{R_{w}T_{a}}(e_{a}-e_{1})$$
$$= C\frac{dt_{1}}{dt}$$
(2.14)

The surface temperature is not measured very often; it will be a function of soil type, soil cover, heat capacity of the soil, and sky radiation. If the soil cover insulates well, T_s may be a function of the effective sky temperature, soil temperature, and thickness of the insulator.

4. Required energy for cold protection. The energy flux density F_p is the required energy necessary to maintain the leaf temperature at the minimum tolerable temperature T_m , which occurs when $dT_m/dt = 0$. This is expressed by equation 2.14 if we substitute e_m for the vapor pressure at the leaf surface, and T_m for the air temperature T_a . If equation 2.14 is subtracted from such an equation, we obtain:

$$F_{p} = 2(h_{r}+h)(T_{m}-T_{1}) + \frac{2L\beta}{R_{w}T_{a}}(e_{m}-e_{1})$$
(2.15)

Assuming that the vapor pressure of the leaf is saturated at air temperature, the difference between the vapor pressure of the leaf and the actual vapor pressure can be adjusted by adding the product of the temperature difference between leaf and air, and the tangent of the saturated vapor pressure-temperature curve at the average temperature. The Clausius-Clapeyron equation expresses the difference in vapor pressures between T_m and T_1 (in approximate form):

$$\mathbf{e}_{m} - \mathbf{e}_{1} = \frac{\mathbf{L}\overline{\mathbf{e}}}{\mathbf{R}_{w}\overline{\mathbf{T}}^{2}} (\mathbf{T}_{m} - \mathbf{T}_{1})$$
(2.16)

where \overline{e} is the average of e_m and e_1 , and T_m may be used instead of \overline{T} . Therefore, equation 2.15 becomes:

$$F_{p} = 2(h_{r}+h+h_{e})(T_{m}-T_{1})$$
(2.17)

where

$$h_{e} = \frac{L^{2} \overline{e} \beta}{R_{w}^{2} T_{m}^{3}}$$

In the vicinity of $0^{\circ}C$, h_e is approximately equal to 0.46h, and h_r is approximately equal to 1.1×10^{-4} cal cm⁻² sec⁻¹, and C = 4.7 × 10^3 erg cm⁻² sec⁻¹C (Businger, 1965).

Fuchs and Tanner (1966) describe the method of infrared thermometry for obtaining the leaf temperature. This is one of the most accurate means to measure this parameter, because other methods depend entirely upon contact with the leaf surface. Instruments such as thermocouples, thermistors, and diffusion porometers suffer from the disadvantage that they must make contact with the leaf surface. Because the radiation load on each side of the leaf will be different at different temperatures, you may at best have only an average of the two surfaces, rather than a distinct temperature for the top of the leaf.

It is important to note that the factor 2 appears in equation 2.16 because the leaf has two surfaces. In dealing with a fruit bud which is spherical, the factor 4 should be used, as the surface of a sphere is four times its cross section (Businger, 1965).

Broadly speaking, four processes may be considered to provide the required energy F_p :

 To prevent radiation loss through the use of man-made fog;

 To utilize the release of the latent heat of fusion by sprinkling;

3. To heat the air surrounding the plants; and

4. To transport the warmer air available above the fruit crop into the immediate vicinity of the fruit.

The remainder of this section will deal with the last process, which is the action of wind machines to prevent damage to fruit crops.

C. The Action of Wind Machines in Freeze Protection. Wind machines have been used in California since the 1920s (Gerber and Busby, 1959), but have only been reported in Arizona since 1954 (Hilgeman et al., 1964), and in Florida since about 1960 (Reese and Gerber, 1969). They have also seen limited use in Washington and Idaho orchards (Ballard, 1976), Oregon (Bates, 1972), and British Columbia in Canada (Davis, 1977). To date, no studies of their effectiveness in Michigan have been published, although they have been in use since about 1950.

The objective here is to point out the salient features of these studies in order to interpret the results of the experiments at Texas Corners, MI conducted during 1978, 1979, and 1980.

The most crucial factor for the successful performance of a wind machine is the existence of a sufficient temperature inversion in the orchard or vineyard. These values are typically reported in terms of 5-50 foot inversions, or some other comparable range. Wind machines are only effective in the absence of wind (non-advective conditions), and, of course, when the actual temperatures that compose the profile are warm enough to potentially raise the leaf or bud temperatures above critical temperatures.

The primary role of the wind machine in freeze protection is to pull warm air available above the crop down to its growing level. Turbulence induced by the wind machine is also beneficial as it increases the turbulent transfer coefficient (h_{+} in equation 2.10) for the sensible

heat flux towards the leaf or bud (which may be cooled below air temperature during radiative freezes). Although the physiology of freezing damage is beyond the scope of this thesis, it is generally accepted that partially frozen fruit are injured less if they thaw slowly. Therefore, if the wind machine is operated after sunrise, rapid warming that occurs from direct exposure to the sun may be slowed (Crawford, 1965). According to some of the Texas Corners observations, quite often a temperature inversion may exist for at least one-half hour past sunrise. Also. some fruit might not incur freeze damage due to its ability to sub-cool without destructive crystallization. Brooks (1947) speculated that the turbulence would minimize the temperature contrast between the exposed side and the shielded side of the fruit, and that this would enhance the possibility of subcooling without damage.

The protection pattern around a wind machine has often been reported to be roughly circular (Gerber and Busby, 1963; Bates, 1972; Crawford and Brooks, 1959; Crawford and Leonard, 1960). However, other protection patterns similar to a torus have also been reported in the literature (Brooks et al., 1951). This pattern was often observed to be elongated on the downdrift side and shortened on the updrift side.

Reese and Gerber (1969) utilized the most elaborate instrumentation system of any of the wind-machine trials conducted up until that time to study its protection

They observed that the protected area was pattern. apparently kidney-shaped in many instances and not isothermal (Figure 3). This hypothesis was also borne out by observations in a Florida citrus grove (Reese and Gerber, 1963) as depicted in Figures 4, 5, and 6. The instrumentation layout in this study was quite unique in that it was designed to simulate the spokes of a wheel, using the machine tower as an axle. Many thermistors were mounted on 28 temperature towers at 5 and 20 feet, and on inversion towers at 5, 20, 35, and 50 feet. Sensitive cup anemometers were used at 5 and 20 feet, and were placed 100, 200, and 300 feet east of the wind machine. Signals from their thermistors were recorded on four Leeds and Northrup 20-point recorders to obtain a complete coverage of the temperature over the entire area every 80 seconds.

The typical air flow pattern was then verified by Reese and Gerber (1969) with the aid of smoke plumes from heaters. They noted an inward air movement immediately prior to the passage of the turning jet, which is where the depression appears in the isotherms. This was accompanied by an inward flow of air that moves parallel but opposite to the outward traveling jet.

Wind machines act to move warm air downward; in a reciprocal manner, it moves colder air inward from the surface in advance of the jet. As it pushes out a small pocket of air in the lower atmosphere, the air pressure

Figure 3. Typical air flow pattern showing direction of air movement around the turning jet based on visual observations and temperature patterns. (Source: Reese and Gerber, 1969)

Meteorological Data

Sky: Clear		Date:	January 4, 1963
Wind: NNW	0-2 m. p. h.	Time:	2:25 a. m.
Inversion:	5-20 ft., 2.1 ⁰ F 5-50 ft., 9.7 ⁰ F	Square bounda test p	corners indicate ries of 10 acre lot.
Check:	29.5 F	Trees	foliated.

Figure 4. Isotherms at the 5-foot level before starting the wind machine. (Source: Reese and Gerber, 1963)

Meteorological Data

Sky: Clear	Date: January 4, 1963		
Wind: NNW 0-2 mph	Time: 4:20 a.m.		
Inversion: 5-20 ft., 3.1 ^O F 5-50 ft., 6.9 ^O F	Square corners indicate boundaries of 10 acre test plot.		
Check: 29.0° F	Trees defoliated.		
	Dashed line is edge of turning jet.		

Figure 5. Isotherms at the 5-foot level with the wind machine operating. (Source: Reese and Gerber, 1963)

Meteorological Data

Sky: Clear

Wind: W 0-2.5 mph

Inversion: $5-20 \text{ ft.}, 0.5^{\circ}\text{F}$ 5-50 ft., 5.7°F

Check: 27.5^OF

Date: December 11, 1962

Time: 12:20 a. m.

Square corners indicate boundaries of 10 acre test plot.

Trees foliated.

Dashed line is edge of turning jet.

Figure 6. Isotherms at 5-foot level with wind machine operating. (Source: Reese and Gerber, 1963)

is lowered surrounding the wind machine. This allows for warmer, less dense air to move into the area. The thrust of the turning jet was seen to maintain this pocket once it was formed by adding energy with each revolution of the wind machine.

Early attempts to articulate the adequacy of freeze protection by wind machines were mostly in terms of horsepower per acre. Using the micrometeorological aspects of a dry atmosphere, Ball (1956) showed that 1/4 horsepower per acre would mix a 100-foot layer. This estimate differed from some of the prior field data by nearly two orders of magnitude. The inconsistency of the field data may have occurred because the efficiency of the propeller in transmitting horsepower to the air was not taken into account. For a given thrust, the shaft power is inversely proportional to the propeller diameter (see Appendix B).

The most useful characteristic of a wind machine is the thrust. The reach of a wind machine will be determined mainly by its thrust and the pressure exerted by the wall of cold air which is trying to flow back into the protected area (Brooks et al., 1952).

Crawford (1962) discussed the concepts of power and thrust with respect to wind machines, and derived an equation for the area influenced by a slowly turning wind machine. This derivation involves fluid mechanical theory of the free air jet, and considers it to be geometrically

and dynamically similar to an air jet produced by a nozzle. An important assumption in deriving the equation was that the lateral velocity profiles in a turbulent, axiallysymmetric jet can be closely approximated by a normal distribution. The air jet must attain some minimum velocity before the turbulent mixing created by the wind machine can be effective, so the average cross sectional velocity was incorporated into the equation:

$$A = \frac{25}{u_a^2} \left(\frac{F}{\rho\pi}\right) \quad (acres) \tag{2.18}$$

where A is the area influenced, u_a is the minimum value of average cross sectional velocity, and F is the thrust (kg). The constant 25 takes into account the ratio of the average velocity to the centerline velocity of a jet, as well as the decrease of centerline velocity with distance from the nozzle.

The average cross-sectional velocity (u_a) was defined to be the velocity necessary to cause a temperature rise in the orchard of 10 percent of the temperature inversion between five and fifty feet above the ground. Implicit in this definition is the frictional decay of the free-air jet by the ground surface and vegetation.

Table 4 gives the small amount of data available from field tests of wind machines that include the temperature inversion, temperature changes over a given area, and the thrust of a wind machine. Field tests later than 1964 (Reese and Gerber, 1969; Bates, 1972; Davis, 1977) either did not discuss thrust or did not use

TABLE 4

AREA OF OCCURRENCE OF A TEMPERATURE RISE OF AT LEAST 10 PERCENT OF THE INVERSION STRENGTH

Wind	Machine Type	Orchard	Thrust, Pounds	Area, Acres	Reference
Under	r tree	Peaches	320	3.6	Crawford and Leonard, 1960
Under	r tree	Peaches	320	6.2	Crawford and Leonard, 1960
Under	r tree	Peaches	250	4.4	Crawford and Leonard, 1960
Undei	r tree	Peaches	390	12.4	Crawford and Leonard, 1960
Undei	r tree	Peaches	470	1.2	Crawford and Leonard, 1960
Tower	c	Prunes	1100	18.8	Goodall et al., 1957
Tower	c	Almonds	1050	19.1	Goodall et al., 1957
Tower	c	Citrus	1050	18.0	Brooks et al., 1952
Tower	c	Citrus	240	7.2	Brooks et al., 1952
Tower	c	Almonds	340	4.6	Rhoades et al., 1955

SOURCE: Crawford, 1964.

instrumentation sensitive enough to determine whether adequate mixing was occurring. These data are also summarized in Figure 7. A line of best fit was drawn through the data. Using equation 2.18 and $\rho = 1.29 \times 10^{-3}$ gm per cubic centimeter, a value of 112.8 centimeters per second was found for u_a from the slope of the line in Figure 7.

The amount of temperature rise that a wind machine will provide depends on the strength of the

THRUST, Kilograms

Figure 7. Area influenced by wind machines of different thrusts. (Source: Crawford, 1965)

inversion. The most comprehensive set of measurements relating the area of protection (resulting in a temperature rise of 1 through 4° F) that can be expected at various temperature inversions was discussed by Reese and Gerber (1969). These results are summarized in Figures 8 and 9 according to whether or not leaves were present in the orchard. The area of protection was found to be greater with weak inversions when leaves were absent (Figure 8). (The authors do not give any explanation for this result.) The two sets of curves gradually converged as the inversion strength increased. During the occurrence of large temperature inversions (8⁰F or more), the area protected in defoliated citrus trees became less than that found when leaves were present on the trees. The two sets of curves reported by Reese and Gerber (1969) differ because the presence of foliage increases the surface roughness, which in turn creates more eddies in the orchard. Although the jet will penetrate further without foliage, the turbulent mixing and therefore the degree of protection will be less.

Although Reese and Gerber (1969) discuss inversion strength as a function of wind speed, they seem to assume calm or very light winds in their figures. Thus, the results of Crawford and Leonard (1960) seem to fit their observations reasonably well, and are summarized in Table 5. Several other studies were reviewed for the purpose of adding data to this table (Crawford and Brooks, 1959; Brooks et al., 1951; Brooks et al., 1952; Brooks

Figure 8. The area of protection of 1, 2, 3, and $4^{\rm O}F$ that can be expected at the indicated inversion strengths when leaves were not present on trees. (Source: Reese and Gerber, 1969)

Figure 9. The area of protection of 1, 2, 3, and $4^{O}F$ that can be expected at the indicated inversion strengths when leaves were present on trees. (Source: Reese and Gerber, 1969)

et al., 1953; Brooks et al., 1954; Rhoades et al., 1955). However, these results were not consonant with Crawford and Leonard's data, either due to the fact that inversions were recorded from 7 to 40 feet, or that the drift was not specified.

In Michigan, Van Den Brink (1968) reported observations of temperature inversions from the 5 to 60 foot level in the vicinity of Peach Ridge, near Sparta, Michigan. Table 6 summarizes the types of freeze, frequency, and associated temperature characteristics for the spring months 1963 through 1966. The magnitude of the temperature inversions that were encountered during radiative-type frrezes throughout the course of this study usually ranged between 4^oF and 6^oF.

TABLE 5

Date	Inversion 5'-50' (F)	Wind at 50' (mph)	Wind Machine Thrust (lbs)	Temp Rise (^O F)	Min Temp (^O F)	Areal Coverage (acres)
3/20/59	7.4	2.0	320	1.0	35	2.7
3/25/59	6.1	2.7	320	1.0	34	3.8
12/8/59	8.6	3.3	250	1.0	23	3.8
1/5/60	5.9	1.7	390	1.0	21	7.3

RESULTS OF SOME FREEZE PROTECTION TESTS IN CALIFORNIA

SOURCE: Crawford and Leonard, 1960

TABLE 6

TYPES OF FREEZES, FREQUENCY, AND ASSOCIATED TEMPERATURE CHARACTERISTICS (SPRING MONTHS, 1963 THROUGH 1966)

Minimum		ze		
Temperature at 5-Foot Level	Factor ^a	Radiation	Advection	Advection- Radiation
32 ⁰ F or lower (23 cases)	A B C D E≤32 ^O F F	12 52% 5.3° 27.9° 7.1 53.4°	6 26% 2.0° 29.0° 6.0 52.8°	5 22% 4.0 ⁰ 30.1 ⁰ 2.6 62.0 ⁰
30 ⁰ F or lower (16 cases)	A B C D E≤30 ^O F F	8 50% 5.4 ⁰ 26.4 ⁰ 6.7 50.9 ⁰	5 31% 2.2 ⁰ 28.6 ⁰ 3.9 52.8 ⁰	3 19% 3.7 ⁰ 29.2 ⁰ 1.8 63.0 ⁰
28 ⁰ F or lower (8 cases)	A B C D E≤28 ⁰ F F	7 87% 5.4 ⁰ 26.1 ⁰ 4.7 50.4 ⁰	1 13% 0.0 ⁰ 26.5 ⁰ 5.0 51.0 ⁰	0 - - - -
26 ⁰ F or lower (3 cases)	A B C D E≤26 ⁰ F F	3 100% 4.5° 24.7° 4.7 4.7 47.3°	0 	0

^aFactors: A = Number of cases B = Frequency C = Average maximum inversion (^OF), 5-60 ft. D = Average minimum temperature E = Average number of hours, temperature shown F = Average previous day's maximum

SOURCE: Van Den Brink, 1968.

Gerber and Busby (1962) describe the turbulent mixing of a wind machine as observed by a captive balloon on nylon yarn. The duration of the turbulence will be a fraction of the time required for the machine to make one revolution, and was observed to extend 425 feet downwind and 300 feet upwind (Figure 10). From this data they hypothesize that reduced protection around the edge of a protected area is due to the shorter duration of the turbulence. No other observations of the decay of the turbulence with distance appear in the literature, but speculations abound. For example, Bates (1972) claims that a radius of 320 feet will be the limit at which protection should be expected, but that the turbulence was evident to about 650 feet. In an early study, Moses (1938) says that the effectiveness of a small machine decreases rapidly beyond 300 feet. Recommendations by Brooks et al. (1952) for spacing of several wind machines in a 40-acre citrus grove were that they should be 600 to 800 feet apart.

D. Empirical Minimum Temperature Forecasting Formulas. According to Sutton (1953), Kammerman's rule was the predecessor of many rules for forecasting the minimum temperature. This rule appeals to the principle that the amount of water vapor in the air controls the radiative heat loss. The nocturnal minimum temperature is established by subtracting a constant number of degrees from a previously determined wet-bulb temperature.

Figure 10. Extent and duration of turbulence created by the wind machine. (Source: Gerber and Busby, 1962) Subsequent investigations revealed that better results were obtained when both the wet-bulb and dry-bulb temperature were taken into account. The physical parameters that are common to the formulation of these empirical relationships are: dry-bulb temperature, wetbulb temperature, dew point, wind speed, and cloud cover.

Bagdonas et al. (1978) extensively reviewed many empirical and theoretical techniques of minimum temperature forecasting. Cold damage to fruit and crops in the far western regions of the United States sparked interest in developing local temperature forecasting formulas by analyzing data statistically. After the factors to be correlated have been selected, the actual construction of the minimum temperature formulas is similar. A scatter diagram is prepared by plotting one factor against another, and a line of "best fit" is then determined.

An average moisture content of the soil surface is usually assumed in the construction of these formulas. An extreme condition in soil moisture is an important factor in minimum temperature forecasting, particularly when a hygrometric formula is applied. The minimum temperature will be lowered or raised, depending on whether an abnormally dry or rain-soaked soil exists.

Ellison (1928) discusses empirical formulas which were designed to evaluate the minimum temperature from factors which can be assigned definite values in the early evening. These formulas may be placed into three

groups:

Group 1: y = f(Y)Group 2: y = f(d)Group 3: y = f(d) + f(h)

The following mathematical conventions will be used throughout the remainder of this discussion:

> y is the minimum temperature d is the dew point at an afternoon observation n is a number deduced from study of data V_d is a number depending on d V_h is a variable depending on h

Formulas in Group 1. The "median-hour" relationship uses the midpoint of the daily temperature range to predict the minimum temperature. The temperature at the time of the median is subtracted from the maximum temperature, and the remainder is the fall that will occur between the median and the minimum temperature (Beals, 1912).

One type of night which often occurs with ideal freeze conditions is when the dew point approaches or reaches the air temperature near the median hour, in which case the median-hour relationship should not be used to predict the minimum temperature.

Another rather infrequent case in which this formula would not apply is the "advective-radiative" freeze. This situation is defined to be the occurrence of frost at night following the passage of a cold front, which is often preceded by a cloudy afternoon.

A rapid drop in air temperature in the early evening is often accompanied by local winds, e.g. mountain and valley winds, and this will cause the temperature to fluctuate over short intervals. This formulation suffers from the fact that the instantaneous temperature at the median hour is affected by local conditions.

The time of occurrence of the median hour in many areas of the country is so late that it is not practical to use the formula in the preparation of forecasts.

The "post-median hour" relationship consists of recording the difference between the maximum temperature and the 10 p.m. air temperature, and taking this to be two-thirds of the difference between the maximum and minimum air temperature (Thomas, 1912). This formula is also not practical because of the lateness of the postmedian hour.

The "pre-median hour" method establishes the temperature fall in the early evening. This technique is used by the forecaster to predict the median-hour temperature by extrapolation (Alter, 1920). Although this allows for an earlier approximation of the minimum temperature than by the median-hour method, it is subject to more error.

A "daily temperature range" method was formulated by Smith (1914) in which the mean, greatest, and least daily temperature ranges were compiled for semi-monthly periods. These values are used to forecast the minimum

temperature once the maximum temperature is known.

Formulas in Group 2. Humphreys (1914) proposed an "evening dew point" relationship in which the temperature is assumed not to fall below the coincident dew point. The minimum temperature is predicted to equal the evening dew point.

Meteorological records from fruit-frost work show that this relationship will only work consistently for stations that are elevated. The minimum temperature is often 8° F to 10° F lower than the evening dew point (Ellison, 1928).

Keyser (1922) proposed the "wet-bulb minimum temperature" method in which the average difference between the wet-bulb temperature at 5 p. m. and the minimum temperature was subtracted from the current 5 p. m. wetbulb temperature to establish a forecast minimum. Similarly, Smith (1920) correlated the difference between the evening temperature and dew point with the difference between the evening dew point and ensuing minimum temperature. Nichols (1926) devised the "depression of the dew point below the maximum temperature" method, in which the maximum temperature minus the evening dew point is correlated to the difference between the maximum and minimum temperature.

