
I
!

”
V
i
a
.

‘



NIVERSITY LIBRARUES

miii‘ii’iiwumiimn.H
31293008776

             

I

This is to certify that the

dissertation entitled

INVESTIGATION OF ELECTRON SPIN RESONANCE

IN MULTILAYERED CUMN/CU SPIN GLASSES

ABOVE THE FREEZING TEMPERATURE

presented by

Diandra Laia Leslie-Pelecky

has been accepted towards fulfillment

of the requirements for

Ph.D. degreein PhYSiCS 

   
' Major professor

Date 09111/91

MSU is an Affirmative Action/Equal Opportunity Institution 0-12771

 



 

LIBRARY

University 

*7)

Michlgan 5mm

  

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date duo.

DATE DUE DATE DUE

 

  
DATE DUE

 

 

 

 

 

 

 
 

 
 

l_]| l

—

 

 

 

LE

-:__[__

 

 

 

 
 

 

 

43

:1-

fl
 

 

 

 

L__

-:[__
 

 

 

 

 

 

 

 
E

i== 

   
 

 

MSU Is An Affirmative ActiorVEqual Opportunity Institution

ammo-91



[\WSTIGAHC

CUE/CC S

 



INVESTIGATION OF ELECTRON SPIN RESONANCE IN MULTILAYERED

CUMN/CU SPIN GLASSES ABOVE THE FREEZING TEMPERATURE

By

Diandra Lain Loslie-Pelecky

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment for the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics and Astronomy

1991

 



[\WES'UGAF

Interpret}:

position. H3» abov

processes and CW

”ordeftxi' Spin 331‘

mm and Ham 3

this layer thick:

(finensionality eff

AHG‘) is .

mics having ‘

aPIJYOpI‘late for T.

 mitt thickness

 tie linewidm itsel

trEnds.

hie ObSCT

Picnic.
In th‘

C

m:

  



ABSTRACT

INVESTIGATION OF ELECTRON SPIN RESONANCE IN MULTILAYERED

CUMN/CU SPIN GLASSES ABOVE THE FREEZING TEMPERATURE

By

Diandra Laia Leslie-Pelecky

Interpretation of the Electron Spin Resonance linewidth, AH and resonance peak

position, Ho, above the freezing temperature, T,, is difficult due to simultaneous physical

processes and even a question as to whether the linewidth is a probe of the long-range

’ordered’ spin glass phase, or a measure of short range correlations. We have measured

AH(T) and Ham in multilayered Cu,,,,Mn, spin glasses with x = 7% and 11%, and spin

glass layer thicknesses, W”, from 1 nm to 1000 nm at 9 GHz. Finite size and

dimensionality effects on T, have previously been observed in these multilayers.

AH(T) is shown to have the same general form for all layer thicknesses, with

samples having W30 5 3 run more accurately described by a corresponding form

appmpriate for T, = 0. Systematic variations in all parameters are seen as a function

of layer thickness. The separation of effects due to the depression of T, and effects on

the linewidth itself is necessary in order to correctly understand the physical origin of the

trends.

The observed behavior of AHCI') is explained in terms of a correlated cluster

Picture. In the correlated cluster model, the existence of spin correlations at

tCmperatures significantly above T, leads to a distribution of cluster sizes and relaxation
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times, with the linewidth dominated by configurations with faster relaxation times. As

clusters become increasingly correlated, the internal fields generated by the clusters,

along with a DM anisotropy field, inhomogeneously broadens the exchange narrowed

resonance line. This interpretation suggests that the observation of resonance in spin

glasses above T, is a characteristic of an intermediate phase between the spin glass and

paramagnet phases, and not a measurement of the spin glass phase per se. The effect

of decreasing layer thickness on the formation and growth of clusters, and the resulting

behavior of the linewidth is qualitatively discussed. The possibility of a ’Griffiths-like’

phase, in which regions of the sample are condensed into the spin glass phase at

temperatures between the bulk freezing temperature and the measured freezing

temperature of the sample, is considered.
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CHAPTER ONE: INTRODUCTION

INTRODUCTION; WHAT E A SPIN GLASS?

"Spin Glasses are magnetic systems in which the interactions

between the magnetic moments are ’in conflict’ with each other, due to

some frozen-in structural disorder. Thus no type of conventional long-

range order (of ferromagnetic or antiferromagnetic type) can be

established. Nevertheless these systems exhibit a ’freezing transition’ to

a state with a new kind of ’order’ in which the spins are aligned in

random directions."1

This definition, from a review article by Binder and Young, captures the essential

nature of spin glasses: although we know a spin glass when we see one, we have a hard

time explaining why it is a spin glass. Considerable theoretical and experimental effort

has gone into understanding the novel properties which appear in such a wide variety of

materials. Most of the effort has focused on the behavior of spin glasses in the spin glass

phase proper; this thesis investigates the behavior of spin glasses as the transition is

approached from above the freezing temperature using Electron Spin Resonance. The

development of nanoscale fabrication and characterization techniques has prompted recent

experiments on the behavior of the freezing temperature as a function of sample size.

Measurement of the Electron Spin Resonance linewidth and position in bulk and

multilayered samples has shed additional light on both the nature of the spin glass

transition and the characteristics of multilayered spin glasses.

The organization of this thesis is as follows; Chapter One provides an

introduction to the experimental properties of spin glasses, and the theoretical concepts

necessary to explain these properties. Chapter Two explains the basics of Electron Spin

1
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Resonance (ESR), and Chapters Three and Four outline the major theories of spin

glasses, and the experimental progress in the study of multilayered spin glasses. The

fifth chapter is divided into two sections; the first section outlines the theory of ESR of

localized moments in metals, and the second section summarizes the current state of ESR

in spin glasses. Having laid the necessary conceptual foundation, Chapter Five concludes

with the motivation of the work presented in this thesis. The experimental technique is

detailed in Chapter Six, the data and analysis are presented in Chapter Seven, and

conclusions and suggestions for further experiments are found in Chapter Eight.

THE EXPERINIENTAL SIGNAIUE QF SPIN QLASSfi

The primary - and most easily observed - signature of a spin glass is a cusp in the

temperature dependent susceptibility, x(T), accompanied by hysteretic behavior at

temperatures below the cusp. Throughout this thesis, I will refer to the temperature of

the cusp as the freezing temperature, T,, although it is also commonly referred to in the

literature as the glass temperature. This cusp was first measured by Cannella and

Mydosh2 in the frequency dependent susceptibility of AuFe, but is seen in a wide variety

of materials including dilute and concentrated metallic alloys, insulators and magnetic

semiconductors‘*3". A typical plot of x(T) for a CunnMnom 1000 nm sputtered film

is shown in Figure 1-1. The solid symbols correspond to measurements made after the

sample has been cooled with no applied magnetic field, and the Open symbols represent

the behavior of the susceptibility when the sample is cooled in a magnetic field of 100 G.

A measuring field of 100 G was used for both curves. Above T,, the behavior is the
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same for both the field cooled (FC) and the zero field cooled (ZFC) curves, but below

the cusp, the field cooled curve remains roughly constant, while the ZFC curve returns

toward zero. The cusp in the susceptibility is reminiscent of the behavior observed in

ferro- and antiferro- magnets, which are known to undergo phase transitions, so the

initial assumption was that this cusp represented a phase transition. Measurements such

as the onset of remanence and irreversibility in the magnetization, and sharp features in

Mossbauer, nonlinear susceptibility and anomalous Hall effect experiments also indicate

a phase transition at T,, yet corresponding behavior has not been observed in other

thermodynamic quantities. The magnetic specific heat, resistivity and thermopower show

only broad features at T,, leaving Open the question of whether or not a true phase

transition occurs.

Specific heat measurements“ in CuMn and AuFe show that the entropy is about

70% of the maximum entropy above T,, indicating that some short range magnetic order

exists above the transition temperature. Along with thermopower and resistivity7

experiments, these measurements indicate that a spin glass above T, can not be treated

as a simple paramagnet. Additional evidence for this picture is found in diffuse neutron

scattering8 in AuFe at zero magnetic field, which shows two quasielastic lines with

different linewidths. One of these lines is interpreted as corresponding to fast relaxation

processes of single spins, while the other line is attributed to the behavior of correlated

pairs, triples, etc. As the temperature decreases, the second line grows at the expense

of the first, indicating a gradual growth of short range ordering.

The strongest evidence for a true phase transition is the divergence of the

nonlinear susceptibility, as first measured in AgMn by Monod and Bouchiat9 and later
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by Levy”, and Levy and Ogielski“. If the temperature dependent susceptibility is

expanded in powers of the magnetic field, we find

= 10(1') - 11mm + Orderm‘) 1-1

m
l
:

where x“, is the nonlinear susceptibility. Bouchiat12 found that the nonlinear

susceptibility could be fit to a power law in the reduced temperature (t= (T-Tf)/T,) with

a characteristic exponent, 7

 

The extraction of an exponent from data appears to depend heavily on the region of

temperatures and magnetic fields considered in the scaling analysis. Bouchiat’s

measurements indicate that restriction of the temperature range to a narrow region around

Tf results in a well defined value of 7 = 2.2 :1; 0.2. Alternate analyses of the nonlinear

susceptibility have been suggested” .

Dynamic measurements of the susceptibility have shown“1 that the relaxation

time spectrum is very broad, even far above T,. As the temperature is lowered, the

width of the spectrum dramatically increases, so that time scales are of macroscopic

order at and below Tr. The shortest relaxation times, 1m are thought to be on the order

of 1010 to 1013 seconds. The average time scale, T,,, and the minimum time scale, rm,

are consistent with an Arrhenius-type law,
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where To is a proportionality constant and E,“ is an activation energy which measures

thermally activated processes involving temperature independent barriers; however, the

maximum relaxation time, rm, does not obey an Arrhenius law, and is inconsistent with

the above picture. rm displays a strong temperature variation, and is described by a

Vogel-Fulcher law,

1' = ‘0 exp(3%) 1’4

The Vogel—Fulcher law describes the frequency dependence of Tf better than the

Arrhenius law, but the variable To is generally treated as a parameter and does not

correspond to the freezing temperature.

Above T,, the behavior of the relaxation times may be described in terms of a

critical slowing down, with the maximum relaxation time following

rm = to (T _ Tf)“" 1-5

where v is the critical exponent of the correlation length (5 o: t"), and z is the dynamical

critical exponent (1' o: E").

If the spin glass transition is not a true phase transition, the cusp in the

susceptibility may represent a ’falling out of equilibrium’. Because the time scales of the
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relaxation are macroscopically long, the system is never completely in equilibrium. Any

probe has a characteristic time scale, such that, when the system is relaxing at a time

scale longer than that of the measurement, the probe is incapable of measuring

equilibrium behavior. Experimentally, the position of the freezing temperature is found

to increase with decreasing measuring times, supporting the interpretation that the cusp

is due to non—equilibrium effects. The freezing temperature is also found to depend on

the magnitude of the magnetic field used in the measurement, which brings up questions

about the ability of a system to support spin glass order in the presence of a magnetic

field.

Below T,, the primary experimental spin glass signatures are irreversibility and

relaxation time effects. The temperature dependent susceptibility has very different

forms depending on whether or not the sample was cooled in a field, as seen in Figure

1-1. As this thesis is mainly concerned with the temperature regime above and

approaching T,, experimental investigations of the spin glass phase per se will not be

reviewed.

IflEQRETIQAL PRQPERTIES

The conflicting experimental evidence surrounding the nature of the spin glass

phase and transition complicates theoretical analysis. Calculations are further hampered

by the lack of a well-understood Hamiltonian for the system, no obvious choice of order

parameter, a complicated and non-periodic ground state, and the analytical difficulties

inherent in dealing with random systems.
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The free energy surface of a spin glass may be schematically thought of as a

multi-valleyed structure, with a large number of local minima, as shown in Figure l-2a.

The free energy surface of a ferromagnet is shown in Figure 1-2b for comparison.

 

    

Order Parameter Order Parameter

  (a) (b)

  

Figure 1-2: Free energy surfaces for (a) a spin glass and (b) a ferromagnet

The complicated free energy of a spin glass leads to a large number of states

which, although different microscopically, are characterized by the same macroscopic

measurable quantities. These degenerate states are separated by free energy barriers

which grow as the temperature decreases. The question of whether there is a single (to

within field symmetry) ground state, or a large number of ground states is still

controversial""‘. The answer may in some part be dependent on the vector character

(i.e. Ising or Heisenberg)“'17 and range of magnetic interactions in the material.
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Frustration and Disorder

A microscopic spin glass theory which is to explain the nonperiodic ground

state(s) and the complicated free energy surface must have two fundamental elements:

disorder and frustration. Disorder refers to the lack of periodicity of the spins, which

introduces a random element to the interactions. Disorder may be a result of random

positioning of magnetic ions on a crystalline lattice or amorphous crystal structure.

 

 

    
Figure 1-3: A Fmstrated Plaquette of Spins

Frustration is the inability of a system to simultaneously satisfy all of its ordering

constraints. A simple example of a frustrated system is a plaquette of three Ising spins
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on the vertices of an oblique triangle, as shown in Figure 1-3. If the interactions

between A and C and between A and B are ferromagnetic, but the interaction between

B and C is antiferromagnetic, we can not have a situation in which all three spins are in

their preferred orientations. This prevents the onset of long range order and is

responsible for the many valleyed free energy.

This combination of frustration and disorder results in a ’serious’1 disorder which

can not be removed by a mathematical transformation. Spin glass theorists agree that

both frustration and disorder must be present in any spin glass theory which is to explain

real materials. The physical mechanisms responsible for frustration and disorder vary

from material to material, so the specific interactions which result in spin glass behavior

in dilute metallic spin glasses will be considered next.

Metallic Spin Glasses

Dilute metallic alloys are the canonical spin glasses and are created by randomly

substituting a small number of transition metal ions - usually Mn, but sometimes Fe - in

the lattice of a host noble metal (Cu, Au, Ag or Pt). The interactions are long-ranged,

and the spins behave in a Heisenberg-like manner. Metallic spin glasses have been

extensively investigated due to the ease of preparation and the range of concentrations

over which spin glass behavior is observed.
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The RKKY Interaction

The Ruderman-Kittel-Kasura-Yosida‘8'19'20 (RKKY) interaction originally

explained the long range interaction of nuclear spins via hyperfine coupling to a sea of

conduction electrons. This interaction can also explain how widely separated Mn atoms

in Cu interact. Hund’s rules determine the magnitude of the local Mn moment, with the

orientation of the moment determined by the exchange interaction, J(R,,). The interaction

can be described by a Heisenberg Hamiltonian,

H = -z w 2 ~53 1-6
it}

The exchange polarizes the spins of the conduction electrons near the Mn ion. The Pauli

exclusion principle causes the conduction electrons to respond with a characteristic

wavelength, x, = 1r/kp, where kF is the Fermi wavevector. The resulting spin

polarization of the conduction electrons is oscillatory and long ranged. The sign of the

interaction between the Mn ions depends on whether the second Mn ion is at the crest

or the trough of the spin polarization wave created by the first Mn ion, so that both

ferromagnetic and antiferromagnetic interactions are present. As the distance between

the Mn ions increases, the strength of the interaction decreases. The derivation of the

RKKY interaction may be found in a number of texts”. The result is
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he, 5 .

J(Ry) = - [131'] [LT—h“ makfkv)'2krRu°°s(2kFRu) (ii! 1-7

I“ «3
(ZkFRyy

where A is the mean free path of the conduction electrons, 303 is the volume of the unit

cell, Rt,- is the distance between Mn ions i and j, and kP is the Fermi wave vector of the

host metal. The exponential term accounts for the finite mean free path of the electron.

The RKKY interaction is frequently written in terms of the asymptotic limit, neglecting

mean free path effects

 

cos(2k,Rv + am]

J( )=Jo

R” [ (kFRyi’

Figure 1-4 shows the RKKY interaction as a function of the distance between the

moments (R,,-). The random placement of the ions provides disorder and the presence of

the RKKY interaction is responsible for both ferro- and antiferro- magnetic interactions,

resulting in frustration.

In theory, we expect an equal number of positive and negative interactions, which

would yield a simple Curie Law paramagnetic susceptibility in the region above Tf.

Morgownik and Mydosh22 carefully investigated the high temperature susceptibility in

an attempt to corroborate the expression for the RKKY interaction in metallic spin

glasses. They found that deviations from ideal random mixing occurred in such a way

as to increase the probability of ferromagnetic interactions in CuMn, AuMn, AuFe and

PtMn. Their analysis showed that even small deviations from random mixing make big
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differences in the interactions. In CuMn, the Mn nearest neighbor interaction is

antiferromagnetic, while the next nearest neighbor interaction is ferromagnetic.

J

M'j

Figure 1-4: The RKKY interaction as a fitnction ofdistance between atoms

 

 

   
 

The Mn-Mn distance23 is maximized by preferential occupation of next nearest neighbor

sites by Mn, so that the predominant interactions are ferromagnetic.

Many theoretical calculations attempt to predict the behavior of T, in metallic spin

glasses from the form of the RKKY interaction, and especially to explain the observed

sublinear dependence of Tf on concentration. Larsen” has presented a mean field

calculation in which the freezing temperature is given by
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kr, ~ 2]: ‘12]: [10,)? 1-9

where the square root represents the local energy scale of spin j (with the sum running

over neighbor spins). Larsen has derived a sublinear dependence of T, on concentration

using a quenched uniform model in which only those moments which are at a distance

greater than the average nearest neighbor distance are included in the sum for a given

ion. Levy and Zhang”36 have demonstrated that failure to include preasymptotic

corrections to the l/R’ behavior overestimates T, by a factor of two for Cuo.”Mno.m, and

by a factor of more than three for cuogsMnQos. They find preasymptotic corrections to

be six times more important than mean free path effects in CuWMnM6 and eight times

more important than mean free path effects for Ago-“Mug“. This means that the

asymptotic form of the RKKY interaction can not be applied to pairs separated by less

than 6 nm in CuMn and 3.5 nm in AgMn” ‘53 In concentrations larger than 100 ppm,

there will always be neighbors within this limit, demonstrating the importance of the

corrections to the UK3 behavior.

Anisotropy

Anisotropies increase the frustration in a system by placing additional ordering

constraints on the individual spins. Some authors?7 contend that nominally Heisenberg

systems, which theoretically are not expected to exhibit a phase transition in three

dimensions, exhibit phase transitions only because of the presence of anisotropy.
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Computer simulations28 and experimental measurements” offer evidence that

anisotropy is not fundamental to the ordering phenomenon. This remains an unresolved

question.

Although dipolar anisotropies are present in metallic spin glasses, the magnitudes

of these anisotropies are too small to be responsible for ordering in CuMn or AuFe. The

most significant anisotropy in metallic spin glasses is the) Dzyaloshinskii-Moriyawm

(DM) anisotropy, which described the interaction between two spins via spin—orbit

scattering from a third atom. This anisotropy is especially pronounced if the third atom

is a strong spin orbit scatterer (i.e. Pd, Fe, or Co impurities in CuMn). If the impurity

is at the origin, and the two spins are at R1 and R2, the DM anisotropy has the form

SinlkF(Rr + R2 + (Rz'Rr))] + 450M

[1+ CkF(R1+ R2 + (R2 - R1))]

 

Hm: = (‘10)!)

(El-fl.) (Exit) .(sgxsg)

R1319: (RI-R2)k13’

1-10 

Because of the coupling of the spin cross product to the spatial cross product, this

anisotropy is unidirectional. Typically, JDM is approximately 1/10 of the magnitude of

the exchange coefficient of the RKKY interaction. The DM anisotropy is most important

below T,, where the anisotropy acts to maintain the frozen direction of the spins.
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In this Chapter, some of the experimental properties of spin glasses have been

briefly reviewed. Experimental evidence for and against the existence of a true phase

transition has been discussed, and an alternative explanation - that a failure to achieve

true equilibrium during the course of the measurement is responsible for the observed

properties - has been suggested. The theoretical concepts necessary to a discussion of

spin glasses have been introduced, with particular attention paid to the properties of

metallic spin glasses.
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CHAPTER TWO

INTRODUCTION TO ESR

INTRQDQQTIQE

Chapter Two focuses on the basic theory of Electron Spin Resonance (ESR). The

general theory of ESR in non-interacting and interacting spin systems far from critical

points is discussed. The material in this chapter provides a foundation for Chapter Five,

where these basic formulas will be modified to describe ESR in the much more

complicated spin glass system.

BASI THEORY F R

As an idealized case, consider a system of spins, each with angular momentum

S. Each spin has a moment, it, given by,

ii = ”g “'3 g 2'1

where the #3 is the Bohr magneton,

ch
= _ 2-2

“B 2mc

17
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and g is the ’g factor’. The charge of the electron, e, will always be taken to be

positive, and the minus sign accounted for explicitly. The gyromagnetic ratio, 7, is

defined as

3 “a 2-3

When a magnetic field is applied, (ZS +1) Zeeman levels result for each spin.

The occupation of these levels by an ensemble of spins is described by the appropriate

statistical mechanics, and results in a net magnetic moment. An applied microwave field

of frequency by induces transitions between Zeeman levels. Resonance occurs when the

microwave energy is equal to the energy difference between two Zeeman levels.

hv = guDH 2-4

Classical Equations of Motion

We can treat the spin as a charged, classical ’top’ with angular momentum its,

and moment u=-7fiS. The motion of the charged top in a magnetic field will be

governed by the classical equation

t—tw
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When H is a constant vector (Ho = Hok), the resulting motion is precession of

the moment at a fixed angle with respect to Ho, with frequency w, = 71-1,. This is called

Larmor precession, and the frequency w, is the Larmor frequency.

Although the above description is entirely classical, a quantum mechanical

calculation leads to the same results. We start from the Heisenberg equation of motion,

. d

where the Hamiltonian is the Zeeman interaction. Calculation of the commutator leads

to

d _.
Tit-(flop) = y]? x <p'op> 2-7

which is the same as Equation 2-5. The details of extending the quantum case to include

the microwave field may be found in a number of references32'33'3‘. As we obtain

the same results classically as quantum mechanically - even in treating the presence of

the microwave field - the more intuitive classical picture can be used in discussing these

effects.

In experiments, we apply a static field, Ho, and a smaller, time dependent field,

H,, at right angles to the applied field. The time dependent field is usually written as

the properly rotating part of an oscillating field,
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H, = H,cos(m)i + Hlsin(wt)f 2-8

The counter-rotating part of this field is obtained by letting w -> -w. If the field of

Equation 2-8 is anywhere near resonance, the counter-rotating part is far from resonance

and may be neglected. The presence of H, modifies Equation 2—5

5% = -a x y (H, + rim) 2-9

We can transform this equation to a reference frame in which both H, and H, are

at rest. This reference frame rotates about the z direction with frequency wk. The

equation of motion in the rotating frame is

I .

(gt) = -,-, x v ,7” 2-10

where the prime denotes the derivative taken with respect to quantities in the rotating

frame, and

= 5( 0-2} . 11,: 2-11

In this reference frame, the moment precesses about H4, in a cone of fixed angle.

The motion of the moment is periodic, with frequency 7H,". At resonance, the

frequency of the alternating field is equal to the Larmor frequency; equivalently, we see
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that this implies that H,,, = H,. Figures 2-1 a,b, and c illustrate the behavior in the

rotating reference frame. If H,, is above resonance (greater than wl'y), H,,, has a positive

2 component, as shown in Figure 2- la. If H(, is below resonance, the 2 component of

H,,, is negative, as shown in Figure 2-lc. Figure 2-lb shows the system at resonance,

when Heff = H,, and (H,,-wl'y) is zero. In all three figures, H,,, is shown by the shaded

arrow. H, is along the x-axis and H,, - w/‘y-iS in the x direction.

In a quantum description, a spin flip corresponds to a transition between two

quantum levels. The absorption of energy from the microwaves enables the spin to flip

from an energy state corresponding to being aligned with the field to a state with a higher

energy corresponding to a position antialigned with the field.

Bloch Equations

Up to this point, we have considered the spins as perfect oscillators, with energy

being transferred only between the spins and the magnetic fields. This ideal system

would have a resonance line with no width. In a real system, spins are constantly

making transitions both from lower energy states to higher energy states, and back again,

with some net absorption. In order to de-excite, a spin must transfer energy to other

spins, or to the lattice. Both processes take a finite amount of time, which results in a

finite resonance linewidth. Felix Bloch” introduced the idea of relaxation times

phenomenologically into the equations of motion to account for these processes.

Bloch posited that the magnetization, if pushed out of equilibrium, will tend to

relax exponentially to its thermal equilibrium value, M0. The 2 component of M grows
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as individual moments making up M flip to relax Mz toward Mo, which requires the

moments to give up energy to the lattice. This process is characterized by the spin-lattice

relaxation time, T,.

Interactions between spins can destroy the magnetization perpendicular to the

applied field. For example, the dipolar interaction can randomly modify the value of H,,,

locally, so that each spin precesses at a slightly different rate. The perpendicular

magnetization is relaxed by destroying the coherence in the individual perpendicular spin

components, and is characterized by the spin-spin relaxation time, T2.

The Bloch Equations, which describe the motion of interacting spins are (in the

rotating reference frame):

dM Mo-M
  

 

d; = wmxnw): + T1 2 2-12a

dM M

f = "Y (fiwaLy + T: 242"

The details of the solution to the Bloch equations can be found in Appendix A.

The spin—lattice relaxation time is usually much longer than the spin-spin relaxation time,

and the rotating field, H, is taken to be much smaller than the applied field, H,,. The

susceptibility will be complex, as the magnetization has components both in and out of

phase with the rotating field. The imaginary part of the susceptibility (X") describes the

absorptive behavior of the sample, while the real part (X') describes the dispersion. In

metals, the complex surface impedance results in the absorbed power being proportional
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to a mixture of the real and imaginary parts. The susceptibility from the Bloch equations

is

 

 

- T

xi = growl “t “’3 ]
1+(m-ma) T2

// 1 l

x = —x,(w,T,) 2-14

2 (1+(0-00)2 1,2]

The functions which result from the solution of the Bloch equations and their

derivatives are shown in Figure 2-3a and b; they are Lorentzian and result from the

assumption of exponential relaxation. Other types of lines are observed experimentally,

and these lineshapes may be derived by assuming other forms of the relaxation. The

linewidth, AH, is usually measured as the peak-to—peak value of the first derivative, and

is proportional to the inverse of the relaxation time, T2.

EXPERIMENTAL DE TI N F THE RES NAN E

The simplest experimental set up consists of a microwave source, which sends

microwaves down a transmission line and into a resonance cavity. Using various

microwave guides, the reflected (or transmitted) microwave energy is sent to a detector

and converted into a current. This current is proportional to the power reflected (or

transmitted), and is smaller than the incident power (P,) by an amount equal to the power

absorbed by the sample (P,). As the magnetic field is swept, (P,—P,) vs. field is plotted,
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Figure 2-2: (a) Absorptive and dispersive parts ofthe Lorentzian lineshape and (b) their

derivatives
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and can then be analyzed to extract parameters which relate to physical quantities of

interest (which will be explained in Chapter 5). This basic set up can be modified in

order to improve the detection of the signal, but the essentials are all present in this brief

description.

SUMMARY

The basic elements of electron spin resonance have been presented in terms of the

motion of a classical moment in a field. Relaxation times, which result from spin-spin

and spin-lattice interactions have been phenomenologically considered within the Bloch

Equations. Chapter Five will extend this simple model to the case of strongly interacting

spins. A preliminary description of the experimental detection of the resonance has been

given.
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CHAPTER THREE

SPIN GLASS THEORIES

INTRQDQQTIQN

Spin glasses pose a challenging problem for theorists. In addition to the

procedural complications inherent in treating disordered systems, frustration must also

be included. In addition, the wide variety of materials displaying spin glass behavior and

questions about ergodicity and measuring time must be considered. There are two major

schools of spin glass theory; the first developed from the mean field theory of the

Edwards-Anderson and Sherrington-Kirkpatrick models, and is referred to as the

hierarchical or mean field model. The second is a scaling theory which expresses the

low lying excitations of a spin glass in terms of critical exponents, and is referred to as

the droplet theory. This section will summarize the development of and important results

arising from these two schools of thought.

In order to understand spin glass theory, and especially the question of whether

or not the spin glass ordering is a true phase transition, the idea of phase transitions and

the formalism used in their description must be understood. The first section of this

chapter briefly reviews phase transitions and scaling formalism. The concept of ’slowing

down’ near a critical point will also be reviewed. The second part of this chapter focuses

on developing a conceptual understanding of the two major spin glass theories. While

the hierarchical model is mathematically rigorous, the upper critical dimension - the

27
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lowest dimension at which mean field exponents are valid - is 6, which makes application

to real systems questionable. While less theoretically rigorous, the droplet theory makes

predictions which distinguish between two and three dimensions and can be

experimentally tested.

A word of caution: most of the theoretical effort to this point has focused on

identifying the nature of the spin glass transition and of the resulting phase. The

Electron Spin Resonance experiments discussed in this thesis investigate how the spin

glass phase is approached from above the transition temperature. A lot of spin glass

theories dismiss this regime as being ’paramagnetic’ and do not address the

experimentally observed ordering effects above T, discussed in Chapter One. Neither the

droplet model nor the hierarchical model has specifically addressed Electron Spin

Resonance experiments.

PHASE TRANSITION AND FINITE IZE E T

Details of the study of phase transformations may be found in many

referencesm7. Mathematically, a phase transition is indicated by a singularity or

discontinuity in some derivative of the free energy. Experimentally, this is indicated by

the divergence of some measurable quantity (i.e. the magnetic susceptibility and specific

heat in ferromagnets). The point at which the transition occurs is called the critical

point, which separates the two phases.

A phase transition corresponds to the spontaneous breaking of some symmetry,

so that the two phases must be described by two different functions which can not be
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analytically continued across the critical point. In the ferromagnet example, a rotational

symmetry exists above the Curie temperature, and is broken when the spins align. The

order parameter, is (generally) a thermodynamically measurable quantity which is zero

above the critical point and non-zero below and is introduced to describe the

thermodynamics of the phase with the broken symmetry. In the ferromagnet example,

the order parameter is the magnetization, which is zero in the paramagnetic phase and

non-zero in the ferromagnetic phase. Anticipating future results, the order parameter

will be symbolized by q.

Fluctuations measure the range of correlation functions; i.e., the distance over

which a disturbance - like a spin wave - ’remembers’ its initial state. As the system

approaches a phase transition, fluctuations in the order parameters extend over large

spatial regions and persist for very long times. Mathematically, the fluctuations manifest

themselves as singularities. The time dependent properties of the critical fluctuations

give rise to the dynamics via the fluctuation - dissipation theorem, which will be

discussed later in the context of ESR theory.

