

1
1
r
1
r
b
i
<

1
.

>
r
~
i
‘
.
—
.
_

:
v
g
.

m
a
y

'
_
V

.
.
-

‘
J
1
‘
I
’
r
l
fi
4

g...n.‘
"F‘Kf.

mf
”‘3

‘1‘:fxmv‘

1 .

,mm-~.
r. .\m‘1\"‘~-
”Ural -)1

(az“!

- . V
J;-.“‘ 1:].

I

('7‘, Anna...1,.
.5"~14q-Ji."gt?“ #14::v

(if!r:-_’I I".

1v
vfr;?-—_..-?._ . ”2f.

'“ILL“."-1" itwyu-W‘TYM w:

2‘15! ..

".'rru‘-;!;r.-.r~--M
‘ v.5..-—-'-”0,, an‘ku»

5’.

Virivérx.
'"' zi'xxe'EI-é”

',.. .7...-

pxr" a*R':'f£-I

v" “pl-var?!“ r: 'rr'
no y: w.,..—.,.,.,..., 1:11;;

' .'."‘.:' 1.11.}.
:2"..- .- if”:

my
....

..',.'1r,£.:;:.:.-,.;.':‘

1..
an“. .

'x'wv

391;?w-M er.» 2‘» av
mvrrvz‘w‘ _

‘11“:4"

1-er~-

.,.
.5 1:1:573:?“1.._

:»‘L’.-.-.,':‘

.7).

. .., o., .w
. l-«l. 1—1.

1-? .51‘s."??- ,
. ~,..

1213...:
'1.13:.....'....w.....':'W

. 1 1 1 ..1:..-,..,..
.;.'....v " r , . 11:51.1; 15.4.3.3?
.- ~, .. W.- -117“

'9 w- “am?”
1.-.. . I."

m-flw'vwfi.‘

.

..if” 6
'In a'n’tb’gp-

LJ.751!Jib-u".

tt‘a- .‘v

u".

£21.;0.;.2“?~..'.‘...
«rug;In;“5"“?!-

723::

a:
‘4?-

N

MALI}. ’_

":1";me “a?”..‘51:! .311! .4.:55,".1.

It...”

... W...
..

,
5......1”, .'.,...
gun“.~-ELr11; -.

5%....”qém1.1-.
~.—...~rfl:r.r:¢wffl We

MICHIGAN STATE E SITY LIBRAR S

i ’H

1: Hum numui’i‘iflm :muuuw‘iuu
3 1293 00876 4932

I!

This is to certify that the

thesis entitled

THE WHITAKER DATABASE 0F DYSARTHRIC SPEECH:

Creation and Baseline Recognition Study

presented by

Ming—Shou Liu

has been accepted towards fulfillment

of the requirements for

Master's degreein Electrical

Engineering

Major professor

DateW?L

0-7639 MSU is an Affirmative Action/Equal Opportunity Institution

LIBRARY

Michigan State

University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before due due.

DATE DUE DATE DUE DATE DUE

CWMM1

fi-———___

THE WHITAKER DATABASE

OF

DYSARTHRIC SPEECH:

Creation and Baseline Recognition Study

By

Ming-Short Liu

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Electrical Engineering

1991

ABSTRACT

THE WHITAKER DATABASE

OF

DYSARTHRIC SPEECH:

Creation and Baseline Recognition Study

By

Ming-Shou Lin

This research represents the culmination of a three year project sponsored by the

Whitaker foundation of which the primary purpose was to conduct research related to

the development of a PC-based isolated word recognition (IWR) system for persons

with severe motor and speech disabilities. This dissertation describes three aspects

of the final stages of the work:

1. The creation of an isolated word database of dysarthric speech (Whitaker Database

(WD)) which is publicly accessible over the internet computer network.

2. A baseline recognition study on the WD using a hidden Markov model approach.

'3. Formulation of an IWR system concept and plans for its development and future

enhancements.

To my Mother

A-Chu Yang

For her love, support and sacrifice

ii

ACKNOWLEDGMENTS

First and most important, I would like to thank my advisor John R. Deller, Jr. for his

patience and support in spite of his busy schedule. His direction was very important

in helping me step into the Speech Processing world.

Secondly, I would like to thank all the members of my thesis committee: Dr. B.

Ho, Dr. Roland Zapp, Dr. Bon K. Sy of Queens College of the City University of

New York, and Dr. John R. Deller, Jr. I would also like to thank Dr. Linda Ferrier of

Northeastern University for her permission to use her report in Section 2.2.2 on the

various dysarthric speakers.

Many recognition procedures and utilities coded by Ross K. Snider were helpful

in the development of this thesis. I would also thank my friend Pei-Chun Chen for

her great encouragement and support.

I gratefully acknowledge the financial support provided by a grant from the Whitaker

Foundation and the collaboration with the Speech and Language Pathology and Au-

diology department at Northeastern University, Boston.

iii

Contents

1 Introduction and Background

1.1 The Purpose and Significance of this Research

1.2 Previous Work and Relation to the Current Project

2 Collection and Creation of the Whitaker Database

2.1 Introduction to the Database

2.1.1 Data Acquisition System

2.1.2 Composition of the Whitaker Database (WD)

2.2 Summary

2.2.1 Characteristics of the Whitaker Database

2.2.2 Characteristics of the Speakers

2.3 How To Access the Database

3 Technical Description of the System

3.1 Feature Extraction

3.2 Vector Quantization (VQ) ‘

3.3 The Hidden Markov Model (HMM)

4 Speech Recognition Experiments

4.1 Size of the Codebook

4.2 HMM Structure

4.3 Acoustic Parameterization

4.4 Silent Portion Extraction

4.5 Number of Training Utterances

4.6 Number of States in the HMM

iv

C
D
Q
D
Q
O
C
D
C
J
‘
U
U
‘

11

14

14

14

15

17

17

19

20

22

23

24

The Prototype IWR System for Dysarthric Speech

Conclusion

6.1 Summary

6.2 Future Work

Experimental Result for Speaker DC

Program Listing: LP Parameter Generating Program

Program Listing: Cepstral Parameter Generating Program

Program Listing: Codebook Generating Program

26

29

29

30

36

42

49

57

List of Tables

m
a
c
a
w

10

11

12

13

Grandfather word list. 9

Results of different codebook sizes using the TI-46 database. 18

Results of different codebook sizes using the Grandfather database. . 18

Recognition performance with different models using the TI-46 database. 19

Recognition performance with different models using the Grandfather

database. 20

Vocabulary for the comparison of WRLS and autocorrelation methods

of LP parameter computation. These words are not in the WD for

reasons explained in the text. 21

Recognition results comparing WRLS and autocorrelation methods of

computing LP parameters......................... 21

Recognition results comparing LP and mel-cepstrum using the TI-46

database. 21

Recognition results comparing LP and mel-cepstrum using the Grand-

father database.......................' 21

Effect of silent portion extraction on recognition performance using the

TI-46 database. 23

Effect of silent portion extraction on recognition performance using the

Grandfather database. 23

Effect of number of training observation sequences on recognition using

the TI-46 database............................. 24

Effect of number of training observation sequences on recognition using

the Grandfather database. 24

vi

14

15

Effect of number of states in HMM on recognition performance using

the TI-46 database.............................

Effect of number of states in HMM on recognition performance using

the Grandfather database.

vii

25

List of Figures

1 Equipment setup for sampling....................... 6

2 Frequency response of anti-aliasing filter................. 7

3 Directory structure of Whitaker Database in the computer network. . 12

viii

1 Introduction and Background

1.1 The Purpose and Significance of this Research

Many significant advances have been achieved in both speaker-dependent and speaker-

. independent speech recognition in the past three decades, (see, e.g. [1, 2, 3, 4, 5, 6,

14, 15, 23, 31]). Most research, however, has been concerned with the recognition of

normal speech. The difficult problem of applying speech recognition technology to

assisting persons with speech disabilities to communicate effectively is still an open

issue for researchers, as indicated by the small amount of literature on the topic and

the relatively small number of systems available to users (e.g. ~ANTIC [10], CDC

[11])-

The inability to speak and write can be caused by a number of neuromuscular

diseases, such as cerebral palsy (CP), aphasia, amyotrophic lateral sclerosis (ALS),

multiple sclerosis (MS), Parkinson’s disease, muscular dystrophy, laryngectomy, and

others [33]. In this study we have focused upon the CP population which comprises a

significant proportion of the total population of profoundly speech and motor disabled

persons. CP is a prevalent condition, present in approximate one of every 330 live

births [32]. Anyone working with these people has observed that many individuals

persistently try to express their needs and feelings vocally, even though many attempts

may fail. However, due to the difficulty of controlling their articulator movements

and voicing in uttering messages, it is frequently impossible for them to produce

intelligible and fluent continuous speech. The goal of this study in a general sense is

to adapt existing electronic technology to devices which will assist such persons to

express ideas and feelings, to have normal social lives and interpersonal interactions,

and to function in the mainstream of society.

1.2 Previous Work and Relation to the Current Project

This work represents the culmination of a three year research effort sponsored by the

Whitaker Foundation of which one of the subgoals was to conduct research related to

the development of a PC-based isolated word recognition (IWR) system for severely

dysarthric speech. Previous work on this project has been reported in the papers

of Sy, Hsu, Deller et a1. [4, 5, 12, 30, 31]. In particular, Hsu’s thesis research was

concerned with the development (on a mainframe system) of hidden Markov model

(HMM) [25] based IWR software, and its testing using a 200 word database collected

from an moderately dysarthric (cerebral palsied) individual, and a digit (10 words)

study involving four other persons whose speech spans a spectrum of dysarthria [7, 12].

The subsequent work of Snider [6, 28] and this author has generally been concerned

with scaling down Hsu’s software to operate on a reasonably ordinary personal com-

puter (PC) in real time, and with extensive testing of the resulting algorithms. In this

process, we have made a point of carefully collecting and organizing a large database

of isolated word dysarthric speech (Whitaker Database (WD)) with which to test the

system. The WD has been made publicly accessible to other research centers over

the internet computer network. Whereas Snider’s work was principally concerned

with scaling and programming the PC-based software, and with developing sampling

and editing software for manipulating the new data, this author has been chiefly con-

cerned with the creation of the database, and with the testing and enhancement of

the recognition software. The result has been the completion of enhanced, flexible

PC-based IWR software which can now be tested “in the field” in conjunction with

a system concept to be described.

Accordingly, this thesis consists of three parts which describe the three research

components noted above:

1. Creation and distribution of the WD,

2. Execution of a baseline recognition study using HMM-based software, and

3. Refinement of the PC-based HMM IWR software for dysarthric speech, and

development of plans and strategies for its distribution and testing.

We note that two specific engineering developments from previous work will be

used in this thesis. They are an algorithm due to Deller and Hsu [4] and Deller and

Snider’s diagonalization strategy [6, 28]. The first implementation of the recognition

software was developed by Hsu in his doctoral work [12]. A fast and simple adaptive

Weighted Recursive Least Square (WRLS) algorithm was derived for the purpose of

feature extraction at the acoustic level. This algorithm enjoys a small improvement

in computational complexity over the conventional WRLS algorithm. The adaptive

method also provides several useful by-products in the context of the recursion which

the conventional one usually does not have [5, 8]. In the word-level processing, an

enhanced HMM based approach was developed to operate under the constraints of

having highly variable speech as well as a lack of statistical information about the

speech. .

The second engineering development from previous work is as follows: Given sev-

eral HMM’s and the observation sequence 0, we need to choose the word model which

has the highest likelihood P(O|M) [25]. A frequently used algorithm to evaluate the

HMM for maximum likelihood criterion is the Baum-Welsh “Forward-Backward” pro

cedure [25]. The Forward-Backward procedure generally requires 0(N2) operations

per observation for an N state, fully connected, HMM. Deller and Snider [6, 28] found

that the number of calculations can be reduced to 0(N) by diagonalizing the matrix1

A in the HMM. All the evaluation work in this thesis is based on this diagonalized

matrix.

1A = {(1.3} is called the state transition probability distribution,

2 Collection and Creation of the Whitaker Database

2.1 Introduction to the Database

2.1.1 Data Acquisition System

The utterances were spoken by 6 speakers and recorded on TDK type II tape cas-

settes. A TEAC W-450R stereo cassette deck with Dolby-C noise reduction was used.

The recording took place in the Department of Speech and Language Pathology and

Audiology at Northeastern University in Boston and was supervised by Dr. Linda

J. Ferrier, Assistant Professor in that department. All data were recorded in an

acoustically isolated booth.

The recordings were played back using a duplicate TEAC tape deck and then sam-

pled in the Speech Processing Laboratory in the Department of Electrical Engineering

’ at Michigan State University. The MetraByte “STREAMER” data acquisition sys-

tem was used to facilitate the sampling. The equipment setup for sampling is shown

in Fig. 1. The filter used is an active bandpass2 fourth order Butterworth filter with

a IOWpass cutoff frequency of 4.7kHz (the sample rate is lOkHz). The frequency re—

sponse of the filter is shown in Fig. 2. A MetraByte DASI6F 12-bit analog to digital

(A/D) conversion board was set to accept a signal with dynamic range of :10 volts.

