
I
'
l
l
-
I
'
l
l
]
.
I
I

I
I
I
I
'
I
I
I

J

MICHIGAN STATE UN RS TY BRARIES L

I II: IIIIIIIIIIIII
3 1293 00877 5599

I

This is to certify that the

dissertation entitled

Candidate Evaluation:

A Task Specific Architecture

Using Multi-Attribute Utility Theory

With Applications in International Marketing

presented by

Michel Mitri

has been accepted towards fulfillment

of the requirements for

Ph.D. degreein Computer Science

@Mfl fig?
Major professqy

Date February 28, 1992

MSU is an Affirmative Action/Equal Opportunity Institution 0-12771

~
V
r
-
fi
w
"

'
-
—

-
V
_

LIBRARY

Michigan State

* Unlverslty I

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before due due.

DATE DUE DATE DUE DATE DUE

MSU Ie An Affirmetlve ActlorVEquel Opportunity lnetitutlon

cfieflMma-pt

USING

WITH APPLI

1“ Part1

De

CANDIDATE EVALUATION:

A TASK SPECIFIC ARCHITECTURE

USING HULTI-ATTRIBUTE UTILITY THEORY

WITH APPLICATIONS IN INTERNATIONAL NARKETING

BY

Michel Mitri

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

1992

I
A.

USING

ma APPI.

This thesis

.e;:esentation
f

sailed Candidate

triplines. Firs attribute utility

in: the frameworl

mfluenced by rec

‘TSA} and gener

tchitecture
is i

TIL (for Candid

331131 CBJED
(for

3'." :RtEIliqent
dg

mistmcts
is

Item

‘ ‘ational

"aimion model

ABSTRACT

CANDIDATE EVALUATION:

A TASK SPECIFIC ARCHITECTURE

USING NULTI-A'I'I'RIBUTE UTILITY THEORY

WITH APPLICATIONS IN INTERNATIONAL MARKETING

BY

Michel Mitri

This thesis presents a knowledge acquisition and

representation framework for evaluative reasoning tasks,

called Candidate Evaluation. It draws from two main research

disciplines. First, the decision theoretic model of multi-

attribute utility theory (MAUT) provides a mathematical basis

for the framework. Second, the knowledge representation is

influenced by recent research in task-specific architectures

(TSA) and generic tasks (GT). The Candidate Evaluation

architecture is implemented in an expert system shell called

CEVAL (for Candidate Evaluator), and a development environment

called CEVED (for Candidate Evaluation Editor). In addition,

an intelligent database combining MAU'I‘ with semantic network

constructs is presented . The thes i s a 1 so presents

international marketing applications of the Candidate

Evaluation model and the MAUT semantic network database.

Copyright by

MICHEL MITRI

1992

timid like tc

:el;ed make this

afiisar, Carl Pa

mri and for pa'

I

terms also go 1

Sticklen, George

Earthy, for the

3381’ Ella and m‘.’

53.3%. with M

Tessible. Finally

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank those who

helped make this dissertation possible. Many thanks go to my

advisor, Carl Page for his tireless efforts in overseeing my

work and for patiently yet firmly prodding me to improve.

Thanks also go to the other members of my committee: Jon

Sticklen, George Stockman, S. Tamer Cavusgil, and William

McCarthy, for their valuable insights and cements. I thank my

mother Eva and my father Moufid for their unceasing love and

support, without which this effort would not have been

possible. Finally, I thank Cheryl, Brendan, and Joshua, who

make my life very happy indeed.

1. Introduction.

1.1 The St;

1.2 The Rep:

1.3 The DO:

1.4 The ChagI

2. Task Specific

2.1 'Task-I:

TABLE OF CONTENTS

1. Introduction...............................

1.1 The Study of Evaluation.........................

1.2 The Representation.of Knowledge.................

1.3 The Domain of International Marketing...........

1.4 The Chapters of this Dissertation............... m
Q
-
b
l
-
‘
H

2 . Task Specific Architectures and Generic Tasks. 11

2.1 "Task-Independent” Knowledge Representations.... 11

2.1.1.Rule-based systems....................... 12

2.1.2 Frame-based.systems...................... 13

2.1.3 Logic-based systems...................... 15

2.1.4 Blackboard.systems....................... 15

2.2 Philosophical Precedent to Task-Specific

Architecture.................................... 18

2.2.1 Newell’s Knowledge Level................. 20

2.2.2 Marr's Information Processing Task and

Type-l/Type-z'theories................... 22

2.2.3 Minsky’s Society of Minds................ 25

2.2.4 Stefik et al.'s Expert Task Breakdown.... 26

2.3 Philosophy of the Generic Task Approach......... 28

2.3.1 So What is a Generic Task, Anyway?....... 31

2.3.2 MDX-MYCIN: Accomplishing MYCIN behavior

using Generic Task.Methods............... 38

3. More About the Idea of Modular Specialists 40

3

2. 3

2 .4 Generic Tasks and Knowledge Acquisition.. 42

2.4 Examples of Generic Tasks, and Comparisons to

OtherMethods................................... 43

2.4.1 Hierarchical Classification.............. 43

2.4.1.1 Comparison to Pattern Recognition. 48

2.4.2 Routine Design and Planning.... 52

2.4.2.1 Overview of the OPM/BBl Approach.. 56

2.4.2.2 Comparisons of Design/Planning

Methods........................... 62

2.4.2.3 Final Thoughts about Comparison

between DSPL and.OPM 65

2.4.3 Abductive Assembly.. 67

2.4.4 Functional Reasoning.... 71

2.4.4.1 O.S.U.’s Functional Reasoning:

Being explicit about purpose...... 73

2.4.4.2 Davis’ Model Based Reasoning

Approach......... 76

2.4.5 Structured Matching...................... 77

2.4.5.1 Samuel’s Signature Tables... 78

2.4.5.2 Another Approach to Structured-

Matching’s IPT................... 80

2.5 Other Approaches to Task-Specific Architectures. 81

2.5.1 TSA work done byMcDermott and Colleagues

at DEC and Carnegie Melon 81

i

B
)

k
)

P
M
)

2.5.2 .

2.6 Conclus;

3. layesian Model

3.1 The Baye

3.2 Subject;

3.3 Bayesiar

Z
'
f
r
f
-

I
“

I
“
0

e
o

-

b
A
g

e
H
'

H
‘

r
u
t
—
'
3

O
U
T
-
#
0
:
)

H
fl
m
n
n
—
v
n
—
I
A
H
H
‘
4

2.5.1.1 MOLE: A Tool for Cover-and-

Differentiate..................... 83

2.5.1.2 SALT: A Tool for Propose-and-Revise

Systems........................... 85

2.5.1.3 KNACK: A Tool for Sample-Based

ReportGeneration................. 87

4 SIZZLE: A Tool for Sizing Systems. 88

.5 A Possible Way to Test the Generic

TaskHypothesis................... 89

2.5.2 The KADS Approach: TSA Research in Europe 91

2.6 Conclusions about.TSAs.......................... 94

3. Bayesian Models in Decision Theory and AI............. 98

3.1 The Bayes Model................................. 98

3.2 Subjective Expected Utility Theory (SEUT)....... 100

3.3 Bayesian Knowledge Representations in DT and AI. 103

3.3.1 Decision Trees and Influence Diagrams.... 103

3.3.2 Probabilistic Inference Networks (PIN)... 105

3.3.3 Comparing Decision Trees and Inference

Networks.................................109

3.4 Bayesian Studies of Human Decision-Making....... 111

3.4.1 Why People Deviate from Bayes............ 113

3.5 Combining Bayesian Decision Analysis with AI.... 116

3.6Conclusion...................................... 123

4. Regression, Linear Models, and Multi-Attribute Utility

Theory in Decision Theory and.AI...................... 125

4.1 MultipleRegression............................. 126

4.2 Use of Regression in Decision Sciences.......... 129

4.2.1.Correlational Paradigm.............. 129

4.2.1.1 Brunswick.Lens Model..... 130

4.2.1.2 Linear Judgement Policy Models.... 130

4.3 Multiattribute Utility Theory (MAUT).... 134

4.3.1 MAUT Approaches to Non-Linearity......... 136

4.3.2 Non-Compensatory'Decisioanules... 139

4.3.3 Applications of MAUT: Multiattribute

UtilityTechnology.......................142

4.4 Combining MAUT and Linear Models with AI........ 142

Samuel's Signature Tables Revisited...... 143

Berliner and Ackley’s Hierarchical

WeightedScoring.........................144

Continuous vs. Discrete Representation... 145

Context in Evaluation.................... 148

Explanation in Evaluation................ 150

Empirical Comparison of Truth Tables and

LinearModels............................ 151

4.5 Multiple Evaluators: Methods for Voting on

Candidates...........................151

4.6Conc1usions........... 157

O e
-
e

0 m
a
p

O
‘
U
‘
l
h
w

fi
b
b
fi

h
u
b

O

h
u
b
-
h
u
h

ii

The Candidat
e

5.1 Develo;

Evalua:

5.2 Overall

Archit61

5.3 The Car:

CEYED a:

5.3.1 r:

5.3.2.

5.4 A Gener‘

5.4.1 '

5.4.2 ,

I

5.5 Candida:

5.6.1 1.

5.6.2 1
5.6.3

.
O

L
J
N

5. The:Candidate Evaluation Architecture................. 159

5.1 Developmental Principles for a Candidate

5.2

5.3

EvaluationTSA.................................. 160

Overall Description of the Candidate Evaluation

Architecture....................................162

The Candidate Evaluation Shell --

CEVEDandCEVAL................................. 165

5.3.1 Candidate Evaluation Editor’ (CEVED)..... 165

5.3.2 Candidate Evaluator' (CEVAL)............. 172

A.Generic Task.Analysis of Candidate Evaluation. 177

5.4.1 Structured Matching and Candidate

Evaluation...............................177

5.4.2 Abductive Assembly and Candidate

Evaluation...............................180

Candidate Evaluation as Implementation of MAUT.. 181

Knowledge Acquisition for Candidate Evaluation.. 182

5.6.1 KA and MAUT.Assessment Techniques........ 184

5.6.2 Identifying the Experts

(or"Stakeholders")...................... 185

5.6.3 Identifying and Structuring the Major

Criteria(Dimensions).................... 186

5.6.4 Identifying and Scaling the Indicator

Variables (Evaluative Questions)......... 187

5.6.5 Weight Assessment 189

5.6.6 InterpretationnAssessment................ 192

5.7 Validation and Verification of CE Expert Systems 194

5.7.1 What Should be Measured?................. 195

5.7.2 How Should Measurement be Done?.......... 197

5.7.3 Testing Methodology for CE Expert System. 199

5.8 Conclusions: Strengths and Weaknesses of

CEVED/CEVAL...................201

6. Issues in International Marketing..................... 204

6.1 Selection of Foreign.Markets.................... 205

6.1.1 Stages of Country Selection.............. 205

6.1.2 Regression-based Model for Country

Evaluation.... 208

6.1.3 Providing Market Research Information and

Evaluation...............................208

6.2 Selection of Entry Modes........................ 209

6.2.1 Factors Involved in Selection Entry Modes 211

6.2.2 Classification of Entry Modes 215

6.2.3 Three Models of Entry Mode Selection 220

6.2.3.1 Goodnow’sGIMS 220

6.2.3.2 Casson’s Model of Contractual

Entry Mode Selection.............. 222

6.2.3.3 Cavusgil’sCORE 223

6.2.3.4 A Final Look at the Three Models.. 227

6.2.4 Use of Candidate Evaluation for Entry Mode

Selection................................228

6.3 Some Operational Issues in International

Marketing.......................................232

iii

6.4Ccnc1us

7. The Country C

Zatatase

7.15enanti

7.1.1.

7.1. 2 ;

7.2 Senanti.

7.3 A Sena:

Consult

6.4conCIUSions.......OOOOOOOOOO O 0.00234

7. The Country Consultant: An Inferential-Evaluative

Database..235

7.1 Semantic Network.Knowledge/Data Representations. 238

7.1.1 Quillian’s Semantic Memory Model......... 239

7.1.2 Schank’s Conceptual Dependency Theory.... 240

7.1.3 Wood’s "What’s in.a Link"................ 242

7.1.4 Brachman'sKLONE 244

7.2 Semantic Networks as Database Models..... 246

7.3 A Semantic Network View of the Country

Consultant...............................249

7.3.1 How the CC Infers Evaluations....... 251

7.3.2 Spreading Activation.in CC............... 254

7.3.3 Inferring Judgements via Weighted

EvidenceAccumulation.................... 256

7.4 The Country Consultant as a MAUT Model.......... 259

7.5 Knowledge Acquisition and Validation for the

CountryConsultant.............................. 260

7.6conCIuSionSOOOOO0.0.000...O 0000000000 O 0.262

8. Conclusions of the Dissertation.... 263

8.1 Contributions of the Thesis................ 263

8.2 FutureDirections............................... 265

8.2.1 Multiple-evaluator Issues................ 265

8.2.2 Generalizations and Extensions of the

Semantic Network MAUT Model......... 266

8.2.3 Linkage of CEVAL modules with Country

Consultant and Each.Other................ 268

8.2.4 Knowledge Acquisition and Representation

Enhancements1x)CEVED.................... 268

8.3.Final.Conclusions............... 270

APPENDIX A: Formal Characterization of the Candidate

Evaluation Architecture 272

iv

free main topics

127515 of abstra:

' tensors to Cha

133—:1erzcness and k!

tcdleige represe

,Ihen'ieu of f ive

>.::!;a:ison of two

Emcn

'.5:';:tural compon-

.3::_:le dimension .

limiedinension
.

fiftietical
effe

V H‘-
,‘ . r

h- u.‘

ESa:;'.e evaluative
finial score pron
eastmnship betus~
rezcaendation fr.

2‘??ch influenc i.

'TIiESCriptive taxr
.lnparlSOn

of t

Q p.

..‘L‘e judgfii‘men

0
1
0
1
0
1

0
1
0
1
0
1
0
1

0

O
‘
O
‘
O
l

\
J
V
Q
V
Q

e
e

e
e

\
I
O
‘
U
T
P
U
M
P

O
C
O
.

W
N
H

U
M
P
-
U
M
P

List of Figures

Three main topics of the dissertation................

