
WNW
WIW

IHI
WHH

I'W
llH

lui
lHH

lll
fllK

WI

'
—
I
_
‘
_
‘

I
N
-
x

I
(
D
O
O
R
)

ANSTATEU

1 ”NMIf”!!!IIHIIIHIIIIHII
00877 2661

{warms

 :lHjllzl!

This is to certify that the

dissertation entitled

Parallel Homotopy Algorithm for Symmetric

Large Sparse Eigenproblems

presented by

Liang Jiao Huang

has been accepted towards fulfillment

of the requirements for

Ph. D. degreeinMathematics

47/77/4 v

MSU is an Affirmative Action/Equal Opportunity Institution 0-12771

1 LIBRARY

4 Michigan State

' University

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before due due.

DATE DUE DATE DUE DATE DUE

 "7 fl

ll IL_I|

4i i:

—i__FT

r—u i
MSU Is An Affirmative ActiorVEqueI Opportunity Institution

Mama-M

PARALLEL HOMOTOPY ALGORITHM

FOR LARGE SPARSE SYMMETRIC EIGENPROBLEMS

Liang Jiao Huang

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1992

8
/

*
x

.
7
0

0

/

O
2
2

..
/

ABSTRACT

PARALLEL HOMOTOPY ALGORITHM

FOR LARGE SPARSE SYMMETRIC EIGENPROBLEMS

By

Liang Jiao Huang

In this work, we apply homotopy method to solve eigenproblem

Ax=/\x, AER,:I:€R”\{0}

for large sparse symmetric matrix A. A one-parameter family of matrices A(t) =

tA + (1 — t)D is introduced and eigenproblem

is considered for t E [0, l]. The problem of choosing optimal starting matrix A(0) = D

is discussed and partial solutions are obtained. The regularity and bifurcation prob-

lems of Mt) and 2(t) are also considered. It is found that these functions can be

chosen as analytic functions of t and the bifurcations are of simple type. Then a

homotopy continuation algorithm is constructed and several new techniques are de-

veloped to handle the curve following process more efficiently. Finally the algorithm is

implemented in both parallel and vector machines and numerical results are obtained

for many typical testing matrices. Our preliminary experiments show that homotopy

continuation method is a very promising method.

To my wife Lu Ping

iii

ACKNOWLEDGMENTS

I would like to thank Professor Tien-Yien Li, my dissertation advisor, for suggesting

the problem and the directions he provided which made this work possible. I would

also like to thank him for for his encouragement and support during my graduate

study at Michigan State University.

I would like to thank my dissertation committee members Professor Qiang Du,

Professor Dennis Dunninger, Professor Richard Hill, and Professor David Yen for

their valuable suggestions and time.

iv

Contents

List of Tables v

List of Figures vi

1 Introduction 1

2 The Choice of Starting Matrix 4

2.1 Introduction 4

2.2 Unitarily Invariant Norms 6

2.3 Block Diagonal Approximants 7

3 Regularity and Bifurcation 14

3.1 Introduction 14

3.2 Regularity 15

3.3 Bifurcation Directions 16

3.4 Continuity of Eigenvectors 18

3.5 Close Eigenvalues 20

4 The Algorithm 23

4.1 Choice of the Starting Matrix 23

4.2 Location of the Starting Points 24

4.3 Prediction 24

4.4 Correction 26

4.5 Dynamic Subspace Iteration 32

4.6 Checking 33

4.7 Clearing Up 35

4.8 Step Size Control 35

Numerical Experiments 37

5.1 Introduction 37

5.2 Test Matrices 38

5.3 Results on IBM 3090 Vector Machine 41

5.4 Results on BBN Butterfly Parallel Machine 44

5.5 Accuracy and Orthogonality 46

Bibliography 48

vi

List of Tables

5.1

5.2

5.3

5.4

5.5

5.6

5.7

Test data from IBM 41

Interior 20 eigenpairs on IBM 3090 42

First 50 eigenpairs on IBM 3090 with perturbed starting matrix . . . 43

Speed-up for homotopy algorithm 45

Speed-up over EA15 45

The residuals of eigenpairs 46

The orthogonalities of eigenvectors 47

vii

List of Figures

2.1

2.2

4.1

4.2

5.1

5.2

5.3

Curves corresponding to D1 5

Curves corresponding to D2 5

The change of clusters from t to t + h 26

An isolated eigenvalue at t becomes nonisolated at t + h 28

Execution time vs. matrix order 44

Speed-up for homotopy 45

Speed-up over EA15 45

viii

Chapter 1

Introduction

Large scale scientific computing is currently a very active research field. Tradi-

tional methods which work well for small problems are often not suitable for large

problems, and not suitable for modern computer architectures. For example, the very

efficient and widely used method for solving eigenproblems of small matrices — the

QR iteration method [25], becomes inapplicable for large sparse eigenvalue problems

because, among other things, the process of Householder reduction can quickly de-

stroy the sparse pattern. Moreover, the method is highly serial in nature, it is difficult

to fully exploit the power of modern computers. The best known method which can

be used to solve large scale eigenvalue problems is the Lanczos method [5]. It can

take advantage of the sparseness structure of a given matrix and is good for finding

a few extreme eigenvalues. However, it is not a parallel method either, and it is not

efficient for finding interior eigenvalues.

In this work, we propose a method, called the homotopy continuation method,

which is suitable for parallel solution of large sparse symmetric eigenvalue problems.

The basic idea of the method is described in the following (see [17] and [18] for more

details).

Given a real symmetric matrix A of order n, instead of solving for all the eigen-

values of A directly, we choose another real symmetric matrix D, called the starting

matrix, and consider the one-parameter family of matrices

A(t) = D + t(A — D) for t 6 [0,1]. (1.1)

This family has the property,

A(O) = D, A(1) = A.

For each t 6 [0,1], let the eigenvalues of A(t) be A1(t) S A2(t) S - - - S An(t). It is

well known that eigenvalues of a matrix are continuous functions of its elements, so in

this case each A;(t) is a continuous function of t for i = 1,2, - ~ - , 12. Therefore, there

are n continuous curves, which we shall call eigencurves.

Suppose we have the eigenvalues of D — A1(0),A2(0),-- - ,An(0). From these

values, the starting points of n eigencurves are known. By following these continuous

eigencurves, we can reach the ending points A1(1),A2(1),- .. ,An(1) of the curves,

which are the eigenvalues of the given matrix A.

The main advantages of our method are:

o It is parallel in nature: tracing of each eigencurve is independent of the others.

0 The main calculation is concentrated on solving large sparse linear equations,

and unlike solving for eigenvalues directly, several good packages are available

for solving such linear equations efficiently [8], [9], [11].

o It can be used to find only a few of the specified eigenvalues. (In contrast,

the Lanczos method tends to give extreme eigenvalues on both ends before the

emerging of interior eigenvalues , and it can not tell which eigenvalue is found

and what multiplicity it has.)

The dissertation proceeds as follows: Chapter 2 discusses the problem of choosing

a starting matrix D. Some optimal solutions to this question are found under certain

conditions. Chapter 3 addresses the regularity and bifurcation problems. Under the

2

assumption that A and D is symmetric, the eigensystems are analytic. Also, with A

and D symmetric, the bifurcations are easy to handle — bifurcation directions can

be readily computed using a simple formula. Chapter 4 describes our homotopy algo-

rithm for following the eigencurves. Chapter 5 presents the test matrices, softwares

used, and the numerical results on two typical machines —— one a vector machine,

and the other a parallel machine. The results show that the homotopy continuation

method is very promising for large sparse symmetric eigenproblems.

Chapter 2

The Choice of Starting Matrix

2.1 Introduction

Choosing a good starting matrix D plays a very important role in our homotopy

algorithm. This can be seen from the following example.

Example 2.1: Let A be a 10 x 10 symmetric random matrix, D; be a random

diagonal matrix, and D2 be a block diagonal matrix with two diagonal blocks directly

from A. That is, if

A = A11 A12

A21 A22

A 0D2 = 11

0 A22

where A,- are 5 x 5 matrices for i, j = 1,2. We construct homotopies (1.1) for

then

each starting matrix D1 and D2, and plot eigencurves in Figure 2.1 and Figure 2.2

respectively. It can be seen that, eigencurves corresponding to D2 are much more

straight and thus much easier to follow than those corresponding to D1. Obviously,

D2 is a better starting matrix than D1.

The following theorem helps in deciding if a matrix D is a good starting matrix.

a6u/ 26..

"’°‘ * "WA

‘1.0 I I I I ‘ -10 I I 1 I I

00. .20 H0 .60 .90 1-0 00. .20 so .60 .80 1.0

Figure 2.1: Curves corresponding to D1 Figure 2.2: Curves corresponding to D2

Theorem 2.1 Let A and D be given symmetric matrices, A1(t),A2(t),- - -,A,.(t) be

the eigenvalues of A(t) in (1.1), then |Ai(t)| _<_ [IA — DI]: for each i = 1,2,- - - ,n.