However, Ellison (1928) points out that all of the formulas in the previous paragraph are in error. Under the assumption of constant dew point, the wet-bulb formula

implies constant relative humidity. Also, the depression of the evening dew point is a pure number which may correspond to widely differing values of absolute humidity or air temperature.

Formulas in Group 3. The hygrometric formulas rely upon the concept that the minimum temperature will be greater than or less than the evening dew point by an amount related to the relative humidity. Most of the literature on minimum temperature formulas, especially since 1930, has dealt with formulas of this nature.

Ellison (1928) reports that the first hygrometric relationship was put forward by Donnel in 1910, while working on Boise, Idaho freeze records:

$$y = d - \frac{h-a}{b}$$
 (2.19)

where a and b are constants derived from the data. Smith (1917) used linear regression, and expressed his hygrometric formula as:

 $Y_{m-d} = a - bh$ (2.20)

where Y_{m-d} is the difference between the minimum temperature and the evening dew point.

The first application of a curvilinear form of the hygrometric formula is due to meteorologist Floyd Young (1920), to whom much fruit-freeze forecasting work can be attributed. His equation was:

$$y = d - \frac{h - n}{4} + V_d + V_h$$
 (2.21)

where n = 20, 30, or 40 for clear, partly cloudy, or cloudy skies, respectively.

Smith (1920) fit parabolic curves to the hygrometric data, by suggesting an equation of the form:

 $Y = a + bh + ch^2$ (2.22)

Nichols (1920) felt that it was not necessary to use mathematical curves to fit the hygrometric data, and suggested that:

 $y = d + V_{h}$ (2.23)

After examining all of the empirical formulas, Ellison (1928) concluded that the hygrometric types were best. This conclusion was more recently borne out by Kangieser (1959), who compared several empirical formulas for clear nights in an arid region. Sutton (1953) remarked that the hygrometric equations worked very well when applied by meteorologists with a good knowledge of local conditions. The Frost Warning Service of the National Weather Service has employed hygrometric formulas very successfully for about 40 years (Bagdonas et al., 1978).

One empirical relationship for forecasting the minimum temperature deviates from the hygrometric, median temperature, and maximum-minimum concepts. Georg (1970) devised the "semi-objective radiometer technique," which implicitly establishes a relationship between the nocturnal net radiation and the air temperature at screen height. The radiating temperatures of two black copper plates, one facing the sky (T_{+}) and one facing the ground (T_{b}) , are
observed two hours after sunset. A scatter diagram of T_b-T_t vs. T_b-T_m is obtained, and two best-fit lines are computed for nights when $T_t \leq 0^{\circ}C$ and $T_t \geq 0^{\circ}C$. The predictive equations are then used to forecast T_m . It is crucial that instrumental error be minimized to insure the quality of these objective forecasts. The economical net radiometer (Suomi and Kuhn, 1958) was chosen by Georg (1970) because it is shielded from advective heat transport by transparent polyethylene, and is ventilated to prevent dew and frost deposition. Among the assumptions that are made when employing this technique is that cloud cover and wind do not change dramatically throughout the course of the evening, and that the top sensor of the instrument is evaluating the effective radiating temperature of the sky.

E. Semi-Empirical and Theoretical Minimum Temperature Forecasting Formulas. Consideration of heat-transfer laws has shown that the temperature of the earth's surface at night very closely parallels the air temperature in the boundary layer. This assumption has allowed for the development of several semi-empirical and theoretical techniques for predicting the nocturnal minimum air temperature, spanning three decades from 1920 to about 1950.

Brunt's (1941) theoretical solution of the nocturnal cooling of the earth's surface is often quoted in the literature as an approximation of the nocturnal air temperature on clear, calm nights. The equation that he developed, assuming the earth radiates as a black body,

is:

$$\Delta T = \frac{2}{\pi} \frac{T_{s}^{4} (1 - a - b\sqrt{e})}{\rho_{s} C_{s} K_{s}} \sqrt{t}$$
(2.24)

where:

- ΔT is the fall in temperature at the ground surface from sunset to sunrise (^OK)
- σ is the Stefan-Boltzmann constant (7.92 × 10⁻¹¹ cal cm⁻²(°K)⁻⁴ min⁻¹)
- T_s is the sunset temperature of the earth's surface (^OK)
- e is the vapor pressure in the atmosphere (mb)
- t is the time interval in hours and tenths of hours beyond zero on the time scale which is taken as the time of sunset
- ρ_s is the density of the soil (l.6 g cm⁻³) C_s is the specific heat of the soil (0.18 cal g⁻¹ °C⁻¹) K_s is the thermal diffusivity of the soil (cal deg^{-1} cm⁻¹ sec⁻¹) a and b are constants derived from the data

This equation essentially models the situation in which the heat flux density outward from the earth's surface by radiation is constant throughout the night, and is equal to the heat flux density from below the surface. Brunt derived his equation by solving the Fourier heat conduction equation

$$\partial T/\partial t = K_s \partial^2 T/\partial^2 Z$$
 (2.25)

with the assumptions:

1. The initial temperature distribution in the soil is isothermal (T (Z,0) = the sunset temperature of the soil surface).

2. The eddy conduction of heat from the air to the earth's surface is equal to zero.

3. The flux of heat to the earth's surface due to condensation processes is equal to zero (assuming no dew or frost).

When developing his equation, Brunt assumed one specific conductivity of heat for the surface layers of the earth.

Reuter (1951) is credited with extending Brunt's equation to include eddy conductivity in the air, and the variation of temperature with depth in the soil. The semi-empirical method that he developed was:

$$\Delta T = \frac{2}{\pi} \frac{R_{n(o)} + \lambda \frac{dT}{dZ} + (\Gamma_{s} - \Gamma)^{C} a^{A} e}{\sqrt{K_{s} \rho_{s} C_{s}} + C_{a} \sqrt{A\rho}} \sqrt{t}$$
(2.26)

where:

C

- n(o) is the net radiation from the soil surface (cal cm⁻² min⁻¹)
- λ is the coefficient of thermal conductivity of the soil (cal deg⁻¹ cm⁻¹ sec⁻¹)
- dT/dZ is the change of temperature with depth in the soil (°K/100 cm)
- Γ_{s} is the lapse rate of temperature in the air at sunset (^OK/100 m)

a is the specific heat capacity of the air
$$(J g^{-1} (^{O}K)^{-1})$$

and all other symbols are as defined for equation 2.18

Several other modifications of the Brunt formula endeavor to create a theoretically more vigorous solution. They have addressed the effect of wind on nocturnal cooling, net radiation as an explicit function of time, and the contributions of both the air and soil to the heat radiated from the earth's surface. To include wind in models of nocturnal cooling, eddy transfer coefficients were defined whose magnitude varied with height above the ground. However, it is not a sound practice to establish values of the eddy conduction of heat in an airflow characterized by an unpredictable degree of turbulence. Cooling formulas in which net radiation is not constant do not give significantly different results for time periods on the order of a night (Georg, 1971). Finally, equations that have included a conductivity parameter involving properties of both air and soil are so complex that they have no practical meaning.

The constants in forecasting formulas are affected by local conditions, such as topography, cultural practices, nature of the vegetation, and stage of plant growth. Thus, the constants will vary with respect to time for any location.

The theoretical formulas, in addition to the above limitations, are particularly sensitive to the type and condition of the soil. Georg (1971) states: "The soil constants in formulas of the Brunt-Groen type vary both spatially and temporally because of the nature and state of

the soil surface layers and changes in the water content of the soil." Assuming average values of the soil constants, i. e., thermal conductivity, is not practical because it will change dramatically with small changes in water content.

F. Current Techniques of Minimum Temperature Prediction. Bagdonas et al. (1978) discuss minimum temperature forecasting formulas that are currently being used in 14 nations. References will be cited mainly from this survey to discuss some of the present-day forecasting techniques, according to the following categories: hygrometric, graphical, Brunt-Reuter, and multiple regression.

Hygrometric approach. The Mendoza area in Argentina is an important growing region. The central forecast station in Buenos Aires uses a hygrometric formula to predict the minimum temperature throughout this region. Linear regression was employed to develop a predictive equation for T_m from T_w , which is the 1800 GMT wet-bulb temperature:

$$T_{m} = a + bT_{w}$$
(2.27)

where a and b are constants derived from the data.

A correction factor was developed by segregating data into five different synoptic patterns known to produce frost in the Mendoza area. (An important criterion in distinguishing between the different synoptic patterns is the expected wind speed.) Data were then analyzed separately for each pattern, with the end result being a total correction C_1 :

$$C_{1} = \overline{\Delta T} - \sigma_{y} \sqrt{1 - r^{2}}$$
 (2.28)

where $\overline{\Delta T}$ is the difference between the mean value for a given location and the reference forecast point, σ_y is the standard deviation of T_m , and r is the correlation co-efficient between T_m at the reference forecast point and the given location.

Graphical approach. The Canadian Department of Transportation (Meteorological Branch, Toronto) has developed a technique to forecast the minimum temperature on clear nights in Hamilton, Ontario, during May. The focal point of this technique is an indirect quantitative measure of the soil heat flux in the nocturnal cooling process. This is accomplished by assuming that the difference between maximum air temperature (T_x) and the normal temperature of western Lake Ontario is roughly analogous to the difference between temperatures at the soil surface and several centimeters below. They gathered data to construct a scatter diagram of:

$$(T_x - T_{LAKE})$$
 vs. $(T - T_d)_{1330}$ EST, (2.29)

Values of ΔT (maximum minus minimum temperatures) were then marked beside each point and plotted, and best fit isopleths constructed. Predictions from these graphs were then modified by adding a wind correction factor based upon estimated surface wind speed at 0730 EST.

Brunt and Reuter's formulas. These formulas have received wide use in the prairie areas of Canada. Eley

(cf. Bagdonas, 1978) applied some simplifying assumptions in Reuter's formula, and gathered historical data to construct nonograms for a graphical solution:

$$\Delta T_{o} = \frac{2}{\pi} \frac{E}{\sqrt{C_{s} \rho_{s} K_{s}} + C_{p} \sqrt{A}} \sqrt{t} = F \cdot E \sqrt{t}$$

An empirically derived equation for net-outgoing radiation (E) as a function of surface temperature and vapor pressure was found, and Reuter's assumption of A = 65 \overline{U} , where \overline{U} is the mean wind speed (mph), was applied. The quantity $\sqrt{C_s} \rho_s K_s$ was also determined empirically by observing ΔT_o for radiative nights. This quantity averaged 0.290 cal C⁻¹ cm⁻² min^{-1/2}. One nonogram of F·E corresponding to relative humidity and sunset temperature, and another nonogram to obtain ΔT_o from F·E for any date from April through September were constructed.

Kagawa (cf. Bagdonas, 1978) rearranged Brunt's formula to make $C = \sqrt{C_s \rho_s K_s}$ the dependent variable, and recorded values for C from field studies. The mode in the distribution of C was chosen, since the quantity exhibited a wide range. He followed Reuter's procedure to calculate S(O)_n, the flux of terrestrial radiation with n tenths of clouds:

$$S(0)_{n} = S(0)_{0} (1-K_{n})$$
 (2.31)

where K_n is a constant according to cloud type: 0.031 for cirrostratus, 0.063 for altostratus, 0.085 for stratus, and 0.099 for nimbostratus.

The assumption of constant soil parameters for any locality allowed Kagawa to simplify Brunt's formula:

$$T = C \cdot S(0) \cdot 2.03 \sqrt{t}$$
 (2.32)

Brunt's formula has been used in the Florida peninsula for at least 10 years. Recently, researchers in this region have sought to improve this method by determining the thermal diffusivity for soils of varying water content. Where this is inconvenient, an approximate thermal diffusivity may be determined graphically from soil temperature profiles and the classical heat conduction equation, where $K = K_c / \rho_c C_c$.

Multiple-regression equations. Wallis and Georg (cf. Bagdonas et al., 1978) derived multiple-regression equations for 300 fruit-frost temperature survey stations in groves and fields on the Florida peninsula. The procedure was to correlate the minimum temperature at each fruit-frost station with the minimum temperature at three "key" stations, using 40 nights over a three-year period during winter. The minimum temperature for the nights chosen was 2.2°C or lower somewhere on the peninsula. A total of 14 "key" stations are maintained by the National Weather Service or Agricultural Experiment Station of Florida.

In Canada, Yacowar (cf. Bagdonas et al., 1978) derived a complex set of multiple-regression equations where maximum and minimum temperature were dependent variables, e. g. atmospheric parameters at the surface, 850 mb, and 500 mb. This procedure is limited to use at the larger meteorological centers, which would disseminate the information to local forecasters.

Jensensius et al. (1978) of the Techniques Development Laboratory, National Oceanic and Atmospheric Administration, also derived multiple linear regression equations to forecast maximum and minimum air temperature out to 132 hours, and probability of precipitation amount out to 84 hours for agricultural weather stations in Michigan (see Table 7). Minimum relative humidity and maximum and minimum soil temperatures 4 inches beneath bare and grassy surfaces were also projected for stations in Indiana. The prediction equations were developed by determining statistical relationships (i. e., how much each included parameter reduced the variance) between local weather observations and the output from the six-layer Primitive Equation (PE) model. The predictors in the maximum/minimum air temperature equation are: 1000-850 mb thickness, 1000-700 mb thickness, 1000-500 mb thickness, 850 mb temperature (the best predictor for minimum air temperature), 500 mb height and temperature, boundary layer and mean relative humidities, number of hours of sunshine, and daily insolation at the top of the atmosphere. The mean absolute errors for the resulting minimum temperature forecasts in Michigan are included in Table 8.

Soderberg (1969) devised a minimum temperature forecasting scheme for agricultural weather stations in

TABLE 7

AGRICULTURAL WEATHER STATIONS IN MICHIGAN USED IN TDL* AGRICULTURAL FORECAST GUIDANCE

1. Arcadia (Beulah) 2. Belding 3. Coldwater 4. Edmore 5. Empire 6. Fennville 7. Fremont 8. Glendora 9. Graham 10. Grand Junction 11. Grant 12. Holland 13. Hudsonville 14. Kent City 15. Kewadin 16. Lake City 17. Lake Leelanau 18. Ludington 19. Mapleton 20. Mears 21. Michigan State University Hort. Farm 22. Nunica 23. Onekama (Bear Lake) 24. Paw Paw 25. Peach Ridge 26. Sodus

27. Watervliet

SOURCE: Jensensius et al., 1978

*Techniques Development Laboratory, NOAA, U. S. Department of Commerce

TABLE 8

MODEL OUTPUT STATISTICS EQUATIONS WHEN TESTED ON ONE GROWING SEASON OF INDEPENDENT DATA (APRIL-OCTOBER, 1976) MEAN ABSOLUTE ERRORS FOR THE MINIMUM AND MAXIMUM AIR TEMPERATURE

		A	norovin	nate For	Pro-	iortion	(houre f	
Tvne		1	1700 744		CCASC FIC			
-150 Of Fanation		12	-36			36-60		60-84
no to an ba	MOSa	Persb	Clim ^c	Modd	MOS ^a Per	s ^b Clim ^c	Modd	MOS ^a Pers ^b Clim ^c Mod ^d
Maximum Air Temp.	3.14	5.99	7.22	3.37	3.70 8.0	7 7.22	3.98	4.42 8.30 7.22 4.80
Minimum Air Temp.	3.88	6.38	7.17	4.00	4.37 8.4	8 7.17	4.61	5.25 8.77 7.17 5.45
	SOURCE	: Jen	sensiu	s et al.	, 1978			

NOTE: Also included are the mean absolute errors for persistence, climatology, and a modified forecast based on the mean error of the past three 12-36 hour. The minimum air temperature equations are valid from late afternoon until approximately 7 a.m. local time the next morning. All of the errors for temperature equations are in ^{OF}.

^aModel Output Statistic

b_{persistence}

climatology

dmodified forecast based on past three 12-36 hour forecasts

western Michigan. This method combines a graphical and hygrometric approach in which mid-afternoon air temperature, dew point, and cloud cover were used to predict the nocturnal minimum temperature at Grand Rapids, Michigan. Using Grand Rapids as a reference point, minimum temperature predictions were made for 25 agricultural weather stations in Michigan by adding or subtracting the average minimum temperature difference. (This data is grouped according to radiative and advective nights.) The mean absolute error in forecasting the Grand Rapids minimum temperature was $2.5^{\circ}F$.

METHODS AND DATA COLLECTION

1. Freeze Climatology

Of the 27 agricultural weather stations used in the TDL agricultural forecast guidance (Jensensius et al., 1978), several of the agricultural weather stations were rejected for this study on the basis that they had to be moved to significantly different microclimates. For each of the 17 agricultural weather stations that were selected, the mean dates for each of the temperature thresholds were generated over the period 1950 through 1979. A computer program developed by the National Climatic Center (NCC) and modified by Dr. F. V. Nurnberger of the Michigan Weather Service, Michigan Department of Agriculture, was utilized in computing dates of 5, 10, 25, 50, 75, 90, and 95 percent chance of temperature occurrence. The normal frequency distribution was chosen to compute the dates of these events (Thom and Shaw, 1958).

The density function for a normal random variable Y is

$$f(Y) = \frac{1}{\sqrt{2\pi} \sigma} \exp \left[-\frac{1}{2} \left(\frac{Y-\mu}{\sigma_n}\right)^2\right] \qquad -\infty \le Y \le +\infty (3.1)$$

where μ and $\sigma_n,$ the two parameters of the normal

distribution, are the mean and standard deviation, respectively. The sample mean and sample standard deviation are

$$\overline{Y} = \frac{\sum Y_i}{n}$$
(3.2)

$$S = \begin{bmatrix} \sum_{i} (Y_{i} - \overline{Y})^{2} \\ \vdots \\ n - 1 \end{bmatrix}^{\frac{1}{2}}$$
(3.3)

where n is the number of observations in the sample. These two parameters were computed for each station for the spring and fall, as well as the estimated standard deviation of the sampling distribution of \overline{Y} ,

$$S(\overline{Y}) = \frac{S}{\sqrt{n}}$$
(3.4)

As previously reported in Michigan Freeze Bulletin (1965), the sample variances (S^2) for long-term climatic stations in Michigan were assumed to be equal for all stations. To obtain dates for the various probability levels at the different temperature thresholds, the authors used the 50 percent probability level (mean date) in conjunction with the average standard deviation, 11.48 days for spring and 12.86 days for fall. The freeze program that was employed in this study, however, calculated the individual sample variances.

The confidence interval for μ (the mean frost date), with a confidence coefficient of $1 - \alpha$ (probability level), is

$$\overline{Y} - Z(1 - \alpha/2; n - 1) S(\overline{Y}) \leq \mu \leq$$

$$\overline{Y} + Z(1 - \alpha/2; n - 1) S(\overline{Y}) \qquad (3.5)$$

In order to establish the 30-year climatology of the chosen agricultural weather stations, it was necessary to estimate freeze dates from the established climatic network. The statistical technique of linear regression was employed to compare agricultural stations to nearby long-term climatic stations. In this manner, predictive equations for minimum temperatures were obtained in order to establish the appropriate freeze dates. The slope and the y-intercept of the resulting regression equations were computed, along with the sample correlation coefficient r:

$$\mathbf{r} = \frac{\Sigma (\mathbf{x}_{i} - \overline{\mathbf{x}}) (\mathbf{y}_{i} - \overline{\mathbf{y}})}{\left[\Sigma (\mathbf{x}_{i} - \mathbf{x})^{2}\right] \left[\Sigma (\mathbf{y}_{i} - \overline{\mathbf{y}})^{2}\right]}$$
(3.6)

In many instances, several correlations were attempted with surrounding stations, and the station exhibiting the best correlation was chosen.

The average length of the growing season was also computed for each station at the various temperature thresholds. This statistic represents the average number of days between the last date of a given temperature occurrence in the spring and the first date of that same temperature occurrence in the fall.

2. Vineyard Data Collection

The primary objective of this field study was to establish the existence and magnitude of nocturnal temperature inversions in southwestern Michigan vineyards. Two vineyards in Texas Corners were chosen because they are relatively flat in comparison with others in the area, e. g. Paw Paw, Lawton, or Mattawan. Temperature inversions were recorded during the springs of 1978 and 1979 in the vineyard formerly owned by Mr. Del Kellogg, and were also recorded during the spring of 1980 in the vineyard owned by Mr. Peter Dragecivich and maintained by Mr. Max Miller. Both vineyards are located on South 6th Street about 10 km southwest of downtown Kalamazoo.

Copper-constantan thermocouples were mounted at six different heights on an instrumentation tower. Temperatures in degrees Fahrenheit were recorded by a null balance self-balancing Leeds and Northrup potentiometer in the Kellogg vineyard, and by a Kaye Instruments digital potentiometer in the Miller vineyard.

Temperature inversions were monitored because their existence is essential to the successful operation of wind machines. Ground truth data were gathered during a wind machine trial which included ambient temperatures within the Miller vineyard before and during the wind machine operation, bud temperatures, and wind drift within the Miller vineyard before the wind-machine operation.

Temperatures were monitored within the vineyard by 14 minimum temperature thermometers mounted on wooden blocks which were mounted on posts at approximately the 1½ meter level. Bud temperatures were periodically monitored during the wind-machine trial by a Precision Readout Thermometer (PRT), an instrument which utilized optical pyrometry. A hot wire anemometer was used to record the wind drift.

On the morning of May 16, 1979, wind-machine gusts were timed in the Bob Kellogg orchard in Mattawan and in the Del Kellogg vineyard in Texas Corners. A watch with a second hand and a hand-held digital thermometer were the only materials that comprised these wind-machine trials. The purpose of these experiments was to determine the temperature fluctuations during the cycle of the wind machine. A secondary objective was to judge (by visual observation) the distance of the influence of the wind machine.

3. Minimum Temperature Forecasting

The method employed was developed by Marshall Soderberg of the National Weather Service, Kent County Airport Office, in Grand Rapids, Michigan (Soderberg, 1969). The Soderberg technique is an objective scheme for forecasting nocturnal minimum temperatures during possible frost nights from April 15 through June 15 at 24 agricultural weather stations and 4 airport locations in western Michigan, and segregates the data into radiative

and advective nights. Soderberg assumed that the critical temperature for frost formation was 40°F at the standard instrument shelter height. The temperature observations at the agricultural weather stations were all at approx-imately the same height above the ground.