Levels of abstraction for expert systems development. m
u

Precursors to Chandrasekaran's Generic Task theory... 19

Genericness and knowledge-use level of various

knowledge representation schemes..................... 95

Overview of five generic tasks....................... 96

Comparison of two AI methods for static evaluation

funCtiODSeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 147

Structural components of CEVED/CEVAL system.......... 164

Sample dimension entry screen in CEVED............... 169a

Sample dimension hierarchy........................... 169b

Hypothetical effect of contextual weight adjustment

in CEVAL..................................... 170

Sample evaluative question entry screen in CEVED..... 174

Partial score propagation in a CEVAL consultation.... 175a

Relationship between dimension-ratings and

recommendation fragments.................... 175b

Factors influencing the choice of entry modes........ 214

A descriptive taxonomy of entry modes................ 217

A comparison of three models for entry mode selection 226

Structural components of the Country Consultant...... 237

Partial view of Country Consultant’s semantic network 250

A sample judgement entry screen in Country Consultant 253

Country Consultant’s inference strategy entry screen 253

Scope of spreading activation in the Country

Consultant............................... 255

E2-

ihis disser

fcreva'uation a

sister shell, ar.

urieting. The

 epirical find;

:‘zeory, psycholo

all this archit

sires, the Candi .

if this thesis, I

iezision-theoret

Eli-attribute
i

AI and knowledge

fiftific ArChite

mternational ma :I

1.1 lbs Study of

Many of the I

Wile deciding

if.d ueaknesSe

i'

. 4‘ mane

e, B

O

Shll tI‘
d datiOn

CHAPTER 1

INTRODUCTION

This dissertation presents a problem-solving architecture

for evaluation and selection, its implementation in an expert

system shell, and its application to problems in international

marketing. The architecture is based on theoretical and

empirical findings from academic literature in decision

theory, psychology, artificial intelligence, and marketing. I

call this architecture Candidate Evaluation. As Figure 1.1

shows, the Candidate Evaluation architecture, and the topics

of this thesis, are based upon work done in three areas.

Decision-theoretic approaches to evaluation, particularly

multi-attribute utility theory, have a major impact. Issues in

A1 and knowledge representation, including the theory of Task-

Specific Architectures play a role. Finally, the domain of

international marketing was a guiding force.

1.1 The Study of Evaluation

Many of the problems we encounter in our day-to-day lives

involve deciding between a set of options, or candidates. In

these kinds of problems, one needs to determine the worthiness

of each candidate in order to select the best one. Other

problems involve assessing an individual candidate’s strengths

and weaknesses in order to suggests ways of improving its

performance. Both types of problems require the process of

evaluation. In schools, for example, students are evaluated

f3: both remedii

There is a

‘3, the social Si

 Evaluation is of

scores and/0r qLI

re usually repr'

are relevant to T

sacring process,

levels of the at

.sed in educatic

1975), software

‘39}. expert sy

fiend

Indeed , evaJ

733.5 r
gown

an ent

6"!

at St

“‘1 0f eval

:5 a branch of d

2

for both remedial purposes and for selection and ranking.

There is a wealth of research literature, both in AI and

in the social sciences, dealing with evaluation methodology.

Evaluation is often described in terms of establishing numeric

scores and/or qualitative ratings for a candidate. Candidates

are usually represented in terms of attributes (criteria) that

are relevant to the evaluation. Many models involve a weighted

scoring process, where the weights indicate the importance

levels of the attributes being scored. Such models have been

used in education (Beggs and Lewis 1975), marketing (Wright

1975), software validation (Gaschnig et al. 1983; O’Keefe

1989), expert system viability (Slagle and Wick 1988), and a

host of other domains.

Indeed, evaluation is a such a ubiquitous task that there

has grown an entire research discipline devoted entirely to

the study of evaluation techniques. This discipline has grown

as a branch of decision theory, and can be found in several

areas.of psychology and.other social sciences. It explores the

methods that people use for evaluation and selection. It

includes study of compensatory decision rules like those

discussed above, usually implemented as algebraic weighted

models. In their simplest form, these are simple weighted

linear models, but they can also be altered to deal with

nonlinear and nonmonotonic data. Also studied is the use of

non-compensatory decision rules, which are usually

lexicographic inform. Studies have indicated that both forms

ntemahonal

Marketing

[Knowledge 1 AI

Representation J

/ \

///

/ \\

/ \

/ \

International 1 y Multiattiribute

Marketing j Utility Theory

DOmaIn DECISIOn

Theory

Figure 1.1

The three main topics of this dissertation deal with

knowledge representation issues in artificial intelligence,

decision theoretic methods for evaluation and selection,

and the business domain of international marketing.

These topics are combined into a task-specific

problem solving architecture called Candidate

Evaluation.

EV N used! d,

:e iii-imam" "

1.2 the Represer

Knowledge

rtificial ir

regresenta-tion s

representations
Edvard/backward

selection.

Although t

:epresentation
c

they still invol

am -

“lth thes

a, H ‘
be a‘leat

e the

LEI

4g:
59d by the

4

may be used, depending on the complexity of the problems and

the importance of the decisions.

1.2 The Representation of Knowledge

Knowledge representation is a key research area in

artificial intelligence. Typical "first-generation"

representation schemes include rules, frames, and logic. These

representations have corresponding inference regimes like

forward/backward chaining, inheritance, and predicate/clause

selection.

Although these regimes are improvements in knowledge

representation compared to traditional programming languages,

they still involve relatively low-level conceptual primitives.

Even ‘with ‘these representations, there is 'much need. to

translate the knowledge of the expert into the structure

imposed by the representation formalisms. Thus, there is

usually a need for a knowledge engineer who is fluent in the

programming and knowledge representation regimes involved.

This KE, despite his or her AI competence, may have little or

no prior experience in the domain field, thus necessitating a

significant learning process in order to ask the pertinent

questions of the expert. There is also a need for rapport to

be established between knowledge engineer and domain expert,

which can be complicated if the expert sees the idea of an

expert system as a threat. All these factors lead to the

infamous "knowledge acquisition bottleneck" (Hayes-Roth et a1.

 1953}. A sway

the average cof-

$250,000 (Barr

firing the know‘.

regresentation

result in signi:

There have

’xttleneck
thrOL

automatic. one
:erelop language

Kiri-tire mirror

alerts Perform

”:7 .m.)
This

an

‘zS‘I‘I' helps in

sci.-
.rEd as “911 “

wines less tr

r c

Te

\l

"”5 and more

5

1983). A survey conducted by SRI international indicated that

the average cost for developing an expert system is around

$260,000 (Barr et a1. 1989). Much of this cost is absorbed

during the knowledge acquisition process. Thus, any knowledge

representation schemes that reduce the RA bottleneck will

result in significant cost-savings.

There Ihave been several attempts to alleviate this

bottleneck through improved KA techniques, both manual and

automatic. One method for speeding the KA process is to

develop languages and expert systems shells whose conceptual

primitive mirror the types of problem-solving techniques that

experts jperform (Boose 1989, Bylander’ and. Chandrasekaran

1987). This approach, called "Task-Specific Architecture"

(TSA), helps in analyzing the type of problem that is being

solved as well as providing a representation framework that

requires less translation than would be needed for rule-based

or frame-based knowledge engineering. The distinction between

TSAs and more traditional programming and AI methods is

illustrated in figure 1.2, and discussed in detail in chapter

2.It has been my experience that TSAs can also be used

directly by domain experts, so that these experts can encode

their knowledge onto the computer without the need for an

intermediary knowledge engineer or computer programmer to do

this encoding.

K701491196;

I534—

fiU-B. Ea.

\
36i anc

\

I456

\

H,

\

Lea 0' abSracm

l 39m

a $9,888

Mow/edge BasedSystem

7'34 - Generic fask

Rules; Frames, Log/cparadigms

362 and4 61/. languages

Assembdrlanguage

 Hardware
Figure 1.2

Ever!

WI

Implementation

Levels of abstraction for expert systems development The TSA and Generic Task

paradigms are closer to the 'knowledge use level“ of representation than are

traditionairepresentationalschemessuchasrulesframesandlogic.

1.31119 Donain

Recently,

 rational bound-

ariancing globe

its European Cc:

is an increased

ifif‘aining to t?

Issues inv

teaching. A Co

flsizess abroad

.3 enter that ill

:actical decis

emersmps to

for“.uarderg
’ evdl

«a foreign sul

Hg policieE

PM .

?~.C1

T0 date ' tI'

7

1.3 The Domain of International Marketing

Recently, there has been an increased permeability of

national boundaries, brought on by technological factors

enhancing global communication and by trade agreements within

the European Community, North America, and Asia. Thus, there

is an increased need to disseminate knowledge and expertise

pertaining to the domain of international marketing.

Issues involved in this arena are numerous and far-

reaching. A company exploring the possibility of doing

business abroad must decide whether it is ready for such a

commitment. Strategic decisions must be made about which

market to enter (i.e. what country or region) as well as how

to enter that market (e.g. export, license, build a plant,

etc.) and how to adapt the product or service accordingly.

Tactical decisions must be made about the types of

partnerships to set up, selecting distributors and freight

forwarders, evaluating the performance of expatriate personnel

and foreign subsidiaries, setting up legal contracts and

pricing policies to fit the target market.

To date, there has been little effort in applying expert

systems technology 0 the international marketing domain. This

thesis explores some of the work that has been done in this

area, and discusses how the evaluation task can be and has

been applied in this domain.

1.4 The Chapter;

This disse

fill for reaso:

evaluation (CE,

for representit'

levels, and n;

‘ncludes a me,
eraluation resu]

:r the evaluati.

for use by non-

The
aPplication

area of interna

finer“ enough

FOIIQw‘lng

in + - ,

8

1.4 The Chapters of this Dissertation

This dissertation presents a task-specific architecture

(TSA) for reasoning and knowledge representation in candidate

evaluation (CE) tasks. The architecture includes primitives

for representing candidates, their attributes, importance

levels, and numeric/qualitative performance measures. It

includes a mechanism for establishing and interpreting

evaluation results, and for recommending actions.to take based

on the evaluation. The architecture is specifically designed

for use by non-programming domain experts, and thus enhances

the ability to quickly acquire and represent expert knowledge.

The applications developed using this architecture are in the

area of international marketing, although the architecture is

general enough to be applied to a wide variety of domains.

Following is a brief synopsis of the remaining chapters

in this dissertation:

Chapter 2 presents a detailed description of the Task-

Specific Architecture (TSA) school of thought, focusing on

research done by Chandrasekaran and others in Generic Tasks

(GT). This chapter discusses the philosophical precursors to

TSAs and GTs, describes the characteristics of these types of

representations, and compares some specific GTs to other

representation schemes that have been employed to deal with

similar problem types.

Chapter 3 discusses Bayesian approaches to decision

theory and artificial intelligence. Its purpose is to show how

3? and AI have

different PM?

wiel for buil

 raking. Bayes 7

Bayes model as

the reasons t‘n

:gtiaal) Bayes a

situations. Tni

apert system 3

file Bayesian a;

Chapter 4

attribute
regre

53- Like Chapt

e‘éberinental
p

mm??- repru

ii...
...znussmns

Of

midattribute

'ise of evalllat.

Ui‘h
.

“‘mUltl-att

Chapter

9

OT and AI have been using common frameworks for often very

different purposes. Topics discussed include the use of Bayes

model for building psychological experiments in decision-

making, Bayes model incorporated in expected utility theory,

Bayes model as an AI knowledge representation formalism, and

the reasons that most people deviate from the (supposedly

optimal) Bayes approach when they make decisions in real-world

situations. This chapter concludes with a discussion of an

expert system shell developed by Langlotz (1989) that merges

the Bayesian approach with expert systems techniques.

Chapter 4 shifts from the Bayesian approach to a multi-

attribute regression model, and its use in decision theory an

AI. Like chapter 3, there is discussion of the model as an

experimental paradigm for psychological study as well as a

knowledge representation scheme for AI systems. Included are

discussions of compensatory and noncompensatory reasoning in

multiattribute settings. Also included is a discussion of the

use of evaluation.functions in AI, which often attempt to deal

with multi-attribute situations.

Chapter 5 presents a detailed description of the

Candidate Evaluation architecture. CE is described in TSA/GT

terminology. It is also discussed as an implementation of the

multi-attribute utility models discussed in chapter 4, and

compared with other AI evaluation methods. Issues of knowledge

acquisition, representation, and validation are all discussed

in the CE context.

 Chapter |

zarketing, Hit:-

:sing expert s“.

the best markeE

entry is the

:taracteristics

iistributors , f

subsidiaries am

:everal theore

iiscussed .

Chapter 7

10

Chapter 6 explores some issues in international

marketing, with an eye toward how these issues can be resolved

using expert systems. Important issues include: selection of

the best market (country) to enter: deciding which mode of

entry is the best, based on the company and market

characteristics: selection of partners (i.e. joint ventures,

distributors, freight forwarders, etc.): evaluation of foreign

subsidiaries and expatriate personnel: and product adaptation.

Several theoretical models and empirical findings are

discussed.

Chapter 7 presents the Country Consultant. This is a

database of market research information that is catalogued and

indexed using a semantic network structure. In addition, it

uses some of the same evaluation mechanisms described for

Candidate Evaluation, particularly the use of multi-attribute

algebraic methods for arriving at evaluative inferences. The

database is characterized by its ability to make educated

guesses about information it does not explicitly know. This

inferencing is done through a combination of spreading

activation in the network and multi-attribute algebra.

Chapter 8 is a conclusion for the thesis, describing its

contributions and suggesting areas of future research.

The appendices at the end of this thesis include: a) a

formal characterization of the Candidate Evaluation

architecture, b) the Joint Venture Partner Selection expert

system, and c) sample output from the Country Consultant.

msx st=

This chap

solving archits

scne I'task-ind

logic, and bla_

philosophical

representations

 'ratural' for U

the generic t1

celleaqaes at 0

against other in

also review son-

ieze by McDermc

Se‘herlands .

The TSA a

CHAPTER 2

TASK SPECIFIC ARCHITECTURES AND GENERIC TASKS

This chapter presents a survey of task specific problem

solving architectures (TSAs). I start with a brief review of

some "task-independent" frameworks such as rules, frames,

logic, and blackboard systems. Then I present some of the

philosophical precedent for developing "higher-level"

representations that capture knowledge in a form that is

"natural" for the type of task being done. I review several of

the generic tasks identified by Chandrasekaran and his

colleagues at Ohio State University and compare some of these

against other methods being used to solve similar problems. I

alsozreview'some other streams in TSA research, including work

done.by McDermott et al. and by researchers in Belgium and the

Netherlands.

The TSA approach serves as a motivation for development

of a Candidate Evaluation problem solving architecture, which

will be discussed in later chapters. The idea is to represent

knowledge in a form that is tied to its intended use. This

chapter explores the reasons for this "use-based"

representation and its implementation in several task-specific

tools.

2.1 “Task-Independent" Knowledge Representations

Before discussing the task—specific framework for

knowledge representation, I will briefly discuss a few

11

general-purlDOS

developed to d-

are techniques

erpert system s

representation

systens, logic

tiese general-

:‘escrihing the

tho-oi ‘i
'rH-st LC TSA 136

2.1.1 Rule-Base

one freqL

milled??? in t}

hem

edge has.

,.

\la forwa

12

general-purpose knowledge representation schemes that were

developed to deal with a wide variety of problem tasks. These

are techniques that are widely implemented in commercial

expert system shell today. I will discuss four main knowledge

representation schemes: rule-based systems, frame-based

systems, logic systems, and blackboard systems. Discussions of

these general-purpose paradigms will set the stage for

describing the motivation behind the TSA approach and some

specific TSA methods.

2.1.1 Rule-Based systems

One frequently-used, knowledge-base paradigm involves

knowledge in the form of lists of condition-action (IF-THEN)

pairs called rules or productions. These systems involve a

knowledge base of rules and an inference engine whose

reasoning strategy involves deduction in the form of forward

and backward chaining.

