This is to certify that the
thesis entitled

THE WHITAKER DATABASE OF DYSARTHRIC SPEECH: Creation and Baseline Recognition Study

presented by
Ming-Shou Liu
has been accepted towards fulfillment of the requirements for $\xrightarrow{\text { Master's }}$ degree in $\frac{\text { Electrical }}{\text { Engineering }}$

Date 8 Cuquat 1991.

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOLD FINES return on or before date due.

MSU Is An Affirmative ActionEqual Opportunity Inetitution

THE WHITAKER DATABASE OF

DYSARTHRIC SPEECH:

Creation and Baseline Recognition Study

By

Ming-Shou Liu

A THESIS

Submitted to
Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Electrical Engineering

ABSTRACT

THE WHITAKER DATABASE OF

DYSARTHRIC SPEECH:

Creation and Baseline Recognition Study

By

Ming-Shou Liu

This research represents the culmination of a three year project sponsored by the Whitaker foundation of which the primary purpose was to conduct research related to the development of a PC-based isolated word recognition (IWR) system for persons with severe motor and speech disabilities. This dissertation describes three aspects of the final stages of the work:

1. The creation of an isolated word database of dysarthric speech (Whitaker Database (WD)) which is publicly accessible over the internet computer network.
2. A baseline recognition study on the WD using a hidden Markov model approach.
3. Formulation of an IWR system concept and plans for its development and future enhancements.

To my Mother

 A-Chu Yang

 A-Chu Yang
 For her love, support and sacrifice

ACKNOWLEDGMENTS

First and most important, I would like to thank my advisor John R. Deller, Jr. for his patience and support in spite of his busy schedule. His direction was very important in helping me step into the Speech Processing world.

Secondly, I would like to thank all the members of my thesis committee: Dr. B. Ho, Dr. Roland Zapp, Dr. Bon K. Sy of Queens College of the City University of New York, and Dr. John R. Deller, Jr. I would also like to thank Dr. Linda Ferrier of Northeastern University for her permission to use her report in Section 2.2.2 on the various dysarthric speakers.

Many recognition procedures and utilities coded by Ross K. Snider were helpful in the development of this thesis. I would also thank my friend Pei-Chun Chen for her great encouragement and support.

I gratefully acknowledge the financial support provided by a grant from the Whitaker Foundation and the collaboration with the Speech and Language Pathology and Audiology department at Northeastern University, Boston.

Contents

1 Introduction and Background 1
1.1 The Purpose and Significance of this Research 1
1.2 Previous Work and Relation to the Current Project 2
2 Collection and Creation of the Whitaker Database 5
2.1 Introduction to the Database 5
2.1.1 Data Acquisition System 5
2.1.2 Composition of the Whitaker Database (WD) 8
2.2 Summary 9
2.2.1 Characteristics of the Whitaker Database 9
2.2.2 Characteristics of the Speakers 9
2.3 How To Access the Database 11
3 Technical Description of the System 14
3.1 Feature Extraction 14
3.2 Vector Quantization (VQ) 14
3.3 The Hidden Markov Model (HMM) 15
4 Speech Recognition Experiments 17
4.1 Size of the Codebook 17
4.2 HMM Structure 19
4.3 Acoustic Parameterization 20
4.4 Silent Portion Extraction 22
4.5 Number of Training Utterances 23
4.6 Number of States in the HMM 24
5 The Prototype IWR System for Dysarthric Speech 26
6 Conclusion 29
6.1 Summary 29
6.2 Future Work 30
A Experimental Result for Speaker DC 36
B Program Listing: LP Parameter Generating Program 42
C Program Listing: Cepstral Parameter Generating Program 49
D Program Listing: Codebook Generating Program 57

List of Tables

1 Grandfather word list. 9
2 Results of different codebook sizes using the TI-46 database. 18
3 Results of different codebook sizes using the Grandfather database. 18
4 Recognition performance with different models using the TI-46 database. 19
5 Recognition performance with different models using the Grandfather database. 20
6 Vocabulary for the comparison of WRLS and autocorrelation methods of LP parameter computation. These words are not in the WD for reasons explained in the text. 21
7 Recognition results comparing WRLS and autocorrelation methods of computing LP parameters. 21
8 Recognition results comparing LP and mel-cepstrum using the TI-46 database. 21
9 Recognition results comparing LP and mel-cepstrum using the Grand- father database. 21
10 Effect of silent portion extraction on recognition performance using the TI-46 database. 23
11 Effect of silent portion extraction on recognition performance using the Grandfather database. 23
12 Effect of number of training observation sequences on recognition using the TI-46 database. 24
13 Effect of number of training observation sequences on recognition using the Grandfather database. 2414 Effect of number of states in HMM on recognition performance usingthe TI-46 database.25
15 Effect of number of states in HMM on recognition performance using the Grandfather database. 25

List of Figures

1 Equipment setup for sampling 6
2 Frequency response of anti-aliasing filter. 7
3 Directory structure of Whitaker Database in the computer network. 12

1 Introduction and Background

1.1 The Purpose and Significance of this Research

Many significant advances have been achieved in both speaker-dependent and speakerindependent speech recognition in the past three decades (see, e.g. $[1,2,3,4,5,6$, $14,15,23,31])$. Most research, however, has been concerned with the recognition of normal speech. The difficult problem of applying speech recognition technology to assisting persons with speech disabilities to communicate effectively is still an open issue for researchers, as indicated by the small amount of literature on the topic and the relatively small number of systems available to users (e.g. ANTIC [10], CDC [11]).

The inability to speak and write can be caused by a number of neuromuscular diseases, such as cerebral palsy (CP), aphasia, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Parkinson's disease, muscular dystrophy, laryngectomy, and others [33]. In this study we have focused upon the CP population which comprises a significant proportion of the total population of profoundly speech and motor disabled persons. CP is a prevalent condition, present in approximate one of every 330 live births [32]. Anyone working with these people has observed that many individuals persistently try to express their needs and feelings vocally, even though many attempts may fail. However, due to the difficulty of controlling their articulator movements
and voicing in uttering messages, it is frequently impossible for them to produce intelligible and fluent continuous speech. The goal of this study in a general sense is to adapt existing electronic technology to devices which will assist such persons to express ideas and feelings, to have normal social lives and interpersonal interactions, and to function in the mainstream of society.

1.2 Previous Work and Relation to the Current Project

This work represents the culmination of a three year research effort sponsored by the Whitaker Foundation of which one of the subgoals was to conduct research related to the development of a PC-based isolated word recognition (IWR) system for severely dysarthric speech. Previous work on this project has been reported in the papers of Sy, Hsu, Deller et al. [4, 5, 12, 30, 31]. In particular, Hsu's thesis research was concerned with the development (on a mainframe system) of hidden Markov model (HMM) [25] based IWR software, and its testing using a 200 word database collected from an moderately dysarthric (cerebral palsied) individual, and a digit (10 words) study involving four other persons whose speech spans a spectrum of dysarthria [7, 12].

The subsequent work of Snider $[6,28]$ and this author has generally been concerned with scaling down Hsu's software to operate on a reasonably ordinary personal computer (PC) in real time, and with extensive testing of the resulting algorithms. In this process, we have made a point of carefully collecting and organizing a large database of isolated word dysarthric speech (Whitaker Database (WD)) with which to test the system. The WD has been made publicly accessible to other research centers over the internet computer network. Whereas Snider's work was principally concerned with scaling and programming the PC-based software, and with developing sampling and editing software for manipulating the new data, this author has been chiefly con-
cerned with the creation of the database, and with the testing and enhancement of the recognition software. The result has been the completion of enhanced, flexible PC-based IWR software which can now be tested "in the field" in conjunction with a system concept to be described.

Accordingly, this thesis consists of three parts which describe the three research components noted above:

1. Creation and distribution of the WD,
2. Execution of a baseline recognition study using HMM-based software, and
3. Refinement of the PC-based HMM IWR software for dysarthric speech, and development of plans and strategies for its distribution and testing.

We note that two specific engineering developments from previous work will be used in this thesis. They are an algorithm due to Deller and Hsu [4] and Deller and Snider's diagonalization strategy [6,28]. The first implementation of the recognition software was developed by Hsu in his doctoral work [12]. A fast and simple adaptive Weighted Recursive Least Square (WRLS) algorithm was derived for the purpose of feature extraction at the acoustic level. This algorithm enjoys a small improvement in computational complexity over the conventional WRLS algorithm. The adaptive method also provides several useful by-products in the context of the recursion which the conventional one usually does not have [5, 8]. In the word-level processing, an enhanced HMM based approach was developed to operate under the constraints of having highly variable speech as well as a lack of statistical information about the speech.

The second engineering development from previous work is as follows: Given several HMM's and the observation sequence 0 , we need to choose the word model which
has the highest likelihood $P(\mathbf{O} \mid \mathbf{M})$ [25]. A frequently used algorithm to evaluate the HMM for maximum likelihood criterion is the Baum-Welsh "Forward-Backward" procedure [25]. The Forward-Backward procedure generally requires $\mathcal{O}\left(N^{2}\right)$ operations per observation for an N state, fully connected, HMM. Deller and Snider [6, 28] found that the number of calculations can be reduced to $\mathcal{O}(N)$ by diagonalizing the matrix ${ }^{1}$ \mathbf{A} in the HMM. All the evaluation work in this thesis is based on this diagonalized matrix.

[^0]
2 Collection and Creation of the Whitaker Database

2.1 Introduction to the Database

2.1.1 Data Acquisition System

The utterances were spoken by 6 speakers and recorded on TDK type II tape cassettes. A TEAC W-450R stereo cassette deck with Dolby-C noise reduction was used. The recording took place in the Department of Speech and Language Pathology and Audiology at Northeastern University in Boston and was supervised by Dr. Linda J. Ferrier, Assistant Professor in that department. All data were recorded in an acoustically isolated booth.

The recordings were played back using a duplicate TEAC tape deck and then sampled in the Speech Processing Laboratory in the Department of Electrical Engineering at Michigan State University. The MetraByte "STREAMER" data acquisition system was used to facilitate the sampling. The equipment setup for sampling is shown in Fig. 1. The filter used is an active bandpass ${ }^{2}$ fourth order Butterworth filter with a lowpass cutoff frequency of 4.7 kHz (the sample rate is 10 kHz). The frequency response of the filter is shown in Fig. 2. A MetraByte DAS16F 12-bit analog to digital (A/D) conversion board was set to accept a signal with dynamic range of ± 10 volts. To make certain that the input to the A / D board did not exceed the dynamic range of the board, the input signal was monitored with an oscilloscope and the gain of the amplifier adjusted appropriately. Data are stored in 16 bit records, one per sample. Encoded in the 16 bit record are 12 bits of measurement data and 4 bits that specify the channel.

[^1]

Figure 1: Equipment setup for sampling.

Figure 2: Frequency response of anti-aliasing filter.

At the beginning of the project, the sampling process was carried out word by word. That is, we located the word on the audio tape, made a file for it and then sampled the word. It took about 90 seconds per word to complete this task. This method is time-consuming and unrealistic because 17,895 words needed to be processed. In order to solve this problem, Snider wrote a program called "Wavemark". With this routine, utterances from an entire cassette tape can be sampled then stored in a large file (about 30 Mbytes). "Wavemark" can then also be used to extract the words from the large file with a screen editing facility [28]. This procedure reduces the per word processing time by a factor of about 10 . The program also has a provision for playing back (audio) any selected portion of an utterance. Details are found in [29].

2.1.2 Composition of the Whitaker Database (WD)

The word sets in the WD are partitioned into the TI-46 word list and Grandfather word list. These word list were selected for the WD to provide one partition of vocabulary which has become "standard" in speech recognition studies, and one which is significant for its speech science attributes.

There are 46 words in the TI- 46 word list. They are utterances of the 26 letters of the alphabet, 10 digits (zero to nine) and 10 the words "start", "stop", "yes", "no", "go", "help", "erase", "rubout", "repeat" and "enter". This word list is suggested as a standard by Texas Instruments [9]. The Grandfather word list consists of 35 words which are shown in Table 1. The set is called "Grandfather" because it was taken from a passage commonly used by speech therapists which begins with the sentence "Let me tell you about my grandfather ...". These words are chosen by Dr. Ferrier due to their phonetic diversity [13].

There are 27 cassette tapes in the Speech Processing Laboratory. Each word in the TI-46 and Grandfather word list was uttered 30 to 45 times by one of the six speakers.

missing	several	to	well	thinks	long
my	old	you	ever	an	frock
coat	usually	still	he	dresses	about
years	is	wish	know	himself	buttons
all	grandfather	as	swiftly	black	beard
in	yet	nearly	clings	ninety-three	

Table 1: Grandfather word list.
Each utterance of each word ultimately became a distinct file. The collection of all the files sampled from these tapes comprise the Whitaker Database (WD). Each file consists of integer samples with dynamic range from -2048 to +2048 . All the files are ASCII with $<\mathrm{CR}><$ LF $>$ after each integer.

2.2 Summary

2.2.1 Characteristics of the Whitaker Database

- The vocabulary sets in the WD are the TI-46 and Grandfather word lists indicated in Table 1.
- There are 17,895 ASCII files in the database, each file represents an utterance of a single word. The end points of each word were detected by hand using the "wavemark" utility described above.
- Each sample point in each file is represented by an integer and is followed by $<\mathrm{CR}><\mathrm{LF}>$.
- The dynamic range of the integer samples is from -2048 to +2048 .