To make certain that the input to the A/D board did not exceed the dynamic range

of the board, the input signal was monitored with an oscilloscope and the gain of the

amplifier adjusted appropriately. Data are stored in 16 bit records, one per sample.

Encoded in the 16 hit record are 12 bits of measurement data and 4 bits that specify

the channel.

2This filter is effectively lowpass for speech which rarely contains significant energy below about

75 Hz.

Back of NAD stereo amplifier 3130

R L

A o 53

B O O O

_l

P S l
ower upp y Butterworth filter Terminal Accessory Board

-15v gnd +15v

4') all”;

69 0 GD & Signal in .2 CHM/é”? ”‘

‘ Filtered signal out
>-@

.a

a»:

 .. Q @
-'§v +liv

HP 54201D

Oscilloscope

l’l’

Figure 1: Equipment setup for sampling.

(
I
!
)

4th Order Bondposs Butterworth Filter

20

15-1

10"

DOD Cl C] UCJUCICD

-5...

-10 ..

L
3

Log(Frequency in Hz)

. J I

3.8

Figure 2: Frequency response of anti-aliasing filter.

4.2

At the beginning of the project, the sampling process was carried out word by

word. That is, we located the word on the audio tape, made a file for it and then sam-

pled the word. It took about 90 seconds per word to complete this task. This method

is time-consuming and unrealistic because 17,895 words needed to be processed. In

order to solve this problem, Snider wrote a program called “Wavemark”. With this

routine, utterances from an entire cassette tape can be sampled then stored in a large

file (about 30 Mbytes). “Wavemark” can then also be used to extract the words from

the large file with a screen editing facility [28]. This procedure reduces the per word

processing time by a factor of about 10. The program also has a provision for playing

back (audio) any selected portion of an utterance. Details are found in [29].

2.1.2 Composition of the Whitaker Database (WD)

The word sets in the WD are partitioned into the T146 word list and Grandfather

word list. These word list were selected for the WD to provide one partition of

vocabulary which has become “standard” in speech recognition studies, and one which

is significant for its speech science attributes.

There are 46 words in the TI-46 word list. They are utterances of the 26 letters of

the alphabet, 10 digits (zero to nine) and 10 the words “start”, “stop”, “yes”, “no”,

“go”, “help”, “erase”, “rubout”, “repeat” and “enter”. This word list is suggested as

a standard by Texas Instruments [9]. The Grandfather word list consists of 35 words

which are shown in Table 1. The set is called “Grandfather” because it was taken

from a passage commonly used by speech therapists which begins with the sentence

“Let me tell you about my grandfather . . . ”. These words are chosen by Dr. Ferrier

due to their phonetic diversity [13].

There are 27 cassette tapes in the Speech Processing Laboratory. Each word in the

TI-46 and Grandfather word list was uttered 30 to 45 times by one of the six speakers.

missing several to well thinks long

my old you ever an frock

coat usually still he dresses about

years is wish know himself buttons

all grandfather as swiftly black beard

in yet nearly clings ninety-three

Table 1: Grandfather word list.

Each utterance of each word ultimately became a distinct file. The collection of all

the files sampled from these tapes comprise the Whitaker Database (WD). Each file

consists of integer samples with dynamic range from -2048 to +2048. All the files are

ASCII with <CR><LF> after each integer.

2L2 Sununany

2.2.1 Characteristics of the Whitaker Database

e The vocabulary sets in the WD are the T146 and Grandfather word lists indi-

cated in Table 1.

e There are 17,895 ASCII files in the database, each file represents an utterance

of a single word. The end points of each word were detected by hand using the

“wavemark” utility described above.

e Each sample point in each file is represented by an integer and is followed by

<CR><LF>.

e The dynamic range of the integer samples is from -2048 to +2048.

2.2.2 Characteristics of the Speakers

The following clinical assessments of the speakers are taken from a report by Dr.

Linda J. Ferrier, Assistant Professor of Speech and Language Pathology and Au-

9

diology, Northeastern University, Boston. Dr. Ferrier is the clinical consultant to

this project. She also received Whitaker funding to support her interaction with the

subject population, analysis of data from a clinical perspective, and writing clinical

assessments of the subjects’ speech and language disorders. The author appreciates

Dr. Ferrier’s permission to use the following descriptiOns3:

1. Speaker DC is a 48-year-old male with a diagnosis of spastic athetoid cerebral

palsy (CP). His intelligibility is mildly impaired, and his voice has a typical

strained-strangled quality and consonants are imprecise.

2. Speaker CJ is a 41-year-old male with a diagnosis of athetoid CP. His intelligi-

bility is moderately impaired but decreases with fatigue. Speech characteristics

include slow rate of speech, imprecise consonants, vowel distortions, and little

variation in pitch or loudness. He is consistently over-loud. Vowel distortions

appear to be caused by deviation of the mandible to the left.

3. Speaker LE4 is a 40-year-old male with spastic CP with dysarthria. His intelli-

gibility is in the moderate to severely impaired range, speech is slow with little

variation in loudness or pitch. He has particular difficulty with transition from

one consonant to the next in consonant clusters. and some difficulty initiating

sounds and dysfluencies often occur at the beginning of the words.

4. Speaker ED is a 39-year-old male with spastic CP. His intelligibility is mildly to

moderately impaired, and his voice shows occasional pitch breaks, inappropriate

nasality, and he is occasionally dysfluent. He has poor breath support for speech.

His amplitude is low and there is little variation in pitch or loudness.

3Our subjects all have some form of cerebral palsy, but there is nothing specific to this disorder

in our work.

4LE is the main speaker in Hsu’s previous work [12].

10

5. Speaker LL is a 47-year-old male with quadriplegic CP, mixed spastic/ataxic.

His intelligibility is severely impaired, utterances are short, consonants are im-

precise.

6. Speaker PW is a 28-year-old male with severe athetoid CP. His intelligibility is

severely impaired, consonants and vowels are extremely distorted, and loudness

is extremely variable.

2.3 How To Access the Database

The Whitaker database is accessible through the internet computer networks. The

database can be obtained from a MSU file server through anonymous ftp. The

database is in the subdirectory “speech” under the directory “pub”. Six subdirec-

tories “DC”, “CJ”, “LE”, “BD”, “LL”, “PW” are in the database, the directory

structure is shown in Fig. 3. The file naming convention is as follows: “coat.0502”

means this word is the fifth utterance of the word “coat”. The last two digits in the

file name are used for internal grouping, and the user may ignore them. Files are

compressed so that they will not require excessive space. All the files (utterances)

uttered by a single speaker are “tarred” together so that only one instruction can be

used to obtain all the files in a tape. The name of the “tarred” files are “t.tar” and

“g.tar”, where “t” means the TI-46 word list and “g” means the Grandfather word

list.

In summary, the steps for accessing the WD are as follows:

1. ftp archive.egr.msu.edu, both the login name and password are anonymous

5The method of accessing the speech data is subject to change due to periodic changes in the

computing facilities. Please contact the author by e-mail if there is any problem in accessing the

data. Electronic mail addresses are: lium©frith.egr.msu.edu or deller©eecae.ee.msu.edu

11

speech

/\ /\ /\ A /\/\..
Liar g.tar ttar g.tar LtaI' g.tar Liar g.ta.rt.tar g.tar

Figure 3: Directory structure of Whitaker Database in the computer network.

12

. cd pub

. cd speech

. cd DC if you are interested in the speaker DC.

. get t.tar if you are interested in TI-46 database.

. tar va t.tar, this is to “untar” the file. “x” means extract.

13

3 Technical Description of the System

A wide variety of approaches to the recognition of human speech has been proposed

in the past three decades. In this chapter, we briefly describe the techniques which

were applied in this research. Details of the underlying technical methods can be

found in many references (e.g. see [3]) and are not further addressed here.

3.1 Feature Extraction

To extract a feature one has to look at a small segment or frame of speech. We define

a frame of speech to be the product of a shifted window with the speech sequence.

For a sample rate of lOkHz, we use a Hamming window of length 256, which is shifted

50 samples for each feature computation.

Two types of vector features are employed in this work:

Linear prediction (LP) [16, 19] has been applied extensively in parameterizing

speech samples. Here we use 14‘” order LP parameters resulting from the autocor-

relation method, where L-D recursion [3, 22, 26] is used to solve the autocorrelation

equation. A computer program which computes the LP parameters is found in Ap-

pendix B.

The other method applied to parameterize the waveform is mel-cepstral analysis.

[3, 21]. We use a 10‘“ order cepstrum produced using a 1024 point FFT [24]. A

computer program for this approach is found in Appendix C.

3.2 Vector Quantization (VQ)

The recognition approach taken here is based on discrete symbol hidden Markov mod-

els (HMM) of isolated words. Accordingly the observations used are discrete symbols

chosen from a finite set. A vector quantizer is required to map each continuous

14

parameter vector into a finite integer index [17, 25].

Two distance measures are used to measure feature similarities in the VQ process.

In the LP case, we use the Itakura’s distance [26]:

aRa"
d “ = — - 1
(at a) log [amt] ()

Where a is a reference LP vector6 and a is an estimated LP vector7.

Unlike LP coefficients, the cepstral parameters may be interpreted as coefficients

of a Fourier series expansion of the periodic log spectrum. Accordingly, they are

based on a set of orthonormal functions; thus we can simply choose the Euclidean

distance between mel-cepstral vectors as the distance measure [3].

An 128 symbol codebook was developed using the n-means algorithm. In our

work, we employ the binary clustering approach, i.e., we let It = 2. A computer

program to geneate the 128 symbol codebook is found in Appendix D. The binary

structure has the advantage that it reduces the number of searches from L to log2 L

[12, 17], where L is the number of symbols in the codebook.

3.3 The Hidden Markov Model (HMM)

The hidden Markov model (HMM) has been used in automatic speech recognition

successfully in recent years for modeling speech waveforms [4, 7, 12, 14, 15, 23, 28] at

various acoustic levels (word and subword) as well as for modeling languages. Some

computationally efficient algorithms have been developed in the previous work by

Snider to evaluate the likehood of the HMM. A major advantage of using an HMM

in the problem of dysarthric speech recognition is that the HMM is a stochastic

6In the present case, an entry in the codebook.

7In the present case, derived from a frame of speech.

15

modeling approach which can automatically handle the “large” variability in speech

for recognition purposes.

16

4 Speech Recognition Experiments

In this chapter, we focus on a baseline recognition study on the WD using a hidden

Markov modeling approach in an effort to learn more about the characteristic features

of dysarthric speech which affect recognition performance. If not specially stated, we

use eight utterances for training, seven for testing, a 128 symbol codebook, and six

state Bakis HMMs. The percentage given is the ratio of the number of correctly

recognized words to the total number of testing words. An example comprehensive

experimental result for speaker DC is found in Appendix A.

4.1 Size of the Codebook

Since the recognition system is based on discrete symbol HMMs of isolated words,

a vector quantizer is required to map each continuous parameter vector into a finite

integer index. The number of indices (code vectors) used should correspond to the

number of meaningful clusters in the feature vectors in the population. Very roughly

speaking, these codes (clusters) represent distinct acoustic tokens. If too few are

used, many dissimilar features will be quantized into the same token. If too many are

used, superfluous and ambiguous codes exist. Either situation potentially degrades

performance. With normal speech typically 64-128 codes provide good performance

[for speaker independent recognition. The following experiments were implemented to

determine whether fewer codes would improve recognition of dysarthric speech, under

the hypothesis that fewer acoustic tokens may exist in some speakers’ utterances.

Experimental results given in Table 2 for the TI—46 database and Table 3 for the

Grandfather database show the effects of different size codebooks on the recognition

rate. A quick glance at the recognition rate would seem to indicate that a larger

codebook is better. Closer inspection reveals that this is not always the case. Large

17

16 symbol 128 symbol

correct top 2 top 4 correct top 2 top 4

Speaker DC 72.05% 82.92% 90.68% 89.13% 95.96% 98.45%

Speaker CJ 81.06% 92.24% 97.52% 81.99% 92.24% 95.96%

Speaker LE 58.39% 70.50% 84.16% 68.94% 81.06% 90.37%

Speaker BD 76.09% 88.51% 95.65% 77.02% 90.68% 96.27%

Speaker LL 47.21% 65.53% 80.43% 56.83% 73.60% 83.85%

Table 2: Results of different codebook sizes using the TI-46 database.

