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ABSTRACT

INVESTIGATION OF ELECTRON SPIN RESONANCE IN MULTILAYERED
CUMN/CU SPIN GLASSES ABOVE THE FREEZING TEMPERATURE

By

Diandra Laia Leslie-Pelecky

Interpretation of the Electron Spin Resonance linewidth, AH and resonance peak
position, H,, above the freezing temperature, Ty, is difficult due to simultaneous physical
processes and even a question as to whether the linewidth is a probe of the long-range
’ordered’ spin glass phase, or a measure of short range correlations. We have measured
AH(T) and Hy(T) in multilayered Cu, Mn, spin glasses with x = 7% and 11 %, and spin
glass layer thicknesses, Wgg, from 1 nm to 1000 nm at 9 GHz. Finite size and
dimensionality effects on T, have previously been observed in these multilayers.

AH(T) is shown to have the same general form for all layer thicknessés, with
samples having Wy, < 3 nm more accurately described by a corresponding form
appropriate for T, = 0. Systematic variations in all parameters are seen as a function
of layer thickness. The separation of effects due to the depression of T and effects on
the linewidth itself is necessary in order to correctly understand the physical origin of the
trends.

The observed behavior of AH(T) is explained in terms of a correlated cluster
Picture. In the correlated cluster model, the existence of spin correlations at

temperatures significantly above T, leads to a distribution of cluster sizes and relaxation
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times, with the linewidth dominated by configurations with faster relaxation times. As
clusters become increasingly correlated, the internal fields generated by the clusters,
along with a DM anisotropy field, inhomogeneously broadens the exchange narrowed
resonance line. This interpretation suggests that the observation of resonance in spin
glasses above T is a characteristic of an intermediate phase between the spin glass and
paramagnet phases, and not a measurement of the spin glass phase per se. The effect
of decreasing layer thickness on the formation and growth of clusters, and the resulting
behavior of the linewidth is qualitatively discussed. The possibility of a ’Griffiths-like’
phase, in which regions of the sample are condensed into the spin glass phase at
temperatures between the bulk freezing temperature and the measured freezing

temperature of the sample, is considered.
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"Someday, after we have mastered the winds and the
waves, the tides and gravity, we will harness for God the
energies of love and then, for the second time in the history
of the world, man will have discovered fire."”

-Teilhard de Chardin-

This thesis is dedicated to my family:
my mother and father,
my brothers Theodore and Steven,
and most of all,
my husband Richard.
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CHAPTER ONE: INTRODUCTION

"Spin Glasses are magnetic systems in which the interactions
between the magnetic moments are ’in conflict’ with each other, due to

some frozen-in structural disorder. Thus no type of conventional long-

range order (of ferromagnetic or antiferromagnetic type) can be

established. Nevertheless these systems exhibit a ’freezing transition’ to

a state with a new kind of ’order’ in which the spins are aligned in

random directions. "!

This definition, from a review article by Binder and Young, captures the essential
nature of spin glasses: although we know a spin glass when we see one, we have a hard
time explaining why it is a spin glass. Considerable theoretical and experimental effort
has gone into understanding the novel properties which appear in such a wide variety of
materials. Most of the effort has focused on the behavior of spin glasses in the spin glass
phase proper; this thesis investigates the behavior of spin glasses as the transition is
approached from above the freezing temperature using Electron Spin Resonance. The
development of nanoscale fabrication and characterization techniques has prompted recent
experiments on the behavior of the freezing temperature as a function of sample size.
Measurement of the Electron Spin Resonance linewidth and position in bulk and
multilayered samples has shed additional light on both the nature of the spin glass
transition and the characteristics of multilayered spin glasses.

The organization of this thesis is as follows; Chapter One provides an
introduction to the experimental properties of spin glasses, and the theoretical concepts

necessary to explain these properties. Chapter Two explains the basics of Electron Spin

1
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2
Resonance (ESR), and Chapters Three and Four outline the major theories of spin

glasses, and the experimental progress in the study of multilayered spin glasses. The
fifth chapter is divided into two sections; the first section outlines the theory of ESR of
localized moments in metals, and the second section summarizes the current state of ESR
in spin glasses. Having laid the necessary conceptual foundation, Chapter Five concludes
with the motivation of the work presented in this thesis. The experimental technique is
detailed in Chapter Six, the data and analysis are presented in Chapter Seven, and

conclusions and suggestions for further experiments are found in Chapter Eight.

THE EXPERIMENTAL SIGNATURES OF SPIN GLASSES

The primary - and most easily observed - signature of a spin glass is a cusp in the
temperature dependent susceptibility, x(T), accompanied by hysteretic behavior at
temperatures below the cusp. Throughout this thesis, I will refer to the temperature of
the cusp as the freezing temperature, T, although it is also commonly referred to in the
literature as the glass temperature. This cusp was first measured by Cannella and
Mydosh? in the frequency dependent susceptibility of AuFe, but is seen in a wide variety
of materials including dilute and concentrated metallic alloys, insulators and magnetic
semiconductors'*4, A typical plot of x(T) for a CuygMn,,;, 1000 nm sputtered film
is shown in Figure 1-1. The solid symbols correspond to measurements made after the
sample has been cooled with no applied magnetic field, and the open symbols represent
the behavior of the susceptibility when the sample is cooled in a magnetic field of 100 G.

A measuring field of 100 G was used for both curves. Above T, the behavior is the



q A VUV e -
| . R . ~ N y h J | " |

(zL)ulwpnd :1—G8T1




wpy pasamds “Cup®On) um opo[ v Jo Kn1qudassng pord(L :1-1 a3y

(b I8
09 o¥ 02 0
| | | | § | ]  § LIS ] I 1 L ] mc-c
_ | _
o
* | * = LU~
IS . ¢ 9
; 00 d
. d Py 7 m
°®
¢ @ IS oo
7Y ® —GT°0 lm.\
0980000%%00000,
wu 00T = 26p S -
[ 1 J 1 — 1 A 1 — 1 1 1 — 1 'l 1 cmoo

(%L)URn) :1-gg81




e for both the
the cusp. the fielk
toward zero. Th
fero- and anufe
w22l assumption
& the onset of re
Mosshauer, non!;
¢ phase transitio
fermodvnamic q
oy broad featy
Tnsition occurs,

Specific



4
same for both the field cooled (FC) and the zero field cooled (ZFC) curves, but below

the cusp, the field cooled curve remains roughly constant, while the ZFC curve returns
toward zero. The cusp in the susceptibility is reminiscent of the behavior observed in
ferro- and antiferro- magnets, which are known to undergo phase transitions, so the
initial assumption was that this cusp represented a phase transition. Measurements such
as the onset of remanence and irreversibility in the magnetization, and sharp features in
Massbauer, nonlinear susceptibility and anomalous Hall effect experiments also indicate
a phase transition at T, yet corresponding behavior has not been observed in other
thermodynamic quantities. The magnetic specific heat, resistivity and thermopower show
only broad features at T,, leaving open the question of whether or not a true phase
transition occurs.

Specific heat measurements*® in CuMn and AuFe show that the entropy is about
70% of the maximum entropy above T, indicating that some short range magnetic order
exists above the transition temperature. Along with thermopower and resistivity’
experiments, these measurements indicate that a spin glass above T; can not be treated
as a simple paramagnet. Additional evidence for this picture is found in diffuse neutron
scattering® in AuFe at zero magnetic field, which shows two quasielastic lines with
different linewidths. One of these lines is interpreted as corresponding to fast relaxation
processes of single spins, while the other line is attributed to the behavior of correlated
pairs, triples, etc. As the temperature decreases, the second line grows at the expense
of the first, indicating a gradual growth of short range ordering.

The strongest evidence for a true phase transition is the divergence of the

nonlinear susceptibility, as first measured in AgMn by Monod and Bouchiat® and later
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5
by Levy', and Levy and Ogielski". If the temperature dependent susceptibility is

expanded in powers of the magnetic field, we find

S

TI' = xO(T) - Hzx,.,(T) + Order(H‘) 1-1

where x, is the nonlinear susceptibility. Bouchiat'? found that the nonlinear
susceptibility could be fit to a power law in the reduced temperature (t= (T-T;)/T,) with
a characteristic exponent, vy

T-T,]Y
o« | —F 1-2
xu(T) [ 7} ]

The extraction of an exponent from data appears to depend heavily on the region of
temperatures and magnetic fields considered in the scaling analysis. Bouchiat’s
measurements indicate that restriction of the temperature range to a narrow region around
T; results in a well defined value of y = 2.2 + 0.2. Alternate analyses of the nonlinear
susceptibility have been suggested'.

Dynamic measurements of the susceptibility have shown!*! that the relaxation
time spectrum is very broad, even far above T,. As the temperature is lowered, the
width of the spectrum dramatically increases, so that time scales are of macroscopic
order at and below T,. The shortest relaxation times, 7., are thought to be on the order
of 10° to 10" seconds. The average time scale, 7,,, and the minimum time scale, 7,

are consistent with an Arrhenius-type law,
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where 7, is a proportionality constant and E,, is an activation energy which measures
thermally activated processes involving temperature independent barriers; however, the
maximum relaxation time, 7,,,,, does not obey an Arrhenius law, and is inconsistent with
the above picture. 7., displays a strong temperature variation, and is described by a

Vogel-Fulcher law,

T = T, exp (—5-(%)-) 1-4
The Vogel-Fulcher law describes the frequency dependence of T, better than the
Arrhenius law, but the variable T, is generally treated as a parameter and does not
correspond to the freezing temperature.

Above T;, the behavior of the relaxation times may be described in terms of a

critical slowing down, with the maximum relaxation time following

Toax = To T~ T)™ 1-5
where v is the critical exponent of the correlation length (¢ o t”), and z is the dynamical
critical exponent (7 o« £%).

If the spin glass transition is not a true phase transition, the cusp in the

susceptibility may represent a ’falling out of equilibrium’. Because the time scales of the
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relaxation are macroscopically long, the system is never completely in equilibrium. Any
probe has a characteristic time scale, such that, when the system is relaxing at a time
scale longer than that of the measurement, the probe is incapable of measuring
equilibrium behavior. Experimentally, the position of the freezing temperature is found
to increase with decreasing measuring times, supporting the interpretation that the cusp
is due to non-equilibrium effects. The freezing temperature is also found to depend on
the magnitude of the magnetic field used in the measurement, which brings up questions
about the ability of a system to support spin glass order in the presence of a magnetic
field.

Below T, the primary experimental spin glass signatures are irreversibility and
relaxation time effects. The temperature dependent susceptibility has very different
forms depending on whether or not the sample was cooled in a field, as seen in Figure
1-1. As this thesis is mainly concerned with the temperature regime above and
approaching T;, experimental investigations of the spin glass phase per se will not be

reviewed.

