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ABSTRACT

ASYMPTOTICALLY OPTIMAL AND ADMISSIBLE ESTIMATORS IN
COMPOUND COMPACT GAUSSIAN SHIFT EXPERIMENTS

By

Suman Majumdar

The problem of finding admissible and asymptotically optimal
compound and empirical Bayes rules is investigated in the context of

decision about an infinite dimensional parameter.

The component experiment considered is a homogeneous
experiment {P; : 6§ €H} on some measurable space (%,%¥), where H is a
real separable Hilbert space, such that the map

b <8,.>4 := 1n py(.) +1612/2
is linear from H into the real-valued measurable functions on (%,%),
where p, is a density of Py wrt u=P;. This experiment is a Gaussian
shift experiment in the sense of LeCam (1986) and { <#6,.>, : 6 €H}
is the isonormal process on (%,¥F,u) in the sense of Dudley (1967).
The component problem estimates the shift parameter 6 restricted to a

compact subset of H under squared error loss.

We consider the compound and empirical Bayes formulations of
the above component problem and show that all Bayes estimators in
the various formulations are admissible. Qur main result : Any Bayes
compound estimator versus a mixture of iid priors on the compound
parameter is asymptotically optimal if the mixing hyperprior has full
support. Analogously any Bayes empirical Bayes estimator is

asymptotically optimal if the empirical Bayes prior has full support.



Using the (weak) conditional expectation representation of the
Bayes estimator in the component problem and weak compactness of the
unit ball, along with the fact that {<6,.>, : 6€H} is the
isonormal process and consequences thereof, we reduce the question
of asymptotic optimality to that of an L; consistency of posterior
mixtures. We prove the consistency result, which complements Datta
(1991a), by assembling some previously known results and repeatedly

using the Gaussian shift structure.

The dissertation also characterizes the support of a Dirichlet
hyperprior on the set of all probability measures on a separable
metric space to be those probability measures whose supports are
contained in that of the parameter measure (of the Dirichlet
hyperprior), proving a result stated in Ferguson (1973) for the line

and providing examples of a full support hyperprior.
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CHAPTER 0
INTRODUCTION

In Section 1 we describe the idea of compounding a decision
problem (called the component problem) first espoused by Robbins
(1951). In Section 2 we review that part of the existing literature
on compound decision theory which can be considered to be a
forerunner to our work and present a summary of it. In Section 3 we
state the notational conventions to be followed throughout the
dissertation (some of these conventions will be used informally in

Sections 1 and 2).

1. The component and the compound problem.

The component problem is a usual decision theory problenm,
consisting of a parameter set O, a family of probability measures
{Py : 6€O} on some measurable space (%,F), an observable %-valued
random element X~P, under f, an action space A, a loss function
L: Ax©—[0,00) and decision rules t, t:%—A such that L(t,0) is
measurable V 8 with risk R(t,0) := PyL(t,6).

For consideration of Bayes solutions, we fix a o-algebra of
subsets of © such that each of the maps (x,0)—L(t(x),f) is jointly
measurable. Let @={w : w is a probability on ©}. For we @, let
r(w) and 7, respectively denote the minimum Bayes risk and a Bayes
rule versus w in the component problem (we assume existence of 7,

for every w). That is,

r(w) = {:\ JR(t,0)dw(8) = [R(7y,0)dw(8).
S C)
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The compound problem simultaneously considers a number, say n,
of independent decision problems, each of which is structurally
identical to the above component problem. The compound loss is taken
to be the average of the component losses. In the set compound
version a decision about each component parameter is reached by
using data from all the component problems, while in the sequence
compound version only X,, data up to stage a, is used in making the
a-th decision. Thus for each n>1, the compound problem is also a
decision problem, with parameter set O", family of probability

measures {Pp := ailPoa : 8 := (8,...,0,)€O"} on the measurable

space %", observations X=(X;,...,X,) ~Py under @, action space A",

decision rules t:%"— A" such that each L(t,,0,) is measurable, loss

[l
=
~~

|t

5
N’

|

1 n
g) :=n IEL(taaoa)
a=1
and corresponding risk

(1'1) RH(L,Q) :

PBLn(EaQ) .

If we were going to use only the data from a particular
component problem to decide about that component parameter, then the
component problems being structurally identical, there 1is an
intuitive reason to use the same procedure (with different data) in
the different problems. Formally, that amounts to using a compound
procedure t, for which ty(x)=1t(xq) V a=1,...,n, where t is a
component procedure; such a compound procedure is called simple

symmetric.

Let G, denote the empirical distribution of (6,,...,8,). The
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compound risk at § of a simple symmetric t reduces to the component
Bayes risk of t versus G, where t,(x) =t(xq) V @a=1,...,n; as such
it is at least 7(G,), the minimum Bayes risk versus G,, which is

referred to as the simple envelope at §.

For a compound rule t, the
difference D,(t,0) =R,(t,8) -7(G,) is called the modified regret of t
at § and a sequence of compound rules {t : n>1} is said to be
asymptotically optimal (a.o0.) if

(1.2)

Dn(t,8) — 0 as n—oo.

However, it has long been recognized (Hannan and Robbins
(1955)) that the compound problem is invariant under the group of n!
permutations of coordinates; also, almost all the compound rules in
the literature are equivariant under the permutation group. Hence a
more appropriate yardstick to judge the performance of a compound
rule should be the equivariant envelope, the minimum compound risk of
equivariant rules (see Gilliland and Hannan (1986) for a discussion

of equivariance in compound decision problems).

Mashayekhi (1990) has shown that if the component problem
involves a compact (in total variation norm) class of mutually
absolutely continuous probability measures, then the excess of the
simple envelope over the equivariant envelope goes to zero uniformly
in the measures. We shall use that result to extend our optimality
result against the simple envelope to that against the equivariant

envelope.

A sequence of compound rules {t : n>1} is said to be
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admissible if for every n it is admissible in the usual sense.

2. Literature review and a summary.

The problem of exhibiting compound rules which are a.o. as
well as admissible has been an interesting and challenging question
ever since it was put forward by Robbins (1951) in his pioneering
paper of compound decision theory. He considered the problem of
decision between N(-1,1) and N(1,1), exhibited an a.o. compound
procedure and conjectured that the Bayes compound rule versus the
symmetric prior uniform on proportions might have better risk
behavior, exactly or asymptotically, than his a.o. rule. [That it
will not be exactly superior to the bootstrap rule of Robbins was

shown by Huang (1972).]

A.o. compound rules whose components are typically Bayes
versus some estimates of the unknown G, or direct estimates of the
Bayes rule versus G, have been worked out for many different
component problems. In particular, when the component problem is an
estimation problem under squared error loss, Gilliland (1968) and
Singh (1974) obtained a.o. sequence compound rules with rates (we
say t is a.o. with rate a, if XDn(_t;,Q):U(an)) for discrete and
Lebesgue exponential components ;espectively. But these rules are

inadmissible in the sense of the previous section.

Making use of results from Gilliland and Hannan (1974), which

was later published in 1986, Gilliland, Hannan and Huang (1976)

1/2

obtained admissible and a.o. rules with rate n~ where the

component problem was a two-state restricted risk problem. [They did
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not specify admissibility of their rules. But they considered full
support hyperprior mixing of independent identically distributed
(iid hereafter) priors on the compound state space to generate full
support priors on it and looked at the resulting Bayes rules. Since
the risk in their problem is trivially continuous (the state space

is discrete), the resulting Bayes rules are admissible. ]

The first solution to the problem of exhibiting compound rules
which are a.o. as well as admissible when the component problem
involves decision among infinitely many probability measures, has
been provided by Datta (1988/91b). The component problem there is
the squared error loss estimation of an arbitrary continuous
transform of the natural parameter of a large compact subclass of a

one parameter exponential family.

Since then, Mashayekhi (1990) proposed a class of admissible
and a.o. procedures in the restricted risk compact component
compound decision problem. This was extended by Zhu (1992), who
successfully exploited Datta’s (1991a) result about consistency of
the posterior mixtures to obtain admissible and a.o. rules when the
component problem involves equi(in actions) continuous loss
functions in a multiparameter exponential family with parameter set

restricted to a polytope inside the natural parameter set.

The present work seems to be the first to accomplish
asymptotic optimality when the component problem is the estimation
of an infinite dimensional parameter. In fact, it accomplishes
admissibility and asymptotic optimality simultaneously. Qur

component distributions, indexed by a real separable Hilbert space,
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form a Gaussian shift experiment. We consider the component problem of
squared error loss estimation of the Hilbert-valued shift parameter
restricted to a compact subset of the Hilbert space. We note that
all Bayes estimators in our compound problem are admissible. Qur
main result is that a Bayes compound estimator versus a mixture of
iid priors on the compound parameter is a.o. if the mixing

hyperprior has full support.
The dissertation is organized as follows.

