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ABSTRACT

A NUMERICAL METHOD FOR THE SOLUTION OF PLANE
STEADY-STATE THERMOELASTIC
FRACTURE MECHANICS PROBLEMS

By

Nengquan Liu

An efficient numerical technique is developed for plane, homogeneous, isotropic,
steady-state thermoelasticy problems involving arbitrary internal smooth and/or
kinked cracks. The thermal stress intensity factors and relative crack surface dis-
placements due to steady-state temperature distributions are determined and com-
pared to available solutions obtained by other methods. In these analyses, the ther-
mal boundary conditions across the crack surface are assumed to be insulated. The
present approach involves coupling the direct boundary-integral equations to newly-
developed crack integral equations.

This new method has distinct advantages over the Finite Element Methods (FEM)
and Boundary Element Methods (BEM), since the FEM treatment requires fine dis-
cretization in the vicinity of crack tips or the use of special crack-tip elements, and the
BEM treatment requires division of the body into two regions and solution the cou-
pled problems. Both treatments require continual remeshing for crack propagation

studies.
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Chapter 1

Introduction and Background

During the last three decades powerful methods have been developed for numerical
analysis. The most popular and efficient ones are Finite Element Methods (FEM),
Finite Difference Methods (FDM), Boundary Element Methods (BEM) and coupled
techniques. In recent years, the BEM has received considerable attention for analysis
of many practical problems in science and engineering. The effort has been particularly
intense in the area of stress analysis and thermal analysis of cracks where the FEM
treatment requires fine discretization in the vicinity of crack tips or the use of special
crack-tip elements. Such an approach is cumbersome if one secks to model crack
pfopagation since the special element must move with the crack tip and continual re-
meshing is required. However, direct application of the BEM is not without problems.
The most popular approach has been to divide the body into two regions (with the
crack located along the interface of these regions) and then to solve the coupled prob-
lems. This technique suffers the same shortcomings as FEM, i.e. crack propagation
studies would require continual redefinition of the coupled regions and associated re-

meshing.

Many investigators have reported that the temperature field is disturbed and thermal
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stresses are induced if a body having cracks or rigid ribbonlike inclusions is subjected
to heat flow. The thermoelastic problem of an infinite plate with a crack [1,2] or a rigid
ribbonlike inclusion [2,3] has been considered. That of an infinite solid with a penny-
shaped crack [4,5] was also analyzed. In these analyses, the thermal boundary condi-
tions assumed at the flaw are insulation [1,3,4], prescribed surface temperature [1,5],
or prescribed heat flux across the surface [2,5]. Solutions for the corresponding exter-
nal crack problems have also been developed [6-8]. Solutions for the case in which
heat is generated at the crack, giving a temperature field symmetrical with respect to
the crack plane have been given [9]. Solutions were presented for the corresponding
temperature field [10] and the stress field [11] in a large solid containing an imper-
fectly conducting, penny-shaped crack, where the heat flux between the crack surfac-

es is assumed to be proportional to the local temperature difference.

Thermoelastic crack solutions have been developed rapidly because of various techni-
cal applications. Solutions were presented for the thermal fracture problem of a uni-
form heat flow disturbed by an insulated circumferential edge crack in an infinite circu-
lar cylinder of finite radius [12], in an infinite cylindrical cavity [13], and in an infinite
spherical cavity [14-16]. In these analyses, the surface of the crack and the cylinder
or the cavity are assumed to be insulated and the heat flow is perpendicular to the
crack surface. The heat conduction problem is first reduced to that of solving a singu-
lar integral equation of the first kind. Next, by the use of the potential of thermoelastic
displacement, the thermoelastic problems reduced to the isothermal elastic problem of
solving a similar singular integral equation, in which the solution of the integral equa-

tion for the first heat conduction problem appears as a known function.

In recent years there has been great interest in the calculation of thermal stress in the
neighborhood of a crack in the interior of an elastic solid, mainly because of its impor-
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tance in the theory of brittle fracture. Most of the work has been concerned with
stcady thermal stress problems, but a few transient thermal stresses in an elastic
solid having a crack have been considered. Solutions have been obtained for the tran-
sient thermal stress field in a semi-infinite body containing an edge crack [17] and
containing an internal crack [18-20]. Solutions have been given for the transient ther-
mal stress problem involving a circumferentially cracked hollow cylinder [21], in an
edge-cracked plate [22] and in a thin plate with a Griffith crack [23-24]. However, in
[17,21,22], it was assumed that the thermal disturbance in the vicinity of the crack
may be neglected. In [23], it was assumed that the surface temperature at a crack is
prescribed and there was a heat exchange by convection from the flat surfaces. In
[24), the elastic medium was assumed to be cooled by time- and position-dependent

temperature on the external crack surfaces.

Many thermal stress problems for isotropic, transversely isotropic, orthotropic and
anisotropic bodies containing many kinds of cracks have been treated. Any linear ther-
moelastic problem of an infinite isotropic medium can be resolved into symmetrical
and antisymmetrical problems by the method of dual integral equations [4-5]. The
steady thermal problems of a transversely isotropic materials with a penny-shaped
crack [25-28] and with an annular crack [29] have been investigated. The transient
thermoelastic crack problem in a transverse isotropic infinite solid with an annular
crack has been developed [30], where the crack was subjected to time- and position-
dependent heat absorption and heat exchange on the crack surface. The antisymmer-
trical thermoelastic stress problems of an orthotropic plate containing a pair of central
cracks [31] and a single central crack [32] were investigated. The symmetrical ther-
mal fracture problem of an orthotropic plate containing a pair of coplanar central cracks
was presented [33]. For anisotropic materials, the thermal and elastic properties
were described for metallic substances [34] and for composite materials [35].
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The early BEM work to solve steady-state thermoelasticity went back to [36-37].
The approach consisted of two steps. In the first step, the boundary element formula-
tion of steady-state heat conduction was employed to determine the surface tempera-
ture and heat flux distribution. In the second step, the resulting temperatures were
applied as body forces in an elastostatic BEM to obtain deformation and stress. Gen-
ecral properties of the steady-state temperature field were exploited to transfer the
thermal body force domain integral to surface integrals involving the known boundary
temperatures and heat flux. Thus, the entire two step process required only surface
discretization. A collection of fundamental solutions were presented, in both Laplace
transform and time domains, under the classifications of coupled, uncoupled, transient
and quasistatic thermoelasticity in [38-42], but there was no numerical implementa-
tion. Tanaka and Tanaka [43] presented a reciprocal theorem and the corresponding
boundary element formulation for the time-domain coupled problem, but kernal func-
tions were not discussed and no numerical results were included. Later, the formula-
tion used by Tanaka et al.[44-46] required the evaluation of a domain integral. Not
only is the calculation of domain integrals undesirable, but also such schemes require
that special care be taken when evaluating the integral close to the singularity. Chau-
douet [47] again resorted to the volume-based approach, while Masinda [48] and
Sharp and Crouch [49] have made efforts for transferring the thermal body force do-
main integral to a surface integral. Masida presented some formulations for three-di-
mensional problems, but stopped short of attempting an implementation. On the other
hand, Sharp and Crouch developed an approach for two-dimensional quasistatic ther-
moelasticity using time-dependent Green’s functions, but domain integrals were used
in the time marching algorithm. Banerjee et al. presented the boundary element formu-
lation in 2D for transient ground water flow [50], steady-state heat conduction [51]
and time-dependent thermoelasticity [52]. Those of transient thermoelasticity were

developed in [53-54]. Among these papers, domain discretization was completely



eliminated in [52-54].

Several attempts have been made to determine thermal stress intensity factors
(TSIFs) [1,43,55-61]. Among these developments, Sladek et al. [43] determined
TSIFs for various line cracks by employing BEM. Sumi [57] obtained the TSIFs for
Griffith cracks with steady temperature distribution in finite rectangular plates by us-
ing the modified mapping collocation method. Thereafter, Emmel et al. [58] applied
the FEM to the same model as Sumi’s and compared his numerical solutions with
Sumi’s. Sladek et al. [59] transformed area integral for body force term in BEM to
line integral and calculated the TSIFs for edge cracks. Lee et al. [60] determined the
TSIFs for cusp cracks in infinite bodies by using a complex variable approach. Lee et
al. [61] computed the TSIFs for the same model as Sumi’s in finite bodies as well as
cusp cracks in infinite bodies by using BEM with the linearized body force term.

The application of the BEM for solving boundary value problems with body forces,
time dependent effects or certain classes of non-linearities generally lead to integral
equations which contains domain integrals [62]. Although these integrals do not in-
troduce any new unknowns they detract from the elegance of the formulation and af-
fect the efficiency of the method as integrations over the whole volume are required.
Hence, a substantial amount of research has been carried out to find a general and ef-
ficient method of transforming domain integrals into equivalent boundary ones. The
approaches which have so far been proposed can be divided into four groups. The first
approach, the Dual Reciprocity Method, was developed in [63,64] and later extended
to a variety of problems [65,66]. It has been shown that the Dual Reciprocity Method
permits one to solve a wide range of problems and is very accurate [67-69]. The sec-
ond approach was based on the expansion of the source term into a Fourier series to

deal with potential and elasticity problems [70]. It has also been successfully applied
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for solving neutron diffusion problems [71]. The third approach was the use of particu-
lar solutions which can convert domain integrals into boundary integrals. This tech-
nique offers some specific advantages over the previous approaches in some specific
applications [72]. The Multiple Reciprocity Method can be thought of as an extension
of the idea of Dual Reciprocity Method. However, instead of approximating the source
term by a set of coordinate functions, a sequence of functions related to the fundamen-
tal solution is introduced [73,74]. The Multiple Reciprocity Method is essentially dif-
ferent from the Dual Reciprocity Method. While the latter applies the same fundamen-
tal solution throughout the process of transformation of domain integrals into bound-
ary integrals, the Multiple Reciprocity Method uses increasingly higher order
fundamental solutions. The fourth approach, the method of particular integrals, was
presented in [75]. The method was the use of particular integrals which is based on
the well-known concept of developing the solution of an inhomogeneous differential
equation by means of a complementary solution and a particular integral. This com-
pletely general approach does not require any volume or additional surface integration
to solve the general body force problem.

In Chapter 2, the crack integral-equation representation developed in [76] is coupled
to the direct boundary-element method and applied to finite plane bodies containing
internal cracks and edge cracks. The method is developed for in-plane (modes I and
II) loadings only. In Chapter 3, the technique is adapted to mode III problems involv-
ing internal cracks. In Chapter 4, the method is extended for application to steady-
state thermal fields disturbed by internal insulated cracks in finite plane regions. The
numerical tredunent is quite straightforward, yet the results are shown to be extreme-

ly accurate.



Chapter 2

Mode I and Mode II Crack Problems

2.1 Internal Cracks

Recent attention has been focused on the development of integral-equation representa-
tions of cracks which can be coupled to the well-known boundary-integral equations
for the treatment of cracks in finite bodies. In [80,81], a crack integral-equation
representation is written in terms of the crack surface tractions. The unknowns in this
representation are the dislocation densities along the crack line. While this formulation
is shown to be quite effective for curved cracks, the equations are shown to be invalid
when the crack contains a kink. In [82-84], a crack integral-equation representation is
written in terms of the resultant forces along the crack line. It is shown that, unlike the
previous formulation, this one can handle kinked cracks. However, the unknowns in
this representation are still the dislocation densities. Since these densitics are singular
at the crack tips and weakly-singular at kinks, a rather cumbersome numerical treat-

ment is required.

The crack integral-equation representation presented in [76] contains, as unknowns, the
displacement discontinuities along the crack line. Since these are zero at crack tips and
continuous at kinks, the numerical treatment of these equations need be no more com-

plicated than the treatment of the boundary-integral equations themselves.

In this section, the crack integral-equation representation developed in [76] is coupled
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the direct boundary-integral equation method with a novel "displacement-discontinuity"
representation of the internal and edge crack. It is shown that the analysis of such
complex crack geometries is straightforward with this technique and several examples

are reported to demonstrate method accuracy.

2.1.1 Theoretical Development

Consider an infinite isotropic elastic plane in which there is a point, X, at which some
"source” of stress is located and a point, x, at which the stresses are to be computed.
At each of these points, we will be referring to internal "surfaces", as shown in Figure
2.1, described by unit normals i and n, respectively, and we will employ the follow-

ing influence functions:

(uR)ij(x, X) = the displacement in the i direction at x due to a unit force applied in
the j direction at X in the infinite plane,
(uc);(x, X) = the displacement in the i direction at x due to a unit displacement
discontinuity applied in the j direction at X in the infinite plane,
(nR);;(x, X) = the value of =; at x due to a unit force applied in the j direction at X
' in the infinite plane,
(mc);;(x, X) = the value of =; at x due to a unit displacement discontinuity applied

in the j direction at X in the infinite plane,
where ; are stress functions defined such that the stress components are

am, __m S m _0m @.1.1)

=l
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The influence functions are given in the Appendix A.

A plane elastic region £, with external boundary I'y,, containing an internal piece-wise
smooth crack I, as shown in Figure 2.2, or an internal piece-wise smooth branch
crack or multiple cracks composed of I';; and I'y,, as shown in Figures 2.3 and 2.4,
respectively, is loaded by prescribed tractions t; on some part of the external boundary
and prescribed displacements u; on the remainder of the external boundary. Then the
direct boundary-integral equations and the integral equations developed in [76] can be

coupled as follow.