THEORETICAL PROPERTIES

The conflicting experimental evidence surrounding the nature of the spin glass
phase and transition complicates theoretical analysis. Calculations are further hampered
by the lack of a well-understood Hamiltonian for the system, no obvious choice of order
parameter, a complicated and non-periodic ground state, and the analytical difficulties

inherent in dealing with random systems.
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The free energy surface of a spin glass may be schematically thought of as a

multi-valleyed structure, with a large number of local minima, as shown in Figure 1-2a.

The free energy surface of a ferromagnet is shown in Figure 1-2b for comparison.

Order Parameter Order Parameter

(a) ®

Figure 1-2: Free energy surfaces for (a) a spin glass and (b) a ferromagnet

The complicated free energy of a spin glass leads to a large number of states
which, although different microscopically, are characterized by the same macroscopic
measurable quantities. These degenerate states are separated by free energy barriers
which grow as the temperature decreases. The question of whether there is a single (to
within field symmetry) ground state, or a large number of ground states is still
controversial'*!®, The answer may in some part be dependent on the vector character

(i.e. Ising or Heisenberg)'®'” and range of magnetic interactions in the material.
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Frustration and Disorder

A microscopic spin glass theory which is to explain the nonperiodic ground
state(s) and the complicated free energy surface must have two fundamental elements:
disorder and frustration. Disorder refers to the lack of periodicity of the spins, which
introduces a random element to the interactions. Disorder may be a result of random

positioning of magnetic ions on a crystalline lattice or amorphous crystal structure.

Figure 1-3: A Frustrated Plaquette of Spins

Frustration is the inability of a system to simultaneously satisfy all of its ordering

constraints. A simple example of a frustrated system is a plaquette of three Ising spins
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on the vertices of an oblique triangle, as shown in Figure 1-3. If the interactions
between A and C and between A and B are ferromagnetic, but the interaction between
B and C is antiferromagnetic, we can not have a situation in which all three spins are in
their preferred orientations. This prevents the onset of long range order and is
responsible for the many valleyed free energy.

This combination of frustration and disorder results in a ’serious’! disorder which
can not be removed by a mathematical transformation. Spin glass theorists agree that
both frustration and disorder must be present in any spin glass theory which is to explain
real materials. The physical mechanisms responsible for frustration and disorder vary
from material to material, so the specific interactions which result in spin glass behavior

in dilute metallic spin glasses will be considered next.

Metallic Spin Glasses

Dilute metallic alloys are the canonical spin glasses and are created by randomly
substituting a small number of transition metal ions - usually Mn, but sometimes Fe - in
the lattice of a host noble metal (Cu, Au, Ag or Pt). The interactions are long-ranged,
and the spins behave in a Heisenberg-like manner. Metallic spin glasses have been
extensively investigated due to the ease of preparation and the range of concentrations

over which spin glass behavior is observed.
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11
The RKKY Interaction

The Ruderman-Kittel-Kasura-Yosida'*'*?* (RKKY) interaction originally
explained the long range interaction of nuclear spins via hyperfine coupling to a sea of
conduction electrons. This interaction can also explain how widely separated Mn atoms
in Cu interact. Hund’s rules determine the magnitude of the local Mn moment, with the
orientation of the moment determined by the exchange interaction, J(R;). The interaction
can be described by a Heisenberg Hamiltonian,

H=-Y JR)S,-§ 1-6

iwj

The exchange polarizes the spins of the conduction electrons near the Mn ion. The Pauli
exclusion principle causes the conduction electrons to respond with a characteristic
wavelength, A\p = x/k;, where k; is the Fermi wavevector. The resulting spin
polarization of the conduction electrons is oscillatory and long ranged. The sign of the
interaction between the Mn ions depends on whether the second Mn ion is at the crest
or the trough of the spin polarization wave created by the first Mn ion, so that both
ferromagnetic and antiferromagnetic interactions are present. As the distance between
the Mn ions increases, the strength of the interaction decreases. The derivation of the

RKKY interaction may be found in a number of texts?. The result is
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([T saenty- 5
HR) - - Ja| |3 sin(2k,R,)-2k, Rycos@ksRy) | -3 19
v )| =? kg R,)*

where \ is the mean free path of the conduction electrons, a.’ is the volume of the unit
cell, R; is the distance between Mn ions i and j, and ki is the Fermi wave vector of the
host metal. The exponential term accounts for the finite mean free path of the electron.
The RKKY interaction is frequently written in terms of the asymptotic limit, neglecting

mean free path effects

cos(2 kFR‘, +¢,)
(kR

J(R) = J, {
Figure 1-4 shows the RKKY interaction as a function of the distance between the
moments (R;). The random placement of the ions provides disorder and the presence of
the RKKY interaction is responsible for both ferro- and antiferro- magnetic interactions,
resulting in frustration.
In theory, we expect an equal number of positive and negative interactions, which
would yield a simple Curie Law paramagnetic susceptibility in the region above T;.
Morgownik and Mydosh? carefully investigated the high temperature susceptibility in
an attempt to corroborate the expression for the RKKY interaction in metallic spin
glasses. They found that deviations from ideal random mixing occurred in such a way
as to increase the probability of ferromagnetic interactions in CuMn, AuMn, AuFe and

PtMn. Their analysis showed that even small deviations from random mixing make big



Giferences 1

arerromags

Flgure 14;



13

differences in the interactions. In CuMn, the Mn nearest neighbor interaction is

antiferromagnetic, while the next nearest neighbor interaction is ferromagnetic.

J
N~ R

Figure 1-4: The RKKY interaction as a function of distance between atoms

The Mn-Mn distance? is maximized by preferential occupation of next nearest neighbor
sites by Mn, so that the predominant interactions are ferromagnetic.

Many theoretical calculations attempt to predict the behavior of T, in metallic spin
glasses from the form of the RKKY interaction, and especially to explain the observed
sublinear dependence of T, on concentration. Larsen” has presented a mean field

calculation in which the freezing temperature is given by
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kT, - ; llzj: &M 1-9

where the square root represents the local energy scale of spin j (with the sum running
over neighbor spins). Larsen has derived a sublinear dependence of T; on concentration
using a quenched uniform model in which only those moments which are at a distance
greater than the average nearest neighbor distance are included in the sum for a given
ion. Levy and Zhang®? have demonstrated that failure to include preasymptotic
corrections to the 1/R? behavior overestimates T, by a factor of two for CugMn, o, and
by a factor of more than three for Cu,4sMn, 5. They find preasymptotic corrections to
be six times more important than mean free path effects in Cu,o,Mn o and eight times
more important than mean free path effects for Ag,oMnyo. This means that the
asymptotic form of the RKKY interaction can not be applied to pairs separated by less
than 6 nm in CuMn and 3.5 nm in AgMn!®'® In concentrations larger than 100 ppm,
there will always be neighbors within this limit, demonstrating the importance of the

corrections to the 1/R3 behavior.
Anisotropy

Anisotropies increase the frustration in a system by placing additional ordering
constraints on the individual spins. Some authors? contend that nominally Heisenberg
systems, which theoretically are not expected to exhibit a phase transition in three

dimensions, exhibit phase transitions only because of the presence of anisotropy.
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Computer simulations® and experimental measurements” offer evidence that
anisotropy is not fundamental to the ordering phenomenon. This remains an unresolved
question.

Although dipolar anisotropies are present in metallic spin glasses, the magnitudes
of these anisotropies are too small to be responsible for ordering in CuMn or AuFe. The
most significant anisotropy in metallic spin glasses is thg Dzyaloshinskii-Moriya**!
(DM) anisotropy, which described the interaction between two spins via spin-orbit
scattering from a third atom. This anisotropy is especially pronounced if the third atom
is a strong spin orbit scatterer (i.e. Pd, Fe, or Co impurities in CuMn). If the impurity
is at the origin, and the two spins are at R, and R,, the DM anisotropy has the form

H,, =(-J sin[k,(R, + R, + (R,-R))] + b,
DM ( D") [l + CkF(Rl + R2 + (R2 _ Rl))]

(R,‘R,) (R xR,) - (§;x85))
R} R; (R,-R) k

1-10

Because of the coupling of the spin cross product to the spatial cross product, this
anisotropy is unidirectional. Typically, Jpy is approximately 1/10 of the magnitude of
the exchange coefficient of the RKKY interaction. The DM anisotropy is most important

below T;, where the anisotropy acts to maintain the frozen direction of the spins.
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In this Chapter, some of the experimental properties of spin glasses have been
briefly reviewed. Experimental evidence for and against the existence of a true phase
transition has been discussed, and an alternative explanation - that a failure to achieve
true equilibrium during the course of the measurement is responsible for the observed
properties - has been suggested. The theoretical concepts necessary to a discussion of
spin glasses have been introduced, with particular attention paid to the properties of

metallic spin glasses.
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CHAPTER TWO

INTRODUCTION TO ESR

INTRODUCTION

Chapter Two focuses on the basic theory of Electron Spin Resonance (ESR). The
general theory of ESR in non-interacting and interacting spin systems far from critical
points is discussed. The material in this chapter provides a foundation for Chapter Five,
where these basic formulas will be modified to describe ESR in the much more

complicated spin glass system.

BASI RY OF ESR

As an idealized case, consider a system of spins, each with angular momentum

S. Each spin has a moment, u, given by,

H=-g p’pg 2-1
where the pg is the Bohr magneton,
eh
=21 2-2
Ha 2mc

17
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and g is the ’g factor’. The charge of the electron, e, will always be taken to be

positive, and the minus sign accounted for explicitly. The gyromagnetic ratio, ¥, is

defined as

gHp 2-3

When a magnetic field is applied, (2S+1) Zeeman levels result for each spin.
The occupation of these levels by an ensemble of spins is described by the appropriate
statistical mechanics, and results in a net magnetic moment. An applied microwave field
of frequency hv induces transitions between Zeeman levels. Resonance occurs when the

microwave energy is equal to the energy difference between two Zeeman levels.

hy = ngH 2-4

Classical Equations of Motion

We can treat the spin as a charged, classical 'top’ with angular momentum #S,
and moment p=-yAS. The motion of the charged top in a magnetic field will be

governed by the classical equation

()00 -
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When H is a constant vector (H, = H k), the resulting motion is precession of
the moment at a fixed angle with respect to H,, with frequency w, = yH,. This is called
Larmor precession, and the frequency w, is the Larmor frequency.

Although the above description is entirely classical, a quantum mechanical
calculation leads to the same results. We start from the Heisenberg equation of motion,

.. d

where the Hamiltonian is the Zeeman interaction. Calculation of the commutator leads

to

d
E<a°”> = yH x <if,,> 2-7

which is the same as Equation 2-5. The details of extending the quantum case to include
the microwave field may be found in a number of references’>*. As we obtain
the same results classically as quantum mechanically - even in treating the presence of
the microwave field - the more intuitive classical picture can be used in discussing these
effects.