Proof: By Weyl’s Theorem [2],

lMt + At) - Mill S ||A(t + At) - A(illlz = "NH - Dlllz-

Hence

Mt + At) - Mt)

I At

Because A;(t) is differentiable function of t [24], letting At -v 0 yields,

l 5 MA - D)":-

IAI-(tN S "(A - D)||2.

This completes the proof. I

One of our goals in constructing a good homotopy is to find a starting matrix

D so that the eigencurves are more straight. The theorem above indicates that one

should look for a D which, among other conditions, minimizes [IA — Dllz. For the

matrix A in example 2.1, it will be proved in Corollary 2.4 that

IIA — Dz": 5 HA - D1 "2. (2.1)

5

(In fact, we will show

IIA - Dzllz = mgn "A - Dllzi (2.2)

where 'D is the set of matrices having the same structure as D2). This explains why

eigencurves are better behaved when D2 is used as a starting matrix.

So the problem of finding a good starting matrix becomes a matrix approximation

problem. In this chapter, an important type of norms in matrix theory is introduced

first, then the approximation problem arises in our homotopy method is considered.

2.2 Unitarily Invariant Norms

Some notations are needed for future reference:

M = { Complex matrices of order n }

Ll = { Unitary matrices of order n }

D = { Block diagonal matrices of order n with

a given block structure }

A unitarily invariant norm is a matrix norm which satisfies

“A“ = IIUAII = IIAVII

for every A E M and U, V G Ll. A result of J. von Neumann characterizes all

unitarily invariant norms by symmetric gauge functions of singular values [28]. Two

important classes of unitarily invariant norms are: Schatten p norms

llAllp =(28j(4)”)1/’, p 2 1

i=1

and Ky Fan 1: norms

I:

IIAllk = ZsJ-(A). k =1.2.---.n
i=1

where {3j(A), j = 1,2, - - - ,n} are the singular values of A in descending order. It is

easy to see that Schatten 2 norm is the Frobenius norm || - "F and Ky Fan 1 norm is

the spectral norm || - "2.

2.3 Block Diagonal Approximants

A good choice for the starting matrix is based on three considerations. First, the

eigensystems of D should be easy to find; secondly, D should be as close to A as

possible, so that the eigencurves are better behaved [l7]; finally, D itself should be

easy to obtain. However, these considerations often conflict with each other in the

sense that if D is too close to A, then eigensystems of D could be as difficult to find

as those of A’s; on the other hand, if eigensystems of D are easy to find, then D is

usually not very close to A.

One natural candidate for the starting matrix D is the block diagonal matrix

[Dll].

D

D = 22 _ (2.3)

L D“: .

where D,-.- are smaller square matrices for 2' = 1,2,--- ,lc. For such a matrix D,

its eigensystems can be found from those of D33, and each D53 eigensystems can

be easily found since it is a small matrix. Furthermore, by using multi-processors,

eigensystems of D can be computed in parallel. Therefore, matrices of this form

satisfy our first consideration.

Let D be of the form in (2.3). The next question is, how to find D of this form

which is closest to a given matrix A. In other words, let D be the set of matrices of

the form in (2.3), we want to find Do 6 D such that

"A - D0" = mDin ”A — D“. (2.4)

To the best of our knowledge, this type of matrix approximation has never been

investigated before. To measure the closeness of two matrices, unitarily invariant

norms are used as the underlying norms. This is because we are considering eigenvalue

problems and these norms are simple functions of eigenvalues (by von Neumann’s

characterization [28]).

For the Frobenius norm, the solution of (2.4) is obvious. We can partition A into

blocks according to the structure in (2.3) and choose Do to be the block diagonal

matrix whose diagonal blocks are identical to the corresponding diagonal blocks of

A. That is, if

A11 A12 ° ° ' All:

A A - ~ - AA = 21 22 2!: (2.5)

_ Akl Akz AH: .

then _

An

A

Do = 22 0 . (2.6)

AH:
For general unitarily invariant norms, however, the solution is not so obvious. One

would hope that Do above is the choice since it meets all our three considerations. It

turns out that this is true for an important class of matrices.

In this section, we prove some positive results first, and then a counterexample is

constructed to show that the result can not be extended to cover all matrices.

Theorem 2.2 Let A and Do be matrices in (2.5) and (2.6). If there exists a unitary

matrix E G Ll which commutes with every D E D such that

A — D0 = —E(A — Do)EH, (2.7)

then Do is the best block diagonal approximant of A for every unitarily invariant

norm, i.e., [IA — D0" = minpep ||A — D”.

For the proof of Theorem 2.2, the following lemmas are needed. They were first

proved by Fan in [10].

Lemma 2.1 Let A,B E M,then ”A” S ”B“ holds for all unitarily invariant norms

|| - I] if and only if

“Alla S “Bill:

8

holds for all Ky Fan norms || - “k, k =1,2, - . - ,n.

Lemma 2.2 Let A 6 M, X)‘ = {2:1,:c2,~-,xk} and Y), = {y1,y2,~--,yk} be sets of

orthonormal vectors in C", then

I: l:

“Alli: = 231M) = 5,113]; 2 Rei-Tjiij).
j=l k kI j=l

Proof of Theorem 2.2: Let A0 = A — D0 = UEV” be a singular value decomposi-

tion of A0, with

U =(U1, U2, ' ' ' a It“), 2 = diag(31(A0)a ' ' ' I 3n(A0))a V = (‘01, 02, ° ° ' ,vn)-

Because A0 = —EA0E”,

A0 = —E(U2V”)E” = (—EU)E(EV)"

where -EU and EV are unitary matrices. This gives another singular value decom-

position of A0. Thus,

(“n/1005) = {—Eu,,AoEv,-) = 31(40)-

By Lemma 2.2, for any D E D and k S n,

k

”A - Dllk Z Z: Rein» (A - 0M)

i=1

l: I:

= 2011, Ao‘vj) + Z Re(u,-, (Do — 13M)

i=1 i=1

l:

= ||A - Dollk + 2 new.» (Do - D)vj)- (2-8)

i=1

On the other hand, since —EU and EV are unitary matrices,

l:

”A - Dllk Z 2 34-511» (A - D)Ev,-)

i=1

k

= Z(—Euj, AoEvj) + i: Re(—E’Uj, (DO - D)Evj)

i=1 i=1

k
k

= 231-(Ao)— Z Re(Eu,-, E(Do - Dlvj)

j=l ’=l

I:

= ”A — D0“). — Z Re(u,-, (Do — D)v,-). (2.9)

i=1

9

Combining inequalities (2.8) and (2.9),

k

IIA - DIII: Z llA - Dollk + I: 38064130 - D)vj)|

i=1

> llA - Dollh-

This completes the proof because of Lemma 2.1. I

Remark 2.1: In fact, it can be seen from the proof that the following more

general result has been established: Let A and Do be any two given matrices, if there

exists a unitary matrix E that commutes with Do such that

A -— D0 = —E(A — D0)E”,

then Do is closest to A among all matrices that commute with E, that is,

IIA — Doll = 02,293,, ||A - D".

An important class of matrices satisfying (2.7) is the class of block tridiagonal

matrices.

Corollary 2.3 If A is a block tridiagonal matrix, then the best block diagonal ap-

proximant of A is Do for every unitarily invariant norms.

Proof: Condition (2.7) is satisfied for E = diag(Il, —Iz, - - . ,(—1)"‘11k), with each I,

an identity matrix of appropriate order. I

Block tridiagonal (in particular, tridiagonal) matrices arise in many applications.

In fact, in matrix eigenvalue computations, a given matrix is usually transformed into

a compact form ——— tridiagonal or block tridiagonal form by Householder or Lanczos

transformation, then QR iteration, bisection, or homotopy method is applied to ob-

tain the solutions.

Corollary 2.4 Let A be any square matrix, if we partition A into

then

D0 =

A11 0

0 A22

is the best approximant of A among all block diagonal matrices of the form for every

unitarily invariant norm.

Proof: This is a special case of Corollary (2.3) with I: = 2. I

Inequality (2.1) and equation (2.2) of Example 2.1 at the beginning of this chapter

follow from this corollary.

It is well known that the time required to find eigensystems of a matrix of order n

is proportional to n3. If A is divided into two blocks of approximately equal sizes as in

Corollary 2.3, then D is closest to A and eigensystems of D can be solved by parallel

computer using about 1 /8 execution time for solving eigensystems of A. Furthermore,

if block sizes of D are still too large to work with, they can be divided into smaller

blocks and the “divide and conquer” strategy can be employed.

For general matrices, the conclusion of Theorem 2.2 may not be true. This can

be seen in the following example.