Chapter 1 treats the compound estimation problem. Section 1
formally introduces the component distributions as satisfying an
assumption (A). That assumption immediately identifies the
experiment to be a Gaussian shift experiment. Section 2 describes
the Bayes estimator versus the above mentioned mixture of iid priors
and establishes a bound on the modified regret of such an estimator.
Section 3 establishes an upper bound on the distance between two
component Bayes estimators in terms of the L; distance between the
corresponding mixtures. Section 4 combines the results in Sections 2
and 3 to establish asymptotic optimality, first against the simple
envelope and then against the equivariant envelope, assuming
posterior mixtures are L; consistent for the empirical mixture. In
this section we provide a closed form expression of our estimator .
and examples of a full support hyperprior. In Section 5, we show
that every Bayes estimator in our compound problem, in particular a

Bayes estimator versus a mixture of iid priors, is admissible.

In Chapter 2 we establish the consistency of the posterior

mixtures assumed in proving asymptotic optimality in Chapter 1. In
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the process we get that the very general sufficient conditions given
by Datta (1991a) for this kind of consistency of the posterior

mixtures are by no means necessary.

Chapter 3 looks at the empirical Bayes problem of Robbins
(1951, 1956) with the component problem described above.
Admissibility and asymptotic optimality (defined in that chapter)

follow from the compound results.

Finally, in Section 1 of the Appendix we prove two
measurability lemmas that are used in the main body of the
dissertation; in Section 2, we characterize the topological support
of a Dirichlet prior on a separable metric space, which is used in

Section 4, Chapter 1 to give examples of a full support hyperprior.

3. Notational conventions.

Given any n-tuple x=(xj,...,x;) of elements from a set, for
each 1 <a<n, x, denotes the a-tuple (x;,...,xX,). For probabilities
Pyy...,Py, i;n(lpi denotes their measure theoretic product; when P;=P V
i, i-_%lpi is denoted by P". For sets {A; : 1<1i<n}, i;n(lAi denotes their
set theoretic product; when A;=A V i, iil(lAi is denoted by A". To
denote the integral of a function f with respect to (wrt hereafter)
a measure p, we will interchangeably use the standard integral
notation [fdy and the left operator notation u(f), or even uf;
depending on typographical convenience and the emphasis to be
conveyed, the dummy variable of integration in the integral notation
will be sometimes displayed, sometimes only partially displayed and

sometimes hidden altogether. Sets are always identified with their
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indicator functions. The same is true for probabilities and their
induced expectations. R stands for the real line. If X is a random
element on a probability space (.,.,P), then PX~! denotes the P-
induced distribution of X on the range space. The notation a := b
will mean that a is defined to be b. The set theoretic complement of
a set A will be denoted by A, except in Section 2 of the Appendix,
where the more traditional A® will be used. The following numbering
convention will be used throughout : All numberings of displays and
statements are local within a chapter. For chapters with multiple
sections, (2.1) will refer to the first display in the second
section; for chapters with a single section, (3) will refer to the
third display. On occasions when we have to refer to numberings in
other chapters, the reference will be explicit, e.g. Theorem 1 of

Chapter 2 or Lemma 1.1 of Chapter 1.



CHAPTER 1
THE COMPOUND ESTIMATION

In this chapter we consider the compound problem as described
in Chapter 0 corresponding to the Gaussian shift component problem to
be introduced below. We prove asymptotic optimality of Bayes rules
versus (full support hyperprior) mixture of iid priors [Theorem
4.1], which is the main result of the dissertation, using the
consistency of the posterior (distribution of 6, under the mixed
compound prior given x _;) mixtures, a result of independent
interest stated and proved in Chapter 2. Section 1 describes the
component problem to be investigated and assembles some pertinent
facts about it. In Section 2 we calculate a Bayes estimator in the
compound problem versus a mixture of iid priors on the compound
parameter and obtain a useful upper bound on its absolute modified
regret. In Section 3, we obtain an upper bound on the distance
between two component Bayes rules in terms of the L, distance between
the corresponding mixtures, which 1is wused in Section 4 in
conjunction with the bound on the absolute modified regret obtained
in Section 2 to prove the main result. In Section 5 we show that
every Bayes estimator in the compound problem, in particular a Bayes

estimator versus a mixture of iid priors, is admissible.

1. The Gaussian shift component.

Ve consider the squared error loss estimation problem in a

Hilbert indexed Gaussian shift experiment. Let H be a real separable
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Hilbert space (with |[f]l denoting the norm of an element f in H and
<.,.> the inner product) and {P, : 6€H} be a family of
probabilities on a measurable space (%,¥) specified by (strictly
positive) densities {p, : § €H} wrt u=P;, such that
(A) the map 6— <6,. >, := In po(.)+||0|P/2 is linear from H
into the linear space of all real-valued measurable

functions on (%,%).

Ve consider the component problem with © a compact subset of

HDADO and L(a,d) =lla—0[R.

The contents of the remainder of this section are as described
below : We show that {<#,.>, : 6§ €H} is the isonormal process on
(%,F,u) in the sense of Dudley (1967) [Remark 1.1], which in turn
identifies the experiment under investigation to be a Gaussian shift
experiment in the sense of LeCam (1986) [Remark 1.2]. We show that
(0,x)—py(x) and (w,x)—py(x) := [pg(x)dw(d) are jointly measurable
when Q (the set of all probabilities on ©) is endowed with the
topology of weak convergence and the corresponding Borel o-field
[Remark 1.3]. We then show that a Bayes estimator in the component
problem must be the (weak) posterior expectation [Lemma 1.1]. Ve
close the section by proving two lemmas [Lemma 1.2 and Lemma 1.3]
describing certain features of the component problem that are used

in the sequel.

Remark 1.1 (The isonormal process). Since by (A)
p0=exp(—||0||2/2+ <b,.>,) V 6€H, by representing the lhs below
as a p integral, using the linearity of the map in (A) to treat the

integrand and representing the resulting integral as a Pn+t0
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integral, we get V t€R and 0,p€H,
Plexp{t <6,.>(}] =exp{t <b,n> + t26R/2},
which by uniqueness of moment generating function proves
(1.1a) P,<8,.>0" 1=N(<8,7>, I8/ V 8,n€el.
The linearity assumption in (A) then shows

(1.1b) {<#0,.>, : 6€H} is a centered Gaussian process on
(%,%F,u).

By the (polar) representation of the product of two numbers in terms
of the square of their sum and the individual squares, using the

linearity of the map in (A) and (1.1a) with n =0, we get

(1.2) p(<0,.>0<n,.>4)=<b8,7> V é,nel.

Now, the assertions in (1.1b) and (1.2) show that the process
{<6,.>, : 0€H} is isonormal in the sense of Dudley (1967). //

Remark 1.2 (Gaussian shift experiment). Note that by (1.1b), the
experiment under investigation is a Gaussian shift experiment in the
sense of Definition 2 of Chapter 9 of LeCam (1986). Even though the
definition in LeCam does not require the indexing set to be a
Hilbert space, discussions following it show that it suffices to

restrict attention to that case. //
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Remark 1.3 (Joint measurability of densities). Let {ej : j>1})
be an orthonormal basis of H. By (1.1b) and (1.2), we get that
{<ej,. > : j2>1} are independent random variables on (%,%F,u). Let

6, := <0,ej >e. By linearity of the wmap in (A),
<bp,.>p=% <0,ej> <e,.>. Since 6,—0 in H, <6,,.>,
=1

converges to <0,.>, in Ly(p) by (1.2); since the <#6,,.>, are

n

the partial sums of a sequence of independent random variables, by
Levy’s Theorem [Theorem 3.3.1, Chow and Teicher (1988)], the
convergence is pu-a.s. as well. Since <#6,,.>, is continuous in §
and a measurable function on %, it is jointly (in 6 and x)
measurable by Doob’s Theorem. That implies the joint measurability

of its p-a.s. limit and hence that of p,.

Let €}, the set of all probabilities on the Borel o-field of O,
be endowed with ~ the topology of weak convergence and the
corresponding Borel o-field. For we ), let py(x) := [py(x)dw; this
is clearly a density of the mixture P, := [Pydw wrt u. The map
(w,x)—p,(x) 1is jointly measurable by the joint measurability of

(6,x)—py(x) and Lemma 1.2 of the Appendix. //

The next lemma characterizes a Bayes estimator in our
component problem. Specializing the notation introduced in Chapter 0
we shall denote a Bayes estimator (versus w) in the component

problem by 7.

Throughout the remainder of the dissertation, let
(1.3) M =sup{lél : 6€0O}.

Lemma 1.1. On the common support of {P, : veQ}, 7, is the
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unique mapping into H satisfying

<T1yh> = é <n,h > (py/pu)dw(n) V hel.