In experiments, we apply a static field, H,, and a smaller, time dependent field,
H,, at right angles to the applied field. The time dependent field is usually written as

the properly rotating part of an oscillating field,
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H, = Hycos(wt)i + H,sin(wt)j 2-8

The counter-rotating part of this field is obtained by letting w = -w. If the field of
Equation 2-8 is anywhere near resonance, the counter-rotating part is far from resonance
and may be neglected. The presence of H; modifies Equation 2-5
di _ _ -
= - i x v (H, + H©) 2-9
We can transform this equation to a reference frame in which both H; and H, are

at rest. This reference frame rotates about the z direction with frequency wk. The

equation of motion in the rotating frame is

/
(%i:) - - xvy Hy 2-10

where the prime denotes the derivative taken with respect to quantities in the rotating

frame, and

H

w a
_ k (Ho__) + Hi 2-11

Y

In this reference frame, the moment precesses about H in a cone of fixed angle.
The motion of the moment is periodic, with frequency yH,. At resonance, the

frequency of the alternating field is equal to the Larmor frequency; equivalently, we see
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that this implies that H, = H,. Figures 2-1 a,b, and c illustrate the behavior in the

rotating reference frame. If H, is above resonance (greater than w/y), H,, has a positive
z component, as shown in Figure 2-1a. If H, is below resonance, the z component of
H,, is negative, as shown in Figure 2-1c. Figure 2-1b shows the system at resonance,
when H 4 = H,, and (H,-w/¥) is zero. In all three figures, H . is shown by the shaded
arrow. H, is along the x-axis and H, - w/y-is in the x direction.

In a quantum description, a spin flip corresponds to a transition between two
quantum levels. The absorption of energy from the microwaves enables the spin to flip
from an energy state corresponding to being aligned with the field to a state with a higher

energy corresponding to a position antialigned with the field.

Bloch Equations

Up to this point, we have considered the spins as perfect oscillators, with energy
being transferred only between the spins and the magnetic fields. This ideal system
would have a resonance line with no width. In a real system, spins are constantly
making transitions both from lower energy states to higher energy states, and back again,
with some net absorption. In order to de-excite, a spin must transfer energy to other
spins, or to the lattice. Both processes take a finite amount of time, which results in a
finite resonance linewidth. Felix Bloch® introduced the idea of relaxation times
phenomenologically into the equations of motion to account for these processes.

Bloch posited that the magnetization, if pushed out of equilibrium, will tend to

relax exponentially to its thermal equilibrium value, M,. The z component of M grows
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as individual moments making up M flip to relax M, toward M,, which requires the
moments to give up energy to the lattice. This process is characterized by the spin-lattice
relaxation time, T,.

Interactions between spins can destroy the magnetization perpendicular to the
applied field. For example, the dipolar interaction can randomly modify the value of H. 4
locally, so that each spin precesses at a slightly different rate. The perpendicular
magnetization is relaxed by destroying the coherence in the individual perpendicular spin
components, and is characterized by the spin-spin relaxation time, T,.

The Bloch Equations, which describe the motion of interacting spins are (in the

rotating reference frame):

dM M-M
dt‘ = ~y(MxH,) + - z 2-12a
M M
_d:-r = -y (MxH w),,, + T:J 2-12b

The details of the solution to the Bloch equations can be found in Appendix A.
The spin-lattice relaxation time is usually much longer than the spin-spin relaxation time,
and the rotating field, H, is taken to be much smaller than the applied field, H,. The
susceptibility will be complex, as the magnetization has components both in and out of
phase with the rotating field. The imaginary part of the susceptibility (x") describes the
absorptive behavior of the sample, while the real part (x') describes the dispersion. In

metals, the complex surface impedance results in the absorbed power being proportional
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to a mixture of the real and imaginary parts. The susceptibility from the Bloch equations

is

-0) T,
x = %x,(w,rz)( (©, m)2 2 2] 2-13
I#(w-0,)" T,
X' = 2x,0,T) S 2-14
2 14(w-0,) T,

The functions which result from the solution of the Bloch equations and their
derivatives are shown in Figure 2-3a and b; they are Lorentzian and result from the
assumption of exponential relaxation. Other types of lines are observed experimentally,
and these lineshapes may be derived by assuming other forms of the relaxation. The
linewidth, AH, is usually measured as the peak-to-peak value of the first derivative, and

is proportional to the inverse of the relaxation time, T,.

EXPERIMENTAL DE TION OF THE RESONANCE

The simplest experimental set up consists of a microwave source, which sends
microwaves down a transmission line and into a resonance cavity. Using various
microwave guides, the reflected (or transmitted) microwave energy is sent to a detector
and converted into a current. This current is proportional to the power reflected (or
transmitted), and is smaller than the incident power (P,) by an amount equal to the power

absorbed by the sample (P,). As the magnetic field is swept, (P;-P,) vs. field is plotted,
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Absorptive and Dispersive Lineshapes
I l I | l

Power Absorbed (Arb. Units)

dP/dH (Arb. Units)

Figure 2-2: (a) Absorptive and dispersive parts of the Lorentzian lineshape and (b) their
derivatives
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and can then be analyzed to extract parameters which relate to physical quantities of

interest (which will be explained in Chapter 5). This basic set up can be modified in
order to improve the detection of the signal, but the essentials are all present in this brief

description.

The basic elements of electron spin resonance have been presented in terms of the
motion of a classical moment in a field. Relaxation times, which result from spin-spin
and spin-lattice interactions have been phenomenologically considered within the Bloch
Equations. Chapter Five will extend this simple model to the case of strongly interacting
spins. A preliminary description of the experimental detection of the resonance has been

given.
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CHAPTER THREE

SPIN GLASS THEORIES

Spin glasses pose a challenging problem for theorists. In addition to the
procedural complications inherent in treating disordered systems, frustration must also
be included. In addition, the wide variety of materials displaying spin glass behavior and
questions about ergodicity and measuring time must be considered. There are two major
schools of spin glass theory; the first developed from the mean field theory of the
Edwards-Anderson and Sherrington-Kirkpatrick models, and is referred to as the
hierarchical or mean field model. The second is a scaling theory which expresses the
low lying excitations of a spin glass in terms of critical exponents, and is referred to as
the droplet theory. This section will summarize the development of and important results
arising from these two schools of thought.

In order to understand spin glass theory, and especially the question of whether
or not the spin glass ordering is a true phase transition, the idea of phase transitions and
the formalism used in their description must be understood. The first section of this
chapter briefly reviews phase transitions and scaling formalism. The concept of ’slowing
down’ near a critical point will also be reviewed. The second part of this chapter focuses
on developing a conceptual understanding of the two major spin glass theories. While

the hierarchical model is mathematically rigorous, the upper critical dimension - the

27
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lowest dimension at which mean field exponents are valid - is 6, which makes application
to real systems questionable. While less theoretically rigorous, the droplet theory makes
predictions which distinguish between two and three dimensions and can be
experimentally tested.

A word of caution: most of the theoretical effort to this point has focused on
identifying the nature of the spin glass transition and of the resulting phase. The
Electron Spin Resonance experiments discussed in this thesis investigate how the spin
glass phase is approached from above the transition temperature. A lot of spin glass
theories dismiss this regime as being ’paramagnetic’ and do not address the
experimentally observed ordering effects above T; discussed in Chapter One. Neither the
droplet model nor the hierarchical model has specifically addressed Electron Spin

Resonance experiments.

PHASE TRANSITIONS AND FINITE SIZE EFFECTS

Details of the study of phase transformations may be found in many
references®?’. Mathematically, a phase transition is indicated by a singularity or
discontinuity in some derivative of the free energy. Experimentally, this is indicated by
the divergence of some measurable quantity (i.e. the magnetic susceptibility and specific
heat in ferromagnets). The point at which the transition occurs is called the critical
point, which separates the two phases.

A phase transition corresponds to the spontaneous breaking of some symmetry,

so that the two phases must be described by two different functions which can not be
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analytically continued across the critical point. In the ferromagnet example, a rotational
symmetry exists above the Curie temperature, and is broken when the spins align. The
order parameter, is (generally) a thermodynamically measurable quantity which is zero
above the critical point and non-zero below and is introduced to describe the
thermodynamics of the phase with the broken symmetry. In the ferromagnet example,
the order parameter is the magnetization, which is zero in the paramagnetic phase and
non-zero in the ferromagnetic phase. Anticipating future results, the order parameter
will be symbolized by q.

Fluctuations measure the range of correlation functions; i.e., the distance over
which a disturbance - like a spin wave - ’remembers’ its initial state. As the system
approaches a phase transition, fluctuations in the order parameters extend over large
spatial regions and persist for very long times. Mathematically, the fluctuations manifest
themselves as singularities. The time dependent properties of the critical fluctuations
give rise to the dynamics via the fluctuation - dissipation theorem, which will be
discussed later in the context of ESR theory.

The divergent behavior of a thermodynamic quantity as the critical point is
approached is described by scaling, and the nature of the singularity is characterized by
a critical exponent. The mathematical definition indicates that the behavior of a function
as the critical point is approached is given in terms of a limit, so that f(x) is
asymptotically proportional to x*. This asymptotic limit may not exist, but the

accompanying formalism has been shown to describe experiment very well. We say that
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lim | Inf(x)
x) ~ (Ax)* = —=l| =2 31
) - @2t - Jm [h(m
where Ax ~ (x-x.) and x, is the critical point.

Critical exponents have proven to be exceptionally useful. In many cases, a large
variety of materials can be characterized by the same set of exponents, so we say that
they belong to the same universality class. Many of the thermodynamic quantities are

related to the reduced temperature, t, which is defined by
.o T-T,
TC

or the correlation length, ¢, which measures the range of a pair correlation function.

3-2

Table 3-1 summarizes and defines some of the common critical exponents.

Critical Slowing Down

As the critical point is approached, a system will take increasingly longer times
to reach the equilibrium state due to the presence of fluctuations. The description of this
process is based on the thermodynamics of irreversible processes, and is called the
thermodynamic or conventional theory of critical slowing down®. Physically, critical
fluctuations of various sizes (with the average size being equal to the correlation length)
are always excited. These excitations can then split up into smaller excitations, merge

with other excitations, or dissipate into random heat, etc, with the available dissipation
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Table 3-1: Summary of Critical Exponents

[ symbot | " Characterzes " Definiton
“-a - SpééiﬁcH&t

B Order Parameter q~ ¢

Y Susceptibility X ~ t7

v Correlation Length E~t”

b Equation of State H ~ M’ (t=0)

z Relaxation Time T~ & II
S —
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paths determining the relaxation time of the system. Critical slowing down has been
used to describe the behavior of ordered ferromagnets and antiferromagnets as they
approach their ordering temperatures®“’. Dynamic critical scaling predicts that the
characteristic relaxation time of a system, 7, goes like
- -zv
T ~ (T_T_}) 3-3

.

where z is the dynamic exponent, and » is the correlation length exponent. As the
critical point is approached, the relaxation time will become infinite, indicating the onset
of an ordered state. Care must be taken in relating this equation to experiments, as
measurements usually measure an average relaxation time, and not a characteristic
relaxation time. The average relaxation time is related to an average exponent, z,,, by

T,

w7 34
!