The Soderberg technique is essentially a hygrometric and graphical approach, where isopleths of the minimum temperature are plotted from 4 p. m. air temperature and dew point measurements at the Kent County Airport. Once this has been done, a line that most closely fits the data is drawn. These parameters were chosen to take into account moisture and radiative characteristics of the prevailing air mass, assuming that the absorption of incoming solar radiation, and hence maximum air temperature, occurred at 4 p. m.

The occurrence of cloud cover will modify the nocturnal radiation balance a great deal (excluding highlevel cirrus clouds), which brings a third parameter into the scheme. Two graphs are required for nights of radiational cooling, one for evenings when the 4 p.m. Grand Rapids cloud cover is clear to partly cloudy (corresponding to zero to five-tenths cloud cover), and the other for evenings when it is mostly cloudy to overcast (six-tenths to ten-tenths cloud cover).

Finally, a parameter which depends on the forecaster's expertise is included to determine whether significant advection will be occurring during the forecast

period. This correction is only applied to the forecast when the passage of a warm or cold front is anticipated, i. e., an evening when an advective type freeze is expected. A predictive equation for the correction to the Grand Rapids forecast (to the nearest ^{O}F) is obtained from the anticipated 24 hour 850 mb temperature change ending at 7 a. m. (to the nearest ^{O}C). Soderberg chose to neglect 850 mb temperature changes of $-3^{O}C$, $-2^{O}C$, $-1^{O}C$, $0^{O}C$, and $1^{O}C$. No justification was given for this assumption.

Once the forecast for Grand Rapids is obtained, the average minimum temperature difference between the agricultural weather station and Grand Rapids (^{O}F) is added or subtracted, according to whether radiational cooling, warm advection, or cold advection is occurring. Following Soderberg, only nights when the Grand Rapids minimum temperature was less than or equal to $45^{O}F$ were used in gathering data for the study.

RESULTS

1. Freeze Climatology of Selected Agricultural Weather Network Stations in Michigan

The 50% probabilities of the last occurrence of 20° F, 24° F, 28° F, and 32° F in the spring and the first occurrence of 20°F, 24°F, 28°F, and 32°F in the fall, the length of the growing season $(28^{\circ}F \text{ and } 32^{\circ}F)$, as well as the 5% and 95% probabilities of the last occurrence of 28^oF and 32^oF in the fall for selected agricultural network stations (generated for the period of record 1950-1979), were chosen for presentation (see Figures 11 through 29). In order to distinguish "spring" and "fall" dates, July 31 was assumed to be the last day of "spring." This did not affect the freeze statistics for the agricultural weather stations. However, for the climatological stations throughout the state, especially in the Upper Peninsula (see Figure 27), freezing temperatures have been reported in all months of the year. This assumption can affect the freeze statistics.

The resulting freeze dates were compared with an isopleth analysis of the climatological network, which contains the stations listed in Table 9. This comparison reveals Grand Junction to be the station that deviates

TABLE 9

CLIMATIC NETWORK STATIONS USED IN THE CONSTRUCTION OF 30 YEAR FREEZE CLIMATOLOGY FOR MICHIGAN

1. Adrian 2. Allegan 3. Alma 4. Alpena WSO AP 5. Alpena Sewage 6. Ann Arbor 7. Atlanta 8. Bad Axe 9. Baldwin 10. Battle Creek 11. Bay City 12. Benton Harbor 13. Big Rapids 14. Bloomingdale 15. Cadillac 16. Caro 17. Charlotte 18. Chatham 19. Cheboygan 20. Coldwater 22. Detroit Metro WSO AP 23. East Jordan 23. East Jordan 24. East Lansing 25. East Tawas 26. Eau Claire 27. Escanaba 28. Fayette 29. Fife Lake 30. Flint WSO 31. Frankfort 32. Gladwin 33. Grand Haven 34. Grand Marais 35. Grand Rapids WSO AP 36. Grayling 37. Greenville 38. Gull Lake 39. Hale Loud Dam 40. Harbor Beach 41. Harrisville 42. Hart 43. Hastings 44. Higgins Lake 45. Hillsdale 46. Holland 47. Houghton

48. Houghton Lake 49. Ionia 50. Iron Mountain 51. Ironwood 52. Ishpeming 53. Jackson FAA AP 54. Kalamazoo St. Hospital 55. Lake City Experiment Farm 56. Lansing WSO AP 57. Lapeer 58. Luddington 59. St. Ignace-Mackinac Bridge 60. Manistee 61. Manistique 62. Marquette WSO 63. Midland 64. Milford GM Proving Ground 65. Mio Hydro Plant 66. Monroe 67. Mount Clemens AF Base 68. Mt. Pleasant University 69. Munising 70. Muskegon WSO AP 71. Newaygo 72. Newberry St. Hospital 73. Onaway State Park 74. Ontonagon 75. Owosso Wastewater Plant 76. Paw Paw 77. Pellston FAA AP 78. Pontiac St. Hospital 79. Port Huron 80. Saginaw FAA AP 81. Saint Johns 82. Sandusky 83. Sault Ste. Marie WSO 84. Seney Nat'l WLR 85. South Haven Exp. Farm 86. Stambaugh 87. Standish 88. Three Rivers 89. Traverse City FAA AP 90. Vanderbilt 91. Watersmeet 92. West Branch

93. Willis

Figure 11. Locations of stations used in freeze climatology study (1950 through 1979).

Figure 12. 50% probability date of last 20⁰F in the spring (1950 through 1979).

Figure 13. 50% probability date of first 20° F in the fall (1950 through 1979).

Figure 14. 50% probability date of last $24{}^{\rm O}{\rm F}$ in the spring (1950 through 1979).

Figure 15. 50% probability date of first $24{}^{\rm O}{\rm F}$ in the fall (1950 through 1979).

Figure 16. 5% probability date of last 28° F in the spring (1950 through 1979).

Figure 17. 50% probability date of last 28⁰F in the spring (1950 through 1979).

Figure 18. 95% probability date of last 28° F in the spring (1950 through 1979).

Figure 19. 5% probability date of first 28° F in the fall (1950 through 1979).

Figure 20. 50% probability date of first 28° F in the fall (1950 through 1979).

Figure 21. 95% probability date of first 28^OF in the fall (1950 through 1979).

Figure 22. Length of 28⁰F growing season, days (1950 through 1979).

Figure 23. 5% probability date of last 32⁰F in the spring (1950 through 1979).

Figure 24. 50% probability date of last $32^{\rm O}F$ in the spring (1950 through 1979).

Figure 25. 95% probability date of last 32^OF in the spring (1950 through 1979).

Figure 26. 5% probability date of first 32° F in the fall (1950 through 1979).

Figure 27. 50% probability date of first $32^{\circ}F$ in the fall (1950 through 1979).

Figure 28. 95% probability date of first $32^{\circ}F$ in the fall (1950 through 1979).

Figure 29. Length of 32⁰F growing season, days (1950 through 1979).

most from the climatological network analysis. The explanation for this result is that Grand Junction temperatures are recorded in a low-lying area, where cold soils of low thermal conductivity predominate. The analysis of the freeze dates for the climatological network shows that the two coldest areas in Michigan are the northern Lower Peninsula (Ostego County and inland parts of Antrim, Montmorency, and Cheboygan counties that surround it), and the central western Upper Peninsula (in particular Iron County). The warmest areas are extreme southwestern Michigan (Berrien County) and southeastern Michigan (Monroe, Wayne, Macomb, and St. Clair counties). The length of the 32^OF growing season (see Figure 29) varies from 70 to 180 days. The 130 to 140 day growing season in the inland area of the "thumb" (Tuscola and Lapeer counties) is a bit shorter than many stations located along a lakeshore further to the north, e. g., Manistee County in the northwest Lower Peninsula, Alpena County in the northeast Lower Peninsula, and the region in Marguette County that is part of the northern shore of the Upper Peninsula.

The agricultural weather network was established in 1962, making it necessary to estimate the remaining freeze dates prior to 1962 by linear regression. Table 10 contains a list of the agricultural weather stations (Y), the climatological station(s) that it was correlated with (X), the intercept, the correlation coefficient (r), the correlation

TABLE 10

COMPLETE LISTING OF PREDICTIVE EQUATIONS CALCULATED TO ESTIMATE MINIMUM TEMPERATURES FOR SELECTED AGRICULTURAL WEATHER STATIONS IN MICHIGAN (Y = mx + b)

1. †BeldingAlma1.07-2.46.95.902.BeldingGreenville1.0318.95.913.EdmoreAlma1.02-2.33.95.91	212 225 212 225 284 180 196
3. Edmore Alma $1.02 - 2.33 - 95 - 91$	225 212 225 284 180 196
	225 284 180 196
4. + Edmore Greenville .9943 .95 .90	284 180 196
5.† Fremont Newaygo 1.00 5.34 .86 .73	180 196
6. Glendora Benton Harbor $1.01 - 1.60$.84 .70	196
7.† Glendora Dowagiac .81 7.32 .86 .74	100
8. Glendora Eau Claire .92 2.16 .78 .61	T 2 0
9. Glendora South Bend .88 2.39 .79 .63	179
10.† Graham Grand Rapids 1.0638 .92 .85	227
11. Grand Junction Allegan 1.03 -2.15 .76 .58	227
12. Grand Junction Benton Harbor 1.19 -10.47 .81 .65	180
13. Grand Junction Bloomingdale .91 .40 .82 .66	236
14.† Grand Junction South Haven 1.21 -10.41 .83 .70	216
15.† Holland Holland .95 1.41 .91 .83	223
16.+ Hudsonville Grand Rapids 1.02 1.19 .90 .81	227
17. Kewadin Frankfort 1.17 -5.47 .86 .74	268
18. Kewadin Mackinaw City 1.01 2.18 .75 .57	311
19.† Kewadin Traverse City .93 3.85 .88 .78	266
20. Lake Leelanau Frankfort 1.13 -4.8/ .82 .67	268
21. Lake Leelanau Mackinaw City 1.00 3.25 ./2.52	311
22.T Lake Leelanau Traverse City .88 4.23 .87 .75	266
23. T Lucington Lucington .96 3.49 .86 .73	256
24. Mapleton Flankford 1.15 -4.01 .02./1	208
25. Mapleton Mackinaw City .90 2.41 .71 .51 26 t Manlaton Traverse City .92 3.25 .99 .70	200
20.1 Maprecial Hart 101 26 91 83	200
28 Daw Daw Kalamazoo 54 14 89 68 46	193
20. Faw Faw $14.03 - 92$.88 77	199
30 + Peach Ridge Grand Rapids 1.00 1.42 .90 .82	227
31. Sodus Eau Claire $.94$ 4.27 $.77$ $.59$	196
32.† Sodus Dowagiac .83 9.17 .82 .67	196
33. Sodus Benton Harbor .95 3.30 .75 .57	180
34. Sodus South Bend .85 6.09 .74 .54	179
35. Watervliet Benton Harbor 1.07 -4.49 .83 .69	180
36.† Watervliet Dowagiac .90 3.17 .89 .80	196
37. Watervliet Eau Claire .9982 .79 .62	196
38. Watervliet South Bend .95 98 .79 .62	179

*correlation coefficient **number of observations †predictive equations chosen coefficient squared (r^2) , and the number of observations (n). The observations used to develop these relationships cover a 5-year period, 1972-1976, for the months April, May, and June. Only nights when the minimum temperature was less than or equal to $45^{\circ}F$ were chosen. The freeze statistics for the selected agricultural weather stations are contained in Appendix C, Tables Cl through Cl7. The freeze statistics for the $36^{\circ}F$ threshold were not mapped.

The predictive equations chosen to estimate the minimum temperatures for selected agricultural weather stations were characterized by correlation coefficients that ranged between .86 and .95, except for Sodus and Grand Junction, which were lower. Belding and Edmore each showed correlation coefficients of .95, regardless of whether Greenville or Alma was chosen to construct the regression line. Glendora, Sodus, and Watervliet, which are located in the extreme southwestern area of the state, presented some problems as a set. Eau Claire, Dowagiac, Benton Harbor, and South Bend were all tried as predictors for these stations. Dowagiac was finally chosen because it showed the highest correlation coefficients for each of these stations. Frankfort, Mackinaw City, and Traverse City were each correlated with the three agricultural network stations in the northwest Lower Peninsula: Kewadin, Lake Leelanau, and Mapleton. Traverse City was subsequently chosen as the predictor for these agricultural network stations. Finally, Grand Junction was the single most difficult

station for which to predict, and South Haven was selected over Allegan, Benton Harbor, or Bloomingdale.

Table 10 lists the predictive equations for estimating minimum temperatures for selected agricultural weather stations from climatological stations, and their correlation coefficients show a wide range. Belding's correlation of minimum temperatures with Alma, and Grand Junction's correlation of minimum temperatures with South Haven were the best and worst correlations, respectively. The individual sample variance of each of these stations was compared to the sample variance of the climatological station that it was correlated with. The decision rule for testing the equality of the variances (Neter and Wasserman, 1974) is if

$$F(\alpha/2;n_1-1,n_2-1) \leq s_1^2/s_2^2 \leq F(1-\alpha/2;n_1-1,n_2-1)$$
(3.10)

conclude C_1 : $\sigma_1^2 = \sigma_2^2$; otherwise conclude C_2 : $\sigma_1^2 \neq \sigma^2$, where

> s_1^2 = sample variance of the agricultural station s_2^2 = sample variance of the climatological station σ_1^2 = population variance of the agricultural station σ_2^2 = population variance of the climatological n_1 = number of observations at the agricultural n_2 = number of observations at the climatological station Choosing the level of significance (α) to be .01,

the appropriate F-statistics are F(.005,29,29) = .038, and F(.995,29,29) = 2.63. For spring and fall, $32^{O}F$, the variances for all four pairs of stations were found to be equal.

The assumption that the variances of the freeze dates were homogeneous was tested by using Bartlett's χ^2 test (Bethea et al., 1975). Let s_1^2 , s_2^2 , ..., s_k^2 be k independent sample variances corresponding to k normal populations with means μ_i and σ_i^2 , i = 1, 2, ..., k. Suppose $n_1 - 1$, $n_2 - 1$, ..., $n_k - 1$ are the degrees of freedom.

$$\chi^{2} = \left[(\ln V) \sum_{i=1}^{k} (n_{i} - 1) - \sum_{i=1}^{k} (n_{i} - 1) \ln s_{i}^{2} \right] / L$$
(3.7)

where

$$V = \sum_{i=1}^{k} (n_i - 1) s_i^2 / \sum_{i=1}^{k} (n_i - 1)$$
(3.8)

and

$$L = 1 + \frac{1}{3(k-1)} \begin{pmatrix} k & 1 \\ \sum_{i=1}^{k} \frac{1}{n_i - 1} - \frac{1}{k} \\ \sum_{i=1}^{k} (n_i - 1) \end{pmatrix}$$
(3.9)

The test statistic (3.7) has an approximate χ^2 distribution with k - 1 degrees of freedom when used as a test statistic for

$$H_{o}: \sigma_{1}^{2} = \ldots = \sigma_{k}^{2}$$

Given k random samples of sizes n_1, n_2, \ldots, n_k , from k independent normal populations, the statistic χ^2 can be used to test H_0 . The rejection region for testing H_0 is

-	
ш	
Ы	
ŋ	
L'A	

RESULTS OF CALCULATING THE χ^2 STATISTIC FOR USE IN BARTLETT'S χ^2 TEST FOR THE HOMOGENEITY OF THE VARIANCES, FOR THE CLIMATOLOGICAL NETWORK, THE AGRICULTURAL WEATHER NETWORK, THE COMBINED CLIMATOLOGICAL AND AGRICULTURAL SET, A CLIMATOLOGICAL SUBSET, AND THE COMBINED AGRICULTURAL AND CLIMATOLOGICAL SUBSET ($\alpha = .01$)

	Degrees	Z×3	32	oF	28	oF	24	o _F	2(J ^O F
Data Set	Freedom	stat- istic	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
Climat- ological	92	126.50	282.09	224.74	140.66	85.73	445.92	97.50	164.78	282.70
Agricul- tural	16	32.00	39.85	9.60	22.67	10.01	27.41	18.39	21.59	20.88
Com- bined*	109	145.54	335.70	235.73	173.74	110.28	481.97	116.80	186.61	304.25
Climat- ological Subset	23	43.00	28.78	19.33	19.55	12.92	34.82	17.62	29.78	24.51
Combined Agric. & Climat. Subset	40	63.69	76.23	30.24	49.57	36.32	73.43	38.80	51.10	47.21
2 X (k-1), degrees	*To calcu 0.99=%(h+	late th -2.33) ² m.	e X ² sta (Kreyszi	itistic .g, 197(for deg)) was u	jrees of ised, wh	E freedo lere h ≣	m > 10(/2m-1,), the 1 , and m	formula is the

 $\chi^2 > \chi^2_{(k-1),1-\alpha}$

The χ^2 statistic was calculated using 3.7 through 3.9 for the 93 climatological stations, the 17 agricultural stations, and the combined set (110 stations), at 4 different temperature thresholds for both spring and fall. The individual variances of the freeze dates were obtained from the computer output of the freeze statistics. If the calculated value for χ^2 is greater than the tabled value of χ^2 given in column 1 of Table 11, then the hypothesis of homogeneous variances is rejected. For the 17 agricultural stations, the hypothesis of homogeneous variances is accepted for all but one of the 8 data sets (32[°]F. spring). For both the climatological stations and the combined data set, the hypothesis of homogeneous variances is rejected for six of the 8 data sets. This result supports inclusion of the individual variances in the freeze program. However, by selecting 24 climatological stations that are in closest proximity to the agricultural weather network (referred to as "climatological subset" in Table 11), the hypothesis of homogeneous variances is accepted at all temperature thresholds. Combining the agricultural network and the climatological subset, the hypothesis of homogeneous variances is accepted at all but two temperature thresholds (32°F and 24°F, spring).

The number of agricultural network stations that "fit" the climatological analysis (i. e., the inclusion of this data would not have altered the analysis) was typically between 8 and 10. The agricultural stations that exhibited the largest deviations from the climatological analysis were Grand Junction, Watervliet, Fremont, and Kewadin.

Referring to the 5% probability dates of the 28°F in the fall, Grand Junction's date was 3 weeks earlier and Watervliet's date was 2 weeks earlier than the climatological analysis would otherwise indicate. (Both of these stations are colder in the spring as well as the fall.) The three agricultural stations in Berrien County are all nearly equidistant from Lake Michigan. Perhaps Watervliet's proximity to Paw Paw Lake accounts for it being cooler than Sodus or Glendora.

Fremont apparently was warmer in both spring and fall, which may reflect the fact that Newaygo (the station with which it was correlated) is located in a low-lying area, in the vicinity of a reservoir. As an extreme example, the 95% probability date of the first 28^OF in the fall is more than 2 weeks later than would be expected in comparison with the climatic analysis.

Kewadin is also warmer in both spring and fall. The 5% probability date for the last 32^OF in the spring was nearly 3 weeks earlier than the climatological analysis would indicate. It is nearly surrounded by water, with Grand Traverse Bay to the west, Elk Lake and Birch Lake to the south, and Torch Lake to the east. Its proximity to water in conjunction with its elevation (710 feet compared with 580-foot datum at Grand Traverse Bay) that allows for coldair drainage moderates the temperature decrease during freeze nights.

2. Vineyard Observations

A. Temperature Profiles. An important contribution to the grape industry of Michigan in this multifaceted study is the characterization of the nocturnal microclimate in two vineyards. Results of this three year study are summarized in Table 12, in which the approximate 1 to 15 meter temperature inversions are reported. To depict the range in the data, the average 1 to 15 meter inversion (\overline{X}) , the standard deviation (SD), and the number of

TABLE 12

DISTRIBUTION OF APPROXIMATE 1 TO 15 METER TEMPERATURE INVERSIONS ACCORDING TO 1 METER TEMPERATURE (1978-1980) (TEXAS CORNERS, MICHIGAN)

Temp. (°F)	x	SD	n	Frequency (% of Total)	Frequency (excluding 46 ⁰ F)
24-25	5.5	1.4	4	1	2
26-27	7.1	3.8	9	3	4
28-29	10.6	3.3	15	5	7
30-31	6.0	4.0	26	9	12
32-33	4.4	3.9	12	4	6
34-35	7.7	3.8	14	5	7
36-37	4.0	3.3	10	3	4
38-39	5.6	3.0	41	14	19
40-41	5.8	3.0	23	8	10
42-43	4.2	2.0	32	10	15
44-45	4.8	2.9	30	10	14
<u>></u> 46	4.2	2.9	84	28	

observations in each category (n) are reported. Two visual summaries in the form of cumulative distribution functions (CDF) were then constructed from this table. Figure 30 is the CDF of inversion strength with respect to 1 meter temperature, neglecting the occurrence of inversions when the 1 meter temperature is above 45°F. Figure 31 is also a CDF which shows the distribution of 1 meter temperatures when inversions of greater than 1°F were occurring.

The resolution of the two instrumentation systems, the Leeds and Northrup potentiometer in the 1978-1979 data (Kellogg vineyard), and the Kaye Instruments digital potentiometer for the 1980 data, were quite different. All 24 channels of the Leeds and Northrup potentiometer were used to record temperatures of six heights: surface, 1.0, 3.7, 8.0, and 15.2 meters. Six sets of four dots that corresponded to the temperature at each height were recorded on a Fahrenheit strip chart every half hour. Based upon the location of these dots, the most-likely temperature to the nearest 0.5°F was noted. The digital instrument, however, was specifically programmed to record temperatures (^OF) at the six heights to the nearest 0.1^oF: 1.0, 2.9, 6.4, 9.8, 12.8, and 17.4 meters once each hour. The inversions that were obtained from this set of data were rounded off to the nearest 0.5°F to be consonant with the resolution of the Leeds and Northrup potentiometer.

