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ABSTRACT

HOMOTOPY METHODS AND ALGORITHMS

FOR REAL SYMMETRIC EIGENPROBLEMS

By

Kuiyuan Li

This thesis discusses the homotopy methods and algorithms for real symmetric

eigenproblems. It contains two parts. In the first part, a new algorithm is presented

for finding all the eigenvalues and the corresponding eigenvectors of a symmetric

tridiagonal matrix. The algorithm is based on the homotopy continuation approach

coupled with the strategy of ‘Divide and Conquer’. Evidenced by the numerical

results, the algorithm provides a considerable advance over previous attempts in using

homotopy method for symmetric eigenvalue problems. Numerical comparisons of the

algorithm with the methods in widely used ESPACK library as well as Cuppen’s

‘Divide and Conquer’ method are presented. It appears that our algorithm is strongly

competitive in terms of speed, accuracy and orthogonality and leads in speed in

almost all the cases. The performance of the parallel version of the algorithm is also

presented.

In the second part, a homotopy method for finding all eigenpairs of a real symmet-

ric matrix pencil (A, B) is giyen, where A and B are real n x n symmetric matrices

and B is a positive semidefinite or ill-conditioned positive definite matrix. A reduc-

tion of pencil (A, B) to pencil (A, B) is given, where A is an unreduced symmetric

tridiagonal matrix and B is a positive definite diagonal matrix. One can easily forms

the eigenpair (:r, A) of pencil (A, B) from the eigenpair (y, A) of pencil (A, 3). Fur-

thermore, a formula is presented for finding the number of the finite eigenvalues of

pencil (A, B) without actually solving the generalized eigenproblem. By choosing

initial pencil properly, the homotopy curves are very well separated and, in general,

very flat and easy to follow. The homotopy algorithm is compared with QZ algo—

rithm. The numerical results show that the homotopy algorithm leads in speed in all

the cases.
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PART I

The Homotopy Method for

Real Symmetric Tridiagonal

Eigenproblem



Chapter 1

The Homotopy Method for Real

Symmetric Tridiagonal

Eigenproblem

1.1 Introduction

In this chapter, we propose a new algorithm, based on the continuation approach,

for finding all the eigenvalues and eigenvectors of a symmetric tridiagonal matrix. Let

A be an n x 12 real symmetric tridiagonal matrix of the form

( 01 52 l

52 02 33 0

A = ' - ° - ° - (1.1)

flit-1 art-l flu

O
\ fin an )  

In (1.1), if some 13.- = 0, then Rn clearly decomposes into two complementary

subspaces invariant under A. Thus the eigenproblem decomposes in an obvious way



into two smaller subproblems. Therefore we will assume that each 19; 9E 0. That is,

A is unreduced. Our algorithm employs the strategy of ‘Divide and Conquer’. First

of all, the matrix A is divided into two blocks by letting one of the A’s equal to zero.

Namely, we let

    

D=(Dl 0) an

0 D;

where

f 01 32 l { 0H1 BM: \

132 a: 53 5H2 01k+2 fik+3

D1 = ° ° ' , Dz —

flk—l air-1 5k flit-1 an—l flu

\ 51: a]: j ( 19» an )

We then calculate the eigenvalues of unreduced matrices 01 and D; by using the most

efficient algorithm available. Different from Cuppen’s ‘Divide and Conquer’ method

[8], our algorithm conquers the matrix A by the homotopy H : R’1 X R x [0, 1]

—-§ R“ x R, defined by

Act—D2: Ax—Aa:

H($,A,t)= (l—t) sz—l +1 sz—l

2 2

As: — [(l — t)D + tA]z

= sz __ 1
(1.3)

2

As: — A(t):r

= 2:72: — l

2

where A(t) = (1 — t)D + tA and D is called an initial matrix. It can be easily seen

that the solution set of H(2,),t) = 0 in (1.3) consists of disjoint smooth curves,

3



each of which joins an eigenpair of D to one of A [5, 6, 7, 20]. We call each of

these curves a homotopy curve or an eigenpath. Thus, by following the eigenpaths

emanating from the eigenpairs of D at t = 0, we can reach all the eigenpairs of A at

t = 1. Theorem 1.1 in next section shows that the eigenvalue component A(t) of each

eigenpath (z(t), A(t)) is monotonic in t. On the Other hand, by Hoffman-Wielandt

theorem [31],

is. — MO)” 5 "Am — Alli.w = 2(1 — 0212:... for any t e [0.11 (1.4)
. i=1

where ||.||p- is the Frobenius norm and where A.- and A;(t) are the i“ eigenvalues of A

and A(t) respectively. Therefore, all the eigenvalue curves /\,~(t) can be quite flat if

5H1 (=0 in D ) is very small, especially when n is very large. As a consequence, the

eigenvalue curves A;(t) are very easy to follow. We shall describe our curve following

algorithm in Chapter 2.

The search for fast reliable methods for handling symmetric eigenproblems has

produced a number of methods, most notably the QR algorithm, the bisection Sturm

sequence method with inverse iteration [14, 15] and the ‘Divide and Conquer’ method

[8, 9, 28]. In Chapter 3, we shall present our numerical results, along with comparisons

with these methods. It appears that our algorithm is strongly competitive in terms

of speed, accuracy and orthogonality, and leads in speed in almost all the cases.

Modern scientific computing is marked by the advent of vector and parallel com-

puters and the search for algorithms that are to a large extent parallel in nature.

A further advantage of our method is that it is to a larger degree parallel, in the

sense that each eigenpath is followed independently of the others. This inherent na-

ture of the homotopy method makes the parallel implementation much simpler than

the other methods. In Chapter 3, we also show the performance of our parallel al-

gorithm and an indirect comparison with both Divide and Conquer (D&C) [9] and

Bisection/Multisections (B/M) [23], which are currently considered the only parallel

algorithms available for symmetric eigenproblems. The very high efficiency of our

method and its natural parallelism make the algorithm an excellent candidate for a

variety of architectures.



Theoretical aspects of the continuation approach to the eigenvalue problems have

been studied in [5, 6, 7, 20]. A first attempt was made in [18] to make the method

computationally efficient. Its parallel version appeared in [22]. Evidenced by the

numerical results, our algorithms given here provide a considerable improvement over

the algorithms in [18, 22].

1 .2 Preliminary Analysis

Let (A)1 denote the lower (n — 1) x (n — l) submatrix of A , (A)1 denote the upper

(12 — 1) x (n — l) submatrix of A.

By a straightforward verification, one can prove the following lemma.

Lemma 1.1 For matrices M and N and a real number 0,

r . \
Ml

det _ ._... ._ .. _ __ _ =detM-detN—c3det(M)1~det(N)‘. (1.5)

  

Let M be a k x k unreduced symmetric tridiagonal matrix and let { £1 < {2 <

< £1. } and { m < 172 < < 771,-1 } be the eigenvalues of M and (M)1 respectively.

Then, by Cauchy’s interlacing theorem [24],

£1 < 111 < 62 < < 1]];_1 < fig. (1.6)

For D1 and D2 in (1.2), let f1 = det(D1 —M), f2 = dct(D2—AI), f3 = det((D1)1 —

«\I) and f4 = det((D2)1 — AI). Let (:r(t),A(t)) be an eigenpath of the homotopy

H(z,A,t) = 0 in (1.3), then for each 0 S t S 1, A(t) is an eigenvalue of A(t) =

(l - t)D + tA in (1.3), where D is of the form in (1.2).

5



Theorem 1.1 If all the eigenvalues of D are distinct then

i) Either A(t) is constant for all t in [0,1] or strictly monotonic.

ii) A(t)A(t) > o for t small, if in) ¢ 0.

Proof: Since

  

| \

D1 —— A(t) I I

l tflm

det(A(t)—A(t)I)=det — ————— ——— — —.—— ————— — =0,

Wk“ 1

K I /

from ( 1.5), we have

f1(A(t))f3(A(t)) - tzflinfsflallfdiial) = 0- (1-7)

If there exists a to in [0,1] for which f3(A(to))f4(A(to)) = 0 then either f3(A(to)) = 0

or f.(A(to)) = 0; say f3(A(to)) = 0. It follows from (1.6), f1(A(to)) 76 0. Hence,

f2(A(to)) = 0 in ( 1.7); accordingly, *

f1(*(10))f2(1(t0)) - t21913+:f:+(A(to))f4(A(to)) E 0.

This implies det(A(t) — A(to)I) = 0. Thus, A(t) = A(to) for all t in [0,1].

Assume f3(A(t))f4(A(t)) 96 0 for any t in [0,1]. Write A(t) = 53A“). Differentiat-

ing (1.7) with respect to t yields,

dl-A-lf1(/\(t))fg(A(t)) — #193,,f3(A(t))f4(A(t))]A(t) = 2tflt+1fa(«\(t))f4(k(t)) (1-8)

(Iii-[fl“(0)506”‘t2fi2+1f3(3(t))f40(t))l '7‘" 0 for any t E (0t1]°

We claim that

gqxlfn(l\(t))f2(k(t)) - t’fit+1fs(A(t))f4(A(t))] H, 7‘ 0- (1-9)

6



For otherwise,

ginsenfzwor twaifaoannmn)![:11 vastness)» .._.o

d d

=3; we» t=012(x(0))+f1(x(0))5 sou» I,=o=0.

Since A(O) is an eigenvalue of D, we have f1(A(0))fg(A(0)) = 0. If f1(A(0)) = 0

then fg(A(0)) at 0 since all eigenvalues of D are distinct. Hence, fi-f1(A(t))|¢=o = 0.

Consequently, A(0) is a multiple eigenvalue of D1 which contradicts to the fact that

D1 is unreduced. The proof of (1.9) for the case f2(A(0)) = 0 follows by the same

argument.

Now, from (1.8),

2tflt+1fa(k(t))f4(»\(t))

ailmenfaou» — t’fl2+1fa(A(t))f.(A(t))]

A(t) =

which implies A(t) 75 0 for any t 6 (0,1]. Obviously, A(t) is continuous, hence, A(t) is

strictly positive or strictly negative. Namely, A(t) is strictly monotonic.

NOW let 9 = fifs , f = fli+1f3f4 811d ’1 = (9 — t’f); = Mtthlla then A = ”N"

1(1) = —41’f2‘9 713”)” + 8t’£;;f- + 3,? ' (1.10)

Since f’(g — t’f),\;,/h3 and f;f/h2 are continuous in [0,1], they are bounded. By

(1.10),

A(O) =]1_r.nA(t) =]i_rr.12f/h

Hence A(t)A(t) > 0 for t small since A(t) = 2tf/h.

Q.E.D.

Theorem 1.2 (Hoffman and Wielandt [31]) Let M be an n x n symmetric

matrix. Let M’ E M + E where E is a symmetric perturbation of M. Denote the

eigenvalues ofM by { £1 5 {3 S S 5,. }, the eigenvalues ofM’ by { £1 5 f; S S

6:, }, and the eigenvalues ofE by { 71 _<_ 72 S S 7“}, then

81.42)“ s 27.?- (1.11)

i=1 i=1



Applying the above theorem on M = A and M’ = A(t) = (l — t)D + tA = A + E

with

f | l

0 l

I (t "' llflkn

E: _ ___ ___ _ ___ ___. _

(t — ”film I

l 0

\ I i

then, (1.11) gives

  

in. _ 1.11))2 5 2(1 — 0219;“ for all t in [0,11 (1.12)

i=1

where A.- and A,-(t) are the eigenvalues of A and A(t) respectively.

From (1.12), together with the conclusion in Theorem 1.1 that each A,-(t) is mono—

tonic in t, we see that the smaller 5H1 is the flatter the eigenvalue curves are,

especially when n is very large. To make the eigenvalue curves easy to follow we in-

tend to choose ,6)...“ as small as we can for k in certain range as described in Chapter 2.

Let A(t) = D + Y(t), where A(t), D and Y(t) are real symmetric, and A,-(t), £5

and 11,-(t) be the eigenvalues of A(t), D and Y(t), respectively, with A;(t) S A5.” (t),

£i S {ii-1 and Hi“) S Ili+1(t):5= 1:2v-wn " 1

Theorem 1.3 For any i, j satisfying 1 S i + j — 1 S n, and t 6 [0,1], the following

inequalities hold:

f.“ + MU) S I‘m-10) (1.13)

and

Ann-64“) S £n+1~i + [Inn-1' (t) (1-14)

Proof: Let RB", RH, and Billy R5"l be the subspaces of Ru defined implicitly by

sTDs . sTDs

E min

Mtg-1 1:73

 

 

C.- = max min T
RP“ 8.1.1?!“ 8 8

8



TY t TY t
11,-(t) = max min 8 T( )8 5 min —-—-—----—sT( )3.