Note that the scaling laws are written in terms of the characteristic relaxation time. For
spin glasses, Ogielski*' has shown that z,, = z - 8/v where B is the order parameter

exponent.
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Finite Size Effects on Critical Exponents

A phase transition can occur only when the thermodynamic limit (N-»o0) is taken;
therefore, a finite system will display a rounded cusp with a finite height, instead of a
peak, and the position of the cusp will be displaced from the position of the infinite
volume case. The simplest example is that of a system in which all dimensions but one
are allowed to become infinite. The size of the finite dimension will be denoted by L.
An example of the behavior due to the finite size on the specific heat is shown in Figure
3-1. The dashed line shows the specific heat in the infinite volume limit, and the solid
line shows the results for a finite system.

The difference between the position of the peak in the finite case and the position
in the infinite case is measured by e, the fractional shift.

T,-T,(N)
T

c

e(N) = 3-5

We can also define a temperature, T", at which the first deviations from the infinite limit
occur (indicated by the arrow in Figure 3-1), so that we may further define a fractional
rounding, 6(N), where

T‘(N) _T..(N) 3-6
T

(4

5N =
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Specific Heat

T,O) T,

Figure 3-1: An example illustrating finite size effects on the specific heat

The magnitude of the critical temperature is a measure of the overall strength of
the interactions. In a naive mean field picture, kyT, is directly proportional to the total
ground state energy. As an example, for a finite nearest neighbor Ising model, the total
energy is that of the infinite system minus lost coupling energy due to the lack of

neighbors at the surface.

Nk,T, = E(N) = dJN - JN* 3-7

where N* is the number of boundary spins, J is the exchange, and d is the

dimensionality. The shift will obey



35

e ~L* 3-8

where A\ is called the shift exponent. The correlation length, &, which is a measure of

the range of the correlation function, diverges with the reduced temperature as

D =t 39

When the correlation length for a finite sample approaches sample size, finite size effects

should be observed. A and » are (in general, but not always*) related by

g = 1 3-10
v

MEAN FIELD THEORY

The Edwards-Anderson Model

The Edwards-Anderson (EA) model*?, was the first to apply standard mean field
theory to the spin glass problem. This model considers classical spins placed on the
vertices of a cubic lattice, with only nearest neighbor interactions. An equal likelihood
of ferromagnetic and antiferromagnetic interactions is assumed, with the interaction

strengths given by a Gaussian distribution. This model successfully predicts a cusp in
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the susceptibility, but also predicts a cusp in the specific heat, which is not
experimentally observed.

Solving the mean field problem for spin glasses requires a quenched average, in
which the log of the free energy instead of the free energy itself must be averaged.
Edwards and Anderson used the ’replica trick’, in which the partition function, Z, is

written

Z"~1+nhZ 3-11

so that the quenched average, denoted by an overbar, can be written

— _ lim {Z"-1 312
z n-—O( )

n

Use of the replica trick allows the calculation of the quenched average.
The EA order parameter is the spin correlation function qgz,, which correlates a

spin at time t, to its value at some later time, t,;

dgy = <§:(t1) : §i(t2)> 313

In using the replica trick, n copies of the original system have been introduced. In

replica language, qg, can be interpreted as the correlation between a single spin, in two
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different replicas. If the Greek indices o and B represent two replicas, an alternate

definition of q is:

qm = <§: .g;'> a;gp 3*14
where qg, defined this way is called the overlap.
The Sherrington-Kirkpatrick Solution

Sherrington and Kirkpatrick (SK)¥* extended the EA model to the infinite
range case, in which interactions are allowed between all spins. The replica trick is used
to evaluate the quenched average, which allows calculation of the free energy and
thermodynamically measurable quantities. In the evaluation of the average over the
disorder, the replicas become correlated. Instead of one mean field parameter, as in the
EA model, the SK model introduces two parameters - q,; and m,, where the greek
indices identify replicas. SK assumed that all replicas must be equal, so that these
parameters should display no dependence on the replica index. This assumption, called
replica symmetry, takes q,;, = q (¥ af) and m, = m (V ). These parameters are

defined by

m, =<2,:<S»"=_E m, 3-15
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q = <—lﬁ 2':<S‘>2>d = };‘, m? 3-16

1
N

where this q is the same as the Edwards-Anderson order parameter, < > indicates an
thermal average, and < >, indicates an average over disorder. The different phases

resulting from this solution are summarized in Table 3-2.

Table 3-2: Phases Resulting From the Sherrington-Kirkpatrick Analysis

¢ | m | Phase |
0 [ 0 Paramagnet |
#= 0 0 Spin Glass !l
#0 #0 Ferromagnet ]!

There are some difficulties with this solution. For T < T, the spin glass phase
does not represent a minimum of the free energy - the paramagnetic phase has a lower
free energy. Even more troubling, at low temperatures, the entropy is negative, with
S(T=0) = -0.16. Theorists have questioned the use of the replica trick, the order of the
analytic continuation of the replica trick and the thermodynamic limit, and the validity

of a mean field approach in general. Thouless, Anderson and Palmer (TAP)* showed
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that, at high temperatures, the same solution can be obtained without using the replica
trick, but obtained different results below T,;. This led de Almeida and Thouless*,
among others, to the conclusion that the problem with the SK solution was the
assumption of replica symmetry. The crucial realization that replica symmetry must be

broken led to the current conceptual picture described by the hierarchical model.

Replica Symmetry Breaking

The replica symmetry breaking (RSB) solution of the mean field problem is rather
detailed, and only a brief outline will be given for the purpose of establishing a
conceptual spin glass picture. Excellent reviews of the details are available in other
sources®’.

Imagine that the q,4 can be arranged in a matrix, with the  index running along
the horizontal and the 8 index along the vertical. The diagonals of this matrix will be
zeros. Measurable quantities will be related to the trace of this matrix, and the trace of
the product of this matrix with other matrices. o« and 8 both run from 0 to n, where n
is the number of replicas and eventually must be taken to O to recover the free energy.

In the first iteration of symmetry breaking*, Parisi suggested dividing the matrix

into blocks, so that the diagonal blocks form one set, and the off diagonals form another.
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Elements in the diagonal blocks are given the value q;, and those in the off-diagonal

blocks are given the value qq, as illustrated below:

0 g9 9| 9 9
4, 0 g, q,| g 49
449 0 9| 4, g
49 90 | 9 %
Toq:—qo_qo-’_—o.Tl
do 99 90 % | 9 O
4 9% 9% %! 4 9
94 9% % % | & 4

9 9
49 9
4 9
4 9

3-17

Parisi then suggests* that this procedure be repeated to infinite order. Each time, the

diagonal matrices further are subdivided, so that, on the second iteration, the matrix

shown in Equation 3-17 becomes

0%'4]41!% 9
%0 |9 9| 9 4

9, 9| 0 q,| 9, 4,
9, 9, ¢, 0 | g9 q

9
9
4
%

()
9
4

% 3-18

9% 9% 9% 9% | 0 4, | 4, q;
4% 9% 9 %! 9,0 | 9, q

——

9% 9% 9% 9% | 9, 4,1 0 q
W% 9% % %| 9 41 9, 0

Monte Carlo simulations” of spin glasses predict an internal energy at zero

temperature of U(0) = -0.76 + 0.01. The replica symmetric solution of the SK model
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results in S(0) = -0.16, U(0) = -0.798. The first iteration of replica symmetry breaking

gives S(0) = - 0.01, and U(0) = -0.765, and the second iteration gives S(0) = -0.03 and
U(0) = -0.7636, indicating that the replica symmetry breaking solution converges
rapidly. In the limit of infinite iterations, the order parameter, q.; becomes a function.
The free energy then becomes a functional of q(x), and can be maximized with respect
to this continuous variable. Various approximations can be made to calculate the free

energy for different temperature and field regimes.

Ultrametricity

Mezard, et. al.®®, and Mezard and Virasoro® related the hierarchical
organization of states to the calculation of statistical quantities. They find that, given any
three states, at least two pair of them will have the same overlap with probability one.
This is the characteristic of an ultrametric space: any three points in space will form an
isosceles triangle, with the two equal angles larger than or equal to the third one. For
any value of q, the states are organized into non-overlapping clusters, such that any pair
of states inside the cluster has an overlap greater than q. Each of these clusters can be
further decomposed into smaller clusters which group together states with overlap greater
than some q’, where q' > q. This procedure can be repeated an infinite number of
times, indicating that the set of pure states obeys a hierarchical ordering. The

organization of hierarchical space is schematically pictured in Figure 3-2
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Cluster

q - -———- States

Configuration

Figure 3-2: Topology of ultrametric states

In this figure, the highest level will correspond to a cluster. If we define a pure
state as a state which cannot be broken down into a combination of other states, the three
vertices shown correspond to pure states, with q;, = gg,. q, will be equal to 1 and
correspond to different configurations within a pure state. To calculate the magnetization
at a given site, an average is taken over a large representative set of configurations
contained in the cluster.

The overlap between two states depends only on their closest common ancestor.
The higher up you have to go on the tree to find a common ancestor, the smaller the
overlap. All the pure states with a common ancestor share a common property; there
exists a partition of the N sites into disjoint macroscopic cells such that the average

magnetization of each of these states in every cell is the same, within some given
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resolution. This has enabled the development of a rather complicated procedure for
taking averages using the hierarchical tree for the purpose of computing the free energy
(and thermodynamic quantities calculable from the free energy ) at any temperature and

field.

AT and GT Lines

The mean field picture has stimulated some exotic calculations based on the
hierarchical structure of states, but has also resulted in some more conventional and
experimentally testable predictions. The question of what happens to a spin glass when
a magnetic field is applied has been addressed by both theoreticians and experimentalists.

Within mean field theory, two lines in the magnetic field - temperature plane
describe the effect of the field on the spin glass transition temperature. De Almeida and
Thouless* (AT) predicted that the dependence of the freezing temperature on field, for

the Ising mean field model, would be described by

T,-T\3 319
H, (T) ~ T ;
/

Above this line, the free energy is smooth with a single valley as found in the free
energy of a paramagnet, while below this line, the free energy becomes the complicated
free energy surface of a spin glass. The time the system takes to transit between any two

valleys is macroscopic, so we see irreversible behavior associated with the onset of this
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state. The AT line marks the transition between the reversible behavior associated with
the paramagnetic phase and the irreversible behavior due to the spin glass phase.

