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ABSTRACT 

FAST AND ACCURATE TRANSIENT ULTRASOUND PROPAGATION AND B-MODE 
IMAGING SIMULATION METHODS 

By 

Yi Zhu 

Computer simulation plays a significant role in the development of diagnostic ultrasound 

sound systems. Traditional calculation methods for continuous wave ultrasound 

calculations converge slowly when applied to transient wave propagation. Fast and 

accurate calculation methods are developed and discussed in this thesis to improve the 

performance of computing transient ultrasound wave propagation. B-mode imaging is 

widely used in practical diagnostic ultrasound applications. The imaging system is 

based on the pulse echo model. Transient ultrasound pulse waves are generated from 

the transducer, and echo signals are received to generate images. Traditional imaging 

simulation methods use the impulse response method, which requires high sampling 

frequencies to reach acceptable accuracies. By employing a convolutional simulation 

model and using fast and accurate transient ultrasound wave calculation methods, the 

simulation performance can be improved significantly both in image quality and 

simulation speed. 
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Chapter 1 Introduction 

1.1 Motivation 

Computer simulations are often used for evaluating the performance of ultrasound 

models, beamformers, and signal processing methods as applied to medical ultrasound 

systems. As new ultrasound systems are created, the amount of RF data to be 

processed in computer simulations is increasing. The simulation time and memory 

usage expand accordingly as the size of temporal and spatial grids increase. For larger 

and more complicated problems, fast, accurate and memory-efficient ultrasound 

simulation models and algorithms are needed.  

In therapeutic ultrasound, calculations of time-harmonic ultrasound waves are important 

for computing the power deposition and subsequent heat transfer calculations. 

Traditional calculation models such as the Rayleigh-Sommerfeld integral are widely 

used in high intensity focused ultrasound (HIFU) applications [1]. When applied to 

transient pressure field calculations, which are important for ultrasound imaging and 

some therapeutic ultrasound applications, the slow convergence in the nearfield region 

makes the Rayleigh-Sommerfeld integral a less ideal calculation model [2]. Fast and 

accurate calculation models for transient pressure field are desired for therapeutic 

ultrasound applications. Efficient simulation models and algorithms are also desired for 

B-mode ultrasound imaging employing fast transient pressure calculation methods. 
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1.2 Background 

1.2.1 Time-harmonic wave calculations 

Time-harmonic ultrasound waves are calculated for therapeutic ultrasound applications. 

In homogeneous media, the conventional calculation model is the Rayleigh-Sommerfeld 

integral [3][4].  Due to the slow convergence rate of the Rayleigh-Sommerfeld integral, 

equivalent integral approaches such as the rectangular radiator method [5] and the 

spatial impulse response method [6] have been developed. Closed-form spatial impulse 

response functions have been derived for common transducer geometries such as 

circular pistons [7], rectangular pistons [6], triangular pistons [8], and spherical shells 

[9][10][11]. For 2D and 3D problems and larger computational grids, the angular 

spectrum approach has been developed for high speed calculations [12][13]. The Fast 

Nearfield Method (FNM) speeds up the calculations in the nearfield region by combing 

integrands and reducing the number of integrals [2][15].  In an inhomogeneous medium, 

a hybrid angular spectrum method has been developed for large grid calculations [14]. 

Finite difference methods [16] have also been developed for nonlinear time-harmonic 

wave calculations.  

1.2.2 Transient wave calculations 

In ultrasound imaging, short pulses are generated by an ultrasound transducer [17]. 

Transient pressure calculations are therefore important for ultrasound imaging 

simulations. The impulse response method is a popular approach for transient pressure 

field calculations [7][18][19][20]. In order to obtain the transient pressure field, a single 

convolution is executed between the time derivative of the input velocity signal and the 

spatial impulse response function for a specific transducer geometry. To extend the 
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impulse response to arbitrary transducer geometries, an approach of dividing the 

transducer surface into sub-rectangle or sub-triangles and summing up the response 

has been developed [21][22]. Due to the discontinuities at the edge of the transducer, 

the impulse response method often requires high a sampling frequency to avoid aliasing 

problems and to achieve an acceptable accuracy. The performance of the impulse 

response method is improved with advanced approaches [23][24]. Even better 

performance is achieved when Time-Space Decomposition (TSD) [25][26] is combined 

with the Fast Nearfield Method for transient pressure field calculations. Since the Fast 

Nearfield Method removes the singularities from each the integrals, the Fast Nearfield 

Method naturally avoids the aliasing problems that occur in the impulse response 

method and therefore achieves high accuracies with low sampling frequency 

requirements. Time-Space Decomposition, which divides the velocity signal into 

separate temporal and spatial functions, further improves the performance of the Fast 

Nearfield Method when calculating transient pressure fields. In standard Time-Space 

Decomposition, explicit temporal and spatial functions are available only for limited 

signal types. Frequency Domain Time-Space Decomposition (FDTSD) extends this 

approach to enable transient calculations with the Fast Nearfield Method for arbitrary 

input signal waveforms [27].  After the Discrete Fourier Transform (DFT)is applied to the 

input signal waveform, the signal is expressed by several discrete frequency domain 

components. Spectral clipping can control the trade-off between calculation speed and 

accuracy in Frequency Domain Time-Space Decomposition. Previously, the FDTSD 

method was developed for circular transducers. In this thesis, the FDTSD will be 

extended to rectangular transducers.  
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1.2.3 B-mode imaging simulations 

Due to the relatively low cost, the ability to perform real-time imaging, and the absence 

of ionizing radiation, ultrasound imaging has certain advantages over other imaging 

technologies [28]. Diagnostic ultrasound imaging modes include B-mode (brightness 

mode), C-mode, M-mode (motion mode) and several Doppler modes [17][29]. B-mode 

imaging is of particular interest for this thesis. In B-mode imaging, short pulses 

generated by  piezo-electric transducers propagate in soft tissue. Echo signals are 

received by the same transducers and then processed to compose B-mode images. An 

impulse response model has been proposed for B-mode imaging [29]. The total impulse 

response of the system can be calculated by convolving individual impulse responses 

generated by different transducers, accounting for diffraction and scattering. For point 

targets, Jenson introduced a simplified impulse response model [30]. An equivalent 

pulse-echo signal can be obtained by convolving the second derivative of the excitation 

signal with the spatial transmit and receive impulse responses [31]. If the excitation 

signal can be expressed as a convolution between two identical signals, the simplified 

impulse response model can be then expressed in terms of transmit and receive 

pressure signals. The Fast Nearfield Method combined with Time-Spatial 

Decomposition/Frequency Domain Time-Spatial Decomposition is then applied to the 

simulation model to accelerate the simulation and reduce the nearfield error. Several B-

mode imaging simulation algorithms will be developed in this thesis, and these will be 

compared to an impulse response model and to Field II [32]. 
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1.2.4 Ultrasound simulators 

Field II (http://field-ii.dk/) is an ultrasound simulation program [32] based on analytical 

expressions for the impulse response derived by Tupholme[33] and Stepanishen[18]. In 

the Field II program, the calculation is accelerated by dividing the transducer surface 

into rectangles and applying the far-field approximation.  

FOCUS (http://www.egr.msu.edu/~fultras-web/) is a cross-platform ultrasound 

simulation tool for rapidly and accurately calculating pressure fields. In FOCUS, 

calculations for continuous wave pressure in a large 3-D grid are further accelerated by 

the Angular Spectrum Approach, and for transient pressures the simulations are 

accelerated by the Fast Nearfield Method combined with Time-Space Decomposition 

[25] or combined with Frequency Domain Time-Space Decomposition [27]. The need for 

fast and accurate B-mode image simulation routines in FOCUS motives the research 

presented in this thesis. 

1.3 Thesis Organization 

This thesis consists of 6 chapters. Chapter 1 presents some background on diagnostic 

ultrasound and explains the motivation for the research in this thesis. Chapter 2 gives 

basic theories of propagation and B-mode image simulation models. Several important 

formulas, derivations, and concepts are explained carefully in this chapter. For transient 

pressure field calculations, the impulse response, Fast Nearfield Method, Time-Space 

Decomposition, and Frequency Domain Time-Space Decomposition will be presented. 

For B-mode image simulations, the pulse-echo system simulation model, the 

convolutional waveform expression, and several different analytically equivalent 

algorithms will be described. This chapter also gives the error evaluation formula used 

http://field-ii.dk/
http://www.egr.msu.edu/~fultras-web/
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for evaluations of the simulation results. In chapter 3, simulations are generated based 

on formulas and algorithms presented in chapter 2. Simulation results are illustrated 

with figures, tables, and careful explanations. Chapter 4 discusses the simulation results 

and evaluates comparisons between different models and algorithms. Conclusions are 

drawn in Chapter 5. In chapter 6, some plans for the future work are described.    
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Chapter 2 Theory 

2.1 Transient wave propagation models 

In this section, the impulse response, Fast Nearfield Method, Time-Space 

Decomposition and Frequency Domain Time-Space Decomposition will be carefully 

explained. The rectangular transducer is the transducer shape source described in each 

sub-section. 