For a single smooth or kinked crack:

ci(X) uj (%) = f(uR);;(x, %) §(X) ds(X) — fr(uc); (x, ) v;(®) ds(X)
+ f, (uc)y (x, %) Auy(X) ds(x) x on Ty
(2.1.2)
mi(x) = P {mR)(x, X) {(X) ds(X) — fr(mc)(x, ) u;(X) ds(¥)

+ [, (me)yx, %) Auy(X) ds(®) x on T,

For a branch crack or multiple cracks:

c®) uj(x) = f(uR);(x, X) (%) ds(¥) — P (uc); (x, X) u;(X) ds(X)

2
+2f; . (uc);; (x, X) Au;(X) ds(X) x on I
k=1

m(x) = $(mR)(x, B) 4 ds(X) — f(ne)(x, 1) (%) ds(¥)
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Figure 2.2 Plane elastic region containing a crack.
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Figure 2.3 Plane elastic region containing a branch crack.
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Figure 2.4 Plane elastic region containing multiple cracks.
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2
+ 3 [, (me)yi(x, ) Auy() dsD) x on T 2.13)
k=1
(%) = §(TR)(x, X) () ds(®) — P (re)y(x, ) ui(®) ds()

+ if r, (@)%, %) Au;(X) ds(X) x on Iy,
=1 '

In egs.(2.1.2) and (2.1.3), i=1, 2, j=1, 2, summation on repeated indices is implied, and

Au; = uj” — uj* are the relative crack surface displacements.

2.1.2 Numerical Treatment

2.1.2.1 A single smooth or kinked crack

A simple numerical treatment of eqs.(2.1.2) is presented here in which the external
boundary is approximated by M, straight elements and the crack by M, straight ele-

ments, as shown in Figure 2.5. Eqs.(2.1.2) can then be written as

M,
c;;(x) ui(x) = ,.E‘l J [ @R)(x, B) () — (ue) (x, D) uj(®) ] ds®)

My+M.

+ 3 [_(uo)y(x, D) Aui(®) ds(x) x on T
m=My+1

(2.14)

M,
m® = 3 [ [ @R D) () ~ (o) (x, T u; (0 ] ds(x)
m=1
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Figure 2.5 Discretized plane region containing a discretized crack.
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My+M,
+ X [ me)y(x, %) Au®) ds(®) x on T, .

m=M,+1

The displacements, tractions and displacement discontinuities on each element can be

linearly approximated by

uy®) = N1(§)uj(m‘l) + N2(§)uj(’“) X on element m of I

4®) = NyEte™D + Ny @™ X on element m of T (2.1.5)
Aui®) = Ny (€)Au™ + Ny(&)Auf™D X on element m of T,

where u(™, t(2m), t{2™*1) are values at the external boundary nodal point m (m=1, ...

M), Auj(m) are values at the crack nodal point m (m=M+2, ... My+M,), and

N, ) = (1-9)2 Na(§) = (1+8)12 -1sE<1 . 2.1.6)
Furthermore
N;(&)x™ D 4+ N,(E)x(™ X on element m of Iy,
x= @.17)
Nl(é)x(m) + N2(§)x(m+1)

X on element m of I'; or I',

[(s t(,m) -5 t(,m--l))/2] d& = [As{™/2] dE X on element m of I
ds(X) = (2.1.8)
(™Y — s¢™)2] d& = [AsP/21 d§ ¥ on elemeent m of Ty or Ty
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where As)" is the length of the external boundary element m and As[" is the length of

the crack element m.

Inserting eqs.(2.1.5) through (2.1.8) into eqs.(2.1.4), we obtain

M,
cfPu® = 3 Asfvd [ (1-E)uR)(x™, §)dg ] 12D

m=1
M,

+ ):lAss'm [ (1+E)(uR);(x™, £)dE ] 2™
W 1

- zlAs.',“M [ (1-5)uo)yx®, &g ] uD
M,

= T AsfA [ (14E)(ue)y(x®™, £)E ] uf™
m=1

My+M,
+ X AsPia(f m(l-f;)(uc)ij(x("), &)dg ] Auf™

m=M,+2

My+M -1

+ X Aspiaff m(1+§)(uc)ij(x("), EXIE ] Aufm+D

m=M+1

(2.1.9)

M,
= zlAsgnm (f m(l—g)(uR)i,-(x(n), E)dg ] gD
M,
+ T A4 1] (HEERKE, A ] 1
M,
- T A4 [ _(1-D(m)ya®, g ] uf™D
m=1
M,
- T A [f(1+0m);a®, g 1 uf™
m=1

My+M,
+ X AsPA L] _(-B)me)yx®, §)E ] Auf™

m=My+2



b
W

{0

rrt
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My+M-1
+ % APAL[ (B@O, EE ] AufmD

m=M,+1

where u{® = y;(x™), x™ being the location of the external boundary nodal point n,
(n=1, ... M), and & = m,(x™), x™ being the location of the crack element mid-point
0, (= Mgtl, ... MyM,).

Eqs.(2.1.9) can be written in the following matrix form:

af J-ofe]-onf )
SERCRENORE

where [UC] is 2M, x 2M, , [Q] is 2M;, x 2(M-1) , [UR] is 2M,, x 4M,, , [PC] is 2M_
x 2M, , [X] is 2M, x 2(M~1) and [PR] is 2M; x 4M,,

(2.1.10)

Thus

[0]
(T2(PR] (1]

N K G R

where, as in [76], we have defined a nodal force matrix on the crack by

[[IPC] —TalX]
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(e} o}

where
(-1 1. 000 0 0]
0O-I TO0OO0OOO
[0 0 000-TT1.

I represents a 2x2 identity matrix, and [I5] is 2(M.~1) x 2M..

2.1.2.2 A branch crack or multiple cracks

A simple numerical treatment of eqs.(2.1.3) is presented here in which the external
boundary is approximated by M, straight elements and the branch crack or multiple
cracks by M.;, M, straight elements, as shown in Figures 2.6 and 2.7, respectively.
Eqgs.(2.1.3) can then be written as

M,
c(X) yy(x) = ,El J [ @Ry (x, ) 4 = (uc)y (x, %) u; (@) ] ds@)

My+Mo
+ X[ @o)yx T Au) ds(o

m=M,,+l
MytM+Mgtl

+ Y ] (ue)y(x, ©) Ay®) ds®) x on T,
m=My+M.+2 m

M,
(x) = 21 [ [ @R (x, B) 00 — (me)y;(x, ©) u; (®) ] ds(®)
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crack element m

boundary

element m

M, 1

LS|

>

Figure 2.6 Discretized plane region containing a discretized branch crack.
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/

crackelement m M

-— boundary
clement m
m-1
My+M; +Mp+2
M, .
1
-

Figure 2.7 Discretized plane region containing discretized multiple cracks.



MM,
+ ¥ [ _(me)y(x, %) Auy(®) ds(®) 2.1.14)

m=M|,+l

MM +M+1
+ ¥ _(me)ii(x, X) Auy(X) ds(%) xon T
m=M|,+Md+2

M,
mi(x) = 21 [ [ @R (x, %) () = (10)y; (x, ) uj (D) ] ds(®
m=

MM,
+ X[ (mo)yx %) Au®) ds®)

m=Mb+1
My+My+M g+l

+ X Im(m)ij (x, X) Au;(X) ds(X) xonT.
m=My+M,+2

The displacements, tractions and displacement discontinuities on each element can be

linearly approximated by
y(X) = N1(§)uj('“’l) + N2(§)uj(“‘) X on element m of ',
4® =N 1(§)tj(2““l) + N2(§)tj(2"‘) X on element m of T (2.1.15)

Ayi®) = Ny (§)Au™ + Np(§)Auf™D X on element m of Ty or I,

where u{™), &), (™1 gre values at the external boundary nodal point m (m=l, ...
M,) and Au{™ are values at the crack nodal point m. For multiple cracks, m=My+2, ...
Mp+M,; » Mp+M;1+3, ... Mp+M+M,+1. For a branch crack, m=My+2, ... My+M,; ,
My +M_ 42, ... MM M+,
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Furthermore
N;(B)x™ D 4 Ny(&)xm X on element m of I'

X= . (2.1.16)
N ©x™ + Ny E)x™*D X on element m of T;; or Iy

[(s{™ - s{™1)2] dE = [AsP/2] dE X on element m of T}

ds(¥) = 2.1.17)

[(s&™D - s8)2] dE = [AsP72]1 € 5 on element m of I,yorT,

where As{" is the length of the external boundary element m and As® is the length of

the crack element m.

Inserting eqs.(2.1.15) through (2.1.17) into egs.(2.1.14), we obtain

M,
i = T AP [f [ (-DR, ) 2D
M, '
+ X A4 [ (4R, E)dg ] 2™
m=1
M,
= T AP [ (1) (uc)y(x®, E)E ] ufmh)
m=1

M,
- uEIAsglm i] (1)), E)E ] uf™

MytM,

+ X AP (1-9)(c)yx®, AL ] Au™

m=My+2

My+Mg-1
+ X AP [ (HE)@e)x®, §)dE ] AufmD

llFMﬂ'l
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MMy +M+1

+ X AsPAlf _(1-9)(uo)x™, §)dE ] Auf™
ln=M|,+Md+2
MytM,+My

+ Y AsPALf (+E)(uo)yx®, B)AE ] AufmD

m=My+My+2

M,
o™= FAs/a[f _(1-B@R)(x®, §Hdg ] ¢#m Y

m=1
M,

+ X Asf4 [f ( I+E)(RR);(x™, E)dE ] 2™
m=1
M,

- Taspialf (- me)yx®, £)dg ] uf™ Y
m=1

M,
= T as4 [ (1+me)yx®, 8 1 uf

MM,
+ % AP ] (1-E)me)®, E)E ] Au™

HFM|,+2
M|,+M¢1—l

+ Y AsMA[[ (14E)me)y(x™, E)dE ] Auf™D (2.1.18)
m=M+1 m

My+M+Mg+l

+ Yy  AsMa [j' m(l_g)(m)ij(x(n), E)E ] Auf™
m=My+M+2
My+tM+Mea

+ X AsPaf (1+R)me)yx®, EdE ] Ay™Y

m=My+M, +2

M,
m=1
M,
+ T Asga [ o 1+E)(RR);(x™, E)dE ] 12
m=1

M,
- ElAsf‘M [f _(1-D@e)yx®, &)t ] u™D
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M,
- uél Asf/4 [I m(l+§)(1tc)ij(x(“), E)dE ] uj(m)

My+My
+ 3 A4 (1-B)me)yx®, ) ] Auf™

m=M.,+2
M5+M¢1—1

+ Y AsMaA[f (1) me);x™, E)AE ] AulmD
m=My+1 m
My+M+M+1

T A | m(]—e;)(nc)ij(x(n), &)dg ] Auf™
m=My+M+2
M5+M°1+M¢3

+ z As™4 U m(l %)(m)ij(x(n)’ E)dE ] Auj(m+l)

m=Mp+M+2

where uj(“) = uj(x(")), x™ being the location of the external boundary nodal point n,
(n=1, ... Mp), and ©{™ = m;(x™), x™ being the location of the crack element mid-
point n. For multiple and branch cracks, n= My+l, ... My+M,;, MgtM+2, ..
My+M.;+M+1. In addition, for a branch crack, we add a nodal point n= My+M;+2 .

Eqgs.(2.1.18) can be written in the following matrix form:

wofs} -0 |- o ]
wof -}l )emnf ofe]
ref -t ) - ]}



For multiple cracks, the matrices in eqs.(2.1.19) have the following dimensions:

[UC] is 2M,, x 2M, , [Q] is 2My, x 2(M-1) , [Q;] is 2M,, x 2(M5-1) , [UR] is 2M,,
x 4M, , [PC] is 2M,; x 2M, , [X] is 2M,; x 2(M;=1) , [X;5] is 2M; x 2(M-1) ,
[PR] is 2M,; x 4M,, , [PC,] is 2M, x 2M,, , [X,;] is 2M,, x 2(M-1) , [X,] is 2M,,
x 2(M5-1) , [PR] is 2M,, x 4M,, , and

b =

(1]

For a branch crack, the matrices in eqs.(2.1.19) have the following dimensions:

[UC] is 2M, x 2M, , [Q] is 2M, x 2M.,~1) , [Q,] is 2M, x 2M,, , [UR] is 2M, x
aM, , [PC] is 2M_; x 2M, , [X] is 2M,; x 2(M 1) , [X,,] is 2M,, x 2M_, , [PR] is
2M¢l X 4Mb ’ [PCl] is 2(Mc2+1) X 2Mb ’ [X21] is 2(M°2+1) X 2(Mcl—l) N [X7J is

[ AuM#2) )
Ag™Me+d)

| Au(Mb"'Md) )

Au(Mb+Mel+3)

AgMoMartMort1)

. 7
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n(Mb"'l )
u(Mb+2)
n(Mb+3)

n(Mtﬁ'Ma )

-

2M,+1) x 2M,, , [PR;] is 2(M,+1) x 4M, , and

LN

s

[ aMitMat2) )
MtMat3)

MMt MrtD)
- J
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(Mp+1)
My+2) T
ot mow2)
Au ZMstd)
Au! =1 < U . ’ e
{ } Ay™MMut]) { 2 MetMuch)
Au MeMa)
e
(My+M1+3) o
Au aMstMat3)
Auz =1 . > nz = 3 i >
\ Au(Mb+Md+Md+l) J n(Mﬁ’M‘ﬁ'Mdi-l)
Thus
[UC] —[Q] -[QI] u [UR] [0] [0] t

[CIPC]  -TIX]  -TalXpp) [jAu’r = | [MPR] M [0 F' ¢
[T][PCy] —Tyl[Xy] —Iy][Xs] LAu

[

[[y](PR,1 [0 [ |{ F?