For Heisenberg spins, the presence of a field selects a preferred direction, so that
the components of the spin longitudinal and transverse to the field will freeze differently.
Gabay and Toulouse® (GT) predicted that the freezing of the transverse components

should occur at the GT line, which is defined by

T,-T)-:
H.(T) «( fT ] 2 3-20
b

The longitudinal components will freeze at the AT line. Gabay and Toulouse originally
claimed that the region between the GT and AT lines represented the region where the
replica symmetric solution is correct, but this has been shown to be incorrect™, due in
part to experimental indications that the longitudinal components will be affected by the
freezing of the transverse components. For Heisenberg spin glasses, the GT line may
be thought of as the line marking the transition from reversible behavior to weakly
irreversible behavior, and the AT line as indicating the transition from weak
irreversibility to strong irreversibility. Little experimental evidence exists for the
existence of a GT line in real materials. Anisotropy which couples the longitudinal and
transverse degrees of freedom (like the DM) has been predicted to be responsible for a
crossover from Ising-like behavior in low fields to Heisenberg-like behavior in high
fields. This has been experimentally observed by Fert and Levy* and predicted within

mean field theory by Kotliar and Sompolinsky*.
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Dynamics Within the Mean Field Model

Dynamics in the mean field model can be broken into two approaches. The
hierarchical approach uses the mathematics of ultrametricity to predict the dynamics
below T;, and will shed no light on the present investigation. The second approach
introduces dynamics into the SK model and can be used above T, as well as below.

The SK model has no natural intrinsic dynamics, so the dynamics must be
artificially introduced, usually within an equation of motion approach. Glauber dynamics
were used in the SK paper to predict that the susceptibility should diverge as t!, and that
the autocorrelation function (C(t) = <S(t) S(t+7)>) should experience critical slowing
down with a decay rate proportional to t2.

Sompolinsky and Zippelius® used a self consistent formulation of the Langevin
equations for the relaxation of soft spin (S is a continuous variable in a symmetric well
which favors the values +1) fluctuations in the Edwards-Anderson model. Their
calculation eschews the use of replicas, relying on linear response theory to generate an
equation of motion for the spin variable in terms of a propagator (Green’s Function),
which is the response function of the spins to the field. Above T;, the low frequency
spin fluctuations will be characterized by a generalized damping function. The relaxation
of the system is predicted to diverge at a rate t'. Their results above T, are in agreement
with the results from the SK model and calculations on generalized short-ranged mean

field spin glasses. The relaxation time may be found from



where C(t) is
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__1 - 321
T I_C£[C(t) C] dt

where C(t) is the spin spin correlation function. The average relaxation time is given by

Toe = fP(t’) v/ dv/ 3-22
)

where P(7') is a probability distribution of relaxation times.

Using dynamical scaling at zero field, Sommers and Fischer’ predict zv = 2.
Use of the mean field value of » = 0.5 predicts z = 4. The average relaxation time
diverges with z,,» = 1, predicting that z,, = 2. When a field is applied, the exponent
z varies from 4 at H = 0, T = T, to 5.0 as H goes to infinity and T to 0. In a
Heisenberg spin glass, Fischer® finds that z keeps its universal value of 4 in non-zero
field along the entire GT line. Dynamic critical exponents for spin glasses are
summarized in Appendix B.

Experimentally, the hierarchical picture has been used to predict the decay of
remanent magnetization and ageing phenomena below T;. Most of these experiments
focus on cooling the system through the freezing temperature in a constant magnetic field
to some final measurement temperature. As the cooling takes place, the number of states
increases rapidly as a result of the formation of the multivalleyed free energy; the spin
glass is ’caught’ in a large number of metastable states. The number and properties of

the states have been calculated within the hierarchical model. Various phenomena can
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be examined by varying the magnitude of the cooling field, the amount of time elapsed

before making the measurement, the length of time the cooling field is allowed to persist
after the measurement temperature has been reached, etc. The hierarchical model
predicts that field cooling decreases the barrier heights between states, so that the time
it takes for the system to change from one state to another should depend on the applied
field. As the amount of corrugation in the free energy increases with decreasing
temperature, new metastable energy minima are constantly appearing, which should
change the measurable quantities of the system. The experiments presented in this thesis
are concerned with the regime above and nearing T;, so the predictions of the

hierarchical model below T; will not be further considered.

THE DROPLET MODEL

The droplet model was first proposed by McMillan**®, and Bray and
Moore®!%2. Fisher and Huse®*%% (FH) have formalized and extended this model,
making predictions which differentiate between two dimensional and three dimensional
behavior. Fisher has noted that, contrary to conventional dynamic scaling, where one
assumes that the relaxation time of a system with fluctuations on scale L goes like L,
the nature of disordered systems implies that the natural log of relevant parameters and
not the parameters themselves are the proper scaling variables. In ordered systems, the
singularity in the free energy which causes a critical point is due to competition between
energy and entropy. The contribution of entropy to the free energy is on the order of

T, but since the characteristic scale of the free energy is also of order T, there will in
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effect be no barriers, and no activated behavior. Barriers will exist in systems where the
behavior of the free energy is caused by competition between two different types of
energy with at least one energy being random. Since every quantity on the scale L will
have region to region fluctuations due to randomness, the distribution of barrier heights
is very wide. If the time for surmounting a barrier is proportional to the Boltzmann
factor, the distribution of barrier heights should result in activated scaling.

The Fisher-Huse model starts with an Edwards-Anderson lattice of randomly
placed Ising spins with short range interactions. In the same way that spin waves
represent the low energy excitations for ferromagnets, FH developed an ansatz to
describe the nature of the low lying excitations in spin glasses. The conceptual picture
presented is of a collection of non-overlapping droplets. A droplet is a minimum energy
coherent collection of spins with one phase, separated by a domain wall from another
group of spins which differ by a universal spin flip. The majority of the low energy
excitations will be high frequency excitations involving small groups of spins, and having
short spatial extent. The low frequency excitations, which will dominate the long time
behavior, will involve the coherent flipping of a droplet containing a large number of
spins. The thermodynamic properties of the system are determined by how
thermodynamic quantities scale with droplet size.

The FH Ansatz is that the free energy of a droplet of size L scales as L’. For a
ferromagnet, 6 is equal to d-1, but in a spin glass, frustration will reduce the exponent,

and FH argue that
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The distribution of droplet free energies will have a width which is comparable to its
median, and scales like L*.

If 6 < 0, large, low energy excitations at T = 0 will be numerous, so that, on
some length scale, there will be a large density of quasi-independent excitations which
will prevent spin glass ordering. In this regime, the transition temperature must be zero,

and the paramagnetic correlation length, £, is given by

£ - ( 1 )Té—l 3-24
T
which allows us to identify » = (1/6).

If @ is positive, then very few of the large scale droplets will be thermally
activated at low temperatures. The distribution of droplet widths is very broad, so there
will always be some droplets which will be active at any temperature, and these droplets
will dominate the equilibrium measurements. Low lying excitations will occur on all
length scales greater than the correlation length.

Relaxation of the low lying excitations is hindered by the presence of energy
barriers. The height of barriers to relaxation of a droplet of length scale L are assumed
to scale like LY, for L < § and where d-1 = ¢y >6. The relaxation of these modes is
proportional to the Boltzmann factor. The characteristic relaxation time of the whole

system, 7, will be due to those droplets at scale £; at scales greater than £, the effects
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of entropy reduce the barriers, and the regions of size ¢ will flip roughly independently.

The relaxation time of the full system (assuming a zero transition temperature as would

be found in a 2D system) satisfies;

Int ~

vy 3-25
T ¥V,

for T > T;, and where subscripts on the exponents denote their dimensionality.

The Behavior of Thin Films Within the Droplet Model

The Fisher-Huse theory has been modified® for application to multilayered spin
glass systems with spin glass layer thicknesses Wgs. On time scales shorter than the
relaxation time of the system, only fluctuations of the system on length scales shorter
than the correlation length will be measured. A cusp in the susceptibility results when
the measurement time, t;,, becomes shorter than the equilibration time, with the position

of the cusp being given by

Te)
T

c

-(1 +
i * i) (1~ va¥) 326
Inr

Decreasing Wy, results in a crossover between two and three dimensional

behavior. For temperatures far below T, the relaxation time at scale £ is
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W("‘s + v, ¥26,)
Int ~ —°______ 3-27
T(l + ¥3v,)

which results in a measured freezing temperature which depends on the measurement

time,

T‘ In(z,)

1
T _ [W'= ik °]T—'-' 328
This prediction assumes thin layers, T(Wg;) much less than the bulk value Ty ), and
Wi larger than the average separation between Mn impurities.
Near T, the relaxation time of the film will be governed by conventional dynamic

finite size scaling,

T - W2 329

where z, is the three dimensional dynamic critical exponent. (In the case that dynamic
critical scaling doesn’t apply, we can simply write 7(Wy;,T,) as a general function of
W;g and the true freezing temperature, T,). The relaxation time of the system must be
less than the measuring time, or the system will fall out of equilibrium before the
correlation length reaches the size of the film. The relaxation time of the system is given

by
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In(tt"™) ~ (" W, SG)% + va¥,0, 3-30a
or
T -t exp[ ¢V3(¥2 + Ova0) Ws(;z * 93"2'2)] 3-30b
In the critical region, the shift of the freezing temperature from T, will be given
by
- -— ¥+ va¥505)vs ]!
TS T}(tm) -~ W Vs In t- [( 3 ° vl )%] 3-31
T ad Vs
g Wee

which introduces logarithmic corrections to the measurement of »,.
The Effect of Magnetic Fields

For three dimensional droplet models in an applied field, three phases are
predicted; the first is a paramagnetic phase, as for the Ising case. The second phase
occurs when the symmetry in the direction of the field is broken, but the rotational
symmetry about the field still exists, in analogy to the GT line in mean field theory. The
third phase is when symmetry is broken in all directions. Only two ground states are
expected to exist.

In the Fisher-Huse model, the presence of a small applied field will suppress the

freezing transition. The relaxation times will grow, but not diverge, as T; is approached.
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The broad distribution of relaxation times will result in freezing characterized by a

temperature T{(H,t,), below which the majority of the relaxation phenomena occur on

time scales longer than the measuring time. For small fields, the freezing temperature

is predicted to be

_ 2 d-20
T 17'{(”"") ~ HY*B (ln(wto))'“ +B) 3-32

4

which is only weakly dependent on the measuring time if the measuring time is small
enough. The logarithmic factor is a correction to the de Almeida-Thouless prediction.
In magnetic fields where the Zeeman energy is comparable to the exchange energy
(J~kgT,), the collective aspects of spin glass freezing should not be seen, and

appreciable hysteretic phenomena will occur only at very low temperatures.

THE GRIFFITHS PHASE

Griffiths®” showed that the free energy of a dilute Ising ferromagnet is a
nonanalytic function of the external magnetic field for all temperatures below the critical
temperature of the corresponding non-dilute system. When the temperature is between
that of the pure system and the ordering temperature of the dilute system, there exist
macroscopic regions of the sample which are ordered. Static measurements, which

represent average quantities, are incapable of detecting these regions.



P:
ordering |
thus dom
ground
infreguen
the size
15 the tery

e ma

a nonexp

ferromag



54

Physically, large ’rare’ regions which are characteristic of systems with higher
ordering temperatures will relax more slowly than the average of the system, and will
thus dominate the long time dynamics. These large clusters will lock into one of two
ground states (related by a global spin reversal) and will flip into the opposite state
infrequently. Regions of a particular size will dominate on a particular time scale, with
the size of the dominant regions increasing with time. The Griffiths temperature, Tg,
is the temperature of the corresponding non-dilute phase, which is higher than that of the
dilute magnet; T, < Tg.

