


'IHIII

293 00876 1565

This is to certify that the
dissertation entitled

Homotopy Methods and Algorithms
for Real Symmetric Eigenproblems

presented by

Kuiyuan Li

has been accepted towards fulfillment
of the requirements for

Ph.D. degree in Mathematics

//@AV%/

Ma_w‘ professor

Date_July 18, 1991

MSU is an Affirmative Action/Equal Opportunity Institution 0-1271



' LIBRARY |
Michigan State ,
University l

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE

| — p— p—

jinii

NN

— |

MSU is An Affirmative Action/Equal Opportunity Institution
cmm:ﬂa.l




HOMOTOPY METHODS AND ALGORITHMS
FOR REAL SYMMETRIC EIGENPROBLEMS

By

Kuiyuan Li

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1991



ABSTRACT
HOMOTOPY METHODS AND ALGORITHMS
FOR REAL SYMMETRIC EIGENPROBLEMS
By
Kuiyuan Li

This thesis discusses the homotopy methods and algorithms for real symmetric
eigenproblems. It contains two parts. In the first part, a new algorithm is presented
for finding all the eigenvalues and the corresponding eigenvectors of a symmetric
tridiagonal matrix. The algorithm is based on the homotopy continuation approach
coupled with the strategy of ‘Divide and Conquer’. Evidenced by the numerical
results, the algorithm provides a considerable advance over previous attempts in using
homotopy method for symmetric eigenvalue problems. Numerical comparisons of the
algorithm with the methods in widely used ESPACK library as well as Cuppen’s
‘Divide and Conquer’ method are presented. It appears that our algorithm is strongly
competitive in terms of speed, accuracy and orthogonality and leads in speed in
almost all the cases. The performance of the parallel version of the algorithm is also
presented.

In the second part, a homotopy method for finding all eigenpairs of a real symmet-
ric matrix pencil (A, B) is given, where A and B are real n X n symmetric matrices
and B is a positive semidefinite or ill-conditioned positive definite matrix. A reduc-
tion of pencil (4, B) to pencil (4, B) is given, where A is an unreduced symmetric
tridiagonal matrix and B is a positive definite diagonal matrix. One can easily forms
the eigenpair (z, A) of pencil (A, B) from the eigenpair (y, A) of pencil (4, B). Fur-
thermore, a formula is presented for finding the number of the finite eigenvalues of
pencil (A, B) without actually solving the generalized eigenproblem. By choosing
initial pencil properly, the homotopy curves are very well separated and, in general,
very flat and easy to follow. The homotopy algorithm is compared with QZ algo-
rithm. The numerical results show that the homotopy algorithm leads in speed in all

the cases.
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PART 1
The Homotopy Method for
Real Symmetric Tridiagonal
Eigenproblem



Chapter 1

The Homotopy Method for Real
Symmetric Tridiagonal

Eigenproblem

1.1 Introduction

In this chapter, we propose a new algorithm, based on the continuation approach,
for finding all the eigenvalues and eigenvectors of a symmetric tridiagonal matrix. Let

A be an n x n real symmetric tridiagonal matrix of the form

( ) ﬂz \
Pr az P o
A= ‘e ‘e ‘e (1.1)
ﬂn—l Qn_1 ﬂn
0,
\ Bn an }

In (1.1), if some B; = 0, then R® clearly decomposes into two complementary

subspaces invariant under A. Thus the eigenproblem decomposes in an obvious way



into two smaller subproblems. Therefore we will assume that each 8; # 0. That is,
A is unreduced. Our algorithm employs the strategy of ‘Divide and Conquer’. First
of all, the matrix A is divided into two blocks by letting one of the 8;’s equal to zero.

Namely, we let

D= ( D0 ) (1.2)
0 D,
where

(& 8, ) ( Qikt1 Prsa )

P a2 Ps Br+z itz Pits

D, = TR " ,D; =

Brar ara B Pn-1 an_1 P

\ B o \ Bn an )

We then calculate the eigenvalues of unreduced matrices D; and D; by using the most
efficient algorithm available. Different from Cuppen’s ‘Divide and Conquer’ method
[8], our algorithm conquers the matrix A by the homotopy H : R® x R x [0, 1]
— R™ x R, defined by

Az — Dz Az — Az
H(.’t,z\,t): (l't) ZTI—]. +t $T.1:—l
2 2

Az — [(1 —t)D + tA]=z

= Tz -1 (1.3)
2
Az — A(t)z
= zTr—1
2

where A(t) = (1 — t)D + tA and D is called an initial matriz. It can be easily seen

that the solution set of H(z,\,t) = 0 in (1.3) consists of disjoint smooth curves,
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each of which joins an eigenpair of D to one of A [5, 6, 7, 20]. We call each of
these curves a homotopy curve or an eigenpath. Thus, by following the eigenpaths
emanating from the eigenpairs of D at ¢ = 0, we can reach all the eigenpairs of A at
t = 1. Theorem 1.1 in next section shows that the eigenvalue component A(t) of each
eigenpath (z(t), A(t)) is monotonic in t. On the other hand, by Hoffman-Wielandt
theorem [31],

S = M) S UIA@) = Allb =201 — 18, foranyte[0,]  (14)

=1

where ||.||F is the Frobenius norm and where ); and );(t) are the i** eigenvalues of A
and A(t) respectively. Therefore, all the eigenvalue curves );(t) can be quite flat if
Br+1 (=0 in D ) is very small, especially when n is very large. As a consequence, the
eigenvalue curves );(t) are very easy to follow. We shall describe our curve following
algorithm in Chapter 2.

The search for fast reliable methods for handling symmetric eigenproblems has
produced a number of methods, most notably the QR algorithm, the bisection Sturm
sequence method with inverse iteration [14, 15]) and the ‘Divide and Conquer’ method
[8,9, 28]. In Chapter 3, we shall present our numerical results, along with comparisons
with these methods. It appears that our algorithm is strongly competitive in terms
of speed, accuracy and orthogonality, and leads in speed in almost all the cases.

Modern scientific computing is marked by the advent of vector and parallel com-
puters and the search for algorithms that are to a large extent parallel in nature.
A further advantage of our method is that it is to a larger degree parallel, in the
sense that each eigenpath is followed independently of the others. This inherent na-
ture of the homotopy method makes the parallel implementation much simpler than
the other methods. In Chapter 3, we also show the performance of our parallel al-
gorithm and an indirect comparison with both Divide and Conquer (D&C) [9] and
Bisection/Multisections (B/M) [23], which are currently considered the only parallel
algorithms available for symmetric eigenproblems. The very high efficiency of our
method and its natural parallelism make the algorithm an excellent candidate for a

variety of architectures.



Theoretical aspects of the continuation approach to the eigenvalue problems have
been studied in [5, 6, 7, 20]. A first attempt was made in (18] to make the method
computationally efficient. Its parallel version appeared in [22]. Evidenced by the
numerical results, our algorithms given here provide a considerable improvement over

the algorithms in [18, 22].

1.2 Preliminary Analysis

Let (A)! denote the lower (n — 1) X (n — 1) submatrix of A , (A); denote the upper
(n — 1) x (n — 1) submatrix of A.

By a straightforward verification, one can prove the following lemma.

Lemma 1.1 For matrices M and N and a real number c,

( | )

det| - —— — — — —— — | =detM-detN — *det(M), - det(N)'. (1.5)

Let M be a k x k unreduced symmetric tridiagonal matrix and let { & < £ <
w. <& } and { ;m < 12 <... < M-y } be the eigenvalues of M and (M), respectively.
Then, by Cauchy’s interlacing theorem [24],

f] <nm< fz eae< NP1 < fk. (16)

For Dy and D, in (1.2), let f; = det(D,— A1), fo = det(Dy—AI), f3 = det((Di1)1 —
AlI) and fy = det((D;)! — M). Let (z(t),\(t)) be an eigenpath of the homotopy
H(z,A,t) = 0 in (1.3), then for each 0 < t < 1, A(t) is an eigenvalué of A(t) =
(1-t)D +tA in (1.3), where D is of the form in (1.2).

5



Theorem 1.1 If all the eigenvalues of D are distinct then
i) Either A(t) is constant for all t in [0,1] or strictly monotonic.
i) A()A(t) > 0 for t small, if A(t) Z 0.

Proof: Since
( | )
Dy — M) |
| tBrsr
det(A(t)-At))=det | — ————— ——— — ——_ ————_— —|=0,
tBrsr |
| Doy — A(t)I
\ | /
from ( 1.5), we have
HA@) (@) = 8L SR fa(A(R) = 0. (1.7)

If there exists a ¢ in [0,1] for which f3(A(20))fe(AM(to)) = O then either f3(A(¢0)) =0
or fo(Mto)) = 0; say f3(A(to)) = 0. It follows from (1.6), fi(A(Zo)) # 0. Hence,
f2(M(to)) = 0 in ( 1.7); accordingly,

Fi(Mt0)) f2(A(to)) — 41 f3(A(t0)) fe(A(to)) = 0.

This implies det(A(t) — A(to)I) = 0. Thus, A(t) = A(Zo) for all ¢t in [0,1].
Assume f3(A(t))f4(A(t)) # 0 for any ¢ in [0,1]. Write A(t) = £)(t). Differentiat-
ing (1.7) with respect to t yields,

SLAOODAOW) - P8 SO ANOA) = 28, SANAA®D)  (18)
LSLAOOAOO LB SONAAO £0  for any t € (0,11
We claim that
FUHOOAOO) — ABLAAOLQWO) |_ #0 (1.9)

6



For otherwise,

SLROOLN®) - 2LAMNLOON | =5 OOACOT|_

d d
=2 pom) | A0+ A0S saw | =0

Since A(0) is an eigenvalue of D, we have f,(A(0))f2(A(0)) = 0. If f,(A(0)) =0
then f,(A(0)) # 0 since all eigenvalues of D are distinct. Hence, £ fi(A(t))e=0 = 0.
Consequently, A\(0) is a multiple eigenvalue of D; which contradicts to the fact that
D, is unreduced. The proof of (1.9) for the case f;(A(0)) = O follows by the same

argument.
Now, from (1.8),

2tBE1 SO fs(A(R)

At) = HAA@)f2(A(2)) — 1282, Fs(A()) fa(A(2)))

which implies A(t) # 0 for any ¢ € (0, 1]. Obviously, A(t) is continuous, hence, A(2) is
strictly positive or strictly negative. Namely, A(t) is strictly monotonic.

Now let g = fifz , f = B fafa and b = (9 — 2f)x = h(t, A(t)), then ) = 2tf/h

At) = -4t’ﬂg—;:—2£)‘—‘ + 8t’f—,:,£ + Zhi (1.10)

Since f2(g — t2f)ar/h3 and fif/h? are continuous in [0,1], they are bounded. By
(1.10),
A0) = gi_’n(}A(t) = }i_.ng2f/h
Hence A(t)A(t) > 0 for t small since A(t) = 2tf/h.
Q.E.D.

Theorem 1.2 (Hoffman and Wielandt [31]) Let M be an n x n symmetric
matriz. Let M' = M + E where E is a symmetric perturbation of M. Denote the
eigenvalues of M by { &1 < & < ... < & }, the eigenvalues of M' by { £} < ¢, < ... <
€. }, and the eigenvalues of E by { m < 72 < ... £ Y}, then

Y(&-&r <y (1.11)

=1 =1



Applying the above theoremon M = Aand M' = A(t)=(1-t)D+tA=A+E
with
( | \

O l
| (t=1)Brsr

E=| - ——— —_——— - ——— —_— =

(t = 1)Brsr : O

\ | /

then, (1.11) gives

IO = M())? S 21— 1)*82,, forall £in [0,1] (1.12)

i=1
where \; and X;(t) are the eigenvalues of A and A(t) respectively.
From (1.12), together with the conclusion in Theorem 1.1 that each \;(t) is mono-
tonic in ¢, we see that the smaller Bi4y is the flatter the eigenvalue curves are,
especially when n is very large. To make the eigenvalue curves easy to follow we in-

tend to choose B4 as small as we can for k in certain range as described in Chapter 2.

Let A(t) = D +Y(t), where A(t), D and Y(t) are real symmetric, and X;(t), &
and u;(t) be the eigenvalues of A(t), D and Y (t), respectively, with X;(t) < Aia(2),
& < &1 and pi(t) < pipa(t),1=1,2,...,n - 1.

Theorem 1.3 For any i, j satisfyingl <i+j— 1< n, and t € [0,1), the following
tnequalities hold:

& + () < Aigja(2) (1.13)
and

Ant2-i-j(t) < Ensr-i + pns1-(2). (1.14)

Proof: Let Rj3?, R*-!, and R{.'(,'), R7-! be the subspaces of R® defined implicitly by

. 8'Ds . 8TDs
{i = max min —— = min
Ri-1 g1Ri-1 glg l.l.R'l;" 3T3




T T
7Y (t)s = min ° Y(t)s.