RJ-laIRJ-l s s “my-é) s s

 

In fact, Rf," is the span of the eigenvectors corresponding to the i — l smallest

eigenvalues of D. Similarly Rial) is the span of the eigenvectors corresponding to the

j —l smallest eigenvalues of Y(t). These subspaces may or may not have a nontrivial

intersection. Let S be the subspace of the smallest dimension containing both R‘B‘

and Iii-(,1). Write k a dim(S) + 1. Now,

k—l:dim(S')S(i—l)+(j—l) <n,

with equality holds only if the intersection, RS" n Rial) = {0}.

So,

Ara—1 2 A]:

, zTA(t):c

= max min _—
Rh 1 All" 1 sz s by definition Of A,”

- c _

 , since dim(S) = k - 1,

zTDz + zTY(t)z}

1.21.3 :rTz $T$

uTDu . vTY(t)v
min

«Is 11% v1.5 11%

T T t
2 min 11 Du min v Y( )v

'—1 T ‘—1 T

  

  

(since RB" Q S, and Rig}, Q 5,)

= £1 + II}.

Inequality (1.14) can also be proved by following the same line of argument.

Q.E.D.

Let the inertia of Y(t) be (1r, u,(), where 11', u and C are the number of positive,

negative, and zero eigenvalues of Y(t) respectively. Then we have,

Corollary 1.1 £1-” S A1,(t) S6131, k = u+l,u+2,...,n—1r, for all t 6

[0,1].



Proof: By the definition of u, py+1(t) Z 0. Let i = Ic — u, and j = V + l in Theorem

1.3, then

51.» S £1.» + pw1(t) S Ak(t)-

Let i = 11 +1 — lc — r, and j = 1r +1 in inequality (1.14), we have

M“) 5 61+: + Ila—«(0 5 (1+:

since 11“-,(t) S 0. Q.E.D.

Let Y(t) = t(A — D), where D is the block diagonal matrix given in (1.2), then

11(1): ----- +-----.

K I J

Since Y(t) has exactly one positive eigenvalue and exactly one negative eigenvalue,

  

from Corollary 1.1, the following corollary is immediately achieved.

Corollary 1.2 For anyt 6 [0,1],

{i-l 5 A8'“) 5 {ii-11‘. = 2131 ""n "' 11'

1‘10) $51

A..(t) 2 6“.

From Theorem 1.1 and Corollary 1.2, the homotopy curve must be one of those in

Figure 1.1. Any homotopy curve is bounded by two consecutive dotted lines and no

homotopy curve can cross a dotted line.

It is desirable to choose D as a diagonal matrix, consisting of the diagonal part

of A, rather than the form in (1.2) as we did in the above analysis. If D is a diag-

onal matrix, then eigenvalues and corresponding eigenvectors of D are immediately

available. Thus, the work of solving the eigenproblem of D is saved. In [18], Li and

Rhee showed that this strategy worked very well for certain matrices, such as [1, i, l],

i = l,2,...,n. That is, if we choose D = diag(l,2, ...,n) in solving eigenproblem of

10



M0)

714(0)

113(0)

MO)

H(X,A:l)=0

..................................

..........................................

 

711(0)
.........................................

 
  

Figure 1.1: Homotopy curves

the matrix [1, i, l], the eigenpaths are still very flat and easy to follow. However, this

strategy bfeaks down when we solve the eigenproblem of tridiagonal matrices [1, 2,1].

The eigenpaths are rather difficult to follow. In the following analysis, we give some

criteria which guarantee the safety of choosing a diagonal starting matrix D.

Note that (A)1 is the lower (11 - l) x (n — l) submatrix of A , (A); the upper

(n - 1) x (n — 1) submatrix of A and A.-(A) is the i‘" smallest eigenvalue of A.

Lemma 1.2 Ifa; < ag+1,i = l,2,...,n —1 and if there exists a c , 0 < c S 1 such

that

(All - (A)1 - Clsrgigfiam - 11,-)I

is positive semidefinite then

min

lSiSn-

where A,- = A,-(A).

Proof: Since A is symmetric, so are (A); and (A)’.

Let

#1 Sfl2.<_“°Sfln-1

ll

,(l‘m — A6) 2 c15¥§i§_,(ai+1 — 0i)



and

61552$°°°S5n-1

be the eigenvalues of (A)1 and (A)1 respectively, then by Cauchy’s interlacing theorem

[24],

AISFISAZS'”SI‘n-1_<_An (1-15)

*1 S 61 5. A2 _<_. ' ° ' S. 611-1 _<_. ’\n- (116)

Since (A)1= (A)1 + cal +[(A)‘— (A)1 - cal], and (A)1 — (A)1 — ca] is positive

semidefinite, where

a— 1_<_1'<m111(0’1" _ 0,),

by the Courant-Fisher maximum characterization [31],

A,-((A)‘) _>__ A,((A)1 + cal) for any i, 1 S i S n —1

i.e.,

p;—6,~an>0, lSiSn—l.

By (1.15) and (1.16),

’\1S6lS/‘ISA2S”'S6n—IS/‘n-lSAno

Hence

Ai-t-l—AiZI‘i’aizcaa 1SiSn—l

and

lsInsin (A,-+1 - A,-)_> clsmin“l (01,-...1— 0;).

Q.E.D.

Corollary 1.3 If

a] 02

(A): - = (A)1 '-

an-1 an

then

l.<‘r.11<in_l (A5“ — A,~__)> lsr.r1in__1(¢:r.'+1— or). (1.17)

12



Proof: (1.17) follows immediately from Lemma 1.2, since

a; — (11

(All — (Ah - = 0.

an - Ora—1

Q.E.D.

Let A(t) = (1 - t)D + tA, where D is a diagonal matrix consisting of the diagonal

elements of A, then

Theorem 1.4

15113340144 (t) - A;(t)) _>_ clsrrgi,p_l(a,-+1 — 01') t 6 [0,1].

Proof:

(AW — (A(t)). — a1 = «(Ar — (A11 — a1) _ (1 ,8)

+(1-t)d¢'ag(az - a1 — 0,03 - a2 — 01"‘1011 — 0.1-1 — a),

where

a = 615%i3—1(a’+1 - 01,-), 0 < c S 1.

Clearly, the second term of the right hand side of (1.18) is positive semidefinite and

the first term is positive semidefinite by assumption. Hence, (A(t))1 - (A(t))l - a]

is positive semidefinite for t 6 [0,1]. By Lemma 1.2,

l_<-riréi,n__l(z\a+1(t) - AU» 2 clsrpsi'n_l(a,-+l — 01,) t 6 [0,1].

Q.E.D.

If A satisfies the conditions in Lemma 1.2, we may choose the initial matrix D as a

diagonal matrix consisting of the diagonal elements of A, then, A(t) is an unreduced

symmetric tridiagonal matrix and the eigenvalue curves are not only distinct, but

also very well separated. There is a lower bound between any two eigenvalue curves

so that the eigenvalue curves are easy to follow.

Example 1.1 A=[1,i,1], where i=1,2,...,20. If we let D=diag{ 1,2,...,20 }, then all

the eigenvalue curves are very well separated. See Figure 1.2.

13



A

21 0000

18 3875

15 7750

13 1625

10 5500

7 93750

5 32500

2 71250

 100000
00 0000 125000 250000 375000 500000 625000 750000 875000 I 0000C

t

Figure 1.2: The eigenvalue curves of [1,i,1] matrix with D=[0,i,0]
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- I 50000 1

I 25000 '

I 02000 ‘

 

\ 1)780000 '  

 

 

 

 

$10000 "
 

 

 

 

 
 

300000 "
 

 

 

050000 ‘

- 280000 "

 

 

 

7200:: 0000 185000 237000 375000 506000 625000 736000 0&00-1 00000

Figure 1.3: The eigenvalue curves of random matrix with a,- < 01,-4.1, on diagonal and

with D=[0,a.-,0]

Example 1.2 A is a real symmetric tridiagonal matrix whose diagonal and subdi-

agonal elements are random numbers between 0 and 1, and whose diagonal elements

satisfy a.- < as“, and D is a diagonal matrix consisting of the diagonal elements of

A, then all the eigenvalue curves are very well separated. See Figure 1.3.
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Chapter 2

The Homotopy Algorithms for

Real Symmetric Tridiagonal

Eigenproblem

2.1 Introduction

The basic features of the curve-following scheme of our algorithm to follow the

eigenpath (x(t),A(t)) are :

(i) Initiating at t = 0

(ii) Prediction

(iii) Correction

(iv) Checking

(v) Detection of a cluster and space iteration

(vi) Step-size selection

(vii)Terminating at t = 1.

We begin by giving an overview of our algorithm, followed by detailed explanation

of these features.

Simple computation shows that Newton’s method for the nonlinear problem of

16



n + 1 equations r

Ax - A1: = 0

F(A,$) = i 3T3 -—l (2.1)

2 L
of the n + 1 variables A, x1,xg, ...,xn at (A(“),x(")) is the inverse iteration,

(A — Al”)l)y = x(")

and i

(n) T (n)

,\(n+1)= ,\(n)+ (‘5 ) 9: +1

‘ 2(31="")’”y

[ x(n+l) = (A(n-H) __ A(n))y.

 

 
By making the initial matrix D close to A, the eigenpairs of D should be excellent

starting points for applying Newton’s method on the eigenproblem (2.1). Based on

this observation, our algorithm, in simple terms, is designed to use the homotopy

continuation method as a backup of Newton’s method applied on (2.1). Namely,

we solve the eigenvalues of the initial matrix D by using the most efficient method

available first, and apply the inverse iteration on (2.1), using each eigenvalue of D as a

shift. Then, we switch to Rayleigh quotient iteration (RQI), an inverse iteration with

Rayleigh quotient as a shift, to speed up the convergence. This is mainly equivalent

to choosing the starting step size h = 1 in the usual curve following scheme with zero

order prediction and Newton correction to follow the eigenpath (x(t), A(t)) of the

homotopy H(x, A, t) = 0 in (1.3). By checking the Sturm sequence at the convergent

point and if this procedure fails to provide the right eigenpair, we shall cut the step

size in half. That is, we repeat the process by applying the inverse iteration on

Ax — A(t)x = 0

t xTx—l

2 

with t = 0.5, where A(t) = (1 — t)D + tA in (1.3), and then switch to RQI to come

back to the right eigenpath (x(t), A(t)). Assuming that after i steps, the approximate

17



value (x(tg), A(t;)) is known, we always choose the step size h = l — t,- at (x(tg), A(t,-)).

In this way, we follow the eigenpath from t = 0 to t = l.

2.2 Initiating at t = 0

As mentioned in Chapter 1, we intend to choose I: for which 191+; is as small as

possible. To make the sizes of the blocks D1 and D2 roughly the same, we limit the

choice of k in the range n/2 — j S k S n/2 + j, where j is roughly equal to n/20,

and find the smallest fig,“ by local sorting.

When the initial matrix D is decided, different from the homotopy algorithms in

[18, 22] where all the eigenvalues and the eigenvectors of D are calculated in order

to start following the eigenpaths, our algorithm only calculates the eigenvalues of D1

and D2. These eigenvalues are obtained by using the most efficient method available.

We require the accuracy to stay only within one-half or even one-third of the working

precision. With this strategy, considerable amount of computing time is reduced.

2.3 Prediction

Assume that after i steps the approximate value (:‘1":(t,-), A(t;)) on the eigenpath

(x(t), A(t)) at t; is known and the next step-size h is determined; that is, t,” = t,- + h.

We want to find an approximate value (:‘1':(t.-+1),A(t,-+1)) of (x(t;+1),A(t,-+1)) on the

eigenpath at t5”. Notice that (ii:(t.-+1), A(t;+1)) is an approximate eigenpair of A(t,-+1).

Since H(x(t), A(t), t) = 0, we have

A(t)x(t) = A(t)x(t)

x(t)Tx(t) = 1.

Differentiating both equations with respect to t yields,

(A — D)x(t) + A(t)a’:(t) = A(t)x(t) + A(t):i:(t)

(2.2)

x(t)T:i:(t) = 0.
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For t = t5, multiplying (2.2) on the left by xT(t,-) yields,

A(t.‘) = $T(t;)(A — D)x(t,-) = 2flk+1$k(t;)xk+1(tg) (2.3)

where x(t.-) = (x1(t,-),...,x,,(t,-))T. In view of (2.3), we use the Euler predictor to

predict the eigenvalue at ti“, namely, 1

Ao(t;+1) = A(tg) + A(tgyl.

It is easy to see that A(O) = 0 in (2.3). Consequently, A°(t1) always equals to

A°(0). To predict the eigenvector, we use the inverse power method on A(t;+1) with

shift A°(t.-+1). That is, we solve

(A(tm) '- A°(t.-+1)I)y°(t,+1) = x(t,-)

and let

1100141)

“90011-0”-

At t,- = 0, since we skip the calculations of eigenvectors of D, x(0) is not available.

3001'“) =

We choose a random vector for x(0).