In the Griffiths phase (T, < T < Tg), relaxation of these clusters will result in
a nonexponential form for the spin autocorrelation function, C(t). For a random Ising

ferromagnet®;

da -
C) ~ exp[-A(lnt)*1] 333

and for a random Heisenberg ferromagnet®

1 3-34
C@t) ~ exp(-Bt?)

Randeria, Sethna and Palmer” have considered the possibility of a Griffiths
phase in spin glasses. In a d-dimensional short range Ising spin glass, they find the
correlation function to be bounded below by the expression in Equation 3-34 in some
temperature range above the spin glass transition. The bound disappears to all orders in

perturbations about high temperature and dimensions, which is perhaps why there is no
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evidence for this phase in mean field theory. They suggest the phase diagram shown in

iy o 77, //
|
? Spin Glass ¢

Figure 3-3: Temperature - dimension phase diagram for Ising spin glasses (after Ref 70)

The authors emphasize that the lower bound is strictly for an ideal system; in a
real system, sample inhomogeneities would enhance clustering, and the bound would be
swamped. The experimental observations of ordering above T; described in Chapter One
support the existence of an intermediate phase between the spin glass ordering and
paramagnetic phases.

Theoretical existence of this phase is found in Ogielski’s*" '® Monte Carlo

simulations of the dynamic behavior of short range three dimensional Ising spin glasses
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in a magnetic field. Three distinct regimes are noted; Above the Curie point of the
nonrandom ferromagnetic Ising model, (T, = 3.8 Ty), paramagnetic behavior is observed.
As the temperature is lowered, a different type of behavior is seen between 3.8 T, and
1.5 T, in which short range correlations cause a change in the form of the decay of the
relaxation functions. The spin-glass correlation length and the correlation times in this
regime are very small compared to those in the spin glass phase, as is the rate of increase
of these quantities with decreasing temperature. From 1.5 T; to Ty, critical behavior is
seen as the spin glass phase is approached. Ogielski finds z,,» = 7.2 + 0.1 from these

simulations.

UMMARY

The hierarchical/mean field and droplet models present two very different pictures
of spin glasses. The biggest difference between them for our purposes is the
dimensionality of the models. The hierarchical model is a mean field model with an
upper critical dimension of 6. The droplet model considers experimentally measurable
differences between two and three dimensional behavior. The droplet model has been
extensively used in previous analyses of multilayered spin glasses.

The other major difference between the models is the effect of an applied
magnetic field. Within mean field theory, the AT and GT lines predict the dependence
of the freezing temperature on magnetic field. Experimentalists, as we shall see in the
next chapter, have claimed measurement of the AT/GT line(s) in fields of up to

15,000 G. The droplet picture predicts a similar dependence of the observed T; (to
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within a logarithmic dependence on measuring time), but with the caveat that this
measurement represents a falling out of equilibrium and not a phase transition. In the
Fisher-Huse formalism, the presence of any finite magnetic field will prevent a spin glass
transition.

The novelty of the spin glass phase and questions about the nature of the transition
have resulted in a lack of theoretical investigation of the temperature region above T;.
The formation of clusters and the onset of short range order at temperatures far above
T; is well documented experimentally and indicates that labeling this region as simply
’paramagnetic’ is incorrect. The idea of a ’Griffiths phase’, in which macroscopic
regions of a sample become correlated at temperatures above the ordering temperature
of the sample as a whole, has been suggested to explain the behavior in this regime. No
experimental evidence of a Griffiths phase in spin glasses has been reported.

This brief foray into spin glass theory may appear to have shown only that neither
of these theories will be of any use in explaining results above T;. A conceptual
understanding of these pictures is important in that any theory developed to explain the
behavior above T; must be consistent with one of these interpretations as T; is

approached.
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CHAPTER FOUR
REVIEW OF PREVIOUS STUDIES OF

MULTILAYERED SPIN GLASSES

INTRODUCTION

This chapter summarizes the current understanding of multilayered metallic spin
glasses. Extensive measurements of T, in multilayers and subsequent analysis in terms
of both finite size and dimensionality effects are reviewed, and the picture of the
transition from three to two dimensions is established. The importance of measuring
frequency and field will be investigated for relevancy to the ESR study. Measurements
of multilayered semiconducting spin glasses and a two dimensional Ising spin glass will
be compared with results from metallic multilayers. The final section of this chapter will
summarize the current understanding of finite size and dimensionality effects in
multilayered metallic spin glasses.

An important question in the study of spin glasses is the value of the lower critical
dimension (LCD). The LCD is the dimension below which a phase transition can only
occur at zero temperature. Computer simulations? indicate that the LCD for long range
RKKY spin glasses should be between two and three. Advances in thin film fabrication
and SQUID technology have made possible the creation and measurement of spin glass
samples on a nanometer scale. In long range ordered magnets, like ferromagnets, finite

size effects are not evident until sample size is on the order of monolayers, due in part

58
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to the strength of the spin-spin interactions, and the non-random nature of the spin
system. In spin glasses, the complex interactions cause observable finite size effects at
much larger layer thicknesses. Further reduction of the size of the sample can reduce
the dimensionality of the material. These properties make thin film spin glass structures
ideal for investigation of the LCD and finite size/dimensionality effects.

As the spin glass thickness decreases, the corresponding magnetic signal becomes
too small to measure with standard susceptometers. This necessitates the fabrication of
multilayers - structures which separate the spin glass layers with buffer layers of
nonmagnetic material of sufficient thickness to prevent coupling between different spin

glass layers.

MULTILAYERED METALLIC SPIN GLASS

Kenning, et. al.,”""™ fabricated the first multilayered CuMn structures to
experimentally determine the lower critical dimension (LCD). Details of the fabrication
and characterization of these samples will be given in Chapter 6, as the same techniques
are used in this thesis. Samples were fabricated with spin glass layer thicknesses, Wy,
ranging from 1000 nm to 2 nm, with Mn concentrations of 4, 7, 14 and 21 atomic
percent. Interlayers of Cu and Si were studied, with experimental results indicating that
30 nm of Cu and 7 nm of Si are sufficient to prevent interlayer coupling. Measurements
were made in a SQUID susceptometer in magnetic fields of 100 - 200 G and measuring

times of 300-400 seconds. The freezing temperature from these quasi-static
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measurements is extracted from the position of the cusp in the temperature dependent

susceptibility.

Finite Size and Dimensionality Effects on T,

Both finite size and dimensionality effects have been observed in the behavior of
the freezing temperature as a function of layer thickness. Finite size scaling predicts that
the freezing temperature of a sample with spin glass layer thickness Wy, (represented by
T{(Wss)) is given by

Tf(oo) - T[(WSG) _ Ws-Gl 4-1
Tf(“)

where X is the inverse of the correlation length exponent, v. Although data over the
entire range of layer thicknesses can be fit to Equation 4-1, finite size scaling should be
valid only in a small region about the bulk value of T;. Fitting the data from all
concentrations to a single exponent results in a value of A = 0.7 £ 0.05, which implies
a value of » = 1.4 + 0.1. By plotting log [T(Wsg/)T{(c)] vs. log[Wsgl, two regimes
are observed, separated at about 20 nm. (Figure 7-4 shows an example of such a plot.)
Based on this observation, and the frequency dependent data which will be discussed in
the next section, Kenning, et. al. chose to use finite size scaling for samples with Wy,
> 20 nm, resulting in a value of » = 1.1 + 0.3. This value can be compared with
other measurements of » shown in Appendix B. If the correlation length is defined to

be the sample thickness at which size effects are first noticeable, Kenning, et. al. find
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¢ = 100 nm. The normalized plot of T(Wss)/T{(o0) vs. layer thickness shows that

concentrations from 4 at.% to 14 at.% all exhibit the same behavior, indicating that
larger concentrations do not display markedly increased ferromagnetic interactions.

One prediction of finite size scaling - a rounding of the divergence - is not seen
in these samples. Sputtered samples may be sufficiently strained so that the cusp is
already broadened beyond the point where rounding might be seen. Alternatively, the
rounding may not be observed because the feature in the susceptibility is a cusp and not
a true divergence.

Below the 20 nm length scale, the data can be analyzed using the Fisher-Huse
prediction for the freezing temperature for small layer thicknesses as given by Equation

3-31. We can write this as

T(Wse) _ pya 42

where a = (Y;+y,»,0,)/(1+v,¥,) and the subscripts on the exponents indicate
dimensionality. Fitting to 2 < Wgg < 20 nm, a value of a = 0.5 + 0.1 is obtained.
An extension of this study to thinner samples and including data for AgMn” finds a
revised value of a = 0.8, which is in agreement with the requirement from the Fisher-
Huse theory that a < y < 2. Stubi, et. al.”* have shown that similar behavior is seen
in AgMn/Ag, AgMn/Cu and CuMn/Ag as is seen in CuMn/Cu, suggesting that these

structures belong to the same universality class.
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Frequency Dependence of the Freezing Temperature

At high temperatures, spin glass susceptibilities obey a Curie law. At some
temperature (as high as 5 T;?), deviations from this behavior appear as the relaxation
times begin to increase. Below this temperature, the susceptibility is frequency
dependent, and the magnetization exhibits irreversibility and waiting time effects. The
’static’ or equilibrium susceptibility still follows the Curie law, but longer and longer
times are needed to experimentally measure this behavior. The ability to measure the
susceptibility over a wide range of frequencies provides a powerful means of comparison
with theory. We have seen in Chapter 3 that standard phase transition dynamics predict
a critical slowing down of the relaxation times, so that the maximum relaxation time goes

like

43

where T; is the freezing temperature measured at frequency w = 1/7,,,, and T, is the
equilibrium freezing temperature. The Fisher-Huse thermally activated dynamics predicts
that the frequency dependence of the freezing temperature should behave like

1,,(_‘.:) VR A 44

T 7}



Intl
Frec
R0

Uni

CusT
e

U

Zl' =

of g,



63
In the case of two dimensional behavior, Equation 4-4 is modified by setting T, = 0.

Frequency dependent susceptibility measurements with measuring times from 10 to 10*
seconds have been made on multilayered CuMn/Cu samples by the group at Uppsala
University”. Zero-Field Cooled (ZFC) measurements were made at measuring fields
of 10 G. As the observation time decreases, (increasing frequency), the location of the
cusp moves towards higher temperatures and broadens in all layer thicknesses; however,
the magnitude of these effects in thick (Wgg = 1000 nm) samples are only about 20%
of the those seen in the thin (Wgg = 3 nm) sample. The frequency dependence can be

typified by the quantity k;

_ 1 9% 4-5
T, d(log,q)

For the 1000 nm film, k has a value of 1/200 at t = 1 s, in agreement with
measurements of bulk (not sputtered) CuMn films. In the 3 nm film, k was found to be
1/40. This is in qualitative agreement with Monte Carlo simulations on 2D short-range
Ising spin glasses’ which found k to be approximately 1/20, and 3D simulations”,
which predict a value of k = 1/60.