The divergent behavior of a thermodynamic quantity as the critical point is

approached is described by scaling, and the nature of the singularity is characterized by

a critical exponent. The mathematical definition indicates that the behavior of a function

as the critical point is approached is given in terms of a limit, so that f(x) is

asymptotically proportional to x‘. This asymptotic limit may not exist, but the

accompanying formalism has been shown to describe experiment very well. We say that
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lim lnf(x)
x ~ Ax " - — = A 3-1f() ( ) Ax,” [mum

where Ax ~ (x-xc) and x, is the critical point.

Critical exponents have proven to be exceptionally useful. In many cases, a large

variety of materials can be characterized by the same set of exponents, so we say that

they belong to the same universality class. Many of the thermodynamic quantities are

related to the reduced temperature, t, which is defined by

t = T-Tc

TC

or the correlation length, 5, which measures the range of a pair correlation function.

3.2

 

Table 3-1 summarizes and defines some of the common critical exponents.

Critical Slowing Down

As the critical point is approached, a system will take increasingly longer times

to reach the equilibrium state due to the presence of fluctuations. The description of this

process is based on the thermodynamics of irreversible processes, and is called the

thermodynamic or conventional theory of critical slowing down”. Physically, critical

fluctuations of various sizes (with the average size being equal to the correlation length)

are always excited. These excitations can then split up into smaller excitations, merge

with other excitations, or dissipate into random heat, etc, with the available dissipation
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Table 3-1: Summary of Critical Exponents
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paths determining the relaxation time of the system. Critical slowing down has been

used to describe the behavior of ordered ferromagnets and antiferromagnets as they

approach their ordering temperatures-”’9'“. Dynamic critical scaling predicts that the

characteristic relaxation time of a system, 1, goes like

_ ’3'

1: ~ [-13] 3—3

7}

where z is the dynamic exponent, and u is the correlation length exponent. As the

critical point is approached, the relaxation time will become infinite, indicating the onset

of an ordered state. Care must be taken in relating this equation to experiments, as

measurements usually measure an average relaxation time, and not a characteristic

relaxation time. The average relaxation time is related to an average exponent, zm by

_. -z,,v

{av or (:1,J
3-4

Tr

Note that the scaling laws are written in terms of the characteristic relaxation time. For

spin glasses, Ogielski‘“ has shown that 2,, = z - B/v where B is the order parameter

exponent.
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Finite Size Effects on Critical Exponents

A phase transition can occur only when the thermodynamic limit (Nam) is taken;

therefore, a finite system will display a rounded cusp with a finite height, instead of a

peak, and the position of the cusp will be displaced from the position of the infinite

volume case. The simplest example is that of a system in which all dimensions but one

are allowed to become infinite. The size of the finite dimension will be denoted by L.

An example of the behavior due to the finite size on the specific heat is shown in Figure

3-1. The dashed line shows the specific heat in the infinite volume limit, and the solid

line shows the results for a finite system.

The difference between the position of the peak in the finite case and the position

in the infinite case is measured by e, the fractional shift.

T. -T,,.(N>

T
C

€(N) = 3-5

We can also define a temperature, T’, at which the first deviations from the infinite limit

occur (indicated by the arrow in Figure 3-1), so that we may further define a fractional

rounding, 6(N), where

T.(N) -Tn(N) 3'6

T
C

 

5(N) =
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Figure 3-1: An example illustrating finite size efi’ects on the specific heat

The magnitude of the critical temperature is a measure of the overall strength of

the interactions. In a naive mean field picture, k,,Tc is directly proportional to the total

ground state energy. As an example, for a finite nearest neighbor Ising model, the total

energy is that of the infinite system minus lost coupling energy due to the lack of

neighbors at the surface.

N151; « E(N) - dJN — JN" M

where N" is the number of boundary spins, J is the exchange, and d is the

dimensionality. The shift will obey
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where A is called the shift exponent. The correlation length, 5, which is a measure of

the range of the correlation function, diverges with the reduced temperature as

5(7) == t" 3'9

When the correlation length for a finite sample approaches sample size, finite size effects

should be observed. A and v are (in general, but not always”) related by

1 = 1 3-10

V

NIEAN FIELD THEIRY

The Edwards-Anderson Model

The Edwards-Anderson (EA) model”, was the first to apply standard mean field

theory to the spin glass problem. This model considers classical spins placed on the

vertices of a cubic lattice, with only nearest neighbor interactions. An equal likelihood

of ferromagnetic and antiferromagnetic interactions is assumed, with the interaction

strengths given by a Gaussian distribution. This model successfully predicts a cusp in



m

HSada.
.rL

MSW
5:3

So3

1’11‘4

or...‘

aaaa

:fie

"En&s

isms



36

the susceptibility, but also predicts a cusp in the specific heat, which is not

experimentally observed.

Solving the mean field problem for spin glasses requires a quenched average, in

which the log of the free energy instead of the free energy itself must be averaged.

Edwards and Anderson used the ’replica trick’, in which the partition function, Z, is

written

Z"~l+nan 3'11

so that the quenched average, denoted by an overbar, can be written

 

‘7' lim [Z"-l] 3-12

n-vO
n

Use of the replica trick allows the calculation of the quenched average.

The EA order parameter is the spin correlation function q“, which correlates a

spin at time tl to its value at some later time, t2;

qEA = <§r(tr) ' §t(t2)> 3-13

In using the replica trick, n copies of the original system have been introduced. In

replica language, qEA can be interpreted as the correlation between a single spin, in two
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different replicas. If the Greek indices (1 and 3 represent two replicas, an alternate

definition of q is:

4“ = (ff.§;p> “#35 3‘14

where q“ defined this way is called the overlap.

The Sherrington-Kirkpatrick Solution

Sherrington and Kirkpatrick (8K)”44 extended the EA model to the infinite

range case, in which interactions are allowed between all spins. The replica trick is used

to evaluate the quenched average, which allows calculation of the free energy and

thermodynamically measurable quantities. In the evaluation of the average over the

disorder, the replicas become correlated. Instead of one mean field parameter, as in the

EA model, the SK model introduces two parameters - qua and ma, where the greek

indices identify replicas. SK assumed that all replicas must be equal, so that these

parameters should display no dependence on the replica index. This assumption, called

replica symmetry, takes qafi = q (V (13) and ma = m (V 0:). These parameters are

defined by

ml = < 2 <Sl>>d = $2 "'1 3-15

1 N r
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q = (’11?! 213332), = 2‘: m? 3-16.1.
N l

where this q is the same as the Edwards-Anderson order parameter, < > indicates an

thermal average, and < > 4 indicates an average over disorder. The different phases

resulting from this solution are summarized in Table 3—2.

Table 3-2: Phases Resulting From the Sherfington-Kirkpatrick Analysis

 

 

 

 

qm A pr... 1r

0 0 Paramagnet

96 0 0 Spin Glass

:6 0 rt 0 Ferromagnet

r     

There are some difficulties with this solution. For T _<_ Tr, the spin glass phase

does not represent a minimum of the free energy — the paramagnetic phase has a lower

free energy. Even more troubling, at low temperatures, the entropy is negative, with

S(T=O) = -0. 16. Theorists have questioned the use of the replica trick, the order of the

analytic continuation of the replica trick and the thermodynamic limit, and the validity

of a mean field approach in general. Thouless, Anderson and Palmer (TAP)45 showed
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that, at high temperatures, the same solution can be obtained without using the replica

trick, but obtained different results below T,. This led de Almeida and Thouless“,

among others, to the conclusion that the problem with the SK solution was the

assumption of replica symmetry. The crucial realization that replica symmetry must be

broken led to the current conceptual picture described by the hierarchical model.

Replica Symmetry Breaking

The replica symmetry breaking (RSB) solution of the mean field problem is rather

detailed, and only a brief outline will be given for the purpose of establishing a

conceptual spin glass picture. Excellent reviews of the details are available in other

sources".

Imagine that the qua can be arranged in a matrix, with the or index running along

the horizontal and the 6 index along the vertical. The diagonals of this matrix will be

zeros. Measurable quantities will be related to the trace of this matrix, and the trace of

the product of this matrix with other matrices. a and B both run from 0 to n, where n

is the number of replicas and eventually must be taken to O to recover the free energy.

In the first iteration of symmetry breaking“, Parisi suggested dividing the matrix

into blocks, so that the diagonal blocks form one set, and the off diagonals form another.
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Elements in the diagonal blocks are given the value q,, and those in the off-diagonal

blocks are given the value (10, as illustrated below:

Oq,q,qllqoqoqoqo

qloqlqllqoqoqoqo

qquOqllqoqoqoqo

4141410 Iqoqoqoqo

_

40 40 40

40 go go

go go 40

3-17
*—

40 90 40 901—0? @721:—

40 I 41 O 41 ql

40 I 41 q] 0 ql

qo I q, q, q, 0

Parisi then suggests49 that this procedure be repeated to infinite order. Each time, the

diagonal matrices further are subdivided, so that, on the second iteration, the matrix

shown in Equation 3-17 becomes

Oqzlqlqllqo qo qoqo

420 lqlqllqo qo qoqo

(11 (11 l 0

q, «11 l 9;

71-0— (Io-710

40 40 40

qo qo qo

40 co qo

42' 4., 4., <1qu

0 I40 40 qoqo

Fro—l WEI-5:9,—

qol 420 lqrqr

qolqlqll 042

qolqlqllqzo

3-18

Monte Carlo simulations“ of spin glasses predict an internal energy at zero

temperature of U(O) = -O.76 :1; 0.01. The replica symmetric solution of the SK model
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results in S(0) = -0. l6, U(0) = -0.798. The first iteration of replica symmetry breaking

gives 8(0) = - 0.01 , and U(O) = -0.765, and the second iteration gives 8(0) = -0.03 and

U(0) = -0.7636, indicating that the replica symmetry breaking solution converges

rapidly. In the limit of infinite iterations, the order parameter, qua becomes a function.

The free energy then becomes a functional of q(x), and can be maximized with respect

to this continuous variable. Various approximations can be made to calculate the free

energy for different temperature and field regimes.

Ultrametricity

Mezard, et. al.’°, and Mezard and Virasoro"1 related the hierarchical

organization of states to the calculation of statistical quantities. They find that, given any

three states, at least two pair of them will have the same overlap with probability one.

This is the characteristic of an ultrametric space: any three points in space will form an

isosceles triangle, with the two equal angles larger than or equal to the third one. For

any value of q, the states are organized into non-overlapping clusters, such that any pair

of states inside the cluster has an overlap greater than q. Each of these clusters can be

further decomposed into smaller clusters which group together states with overlap greater

than some q’, where q’ > q. This procedure can be repeated an infinite number of

times, indicating that the set of pure states obeys a hierarchical ordering. The

organization of hierarchical space is schematically pictured in Figure 3-2
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Cluster

  Configuration

 
 
 
Figure 3-2: Topology of ultrametric states

In this figure, the highest level will correspond to a cluster. If we define a pure

state as a state which cannot be broken down into a combination of other states, the three

vertices shown correspond to pure states, with q1 = q“. q2 will be equal to l and

correspond to different configurations within a pure state. To calculate the magnetization

at a given site, an average is taken over a large representative set of configurations

contained in the cluster.

The overlap between two states depends only on their closest common ancestor.

The higher up you have to go on the tree to find a common ancestor, the smaller the

overlap. All the pure states with a common ancestor share a common property; there

exists a partition of the N sites into disjoint macroscopic cells such that the average

magnetization of each of these states in every cell is the same, within some given
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resolution. This has enabled the development of a rather complicated procedure for

taking averages using the hierarchical tree for the purpose of computing the free energy

(and thermodynamic quantities calculable from the free energy ) at any temperature and

field.

AT and GT Lines

The mean field picture has stimulated some exotic calculations based on the

hierarchical structure of states, but has also resulted in some more conventional and

experimentally testable predictions. The question of what happens to a spin glass when

a magnetic field is applied has been addressed by both theoreticians and experimentalists.

Within mean field theory, two lines in the magnetic field - temperature plane

describe the effect of the field on the spin glass transition temperature. De Almeida and

Thouless‘“S (AT) predicted that the dependence of the freezing temperature on field, for

the Ising mean field model, would be described by

 

Tr" § 3 19
HAT(T) «x T ‘

f

Above this line, the free energy is smooth with a single valley as found in the free

energy of a paramagnet, while below this line, the free energy becomes the complicated

free energy surface of a spin glass. The time the system takes to transit between any two

valleys is macroscopic, so we see irreversible behavior associated with the onset of this
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state. The AT line marks the transition between the reversible behavior associated with

the paramagnetic phase and the irreversible behavior due to the spin glass phase.

For Heisenberg spins, the presence of a field selects a preferred direction, so that

the components of the spin longitudinal and transverse to the field will freeze differently.

Gabay and Toulouse’2 (GT) predicted that the freezing of the transverse components

should occur at the GT line, which is defined by

 

T-T-l

HGT(T) «( fr ] 2 3-20

f

The longitudinal components will freeze at the AT line. Gabay and Toulouse originally

claimed that the region between the GT and AT lines represented the region where the

replica symmetric solution is correct, but this has been shown to be incorrect”, due in

part to experimental indications that the longitudinal components will be affected by the

freezing of the transverse components. For Heisenberg spin glasses, the GT line may

be thought of as the line marking the transition from reversible behavior to weakly

irreversible behavior, and the AT line as indicating the transition from weak

irreversibility to strong irreversibility. Little experimental evidence exists for the

existence of a GT line in real materials. Anisotropy which couples the longitudinal and

transverse degrees of freedom (like the DM) has been predicted to be responsible for a

crossover from Ising-like behavior in low fields to Heisenberg-like behavior in high

fields. This has been experimentally observed by Fert and Levy“ and predicted within

mean field theory by Kotliar and Sompolinsky”.
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Dynamics Within the Mean Field Model

Dynamics in the mean field model can be broken into two approaches. The

hierarchical approach uses the mathematics of ultrametricity to predict the dynamics

below T,, and will shed no light on the present investigation. The second approach

introduces dynamics into the SK model and can be used above T,, as well as below.

The SK model has no natural intrinsic dynamics, so the dynamics must be

artificially introduced, usually within an equation of motion approach. Glauber dynamics

were used in the SK paper to predict that the susceptibility should diverge as t", and that

the autocorrelation function (C(t) = < S(t) S(t+1) >) should experience critical slowing

down with a decay rate pr0portional to t”.

Sompolinsky and Zippelius"5 used a self consistent formulation of the Langevin

equations for the relaxation of soft spin (S is a continuous variable in a symmetric well

which favors the values 1 1) fluctuations in the Edwards-Anderson model. Their

calculation eschews the use of replicas, relying on linear response theory to generate an

equation of motion for the spin variable in terms of a propagator (Green’s Function),

which is the response function of the spins to the field. Above T,, the low frequency

spin fluctuations will be characterized by a generalized damping function. The relaxation

of the system is predicted to diverge at a rate t‘. Their results above T, are in agreement

with the results from the SK model and calculations on generalized short-ranged mean

field spin glasses. The relaxation time may be found from
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=_1_.. _ 3-21I 1_C_[[C(t) C]dt

where C(t) is the spin spin correlation function. The average relaxation time is given by

1:” = fP(t’) t’dr’ 3'22

o

where P(r’) is a probability distribution of relaxation times.

Using dynamical scaling at zero field, Sommers and Fischer-‘7 predict zv = 2.

Use of the mean field value of v = 0.5 predicts z = 4. The average relaxation time

diverges with z,,,v = l, predicting that 2,, = 2. When a field is applied, the exponent

zvaries from4atH = 0,T =T,toS.0angoestoinfinityanthoO. Ina

Heisenberg spin glass, Fischer” finds that z keeps its universal value of 4 in non-zero

field along the entire GT line. Dynamic critical exponents for spin glasses are

summarized in Appendix B.

Experimentally, the hierarchical picture has been used to predict the decay of

remanent magnetization and ageing phenomena below T,. Most of these experiments

focus on cooling the system through the freezing temperature in a constant magnetic field

to some final measurement temperature. As the cooling takes place, the number of states

increases rapidly as a result of the formation of the multivalleyed free energy; the spin

glass is ’caught’ in a large number of metastable states. The number and properties of

the states have been calculated within the hierarchical model. Various phenomena can
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be examined by varying the magnitude of the cooling field, the amount of time elapsed

before making the measurement, the length of time the cooling field is allowed to persist

after the measurement temperature has been reached, etc. The hierarchical model

predicts that field cooling decreases the barrier heights between states, so that the time

it takes for the system to change from one state to another should depend on the applied

field. As the amount of corrugation in the free energy increases with decreasing

temperature, new metastable energy minima are constantly appearing, which should

change the measurable quantities of the system. The experiments presented in this thesis

are concerned with the regime above and nearing Tf, so the predictions of the

hierarchical model below Tf will not be further considered.

THE DROPLET MODEL

The droplet model was first proposed by McMillan59’6", and Bray and

Moore61’62. Fisher and Huse“""“ (FH) have formalized and extended this model,

making predictions which differentiate between two dimensional and three dimensional

behavior. Fisher‘56 has noted that, contrary to conventional dynamic scaling, where one

assumes that the relaxation time of a system with fluctuations on scale L goes like I},

the nature of disordered systems implies that the natural log of relevant parameters and

not the parameters themselves are the proper scaling variables. In ordered systems, the

singularity in the free energy which causes a critical point is due to competition between

energy and entropy. The contribution of entropy to the free energy is on the order of

T, but since the characteristic scale of the free energy is also of order T, there will in
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effect be no barriers, and no activated behavior. Barriers will exist in systems where the

behavior of the free energy is caused by competition between two different types of

energy with at least one energy being random. Since every quantity on the scale L will

have region to region fluctuations due to randomness, the distribution of barrier heights

is very wide. If the time for surmounting a barrier is proportional to the Boltzmann

factor, the distribution of barrier heights should result in activated scaling.

The Fisher-Huse model starts with an Edwards-Anderson lattice of randomly

placed Ising spins with short range interactions. In the same way that spin waves

represent the low energy excitations for ferromagnets, FH developed an ansatz to

describe the nature of the low lying excitations in spin glasses. The conceptual picture

presented is of a collection of non-overlapping droplets. A droplet is a minimum energy

coherent collection of spins with one phase, separated by a domain wall from another

group of spins which differ by a universal spin flip. The majority of the low energy

excitations will be high frequency excitations involving small groups of spins, and having

short spatial extent. The low frequency excitations, which will dominate the long time

behavior, will involve the coherent flipping of a droplet containing a large number of

spins. The thermodynamic properties of the system are determined by how

thermodynamic quantities scale with droplet size.

The FH Ansatz is that the free energy of a droplet of size L scales as L’. For a

ferromagnet, 0 is equal to d-l, but in a spin glass, frustration will reduce the exponent,

and FH argue that
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The distribution of droplet free energies will have a width which is comparable to its

median, and scales like L‘.

If 0 < 0, large, low energy excitations at T = 0 will be numerous, so that, on

some length scale, there will be a large density of quasi-independent excitations which

will prevent spin glass ordering. In this regime, the transition temperature must be zero,

and the paramagnetic correlation length, 5 +, is given by

1

5* ,, (lTJI—fi 3-24

which allows us to identify it = (NO).

If 0 is positive, then very few of the large scale droplets will be thermally

activated at low temperatures. The distribution of droplet widths is very broad, so there

will always be some droplets which will be active at any temperature, and these droplets

will dominate the equilibrium measurements. Low lying excitations will occur on all

length scales greater than the correlation length.

Relaxation of the low lying excitations is hindered by the presence of energy

barriers. The height of barriers to relaxation of a droplet of length scale L are assumed

to scale like L“, for L s E and where d-l 2 ill 20. The relaxation of these modes is

proportional to the Boltzmann factor. The characteristic relaxation time of the whole

system, 1, will be due to those droplets at scale E; at scales greater than 5, the effects
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of entropy reduce the barriers, and the regions of size E will flip roughly independently.

The relaxation time of the full system (assuming a zero transition temperature as would

be found in a 2D system) satisfies;

Int ~ 3-25
 

Tl ’Vz":

for T > T,, and where subscripts on the exponents denote their dimensionality.

The Behavior of Thin Films Within the Droplet Model

The Fisher-Huse theory has been modified‘53 for application to multilayered spin

glass systems with spin glass layer thicknesses W50. On time scales shorter than the

relaxation time of the system, only fluctuations of the system on length scales shorter

than the correlation length will be measured. A cusp in the susceptibility results when

the measurement time, tn, becomes shorter than the equilibration time, with the position

of the cusp being given by

7',(:_) fl W“,

T
C

326
  

(., * '1'263)]-(l + v2’2)
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Decreasing Wso results in a crossover between two and three dimensional

behavior. For temperatures far below T,, the relaxation time at scale s is
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(*3 ” '2V293)

WSG

TO * ’2":)

Int .. 3-27 

which results in a measured freezing temperature which depends on the measurement

time,

1,0,.)

T8

~
  

l

w'3 * W’3 7'7; 3-23

ln(t")

 

This prediction assumes thin layers, TAWSG) much less than the bulk value T,(oo), and

Wm larger than the average separation between Mn impurities.

Near T,, the relaxation time of the film will be governed by conventional dynamic

finite size scaling,

, ,, W33 3-29

where h is the three dimensional dynamic critical exponent. (In the case that dynamic

critical scaling doesn’t apply, we can simply write 1(WSG,Tg) as a general function of

W3C, and the true freezing temperature, T,,). The relaxation time of the system must be

less than the measuring time, or the system will fall out of equilibrium before the

correlation length reaches the size of the film. The relaxation time of the system is given

by
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ln(1: t“) ~ (t’e Wm)" ‘ ”2%": 3-30a

or

t ~ t"'"’ exp[ tvam + emu) W32“ + Gama] 3.30],

In the critical region, the shift of the freezing temperature from T, will be given

by

_ '7 [(‘Vs '* V2'2°3)"3]-1

T‘ T’a‘") ~ W” 3 In t" 3—31

T8 W8”;

    

which introduces logarithmic corrections to the measurement of v3.

The Effect of Magnetic Fields

For three dimensional droplet models in an applied field, three phases are

predicted; the first is a paramagnetic phase, as for the Ising case. The second phase

occurs when the symmetry in the direction of the field is broken, but the rotational

symmetry about the field still exists, in analogy to the GT line in mean field theory. The

third phase is when symmetry is broken in all directions. Only two ground states are

expected to exist.

In the Fisher-Huse model, the presence of a small applied field will suppress the

freezing transition. The relaxation times will grow, but not diverge, as Tf is approached.
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The broad distribution of relaxation times will result in freezing characterized by a

temperature T,(H,tm), below which the majority of the relaxation phenomena occur on

time scales longer than the measuring time. For small fields, the freezing temperature

is predicted to be

 

_ 2 «146

T8 2(HJ...) ~ Hy + 5 (1n("’to))“y * B) 3-32

8

 

which is only weakly dependent on the measuring time if the measuring time is small

enough. The logarithmic factor is a correction to the de Almeida-Thouless prediction.

In magnetic fields where the Zeeman energy is comparable to the exchange energy

(J ~ kBTg), the collective aspects of spin glass freezing should not be seen, and

appreciable hysteretic phenomena will occur only at very low temperatures.

THE GRIFFITHS PHA E

Griffiths67 showed that the free energy of a dilute Ising ferromagnet is a

nonanalytic function of the external magnetic field for all temperatures below the critical

temperature of the corresponding non-dilute system. When the temperature is between

that of the pure system and the ordering temperature of the dilute system, there exist

macroscopic regions of the sample which are ordered. Static measurements, which

represent average quantities, are incapable of detecting these regions.
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Physically, large ’rare’ regions which are characteristic of systems with higher

ordering temperatures will relax more slowly than the average of the system, and will

thus dominate the long time dynamics. These large clusters will lock into one of two

ground states (related by a global spin reversal) and will flip into the opposite state

infrequently. Regions of a particular size will dominate on a particular time scale, with

the size of the dominant regions increasing with time. The Griffiths temperature, To,

is the temperature of the corresponding non-dilute phase, which is higher than that of the

dilute magnet; T, 5 To.

In the Griffiths phase (T, < T < To), relaxation of these clusters will result in

a nonexponential form for the spin autocorrelation function, C(t). For a random Ising

ferromagnet“;

J. -

co) ~ eXPI-A(1nt)"‘] 3 33

and for a random Heisenberg ferromagnet69

1 3-34

C(t) ~ exp(-Bt 2)

Randeria, Sethna and Palmer"0 have considered the possibility of a Griffiths

phase in spin glasses. In a d-dimensional short range Ising spin glass, they find the

correlation function to be bounded below by the expression in Equation 3-34 in some

temperature range above the spin glass transition. The bound disappears to all orders in

perturbations about high temperature and dimensions, which is perhaps why there is no
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evidence for this phase in mean field theory. They suggest the phase diagram shown in

 

 
 T

  
 

Figure 3—3: Temperature - dimension phase diagramfor Ising spin glasses (afier Ref 70)

The authors emphasize that the lower bound is strictly for an ideal system; in a

real system, sample inhomogeneities would enhance clustering, and the bound would be

swamped. The experimental observations of ordering above T; described in Chapter One

support the existence of an intermediate phase between the spin glass ordering and

paramagnetic phases.

Theoretical existence of this phase is found in Ogielsld’s‘" 1‘3 Monte Carlo

simulations of the dynamic behavior of short range three dimensional Ising spin glasses
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in a magnetic field. Three distinct regimes are noted; Above the Curie point of the

nonrandom ferromagnetic Ising model, (Tc = 3.8 Tf), paramagnetic behavior is observed.

As the temperature is lowered, a different type of behavior is seen between 3. 8 Tf and

1.5 T,, in which short range correlations cause a change in the form of the decay of the

relaxation functions. The spin-glass correlation length and the correlation times in this

regime are very small compared to those in the spin glass phase, as is the rate of increase

of these quantities with decreasing temperature. From 1.5 T, to T,, critical behavior is

seen as the spin glass phase is approached. Ogielski finds z,,,v = 7.2 i 0.1 from these

simulations.

UMTVIARY

The hierarchical!mean field and droplet models present two very different pictures

of spin glasses. The biggest difference between them for our purposes is the

dimensionality of the models. The hierarchical model is a mean field model with an

upper critical dimension of 6. The droplet model considers experimentally measurable

differences between two and three dimensional behavior. The droplet model has been

extensively used in previous analyses of multilayered spin glasses.

The other major difference between the models is the effect of an applied

magnetic field. Within mean field theory, the AT and GT lines predict the dependence

of the freezing temperature on magnetic field. Experimentalists, as we shall see in the

next chapter, have claimed measurement of the AT/GT line(s) in fields of up to

15,000 G. The droplet picture predicts a similar dependence of the observed Tf (to
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within a logarithmic dependence on measuring time), but with the caveat that this

measurement represents a falling out of equilibrium and not a phase transition. In the

Fisher-Huse formalism, the presence of any finite magnetic field will prevent a spin glass

transition.

The novelty of the spin glass phase and questions about the nature of the transition

have resulted in a lack of theoretical investigation of the temperature region above Tf.

The formation of clusters and the onset of short range order at temperatures far above

Tf is well documented experimentally and indicates that labeling this region as simply

’paramagnetic’ is incorrect. The idea of a ’Griffiths phase’, in which macroscopic

regions of a sample become correlated at temperatures above the ordering temperature

of the sample as a whole, has been suggested to explain the behavior in this regime. No

experimental evidence of a Griffiths phase in spin glasses has been reported.

This brief foray into spin glass theory may appear to have shown only that neither

of these theories will be of any use in explaining results above T,. A conceptual

understanding of these pictures is important in that any theory developed to explain the

behavior above Tf must be consistent with one of these interpretations as T; is

approached.
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CHAPTER FOUR

REVIEW OF PREVIOUS STUDIES OF

MULTILAYERED SPIN GLASSES

INTRODUCTION

This chapter summarizes the current understanding of multilayered metallic spin

glasses. Extensive measurements of Tf in multilayers and subsequent analysis in terms

of both finite size and dimensionality effects are reviewed, and the picture of the

transition from three to two dimensions is established. The importance of measuring

frequency and field will be investigated for relevancy to the ESR study. Measurements

of multilayered semiconducting spin glasses and a two dimensional Ising spin glass will

be compared with results from metallic multilayers. The final section of this chapter will

summarize the current understanding of finite size and dimensionality effects in

multilayered metallic spin glasses.

An important question in the study of spin glasses is the value of the lower critical

dimension (LCD). The LCD is the dimension below which a phase transition can only

occur at zero temperature. Computer simulations28 indicate that the LCD for long range

RKKY spin glasses should be between two and three. Advances in thin film fabrication

and SQUID technology have made possible the creation and measurement of spin glass

samples on a nanometer scale. In long range ordered magnets, like ferromagnets, finite

size effects are not evident until sample size is on the order of monolayers, due in part

58
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to the strength of the spin-spin interactions, and the non—random nature of the spin

system. In spin glasses, the complex interactions cause observable finite size effects at

much larger layer thicknesses. Further reduction of the size of the sample can reduce

the dimensionality of the material. These properties make thin film spin glass structures

ideal for investigation of the LCD and finite size/dimensionality effects.

As the spin glass thickness decreases, the corresponding magnetic signal becomes

too small to measure with standard susceptometers. This necessitates the fabrication of

multilayers - structures which separate the spin glass layers with buffer layers of

nonmagnetic material of sufficient thickness to prevent coupling between different spin

glass layers.

MULTILAYERED METALLI PIN LASSES

Kenning, et. al. ,71'72 fabricated the first multilayered CuMn structures to

experimentally determine the lower critical dimension (LCD). Details of the fabrication

and characterization of these samples will be given in Chapter 6, as the same techniques

are used in this thesis. Samples were fabricated with spin glass layer thicknesses, W30,

ranging from 1000 nm to 2 nm, with Mn concentrations of 4, 7, l4 and 21 atomic

percent. Interlayers of Cu and Si were studied, with experimental results indicating that

30 nm of Cu and 7 nm of Si are sufficient to prevent interlayer coupling. Measurements

were made in a SQUID susceptometer in magnetic fields of 100 - 200 G and measuring

times of 300-400 seconds. The freezing temperature from these quasi-static
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measurements is extracted from the position of the cusp in the temperature dependent

susceptibility.