Via forward chaining, the inference engine starts with

facts, then searches for rules whose conditions (IF-part) are

satisfied by these facts. The actions of these rules (THEN-

part) produce new facts. The inference engine then uses these

new facts, in addition to the old ones, to search for further

rules whose conditions are satisfied, and the THEN-part of

these rules again produce new facts. This process continues

until a goal fact is established, or there are no more rules

to process.

hypothesis tha

Tail-parts car

 hypnthesis. FCI

type-thesis, an

typetheses are

end is reached

Piles.

Backward c

Etrposes.
One cl

ledical diagnos

:cntrast,
for“

30?.Struction
an

‘4’} { cDernott

"n-c- .

M‘lguration .

2.1.2

Prue‘Bas

13

Backward chaining is the reverse of forward chaining.

With this strategy, the inference engine starts with.algoal or

hypothesis that.it seeks to prove. It searches for rules whose

THEN-parts can establish the truth or falsehood of the

hypothesis. For each.of these rules, the IF-part becomes a new

hypothesis, and new rules whose THEN—parts establish the new

hypotheses are triggered. This process continues until a dead

end is reached or the input facts satisfy the IF-parts of the

rules.

Backward chaining systems are often used for diagnostic

purposes. One of the first backward chaining rule base was a

medical diagnostic system called MYCIN (Shortliffe 1976). By

contrast, forward chaining systems are often used for

construction and design. A prime example is XCON (also called

R1) (McDermott 1982), an expert system for computer-hardware

configuration.

2.1.2.Era-e-Based Systems

Frame-based representation schemes focus on the objects

toflbe represented, as opposed to focussing on the conditional-

triggered actions of rule-based systems. The objects,

sometimes called frames, are similar to record structures in

databases. They typically contain attributes called slots,

which are analogous to fields in a record structure. However,

unlike simple record fields, the slots may actually trigger

procedural actions, called demons, in order to determine their

values or in u

have default v.

data values.

Frane sys

called object-

:te frane-slo

fear-res. First

L‘erarchically
deaons. Thus ,

ar~ +.tes.or class

14

values or in upon receipt of a value. In addition, slots may

have’default values, which are used in the absence of explicit

data values.

Frame systems have evolved into a programming technique

called object-oriented programming. This paradigm combines

the frame-slot-demon concept with two major additional

features. First, frame types (called classes) can be arranged

hierarchically, which allows for inheritance of slots and

demons. Thus, a sub-class will inherit the slots of its

ancestor classes, so that these slots do not need to be

explicitly coded in by the programmer. Second, classes and

their instances (i.e. - actual objects of the class type) pass

messages to one another which trigger procedural actions

called methods. Because these methods can also be inherited,

this allows for higher-level classes to define general-purpose

methods which can be used and specialized (i.e. modified) in

the lower level classes. The use of class hierarchies,

inheritance, and methods encourages encapsulation of program

code. That is, in object-oriented programming, the actions to

take on objects (the methods and demons) are defined in the

same structure as the data descriptions of the objects (the

slots). This increases modularity and.allows for easier re-use

of program code.

2.1.3 logic-Ba

Logic-bag

predicate cal.

freruently use

Propositional

carnectives . L

ZELEES. Sever.-

systeas using

algorithm (wan

357)
I - In fac‘

wields ru1e-l

Prepos it

I

i‘. .

These ’

sperm01-5. .

‘Egresemzatic

15

2.1.3 Logic-Based Systems

Logic-based systems are based on propositional and

predicate calculus. These mathematical representations are

frequently used for theorem-proving and automatic deduction.

Propositional calculus involves statements and their logical

connectives. Logical connectives include AND, OR, NOT, and

IMPLIES. Several algorithms have been developed to implement

systems using propositional calculus, including Wang's

algorithm (Wang 1960) and the Logic Theorist (Newell et al.

1957). In fact, it was Logic Theorist that introduced the

notions of forward and backward chaining that are used in

today's rule-based systems.

Propositional calculus is an extension of propositional

calculus, and includeS‘thelquantifiers "there exists" and "for

all". These, together with resolution and unification

operators, make logic systems a valuable general-purpose

representation for problem solving.

2.1.4 Blackboard systems

The blackboard model is a generic problem-solving

methodology designed to tackle complex, ill-structured

problems. Simon (1969) described a complex system as one that

is "made up of a large number of parts that interact in a

non-simple way. In such systems,the whole is more than the sum

of its parts, in the sense that] given the properties of parts

and the laws of their interaction, it is not a trivial matter

I

:3 infer the E

ill-structure;

defined goals I

true the initl

111struC

because “‘0le

applied t° the:
the situation

path to the
5

results in PrC

gpportuniStiC
i

:pportunistic l
systehs exhibit

The black

First is the bl

elation-state

atjects in the

16

to infer the properties of the whole." Newell (1969) said of

ill-structured problems that they are "characterized by poorly

defined goals and an absence of a predetermined decision path

from the initial state to the goal."

Ill structured problems are often solvable, says Newell,

because knowledge in the form of empirical associations can be

applied to them. These knowledge fragments are triggered when

the situation warrants, and there is no a priori reasoning

path to the solution. This type of knowledge processing

results in problem solving behavior that is incremental and

opportunistic in nature, and it is precisely this incremental,

opportunistic behavior that blackboard

systems exhibit.

The blackboard model involves three main components.

First is the blackboard itself, which is aldatabase containing

solution-state information. The blackboard is made up of

objects in the solution state (often called hypotheses), which

are linked together as the solution unfolds. A blackboard is

divided into multiple levels of abstraction.

Some systems include several blackboard panels, or

planes, each corresponding to different sub-portions of the

problem. For example, BB1 (which will be discussed later)

includes a domain knowledge plane and a control knowledge

plane.

The second component of the blackboard model is the

knowledge sources. A knowledge source is a specialist that

uses informat;

(via its prec

the solution 5

'm the form c.

utter inplemer

The thirt‘:

at its root,

103p. three ma

 1) a $91

2) each

17

uses information on the blackboard to judge its applicability

(via its preconditions), then performs actions that modify

the solution.state on the blackboard. Knowledge sources can be

in the form of rules, rule sets, procedures, or a number of

other implementations.

The third component is the control structure, which is,

at its root, a simple control 100p. Each time through the

loop, three main actions take place:

1) a selected knowledge source changes the blackboard

2) each of the knowledge sources looks at the

blackboard to see if its preconditions have

been met. If so, they are placed on an agenda,

or schedule.

3) a control mechanism (central, or a knowledge source)

selects a scheduled knowledge source based on

control heuristics (eg - priority level).

The control loop is supplemented by control knowledge in

the form of knowledge sources and sometimes a control area of

the blackboard. Thus, a knowledge engineer can specify

heuristics pertaining to the problem-solving method as well as

the domain. Thus, although the blackboard framework is not

task-specific (unlike DSPL), its control regime can be

tailored to different kinds of tasks. Note also that the

blackboard model does not presuppose any implementation

(eg-rules, frames, etc.) but is a higher-level abstraction of

the problem solving process, and therefore attempts to

approach the knowledge level of problem formulation.

2.2 Philosopl'.

Approach

The noti.

by a dissati

representatior

systems (rule.

control regime

 lirlts, and pr:

L'e general in

10“ a level of

‘n . -

“mhllatlng
(

asstraction 1

Software desic

{001 shCNllIi XDE

level (Newell

u; .
”35,

StEle

to “think
1ik

Task-spe

expressing
tr

Mural for t

LESS

geruarail

18

2.2 Philosophical Precedent to Task-Specific Architecture

Approach

The notion of task-specific architectures was motivated

by a dissatisfaction with the above-mentioned knowledge

representation paradigms usually associated with expert

systems (rules, frames, and logic) and their corresponding

control regimes of forward and backward chaining, inheritance

links, and predicate and clause selection. These frameworks

are general in their applicability, but are expressed at too

low a level of abstraction to make them useful and coherent in

formulating complex problem solutions. Their level of

abstraction is too close to the implementation level of

software design, whereas a truly useful knowledge engineering

tool should.belexpressed‘using’constructs at the knowledge—use

level (Newell 1981; Clancey 1985; Chandrasekaran 1983 and

1986; Steels 1990). In other words, the tool should be forced

to "think like the expert", and not vice versa.

Task-specific architectures attempt to do this by

expressing their representation constructs in terms that are

natural for the type of problem to be solved. Thus, they are

less general in scope than the rule—based or object-oriented

paradigms, but make up for this lack of generality by being

more expressive in their ontology and therefore making it

easier to implement knowledge bases in the task areas to which

they apply. Figure 2.1 illustrates this point.

In this section, I will discuss some of the historical

[
fi
r
—
fi
r
fi
fl

Char

bla:

bYAi

19

Figure 2.1

Chandrasekaran’s Generic Task theory is influenced

by a number of other theoretical and empirical work done

by Al researchers.

 precedent le.

I will concer.

Stefik.

2.2.1 Newell ’:

 Newell (

excessive resr

for not Spend

itSEIf. He ..

C

knowledge I e;

fire abStrac

”Present“ ic

Heaven

and
d
ineers an:

4.;
Qter SYS

CCEn

20

precedent leading to the task-specific architecture approach.

I will concentrate on the work of Newell, Marr, Minsky, and

Stefik.

2.2.1 Hewell’s Knowledge Level

Newell (1981) criticized the AI community for its

excessive research emphasis on knowledge representation, and

for not spending enough time exploring concepts of knowledge

itself. He asserted, that. knowledge is not the same as

knowledge representation. Knowledge should be expressed at a

more abstract level than what had been used to describe

representation paradigms.

Newell identified several levels of abstraction that

engineers and scientists can use when describing and analyzing

computer systems. These levels are, from lowest abstraction to

highest: device, circuit, logic, register/transfer and symbol.

The idea here is that each higher level of description

provides a more abstract and less perfect approximation of the

system in question. The symbol level, according to Newell, is

the appropriate place to discuss issues of knowledge

representation.

But another level is needed that is more abstract than

evenmthe symbol level. Newell called.this the knowledge level.

Knowledge level descriptions are descriptions of the

functionality of the system, without concern for structural

details. FUHC

are useful he

system behavi.

underlying p:

ccaputational

the world is .

explicit struc

giant (infini

Since this i

Sisteh must b4

generate only

hand.

Newell s

CoriPoments '

‘9'"91: compo

MM is km

21

details. Functional, non-structural descriptions of knowledge

are useful because they allow prediction and understanding of

system behavior without necessitating detailed descriptions of

underlying processes. They are necessary because, whereas

computational structure is finite and bounded, knowledge about

the world is by nature unbounded. To describe knowledge with

explicit structural form, said Newell, would be like having a

giant (infinite) table containing all knowledge elements.

Since ‘this. is icomputationally infeasible, an intelligent

system must be able to generate knowledge dynamically, and to

generate only that.knowledge which is relevant for the task at

hand.

Newell said that each level can be characterized by its

components, medium, and behavior laws. For the knowledge

level, components include goals, actions, and bodies. The

medium is knowledge itself. The behavior law is the principle

of rationality, which states that an agent's knowledge that an

action will achieve a goal causes that agent to choose that

action.

Any system, said Newell, should be describable in this

manner. Once so described, he said, it would be a relatively

simple matter to translate to a more detailed, structural

description. of the knowledge representation used. by the

system. This is alclassic top-down approach to systems design.

2.2.2 wr’s

modes

Marl: (19

Se discussed

iefin€d as an

grocessing F

tathenatics-

describe meth

Harr def

a particular

providing
a 1

that methods

implementatii

cases,
knowl

terms
bet or

A
a

|
uEbCIlptionQ

22

2.2.2 Hart’s Information Processing Task and Type-l/Type-Z

Theories

Marr (1976) was concerned with similar issues as Newell.

He discussed the idea of a problem-solving method, which he

defined as an abstract account of how to solve an information

processing problem. He likened methods to theorems in

mathematics. To Marr, a major goal of AI is to identify and

describe methods for solving various kinds of AI problems.

Narr defined a result in AI as involving first, isolating

a particular information processing problem, and second,

providing a statement of a method for solving it. Marr said

that methods are not.concerned‘with the details of algorithmic

implementation. Note the similarity to Newell’s ideas. In both

cases, knowledge should be described in conceptual, abstract

terms before being translated into detailed structural

descriptions.

Marr saw two kinds of problem-solving types. The first,

called a Type 1 Theory, provides an overall, global

algorithmic solution to a problem. This is a "clean" theory,

in that it explicitly provides all the steps in the process,

and gives a holistic view of the method.

The second method, called Type 2 Theory, is for problems

that cannot be solved via Type 1. In this method, sub-

processes are defined along with the behaviors they produce.

Then, the interactions between the subproblems are described.

In this case, there is no overall view'or understanding of how

the system i.

l
~rderstandi n i;

communicate ml

fall into thiI

An exampl

theories, in .

Vision system

1) Jule:

discriminable

23

the system works to solve a problem. Rather, there is an

understanding of how individual components work and how they

communicate with each other. Most problems in AI, he said,

fall into this camp.

An example of the difference between Type 1 and Type 2

theories, in the domain of texture discrimination in computer

vision systems, is:

1) Julesz’ (1975) theory that textured regions are

discriminable if and only if there is a difference in the

first or second order statistics of their intensity arrays.

vs.

2) Marr’s solution to texture-vision discriminations by

identifying and coding specific grouping processes.

Note the distinction here. Julesz described an overall

formulation which characterizes how the texture-discrimination

task was to be performed. This is a Type 1 theory. Marr, on

the other hand, presented some specific procedures that each

performed a sub-task of the overall texture-discrimination

task. There was no overall algorithm, but a group of

"specialists", each performing its assigned task, and each

communicating its results to the others.

Based on this breakdown of theory types, Marr had the

following suggestions for AI research. Important question in

tackling an AI problem include:

1) What information processing problem has been

isolated? (ie what is the task?)

2) Can we find a clean (Type 1) theory for solving it?

3) If not, can we describe a set-of—processes solution

abstract for?

dcmains, whe

restricted i

descriptions

above three q‘

‘he issue of ‘

discussing me

fra3l3~based,

TIDE 2 theol-

into 5&5 Of

'rery Simple '

representati

CED:

raliZed

24

(Type 2)...how well will they work?

It is apparent that a Type 1 theory, being a more

abstract formalism, is more likely to be generalizable across

domains, whereas a Type 2 theory is likely to be more

restricted in its applicability. Both theories involve

descriptions of problem-solving methods. Note that of the

above three questions, only question 1 is directly addressing

the issue of task-classification. The other two questions are

discussing method-classification. Note also that rule-based,

frame-based, and blackboard formalisms are all examples of

Type 2 theories. Each is a technique that divides knowledge

into sets of semi-autonomous modules which are managed by a

very simple control regime. In general, distributed knowledge

representations can be considered Type 2 theories, whereas

centralized methods are Type 1.

Marr also asserted that chunks of knowledge should be

larger than what was happening at the time (another support

for more abstraction in representation), and that problem

solving may involve several simultaneous computations on

different aspects of the problem. We will later see how this

relates to Minsky’s "society of minds" theory.

Marr said that "once a :method is described for a

particular problem type, it never has to be done again (p.