Proof. We first show that for any probability measure = on O,

J an unique element v(7) in H satisfying
(1.4) <v(m),h> = [ <n,h>dn(9) V hel.
©

Since the map h— [ <n,h>dn(n) is a linear functional on H whose
)
norm is bounded by M, the assertion of (1.4) follows from the Riesz-

Frechet Theorem [Theorem 5.5.1, Dudley (1989)].

Note that if p,(x) is positive, the map BO—py(x)/p,(x) is a
density (wrt w) of a probability measure &y on ©. By (1.4), it is
enough to show that 7,=v(@) on the common support of {P, : v€Q}.
Now, by Fubini’s Theorem, the Bayes risk (versus w) of an estimator

t is equal to

(1.5) JLLIt(x) — 8Pd@y ]dp(x)dp(x).
% O

Triangulating around v(&y) and expanding the norm square of the sum,

the inner integral in (1.5) is

“t(x) —v(@y) |F + é"v(‘:’x) - ale‘st
which is minimized iff t(x) =v(&y), completing the proof. //

Lemma 1.2. For every finite sequence {6, : 1<i<k}CH and {a
. 1<i<k}CR,

kK a k
2log( f .Hlpgia'du) =“.Elai0i
1= 1=

- Lajop.
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Proof. Starting with the functional form of p, implicit in
1
(A), the assertion follows by using the linearity of the map in (A)

k
and the functional form of P> where fz.zla.iOi. //
1=

Throughout the remainder of the dissertation, let ||f||; denote

the Lg(p#) norm of a function f in Lg(p).
Lemma 1.3. For every w € () and every integer q >1,

2
—-1)M*“/2
P € Lq(#) and [pyfq < @™ M2,
Proof. Writing p,% as a q-fold iterated integral, interchanging
the order of integration on % and ©9, applying Lemma 1.2 (with k=q

and a;=1V i), and using (1.3), we get

(1.6) p(p,3) < exp{a(q —1)¥%/2},

completing the proof. //

2. Estimators induced by hyperpriors.

In Subsection 2.1 we show that the a-th component of a Bayes
estimator in the compound problem versus a mixture of iid priors on
the compound parameter is the Bayes estimator in the component
problem versus the posterior mean under the mixing hyperprior given
the data from the other problems; in Subsection 2.2 we obtain an
upper bound on the absolute modified regret of such an estimator in
terms of the distance between its a-th component and a component

Bayes rule versus the empirical state distribution.
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2.1. Bayes versus mizture of iid priors.

Since © 1is a compact metric space, by Theorem II.6.4 of
Parthasarathy (1967), Q with the topology of weak convergence is
also a compact metric space; let B({2) denote its Borel o-field. Let
A be a probability measure on (Q,B(f)). Ve take A-mixture of iid
priors on O" (for each n) and denote that prior by @p g [The

measure @, , is defined on the class of measurable rectangles by

1=

n
(2.1) G)A,n(BIXB2X""XBn)=£ Hl“’(Bi)dA’

and then extended to the product o-field. Note that by Lemma 1.1 of

the Appendix the above integrand is measurable. ]

Let t=(ty,...,t,), where t,:%"—A is a measurable function,
be an estimator in the set compound problem. The a-th component

Bayes risk of t versus ©An is

(2.2) R(tas@p,0) = / in—l (1] | ta— 0o F dPy_dw]dP,”~1dA.
Disintegrating the joint probability on %"~ IxQ determined by
(dP 2~ 1dA) as (dA"'“dPDA,n—l)’ where A,p, is the posterior
distribution of w (under A) given (Xy,...,Xq_1,Xq415--->Xn) [since
2 is a Polish (in fact compact metric) space, by Theorem 10.2.2 of
Dudley (1989), such a disintegration exists], we get

(2.3) 1hs(2.2) =g{n_l[£é [t — 00 P dPy dwonldPg, =,

where w,, denotes the A,, mix of w’s. Clearly, rhs(2.3) is
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minimized by choosing t4(x) =7y, (Xa). Since the compound risk is
the average of the component risks, the Bayes estimator in the set

compound problem versus the prior ©An is given by t, where

(2.4a) éa(ln) =Twa,n(xa)-

A similar argument shows that the Bayes estimator in the

sequence compound problem versus the prior @A is given by t', where

(2.4b) t'a(%n) =Twa’a(xa)-

2.2. A useful inequality on the modified regret.

Recall from Chapter 0 that G, stands for the empirical

distribution of 4,,...,0,. For every § € ©", by definition,

R 1N R .
Dy(t,8) =n 102_:1 PQ[" ta—ealF—" ta“’ealF]’
where t,(x) =TGn(Xa). Using Cauchy-Schwartz inequality to bound the
absolute difference between [dI? and b by |d+b| times lld—bl,
triangle inequality in H and (1.3), we get
~ n ~ ~
(2.5) |Dn(£,8) | 54Mn-121!’g||ta—ta||.
a=

Since t,(x) = ‘rwa’n(xa) ,

(2.6) Pgl ta — Ea | = PyP, o "an = TGy
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to investigate the bound on the absolute modified regret given by

(2.5), we therefore consider Py 7, —7,| , where § €O and w,r €.

3. A bound on the L;(Py) distance between two component Bayes rules.

In Proposition 3.1 we derive a bound on Py, —7,| essentially
in terms of the total variation distance between the corresponding
mixtures. Abusing notation we shall use |loll to denote the total

variation norm of a signed measure o on (%,¥F) as well.
The next three lemmas are used to prove Proposition 3.1.

Lemma 3.1. Let <w,x>g := [ <8,x>(dw(F). Then

p<w,. >0_1=N(09 JJ <n,§>dw(n)dw()).-

Proof. By (1.1b), <w,.>, is normally distributed if w is
finitely supported. Since (#,7)— <6,7> 1is continuous and bounded
(on compact ©2), the map taking (w,7) to the Lo(p) inner product of
<w,.>p and <m,.>, (which by interchanging the order of
integration and using (1.2) is seen to be (wxwm)<.,.>) is
continuous. Continuity of w— <w,.>, in Ly(u) follows. Since Q
has a dense subset consisting of finitely supported measures
[Theorem II.6.3, Parthasarathy (1967)], and a family of normally
distributed random variables is closed under L, convergence, we get
that <w,. > is normally distributed. The expression for the mean

and the variance follows by using Fubini’s Theorem. //

The following lemma is Lemma A.1 of Datta (1988).
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Lemma (Datta-Singh): For (y,z,Y,Z,L)efR5 such that z#0 and
L>0,
2| {15-F%| AL} < |y =Y| + (15 +1)|z - Z].

Lemma 3.2. Given 6>0, 3 {hy,...,hj}CW := {hel : [h]<1}

such that, for all real numbers a and b,

exp( —M?/2—a+b)u(py 7w —Txl[ <8,- > <a][ <w,.>y>b])
(3.1)
I
S25+,Elﬂlf <8,h; > pgd(w—7)| + 3P, —Pr|.
i=

Proof. Starting with the definition of p,( = [pgdw), recalling
the functional form of p, implicit in (A), using (1.3) to bound p,
below, applying Jensen’s inequality to the exponential function, and
noting that py[ <8,.>j<ale”™®<1 and e<w">02eb[ <w,.>(>b],

we get
exp(—M2/2—a.+b)p0[ <b,.>p<a][ <w,.>3>b] <p,.

In view of the above it suffices to show that u(p. 7, —7x|)
can be bounded by rhs(3.1).

By Lemma 1.1,
(3.2) 1T —Txl= VA [ <.,h>do— [ <.,h>d#|},
W e e

where @ and # are as in the proof of Lemma 1.1.
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Applying Datta-Singh Lemma with z=p, y= [ <75,h>p,dw(n),
(5]
Z=pg, Y= J <n,h>pydr(n) and L =2M,
©

(3.3) Pul (é <n,h > pydw(n)/py) — (f) <n,h > pyd=(n)/px|

< lefa <n,h>pyd(w—7)(n)| + 3M|py, — px| -

Since O is compact by assumption and W 1is weakly compact by the
Banach-Alaoglu Theorem, © x W is compact. Since H is separable, W,
and hence O x W, is metrizable. Since (8,h)— <@,h > is a continuous
function on OxWy,, it is uniformly continuous. That implies
{h— <8,h> : €06} is an equi(in 6) uniformly continuous family of

functions on W, so that for every we

(3.4) plf(<8,h> — <6,h'>)pydw|
< g|<0,h> — <6,k > |

<é,

if the distance between h and h’, in a metric metrizing W, is less
than e =¢€(6). If weak-balls of radius e around {h;,...,h;} cover W,
then triangulating around appropriate h;, using (3.4) and dominating

the maximum of I non-negative terms by their sum, we get
I

(3.5) # G 1S <8h>pyd(w—m)[) < 25+-21”| J <8,h; >pyd(w—m)]|.
1=

The lemma follows from (3.2),(3.3) and (3.5). //

Proposition 3.1. Let y>0 be fixed arbitrarily. Then, 3 a
number % such that
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Pl 7w = 7x| < 57 + 3Py — Pr|.