Finite Size and Dimensionality Effects on T'

Both finite size and dimensionality effects have been observed in the behavior of

the freezing temperature as a function of layer thickness. Finite size scaling predicts that

the freezing temperature of a sample with spin glass layer thickness Wso (represented by

T,(WSG)) is given by

Tf(oo) - T/(WSG) ~ W82 4.1

1,0»)

 

where x is the inverse of the correlation length exponent, u. Although data over the

entire range of layer thicknesses can be fit to Equation 4-1, finite size scaling should be

valid only in a small region about the bulk value of T,. Fitting the data from all

concentrations to a single exponent results in a value of A = 0.7 :l; 0.05, which implies

a value of u = 1.4 i 0.1. By plotting log “(Wm/)Txoofl vs. longSG], two regimes

are observed, separated at about 20 nm. (Figure 7-4 shows an example of such a plot.)

Based on this observation, and the frequency dependent data which will be discussed in

the next section, Kenning, et. al. chose to use finite size scaling for samples with Wso

2 20 nm, resulting in a value of v = 1.1 :t 0.3. This value can be compared with

other measurements of 1: shown in Appendix B. If the correlation length is defined to

be the sample thickness at which size effects are first noticeable, Kenning, et. al. find
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E = 100 nm. The normalized plot of TKWSG)/T,(oo) vs. layer thickness shows that

concentrations from 4 at. % to 14 at. % all exhibit the same behavior, indicating that

larger concentrations do not display markedly increased ferromagnetic interactions.

One prediction of finite size scaling - a rounding of the divergence - is not seen

in these samples. Sputtered samples may be sufficiently strained so that the cusp is

already broadened beyond the point where rounding might be seen. Alternatively, the

rounding may not be observed because the feature in the susceptibility is a cusp and not

a true divergence.

Below the 20 nm length scale, the data can be analyzed using the Fisher-Huse

prediction for the freezing temperature for small layer thicknesses as given by Equation

3-31. We can write this as

T/(Wso) ., W4 4-2 

where a = (¢3+¢2u203)/(1+v2¢2) and the subscripts on the exponents indicate

dimensionality. Fitting to 2 5 W30 5 20 nm, a value of a = 0.5 i 0.1 is obtained.

An extension of this study to thinner samples and including data for AgMn73 finds a

revised value of a = 0.8, which is in agreement with the requirement from the Fisher-

Huse theory that a 5 ll! 5 2. Stubi, et. al.74 have shown that similar behavior is seen

in AgMn/Ag, AgMn/Cu and CuMn/Ag as is seen in CuMn/Cu, suggesting that these

structures belong to the same universality class.
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Frequency Dependence of the Freezing Temperature

At high temperatures, spin glass susceptibilities obey a Curie law. At some

temperature (as high as 5 T,,”), deviations from this behavior appear as the relaxation

times begin to increase. Below this temperature, the susceptibility is frequency

dependent, and the magnetization exhibits irreversibility and waiting time effects. The

’static’ or equilibrium susceptibility still follows the Curie law, but longer and longer

times are needed to experimentally measure this behavior. The ability to measure the

susceptibility over a wide range of frequencies provides a powerful means of comparison

with theory. We have seen in Chapter 3 that standard phase transition dynamics predict

a critical slowing down of the relaxation times, so that the maximum relaxation time goes

like

 

_ "ZV

, ”of; Te) 4—3

where T, is the freezing temperature measured at frequency w = 1/1m, and T: is the

equilibrium freezing temperature. The Fisher-Huse thermally activated dynamics predicts

that the frequency dependence of the freezing temperature should behave like

_ 4v

111(2) .. (Tf :8) 4-4

to T,
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In the case of two dimensional behavior, Equation 4-4 is modified by setting T, = 0.

Frequency dependent susceptibility measurements with measuring times from 10“ to 10‘

seconds have been made on multilayered CuMn/Cu samples by the group at Uppsala

University”. Zero-Field Cooled (ZFC) measurements were made at measuring fields

of 10 G. As the observation time decreases, (increasing frequency), the location of the

cusp moves towards higher temperatures and broadens in all layer thicknesses; however,

the magnitude of these effects in thick (W$0 = 1000 nm) samples are only about 20%

of the those seen in the thin (WSG = 3 nm) sample. The frequency dependence can be

typified by the quantity k;

”I 4.5k = .1.__

T, d(logmt)

For the 1000 nm film, k has a value of 1/200 at t = l s, in agreement with

measurements of bulk (not sputtered) CuMn films. In the 3 nm film, k was found to be

1/40. This is in qualitative agreement with Monte Carlo simulations on 2D short-range

Ising spin glasses"5 which found k to be approximately 1/20, and 3D simulations",

which predict a value of k = 1/60.

If the dynamic behavior of the films is analyzed in terms of Equation 4-3, the

1000 nm film is fit with 2:: = 9 j; l, and T, = 66 i 0.2 K, where To is 1013”"

seconds. Fitting the 3 nm data to this expression, however, results in a value of

2» = 19, which suggests that standard critical slowing down is not a good description

of the dynamics of thin spin glass layers.
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Fitting the data from the 3 nm sample to Equation 4-4 with a zero T, results in

a value of 11w = 1.6 i 0.2, with To = 10‘3“” seconds. The value of l+¢v is in rough

agreement with the value of 2 found from Monte Carlo simulations75'7". The data may

also be fit to Equation 4-4 with a finite transition temperature. For 0 < T, < 10 K, W

is between 1.1 and 1.6.

These measurements have been extended to samples with WSO from 2 nm to

1000 nm. For W80 5 4 nm, fitting to the activated dynamics with zero freezing

temperature yields a consistent value of W = 1.6 i 0.1. If this fit is continued to

thicker samples, the exponent grows anomalously. Samples with WSG s 50 nm can be

fit to Equation 4-4 with the same exponent of (it: = 1.6 -l_- 0.1. These measurements

have been important in confirming the change in the dimensional character of

multilayered spin glasses as the spin glass layer thickness is reduced.

Other Measurements on Multilayered Spin Glasses

Gavrin, et. al.", have investigated sputtered multilayers of CumMnQog/A1203.

The choice of A1203 as the interlayer material is designed to eliminate concerns about

interfacial alloying, transmission of the RKKY interaction across layers, and to simplify

characterization. WSG ranged from 4 nm to 125 nm, with the A1203 layer having a

constant thickness of 7.5 nm. Sample composition was confirmed by microscopy and

x-ray analysis.

The values of T, from susceptibility measurements were fit to Equation 4-1, with

an exponent of A = 0.64 i 0.07 (v = 1.6) describing the data for all thicknesses. DC



 

measure:

from 10v

vs. thick

8.8 nmt

suscepti‘:

for all s

Values c



65

measurements of nonlinear susceptibility, in which the linear susceptibility is extrapolated

from low field measurements, show distinct differences in the scaling behavior for thin

vs. thick samples. The crossover exponent, 6, is found to be about 7 in thin (6 nm and

8.8 nm) samples, and 4.4 in the bulk. The value of u obtained from the nonlinear

susceptibility measurements is 3.4 in thin samples, and 1.6 in the bulk film. B as 0.9

for all samples. The value of n is 0.5 in thin samples and 0.11 in thick samples. These

values can be compared to values in Appendix B.

Measurement of the nonlinear susceptibility in CuMn/Cu multilayers has been

made by the Uppsala group79 using an ac technique at low fields, and a dc technique

at high fields. The measurements were made on a 2 nm Cuo_87Mno_,3/Cu sputtered

sample, and critical exponents different from those of Gavrin,et. al. were reported. The

extracted exponents were: 7 = 9.3, v = 4.5, d = 0 and n = 0, some of which are quite

different from those found by Gavrin, et. al. Our experience with dc nonlinear

measurements has indicated that the extrapolative determination of the linear

susceptibility is not straightforward, and we would expect the more sensitive ac

measurements of the Uppsala group to be more accurate.

Finite Size Effects in Metallic Films

The anomalous Hall effect, which is a measure of the magnetization of the

impurity spins, has been studied in flash evaporated Auoer,ml and Au0,9,Feo_0, films

varying from 40 nm to 4 nmm‘. The strong spin-orbit coupling in AuFe results in

an anomalous component in the Hall resistivity when an external magnetic field is
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applied. T, is determined from the maximum in the temperature dependent Hall

resistivity. The Hall measurements are made by zero field cooling the sample, then

applying a measuring field between 100 G and 500 G. As the sample thickness

decreases, the freezing temperature decreases, with larger measuring fields broadening

the cusp. The freezing temperatures are fit to Equation 4-1 ,with an exponent of

v = 1.6 i 0.4. A deviation from finite size scaling was seen in films with thicknesses

less than 10 nm, but was not analyzed in terms of possible dimensionality effects.

Effect of Magnetic Field on T, in Metallic Multilayers

Arguments have been made for a DM anisotropy induced crossover from Ising

to Heisenberg-like behavior in bulk spin glasses as the magnetic field strength is changed.

Experimental measurement of the nonlinear susceptibility82 in bulk AgMn and CuMn

has been analyzed using anisotropy as a scaling parameter. Two sets of critical

exponents result, one of which is ascribed to ’Ising like’ behavior and results from low

field measurements, and the other of which is labeled ’Heisenberg’ behavior and is

observed in high fields. Torque measurements made by Campbell, et. al.83 on

AgomMno026 indicate that, for fields between 1 kG and 20 kG, the value of T,(H) does

not change by more than 10%. Similar results are cited for CuMn.

Kenning, et. al.“4 have studied the effect of magnetic field on the freezing

temperature in Cuo,”Mnom/Cu multilayers with Wso from 2 nm to 1000 nm in fields

from 2 G to 15000 G. The behavior in low field is described” by
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where, in both expressions, n = S(S+1), and T,(0) and T,(0) are the Ising and

Heisenberg zero field freezing temperatures. Kenning, et. al. find the behavior for all

W80 to be qualitatively described by these equations, although the prefactor of the Ising

expression differs from the experimental measurement by an order of magnitude. The

depression of T, is more pronounced in the Ising regime (from 2 G to about 500 G) than

in the Heisenberg regime (above 500 G). No dimensionality or finite size corrections

to this behavior are noted, and the crossover field appears to be the same for all W30.

MULTILAYERED SEMIQQNDUQTINQ SPIN GLASSE

Awschalom, et. al.“5 studied the dilute magnetic semiconductor Cd,_,,Mn,,Te, with

x = 0.069 to 0.20. Multilayered structures with CdTe interlayers were grown by

Molecular Beam Epitaxy (MBE) with spin glass layer thicknesses from 8.6 nm to

1.8 nm. X-ray diffraction and low temperature photoluminescence confirmed the layered

structure and concentration. The ac magnetic susceptibility was measured at 97 Hz and

a variety of temperatures. Contrary to the effects seen in metallic multilayers, decreasing
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W80 resulted in a broadening of the susceptibility peak, but no shift to lower

temperatures. The observation of rounding may be due to the low strain in MBE grown

samples, which may explain why this phenomena is not seen in sputtered films.

The interactions in CdMnTe are short ranged, with the nearest neighbor

interaction 5 times that of the next nearest neighbor exchange. This means that there are

a number of isolated single spins and also small clusters of spins which preferentially

interact with each other and not with surrounding spins. At low temperatures, the

paramagnetic clusters result in a l/T divergence of the susceptibility. The rounded

maximum indicates the onset of short range spin glass ordering, and the broadness is due

to the blocking of the establishment of long range order. This is interpreted as proof that

a 2D structure is incapable of supporting spin glass order.

Hysteretic effects were seen in the thinnest samples with the highest

concentration, with the warming susceptibility having a greater magnitude than the

cooling measurements. The hysteretic effects are due to the trapping of the system in

a metastable state; when the system is cooling, the establishment of short range order

creates preferential states. As the temperature continues to decrease, the energy barriers

increase, and the system is trapped. In the lowest concentration (x= 0.07), a l/T

behavior is seen for all thicknesses, which indicates that when the system consists

primarily of small isolated clusters of spins, dimensionality is unimportant.
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TW -DIMENSI NAL P LA

Dekker, et. al.87 have investigated the behavior of the two dimensional Ising spin

glass Rb2Cu,-,,CoxF4, with x = 0.22. AC susceptibility measurements over 15 decades

of time show frequency dependent behavior beginning as high as 2 T,, with an extremely

broad distribution of relaxation times. Fits to Equation 4-3 result in a value of zu = 15.

The activated dynamics of Fisher-Huse given by equation 4-4 with T, = 0, as

appropriate to a true two dimensional system, find (in; = 2.2 i 0.2 and

To = (2il) x 10'”. Use of the same equation with a finite T, resulted in a worse fit.

Ageing phenomena seen in this material88 are found to be qualitatively different than

those seen in 3D.

THE CURRENT PICTURE QFDINIENSIQNALITY AND FINITE SIZE EFFEQIS

IN MULTILAYERED SPIN GLASSES

Based on the static and the dynamic measurements, we have the following picture

of dimensionality crossover and finite size effects in multilayered spin glasses. For

20 nm 5 W86 5 1000 nm, deviations from bulk behavior in the static and dynamic

measurement of T, can be analyzed in terms of finite size effects. The correlation length

exponent, v, has a value of 1.1 i 0.3 when fit to samples in this thickness regime.

For thin samples, the behavior of the freezing temperature is described by the

activated scaling of Fisher-Huse, as given by Equation 4-4 and its zero freezing

temperature modification. Frequency dependent susceptibility measurements over 8
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decades in time show that T, = 0 for W30 5 5 nm, and provide convincing arguments

for two dimensional behavior. In the intermediate regime (5 nm 5 W86 5 20 nm), we

find a crossover behavior described by Equation 4-4 with a finite T,.

The freezing temperature is observed to increase with increasing frequency, and

decrease with increasing magnetic field; the former effect has been shown to

demonstrate dimensionality dependence, while the latter has not.
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CHAPTER FIVE

ESR IN SPIN GLASSES

NTRODUCTION

This chapter is divided into three parts: the first part extends the basic theory of

SR given in Chapter 2 to the ESR of magnetic moments in metals. The second part

immarizes the experimental situation of ESR in spin glasses and other magnetically

rdered materials. Of special interest are results of linewidth and peak position studies

f ferro- and antiferro- magnets, as many of these materials behave in an analogous

tanner to spin glasses. The ESR of one and two dimensional ferro- and antiferro-

tagnets is discussed. The third section looks at theoretical explanations specifically

.ilored to ESR in spin glasses. Having provided the necessary background, Chapter

ive concludes with the motivation and goals of this experiment.

eneral Behavior

In spin glasses, the linewidth as a function of temperature, AH(T), has two trends,

)th of which are also seen in other materials. At high temperatures, the linewidth is

near in temperature and described by

71
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[AHU'HM = A + BT 5-la

As the freezing temperature is approached from above, the linewidth diverges as

a power law in the reduced temperature, t, with a characteristic exponent, x

T

[AH(T)]“ = c (Iii) 5-1b

f

The standard equation used in the analysis of ESR data above T, is therefore

 

T- r -s

AH(T) =A + BT +0[ T f] 5-2

f

ESR IN SPIN GLASSES: THEOR,_Y

This section begins with a theoretical explanation of the linear behavior common

to localized moments in metallic hosts, and is followed by a summary of the approaches

which have been used to explain the behavior near the ordering temperature in

ferromagnets, antiferromagnets, and spin glasses.
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ESR of Localized Moments in Metallic Hosts

The major applications of ESR in metals are; 1) determination of spectroscopic

states of ions in various hosts, 2) determination of relaxation times, 3) information about

the exchange interaction between localized moments, and 4) studying long and short

range magnetic order. The two measurable quantities we will be interested in are the

resonance peak position, H0 (related to the inverse of the effective g value) and the

linewidth, AH. Measurement of the g value provides information about the spectroscopic

state of the ion and the energy scale of the resonance, and measurement of the linewidth

provides information about relaxation phenomena.

The first experimental report of the ESR of localized moments in metallic hosts

was made by Owen, et. al.89 in 1956 in Moanom, where M is Cu, Ag or Mg. Mn“

impurities in non-metallic hosts show six separate resonance lines. Owen, et. al.

observed a much wider single line, with no fine or hyperfine structure, centered around

g = 2. As the temperature was reduced, the linewidth broadened, and the position of

the resonance peak shifted to lower fields. At the time, spin glasses had not been

identified as such, and the divergent behavior was explained in terms of

antiferromagnetic interactions.

ESR Equations for Transition Ion-Metal Systems

In the ESR of transition ions in metals, two spin components must be considered;

the conduction electrons, which are denoted here by a subscript ’e’, and the ions, denoted
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by the subscript ’i’ . Consider first an assembly of conduction electrons and ions in the

approximation of immediate relaxation and far from any critical point. Taking all ions

to be equivalent (and all electrons to be equivalent), a simple relation exists between the

average magnetization and the effective field, so that we can write the static

magnetization of the ions and of the conduction electrons per ion (or per electron) as

Hi 5 xtHo = X?(Ho + All?) 5-3a

H, 5 1,17. = X201 + Afir) 5-3b

where A is the molecular field coefficient, given by

A = ____l2(31(Rq) 5-4

2

8; 8. Fe

and the susceptibilities of the ions and electrons are given by

0 S 3+1

x, = (any 4,7,3 S-Sa

x2 - gamma) 5-5b

where p(E,,) is the density of states at the Fermi surface.
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Relaxation Rates

The relaxation processes in the ESR of localized moments in metals are governed

by the presence of three distinct components; the lattice, the ions and the conduction

electrons. In Chapter Two, we considered only one type of spin which could interact

with other spins of its own type and with the lattice. In the ESR of transition ions in

metals, there are four relaxation processes. The conduction electrons and the localized

spins can each relax to the lattice, with characteristic relaxation times T,,, and TiL

respectively. In addition, the conduction electrons and the localized moments can cross-

relax (with times T,, and T,,). T,,, the Korringa relaxation time, is a measure of how

quickly the spins of the localized moments relax to the conduction electrons. T,,, the

Overhauser rate is a measure of the reverse process. The Korringa and Overhauser rates

can be calculated by using a rate equation approach.

1 4 1t 2

7}, , (pl)

1 8
— = —rtcS 5+1 12 5-6bT“ 3, ( )p

where J is the exchange coefficient and c is the concentration of magnetic ions.

Figure 5-1 schematically illustrates the relaxatidn paths available to these systems.

T,, and Tci are the relaxation times between the ion and the conduction electrons, and TcL
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and TiL are the relaxation times between the spins and the lattice. TiL is very long

compared to the other times.
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Figure 5-1: Available relaxation pathsfor transition ion-metal systems

We can identify three regimes: in the first two regimes, we can treat the

electrons as if they were in static thermal equilibrium. If the electrons relax rapidly to

the lattice (isothermal approximation), the linewidth is determined by the ion-electron

relaxation rate, l/Tg. In the adiabatic regime, the electron magnetization doesn’t

respond rapidly enough to follow the rf field, so that the resonance width is determined

3y the relative values of T,,, and T,,. In these two regions, we can replace the conduction
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electron spin and number operators by their expectation values. This leaves us with an

equation of motion for the ionic magnetization.

as?

7?! = 3,11,57,41? + A”) = 81% (1 +Axe)M,xH 5.7

which introduces an effective g factor,

5-8
s = g..(1 + Ax.) = 3.0 + Ax? + A’xi’x.)

The first two terms are temperature and concentration independent, while the last

is proportional to concentration and inversely proportional to temperature. The g-shift

due to the second term is called the Knight shift and is observed for many metals with

Eu“, Gd“, and non—S state ions. In the adiabatic regime, both the first and second

order (in A) g-shifts are seen, while in the isothermal regime, the second order shift is

not observed. The linewidth is given by

AH~ =—1—+—l—1——6-]EA+BT 5-9
T,, T,, T

_1_

Tel?

where A is the linewidth at T = 0, called the residual linewidth, and B is the thermal

broadening coefficient. In theory, l/TiL is the residual (T = 0) linewidth, although in

practice, there may be other contributions to this quantity. The presence of the (l-0/T)

term is due to assumption of a Curie-Weiss behavior of the susceptibility. Note that this

expression results in a concentration independent value for B. If we cannot treat the
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electrons as being in thermal equilibrium, then T6L becomes important. If the electrons

cannot transfer energy to the lattice fast enough, the system is ’bottlenecked’ , and neither

of the shifts in equation 5-8 are observed.

Physically, we can explain the bottleneck as follows: the impurity spins want to

maintain equilibrium with the lattice, and there are two routes to do this; relaxation

directly to the lattice, and relaxation via the conduction electrons. We expect that the

relaxation of the spins directly to the lattice would be slow compared to the relaxation

of spins to the conduction electrons. If the conduction electrons can transfer their energy

to the lattice fast enough, the linewidth will be dominated by how fast the localized spins

can transfer energy to the conduction electrons (l/Tk). If the relative relaxation rates

between the spin systems are such that the conduction electrons can transfer energy back

to the localized moments faster than they can transfer energy to the lattice, energy can

become trapped between the conduction electrons and the moments, which results in a

bottleneck. The linewidth will be due to both sets of spins, as they are locked together.

In general, a bottlenecked system will not display a g-shift, so that the observed g value

will be close to that of the conduction electrons.

lHasegawa90 modified the Bloch equations to include the cross relaxation between

the elements in the system, resulting in the Bloch-Hasegawa equations.

d”. _ 1 1 g. 1 540
7 - gills”: X (H + AM.) ’ ("T—+3.2) 55?: + g-T—dbfi‘ a
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am?
. = mm, x (mm) - _1- + _L m, + film, slob

dt T,, Ta. 3‘ T“

Various approximations are made to solve this system of equations. In the

isothermal regime, (1/Td) is very large and the electrons relax quickly. If (gi/g,) is very

large, we recover the adiabatic regime. In the strongly bottlenecked limit, gi ~ go and

T11. 22 TcL, with the rates of relaxation to the lattice both small, the equation of motion

may be written

 

d A? +1?
_(___.___.2 .. guamnmx g - 1501.11.19 5-11

dt T

where

g = ggxg + 81x] 5_12

x; X}

and

_1_,o .. LXO‘
1 _ I", ‘ Ta ‘ 5-13

Td x: + xi

In general, the host susceptibility is much smaller than that of the magnetic ions

(x," > x,"), the ion g factor is equal to the effective electron g-factor, and we find that

the effective relaxation rate (and hence the linewidth) goes like
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+l._1_ _1- .1. _

T Til. Tel. TIL Tel. ie:
2
e
r

+ T“ [7:] a A+BT 5-14

where B is inversely proportional to the concentration of magnetic ions. This is similar

to Equation 5-9, which describes the behavior in the adiabatic and isothermal regimes,

but is different in that the bottlenecked expression is concentration dependent. The

g value, indicated by the position of the resonance peak, should be constant. In real

systems, some combination of bottlenecked and isothermal/adiabatic behavior is expected.

In more detailed calculations, the Bloch-Hasegawa equations can be modified to

account for the motion of the conduction electrons throughout the sample, hyperfine, and

fine structure splitting.

Residual Width and Thermal Broadening

The nonzero value of the residual width at low concentrations is attributed to local

internal field effects (such as the presence of anisotropy) and not to relaxation effects,

although these effects are included in the ion-lattice relaxation rate. From Equation 5-14,

we can write the residual width in field units as
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A = 7‘ 5-15a

g “3 Tu.

 

and the thermal broadening coefficient may be written

BT = — be 5—15b

where bK = (1/T,J/T is the unbottlenecked Korringa rate given by Equation 5-6a.

Experimental studies91 correlate the residual width to local strains and structural

properties. Barnes91 suggests that the behavior is due to internal field distributions.

Although the RKKY interaction commutes with the total magnetization and should cause

no additional linewidth, the part of the RKKY interaction transverse to the field is

frequency dependent. This suggests that, if the appropriate limits hold, the transverse

part of the RKKY interaction cannot follow the rf field. The spins are locked into an

aligned configuration, producing an internal field, which results in inhomogeneous

broadening. For S-ion states, random strains should have a fairly negligible effect, since

there is almost no angular momentum in the ground state. Dipole-dipole broadening may

affect the residual width, but this quantity is small in the Mn alloys.

For AgMn with concentrations on the order of a thousand ppm, the residual width

is found to decrease with increasing concentration for concentrations higher than a few

hundred ppm. Concentration and frequency dependence has not been tested in detail,

because magnetic ordering phenomena obscure the linear behavior. When a third
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impurity (Si or Al) is added to CuMn (Mn concentration on the order of 0.1%), the

residual width is roughly proportional to the concentration of the additional impurity.

In general, the residual width would be expected to be positive. Stewart92

explained that A is related to the ”true" residual width, A0, via

A=Ao-—Be 5-16

where B is the same thermal broadening coefficient, and 0 is the Weiss temperature,

which can be measured from high temperature susceptibility measurements. If 0 > 0,

the value of A measured by ESR experiments will be negative.

The Effect of Magnetic Ordering on Linewidth

Line broadening or narrowing is the result of interactions between spins. Specific

mechanisms for the spin glass problem will be discussed in the last section of this

chapter. Linewidths may be broadened homogeneously, or inhomogeneously.

Inhomogeneous broadening is a result of the existence of different Larmor frequencies

throughout the sample. In effect, each of the spins sees a different field, and has a

slightly different resonance frequency. This results in a distribution of individual lines

merged into one overall line or envelope, but with no change in the lifetimes of the

states. Inhomogeneous broadening may be due to experimental artifacts, such as poor

homogeneity of the magnetic fields across the sample, or unresolved fine or hyperfine
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structure. The linewidth may also be inhomogeneously broadened due to inhomogeneity

or irregularities in the sample.

The width of a homogeneously broadened line is entirely due to processes which

change the lifetime of the states between which the transition takes place. This may be

due to; l) dipolar interaction between like spins, 2) spin-lattice interaction, 3) interactions

with the radiation field, 4) diffusion of excitations throughout the sample, or

5) motionally narrowing fluctuations in the local field, such those due to as exchange

interactions. Two of these interactions will be important to the problem at hand: the

dipolar interaction, and the phenomenon of exchange narrowing.

In the case of dipole-dipole interaction between spins of different types, random

local fields are set up at each spin site. The interaction between a pair of spins depends

on the distance between them and their orientations. The dipolar field displaces the

resonance line from that of a single ion by an amount which depends on the strength of

the interaction. The greater the number of pairs with a given interaction strength, the

greater the net intensity of the interaction and the further the shift. As we look at more

distant ions, the interaction will diminish in size as the separation between the spins

increases, but there are more spins with which to pair at larger distances. The resonance

lines which are displaced a small amount from their single ion position are due to strong

interactions with a small number of other spins, and so the intensity of these lines is

greater. Lines which are displaced by a large amount are a result of interaction with a

larger number of spins at a greater distances, and will be less intense. The line profile
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should then reflect the distribution of the dipolar fields, with a width on the order of

traff-

If the interaction is between like spins, the field is homogeneously broadened.

The precessing components of one magnetic dipole set up an oscillatory field at another

dipole, which (because all the spins have the same Larmor frequency) is at the precise

frequency to cause resonance transitions, and vice-versa. These transitions are equivalent

to the exchange of quanta between the spins, and gives an additional broadening which

is homogeneous in nature, as the lifetime of the individual ion in a given quantum state

is shortened.

The other important mechanism is the exchange interaction, which we can think

about simply by considering a two level-two spin system. For antiferromagnets, the

antiparallel state is lowest in energy; however, the one up, one down state (I t l)) is not

an eigenstate of the exchange Hamiltonian. The eigenstate is a linear combination of

l t l) with | l t), which results in the system oscillating between the two states at the

exchange frequency, J/h. When the exchange energy is large compared to other

energies, the orientation of the spins is being changed at a rate of order J/h, which

causes a fluctuation in the local dipolar field at a similar rate. The fluctuations cause the

dipolar broadening to be less effective. This phenomena results is a line which is

narrowed near the center and broadened at the wings, and is called exchange narrowing.
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Lineshape, Correlation Functions and the Relaxation Rate

The formalism used to describe the behavior of ESR lines in the presence of spin-

spin interactions near a critical point has been developed by Kubo, Mori, Kawasaki and

Tomita93'94’95’96'97. We are interested in the linear response of a system (the spins)

to a perturbation (the magnetic field).

The fluctuation-dissipation theorem links a spectral density function with a time

correlation function; alternatively, it may be thought of as describing the relationship

between the response of a driven system and the correlations in its equilibrium

fluctuations.

J(w) = f<A'(r)B(0)> em dt 5-17

where J is the spectral density distribution, and <A(t) B(O)> is a time correlation

function which measures the fluctuations of the system in response to the applied driving

force. In the case of ESR, the spectral density distribution is the power absorbed as a

function of frequency (or field) - which is the lineshape and will be denoted by I(w). The

response function will be the correlation function of the random forces which result from

spin-spin interactions.

The Bloch equations with an rf field are the same as the equation of motion for

a damped oscillator. The oscillator has natural frequency we, which is modified by the
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driving force in a random way, with this randomness broadening the lineshape. The

frequency of the oscillator may be written

w(t) = too + wl(t) 5-18

where w,(t) represents the random fluctuations in frequency, with a time average of zero.

In the ESR experiment, w(t) = 7H(t), where H(t) contains the static and rotating rf

fields. The equation of motion of the magnetization is

5-19
 

’ ' (0M= to)
dt x

We are interested in an ensemble average of M,. Assuming that we can replace the time

averages with ensemble averages, we can integrate Equation 5-19.

I

<M,(r)> = Mac) cw < exp(if01(t') dt’)> 5-20

o

¢(t), the relaxation function of the oscillator, is

t

¢(t) = exp [if (910’) dt’] 5-21

0

so that we can write
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<M.<r>M.ror> = IM.(0) 12 e""'°‘<r>(r) 5-22

which links the expectation of the magnetization to the relaxation function. By the

fluctuation-dissipation theorem, Equation 5-17, we can write the resonance absorption

spectrum, 1(w-w0) as

1(0) - ”0) = fifemwwomdt 5-23

where this expression has been normalized to 1. This equation represents an absorption

centered at (.00 which is broadened by the random modulation wl. We can define two

characteristic parameters of the broadening; The amplitude of modulation, A, is given

by the average of the square of the modulation process, < (0,2 > . Using the central limit

theorem, we can write the modulation in terms of a Gaussian,

A2 = f(w-wo)21(m-wo)dm 5-24

The correlation time, 1,, is defined

1:, = film) d: 5.25

o

where the correlation function of the modulation, II/(t), is given by
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W) = 31-2-(w,(r) w,(t+r)) 5-26

¢(t) measures how much the modulation at time t+1' is influenced by the value of the

modulation at some earlier time t; if Mt) is 0, there is no correlation. r, corresponds to

the time after which the correlation function is reduced to less than one half the initial

value -- this tells us how fast the effects of the perturbation vanish after the perturbation

is removed.

If r, is large compared with l/A (slow modulation), the intensity distribution will

directly reflect the distribution of the modulation. The width of the lineshape will be

about A. If r, is small (fast modulation), a disturbance will not last for a significant

time, so that fluctuations are smoothed out, and the resonance line will be sharper around

the center. In the limit Are a O, the line will be Lorentzian, and the half-width will be

on the order of A27, (which is less than the corresponding linewidth for the Gaussian).