:(t) = max min
#i(?) Ri-1,1Ri-t gTs +LR{7) sTs

In fact, Rj! is the span of the eigenvectors corresponding to the i — 1 smallest
eigenvalues of D. Similarly R{,'(:) is the span of the eigenvectors corresponding to the
J — 1 smallest eigenvalues of Y(t). These subspaces may or may not have a nontrivial
intersection. Let S be the subspace of the smallest dimension containing both Ri;*

and R} Write k = dim(S) + 1. Now,
k—1=dim(S)<(i-1)+(G -1) <n,

with equality holds only if the intersection, R;! N R{,'(,l) = {0}.

So,
Aij-1 2 Mk
. zTA(t)r .
=max min ——, by definition of A,
. zTA(t)z i )
> min —=-—, since dim(S) = k — 1,

zT Dz + zTY(t)z}
z1s" 2Tz zTz
uTDu + min vTY (t)v
wls uTu ~ wis o7y
. uTDu . vTY(t)v
min min

i-1 T j— T
uwlRy! u'u vJ_R’Y( :) viv

(since R;;* C S, and R‘;,"(}) cS,)

=& + u;.

Inequality (1.14) can also be proved by following the same line of argument.
Q.E.D.
Let the inertia of Y'(¢) be (x,v,(), where =, v and { are the number of positive,

negative, and zero eigenvalues of Y'(t) respectively. Then we have,

Corollary 1.1 iy S M(t) S &kgny k=v+1L,v+2,...,n—mn, forallte
[0,1].



Proof: By the definition of v, p,41(t) > 0. Let i = k — v, and j = v + 1 in Theorem
1.3, then
£k—v S fk—v + I‘v+l(t) S Ak(t)-

Let i=n+1—k—~x,and j = v + 1 in inequality (1.14), we have
Ak(t) Ser + l‘n-a'(t) < Ekir

since pin—(t) < 0. Q.E.D.
Let Y (t) = t(A — D), where D is the block diagonal matrix given in (1.2), then

O |
Y@t)= |----— k@tl--

B : O

Since Y(t) has exactly one positive eigenvalue and exactly one negative eigenvalue,

from Corollary 1.1, the following corollary is immediately achieved.

Corollary 1.2 For any t € [0, 1],

ft‘-—l < Ai(t) S Et'-i-hi = 2y 3’ ey — 1’
M) <&
An(t) 2 &n.

From Theorem 1.1 and Corollary 1.2, the homotopy curve must be one of those in
Figure 1.1. Any homotopy curve is bounded by two consecutive dotted lines and no
homotopy curve can cross a dotted line.

It is desirable to choose D as a diagonal matrix, consisting of the diagonal part
of A, rather than the form in (1.2) as we did in the above analysis. If D is a diag-
onal matrix, then eigenvalues and corresponding eigenvectors of D are immediately
available. Thus, the work of solving the eigenproblem of D is saved. In [18], Li and
Rhee showed that this strategy worked very well for certain matrices, such as [1,1,1],

i = 1,2,...,n. That is, if we choose D = diag(1,2,...,n) in solving eigenproblem of

10



H(x»k,t)=0 EMI)

S — V)
Mg (O) [ M])

D (O f——rE e

AA0) asssszzsizzinne s
2 T A4D
y WY R —
7\1(1)>
0 t=1 t

Figure 1.1: Homotopy curves

the matrix [1,1, 1), the eigenpaths are still very flat and easy to follow. However, this
strategy B;ea.ks down when we solve the eigenproblem of tridiagonal matrices (1,2, 1].
The eigenpaths are rather difficult to follow. In the following analysis, we give some
criteria which guarantee the safety of choosing a diagonal starting matrix D.

Note that (A)! is the lower (n — 1) x (n — 1) submatrix of A , (A); the upper
(n =1) x (n — 1) submatrix of A and X;(A) is the i** smallest eigenvalue of A.

Lemma 1.2 If o; < ai41,t = 1,2,...,n—1 and if there exists a ¢ , 0 < ¢ < 1 such
that
(A — (A - Clsl‘%i,?_l(ao‘n —a)I

is positive semidefinite then

1 Sr"l.g'{l—l(’\i“ -X)2e¢ 1 Sf'.léi'?_l(aiu - a.-)

where \; = X;(A).
Proof: Since A is symmetric, so are (A); and (A)!.

Let
1S pr < < pinr

11



and
61 <8 L+ S by

be the eigenvalues of (A)! and (A); respectively, then by Cauchy’s interlacing theorem
24],
MSmSAh< S a1 < (1.15)

M<HS A< Sy S A (1.16)

Since (A)! = (A)1 + cal +[(A)! — (A)1 — cal], and (A)! — (A1 — cal is positive

semidefinite, where

a= l<r.xyn (aiy1 — @),

by the Courant-Fisher maximum characterization [31],

Ai((A)Y) = Xi((A) + cal) foranyi,1<i<n-1

ie.,

pi —6; > ca>0, 1<it<n-1.
By (1.15) and (1.16),

MSHSm AL <bn1 S a1 £ A

Hence
Aig1 = Ai 2 pi — 6; 2 ca, 1<i<n-1
and
l<mm (Aig1 = X)) 2 c mm (a,+1 - a;).
Q.E.D.
Corollary 1.3 If
a (¢
-] - = (4)' -
Qan-1 Qan

then

1<’P<’v? l(/\..H -XN)2 <mm (qiy1 — ;). (1.17)

12



Proof: (1.17) follows immediately from Lemma 1.2, since

az —ay
(A — (A) — =0.
Qn — Qp_1
Q.E.D.
Let A(t) = (1 —t)D+tA, where D is a diagonal matrix consisting of the diagonal

elements of A, then
Theorem 1.4

lslgi'fl_l(/\,-.,.l(t) - X(t) > clgl%if-l(a”’ - ;) telo,1)].

Proof:

(A@))! = (A@®): ~ of = 4(A)* — (A) - al) | w19

+(1 — t)diag(az — oy —a,a3 —az —a,---,an — ap_1 — @),
where

a= clg’%i'?-l(a‘“ - ), 0<c<l.

Clearly, the second term of the right hand side of (1.18) is positive semidefinite and
the first term is positive semidefinite by assumption. Hence, (A(t))! — (A(t))1 — al
is positive semidefinite for ¢ € [0,1]. By Lemma 1.2,

. S‘}}i,{l_l(&'ﬂ(t) —A(t)) 2 e, S%i.?_x(a‘“ - a;) t €[0,1].

Q.E.D.

If A satisfies the conditions in Lemma 1.2, we may choose the initial matrix D as a
diagonal matrix consisting of the diagonal elements of A, then, A(t) is an unreduced
symmetric tridiagonal matrix and the eigenvalue curves are not only distinct, but

also very well separated. There is a lower bound between any two eigenvalue curves

so that the eigenvalue curves are easy to follow.

Example 1.1 A=[1,i,1], where i=1,2,...,20. If we let D=diag { 1,2,...,20 }, then all

the eigenvalue curves are very well separated. See Figure 1.2.

13



A

21 0000 7 [

18 3875 A

1S5S 7750

13 1625

10 5500

? 93750

S 32500 1

2 71250

]00000 T T L T L) T T 1
00 0000 125000 250000 375000 S00000 625000 750000 875000 1 003¢C

t

Figure 1.2: The eigenvalue curves of [1,i,1] matrix with D=[0,i,0]
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- 150000 1

1 25000

763000 A

549000

330000 +—

050000

- 180000 A

TS 2000 123000 23000 373080 300000 625000 730600 e7300s 1 o000
Figure 1.3: The eigenvalue curves of random matrix with a; < a;41, on diagonal and
with D=[0,e;,0]

Example 1.2 A is a real symmetric tridiagonal matriz whose diagonal and subdi-
agonal elements are random numbers between 0 and 1, and whose diagonal elements
satisfy a; < a1, and D is a diagonal matriz consisting of the diagonal elements of

A, then all the eigenvalue curves are very well separated. See Figure 1.3.
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Chapter 2

The Homotopy Algorithms for
Real Symmetric Tridiagonal
Eigenproblem

2.1 Introduction

The basic features of the curve-following scheme of our algorithm to follow the

eigenpath (z(t), A(t)) are :

(i) Initiating at t =0

(ii) Prediction

(iii) Correction

(iv) Checking

(v) Detection of a cluster and space iteration
(vi) Step-size selection

(vii)Terminating at ¢t = 1.

We begin by giving an overview of our algorithm, followed by detailed explanation
of these features.

Simple computation shows that Newton’s method for the nonlinear problem of

16



n + 1 equations

F(Aiz) = zTz -1 0 (21)

of the n + 1 variables A, z,, 3, ..., 2, at (A, (") is the inverse iteration,

(A= A1)y =z

(z("))Tz(“) + 1
2(z)Ty
z(n+1) — (A(n-H) - A(n))y.

A+ — A() 4

By making the initial matrix D close to A, the eigenpairs of D should be excellent
starting points for applying Newton’s method on the eigenproblem (2.1). Based on
this observation, our algorithm, in simple terms, is designed to use the homotopy
continuation method as a backup of Newton’s method applied on (2.1). Namely,
we solve the eigenvalues of the initial matrix D by using the most efficient method
available first, and apply the inverse iteration on (2.1), using each eigenvalue of D as a
shift. Then, we switch to Rayleigh quotient iteration (RQI), an inverse iteration with
Rayleigh quotient as a shift, to speed up the convergence. This is mainly equivalent
to choosing the starting step size A = 1 in the usual curve following scheme with zero
order prediction and Newton correction to follow the eigenpath (z(t), A(t)) of the
homotopy H(z,,t) = 0 in (1.3). By checking the Sturm sequence at the convergent
point and if this procedure fails to provide the right eigenpair, we shall cut the step

size in half. That is, we repeat the process by applying the inverse iteration on

Az — A(t)z=0
Tz —1
2

with ¢ = 0.5, where A(t) = (1 — t)D + tA in (1.3), and then switch to RQI to come
back to the right eigenpath (z(t), A(t)). Assuming that after ¢ steps, the approximate
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value (z(;), A(;)) is known, we always choose the step size h = 1 —¢; at (z(t;), A(t:)).
In this way, we follow the eigenpath fromt =0to ¢t = 1.

2.2 Initiating at t =0

As mentioned in Chapter 1, we intend to choose k for which Bi4; is as small as
possible. To make the sizes of the blocks D; and D, roughly the same, we limit the
choice of k in the range n/2—j < k < n/2+ j, where j is roughly equal to n/20,
and find the smallest Bi4; by local sorting.

When the initial matrix D is decided, different from the homotopy algorithms in
[18, 22] where all the eigenvalues and the eigenvectors of D are calculated in order
to start following the eigenpaths, our algorithm only calculates the eigenvalues of D,
and D;. These eigenvalues are obtained by using the most efficient method available.
We require the accuracy to stay only within one-half or even one-third of the working

precision. With this strategy, considerable amount of computing time is reduced.

2.3 Prediction

Assume that after i steps the approximate value (%(t;), A(t;)) on the eigenpath
(z(t), A(2)) at ¢t; is known and the next step-size h is determined; that is, t;4; = t; +A.
We want to find an approximate value (£(ti41), A(tis1)) of (z(ti41), A(ti41)) on the
eigenpath at ;4;. Notice that (Z(¢;41), A(ti41)) is an approximate eigenpair of A(ti41).

Since H(z(t), A(t),t) = 0, we have
A(t)z(t) = M(t)z(t)

z(t)Tz(t) = 1.
Differentiating both equations with respect to t yields,

(A - D)z(t) + A(t)(t) = A(t)z(t) + A(t)£(t)
(2.2)
z(t)T#(t) = 0.
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For t =¢;, multiplying (2.2) on the left by z7(¢;) yields,
At:) = 27 (8:)(A — D)z(ti) = 2Biaza(ti)zana(ts)  (2.3)

where z(&) = (zi1(t;), ..., Za(t:))T. In view of (2.3), we use the Euler predictor to
predict the eigenvalue at t;;,, namely,

z\o(t.'.H) = A(t,') + A(t,)h

It is easy to see that A(0) = 0 in (2.3). Consequently, \°(t;) always equals to
A%(0). To predict the eigenvector, we use the inverse power method on A(t;4;1) with
shift A°(t;41). That is, we solve

(A(tisr) = X°(tiga) Dy’ (tinr) = 2(ti)

and let

¥(tir)
lly°(tesa)Il-

At t; = 0, since we skip the calculations of eigenvectors of D, z(0) is not available.

20(tip1) =

We choose a random vector for z(0).

2.4 Correction

As a corrector, we use the standard RQI, starting with z°(¢;;1). To be more

precise, at (2771 (tis1), ¥ (ti41))(j 2 1) let
X (tipr) = 277 (tipn) T A(tin)2? ™ (i)
then solve
(A(tis1) = ¥ (i)Y (tin) = 77 (tin)

and let
¥ (tis1)
Ty i)

$j(tg+1 ) =
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We repeat the above process to within half of the working precision if single precision
is used and one-third of the working precision if double precision is used when ¢;4; < 1,
since precision in determining the curve itself is only of secondary interest. We polish
(z7(ti41), M (ti+1)) at the end of the path (¢;41 = 1) by iterating the Rayleigh quotient
to machine precision. The stop point (z7(ti41), A(ti4+1)) of RQI will be taken as an
approximate eigenpair (£(ti41), M(tis1)) of A(ti4+1). The cubic convergence rate of RQI
makes the corrector highly efficient.