2.1.1 Impulse Response 

The impulse response method can be derived from the Green’s function [18]. For a 

time-dependent pressure generated in a half-plane due to a vibrating piston on an 

infinite planar baffle, the velocity potential  ( ) obtained from the Green’s function is 

  (   )   ∫ ∫  (    ) (        )    
 

 

 

  (2.1) 

where    indicates the source points and   indicates the observation points,   is the 

area of piston surface,  (    ) is the piston surface velocity, and  (        ) is the 

Green’s function. For the region outside the piston surface on the infinite baffle, the 

normal velocity is zero. The medium in which the sound wave is propagating is 

assumed to be isotropic with a constant propagation velocity. The initial pressure and 

derivative of the pressure is equal to zero. The pressure is then obtained from the 

momentum equation, 

  (   )   
 

  
 (   )  (2.2) 

where   is the density of the homogenous medium. 
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For uniform piston surface velocity  ( ), equation (2.1) is equivalent to 

  (   )   ∫ ∫  ( ) (        )    
 

 

 

  (2.3) 

The Green’s function for this problem is  

  (        )  
 

  

 (       )

 
  (2.4) 

where   is the speed of sound in the propagation medium, and          is the 

distance from the source point to the observation point.    in the denominator 

represents the radiation into the half-plan. The velocity potential can be then expressed 

as 

  (   )   ∫ ∫  ( )
 (       )

   
     

 

 

 

 (2.5) 

If the spatial integration in equation (2.5) is evaluated first, the integral can be described 

in a convolutional form: 

  (   )    ( )   (   )  (2.6) 

where 

  (   )  ∫
 (     )

   
   

 

 (2.7) 

is defined as the impulse response function of the piston evaluated at a single 

observation point. To obtain the pressure field at the observation point, equations (2.2) 

and (2.6) are combined, which yields 
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  (   )    ̇( )   (   )  (2.8) 

The pressure field in the half-plane can now be obtained by evaluating the convolution 

between the time derivative of the surface velocity and the impulse response function. 

The convolution can be calculated numerically with the Fast Fourier Transform (FFT). 

Lockwood and Willette [6] gives a closed-form solution for the impulse response of a 

rectangular piston. An observation point (     ) in the pressure field has a projection 

point    (     ) on the piston surface plane. Assume the rectangular piston is 2b in 

length and 2a in height. The piston surface plane is divided into four rectangles, where 

each has a corner at   . The pressure field is obtained by combining the contributions of 

four sub-rectangles. If    is outside of the piston region, a larger rectangle is defined 

that includes the projection point and the contributions of other rectangles that are 

subtracted in the calculation. After defining the longer sides of  th sub-rectangle as    

and shorter sides as   , the exact solution for the impulse response of the rectangular 

piston can be written as 

 

 (   )   
 

  
∑ {∫

 

 
 ( )  

   

   

 

   

 ∫      {
  

√  (   )    
}  ( )  

   

   

 ∫      {
  

√  (   )    
}  ( )  

   

   

}  

(2.9) 

where 
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{
 
 
 
 

 
 
 
       

 

 

      √     
   

      √     
   

      
√     

    
 

 
 

 (2.10) 

Whether a term is added or subtracted in equation (2.9) is determined by the location of 

the observation point relative to the rectangular piston. If the projection point is located 

at the edge of the rectangular piston, the contributions of the two sub-rectangles with 

zero shorter sides are equal to zero. 

Figure 2-1 shows the projections of observation points (a) - (e) on the piston surface 

plane. For each observation point, the pressure field is the combinations of contributions 

of four sub-rectangles. In Figure 2-1, region I – IV are defined for point (c). The width of 

the rectangular piston is    and the height is        . All of the observation points 

share a common z coordinate with           . Point (a) is located outside of the 

paraxial region at x = 1.4a, y = 1.25a. Point (b) is located at the edge of the paraxial 

region at x = a, y = 0.75b. Point (c) is located inside of the paraxial region at x = 0.6a, y 

= 0.75b. Point (d) is located on the x-axis at x = 0.6a, y=0. Point (e) is located at x = 0, y 

= 0. The corresponding impulse response functions are shown in Figure 2-2.  
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Figure 2-1 Rectangular Piston and the projections of observation points (a) – (e) 
used in impulse response calculation. In the figure, a is half the width of the 

transducer, and b is half the height of the transducer. Region I – IV are defined for point 
(c). All of the observation points share a common z coordinate with           . For 
point (a), x = 1.4a, y = 1.25a. For point (b), x = a, y = 0.75b. For point (c), x = 0.6a, y = 
0.75b. For point (d), x = 0.6a, y=0. For point (e), x = 0, y = 0. 
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Figure 2-2 Impulse responses calculated for a rectangular piston with b/a = 1.5 at 
5 different locations that share a common z coordinate with z/a = 10. The 

horizontal axis represents the time in micro second, and the vertical axis represents the 
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Figure 2-2 (cont’d) amplitude of the impulse response. The impulse responses in sub-
figures (a) – (e) are corresponding to observation points (a) – (e) in Figure 2-1. 

 

The main disadvantage of impulse response calculations is that aliasing limits the 

accuracy when the sampling frequency is low. For example, discontinuities in the 

impulse response produce large errors at low sampling frequencies. To calculate the 

pressure with the impulse response method, the impulse response function needs to be 

evaluated during the entire duration of the impulse response signal. The computation 

time and memory usage can be very large when the sampling frequency is high, which 

is needed to obtain a more accurate result. 

In Field II, the pressure field is calculated based on the impulse response evaluated in 

the far-field region. Hence, the calculation accuracy is also limited by the sampling 

frequency in Field II. 

2.1.2 Fast Nearfield Method 

Lockwood and Willette [6] defines the steady-state acoustic field produced by a 

transducer piston for a time-harmonic excitation as 

  (   )           (    ) 
      (2.11) 

where     is the center frequency of the excitation in radians per second,    is the 

density of medium,    is the constant normal velocity on the piston surface,   is the 

coordinate of the observation field point, and  (    ) is the Fourier transform of the 

impulse response. For a rectangular piston [15], the Fourier transform of the impulse 

response over the corner of a rectangle can be written as 
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    (   )        
 

  
(
  

  
[    √              ]

 ∫      {
 

√     
}        

√        

√     

 ∫      {
 

√     
}        

√        

√     
)     

(2.12) 

where     are the shorter and longer sides of the rectangle, respectively. After changing 

variables       and replacing the wavenumber   with     , where   is the speed of 

sound, the expression (2.12) is equivalent to the solution given by Lockwood and 

Willette [6].  The total Fourier transform of the impulse response for a rectangular piston 

is 

  (   )  ∑ 

 

   

      
(   )  (2.13) 

where       are the shorter and longer sides defined for up to four sub-rectangles. The 

sign of each contribution is decided by whether the corresponding sub-rectangle is 

added or subtracted.  

The Fast Nearfield Method for a rectangular transducer is obtained after three 

improvements are applied to equation (2.12). The first improvement involves deriving 

equivalent integrals from (2.12) and subtracting the singularities. The second 

improvement reduces repeated calculations in the new integral expressions. By 

combining integrals that share same integrand and common upper or lower limits, the 
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third improvement is realized. After combining these three steps, the pressure field is 

evaluated with Gauss quadrature. 

The expression that describes the Fast Nearfield Method for pressures evaluated over 

one corner of a rectangular piston is given by 

 

    (   )   
 

   
( ∫

    √        
      

     
  

 

 

  ∫
    √              

     
  

 

 

)  

(2.14) 

Combining the shared integrand of sub-rectangles, the Fast Nearfield Method gives the 

expression for calculating pressure field generated by a rectangular piston as 

 

 (       )  
      

    

  
{( 

  ) ∫
    √   (  )  (   )       

(  )  (   ) 

   

   

   

 (   ) ∫
    √   (  )  (   )       

(  )  (   )    
   

   

 (   ) ∫
    √   (  )  (   )       

(  )  (   )    
   

   

 (   ) ∫
    √   (  )  (   )       

(  )  (   )    
   

   

}   

(2.15) 
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In Equation (2.15),   is half the width and   is half the height of the rectangular piston. 

The sign of the contribution of each sub-rectangle is automatically determined by 

leading terms.  The combination of terms with the same integrands reduces the number 

of integrals from eight to four in nearfield calculations with this expression. For points 

located on the edge of the transducer, the contributions from the two rectangles with 

zero-length short edges are equal to zero, and only two remaining integrals need to be 

evaluated. Equation (2.15) also subtracts singularities to improve the rate convergence, 

which is much better than the impulse response method. 

For a transient pulse excitation  ( ), the Fast Nearfield Method is given as 

 

 (       )  
   

  
{∫

   

(  )  (   )   (     )   (    ) 
   

   

   

 ∫
   

(  )  (   ) 
  (     )   (    )    

   

   

 ∫
   

(  )  (   ) 
  (     )   (    )    

   

   

 ∫
   

(  )  (   ) 
  (     )   (    )    

   

   

}  

(2.16) 

where  
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{
 
 
 

 
 
     √(   )  (  )      

    √(   )  (  )      

    √(   )  (  )      

    √(   )  (  )      

   
 

 

  (2.17) 

In Equation (2.16), the calculation involves both the time variable   and variables    that 

contain only spatial information. To further improve speed of the computation, the Time-

Space Decomposition method is combined with the Fast Nearfield Method. 

2.1.3 Time-Space Decomposition 

Time-Space Decomposition converts the integrals in the Fast Nearfield Method, where 

both temporal and spatial variables are involved, into an analytical equivalent sum of 

spatial integrals that are weighted by time-dependent factors [25]. Since the time 

dependence is removed from the integrals, the equivalent superposition of spatial 

integrals converges rapidly. To further accelerate the calculation, the repeated terms in 

the integrals are calculated once, stored, and re-used in the following calculations. The 

resulting combination of the Fast Nearfield Method with Time-Space Decomposition is 

therefore fast and accurate in the nearfield region. 

For a temporally windeowed transient pulse, Time-Space Decomposition can be applied 

to the function  (   ): 

  (   )      (
   

 
) ∑   ( )

 

   

  ( ) (2.18) 



18 
 

where     ( )    if        , and     ( )    otherwise. The variable   only contains 

spatial information of the observation point coordinates, thus the function  (   ) can 

be evaluated by the temporal functions   ( ) and spatial functions   ( ) seperately.  By 

applying Equation (2.18), Equation (2.16) can be expressed as 

 

 (       )  
   

  
{∑   ( ) (∫      (   )      (   )    

   

   

 

   

 ∫      (   )      (   )    
   

   

)

  (    ) (∫           
   

   

 ∫           
   

   

)} 

(2.19) 

where  

 

{
 
 
 
 

 
 
 
    

   

(  )  (   ) 

   
   

(  )  (   ) 

   
   

(  )  (   ) 

   
   

(  )  (   ) 

 (2.20) 

and    -    are the same in Equation (2.17). The closed-form expressions of   ( ) and 

  ( ) for Hanning-weighted pulse are given by D. Chen and R. J. McGough [26]. For 
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Hanning-weighted pulse,    . The temporal and spatial functions for a Hanning-

weighted pulse [26] are listed in Table 2-1. 