T > 1, for most times, so the Lorentzian behavior will be most significant near t = 0,

and the line will be Gaussian in the wings.

In the ESR spectra of magnetic solids, the slow dipolar interactions broaden the

lines, resulting in a Gaussian shape, while the exchange interactions - if large enough -

narrow the line. The speeds of the respective modulations are about 108 - 109 Hz for the

dipolar interaction, and an order of magnitude faster for the exchange interaction, so that

the exchange narrowing condition is fulfilled in most cases.

In the limit of rapid exchange modulation;
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<exp[if w1(t’)d:/] > ~ exp[-f(t - 1:) (0)1(1) 091(0) )dt] 5-27

0 o

and the Kubo-Tomita formula results:

5-28

 

W) .. exp[-f<w.(r> w,(0)>dr
0

We recognize the brackets as being proportional to the correlation function of the

modulation. In this limit, the relaxation function decays exponentially;

¢(t) ~ exp(-t/I‘), where I‘ is a complex value related to the linewidth and lineshift.

Including all of the constants,

r = l [exp“‘°°‘ «91(1) w,(0)> dt 5-29

X o

where X is the static susceptibility. The linewidth is given by the real part of I‘, and 1le

times the imaginary part gives the shift in the resonance position. This equation may

also be derived from a Green’s function solution of the equation of motion, where l‘ is

the self energy. In general, Equation 5-29 will apply if

I I

((01(m1(0)) = (1H (r>.M.(0)1 [M-(0).H (0)1) “0

<M.(0)M_(0)>
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where H’ is a perturbation Hamiltonian, and the time dependence of the perturbation

Hamiltonian is accounted for by an interaction representation approach. The important

point about this equation is not its complexity, but rather that it contains a four spin

correlation function, as does the relaxation function of the modulation.

In exchange narrowed dipolar broadening, the strength of the exchange is greater

than the dipolar strength, so we can treat the Hamiltonian, H, as the unperturbed

Hamiltonian, HZeeman + Hacmc, plus a perturbation H’ = Hmm. We can redefine the

relaxation function to remove the faster Zeeman and exchange frequencies, and focus on

the slower dipolar effect. Evaluating the correlation function for the dipolar case,

Mt) = '12 22 p5! m“ 35:11:) 5-31
1h M an

where M is the change in the total Zeeman quantum number (M=O,:l, or $2), the

F01”) the angular dependence from the dipolar functions, and the Si M(er) is a four spin

time correlation function.

55;: = <S.-..(t)5,,(t)S,,,(0)s,,(0)>
5-32

where the greek indices are 2, + or -, and the i,j,k,l label the spin sites. This function

measures the probability that, at time 1, the spin value on site i is a, and the spin value

on site j is 6, given that the spins on sites k and 1 had values 5 and 'y at time = O. This

four spin correlation function must be decoupled in order to find expressions which can

be compared with the experimental measurements. Given the number of combinations
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of spins which must be considered, this is not a simple calculation, and usually must be

tailored to the system in question. In cases away from the critical point, the four-spin

correlation function can be decoupled into products of two spin or one spin correlation

functions. This is the starting point of the analysis which will be used in the latter part

of this chapter.

Dimensionality Effects on ESR Linewidth and Lineshape

The magnetic dimensionality of a sample is not necessarily the same as the spatial

dimensionality. Magnetic dimensionality will depend on the lattice structure, but also

on the strengths and the ranges of the interactions. The characteristic time for decay of

the spin correlation function, 1,0, in three dimensions, is proportional to h/J . Propagation

of disturbances in one dimension is much more difficult than in three dimensions, as

there are fewer relaxation pathways available. In lower dimensions, long time behavior

of the relaxation function will be dominant. Experimentally, the decay of ¢(t) is

determined to be Gaussian for short times, but diffusive (approximately t“ ) for long

times. The dimensionality dependence is a result of the diffusive nature of the motion

of the disturbances.

The expression for the characteristic time contains an integral over the correlation

function, with the correlation function diverging like t"2 for 1D and like ln(t) in 2D. One

of the experimentally observed effects is a significantly different lineshape, which falls

somewhere between Gaussian and Lorentzian. The shape of one dimensional lines is

close to Lorentzian in the center, but decreases more rapidly. The slow decay of the
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correlation in a one dimensional system does not allow the system to reach the fast

exchange regime typical of Lorentzian lines, but leaves the system in an intermediate

state. Short time phenomena are generally dependent on the number of nearest neighbors

coupled by the interaction, while the long time phenomena are most dependent on the

availability of paths for the disturbance. The one dimensional lineshape is predicted to

be the Fourier transform of exp(-t3’2), and the angular and temperature dependences

should also be different from that of the three dimensional prediction.

Observation of the different lineshapes and angular dependence of lower

dimensionality materials is not straightforward. The differences are much greater in one

dimensional materials than in two, with most two dimensional materials having a

lineshape indistinguishable from a Lorentzian. The appearance of a Lorentzian lineshape

in one and two dimensional materials is due to the fact that only a very weak interchain

or interplanar coupling is needed to create paths for propagation of a disturbance, thus

simulating three dimensional behavior”. The same reasons are responsible for the onset

of divergent behavior seen in one and two dimensional materials which should not

support magnetic order. In many cases, the deviations from Lorentzian behavior are so

small that they can only be seen in single-crystal precision experiments specifically

geared to sensitive observation of the lineshape.

EXPERINIENTAL EEULTS

This section focuses on the experimental investigation of spin glasses in the

regime above and approaching T,, and presents the two models used to understand these
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results. The same general behavior of the linewidth and shift is seen in a wide variety

of spin glasses; we will see that many ferro- and antiferro- magnets share the same

characteristics as spin glasses. Representative data from long range ordered magnets, as

well as data from low dimensional magnets will be reviewed for its pertinence to the

present problem.

Metallic Spin Glasses

Cub/Ln

The first ESR investigations of spin glasses were performed by Owen”, and

Griffiths99 on CuMn. The anomalous behavior of the linewidth and shift were discussed

in the beginning of this chapter.

Salamon and Hermann100 found the same behavior - a divergent linewidth and

a shift of the resonance to lower fields - in Cuo_—,5Mn0_25, attributing the divergence of the

linewidth to the critical nature of the dynamics of the spin glass phase in support of a

phase transition at T,. Critical slowing down of the relaxation time as T, is approached

lessens the effectiveness of the exchange narrowing of the dipolar broadening causes the

linewidth to diverge, as is also seen in insulating antiferromagnets“.

Starting from the Equation 5-29, the random forces are roughly approximated by

writing <w,(t),w,(0)> = of, the dipolar frequency, for times between 0 and 76"”.

The relaxation rate and the fractional g-shift are given by
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2
w t4 , Ag = _l_ (I): 1: 5-331

T x e 2x

 

or, relating these quantities to the linewidth and resonance shift in field units;

AH = i— ofite (H - Ho) = immite 5-34

893 8'43

where x is the static susceptibility, did is the dipolar frequency = gzaazlhv and v is the

volume per spin. 1, is the characteristic spin-spin relaxation time, and is equal to the

inverse of the exchange frequency, «1,. The expression for the line shift in Equation 5-34

is a low frequency approximation. We can combine the equations in 5-33 to find an

expression for the relaxation rate in terms of the shift and the linewidth.

i .__ _S_ 2 5-35

re

By plotting the relaxation rate as a function of temperature, Salamon showed that

the effective relaxation rate goes like the t". A more detailed analysis of data for

CuosnMan103 found the same behavior with exponent -l.3. This is compared to a

mflan-field calculation of Kinzel and Fischer‘o‘, which predicts that the relaxation rate

Should diverge as t‘2. The fit of the relaxation rate did not take the contribution from the

linear behavior at high temperatures into account, which may have influenced the value

Obtained for the exponent. Deviations from the power law behavior are seen near T,.
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Both the shift and the excess width are related to the four spin correlation

function, so we can derive a relationship between them.

 

.. [Hf ”(8 ”’18 5-36

where H(g =2) is the value of the resonance peak position corresponding to a

g-value of 2, and E is predicted to be twice the exponent governing the linewidth

divergence. Experimentally, this relationship is difficult to test, because of the small

temperature range over which both Ho significantly differs from the high temperature

value and the power law behavior still holds.

Most of the ESR work in metallic spin glasses above Tf has been performed on

Ag,,XMn,, in part due to the lack of chemical clustering and the ease of sample

preparation. Mozurkewich, et. al. "’5 proposed that the dominant mechanism for

broadening in metallic spin glasses is the DM anisotropy and not the dipolar interaction.

To test this theory, a spin orbit scatterer, Sb, at a concentration y (in at. %) was added

to some of the AgMn samples, so that the study considered Ag,_an,Sby with x from

.026 to .10 and y from 0.06 to 0.57. Measurements were made over a frequency range

from 1 to 9 GHz. These measurements and the subsequent analysis have the most

relevance to our experiment, so they will be reported in more detail.
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AH(T) in both the AgMn and the AgMnSb samples exhibited the behavior

characterized by Equation 5-2, with the parameters obtained from fitting shown in Table

5-1. The residual width, A, increases linearly with y and decreases linearly with x. The

thermal broadening, B, increases linearly with increasing Sb concentration, with the rate

of increase largest in the smaller Mn concentrations. This behavior is due to the

lessening of the bottleneck due to the introduction of another relaxation path.

The divergence strength, C, increases linearly with increasing Sb concentration,

with the strong dependence on Sb concentration precluding dipole-dipole interaction as

the major source of line breadth near T,. Calculations using a DM anisotropy106 as

the primary broadening mechanism predict a linear dependence of the excess linewidth

on both x and y. The linear dependence on y is observed, but a weaker than linear

dependence on x is seen, which is attributed to the same effects responsible for the

sublinear dependence of Tf on x. The possibility of chemical clustering at the higher

concentrations is also noted.

The values of the exponent it all lie between 1.2 and 1.8, with the values for the

undoped AgMn being roughly concentration independent and ranging from 1.2 to 1.4.

The addition of Sb tends to increase the exponent from 1.3 at small concentrations to 1.8
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Table 5-1 .' Parameters describing the dependence ofAH(T) on Mn and

Sb concentration in Ag,_,Mn,Sb, from Mozurkewich, et. al.”.

 

‘ y<at%> 1:.;:B<crr<>j:  ":i1:..c.<c>:;z
 

2.48 21 1.4

 

 

0.06 2.75 24 1.3

 

0.17 9.79 3.15 24 1.6

 

 

0.22 9.65 3.29 30 1.5

 

0.46 9.10 16 4.35 43 1.8

 

2.6 0.57 8.67 32 4.60 48 l.8

 

5.8 19.28 —43 2.53 34 1.2

 

7.8 24.56 2.67 37 1.4

 

10.3   31.43   2.68  40  1.4   



98

at the largest concentrations. This is attributed to depression of the range dependence

of the exchange coupling by the spin orbit scatterers. Departure from power law

behavior is observed as the freezing temperature is approached, with the departure

occurring at higher reduced temperatures for higher frequencies and lower

concentrations.

At high temperatures, the resonance peak position is found at g z 2. As TeTf,

the line shifts to lower fields, with the shift being much stronger for lower frequencies

than for higher ones. The shift cannot be properly described as a pure g-value shift, nor

as a simple, frequency independent internal field. The magnitude of the low frequency

shift is insensitive to Mn concentration (at any given reduced temperature), but shifts

more strongly with increasing Sb concentration. The behavior of the shift with Sb

concentration is correlated to the behavior of the linewidth with Sb concentration,

indicating that they arise from the same mechanism. From equation 5-34, at low

frequencies, the resonance peak position should diverge as the reduced temperature to

a power twice that of the linewidth divergence. As already mentioned, this is

experimentally difficult to verify, because the resonance peak position is different from

the high temperature value only over a small temperature region before the line becomes

too broad to accurately measure. The strong Sb dependence of the data reported by

Mozurkewich,et. al. , indicates that the dominant linewidth mechanism is an exchange

narrowed anisotropy, and not the previously predicted exchange narrowed dipolar

broadening.

Wu, et. al. “’7 have measured frequency dependence of the linewidth and shift

in Ag,,,Mn, (x=2.6 at.%) at frequencies from 1 and 10 GHz. The critical part of the
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spin-spin relaxation rate is calculated using the DM anisotropy instead of the dipolar

interaction as the broadening mechanism. Critical scaling in both field and frequency are

(separately) applied, and critical exponents extracted. For frequency scaling, the

linewidth is written

(1311)“ = Ct" GUM) where 1: = tot‘" 5-37

and uz is found to be 2.5 -__l- 0.3. Field scaling results in an expression for the excess

linewidth

m _

(AH)"‘ = Ct"“G(Hr) where 1: = Tot 2 5 38

which yields a value of (B + 7)/2 = 2.5 i 0.3. The crossover exponent,

<15 = B + "y = 5.0 i 0.5. These values can be compared with other measured and

theoretically calculated values shown in Appendix B.

An interesting sidenote to this analysis is that one freezing temperature is used in

the scaling for all frequencies, which the authors claim determines a unique (to about

10%) T,, good for all fields and frequencies. In this field regime, the Gabay-Toulouse

line predicts a constant value of T,, so Wu, et.al. interpret Tf as the GT transition

temperature.

Baberschke, et. al.108 and Mahdjour, et. al. “’9 noted that the magnetization,

and not the temperature is the variable occurring in the Bloch-Hasegawa equations, and

plotted the linewidth as a function of susceptibility, where the susceptibility is measured
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at a magnetic field equal to the resonance peak position. As Tf is approached, the

magnetization becomes highly nonlinear, departing from its usual Curie—Weiss

temperature dependence. This departure is larger for larger applied magnetic field

(corresponding to larger ESR frequencies), which they cite as the reason why ’frequency

dependence’ is observed. By plotting AH(T) vs. x, all frequency dependence is removed,

which indicates that this is a field and not a time window effect. The excess part of the

linewidth can be analyzed in terms of a power law in x,/Hz, where X. is the nonlinear

susceptibility, and the scaling holds for all frequencies and for reduced temperatures

down to T,. A similar analysis has been applied to (LaGd)A12”°r‘“.

Other Spin Glam

EULSILXE

EuxSrHS is a Heisenberg system, with cubic NaCl structure. The compound can,

depending on concentration, be paramagnetic, ferromagnetic, or a spin glass. The

nearest neighbor interaction is ferromagnetic, and the next nearest neighbor is

antiferromagnetic, with long range magnetic dipolar interactions the sole source of

broadening. The non-metallic nature of this system precludes the bottlenecked behavior;

the linewidth is temperature independent until magnetic correlations start to cause

broadeningm. The same type of frequency dependence (a weakening of the divergence

with increasing frequency) is observed”. Dynamic scaling has been used to explain

the frequency dependence of the linewidth”.
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In concentrated metallic spin glasses, direct exchange, and not the long range

RKKY interaction dominates. Hou, et. al. “5"“ analyzed this behavior in FegNiano,

and FewN17°F”, finding that these materials behaved similarly to the materials mentioned

above.

Park, et. al.117’m, studied amorphous Fe,Niw,P,4B, and sputtered Mn..,B,2

films. Contrary to results found in dilute metallic spin glasses, the linewidth does not

diverge strongly. As T, is approached, the linewidth becomes very broad, but remains

measurable through the freezing temperature. As the temperature is lowered below T,,

the linewidth decreases and finally disappears. The divergent behavior above T, is fit to

a phenomenological expression,

= stern-Ir

where n is either 1 or 0. Frequency effects similar to those seen in the other spin glasses

are seen, but there appears to be a ’resonant frequency’ , for which the rise in linewidth

is faster than either higher or lower frequencies. This resonant frequency is about 3 GHz

for the Fe compound, and 4 GHz for the Mn compound. In contrast to the dilute

metallic spin glasses, the ESR linewidth shows no history dependence on the cooling field

for fields up to at least 17 k6. In the Fe series, increasing the iron concentration

decreases the strength of the divergence and increases the breadth of the minimum in
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AH(T). Bhagat, et. al. ”9 have shown that Equation 5-39 can be used to fit data from

both concentrated and dilute metallic spin glasses.

Malozemoff and Jamet120 studied amorphous Gdo.37Alo,3 films sputtered onto

Kapton. The linewidth is fit to a power law with exponent between 1.5 and 2.

Frequency dependent measurements reveal a flattening of the divergence with increasing

frequency. Exchange narrowing is predicted to account for the linewidth at temperatures

above T,; near the freezing transition, where a departure from the power law behavior

is observed, a local field model based on the presence of ferromagnetic clusters is

suggested.

Misc, Spin gilasses

l. ‘2‘, found divergent behavior in the insulating spinel solidFiorani, et. a

solution CdIn2,,,Cr,S4 for x between 0.6 and 1.7. The spin glass mechanism is

preferential occupation of the octahedral sites of the spinel structure by the Cr, which

gives rise to F and AF bonds. As with the concentrated metallic spin glasses, the

linewidth measurements are insensitive to the magnetic field in which the sample was

cooled. The broadening of the linewidth and the shift in the resonance peak position are

attributed to random internal fields. The value of the linewidth saturates near T,, then

decreases, with an accompanying deviation from a Lorentzian shape well above T,. In
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the region near T,, the lineshape is Gaussian in the center and very narrowed in the

wings. Similar results have been seen in CukCr2,Sn2,2,S4‘22.

Aronson, Salamon and Hauser123 studied the concentrated amorphous spin glass

MnSi, in which the spin relaxation is dominated by random anisotropic fields, with

linewidth and shift results identical to the concentrated metallic spin glasses.

Koche, et. al.124 studied the divergence of the linewidth in pseudobrookite (Fez

TiOS) in a percolation context, modeling the sample as one ’infinite’ cluster of spins

coexisting with smaller finite clusters. The low energy excitations of the infinite cluster

are treated as spin waves, with the finite clusters providing relaxation channels. The DM

interaction links the finite clusters and the infinite cluster. The linewidth can be

satisfactorily fit to an exponential form,

(AH)"‘ = A exp[-l) 5-40

T;

Ferromagnets, Antiferromagnets and Low Dimensionality

The divergence of the ESR linewidth is noted for many -- but not al --

ferromagnets and antiferromagnets. Taylor and Coles‘” identified a series of

intermetallic compounds, including both ferromagnetic and antiferromagnetic materials,

which display the same temperature dependence of the linewidth and the resonance peak

position as seen in the spin glasses. The materials are atomically well ordered, and

include dilute alloys like GdZnn, as well as compounds like GdAl2 and szEu.
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Measurements were made on powdered samples at 9 GHz. At high temperatures, these

materials follow an A+BT behavior, and at some temperature, denoted by T,,, deviation

from the linear behavior in the form of an diverging linewidth is noted.

In the ferromagnetic compounds, T,, is between 1.2 and 1.5 T,, for all compounds

except Cu6Gd, which broadens at about 6Tc. In the antiferromagnets, broadening is also

seen at 1.5 - 2 Tc in most compounds, with the exception of: Cu4Gd (2Tc), EuAl4(4Tc),

GdZn12 (5Tc), and GdZZn,—,(1011). The high temperatures at which broadening occurs is

related to the presence of short range order. The short range order is induced by

anisotropy in the exchange interaction; large enough anisotropies can effectively reduce

the dimensionality of the material.

ZnnMn has a highly anisotropic crystal structure; along the c axis, Mn atoms are

5.1 A apart, with only a single Zn atom between them. Adjacent chains of Mn atoms

are separated by at least 6.6 A, with several Zn atoms in between the Mn. Susceptibility

measurements indicate that chains of Mn along the c axis order first, at a temperature of

about 120 K. This intrachain ordering is ’quasi one dimensional’ and therefore weak,

but strong enough to sustain short range order. Full 3-d ordering is not seen until about

23 Km. ESR measurements show that the g value of the material is equal to 2 at high

temperature, begins to increase at 120 K, and reaches a value of 3 at 4 K. The

broadening at temperatures far above T6 is linked to the onset of the quasi-l-dimensional

(or short range) order. One possible source for a large amount of short range order

occurs when the RKKY interaction favors spin ordering which cannot be maintained due

to the strict periodicity of the lattice. This frustration would result in a fairly extended
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temperature range over which the free energy would be minimized by the existence of

short range order.

In the short range ordered regime, Kawasaki“ used the formalism outlined in the

first part of this chapter and calculated that the linewidths in antiferromagnets could be

described by

AH(T) a (T—TN)""' 5-41

with an exponent of P = 5/3. Experimental values of P range from 0.5 to 1.6,

depending on the material. Seehra and Castner127 measured AH(T) for Man, a

uniaxial antiferromagnet, and found P= 1.17. Burgiel, et. all” found the same

behavior, but with exponent 3/8. Zimmerman, et. al.129 measured P = 0.58 in the

antiferromagnet CuCl2 2HZO. Measurements of MnO and MnS‘m”, found P = 3/4

for both materials.

Seehra”2 measured the frequency dependence of the excess linewidth in MnF2

near the critical temperature. The frequency dependence starts at a reduced temperature

of about 0.15, with higher frequencies producing narrower linewidths. Frequency

dependence is also noted in MnSm. All of the measurements of P cited above, except

Seehra and Caster’s were performed at 35 GHz, which may explain the low values of the

exponents.

As in spin glasses, anisotropy appears to play a very important role in the

presence of a divergence. Although the linewidth of MnF2 - a strongly anisotropic

antiferromagnet - diverges, the cubic antiferromagnets RanF3, KMnF3, and KMn:
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MgF3 show a slight narrowing as TN is approached from above. The role of anisotropy

in the divergent nature of the ESR linewidth was theoretically investigated in

antiferromagnets by Huber‘o‘, and Seehram, in much the same manner as

Mozurkewich, et. al.‘°5 did with AgMn. These theories will be discussed in the last

section of this chapter.

ESR in 1 and 2 Dimensional Materials

Because of the importance of long time relaxation behavior in 1 and 2 dimensional

systems, the dependence of linewidth on temperature should be different. In one

dimension, for exchange narrowed dipolar broadening, the expression corresponding to

Equation 5-34 is

% ~ (032/3 (1.)1/3 5-42

In the canonical linear chain antiferromagnets TMMC ((CH3)4NMnCl3)‘3", and

CsMnCl32HZO‘35, the same divergent behavior of the linewidth is observed; however,

the line broadening begins at much higher temperatures than the resonance shift and the

ordering behavior is dependent on the direction of the sample with respect to the field.

As the temperature decreases, short range order begins to grow, so that small clusters

are formed. These clusters randomly provide local fields, which results in a shift of the

resonance line. Although a one dimensional compound can not support order, the small
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clusters are ordered enough to approximate the behavior seen in the three dimensional

ordered compounds. 1

Other ESR experiments with TMMC have substituted diamagnetic or

paramagnetic impurities, which tend to block or slow down the rate of spin correlations.

Linear chain ferromagnets, such as CHAC [(C,H,,NH3)CuCl3] and CHAB

[(C6H,,NH3)CuBr3] also display the g-shift seen in the antiferromagnets; the linewidth

results were not reported“. The lineshift move towards higher fields for the hard

axes, and towards lower fields for the easy axis.

In magnetically 2-D manganese bromide and manganese chloride salts, AH(T)

also obeys a straight line at high temperatures (due to coupling of the spin system and

the phonon system through the DM anisotropy, and a divergent part which follows

Equation 5-2'37. The exponent is observed to have a value on the order of 2, and a

different angular dependence of the linewidth than three dimensional compounds.

Richards and Salamon138 studied the behavior of the two dimensional

antiferromagnet KzMnF4. The problem is treated within the theory of two dimensional

exchange narrowed dipolar interactions, and the linewidth may be calculated by assuming

a Gaussian form for the short time behavior of the relaxation function, and a diffusive

behavior for long times. Qualitatively, the calculated linewidths predict the same

temperature dependence as that observed. The numerical agreement is not ideal, but

given that the theory has no adjustable parameters, these results are very good evidence

that the exchange narrowed dipolar broadened formalism can distinguish two dimensional

behavior from three dimensional behavior.
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The antiferromagnet KzMncMng4 displays crossover behavior from one to two

dimensions, depending on the Mn concentration. As the Mn sites are diluted with Mg,

the paths for spin diffusion becomes blocked, resulting in one dimensional behavior

indicated by a change in the lineshape. The crossover to one dimension can be

determined within the context of a percolation problem. As the amount of Mn increases,

the lineshape becomes increasingly Lorentzian although, even at c= 1, the line is

significantly non-Lorentzian. The behavior of AH(T) is dependent on the angle between

the normal to the 2D plane and the applied field, with the dependence being more

pronounced for lower concentrations. Although the data was not fit to a theoretical form,

the raw data seems to indicate that the exponent takes on one value for all of the samples

obeying two dimensional behavior, and gradually increases as the Mg concentration

increases.

Walsh, et. al. ‘39 found the same behavior in szMncMghF.” a dilute two

dimensional antiferromagnet which is closely related to the 2D Ising spin glass

Rb2Cu,_xCoxF4. These effects were explained in the context of percolation theory, which

predicts that the linewidth will diverge like T4" in the 2D case. The data do show a

divergence in the samples which are two dimensional, and a much weaker divergence in

the ’one dimensional’ samples, but the predicted power law behavior is not observed.

THEORIES OF ESR 1N SPIN GLASSES

Now that we have looked at the general theory of ESR in localized metallic

moments, and data from spin glasses, ferromagnets and antiferromagnets, we turn to the
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specific theories which have been advanced to explain the behavior of the ESR linewidth

in spin glasses. There are two general approaches. The first theory can be characterized

as a mean field approach, which uses the Mon-Kawasaki treatment of ESR near critical

points. The second approach is a cluster model in which the dominant processes above

T, are the formation of regions of correlated spins. These two theories have a subtle, but

very important difference. The mean field theory assumes that the behavior of the ESR

linewidth is a divergence associated with the phase transition into the spin glass phase.

The correlated cluster model implies that, at temperatures above T,,, but below T,, the

behavior of the ESR linewidth in spin glasses is actually a measure of a paramagnetic

phenomena.

Mean Field ESR Theory

Huber studied the behavior of the linewidth near critical points in

ferromagnets‘”, antiferromagnets”, and AgMn”1 using the Mon-Kawasaki

treatment. The Hamiltonian is taken to include the RKKY exchange interaction and the

DM anisotropy is the broadening mechanism. The Random Phase Approximation used

to decouple the four-spin correlation function emphasizes two spin correlation functions,

which is analogous to considering that single spin flip events are most important. In

ferromagnets, the linewidth is predicted to diverge as x3". In antiferromagnets

(specifically Man), dipolar anisotropy is introduced, with the linewidth is predicted to

diverge as ('T/x)£5’2. Using the relationships between the susceptibility and the

correlation length, and between the correlation length and the reduced temperature, he
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finds that the linewidth should diverge like (T-TN)“, where x is between 1.2 and 1.6.

This lower limit is determined by using the mean field relationship between E and t, and

the upper limit by using the experimentally measured relationship 5 = (f-TN)'2’3. The

accuracy of both expressions decreases as the temperature gets farther from T,,. Critical

slowing down is suggested as the reason for the divergence. The predictions are valid

in the temperature range from TN to 2 TN. Theoretical predictions of the angular

dependence of the linewidth within the framework of this theory have been

experimentally verified‘”.

The broadening of the linewidth as a function of temperature and the eventual

departure from the predicted power law behavior can be qualitatively considered as

follows: When the exchange energy is much larger than the anisotropy and Zeeman

energies, the usual picture of exchange narrowing applies. As the Neel temperature is

approached, the mean free path of an excitation increases due to increasing correlations

between the spins. Cluster formation decreases the frequency of the exchange

modulation, resulting in broadening. At some temperature, the modulation frequency

becomes comparable to the anisotropy frequency or the Larmor frequency, and the

exchange narrowing picture fails. Below the temperature where the exchange frequency

is on the same order as the Larmor frequency, the measuring frequency becomes

important, so that increasing measuring frequency results in a deviation from power law

behavior at a higher reduced temperature.

[.105

Based on the measurements of Mozurkewich, et. a , Levy, Morgan-Pond and

Raghavan‘o" used the Mod-Kawasaki/Kubo-Tomita formalism with a DM anisotropy as
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the broadening mechanism. Configurational averages over the random distributions of

the exchange, DM and dipolar couplings must be made for application to spin glasses.

The four spin correlation function is expanded by expressing it in the basis in

which the RKKY interaction is diagonal. The decoupling is exact for an infinite range

model, but emphasizes single spin flips as being the most important contributions to the

line. A mean field expression for the two spin correlation functions is assumed for the

resulting decoupled expression. The assumptions cause the model to break down near

T,. Morgan-Pond142 estimates that the corrections to the mean field approximations

become important below t = 1/4 in AgMn.

Both the divergence of the linewidth and the shift of the resonance peak position

to lower fields are predicted from this theory, but these quantities are not presented in

a closed analytic form. Their quantitative predictions for AH(T) as a function of

temperature agree remarkably well with the low frequency data, especially considering

that no adjustable parameters are used. Higher frequency data does not match as well

in the region where it differs from the low frequency data, due to the approximations

used in the decoupling procedure. This analysis has been successfully applied to

EuSrS‘43r‘“; it is simpler in this case because the only broadening mechanism is the

dipolar interaction. Agreement with low frequency experiment has been extraordinary,

considering that there are no adjustable parameters.
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The Correlated Cluster Model

Experimental evidence indicates that correlations begin at temperatures far above

T,. Barnes145 adapted and extended the Bloch-Hasewaga treatment of ESR of localized

moments in metals to treat spin glasses. At high temperatures, correlations between

spins can be neglected, and the behavior of the linewidth is explained by the Bloch-

Hasegawa equations. As T, is approached, correlations will become increasingly

important as pair, triples, etc. form. Clusters will form when the correlation between

the spins in the cluster excwds some critical value of J. The Boltzmann factor weighting

causes these clusters to essentially drop out of the thermodynamics of the system.

We now have a four component system consisting of the lattice, the conduction

electrons, correlated clusters, and the uncorrelated ions. A schematic picture of the

system is shown in Figure 5-2.

This results in the introduction of a myriad of additional relaxation times. Tcc and

To, represent the relaxation time of a spin in a correlated cluster to a free spin and vice-

versa. We now have three Bloch-Hasegawa equations; one for the conduction electrons,

one for the correlated clusters, and one for the uncorrelated ions.

We have to consider the conditions under which the correlated spins and the

uncorrelated spins will have a common resonance. The solution for the case of common

resonance requires that an appreciable number of correlated spins are present, which is

satisfied in a temperature regime with an upper limit of a few times T,. The same range

also applies to the bottlenecked case.
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Figure 5-2: Allowed relaxation paths for the correlated cluster model

In Barnes’ original picture, clusters are either ferromagnetic or antiferromagnetic.