Proof. For arbitrary real numbers a and b, partitioning H into
the sets [ <0,.>g<a][ <w,.>y>b], [<0,.>¢<a][ <w,.>5<b]
and [ <6,.>7>a], using the bound ||7,—7,|<2M on the last two
sets and Cauchy-Schwartz inequality in Lg(u#) on the remaining

2
factors, and bounding ||py|p by eM/2 (see Lemma 1.3), we get

Pyl 7w — Tl
(3.6) < MM (U <0,. > ¢ >a]) 2+ (ul <w,. > ¢ <)V
+ (Pl Tw—Txll <8,.>p<a][ <w,.>y>b]).

By (1.1a), using the familiar bound on the upper tail of a

normal distribution and (1.3), we get, for a>0
(3.7) pl <4,. >0>a]S(27r)_1/2Ma”1exp(—a2/2M2).
Similarly, using Lemma 3.1, for b<0

(3.8) [ <w,.><b]<(2r) " Y2M(—b)lexp( —b2/2M2).

In view of (3.7) and (3.8), the first term in rhs(3.6) can be
made arbitrarily small by appropriate choice (to be made later) of a
and b. To treat the second term, we shall use Lemma 3.2 and
concentrate on the term u| [ <8,h; > pgd(w—7)| in the bound (3.1).

A<6,h> -

Expanding the function A—e in a Taylor series around
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A=0 up to 2nd order, collecting the terms in lhs(3.9) on one side
of the equality, and using Cauchy-Schwartz inequality in H and (1.3)

to bound the other side, we get for A>0 and he W,

(3.9) | <8,h> —i(e’\<0’h> —1)| < M2eMM/2,
By (3.9) and the triangle inequality, with o abbreviating w—r,

(3.10) ul f <6,h>pydo| < 2AM 4 A[|P, —Pr||+ u| J <PMpyda|].

We now show

A<l
(3.11) pl fer <Oh>pd(w—7)| =Py |py—prl

as a consequence Of
A<6,h A<6,h - _
(3.11a) p(fe* <02 pydw, [ <% > podr) =1 =Py, (py,pr) 71

By (1.1a), linearity of inner product and the map in (A), we get, V
m>1and V (6,...,0y) €O™,

p({A<8,h> + <6, > b T = Py({<6,. > 2D

or equivalently,

e)\<0i,h>

n({

i=m\ —1 _ i=m, — 1
Pgi}izl) = P)\h({Poi}izl) .

Hence, if w and = are finitely supported, (3.11a) holds. Since by
Theorem I1I.6.3 of Parthasarathy (1967) @ has a dense subset
consisting of finitely supported measures, to prove (3.11a) for
general w and 7w it will suffice to show that for every v in Q, as

vV, fe’\<9’h>p0duk(0) [p,,k] goes to fe’\<0’h>p9du(0) [p,] along
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a subsequence g [Py, ] a.s.. Actually we shall show the continuity of
the map taking (v,v') to the Lo(u) [Ly(Py,)] inner product of
fe’\<o’h>p9du(0) and fe’\<0’h>p0du'(0) [p, and p,]. We do that by
interchanging the order of integration on % and ©2, using Lemma 1.2
(with k=2, a;=ap=1) to evaluate the u integral (which is
continuous on ©2, by continuities of vector addition and inner
product and the exponential function, and bounded on ©? by (1.3))
and Lemma III.1.1 of Parthasarathy (1967). The bracket alternative
is shown by representing the L,(P,;) inner product as a u integral,
again interchanging the order of integration on % and 62, using
Lemma 1.2 (this time with k=3, a;,=1 V i) to evaluate the integral
(which is bounded continuous on ©? by the same reasons as above) and

Lemma III.1.1 of Parthasarathy (1967) again.

Combining (3.10) and (3.11), we get

(3.12)  1hs(3.10) < AMZeM +§||PW—P,,||+§;1( |Pw— PxlPyp) -

By partitioning % into [py, >c] and [py, <c], and applying

Cauchy-Schwartz inequality in Ly(u), we get

(3.13)  p(|pw—PrlPap) < IPu = Prll+11Pw — Pr o {#pa 2Py > <132

Since the family {p),®2 : A€[0,K], he W} is uniformly p-integrable
(it has wuniformly bounded higher moments) for every K>O0,
{I‘P,\h2[p,\h>c]}1/2 can be made arbitrarily small, uniformly in A and

h, by choosing c large enough.

Now choose a in (3.7) and b in (3.8) so that, uniformly in w

and 6, 2MeM2/2{(;t[ <8,.>, >a])1/2+(p[ <w,. >05b])1/2} <. Then
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choose § small enough so that exp(M2/2+a.—b) <v/6. Let I correspond
to this 6 as in Lemma 3.2. Now choose A small enough so that
MM2e*M < §/I. Then choose c large enough so that, uniformly in w and
x as well as in heW, (1/A)pw—Prh{spyilps, > c1}/2<6/1
(possible since by Lemma 1.3 and the triangle inequality in Lo(p),

M2
IPw—Prlp < 2¢M 72).

Vith these choices, by (3.12) and (3.13),
(3.14)  1hs(3.10) <26/ + (c+1)|Py —Px /A

The proof of the proposition 1is now completed [with

2
3G={3M+/\—11(c+1)}exp(Mz—+a—b)] by (3.6), choice of a and b, use
of Lemma 3.2 with the above mentioned choice of § and substitution of

the bound from (3.14) in Lemma 3.2. //

4. Asymptotic optimality.

In view of the bound obtained in Proposition 3.1, (2.5) and
(2.6), the question of convergence of the modified regret to 0
reduces to the question, loosely speaking, whether P“,mn is I

consistent for PGn' More specifically, it suffices to show

a=1

(4.1) v PQ"PWa,n_PGn" — 0, uniformly in §, as n—oo.

In Theorem 1 in Chapter 2 we establish such a consistency
result for the non-delete version for sufficiently diffuse A. The
result involving the delete versions will follow as a corollary

(i.e. Corollary 1 in Chapter 2).

Now we are in a position to prove our main result. For a
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finite measure m on the Borel o-field of a second countable
topological space ¥, let S,, denote the topological support of m.
[For the definition of the topological support of a finite measure
on a second countable topological space see Section 2 of the

Appendix. ]

Theorem 4.1 (Main Result). If S, =Q and t is the Bayes

estimator in the set compound problem given in (2.4a), then
(4.2) {I/IP(,"EG—EO,"——»O, uniformly in 8, as n—oo.
a=1 =

Consequently, t is a.o.

Proof. The second part of the assertion follows from the first

part and the bound (2.5).

For the first part recall from (2.6) the representation
PQ“ ta — ta " = PQP()Q" Twan = TGy, ", since v in the statement of
Proposition 3.1 is arbitrary, the assertion follows from that

proposition and the L; consistency (4.1). //

Remark 4.1 (Asymptotic optimality against the equivariant
envelope). As indicated in the introduction we now extend our
optimality result against the simple envelope to that against the
equivariant envelope. If the component problem involves a compact
(in total variation norm) class of mutually absolutely continuous
probability measures, then the excess of the simple envelope over
the equivariant envelope goes to zero uniformly in the measures
(Remark 4 in Mashayekhi (1990)). Recall that by assumption the
measures {P, : €O} are mutually absolutely continuous. Since © is

topologically embedded in 2 by Lemma 2 of Chapter 2 the map f—p, is
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continuous in Ly(p). That implies continuity of 6—Pp in total
variation norm by the moment inequality. Since © is compact, {P, :
6 €O} is compact in the total variation norm. By triangulation
around the simple envelope, the asymptotic optimality against the

equivariant envelope follows from Theorem 4.1. //

Remark 4.2 (Asymptotic optimality of Bayes sequence compound
estimators). We now prove the asymptotic optimality of the Bayes
sequence compound estimator t’' given in (2.4b). For 1< a<n < oo,
let ton(xp) = ‘an(xa) s E=(%,,.-5t0n) and ¥ =(%,...,8m). Now
note that (with Pj and 7 abbreviating qu and TGj respectively), by

the definition of G, _,,

k=1 k=1

J§l P.]"Tk_a.]lF Zj_z.:l PJ"Tk_l—HJIF v k=n,n—1,...,2.
Applying the above iteratively with k=n,n—-1,...,2

n n

£ oo < & pjn-of

That 1s,

Rn(,8) <Ru(%,9) Va>1,
which implies
(4.3) Dy(t',8) <R, (t',8) —R,(¥',0).
It should be noted that the display immediately preceding (4.3) is
essentially inequality (8.8) of Hannan (1957).