Table 2-1 Basis functions of TSD for Hanning weighted signal 

Temporal basis function   ( ) Spatial functions   ( ) 

  ( )  
 

 
   (     )   ( )     (     ) 

  ( )   
 

 
   (     )   ( )     (     ) 

  ( )   
 

 
   (

   

 
)    (     )   ( )     (

   

 
)    (     ) 

  ( )  
 

 
   (

   

 
)    (     )   ( )     (

   

 
)    (     ) 

  ( )   
 

 
   (

   

 
)    (     )   ( )     (

   

 
)    (     ) 

  ( )  
 

 
   (

   

 
)    (     )   ( )     (

   

 
)    (     ) 

 

When calculating nearfield pressures with the Fast Nearfield Method combined with 

Time-Space Decomposition, the temporal basis functions   ( ) are evaluated first and 

stored for all time values. The variable    that contains the spatial information is then 

evaluated for each coordinate. The spatial functions   ( ) are evaluated immediately 

after each    is calculated. The expression  (    ) can also be evaluated directly 

with the current time point and observation coordinates by the direct evaluation of 

expression for the input signal. After all   ( ) are evaluated, the integrals containing 

     and   (      ) are calculated by Gauss quadrature. Time-Space Decomposition 

then separates the transient pulse signal, combines integrals with the same integrands, 
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and exploits repeated calculations. This combination speeds up the Fast Nearfield 

Method without adversely impacting the accuracy of the nearfield pressure calculation. 

2.1.4 Frequency Domain Time-Space Decomposition 

When combined with Time-Space Decomposition, the Fast Nearfield Method generates 

faster and more accurate transient pressure results in the nearfield region. The 

limitation of standard Time-Space Decomposition is that exact expressions for   ( ) 

and   ( )  are obtained only for a few signal types. For exponential functions 

containing non-integer powers of  (   ) or if the power is other than one, it is 

impossible to expand the function  (   ) into separate temporal and spatial functions. 

In order to exploit the advantage of Time-Space Decomposition for arbitrary single 

representations, Frequency Domain Time-Space Decomposition has been developed. 

 Frequency Domain Time-Space Decomposition method is derived for circular piston by 

E. J. Alles et al [27]. The method is extended to rectangular pistons as follows. The 

frequency domain representation of  ( ) is obtained from the inverse discrete Fourier 

transform (DFT) as 

      
 

  
∑  ̂      (

   (   )(   )

  
)

  

   

  (2.21) 

for         , where  ̂    is a sampled frequency domain signal with         . 

After substituting         ,                  ,       (  ), and 

 ̂     ̂(  ), the result can be expressed as 
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 (2.22) 

where    is the sampling frequency,         is the angular frequency of the  th 

frequency component,  ̂(  ) is the  th frequency component of the transducer surface 

velocity,  (  ) is the  th time sample of the transducer surface velocity, and    is the 

number of time samples. The     ( ) function removes the periodic replicas in (2.21) so 

that only the original signal  ( ) that begins at      and ends at    
   

(    )    is retained. 

Replacing     with  (   ) in (2.22) yields  

  (   )      (
    

 
)

 

  
∑  ̂(  )    (   (   ))

  

   

 (2.23) 

Comparing (2.23) to the expression for standard Time-Space Decomposition given in 

Equation (2.18) yields 

 

  ( )     (     )

  ( )  
 

  
 ̂(  )    (    )

  (2.24) 

The number of terms in (2.18)  is     . The signal  (   ) is now decomposed into 

a finite number of unweighted and weighted complex exponential functions   ( ) and 

  ( ) which only depend on the spatial term   and the temporal term  , respectively. 

Applying (2.24) to (2.19), the transient pressure field generated by a rectangular piston 
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with an arbitrary surface velocity signal can be now calculated with the Fast Nearfield 

Method combined with Frequency Domain Time-Space Decomposition. 

Other differences between Frequency Domain Time-Space Decomposition and Time-

Space Decomposition include 1) the functions   ( ) and   ( ) are complex in 

Frequency Domain Time-Space Decomposition and are purely real in Time-Space 

Decomposition, and 2) the number of terms    is the number of discrete signal samples 

in Frequency Domain Time-Space Decomposition while the number of terms   is 

determined by the signal type in Time-Space Decomposition. Since the DFT can be 

applied to any discretized signal, Frequency Domain Time-Space Decomposition 

removes the limitation imposed by Time-Space Decomposition and thereby improves 

the speed of transient pressure field calculations when combined with Fast Nearfield 

Method. 

The typical number of superposition operations in standard Time-Space Decomposition 

is 2, 6, or 8, depending on the signal type. The number of superposition operations in 

Frequency Domain Time-Space Decomposition is equal to the number of frequency 

components in DFT and is usually much larger than that in standard Time-Space 

Decomposition. In addition, all of the frequency components evaluated in Frequency 

Domain Time-Space Decomposition are complex-valued. In order to improve the 

performance of Frequency Domain Time-Space Decomposition, a few specific Fourier 

transform properties are applied. In particular, for real-valued signals,  ̂(  )  

 ̂ (   ). Thus, only half of the frequency components are needed to represent the 

original signal. Further improvement can be achieved with spectral clipping. In spectral 
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clipping, a threshold value is defined for the spectrum. Complex-valued frequency 

components with amplitudes below the threshold are discarded in the calculation, and 

only components above the threshold are passed to the Frequency Domain Time-

Space Decomposition routine. With spectral clipping, Frequency Domain Time-Space 

Decomposition is significantly accelerated, and the error increases by only a small 

amount. 

2.2 B-mode imaging simulation  

In this section, the impulse response simulation model for a pulse-echo system and the 

convolution model in terms of transmit and receive pressure signals will be explained. 

Several algorithms designed to improve the performance for the latter model will also be 

introduced. 

2.2.1 Impulse Response Pulse-echo Model 

For a pulse-echo imaging system, the convolution integral that describes the 

relationship between the excitation and the received signal are given in Stepanishen 

[29]. For an pulse-echo input signal  ( ), which includes the transducer excitation and 

the electromechanical impulse response of the transmit and receive transducers that is 

already known from either established electromechanical properties or from 

measurements, the pulse-echo model can be represented as [30] 

    ( )  
 

  
 

   ( )

   
        (2.25) 

In equation (2.25),     represents the simulated pulse-echo signal received by the 

transducer,    is the speed of sound in the medium, and    and    are the impulse 
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response of the transmit aperture and receive aperture, respectively. Aliasing effects 

are observed in the impulse response pulse-echo simulation model when the sampling 

frequency is too low. 

If  ( ) can be expressed as the convolution between two identical signals  ( ) [31] 

such that 

  ( )   ( )   ( )  (2.26) 

The simulated pulse-echo signal (2.25) can be then expressed as 

    ( )  
 

  
   ̇( )      ̇( )            (    )

 ⁄  
(2.27) 

where     is the density of the medium,    is the transient pressure at the observation 

point generated by the transmit aperture when excited by the signal  ( ), and    is the 

transient pressure at the same point generated by the receive aperture for an excitation 

signal  ( ). An equivalent expression for the pulse-echo signal     is thus derived in 

terms of    and   .  

When the Fast Nearfiled Method is combined with Time-Space Decomposition or 

Frequency Domain Time-Space Decomposition, pulse-echo signals for B-mode imaging 

simulations can be calculated faster and with more accuracy than simulations that use 

the impulse response simulation model.  

2.2.2 Algorithms for B-mode imaging simulations 

In (2.27), the pressure signals    and    are generated by the transmit and receive 

apertures, respectively. One approach calculates pressure signals generated from the 
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entire aperture using Fast Nearfield Method. The convolutions between    and    are 

then executed with Fast Fourier Transforms using the open source fftw library 

(http://www.fftw.org/).  

 

Figure 2-3 Aperture Movement. The gray transducer elements represent the active 

aperture. When the aperture is translated to obtain a new A-line, the pressure signals 
contributed from same transducer elements are calculated repeatedly with the first 
simulation algorithm. 

When the aperture is translated to the center of the next A-line, there are repeated 

calculations for the pressure signals generated by same transducer elements in the next 

aperture. The contributions from the transducer elements colored in black in Figure 2-3 

are calculated twice with this simulation approach when the aperture (colored in gray) 

moves from Figure 2-3 (a) to  Figure 2-3 (b). Considering the linearity of the pulse-echo 

system, total transmit and receive pressure signals can be written as the superposition 

http://www.fftw.org/
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of individual pressure signals generated from each transducer element. The convolution 

between    and    can be then be represented as 

 

      (             )  (             )

                          

                          

  
                           

 (2.28) 

With Equation (2.28), second algorithm that convolves the signals first and then 

superposes the results has been developed. In this algorithm, the individual pressure 

signals generated from each transducer element are calculated first. The convolutions 

between each pair of transmit and receive pressure signals are then evaluated and 

stored. Since the results of the convolution are the same when transmit and receive 

apertures are swapped, the resulting waveforms can be saved in an upper-triangular 

"matrix" structure as  

 

(

 
 

                     

              

       

 
 
 

       

       

       

  
       )

 
 

  (2.29) 

When the time delays are digitized for a specific system clock, the RF data can then be 

calculated by reading these stored waveforms and superposing them with appropriate 

time delays according to the location of the focal point along each A-line.  

In Equation (2.28), if the convolutions between each pair of transmit and receive 

pressure signals are not evaluated and stored and instead individual pressure signals 

generated from each single element are evaluated and stored, the total aperture 
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pressure signals can then be obtained by superposing individual element pressure 

signals with appropriate time delays. Convolutions between total transmit and receive 

aperture pressure signals are then evaluated with FFTs to obtain the RF data. This third 

algorithm therefore adds the signals first and then performs a single convolution to 

represent received pulse-echo signal.  