If the dynamic behavior of the films is analyzed in terms of Equation 4-3, the
1000 nm film is fit with z» =9 + 1, and T, = 66 + 0.2 K, where 7, is 103*?
seconds. Fitting the 3 nm data to this expression, however, results in a value of
zv = 19, which suggests that standard critical slowing down is not a good description

of the dynamics of thin spin glass layers.
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Fitting the data from the 3 nm sample to Equation 4-4 with a zero T, results in
a value of y» = 1.6 + 0.2, with 7, = 10"*®D seconds. The value of 1+ is in rough
agreement with the value of 2 found from Monte Carlo simulations”’. The data may
also be fit to Equation 4-4 with a finite transition temperature. For0 < T, < 10K, y»
is between 1.1 and 1.6.

These measurements have been extended to samples with Wy; from 2 nm to
1000 nm. For Wg; < 4 nm, fitting to the activated dynamics with zero freezing
temperature yields a consistent value of y» = 1.6 + 0.1. If this fit is continued to
thicker samples, the exponent grows anomalously. Samples with W5 < 50 nm can be
fit to Equation 4-4 with the same exponent of y» = 1.6 + 0.1. These measurements
have been important in confirming the change in the dimensional character of

multilayered spin glasses as the spin glass layer thickness is reduced.

Other Measurements on Multilayered Spin Glasses

Gavrin, er. al.™, have investigated sputtered multilayers of Cu, s,Mny o5/ ALO;.
The choice of Al,O; as the interlayer material is designed to eliminate concerns about
interfacial alloying, transmission of the RKKY interaction across layers, and to simplify
characterization. W, ranged from 4 nm to 125 nm, with the Al,O, layer having a
constant thickness of 7.5 nm. Sample composition was confirmed by microscopy and
x-ray analysis.

The values of T, from susceptibility measurements were fit to Equation 4-1, with

an exponent of A = 0.64 + 0.07 (v = 1.6) describing the data for all thicknesses. DC
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measurements of nonlinear susceptibility, in which the linear susceptibility is extrapolated

from low field measurements, show distinct differences in the scaling behavior for thin
vs. thick samples. The crossover exponent, 8, is found to be about 7 in thin (6 nm and
8.8 nm) samples, and 4.4 in the bulk. The value of » obtained from the nonlinear
susceptibility measurements is 3.4 in thin samples, and 1.6 in the bulk film. 8 = 0.9
for all samples. The value of 5 is 0.5 in thin samples and 0.11 in thick samples. These
values can be compared to values in Appendix B.

Measurement of the nonlinear susceptibility in CuMn/Cu multilayers has been
made by the Uppsala group”™ using an ac technique at low fields, and a dc technique
at high fields. The measurements were made on a 2 nm Cu,gMn,,5/Cu sputtered
sample, and critical exponents different from those of Gavrin,et. al. were reported. The
extracted exponents were: v = 9.3, » = 4.5, 8 = 0and n = 0, some of which are quite
different from those found by Gavrin, et. al. Our experience with dc nonlinear
measurements has indicated that the extrapolative determination of the linear
susceptibility is not straightforward, and we would expect the more sensitive ac

measurements of the Uppsala group to be more accurate.

Finite Size Effects in Metallic Films

The anomalous Hall effect, which is a measure of the magnetization of the
impurity spins, has been studied in flash evaporated Au,oFe,o and AuggsFeg o5 films
varying from 40 nm to 4 nm®®*!, The strong spin-orbit coupling in AuFe results in

an anomalous component in the Hall resistivity when an external magnetic field is
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applied. T, is determined from the maximum in the temperature dependent Hall
resistivity. The Hall measurements are made by zero field cooling the sample, then
applying a measuring field between 100 G and 500 G.  As the sample thickness
decreases, the freezing temperature decreases, with larger measuring fields broadening
the cusp. The freezing temperatures are fit to Equation 4-1 ,with an exponent of
v = 1.6 + 0.4. A deviation from finite size scaling was seen in films with thicknesses

less than 10 nm, but was not analyzed in terms of possible dimensionality effects.

Effect of Magnetic Field on T, in Metallic Multilayers

Arguments have been made for a DM anisotropy induced crossover from Ising
to Heisenberg-like behavior in bulk spin glasses as the magnetic field strength is changed.
Experimental measurement of the nonlinear susceptibility®? in bulk AgMn and CuMn
has been analyzed using anisotropy as a scaling parameter. Two sets of critical
exponents result, one of which is ascribed to ’Ising like’ behavior and results from low
field measurements, and the other of which is labeled 'Heisenberg’ behavior and is
observed in high fields. Torque measurements made by Campbell, er. al.®* on
Ag, :sMng o, indicate that, for fields between 1 kG and 20 kG, the value of T{(H) does
not change by more than 10%. Similar results are cited for CuMn.

Kenning, et. al.** have studied the effect of magnetic field on the freezing
temperature in Cugg;Mn, o;/Cu multilayers with Wg; from 2 nm to 1000 nm in fields

from 2 G to 15000 G. The behavior in low field is described® by
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1 2
+2\3( 81sH \3 46
f ! 4 ) \k,T,(0)

and high field behavior by

T, = T,0) 47

1 - ((n+2)(n+1))% gusH )
8 ky T, (0)

where, in both expressions, n = S(S+1), and T(0) and T(0) are the Ising and
Heisenberg zero field freezing temperatures. Kenning, et. al. find the behavior for all
W, to be qualitatively described by these equations, although the prefactor of the Ising
expression differs from the experimental measurement by an order of magnitude. The
depression of T is more pronounced in the Ising regime (from 2 G to about 500 G) than
in the Heisenberg regime (above 500 G). No dimensionality or finite size corrections

to this behavior are noted, and the crossover field appears to be the same for all W.

MULTILAYERED NDUCTING SPIN GLA

Awschalom, et. al.® studied the dilute magnetic semiconductor Cd, ,Mn,Te, with
x = 0.069 to 0.20. Multilayered structures with CdTe interlayers were grown by
Molecular Beam Epitaxy (MBE) with spin glass layer thicknesses from 8.6 nm to
1.8 nm. X-ray diffraction and low temperature photoluminescence confirmed the layered
structure and concentration. The ac magnetic susceptibility was measured at 97 Hz and

a variety of temperatures. Contrary to the effects seen in metallic multilayers, decreasing



T



68
W, resulted in a broadening of the susceptibility peak, but no shift to lower

temperatures. The observation of rounding may be due to the low strain in MBE grown
samples, which may explain why this phenomena is not seen in sputtered films.

The interactions in CdMnTe are short ranged, with the nearest neighbor
interaction 5 times that of the next nearest neighbor exchange. This means that there are
a number of isolated single spins and also small clusters of spins which preferentially
interact with each other and not with surrounding spins. At low temperatures, the
paramagnetic clusters result in a 1/T divergence of the susceptibility. The rounded
maximum indicates the onset of short range spin glass ordering, and the broadness is due
to the blocking of the establishment of long range order. This is interpreted as proof that
a 2D structure is incapable of supporting spin glass order.

Hysteretic effects were seen in the thinnest samples with the highest
concentration, with the warming susceptibility having a greater magnitude than the
cooling measurements. The hysteretic effects are due to the trapping of the system in
a metastable state; when the system is cooling, the establishment of short range order
creates preferential states. As the temperature continues to decrease, the energy barriers
increase, and the system is trapped. In the lowest concentration (x= 0.07), a 1/T
behavior is seen for all thicknesses, which indicates that when the system consists

primarily of small isolated clusters of spins, dimensionality is unimportant.
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TWO-DIMENSIONAL SP LA

Dekker, et. al.*” have investigated the behavior of the two dimensional Ising spin
glass Rb,Cu, ,Co,F,, with x = 0.22. AC susceptibility measurements over 15 decades
of time show frequency dependent behavior beginning as high as 2 T;, with an extremely
broad distribution of relaxation times. Fits to Equation 4-3 result in a value of zv = 15.
The activated dynamics of Fisher-Huse given by equation 4-4 with T, = 0, as
appropriate to a true two dimensional system, find Y» = 2.2 + 0.2 and
7o = (241) x 10, Use of the same equation with a finite T, resulted in a worse fit.
Ageing phenomena seen in this material® are found to be qualitatively different than

those seen in 3D.

THE CURRENT PICTURE OF DIMENSIONALITY AND FINITE SIZE EFFECTS
IN MULTILAYERED SPIN GLASSES

Based on the static and the dynamic measurements, we have the following picture
of dimensionality crossover and finite size effects in multilayered spin glasses. For
20 nm < Wy; < 1000 nm, deviations from bulk behavior in the static and dynamic
measurement of T, can be analyzed in terms of finite size effects. The correlation length
exponent, v, has a value of 1.1 + 0.3 when fit to samples in this thickness regime.

For thin samples, the behavior of the freezing temperature is described by the
activated scaling of Fisher-Huse, as given by Equation 4-4 and its zero freezing

temperature modification. Frequency dependent susceptibility measurements over 8
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decades in time show that T, = 0 for Wy, < 5 nm, and provide convincing arguments
for two dimensional behavior. In the intermediate regime (5 nm < Wg; < 20 nm), we
find a crossover behavior described by Equation 4-4 with a finite T,.

The freezing temperature is observed to increase with increasing frequency, and
decrease with increasing magnetic field; the former effect has been shown to

demonstrate dimensionality dependence, while the latter has not.
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CHAPTER FIVE

ESR IN SPIN GLASSES

NTRODUCTION

This chapter is divided into three parts: the first part extends the basic theory of
SR given in Chapter 2 to the ESR of magnetic moments in metals. The second part
immarizes the experimental situation of ESR in spin glasses and other magnetically
rdered materials. Of special interest are results of linewidth and peak position studies
f ferro- and antiferro- magnets, as many of these materials behave in an analogous
anner to spin glasses. The ESR of one and two dimensional ferro- and antiferro-
agnets is discussed. The third section looks at theoretical explanations specifically
ilored to ESR in spin glasses. Having provided the necessary background, Chapter

ive concludes with the motivation and goals of this experiment.

eneral Behavior

In spin glasses, the linewidth as a function of temperature, AH(T), has two trends,

th of which are also seen in other materials. At high temperatures, the linewidth is

1ear in temperature and described by

71
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[AH(T)}™* = A + BT 5-1a

As the freezing temperature is approached from above, the linewidth diverges as

a power law in the reduced temperature, t, with a characteristic exponent, «

[AH(D)]" = C (Iif] 5-1b
T,

The standard equation used in the analysis of ESR data above T is therefore

T-T\*™
AH(T) = A + BT +C( T f] 52
s

ESR IN SPIN GLASSES: THEORY

This section begins with a theoretical explanation of the linear behavior common
to localized moments in metallic hosts, and is followed by a summary of the approaches
which have been used to explain the behavior near the ordering temperature in

ferromagnets, antiferromagnets, and spin glasses.
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ESR of Localized Moments in Metallic Hosts

The major applications of ESR in metals are; 1) determination of spectroscopic
states of ions in various hosts, 2) determination of relaxation times, 3) information about
the exchange interaction between localized moments, and 4) studying long and short
range magnetic order. The two measurable quantities we will be interested in are the
resonance peak position, H, (related to the inverse of the effective g value) and the
linewidth, AH. Measurement of the g value provides information about the spectroscopic
state of the ion and the energy scale of the resonance, and measurement of the linewidth
provides information about relaxation phenomena.

