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ABSTRACT

A NUMERICAL METHOD FOR THE SOLUTION OF PLANE

STEADY-STATE THERMOELASTIC

FRACTURE MECHANICS PROBLEMS

By

Nengquan Liu

An efficient numerical technique is developed for plane, homogeneous, isotropic,

steady-state thermoelasticy problems involving arbitrary internal smooth and/or

kinked cracks. The thermal stress intensity factors and relative crack surface dis-

placements due to steady-state temperature distributions are determined and com-

pared to available solutions obtained by other methods. In these analyses, the ther-

mal boundary conditions across the crack surface are assumed to be insulated. The

present approach involves coupling the direct boundary-integral equations to newly-

developed crack integral equations.

This new method has distinct advantages over the Finite Element Methods (FEM)

and Boundary Element Methods (BEM), since the FEM treatment requires fine dis-

cretization in the vicinity of crack tips or the use of special crack-tip elements, and the

BEM treatment requires division of the body into two regions and solution the cou-

pled problems. Both treatments require continual remeshing. for crack propagation

studies.
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Chapter 1

Introduction and Background

During the last three decades powerful methods have been developed for numerical

analysis. The most popular and efficient ones are Finite Element Methods (FEM),

Finite Difference Methods (FDM), Boundary Element Methods (BEM) and coupled

techniques. In recent years, the BEM has received considerable attention for analysis

of many practical problems in science and engineering. The effort has been particularly

intense in the area of stress analysis and thermal analysis of cracks where the FEM

treatment requires fine discretization in the vicinity of crack tips or the use of special

crack-tip elements. Such an approach is cumbersome if one seeks to model crack

propagation since the special element must move with the crack tip and continual re-

meshing is required. However, direct application of the BEM is not without problems.

The most popular approach has been to divide the body into two regions (with the

crack located along the interface of these regions) and then to solve the coupled prob—

lems. This technique suffers the same shortcomings as FEM, i.e. crack propagation

studies would require continual redefinition of the coupled regions and associated re-

meshing.

Many investigators have reported that the temperature field is disturbed and thermal
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stresses are induced if a body having cracks or rigid ribbonlike inclusions is subjected

to heat flow. The thermoelastic problem of an infinite plate with a crack [1,2] or a rigid

ribbonlike inclusion [2,3] has been considered. That of an infinite solid with a penny-

shaped crack [4,5] was also analyzed. In these analyses, the thermal boundary condi-

tions assumed at the flaw are insulation [1,3,4], prescribed surface temperature [1,5],

or prescribed heat flux across the surface [2,5]. Solutions for the corresponding exter-

nal crack problems have also been developed [6-8]. Solutions for the case in which

heat is generated at the crack, giving a temperature field symmetrical with respect to

the crack plane have been given [9]. Solutions were presented for the corresponding

temperature field [10] and the stress field [11] in a large solid containing an imper-

fectly conducting, penny-shaped crack, where the heat flux between the crack surfac-

es is assumed to be proportional to the local temperature difference.

Thermoelastic crack solutions have been developed rapidly because of various techni-

cal applications. Solutions were presented for the thermal fracture problem of a uni-

form heat flow disturbed by an insulated circumferential edge crack in an infinite circu-

lar cylinder of finite radius [12], in an infinite cylindrical cavity [13], and in an infinite

spherical cavity [14-16]. In these analyses, the surface of the crack and the cylinder

or the cavity are assumed to be insulated and the heat flow is perpendicular to the

crack surface. The heat conduction problem is first reduced to that of solving a singu-

lar integral equation of the first kind. Next, by the use of the potential of thermoelastic

displacement, the thermoelastic problems reduced to the isothermal elastic problem of

solving a similar singular integral equation, in which the solution of the integral equa-

tion for the first heat conduction problem appears as a known function.

In recent years there has been great interest in the calculation of thermal stress in the

neighborhood of a crack in the interior of an elastic solid, mainly because of its impor-



3

tance in the theory of brittle fracture. Most of the work has been concerned with

steady thermal stress problems, but a few transient thermal stresses in an elastic

solid having a crack have been considered. Solutions have been obtained for the tran-

sient thermal stress field in a semi-infinite body containing an edge crack [17] and

containing an internal crack [18-20]. Solutions have been given for the transient ther-

mal stress problem involving a circumferentially cracked hollow cylinder [21], in an

edge-cracked plate [22] and in a thin plate with a Griffith crack [23-24]. However, in

[17.21.22], it was assumed that the thermal disturbance in the vicinity of the crack

may be neglected. In [23], it was assumed that the surface temperature at a crack is

prescribed and there was a heat exchange by convection from the flat surfaces. In

[24], the elastic medium was assumed to be cooled by time- and position-dependent

temperature on the external crack surfaces.

Many thermal stress problems for isotropic, transversely isotmpic, orthotropic and

anisotropic bodies containing many kinds of cracks have been treated. Any linear ther-

moelastic problem of an infinite isotr'Opic medium can be resolved into symmetrical

and antisymmetrical problems by the method of dual integral equations [45]. The

steady thermal problems of a transversely isotropic materials with a penny-shaped

crack [25-28] and with an annular crack [29] have been investigated. The transient

thermoelastic crack problem in a transverse isotropic infinite solid with an annular

crack has been developed [30], where the crack was subjected to time- and position-

dependent heat absorption and heat exchange on the crack surface. The antisymmet-

trical thermoelastic stress problems of an orthotropic plate containing a pair of central

cracks [31] and a single central crack [32] were investigated. The symmetrical ther-

mal fracture problem of an orthotropic plate containing a pair of coplanar central cracks

was presented [33]. For anisotropic materials, the thermal and elastic properties

were described for metallic substances [34] and for composite materials [35].
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The early BEM work to solve steady-state thermoelasticity went back to [36-37].

The approach consisted of two steps. In the first step, the boundary element formula-

tion of steady-state heat conduction was employed to determine the surface tempera-

ture and heat flux distribution. In the second step, the resulting temperatures were

applied as body forces in an elastostatic BEM to obtain defamation and stress. Gen-

eral properties of the steady-state temperature field were exploited to transfer the

thermal body force domain integral to surface integrals involving the known boundary

temperatures and heat flux. Thus, the entire two step process required only surface

discretization. A collection of fundamental solutions were presented, in both Laplace

transform and time domains, under the classifications of coupled, uncoupled, transient

and quasistatic thermoelasticity in [38-42] , but there was no numerical implementa-

tion. Tanaka and Tanaka [43] presented a reciprocal theorem and the corresponding

boundary element formulation for the time-domain coupled problem, but kernal func-

tions were not discussed and no numerical results were included. Later, the formula-

tion used by Tanaka et al.[44-46] required the evaluation of a domain integral. Not

only is the calculation of domain integrals undesirable, but also such schemes require

that special care be taken when evaluating the integral close to the singularity. Chau-

douet [47] again resorted to the volume-based approach, while Masinda [48] and

Sharp and Crouch [49] have made efforts for transferring the thermal body force do-

main integral to a surface integral. Masida presented some formulations for three-di-

mensional problems, but stopped short of attempting an implementation. On the other

hand, Sharp and Crouch developed an approach for two-dimensional quasistatic ther-

moelasticity using time-dependent Green’s functions, but domain integrals were used

in the time marching algorithm. Banerjee er al. presented the boundary element formu-

lation in 2D for transient ground water flow [50], steady-state heat conduction [51]

and time-dependent thermoelasticity [52]. Those of transient thermoelasticity were

developed in [53-54]. Among these papers, domain discretization was completely



eliminated in [52-54].

Several attempts have been made to determine thermal stress intensity factors

(TSIFs) [1,43,55-61], Among these developments, Sladek et al. [43] determined

TSIFs for various line cracks by employing BEM. Sumi [57] obtained the TSIFs for

Griffith cracks with steady temperature distribution in finite rectangular plates by us-

ing the modified mapping collocation method. Thereafter, Emmel et al. [58] applied

the FEM to the same model as Sumi’s and compared his numerical solutions with

Sumi’s. Sladek et al. [59] transformed area integral for body force term in BEM to

line integral and calculated the TSIFs for edge cracks. Lee et al. [60] determined the

TSIFs for cusp cracks in infinite bodies by using a complex variable approach. Lee et

al. [61] computed the TSIFs for the same model as Sumi's in finite bodies as well as

cusp cracks in infinite bodies by using BEM with the linearized body force term.

The application of the BEM for solving boundary value problems with body forces,

time dependent effects or certain classes of non-linearities generally lead to integral

equations which contains domain integrals [62]. Although these integrals do not in-

troduce any new unknowns they detract from the elegance of the formulation and af-

fect the efficiency of the method as integrations over the whole volume are required.

Hence, a substantial amount of research has been carried out to find a general and ef-

ficient method of transforming domain integrals into equivalent boundary ones. The

approaches which have so far been proposed can be divided into four groups. The first

approach, the Dual Reciprocity Method, was developed in [63,64] and later extended

to a variety of problems [65,66]. It has been shown that the Dual Reciprocity Method

permits one to solve a wide range of problems and is very accurate [67-69]. The sec-

ond approach was based on the expansion of the source term into a Fourier series to

deal with potential and elasticity problems [70]. It has also been successfully applied
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for solving neutron diffusion problems [71]. The third approach was the use of particu-

lar solutions which can convert domain integrals into boundary integrals. This tech-

nique offers some specific advantages over the previous approaches in some specific

applications [72]. The Multiple Reciprocity Method can be thought of as an extension

of the idea of Dual Reciprocity Method. However, instead of approximating the source

term by a set of coordinate functions, a sequence of functions related to the fundamen-

tal solution is introduced [73,74]. The Multiple Reciprocity Method is essentially dif-

ferent from the Dual Reciprocity Method. While the latter applies the same fundamen-

tal solution throughout the process of transformation of domain integrals into bound-

ary integrals, the Multiple Reciprocity Method uses increasingly higher order

fundamental solutions. The fourth approach, the method of particular integrals, was

presented in [75]. The method was the use of particular integrals which is based on

the well-known concept of developing the solution of an inhomogeneous differential

equation by means of a complementary solution and a particular integral. This com-

pletely general approach does not require any volume or additional surface integration

to solve the general body force problem.

In Chapter 2, the crack integral-equation representation developed in [76] is coupled

to the direct boundary-element method and applied to finite plane bodies containing

internal cracks and edge cracks. The method is developed for in-plane (modes I and

II) loadings only. In Chapter 3, the technique is adapted to mode III problems involv-

ing internal cracks. In Chapter 4, the method is extended for application to steady-

state thermal fields disturbed by internal insulated cracks in finite plane regions. The

numerical treatment is quite straightforward, yet the results are shown to be extreme-

ly accurate.



Chapter 2

Mode I and Mode II Crack Problems

2.1 Internal Cracks

Recent attention has been focused on the development of integral-equation representa-

tions of cracks which can be coupled to the well-known boundary-integral equations

for the treatment of cracks in finite bodies. In [80,81], a crack integral-equation

representation is written in terms of the crack surface tractions. The unknowns in this

representation are the dislocation densities along the crack line. While this formulation

is shown to be quite effective for curved cracks, the equations are shown to be invalid

when the crack contains a kink. In [82-84], a crack integral-equation representation is

written in terms of the resultant forces along the crack line. It is shown that, unlike the

previous formulation, this one can handle kinked cracks. However, the unknowns in

this representation are still the dislocation densities. Since these densities are singular

at the crack tips and weakly-singular at kinks, a rather cumbersome numerical treat-

ment is required.

The crack integral-equation representation presented in [76] contains, as unknowns, the

displacement discontinuities along the crack line. Since these are zero at crack tips and

continuous at kinks, the numerical treatment of these equations need be no more com-

plicated than the treatment of the boundary-integral equations themselves.

In this section, the 'crack integral-equation representation developed in [76] is coupled
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the direct boundary-integral equation method with a novel "displacement-discontinuity"

representation of the internal and edge crack. It is shown that the analysis of such

complex crack geometries is straightforward with this technique and several examples

are reported to demonstrate method accuracy.

2.1.1 Theoretical Development

Consider an infinite isotropic elastic plane in which there is a point, X, at which some

"source" of stress is located and a point, x, at which the stresses are to be computed.

At each of these points, we will be referring to internal "surfaces", as shown in Figure

2.1, described by unit normals It and n, respectively, and we will employ the follow-

ing influence functions:

(uR)iJ-(x, it) = the displacement in the i direction at x due to a unit force applied in

the j direction at if in the infinite plane,

(uc)ij(x, it) = the displacement in the i direction at it due to a unit displacement

discontinuity applied in the j direction at i in the infinite plane,

(1tR)iJ-(x, Y) = the value of rt, at x due to a unit force applied in the j direction at if

_ in the infinite plane,

(1tc)ij(x, it) = the value of xi at x due to a unit displacement discontinuity applied

in the j direction at X in the infinite plane,

where it; are stress functions defined such that the stress components are

a“! E 012 = .. 351 = 3?. , (2.1.1)o =-— c =— ,

11 dxz’ 22 8x1 3x1 3x2



..
..
..
..
..
..
..

..
..
..
..
..
..
..
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The influence functions are given in the Appendix A.

A plane elastic region Q, with external boundary I‘b, containing an internal piece-wise

smooth crack I}, as shown in Figure 2.2, or an internal piece-wise smooth branch

crack or multiple cracks composed of F61 and l"c , as shown in Figures 2.3 and 2.4,

respectively, is loaded by prescribed tractions tj on some part of the external boundary

and prescribed displacements uj on the remainder of the external boundary. Then the

direct boundary-integral equations and the integral equations developed in [76] can be

coupled as follow.

For a single smooth or kinked crack:

Cij(X) u,- (x) = MIR)”- (x. i) tics) dsCrE) - fugue», (x, i) ujcz) (ism

+ Lucia. 2) Aujm use) x on r,

(2.1.2)

“1(3) = firgnRhJ-(x. X) 5-6) ds(x) - Hwy-(x, x) ujco user)

+ [r‘(nc),j(x, a) Aujcr) ds(r‘t') x on 1“c

For a branch crack or multiple cracks:

cijcx) u, (x) = Mumb- (x. r) at!) dsm - fugue,- (x. X) 11,02) asap

2

+ Simeon-(x. r) Anion dsm x on r,
k=l

MK) = Mung-(x. in am dsm - Mange. a ujm dstio



 ui
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Figure 2.2 Plane elastic region containing a crack.
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Figure 2.3 Plane elastic region containing a branch crack.
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Figure 2.4 Plane elastic region containing multiple cracks.
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+ £11.“ (nc)ij(xr i) Aujm (1865) x on rel (2.1.3)

b1

1H(X)=§r51tR)i,-(x.i) 5-0?) asap - Wage, i-o ujco dso-o

+ iii-*(“Chfixi 7‘) Alt-(7:) (18(3) x on I‘02

k=1

In eqs.(2.l.2) and (2.1.3), i=1, 2, j=1, 2, summation on repeated indices is implied, and

Auj = uj‘ - uj+ are the relative crack surface displacements.

2.1.2 Numerical Treatment

2.1.2.1 A single smooth or kinked crack

A simple numerical treatment of eqs.(2.l.2) is presented here in. which the external

boundary is approximated by Mb straight elements and the crack by Mc straight ele-

ments, as shown in Figure 2.5. Eqs.(2.1.2) can then be written as

M.

ciao ujtx) = .331! ml (us),- 6:. a 5-0?) - (no),- (x. r) u,- or) 1 asap

Mb+Me

+ 2 j (11¢)ij (X. 3) A010“) (1853) x on I‘b

m=M.,+1 m

(2. 1.4)

Mb

nix) = z ] mt (1:11),,- (x. x) 5-6) - (new. to u,- (r) 1 dsm
m=1
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Mb+Mc+l

+1 k l merit inm /crac ee

m x m

M_ boundary

element m

ml

2

1
Mb xi

1

Figure 2.5 Discretized plane region containing a discretized crack.
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Mb+Mc

+ 2 I m(7‘5¢)ij (x, 33) ADJ-(30 (18(3) x on I‘c .