Example 2.2: Let

’ 0 2 2 7

A = 2 0 2

. 2 2 0 .

If we choose block size to be 1, then

. 0 0 0 I

D0 = 0 0 0

L 0 0 0 .

The eigenvalues of A are A1 = 4, A2 = —2 and A3 = —2, therefore for spectral norm

ll - Ila,

"A - Do||2 = {2332; IM = A: = 4

11

However,

llA-1||2=112&§|M-1|=3,

i.e.,

IIA - IIla < llA - Dolls-

Thus Do is not the best approximant. In fact, it can be shown that I is the best

approximant in this case: first of all, A — I has orthonormal eigenvectors

r a F 1 r 1

l 0 -—2

1‘ " 1 l 1‘ " l 1 1 — 1 11 fl 1 2 fl) 3 «6 a

1 —1 1 J

with corresponding eigenvalues A1 = 3, A2 = —3 and A3 = —3. If there exists a matrix

D such that "A — DI]; < ”A - 1]]2, then by Courant-Fischer min-max theorem, we

must have

Kiwi/1 - D)x,-)| = K3313 (A - [)331') +($1a(1 - Dlxjil

= It; + ($1, (I - D)$j)| S ||A - D||2

< [IA-III2= Mil. i=1,2,3.

Let I — D = diag(d1,d2,d3) , then the above inequalities yield

($1, (I -- D)$1) == (d1 + (I: + d3)/3 < 0, (2.10)

(32, (I — D)x2) = (.12 + d3)/2 > o, (2.11)

(1'3, (1 - D)$3) = (4d1 + d2 + d3)/6 > 0. (2.12)

It follows from (2.10) and (2.11), d1 < 0. However, (2.10) and (2.12) imply 3d; > 0,

Thus such a matrix D does not exist, and the assertion is achieved.

Another example of larger order can be found in [22] where the conclusion was

justified by numerical results.

Although the question of choosing the starting matrix is not completely answered,

the matrix D in (2.6) is the best choice in several important cases (such as block

tridiagonal A) and is the best in all cases for Frobenius norm.

12

Remark 2.2: Our results provide a general guide line for choosing a starting

matrix. In a practical problem, usually more special properties about the given

matrix A is known, this allows other choices for D as long as it satisfies our three

general considerations. For instance, when a physical problem is investigated, in

order to determine the final parameters for the problem, it is necessary to do a series

of experiments. In each experiment, the parameters are adjusted only by a small

amount. If the question is related to an eigenvalue problem, then there is a family of

matrices with the same (or similar) structures, each matrix is a small perturbation of

the previous one (except the first). In such a case, the natural choice for the starting

matrix is one of the matrices in the family whose eigensystems have been found, and

we expect eigensystems of the new matrix to be a “small” perturbation of the starting

matrix.

13

Chapter 3

Regularity and Bifurcation

3.1 Introduction

It is well known that eigenvalues are continuous functions of the entries of the matrix.

However, they are generally not differentiable. For example, consider

A(t)=[l t]. (3.1)
1 1

its eigenvalues are A1(t) = 1 — \/t and A2(t) = 1 + fl. They are not differentiable at

t = 0. This happens because, at t = 0, A(O) has multiple eigenvalues A1(0) = A2(0) =

1, that is, eigencurves have a bifurcation point.

The behavior of eigenvectors at a bifurcation is even worse. They may not even

be continuous. The following example is attributed to W. Givens in [21], §3.1:

A(t) = [1+tcos(2/t) —t sin(2/t) J (3.2)

—t sin(2/t) 1 — tcos(2/t)

has eigenvalues A1(t) = 1 -t and A2(t) = l + t. They are analytic functions of t.

However, the corresponding eigenvectors are

cos(1/t) sin(l/t)

31“) = i $2“) = v

[—sin(1/t)] [cos(I/t) [

14

which have no limits as t —-v 0 ! Again the problem arises because A(t) has a double

eigenvalue at t = 0.

For our homotopy algorithm, handling the bifurcation efficiently becomes a very

important problem. The behavior of eigencurves around such points can be quite

complicated. Nevertheless, for symmetric matrices, bifurcation is not as difficult. In

fact, a result proved in 19403 ([24], Chapter I) guarantees that A;(t) and x.-(t) can

be chosen in such a way that they are all analytic functions of t. In such a case,

the eigencurves through a bifurcation point are well behaved. A more general result

of this type is considered one of the major breakthroughs in the past fifty years in

eigenvalue perturbation theory [14].

3.2 Regularity

We summarize those results that related to our problem in the following theorem.

Theorem 3.1 Suppose A and D are both real symmetric matrices. Let

A(t)=tA+(1 -t)D= D+t(A—D),

then the eigensystems

(A10), 31(0), (02“), $20)), ' ' ' a(An(t)1 xn(t))

of A(t) can be chosen in such a way that all functions involved are analytic functions

for real t. Furthermore, there are only finitely many t 6 [0,1] such that A(t) has

multiple eigenvalues.

Proof: see [14]. I

Remark 3.1: In our algorithm, preserving the order A1(t) S A2(t) S - . - S A..(t)

is very important. With such an order, we can implement parallel processing and

compute only partial eigensystems when necessary. However, when this is imposed,

15

the conclusion of the above theorem is no longer valid. For example, let

1 1 — 2t

A(t) = (3'3)

1 — 2t 1

then A1(t) = 2t, A2(t) = 2 — 2t and they are analytic. With the ordering, however,

A1(t) = 1-[1—2tl, Ag(t) = 1+]1-2tl. They are not analytic at t = 1/2. Nevertheless,

after the ordering, these A;(t)’s are still piecewise analytic and one-sided derivatives

Ag")(t+) always exist. This is sufficient for our numerical implementation, since we

trace eigencurves forward, only the right hand derivatives are needed.

3.3 Bifurcation Directions

Suppose

(MU), 31“», (A2“), 320)), ' ° ' 9 (Ana), $n(t))

are the eigensystems of A(t) as in Theorem 3.1, then

Acme) = Aj(t)=vj(t). (3.4)

Taking the right-hand derivatives with respect to t on both sides of this equation

yields

A'(t)x,-(t) + A(t)x;-(t+) = A;(t+)$j(t) + A,(t)x;~(t+). (3.5)

Multiplying the above equation on the left by xflt), we have

A}(t+) -_- xf(t)A'(t):c,-(t).

But A(t) = A — D, so

A;(t+) = zf(t)(A — D)x,~(t). (3.6)

With this last formula, the prediction-correction scheme can be applied to numerically

compute the eigensystems. However, at a bifurcation point, eigenvectors are not

uniquely defined. For an eigenvalue of multiplicity 1:, any I: orthonormal vectors

l6

from the Ir dimensional invariant subspace form an eigenbasis for that subspace. By

Theorem 3.1, there is at least one way in choosing an appropriate set of eigenvectors

for each t such that xJ-(t) becomes analytic. This choice is not known beforehand.

And (3.6) can only be applied for this set of xj(t)’s. An alternative way of computing

these bifurcation directions is given as follows.

Theorem 3.2 Suppose A;(t) = Ag+1(t) = - - - = Ag+k-1(t) are k multiple eigenvalues

of A(t). Let y1(t), y2(t), - - - , y)‘(t) be any I: orthonormal eigenvectors corresponding to

these eigenvalues. Then A;(t+),A:-+1(t+),--- ,»\:-+,,_1(t+) equal the k eigenvalues of

YT(A — D)Y, where Y is the matrix consisting of y.-(t),y.-+1(t),- - - ,y,-+k-1(t) as its

columns.

Proof: The proof of a more general result can be found in [14]. By using equation

(3.5) a very simple proof can be obtained here.

Let x.-(t), x.-+1(t), - - - , $g+k_1(t) be the analytic eigenvectors corresponding to A;(t) =

Ag+1(t) = - - - = Ag+k-1 (t) as in Theorem 3.1. Multiply (3.5) by x,T(t) from the left,

xl(t)(A — Din-(t) + Az(t)zi(t)x;(t+) = A}(t+)zi(t)x.-(t) + A1(t)wi(t)z;(t+)-

Since A)(t) = /\,(t) and xjr(t)x,-(t) = 6;,- for i S l, j S i + k — 1, the above equation

yields

x,T(t)(A — D)x,-(t) = a,,1§(1+), for iS 1, j g i + k -— 1. (3.7)

Let X be the matrix consisting of x,-(t), xg+1(t), - - - , $g+k_1(t) as its columns. By (3.7),

P A;(t+)

A2..(t+)
A'(t+) a XT(A — D)X = (3.8)

 _ A:I'i"k--1(tnl-) J

Because both {y,-(t), y.-+I(t), - - - , yg+k_1(t)} and {x.-(t), $g+1(t), - - - , xg+k_1(t)} form or-

thonormal bases for the invariant subspace, there exists an orthogonal matrix Q such

that Y = XQ Hence

17

YT(A - D)Y -_- QT[XT(A — D)X]Q.