2.5 Checking

When (%(i41), A(ti41)) is taken as an approximate eigenpair of A(¢;41), the Sturm
sequence at A(t;41) + € is computed to check that, if we are trying to follow the curve
of j** highest eigenvalues, we still on that curve. Here, ¢ is chosen as half of the
working precision if single precision is used and one-third of the working precision if
double precision is used. If the check fails, we reduce the step size to A/2 and repeat

the whole process once again beginning with the eigenvalue prediction in Section 2.3.

2.6 Detection of a cluster and subspace iteration
At t; = 0, when all the eigenvalues of D
A1(0) < A2(0) < ... < Aq(0)

are available, we let § = maz(10-%,10-2(\,(0) — A;(0))/n) if double precision is used
(or § = maz(10~2,10-2(A,(0) — A1(0))/n) if single precision is used). Set A; and A; in
the same group if |X;(0) — A;(0)| < é. If the number of the eigenvalues in any group
is bigger than 1, then a cluster is detected. At ¢; # 0, or 1, when (2(%:), A(t:)) is
taken as an appr&imate eigenpair of A(t;), after the checking step in Section 2.5, we
compute the Sturm sequences at A(t;) & & for the purpose of finding the number of
eigenvalues of A(%;) in the interval (A(t;) — 6, A(t;) + §). When this number is bigger
than 1, a cluster of eigenvalues of A(t;) is detected.
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In those cases, the corresponding eigenvectors are ill-conditioned and this ill-
conditioning can cause the inefficiency of the algorithm. To remedy this problem,
the inverse power method [24, 31] with A(¢;) as shift is used to construct an approx-
imation of the corresponding eigenspace S of dimension m (= the number of the
eigenvalues in the cluster) of A(¢;). This approximate eigenspace S is used as an ini-
tial subspace of the subspace iterations at ¢;;; when we approximate the eigenpairs

of A(t,'+1).

2.7 Step size selection

In the first attempt, we always choose the step size h = 1 —¢; at ¢; < 1. If after
the prediction and the correction steps the checking step fails, we reduce the step size
to h/2 as mentioned in Section 2.5. This extremely liberal choice of step size can be
justified because of the observations we described in the beginning of this Chapter
( Section 2.5 ) as well as the effective checking algorithm. Indeed, since the initial
matrix D is chosen to be so close to A, from our experiences, most of the eigenpairs
of A can be reached in one step, i.e., h = 1.

Very small step size can also cause the inefficiency of the algorithm. Therefore,
we impose a minimum 4 on the step size k. If A < v, we simply give up following the
eigenpath and the corresponding eigenpair of A will be calculated at the end of the
algorithm by the method of bisection with inverse iterations (see Section 2.8). We
usually choose v = 0.25.

2.8 Terminating att=1

Att = 1, when an approximate eigenvalue X(1) is reached, we compute the Sturm
sequence at A\(1) + € with ¢ = machine precision to ensure the correct order. If the
checking fails, we have jumped into a wrong eigenpath. More precisely, suppose we
are following the i** eigenpair, the checking algorithm detects that we have reached

the j* eigenpair instead. In this situation, we will save the j** eigenpair before the
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step size is cut. By saving the j** eigenpair, the computation of following the jt¢
eigenpair is no longer needed.

As mentioned in Section 2.7, we may give up following some eigenpaths to avoid
adapting a step size that is too small. Without any extra computation, we know
exactly which eigenpairs are lost at ¢ = 1. In order to find these eigenpairs, we first
use the bisection to find the eigenvalues up to the half working precision and then use
the inverse iteration and the RQI or subspace iteration (if there are some clusters) to

find the eigenpairs.
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Chapter 3

Numerical Results of the
Homotopy Algorithms for Real
Symmetric Tridiagonal

Eigenproblem

3.1 Test Matrices

The homotopy continuation algorithm is in its preliminary stage, and much de-
velopment and testing are necessary. But the numerical results on the examples we
have looked at seem remarkable. OQur testing matrices are:

(1) The Toeplitz matrix [1, 2, 1], i.e., all its diagonal elements are 2 and off-
diagonal elements are 1.

(2) The random matrix with both diagonal and off-diagonal elements being uni-
formly distributed random numbers between 0 and 1.

(3) The Wilkinson matrix W}. i.e., the matrix [1,d;,1], where d; = abs((n +
1)/2 —1),i=1,2,...,n with n odd.

(4) The matrix [1, y;, 1], where p; = ¢ x 1076,

(5) The matrix T3 : same as matrix [2, 8, 2] except the first diagonal element
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a; = 4.

(6) The glued Wilkinson matrix W;': The matrix consists of j copies of Wilkinson
matrices Wit along the diagonal and the off-diagonal elements f; k41 = 10~¢, where
t=1,...,5-1

(7) The LAPACK test matrices which include 21 type matrices.

3.2 A serial comparison with the existing meth-
ods.

For symmetric tridiagonal matrices, the routine TQL2 in EISPACK [27] im-
plements explicit QL-iteration to find all the eigenpairs. EISPACK also includes a
Sturm sequence with inverse iteration method ( BISECT+ TINIVT) which is much
faster than TQL2. However, it may fail to provide more accurate eigenvectors when
the corresponding eigenvalues are very close. A new version by Jessup [15] (B/III)
has considerably improved the reliability and the accuracy of the inverse iteration.
The ‘Divide and Conquer’ method for symmetric tridiagonal matrix was suggested
by Cuppen (8] and was implemented, combining with a deflation and a robust root
finding technique, by Dongarra and Sorenson [9] (TREEQL) (see also [28]).

We shall show the computational results comparing the homotopy continuation
method HOMO with those obtained by the methods TQL2, B/III and TREEQL
mentioned above. The computations were done on a Sun SPARC station 1.

Table 3.1, 3.2 and 3.3, show the comparisons on the first 6 type test matrices
listed in Section 3.1 in terms of speed, accuracy and orthogonality respectively. The
homotopy method appears to be strongly competitive in every category and leads in
speed by a considerable margin in comparison with all other methods in most of the
cases.

Tables 3.4 to 3.9 show the comparisons with (B/III) i.e., DSTEBZ+ DSTEIN,
which is the latest code based on bisection with inverse iteration, in terms of speed,
accuracy and orthogonality respectively on the LAPACK test matrices. The LAPACK
test matrices of type 1 to type 7 are diagonal matrices. Table 3.4 to 3.6 show that
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Matrix | Order Execution Time (second)

N |HOMO | B/III | TREEQL | TQL2

64 | 2.03 |2.43000] 5.90999 | 17.0600
[1,2,1] | 125 | 5.88 |8.58000 | 37.6199 | 114.460
256 | 30.25 |35.7000 | 302.859 | 904.659
499 | 100.04 |152.920 | 984.460 | 2416.14
64 | 113 |[2.44000 | 6.09000 |17.3200
Random | 125 | 3.79 |8.53000 | 31.4100 [ 115.880
256 | 14.90 |34.4500 | 158.120 | 949.939
499 | 53.19 |133.620 | 235.889 | 2482.68
65 | 0.97 |1.84000 | 2.73999 | 16.1000
w+ | 125 | 3.97 |6.21000 [ 8.20001 | 108.890
255 | 16.40 |22.5700 | 31.8398 | 879.959
499 | 57.35 | 95.5000 | 57.8300 | 3869.33
64 | 1.97 |2.43000 | 5.91000 |17.1500
,p,1 | 125 | 6.78 |8.64999 | 37.6500 | 115.699
256 | 30.61 |34.1900 | 303.449 |901.810
499 | 107.04 | 129.370 | 984.410 | 2424.88
64 | 1.80 |2.39000 | 5.80000 | 16.6800
T, 125 | 6.85 |[8.60000| 37.3700 | 115.000
256 | 28.24 |34.8600 | 165.250 | 939.859
499 | 108.46 | 174.760 | 979.738 | 2506.93
64 | 1.80 |1.73000 | 2.07999 | 12.2000
w+ | 128 | 869 |6.07000 | 6.90000 |67.5600
256 | 38.85 |22.5100 | 29.0700 | 490.779
512 | 144.05 | 89.2200 | 162.040 | 5303.37

Table 3.1: Execution Time (second) of computed eigenvalues and eigenvectors.



Matrix | Order max; ||Az; — Aizi||2/Ames
N HOMO B/III TREEQL TQL2
64 | 1.9107D-15 | 4.9769D-16 | 1.9027D-15 SEGED-M
(1,2,1) 125 | 1.9519D-15 | 8.4237D-16 | 3.3617D-15 | 1.0949D-14
256 | 2.3533D-15 | 1.2825D-15 | 6.0929D-15 | 2.7538D-14
499 | 2.2251D-15 | 1.7640D-15 | 7.5172D-15 | 3.7564D-14
64 1.9319D-16 | 3.6661D-16 | 2.4581D-14 | 6.0589D-15
Random | 125 | 2.0485D-16 | 3.5621D-16 | 5.6541D-14 | 1.2686D-14
256 | 3.9846D-15 | 3.6238D-16 | 7.1488D-14 | 5.3928D-14
499 | 1.0330D-13 | 9.2496D-15 | 4.8200D-14 | 5.7588D-14
65 | 5.4172D-16 | 5.4991D-15 | 1.8801D-13 | 8.7914D-14
wi 125 | 3.3967D-16 | 7.1627D-15 | 1.0842D-12 | 3.4443D-13
255 | 7.7880D-16 | 1.4301D-14 | 1.0868D-12 | 6.7159D-13
499 | 9.1037D-16 | 2.8363D-14 | 1.6269D-11 | 6.5775D-12
64 | 4.9149D-15 | 5.0881D-16 | 2.4436D-15 | 8.8198D-15
[1,p,1) | 125 |3.2254D-15 | 7.0876D-16 | 3.8144D-15 | 1.1196D-14
256 | 4.4093D-15 | 1.1424D-15 | 5.4271D-15 | 2.7578D-14
499 | 4.9410D-15 | 1.7580D-15 | 8.4456D-15 | 3.7155D-14
64 | 7.1616D-16 | 1.7737D-15 | 5.5986D-15 | 1.5815D-14
T, 125 | 7.3060D-16 | 1.8509D-15 | 6.5573D-15 | 2.6714D-14
256 | 8.1746D-16 | 2.2977D-15 | 1.3413D-14 | 5.0148D-14
499 | 8.0805D-16 | 3.7362D-15 | 1.7603D-14 | 8.1773D-14
64 | 8.1580D-16 | 3.2592D-15 | 4.3889D-14 | 3.1906D-14
wi 128 | 1.2509D-15 | 1.3014D-14 | 4.3246D-13 | 1.1476D-13
256 | 2.1321D-15 | 1.4015D-14 | 3.8488D-12 | 6.6732D-13
512 | 4.2327D-15 | 2.3889D-14 | 3.8490D-12 | 1.7667D-12

Table 3.2: The residual of computed eigenvalues and eigenvectors.
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Matrix | Order max;; |(XTX — I)i;j|/Ama=
N HOMO B/III TREEQL TQL2
64 |1.7133D-15 | 9.4041D-15 | 1.4836D-15 | 5.9952D-15
[1,2,1] | 125 |1.3399D-14 | 3.5176D-14 | 3.6237D-15 | 7.5495D-15
256 | 1.1554D-14 | 2.1010D-14 | 1.4941D-14 | 1.5987D-14
499 | 5.3994D-14 | 4.1999D-14 | 1.9569D-14 | 2.4868D-14
64 | 2.3654D-15 | 2.6645D-15 | 1.0890D-14 | 7.3274D-15
Random | 125 | 8.5588D-14 | 5.5839D-15 | 4.1540D-14 | 1.1324D-14
256 | 4.0178D-13 | 3.9968D-15 | 1.9257D-13 | 3.6415D-14
499 | 1.0330D-13 | 9.2496D-15 | 4.8200D-14 | 4.2410D-14
65 | 4.7465D-17 | 2.2204D-15 | 1.1102D-15 | 7.5495D-15
w} 125 | 1.7693D-17 | 3.2163D-15 | 1.2585D-15 | 1.2656D-14
255 | 1.2167D-17 | 4.3258D-15 "4.4408D-15 | 2.5091D-14
499 | 9.3353D-18 | 1.2278D-13 | 8.2156D-15 | 6.9722D-14
64 | 3.3790D-15 | 7.6699D-15 | 1.0852D-15 | 4.6629D-15
[1,m,1) | 125 |1.2375D-14 | 4.3372D-14 | 1.2751D-14 | 6.6613D-15
256 | 3.9662D-14 | 1.6639D-13 | 8.4026D-15 | 1.3322D-14
499 | 1.8082D-13 | 1.3981D-13 | 6.9169D-14 | 2.4424D-14
64 | 5.7249D-16 | 7.9102D-15 | 9.3588D-16 | 5.9952D-15
T; 125 | 1.8625D-15 | 1.3832D-14 | 3.7492D-15 | 1.3322D-14
256 | 3.2107D-14 | 1.9904D-14 | 1.0485D-14 | 2.1760D-14
499 | 6.6773D-14 | 1.5714D-14 | 1.9133D-14 | 4.9293D-14
64 | 7.9556D-17 | 3.5527D-15 | 6.6613D-16 | 7.9936D-15
W,‘*‘ 128 | 6.2610D-16 | 1.4708D-13 | 1.1366D-15 | 9.1038D-15
256 | 7.0303D-17 | 1.0394D-13 | 4.4408D-15 | 2.3758D-14
512 | 8.4508D-17 | 1.4259D-13 | 1.1324D-14 | 2.6645D-14

Table 3.3: The orthonormality of computed eigenvectors
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both algorithms work very well. The matrices of type 9, 17 and 21 have a large cluster
with dimension around 4n/5, where n is the order of matrices. On these matrices,
while HOMO is not as fast as B/III its accuracy is still competitive. The matrices of
type 10 and 18 have a even larger cluster with dimension n — 1. Although HOMO
works, time consuming is out of comparison. Tables 3.4 to 3.9 clearly show that the
homotopy method leads in speed by a considerable margin in comparison with B/III
on all other types of the LAPACK test matrices.