(2.1.20)

where, as in [76], we have defined nodal force matrices on the crack by

e
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(2.1.21)
where
(-1 T 000 0 O]
0-IT0O0O0O
Mh=(ry=|% 011000 (2.122)
[0 0 000 -II)

and I represents a 2x2 identity matrix. For multiple cracks, [I’;] is 2(M;—1)x2M,; and
[Ty] is 2(M-1)x2M,,. For a branch crack, [I';] is 2M;x2(M;+1) and [T3;] is
2Mx2(MgH1).

For multiple cracks, the matrices in egs.(2.1.21) have the following dimensions:

, F(Mwl- 2) 9 , N
F(M" +3) F(Mb*'Muﬂ)
{#}=1 T {#}=1 I -
F(Mb+Mel+Mcz+1 )
| FMetMa) ) \ ]
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For a branch crack, the matrices in eqs.(2.1.21) have the following dimensions:

FMst2)
My+3
FMs+3) FMstMa+2)
: FMytM.1#3)
{Fl}=1 FMyMus1) [ {Fz}ﬂ L
: L F(Mb+Mel+Md+ 1) J
FMutM,)

For a branch crack, we need to employ continuity conditions and equilibrium condi-

tions, i.e.
Auj(M'%+l) = Auj(M"+M“+2) (2.1.23)
Fj(M'+M“‘+1) _ Fj(M‘+M“+l) + Fj(M'+M“+2) . (2.1.24)

It is well-known that one can obtain the diagonal 2x2 blocks of [UC] in egs.(2.1.11) or
(2.1.20) from rigid-body considerations. If we apply a rigid-body displacement, i.e.

ufP=uP=u®= ... =u™ =y,
(2.1.25)
u=uP=u= ... = o =y,

then the body is stress-free. Thus



and egs.(2.1.11) or (2.1.20) reduce to

U
Uz
U

u2
uch . ’={o}

L3
Uy

so that

Uc(2i—l)(2i—l) = _%Uc(ﬁ-l)aj—l)
Fl
i
. M, e
UCE-D@D = _FyCc@-1Xa)

Fl
g

M
UC@X2-D < _SIyCEN-D)
=
Pl
UC2iN2) = _%Uc(ﬁxzj) .

Fl
i

(2.1.26)

(2.1.27)
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Once eqs.(2.1.11) or (2.1.20) have been constructed, we must impose four conditions

at each nodal point m on Iy involving the boundary values

u l(m)’ t {Zm)' t f2m+1 )’
u ém), t éZm)’ t §2m+l )’

and rearrange eqs.(2.1.11) or (2.1.20) accordingly to obtain

wf2)-{s] ‘

where {Z} contains the unknown boundary displacements and tractions on I’y and the

unknown matrix {Au}.

Once we have obtained Auy; at each crack nodal point, the displacement discontinuities

normal and tangential to the crack surfaces at that point are

Au, = Aun; + Au,n,
(2.1.29)
All‘ = AUZHI - Au1n2

and the nondimensional stress intensity factors can be determined from

Kl = '\/ 8leG(1+v)Au,,(e)/o~JE£
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Kyl = \/ %G(lw)Au,(e)/oﬁE

(2.1.30)

Kl = —;—tgG(lw)Aun(l—e)/mlﬁ

Kgl = -%G(lw)Au,(l-e)/ml’ia

where € = 0, G, v are the shear modulus and Possion’s ratio, respectively, 1 is the

length of the crack, ¢ is a reference load, and a is a reference length.

It should be noted that, for a problem involving a traction free crack, {F}={0} and
eqs.(2.1.11) or (2.1.20) reduce to

1 {A“} { } 2.1.31)
[TIPC]  ~{T,)IX] [C,PR]
or
[uq -Q] -1Q] u [UR]

—

[LIPC] —[RIIX]  -[FX;,) JAult=| [[L[PR] {t} (2.1.32)
T2lPCi] —Ta)lXa] —T2)(Xo] ||Au?| | Tal(PR] |

respectively.
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2.1.3 Results

Here we employ the coupled model to find numerical solutions for some finite domain
problems.

1.  Straight crack.

In all straight crack problems, the crack is modeled by 12 elements and the exter-
nal boundary is modeled by 40 elements. The crack discretization is shown in
Figure 2.8. The stress intensity factors, normalized with respect to oVma, as
shown in eqs.(2.1.30), are calculated and are compared to those obtained in [84].

a) Straight central crack in a rectangular plate subjected to uniform uniaxial

tensile stress.

A rectangular plate of height 2h and width 2b contains a central straight
crack of length 2a. A uniform uniaxial stress, ¢, perpendicular to the crack
direction, acts over the ends of the plate as shown in Figure 2.9. In Table

2.1, the stress intensity factors are given for various ratios of a/b and h/b.

b) Straight central slant crack in a rectangular plate subjected to uniform uniax-

ial tensile stress.

A rectangular plate of height 2.5b and width 2b, containing a crack of length
2a, is subjected to a uniform uniaxial stress ¢ at the ends. The crack is
located centrally at an angle 7y to the direction of ¢ as shown in Figure 2.10.

In Tables 2.2 through 2.4, the stress intensity factors are given for various
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Ola cach+ A48a each +.Ola each
— >

€ = 0Ola

Figure 2.8 Discretization for a straight crack.
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Figure 2.9 Geometry and loading for a straight central crack in a finite plate.



36

Table 2.1 Stress intensity factors for a straight central crack in a finite plate.

K; (hWb=1.0) K; (h/b=0.4)
a/b
Present | Ref. [84] || Present | Ref. [84]

2 1.07 1.07 1] 1.25 1.25
3 1.12 1.12 1.51 1.52
4 1.21 1.21 1.83 1.84
5 1.31 1.32 2.24 224
6 1.47 1.47 Jl 2.80 2.80
7 1.67 1.67 " 3.66 3.66
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Figure 2.10 Geometry and loading for a straight central slant crack in a finite plate.
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Table 2.2 Stress intensity factors for a straight central slant crack in a finite plate, ¥=22.5°.

K| Ky
a/b Present Ref. [84] || Present Ref. [84]
8 | .148 148 356 358
2 154 .160 367 .366
3 164 164 386 .367
4 “ .180 .180 413 .390
S 187 188 425 404
6 .200 200 439 416

Table 2.3 Stress intensity factors for a straight central slant crack in a finite plate,

*=45.0°.

K Kn
a/b || Present | Ref. [84] || Present | Ref. [84]
1 500 500 .500 500
2 S13 513 506 502
3 534 538 S18 S10
4 550 550 522 S22
S 610 618 535 538
6 616 .606 551 551




Table 2.4 Stress intensity factors for a straight central slant crack in a finite plate,

¥=67.5°.

39

Ref. [84]

351

351

356

0.958

374

374

1.003

377

.369

1.118

388

.380
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ratios a/b and various angles ¥.

Kinked crack.

In the kinked crack problems, both stress intcnsity factors and relative crack sur-

face displacements are reported. The material properties selected G, v, are given

in the following descriptions.

a)

b)

c)

Symmetric V-shaped crack in a square plate.

This example involves a symmetric V-shaped crack in a square plate sub-
jected to pure shear stress as shown in Figure 2.11. Each straight crack seg-
ment is modeled by 22 elements of equal length and the external boundary
is modeled by 72 elements. In Figures 2.12 and 2.13, the relative crack sur-
face displacements are plotted for G/0=78.85, v=0.3.

Non-symmetric V-shaped crack in a square plate.

This example involves a non-symmetric V-shaped crack in a square plate
subjected to uniform uniaxial tensile stress as shown in Figure 2.14. Each
straight crack segment is modeled by 12 elements of equal length and the

external boundary is modeled by 72 elements. In Figures 2.15 and 2.16, the
relative crack surface displacements are plotted for G/6=76.92, v=0.3.

Z-shaped crack in a rectangular plate.

The first example involves a Z-shaped crack in rectangular plate subjected to
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Figure 2.11 Geometry and loading for a symmetric V-shaped crack
in a finite plate.
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Figure 2.14 Geometry and loading for a non-symmetric
V-shaped crack in a finite plate.
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a uniform uniaxial tensile stress at one end and a sliding support on the
opposite end as shown in Figure 2.17 and the second example involves
uniaxial tensile stress as shown in Figure 2.18. The middle straight crack
segment is modeled by 20 elements of equal length and each of the two
other segments are modeled by 5 elements, as shown in Figure 2.19. The
external boundary is modeled by 90 elements. In Figures 2.20 and 2.21, the
relative crack surface displacements for the first example are plotted. In
Tables 2.5 and 2.6, the stress intensity factors for the two examples are

reported and compared to those obtained in [81,85] for G/0=78.85, v=0.3.

Multiple cracks.

In the multiple crack problems, both stress intensity factors and relative crack

surface displacements are reported. The material properties, G, v, are given in the

following descriptions.

a)

Two equal length collinear cracks in a square plate subjected to uniform

uniaxial tensile stress.

A square plate contains two equal length collinear cracks of length 2a. A
uniform uniaxial stress, ©, acts at the ends as shown in Figure 2.22. Each
straight crack segment is modeled by 9 equal elements and the external
boundary is modeled by 40 elements. In Table 2.7, the stress intensity fac-
tors are given for various ratios 2a/b and compared to those obtained in

[86-88]. (G/o = 4., v = 0.25)
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25 X1
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Figure 2.17 Geometry and loading for a Z-shaped crack in a finite plate, case 1.
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Figure 2.18 Geometry and loading for a Z-shaped crack in a finite plate, case 2.
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Figure 2.19 Discretization for a Z-shaped crack.
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Table 2.5 Stress intensity factors for the Z-shaped crack of Figure 17 in a finite plate.

|| Kp Kp | Km Km

Present 4516 | .321 | 4.410 | .363

E

Ref. [81] || 4.502 | .325 | 4.397 | .405

Ref. [85] || 4.555 | .335

Table 2.6 Stress intensity factors for the Z-shaped crack of Figure 18 in a finite plate.

Present 4.592 | .382

Ref. [81] || 4.600 | .410
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2b L]

Figure 2.22 Geometry and loading for two equal-length collinear cracks
in a finite plate.



Table 2.7 Stress intensity factors for two equal-length collinear cracks in a finite
plate.

Present Ref. [86] Ref. [87] Ref. [88]

Kia Kp Kia Kp Kia Kp Kia Km

1 1.0049 | 1.0049 | 1.0054 | 1.0053 || 1.0051 | 1.0044 || 1.006 | 1.005

2 1.0219 | 1.0200 |f 1.0223 | 1.0215 | 1.0223 | 1.0188 [ 1.023 | 1.021
3 1.0540 | 1.0480 || 1.0524 | 1.0497 [ 1.0548 | 1.0458 || 1.056 | 1.048
4 1.0999 | 1.0900 || 1.0989 | 1.0919 [ 1.1066 | 1.0885 || 1.106 | 1.088

S 1.1780 | 1.1500 | 1.1679 | 1.1521 | 1.1825 | 1.1508 | 1.181 | 1.142

6 1.2800 | 1.2339 || 1.2699 | 1.2368 || 1.2871 | 1.2361 || 1.290 | 1.220

g 1.4270 | 1.3500 || 1.4269 | 1.3603 || 1.4274 | 1.3488 | 1.450 | 1.340

8 1.6779 | 1.5600 | 1.6926 | 1.5663 || 1.6244 | 1.5052 || 1.680 | 1.560

9 2.2694 | 2.1102 || 2.2777 | 2.1195




b)
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Two equal length offset cracks in a rectangular plate subjected to uniform

uniaxial tensile stress.

A rectangular plate of height 15. inches and width 4.5 inches, containing
two equal offset cracks of lenght 0.8 inches, is subjected to a uniform uniax-
ial stress o at the ends as shown in Figure 2.23. Each straight crack segment
is modeled by 9 equal elements and the external boundary is modeled by 24
elements. In tables 2.8 through 2.11, the stress intensity factors are given for
various angles a and compared to those obtained in [89]. (G/o = 1.257, v =
0.38)

A straight crack and a kinked crack in a rectangular plate subjected to uni-

form uniaxial tensile stress.

A rectangular plate of height 15. inches and width 4.5 inches, containing
two cracks, is subjected to a uniform uniaxial stress G at the ends as shown
in Figure 2.24. Each straight crack segment is modeled by 5 equal elements
and the external boundary is modeled by 24 elements. In Table 2.12, the
stress intensity factors are given for various distances h. (G/o = 1.257, v =

0.38)

Branch crack.