From the definition of R,, t' and %, following the steps
involved in showing (2.5),

(4.4) |rhs(4.3)] g4Mn-la§1PQ||t'a—£aa||.
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From (2.4b) and the definition of t,q, using an analog of
(2.6), Proposition 3.1 and (4.1), it follows that

X PQ" t'n — ton || —0 as n—oo.

Using subadditivity of supremum and the fact that the limit of a
convergent sequence equals its Ce’saro limit, we get that rhs(4.4)—0

uniformly in 6.

If we can show that XDn(ﬁ"Q) is positive, the
asymptotic optimality of t’ will follow by (4.3) and convergence
(uniform in @) of rhs(4.4) to 0.

Ve shall show that XDn(LQ) is positive for every compound

t. Since jRn(L,Q)dw"Z r(w) for every w, in particular for

procedure
G,, we get that VRn(t 9) > Vr(Gn) That, by definition of VDn(L 9)

and subadd1t1v1ty of supremum, implies the positivity of VDn(L 9).//

Remark 4.3 (Calculation of the a.o. Bayes compound estimator).
From (2.4a), Lemma 1.1 and the definition of w,p, it follows by a

successive deconditioning argument that

[f...] <8a,h> ifllpoi()g)iﬁldwg i-1(6,)]

(4.5) < to(x),h> = - TR
[f...] iglpoi(xi)igldw‘ i-1(6,)]

6. . . . 6
where w is the posterior mean of w given §, and w V= [wdA; for

details see Section 3 in Chapter 4 of Datta (1988).

To use (4.5) to calculate our Bayes compound estimator, we

. ) 0.
need to choose a hyperprior A such that the posterior mean w™ has a
nice form for all i. With that end in mind, we settle for the

Dirichlet priors described below.

Let a be a non-null finite Borel measure on ©, where © is an
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arbitrary separable metric space. In Section 2 of the Appendix we
show (compiling some results from Section 4 in Ferguson (1973)) that
there exists a probability measure 9P(a) on (2,B(N)) with the
following property : for every finite measurable partition
{By,...Bp} of O, the distribution of (w(B,),...,w(By)) under P(a)
is Dirichlet with parameters (a(B;),...,a(By)). We call 9(a) the
Dirichlet prior with parameter a. By Theorem 2.1 of the Appendix,
the topological support of U(a) is 2 if that of a is ©. An example
of a finite Borel measure a on O with full support is obtained by
choosing a countable dense subset {6, : n>1} of © and selecting
a=§lcn50n, vhere ¢, >0 V n  and nilcne(o,oo). By Theorem 1 in

n=

Ferguson (1973),

wgn:(a(@)+n)—1(a+ijl60i), n>0.

When © is a subset of the line, a Monte Carlo method for
calculation of rhs(4.5) has been given by Kuo (1986). The problem of
numerical evaluation of our estimator remains and is worth

investigating. //

5. Admissibility.

The argument we use to prove admissibility of Bayes compound
estimators is fairly standard in decision theory : A unique Bayes
rule is admissible (see Theorem 1 in Section 2.3 of Ferguson (1967)

for a precise statement).

Let € be a prior on the compound parameter 8. ( will denote the

joint distribution £P, on (x,8). Note that n—1£:0|lta—00"2, the
= a=1
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Bayes (versus §) compound risk of an estimator t, is minimal iff
q ta—0a|F is minimal for every a. Now {t,—04|f can be represented
as [Py f||ta—00||2dPoad£a)d£, where £,=£60,~!. Since the
expression inside parenthesis in the previous line has, by Lemma
1.1, a unique minimizer, there exists a unique Bayes compound

estimator versus every prior . That implies the admissibility of

every Bayes compound estimator.



CHAPTER 2
CONSISTENCY OF THE POSTERIOR MIXTURES

In this chapter we show [Theorem 1] that P“,n’n (the non-delete
version of the discussion at the beginning of Section 4 in Chapter
1) is L; consistent for PGn—l in the sense of (4.1) of Chapter 1. Ve
actually prove the result with n replaced by (n+1) and obtain (4.1)
of Chapter 1 as a corollary [Corollary 1]. For the rest of the
chapter let & and A  abbreviate Wn4ln+1 and An+l.n+1
respectively. Before proceeding further we note that & can be
interpreted as the posterior distribution of 6,,; given
(Xy5.--,X3) = (xq5.-+,%X5) in the Bayes compound model with (n+1)

components.

Consider the following Bayes model on 2 xO" x B":
(1) Bayes model: w is distributed as A and given w, 8 is distributed

as w?= X w and given § and w, X is distributed as P,= X P, .
a=1 8" a=1 ba

The above model gives rise to the following marginal model:
(ii) Bayes compound model: §=(0;,...,6,) is distributed as @, , and
given 8, X=(X{,...,X;) is distributed as P,, where DA n is the A

mixture of w".

Since © and hence 2 (with the weak convergence topology) is a
Polish (in fact compact metric) space, all conditional distributions
are regular by Theorem 10.2.2 of Dudley (1989). Datta (1991a) shows
[see his Proposition 2.1] that under model (ii), with n replaced by

n+1, & is the posterior distribution of 6, ,, given

(Xl,...,xn) =(xl,...,xn).

29
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Ve now develop the machinery needed to prove Theorem 1. There
are four propositions leading to the proof of Theorem 1. Four

auxiliary lemmas are needed to prove the propositions.

The key to the proof of Theorem 1 is the inequality (17)
proved in Proposition 3. The force of Proposition 1 is used in part
in the proof of Proposition 3 and later in full in the proof of
Theorem 1 to treat the denominator of the second term in the bound
(17); it is the only link in the proof where the assumption S, =
is used. Proposition 2 is used to treat the numerator of the second
term in the bound (17). Proposition 4 disposes of the third term in
the bound (17).

Lemma 1. For every {w,7}c, log(p,/pr) € Ly(x) and

2
Log(pu/pr) b < ™M s~ pris.

Proof. Since the reciprocal function is convex on (0,00), the
area under the reciprocal curve between a and b, where 0 <a<b< oo,
is smaller than the area under the straightline joining the points
(a,a~1) to (b,b~1), which is equal to (b—a)(a~!+b~1)/2. That

gives

Ilog(pw/pw)lSlPu‘?r'(Pw_l+P7r_l)/2 a.s. (/‘),

which implies, via Cauchy-Schwartz inequality,

(1) 2 Log(pu/pr) o < IPw — Prlul#(Po ™ +px ~ 1414,

Applying Jensen’s inequality to the function XHX—j, which is

convex on (0,00) V j>1 and (trivially) for j=0,
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(2) p“,-j < fpo_jdw Vwe and V j described above.

Applying (2) with j=1i on p, and j=4—1 on py, interchanging the
order of integration on ©2 and %, and using Lemma 1.2 of Chapter 1

(vith k=2, a;= —i, ag=i—4), ve get
(3)  w(poTipr ) =exp{27 | —i0+ (i —4)nf +il6R + (4-i)n ]}
The exponent in rhs(3) simplifies to

27 (24 1)I0P 4+ (i2-9i +20) P +2i <O, > (4—1)].

For all i=0,1,...,4, the coefficients of |8I7, ||17||2 and <0,p> are

all non-negative and hence, by (1.3) of Chapter 1, the exponent in
4

rhs(3) is bounded by 10M2. Since E(§)=24, using (3) with 10M2
i=1

bounding the exponent, we get
2
(4) second factor in rhs(1) < 2e5M°/2,

The lemma follows from (1) and (4). //

In what follows, any reference to a topology of  will be to

the topology of weak convergence.
Lemma 2. w—p, is uniformly continuous from @ into Ly(u).

Proof. For ;=0,1,2,3,4, writing p“,,j (and p,.4_j) as a j (and
4—j) fold iterated integral, interchanging the order of integration
on & and ©* and using Lemma 1.2 of Chapter 1 (with k=4,

a1=...=a4=1),

(5) o prtidp = W xrt i (expl2 ™! {“ii:loi‘k _él“adfz}]).
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By repeated application of Lemma III.1.1 of Parthasarathy (1967), if
wp—w then wnjxw4—j—>w4 weakly on ©%. Since the integrand in
rhs(5) is a bounded continuous function on ©%, using (5) twice we
get

fpwnjpf _Jd#—-’fpw'tdp as wp—w.

Expanding (p“,n-—p“,)4 and applying the above to the integral of each

term,

[ (Pu, —Pu)1du—0 as wy—w;

that establishes the asserted uniform continuity because the weak

topology of  is metrizable as a compact metric space. //

Let
(1) Ar(w) := [log(px/Pw)dPx.

Lemma 3. m—A,(w) is equi(in w) continuous.