3.3 An indirect comparison with the existing par-
allel algorithms

Scientific and engineering research has become increasingly dependent upon the de-
velopment and implementation of efficient parallel algorithms on modern high -
performance computers. Developing algorithms for advanced computers suitable for
eigenvalue problems has produced several algorithms, such as Divide and Conquer
(D&C)[9] and Bisection/Multisection (B/M)[23] for symmetric tridiagonal matrices.

The homotopy algorithm is to a large degree parallel since each eigenpath can
be followed independently. This inherent nature of the homotopy method makes the
parallel implementation much simpler than other methods.

In our parallel algorithm, after all the eigenvalues of D are computed and put in
the increasing order, we assign each processor to trace roughly n/p eigencurves, where
n is the dimension of matrix A and p is the number of the processors being used. Let
the first processor trace the first n/P smallest eigencurves from the smallest to the
largest and let the second processor trace the second n/p smallest eigencurves, and
8o on.

We present, in this section, the numerical results of the parallel implementation
of our algorithm. All examples were executed on BUTTERFLY GP 1000, a shared

memory multiprocessor machine.
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Matrix Order B lon Time ( d)
Type N HOMO B/ Ratio ((B/IIT)/HOMO
10 0.00 0.00 .
Matrix 32 0.00 9.99999E-03
Type N 2.00006E-02 | 2.99988E-02
1 128 | 7.00073B-02 | 1.00006E-01
256 0.320068 0.330017
500 1.17969 1.40000 1.18
10 0.00 1.00000E-032
Matrix 32 1.00002B-02 | 9.99999E-03
Type “ 2.00005B-02 | 2.00005E-02
2 128 8.00018E-02 8.99963E.02
258 0.310059 0.350098
300 1.18068 1.32096 1.12
10 0.00 9.99999E-03
Matrix 32 0.00 9.99999E-03
Type ' 2.00005E-02 | 3.00026E-02
3 128 6.99921E-02 9.00116E-02
256 0.309937 0.340088
500 1.17969 1.33997 1.14
10 0.00 0.00
Matrix 32 1.00002E-02 0.00
Type (7] 2.00005E-02 | 2.00005E-02
4 128 | 6.99921E-02 | 6.99963E-02
256 0.320088 0.339966
300 1.17969 1.34998 1.1¢4
10 0.00 0.00
Matrix 32 0.00 1.00002E-02
Type o4 2.00005B-02 | 2.99988E-02
5 128 | 7.99866E-02 | 9.99908E-02
256 0.3090037 0.340088
500 1.180668 1.3598¢6 1.1%
10 0.00 0.00
Matrix 32 1.00002E-02 9.9997SE-03
Type [ [} 2.00005E-02 2.00003E-02
[ ] 128 6.99768E-02 9.99908E-02
256 0.320088 0.339968
300 1.16992 1.32007 1.12
10 0.00 9.90999E-03
Matrix 32 9.99928E-03 | 1.00002E-02
Type [ 2.00005E-02 | 2.00005E-02
7 128 | 6.99768E-02 | 8.99963E-02
256 0.320068 0.339966
300 1.18068 1.34985 1.14

Table 3.4: Execution Time (second) of computed eigenvalues and eigenvectors from

typel to 7.
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Matrix | Order | max; ||As; — A;sill2/Amas | max; i KXT X = I); j1/7mas
32 0.0 0.0 0.0 0.0
Type 64 0.0 0.0 0.0 0.0
2 128 0.0 0.0 0.0 0.0
256 0.0 0.0 0.0 0.0
500 0.0 0.0 0.0 0.0
10 0.0 0.0 0.0 0.0
32 0.0 0.0 0.0 0.0
Type o4 0.0 0.0 0.0 0.0
3 128 0.0 0.0 0.0 0.0
256 0.0 0.0 0.0 0.0
500 0.0 0.0 0.0 0.0
10 0.0 0.0 0.0 0.0
332 0.0 0.0 0.0 0.0
Type 64 0.0 0.0 0.0 0.0
4 128 0.0 0.0 0.0 0.0
256 0.0 0.0 0.0 0.0
500 0.0 0.0 0.0 0.0
10 0.0 0.0 0.0 0.0
32 0.0 0.0 0.0 0.0
Type 64 0.0 0.0 0.0 0.0
1] 128 0.0 0.0 0.0 0.0
256 0.0 0.0 0.0 0.0
500 0.0 0.0 0.0 0.0
10 0.0 0.0 0.0 0.0
32 0.0 0.0 0.0 0.0
Type 64 0.0 0.0 0.0 0.0
e 128 0.0 0.0 0.0 0.0
256 0.0 0.0 0.0 0.0
500 0.0 0.0 0.0 0.0
10 0.0 0.0 0.0 0.0
32 0.0 0.0 0.0 0.0
Type 64 0.0 0.0 0.0 0.0
7 128 0.0 0.0 0.0 0.0
56 0.0 0.0 0.0 0.0
500 0.0 0.0 0.0 0.0

Table 3.5: The residual and the orthonormality of computed eigenvalues and eigen-
vectors from type 1 to 7.
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Matrix | Order B ion Time ( d)
Type N HOMO B/l Ratio ((B/111)/HOMO) |
10 | 9.000008-02 | 1.00000E-01
Matrix | 32 0.799999 1.01000
Type | & 2.67000 3.99000
s 128 11.3300 15.3600
258 26.3000 €0.1001
500 142.880 226.680 1.59
10 0.11000 | 1.00000E-01
Matrix | 32 1.24000 0.93000
Type | e 16.0100 4.54000
0 128 119.060 15.2600
256 937.830 154.810
500 7334.24 969.060 0.14
10 . 9.00000E-02
Matrix | 32 . 0.80000
Type | & . 3.91000
10 128 . 24.2200
258 . 171.650
500 . 1s3.11 .
10 | 5.99999E-02 | 0.13000
Matrix | 32 0.719999 1.00000
Type | o 2.86000 3.80000
1 128 11.1400 24.2800
256 46.8599 57.9600
500 174.379 217.410 128
10 | 1.000008-01 | 0.11000
Matrix | 32 0.520001 1.07000
Type | & 3.22000 4.17000
12 128 12.2300 14.7000
256 40.9399 €0.9900
500 150.332 220.199 1.44
10 0.110000 0.13000
Matrix | 32 0.67000 0.96000
Type | o 2.37000 3.84000
13 128 9.95001 14.9000
256 33.9600 50.5099
500 157.018 223.401 142
10 | 5.00000E-02 | 0.12000
Matrix | 32 0.520000 0.99000
Type | & 2.49000 3.82000
1" 128 9.7000¢ 14.7700
256 41.3199 58.1009
500 137.410 217.328 1.58
* The dimension of the subspaces is greater thaa 4n/s.

Table 3.6: Execution Time (second) of computed eigenvalues and eigenvectors from

type 8 to 14.
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Order | max; ||4s; — A;illa/Amas | max;; KXTX —I); jl/Amas
HOMO B/111 HOMO B/
L
1.11979D-16 1.40169D-16 2.50017D-16 4.44089D-16
2.13068D-16 2.05358D-16 1.39708D-18 1.73556D-18
1.73786D-16 2.97351D-16 3.38698D-15 2.98872D-15

10
332
Type ([}
] 128 6.41132D-16 2.34456D-16 3.84370D-18 4.58696D-15
288
500

5.87908D-16 3.87636D-16 1.08532D-14 1.52117D-14
6.38974D-16 3.31384D-16 2.02084D-14 2.53789D-14
10 3.7T1272D-17 7.55706D-17 8.881784D-16 3.33066D-16
32 2.17351D-16 1.03313D-16 3.32384D-16 4.44089D-16

Type (] 6.70107D-17 1.03714D-16 5.10702D-15 4.94924D-16
] 128 1.60543D-16 1.40528D-16 5.77318D-15 7.77156D-16
256 1.14730D-16 2.38822D-16 1.19904D-14 1.21788D-15

500 1.68305D-16 3.87896D-16 1.77635D-14 2.10941D-15

10 . 9.71445D-17 . 3.33066D-16

32 . 8.51284D-17 . 5.15680D-15

Type (] . 1.60196D-16 . 3.72705D-15
10 128 . 3.93143D-16 - 3.22413D-14
258 . 5.81478D-16 . 1.20921D-13

500 . 6.56717D-17 . 5.22390D-15

10 1.02087D-16 1.44292D-16 1.60486D-16 1.49166D-16
32 1.83393D-16 | 2.0712¢D-16 7.75682D-16 1.88385D-15
Type o4 1.95769D-16 | 2.35639D-16 1.81188D-15 5.93786D-15

1 128 5.08959D-16 | 2.30321D-16 | 2.63579D-15 2.81245D-14
258 6.01778D-16 | 2.907123D-16 | 4.68401D.15 1.44048D-13

500 1.04629D-18 | 3.44644D-16 1.15582D-14 8.36717D-13

10 2.26309D-16 | 1.84046D-16 | 3.20972D-16 1.01256D-16

32 1.76773D-16 | 2.51273D-16 | ¢.41354D-16 8.44369D-16

Type 64 6.82696D-16 | 2.29980D-16 1.55944D-15 4.93778D-16
12 128 4.76083D-16 | 2.51574D-16 | 4.32089D-15 5.73286D-16
256 4.63179D-16 | 2.69293D-16 | 5.36573D-15 9.84989D.16

500 1.24891D.15 | 3.33008D-16 1.46643D-14 6.39731D-15

10 1.34514D-16¢ | 3.12229D-16 1.17738D-16 1.10379D-16

2 3.71838D-16 | 1.69026D-16 | . 1.72823D-16 1.85385D-16

Type (7] 1.81997D-16 | 2.69087D-16 1.10898D-16 1.79368D.16
13 128 8.93746D-16 | 2.85143D-16 | 3.04023D-16 4.05102D-16
256 7.05711D-16 | 2.21222D-.16 1.07909D-15 7.07T9D-16

500 9.38932D-16 | 2.42164D-16 1.29186D-15 9.48430D-16

10 8.47725D-17 | 2.76210D-16 | 1.45724D-16 2.96606D-16

32 1.50639D-16 | 1.80141D-16 | 5.42833D-16 1.40487D-16

Type o 2.40877D-16 | 1.91583D-16 1.23018D-15 3.74679D-15
14 128 4.24393D-16 | 2.01754D-16 | 3.03074D-15 2.02345D-18
256 2.31166D-16 | 2.66357D-16 | 5.47526D-15 8.71391D-15

800 1.17818D-15 | 2.81805D-16 1.67426D-14 2.31860D-14

® The dimension of the sub is greater than 4n/S.

P

Table 3.7: The residual and the orthonormality of computed eigenvalues and eigen-
vectors from type 8 to 14.
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-+ Table 3.8: Execution Time (second) of computed eigenvalues and eigenvectors from

type 15 to 21.

Matrix | Order Baecution Time (second)
Type N HOMO B/l Rasio ((B/11T)/HOMO) |
10 0.11000 0.14000 :
Matrix 32 0.00900 1.08000
Type “ 3.42000 4.07909
15 128 9.97003 15.3500
256 36.7100 60.3398
800 143.809 229.719 1.60
10 8.999097R-02 0.12000
Matrix 32 0.540001 1.03000
Type | & 2.34001 3.89000
16 128 9.96997 15.1800
256 42.9199 59.5601
800 150.508 227.301 1.81
10 9.99999E-02 0.14000
Matrix | 32 2.00000 0.970001
Type o 14.4700 4.53001
17 128 105.450 24.5800
256 888.330 182.210
500 9013.04 998.189 0.11
10 . 9.00002E-02
Matrix 32 hd 0.840000
Type “ . 3.85001
18 126 . 24.2900
256 hd 170.440
800 . 1193.35 .
10 0.180000 0.110000
Matrix | 32 0.550003 1.02000
Type o4 2.39999 3.81001
19 128 s.1907 14.7500
256 45.7002 s7.5098
00 157.070 216.340 1.38
10 8.99997B-02 0.110000
Matrix | 32 0.090997 1.04000
Type o4 3.73999 3.88000
20 128 10.9099 18.5000
256 42.9802 €0.2900
800 146.160 231.730 1.59
10 7.99999E-02 1.99009E-02
Matrix 32 2.57000 1.01000
Type [ ] 14.1000 4.96001
21 128 142.250 24.4200
256 1116.03 150.780
$00 8702.48 992.301 0.12
* The dimension of the subspaces Is greater thaa 4n/5.