2.4 Correction

As a corrector, we use the standard RQI, starting with x°(t,-+1). To be more

P11501861 at (ti-16141): Aj'l(ti+1))(j ..>. 1) let

”(1141) = 1".-1(ti+1)TA(ti+1)$j'-i(ti+1)

then solve

(A(tm) - *5(1:41)”th(0+1) = 1‘""’(t-‘Hl

and let

95(0+1)

“160141)"-

$j(tg+l) =
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We repeat the above process to within half of the working precision if single precision

is used and one-third of the working precision if double precision is used when t.-+1 < 1,

since precision in determining the curve itself is only of secondary interest. We polish

(x5(t.-+1), A5(t.-+1)) at the end of the path (t.-+1 = l) by iterating the Rayleigh quotient

to machine precision. The stop point (xj(t;+1), Aj(t.-+1)) of RQI will be taken as an

approximate eigenpair (5:(t.-+1), A(t;+1)) of A(t.-+1). The cubic convergence rate of RQI

makes the corrector highly efficient.

2.5 Checking

When (5:(t.-+1), A(t.-+1)) is taken as an approximate eigenpair of A(t;+1), the Sturm

sequence at A(t;+1) + e is computed to check that, if we are trying to follow the curve

of 1"“ highest eigenvalues, we still on that curve. Here, 6 is chosen as half of the

working precision if single precision is used and one-third of the working precision if

double precision is used. If the check fails, we reduce the step size to h/2 and repeat

the whole process once again beginning with the eigenvalue prediction in Section 2.3.

2.6 Detection of a cluster and subspace iteration

At t.- = 0, when all the eigenvalues of D

A1(0) < A2(0) < ... < 21,.(0)

are available, we let 6 = max(10'5,10"2(A,.(0) — A1(0))/n) if double precision is used

(or 6 = max(10'3,10'2(A,,(0)— A1 (0))/n) if single precision is used). Set A,- and A,- in

the same group if IA.'(0) — Aj(0)| < 6. If the number of the eigenvalues in any group

is bigger than V1,_then a cluster is detected. At t,- 79 0, or 1, when (:‘1’:(t,-),A(t,-)) is

taken as an approximate eigenpair of A(tg), after the checking step in Section 2.5, we

compute the Sturm sequences at A(t.) :1: 6 for the purpose of finding the number of

eigenvalues of A(tg) in the interval (A(t,-) -— 6, A(t,-) + 6). When this number is bigger

than 1, a cluster of eigenvalues of A(tg) is detected.
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In those cases, the corresponding eigenvectors are ill-conditioned and this ill-

conditioning can cause the inefficiency of the algorithm. To remedy this problem,

the inverse power method [24, 31] with A(tg) as shift is used to construct an approx-

imation of the corresponding eigenspace .S' of dimension m (= the number of the

eigenvalues in the cluster) of A(tg). This approximate eigenspace S is used as an ini-

tial subspace of the subspace iterations at t,-+1 when we approximate the eigenpairs

Of A(t.’+1).

2.7 Step size selection

In the first attempt, we always choose the step size h = 1 — t,- at t,- < 1. If after

the prediction and the correction steps the checking step fails, we reduce the step size

to h/2 as mentioned in Section 2.5. This extremely liberal choice of step size can be

justified because of the’ob'servations we described in the beginning of this Chapter

( Section 2.5 ) as well as the effective checking algorithm. Indeed, since the initial

matrix D is chosen to be so close to A, from our experiences, most of the eigenpairs

of A can be reached in one step, i.e., h = 1.

Very small step size can also cause the inefficiency of the algorithm. Therefore,

we impose a minimum 7 on the step size h. If h < 7, we simply give up following the

eigenpath and the corresponding eigenpair of A will be calculated at the end of the

algorithm by the method of bisection with inverse iterations (see Section 2.8). We

usually choose 7 ‘8 0.25.

2.8 Terminating at t = 1

At t = 1, when an approximate eigenvalue A(l) is reached, we compute the Sturm

sequence at A(l) + c with e = machine precision to ensure the correct order. If the

checking fails, we have jumped into a wrong eigenpath. More precisely, suppose we

are following the i“ eigenpair, the checking algorithm detects that we have reached

the j"’ eigenpair instead. In this situation, we will save the 1"” eigenpair before the
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step size is cut. By saving the j‘h eigenpair, the computation of following the j‘h

eigenpair is no longer needed.

As mentioned in Section 2.7, we may give up following some eigenpaths to avoid

adapting a step size that is too small. Without any extra computation, we know

exactly which eigenpairs are lost at t = 1. In order to find these eigenpairs, we first

use the bisection to find the eigenvalues up to the half working precision and then use

the inverse iteration and the RQI or subspace iteration (if there are some clusters) to

find the eigenpairs.
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Chapter 3

Numerical Results of the

Homotopy Algorithms for Real

Symmetric Tridiagonal

Eigenproblem

3.1 Test Matrices

The homotopy continuation algorithm is in its preliminary stage, and much de-

velopment and testing are necessary. But the numerical results on the examples we

have looked at seem remarkable. Our testing matrices are:

(1) The Toeplitz matrix [1, 2, l], i.e., all its diagonal elements are 2 and off-

diagonal elements are 1.

(2) The random matrix with both diagonal and off-diagonal elements being uni-

formly distributed random numbers between 0 and 1.

(3) The Wilkinson matrix W,;". i.e., the matrix [l,d;,1], where d,- = abs((n +

l)/2 — i), i = 1,2, ...,n with n odd.

(4) The matrix [1, 11,-, 1], where p.- = i x 10".

(5) The matrix T; : same as matrix [2, 8, 2] except the first diagonal element
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a] = 4.

(6) The glued Wilkinson matrix W}? The matrix consists of j copies of Wilkinson

matrices W: along the diagonal and the off-diagonal elements 19.31,.” = 10’“, where

i=1,...,j-l.

(7) The LAPACK test matrices which include 21 type matrices.

3.2 A serial comparison with the existing meth-

ods.

For symmetric tridiagonal matrices, the routine TQL2 in EISPACK [27] im-

plements explicit QL-iteration to find all the eigenpairs. EISPACK also includes a

Sturm sequence with inverse iteration method ( BISECT+ TINIVT) which is much

faster than TQL2. However, it may fail to provide more accurate eigenvectors when

the corresponding eigenvalues are very close. A new version by Jessup [15] (B/III)

has considerably improved the reliability and the accuracy of the inverse iteration.

The ‘Divide and Conquer’ method for symmetric tridiagonal matrix was suggested

by Cuppen [8] and was implemented, combining with a deflation and a robust root

finding technique, by Dongarra and Sorenson [9] (TREEQL) (see also [28]).

We shall show the computational results comparing the homotopy continuation

method HOMO with those obtained by the methods TQL2, B/III and TREEQL

mentioned above. The computations were done on a Sun SPARC station 1.

Table 3.1, 3.2 and 3.3, show the comparisons on the first 6 type test matrices

listed in Section 3.1 in terms of speed, accuracy and orthogonality respectively. The

homotopy method appears to be strongly competitive in every category and leads in

speed by a considerable margin in comparison with all other methods in most of the

cases.

Tables 3.4 to 3.9 show the comparisons with (B/III) i.e., DSTEBZ+ DSTEIN,

which is the latest code based on bisection with inverse iteration, in terms of speed,

accuracy and orthogonality respectively on the LAPACK test matrices. The LAPACK

test matrices of type 1 to type 7 are diagonal matrices. Table 3.4 to 3.6 show that
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Matrix Order Execution Time (second)

N HOMO B/III TREEQL TQL2

64 2.03 2.43000 5.90999 17.0600

[1,2,1] 125 5.88 8.58000 37.6199 114.460

256 30.25 35.7000 302.859 904.659

499 100.04 152.920 984.460 2416.14

64 1.13 2.44000 6.09000 17.3200

Random 125 3.79 8.53000 31.4100 115.880

256 14.90 34.4500 158.120 949.939

499 53.19 133.620 235.889 2482.68

65 0.97 1.84000 2.73999 16.1000

w: 125 3.97 6.21000 8.20001 108.890

255‘ 16.40 22.5700 31.8398 879.959

499 57.35 95.5000 57.8300 3869.33

64 1.97 2.43000 5.91000 17.1500

[1,,1.,1] 125 6.78 8.64999 37.6500 115.699

256 30.61 34.1900 303.449 901.810

499 107.04 129.370 984.410 2424.88

64 1.80 2.39000 5.80000 16.6800

T2 125 6.85 8.60000 37.3700 115.000

256 28.24 34.8600 165.250 939.859

499 108.46 174.760 979.738 2506.93

64 1.80 1.73000 2.07999 12.2000

w; 128 8.69 6.07000 6.90000 67.5600

256_ 38.85 22.5100 29.0700 490.779

512 144.05 89.2200 162.040 5303.37
 

Table 3.1: Execution Time (second) of computed eigenvalues and eigenvectors.
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Matrix Order [ max; llAza ’, Aatallz/Amu
 

 

|
TQL2 [

 

 

 

 

 

 

N HOMO B/III I TREEQL

64 1.9107015 4.9769016 1.9027015 9.8365015

[1,2,1] 125 1.9519015 8.4237016 3.3617015 1.0949014

256 2.3533015 1.2825015 6.0929015 2.7538014

499 2.2251015 1.7640015 7.5172015 3.7564014

64 1.9319016 3.6661016 2.4581014 6.0589015

Random 125 2.0485016 3.5621016 5.6541014 1.2686014

256 3.9846015 3.6238016 7.1488014 5.3928014

499 1.0330013 9.2496015 4.8200014 5.7588014

65 5.4172016 5.4991015 1.8801013 8.7914014

w: 125 3.3967016 7.1627015 1.0842012 3.4443013

255 7.7880016 1.4301014 1.0868012 6.7159013

499 9.1037016 2.8363014 1.6269011 6.5775012

64 4.9149015 5.0881016 2.4436015 8.8198015

[1,11.,1] 125 3.2254015 7.0876016 3.8144015 1.1196014

256 4.4093015 1.1424015 5.4271015 2.7578014

499 4.9410015 1.7580015 8.4456015 3.7155014

64 7.1616016 1.7737015 5.5986015 1.5815014

T2 125 7.3060016 1.8509015 6.5573015 2.6714014

256 8.1746016 2.2977015 1.3413014 5.0148014

499 8.0805016 3.7362015 1.7603014 8.1773014

64 8.1580016 3.2592015 4.3889014 3.1906014

w; 128 1.2509015 1.3014014 4.3246013 1.1476013

256 2.1321015 1.4015014 3.8488012 6.6732013

512 4.2327015 2.3889014 3.8490012 1.7667012     
 

Table 3.2: The residual of computed eigenvalues and eigenvectors.
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Matrix Order max-JKXTX —I);J|/Am.,

N HOMO B/III PTREEQL TQL2

64 1.7133015 9.4041015 1.4836015 5.9952015

[1,2,1] 125 1.3399014 3.5176014 3.6237015 7.5495015

256 1.1554014 2.1010014 1.4941014 1.5987014

499 5.3994014 4.1999014 1.9569014 2.4868014

64 2.3654015 2.6645015 1.0890014 7.3274015

Random 125 8.5588014 5.5839015 4.1540014 1.1324014

256 4.0178013 3.9968015 1.9257013 3.6415014

499 1.0330013 9.2496015 4.8200014 4.2410014

65 4.7465017 2.2204015 1.1102015 7.5495015

w: 125 1.7693017 3.2163015 1.2585015 1.2656014

255 1.2167017 4.3258015 "4.4408015 2.5091014

499 9.3353018 1.2278013 8.2156015 6.9722014

64 3.3790015 7.6699015 1.0852015 4.6629015

[1,15, 1] 125 1.2375014 4.3372014 1.2751014 6.6613015

256 3.9662014 1.6639013 8.4026015 1.3322014

499 1.8082013 1.3981013 6.9169014 2.4424014

64 5.7249016 7.9102015 9.3588016 5.9952015

T2 125 1.8625015 1.3832014 3.7492015 1.3322014

256 3.2107014 1.9904014 1.0485014 2.1760014

499 6.6773014 1.5714014 1.9133014 4.9293014

64 7.9556017 3.5527015 6.6613016 7.9936015

w; 128 6.2610016 1.4708013 1.1366015 9.1038015

256 7.0303017 1.0394013 4.4408015 2.3758014

512 8.4508017 1.4259013 1.1324014 2.6645014      
 

Table 3.3: The orthonormality of computed eigenvectors
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both algorithms work very well. The matrices of type 9, l7 and 21 have a large cluster

with dimension around 4n/5, where n is the order of matrices. On these matrices,

while HOMO is not as fast as B/III its accuracy is still competitive. The matrices of

type 10 and 18 have a even larger cluster with dimension n - 1. Although HOMO

works, time consuming is out of comparison. Tables 3.4 to 3.9 clearly show that the

homotopy method leads in speed by a considerable margin in comparison with B/III

on all other types of the LAPACK test matrices.

