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ABSTRACT

ELASTIC MODULI OF 2-D COMPOSITES
WITH SLIDING INCLUSIONS
- A COMPARISON OF
THE EFFECTIVE MEDIUM THEORIES

By

Sukky Jun

The effective elastic moduli of 2-D composites with circular sliding inclu-
sions randomly distributed in the matrix are investigated. A sliding parameter
is introduced to simulate sliding effect, which gives perfect bonding or pure
sliding boundary conditions. The elastic moduli are evaluated by using four
popular effective medium theories: a self-consistent method, a differential
scheme, a Mori-Tanaka method and a generalized self-consistent method.
These methods are modified to account for sliding. In this thesis two aspects
are focused. One is the study of the effect of interface on the elastic constants
of composites and the other is the comparison of the effective medium theories
for the cases of both perfect bonding and sliding. A recently stated Cherkaev-
Lurie-Milton theorem (CLM theorem) is used for evaluation of theses methods.
This theorem gives the general relations between the effective elastic constants
of 2-D composite. The results of these theories are also compared with those

from the numerical simulations.
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CHAPTER 1

INTRODUCTION

The composite materials are composed of two or more constituents which
have different mechanical properties from each other. Generally it is very dif-
ficult to predict the mechanical responses of the composite materials. In order
to understand the mechanical properties of the composites, it is important to
find the the effective elastic moduli of the composites. The effective elastic

moduli Cijkl are defined by the relation (Christensen, 1979; Hashin,1983))

(0;) = CijulEyp) (1.1)

where (o‘.j) and (g,,) are the volume averages of stress and strain fields
respectively.

The exact theoretical evaluation of the effective elastic properties is very
difficult because it requires the knowledge of the stress field everywhere in the
composite. There have been many effective medium theories to find the effec-
tive elastic moduli of composites by employing simplified geometrical model
of composite to make the problem mathematically tractable. Out of them the
four popular effective medium theories are studied in this thesis; the self con-
sistent method, the differential scheme, the Mori - Tanaka method and the gen-
eralized self consistent method. However, because of the different assumptions
used, they yield different results for the effective elastic constants of composite
materials. Therefore it is very important to compare these methods. Recently
Christensen (1990) and Zimmerman (1991) compared the results of these effec-
tive medium theories. Their work has been done on the basis that the interface

between matrix and inclusion is perfectly bonded.
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However the interface in composite materials may not be perfectly bonded
and sliding or debonding may exist. A number of recent studies on the effect
of interfaces showed that the contribution of interface is important but the study
in this area is far from complete. In this thesis the effect of sliding interfaces
on the effective elastic moduli of composites are investigated and the compar-
ison of the effective medium theories is carried out. The four above mentioned
effective medium theories are modified for the effects of sliding to be included.

In this thesis the general solutions for the case of elastic inclusions are
obtained and several interesting limits, such as holes, rigid inclusions, the con-
stituents with equal shear moduli and the constituents with the same elastic
properties and sliding at interfaces, are studied for the effective medium theo-
ries to be compared.

The analysis of this thesis is also emphasized on the two dimensional geom-
etry in order for a Cherkaevauric-Milton theorem (Cherkaev et al., 1992) to be
used. Although this CLM theorem holds only in two dimensions, it gives the
general relations between the elastic moduli and is very powerful because it
gives results which are independent of the details of microstructure. The CLM
theorem also provides the general results for the stress fields which agrees with
the famous results by Dundurs (1967, 1970) and Michell (1989) as investigated
by Thorpe and Jasiuk(1992). The effective medium theories should satisfy the
CLM theorem since this theorem places no restriction on the microstructure of
composite materials. The CLM theorem has been proved only for the limit of
perfect bonding so far. In this thesis it is shown that all effective medium the-
ories studied here do satisfy the theorem in the limit of sliding as well as perfect

bonding.



CHAPTER 2

EFFECTIVE MODULI OF 2D COMPOSITES CONTAINING ELASTIC
INCLUSIONS WITH SLIDING INTERFACES

In this chapter the effective moduli of two dimensional composite material
which is composed of matrix and elastic inclusions with sliding interfaces are
obtained by using the effective medium theories. For simplicity the inclusion
is considered to be a circular inclusion. The first section of this chapter is
devoted to the results of dilute case that the volume fraction of inclusions is
very small. The parameter which represents the degree of sliding of interfaces
is introduced by boundary conditions. The other sections are for the effective

medium theories.