2.3 Error Evaluation 

In calculations of transmitted ultrasound signals in a plane, the normalized error is 

evaluated with 

    

√∑   (     )   
    

(     )       

√∑   
    

(     )       

 (2.30) 

where   (     ) is the pressure amplitude at the spatial coordinates (   ) evaluated at 

a specified instant in time and at a given   distance, and  
    

(     ) is the reference 

pressure calculated by the impulse response method, which is calculated with a high 

sampling frequency in the same locations. The indices    and    indicate a particular 

spatial point (   ).    and    represent the number of grid points in the   and   

directions, respectively. 

For the simulation of B-mode imaging, the normalized error for the RF signal is 

evaluated with 
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√∑     (     )     
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√∑     
    (     ) 

 
     

  (2.31) 

where    (     ) represents a single time point on a single A-line, and    
    (     ) 

indicates the reference pulse-echo signal calculated by the impulse response simulation 

model at a high sampling frequency. The index    indicates a particular time point, and 

the index    indicates an individual A-line.    is the number of time points, and    is the 

number of A-lines. The reference RF signals are down-sampled before the comparison 

with the simulated pulse-echo signals is evaluated. 
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Chapter 3 Simulation Results 

Results of transient ultrasound propagation and B-mode imaging simulations will be 

described in this chapter. In section 3.1, the propagation of a transient ultrasound wave 

is simulated with various models. Simulation results of a transient pressure field 

generated by a rectangular piston transducer are shown in this section. In section 3.2, 

B-mode imaging is simulated using the pulse-echo model. Images resulting from the 

simulations of point target scattering and cyst phantom scattering are shown in this 

section. 

All simulations were conducted on a computer with an Intel Core i5 CPU at 2.8GHz, 

with 8GB RAM. The simulations were run in MATLAB R2010a, 64-bit version. Microsoft 

Visual C++ 2008 SP1 was used to compile C/C++ MEX routines. 

3.1 Transient wave propagation simulations 

In this section, transient pressure fields will be calculated with different propagation 

models. The simulation parameters are given in sub-section 3.1.1. The reference 

pressure field is given in sub-section 3.1.2. The simulation results generated with the 

impulse response method, Fast Nearfield Method, FNM with Time-Space 

Decomposition, and the FNM with Frequency Domain Time-Space Decomposition are 

described in following paragraphs. The calculation times and errors for each 

propagation model are plotted in figures and compared in the table.  

3.1.1 Simulation Parameters 

The transducer used in the transient ultrasound propagation simulations is a rectangular 

piston of 1.5mm in width and 2.25mm in height. The center of the transducer is located 
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at the origin of the Cartesian coordinate system. The excitation applied to the 

transducer surface is a four-cycle hanning weighted sinusoid signal centered at 5MHz 

with      normal velocity amplitude. The transient pressure field is calculated at 

         . The calculated plane is located at            from the transducer surface 

and consists of a 50 x 50 point grid from 0 to the piston width along the x axis and from 

0 to the piston height along the y axis. All the simulations are calculated in a lossless 

medium. The speed of sound            . The density of the medium     

        . The transducer and calculation plane are illustrated in Figure 3-1. The 

rectangular area enclosed by the solid lines in Figure 3-1 indicates the rectangular 

piston located in the X-Y plane centered at the origin. The rectangular area inside the 

dashed lines at            indicates the calculation plane of the transient pressure 

field. 

 

Figure 3-1 Rectangular transducer piston and simulation coordinates. The 

rectangular piston is 1.5mm in width and 2.25mm in height. The transient pressure field 

is calculated in the plane 0.5mm from the transducer surface in the first quadrant. 

Cartesian coordinates are used for the simulation. 



31 
 

 

3.1.2 Reference pressure field 

The reference pressure field is calculated with the impulse response at a 10GHz 

sampling frequency. Figure 3-2 shows the reference pressure field in the         

plane at          . Due to the symmetry of the rectangular transducer, the pressure 

field is only calculated in the first quadrant. The overall pressure field is symmetric to the 

coordinate origin of the pressure field shown in Figure 3-2. This quarter of the overall 

pressure field contains both field regions inside (0 – half width/height) and outside (half 

width/height – width/height) the transducer’s surface space, and therefore obtains a 

good representation of the overall transient pressure field. The 10GHz sampling 

frequency ensures the calculation accuracy of the impulse response used as the 

reference. 
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Figure 3-2 Reference Pressure Field. The reference pressure field is calculated with 

the impulse response at a 10GHz sampling frequency. The pressure field is only 

calculated in the first quadrant due to the symmetry of the transducer. For interpretation 

of the references to color in this and all other figures the reader is referred to the 

electronic version of this thesis. 

 

3.1.3 Impulse Response 

In the simulations using the impulse response model, the pressure field is calculated 

with sampling frequencies from 100MHz to 4GHz. The calculation error is evaluated by 

(2.30). Simulation time is recorded for each sampling frequency. Figure 3-3 shows the 

relationship between calculation time and error for the impulse response model. The 

axes of the plot are in the log scale.  
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In the impulse response, the pressure field is obtained by a temporal convolution 

evaluated using the Fast Fourier Transform (FFT) in MATLAB. To optimize the 

calculation, the signals calculated in the FFT have been zero padded to a power of 2 

points. Hence when the sampling frequency increases, the change of the error is 

relatively stable in some regions and quite sharp in other regions in Figure 3-3. The 

sudden change in error indicates a change in the number of FFT points used in 

calculating the convolution. Due to aliasing at the impulse response edge, the 

calculation error is large when the sampling frequency is low. At a sampling frequency 

of 100MHz, the impulse response generates a 1.70% calculation error with a 

computation time of 0.16 seconds. To reach computation accuracy better than 1%, the 

impulse response requires a sampling frequency of 200MHz. The calculation error is 

0.54% when the sampling frequency is 200MHz, and the computation time is 0.39 

seconds. For a computation error lower than 0.1%, the impulse response requires a 

sampling frequency higher than 700MHz. The computation time for a 700MHz sampling 

frequency is 1.76 seconds. Figure 3-3 illustrates the trend of decreasing error while 

calculation time increases when the sampling frequency increases in the impulse 

response calculations. 
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Figure 3-3 Impulse Response Calculation Time vs. Error. At a 100MHz sampling 

frequency, the calculation error of the impulse response is 1.70%. Increasing the 

sampling frequency to 200MHz, the calculation error drops to 0.54% with a computation 

time of 0.39s. A calculation accuracy reaching 0.1% error or less requires a sampling 

frequency over 700MHz. At a 700MHz sampling frequency, the calculation error is 0.75% 

and the computation time is 1.76s. When the sampling frequency increases, the 

calculation time also increases while the calculation error drops. 

 

3.1.4 Time-Space Decomposition 

In Time-Space Decomposition, the hanning weighted sinusoid signal is divided by the 

sum of products of 6 pair of sine and cosine functions. The calculation accuracy 

depends greatly on the accuracy of the Gaussian quadrature. Figure 3-4 shows the 

relation between calculation error and time as the number of Gaussian abscissas 

increases. The sampling frequency used in the Time-Space Decomposition calculation 
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is 100MHz. The number of abscissas used for the Gaussian quadrature is from 2 to 60. 

The axes in the plot are in log scale. 

 In Figure 3-4, when increasing the number of Gaussian abscissas, the Time-Space 

Decomposition calculation time increases while the calculation error decreases. After 4 

Gaussian abscissas, the time-error plot shows a significant drop in calculation error 

while the increase in calculation time is relatively small. To reach a 1% accuracy, Time-

Space Decomposition requires at least 15 Gaussian abscissas. The corresponding 

calculation time is 0.05 seconds. To reach 0.1% calculation accuracy, the time-space 

decomposition requires at least 19 Gaussian abscissas. The corresponding calculation 

time is 0.07 seconds. After 20 Gaussian abscissas, Time-Space Decomposition gives 

good accuracy in the transient pressure field calculation. Considering both calculation 

error and time, 20 abscissas is a good choice for the Time-Space Decomposition 

method. 
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Figure 3-4 Time-Space Decomposition Calculation Time vs. Error. Calculation 

accuracy increases when increasing the number of Gaussian abscissas used in the 

Time-Space Decomposition method. To reach 1% accuracy, Time-Space 

Decomposition requires 15 abscissas. The computing time for 15 abscissas is 0.05s. 19 

abscissas are required to reach 0.1% accuracy. The computing time for 19 abscissas is 

0.07s. 

 

3.1.5 Frequency Domain Time-Space Decomposition 

In Frequency Domain Time-Space Decomposition, both the number of frequency 

components chosen in spectral clipping and the number of abscissas used in Gaussian 

quadrature influence the calculation accuracy. The following paragraphs discuss the 

influence of these two factors in two sections. Section 3.1.5.1 gives the result of spectral 

clipping and section 3.1.5.2 shows the relation of calculation time and error with and 
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without spectral clipping. The sampling frequency used in Frequency Domain Time-

Space Decomposition calculations is 100MHz.  