“M544

The displacements, tractions and displacement discontinuities on each element can be

linearly approximated by

uja) = Nl(§)uj<m-1>+ N2(§)uj<m> ii on element m of 1‘1,

5'0?) = N1(§)tj(2m—l) + N2(§)tj(2m) i on element m of 1], (2.1.5)

AujCY) = N1(§)Auj(m) + N2(§)Auj(m+1) i on element m of 1"c

where mo“), tic“), tic-m“) are values at the external boundary nodal point m (m=1,

Mb), Aujm‘) are values at the crack nodal point m (m=Mb+2, Mb+Mc), and

N1(§) = (1-§)/2 N2(§) = (1+§)/2 -1 S E S 1 . (2.1.6)

Furthermore

N1(§)X(m-l) + N2(§)x(m) i on element 111 of I],

i = 1 (2.1.7)

L N1(§)x(m) + N2(§)x(m+l) if on element m of Pd or Fez 

[(sé‘“) _ Sém'1))/2] d§ = [Asgnl2] (if, i on element m of 1“,

(13(3) =1 ‘ (2.1.8)

[(sctm+1)_ sém))/2] ‘15:: [ASE/2] d5 X“ on elemeent m of Pd or I‘d 5
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where Ast‘,n is the length of the external boundary element in and Asg“ is the length of

the crack element m.

Inserting eqs.(2.l.5) through (2.1.8) into eqs.(2.l.4), we obtain

Mi,

ciSnmJ-(n) = gimp/4 [j m(1‘§)(uR)iJ-(X‘“’. §)d§ ] 5‘2””

M],

+ EIASE‘M [I m(1+§)(uR)ij(x(n)’ §)d§ ] tj(2m)

Mb

1

- Elms/4 II m(1-§)(uc)ij(x(“), gm
1 ,1..- )

M),

_ 2 Asf,“/4 [j m(1+§)(“°)ij(X‘“). §)d§ ] ufm)

m=1

M.+M,

T 2 Asc’W4 [j m(l-§)(uc)ij(x(“), §)d§ ] Aujlm)

HFM5+2

Mb‘i'Mc-l

+ Z As.‘J‘I4 [j m(1+§)(uc),j(x<n>, 13).): ] Auj(m+l)

DFMb'i'I

(2.1.9)

Mb

“1(a) = ElASlgn/4
[I m(l—§)(uR)ij(x(n)’

§)d§ ] tJ(2m_1)

M.

+ 21451?” [I m(1+§)(uR)ij(x(n)i
§)d§ ] 15am)

M.

- ZlASénM.
[I m(1‘§)(flc)ij(x(“),

§)d§ ] uj(m-1)

M.

' 2 AS?“ [I m(1+§)(“°)ij(X‘“).
§)d§ ] ujlml

m=l

Mb+Me

+ E A8374 [jm(l-§)(1tc)ij(x(“), gag ] Aqum)

m=M5+2



1

h

H

{IF

r
r
1
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Mgr-M-1

+ 2 Asa/4 [I m<l+§xnc),-(x<n> ed: 1 Au<m+1>

“FMlfi'l

where 111‘“) = u-(x‘n’), x‘") being the location of the external boundary nodal point 11,

(n=1,...,Mb) and rtf"): rt(x(“)), it“) being the location Of the crack element mid-point

n, (n= Mb+1’ ... Mb+Mc)'

Eqs.(2.l.9) can be written in the following matrix form:

mini-dds)

m1 l-dwlmll-l }

where [UC] is 2M, x 2Mb , [Q] is 2M,, x 2(Mc-1) , [UR] is 2Mb 'x 4Mb , [PC] is 2Mc

x 2Mb , [X] is 2Mc x 2(Mc—1) and [PR] is 2Mc x 4Mb.

(2.1.10)

Thus

-[Q]

[DJ[PC] {Film

[0]

[leiPR] [I]u u

where, as in [76], we have defined a nodal force matrix on the crack by
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Hap}

where

'-II 00000“

o-rroooo

.6 i) bird—'11.  

I represents a 2x2 identity matrix, and [F2] is 2(Mc—l) x 2Mc.

2.1.2.2 A branch crack or multiple cracks

A simple numerical treatment of eqs.(2.l.3) is presented here in which the external

boundary is approximated by M, straight elements and the branch crack or multiple

cracks by Mel, Mcz straight elements, as shown in Figures 2.6 and 2.7, respectively.

Eqs.(2.l.3) can then be written as

M.

c.,-<x> ..,-(x) = 51] ml (um,- (x. i) so?) - (ac), (x. s) u,- (x) 1 asap

M.+M..

+ 2 [mung-(x, a) Aujm dsGr’)
“PM5+1

M5+Md+Ma+l

+ 2 j (“Chj (X. 75) Aujfi') dsm x on I},

m=M,+M,,+2 m

M.

nix) = 2],] (with, (x. i) tics) — (1m),- (x. a u,- (i) 1 dstr)
m=l
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Mb+Mc1

crack element m

m+1 /

 

 

Mb  

 

xr

 5

Figure 2.6 Discretized plane region containing a discretized branch crack.
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Mb+Mcl+1   

    

/

crack element m m

 

boundary

element m

<—

 
m-l

Mb+Mcl+Mc2+2

 

Mb

x1 A

r

Figure 2.7 Discretized plane region containing discretized multiple cracks.



MbTMeI

+ 2 I moose. X) Aujm dsm (2.1.14)

m=Mb+1

M5+Md+Md+l

+ 2 [mums-e. 2) Aujoz) as?) x on re,

me'i'Md'i'z .

M.
.

nor) = 21] ml (1:11),,- (x. a) 5-60 - (Itch,- (x. r) u,- (a) 1 use)

MbTMeI

+ 2 I macaw. s) Aujm dsa)
me'i'1

Mb‘i'Md'i‘Ma‘t'l

+ 2 [ m(1tc)ij(x, it) Aujor) ds(iz) x on I‘c2 .

mMfi’Md'i'z

The displacements, tractions and displacement discontinuities on each element can be

linearly approximated by

ujGt') = N1(§)uj(m‘1) + N2(§)uj(m) i on element m of I},

tj(i') q= N1(§)tj(2m‘1) + N2(§)tj(2m) if on element m of 1], (2.1.15)

AujGt') = N1(§)Auj(m) + N2(§)Auj(m+1) i on element m of For or cm

where ufm), Bum), gum“) are values at the external boundary nodal point m (m=l,

Mg) and Aufm) are values at the crack nodal point m. For multiple cracks, m=Mb+2,

Mb+Mfl , Mb+Mc1+3, Mb+Mc1+Mc2+L For a branch crack, m=Mg+2, Mb+Me1 ,

Mb+Mcl+2, Mb+Me1+Me2+1-
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Furthermore

N1(§)x(m-1) + N2(§)x(m) i on element m of I],

3" =
(2.1.16)

Nl(§)x(m) + N2(§)X(m+l)

x on element 111 of Tel or Fez

[(891)- sfim‘1))/2] (1?; = [Asgun/2] d5 i on element in of I“,

dim =
(2.1.17)

[(Scuml) ‘ 595/2] 95 = [Asia/2] d: i on element in of Pol or 1‘62

where Ast‘,n is the length of the external boundary element 111 and As;In is the length of

the crack element m.

Inserting eqs.(2.l.15) through (2.1.17) into eqs.(2.l.l4), we obtain

M.

Ciin’la‘” = EASE/4 [I m(1-§)(uR)ij(x(n), §)d§ ] tj(an-1)

Mg ~

+ 2 ASE/4 [I m(l+§)(UR)ij(X(n),
an: ] Liam)

m=1

M5

— z Mfr/4 [I m(1-§)(UC)ij(X(n),
an: ] uj(m-1)

m=l

M.

_ §1M§l4 [j m(1+§)(uc)ij(x(n)’ 9d: ] uj(“‘)

My?Met

+ ASE/4 [I (l—é)(uc)ij(x(n)’ §)d§ ] Auj(m)

m=Mg+2 m

Mb+M¢1-l

+ 2 ASE/4 [I m(1+§)(UC)ij(X(n),
§)d§ ] Auj(m+l)

HFMVI'I
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Mg+Md+Md+1

m=Mg+Md+2

Mb+Mer+Me2

+ Z ASE/4 [j m(l+§)(uc)ij(x(n), mg 1 Auj(m+1)

m=M5+Md+2

M.

18“” = Elisa/4 i] m<1—§)(sa),j(x<n>, gag ] tj(an-u

m=l

M.

+ 2 4813“” [j m(l+§)(rtR)iJ-(x(“), mg 1 Sam)

m=l

M.

" 2‘. AS8V4 [I m(1—.§)(rce),j(x<“’. 0dr: 1 uJKm-l)

m=1

Ma

.. “EIASgnM' [Im(1+§)(1§c)ij(x(n)’
§)d§ ] uj(m)

Mb+Mcl

+ Z. Asia/4 [j m(1—§)(rtc)ij(x(“), 5X15 ] Ami“)

m=Mg+2

M5+M¢1-l

+ 2 Asg“/4 [[ (1+§)(se),j(x<n>, §)d§ ] Adj-(ml) . (2.1.18)

m=Mg+1 m

Ms+Ma+Ma+1

+ 2 Ass/4 [I m<1—§>(nc).,~<x‘">. ed: ) Auj<m>

m=M5+M¢1+2

Ma+Md+Ma

+ 2 ASE/4 [I m(1+§)(m)ij(x(
n)s §)d§ ] Aufm“)

m=Mb+Md+2

Mr.

Kim) = 2 Asian/4 [I m(l-§)(rr:R)iJ-(x("), §)d§ ] tj(2m-l)

m=l

Ma

+ 2 483/4 [I m(1+§)(1tR)ij(x(“), gag ] ,jtzm)

m=l

Ma

- uE1A8113n/4 [I m(l-§)(m)ij(x(n).
§)d§ ] uj(m_l)
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M.
- “EIAsg‘M [] m(1+§)(rtc)ij(x(n)’ €115] slim)

+ inAsm/4 [j m(1—§)(rtc)ij(x(“), §)d§ 1 Au(m)

m=Mg+2

M.+M,1-l

+ 2 Asa/4 1] m11+§><uc).,(x<"> ed: 1 Au<m+1>
m=Mg+I

Mg+Md+Md+l

+ 2 ASE/4 [j (1—§)(nc)ij(x<">, §)d§ 1 Allj(m)

m=Mg+Mg1+2 m

Mb+Mc1+M92

+ )3 Asm/4 [j m(1+§)(ice),j(x<n>, §)d§ 1 Adm“)

m=Mb+Md+2

where uf") = uj(x(“)), x‘“) being the location of the external boundary nodal point n,

(n=1, Mg), and 1:5”) = rti(x(“)), rd“) being the location of the crack element mid-

point n. For multiple and branch cracks, n= Mb+1, Mb+Mcl, Mb+Mc1+2,

Mb+Mc1+M¢2+L In addition, for a branch crack, we add a nodal point n= Mb+M¢1+2 .

Eqs.(2.l.18) can be written in the following matrix form:

11111I11111

111111111111111

111-111111111111
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For multiple cracks, the matrices in eqs.(2.l.19) have the following dimensions:

[UC] is 2Mb x 21111,, , [Q] is 2Mb x 2(Mc1-1) . [Q] is 2Mb x 2(Mc2-1) , [UR] is 2Mb

x 4MID , [PC] is 2Mc1 x 2Mb , [x1 is 2Mcl x 2(Mc1-1) , [x12] is 2Mcl x 2(Mc2-1) ,

[PR] is 2Mcl x 4Mb , [PC1] is 2Mc2 x 2Mb , [x21] is 2Mc2 x 2(Mcl—l) , [x2] is 2Mc2

x 2(Mc2—1) , [PR1] is 2Mc2 x 4Mb , and

    

r a

r (Mb+l)

(Maia) 1 11'.
Au<Ms+3) “(M11121

All “(Mb+3)

Au1 =1 ‘ ’ 11:1 =1 . i

J 116W“) 1 “(MM/Ia)

t J

’ 1 ’ “(1111412) ‘

Aum"+M°‘+3) “(11111111131 1

{Au2}=1 : » {2:}1 - =

' 2111““wa1’ “(Msi'Msi'i’Mcz'i’D
5 J b. J

    

For a branch crack, the matrices in eqs.(2.l.19) have the following dimensions:

[UC] is 2Mb x 2Mb , [Q] is 2Mb x 2(Mc1—1) . [Q] is 2Mb x 2Mc2 , [UR] is 2Mb x

4Mb , [PC] is 2Mcl x 2Mb , [X] is 2Mc1 x 2(Mcl—1) , [x12] is 2M¢l x 2Mc2 , [PR] is

2Mc1 x 4Mb , [PC1] is 2(M02+1) x 2Mb , [x21] is 2(Mc2+1) x 2(Mc1—l) , [x2] is

2(Mc2+1) x 2Mc2 , [PR1] is 2(Mc2-1-1) x 4Mb , and
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P (M 2) ‘ JJ(111.11)

Al! 1+ <M.+2)
1C

AJJ(M1.+3) “(Mb+3)

Aul =1 * n1 =1 . F

{ } Au(M”+M“‘+l) { “(Mb+Mu+l)

Au(Mb+Md) L “(Mb+Mcl)

J J

J

“(Mu-Man)

Aum"+M“+2) n(M.,+Md+2)

ADM”+M“+3) “(M5+Md+3)

All2 =1 ' ’ {1:2 } =l . *

. Au(M"+M“+M“+” 1 “(14114111141111

L J

Thus

- r a r q

[UC] -[Q] -[Q1] u [UR] [0] [0] t

[lelPC] —[I‘2][X] —[I‘2][X12] 1Au1> = [I‘zllPR] [I] [01 1F‘ *

JIF21][PC1] -[I‘21][X21] -[I‘21][X7) Au2 _ [1‘21][PR1] [0] [I] _ F2

‘LJ
        

(2. 1.20)

where, as in [76], we have defined nodal force mauices on the crack by

11111



28

(2.1.21)

where

"-1 I o o o o 0'

o -I I o o o 0

[rz]=[r2J]= 9 9 f1 1 f) 9 9 (2.1.22)

.11 ('1 (1 116-1 i1  

and I represents a 2x2 identity matrix. For multiple cracks, [F7] is 2M1—1)x2M¢1 and

[F21] is 2(Mc2_1)XZM02' For a branch crack, [F2] is 2Mc1X2(Mc1+l) and [F21] is

2Mc2x2(Mc2+1).

For multiple cracks, the matrices in eqs.(2.l.21) have the following dimensions:

1' F‘Mb+2) W P

FNb+Ms1+3)
F‘Ms-i-3)

{11-1 . 1 {.211 . ..
F(Mb+Mcl) F(MU+MCI+MCZ+1)

L J
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For a branch crack, the matrices in eqs.(2.l.21) have the following dimensions:

F(M.+2)

F<Mh+3) F(Mb+Md+2)

F<M1+Ma+3>

M11111 : 1
F(Mb+Mel+Me2+1) J

L  
FMb+Mcl)

5 J  

For a branch crack, we need to employ continuity conditions and equilibrium condi-

tions, i.e.