2.2.2 Characteristics of the Speakers

The following clinical assessments of the speakers are taken from a report by Dr. Linda J. Ferrier, Assistant Professor of Speech and Language Pathology and Au-
diology, Northeastern University, Boston. Dr. Ferrier is the clinical consultant to this project. She also received Whitaker funding to support her interaction with the subject population, analysis of data from a clinical perspective, and writing clinical assessments of the subjects' speech and language disorders. The author appreciates Dr. Ferrier's permission to use the following descriptions ${ }^{3}$:

1. Speaker DC is a 48-year-old male with a diagnosis of spastic athetoid cerebral palsy (CP). His intelligibility is mildly impaired, and his voice has a typical strained-strangled quality and consonants are imprecise.
2. Speaker CJ is a 41-year-old male with a diagnosis of athetoid CP. His intelligibility is moderately impaired but decreases with fatigue. Speech characteristics include slow rate of speech, imprecise consonants, vowel distortions, and little variation in pitch or loudness. He is consistently over-loud. Vowel distortions appear to be caused by deviation of the mandible to the left.
3. Speaker LE^{4} is a 40 -year-old male with spastic CP with dysarthria. His intelligibility is in the moderate to severely impaired range, speech is slow with little variation in loudness or pitch. He has particular difficulty with transition from one consonant to the next in consonant clusters. and some difficulty initiating sounds and dysfluencies often occur at the beginning of the words.
4. Speaker BD is a 39 -year-old male with spastic CP. His intelligibility is mildly to moderately impaired, and his voice shows occasional pitch breaks, inappropriate nasality, and he is occasionally dysfluent. He has poor breath support for speech. His amplitude is low and there is little variation in pitch or loudness.

[^2]5. Speaker LL is a 47-year-old male with quadriplegic CP, mixed spastic/ataxic. His intelligibility is severely impaired, utterances are short, consonants are imprecise.
6. Speaker PW is a 28 -year-old male with severe athetoid CP. His intelligibility is severely impaired, consonants and vowels are extremely distorted, and loudness is extremely variable.

2.3 How To Access the Database

The Whitaker database is accessible through the internet computer network ${ }^{5}$. The database can be obtained from a MSU file server through anonymous ftp. The database is in the subdirectory "speech" under the directory "pub". Six subdirectories " DC ", " $\mathrm{CJ} ", ~ " \mathrm{LE}{ }^{\prime}, ~ " \mathrm{BD}^{\prime}, ~ " \mathrm{LL} ", ~ " P W "$ are in the database, the directory structure is shown in Fig. 3. The file naming convention is as follows: "coat.0502" means this word is the fifth utterance of the word "coat". The last two digits in the file name are used for internal grouping, and the user may ignore them. Files are compressed so that they will not require excessive space. All the files (utterances) uttered by a single speaker are "tarred" together so that only one instruction can be used to obtain all the files in a tape. The name of the "tarred" files are "t.tar" and "g.tar", where " t " means the TI-46 word list and " g " means the Grandfather word list.

In summary, the steps for accessing the WD are as follows:

1. ftp archive.egr.msu.edu, both the login name and password are anonymous

[^3]

Figure 3: Directory structure of Whitaker Database in the computer network.
2. cd pub
3. cd speech
4. cd DC if you are interested in the speaker DC.
5. get t.tar if you are interested in TI-46 database.
6. tar xfv t.tar, this is to "untar" the file. "x" means extract.

3 Technical Description of the System

A wide variety of approaches to the recognition of human speech has been proposed in the past three decades. In this chapter, we briefly describe the techniques which were applied in this research. Details of the underlying technical methods can be found in many references (e.g. see [3]) and are not further addressed here.

3.1 Feature Extraction

To extract a feature one has to look at a small segment or frame of speech. We define a frame of speech to be the product of a shifted window with the speech sequence. For a sample rate of 10 kHz , we use a Hamming window of length 256 , which is shifted 50 samples for each feature computation.

Two types of vector features are employed in this work:
Linear prediction (LP) $[16,19]$ has been applied extensively in parameterizing speech samples. Here we use $14^{\text {th }}$ order LP parameters resulting from the autocorrelation method, where L-D recursion $[3,22,26]$ is used to solve the autocorrelation equation. A computer program which computes the LP parameters is found in Appendix B.

The other method applied to parameterize the waveform is mel-cepstral analysis. [3, 21]. We use a $10^{\text {th }}$ order cepstrum produced using a 1024 point FFT [24]. A computer program for this approach is found in Appendix C.

3.2 Vector Quantization (VQ)

The recognition approach taken here is based on discrete symbol hidden Markov models (HMM) of isolated words. Accordingly the observations used are discrete symbols chosen from a finite set. A vector quantizer is required to map each continuous
parameter vector into a finite integer index [17, 25].
Two distance measures are used to measure feature similarities in the VQ process. In the LP case, we use the Itakura's distance [26]:

$$
\begin{equation*}
d(\hat{\mathbf{a}}, \mathbf{a})=\log \left[\frac{\mathbf{a R a}^{\mathrm{t}}}{\left.\hat{\mathbf{a} \mathbf{R} \hat{\mathbf{a}}^{\mathrm{t}}}\right]}\right. \tag{1}
\end{equation*}
$$

Where a is a reference $L P$ vector ${ }^{6}$ and $\hat{\mathbf{a}}$ is an estimated LP vector ${ }^{7}$.
Unlike LP coefficients, the cepstral parameters may be interpreted as coefficients of a Fourier series expansion of the periodic log spectrum. Accordingly, they are based on a set of orthonormal functions; thus we can simply choose the Euclidean distance between mel-cepstral vectors as the distance measure [3].

An 128 symbol codebook was developed using the κ-means algorithm. In our work, we employ the binary clustering approach, i.e., we let $\kappa=2$. A computer program to geneate the 128 symbol codebook is found in Appendix D. The binary structure has the advantage that it reduces the number of searches from L to $\log _{2} L$ $[12,17]$, where L is the number of symbols in the codebook.

3.3 The Hidden Markov Model (HMM)

The hidden Markov model (HMM) has been used in automatic speech recognition successfully in recent years for modeling speech waveforms $[4,7,12,14,15,23,28]$ at various acoustic levels (word and subword) as well as for modeling languages. Some computationally efficient algorithms have been developed in the previous work by Snider to evaluate the likehood of the HMM. A major advantage of using an HMM in the problem of dysarthric speech recognition is that the HMM is a stochastic

[^4]modeling approach which can automatically handle the "large" variability in speech for recognition purposes.

4 Speech Recognition Experiments

In this chapter, we focus on a baseline recognition study on the WD using a hidden Markov modeling approach in an effort to learn more about the characteristic features of dysarthric speech which affect recognition performance. If not specially stated, we use eight utterances for training, seven for testing, a 128 symbol codebook, and six state Bakis HMMs. The percentage given is the ratio of the number of correctly recognized words to the total number of testing words. An example comprehensive experimental result for speaker DC is found in Appendix A.

4.1 Size of the Codebook

Since the recognition system is based on discrete symbol HMMs of isolated words, a vector quantizer is required to map each continuous parameter vector into a finite integer index. The number of indices (code vectors) used should correspond to the number of meaningful clusters in the feature vectors in the population. Very roughly speaking, these codes (clusters) represent distinct acoustic tokens. If too few are used, many dissimilar features will be quantized into the same token. If too many are used, superfluous and ambiguous codes exist. Either situation potentially degrades performance. With normal speech typically 64-128 codes provide good performance for speaker independent recognition. The following experiments were implemented to determine whether fewer codes would improve recognition of dysarthric speech, under the hypothesis that fewer acoustic tokens may exist in some speakers' utterances.

Experimental results given in Table 2 for the TI-46 database and Table 3 for the Grandfather database show the effects of different size codebooks on the recognition rate. A quick glance at the recognition rate would seem to indicate that a larger codebook is better. Closer inspection reveals that this is not always the case. Large

	16 symbol			128 symbol		
	correct	top 2	top 4	correct	top 2	top 4
Speaker DC	72.05%	82.92%	90.68%	89.13%	95.96%	98.45%
Speaker CJ	81.06%	92.24%	97.52%	81.99%	92.24%	95.96%
Speaker LE	58.39%	70.50%	84.16%	68.94%	81.06%	90.37%
Speaker BD	76.09%	88.51%	95.65%	77.02%	90.68%	96.27%
Speaker LL	47.21%	65.53%	80.43%	56.83%	73.60%	83.85%

Table 2: Results of different codebook sizes using the TI-46 database.

	16 symbol			128 symbol		
	correct	top 2	top 4	correct	top 2	top 4
Speaker DC	90.61%	98.78%	98.78%	91.43%	97.55%	99.59%
Speaker CJ	61.63%	84.75%	91.02%	86.53%	95.51%	97.55%
Speaker LE	73.06%	84.49%	93.06%	74.29%	83.67%	93.06%
Speaker BD	68.98%	82.04%	93.06%	79.18%	90.61%	93.47%
Speaker LL	57.55%	76.33%	84.90%	60.00%	74.29%	85.31%

Table 3: Results of different codebook sizes using the Grandfather database.
codebooks do not work as well for the discriminating vowel sounds. For example, the recognition of the dipthong /ai/ (utterances of letter "a") for small codebooks (16 symbols) is better than that for a large codebook (128 symbols), but a larger codebook is necessary for the fricatives. For example, the utterance /pi/ (letter "p") is frequently recognized as /i/ (letter "e") if the 16 symbol codebook is used.

The reason why a large codebook does not work for the vowel case is generally explained as follows: dysarthric speakers have difficulty in controlling their articulators, and multiple symbols in the codebook which are close "acoustically" can accordingly represent the same vowel sound. Increasing the number of symbols will not increase the recognition rate. In fact, as noted above, too many symbols made degrade performance. However, fewer symbols do not provide the acoustic diversity necessary to represent frictives, for example.

	ergodic model			left-to-right model		
	correct	top 2	top 4	correct	top 2	top 4
Speaker DC	84.47%	92.86%	97.51%	89.13%	95.96%	98.45%
Speaker CJ	80.75%	90.68%	94.10%	81.99%	92.24%	95.96%
Speaker LE	64.60%	76.09%	89.13%	68.94%	81.06%	90.37%
Speaker BD	70.81%	83.54%	92.86%	77.02%	90.68%	96.27%
Speaker LL	55.90%	68.94%	81.37%	56.83%	73.60%	83.85%

Table 4: Recognition performance with different models using the TI-46 database.

4.2 HMM Structure

One of the important factors that was found to greatly affect the recognition rate is the HMM model structure. In this study, two types of model structure were considered, the "ergodic" and "left-to-right (Bakis)" model [25]. For IWR in which (at least) one HMM is designated for each word in the vocabulary, it should be clear that a left-to-right model is more appropriate than an ergodic model, since time and model states are associated in a natural manner [25]. In addition to the property that the state transitions always occur from left to right in the Bakis model, an additional constraint is placed on the state transition coefficients to make sure that "large" changes in state indices do not occur. That is, $a_{i j}=0$ if $j>\Delta$. In our system, we take $\Delta=2$. Experimental results in Table 4 and Table 5 also show that the Bakis model yields better performance than the ergodic model.

This result is contrary to Hsu's findings. Hsu found the ergodic structure to be slightly preferable to the Bakis structure [7, 12]. His results, however, were based on a digit database collected from speaker LE. In fact, if we examine only the recognition rate of digits for speaker LE, ergodic structure and Bakis structure produce the same recognition rate in this study as well. Thus, we could conclude that although the Bakis model is intuitively more appropriate for normal speech, the choice of Bakis vs. ergodic model in the dysarthric case may be vocabulary and speaker-dependent.

	ergodic model			left-to-right model		
	correct	top 2	top 4	correct	top 2	top 4
Speaker DC	88.57%	95.92%	97.55%	91.43%	97.55%	99.59%
Speaker CJ	82.04%	90.61%	95.51%	86.53%	95.51%	97.55%
Speaker LE	71.02%	81.22%	89.39%	74.29%	83.67%	93.06%
Speaker BD	68.57%	84.08%	93.06%	79.18%	90.61%	93.47%
Speaker LL	55.10%	70.61%	81.22%	60.00%	74.29%	85.31%

Table 5: Recognition performance with different models using the Grandfather database.

4.3 Acoustic Parameterization

The choice of parametric vector representation for the acoustic waveform is an important factor in automatic speech recognition. We have used weighted recursive least squares (WRLS) estimation (with weights chosen to implement a forgetting factor $[4,12]$) and autocorrelation methods to compute LP parameters, and cepstral analysis. Results in Table 7 show that there is no significant difference between the WRLS and autocorrelation LP methods. In this experiment we use five utterances for training and five for testing. The words which were used to compare the WRLS and autocorrelation methods are shown in Table 6 which consists of 40 words spoken by speaker LE. These words are a subset of a 200 word database which is reported in the Ph.D. dissertation of Hsu^{8} [12]. From Table 8 and Table 9, we see that the experiments show that the mel-based cepstrum significantly improves the performance with respect to the LP case. This result is consistent with a finding of Davis and Mermelstein [2] on IWR of normal speech ${ }^{9}$.

[^5]| a | american | about | becomes |
| :--- | :--- | :--- | :--- |
| bicycle | calculus | child | doesnt |
| drink | enough | existed | from |
| father | gauge | go | has |
| home | in | just | knows |
| landmark | muscle | movies | notion |
| never | old | opinion | paycheck |
| problem | question | rattle | shaky |
| sounds | topic | today | tell |
| usually | vote | who | with |

Table 6: Vocabulary for the comparison of WRLS and autocorrelation methods of LP parameter computation. These words are not in the WD for reasons explained in the text.

	ergodic model			Bakis model		
	correct	top 2	top 4	correct	top 2	top 4
WRLS	54.00%	65.00%	74.00%	59.50%	67.00%	77.00%
autocorrelation	56.00%	68.00%	74.00%	59.00%	71.00%	80.50%

Table 7: Recognition results comparing WRLS and autocorrelation methods of computing LP parameters.