16 symbol 128 symbol

correct top 2 top 4 correct top 2 top 4

Speaker DC 90.61% 98.78% 98.78% 91.43% 97.55% 99.59%

Speaker CJ 61.63% 84.75% 91.02% 86.53% 95.51% 97.55%

Speaker LE 73.06% 84.49% 93.06% 74.29% 83.67% 93.06%

Speaker BD 68.98% 82.04% 93.06% 79.18% 90.61% 93.47%

Speaker LL 57.55% 76.33% 84.90% 60.00% 74.29% 85.31%

Table 3: Results of different codebook sizes using the Grandfather database.

codebooks do not work as well for the discriminating vowel sounds. For example,

the recognition of the dipthong /ai/ (utterances of letter “a”) for small codebooks

(16 symbols) is better than that for a large codebook (128 symbols), but a larger

codebook is necessary for the fricatives. For example, the utterance /pi/ (letter “p”)

is frequently recognized as /i/ (letter “e”) if the 16 symbol codebook is used.

The reason why a large codebook does not work for the vowel case is generally ex-

plained as follows: dysarthric speakers have difficulty in controlling their articulators,

and multiple symbols in the codebook which are close “acoustically” can accordingly

represent the same vowel sound. Increasing the number of symbols will not increase

the recognition rate. In fact, as noted above, too many symbols made degrade per-

formance. However, fewer symbols do not provide the acoustic diversity necessary to

represent frictives, for example.

18

ergodic model left-to-right model

correct top 2 top 4 correct top 2 top 4

Speaker DC 84.47% 92.86% 97.51% 89.13% 95.96% 98.45%

Speaker CJ 80.75% 90.68% 94.10% 81.99% 92.24% 95.96%

Speaker LE 64.60% 76.09% 89.13% 68.94% 81.06% 90.37%

Speaker BD 70.81% 83.54% 92.86% 77.02% 90.68% 96.27%

Speaker LL 55.90% 68.94% 81.37% 56.83% 73.60% 83.85%

Table 4: Recognition performance with different models using the TI-46 database.

4.2 HMM Structure

One of the important factors that was found to greatly affect the recognition rate is the

HMM model structure. In this study, two types of model structure were considered,

the “ergodic” and “left-to-right (Bakis)” model [25]. For IWR in which (at least)

one HMM is designated for each word in the vocabulary, it should be clear that a

left-to-right model is more appropriate than an ergodic model, since time and model

states are associated in a natural manner [25]. In addition to the property that the

state transitions always occur from left to right in the Bakis model, an additional

constraint is placed on the state transition coefficients to make sure that “large”

changes in state indices do not occur. That is, a;,- = 0 if j > A. In our system, we

take A = 2. Experimental results in Table 4 and Table 5 also show that the Bakis

model yields better performance than the ergodic model.

This result is contrary to Hsu’s findings. Hsu found the ergodic structure to be

slightly preferable to the Bakis structure [7, 12]. His results, however, were based on a

digit database collected from speaker LE. In fact, if we examine only the recognition

rate of digits for speaker LE, ergodic structure and Bakis structure produce the same

recognition rate in this study as well. Thus, we could conclude that although the

Bakis model is intuitively more appropriate for normal speech, the choice of Bakis vs.

ergodic model in the dysarthric case may be vocabulary and speaker-dependent.

l9

c to- t

correct top top correct top top

.5 95. 97.55 1. 97.55 99.

82.04 90.61 95.51 86.53 95.51 97.55

71. 81. 89. 74. 83. 93.06

BD 68.5 84.08 93.06 79.18 90.61 .4

LL 55.1 70.61 81. 60. 74. 85.31

Table 5: Recognition performance with different models using the Grandfather

database.

4.3 Acoustic Parameterization

The choice of parametric vector representation for the acoustic waveform is an im-

portant factor in automatic speech recognition. We have used weighted recursive

least squares (WRLS) estimation (with weights chosen to implement a forgetting fac-

tor [4, 12]) and autocorrelation methods to compute LP parameters, and cepstral

analysis. Results in Table 7 show that there is no significant difference between the

WRLS and autocorrelation LP methods. In this experiment we use five utterances

for training and five for testing. The words which were used to compare the WRLS

and autocorrelation methods are shown in Table 6 which consists of 40 words spoken

by speaker LE. These words are a subset of a 200 word database which is reported in

the Ph.D. dissertation of Hsu8 [12]. From Table 8 and Table 9, we see that the ex-

periments show that the mel-based cepstrum significantly improves the performance

with respect to the LP case. This result is consistent with a finding of Davis and

Mermelstein [2] on IWR of normal speech”.

8Except. for the window employed, the WRLS and autocorrelation methods are nearly equivalent

procedures. These experiments were performed prior to the creation of the WD as a quick check of

the expected similarity of performance between the two methods.

9The result of Davis and Mermelstein was based on dynamic time warping

20

a american about becomes

bicycle calculus child doesnt

drink enough existed from

father gauge go has

home in just knows

landmark muscle movies notion

never old opinion paycheck

problem question rattle shaky

sounds topic today tell

usually vote who with

Table 6: Vocabulary for the comparison of WRLS and autocorrelation methods of

LP parameter computation. These words are not in the WD for reasons explained in

the text.

ergodic model Bakis model

correct top 2 top 4 correct top 2 top 4

WRLS 54.00% 65.00% 74.00% 59.50% 67.00% 77.00%

autocorrelation 56.00% 68.00% 74.00% 59.00% 71.00% 80.50%

Table 7: Recognition results comparing WRLS and autocorrelation methods of com-

puting LP parameters.

LP Mel-Cepstrum

correct top 2 top 4 correct top 2 top 4

Speaker DC 84.78% 93.79% 98.14% 89.13% 95.96% 98.45%

Speaker CJ 78.88% 89.44% 94.10% 81.99% 92.24% 95.96%

Speaker LE 59.63% 72.05% 84.47% 68.94% 81.06% 90.37%

Speaker BD 74.53% 86.34% 97.20% 77.02% 90.68% 96.27%
 Speaker LL 43.48% 56.52% 72.67%

56.83% 73.60% 83.85%

Table 8: Recognition results

database.

comparing LP and mel-cepstrum using the TI-46

LP Mel-Cepstrum

correct top 2 top 4 correct top 2 top 4

Speaker DC 89.39% 95.92% 98.37% 91.43% 97.55% 99.59%

Speaker CJ 73.47% 85.71% 93.06% 86.53% 95.51% 97.55%

Speaker LE 67.35% 79.59% 89.39% 74.29% 83.67% 93.06%

Speaker BD 74.29% 84.90% 91.43% 79.61% 90.61% 93.47%

Speaker LL 57.96% 71.84% 86.12% 60.00% 74.29% 85.31%

Table 9: Recognition results comparing LP and mel-cepstrum using the Grandfather

database.

21

4.4 Silent Portion Extraction

For many dysarthric speakers, “steady state” vowel-like phonemes are the easiest

sounds to produce because they do not require dynamic movement of the vocal sys-

tem. Conversely, phonetic transitions in speech are more difficult to produce for

dysarthric individuals because they require fine muscle control to move the articula-

tors. Many dysarthric individuals are not able to consistently and reliably make such

transitions between two phonemes due to lack of muscle control. Consequently, it is

reasonable to assume that acoustic transitions in dysarthric speech are of much larger

variance than stationary regions. Hsu tested this hypothesis by pursuing a method

to clip out the dynamic regions from the speech in order to decrease the variability.

These experiments revealed significant performance improvement as a result of this

procedure [7, 12].

Early experiments conducted during Snider’s work [28] suggested that this clip-

ping procedure might have been effective principally because it was removing short

silent regions from the acoustics. To test this hypothesis, a silence detection strategy

based on the zero-crossing and energy thresholds was employed to remove short silent

regions. The thresholds were carefully selected so that the technique would extract

only silence regions without removing the weak frictives and other low-amplitude por-

tions of the speech. However, most experiments reported in Table 10 and Table 11

do not support Snider’s hypothesis. These results suggest that silence portion extrac-

tion algorithm does not benefit the system performance and Hsu’s improvement from

the clipping procedure is apparently not due to silence extraction alone as Snider

suspected.

22

D

LL

Table 10: Effect of silent portion extraction on recognition performance using the

TI-46 database.

t portion rem

correct

86.65

82.

4.

53.

top

95.34

91.

1.06

88.51

64.91

top 4

98.14

97.

79.1

correct

89.1

81 .

68.

56. _

t portion

top

95.96

92.24

1.

73.

t

top

98.45

95.

83.85

Silent portion removed Silent portion kept

correct top 2 top 4 correct top 2 top 4

Speaker DC 91.43% 96.33% 98.78% 91.43% 97.55% 99.59%

Speaker CJ 84.90% 93.88% 97.55% 86.53% 95.51% 97.55%

Speaker LE 72.65% 83.67% 90.61% 74.29% 83.67% 93.06%

Speaker BD 75.10% 88.16% 95.10% 79.18% 90.61% 93.47%)"

Speaker LL 60.00% 71.43% 83.27% 60.00% 74.29% 85.31%

Table 11: Effect of silent portion extraction on recognition performance using the

Grandfather database.

4.5 Number of Training Utterances

Training of each HMM was based on the Baum-Welch reestimation procedure for

multiple observation sequences [25]. The problem of having little training data with

which to accurately characterize the statistical distributions in the HMM, which is

common to most HMM training problems, is extraordinary in the dysarthric speech

problem. The experimental results in Table 12 and Table 13 show that the number

of training sequences has a significant effect on the recognition rate. However, the

number of observation sequences used for training is limited, since any attempt to

collect large bodies of speech data by lengthy recording sessions is impractical. Such

sessions are mentally and physically fatiguing for many persons, a fact which only

contributes to the variability one is trying to characterize by collecting more data. In

order to get the best performance from the system, we suggest a retraining strategy.

23

5 observation sequences 8 observation sequences

correct top 2 top 4 correct top 2 top 4

Speaker DC 81.99% 91.61% 95.03% 89.13% 95.96% 98.45%

Speaker CJ 79.81% 89.13% 94.41% 81.99% 92.24% 95.96%

Speaker LE 62.11% 75.16% 87.27% 68.94% 81.06% 90.37%

Speaker BD 69.25% 82.61% 91.61% 77.02% 90.68% 96.27%

Speaker LL 47.83% 61.49% 77.33% 56.83% 73.60% 83.85%

Table 12: Effect of number of training observation sequences on recognition using the

TI—46 database.

LL

5

correct

.76

74.69

.41

48.5

sequences

top

89.

.4

64.

top 4

.55

95.

85. 1

8

correct

91 .

86.

4

.1

60.

sequences

top

.55

95.51

.6

74.

top 4

97.55

93.

.4

85.31

Table 13: Effect of number of training observation sequences on recognition using the

Grandfather database.

Whenever the recognition is incorrect or correct but the likelihood of the recognized

word is not sufficiently different from that of other candidates, we retrain the model

by incorporating the new observations into the existing HMM.

4.6 Number of States in the HMM

It is clear that the Markov structure cannot correctly reflect the temporal speech

waveform unless enough states are involved. One idea is to let the number of states

correspond roughly to the number of phonemes within words, hence models with

two to 10 states would be appropriate [25]. For computational efficiency, however,

including fewer states is favorable.

The experimental results show that for short words, especially single syllable

words, using fewer states results in better performance. This is consistent with the

24

Table 14: Effect of number of states in HMM on recognition performance using the

TI-46 database.

6 states 8 states 10 states

Speaker DC 89.13% 90.99% 88.51%

Speaker CJ 81.99% 83.85% 84.78%

Speaker LE 68.94% 70.50% 68.94%

Speaker BD 77.02% 77.95% 75.47%

Speaker LL 56.83% 57.14% 57.45%

6 states 8 states 10 states

Speaker DC 91.43% 92.24% 92.65%

Speaker CJ 86.53% 84.49% 88.16%

Speaker LE 74.29% 72.65% 75.92%

Speaker BD 79.18% 76.73% 77.14%

Speaker LL 60.00% 60.41% 56.73%

Table 15: Effect of number of states in HMM on recognition performance using the

Grandfather database.

assumption that the number of states roughly reflects the number of phonemes within

words. Since the TI-46 word list contains 26 alphabetic characters and 10 digits (most

of which are short words), the effect of increasing the number of states in using TI-46

is not as obvious as that in using the Grandfather word list. Note, however, that for

Speaker LL who routinely produces short sounds, the use of fewer states results in

better performance consistent with expectation.

25

5 The Prototype IWR System for Dysarthric Speech

The long term goal of this research is the development of an “artificially intelligent”

communication aid to serve the needs of a person who is severely speech disabled and

whose motor skills will only permit simple responses in answering “interrogations” by

the device.