Auj(M"+M""+1) = AuJ‘M~*Md+2’ (2.1.23)

ij‘i-Mu-l'l) = Fj(NRHVIJJJJH) + 1..Jj(MJJ+McJ+2) , J (2124)

It is well-known that one can obtain the diagonal 2x2 blocks of [UC] in eqs.(2.l.ll) or

(2.1.20) from rigid-body considerations. If we apply a rigid-body displacement, i.e.

uf1)= ufz) = uf3) = ....... = ulm") = 111

(2.1.25)

11»: up: up) = ....... = 119‘»): u,

then the body is stress-free. Thus



and eqs.(2.l.11) or (2.1.20) reduce to

111 1

n2

n1

[UCF 11.2 *={o}

u1

u2  

so that

M
UCai-rxzi-r) = _iUdZi-IXZj—l)

F!
jun

M. . .
UCm-rxzi) - _ZUCm—lxzi)

F!
In

M

UCaixzi-u ___ _iuctzixzi—I)

i=1#J

UCtzixzi) = _gucwfii) J

F!
per

(2. 1.26)

(2.1.27)
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Once eqs.(2.l.11) or (2.1.20) have been constructed, we must impose four conditions

at each nodal point m on I}, involving the boundary values

ufm)’ t1(2m)’ ham-+1),

uém)’ 62m), t52m+1 ),

and rearrange eqs.(2.l.11) or (2.1.20) accordingly to obtain

1.1.1.1.} .

where {Z} contains the unknown boundary displacements and tractions on I], and the

unknown matrix {Au}.

Once we have obtained Au; at each crack nodal point, the displaCement discontinuities

normal and tangential to the crack surfaces at that point are

Aun = Aulnl + Auznz

(2.1.29)

Au, = Auznl — Aulnz

and the nondimensional stress intensity factors can be determined from

KI I=0 = V8LEG(1+V)Alln(8)/O'J1—ta
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Kn'w = V%G(1+V)Aut(e)/U\lfi

(2.1.30)

K11=1 = -8%G(1+V)Aun(l—e)/o\/E

rial,=1 = —G(1+v)Au,(1-e)/ofifa

where e —> 0, G, v are the shear modulus and Possion’s ratio, respectively, 1 is the

length of the crack, 0 is a reference load, and a is a reference length.

It should be noted that, for a problem involving a traction free crack, {F]={0] and

eqs.(2.l.11) or (2.1.20) reduce to

131”“
-[Q]

[1‘2J1PC] -11‘21m [rim]

    

]t{} (2.1.31)

    

01'

[UC] -[Q] -[Qfl . u ' [UR] l

[1"2][PC] —[I‘7J[X] -[1‘2][x17]1Au1>= [13mm] {I} (2.1.32)

[irzliipcli 15111le1 -1r2111x21. [Auz 31311111211 _  

respectively.
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2.1.3 Results

Here we employ the coupled model to find numerical solutions for some finite domain

problems.

1. Straight crack.

In all straight crack problems, the crack is modeled by 12 elements and the exter-

nal boundary is modeled by 40 elements. The crack discretization is shown in

Figure 2.8. The stress intensity factors, normalized with respect to (Nu—a, as

shown in eqs.(2.l.30), are calculated and are compared to those obtained in [84].

a) Straight central crack in a rectangular plate subjected to uniform uniaxial

tensile stress.

A rectangular plate of height 2h and width 2b contains a central straight

crack of length 2a. A uniform uniaxial stress, a, perpendicular to the crack

direction, acts over the ends of the plate as shown in Figure 2.9. In Table

2.1, the stress intensity factors are given for various ratios of Nb and M.

b) Straight central slant crack in a rectangular plate subjected to uniform uniax-

ial tensile stress.

A rectangular plate of height 2.5b and width 2b, containing a crack of length

2a, is subjected to a uniform uniaxial stress 6 at the ends. The crack is

located centrally at an angle 7 to the direction of o as shown in Figure 2.10.

In Tables 2.2 through 2.4, the stress intensity factors are given for various
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Figure 2.8 Discretization for a straight crack.
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Figure 2.9 Geometry and loading for a straight central crack in a finite plate.
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Table 2.1 Stress intensity factors for a straight central crack in a finite plate.

 

 

 

 

 

 

 

 

KI (h/b=1.0) K1 (h/b=0.4)

a/b

Present Ref. [84] Present Ref. [84]

.2 1.07 1.07 1.25 1.25

.3 1.12 1.12 1.51 1.52

.4 1.21 1.21 1.83 1.84

.5 1.31 1.32 2.24 2.24

.6 1.47 1.47 2.80 2.80

.7 1.67 1.67 3.66 3.66       



.7sz

‘11 11““

Y

f XI

2.5 b t

2 a

"11111..

1 2: 1

 

 
 

     ‘

 

Figure 2.10 Geometry and loading for a straight central slant crack in a finite plate.



Table 2.2 Stress intensity factors for a straight central slant crack in a finite plate, y=22.5°.

Table 2.3 Stress intensity factors for a straight central slant crack in a finite plate,

1:45.08

38

 

 

 

 

 

 

  
    

KI KII

a/b Present Ref. [84] Present Ref. [84]

==J

.l .148 .148 .356 .358

.2 .154 .160 .367 .366

.3 .164 .164 .386 .367

.4 .180 .180 .413 .390

5 H .187 .188 .425 .404

.6 II .200 .200 .439 .416 
 

 

 

 

 

 

 

  
    

KI K11

a/b Present Ref. [84] Present Ref. [84]

.1 .500 .500 F .500 .500

.2 .513 .513 .506 .502

.3 .534 .538 .518 .510

.4 .550 .550 .522 .522

.5 .610 .618 .535 .538

.6 .616 .606 j .551 .551 
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Table 2.4 Stress intensity factors for a straight central slant crack in a finite plate,

1:67.52

 

 

 

 

 

 

 

 

K1 K11

a/b Present Ref. [84] Present Ref. [84]

.1 0.861 0.868 .355 .351

.2 0.868 0.870 .354 .351

.3 0.900 0.900 .359 .356

.4 0.959 0.958 .374 .374

.5 1.002 1.003 .377 .369

.6 1.085 1.118 .388 .380      
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ratios a/b and various angles 7.

Kinked crack.

In the kinked crack problems, both stress intensity factors and relative crack sur-

face displacements are reported The material properties selected G, v, are given

in the following descriptions.

a)

b)

C)

Symmetric V-shaped crack in a square plate.

This example involves a symmetric V-shaped crack in a square plate sub-

jected to pure shear stress as shown in Figure 2.11. Each straight crack seg-

ment is modeled by 22 elements of equal length and the external boundary

is modeled by 72 elements. In Figures 2.12 and 2.13, the relative crack sur-

face displacements are plotted for Glo=78.85, v=0.3.

Non-symmetric V-shaped crack in a square plate.

This example involves a non-symmetric V-shaped crack in a square plate

subjected to uniform uniaxial tensile stress as shown in Figure 2.14. Each

straight crack segment is modeled by 12 elements of equal length and the

external boundary is modeled by 72 elements. In Figures 2.15 and 2.16, the

relative crack surface displacements are plotted for G/0'=76.92, v=0.3.

Z-shaped crack in a rectangular plate.

The first example involves a Z-shaped crack in rectangular plate subjected to
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Figure 2.11 Geometry and loading for a symmetric V-shaped crack

in a finite plate.
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Figure 2.14 Geometry and loading for a non-symmetric

V-shaped crack in a finite plate.
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a uniform uniaxial tensile stress at one end and a sliding support on the

opposite end as shown in Figure 2.17 and the second example involves

uniaxial tensile stress as shown in Figure 2.18. The middle straight crack

segment is modeled by 20 elements of equal length and each of the two

other segments are modeled by 5 elements, as shown in Figure 2.19. The

external boundary is modeled by 90 elements. In Figures 2.20 and 2.21, the

relative crack surface displacements for the first example are plotted. In

Tables 2.5 and 2.6, the stress intensity factors for the two examples are

reported and compared to those obtained in [81,85] for Gla=78.85, v=0.3.

Multiple cracks.

In the multiple crack problems, both stress intensity factors and relative crack

surface displacements are reported. The material properties, G, v, are given in the

following descriptions.

a) Two equal length collinear cracks in a square plate subjected to uniform

uniaxial tensile stress.

A square plate contains two equal length collinear cracks of length 2a. A

uniform uniaxial stress, 0, acts at the ends as shown in Figure 2.22. Each

straight crack segment is modeled by 9 equal elements and the external

boundary is modeled by 40 elements. In Table 2.7, the stress intensity fac-

tors are given for various ratios 28b and compared to those obtained in

[86-88]. (GIG = 4., v = 0.25)
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Figure 2.17 Geometry and loading for a Z-shaped crack in a finite plate, case 1.
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Figure 2.18 Geometry and loading for a Z-shaped crack in a finite plate, case 2.
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Figure 2.19 Discretization for a Z-shaped crack.
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Table 2.5 Stress intensity factors for the Z-shaped crack of Figure 17 in a finite plate.

 

 

Present 4.516 .321 4.410 .363

 

Ref. [81] 4.502 .325 4.397 .405

 

Ref. [85] 4.555 .335        

Table 2.6 Stress intensity factors for the Z-shaped crack of Figure 18 in a finite plate.

 

=;

Present 4.592 .382

 

 

    
Ref. [81] 4.600 .410

 



54

 

  
 

2b —

1-—2a—-1 - ,._2._.,

 
   ., 1 1 1 1 1 1 1

F 2b 1  

Figure 2.22 Geometry and loading for two equal-length collinear cracks

in a finite plate.



Table 2.7 Stress intensity factors for two equal-length collinear cracks in a finite

 

 

 

 

 

 

 

 

 

 

 

plate.

Present Ref. [86] Ref. [87] Ref. [88]

2a/b .

KIA Km KIA Km KIA Km KIA Km

.1 1.0049 1.0049 1.0054 1.0053 1.0051 1.0044 1.006 1.005

.2 1.0219 1.0200 1.0223 1.0215 1.0223 1.0188 1.023 1.021

.3 1.0540 1.0480 1.0524 1.0497 1.0548 1.0458 1.056 1.048

.4 1.0999 1.0900 1.0989 1.0919 1.1066 1.0885 1.106 1.088

.5 1.1780 1.1500 1.1679 1.1521 1.1825 1.1508 1.181 1.142

.6 1.2800 1.2339 1.2699 1.2368 1.2871 1.2361 1.290 1.220

.7 1.4270 1.3500 1.4269 1.3603 1.4274 1.3488 1.450 1.340

.8 1.6779 1.5600 1.6926 1.5663 1.6244 1.5052 1.680 1.560

.9 2.2694 2.1 102 2.2777 2.1 195         
 

 



b)
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Two equal length offset cracks in a rectangular plate subjected to uniform

uniaxial tensile stress.

A rectangular plate of height 15. inches and width 4.5 inches, containing

two equal offset cracks of lenght 0.8 inches, is subjected to a uniform uniax-

ial stress a at the ends as shown in Figure 2.23. Each straight crack segment

is modeled by 9 equal elements and the external boundary is modeled by 24

elements. In tables 2.8 through 2.11, the stress intensity factors are given for

various angles at and compared to those obtained in [89]. (Old = 1.257, v =

0.38)

A straight crack and a kinked crack in a rectangular plate subjected to uni-

form uniaxial tensile stress.

A rectangular plate of height 15. inches and width 4.5 inches, containing

two cracks, is subjected to a uniform uniaxial stress a at the ends as shown

in Figure 2.24. Each straight crack segment is modeled by 5 equal elements

and the external boundary is modeled by 24 elements. In Table 2.12, the

stress intensity factors are given for various distances h. (G/o = 1.257, v =

0.38)

Branch crack.

In all branch crack problems, each straight crack segment is modeled by 6 ele-

ments and the external boundary is modeled by 40 elements. The stress intensity

factors, normalized with respect to min—a, as shown in eq.(2.1.30), are calculated

and are compared to those obtained in [90]. (G/o = 4., v = 0.25)



Fig,



 

 
 

 

 
_1_

111111111.

1 1
Figure 2.23 Geometry and loading for two equal-length offset cracks

in a finite plate.
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Table 2.8 Stress intensity factors for two equal length offset cracks in a finite plate,

 

 

 

 

 

 

 

 

        

tip A.

Present ll Ref. [89]

LLKI Kn kaxmmm Kfixperimenlal Klnumerical Kfilumerical

0 1.30 0.03 1.22 0.04 1.35 0.02

15 1.20 0.21 1.18 0.31 1.31 0.15

30 0.97 0.50 0.94 0.49 0.95 0.52

45 0.70 0.60 0.64 0.59 0.79 0.65

60 0.42 0.60 0.36 0.56 0.43 0.68

75 0.13 0.51 0.14 0.45 0.11 0.54

90 0.09 0.25 0.09 0.28

 

Table 2.9 Stress intensity factors for two equal length offset cracks in a finite plate,

 

 

 
 

 

 

 

 

 

        

tip B.

Present Ref. [89]

a0 KI Kn Klexperimental Kfixperimental Klnumerical Klrllumerical

l=='l

0 1.40 0.20] 1.47 0.16 1.39 0.22

15 1.18 0.25 ll 1.19 0.17 1.18 0.30

30 1.02 0.50 H 1.10 0.44 0.95 0.52

45 0.65 0.60 0.70 0.58 0.64 0.61

60 0.36 0.60 0.38 0.68 0.34 0.56

75 0.10 0.40 0.10 0.58 0.1 1 0.39

90 0.01 0.20 0.06 0.33 0.00 0.13
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Table 2.10 Stress intensity factors for two equal length offset cracks in a finite plate,

 

 

 
 

 
 

 

 

 

 

  
 

tip C.

1

Present Ref. [89]

“0 K1 K1] Klexperimental Kfixpen'mental KInurnerical KIrlmmerical

0 1.40 0.20 n 1.42 0.21 1.39 0.22

15 1.27 0.21 1.30 0.20 1.27 0.22

30 1.25 0.19 1.27 0.19 1.22 0.19

45 1.16 0.14 1.14 0.14 1.18 0.14

60 1.14 0.10 1.14 0.08 1.14 0.10

75 1.10 0.05 1.08 0.05 1.11 0.05

90 1.06 0.03 H 1.05 0.08 1.08 0.02        
 

Table 2.11 Stress intensity factors for two equal length offset cracks in a finite plate,

 

 

 

 

 

 
 

 
 

 

 

tip D.

Present ll Ref. [89]

a0 KI K11 l] Klexperimental KIeprerimental Klnumerical Klrlrumerical

TI 1.30 0.03 1.28 0.00 1.35 0.02

15 1.27 0.01 1.28 0.00 1.25 0.00

30 1.20 0.01 1.18 0.01 1.21 0.01

“$.16 0.01 1.16 0.04 1.18 0.01

60 n 1.14 0.01 1.15 0.06 1.14 0.00

75 1.10 0.00 1.06 0.02 1.12 0.01

90 1.00 0.00 1.10 0.02 1.09 0.01        
 



 

  
15. x

_
-

V

 

 
   11111111.

1e 1
Figure 2.24 Geometry and loading for a straight crack and a kinked crack

in a finite plate.

E
a
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Table 2.12 Stress intensity factors for a straight crack and a kinked crack in a finite

 

 

 

 

 

 

 

 

 

plate.

11 KIA KIIA Km Km; ch, Knc KID K111)

0.02 1.1099 0.9021 2.0836 0.01 14 0.8068 2.2328 0.0536 0.1832

0.04 1.1 176 0.9140 2.081 1 0.0148 0.7997 2.0923 0.0614 0.1764

0.06 1.1250 0.9241 2.0784 0.0169 0.7948 1.973 1 0.0681 0. 1704

0.08 1.1321 0.9330 2.0756 0.0183 0.7901 1.8756 0.0736 0.1652

0.10 1.1386 0.9407 2.0727 0.0191 0.7852 1.7973 0.0779 0.1607

0.12 1.1447 0.9475 2.0696 0.0196 0.7800 1.7351 0.081 1 0.1568

0.14 1.1504 0.9534 2.0664 0.0198 0.7745 1.6862 0.0834 0.1535

0.16 1.1556 0.9586 2.0630 0.0197 0.7689 1.6486 0.0849 0.1508           



a)

b)
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A central symmetrically-branched crack in a square plate subjected to uni—

form uniaxial tensile stress.