2.1 DILUTE RESULTS

The exact solution of the effective moduli for the case that a single inclusion
is in an infinite matrix can be solved by the equivalency of energy which is
introduced by Eshelby (1957). All effective medium theories should show the
same result as the Eshelby’s solution when the volume fraction of inclusions is
near zero. Therefore the solutions of dilute results are useful to test the values
of effective moduli obtained by an effective medium theory.

In this thesis, the sliding condition between matrix and inclusions is intro-
duced by the boundary conditions which involve the discontinuity of the tan-

gential components of displacements across interface, which are written as



u7(a,0) = i (a,0) 2.1)
o (a,0) = 06/y(a,0) = k[ug(a,0) —1(a,6)] 2.2)
o™ (a,0) = o/ (a,0) (2.3)

The superscripts f and m denote inclusion and matrix respectively and a is
the radius of a circular inclusion. The subscripts r, 0 are for the polar coor-
dinates. The degree of sliding at the interface is represented by the factor k
which is zero when the interface is purely sliding and which goes to infinity
when the interface reaches perfect-bonding. These boundary conditions to
involve the slipping interfaces have been used by Jones and Whittier (1967),
Lene and Leguillon (1982), Benveniste (1985), Achenbach and Zhu (1989)
Hashin (1990) and many others.

As mentioned before, the exact solutions of effective moduli of composites
having single inclusion can be obtained by the equavalency of the strain energy
(Christensen, 1979). When the stress field og. is applied at infinity to the single
inclusion Q in a domain D, the elastic strain energy is expressed as (see Fig.

2.1)

1 0 1

where W0 = %gogeng. The superscript 0 denotes the quantities of the applied
fields and the subscripts i,j denote the general coordinates. The n; repre-
sents the unit vector which is normal to the interface and the jump of displace-
ment at interface is defined as [uj] = u}"- uJ‘:

Using the boundary conditions and the equivalency of strain energy, the
effective area bulk modulus K and the effective shear modulus p are given as

(Thorpe and Jasiuk, 1992),




N
E K—-m""C(E'f—F l+i (2.5)
K um
11 1 1.r,2 1 1. .1 1.,1 1 2
—= —+2c(—+—=2) | (5=-—+—=) +k(—=—-— +—+
QT Rty K,,,)[(u, mt ) TG o K,)]
=22 3 1 l 1,2 1 1.2 (2.6)
= +Z k —+—+=
Cat gt gt @ Cat gt o) Gt gt

where k = 523 and c is the volume fraction of inclusions. These solutions yield
two limiting cases. One is perfect bonding (l: —> oo) and the other is pure sliding
(k—0).

The effective medium theories should obey these results when the volume frac-

tion of inclusions approaches zero.
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FIGURE 2.1 Single Inclusion Problem




2.2 SELF CONSISTENT METHOD

The self consistent method (Budiansky, 1965; Hill, 1965) suggests a geo-
metrical model that an inclusion is embedded in a homogeneous effective
medium (see Fig. 2.2). This model is the simple boundary value problem which
can be solved by using the results of the section 2.1. The results that the self
consistent method predicts are much more reliable at low volume fraction than
high volume fraction.

In order to calculate the effective shear modulus, an external shear stress
cgy should be applied and then, the volume average fields of strain € and stress

o are given as (Mura, 1982)

(€,,) = ‘l’t[ (€2, +€, ) dV+ ‘l’.!u% ([ug)ny + [u,)n,) dS @7
©) =7 _.! (6%, +0, ) dV (2.8)

where the subscripts x,y denote the rectangular coordinates. The second term
of (exy) in eq.(2.7) accounts for sliding effect and it can be calculated by the
boundary conditions at the sliding interface which are introduced in the previ-

ous section. It is obtained as follows

1 1 2
(&, TREWAN/
1 -l-(lu,]n +[u]n,)ds=c(—’)ll°uf - WK (2.9)
Vl 2 ’ ’ g 3+2k(1+l+£)
CENTAN 4

where the g° is defined by

€ 0
(03, +0,) = 2(? )uu’ (2.10)




in this problem,

1 1 2 p,, 1 1

——+ = =V (=+=

1 _ o d (f)(u K

- =1 1 2 2 2 3 1 1 1 2
g 342k(=+—+= Z+Z+ 2 +k(=+—+ +—+

(u 'J Kf) (p. l*’ K K) ( l»lf K)( pf Kf)