The first experimental report of the ESR of localized moments in metallic hosts
was made by Owen, et. al.* in 1956 in M, oMn, ;, where M is Cu, Ag or Mg. Mn?*
impurities in non-metallic hosts show six separate resonance lines. Owen, et. al.
observed a much wider single line, with no fine or hyperfine structure, centered around

= 2. As the temperature was reduced, the linewidth broadened, and the position of
the resonance peak shifted to lower fields. At the time, spin glasses had not been
identified as such, and the divergent behavior was explained in terms of

antiferromagnetic interactions.

ESR Equations for Transition Ion-Metal Systems

In the ESR of transition ions in metals, two spin components must be considered;

the conduction electrons, which are denoted here by a subscript ’e’, and the ions, denoted
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by the subscript ’i’. Consider first an assembly of conduction electrons and ions in the
approximation of immediate relaxation and far from any critical point. Taking all ions
to be equivalent (and all electrons to be equivalent), a simple relation exists between the
average magnetization and the effective field, so that we can write the static

magnetization of the ions and of the conduction electrons per ion (or per electron) as

M, = yH, = x;#, + AM) 5-3a
M, = x H, = y#, + AM) 5-3b

where A is the molecular field coefficient, given by

s - o) 54

g 8 Ha

and the susceptibilities of the ions and electrons are given by

_ 2 S(S+1) 5-8a
@y g7

=
~e
I

X = %(g.u,)’p(EF) 5-5b

where p(E;) is the density of states at the Fermi surface.
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Relaxation Rates

The relaxation processes in the ESR of localized moments in metals are governed
by the presence of three distinct components; the lattice, the ions and the conduction
electrons. In Chapter Two, we considered only one type of spin which could interact
with other spins of its own type and with the lattice. In the ESR of transition ions in
metals, there are four relaxation processes. The conduction electrons and the localized
spins can each relax to the lattice, with characteristic relaxation times T, and T,
respectively. In addition, the conduction electrons and the localized moments can cross-
relax (with times T, and T,). T,, the Korringa relaxation time, is a measure of how
quickly the spins of the localized moments relax to the conduction electrons. T, the
Overhauser rate is a measure of the reverse process. The Korringa and Overhauser rates
can be calculated by using a rate equation approach.

1 47 2
—_— T —— kT 5-6a
T, h (pJ)

1 8
— = —ncS(S+1)pJ? 5-6b
T, 3 (S+1)p
where J is the exchange coefficient and ¢ is the concentration of magnetic ions.

Figure 5-1 schematically illustrates the relaxation paths available to these systems.

T, and T, are the relaxation times between the ion and the conduction electrons, and T,



76

and T; are the relaxation times between the spins and the lattice. T; is very long

compared to the other times.

Localized Conduction
Moments Electrons

LATTICE

Figure S-1: Available relaxation paths for transition ion-metal systems

We can identify three regimes: in the first two regimes, we can treat the
electrons as if they were in static thermal equilibrium. If the electrons relax rapidly to
the lattice (isothermal approximation), the linewidth is determined by the ion-electron
relaxation rate, 1/T,. In the adiabatic regime, the electron magnetization doesn’t

-espond rapidly enough to follow the rf field, so that the resonance width is determined

>y the relative values of T; and T,.. In these two regions, we can replace the conduction
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electron spin and number operators by their expectation values. This leaves us with an

equation of motion for the ionic magnetization.

dM
_d—tz = gy M x(H + AM) = gk (1+Ax )M, xH 57

which introduces an effective g factor,

g =81 +Ayx,) = g(1 + Axd + A2x0x) 58

The first two terms are temperature and concentration independent, while the last
is proportional to concentration and inversely proportional to temperature. The g-shift
due to the second term is called the Knight shift and is observed for many metals with
Eu?*, Gd**, and non-S state ions. In the adiabatic regime, both the first and second

order (in A) g-shifts are seen, while in the isothermal regime, the second order shift is

not observed. The linewidth is given by

AH~_L=—1—+—1_[I—.9]EA+BT 59
Teﬁ T,.L Tu T

where A is the linewidth at T = 0, called the residual linewidth, and B is the thermal
broadening coefficient. In theory, 1/T; is the residual (T = 0) linewidth, although in
practice, there may be other contributions to this quantity. The presence of the (1-6/T)
term is due to assumption of a Curie-Weiss behavior of the susceptibility. Note that this

expression results in a concentration independent value for B. If we cannot treat the
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electrons as being in thermal equilibrium, then T,; becomes important. If the electrons
cannot transfer energy to the lattice fast enough, the system is ’bottlenecked’, and neither
of the shifts in equation 5-8 are observed.

Physically, we can explain the bottleneck as follows: the impurity spins want to
maintain equilibrium with the lattice, and there are two routes to do this; relaxation
directly to the lattice, and relaxation via the conduction electrons. We expect that the
relaxation of the spins directly to the lattice would be slow compared to the relaxation
of spins to the conduction electrons. If the conduction electrons can transfer their energy
to the lattice fast enough, the linewidth will be dominated by how fast the localized spins
can transfer energy to the conduction electrons (1/T,). If the relative relaxation rates
between the spin systems are such that the conduction electrons can transfer energy back
to the localized moments faster than they can transfer energy to the lattice, energy can
become trapped between the conduction electrons and the moments, which results in a
bottleneck. The linewidth will be due to both sets of spins, as they are locked together.
In general, a bottlenecked system will not display a g-shift, so that the observed g value
will be close to that of the conduction electrons.

Hasegawa® modified the Bloch equations to include the cross relaxation between

the elements in the system, resulting in the Bloch-Hasegawa equations.

dM,
— = guM, x (H + AM) - (

+L) aﬂ‘ + ﬂluﬁ 5-10a
dt .

1
T, TIL gc Tel
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dM
¢ =g uM, x (HAM) - 1,1 oM, + &Laﬂ‘ 5-10b
dt T, el & 7T,

Various approximations are made to solve this system of equations. In the
isothermal regime, (1/T,,) is very large and the electrons relax quickly. If (g/g,) is very
large, we recover the adiabatic regime. In the strongly bottlenecked limit, g; = g, and

T, = T, with the rates of relaxation to the lattice both small, the equation of motion

may be written

dM +M
SOLND | gn, o, +d)x 7 - Lo, + bt 511
dt T
where
g - gng + gng 5_12
x‘ x[
and
lxo . on1
1 T, ¢ T, s 5-13
T, Xe * X

In general, the host susceptibility is much smaller than that of the magnetic ions

x° > x.), the ion g factor is equal to the effective electron g-factor, and we find that

the effective relaxation rate (and hence the linewidth) goes like
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0
l-_l.-g-kl:_l_-p& i = A+BT 5-14
T T, ©T, T, T,(T,

where B is inversely proportional to the concentration of magnetic ions. This is similar
to Equation 5-9, which describes the behavior in the adiabatic and isothermal regimes,
but is different in that the bottlenecked expression is concentration dependent. The
g value, indicated by the position of the resonance peak, should be constant. In real
systems, some combination of bottlenecked and isothermal/adiabatic behavior is expected.

In more detailed calculations, the Bloch-Hasegawa equations can be modified to
account for the motion of the conduction electrons throughout the sample, hyperfine, and

fine structure splitting.

Residual Width and Thermal Broadening

The nonzero value of the residual width at low concentrations is attributed to local
internal field effects (such as the presence of anisotropy) and not to relaxation effects,
although these effects are included in the ion-lattice relaxation rate. From Equation 5-14,

we can write the residual width in field units as
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A=D1 5-15a
8Ty

and the thermal broadening coefficient may be written

BT = -2 b, T 5-15b

where by = (1/T,)/T is the unbottlenecked Korringa rate given by Equation 5-6a.

Experimental studies correlate the residual width to local strains and structural
properties. Barnes” suggests that the behavior is due to internal field distributions.
Although the RKKY interaction commutes with the total magnetization and should cause
no additional linewidth, the part of the RKKY interaction transverse to the field is
frequency dependent. This suggests that, if the appropriate limits hold, the transverse
part of the RKKY interaction cannot follow the rf field. The spins are locked into an
aligned configuration, producing an internal field, which results in inhomogeneous
broadening. For S-ion states, random strains should have a fairly negligible effect, since
there is almost no angular momentum in the ground state. Dipole-dipole broadening may
affect the residual width, but this quantity is small in the Mn alloys.

For AgMn with concentrations on the order of a thousand ppm, the residual width
is found to decrease with increasing concentration for concentrations higher than a few
hundred ppm. Concentration and frequency dependence has not been tested in detail,

because magnetic ordering phenomena obscure the linear behavior. When a third
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impurity (Si or Al) is added to CuMn (Mn concentration on the order of 0.1%), the

residual width is roughly proportional to the concentration of the additional impurity.
In general, the residual width would be expected to be positive. Stewart®”

explained that A is related to the "true" residual width, A,, via

A=4,-B6 5-16

where B is the same thermal broadening coefficient, and 6 is the Weiss temperature,
which can be measured from high temperature susceptibility measurements. If § > 0,

the value of A measured by ESR experiments will be negative.

The Effect of Magnetic Ordering on Linewidth

Line broadening or narrowing is the result of interactions between spins. Specific
mechanisms for the spin glass problem will be discussed in the last section of this
chapter. Linewidths may be broadened homogeneously, or inhomogeneously.
Inhomogeneous broadening is a result of the existence of different Larmor frequencies
throughout the sample. In effect, each of the spins sees a different field, and has a
slightly different resonance frequency. This results in a distribution of individual lines
merged into one overall line or envelope, but with no change in the lifetimes of the
states. Inhomogeneous broadening may be due to experimental artifacts, such as poor

homogeneity of the magnetic fields across the sample, or unresolved fine or hyperfine
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structure. The linewidth may also be inhomogeneously broadened due to inhomogeneity
or irregularities in the sample.

The width of a homogeneously broadened line is entirely due to processes which
change the lifetime of the states between which the transition takes place. This may be
due to; 1) dipolar interaction between like spins, 2) spin-lattice interaction, 3) interactions
with the radiation field, 4) diffusion of excitations throughout the sample, or
5) motionally narrowing fluctuations in the local field, such those due to as exchan