A square plate, i.e. h=w, contains a branch crack. A uniform uniaxial stress,

6, acts at the ends as shown in Figure 2.25. In table 2.13, the stress intensity

factors are given for various angles at. In Figures 2.26 and 2.27, the relatve

crack surface displacements are plotted. In Table 2.14, the stress intensity

factors are given for various ratios Za/w.

A central symmetrically-branched crack in a rectangular plate subjected to

uniform uniaxial tensile stress.

A rectangular plate contains a branch crack and is subjected to uniform

uniaxial tensile tensile stress a at the ends as shown in Figure 2.25. In Table

2.15, the stress intensity factors are given for various ratios h/w.
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  2h xl

 

 
   1,11 11111.

1 2w 1
Figure 2.25 Geometry and loading for a branch crack in a finite plate.

I
:
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Table 2.13 Stress intensity factors for a branch crack in a finite plate, h/w=1.0,

2a/w=0.5.

 

Present Ref. [90]

 

(1° KIA KIB KIIB KIA ‘ KIB KIIB

 

10 0.87 0.61 0.12 0.87 0.62 O. 12

 

20 0.92 0.58 0.24 0.92 0.58 0.24

 

30 0.90 0.49 0.35 0.91 0.50 0.35

 

45 0.87 0.33 0.50 0.87 0.33 0.50

 

60 0.82 0.12 0.52 0.81 0.12 0.52

 

70 0.77 -.08 0.50 0.77 -.08 0.50         
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Table 2.14 Stress intensity factors for a branch crack in a finite plate, at=45°, h/w=1.0.

 

 

Table 2.15 Stress intensity factors for a branch crack in a finite plate, or=45°,

2a/w=0.5 .

 

 

 

 

 

 

Present Ref. [90]

2a/w KIA Km K1113 KIA Km K1113

.10 0.69 0.31 0.32 0.69 0.31 0.32

.25 0.73 0.32 0.34 0.74 0.31 0.34

.40 0.81 0.32 0.41 0.81 0.32 0.41

.50 0.87 0.33 0.50 0.87 0.33 0.50

.60 0.93 0.35 0.60 0.93 0.35 0.60       

 

 

 

 

 

 

 

       

Present Ref. [90]

NW KIA Km Km; KIA Km Km,

0.8 0.99 0.38 0.55 1.00 0.38 0.55

1.0 0.87 0.33 0.50 0.87 0.33 0.50

1.2 0.80 0.31 0.43 0.80 0.31 0.43

1.6 0.74 0.30 0.40 0.74 0.30 0.40

2.0 0.71 0.30 0.38 0.71 0.30 0.38

2.4 0.70 0.30 0.37 0.70 0.30 0.37   

 



2.2 Edge Cracks

2.2.1 Theoretical Development

A plane elastic region Q, with external boundary I" = I‘m + I‘m, containing a piece-

wise smooth edge crack I“, , as shown in Figure 2.28 or a piece-wise smooth edge

branch crack, Pd and FC , as shown in Figure 2.29, is loaded by prescribed tractions ti

on some part of the external boundary and prescribed displacements uj on the

remainder of the external boundary. Then the direct boundary-integral equations and

the integral equations developed in [76] can be coupled as follows.

For a single edge crack:

ctjtx) u,-(x) = [er (1112).? (x. a) gal — (11056.5?) ujtsil dstio

+ jr‘(uc)i§‘(x, r) Aujm dsm x on l“b1

‘ (2.2.1)

nttx) = jrul (ER),§-‘(x. n gm — (mlgtx. so am] dsm

+ [r (mug-‘01,?) AuJ-(r) dstrt) x on Fe

For an edge branch crack:

one) ujtx) = [ml (uR)t’,-‘(X. :1 gm - (u0)i',-‘(X. it) 11,6) laser)

2

+ Elr. (not? (x. x) Alt-(n dstn x on rbl

k=1
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Figure 2.28 Half-hlane elastic region containing a single edge crack.
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Figure 2.29 Half-plane elastic region containing an edge branch crack.
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nt(x) = jrul (KR),§-‘(x. it) 5m — (reign. r) ujm ]ds(x)

2

+ Z], (Eds-‘0‘. 70 Aujm (18(7) X on 1‘cl (23-2)

lt=1 “

MK) =M (nk)i1j‘(x,i) tjm — (nc)g(x, it) ujm ]ds®

+ éjr (nch'flx. 8) 1311,05) (18(8) x on cm

lt=1 ‘*

In eqs.(2.2.1) and (2.2.2), i=1, 2, j=1, 2, summation on repeated indices is implied,

Auj = uj‘ - uj” are the relative crack surface displacements, and in are stress functions

defined such that the stress components

o,,=—, 022=-—, 012=-—=— . (2.2.3)

It was shown in [91,92] that the half-plane fundamental solutions ()h can by

represented by adding a complementary part ( )c to the well-known two-dimensional

Kelvin solutions ( ) as follows:

(uth-‘(m = (um-(xx) + (amigos)

(UC)§(X50 = (non-(xx) + (u0)§(x.i‘)

(2.2.4)

(nRh’J-‘(xm = (urns-(m + (uklgtxm

(reigns) = (nan-(xx) + (whim)
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The Kelvin fundamental solutions and the corresponding complementary expressions

are given in the Appendix A and Appendix B, respectively.

2.2.2 Numerical Treatment

2.2.2.1 A single edge crack

A simple numerical treatment of eqs.(2.2.1) is presented here in which the external

boundary is approximated by M, straight elements and the crack by Mc straight ele-

ments, as shown in Figure 2.30. Eqs.(2.2.1) can then be written as

Mb

can) u,-(x) = £2] m[(uR)i‘,-‘ (x. 2) 5m — (not? (x. x) u,- 6)] dscx)

Mb'f'Mc

+ )3 j m<uc),*;(x,rt) AuJ-(ir‘) dso-t) x on 1“bl

“FMb'f'1

(2.2.5)

Mb

“30!) = ZImKKRh? (X, i) 15(7) — (no);1 (X, i) “j (-x-)] (18(3)

m=2

Mt+M.

+ 2 l meat-«x. s) Alt-(rt) M) x on r, .

m=M5+1

Following the same procedures as in previous section, eqs.(2.2.5) become

Mt,

ct§“’u,-‘“’ = 22mm 1] m(1-§)(uR)t’,-‘(X‘“’. ed: 1 tam-1)
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Figure 2.30 Discretized half-plane region containing

a discretized single edge crack.
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M.

+ 22’3“?” U m(1+§)(uR),§-‘(x(">,
Dd: ] tiara)

Mb

" 2 Asg‘m [j m(1-§)(uc)i’j‘(x(“), gag
] ultra—1)

m=2

Mb

,

‘ “E35874 [j m(l-l-§)(uc)i§‘(x(“), §)d§ ] uj(m)

M5+M¢

+ 2 11.3114 1] (1-§)(UC)1',~‘(X‘“’.§)d§]AuJ-(m)
HFMVP]. m

Mb'f'Mc-l

+ 2‘. Ass/4 [j m(1+§)(uc)i1j‘(x(“), mg ] Auj(m+1)

IIFMfl'l

(2.2.6)

M.

1‘5“) = 2 Asg“/4 [j m(1-§)(1tR)i§-‘(x(“), gag
] thm-l)

m=2

M.

+ Z 481174 [j m(1+E,)(ttlz),g‘(rt<n>, {gag ] £1121“)

rn=2

Mb

- “>321:er [j m(1-§)(1tc)i',’(x(“), §)d§ 1 ujtm-n

M.
_. z Asp/4 [j m(l+§)(1;c)iljl(x(n), §)d§ ] ujtn.)

m=2

Mt+M.

+ )3 Ase/4 [jm(l-§)(1cc)i§‘(x‘“’. eat ] Auj(m)
m=Mb+l

M.+M,-1

+ 2 433/4 1] m(l+§)(1tc)i§‘(x(“), §)d§ ] Auj(‘“+1)

ID=M~+1

where u}"", 552'“), 5‘2““) are values at the external boundary nodal point m (m=1,

Mb), Aujo“) are values at the crack nodal point m (m=Mb-I-1, Mb+M,); uj<n> .-. uj(x<n)),

x‘“) being the location of the external boundary nodal point 11, (n=1, M), and 1:5“) =



7 5

more”), it“) being the location of the crack element mid-point n, (n= Mb+1,

Mb-l-MJ, in addition, we add a nodal point n= Mb+1.

Eqs.(2.2.6) can be written in the following matrix form:

..{u}-..{..}=..{.}

dul-mlmlmll-l }

where

(2.2.7)

[UC] is 2Mb x 21111,, , [Q] is 2Mb x 2Mc , [UR] is 2Mb x 4(Mb-1) , [PC] is 2M+1) x

21111,, [X] is 2(M,+1) x 2Mc and [PR] is 2(Mc+1) x 4(Mb-l).

Thus

[0]

[F211PR] [11M11 1:1

where, as in [76], we have defined a nodal force matrix on the crack by

1.1.1.1

    

[r2][PC] -[I‘7J[X]
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where

11100000“

0-110000

.6 6 coo—ti.  

I represents a 2x2 identity matrix, and [F2] is 2M1; x 2(Mc+1).

2.2.2.2 An edge branch crack

A simple numerical treatment of eqs.(2.2.2) is presented here in which the external

boundary is approximated by Mb straight elements and the cracks by Mel, Mc2 straight

elements, as shown in Figure 2.31. Eqs.(2.2.2) can then be written as

M. .

one) u,-(x> = £21“; (tiling-11x. it) too - (nah? (x. x) u,- an] also-d

M5+Md

+ 2 j m(neg-hot, r) Aujar) dscin

m=Mb+1

M.+M,1+Md+1

+ 2‘. j m(uc),§‘(x, in Aujor) dsoz)

m=Mb+M¢1+2

Mb

tux) = 2 1 ml (1:11),? (x. 1:) 5m -(1tC)t,-"(X.X) u, an] dsm
m=2

Mb‘l’Md

+ E lm(1w)i‘,-‘(x. 92) Aujm asap (2.2.11)

“FMVP1

M5+MQ+M4+1

+ z j m(rtc),*j|(x, it) Aujm mm x on I‘c1

m=Mb+Md+2



AX2
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Figure 2.31 Discretized half-plane region containing

a discretized edge branch crack.
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M.

n.(x) = 2, j m[ (nR),’,-‘(x. x) 5m —(ttc),§-1(x,sn nj (2)] ds(i')

rn=2

Mh+Mcl

+ 2 I more]? (x. s) Aujnr) dsm

”My?1

M.+M,,+Ma+l

+ 2 [moot-‘11:.» Aujtx) dsm x on 11,.

m=Mb+Md+2

Following the same procedures as in previous section, eqs.(2.2.11) become

M.

Ciin)“i(") = 2248104 [jm(1-§)(un)g(x<n>, 6d: ] ,jam-I)

M.
+ 22mg‘I4 [j m(l+§)(uR)igl(x(n)’ §)d§ ] tjam)

M.

" 2248.04 1] m(1—§)(uc),'}(tt<n>, gag
] uj(tn-1)

Mb m
h (I!) (m)

- "EzAsb l4 [1m(1“6)(“°)ij(x . §)d§ ] uj

Mb+Mel

+ 2: Ase/4 [jm(1-§)(uc)t§-‘(x‘"’. not 1 Aujm)

313M544

Mb+Md-1

+ 2 Ass/4 [[m(1+§)(uc)i‘j‘(x‘“’. §)d§ 1 Auj(m+1)

”M544

Mh‘l'Mcl'tMa'tl

+ 2‘. Ass/4 [j mu-txuchg-‘(x‘nh not 1 Anj<m>

me+Md+2

M.+M,1+Md

+ Z Ass/4 [j m(1+§)(UC)i’,-‘(x(“). not 1 cuj<m+1>

m=M.,+M,,-l-2

M.

1:5“) = 22481174 [I m(1-§)(rta),*;(x<n>, mg 1 5‘2“)
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M.

+ 2 Ase/4tjm(1+§>(nR>.51<x<n>. an: 1 512"»

m=2

M.

- 2 Asst‘.“/4 1] m(1-§)(nc),§‘(x<“’. §)d§ ] slim-1)

nt=2

M.

_ "Elfin/4 [j m<1+§)(“°)ij(x("). §)d§ ] ufm)

Mb'f‘Mcl

+ 2 As.”/4 [I m(1—§)(1tc)t‘,-‘(X‘“’. F.1d: ] Auj<m> (2.2.12)

HFMb't'l

M.+M,1—1

+ 2: Asa/4 [jm(1+§)(mc)t'j‘(x("’. no: 1 Auj<m+1>

rn=M5+1

Mt+Mn+Ma+1

+ )3 Asa/41] (1-§)(1w),’j‘(x‘“). an; 1 nuj<m>

m=Mb+M¢1+2 m

Mh+Mcl+Mc2

'1' 2 A8374 [I m(l+§)(1;c)i:.\(x(n)’ a”:
] Auj(m+1)

m=Mb+Md+2

M.

Kim) = “EzAslin/‘i [jm(1‘§)(1tR)ig-‘(x(“),
§)d§ ] thm—l)

M.

+ 22481?“ [I m(1+§)(ttlt)§;(x<"), 0d:
] tJan)

M.

‘ Z 483/4 1] m(1—§)(rtc)i§‘(x("), gag ] uj(tn-1)

m=2

Ms

._ £21381?“ 1] m(1+§)(7‘°)ilj(X‘“), §)d§ ] ujm

Mb+Me1

+ Z Ass/4 ljm(1-§)(1t<:)t§‘(x(“’.§)d§ ] Aujo“)

“3M3?l

M5+M¢1-l

+ 2: Asa/4 [j mtl+§><nc>,';<x<n>. ad: ] Aufm“)
m=M5+1



so

M.+M.,+Md+1

+ 2: ASE/4 [j (1-§)(nc)i'j‘(x("’.§)d§]AuJ-““)
m=M.+M.,+2 m

Mb+Mcl+Mc2

+ z Asp/4 [j m(1+z;)(1cc)i§1(x<">, gm: ] Auj<m+1>

m=M5+Md+2

where ujm), tja‘“), 552““) are values at the external boundary nodal point tn (m=1,

Mb), Aujm‘) are values at the crack nodal point 111 (m=Mb+1, Mb+Mc1 , Mb+Mcl+2,

Mb+Mc1+Mc2+l) ; uj(“) = uj(x(“)), x0” being the location of the external boundary

nodal point It, (n=1, Mb), and 1:5“) = ni(x(“)), x‘“) being the location of the crack ele-

ment mid-point n, (n= Mb+1, Mtg-Mel, Mb+Mcl+2, Mb+Mc1+Mc2+1), in addi-

tion, we add two nodal points n= Mb+l, Mb+Mc1+2.

For an edge branch crack, we need to employ continuity conditions and equilibrium

conditions, i.e.

AuijW’ = Auj‘Mhmdm (2.2.13)

ijb+th+n = Fj(M"+M“‘+1) + Fj(M"+M“+2) . (2.2.14)

Then, eqs.(2.2.12) can be written in the following mauix form:

Nola}-dw‘}-mlw}=m{t}

..{u}-.,{..}-......2}=.,.{.}-{.}

....{u}-....4..1}-..{..}=mite}
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where

[UC] is 2Mb x 2Mb , [Q] is 2Mb x 2Mcl , [Q] is 2Mb x 2M,2 , [UR] is 2Mb x

4(Mb-1), [PC] is 2(Mc1+1) x 2M1, , [x1 is 2(M,,+1) x 2Mcl , [x,,] is 2(M,,+1) x

2Mc2 , [PR] is 2(M,,+1) x 4(Mb—l) , [PC1] is 2(Mc2+1) x 2Mb , [x2,] is 2(Mc2+1) x

2Mc1 , [xz] is 2(Mc2+1) x 2Mc2 and [PR1] is 2(Mcz+1) x 4(Mb—1).

