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ABSTRACT

A COMPARATIVE STUDY
IN
AUTOMOTIVE ACTIVE SUSPENSION SYSTEMS

By

Yung-Chi LIN

The vehicle active suspension problem is investigated using a quarter car model which
consists of one fourth of the body mass, suspension components and one wheel. A
State space approach is used and three control methodologies including LQG/LTR,
constant gain output feedback and singular perturbation are applied. The perfor-
mance criteria of suspension systems are formulated into minimizing sprung mass ac-
celeration, suspension deflection, and tire deflection for the concerns of ride comfort,
working space constraint, and road holding ability, respectively. Various measurement
schemes which contain position, velocity and acceleration are investigated. It is shown
that sprung mass acceleration gain can be attenuated significantly over a wider fre-
quency band, reaching into the wheel resonance via using acceleration feedback, then
characterizing the dynamics into slow and fast models and designing compensators
individually to meet desired specifications for low and high frequency ranges. Non-
ideal integration, controller bandwidth, force level requirement and robustness are
also studied. All designs demonstrate comparable robustness properties when system

parameters are perturbed.
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Chapter 1

Active Suspension

The automotive industry is always pursuing more comfortable and safer cars. Im-
provement in suspension systems plays an important role in achieving these goals.
Naturally, the suspension system is then expected to have more intelligence to ac-
commodate itself in various road conditions. The increasing capability and decreasing

cost of electronic components motivate people’s strong interest in this topic.

1.1 What Is Active Suspension?

An active suspension system is considered as one with the following two features [1].

1. Energy is constantly supplied to the suspension system and the force generated
by that energy is constantly controlled.

2. The suspension system incorporates various types of sensors and a unit for

processing signals; it generates forces which are functions of the output signals.

One possible structure of active suspension systems is depicted in Fig.1. The system
employs sensors to measure signals, a compensator to process signal and an electro-

hydraulic actuator to generate force. Shown in this figure is the so-called quarter

1



car model consisting of one fourth of the body mass, suspension components and one
wheel. The model describes the y — azis motion under road disturbances when the
vehicle moves in the z — azis direction. It does not describe other motions of the

body like roll or pitch.

1.2 Classification of Suspension Systems

The design of traditional suspension systems requires a careful choice of spring and
damper which are assumed to behave linearly. This system is referred to as passive
suspension system (PSS) since no external energy is added to generate any control
force. An active suspension system (ASS) usually employs an electrohydraulic sys-
tem to achieve its performance criteria, requiring extra power supply and a signal
processing unit. Another kind of suspension system between the previous two sys-
tems is called semi-active suspension system (SAS). Based on different control laws,
the damper of the SAS can be switched on/off or adjusted continuously to meet var-
ious road conditions. It does not require power supply as large as the ASS. This will
introduce nonlinear characteristics into the system. Some research [3, 4, 5, 6] has

been dedicated to the study of SAS.



1.3 Mathematical Model

The quarter car model used in this thesis is shown in Fig.1. The state variables are

chosen as follows [12],

(1.1)

where z, — z,, 2,, z, — 2z, and z, are, respectively, called suspension deflection, sprung

mass velocity, tire deflection and tire velocity. The state space equation is then given

by
z=Az + Bu+ E=z, (1.2)
where
r 9 r b
0 1 0 -1 0 0
—ks/m, —b,/m, 0 b,/m, 1/m, 0
o | —Eime —bim fra | | e |
0 0 0 1 0 -1
ky/m, b,/m, —ki/m, —b,/m, -1/m, 0
) ) ) ) (1.3)

The above vehicle parameters are defined in Fig.l. In ouf study, a typical set of

vehicle parameters shown in Table 1.1 is taken from [2].

m, = 504.5kg |
m, = 62kg

b, = 1328N.s/m
k, = 13100N/m
ke = 252000N/m |

Table 1.1: Vehicle Parameters



When active control is used, the damping constant, b,, is replaced by 400N.s/m.
The damper is not completely removed due to a practical safety concern in case of the
failure of the control system. The observed outputs of interest are position (suspension
deflection, z, — z,), velocity (sprung mass velocity, Z,) and acceleration (sprung mass
acceleration, z,). The suspension deflection can be measured by acoustic or radar
transmitter & receiver; while the velocity z, is typically obtained by integrating the

acceleration z, which is measured using accelerometer [16].

1.4 Performance Measure

Traditionally, a good suspension system is supposed to be able to provide passengers
with ride comfort, while maintaining necessary road holding ability to satisfy maneu-
vering safety concerns, subject to the design constraint of limited suspension working
space. Ride comfort is related to vehicle body motion sensed by passengers and,
generally, measured by vehicle body acceleration (sprung mass acceleration for the
quarter car model). Road holding ability is affected by wheel load dynamic variations,
i.e., fluctuation of the contact force between the tire and the road surface. Clearly,
this fluctuation is directly related to tire deflection. When road disturbances come
into the suspension system, the relative displacement between the body and wheel
keeps varying in such a way that the disturbance transmission is kept as small as pos-
sible, to provide best comfort. However, the allowable relative displacement is limited
by the usable working space. Thus, the previous discussions lead us to formulate the
performance criteria into minimizing sprung mass acceleration, suspension deflection,
and tire deflection for ride comfort, working space constraint, and road holding ability
[9, 10, 11, 12, 13, 14], respectively. It is well known that there is always a trade-off in

minimizing these performance criteria [9, 10, 11, 12, 13, 14]. In this research, control



effort, force actuator bandwidth, robustness and nonideal signal processing in using
velocity feedback are also considered. Hrovat (7] has identified the advantages of tak-
ing jerk (derivative of acceleration) into consideration for ride comfort, but his idea

has not yet received much support.