	LP			Mel-Cepstrum		
	correct	top 2	top 4	correct	top 2	top 4
Speaker DC	84.78%	93.79%	98.14%	89.13%	95.96%	98.45%
Speaker CJ	78.88%	89.44%	94.10%	81.99%	92.24%	95.96%
Speaker LE	59.63%	72.05%	84.47%	68.94%	81.06%	90.37%
Speaker BD	74.53%	86.34%	97.20%	77.02%	90.68%	96.27%
Speaker LL	43.48%	56.52%	72.67%	56.83%	73.60%	83.85%

Table 8: Recognition results comparing LP and mel-cepstrum using the TI-46 database.

	LP			Mel-Cepstrum		
	correct	top 2	top 4	correct	top 2	top 4
Speaker DC	89.39%	95.92%	98.37%	91.43%	97.55%	99.59%
Speaker CJ	73.47%	85.71%	93.06%	86.53%	95.51%	97.55%
Speaker LE	67.35%	79.59%	89.39%	74.29%	83.67%	93.06%
Speaker BD	74.29%	84.90%	91.43%	79.61%	90.61%	93.47%
Speaker LL	57.96%	71.84%	86.12%	60.00%	74.29%	85.31%

Table 9: Recognition results comparing LP and mel-cepstrum using the Grandfather database.

4.4 Silent Portion Extraction

For many dysarthric speakers, "steady state" vowel-like phonemes are the easiest sounds to produce because they do not require dynamic movement of the vocal system. Conversely, phonetic transitions in speech are more difficult to produce for dysarthric individuals because they require fine muscle control to move the articulators. Many dysarthric individuals are not able to consistently and reliably make such transitions between two phonemes due to lack of muscle control. Consequently, it is reasonable to assume that acoustic transitions in dysarthric speech are of much larger variance than stationary regions. Hsu tested this hypothesis by pursuing a method to clip out the dynamic regions from the speech in order to decrease the variability. These experiments revealed significant performance improvement as a result of this procedure [7, 12].

Early experiments conducted during Snider's work [28] suggested that this clipping procedure might have been effective principally because it was removing short silent regions from the acoustics. To test this hypothesis, a silence detection strategy based on the zero-crossing and energy thresholds was employed to remove short silent regions. The thresholds were carefully selected so that the technique would extract only silence regions without removing the weak frictives and other low-amplitude portions of the speech. However, most experiments reported in Table 10 and Table 11 do not support Snider's hypothesis. These results suggest that silence portion extraction algorithm does not benefit the system performance and Hsu's improvement from the clipping procedure is apparently not due to silence extraction alone as Snider suspected.

	Silent portion removed			Silent portion kept		
	correct	top 2	top 4	correct	top 2	top 4
Speaker DC	86.65%	95.34%	98.14%	89.13%	95.96%	98.45%
Speaker CJ	82.92%	91.30%	97.20%	81.99%	92.24%	95.96%
Speaker LE	68.32%	81.06%	91.93%	68.94%	81.06%	90.37%
Speaker BD	74.22%	88.51%	95.96%	77.02%	90.68%	96.27%
Speaker LL	53.73%	64.91%	79.19%	56.83%	73.60%	83.85%

Table 10: Effect of silent portion extraction on recognition performance using the TI-46 database.

	Silent portion removed			Silent portion kept		
	correct	top 2	top 4	correct	top 2	top 4
Speaker DC	91.43%	96.33%	98.78%	91.43%	97.55%	99.59%
Speaker CJ	84.90%	93.88%	97.55%	86.53%	95.51%	97.55%
Speaker LE	72.65%	83.67%	90.61%	74.29%	83.67%	93.06%
Speaker BD	75.10%	88.16%	95.10%	79.18%	90.61%	93.47%
Speaker LL	60.00%	71.43%	83.27%	60.00%	74.29%	85.31%

Table 11: Effect of silent portion extraction on recognition performance using the Grandfather database.

4.5 Number of Training Utterances

Training of each HMM was based on the Baum-Welch reestimation procedure for multiple observation sequences [25]. The problem of having little training data with which to accurately characterize the statistical distributions in the HMM, which is common to most HMM training problems, is extraordinary in the dysarthric speech problem. The experimental results in Table 12 and Table 13 show that the number of training sequences has a significant effect on the recognition rate. However, the number of observation sequences used for training is limited, since any attempt to collect large bodies of speech data by lengthy recording sessions is impractical. Such sessions are mentally and physically fatiguing for many persons, a fact which only contributes to the variability one is trying to characterize by collecting more data. In order to get the best performance from the system, we suggest a retraining strategy.

	5 observation sequences		8 observation sequences			
	correct	top 2	top 4	correct	top 2	top 4
Speaker DC	81.99%	91.61%	95.03%	89.13%	95.96%	98.45%
Speaker CJ	79.81%	89.13%	94.41%	81.99%	92.24%	95.96%
Speaker LE	62.11%	75.16%	87.27%	68.94%	81.06%	90.37%
Speaker BD	69.25%	82.61%	91.61%	77.02%	90.68%	96.27%
Speaker LL	47.83%	61.49%	77.33%	56.83%	73.60%	83.85%

Table 12: Effect of number of training observation sequences on recognition using the TI-46 database.

	5 observation sequences			8 observation sequences		
	correct	top 2	top 4	correct	top 2	top 4
Speaker DC	87.76%	94.29%	97.55%	91.43%	97.55%	99.59%
Speaker CJ	74.69%	89.39%	95.92%	86.53%	95.51%	97.55%
Speaker LE	60.41%	73.47%	85.71%	74.29%	83.67%	93.06%
Speaker BD	68.57%	80.82%	89.80%	79.18%	90.61%	93.47%
Speaker LL	48.57%	64.49%	80.82%	60.00%	74.29%	85.31%

Table 13: Effect of number of training observation sequences on recognition using the Grandfather database.

Whenever the recognition is incorrect or correct but the likelihood of the recognized word is not sufficiently different from that of other candidates, we retrain the model by incorporating the new observations into the existing HMM.

4.6 Number of States in the HMM

It is clear that the Markov structure cannot correctly reflect the temporal speech waveform unless enough states are involved. One idea is to let the number of states correspond roughly to the number of phonemes within words, hence models with two to 10 states would be appropriate [25]. For computational efficiency, however, including fewer states is favorable.

The experimental results show that for short words, especially single syllable words, using fewer states results in better performance. This is consistent with the

	6 states	8 states	10 states
Speaker DC	89.13%	90.99%	88.51%
Speaker CJ	81.99%	83.85%	84.78%
Speaker LE	68.94%	70.50%	68.94%
Speaker BD	77.02%	77.95%	75.47%
Speaker LL	56.83%	57.14%	57.45%

Table 14: Effect of number of states in HMM on recognition performance using the TI-46 database.

	6 states	8 states	10 states
Speaker DC	91.43%	92.24%	92.65%
Speaker CJ	86.53%	84.49%	88.16%
Speaker LE	74.29%	72.65%	75.92%
Speaker BD	79.18%	76.73%	77.14%
Speaker LL	60.00%	60.41%	56.73%

Table 15: Effect of number of states in HMM on recognition performance using the Grandfather database.
assumption that the number of states roughly reflects the number of phonemes within words. Since the TI-46 word list contains 26 alphabetic characters and 10 digits (most of which are short words), the effect of increasing the number of states in using TI-46 is not as obvious as that in using the Grandfather word list. Note, however, that for Speaker LL who routinely produces short sounds, the use of fewer states results in better performance consistent with expectation.

5 The Prototype IWR System for Dysarthric Speech

The long term goal of this research is the development of an "artificially intelligent" communication aid to serve the needs of a person who is severely speech disabled and whose motor skills will only permit simple responses in answering "interrogations" by the device.

In research related to the speech recognition function of such a device, experiments with the dysarthric speech database yielded results which were highly sensitive to many analysis parameters, in particular, the settings of Hsu's transition clipping procedure [12]. Whereas Hsu's hypothesis was that the clipping procedure was effective because it removed transitional acoustics from the observation sequence [7, 12], preliminary experiments conducted during Snider's work [28] suggested that the clipping procedure might be beneficial principally because it was removing "gaps" or short silent regions from the acoustics. In most of the experiments in Section 4.4, however, discarding the silent regions is seen to cause a decrement in performance, though this is not generally true. These results significantly affected our thinking about the proper course of action in the development of the communication aid.

The conclusion from these mixed results is that building a "fixed box" for all the speech disabled individuals is not possible nor appropriate because the choice of parameters to improve the recognition rate is highly speaker-dependent. Our future plan is to cooperate with clinical centers in the development of customized systems for a few selected speech-disabled clients with "small" task requirements, for example, issuing a small set of verbal commands to an assistive device. "Customized" means that the inclusion of specific modules and parameter-choices in the system will be based on the needs and speech characteristics of the client. The clinical center will transmit digitized speech data over the electronic mail service (email) on the computer
network to the Speech Processing Laboratory. These data along with knowledge of the needs of the clients will be used to create a customized recognition system (software) which will then be returned to the clinical center over the network. Periodic updates (adaptation) of the software can be accomplished by the same means, particularly if the system is designed to record information about recognition errors and representative confused utterances. Such adaptation can also be achieved "on-line" if the system is apropriately designed. In parallel, of course, an opportunity exists for further research and development as we gain experience from this endeavor.

In this research, we have developed a fundamental speech recognition software module which, in keeping with the basic philosophy expressed above, remains flexible for user-specific customization. In addition, the "front" and "back" ends of the device remain unspecified, to be customized for individual users. For example, the basic operation could be as follows: 1) The user hits one key first, utters the words vocally, and then hits the key again to indicate the end of the utterance. 2) The software will then process the incoming speech by coding the speech signal, quantizing, and computing the probability for each prestored model. 3) Finally, the software presents a list of probable words in the decreasing order of their likelihood measure for the user to affirm, to deny, or from which to make a selection (see $[30,31]$).

One relatively straightforward technical problem remains in the development of a complete prototype recognition system. The system is running on a general-purpose PC, and thus, the speed of the recognition is limited. Even on a "high-end" PC based on an Intel 80486 microprocessor with math coprocessor support, it takes about 15 seconds, for example, to recognize a word from a 46 word vocabulary (TI-46) with the current system. In order to achieve the real-time speech recognition system, we can include Snider's compression approach $[6,28]$ to reduce the computational complexity, or employ a programmable signal processing board to maximize the speed, to achieve
real-time operation.
The performance of this prototype system depends on numerous inter-related factors. Although our approach can easily be adjusted to adapt to different dysarthric cases and maximize the performance, further study of several approaches to enhance the recognition system is in progress and will be discussed in the next section.

6 Conclusion

6.1 Summary

Recognition of the speech of severely dysarthric individuals requires a technique which is robust to extraordinarily high variability and very little training data. Many experimental results show that the recognition of dysarthric speech is a distinctly different problem from that of normal speech, and new strategies and approaches will be needed. Because the personal needs and the degree of dysarthria of the speakers are different, this effort has suggested that a flexible system in which system parameters can be selected on an individual basis is preferable to a "fixed" system.

The principal contributions of the this research are:

1. The creation of the "Whitaker Database": The WD provides a well-organized speech data set which is accessible over the internet computer network. The words in the database were carefully selected for their phonetic richness and complexity. It is hoped that this database will serve as a standard for researchers around the world with which many systems can be compared and meaningfully evaluated.
2. Extensive experimental studies on the WD to determine effects of various recognition parameters and strategies on performance. These studies resulted in the conclusion that "customization" of the recognition system to individual speakers is the proper design philosophy. This, in turn led to the conception of an "on-line" development and testing paradigm to be employed in cooperation with clinical centers in future work.

6.2 Future Work

In view of the current research on IWR for dysarthric speech, several issues which should be addressed in future work have been identified.

First, collection of speech data by lengthy recording sessions is a stressful experience for many dysarthric speakers, and resulting mental and physical fatigue and frustration introduce more variability. Consequently, training data are severely limited. We have suggested a "retraining" strategy as an area of future work in Section 4.5. The recognizer must have a convenient way to let the speaker identify the correctness of the recognized word and decide if the retraining process is required. Of course, the system should have the ability to decide automatically whether or not the retraining process is required when the recognition is correct in order to make it more robust.

Second, it is common for some speakers to introduce unnatural and irregular pauses within words. We introduced the idea of building a silent model as in Section 4.4. In this case, the incoming speech is represent as an arbitrary sequence of phone and silent models:

$$
\text { signal }=(\text { silent })-\text { phone }-(\text { silent })-\text { phone }-(\text { silent })
$$

where the silent part is optional and may appear in general between any two phones in the signal. A similar strategy was proposed by Levinson in an HMM-based levelbuilding connected word recognition system as a means for accounting for inter-word silence [15]. The significant benefits from this algorithm are: 1) It can be used to automate the end-point detection process, and 2) It avoids removing the transition information of dysarthric speech which can occur if silence regions are removed using conventional silence detection approaches [27].

Third, recognition based on sub-word (e.g. phoneme) modeling would alleviate
some of the problems encountered in collecting sufficient training data. In fact, such an approach might be a natural solution for some speakers who tend to use only a small number of phones. A natural extension of this idea would be to incorporate a grammar and begin recognition of "continuous" speech or at least isolated word sentence or phrase utterances. While the use of a grammar and these "higher-level" considerations were beyond the scope of the present work, significant benefits may result from their use in future research.