Matrix | Order | max; |lAs; = Aisila/Amas | max;; KXT X = I); ;1/Amas
Type N HOMO B/I11 HOMO l B/III
=l ————
10 7.71083D-17 3.01877D-16 3.64310D-16 1.42399D-16

32 1.63282D-16 1.84369D-16 1.44074D-15 7.43638D-16
Type [ ] 5.40007D-16 | 3.63386D-16 1.83208D-18 5.86866D-15

18 128 1.73812D-16 1.99826D-16 | 3.77409D-13 7.95686D-18
56 6.65346D-16 | 2.16321D-16 | 6.38724D-15 4.48458D-14

500 8.55775D-16 | 3.34659D-16 | 2.74375D-14 2.08902D-14

10 8.96831D-17 1.21381D-16 | 3.33066D-16 4.44089D-16

32 7.25319D-17 | 2.01281D-16 | 6.66133D-16 7.717156D-16

Type 64 1.12987D-16 | 2.25802D-16 1.79118D-18 1.00357D-15
16 128 9.94269D-17 | 2.21255D-16 | 2.80977D-18 2.27353D-18
256 4.67682D-16 1.82634D-16 8.41726D-18 5.64456D-15

500 1.14565D-.18 | 2.37227D-16 1.70815D-13 1.24728D-14

10 3.31651D-17 | 9.61092D-17 1.11022D-15 3.33066D-16

32 6.46719D-17 1.87507D-16 2.85351D-18 4.44089D-16

Type 64 8.51895D-17 | 9.18698D-17 4.21884D-15 1.10857D-18
17 128 9.34392D-17 | 1.84390D-16 7.99360D-15 9.68580D-16
256 6.45302D-17 1.57202D-16 1.24344D-14 3.00985D-15

500 2.86221D-16 1.58683D-16 | 2.06721D-14 3.20500D-15

10 hd 1.31398D-16 . 7.45834D-16

33 . 1.07552D-16 . 1.13646D-15

Type o4 e 8.36246D-17 . 8.05508D-16
18 128 . 1.29899D-16 hd 1.60028D-18
258 . 4.47532D-16 . 2.16280D-13

. 1.32444D-14

. 3.71442D-16¢

500
10 9.40162D-16 | 5.93782D-17 | 5.47982D-16 4.44089D-16
3 7.42684D-17 1.53069D-16 | ¢.83611D-16 7.16000D-16
Type 64 2.59657D-16 1.25604D-16 7.10580D-16 3.03968D-16
19 128 3.18130D-16¢ 1.83999D-16 1.82526D-15 1.14483D-16
256 8.97197D-16 | 2.12675D-16 | 3.58589D-15 4.57344D-18
500 1.20878D-15 | 2.19779D.16 7.83319D-15 1.68873D-18
10 7.51380D-17 1.09097D-16 2.73991D-16 6.61055D-.16
32 5.79247D-16 1.26621D-16 | 6.49208D-16 3.00869D-15
Type [ ] 1.46998D-16 1.90154D-16 7.309081D-16 3.11117D-18

20 128 2.534028D-16 1.68461D-16 1.35331D-18 2.45308D-18
256 4.45045D-16 | 2.32804D-16 3.02230D-15 4.28995D-18

500 6.03169D-16 | 2.20704D-16 9.48585D-18 3.93531D-18

10 5.15682D-17 | 6.88658D-17 1.17519D-18 3.52558D-16

2 3.372M4D-17 1.00773D-16 2.44274D-135 6.66973D-16

Type 64 4.33398D-17 1.01234D-16 3.99683D-15 6.66138D-16
21 128 5.33451D-17 1.18716D-16 9.54794D-18 6.66135D-16
258 6.25490D-17 1.14237D-16 1.24344D-14 8.88178D-16

500 6.04883D-17 1.14603D-16 2.35367D-14 1.75631D-18

* The di ion of the subep is greater thanm 4n/5.
Table 3.9: The residual and the orthonormality of computed eigenvalues and eigen-
vectors from type 15 to 21.



The speed-up is defined as

execution time using one processor
P execution time using p processors

and the efficiency is the ratio of the speed-up over p, the number of processors being
used.

Table 3.10 shows the execution time as well as the speed-up S, and the efficiency
Sp/p of our algorithm HOMO on matrices 1, 2, 1] and T; by using p processors.
For the purpose of comparison with other methods, the speed up of our method over
TQL2, %, on [1, 2, 1] are also listed. Similar results on random matrices and
Wilkinson matrices are shown on Table 3.11.

We list in Table 3.12, 3.13 and 3.14 some of the results of D&C and B/M. It
is somewhat difficult to compare our results with theirs directly since their results
were executed on different machines. Using TQL2, an indirect comparison may be
obtained. In Table 3.12 (Table 8.3[9]), when eight processors are being used, the
speed-up of D&C algorithm(SESUPD) over TQL?2 is 9.4 for matrix [1, 2, 1] of order
100 whereas ours is 27.70 for the same matrix of order 125, and the speed-up of
D&C algorithm(SESUPD) over TQL?2 is 20.00 for order 400 whereas ours is 146.19
for order 499. In Table 3.14 (Table 8.4[9]), when eight processors are being used, the
speed-up of D&C algorithm(SESUPD) over TQL?2 is 12.1 for random matrix of order
100 whereas ours is 46.16 for the same matrix of order 125 (see Table 3.11), and the
speed-up of D&C algorithm(SESUPD) over TQL2 is 60.7 for order 400 whereas ours
is 220.00 for order 499.

Table 3.13 (Table 7b[23]) shows the speed-up of B/M (two versions: TREPS1 and
TREPS2) and D&C over TQL2 for the matrix [-1,2, —1] of order 500. It indicates
that TQL2/SESUPD = 27.1 and TQL2/TREPS2 = 131.5 whereas TQL2/HOMO =
146.19 for the matrix [1,2,1] of order 499 on Table 3.10. This result suggests that
the speed-up of the homotopy algorithm is at least as good as TREPS2.

Figure 3.1 shows the efficiency of the matrices [1, 2, 1], T3, Random matrices and
W} of the order 499 and Figure 3.2 shows the speed-up of the matrices [1, 2, 1], T3,
Random matrices and W} of the order 499.
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(1, 2, 1] matrix T2 matrix

order | Neass | HOMO S, | TqL2 | TQL2 | HOMO S, | TQL2
N P | (ExeTime) _i P | ®xerime) | HOMO || mxemime) | S, P | (ExeTime)
_T 7.99 | 1.0 |1.00 | 27.55 26.33
65 | 2 4.51 | 1.8 | 0.89

4 2.77 | 2.9 [0.72

1 29.18 | 1.0 | 1.00 | 176.7 177.33
125 2 | 1525 | 1.9 | 0.96

4 8.76 | 3.3 {0.83

8 6.38 | 4.6 | 0.57

1 {12237 | 1.0 | 1.00 | 1457. 1497.

2 | 69.93 | 1.9 |0.97
255 | 4 | 33.08 | 3.7 | 0.92

8 | 2038 | 6.0 [0.75

16 | 14.28 | 8.6 | 0.54

1 | 47791 | 1.0 | 1.00 | 10889 11198

2 | 242.01 | 2.0 | 0.99
499 | 4 | 12545 | 3.8 | 0.95

8 | 7449 | 6.4 |0.80

16 | 47.41 |10.1 | 0.63

Table 3.10: Execution time (second), speed-up and efficiency of HOMO on [1, 2, 1]

and T; matrices.
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Random matrix " - Wilkinson matrix

order | Neaws | HOMO S, | TqLe | TqL2 [ HOMO S, | Tqr2
_N P | ®xeTime) | Sp | P | (ExeTime) | HOMO || (BxeTime) | Sp | P | (ExeTime)
B 1 6.66 |1.0]1.00 | 29.48 4.43 6.27 |1.01.00| 25.61
65 | 2 390 |1.7]0.85 7.56 3.35 |1.9]0.94

4 244 |2.7/0.68 12.08 2.03 |3.0]0.77

1 21.11 | 1.0 1.00 | 187.4 8.88 22.10 | 1.0 | 1.00 | 172.05
125 | 2 11.11 | 1.9 | 0.95 16.87 1141 |1.9]0.97

4 6.04 |3.5]0.87 31.03 6.20 | 3.6 |0.89

8 4.06 |5.2]0.65 46.16 426 |52]0.65

1 80.55 | 1.0 [ 1.00 | 1490. | 18.50 86.69 | 1.0 |1.00| 1367.

2 41.59 |1.90.97 35.83 44.27 (2.0 | 0.98
255 | 4 22.23 | 3.6 [ 0.91 67.03 23.45 |3.710.92

8 14.35 | 5.6 | 0.70 103.83 || 15.19 | 5.7 | 0.71

16 | 10.57 | 7.6 | 0.48 140.96 || 10.55 | 8.2 | 0.51

1 |301.78 | 1.0 | 1.00 | 11447 | 37.93 || 328.24 | 1.0 | 1.00 | 9949.

2 | 155.11 | 1.9 |0.97 73.80 || 166.82 | 2.0 | 0.98
499 | 4 82.47 | 3.710.92 138.80 || 88.89 | 3.7 |0.92

8 52.03 | 5.80.73 220.00 || 56.16 | 5.8 0.73

16 | 39.19 | 7.710.48 292.09 || 40.13 |8.2]0.51

Table 3.11: Execution time (second), speed-up and efficiency of HOMO on Wilkinson

and Random matrices.

37



N
TQL2/SESUPD

100 200 300 400
94 154 17.7 20.00

Table 3.12: A comparison on the Alliant FX/8 for TQL2 vs. TREEQL on [1,2,1]

matrices.

; Algorithm _Time(TQL2 on 1 CE) 3me(TQL2 on 8 CE)
Time(Alg. i on 8 CEs) | Time(Alg. ¢ on 8 CEs)

1 TREPS1 32.9 7

2 TREPS2 131.5 28

3 TQL2 4.7 1

4 | BISECT+TINVIT 3.6 .8

5 SESUPD 21.1 5.8

Table 3.13: Speed-up over TQL2 on the Alliant FX/8 for computing all the eigenpairs
of [-1,2, —1] matrix of order 500.

100 200 300 400
12.1 19.5 38.8 60.7

N
TQL2/SESUPD

Table 3.14: A comparison on the Alliant FX/8 for TQL2 vs. TREEQL on random

matrices.
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S .
2P, Test matrices

P
1. Random
1.00 7 2. Wilkinson
3.[1,2,1]
075 T
)
0.50 T n=500
p=i# of processors
025 T S
: TP =efficiency
} } } }
0 4 8 12 16 P

Figure 3.1: Efficiency of homotopy method on [1, 2, 1], T;, Random matrices and
wi

Sp Test matrices
1. Random

10 7 2. Wilkinson
3.[1,2,1]

75 7T
4.5

5 - n=500
p=# of processors

25 Sp=speed-up

} } } |
0 4 8 12 16 P

Figure 3.2: Speed-up of homotopy method on [1, 2, 1], T3, Random matrices and W}
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PART II
The Homotopy Method
for
Real Symmetric Generalized

Eigenproblem

40



Chapter 4

Introduction

Consider the symmetric positive semidefinite generalized eigenproblem:
Az = ABz (4.1)

where A and B are n X n real symmetric matrices, B is positive semidefinite. The
pair (A, B) is called a pencil of the eigenproblem (4.1), and the eigenpair of (4.1) is
called the eigenpair of the pencil (4, B). When B is singular, (4.1) has fewer than n

eigenvalues.

Let XAXT be a spectral decomposition of B, where X is an orthonormal matrix

and A is a diagonal matrix. Then, (4.1) is equivalent to

z‘iy = AAy
with A = XTAX and y = XTz. Hence, we may assume the matrix B in (4.1)
is a diagonal matrix with nonnegative diagonal elements. In this case, the MDR
reduction [3] can further reduce A to a symmetric tridiagonal matrix and, through

the reduction, keep B as a diagonal matrix. Therefore, we will assume hereafter that,

in (4.1), A is a symmetric tridiagonal matrix of the form

( o B \
P az Ps
e, e (4.2)
Pr-1 Qnoy Pa
\ Bn an )
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and B = diag(by, by, ..., b,) with b; > 0.

If B; = 0 for some i, 2 < 1 < n, then R® can clearly be decomposed into two
complementary subspaces invariant under A. Thus the generalized eigenproblem
Az = ABz is decomposed in an obvious way into two smaller subproblems. Hence,
we will assume that each §; # 0. That is, A is unreduced.