3.3 An indirect comparison with the existing par-

allel algorithms

Scientific and engineering research has become increasingly dependent upon the de-

velopment and implementation of efficient parallel algorithms on modern high -

performance computers. Developing algorithms for advanced computers suitable for

eigenvalue problems has produced several algorithms, such as Divide and Conquer

(D&C)[9] and Bisection/Multisection (B/M)[23] for symmetric tridiagonal matrices.

The homotopy algorithm is to a large degree parallel since each eigenpath can

be fOllowed independently. This inherent nature of the homotopy method makes the

parallel implementation much simpler than other methods.

In our parallel algorithm, after all the eigenvalues of D are computed and put in

the increasing order, we assign each processor to trace roughly 11/p eigencurves, where

n is the dimension of matrix A and p is the number of the processors being used. Let

the first processor trace the first n/P smallest eigencurves from the smallest to the

largest and let the second processor trace the second n/p smallest eigencurves, and

so on.

We present, in this section, the numerical results of the parallel implementation

of our algorithm. All examples were executed on BUTTERFLY GP 1000, a shared

memory multiprocessor machine.
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Table 3.4: Execution Time (second) of computed eigenvalues and eigenvectors from

type 1 to 7.

 

 

 

 

 

 

 

 

 

     

Matrix Order Execution The (second)

7". 17 110140 31111 11.41.7(B/IIDIHOMO

10 0.00 0.00 .

10.111: 02 0.00 0.00000000

Type 04 2.0000000: 2.0000000:

1 120 7.0007000: 1.0000000:

:50 0.020000 0.000017

500 1.17000 1.40000 1.10

10 0.00 1.0000000:

100411: 0: 1.0000200: 0.00000000

7". 04 2.0000000: 2.0000000:

2 120 0.0001000: 0.0000000:

:00 0.010000 0.000000

000 1.10000 1.02000 1.12

10 0.00 0.00000000

14.111. 0: 0.00 0.00000000

'1‘". 04 2.0000000: 0.0002000:

0 120 0.0002100: 0.0011000:

:50 0.000007 0.040000

000 1.17000 1.00007 1.14

10 0.00 0.00

14.411: 0: 1.0000200: 0.00

r". 04 2.0000000: 2.0000000:

4 120 0.0002100: 0.0000000:

:50 0.020000 0.000000

1100 1.17000 1.04000 1.14

10 0.00 0.00

11.411: 0: 0.00 1.0000200:

r". 04 2.0000500: 2.0000000:

0 120 7.0000000: 0.0000000:

:00 0.000007 0.040000

000 1.10000 1.00000 1.10

10 0.00 0.00

00.411: 0: 1.0000200: 0.00070000

Type 04 2.0000500: 2.0000500:

0 1:0 0.0070000: 0.0000000:

:50 0.020000 0.000000

000 1.1000: 1.02007 1.12

10 0.00 0.00000000

10541-1: 02 0.00020000 1.0000200:

Type 04 2.0000000: 2.0000000:

7 120 0.0070000: 0.0000000:

:00 0.020000 0.000000

1100 1.10000 1.04000 1.14
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Mom: Otdu mu.- IIM.‘ - Airing/8m I Duij KXTX - ”Lil/x770“ I

32 0.0 0.0 0.0 0.0

Type 04 0.0 0.0 0.0 0.0

3 130 0 0 0.0 0 0 0 0

250 0.0 0.0 0.0 0.0

500 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

32 0.0 0.0 0.0 0.0

Type M 0.0 0.0 0.0 0.0

3 120 0 0 0.0 0 0 0 0

250 0.0 0.0 0.0 0.0

000 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

33 0.0 0.0 0.0 0.0

Type 04 0.0 0.0 0.0 0.0

d 12. 0 0 0.0 0 0 0 0

L 250 0 0 0.0 0 0 0 0

500 0.0 0.0 0.0 0.0

)0 0.0 0.0 0.0 0.0

32 0.0 0.0 0.0 0.0

Type 04 0.0 0.0 0.0 0.0

5 130 0 0 0.0 0 0 0 0

350 0.0 0.0 0.0 0.0

000 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

32 0.0 0.0 0.0 0.0

Type 04 0.0 0.0 0.0 0.0

0 120 0.0 0.0 0.0 0.0

3“ 0.0 0.0 0.0 0.0

500 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

32 0.0 0.0 0.0 0.0

Typo 04 0.0 0.0 0.0 0.0

7 120 0.0 0.0 0.0 0.0

3“ 0.0 0.0 0.0 0.0

m 0.0 0.0 0.0 0.0  
Table 3.5: The residual and the orthonormality of computed eigenvalues and eigen-

vectors from type 1 to 7.
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Table 3.6: Execution Time (second) of computed eigenvalues and eigenvectors from

type 8 to 14.

 

 

 

 

 

 

 

 

   

11001'18 00400 380000100 Time (0000“)

Type 11 nouo 31111 11.41.(

10 0.00M0‘02 1.000003-01 .

1400112 32 0.700000 1.01000

Type 44 2.47000 4.04000

4 120 11.3300 15.3000

254 33.3000 40.1001

500 142.500 224.000 1 .50

10 0.11000 1.000003-01

ll“fix 32 1.24000 0.03000

Type 04 10.0100 4.04000

0 120 110.000 15.3000

250 037.030 154.510

500 7334.24 000.000 0. 14

10 ‘ 0.000003-02

“51718 32 ‘ 0.50000

1'". 04 ' 0.01000

10 120 " 24.2200

250 ‘ 171.450

500 ‘ 1 103. 1 1 ’

10 0.0000000: 0.10000

11.1112 02 0.7100'00 1.00000

Type 44 2.44000 3.44000

1 1 124 11 .1400 24.2000

254 40.3500 57.00“

500 174.370 217.410 1.25

10 1.00000001 0.1 1000

1400010 32 0.530001 1.07000

Type 04 0.22000 4.17000

12 120 12.2300 14.7000

250 40.0300 00.00“

500 150.332 220.100 1 .44

10 0. 1 10000 0.13000

Hun-in 32 0.47000 0.04000

Type 44 2.37000 4.44000

13 120 0.05001 14.00”

250 33.0000 50.5000

5“ 157.010 223.441 1.42

10 5.000003-02 0.12000

1400010 32 0.520000 0.00000

Typo 04 2.40000 0.02000

14 124 4.70004 14.7700

250 41.3700 55.1000

5” 137.410 217.320 1.53  
 

' The dime-0100 cl 050 0050100000 10 3000000 than 410/5.

31

 



 

 

 

 

 

 

 

 

      

non-1x 00000 .1086 "As.- - 15:5", [1,... nos,-.1' [1(7): - 1),-.1'mm

Typo 11 110140 a/m 110110 111m

10 1.110000." 1.401000.“ 2.0001 10.10 4.4400011.”

02 2.1000011.“ 2.0005011.” 1.0010011.“ 1.0000011."

Type 04 1.0000010.“ 2.0000111.“ 0.0000011.” 2.000720.“

0 120 0.4110211.“ 2.0440013.“ 0.0400011.“ 4.5000013.»

200 0.0100011." 0.0-000013.10 1.0050211.“ 1.0211110.“

soo 0.000740.“ 0.0100411." 2.0200413.“ 2.0010010.“

‘ 10 0.1120211." 1.0070013." 0.001 10413.10 0.0000013."

02 2.1100111.“ 1.000100.“ 0.020040.“ 4.440000.“

Typ0 04 0.1010111." 1.0071411." 0.101020.“ 4.040240.“

0 120 1.0004011.“ 1.4002011.“ 0.1101511.“ 1.0110010."

200 1.1470011.“ 2.0002211." 1.1000413.“ 1.2110011.”

1100 1.0000010." 0.0-100013.10 1.7700011.“ 2.100410."

10 - 0.014400." 0.000000.”

02 - 0.5120413." — 5.1500004:

'rypo 04 - 1.001000." - 0.1210013.“

10 120 - 0.0014011.“ - 0.224100.“

200 - 0.014700.“ - 1.2002113.”

000 - 0.0001711." - 0.2200011."

10 1.0200113." 1.4420211.“ 1.004000.“ 1.401000."

02 1.0000011.“ 2.0112011." 1.7000211.“ 1.0000011."

'rypo 04 1.0070010.“ 2.0000011.“ 1.011000." 0.007000.”

11 120 0.0000011.“ 2.0002113.“ 2.0001013.“ 2.0124010.“

200 0.01 17011.10 2.0011210.“ 4.0040111." 1.4404010.”

:00 1.0402011." 0.4404411.“ 1.1000213. 14 0007171110

10 2.2000011." 1.0404013.“ 0.200020." 1.012000.“

02 ”01000.10 2.0127013.“ 4.4100411.“ 0.4400013."

'rypo 04 0.0200011.“ 2.2000011.“ 1.000440.” 4.007000.“

12 120 4.0000011.“ 2.0101411.“ 4.0200011.» 0.0020011.“

200 4.001000.“ 2.0020011.“ 0.0000011.“ 0.0400013.“

000 1.2400111.“ 0.000000.“ 1.400400.“ 0.007010.“

10 1.040140.“ 0.122200." 1.171000.“ 1.100700."

02 0.1100011.“ 1.0002011.“ . ”202013.10 1.000000."

Typo 04 1.010010.“ 2.0000711.“ 1.1000013." 1.0000011.“

10 120 0.0014010.“ 2.0014013.“ 0.0402013.“ 4.0010211.“

200 1.0071 115.10 2.2122213." 1.0700010." 1.0100010."

000 0.000020." 2.4210411.» 1.2010011.” 0.404000."

10 0.4712011." 2.1021011.“ 1.407240." 2.000000."

02 1.0000011." 1.0014111.“ 0.420000." 1.404070.“

'rypo 04 2.4001711." 1.010000.“ 1.200100." 0.1407011.»

14 100 4.2400011.“ 2.0100413.“ 0.0001413." 2.020400. 10

2110 2.0110011." 2.0000110.“ 0.4702011.” "10010.10

000 1.1101011.“ 2.0100010.“ 1.0142011.“ 2.0100013.“
 

Table 3.7: The residual and the orthonormality of computed eigenvalues and eigen-

‘ 1'00 0100000100 0! 100 0050100430 10 3000100 0000 401/5.

vectors from type 8 to 14.
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-' Table 3.8: Execution Time (second) of computed eigenvalues and eigenvectors from

type 15 to 21.

 

 

 

 

 

 

 

 

 

0000110 00400 Ixmthl Til-0 (0000.1!)

rm 17 110000 31111 100110 ((B/III) O

10 0.11000 0.10000 .

10.111: 02 0.00000 1.00000

2‘". 00 0.02000 0.07000

10 120 0.07000 10.0000

000 00.7100 00.0000

000 100.000 220.710 1.00

10 ”00070.02 0.12000

100011; 02 0.000001 1.00000

rm 00 2.00001 0.00000

10 120 0.00007 10.1000

200 02.0100 000001

000 100.000 227.001 1.01

10 0.000000.” 0.10000

00.1010 02 2.00000 0.070001

1”. 00 10.0700 0.00001

17 120 100.000 20.0000

200 000.000 102.210

000 0010.00 000.100 0.11

10 - 0000021002

100111: 02 0 0.000000

Tm 00 - 0.00001

10 120 - 20.2000

200 - 170.000

000 - 1100.00 -

10 0.100000 0.110000

00.111: 02 0.000000 1.02000

Type 00 2.00000 0.01001

10 120 0.71007 10.7000

200 00.7000 07.0000

000 107.070 210.000 1.00

10 ”00070.02 0.110000

10001111 02 0.000007 1.00000

Type 00 0.70000 0.00000

20 120 10.0000 10.0000

200 02.0002 00.2000

000 100.100 201.700 1.00

10 7.000000.02 7.00000502

1000110 02 2.07000 1.01000

Type 04 14.1000 0.00001

21 120 102.200 20.0200

200 1110.00 100.700

000 0702.00 002.001 0.12    
 

' Th0 dine-.000- 0! the 0050100000 10 3000007 050. 00,5.
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140001: 07407 1010:.- "As.- -1,-s.-|bllm .uid' KXTX - ”MI/1m

1'”. N 110000 31111 30000 I 31m

10 ”10000.17 0.010771110—m

52 1352.20.1. 1.545.20-1. 1.4407404. 7.45.5.04.

Type .4 5.4.0070-1. 2..52..04. 1.5522504. 5......045

1. 12. 1.7551204. 1.22.2.0-1. 5.7740204. 7.2....04.

2.. ...554004. 3.1552104. ..5.7240-1. 4.4.4.5044

500 ..5577504. 5.54.5204. 2.745750-14 2.0.2020.14

10 ..2..51047 1.215.104. 53505.0.1. 4.440.204.

52 7.35512047 2.012.104. ....1550-1. 7.771550.1.

Typo .4 1.132.704. 2.2550204. 1.7211504. 1.0055704.