"Proof. For 7 and v in 2, triangulating around [log(px/p.)dP,,
(6) |Ar(w) = Ay(w)| < | Jlog(pr/pu)d(Pr —P,) | + |A,(7)].
By Cauchy-Schwartz inequality in Lo(u),

(7) 1st term in rhs(6) Slllog(pﬁ'/Pw”b [P — Pvibs

by Lemma 1, the triangle inequality in L;(x) and Lemma 1.3 of Chapter
1 with q =4,

2
(8) rhs(7) < 2¢Mpr —p, Jp-
By Cauchy-Schwartz inequality in Lo(u) again,

(9) 2nd term in rhs(6) §||log(p,,/p,)||2 IPvlp
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by Lemma 1.3 of Chapter 1 with q =2 and Lemma 1,
3M2
(10) rhs(9) < e |pr = puly-

Since ||px—Pylp <||Px—Pv|y the proof is completed by combining (6)-
(10) and applying Lemma 2. //

Lemma 4. w—A,(w) is equi(in 7) continuous.

Proof. For w and v in Q, by Cauchy-Schwartz inequality in
Lo(m),
|Az(w) = Ar()] <|log(pu/pu) b IPx Ik
< e3M2“pw—p,,||4, by Lemma 1.3 of Chapter 1
with q =2 and Lemma 1;
the lemma follows by Lemma 2. //

Proposition 1. If S, =, then
N AMAr<8}>0V 6>0.

Proof. [Taken from Lemma 6.6 of Datta (1991a)] By Lemma 4
{Ax <46} is open; since it is non-empty (it contains 7) and S, =12,
A{Ar <6} >0. By Lemma 3, if wp—m then A,rn—+A,r pointwise on {2,
hence in A-distribution. Therefore, by Theorem II.6.1(d) of
Parthasarathy (1967),
lim inf A{A; <6} 2 A{Agr <6} as mp—m;

in other words, m—A{A,<é} is lower semi-continuous. Hence the
infimum is attained over compact 2 and is positive. //

Let
n
(11) Ya(w) = 0718 Tog pul(xa) = J1og pudPe,.
Q=
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Proposition 2. Let p be a metric on ) for the topology of weak

convergence. For every 6 >0, 3 an € >0, such that p(w,7) <€ implies

(11) Py(exp{2n[¥y(w) — ¥o(m)]}) <™.

Proof. Using Cauchy-Schwartz inequality in Lo(yx), Lemma 1.3 of
Chapter 1 with q =2 to bound "pﬂlf and Lemma 1,

2
(12) I flog(pw/Px)dpoal < e3M [Pw—Pxly-

Since

20[¥a(w) ~Ya(r)] =25 Log(Pu/ps)(xa) =25 [ log(pu/pr)dPy,,
by isotonicity of the exponential function and the bound in (12),
(13) lhs(11) < [Pg(alill(pw/l)w)2(xa))]exP{znllpw—‘P1r”463M2}'

We shall now show that

(149) Ryl (pu/pr)?(x0)) < exp(2ipy —prlpe!™).

Since the L, norm of a random variable is less than or equal to its
Ly norm, (13) and (14), in view of Lemma 2, will complete the proof

of the proposition.

Using independence of the factors in the integrand under Py,

lhs(14) =aﬁlpga(9w/Pr)2 )

which, by bounding each of the factors using the inequality

v<e"" !l is bounded by

(15) {3 Py, [(pu’/ps) = 11}.
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Converting the integrand into an expression with common denominator,

factoring the numerator and applying Cauchy-Schwartz inequality in
Ly(k),
(16) Py, [(Pu?/Pr®) =11 <|Pu = Prlb] Py, Pu+ x/Pr -

It now suffices to show that the square of the second factor
in rhs(16) can be bounded by 4e32M2. Ve do that by considering it as
a p integral, using the bound on the inverse fourth power of a mixed
density obtained in (2), writing (p““,_,r)2 as an iterated integral,
interchanging the order of integration on % and o3, applying Lemma
1.2 of Chapter 1 (with k=4, a;=2, ay=ag=1, ayz= —4),
simplifying the resulting exponent by expanding the squared norm of
the sum of four terms and making possible cancellations, and using
Cauchy-Schwartz inequality in H and (1.3) of Chapter 1 to bound the

remaining terms in the exponent, in that order. //

The basic idea in the following proposition can be traced back
to (iii)’ of the Addendum of Gilliland, Hannan and Huang (1976). For
a similar exploitation of that basic idea see Lemma 6.1 of Datta

(1991a).

Let
(I11) Us := {w : AGn(w)<5}.

Proposition 3. Let p be as in Proposition 2. Fix a § > 0. Let

A= N {1%a(w)] <6/2},

where p-balls of radius € (corresponding to é as in Proposition 2)

around {wj,...,w;} cover Q1. Then

—3né ~
ip, _ <2 e -n¥, n¥,
(17) -2-"Pw PGn"__Z S+ A2( 6)fe dA fe " "dAJA;+A;.
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Proof. Since %{]PW—P,"S 1 for all {w,r} CQ

(18) lhs(17) gﬂlpa—PGn“AﬁK&.

By definition of &, using the inequality | ff| < [|f| with
f=p,—pg and interchanging the order of u and A integration, we
n

get

(9 [P, TJPu =P,k

Since by inequality (3.6) of Hannan (1960)

%"Pw“Pw”S\JAr(“’)’
bounding the integrand in rhs(19) by 4J§ on Uus and by 2 on the
complement, and [\(‘{145)1\6 by 1,

(20) 3Pa — Pa, [As < 206 + A(Uys)As.

In view of (18) and (20), it remains to show that the second

term in rhs(20) can be bounded by the second term in rhs(17).

By definition of A [it is the posterior distribution of w

given (X,...,X;) =(xy,...,%X,), when given w, X;,...,X; are iid~P,

and w~ A],
J eBdA
21 A, < s
(21) (L) S Py
Us

n
where g(w) = 2110g Puw(Xq) -
a=

Using the identity

g(w) =n¥y(w) - nAGn(w) +n [log pGndPGn,
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bounding AGn below by 46 on ‘&46 in the numerator of rhs(21) and
above by 6 on Uz in the denominator of rhs(21), we get

[ e*¥nda
U
22) rhs(21) <e~3n6 46 __
( [ e Vnda
Us
Normalizing A on U; (A(Us;) >0 by Proposition 1) and applying

Jensen’s inequality to the reciprocal function, which is convex on

(0,00),

1 1 -n¥
(23) < [ e~ " nga.
J e"VndA T A%(U,)
Us
Substituting (23) in rhs(22) and weakening the resulting bound

by enlarging the ranges of integration, the proposition follows from

the remark following (20). //

Proposition 4. Fix a 6 > 0. Let A; be as in Proposition 3. Then

<<

P ~6=0(“—1) as n—oo.

Proof. By the definition of A; and subadditivity of measures,
~ r
Pohs < L Pyl V()| 2 6/2]
1=

which, by applying Chebychev’s inequality to each of the terms and
bounding the sum of r nonnegative terms by the maximum of the terms

times r, is bounded by
(45/8%) Y Py(Ta(w))?.

Since ¥ (w) is the centered average of n independent random

variables under P,
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Py(¥a(w))? <=1 yvary(log pu).

Since the variance is smaller than the second moment, it

suffices to show that V \0/P0(log pu)? < .

By the elementary log inequality used in the proof of Lemma 1,

(24) 4P0(1°g pw)2§P0(pw—1)2(1+pw_l)2-

By Cauchy-Schwartz inequality in Ly(u),

(25) rhs(24) <[ pg(1 +py, )2 |lpw — 13-

By the triangle inequality in L,(y#) and Lemma 1.3 of Chapter 1 with

qQ=4,
2
(26) 2nd factor in rhs(25) < (e3M /2+1)2 .

By Cauchy-Schwartz inequality in Lo(#) and Lemma 1.3 of Chapter 1

with q =4,

(27) 1st factor in rhs(25) §e3M2/2”1+pw—1|L32.
By the triangle inequality in Lg(u),

(28) 2nd factor in rhs(27) <2(1 +||pw_llk2).

Applying the bound on the inverse eighth power of a mixed density
obtained in (2), interchanging the order of g and w integration,
using Lemma 1.2 of Chapter 1 (with k=1, a;= —8), and using (1.3)
of Chapter 1 to bound the resulting exponent, we get that "pw“1|k2
is bounded by e18M2; substituting that bound in rhs(28) and

combining the result with (27) and (26), we complete the proof using
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(25) and the remark preceding (24). //

Theorem 1 [Consistency of the posterior mixtures]. If S, =1,
then

PQ“P&—PG,I"—‘O’ uniformly in §, as n—oo.

Proof. We shall show that for every § >0,

(29) Py( fe "VndA fe"VndA)A; < 206,

where Ag is as in Proposition 3.

Taking P, expectation of both sides of (17) and using (29),

—né
(30) Py Py —Pg, [ < 446 +2 Kg_(qTﬁ

Since the above inequality holds for every 6 >0, we complete the

+2Pgks.

proof of Theorem 1 by taking supremum over § and lim sup as n—oo (in
that order) of both sides of (30), using subadditivity of these

operations, and applying Propositions 1 and 4.