In this part of the work, we shall describe our homotopy algorithm for solving
eigenpairs of the pencil (A, B) in (4.1). Let D be an n x n symmetric tridiagonal
matrix and consider the homotopy H : R® x R x [0,1] — R™ x R, defined by

ABz - Dz ABz — Az
H(z,\t) =(1-t)| zTBz—1 |+t| zTBz—1
2 2

ABz — [(1 —t)D + tA]z

= zTBr —1 (4.3)
2
ABz — A(t)z
= zTBz —1
2

where A(t) = (1 — t)D + tA. The pencil (D, B) is called an initial pencil.

In Chapter 5, we shall give a reduction which shows that the eigenvalues of the
pencil (A, B) are the same eigenvalues of a pencil (A, B) with an unreduced sym-
metric tridiagonal matrix A and a positive definite diagonal matrix B. And, from
the reduction, one can easily form the eigenpair (z, ) of the pencil (A, B) from the
eigenpair (y, A) of the pencil (4, B). Therefore, we shall assume the diagonal elements
b; of B are all positive. In such case, we shall prove, in Chapter 6, that the solution
set of H(z,A,t) = 0 in (4.3) consists of disjoint smooth curves, each of which joins

an eigenpair of the pencil (D, B) to an eigenpair of the pencil (A4, B). We call each
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of these curves a homotopy curve or an eigenpath. Thus, by following the eigenpaths
emanating from the eigenpairs of the pencil (D, B) at t = 0, we can reach all the
eigenpairs of the pencil (4, B) at t = 1.

The algorithm of following an eigenpath will be given in detail in Chapter 7. Some
numerical results along with comparison with the QZ method will be presented in
Chapter 8. It appears that our algorithm is strongly competitive in terms of speed,
accuracy and orthogonality and leads in speed in all the cases.
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Chapter 5

Reduction

Let A be an unreduced, symmetric tridiagonal matrix in (4.2) and b = diag(b,
ba,-..,bs) withi &y > 0 and b; > 0 for ¢ = 2,3, ...,n. In this chapter, we give the details
of the reduction of the pencil (4, B) to a pencil (4, B), where A is still unreduced
tridiagonal and B is positive definite and diagonal.

Lemma 5.1 Assume

A= ____JE"‘L'!’L__. andB= Bl ]
o

where B, is a positive definite diagonal matriz with dim(B,) = dim(A,) = m, and O
is the zero matriz with dim(0) = dim(A?) = n — m,. If det(A?) # 0, then the pencil

(A, B) has the same eigenvalues as the eigenproblem:
(Al + S)y = ABly’
where S is a diagonal matriz.

Proof: Clearly, with z = (z,, z3,...,2,)T, Az = ABz is equivalent to



( I \
A, : +
Tmy-1

\ o/

and

0

L o

( Pmy+1Zm, \

0

/

\ Bmi+1Zmi+1

+ A9

( T )

Tm,4+2

=B,

\ 2 )

Since det(A9) # 0, (A9)~! exists. From (5.2),

xmg +2

( Tmy+1 \

\ Zn

Let (wy, w3, ..., Wn—m,)T be the solution of

A}

[ w )
\ Gnm |

= —(A8)

0

\ 0/

then from (5.3) and (5.4), Zm;+1 = —W1Pm;+1Zm,- Let

(0

| O

then (5.1) can be written as:

(A1 +S)

O

0

—wlﬂ?u;+l /

(2 )

T2

\ Zm1
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=B,

(2 )

T2

\ Zmi )

(o)

Tmy-1

\ T

my; X m,,

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)



Clearly A, + S is an unreduced symmetric tridiagonal matrix and the eigenvalues of
(5.5) are exactly the eigenvalues of the pencil (A, B).

Furthermore, if z = (21,23, ...,Zm,)? is the eigenvector of (5.5) corresponding to
the eigenvalue ), then z = (21,232, ..., Tmyy —CW1, cey —CWn_m, )T, where ¢ = B, +1Zm,,

is the eigenvector of the pencil (A, B) corresponding to the same eigenvalue .

Q.E.D.
Lemma 5.2 Assume
( l \
A1 |
__ _1_. | Bmuts_ _
ﬂmri-l | B,
A= || A?' : and B = [0 ,
B 1. N B,
T ﬂm2+l |
|
\ A2

where B;,i = 1,2, are positive definite diagonal matrices with dim(B,) = dim(A,) =
my and dim(B;) = dim(Az) = n — my. O is the zero matriz with dim(0) =
dim(A9) = my — m,. If det(A9) # 0, then the pencil (A, B) has the same eigen-

values as the eigenproblem:

A B
! +S|y=a| " v, (5.6)
Az Bz
where S is a symmetric matriz and the matriz
A
1 +S
A;
is unreduced, symmetric and tridiagonal.
Proof: Clearly, Az = ABz can be rewritten as:
! N \ ( 0 \ ( z )
z z
Al 7+ =B, | 7|, (5.7)
: 0 :
\ Tm,y ) \ ﬂmﬂ-lzmrl-l ) \ Tm, )
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( ﬂﬂu'l-lzmn \ ( Tmy+1 \ ( 0 \

0 +A° zm',-n + 0 -0 (5.8)
\ 0 ) \ Zm / \ Bmt1Zm1
and
{ ﬂmﬂ-lzmz \ / Tma+1 \ ! Tma+1 \
0 +A,,9T* =B, | ™" (5.9)
\ 0 ) \ 2} \ Zn )
Since det(A9) # 0, from (5.8)
{ Tmy+1 \ / ﬂmg+lxm1 \
Tmy+2 0
el T P (5.10)
Tmy-1 0
\ Tm, } \ ﬂmz-i-lzmg-{-l /

Let w = (wy, ..., Wny—m, )T and v = (v1,..., Um;—m, )T be the solutions of

(1) (o)
0 :

Adw = ,and Al = )
: 0

\ 0 \ 1)

then, from (5.10),

ﬂmﬂ-lzm,-f-l = —wlﬂ:.,.nzm, - vlﬂm1+lﬂm,+lxm:+l

2
ﬂ"h-f-lzmz = —Wmy-m; ﬂm;+lﬂmz+lzm1 = Uma—m, ﬂmr}-lzmzi—l‘

Since AY is unreduced, clearly v; # 0. A? is symmetric, so is its inverse. Thus,

V1 = Wmy—m,. Let S be an (n — my + m,) X (n — my + m,;) matrix of form
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(o

O

\
Then, (5.7) and (5.9) can be rewritten as:

( T \
("))
A, Tma+1

Clearly, the matrix

O

—wlﬂ;‘:.,.n —V18my +1Pma+1

-V ﬂm; +1 ﬂm:+l —Uma-m, ﬂ12m+l

()

A,
+S

is unreduced, symmetric and tridiagonal and the eigenvalues of (5.11) are the same

eigenvalues of the pencil (4, B).

0)
(=

Zm,

zm3+l

(M) row

(m1 + 1)‘,"'01.0

(5.11)

Furthermore, if (Z1, ...y Zmy, Tmg+1y---» Tn)7 i8 the eigenvector of (5.11) correspond-

ing to the eigenvalue ), then for ¢ = Bm,+1Zm,+1 and d = By 41Zm,,

T
(T1y ooy Tmyy —W1€ — V1, ooy ~Wing—my € — Umg—mi @y Tmg 41y -eey Tn)

is the eigenvector of the pencil (A, B) corresponding to the same eigenvalue \.
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If

(Bl \ ( Al * \
Ol * A? *

B = B, , welet A= . (5.12)

0
A, =

If

{Bl \ (Al * \
O * A) =

B = B, , welet A= . (5.13)

\ O ) \ * A
where O;s are zero matrices with dim(0;) = dim(AY), and B;’s are-positive definite

diagonal matrices with dim(B;) = dim(A;), i = 1,2,...,r.

Theorem 5.1 If det(A?) # 0, i = 1,2,...,r, then the pencil (A, B) has the same

eigenvalues as the eigenproblem:

[ ( A \ ) ( B, )

A B
? +S |y=2 * v, (5.14)

W A ) ) \ B,

where S is a symmetric matriz and the matriz on the left hand side is an unreduced

symmetric tridiagonal matriz.

Proof: By the same line of argument used in Lemma 5.1 and Lemma 5.2, the proof
can be immediately achieved by mathematics induction.

Q.E.D.

In the following discussion, let (A)! and (A), denote the lower (n — 1) x (n — 1)

submatrix and the upper (n — 1) X (n — 1) submatrix of A respectively, then (A)} =

(A1) =((A)).
49



Lemma 5.3 Assume

— e um cmm o= oo

where B, is a positive definite diagonal matriz with dim(B,) = dim(A,) = m; and O
is a zero matriz with dim(0) = dim(A) = n — m;. If det(A9) = 0, then the pencil

(A, B) has the same eigenvalues as the eigenproblem:

(Aithy = A(Bihy,

Proof: Clearly, Az = ABz can be rewritten as

A

and

(2 )

I3

\ Zm1

\

{ ﬂm;-l-l Zmy \

0

0

/

r 0 \ { I \
: = | ©
0 :
\ Bmi+1Zm,y 41 ) \ Zm; )
( zml.ﬂ \
+A2| | o

\ % )

Since det(A) = 0 and (5.16) has a solution,

(

rank

0

( ﬂm1+1xm; \

0
’Al

)

=rank(A}) =n-m; — 1.

(5.15)

(5.16)



This implies Bm,4+1Zm, = 0, since A? is unreduced tridiagonal. Since fBm,41 # 0,
Tm, = 0. Replacing z,,, by 0 in (5.15), we have

(zo \ [ o ) (2 )
Al 7 1+ ’ =B . (5.17)
Tmy-1 0 Ty -1
\ 0 } \ ﬂm|+13m1+1 } \ 0 }
From the last row of (5.17),
ﬂmlznu-l = _ﬂml-{—lzm;-l-l- (5.18)
Hence,
Iy I
(A1) : = ABi) : . (5.19)
Tm;-1 Tmy-1

Clearly, the eigenvalues of (5.19) are the same eigenvalues of the pencil (A, B). More-
over, from (5.16) and (5.18),

{ —%zm,-l \
al ™ oo (5.20)
S

When (5.19) is solved, zp,-; is known, so (5.20) has a unique solution since
rank(A9) = n — m; — 1. Hence if (z1,...,Zm,-1)7 is the eigenvector of (5.19) cor-
responding to the eigenvalue A, then for ¢ = —Bm,/Bm,+1, (Z1, -y Tmy—1,0,Zm, -1,
T, 42,---,Zn)? i8 the eigenvector of the pencil (A4, B) corresponding to the same eigen-
value A.

Q.E.D.
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Lemma 5.4 Assume

A= ! A? : and B = 0 :

B,

\ . /
where B;,t = 1,2, are positive definite diagonal matrices with dim(B,) = dim(A,) =
m; and dim(B;) = dim(Az) = n—m3. O is a zero matriz with dim(0) = dim(A}) =
my — m,. If det(A9) = 0, then the pencil (A, B) has the same eigenvalues as the

eigenproblem:

(A1) " h (Bih
0 +Sly=2A 0 +T|y, (5.21)

(4a)! (Ba)!
where S is a symmetric matriz and the matriz on the left hand side in (5.21) is an

unreduced symmetric tridiagonal matriz. T is a diagonal matriz and the matriz on

the right hand side is positive definite and diagonal.

Proof: If my — m; = 1, i.e., A} is an 1 X 1 matrix, then A} = 0 since det(A9) = 0.

Hence, Az = ABz can be rewritten as

(2o ([ o ) (2 )
Al 3.2 + : . = AB; 3.2 )
’ : 0 :
\ Tm,y } \ ﬂm1+lz'n1+l } \ Tm, /
Brmy+1Zmy + Bmy+1Zmy41 = 0 (5.22)
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and
( Bma+1Zm, \ ( Tma+1 \ ( Tma+1 \

0 m
+ A; N _z+2 = AB;

Tma42

\ 0 ) \ 2 ) \ T )

Notice that z,,, = Zm,+1, and B, and B; are positive definite. We may rewrite (5.22)

as:
( I \ ( 0 \ { I \
(Aih ' + . = ABi)
zm; -2 0 3m;-2
\ Zmi-1 )\ 5__1_:_"/-’"‘.’;::1 ma+l ) \ Tmi-1 )
-_— ﬂm;zml—l + .a_'"lﬂ—m+—13m2+l —_— ﬂm|+lxmz = Abml_ﬂmtlzm2+l
,Bml-}-l ﬂm;-l—l
and

Bma+1Zm; + Amy41Tmat1 + Pmat2Tma+2 = Abmy41Zma1

{ ﬂmz+2$ma+l W ( Tma+2 \ ( Tma+2 \
0 + (A2)1 Tmay+3 — A(Bz)l Tma+3
N\ 0 \ Zn / \ Zn /

Solving for z,,, in (5.23) and substituting it into (5.24), yields

Bm, B, Ao
- g 1 zml—l + (aml p! + + amz+l)zmz+l + ﬂm3+2zm3+2
my+1 my+1

ﬁz
= A(bmy+1 + E";:'Ebmx )Zma41-

Let S and T be (n — m3 + m; — 1) x (n —m; + m; — 1) matrices of forms.
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0 _;‘%"_ﬁ'_nz“_ﬂ we(my — 1) row

- g
S = _%x"%zgi Cm, E.?,ff 4 Cmyt1 Brmat2 (M)t row
Brmata 0 wee(my + 1)tProw

O

and
(0 )
0
T= bmy+1 + ::m?‘—l::bm: (m1)*row
0
0,
\ 0)
Then
( 1 \ f zy \
(Aih N : (Bi) .
0 A +S my—1 =2 0 +T my-1
(A Fratt (B S
\ =/ \ =/
(5.25)
Clearly,

ﬂ2
bmz+l + %ﬂbnu > 0’
my+1

and the matrix on the left hand side in (5.25) is unreduced symmetric tridiagonal.
. The eigenvalues of (5.25) are the same eigenvalues of the pencil (A4, B).
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Furthermore, after solving (5.25), zm, and z,, can be obtained from (5.22) and
from (5.23). Hence if (21,..., Tm;=1,Zmy+1,---,Zn)T is the eigenvector of (5.25) cor-
responding to the eigenvalue A, then (Z1,...,Tm;—1,Tm;s Tmg) Tmad1y--yZTn)? i8 the
eigenvector of the pencil (A, B) corresponding to the same eigenvalue .