Figures 32 through 46 are 15 graphs of temperature

Figure 33. Vineyard temperature profile on April 17-18, 1979 at Texas Corners, Michigan. Grand Rapids wind speed, wind direction, and cloud cover indicated at top.

versus time for each height during selected evenings. The criteria for selecting the evening were that the minimum temperature at the 1-meter level was $45^{\circ}F$ or less, and that inversions greater than $1.0^{\circ}F$ were consistently occurring. As a source of information for the prevailing weather conditions during the chosen evenings, the "Local Climatological Data" for the National Weather Service office at the Kent County Airport at Grand Rapids was consulted. The data available from this publication are listed in Tables 13 and 14, and contain the following information: hour, sky cover (tenths), ceiling (hundreds of feet), temperature and dew point ($^{\circ}F$), relative humidity (percent), wind direction (tens of degrees from true north) and wind speed (knots).

For the time period 10 p. m. through 4 a. m. for 8 of the 15 nights, the cloud cover at Grand Rapids was 3/10 or less. Most of the cloud cover observations during these nights were reported as clear skies. The first four graphs were the consecutive nights April 16 through April 19, 1979, when data were collected during the passage of a particularly strong high pressure system. Calm winds were reported during three of these nights.

The night of April 30, 1979 was the coldest recorded at Grand Rapids for the 15 nights in the case study. The 4 a. m. temperature was 24^OF (which was also the minimum temperature), and the 15.2 m temperature was

TABLE 13

WEATHER CONDITIONS AT GRAND RAPIDS FOR SELECTED NIGHTS DURING THE SPRING OF 1979

Dat (197	ce 79)	Но	our	Sky Cover (Tenths)	Ceiling (100s of ft.)	Temp.	Dew Point	Rel. Hu- midit	Wind Dir. Y	Speed
Ap.	16	10	p.m.	0	Unlim.	44	36	74	33	8
	17	1	a.m.	0	Unlim.	40	34	79	35	9
	17	4	a.m.	0	Unlim.	36	31	82	33	7
	17	7	a.m.	0	Unlim.	34	30	85	36	6
Ap.	17 18 18 18	10 1 4 7	p.m. a.m. a.m. a.m.	0 0 0	Unlim. Unlim. Unlim. Unlim.	42 39 34 35	28 27 27 28	58 62 76 76	01 00 28 35	6 0 4 4
Ap.	18	10	p.m.	0	Unlim.	43	30	60	17	5
	19	1	a.m.	0	Unlim.	41	30	65	00	0
	19	4	a.m.	0	Unlim.	34	30	85	08	4
	19	7	a.m.	6	Unlim.	37	30	76	10	3
Ap.	19	10	p.m.	3	Unlim.	50	34	54	00	0
	20	1	a.m.	0	Unlim.	44	35	71	13	5
	20	4	a.m.	2	Unlim.	44	33	65	16	4
	20	7	a.m.	0	Unlim.	41	33	73	15	6
Ap.	22	10	p.m.	0	Unlim.	50	40	69	28	4
	23	1	a.m.	0	Unlim.	46	40	80	15	4
	23	4	a.m.	0	Unlim.	42	39	89	12	3
	23	7	a.m.	10	Unlim.	59	40	50	16	5
Ap. May	30 1 1 1	10 1 4 7	p.m. a.m. a.m. a.m.	0 0 0 3	Unlim. Unlim. Unlim. Unlim.	37 32 29 31	30 29 26 29	76 89 89 92	30 05 21 00	7 10 4 0 (GF)
Мау	1	10	p.m.	7	Unlim.	44	37	76	11	6
	2	1	a.m.	10	150	46	35	66	13	9
	2	4	a.m.	10	150	46	35	66	12	10
	2	7	a.m.	10	120	45	34	65	12	9
Мау	3	10	p.m.	0	Unlim.	46	33	61	33	5
	4	1	a.m.	4	Unlim.	41	33	73	35	6
	4	4	a.m.	8	Unlim.	38	33	82	07	4
	4	7	a.m.	10	250	38	32	79	05	7

SOURCE: Local Climatological Data for Grand Rapids, published by the USDC/NOAA/EDIS National Climatic Center

TABLE 14

WEATHER CONDITIONS AT GRAND RAPIDS FOR SELECTED NIGHTS DURING THE SPRING OF 1980

Dat (198	te 30)	Но	our	Sky Cover (Tenths)	Ceiling (100s of ft.)	Temp.	Dew Point	Rel. Hu- midity	Wind Dir.	Speed
Ap. May	30 1 1	10 1 4 7	p.m. a.m. a.m.	8 6 10 10	50 90 90 45	50 45 48	48 45 48 49	93 100 100	27 22 23 25	3 3 5 5
Мау	- 6 7 7 7	10 1 4 7	p.m. a.m. a.m.	3 2 7 0	Unlim. Unlim. 32 Unlim.	51 44 40 41	32 35 33 33	48 71 76 73	33 30 31 29	7 10 11 15
Мау	7	10	p.m.	2	Unlim.	40	29	65	28	7
	8	1	a.m.	10	100	38	33	82	25	6
	8	4	a.m.	10	110	39	34	82	23	5
	8	7	a.m.	10	44	40	33	76	34	8
Мау	8	10	p.m.	8	60	42	32	68	28	9
	9	1	a.m.	6	Unlim.	34	30	85	29	5
	9	4	a.m.	10	30	37	33	85	23	4
	9	7	a.m.	5	Unlim.	39	34	82	26	4
Мау	9	10	p.m.	0	Unlim.	44	34	68	11	4
	10	1	a.m.	0	Unlim.	41	33	73	16	6
	10	4	a.m.	0	Unlim.	43	33	68	16	7
	10	7	a.m.	8	Unlim.	49	34	56	19	9
Мау	14	10	p.m.	0	Unlim.	42	37	83	25	5
	15	1	a.m.	2	Unlim.	39	36	89	00	0
	15	4	a.m.	10	60	43	40	89	25	5
	15	7	a.m.	10	40	45	42	89	35	8
Мау	15	10	p.m.	0	Unlim.	51	43	74	02	4
	16	1	a.m.	0	Unlim.	45	40	83	06	3
	16	4	a.m.	0	Unlim.	42	38	86	11	4
	16	7	a.m.	0	Unlim.	49	42	77	10	6

SOURCE: Local Climatological Data for Grand Rapids, published by the USDC/NOAA/EDIS National Climatic Center 30° F, indicating a 6° F inversion. The 7 a. m. Grand Rapids wind speed was reported as calm.

The ceiling values recorded in Tables 13 and 14 were pertinent to the interpretation of vineyard temperature profiles. A four-degree inversion was initially recorded in the vineyard while the 10 p. m. Grand Rapids cloud cover was 7/10. Subsequent Grand Rapids observations were overcast skies, accompanied by lower ceilings as middle-level clouds (altostratus) moved in. The inversions after midnight were all very weak.

Wind-machine trials were performed on the night of May 3, 1979 and the results of these trials will be discussed in the next section. The Grand Rapids LCD listed 0 and 4/10 cloud cover at 10 p. m. and 1 a. m. respectively. Vineyard temperature inversions were approximately 3^oF until 2:15 a. m., when the 1.0 m and 15.2 m temperatures coincide. Visual observations in the vineyard confirm that skies became overcast at about this time. The sky condition retrogressed to partly cloudy in the early morning hours, and the temperatures returned to modest inversions.

Mostly cloudy conditions prevailed on the night of April 30, 1980, and skies became completely overcast during the following morning. Nevertheless, a $7^{\circ}F$ temperature inversion was recorded in the vineyard at 11:21 p. m. This coincided with a transition period at Grand Rapids from a 5000-foot ceiling at 10 p. m. (8/10 cloud cover)

to a 9000-foot ceiling at 1 a. m. (6/10 cloud cover). Vineyard inversions oscillated between $3^{\circ}F$ and $5.5^{\circ}F$ until 6:30 a. m., when it was less than $1^{\circ}F$. The ceiling at Grand Rapids lowered to 4500 feet at 7 a. m. The wind speeds were light throughout the course of the evening, varying between 3 and 6 knots.

Unusually brisk northwest winds characterized the night of May 6, 1980. The largest vineyard inversion occurred at 10:30 p. m. when the 1.0 m temperature was $50^{\circ}F$, and the 17.4 m temperature was $55^{\circ}F$. The second largest temperature inversion was not observed until 6:30 a. m. the following morning, when the minimum vineyard temperature of $34^{\circ}F$ was recorded. The Grand Rapids wind speed at 7 a. m. was 15 knots, which accounts for a relatively low temperature inversion despite clear skies and a nearfreezing temperature.

No inversions existed after 1:30 a.m. on the morning of May 8, 1980, when temperatures rose in the vineyard and at Grand Rapids during the early-morning hours. The largest temperature inversion of 5.5°F was once again recorded at 10:30 p.m. All of the sky cover observations at Grand Rapids for this morning were of overcast skies.

Perhaps the most significant vineyard temperature observation occurred during the morning of May 9, 1980. For the hours of 8:30 p. m. through 12:30 a. m., vineyard temperature inversions were never greater than 2^oF. The
Grand Rapids 10 p. m. wind speed was 9 knots, accompanied by a 6000-foot ceiling. At 1 a. m. the wind speed diminished to 5 knots and the ceiling became unlimited. Vineyard temperature inversions subsequently increased between 2:30 a. m. and 4:30 a. m. with a temperature inversion of $6^{\circ}F$ and a 1.0 m temperature of 27.5°F.

The last three evenings of the case study were characterized by clear skies and unlimited ceiling, with the exception of the latter part of the morning of May 15, 1980.

Very strong temperature inversions highlighted the evening of May 9, 1980, with an $8^{\circ}F$ to $9.5^{\circ}F$ temperature inversion sustained for 6 hours. The minimum vineyard temperature that morning approached critical levels at 2:30 a. m., when the 1.0 m temperature was $35.5^{\circ}F$ and the 17.4 m temperature was $45^{\circ}F$.

The night of May 14, 1980 was quite unique because the 1 a. m. Grand Rapids observations were 2/10 cloud cover, unlimited ceiling, and calm winds, but at 4 a. m. rain showers were reported. A $9^{\circ}F$ temperature inversion was recorded at 11:30 p. m., with a 1.0 m reading of $39.5^{\circ}F$ and an $8^{\circ}F$ temperature inversion at 2:30 a. m. occurred with a 1.0 m reading of $36.5^{\circ}F$. Warm advection was evident after this time, as the 5:30 a. m. 1.0 m temperature was $44^{\circ}F$.

The final night of the case study was May 15, 1980,

and a $4^{\circ}F$ to 7.5°F temperature inversion was sustained for 10 hours under clear skies and an unlimited ceiling. The minimum 1.0 m temperature was $39^{\circ}F$ at 5 a. m., while the 17.4 m temperature at this time was $46^{\circ}F$.

An examination of the data presented reveals several occasions when the nocturnal temperature inversions exceed $10^{\circ}F$. During the nights of April 17 and 18, 1979, inversions of $12^{\circ}F$ were recorded, and an $11^{\circ}F$ inversion was noted during the following night. The largest temperature inversion observed (during the course of this study) was $14^{\circ}F$, which occurred on May 22, 1980 at 4:00 a. m. while the 1.0 m temperature was $46^{\circ}F$. A $12.5^{\circ}F$ inversion had been observed at the previous hour. At 1:00 a. m., May 27, 1980, a $13.5^{\circ}F$ temperature inversion was recorded, with $10.5^{\circ}F$ temperature inversions one hour before and one hour after that observation.

Table 15 is a comparison of the minimum temperatures at Grand Rapids, Kalamazoo, and the 1.0 m height in the vineyard for the 15 nights in the case study that have been discussed. Indeed, under the dominating highpressure system during the nights of April 16 through April 19, 1979, on two occasions the vineyard minimum temperatures at 1.0 m were 9°F lower than the Kalamazoo minimum temperature. Although the vineyard minimum temperature would be expected to be lower than the minimum temperatures observed in the city, part of the temperature differences

Date			Grand Rapids	Kalamazoo	Vineyard
April	17,	1979	34	34	30
April	18		33	35	28
April	19		32	36	27
April	20		39	40	31
April	23		41	45	37
May	1		28	29	24
May	2		45	42	41
May	4		37	37	37
May	1,	1980	44	45	39
Мау	7		36	32	34
May	8		36	39	35
May	9		32	34	28
May	10		40	41	36
May	15		38	42	37
May	16		40	44	39

COMPARISON OF THE MINIMUM TEMPERATURES AT GRAND RAPIDS, KALAMAZOO, AND THE VINEYARD* FOR NIGHTS WHEN SIGNIFICANT TEMPERATURE INVERSIONS WERE OCCURRING

*1.0 m height

must be attributed to differences in height of measure (Kalamazoo observations are recorded at roughly 1.5 m).

<u>B. Wind-Machine Trials</u>. Wind-machine trials were conducted on the nights of May 3 and May 15, 1979, in the vineyard owned by Peter Dragecivich (maintained with the assistance of Max Miller), located on South Sixth Street, Texas Corners, Michigan. The objective of this experiment was to establish the magnitude of the temperature rise at various locations in the vineyard during the operation of the wind machine.

Data that were gathered during this experiment are presented in Table 16, which lists the ambient temperature just prior to and during the wind-machine operation. The numbers 1 through 15 correspond to the location of minimum-temperature thermometers throughout the vineyard, which were mounted on posts at a height of 1.5 m. Seven minimum thermometers, corresponding to numbers 1 through 7 in Table 11, were all located along row #49, which is oriented north-south. Station #1 was at the northern end, station #7 was at the southern end, and the wind machine is in the center of the row. Station #4 was located approximately 1 m north of the wind machine. The other minimum-temperature thermometers along row #49 were placed an equal distance apart (30 m). The eight remaining thermometers were placed along an east-west perpendicular, four on each side of the wind machine beginning 12 rows from it (in the center of the vineyard). Stations #8, 9, 10, and 15 were located in rows #61, 67, 73 and 79, respectively. Stations #11, 12, 13, and 14 were located in rows #37, 31, 25, and 19, respectively. There are approximately 100 rows in the vineyard, and its approximate dimensions are 650 m by 180 m.

The wind machine ran twice on the morning of May 4, the first time for 18 minutes between 3:50 a.m. and 4:08 a.m., and the second time for 15 minutes between

AMBIENT TEMPERATURES OBSERVED BEFORE AND DURING WIND-MACHINE OPERATION AT 15 LOCATIONS (MINIMUM TEMPERATURE THERMOMETERS AT THE 1½ METER LEVEL) IN THE MILLER VINEYARD, SOUTH 6th STREET, NEAR TEXAS CORNERS, MI, THE MORNING OF MAY 4, 1979 (^OF)

Station Number	Before Wind Machine Operation (5:05 a.m.)	During Wind Machine Operation (5:15 a.m.)
1	37.0	38.0
2	37.5	37.5
3	36.5	37.0
4	35.5	37.0
5	35.5	37.0
6	36.5	37.5
7	36.0	37.5
8	37.0	37.5
9	36.0	37.0
10	36.5	37.0
11	36.5	37.5
12	36.0	37.0
13	36.5	37.5
14	36.0	37.0
15	36.5	37.0

5:15 a. m. and 5:30 a. m. A thermograph was placed beside the instrumentation in the Kellogg vineyard, and it continuously monitored the ambient temperature throughout the course of the evening. The instantaneous 1.0 m temperature on the instrumentation tower agreed with the thermograph tracing for this time period.

Wind drift was determined prior to the first wind machine trial by a hot-wire anemometer between 1:50 a.m. and 2:45 a.m. A fairly light, steady breeze was observed, whose magnitude was usually from 1 to 2 m/s. The hotwire anemometer malfunctioned at about this time, so that Table 16 only contains the ambient temperatures at 4:59 a.m. to 5:05 a.m., and the temperatures during the windmachine operation, which began at 5:15 a.m. and ended at 5:30 a.m. Vine temperatures were periodically monitored at this time, and were consistently 1.5°F below the air temperature.

The results of the first wind machine trial (data is not shown) showed that temperatures actually decreased during its operation. Although the early-morning hours were characterized by weak inversions (the 3:45 and 4:15 a. m. temperature inversions were $2.5^{\circ}F$), substantial wind drift hampered the wind machine's effectiveness. However, the results of the second wind machine trial can at best be described as promising. The wind drift was much less during this time, and was visually observed to be calm or extremely light. Several stations, particularly those

closest to the wind machine, recorded a temperature response of $1.0^{\circ}F$ to $1.5^{\circ}F$ (Table 16). The 1.0 m temperature (ambient temperature) at 5:45 a. m. was $37^{\circ}F$, which was a decrease of $1.0^{\circ}F$ from the 5:15 a. m. observation, and the temperature inversion increased slightly to $2.0^{\circ}F$ at 5:45 a. m.

Some additional observations of wind-machine gusts in a cherry orchard in Mattawan and in the Del Kellogg vineyard near Texas Corners were recorded on the morning of May 16, 1979. The temperature fluctuations at 7 a.m. in the Kellogg vineyard (1/2 km south of the Miller vineyard on 6th Street) were monitored by a hand-held digital thermometer. The series of temperatures that were the immediate temperature response to a wind-machine passage at several locations over a time period of 10 to 15 seconds were noted. The sequence indicated a rapid drop in temperature due to the influx of cold air at the surface, followed by a gradual rise. The time of arrival of the wind-machine gust from when the propeller blade was facing perpendicular to the observer, the time required to achieve maximum wind speed, and the end of the temperature cycle were also noted. The maximum wind speed of the gust decreased with distance from the wind machine, as evidenced by the quicker, more dramatic end to the wind-machine gust. Earlier that morning, temperature responses to the wind-machine passage were observed in Bob Kellogg's cherry orchard in Mattawan.

Both of the vineyards are very flat, whereas the cherry orchard contains numerous hollows. The first temperature cycle was recorded in a slight hollow, and, therefore, shows an apparently larger response to the wind machine, despite the fact that it is farther away from the wind machine than where the second observation was taken. That night, Mr. Kellogg observed (with his own minimum temperature thermometer at $1\frac{1}{2}$ m) a low temperature of $34^{\circ}F$ in his deepest hollow, and was able to bring the temperature up to $40^{\circ}F$ by using the wind machine.

3. Minimum Temperature Forecasting for Selected Agricultural Weather Stations in Western Michigan

The 4 p. m. temperature, dew point, and cloud cover at the Kent County Airport, Grand Rapids, during the years 1967 through 1976 were used to evaluate the Soderberg technique. Only nights when the Grand Rapids minimum temperature was less than or equal to 45° F for the period April 15 through June 15 were used. The springs of 1977 and 1978 were chosen to test the method.

Figures 47 and 48 provide the forecast temperature for Grand Rapids during non-advective nights under fair skies (0 through 5/10 cloud cover at 4 p. m.), and under cloudy skies (6/10 through 10/10 cloud cover at 4 p. m.), respectively. For nights when the absolute magnitude of the 850 mb temperature advection was anticipated to be greater than 2° C, a correction equation was used to adjust the Grand Rapids forecast. This was obtained by linear regression, in which Y was the correction that must be applied to the Grand Rapids forecast (^{O}F), and X was the corresponding 24 hour 850 mb temperature change (^{O}C). The resulting equation, which was based on the years 1967 through 1976, was:

$$Y = .34X + 3.58$$
 $r^2 = .76$ (4.1)

In testing the method, the 850 mb temperature change was already known. However, for operational purposes, this parameter must be predicted by the forecaster.

Table 17 contains the results of taking the average difference between the minimum temperatures at the indicated agricultural station and Grand Rapids. This table is used in conjunction with the Grand Rapids forecast to obtain a forecast for the selected agricultural weather station.

The frequency distribution of weather conditions at Grand Rapids with respect to minimum temperature is reported in Table 18, where n represents the total number of observations. The term "weather condition" here refers primarily to cloud cover during the course of the evening. Clear skies (possibly with high cirrus) would indicate radiational cooling, and cloudy evenings would be classified according to whether cold or warm advection was occurring. Other criteria which played a role in this categorization were wind speed, wind direction, and the 24 hour 850 mb temperature change.

Figure 47. Minimum temperature (^OF) for nonadvection nights when cloud cover at 4 p. m. ranges from 0 through 5/10. Data from April 15 through June 15, 1967 through 1976.

Figure 48. Minimum temperatures (^OF) for nonadvection nights when cloud cover at 4 p. m. ranges from 6/10 to 10/10. Data from April 15 through June 15, 1967 through 1976.