Applying Cauchy-Schwartz inequality in Lo(Py) and then the
moment inequality to the A integrals in both the factors in the

Cauchy-Schwartz bound,

(31) 1hs(29) < [Py( fe ™ 2" ndA)A;]Y/2[Py( f ™ ndA)As] /2.

Consider the finite cover of ) described in Proposition 3. Clearly,
for every we€(, choosing an w; such that p(w,w;) <e and using

Proposition 2 with w and w;, by the definition of Aj,
(32) Py(e —2nY“(W)A6) < e and Pa(e%v.“(w)A&) < e,

Interchanging the order of A and P, integration in rhs(31) and using
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(32), we establish (29). //

Remark 1 (Comparison of Theorem 1 and Theorem 3.1 of Datta
(1991a)). In his Theorem 3.1 Datta (1991a) proves the assertion of
Theorem 1 for compact metric © and a class of probability densities
{py : 6€6} on an arbitrary measurable space, under two regularity
assumptions including the one (A1) that py(x) is continuous in 6 for
every x. Unless © is what Dudley (1967) called a GC set (GC is an
abbreviation for Gaussian Continuity; a subset of a Hilbert space is
defined to be a GC set if the isonormal process indexed by that
subset has a sample continuous version) (Al) is not satisfied for
the Gaussian shift experiment. For an example (among the ellipsoids)

of a compact © which is not GC, see the introduction to Section 6

and Proposition 6.3 of Dudley (1967).

Datta (1991a) obtains a bound on %"P&"PGn" in his Lemma 6.1
similar to our bound in Proposition 3. His bound consists of an
arbitrarily small term, a term involving a measure of diffuseness of
A (which we dispose of by Proposition 1, which is essentially his
Lemma 6.6) and another term involving the probability of the tail of
V|¥n(w)|. By his assumption (A1), the quantity V[¥,(w)| is the
Banach norm of a C(?) valued random element, where C(S) is the
Banach space (with sup norm) of all real-valued continuous functions
on compact metric S. He develops an uniform L; law of large numbers
for C(S)-valued random elements to dispose of that term. In our
context ¥, is not a C() valued random element, making Datta’s

method of proof inapplicable. //

Corollary 1. If SA:=(), then (4.1) of Chapter 1 holds; i.e.,
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v PQ"PUG’"—PGn" —0, uniformly in 8, as n—oo.

a=1
Proof. As in the proof of Lemma 4.3 of Datta (1991b), we

observe that

- < vV P, -P
(33) 8 dona% nPQ" Puan ~PGna| “geon—l PQ" “nn "Gy "’
where Ghe 1is the empirical distribution based on

(615- 8 — 1054+ 15--0n). Since Gn-Gng=0"1(8 —Gne) with & the

unit mass at 8,, the definition of p, gives

_ : -1 _ -1
(34) IIP(;n—P(j.mll—#(|PGn PGM|) n ﬂ(|Pga P(;,ml)S2n .

By the triangle inequality, (33) and (34), the corollary follows if
rhs(33) goes to 0. But that, with n replacing n—1, is the assertion

(with some notational changes) of Theorem 1. //



CHAPTER 3
THE EMPIRICAL BAYES ESTIMATION

In this chapter we look at the empirical Bayes [Robbins (1951,
1956)] formulation of our component problem. Consider a Bayes
decision problem involving {P, : § € ©} and a Bayes prior w, where w
is unknown. Suppose we have iid pairs (6,,X;),...,(0y,Xp),...., where
6, is distributed as w and given 6;, X; is distributed as Pgl. At
stage n, a decision t,=t,(X,) about 4, is taken incurring loss
|ta—60.F and risk ff||tn—0n||2dPde“. The sequence {t, : n>1} is
called an empirical Bayes rule. An empirical Bayes rule {t,} is

called asymptotically optimal (a.0.) if

Il tn—0n|f2dPde“—»'r(w), for each we 2, as n—oo.

The notion of admissibility in the class of empirical Bayes rules
is the same as the corresponding notion in the case of compound

rules, with the understanding that the risk now is a function of w.

Let A be a hyperprior on ). We will prove that any sequence of
Bayes (versus A at each stage) empirical Bayes rules is admissible;
if S, =0, a sequence of Bayes empirical Bayes rules versus A is

asymptotically optimal as well.

1. Bayes empirical Bayes.

For any given n, the stage n Bayes risk versus A in the

empirical Bayes problem is

42
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gjz eIn an | tn — 6n [PdPydwRdA (w) = ejn &_{n | tn — 6n|FdPyday ,,
which is the n-th component Bayes risk versus the prior'chﬁlon the
compound parameter @ in the set compound problem with n components.
Hence a Bayes empirical Bayes estimator is t, given in (2.4a), with

a replaced by n.

-

Admissibility. Since a Bayes empirical Bayes estimator is t,
given in (2.4a), and as observed in Section 2.5 of Chapter 1 every
Bayes compound estimator is unique up to " equivalence, the
admissibility again follows from the uniqueness of Bayes rule

argument.

2. Asymptotic optimality.

Theorem 2.1. If S, =Q then the Bayes empirical Bayes

estimator {t, : n>1} is asymptotically optimal.

Proof. Let 7,5, be a component Bayes estimator versus w based

on X,. Then, as in (2.5) of Chapter 1,

(2.1) |1 710~ 6 PdPgdw — r(w) | < M PP |70, | = Tura
by Proposition 3.1 of Chapter 1 it is enough to show that
(2.2) P"’n-lup‘”n,n_P‘*’" —0 as n—oo.

The uniform (in w) version of (2.2), with n replacing n—1, is the
assertion (with some changes in notation) of the following corollary

[Corollary 2.1] to Theorem 1 in Chapter 2; applying that corollary
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we complete the proof. //

Corollary 2.1. Let & be as in Chapter 2. Under the assumption
SAZQ,
Pwﬂ

PQ-—P“JF+O, uniformly in w, as n—oo.

Proof. Noting that P " is the marginal on %" of the joint
distribution on %"xO" obtained from Py and w", and triangulating

around PGn,

(2.3) P." [Py —Pu|| < SR Py—Pg [ de” + ([P, —Pu)) -

Now the first term in rhs(2.3) goes to zero uniformly in w by

Theorem 1 in Chapter 2.

By the moment inequality, applied first to the w" integral and

then to the u integral,
(2.4) (wPg, —Pu])? < (PG, — Pulp®) -

Now by interchanging the order of u and w" integration, noting that
w“(pGn-—pw)2 is the variance of the average of n iid random
variables and bounding the variance of a random variable by its

second moment, we get
(2.5) rhs(2.4) <n~!f [py2dw(8)dp.

Interchanging the order of u and w integration, and applying Lemma

1.3 of Chapter 1 with q =2 to bound u(p92),
2
(2.6) rhs(2.5) <n~leM",

The corollary follows by (2.4)-(2.6). //
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emark 2.1. By (2.1), Proposition 3.1 of Chapter 1 and
Corollary 2.1, we get that lhs(2.1) goes to 0 uniformly in w, which

is a stronger form of asymptotic optimality.
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1. On measurability.

In this section, we prove two lemmas concerning measurability
of two maps which have been used in the main body of the

dissertation.

Lemma 1.1. Let © be a separable metric space endowed with its
Borel o-field. Let Q2 be the set of all probabilities on ©, endowed
with the topology of weak convergence and the corresponding Borel o-
field. Then, for every bounded real-valued measurable function h on

O, the map w—w(h) is measurable.

Proof. We shall use the following theorem (TI.20) from Meyer
(1966):

Let 36 be a vector space of bounded real-valued functions defined on T,
which contains the constant 1, i3 closed under uniform convergence, and i3 such
that for every increasing, uniformly bounded sequence of non-negative functions
gn € %, the function g = lim g, belongs to J. Let C be a subset of 3, closed
under multiplication. Then the space ¥ contains all the bounded functions

measurable with respect to the o-field T generated by the elements of C.

Let '=0, ¥ ={h : h is a bounded real-valued function on ©
and w—w(h) is measurable}; clearly 3 satisfies all the conditions
of TI.20, Meyer (1966). Let C={BC© : B is closed}. Clearly C is
closed under multiplication. Since, by the portmanteau Theorem
[Theorem II.6.1(c), Parthasarathy (1967)], for every B€C and every
keR the set {w : w(B)>k} is closed in the topology of weak
convergence, we get that C is a subset of 3. Therefore 3 contains

all the bounded real-valued measurable functions on O. //

46
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Lemma 1.2. Let (%,¥) be a measurable space. Let © be a
separable metric space endowed with its Borel o-field. Let
f:0x%5—[0,00) be a measurable function. Let @ be the set of all
probabilities on O, endowed with the topology of weak convergence
and its Borel o-field. For wef, let f(w,x) := [f(.,x)dw; then
f:Qx%—[0,00) is measurable.