If a pair is antiferromagnetically correlated, there is no net magnetization, so the only

effect on the Bloch-Hasegawa equations is a decrease in the concentration of free spins.

If the pair is ferromagnetically coupled, Barnes’ calculation shows that the Korringa rate

(l/T“) decreases by a factor of two, but the Overhauser rate (l/Tw) increases by a factor

of four, which favors bottlenecking.

For both bottlenecked and non-bottlenecked systems, the same high temperature

linear behavior is observed. As the temperature decreases, clusters become more
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important. The thermal broadening and the residual width are found to be dependent on

the degree of short range correlation. As T, is approached, Barnes cites experimental

evidence of the importance of the DM anisotropy and assumes an EA phase transition

to obtain the divergent behavior. Two broadening mechanisms are present; the internal

fields due to the clusters, and a random-effective field due to the DM interaction.

The anisotropy can be accounted for in an effective moment to lattice relaxation time,

T,,. The broadening fields will be narrowed by cross relaxation between the clusters and

the free ions. In particular, the residual width will be proportional to l/T,L, where (using

Equation 5-34),

i ~ <(toa)2> 1:, 5-43

Til.

where r, is the mean relaxation time of the local moments and era is the anisotropy

frequency. This implies that the ESR linewidth is due to the contribution from the local

moments, and not the spins contained in correlated clusters. If an Edwards-Anderson

type phase transition is assumed, 1, ~ t", and

 

T - T -1
AH(T) ~ 7}— .. <(w.)”‘?[ IT ] 5_44

a. f

Barnes91 notes that, since there is little reason to expect measurements to yield mean field

values, the exponent should be used as a parameter. In particular, if the correlation

length goes like t", and the critical relaxation time goes like the correlation length to an
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exponent, gr, we would predict a divergence which goes like t"‘. For antiferromagnets,

the relaxation time goes like 5"”, so the exponent governing the divergence of the

linewidth (it) would be equal to -3/2v.

Barnes offers a conceptual explanation for the frequency dependence of the ESR

linewidth in the bottlenecked system YzGd‘“, which is an antiferromagnet at higher

concentrations, and a spin glass at lower concentrations. The homogeneous relaxation

processes continue all the way down to T=0, so that broadening as the ordering

temperature is approached must be inhomogeneous in nature. The highly correlated

clusters generate an internal field distribution with a small average value, which results

in inhomogeneous broadening. If a system is strongly enough bottlenecked, the

narrowing effect due to cross relaxation will overcome the inhomogeneous broadening.

The strength of the bottleneck is proportional to the root mean square of the Knight shift

(which scales with frequency) and the Korringa rate, so that the bottleneck is more

effective at higher frequencies and explains the deviations from power law behavior as

a function of frequency.

Comparison of the Models

Although these two models predict the same behavior of the linewidth, their

foundations are very different, with the mean field theory attributing the ESR linewidth

divergence and lineshift to spin glass phenomena, and the droplet model attributing these

effects to paramagnetic (uncorrelated) spins. Both models agree that anisotropy is a

significant broadening mechanism in spin glasses, especially near T,.
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The mean field approach does not present a functional form for the divergence,

so there is no obvious relation between it and other exponents. Other calculations have

been performed by Bruinsmam who determined it = vz by averaging the DM

interaction in a scaling context, and by Henley”7 who decoupled the four-spin correlation

functions and found it = uz - 28.

W

The theoretical treatment of the ESR of localized moments in metals indicates that

the linear behavior, AH(T) = A+BT is due to the temperature dependence of competing

relaxation rates. The correlation function formalism which predicts the linewidth and

lineshape in the case of strongly interacting spins has been outlined, with general

comments on how the cooperative behavior of the spins can narrow or broaden the

resonance line. Qualitative differences between ESR in low dimensional materials and

in three dimensions have been noted.

Experimentally, we have seen that the divergent behavior of the ESR linewidth,

along with the accompanying line shift, has been observed in one and two dimensional

antiferromagnets and ferromagnets. Anisotropy appears to be the dominant mechanism

for the behavior of the linewidth near T,, both in spin glasses and in other magnets. The

set of ferro- and antiferro- magnets which display this divergence are all anisotropic, with

the low dimensional materials being the limiting case of strong anisotropy. In lower

dimensional magnets, data taken with the field along the easy axis exhibits the standard

shift of the resonance field to lower fields; data taken with the fields along a hard axis
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shifts to high fields. Measurement of the linewidth and shift at higher frequencies results

in a departure from the power law behavior for AH(T) at higher reduced temperatures

than measurements at lower frequencies. This frequency dependent has been seen in both

antiferromagnets and spin glasses.

Interpretation of ESR in spin glasses above T, has been primarily

phenomenological, in terms of Equation 5-2, due to the lack of specific theories (with

the exception of the AgMn analysis of Levy, Morgan-Pond and Raghavan which is valid

only for low frequencies) addressing this temperature regime. Two theories have been

presented. The first theory assumes that the divergent nature of the ESR linewidth is due

to critical slowing down near a phase transition. The second theory attributes the

linewidth to inhomogeneous broadening due to the formation of internal local fields of

correlated clusters, with cluster formation beginning at a few times T,. This second

theory is compatible with the existence of an intermediate phase between the

paramagnetic and the spin glass phase.

ESR investigation of thin film ferro- and antiferro- magnets have primarily

focused on behavior below the ordering temperature, so there has not been an extensive

investigation of ESR in multilayered magnets to which we could compare our spin glass

measurements .

MOTIVATION FOR THE EXPERIMENT DESCRIBED IN THIS THESIS

Now that the intricacies of spin glasses have been explained, the principles behind

the FER experiment and theory have been discussed, and the literature pertinent to ESR
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in spin glasses has been reviewed, a statement of the motivation of the work presented

in this thesis is in order. As we have seen, spin glass properties are a function of

dimensionality, measuring time and magnetic field. The previous studies of multilayered

metallic spin glasses have primarily been of three types; ’DC’ susceptibility

measurements made at 100 G and measuring times on the order of 300 seconds, 2)

susceptibility measurements from 10“ seconds to 10‘ seconds at a fields of 10 G, and 3)

field dependent susceptibility measurements from 2 G to 15000 G at measuring times of

300 seconds. This group of experiments covers a small region of frequency-field space,

as shown in Figure 5-3. All of these experiments probe the behavior of one quantity -

the freezing temperature - as layer thickness is reduced. The observed effects have been

analyzed in terms of finite size scaling and dimensionality effects.

ESR experiments at 9 GHz have a measurement time of 1010 s, and require

magnetic fields from 1 to 6 kG. This represents a very different time regime than

probed by susceptibility measurements and investigates the behavior of a quantity (the

ESR linewidth and shift) different from the freezing temperature. We would like to

answer the following questions:

1) Does the expression (Equation 5-2) used to describe the ESR linewidth in bulk

samples apply for all layer thicknesses, or is an alternate expression needed to describe

the behavior of the very thin (2D) samples?

2) If the exponent x is a critical exponent, will it take on two different values in

the different dimensional regimes?
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3) Are there substantial changes in the lineshape as a function of layer thickness

hich might be indicative of 2D behavior and therefore provide additional evidence of the

change in dimensionality in these multilayers?
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Figure 5-3: Measurement regimes of techniques used in the investigation of metallic

multilayers in the time-magneticfield plane

4) Does the lineshift behave in the same manner for all W30? If the shift and the

divergence of the linewidth arise from the same mechanism, we expect this to be true.
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If they arise from a different mechanism, one of the mechanisms may be more or less

affected by the changing sample size.

5) Is the observed departure from power law behavior as T, is approached

dependent on W50? The mechanism for this departure in bulk materials is not clear.

6) Substantial evidence exists for the onset of correlations above T, in spin

glasses; these correlations have a broader spectrum of relaxation times than a

paramagnet, but nowhere near the extended time scales of the spin glass phase. Long

time probes like the DC susceptibility - and even the AC susceptibility - would be

insensitive to these phenomena. If there is indwd a ’Griffiths phase’ in spin glasses, the

time scale of the correlations would observable only to high frequency probes like uSR,

neutron scattering and ESR.

7) Most importantly, can the results of this study shed any light on the question

of whether the mean field or the correlated cluster model is the most accurate description

of ESR in spin glasses?

In summary, this study is designed to test the behavior of spin glasses in the

temperature regime above T,, in a field-frequency regime quite different from that of the

susceptibility experiments. We hope to extend our knowledge about ESR in spin glasses

to metallic multilayers, and hopefully to shed some light on the general behavior of spin

glasses on the approach to T,.



CHAPTER SIX

EXPERIMENTAL METHODS

INTRODQCTION

This section details the experimental techniques used in this study and is divided

into three parts. The first part describes the fabrication of the target and the sputtering

of the samples. This is followed by a discussion of characterization techniques used to

determine the quality of the samples, and is primarily a summary of work done by the

MSU spin glass group. The third section details the experimental techniques used in

sample preparation and data taking for the Electron Spin Resonance (ESR) experiment.

Sample Naming Convention

The samples sputtered are multilayers of the form W30 nm of spin glass and Wu.

nm of interlayer material, with N bilayers. The standard way of referring to these

samples is WSG/WIL/N, with all thicknesses given in nanometers. As discussed in

Chapter 4, W,L = 30 nm for copper and 7 nm for silicon.

121
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SAMPLE FABRICATION

To have enough spins in a sample for a measurable signal, multilayers were

fabricated with Wso nm of the spin glass interlayered with a suitable amount of non—

magnetic material which prevents magnetic interactions between spin glass layers. The

original study“:72 investigated the effects of using both silicon and copper as the

interlayer materials. Samples with copper interlayers were chosen for the ESR

experiment because a) most of the measurements done on multilayered spin glasses at

the time focused on copper interlayers b) the silicon interlayered samples are not as close

to ideal multilayers as the copper interlayered samples and c) the copper interlayers

should not produce an independent ESR signal.

Target Production

The CuMn targets were alloyed in an RF induction furnace from 99.9999% pure

copper and 99.99% pure Mn purchased from Aesar, Inc. A cylindrical graphite boat of

radius 6.5 cm and depth 2 cm was painted with boron nitride to prevent contact between

the boat and the target. Two coats of boron nitride were applied, with each coat allowed

to dry overnight. Prior to alloying, the constituents were etched in nitric acid, rinsed in

deionized water and then in alcohol, and weighed. The Mn, which was etched

immediately before alloying to prevent oxidation, was placed at the bottom of the boat

and covered with the copper. The crucible and metals were immediately placed in a

quartz vacuum chamber encircled by the RF coils. The chamber is evacuated to a
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pressure of approximately 10" torr, flushed three times, and then backfilled with a 90%

Argon/10% Hydrogen mixture. The Argon provides an inert atmosphere, while the

hydrogen helps remove oxygen which may outgas as the metals are heated.

The temperature of the boat was measured using an optical pyrometer. Because

of the difference in the melting points of the two metals (T,,,Cu = 1083 °C,

T,,,Mn = 1244 °C), the Mn is placed in the bottom of the boat, and covered with copper

so that the Mn is in contact with the heating graphite boat. The temperature is slowly

increased by increasing the current through the rf coils. As the temperature rises, the

copper melts and surrounds the Mn. As the temperature is increased, the Mn begins to

dissolve. At or near 1244 °C, the molten mixture begins to swirl in the boat. The alloy

is held at this temperature for approximately five minutes to encourage mixing. The

current is gradually decreased, and the sample is allowed to cool. A crust, probably

made up of contaminants and MnO, forms on the top of the liquid as the mixture cools.

The target is removed from the vacuum compartment after reaching room temperature

and turned on a lathe to a final radius of 5.7 cm and a thickness of approximately 1.25

cm.

The concentration of the target is determined by comparing susceptibility

measurements of the freezing temperature to known values of T, as a function of Mn

concentration. In general, a small (1 or 2 percent) excess of Mn is necessary in alloying

the target. We believe the loss of Mn in the alloying process is due to oxidation and

failure to alloy homogeneously, resulting in a larger concentration of Mn and MnO on

the surface which is then machined away.
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Prior to being placed in the sputtering chamber, the target is washed with alcohol.

The target is presputtered for a few minutes prior to sample deposition to remove surface

impurities acquired during the machining process. The Cu target used for the interlayers

was purchased commercially from Varian, Inc.

Sputtering Apparatus

In sputtering, the surface atoms of a target (CuMn or Cu) are emitted as a result

of bombardation by energetic particles (Ar+ ions in this case). The sputtering chamber

is a stainless steel cylinder of radius 23 cm and height 48 cm. Four DC sputtering

sources are available, but we used only two targets at a time in the fabrication of these

samples. The sputtering sources are mounted so that target particles are sputtered

upward. A Substrate Positioning and Measurement Apparatus (SPAMA) is suspended

from the top of the tank at a height of about 10 cm from the targets. The motion of the

plate is controlled by a computer programmed stepper motor. The SPAMA holds up to

sixteen substrates, grouped in eight pairs of two. In earlier sample runs, two of each

sample configuration were simultaneously sputtered, with the midpoint between the two

samples centered over the sputtering source. Concerns about the angular distribution of

the sputtered ions changed this procedure to making samples one at a time, with each

sample centered over the source. Each removable part of the sputtering chamber is

etched in an acid solution to remove any metal left from the last sputtering run, then

rinsed with acetone and alcohol. Rubber or cloth gloves were worn at all times when
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working inside the chamber, or with parts placed inside the chamber to reduce

contaminants which might degrade the vacuum.

Silicon (preferably 100, but also 110, or 111 orientation) was chosen as the

substrate material due to its smooth surface and ease of cleaving. After having been cut

into 1/2" x 1/2" squares, the substrates are cleaned in an ultrasonic cleaner first in

acetone and then in alcohol. In earlier runs, the substrates had been cleaned with

Alconox before the acetone and alcohol, but we were advised that this procedure

scratches the surface of the silicon, and this step was removed. The substrates are

mounted in the SPAMA and placed in the sputtering chamber. A capillary fed LN2

substrate cooler, which can cool the substrates to or below room temperature, was

installed to minimize diffusion during sputtering. Thermocouples attached to opposing

sides of the SPAMA are used to determine the temperature during the sputtering process.

Once the chamber is loaded and closed, it is pumped down by a roughing pump

followed by a cryopump. The chamber is baked for 24 hours to allow outgassing,

resulting in a base pressure of s 2 x 108 Torr. Ultra-pure Argon gas is passed through

a cold trap and a gas purifier before backfilling the chamber to a pressure of 2.5 x 103

Torr.

Argon atoms are ionized by accelerating electrons from a hot filament through the

gas flowing across the target. By holding the target at a negative potential, the positive

Ar ions are accelerated toward the target. The sputtering parameters are experimentally

determined so that the resulting CuMn layers are homogenous and preferential sputtering

of one component of the alloy over the other is avoided. Both Cu and CuMn are

sputtered at currents from 0.6 A to 0.7 A and voltages of about 400 V (which means an
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incoming Ar ion energy of approximately 400 eV). Quartz crystal Film Thickness

Monitors (FTMs) were used to measure the deposition rate of both sources before

sputtering. Typical sputtering rates are 1.1-1.6 nm/s for both the Cu and the CuMn

targets.

In sputtering from alloys, one type of atom may be preferentially emitted from

the target. The transition temperatures of 500 nm films and target shavings showed no

more than i 1 K difference, which indicates that the degree of preferential sputtering

in CuMn is small or non-existent.

The sputtering process is inherently random, which we believe contributes to

achieving a uniform distribution of Mn atoms; however chemical clustering, especially

at higher concentrations, is a possibility. We have minimized both this problem, and the

problem of diffusion at interfaces by keeping the substrates cooled to room temperature

or less during the sputtering process. The effect of cooling on multilayer quality has

been demonstrated to be especially significant in CuMn/Si". The detailed analysis of the

freezing temperature in these multilayers has shown scaling behavior to hold for samples

with concentrations up to 14% , indicating that increased ferromagnetic interactions in

larger concentrations are not likely.

CHARACTERIZATION

An ideal multilayer structure has crystalline layers and perfect periodicity

(meaning flat, abrupt interfaces between layers with no intermixing). Although the

multilayers produced by sputtering are not ideal, the studies cited in Chapter Four have
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shown that the quality of the samples is sufficient for the observation of numerous

interesting spin glass properties. Because knowledge of how closely these samples

approximate ideal multilayers is fundamental to further studies, many characterization

techniques were used to determine the integrity of the multilayers. The initial

investigations have provided a consistent picture of the quality of the sputtered

multilayers, so one or two of these techniques are now used as routine checks. In the

CuMn/Cu samples, the primary techniques used were profilometer measurements, x-rays,

and susceptometry. Although investigation into the detailed structure of sputtered

multilayers continues, the sample production process should be regarded as consistent and

well-established. This section outlines the methods which have been used to establish the

quality of the samples and summarizes the conclusions of the spin glass group to date.

The step most conducive to intermixing of the layers is the actual sputtering

process. Ag-Cu multilayers, which were made because Ag and Cu are immiscible,

indicate that even with 0.8 nm/0.8 nm samples, the sputtering process must be good

enough to keep the two metals from spreading more than two atomic layers (.4—.5 nm).

The total spreading of the host materials is .81 nm for a given layer.

Diffusion of the Mn into the buffer layer is the most likely source of significant

deviations from ideal layering. Diffusion of Mn in Cu in defect free material at room

temperature and even at temperatures comparable to those reached during the sputtering

process is fairly negligible. The sputtered materials, however, are highly polycrystalline,

resulting in grain boundaries and other defects at a concentration of about 1%. If these

defects were all vacancies, then Mn diffusion into the bulk might be a problem.
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Some susceptibility measurements indicate that subtle changes in the magnitude

and qualitative characteristics of x(T) occur over short (days or weeks) time frames after

sputtering, but no change in the value of T, is observed and these measurements are

highly preliminary. Measurements of samples on time scales of a few months to more

than two years after sputtering show no perceptible changes in either x-ray measurements

or the value of T,.

As a further test of the possibility of diffusion, samples were sputtered with the

substrates held at different temperatures ranging from ambient to below room

temperature. No significant changes in the values of T, were observed.

X-Ray Studies

X-ray diffraction uses Bragg reflection, in which periodic structures in the sample

scatter an incident x-ray beam of wavelength )s at an angle 0.

sin(0) = 1% 6-1

where 1 denotes the order of the reflection and a measures the periodicity of the sample.

Measurements are taken at large angles (LAXD) and at small angles (SAXD). In a

single crystal, measurement of the angle of a reflection peak allows calculation of the

spacing between the crystal planes. The individual lattice parameters of the layers are

periodic only within the layers, so the real periodicity is in the bilayer spacing, d
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(d = W56 + W“). The lattice parameters for the spin glass and interlayers are aso and

ac“, with 11,6 and no, denoting the numbers of atoms in each bilayer, so that

d = "so ass + "Cu 004 6'2

In the limit of thick layers, several Bragg peaks corresponding to the bilayer

thickness will occur in the region where the Bragg reflections would have been seen for

the individual layer thicknesses, resulting in strong main peaks at these angles,

surrounded by satellite peaks. In the limit of thin layers, the two peaks corresponding

to the individual layer thiclmesses coalesce into one main peak at an average lattice

spacing.

Satellites are a result of periodic variations in electron density and lattice

parameters. By modeling these variations according to a square wave or sine wave

profile, a theoretical prediction of the position and intensities of the x-ray peaks can be

calculated, using the layer thicknesses as the parameters.

In CuMn/Cu, no SAXD satellites are found. LAXD satellites are seen, but are

weak for concentrations of Mn < 7 at.%. The lack of the SAXD satellites is not

surprising, because the electron densities are very similar in CuMn and Cu. In addition,

30 nm of copper are needed to decouple the spin glass layers. This means that the value

of d is at least 32 nm which, according to Equation 6-1, means that 20 = 0.25 degrees.

Experimentally, the direct x-ray beam obscures detection at this angle. The similarity

of the electron densities diminishes the intensity of the satellites, so that the first order

i=0 satellite intensity is 0.000006 of the main peak. In order to test the layering in the
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CuMn/Cu system, samples were made with thinner values of both the copper and the

spin glass layers. Measurements performed on these samples showed weak SAXD peaks,

and we believe these measurements to be representative of the CuMn/Cu series.

Calculated values of the bilayer thickness in CuMn/Cu from LAXD measurements are

less than 10% different from the value indicated by the deposition rates measured by the

film thickness monitors.

The crystallite dimensions can be estimated from the widths of the LAXD lines,

using

5 2 K). 6_3

0008(9)

 

where S is the crystallite size, K is a constant on the order of unity, A is the x-ray

wavelength, 0 is the Bragg angle, and B is the width of the peak in radians. In

CuMn/Cu, the LAXD reflections were from the < 111 > planes, indicating strong

crystallite orientation. Measured crystallite sizes for CuMn(7%)/Cu148 are 44 nm for

WSG = 2 nm, 43 nm for Wso = 3 nm, and 37 nm for WSG = 5 nm.

Microscopy

Kenning148 performed transmission electron and field emission scanning

transmission electron microscopy on a number of samples. The samples were coated in

epoxy and microtomed; if they were still too thick, they were ion milled. Direct TEM

imaging confirms the layered structures and polycrystalline nature of the material.
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Energy Dispersive X-Ray analysis (EDX), which detects changes in chemical

composition, was used by scanning across the sample in the direction of layer growth.

Studies in CuMn(21%)/Cu again confirm the layered structure of the materials down to

the beam resolution of about 10 nm.

Resistivity

The resistivity of the samples was measured using a Van de Pauw149 technique.

The results were compared with the predictions of three models: 1) a perfectly layered

model, in which interfaces do not contribute to the resistivity, 2) a Fuchs model, in

which diffuse scattering occurs at the interfaces‘”, and 3) a uniform model in which

the Mn is assumed to have diffused uniformly throughout the sample. The diffuse

scattering model, in which an electron is scattered at the interface such that it loses

knowledge of its initial direction, is expected to be closest to the experimental situation

and this is confirmed by the resistivity measurements. The measured resistivities lie

between the values predicted by models 1 and 2, consistent with the assumption of

layered materials. Profilometer measurements of the total sample thickness were also

made to check for any gross inconsistencies.

To summarize the structural characterization: We believe our CuMn/Cu samples

to be polycrystalline, with 111 texture along the axis perpendicular to the layers (i.e.

along the growth direction.) The layer spreading in these structures is probably not more

than 0.5 nm.
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SQUID Measurements

Measurement of the susceptibility as function of temperature, x(T), is the primary

way of determining the freezing temperature. A typical x(T) was shown in Figure 1-1

for a sputtered CuMn film. The susceptibility measurements are made in a MPMS

(Quantum Designs) computer controlled SQUID, with a temperature range of 2 K to

400 K, and in magnetic fields up to 55000 G. Prior to measurement, the magnet is soft

quenched (brought to zero by alternating between consecutively decreasing positive and

negative magnetic fields) in order to eliminate any remanent fields which may affect the

zero field cooled susceptibility. The measurement protocol is as follows: after soft

quenching, the sample is brought to a temperature sufficiently above T,, and is lowered

to 5 K in zero field. A measuring field of 100 G is applied, and measurements are made

as the temperature is stepped back to about 100 K. The sample is then returned to 5 K

in the 100 G field. Field cooled measurements have been made in both directions - with

the temperature starting out low and increasing, and from higher temperatures down.

No changes in the value of T, are found, but a technical glitch in the SQUID requires us

to make measurements from low temperature to high. The freezing temperature is

extracted by visual inspection.

ELECTRON PIN E R TE HNI

Figure 6—1 shows a block diagram of the Varian 4500 ESR system. The

microwave source is a klystron driven bridge which operates at 9.3 GHz with a power
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output of about 1 mW. The bridge is connected to a standard 3 cm microwave resonant

cavity which operates in the TE 110 mode. At the sample resonance, the resonant

frequency of the cavity will change, which changes the coupling of the ldystron to the

cavity. A sinewave modulation technique which compares the returning signal with a

reference signal is used to keep the klystron locked on the cavity resonance. This

procedure is called Automatic Frequency Control, or AFC.

The reflected ESR signal is detected using field modulation, in which a 10 kHz

ac magnetic field is superposed on the larger applied field via Helmholtz coils mounted

on either side of the resonant cavity. The resulting signal is proportional to the first

derivative of the power absorbed by the sample and is sent to the Y axis of the xy

recorder. A Fieldial field sweep allows us to sweep the applied magnetic field, H,, by

varying the amount of current sent to the magnet. The applied field is measured by a

Hall probe gaussmeter, and the output of the gaussmeter is fed to the X axis of the xy

recorder. The result is a plot of the first derivative of the power absorbed by the sample

as a function of magnetic field. This data is fed from the plotter through some

electronics and an A/D converter into a PC (not shown on the block diagram) for

analysis.

An Oxford ESR-9000 liquid Helium flow cryostat (not shown in Figure 6-1) is

used to control the temperature from 300 K to 4 K. A Au-Fe/constantan thermocouple

is mounted directly underneath the sample region to detect the temperature. The

temperature is regulated by controlling the power supplied to two resistive heaters in the

cryostat, which allows us to maintain the temperature at a stability of i 1 K for long

periods of time.
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ESR Sample Preparation

A stainless steel razor blade washed in acetone is used to carefully peel the

samples from the silicon substrates. Due to the overall thinness of the sample, this was

not straightforward. Wetting the samples with acetone periodically during the separation

helped in film removal. In most cases, the films could not be pulled off in one piece.

After separation, the films are mounted on flattened spectroscopic quality 4 mm

quartz rods using Apiezon ’N’ grease. Prior to mounting, the rods are cleaned in

Hexaflouric acid, acetone and hexanes, and checked in the ESR for contamination. The

total area of the mounted sample was approximately 4 mm by 1.1 cm. The sample rods

are placed in the cavity so that the plane of the layers in the film is parallel to the applied

magnetic field.

Skin Depth Effect

One problem associated with ESR experiments in these multilayers is a result of

the attenuation of microwaves in metals. The microwaves are exponentially attenuated

as the depth of penetration into the sample increases. In metals, the skin depth, 6 (in

units of meters), is given by

where 6 = 2 6‘4 
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where w is equal to 21w, (1: in Hz), or is in inverse Q-m, and I1 is in fl-m-s (note that 1

fl-m-s = l N/Az). At five skin depths, only 1 percent of the initial electric field

remains, and only 0.01 percent of the incident power.

The original investigations into the effect of the skin depth on ESR in metals were

pursued by Dyson‘”, who developed a theoretical expression for the lineshape, and by

Feher and Kip”2 , who experimentally confirmed the predictions. Dyson realized that

diffusion of conduction electrons in and out of the skin depth would alter the ESR

lineshape, as only the skin depth was (effectively) ’seen’ by the resonance experiment.

Dyson showed that the diffusion of electrons in metals throughout the skin depth changed

the shape and the intensity of the resonance line, resulting in a first derivative having a

positive lobe three times bigger than the corresponding negative lobe. Dyson derived the

following formula for the power absorbed by a metach sample of thickness 0

z _c_’ 2 i
PUD (41:) H1 R400

(F+%nvxa2TzGF2) 6'5

L
2
.

where

0

F u tan(u) u 26 (1 I)

I 2 COMG = __ 2n + (“R—3“?) cotu + (wz-uz) cscz(u) 6-7  
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= l = 9. I2 6-8
w 2a(£+1n) a 6\ T2

1 a a a 6.9

5: sgn(x)[(l + 12)2 " 112 TI =sgn(x)[(1+ x2)2 +112

x = ——2u: T’ (H, -H) 6-10

6 is the skin depth, T,, is the time it takes an electron to diffuse through a skin depth, and

T2 is the electron spin-spin relaxation time. The linewidth itself does not change, but the

shape and the intensity of the line do.

For layered samples, we can define an effective skin depth by summing the

attenuation in each layer. This does not take the complex effects of reflection and/or

refraction at the interfaces into account, but this detail is unimportant for the purposes

of this experiment. We do, however, have to consider the differences in the

conductivities of the CuMn and the Cu, as pure Cu, with its higher conductivity, will

more effectively attenuate the microwaves. The 30 nm thickness of copper required to

decouple the spin glass layers is the limiting factor on the skin depth. The resistivity

of sputtered Cu films is measured to be 2 j; 1 all-cm. The resistivity of Cu,,,,Mn,, is

about 8 all-cm for x = 0.04, and ranges to 41.43 all-cm for x=0.l4, where all

measurements cited were made at room temperature. The effective skin depths thus
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range from 2100 nm for a multilayer with W30 = 1000 nm to 754 nm for multilayer with

WSG = lnm (for x = 11%).

When the time it takes an electron to traverse the sample is less that the time it

takes the electron to diffuse through the skin depth, the Dysonian lineshape reduces to

a Lorentzian. Dyson cites an upper limit to this approximation when the sample is less

than four times the skin depth, while Feher and Kip claim that the limit will

experimentally apply when the sample is ’less than’ the skin depth.

In our experience, we find that Lorentzian lines result if the sample thickness is

no more than 3/4 of the skin depth. This limit on the number of spins presents some

difficulty in acquiring data at high temperatures, as the signal to noise is poor in samples

with small WSG; however, we find this constraint preferable to the complications

inherent in analyzing the Dysonian lineshape. The average sample thickness ranges from

1000 nm (for spin glass films which have no copper layer) to 500 nm.

I We investigated a number of options which might reduce the constraints placed

on the experiment by the skin depth problem. From Equation 6-4, we see that we can

only change the conductivity of the sample or the frequency at which the measurements

are made. Increasing the Mn concentration increases the resistivity of the spin glass

layers, but the limiting factor is the requisite 30 nm of copper, so that no significant

advantage is gained by small increases in Mn concentration. Above 16% , clustering and

other factors begin to become important, so increasing the skin depth via an overall

increase in resistivity is not possible.

We sputtered buffer layers of 1000-2000 nm of copper onto the silicon substrates

prior to fabricating the samples in an attempt to increase the total sample thickness. The
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very thick layer of copper would block out the microwaves entirely on one side of the

sample, so that we would still have a Lorentzian lineshape due to the microwaves

incident on the other side of the sample. Data taken on these samples appeared to

depend on the thickness of the buffer layer, and concerns that we might block out spin

glass behavior led us to abandon this idea.