1.5 Organization of Thesis

This thesis is organized into six chapters. The first chapter is an introduction to
the active suspension system, including the mathematical model description, and the
performance measure of suspension systems. Chapter 2 reviews some control method-
ologies of LQR, LQG, and constant gain output feedback. The simulation results
with the applications of the above methodologies are also presented under velocity
and position feedback. The value of acceleration feedback is first explored with LQG
method in chapter 3. Chapter 4 introduces the singularly perturbed systems and the
sequential design procedure. Two sequential design examples are presented in this
chapter. A comprehensive study of the above schemes is performed in chapter 5. The
issues discussed in this chapter include nonideal integration, performance evaluation,
controller bandwidth, force level, and robustness. The robustness is investigated via
evaluating both the singular values of the complementary sensitivity functions and
the performance under system parameter perturbations. Chapter 6 presents conclu-
sions. For the purpose of comparison, some performance results reported in other

literature are also mentioned briefly.



Chapter 2

Review of Some Control

Strategies

In this chapter, the theory of LQR, LQG (8] and constant gain output feedback are
briefly described. The performance of ASS by the application of LQR is evaluated
as a reference performance. After that, with the observed outputs of position and
velocity, LQG designs and output feedback are done. In doing LQG designs, the
concept of LQG/LTR (Loop Transfer Recovery) is introduced to achieve the desired
frequency loop shaping. The work of LQG is similar to the work of [12]; the work of

constant output feedback is similar to [2].

2.1 Linear Quadratic Regulator (LQR)

Consider the system

z = Az 4+ Bu (2.1)



Assuming measurements of all states available, the LQR problem can be formulated

into seeking a linear control law

u= -Gz (2.2)

where G is a suitable stabilizing gain matrix, to minimize the performance index
oo
PI = / (z'Qz + ' Ru) dr (2.3)
0

R is a positive definite symmetric matrix and @ is a positive semidefinite symmetric

matrix. It is well known that the optimal gain, G, is given by
G=R'B'M (2.4)
where M satisfies the algebraic Riccatic equation (ARE)
0=MA+A'M-MBR'B'M+Q (2.5)

When (A, B) is controllable and (A, +/Q) is observable, the Riccatic equation (2.5)
has a unique solution M = M’ > 0 such that (A — BR'B'M) is Hurwitz.



2.2 Linear Quadratic Gaussian (LQG)

Consider the state equation

4= Az + Bu+ Ev (2.6)

and the observed output equation
y=Cz+w | (2.7)
where v and w are Gaussian white noise processes with
Ev(t)v(t+ 7)) = 6(7), E [w(t)w(t + 7)] = pé(1) (2.8)
The LQG problem seeks an optimal control u that minimizes the performance index
PI= Jim LE([ " (#'Qz + wRu) dr) (2.9)
The optimal solution of the LQG problem is given by
u=—G% (2.10)

where G is the same optimal control gain defined by Equation (2.4), and z is the

optimal state estimate, defined by the optimal observer or Kalman filter

i=Ai+ Bu+ K(y—C#%) (2.11)



The observer gain K is given by

K = lPC" (2.12)
m
where P satisfies the ARE
0= AP+ PA - -:;PC’CP + EE' (2.13)

Although p indicates the value of the sensor noise, it is often treated as a design
parameter to reflect the bandwidth of the observer. By increasing the bandwidth of
the observer, i.e. u — 0, the feedback loop transfer function of an LQR system can

be recovered by an LQG system. This is the so-called LQG/LTR (Loop Transfer

Recovery) methodology [23, 26].

2.3 LQG Applied to ASS

Looking at the system dynamic equation (1.2), there are two inputs coming into
the picture. The design task is to select a control u to reject the effect of the road
disturbance 2, on the sprung mass acceleration z,.

Fig.2 shows the frequency response of the original passive system. It is easily
noticed that the suspension system dynamics contain two distinct oscillatory modes:
one mode corresponds to body resonance (= 1 Hz); the other corresponds to wheel
resonance (=~ 10 Hz). The damping constant of the passive system is 1328 N.s/m
which will be replaced by a smaller value of 400/N.s/m when control is applied. As

stated previously, the reference performance is designed by an LQR procedure [8].
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The following Q and R
Q =diag[ 0 1225 0 156 ] (2.14)

R = [0.000056] (2.15)

yield the state feedback gain G, given by

G=[0 4374 —14448 —1274 ] (2.16)

which will be used in cascade with observer. In particular, both the states z, — z, and
z, are not easily measured. The LQG design is used, assuming only position (z, — z,)

or velocity (2,) are available. The observer equation is then given by
=A%+ Bu+ k(y —C#) (2.17)
with the measured output being
Yposition =Cpz+w=[1 0 0 0]z +w (2.18)

or

Yvelocity = Cux +w= [ 0 1 0 0 ]23 +w (219)

In order to apply LQG, the road velocity z, and sensor noise w are modelled as white

noise processes, i.e.,
E[Z.(t)z.(t + 7)] = 6(7), E [w(t)w(t + 7)] = pé(7) (2.20)

As stated in Sec.2.2, u is used as a design parameter to determine the bandwidth of

‘the observer. In Fig.3 and Fig.4 the LTR results are seen. The dotted lines indicate
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the performance of LQR designs. Table 2.1 shows the values of y used in these

Figures.

u(Pos.) [ 1073 107* 5x 10> 107°
u(Vel.) [ 10 10~* 5x 10~ 10~°

Table 2.1: LTR u of LQG-P and LQG-V

The arrows in these plots indicate the corresponding directions of change. It
is easily noticed that larger suspension deflection 2, — z, and high frequency tire
deflection z, — 2, come along with the improvement of sprung mass acceleration z,
and low frequency tire deflection. Based on the principle of “equal working space ”
the design parameters are picked up as in Table 2.2. Once the design parameter u
is picked up, the observer is determined. The frequency response of the LQG-P and
LQG-V designs are shown in Fig.6. Note that the suspension deflections z, — z, are

very close to each other.