It follows that YT(A - D)Y and XT(A - D)X are similar matrices and have the same

eigenvalues. By (3.8), they are A;(t+), A;+,(t+), - - - , Ai+k-1(t+)- I

3.4 Continuity of Eigenvectors

The Rayleigh quotient iteration (RQI) is one of the most important methods in our

algorithm (see Chapter 4). The convergence of ROI depends not only on a good

choice of eigenvalue prediction, but also on a good eigenvector prediction. Usually,

the eigenvector at step t is used as the starting vector for RQI at step t + At. In

earlier discussion, homotopy algorithm computes eigenvectors at t = 0 as follows:

find the eigenvectors for each diagonal block of A(O) = D then extend them to full

length vectors with appropriate zero entries. The following example shows that this

can be an inefficient choice.

Let

[11] [10]
A: , D: , (3.9)

11 01

and A(t) = (l — t)D + tA, then

A(t) = [1 t] . (3.10)

t 1

According to the earlier algorithms, eigenvectors of A(O) = D should be (by consid-

ering D as a block diagonal matrix with two 1 x 1 diagonal blocks),

$1(0)=[1], 32(0)=[0].

0 1

However, for any t > 0, A(t) has eigenvectors

1 l 1 1

x1(t)_7§[l], x2(t)—7§ -1].

18

These eigenvectors are not even continuous at t = 0. In fact there is a 45° turn in

both vectors. Using x1(0) and x2(0) as starting vectors for ROI in the computation

of x1(t) and xg(t) is obviously a bad choice. Again, the problem occurs because A(t)

has multiple eigenvalues at t = 0, and any two orthonormal vectors can serve as base

vectors for the corresponding invariant subspace.

An important question is then, how can one find a set of eigenvectors at step t

that can be turned continuously into a set of eigenvectors at step t + At? Using the

notations in Theorem 3.2, we have

Theorem 3.3 Suppose YT(A —- D)Y has eigendecomposition QA’QT. If

A:‘(t'l")i Ai+1(t+)9 ' ' ' a Ai-i-k—l (t+)

are distinct, then the columns of YQ are, up to a sign, the analytic eigenvectors

described in Theorem 3.1.

Proof: Let X be the matrix with analytic eigenvectors

x.(t). 3:410), ° ° ° , $i+k—1(t)

as its columns. Since both X and Y consist of orthonormal eigenvectors from the same

invariant subspace, there is an orthogonal matrix Q such that X = YQ. Substituting

into (3.8), yields

QTO’TM - D)Y)Q = A'.

01'

YT(A — D)Y = QA’QT.

On the other hand,

YTM — D)Y = QA'QT,

QA'QT = QA’QT.

19

Because diagonal matrix A’ has distinct values A;(t+), A2+1(t+), . - - , Aj+k_1(t+) along

its diagonal, the columns of Q and Q can differ at most by a sign. Hence the columns

of YQ and X = YQ can differ at most by a sign. I

In conclusion, when bifurcation occurs at t, YT(A — D)Y is formed by using the

computed eigenvector matrix Y, then the eigendecomposition QA’QT is computed for

this I: X It matrix YT(A — D)Y. From this decomposition, the bifurcation directions

can be obtained. If these directions are mutually distinct, then YQ is formed and its

columns are taken as a set of improved eigenvectors at this step, which can be used

to speed up the iterations in later steps.

In the example considered at the beginning of this section, a simple computation

generates the improved eigenvectors at t = 0

1 1 1 1
31(0)=—‘/-§[1], 32(0)=7.2.[_1].

They turn out to be the exact eigenvectors at t = 1.

3.5 Close Eigenvalues

Results in previous sections are derived under the assumption that A(t) has multiple

eigenvalues at some t. In real computations, however, it is hardly distinguishable

whether a matrix has true coincidental eigenvalues or pathologically close ones. For

example, the famous Wilkinson matrix

[101 l

19

1

W5: 10

1

191

110
20

has distinct eigenvalues since it is an irreducible symmetric tridiagonal matrix, but

its first two eigenvalues are so close that they agree to 15 significant digits ([29],

p.308-309). That is, these eigenvalues are practically indistinguishable. Moreover,

even if the eigenvalues are distinct, formula (3.6) may not be appropriate to apply

when eigenvalues are close, since in this situation the corresponding eigenvectors can

be very sensitive. The computed eigenvector yj(t) may be significantly different from

the true one xj(t), making yf(t)(A — D)y,-(t) inaccurate. In such a case, we will treat

them together as a cluster.

In the rest of this section, we demonstrate that the result of Theorem 3.2 can also

be used in the case of close eigenvalues.

Theorem 3.4 Let c > 0, suppose A(t) has eigenvalues A;(t),)..-+1(t),- - - ,z\.~+)¢-1(t)

such that |A.-(t) — Aj(t)| S c forj = i+ l, . - - ,i+ k — 1. Then there exists a matrix E

such that B(t) = A(t) + E has A,(t) as its k-multiple eigenvalue and “E”; S 6.

Proof: Suppose A(t) has eigendecomposition QAQT, where Q is an orthogonal matrix

and A = diag().l, A2,. - - ,An). Let A = diag(61, 62, - . - ,6") be the diagonal matrix

such that 51 = = 5a = 0, 5m = A; - Ai+la"'96i+k—l = A; - Aawe-1, 51+): = =

6,, = 0. Set E = QAQT and B(t) = A(t) + E. It is easy to see that B(t) has

k-multiple eigenvalue)1,- and "Eng = IIQAQT“; = ”Aug S e. I

Suppose B(t) has eigensystems (p1(t), 21(t)), (p2(t), 22(t)), - - - , ([1,,(t), 2,,(t)). When

A(t) has close eigenvalues, e is small, hence B(t) is a small perturbation of A(t). Al-

though eigenvectors corresponding to close eigenvalues are very sensitive, a collection

of sensitive eigenvectors can define an insensitive invariant subspace provided the

corresponding cluster of eigenvalues is isolated ([12], p.199-208). So

X = spanks“), $1410), ' ' ' , $i+k-1(t)}

and

Z = span{z.(t).z.-+1(t).- ' ° , 2141—10)}

21

are close. Let X = [x.-(t) xg+1(t)-- -x.-+k-1(t)], Z = [2,-(t) z;+1(t) . - -Z,'+k_1(t)], then

the eigenvalues of XT(A — D)X and ZT(A — D)Z, are close since XT(A — D)X and

ZT(A — D)Z are the projections of A — D onto X and Z, respectively.

Now apply Theorem 3.2 to matrix B(t),

o(ZT(A — D)Z) = {,1;(t)|j = 1,1 + 1, - . -,i + k — 1}.

And the first order prediction gives

#10 + At) t” #10) + #j-(UN = Mt) + Ilj-(tlAt-

By Weyl’s Theorem [2],

PW + At) - 2110+ At)l S Ilr‘1(t + At) - B(t + At)” = HE” S 6,

hence

A,(t + At) e ,1,(t + At) rs ,\.(t) + p;(t)At.

It follows that we may replace #2“) by an eigenvalue of XT(A — D)X. Hence close

eigenvalues and multiple eigenvalues can be handled in a uniform way.

22

Chapter 4

The Algorithm

The tracing of eigencurves consists of the following main steps:

4.1 Choice of the Starting Matrix

To start the algorithm, we need to choose a starting matrix D first. From the results

developed in Chapter 2, block diagonal matrix with blocks directly from A will be

our choice unless more information about the problem is revealed. At this stage,

the sizes of the blocks remain undecided. It is clear that D will be closer to A if

its diagonal blocks are larger, and the eigencurves will be better behaved. However,

because of the requirement that the eigensystems of D should be much easier to find

than those of A, the sizes of the blocks of D should be kept under certain limit. In

our algorithm, QR iteration is used to solve for eigensystems of D. This requires that

each block size be no more than a few hundred. Another important factor in choosing

D is the computer architecture. When more processors are available, one can choose

more (hence smaller) blocks; otherwise, fewer (hence larger) blocks should be used.

In the test examples we run in BBN Butterfly Machine, we choose the block size to

be around one hundred. This seems to be optimal for most of the cases comparing

with other choices. In general, no formula is set to automatically generate the block

23

sizes of D.

4.2 Location of the Starting Points

When the starting matrix D is chosen, we need to find values A;(0), x;(0) for i =

1, 2, . - - , n, that is, the eigenvalues and eigenvectors of D. Since D is a block diagonal

matrix, its eigenvalues consist of eigenvalues from all diagonal blocks, its eigenvectors

can be obtained from eigenvectors of diagonal blocks by extending them to full di-

mension vectors with appropriate zero entries. In a parallel architecture, each block

is assigned a processor to perform QR iterations on the block, and the results are

collected to form the eigensystems of D. The QR iteration method is used since it is

one of the best methods for matrices of relatively small size. Finally the eigenvalues

of D are arranged in descending order to prepare for parallel processing in later steps.