3.1.5.1 Spectral Clipping 

In Figure 3-5, four aspects of the four-cycle hanning weighted sinusoid excitation 

signal are illustrated to explain the spectral clipping. Figure 3-5(a) illustrates the 

zero-padded original signal. The horizontal axis is the time in microseconds, and the 

vertical axis is the velocity amplitude. The duration of the excitation signal is 0.8 

seconds. When sampled at 100MHz, the number of time points contained in the 

input signal is 81. To optimize the FFT calculation, the excitation signal has been 

zero padded to 128 temporal points. Figure 3-5(b) shows the spectrum of the input 

signal. The horizontal axis is the frequency in MHz, and the vertical axis is the 

spectrum power in dB. Due to frequency domain symmetry, only half of the spectrum 

is shown from 0 to 50MHz. The dashed line and the dotted line indicate the power 

thresholds for 1% and 0.1% clipping at -44dB and -63dB, respectively. Figure 3-5(c) 

shows the reconstruction error when applying the inverse FFT with different 

numbers of frequency components. The horizontal axis indicates the number of 

frequency components used in the reconstruction, and the vertical axis indicates the 

reconstructed signal error. Since the Fourier transformation property of  ̂(  )  

 ̂ (   ) is applied for the real input signal, half of the 128 frequency components 

can represent all of the information in the spectrum. The reconstruction error is 

introduced when applying the inverse FFT with fewer frequency components. When 

clipping is implemented at -44dB, the reconstruction error is below 1%. The 10 

frequency components that contain most of the energy in the spectrum are chosen 
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for the reconstruction. To reach reconstruction accuracy higher than 0.1%, the 15 

components that contain most of the power are required. The spectral clipping for 

this accuracy is implemented at -63dB. The dashed and dotted lines in Figure 3-5(c) 

illustrate the reconstruction error of 1% and 0.1% accuracy with the corresponding 

number of frequency components, respectively. Figure 3-5(d) shows the 

reconstructed signal at 0.67% accuracy with the 10 frequency components 

containing most of the spectral power. The reconstructed signal matches well with 

the original signal within the duration of the signal with only small oscillations in the 

zero-padded region. 

 

Figure 3-5  Spectral Clipping. (a) The zero-padded original excitation signal. The 

duration of the original signal is 0.8s with 81 temporal points. The signal is zero-padded 

to 128 temporal points. (b) Spectrum of the original signal. Half of the frequency domain 
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Figure 3-5 (cont’d) is shown considering the symmetry of the frequency domain. The 

dashed line and the dotted line indicate the threshold of spectral clipping for 1% and 0.1% 

accuracy, respectively. (c) Reconstruction error compared to the number of frequency 

components chosen to reconstruct the signal. The dashed line and dotted line indicate 

reconstruction errors of 1% and 0.1% accuracy and corresponding number of frequency 

components, respectively. (d) Reconstructed signal at 1% accuracy. 

 

3.1.5.2 Calculation error – time 

Figure 3-5 shows the relation of calculation time to error with and without spectral 

clipping. The calculations use from 2 to 60 Gaussian abscissas. In Figure 3-5, the 

horizontal axis is the calculation time, and the vertical axis is the calculation error. 

The horizontal dashed and dotted lines illustrate 1% and 0.1% calculation error, 

respectively. The solid line indicates the calculation time and error without spectral 

clipping. All 64 frequency terms are used in this case. The leftmost dashed line 

indicates the relationship between calculation time and error when spectral clipping 

is implemented at 1% accuracy, and the dotted line indicates the relationship 

between calculation time and error when the spectrum clipping is implemented at 0.1% 

accuracy.  

The FDTSD method without spectral clipping ultimately reaches an accuracy of 

0.001% when the number of Gaussian quadrature abscissas increases to 60. For 1% 

accuracy, FDTSD without spectral clipping requires 15 Gaussian abscissas and 

takes 0.44 seconds to finish the calculation. For 0.1% error, 19 Gaussian abscissas 

are required. The calculation takes 0.54 seconds at this accuracy.  

For FDTSD with 1% spectral clipping, the simulation result converges to an accuracy 

of 0.41%. When the number of Gaussian abscissas is large, the calculation error is 
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mainly caused by the 1% spectral clipping. For an error lower than 1%, the 1% 

spectral clipping FDTSD requires 13 Gaussian abscissas and takes 0.07 seconds to 

complete the calculation. When spectral clipping is implemented at 1% accuracy, the 

FDTSD method will not converge to 0.1% calculation accuracy. 

For FDTSD with 0.1% spectrum clipping, the simulation results converge to 0.096% 

accuracy in the end. The FDTSD method requires 15 Gaussian abscissas to reach 1% 

accuracy. The corresponding calculation time is 0.10 seconds. 24 Gaussian 

abscissas are required to reach 0.1% calculation accuracy which takes 0.15 

seconds. 

 

 

Figure 3-6 Frequency Domain Time-Space Decomposition Calculation Time vs. 
Error. The solid line indicates FDTSD without spectral clipping. To reach 1% accuracy, 
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Figure 3-6 (cont’d) 15 Gaussian abscissas are required and the calculation time is 
0.44s. 19 Gaussian abscissas give a calculation accuracy of 0.1%. The corresponding 
calculation time is 0.54s. The dashed line indicates FDTSD with 1% spectral clipping. 1% 
calculation accuracy is achieved with 13 Gaussian abscissas with 0.07s computing time. 
FDTSD with 1% spectral clipping cannot converge to 0.1% accuracy. The dotted line 
indicates FDTSD with 0.1% spectral clipping. To reach 1% calculation accuracy, the 
FDTSD with 0.1% spectral clipping requires 15 Gaussian abscissas and 0.10s to 
complete computation. To reach 0.1% accuracy, the method requires 24 Gaussian 
abscissas and takes 0.15s. 

 

3.1.6 Comparison 

Figure 3-6 shows a comparison of the performances of different calculation models. In 

the figure, the solid line indicate FDTSD without spectral clipping, the dashed line 

indicates FDTSD with 1% spectral clipping, the dotted line indicates FDTSD with 0.1% 

spectral clipping, the solid line with circle marks indicates the impulse response, and the 

solid line with square marks indicates TSD method. In Figure 3-6, calculation time 

increases to the right along the horizontal axis and calculation error increases upward 

along the vertical axis. Thus, the time – error lines located to the right of the figure take 

more calculation time than the lines located to the left of the figure. The horizontal 

dashed and dotted lines throughout the figure indicate calculation errors of 1% and 

0.1%, respectively. Observing the intersection with 1% and 0.1% horizontal lines, the 

cross-point of the TSD line appears farthest to the left, which indicates that the TSD 

method takes least calculation time to reach a given accuracy. The next cross-points 

are the FDTSD method with 1% spectrum clipping, and FDTSD method with 0.1% 

spectrum clipping. To reach a given accuracy, the FDTSD method executes faster when 

fewer frequency components are selected in the spectral clipping. For low calculation 

accuracies, the FDTSD method without spectral clipping can be even slower than the 
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impulse response. When the calculation accuracy increases, the advantage of FDTSD’s 

calculation speed becomes obvious even in the case of no spectral clipping. At higher 

accuracies, the impulse response requires high sampling frequencies. The calculation 

speed of the impulse response with a high accuracy is the slowest of all methods 

mentioned above. 

 

Figure 3-7 Comparison of all propagation models. The horizontal axis is the 

calculation time, and the vertical axis is the calculation error. From left to right, the solid 
line with square marks is the TSD method, the dashed line is FDTSD with 1% clipping, 
the dotted line is FDTSD with 0.1% clipping, the solid line is FDTSD without clipping, 
and the solid line with circle marks is the impulse response. TSD is located to the far left 
in the figure, which indicates it is the fastest model in this calculation. The impulse 
response is located to the far right in the figure when the accuracy is high, which 
indicates it takes most time to calculate a high accuracy result.  
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Table 3-1 gives an explicit comparison of the calculation time for each propagation 

model.  At 1% accuracy, the Time-Space Decomposition method is about 7x faster than 

the impulse response. FDTSD without spectral clipping is even slower than the impulse 

response. FDTSD with spectral clipping can calculate at the same speed as the TSD 

method. FDTSD with 1% spectral clipping calculates 5x faster than the impulse 

response, and FDTSD with 0.1% spectral clipping calculates 4x faster than the impulse 

response. For 0.1% accuracy, the TSD method is 26x faster than the impulse response. 

FDTSD without spectral clipping calculates 3x faster than the impulse response at this 

accuracy, and FDTSD with 0.1% spectral clipping calculates 12x faster than the impulse 

response. FDTSD with 1% spectral clipping cannot reach a 0.1% accuracy in the overall 

calculation. 

Table 3-1  Comparison of calculation time 

Model 
Calculation Time (s) 

1% error 0.1% error 

Impulse Response 0.3924 1.7615 

TSD 0.0535 0.0677 

FDTSD – No Clipping 0.4354 0.5431 

FDTSD – 1% Clipping 0.0743 - 

FDTSD – 0.1% Clipping 0.0969 0.1504 

 

3.2 B-mode imaging simulations 

This section will describe B-mode imaging simulations. Sub-section 3.2.1 gives the 

simulation parameters used in the B-mode imaging simulation.  

In sub-section 3.2.2, the B-mode imaging is simulated for the point target scattering. 

Sub-section 3.2.2.1 generates simulations with a single focus point. When no system 
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clock  is applied, the simulations are implemented in MATLAB with FOCUS and Field II 

simulators in 3.2.2.1.A. The algorithms are written in C/C++ and implemented in 

MATLAB with C/C++ MEX files. The simulation results are shown in 3.2.2.1.B.  

“Algorithm 1 / ALG1” indicates the first algorithm described in Section 2.2.2. “Algorithm 

2 / ALG2” indicates the second algorithm, and “Algorithm 3 / ALG3” indicates the third 

algorithm. In 3.2.2.1.C, simulations are generated with different sampling frequencies 

and system clocks to discuss the influence of these two factors on the simulation. Sub-

section 3.2.2.2 generates simulations with multiple focal zones. 

In sub-section 3.2.3, the B-mode imaging simulations are generated for the cyst 

phantom scattering. The simulations are generated with the Field II simulator and with 

the pulse-echo simulation algorithm 3 (“sum first, convolve second algorithm”). Imaging 

results and RF data comparisons are shown in this section.  