2.4 Constant Gain Output Feedback (CGOF)

CGOF has been applied in [2] by the centralized/local optimization procedures to
solve a full car ASS problem. Motivated by this idea, CGOF is used to investigate
various measurements. The control is obtained by multiplying measured signals with

a constant gain, denoted by K. In single-input-single-output systems, K. is scalar.

1This principle is discussed in [11]. It is primarily to express a common usable space constraint
which exists in designing vehicle suspension systems Even when active control are apphed it is still
considered as a fair comparison baseline for various designs.

p(Position) | 0.0001
| #(Velocity) | 0.000075

Table 2.2: Designed p of LQG-P and LQG-V
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This fact simplifies our analysis.
Consider a system

z = Az + Bu (2.21)
y=Cz+ Du (2.22)

where u and y are scalar variables. Suppose the control u is obtained by
u=—-Ky=—-K,(Cz+ Du)=—-K.Cz— K.Du (2.23)
if I + K.D is nonsingular, then
u=—(I+K.D)'K.Cz (2.24)
The closed loop system is represented by
t=(A-B(I+ K.D)'K.C)z (2.25)

Since K. is scalar, the stabilizing range of K. can be determined by looking at the
root locus of the closed loop system. Therefore, we study all possible values of K, to
pinpoint a satisfactory K, for each of the different measurement schemes. The root
locus analysis of CGOF for va.rioﬁs measurements shows that only velocity feedback
can provide with enough damping force. Thus, only the results of velocity feedback
will be discussed.

Fig.8 shows the performance of several CGOF designs. Table 2.3 summarizes the
values of K. used in this Figure. Likewise, the arrows in this Figure indicate the
corresponding directions of change. Both of the open loop performance and LQR

are also shown for comparison. For convenience, the root locus of position,velocity
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and acceleration feedback schemes are reported in Fig.9. Note that, for the case
of velocity feedback, the two fast poles are insensitive to K. range of interested, as
shown in Table 2.3. In other words, when K, is tuned not greater than 20000, their
motions toward imaginary axis are negligible. This characterizes the CGOF loop

shaping primarily in low frequency range. Note that the performance changes only in

[ K. | 1000 5000 10000 20000 ||

Table 2.3: Designing K. of CGOF systems

the low-frequency range when K, varies, i.e., the high frequency shape of open loop
system is still kept in feedback system. This scheme increases damping force around
body resonance to eliminate the two body resonance peaks of acceleration and tire
deflection. Compared to the LQR performance, the price paid in larger suspension

deflection and high frequency tire deflection is also observed.



Chapter 3

Acceleration Feedback

The output feedback controllers designed in the previous chapter use measurements
of suspension deflection z, — z, (LQG-P) or the sprung mass velocity z, (LQG-V &
CGOF). The suspension deflection can be measured by acoustic or radar transmitter
& receiver; while the velocity Z, is typically obtained by integrating the acceleration
Z, which is measured using accelerometer [16]. This integration scheme shows that
the actual observed output is acceleration, and requires an integrator part in cascade
with the compensator designed using velocity feedback. The nonideal effects of such
integration have been discussed in [17]. The restriction of the controller to have an
integral component might be limiting the performance which can be achieved with a
more general use of acceleration feedback. Hence, the design of LQG controller using

acceleration feedback is explored in this chapter.

14
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3.1 LQG with Acceleration Feedback (LQG-A)

In order to use sprung mass acceleration z, which is given by

23 = [ _ka/mc _ba/ma 0 ba/ma ].’E + [l/m-’]u (31)

Equations (2.7) and (2.11) are modified as follows.

y=Cr+Du+tw (3.2)
i=Ai+Bu+ K(y—19) (3.3)

where
y=Cz+ Du (3.4)

3.2 Performance of LQG-A

The LQG/LTR design performance for the acceleration feedback are shown in Fig.7
with the design parameters y shown in Table 3.1, where 4 = 1.0 is picked up for
LQG-A design.

[#(Acc)[10.0 2.0 1.0 0.1

Table 3.1: LTR g of LQG-A

The observer gain K and design parameter y of the three LQG designs are sum-
marized in Table 3.2. Looking at Fig.6 and Fig.7, the LQG-A design used in this work
does not provide with remarkable advantages over the LQG-P and LQG-V designs.
The reasons will be discussed in chapter 5. Compared to the performance of LQG-V
& LQG-P, the LQG-A design has a smaller suspension deflection z, — z, along with
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type K’ p

LQG-P | [ 103.80 -82.3 -4.20 -5474.40] | 0.0001
LQG-V | [ -123.70 127.1 9.20 6262.10] | 0.00075
LQG-A|[ -0.72 00 -027 5358 |1.0

Table 3.2: Observer Gain K for Various Schemes

a sacrifice in sprung mass acceleration and tire deflection.