1. 12. 2.242.2047 2.2125504. 240277045 2.275550.15

25. 4.575.30-1. 1.525540.1. 5.4172.04. 5.5445504.

.00 1.145.504. 2.5722704. 1.70.15045 1.24725044

10 5.51.510- 17 2..1022047 1. 1 10220-1. 5.5505504.

52 ..4.712047 1.575070-1. 2.5555104. 4.440.20-1.

'1'pr .4 ...1.25047 2.1.52.047 4.215.404. 1.1055704.

17 12. 2.54522047 1.545200.1. 7.2255004. 2.....00-1.

35. ..45502047 1.5720204. 1.34544044 5.0025504.

.00 2.552210. 1. 1.....50-1. 2.0.721044 5.2050004.

10 ' 1.515250- 1. 7.45.5404.

52 ' 1.075520.1. 1 .15.4.0-15

Type .4 ‘ 0.3624004? 8.055000.1.

1. 12. ‘ 1.22.2204. ‘ 1 ..0025045

2.. ‘ 4.4755204. ‘ 2.1.2.0045

500 ‘ 5.7144304. ‘ 1.5244404.

10 2.401.30-1. 5.2.7.30.1 7 ..472.30-1. 4.440.20-1.

53 7.425.40-17 1.550.204. 4..5.1104. 7.1.”00-1.

Type 00 2.000070." 1.200000. 10 7.100000.10 0.000000.10

12 13. 5.1.1500-1. 1..522204. 1.52.3045 1.144.504.

25. ..271270.1. 2.12.7504. 5.5.5.2045 4.5754404.

5N 1.20.7504. 2.1277204. 7..5512045 1....75045

10 7.515.0047 1.020270- 1. 2.7522104. ...10550o1.

.2 5.7224704. 1.”.2104. ..4220.0-1. 5.02.020.15

Type .4 1.4.22.04. 1.2015404. 7.502.104. 5.1111704.

20 12. 2.5402.0-1. 1.....10-1. 1.5555104. 2.4.50.0-15

2.. 4.4504504. 2.52.0404. 5.0225004. 4.2522504.

.00 ..051520-1. 2.3070404. 2.4.5.50-1. 5.2555104.

10 5.1.5.2047 ......5047 1.1751204. 5.52.5.04.

53 5.57254047 1.0077504. 2.4427404. ....2750-1.

Type .4 4.5552.047 1.0125404. 5.225.50-1. ....15.0-1.

21 13. 5.5.4.1047 1.1.71.0-1. 2.5472404. ....1550o1.

25. ..354200- 17 1.1435704. 1.24544044 ....17.04.

500 ..04..5047 1.14.0504. 2.5.5.7044 1.75.5104.        
‘ Th0 dime-0k- “ the 0.5090000 10 3700000 050. 400/5.

Table 3.9: The residual and the orthonormality of computed eigenvalues and eigen-

vectors from type 15 to 21.
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The speed-up is defined as

execution time using one processor

P execution time using p processors

 

and the efliciency is the ratio of the speed-up over p, the number of processors being

used.

Table 3.10 shows the execution time as well as the speed-up S, and the efficiency

SP/p of our algorithm HOMO on matrices [1, 2, l] and T2 by using p processors.

For the purpose of comparison with other methods, the speed up of our method over

TQL2, 71.811726, on [1, 2, 1] are also listed. Similar results on random matrices and

Wilkinson matrices are shown on Table 3.11.

We list in Table 3.12, 3.13 and 3.14 some of the results of D&C and B/M. It

is somewhat difficult to compare our results with theirs directly since their results

were executed on different machines. Using TQL2, an indirect comparison may be

obtained. In Table 3.12 (Table 8.3[9]), when eight processors are being used, the

speed-up of D&C algorithm(SESUPD) over TQL2 is 9.4 for matrix [1, 2, 1] of order

100 whereas ours is 27.70 for the same matrix of order 125, and the speed-up of

D&C algorithm(SESUPD) over TQL2 is 20.00 for order 400 whereas ours is 146.19

for order 499. In Table 3.14 (Table 8.4[9]), when eight processors are being used, the

speed-up of D&C algorithm(SESUPD) over TQL2 is 12.1 for random matrix of order

100 whereas ours is 46.16 for the same matrix of order 125 (see Table 3.11), and the

speedup of D&C algorithm(SESUPD) over TQL2 is 60.7 for order 400 whereas ours

is 220.00 for order 499.

Table 3.13 (Table 7b[23]) shows the speed-up of B/M (two versions: TREPSl and

TREPS2) and D800 over TQL2 for the matrix [—1,2, —1] of order 500. It indicates

that TQL2/SESUPD = 27.1 and TQL2/TREPS2 = 131.5 whereas TQL2/HOMO =

146.19 for the matrix [1,2,1] of order 499 on Table 3.10. This result suggests that

the speed-up of the homotopy algorithm is at least as good as TREPSZ.

Figure 3.1 shows the efficiency of the matrices [1, 2, 1], T2, Random matrices and

W: of the order 499 and Figure 3.2 shows the speed-up of the matrices [1, 2, 1], T2,

Random matrices and W: of the order 499.
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[1, 2, 1] matrix

0.... 0.... HOMO g, TQL2 TQL2

li— (can...) 3, p (lu'l‘tms) (00.11....)

___—T 7.99 .1.0 1.00 27.55 3.44 9.41 1.0 1.00 26.33

65 2 4.51 1.8 0.89 6.10 4.93 1.9 0.95

4 2.77 2.9 0.72 9.93 2.88 3.3 0.82

1 29.18 1.0 1.00 176.7 6.06 34.98 1.0 1.00 177.33

125 2 15.25 1.9 0.96 11.59 17.55 2.0 1.00

4 8.76 3.3 0.83 20.18 9.34 3.7 0.94

8 6.38 4.6 0.57 27.70 6.14 5.7 0.71

1 122.37 1.0 1.00 1457. 11.91 143.46 1.0 1.00 1497.

2 69.93 1.9 0.97 20.85 71.76 2.0 1.00

255 4 33.08 3.7 0.92 44.07 37.2 3.9 0.96

8 20.38 6.0 0.75 71.53 22.4 6.4 0.80

16 14.28 8.6 0.54 102.08 14.85 9.7 0.60

1 477.91 1.0 1.00 10889 22.79 550.90 1.0 1.00 11198

2 242.01 2.0 0.99 45.00 276.56 2.0 1.00

499 4 125.45 3.8 0.95 86.80 140.48 3.9 0.98

8 74.49 6.4 0.80 146.19 81.72 6.7 0.84

16 47.41 10.1 0.63 229.69 52.27 10.5 0.66

 

Table 3.10: Execution time (second), speed-up and efficiency of HOMO on [1, 2, 1]

and T2 matrices.
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Random matrix ll ' Wilkinson matrix

0.... ...... 110140 5, TQL2 3912 HOMO g, TQL2

N p (lu‘l‘ime) S, L (Bu’l‘imo) HOMO (Bu’l‘imo) S, p (24m...)

1 1 6.66 13 1.00— 29.48 4.43 6.27 1.0 1.00 25.61

65 2 3.90 1.7 0.85 7.56 3.35 1.9 0.94

4 2.44 2.7 0.68 12.08 2.03 3.0 0.77

1 21.11 1.0 1.00 187.4 8.88 22.10 1.0 1.00 172.05

125 2 11.11 1.9 0.95 16.87 11.41 1.9 0.97

4 6.04 3.5 0.87 31.03 6.20 3.6 0.89

8 4.06 5.2 0.65 46.16 4.26 5.2 0.65

1 80.55 1.0 1.00 1490. 18.50 86.69 1.0 1.00 1367.

2 41.59 1.9 0.97 35.83 44.27 2.0 0.98

255 4 22.23 3.6 0.91 67.03 23.45 3.7 0.92

8 14.35 5.6 0.70 103.83 15.19 5.7 0.71

16 10.57 7.6 0.48 140.96 10.55 8.2 0.51

1 301.78 1.0 1.00 11447 37.93 328.24 1.0 1.00 9949.

2 155.11 1.9 0.97 73.80 166.82 2.0 0.98

499 4 82.47 3.7 0.92 138.80 88.89 3.7 0.92

8 52.03 5.8 0.73 220.00 56.16 5.8 0.73

16 39.19 7.7 0.48 292.09 40.13 8.2 0.51
 

 
Table 3.11: Execution time (second), speed-up and efficiency of HOMO on Wilkinson

and Random matrices.

37



 

N 100 200 300 400

TQL2/SESUPD 9.4 15.4 17.7 20.00

 

   
 

Table 3.12: A comparison on the Alliant FX/8 for TQL2 vs. TREEQL on [1,2,1]

 

  

 

matrices.

i Algorithm Time(TQL2 on 1 CE) Time(TQL2 on 8 CE)

Time(AIg. i on 8 CEs) Time(AIg. i on 8 CEs)

1 TREPSI 32.9 7

2 TREPSZ 131.5 28

3 TQL2 4.7 1

4 BISECT+TINVIT 3.6 .8

5 SESUPD 27.1 . 5.8      
 

Table 3.13: Speed-up over TQL2 on the Alliant FX/8 for computing all the eigenpairs

of [—1,2, —1] matrix of order 500.

 

N 100 200 300 400

TQL2/SESUPD 12.1 19.5 38.8 60.7

 

   
 

Table 3.14: A comparison on the Alliant FX/8 for TQL2 vs. TREEQL on random

matrices.
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Test matrices

  

£2 4

P

1. Random

1.00 ~-

2. Wilkinson

3. [1.2.1]

0.75 "

4. T2

0.50 '" n=500

p---# of processors

0.25 '

—— =efficiency

P

} l l ! 4

0 4 8 12 16 P

Figure 3.1: Efficiency of homotopy method on [1, 2, 1], T2, Random matrices and

W3”

 
  

Sp 0 Test matrices

1. Random

10 ' 2, Wilkinson

3. [1.2.1]

7.5

4. T2

5 — n=500

p=# of processors

2.5 Sp=speed-up

l I l l _

I ' I I —"

0 4 8 12 16 P

Figure 3.2: Speed-up of homotopy method on [1, 2, 1], T2, Random matrices and W:
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PART II

The Homotopy Method

for

Real Symmetric Generalized

Eigenproblem

40



Chapter 4

Introduction

Consider the symmetric positive semidefinite generalized eigenproblem:

Ax 2 A83: (4.1)

where A and B are n x 71 real symmetric matrices, B is positive semidefinite. The

pair (A, B) is called a pencil of the eigenproblem (4.1), and the eigenpair of (4.1) is

called the eigenpair of the pencil (A, B). When B is singular, (4.1) has fewer than n

eigenvalues.

Let XAXT be a spectral decomposition of B, where X is an orthonormal matrix

and A is a diagonal matrix. Then, (4.1) is equivalent to

fly = AAy

with A = XTAX and y = X72. Hence, we may assume the matrix B in (4.1)

is a diagonal matrix with nonnegative diagonal elements. In this case, the MDR

reduction [3] can further reduce A to a symmetric tridiagonal matrix and, through

the reduction, keep B as a diagonal matrix. Therefore, we will assume hereafter that,

in (4.1), A is a symmetric tridiagonal matrix of the form

f 01 52 l

.32 02 33

‘- ’° (4.2)

571-1 Ora—1 flu

( [3» an )  
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and B = diag(bl,bg, ...,bn) with b,- _>_ 0.

If ,6; = 0 for some i, 2 S i S n, then R“ can clearly be decomposed into two

complementary subspaces invariant under A. Thus the generalized eigenproblem

A2: = AB: is decomposed in an obvious way into two smaller subproblems. Hence,

we will assume that each [3,- ;£ 0. That is, A is unreduced.

In this part of the work, we shall describe our homotopy algorithm for solving

eigenpairs of the pencil (A, B) in (4.1). Let D be an n x n symmetric tridiagonal

matrix and consider the homotopy H : Rn x R x [0, 1] —-§ Rn x R, defined by

ABa: — D2: /\B:1: — A1:

HWJJ) =(1-t) xTBz—l +t zTBz-l

2 2

ABz - [(1 — t)D + tA]a:

zTBa: — 1 (4.3)

2

ABa: — A(t)x

= $733: — 1

2

where A(t) = (1 — t)D + tA. The pencil (D, B) is called an initial pencil.

In Chapter 5, we shall give a reduction which shows that the eigenvalues of the

pencil (A, B) are the same eigenvalues of a pencil (A, B) with an unreduced sym-

metric tridiagonal matrix A and a positive definite diagonal matrix B. And, from

the reduction, one can easily form the eigenpair (:c, A) of the pencil (A, B) from the

eigenpair (y, )1) of the pencil (A, B). Therefore, we shall assume the diagonal elements

b,- of B are all positive. In such case, we shall prove, in Chapter 6, that the solution

set of H(z, A,t) = 0 in (4.3) consists of disjoint smooth curves, each of which joins

an eigenpair of the pencil (D, B) to an eigenpair of the pencil (A, B). We call each
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of these curves a homotopy curve or an eigenpath. Thus, by following the eigenpaths

emanating from the eigenpairs of the pencil (D, B) at t = 0, we can reach all the

eigenpairs of the pencil (A, B) at t = 1.