References

[1] Bahl, L.R., P.F. Brown, P.V. de Souza, and R.L. Mercer, "A new algorithm for the estimation of hidden Markov model parameters," Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, New York, Vol. 1, pp. 493-496, 1988.
[2] Davis, S.B. and P. Mermelstein, "Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 28, pp.357-366, 1980.
[3] Deller, J.R., J.G. Proakis and J.H.L. Hansen, Discrete Time Processing of Speech Signals, New York: Macmillian, 1993.
[4] Deller, J.R. and D. Hsu, "On the use of HMM's to recognize cerebral palsy speech: Isolated word case," Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Glasgow, vol. 1, pp. 290-293, 1989.
[5] Deller, J.R. and D. Hsu, "An alternative adaptive sequential regression algorithm and its application to the recognition of cerebral palsy speech," IEEE Trans. Circuits and Systems, vol. 34, pp. 782-787, 1987.
[6] Deller, J.R. and R.K. Snider, "'Quantized' hidden Markov models for efficient recognition of cerebral palsy speech," Proceedings 1990 IEEE International Symposium on Circuits and Systems, New Orleans, vol. 3, pp. 2041-2044, 1990.
[7] Deller, J.R., D. Hsu and L.J. Ferrier, "On the use of hidden Markov models for the recognition of dysarthric speech," Computer Methods and Programs in Biomedicine, in press.
[8] Deller, J.R. and G.P. Picaché "Advantages of a Givens rotation approach to temporally recursive linear predition analysis of speech," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 3, pp. 429-431, 1989.
[9] Doddington, G.R. and T.B. Schalk, "Speech recognition: Turning theory to practice," IEEE Spectrum, vol. 18, pp. 26-32, 1981.
[10] Foulds, R.A., G. Balesta, W.J. Crochetiere and C. Meyer, "The Tufts non-vocal communication program," Proceedings 1976 Conference on Systems and Devices for Disabled, pp. 14-17.
[11] Heckathorne, C.W. and D.S. Childress, "Applying anticipatory text selection in a writing aid for people with a severe motor impairment," Micro (IEEE Computer Society), vol. 3, pp. 17-23, 1983.
[12] Hsu, D., Computer Recognition of Nonverbal Speech Using Hidden Markov Model (Ph.D. Dissertation), Northeastern University, Boston, 1988.
[13] Johnson, W., F.L. Darley, and D.C. Spreisterbach, Diagnostic Methods in Speech Pathology, New York: Harper \& Row, 1963.
[14] Lee, K.-F., Automatic Speech Recognition, the Development of the SPHINX system, (Ph. D Dissertation), Carnegie-Mellon University, 1989.
[15] Levinson, S.E., "Structural methods in automatic speech recognition," Proceedings of the IEEE, vol. 73, pp. 1625-1650, 1985.
[16] Makhoul, J., "Linear prediction: A tutorial review," Proceedings of the IEEE, vol. 63, pp. 561-580, 1975.
[17] Makhoul, J., S. Roucos and H. Gish, "Vector quantization in speech coding," Proceedings of the IEEE, vol. 73, pp. 1551-1587, 1987.
[18] Mann, H.B. and A. Wald, "On the statistical treatment of linear stochastic difference equation," Econometrica, vol. 11, pp. 173-220, 1943.
[19] Markel, J.D. and A.H. Gray, Jr., Linear Prediction of Speech, New York: Springer-Verlag, 1976.
[20] Niemann, H., M. Lang and G. Sagerer, Recent Advances in Speech Understanding and Dialog Systems, New York: Springer-Verlag, 1987.
[21] O'Shaughnessy, D., Speech Communication: Human and Machine, Reading, Massachusetts: Addison Wesley, pp. 420-424, 1987.
[22] Parsons, T.W., Voice and Speech Processing, New York: McGraw-Hill, 1986.
[23] Picone, J., "Continuous speech recognition using hidden Markov models," IEEE ASSP Magazine, vol. 62, pp. 29-41, 1990.
[24] Press, W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical Recipes in C, New York: Cambridge University Press, 1988.
[25] Rabiner, L.R., "A tutorial on hidden Markov models and selected applications in speech recognition," Proceedings of the IEEE, vol. 77, pp. 257-285, 1989.
[26] Rabiner, L.R. and R.W. Schafer, Digital Processing of Speech Signals, Englewood-Cliffs, New Jersey: Prentice-Hall, pp.120-135, 1978.
[27] Rosenthal, L.H., L.R. Rabiner, R.W. Schafer, P. Cummiskey, and J.L. Flanagan, "A multiline computer voice response system utilizing ADPCM coded speech," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 22, no. 5, pp.339-352, 1974.
[28] Snider, R.K., Efficient Discrete Symbol Hidden Markov Model Evalution Using Transformation and State Reduction (M.S. Thesis), Michigan State University, 1990.
[29] Snider, R.K., Laboratory Manual, Speech Processing Laboratory, Michigan State University, 1991.
[30] Sy, B.K., A Knowledge-Based Message Generation System for Nonverbal Severely Motor Disabled Persons: Design and Prototype Testing (Ph.D. Dissertation), Northeastern University, Boston, 1988.
[31] Sy, B.K. and J.R. Deller, "An AI-based communication system for motor and speech disabled persons: Design and methodology and prototype testing," IEEE Transactions on Biomedical Engineering, vol. 36, no. 5, 1989.
[32] UCP Prospectus, United Cerebral Palsy of Chicago, 1983.
[33] Van Hattum, R.J., Communication Disorers, New York: MacMillan, 1980.
[34] Wilpon, J.G. and L.R. Rabiner, "Application of hidden Markov models to automatic speech endpoint detection," Computer Speech and Language, vol. 2, pp. 321-341, 1987.

APPENDICES

A Experimental Result for Speaker DC

Shown in this appendix is an example experimental result for speaker DC using the TI-46 word list. In this experiment, eight utterances were used for training, seven for testing, a 128 symbol codebook, and 6 state Bakis model. The first column represents correct words, the second column are recognized words, the third column represents the number of correct recognitions to that point in the table, the fourth column are the number of times the correct word appeared in the two words to which the recognizer assigned highest likelihood to that point in the table (column five and six are similar results for top four and eight candidates), and the last column represents the total number of testing words.

A	$\mathrm{p}=1$	p2=1	$\mathrm{p} 4=1 \quad \mathrm{p}$	$\mathrm{p} 8=1 \quad$ to	$t=1$
X	$\mathrm{p}=1$	p2-1	p4=1 p	$\mathrm{p} 8=2$ 七○	t=2
ENTER	$\mathrm{p}=1$	p2-1	p4-1 p	p8-3 to	t=3
A	$\mathrm{p}=2$	p2-2	p4-2 p	$\mathrm{p} 8=4$ 七	$t=4$
A	p-3	$\mathrm{p} 2=3$	p4-3 p	p8-5 to	t=5
A	$\mathrm{p}=4$	p2-4	p4-4 p	p8-6 to	t-6
A	$\mathrm{p}=5$	p2-5	p4-5 p	p8=7 to	t=7
B	$\mathrm{p}=6$	p2=6	p4-6 p	p8=8 to	t-8
V	$\mathrm{p}=6$	p2-7	p4-7 p	p8=9 to	t-9
V	p-6	p2-7	p4-8 p	p8-10	Ot-10
REPEAT	$p=6$	p2=8	$\mathrm{p} 4=9 \mathrm{p}$	$\mathrm{p} 8=11$	Ot=11
B	$\mathrm{p}=7$	p2=9	p4-10	p8-12	tot=12
B	p-8	p2-10	p4-11	p8-13	tot=13
B	p=9	$\mathrm{p} 2=11$	p4-12	$p 8=14$	tot=14
C	$p=10$	p2-12	p4=13	$3 \mathrm{p} 8=15$	tot=15
C	$p=11$	p2-13	p4-14	$4 \quad \mathrm{p} 8=16$	tot=16
C	$p=12$	p2-14	p4-15	$5 \quad p 8=17$	tot $=17$
C	$\mathrm{p}=13$	$\mathrm{p} 2=15$	p4=16	$6 \mathrm{p} 8=18$	tot=18
C	$p=14$	p2-16	p4=17	$7 \mathrm{p} 8=19$	tot=19
C	$p=15$	p2-17	p4-18	$8 \mathrm{p} 8=20$	tot=20
C	p=16	p2-18	p4-19	$9 \mathrm{p} 8=21$	tot-21
D	$\mathrm{p}=17$	p2=19	p4-20	$0 \mathrm{p} 8=22$	tot=22
D	$p=18$	p2=20	p4-21	$1 \mathrm{p} 8=23$	tot-23
G	$p=18$	$\mathrm{p} 2=21$	p4=22	$2 \mathrm{p} 8=24$	tot-24
D	$p=19$	p2-22	p4-23	$3 \mathrm{p} 8=25$	tot=25
D	$\mathrm{p}=20$	p2-23	p4-24	4 p8-26	tot-26
D	$\mathrm{p}=21$	p2=24	p4=25	$5 \mathrm{p} 8=27$	tot=27
D	$\mathrm{p}=22$	p2=25	p4-26	$6 \mathrm{p} 8=28$	tot-28
P	$\mathrm{p}=22$	p2=26	p4-27	$7 \mathrm{p} 8=29$	tot=29
E	$p=23$	p2-27	p4-28	$8 \mathrm{p} 8=30$	tot-30
E	$\mathrm{p}=24$	p2-28	p4=29	$9 \mathrm{p} 8=31$	tot=31
G	$\mathrm{p}=24$	p2-28	p4=30	$0 \quad \mathrm{p} 8=32$	tot=32
D	$p=24$	p2-29	p4-31	$1 \mathrm{p} 8=33$	tot=33
E	p-25	p2-30	p4-32	2 p8=34	tot-34
E	p-26	p2-31	p4-33	$3 \mathrm{p} 8=35$	tot-35
STOP	$p=26$	$\mathrm{p} 2=31$	p4-33	$3 \mathrm{p} 8=35$	tot=36
STOP	$p=26$	p2-31	p4-34	4 p8=36	tot=37
F	p-27	p2-32	p4-35	5 p8-37	tot=38
F	p-28	p2-33	p4-36	6 p8-38	tot-39
F	p-29	p2=34	p4=37	$7 \mathrm{p} 8=39$	tot $=40$
L	p=29	p2-35	p4-38	$8 \mathrm{p} 8=40$	tot-41
F	$\mathrm{p}=30$	p2-36	p4-39	$9 \mathrm{p} 8-41$	tot=42
G	$\mathrm{p}=31$	p2-37	$p 4=40$	0 p8=42	tot-43
G	$\mathrm{p}=32$	p2=38	p4-41	$1 \mathrm{p} 8=43$	tot=44
G	p=33	p2-39	p4-42	2 p8-44	tot-45
G	$\mathrm{p}=34$	p2-40	p4=43	$3 \mathrm{p} 8=45$	tot=46
G	$\mathrm{p}=35$	p2-41	p4=44	$4 \mathrm{p} 8=46$	tot=47
G	$\mathrm{p}=36$	p2=42	p4-45	$5 \quad \mathrm{p} 8=47$	tot=48
G	$\mathrm{p}=37$	p2-43	p4-46	6 p8-48	tot=49
H	$\mathrm{p}=38$	p2=44	p4-47	$7 \quad \mathrm{p} 8=49$	tot=50
H	p=39	p2-45	p4-48	$8 \mathrm{p} 8=50$	tot-51
H	$p-40$	p2-46	p4-49	$9 \mathrm{p} 8=51$	tot-52
H	$p=41$	p2-47	p4-50	- p8-52	tot=53
H	p-42	$\mathrm{p} 2=48$	p4-51	$1 \mathrm{p} 8-53$	tot=54
H	$p=43$	$p 2=49$	p4-52	$2 \mathrm{p} 8=54$	tot=55
H	$p=44$	p2=50	p4-53	$3 \mathrm{p} 8=55$	tot-56
I	$p=45$	p2-51	p4-54	$4 \quad \mathrm{p} 8=56$	tot=57
I	p-46	p2-52	p4-55	$5 \mathrm{p} 8=57$	tot $=58$
I	$p=47$	p2-53	p4-56	$6 \mathrm{p} 8=58$	tot=59
I	p-48	p2-54	p4-57	$7 \mathrm{p} 8=59$	tot=60
I	$p=49$	p2-55	p4-58	$8 \quad p 8=60$	tot=61
I	p-50	p2-56	p4=59	p $\mathrm{p} 8=61$	tot=62
I	$\mathrm{p}=51$	p2=57	p4=60	p8=62	tot=63
J	$p=52$	p2=58	p4-61	$1 \quad \mathrm{p} 8=63$	tot=64
J	$\mathrm{p}=53$	p2-59	p4=62	p8=64	tot-65
YES	$p=53$	p2-59	p4=63	$3 \mathrm{p} 8=65$	tot=66