3.2.1 Simulation Parameters 

In point target scattering simulations, 20 point scatterers are equally arranged from 

15mm from the transducer surface to 110mm along z-axis. The distance between 

scatterers is 5mm. The transducer array used in the point target scattering simulation is 

composed of 128 rectangular elements. Each rectangular element is 0.5133mm in width 

and 5mm in height. The kerf between elements is 0.1mm wide. The excitation signal 

 ( ) is obtained by convolving two single cycle sine functions with 3MHz center 

frequency. In Field II, 2x20 sub-rectangles are applied on each transducer element. The 

B-mode image is 20mm in width and contains 20 amplitude-lines (A-lines). For each A-

line, a sub-aperture of 64 elements is defined centered at the A-line. For simulations 

with single focal zone, a single focus point is defined at 60mm from aperture surface 
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along each A-aline. For simulations with multiple focal zones, 5 focal zones are defined 

for each transmit and receive sub-aperture. The focus point of each focal zone locates 

equally from 30mm to 110mm from transducer surface. The distance between two focus 

points is 20mm. In Field II, 5 set of time delays are set to sub-apertures independently 

in beamforming to assure the time delays are identical to those used in the reference. 

The simulation results are generated in each focal zone and stitched together to 

compose the Field II results. The simulation times for Field II are recorded for the typical 

routines generating the multiple-focal-zone results. The B-mode images are generated 

with 60dB dynamic range. 

In cyst phantom scattering simulations, 100,000 scatterers are randomly generated 

within a 50mm x 10mm x 60mm cubic space. The phantom starts at 30mm from the 

transducer surface. 5 cysts with 0 amplitude are generated at x = 10mm and y = 0 along 

the z-axis. The centers of cysts are from z = 40mm to 80mm, and with 10mm distance 

between each. The diameters of 6 cysts are 6mm, 5mm, 4mm, 3mm, and 2mm, 

respectively. Five highly scattering cysts with 10x amplitude are generated at x = -5mm 

and y = 0 along the z-axis.  The centers of the cysts are from z = 40mm to 80mm, with 

10mm distance between each. The diameters of the highly scattering cysts are 2mm, 

3mm, 4mm, 5mm, and 6mm. Six point scatterers with 20x amplitudes are generated at 

x = -15mm and y = 0 along the z-axis. The first point scatterer is located at 40mm from 

transducer surface. The distance between two point scatterers is 10mm. The transducer 

array used in cyst phantom simulations is composed of 192 rectangular elements. 

Transducer elements’ sizes are the same as defined in the point target scattering 

simulations. The kerf between elements is 0.05mm wide. The excitation signal  ( ) is 
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obtained by the convolving two single cycle sine functions with 3.5MHz centering 

frequency. In Field II, 1x10 sub-rectangles are applied on each transducer element. The 

B-mode image is 40mm in width and contains 50 amplitude-lines (A-lines). For each A-

line, a sub-aperture of 64 elements is defined. A single focus point located at 60mm 

along each A-line is defined for each aperture. A 40MHz system clock is applied in 

simulations. 

The sound speed            . The density of the medium             . 

The reference RF data and B-mode image are generated by impulse response at 5GHz 

sampling frequency. 

3.2.2 Point target scattering 

3.2.2.1 Single focal zone for transmit and receive apertures 

3.2.2.1.A B-mode imaging simulation in FOCUS without system clock 

Figure 3-8 shows the 5GHz reference impulse response B-mode imaging simulation 

result. Figure 3-9, Figure 3-10 and Figure 3-11 show comparisons of Field II and 

FOCUS simulated image results generated at different sampling frequencies. The 

left columns in these three comparison images are simulated images generated by 

Field II. The right columns in the comparison images are simulated images 

generated by FOCUS. 

In Figure 3-8, 20 point scatterers are shown from 15mm to 110mm in the middle A-

line of the simulated image. A single focus point is shown at 60mm. The reference 

image has a clear view throughout the image due to the high sampling frequency. 

Only slight blurring appears in the nearfield region. 



47 
 

 

Figure 3-8 Reference B-mode simulated image for single focal zone simulation 
without system clock. The reference RF data is generated by 5GHz impulse response. 

20 point scatterers are shown in the middle of the image from 15mm to 110 mm. The 
single focal zone is shown at 60mm.  
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Figure 3-9 Field II and FOCUS simulated image comparison at 25MHz sampling 
frequency. Clutters are obvious in the nearfield region in Field II simulated image, 

whereas the artifacts are not obvious in FOCUS simulated image. The calculation error 
for Field II is 18.58% and for FOCUS is 1.47%. Simulation time for Field II is 0.23s and 
for FOCUS is 1.08s. 

 

When the sampling frequency is 25MHz, the simulation error for Field II result is 

18.58%, while the simulation error for FOCUS result is 1.47%. In Figure 3-9, clutters 
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appear in the nearfield region in the Field II simulated image, whereas nearfield 

artifacts are not obvious in the FOCUS simulated image. The calculation time for 

Field II at 25MHz sampling frequency is 0.23 seconds. For FOCUS, the simulation 

takes 1.08 seconds to complete computing.  

 

Figure 3-10 Field II and FOCUS simulated image comparison at 50MHz sampling 
frequency. Nearfield artifacts are reduced in the Field II simulated image. The FOCUS 

simulated image remains high quality. The calculation error for Field II at 50MHz  
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Figure 3-10 (cont’d) sampling frequency is 7.02% and for FOCUS is 0.37%. The 
calculation time for Field II is 0.26s and for FOCUS is 1.60s.  

 

When increasing the sampling frequency to 50MHz, the simulation error for Field II 

decreases to 7.02%, and the error for FOCUS decreases to 0.37%. Nearfield clutter 

is reduced in Field II simulated image as shown in Figure 3-10. The FOCUS 

simulation keeps the high quality in the simulated image. At as low sampling 

frequency as 50MHz, FOCUS reaches a simulation error lower than 1%. The 

calculation time for Field II at a 50MHz sampling frequency is 0.26 seconds. The 

calculation time for FOCUS is 1.60 seconds. 
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Figure 3-11  Field II and FOCUS simulated image comparison at 100MHz sampling 

frequency. Field II generates a visually clear image at 100MHz and FOCUS keeps the 

high simulation quality. The calculation error for Field II is 5.07% and for FOCUS is 

0.19%. The simulation time for Field II is 0.33s and for FOCUS is 2.62s. 

 

At 100MHz sampling frequency, both Field II and FOCUS simulate visually clear 

result images. The simulation error of Field II is 5.07% and of FOCUS is 0.19%. It 
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takes 0.33 seconds for Field II to finish the simulation, whereas the calculation time 

for FOCUS is 2.62 seconds at 100MHz sampling frequency. 

For the FOCUS simulation routine, it only requires 30MHz sampling frequency to 

reach a simulation error of less than 1%. For Field II, 250MHz sampling frequency 

and 2x20 spatial sampling are required to reach a simulation error below 1%. The 

main factors slowing down the FOCUS calculation speed are repeating calculations 

of transducer elements and the evaluations of FFTs. Thus, several implementing 

algorithms run in C/C++ routines are developed as following. 

3.2.2.1.B Implementing algorithms with 40MHz system clock 

To take advantage of the system linearity, a 40MHz system clock is applied to the 

simulation. The time delays for each aperture are digitized and aligned to the system 

clock. Figure 3-12 shows the reference simulated image generated by the impulse 

response at 5GHz sampling frequency with 40MHz system clock. Figure 3-13 shows 

the comparison of simulated images generated by the first algorithm (ALG1), the 

second algorithm (ALG2) and the third algorithm (ALG3) at 40MHz sampling 

frequency.   

In Figure 3-12, artifacts appear in the nearfield region and beyond the focus region 

due to the digitized time delays.  
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Figure 3-12  Reference B-mode simulated image for single focal zone simulation 

with 40MHz system clock. The reference RF data are generated by impulse response 

at 5GHz sampling frequency. Due to the time delays, clutter appears in the nearfield 

region and beyond the focus region. 
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Figure 3-13  Comparison of implementing algorithms. Three columns of simulated 

images from left to right are generated by the first algorithm, the second algorithm and 

the third algorithm, respectively. The time delays are aligned to a system clock of 

40MHz. The sampling frequency is 40MHz. The simulation results of all algorithms 

obtain simulation accuracies of 0.56%.  The simulation times are 0.41s, 0.47s and 0.05s 

for the first algorithm, the second algorithm, and the third algorithm, respectively. 

 

Figure 3-13 illustrates the performances of three algorithms at 40MHz sampling 

frequency. Since all algorithms are based on the same simulation approach and the 
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only difference is the calculation sequence, the simulation error is 0.56% for all three 

algorithms. For the first algorithm calculating with Fast Nearfield Method with Time-

Space Decomposition, the calculation time is 0.41 seconds. The second algorithm 

takes 0.47 seconds to complete the simulation, and the third algorithm takes 0.05 

seconds to finish the simulation. In the first algorithm, the number of convolutions 

equals to the number of A-lines multiplied by the number of scatterers. In the second 

algorithm, the number of convolutions is proportional to the number of elements. In 

the third algorithm, the number of convolutions is the same as in the first algorithm. 

Considering the time for evaluating FFTs to calculate convolutions, the second 

algorithm can be slower than other two algorithms when the number of elements is 

large. The third algorithm is a good combination of the first algorithm and the second 

algorithm, and thus speeds up the computation about 8x faster than the first 

algorithm and the second algorithm. When applying 40MHz sampling frequency and 

40MHz digitized time delays to Field II, the simulation takes 0.28 seconds to 

complete the computation. The simulation error at this low sampling frequency is 

15.56% for Field II simulation result, which is much larger than Fast Nearfield 

Method based approaches. 

3.2.2.1.C Influence of sampling frequency and system clock 

When the digitized time delays are applied in the simulation, both the sampling 

frequency and the system clock to which the digitized time delays are aligned to will 

affect the simulation performance. Figure 3-14 and Figure 3-15 illustrate how these 

two factors influence the simulation. In Figure 3-14, the digitized time delays are 

aligned to a 40MHz system clock. The simulation results are generated with 
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sampling frequencies of 40MHz, 200MHz and 400MHz and the corresponding 

simulated images are shown in three columns from left to right in Figure 3-14. In 

Figure 3-15, the sampling frequency is set to 400MHz. The digitized time delays are 

aligned to system clocks of 40MHz, 200MHz and 400MHz. The corresponding 

simulated images are shown in three columns from left to right in Figure 3-15. The 

reference used in this sub-section is generated by the impulse response at 5GHz 

sampling frequency without system clock. The simulated image for the reference is 

shown in Figure 3-8 in section 3.2.2.1.A. 