Chapter 4

Singular Perturbation Approach

In vehicle suspension systems, the presence of body (slow) and wheel (fast) resonance
shows the existence of a two-time-scale structure [21]. This can be utilized by the
application of singular perturbation methodology. In this chapter, a brief descrip-
tion of singularly perturbed systems and the sequential design procedure of [18] is
first presented. The suspension system is then cast into a singularly perturbed form
which is composed of two submodels called slow and fast models. The value of using
acceleration feedback is easily seen at this point because the transfer function from
the control input to the acceleration output has nontrivial slow and fast components.
The corresponding transfer functions for position and velocity outputs have zero fast
models. This chapter concludes with two design examples where the sequential design

procedure is employed to design the acceleration feedback controllers.

17
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4.1 Singularly Perturbed Systems

A linear time-invariant singularly perturbed system is represented by

T = Anz + A2z + Biu (41)
€z = Anz + Az + Byu,det [A2(0)] # 0 (4.2)
y=Ciz+ Caz+ Du (4.3)

where z € R" denotes the slow state vector; z € R™ denotes the fast state vector;
u € RP is the control input and y € R? is the output. The separation between the
slow and fast dynamics can be represented by the small positive constant € in the
sense that & is O(1), whereas z is O(1). In other words, as ¢ — 0, the singularly
perturbed system of (4.1)—(4.3) has a two-time-scale structure and the eigenvalues
cluster into a group of slow O(1) eigenvalues and a group of fast O(2) eigenvalues.
The full system can be approximated by the slow and fast models.
The slow model is given by

z, = Aoz, + Bou (4.4)

Ys = Coz, + Dou (4.5)

where Ao = Au - A12A2-21A21,Bo = Bl - AIQA;;BQ,CQ = Cl - CQA2_21A21 and
Dy = D — C,A3} B,. The fast model is given by

ij =A,z;+Bfu (4.6)

ys =C;z;+D,u (4.7)
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where Ay = Az/e, By = By/¢,Cy = C,, and Dy = D. Various properties of the
singularly perturbed system (4.1)-(4.3) can be approximated by the slow and fast
models (4.4)—(4.7). Two approximations that are used in this paper are the eigenvalue
and transfer function approximations.

Eigenvalue Approximation [20]
As € — 0 the slow eigenvalues of the full singularly perturbed system (4.1)-(4.3)
approach the eigenvalues of the slow model of (4.4)-(4.5); the fast eigenvalues of
(4.1)-(4.3) approach the eigenvalues of the fast model of (4.6)-(4.7).

Transfer Function Approximation [19]
The transfer function, denoted by G(s,€), of the full singularly perturbed system

(4.1)-(4.3) can be approximated by

G(s,€) = G,(3) + Gy(es) — G4(00) + O(e) (4.8)

on the imaginary axis s = jw, where G,(s) and Gy(es) denote the transfer functions

of the slow and fast models, respectively, i.e.,
G,(S) = Co(SI - Ao)-lBo + Do

Gf(fs) = Cj(SI - Af)—lBj + Df = CQ(ESI - A22)-132 + D

Equation (4.8) is valid when G,(s) and Gy(es) have no poles on the imaginary axis,

which is the case when they are stable.
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4.2 Sequential Design Procedure

A stabilizing output feedback compensator, with two-time-scale structure, can be

obtained by the following sequential design procedure [18].

1. Design a fast compensator Cy(es) to stabilize the high frequency feedback loop

[Cs(es), G¢(es)] and to meet high-frequency design specifications.

2. Design a slow compensator C,(s) to stabilize the low-frequency feedback loop
[Cs(3),G,(s)] and to meet low-frequency design specifications, subject to the
constraint

Cy(00) = C4(0) (4.9)

3. A composite compensator C(s,¢), taken as the parallel connection of Cy(es)
and the strictly proper part of C,(s), will stabilize the closed-loop system
[C(s,€),G(s,€)] for sufficiently small e. Moreover, any point to point the trans-
fer function of the closed loop system [C(s, €), G(s, €)] is O(¢) close to the one

approximated by the corresponding slow and fast models, as stated in (4.8).

4.3 Modeling in Singular Perturbation (SPT)

In vehicle suspension systems, the time scale characteristics are composed of two
resonance modes: body resonance and wheel resonance [21]. To apply singular per-
turbation theory, a singularly perturbed model of suspension systems is needed. First,
the small positive constant, €, which represents the separation of the slow and fast

dynamics can be chosen as the ratio between sprung mass resonance and unsprung

VEi/m (4.10)
V ke/ma '

mass resonance, i.e.,

€=
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For the typical data of Table 1.1, € = 0.1. It is shown in the Appendix that the
suspension system is a singularly perturbed system with the first two state variables,
2, — 2y and Z, as slow variables and the other two state variables, z, — 2, and 2, as

fast variables. Hence, assuming acceleration measurement

£.=[-k,/m, -b,/m, 0 b,/m,]z+[1/m.]u=0x+Du (4.11)

and using the vehicle parameters given in Table 1.1, the full system can be approxi-
mated by the slow and fast models given below.