It is clear that this step has high parallelization level and requires relatively small

amount of execution time.

4.3 Prediction

From the previous step, eigenvalues)1,(0) and eigenvectors x,(0) are available for

j = 1,2,- - - ,n. Assuming in general that Aj(t),x,-(t) at t have been obtained, we

shall apply the prediction — correction scheme to compute the eigenvalues A,- and

eigenvectors x,- at t + h. The choice of the step size h will be discussed in a later

section. Here, we first consider the prediction procedure. In this step we not only

predict the eigenvalue A,(t + h), but also predict whether or not it is an isolated

eigenvalue of A(t + h). For isolated eigenvalues and for clusters, different correction

methods are used.

Case 1: If the j-th eigenvalue Aj(t) of A(t) is simple and well separated from the

other eigenvalues, then

X-(t) = xf(t)(A — D)x,-(t).
J

24

Let the j-th predicted eigenvalue of A(t + h) be

1,(t + h) as ,\,-(t) + 1;.(t)h

= A,(t) + zf(t)(A — D)x,-(t)h.

All quantities on the right hand side of the above equation are available from step t.

For the eigenvector, we simply use $j(t) as the prediction for xJ-(t + h). There are

several reasons for this choice:

0 Although in theory one can use

xJ-(t + h) z raj-(t) + x;(t)h, (4.1)

but the high cost in computating x;(t) makes it an impractical approach.

0 Eigenvectors are more sensitive to perturbation than eigenvalues ([29], p.331-

335). It is difficult to compute the derivative xs-(t) to a high accuracy. Hence

(4.1) usually does not yield significant improvement of xj(t + h).

e In our correction step, the eigenvector prediction is not as important as the

eigenvalue prediction.

Case 2: Aj(t) is in a cluster of eigenvalues of A(t), then we proceed as follows.

1) Find It — the number of eigenvalues in the cluster;

2) Form X = [2:5, $5+1,°°-,.’Bg+k_1] where the corresponding A;,---,A,-+k_1

form a cluster;

3) Form XT(A - D)X;

4) Calculate eigendecomposition XT(A — D)X = QQQT;

5) Set X = XQ.

25

clusterof3

clustcrofS

t t+h

Figure 4.1: The change of clusters from t to t + h

Now suppose fl=diag(w,- 025+] - - -w.-+),_1). By Theorem 3.2, Log, wi+1, -- -, wg+k_1

are the approximations of the derivatives of A,(t). Thus the predictions

Aj(t + h) z Aj(t) + wjh (4.2)

xJ-(t + h) z x_,-(t). (4.3)

can be used. If some at; (i S j S i + k — 1) is an isolated value inside (0;, 10,-1.1,

- - -, wg+g_1, then Aj(t + h) is likely to be out of the cluster at t + h (Figure 4.1). So

it should be labeled as an isolated value and treated as in Case 1. If, on the other

hand, some wj’s are among a cluster of tag, 025+], - - -, wg+k_1, the corresponding Aj’s

are likely to form a new cluster at t + h (Figure 4.1), hence they are collected in a

group and handled together at the correction step. The predictions for them are the

same as in (4.2) and (4.3).

4.4 Correction

From the last step, in addition to the predictions for Aj(t + h) and x_,-(t + h), the

information about the isolation of A,(t + h) is also available. If it should be treated as

26

an eigenvalue in a cluster, the number of eigenvalues in the cluster is also known, then

Subspace Iteration with Rayleigh-Ritz Procedure (SIRR) is used for the correction:

Suppose {A,-, A,“ , - - - , L414} is a. cluster and the corresponding approximate

eigenvectors are {x,-,x,°+1,- - - ,x.-+),-1}. Let

1

A = I“; + Ai-l-l + ° ° ° + Ai+k—l), X = [31° $£+1 ' ° ' 335+k-1l-

Solve (A — AI)Y1 = X for Y1, then repeat the following for V = 1,2, - -- :

1) Decompose Yu = QuRu;

2) Solve (A — AI)Yy = Qu;

3) Form Hy = QZ'(A - D)-1Qu = QZYu;

4) Decompose H” = GVOVGI, where G is orthogonal matrix, Oyzdiag(0,-,0,-+1,

° - ° , 9.41:4);

5) Form Yu+1 = QuGu

6) Test for the convergence of 0;, 0;“, - - - , 0,-+).-1. Goto 1) until all 0;, 0,-+1,- - -,

9.4.1-1 converge.

If A,- (t + h) can be treated as an isolated eigenvalue, Rayleigh Quotient Iteration

(RQI) is the choice. However, in our algorithm, RQI is not applied directly at the

very first step because of the following two observations:

a) Although A,(t) is isolated, Aj(t + h) may not be so (Figure 4.2), and our

prediction step can not detect such a situation. When this happens, if RQI

is used, those undesirable behaviors of the algorithm, such as converging

to an eigenvalue far from the original prediction, may occur [20].

b) Although RQI converges cubically, it usually needs a few iterations before

achieving this rate (unless the starting values are extremely good). It is

quite expensive to use when cubic rate can not be achieved.

27

P cluster of 2

isolated

t (+11

Figure 4.2: An isolated eigenvalue at t becomes nonisolated at t + h

To overcome these difficulties, two additional procedures are introduced. The

first one is the Inverse Iteration (INVIT) procedure. It can be used to compute a

better approximate eigenpair (A, x) by using inverse iteration recursively. It is cheaper

than RQI. The second one is called SUBDIM, which is designed to detect whether

an approximate eigenvalue falls inside a cluster of eigenvalues. If it does, SUBDIM

will compute the dimension of the invariant subspace corresponding to this cluster

of eigenvalues and also generates an approximate basis for the subspace. Otherwise,

SUBDIM is equivalent to an additional step of inverse iteration.

With the help of these two procedures, the correction goes as follows: First, a

few steps of INVIT are used to obtain a better approximate eigenpair (A,x), then

SUBDIM is called to determine if A is an isolated eigenvalue. If so, the faster method

— RQI is applied for the rest of the correction steps. The starting values (A,x) for

the iteration are now inside or closer to the cubic converging range of ROI. If A is not

an isolated eigenvalue, then from SUBDIM, the dimension of an invariant subspace

corresponding to eigenvalues close to A and an approximate basis for the subspace are

available. Then, similar to the first case described at the beginning of this section,

subroutine SIRR is applied to further improve the subspace to the desired accuracy.

28

The detail of INVIT and SUBDIM is described in the rest of this section.

(a). INVIT: This is a slightly different version of ordinary inverse iteration

procedure:

0) set xlo) = x,-(t,-), p = A;(t,-+1), k = 0

1) solve

(Assn—1111“) = z“) (4.4)

for yl").

2) compute 7), = ||y(")|| and let

(1:)

30+!) ._._ L.

'71:

3) if 7), S M and 71/714 2 a then k=k+l, goto 1)

else let A = p(x("+1)), x = xU‘“), quit;

where

112””) = (x<*+”)TA(t.-..)x<*+'>

is the Rayleigh quotient.

There are two control parameters in this procedure, namely M and a. In our

algorithm, we set M = 10‘/p and a = 1.2. It is well known that xl") will converge

to an invariant subspace corresponding to the eigenvalues close to p and

—) . l .

mlnlp—Agl

‘71:

The convergence comes in two ways: if the prediction [1 is very close to some true

eigenvalues (min In — A.-I < 1/M), 7), > M is quickly satisfied; on the other hand, if p

is not close to any particular eigenvalue (min lp — A,-| > 1/M), then we must wait for

the second condition 7k/7k_1 < a to be satisfied. Inequality 75/71,-1 < 0 indicates

that 7). will not grow significantly in the following iterations. In this case, the inverse

iteration procedure has been stabilized or converged. For our purpose, this procedure

29

is not affected by close eigenvalues, since one of the two conditions must be satisfied

in the end. There are other choices for M and 0. Since we will switch to a faster

method eventually, it is appropriate to impose a loose converging condition.

(b). SUBDIM — for computing the dimension and basis of the invariant sub-

space corresponding to the eigenvalues close to A:

Suppose (A19 $1)1(A29 33), ' ' ' 1(An1 37!) are n eigenpairs 0fA(tj+1)tlet {3’11 3"), ' ' ' 1 Sin}

be a set of linearly independent vectors chosen beforehand. Take yl, orthogonalize it

against x1 and call it yl again. Then

0) let k=l, 21: x

i) solve

(A(t...) — 102 = y. (4.5)

for 2

ii) compute ||z||.