J	$\mathrm{p}=54$	$\mathrm{p} 2=60$	p4-64 p	p8=66 to	tot=67
J	$p=55$	p2=61	p4=65 p	p8-67 to	Lot=68
J	$\mathrm{p}=56$	$\mathrm{p} 2=62$	p4=66 p	p8=68 to	cot=69
J	$p=57$	p2=63	p4=67 P	p8-69 to	tot=70
K	$\mathrm{p}=58$	p2-64	p4=68 $\quad \mathrm{p}$	p8-70 to	cot-71
K	$p=59$	p2-65	p4=69 p	$\mathrm{p} 8=71$ to	Lot=72
K	$p=60$	p2=66	p4-70 p	$\mathrm{p} 8=72$ to	Lot=73
K	p-61	p2-67	p4-71. p	$\mathrm{p} 8=73$ to	Cot=74
K	$p=62$	p2-68	p4-72 p	p8=74 to	cot=75
K	$p=63$	p2=69	p4-73 p	p8-75 to	Cot=76
K	p-64	p2-70	p4-74 p	p8-76 to	tot=77
L	p-65	p2-71	p4-75 p	p8-77 to	tot=78
L	$p=66$	p2-72	$\mathrm{p} 4=76 \mathrm{p}$	p8-78 to	tot=79
L	$p=67$	$\mathrm{p} 2=73$	p4-77 p	p8-79 to	-ot-80
L	p-68	p2-74	p4-78 p	$\mathrm{p} 8=80$ to	Lot=81
L	p-69	p2-75	p4-79 p	p8-81 to	Lot-82
L	$p=70$	p2-76	p4-80 p	p8-82 to	tot=83
L	$\mathrm{p}=71$	p2-77	p4-81 p	p8-83 to	Cot=84
M	$\mathrm{p}=72$	p2=78	p4-82 p	p8-84 to	Cot=85
M	$\mathrm{p}=73$	p2-79	p4-83 p	p8=85 to	tot=86
M	$\mathrm{p}=74$	p2=80	p4=84 p	p8-86 to	Cot=87
M	$p=75$	p2-81	p4-85 p	p8-87 to	cot=88
M	p-76	p2=82	p4-86 p	p8=88 to	tot=89
M	$\mathrm{p}=77$	p2-83	$\mathrm{p} 4=87 \mathrm{p}$	p8-89 七o	Cot=90
M	p=78	p2-84	p4-88 p	p8=90 to	-ot-91
N	p-79	p2-85	p4-89 p	p8-91 to	-ot=92
N	$\mathrm{p}=80$	p2-86	p4-90 p	p8=92 to	cot=93
ENTER	p=80	p2-87	p4-91 p	p8-93 to	Cot=94
ENTER	p-80	p2-87	p4-92 p	p8-94 to	Lot-95
ENTER	$\mathrm{p}=80$	p2-88	p4-93 p	p8-95 to	tot-96
N	$\mathrm{p}=81$	p2=89	p4-94 p	p8-96 to	Cot=97
N	$\mathrm{p}=82$	p2-90	p4-95 p	p8-97 to	Lot=98
0	$p=83$	p2=91	p4-96 p	p8-98 to	Lot=99
0	$\mathrm{p}=84$	p2-92	p4-97 p	p8=99 to	tot-100
0	$p=85$	p2-93	p4=98 p	p8-100 t	tot=101
0	p-86	p2-94	p4-99 p	$\mathrm{p} 8=101$ t	tot=102
0	p-87	p2-95	p4-100	p8-102	tot-103
0	$\mathrm{p}=88$	p2-96	p4=101	p8=103	tot=104
0	$p=89$	p2-97	p4=102	p8=104	tot=105
P	$p=90$	p2-98	p4-103	p8=105	tot=106
D	$p=90$	p2-99	p4-104	p8-106	$t o t=107$
P	$\mathrm{p}=91$	p2-100	p4-105	p8-107	7 tot=108
P	p=92	p2-101	p4=106	$\mathrm{p} 8=108$	tot=109
P	p-93	p2-102	p4-107	p8-109	tot-110
P	p-94	p2-103	p4-108	p8=110	tot=111
P	$p=95$	p2-104	p4-109	p8=111	tot=112
Q	p-96	p2-105	p4-110	p8-112	tot-113
Q	$\mathrm{p}=97$	p2-106	p4-111	$\mathrm{p} 8=113$	3 tot=114
Q	$\mathrm{p}=98$	p2=107	p4-112	p8=114	4 tot=115
Q	$p=99$	p2-108	p4-113	p8-115	tot=116
Q	$\mathrm{p}=100$	p2-109	p4=114	$4 \mathrm{p}=116$	16 tot $=117$
Q	$p=101$	p2-110	p4-115	$5 \quad \mathrm{p}=117$	17 tot=118
Q	$\mathrm{p}=102$	p2-111	p4-116	$6 \quad \mathrm{p} 8=118$	18 tot=119
R	$p=103$	$\mathrm{p} 2=112$	p4=117	$7 \mathrm{p}=119$	19 tot=120
R	$p=104$	p2-113	p4=118	8 p8-120	20 tot=121
STOP	$p=104$	p2-113	p4=119	$9 \mathrm{p}=121$	21 tot=122
R	$p=105$	p2=114	p4-120	$0 \mathrm{p}=122$	22 tot=123
L	$p=105$	p2-115	p4=121	$1 \mathrm{p} 8=123$	23 tot=124
R	$\mathrm{p}=106$	p2-116	p4-122	$2 \mathrm{p} 8=124$	24 tot=125
R	$p=107$	$\mathrm{p} 2=117$	p4-123	$3 \mathrm{p} 8=125$	25 tot=126
S	$\mathrm{p}=108$	p2-118	p4-124	$4 \mathrm{p} 8=126$	26 tot=127
S	$p=109$	p2-119	p4-125	$5 \mathrm{p} 8=127$	27 tot=128
X	$p=109$	p2-120	p4-126	$6 \mathrm{p} 8=128$	88 tot=129
S	$p=110$	p2-121	p4-127	$7 \mathrm{p} 8=129$	29 tot=130
YES	$p=110$	p2-122	p4=128	$8 \mathrm{p} 8=130$	30 tot=131
S	$p=111$	$\mathrm{p} 2=123$	p4-129	$9 \mathrm{p} 8=131$	31 tot=132

S	S	$p=112$	$\mathrm{p} 2=124$	$\mathrm{p} 4=130$	$\mathrm{p} 8=132$	tot=133
T	Three	$\mathrm{p}=112$	p2=125	p4=131	$\mathrm{p} 8=133$	tot=134
T	T	$\mathrm{p}=113$	p2-126	p4-132	p8-134	tot=135
T	T	$\mathrm{p}=114$	p2=127	$\mathrm{p} 4=133$	$\mathrm{p} 8=135$	t tot $=136$
T	T	$p=115$	$\mathrm{p} 2=128$	p4=134	$\mathrm{p} 8=136$	tot=137
T	T	p-116	p2-129	p4-135	p8-137	tot-138
T	T	$p=117$	p2=130	p4-136	$\mathrm{p} 8=138$	tot=139
T	T	$\mathrm{p}=118$	p2=131	p4=137	$\mathrm{p} 8=139$	tot=140
U	U	$p=119$	p2-132	$\mathrm{p} 4=138$	$\mathrm{p} 8=140$	tot=141
U	U	$\mathrm{p}=120$	p2-133	p4=139	p8-141	tot=142
U	ZERO	$p=120$	p2=134	p4=140	$\mathrm{p} 8=142$	tot=143
U	U	$\mathrm{p}=121$	p2=135	p4=141	$\mathrm{p} 8=143$	tot=144
U	U	$\mathrm{p}=122$	p2-136	p4=142	p8=144	tot=145
U	0	$\mathrm{p}=123$	p2-137	p4=143	p8-145	tot=146
U	0	$\mathrm{p}=124$	$\mathrm{p} 2=138$	p4-144	$\mathrm{p} 8=146$	tot=147
V	V	$p=125$	$\mathrm{p} 2=139$	p4=145	$\mathrm{p} 8=147$	tot=148
V	V	$\mathrm{p}=126$	$\mathrm{p} 2=140$	p4-146	p8-148	tot-149
V	V	p-127	$\mathrm{p} 2=141$	p4=147	p8-149	tot=150
V	V	$p=128$	$\mathrm{p} 2=142$	p4=148	p8=150	tot=151
V	V	$\mathrm{p}=129$	p2=143	p4-149	p8=151	tot=152
V	V	$\mathrm{p}=130$	p2-144	p4-150	p8-152	tot=153
V	V	$\mathrm{p}=131$	$\mathrm{p} 2=145$	p4-151	$\mathrm{p} 8=153$	tot=154
W	W	$\mathrm{p}=132$	$\mathrm{p} 2=146$	p4=152	$\mathrm{p} 8=154$	tot=155
W	W	$p=133$	p2-147	p4-153	p8=155	tot=156
W	W	$\mathrm{p}=134$	p2=148	p4-154	p8-156	tot-157
W	W	$p=135$	p2=149	p4=155	$\mathrm{p} 8=157$	t tot=158
W	W	$p=136$	p2-150	p4-156	p8=158	tot=159
W	W	$\mathrm{p}=137$	p2-151	p4-157	p8=159	tot=160
W	W	$\mathrm{p}=138$	p2-152	p4=158	$\mathrm{p} 8=160$	tot=161
X	X	$\mathrm{p}=139$	p2-153	p4=159	p8-161	tot=162
X	X	$\mathrm{p}=140$	p2=154	p4=160	$\mathrm{p} 8=162$	tot=163
X	X	$\mathrm{p}=141$	p2-155	p4-161	p8-163	tot-164
X	X	$p=142$	p2=156	$\mathrm{p} 4=162$	$p 8=164$	tot=165
X	X	$\mathrm{p}=143$	p2=157	$p 4=163$	$p 8=165$	tot=166
X	X	p-144	p2-158	p4-164	$\mathrm{p} 8=166$	tot=167
X	X	$p=145$	p2-159	$\mathrm{p} 4=165$	$\mathrm{p} 8=167$	tot=168
Y	\mathbf{Y}	$p=146$	p2-160	p4=166	p8=168	tot=169
\mathbf{Y}	\mathbf{Y}	$p=147$	p2-161	p4-167	p8-169	tot=170
Y	\mathbf{Y}	$p-148$	p2-162	p4-168	p8=170	tot=171
Y	\mathbf{Y}	$p=149$	p2=163	p4=169	$\mathrm{p} 8=171$	tot=172
Y	\mathbf{Y}	$p=150$	$\mathrm{p} 2=164$	$p 4=170$	$\mathrm{p} 8=172$	tot=173
Y	\mathbf{Y}	$\mathrm{p}=151$	p2=165	$\mathrm{p} 4=171$	$\mathrm{p} 8=173$	tot=174
Y	\mathbf{Y}	$\mathrm{p}=152$	p2-166	$\mathrm{p} 4=172$	p8=174	tot=175
Z	REPEAT	$p=152$	p2-167	p4=173	$\mathrm{p} 8=175$	tot=176
2	2	p-153	p2=168	p4=174	p8-176	tot-177
2	2	$\mathrm{p}=154$	p2=169	p4-175	p8=177	tot=178
2	2	$p=155$	$\mathrm{p} 2=170$	p4=176	$\mathrm{p} 8=178$	tot=179
Z	2	$p=156$	p2=171	p4-177	$\mathrm{p} 8=179$	tot=180
2	2	$p=157$	p2=172	p4=178	$\mathrm{p} 8=180$	tot=181
2	2	$\mathrm{p}=158$	p2-173	p4-179	$\mathrm{p} 8=181$	tot=182
ONE	ONE	$p=159$	p2-174	p4=180	$\mathrm{p} 8=182$	tot=183
ONE	ONE	$p=160$	p2-175	p4-181	p8-183	tot=184
ONE	ONE	$p-161$	$\mathrm{p} 2=176$	p4-182	p8-184	tot=185
ONE	ONE	$p=162$	$\mathrm{p} 2=177$	$\mathrm{p} 4=183$	$\mathrm{p} 8=185$	tot=186
ONE	ONE	$p=163$	p2-178	p4-184	$\mathrm{p} 8=186$	tot=187
ONE	ONE	$p=164$	p2-179	p4-185	p8-187	tot=188
ONE	ONE	$\mathrm{p}=165$	p2-180	p4=186	p8=188	tot=189
TWO	TWO	$p=166$	p2-181	p4=187	p8=189	tot=190
TWO	TWO	$p=167$	$\mathrm{p} 2=182$	p4=188	p8-190	tot=191
TWO	TWO	$\mathrm{p}=168$	$\mathrm{p} 2=183$	p4-189	p8=191	tot=192
TWO	TWO	p=169	p2=184	$p 4=190$	p8-192	tot=193
TWO	TWO	$\mathrm{p}=170$	p2=185	p4-191	p8=193	tot=194
TWO	TWO	$\mathrm{p}=171$	p2-186	p4=192	$\mathrm{p} 8=194$	tot=195
TWO	TWO	$\mathrm{p}=172$	p2-187	p4=193	$\mathrm{p} 8=195$	tot=196
THREE	THREE	$p=173$	$\mathrm{p} 2=188$	$p 4=194$	$p 8=196$	tot=197
THREE	THREE	$\mathrm{p}=174$	p2-189	p4=195	p8=197	tot=198