Slow model

0 1 0
Ao = A — A12A2_21 Ay = ,Bo= B, — A12A2-2132 =
—-25.97 —-0.79 0.002

Co=Cy — C2A3} An = [ —25.97 —0.79 ] yDo = D — C,A3; B, = [0.002] (4.12)

Fast model

0 1 [ 0 v
A.f = ) Bf = )
—4064.5 -6.5 -0.016 (4.13)
Cy = [ 0 —0.793 ] Dy = [0.002]

The value of using acceleration feedback is seen from the fact that the measurement
matrices Cy & Dy in the fast model are nonzero. Consequently, the fast model G(es)

is not trivial. If position or velocity feedback is used, i.e.,
ypoat'tion=[l 00 0]3, yvelocity=[0 10 O]z

we have

C[,ueloa'ty = Cf,pou'tion = 0, Dj,vclocity =D f.position = 0
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Hence, the fast model Gy(es) will be identically zero, and feedback will have a little
effect on the performance of the system in the high-frequency range. More precisely,
the effect of feedback on the closed-loop transfer function in the high-frequency range
will be O(¢). In the case of acceleration feedback, the fast model in not trivial and
feedback could have a significant effect in the high-frequency range.

Eigenvalue Approximation

The eigenvalue approximation for the open loop system is demonstrated in Table 4.1.

=Eigenvalues fast= slow
Approzimate | —3.23 £ 63.675 —0.40 £ 5.08;
Ezact —3.26 +65.285 —0.36 + 4.867

Table 4.1: Eigenvalue Approximation for the Open Loop System

Transfer Functions Approximation
Fig.10-Fig.15 show the frequency response of the transfer functions of the system
from control force, u, and road velocity, z,, to the three controlled outputs. They are
shown in the order of (1) slow, (2) fast, (3) composite and (4) full. In the case of
Fig.11 & Fig.14, the fast transfer function is identically zero. The composite
transfer function is O(¢€) close to the full transfer function. It is easily noticed that
there is a “sharp dip” at the point of wheel resonance in the transfer function of u to
%,. This implies that the control u has no (or very little) influence on the ride comfort
at that frequency point. That. point is referred to as the Invariant Point, and the fact

that it cannot be changed by feedback is proved in [12].
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4.4 Sequential Design Example I (SPT-2)

4.4.1 Fast Design

Under sprung mass acceleration feedback, with a lighter damper, b, = 400/N.s/m, the

" fast subsystem is not a strictly proper plant as given below:

0.002s? + 8.0565

chat(s) = 82 + 6.5s3 + 4064.5

(4.14)

The fast transfer function is written in terms of s rather than es since the parameter
€ is substituted in the fast model by its numerical value. Under the consideration
of controller order not exceeding plant order, a constant gain controller is first tried
and causes instability. Therefore, in order to improve stability and satisfy the well-
posedness requirement [22], a controller with one zero and two poles is proposed for

the fast subsystem. The transfer function of this controller is in the form

s+2
$2 4+ 2(wns + w?

Cram(s) = K (4.15)

Using root-locus (Fig.16) and Bode plot techniques, the following compensator pa-

rameters are chosen, with emphasis on ride comfort improvement:

K = 180000, z = 36, = 0.5, w, = 100 (4.16)

4.4.2 Slow Design

The transfer function of the slow subsystem is

0.002s2
82 4+ 0.7929s + 25.9663

G,;m(s) = (4.17)
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In the low frequency range, the design task is to choose a slow controller to meet the
slow design damping force requirements and eliminate the resonance peak, subject to
the following constraint:

Cotow(00) = Cane(0) = 648 (4.18)

In order to satisfy the above constraint, the proposed controller is taken in the form

Z
Cuton(s) = 648 (3 >+ 1) (4.19)

For the concern of the separation of the slow and fast dynamics, the choice of the
zero and the pole should not exceed the mid-point between the sprung and unsprung
mass resonance frequencies, which is about 5 Hz. Using root locus (Fig.16) and Bode

plot, the slow compensator is taken as

12
Caiou(s) = 648 (3 5t 1) (4.20)

4.4.3 Full Design

The two-time-scale stabilizing controller is taken as the parallel connection of Cy,.(s)

and the strictly proper part of Cyiou(3), i.e.

C(S) = Cnlow(s) + Cjact(s) - Cnlow(m)

12
+ 180000 x ———+ 36 (4.21)

— 64
648 % ST 08 52 + 100s + 1002

The full design is applied to the system. The closed-loop performance of the full
system (under the composite compensator (4.21)) is shown in Fig.17. The closed-
loop eigenvalues are summarized in Table 4.2.

It is noticed that a very wide band reduction and a very sharp wheel resonance
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fast | -426.16 -46.85 —0.77 4+ 64.24:
slow| -10.55 -—0.573+0.8:

Table 4.2: Closed Loop Eigenvalues of SPT-2

reshaping in sprung mass acceleration have been achieved. This significant improve-
ment, however, introduces other lightly damped peaks in suspension and tire defec-
tion, which implies larger working space and worse road holding ability. Actually,
the necessity of high peak force level at wheel resonance is also noticed, which will
be mentioned later. Due to the concern of actuator saturation, a force roll-off might
be preferred in high frequency range. Thus, the performance of SPT-2 might not be

satisfactory enough.

4.5 Sequential Design Example II (SPT)

In the previous section, the restriction of controller order not exceeding plant is im-
posed on the fast design, and results in a pair of lightly damped poles which are
responsible for several undesirable peaks. This restriction will be relaxed a little bit
but still imposed on the full system in this section, i.e., a 3" order fast controller and

a 1%t order slow controller will be considered.