(2.11)
Therefore the average strain and stress field are given as
1+ 1 + 2
e, (e TR A
(e.,) = c( )u+ (l—c)e"'+c( L2/ )uuf W K
y =1 1, 2
g g 342k(=+—+=)
NN
(2.12)
(e
(c,) = 2c( )ufu+ (1-c)o™ (2.13)
g

where o™, €™ are average shear stress and strain in the original matrix. By
using o™ = 2u™e™ and the above average strain and stress field, the effective

shear modulus is computed as below

1 3 4 2 s 1 1.1 2
——r—+ 2y 42k
U RE N I AN ‘»f "u Al
pooym LK 2. 2. 3.1 1,12
W ‘E+Ef+?+xf)+"‘ +u )( Mvas

(2.14)

The area bulk modulus can be obtained in a similar way if the external loads
are applied by ogx = "2, = ¢% The result is
The final results of the effective shear and bulk modulus are highly coupled

each other. Therefore it is not easy to calculate these effective moduli directly




(2.15)

from the given data of the elastic constants of matrix and inclusion. Several

interesting limit cases will be investigated for evaluating the results of this
method in the next chapter.
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FIGURE 2.2 Geometrical Model of Self Consistent Method
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2.3 DIFFERENTIAL SCHEME

The differential scheme has been developed by McLaughlin (1977) and Nor-
ris (1985 ).

Let us consider é homogeneous medium of which the moduli are given by
eq.(2.5) and (2.6) for dilute case. The differential scheme suggests the sequen-
tial procedure that a small amount of volume fraction of inclusions dc is added
to the effective medium. As the volume fraction of inclusions increases, the
effective moduli are changed by the increments of 8K and du. The differential

equationé can be set up from the dilute results, by taking the limit of 8¢ — 0,

as below
1,1
dK _ dc (1_5) K u
K 1-c' g'|1.1 (2.16)
K u
1 2 1, -1 1,1 1 2
—_—— — - — - ) (= 4+ —+ —
dp _ 2dc a+hy (u W Kf) (u uf)(u B Kf)
®w 1-¢" K'|2. 2 3 1, -1 1 2,1 1 2
—+—=+c+=)+k(=+=+2)(=+=+—=
(u AR K,) (u ufK)(u o K,)
(2.17)

These two equations are also highly coupled nonlinear differential equations
which are difficult to be solved directly. However, in some limit cases, the

solution can be easily obtained with the condition that u = p™ and K = K™
at f=0.
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2.4 MORI - TANAKA METHOD

This average field method was introduced by Mori and Tanaka (1973). After-
wards Benveniste (1987) reformulated this method to compute the effective
properties of composite materials. Recently Mori and Wakashima (1990) devel-
oped a successive iteration method which is a different interpretation of Mori-
Tanaka method. Shibata et al.(1990) used this iteration method to demonstrate
the interfacial effect although their work was confined to the case that the
matrix and the inclusion are of the same material.

In this section the results of the Mori - Tanaka method are calculated for the
general composite materials of which inclusion is different material from
matrix and the interface is slipping.

If an external load cg. is applied at infinity, the average stress field in the

region of a single inclusion (in Q ) is given as

0% +(0,;) = Clyy (63 + (€y)) = Chy(e))+ (e,)— (gy" ) (2.18)

*
where €y is the eigenstrain in the inclusion.
The effect of sliding interface is involved by considering the energy equiv-

alency in the region of inclusion

0 0 - 0,0 0
l&e 04V + > lo e *dV Lo € dv+2£(oq = ch)dV+2 iounllu]ds

iy ijij U
(2.19)
which can be rewritten as
o
= o0 0 0
o J& v = e, ) 1[(0 oueu)ds-kgg[‘ o,n; [u;1dS
(2.20)

where (€;"),, is the volume average of the eigenstrain in the inclusion.