Proof. We shall again use TI.20, Meyer (1966). Let '=©x%,
¥={(h : h is a bounded real-valued function on ©Ox% and
(w,x)— fh(.,x)dw is measurable}; clearly ¥ satisfies all the
conditions of TI.20, Meyer (1966). Let C={AXxB : A is a measurable
subset of ©, B is a measurable subset of %}. C is clearly closed
under multiplication. That € is a subset of 3 follows from Lemma
1.1. Therefore 3 contains all the bounded real-valued measurable
functions on ©x%, in particular, fAM for every integer M. Since
{fAM : M is an integer} is an increasing, uniformly bounded
sequence of non-negative functions, its pointwise limit f also

belongs to 3. That completes the proof of the lemma. //

2. On topological support of Dirichlet prior.

In this section we present a result of independent interest
characterizing the topological support of a Dirichlet prior on an
arbitrary separable metric space, which is used in Remark 4.3 of

Chapter 1 to give examples of A with full support.

Ferguson (1973) states that the topological support of a
Dirichlet prior on the Borel o-field (corresponding to the weak

convergence topology) of the set of all probability measures on the
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line is the set of all probability measures with their topological
supports contained in that of the parameter measure of the Dirichlet
prior. We prove that statement with the line replaced by an

arbitrary separable metric space.

Let % be a separable metric space and A be the Borel o-field
of €. Let 2 be the set of all probability measures on (%,A). The
topology of weak convergence on () is metrizable as a separable
metric space [Theorem II.6.2, Parthasarathy (1967)]; let B(Q) denote

its Borel o-field.

We consider the random probability measure P defined in (4.7)
of Ferguson (1973). Let {V, : n>1} be a sequence of iid random
elements taking values in (%, A) with common distribution {, where
Q(A) =a(A)/a(%) and a is a finite non-null measure on (%, A). Let
{Jo : n>1} be a sequence of non-negative random variables
independent of {V, : n>1}. For j>2, let the conditional
distribution of Jj given Jj_l,...,.]l be equal to the distribution of
J; truncated above at Jj—l; let the distribution function of J; be
exp(N(.)), where N(x) = —a(%)o)fe"yy"ldy for x>0. In Theorem 4.1
of Ferguson (1973) it is proved that %?Jn converges w.p. 1. For
Ac A, define 1

P(A) = SPyxv(A),

where P, = og“
a:Jn

and xy(A)=1 if veA

=0 otherwise.

Clearly, for every point in the set (in the probability space

underlying the random sequences {P,} and {V,}) on which %Jn
1
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converges, P is a probability measure on A. Therefore without loss
of generality we can assume P to be (1 valued. Let ¢, be the map on
0 taking w to w(A). Since the real-valued map P(A) is Borel
measurable, P is measurable with respect to o{¢}, the o-field
generated by the family {¢, : A€ A}. Note that by Lemma 1.1, o{¢}
is a sub o-field of B(2). We shall show that B(N) is a sub o-field
of o{¢}. We shall denote the induced distribution of P on (£2,B(Q))
by P and refer to it as the Dirichlet prior on B(f2) with parameter
a. By Theorem 4.2 of Ferguson (1973), for every k=1,2,..., and
measurable partition (B;,...,B;) of %, the distribution of
(P(By),...,P(B,) is Dirichlet with parameters (a(B;),...,a(B)).
Note that in the sense of Ferguson (1973) if the j-th parameter of a
Dirichlet distribution is equal to 0, then the j-th coordinate is

degenerate at 0.
To prove B(N)co{¢}, recall [Theorem 3, Appendix III,

Billingsley (1968)] that

U := {N(p 5 Ap,eohAL 5 €1,--.56) : BER, >0,
A, p-continuity subset of %, i=1,2,...,k, k=1,2,...}

is an open base for the topology of weak convergence on {2, where

k
N(p 5 ApsehArs €150005€) ::igl{ueﬂ 2 () -u(A)] <¢g).

Obviously, every set in QU is in o{#}. Using separability and
metrizability of , which together imply second countability, we
conclude by Lindelof’s Theorem that every open subset of 0 is in

o{#}; hence B(N) co{d}.

For a finite Borel measure m on a second countable topological
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space ¥, the topological support of m is defined to be the set
Sm= N{F: Fis closed and m(F°) =0}.

Note that s€ S, iff for any open set (0 containing s, we have
m(0) > 0. Since ¥ is second countable, by Lindelo f’s Theorem S,;,° can

be expressed as a countable union of F¢sets. Therefore

(2.1) m(Sm°) = 0;
hence
(2.2) if B is closed and m(B) = m(S,,), then S,,cB.

In the sequel, the set

{(x15++-sxp) ERM: 0<%, V i=1,2,...,m and.ﬁ x; <1}

i=1

will be referred to as the sub-simplez in m-dimension.

We now state the main result of this section characterizing

the topological support of a Dirichlet prior P with parameter a.

Theorem 2.1. Sg={pne : S,cS,}.

Proof. Ve first show Spo{peQ : S,cS,}. Let S,c Sy ; we
shall show that every basic open set in AU containing u has positive
P-probability to conclude pe€ Sq. Now for arbitrary positive integer

k, p-continuity subsets A;,...,A, of % and positive numbers

€19 -9€k>
k k

(2.3) ‘J’(,ﬂl{vem lv(A) - u(A) | <€}) =Pr(,ﬂl{|P(Ai)—u(Ai)| <€}),
1= 1=

where Pr is the probability measure on the domain of P.

Let {F"l""” : y;=0 or 1 V i=1,...,k} denote the measurable

-
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partition generated by A;,...,A, ; i.e.

F"l““"k =,

kK v .
ﬂA-V-‘ where A =A if v,=1
e j

=A% otherwise.

Then, noting that A, = UIF,,
V.=
1

L and using subadditivity of distance,

we get

(2.9) AUP-wW)1 <} AL £ 1(P-#)(Fypu)| <6}
i=1 i=1 Ui=l

Since the class of p-continuity sets form a field [Lemma

I1.6.4, Parthasarathy (1967)], FV1--- is a p-continuity set; i.e.,

.Vk

(2.5) l‘(‘SFul....uk) =0.

Note that,
(2.6) if a(Ful....uk) =0, then I‘(intFul....uk) =0.

Because a(F"l"“”k) =0 implies a((intFyl.__',,k)cﬂSa) = a(S,), and since
(intF,,l.m,,k)cr']Sa is closed, by the observation in (2.2),
(intFyl,,_,uk)CDSa. Since S, C Sy, the claim follows by (2.1).

Since (P(F"l"“"k)’P((F”l""”k)c)) has a Dirichlet distribution
with parameters (Q(Ful....uk)aa((Ful....Vk)c))’ P(Ful....uk) is degenerate

at 0 if o(F, =0; hence, by (2.5) and (2.6),
1

..Vk

(2.7) rhs(2.4) > N1 (P=#) (Fy )| <27%e] = a(By .0y ) >0,

where e= A ¢;.

i=
Now {P(F”l""”k) : a(F”l""”k)>0} has a Dirichlet distribution

with all parameters positive; since, by (2.5) and (2.6),
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> {I‘(Ful....uk) : a(Ful....uk) >0}=1,

temporarily abbreviating (vq,...,v,) to v and fixing a ¥ for which

a(F;) >0, ve get

(2.8) rhs(2.7) > N{[|P(F,) -u(F,)| <27 2%¢] : y#£p and a(F,) > 0}.

Since {P(F”l"""k) : a(F”l""”k) >0} has a Dirichlet distribution
with all parameters positive, the induced distribution (over the
sub-simplex in appropriate dimension) of a one-component-deleted
subvector of {P(F"l"""k) : a(F"l"""k) >0} puts positive mass on every
subset of the sub-simplex with non-empty interior. By (2.4), (2.7)

and (2.8), 1hs(2.3) is positive. That completes the proof of ue Sg.

Conversely, suppose p€ Sp; to show S,C S, it is enough (by the
observation in (2.2)) to show u(S,°) =0. Since by Theorem II.6.1(d)
of Parthasarathy (1967) lim w,(A) > w(A) whenever w,—w and ACc% is
open, the set {vreQ : u(A) >v(A)+e€} is closed (in the topology of
weak convergence) for every open set ACc% and every e€>0. Since S,°
is open, {reQ : u(S,°) <v(S,°) +¢€¢} is an open set containing u for

every € >0; since pe Sy,
PlreQ : p(S,°) <v(Sy°) +¢€¢} >0 for every €>0.

Now »(S5,°)=0 a.s. (P), because (P(S,°),P(Sy)) has a Dirichlet
distribution with parameters (a(S,%),a(Sy)) and a(S,°) =0 by (2.1).
Therefore, u(S,°) <e for every €>0; that is, p(S,°)=0. That

completes the proof. //
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