4.5.1 Fast Design

Under sprung mass acceleration feedback, with a lighter damper, b, = 400N.s/m, the

fast subsystem is repeated below:

_0.002s? + 8.0565
"~ s2+6.5s + 4064.5

Gast(S) (4.22)



26

which has two zeros at £63.46; and two poles at —3.23+63.67j. A 3¢ controller with
two zero and three poles is considered for the fast subsystem. The transfer function
of this controller is in the form of

32 + 2Czwnzs + w,z.z
(8% + 2(wnps + w3,)(s + p)

Cram(s) = K (4.23)

Under stability and well-posedness concerns as stated previously, the design idea is
to choose a pair of complex zeros around the neighborhood of the fast poles to keep
the open loop high frequency damping characteristics; while the choice of the poles
is done without cdusing another significant resonance. Moreover, due to the actuator
behaviors, the high frequency ride comfort improvement is also desired while not
increasing force level in that range. As shown in the lower half of Fig.18, the open
loop fast poles move slightly left before meeting with the controller poles. If the
controller gain is appropriately chosen, the open loop high frequency damping is then

expected to be preserved. This leads us to choose the following compensator:

32 + 7.5 + (65.8)?

(s) = 4.
Cranls) = S4000 055 + (72.0)%)(s 7 30) (4:24)
4.5.2 Slow Design
The transfer function of the slow subsystem is repeated again
0.002s?
Guiow(8) = 737079295 + 25.9663 (4.25)

In the low frequency range, the design task is to choose a slow controller to meet the

slow design damping force requirement and eliminate the resonance peak, subject to
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the following constraint:
Ciiow(00) = Crast(0) = 1504 (4.26)

In order to satisfy the above constraint, the proposed controller is taken in the form

of
4
C,zow(s) = 1504(8—-|-—p + 1) (4.27)

Likewise, for the separation concern of the slow and fast dynamics, the choice of the
zeros and the pole should not exceed the mid-point between the sprung and unsprung

mass resonance frequencies which is about 5 Hz. The slow compensator is taken as

7

Caton(3) = 1504(—52

+1) (4.28)

4.5.3 Full Design

The two-time-scale stabilizing controller can be taken as the parallel connection of

C/ast(s) and the strictly proper part of Ciiou(3), i.e.

C(S) = Cslow('s) + Cfaat(s) - C,[W(OO)

2 2
7 + 54000 s? 4+ 7.5s + (65.8)

= 1504— (s2 + 60.55 + (72.0)%)(s + 30)

(4.29)

The full design is applied to the system. The closed-loop eigenvalues are summarized
in Table 4.3. Note that the open loop fast poles, —3.26 £65.285 (shown in Table 4.1),
have been moved to —3.59 £ 65.87;. Thus, the fast open loop damping is preserved in
this design. The closed-loop performance of the slow, fast, and full systems (under the
composite compensator (4.29)) is shown in Fig.19. For the purpose of comparison, the

same transfer functions are shown under the passive system. The performance of SPT



28

fast
slow

-192.18
-4.35

.

—3.59 £ 65.87j
—0.55 + 0.84;

—10.84 + 60.68;

Table 4.3: Closed Loop Eigenvalues of SPT

and SPT-2 are shown in Fig.20 & Fig.21 again. Compared to SPT-2, the undesirable
peaks including high frequency tire deflection, suspension deflection, and force level
are reduced. Although a sharp reduction in high frequency sprung mass acceleration
is lost, we still have some more ride comfort and road holding improvement at the low

frequency range (below 5 Hz). Generally speaking, SPT performs more satisfactorily

than SPT-2.




Chapter 5

Comparative Study

Five controllers have been designed. They are LQG-P, LQG-V, LQG-A, CGOF and
SPT. A comparative study in those various control schemes will be done in this chap-
ter based on the perspectives of nonideal integration, controller bandwidth, actuator

force level requirement and system robustness.

5.1 Nonideal Acceleration Integration

Velocity signal is typically obtained by integrating acceleration. The practical factors
of using a nonideal integrator has been studied in [17]. The frequency response of
an integrator should reject DC bias and roll off quickly before reaching the system
frequency range of interest to behave like an ideal integrator. Thus, the integrator is

considered in the following form:

e _ 18
ea (ns+1)(rs+1)

(5.1)

29
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where e, and e, denote acceleration and velocity signals, respectively. In this case,

the following condition is used.
n=71=10 ma/ka (5.2)

Equation (5.2) indicates the integrator roll-off frequency point is one decade away from
the body resonance point. Under the assumption of (5.2), this nonideal scheme usually

affects the performance around 0.1 Hz. This fact can be seen from the performance

of LQG-V and CGOF systems.

5.2 Evaluation of Performance Criteria

As LQG designs are done by the loop transfer recovery of LQR system, no matter what
kind of feedback signal is used, the role of the observer is just to provide actuator with
state estimate which is determined by the sensor’s noise intensity x. This explains
why no significant difference is observed among the LQG performance results, as
shown in Fig.6 & Fig.7. The average ride comfort improvement compared to passive
system is about 5-8 dB, primarily in the range of 1 Hz—5 Hz]. This improvement
substantially eliminates the body resonance in acceleration and tire deflection. Tile
price paid with the above improvement is the elevated low frequency suspension
deflection, depending on how far the ride comfort is achieved. At high frequency
range, ride comfort improvement is achieved at the expanse of higher suspension
and tire deflection. In the cases of CGOF and SPT, the ride comfort improvement
show larger and wider band reduction than the ones of LQG systems, especially
reaching further into wheel resonance region (see Fig.22 & Fig.23). The SPT [1 Hz-5

Hz] acceleration average reduction compared to passive is about 18 dB (see Fig.19).
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In designing SPT controller, the closed loop high frequency damping is intentionally
maintained the same as open loop; while in CGOF case, the controller gain K, is tuned
without affecting high frequency mode (see Fig.8 & Fig.9). Therefore, both CGOF
and SPT will keep high frequency road holding ability and suspension deflection at

least the same as the open loop system.