2)“, but I don’t agree with this. We will later see that the

classification task can be attacked by many methods, including

hierarchical classification, opportunistic reasoning (in

blackboards f
appropriatenes

type of class.

nature of the p

the search for

one has been fC

”35305-5. and tr

Particular appl

2'2'3 linskyrs

I“"‘I’Vin Hi
a

R

in.

""'elligence .

25

blackboards for instance), or pattern recognition. The

appropriateness of each method will depend on the particular

type of classification that needs to be done, and on the

nature of the problem space. Thus, it is not useful to abandon

the search for problem solving methods for a given task once

one has been found. It is better instead to have a toolbox of

methods, and to be able to choose the one that best fits the

particular application of the task at hand.

2.2.3 Hinsky’s society of Minds

Marvin Minsky was another AI theorist who encouraged

high-level discussions of knowledge representation and

intelligence. In one article (1979), he said:

"There are many real questions about overall organization

of the mind that are not just problems of implementation

detail. The details of an artificial intelligence

theory. . .will miss the point if machines that use it

cannot be made to think. (p. 428)."

He warned against being too quick to pin representational

descriptions to mental facilities, saying "we must be

particularly cautious about such questions as ’What sorts of

data structures does memory use?’ There is no single answer;

different mechanisms succeed one another, some persist, some

are abandoned or modified." This comment suggests two things

to me. First, it suggests that Minsky, like Marr and Newell,

wanted.toidescribe intelligence at.a level of abstraction.that

was higher than the level discussed in AI circles at the time.

 Second, it sui_

may take many :

stated above,

problem type ,

 ttere should bel

tac ling the s

atrees with th

Minsky th

 Product of a

cmmication 1

This idea is v:

the notion Of

the generic tag

theories,

ment

SC'Ci‘aties were

26

Second, it suggests that problem solutions for a given task

may take many forms, and seems to»contradict.Marr’s assertion,

stated above, that once a method is found for a particular

problem type, one need not look any further. On the contrary,

there should be an effort to find and compare many methods for

tackling the same task type. We will see that Steels (1990)

agrees with this.

Minsky theorized that human intelligence is not the

product of a single entity, but rather results from

communication between many agents in a "society of minds".

This idea is very similar to, and seems to have influenced,

the notion of interacting specialists that we will see with

the generic task theory. It is also similar to Marr’s Type 2

theories, mentioned above. Minsky hypothesized that these

societies were arranged in a generally hierarchical fashion

(again like the generic task concept), where communication

links may be very rich between agents which reside in the same

"subsocieties", but.are very sparse between agents that are in

different subsocieties. The choice of control transfer between

agents is based on local context, again like the generic task

approach.

2.2.4 Stefik, et al.’s EXpert Task Breakdown

An often-quoted categorization of problem tasks comes

from Stefik et al. (1983). This task breakdown is worth

mentioning, partly because it is so widely quoted, and partly

because it d

scesested by

removing:

 1) Diagncobserv2)
p
r
e
d
i
c

situat
3)Interpisensor
4) 095m“5) Planni'6)

Honito

vulner'7)
Debug:8)
Repair

prescri
9) InStI‘UC

behavic
10) Contrc

monitC

It

seems

categorization

doing. For
exa

hmginterpre

3's.re doing dia'

27

because it differs in many respects from the breakdown

suggested by Chandrasekaran. The tasks identified are the

following:

1) Diagnosis: infer system malfunctions from

observable symptoms.

2) Prediction: infer likely consequences of given

situations.

3) Interpretation: infer situation descriptors from

sensor data.

4) Design: configure objects under constraints.

5) Planning: design of actions.

6) Monitoring: comparing observations to plan

vulnerabilities.

7) Debug: prescribe remedies for a malfunction.

8) Repair: execute a plan to administer a

prescribed remedy.

9) Instruction: diagnose, debug, and repair student

behaviors.

10) Control: interpret, predict, repair, and

monitor system behaviors.

It seems that this breakdown was developed as a

categorization of what the expert systems of the time were

doing. For example, many systems (Hearsay, HASP, etc.) were

doing interpretation. Other systems (MYCIN, INTERNIST, etc.)

were doing diagnosis. Still others, such as XCON, were doing

design and construction. In other words, this task breakdown

was the result.of empirical observation.of‘what.was being done

in the AI community. The implication is that, as knowledge

based applications proliferate, there will be more task types

that are added to this list.

Note that the different systems performing the same tasks

were often using very different methods for accomplishing

those tasks. For example, whereas MYCIN’s approach to

diagnosis involved rule-based backward chaining and certainty

propagation,
diseases that

it appears the

without regar.

contrast to Ch

Sf problem-sol

“is to solve

We will 3

Tiillfy as age

the term. For ‘

it Can be 501‘

The gene:

bi! Newell. ll

F

'r‘andfasekara

rinds of pro)

“ledge-let

28

propagation, INTERNIST used abductive reasoning to find

diseases that could account for a given set of symptoms. Thus,

it appears that Stefik’s breakdown*was truly a task breakdown,

without regard to methodology. We will see that this in

contrast to Chandrasekaran's generic tasks, a categorization

of problem-solving methods which can be combined in various

ways to solve many different tasks.

We will see also that some of Stefik’s tasks do not

qualify as ”generic tasks" in Chandrasekaran's definition of

the term. For example, diagnosis.is not.aigeneric task because

it can be solved via a composite of generic task primitives.

2.3 Philosophy of the Generic Task Approach

The generic task approach follows from the issues raised

by INewell, Marr, Minsky, and Stefik (cited. previously).

Chandrasekaran, and others, worked on enumerating different

kinds of problem-solving methods, and describing them using

knowledge-level constructs.

In the early-to-mid 1980s, Chandrasekaran and his colleagues

at Ohio State University’s Laboratory for Artificial

Intelligence Research (LAIR) began to isolate various types of

problem solving methods, much as Marr had suggested to do.

Chandrasekaran’s thesis was the following:

"There exist different problem solving types, i.e.

uses of knowledge, and corresponding to each is a

separate substructure specializing in that type of

problem .

handraSe

types in the p

called HDX. It

of appropriate

and consequenc

SClving types

isttaining to

ciifihized as

distributed

“MR9 Specs

itsell‘, but a

that inst be

Note Se

#1

«Out “SOCi.

29

problem solving. (Chandrasekaran 1983,p9)."

Chandrasekaran identified four of these problem solving

types in the process of developing a medical diagnostic system

called MDX. These types included classification, recognition

of appropriateness, intelligent data retrieval and inference,

andmconsequence finding ("what.will happen if"). These problem

solving types all shared certain common characteristics

pertaining to their structure and behavior. They are all

organized as hierarchies of specialists, with the knowledge

distributed among these specialists. Within each problem

solving specialist.resides knowledge not just about.the:domain

itself, but also about the types of problem solving activity

that must be performed relative to the task at hand.

Note several things about this. The idea of distributed

knowledge of specialists is consistent with Minsky’s ideas

about "society of minds", and are in sync with the Type II

problems described by Marr. The notion of identifying problem

tasks and associated problem solving regimes is consistent

with Marr’s suggestions for AI research mentioned above. The

fact that Chandrasekaran was describing problem solving

regimes in a structural, yet abstract, way implies that he was

attempting to bridge the gap between Newell’s knowledge level

and symbol level. Luc Steels (1990) coined a phrase for such

an intermediate level between knowledge and symbol, called the

knowledge use level. The fact that specialists include

problem-solving knowledge as well as domain knowledge defies

cornentiolla1

engine" is S

'htoviedge ba:

ChandraSi

identify a fi?

be combined 1

 problem task.

primitives of

implemented it

example, the

combination
0

retrieval,
an

its own (hier

reqine,
and l

°f problem 5

solving, in 1

The ids.-

together to

following qu

"You sh

FOSsibl

reatin

30

conventional thinking in expert systems that the "inference

engine" is somehow separate from an independent of the

"knowledge base".

Chandrasekaran's idea was that it should be possible to

identify a finite number of problem-solving methods that can

be combined in various ways to tackle almost any type of

problem task. These methods would be considered the epistemic

primitives of knowledge-based problem solving, and could be

implemented in a series of expert system building tools. For

example, the diagnostic task could be tackled via a

combination of hierarchical classification, intelligent data

retrieval, and consequence finding, each of which would have

its own (hierarchical) substructure of specialists, control

regime, and language. (Later, abduction was added to the list

of problem solving methods employed in diagnostic problem

solving, in Sticklen’s MDXZ).

The idea of combining different problem solving methods

together to form an expert system is not a new one, as the

following quote from Winston (1984) illustrates:

"You should think of problem solving paradigms as

possible ingredients, not as complete solutions. In

creating particular problem solving systems, you

may never use any paradigm by itself. Instead, you

will mix them together, developing your own blends

tailored to the problem domain you face." (p. 203).

The problem solving regimes identified by Chandrasekaran

were later termed generic tasks. As time went on, some

additional generic tasks were added to the list, including

abduction and
'task' can be

his colleagues

various tasks

themselves ar

emphasis is p;

m the proble

tasks. It is

311% "generi

I“ Partic

Structure
in 1

hierarch ical I

ll'linum 0f ‘

Structure is 1

in . .

MJCtlve aSs‘

31

abduction and simple design. Note: I think the term generic

"task" can be a bit misleading here. What Chandrasekaran and

his.colleagues are really proposing are methods.of solving the

various tasks that can be identified. Although the tasks

themselves are described in the O.S.U. literature, most

emphasis is placed on the representational issues pertaining

to the problem solving approaches employed in tackling these

tasks. It is these problem-solving methods that are often

called "generic tasks".

In particular, much emphasis is placed on describing

structure in these generic tasks, with a heavy emphasis on

hierarchical, tree-like taxonomies of specialists and a

minimum of tangledness in the tree. This hierarchical

structure is not imposed on all generic tasks, however...the

abductive assembly method did not use such a hierarchy.

2.3.1 Sb>What is a Generic Task, Anyway?

Several questions arise from the reading of the generic

task and TSA literature. At what point does a problem solving

method.become a "generic task"? At.what point.is it considered

an implementation-level programming construct? When does it

cross the line between task-specificity and domain-dependence?

There are no clear dividing lines, but rather a continuum of

problem-solving techniques that may be described as a

"continuum of genericness". At one extreme of this continuum

are general purpose languages and "first-generation"

knowledge-has :

the other ext:

in the middle

architectures .

architectures

area here. . .sc

 iorexanple, s

Si‘ecialized tr

Although

task'specific

iéentify some

Wines. Stil

32

knowledge-base constructs such as rules, frames, and logic. At

the other extreme are domain-specific applications. Somewhere

in the middle ranges of this continuum lie the task-specific

architectures, and in the left portion of these task-specific

architectures are the generic tasks. But there is much grey

area here. . .some generic tasks are more "generic" than others.

For example, structured matching is more ubiquitous and less

specialized than routine design.

Although there is no clear distinction between

task-specific and general-purpose languages, it is possible to

identify some important characteristics of task-specific

regimes. Sticklen, in his PhD dissertation, cited four

criteria that can be used to identify whether a particular

problem-solving strategy qualifies as a generic task: wide

applicability, existence of a problem-solving template, proper

granularity of problem solving, and task specificity.

A problem solving strategy must be applicable across a

wide range of domains and problems encountered by humans. The

strategy' cannot. be confined. to, say, medical diagnostic

problems. Of course, by this criterion alone, almost any

general purpose programming language and any AI programming

construct would qualify as a generic task.

The problem solving method should have an identifiable

control regime and known set of primitives for representing

the knowledge that this task embodies. This implies that the

strategy can be implemented in the form of an expert system

shell (i.e.

procedures, e

no would enc

to the prinit

This lea.

be expressed a

for the task

such as rule-

being generic

10010“ a 18V

oi the task-s

emlineers t'

lcmalisrls .

33

shell (i.e. template), where instead of rules, objects,

procedures, etc. as the knowledge representation constructs,

one would encode the knowledge directly in terms that relate

to the primitives of the task.

This leads to the third criterion, that these primitives

be expressed at the proper level of granularity or abstraction

for the task at hand. This is where general purpose methods

such as rule-based or frame-based programming fall short of

being generic tasks. These approaches represent knowledge at

too low a level of abstraction to be natural representations

of the task-specific knowledge and as a result force knowledge

engineers to twist the knowledge into rule or frame

formalisms.

The fourth criterion, one that has been implied by the

first three, is that the problem solving strategy be

"primitive", in the sense that it cannot be decomposed into

other, already-defined generic tasks. This is why diagnosis,

in the view of Chandrasekaran, is not a generic task in

itself. Rather, it is a task that can be solved via a

combination of generic tasks including classification,

abduction, consequence finding, etc. A true generic task is

one that is both high level and abstract on the one hand, and

non-decomposable into other generic task on the other.

These criteria, are helpful in characterizing generic

tasks. However, I don't think they will enable us to give a

hard-and-fast judgement as to whether or not a problem-solving

netted qualil

The f i}

identifiable

generation' A

reasoning, fr

search, and 1

identifiable

:taining (ir

frame-based s

The thir

ts’Cllblesone b

FrillE‘based

SOCiety 0f p

ElPressing k,

tired in imp

it has Come

and qeheric

l m ..

image Cor

34

method qualifies as a generic task.

The first two criteria, wide applicability and

identifiable control regimes, are satisfied by most "first

generation" AI problem solving methods. Certainly rule-based

reasoning, frame-based representation, heuristic state space

search, and logic are widely applicable. They also all have

identifiable control regimes: such as forward and backward

chaining (in rule—based systems) or inheritance (in

frame-based systems).

The third criterion, that of "proper granularity", is

troublesome because this criterion‘will shift.as time goes on.

Frame-based reasoning, for example, grew out of Minsky’s

society of minds theory, and was thought to be a way of

expressing knowledge at high levels and thereby avoid getting

mired in implementation level details. Now, however, because

it has come into wide use, it is judged by proponents of TSA

and generic tasks as being too much like a programming

language construct.

The fourth criterion, non-decomposability, is also a

problem, for two reasons. First, it appears to contradict the

third criterion. Expressing a PS strategy at a high

abstraction level implies that it may be broken down into

lower level subtasks and submethods. Why would these

submethods not be considered the generic tasks? Second, it

appears that some of the generic tasks identified by the

O.S.U. researchers are, in fact, decomposable, or at least

partially 50'
in exact"

$1990) calls

subtasks, Whi

Steels decon;

First, genera

design inplen

implemented 1

classificatior

sponsor-selecl

best design p'

some pre-enune

satisfy
the c

example
is

granularity“

is unclear wt

bet .5. level
0:

if 'e
.

1.3 SUDta

's

1591f a 99m

“Q SatleaC

Q generic t

ib‘“1ng
Can

they
-»...Selves ‘

35

partially so.

An example generic task is routine design, what Steels

(1990) calls "construction". This task can be decomposed into

subtasks, which themselves may be considered generic tasks.

Steels decomposed the construction task into three parts.