Thus

[UC] -[Ql -le - u ' [UR] [01 [01' .

[wipe] {mm -[I‘21[x121 Mu“ = [1‘2][PR] [I] [01 i F1 .

_[I‘zlllPCll —[I‘21][X21] 4mm], Au2 _ll‘zlllPRll [01 [11‘ F2        

(2.2.16)

where, as in [76], we have defined nodal force matrices on the crack by

(2.2.17)

-1 I O O O O 0

O -I I O 0 0 0

[1‘2] = [r21] = 9 9 f1 I 9 9 9 (2.2.18)

.6 t) i) 6 b -'1 i.  
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1 represents a 2x2 identity matrix, [P2] is 2Mclx2(Mc1+1), and [F21] is

2Ms2X2(Ms2+1)-

It is well-known that one can obtain the diagonal 2x2 blocks of [UC] in eqs.(2.2.8) or

(2.2.16) from rigid-body considerations, as in the previous section.

Once eqs.(2.2.8) or (2.2.16) have been constructed, we must impose four conditions at

each nodal point m on I“, involving the boundary values

it 1(rn)’ t1(2m)’ tl(2m+l)’

uém)’ téZm)’ tézmi)’

and rearrange eqs.(2.2.8) or (2.2.16) accordingly to obtain

44+} ‘

where {2} contains the unknown boundary displacements and tractions on I}, and the

unknown matrix {Au}.

Once we have obtained Aui at each crack nodal point, the displacement discontinuities

normal and tangential to the crack surfaces at that point are
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Ann = Aulnl + Anznz

(2.2.20)

Au. =3 Allan —' Aulnz

and the stress intensity factors can be determined from

KIIFO = \/gleoawmunm)

Kn!“0 = \j -81-ce-G(1+V)Au,(e)

(2.2.21)

KIIs=l = %G(1+V)Aun(l-e)

Kn|,._.1= g—eouwmma-e)

where e -> 0, G, v are the shear modulus and Possion’s ratio, respectively, and l is the

length of the crack.

2.2.3 Results

Here we employ the coupled model to find numerical solutions for some finite domain

problems.



b)

C)

84

Single edge crack in a rectangular plate subjected to uniform uniaxial tesile

SUCSS.

A rectangular plate of height h and width w with a single edge crack of length a

is loaded by a uniform tension acting over an interval of length L. The total force

acting on the interval is denoted by constant 0, as shown in Figure 2.32. The

crack line is modeled by 20 equal elements and the external boundary part I‘m is

modeled by 45 equal elements. In Tables 2.16 and 2.17, the stress intensity fac-

tors, normalized with respect to 6‘5, are given for various ratios of a/w and L/w

and compared to those obtained in [93-96].

Single slanted edge crack in a rectangular plate subjected to uniform uniaxial ten-

sile stress.

A rectangular plate of height 2.5w and width w, containing a single slanted edge

crack of length a, is subjected to a uniform uniaxial tesile stress 6 at the ends.

The crack is located eccentrically a distance w from one end and inclined at an

angle [3 towards the other end, as shown in Figure 2.33. The crack line is

modeled by 25 equal elements and the external boundary part PM is modeled by

45 equal elements. In Table 2.18, the stress intensity factors, normalized with

respect to %, are reported for various ratios a/w and various angles [3 and

compared to those obtained in [84].

Single edge crack in a rectangular plate subjected to mixed mode loading.

A rectangular plate of height h and width w with a single edge crack of length a

is subjected to a unit uniform tensile stress 0' at one end and a sliding support on
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Figure 2.32 Geometry and loading of a rectangular plate with a single edge crack.
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Table 2.16 Stress intensity factors for a single edge cracked plate under uniform tension.

 

 

   
 

 

 

W 0.1 0.2 0.3 0.4

present [93] present [93] present [93] present [93]

1.0 1.22 1.23 1.48 1.49 1.83 1.85 2.30 2.32

0.9 1.41 1.43 1.70 1.72 2.10‘ 2.13 2.64 2.67

0.8 1.65 1.67 1.98 1.99 2.42 2.45 3.01 3.05

0.7 1.93 1.95 2.28 2.31 2.80 2.82 3.45 3.48

0.6 2.29 2.31 2.66 2.70 3.21 3.25 3.90 3.95

0.5 2.75 2.78 3.16 3.19 3.73 3.76 4.43 4.48

0.4 3.34 3.38 3.75 3.76 4.27 4.32 5.00 5.03

0.3 4.05 4.09 4.40 4.43 4.87 4.92 5.52 5.57

0.2 4.84 4.88 5.13 5.16 5.50 5.54 6.10 6.13

0.1 5.60 5.64 5.82 5.88 6.12 6.16 6.61 6.68

Table 2.16 Stress intensity factors for a single edge cracked plate under uniform tension.

L w 0.5 0.6 0.7 0.8

/W present [93] present [93] present [93] present [93]

1 0 2.99 3.01 4.11 4.15 6.34 6.40 11.2 12.0

.9 3.41 3.45 4.68 4.73 7.18 8.22 12.8 13.4

.8 3.88 3.91 5.28 5.31 8.00 8.05 14.4 14.8

.7 4.36 4.40 5.90 5.92 8.85 8.88 15.9 16.2

.6 4.90 4.93 6.50 6.54 9.66 9.71 17.1 17.6

.5 5.45 5.48 7.15 7.17 10.45 10.50 18.6 19.0

.4 6.00 6.03 7.73 7.78 1 1.33 1 1.40 20.0 20.4

.3 6.52 6.57 8.35 8.39 12.14 12.20 21.2 21.8

.2 7.10 7.12 9.00 9.01 12.96 13.00 22.8 23.2

.1 7.61 7.67 9.60 9.65 13.84 13.90 24.0 24.7 
 

Table 2.17 Stress intensity factors for a single edge cracked plate under uniform tension,

  

 

L/w=l.0.

UW=L0

W present [93] [94] [95] [96]

.125 1.28 --- 1.26 1.27 1.299

0.150 1.35 --- 1.30 1.34 1.362

0.200 1.48 1.49 1.40 1.48 1.505

p.300 1.83 1.85 1.67 1.82 1.867  
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Figure 2.33 Geometry and loading of a rectangular plate

with a single slanted edge crack.
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Table 2.18 Stress intensity factors for a single slanted edge cracked plate.

 

L...
[3 = 45° [3 = 67.50

present [84] present [84]

KI/ov‘itT Kn/othKI/WKH/ofi' KI/oficsT Kn/cx/nTKI/offi Kn/cfit?‘
 

0.30

0.35

0.40

0.45

0.50

0.55

0.60  

035 0.443 0.15 0.443 1.43 0.342 1.43 0.342

0.95 0.472 0.95 0.473 1.58 0.370 1.58 0.370

1.01 0.502 1.02 0.504 1.76 0.402 1.77 0.404

1.08 0.534 1.10 0.536 1.99 0.440 2.00 0.441

1.20 0.570 1.20 0.571 2.27 0.491 2.28 0.494

1.30 0.608 1.32 0.612 2.60 0.562 2.62 0.565

1.40 0.658 1.43 0.662 3.03 0.658 3.06 0.662   
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the other opposite end as shown in Figure 2.34. The crack line is modeled by 30

equal elements and the external boundary part PM is modeled by 46 equal ele-

ments. In Table 2.19, the stress intensity factors are calculated and compared to

those obtained in [97-99].



h/2 J N2

1
1
—
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11 v

_
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1

1

1

W= 1°

1

1

1

Figure 2.34 Geometry and loading of a rectangular plate with a single edge crack.
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Table 2.19 Stress intensity factors for a single edge cracked plate as shown in Figure

2.34.

 

present [97] [98] [99]

 

KI 32.6 34.0 33.20 33.1

Kn 4.38 4.55 4.50 4.36     



Chapter 3

Mode III Crack Problems : Internal Cracks

3.1 Theoretical Development

Consider an infinite isotropic elastic plane in which there is a point, X, at which some

"source" of stress is located and a point, x, at which the stresses are to be computed.

We will employ the following influence functions associted with antiplane strains:

(uR)33(x, i) = the displacement in the x3 direction at it due to a unit force applied

in the x3 direction at Y in the infinite plane,

(uc)33(x, Ti) = the displacement in the x3 direction at x due to a unit displacement

discontinuity applied in the x3 direction at i in the infinite plane,

(ER)33(x, i) = the scalar 1:3 in the x3 direction at it due to a unit force applied in

the x3 direction at “i in the infinite plane,

(1tc)33(x, i) = the scalar 1:3 in the x3 direction at it due to a unit displacement

discontinuity applied in the x3 direction in the infinite plane,

where 113 is a stress function defined such that the stress components are

81:

013 = 5;}. 023 = — {2%. (3.1)

92
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The influence functions are given in the Appendix C.

In Figure 2.2, suppose that I‘c represents a crack, the surfaces of which are subjected

to equal and opposite traction t3(s) given by

t3 = — ( 013111 '1' 023112 )

= _ _
(3.2)

A plane elastic region Q, with external boundary I‘b, containing an internal piece-wise

smooth crack I}, as shown in Figure 2.2, or an internal piece-wise smooth branch

crack or multiple cracks composed of Pd and Fez: as shown in Figures 2.3 and 2.4, is

loaded by prescribed tractions t3 on some part of the external boundary and prescribed

displacements u3 on the remainder of the external boundary. Then the direct

boundary-integral equations and the crack integral equations developed as in [76] can

be coupled as follows.

For a single smooth or kinked crack:

cam 1130‘) = [3,088. (x. in 1.00 4st - 1,003. (x. i) use?) dscn

+1r.(uc)33(xi i) A9307) 935) x 9“ Pb (3'3)

4.00 = 1.5410330. 10 1300 we — fitness“. 10 11300 asap

'1’ 1rc(“°)33(xv i) A1135) dsm x on I‘c .
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For a branch crack or multiple cracks:

030!) 1130!) = 111-91353“. 8) I300 (18(8) - 11,910)” (X. 8') 113(8) €155)

2

+ 21rd(UC)33 (X, Y) AU3(Y) (18(8) X _ on I},

k=l

2:300 = [44181330. :0 1300 dson — “was. r) .1300 ass)

2

+ 2J,a (110330. 8) 4.300 dsm x on I}. (3.4)

k=1

48111444115303) 13(8) dsco — 1.540330. a) 1:300 dsm

2

+ 21.540.30.10 Austin dscn x on 1},

#1

In eqs.(3.3) and (3.4), Au3 = u; — u; is the relative crack surface displacement in the

x3 direction and c3 is a coefficient which depends on the smoothness at x on Pb.

3.2 Numerical Treatment

3.2.1 A single smooth or kinked crack

A simple numerical treatment of eqs.(3.3) is presented here in which the external

boundary is approximated by M, straight elements and the crack by Mc straight ele-

ments, as shown in Figure 2.5. For this model, eqs.(3.3) can then be written as

M.

c300 1130‘) = z I m[ (1:10.301. 70 t. (to - (110336.70 113 Ci) 1 we
m=l



\
U

U
]

M.,+Mt

+ 2‘. I (no)... (x. 70 Am) dsm x on r,

m=Mwl m

(3.5)

M.

1.36.): 2 ] m1 (11R)... (x. :0 13 (81 - (no)... (x. 8‘1 u3 00 1 dso-o
m=l

M.+M.

+ z 1 mm)... (x. s) 4113(8) dsm x on rc .

th+l

The displacements, tractions and displacement discontinuities in the x3 direction on

each element can be linearly approximated by

113(2) = N1(§)u§m-1) + N2(§)u§m> r on element m of 1“b

1351) = N,(§)1§2m-1)+ may?” i on element m of I], ‘ (3.6)

A6361) = N,(§)Au§m> + N2(§)Au§m+1> it on element 111 of r,

where uj’“), 62‘“), tézm“) are values at the external boundary nodal point m (m=1,

Mb), Auj‘“) are values at the crack nodal point in (m=Mb-t-2, Mb+Mc), and

WE) = (1—§)/2 N2(§)=(1+§)/2 -1 s t s 1 . (3.7)

Furthermore

N1(§)x(’“’l) + N2(§)x(m) i on element 111 of I],

N1(§)X(m) ‘1' N2(§)X(m+l) it" on element m of I‘c 
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[(sém) _. sém'1))/2] (1:: [Ast511,2] (1: i on element m of I],

951*) =
(3.9)

[(sctmfi) ' 5919/2] 9: = [A5192] d5.» i on element m of R

where Ast‘,n is the length of the external boundary element m and As;n is the length of

the crack element m.

Inserting eqs.(3.6) through (3.9) into eqs.(3.5), we obtain

M.

14911;“) = )3 Asf,“/4 [j m(1—§)(uR)33(x(”), §)d§ ] 112"“)

m=l

Mb 2m

+ 2 Ass/4 [I m<1+§><uR>ss<x‘“>. 0d: 1 ts‘ ’
m=1

M.

- z Ass/4 1] “10410033091 ed: 1 111““)
rn=l

M1,

- 2 Ass/4 [1m<1+§><uc)ss(x‘">. ed: 1 111'")
rn=1

lM.,+Mt

+ 2; Ascm/4 [j m(1-§)(uc)33(x(“), gm: 1 Any“)

me‘Fz

Mythic.l

+ )3 Asg‘m [[ m(1+§)(uc)33(x(“), §)d§1Au§m+1>

HFMfi'1

(3.10)

M.

1.11:): zlAsgnm [[ m(1‘§)("R)33("(n)1 §)d§ ] tpin-1)

M.

+ Z As1194 [I m(14.5,)(1110330100, gag ] tézm)

m=1

M.

- 21481?“ [I mU-txmssw“). ed: 1 aim-1’
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M.
— z ASE/4 [j m(1+§)(1cc)33(x‘“’. §)d§ 1 111‘“)

m=l

M.+M,

+ z ASén/4 [I m(1—§)(KC)33(X(n),
§)d§ ] Auém)

“FMF+2

Mb'i'Mc-l

9

+ 2 Asgn/4 [1 m(1+§)(1tc)33(x(n>, 13d: 1 my...»

[FMV‘Fl

where u?” = u3(x(“)), x99 being the location of the external boundary nodal point n,

(n=1, M), and 1:?) = 1:30:99), x1“) being the location of the crack element mid-

point n, (n= Mb+1, Mb-t-Mc).

Eqs.(3.10) can be written in the following matrix form:

166,11 ..1 - 16.11.31: 11111.11 ,1

1.11-“1.1413111

where [UC3] is Who [Qil is M6X(Mc"1). [UR3] is MbXZMb. [PC3] is McXMb9 1X3]

is Mcx(M,-1) and [PR3] is Mcx2Mb.

(3.11)

Thus

r

[U03] '[Q3] 113

1

[F3][PC3] -[F3][X3]

(3.12)

  

[URs] [0] 1 t3

Au3 [F3] [PR3] [I]

L

F3
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where, as in [76], we have defined a nodal force matrix on the crack by

{F3 } = [F3111t31 (3.13)

where

1-1100000‘

0-110000

...: 9 1.1-.11??? 1......
.0 0 000—1i1  

and [F3] is (MC-1) x M,.

3.2.2 A branch crack or multiple cracks

A simple numerical treatment of eqs.(3.4) is presented here in which the external

boundary is approximated by Mb straight elements and the branch crack or multiple

cracks by Mel, M02 straight elements, as shown in Figure 2.6 and Figure 2.7, respec-

tively. Eqs.(3.4) can then be written as

M.

c300 1131") = 2: 1 m1 010.. (x. 1‘0 :3 (to — (1103.01.81 us (8) 1 dsCi)
tn=l

Mb+Mcl

‘1' 2 1 m(‘19)33 (X. 7‘) A1135) dsCi)

m=M5+1
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M.+M,1+Md+l

+ z j m(uc)33(1t, 1r) Au3(r) asap x on rb

m=M,+M,,+2

M.