In all branch crack problems, each straight crack segment is modeled by 6 ele-

ments and the external boundary is modeled by 40 elements. The stress intensity

factors, normalized with respect to 6Vra, as shown in eq.(2.1.30), are calculated

and are compared to those obtained in [90]. (G/c = 4., v = 0.25)



Fig
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Figure 2.23 Geometry and loading for two equal-length offset cracks
in a finite plate.
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Table 2.8 Stress intensity factors for two equal length offset cracks in a finite plate,

tip A.
" Present ]I Ref. [89]

o | K - Kprperimental | | experimental | g pumerical | K numerical

0 1_.30 0.03 1.22 0.04 1.35 0.02
15 || 1.20 | 0.21 1.18 0.31 1.31 0.15
30 || 097 | 0.50 0.94 0.49 0.95 0.52
45 || 0.70 | 0.60 0.64 0.59 0.79 0.65
60 || 0.42 | 0.60 0.36 0.56 043 0.68
75 || 0.13 | 0.51 0.14 0.45 0.11 0.54
90 || 0.09 | 0.25 0.09 0.28

Table 2.9 Stress intensity factors for two equal length offset cracks in a finite plate,

tip B.
|| Present Ref. [89]

o || K Ky Kpxperimental | g experimental | g pumerical | mumerical

0 || 1.40 | 0.20 1.47 0.16 1.39 0.22
15 || 1.18 | 0.25 1.19 0.17 1.18 0.30
30 | 1.02 | 0.50 1.10 0.44 0.95 0.52
45 || 0.65 | 0.60 0.70 0.58 0.64 0.61
60 || 0.36 | 0.60 0.38 0.68 0.34 0.56
75 || 0.10 | 0.40 0.10 0.58 0.11 0.39
90 | 0.01 | 0.20 0.06 0.33 0.00 0.13




Table 2.10 Stress intensity factors for two equal length offset cracks in a finite plate,
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tip C.
" Present || Ref. [89]
o || Ky - Kpwerimental | g experimental | g pumerical | g numerical
0 (| 1.40 | 0.20 ﬂ 1.42 0.21 1.39 0.22
15 || 1.27 | 0.21 1.30 0.20 1.27 0.22
30 " 1.25 | 0.19 1.27 0.19 1.22 0.19
45 lL1.16 0.14 1.14 0.14 1.18 0.14
60 (| 1.14 | 0.10 1.14 0.08 1.14 0.10
75 || 1.10 | 0.05 1.08 0.05 1.11 0.05
90 " 1.06 | 0.03 1.05 0.08 1.08 0.02

Table 2.11 Stress intensity factors for two equal length offset cracks in a finite plate,

tip D.
Present Ref. [89]

o | K - Kpperimental | g experimental | g pumerical | g gumerical

0 || 1.30 | 0.03 1.28 0.00 1.35 0.02
15 || 1.27 | 0.01 1.28 0.00 1.25 0.00
30 || 1.20 | 0.01 1.18 0.01 1.21 0.01
45 || 1.16 | 0.01 1.16 0.04 1.18 0.01
60 (| 1.14 | 0.01 1.15 0.06 1.14 0.00
75 || 1.10 | 0.00 1.06 0.02 1.12 0.01
90 (| 1.00 | 0.00 1.10 0.02 1.09 0.01
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Figure 2.24 Geometry and loading for a straight crack and a kinked crack
in a finite plate.
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Table 2.12 Stress intensity factors for a straight crack and a kinked crack in a finite

plate.

h | Kia Kiia K Kip | Kic Kic | Kp Kip
0.02 || 1.1099 | 0.9021 ‘=2.0836 0.0114 | 0.8068 | 2.2328 | 0.0536 | 0.1832
0.04 || 1.1176 | 09140 | 2.0811 | 0.0148 | 0.7997 | 2.0923 | 0.0614 | 0.1764
006 || 1.1250 | 09241 | 2.0784 | 0.0169 | 0.7948 | 1.9731 | 0.0681 | 0.1704
0.08 || 1.1321 | 0.9330 | 2.0756 | 0.0183 | 0.7901 | 1.8756 | 0.0736 | 0.1652
0.10 || 1.1386 | 0.9407 | 2.0727 | 0.0191 | 0.7852 | 1.7973 | 0.0779 | 0.1607
0.12 " 1.1447 | 09475 | 2.0696 | 0.0196 | 0.7800 | 1.7351 | 0.0811 | 0.1568
0.14 || 1.1504 | 09534 | 2.0664 | 0.0198 | 0.7745 | 1.6862 | 0.0834 | 0.1535
0.16 || 1.1556 | 0.9586 | 2.0630 | 0.0197 | 0.7689 | 1.6486 | 0.0849 | 0.1508




a)

b)
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A central symmetrically-branched crack in a square plate subjected to uni-

form uniaxial tensile stress.

A square plate, i.e. h=w, éontains a branch crack. A uniform uniaxial stress,
G, acts at the ends as shown in Figure 2.25. In table 2.13, the stress intensity
factors are given for various angles a. In Figures 2.26 and 2.27, the relatve
crack surface displacements are plotted. In Table 2.14, the stress intensity

factors are given for various ratios 2a/w.

A central symmetrically-branched crack in a rectangular plate subjected to

uniform uniaxial tensile stress.

A rectangular plate contains a branch crack and is subjected to uniform
uniaxial tensile tensile stress ¢ at the ends as shown in Figure 2.25. In Table

2.15, the stress intensity factors are given for various ratios h/w.
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Figure 2.25 Geometry and loading for a branch crack in a finite plate.
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Table 2.13 Stress intensity factors for a branch crack in a finite plate, h/w=1.0,
2a/w=0.5.

Present Ref. [90]

10 | 0.87 | 0.61 0.12 087 | 062 | 0.12

20 || 092 | 0.58 0.24 092 | 058 | 0.24

30 | 0.90 | 0.49 0.35 091 | 050 | 035

45 | 0.87 | 0.33 0.50 0.87 | 033 | 0.50

60 [ 0.82 | 0.12 0.52 0.81 | 0.12 | 0.52

70 | 0.77 | -.08 0.50 077 | -08 | 0.50
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Table 2.14 Stress intensity factors for a branch crack in a finite plate, a=45°, h/w=1.0.

Present Ref. [90]

J0 || 069 | 031 0.32 069 | 031 | 0.32

25 || 073 | 032 0.34 074 | 031 | 0.34

40 | 0.81 | 0.32 0.41 0.81 | 032 | 0.41

S0 || 087 | 0.33 0.50 0.87 | 033 | 0.50

60 | 093 [ 0.35 0.60 093 | 035 | 0.60

Table 2.15 Stress intensity factors for a branch crack in a finite plate, a=45°,
2a/w=0.5 .

08 || 099 [ 0.38 | 0.55 || 1.00 | 0.38 | 0.55

10 || 0.87 | 0.33 | 0.50 {| 0.87 | 0.33 | 0.50

1.2 || 0.80 | 0.31 | 0.43 | 0.80 | 0.31 | 0.43

1.6 | 0.74 | 0.30 | 0.40 “ 0.74 | 0.30 | 0.40

20 |[ 0.71 | 0.30 | 0.38 [lO.?l 0.30 | 0.38

24 || 0.70 | 0.30 | 0.37 ﬂOJO 0.30 | 0.37




2.2 Edge Cracks
2.2.1 Theoretical Development

A plane elastic region €, with external boundary I"' = I'y; + I'y,, containing a piece-
wise smooth edge crack I'; , as shown in Figure 2.28 or a piece-wise smooth edge
branch crack, I';; and 'y, as shown in Figure 2.29, is loaded by prescribed tractions t;
on some part of the external boundary and prescribed displacements u; on the
remainder of the external boundary. Then the direct boundary-integral equations and
the integral equations developed in [76] can be coupled as follows.

For a single edge crack:

c5®) u; () = [ [ @R} (x, ) (00 ~ @) (x, X) u®)] ds(X)
+| r‘(uc)i‘j'(x, X) Auy(X) ds(x) x on Iy,
2.2.1)
m(x) = [ [ @R, X) (%) — Re)F(x, X) u(%)] ds(X)

+ [ (mo)fx, T Ay(%) ds(x) x on T,

For an edge branch crack:

¢y® v () = [ [ AR (x, B 4@ — (o) (x, T) (X) 1ds(®)

2
+ 3 [, Ok x, 1) Au®) ds(®) x on Ty
k=1
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Figure 2.28 Half-hlane elastic region containing a single edge crack.
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Figure 2.29 Half-plane elastic region containing an edge branch crack.
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) = [ [ @R, B 400 - @R, B w0 ds®)

2
+ 3 [ ®ohx, X) Ayi(X) ds(®) x on I, 2.22)
=1 =

m(x) = [ [ @R, %) (%) — (e)(x, %) ui(X) Jds(®)

2
+3f r, (O, X) Au(X) ds(%) x on I,
k=1

In egs.(2.2.1) and (2.2.2), i=1, 2, j=1, 2, summation on repeated indices is implied,

Au;

;= uy” — u;* are the relative crack surface displacements, and =; are stress functions

defined such that the stress components

on on
0'11=—_l' , On=“ﬁ ’ ()'12"—""‘_1'=ﬂ . (2.2.3)

It was shown in [91,92] that the half-plane fundamental solutions ()* can by
represented by adding a complementary part ( )° to the well-known two-dimensional

Kelvin solutions ( ) as follows:

@R)H(xX) = (@R);(xD) + WR)S(x.X)
(UE)(x,%) = (uC)y;(x,K) + (uc)§(x.%)

(2.2.4)
(RR)(x.X) = (TR);(xX) + (RR)F(x.%)

@OIX) = (M) (xX) + (MO
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The Kelvin fundamental solutions and the corresponding complementary expressions
are given in the Appendix A and Appendix B, respectively.

2.2.2 Numerical Treatment

2.2.2.1 A single edge crack

A simple numerical treatment of eqs.(2.2.1) is presented here in which the external
boundary is approximated by M, straight elements and the crack by M, straight ele-
ments, as shown in Figure 2.30. Eqs.(2.2.1) can then be written as

M,
0y = 3, [ TR (x, ) (%) — (ue) (x, X) v (X)] ds(x)

Mb'l'M‘
+ [ @e)} (x, %) Aui(®) ds(®) x on Ty

m=M+1

(2.2.5)

M,
mex) = X[ _[@R) (%, %) ) — (re)f (x, X) v (®)] ds®
m=2

My+M, L
+ X I () (%, X) Auy(X) ds(X) x on I, .

m=M.+l

Following the same procedures as in previous section, egs.(2.2.5) become

M,
oo = 3 asfa [ (=R}, g ]y
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Cfack
ement m

c

Figure 2.30 Discretized half-plane region containing
a discretized single edge crack.
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M,

+ ZZAS{,"M [ _(@RIB™, B)E ] 1
M,

- APl (18 o)fx™, §)dE ] uf™
m=2

M,
- T Asfva If _(1+E)(we)f®, §)E 1 uf™
m=2

MM,
+ X AsA[] (1-E)uc)hx®, EXE ] Au™
m=M.,+1 m

M+M-1

+ % APl (+DEOIE®, HE ] Aufm+D

m=M bt 1

(2.2.6)

M,
W= 3 a5 []  (A-DERJ, g ] ¢
M,
+ 3 Asa [ _(1+D@ERFED, Bk ] 12
m=2
M,
- 3 AsPi4 I _(1-B)m)BE®, E)E ] uf™D
m=2
M,
- ,E’a As/a [ _(1+8)me)i(x®, §dE ] uf™

MyM,
+ 3 APl (-9, E)E ] Auf

m=My+1
My+M -1
+ X AsPialf (+Rmo)ix®, §)dE ] AufD

m=My+1

where u{™, t#, @™1) are values at the external boundary nodal point m (m=1, ...
M), Au{™ are values at the crack nodal point m (m=My+1, ... Mp+Mo); uf™ = ux®),
x® being the location of the external boundary nodal point n, (n=1, ... My), and n{® =
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m(x®™), x™ being the location of the crack element mid-point n, (n= My+l, ...

M,+M,), in addition, we add a nodal point n= My+1.

Eqgs.(2.2.6) can be written in the following matrix form:

ol -
el

where

(2.2.7)

[UC] is 2M, x 2M,, , [Q] is 2M, x 2M_ , [UR] is 2M; x 4M,~1) , [PC] is 2(M+1) x
2M,, [X] is 2(M+1) x 2M_ and [PR] is 2(M+1) x 4(My~1).

Thus

[0]
[T2](PR] (1]

oy e

where, as in [76], we have defined a nodal force matrix on the crack by

(1))

[PC]  —TLlX]
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where
-1 1 000O00O
0-I TO0OOO0O
[Tyl = 0 0O-ITOOO (2.2.10)

00 000-IT
I represents a 2x2 identity matrix, and [I'5] is 2M, x 2(M+1).
2.2.2.2 An edge branch crack

A simple numerical treatment of eqs.(2.2.2) is presented here in which the external
boundary is approximated by M, straight elements and the cracks by M, M., straight

elements, as shown in Figure 2.31. Egs.(2.2.2) can then be written as

M,
400 w0 = 3 f [ RIJx, 3 00 ~ (el (x, 1 0080 s

My+Mqg
+ X [ _@e)yx, %) Au®) ds)

m=Mb+l

My+tM+M+1
+ X [ o)l x %) du®) ds®)
m=My+M,,+2

M,
me) = X[ [ @R &, 0 ) = (1e);*(x, X) v; (0] ds(X)
m=2

My+My

+ 3 [ mofx %) Ay® ds® @2.11)

m=M+1

M+M+Mg+1
+ Y [ @ofe %) Ay® ds) x on Iy

m=M,+M;+2
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Figure 2.31 Discretized half-plane region containing
a discretized edge branch crack.
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M,
me) = [ [ @R &, %) 40 - me)f %, ) ;)] ds(®)
m=2

My+Mo
+ 3 [ @0 %) Au®) ds(X)

m=M,+1

M5+M¢1+Ma+l
+ ¥ [ @Ofx %) Ay®) ds) x on T,.
m=My+M,+2

Following the same procedures as in previous section, egs.(2.2.11) become

M,
ofuf® = 3454 [f | (-DERJE™, g 1 4D
M,
+ ):zAsé"M [ Q+OERFE®, £)dE ] ¢*™
M,
- Tasfvaf (-8 ofe®, £)dg ] uf™
m=2
M,
= TAspra [ _(1+8) o)™, E)dE ] uf™
m=2

My+Mqy
+ T AsPAlf_(-Buode®, &g ] Auf™

m=M,+1

My+M -1

+ % APl (1HEORE®, B ] AufmD

m=M,+1

My+M+Mg+1
+ X APl (1-B)uo)fx™, §)dE 1 Au™

m=My+M+2
My+M, +Mo,

3 APAL (D)W, Bt ] Auf™D
m=My M +2 m

M,
W= 3 A (] A-DERJx, Bt o
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M,

+ AP [ HDERJED, B)E ] of2m
m=2
M,

- Y As™4 | J’ m(l—ﬁ)(nc)i'j‘(x(n). §)dg ] “j("“l)
m=2

M,
- T asa [f  (+me . D ] ™

My+M
+ i Asl/4 [ m(l-g)(nc)i}’(x@), E)E ] Auf™ (2.2.12)

m=M,+1

My+M -1
+ Y APAf(1)@R®, §)E ] Auf™D

m=M,+1
MytMatMtl
+ X AsPalf (1-9me)ix®, 8dg ] au™

m=My+M;+2
My+tMg+Mq
+ Y AsPAlf (+8)me)ix®, EdE ] AuD

m=My+My+2

M,
w0 = T asa ] A-DERHE, DAt 1 12
M,
+ Taspa [ (@R, §dg ] e
m=2
M,
- Taspralf (1-Dme)fx®, £dg ] ufh
m=2

M,
- 3 A [ (D @BE®, O 1 uf™
m=2 m

M;+M,,
+ % asPa (] (1-H@EHE®, B ] Auf™

m=My+1

Mbﬁ'Md-l

+ Y AP (1+E)mo)f®, E)E ] AufmD
m=M+1 m
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MytM+Mg+l
+ Y Asraff m(l-ﬁ)(nc)i'j‘(x(n), &)dg 1 Auf™
m=My+M,,+2
My+M+M

+ X APl ()me)Ix®™, §)E ] AufmD
m=My+M,;+2

where uj(“‘). tj(z“", tj(z'“”) are values at the external boundary nodal point m (m=l, ...
My), Au{™ are values at the crack nodal point m (m=My+1, ... MytM,; , My+M 42,
we MptM1+M,+1) ; uj(“) = uj(x(")), x®™ being the location of the external boundary
nodal point n, (n=1, ... My), and &® = m;(x™), x™ being the location of the crack ele-
ment mid-point n, (n= My+1, ... Mp+M;, Mp#tM 42, ... Mp+M+Mo+1), in addi-

tion, we add two nodal points n= My+1, My+M_;+2.