The effective shear modulus is calculated when an external shear stress 02’
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is applied to the medium. By the definition,

0 0
o o
e RN @

where (ex; )g is the volume average of eigenstrain in the inclusion

€y ) = 1 fwog, (2.22)

In our analysis, a and B are defined as below,
a=-4 (2.23)
B=%(ui,,+zl—,,,) (2.24)

where

2 1 1. -1 1..1 1 2
2 e )tk ) (ot 2)
4 TANTL TANTCOSTLINT -
2,2,3 1z 1 T 2 1 T 2 (2.25)
i S S Wl —_— =Y (——+ =
(u”'ufK"‘ K TLIRNTAN <O TL RN <

After manipulating the above relations, the effective shear modulus of the Mori

- Tanaka method is given as

_1.—_]_+____20A (L.;.i)

The effective area bulk modulus is computed directly from the formulation
which is provided by Benveniste (1987) because no interfacial effect occurs

when the applied load is o& = cgy =a?.
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1 1

—_—
1 1 1 1 K™ u"
_ = — —_——_— 2.27
<l s s we (2.27)

In contrast to the first two methods, the advantage of the Mori - Tanaka
method is that the effective moduli of real composite materials can be obtained
by substituting the elastic constants of matrix and inclusion into the final closed
forms. The Mori - Tanaka method, however, has the wider range of error at high
volume fraction than the generalized self consistent method (Christensen,
1992). The Mori - Tanaka method shows several unique results at high volume
fraction which are much different from the results of other methods, which will

be discussed in the next chapter.
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2.5 GENERALIZED SELF CONSISTENT METHOD

The generalized self consistent method is an extension of self consitent
method, which is due to Christensen and Lo (1979). It modifies the self consis-
tent method by putting matrix phase between inclusion and effective medium
(see Fig.2.4).

The equivalency of elastic strain energy of the two media in Fig.2.4 leads to
(Christensen and Lo, 1979)

WO = WO+ [(olnu;— o nu)dS (2.28)

In addition to thé boundary conditions of eq.(2.1) - (2.3), the new boundary
conditions that ©,,0 g, 4, Ug are continuous at r=b are needed. If an external
shear stress is applied, the effective shear modulus is calculated by the bound-
ary conditions and the equivalency of energy. There are eight constants which
are determined by the above boundary conditions. By the way, one of the con-
stants vanishes by the above equation of energy equivalency. This leads to a
quadratic equation for W

p 2 n
Ci(=) +C(=)+C3 =0 2.29
1 um 2 um 3 ( )

where the coefficients Cy, Cy, C3 are given in Appendix. These coefficients
contain the sliding parameter k which is defined in section 2.1. It can be easily
shown that, if the parameter is taken to be infinite (perfect bonding), the solu-
tion of e€q.(2.30) coincides with that of Christensen and Lo (1979) exactly.
These coefficients do not contatin the unknown effective moduli, which means
that the solution can be obtained only by putting the elastic constants of matrix
and inclusion into the equation.

The effective area bulk modulus is computed when the applied loads are

given by o° = o‘y)y = o0, This result is given as below
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1 1
1 1 1 1 K"'+M"'
== —=+c(——=) :
Kk Kf _l_.+_1 +C(—-1 _.l 2 30)

K pm K" Kk

which is exactly same form as the result of the Mori - Tanaka method as

expected.
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FIGURE 2.3 Geometrical Model of Generalized Self Consistent Method



CHAPTER 3

SPECIAL LIMIT CASES

Several limiting cases are studied in this chapter to compare the results of
the four effective medium theories and to observe the effects of sliding interfe-

ces on the elastic properties of two dimensional composite materials.

3.1 HOLE INCLUSIONS

When the inclusions are holes, the effective moduli are easily calculated
from the results of the chapter 2 by taking the limit K -0 and p — 0. Itdoes
not matter whether the interface is j)erfect bonding or pure sliding, because the
interface does not give any actual contribution to the effective moduli in this
limit. The normalized area bulk modulus and the normalized shear modulus of
each method are given as

(1) Dilute results

1 1 1 1 1 1 1 1
- = —4+c(— + — - = —+c(—+— 3.1
(2) Self consistent method
1 _ 1 1 1 1 _ 1 1 1
Rt Gt p TGt (3.2)

(3) Differential scheme

18
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—a+k B
(1+:5) -2(1+3)