If AY 8 (m3 — m,) X (m2 — m,), where m; — m, > 2, then Az = ABz can be

written as:
( I \ ( 0 \ { I \
(Al)l | + ’ = A(Bl)l ) ’ (526)
Tmy-2 0 ZTm,-2
\ Zmy -1 } \ ﬂmlzmg } \ Tm; -1 )
:Bmxzmn—l + amyTm, + ﬂm1+lzm1+l = ’\bmxzmn (5'27)
( ﬂmx+lzm1 \ ( Tmy+1 \ ( 0 \
0 m :
+a| 7 i [ =0, (5.28)
: : 0
\ 0 ] \ Zm, ) \ Brmz+1Zma41
.Bmz+lzmg + 0y 41Zmy41 + ﬂm2+2xﬂu+2 = '\bmz+11'm3+l, (529)
and
( ﬁmz+2zm:+l \ { Tma+2 \ ( Tma+32 \
0 m m.
+ (A | T | =By | T (5.30)

\ 0 \ Zn ) \ Zn

Since rank(A?) = mz —m; — 1 and A? is unreduced tridiagonal,

(1 )

al " -0 (5.31)

\ Yma—m;y-1 /

55



has a unique solution. Multiplying (1,1, ..., Yms—m;~1) on the left in (5.28), yields

ﬂmﬁ»lzm; = _ymz-MI-lﬂmz+lzm:+l'
Now (5.26) and (5.27) can be rewritten as

{ T \ ( 0 \ ( z \

(an| |+ : =xB)| |, 632
Tmy-2 0 Tm;-2
e \ Zmi-1 )

and

—Ymg —my —10m; Bma+1
ﬂmlzml—l + ma-m 17m2

e —e Tmy41 + ﬂm|+lzm1+l

(5.33)

=Ymg—my ~1Bma 41
= Abﬂu =2 ﬁmlylhl =2

Since det(A9) = 0 and A{ is unreduced tridiagonal, det((A9)!) # 0. Therefore

(1Y = (o)

0
(4= . |, and (AY'w =

Tma+1-

: 0
\ 0 \ 1)

have solutions. Write v = (v1,...,Um;—my-1)7 and w = (W1, .cc, Wy, -1)7. (A?)! is

symmetric, 8o is its inverse. So wy = Vym,_m,-1. From (5.28),

Tmy+2 = —V1Bmy+2Zmi 41 — W1Bmyp41Zma+1
(5.34)
Tmy = —wlﬂm,+2$m,+1 - wmg-m,-lﬂm,+1$m,+1-
It follows from (5.31),
( 11 \ ( Brmy+2 \
Y2 0
@y T f=- . |
e N
thus,
ymz-ml—l = -ﬂm1+2vm2-m1 -1 = —ﬂm1+2wl' (5-35)
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Substituting (5.34) into (5.29), we have

wlﬂm;+2ﬂmz+lzm|+l + (a"u'l-l - wmz—ml—lﬂ3|3+l)zmz+l + ﬂm3+23m2+2 (5 36)

= Abm.z-l-l ZTma+1.

Similarly, substituting (5.35) into (5.32) and (5.33), yields,

ﬂ,,.,z,,,’ a4+ %amx‘f,’:i::ﬁmﬂ Tma41 + ,B,,.,Hz,,.,ﬂ (5 37)
— ,\bml%ﬂzm“,
and
( I \ ( 0 \ ( I \
(A ) + | = ABi) ) . (5.38)
Tmy-2 0 Tmy-2
W1 Pmy Pmy B,
\zfm-l ) \ 14 g,.,:: "2 T g 41 } \ Tmy-1 )

We may solve for 41 in (5.36) and substitute it into (5.37), to obtain

By B Bmy 428ma 4
= 4“:::’2%1»1 ZTmy-1+ (amz+1 - wm,—m;-lﬂ?n,-n + am, (ml p,,,:n : )2)zwu+l

+Bma42Tma43 = AbTm, 41
(5.39)

where

b= b1 + by (22 ';‘“ﬁ = )2 > 0.
ma

Let S and T be (n — m3 + m; — 1) X (n — m2 + m; — 1) matrices of forms

(0 \

0 : s | woo(m1 — 1)*row
S = S | t |ﬂﬂu+2 ...("’&1)"l row
e e e Cw— ﬂ — e— -
|ﬂmz+2 [ 0 ...(ml + 1)"‘row
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o
T= b woe(my)**row
o/,
where 8 = ""p""gle’p""“ )t = Cmy41 — Wmgemy 185,41 + am‘(ﬂ’%:%ﬁmﬁ)z.
From (5.32), (5.38) and (5.39), we have
( z ) (= )
(A1) . (Bi) .

0 +s|| ™™ =2 0 +T|| ™

(Az)l Zma+1 (Bz)l zm.rl'l
\ = \ = )

(5.40)

Obviously, the matrix on the left hand side in (5.40) is unreduced tridiagonal and
the matrix on the right hand side is positive definite and diagonal. The eigenvalues
of (5.40) are the same eigenvalues of the pencil (A, B).

Furthermore, after solving (5.40), we can calculate z,, 41 from (5.36), z,,, from
(5.27) and zm,42,...yZm, from (5.28). Hence, the eigenvector of the pencil (A, B)
corresponding to the eigenvalue A can be easily formed from the eigenvector of (5.40)

corresponding to the same eigenvalue ).
Q.E.D

Theorem 5.2 Assume det(A?) =0, fori=1,2,...,r.
(1) If A and B are of the same form as in (5.12), then the pencil (A, B) has the

same eigenvalues as the eigenproblem:

(( (A \ ) (( (Bi): 'R
(42)} +S|y=2 (B)} +T ]|y
\ a)r ) \ (B:)' )
(5.41)

where S s a symmetric matriz, and the matriz on the left hand side is an unreduced

symmetric tridiagonal, T is a diagonal matriz and the matriz on the right hand side
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is positive definite and diagonal.
(i1) If A and B are of the same form as in (5.13), then the pencil (A, B) has the
same eigenvalues as the following eigenproblem

(( (A \ ) (( (B: \ )

(A2)i +8|y=2 (Ba)i +T |y

\ @i/ ]\ B} )

(5.42)
where S is a symmetric matriz, and the matriz on the left hand side in (5.42) is
unreduced symmetric tridiagonal, T is a diagonal matriz and the matriz on the right

hand side is positive definite and diagonal.

Proof: By the same arguments used in Lemma 5.3 and Lemma 5.4, the proof can be

easily achieved by mathematics induction.

Q.E.D.

Theorem 5.8 If A is an unreduced symmetric tridiagonal matriz and B is a positive
semidefinite diagonal matriz, then the pencil (A, B) can be reduced to a positive defi-
nite pencil (A, B), where A is still unreduced symmetric tridiagonal and B is positive
definite diagonal.

Proof: The proof follows immediately from Theorem 5.1 and Theorem 5.2.
Q.E.D.
Let f, denote the number of the eigenvalues of the pencil (A, B), then by Theorem

5.1 and Theorem 5.2, we may obtain the following result.

Theorem 5.4

fa = rank(B) — zr:(l — sign(|det(AD)))).

i=1

Since B is diagonal, rank(B) is just the number of nonzero diagonal elements of
B. If zero is an eigenvalue of A}, sign(|det(A?)|) = 0. Otherwise, sign(|det(A?9)|) = 1.
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Since A is unreduced, the Sturm’s sequence [24, 31] can be used to check if zero
is an eigenvalue of A, so, f, can be easily computed without actually solving the

generalized eigenvalue problem.
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Chapter 6
Preliminary Analysis

Let A be an n X n real symmetric tridiagonal matrix and B be an n x n positive

definite diagonal matrix of the form

(al B2 O ) (51 0 \
Pr a3 P by
A= , B = . ) (6.1)
O Pn-1 an-1 P \ O buj
\ ﬂa an}

where b; > 0, and B; # 0 for all i. Our algorithm employed the same strategy of
‘Divide and Conquer’ as we did in Part I. First of all, the matrix A is divided into
two blocks by letting one of the B;’s equal to zero. Namely, for the initial pencil
(D, B) in (4.3), we let

Dy 0
D= ) 6.2
(%) 62
where
(01 Pa O | {ak+l Br+a O )
P az P Brsz iz Prss
D1 = T : ,Dz = )
Br-1 arr B Brn-1 an1 Ba
O A O B o)
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and then let

B, 0
B =
0 B;
with dim(B;) = dim(D;),i = 1,2. We calculate the eigenvalues of the pencils (D;, B;),

t = 1,2, by using the most efficient algorithm available. Then our algorithm conquers

the pencil (A, B) by the homotopy in (4.3).

Theorem 6.1 The solution set of (4.3) consists of disjoint smooth curves and each

curve joins one eigenpair of the pencil (D, B) and one eigenpair of the pencil (A, B).

Proof: Differentiating H(z, A,t) with respect to (z,A) in (4.3) yields,

AB— A(t) Bz )

H (:L‘, A,t) =
=) ( zTB 0

We claim that if (z, A, t) satisfies H(z, A,t) = 0, then H(; y)(z,A,t) is nonsingu-
lar. To see this, we show that H(. )(z,A,t)y = 0 has only trivial solution. Clearly
dim(ker(AB—A(t))) = 1 and zT Bz # 0, since for each t, A\B— A(t) is unreduced tridi-
agonal and B is positive definite. Suppose y satisfies H.,»)y = 0, write y = (y{, y2)7,
where y; € R® and y; € R, then

(AB = A(t))y1 +y2Bz = 0 (6.3)
zT By, = 0. (6.4)
Since zT Bz # 0 and zT(AB — A(t)) = 0, (6.3) implies y2 = 0. Hence,

(AB - A(t))yl =0,

or

B¥(\I = B~} A(t)B~})B}y, = 0.

That is, By, € ker(AI — A(t)) with A(t) = B-1A(t)B-3. It is easy to see that A(t)

is also unreduced since B-% is a diagonal matrix with positive diagonal elements.
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Thus, dim(ker(AI — A(t)) = 1. On the other hand,

(M - A®)Btz = (M - B-}4A(t)B-1)Biz
= (AB% — B-1 A(t))z
= B-#(AB — A(t))z = 0.

Thus, Biz € ker(A] — A(t)) and hence, Btz = cBty, for certain nonzero constant
c. From (6.4),

2T By, = (2T BY)(BYy,) = o(BYy)T(Biy) = 0.

Therefore, y; = 0, since B? is positive definite. Hence y = 0.
A repeated application of the implicit function theorem, the assertion of the the-

orem is achieved.
Q.E.D.
Let & and );(t) be eigenvalues of the pencils (D, B) and (A(t), B), respectively.
Then the following theorems follow immediately from the results we proved in Part

L

Theorem 6.2 If eigenvalues of (D, B) are distinct then
(i) Either X;(t) is constant for all t in [0,1] or strictly monotonic.
(i) Xi(®)A(t) > 0 for t small, if A;(t) # 0.

Theorem 6.3 For any t € [0, 1],

£l'—l < A0'(t) < £i+l’i =2,3,..,n—1,
M) <&
An(t) 2 &n.

From Theorem 6.2 and Theorem 6.3, every homotopy curve must be one of those
in Figure 6.1. Each homotopy curve is bounded by two consecutive dotted lines and

no homotopy curve can cross any dotted line.
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Figure 6.1: The generalized homotopy curves



Chapter 7

The Homotopy Algorithms for

Generalized Eigenproblem

Our algorithm for finding all the eigenpairs of the pencil (A, B) with unreduced
symmetric tridiagonal matrix A and positive semidefinite diagonal matrix B is based
on the following steps:

(i) Reduction

(ii) Initiating at t =0
(iii) Prediction

(iv) Correction

(v) Checking

(vi) Detection of a cluster
(vii) Step-size selection
(viii)Terminating at ¢ = 1

(ix) Forming the eigenpairs of the pencil (A, B).