5.3 Controller Bandwidth and Force Level

The ride comfort improvement can be used, qualitatively, to reflect the bandwidth of
the controller. The L.R.H. side of Fig.22 summarizes the controller frequency response
from acceleration to force (Note that velocity is obtained by integrating acceleration).
LQG-P is not shown in this plot because it uses a different measurement scheme
from the other four systems. However, a fair comparison baseline is the force level
requirement. Fig.23 & Fig.24 show the force level of all designs. Generally speaking,
in low frequency range, SPT requires 10 dB more force level than LQG systems in
[0.05 Hz-0.5 Hz], and has 10 dB less sprung mass acceleration in [0.5 Hz-5 Hz]; while
at high frequency range, the LQG systems require higher force to maintain better
damping; instead, SPT uses less amount of force to achieve better ride comfort. This

fact is also true in the CGOF system.

5.4 Robustness Analysis

For the concern of robustness, the stability and performance of the feedback loop
system (C(s),G(s)) should be maintained in the presence of model uncertainties

including load, damping and tire stiffness variations, etc. In MIMO systems, assuming
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that the system model error can be characterized by multiplicative uncertainties, i.e.,
G(s) + 6G(s) = [I + L(s)]G(s) (5.3)

where L(s) is an arbitrary stable transfer function matrix with
6[L(jw)] < m(w) (5.4)

the system’s robustness can be measured by the widely used “complementary sensi-

tivity function” (26, 27|, as defined below:
T(s) = G(s)C(s)[I + G(s)C(s)]! (5.5)

With m(w) denoting the upper bound of normalized magnitude that the model error
can tolerate, it is shown that stability is maintained in the presence of all possible

uncertainties described by (5.3)—(5.4) if and only if

5T (jw)] < ﬁ (5.6)

The m(w) is typically small at low frequency but goes up to unity and above as
frequency increases [2, 26)].

In active suspension systems, T'(jw) is a scalar term. The singular value bode plot
of various designs is shown in Fig.25 including SPT-2 design. It is easily seen that
all of the acceleration measurement schemes, except LQG-P, have similar behavior.
Without taking LQG-P into consideration, CGOF shows better robustness property
than the others because its largest magnitude is kept at unity (which implies allowing

100% model error) and starts to roll off at 2 Hz. The unity level is also observed
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in SPT and SPT-2 designs, but their roll-off frequencies are at about 20 Hz and 30
Hz, respectively. This is reasonable because SPT (and SPT-2) the fast compensators
Cy(s) are intentionally introduced in high frequency range to achieve high frequency
design goals. This high frequency dynamics does not exist in the CGOF design due to
the velocity z, (slow variable) feedback and the limited stabilizing range of the gain
K.. As for LQG-A and LQG-V, the singular value rises up to 8 dB around wheel
resonance. Therefore, the allowable model error has to be limited to 40%.

As stated previously, m(jw) is typically small in low frequency region. This might
make LQG-P still acceptable in spite of its elevated DC value. At the frequency range
above 1 Hz, it is always below unity and rolls off at 10 Hz. However? the relative
advantage over the other systems can not be determined unless we can understand

more characteristics about acceleration and position measurements schemes.

5.5 Performance Variation Due to Parameter Per-
turbation

Another approach of robustness analysis is to investigate the performance variations
when parameters perturbation occur. The perturbation of 50% increase in damping
coefficient (b,) and 25.7% decrease in sprung mass (m,) relative to nominal value have
been investigated in [24]. For a real vehicle, the opposite perturbation also happens,
but it is claimed that the change in this direction as stated above represents the worst
case. We thus consider the above two cases in our analysis. Besides, the perturbation
of tire stiffness, which plays an important role in high frequency dynamics, is also
of interest. Due to modeling error or environmental influence, it is assumed that

the tire stiffness could be varied from 50% decrease to 50% increase relative to its
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nominal value. This is equivalent to a 50%-150% wide variation range. For the sake
of simplicity, the analysis is performed only on LQG-P, CGOF and SPT, representing

different measurement schemes of position, velocity and acceleration, respectively.

5.5.1 Perturbation of 50% Damping (b;) Increase

Fig.26, Fig.27, & Fig.28 show the damping perturbed performance, where the solid
lines represent the nominal performance and the dashed lines represent the perturbed
performance. This perturbation causes the three systems about 2-4 dB ride comfort
degradation in [1 Hz-10 Hz]. A little bit loss in road holding ability is also noticed.
As for suspension deflection, the influence is not significant. In general, the three

systems have comparable robustness property to damping perturbation.

5.5.2 Perturbation of 25.7% Sprung Mass (m,) Decrease

The vehicle load fluctuates quite often, and is usually characterized by sprung mass
variation. The assumption of 25.7% decrease results in 1-3 dB ride comfort loss in
the three systems, while requiring less suspension and tire deflection, as shown in
Fig.29, Fig.30, & Fig.31. Likewise, the solid lines represent the nominal performance
and the dashed lines represent the perturbed performance. In fact, SPT sprung mass
acceleration is more insensitive to mass variation except at the wheel resonance point.
This property is not considered as relatively important because the other two systems

are still quite comparable.

5.5.3 Perturbation of +50% Tire Stiffness (k)

Next, a wide range, from 50% decrease to 50% increase, of tire stiffness is assumed.