11.00 = )3 1 ml (4103.01.81 1. 0'0 - (1:03.01. 10 u. 00 1 dsco
m=1

M5+M¢1 .

+ 2 jm(1t0)33 (x. 8) Ausm ds® (3.15)

me'i’l

M.+M,,+M,;+1

'1' 2 jm(750)33 (X. 8) Au3® ds(r't) x on For

m=M5+M¢1+2

M.

11.00 = z ] nu1 (1.11),, (x. 10 1, 00 — (1.6),, (x. 10 u. an 1 dsm
m=l

Mb+Mcl

+ 2‘. Imam)... (x. 21 411.00 «ism
“FMb't'l

Mb-i-Mcl-t-Ma-t-l

+ 2 1m(“°)33 (*1 ’0 Al1361) (18(8) x on I}, .

me+M¢1+2

The displacements, tractions and displacement discontinuities in the x3 direction on

each element can be linearly approximated by

u3(i) = N1(§)u§m‘1) + N2(§)u§m) i on element at of I],

t3(i) = N1(§)t§2‘“‘1) + N2(§)t§2“9 i on element m of I], (3.16)

Au3(i') = N1(§)Au§m) + N2(§)Au§m+l) if on element m of Tel or I‘c2

where 01’“), t9“), 62"“) are values at the external boundary nodal point m (m=1,

M) and Au?“ are values at the crack nodal point m. For multiple cracks, m=Mb+2,

Mb+Mc1 , Mb-t-Mcl+3, Mb+Mc1+Mc2+L For a branch crack, m=Mb+2, Mb+Mc1 ,

Mb+Mcl+2, Mb+M¢1+Mc2+L
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Furthermore

N1(§)X(m'1) .1. N2(§)x(’“) x on element m of 1],

i=1
(3.17)

N1(§)x(m) + N2(§)x(m+l) i on element 111 of Pd or 1‘02

[(sém) _ s§""11)/2] d§ = [Ast111/2] d§ if on element 111 of I],

“(79 =
(3.18)

[(S‘Smm - 36011)),2] d§ = [Ascm/Z] 9: i on element m of For or 1‘02

where Asi;n is the length of the external boundary element In and As? is the length of

the crack element m.

Inserting eqs.(3.16) through (3.18) into eqs.(3.15), we obtain

M.

°§“’“§“’ = 2 Ass/4 [1m(1-§)(uR)33(x1“’. 01:1 1141-11
m=l

M.

+ 2 AS?” [1m<1+§qu133(x<">. 8.14: 1 112m)
m=l

M.

‘ 2 488/4 [1 m(l—§)(uc)33(x("), mg 1 11:1“)

m=l

M.

- 2 Asg“/4 11 m(1+§)(uc)33(x<“), §)d§ 1 111‘“)

ml

Mb+Mel

+ 2; Asgi/4 1[ m(1—§)(uc)33(x(“), §)d§ 1 Any")

m=M1,+2

M5+M¢1—1

'1' Z Asia/4 [I m(l+§)(uc)33(x("), §)d§ ] Auk“)

lfl=Mb+l
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M1,+M,,+Md+l

+ 2: Asa/4 [1.11—0003309). tn: 1 4111‘“)
m=M,+M.,+2

Mb'i'Mc]+M¢2

+ 2 Ass/4 11 m(1+§)(uc)33(x("). eat 1 4111“”
rn=M1,+M¢1+2

M.
1.111) = 21ml?” [1 m(1—§)(11R)33(x‘"’. §)d§ 1 tim'”

M.
+ 2 Asgn/4 [j m(1+§)(11R)33(x“”’. §)d§ 1 912’")

rn=1

M.
— glassy/4 [j “la—00103361“). §)d§ ] vim-1’

M.

- Elms/4 [jm(1+§)(nc)33(x1“’. ed: 1 111*“)

Mb'i'Ma

+ 2 Asa/4 [1' m(1-§><nc>ss(x<“>. ed: 1 8.11m)
m=Mb+2

Mb'i'Md-l

+ z Asgn/4 [j (1+§)(1tc)33(x(“), §)d§ 1 Au§m+1> (3.19)

m=Mb+1 m

M5+Md+Ma+l

+ )3 mom/4 [[ m(1—§)(1tc)33(x(“), gm: 1 Auém)

rn=Mb+Mfl+2

M5+M¢1+Ma

+ 2 Asa/4 1] m<1+§xnc133(x‘n>. ed: 1 4111“”
IIFM5+M¢1+2

M.
.1111) = )3 As§‘/4 [j m(1—§)(11R)33(x‘“’. §)d§1 62"“)

rn=1 .

Mb

+ )3 MIT/4 [j m(1+§)(nR)33(x‘“’. W: 1 82’“)
rn=1

M. '

- 214.1814 [1m(1-§><nc>ss<x‘"’.§>d§1 aim-1’



102

M.
— Easy/4 [j m(1+§)(1ec)33(x"‘°. §)d§ 1 111‘“)

rn=1

M5+M¢1

+ 2 Asa/4 [I .10-£100.30“). ed: 1 4111‘“)
m=Mb+2

Mb'i'Mcl-l
‘

+ z Asa/4 [I m<1+§xnc1331x<n>. ed: 1 4111““)
m=Mb+l

M5+M¢1+Ma+l

+ 2: Asa/4 [I m<1—§><nc>ss<x<">. ed: 1 4111'“)
m=Mb+M¢1+2

Mb+Mc1+Mc2

+ )3 Assn/4 11m<1+§x1cc133<x<n>. ed: 1 4111“”
m=Mb+Md+2

where u?” = u3(x(“)), x1“) being the location of the external boundary nodal point n,

(n=1, Mb), and né") = n3(x(“)), x1“) being the location of the crack element mid-

point n. For multiple and branch cracks, n= Mb+l, Mb+Mc1, Mb+Mc1+2,

Mb+Mc1+Mc2+L In addition, for a branch crack, we add a nodal point n= Mb+Mc1+2.

Eqs.(3.l9) can be written in the following matrix form:

[UC31{ u3 } - [Q3 Au3l }’ 1Q311{ Au32 1: [UR31{ ‘31

[PC/111 113 1 - 1x31120131 1- [x3111 A1132 1 = [911311 031-1 1131 1 (3.20)

[Poiil{ u3 } - [X2311 Au3l 1 - [X3311 Au32 1: 9113111 t3 1 ‘ 1 7‘2 1
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For multiple cracks, the matrices in eqs.(3.20) have the following dimensions:

[UC3] is Mb x Mb , [031 is Mb x (Mel-1) , [Q31] is Mb x (Ma-1) , [UR3] is Mb x

2Mb , [PC3] is Mcl x Mb , [x3] is Mc1 x (Mel-1) , [x321 is Mc1 x (Ma-1) , [PR3] is

Mc1 3 2Mb 1 [PC2111 is Mc2 x Mb 1 [X23] is Mc2 X (Merl) 1 [X331 is Mc2 X (Merl)

and [PR31] is M62 x 2Mb.

For a branch crack, the matrices in eqs.(3.20) have the following dimensions:

[UC3] is M1, x M1, , [Q,] is Mb x (Mel-1) , [Q31] is Mb x Mc2 , [1111,] is Mb x 2M1, ,

[PC3] is M,,1 x Mb , [x3] is Mc1 x (Mel-1) , [x321 is Mc1 x Mc2 , [PR3] is M1,l x ml,

[PC3311 is (Mc2+1) X Mb . [X23] is (Mc2+1) X (Mel-1) . [X33] is (Mcz‘i'i) X Mc2 311d

[PR31] is M2+1) x 2141,.

Thus

F [UC3] —[Q3] ’[Q31] - “31 - [UR3] [0] [0] 4 t3

[F3HPC3] —[F3][X3] ‘IF3IIX37J 1Au31> = [F3][PR3] [I] [0] 1 F31

_[I‘31][PC31] -[F3111x311 -[F31][X33]‘ Au2 _W3111PR31] [O] [I] 1 F}

Y

        

where, as in [76], we have defined nodal force matrices on the crack by
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(3.22)

{F32}=[I‘31]{1t32}

1-1 1 0 0 0 0 0'

0 -1 1 0 0 0 0

22=222= 9 9 ‘1??? 0 22>

  

For multiple cracks, [F3] is (Mel-1) x Mel and [F31] is (Md-1) x M62. For a branch

craCk, [F3] is Mel X (Mcl+1) and [F31] is Mcz X (Mez‘i'l).

For a branch crack, we need to employ continuity conditions and equilibrium condi-

tions, i.e.

2.942%“) = Au3(M"+M“+2) (3.24)

F3(hd.,-i-Mm‘+l) = F1§M1,+Mm+l) + F§Mb+Md+2) (3.25)

It is well-known that one can obtain the diagonal entries of [UC3] in eqs.(3.12) or

(3.21) from rigid-body considerations. If we apply a rigid-body displacement, i.e.

uél) = u? = u?) = ....... = u3(M”) = u3 (3.26)
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then the body is stress-flee. Thus

1111 12111

and eqs.(3.12) or (3.21) reduce to

  

r ‘13 1

I13

[UC311 ' i =1 0} (3.27)

L “3 J

so that

. . Mb . .

UC§‘X‘) = -2UC§00> (3.28)

1:1
122i

Once eqs.(3.12) or (3.21) have been constructed, we must impose two conditions at

each nodal point m on I], involving the boundary values

11:9"), té’lm)’ téZr'n-i-l)

and rearrange eqs.(3.12) or (3.21) accordingly to obtain
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[A{ Z} :1 B 1 (3.29)

where {Z} contains the unknown boundary displacements and tractions in the x3 direc-

tion on I}, and the unknown matrix {Au}.

Once we have obtained Au3 at each crack nodal point, the stress intensity factors can

be determined from

Kmlg0 = \/-8—:—GAu3(e)

(3.30)

'1:—
Kmls:1 = Emma—e)

where a —> 0, G is the shear modulus, and l is the length of the crack.

It should be noted that, for a problem involving a traction free crack, {F3} = [0} and

eqs.(3.12) or (3.21) reduce to

1 =

[F3] [PCs] -[F3][X3] A03 [F3] [PR3]

L

[UC3] "lQ'iI 113 [URs]

1. 1 . (3.31)

 

Of
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l [UC31 -[Q3] 4031] ' U3 ' [UR3] "

[1‘3][PC3] '[rsllxsl {1‘31 [X32] [F3IIPR3] { t3 } (3-32)

L[F31][PC:;1] "ll-311331] -[I‘31][X33]_ A1132 _U31][PR31] J

A1131 V II

_
A

      

respectively.

3.3 Results

Here we employ the coupled model to find numerical solutions for some finite domain

problems.

1. Straight crack.

In all straight crack problems, the crack is modeled by 20 equal elements and the

external boundary is modeled by 40 elements. The stress intensity factors, nor-

malized with respect to o‘la, are calculated.

a) Straight central crack in a rectangular sheet subjected to anti-plane shear

SUCSS.

A rectangular sheet of height 2h and width 2b contains a straight central

crack of length 2a. A uniform shear stress, 0’, acts over the ends of the plate

as shown in Figure 3.1. In Table 3.1, the stress intensity factors are given

for various ratios of a/b and a/h and are compared to those obtained in

[100].
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 l: 2. 4

Figure 3.1 Geometry and loading for a straight central crack

in a finite sheet under a uniformly distributed shear stress.



Table 3.1 Stress intensity factors for a straight central crack under a uniformly distributed

shear stress as shown in Figure3.l.
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a: o

1:0.25

1:0.5

1: 1

1:2

1:4

1:00  

1.897

1.723

1.689

1.686

1.686

1.687

1:1.2

. | H

1.900 1.780

1.725

1.691

1.689

1 .689

1.689

1.460

1.369

1.359

1.358

1.358

1:1.4

H

1.782

1.463

1.370

1.361

1.360

1.360

1:1.6

5r ‘ I .1.

1.771 1.773

1.399 1.401

1.254 1.256

1.233 1.235

1.233 1.235

1.234 1.235

1:2.0

1.770

1.377

1.176

1.127

1.126

1.127

m

1.772

1.379

1.178

1.130

1.128

1.128 ~

...

Ulr|

1.770

1.375

1.147

1.046

1.012

1.000

H

1.772

1.377

1.149

1.047

1.013

1.000
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b) Straight central crack in a rectangular sheet subjected to anti-plane shear

stress on the crack.

A rectangular sheet of height 2h and width 2b contains a straight central

crack of length 2a. The crack is subjected to anti-plane shear stress 0. Three

examples are considered for the problem of a rectangular sheet with fixed

edges parallel to its crack, with fixed edges perpendicular to its crack and

with four fixed edges as shown in Figures 3.2 throught 3.4, respectively. In

Tables 3.2 throught 3.4, the stress intensity factors are given for various

ratios of a/b and a/h and are compared to those obtained in [101].

Kinked crack.

In all kinked crack problems, both stress intensity factors, normalized with

respect to (PIE, and relative crack surface displacements .are reported. G/O’ =

200.

a) Symmetric V-shaped crack in a rectangular sheet subjected to anti-plane

shear stress.

This example involves a symmetric V-shaped crack in a rectangular sheet

subjected to a uniform anti-plane shear stress, as shown in Figure 3.5. The

crack is modeled by 40 equal elements and the external boundary is

modeled by 44 equal elements. For various angles or, the relative crack sur-

face displacements are plotted in Figure 3.6 and the stress intensity factors

are reported in Table 3.5.
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Figure 3.2 Geometry and loading for a straight central crack

in a finite sheet with fixed edges parallel to the crack.
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Figure 3.3 Geometry and loading for a straight central crack

in a finite sheet with fixed edges perpendicular to the crack.
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Figure 3.4 Geometry and loading for a straight central crack

in' a finite sheet with four fixed edges.
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Table 3.2 Stress intensity factors for a straight central crack with fixed edges parallel to the

crack as shown in Figure 3.2.

 

 

g azb 1:1.2 1:1.4 1:1.6 1:2.0 1:00

= Liar n 101 Present 101 Present 101 '- nt 101 ' - nt 101

I:0.25 0.398 0.400 0.397 0.399 0.397 0.399 0.397 0.399 0.397 0.399

I:0.5 0.573 0.575 0.560 0.564 0.560 0.563 0.561 0.563 0.561 0.563

I:10.830 0.833 0.778 0.780 0.767 0.769 0.762 0.764 0.762 0.764

:I2 1.111 1.114 0.989 0.991 0.948 0.950 0.920 0.923 0.912 0.914

I:4 1.339 1.342 1.145 1.147 1.072 1.074 1.014 1.016 0.974 0.975

Izoo 1.687 1.689 1.358 1.360 1.234 1.235 1.127 1.128 1.000 1.000
 

Table 3.3 Stress intensity factors for a straight central crack with fixed edges perpendicular

to ithe crack as shown in Figure 3.3.

 

. 1 '1‘ .'

1:0.25

1:0.5

1: 1

1 :2

1:4

1:00  

1 .650

1. 177

0.844

0.772

0.767

0.768

1:1.2

0

1.653

1. 180

0.847

0.775

0.770

0.770

51‘ '

1.759

1.295

0.981

0.868

0.856

0.857

1:1.4

0

1.760

1 .298

0.984

0.87 1

0.859

0.859

u. ‘_

1.769

1.351

1.055

0.920

0.899

0.900

1:1.6

0

1.77 1

1 .354

1 .058

0.922

0.901

0.901

1:20

'11' ‘

1.770

1.373

1. 120

0.977

0.941

0.942

O

1.772

1.375

1.122

0.979

0.943 ’

0.942

1:00

1'1 1‘

1.770

1.375

1.147

1.046

1.012

1.000

r I 0

1.772

1.377

1.149

1.047

1.013

1.000
 

 

 
Table 3.4 Stress intensity factors for a straight central crack with four fixed edges as shown

in Figure 3.4.