1 1
= (TT_—E) (3.3)

1_1 1
K gm -

1
H o um

1
(=)
(4) Mori Tanaka theorem

1 1. 2 ,1 1
H—E;,;*"l—_—z,(ﬁ"'x—m) (3.4)

]

1 (im

1 1
R Tt

For the self consistent method and the differential scheme, the dilute result

of the Poisson ratio

v=vt-c(3v"-1) (3.5)

and the general relation of two dimensional elasticity

V= ——— (3.6)

should be used. The integrations of differential scheme are easily carried out

with the limit conditions of section 2.3.
(5) Generalized self consistent method

c

1 1
(=

1 1
- = — +— 3.7
=g 1= K"') 3.7)

T m
Ci(=) +C(=)+Cy3 =0 3.8
1 um 2 um 3 (3.8)

m
where " = 1+2l»1_ .
K"
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C,=-3c(1-0)%= ™+ (1+en™) (3.9)
C,= 3c(1_—c)2+%(1-c) (™ -1+2¢% -%c(n"‘+l) (1-¢% (3.10)

Ci=-3c(1-¢)2+ (1-¢) (1-¢%) (3.11)

The closed forms of K/K™ exactly same as each other as refered in the chap-
ter 2. Fig.(3.1) - (3.16) illustrate the normalized area bulk modulus the normal-
ized shear modulus, the Poisson ratio and the normalized Young’s modulus of
effective medium which are calculated by the four effective medium theories.
In all figures in this thesis, the effective moduli are denoted by superscript c.

The most interesting result arises from the Poisson ratio. Every theory shows
the tendency that, as the volume fraction increases, the values of the Poisson
ratio go to a fixed value which is independent of the elastic constants of matrix.
However the critical volume fraction ¢y where the fixed value exists is 1/3 for
the self consistent method while cp = 1 for the other methods. The fixed value
itself also varies depending on the effective medium theory used. The general-
ized self consistent method predicts the value is 1 and the other theories 1/3.

The existence of the fixed value of the Poisson ratio has been also observed
by other researchers. Day et al.(1991) have obtained the elastic moduli of a
matrix containing circular holes by computer simulation techniques. Their
result of the Poisson ratio for the regular honeycomb network is quite similar
to that of the generalized self consistent method in the sense that the fixed value
is 1. Zimmerman (1991) has also calculated the effective moduli of composites
by the three popular effective medium theories. In his paper, the fixed value of
the Poisson ratio for the case of hole inclusions is observed although his work
is for the three dimensional composite materials.

Another important result is about the Young’s modulus. All the four theories
predict the coincident result that the effective Young’s modulus is independent
of the elastic constant of matrix, at the whole range of volume fraction. This

result is closely related to the fact that the stress field in the matrix having hole
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inclusions is independent of the elastic constant of matrix (Michell, 1899;
Thorpe and Jasiuk, 1992). This property of the Young’s modulus is discussed

in the next chapter which is about the CLM theorem.
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3.2 RIGID INCLUSIONS

In this section the inclusion is regarded as the rigid material. The results
are computed by taking K/ 5 and W — e from the results of the elastic
inclusions. Jasiuk et al.(1992) have already discussed the two theories, the self
consistent method and the differential scheme, for this limit. However their
results are referred here to be compared with those of the other theories. The
final forms of the remaining theories are as below r

(1) Mori - Tanaka method

1,1
Y i L
K Km Km _1-”_'+C—Kl—m .
Tt
1,1
1 1 ,c | W™ K™
l'_‘- = —m-ZA — P (3.13)
H Hl1+a—=
V1
where
1+12im
A= 2 (3.14)
2 3 ~-1,1 2 :
u—m+K—m+k:l-"-'(—'-” F')
(2) The generalized self consistent method
1,1
1_1_c|¥ K
K - Km K,,, _l_+c_L (3.15)
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p” n” _
C‘("u') +C2(_}1-) +C3;=0 (3.16)

where the coefficient C{,C, and C3 can be easily obtained from Appendix.
These yield the two interesing limits. One is perfect bonding (12 — o) and

the other is pure sliding (I: - 0).