In research related to the speech recognition function of such a device, experi-

ments with the dysarthric speech database yielded results which were highly sensitive

to many analysis parameters, in particular, the settings of Hsu’s transition clipping

procedure [12]. Whereas Hsu’s hypothesis was that the clipping procedure was effec-

tive because it removed transitional acoustics from the observation sequence [7, 12],

preliminary experiments conducted during Snider’s work [28] suggested that the clip-

ping procedure might be beneficial principally because it was removing “gaps” or

short silent regions from the acoustics. In most of the experiments in Section 4.4,

however, discarding the silent regions is seen to cause a decrement in performance,

though this is not generally true. These results significantly affected our thinking

about the proper course of action in the development of the communication aid.

The conclusion from these mixed results is that building a “fixed box” for all

the speech disabled individuals is not possible nor appropriate because the choice of

parameters to improve the recognition rate is highly speaker-dependent. Our future

plan is to cooperate with clinical centers in the development of customized systems for

a few selected speech-disabled clients with “small” task requirements, for example,

issuing a small set of verbal commands to an assistive device. “Customized” means

that the inclusion of specific modules and parameter-choices in the system will be

based on the needs and speech characteristics of the client. The clinical center will

transmit digitized speech data over the electronic mail service (email) on the computer

26

network to the Speech Processing Laboratory. These data along with knowledge of

the needs of the clients will be used to create a customized recognition system (soft-

ware) which will then be returned to the clinical center over the network. Periodic

updates (adaptation) of the software can be accomplished by the same means, par-

ticularly if the system is designed to record information about recognition errors and

representative confused utterances. Such adaptation can also be achieved “on-line” if

the system is apropriately designed. In parallel, of course, an opportunity exists for

further research and development as we gain experience from this endeavor.

In this research, we have developed a fundamental speech recognition software

module which, in keeping with the basic philosophy expressed above, remains flexible

for user-specific customization. In addition, the “front” and “back” ends of the device

remain unspecified, to be customized for individual users. For example, the basic

operation could be as follows: 1) The user hits one key first, utters the words vocally,

and then hits the key again to indicate the end of the utterance. 2) The software

will then process the incoming speech by coding the speech signal, quantizing, and

computing the probability for each prestored model. 3) Finally, the software presents

a list of probable words in the decreasing order of their likelihood measure for the

user to affirm, to deny, or from which to make a selection (see [30, 31]).

One relatively straightforward technical problem remains in the development of a

complete prototype recognition system. The system is running on a general-purpose

PC, and thus, the speed of the recognition is limited. Even on a “high-end” PC based

on an Intel 80486 microprocessor with math coprocessor support, it takes about 15

seconds, for example, to recognize a word from a 46 word vocabulary (TI-46) with the

current system. In order to achieve the real-time speech recognition system, we can

include Snider’s compression approach [6, 28] to reduce the computational complexity,

or employ a programmable signal processing board to maximize the speed, to achieve

27

real-time operation.

The performance of this prototype system depends on numerous inter-related

factors. Although our approach can easily be adjusted to adapt to different dysarthric

cases and maximize the performance, further study of several approaches to enhance

the recognition system is in progress and will be discussed in the next section.

28

6 Conclusion

6.1 Summary

Recognition of the speech of severely dysarthric individuals requires a technique which

is robust to extraordinarily high variability and very little training data. Many ex-

perimental results show that the recognition of dysarthric speech is a distinctly differ-

ent problem from that of normal speech, and new strategies and approaches will be

needed. Because the personal needs and the degree of dysarthria of the speakers are

different, this effort has suggested that a flexible system in which system parameters

can be selected on an individual basis is preferable to a “fixed” system.

The principal contributions of the this research are:

1. The creation of the “Whitaker Database”: The WD provides a well-organized

speech data set which is accessible over the internet computer network. The

words in the database were carefully selected for their phonetic richness and

complexity. It is hoped that this database will serve as a standard for researchers

around the world with which many systems can be compared and meaningfully

evaluated.

2. ’ Extensive experimental studies on the WD to determine effects of various recog-

nition parameters and strategies on performance. These studies resulted in the

conclusion that “customization” of the recognition system to individual speak-

ers is the proper design philosophy. This, in turn led to the conception of an

“on-line” development and testing paradigm to be employed in cooperation with

clinical centers in future work.

29

6.2 Future Work

In view of the current research on IWR for dysarthric speech, several issues which

should be addressed in future work have been identified.

First, collection of speech data by lengthy recording sessions is a stressful ex-

perience for many dysarthric speakers, and resulting. mental and physical fatigue

and frustration introduce more variability. Consequently, training data are severely

limited. We have suggested a “retraining” strategy as an area of future work in Sec-

tion 4.5. The recognizer must have a convenient way to let the speaker identify the

correctness of the recognized word and decide if the retraining process is required.

Of course, the system should have the ability to decide automatically whether or not

the retraining process is required when the recognition is correct in order to make it

more robust.

Second, it is common for some speakers to introduce unnatural and irregular

pauses within words. We introduced the idea of building a silent model as in Section

4.4. In this case, the incoming speech is represent as an arbitrary sequence of phone

and silent models:

signal = (silent) - phone - (silent) - phone - (silent)

where the silent part is optional and may appear in general between any two phones

in the signal. A similar strategy was proposed by Levinson in an HMM-based level-

building connected word recognition system as a means for accounting for inter-word

silence [15]. The significant benefits from this algorithm are: 1) It can be used to

automate the end-point detection process, and 2) It avoids removing the transition

information of dysarthric speech which can occur if silence regions are removed using

conventional silence detection approaches [27].

Third, recognition based on sub-word (e.g. phoneme) modeling would alleviate

30

some of the problems encountered in collecting sufficient training data. In fact, such

an approach might be a natural solution for some speakers who tend to use only a

small number of phones. A natural extension of this idea would be to incorporate

a grammar and begin recognition of “continuous” speech or at least isolated word

sentence or phrase utterances. While the use of a grammar and these “higher-level”

considerations were beyond the scope of the present work, significant benefits may

result from their use in future research.

31

References

[1] Bahl, L.R., P.F. Brown, P.V. de Souza, and R.L. Mercer, “A new algorithm for

the estimation of hidden Markov model parameters,” Proceedings of the IEEE

International Conference on Acoustics, Speech, and Signal Processing, New York,

Vol. 1, pp. 493-496, 1988.

[2] Davis, SB. and P. Mermelstein, “Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences,” IEEE Trans-

actions on Acoustics, Speech, and Signal Processing, vol. 28, pp.357-366, 1980.

[3] Deller, J.R., J.G. Proakis and J.H.L. Hansen, Discrete Time Processing of Speech

Signals, New York: Macmillian, 1993.

[4] Deller, J.R. and D. Hsu, “On the use of HMM’s to recognize cerebral palsy

speech: Isolated word case,” Proceedings of the IEEE International Conference

on Acoustics, Speech, and Signal Processing, Glasgow, vol. 1, pp. 290-293, 1989.

[5] Deller, J.R. and D. Hsu, “An alternative adaptive sequential regression algorithm

and its application to the recognition of cerebral palsy speech,” IEEE' Trans.

Circuits and Systems, vol. 34, pp. 782-787, 1987.

[6] Deller, J.R. and R.K. Snider, “ ‘Quantized’ hidden Markov models for efficient

recognition of cerebral palsy speech,” Proceedings 1990 IEEE International Sym-

posium on Circuits and Systems, New Orleans, vol. 3, pp. 2041-2044, 1990.

[7] Deller, J.R, D. Hsu and L.J. Ferrier, “On the use of hidden Markov models

for the recognition of dysarthric speech,” Computer Methods and Programs in

Biomedicine, in press.

[8] Deller, J.R. and GP. Picaché “Advantages of a Givens rotation approach to

temporally recursive linear predition analysis of speech,” IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. 37, no. 3, pp. 429-431, 1989.

[9] Doddington, GR. and TB. Schalk, “Speech recognition: Turning theory to

. practice,” IEEE Spectrum, vol. 18, pp. 26-32, 1981.

[10] Foulds, R.A., G. Balesta, W.J. Crochetiere and C. Meyer, “The Tufts non-vocal

communication program,” Proceedings 1976' Conference on Systems and Devices

for Disabled, pp. 14-17.

[11] Heckathorne, CW. and D.S. Childress, “Applying anticipatory text selection in a

writing aid for people with a severe motor impairment,” Micro (IEEE Computer

Society), vol. 3, pp. 17-23, 1983.

32

[12] Hsu, D., Computer Recognition of Nonverbal Speech Using Hidden Markov Model

(Ph.D. Dissertation), Northeastern University, Boston, 1988.

[13] Johnson, W., F.L. Darley, and DC. Spreisterbach, Diagnostic Methods in Speech

Pathology, New York: Harper & Row, 1963.

[14] Lee, K.-F., Automatic Speech Recognition, the Development of the SPHINX sys-

tem, (Ph. D Dissertation), Carnegie-Mellon University, 1989.

[15] Levinson, S.E., “Structural methods in automatic speech recognition,” Proceed-

ings of the IEEE, vol. 73, pp. 1625-1650, 1985.

[16] Makhoul, J., “Linear prediction: A tutorial review,” Proceedings of the IEEE,

vol. 63, pp. 561-580, 1975.

[17] Makhoul, J., S. Roucos and H. Gish, “Vector quantization in speech coding,”

Proceedings of the IEEE, vol. 73, pp. 1551-1587, 1987.

[18] Mann, H.B. and A. Wald, “On the statistical treatment of linear stochastic

difference equation,” Econometrica, vol. 11, pp. 173-220, 1943.

[19] Markel, JD. and AH. Gray, Jr., Linear Prediction of Speech, New York:

Springer-Verlag, 1976.

[20] Niemann, H., M. Lang and G. Sagerer, Recent Advances in Speech Understanding

and Dialog Systems, New York: Springer-Verlag, 1987.

[21] O’Shaughnessy, D., Speech Communication: Human and Machine, Reading,

Massachusetts: Addison Wesley, pp. 420 - 424, 1987.

[22] Parsons, T.W., Voice and Speech Processing, New York: McGraw-Hill, 1986.

[23] Picone, J ., “Continuous speech recognition using hidden Markov models,” IEEE

ASSP Magazine, vol. 62, pp. 29 - 41, 1990.

[24] Press, W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical

Recipes in C, New York: Cambridge University Press, 1988.

[25] Rabiner, L.R., “A tutorial on hidden Markov models and selected applications

in speech recognition,” Proceedings of the IEEE, vol. 77, pp. 257-285, 1989.

[26] Rabiner, L.R. and R.W. Schafer, Digital Processing of Speech Signals,

Englewood-Cliffs, New Jersey: Prentice-Hall, pp.120-135, 1978.

[27] Rosenthal, L.H., L.R. Rabiner, R.W. Schafer, P. Cummiskey, and J.L. Flanagan,

“A multiline computer voice response system utilizing ADPCM coded speech,”

IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 22, no. 5,

pp.339-352, 1974.

33

[28] Snider, R.K., Efficient Discrete Symbol Hidden Markov Model Evalution Using

Transformation and State Reduction (MS. Thesis), Michigan State University,

1990.

[29] Snider, R.K., Laboratory Manual, Speech Processing Laboratory, Michigan State

University, 1991.

[30] Sy, B.K., A Knowledge-Based Message Generation System for Nonverbal Severely

Motor Disabled Persons: Design and Prototype Testing (Ph.D. Dissertation),

Northeastern University, Boston, 1988.

[31] Sy, B.K. and J.R. Deller, “An AI-based communication system for motor and

speech disabled persons: Design and methodology and prototype testing,” IEEE'

Transactions on Biomedical Engineering, vol. 36, no. 5, 1989.

[32] UCP Prospectus, United Cerebral Palsy of Chicago, 1983.

[33] Van Hattum, R.J., Communication Disorers, New York: MacMillan, 1980.

[34] Wilpon, J.G. and L.R. Rabiner, “Application of hidden Markov models to au-

tomatic speech endpoint detection,” Computer Speech and Language, vol. 2, pp.

321 - 341, 1987.

34

APPENDICES

35

A Experimental Result for Speaker DC

Shown in this appendix is an example experimental result for speaker DC using the

TI-46 word list. In this experiment, eight utterances were used for training, seven for

testing, a 128 symbol codebook, and 6 state Bakis model. The first column represents

correct words, the second column are recognized words, the third column represents

the number of correct recognitions to that point in the table, the fourth column

are the number of times the correct word appeared in the two words to which the

recognizer assigned highest likelihood to that point in the table (column five and six

are similar results for top four and eight candidates), and the last column represents

the total number of testing words.

36

(
s
a
c
—
4
H
H
H
H
H
H
H
:
n
m
m
m
m
m
m
o
m
m
o
o
m
m
m
n
m
m
m
m
m
m
m
m
m
m
m
m
o
c
o
c
o
o
o
n
n
n
n
n
n
n
m
w
m
m
m
w
t
n
s
z
w
w
z
v
z
v
n
v

ENTER

‘
<
0
1
>
2
V
3
’
?