First, generate the partial solution. In DSPL, the routine

design implementation shell developed.by Brown (1987), this is

implemented in a fashion very similar to hierarchical

classification, using structured. matching' via a

sponsor-selector approach to compare and choose from among the

best design plans. Second, test the partial solution against

some pre-enumerated constraints. Third, modify the solution to

satisfy the constraints (what Brown calls "redesign"). This

example is illustrative of the problems with the "proper

granularity" and the "non-decomposability" criteria. First, it

is unclear why the level of routine design is considered the

best level of granularity for a generic task. After all, one

of its subtasks is essentially hierarchical classification,

itself’algeneric task. Why, for example, is constraint-testing

and satisfaction not a proper grain size for qualification as

a generic task? This brings up a second point. If routine

design can indeed be decomposed into subtasks which are

themselves generic tasks, does this not make routine design

something more like a composite of generic tasks in the same

way that diagnostic reasoning is considered a composite task?

There are other characteristics that help define a P6

ttandrasekara

howiedge is

base of an e)

engine (or p;

paradigms, ln

domain usual:

methods used

illustrates t.

“Since

each tag

36

method as a generic task. One characteristic of

Chandrasekaran’s version of generic tasks is that control

knowledge is intertwined with domain knowledge. The knowledge

base of an expert system is not divorced from the inference

engine (or problem solver), as is the case with many other

paradigms. In the view of Chandrasekaran, knowledge about a

domain usually implies knowledge about the problem-solving

methods used to attack that domain. The following quote

illustrates this:

"Since there is a control regime associated with

each task, the problem solver can be implicit in

the representation language.That is, as soon as

knowledge is represented in the shell corresponding

to a particular task, a problem solver that uses

the control regime on the knowledge representation

created for the domain can be created by the

interpreter. (1986 p. 29)."

Another characteristic of the task-specificity of the

generic task approach is that no longer is general

intelligence the goal. Unlike rules and frames, which are

meant to convey any type of intelligent activity, and which

can perform any Turing-computable task, a TSA or a generic

task. is much. more constrained in its applicability. It

sacrifices generality in order to achieve explicitness of

control representation, richness of ontology, and high-level

(abstract) control and domain knowledge representation.

Yet another characteristic of the GT approach is the

tendency to distribute knowledge among knowledge agents, or

specialists, which each contain expertise in a limited area of

the problem domain (and the problem-solving task), and which

communicate

hierarchical l

nine to the

idea has been
of distribut

approach (llay

each contain

iii a COMOT

however, thre

m the black

lid domain

Specialist.

Wedge to

control kilor

Ices' an(

50‘;
{C63 are

~‘H

5; Q

My“ .

lard distil

37

communicate with each other along prescribed, usually

hierarchical, channels. Of course, this characteristic is not

unique to the GT school of thought. Minsky’s society of minds

idea has been adopted by many AI researchers. Another example

of distributed knowledge among agents is the blackboard

approach (Hayes-Roth 1985, Nii 1986), where knowledge sources

each contain their own specialized expertise and communicate

via a common data structure (the blackboard). There are,

however, three important distinctions between the GT approach

and the blackboard approach. First, with GT, control knowledge

and domain knowledge may both reside within the same

specialist. With blackboards, the convention is for domain

knowledge to be separate from control knowledge. Sometimes the

control knowledge is kept in special "control" knowledge

sources, and sometimes it is kept in global routines. The

second difference is that in blackboard systems, the knowledge

sources are not linked hierarchically, but are independent of

one another, whereas the GT approach always imposes a

structured relationship between specialists. This leads to the

third distinction: GT communication channels are almost always

limited to parent-child links in the hierarchy, whereas the

blackboard approach uses a common data source through which

all knowledge sources can communicate. Thus, the behavior of

blackboard applications tends to be more opportunistic and

less structured. than. the ‘behavior of applications using

generic task methods. (There is one exception to this

iaposition c

This excepti

detail later _

Actuali;

was addressel

explore the i

to the hier
approach wou]

deconpos it '10,

comunicatior

it in a carei

I

achil.draseka]

5639 as Hins}

'S‘Jbsocietyn

licks. but on

Sparse. Al

”to

““andrasekar

m€t0013 CS

2.3.2 HDX‘M]

TaSk Heth0d<

“Ugh 01

he

akdown (

ii‘ér .aroma:

t
0 aCCOmpli

38

imposition of hierarchical structure in the generic tasks.

This exception is in abduction, which will be discussed in

detail later).

Actually, this bias toward hierarchical representation

was addressed by Chandrasekaran, who appeared willing to

explore the idea of incorporating non-hierarchical components

to the hierarchy-of-specialists structure. He said his

approach would be to "...start by looking for hierarchical

decompositions, and where there seems to be a need for

communication outside of the hierarchical channels, to provide

it in a carefully controlled fashion such as...blackboards."

(Chandrasekaran 1983, p. 16). This idea puts him in the same

camp as Minsky, for whom the communications channels within a

"subsociety" would be rich and not limited to parent-child

links, but whose communications between subsocieties would be

SParse. Although this philosophy was espoused by

Chandrasekaran, I see little evidence of its implementation in

the tools CSRL, DSPL, HYPER, etc.

2.3.2 HDX-HYCIN: Accouplishing HYCIN behavior using Generic

TaSkaflethods

Much of the initial conceptualization of this taxonomic

breakdown came out of their work on MDX, which used

hierarchical classification and structured hypothesis matching

to accomplish medical diagnostic tasks. Note that MDX was

designed for
[1985) con;

production-r

comparison w;

of the syster

crovide mean

Specifically

sane expert k

the ”BX forma

Operatic

astrics: per

iCSitivesn'

literamre. j

as availabl

“”5 0f hit

data was Ella

and HDX had 1

was found
tc

available.
}

“Emblems

a:
...El'archica

]

“Mes to be

39

designed for the same general domain as MYCIN. Sticklen et al.

0985) compared the MDX (generic task) approach to MYCIN’s

gnoduction-rule-and-uncertainty-calculus ‘method. This

cmmparison was done for two criteria: operational performance

cfi'the systems and ease of knowledge engineering. In order to

provide meaningful comparison, MDX was modified to apply

specifically to infectious meningococcal diseases, using the

same expert knowledge represented in MYCIN, but structured in

the MDX format.

Operational system performance was measured using two

metrics: percentage of "hits" and percentage of "false-

positives", based on test data from cases in the medical

literature. For cases where only initial, pre-screening data

was available, MDX performed slightly better than MYCIN in

terms of hits, but also had more false-positives. When full

data was available, MDX and MYCIN both had perfect hit-rates,

and MDX had less false-positives than MYCIN. Additionally, MDX

was found to be more efficient in pruning when full data was

available. However, its strict hierarchical structure caused

Prdblems *when ‘there was only partial data, because the

hierarchical classification method did not allow for child

"Odes to be activated when knowledge used at the parent level

was insufficient. MDX was later enhanced to allow for this.

In terms of knowledge engineering issues, MDX had

Significant advantages over MYCIN. MDX was superior in

extensibility of the system. The hierarchical classification

structure in

in HYCIN. Aci

reviewing the

modifying t'r

hierarchical

anew node or

This also has

The com;

knowlEdge-lev
generic task

kinds Perform

and refining

Particularly

Calitures. the

within its st

the Specific

L:

is collie,1gu€

2.3.3 ”Ore At

AS mentj

i629 '
NC task

he..cwledge
is

in
a predom

it’SOiUtely he

be

en arQUed

inglementatic

40

structure imposes a conceptual modularity that was not found

in MYCIN. Adding a new disease hypothesis to MYCIN required

reviewing the entire database of existing rules, and possibly

modifying the clauses of those rules. By contrast, the

hierarchical classification tree of MYCIN only required adding

a new node or subtree at an appropriate spot in the hierarchy.

This also made debugging easier in MDX than in MYCIN.

The comparison of MDX to MYCIN is illustrative of the

knowledge-level approach to representation that underlies the

generic task philosophy. Knowledge specialists of different

kinds perform different tasks, such as testing of a hypothesis

and refining the hypothesis. Modularity is the key here, and

particularly a "conceptually valid" kind of modularity that

captures the semantic content of the problem-solving methods

Within its structure. We now go to a description of some of

the specific generic tasks identified by Chandrasekaran and

his colleagues.

2.3.3 More About the Idea of HOdular Specialists

As mentioned above, one characteristic of the way most

generic: tasks have been implemented is the notion that

kno‘Wledge is distributed among specialists which are arranged

in a predominantly hierarchical structure. This is not an

absolutely necessary characteristic of generic tasks. It has

been argued that the modularity characteristic is an

1mplenentation detail...not a knowledge-level consideration.

In fact, one

of such a "5

al. (1987) nl

engineering

distribution

ertensr'bilit;I

knowledge has

Stickler

SWCialists a

anall’sis as

mlEdge-1m!
behavior of

Wicting SL

analysis d0es

relations of

nmledqe‘lev

level White

solving agent

Simgents'

hierstandab]

“escriptions

41

Inifact, one'generic task, abductive assembly, is not.composed

of such a "society of minds" approach. However, Sticklen et

a1. (1987) has argued that it is important from a knowledge

engineering point of view. Specifically, the hierarchical

distribution of knowledge among specialists enhances the

extensibility, predictability, and debuggability of the

knowledge base.

Sticklen (1989) also argues that the hierarchy—of-

specialists approach solves a problem with the knowledge-level

analysis as defined by Newell. Specifically, although

knowledge-level analysis is useful for explaining the observed

behavior of a system or an expert, it is not good at

predicting such behavior. This is because knowledge-level

analysis does not discuss specific behaviors or cause-effect

relations of the system. Sticklen proposed that Newell's

knowledge-level hypothesis be supplemented with a knowledge-

level architecture hypothesis, which allows for the problem—

solving agent to be decomposed into a cooperative structure of

subagents, where the behavior of the overall agent is

understandable, and predictable, via knowledge-level

descriptions of the subagents and their interactions. This

decomposition enables one to view a knowledge based system as

a "Simulation" of a problem-solving agent, thus fostering

prediCtionof problem-solving behavior; In this way, Sticklen

mer(Jedthe knowledge-level approach of Newell with the Type 2

AI tJ'lt-‘eory described by Marr.

2.3.4Generi

The de.

inplications

Bylander an

interaction ;

'Repres

some prr

the pr(

applied

The 1111;:

Process shou]
vabien 501vi'

intimately re

that thEre

Wiledqe. T

generic tag)“

Ghee those

Chandrasekara

42

2.3.4 Generic Tasks and Knowledge Acquisition

The desired characteristics of TSAs have significant

implications for knowledge acquisition, as pointed out by

Bylander and Chandrasekaran (1987). They discussed the

interaction problem in knowledge representation, stating that:

"Representing knowledge for the purpose of solving

some problem is strongly affected by the nature of

the problem and the inference strategy to be

applied to the knowledge" (1987 p.232)

The implications are ‘that. the Iknowledge acquisition

process should be guided by the language or vocabulary of the

problem solving task at hand. The knowledge representation is

intimately reflected by its intended use, with the implication

that there is no such thing as "task-neutral" domain

knowledge. Thus, an early goal of KA is to identify the

generic task(s) that are appropriate for the problem at hand.

Once those have been selected, said Bylander and

Chandrasekaran, the interviewing process can be guided by, and

exPressed in terms of, the language constructs of the chosen

generic tasks.

I would go a step further from this. In my View,

exPressing the architectural primitives of a TSA in terms of

high‘abstraction knowledge-use level constructs makes it

possible for non-programmers to use a TSA shell directly

withOut the need to go through an intermediary knowledge

engineer or computer programmer for encoding knowledge onto

the cOmputer. In other words, the programming language of the

 TSA (or the

acquisition

auser-frie.

feel of a "

nenus, graph

2.4 mm

Weds

In the 1

tasks that

their implen

leill Comp;

93 against

develoned ti

how the "t

mi” from

of the

Computatim

2.4.1 flier,

One 01

gloup Was .

architectUI

classifiCat

u. 3 .

“tegles

43

TSA (or the generic task) can itself serve as a knowledge

acquisition tool, provided that the language is implemented in

a user-friendly environment that does not have the look or

feel of a "programming language" (i.e. - that it involves

menus, graphical displays, and other user-friendly features).

2.4 Examples of Generic Tasks, and Comparisons to Other

Methods

In the following sections, I describe some of the generic

tasks that were identified by the O.S.U. researchers, and

their implementations in specific GT languages. In so doing,

I will compare the problem-solving methods embodied in these

GTs against other knowledge-based systems that have been

developed to solve similar problems. The idea here is to show

how the "task-specific" nature of the GT representations

differ from the more general-purpose representations in terms

of the impact on representational expressiveness,

computational efficiency, and generalizability of the

implemented systems.

2.4.1 Hierarchical Classification

One of the earliest generic tasks defined by the O.S.U.

group was hierarchical classification. This problem-solving

architecture implements hypotheses as nodes in a

classification hierarchy and uses top-down tree search control

strategies for narrowing in on the most promising hypothesis

nodes. The C

Conceptual E
of develot

classificat;

Based

researchers

 racially go ‘

intelligent

latching. CS

Tote t:

Several pg1

ClfiSSificat

CIBSSificat

associatit‘m

lid distant

includes

apprQaChes

Ciassifica‘

44

nodes. The O.S.U. group developed a language called CSRL (for

Conceptual Structures Representation Language) for the purpose

of developing expert systems that do hierarchical

classification. (Bylander and Smith, 1986).

Based on research in the MDX project, the O.S.U.

researchers specified four main problem—solving tasks that

normally go into solving diagnostic problems: classification,

intelligent database access, abduction and hypothesis

matching. CSRL.is a language that tackles the first such task.

Note that hierarchical classification is just one of

several possible methods for accomplishing the overall

classification task. Steels (1990) identified six methods for

classification: linear search, top-down refinement,

association, differentiation, weighted evidence accumulation,

and distance computation. The field of pattern recognition

includes several statistical, syntactic, and parametric

approaches to classification. O.S.U.'s hierarchical

classification corresponds to Steel’s top-down refinement.

In keeping with the overall generic task philosophy,

CSRL’s intent is:

"...to allow the system implementor to more

directly encode the knowledge acquired from domain

experts, and to avoid much of the detail associated

with general purpose languages (Bylander and Smith

1986, p.1)."

Also, similarly to most of the O.S.U. generic task

languages, the domain and control knowledge in CSRL is

decomposed into specialists, which "correspond to different

concepts ir

activity wi-

These speci-

and the onl

Each special

Specialists

Whereas low

SEQCifiC hype

AS desc

Processing t

W59 desc;

clasSificatj

This 1

establisnm

5039 using

stp‘ictul‘ed

the like} .1]

data. If

nestahhsm

45

concepts in the domain, and perform the decision-making

activity within the concept" (Bylander and Smith 1986, p.2).

These specialists are organized in a strict tree structure,

and the only relationship between specialist is super-sub.

Each specialist corresponds with a hypothesis. Higher-level

specialists represent more general, abstract hypotheses,

whereas lower-level specialists represent more detailed,

specific hypotheses.

As described by Bylander and Smith, the information

processing task of hierarchical classification is to identify

a case description with a specific node in a predetermined

classification hierarchy.

This is accomplished via a control strategy called

establish-refine. Establishing a hypothesis (specialist) is

done using "decision knowledge" (frequently implemented via

structured matching) which returns a confidence value showing

the likelihood that the given hypothesis matches the input

data. If the confidence is high enough, then CSRL

"establishes" the hypothesis, which qualifies it for further

refinement. If the confidence level is too low, then the

specialist is rejected, which eliminates the entire subtree

anchored at that node from further consideration. If the

confidence level is neither high nor low, the specialist may

be suspended, and possibly reinvoked later for further

refinement.