Measurements made at the Wisconsin College of Medicine Electron Spin

Resonance Center (WCOMESRC) on Cuoanom/Cu samples at 1, 2, 4 and 9 GHz show

that samples which are Dysonian at 9 GHz are Lorentzian when measured at lower

frequencies. This confirms that the observed lineshapes are in fact due to the skin depth

effect and not a spin glass property. In standard resonant cavity ESR, the cavity size

increases as frequency decreases, which results in decreased sensitivity. A loop-gap

resonator system, like the ones employed by WCOMESRC, requires the same amount

of sample for 1 GHz as for 9 GHz measurements, with comparable sensitivity. Further

measurements at WCOMESRC were not pursued due to a lack of adequate temperature

control, but we have shown that the loop-gap system would be an ideal experimental

apparatus for measuring the ESR of multilayered spin glasses at low frequencies.

Background Signal

Samples are sputtered directly onto silicon squares, and then separated from the

substrates for measurement. The silicon wafers we buy are generally surplus wafers, the

(10th and concentration of which varies according to what the vendor has available.

Our study has shown that some of the (10th either diffuses into the sample, or adheres
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to the back of the sample, resulting in a background to the ESR line. We believe that

this signal is due to magnetoresistive effects of the silicon dopants on the cavity

resonance. The magnitude of the background varies from sample to sample and, as

detailed records of which substrates were used for which run were not kept, it is difficult

to make any further correlations between substrate dopant and the extent of the

background. The background is significant only in samples with small W30, as the signal

from the spin glass in thicker layers is much larger than the background. In some cases,

background was seen on one ESR sample, but not on another ESR sample taken from the

same silicon square, indicating that this may be a result of how the sample is removed

from the substrate. The use of acetone in the removal was shown to have no effect on

the presence or lack of a background signal.

Figure 6-2 shows the background, as observed at T = 300 K in a Cu0,,9Mno.,,/Cu

3/30/20 sample. At this temperature, the spin glass signal is much weaker than the

background, so the signal seen here is primarily due to the background. The spin glass

signal can be seen as a very small feature centered at about 3300 G. Below 2000 G, the

background has a negative curvature and is nonlinear; over the rest of the field range,

the background is linear with a positive slope, allowing us to subtract it during the fitting

process.

Measurement Protocol

The data presented for a given sample was all taken during the course of a single

data run to avoid small changes due to sample position and orientation in the cavity,
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thermal cycling effects, and more significantly, hysteretic effects. Data is taken starting

at room temperature, with the field turned completely to zero while the sample is being

cooled to the next temperature. A residual field of about 20-30 G exists during the

cooling; however, the measurement fields are much larger than this field, and we expect

the residual field to have no effect on the data. The temperature increments are

dependent on the behavior of the line; at high temperature, data is taken every 10 K.

As the rounding of the AH(T) line begins, data is taken every 5 K. In the regime of the

divergent behavior, AH(T) has such a large slope that small temperature changes result

in very large changes in the linewidth, so that data must be taken every 2.5 K. Data

points are taken until the line becomes too broad to measure, or too weak to observe.

In cooling from T, to the next temperature to be measured, T2, the temperature

is not allowed to fall below T, to avoid hysteretic effects. Hysteretic behavior has been

routinely observed in these samples, but has not been investigated in any systematic

manner. As an example, consider a measurement at temperature T, (T, > T,) which

results in a linewidth AH,. The sample is cooled to temperature T,, where T, is also

above T,. After waiting some time at T2, the sample is returned to T, and the linewidth

is remeasured. The resulting value will be smaller than AH,. As time goes on, with the

system sitting at T,, repeated measurements of the linewidth will result in increasing

values of AH, until the original value is returned.
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SUNIMARY

This Chapter has detailed the fabrication and characterization of the multilayers

used in the Electron Spin Resonance experiments. Based on the sum of the investigations

performed on these samples, we claim that the CuMn/Cu multilayers are polycrystalline

in nature, with the value of Wso modified by less than 0.5 nm due to diffusion of Mn

into the copper layers.

The ESR system has been described, and two problems — the skin depth effect

and the background - have been discussed. The skin depth problem limits the total

thickness of our samples to less than about 3/4 of the skin depth, so that the average

sample thickness is 600-1000 nm. A background, which is due to the magnetoresistive

behavior of impurities which are transferred from the substrate to the ESR sample, is

linear in the field range of 2000 G to 6000 G, enabling us to fit it with little difficulty.

The measurement protocol has been summarized, and the routine observation of

hysteretic behavior noted.



CHAPTER SEVEN

DATA AND ANALYSIS

"It appears that the quantitative analysis of such ESR measurements

(above T,) is a complicated problem "1

SUIVIIVIARY OF SAIVIPLES ANALYZED

Data was taken on three complete sputtering runs, with some additional

measurements made on other samples. The concentration regime over which data can

be taken across a wide range of temperatures and layer thicknesses is small, due to the

skin effect and background problems discussed in the last chapter. For lower

concentrations, the ESR line is undetectable at high temperatures, even in the thickest

samples. In samples with concentrations greater than 16%, the lines becomes extremely

broad, making reliable extraction of a linewidth and position difficult.

Tables 7-1 through 7—4 detail the configurations of the samples studied. All of

the samples studied were either single layer films, or had Cu interlayers of 30 nm, so the

samples will be referred to solely by the spin glass layer thickness, making note of any

exceptions. Tables 7-1 through 74 may be consulted for additional information.

144



145

Table 7—1: Configurations ofRun 243 — Cuangna,,

  
 

  
“ Rm243CWMno,

  

Sample‘f»

 

we Warm) N , T(K),

 

 

 

243-12 500 30 47.5

 

  
11 243-11 100 30 47.5

 

 

243-8 50 30 45.0

 

243-7 30 30 17 42.5

 

243-6 10 30 17 35.0

 

243-4 30 18 31.0

 

243-2 30 18 20.5

 

243-l    30  l8   10.0

_____l_____h___1__h___, 
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Table 7-2: Configurations ofRun 185 - Cuaanam

  

*  iimms-‘cu....Mn.. ‘ g

 

 

 
 

185-2 50 30 6 36.0

 

185-4 30 30 15 35.0

 

185-3 7 30 16 25.0

 

185—10 5 30 16 23.5

 

185-6 3 30 17 17.5       
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Table 7-3: Configurations ofRun 245 - Cua93Mna07

~ ~756mm2454a,.Mn. *
   

 

 

 

 

 

 

245-3 10 30 17 27.0 II

2454 9 30 17 26.0 H

245-6 7 30 13 23.5 "

245-7 6 30 18 22.0

ms 5 30 18 21.0

 

245-12 3 30 18 16.5       



Table 7-4: Configurations ofAdditional Samples Run
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'1 Other Samples Analyzed  

 

 

 

 

 

        

265-2 16 500 30 67.5 * ll

220-15 7 500 - 39.0

220—16 7 500 1 39.0

85-4 4 500 - 24.0

=___l_____ ______n 
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ANALYSIS OF THE FREEZING TEMPERATURE

Figures 7-1 through 7-3 show the freezing temperatures as a function of the log

of the spin glass layer thickness for runs 243, 185 and 245 respectively. This behavior

can be fit to the finite size scaling form

6 = 1}(°°) " Tf("ls(;) ~ W4

Tf(°°) so
 

where T,(oo) is the bulk freezing temperature. The value of A is obtained by the slope

of a linear regression of log(e) vs logONSG). The fits are limited to samples with

W86 2 30 nm, although data down to 9 nm had to be included in order to use the linear

regression program in fitting the 245 run. The correlation length exponent, u, is UK.

The fit values are summarized in Table 7-5.
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Table 7-5: Parameters from Finite Size Scaling Fits of T,

 

 

 

 

 

 

     

Sputter Run , Smallest W30

' ‘ . Number . , 1‘ '~‘

243 10 nm 0.98 i 0.10 1.02 :1; 0.10

185 7 nm 0.79 :t 0.08 1.27 :1; 0.12

245 9 nm 0.78 i 0.06 1.28 i 0.10

All 7% 10 nm 0.80 i 0.08 1.25 :1; 0.13

All samples 10 nm 0.78 j; 0.08 1.28 :1; 0.13

 
 



 

2
4
3
:
C
u
M
n
(
1
1
%
)
/
C
u

 

l
I

I
I
I
I
I
I
1
I

l
I

I
I
I
I
I
U
I

I
l

I
I
I
U
I
1
I

h

D

-

b

l

5
0

—
—
I
L
7
 

4
0

3
0

 

(>1) (”910’s

2
0

I
A
=

0
.
9
8

a
:
0
.
1

Jlllllllljlllllllll
lJl

1
0

lllJ  
o

l
l
l
l
l

l
I

l
l
l
l
l
l
l

l
l

l
l
l
l
l
l
l

l
I

l
l
l
l
l
l
l

l IIITIIIIITIileIIllle

 
 

1
1
0

1
0
0

1
0
0
0

w
a
s

(
r
u
n
)

.

 
 
 F
i
g
u
r
e
7
-
1
:

D
e
p
r
e
s
s
i
o
n
o
f
T
/
W
S
G
)
a
s
a
fi
t
n
c
t
i
o
n
o
f
W
m
f
o
r
R
u
n
2
4
3

-
C
u
a
n
a
"

151



  

1
8
5
:
C
u
M
n
(
7
%
)
/
C
u

 

-
I
I
I
I
I

I
j

I
I
I
I
I
I
I

I
T
I
I
I
I
I
I
I

4
0

i

 
 
 
 

3
0

2
0

(>1) (”MY-L

1
0

lllllLllllLLlJllllJlL

I
I

I
I
I
T
I
I
'

III

 

A
=

0
.
7
9

:1
:
0
.
0
8

l

‘IIIIIIIIII

152

Illlllril

  

 

l
l
l
l
l
l
l
l

l
l

l
l
l
l
l
l
l

1
1
0

1
0
0

w
a
s
(
n
m
)

0
L
l
l
l
y

 
 

l
I
l
l
l
l
l
l

1
0
0
0

 
 

F
i
g
u
r
e

7
-
2
:

D
e
p
r
e
s
s
i
o
n
o
f
T
/
W
m
l

a
s
a
fi
m
c
t
i
o
n
o
f
W
,
,
,
f
o
r
R
u
n
1
8
5

-
C
u
a
”
M
n
”
,



 

2
4
5
:
C
u
M
n
(
7
%
)
/
C
u

 

I
I
I
I
I

I
I

I
I
I
I
T
I
I

I
I
W
I
I
I
I
I
I

4
0

3
0

llLllllllLLfl

2
0

(2!) (“10‘s

1
0

 lllllllll-W

I
I
I
I
I
I
I
I

1+
 

x
=

0
.
7
8

:1
:
0
.
0
6
_

1
1
1
1
1
1
1
1

 

FFIIIIIIIIIIIIFIIrIIIr

 

O
1
1
1
'

1
1

1
1
1
1
1
1
!

1
1
L
J
I
I
I
I
I

1
1
0

1
0
0

w
a
s

(
r
u
n
)

1
0
0
0

 
  F
i
g
u
r
e

7
-
3
:

D
e
p
r
e
s
s
i
o
n
o
f
T
/
W
S
G
)
a
s
a
fi
t
n
c
t
i
o
n
o
f
W
m
f
o
r
R
u
n
2
4
5

-
C
u
a
”
M
n
”
,

153



 

1
.
0

0
.
8

0
.
6

0
.
4

q’t/(i’sarr

0
.
2

0
.
1

 

N
o
r
m
a
l
i
z
e
d
F
r
e
e
z
i
n
g
T
e
m
p
e
r
a
t
u
r
e

v
s
.
W
9
3

 

I
I
I
I
I

I
I

I
I
I
!
!
!
‘

I
I

I
I
I
I
I
I

I
I

I
I
I
I
I
I

*-
@

 

 
 

 

I

-
0

R
u
n
2
4
3
-
1
1
7
5

0
R
u
n

1
8
5
—
7
%

-
E
l
R
u
n
2
4
5
-
7
%

I

 
 llll

l
l

l
l
l
l
l
l
l
l

l
L
l
l
l
l
l
l
l

l
l
l
l
l
l
l
l
l
 

1
1
0

1
0
0

1
0
0
0

W
m

(
n
m
)

 
 

F
i
g
u
r
e
7
-
4
:

T
/
W
s
a
l
l
T
/
o
o
)
a
s
a
fi
t
n
c
t
i
o
n
o
f
W
W
f
o
r

a
l
l
c
o
n
c
e
n
t
r
a
t
i
o
n
s

154



155

Figure 7-4 shows a normalized plot of log('l“,(Wso)/T,(oo)) vs logONSG) for all

samples. The solid line indicates the prediction of Equation 7-1 for the value of

u = 1.25 i 0.13 found by fitting all concentrations. This value, along with the general

trends represented by this analysis, are in agreement with those determined by all of the

past work on CuMn/Cu multilayers, indicating that these samples are of the same quality

as those described in Chapter Six.

LINEWIDTH ANALYSIS

As explained in Chapter 2 and Appendix A, the resonance line detected by the

ESR spectrometer in metals is proportional to a mixture of the real and imaginary parts

of the susceptibility. The Lorentzian dispersion and absorption signals are given by

  

 

I = x
I, = 1

7‘2

X l + 1:2 X 1 + x2

where

H—Ho

x =

7-3

13m
2

The first derivative resonance lines captured by the computer are fit to

a,x'+a2x", with the ratio of azlal held constant for each run. For the 185 data run,

012/01, = 9.0, while for all other runs, org/oz, = 7.0. The linewidth is relatively
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insensitive to small changes in the value of 05/01,, while the resonance peak position may

change by as much as 20—30 G when azla, is changed by 1.

Figure 7-5 compares the lineshapes at 100 K for the smallest (1 nm) and the

largest (500 nm) W30 from the 243 (Cuo,89Mn0_,,) run, along with the calculated fits. The

individual dots are the discrete values accumulated via the A/D converter, and the thin

line is the fit. The linewidth of the 500 nm sample is 373 j; 10 G, and the resonance

position, H,,, is 3294 i 10 G. The corresponding parameters for the 1 nm sample are

AH = 360 i 14 G, and H,, = 3315 i 12 G. In fitting the 1 nm sample, only the

portion of the data taken in fields greater than 2000 G was used in order to avoid effects

from the nonlinear part of the background. These lineshapes are representative of all

data taken.

Figure 7-6 illustrates the contributions from the real and imaginary parts of the

susceptibility and the background for a 500 nm Cuo,89Mn,,_,, multilayer. The solid line

is the total curve, the dotted line is the contribution from the azx” term, the dashed line

is the contribution from the a,x' term, and the dot-dashed line is the linear background

contribution. Observed lineshapes are Lorentzian for all layer thicknesses. Small

changes in the character of the lineshape near T, are seen; the shape tends to distort

from pure Lorentzian, and the peak height decreases.
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lineshapes for Cufln(11%) at '1' - 100 K
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Figure 7-5: Representative lineshapes for a) a 1 nm 0,,”an and b) a 500 nm

wnoasMnorr samPIe
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Fitting Protocol

The standard expression used in the analysis of the ESR linewidth is

 AH(T) = a + BT + c[T'Tf‘WW)]" 7.4
T,( Wm)

Fitting to equation 7-4 can be somewhat complicated, depending on the

temperature range of the data to be fit. A standard nonlinear least squares computer fit

was used. We found that systematic errors and spurious divergences were avoided if the

value of x was fixed and the other three parameters allowed to vary. it was then

incremented, and the fit repeated, with the value of 1: resulting in a minimum reduced

chi-squared selected as the best fit. All values for T, are subject to an accuracy of

i l K. The fits are noticeably worsened if the value of T, is changed by more than a

few percent.

Departure from the Power Law Behavior Near T,

Departure from the power law behavior near T, has been observed in bulk

metallic spin glasses, with the departure occurring at higher reduced temperatures for

higher frequencies. This reduces the range of temperatures over which Equation 7-4 can

be fit. To determine where this departure begins, the fit was repeated, removing the

lowest temperature data point each iteration. At some temperature, continued removal
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of points ceased to change the parameters or improve the reduced chi-squared value.

The temperature at which this insensitivity to continued removal of points occurs

(denoted T') is the minimum temperature used for the fit. The reduced temperature

corresponding to T’ is denoted t' (t' = (T'-T,)/T,).

Concentration Dependence

Figure 7-7 shows the concentration dependence of AH(T) for four bulk

(WSG = 500 or 1000 nm) Cu,,,,Mn,, samples (x = 0.04,0.07,0.11 and 0.16) and

illustrates the point made in the introduction regarding the concentration range over

which data can be taken for this experiment. For the 4% sample, data could not be

acquired above 200 K in a 500 nm film due to thermal effects. The data acquired on the

bulk samples is the strongest data as a result of the constraints on the total sample

thickness due to the skin depth effect, so this data indicates (as has been experimentally

confirmed) that our chances of acquiring meaningful data in samples with smaller Wso

are not good. The data for the 16% sample shows extremely broad lines, with AH(T)

having a minimum value of about 900 G. Fitting lines this broad is difficult, as

contributions from negative fields must be included in the fit to accurately represent the

lineshape. Also, the line becomes too broad to fit in the spectrometer range at

temperatures above 2 T,, which limits fitting in the critical area near T,. Table 7-6

shows the values obtained by fitting AH(T) for bulk samples (500 nm or 1000 nm) at

four different concentrations.
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Table 7-6: Concentration Dependence ofAH(T) in Bulk Spin Glasses

 

4 24.0 34 i 15 2.65 i 0.15 107 i 14 1.5 l

 

7 37.5 -132 j; 32 2.94 i 0.04 248 i 33 1.5

 

11 47.5 -245 i 13 3.36 i 0.01 328 j: 13 1.5

 

16 67.5 -l84 i 37 4.47 :1; 0.20 672 i 25 1.5      ll

 

All concentrations can be fit by Equation 7-4 with an exponent of x = 1.5 :1; 0.1.

We see that, with the exception of the 16% sample, the residual linewidth, A,

monotonically decreases with increasing concentration, while the thermal broadening

coefficient, B, monotonically increases with increasing concentration. The divergence

strength, C, also monotonically increases. The results for all parameters are in general

agreement with the findings of Mozurkewich, et. al.105 in AgMn. (See Table 5-1 for

Mozurkewich’s results). The residual width and the thermal broadening - with the

exception of data from the 16% sample - depend linearly on Mn concentration. The

failure of the 16% sample to follow this trend may be due to chemical clustering, or

inaccurate extraction of the linewidth in this run due to the very broad resonance lines.

The residual width decreases at a slope of 40 G/at. %, reaching a value of 0 at about 5

at. %. This can be compared to Mozurkewich, et. al.’s slope of 13 G/at. % and
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zero intercept at 2 at. % . The thermal broadening coefficient in our CuMn samples

increases at a rate of .1 G/K—at%, compared to 0.04 G/K at.%. in AgMn. The

divergence strength, C, is predicted106 to depend linearly on Mn concentration, but a

sublinear dependence has been observed by Mozurkewich,et. al. If the 16% data is

ignored, we also see a sublinear dependence in C. This may be attributable to the same

effects as are responsible for a sublinear dependence of T, on concentration, such as the

importance of preasymptotic RKKY corrections. Figures 7-8 through 7-10 plot the

magnitudes of the parameters as a function of concentration. The straight lines in

Figures 7—8 and 7—9 represent fits to the linear behavior.

The position and value of the minimum linewidth also change monotonically with

concentration, as shown in Table 7-7 and Figure 7—10. The temperature at which the

linewidth has its minimum value is defined to be Tm, and the minimum linewidth is

AHm. Tmin can be fit to a power law in c; we find that Tmin ~ cm".

Table 7- 7: Concentration Dependence ofthe Positions and Values of the

Minimum Linewidth for Cuaana"
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The temperature at which AH(T) departs from power law behavior is tabulated

in Table 7-8. We see that lower concentrations obey a power law to lower reduced

temperatures than do higher concentrations.

Table 7-8: Dependence of t' on concentration
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Figures 7-12 through 7—19 show AH(T) and H,,(T) for the 243 run, Figures 7—20

through 7-26 correspond to the same data for the 185 sample, and Figures 7-27 through

7-33 illustrate the behavior of the 245 sample. In all figures, the lower graph shows

AH(T) and the upper plot shows H,,(T). The error bars are less that the size of the
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symbols and have been omitted for clarity. In all cases, the same general behavior is

observed: the linewidth behaves linearly at high temperatures, reaches a broad minimum

and diverges as the freezing temperature is approached.

Qualitative Nates on the Raw Data

As can be seen from the raw data, the same general behavior is seen in samples

of all layer thicknesses. The data from sample 185—3 (7 nm) shows anomalous behavior

in both the linewidth and the resonance peak position; the minimum linewidth is much

larger than the minimum linewidths in the other samples from that run and the resonance

peak position as a function of temperature shows a hump not seen in other data. No

anomalies in the SQUID measurements were seen.

The lineshift as a function of temperature also exhibits the same qualitative

behavior for all layer thicknesses; a g-value 2: 2 is observed over the same region in

which the linewidth obeys a linear form. As the linewidth begins to broaden, the

position of the line shifts to lower fields. Over the region where the linewidth obeys a

power law, the fractional shift in the value of H0 is only about 5%; the majority of the

lineshift occurs below t’.

Reproducibility

Figure 7-34 shows two different data runs of sample 243-2, a 3 nm

CuMnaanQll multilayer. The data runs were made about a week apart, and illustrate
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the lack of significant run-to run variations. The data illustrated by the squares in

Figure 7-34 exhibited a strong baseline, while the data represented by the circles did not,

which confirms our ability to extract a reliable value for AH(T) in the presence of the

background discussed in Chapter 6.

AH(T) has been compared in samples with data runs taken as much as a year

apart, with the no significant changes in the behavior of the linewidth or shift as a

function of temperature. No differences in the values of AH(T) or HOCT) are found in

comparing data from ESR samples taken from different parts of the substrate. The

primary source of difficulty in making repeated data runs on a given sample is the

tendency of the mounted sample to attract dirt due to the presence of the Apiezon grease.

Great care was taken in the storage and handling of the samples to minimize

contamination. Contamination of the sample is observed as an additional resonance line

superposed on the spin glass resonance and is easily identifiable.

Effects Due to the Layered Structure

Figure 7-35 shows data from two samples which were specifically sputtered to test

the effect of the interlayers. The data shown in circles is data from a 500 nm

Cuo.93Mno.m film, and the data represented by squares is from a sample with a single

30 nm layer of copper in addition to the 500 nm of CuMn. Agreement between the two

sets of data is very good for all temperatures. A study over a larger number of

interfaces is difficult due to the trade-off between signal to noise and skin depth

constraints.
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Dependence of the Position of the Minimum Linewidth on WSC

The position of the minimum linewidth, denoted by T,,, and the value of the

minimum linewidth, AH(Tm) for Run 243 (CumgMnon) are shown in Table 7-9. The

position of the minimum, in terms of absolute temperature, gradually shifts as WSG

decreases. Viewed in terms of reduced temperature, the change is more dramatic,

increasing from 2.5 T1. in the bulk samples to 6.5 Tf in the 1 nm samples.

The minimum linewidth should be a comparison of the strength of the divergent

behavior compared to that of the linear behavior. The increased reduced temperature of

the minimum linewidth in thinner samples indicates that ordering phenomena become

more important compared to the linear behavior at higher reduced temperatures than in

samples with large W30.

Departure From Power Law Behavior

Tables 7-10 through 7-12 tabulate the temperatures at which AH(T) departs from

power law behavior as the spin glass layer thickness is reduced. We see from these

tables that departure from a power law occurs at higher reduced temperature for smaller

W80. Departures from the power law behavior may be due to 1) the effect of a large

field on the nature of the spin glass ordering, 2) regions of the material which, near T,,

are frozen into a spin glass state for times longer than the Larmor period or 3) failure

to remain inside the exchange narrowing limit - i.e. the frequency of the exchange is not
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Table 7-9: Characteristics ofthe Minimum Linewidthfor Run 243 - Cua”Mm,,,

 

 

 
 

 

 

 

 

 

      

50 45.0 336 115 ‘ 2.6 ll

30 42.5 335 115 2.7

10 35.0 329 110 3.1

7 31.0 334 100 3.2

3 20.5 327 90 4.4

1 10.0 316 65 6.5

=I==————I___—_—__——I__——I__J
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Table 7-10: Temperature at which AH(T) Departs From a Power Lawfor

Run 243 ‘ Cl‘agflnau/Cu

  

 

   
 

100 47.5 77.5 .63

 

50 45.0 75.0 .67

 

30 42.5

 

110 35.0

 

7 31.0

 

3 20.5

 

1 10.5     
  



198

Table 7-11: Temperatures at which AH(T) Deviates from a Power Law

for Run 185 ’ cuo.93Mnao7/Cu

 

I  ‘ W* ‘stscum... _

 

37.5 60.0

 

38.8 65.0 .68

 

36.0 60.0 .67

 

35.0 68.0 .95

 

25.0 57.5 1.30

 

23.5 ' 62.5 1.66

 

 
17.5 52.5       

2.00
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Table 7-12: Temperature at which AH(T) Divergesfrom a power lawfor

Run 245 " cuang’Iam/Cu

 

 

 (nm)

  
11
8732.45 “CI—10335406074 . i *

 

30 57.5 .74

 

10 52.5 .94

 

47.5 .83

 

23.5 55.0 1.34

 

21.0 60.0 1.73

 

20.0 62.5 2.00

 

  16.6   
50.0 2.00
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much greater than the average width of the anisotropy mechanism. Mozurkewichw‘,

et. al. ’s study of the effects of increasing the anisotropy by Sb doping showed that there

was no dependence of t’ on the Sb doping, as would be expected by the last of these

conditions.

The first case would imply that the formation of the spin glass state is being

affected by the application of a large field. The importance of field effects on spin glass

properties is characterized by the ratio guBH/lc'rf, implying that field effects should be

less pronounced with smaller Tf’s. This would in turn imply that the value of t' should

decrease with decreasing concentration, as is confirmed by the data in Table 7-8. Since

samples with smaller WSO have smaller Tfs, t' should also decrease for decreasing spin

glass layer thickness - which is the exact opposite of what is seen.

If formation of clusters is responsible for the deviation from power law behavior,

the behavior of t' with Wso implies that cluster formation must begin at higher

temperatures relative to Tf in smaller WSG than in larger WSG.

Fits of AH(T) as a Function of WSG

Tables 7-13 through 7-15 show the values obtained by fitting to Equation 7-4 for

runs 243, 185 and 245. Figures 7-36 and 7-37 show representative fits of AH(T) to

Equation 7-4 for the smallest W80 (1 nm) and the largest Wso (500 nm) in the 243

CuuggMnm, run. The appearance of all fits is very similar, so only these two are shown

to avoid repetition. In both plots, data points which were not used in the fit (due to the

departure from power-law behavior) are shown by solid symbols. Figure 7-38 compares
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the theoretical fits for a representative group of spin glass layer thicknesses in the 243

CuaggMnoJl. Figures 7-39 and 7-40 show the excess linewidth, AH“x = AH(T) -

(A+BT) for representative samples in the 243 and 245 runs. Error bars, which are

approximately 10—30 G, have been omitted to increase clarity.

General Behavior of the Fits

We can identify some broad trends as a function of layer thickness. The exponent

characterizing the divergence, 1:, increases with decreasing layer thickness for samples

with W30 2 5 nm. Below this thickness, the exponents decrease, but still have values

greater than the bulk value of x = 1.5. Both the residual width, A, and the thermal

broadening coefficient, B, tend to increase with decreasing layer thickness. From the

data in Table 7-6, the increase in the residual width with decreasing layer thickness might

be indicative of a reduced effective concentration. If spreading of the spin glass layer

into the interlayer were significant, the sample would have a larger W30, and a lower

concentration; however, the amount of spreading would have to be much larger than the

nominal .5-1 mm to explain the magnitudes of the changes seen. The graph of residual

width vs. concentration indicates that the CuomMnQll 3 nm sample from Run 243 would

have to have an effective Mn concentration of 7% to explain the observed value. The

concentration study also indicates that decreasing concentration should result in a smaller

thermal broadening, and the opposite effect is noted with decreasing W50. We conclude

that the systematic changes in A and B are not due to the spreading of the spin glass
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Table 7-13: Fits to A+BT+CI* for Run 243 - Cuo,89Mno_,,/Cu

l

11A

 (6)3151}?
LLB

 :1:=(61<)* 

 

(G) ~ -
 

-245 j; 13 3.36 :t 0.01 328 j; 13 1.5 :t 0.1 E

 

-245 j; 14 3.46 i 0.02 324 :1: 17 1.5 :t 0.1

 

-236 i 14 3.40 :t 0.02 366i16 1.5 fl: 0.1

 

 -226 i 14 3.57 :t 0.02 453 i 16 2.0 i 0.1

 

35.0 -201 i 14 3.54 :t 0.02 650 i 13 2.0 i 0.1

 

31.0 -183 i 14 3.70 :t 0.02 890:]:17

 

20.5 -145 :t 15 3.73 i 0.03 1182 j; 21

 

  10.5  -88 j; 14

  —h4.18 :t 0.03  2745 i 63  
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Table 7-14: Fits to A+BT+Ct" for Run 185 - Cu0_9,Mn0_07/Cu

 

(um) i _- -){. _.

Rxsscuom. i»

,:..(G)- . y *
 

1000 -l32 i 32 2.94 :l: .04 248 j; 33

 

100 -151 i 33 3.00 :1: 0.10 280 j; 34

 

50 -153 i 33 2.92 i 0.03 294 i 35

 

30 35.0 -134 :l: 33 3.22 i 0.02 413 i 36

 

25.0 -34 :t 63 3.45 :t 0.14 566:1:45 2.1 :t 0.1

 

23.5 -115 j: 33 3.19 i 0.04 1504 i 56 2.4 i 0.2

 

  17.5  —82 i 44  3.62 i 0.14   1340 j; 31   2.1 i 0.2
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Table 7—15: Fits to A+BT+Ct'“ for Run 245 - 05.9,MnM7/Cu

 

 

[(nm) ,

Tr

(K)

—

H

A _ (G/Kl“ : 5

 

‘ ' if? Run?245?iCuo.93Mnom , ‘  

[71(6) . _ , '1 ‘ (G),f_-;.*.:L w
 

30 33.0 —144 i 13 3.42 :t 0.02 280 :t 15 1.6 i 0.1

 

10 27.0 -127 i 13 3.40 i 0.02 423 :t 17 1.7 i 0.1

  
26.0 -116 i 13 3.38 i- 0.02 492 i 16 2.1: 0.1

 

23.5 -115 i 13 3.24 i 0.03 710 i- 14 2.0 i 0.1

 

21.0 -105 -_l- 13 3.42 i 0.03 1888 i 46 2.8 i 0.1

 

20.0 -107 :t 13 3.34 :t 0.03 2868 i- 65 2.8 i 0.1

 

  16.6  -75 i- 13  3.83 :t 0.03  1576 i- 20  2.2 i 0.1  
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layers. The divergence strength, C, also displays a marked increase with decreasing

layer thickness.