H
<

REPEA

M
N
U
Q
M
M
'
U
U
U
U
U
D
U
U
O
O
O
O
O
O
O
W
C
U
G
’

m
c
q
c
.
H
i
a
r
s
r
i
H
1
4
r
i
m
:
n
n
:
m
:
n
u
:
m
¢
D
G
)
C
)
Q
¢
D
C
)
Q
'
fl
r
4
m

m [
'
1

p-l

p-l

p-l

p-Z

p-3

p-4

p-5

p-6

p-6

p-6

p-6

p-7

p-8

p-9

p-lO

p-ll

p-12

p-13

p-l4

p-lS

p-16

p-17

p-18

p-18

p-l9

p-20

p-21

p-22

p-22

p-23

p-24

p-24

p-24

p-25

p-26

p-26

p-26

p-27

p-28

p-29

p-29

p-30

p-31

p-32

p-33

p-34

p-35

p-36

p-37

p-38

p-39

p-40

p-41

p-42

p-43

p-44

p-45

p-46

p-47

p-48

p-49

p-SO

p-Sl

p-SZ

p-53

p-53

p2=1

p2-1

p2-1

p2-2

p2-3

p2-4

p2-5

p2-6

p2-7

p2-7

p2-8

p2-9

p2-12

p2-13

p2-14

p2-15

p2-16

p2-17

p2-18

p2-19

p2-20

p2-21

p2-22

p2-23

p2-24

p2-25

p2-26

p2-27

p2-28

p2-28

p2-29

p2-30

p2-31

p2-31

p2-31

p2-32

p2-33

p2-34

p2-35

p2-36

p2-37

p2-38

p2-39

p2-40

p2-41

p2-42

p2-43

p2-44

p2-45

p2-46

p2-47

p2-48

p2-49

pZ-SO

p2-51

p2-52

p2-53

p2-54

p2-55

p2-56

p2-57

p2-58

p2-59

p2-59

37

p4-1

p4-l

p4-1

p4-2

p4-3

p4-4

p4-5

p4-6

p4-7

p8-1

p8-2

p8-3

p8-4

p8-5

p8-6

pB-7

p8-8

p8-9

tot=l

tot-2

tot-3

tot-4

tot-5

tot-6

tot-7

tot-8

tot-9

p4-8

p4-9

p4-10 p8-12

p2-10 p4-11 p8-l3 tot-13

pZ-ll p4-12 p8-14

p4-13

p4-14

p4-15

p4-16

p4-17

p4-18

p4-19

p4-20

p4-21

p4-22

p4-23

p4-24

p4-25

p4-26

p4-27

p4-28

p4-29

p4-30

p4-31

p4-32

p4-33

p4-33

p4-34

p4-35

p4-36

p4-37

p4-38

p4-39

p4-40

p4-41

p4-42

p4-43

p4-44

p4-45

p4-46

p4-47

p4-48

p4-49

p4-50

p4-51

p4-52

p4-53

p4-54

p4-55

p4-56

p4-57

p4-58

p4-59

p4-60

p4-61

p4-62

p4-63

p8-15

p8-16

p8-17

p8-18

p8-19

p8-20

p8-21

p8-22

p8-23

p8-24

98-25

p8-26

p8-27

p8-28

p8-29

p8-30

p8-31

p8-32

p8-33

p8-34

p8-35

p8-35

p8-36

p8-37

p8-38

p8-39

p8-40

p8-41

p8-42

p8-43

p8-44

p8-45

p8-46

p8-47

p8-48

p8-49

p8-50

p8-51

p8-52

p8-S3

p8-54

pB-SS

p8-56

p8-57

p8-58

p8-59

p8-60

p8-61

p8-62

p8-63

p8-64

p8-65

p8-10 tot-10

p8-11 tot-11

tot-12

tot-14

tot-15

tot-16

tot-17

tot-18

tot-19

tot-20

tot-21

tot-22

tot-23

tot-24

tot-25

tot-26

tot-27

tot-28

tot-29

tot-30

tot-31.

tot-32

tot-33

tot-34

tot-35

tot-36

tot-37

tot-38

tot-39

tot-40

tot-41

tot-42

tot-43

tot-44

tot-45

tot-46

tot-47

tot-48

tot-49

tot-50

tot-51

tot-52

tot-53

tot-54

tot-55

tot-56

tot-57

tot-58

tot-59

tot-60

tot-61

tot-62

tot-63

tot-64

tot-65

tot-66

m
m
m
m
m
m
w
w
w
w
w
w
w
o
o
o
o
o
o
o
m
m
m
m
m
m
m
o
o
o
o
o
o
o
z
z
z
z
z
z
z
x
z
z
z
z
z
z
r
—
«
r
r
a
r
r
—
«
r
—
«
x
w
m
x
x
q
u
u
q
e

z
z
x
z
x
z
z
t
h
h
v
B
a
v
v
m
x
m
x
m
w
m
u
m
e
g

2
2

STO

*
<

m

m
m
w
x
m
m
w
w
t
'
w
w
w
w
o
o
o
o
o
o
o
m
m
m
v
o
m
o
w
o
o
o
o
o
o
o

p-S4

p-55

p-56

p-57

p-58

pr59

p560

p-61

p-62

p-63

p-64

p-GS

p-66

p-67

p-68

p-69

p-70

p-71

p-72

p-73

p-74

p-75

p-76

p-77

p-78

p-79

p-80

p-BO

p-BO

p-80

p-81

p-82

p-83

p-84

p-85

p-86

p-87

p-88

p-89

p-90

p-9O

p-91

p-92

p-93

p-94

p-9S

p-96

p-97

p-98

p-99

p-100

p-lOl

p-102

p-103

p-104

p-104

p-105

p-105

p-106

p-107

p-108

p-109

p-109

p-llO

p-llO

p-lll

p2-60

p2-61

p2-62

p2-63

p2-64

p2-65

p2-66

p2-67

p2-68

p2-69

p2-70

p2-71

p2-72

p2-73

p2-74

p2-75

p2-76

p2-77

p2-78

p2-79

p2-80

p2-81

p2-82

p2-83

p2-84

p2-85

p2-86

p2-87

p2-87

p2-88

p2-89

p2-90

p2-91

p2-92

p2-93

p2-94

p2-95

p2-96

p2-97

p2-98

p2-99

p2-100

p2-101

p2-102

p2-103

p2-104

p2-105

p2-106

p2-107

p2-108

p4-64

p4-65

p4-66

p4-67

p4-68

p4-69

p4-70

p4-71_

p4-72

p4-73

p4-74

p4-7S

p4-76

p4-77

p4-78

p4-79

p4-80

p4-81

p4-82

p4-83

p4-84

p4-85

p4-86

p4-87

p4-88

p4-89

p4-90

p4-91

p4-92

p4-93

p4-94

p4-95

p4-96

p4-97

p4-98

p4-99

p4-100

p4-101

p4-102

p4-103

p4-104

p8-66

p8-67

p8-68

p8-69

p8-7O

p8-71

p8-72

p8-73

p8-74

p8-75

p8-76

p8-77

p8-78

p8-79

p8-80

p8-81

p8-82

p8-83

p8-84

p8-85

p8-86

p8-87

p8-88

p8-89

p8-9Q

p8-91

p8-92

p8-93

p8-94

p8-95

p8-96

p8-97

p8-98

p8-99

tot-67

tot-68

tot-69

tot-70

tot-71

tot-72

tot-73

tot-74

tot-7S

tot-76

tot-77

tot-78

tot-79

tot-80

tot-81

tot-82

tot-83

tot-84

tot-85

tot-86

tot-87

tot-88

tot-89

tot-9O

tot-91

tot-92

tot-93

tot-94

tot-95

tot-96

tot-97

tot-98

tot-99

tot-100

p8-100 tot-101

p8-101 tot-102

p8-102

p8-103

p8-104

p8-105

p8-106

tot-103

tot-104

tot-105

tot-106

tot-107

p4-105

p4-106

p4-107

p4-108

p4-109

p4-110

p4-111

p4-112

p4-113

p8-107

p8-108

p8-109

p8-110

pB-lll

p8-112

p8-113

p8-114

p8-115

p2-109

p2-110

p2-111

p2-112

p2-113

p2-113

p2-114

p2-115

p2-116

p2-117

p2-118

p2-119

p2-120

p2-121

p2-122

p2-123

38

p4-114

p4-115

p4-116

p4-117

p4-118

p4-119

p4-120

p4-121

p4-122

p4-123

p4-124

p4-125

p4-126

p4-127

p4-128

p4-129

p8-116

p8-117

p8-118

p8-119

p8-120

p8-121

p8-122

p8-123

p8-124

p8-125

p8-126

p8-127

p8-128

p8-129

p8-130

p8-131

tot-108

tot-109

tot-110

tot-111

tot-112

tot-113

tot-114

tot-115

tot-116

tot-117

tot-118

tot-119

tot-120

tot-121

tot-122

tot-123

tot-124

tot-125

tot-126

tot-127

tot-128

tot-129

tot-130

tot-131

tot-132

u
r
e
a
:
N
c
e
e
a
N
r
<
~
<
K
v
<
~
<
K
t
<
>
<
X
:
K
>
<
X
:
K
>
<
2
:
E
1
3
2
:
8
1
§
£
<
:
<
‘
<
<
$
<
<
3
<
<
3
C
2
6
<
2
C
2
6
<
3
r
a
e
v
a
r
a
e
v
a
r
a
m

*
3

:
1
:

{3 m
m

ZER

>
<
X
1
K
>
<
8
1
8
1
3
2
=
8
5
:
8
<
3
<
‘
<
<
:
<
<
=
<
3
Q
<
3
C
J
G
<
D
C
I
G
I
Q
F
i
a
r
a
r
i
fl

REPEA

N
C
Q
D
I
N
E
Q
b
1
8
r
<
H
t
h
<
h
<
K
r
<
>
<
N
>
<

p-112

p-112

p-113

p-114

p-llS

p-116

p-ll?