The results are demonstrated in Fig.32, Fig.33, & Fig.34. Clearly, all of their wheel
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resonances are shifted lower or higher, and their perfdrrnance band variations appear
without any significant difference. No relative advantage is offered by any system.
This fact shows that tire stiffness change has similar influence on each system.

On the other hand, if we investigate the perturbational influence on the three
performance criteria, it might be concluded that the increase of tire stiffness causes
(1) deprivation of ride comfort, (2) requirement of larger working space, (3) loss of
road holding ability. For the case of ride comfort, it can be considered as better if
only the range of [1 Hz-10 Hz] is concerned, which is claimed in [24] as the main
sensitivity region of human being!. But for road holding ability, it is not sufficient to
look at only tire deflection when tire stiffness is perturbed, becauée the road holding is
measured by the contact force fluctuation between the tire and road surface as stated
in Section 1.4. Thus, a much worse road holding comes out. For more references

about this issue, please refer to [11].

! Actually, the region is claimed as [3 Hz-8 Hz] in [24].



Chapter 6

Conclusions

The potential of using acceleration feedback has been explored in this thesis. It is
shown that ride comfort can be improved over a wider frequency band, reaching into
the wheel resonance. The improved design is achieved via characterizing the dynamics
into slow and fast models and designing compensators individually to meet desired
specifications for low and high frequency ranges. The design takes advantage of a
more general use of acceleration feedback, compared with the more typical limited
use when acceleration is integrated to produce velocity. The ride comfort improvement
reported in [24] using “frequency weighted output feedback” is 8.3 dB at 20 rad/sec.
(~ 3 Hz); and in [12] using LQG-P is the elimination of the sprung mass resonance.
Here, the average band reduction on the frequency range of [1 Hz-5 Hz] is about 18 dB
compared with the passive system, while still satisfying other performance concerns.
A simpler scheme like CGOF might be attractive if acceleration integration is done
properly. However, compared with the original passive system, the price paid for
these achievements is the requirement of larger working space and some loss of road
holding ability at the wheel resonance.

Another advantage of applying the two-time-scale technique to ASS is that the

36
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complexity of design task will be reduced a lot when we move up to solve a full-
car problem. By the assumption of full car symmetry (see [2] for a full car model
description), the original 14** order full model can be decomposed into a 6** order

slow model (body) and four identical 2" order fast models (4 wheels).
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mg : sprung mass

m,, .unsprung mass

b, :suspension damping constant
ks :suspension spring constant

k, :tyre spring constant

z, :road displacement

u :control force

from sensors(position,velocity or acceleration)
Zs
power
suj

signal pply Ms(body) f
u ksl | bS
servovalve T I I z
& actuator u
My wheel) ?
~

Figure 1: Structure of an Active Suspension System
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Appendix A

Through physical understanding of the state variables, it might be easy to conjecture
that the state variables related to sprung mass dynamics, i.e., z, — 2, & z,, are slow
variables; while the other two state variables related to unsprung mass dynamics,
i.e., z, — z, & 2., are fast variables. This conjecture can be confirmed by modeling
the system in the singularly perturbed form. Consider the vehicle state equation as

defined before,

z=Az+ Bu+ Ez, (A.1)
where
r -
0 1 0 -1 ( 0 0
—kys/m, —bs/m, 0 by/m, 1/m, 0
L | m / fma | | Yme | L

0 0 0 1 0 -1

ks/my,  by/m, —ki/m, -b,/m, -1/m, i 0
) ) ) ] (A.2)
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ks/m - . N
Let e = %ICT/——' and choose a new state vector Z and a new input 4 as
t/Mu

:i:l 23— 2y
z \Vms/kszs
i=| "= / = ki (A.3)
z3 (20 — 2/) /€ s
5:4 V ma/k:z'u
If we define a new time scale by
i=t ko (A.4)

m,

then, with () denoting the derivative w.r.t. {, the state equation is expressed by

él 5?1 «'i'3 - .
. = All + A12 + Blu + E]Z,- (A.5)
z, z, T4
6.%3 I, T3 N .
) = An + Az + Byu + Eyz, (A.6)
€T4 Z, Z4
where
0 1 0 -1 0 0
All— 12 — ,Bl= »El= [}

0 0 : 0 1
Ay = y Az = y
em,/m, €pr, [T mup c2u/m,[k,
0 -1
B2 = ,Eg = y (A7)
—c s 0
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For the typical numerical parameters given in Table 1.1, € is about 0.1 and all the

following quantities are O(1).

ba m, zmskt ba m,
_bs/\/maku ba/\/msku em,/mu, e—ﬂl—u”-k—,-’ € m’ emu v m,/k,, _Cm

u

This shows that the model (A.5)-(A.6) is in the standard singularly perturbed form,
and confirms the conjecture that z, — z, & 2, are the slow variables while 2z, — z,
& z,, are fast variables. To put the system into the standard singularly perturbed
form, we needed to scale some of the state and input variables. Scaling of state
variables does not affect the input-output tansfer functions since it is an internal
similarity transformation. Scaling of the input only multiplies the transfer function
by a constant. Since the sequential design procedure uses transfer function models
in designing the controllers, it is not necessary to model the system in the standard
singularly perturbed form. It is sufficient to recognize the slow and fast variables and
order the components of state vector so that the slow variables come first. Then, the
slow and fast models can be defined as in Section 4.1. It can be verified that scaling

of state variables does not affect the slow and fast transfer functions.
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