Sta	tion	Radiational Cooling	Cold Advection	Warm Advection
1.	Belding	-1	1	2
2.	Edmore	0	-1	-1
3.	Empire	-1	-2	-2
4.	Fremont	0	1	1
5.	Glendora	0	2	2
6.	Graham	1	2	2
7.	Grand Junct	ion -2	1	0
8.	Grant	-2	1	1
9.	Holland	-1	2	2
10.	Hudsonville	0	3	3
11.	Kent City	-1	0	2
12.	Kewadin	0	-2	0
13.	Lake City	- 3	- 3	-2
14.	Lake Leelana	au O	-3	-1
15.	Lansing	0	0	0
16.	Ludington	1	0	0
17.	Mapleton	-1	-3	-1
18.	Mears	2	0	1
19.	Muskegon	2	1	0
20.	Nunica	-2	1	1
21.	Paw Paw	2	3	4
22.	Peach Ridge	1	2	3
23.	Sodus	6	4	5
24.	Traverse Ci	ty -2	-3	-2
25.	Watervliet	0	2	3

AVERAGE DIFFERENCE IN MINIMUM TEMPERATURES BETWEEN THE INDICATED STATION AND GRAND RAPIDS (APRIL 15-JUNE 15, 1967-1976)

		MINI	MUM TE JU	UM TEMPERATURE (APRIL 15 THROUGH JUNE 15, 1967-1976)					
Min. n Temp.		Radiational		Cold Advection	Warm Advective		Advective- Radiative		
14	3 36 ⁰ f	62%	(88)	22% (31)	15% (22)	1%	(2)	

16% (30)

17% (39)

21% (67)

2% (3)

1% (3)

3% (9)

185 38⁰F 59% (110) 23% (42)

224 40⁰F 59% (132) 22% (50)

316 45⁰F 49% (156) 27% (84)

FREQUENCY DISTRIBUTION OF WE	ATHER CONDITIONS
AT GRAND RAPIDS, MICHIGAN	ACCORDING TO
MINIMUM TEMPERATURE (APRI	L 15 THROUGH
JUNE 15, 1967-197	6)

The results of the minimum temperature forecast-
ing scheme are presented in Table 19, which lists the
average absolute error of the predictions, with the
standard deviation in parentheses. The most noteworthy
result is that the average absolute error of the pre-
diction for Grand Rapids, under radiative conditions
only, is 2.48 ⁰ F. There are 31 radiative cases, and 18
advective cases. For all observations, the average
absolute difference between the minimum temperature
predictions using the Soderberg technique and the
observed minimum temperatures was 4.10 ⁰ F. Some of the
larger errors resulted because agricultural weather
stations have been moved during the period that this
study covered, or have been located on soils of low
thermal conductivity. For example, Empire has been moved

AVERAGE ABSOLUTE DIFFERENCE BETWEEN THE MINIMUM TEMPERATURE PREDICTIONS USING THE SODERBERG TECHNIQUE AND THE OBSERVED MINIMUM TEMPERATURE

Station		A Observ	11 vations	Radi Oı	ative nly	Advective Only		
1.	Grand Rapids	3.10	(2.31)	2.48	(1.71)	4.16	(2.83)	
2.	Belding	3.00	(2.63)	3.08	(2.64)	2.88	(2.70)	
3.	Edmore	3.66	(2.79)	3.79	(2.58)	3.00	(2.96)	
4.	Empire	5.31	(3.21)	5.55	(3.37)	4.89	(2.95)	
5.	Fremont	2.88	(2.17)	2.86	(1.46)	2.93	(3.17)	
6.	Glendora	3.65	(2.29)	3.64	(2.23)	3.67	(2.50)	
7.	Graham	2.83	(2.38)	2.65	(2.32)	3.18	(2.53)	
8.	Grand Junction	4.92	(2.82)	4.97	(2.71)	4.82	(3.09)	
9.	Grant	4.02	(2.59)	4.10	(2.45)	3.89	(2.87)	
10.	Holland	5.45	(3.65)	4.84	(2.66)	6.50	(4.82)	
11.	Hudsonville	3.88	(2.70)	3.42	(2.51)	4.67	(2.89)	
12.	Kent City	3.00	(2.57)	2.94	(2.70)	3.09	(2.47)	
13.	Kewadin	3.61	(3.21)	3.39	(3.35)	4.00	(3.01)	
14.	Lake City	4.57	(3.77)	4.87	(3.86)	4.06	(3.65)	
15.	Lake Leelanau	5.30	(3.80)	5.39	(4.02)	5.13	(3.42)	
16.	Lansing	3.51	(2.99)	3.29	(2.37)	3.89	(3.88)	
17.	Ludington	4.35	(3.31)	4.81	(3.27)	3.56	(3.31)	
18.	Mapleton	4.88	(3.16)	4.65	(2.90)	5.29	(3.64)	
19.	Mears	3.59	(3.19)	3.44	(3.15)	3.81	(3.35)	
20.	Muskegon	3.33	(2.63)	2.90	(2.51)	4.06	(2.73)	
21.	Nunica	4.37	(2.74)	3.97	(2.26)	5.06	(3.39)	
22.	Paw Paw	4.77	(3.23)	4.77	(2.42)	4.78	(4.35)	
23.	Peach Ridge	3.29	(2.44)	3.35	(2.24)	3.17	(2.81)	
24.	Sodus	5.55	(3.40)	6.39	(3.40)	4.11	(2.97)	
25.	Traverse City	5.14	(3.77)	5.32	(3.89)	4.83	(3.65)	
26.	Wavervliet	4.53	(2.99)	4.26	(2.99)	5.00	(3.01)	

NOTE: Numbers in parentheses are standard deviations.

several times, and is now located in a relatively colder location approximately 1½ miles from Lake Michigan. The Holland and Grand Junction agricultural weather stations are both located on cold soils. Especially on radiative nights, Lake Leelanau will be relatively cold (as compared with Kewadin) due to northerly or northeasterly wind drift off the land. Lake Leelanau is located 2 miles due east of Lake Michigan.

Table 20 compares the prediction from the Soderberg method and the 4 p. m. dew point method forecasting the minimum temperature at Grand Rapids. The results are categorized according to whether 850 mb cooling, 850 mb warming, or no temperature change at 850 mb had occurred. Of these cases, 31 were considered to be radiative, and the average absolute error was found to be 6.45^oF.

The frequency distribution of the absolute error of the Soderberg prediction method for Grand Rapids during 1977 and 1978 is presented in Table 21. This table shows that the minimum temperature prediction for Grand Rapids using the Soderberg technique is usually not more than $4^{\circ}F$. However, for more than half of the cases when no 850 mb temperature change was observed (i. e., radiative-freeze conditions), the Soderberg prediction was not in error by more than $2^{\circ}F$.

Table 22 reports the results of comparing the average absolute error of the MOS minimum temperature forecast (Jensensius et al., 1978) to the average

COMPARISON BETWEEN MINIMUM TEMPERATURE FORECASTS USING THE "SODERBERG" PREDICTION METHOD AND THE "4 P. M. DEW POINT" METHOD FOR GRAND RAPIDS (1977 AND 1978)

Type of Temperature Change	Number of cases	Soderberg*	Dew Point**
850 mb cooling	12	3.08	8.58
850 mb warming	16	2.88	5.13
No 850 mb change (total)	21	2.53	7.14
Cloud cover 0 through 5/10	9	2.78	5.44
Cloud cover 6/10 through 10/10	12	2.25	8.42

*Average absolute difference between "Soderberg" prediction and observed minimum temperature

**Average absolute difference between "4 p. m. dew point" method and observed minimum temperature

absolute error of the Soderberg minimum temperature forecast for selected agricultural weather stations in western Michigan, April 15 through June 15, 1978. (The MOS forecasts were not archived during 1977 on a station-bystation basis.) The Soderberg prediction method results in a comparable average absolute error for all observations in the study, being only $0.2^{\circ}F$ greater than the average absolute error of the MOS minimum temperature forecasts. (It should be noted that MOS forecasts are made 36 hours in advance, and the Soderberg predictions are made 12 hours in advance.) As one may anticipate, it appears to perform better than the MOS forecast in the vicinity of Grand Rapids, i. e., at Hudsonville, Graham, Grand Junction, and Paw Paw. The MOS forecast was better than the Soderberg forecast for slightly more than half of the stations, including Kent City, Lake City, Ludington, Mapleton, Nunica, Peach Ridge, and Sodus. No overall pattern of predicting above or below the observed minimum temperature was discernible in either method.

In an attempt to explain the performance of the

TABLE 21

FREQUENCY DISTRIBUTION OF THE ABSOLUTE ERROR OF THE SODERBERG PREDICTION METHOD DURING 1977 AND 1978 FOR GRAND RAPIDS (PERCENTAGES OF TOTAL FOR EACH TYPE OF TEMPERATURE CHANGE ARE GIVEN IN PARENTHESES)

Type of Temperature Change		Range of Error in ^O F							
		0-2		3-4	5	5-6	78	vover	
850 mb cooling	3	(25%)	6	(50%)	1	(8%)	2	(17%)	
850 mb warming	7	(50%)	5	(36%)	0		2	(14%)	
No 850 mb change (total)	12	(57%)	5	(24%)	4	(19%)	0		
Cloud cover 0 through 5/10	4	(44%)	3	(33%)	2	(23%)	0		
Cloud cover 6/10 through 10/10	8	(67%)	2	(16.5%)	2	(16.5%)	0		

COMPARISON BETWEEN THE AVERAGE ABSOLUTE ERROR* USING THE MOS FORECAST AND THE SODERBERG FORECAST FOR SELECTED AGRICULTURAL WEATHER STATIONS IN WESTERN MICHIGAN (APRIL THROUGH JUNE, 1978)

Station		AAE* MOS F	from orecast	AAE* from Soder- berg Forecast	Number of Observations
1.	Belding	1	.95	3.00	20
2.	Edmore	3	.67	3.79	24
3.	Empire	4	.24	4.64	25
4.	Fremont	3	.10	2.55	20
5.	Glendora	3	.95	3.85	20
6.	Graham	3	.44	2.96	25
7.	Grand Junction	5	.29	4.79	24
8.	Grant	4	.48	4.08	25
9.	Holland	5	.08	5.00	25
10.	Hudsonville	9 4	.92	4.32	25
11.	Kent City	2	.56	3.36	25
12.	Kewadin	2	•96	2.76	25
13.	Lake City	3	.28	4.28	25
14.	Lake Leelar	nau 4	.14	4.32	22
15.	Ludington	3	.52	4.36	25
16.	Mapleton	3	.68	4.12	24
17.	Mears	3	.04	3.64	25
18.	Nunica	3	.44	4.44	25
19.	Paw Paw	4	.12	3.88	25
20.	Peach Ridge	e 2	.88	3.52	25
21.	Sodus	4	.60	5.64	25
22.	Watervliet	4	.88	4.24	25

NOTES: No. of observations (all stations): 529 AAE* -- MOS (all stations): 3.80 AAE* -- Soderberg (all stations): 4.00

*AAE = Average Absolute Error, the difference between predicted and observed minimum temperature, ^OF

Soderberg technique in predicting minimum temperatures, Table 23 shows the results of correlating selected agricultural weather stations with Grand Rapids, Michigan. The correlations were found to be within the range of those reported in Table 10, which lists the equations for predicting minimum temperatures for the agricultural weather network from the climatological network. The six worst and the five best stations (highest and lowest average absolute difference between the Soderberg prediction and the observed minimum temperature) were chosen to see whether correlations with Grand Rapids paralleled these results. With the exception of Holland, which was well-correlated with Grand Rapids but not predicted well by the Soderberg method, all stations with average absolute errors of at least 5^OF were poorly correlated with Grand Rapids, and the stations for which lower absolute errors were found were well-correlated with Grand Rapids. This indicates that the success of the Soderberg method is dependent on how well the agricultural weather station is correlated with Grand Rapids.

CORRELATION COEFFICIENT OF THE MINIMUM TEMPERATURES AT SELECTED AGRICULTURAL WEATHER STATIONS IN MICHIGAN AS COMPARED WITH GRAND RAPIDS, MICHIGAN

	Y	Х	r*	r ²	n**
1.	Belding	Grand Rapids	.91	.83	198
2.	Empire	Grand Rapids	.78	.61	195
3.	Fremont	Grand Rapids	.88	.78	216
4.	Graham	Grand Rapids	.92	.85	227
5.	Holland	Grand Rapids	.90	.81	203
6.	Hudsonville	Grand Rapids	.90	.81	227
7.	Kent City	Grand Rapids	.89	.80	236
8.	Lake Leelanau	Grand Rapids	.79	.62	214
9.	Peach Ridge	Grand Rapids	.90	.82	227
10.	Sodus	Grand Rapids	.75	.56	184
11.	Traverse City	Grand Rapids	.79	.62	214

*correlation coefficient

**number of observations

SUMMARY AND CONCLUSIONS

1. Certain aspects of the occurrence of freezes in Michigan have been addressed. These include the climatology of freezes, vineyard temperature profiles as a parameter to evaluate the wind machine as a freezeprotection device, field trials with a wind machine in a vineyard, and a method to predict the minimum temperature for selected agricultural network stations in western Michigan.

Temperature records from selected agricultural weather stations in Michigan have been compared to the climatic stations maintained by the USDC/NOAA/NWS Cooperative Observers Network to determine whether the average freeze dates differ. The last date of occurrence in the spring and the first date of occurrence in the fall were determined for five different temperatures for 17 agricultural weather stations, from the first year that it had been in existence (circa 1962) through 1979. These data were punched onto cards and analyzed by a FORTRAN computer program to determine the freeze statistics. The absence of agricultural weather records before 1962 necessitated using the statistical technique of linear regression to construct a 30-year freeze

climatology for this network. By incorporating agricultural weather stations and the USDC/NOAA/NWS Cooperative Observers Network, a more-refined analysis of the freeze dates was obtained.

2. Graphs of temperature profiles from two vineyards were drawn, as well as graphical and tabular summaries for the three years of observations. The average temperature inversions were obtained between the 1 and 15 meter levels (approximately) for temperatures at the 1-meter level that may be critical to grapes. These inversions were of a sufficient magnitude to provide an ample heat source for a wind machine to be potentially effective in the vineyard. This conclusion is based solely upon the Reese and Gerber (1969) graph of area of protection (acres) vs. degree of protection (^OF), according to inversion strength. For a 6^OF inversion (e. g., when a 1-meter temperature of 30° F is occurring), a $2^{\circ}F$ protection over an area of $3\frac{1}{2}$ acres, or a $1^{\circ}F$ protection over an area 6 acres may be expected. For a 10° F inversion, a 2°F protection over 6 acres, or a 1°F protection over an area of nearly 10 acres may be anticipated.

The temperature response to the passage of a wind machine was monitored on May 4, 1979, by 14 minimum temperature thermometers in a Texas Corners vineyard, during which increases of $0^{\circ}F$ to $1.5^{\circ}F$ were noted. Temperature profiles recorded in a nearby vineyard indicated

a small temperature inversion of 2.0^oF. Although a strong conclusion should not be gleaned from this isolated observation, this is nevertheless a positive result as the ambient temperature fell 1.0^oF during the wind-machine trial.

3. A minimum temperature forecasting scheme developed by Marshall Soderberg of the National Weather Service (NWS) for agricultural weather stations in western Michigan was evaluated. The 4 p. m. temperature, dew point, cloud cover, and anticipated 850 mb temperature trend are used to predict the Grand Rapids minimum temperature. This prediction serves as a basis to establish a forecast for 25 agricultural weather stations in southwestern Michigan, provided that an average difference between Grand Rapids and the station in question, for different synoptic conditions, has been determined.

The average absolute error of 31 predictions under radiative conditions ranged from 2.48°F for Grand Rapids to 6.39°F for Sodus. These results are very comparable to those obtained during 1978 from a computerized agricultural weather forecast guidance developed by the NWS for Michigan and Indiana (see Table 22). As the NWS guidance was quite complex in its statistical development and operation, it is concluded that the Soderberg technique is useful as a simple method to forecast nocturnal minimum temperatures at agricultural weather sites in Michigan.

RECOMMENDATIONS

1. The existence of a heat source within the nocturnal temperature profile (i. e., strong inversion) is imperative to the successful operation of a wind machine. Looking ahead to the time when on-farm computers will prevail, a program to forecast such information would be an invaluable potential tool in aiding the grower to decide when to turn on his wind machine.

The objective of a boundary-layer model developed by Georg (1971) is to predict the nocturnal air temperature profile from 1.5 to 24 meters. The input parameters are: the measured net radiation; the ambient temperature at the reference level (T_R), and 1.5 m; the wind speeds at 9.0 and 18.0 m; the maximum and minimum soil temperatures for the day at 0, 5, 10, 20, and 50 cm; the percentage of water in the soil on a volume basis; and dew-point temperature. The program will compute a temperature profile up to 24 m with T_R as a base, and subsequently generate a new value for T_R one time-step into the future (see Appendix D).

There is no explicit function within the program to calculate the flux of latent heat due to condensation and sublimation. There is a command within the model that tests for $T_R \leq T_d$, which will reduce

all temperature changes with respect to time by onehalf when this condition is encountered.

This model differs from the Brunt equation by utilizing assumed air, soil, and wind profiles to calculate eddy conductivity, soil heat flux, and convective heat flux within the boundary layer.

No other models of this nature have appeared in the literature, and it would be invaluable to merely validate the model as is, let alone improve various aspects of it.

2. Future frost researchers who are cognizant of Businger's dimensionless coefficient may apply this concept to the prediction of minimum temperatures. Observations of downward longwave sky radiation coupled with air temperature at the five-foot level may be used to compute γ over the course of several frost evenings, weather permitting. By measuring γ in the early evening, one may extrapolate to find γ for the early morning, based upon past observations. As downward radiation will remain nearly constant, the minimum temperature may be approximated.

Characterizing the effective sky temperature may enable one to know the magnitude of the difference between leaf (or bud) and ambient temperature. Thus, a fruit grower would know whether or not it would be economical to run his wind machine (or other freeze-protection device) when the ambient temperature is above freezing.

3. Additional statistical procedures may be incorporated into the Soderberg method. Following the methodology developed for the Mendoza region of Argentina (cf. Bagdonas, 1978), a correction factor may be applied to the average difference between Grand Rapids and the agricultural station in question: $\sigma_{\rm Y}\sqrt{1-r^2}$, where $\sigma_{\rm Y}$ is the standard deviation of the minimum temperatures at Grand Rapids, and r is the correlation coefficient between Grand Rapids and the agricultural station.

4. If resources were available, dew-point hygrometers (or some other suitable means) might be provided at selected agricultural stations. To facilitate the choice of locations, correlations between relatively close agricultural stations might be established. Thus, one or more agricultural station(s) might serve as "key" stations, augmenting Grand Rapids in the role of reference forecasting station.

APPENDICES

APPENDIX A

ACREAGE,	YIELD	(TC	NS),	USES	(TONS)	AND	RAW	PRODUCT	VALUES
	F	OR	MICH	IGAN	GRAPES,	1965	-1970	б	

Voar	2000000	Yield		Uses	Raw Product		
IEal	Acreage	(Tons)	Juice	Wine	Fresh	(Dollars)	
1976	15,800	14,500	10,700	*	1,400	*	
1975	15,800	56,000	47,000	5,000	3,000	\$6,710,000	
1974	15,800	47,500	40,000	5,500	2,000	8,740,000	
1973	15,800	23,500	17,800	4,100	1,600	4,630,000	
1972	15,800	53 , 000	45,500	4,700	2,800	8,798,000	
197 1	15 ,9 00	69 , 000	59,600	6,000	3,400	8,280,000	
1970	15 ,9 00	62,000	*	*	3,600	8,804,000	
1969	16,000	38,000	28,200	7,300	2,200	5,510,000	
1968	16,100	23,000	16,200	4,600	1,900	2,852,000	
1967	16,000	39,000	27,900	7,700	3,100	4,446,000	
1966	16,600	49,000	36,400	8,800	3,400	5,145,000	
1965	16,600	71 , 500	54,600	13,200	3,400	7,575,000	

*Not available

APPENDIX B

ESTIMATION OF WIND-MACHINE DESIGN FOR THRUST PER HORSEPOWER

The thrust of a wind machine will depend upon the power (P), the diameter of the propeller (d_{wm}) , the power coefficient (C_p) , and the thrust coefficient (C_F) . Leonard (1953) defined the relation between power, revolutions per minute (N), and diameter of wind-machine propeller:

$$C_{p} = P/\rho N^{3} d_{wm}^{5}$$
 (B.1)

where $\rho = 1.29 \times 10^{-3}$ grams per cm³. The thrust coefficient is the relation between pounds thrust (F), revolutions, and diameter:

$$C_{\rm F} = F/\rho N^2 d_{\rm wm}^4 \tag{B.2}$$

Solving these equations for thrust in terms of power and diameter:

$$F = C_{F}^{3} \sqrt{\rho P^{2} d_{wm}^{2} / C_{p}^{2}}$$
(B.3)

APPENDIX C

FREEZE STATISTICS FOR THE AGRICULTURAL WEATHER STATIONS

The freeze statistics for the agricultural weather stations are presented in Tables Cl through Cl7. The following abbreviations have been used:

М	=	number of years of freeze dates that have been read by the computer program						
N	H	number of years of freeze dates for which a complete data set was found						
VAR	=	variance of the freeze dates						
XBAR	=	mean of the freeze dates						
SD	=	standard deviation of the freeze dates						
SD/XBAR	=	coefficient of variation which is the standard deviation of the freeze dates divided by the mean of the freeze dates						
THRES	=	threshold (followed by temperature, ^O F)						

Under the column titled "Percent Chance of Season Longer Than Indicated Length (days)," MAX refers to the longest growing season in the data set of the indicated temperature threshold, preceded by the last two digits of the year during which it occurred.