The algorithm of following an eigenpath will be given in detail in Chapter 7. Some

numerical results along with comparison with the QZ- method will be presented in

Chapter 8. It appears that our algorithm is strongly competitive in terms of speed,

accuracy and orthogonality and leads in speed in all the cases.
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Chapter 5

Reduction

Let A be an unreduced, symmetric tridiagonal matrix in (4.2) and b = diag(bI,

b2,...,b,,) with b: > 0 and b,- _>_ 0 for i = 2,3, ...,n. In this chapter, we give the details

of the reduction of the pencil (A, B) to a pencil (A, B), where A is still unreduced

tridiagonal and B is positive definite and diagonal.

Lemma 5.1 Assume

A: ————JEmfi}-“‘ andB=(Bl 0):

  
\

where B1 is a positive definite diagonal matrix with dim(B1) = dim(A1) = m1 and 0

is the zero matrix with dim(0) = dim(A‘,’) = n - m1. If det(A‘,’) 96 0, then the pencil

(A, B) has the same eigenvalues as the eigenproblem:

(A1 + S)y = A313/,

where S is a diagonal matrix.

Proof: Clearly, with x = (x1, x2, ...,xn)T, Ax = ABx is equivalent to



and

{$1\

3m:—l
0

   Km)

0

 1 6

( fim+1xm )

+A‘,’

 
)

Since det(A‘1’) gé 0, (A‘,’)"1 exists. From (5.2),

( mmx+1 ‘

aim; +2

  
(2..)

= 443-1

Let (w1, wg, ..., wn_,,,,)T be the solution of

A?

rum

 
(44..-... J

10:

 

K flmi+131»: +1 )
 

/ 4...,“ \

3m1+2

= AB]

31111—1

 

  
(4,.)

0

 

(1)

0

  m
then from (5.3) and (5.4), me = —wlflm,+1xm,. Let

f 0

 

then (5.1) can be written as:

(A1 + S)

  

 

 

{ Batu-131711 \

I.”

 
Km)

 

 

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)



Clearly A1 + S is an unreduced symmetric tridiagonal matrix and the eigenvalues of

(5.5) are exactly the eigenvalues of the pencil (A, B).

Furthermore, if x = (x1,x2, ...,xm,)T is the eigenvector of (5.5) corresponding to

the eigenvalue A, then x = (x1, x3, ..., xm,, —cwl, ..., —cw,,_,,,,)T, where c = 5",”.le ,

is the eigenvector of the pencil (A, B) corresponding to the same eigenvalue A.

  

Q.E.D.

Lemma 5.2 Assume

/ . K
A l

_ _ .1- ' €79.11- ..

19m,“ I Bl

A = || A(l). : and B = 0 ,

----lgmzfl ---- B2

.. firm-H I

I

K . A2 1
where B,-,i = 1,2, are positive definite diagonal matrices with dim(B1) = dim(A1) =

m; and dim(Bg) = dim(A2) = n — mg. 0 is the zero matrix with dim(0) =

dim(A?) = mg - m1. If det(A?) rf 0, then the pencil (A, B) has the same eigen-

values as the eigenproblem:

M“ l l (3‘ )
+3 y=A y, (5.6)

A2 82

where S is a symmetric matrix and the matrix

A1
+S

is unreduced, symmetric and tridiagonal.

Proof: Clearly, Ax = ABx can be rewritten as:

   

( 31 A f 0 l f x; A

A1 5 “l" 0 =A31 E , (5.7)

K 3m / Kflmmzmm ) K 2..., )
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( firm-Hahn: \

+A‘,’

   

and

  

Since det(A‘1’) 76 0, from (5.8)

(zmfll

$m1+2

ting-1

K‘m J
  

  

{ zmfi-l \ f 0 A

tun-{’2 +

0

3m: ) Kflmz-Hzmfi-l /

{ 3mg.” \ ( 17mg.” \

3m?” = A32 3m2+2

  

4M0“

 K flmz+13M2+l /

 

  

 

=0 (5@

59)

(5m)

Let w = (wl, ..., mm.m1 )T and v = (v1, ...,vm,-m,)T be the solutions of

    

(1) (0)

0 0 0 E
Alw = , and Alv = ,

i 0

K 0 l K I J

then, from (5.10),

flm1+lzm1+l = “wlflrznl-I-lzml _ vlflm1+1fimg+lxm2+l

flinz'i-lxma = 'wmg—m1flm14-116m2-I-13m1 "" ”Ma—M1fl72n34-lzmTI-1'

Since A? is unreduced, clearly v1 7e 0. A? is symmetric, so is its inverse. Thus,

v1 = w,,,,..,,.,. Let S be an (n — mg + m1) x (n — mg + m1) matrix of form
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K 0 l

0

“ml53., +1 ”vlfimi+1fimfi-l "(ml)". raw

-v1.3m.+iflm2+1 —”m,—m116,2n,+1 . ...(m1+1)"‘row

0

K 0)

Then, (5.7) and (5.9) can be rewritten as:

f 271 A ( 1'1 \

A1 + S xi": = A Bl 2m; . (5.11)

A2 3771344 32 3m2+1

Clearly, the matrix

A1
+ S

is unreduced, symmetric and tridiagonal and the eigenvalues of (5.11) are the same

eigenvalues of the pencil (A, B).

  

    

Furthermore, if (x1, ..., xm, 2m“, ..., xn)T is the eigenvector of (5.11) correspond-

ing to the eigenvalue A, then for e = 19",,“xm,“ and d = flmfilxmv

(x x —w — v d —w c — v .d )Tl, 00., mx, [C l ’00., m2_m1 gun—m‘ ,3m2+1,...,$n

is the eigenvector of the pencil (A, B) corresponding to the same eigenvalue A.

Q.E.D.
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If

(B; A (A1 4: A

01 :1: A‘,’ :1:

B: B2 , weletA= . (5.12)

ASL, :1:

    
If

(B; l (A, at A

01 :1: A‘,’ at

B: B2 ,weletA= . (5.13)

-. A, 4:

K 0,) K * 42)    
where 05’: are zero matrices with dim(0,-) = dim(A?), and B,-’s arepositive definite

diagonal matrices with dim(B.-) = dim(A.-), i = 1,2, ...,r.

Theorem 5.1 If det(A?) 96 0, i = l,2,...,r, then the pencil (A, B) has the same

eigenvalues as the eigenproblem:

((A1 ) ) (B. )
I

» A B

E 2 + S y = A 2 . y, (5.14)

KK Ar) 1 K Br)

where S is a symmetric matrix and the matrix on the left hand side is an unreduced

      

symmetric tridiagonal matrix.

Proof: By the same line of argument used in Lemma 5.1 and Lemma 5.2, the proof

can be immediately achieved by mathematics induction.

Q.E.D.

In the following discussion, let (A)1 and (A)1 denote the lower (n — 1) x (n - l)

submatrix and the upper (n - 1) x (n — 1) submatrix of A respectively, then (A)1 =

((4)1)1 =((A)‘)1~
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Lemma 5.3 Assume

A: —————-€"2+3-—-- and B: Bl ,

0

  

where B1 is a positive definite diagonal matrix with dim(B1) = dim(A1) : m1 and 0

is a zero matrix with dim(0) : dim(A‘l’) = n — m1. If det(A‘1’) = 0, then the pencil

(A, B) has the same eigenvalues as the eigenproblem:

(Amy = M3019,

Proof: Clearly, Ax : ABx can be rewritten as

      

    

( x; A f 0 A r x; A

A, 4., + 0 = AB, 3” (5.15)

K 3m; j \ fimj-I-lznu-I-l ) K 3m) J

and

( flint-Hz?!“ \ ( $731+! \

0 + A‘,’ ““7 = 0. ~ (5.16)

K o J K .. J

Since det(A‘1’) : 0 and (5.16) has a solution,

/ (fling-Hz?!“ \ \

rank 0 ,A‘,’ = ran/4A?) = n — m1 — 1.
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This implies flm+1xm : 0, since A? is unreduced tridiagonal. Since 5m,” 74 0,

xml : 0. Replacing x,,., by 0 in (5.15), we have

(x1)(0) (x1)

      

A1 : + E = AB; 3 . (5.17)

3m1—1 0 31m —1

K 0 l K flmi-Hzmi-H ) K 0 )

From the last row of (5.17),

flmlxml-l = —flm1+13m1+1- (5.18)

Hence,

$1
31

(All! 5 = A(Blh 5 . (5.19)

xml-l Jinn—l

Clearly, the eigenvalues of (5.19) are the same eigenvalues of the pencil (A, B). More-

over, from (5.16) and (5.18),

{ -%3m1-1 \

zm1+2

A? . = 0. (5.20)

  
KI»)

When (5.19) is solved, xm,-1 is known, so (5.20) has a unique solution since

rank(A‘,’) : n - m1 — 1. Hence if (x1,...,x,,,,-1)T is the eigenvector of (5.19) cor-

responding to the eigenvalue A, then for c : —flm,/flm,+1, (x1,...,x,,,,-1,0,cxm,-1,

x,,,1 +2, ..., x,,)T is the eigenvector of the pencil (A, B) corresponding to the same eigen-

value A.

Q.E.D.
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Lemma 5.4 Assume

  
K . l

where B,-,i = 1,2, are positive definite diagonal matrices with dim(B1)-= dim(A1) :

m1 and dim(Bg) = dim(Ag) = n—mg. 0 is a zero matrix with dim(0) = dim(A?) =

mg - m1. If det(A?) = 0, then the pencil (A, B) has the same eigenvalues as the

eigenproblem:

(A1)1 .4 ... (Blli

0 +3 y=A o +T y, (5.21)

(’42)1 (32)1

where S is a symmetric matrix and the matrix on the left handside in (5.21) is an

unreduced symmetric tridiagonal matrix. T is a diagonal matrix and the matrix on

the right hand side is positive definite and diagonal.

Proof: If mg — m1 : 1, i.e., A? is an 1 x 1 matrix, then A? = 0 since det(A?) = 0.

Hence, Ax = ABx can be rewritten as

      

( x1 \ f 0 \ / x1 \

Al 3.2 'l" E J. =3 AB] 1:2 ,

' : 0 :

K 3m, l K 5m1+1$m1+1 ) K xmI )

firm-+1311“ + flm3+lzm3+l = 0 (5.22)

52



and

( flm4+1zm ) f 2...,“ ) f 3...,“ l

0 3711344 wins-+2

4' A2 . = 1‘32

K 0 l K34} K45}

Notice that 3:",2 = xm,+1, and B1 and B2 are positive definite. We may rewrite (5.22)

      

      

as:

{ $1 A r 0 \ K 31 \

(A1)1 . "l' . = A(Blh . ,

37131-2 0 ting-2

A 31711-1 A K _H'Znijxnxm'tl / K mml-I A

Om m m

"' flmixmi—l + “—fl'lfijflxmz-i-l '— .Bmi-mez = Ahlé'L-Sflzmz-i-l (523)

"11 m1

and

flmz-i-lzmz + am2+l$m2+1 + 76m3+23m2+2 = Abmrl-lxma-H (524)

( fimg+2xm2+1 ) ( 3m3+2 A ( $m3+2 A

0 m m+ (A2)1 3 2+3 = A(Bz)l x 2+3

      
K0} (2,.) Kat”)

Solving for x,,,2 in (5.23) and substituting it into (5.24), yields

on 5?»

-3 3'3““ 39711—1 + (am! 7372:]- + am2+1)zm2+l '1' flmg+2$m3+2
My?!

32

= A(bmfil ‘1' fibmilxmfil'

Let S and T be (n — mg + m1 — 1) x (n —_m2 + m1 — 1) matrices of forms.
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(0 \

0

3m fl
0 -fi3 . ...(ml — l)"‘row

,,, 5’

S = -Ejflnfl am: 73;!11 '1' am2+1 fim2+2 ...(m1)"‘ row
”1+1 "31+!

0

  

  

    

and

f 0 )

’ 0

0

T = bmz+l "I" $23—15"): (mllth'ow

0

O

K 0}

Then

( r: ) f z: \

(A1)1 : (31h

0_ +8 “"1 =4 0 +T 2"“

(4‘13)l 3m?“ (132)1 3m?“

K ... l K 4,. l
(5.25)

Clearly,

53.. +1
bmg-H ‘l" 'fi'z—z'—bm1 > 0:

”n+1

and the matrix on the left hand side in (5.25) is unreduced symmetric tridiagonal.