Refinement of a specialist involves invoking its

suspmiali

attempting If

available at

A spec~

following in:

1) The

Spec

2iThe

know

As 5'

a st

stru

3iThei

res;

SUpe

Spec

knou

SEnr

Whit

the

Note

SuperSP‘ECia

StructUre f;

andsmith:

46

subspecialists. This means expanding the tree node, and

attempting to establish its children, using decision knowledge

available at the child nodes.

A specialist is a knowledge structure that contains the

following main components:

1) The declare section defines relationship to other

specialists (super/sub).

2) The KGS section (knowledge group section) defines the

knowledge'used.tolestablish.or reject the specialist.

As stated earlier, this is usually done in the form of

a structure matching truth-table. See the section on

structured matching for further details.

3) The messages section specifies how the specialist will

respond to an establish-refine request from its

superspecialist. A typical way to do this is for the

specialist to first establish itself (using the KGS

knowledge), then recursively call its subspecialists

sending each an establish-refine request. The order in

which subspecialists are called can be specified by

the knowledge engineer in the messages section.

Note that each specialist can have only one

superspecialist in CSRL. This makes the classification

structure fairly rigid. This problemiwas addressed by Bylander

and Smith:

"An initial difficulty is that a CSRL hierarchy is

required to be a tree structure, ie a specialist

can only have one superspecialist. For medicine

this appears to be overly restrictive, since it

prevents implementation of alternative

classifications of diseases (p. 4)"

and

"...we are not against tangled hierarchies per se,

but we are against increasing complexity and

"knowledge" without achieving a corresponding gain

in problem solving ability. (p. 4)"

 It app

iaplenentec‘ ‘

classificat

I

structure to

inplenentor

recresentat;

0f the stat

Chandrasekar
needs of tip

Tethods that

lasts. Aga ir

5Lsport this

An adVa]

Classificato

image at

I.

'v

“ThESe

multi~1

47

It appears, then, that hierarchical classification, as

implemented in CSRL, may not be applicable to all kinds of

classification tasks. Indeed, by forcing a rigid tree

structure to the hierarchy, it is possible to force the system

implementor to twist the knowledge into an unnatural

representational structure. This seems to go against the grain

of the stated goal of Generic Task philosophy (stated by

(mandrasekaran) that the expert system shell should meet the

needs of the task. This implies that there may be other

nwthods that are more appropriate for certain classification

tasks. Again, Steel's list of six classification methods

support this notion.

An advantage of the hierarchical approach to representing

classificatory knowledge is its ability to represent the

knowledge at varying levels of abstraction, as stated by

Bylander and Smith:

"These constructs can be used to implement a

multi-layer evaluation of a disease. At the lowest

levels, rules test the values of database queries

and are grouped into KGs. Following this, there can

be any number of levels in which several KGs are

summarized by another KG. (Bylander and Smith 1986,

P-4)"

These advantages do not exist in some of the other

methods cited.by Steel, such.as‘weighted.evidence accumulation

or'distancecomputation. Thus, explanation may be easier using

hierarchical classification than using other classification

approaches.

I

2.4.1.1 Conpal

Pattern

either statis

instances (us

predefined ca‘ each pattern.

I

sane kind of

classificatioi

classificatio;

later.

A Patte:

classified. I

which Corltain

being reprESe

ii”. One (if b“

hpattern
mat

Patterns and

Pattern. s

Valne for fee

and ("here

contains the

53.
De proximi

48

2.4.1.1 Comparison to Pattern Recognition

Pattern recognition is a supervised learning method,

either statistical or structural, whose goal is to group

instances (usually called patterns) into one of a number of

predefined categories based on the values of the features of

each pattern. In this sense, it is a method for performing the

same kind of information processing task as hierarchical

(flassification. However, it differs from hierarchical

classification in several respects, which will be described

later.

A pattern is a representation of an object to be

classified. It consists of a set of features, or attributes

which contain information relevant to classifying the object

being represented. Patterns are generally stored in a database

in one of two forms: pattern matrices or proximity matrices.

A pattern matrix is a matrix in which the rows represent the

patterns and the columns represent the features of each

pattern. Each cell (i,j) in the pattern matrix contains the

value for feature j of pattern i. A proximity matrix is an an

array (where n is the number of patterns) where cell (i,j)

Contains the "distance" between patterns i and j, according to

some proximity metric.

Learning is facilitated by first presenting the system

With a set of training patterns. The training patterns include

the features mentioned above, and also include the class to

whiCh the pattern belongs. This is what makes pattern

recognition a

unsupervised

The inf.

thusly: giver.

of potential

category or c

 siailarity bl

described for

Pattern-recog

mpsiques ca

rethods. M051

Methods, Vii;

r‘onllaranetric

One sta.

159017. A Bag

Fosteriol. pm

tiaSs based

Conditionai ,

49

recognition a supervised learning process, as opposed to the

tmsupervised learning of cluster analysis.

The information processing task here can be described

thusly: given a pattern representing an individual, and a set

cfi'potential categories to which it may be assigned, find the

category or class of patterns in which it best fits. Note the

similarity between this task description and the task

described for hierarchical classification. There are many

pattern-recognition techniques for' doing' this; these

techniques can be divided into statistical and structural

methods. Most pattern recognition systems use statistical

methods, which can be divided into parametric and

nonparametric approaches.

One statistical method for PR uses Bayesian decision

theory. A Bayesian decision rule is one that calculates the

posterior probability that a pattern belongs in a particular

class based on the prior probability of the class and the

Conditional probability of the pattern values given that the

pattern is in the class. Bayes rule states that one should

pick.the ClaSS‘With the highest posterior probability combined

With the lowest negative consequence (loss) for making'a*wrong

ChOice. Bayes rule assumes that the prior probabilities of the

Classes are known in advance, which is often unrealistic in

real-world problems. Some modifications to the Bayesian

approach allow for parameter estimation, whereby the prior

Prohabilities are estimated rather than known explicitly. The

Bayesian ap

parametric p

based on th

distribution :

advance. 0th"

uaxinum-l lye:

iimbdbilities

that minimize

Mother

alproach, wh

patter“(8) tn

is an exampl

define a den

algorithm C0

each of the

several DOS-

distanCe'

differenCes

distanCe' w

sup distam

difference

diStanCes ..

50

Thyesian approach and its modifications are known as

pmrametric pattern recognition techniques, because they are

tmsed on the assumption that. the underlying' probability

distribution function of the set of classes is known in

advance. Other parametric decision rules include minimax,

maximum-likelihood, and Nehman-Pearson. All are based on known

probabilities of the classes. Of these, Bayes rule is the one

that minimizes the average risk.

Another PR technique is called the nearest-neighbor

approach, where a pattern is grouped. with the training

pattern(s) that are "closest" to it in the pattern space. This

is an example of nonparametric PR, and does not attempt to

define a density function for the classes. Instead, a k-NN

algorithm computes the "distance" between a test pattern and

each of the training patterns. This distance can be based on

several possible distance metrics, for example: Euclidean

distance, which takes the square root of the sum of

differences of all the features of two patterns; Manhattan

distance, which simply sums the difference in features: and

Sup distance, which computes the distance as the maximum

difference between two patterns for a single feature. Once the

distances are computed, using one of these metrics, the test

pattern is grouped into the same category shared by the k

nearest.training patterns. Of course, if not all the k closest

training patterns are in the same class, some method for

"Voting" will take place, such as majority rule or weighting

the votes b

As men

that are p

classifica‘

their prob

a technic

classific;

khOViiedge

hierarchy

but rathe

an OVera

Sense,

hiErarCr

used Ce

GESCrih

Classic

Finau.

quark

irony

tgg

as“:

‘10
a

51

the votes based on proximity to the test pattern.

As mentioned earlier, despite the similarity in the tasks

that are performed by pattern recognition and hierarchical

classification, there are many significant differences in

their problem-solving methods. First, pattern recognition is

a technique for machine learning, whereas hierarchical

classification is a mechanism for representing pre-compiled

knowledge. Second, pattern recognition does not use a

hierarchical , modular representation of specialist hypotheses,

but rather involves a flat file of patterns (or instances) and

an overall algorithm for grouping these patterns. In this

sense, pattern recognition is a Type 1 theory whereas

hierarchical classification is a Type 2 theory. The algorithm

used can be statistical or graph-theoretic, but it is

described as a whole entity, whereas hierarchical

classification tends to be more modular and distributed.

Finally, pattern recognition does not involve verbal,

qualitative explanation as ani integral part of its

architecture. It is solely a means to train the computer how

to group» objects into categories. Again, this is quite

distinct from hierarchical classification, whose aim as a

knowledge representation formalism is to explain to the user

how and why a decision is made.

2.4.2 Rou

The

nd part:

will alsl

based sys

is calle

and was .

the ongc

Brc

Categor:

design.

innovat

dCllain

l‘-'1VOlv i

are St

design

Prome

design

reg-1m

311—“ C,

strUC

52

2.4.2 Routine Design and Planning

The next task type I will discuss is object synthesis,

and particularly the generic task called routine design. I

will also discuss a language for development of knowledge

based systems performing routine design tasks. This language

is called DSPL, for "Design Specialists and Plans Language,"

and was created by Brown (1987) at O.S.U. in conjunction with

the ongoing research in generic tasks.

Brown (1987) divided design activities into three

categories, which he called Class 1, Class 2, and Class 3

design. Class. 1 design requires uncommon creativity and

innovation, and is characterized by lack of knowledge in both

domain and problem-solving. Class 2 activity is more typical,

involving knowledge of the domain, but problem-solving actions

are still not known in advance. Class 3 design is routine

design, and involves knowledge of both the domain and the

problem-solving strategies. DSPL was developed to do routine

design. Routine design is a top-down, "plan and successively

refine" approach, and thus involves the same hierarchical

structure that.we have seen in hierarchical classification and

structured matching. As Brown said,

"Our View of routine design is that it is largely a

top-down activity. By this we mean that the problem

decomposition is performed in a top-down fashion to

produce a hierarchy of design goals. It does not

imply that the design decisions themselves are made

strictly from the top down. In fact, it could be

that they are made bottom-up in some situations,

but such decisions are guided by the goals already

established (Brown, p. 5)."

In t

built frc

structure

top-down

Fea'

done may;

differen

involve

Plans ar

that an

eXP‘ériel

opposed

DS

Configu

5:30 k

a1. .19;

and a

53

In other words, while the solution-space itself may be

built from both top-down and.bottom-up mechanisms, the control

structure of the problem solver must act in a totally

top-down, successive-refinement manner.

Features of a routine design task are: that it has been

done many times before; that each time it is done requires

different, but similar specifications; that all instances

involve similar topologies; that an expert knows specific

plans and knows about how to resolve failure situations; and

that an expert has complete knowledge with respect to past

experiences, with that knowledge being mostly compiled (as

opposed to "deep"). .

DSPL was originally developed for design of

configurations, such as mechanical devices. However, it has

also been used to construct plans (Chandrasekaran et

al.,1986). Design and planning are very similar activities ,

and a routine design tool can be applied for "routine

planning" tasks. As with routine design, a theory of planning

requires an ontology of the planning task (terms in which

planning knowledge is encoded), a structural organization of

domain knowledge, and an account of the control processes

required.to use the knowledge to produce a plan. These are all

very similar to the requirements of routine design, and all

are expressed as constructs in DSPL.

In DSPL, knowledge about a domain is organized in the

form of active cooperating design specialists (Brown, p.17),

each of uni-c

The speciali

the childrer

sub-speciali

specialist's
lessage-passl

the root nod

attatking

sub‘SPeCiali

Sub‘5P‘3Ciali

reCllI‘SiVely

results of

Structural

earlier).

SPeCiai

Here is whe

lies in My

of Calls

comfaint

54

each of which is responsible for a sub-portion of the design.

The specialists are organized in a tree-like hierarchy, where

the children of a specialist are themselves further refined

sub-specialists attacking sub-portions of the parent

specialist's task. Communication is possible (via

message-passing) between parent and child specialists. Thus,

the root node of a specialist tree represents a specialist

attacking the entire design problem, and invokes

sub-specialists to solve sub-portions of the design task. The

sub-specialists in turn attack their sub-problems (perhaps by

recursively calling sub-sub-specialists), then return the

results of its attempt back to its parent. (Note the

structural similarity between DSPL and CSRL, discussed

earlier).

Specialists contain local design agents called plans.

Here is where the actual domain-specific control knowledge

lies in DSPL-generated systems. A plan consists of a sequence

of calls to sub-specialists, calls to tasks, and

constraint-tests. In this sense, a plan is a procedural-like

representation of control knowledge as a sequence of

instructions and/or "subroutine" calls. Note that this control

knowledge is like a local "scheduler", imbedded in a

specialist that itself is focusing on a subportion of the

design domain. Thus, you see an example of Chandrasekaran's

View that domain knowledge and control structure cannot be

totally separate; knowledge of the domain involves knowledge

of the cont:

plan in a D

lessaqes sec

and conditi

controlling

Specialist '1

 Each p1

Current desi

evaluate the

istYPically

Thus, the 3;

K68 section

bl the Spec

Sponsors. T

for Each C

executhn.

judged by 1

any Plan t

PrioritiZa

dlSCox,Ered

a manner s

55

of the control regime to use on that domain. In this view, a

plan in a DSPL specialist serves a similar function as the

messages section of a CSRL specialist. . .both control the order

and conditions of calls to sub-specialists, as well as

controlling the sequence of actions that occur within the

specialist itself. .

Each plan has an associated sponsor, which views the

current design state (as stored on the design database) to

evaluate the current appropriateness of the plan. The sponsor

is typically implemented in the form of a structured matcher.

Thus, the sponsor is performing an analogous function as the

KGS section of a CSRL specialist. Plans themselves are chosen

by the specialist’s plan selector, based on input from the

sponsors. The selector compares the results of the sponsors

for each candidate plan, and chooses the "best" one for

execution. It may look for "perfect" or "suitable" plans, as

judged by the sponsors. Or, it can use a strategy of picking

any plan that has not yet been tried. Or, it can impose a

jprioritization scheme, if more than one suitable plan has been

discovered. Thus, the selector contains control knowledge in

a manner similar to the messages sectiontof a CSRL specialist.

Tasks are sequences of steps and possibly constraints.

Their purpose as a DSPL construct appears to be to encourage

modularity in design. The steps are the agents that actually

make design decisions; that is, they are the agents that

change the design state on the design database. Each step is

associated

include knoc-

that is, Sit

the design

ilggestions ‘

311W minor 2

 suggestions ‘

that are actj

indiCations, (

tests on the

design is un

failure hand

and fa11Ure

ospL a;

Varying 19Ve

it is 9083“

refine it E

knowledge be

24.24 OVeJ

0PM

if

that

'H5Y93.Roth

S6

associated'with an attribute of the device being designed. The

body of each step involves decisions to be made about (i.e.

values to be placed in) that attribute, based on information

the step retrieves from the design database. Steps also

include knowledge about how to deal with failure situations,

that is, situations in which constraints are not met during

the design process. This comes in the form of failure

suggestions and redesigners. Redesigners are constructs that

allow minor adjustment of decisions made by the step. Failure

suggestions are essentially output parameters from the step

that are active if the step fails, and give the calling task

indications on how to deal with that failure. Constraints are

tests on the design state that, if failed, indicate that the

design is unsatisfactory. This DSPL construct also includes

failure handling capabilities in the form of failure messages

and failure suggestions.