3.2.1 PERFECT BONDING

Fig. (3.17) - (3.22) are for the effective elastic constants of the perfect bond- L
ing case which are obtained by using the Mori - Tanaka method and the gener-
alized self consistent method. In perfect bonding case, the distinctly different
results between the four effective medium theories come from the Poisson ratio.
The self consistent method and the differential scheme allow the existence of
the fixed value of the Poisson ratio. Both give the same fixed value v = 1/3.
However the Mori-Tanaka method and the generalized self consistent method

do not show the fixed value of Poisson ratio as shown in Fig. (3.21) and (3.22).
3.2.2 PURE SLIDING

If there exist only sliding effect at the interface between matrix and inclu-
sion, the values of the effective shear modulus and the effective Young’s mod-
ulus are lower than those of the perfect bonding case. All theories agree to this
reduction of U and E. In contrast to them, the theories split when the area bulk
modulus is concerned. The self consistent method and the differential scheme
allow this reduction of the value of K while the Mori - Tanaka method and the
generalized self consistent method give the same value of K as that of perfect

bonding case.
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A remarkable difference also happen when the effective Poisson ratio v is
taken into account. All theories except differential scheme predict the exist-
ence of the fixed value of the Poisson ratio when the volume fraction goes to
one. By the way, the fixed value of the generalized self consistent method is

v? = 1/2 while the fixed value of the other twomethods is v® = 1 (Fig. 3.23
- 3.26).

Another difference is founded in the effective shear modulus. Only the Mori
- Tanaka method shows that the value of p is not an infinite value but a finite
value ( p = 3u™ ) which is independent of the elastic constant of the matrix at
the point where the volume fraction is ¢ = 1. However the other methods give

an infinite value of p at c = 1, which implies that the inclusion is rigid material.
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FIGURE 3.17 K™/K° vs. c for rigid inclusions by Mori-Tanaka method
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oM/ url

FIGURE 3.18 K™/K° vs. ¢ for rigid inclusions by generalized self-

consistent method
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FIGURE 3.24 pu™/p€ vs. c for rigid inclusions and pure sliding by

generalized self-consistent method
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3.3 EQUAL SHEAR MODULI

If the shear modulus of matrix is same as that of inclusion, the elastic con-
stants of the composite materials are determined exactly (Hashin, 1965; Chris-
tensen, 1979). This can be applied to 2D or 3D composites but only to perfect
bonding case. All effective medium theories used here give the exact values of

the elastic constants. The area bulk modulus is given as

(3.17)

f _ pm
K=K"‘+c(K”‘+u"‘)[ K-K ]

K +p™+c (K™K

It is well known that the upper and lower bounds of elastic constants coincide
to each other for this limit case. It can be easily shown that the above bulk mod-
ulus is the same as the exact bound. The Poisson ratio and the Young’s modulus
which are obtained by the four theories also coincide to the law of mixtures as
expected.

For the two dimensional composite materials, this results of exact elastic
constants were also derived from the CLM theorem by Thorpe and Jasiuk
(1992).
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3.4 SAME MATERIALS WITH PURE SLIDING

It has been known that, for pure sliding case, the stress field of the composite
materials is independent of the elastic constants of the materials if matrix and
inclusions are made of the same material (Dundurs and Stippes, 1970). When
the volume fraction of inclusion is dilute, the Young’s modulus of this kind of
composite is proved to be independent of the Poisson ratio (Thorpe and Jasiuk,
1991). Here it is founded that, at the whole range of volume fraction, the
Young’s modulus is independent of the Poisson ratio of the material as well as
the dilute case, no matter which theories are used.

Fig.(3.35) - (3.38) are for the Young’s modulus calculated by each theory
and Fig.(3.27) - (3.34) for the Poisson ratio and the shear modulus. Only the
diffentiél scheme shows that, as the volume fraction approach c = 1, the values
of Poisson ratio and shear modulus go to a fixed value which is independent of
the elastic constants of materials. More discussion with the CLM theorem is

given in the next chapter.
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CHAPTER 4

CLM THEOREM AND THE RESULTS OF
EFFECTIVE MEDIUM THEORIES

In this chapter the recently proven theorem for two dimensional composites
is discussed comparing with the results of the effective medium theories. This
theorem is stated as follow.