The larger errors on the 185 run are due to three factors. This data was taken

prior to the renovation and fine—tuning of the ESR apparatus. These samples were also

fabricated before the substrate cooler was installed, and some of the samples were

sputtered as single samples with the substrate centered over the gun, and some were

sputtered two at a time, with the midpoint between the two substrates centered over the

gun. The susceptibility measurements were somewhat anomalous, with bulk samples

sputtered during the same run having Tfs which differed by as much as 3.5 K, (37.5 K

to 41.0 K) which is outside the normal estimated errors of j: 1 K. The difference in Tfs

may be caused by changes in the sputtering rate over the course of a sputtering run,

differences due to the substrate positions with respect to the gun, or lack of substrate

cooling. Target shavings were measured to have a Tf of 38 K. The bulk freezing

temperature for this run was taken to be 39 K, which contributed to larger errors on the

fits, but allowed a consistent analysis of the run using a single bulk temperature.

INTERPRETATION OF THE MEANINQ OF T, IN mflATION 7-4

As is evident from the preceding chapters (and the opening quote of this chapter)

the interpretation of Electron Spin Resonance measurements above T,, even in bulk spin

glasses, is not straightforward. Neither of the two theories discussed (mean field and

cluster) has addressed ESR in spin glasses in lower dimensions, and there have been no

calculations regarding finite size effects on ESR measurements.
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Use of Equation 74 in the analysis of multilayered spin glasses raises some

questions. The first problem is that our goal - observation of finite size and

dimensionality effects - is confused by the presence of T,(Wso) in Equation 7-4. We

must therefore determine which of the trends observed in fitting to Equation 7-4 are due

to the depression of T,, and which are indicative of effects on the ESR linewidth.

Knowledge of the behavior of T,(WSG) in different field, frequency and dimensionality

regimes will contribute to separating these effects.

Zero Temperature (2D) Scaling Forms

The first question is to determine if Equation 74, which has been shown to

describe the behavior of AH(T) in bulk spin glasses and is consistent with the predictions

of both the mean field and the cluster model, is suitable to describe samples with small

W36. The fits described by Tables 7-13 through 7-15 have shown that Equation 7—4 does

indeed describe the data for all layer thicknesses for T > T,. Systematic trends as a

function of WSO are seen in the parameters, but samples with Wso s 3 nm do not obey

these trends.

Analysis of ac susceptibility measurements of thin multilayers, and of 2D Ising

spin glasses, indicate that two dimensional behavior should be characterized by a zero

freezing temperature, so that our assumption of a finite Tf in Equation 7-4 results an

incorrect form for the divergence. The zero freezing temperature form corresponding

to Equation 7-4 is:



212

AH(T) = A + BT + c' T" 7-5

where C' is used to indicate that this coefficient should not be expected to equal the

values of C obtained from the fits to finite T,. Tables 7-16 through 7-18 show the results

of fitting to Equation 7-5.

Fitting the samples with WSO s 3 nm to Equation 7-5 does not substantially

change the values of A and B. The value of C' does not appear to have any obvious

relationship to bulk parameters, but does decrease with decreasing layer thickness. The

exponents obtained by this fit continue the trend of increasing exponents as the layer

thickness decreases.

Figures 7—41 through 7-44 summarize the dependence of the fitting parameters on

WSG for run 243. Figures 7-45 through 7—48 and 7-49 through 7-52 show the

corresponding information for runs 185 and 245 respectively. In the plots of A(WSG) and

«(WSGL squares indicate parameter values obtained by fitting to a zero temperature

transition and circles correspond to fits made with finite values of T,(WSG).

There are two issues to be considered in separating effects on T, from effects on

the ESR linewidth. The first issue is field and frequency effects on T,, and the second

involves the depression of T, with layer thickness. Thus far, all data has been analyzed

in terms of the values of T, measured at 100 G and a measuring time of 300 seconds.

The use of the bulk T, for all samples will not work; in very thin samples, the linewidth

is barely out of the broad minimum at this temperature. We consider these effects in the

following sections.
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Table 7-16: Fits to A+BT+C'T" for Run 243 - Cuasdllnau/Cu

 

 

 

 

 

No fit

 

No Fit

 

No Fit

 

No Fit

 

No Fit  
 

31.0 ~199 j; 14 3.70 :t 0.02 1.77(i.03) x 108 3.0 :I: 0.2 II

 

20.5 -128 i 15

1

3.73 i- 0.03 1.57(:.02) x 107 2.5 i 0.2

   

10.5

It 

-76 i 14   
4.18 i 0.03

__—__l|—_—___A.__—_

2.57(:t.06) x 10‘5

  
2.4 :t 0.2
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Table 7—17: Fits to A+BT+C’T" for Run 185 - Cu0,9,Mn0_0,/Cu

 

U Run185~Cu093Mnom

 

  

 

 

 

 
 

30 35 .0 No Fit

 

7 25.0 -27 j; 13 3.45 i- 0.14 3.01(i.08) x 108 3.4 j: 0.2

 

5 23.5 -104 i- 13 3.19 i 0.04 1.90(i.02) x 1010 3.7 i 0.2

 

3 17.5 -31 i 12 3.62 j: 0.14 5.93(i.08) x 108 3.7 i 0.2       
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Table 7-18: Fits to A+BT+CT“for Run 245 - Cuaanam/Cu

 

 

 

(G)   
' (G)C ’
 

No Fit

 

No Fit

  No Fit

 

23.5 No Fit

 

21.0 -100 i 13 3.42 :t 0.03 6.35(;t.l6) x 109 4.1 j; 0.2

 
 

20.0 -101 :t 13 3.34 :t 0.03 5.l9(i.12) x 109 4.0 :t 0.2

 

  
16.6  --78 j; 13

 
3.83 :t 0.03 1.24(:.03) x 107

  
2.7 i 0.2
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Field and Frequency Effects on T,(Wsc)

In general, the freezing temperature is a function of measuring field, frequency

and spin glass layer thickness, so that we must consider T,(WSG,H,w). In ESR

measurements, the frequency determines the field used - a frequency of 1 GHz requires

a magnetic field of 300 G. For ESR at 9 GHz, a 3300 G field is required. We have

seen in Chapter 4 that field and frequency effects have opposite actions on T,; an

increased magnetic field results in a depressed value of T,, and an increased frequency

results in a larger value of T,. We have also seen that, as the layer thickness is reduced,

the form of the frequency dependence changes.

According to the prediction by Fischer”, and the experimental data by Kenning,

l. 83

et. a , the magnetic field dependence of T, is different in low fields than in high fields,

with the crossover point experimentally found to be between 300 and 500 G in

Cuo_93Mn0m/Cu multilayers for WSG = 2 nm to 500 nm and fields from 2 G to 15000 G.

We can use this data to predict the freezing temperature over the range of magnetic fields

used in the ESR experiment. Concentration dependence can be taken into account by

scaling the freezing temperature like concentration to the 2/3 power. ‘53. Table 7-19

summarizes the values predicted for Cuo_89Mn0_,,/Cu for the range of fields used in the

ESR experiment.

This table shows that the percent change of the value of T,(WSG,H) from the value

measured at 100 G is much greater in the thinner layers than in the thicker layers. For

the 1 nm sample, the change from the ’DC’ measurement is a 40 to 68 percent

depression, while the corresponding change for the 500 nm samples is only 12 to 23
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percent. In bulk AgMn, Wu, et. al.“", claim that the freezing temperature is roughly

field independent for the magnetic fields used for ESR and assume a single value of T,

for all fields and frequencies in their scaling analysis, in contrast to the predictions of

Table 7-19.

The Uppsala group has measured the frequency dependence of the freezing

temperature over eight decades from 10“ to 10‘ seconds. Holtzberg, et. al."4 have

made a similar measurement on EuSrS from 17 Hz to 2100 Hz, and used a resonant

cavity technique to measure T, at 9 GHz. The EuSrS results indicate that a Fulcher law

with a characteristic time of 1013 3 describes the data for all frequencies, including

9 6112.

Assuming this extrapolation to 9 GHz is valid for CuMn, we can use the Uppsala

measurements to predict a value of T, at 9.3 GHz. Figure 7-53 shows the measured

values of T, from the Uppsala data, and the extrapolated T, at 9.3 GHz. Table 7-20

shows the values of T, at 9.3 GHz for Cu,,,,.,Mn,,,ll assuming both a finite T, and Tll = 0.

(Recall that T3 is the equilibrium freezing temperature.)

Figure 7-54 shows the ranges of predicted T,’s from the two field/frequency

regimes; the circles represent the Uppsala prediction [T,(WSG, 10 G, 10'10 s)], the

squares represent the magnetic field dependence for the fields used in the ESR

experiment [T,(WSG, 1000 G < H < 6000 G,3OO s)] and the diamonds represent the

values used in the fitting presented here, TKWSG, 100 G, 300 3).

Part of the problem in combining these two effects to obtain T, at conditions

appropriate to ESR is that the frequency dependent measurementswere made in the low

field regime, which should exhibit Ising-like behavior according to Fischer’s predictions,
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Table 7-19: Predicted Dependence of T, on Magnetic Fieldfor CuogpMno,,I/Cu

 

 

 

   

mu.

     
«00>

    

* (K)
 

47.5 41.7 39.0 36.7

 

100 47.5 40.4 37.8 35.4

 

50 45.0 39.8 37.2 34.9

 

30 42.5 35.3 32.8 30.6

 

10 35.0 25.8 23.5 21.5
1.
 

31.0 22.7 20.5 18.5

 

20.5 15.3 13.4 11.7

   10.0  5.9  4.5 3.2  
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Table 7-20: Extrapolation of T} to 9.3 GHzfor Cu,,.,,,,Mn,,Lu/Cu

~ an»; ,H.
      

_ “9}

 

 

 

4 55.3 54.4

 

5 58.0 56.6

 

10 67.5 65.6

ll 

20 71.7 68.2

 

30 75.9 72.4  
  50 74.1 65.7  
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while the ESR data is taken well within the Heisenberg—like regime. If we were to use

the value of T, at 9.3 GHz as extrapolated from the Uppsala data in Fischer’s prediction

for the Heisenberg-like regime, we would substantially overestimate T,. Use of the

values of T, extrapolated from the Uppsala data with no field correction in Equation 7-4

is incorrect, as the linewidths continue to diverge for temperatures below these values.

Fitting to Equation 74 with the value of T, predicted to apply at 3300 G (roughly

the position of the resonance peak center) results in a systematic shift in the parameters

A, C and x. The thermal broadening coefficient remains roughly constant and the trends

with decreasing layer thicknesses are unchanged.

The analysis presented in this section leads us to conclude that, at present, we

have no better alternative to using the value of T, from the quasi-static SQUID

measurements at 100 G. All of the literature on ESR in bulk spin glasses uses quasi-

static measurements of the freezing temperature in analysis of AH(T), which will

facilitate comparison between this data and other reports.

Effect of the Depression of T, on Equation 7-4

The effect of dimensionality and finite size in depressing T,(WSG) in these

multilayers has been well documented in Chapter Four. The presence of T, in Equation

7-4 complicates interpretation of this expression. We must be very careful that the

effects of the depression of T, are separated from possible dimensionality and finite size

effects on AH(T). The similarity of the AH(T) curves for all layer thicknesses suggests
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that there might be a simple transformation - such as a temperature shift - which will

allow us to essentially remove the effects of the depression of T,.

In general, there exists some function which relates T,(Wso) to the bulk freezing

temperature, T,(oo). We can look at the specific case of finite size scaling as given by

Equation 7—1 , although the same analysis is applicable to any general relationship

between T,(WSO) and T,(00). We can solve Equation 7-1 for TKWSG) in terms of T,(oo)

and plug this result into Equation 7-4. This allows us to write a more general equation

which is expressed in terms of a shifted temperature, T'.

T’ = T + a w; T,(°°) = T + T,(~) - T,(W,G> 7"

The shift in the temperature scale, T,, is just the difference between the freezing

temperature at W8,, and the bulk freezing temperature. Equation 7-4 becomes

 AH(T’) = A’ + B T’ +C’ T, - 7}(°°) 1 7-7

1,0»)

where the parameters in Equation 7-7 are related to those in Equation 7-4 by

AI =A - B a W33 Tf(00) =A + B(Tf(oo) _ Tf(WSG)) 7-8

C’=C(1-aWs'$ "=c(W]-x 7-9

no»)
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By using the relationships given by Equations 78 and 7-9, we can determine to

what extent the trends observed in fitting to the measured T,(WSG) (Equation 7-4) are due

to the depression of T,WSG. The values of A and C are predicted to change, but the

values of B and It should remain invariant under this transformation. Tables 7-21

through 7-23 compare the values of A and C under the transformations. Figures 7-55

through 7-60 graphically illustrate the effect of using T,(WSG) in Equation 7-4.

The changes due to this shift are very illustrative, especially in the case of Run

243. The residual width has the same value for all layer thicknesses when fit to Equation

7-7. The divergence strength, C, takes on roughly the same value for all layer

thicknesses 2 7 nm. Below this thickness, the analysis for Run 243 results in a lower

value for the divergence strength. The analysis for run 245 also indicates a departure

from systematic behavior at about Wso = 7 nm, but the values of C for samples less

thanthis thickness are larger than the bulk value. The data for Run 185 indicates a

failure between 30 and 7 nm; the quality of the data andthe lack of data between these

two layer thicknesses makes it difficult to localize where the failure begins. The values

of C are on average overestimated, with the exception of the 5 nm sample which has

already been identified as behaving anomalously.

Regardless of the model used to predict the depression of the freezing

temperature, the temperature shift will always be equal to the difference T,(WSG) and



237

Table 7-21: Parameters A and C after removal of T/WSG) dependence of

Equation 7-4for Run 243 - Cuangnau/Cu

 

. , .

 

'=A

 

-245 :I: 13 -245 :1; 13 328 j; 13 328 :t 13 l

 

 -245 i 14 -245 i 14 324 i 17 324 _-t-_ 17

 

50 2.5 -247 i 12 -236 i 14 337 j; 14 366i16

 

30 5.0 -243 i 14 -226 i 14 363 j: 14 453 i 16

 

10 12.5 -248 i 13 -201 i 14 353 j: 13 650 :1: l3

 

16.5 -242 i 14 -183 i 14 349 i 13 890 j; 17

 

27.5 -244 i 15 -145 i 15 281 i 13 1182 j: 21 I

 

 37.5 -246 j; 12  — -88 :1: 14 166;]: 13  2745 i 63
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Table 7-22: Parameters A and C afier removal of TKWSG) dependence of

Equation 7-4for Run 185 - Cuo.9,Mn0_0,/Cu

:1
|

1 f ? - Run 185’Cu093Mn007 .1 ' i, I: z 1:5 I.  , . 1‘ I I '. I f i

 I!
(um) I

 ? .‘Ai‘A-i‘ReSidualmde)1 '.

T

m..............,,... e:
 

I C (I

 

1000 1.5 —l35 i 32 -l32 i 32 240 j; 33 248 i 33

 

100 0.2 -152 :t 33 -151 i 33 278 j; 34 280 :t 34

 

50 3.0 —162 j: 33 ~153 i 33 259 i 34 294 j; 35

 

30 4.0 -l47 i- 33 -134 j; 33 329 i 35 413 i 36 
 

14.0 -82 i 63 -34 i 63 233 :1: 46 566 i 45 II

 

15.5 -164 i 33 -115 j: 33 446i38 1504 :1: 56

    21.5  -156 i 44  -82;t44 263 :1: 36  1340 j; 31
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Table 7-23: Parameters A and C after removal of T/WSG) dependence of

 

W45equno

 

r, ’ * Residual Width. (G) - , Divergeneesrrength (6),}
 

Wig-(3' ‘- 1 ‘

 

 4.5 -l60 j: 13 -144 i- 13 228 j: 14 280 :1: 15

 

10 10.5 -162 :1: 15 -127 i 13 242 j: 14 423 i 17

 

11.5 -155 i- 13 -116 j: 13 229 i 13 429 j; 16

 

 14.0 -l60 i 13 -115 i 13 279 i 15 710 i 14

 

16.5 -l61 i: 13 -105 i 13 372 i 19 1888 j; 46

 

17.5 -165 j: 13 -107 i 13 493 j: 21 2868 j: 65

 

  20.9  -155 i- 13  -75 -l_- 13  262 j; 13  1576 -_l-_ 20

 

 



 

D
e
p
e
n
d
e
n
c
e

o
r
t
h
e

R
e
s
i
d
u
a
l
I
i
d
t
h
o
n

I
t
,
(
,
—
R
u
n

2
4
3

O
I
I
I
I
I

I
I

I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I

 

I
‘

o
'1
',
F
i
n
i
t
e

.
T
,
B

0
—

g
e

S
h
i
f
t
e
d

F
i
t

-
1
0
0

*
-

240

-
2
o
o
—
-

h
—

.
f

f
i
i

i
i
i

1
-

_
3
0
0

I
I
I
I

I
I

I
I
I
I
I
I
I

I
J

I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I

0
.
1

.
1
.
0

1
0
.
0

_
1
0
0
.
0

1
0
0
0
.
0

w
s
o
.
(
n
m
)

(9) V - WWII Happen

 
 
 

 
L
1

  Figure‘7
-
5
5
:

C
o
m
p
a
r
i
s
o
n
o
f
t
h
e
R
e
s
i
d
u
a
l
W
i
d
t
h
fi
v
m

E
q
u
a
t
i
o
n
7
4
a
n
d

7
-
7
f
o
r
2
4
3
C
u
a
n
a
"

 



 

(9) o — muons mnemonic

 

3
0
0
0

2
0
0
0

1
0
0
0

D
e
p
e
n
d
e
n
c
e

o
f
t
h
e
D
i
v
e
r
g
e
n
c
e
S
t
r
e
n
g
t
h
o
n
I
”
-
R
u
n
2
4
3

 

I
I
I
I
I

I
I

I
I
I
I
I
I
;

I
r

I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I

i
- t

I
S
h
i
f
t
e
d

F
i
t

0
F
i
n
i
t
e

'r
,

-

e

241

..
J

I
I
I
I

I
I
I
I
I
I
I
I
I

I

.J

I
J

I
I
I
I
I
I
I
  0

.
1

1
.
0

-
1
0
.
0

1
1

1
1
1
1
1
1
1

1
0
0
.
0

I
n

(
n
m
)

 
1
0
0
0
.
0

 
 F
i
g
u
r
e
7
—
5
6

C
o
m
p
a
r
i
s
o
n
o
f
D
i
v
e
r
g
e
n
c
e
S
t
r
e
n
g
t
h
F
r
o
m
E
q
u
a
t
i
o
n
7
4
a
n
d

7
-
7
f
o
r
R
u
n
2
4
3
C
u
,
”
M
n
,

,
,

 



 

D
e
p
e
n
d
e
n
c
e

o
f
t
h
e
R
e
s
i
d
u
a
l
I
i
d
t
h
o
n
I
”

—
R
u
n

1
8
5

I
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I

 

I

c:

‘
1

S
h
fl
n
e
d
F
u
n

“

.
T
’
I
O

.
.

'
.

T
!
F
i
n
i
t
e

"

-
1
0
0
—

'
_

242

 

(9) v - Input I‘RPIBOH

 

  
 

_
2
0
0

I
1

I
I
I
I
I

I
I

I
I
I
J
I
A

L
I

I
J
I
I
I
I
I

1
1
0

-
1
0
0

1
0
0
0

.
‘
H
c
l
h
fl
n
l

 
  Figure7-

5
7
:

C
o
m
p
a
r
i
s
o
n
o
f
t
h
e
R
e
s
i
d
u
a
l
W
i
d
t
h
f
r
o
m
E
q
u
a
t
i
o
n
s
7
4
a
n
d

7
-
7
f
o
r
R
u
n
1
8
5

-
C
u
m
m
M
n
,
W

 

 
 



 

D
e
p
e
n
d
e
n
c
e

o
f
t
h
e
D
i
v
e
r
g
e
n
c
e
S
t
r
e
n
g
t
h
o
n
I
n
-
R
u
n

1
8
6

 

2
0
0
0

I
I

I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I

l-Ol

l

O

O

In

"I

.
T
,
F
i
n
i
t
e

—

_
'

'
e

S
h
i
f
t
e
d

F
i
t

243

Q
;

_

i
-

.
Q

‘
.

.
.

.-

I

l L
o o
o o
3 to

(9) Wang eoneflaeam

 
 
 1

I
1
0

1
0
0

1
0
0
0

O
I

I
J
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I

I
I

I
I
J
I
I
I
I

 
 
 

F
i
g
u
r
e
7
-
5
8
:
C
o
m
p
a
r
i
s
o
n
o
f
t
h
e
D
i
v
e
r
g
e
n
c
e
S
t
r
e
n
g
t
h
fi
'
o
m
E
q
u
a
t
i
o
n
s

7
-
4
a
n
d
7
-
7

-
R
u
n
1
8
5

-
C
u
a
,
,
M
n
o
_
0
7

 



 

D
e
p
e
n
d
e
n
c
e

o
f
t
h
e
R
e
s
i
d
u
a
l
I
i
d
t
h
o
n
I
,
“
-
R
u
n

2
4
5

I
I

I
I
I
I
I
I
'

I
I

I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I
 

0
—

O
S
h
i
f
t
e
d

F
1
1
.

"
—

I
1'
,

e.
o

"
‘

.
T
!
F
I
n
I
t
C

"

.
1
1
0
0
—

i
i
i
,

I
.
_

‘
i

ii
i

1
~

‘
-
2
0
0

I
I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I

I
I

I
I
I
I
J
I
I

1
_
1
0

*
1
0
0
‘

1
0
0
0

I
“

(
n
m
)

244

(a) v - Input l'nplflll

 
 
 

 
 
 F
i
g
u
r
e
7
-
5
9
:

C
o
m
p
a
r
i
s
o
n
o
f
R
e
s
i
d
u
a
l
W
i
d
t
h
fi
o
m

E
q
u
a
t
i
o
n
s
7
4
a
n
d
7
-
1
-
R
u
n
2
4
5

-
C
a
u
g
M
n
a
o
,



 

D
e
p
e
n
d
e
n
c
e

o
f
t
h
e
D
i
v
e
r
g
e
n
c
e
S
t
r
e
n
g
t
h
o
n
I
”

-
R
u
n

2
4
5

 

2
0
0
0

I
I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I

r
j

I
r
I
I
I
I
l

I

l

O

O

In

H

e
S
h
i
f
t
e
d

F
i
t

0
'1
',
F
i
n
i
t
e

—

O
O

'
.
—

e
'

.
L

Q
0
'

'
-

o
g

1
1

1
1
1
1
1
1
1

1
1

1
1
1
1
1
1
1

L
1

1
1
1
1
1
1
1

1
'

1
0

1
0
0

1
0
0
0

I
”

(
n
m
)

1 l

o o

o o

o to
H

(9) mittens constrain

 
 
 

 
 
 

F
i
g
u
r
e
7
-
6
0
:
C
o
m
p
a
r
i
s
o
n
o
f
D
i
v
e
r
g
e
n
c
e
S
t
r
e
n
g
t
h
s
fi
o
m

E
q
u
a
t
i
o
n
7
4
a
n
d

7
-
7

-
R
u
n
2
4
5

-
C
u
a
”
M
n
“
,

 

245



246

T,( on ) . A’ , which is changed by an additive factor proportional to the magnitude of the

shift, will be the same regardless of the function describing the relationship between

T,(WSG) and T,(oo). The magnitude of C' will be affected by the form assumed to relate

T,(WSG) and T,(oo), and the failure of samples with smaller Wso to take on the bulk value

of C’ may be due to the failure of finite size scaling in describing this relationship.

A further interesting observation is that the temperature at which deviations from

the power law behavior occurs (1") also becomes relatively constant in the shifted

analysis. If T' is shifted by T,, and the reduced temperature is calculated using T,(oo),

the resulting values of t' for all layer thicknesses range from .63 to .80 for Run 243

(Cuo_89Mno,,,), between 0.60 and 1.0 for Run 185 (CuomMnom) and between .65 and 1.1

for Run 245 (Cuo.93Mnom). The range ofvalues represent scattered valuesfor the shifted

t', and do not represent systematic trends with decreasing W30.

The removal of the dependence of Equation 74 on T, has shown that the

systematic changes in the values of the parameters A and C can be attributed to effects

on T, and not to effects on AH(T); however, the value of the exponent, K, and the

Thermal Broadening, B, are not due to the depression of T,.

COMPARISON WITH THEORY

The two theories developed to explain ESR in spin glasses represent very distinct

physical pictures, even though they predict the same functional form of AH(T). This

point is exceptionally important; in order to properly interpret these measurements, we

must understand what we have measured. The importance of this statement bears a
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review of the differences between the pictures before considering the consistency of the

data with each.

We would like to look for data which would contradict one or the other of these

pictures. Because both pictures predict a power law behavior, but neither model predicts

the value of x, comparing the measured value of x with theory will not serve to

distinguish between the models. We must also consider if, near T,, the models are

consistent with either the general mean field/hierarchical picture or the droplet picture

described in Chapter 3.

Comparison with the Mean Field Picture of ESR

In the mean field picture, the ESR resonance is due to critical slowing down as

the material approaches the spin glass phase. Physically, this implies that, at high

temperatures, the spins are all in the paramagnetic phase and contribute to the resonance.

As the temperature is lowered, the relaxation times of the spins begin to diverge, finally

going to infinity at T,, which results in an infinite relaxation time and an infinite width

to the resonance line. The ESR resonance thus measures the collective behavior of the

spins. Departure from the power law behavior near T, is attributed to the failure of the

exchange narrowing limit near T,.

The mean field ESR theory is consistent with the mean field picture of spin

glasses; this model assumes a phase transition at T,, and asserts that the transition exists

in large (1000 G to 6000 G) magnetic fields. This is inconsistent with the droplet theory,

in which a phase transition should not be observed in fields of this magnitude.
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The mean field calculations of Levy, Morgan-Pond and Raghavan have been shown106

to describe low frequency ESR data with accuracy, but fail when applied to high

frequency (9 GHz) data. A direct comparison of their analytic expressions with this data

is therefore not possible.

One point which seems to have been neglected by proponents of the mean field

theory is the relationship of it to other exponents. If x is a critical exponent, relationships

between K and other critical exponents should exist. Wu1m cites calculations which

indicate tt= Zr, and also It: zu-2B. Appendix B shows that measurements of Zn vary,

even within measurements of metallic spin glasses. Values of zv obtained from scaling

measurements of the ESR linewidth in metallic spin glasses are between 1 and 3; those

obtained from AC susceptibility measurements are in the range 7 to 10. Mean field

theory predicts values in the range 2 to 4. Bulk samples are characterized by K = 1.5,

which corresponds to zu = 1.5 or zv = 3.5 from the predictions given above. These

values are consistent with other values obtained from ESR scaling, but are different from

other measurements of zv.

If the measurement of the divergence of AH(T) corresponds to the measurement

of a phase transition, we would expect to see finite size effects. Finite size effects on

the linewidth should manifest themselves by departure from the bulk behavior at a higher

temperature, and a rounding of the divergence as the layer thickness decreases. We must

be careful to exclude the known effects of the depression of T,(WSG). From the shifted

analysis described by Equation 7-7, we find that departure from a power law occurs at

approximately the same reduced temperature for all layer thicknesses. In addition, the

value of the exponent increases with decreasing layer thickness.
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The effect of dimensionality on x is unclear. One difficulty with numerical

comparisons is that departure from the power law behavior occurs at higher reduced

temperatures for higher frequencies. The values of I: obtained from our fits would be

an underestimate of the actual value if this effect were pronounced. In lieu of

measurements at other frequencies, our values can be taken as lower bounds on tt. In

analogy with Equation 5-34 and 5-42, the linewidth due to an exchange narrowed

broadening should go like 1‘” in two dimensions. We have no a priori reason for

assuming that dynamic critical scaling applies in 2D; measurements in multilayers78 have

shown that the Fisher-Huse model is more appropriate.

Comparison with the Correlated Cluster Model

The correlated cluster model as originally presented by Barnes (See Chapter 5)

presents a very different picture from the mean field model. At high temperatures, the

spins are paramagnetic and all contribute to the resonance. As the temperature is

lowered, regions of the sample become correlated, so that when the relaxation time of

the correlated clusters becomes very long, these clusters will not contribute to the

resonance. This means that AH(T) is not a measure of Spin glass properties, but is

actually a measure ofthe decreasing concentration ofuncorrelated (paramagnetic) spins.

In order to apply the correlated cluster model to multilayered spin glasses, some

modifications must be made. Barnes’ original model was that the spins are paramagnetic

up until the time they become correlated. At that time, he assumes that their relaxation

times are longer enough so that they do not contribute to the resonance. Given the broad
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spectrum of relaxation times above T,, this picture seems restrictive, as spins are either

paramagnetic and in the resonance, or are correlated and are not in the resonance. The

broad spectrum of relaxation times suggests that the resonance line will detect both

uncorrelated spins, and spins in clusters which relax with a time faster than the upper

limit of detection. Up to now, we have avoided using the word ’droplet’ to describe a

picture of this sort, but an extension of the Fisher-Huse theory to this regime seems

natural.

In the correlated cluster model, the linewidth is not due to the spin glass behavior,

and so there is no reason to expect dimensionality or finite size effects. Instead, the

effect of decreasing the sample size should manifest itself in how the correlated clusters

are formed and grow. As the sample size decreases, the ratio of surface to volume spins

increases. Surface spins will be missing nearest and next nearest neighbors, and this

could affect the formation and the shape of correlated clusters. Preasymptotic corrections

to the RKKY interaction are expected to be important when spins are separated by less

than 6 nm in CuMn, and should affect cluster growth and formation which result in a

concentration dependence. Chemical clustering in real materials would also contribute

to correlated cluster growth.

The fundamental role of anisotropy in ESR above T, is further emphasized by the

fast that those ferro- and antiferro— magnets whose linewidths also diverge in this manner

are all anisotropic. Cubic (isotropic) antiferromagnets do not exhibit this behavior. This

indicates that anisotropy must play a fundamental role in the growth of correlated

clusters. This is especially applicable to highly anisotropic materials (such as ZnnMn;

see Chapter 5). In a one dimensional material, ordering occurs within the chain first,

 
 



251

so that we expect clusters to be oblate in nature and oriented along the chain direction.

These clusters would contribute to a strongly directional internal broadening field. This

indicates that anisotropy may be important to cluster formation and growth.