		20	30 151.621 133.650 122.657 095								
	1979)	11511C5	105 124 124 124 104 104 104 104 104 104 104 105 1052								
	THROUGH	HELEZE STA	144 144 115.0066 115.006 115.006 1107			F I KS T	46999 2999 2999 2999 2999 2999 2999 2999	LAST		N 1 W	62/ 95 66/119 74/1164 72/192
	N (1950	IRST FALL	39 39 37 37 50 12 56 13 0 12 56 13 0			. 95	944 94 94 94 94 94 94 94 94 94 94 94 94	• 95	1010 1020 1110 1219	75. 755	101 101 101 101 101 101 101
	MICHIGAN	56 F	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 O	2223 2252 1552 125 2255 2555 2555 2555 2	U6°	14495 074405 98440	06.	1125 1125 11125	LENGTH CDA	88998 89998 89998
	, DN				80000-	.75	2024 2025 2027 2027 2027 2027 2027 2027 2027	.15	100 101 1029 1029 1109 1119	CAT 60 1	95055 1100 1100 1100 1100
-	DR BELDI	20	0.80 98 940.0 9100.0 9100.0 910.0 91	stics 24	200 2012 2012 2012 2012 2012 2012 2012	1116 DATES	0.000 2 4 0.000 - C 0.04 4 4	111 0,755	10000 10000 10000 10000	141, 10010	44 -00 24-00 24-00
	STICS F(111151105	30 357 357 10.20 10.20 03 03 03 5	ASUN STATI	2012 2012 2012 2012 2012 2012 2012 2012	F LAST SPH	55554 26554 2655	F FIRST FA	6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ok Landek	401470 201470 201470
	E STATI	FREEZE SI	127.20 127.20 11.278 11.278	SROFING SE		11111ES 01	₽ ₽238 12798 12748	11111ES 01	915 916 1006 1020	CE OF SEAS: .10	2352 2552 2552 2552 2552 2552 2552 2552
	FREEZ	ST SFRING	110 110 110 110 110 110 110 110	5	244 24 7	PPORAL 65	99194 99194 79294	12 40 4 41	919 919 1001 1011	FAT CHANC	
		3C LA	2000 m2 MM6420M •••• #Ja #Ja	3.6	185.55 124.55 124.55 13.62 13.62 13.62 13.62	LAST	0000 4 2000 4 2000 4	11-51		FERC M A 1	11/11/2 11/11/2 11/11/2 11/2/2 11/2/2 11/2/2 11/2/2 11/2/2 11/2/2 11/2/2 12/2/2 2
			м ч х х х х х с х с х с х с х с х с х с х		н Кар Кар Сар Сар Сар		2000/200 2000/200 2000/200 2000/200				
		1									

J

C2	
TABLE	

0 THRO	
(195	
MICHIGAN	
EDMORE,	•
FOR	
STATISTICS	
ы	

	5 0	06 90 191.289 152.161 152.161 152.161 152.161								
1979)	41111CS	200 200 200 200 200 200 200 200 200 200								NID (L. 2. 3)
THROUGH	FPL1 / 1 28	1991 1991 1991 1992 1997 1997 1997 1997			F IRST	84800 84400 84400	LAST	1019 12129 12015 12015	N I H	653/ 663/ 764/100 764/190
(1950	IST FALL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			, • 95	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	•95	1000	;) .95	92 1640 1641
MICHIGAN	36 F 14	11 10 10 10 10 10 10 10 10 10 10 10 10 1	50	30 294 - 30 217 - 533 217 - 533 20790	06•	2001CC 0016CC 04880	06•	1005 1115 11117 11126	ENGTH CDAYS	940 1470 1466 1466
DRE, N			\$	conn~-	.15	100449 1000 1000 1000 1000 1000 1000 100	¢1.	11054 11054 11054 11054 11054 11054 11054 11054 11054 11054 11054 11054 11054 11054 11054 11054 11054 11054 1105554 110555555 11055555 1105555555555	CATFD L	5 0000 5 0000 8 0000
FOR EDM	20	212.554 212.554 217.954 8.55354 031	1571CS 2	1969 1960 1960 1060 1060 1060 1060 1000 100	RING DATES	nr444 N-W 44074	ALL PATES	2001 2001 2001 2001 2001	THAN INDI .50	07 FF 8 07 FF 8 07 FF 8
ISTICS	TATISTICS	000000 90000 90000 9000 9000 9000 9000	ASLI. STAT	275-75 277-75 16-16-75 16-16-04 16-16-04	1F LAST SP	90044 90044 90000	IF FINST F	40040 10000 6000 111	01. LORGER	15177 15177 15172 15172
CZE STAT	G FRLLZE SH	3047 3047 3047 4047 4047 4047 0447 0328	GROWING SL	5002 12907 12907 12907		00044 00044 00040	HLIFIES C	906 915 927 1022 1022	CE OF SEAS •10	41146 1 41146 1 41146 1 41146 1
FREE	L SPALL	114-20 14 14-20 14	-		PROPA • 05	9 Jun 4 4 0 - 0 - 4 4 0 - 0 - 4 7 - 6 7 - 7 7 -	FRUE AI	405 11 10 10 10 10 10 10	T CHAN	N 3 5 8 9 4 3 1 0 8 1 1 0 8
,	197 197	2012 2012 2012 2012 2012	<u>م</u>	2000 2000 2000 2000 2000 2000 2000 200	LAST	10000 71077 94257	15414		F EK CF M & X	70/100 70/100 70/100 70/100 70/000 70/000
				.		2012-201 2012-201 2012-201		and an array The rest of the Alexandress		
		4 7 832 X 832 C 825 X 798		2 X X 24 X 7700 772 X X/4						

	20	176 176 156 156 156 150 150 150 150 150 150 150 150 150 150								
1979)	1 15 T I C S	219.099 122.099 14.022 14.022								
THROUGH	FRLEZE STA	270 270 270 275 255 255 255 255 255 255 255 255 255			FIRST	44090 80106 80106	LAST	102 1129 1229 12129	2 I H	64/ 51 64/ 51 76/133 72/167 72/167
1 (1950	ST FALL I	66 66 66 66 66 66 66 66 66 66 66 66 66			•95	00000 00000 00000	. 95	101 102 1222 2223 2223	.95	99000 99670 99970
MICHIGAN	5 F I R 36	191 - 052 191 - 052 19 - 403 10 - 403 10 - 106	20	2176 - 99 219 - 99 219 - 50 219 - 50 219 - 50	06•	507 507 507 507 507 507	06•	5-5-1-1-1 5-5-1-1-1-1	ENGTN CDAYS	10896 0450 0150
MONT,				00M40	. 15	5019 1019 1019 1019 1019 1019 1019 1019	.75		CATLD L	-0000
FOR FRE	2)	2666.130 2666.130 266133 2020 2020 2020 2020 2020 2020 2020 2	STICS 2	2881. 2971. 1971. 16.7490 16.00	ING DATES	 	LL PATES	921 1071 1071 1071 1131	THAN 1401	2222 2222 2222 2222 2222 2222 2222 2222 2222
ISTICS	A 1 1 S 1 1 C S 2 A	80 95 95 95 95 95 95 95 95 95 95 95 95 95	1211 STATI	20 20 20 20 20 20 20 20 20 20 20 20 20 2	LAST SPP	40044 00064 10400	FIRST FA	900 1000 1000 100 100	01: LOPGER	4 106 9 8 106 9 8 106 9
LE STAT	FRIFEZE SI	30 126.537 376.977 11.24P	IOUING SEI	0000000	LITIES OF	611 611 611 611 611 611 611 611 611 611	LITTES OF	9099 9309 9309 10120	OF SEASC	2000 219300 219300 219300 219300 21930 219300 219300 219300 219300 219300 219300 219300 219300 219300 219300 219300 210000 210000 2100000000
FREE?	ST SPRING	30 39 167.697 117.690 112.950	39	2000 2000 2000 2000	FROUAN	99504 1910 9400	FRORAB1	200420 200400 2004000 2004000 200400000000	ENT CHANCE	2753 2753 2753 2753 2753 2753 2753 2753
	36 LAS		36	30 30 119 - 31 119 - 310 22 - 341	Last	00000 0000 00000	FIFST	60.57 977 170 170 170 170 170 170 170 170 170 1	PEKCI	53/161 59/179 61/231 61/231 54/241
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				むごうりゅう こうべいいい ここへいい		00000000 100000000 1000000000
		AELC AELC AELC		222×22 4000 54 2		ILTII LLTII MMMM				

	26	25 25 25 25 25 25 25 25 25 25 25 25 25 2								
JGH 1979)	1151105	20 20 13 15 15 15 15 11 15 11 19 111 19 11 11								
50 THROU	FFEEZE STA	30 3169 3169 315 315 31 31 31 31 31 31 31 31 31 31 31 30 30 30 30 30 30 30 30 30 30 30 30 30			FIRST	44550 9050 9050 9050 9050 9050 9050 9050	LAST	1019 11105 12166 1215	21W	63/ 63/ 64/105 74/136 72/198
GAN (19	RST FALL	21 24 25 25 25 25 25 25 25 25 25 25 25 25 25			•95	44000 1910 1910	•95	1016 1113 1204 1214	'S) , 95	005100 574100 57711
MICHI	36 F1	171 	20	8 8 8 8 8 8 8 8 8 8 8 8 8 8	96•	94400 94600 94600	06•	101 1026 1129 1229	FNGTN (DA)	8499 849 849 849 849 849 849 849 849 849
NDORA					.15	20455 20455 20455	.15		CATED L.	22 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2
FOR GLE	20	2646 2646 2646 2652 2015 2015 2015 2015 2015 2015 2015 20	1311CS 24	2155. 21.1 21.1 21.1 21.1 21.1 21.1 21.1	LING DATES	89449 60846 20826	LL PATES	0000 0000 0000 000 000 000 000 000 000	THAN IND 10	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ISTICS	A 1 1 5 1 1 C S	285 285 285 285 285 285 293 293 293 293 293 293 293 293 293 293	5CN 5TATI 26	241 241 241 241 241 241 241 241 241 241	LAST SPH	100044 100044 100004	F1457 FA	916 926 111 111	4 LONGER	シュートン
ZE STAT	FREZES	2009 2010 14.40 240 240 240 240 240 240 240	32 146 SLA	009500 009500 1	LITIES OF .10	10294 10294 10294	LITTES 0F	908 918 1026 11030	OF SEASO .10	091091 091091 091091
FREE	T SFRIVG	2001 200 200 200 200 200 200 200 200 200	C.F.	391. 148. 198.1	PE06A01 • 05	44229 49754 49754	PROE ABI • 05		NT CHANCE	21220 21220 21220
	se Las	50000000000000000000000000000000000000	36	30 31 25 30 20 20 20 55 20 55 20 55 20 55 20 55 20 55 20 55 20 55 20 55 20 55 20 55 20 55 55 55 55 55 55 55 55 55 55 55 55 55	LAST	00000 00000 00000	F14ST		PLKC1 MAX	1077755 1077755 1077755 1077755 1077755 1077755 1075755 1075755 1075755 1075755 1075755 1075755 107575 105555 105555 105555 105555 10555 10555 1055555 105555 105555 105555 1055555 1055555 105555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 10555555 1055555 1055555 10555555 1055555 105555555 1055555555
		200				していまつ				SN 31 ₹ ⊃
				2012 2012 2012 2012 2012 2012 2012 2013 2013						

.

	20	C 110000 110000 100000 100000 100000 10000 100000 100000 10000 1000000								
JGH 1979)	15T1CS	1240 1240 1240 1240 1240 1240 1240 1240								
50 THROU	FHEEZE STAT	30 30 117.05 117.016 12.016 102			F IRST	12020 12020 12020 12020	LAST	1022 1110 12150 1215	N 1 K	66/1195 66/1195 74/164 72/1192
AN (19	51 FÅLL 32	80 80 89 89 86 86 86 86 80 80 80 80 80 80 80 80 80 80 80 80 80			•95	1003 1003 1003 1003 1003 1003 1003 1003	•95	1014 1028 11155 11127 1217	• 95	123 175 188
I, MICHIGA	F IRS 36	103.230 163.252 163.752 105.1657 114	20	2950 950 950 909 909 909 901 901	06•	944MG 970000 99000	06•	10210 10220 1122 1122 1122	ENGTN (DAYS)	92220 94740 94740
GRAHA			•	0000940	. 75	52445 52445 50445 50445 50445 50445 50445 50445 50445 50445 50445 50445 50445 50445 50445 50445 50445 50445 50445 50445 5005 5000000	• 75	1004 1516 1173 1201 1201	ICATED L	14 14 14 14 14 14 14 14 14 14 14 14 14 1
CS FOR	20	255 255 252 252 252 253 253 253 253 253	ISTICS 2	24 24 24 24 24 24 24 24 24 24 24 24 24 2	ING DATES	30349 10049 20440	111 0716 S	427 1005 11065 11266 1126	THAN INDI	
TATISTI	1 A 1 I S T I C S	600 99 99 99 99 99 90 99 90 90 90 90 90 9	I LU STATI	00 00 00 00 00 00 00 00 00 00 00 00 00	LAST SPR	ດງທ ະ ເມີດ ເມີດ ເມີດ ເບີດ ເບີດ ເບີດ ເບີດ ເບີດ ເບີດ ເບີດ ເບ	FIRST FI		14 LOUGER	44949 44509 44500
REEZE S	FREEZE \$1	100 100 100 100 100 100 100 100 100 100	OU ING SEI	00-050	LITIES OF	999944 990944 1449-249	LITIES OF	919 922 1011 1011	OF SEASO .10	510% 210% 210% 210% 210% 210% 20%
E	SPRING 32	400 400 400 400 400 400 400 400 400 400	GR	322. 154-0 17-9	rf02411	400-50 201-00 90 90-6	PROBABI • 05	210 210 200 100 200 200 200 200 200 200	T CHALCE	4470 00 44700 44700
	36 Já	210 20 20 20 20 20 20 20 20 20 20 20 20 20	36	30 315.89 131.∻00 17.717	LAST	43904 48105 48105	LSnI J	2101 2010 2017 2017 2017	FERCEN Max	557/191 657/191 657/191 757/191
		424						9000 40		0.04 m 40
		000 X VEM 000 X V 000		2 4 2 6026 6027 7						
979)	20	316.547 316.547 135.567 17.775 131								
----------	------------	---	-----------	--	-----------------	---	-----------------	--	-------------------	---
IROUGH 1	111511CS	191-257 120-257 120-755 13-725								
(1950 TF	FREEZE ST	274 204 105 105 15 15 15 15 15 15 15 15 15 15 15 15 15			FIKST	54400 54400 54400	LAST	1019 1119- 1212	2 1	72/ 30 72/ 30 72/151 76/131
CHIGAN	IRST FALL	219 • 65 40 29 • 66 40 19 • 651			•95	201264 201264 201264	.95	1015 1115 1212 1212 1212 1212 1212	rs) ₉₅	2 - 4 - 2 2 - 2 - 2 - 2
ION, MI	36	325.552 325.552 75.167 18.044	20	216.650 216.650 20.8550 20.8550 .795	06•	20444 20444 20444	06*	1006 11104 12155 12155	FNGTH (0A)	72 299 141 191
JUNCT					.15	00444 100444 10000	. 75	108 1108 1105 1105	AT FD L	2365 2365 2356 2356 2356 2356 2356 2356
GRAND	20	440 440 440 900 900 900 900 900 900 900	STICS 24	22.295 22.295 2111	ING DATES	50044 00500 00440	LL DATES	474 474 474 474 474 474 474 474 474 474	THAN INDIC	101 107 2132 2132 2132
ICS FOR	1151155	50000 5000 5000 5000 5000 5000 5000 50	SLN STATI	511.77 511.77 2.660 2.1660	LAST SPR •25	49044 70101 70101	FIRST FA •25	901 916 7001 7001 1011	LONGER	55102 55105 55005 5505 55005 5
STATIST	FREEZE STI	3074 3074 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 14.50 15	32 32	ocene: Nnener	ILITIES OF	44114 402114 402114	ILITIES OF	821 909 922 1021	E OF SEASO	221128 2212 2212 2212 222 222 222 222 22
FREEZE	ST SFRING	355 355 3255 3255 3255 3255 555 555 555	č	517	PR08AH1 •05	662 115 115 115 115 115	FR06A61	44994 100 100 10 10 10 10 10 10 10 10 10 10 1	FNT CHANCE	111440 900 900 900 900 900 900 900 900 900
	36 LAS	00000000000000000000000000000000000000	36	30 31 106.163 21.196 21.296	LAST	1900 1900 2000 2000 2000	12-11	80,00 80,000 80,0000 80,000 80,0000 80,0000 80,0000 80,0000 80,00000000	PERC.	53/155 61/169 61/200 55/255 61/245
		NM				56.900 000000		40030 400 M		410-2000 41-550-550
		1222 1222 1222 1222 1222 1222 1222 122		212.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				22222 22222 240000 240000

	20	223 • 1 45 223 • 1 45 1 4 2 • 4 6 0 1 4 2 • 4 6 0 1 4 5 • 4 6 0 1 6 5								
GH 1979)	AT 151 1CS	1255 1255 1255 18:295 18:295 18:295 18:295 18:295 18:295 18:205 1								MNGON
0 THROU	FHLEZE SA	30 30 30 16.6616 13.754 .118			F IRST	-9000 119000 -9000	LAST	1018 11028 12128 12128 12128	N N N	64/ 64/ 72/11 66/14
AN (195	IRST FALL	206.330 296.330 14.932 14.933 15.43 15.43 15.43 15.43 15.43 15.43			•95	0 e n c f M n c n u F e e m n	• 9 5	1016 1027 1116 12166	YS) .95	30 136 1962 1962
MICHIG	56 36	213.655 74.000 14.17	20	231-67-09 231-67-09 231-612 21-612 21-642	06•	64838 00004 98498	06•		.ENGTH 1013.	627716 67770 67770
LAND,			•	00000-	. 75	5014 1014 1014 1014 1014 1014 1014 1014	. 75	1 1 0 2 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 2 0 2 1 1 1 0 2 1 1 2 0 2 1 1 1 0 2 1 1 2 0 2 1 1 1 0 2 1 1 2 0 2 1 1 1 0 2 1 1 2 0 2 1 1 1 0 2 1 1 2 0 2 1 1 1 0 2 1 1 0 2 1 1 1 0 2 1 1 0 2 1 1 1 0 2 1 1 0 2 1 1 1 0 2 1	CATED L	105 123 181 212
FOR HOI	21	202	ISTICS 2	1402 9929 7927 7927 7927	LING DATES	00444 6.40700 000444	VLL DATES	922 1073 1154 1156	THAN INDI	1900 1900 1900 1900 1900
ISTICS	1 4 1 1 5 T 1 C S	233 • 407 267 • 407 267 • 278 15 • 278 15 • 053	ISON STATI	30 576.37 177.667 24.008 24.008	: LAST SPR	ମହାର ଜନ୍ମ କୁଥିଲିକ	FIRST FI	000000 000000 0000000 0000000000000000	N LONGER •25	€►-\$€-\$ FIGU-0:\$ APP1G(Y
ZE STAT	FRUUZE SI	264.373 302.6333 302.6333 16.2633	ROUTHG SEI	0000 0000 0000 0000 000 000 000 000 00	111155 OF	99004 199094 19995	ILITIES OF	106 106 100 100 100 100	E OF SEASO	
FREE	T SPRING	30 364 .330 19 .273 19 .749	ē	905-1 9173- 1	FK0HAP . J5	00000 01000 01000	P.K.08.A.6 .05	829 909 1001 1001	NT CHANC	55755 24755 24755
	36 LAS	80-5 8975 8975 8975 8975 8975 8975 8075 8075 8075 8075 8075 8075 8075 80	36	30 546-45 114-67 23.577 23.193	L 0 5 T	49990 2012 80000	F 1FST	29496 2004 2005 2005 200 2004 200 2004 200 2004 200 2004 200 200	PERC! MAX	50 50 50 50 50 50 50 50 50 50 50 50 50 5
		N M				きょうちゅう		56.340 		ちってい ひゅうし P うついしょう
		2 Ver Xaa 30 30 ve		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		5556946 5555986 27277 77277		NUK SS		

	20	30 141.0554 141.0554 17.5554 17.552								
1979)	411511CS	252 252 126 156 124 124								ചപപക
LHROUGH	FREUZE ST	1332 1332 116-600 118-200 15-15-15-15-15-15-15-15-15-15-15-15-15-1			FIRST	2260 2260 2260 2260 2260	LAST	1022 1101 1265 12155 12155	N I H	55/110 55/10 55/10
(1950 7	KST FALL	242 242 252 254 254 254 254 254 254 254			•95	444NN 846NN 899NN	•95	1011 1011 12121 12121	s) .95	
ICHIGAN	36 F I	000000 100000 4000 4000 4000 4000 4000	20	23-24 23-44 22-55	06*		06•	1012 1025 1116 1211	ENGTH (UAY	24000 24610 24610
Е, М					.15	10444 10444 1000 1000 1000 1000 1000 10	• 75	1105	ATCU 1	10100 10100 11100
DSONVILL	0 5 U		ISTICS 24	2451 - 204 2451 - 24 21 - 254 21 - 254	RING DATES	000000 0000000000000000000000000000000	ALL DATES		THAN IND IC	111111 1441111 1441111 14411111 144111111
FOR HU	ATISTICS	000000 9000000	ISCH STAT	26647 26647 26647 26647 26647 26647 2036	LAST SP	5000 10000 10000	FIFST F	911 91 12 12 12 12 12 12 12 12 12 12 12 12 12	14 LONGER	4 10/1 4 5110/14 110/0/17
TISTICS	FREEZE SI	30 156.695 297.167 2.518 .192	ROJING SLA	1720 1720 1720	11.1115 OF	99944 99944 99944	11L 1715 OF	901 915 1001 1021	E UF SEASC	201156 20116 20116
ZE STA	SPRING	399-752 17-500 17-50 170	2	2963	PF0PAH .05	04904 42404 42403	PR06A8 .05	1010 1010 1010	CHANG	1-002 5000 1-002
FREE	36 14	5000000 9900000 9900000 9900 9900 9900	36		1 431	99954 007444 004444 004444	12414	89459 2017 909 909 909 909 909 909 909 909 909 90	PLKC! MAK	557166 557166 5577255 5477777777777777777777777777777
		N m		-		0 2 4 5 FINICUL N		1010 - 110 - 11 10 - 11 - 11 - 11 - 11 -		2270C
		2 X 2 X 2 2 X 2 2 X 2 X 0 0 X 7 Z X 0 0 X		2000 2000 2000 2000						