- The eigenvalues of (5.25) are the same eigenvalues of the pencil (A, B).
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Furthermore, after solving (5.25), 33m, and x...2 can be obtained from (5.22) and

from (5.23). Hence if (x1,...,xm,_1,xm,+1,...,x,.)T is the eigenvector of (5.25) cor-

responding to the eigenvalue A, then (x1,...,x,,,,_1,x,,,,, xm,,x,,,,+1,...,x,,)T is the

eigenvector of the pencil (A, B) corresponding to the same eigenvalue A.

If A? is (m2 -- m1) x (m; - m1), where m; — m1? 2, then Ax : ABx can be

      

      

written as:

f 331 \ f 0 A f 31 \

(A1)1 . + . = A(Bih . 4 (5-26)

wing—2 0 $m1-2

K 4....-. ) K 94.x... ) K mm.-. )

flmxzml—l + amlxflu + flm1+lxm1+l = Abflu 3m“ (5'27)

( Bm1+13m1 l f 3m,“ l r 0 A

0 ... E

+ A? 3 f“ + = 0, (5.28)

. : 0

K 0 j K x1712 ) K flma-i-lxmz-l-l )

flm2+lxmg + am3+1$m2+1 + flm2+QxM2+2 = Ab7732+lmms+li (5'29)

and

( flma+23m2+1 l ( $m2+2 ) ( aim-4+2 )

0 m m

+ (A2)1 3 ”3 = A(Bg)‘ 1” ”'3 (5.30)

      
K0) Ken} K9»)

Since ranh(A?) : m2 — m1 — 1 and A? is unreduced tridiagonal,

  

/ 1 K

A? y‘ = 0 (5.31)

K yma-nu-l /
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has a unique solution. Multiplying (l,y1,...,ym,_m,-1) on the left in (5.28), yields

flmri-lzml = -ym,-m,-1J9m3+13m+1-

Now (5.26) and (5.27) can be rewritten as

       

( $1 \ f 0 \ , { $1 \

(Alli E + 0 =A(Bl)1 E , (5-32)

szx-IJ K'"""'"3.:Ifl”‘”""“$ma+1J Kan-IJ

and

‘1’ -m —lam am +1

firm 2m,_1 + m2 1 1 23m!“ $m2+1 + 3m1+13m1+1

mam

-v -m .- 5 +1

= Abm: "'2 30011:! m

Since det(A?) : 0 and A? is unreduced tridiagonal, det((A?)‘) # 0. Therefore

(1) he (0)

0

(A:)‘v= , .and(A:)‘w=

3m3+1 °

0

KOJ KlJ

have solutions. Write v : (v1,...,v,,,,_m,_1)T and w : (w1,...,wm,_m,_1)T. (A?)1 is

    

symmetric, so is its inverse. So w] : vm,_m,_1. From (5.28),

    

3mm = -vifim,+2$m,+1 - wiflm2+1$m2+1

ass

3m; = _wlflm1+2zm1+1 — wM2-ml-lflm:+le2+l°

It follows from (5.31),

f 111 l ( flm1+2 A

0

(4‘91 ,, = — . ,

K ym.-..,-1 J K 0 J

thus,

yfltz-ml-l = —flm1+2vm2-m1—1 = _flmpI-zwl' (5.35)
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Substituting (5.34) into (5.29), we have

wlfimg-Hfimrl’lzmi-i-l "l’ (am2+1 - wms-m1-1 3.2+!)3m3-H + flm2+2$m2+2 (5.36)

= Abuse“3mz+l -

Similarly, substituting (5.35) into (5.32) and (5.33), yields,

 

 

       

flmazml’l + mamlgz:::fim2+1zm2+l + flml+1$m1+1 (5 37)

= Abm, wingin-jfzrng-fl zmz-Ha

and

f 31 ‘ r 0 \ K $1 \

(A1)1 ' + ° = A(Bl)1 ' . (5.38)

37121-2 0 zm1—2

‘0 ”Hunt!“ 3

K3m1-1 / K 1 ”Mai: ”£93m“ ) szi-l )

We may solve for xm.” in (5.36) and substitute it into (5.37), to obtain

 

w pm pm hi ”13m 5

1 Jamil: 12031-1 + (Oman - wma-mx-lfivznz-l-l + am1( p1":2+1m+1)2)$m2+1
 

+flm+23m3+2 = Abzmg-H

(5.39)

where

wlflmx-Hflmg-l-l )2 > 0

fiflu-{d

Let S and T be (n — mg + m1 — 1) x (n - mg + m1 — 1) matrices of forms

{ 0 )

b = bins-H + bm1(

0 : s l ...(ml - 1)"‘row

S: s I t 'flm,+2 ...(m1)"‘ row

— - ... — —1 -— ...-

.flmfi.) ; 0 ...(m; + l)"‘row
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T = b ...(m1)"‘row

0 4

where s = “pm‘gzxffim” , t = am,“ - wing—nu-l 3,2.” + am,(wlp'3‘::fl'”’“ )2.

From (5.32), (5.38) and (5.39), we have

    

( 31 ) l 31 )

(4.). ‘ (3.). °

0 + S 3”“ = A 0 + T 3“”

(A2)1 301.2471 (Bg)l ”Mai-1

K .. J K ... J
(5.40)

Obviously, the matrix on the left hand side in (5.40) is unreduced tridiagonal and

the matrix on the right hand side is positive definite and diagonal. The eigenvalues

of (5.40) are the same eigenvalues of the pencil (A, B).

Furthermore, after solving (5.40), we can calculate xm,“ from (5.36), x,,,, from

(5.27) and x,,.,+2,...,x,,., from (5.28). Hence, the eigenvector of the pencil (A, B)

corresponding to the eigenvalue A can be easily formed from the eigenvector of (5.40)

corresponding to the same eigenvalue A.

Q.E.D

Theorem 5.2 Assume det(A?) = 0, fori : l,2,...,r.

(i) HA and B are of the same form as in (5.12), then the pencil (A, B) has the

same eigenvalues as the eigenproblem:

( ( (Aill ) ) r ( (31h ) )

0 o

(42% + S v = A (32H + T v

        
KK ' (4)1) J KK . (BM

(5.41)

where S is a symmetric matrix, and the matrix on the left hand side is an unreduced

symmetric tridiagonal, T is a diagonal matrix and the matrix on the right hand side
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is positive definite and diagonal.

(ii) IfA and B are of the same form as in (5.13), then the pencil (A, B) has the

same eigenvalues as the following eigenproblem

( f (141): ) l f ( (31h \ )

(42): +5 u=4 ' (3,); +:r ,

        K K (4)4 J J K K (3.): J
(5.42)

where S is a symmetric matrix, and the matrix on the left hand side in (5.42) is

unreduced symmetric tridiagonal, T is a diagonal matrix and the matrix on the right

hand side is positive definite and diagonal.

Proof: By the same arguments used in Lemma 5.3 and Lemma 5.4, the proof can be

easily achieved by mathematics induction.

Q.E.D.

Theorem 5.3 IfA is an unreduced symmetric tridiagonal matrix and B is a positive

semidefinite diagonal matrix, then the pencil (A, B) can be reduced to a positive defi-

nite pencil (A, B), where A is still unreduced symmetric tridiagonal and B is positive

definite diagonal.

Proof: The proof follows immediately from Theorem 5.1 and Theorem 5.2.

Q.E.D.

Let f,, denote the number of the eigenvalues of the pencil (A, B), then by Theorem

5.1 and Theorem 5.2, we may obtain the following result.

Theorem 5.4

f,, -= rank(B) _ :(1 — sign(|det(A?)|)).

i=1

Since B is diagonal, rank(B) is just the number of nonzero diagonal elements of

B. If zero is an eigenvalue of A9, sign(|det(A?)|) : 0. Otherwise, sign(|det(A?)|) : 1.
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Since A? is unreduced, the Sturm’s sequence [24, 31] can be used to check if zero

is an eigenvalue of A9, so, f,, can be easily computed without actually solving the

generalized eigenvalue problem.
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Chapter 6

Preliminary Analysis

Let A be an n x n real symmetric tridiagonal matrix and B be an n x n positive

definite diagonal matrix of the form

(011 32 l

53 as 53 0 Kb] 0‘

A= . , B: b2 . 5 (6'1)

    
0 [921—1 an-l fin K 0 . bu l

K J?» an ) .

where b; > 0, and fl,- 7‘. 0 for all i. Our algorithm employed the same strategy of

‘Divide and Conquer’ as we did in Part I. First of all, the matrix A is divided into

two blocks by letting one of the 388 equal to zero. Namely, for the initial pencil

(D, B) in (4.3), we let

D=(1:g), (6.2)

2

where

I 011 52 O l { 0H1 flit-+2 0 l

52 02 53 51:“ 05+: fins

D1 _ . . ’ D3 = ’

Bic-1 alt-1 flit Ian-1 an—l fin

K 0 a a.) K 0 9» “nJ
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and then let

B1 0

B =

with dim(B,-) = dim(D,-),i = l, 2. We calculate the eigenvalues of the pencils (D,-, B;),

i : 1, 2, by using the most efficient algorithm available. Then our algorithm conquers

the pencil (A, B) by the homotopy in (4.3).

Theorem 6.1 The solution set of (4.3) consists of disjoint smooth curves and each

curve joins one eigenpair of the pencil (D, B) and one eigenpair of the pencil (A, B).

Proof: Differentiating H(x, A,t) with respect to (x, A) in (4.3) yields,

AB — A(t) Bx )
Hm; (x,A,t) =

( ) ( xTB 0

We claim that if (x, A, t) satisfies H(x, A,t) = 0, then H(,,)()(x,A,t) is nonsingu-

lar. To see this, we show that H(,,;K)(x,A,t)y : 0 has only trivial solution. Clearly

dim(lcer(AB-A(t))) : 1 and xTBx at 0, since for each t, AB—A(t) is unreduced tridi-

agonal and B is positive definite. Suppose y satisfies H(,,)K)y = 0, write y = (yf, y2)T,

where yl E R1‘ and y; E R, then

(AB — A(t))yl + 3]ng = 0 (6.3)

(BTByl = 0. (6.4)

Since xTBx at 0 and xT(AB -— A(t)) : 0, (6.3) implies yg .: 0. Hence,

(*3 - A(t))yt = 0.

01‘

Him — B-iA(t)B-%)Biy, = 0.

That is, Big, e ker(AI — A(t)) with A(t) = B-iA(t)B-l. It is easy to see that A(t)

is also unreduced since B‘i is a diagonal matrix with positive diagonal elements.
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Thus, dint(lcer(AI - A(t)) = 1. On the other hand,

()1 — 4(4))th = (AI — B'iA(t)B-i)Bix

= B-i(AB — A(t))x = 0.

Thus, B§x E ker(AI — A(t)) and hence, B’i‘x : cBiyl for certain nonzero constant

c. From (6.4),

473,, = (szxBiyl) = c(B%y.)T(B%h) = 0.

Therefore, y; = 0, since B ’1‘ is positive definite. Hence y = 0.

A repeated application of the implicit function theorem, the assertion of the the-

orem is achieved.

Q.E.D.

Let f.- and A.-(t) be eigenvalues of the pencils (D, B) 'and (A(t),B), respectively.

Then the following theorems follow immediately from the results we proved in Part

1.

Theorem 6.2 If eigenvalues of (D, B) are distinct then

(i) Either A;(t) is constant for all t in [0,1] or strictly monotonic.

(ii) A,(t)A.-(t) > 0 for t small, if A,-(t) ¢ 0.

Theorem 6.3 For any t 6 [0,1],

£{_1 S Ag“) 5 £§+1,i ‘2 2, 3, ...,n — 1,

A1“) $51

A..(t) 2 5,.

From Theorem 6.2 and Theorem 6.3, every homotopy curve must be one of those

in Figure 6.1. Each homotopy curve is bounded by two consecutive dotted lines and

no homotopy curve can cross any dotted line.
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Figure 6.1: The generalized homotopy curves



Chapter 7

The Homotopy Algorithms for

Generalized Eigenproblem

Our algorithm for finding all the eigenpairs of the pencil (A, B) with unreduced

symmetric tridiagonal matrix A and positive semidefinite diagonal matrix B is based

on the following steps:

(i) Reduction

(ii) Initiating at t = 0

(iii) Prediction

(iv) Correction

(v) Checking

(vi) Detection of a cluster

(vii) Step-size selection

(viii)Terminating at t = 1

(ix) Forming the eigenpairs of the pencil (A, B).

7.1 Reduction

If B is positive semidefinite, the pencil (A, B) will be reduced to a pencil (A, B)

with B positive definite by the reduction we described in Chapter 5.
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7.2 Initiating at t = 0

As we mentioned in Part I, by making the initial matrix D in (6.2) close to A,

then the eigenpairs of the pencil (D, B) should be excellent starting points as we

mentioned in Part I. We intend to choose I: for which fig.“ is as small as possible. To

make the sizes of the blocks D1 and D; roughly the same, we limit the choice of k in

the range n/2 —j S I: _<_ n/2 +j, wherej is roughly equal to n/20, and find the

smallest (31,.” by local sorting.