Relaxation between spins in clusters and the uncorrelated ions will exchange

narrow the inhomogeneous broadening due to the internal field distribution, so the

behavior of the divergence should be governed by how effectively the clusters and the

ions cross-relax relative to the strength of the internal field distribution. The thermal

broadening is a measure of the cross relaxation and is dependent upon the amount of

short range order. The value of B is inversely proportional to the relaxation time of the

electrons to the lattice. As the clusters correlate, their relaxation times to the conduction

electrons increase, which should lessen the bottleneck. The weaker bottleneck can not

effectively narrow the inhomogeneous broadening and the divergence should be stronger.

This is a possible explanation for the behavior of B and x as a function of decreasing

layer thickness.

We would expect that, at some layer thickness, the lack of neighbors would make

it harder to form clusters, so that the material would behave in the main as a paramagnet.

Awschalom” claims from susceptibility measurements of thin CdMnTe multilayers that,

when the behavior of a sample is determined by paramagnetic clusters, the dimensionality

of the sample is not important.
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Summary of the Comparison with Theory

We believe our data to be better explained by the correlated cluster model than

by the mean field model. The major difficulty in using Equation 7-4 to analyze AH(T)

comes from the presence of a quantity (T,(WSG)) which itself is subject to finite size and

dimensionality effects. When the effects of the depression of T,(WSG) are removed from

Equation 7-4, as reported in Tables 721 through 723, we see that the behavior of the

residual width and the divergence strength as a function of layer thickness becomes the

same as in the bulk. A conceptual explanation of the increase in B and x in the context

of the correlated cluster model has been forwarded.

The lack of correlation between the meaning of v and other critical exponents, as

well as the lack of finite size effects make this behavior difficult to explain within the

mean field model. The fact that the values of Zn obtained from ESR scaling are quite

different from the values arrived at from other methods also calls into question the

relationship of the ESR linewidth divergence to the spin glass transition.

The question of dimensionality is open, due in part to the fact that our

measurements represent a lower bound to the values of K due to frequency effects. Other

measurements on multilayers indicate that we don’t expect conventional critical slowing

down to describe the data in 2D, so trying to compare the value of It with other measured

or calculated values is futile. The expected characterization of the different dimensions

by an exponent which takes on two distinct values is not seen. The value of the exponent

is unaffected by the temperature shift analysis, indicating that the increase with

decreasing layer thickness cannot be attributed to the depression of T,.
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No mechanisms for the nucleation and growth of clusters have been suggested by

Barnes. The proximity of nearest neighbors - especially if the preasymptotic corrections

to the RKKY interaction are considered - should be fundamental to ordering. The

presence of this behavior in anisotropic ferro- and antiferro- magnets indicates that

anisotropy is also important.

INTERPRETATION OF AH(T) IN THE CONTEXT OF ACTIVATED CLUSTERS

The primary difference between spin glasses and regular, long-ranged magnets

is activated behavior. In a ferromagnet or antiferromagnet, we might expect that the

distribution of cluster relaxation times would be very small. In a spin glass, we know

that even above T, there is a broad distribution of relaxation times, so that some fraction

of the clusters will be partially frozen but will still contribute to the resonance.

Fisher and Huse predict (Equation 3-30) the relationship between the relaxation

time and the reduced temperature near the transition temperature. We can naively

appropriate this form, assuming that the linewidth diverges in the same manner as the

characteristic relaxation time. We would expect the divergent part of the behavior to

obey

um~t-veexpiiwwewwl

which is a modification of Equation 7-4 by an exponential factor. This equation holds

when the relaxation time is less than the measuring time, which corresponds to the case
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in which the spins can contribute to the resonance. We can gather the exponents to result

in a general form.

AH(T) = A + BT +c t“exp(Dt-")

This equation describes data with W8,} 2 7 nm consistently but results in lesser

quality fits for data 5 3 nm. The residual linewidth, A, and the thermal broadening,

B, are approximately the same as found by fits of the non-activated expression. The

values of C are approximately constant for all Wso 2 7 nm. The correction term,

characterized by the values of D and h, was not needed in fitting the samples with Wso

2 50 nm. (The best fit resulted when D = O). The remaining samples are fit with an

exponent of approximately h z 1 and monotonically increasing values of D. The value

of x is 1.5 for all samples. These parameters are summarized in Table 7-24.

The form of Equation 7—11 appropriate to T, = 0 is

AH(T) = A” + BT + C”exp(D T“) 7'12

where one must be careful in comparing A" with the residual widths obtained in the

other fits; the high temperature behavior is described by A" + BT + C", so that the
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residual width, A, is actually A"+ C". Samples with W30 5 can be fit to the zero

freezing temperature form, as shown in Table 7-25.

Table 7-25: Fits to A"+BT+C” exp(D T”) for Run 243 - Cuo_,9Mno, ,,

  

 

(nm) (K)  (G) (G/K) y . (G)

  

 3 20.5 ~182 i 15 3.73 i 0.03 15 i 13

 

1 10.5 -176 i 31 4.18 :1: 0.03 55 i 17

         

The resulting residual linewidths are -l67 G for the 3 nm sample and -121 G for the

1 nm sample. We note that the parameter h resulting from the zero temperature fit is

the same as the value for the thicker samples with non-zero T,.

An analysis of the divergence of the linewidth in terms of the relaxation of

activated droplets has been shown to consistently describe the data for all layer

thicknesses, but at the expense of two additional parameters for which we have no

physical feeling. The correction terms become significant for Wso s 30 nm, and are

characterized by an exponent 2: 1 for all layer thicknesses below this limit.
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LEEHIFI‘ ANALYSIS

As has been mentioned, the behavior of the lineshift with temperature at 9 GHz

does not lend itself to simple quantitative analysis, which is why the majority of this

study has focused on the behavior of the linewidth. Over most of the temperature range,

the position of the resonance line has a constant value corresponding to g at 2. The shift

to lower fields is very small over the region in which the power law is obeyed. Equation

5-34 predicts that, in the low frequency limit, the divergence of the lineshift should go

like the reduced temperature to a power twice that of the power characterizing the

linewidth divergence. The values obtained by fitting the lineshift to

T-T -8

(Hom - H,(~)) ~ [71] 7-13

f

are given in Table 7-26 and compared with the values of x obtained from fitting the

linewidth. In making these fits, the same minimum value of t used in making the

linewidth fits was used in order to give a direct comparison. Values given in parenthesis

for the samples with smalle represent the values of I: obtained by fitting to a zero T,.

Fits of Equation 7-13 to a T,=0 form resulted in very large errors. The values of 2/2

are consistently larger than the values of x, but in the general expected range. Equation

7-13 should strictly hold only for the low frequency limit, so this analysis is mostly to

illustrate that there are no drastic changes in the behavior of the lineshift as a function

of W30.



Table 7-26: Fits to (H(T)-Ho(oo)) ~ t'3 for Run 243 - Cua,39Mno.n
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H"

‘ re. 1 -‘ .i'fgii‘'

 

500 47.5 3319 j; 2 3.6 :t 0.2

 

100 47.5 3303 i 2 3.8 :1; 0.4

 

50 45.0 3312 j: 2 3.5 :t 0.4 1.5

 

30 i 42.5 3318 :t 3 4.5 :1: 0.4 2.0

 

10 35.0 3317 j: 2 4.6 :1; 0.4 2.0

 

31.0 3313 :l: 3 4.8 :t 0.3 2.2

 

 20.5 3304 j; 3 4.2 :t 0.3 1.7 (2.5)

 

10.5 3312 j; 3    %—5.1 i 0.7  1.8 (2.4)
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SQMARY

The linewidth and resonance peak position as a function of temperature and spin

glass layer thickness have been measured and presented for the multilayered spin glasses

Cu,,,,,9Mn,,_ll and CuomMnom with spin glass layer thicknesses from 1 to 1000 nm. The

concentration dependence of bulk spin glasses with Mn concentrations of 4,7, 11 and 16%

has also been studied. The data has been analyzed in terms of the standard equation

(7-4) used to analyze ESR in metallic ferromagnets, antiferromagnets and spin glasses.

The relevance of both mean field and correlated cluster interpretations of ESR has been

discussed, and the implications of each considered in light of the data presented here.

The observation is made that the systematic behavior observed in the residual width and

the divergence strength are the result of the depression of T,(WSG) with spin glass layer

thickness, as indicated by the shifted temperature analysis. The effects of assuming a

finite transition temperature in Equation 7-4 were considered, and samples with Wso

S 3 nm were found to obey a form of Equation 7—4 with T, = 0.

An alternate fitting form which contains a correction term to take activated

behavior into account was proposed, and shown to fit the data for all layer thicknesses

consistently, although at the expense of the introduction of two more parameters. The

conclusions of this study are presented in Chapter 8.

 



CHAPTER EIGHT

CONCLUSIONS AND SUGGESTIONS

This chapter summarizes the results of this thesis, and comments on some

experiments which have been suggested by this study.

SUMMARY AND CONCLUSIONS

Electron Spin Resonance (ESR) has been shown to be a useful probe of the

dynamics of spin glasses above T,. A straightforward interpretation of ESR results above

T, is difficult owing to the presence of multiple effects (i.e. bottleneck behavior,

frequency dependence, etc.), and even confusion as to the origin of the ESR signal in this

temperature regime.

The fabrication of multilayered metallic spin glasses with spin glass layer

thicknesses, W30, from 1 nm to 1000 nm has resulted in the observation and analysis of

both finite size effects and a crossover behavior from three dimensions to two as WSO is

decreased. These effects are observed as a depression of the freezing temperature,

TAWSG). Investigation of the frequency and field dependent behavior of multilayered

spin glasses has been limited to susceptibility measurements in the frequency regime from

10“ to 10‘ seconds at low fields, and from 2 G to 55000 G at 102 seconds. ESR

experiments, which probe a much different part of the field-frequency plane (as shown

in Figure 5-3), provide us with a means of testing the behavior of multilayered spin

260
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glasses with a different type of measurement. The short time scale of ESR (1010

seconds) opens the door to observation of relaxation phenomena occurring on much

shorter time scales than the extended dynamics of the spin glass phase, but still short

enough times so that these phenomena cannot be seen by susceptibility measurements.

A large body of experimental evidence, as well as computer simulations, indicates

that correlations are evident in spin glasses well above T,. The two major spin glass

theories - the mean field and the droplet models - have by and large neglected this

temperature regime, preferring instead to label it as simply ’paramagnetic’. The

conclusions drawn from the behavior of the linewidth, AH(T) and the resonance peak

position, H,,(T), above T, depend to a large part on the origin of the resonance. The two

theories used in explaining the divergence of these quantities near T, can be classed as

’mean field’ and ’correlated cluster’ theories, with both theories predicting a power law

divergence, but for different physical reasons. The mean field theory attributes the ESR

signal to the divergence of a characteristic relaxation time of the sample as T, is

approached. The temperature dependence of the linewidth is due to an

exchange-narrowed anisotropy-broadened line which diverges with the same characteristic

exponent as the relaxation time (in 3D).

The correlated cluster model assumes that the dominant activity above T, is the

formation and growth of correlated clusters, composed of moments which interact more

strongly with each other than with other moments. We expect that there will be a

distribution of relaxation times as a result of a distribution of cluster sizes and correlation

strengths. When the relaxation rate of a cluster is sufficiently long, the clusters dominant

contribution to the ESR measurement is as a source of random internal magnetic fields.
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The broadening of the linewidth as a function of temperature is due to two sources; the

random local fields due to the correlated clusters, and a random field due to the DM

anisotropy. The latter mechanism is introduced rather ad hoc as a concession to the body

of evidence that this anisotropy is indeed fundamental to broadening (cf. Mozurkewich,

et. al. ‘0’). The broadening due to both of these factors is narrowed by cross relaxation

between the clusters and uncorrelated spins.

If the mean field theory is correct, and the divergence of the ESR linewidth is

indicative of a phase transition, we expect to see finite size and dimensionality effects,

as seen in the behavior of T, in spin glass multilayers. If, as the cluster theory proposes,

the ESR linewidth actually measures some intermediate phase between the paramagnetic

and the spin glass phases, we expect the effects of reduced sample size will be evident

in how the correlated clusters nucleate and grow.

These measurements are the first observation of the Electron Spin Resonance

linewidth and lineshift in multilayered metallic spin glasses above T,. Qualitatively, the

same behavior is seen for all layer thicknesses; the linewidth decreases linearly at high

temperatures, experiences a broad minimum and diverges as a power law in reduced

temperature. The position of the minimum linewidth increases dramatically with

reference to the measured freezing temperature as WSO decreases. In bulk samples, the

minimum is at about 2.5 T,; in thinner samples, it moves to as high as 6.5 T,.

The position of the resonance peak corresponds to a constant value of g z 2 for

the same temperature range over which the linewidth obeys the linear form. As the

linewidth reaches its broad minimum, the position of the resonance peak begins to shift

to lower fields. This shift is much more pronounced in the region near T, where the
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power law prediction for the linewidth fails. Analysis of the lineshift is limited to

qualitative study, due to the small temperature regime in which a value different than

g = 2 is seen, and in which the power law behavior holds. The expression used to

describe the behavior of the linewidth with temperature in the bulk is given by

Equation 7-4. At a reduced temperature t', the linewidth departs from this power law,

rising less rapidly than predicted.

The concentration dependence of the linewidth in bulk samples of Cu,,,Mn, (x =

4,7 , 11 and 16 at. %) has been studied. The linewidth of bulk samples diverges with a

value of x = 1.5 for all concentrations. The residual width, A, and the thermal

broadening, B, are found to depend linearly on concentration, with A decreasing with

increasing concentration, and B increasing with increasing concentration. The divergence

strength, C, is observed to have a sublinear (increasing) dependence on increasing

concentration.

We have shown that samples of all layer thicknesses (1 nm 5 W56 5 1000 nm

for concentrations of 7 and 11 at. %) can be fit with the linewidth expression used to fit

the bulk, although samples with W$0 less than about 3 nm are better fit to an expression

corresponding to Equation 74, but appropriate to T, = O. This result is consistent with

susceptibility measurements on multilayers with small W30. The reduced temperature at

which departure from power law behavior is observed, t’, increases with decreasing W36.

Systematic variation of all parameters is seen as a function of layer thickness. The

values of the residual linewidth, A, and the thermal broadening coefficient, B, increase

with decreasing layer thickness. The divergence strength, C, is also seen to increase

dramatically with decreasing layer thickness. Comparison of Wso - dependent data to
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concentration dependent data allows us to exclude the possibility of layer spreading as

a source of these systematic changes. Considering the case in which samples with

Wso _<_ 3 nm are fit to the zero T, expression, the value of the exponent, it, increases

with decreasing layer thickness for all layer thicknesses studied. This general behavior

is obeyed for both concentrations studied.

In determining if there are finite size effects on AH(T), we must carefully

consider the parameterization of Equation 7-4 in terms of T,(WSG); the finite

size/dimensionality effects on T, may be misinterpreted as effects on AH(T). In general,

a relationship between T,(WSG) and T,(oo) (known to be finite size scaling over some

range of WSG) exists. We can use this relationship to remove T,(WSG) from Equation 7-4

so that the reduced temperature is expressed in terms of T,(oo) for all layer thicknesses

and the data for each W8,} is shifted by an amount equal to T,(oo) - T,(WSG). This

essentially removes the known effects of the depression of T, from the linewidth

measurement. This analysis indicates that A and C are constant for all layer thicknesses

2 7 nm. The failure of the assumed form of finite size scaling in representing the

dependence of T,(WSG) on T,(oo) for samples with WSG < 7 nm is responsible for the

deviations in the thinner samples. The temperature shift analysis, however, does not

affect the value of the exponent, K, or the thermal broadening. The reduced temperature

at which departure from a power law occurs also takes on the same value for all WSG

upon shifting and using T,(oo) in calculation of t'. This analysis suggests that finite size

effects - which would be expected to appear as a rounding of the divergence, and a

departure from bulk behavior at some t' which should progressively increase with

decreasing WSG are not seen in the ESR linewidth. This could be due to the short length
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scales which the ESR probes, or it may suggest that the measurement does not

correspond to a measurement of the spin glass phase. Our results indicate that no finite

size effects are seen in the linewidth; the appearance of these effects is due to the

presence of T,(WSG) in Equation 7-4.

We expect dimensionality effects to be characterized by changes in the exponent

x and possible by changes in the ESR lineshape and angular dependence of the linewidth.

The ESR lineshape remains Lorentzian for all layer thicknesses to 1 nm in the region

where the power law behavior is obeyed. The angular dependence of the lineshape has

not been systematically surveyed.

A value of x = 1.3 - 1.6 has been widely reported in bulk spin glasses,

ferromagnets and antiferromagnets. The only report of x in two dimensions (in an

antiferromagnetic salt) is x = 2. Frequency effects in the bulkl‘” indicate that values of

x from high frequency measurements (such as the ones reported here) may underestimate

x. In the thinnest samples considered in this study, a value of well over 2 is found. A

gradual increase in K is seen as W30 is reduced, but the data is not sufficient to determine

if this change is indicative of a dimensionality crossover, or a result of the changes in

cluster growth and nucleation due to the larger surface spin to volume spin ratio.

An added difficulty with the mean field model is in a lack of identification of ti

with other critical exponents. Calculations predict that it should be on the order of Zn;

values of Zn obtained from dynamic scaling are on the order of 1-3, so values of x in this

region are not unreasonable. Most measurements of zv in metallic spin glasses using

other probes find a value of zv = 7 - 11, which is very different from the ESR
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measurements. This may be a result of an incorrect interpretation of x as characterizing

a critical behavior.

We conclude that the cluster model is more likely to explain the behavior of the

ESR linewidth as a function of the spin glass layer thickness than the mean field model.

The evidence for correlations above T,, and the successful description of the stronger

correlations below T, via the Fisher-Huse droplet model suggests that a similar model

could describe the phase intermediate to the spin glass and true paramagnetic regimes,

and would provide a better theoretical understanding of the nature of the transition at T,.

As mentioned earlier, the divergent behavior of the linewidth is not unique to spin

glasses; however, we expect that the dynamics of the correlated cluster phase will differ

from those of long range ordered magnets. If the resonance is due to paramagnetic spins

and loosely correlated clusters, we might expect the dynamics of the clusters to obey an

activated expression. The behavior of the material can be consistently analyzed across

all ranges of W36, but lack of a theory gives us no feeling for the meanings of the

parameters and further interpretation of these results is difficult.

We believe that these ESR measurements are further evidence for the existence

of an intermediate phase, with a spectrum of relaxation times which are short enough that

they have gone undetected in the longer time susceptibility measurements. This raises

the question of the nature of this phase as a function of decreasing sample thickness. The

importance of the DM anisotropy to the broadening has been well documented. One

possible hypothesis for the increasing value of it with decreasing layer thickness is the

presence of regions of sample which have already condensed into the spin glass phase.

These regions would have macroscopic relaxation times and would be sources for the
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DM anisotropy, which is known to be most important in the spin glass phaseper se. We

might present a hypothetical phase diagram as shown in Figure 8-1.

For all sample thicknesses, a correlated cluster phase will begin at temperatures

in the area of the minimum of the AH(T) curve - about 2—3 T,. The onset of these

correlations is a property of a specific concentration of spin glass and should occur at

roughly the same temperature for all layer thicknesses down to some lower limit. At this

limit, the nearest and next-nearest neighbor distances between Mn ions will be large

enough to be prohibitive to the formation of correlations.

The ’correlated cluster’ phase is characterized by a distribution of relaxation times

which correspond to those of the weakly correlated clusters and the uncorrelated spins.

As the correlations within a cluster grow, the relaxation time of the cluster increases.

At some critical value of the correlation strength, the relaxation time of the cluster will

become macroscopic and undetectable by the ESR measurement. The cluster is then

essentially condensed into the spin glass phase. For a given concentration, this should

first happen (for all layer thicknesses) at T,(oo), with the caution that an absolute value

for the temperature must take into account the field/frequency conditions of the ESR

measurement. The question mark in the diagram indicates that, at some layer thickness,

the number of neighbors will be so reduced that clusters may be harder to form, which

would prevent correlations at higher temperatures.

For samples with T,(WSG) < T,(oo) a phase analogous to the Griffiths phase

exists, in which macroscopic portions - but not all - of the sample will be frozen into the

spin glass state. This region of gradual freezing continues to TKWSG), at which point all

of the relaxation times are macroscopic. The only reason this Griffith’s-like phase could
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be observed in these materials is due to the depression of the spin glass transition

temperature via finite size and dimensionality effects. As W80 decreases, the fraction of

frozen regions which exist will increase relative to ’free spins’. The length scale over

which the critical temperature is significantly different from the bulk critical temperature

in ferro- and antiferro- magnets is very small and may entirely preclude observation of

this phase in those materials.

The presence of correlated regions suggests that irreversibility effects should be

seen above T,. These effects would be on time scales which are too short to be observed

in susceptibility measurements. Irreversible behavior in the ESR linewidth has been seen

in these samples, as described in Chapter 6, but not investigated systematically.

SU ESTIONS R EXP

The existence of an intermediate phase and the possibility of a Griffiths-like phase

suggests a number of experiments which could be important in further defining the nature

and dynamics of this phase. Because the nature of research entails both answering

questions and knowing which questions to answer, this final section proposes some tests

of the existence and the elucidation of the nature of the intermediate phase.

1. We have seen that field and frequency effects influence the value of T,(Wso).

The phase diagram shown in Figure 8-1 will be dependent of the values of T,(00) and

T,(WSG) at the field and frequency of the measurement. Extension of ac susceptibility

measurements to fields on the order of ESR fields would allow an extrapolation of
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T,(WSG,H,w) which would give an absolute meaning to the parameter values which result

from fitting to Equation 74.

2. A frequency effect on the divergence has been shown to exist in bulk spin

glasses, so that lower frequencies follow the power law behavior to lower reduced

temperatures. Measurements of AH(T) at lower frequencies would result in better fits,

as a wider range of temperatures can be considered. This would more accurately

determine the value of x. Additionally, the behavior of the resonance peak position with

temperature is enhanced at lower frequencies, enabling a more quantitative analysis and

comparison with the AH(T) results.

3. As clusters form and ’drop out’ of the resonance, the intensity of the ESR line

should decrease. The total number of spins is proportional to the area under the ESR

resonance peak, and is further proportional to the susceptibility. Careful measurement

of the high temperature susceptibility will allow the extraction of the Curie constant and

the Weiss temperature for the multilayers. The ESR intensity should deviate from a

Curie—Weiss law as more and more spins drop out of the resonance and more slowly

relaxing clusters are formed. The reduction in the number of spins could be quantified

in this type of analysis, providing information about the growth of clusters, and the

temperature at which the correlations are first measurable.

4. The divergent linewidth and resonance peak position is seen in ferromagnets,

antiferromagnets and spin glasses. All spin glasses exhibit this behavior, but only some
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ferro- and antiferro- magnets. The determining factor in the behavior of AH(T) seems

to be anisotropy. This intuitively follows, as anisotropies could influence the shape and

dynamics of the cluster, as well as the character of the resulting internal field.

Au and Pt are spin-orbit scatterers in CuMn. Addition of one of these to a series

of multilayer films would increase the anisotropy of the film without changing T,.

Mozurkewich, et. al. ‘°5 have studied the behavior of bulk AgMn doped with Sb (which

increases the anisotropy and relieves the bottleneck) and found that the exponent

governing the divergence increases with increasing anisotropy. Our cluster interpretation

would imply that the breaking of the bottleneck increases the effect of the broadening

relative to the cross-relaxation. The values of the thermal broadening and the exponent,

it, increase, in agreement with this analysis. This study could shed light on the

mechanism governing cluster formation and growth and the relationship between the

thermal broadening and the exponent x.

5) The importance of anisotropy also calls into question the effect of the growth

technique on the spin glass character of the material. Comparison with films grown in

some other way - such as MBE - would be interesting. Likewise, a similar analysis of

a short range spin glass would be of interest.

6) The dilute magnetic semiconductors (like Cd,,,Mn,Te, Cd,_,,Mn,,Se) are tunable

over a wide range ofMn concentration. At low Mn concentration, they are paramagnets,

intermediate Mn concentrations result in spin glass behavior, and larger Mn

concentrations are antiferromagnetic in nature. By studying a series of these materials
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as they change magnetic character, the common (or different) elements of the behavior

as T, (or T,,) is approached can be identified. This would determine if the intermediate

state is specific to spin glasses, or if evidence exists in other materials as well. These

materials are semiconducting, so the skin depth problem would not limit sample size.

Multilayers are routinely fabricated by growth techniques which result in very low strain

samples, so data as a function of layer thickness can be taken and compared with

susceptibility results.

7) The intermediate phase should exhibit hysteretic effects. A study of these

effects would add to understanding of the dynamics of clusters, much as has been done

below T,. The advantage here is that the nature of the hysteretic effects are on relatively

short time scales (compared to true spin glass behavior), which are observable via ESR

measurements.

One study of MnSe‘” showed distinct hysteretic behavior in the intensity of the

linewidth as a function of temperature, and only weak hysteresis in AH(T). MnSe

undergoes a structural phase transition as the temperature changes. On cooling, the

structure goes from a cubic phase, in which the Mn+ interact paramagnetically, to a NiAs

structure, in which the ions interact antiferromagnetically. The onset of

antiferromagnetism is indicated by a decrease in the intensity as the material changes

phase. On warming, the signal starts out with low intensity, due to the antiferromagnetic

correlations, and the intensity rises rapidly upon the change back to the cubic structure.

Some type of hysteretic effects should be seen in the intermediate phase.
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8) The observation of the ’Griffith’s - like’ phase in these samples is possible

only because of the large WSO range over which T,(WSG) is different than T,(oo). It

would interesting to know if a similar range exists for random ferromagnets. More

theoretical work has been done on the possibility and characteristics of a Griffiths phase

in random ferromagnets, which might shed some additional light on the nature of this

phase. We might expect to see two phases; a true Griffiths phase, between T,(p= 1) and

T,(p), where p is the dilution from a pure ferromagnet, and a ’Griffiths like’ phase

between Tc(p, co) and Tc(p,W), where W is the width of the layered random ferromagnet.

9) A systematic search for changes in the lineshape and/or angular dependence

could determine if there is a difference in the approach to a three dimensional spin glass

vs. the approach to a two dimensional spin glass. A theoretical study of the effect of a

distribution of relaxation times on the lineshape could enhance our understanding of the

behavior of these materials in the immediate vicinity of T,.

 

 



APPENDIX A

SOLUTION TO THE BLOCH EQUATIONS

The Bloch equations are given by

  

dM M -M

d" = -y(b?xl?¢,z + 0 z A‘1

1

(III M

.710— : -Y(MXH¢)IJ - _XJ_ A'z

H,, can be considered to be the real part of a complex field, H’ = 2 H1 cos(wt), where

H1 is the pr0perly rotating component of H,. The counter rotating part will have a

resonance at -wo; when the system is near the resonance for H,, the other resonance will

be far away, so we can neglect the counter-rotating field.

The x component of the magnetization is given by the real part of the complex

magnetization, M’x

M, = 11(M,’) = x2H,e""‘ A-3

where the susceptibility, x, relates the complex magnetization to the complex magnetic

field. The susceptibility is now also complex, where
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x = x’-1 x” A'4

so that

R(M;) = x’2H,cos(u)t) + x”2H,sin(mt) A-5

The Bloch equations are (with the rotating field included)

dM . M

d: = 1(M1Hlsrnwt — HOMQ — 7‘1 A-6

2

dM M

Tr, = “Hou, - Mzchosmt) - f A-7

2

dM . M —

d“ = y(M,H,eos(et) - Mxfllsrnflofl) + 0T1 '- A-8

We can define the operators Ni;

Nt = e*""‘(Mx :1: (My) A'9

Adding and subtracting Equations A-6 and A-7, we find

t _ YHIMZ

- A-10
I

2
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If we require a steady state solution, szldt = O, and we find from Equation A-8 that

 

 

 

 

 

 

Mz—M0 = [ll-,1](N‘ _ N') A-ll

T1 2:

Solving for M1, If.

2

Mz = 0 l + 722m") A-12

1 + 132011.32 + 7211121312

:1

This is then plugged back into Equations A-9 and A-lO to give

TAmZHcoswt + 2Hsin cot

M, = 1101107012 ‘ 2 2 ( ) ; ( ) A-13

2 1 + 132(Am)2 + 721117312

1 T A1021! sin(wt) - 2H cos(mt)

M, = 510307012 2 2 2 2 ‘2 A-14

1 + 132mm) + 7 11,131;

The real and imaginary parts of the susceptibilities are

- T
(“’2 w) 2 A-15 x’ = 51-2401,) [

 

1+(m -mo)2 T; + «1131,12
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1

moi-mp2 T,’ + yzleTsz

A-l6 

1

x” = Emu!)

when H1 is small compared to Ho, which is usually satisfied, the last term is the

denominator can be ignored. For most nonmetallic samples, the real part of the

impedance will depend on x", the imaginary part of the susceptibility, so that the average

power absorbed is given by

P = 2mm: A-17

For metallic samples, the surface impedance, Z, is defined as

 

Z = 4n[fi'gxfi.] A-18

cl H2

And the power absorbed from the If field will be given by

4 2

Pa. = (7") IHI2Re<Z) A-19



APPENDIX B

CRITICAL EXPONENTS IN SPIN GLASSES

This appendix summarizes a representative group of measured and calculated

exponents, and defines the exponents. The dimensionality is denoted by d. Table B-1

defines some common exponents, and Table B-2 summarizes some important

relationships between the exponents. A list of calculated and measured static exponents

is given in Table B—3. The dynamic exponent is usually measured from dynamic scaling,

so a value of zu is found. Some authors distinguish between zu, which measures the

characteristic relaxation time and zvm, which is the exponent associated with critical

slowing down of the average relaxation time. A value of zym was cited only if the

author identified it as such, and was otherwise assumed to be zv. These results are

tabulated in Table B-4.
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Table B—1: Definitions ofSome Common Critical Exponents

 

‘1 I Exponent andNam‘e'Ii“, ,’.. 7‘ w ; ADefinitionJ‘SI,f-

 

Order Parameter

  
 

 

 

 

 

 

     

B

'y Susceptibility X ~ t"

a Specific Heat C ~ t“

u Correlation Length E ~ t'

6 Equation of State H ~ M‘

77 Pair Correlation Function (I‘(r)) P ~ r“‘”2+"’

tl/V Fisher-Huse Exponent (2D) 1 ~ expCI‘m“)

z Dynamic Exponent 1' ~ 5’
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Table B-2: Summary ofRelationships Between Critical Exponents

 

,1.3....»

¢ = (7 + B)/2

 

'Y = (“1-5-1) Widom Scaling Law

 

 
'y = yam) Fisher Scaling Law

 

= a + 26 + 7 Rushbrooke Scaling Law
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