p-118

p-119

p-120

p-120

p-121

p-122

p-123

p-124

p-125

p-126

p-127

p-128

p-129

p-130

p-131

p-132

p-133

p-134

p-135

p-136

p-137

p-138

p-139

p-140

p-141

p-142

p-143

p-144

p-145

p-146

p-147

p-148

p-149

p-lSO

p-lSl

p-152

p-152

p-153

p-154

p-lSS

p-156

p-157

p-158

p-159

p-160

p-161

p-162

p-163

p-164

p-165

p-166

p-167

p-168

p-169

p-170

p-171

p-172

p-173

p-174

p2-124

p2-125

p2-126

p2-127

p2-128

p2-129

p2-130

p2-l31

p2-132

p2-l33

p2-134

p2-135

p2-136

p2-137

p2-138

p2-139

p2-140

p2-141

p2-142

p2-143

p2-l44

p2-145

p2-146

p2-147

p2-l48

p2-149

p2-150

p2-151

p2-152

p2-153

p2-154

p2-155

p2-156

p2-157

p2-158

p2-159

p2-160

p2-161

p2-162

p2-163

p2-164

p2-165

p2-166

p2-167

p2-168

p2-169

p2-l70

p2-171

p2-172

p2-173

p2-174

p2-175

p2-176

p2-177

p2-178

p2-179

p2-180

p2-181

p2-182

p2-183

p2-184

p2-185

p2-186

p2-187

p2-188

p2-189

39

p4-130

p4-131

p4-132

p4-133

p4-134

p4-135

p4-136

p4-137

p4-138

p4-139

p4-140

p4-141

p4-142

p4-143

p4-144

p4-l45

p4-146

p4-147

p4-148

p4-l49

p4-150

p4-151

p4-152

p4-153

p4-154

p4-155

p4-156

p4-157

p4-158

p4-159

p4-160

p4-161

p4-162

p4-163

p4-164

p4-165

p4-166

p4-167

p4-168

p4-169

p4-170

p4-17l

p4-172

p4-173

p4-174

p4-17S

p4-l76

p4-177

p4-178

p4-l79

p4-180

p4-181

p4-182

p4-183

p4-184

p4-185

p4-186

p4-187

p4-188

p4-189

p4-190

p4-191

p4-192

p4-193

p4-194

p4-195

p8-132

p8-133

p8-l34

p8-135

p8-136

p8-l37

p8-138

p8-l39

p8-l40

p8-141

p8-142

p8-143

p8-144

p8-145

p8-l46

p8-147

p8-148

p8-149

p8-150

p8-151

p8-152

p8-153

p8-154

p8-155

p8-156

p8-157

p8-158

p8-159

p8-160

p8-161

p8-162

p8-163

p8-164

p8-165

p8-166

p8-167

p8-168

p8-169

p8-170

p8-171

p8-172

p8-173

p8-174

p8-175

p8-176

p8-177

p8-178

p8-179

p8-180

p8-181

p8-182

p8-183

p8-184

p8-185

p8-186

p8-187

p8-188

p8-189

p8-l90

p8-191

p8-192

p8-193

p8-194

p8-195

p8-196

p8-197

tot-133

tot-134

tot-135

tot-136

tot-137

tot-138

tot-139

tot-140

tot-141

tot-142

tot-143

tot-144

tot-14S

tot-146

tot-147

tot-148

tot-149

tot-150

tot-151

tot-152

tot-153

tot-154

tot-155

tot-156

tot-157

tot-158

tot-159

tot-160

tot-161

tot-162

tot-163

tot-164

tot-165

tot-166

tot-167

tot-168

tot-169

tot-170

tot-171

tot-172

tot-173

tot-174

tot-175

tot-176

tot-177

tot-178

tot-179

tot-180

tot-181

tot-182

tot-183

tot-184

tot-185

tot-186

tot-187

tot-188

tot-189

tot-190

tot-191

tot-192

tot-193

tot-194

tot-19S

tot-196

tot-197

tot-198

ZERO

START

START

START

START

START

START

START

STOP

STOP

STOP

STOP

STOP

p-l75

p-176

p-176

p-177

p-178

p-179

p-180

p-181

p-182

p-183

p-184

p-185

p-186

p-187

p-l88

p-189

p-190

p-191

p-192

p-193

p-194

p-l95

p-196

p-197

p-198

p-199

p-200

p-201

p-202

p-203

p-204

p-205

p-206

p-207

p-207

p-207

p-207

p-208

p-209

p-209

p-210

p-210

p-210

p-le

p-212

p-213

p-214

p-ZlS

p-216

p-217

p-218

p-219

p-220

p-221

p-222

p-223

p-224

p-225

p-226

p-227

p-228

p-229

p-230

p-231

p-232

p-233

p2-190

p2-19l

p2-192

p2-193

p2-194

p2-195

p2-l96

p2-197

p2-198

p2-199

p2-200

p2-201

p2-202

p2-203

p2-204

p2-205

p2-206

p2-207

p2-208

p2-209

p2-210

p2-211

p2-212

p2-213

p2-214

p2-215

p2-216

p2-217

p2-218

p2-219

p2-220

p2-221

p2-222

p2-223

p2-224

p2-225

p2-226

p2-227

p2-228

p2-228

p2-229

p2-229

p2-230

p2-231

p2-232

p2-233

p2-234

p2-235

p2-236

p2-237

p2-238

p2-239

p2-240

p2-24l

p2-242

p2-243

p2-244

p2-245

p2-246

p2-247

p2-248

p2-249

p2-250

p2-251

p2-252

p2-253

40

p4-196

p4-197

p4-l98

p4-199

p4-200

p4-201

p4-202

p4-203

p4-204

p4-205

p4-206

p4-207

p4-208

p4-209

p4-210

p4-211

p4-212

p4-213

p4-214

p4-215

p4-216

p4-217

p4-218

p4-219

p4-220

p4-221

p4-222

p4-223

p4-224

p4-225

p4-226

p4-227

p4-228

p4-229

p4-230

p4-231

p4-232

p4-233

p4-234

p4-235

p4-236

p4-236

p4-237

p4-238

p4-239

p4-240

p4-241

p4-242

p4-243

p4-244

p4-245

p4-246

p4-247

p4-248

p4-249

p4-250

p4-251

p4-252

p4-253

p4-254

p4-255

p4-256

p4-257

p4-258

p4-259

p4-260

p8-l98

p8-199

p8-200

p8-201

p8-202

p8-203

p8-204

p8-205

p8-206

p8-207

p8-208

p8-209

p8-210

p8-211

p8-212

p8-213

p8-214

p8-215

p8-216

p8-217

p8-218

p8-219

p8-220

p8-221

p8-222

p8-223

p8-224

p8-225

p8-226

p8-227

p8-228

p8-229

p8-230

p8-231

p8-232

p8-233

p8-234

p8-235

p8-236

p8-237

p8-238

p8-239

p8-240

p8-241

p8-242

p8-243

p8-244

p8-245

p8-246

p8-247

p8-248

p8-249

p8-250

p8-251

p8-252

p8-253

p8-254

p8-255

p8-256

p8-257

p8-258

p8-259

p8-260

p8-261

p8-262

p8-263

tot-199

tot-200

tot-201

tot-202

tot-203

tot-204

tot-205

tot-206

tot-207

tot-208

tot-209

tot-210

tot-211

tot-212

tot-213

tot-214

tot-215

tot-216

tot-217

tot-218

tot-219

tot-220

tot-221

tot-222

tot-223

tot-224

tot-225

tot-226

tot-227

tot-228

tot-229

tot-230

tot-231

tot-232

tot-233

tot-234

tot-23S

tot-236

tot-237

tot-238

tot-239

tot-240

tot-241

tot-242

tot-243

tot-244

tot-245

tot-246

tot-247

tot-248

tot-249

tot-250

tot-251

tot-252

tot-253

tot-254

tot-255

tot-256

tot-257

tot-258

tot-259

tot-260

tot-261

tot-262

tot-263

tot-264

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

ENTER

ENTER

ENTER

ENTER

ENTER

ENTER

ENTER

RUBOUT

RUBOUT

RUBOUT

Y

RUBOUT

STOP

RUBOUT

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

ENTER

ENTER

ENTER

ENTER

ENTER

ENTER

ENTER

p-234

p-235

p-236

p-237

p-238

p-239

p-24O

p-241

p-242

p-243

p-244

p-245

p-246

p-247

p-248

p-249

p-249

p-ZSO

p-251

p-251

p-252

p-253

p-254

p-255

p-256

p-257

p-258

p-259

p-260

p-261

p-262

p-263

p-264

p-265

p-266

p-267

p-268

p-269

p-27O

p-271

p-271

p-272

p-272

p-273

p-274

p-275

p-276

p-277

p-278

p-279

p-280

p-281

p-282

p-283

p-284

p-285

p-286

p-287

recognition rate - 89.1304

p2-254

pZ-ZSS

p2-256

p2-257

p2-258

p2-259

p2-260

p2-261

p2-262

p2-263

p2-264

p2-265

p2-266

p2-267

p2-268

p2-269

p2-269

p2-270

p2-271

p2-272

p2-273

p2-274

p2-275

p2-276

p2-277

p2-278

p2-279

p2-280

p2-281

p2-282

p2-283

p2-284

p2-285

p2-286

p2-287

p2-288

p2-289

p2-290

p2-291

p2-292

p2-292

p2-293

p2-294

p2-295

p2-296

p2-297

p2-298

p2-299

p2-300

p2-301

p2-302

p2-303

p2-304

p2-305

p2-306

p2-307

p2-308

p2-309

percent

41

p4-261

p4-262

p4-263

p4-264

p4-265

p4-266

p4-267

p4-268

p4-269

p4-270

p4-271

p4-272

p4-273

pA-274

p4-275

p4-276

p4-276

p4-277

p4-278

p4-279

p4-280

p4-281

p4-282

p4-283

p4-284

p4-285

p4-286

p4-287

p4-288

p4-289

p4-290

p4-291

p4-292

p4-293

p4-294

p4-295

p4-296

p4-297

p4-298

p4-299

p4-300

p4-301

p4-302

p4-303

p4-304

p4-305

p4-306

p4-307

p4-308

p4-309

p4-310

p4-311

p4-312

p4-313

p4-314

p4-315

p4-316

p4-317

p8-264

p8-265

p8-266

p8-267

p8-268

p8-269

p8-270

p8-271

p8-272

p8-273

p8-274

p8-275

p8-276

p8-277

p8-278

p8-279

p8-279

p8-280

p8-281

p8-282

p8-283

p8-284

p8-285

p8-286

p8-287

p8-288

p8-289

p8-290

p8-291

p8-292

p8-293

p8-294

p8-295

p8-296

p8-297

p8-298

p8-299

p8-300

p8-301

p8-302

p8-303

p8-304

p8-305

p8-306

p8-307

p8-308

p8-309

p8-310

p8-311

p8-312

p8-313

p8-314

p8-315

p8-316

p8-317

p8-318

p8-319

p8-320

tot-265

tot-266

tot-267

tot-268

tot-269

tot-270

tot-271

tot-272

tot-273

tot-274

tot-275

tot-276

tot-277

tot-278

tot-279

tot-280

tot-281

tot-282

tot-283

tot-284

tot-285

tot-286

tot-287

tot-288

tot-289

tot-290

tot-291

tot-292

tot-293

tot-294

tot-295

tot-296

tot-297

tot-298

tot-299

tot-300

tot-301

tot-302

tot-303

tot-304

tot-305

tot-306

tot-307

tot-308

tot-309

tot-310

tot-311

tot-312

tot-313

tot-314

tot-315

tot-316

tot-317

tot-318

tot-319

tot-320

tot-321

tot-322

B Program Listing: LP Parameter Generating

Program

This program computes the LP parameters of an input speech file using the autocor-

relation method, and then quantizes the LP parameters.

42

#include <stdio.h>

Oinclude <ctype.h>

Oinclude <string.h>

tinclude <time.h>

linclude <math.h>

#define N 256 /* Hamming window size */

tdefine NUM 50000 /* maximum allowed for speech data */

{define MO 14 /* Model Order of LPG */

Odefine NLEVELS 7 /* number of levels in binary codebook */

{define LEVELINDX 126 /* ZANLEVELS-Z */

#define TOTVECT 254 /* number of vectors in codebook */

Odefine CODEFILE "codedc36.dat" /* output file directive */

int count:

int index2[100][2]:

double speech_data[NUM]:

double window[N]:

double aiMO+1]: /* estimated LP parameters */

double r[MO+1]: /* short term autocorrelation */

double codebookiTOTVECT][MO]:

char codefilelBO];

FILE *outfile:

/*i’i’it****§***t§***tititiiflitti*
****i*******t***********t***i*****

* Program name: lpcqnt_a. c ‘ *'

* Command : run386 lpcqnt_a cdbkfile. dat *

* Description : Computing the LP parameters using autocorrelation *

* method with 256 points *

* Hamming window as a frame. *

* Date : July 19, 1990 *

fl**************iifitifiiiiti‘tii‘ttiii'i'fliiitii’fttttti**t*i****t***t******ft/

mainiargc,argV)

int argc:

char *argvi]:

{

int i,j,k,h,t;

int numread:

int M,p,sum,m:

char infilesl80],infilenamelIBO],infilename[80],filenameilOO]:

char instring[40],numstring[5],inputl[30]:

short bufferi64]:

FILE *infilel,*infile2,*infile,*file:

int total_data:

void lpc_computation():

void codeboox_entry();

if(argc < 1 i

{

print£(”***** After program name enter two file names *****\n");

printf("1. The first file name is the name of the codebook. \n"):

printf("2. The second is the name of the file that contains the paths and\n"):

printfi” names of all the data files to be qauntized.\n\n");

print£("Example: "i:

printf("lpc2 codebook. dat allfiles. dat\n", argv[0]);

eXit (O)I

l

stGCyicodefile,argv[1]):

codebooh_entry(i:

count-O;

strcpyiinfilename,"tstti. dat");

printfi'Start data input - infilename - %s\n", infilename);

if ((infile - £open(infilename, "r")) - NULL)

1

43

printf("fopen failed for infilename %s.\n",infilename):

exit(0):

}

while(fscanf(infile,"%s\n",instring) !- EOF)

{

for(h-l: h<8: h++i

i

strcpy(filename,"c:\\dc36\\test\\bin\\"):

strcat(filename,instring):

strcat(filename,".36"):

switch(h)

{

case 1 strcpy(numstring,”9"): break:

case 2 strcpyinumstring,"a"); break:

case 3 : strcpyinumstring,"b"): break:

case 4 : strcpyinumstring,"c"): break:

case 5 . strcpyinumstring,"d"): break:

case 6 strcpy(numstring,"e”); break:

case 7 strcpy(numstring,"f"); break;

default : break:

strcat(filename,numstring):

_pmode - 0x8000:

if ((file - fopen(filename, "r")) - NULL)

{

printf(”fopen failed for filename %s\n",filename):

exit(0): -

}

printf(”reading in data from file %s \n",fi1ename):

k-t-O:

do

{

numread - fread((void *)buffer, sizeof(short),64,file):

if(numread -- 0)

break:

for(i-O: i<64: i++)

{

speech_data[t] - (int)buffer[i]:

t++:

} .