For an edge branch crack, we need to employ continuity conditions and equilibrium

conditions, i.e.

AuMMD gy MM (2:2.13)

Fj(M'+M""+l) _ Fj(M"+M"‘+l) + Fj(M"+M°'+2) . (2.2.14)

Then, egs.(2.2.12) can be written in the following matrix form:

wofs -0 - e} unf |
S S Y BN 1 B 6
v - ) o ]



where
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[UC] is 2M, x 2M, , [Q] is 2M, x 2M,, , [Q,] is 2My x 2M,, , [UR] is 2M, x
4My-1), [PC] is 2(M+1) x 2M, , [X] is 2(M+1) x 2M, , [X5] is 2(M,,+1) x
2M,, , [PR] is 2(M+1) x 4My=1) , [PCy] is 2(M+1) x 2M, , [X,,] is 2(M,+1) x
2M,, , [X,] is 2(M,+1) x 2M_, and [PR,] is 2(M_+1) x 4(M,-1).

Thus
[UC) -Q] -Q] u [UR] [0 (0]
[[APC]  —[IIX]  —[FX),] [{Au! PR} [0 [0] [yF' ¢
| [T2)PCy] —(T][X] —T](X;] | Au? _[I' ,J[PR,] (01 (] - F?
(2.2.16)
where, as in [76], we have defined nodal force matrices on the crack by
(o -l
(2.2.17)
[#}omofe}
(-1 T 000 0 O]
0-I T 0000
[Tyl = [Ty] = f’ ? f‘ I f’ f’ f’ 2.2.18)
00 000-1T1.
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I represents a 2x2 identity matrix, [I}] is 2M x2(M,+1), and [T] is
2Mp;x2(Mo+1).

It is well-known that one can obtain the diagonal 2x2 blocks of [UC] in eqs.(2.2.8) or

(2.2.16) from rigid-body considerations, as in the pfevious section.

Once eqs.(2.2.8) or (2.2.16) have been constructed, we must impose four conditions at

each nodal point m on I'y, involving the boundary values

uf™, 2w, fem),
uf®, g, gD,

and rearrange eqs.(2.2.8) or (2.2.16) accordingly to obtain

wf2)-{s]

where {Z} contains the unknown boundary displacements and tractions on I, and the

unknown matrix {Au).

Once we have obtained Ay; at each crack nodal point, the displacement discontinuities

normal and tangential to the crack surfaces at that point are
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Alln = Aulnl + Au2n2

(2.2.20)
Aut = Allznl - Aulnz
and the stress intensity factors can be determined from
Kl = \/ 8££G(1+v)Au,,(e)
Kyl = \/ %G(lw)Aut(e)
(2.2.21)

Kile =\ gz Gl1+V)Au01-€)

Kyl = :—GG(I-l-v)Aut(l-e)

where € — 0, G, v are the shear modulus and Possion’s ratio, respectively, and 1 is the

length of the crack.

2.2.3 Results

Here we employ the coupled model to find numerical solutions for some finite domain
problems.



b)

c)
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Single edge crack in a rectangular plate subjected to uniform uniaxial tesile

stress.

A rectangular plate of height h and width w with a single edge crack of length a
is loaded by a uniform tension acting over an intcrval of length L. The total force
acting on the interval is denoted by constant o, as shown in Figure 2.32. The
crack line is modeled by 20 equal elements and the external boundary part I'y; is
modeled by 45 equal elements. In Tables 2.16 and 2.17, the stress intensity fac-
tors, normalized with respect to oVa, are given for various ratios of a/w and L/w

and compared to those obtained in [93-96].

Single slanted edge crack in a rectangular plate subjected to uniform uniaxial ten-

sile stress.

A rectangular plate of height 2.5w and width w, containing a single slanted edge
crack of length a, is subjected to a uniform uniaxial tesile stress G at the ends.
The crack is located eccentrically a distance w from one end and inclined at an
angle B towards the other end, as shown in Figure 2.33. The crack line is
modeled by 25 equal elements and the external boundary part I'y; is modeled by
45 equal elements. In Table 2.18, the stress intensity factors, normalized with
respect to oVra, are reported for various ratios a/w and various angles B and

compared to those obtained in [84].

Single edge crack in a rectangular plate subjected to mixed mode loading.

A rectangular plate of height h and width w with a single edge crack of length a

is subjected to a unit uniform tensile stress 6 at one end and a sliding support on
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Figure 2.32 Geometry and loading of a rectangular plate with a single edge crack.
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Table 2.16 Stress intensity factors for a single edge cracked plate under uniform tension.

a'w 0.1 0.2 0.3 04

present  [93] present [93] present [93] present [93]
1.0 1.22 1.23 1.48 1.49 1.83 1.85 2.30 2.32
D.9 1.41 1.43 1.70 1.72 2.10 2.13 2.64 2.67
D.8 1.65 1.67 1.98 1.99 242 245 3.01 3.05
D.7 1.93 1.95 2.28 231 2.80 2.82 3.45 3.48
D.6 2.29 2.31 2.66 2.70 3.21 3.25 3.90 3.95
D.5 2.75 2.78 3.16 3.19 3.73 3.76 443 4.48
D.4 3.34 3.38 3.75 3.76 427 432 5.00 5.03
D.3 4.05 4.09 440 443 4.87 492 5.52 5.57
D.2 4.84 4.88 5.13 5.16 5.50 5.54 6.10 6.13
D.1 5.60 5.64 5.82 5.88 6.12 6.16 6.61 6.68

Table 2.16 Stress intensity factors for a single edge cracked plate under uniform tension.

aw 0.5 0.6 0.7 0.8
IL/W present  [93] present [93] present [93] present [93]
1.0 2.99 3.01 4.11 4.15 6.34 6.40 11.2 12.0
.9 3.41 3.45 4.68 473 7.18 8.22 12.8 13.4
.8 3.88 3.91 5.28 5.31 8.00 8.05 144 14.8
.7 4.36 4.40 5.90 5.92 8.85 8.88 15.9 16.2
.6 4.9 493 6.50 6.54 9.66 971 17.1 17.6
.5 5.45 5.48 7.15 7.17 10.45 10.50 18.6 19.0
.4 6.00 6.03 7.73 7.78 11.33 11.40 20.0 204
.3 6.52 6.57 8.35 8.39 12.14 12.20 21.2 21.8
.2 7.10 7.12 9.00 9.01 12.96 13.00 22.8 23.2
.1 7.61 7.67 9.60 9.65 13.84 13.90 240 24.7

Table 2.17 Stress intensity factors for a single edge cracked plate under uniform tension,
L/w=1.0.

L/W=1.0
h/w present [93] [94] [95) [96]
D.125 1.28 .- 1.26 1.27 1.299
D.150 1.35 - 1.30 1.34 1.362
0.200 1.48 1.49 1.40 1.48 1.505
D.300 1.83 1.85 1.67 1.82 1.867
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Figure 2.33 Geometry and loading of a rectangular plate
with a single slanted edge crack.
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Table 2.18 Stress intensity factors for a single slanted edge cracked plate.

L/w B =45° B=67.5°
present [84) present [84]

Kj/oWta Kp/ofta Kj/o/ma Kp/ota| Ky/ota Kp/ota Ky/ota Kyy/ovta |
0.30 | 0.89 0443 0.89 0.443 | 143 0342 143 0.342
p.35 | 0.95 0472 095 0473 | 1.58 0370 158 0.370
0.40 | 1.01 0.502 1.02 0.504 1.76 0.402 1577 0.404
D.45 | 1.08 0534 110 0.536 | 1.99 0.440  2.00 0.441
D.50 | 1.20 0.570 1.20 0.571 2.27 0.491 2.28 0.494
D.55| 1.30 0.608 132 0.612 | 2.60 0562  2.62 0.565
D.60 | 1.40 0.658 143 0.662 | 3.03 0.658  3.06 0.662
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the other opposite end as shown in Figure 2.34. The crack line is modeled by 30
equal elements and the external boundary part I'y; is modeled by 46 equal ele-
ments. In Table 2.19, the stress intensity factors are calculated and compared to

those obtained in [97-99].
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Figure 2.34 Geometry and loading of a rectangular plate with a single edge crack.
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Table 2.19 Stress intensity factors for a single edge cracked plate as shown in Figure
2.34.

present [97] [98] [99]

K; 32.6 34.0 33.20 33.1
Kq 4.38 4.55 450 4.36




Chapter 3

Mode III Crack Problems : Internal Cracks

3.1 Theoretical Development

Consider an infinite isotropic elastic plane in which there is a point, X, at which some
"source" of stress is located and a point, x, at which the stresses are to be computed.

We will employ the following influence functions associted with antiplane strains:

(uR)s3(x, X) = the displacement in the x; direction at x due to a unit force applied
in the x5 direction at X in the infinite plane,

(uc)y3(x, X) = the displacement in the x3 direction at x due to a unit displacement
discontinuity applied in the x3 direction at X in the infinite plane,

(nR)33(x, X) = the scalar ®3 in the x5 direction at x due to a unit force applied in
the x5 direction at X in the infinite plane,

(rc)s3(x, X) = the scalar ;3 in the x3 direction at x due to a unit displacement

discontinuity applied in the x5 direction in the infinite plane,
where 7; is a stress function defined such that the stress components are

O13 = '3’%, Oy =- '?—;:31- (3.1

92
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The influence functions are given in the Appendix C.

In Figure 2.2, suppose that I'; represents a crack, the surfaces of which are subjected

to equal and opposite traction t3(s) given by

t3 =— ( Oy3n; + Oxny )

oy dx; N on; dx;
aX2 ds axl ds

=-(

drm;

=——= (3.2)

A plane elastic region Q, with external boundary I'}, containing an internal piece-wise
smooth crack I';, as shown in Figure 2.2, or an internal piece-wise smooth branch
crack or multiple cracks composed of I';; and I';y, as shown in Figures 2.3 and 2.4, is
loaded by prescribed tractions t3 on some part of the external boundary and prescribed
displacements u; on the remainder of the external boundary. Then the direct
boundary-integral equations and the crack integral equations developed as in [76] can
be coupled as follows.

For a single smooth or kinked crack:

c3(x) u3 (®) = §(uR)3;3 (X, X) t3(X) ds(@) — Py {uc)s3 (x, X) u(X) ds(®)
+ [, (wC)g3 (%, ©) Aus(®) ds(®) x on Ty (33)
m3(x) = $(TR)33(x, X) 3(%) dsCX) — f(Rc)3(x, 1) uy(X) ds(X)

+ [, (@)3(x, ©) Aug(X) ds(x) x on T, .
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For a branch crack or multiple cracks:

c3(x) uz (x) = ﬁrguR)g_o, (x, X) t3(X) ds(X) - ﬁrguC)sg (x, X) u3(X) ds(X)

2
+ erek (uc)33 (x' Y) Au3(x) dS(Y) X Oon I‘b
k=1

m3(x) = §(TR)33(X, X) t3(%) ds(X) — $;(nc)s3(x, X) u3(X) ds(X)

2
+ ZI r,, ()33(x, X) Aus(X) ds(X) x on Iy (3.4)
k=1

300 = $(MR)33(x, %) t3(%) ds(X) — §(mc)33(x, %) u3(X) ds(¥)

2
+ 3, (@C)33(x, ) Aug(X) ds(®) x on T,
k=1

In eqgs.(3.3) and (3.4), Au; = uy — ug is the relative crack surface displacement in the

x3 direction and c; is a coefficient which depends on the smoothness at x on I,
3.2 Numerical Treatment

3.2.1 A single smooth or kinked crack

A simple numerical treatment of eqs.(3.3) is presented here in which the external
boundary is approximated by M, straight elements and the crack by M, straight ele-
ments, as shown in Figure 2.5. For this model, egs.(3.3) can then be written as

M,
c3(0) u3®) = X [ [ (@R)33 (%, %) t3 () = (uC)s3 (x, %) u3 ) ] ds(®)
m=1
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M+

M,
+ X [ _(ue)s(x, X) Auy() ds(®) x on T,
m=M,+1 m

(3.5)

M,
(x) = Z_[m[ (R)33 (x, X) t3(X) — (1C)33 (X, X) u3 (X) ] ds(X)
m=1

My+M,
+ X Im(nc)ss (x, X) Aux(X) ds(X) x on I, .

m=M.,+l

The displacements, tractions and displacement discontinuities in the x5 direction on

each element can be linearly approximated by

u3(X) = N;E)uf™ D + Ny(E)uf™ X on element m of I,
t3(X) = N,(i)téz'“'l) + N2(§)t§2"‘) X on element m of I, - (3.6)
Aus(X) = N (E)Auf™ + N,(§)Auf™D) X on element m of I,

where u§™, {2, t{2™*1) are values at the external boundary nodal point m (m=1, ...