When the digitized time delays are aligned to a system clock of 40MHz, the 

simulation error is 13.77% regardless of the sampling frequency. In Figure 3-14, the 

cluttering in the nearfield regions in all simulated images reflects the influence of a 

low system clock. When the system clock is relatively low in the simulation, 

increasing the sampling frequency cannot generate a simulation result of higher 

accuracy. In this condition, the system clock is crucial to the calculation accuracy 

and the quality of simulated image. 
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Figure 3-14 Comparison of simulated images generated with different sampling 

frequencies. The digitized time delays are aligned to a 40MHz system clock. The three 

columns of simulated images from left to right are generated with 40MHz, 200MHz and 

400MHz sampling frequencies, respectively. The nearfield cluttering indicates the 

influence of a low system clock. The simulation error is 13.77% regardless of the 

sampling frequency.  

 

When the sampling frequency is 400MHz, the comparison of simulated images 

generated with different system clocks are shown in Figure 3-15. The left column in 
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Figure 3-15 is the simulated image where the digitized time delays are aligned to a 

40MHz system clock. The nearfeild cluttering is caused by the low system clock as 

described above. When increasing the system clock to 200MHz, the simulation error 

drops to 2.98%.  The middle column in Figure 3-15 shows the simulated image. A 

visually clear image is generated with this system clock. A system clock of 400MHz 

with 400MHz sampling frequency can provide a simulation accuracy of 1.44% and 

create a simulated image as shown in the right column in Figure 3-15. The simulated 

image obtains a good quality in this condition and is visually comparable to the 

reference result without system clock.  
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Figure 3-15  Comparison of simulated images generated with different system 

clocks. The sampling frequencies are 400MHz for all simulations. The three columns of 

simulated images from left to right are generated with 40MHz, 200MHz and 400MHz 

system clocks, respectively. The nearfield cluttering is obvious when the system clock is 

low as 40MHz. When the system clock increases to 200MHz and 400MHz, the artifacts 

visually disappear. The simulation errors are 13.77%, 2.98% and 1.44% for 40MHz, 

200MHz and 400MHz system clocks, respectively. 
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Table 3-2 gives a conclusion of the influences of sampling frequencies and system 

clocks. The system clock to which the digitized time delays are aligned is a crucial factor 

affecting the simulation quality. A system clock of 200MHz can provide a visually 

acceptable quality in the simulated image. 

Table 3-2 Sampling frequency and system clock effect 

40MHz system clock 

Sampling 

frequency 
fs = 40MHz fs = 200MHz fs = 400MHz 

Error 13.77% 13.77% 13.77% 

400MHz sampling frequency 

System Clock Clk = 40MHz Clk = 200MHz Clk = 400MHz 

Error 13.77% 2.89% 1.44% 

 

3.2.2.2 Multiple focal zones for transmit and receive aperture 

Figure 3-16 shows the reference B-mode simulated image for 5 transmit and receive 

focal zones generated by impulse response at 5GHz with 40MHz system clock. 

Figure 3-17 shows the comparison of simulated images generated by Field II and 

the third algorithm at 40MHz sampling frequency with 40MHz system clock. Figure 

3-18 shows the comparison of simulated images generated by Field II and the third 

algorithm at 40MHz sampling frequency with 40MHz system clock. 
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Figure 3-16 Reference B-mode simulated image for 5 transmit and receive zones. 

The reference result is generated by the impulse response at 5GHz sampling frequency. 

The digitized time delays are aligned to a 40MHz system clock.Nearfield cluttering is 

cause by the low system clock. The multiple focal zones improves the simulation quality 

in focal regions.  

 

In Figure 3-16, the cluttering in the nearfield region and beyond the focal regions is 

caused by the system clock. Due to the multiple focal zones, the artifacts are 
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reduced in the focal regions. Since the threshold of two focal zones are set in the 

middle of two focus points, some edge affects are shown at the thresholds (40mm, 

60mm, etc.). 

At a sampling frequency of 40MHz, the Field II simulation obtains a simulation error 

of 16.64%. The calculation time for the typical Field II multi-focal-zone routine is 0.31 

seconds. For the third algorithm, the simulation error is 0.45% at 40MHz sampling 

frequency. The simulation completes in 0.08 seconds.  

Increasing the sampling frequency to 200MHz, the typical Field II routine reaches an 

accuracy of 1.96%. The computation time for the typical Field II routine at 200MHz 

sampling frequency is 0.51 seconds. The third algorithm obtains a simulation 

accuracy of 0.19% at 200MHz sampling frequency. The computation time for the 

third algorithm is 0.24 seconds.  

At a low sampling frequency as 40MHz, the third algorithm already reaches a high 

simulation accuracy of 0.45%, which is even better than the simulation accuracy 

obtained by Field II at 200MHz sampling frequency. The computing speed of the 

third algorithm is faster than the typical Field II simulation routine as well. 
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Figure 3-17  Comparison of Field II and third algorithm at 40MHz sampling 

frequency with 40MHz system clock. The left column is the simulated image 

generated by Field II at and the right column is the simulated image generated by the 

third algorithm (ALG3). Field II reaches a simulation accuracy of 16.64% in 0.31s, 

whereas algorithm 3 reaches a simulation accuracy of 0.45% in 0.08s.  
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Figure 3-18 Comparison of Field II and third algorithm at 200MHz sampling 

frequency with 40MHz sampling frequency. The left column is the simulated image 

generated by Field II at and the right column is the simulated image generated by the 

third algorithm (ALG3). Field II reaches a simulation accuracy of 1.96% in 0.51s, 

whereas algorithm 3 reaches a simulation accuracy of 0.19% in 0.24s. 
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Table 3-3 Point target scattering B-mode imaging simulation comparison 

Simulation Type 
Sampling 

Frequency 

Approach 

Error Time Error Time 

Field II FOCUS 

Single 

Focal 

zone 

No 

system 

clock 

25MHz 18.58% 0.23s 1.47% 1.08s 

50MHz 7.02% 0.26s 0.37% 1.60s 

100MHz 5.07% 0.33s 0.19% 2.62s 

40MHz 

System 

Clock 

40MHz 

15.56% 0.28s - 

ALG1 ALG2 ALG3 

0.56% 0.41s 0.56% 0.47s 0.56% 0.05s 

5 

Focal 

Zones 

40MHz 

System 

Clock 

40MHz 
Field II ALG3 

16.64% 0.31s 0.45% 0.08s 

200MHz 1.96% 0.51s 0.19% 0.24s 

 

Table 3-3 summarizes the performances of point target scattering simulations in 

section 3.2.2. For the simulations with a single focal zone and without system clock, 

at same sampling frequencies, the FOCUS simulations can generate results 13x - 

27x more accurate than Field II but with longer computation times. When the time 

delays are digitized and aligned to a 40MHz system clock, the third algorithm (ALG3) 

using the Fast Nearfield Method with Time-Space Decomposition generates 

simulation results with the same accuracy but 8x faster than the first algorithm 

(ALG1). In the simulations with multiple focal zones, the third algorithm (ALG3) 

generates simulation results that are 37x more accurate than Field II at 40MHz 

sampling frequency with 40MHz system clock. The computation time for ALG3 is 4x 

faster than Field II. At 200MHz sampling frequency with 40MHz system clock, the 

ALG3 generates 10x more accurate results than Field II and the computing time is 
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2x faster than Field II. The simulation results generated by the third algorithm (ALG3) 

at 40MHz sampling frequency are even more accurate than Field II results at 

200MHz sampling frequency.  

3.2.3 Cyst Phantom scattering 

Figure 3-19 and Figure 3-20 show the simulated images of cyst phantom generated by 

Field II and the third algorithm (ALG3), respectively. Zero amplitude cysts, highly 

scattering regions, and point scatterers can be seen in the simulated images. Since only 

a single focal zone is applied in these simulations, the cysts beyond the focal region can 

be obscured or deformed. From the discussions of simulations of point target scattering, 

a sampling frequency of 200MHz is appropriate for Field II simulations to obtain an 

acceptable accuracy. To complete a simulation with 100,000 random scatterers, Field II 

requires more than 1 hour to finish the computation. For the third algorithm (ALG3), a 

sampling frequency of 40MHz is enough to obtain accurate results. The third algorithm 

only needs approximately 7 minutes to finish the simulation. The RF results generated 

by Field II and the third algorithm are compared in Figure 3-21. 
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Figure 3-19  Cyst phantom simulated image generated by Field II. The simulation 

results are generated at 200MHz sampling frequency with a 40MHz system clock. Five 

zero amplitude cysts can be seen along x =  10mm, five highly scattering regions can be 

seen along x = -5mm, and 6 point scatters can be seen along x = -15mm. The image 

regions within in the focal zone are clearer and more accurate than the regions beyond 

the focal zone. The simulation time for Field II at 200MHz sampling frequency is more 

than 1 hour. 
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Figure 3-20 Cyst phantom simulated image generated by the third algorithm 

(ALG3). The simulation results are generated at 40MHz sampling frequency with a 

40MHz system clock. Five zero amplitude cysts can be seen along x =  10mm, five 

highly scattering regions can be seen along x = -5mm, and 6 point scatters can be seen 

along x = -15mm. The image regions within in the focal zone are clearer and more 

accurate than the regions beyond the focal zone. The simulation time for ALG3 at 

40MHz sampling frequency is around 7 minutes. 

 

In Figure 3-21, RF data along the 7th A-line (x = -15.2mm) generated by Field II and the 

third algorithm (ALG3) are compared. Five point scatterers are located near this A-line. 