}while(feof(infile) - 0 || numread -- 64): /** for with.cp5 file **/

fclose(filei:

strcpy(filename,"\\dc36\\test\\qnt\\"):

strcat(filename,instring):

strcat(filename,".vq"):

strcat(filename,numstring):

_pmode - 0x4000:

outfile - fopen(filename,”w"i:

printfi' Quantizing data...\n"):

count-0:

lpc_computation(ti:

printf("%u Quantized lpc vectors written to file %s\n",count,filename):

fclose(outfile);

i

}

/tii*****fi*******i********i****i**i******t*if**fl**ti*ti***i***i*******tiii

* This function computes the lpc vectors from the speech data and *

* then vector quantizes the lpc vectors *

ttti*tttttttitttttiiit*itiitttttt
iittttitiiiiiiiittit**i*t**t*****

***ttttl

void lpc_computation(total_data)

int total_data:

int n,i:

void LD_recursion():

44

void shift_window();

void vector_guantize():

a[0]-1:

for(n-0: (n+N)<total_data: n-n+50)

shift_window(n):

LD_recursion():

vector_quantize():

}

}

/********i******************iittititiiit
iif*****************************fl***

* This function takes 256 points from sampled data using Hamming window *

* to implement short term LP analysis
*

*i***t******it****tittttti*ttttt*t*
************************tt********t

****t/

void shift_window(n)

int n:

i

int i:

for (i-O: i<N: i++l

{

windowIiJ-speech_data[n]*(0.54-0.46*cos(2*PI*i/N));

n++:

}

}

/*t*****i*********fl*ii******i*************i*****
iifit****************i****fifi

* This routine use Levinson-Durbin Recursion to get the LP parameters *

itittittt***************tt***titt
ttt*itt*tttt*t********tt**ti**ttt

tttttittr/

void LD_recursion()

{

int 1,1:

double ai,aj,temp:

double e: /* xi, the average energy in the predition residual */

double k: /* kappa, reflection coefficient */

void comp_corr(): /* compute short term autocorrelation */

comp_corr();

/* initialization */

e-riO]:

for (1-1: l<-MO: l++)

{

/* step 1 */

temp-0.0:

for (i-l: i<l: i++)

temp-temp+a[i]*r[l-i]:

k-(r[l]-temp)/e:

/* step 2 */

a[l]-k:

for (i-l: i<-l/2: i++)

{

ai-ali];

aj-aIl-i]:

a[i]-ai-k*aj:

a[l-i]-aj-k*ai:

}

/* step 3 */

e-e*(l.-k*k):

}

i

/***t*****tii*******fi*fl*i********tf*****
****************************ii******

* This procedure computes short-term autocorrelation *

*********iittitttt*ittitttitttt
tttt**ttttttt*********fl********

*tttttttttiit/

void comp_corr()

45

int ilj;

for (i-O: i<-MO: i++)

rlil-O:

for (j-O: j+i<N: j++i

r[i]-r[i]+window[j]*window[j+i];

r[i]-r[i]/N:

l

l

/***********i*******i********************
********fi*******************ititit

* This routine vector quantizes the computed lpc vector with respect to *

* the given codebook. *

it*fi*******itttt***********************
ti*****t****************t*itt/

void vector_guantize()

{

int i,index1,index2,vq;

double idml,idm2:

double itakura_dist_meas();

int level_index():

indexl - O:

indexZ - 1:

idml - itakura_dist_meas(codebook[index1]);

idm2 - itakura_dist_meas(codebook[index2]);

if(imu.>i¢fl)

indexl - indexZ:

for(i-l: i<NLEVELS: i++)

{

indexl - (indexl - level_index(i))*2 + level_index(i+l):

indexZ - indexl + l:

idml - itakura_dist_meas(codebook[indexl]):

idm2 - itakura_dist_meas(codebook[index2]);

if(idml > idm2)

indexl - index2:

}

vq - indexl - LEVELINDX:

fprintf(outfile,"%d\n",vq);

count-count+l:

}

/*itttfltfiit************t***********t**it****#***t*ii**fit*i***************it

* This routine calculates which vector to compare next in the codebook *

* once a vector index in the previous level is given *

*tttttttttttitttttttttttitttttttttttflirt*Qtttttttitt*ttttttttttttttiittttt/

int level_index(k)

int k:

{

int num:

num - (int)pow((double)2,(double)k) - 2:

return num:

}

/*********i****t*****************t*itfl!***tit******************************i

* This routine calculates the Itakura Distance Measure between the *

* computed lpc vector and a vector from the codebook *

*t*******ittt**********t****ifit*titttti*ti**fi*i*********t**t*************t/

double itakura_dist_meas(array) '

double arrayl]:

int i,j:

double templIMo+l],temp2[M0+1]:

double al[MO+l],entry[M0+l]:

46

double idml,idm2,idm:

entryi01-1.0:

al[0]-l.0:

for (i-l: i<-MO: i++l

entryli]-0.-array[i-l]:

aliil-0--alil:

l

for (i-O: i<-MO: i++)

{

templ[i]-0:

temp2[i]-0:

for (j-O: j<-MO: j++i

if (i<j)

{

templIi]-temp1[i]+a1[j]*rij-i]:

temp2[i]-temp2[i]+entry[j]*r[j-i]:

}

else

{

templii]-templ[i]+a1[j]*r[i-j]:

temp2[i]-temp2[i]+entry[j]*r[i-j]:

}

}

idml-0:

idm2-O:

for (i-O: i<-MO: i++)

{

idml-idml+templ[i]*al[i]:

idm2-idm2+temp2[i]*entry[i]:

}

idmplogiidm2)-log(idml):

return idm:

}

/**ii*********i‘i’t‘ktttii‘kiti’ttt/

void codebook_entry()

i

FILE *infile3:

int i,j,k,m:

char inputlli801,input12[80],inputl3i80]:

void extractword():

infile3 - fopeniCODEFILE,”r"):

printf("\nReading %s\n",CODEFILE):

m-O:

for(i-l: i<-NLEVBLS: i++)

{

fgets(inputll,80,infile3):

printf("%s",inputlli:

for(j-0: j<(int)pow((double)2,(double)i): j++i

{

fgets(inputll,67,infile3):

fgets(input12,67,infile3):

fgets(input13,80,infile3):

extractwordiinputll,input12,input13,m):

for (k-O: k<l4; k++) printf("%f ”,codebookim][k]);

printf("\n”): .

m++:

}

l

fcloseiinfileB):

}

47

/it*ttitittititttttittttttitititittiiitttitttttttwwwtwttttttitttwttwttwttwttt/

void extractword(inl,in2,in3,m)

char inl[80],in2[80],in3[80];

int m:

(

int i,j,k:

char templ[30],temp2[30],temp4[30]:

for(j-O: j<30: j++l

{

templij] - '\0':

temp2ij] - '\0':

temp4ij] - ’\0’:

)

for(i-O: i<6: i++)

i

k-O:

forij-i*ll: j<(i+l)*ll: j++i

{

templikl - inlij]:

temp-21k] - inZijl:

k++:

}

codebook[m][i] - atof(temp1):

codebook[m][i+6] - atof(temp2):

l

for(i-O: i<2: i++i

{

k-O:

for(j-i*ll: j<(i+l)*11: j++)

temp41k1 - in3ijl:

k++:

}

codebookim][i+12] - atof(temp4):

}

48

C Program Listing: Cepstral Parameter Gener-

ating Program

This program computes the mel-cepstral parameters of an input speech file using a

1024 point FFT, and then quantizes the cepstral parameters.

49

<stdio.h>

<ctype.h>

<string.h>

<time.h>

<math.h>

#include

#include

#include

Oinclude

tinclude

#define N

#define NUM 50000

Odefine MO 10

#define NLEVELS 7

#define LEVELINDX 126

{define TOTVECT 254

#define CODEFILE "codele27.dat"

#define FFT 1024

256

int count:

int freql22]:

int speech_data[NUM]:

double window[PPT];

double c[MO+1]:

double codebook[TOTVECT][MO];

FILE *outfile:

/*

/*

It

/*

/*

/i

/*

/*

It

/*

It

/*

Hamming window size */

maximum allowed for speech data */

model order of cepstrum */

number of levels in binary codebook */

Z‘NLEVELS-Z */

number of vectors in codebook */

codebook file */

number of point for FFT */

mel_frequency */

256 samples plus zero padding */

cepstrum parameters */

pointer to quantized file */

l****it*************i****t**i**it****ii***************ifi***fi***if***********

* Program name:

* Command :

Description :

ceps_qnt.c

run386 cepstrum

*

t

* parameters

* Date : August 1, 1990

cepstral analysis training data with 1024 points PET and

silent portion kept and then quantize these cepstrum

\

#
1
0
!

t
i

i

tiff************t**i*****t****i**********t**********t*tt**ti*t***t******fi*tl

main()

{

int i,j,k,h,t:

int numread:

int M,p,sum,m,mt:

int indataINUM],index2[100][2]:

char infilesIBO],infilenamel[80],infilename[80],filename[1001:

char instringi40],numstring[5],inputll30]:

short bufferi64]:

FILE *infile2,*infile,*file:

int total_data:

void cepstrum_comp():

void codebook_entry():

void mel_freq():

codebook_entry():

mel_freq():

count-0:

for (i-O; i<FFT:

windowIil-0.0:

i++)

strcpy(infilename,"tstti.dat"):

printf("$tart data input -

if (

{

infilename

(infile - fopen(infilename,

- %s\n",infilename):

"r")) - NULL)

printf("fopen failed for infilename ts.\n",infilename):

exit(0):

1

while(fscanf(infile,"%s\n",instring)

for(h-l: h<9: h++)

{

!- EOF)

strcpy(filename,"c:\\le27\\train\\bin\\");

strcat(filename,instring);

strcat(filename,".27");

50

switch(hl

{

case 1 strcpy(numstring,"l"):break:

case 2 . strcpy(numstring,"2"):break:

case 3 : strcpyinumstring,"3"):break:

case 4 : strcpy(numstring,"4"):break:

case S : strcpy(numstring,"5"):break:

case 6 : strcpy(numstring,"6"):break:

case 7 : strcpy(numstring,"7"):break;

case 8 : strcpy(numstring,"8"):break:

default : break:

strcat(filename,numstring):

_pmode - 0x8000:

if ((file - fopentfilename, "r")) - NULL)

{

printf(”fopen failed for filename %s\n",filename):

exit(0):

printf("reading in data from file %s \n",filename):

k-t-O:

do

{

numread - freadiivoid *)buffer, sizeof(short),64,file):

ifinumread - 0)

break:

for(i-0: i<64: i++i

{

speech_data[t] - (int)buffer[i]:

tH:

}

)while(feof(infile) - 0 ll numread -- 64 i: /* for with.cp5 file */

fcloseifile):

strcpyifilename,“\\le27\\train\\qnt\\"):

strcat(filename,instring);

strcatifilename,".vq"):

strcat(filename,numstring):

ode - 0x4000:

outfile - fopen(filename,"w");

printfi" Quantizing data...\n"):

count-0:

cepstrum_compiti:

printf("%u Quantized lpc vectors written to file %s\n",count,filename):

fclose(outfile):

l

}

/it***********i*******iii****iti****t**t**t*t*****ti**#*****it*t*i*********t**

* This function computes the cepstrum parameters from the speech data and *

* then vector quantizes the cepstrum parameters *

it*ttiit*tiiit*ttttfi******fitittt**ii**ttt*ttttt*i*i**t*t*i****t**********tti*/

void cepstrum_comp(total_data)

int total_data:

{

int n,i:

float f[2*FFT+1]:

double mel[21],rf[FFT/2+1]:

void shift_window():

void stdft():

void mel_energy():

void mel_cepstrum():

void vector_quantize():

forth-0: (n+N)<total_data: n-n+50)

{

51

shift_window(n):

for (i-l: i<-FFT: i++i

f[2*i]-0.0:

f[2*1-11-(float)windowii-l]:

i

stdftif,FFT,1);

for (i-l: i<-(FFT/2): i++)

rf[1]-sqrt((double)f[2*i—1]*(double)f[2*i-1]+(double)f[2*i]*(double)f[2*i]

mel_energy(mel,rf):

mel_cepstrum(mel);

vector_guantize():

l

/*********************t***********ti**itt********************t******t****tfl**t

* This function takes 256 points from sampled data using Hamming window and *

* put zero in remaining position to implement 2048 points FFT *

t*******t******titttittt**********t**#*******ttitttt*****i**t*i#********i/

void shift_window(n)

int n:

(

int i:

for (i-O: i<N: i++)

windowIil-speech_data[n]*(0.54-0.46*cos(2*PI*i/N));

n++:

}

/******it*********i*******i**********t***********fli*tti***************fi******

* This routine use radix-2, 2048 points FFT to implement short term DPT *

itti******t****i*********itittttttflfittttttit*****ttittrtt**it***t*****it***t/

tdefine SWAP(a,b) tempr-(a):(a)-(b):(b)-tempr

void stdft(data,nn,isign)

float datai]:

int nn,isign:

{

int n, mmax,m,j, istep,i:

double wtemp, wr, wpr, wpi, wi, theta:

float tempr, tempi:

n-nn << 1:

j-l:

for (i-1:i<n:i+-2) {

if (j > i) {

SWAP(data[j],data[i]):

SWAP(data[j+l],data[i+1]);

}

m-n >> 1:

while (m >- 2 && j > m) {

' j -- m:

m >>- 1:

}

j +- m:

}

mmax-Z:

while (n > mmax) {

istep-2*mmax:

theta-6.28318530717959/(isign*mmax):

wtemp-sin(0.5*theta):

wpr - -2.0*wtemp*wtemp:

wpi-sin(theta):

wr-l.0:

52

wi-0.0:

for (m-1:m<mmax:m+-2) (

for (i-m;i<-n:i+-istep) {

j-i+mmax:

tempr-wr*data[j]-wi*data[j+1]:

tempi-wr*data[j+l]+wi*data[j]:

data[j]-data(i]-tempr;

dataij+1]-data[i+1]vtempi:

datali] +- tempr:

data[i+1] +- tempi:

l

wr-(wtemp-wr)*wpr-wi*wpi+wr:

wi-wi*wpr+wtemp*wpi+wi:

mmax-istep:

}

#undef SWAP

/*i**fi*****f*ii*******i*t*****i***iit********t*****i*******i*************t***t

* This routine computes the MEL-frequencies, then computes the critical *

* band energy and put these values in the same array. *

********itittitittitittitttitt*tifl*t*******i**it*i*it***tittifitttt*t*********/

void me1_energy(mel,f)

double mel[]:

double ft]:

{

double ratio,r:

int i,j:

for (i-l: i<-20: i++)

{

ratio-1.0/(freq[i]-freq[i-l]):

melli]-0.0:

for (j-l: j<(freq[i]-freq[i-l]): j++) .