DSPL allows the design process to be accomplished at

varying levels of abstraction and completeness. For example,

it is possible to perform a "rough design" first, then later

refine it according to the constraints defined in a DSPL

knowledge base.

2.4.2.1 Overview of the CPI/831 approach.

0PM (for Opportunistic Planning Model) is a computer

:model that simulates human errand-planning behavior

(Hayes-Roth and Hayes-Roth 1979). It is a tflackboard-based

 nodel desigr

(xii 1986),

engineers to

knowledge in

rePresentatic

evolved from

0PM was

mlCh had bee
[Ethan 9t a1.

{Nagao et al‘

Planning,

Predeterminat

at achieving

57

model designed to illustrate the opportunistic nature of the

cognitive processes humans employ when constructing plans.

881 (Hayes-Roth 1984), which evolved partially from OPM

(Nii 1986), is a blackboard-based shell that allows knowledge

engineers to specify control knowledge as well as domain

knowledge in a tflackboard framework. The control knowledge

representation of B81 is similar to that.of 0PM and presumably

evolved from it.

0PM was the first attempt to take the blackboard model,

which had been traditionally applied to signal interpretation

(Erman et a1. 1980; Nii et al. 1982) and scene understanding

(Nagao et al. 1980), and use it for a planning application.

Planning, which Hayes-Roth (1979) defines as "the

predetermination of a course of action aimed

at achieving someigoal (p. 275)," involves top-down successive

refinement and bottom-up data-driven reasoning, interspersed

with intuitive refocusing of attention as the plan unfolds.

Here is where Hayes-Roth’s view of planning (and design)

differs from the routine design approach of Brown. Hayes-Roth

is trying to tackle planning tasks without recourse to having

complete knowledge of the planning process, and wishes instead

to rely on an incremental approach to plan synthesis. The OPM

and 831 systems "typically forego efforts to predetermine

complete or correct control procedures that anticipate all

important problem solving situations (Hayes-Roth.1984, p.3)."

Rather, they allow control knowledge to be

58

incomplete, and represented in the same blackboard—and-

knowledge-source framework as domain knowledge. As Hayes-Roth

puts it:

"While not incompatible with successive-refinement

models, our view is somewhat different. We share

the assumption that planning processes operate on a

two-dimensional planning space defined on time and

abstraction dimensions. However, we assume that

people's planning activity is largely

opportunistic...For example, a decision about how

to conduct initial planned activities might

illuminate certain constraints on the planning of

later activities and cause the planner to focus

attention on that phase of the plan. Similarly,

certain low-level refinements of a previous,

abstract plan might suggest an alternative abstract

plan to replace the original one. (Hayes-Roth 1979

p.276)."

Much of the evidence for these conclusions came as a

result of protocol analysis of human subjects performing

errand planning tasks. Hayes-Roth found that "...the planner

does not plan strictly forward in time. Instead, he plans

temporally—anchored sub-plans at arbitrary points on the time

dimension and eventually concatenates the subplans (p.284)."

As a result, when asked to explain their planning process,

"planners will produce many coherent decision sequences, but

some less coherent sequences as well (p.276)."

0PM and 881 express this opportunism in their control

knowledge by using a blackboard framework to represent that

(control knowledge. OPM has two blackboard planes for

:representing the control decisions of the planner; whereas BB1

has.a single control blackboard. As they are similar in their

structure, I will describe OPM’s blackboard first, and point

out inporta

blackboard

abstraction

plane, and }

decisions of

and comes;-

database if

hierarchical
Procedures, i

the System

abStraction.

The p}

attributes 0

of actions t

directly to

The knc

the Specific

OPH' this k.

teulogy of

9::
ands! am

Comm:

Planes. The

59

out important discrepancies with 881 when necessary. OPM's

blackboard is divided into five planes, the plan plane, plan

abstraction plane, executive plane, meta-plan

plane, and knowledge-base plane. The plan plane contains the

decisions of actions the planner intends to take on the world,

and corresponds to the design-state portion of the design

database in Brown's DSPL system. The plan plane is

hierarchically decomposed into four levels: outcomes, designs,

procedures, and.operations. Thus, the final design (plan) that

the system produces is expressed at several levels of

abstraction.

The plan abstraction plane characterizes desired

attributes.of potential plan decisions. It indicates the kinds

of actions to take, and consists of four levels corresponding

directly to the four levels of the plan plane.

The knowledge base plane contains domain knowledge about

the specific problem the planner has to act on. In the case of

0PM, this knowledge was of errands that needed to be done,

topology of the geographic area in which to perform the

errands, and possible routes through that area.

Control knowledge resides in the executive and metaplan

planes. The executive plane has three levels: priorities,

*which.establish.principles for allocating cognitive resources

and point to general areas of the blackboard to focus on;

focus, which specifies where specifically on the blackboard to

focus attention on; and schedule, which resolves remaining

conflicts a

and essenti

the form of

531 general.

separate, wt

control kno

Iodified by ~

and referee.

60

conflicts among executable specialists (knowledge sources),

and essentially contains the agenda of actions to take in

constructing the plan. Note that in contrast to DSPL’s

control knowledge, which.consists of many local "schedules" in

the form of plans and tasks, OPM’s schedule is global. 0PM and

881 generally attempt to keep domain and control knowledge

separate, which is different from the Ohio State approach. The

control knowledge on the executive plane is generated and

modified by special control knowledge sources called director

and referee. These act in primarily a top-down manner. The

director uses knowledge at the priority level to alter

knowledge at the lower focus level. The referee uses input

from the focus level to make decisions on the lowest schedule

level. However, this top-down structure is not imposed by the

blackboard model. There is no explicit hierarchy of the

specialists themselves, unlike the DSPL model. The hierarchy

is in the blackboard (data-base) only;.that is, the hierarchy

is in the knowledge of the domain (the knowledge-base plane),

of the control structure (executive and metaplan planes), and

of the solution space (the plan and plan-abstraction planes).

In principle, a specialist can use input from a lower level of

{a blackboard plane to make decisions on a higher level, or

even to make decisions on a totally different plane. For

example, decisions that are made on the outcome level of the

plan plane may trigger knowledge sources that make changes to

‘the focus level of the executive plane. This capacity for

specialists

the design

different

'Gpportunisi

behave more

astrict to;

AS a re

tackle desic

amt PIOblei

1“ Other UOre tasks mere CC

DSPL deals ‘

Character of

The m

Capacity in

the sQilit‘u

Maxims,

the; S and

it the C

“Hanan

prObl‘em s

61

specialists that are triggered by data at certain points of

the design and control space to make decisions at totally

different locations gives the blackboard model an

”opportunistic", "intuitive" flavor, and makes the system

behave more like a committee of independent agents than like

a strict top-down refinement of an abstract plan.

As a result, the blackboard model makes it possible to

tackle design and planning tasks where complete knowledge

about problem-solving sequences may not be known in advance.

In other words, OPM seems to be trying to deal with planning

tasks more complex than the Class 3 routine design tasks that

DSPL deals with. This is part of the apples-and-oranges

character of a comparison between OPM/BBl and DSPL.

The non-hierarchical specialist organization, the

capacity for specialists to take input from one location of

the solution space and produce output at totally different

locations, and.the agenda-based control loopiall contribute to

OPMVS and BBl’s opportunistic behavior. This.is done, however,

at the cost of coherent decision paths, which can make

explanation difficult in such a system. BBl explains its

problem solving actions in terms of a "dynamic control plan"

including the current scheduling rule, the operative control

heuristics, the current action (knowledge source or blackboard

focus) and its priority, and a rating of how well the

current action matched up with the operative control

Iheuristics compared with other candidate actions. (Hayes—Roth

1984, p.

Am

terns c

control

applicaj

llevia

This is

constra

based u

mail

and d,

Opportr

62

1984, p. 4).

Another cost of the opportunism of blackboards is in

terms of computational efficiency. Each time through the

control loop, every knowledge source must be re-evaluated for

applicability (although dividing the blackboard into planes

alleviates this situation somewhat) (Hayes-Roth 1979, p.303).

This is in contrast to the DSPL approach, which severely

constrains the possible actions to take at each iteration,

based upon the specialist hierarchy and the strict top-down

formalism. Therefore, a routine design approach to planning

and design will generally be more efficient than an

opportunistic approach.

2.4.2.2 Camparisons of Design/Planning Hethods

As mentioned earlier, many of the language constructs of

DSPL have similar corresponding constructs serving similar

purposes in 0PM and 881. For example, DSPL writes its design

decisions to a portion of the design database containing the

<design state. These deciSions are in terms of values that are

assigned to attributes of the design state, and are generated

by the steps. Similarly, in 0PM, the design decisions (i.e.

the unfolding plan that is being developed) are written to the

plan plane of the blackboard, in the form of values assigned

t1) attributes (often called hypotheses in blackboard

parlance), and these values are generated by knowledge

sources. Also, note that both DSPL and the blackboard approach

provide 5

determine

example,

evaluate

approach

precondi

Similari

part of

"rough“

llan ca

CPR, tn

and the

Hc

63

provide specialists and action-taking modules with built-in

determinants of their appropriateness for the situation. For

example, in DSPL, each plan has an associated sponsor to

evaluate that plan’s appropriateness. In the blackboard

approach, each knowledge source has a corresponding

precondition portion to make this evaluation. Another

similarity between the two approaches is that both have, as

part of their reasoning processes, development of an interim

"rough" design. For DSPL, there is an actual type of design

plan called a rough design plan that accomplishes this. In

0PM, the rough design is built on the plan abstraction plane,

and the higher levels of the plan plane itself.

However, despite the similarities, the differences are

far more pronounced. Probably the biggest difference is in

the control and scheduling regime the two approaches employ.

For example, DSPL's basic control architecture is in the form

of top-down refinement of a solution tree, whereas the

blackboard model uses a simple control loop updating a global

agenda, or schedule. n DSPL, the domain-specific control

knowledge is represented locally, within the domain

specialists, where each specialist employs a plan selector to

choose among competing plans whose appropriateness to the

situation had been judged by their sponsors. In OPM, the

scheduling is global. The executive plane contains the

schedule (called a to-do set in 881) which contains a list of

lexecutable knowledge sources. Higher levels of the executive

blackboard _

generated :

selection 0

control kno

aostly in

accomplish

910561 to t

0f control

A thir

there is n,

DSFL'S Sp

PIOblem-re

lirrors th

being deg;

Until its

blackbOar,

“99d the .

the hier

invoCatio

ot the bl

invoked I

tenured

«ll.813

64

blackboard (e.g. focus) contain control decisions previously

generated by control knowledge sources, which guide in the

selection of scheduled knowledge sources. Thus, whereas DSPL’s

control knowledge is local to the specialists and.is expressed

mostly in terms of actual sequences of actions to take to

accomplish the design goals, 0PM and 881 control knowledge is

global to the system as a whole and is expressed in the form

of control heuristics for scheduling decisions.

A third difference is that in 0PM and B81, unlike DSPL,

there is no explicit hierarchy of the specialists themselves.

DSPL’s specialist hierarchy ties in with its top—down

problem-reduction approach. The specialist hierarchy usually

mirrors the device hierarchy of the configuration (or plan)

being designed. Thus, a given specialist cannot be invoked

until its parent specialist has already been invoked. The

blackboard model, with its agenda-based control loop, does not

:need the specialists to be arranged hierarchically to mirror

‘the hierarchy of the domain and solution spaces. The

invocation of a knowledge source depends solely on the state

«of the blackboard, not directly on which knowledge source was

invoked previously. This is one way that the opportunistic

:flavor of the system’s behavior can be expressed.

15 fourth difference is that DSPL explicitly represents

failure-handling mechanisms as constructs in the language.

flfixis is an example of how task-specificity allows an

expression

task at ha

solving me1

as does 581

constructs

2.4.2.3 m

The at

and design

shortcoming

exillicit [in

design step

simple des i

Provide co]

beCause or

Class of de

the opportu;

We difficr

often at the

decision

pat

The We

the explicit

65

expression of the knowledge in forms that are natural for the

task at hand. The blackboard model, being a general problem

solving method, expresses knowledge in a more generic fashion

asldoes B81, and OPM’does not appear to have explicit planning

constructs dealing with failure, despite its task-specificity.

2.4.2.3 Final Thoughts About Comparison Between DSPL and CPU

The above analysis of top-down vs opportunistic planning

and design indicates that each approach has its merits and

shortcomings. DSPL, with its capacity to represent rich and

explicit problem-solving knowledge in the form of sequences of

design steps and failure-handling strategies, can perform

simple design tasks in a computationally efficient manner and

provide coherent explanation of its reasoning. However,

because of its tightly constrained control structure, the

class of design tasks it can solve is limited. By contrast,

the opportunistic flavor of 0PM and B81 enable them to tackle

more difficult and "interesting" planning and design tasks,

often at the expense of computational efficiency or coherent

decision paths.

The question is, can we have it both ways? Can we merge

the explicit, ontologically rich and task-specific nature of

DSPI.including its top-downjrefinement.control structure, with

the capacity to make intuitive leaps of reasoning via the

eVent-driven control structure of blackboard models? I see

tWO possible methods for doing this.

The f

into the

Hayes-Roth

could be t

lodel. Wit

would be

constraine

refinement

The ;

reasoning

example, ,-

not descer

inc”porter

design Sta

5“ to use

C0ltroi, a

event‘Clrix

66

The first is to incorporate top-down control heuristics

into the blackboard framework. This was suggested by

lmyes-Roth (1985 p.307), who said that the top-down model

could be thought of as a special case of the opportunistic

nmdel. With this approach, the major thrust of the system

would be opportunistic, but the opportunism would be

constrained by control heuristic which enforce focusing via

refinement.

The second approach is to incorporate opportunistic

reasoning into the overall control regime of DSPL. For

example, if specialists can call other specialists that are

not descendants of themselves, and if the reasoning could be

incorporate event-driven features such that changes to the

design state trigger specialists into action, then this would

add to DSPL’s flexibility. By maintaining theloverall top-down

control, and only interspersing it with occasional

event-driven reasoning, this would preserve most of the

structure and computational efficiency of DSPL, while adding

theeability for "creative thought" and therefore allowing DSPL

to tackle more difficult design problems.

Whichever tactic one uses, it is clear that any theory of

human design and planning must take into account the notion

0f "creativity" and "intuition". I believe this is even true

for simple, "routine" tasks. Humans don*t turn off their

"Creativity function" when faced with easy design tasks (i.e.