M,), Au§™ are values at the crack nodal point m (m=My+2, ... My+M,), and

Ni©®) = (1-5)2 Ny(E) = (1+5)/2 ~1<E<1 . 37
Furthermore

N (E)x™D 4 Ny(&)x™ X on element m of T,
x= (3.8)

Ny (E)x™ + NpE)xt+D) X on element m of I,
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[(s t(,m) -5 Igm—l))/z:l dE = [As®/2] dE X on element m of I,
ds(x) = 3.9
(™D - sf™)2] dE = [As2] dE X on element m of ',

where Asy® is the length of the external boundary element m and As" is the length of

the crack element m.

Inserting eqs.(3.6) through (3.9) into eqs.(3.5), we obtain

M,
cfuf = ¥ Aspv4 [f m(l—?,)(uR)33(x(“), E)dE ] tf2m D
m=1
M,
+ T Asra [ (+E)uR)5x®, E)E ] 1™
m=1
M,
= T Asfa [ (1-8)uc)n(x®™, &g ] uf™ D
m=1
M,
- T AP/ [ (140)(ue)z(c®™, &L ] uf™
m=1

M+M,
+ 3 AP (1-)uc)(c®™, £)dE ] Auf™

m=M+2

MM -1

+ Y AsPAT(1+E)(uc)5E®, dE ] Auf™)

m=M.,+l

(3.10)

My
o= a5 (], A-DERe, it ]
My
+ T A4 [ _(1+D)@ER)5E®, E)E ] ™
m=]

M,
= ZAsPia [ (1-0)me)zax, £ ] wfr~D
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M,
- ZlAs{,“M [f (1) (Re)53(x®, ) ] uf™

My+M,

+ ¥ AsMa|f m(l-g)(uc)33(x<">, E)dE ] Auf™
!FM5+2
M5+M¢—1

X APl (1+)me)5&®, §E ] Auf™D

m=M+1

where uf® = u3(x®), x® being the location of the external boundary nodal point n,
(n=1, ... Mp), and T{® = m3(x™), x®™ being the location of the crack element mid-

point n, (n= My+1, ... My+M,).

Eqgs.(3.10) can be written in the following matrix form:

ol o on
) fomfo} o

where [UC;] is MgxMy, [Qs] is Myx(M.~1), [UR;] is Myx2M,, [PC3] is MxMy, [X3]
is M_x(M_~1) and [PR,] is M_x2M,,

(3.11)

Thus

[URs] (0]
(I51(PR;] (1]

t3

(3.12)

[UG;] -[Qs] u3
(I51[PCs]  —(I3][X3]

All3 F3
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where, as in [76], we have defined a nodal force matrix on the crack by

{ F, } = [1"31{ s } (3.13)

where
(-1 1 000 0 0]
0 -110000

ra=| 0 011000 =
0 0 0 00 -11]

and [T3] is M~1) x M,.

3.2.2 A branch crack or multiple cracks

A simple numerical treatment of eqs.(3.4) is presented here in which the external
boundary is approximated by M, straight elements and the branch crack or multiple
cracks by M., M., straight elements, as shown in Figure 2.6 and Figure 2.7, respec-

tively. Eqs.(3.4) can then be written as

M,
c3x) u®) = T [ [ (R)33(x, %) t3 (@) = (uC)s3 (x, X) u3 () ] ds(®)
m=1

M,+M,

+ Y Im(uc)ss (x, X) Auz(X) ds(X)
m=My+1
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My+M+M+1
+ > n(Uc)33 (%, X) Aug(X) ds(®)  xon T,

m=M+M,+2

M,
mm) = X[ [ @R)3;3 &, %) t3®) = ()33 (x, X) u3 (%) ] ds(®)
m=1

My+tMqy .

+ 3 f_me)(x %) Auy(®) ds(x) (3.15)
m=M,+1
MytM+M+l

+ 2z Im(m)33 (x, X) Auz(X) ds(X) xonT
m=M|,+M‘1+2

M,
M) = X[ [ @R)53 (X, %) t3(%) = ()3 (x, X) u3 (0 ] ds(®)
m=1

MMy
+ X [ (@) (x, %) Auy(®) ds®)

m=M+1

My+M+M+1
+ 3 [ (m0)5(x, %) Aug(®) ds(X) xonTy,.

m=M,+M+2

The displacements, tractions and displacement discontinuities in the x; direction on

each element can be linearly approximated by

u3(®) = N;j(E)uf™ D + NyE)uf™ X on element m of I,
(%) = Ny E)2™ D + Ny(Epef™ X on element m of I, (3.16)

Auy(®) = N;(E)Auf™ + Ny(E)Auf™D X on element m of T, or T,

where uf™, t{Z, ¢{2m*1) are values at the external boundary nodal point m (m=l, ...
Mp) and Auf™ are values at the crack nodal point m, For multiple cracks, m=My+2, ...
MytM,; , MgtM 143, ... My+M+Mo+1. For a branch crack, m=My+2, ... Myz+M; ,
Mp+M 142, ... MgtM +M o+,
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Furthermore

N (E)x™D 4 N, (E)xm™ X on element m of ',
X= (3.17)
Ni@x™ + N QxmD X on element m of ', or ',

[(sf™ — s{™1)2] dE = [Asi2] dE X on element m of I,
ds(X) = (3.18)
(™D = s¢)12] d& = [As{21 & 5 on element m of [ orT,

where Asy" is the length of the external boundary element m and As;" is the length of

the crack element m.

Inserting egs.(3.16) through (3.18) into eqs.(3.15), we obtain

M,
cfPuf® = ZlAs,;“M [f m(l—g)(uR)_,,_,,(x("), &)dg 1§21
M,
+ T AsP [ (1+E)uR)zx™, BE ] 1f*™
m=1
M,
= T AP ([ (1-E)ue)s(x®™, £)dg ] uf™D
m=1

M,
= T A4l (+E)ue)z(x®™, E)dg ] uf™
m=1

MM,

+ X AP (1-5)(uc)ix®, E)E ] Auf™
m=M,+2

My+M-1
+ X Asta(f m(l+§)(uc)33(x(“), E)dE ] Auf™D

m=M.,+l
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MytM+M+1

+ Y AsMA[f (1-8)uc)yx™, E)E ] Auf™
ﬂl=Mb+Md+2 m

MM, +M,

+ X APAf (148)uc)p®, §dE ] Aug™ D

ﬂFMb'f'Md +2

M,
" = ElAsl',“M [f _(1-)@R)53x™, £)dE ] ¢f*™
M,
+ T A4 [ (HDER)5&®, §)IE ] 2
m=1
M,
- T as4 [f (-0, g ] ™

M,
- 3 A4 [ _(1+E)m)5®, ) ] uf™
m=1

Mgﬁ'Mu

+ X APALf(D)m0)5nx®, §AE ] Auf™

m=My+2
My+M -1
+ X AsPa(f m(1+§)(nc)33(x<">, E)dE ] Auf™D (3.19)
m=My+1
MytM+M+1
+ X AsPiAf (1-8)me)p*®, §)dE ] Auf™
m=My+M,,+2
M|,+M¢1+M¢3
+ X AT (1+8)Me)s(®, £)dE ] Auf™

m=My+M+2

M,
o = 3 As4 [ _(1-E)ER)5x, E)E ] tf2D
m=1
M,
+ T A (] (BRI, B ] o2

M,
- ZlAs{,"M [f _ (1-8)(me)zs(x ™, E)E ] uf™D
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M,
- ZlAs{,“M [f (148 (me)33(x®, EE ] uf™

MytMy;
+ X AsP/4(f m(1—§)(1tc)33(x(“), E)dg ] Auf™
m=My+2
My+M -1 :
+ X AsPALf_(14)me)y(x™, £)AE ] Auf™
m=M+1
MytM+Mo+l
+ Y AsPuf m(1—§)(1cc)33(x(“), E)dg ] Auf™
m=My+M.,+2
My+M+M,,
+ Y Asraf _(14+8)(me)33(x™, E)dE ] Auf™+D)

m=My+M+2

where uf® = uy(x™), x® being the location of the external boundary nodal point n,
(n=1, ... Mp), and w§™ = my(x™), x™ being the location of the crack element mid-
point n. For multiple and branch cracks, n= My+1, ... My+My;, Mp+M+2, ..
My+M,+M,+1. In addition, for a branch crack, we add a nodal point n= My+M+2.

Eqgs.(3.19) can be written in the following matrix form:

AR MRS
o)l mfosfomfo (5] o
reuf ) - ) -t} -} -{ ]
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For multiple cracks, the matrices in egs.(3.20) have the following dimensions:

[UCs] is My x M, , [Qs] is My x (M.=1) , [Qs] is My X (Mp=1) , [URs] is My, x
M, , [PCs] is M, x My , [Xa] is My x My=1) , [Xa,] is M, x (Mg=1) , [PRs] is
M x 2M,,, [PGyy) is M x My, [Xp3] is Mg, x (Mél'l) » [X33] is M; x (M(,-1)
and [PRy,] is M, X 2M,.

For a branch crack, the matrices in eqs.(3.20) have the following dimensions:

[UCs] is My x My , [Qs] is My x Mg=1) , [Qs;] is My x M, , [URs] is My x 2M, ,
[PCs] is M, x My , [Xa] is Mg x (Mgy=1) , [Xa,] is Mgy X My , [PRs] is M x 2M,,
[PCs,] is (Mcz+1) x My , [Xa3) is (Mp+1) x Moy=1) , [Xaal is (Mcp+1) x M, and
[PR3;] is (Mz+1) x 2M,,

Thus
[ [UCy) -1Qs] HQul | {“J [ [URy] [0] [0]~ &
[[GIPC;]  —[M51[Xs]  —{T51(Xs) Aude =| [T3)[PRs] [0 [0] K Fi ¢

| [C31]PCyy] ~[T3lX;) —[M5ilXs) [|au2| | MallPRsy) 01 1 || B2

where, as in [76], we have defined nodal force matrices on the crack by
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(3.22)

T3] =[T5] = (3.23)

For multiple cracks, [I'3] is M¢;—1) x M; and [I'3;] is (M;—-1) x M,,. For a branch
crack, [I'3] is M; x (M;+1) and [I3;] is My x (M+1).

For a branch crack, we need to employ continuity conditions and equilibrium condi-

tions, i.e.
AuMMuD _ MM, 32D (3.24)
EMMAD | g MM | b MM, 142) (3.25)

It is well-known that one can obtain the diagonal entries of [UC;] in egs.(3.12) or

(3.21) from rigid-body considerations. If we apply a rigid-body displacement, i.e.

wl=uP=ufd= .. = oW =y (3.26)
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then the body is stress-free. Thus

SRCER RS

and eqs.(3.12) or (3.21) reduce to

oy
u3
[UGH - ={ 0} (3.27)
. u3 P
so that
- M, .

UC{® = -y uC{)d (3.28)
Fl
”

Once egs.(3.12) or (3.21) have been constructed, we must impose two conditions at

each nodal point m on I, involving the boundary values

u ém)’ t §2m)’ t §2m+l)

and rearrange eqs.(3.12) or (3.21) accordingly to obtain
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[A]{ Z } ={ B } (3.29)

where {Z} contains the unknown boundary displacements and tractions in the x5 direc-

tion on I'y and the unknown matrix {Au}.

Once we have obtained Auj at each crack nodal point, the stress intensity factors can

be determined from

Kl o = ‘\/-:—EGAu3(£)

Kl = -:?GAu3(l—e)

(3.30)

where € — 0, G is the shear modulus, and | is the length of the crack.

It should be noted that, for a problem involving a traction free crack, {F3;} = {0} and

eqs.(3.12) or (3.21) reduce to

(UG] -[Qs] u3 [UR;]
{ t } . (3.31)

[I51PCs]  —(I5][Xs] | |Aus (T'3](PR3]

or
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UGl Q) Qi ||w| [ [URy
[GIPGs]  -[T51[X3]  —{T51X3)] [T3][PR;] {13} (3.32)
| [[31][PCy;]  —[T3,][X3]  —{T31(X33] [|Au? | [T31](PR3;] |

Aud

v
[

—

respectively.

3.3 Results

Here we employ the coupled model to find numerical solutions for some finite domain

problems.

1.  Straight crack.

In all straight crack problems, the crack is modeled by 20 equal elements and the
external boundary is modeled by 40 elements. The stress intensity factors, nor-

malized with respect to oVa, are calculated.

a) Straight central crack in a rectangular sheet subjected to anti-plane shear

stress.

A rectangular sheet of height 2h and width 2b contains a straight central
crack of length 2a. A uniform shear stress, G, acts over the ends of the plate
as shown in Figure 3.1. In Table 3.1, the stress intensity factors are given
for various ratios of a/b and a/h and are compared to those obtained in

[100].
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Figure 3.1 Geometry and loading for a straight central crack
in a finite sheet under a uniformly distributed shear stress.
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Table 3.1 Stress intensity factors for a straight central crack under a uniformly distributed
shear stress as shown in Figure3.1.