{

r-ratio*j:

mel[il-mel[i]+r*r*f[freq[i-1]+j]*fifreq[i-l]+j]:

l

ratio-1.0/(freq[i+1]-freq[i]):

for (j-O: j<(freq[i+1]-freq[i]): j++i

{

r-l-ratio*j:

melii]-mel[i]+r*r*f[freq[i]+j]*flfreqii]+j]:

}

melti]-loglO(mel[i]):

l

i

/*t*t***********************************i**ti*********i*************it**t****

* This routine computes MEL-based cepstral coefficients with critical band *

* filtering. *

*****t**fi*i**i****i*******tttit******titttwtttt***tt*ttitt**tt*******t****t*/

void mel_cepstrum(mel)

double melt]:

{

int n,k:

double a:

for (n-l: n<-MO: n++)

{

cln]-0.0:

for (k-l: k<-20: k++)

a-n*(k-0.S)*PI/20.0:

cln]-c[n]+mel[k]*cos(a):

53

}

/***i********flt***i*itflit******it
*tt*******t*******itfit*t*********

t*titt*i

* This routine vector quantizes the cepstrum parameters with respect to the *

* given codebook. *

tttiiiittiiitiitiiiiiiti*itttiii*ititii
tii**t*tttt*f*t***t*tfitttitttitttttttl

void vector_guantize()

{

int i,index1,index2,vq:

double idml,idm2:

double euclidean_dist_meas();

int level_index();

indexl - O:

indexZ - 1:

idml - euclidean_dist_meas(codebook[indexl]):

idm2 - euclidean_dist_meas(codebooklindexZJ);

if(idml > idm2)

indexl - index2:

for(i-1: i<NLEVELS: i++)

indexl - (indexl - level_index(i))*2 + level_index(i+l):

index2 - indexl + 1:

idml - euclidean_dist_meas(codebook[indexl]):

idm2 - euclidean_dist_meas(codebooinndexZ));

if(idml > idm2)

indexl - index2:

- }

vq - indexl - LEVELINDX:

fprintfioutfile,"$d\n",vq):

count-count+l:

l

/*ifi**t****fifi**iitfif***i*fiiffiitii*iittiiiflififiiittitiii**t***9i****f****titit!

* This routine calculates which vector to compare next in the codebook once *

* a vector index in the previous level is given , *

**********fi******i***tttttittwttittt*t**t*********tt**w****t*************t**t/

int level_index(k)

int k:

{

int num:

num - (int)pow((double)2,(double)k) - 2:

return num:

}

/tiit****ti*ii'fi****t****i***i******t*****i*i*****t*t**tt****i*******tt******

* This routine calculates the Euclidean Distance between the cepstrum *

* parameters and the one in the codebook. *

*tttttttittit!*itttiti*****t**ti*t*t******t**i***t********************tttittt/

double euclidean_dist;meas(array)

double arrayll:

{

int 1:

double idm:

idm-0.0:

for (i-O: i<MO: i++)

idm-idm+(c[i+l]—array[i])*(c[i+1]-array[i]):

return idm:

l

/t*t*******t********ifittififittittiifitfiiititfl****************ttiiitfitt****t****i/

void codebook_entry(i

54

{

FILE *infile3:

int i,j,k,m:

char input11[80],input12[801:

void extractwordi):

infile3 - fopen(CODEFILE,"r"):

printf("\nReading %s\n",CODEFILE):

m-O:

forii-l: i<-NLEVELS: i++)

{

fgets(inputll,80,infile3):

printf("%s“,input11):

for(j-o; j<(int)pow((doub1e)2,(double)i); j++)

I

fgets(input11,67,infile3):

fgets(input12,80,infile3):

extractword(inputll,input12,m):

m++ :

}

fclose(infile3):

i

/*t******************************itit************t*********ttI

void extractword<in1,in2,m)

char inl[80],in2[80]:

int m:

{

int i,j,k:

char templIBO],temp2l30],temp3[101,temp4[30]r

fori jéo: j<30: j++)

{

templ[j] - ’\0’:

temp2[j] - '\0':

temp4[j] - '\0':

}

fori j-O: j<10: j++i

temp3[j] - '\0’:

}

forii-O: i<6: i++i

{

k-O:

for(j-i*11: j<ii+1)*ll: j++i

{

templlk] - inlij]:

k++:

}

codebookim][i] - atofitempl):

}

forii-O: i<4: i++i

{

k-O:

for(j-i*1l: j<(i+1)*11+1: j++l

{

temp4[k] - in2[jl:

k++:

i

codebookim][i+6] - atof(temp4);

}

}

/itit**i********t**t*t*****ititit*********t*tt*******fi**t**i*tittttttittttittt

* This routine computes the MEL-frequencies. *

1*ittitttttttttttttttiittittititt*iii!*tttttitittttitittttttttiiiititttittfitt/

55

void mel_freq()

{

double interval,scale,mel_f:

int i:

interval-10000.0/FFT:

scale-(loglO(5000.0)-3)/11.0:

freq[O]-O:

for (i-l: i<ll: i++l

{

mel_f-100.0*(i):

if (fmod(mel_f,interval) < interval/2)

freqlil-floor(me1_f/interval):

else

freqlil-floor(mel_f/interval)+1:

mel_f-3.0+scale*i:

mel_f-pow(10.0,me1_f):

if (fmod(mel_f,interval) < interval/2)

freq[i+10]-floor(mel_f/interval):

else

freq[i+lO]-floor(mel_f/interva1)+1:

l

mel_f-3.0+scale*ll:

mel_f-pow(10.0,mel_f):

if (fmod(me1_f,interval) < interval/2)

frquZIJ-floor(mel_f/interval):

else

freq[21]-floor(mel_f/interval)+1:

56

D Program Listing: Codebook Generating Pro-

gram

This program produces a seven-level, binary tree codebook for cepstral parameters.

The input of this program is a large file which consists of cepstral parameters of all

the words spoken by one speaker in the TI-46 or Grandfather word list.

57

#include <stdio.h>

tinclude <ctype.h>

#include <string.h>

#include <math.h>

#define MO 10 /* Model Order of Cepstrum */

#define NLEVELS 7 /* number of levels in binary codebook */

#define SYMBOL 128 /* 22NLEVELS */ '

#define CEP 75000 /* number of cepstrum parameters */

int groupiCEP][2],change:

long total_count,counta,countb:

double table[CEP][MO]:

double centroid[NLEVELS+1][SYMBOL][MO]:

FILE *outfile:)

/*i‘ttfl’ti’t*******i********************
****t'k'k'k'ktti'kii‘kti****t********ii’

i‘ii*titt

* Program name: cdbkgen.c
*

* Command : cdbkgen
*

* Description : generate a N-level codebook by using the cepstral analysis *

* Date : August 14, 1990 *

t***t********i*******t*****fi***********
***iti’tfltti'fiittitiiiii‘ktt*tit‘kttii/

main()

{ .

int i,j,k,level,nt:

int aa,bb,cc:

long m:

long readcode():

double distance():

void separatei):

void compute_centroid():

void perturb():

outfile - fopen(”codebd26.dat","w"):

total_count - readcode():

printf("total_count-%1d\n",total_count):

for (m-O: m<total_count: m++i

stompiml[Oi-quUlellll-O:

compute_centroid(0,0,0):

printf("first centroid is %10.6f\n",centroid[0][0][0]):

for(level-O: level<NLEVELS: level++)

l

\

for(i-0: i<(int)pow((double)2,(double)level): i++)

perturb(level,i,centroid[level][1]):

nt-O:

do

{

change-0:

separate(level,i);

nt++:

compute_centroid(level+1,2*i,i):

compute_centroid(level+l,2*i+1,i):

printf(”level-%d,symbol-td,iteration-td,counta-%ld,countb-%ld\n",levelp

} while (change-l):

i

for (m-O; m<total_count: m++i

} groupimliol-QIOUPimllll:

for(i-1:i<-NLEVELS:1++)

{

fprintf(outfile,”level %u \n",i):

for(j-0: j<(int)pow((double)2,(doubleii): j++)

for(k-0:k<MO:k++)

fprintfioutfile,"% 10.6f ",centroidIi][j][k]):

58

fprintf(outfile,"\n");

}

i

fclose(outfile): \

}

/t*******************i*******iflit*iit*tti******i#*****tfflt*ttii***tittttti*t

* This procedure reads the cepstral parameters file and put these vectors *

* into an array. *

*ttttitttitffitttitt**t**tt**t**tttttitit**********t*i*t**tt**t**tt*ttt*tttt/

long readcode()

{

FILE *infile:

int j,k:

long 1:

char code[20]:

infile - fopen("bd26.dat","r");

i-O:

while (feof(infile)--O)

{

for (j-O: j<MO: j++)

{

fscanf(infile,"%s",code):

table[i][j]-atof(code):

1

i++:

fscanf(infile,”\n");

l

fcloseiinfile):

return i:

}

/ifi*****i*fi****i******ifi*******itii*****ittiiittitttfl******fl***i**************

* This procedure computes the centroid in a cluster *

*itttttiittitt*tttttmitttittttit*t*tttttttttiittit*tiittttittifitittrittitiitt/

void compute_centroid(level,symbol,now)

int level,symbol,now:

{

int 1:

long j,k:

k-O:

for (i-O: i<MO: i++)

l

centroidllevel][symbol][i]-0.0:

for (j-O; j<total_count: j++i

if ((groupljlll] - symbol) at (group[j][0]--now))

{

if (i-Oi

k-k+1:

centroidilevel][symbol][ii-centroidilevel][symbol][i]+table[j][i]:

}

centroidilevel][symbol][i]-centroid[level][symbol][i]/k:

}

/*****t***t***tttiiit********it*************ttiti*******************t******tit

* This procedure splits the centroid into 2 vectors *

*itt*fitttitttt***tiiit*tti*tttt**t*****fi**fit*tttttttiittttttittitiittttt*titt/

void perturb(1evel,symbol,vectora)

int level:

int symbol:

double vectora[MO]:

i

register int j:

59

for (j-O: j<MO: j++)

{

centroid[leve1+1][symbol*2][j]-vectora[j]*l.01:

centroid[level+l][symbol*2+l][jJ-vectoratj]*0.99:

/i************t****i***********it***

* This procedure separates one group into 2 clusters *

*t********fi*********it*****************************i****************t********/

void separate(level,symbol)

int level,symbol:

{

long i:

double dist1,dist2:

double distance():

counta-countb-O:

for (i-O: i<total_count: i++)

{

if (group[i][O]-symbol)

{

distl-distance(table[i],centroidtlevel+l][2*symboli);

dist2-distance(table[i],centroidtlevel+1][2*symbol+1]):

if (distl < dist2)

f

if (group[i][l] !- 2*symbol)

change-1:

groupti][1]-2*symbol:

counta-counta+l:

}

else

{

if (group[i][1] !- 2*symbol+l)

change-1:

group[i][l]-2*symbol+l:

countb-countb+1:

}

/ititit****************tiff*iti***************************t**t****************

* This procedure computes the Euclidean distance *

tfl**********************fi**1t**************t*********************************/

double distance(vector1,vector2)

double vector1[1,vector2[]:

{

int 1:

double dist:

dist-0.0:

for (i-O: i<MO: i++)

dist-dist+(vectorl[i]~vector2[i])*(vector1[i]-vector2[i]):

return dist:

60

"Tillflllfllllfitflflllllfllfllfl