60	
TABLE	

10701 1050 NKUTHUTM KFMADIN FREEZE STATISTICS FOR

	20	120°50 120°50 141°53 141°53 14977 14977 14977								
13/3/	AT ISTICS	155.159 134.159 134.559 122.5533 092								
וחאטטפח	FREEZE ST 28	11755 11755 11700 11700 11700 11700 11700 1090 10950			FIKST	54477 57447 1925 9859 96	LAST	11100 12020 12020 12020	N 1 N	56/13 56/13 56/13 57/20
r ncet)	IRST FALL	123.343 167.653 11.105			. 95	50 499 00 499 5 4970 5 4970	.95 •	1024 11103 1203 1203	18) .95	2009 2007 2007 2007 2007
ICD T GAIN	56 F I	02 751.871 251.872 251.524 263.81	20	227.167 257.167 252.167	U6 •	10-110 10-110 10-110	06•	9101 9501 7511 7511	LENGTH (DAY	21951
			•	ocnoru	• 15	000 100 100 100 100 100 100 100 100 100	•15	1 010 1 923 1 1 02 1 1 20 1 1 26	CATED 1	98999 1499 1499 1497 199 199 199 199 199 199 199 199 199 1
LUNAU N	20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1511CS 2	2048 2048 1048 104 104 104 103	LING DATES	000044 01110 00000	ALL DATES •50	111256 111256 11122	THAN IND 1	2022 2012 2012 2012 2012 2012 2012 2012
DJ COT	14 T 15 T 1C S	333.137 286.957 11.558	ASON STAT	30 396.13 175.167 14.076	F LAST SPI	000077 00077 95037	FIRST F	922 1068 11018 11103	04 LONGFR •25	44300 44300 8490 8490 8490 8490 8490 8490 8490 84
I OT TUTO	FREEZES	33 306.5337 10.660 035	102 146 SE	5000NIG	111155 01	4 8 0 2 B 1 C C J C 1 C C C J C 1 C C C C C C C C C C C C C C C C C C	11 1 1 1 ES 0	913 1011 1021 1021	E OF SFAS	221151 22551 2403 2403
	T SFRING	80 80 80 80 80 80 80 80 80 80 80 80 80 8	5	152.07	1-100 AH	1999 1999 1999 1997 1997 1997 1997 1997	FROBAB) •65	904 927 1527 1122	NT CHANCI	1151 1251 1253 1254 1254 1254 1254 1254 1254 1254 1255 1255
	16 125	12 27 27 10 57 12 12 12 12 12 12 12 12 12 12 12 12 12	36 3	000000 1 4 000 1 4 0000 1 4 000 1 4 000 1 4 000 1 4 0000 1 4 00000 1 4 0000 1 4 0000 1 4 00000 1 4 00000 1 4 00000 1 4 000000 1 4 0000000000	LAST	49049 19049 26019	F IKST	55000 55000 55000 55000	HEKCE HAX	12 10 10 10 10 10 10 10 10 10 10 10 10 10
		н Хана 2014 2017 2017 2017 2017 2017 2017		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						0024C

PPPPZF STATICS FOR LAKE LEFLANAL MICHICAN (1950 THROUGH 1979)

	20	11 145 145 145 10 10 10 10 10 10								
12121	AT 151 1CS	11 11 11 11 11 11 11 11 11 11								ອາດຸວະ
חטטה ו	. FREEZE ST	30 367 - 131 117 - 131 117 - 131 117 - 131 110			F IKST	504450 52426 52526 52526	LAST	1001 1221 1221 1221	2 1	64/ 6 55/11 57/13
DC&T)	IKST FALL	105.551 122.957 122.164			•95	55477 10477 10477	•95	1022 1031 1116 1209	15) .95	84976 9766 9766
TCHTGAN	36 FI	2200,700 220,070,00 21,01,01 11,01 11,01 171,01	07	2007 2007 2007 2007 2007 2007 2007 2007	06•	903499 903499 90949	06•	1016 1111 11155 12055	LENGTH (DAY	2000 2000 2000 2000 2000 2000 2000 200
U, M					. 75	99233 2012 2012 2012 2012 2012 2012 2012 2	.15	1 007 1 007 1 1 04 1 1 1 04 1 1 1 04	ATF0 1	5
LEELANA	20	223. 273. 278. 278. 278. 278. 275. 295. 240. 240.	stics 24	30 316 316 216 1949 206 17 7 719 17 00 100	ING DATES	₩₩₩ ₩₩₩ ₩₩₩₩ ₩₩₩₩₩₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	LL DATES	927 1011 1026 1111	THAN INDIC	11100 1000 1000
JK LANE	A 1 IST ICS 24	292-167 292-167 13-002 13-002	SON STATI	2.44 2.44 4.44 2.44 2.44 2.44 2.44 2.44	L457 SPR •25	90044 90044 94499	FIRST FA	2121 2121 2121 2111	N LONGER	000000 911/00 911/00
LTCS FL	FREEZE ST	123. 123. 113. 11. 11. 1000 11. 1000 11. 1000 1000	ROUING SLA	004555 004555 004555 004555 00455 00455 0045 005 00	111115 OF	9000 1000 1000 100 100 100 100 100 100 1	1111ES OF	907 926 1029 1121	E OF SEASC .10	131 251 252 252 249
T.I.A.I.C	SI SPRING	302.0516 324.267 324.267 10.133	5	1720	РИОНАН • 05	80040 2004 2004 2004	РF08А6 • 05	1000 1000 1000 1000 1000 1000 1000 100	ENT CHANC	500055 500055 50000
I KEEZ	36 LA	100 00 00 00 00 00 00 00 00 00 00 00 00	3.6	295.295 262.295 27.1000 21.1.111	LAST	9 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	F IRST	1215 1215 1215 1215 1215 1215 1215 1215	PERC' MAX	64/154 752/173 68//273 68//230 68//230
		2139X000 244000 212 212 212 212 212 212 212 212 212		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						

	20	80 179. 30 147. 161 19.93 19.93 19.93								
1979)	AT 1511CS	000 400 400 100 100 100 100 100 100 100								~~~~
LHROUGH	FNECZE ST	233 115.528 15.288 15.288 15.288 15.288			FIRST	44 000 11 000 9000	LAST	1021 1110 1228 1228	2 I U	63/ 653/ 165/114 72/19
(1950 7	HST FALL	30 224 116 101 - 767 14 - 771			9 5	844MM 946574 846774	• 95	1015 1110 1205 1216	59 . (2	50 51 51 50 50 50 50 50 50 50 50 50 50 50 50 50
ICHIGAN	36 F I	229.930 255.930 265.933 155.113 156.176	20	2294 01 237 01 237 167 17 149	06*	2346 2346 2346 246 246 246 246 246 246 246 246 246 2	06*	1013 1029 1112 1130	.FNGTH ,0AY	90 90 215 215 215 215
NO, M	_			00	• 15	00440 00440 005800000000	• 75	600 600 100 100 100 100 100 100 100 100	CATED 4	
LUDINGT	20	242 242 242 242 242 242 242 242 242 242	1571CS 2	6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	HING DATES	89449 89449 84849	ALL DATES	626 1010 1122 1121	THAN INDI	12122
CS FOR	TATISTICS 24	30 103.426 202.426 10.190 10.190	ASON STAT	30 30 37 59 56 17 55 56 17 55 55 21 56 55 55 55 55 55 55 55 55 55 55 55 55	F LAST SPI	900944 000000 000000	F FIRST F	400 101 101 101 101 101 101 101 101 101	ON LONGER	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TATISTI	FPEEZE S	11 11 10 10 10 10 10 10 10 10 10 10 10 1	ROVING SE		1LITTES 0	90004 40404 90404	111115 0	905 1921 1023 1023	E UF SEAS	5286661 52986 52986 52986 52986 5299 5299 529 529 529 529 529 529 529 5
REEZE S	ST SPRING	112 112 112 112 112 112 112 112 112 112	3	2289	PR05A6	6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ŀk∩B▲B • 65	2270 2770 2770 2770 2770 2770 2770 2770	ENT CHANC	0.9460 0.7446 0.000
Ŀ	36 LA	25 25 25 25 25 25 25 25 25 25 25 25 25 2	36	1 255 2 40 2 2 5 2 40 2 2 5 5 5 6 2 2 5 5 5 5 6 2 3 5 5 5 6 3 5 5 5 6 3	LAST	4 LT (19- 19- 19- 19- 19- 19- 19- 19- 19- 19-	F LAST		PERC Mål	527159 527139 617279 617275 617275
		200 27 27 27 27 27 27 27 27 27 27 27 27 27		A A A A A A A A A A A A A A A A A A A		11111 11111 11111 11111 11111 11111 1111				

FREEZE STATISTICS FOR MAPLETON, MICHIGAN (1950 THROUGH 1979)

20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
1151105	30 3137 - 120 136 - 467 11 - 752 - 046								
FRECE 314	30 1664 -921 1155 -900 112 -542 -111			FIKST	551 19 19 19 19 19 19 19 19 19 19 19 19 19	LAST	1101 1108 1129 1225	2 I K	79/ 88 58/120 56/139 57/198
RST FALL	30 161.059 104.9900 12.641 ,1212			. 95	89999 1996 1996 1996	•95	1018 12018 12018 12018	s) ,95	1110 61460 61460
36 FI	30 366.05 188.251 12.651 12.651	20	2235 2255 2266 2266 2567 267 267	06•	00449 40820 43460	06•	1013 1029 11209 12129	ENGTH COAT	966 256 2096 2096
				. 75	600460 9000 90000	.15	1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ATED L	2109
20	0000 90 90 90 90 90 90 90 90 90 90 90 90	STICS 24	253 51 26 6 6 21 26 6 6 21	ING DATES	00044 100044 1000-00	TL DATES	726 2101 2111 2111	THAN IND IC	1111 144 144 144 144 144 144 144 144 14
1 A T I S T I C S	30 36 36 36 29 4 0 5 1 1 6 7 6 1 1 0 4 0	ASON STATI 28	30 16,100 16,100 16,100 16,100	F LAST SPA		F FIRST FA	918 918 1019 11018 1106 1106 1106 1106 1106 1106 110	ON LONGFR •25	128 156 213 233 235
6 FREZLS	128.039 128.033 112.0533 11.0330 036	SROVING SE	500000 500000 500000 500000 500000 5000000	1111155 0	90004 40004 40704	91111ES 0	9211 729 7001 7001	CE OF SEAS	137 168 227 240
ST SHRIU	33 33 32 32 32 32 32 32 32 32 32 32 32 3	-	66 - 1 	PROBA	6018 5027 2027 2027	FF0BA1 • 05	906 422 1025 1151	NT CHAN	144 144 254 254 254 254 254 254 254 254 254 2
3f LA		36	20 211, 30 117, 333 117, 333 125, 233	LAST	90665 90665 90665	F LHST	902 921 1021 1021	FEKCF MÅX	69/151 75/211 60/234 69/262
			2012 41200 744 744 757 77		90246 900260 900500 977717 977717 977717 977717		900845 Philippi Sticlippi Cotta Cott		100000 1000000

.

	20	30 30 30 30 30 30 30 30 30 30 30 30 30 3								
1979)	411511CS 24	1950 1950 1970 1970 1970 1970 1970 1970 1970 197								Det tor N
THROUGH	FALEZE ST	00 00 00 00 00 00 00 00 00 00 00 00 00			F JRS T	8000 800 800 800 800 800 800 800 800 80	LAST	1101 1126 1129 1232	Z I I H	664/ 661/126 56/1726 56/1726
(1950]	IAST FALL	30 30 399-167 15-013 15-013			•95	506 \$27 \$28 \$28 \$28	56°	1022 11102 11112 1021	75) .45	81 121 126 179 203
ICHIGAN	36 F	296. 120 296. 120 27.251 17.251	20	2284	06*	00044m	06•	111025 211029 211039 21100 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 2100000000	LENGTH (DA	0 49 90 7 - 44 7 - 40 7 - 70 7 - 70 7 - 70 7 - 70 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
ARS, M	0	DENNAL	24	300 222 10 10 10	S .75	10344 10344 10344 10344 10355 10354 103555 103555 103555 103555 103555 103555 103555 103555 103555 1035555 1035555 103555 103555 1035555 1035555 1035555 1035555 1035555 1035555 1035555 1035555 1035555 10355555 1035555 10355555 10355555 10355555 10355555 10355555 10355555 103555555 10355555 1035555555 10355555555 1035555555555	. 15	1005 1018 1119 1119	ICATED 1	4777 2 (1937 4 4 4 90 9
FOR MEP	N	212 212 212 212 212 212 20 20 20 20 20 20 20 20 20 20 20 20 20	ISTICS	281. 206.7 16.7	RING DATF	888844 670844 87098	ALL DATES	625 1201 1201	THAN IND .50	000 - 1 04-00 4 -10 0
ISTICS	1 A 1 I S 1 I C S	295 295 295 11 577 291	ASON STAT	30 30 30 30 30 30 30 20 30 30 30 30 30 30 30 30 30 30 30 30 30	- LAST SP	96044 Canad 99844	FIRST F	910 910 1010 1010 1010 1010 1010 1010 1	NN LONGER	57420 97420 97420
LE STAT	FREEZE SI	102 102 102 10 10 10 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 20 14 20 20 20 20 20 20 20 20 20 20 20 20 20	OUING SEI	002230	11 1 T I E S U	90269 90269 902690	10	901 1011 1023 11023	CF SEAS	1120 1400 1400 1400
FREE!	ST SPRING	321-23 12-23 12-53	5	2456 1426	FR08A6	003 73 00027	PRUB46 • 05	4256 1000 1000 1000 1000 1000 1000 1000 10	ENT CHANCI	99411 1947 1947 1947 1947 1947 1947 1947
	36 LA:		36	119.7.67 23.567 23.567 23.567	LAST	0 4 J J J J J J J J J J J J J J J J J J	FIKST		РЕКС! МАХ	74/174 75/166 75/216 64/253
		2		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						

	20	203.752 136.201 14.275 105								
1979)	1 1 S I 1 C S 4	30 354 124 124 102 122 102								
THROUGH	FREEZE STA	1129 1129 1122 1122 101 101 101			FIRST	9154 9155 9066 9066	LAST	1007 1101 1129 1208	2 I ¥	63/ 82 66/116 74/165 66/172
(1950	ST FALL	30 68.079 96.300 12.965			36.	1999 1999 1998 1998 1998 1998 1998 1998	• 55	1006 1103 1103 1201	, 95	ан 151 161 163 163 163 193
MICHIGAN	5 F I R 36	30 76.692 1.4.067 1.067 1.069 1.04	20	2359, 91 2359, 91 2222, 457 282, 4537 284, 91	•06•	54440 54440	06•	1000 1100 1110 1117 01	LENGTH CDAYS	
AW PAW,	20	5045 1944 6005 600 600 600 600 600 600 600 600 60	~	30 352 • 42 37 • 842 8 • 773 • 0 95	ATES .75	11 513 166 4 513 166 4 4 213 166 4 4 213 167 167 167 167 167 167 167 167 167 167	175 .75	928 928 929 1103 1123	INDICATED	2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
FOR P	₽S C	00000000 10000 10000	ATISTICS	- 6 -	SPR1NG	00444 000444	FALL DA	60011 6011	ER THAN	
STICS	TATISTIC	2946	ASUN ST	1 7 5 • 3 0 1 7 5 • 3 0 1 5 • 4 1 2 1 5 • 4 1 2 0 8 7	F LAST	000044 1940/14	F FIRST	916 928 1013 1023 1023	ON LONG	
LE STAT	5 FREEZES	162 162 120 120 120 120 120 120 120 120 120 12	LRD4ING SF	20 20 20 20 20 20 20 20 20 20 20 20 20 2	BILITIES C	90000 90000 90000	B1L111ES 0	911 920 1016 1016	CE OF SEAS	142 172 246 246 246
F.REE.	51 SI RI HI	30 183.030 311.557 13.557 13.557	-	1500	PROBA .05	60100 80100 80100	PRCHA • 05	908 916 110 110 110 110 110 110 110 110 110 1	ENT CHAN	252 252 253 253
	36 L &	1000 1000 1000 1000 1000 1000 1000 100	36	30 30 12257-79 123-767 123-767 123-763	138 T	€00000 01221 010200	F LEST	9152 9152 9152 9152 9159 9159 9159 9159	HEKC MAX	75/150 73/209 75/209
						1000000		00.2000 100.000		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		N N N N N N N N N N N N N N N N N N N		LI LII LI LI LII LI LII LI LII LI LII LI LII LI LII LI LII LI LII LI LI LII LI LI LII LI LII LI LII LI LII LI LI LII L				

STATISTICS FOR DAW DAW MICHICAN (1950 THROUG)

	20	259.638 259.638 142.567 16.113								
3H 1979)	1 15 1 1 CS 2 4	30 323 30 126.4200 126.4200 126.400 113 4013								
O THROUC	FREEZE STA 28	30 30 11 9.500 12.592			F 1 K S T	445 229 229 29 29 29 29 29 29 29 29 29 29 2	LAST		N I W	76/ 97 66/119 74/1 9 6 66/172 72/192
195 195	ST FALL	74.230 21.52350 11.52350 11.52350 11.52350 11.22			•95	044NN 01000 18470	•95	1014 11101 1116 1216	• 95	1756 1756 1957 195
, MICHIGA	36 36	126 - 51 126 - 51 11 - 228 128	20	2522 2522 2522 2522 2522 2522 2522 252	06•	:07 82 4 07077 0 4 4 MM	06•	1010 1027 11123 12123	ENGTH (DAYS)	94079 94079 94079
LDGE					. 15	8-650 10-650 9-4-47	• 75	001 001 001 001 001 001 001 001 001 001	ATED L	14112 141 141 141 141 141 141 141 141 14
PEACH F	20	274.267 274.267 13.814 13.814	STICS 24	2000 1960 1965 1966 1966 1966 1960 1960 1960 1960 1960	146_0A1ES .50	C 3 8 4 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LL DATES	929	THAN IND IC	2005537 2005537 2005537
ICS FOR	1 A T I S T I C S	2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	LSCN STATI	888 888 888 888 888 888 888 888 888 88	: LAST SPR	80544 800-4 70465	FIRST FA	90000 1000 1000 1000 1000	DE LONGER	うて どう じ う じ ひ う う う う こ う う う う う う こ う う う う う う う じ う う う う う う う じ う う う う
STATIST	FREEZE S1	500 50 50 50 50 50 50 50 50 50 50 50 50	QUING SEI	20-00-4 20-00-4	LITIES OF	00004 00004 00004	LITIES 01	911 922 1010 1016	OF SEASC	00088 00088 000788 000788
EEZE 8	SFRING 32	0000000 99000 99000 9000 90000 90000 9000 90000 9000000	6 R	317 317 155.4	PK06AU1 •05	40054 20100 20100 20100	PF69A81 .05	401 1010 1010 1010 1010	CHANCE	2155 2155 2155 2155 2155 2155 2155 2155
FF	145T 36	1000 1000 1000 1000 1000 1000 1000 100	36	20 275.99 127.50 127.50 126.611	LAST	ເປັນ ເປັນ ເປັນເປັນ ເປັນເປັນ ເປັນ ເປັນ ເປັນ ເປ	F JKST	0 - 1- 15 6 9 - 2 - 15 - 1 9 - 2 - 1 - 1 9 1 9 - 1	HEPCEN	54/277
				•		502565 5000.100				
		M 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								

	20	29 29 29 29 29 29 29 29 29 20 29 20 20 20 20 20 20 20 20 20 20 20 20 20								
979)	AT 15 F 1 CS	24 24 25 25 25 25 25 25 25 25 25 25 25 25 25								
HROUGH 1	FREEZE ST	266.329 266.329 121.6955 16.1321			FIRST	8000 8000 8000 8000 8000 8000 8000 800	LAST	1019 12119 12213 2221	N I W	66/120 66/120 66/161
(1950 TH	FIRST FALL	100 100 100 100 100 100 100 100 100 100			56 °	001149 012000 010199	36°	1014 1127 1126 1209	1751 _{.95}	21112 2749 2959 2959 2959 2959 2959 2959 2959 29
CHIGAN	36	29 96.677 90.034 9.832 9.832 9.832	20	250.795 250.795 250.795	06•	54555 24555 20105	ŋ6 .	1011 1011 1021 1021 1021 1021 1021 1021	LINGTH (01	
, MI					. 75	575 124 125 125 125 125 125 125 125 125 125 125	. 75	1005	ATED 1	149691 199791 1996
OR SODUS	2 (269 262 262 262 262 262 262 262 262 262	stics 24	2008 2008 2008 2008 2008 2008 2008 2008	ING DATES	898441 45400 8 4640	LL DATES	928 1015 11155 11125	THAN 1001C	201921 201951 201951
STICS F	1411511CS	2551 - 29 276 - 458 276 - 621 15 - 651 15 - 651	ASON STATI	24 24 24 24 24 24 24 24 24 24 24 24 24 2	F LAST SPR • 25	2 - C P C 2 - C P C P C P C 2 - C P C P C P C P C P C P C P C P C P C	F FIRST FA	195 195 195 195 195 195 195 195 195 195	0. 1.01.6E.R •25	NØ494 47944 9700
E STATI	5 FREEZES	29 2916-719 291-011 16-635 16-635	GRO≓ING SE	660050 002030 1000	11111ES 0	900044 00000 00000	1111155 0	915 927 1029 1110	CE OF SEAS	150 200 270 270
FREE2	AST SPRINI 32	211.29 201.909 14.557 14.557	-	1561	PR08 AI	85054 85056 8009 8099 8099	PR08A1 •05	1002 1002 1002 1002 1002	CENT CHAN	
	36 L	60 60 60 60 70 70 70 70 70 70 70 70 70 70 70 70 70	36	253.27 253.67 131.446 15.946	LAST	N7000 9200 9200 8	F 14ST	10000 1000 1000 1000 1000 1000 1000 10	H EH	551/201 551/201 57/201 5/2/201
		П 		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						21211 27222 000000 000000