THREE	three	$\mathrm{p}=175$	p2-190	p4-196	p8-198	tot-199
THREE	three	$\mathrm{p}=176$	p2-191	p4-197	p8-199	tot-200
three	REPEAT	$\mathrm{p}=176$	p2=192	p4=198	$\mathrm{p} 8=200$	tot=201
THREE	THREE	$\mathrm{p}=177$	p2=193	p4-199	$\mathrm{p} 8=201$	tot-202
three	three	$\mathrm{p}=178$	p2-194	$\mathrm{p} 4=200$	p8-202	tot-203
FOUR	FOUR	$\mathrm{p}=179$	p2-195	p4-201	p8-203	tot-204
FOUR	FOUR	$\mathrm{p}=180$	p2=196	p4=202	$\mathrm{p} 8=204$	tot=205
FOUR	FOUR	$\mathrm{p}=181$	p2-197	p4-203	p8-205	tot-206
FOUR	FOUR	$\mathrm{p}=182$	p2-198	p4-204	p8-206	tot-207
FOUR	FOUR	$\mathrm{p}=183$	p2-199	p4-205	p8-207	tot=208
FOUR	FOUR	$\mathrm{p}=184$	p2-200	p4-206	p8=208	tot-209
FOUR	FOUR	$\mathrm{p}=185$	p2-201	p4-207	p8-209	tot=210
FIVE	FIVE	$\mathrm{p}=186$	p2-202	p4-208	p8-210	tot=211
FIVE	FIVE	$\mathrm{p}=187$	p2-203	p4-209	$\mathrm{p} 8=211$	tot=212
FIVE	FIVE	$\mathrm{p}=188$	p2-204	p4-210	p8-212	tot-213
FIVE	FIVE	$\mathrm{p}=189$	p2-205	p4-211	p8-213	tot-214
FIVE	FIVE	p-190	p2-206	p4-212	$\mathrm{p} 8=214$	tot-215
FIVE	FIVE	$\mathrm{p}=191$	p2-207	p4-213	$\mathrm{p} 8=215$	tot=216
FIVE	FIVE	p-192	p2-208	p4-214	p8-216	tot-217
SIX	SIX	$\mathrm{p}=193$	p2-209	p4-215	p8-217	tot-218
SIX	SIX	$\mathrm{p}=194$	p2=210	p4-216	p8-218	tot=219
SIX	SIX	$\mathrm{p}=195$	p2-211	p4=217	p8-219	tot=220
SIX	SIX	$\mathrm{p}=196$	p2-212	p4-218	p8-220	tot-221
SIX	SIX	$\mathrm{p}=197$	p2-213	p4-219	$\mathrm{p} 8=221$	tot=222
SIX	SIX	$\mathrm{p}=198$	p2-214	p4-220	$\mathrm{p} 8=222$	tot=223
SIX	SIX	p-199	p2-215	p4-221	p8-223	tot-224
SEven	SEVEN	$\mathrm{p}=200$	p2-216	p4-222	p8-224	tot-225
SEven	SEVEN	$\mathrm{p}=201$	p2-217	p4-223	p8-225	tot=226
SEven	SEVEN	$\mathrm{p}=202$	p2-218	p4=224	p8-226	tot-227
SEven	SEVEN	$\mathrm{p}=203$	p2-219	p4-225	p8-227	tot=228
SEven	SEVEN	$\mathrm{p}=204$	p2-220	p4-226	p8-228	tot=229
SEven	SEVEN	p-205	p2-221	p4-227	p8-229	tot=230
SEven	SEVEN	p-206	p2-222	p4-228	p8=230	tot=231
EIGHT	EIGHT	p-207	p2-223	p4-229	p8-231	tot-232
EIGRT	H	$\mathrm{p}=207$	p2-224	p4-230	p8-232	tot=233
EIGRT	日	$\mathrm{p}=207$	p2-225	p4=231	p8-233	tot=234
EIGHT	H	$\mathrm{p}=207$	p2-226	p4-232	p8=234	tot-235
EIGHT	EIGHT	p-208	p2-227	p4-233	p8-235	tot-236
EIGHT	EIGAT	p=209	p2-228	p4-234	p8-236	tot=237
EIGHT	H	p=209	p2-228	p4-235	p8-237	tot=238
NINE	NINE	$\mathrm{p}=210$	p2=229	p4=236	p8=238	tot-239
NINE	NO	$\mathrm{p}=210$	p2-229	p4=236	$\mathrm{p} 8=239$	tot=240
NINE	M	$\mathrm{p}=210$	$\mathrm{p} 2=230$	p4-237	p8-240	tot=241
NINE	NINE	$\mathrm{p}=211$	p2-231	p4-238	p8-24i	tot-242
NINE	NINE	$\mathrm{p}=212$	p2-232	p4-239	p8-242	tot-243
NINE	NINE	$\mathrm{p}=213$	p2-233	p4-240	p8=243	tot=244
NINE	NINE	$\mathrm{p}=214$	p2-234	p4-241	p8-244	tot=245
2ERO	2ERO	$\mathrm{p}=215$	p2-235	p4-242	p8-245	tot-246
2ERO	2ERO	$\mathrm{p}=216$	p2-236	p4-243	p8-246	tot=247
2ERO	zero	$\mathrm{p}=217$	p2-237	p4-244	p8-247	tot=248
2ERO	2ERO	$\mathrm{p}=218$	p2-238	p4-245	p8-248	tot-249
ZERO	zero	p-219	p2-239	p4-246	p8=249	tot-250
ZERO	2ERO	$\mathrm{p}=220$	p2-240	p4-247	p8-250	tot=251
2ERO	2ERO	$\mathrm{p}=221$	p2-241	p4-248	p8-251	tot-252
StART	START	$\mathrm{p}=222$	p2-242	p4-249	$\mathrm{p} 8=252$	tot=253
START	START	$\mathrm{p}=223$	p2-243	p4-250	p8-253	tot-254
START	START	$\mathrm{p}=224$	p2-244	p4-251	p8-254	tot=255
START	START	$\mathrm{p}=225$	p2-245	p4-252	p8-255	tot-256
StART	START	$\mathrm{p}=226$	p2-246	p4-253	p8-256	tot=257
START	START	$\mathrm{p}=227$	p2-247	p4-254	p8-257	tot=258
START	START	$\mathrm{p}=228$	p2-248	p4-255	p8-258	tot-259
STOP	STOP	$\mathrm{p}=229$	p2-249	p4-256	p8-259	tot=260
STOP	STOP	$\mathrm{p}=230$	p2-250	p4-257	p8-260	tot=261
STOP	STOP	$\mathrm{p}=231$	p2-251	p4-258	$\mathrm{p} 8=261$	tot=262
STOP	STOP	$\mathrm{p}=232$	p2-252	p4-259	p8-262	tot=263
STOP	STOP	$\mathrm{p}=233$	p2-253	p4-260	p8-263	tot-264

STOP	STOP	$\mathrm{p}=234$	p2-254	p4=261	$\mathrm{p} 8=264$	tot $=265$
STOP	STOP	$\mathrm{p}=235$	p2 255	p4=262	$\mathrm{p} 8=265$	tot $=2$
YES	YES	$\mathrm{p}=236$	p2=256	p4=263	p8=266	tot=26
YES	YES	p-237	p2-257	p4-264	p8-267	tot-268
YES	YES	$\mathrm{p}=238$	p2=258	p4=265	p8-268	tot=269
YES	YES	$\mathrm{p}=239$	p2-259	p4-266	p8-269	tot=270
YES	YES	$\mathrm{p}=240$	p2-260	p4-267	$\mathrm{p} 8=270$	tot=271
YES	YES	$\mathrm{p}=241$	p2-261	p4=268	p8-271	tot=272
YES	YES	$\mathrm{p}=242$	p2-262	p4-269	p8-272	tot=273
NO	NO	$\mathrm{p}=243$	p2-263	p4-270	p8-273	tot=274
NO	NO	$\mathrm{p}=244$	p2-264	p4-271	p8-274	tot-275
NO	No	$\mathrm{p}=245$	p2=265	p4-272	p8=275	tot $=276$
NO	NO	$\mathrm{p}=246$	p2-266	p4=273	$\mathrm{p} 8=276$	tot=277
NO	NO	$\mathrm{p}=247$	p2-267	p4-274	p8-277	tot=278
NO	NO	$\mathrm{p}=248$	p2-268	p4-275	p8-278	tot-279
NO	NO	$\mathrm{p}=249$	p2-269	p4-276	p8-279	tot=280
GO	FOUR	$\mathrm{p}=249$	p2-269	p4-276	$\mathrm{p} 8=279$	tot-281
GO	GO	$\mathrm{p}=250$	$\mathrm{p} 2=270$	p4-277	$\mathrm{p} 8=280$	tot=282
GO	GO	$\mathrm{p}=251$	$\mathrm{p} 2=271$	p4=278	p8=281	tot=283
GO	NO	$\mathrm{p}=251$	$\mathrm{p} 2=272$	p4-279	p8=282	tot=284
GO	GO	$\mathrm{p}=252$	p2-273	p4-280	p8-283	tot=285
GO	GO	$\mathrm{p}=253$	p2-274	p4-281	p8-284	tot-286
GO	GO	$\mathrm{p}=254$	p2-275	p4-282	p8=285	tot=287
HELP	help	p-255	p2-276	p4-283	p8-286	ot-288
HELP	HELP	$\mathrm{p}=256$	p2-277	p4-284	p8-287	tot-289
HELP	HELP	$\mathrm{p}=257$	p2-278	p4-285	p8-288	tot-290
HELP	HELP	$\mathrm{p}=258$	p2-279	p4-286	p8-289	tot-291
HELP	HELP	p-259	p2-280	p4-287	p8=290	tot-292
HELP	HELP	$\mathrm{p}=260$	p2-281	p4-288	p8=291	tot=293
HELP	HELP	$\mathrm{p}=261$	p2-282	p4-289	p8=292	tot=294
ERASE	ERASE	$\mathrm{p}=262$	p2-283	p4-290	p8-293	tot-295
ERASE	ERASE	$\mathrm{p}=263$	p2-284	p4-291	p8=294	tot-296
ERASE	ERASE	$\mathrm{p}=264$	p2-285	p4-292	p8-295	tot-297
ERASE	ERASE	$\mathrm{p}=265$	p2=286	p4-293	p8=296	tot=298
ERASE	ERASE	$\mathrm{p}=266$	p2-287	p4-294	p8-297	tot=299
ERASE	ERASE	$\mathrm{p}=267$	p2-288	p4-295	p8-298	tot=300
ERASE	ERASE	$\mathrm{p}=268$	p2-289	p4-296	p8=299	tot=301
RUBOUT	RUBOUT	$\mathrm{p}=269$	p2=290	p4-297	p8=300	tot=302
RUBOUT	RUBOUT	$\mathrm{p}=270$	p2-291	p4-298	p8=301	tot-303
RUBOUT	RUBOUT	$\mathrm{p}=271$	p2-292	p4-299	p8-302	tot=304
RUBOUT	Y	$\mathrm{p}=271$	p2=292	p4-300	$\mathrm{p} 8=303$	tot=305
RUBOUT	RUBOUT	$\mathrm{p}=272$	p2-293	p4-301	p8-304	tot-306
RUBOUT	STOP	$\mathrm{p}=272$	p2-294	p4-302	p8=305	tot-307
RUEOU'S	RUBOUT	$\mathrm{p}=273$	p2-295	p4-303	p8-306	tot=308
REPEAT	REPEAT	$\mathrm{p}=274$	p2-296	p4=304	$\mathrm{p} 8=307$	tot=309
REPEAT	REPEAT	$\mathrm{p}=275$	p2-297	p4-305	p8-308	tot=310
REPEAT	REPEAT	$\mathrm{p}=276$	p2-298	p4-306	p8-309	tot=311
REPEAT	REPEAT	$\mathrm{p}=277$	p2-299	p4-307	$\mathrm{p} 8=310$	tot=312
REPEAT	REPEAT	$\mathrm{p}=278$	p2-300	p4-308	p8-311	tot=313
REPEAT	REPEAT	$\mathrm{p}=279$	p2-301	p4-309	p8=312	tot=314
REPEAT	REPEAT	$\mathrm{p}=280$	p2-302	p4-310	p8-313	tot=315
ENTER	ENTER	$\mathrm{p}=281$	p2-303	p4-311	p8=314	tot=316
ENTER	ENTER	$\mathrm{p}=282$	p2-304	p4-312	p8-315	tot-317
ENTER	ENTER	$\mathrm{p}=283$	p2-305	p4-313	p8-316	tot-318
ENTER	ENTER	$\mathrm{p}=284$	p2=306	p4=314	$\mathrm{p} 8=317$	tot=319
ENTER	ENTER	$\mathrm{p}=285$	p2-307	p4-315	p8-318	tot-320
ENTER	ENTER	$\mathrm{p}=286$	p2-308	p4-316	p8-319	tot=321
ENTER	ENTER	$\mathrm{p}=287$	p2-309	p4-317	p8-320	tot-322