 

1:00

Present [101]

1:1.6

Present [101]

1:2.0

Present [101]

1:T.2 1:1.4

[101] Present [101]
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11

    

Figure 3.5 Geometry and loading for a symmetric V-shaped crack

in a finite sheet under a uniformly distributed transverse shear stress.
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Asymmetric kinked crack in a rectangular sheet subjected to anti-plane shear

SUCSS.

This example involves an asymmetric kinked crack in a rectangular sheet

subjected to a uniform anti-plane shear stress, as shown in Figure 3.7. The

crack is modeled by 30 equal elements and the external boundary is

modeled by 44 equal elements. For various ratios L/Za, the relative crack

surface displacements are plotted in Figure 3.8 and the stress intensity fac-

tors are reported in Table 3.6.

Anti-symmetric kinked crack in a rectangular sheet subjected to anti—plane

shear stress.

This example involves an anti-symmetric kinked crack in a rectangular sheet

subjected to a uniform anti-plane shear stress, as shown in Figure 3.9. The

crack is modeled by 35 equal elements and the external boundary is

modeled by 44 equal elements. For various angles at, the relative crack sur-

face displacements are plotted in Figure 3.10 and the stress intensity factors

are reported in Table 3.7.
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Figure 3.7 Geometry and loading for an asymmetric kinked crack

in a finite sheet under a uniformly distributed transverse shear stresss.
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Table 3.5 Stress intensity factors for a symmetric V-shaped crack under a unifome distrib-

uted shear stress as shown in Figure 3.5.

 

(X 15 30 45 60 75

 

Km I min? 2.0700 1.8743 1.5755 1.1965 0.7496

    

Table 3.6 Stress intensity factors for an asymmetric kinked crack under a uniformly distribut-

ed shear stress as shown in Figure 3.7.

 

L/2a 0.2 0. 16 0. 12 0.08 0.04

 

Km / (Tl—113: 3.4359 3.9220 4.5877 5.6497 7.9809

    

Table 3.7 Stress intensity factors for an anti-symmetric kinked crack under a uniformly dis-

tributed shear stress as shown in Figure 3.9.

 

(X 15 30 45 60 75

 

Km/ min—a? 4.5605 4.3281 3.9757 3.5427 3.0664
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Figure 3.9 Geometry and loading for an anti-symmetric kinked crack

in a finite sheet under a uniformly distributed trensverse shear stresss.



 

0
.
0
7

0
.
0
6
-
4

0
.
0
5
-
1

0
.
0
4
-
1

0
.
0
3
‘

0
.
0
2
-
1

  

0‘089lé

a
=
1
5
°

a
=
3
0
°

a
=
4
5
°

=
6
0
°

 
 

I I

0‘08 ¥

0‘0 8 8

0‘0 8 8

0‘08¥

0‘08!

0‘08l

0‘08!

0‘08!

0‘08!

0‘088

 

 
0
.
0
1

 
F
i
g
u
r
e
3
.
1
0

R
e
l
a
t
i
v
e
c
r
a
c
k

s
u
r
f
a
c
e

d
i
s
p
l
a
c
e
m
e
b
t
A
U
3

f
o
r
a
n

a
n
t
i
—
s
y
m
m
e
t
r
i
c

k
i
n
k
e
d

c
r
a
c
k
.

122



 

0
.
0
7
 

0
.
0
6
-

0

IO
qr

ll

6

0€08>K

 
  

0‘0-8 !

0‘0 8 !

0‘0 8 !

0‘08!

0‘08!

0‘08!

0‘08!

0‘08!

0‘08!

0‘08!

0
.
0
5
4

X

0
.
0
4
-
1

o
’
*

0
.
0
3
-
4

0
.
0
2
-
1

 

12.2

 
 

0
.
0
1

F
i
g
u
r
e
3
.
1
0

R
e
l
a
t
i
v
e
c
r
a
c
k

s
u
r
f
a
c
e

d
i
s
p
l
a
c
e
m
e
b
t
A
u
3

f
o
r
a
n

a
n
t
i
-
s
y
m
m
e
t
r
i
c

k
i
n
k
e
d

c
r
a
c
k
.



Chapter 4

Thermoelastic Problems Involving Cracks

4.1 Theoretical Development

In Chapters 2 and 3, an integral equation representation of cracks was developed and

coupled to the direct boundary element method for treatment of smooth and/or kinked

cracks in finite plane bodies. In these Chapters, the equations were written in terms of

the displacement-discontinuity across the crack surfaces. The approach can be applied

to arbitrary regions containing arbitrary cracks in a simple, straightforward manner. In

Chapter 2, the coupling of the direct boundary-integral equations to crack integral

equations were developed for modes I and II cracks. In Chapter 3, the analogous

approach was developed for mode 111 crack problems.

The method outlined in the previous Chapters is here extended for application to

steady-state thermal fields disturbed by arbitrary insulated internal smooth and/or

kinked cracks in finite plane regions. In this approach, the divergence theorem is

applied to transform the domain integrals to equivalent boundary integrals in order to

treat the body force terms. The advantages of the boundary-only formulation is that

only surface discretization is involved.

In the theory of uncoupled thermoelasticity, the steady-state problems can be solved

separately from the elastic problem because thermal unknowns are independent of the

elastic ones. The elastic fields (displacements and stresses), however, are generated by
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temperature gradients. Thus, steady-state heat conduction is considered first to deter-

mined the surface temperatures and heat flux distributions, then the resulting tempera-

ture fields are treated as body force terms in an elastostatic formulation.

A plane elastic region Q, with external boundary I‘b, containing an internal piece-wise

smooth crack line I}, as shown in Figure 4.1, is loaded by prescribed heat fluxes qn on

some part of the external boundary and prescribed temperatures T on the remainder of

the external boundary. Because of the analogy between mode 111 elasticity and heat

conduction, the steady-state heat conduction equations can be represented, as shown in

Chapter 3, by replacing u3, t3, Au3 and 7:3 by T, qn, AT and Q, respectively

c300 T0) = Mum” (x. In anT) dsoz) - 85°C)” (x. 8) Tm use)

+ jr (110)33 (x, 2) Area dsGt’) x on I],

(4.1)

(200 = 5341:8830. 8) (1.150 dsa) - £1,903.08) Tm dsao

+ [r (1tc)33(x,'i) Arm dsm x on 1‘c

where AT = T' - T” is the temperature jump across the crack, c3 is a coefficient

which depends on the smoothness of the boundary at x on I], and

= _ d_0.
qn ds . (4.2)

The influence functions in eqs.(4.1) are identical to those presented in Appendix C

where G is replaced by k, the thermal conductivity. Following the same procedures as
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Figure 4.1 Heat transfer problem involving a crack.
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' shown in Chapter 3, we can obtain the temperatures T and heat fluxes qn at each of

the boundary nodal points and the temperature jumps AT at each of the crack nodal

points for the insulated crack case.

Consider an infinite isotropic elastic plane in which there is a point, 3?, at which some

"source" of stress is located and a point, x, at which the stresses are to be computed.

We will employ the following additional influence functions

(uR)i3(x, it) = the displacement in the i direction at it due to a unit heat source

applied at Y in the infinite plane,

(uc)i3(x, i) = the displacement in the i direction at it due to a unit temperature

jump applied at if in the infinite plane,

(7tR)i3(x, i) = the value of xi at x due to a unit heat source applied at if in the

infinite plane,

(1tc)i3(x, i) = the value of lti at it due to a unit temperature jump applied at “if in

the infinite plane,

where ni, i=1,2, are stress functions defined as in eqs.(2.l.1).

A plane elastic region, as shown in Figure 4.2, is loaded by prescribed tractions tj

and/or heat fluxes qn on some part of the external boundary and prescribed displace-

ments uj and/or temperatures T on the remainder of the external boundary. Then the

direct boundary-integral equations and the integral equations developed in [76] can be

coupled as follows:

015(X)uj(X)+{If}(110150.311,-m-(uRkJ-(xmtjmldsm-j,¢(u0)ij(X.8)AujCX)dS(i)
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Qn

 

Figure 4.2 Thermoelasticity problem involving a crack.



= 1 00111880801480)

= 1’11[(UC)13(X.TK)T®-(UR)13(X.m®1dS®-§rb(uR)ij(X,i)'ynj(it‘)T(‘i)dsCi)

— 1.5110130813883818) x on 1“,. 1 in a

(4.3)

M") + fr,[(nc)1j(x.i)uj®—(nR)ij(x.i)t,-(x)]ds(x)- Irc(10c)ij(x,i)AuJ-('i)ds(i’)

= Ia(nR)i,-(x.8)bj(x)dsm

= 1r,[(1%(x.mT(8)-(nR)6(xmq,mIdsm-§,b(nR).,-(x.mjmrmdsm

- jrc(1tc)i3(x,i)ATo-r)ds(i') x on 1“,, 11 in a

where i=1, 2, j=1, 2, summation on repeated indices is implied, and Auj = uj’ — uf are

the relative crack surface thermal displacements.

In eqs. (4.3), we have inserted b]: — ya” and applied the divergence theorem as

shown in Appendix D. It should be noted that the right sides of eqs.(4.3) are known

functions.

4.2 Numerical Treatment

A simple numerical treatment of eqs.(4.3) is presented here in which the external

boundary is approximated by M, straight elements and the crack by Mc straight ele-

ments, as shown in Figure 2.5. Eqs.(4.3) can then be written as

Mb

c400 u,-<x> + £1] m[ (m)..- (x. 8) u,- (r) - 01R),- (x. 8) 500 ] dsa)
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Mb-I-M,

- 2 l m(neg-(x. 8) ADJ-(3‘0 ds(8)
HFMb'i'l

M!)

= 2: j mt<uc),3<x. 8) T<8)—(uR),3<x. 8) 1.18)] we
rn=1

Mb

- 2‘. l ".9199“, roam-(8m) ds(8)
m=l

M5+M,

_ Z Im(uc)i3 (X! i) ATm dsci) X on Pb

rn=Mb+1

(4.4)

Mb

8.00 + 21 ml (no),- (x. 8) u,- (8) - (nR).,-<x. 8) 4(8) ] ds(8)
rn=1

Mb+Mc

- )3 l m<nc>.,-(x. 8) Amt-(8) dso't‘)
m=Mb+1

. M.

= 2 j manager. 8)T(8) — 0:81:10. 8)q,.<8)1 dst8)
rn=1

Mb

- ZlmmRIchr. 8)7n,-(8)Tc8)ds(8)
rn=1

M.+M,

- )3 j m(1tc)i3 (x, r) AT® ds(i’) x on 1“(, .

“FMh'l'l

The displacements, tractions, displacement discontinuities, temperatures, heat fluxes

and temperature jumps on each element can be linearly approximated by

15(8) = N,(§)uj<m-l> + N2(§)uj<m> 8 an element in of 1‘b

5(8) = N1(§)tj(2m‘1) + N2(§)tj(2‘“) Y on element m of I],

AujO'I) = N1(§)Auj(m) + N2(§)Auj(m+1) i an element m of I}
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Tar) = N1(§)T(m‘l) + N2(§)r<m> 8 an element m of I‘b (4.5)

anl') = N1(§)q§2‘“‘1) + N2(§)q§2‘“) i an element in of 1],

Area = N1(§)Ar<m> + N2(§)AT"“+1) x an element in of 170

where uf‘“), tjam‘l), 517’“), “I‘m, qxszm'l), qff’“) are values at the external boundary nodal

point m (m=1,... Mb), Aufm) and A'I‘m) are values at the crack nodal point (m) (m--

Mb+2,... Mb+M,), and

N1(§) = (1—§)/2 N2(§) = (l+§)/2 -1 5 § 5 1 . (4.6)

Furthermore

if = N1(§)x(m“l) + N2(§)x(m) i on element m of I], and I‘c (4.7)

dsGt") = [(s<m> - s(“"l))/2] a: = [mm/21 dE, r on element m of Pb and I; (4.8)

where As“1 is the length of the element m.

Inserting eqs.(4.5) through (4.8) into eqs.(4.4), we obtain

Mb

C1328“) + "EM/4 [I m(1—t)(uc).,-(x<">. ed: ] aim-1’

M.

+ 2 Asm/4 [j nu(1+§)(tlc),j(x<"), gm: ] uj<m>

rn=1
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M1,

- {Elm/4 limo—4x11121188). ed: ] gem-1)

MI.

- m2:31Asm/4 [I m(l+§)(“R)ij(X(n)» §)d§ ] tjam)

M5+M¢
.

- 2 AW [1 m<1—§)<uc).,(x<“>. §)d§ 1 Aufm)

m=M5+2

M5+M,

" 2 AS"‘/4[Im(1+§)(uC).,-(x°".§)d§]13.11.0181)
IIFMb't'l

M.
= 21mm/4 [j n"(1—§)(uc)i3(x(n), §)d§ ] T(rn-l)

M.

+ 2148mm [1 m(1+§)(uc)i3(x(“), gm; 1 11m)

Mb
_ zlAsm/4 [I m(1-§)(uR)ij(x(n)’ §)'Ynj(§)d§ ] T(m-l)

M.

- Elam/4 [1 m<1+§>(uR).,-<x<“>. 8mm); 1 1~<m>

M.,+Mg

- 2‘. AW 11 m<1—§)(uc),3(x<n>. §)d§ 1 8199

rn=Mb+2

bib-0N1¢

- >3 A8741] (1+§)(uc).3<x<“>. §)d§ 1 mm»

m=Mb+1 m

M!)

- 218.994 [1 m<1—§><uR).3(x<“>. §)d§ 1 (11.2....)

M.

- 2:MM [1 m<1+I':)<uR).;.(x<“>. §)d§ 1 .199
rn=1

(4.9)

M.

11,00 + 2; Asm/4 [j m(1-§)(1cc)ij(x<“>, §)d§ 1 ufm-l)

rn=1
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M.

+ 2 Asm/4 [j m(1+§)(m)11(X‘"). E.)d§ 1 u)(...)

rn=1

M.

- 2 A9’04 [I m(1—§)(7tR)11(x("), mg 1 tjurn-1)

rn=1

Mb

_ ..EiAsmM [j m(l+§)(1tR)ij(x(n)’ 9d: 1 512,“,

Nib-1Mc

_ E4: 2ASm/4 [I m(1—§)(KC)ij(x(n)’ §)d§ ] Aufm)

rn= b...

M.+M,

._ 2 Asm/4 [1m(1+§)(fic)ij(x(“), §)d§ ] AuJ-(m’rl)

m=Mb+l

Mb

= 2 95m” U m(1‘§)(flC)13(x(“), 0d:
1 Ton-1)

rn=1

Mb

+ 2AW ll m<1+§><nc>.3(x<">. ed: ] r99
rn=1

Mb

.. z Asm/4 [I m(1-§)(nR)ij(x(n)’ gmjmmg ] T(m_1)

rn=1

M.

- 2AM [1 m<1+§qu).,-(x<n>. émj(§)d§ 1 19»

rn=1

M1,+M,

- {4; 28.1174 11 m<1-§)<nc).3(x<n>. §)d§ 1 mm)

Mg-t-M,

- )3 MW [Im(l+§)(1cc).3(x‘“’. §)d§ 1 Ar<m+l>

m=M5+1

Mb

- 2 Asm/4 [I m(1—§)(1:R)i3(x(n)’ §)d§ ] (1112”.1)

rn=1

M.