If "z” is large, then

let 21+] = z/||z||, take yk+1, use MGS to orthogonalize it against

{21, 22, - - - , 2H,}, let iterat=1,k=k+l, goto i).

else

if iterat = 1, orthogonalize 2 against {21,Zg,'°',2k}, let 3),, =

z/||z||, iterat = iterat+l, goto i).

end if.

where MGS stands for modified Gram—Schmidt process [12].

From this procedure, It is the dimension of invariant subspace and {21, 22, . - - , 2k}

is an approximate basis.

The theoretical background for this procedure is the following.

30

Suppose A1, A2, . - - , Am are in a cluster for some 1 S m < n such that

max IA) — AIS 6, min IA) — AI 2 a > e. (4.6)
lSlSm m-HSlSn

Expand the vector y), in (4.5) in terms of x1, x2, - - - , x":

n m n

w: = 2 “(on = 2 “la-TI + 2: “lib”: 314' silo) + ill”,
i=1 l= l=m+l

then the solution of (4.5) is

Z = (A(tm) - All-1w:

= (A(tm) - All-1 20951

l=l

1'!

l=1

m (k) n (k)

a! at
= x; + x).

g A) — A , Ea, A) — A

The norm of z“) is not big, in fact,

(I) = (al) < Zl=l(al) <1

II2 II J z —— _ .-
l=m+1 [Al - Alz - minm+lSlSn [At - Al

If k < m, y), is orthogonal to 17), = {21, 22, - - - , 2),}, hence y), has nontrivial component

ylo) in Vm, and the norm of z grows rapidly during the iteration; in fact,

"2“ 2 "2(0)” = \Ji “(f-[2" Z lIla/lo)"-
l=1 IA; — A] 6

Hence ||z|| becomes large in one or two iterations, and when the procedure continues,

the subspace dimension continues to grow. When one reaches 1: = 171, however, y),

is orthogonal to the whole subspace 17", which is a good approximation to Vm, hence

yl‘o) z 0, and ”z” is not large. Then the procedure ends. In such a way, we can detect

the size of the cluster and generate a set of vectors which is a good approximate basis

for the corresponding invariant subspace.

31

It is necessary to be specific about “large” and “not large” when this algorithm is

used. Notice that keeping on iterating (4.5) yields,

Ila/lo)" -* 1. llylnll -' 0.

hence in the end

NZ" 2

a
l
t
—
t

Therefore, we can say, for example, "2" is large if it is greater than l/2e, it is not

large otherwise, where e is as in (4.6). Our experience is that, one needs not be

too restrictive, because underestimating the cluster dimension is more serious than

overestimating it, which can cause the slow convergence of the subspace iteration.

One remedy for the possible incorrect dimension count is that one can use “dynamic”

scheduling (describe in the next section) during the progress of the subspace iteration.

4.5 Dynamic Subspace Iteration

When the convergence of the Rayleigh quotient iteraion or subspace iteration is too

slow (more than three iterations, for instance), it indicates that the estimate of the

subspace dimension is inappropriate, either too big or too small. The iteration process

needs to be monitored more carefully, and the subspace dimension should be ajusted

during the progress when it becomes necessary: after a few steps of Rayleigh-Ritz

procedure [23], only those Ritz vectors with their Ritz values close together are kept

for further iterations. The subspace dimension is then reduced and the condition of

the subspace is improved. This in turn will reduce the computation and speed up the

convergence. If, on the other hand, all the Ritz values are close and convergence is

still slow, then it becomes necessary to enlarge the subspace. This can be achieved

by calling procedure SUBDIM to determine a more accurate dimension for the in-

variant subspace, and the subspace iteration resumes after this. Such a process often

accelerates the convergence considerably.

32

Remark 4.1: For large sparse matrix, factorization is feasible, but it is still

one of the major parts of the computation when solving an equation. Therefore we

keep the number of factorizations to a minimum in our algorithm by including all

the procedures such as INVIT, SUBDIM, SIRR, and ROI in the algorithm. INVIT,

SUBDIM, and SIRR are all iterative methods. They require solving the systems with

different right hand sides only, that is, for different iteration step, new factorization is

not needed. These methods are not the fastest, but by combining with faster methods

such as RQI, one can still achieve high convergent rate to reduce the computation

time.

4.6 Checking

When RQI or SIRR is used, equations of the type

(A(t) - #03 = y

are solved. By taking advantage of the symmetry, the so called symmetric Gauss

elimination method [3] can be applied. That is, A(t) - 111 can be decomposed as

LDLT (instead of the traditional LU form), where L is a lower triangular matrix

and D is a block diagonal matrix with diagonal blocks of order one or two. Using

Sylvester’s Theorem, the inertia (u, C, 7r) of A(t) — #1 is available as a by-product of

the decomposition, where u,(, and r are the number of eigenvalues of A(t) which

is greater than, equal to and less than a, repectively. With the availability of the

inertia, the location of 11 relative to other eigenvalues of A(t) is known. To see how

the checking is done, let’s assume the eigenvalues of A(t) are A1 S A; S - - . S An and

ROI is applied to compute the eigenvalues. Suppose the lc-th step of RQI is:

1). Solve (A(t) — 11021)le = x“) for y“).

2). Compute 7), = ||y(")|| and set self“) = ylkl/ryk.

3). Set 110‘“) = (x("+1))TA(t)x("+1) and goto 1).

33

Suppose the convergence is observed at step m. Let the inertias corresponding to

A(t) — p('”‘1)I and A(t) — ”("01 be (um-1,(m_1,1rm-1) and (um, (mtrm) respectively.

If we denote i = um-“ then A.- S plm'll S Ag“. Now the checking can be done as

follows:

1). If V... = i and pl”) S [Am-1), set A,- = pl”).

(m)

11 l l

2., 11““) 1.1.1

2). If V... = i and 11“”) > fl(m-1), set A,“ = til”).

(at)

u

A, “(m-1) 114-1

3). If um = i + 1, set A,“ = 11"”).

l4‘01!)

A, “(m-1) Am

4). If um = i — 1, set A,- = 11“").

”(m)

A, ”(m-1) At+1

Hence with minimum computations, we know whether the process converges to

the eigencurve being followed. In general, jumping to a neighboring curve does not

occur when eigenvalue separation is good. When the separation is poor, a cluster of

eigenvalues are computed which usually includes the one we wanted. Our iterations in

the correction steps are successful most of the time. In case the process does converge

to a neighboring eigenvalue, there is a good chance that this value is also needed and

the corresponding eigencurve has not been traced. Usually, the number of eigenvalues

sought is larger than the number of processors available, so a total waste is unlikely.

34

For example, suppose we have 100 eigencurves to trace and there are 10 proces-

sors available for the purpose. Assume the scheduling is arranged as follows: The

first processor is assigned to trace A1(t),A2(t),---,Alo(t); the second processor is

assigned to trace Au(t),A12(t),o - ',A20(t); and so on. If jumping occurs when the

first processor is following A, (t), then the computed eigenvalue should be one among

A2(t), A3(t), - . - , A10(t), say A3(t). Then tracing of the third eigencurve can be skipped.

4.7 Clearing Up

During the tracing of eigencurves, a significant amount of time is spent on keeping

the process on the right curve. There are several existing techniques for this purpose

[l7],[18]. However, there are cases where these techniques are too costly. Several

new approaches have been introduced in our algorithm. They are designed especially

for large matrices. Instead of imposing very strong restrictions on those control

parameters, our strategy is to abandon the process of tracing the curve if convergence

to a desired value is not observed after reasonable efforts have been made. In the

end, most of the needed eigenvalues of A are computed. A few of those missed are

scattered across the spectrum of A and are isolated by those found, that is, there

are several small intervals containing those missed values. By counting the inertias

corresponding to the end points of each interval, the number of eigenvalues inside

such an interval is known. These values are well separated from the neighboring ones

since clusters have been found by SUBDIM in the algorithm. Under these favorite

conditions, subspace iteration method can be applied in each interval efficiently to

find the eigenvalues inside it, and this can be done in parallel.

4.8 Step Size Control

Our extensive numerical experience shows that the step size should be chosen as large

as possible. Allowing small step size can lead to inefficiency. In our algorithm, the

35

first attempt of the step size h is chosen to be max{0.25, (1 — t)/2}. If convergence

is not achieved at some step and h > 0.25, the step size is cut in half and the

process is repeated. If the failing occurs when h S 0.25, we will simply abandon the

process of following this specific curve. Then the eigenvalue may be computed by

other process (such as SUBDIM if the value is among a cluster) or may be considered

missed. Because we have a back up procedure for those eigenvalues missed due to

the abandence of tracing the corresponding curves, this “giving up” strategy does

not cause problem, instead, it is more efficient to have a lower bound imposed on h.

There are cases that, under no control limit, h becomes very small, hence causing

the long execution time at a single “bad point”. In our many examples, the largest

number of missed eigenvalues is usually less than 10% of the total values sought.