If the area bulk modulus and shear modulus are varied by the transformation

(CLM transformation) as (Cherkaev et al., 1992; Thorpe and Jasiuk, 1992)

1 1 1 1
— =—4+C —=—-=C 4.1
K:” K™ u:n pm (4.1)
1 1 1 1
—=—+C — =—=-C (4.2)
K{ I H{ l»lf
then
1. 1 1 1
— ==+C — =-=C .
K-K TRl 4.3)

where the subscript t denotes the transformed modulus and C is constant. This
theorem is true only for two dimensional composites. It is also true that the
Young’s modulus is invariant under this CLM transformation.

The effective medium theories used in this thesis show that the Young’s mod-
ulus of two dimensional composites containing holes is independent of the
Poisson ratio of matrix. This agrees to the results of numerical simulations

given by Day et al.(1991). Thorpe and Jasiuk (1992) have proved that the
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invariance of Young’s modulus of the materials containing holes is derived
from the CLM theorem. The CLM transformation leaves the inclusion as holes,
which means that change of the Poisson ratio of matrix is basically identical to
the CLM transformation. Therefore, for the composites of which inclusions are
holes, the effective medium theories do not violate the CLM theorem.

For the same material with pure sliding discussed in section 3.3, the stress
field is independent of the elastic constants of matrix as said before. In this
limit the Young’s modulus calculated by using the four effective medium theo-
ries is given to be independent of the Poisson ratio at whole range of volume
fraction, which provides the possibility that the CLM theorem can be applied to
the composite materials having imperfect bonding at interfaces.

The area bulk modulus and shear modulus obtained by the Mori - Tanaka
method for the case of general inclusion are easily verified to follow the CLM
theorem because the quantities in the parenthesis of the solutions of section 2.4

are invariant.



CHAPTER §

CONCLUSIONS

The effective moduli of two dimensional composites are calculated by the
effective medium theories ; the self consistent method, the differential scheme,
the Mori - Tanaka method and the generalized self consistent method. The com-
posites have the sliding interfaces between matrix and inclusions. The results
of the self consistent method and the differential scheme are highly coupled
forms while those of the Mori - Tanaka method and the generalized self consis-
tent method are easy-to be applied directly to an actual composite materials.

Several interesting limits are investigated to observe the differences between
the effective medium theories and the effects of sliding interfaces on the effec-
tive moduli of composites. All the results of the effective medium theories used
in this thesis reduce to the exact Eshelby’s solution of a single inclusion prob-
lem when the volume fraction of inclusions is dilute. In some limit the big dif-
ferences between the values of the effective moduli predicted by these theories
are observed especially at the high volume fraction. The effect of the sliding
interfaces make the value of the effective shear modulus and the effective
Young’s modulus lower than the values of perfect bonding case.

The above mentioned four effective medium theories do not violate the
results of the CLM theorem of 2 D elasticity when the inclusion is hole. Fur-
thermore they show the possibility that the CLM theorem can be applied to the

case of sliding interfaces.
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APPENDIX

The coefficients of equation for shear modulus of the generalized self con-

sistent method are

C, = (B;—2B,) (A,+ANM™) +2(B;+BN™) (A;—A,) —Ay (B3 +B,N™)
(A.1)

(A.2)

Cy = 2[B,A,—B,(A;-A,)] (A.3)
where

Ay = [(W-3)pm- (-3 -3 -pm) (A.4)

Ay = —— (™= )W - (W=-3) ™) +4 (W-pm) 2
™+ 1)

+[M™+ D+ W+ Dp™c} (A.5)

= 1 m_ f_ - my 3 _ymy A2
A= oy L™= M -3)umc+3 W -umc

+ (W+np™ } (A.6)

Ag = 2(W-pmc? (A.7)
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By = 2c* [k (W - ™) — W™ (A.8)
B, = o +1) {Wum(3-2¢c) +k[W (M™-1) —p™ (W - 1) c]
+ k(W +num) —pume? vk (W -pmy et ) (A.9)

By = k[ (™ +3) —u™ (W +3) 1% - 6p/umc + 3ppme? - 3k (W - p™) ¢
(A.10)

B = (,, o (3w 2= 1) =k WM™ +3) —pm (W +3)]

k(W™ = 3ppm 43k (W -pm 2 (AL

whm

where c is the volume fraction of inclusions and '™ = 1+ 2Kf’"
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