‘ 2 ASm/4 [I m(1+§)(1tR)13(x(“), mg 1 q12m)

rn=1
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where 111‘“) = uj(x(“)), it“) being the location of the external boundary nodal point 11,

(n=1, M1,), and 1.5“) = 1.161(9)), 1100 being the location of the crack element mid-

pOint 1), (n= Mb+1, ... Mb+Mc)'

Eqs.(4.9) can be written in the following matrix form:

n41—[411811311-11460

.01.}- .11....11 . 1.1. .81.}- M11}- ...11

where [UC] is 2M1, x 2M1, , [Q] is 2M1, x 2(Mc-1) , [UR] is 2M1, x 4M1, , [PC] is 2Mc

x 2M1, , [X] is 2Mc x 2(Mc-1) , [PR] is 2Mc x 4M1, , [UC13] is 2M1, x M1, , [Q13] is

2M1, x (Mc-,1) [UR13] is 2M1, x 2M1, , [PC13] is 2Mc x Mb, [X13] is 2Mc x (MC—1)

and [PR13] is 2M0 x 2Mb. '

(4. 10)

Thus

-[Q]

[F2][PC] -[I‘2][X]

[0]

{Ll-“J“ m{L}

‘ [UC131 '[Q131 {2‘} [UR13] { }

= — qn (4.11)

[F211PC13] -[l‘2][X13] T [DJIPRB]
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where, as in [76], we have defined a nodal force matrix on the crack by

1.14.1.1

where

”-1100000'

0410000

[1.2]: 0 041000
(4.13)

.0 0 000-11.  

I represents a 2x2 identity matrix, and [P2] is 2(Mc-1) x 2M?

It is well-known that one can obtain the diagonal 2x2 blocks of [UC] in eqs.(4.11)

from rigid-body considerations. If we apply a rigid-body displacement, i.e.

ujm = “112) = uj(3) = = um‘) = u (4.14)

then the body is stress-free. Thus

{Ho} {.11.}



and eqs.(4.11) reduce to

“1

n2

111

112 I

[UCF . *={0} (4.15)

u2  

so that

M
UC(21-1)(21—1) = _iUdfl-1X2j—l)

i=9
1*]

M
UC(21-1)(2i) = _iUCQi-IXZj)

1:9
1:1

(4. 16)

M

ucaixzi-I) = _iucaixzj-I)

F]

M

UCaixzi) = _iucaixzj) .

F9
per

Once eqs.(4.11) have been constructed, we must impose four conditions at each nodal

point m on F1, involving the boundary values



u1(m)’ t1(2m)’ t1(2m+1)’

uém)’ 62m), té2m+1)’

and rearrange eqs.(4.11) accordingly to obtain

.1411

where {Z} contains the unknown boundary thermal displacements and tractions on F1,

and the unknown matrix {Au}.

Once we have obtained Aui at each crack nodal point, the thermal displacement

discontinuities normal and tangential to the crack surfaces at that point are

Aun = Au1n1 + Auznz

(4.18)

Aut = Au2n1 - Au1n2

and the thermal stress intensity factors can be determined from

KIIs=0 = ’\/€EG(1+V)Aun(e)

KHI,=0 = \/%G(l+v)Aut(e)
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(4.19)

K1l=1 = -8%G(l+v)Aun(l—e)

KHIF1= %G(I+V)Aut(1—e)

where e —) 0, G, v are the shear modulus and Possion’s ratio, respectively, and 1 is the

length of the crack.

It should be noted that, for a problem involving a traction free crack, {F}={0} and

eqs.(4.11) reduce to

    

[UC] -[Q1 {1:} [UR] {I}

[13][PC] -[I‘2][X] [F21[PR]

[UC13] -[Q13] {AT} WR13] { } '

= — qn (4.20)

[F211K313] -[F2J[X13] T [FflIPRn]

 

4.3 Results

Here we employ the coupled model to find the numerical solution for a finite domain

problem.
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A rectangular plate of height 2h and width 2w contains a straight central crack of

length 2a. The surface of the crack are assumed to be free of tractions and ther-

mally insulated. Mechanical and thermal boundary conditions are shown in Figure

4.3. The crack is modeled by 20 equal elements and the external boundary is

modeled by 40 elements. In Table 4.1, the thermal stress intensity factors are

given for various ratios a/w and compared to those obtained in [57] and [61]. The

relative crack surface thermal displacements are plotted in Figures 4.4 through 4.9

for a = 8.411104, v = 0.3 and a, = 1.67x10-5.



139

 

  
 

   
 

ll x2

T==100

_II_'

h

q=0 I: 2 a :1 q=0

-X , I I <1l§ xr

h

_"_.

T = --100

| 2 W -l
 

Figure 4.3 Geometry and thermal loading for an insulated

straight central crack in a finite plate.
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Table 4.1 Thermal stress intensity factors KH/ott ET (ml/2 for an insulated straight

central crack.

 

 

a/w 0.1 0.2 0.3 0.4 0.5 0.6

Present 0.6779 2.1587 3.8875 5.7308 7.6109 9.6078

[571 0.6810 2.1643 3.8900 5.7314 7.6152 9.6190

[611 0.6790 2.1500 3.8970 5.7600 7.7200 9.6800    
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Chapter 5

Conclusions 1

An integral-equation representation for cracks in two-dimensional infinite regions

[76] has been coupled to the well-known direct boundary element method so that

cracks in finite plane bodies can be solved. The method has been further extended to

include multiple cracks, branch cracks, edge cracks, mode III loading conditions and

thermal conditions loading. In all cases, accurate results are obtained with small com- -

putational effort relative to other known methods.

In principle, this method is not confined to the classes of problems discussed in this

dissertation. It is anticipated that this new method can be extended for use in the so-

lution of thermoelasticity involving different thermal boundary conditions on the crack,

electromagnetic problems, fiber reinforced composites, crack propagation studies and

three-dimensional problems.
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Appendix A In-plane Elasticity Influence Functions

The Kelvin influence functions for plane stress can be written as in [77]

(uR),J- = [—(3—v) 611 logp + (1+v) q, qj ]/81tG 1 (a.l)

(uc).. = 12(1+v)(fi. qi-fia 93H(1—V)fi'1 qt+(3+v)fiaq2 174.11.
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(1:11),2 = [(l-v) logp + (1+v) (1,2 1x41:

(83)

(1111),, = [-(l-v) logp - (1+v) q22 1/41:

(ltR)22 = {-20 + (1+v) q1q2]/41t
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where

91:10-81 Pz=X2-3?2

p = [(x, - 8,)2 + (x2 - 8,)211’2

  

 

_ x1 ' x1 _ x2 " i2

ql p 8 C12 p

. fi - 'fi9 = arctan[ 92—1 c11.2 ]

anl + ‘12“2

(85)

(46)

(1L7)

(88)

and G, v are the shear modulus and Poisson’s ratio, respectively. For plane strain, v

must be replaced by v/( l—v).
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Appendix B Complementary Elasticity Influence

Functions

The complementary expressions for plane stress can be written as in [102]

(uR)f1= —[[(3-vv)-—llogpN+[(3—v)-2(1+V)
 

xi *

..,izlq."++2<1+v)—2,,"’—q221
p p

 

c 1

(111012“- fi1-4-i—9-4(1+V)x5:2(1102H3-VN1‘17J

(b.1)

xx22 II- II-

0192+(3-v)q1<12]
 

(uR)f1-- ——G[+4-1'i—v-6+4(1+V) p‘2

R ° -—1—- 3— -—8—-l 221+ x22 ‘24- 3— 21+ L259 *7—(u )22— mm v) 1+..ng < 11)th [( v)+( v) p.21q2]

 (uc)f1= —i;-[3(1-v)+2(1+v)q1'2+4(1+v)xizle‘a-4q2)+4(1-v)—§-q2]qn

41w p p

—2—p22qf'n,+2(l-v)—n,J

P P

        

4np'

— - 2
1 x2X2 .. . x2 e e 7‘2 _ .

p' [[2(l+V)(1-3 p.12 )91‘12‘4(1-V)-p7¢11lqn+[(1-V)—4(1+V)F]n2€lll
  

(11¢)c =

12 47:

 

     

Xziz _ 0 x2.
_ —v)+4(1+v) p‘z ]n1q2-2(l-v)?-n1]

(b.2)

             (uc)§1 = p22)q1q2-1-4[(1+v)-p——(1-v)—p-]q1]qn-2(l-v)—n1]

x22 . x25:2 1I-
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     —v)+2(l+v)q2"2-I4(1+v)x2(——-1-4qi'p22)-4(1-V)%C12]qt:(UC)° =22 41

x292

         

III- x2

q1qn1-2( l-V)7112]

+4719 9

Xziz t t X2 e

(71R)1°1-" 4—1n'129+(1+v)(1-4';r,')¢11(12'2(1-V)?<111

(8R)f2-- —[-(1-v)logp+2(1+v)fiqu+2(l+v)(1-2—)q,2+4—

p P

 

                                

  

 

  

 

  

 

(b.3)

(ltR)§1" 411: 122x22 (12.244:.‘1

c 1 x282 e e x, .
(1:11),, = T[20—(1+v)(1+4—5-)q1q2+2(1-v)-7q1]

K p p

(1tc)1°1= 62(1:+v)[2(1-8-p—-)qfq2qn'‘+(-1+4x2p:2)n,q,]

G 1 _ .
(——[(1+4+V)..,)n11195-2—,-n1(9f41.2)]
2119 p p

G 1 0 0

(750)1c2= ( +V) [’(Ql -q22)q.n—16x:1:ZFIQIQZZ’11qu2‘12”

+6 1+

( v) [4x2.201191"1292l—ZJ:H2(C112-C122)1

2193 p p

(b.4)

C G 1 O 0 0 x -x- 0 t _. 0 0

(710)21= 5:3) 1"(C112‘<122)<ltt'*'16 132': (519192131qu 2(12)]

+G 1+v

+2(“-4.,(‘191-9292)-Z—('2914919192812920]

119 p p
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  (11c),°, = -G——(1+")[--2(1+8x x—22)11,qf']
21m"

2:21“;"'*+(-1+422

p P2

+_G___(l+v)
 

 

 

     

-——[(1+422.,22)n192-2—n1(9i2-92'2)l

21w p p

where

Pi = x1 - f1 p; = -x, — i, (11.5)

p‘2 = 1312 + of (11.6)

, x -'1'1' . -x -x

,1... 1,1 92=—-2.2 (11.7)
p p

, ‘E + 2n
(in = P1 1 .P2 2 (b.8)

p

22 (11.9)

P1

and G, v are the shear modulus and Poisson’s ratio, respectively. For plane strain, v

must be replaced by v/(l-v).

The half-plane influence functions ( )h can be written as

(>h=()+()°

where ( ) are given in Appendix A
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Appendix C Anti-plane Elasticity Influence Functions

The influence functions associted with antiplane strains can be written as in [79]

 
 

 

(111033 = -§IG- logp 2 (0.1)

(UC)33 = iii-[El ql+fizqzl (C.2)

1 ..

(11R)33 = ‘31:.2 (c.3)

G _ _

(nc)33 = 31;;an q2+n2q1] (CA)

where

p = [(x1 — 2,)2 + (x, -- 2,)211’2 (c.5)

x - i x - i

91=1p1. q2= 2p 2 (c.6)

.. fi - fi

e=arc1an[22‘ ql2] (c.7)

C11221 4' 9252

and G is the shear modulus.
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Appendix D Reduction of Domain Integrals to

Boundary Integrals

Here we remove the domain integrals involving the temperature gradient. According to

the Divergence Theorem and Green’s Second Identity, i.e.

1an d8 =41]; nj ds W)

3 8f

IQGVZg - gvzt) ds = (51.11% — 115;) as «12)

the domain integral terms in eqs.(4.3) can be transformed to boundary integral terms

as follows,

I dumb-(11.211 — 111(2)] dsm)

= 191(uR11J-J(x.2wr(s)— [(uR111-(xswronJ-1 «18(2)

= Iarruwzomaw) — (uR).3(x.s)V"r(s)1 113(1) - 531—. (umijcxsmjm dson

= 531..1~,1ngin(uk)a(x.x> — (UR)13(X.X)'§;T(Y)] dsm — 531. <uR)i,-<xm,-Tm asap

= ir.-r.l<uc)13(x.i)T® — <uR)B(x.i)qn<i>1 dsm -§1~.(uR).J-(x,1)ynjrm 11(1) ((13)

where
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(amines) = V2(uR>.3<x.s) Wm) = o

(11.4)

(i) = in?) (uc) (xx) = i(11R)- (xx)
q" an ‘3 8n ‘3 °

All the problems discussed in this Dissertation involve a finite region with a crack.

The boundary I‘ consists of two parts, namely the external boundary I], and the crack .

surface I}. The upper face F: and the lower face I"; of the crack surface differ only

in their normal, so that 11"“ = - n’. We make use of the apparent relations of symmetry:

Ta) = Ni) 2:0?) = — c1361)

(<15)

(11013131.): = - (1101326.?) (uR)13'(x50 = (uR)13*(x3) .

The first integral in eqs.(d.3) can be expressed as follows,

55 r..rl(uc)a<x.i)rm - (ukwmnml «ism

= fir. [(uc)13(x.x)'r(x) - (uR)i3(x,i)qn(i)] (1302)

- §1~; [(uc)13‘(X.i)'I"(x) - (uR)i3"(x,§)qn‘(i)] d355,

‘ ér; [(UC)13+(X.X)T*(X’) - (uR)i3+(x,X)qn+(i)] dsm

= 5’?» [0103(3me - (uR)13(x.i)9n®] dsGi) - §1~¢-(uc)i3'(x,i)AT(i) (135)

= $311, [(9999.me - (uR)a<xmq.®1 dson -<51~.(uc).3<x.r)Ar(1) 111(1) . (d.6)
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Following the same approach as above, the domain integral terms in eqs.(4.3) can be

expressed as follows,

I 901111111211 — mm] dsm)

= fir,[(1tc)i3(x,x)T(x) - (nR)i3(x,')qn(i)] ds(x’) ((1.7)

- <51, (newsman dsm - 91,(nR),j<x.ijm dso-o

where

(nR11J-1(x.s)= V2(nR),3(x.s) (110,301.11 = $210,111,111 . (c181
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Appendix E Heat Transfer Influence Functions

The influence functions for plane stress can be written as in [59]

 

 

(1+v)ott

(UR)i3 '—" 8 [1+210gp]pi (6.1)

It

l+v)a,

(uc)i3 = 8n [(l+210gp)fi,+2qiqkfik] (e.2)

(1112113 = —§7;[4plé+(4vlogp - (l—v) >132]

(6.3)

(112123 = +—8‘%t(4vlogp — (l-v) >p1+4p261

(“0)13 = -‘8%[(4VP2Q1+49‘4P1P2)fil+(4V1°gP-(1-V) +4VP2Q2MP12)52]

(e.4)

(“023 = +§Y;[(4V103P’(1-V) +4VP1Q1‘4P22)51+(4VP1Q2Mé+4P1P2)fi7J

where

P1 = x1 ‘ i1 P2 = x2 ' i2 (65)

p = [(x1 — x1)? + (x2 — 5(2)211/2 (6.6)

x - i x - if‘11: 1 1’ Q2: 2 2 (6.7)
  

p p
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. fi - 'fi

6 = arctan[ Q2: (11 2 ] (e8)

(1101 + C12112

= 2031 (e 9)
2, l-v '

and G, v , a, are the shear modulus, Poisson’s ratio and thermal expansion coefficient,

respectively. For plane strain, v must be replaced by v/(l-v) and a, must be replaced

by (1+v)a,.

(ER)i3 = —G I [(UR)i3'n + (uR)k3.i3nk + TZEIJOJRMGBIH] d5

0

(e.10)

(ma = aa—nOtRm .
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Appendix F Computer Program for Matrices
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