36

Chapter 5

Numerical Experiments

5.1 Introduction

Our algorithm has been implemented in several machines using FORTRAN language.

The sparse matrix A is held using coordinate scheme ([8], p.23—24), that is, the matrix

is specified as a set of triples (a;,-, i, j), they are stored in one real array and two integer

arrays. Because A is symmetric, only the upper triangular part is stored.

In our algorithm, sparse linear systems of the type

(A(t) — AI)y = x (5.1)

need to be solved frequently. The intensive research in sparse matrix techniques in

the past two decades resulted in several efficient codes for solving such systems. We

choose MA27 subroutines from Harwell Subroutine Library for this purpose. This

code can solve indefinite symmetric systems, such as (5.1), stably and with minimum

overhead above the code for positive definite systems. It can also obtain the inertia

of A(t) — AI as a by-product. Both of these features are vitally important to our

algorithm.

The code MA27 has three separate steps: Symbolic Analyse, Factorize, and Solve.

Symbolic Analyse exploits the sparse structure of the matrix and estimates the work-

ing space needed for later steps. Factorize implements a version of Gauss Elimination

37

to compute the LDLT decomposition of the matrix. The last step, Solve, uses this

decomposition to actually solve the matrix system. Since the underlying matrices

A(t) have the same sparse structure for all t 6 [0,1], Symbolic Analyse is required

only once in the whole algorithm. In addition, for inverse iterations, one needs to

solve systems with different right hand sides only, new LDLT decomposition is not

necessary, i.e., only the last step, Solve, is called for each iteration. This leads to

significant saving in time because Factorize is the most expensive one of the three.

5.2 Test Matrices

Four types of matrices are used to test our algorithm. The first two can be found in

[5]. They are common matrices for testing purpose.

1. Diagonally-disordered matrices:

These matrices arise in the study of two-dimensional NX x NY arrays of atoms

in disordered systems [15]. The associate matrix A has order N = NX X NY,

[B I 1' [$1 1l

I B 1x

A: ,3:

I ".1

.I I B] L1 lx‘
The matrix A is almost block tridiagonal. I is the identity matrix of order NX. Each

B block is NX X NX and there are NY blocks down the diagonal of A. The diagonal

elements of B are randomly generated numbers. A scaling parameter bounds the mag-

nitudes of these disordered terms. In the simplest case, these entries are chosen from

a uniform random distribution over an interval [~SCALE, SCALE] determined by the

user-specified scaling parameter SCALE. A second class of diagonally-disordered ma-

trices is obtained by choosing the diagonal elements randomly as either 0 or SCALE.

If NX and NY are coprime, then all of the eigenvalues of A are distinct.

38

2. Poisson matrices:

When the Laplace equation

um+uW = Au, R: {(x,y)|0 S x S X,0 S y S Y}

is solved numerically, the differential equation is replaced by an algebraic linear sys-

tem, Ax = Ax, obtained from discretizing the Laplace operator on the rectangle.

The order of the resulting matrix is N = NX x NY where NX is the number of

subdivisions in x-direction and NY is the number of subdivisions in y-direction. The

matrix A is block tridiagonal,

r - 1 —3c

B C

—sc 1 —c

C B

—c

A: C 1 B:

—c

C B 30

—c l —sc

30 B

' ‘ _ —sc 1]

The parameter c is user-specified and must be chosen such that 0 < c S 0.5. Here,

C = —(0.5 — 0)]. For Dirichlet boundary conditions 3 = 1, and for Neumann con—

ditions s = J2. Under Dirichlet conditions, the eigenvalues (and eigenvectors) of A

are known,

A;,- = [1 — 2ccos(1ri/(NX +1)) — 2(0.5 — c)cos(1rj/(NY +1))],

1SiSNX,1SjSNY.

Under Neumann conditions, however, the eigenvalues and eigenvectors are not known

a priori. By varying the value of c, many different eigenvalue distributions can be

obtained.

3. Random matrices:

The sparse matrices in this group are generated in three steps: Let N be the order

of the matrix. We use rand to represent random number generator that produces

uniform distribution on interval (0,1). Then

39

0) Clear the matrix:

for I=1,- - -, N; J=I,- - -, N

A(I, J) = 0.0.

1) Generate N entries randomly in the upper triangular part of A:

for i=1,- - -, N

=Int(N*rand(i)+1), J=Int(N*rand(I)+1)

if I<J then A(I,J)=rand(i)+A(I,J) else A(J,I)=rand(i)+A(J,I).

2) Generate N entries randomly along upper 5 diagonals:

for i=1,- - -, N

=Int(N*rand(i)+I), J=Min{N, I+Int(5*rand(I))}

A(I,J)=rand(i)+A (I,J).

3) Generate N entries randomly along the main and upper diagonal:

for i=1,- - -, N

I=Int(N*rand(i)+1), J=Min{N, I+Int(2*rand(I))}

A(I,J) = rand(i)+A(I,J).

A matrix generated this way has nonzero entries concentrated near the main

diagonal, a pattern shared by many sparse matrices in applications.

4. Tridiagonal matrices:

The familiar Toeplitz matrices

A=[121]=

of different orders are chosen as test examples in this group.

40

5.3 Results on IBM 3090 Vector Machine

We compare our algorithm with EA15 — an algorithm for eigenproblems using Lanc-

zos method. This algorithm is made up of several subroutines in Harwell Subroutine

Library . The user supplies an interval which contains all the eigenvalues of inter-

est and the algorithm finds all eigenvalues inside the interval and the corresponding

eigenvectors.

Table 5.1 contains a list of execution times for computing the first 50 eigenpairs for

different matrices. It can be seen that our algorithm runs behind Lanczos algorithm

in IBM 3090, a sequential machine.

Matrix Order Homotopy Lanczos Ratio

500 85.34 43.91 0.515

Disordered 1000 181.01 94.49 0.522

5000 1198.72 631.73 0.527

500 65.29 37.44 0.573

Poisson 1000 133.54 75.61 0.579

5000 676.41 394.35 0.583

500 46.83 23.65 0.505

Random 1000 94.66 49.04 0.518

5000 481.37 253.68 0.527

Table 5.1: Test data from IBM

However, in the following important situations, our algorithm outperforms Lanc-

zos algorithm.

1). Interior Eigenvalues: The above comparision with EA15 are based on the

computing of some extremal eigenvalues. It is well known that Lanczos algorithm is

41

most efficient for such problems. However, in many applications, interior eigenvalues

are needed. In such a circumstance, our homotopy method is much faster than Lanc-

zos algorithm. The reason is that, during Lanczos iterations, extremal eigenvalues

usually emerge before the interior ones.

Table 5.2 shows the execution times for the computation of 20 middle eigenpairs

of the matrices listed.

Matrix Order Horn. EA15 Ratio

500 42.68 86.79 2.03

Disordered 1000 82.38 332.07 4.03

5000 354.10 2487.48* 7.02

500 33.52 70.73 2.11

Poisson 1000 63.91 270.34 4.23

5000 347.64 2471.72* 7.11

500 24.78 55.75 2.25

Random 1000 49.46 214.16 4.33

5000 251.47 1750.23* 6.95

Table 5.2: Interior 20 eigenpairs on IBM 3090

* Eigenvalues only

2). Better Initial Matrix: As mentioned in Remark 2.2, for a typical application

problem, one needs to solve a series of matrix eigenvalue problems. When this situ-

ation occurs, using a matrix in the sequence as the initial matrix, we expect to have

a much better result than using the block diagonal initial matrix. An experiment

is constructed to illustrate this: randomly choose n/2 nonzero entries in A, perturb

them by small random numbers in (-0.05, 0.05). Then use the perturbed matrix

42

Matrix Order Homotopy EA15 Ratio

500 11.96 43.91 3.67

Disordered 1000 33.39 94.49 2.83

5000 199.28 631.73 3.17

500 11.52 37.44 3.25

Poisson 1000 18.72 75.61 4.04

5000 119.14 394.35 3.31

500 9.98 23.65 2.37

Random 1000 23.69 49.04 2.07

5000 85.70 253.68 2.96

Table 5.3: First 50 eigenpairs on IBM 3090 with perturbed starting matrix

as the initial matrix D. Table 5.3 shows the execution times for both algorithms —

homotopy and EA15. The time needed for the computation of initial eigensystems

is not included in homotopy algorithm since it is assumed that eigensystems for that

matrix are obtained in the previous step of the sequence.

Test results for tridiagonal matrices are not included in the tables above. Our

algorithm runs successfully for this group. However, the code EA15 can not find all

the eigenvalues in a given interval and no error messasge was signaled. It is known that

Lanczos algorithm can be very fast for many problems, but it may not be suitable for

general problems, even some well conditioned ones. In contrast, our algorithm seems

more robust.