1:0.25]1.897 1900 1.78 1.782 1771 1773 1770 1.772 1770 1.772
1:0.5 |1.723 1.725 1460 1463 1399 1401 1377 1379 1375 1377
1:1 |[1.689 1691 1369 1370 1.254 1256 1.176 1.178 1.147 1.149
1.2 |[1.686 1.689 1359 1361 1.233 1235 1.127 1.130 1.046 1.047
1:4 ]1.686 1.689 1358 1360 1.233 1235 1.126 1.128 1.012 1.013

l:o 11,687 1.689 1.358 1360 1.234 1.235 1.127 1.128 1.000 1.000
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b) Straight central crack in a rectangular sheet subjected to anti-plane shear

stress on the crack.

A rectangular sheet of height 2h and width 2b contains a straight central
crack of length 2a. The crack is subjected to émti-planc shear stress . Three
examples are considered for the problem of a rectangular sheet with fixed
edges parallel to its crack, with fixed edges perpendicular to its crack and
with four fixed edges as shown in Figures 3.2 throught 3.4, respectively. In
Tables 3.2 throught 3.4, the stress intensity factors are given for various

ratios of a/b and a/h and are compared to those obtained in [101].

Kinked crack.

In all kinked crack problems, both stress intensity factors, normalized with
respect to GVma, and relative crack surface displacements are reported. G/G =
200.

a) Symmetric V-shaped crack in a rectangular sheet subjected to anti-plane

shear stress.

This example involves a symmetric V-shaped crack in a rectangular sheet
subjected to a uniform anti-plane shear stress, as shown in Figure 3.5. The
crack is modeled by 40 equal elements and the external boundary is
modeled by 44 equal elements. For various angles c, the relative crack sur-
face displacements are plotted in Figure 3.6 and the stress intensity factors

are reported in Table 3.5.
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Figure 3.2 Geometry and loading for a straight central crack
in a finite sheet with fixed edges parallel to the crack.
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X2

2b |

Figure 3.3 Geometry and loading for a straight central crack
in a finite sheet with fixed edges perpendicular to the crack.
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Figure 3.4 Geometry and loading for a straight central crack

in a finite sheet with four fixed edges.
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Table 3.2 Stress intensity factors for a straight central crack with fixed edges parallel to the
crack as shown in Figure 3.2.

1:1.2 114 1:1.6 1:2.0 Troo
101] Present [101] Present [101] Present [101] Present [101]
0400 0397 0399 0397 0399 0397 039 0397 0.399
0.575 0.560 0.564 0.560 0.563 0.561 0.563 0.561 0.563
0.833 0778 0.780 0.767 0769 0762 0764 0762 0.764
1.114 0989 0991 0948 0950 0920 0923 0912 0914
1342 1.145 1147 1072 1074 1014 1016 0974 0975

1.689 1358 1360 1.234 1235 1.127 1.128 1.000 1.000

Table 3.3 Stress intensity factors for a straight central crack with fixed edges perpendicular
to ithe crack as shown in Figure 3.3.

.1 P PIese 4 : AL

1:025]1.650 1.653 1.759 1760 1769 1771 1770 1772 1770 1.772
1:0.5 |1.177 1.180 1295 1.298 1.351 1354 1373 1375 1375 1377
1:1 |0.844 0.847 0981 0984 1.055 1.058 1.120 1.122 1.147 1.149
1:2 10772 0.775 0868 0.871 0.920 0922 0977 0979 1.046 1.047
1:4 ]0.767 0.770 0.856 0.859 0.899 0901 0941 0943 1012 1.013

l:eo 10.768 0.770 0.857 0.859 0900 0901 0942 0942 1.000 1.000

Table 3.4 Stress intensity factors for a straight central crack with four fixed edges as shown
in Figure 3.4.

1:1.2 1:14 1:1.6 1:2.0 1:00

Present [101] Present [101] Present [101] Present [101]
0.398 0.397 0.399 0.398 0.399 . . . X
0.551 0560 0.562 0.561 0.563 0.562 0.563 0.562 0.563
0.702 0.746 0.748 0.758 0760 0.762 0.764 0762 0.764
0.765 0.844 0846 0878 0880 0903 0905 0913 0914
0.770 0.856 0.858 0899 0900 0940 0940 0915 0915

0.770 0.857 0859 0900 0901 0942 0942 1.000 1.000
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11

Figure 3.5 Geometry and loading for a symmetric V-shaped crack
in a finite sheet under a uniformly distributed transverse shear stress.
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Asymmetric kinked crack in a rectangular sheet subjected to anti-plane shear

stress.

This example involves an asymmetric kinked crack in a rectangular sheet
subjected to a uniform anti-plane shear stress, as shown in Figure 3.7. The
crack is modeled by 30 equal elements and the external boundary is
modeled by 44 equal elements. For various ratios L/2a, the relative crack
surface displacements are plotted in Figure 3.8 and the stress intensity fac-

tors are reported in Table 3.6.

Anti-symmetric kinked crack in a rectangular sheet subjected to anti-plane

shear stress.

This example involves an anti-symmetric kinked crack in a rectangular sheet
subjected to a uniform anti-plane shear stress, as shown in Figure 3.9. The
crack is modeled by 35 equal elements and the external boundary is
modeled by 44 equal elements. For various angles a, the relative crack sur-
face displacements are plotted in Figure 3.10 and the stress intensity factors

are reported in Table 3.7.
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Figure 3.7 Geometry and loading for an asymmetric kinked crack

in a finite sheet under a uniformly distributed transverse shear stresss.
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Tablé 3.5 Stress intensity factors for a symmetric V-shaped crack under a uniformly distrib-
uted shear stress as shown in Figure 3.5.

o 15 30 45 60 75

Kp/oVra | 2.0700 1.8743 1.5755 1.1965 0.7496

Table 3.6 Stress intensity factors for an asymmetric kinked crack under a uniformly distribut-
ed shear stress as shown in Figure 3.7.

L/2a 0.2 0.16 0.12 0.08 0.04

Kpg/oVra | 34359 3.9220 4.5877 5.6497 7.9809

Table 3.7 Stress intensity factors for an anti-symmetric kinked crack under a uniformly dis-
tributed shear stress as shown in Figure 3.9.

o 15 30 45 60 75

K/ OVra | 4.5605 4.3281 3.9757 3.5427 3.0664
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Figure 3.9 Geometry and loading for an anti-symmetric kinked crack

in a finite sheet under a uniformly distributed trensverse shear stresss.
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Figure 3.10 Relative crack surface displacemebt Auz

for an anti—symmetric kinked crack.
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Chapter 4

Thermoelastic Problems Involving Cracks

4.1 Theoretical Development

In Chapters 2 and 3, an integral equation representation of cracks was developed and
coupled to the direct boundary element method for treatment of smooth and/or kinked
cracks in finite plane bodies. In these Chapters, the equations were written in terms of
the displacement-discontinuity across the crack surfaces. The approach can be applied
to arbitrary regions containing arbitrary cracks in a simple, straightforward manner. In
Chapter 2, the coupling of the direct boundary-integral equations to crack integral
equations were developed for modes I and II cracks. In Chapter 3, the analogous
approach was developed for mode III crack problems.

The method outlined in the previous Chapters is here extended for application to
steady-state thermal fields disturbed by arbitrary insulated internal smooth and/or
kinked cracks in finite plane regions. In this approach, the divergence theorem is
applied to transform the domain integrals to equivalent boundary integrals in order to
treat the body force terms. The advantages of the boundary-only formulation is that

only surface discretization is involved.

In the theory of uncoupled thermoelasticity, the steady-state problems can be solved
separately from the elastic problem because thermal unknowns are independent of the

elastic ones. The elastic fields (displacements and stresses), however, are generated by
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temperature gradients. Thus, steady-state heat conduction is considered first to deter-
mined the surface temperatures and heat flux distributions, then the resulting tempera-

ture fields are treated as body force terms in an elastostatic formulation.

A plane elastic region €, with external boundary Iy, coniaining an internal piece-wise
smooth crack line I';, as shown in Figure 4.1, is loaded by prescribed heat fluxes g, on
some part of the external boundary and prescribed temperatures T on the remainder of
the external boundary. Because of the analogy between mode III elasticity and heat
conduction, the steady-state heat conduction equations can be represented, as shown in

Chapter 3, by replacing us, t3, Au; and 73 by T, q,,, AT and Q, respectively

c3(%) T (x) = §;(uR)s3 (X, X) Gu(¥) ds(X) ~ P (uc)s; (x, ¥) T(X) ds(X)
+| r, (uC)3; (x, X) AT(X) ds(X) x on I,
4.1
Q) = §(TR)33(x, X) 4, (0) ds(X) — $(mCc)z3(x, X) T(X) ds(X)

+ [ (@C)z3(x, X) AT(X) ds(X) x on T,

where AT =T~ - T* is the temperature jump across the crack, c; is a coefficient

which depends on the smoothness of the boundary at x on I',, and

-_49
G=-gs 4.2)

The influence functions in egs.(4.1) are identical to those presented in Appendix C
where G is replaced by k, the thermal conductivity. Following the same procedures as
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Figure 4.1 Heat transfer problem involving a crack.
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- shown in Chapter 3, we can obtain the temperatures T and heat fluxes q, at each of

the boundary nodal points and the temperature jumps AT at each of the crack nodal

points for the insulated crack case.

Consider an infinite isotropic elastic plane in which there is a point, X, at which some
"source" of stress is located and a point, x, at which the stresses are to be computed.

We will employ the following additional influence functions

(uR);3(x, X) = the displacement in the i direction at x due to a unit heat source
applied at X in the infinite plane,

(uc)s(x, X) = the displacement in the i direction at x due to a unit temperature
jump applied at X in the infinite plane,

(7R);3(x, X) = the value of w; at x due to a unit heat source applied at X in the
infinite plane,

(mc);3(x, X) = the value of w; at x due to a unit temperature jump applied at X in

the infinite plane,

where x;, i=1,2, are stress functions defined as in egs.(2.1.1).

A plane elastic region, as shown in Figure 4.2, is loaded by prescribed tractions t;
and/or heat fluxes g, on some part of the external boundary and prescribed displace-
ments u; and/or temperatures T on the remainder of the external boundary. Then the
direct boundary-integral equations and the integral equations developed in [76] can be

coupled as follows:

C;5(xX)u;(x) + ﬁrb[(uc)ij(x,x)uj(x)—(UR)ij(XX)tj(x)]dS(ﬂ) - jrc(uc)i,-(xx)Au,-(X)dsm
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Figure 4.2 Thermoelasticity problem involving a crack.



= [ UR)(x.R)b;(R)AS(R)
= fir, [(WO)3(xX D) TE—~(uR);3(x, ¥4 (X)1ds () — f;. (uR);(x. Ty E) T(X)ds(X)
~ J 1 (ue)3(XDAT®)ds(X) xonT, &in Q
4.3)
(%) + fr, ()X T @~R)y(x D) — f - (1) (x, T Au;(R)ds(X)
= [ JERXRbR)AS®)
= fr, [(W0)a XD TE)~(TR);3 (X X)q D5 () ~ fy. (TR);;(x Xy T(R)ds(X)

~ [, ()3 (x DAT)ds(X) xonT, &in Q

where i=1, 2, j=1, 2, summation on repeated indices is implied, and Au; = uj” — u;" are

the relative crack surface thermal displacements.

In egs. (4.3), we have inserted b=—1u;; and applied the divergence theorem as
shown in Appendix D. It should be noted that the right sides of egs.(4.3) are known

functions.
4.2 Numerical Treatment

A simple numerical treatment of eqgs.(4.3) is presented here in which the external
boundary is approximated by M, straight elements and the crack by M, straight ele-

ments, as shown in Figure 2.5. Eqs.(4.3) can then be written as

M,
o400 800+ T [ () D 130~ (GR)y(x D 0 1 s
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My+M,
- X 1 [ we)(x, %) Auy(®) ds(X)

m=My+

M,
= 3 f _[@)sx, %) T@-@R)a(x, X) G,(0)] ds(¥)
m=1

M,
- 3 J @Ry, DT ds®)
m=1

Mb'l'M,
- X [, (e)s(x, ) AT®) ds(x) x on T,

m=My+1

44)

M,
m(x) + z:1 [ [ @me)x, 0 uj@® - (R (x, D) () ] ds®)

My+M,
- X[ @)y %) Ay®) ds®

m=My+1

.
= 2] [)ax, DT ~ @R)a(x, 0] ds)

M,
- X | @R)x, HME®TE@ds®
m=1

MM,
- X fm(uc)a (x, X) AT(X) ds(X) x on I, .

m=M|,+l

The displacements, tractions, displacement discontinuities, temperatures, heat fluxes

and temperature jumps on each element can be linearly approximated by

ui(®) = Ny@u™ ™ + NyE)u™ X on element m of T,
4(®) = NyEXE™D + Ny(&)rm X on element m of T,

Auy(®) = N1(§)Auj(“‘) + N2(§)Auj("“+1) X on element m of T,
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T(X) = Ny(E)T™ D + N (E)T™ X on element m of I, (4.5)
4a®) = N;(£)q{# D + N,(&)q 2™ X on element m of T,
AT(X) = N{(E)AT™ + N,(E)AT(™+D X on element m of I,

where u{™, (2m-1), ((@m) Tm) q@m-1) qm) gre values at the external boundary nodal
point m (m=1,... M), Auj(m) and AT™ are values at the crack nodal point (m) (m=
Myt+2,... My+M)), and

N1 ©) = (1-%)/2 Ny (§) = (148)/2 -1s§s1. (4.6)
Furthermore

X = Ny (E)x™ D + Ny (E)x™ Xonelementmof yand I, (4.7)
ds(X) = [(s"™ — s™1)y2] dE = [As™/2] dE Xonelementmof I'yand I, (4.8)

where As™ is the length of the element m.