recognition rate $=89.1304$ percent

B Program Listing: LP Parameter Generating Program

This program computes the LP parameters of an input speech file using the autocorrelation method, and then quantizes the LP parameters.

```
*include <stdio.h>
*include <ctype.h>
#include <string.h>
*include <time.h>
|include <math.h>
#define N 256 /* Hamming window size */
*define NUM 50000 /* maximum allowed for sp
#define MO 14 /* Model Order of LPC */
define NLEVELS 7 /* number of levels in binary codebook */
#define LEVELINDX 126 /* 2^NLEVELS-2 */
|define TOTVECT 254 /* number of vectors in codebook */
#define CODEFILE "codedc36.dat" /* output file directive */
int count;
int index2[100][2]:
double speech data[NUM];
double window[N]:
double a(MO+1]; /* estimated IP parameters */
double r[MO+1]; /* short term autocorrelation */
double codebook[TOTVECT][MO];
char codefile[80];
FILE *outfile;
/******************************************************************************
    * Program name: lpcqnt_a.c
    * Command : run386 lpcqnt a cdbkfile.dat *
    * Description : Computing the IP parameters using autocorrelation *
    * method with 256 points *
    * Hamming window as a frame. *
    * Date July 19, 1990 *
    ***************************************************************************/
main(argc,argv)
int argc;
char *argv[];
l
int i,j,k,h,t;
int numread;
int M,P,sum,m;
char infiles[80], infilenamel[80],infilename[80],filename[100]:
char instring[40], numstring[5], inputl[30];
short buffer[64];
FILE *infilel,*infile2,*infile,*file:
int total data;
void lpc_computation():
void codēbook_entry();
if( argc < 1 )
    {
    printf("***** After program name enter two file names *****\n");
    printf("1. The first file name is the name of the codebook.\n");
    printf("2. The second is the name of the file that contains the paths and\n"):
    printf(" names of all the data files to be qauntized.\n\n");
    printf("Example: ");
    printf("lpc2 codebook.dat allfiles.dat\n",argv(0]);
    exit (0):
    }
strcpy(codefile,argv[1]):
codebook_entry();
count=0;
strcpy(infilename,"tstti.dat");
printf("Start data input - infilename = %s\n",infilename);
if ( (infile = fopen(infilename, "r")) = NULL)
    1
```

```
    printf("fopen failed for infilename %%s.\n",infilename);
    exit(0);
    }
while( fscanf(infile,"%s\n",instring) != EOF)
    1
    for(h-1; h<8; h++)
        |
        strcpy(filename,"c:\\dc36\\test\\bin\\");
        strcat(filename,instring):
        strcat(filename,".36");
        switch(h)
            1
            case 1 : strcpy(numstring,"9"); break;
            case 2 : strcpy(numstring,"a"); break;
            case 3 : strcpy(numstring, "b"); break;
            case 4 : strcpy(numstring,"c"); break;
            case 5 : strcpy(numstring,"d"); break;
            case 6 : strcpy(numstring,"en); break;
            case 7 : strcpy(numstring,"f"); break;
            default : break;
            }
            strcat(filename,numstring);
            pmode = 0x8000;
            if ( (file = fopen(filename, "r")) = NULL)
                    I
                    printf("fopen failed for filename %s\n",filename);
                    exit(0):
            }
        printf("reading in data from file %s .....\n",filename);
        k=t-0;
            do
            numread = fread((void *) buffer, sizeof(short),64,file);
            if (numread -- 0)
                break;
            for(i=0; i<64; i++)
                l
                    speech_data[t] = (int)buffer[i];
                    t++;
                    }
                    }while( feof(infile) == 0 || numread -- 64 ); /** for with.cp5 file **/
            fclose(file);
            strcpy(filename,"\\dc36\\test\\qnt\\");
            strcat(filename,instring);
            strcat(filename,".vq");
            strcat(filename, numstring);
            pmode = 0x4000;
            Outfile = fopen(filename, "wn);
            printf(" Quantizing data...\n"):
            count=0;
            lpc_computation(t);
            priñtf("%u Quantized lpc vectors written to file %s\n",count,filename);
            fclose(outfile);
            }
    }
}
/***************************************************************************
    * This function computes the lpc vectors from the speech data and *
    * then vector quantizes the lpc vectors
```



```
void lpc_computation(total_data)
int totaI_data;
1
    int n,i;
    void LD_recursion();
```

```
    void shift_window():
    void vector
    a [0]=1;
    for(n=0; (n+N)<total_data; n=n+50)
    {
        shift window(n);
        LD_recursion():
        vector_quantize():
    }
}
/*****************************************************************************
    * This function takes }256\mathrm{ points from sampled data using Hamming window *
    * to implement short term IP analysis
    ***************************************************************************/
void shift_window(n)
int n;
{
    int i;
    for (i=0; i<N; i++)
    l
        window[i]=speech_data[n]*(0.54-0.46*\operatorname{cos}(2*PI*i/N));
        n++;
    }
}
/*******************************************************************************
    * This routine use Levinson-Durbin Recursion to get the LP parameters
    ***************************************************************************/
void LD_recursion()
{
    int i,l;
    double ai,aj,temp;
    double e; /* xi, the average energy in the predition residual */
    double k; /* kappa, reflection coefficient */
    void comp_corr(): /* compute short term autocorrelation */
    comp_corr():
    /* iñitialization */
    e=r[0];
    for (1-1; 1<-MO; 1++)
    {
        /* step 1 */
        temp=0.0;
        for (i=1; i<l; i++)
            temp=temp+a [i]*r[1-1];
        k=(r[l]-temp)/e;
        /* step 2 */
        a[l]=k;
        for (i=1; i<=1/2; i++)
        l
            ai=a[1];
            aj=a[l-i]:
            a[i]=ai-k*aj;
            a(l-i]=aj-k*ai;
        }
        /* step 3 */
        e=e*(1.-k*k);
    }
}
/*****************************************************************************
    * This procedure computes short-term autocorrelation
```



```
void comp_corr()
```

```
1
    int i,j;
    for (i=0; i<-MO; i++)
    1
        r[i]=0;
        for (j-0; j+i<N; j++)
            r[i]-r[i]+window[j]*window[j+i];
        r[i]=r(i]/N;
    }
}
/****************************************************************************)
    * This routine vector quantizes the computed lpc vector with respect to
    * the given codebook.
```



```
void vector_quantize()
{
int i,index1,index2,vq;
double idml,idm2;
double itakura_dist_meas();
int level_index();
indexl = 0;
index2 - 1;
idml - itakura_dist_meas(codebook[indexl]);
idm2 = itakura_dist_meas(codebook(index2));
if( idml > idm\overline{2})
    index1 - index2;
for(i=1; i<NLEVELS; i++)
    {
    indexl = (indexl - level_index(i))*2 + level_index(i+1);
    index2 = index1 + 1;
    idml - itakura_dist_meas(codebook[indexl]);
    idm2 = itakura_dist_meas(codebook(index2]);
    if(idml > idm\
        indexl = index2;
    }
vq = indexl - LEVELINDX;
fprintf(outfile,"%d\n",vq);
count=count+1;
}
```



```
    * This routine calculates which vector to compare next in the codebook
    * once a vector index in the previous level is given
    **************************************************************************/
int level_index(k)
int k;
1
int num;
num - (int) pow((double) 2,(double)k) - 2;
return num;
}
/*****************************************************************************
    * This routine calculates the Itakura Distance Measure between the *
    * computed lpc vector and a vector from the codebook
```



```
double itakura_dist_meas(array)
double array[]:
l
    int i,j;
    double temp1(MO+1), temp2(MO+1);
    double al [MO+1],entry[MO+1];
```

```
    double idml,idm2,idm;
    entry[0]-1.0;
    a1[0]=1.0;
    for (i=1; i<=MO; i++)
    |
        entry[i]-0.-array[i-1];
        al(i]=0.-a[i];
    }
    for (i=0: i<-MO; i++)
    l
        templ(i]=0;
        temp2[i]=0;
        for (j=0; j<=MO; j++)
        if (i<j)
        l
            templ[i]-templ[i]+al[j]*r[j-i];
            temp2[i]=temp2[i]+entry[j]*r[j-i];
        }
        else
        l
            templ[i]=templ[i]+al[j]*r[i-j];
            temp2[i]-temp2[i]+entry(j]*r[i-j];
        }
    }
    idml=0;
    idm2=0;
    for (i=0; i<-MO; i++)
    l
        idml=idml+templ[i]*al[i];
        idm2-idm2+temp2[i]*entry[i];
    }
    idm=log(idm2)-log(idm1);
    return idm;
}
/********###**************************************************************************)
void codebook_entry()
l
FILE *infile3;
int i,j,k,m;
char input11[80],input12[80],input13[80];
void extractword();
infile3 = fopen(CODEFILE,"r");
printf("\nReading %s\n",CODEFILE);
m=0;
for(i-1; i<=NLEVELS; i++)
    |
    fgets(input11, 80,infile3);
    printf("%s",inputl1);
    for(j=0; j<(int) pow((double) 2,(double)i); j++)
        l
            fgets(input11,67,infile3);
            fgets(input12,67,infile3);
            fgets(input13,80,infile3);
            extractword(input11,input12,input 13,m);
            for (k=0; k<14; k++) printf("%f ",codebook(m)(k]);
            printf("\n"):
            m++;
            }
    }
fclose(infile3);
}
```

```
/********************************************************************************/
void extractword(in1,in2,in3,m)
char in1[80],in2[80],in3(80):
int m;
1
    int i,j,k;
    char templ[30], temp2[30], temp4[30];
    for( j-0; j<30; j++)
    {
        termpl[j] = '\0';
        temp2(j] = '10';
        temp4[j] = '\0';
    l
    for(i=0; i<6; i++)
    l
        k=0;
        for(j-i*11; j<(i+1)*11; j++)
        l
            templ[k] = inl[j];
            temp2[k] = in2[j];
            k++;
        }
        codebook[m][i] - atof(templ);
        codebook(m][i+6] - atof(temp2):
    }
    for(i-0; i<2; i++)
    {
        k=0;
        for(j-i*11; j< (i+1)*11; j++)
        {
            temp4[k]=in3[j];
            k++;
        }
        codebook[m][i+12] - atof(temp4);
    }
}
```