In sparse matrix computations, it is common experience that any method involving

0(n2) or more computations is not recommendable. When the number of needed

eigenpairs is fixed, it can 'be seen from Figure 5.1 that our algorithm’s execution

43

time

A

1200‘ disorderedman'ices

900‘

Pommatrices

600‘

randommamces

300-

F I I I I ’

1000 2000 3000 4000 5000 “d“

Figure 5.1: Execution time vs. matrix order

time is approximately proportional to the order n of the matrix. It appears that our

homotopy method is an excellent candidate for the parallel computation of eigenvalues

of sparse matrices.

5.4 Results on BBN Butterfly Parallel Machine

BBN Butterfly machine is a share-distributed memory architecture with 96 MC68020

/MC68882 BBN GP1000 processors, the maximal number of processors available to

users is 90. The results in Table 5.4 and Table 5.5 are obtained from averaging the

times used in computing the first 100 eigenpairs of 1000 by 1000 diagonally-disordered

matrix, Poisson matrix, and random matrix.

Speed-up in Table 5.4 measures the parallelization level of the algorithm itself.

It is close to the “ perfect” speed-up when the number of processors is less than or

equal to 16 (15 times faster using 16 processors). After that, however, the efficiency

(speed-up/number of processors) becomes lower. This is caused by the computation

of initial eigensystems (those of D’s), since the tasks available at this step is far less

than the number of processors. If the problem is of sequential type (Remark 2.2),

this “bottle neck” will disappear. Another possible way of improving our algorithm

44

Number of processors 1 2 4 8 16 32 64

Time for homotopy 2186.85 1095.73 565.08 282.90 145.61 88.14 74.08

Speed-up l 1.99 3.87 7.73 15.02 24.81 29.52
Table 5.4: Speed-up for homotopy algorithm

here is to apply homotopy method recursively — using the idea of “Divide and Con-

quer”. Nevertheless, our present algorithm can achieve high speed-up close to 30.

Number of processors 1 2 4 8 16 32 64

Time for homotopy 2186.85 1095.73 565.08 282.90 145.61 88.14 74.08

Time for EA15 998.17 998.17 998.17 998.17 998.17 998.17 998.17

Speed-up 0.46 0.91 1.77 3.41 6.86 11.33 13.47

Table 5.5: Speed-up over EA15

Table 5.5 lists the speed-up of our algorithm over EA15. It can be seen that

our algorithm can be more than 13 times faster than EA15, although it is slower on

sequential machines.

The following two figures are the graphs of speed-up curves.

“-

48..

32‘

16"

Figure 5.2: Speed-up for homotopy

45

64a

48"

Figure 5.3: Speed-up over EA15

5.5 Accuracy and Orthogonality

The accuracy of our algorithm is also very satisfactory compare to EA15. Table 5.6

lists the maximal residuals

1232a "Ax.- - A13"

for the computed eigenpairs from these two algorithms. The data used here are

collected from IBM 3090. The residual measures the accuracy for both the eigenvalue

and eigenvector.

Matrix Order Homotopy Lanczos

500 0.97e-15 0.81e-l5

Disordered 1000 0.13e-14 0.94e-15

5000 0.27e-14 0.13e-14

500 0.32e-14 0.74e-15

Poisson 1000 0.5le-l4 0.79e-15

5000 0766-14 0.11e-l4

500 0.27e-15 0.18e-15

Random 1000 0.22e-15 0.20e—15

5000 0.23e-l5 0.39e—15

Table 5.6: The residuals of eigenpairs

Table 5.7 compares the orthogonality among the computed eigenvectors. Because

A is symmetric, these eigenvectors are orthogonal in theory, i.e., [IXTX — IH = 0.

Listed in the last two columns are the maximal entries of the computed matrices

XTX - I from these two algorithms.

46

Matrix Order Homotopy Lanczos

500 0.36e-15 0.52e-15

Disordered 1000 0.66e-15 0.71e—15

5000 0.67e-15 0.82e-15

500 0.27e-14 0.75e-15

Poisson 1000 0.23e-14 0.84e-15

5000 0.59e-14 0.20e-14

500 0.87e-16 0.13e-15

Random 1000 0.19e-15 0.36e-15

5000 0.25e-15 0.47e-15

Table 5.7: The orthogonality of eigenvectors

47

Bibliography

[1] P. Arbenz and GB. Golub. On the spectral decomposition of hermitian matrices

modified by low rank perturbations with applications. SIAM J. Matrix Anal.

Appl., 9(1):40—58, Jan. 1988.

[2] R. Bhatia. Perturbation Bounds for Matrix Eigenvalues. Longman Scientific 8!.

Technical, New York, 1985.

[3] JR. Bunch and RN. Parlett. Direct methods for solving symmetric indefinite

systems of linear equations. SIAM J. Numer. Anal, 8(4):639—655, 1971.

[4] E. Chu, A. George, J. Liu, and E. Ng. Sparspack: Waterloo sparse matrix

package user’s guide for sparspack-a. 1984.

[5] J.K. Cullum and K.A. Wiloughby. Lanczos Algorithms for Large Symmetric

Eigenvalue Computations, volume I:Theory. Birkhauser, Boston, 1985.

[6] J .J.M. Cuppen. A divide and conquer method for the symmetric eigenproblem.

Numer. Math., 36:197—95, 1981.

[7] J .J . Dongarra and D.C. Sorensen. A fully parallel algorithm for the symmetric

eigenvalue problem. SIAM J. Sci. Stat. Comput., 8(2):139—54, March 1987.

[8] LS. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices.

Clarendon Press, Oxford, 1986.

48

[9] SC. Eisenstat, M.C. Gursky, M.H. Schultz, and A.H. Sherman. Yale sparse

matrix package. 1: The symmetric codes. Int. J. Numer. Meth. Engng., 18:1145—

51, 1982.

[10] K. Fan. Maximum properties and inequalities for eigenvalues of completely con-

tinuous operators. Proc. Nat. Acad. Sci. U.S.A., 75:760-766, 1951.

[11] A. George and J.W.H. Liu. Computer Solution of Large Sparse Positive- definite

Systems. Prentice-Hall, New York, 1981.

[12] GB. Golub and CF. Van Loan. Matrix Computation. The Johns Hopkins

University Press, Baltimore, 1983.

[13] RS. Jenson. The solution of large symmetric eigenproblems by sectioning. SIAM

J. Numer. Anal., 9:534—545, 1972.

[14] T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, New York,

1966.

[15] S. Kirkpatrick and T.P. Eggarter. Localized states of a binary alloy. Phys. Rev.,

B 6:3589—3600, 1972.

[16] K. Li and T.Y. Li. An algorithm for symmetric tridiagonal eigenproblems —

divide and conquer with homotopy continuation. To Appear.

[17] T.Y. Li and NH. Rhee. Homotopy algorithm for symmetric eigenvalue problems.

Numer. Math., 55(3):265—80, 1989.

[18] T.Y. Li, H.Z. Sun, and X.H. Sun. Parallel homotopy algorithm for symmetric

tridiagonal eigenvalue problem. SIAM J. Sci. Stat. Comput., 12(3):155—65, May

1988.

[19] 3.8. L0, B. Philippe, and A. Sameh. A multiprocessor algorithm for the sym-

metric eigenvalue problem. SIAM J. Sci. Stat. Comput., 8(2):155—65, March

1987.

49

[20] SC. Ma, M.L. Patrick, and DB. Szyld. A parallel, hybrid algorithm for the

generalized eigenproblem. Preprint, 1988.

[21] J. Ortega. Numerical Analysis; 0 second course. Academic Press, New York,

1972.

[22] M.L. Overton. On minimizing the maximum eigenvalue of a symmetric matrix.

SIAM J. Matrix Anal. Appl., 9(2):256—68, April 1988.

[23] RN. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood

Cliff, New York, 1980.

[24] F. Rellich. Perturbation Theory of Eigenvalue Problems. Gordon and Breach,

New York, 1969.

[25] RT. Smith, J.M. Boyle, J.J . Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and

GB. Moler. Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in

Computer Science, volume 6. Springer-Verlag, Berlin, 2 edition, 1976.

[26] G.W. Steward. Introduction to Matrix Computations. Academic Press, New

York, 1973.

[27] D. Szyld. Criteria for combining inverse and rayleigh quotient iterations. SIAM

J. Numer. Anal, 25(6):1369—75, 1988.

[28] J. von Neumann. Some matrix inequalities and metrization of matrix space.

Tomlr. Univ. Rev., 1:286-300, 1937.

[29] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford Univ. Press, Oxford,

1965.

[30] Z. Zeng, T.Y. Li, and L. Cong. Solving eigenvalue problems of real nonsymmetric

matrices with real homotopies. SIAM J. Numer. Anal, 29(1):229-248, 1992.

50

"llllilli'liiillll