In Figure 3-21, the horizontal axis is the axial distance along z-axis, and the vertical axis 

is the RF data amplitude normalized by the maximal signal value. Zooming in 58mm to 

62mm along the axial distance, the signal of the 3rd scatterer located at 60mm is 
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distinct from the background. As shown in Figure 3-21, RF results generated by the 

third algorithm at 40MHz sampling frequency (marked as circles in the figure) match 

well with the results generated by Field II (the solid line in the figure) at 200MHz 

sampling frequency.  

 

Figure 3-21 Cyst Phantom RF data comparison. The horizontal axis is the axial 

distance along z-axis, the vertical axis is the signal amplitude normalized by the 

maximal signal amplitude. The solid lines indicates the RF results generated by Field II 

at 200MHz sampling frequency. The circle marks are the RF results generated by the 

third algorithm (ALG3) at 40MHz sampling frequency. RF results generated by ALG3 at 

20MHz sampling frequency match well with the results generated by Field II at 200MHz 

sampling frequency. 
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Chapter 4 Discussions  

4.1 Transient wave propagation models 

Different propagation models are used for different purposes in ultrasound simulations. 

The Rayleigh-Sommerfeld integral has analytical solutions and is often used in 

continuous wave calculations. Due to its slow convergence rate in transient pressure 

calculations, this method is less commonly used in the transient pressure field 

simulations. For transient pressure field calculations, the impulse response method, 

Fast Nearfield Method, Time-Space Decomposition method and Frequency Domain 

Time-Space Decomposition method have been calculated and discussed in this thesis. 

4.1.1 Impulse Response 

The impulse response is one of the most popular calculation models for transient 

pressure propagation. Derived from the Green’s function, the impulse response method 

simplifies the calculation by one convolution between the time derivative of the velocity 

and the spatial impulse response. Closed form spatial impulse response functions for 

different geometries can be obtained by integrals given in Equation (2.7) and have been 

derived in several papers. Due to the discontinuities at the edges in the impulse 

response function, a high sampling frequency is required in the calculation to obtain an 

accurate result. At high sampling frequencies, the impulse response can generate 

highly accurate results, yet the computing time will be long. The impulse response result 

generated at a high sampling frequency is often used as a reference. 
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4.1.2 Fast Nearfield Method 

Fast Nearfield Method reduces the number of integrals evaluated in the Rayleigh-

Sommerfeld integral method, isolates the repeated calculations, combines integrals 

sharing same integrand and common upper or lower limits, and therefore speeds up the 

computation. Furthermore, since no edge discontinuity occurs in the Fast Nearfield 

Method, the aliasing problem that occurs in the impulse response model at low 

sampling frequencies has been avoided. As a consequence, Fast Nearfield Method can 

reach a high accuracy at a low sampling frequency. Considering the velocity containing 

both temporal and spatial terms in the transient pressure field calculations, Fast 

Nearfield Method is often used with Time-Space Decomposition or Frequency Domain 

Time-Space Decomposition. 

4.1.3 Time-Space Decomposition 

Time-Space Decomposition optimizes the Fast Nearfield Method by dividing the velocity 

term into the superposition of temporal and spatial functions. The expression for 

temporal and spatial functions for specific signal types can be found in Table 2-1. As 

shown in section 3.1.6, the calculation speed of Fast Nearfield Method with Time-Space 

Decomposition is the fastest in all computing methods discussed in this thesis. The 

limitation for Time-Space Decomposition is that the expressions for temporal and spatial 

functions can be obtained only for several signal types. Thus the Frequency Domain 

Time-Space Decomposition has been developed to take advantage of the 

decomposition. 
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4.1.4 Frequency Domain Time-Space Decomposition 

Frequency Domain Time-Space Decomposition applies the decomposition to the 

velocity signal on arbitrary signal types. With spectral clipping, the trade-off between 

computing time and calculation accuracy can be controlled by selecting appropriate 

number of frequency components. As shown in section 3.1.6, the Frequency Domain 

Time-Space Decomposition method can generate accurate result at a comparable 

speed to the TSD method when 1% spectral clipping is applied. The calculation time 

increases when accuracy of the spectral clipping increases. The FDTSD is an ideal 

calculation model when the excitation signal cannot be decomposed by TSD method 

(such as the Gaussian-modulated sinusoidal pulse). The computing time of FDTSD 

method will be much smaller than the impulse response method when the spectral 

clipping is applied appropriately. 

4.2 B-mode imaging simulations 

The impulse response model for a pulse-echo system can be simplified as equation 

(2.25). Simulated results generated by impulse response at a high sampling frequency 

are used for reference in this thesis. By expressing the excitation signal in a 

convolutional form, the impulse response model can be written as the convolution 

between transmit and receive pressure signals. The RF data can be then calculated 

with efficient transient pressure method as discussed in the previous section. Two types 

of B-mode imaging simulations are generated in this thesis: the point target scattering 

and the cyst phantom scattering. 
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4.2.1 Point target scattering 

4.2.1.1 Single Focal Zone 

In simulation software FOCUS, the transient pressure signals are calculated by Fast 

Nearfield Method with Time-Space Decomposition using existing routines. Implementing 

the convolutional model given in (2.27) directly in FOCUS, the simulation reaches 

higher accuracy compared to Field II at the same sampling frequency. To reach same 

accuracies, FOCUS requires much lower sampling frequencies than the impulse 

response based software Field II. Several implementing algorithms are developed to 

improve the performance of the FNM based imaging simulation routine. 

With digitized time delays that are aligned to a specific system clock, the first algorithm 

implements the convolutional model directly from equation (2.27). Repeated 

calculations are executed for individual pressure signals generated from same 

transducer elements. The second algorithm calculates the convolution between each 

pair of transmit and receive individual pressure signals and stores the convolutional 

waveform. The RF data are generated by these stored waveforms with appropriate time 

delays. The third algorithm calculates and stores each individual pressure signal. 

Instead of convolving between each pair of individual signals, the third algorithm applies 

time delays to the stored individual signals and superposes them to generate aperture 

pressure signals. The convolutions are then executed between transmit and receive 

aperture signals. From comparison in Table 3-3, the second algorithm takes the longest 

computing time, and the third algorithm simulates the fastest. Considering the number 

of convolutions evaluated in each algorithm, the first algorithm and the third algorithm 

evaluate the number of convolutions equal to the product of the number of A-lines 
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multiplying the number of scatterers (                       ). The second algorithm, 

in the other hand, evaluates the convolutions proportional to the square of the number 

of transducer elements times the number of scatterers (                  (         

 )        ). As a consequence, when the number of elements in the transducer is 

huge, the computing time for this algorithm will be long.  

 The influence of sampling frequencies and system clocks have been considered. When 

the digitized time delays are aligned to a low system clock, increasing the sampling 

frequency will not improve the simulation performance. A system clock of 200MHz 

provides acceptable simulation quality. For all implementing algorithms, the requirement 

of a sampling frequency that is higher than the system clock needs to be satisfied. 

4.2.1.2 Multiple focal zones 

 B-mode imaging simulation algorithms can be applied for simulations with multiple focal 

zones. Thresholds for different focal zones are set at the middle point between two 

focus points. The multiple focal zones improve the performance in the focal regions. 

Artifacts exist at thresholds due to the edge problem. The third algorithm provides an 

implementing method to generate accurate results with a low sampling frequency 

requirement for B-mode imaging simulations with multiple focal zones.  

4.2.2 Cyst Phantom scattering 

Simulations for complicated images with a large number of scatterers can be generated 

by B-mode imaging simulation algorithms discussed in the previous section. Since the 

third algorithm has the best performance in the point target scattering simulations, we 

implement this simulation algorithm in the 100,000-scatterer cyst phantom scattering 
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imaging simulation. At a sampling frequency of 40MHz, the third algorithm generates 

RF results which are well matching to the results generated by Field II at 200MHz. The 

third algorithm takes only 7 minutes to finish the 100,000-scatterer imaging simulation, 

which is 9x faster than the Field II simulation. For complicated imaging simulations, the 

third algorithm shows its potential to be a fast and accurate simulation approach.  
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Chapter 5 Conclusions 

In calculations of transient pressure field, the impulse response method generates high 

accuracy results with high sampling frequencies. The Fast Nearfield Method avoids the 

aliasing problem in the impulse response method and therefore reaches the same 

accuracies with lower sampling frequency requirements. The Time-Space 

Decomposition further speeds up the Fast Nearfield Method by dividing temporal and 

spatial terms and combing repeated calculations. To break the restriction of signal type 

in Time-Space Decomposition, Frequency Domain Time-Space Decomposition has 

been developed. Spectral Clipping helps FDTSD to control the trade-off between 

calculation accuracy and computing time. 

For B-mode imaging simulations, the convolutional expression in equation (2.27) 

introduces an approach applying FNM with TSD/FDTSD in B-mode imaging simulations. 

The FNM based imaging simulation approach requires lower sampling frequencies to 

reach the same simulation accuracies. The third algorithm generates accurate imaging 

results with low sampling frequency requirements and high computing speeds. The 

system clock to which the digitized time delays are aligned will affect the simulation 

performance. The implementing algorithms can be applied for imaging simulations with 

single focal zone or with multiple focal zones. The speed advantage of the third 

algorithm stands out when applied to simulations for complicated images.  
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Chapter 6 Future Work 

In the B-mode imaging simulations with multiple focal zones, better windows for 

separating different focal zones can be developed to avoid artifacts at the zones’ edges. 

The implementing routine for the cyst phantom imaging simulation with multiple focal 

zones can be developed with the third algorithm to obtain better simulation results. 

Apodization on sub-apertures can further improve the simulation quality. With the 

development of convolutional waveform expressions and the FDTSD method, the 

limitation of the excitation signal type can be reduced. Good interpolation approaches 

should also be considered to improve the simulation performance when the system 

clock is limiting the simulation quality. 
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