7.1 Reduction

If B is positive semidefinite, the pencil (A, B) will be reduced to a pencil (4, B)
with B positive definite by the reduction we described in Chapter 5.
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7.2 Initiating at t =0

As we mentioned in Part I, by making the initial matrix D in (6.2) close to A,
then the eigenpairs of the pencil (D, B) should be excellent starting points as we
mentioned in Part I. We intend to choose k for which B4, is as small as possible. To
make the sizes of the blocks D; and D; roughly the same, we limit the choice of k in
the range n/2 —j < k < n/2+ j, where j is roughly equal to n/20, and find the
smallest Bi41 by local sorting.

When the initial matrix D is decided, we calculate the eigenvalues of the pencils
(Dh, By) and (D3, B;) by using the most efficient method available. We only require
the accuracy stay within one-half or even one-third of the working precision. With

this strategy, considerable amount of computing time is saved.

7.3 Prediction

Assume that after i steps the approximate value ((t;), \(£;)) on the eigenpath
(z(t), A(?)) at t; is known and the next step-size h is determined; that is, t;41 = t; + h.
We want to find an approximate value (Z(ti41), A(ti41)) of (z(ti41), A(ti41)) on the
eigenpath at t;4;. Notice that (£(ti41), A(ti41)) is an approximate eigenpair of the
pencil (A(ti4+1), B). Since H(z(t), A(t),t) = 0, we have

A(t)z(t) = A(t)Bz(t)

z(t)TBz(t) = 1.
Differentiating both equations with respect to ¢, yields,

(A — D)z(t) + A(t)£(t) = A(t) Bz(t) + A(t)Bi(t)

(7.1)
z(t)TBi(t) = 0.
For t = t;, multiplying (7.1) on the left by z7(¢;), yields,
A(ts) = 27(t:)(A — D)a(t:) = 2Brsrza(ts)zrs (k) (7.2)
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where z(¢;) = (z1(ti), ...y Za(t:))T. In view of (7.2), we use the Euler predictor to

predict the eigenvalue at t;;;, namely,
Ao(t.'.n) = A(t.') + i(t.)h

It is easy to see that A(0) = 0 in (7.2). Consequently, A%(¢;) always equals to A°(0).
To predict the eigenvector, we use the inverse iterations on (A(t;4+1), B) with shift

AO(t;41). That is, we solve
(A(tis1) = A°(ti1) B)y (tisa) = z(t:)

and let
By°(tis1)

[[By°(tisa)l-

At t; = 0, since we skip the calculations of eigenvectors of the pencil (D, B), z(0) is

2(tiy1) =

not available. We choose a random vector for z(0).

7.4 Correction

When B is positive definite, the generalized Rayleigh quotient p(u) = (uT Au)/uT Bu
enjoys the following properties [24]:

(i) Stationarity.

Since

arad(p(u)) = (p(u)) = AL pWBU)T

thus p is stationary at the eigenvectors of the pencil (A, B).

(ii) Minimum residual.
(A = oB)ullp-: 2 | Aull3-: — |o(u) || Bull-,

where ||z||}-1 = 27 B-z, with equality holds if and only if o = p(u).

(iii) Monotonicity.

[I(A = pry1B)zrsa|lB-1 < ||(A — o B)zi|| 81 for all £.
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(iv) Cubic convergence.
Therefore, we use the generalized RQI as a corrector, starting with z°(¢;41). To
be more precise, at (27~ (ti41), N (tis1)) (7 2 1) let
N(tis1) = @7 (ti1)T A(tisn) @~ (i)
then solve
(A(tis1) = ¥ (L) B)y (tis1) = 27 (ti)

and let
Byi(tiy1)
||Byiit.-+1)||.

We repeat the above process to within half of the working precision if single precision

=i (tiya) =

is used and one-third of the working precision if double precision is used when ¢;4; < 1,
since precision in determining the curve itself is only of secondary interest. We polish
(z7(ti41), M(ti+1)) at the end of the path (t;41 = 1) by iterating the Rayleigh quotient
to machine precision. The stop point (z7(ti41), M(#i41)) of RQI will be taken as an
approximate eigenpair ((i41), M(ti41)) of the pencil (A(ti41), B).

The cubic convergence rate of RQI makes the corrector highly efficient.

7.5 Checking

For
( \
ay P ( by \
P2 a2z Ps b,
A= , and B= . ,
ﬂn—l Qn_1 ﬂn .
\ ba
k Bn an /
with nonzero §;s and b; > 0, the polynomials defined by
p(A) =1
Pi(}) = a1 — Ab,

Pr(A) = (ar — Ab,)pr—1(X) — B2pr-a(})

r=23,..,n



form a generalized Sturm sequence. Thus, the number of the eigenvalues of (A, B)
strictly greater than ) is equal to the number of the sign changes of the Sturm
sequence, with the convention that if p,(A) = 0, then p,()) is taken to have the
opposite sign of p,_;(A).

When (£(ti41), A(ti41)) is taken as an approximate eigenpair of the pencil (A(i41),
B), the generalized Sturm sequence at A(fi41)+ € is computed to check that, if we are
trying to follow the curve corresponding to j** largest eigenvalue, we are still on that
curve. Here, ¢ is chosen as half of the working precision if single precision is used and
one-third of the working precision if double precision is used. If the check fails, we
reduce the step size to /2 and repeat the whole process once again beginning with

the eigenvalue prediction in Section 7.3.

7.6 Detection of a cluster
At t; = 0, when all the eigenvalues of the pencil (D, B)
Al(O) < AQ(O) <..< A,.(O)

are available, we let § = maz(10-%,10-2(A,(0) — A1(0))/n) if double precision is used

(or & = maz(10-3,10-2(Aa(0) — A1(0))/n) if single precision is used). Set A; and );
in the same group if |A;(0) — A;(0)] < 8. If the number of the eigenvalues in any
group is bigger than 1, then a cluster is detected. At t; # 0, or 1, when (Z(t;), A(%:))
is taken as an approximate eigenpair of the pencil (A(¢;), B), after the checking step
in Section 7.5, we compute the Sturm sequences at A(;) + & to find the number of
eigenvalues of (A(;), B) in the interval (A(t;) — 6, A(t;) + §). When this number is
bigger than 1, a cluster of eigenvalues of (A(¢;), B) is detected.

, In those cases, the corresponding eigenvectors are ill-conditioned and such ill-
condition can cause the inefficiency of the algorithm. We simply give up following
the eigenpath and the corresponding eigenpair of the pencil (A, B) will be calculated
at the end of the algorithm (see Section 7.8).
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7.7 Step size selection

In the first attempt, we always choose the step size h =1 — ¢; at ¢; < 1. If after
the prediction and the correction steps the checking step fails, we reduce the step size
to h/2 as mentioned in Section 7.5. Since the initial pencil (D, B) is chosen to be so
close to (A, B), from our experiences, most of the eigénpa.irs of the pencil (A, B) can
be reached in one step, i.e., h = 1.

Very small step size can also cause the inefficiency of the algorithm. Therefore,
we impose a minimum v on the step size h. If 2 < 4, we simply give up following the
eigenpath and the corresponding eigenpair of A will be calculated at the end of the
algorithm (see Section 7.8). We usually choose v = 0.25.

7.8 Terminatingatt=1

At t = 1, when an approximate eigenvalue \(1) is reached, we conipute the Sturm
sequence at A(1) + € with ¢ = machine precision to ensure the correct order. If the
checking fails, we have jumped into a wrong eigenpath. More precisely, suppose we
are following the i** eigenpair, the checking algorithm detects that we have reached
the j** eigenpair instead. In this situation, we will save the j** eigenpair before the
step size is cut. By saving the j** eigenpair, the computation of following the jt*
eigenpair is no longer needed.

As mentioned in Section 7.6 and 7.7, we may give up following some eigenpaths
to avoid adapting a step size that is too small or the situation when a cluster is
encountered. Without any extra computation, we know exactly which eigenpairs are
lost at ¢t = 1. In order to find these eigenpairs, we first use the bisection to find
the eigenvalues up to the half working precision and then use the inverse iteration
and the RQL. If there is a cluster, then we do bisection to find the eigenvalues up
to the machine precision, then use the inverse iteration to find the corresponding
eigenvectors. In this case, to guarantee the orthogonality, we orthonormalize the

eigenvectors belonging to the same cluster while we are using the inverse iteration.
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7.9 Forming the eigenpairs of (A, B)

If B is positive semidefinite, the pencil (4, B) was reduced to a pencil (4, B) with
B positive definite. From Theorem 5.1 and Theorem 5.2, the eigenvalues of the pencil
(A, B) are the same eigenvalues of the pencil (A, B). Although the eigenvectors are
different, the eigenvectors of the pencil (A, B) can be easily formed from those of the

pencil (A, B) with few computations. The formulas are given in Chapter 5.
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Chapter 8

Numerical Results of the
Homotopy Method for Symmetric

Generalized Eigenproblem

We shall show the computational results comparing the homotopy continuation
method GHOMO with QZ method. The computations were done on a Sun SPARC
station 1.

Our testing examples consist of the following types of pencils (A, B):

Type 1. A is an unreduced symmetric tridiagonal matrix with both diagonal
and off-diagonal elements being uniformly distributed random numbers between 0
and 1. B is a diagonal matrix with the first n/2 diagonal elements being uniformly
distributed random numbers between 0 and 1, and the last n/2 being zeros.

Type 2. A is an unreduced symmetric tridiagonal matrix with both diagonal and
off-diagonal elements being uniformly distributed random numbers between 0 and 1.
B is a diagonal matrix with the first 3n/10 and the last 3n/10 diagonal elements
being uniformly distributed random numbers between 0 and 1, and the rest being
Zeros.

Type 3. A is Toeplitz matrix [1,2,1]. B is a diagonal matrix with the first n/2
diagonal elements being 1, and the rest being zeros.

Type 4. A is Toeplitz matrix [1,2,1). B is a diagonal matrix with the first 3n/10
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and the last 3n/10 diagonal elements being 1, and the rest being zeros.

Type 5. A is an unreduced symmetric tridiagonal matrix with both diagonal and
off-diagonal elements being uniformly distributed random numbers between 0 and 1.
B is a diagonal matrix with all diagonal elements being random numbers between 0
and 1.

Table 8.1 shows the comparison in terms of speed with the QZ method. Table
8.2 shows the accuracy and orthogonality of the homotopy method. The homotopy
method appears to be strongly competitive and leads in speed by a considerable

margin in comparison with the QZ method in all the cases.
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Matrix | Order Execution Time (second)
_T‘ype N | GHOMO QZ Ratio (QZ/GHOMO) |
[ 50 | 023 | 649 | 2821 |

Matrix | 100 0.75 48.20 64.26

Type | 200 2.85 328.19 115.15
1 400 12.39 | 2546.06 205.49

50 0.28 6.23 22.25

Matrix | 100 1.14 45.67 40.06
Type | 200 | 4.86 | 321.86 66.22
2 400 15.24 1802.32 118.26
_ 50 0.31 6.15 19.83
Matrix | 100 1.60 46.96 29.35
Type | 200 6.46 352.67 54.59
3 400 23.68 | 2796.63 118.10
50 0.52 5.82 10.15

Matrix | 100 2.18 44.20 20.27
Type | 200 8.80 336.50 38.23
4 400 34.84 | 2694.60 71.34
50 0.72 11.17 15.51

Matrix | 100 2.81 74.66 26.56
Type | 200 | 12.74 | 488.53 38.34
5 400 47.70 | 3866.14 81.05

Table 8.1: Execution Time (second) of computed eigenpairs of generalized eigenprob-

lems.
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Matrix

Order N

max; ||Az; — AiBz;||2/Amas

max;; |[(XTBX — I)i |/ Amas

Matrix

50
100
200
400

3.9107905787880D-16
3.4241406339558D-16
4.3779590340543D-16
5.2265929394497D-16

2.8617639677154D-16
2.6417938095675D-15
2.0037668814815D-15
5.1552956553653D-15

100
200
400

3.4923828496565D-16
4.1134132219334D-16
5.1246002221589D-16
4.9856607322645D-16

1.3678005594614D-15
1.0126081452260D-15
1.8957582132953D-13
1.0934604011632D-14

50
100
200
400

1.1454950034247D-16
1.6564408035527D-16
2.1624971847800D-16
2.4734721400459D-16

3.4233801826002D-16
1.1470895221836D-15
3.6096263986950D-15
2.1752300627827D-14

Matrix

Type

50
100
200
400

1.0336086782520D-16
2.0867616866469D-16
2.1954327917052D-16
2.9860202732850D-16

2.4870346559132D-16
2.3841690810960D-15
6.4657627842233D-15
2.6556085482256D-14

Matrix
Type

100
200
400

2.1611472844832D-16
4.3084863486435D-16
4.6005546307787D-16
6.0472727089284D-16

2.2100520796971D-15
1.7434653812219D-15
5.2256957128428D-15
2.1235908790871D-14

Table 8.2: The residual and orthonormality of computed eigenvectors of generalized

eigenproblems.
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