When the initial matrix D is decided, we calculate the eigenvalues of the pencils

(D1, B1) and (D2, B2) by using the most efficient method available. We only require

the accuracy stay within one-half or even one-third of the working precision. With

this strategy, considerable amount of computing time is saved.

7.3 Prediction

Assume that after i steps the approximate value (:i':(t,-), A(t;)) on the eigenpath

(x(t), A(t)) at t,- is known and the next step-size h is determined; that is, t5.“ : t,- + h.

We want to find an approximate value (i(t,-+1),A(t,~+1)) of (x(t;+1),A(t,-+1)) on the

eigenpath at t5“. Notice that (i(t,~.,.1),A(t,-+1)) is an approximate eigenpair of the

pencil (A(t;+1),B). Since H(x(t), A(t),t) = 0, we have

K A(t)x(t) = A(t)Bx(t)

 . x(t)TBx(t) = 1.

Differentiating both equations with respect to t , yields,

(A — D)x(t) + A(t)x(t) = A(i)Bx(t) + A(t)B:1’:(t)

(7.1)

$(t)TB:i'(t) = 0.

For t = t,-, multiplying (7.1) on the left by xT(t,), yields,

A(ti) = 3T(ti)(A - D)$(ti) = 25k+1$k(ti)$k+1(ta) (7-2)

66



where $(t5) = (x1(t,-),...,x,,(t,-))T. In view of (7.2), we use the Euler predictor to

predict the eigenvalue at t.-+1 , namely,

A°(t,-+1) = A(t,-) + i(t.-)h.

It is easy to see that A(0) : 0 in (7.2). Consequently, A°(t1) always equals to A°(0).

To predict the eigenvector, we use the inverse iterations on (A(t;+1), B) with shift

A°(t,-+1). That is, we solve

(A(tm) - A°(t.~+1)B)y°(t,-+1) = 3304')

and let

By°(t.-+1)

ITBy°(t.-+1)ll-

At t,- = 0, since we skip the calculations of eigenvectors of the pencil (D, B), x(0) is

 
30(ti+1) =

not available. We choose a random vector for x(0).

7.4 Correction

When B is positive definite, the generalized Rayleigh quotient p(u) : (uTAu)/uTBu

enjoys the following properties [24]:

(i) Stationarity.

Since

grad(p(u)) a v(p(u)) = 2“" :T”§:)B“)T. 

thus p is stationary at the eigenvectors of the pencil (A, B).

(ii) Minimum residual.

“(A - aB)u||},_. Z ”Aullis-I - |P(u)I’IIBUI|ia—x,

where [le [23-1 = xTB'lx, with equality holds if and only if a = p(u).

(iii) Monotonicity.

“(A " Pk+1B)$k+1IIB-1 S “(A - ptB)xtIIB.-1 for all k.
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(iv) Cubic convergence.

Therefore, we use the generalized RQI as a corrector, starting with x°(t;+1). To

be more precise, at (xj‘1(t,-+1), A5’1(t.-+1)) (j _>_ 1) let

A"'(tm) = 3i"(ti+1)TA(ti+1)3j-l(ti+1l

then solve

(A(tm) - A5(ti+1)B)IIj(ti+1) = xj'lUm)

and let

Byj(ti+1)

HBvi(t.-'+1)ll~

We repeat the above process to within half of the working precision if single precision

$j(ti+1) = 

is used and one-third of the working precision if double precision is used when t5.” < 1,

since precision in determining the curve itself is only of secondary interest. We polish

(xj(t,+1), A5(t,-+1)) at the end of the path (t.-+1 = 1) by iterating the Rayleigh quotient

to machine precision. The stop point (x5(t.-+1),.A5'(t',-+1)) of ROI will be taken as an

approximate eigenpair (:i':(t,-+1), A(t,-+1)) of the pencil (A(t.-+1), B).

The cubic convergence rate of RQI makes the corrector highly efficient.

7.5 . Checking

    

For

f a 32 ) i

1 f t, \

52 02 .33 b;

A: , and B: . ,

fln-l an-l fin K ° b j

K fin an ) n

with nonzero figs and b,- > 0, the_polynomials defined by

110(k) =1

P1”) = 01 — Ab1

“(Al = (a, " ”filly-10‘) - fiEPr-“M

r = 2, 3, ...,n
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form a generalized Sturm sequence. Thus, the number of the eigenvalues of (A, B)

strictly greater than A is equal to the number of the sign changes of the Sturm

sequence, with the convention that if p,(A) : 0, then p,(A) is taken to have the

opposite sign of p,-1 (A).

When (i(t,-+1), A(t;+1)) is taken as an approximate eigenpair of the pencil (A(t,-+1),

B), the generalized Sturm sequence at A(t.‘+1)+ e is computed to check that, if we are

trying to follow the curve corresponding to j‘h largest eigenvalue, we are still on that

curve. Here, 6 is chosen as half of the working precision if single precision is used and

one-third of the working precision if double precision is used. If the check fails, we

reduce the step size to h/2 and repeat the whole process once again beginning with

the eigenvalue prediction in Section 7.3.

7.6 Detection of a cluster

At t,- = 0, when all the eigenvalues of the pencil (D, B)

A1(0) < A2(0) < < A..(0)

are available, we let 6 : max(10'5,10’2(A,.(0) — A1(0))/n) if double precision is used

(or 6 = max(10’3,10’2(A,,(0) — A1(0))/n) if single precision is used). Set A,- and A,-

in the same group if IA.-(0) - A,(0)I < 6. If the number of the eigenvalues in any

group is bigger than 1, then a cluster is detected. At t,- 96 0, or 1, when (5(a), A(t;))

is taken as an approximate eigenpair of the pencil (A(tg), B), after the checking step

in Section 7.5, we compute the Sturm sequences at A(t.) :l: 6 to find the number of

eigenvalues of (A(t;),B) in the interval (A(tg) — 6, A(tg) + 6). When this number is

bigger than 1, a cluster of eigenvalues of (A(tg), B) is detected.

, In those cases, the corresponding eigenvectors are ill-conditioned and such ill-

condition can cause the inefficiency of the algorithm. We simply give up following

the eigenpath and the corresponding eigenpair of the pencil (A, B) will be calculated

at the end of the algorithm (see Section 7.8).
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7.7 Step size selection

In the first attempt, we always choose the step size h = l — t.- at t,- < 1. If after

the prediction and the correction steps the checking step fails, we reduce the step size

to M2 as mentioned in Section 7.5. Since the initial pencil (D, B) is chosen to be so

close to (A, B), from our experiences, most of the eigenpairs of the pencil (A, B) can

be reached in one step, i.e., h : 1.

Very small step size can also cause the inefficiency of the algorithm. Therefore,

we impose a minimum 7 on the step size h. If h < 7, we simply give up following the

eigenpath and the corresponding eigenpair of A will be calculated at the end of the

algorithm (see Section 7.8). We usually choose 7 as 0.25.

7.8 Terminating at t : 1

At t = 1, when an approximate eigenvalue A(l) is reached, we compute the Sturm

sequence at A(l) + c with e = machine precision to ensure the correct order. If the

checking fails, we have jumped into a wrong eigenpath. More precisely, suppose we

are following the i“ eigenpair, the checking algorithm detects that we have reached

the j‘“ eigenpair instead. In this situation, we will save the j“ eigenpair before the

step size is cut. By saving the j“ eigenpair, the computation of following the j‘h

eigenpair is no longer needed.

As mentioned in Section 7.6 and 7.7, we may give up following some eigenpaths

to avoid adapting a step size that is too small or the situation when a cluster is

encountered. Without any extra computation, we know exactly which eigenpairs are

lost at t = 1. In order to find these eigenpairs, we first use the bisection to find

the eigenvalues up to the half working precision and then use the inverse iteration

and the RQI. If there is a cluster, then we do bisection to find the eigenvalues up

to the machine precision, then use the inverse iteration to find the corresponding

eigenvectors. In this case, to guarantee the orthogonality, we orthonormalize the

eigenvectors belonging to the same cluster while we are using the inverse iteration.
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7.9 Forming the eigenpairs of (A, B)

If B is positive semidefinite, the pencil (A, B) was reduced to a pencil (A, B) with

B positive definite. From Theorem 5.1 and Theorem 5.2, the eigenvalues of the pencil

(A, B) are the same eigenvalues of the pencil (A, B). Although the eigenvectors are

different, the eigenvectors of the pencil (A, B) can be easily formed from those of the

pencil (A, B) with few computations. The formulas are given in Chapter 5.
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Chapter 8

Numerical Results of the

Homotopy Method for Symmetric

Generalized Eigenproblem

We shall show the computational results comparing the homotopy continuation

method GHOMO with QZ method. The computations were done on a Sun SPARC

station 1.

' Our testing examples consist of the following types of pencils (A, B):

Type 1. A is an unreduced symmetric tridiagonal matrix with both diagonal

and off-diagonal elements being uniformly distributed random numbers between 0

and 1. B is a diagonal matrix with the first n/2 diagonal elements being uniformly

distributed random numbers between 0 and l, and the last 11]2 being zeros.

Type 2. A is an unreduced symmetric tridiagonal matrix with both diagonal and

off-diagonal elements being uniformly distributed random numbers between 0 and l.

B is a diagonal matrix with the first 3n/10 and the last 3n/10 diagonal elements

being uniformly distributed random numbers between 0 and 1, and the rest being

zeros.

Type 3. A is Toeplitz matrix [1,2,1]. B is a diagonal matrix with the first n/2

diagonal elements being 1, and the rest being zeros.

Type 4. A is Toeplitz matrix [1,2,1]. B is a diagonal matrix with the first 3n/10
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and the last 3n/10 diagonal elements being 1, and the rest being zeros.

Type 5. A is an unreduced symmetric tridiagonal matrix with both diagonal and

off-diagonal elements being uniformly distributed random numbers between 0 and 1.

B is a diagonal matrix with all diagonal elements being random numbers between 0

and 1.

Table 8.1 shows the comparison in terms of speed with the QZ method. Table

8.2 shows the accuracy and orthogonality of the homotopy method. The homotopy

method appears to be strongly competitive and leads in speed by a considerable

margin in comparison with the QZ method in all the cases.
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Table 8.1: Execution Time (second) of computed eigenpairs of generalized eigenprob-

lems.

 

 

 

 

 

 

 

 

 

 

 

 

Matrix Order I Execution Time (second)

[_Type N I GHOMO QZ Ratio (ox/0110540)

l——k 30 0.23 6.49 28.21

Matrix 100 0.75 48.20 64.26

Type 200 2.85 328.19 115.15

1 400 12.39 2546.06 205.49

50 0.28 6.23 22.25

Matrix 100 1.14 45.67 40.06

Type 200 4.86 321.86 66.22

2 400 15.24 1802.32 118.26

50 0.31 6.15 19.83

Matrix 100 1.60 46.96 29.35

Type 200 6.46 352.67 54.59

3 400 23.68 2796.63 118.10

50 0.52 5.82 10.15

Matrix 100 2.18 44.20 20.27

Type 200 8.80 336.50 38.23

4 400 34.84 2694.60 77.34

50 0.72 11.17 15.51

Matrix 100 2.81 74.66 26.56

Type 200 12.74 488.53 38.34

5 400 47.70 3866.14 81.05     
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Matrix Order N max.- ||Ax,- - Anggllg/Am, max“,- |(XTBX — I),-JI/Am

50 3.9107905787880D-16 2.8617639677154D-16

Matrix 100 3.4241406339558D-16 2.6417938095675D-15

Type 200 4.3779590340543D-16 2.0037668814815D-15

1 400 5.2265929394497D-16 5.1552956553653D-15

50 3.4923828496565D-16 l.3678005594614D-15

Matrix 100 4.1134132219334D-16 1.0126081452260D-15

Type 200 5.1246002221589D- 16 1.8957582132953D-13

2 400 4.9856607322645D-16 1.093460401 163213-14

50 1.1454950034247D-16 3.4233801826002D-l6

Matrix 100 1.6564408035527D-16 1 .147089522183613—15

Type 200 2.1624971847800D-16 3.6096263986950D-15

3 400 2.4734721400459D- 16 2.1752300627827D-14

50 1.0336086782520D-16 2.4870346559132D-16

Matrix 100 2.0867616866469D-16 2.3841690810960D-15

Type 200 2.1954327917052D-16 6.4657627842233D-15

4 400 2.9860202732850D- 16 2.6556085482256D-14

50 2.1611472844832D-16 2.2100520796971D-15

Matrix 100 4.3084863486435D-16 1.7434653812219D-15

Type 200 4.6005546307787D-16 5.2256957128428D-15

5 400 6.0472727089284D- 16 2.1235908790871D-14   
 

 
Table 8.2: The residual and orthonormality of computed eigenvectors of generalized

eigenproblems.
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