Inserting eqgs.(4.5) through (4.8) into eqs.(4.4), we obtain

M,
cPu® + ZlAs’"/‘v1 i m(l-é)(“c)ij(x(n), &)dg ] ufm

M,
+ T A4 [[ (1) (uc)yx®, ) ] u™
m=1
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M,
- n§lAsm/4 [f _(1-H@R), )it ] 12D

M,
= T AsmA (] (4D @R, B ] 2

Mb‘hM;
- X ATA[ (-8 ue)x®, §dE ] Auf™

m=M,+2

My+M,
- Y As™A [I m(]+§)(uc)ij(x(n), E)dE ] Auj(m+1)

m=My+1

M,
= T A4 [f (1-E)(uc)s(x™, £)g ] T D

m=1

M,
+ T ATAT] (D)o, 85 1 T
M,
- LA J  (1-DER)(x, Eymy@)dg ] T

M,
- T a5l [ (+0)uR)(x, Em;(€)dE ] T

My+M,
- X AL (1-8)(e)a(x®, §ag ] AT

m=M+2

Mb"'Mc
- ) As™4 [I m(1+§)(uc)i3(x(n)’ E)dE ] ATm+1)

m=My+1
M,

- A4 (] (DGR, B ] gD
M,

- T A4 [ (14D)ER)™, E)d ] g
m=1

4.9)

M,
m+ ¥ A4 [ (1-9)(re)yx®, E)dE ) uf™ D
m=1 m



132

M,

+ T A L[ (1+E)m)(x®, )k ] uf™
m=1
M,

- T A4 L] (1-DER)K, A ] ¢
m=1

M,
- nEIAs“‘M [f _(+D@ER);x™, £)dg ] 2™

My+M,
- X AMA[(1-H)me)y®, E)dE ] Au

m=My+2

My+M,
- T ATALf(1+)me)yx®, EdE ] A

m=M,+1

M,
= T A4 ([ _(1-9)me)px®, §dg ] T
m=1
M,
+ T A4 [ (1+8)(me)p(x®, E)dE ] T
m=1
M,
= T A4 [ 1-HER)E®, Eym(E)dg ] T
m=1

M,
- T a4 [ (@R, Hrym(E)ds ] T

m=1

My+M,
- ¥ A m(l—ﬁ)(m)g(!t‘“’. &)dg ] AT™

m=Mb+2

My+M,
- 3 AT (1+)me)s(®, E)dE ] AT

m=M,+1

My
- T A5 [ A-E)rR)S, ek ] g

M,
- T4 [ (1+OER)E®, BXE ] o
m=1
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where uj(“) = u;(x™), x™ being the location of the external boundary nodal point n,
(n=1, ... Mp), and 7™ = m,(x™), x™ being the location of the crack element mid-

point n, (n= My+1, ... My+M,).

Eqgs.(4.9) can be written in the following matrix form:

-] -l
el -

where [UC] is 2M, x 2M, , [Q] is 2M;, x 2(M~1) , [UR] is 2My, x 4M, , [PC] is 2M,
x 2My , [X] is 2M, x 2(M~1) , [PR] is 2M, x 4M, , [UCy3] is 2My x My , [Qy3] is
2M, x (M-1) , [URy3] is 2My x 2M, , [PCy5] is 2M, x My , [X;3] is 2M, x (M~1)
and [PR,3] is 2M, x 2M,,

(4.10)

Thus

-Q
[F2(PC] —{T2](X]

[0]

IR R

" | [UCysl -[Qi3] {:‘} [UR,3] { }
- - @ (4.11)
[[21[PCy3] —(IL1[X;3]| AT, [[21[PR,3]
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where, as in [76], we have defined a nodal force matrix on the crack by

(e}l

where
(-1 1 000 0 0]
0-IT00O0O

=% 011000 @4.13)
L0 0 000 -11I]

I represents a 2x2 identity matrix, and [T’;] is 2(M~1) x 2M,.

It is well-known that one can obtain the diagonal 2x2 blocks of [UC] in egs.(4.11)
from rigid-body considerations. If we apply a rigid-body displacement, i.e.

P =u@=u®= ... =u™= (4.14)

then the body is stress-free. Thus

Ut =p)



and eqs.(4.11) reduce to

u;
U
U

uz
[ucy . ’-_-{0} (4.15)

L3
Uz

so that

M
UC@-1@2i-1) - _Z“Udzi-x)(zj-l)
=0
g
M
U@~ — _Z”UCai-l X2j)
K0
p
(4.16)
UCiX2-1) _%UC(Zi)(Zj-l)

F0
4

M
UCEX) = _FyCEXD)
=0

i

Once eqs.(4.11) have been constructed, we must impose four conditions at each nodal

point m on Iy, involving the boundary values
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uf™,  gm), gameD),
uém)’ t §2m)’ t 52m+l)’

and rearrange eqs.(4.11) accordingly to obtain

wf2)-{)

where {Z} contains the unknown boundary thermal displacements and tractions on I},

and the unknown matrix {Au]}.

Once we have obtained Au; at each crack nodal point, the thermal displacement

discontinuities normal and tangential to the crack surfaces at that point are

Au, = Auyn; + Auyn,
(4.18)

Au; = Auyng — Aujn,

and the thermal stress intensity factors can be determined from
Kl = '\/%G(l-l—v)Aun(e)

Kyl = \/ -:-EG(HV)Aut(e)
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(4.19)

Kl = ;‘—SG(lw)Auna—e)

Kl = :—eG(lw)Aul(l—e)

where € = 0, G, v are the shear modulus and Possion’s ratio, respectively, and 1 is the

length of the crack.

It should be noted that, for a problem involving a traction free crack, {F}={0} and
eqgs.(4.11) reduce to

[uq -[Ql {Au‘} [UR] {t}
[[LPC] -([IIX] [[;1[PR]
(UCy5] —{Qisl {AT } [UR;3]
= - {q,,} (4.20)
[T2J[PCy3] —TL)IX3]{AT)  [[T2][PRy3)
4.3 Results

Here we employ the coupled model to find the numerical solution for a finite domain

problem.
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A rectangular plate of height 2h and width 2w contains a straight central crack of
length 2a. The surface of the crack are assumed to be free of tractions and ther-
mally insulated. Mechanical and thermal boundary conditions are shown in Figure
4.3. The crack is modeled by 20 equal elements and the external boundary is
modeled by 40 elements. In Table 4.1, the thermal stress intensity factors are
given for various ratios a/w and compared to those obtained in [57] and [61]. The
relative crack surface thermal displacements are plotted in Figures 4.4 through 4.9
for G = 8.4x10% v = 0.3 and o, = 1.67x1075,



4 X2
T 4 10°
a
h
q=0 L 2|2 >| q=0
v % r | W X
h
\
T = -10°
2w |

Y

Figure 4.3 Geometry and thermal loading for an insulated
straight central crack in a finite plate.
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Table 4.1 Thermal stress intensity factors Kpy/ot, ET (w)!/2 for an insulated straight
central crack.

a/w 0.1 0.2 0.3 0.4 0.5 0.6

Present | 0.6779 21587 3.8875 57308 7.6109 9.6078
[57] 06810 2.1643 3.8900 57314 7.6152 9.6190
[61] 06790 21500 3.8970 57600 7.7200  9.6800
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Chapter 5

Conclusions

An integral-equation representation for cracks in two-dimensional infinite regions
[76]) has been coupled to the well-known direct boundary element method so that
cracks in finite plane bodies can be solved. The method has been further extended to
include multiple cracks, branch cracks, edge cracks, mode III loading conditions and
thermal conditions loading. In all cases, accurate results are obtained with small com- -

putational effort relative to other known methods.

In principle, this method is not confined to the classes of problems discussed in this
dissertation. It is anticipated that this new method can be extended for use in the so-
lution of thermoelasticity involving different thermal boundary conditions on the crack,
electromagnetic problems, fiber reinforced composites, crack propagation studies and
three-dimensional problems.
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Appendix A In-plane Elasticity Influence Functions

The Kelvin influence functions for plane stress can be written as in [77]

(uR);; = [-(3-V) Sij logp + (1+v) q;q; 1/8nG (a.1)
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(a.2)
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(a.5)

(a.6)

@7)

(a.8)

and G, v are the shear modulus and Poisson’s ratio, respectively. For plane strain, v

must be replaced by v/(1-v).
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Appendix B Complementary Elasticity Influence
Functions

The complementary expressions for plane stress can be written as in [102]

. XX .
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and G, v are the shear modulus and Poisson’s ratio, respectively. For plane strain, v

must be replaced by v/(1-v).

The half-plane influence functions ( )* can be written as

P=0+()

where () are given in Appendix A.
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Appendix C Anti-plane Elasticity Influence Functions

The influence functions associted with antiplane strains can be written as in [79]

(R)s3 = =5 logp @)

(UC)s3 = Et-p-[ﬁl Q1+, 5] €2)
1 a

(KR)33 = ——i';e (0.3)

G, ,_-. .-

(rc)33 = m[—nl g+, q] (c4)

where

p = [(x; — X)) + (x, — )22 (c.5)

T e R e @9
qif) + qoffy

and G is the shear modulus.
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Appendix D Reduction of Domain Integrals to
Boundary Integrals

Here we remove the domain integrals involving the temperature gradient. According to

the Divergence Theorem and Green’s Second Identity, i.e.

J of 98 =¢rf n; ds @.1)

otV - %D a5 = §r, r(e2E - gL, as @2)

the domain integral terms in eqs.(4.3) can be transformed to boundary integral terms

as follows,

J QR — YT ®)] dS(R)

= [ g(R);; ;X ANT(R) — [@R);(xRNT®)];] dS(R)

= [ Q[T®V?(uR);3(x.8) - @R)3(X,R)V2T(R)] dS(R) ~ fr, (uR);(x.Xyyn;T(X) ds(x)

= $re T @RIET) — (RICT)-TH] dSX) — fr, RIFEMT) ds(X)

= $r-rUO)*TT® — @R)3(X, D] ds@® — r, GREDMTE ds®  (d3)

where
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(UR);;;(x.2) = V2UR);5(x,2) V2T() = 0
(d4)
3 3
G&® = =-T® O)(xT) = = -(uR)5(x D) .

All the problems discussed in this Dissertation involve a finite region with a crack.
The boundary I" consists of two parts, namely the external boundary I, and the crack
surface I'.. The upper face I'Y and the lower face I'; of the crack surface differ only
in their normal, so that n* = - n”. We make use of the apparent relations of symmetry:

TX) = 'I*(i) qn_(Y) = - +®
@.5)

(uc)iz~ (x.X) = — (uc);3*(x.X) (uR)3™(x,X) = (UR);3*(xX) .
The first integral in eqs.(d.3) can be expressed as follows,

¢ r,-rJUC)3 (XD T(X) — (uR);3(x.X)q,(¥)] ds(X)
= ér, [@C)3(XDT(X) — (UR);3(x,X)q,(X)] ds(X)
= §r.- (W05 xIT(® — UR)z" (XX )] ds(®)
= §r+ [(UC)5* ®XIT*(X) - @R);3*(x.X)q,* ()] ds(X)
= fr, [(UC)3(XT®) — (UR);3(X,%)q,(®)] ds®) — §r- -(uc) (X DAT() ds(X)

= fr, [UC)3(OTE) — UR)3(xXD)q,®)] ds) — §r, (UC)3XFATR) ds(x) (d.6)
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Following the same approach as above, the domain integral terms in eqs.(4.3) can be

expressed as follows,

| QRXRL — ¥T;®)] dSR)
= $r, [(C)3(xT)T®) — (TR);3(x,X)q,(X)] ds(X) @7

— §r, (TC)3 (X DAT() ds(X) — $r,(RR) (XXM T(X) ds(X)

where

(TR);;;(x.2) = VA(IR)5(x.8) (TC)p(X.X) = %(nk)acrx) : d8)
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Appendix E Heat Transfer Influence Functions

The influence functions for plane stress can be written as in [59]

(1+v)o,
(UR)B = 8 [1+2 l(')gp]pl (e.l)
T
+v)oy
(ue)i3 = o [(1+2logp)n;+2q;q; Ny ] (e.2)

(nR)y3 = —L-[4p,8+(aviogp — (1-V) )p]

(e.3)
(TR)z3 = +2L-[(4vlogp ~ (1-V) )py+4p,f)
(RC) (3 = -—8%[(4vp2q1+4§—4p1 P, HAVIogp—(1-V) +4vp,q,+4p )i,)

(e.4)
(mc)y3 = +—87;[(4vlogp—(1—v) +4vp q —4p ) HAvp gy +46-+4p 1 po)ii)
where
P1=X — X P2=X2 — X (e.5)
p = [(x) = Xp)? + (xy — X212 (e.6)

X; — X Xy — X-

q = 1 1 i Q= 2 2 (6.7)

P p
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" n; — q;
8 = arctan [—2L 1172 | e.8)
qin + QN
A 1V
Y= 20—1_v o, (e.9)

and G, v, o, are the shear modulus, Poisson’s ratio and thermal expansion coefficient,
respectively. For plane strain, v must be replaced by v/(1-v) and o, must be replaced

by (1+v)a,.

("R)3 = G [ [(4R)zy + (@R 0 + ~2e (R)yysan] dis
0
(e.10)

(KC)B = aa—n(ﬂR)a .
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Appendix F Computer Program for Matrices
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