C Program Listing: Cepstral Parameter Generating Program

This program computes the mel-cepstral parameters of an input speech file using a 1024 point FFT, and then quantizes the cepstral parameters.

```
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <time.h>
*include <math.h>
#define N
*define NUM
*define MO
#define NLEVELS
#define LEVELINDX
*define TOTVECT
#define TOTVECT N Ncodele27.dat" /* codebook file */
#define FFT 1024 /* number of point for FFT */
int count;
int freq[22]; /* mel_frequency */
int freq[22];
double window [FFT];
double c[MO+1];
double codebook[TOTVECT][MO]:
FILE *outfile:
/*256 samples plus zero padding */
/* cepstrum parameters */
    256 /* Hamming window size */
    10 /* model order of cepstrum */
    7 /* number of levels in binary codebook */
    126 /* 2^NLEVELS-2 */
    254 /* number of vectors in codebook */
/* pointer to quantized file */
```



```
    * Program name: ceps_qnt.c
    * Program name: ceps_qnt.c
    * Description : cepstral analysis training data with 1024 points FFT and
    * silent portion kept and then quantize these cepstrum
    * parameters
    * Date : Aurameters 1, 1990 * *
```



```
main()
{
    int i,j,k,h,t:
    int numread;
    int M,P,sum,m,mt;
    int indata[NOM],index2[100][2];
    char infiles[80],infilenamel[80],infilename[80], filename[100];
    char instring[40], numstring[5],inputl[30];
    short buffer[64];
    FILE *infile2,*infile,*file;
    int total data;
    void cepsťrum_comp();
    void codebook entry();
    void mel_freq():
    codebook entry():
    mel_freq():
    count=0;
    for (1=0; i<FFT; 1++)
    window[i]=0.0;
    strcpy(infilename,"tstti.dat");
    printf("Start data input - infilename - %s\n",infilename);
    if ( (infile = fopen(infilename, "r")) =- NULL)
    {
        printf("fopen failed for infilename %s.\n",infilename);
        exit(0);
    }
    while( fscanf(infile,"%s\n",instring) != EOF)
    l
        for(h-1; h<9; h++)
        1
            strcpy(filename,"c:\\le27\\train\\bin\\"):
            strcat (filename,instring);
            strcat (filename,".27m);
```

```
            switch(h)
            l
            case 1 : strcpy(numstring,"1");break;
            case 2 : strcpy(numstring,"2");break;
            case 3 : strcpy(numstring,"3n);break;
            case 4 : strcpy(numstring,"4");break;
            case 5 : strcpy(numstring, "5");break;
            case 6 : strcpy(numstring,"6");break:
            case 7 : strcpy(numstring,"7n);break;
            case 8 : strcpy(numstring,"8n);break;
                    default : break:
                }
            strcat(filename, numstring);
            pmode = 0x8000;
            if ( (file - fopen(filename, "r")) - NULL)
            {
            printf("fopen failed for filename %s\n",filename);
            exit(0):
            }
            printf("reading in data from file %s .....\n",filename);
            k=t=0;
            do
                numread = fread((void *)buffer, sizeof(short), 64,file);
                    if(numread =- 0)
                            break:
            for(i=0; i<64; i++)
                l
                    speech_data[t] = (int)buffer[i];
                    t++;
                }
            }while( feof(infile) = 0 || numread =* 64 ); /* for with.cp5 file */
            fclose(file):
            strcpy(filename,"\\le27\\train\\qnt\\");
            strcat(filename,instring);
            strcat (filename,".vq");
            strcat(filename, numstring);
            pmode = 0x4000;
            Outfile = fopen(filename, "w");
            printf(" Quantizing data...\n");
            count-0;
            cepstrum_comp(t);
            printf("\overline{%}u Quantized lpc vectors written to file %%\n",count,filename);
            fclose(outfile):
            }
        }
}
/*****************************************************************************
    * This function computes the cepstrum parameters from the speech data and
    * then vector quantizes the cepstrum parameters
    *******************************************************************************)
void cepstrum_comp(total_data)
int total_dat\overline{a};
{
    int n,i;
    float f[2*FFT+1];
    double mel[21],rf[FFT/2+1];
    void shift window();
    void stdft():
    void mel energy():
    void mel_cepstrum();
    void vec\overline{tor_quantize():}
    for(n=0; (n+N)<total_data; n=n+50)
    {
```

```
            shift_window(n);
            for (i=1; i<-FFT; i++)
            l
                    f[2*i]-0.0;
            f[2*i-1]=(float)window[i-1];
            }
            stdft(f,FFT,1);
            for (i-1; i<=(FFT/2); i++)
                    rf[1]=sqrt((double)f[2*i-1]*(double) f[2*i-1]+(double)f[2*i]*(double) f[2*i]
            mel_energy(mel,rf):
            mel-cepstrum(mel);
            vector_quantize();
    }
}
/*******************************************************************************
    * This function takes }256\mathrm{ points from sampled data using Hamming window and *
    * put zero in remaining position to implement }2048\mathrm{ points FFT
    #######****###***************************************************************/
void shift_window(n)
int n;
l
    int 1;
    for (i=0; i<N; i++)
    l
        window[i]-speech_data(n]*(0.54-0.46*\operatorname{cos}(2*PI*i/N));
        n++;
    }
}
/****************************************************************************
    * This routine use radix-2, 2048 points FFT to implement short term DFT
```



```
*define SWAP (a,b) tempr=(a); (a)=(b); (b)=tempr
void stdft(data,nn,isign)
float datal];
int nn,isign;
{
int n,mmax,m,j,istep,i;
double wtemp,wr,wpr,wpi,wi,thet=;
float tempr,tempi;
n=nn << 1;
j=1:
for (i=1;i<n;i+-2) {
    if (j> i) i
                                    SWAP (data[j],data[1]);
                                    SWAP (data[j+1],data[i+1]);
    }
    m=n >> 1;
    while (m >= 2 && j > m) {
                j -= m;
                m >>- 1.
            }
            j += m;
}
mmax=2;
while (n > mmax) {
            istep-2*mmax;
            theta=6.28318530717959/(isign*mmax);
            wtemp=sin(0.5*theta);
            wpr = -2.0*wtemp*wtemp;
            wpi-sin(theta):
            wr=1.0:
```

```
            wi=0.0;
            for (m=1;m<mmax;m+-2) (
                            for (i=m;i<=n;i+=istep) {
                        j=i+mmax;
                        tempr=wr*data[j]-wi*data[j+1];
                        tempi=wr*data[j+1]+wi*data(j];
                        data[j]=data[i]-tempr;
                    data[j+1]=data[i+1]-tempi;
                    data[i] +o tempr:
                    data[i+1] +a tempi;
            }
            wr= (wtemp=wr) *wpr-wi*wpi+wr;
            wi=wi*wpr+wtemp*wpi+wi;
}
mmax=istep;
    }
}
#undef SWAP
/*****************************************************************************
    * This routine computes the MEL-frequencies, then computes the critical
    * band energy and put these values in the same array.
    ******************************************************************************/
void mel_energy(mel,f)
double mel[];
double f[];
{
    double ratio,r;
    int i,j:
    for (i=1; i<=20; i++)
    l
            ratiom1.0/(freq[i]-freq(i-1]):
            mel[i]=0.0:
            for (j=1; j<(freq[i]-freq(i-1]); j++)
            {
            r=ratio*j;
            mel[i]=mel[i]+r*r*f[freq[i-1]+j]*f[freq[i-l]+j];
            }
            ratio=1.0/(freq[i+1]-freq(i]):
            for (j=0; j<(freq[i+1]-freq[i]); j++)
            {
                    r=l-ratio*j;
                    mel[i]=mel[i]+r*r*f[freq[i]+j]*f[freq[i]+j];
            }
            mel[i]=log10(mel[i]);
    }
}
|*****************#************************************************************
    * This routine computes MEL-based cepstral coefficients with critical band *
    * filtering.
    ****************************************************************************/
void mel_cepstrum(mel)
double mel[];
l
    int n,k;
    double a:
    for (n=1; n<=MO; n++)
    {
        c[n]=0.0;
        for (k=1; k<-20; k++)
        l
            a=n*(k-0.5)*PI/20.0;
            c[n]=c[n]+mel[k]* cos (a);
```

```
        }
    }
}
/****************************************************************************************)
    * This routine vector quantizes the cepstrum parameters with respect to the *
    * given codebook.
    ******************************************************************************/
void vector_quantize()
l
int i,index1,index2,vq;
double idml,idm2;
double euclidean_dist_meas():
int level_index();
indexl = 0;
index2 = 1;
idml = euclidean_dist_meas(codebook[indexl]);
idm2 = euclidean_dist_meas(codebook(index2]);
if(idml > idm2 )
    index1 = index2;
for(i=1; i<NLEVELS; 1++)
    {
    indexl - (index1 - level_index(i))*2 + level_index(i+1);
    index2 = indexl + 1;
    idml = euclidean_dist_meas (codebook[indexl]);
    idm2 = euclidean_dist_meas (codebook[index2]);
    if( idml > idm2 )
        index1 = index2;
    }
vq - indexl - LEVELINDX;
fprintf(outfile,"%d\n",vq);
count=count+1;
}
/******************************************************************************
    * This routine calculates which vector to compare next in the codebook once *
    * a vector index in the previous level is given
    *****************************************************************************)
int level_index(k)
int k;
1
int num;
num = (int) pow((double) 2,(double)k) - 2;
return num;
}
/********************************************************************************
    * This routine calculates the Euclidean Distance between the cepstrum
    * parameters and the one in the codebook.
    *****************************************************************************/
double euclidean_dist_meas(array)
double array[];
l
    int i:
    double idm;
    idm=0.0:
    for (i=0; i<MO; i++)
        idm-idm+(c[i+1]-array[i])*(c[i+1]-array[i]);
    return idm;
}
/*********************************************************************************/
void codebook_entry()
```

```
|
FILE *infile3;
int i,j,k,m;
char inputll[80],input12(80];
void extractword():
infile3 - fopen(CODEFILE,"r");
printf("\nReading %s\n",CODEFILE);
m=0;
for(i=1; i<=NLEVELS; i++)
    l
    fgets(input11,80,infile3):
    printf("%s",input11):
    for(j=0; j<(int) pow((double) 2,(double)i); j++)
            l
            fgets(input11,67,infile3):
            fgets(input12,80,infile3):
            extractword(input11,input 12,m):
            m++;
            }
        }
fclose(infile3);
}
/***##********************************************************/
void extractword(in1,in2,m)
char in1(80],in2(80];
int m;
{
    int i,j,k;
    char templ[30],temp2[30],temp3[10],temp4[30]:
    for( j=0; j<30; j++)
    l
        templ[j] = '\0';
        temp2lj] = '\0';
        temp4(j] = '\0':
    }
    for( j=0; j<10; j++)
    {
        temp3[j] = '\0';
    }
for(i=0; i<6; i++)
    l
    k=0;
    for(j-i*11; j<(i+1)*11; j++)
        templ[k] = inl(j];
        k++;
        }
    codebook[m][i] = atof(templ);
    }
for(i-0; i<4; i++)
    l
    k=0;
    for( j=i*11: j<(i+1)*11+1; j++)
        {
            temp4[k] = in2[j];
            k++;
            }
    codebook(m)[i+6] = atof(temp4);
    }
}
/*******************************************************************************
    * This routine computes the MEL-frequencies.
```



```
void mel_freq()
l
    double interval,scale,mel_f;
    int i;
    interval=10000.0/FFT;
    scale=(log10(5000.0)-3)/11.0;
    freq(0)-0;
    for (i=1; i<11; 1++)
    |
        mel_f=100.0*(i):
        if (fmod(mel_f,interval) < interval/2 )
            freq(i]-floor(mel_f/interval);
        else
            freq[i]=floor(mel_f/interval)+1;
        mel_f-3.0+scale*i;
        mel-f-pow(10.0,mel_f);
        if ( fmod(mel_f,interval) < interval/2 )
        freq(i+10]=floor(mel_f/interval):
        else
            freq[i+10]-floor(mel_f/interval)+1;
    }
    mel_f=3.0+scale*11;
    mel-f-pow(10.0,mel_f);
    if ( fmod(mel_f,interval) < interval/2 )
        freq(21]-f\overline{I}OOr(mel_f/interval);
    else
        freq[21]-floor(mel_f/interval)+1;
}
```


D Program Listing: Codebook Generating Program

This program produces a seven-level, binary tree codebook for cepstral parameters. The input of this program is a large file which consists of cepstral parameters of all the words spoken by one speaker in the TI-46 or Grandfather word list.

```
|include <stdio.h>
|include <ctype.h>
#include <string.h>
include <math.h>
```

\#define MO	10	/* Model Order of Cepstrum */
\#define NLEVELS	7	/* number of levels in binary codebook */
\#define SYMBOL	128	/* 2^NLEvELS */
\#define CEP	75000	/* number of cepstrum parameters */

int group [CEP][2], change;
long total count, counta, countb;
double table[CEP] (MO]:
double centroid[NLEVELS+1][SYMBOL] [MO];
FILE *outfile;

```
ノ******************************************************************************
    * Program name: cdbkgen.c
    * Command : cdbkgen
    * Description : generate a N-level codebook by using the cepstral analysis
    * Date : August 14, 1990 *
    *****************************************************************************)
```

main()
1
int $i, j, k, l e v e l, n t:$
int aa,bb,cc;
long m;
long readcode():
double distance():
void separate():
void compute_centroid();
void perturb():
outfile = fopen("codebd26.dat", "w"):
total count = readcode():
printf("total_count=\&ld\n",total_count);
for (m-0; m<total_count: m++)
group [m] [0]=group [m] [1]=0;
compute centroid $(0,0,0)$:
printf("first centroid is \%10.6f\n", centroid[0][0][0]):
for (level-0: level<NLEVELS: level++)
i
for (i=0; i<(int) pow((double) 2, (double) level); i++)
1
perturb(level,i, centroid[level][i]):
nt=0;
do
1
change=0;
separate (level,i):
nt++;
compute_centroid(level+1, $2 \star i, i$) ;
compute_centroid(level $+1,2 \star i+1, i)$;
printf($\overline{\text { "level }}=\% \mathrm{~d}$, symbol-\%d, iteration=\%d, counta=\%ld, countb=\%ld\n", level,
) while (changem-1):
)
for (m=0; m<total_count: m++)
group [m] [0] =group (m] [1] ;
\}
for (i=1:i<-NLEVELS:i++
1
fprintf(outfile,"level su $\left.{ }^{\prime} n^{n}, i\right)$;
for (j=0: j<(int) pow((double)2, (double)i): j++)
1
for ($k=0 ; k<M O ; k++$)
fprintf(outfile, "\& $10.6 f$ ", centroid[i][j][k]):

```
                fprintf(outfile,"\n");
            }
    }
    fclose(outfile);
}
|*******************************************************************************
    * This procedure reads the cepstral parameters file and put these vectors *
    * into an array.
    *****************************************************************************/
long readcode()
1
    FILE *infile;
        int j,k;
        long i;
        char code[20];
        infile = fopen("bd26.dat","r");
        i=0;
        while (feof(infile)=-0)
        {
        for (j=0; j<MO; j++)
        l
            fscanf(infile,"%s",code);
            table[i][j]=atof(code):
        }
        i++;
        fscanf(infile,"\n");
    }
    fclose(infile);
    return i;
}
/*****************************************************************************
    * This procedure computes the centroid in a cluster
                                    *
    #**************t*************************************************************/
void compute_centroid(level,symbol, now)
int level,symbol,now;
{
    int i;
    long j,k;
    k=0;
    for (i=0; i<MO; i++)
    l
        centroid[level][symbol][i]=0.0;
        for (j-0; j<total_count; j++)
            if ((group[j][\overline{I}] -- symbol) && (group[j][0]=-now))
            1
                        if (i-0)
                            k=k+1;
                            centroid[level][symbol](i]-centroid[level][symbol][i]+table[j][i];
                }
            centroid[level][symbol][i]=centroid[level][symbol][i]/k;
        }
}
/*****************************************************************************
    * This procedure splits the centroid into 2 vectors
    ##***************************************************************************/
void perturb(level, symbol,vectora)
int level;
int symbol;
double vectora[MO]:
{
    register int j;
```

```
    for (j=0; j<MO; j++)
    l
        centroid[level+1][symbol*2][j]=vectora[j]*1.01;
        centroid[level+1][symbol*2+1][j]=vectora[j]*0.99;
    }
}
```



```
    * This procedure separates one group into 2 clusters
    *****************************************************************************/
void separate (level, symbol)
int level,symbol;
l
    long i;
    double dist1,dist2;
    double distance();
    counta-countb=0;
    for (i=0; i<total_count; i++)
    {
        if (group[i][0]-symbol)
                distl-distance(table[i], centroid(level+1][2*symboly);
                dist2-distance(table[i], centroid(level+1](2*symbol+1));
                if ( dist1 < dist2 )
                l
                    if (group[i][1] !- 2*symbol)
                    change-1;
                    group[i][1]=2*symbol:
                    counta=counta+1;
                }
                else
                l
                    if (group[i][1] !- 2*symbol+1)
                    change=1;
                    group[i][1]-2*symbol+1;
                    countb=countb+1;
                }
        }
    }
1
/******************************************************************************
    * This procedure computes the Euclidean distance
                                    *
    *****************************************************************************/
double distance(vectorl,vector2)
double vector1[],vector2[];
l
    int i;
    double dist;
    dist=0.0;
    for (i=0; i<MO; i++)
        dist=dist+(vectorl[i]-vector2[i])*(vector1[i]-vector2[i]);
    return dist:
}
```


[^0]: ${ }^{1} A=\left\{a_{i j}\right\}$ is called the state transition probability distribution,

[^1]: ${ }^{2}$ This filter is effectively lowpass for speech which rarely contains significant energy below about 75 Hz .

[^2]: ${ }^{3}$ Our subjects all have some form of cerebral palsy, but there is nothing specific to this disorder in our work.
 ${ }^{4} \mathrm{LE}$ is the main speaker in Hsu's previous work [12].

[^3]: ${ }^{5}$ The method of accessing the speech data is subject to change due to periodic changes in the computing facilities. Please contact the author by e-mail if there is any problem in accessing the data. Electronic mail addresses are: lium@frith.egr.msu.edu or deller@eecae.ee.msu.edu

[^4]: ${ }^{6}$ In the present case, an entry in the codebook.
 ${ }^{7}$ In the present case, derived from a frame of speech.

[^5]: ${ }^{8}$ Except for the window employed, the WRLS and autocorrelation methods are nearly equivalent procedures. These experiments were performed prior to the creation of the $W D$ as a quick check of the expected similarity of performance between the two methods.
 ${ }^{9}$ The result of Davis and Mermelstein was based on dynamic time warping