C17	
TABLE	

MICHIGAN (1950 THROUGH 1979) E ÷ T C C C C 1.1.3 ちつち Ċ E E ß 000

	20	30 30 30 30 30 30 137 939 939 939 939								
3H 1979)	at Ist Ics	30 31 123 • 167 13 • 167 13 • 167								- 60990
D THROUG	FREEZE ST 28	213.572 109.400 19.400 1.400 1.400			FIRST	444NN 40000 444NN	LAST	1014 11108 11108 1216	2 I H	664/ 664/ 76/13 76/13 66/14
N (195	IST FALL	30 196.326 97.133 149.012			•95	44400 04004 06004	•95	1012 1075 1123 1123	s) .95	90000 9000 90000
MICHIGAN	36 F1F	175.637 175.637 13.7535 13.7535	20	226.226 226.557 226.557 20.090	06 •	94400 04400 01000	Ű 6 •	1007 1023 1105 1116	.ENGTH (DAYS	5150 2016 2016 2016
LET,					.15	400004 10100 4440	.15	1103	ATED 1	40:08M 6 796 7 7 716 7
WATERVL	5	2756 2756 2756 2756 2756 2756 2756 2756	1571CS 24	000 1 5 2 1 5 2 1 5 2 1 5 2	LING DATES	0000-9 3-:320 99900	ALL DATES	920 101 101 101 101 101 101 101 101 101 1	THAN INDIC	22228 22228 22228
ICS FOR	A T I S T I C S 24	30 366 - 041 285 - 640 13 - 640 13 - 640	SCP STATI	301.30 301.36 71.767 17.366 17.366 101.	LAST SPF	90044 90044 90044	FIRST FI	911 926 1024 1022	N LONGER	22200 1001 100 100 100
STATIST	FREZESI 24	30 185.775 301.667 13.630 13.630	OVING SEA 32	50000000 5000000	LITIES OF •10	4000 1990 1990 1990 1990 1990 1990 1990	LITIES OF .10	903 917 929 1021	0F SE 450	176 172 228
FREEZE 3	ST SPRING 32	30 315-579 315-670 16-640	6.4	. 1 4 1 2 4 1 1 2 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	PP06451	9400 1000 1000 100 100 100 100 100 100 10	FR06AB1 .05	829 912 923 1704	ENT CHANCE	0000 0000 0000 0000 0000
	36 LA	000 000 000 000 000 000 000 00 00 00 00	36	30 456 - 46 114 - 400 21 - 565 21 - 180	L 4 5 T	0.070 0.00 0.00 0.00 0.00 0.00 0.00 0.0	F 1kST		FERC Max	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
		20				1001218-2 10001010		そうろうこ		5000000 1000000
		N N N N N N N N N N N N N N N N N N N		11 11 11 11 11 11 11 11 11 11 11 11 11						999969 99596 77967 77967 77967 77977777 779777 779777 779777 779777 779777 779777 779777 779777 779777 779777 7797777 7797777 7797777 779777777

APPENDIX D

TEMPERATURE-PROFILE PREDICTION MODEL

There are five distinct steps in the model:

- 1. soil heat flux
- 2. convective heat flux
- 3. friction velocity
- 4. air-temperature profile
- 5. temperature change with time

Input Parameters

Input parameters at t_o were:

R _n (0)	an hourly mean value preceding t_0 (calcm ⁻² min ⁻¹)
Τ _R	ambient air temperature at the reference level, 150 cm (^{O}K)
$\overline{v}_1, \overline{v}_2$	wind speeds at 900 and 1800 cm, respectively
^T xi	maximum soil temperature for the day at $i = 0$, 5, 10, 20, and 50 cm (^O K)
T _{ni}	minimum soil temperature at same levels (O K)
PW	percent water in the soil on a volume basis
T _d	dew-point temperature (^O K)

Soil Heat Flux

The heat flux through the upper boundary of a slab of soil at the earth-air interface during periods of net outgoing radiation is

$$S(0) = \int_{0}^{z} (\rho_{S} C_{S} \Delta T / \Delta t) dZ \qquad (D.1)$$

Soil layers which exhibit diurnal temperature variation are responsible for the total flux of heat across the earth's surface. Equation D.l is then evaluated as an algebraic sum:

$$S(0) = (\rho_{S}C_{S}\Delta T/\Delta t)_{1} + (\rho_{S}C_{S}\Delta T/\Delta t)_{2} + \dots + (\rho_{S}C_{S}\Delta T/\Delta t)_{I}$$
(D.2)

where the subscripts refer to depths 1 cm, 2 cm, etc., to the depth where $\Delta T/\Delta t = 0$.

The soil heat capacity per unit volume (volumetric heat capacity) is computed by the formula

$$C_v = \rho_B (C_S + PW/100)$$
 (D.3)

A moist, homogeneous soil is assumed, where $\rho_{\rm B}$ is the bulk density of the soil, 1.6 g cm⁻³, and C_S is the specific heat of the soil, 0.18 cal g⁻¹ C⁻¹.

Van Wijk (1965) bypassed the need for precise knowledge of the thermal diffusivity of the soil when deriving his equation of the soil temperature profile with respect to time. His equation is:

$$T(Z,t) = T_A + AT_0 e^{-(Z/D)} sin(wt+C_0-Z/D)$$
 (D.4)

where

- T_A is the average soil temperature and is often the same at any level within the depth of diurnal temperature change (^OK)
- AT_0 is the amplitude of the soil surface temperature (^OK/100 m)
- D is the damping depth: the depth at which the amplitude of the temperature wave has increased to 1/e of its value at the surface (cm)
- C_0 is a constant which depends upon the choice of the zero point on the time scale
- w is $2\pi/P$, where P is the period (sec⁻¹)

This equation is actually a solution to the classical Fourier heat conduction equation:

$$\partial T/\partial t = K_s \partial^2 T/\partial^2 Z$$

which fits the boundary condition

T = T sin wt.

This assumption is based upon the observation that, on cloudless days, the diurnal fluctuation of soil temperature may be approximated by a sine function of the time.

The soil heat flux each hour was computed by use of D.2, D.3, and D.4. Finally, the derivatives of D.4 for each soil level at t_0 and at hourly increments after t_0 were used in a form of D.2 designed to account for the uneven spacing of maximum soil temperature measurements:

$$S(0) = 5C_{v} \left[\overline{(\Delta T/\Delta t)}_{1} + \overline{(\Delta T/\Delta t)}_{2} + 2(\Delta T/\Delta t)_{3} + 6\overline{(\Delta T/\Delta t)}_{4} \right]$$
(D.5)

The subscripts refer to descending soil slab numbers, and

bars denote averages of the change in temperature with respect to time at the bounding surfaces of each slab. For example,

$$(\Delta T/\Delta t)_{1} = [(\Delta T/\Delta t)_{0 \text{ cm}} + (\Delta T/\Delta t)_{5 \text{ cm}}]/2$$

Convective Heat Flux

The convective heat flux was solved by $F_{H}(0) = R_{n}(0)-S(0)$ (D.6)

where the horizontal and vertical divergence of heat flux were assumed to be zero, and the net radiation considered to be constant throughout the forecast period.

Friction Velocity

An approximation to the friction velocity was found from the difference form of Prandtl's logarithmic law, which models the wind velocity in an adiabatic atmosphere:

$$U_{2} - U_{1} = [(U_{*}/K) (\ln Z_{2}/Z_{0})] - [(U_{*}/K) (\ln Z_{1}/Z_{0})]$$

= $(U_{*}/K) \ln (Z_{2}Z_{1})$ (D.7)

Alternatively,

$$U_{\star} = (U_2 - U_1) k / \ln (Z_2 / Z_1) = (U_2 - U_1) k / \ln 2$$
 (D.8)

where k is von Karman's constant, 0.40.

In the non-adiabatic case, it was necessary to compute a thermal stability index known as the Monin-Obukhov scale length:

$$L = U_{\star}^{3} c \quad T/(kgF_{H})$$
 (D.9)

The scale length is constant with height, making it convenient to express wind and temperature gradients as a function of the dimensionless height ratio Z/L. The non-neutral wind profile is

$$dU/dZ = (U_{\star}/kZ)(1+\alpha Z/L)$$
 (D.10)

where the term $(1+\alpha Z/L)$ represents the first term in the power series expansion of f(Z/L). Integrating D.10:

$$U = (U_{\star}/K) \left[\ln (Z/z_{o}) + \alpha (Z-z_{o})/L \right]$$
 (D.11)

but z_0 is very small, so that the non-adiabatic profile is

$$U = (U_{\star}/K) \left[\ln (Z/Z_{o}) + \alpha Z/L \right]$$
(D.12)

Air-Temperature Profile

The Lumley-Panofsky scaling temperature

$$T_{\star} = F_{H} / KU_{\star} c \rho \qquad (D.13)$$

appeared in the temperature profile equation,

$$\Theta - \Theta_{z_0} = T_{\star} [\ln (Z/z_0) + \alpha Z/L]$$
 (D.14)

By neglecting vertical motions in a stable atmosphere, the profile equation was solved in a manner similar to that for obtaining D.7:

$$T_{z_2} - T_{z_1} = T_{\star} \left[ln (Z_2/Z_1) + \alpha \left(\frac{Z_2 - Z_1}{L} \right) \right]$$
 (D.15)

 T_{z_1} was designated as the reference temperature T_R at 150 cm. Typically L is much greater than Z_1 , so that Z_1/L was neglected and the final profile equation was

$$T_{z} = T_{R} + T_{\star} [ln Z/Z_{R} + \alpha Z/L]$$
 (D.16)

Temperature Change with Time

From the air-temperature profile, dT/dZ at the reference level was computed and then used with $F_{\rm H}(0)$ to find the exchange coefficient:

$$K_{\rm H} = -F_{\rm H}(0) / \rho c_{\rm D}({\rm dT}/{\rm dZ})$$
 (D.17)

This enabled the computation of the eddy conductivity (λ) :

$$\lambda = K_{\rm H} \rho c_{\rm p} \tag{D.18}$$

By considering heat flux across any plane, Brunt (1941) derived an equation for the air-temperature profile valid for the case of constant flux across Z=0, with the boundary condition $T_{(z=0)}=0$. This equation was then solved to compute the predicted change in temperature at 150 cm during the next hour, which then establishes the value of the reference temperature for the next iteration of the program:

$$T(Z,t) = 2F_{H}/\lambda \left[(K_{H}t/\pi)^{\frac{1}{2}} \exp(-Z^{2}/4K_{H}t) - (Z/2) \operatorname{erfc}(Z/\sqrt{4K_{H}t}) \right]$$
(D.19)

where erfc is the complimentary error function.

The main assumptions in the model were:

1. constant net radiation

2. a homogeneous soil with respect to conductivity and water

3. equality of the exchange coefficients for

momentum and heat

4. a neutral wind profile

5. zero advection of heat

This model was tested by the Agricultural Weather Service in Florida and presented by J. C. Georg in partial fulfillment of a master's degree from the University of Florida. His results in predicting the nocturnal minimum temperature are very promising: the mean error was -0.16°C, with a standard deviation of 2.4°C. Seventy percent of the errors were within one standard deviation of the mean, and 100% were within two standard deviations.

Georg cited the need to improve computation of the friction velocity, both initially and in subsequent time periods. To accomplish this, he suggested obtaining longer time averages of the input wind velocities, and using a log-linear wind profile on nights when the expected wind speed is less than 2.0 m sec⁻¹. He also concluded that omitting a net radiation divergence term distorted some of the temperature profiles. Finally, a means for computing the change in net radiation during the course of the evening would improve the model.

BIBLIOGRAPHY

BIBLIOGRAPHY

- Alter, A. G. 1920. Studies of the Frost Problem. <u>Geogr</u>. Ann. 2:20-32.
- Bagdonas, A.; Georg, J. C.; and Gerber, J. F. 1978. Techniques of Frost Prediction and Methods of Frost and Cold Protection. WMO Technical Note No. 157. Geneva. 160 pp.
- Ball, F. K. 1954. Energy Changes Involved in Disturbing a Dry Atmosphere. Quart. J. Roy. Meteorol. Soc. 82:15-29.
- Ballard, J. 1976. Wind, Water and Wits. J. Wash. St. Hort. Assn. 81:62ff. (8 pp.)
- Bartholic, J. F., and Braud, H. J. 1979. Foam Insulation for Freeze Protection, in Modification of the Aerial Environment of Plants, eds. B. J. Barfield and J. F. Gerber. Vol. 2. St. Joseph, Mich.: ASAE.
- Bates, E. M. 1972. Temperature Inversion and Freeze Protection by Wind Machine. <u>Agric. Meteorol</u>. 9:335-46.
- Bethea, R. M.; Duran, B. S.; and Boullion, T. L. 1975. Statistical Methods for Scientists and Engineers. New York: M. Dekker. 583 pp.
- Beals, E. A. 1912. Forecasting Frost in the North Pacific States. Bulletin No. 41 (W. B. No. 473). 49 pp.
- Brooks, F. A. 1947. Action of Wind Machines in Frost Protection. American Fruit Grower 47:15ff. (4 pp.)
- Brooks, F. A.; Rhoades, D. G.; and Schultz, H. B. 1950. Frost Protection for Citrus. Cal. Ag. 4:13-15.
- Brooks, F. A.; Kelly, C. F.; Rhoades, D. G.; and Schultz, H. B. 1951. Heat Transfer in Citrus Groves. <u>Cal</u>. Ag. 5:14-15.
- Brooks, F. A.; Kelly, C. F.; Rhoades, D. G.; and Schultz, H. B. 1952. Heat Transfer in Citrus Orchards Using

Wind Machine in Frost Protection. Cal. Ag. 33(2): 74ff. (10 pp.)

- Brooks, F. A.; Rhoades, D. G.; and Leonard, A. S. 1952. Wind Machines: 90 and 15 bhp Machines Compared for Frost Protection at Riverside. Cal. Ag. 6:7-8.
- Brooks, F. A.; Rhoades, D. G.; and Leonard, A. S. 1952. Frost Protection Tests with Wind Machines. <u>Cal</u>. Citrograph 37:14-16.
- Brooks, F. A. 1952. Heat Transfer in Citrus Orchards Using Wind Machines for Frost Protection. Agr. Eng. 33(3):143-7.
- Brooks, F. A., Rhoades, D. G., and Leonard, A. S. 1953. Wind Machines: 1953 Report on Frost Protection Tests in California Citrus Groves. Cal. Ag. 7:6-7.
- Brooks, F. A.; Rhoades, D. G.; and Leonard, A. S. 1954. Wind Machine Tests in Citrus. Cal. Ag. 8:8-10.
- Brooks, F. A. 1959. An Introduction to Physical Microclimatology. Davis, Calif.: University of California. 264 pp.
- Brunt, David. 1941. Physical and Dynamical Meteorology. New York: Cambridge University Press. 428 pp.
- Businger, J. A. 1965. Frost Protection with Irrigation. <u>Meteorol. Monog.</u> 6:74-80. (Boston: Amer. Meteorol. <u>Soc.</u>)
- Crawford, T. V. 1964. Analysis of Area Influenced by Wind Machines in Frost Protection. <u>Trans. ASAE</u> 3:250-2.
- Crawford, T. V. 1965. Frost Protection with Wind Machines and Heaters. <u>Meteorol. Monog.</u> 6:81-7. (Boston: Amer. Meteorol. Soc.)
- Crawford, T. V., and Brooks, F. A. 1959. Frost Protection in Peaches. Cal. Ag. 13:3-6.
- Crawford, T. V., and Leonard, A. S. 1960. Wind Machine-Orchard Heater Systems for Frost Protection in Deciduous Orchards. <u>Cal. Ag</u>. 14:10-13.
- Davis, R. L. 1977. An Evaluation of Frost Protection by a Wind Machine in the Okanogan Valley of British Columbia. Can. J. Plant Sci. 57:71-4.
- Ellison, E. S. 1928. A Critique on the Construction and Use of Minimum Temperature Formulas. Mon. Wea. Rev. 56:485-91.

- Fuchs, M., and Tanner, C. B. 1966. Infrared Thermometry of Vegetation. Agronomy J. 46:597-601.
- Gates, D. M. 1965. Radiant Energy, Its Receipt and Disposal. <u>Meteorol. Monog.</u> 6:1-26. (Boston: Am. Meteorol. Soc.)
- Gates, D. M., and Tantraporn W. 1952. The Reflectivity of Deciduous Trees and Herbaceous Plants in the Infrared to 25 Microns. Science 115:613-16.
- Geiger, R. 1957. The Climate Near the Ground. Cambridge, Mass.: Harvard University Press. 494 pp.
- Georg, J. G. 1970. An Objective Minimum Temperature Forecasting Technique Using the Economical Net Radiometer. J. Appl. Meteorol. 9:711-13.
- Georg, J. G. 1971. A Numerical Model for Prediction of the Nocturnal Temperature in the Atmospheric Surface Layer. Master's thesis, University of Florida.
- Gerber, J. F., and Busby, J. N. 1962. Field Trials with a Wind Machine. Fla. State Hort. Soc. 75:13-18.
- Gerber, J. F., and Harrison, D. S. 1964. Sprinkler Irrigation for Cold Protection of Citrus. Trans. ASAE 7(4):464-8.
- Gerber, J. F., and Martsolf, J. D. 1979. Sprinkling for Frost and Cold Protection. In <u>Modification</u> of the Aerial Environment of Plants, eds. B. J. Barfield and J. F. Gerber. Vol. 2. St. Joseph, Mich.: ASAE.
- Goss, G. B., and Brooks, F. A. 1956. Some Observations of Longwave Radiation from Clear Skies. Quart. J. Roy. Meteorol. Soc. 82:241-53.
- Hashemi, F., and Gerber, J. F. 1965. The Freezing Point of Citrus Leaves. Proc. Amer. Soc. Hort. Sci. 86:220-5.
- Hendershott, C. H. 1961. The Response of Orange Trees and Fruits to Freezing Temperatures. Proc. Amer. Soc. Hort. Sci. 80:247-50.
- Hilgeman, R. H.; Everling, C. E.; and Dunlap, J. A. 1964. Effect of Wind Machines, Orchard Heaters, and Irrigation Water on Moderating Temperatures in Citrus Grove During Severe Freezes. <u>Am. Soc. Hort</u>. Sci. Proc. 85:232-44.

- Jensensius, J. S.; Zurndorfer, E. A.; and Carter, G. M. 1978. Specialized Agricultural Forecast Guidance for Michigan and Indiana. <u>TDL Office Note</u> 78-9. National Weather Service, Systems Development Office, Techniques Development Laboratory.
- Kangieser, P. C. 1959. Forecasting Minimum Temperatures on Clear Winter Nights in an Arid Region. <u>Mon</u>. Wea. Rev. 87:19-27.
- Keyser, E. M. 1922. Calculating Temperature Extremes in Spokane County, Washington. <u>Mon. Wea. Rev</u>. 50: 526-8.
- Kreyszig, E. 1970. Introductory Mathematical Statistics: Principles and Methods. New York: John Wiley and Sons, Inc.
- Mee, T. R., and Bartholic, J. F. 1979. Man-Made Fog. In Modification of the Aerial Environment of Plants, eds. B. J. Barfield and J. F. Gerber. Vol. 2. St. Joseph, Mich.: ASAE. pp. 334-52.
- Mitchell, A.; Eichmeier, A. H.; Johnston, S.; Larson, R. P.; Bell, H. K.; Dexter, S. T.; Downes, J. D.; Kidder, E. H.; Wheaton, R. Z.; and Van Den Brink, C. 1965. Michigan Freeze Bulletin Research Report No. 26. East Lansing: Michigan State University Agricultural Experiment Station. 40 pp.
- Moses, B. D. 1938. Blowers for Frost Protection. Agric. Eng. 19:307-308.
- Neter, J., and Wasserman, W. 1974. Applied Linear Statistical Models. Homewood, Ill.: Richard D. Irwin, Inc. 842 pp.
- Nichols, E. S. 1920. Notes on Damage to Fruit by Low Temperatures; Prediction of Minimum Temperatures. Mon. Wea. Rev. 16:37-45.
- Nichols, E. S. 1926. Notes on Formulas for Use in Forecasting Minimum Temperatures. Mon. Wea. Rev. 54:499-501.
- Raschke, K. Heat Transfer Between the Plant and the Environment. Ann. Rev. Plant Physiol. 11:111-26.
- Reese, R. L. and Gerber, J. F. 1963. Field Trials with a Wind Machine in a Citrus Grove. Fla. St. Hort. Soc. 76:81-6.

- Reese, R. L. and Gerber, J. F. 1969. An Empirical Description of Cold Protection Provided by a Wind Machine. J. Amer. Soc. Hort. Sci. 94(6):697-700.
- Reuter, H. 1951. Forecasting Minimum Temperatures. Tellus 3:141-7.
- Rhoades, D. G.; Brooks, F. A.; Leonard, A. S.; and Schultz, H. B. 1955. Frost Protection in Almonds. Cal. Ag. 9(8):3ff. (4 pp.)
- Sakamoto, A. G. and Gifford, C. S. 1960. The Climate of Nevada. Nev. Agr. Exp. Sta. Bul. 649.
- Schaal, L. A.; Newman, J. E.; and Emerson, F. H. 1961. Risks of Freezing Temperatures--Spring and Fall in Indiana. Indiana Agr. Exp. Sta. Bul. 721.
- Sellers, W. D. <u>Physical Climatology</u>. 1965. Chicago: University of Chicago Press.
- Shaw, R. H.; Thom, H. C. S.; and Barger, G. L. 1954. The Climate of Iowa. Special Report No. 8. Iowa Agr. Exp. Sta.
- Smith, J. W. 1914. Frost Warnings and Orchard Heating in Ohio. Mon. Wea. Rev. 10:573-9.
- Smith, J. W. 1920. Predicting Minimum Temperatures from Hygrometric Data. Mon. Wea. Rev. 16:6-19.
- Soderberg, M. E. 1969. Minimum Temperature Forecasting During Possible Frost Periods at Agricultural Weather Stations in Western Michigan. WBTM CR-28. Kansas City, Mo.: Weather Bureau. 8 pp.
- Suomi, V. E., and Kuhn, P. M. 1958. An Economical Net Radiometer. Tellus 10:160-3.
- Sutton, O. G. 1953. Micrometeorology. New York: McGraw-Hill. 333 pp.
- Swinbank, W. C. 1963. Longwave Radiation from Clear Skies. Quart. J. Roy. Meteorol. Soc. 89:339-48.
- Thom, H. C. S. and Shaw, R. H. 1958. Climatological Analysis of Freeze Data for Iowa. Mon. Wea. Rev. 86:251-2.
- Van Den Brink, C. 1968. Types of Spring Freezes in Michigan and Their Relationship to Protection Equipment. Mich. St. Hort. Soc. 98:102-107.

Young, F. D. 1920. Forecasting Minimum Temperatures in Oregon and California. Mon. Wea. Rev. 16: 53-60.