Class 3 tasks in Brown’s terminology). The fact that one has

extensive

design prc

lake use (

example, i

that was \

use a top-

Ivould ta

choose to

This is a]

use to Ci,

thereby ,

cognition

that it C

‘3' tn.
\

MUCtive

67

extensive knowledge of the problem-solving needed for a given

design problem does not imply that this person would fail to

make use of unexpected opportunities in the information. For

example, if’I had designed a simple computer program last week

that was very similar to one I must create today, I would not

use a top-down strategy to build today's program...rather,

] would take advantage of my opportunity to be lazy, and would

cmoose to make minor modifications to last week’s program.

This is an example of opportunistic reasoning that DSPL could

use to circumvent its top-down plan refinement approach, and

thereby come closer to representing a valid theory of

cognition as well as expanding the class of design problems

that it can address.

2.4.3 Abductive Assembly

Abduction reasoning is a search for hypotheses to account

for the data of a particular case. It is not deductive logic.

For example, in deductive logic, the modes ponens rule is the

following:

Given:

if p then q

Conclude:

9

Thus, the evidence p logically implies the hypothesis q.

Deductive logic proves q with certainty.

By cc

In this ca

it cannot

be accounl

0f reason

W1C. bu

solving a

reasoning

Punt

hethOd f,

its imple

is a file

antibodi

on RED'S

68

By contrast, abductive reasoning looks like this:

Given:

if p then q

Conclude:

P

In this case, p is the hypothesis and q is the evidence. Here,

it cannot be said that q logically implies p. Instead, q can

he accounted for, or explained, by the hypothesis p. This type

of reasoning does not have the logical certainty of deductive

logic, but is nonetheless a useful heuristic for much problem-

solving activity. A prime example is its use in diagnostic

reasoning.

Punch et al. (1990,1991) described a problem-solving

method for abduction in the framework of a generic task, and

its implementation in two expert systems, RED and PEIRCE. RED

is a medical diagnostic system that identifies red-blood

antibodies in parient sera. PEIRCE is a shell, based largely

on RED's abductive method, serving as an knowledge-engineering

environment for representing abductive knowledge.

The particular method used is abductive assembly. Given

a list of possible hypotheses (which, in the case of RED and

PEIRCE are provided via hierarchical classification) the

abductive assembler selects a subset of hypotheses to explain

the findings. This compound hypothesis is generated based on

three requirements: it should cover all the findings, it

Should use the most plausible hypotheses, and it should

Imaintain consistency and compatibility between hypotheses.

RED’s abd"

al., is as

69

RED’s abductive assembly algorithm, as described by Punch et

al., is as follows:

1) Select a finding that needs explaining.

2) Find the list of hypotheses (output from

hierarchical classifier) that account for the

finding.

3) Pick the most plausible one.

4) Try to integrate the chosen hypothesis with the

existing compound hypothesis, based on

compatibility constraints.

5) If compatible, add it to the compound hypothesis

and mark the finding as explained.

6) If incompatible, either go back to step 3 (ie

pick the next-most plausible hypothesis), or

remove the incompatible hypothesis from the

compound hypothesis and unmark its findings.

7) Update other findings from the integration.

8) Loop back to step 1. (pp. 8-9).

The final compound hypothesis generated by RED’s assembly

module is then critiqued (i.e. evaluated) based on two main

criteria: parsimony and essentiality. Parsimony is enforced by

temporarily removing hypotheses from the compound list one by

one (starting‘with least plausible hypotheses), and testing to

see if the compound hypothesis still provides an explanation

that covers all the findings. If so, the removed hypothesis is

redundant and unnecessary. The essentiality critique is based

on finding which hypotheses in the compound are absolutely

essential (i.e. there is no other way of explaining the

findings than to use this hypothesis). An abundance of

essential hypotheses in the compound hypothesis is considered

a good thing in this evaluation.

PEIRCE's main contribution was in breaking the components

of RED's algorithm.int0vgeneral-purposeIbuilding'blocks and in

providing

execution

abduction

parsimony

sponsor-5e

provide tn

Iodule has

tible) to ,

then Compar

ties, the s

1“ additio

PEIRCEIS S]

electing“

lie:atChit

lathermg

The:

“Wilmer,

wager‘lbe

70

providing a flexible control strategy for scheduling the

execution of these building blocks. The behaviors of RED’s

abduction algorithm, such as hypothesis integration and

parsimony critique, were broken into behavior modules. A

sponsor-selector mechanism, similar to DSPL’s, was used to

provide the control strategy. In particular, each behavior

module has a sponsor (represented as a pattern-matching truth

table) to evaluate and rate its appropriateness. A selector

then compares the scores from each sponsor, and chooses the

most appropriate behavior to execute next. In the case of

ties, the selector chooses based on a-priori ordering lists.

In addition to controlling abductive behavior modules,

PEIRCE’s sponsor-selector mechanism was used to control the

executiont of the ‘various generic tasks themselves (e.g.

hierarchical classification, abduction assembly, and data

gathering).

There are some similarities between abduction and the

recommendation-generating algorithm used in CEVAL, which is

described in detail in chapter 5. CEVAL’s "recommendation

fragments" are like the "candidate hypotheses" of abductive

assembly. CEVAL generates a list of all the recommendation

fragments whose conditions were met. This is analogous to the

list of hypotheses that the abductive assembler receives from

the hierarchical classifier in RED of PEIRCE. CEVAL uses

suppression links to maintain consistency in the

recommendation, much as the abduction assembly's "integration"

phase. (hi

handling) .l

implement

parsimony

context-5p

Parsimony

“J Punc:

ANOthe

Called func

t° a kin.

Structure,

work in flu

had ern d

si’StEnsl l1

reasoning

vork in t

functional

this VOrk

task in de

Deep

interest

kite

Hedge

C‘anlex kr

0f tilllnb"

taSkS ' the

71

phase. (Actually, both are implementing a form of constraint-

handling). CEVAL’s suppression links are also used to

implement ”parsimony" requirements, much the same as RED’s

parsimony critique. In particular, suppression based on

context-specificity and abstraction-level are motivated by

parsimony considerations.

2.4.4 Functional Reasoning

Another generic task type developed at O.S.U.’s LAIR is

called functional reasoning (Sticklen.etral. 1989), and.refers

to a kind of qualitative simulation of the behavior,

structure, and function of devices. The ideas behind O.S.U.'s

work in functional reasoning evolved out of previous work that

had been done in the area of "deep reasoning" systems. These

systems, unlike compiled knowledge representations, operate by

reasoning form "first principles". Since there has been much

work in this area prior to the development of Sticklen's

functional reasoning system, it is helpful to review some of

this work before describing the functional reasoning generic

task in detail.

Deep reasoning has long been a topic of research

interest. Its motivation derives from the fact that compiled

knowledge is often not robust enough to serve the needs of

Complex knowledge domains. Although experts usually use "rules

of thumb" gained from years of experience in performing their

taSks, they sometimes must resort to "first principles" when

confr

devel

expla

svste

deep

break

funct

ll’Pil

bases

and :

COns

iSc

72

confronting tough problems. Another motivation for the

development and use of deep reasoning is its application in

explanation, an important.component.in any good knowledge base

system.

A question may arise, what is the distinction between

deep and compiled knowledge? Michie (1982) gives one possible

breakdown. Compiled (or "low-road") reasoning involves a

function like this:

SITUATION ---------------> ACTION

This is called a heuristic machine representation, and

typifies what we commonly know as expert-system knowledge

bases.

Deep ("high-road") knowledge takes this form:

SITUATION & ACTION ----------> NEW SITUATION

and is a causal machine representation. Actually, this looks

considerably like a finite-state automaton.

Another distinction between compiled and deep knowledge

is cited by Sticklen (1987). A deep approach is one which

provides a way to derive the assumptions under which its

domain knowledge holds. In other words, it is not enough to

know that A causes B. One must also know WHY A causes B.

Deep reasoning is computationally expensive compared to

Compiled knowledge, and runs the risk of getting bogged down

in computability and complexity problems. Thus it should be

used sparingly (Michie 1982) . Typically, an expert system will

attempt to solve a problem using a compiled knowledge base

firs

the l

2.4»

73

first...if this fails to produce a solution, it will resort to

the deep reasoning component.

2.4.4.1 0.5;0. LAIR’s Functional Reasoning...being explicit

about purpose

Sticklen (1987), Chandrasekaran (1983), and

Sembugamoorthy and Chandrasekaran (1986), describe a level of

reasoning between surface compiled reasoning and the deep

reasoning of qualitative simulation. This is called functional

reasoning, and is distinguished by its explicit representation

of the function, or purpose, of the device whose behavior is

being simulated.

Sticklen’s functional representation scheme is founded on

several intuitive notions about how'causal reasoning should be

represented (Sticklen et al. 1989). First, there is a

limitation to representations of physical devices instead of

device properties or attributes. Second, device

representations can be recursively decomposed into device

components, so a functional representation must include this

composition capability. Third, the major understanding in the

device representation pertains to functionality more than to

either structure or behavior, in contrast to Davis’ model

mentioned below. These all lead to a concern with representing

devices in terms of the functionality of their components.

Sticklen’s functional representation involves three main

aspects of a device: its structure, function, and behavior.

the 5th

its compo.

providing

microscop;

lh‘lOlves

74

The structure is expressed as a breakdown of the device into

its components, and their breakdown into subcomponents, thus

providing a hierarchical structure from macroscopic to

microscopic. The function of a device (and of each component)

involves three facets:

1) a statement of the function, or purpose, of the device.

2) a list of preconditions necessary for the function to take

3) gliigt of behaviors by which the function is carried out.

Thus, we see that by explicitly representing the function

of a device, we enable a higher-level description of

functionality without having to go into details of behavior.

We also explicitly state all underlying assumptions enabling

that functionality. Finally, we enable a deeper-level

description by indexing into detailed behavioral

representation if necessary.

The behavioral aspect of a device’s representation serves

the purpose of showing state changes of a device, and

describing how and why these changes take place. Behavior is

represented as a tree whose nodes describe three types of

information: state-variable predicates, state-variable-change

Statements, and knowledgegpointers. If we ignore the knowledge

Pointers, this representation would be like a causal net,

Where links indicate that the state described by one node

Causes the state change at the next. As Sticklen (1987) and

Chandrasekaran (1983) point out, however, this could not

legitimately be called a "deep" representation, as it does not

explicitl

states.

pointers.

state-var:

another. v

other dev

(minting '
indication

From'

We see or

knowledge

SUCcessful

Second, tl

ellllicitly

Now

funcucma1

which it c'

reasoning

“Mine, .

a .
envrs10m

75

explicitly represent the reason for the causal link between

states. Thus, we see the justification for knowledge

pointers. These are inserted in the graph between each pair of

state-variable nodes, and serve to explain‘why one state cause

another. Knowledge pointers can be decomposable (pointing to

other device functions or behaviors) or non-decomposable

(pointing to statements about world knowledge, definitions, or

indications that the reasons for the causal link are unknown.

From the above description of functional representation,

we see why it can legitimately be classified as "deep"

knowledge representation. First, the assumptions underlying

successfully carrying out a function are explicitly stated.

Second, the reasons for causal links between states are

explicitly stated via knowledge pointers.

Now that I’ve described the representation of the

functional system, I will discuss the reasoning process by

which it determines consequences of initial conditions. This

reasoning process is called, appropriately enough, consequence

finding, and can be compared with Kuipers' and DeKleer’s

"envisionment" algorithm.

The consequence finding algorithm involves the following

steps:

1) Specify initial conditions and unavailable functions

2) Determine starting (invocable) functions and behaviors by

indexing candidate functions of behaviors via starting

conditions and filtering out inferior functions and

behaviors.

3) Construct a partial state diagram (PSD) by recursively

expanding all decomposable knowledge pointers until only

partial state transitions are there. During this process,

assump

h From '

trave:

5)Chang

itera

Q Go to

in that

constrai

hhavior

satisfy

Also, a

branchi

each or

State,

variam

in the

State ‘

S'

an ant

C0‘epii

76

assumptions are being accumulated.

4) From the PSD, determine composite device changes by

traversing the PSD and changing variables.

5) Changes from 4 become initial conditions for the next

iteration

6) Go to 2.

This reasoning approach is similar to envisionment

in that it builds a state space. However, it does not use

constraint. propagation, but. rather .indexes into jpossible

behaviors and functions based on initial conditions which

satisfy the preconditions of these behaviors or functions.

Also, as far as I can see, there is no nondeterministic

branching in this method. Also, note the important fact that

each node of the state diagram does not represent a full

state, but a partial state, ie a change to a particular state

variable. This is in contrast to envisionment, where each.node

in the state space represents a full

state change in the device.

Sticklen showed that functional reasoning can be used as

an automated knowledge acquisition method in order to derive

compiled rules based on qualitative, functional simulation.

2.4.4.1 Devis’ Model Based Diagnosis Approach

A similar method was described by Davis (1984), who

developed a system that reasons from first principles for

tackling diagnostic problems in the domain of digital

electronic circuits. Like the functional reasoning approach,

Davis’ method was to make explicit all assumptions underlying

77

the proper performance of the device in question, and

enumerate all these assumptions. His troubleshooting activity

can be described as a methodical enumeration and relaxation of

underlying assumptions about the device (via a technique

called constraint suspension), with subsequent consideration

of the consequences of violating each of these assumptions,

thus leading to generation of a list of candidate reasons for

the device’s failure. This is similar in many ways to the

Sticklen’s consequence-finding algorithm, mentioned above.

2.4.5 Structured Hatching

Bylander et al. (1988) described a generic

problem-solving method called structured matching, which is

essentially a method for evaluating "goodness of fit", or to

use Bylander’s terminology, "recognition" . The architecture of

structured matching involves a hierarchy of "matchers", or

truth tables, each mapping a limited set of parameter-value

pairs onto ardecision for that matcher. Parameters can be data

about the world, or can be outputs from lower-level matchers.

Each row of the truth table includes a conjunctive clause of

the parameter-value pairs and the resulting output value that

occurs if the clause is satisfied. The different rows of the

truth table have a disjunctive relationship to each other,

with each row containing a different alternative output value.

The inferencing action of structured matching is a goal

driven top-down traversal of the matcher hierarchy. The goal,

2.4

..at
31

C011

78

at each level, is to determine the output value of the

matcher. This is done by examining the truth table. If

parameter values in the truth table are determined by lower

level matchers, then those matchers are examined. This process

continues recursively ‘until the 'value for the ‘top-level

matcher can be determined.

2.4.5.1 Samuel’s Signature Tables

Structured matching is very similar to a method

introduced by Samuel (1967), called signature table analysis,

which involves a hierarchy of matchers which map patterns of

input values onto some output score measuring a "goodness"

evaluation. Samuel used this technique as a static evaluation

function for evaluating potential checker board positions for

a checker-playing computer program. In Samuel's method, each

matcher is a n-dimensional array (called a signature table)

which contains the scores for various board positions. Each

dimension of the array represented a feature of the board

position. An array’s dimension would be divided into as many

positions as there were possible values of the corresponding

feature. Thus, if a feature could take on values -2, -1, 0, 1,

and 2, the corresponding array dimension would have five

positions. Each cell in the array contained a value which was

the score corresponding with the combination of feature values

that mapped onto that cell. In this way, a board position’s

overall score was specific to the non-linear combination of

feature

A;

intera:

space-

vith a

would

this e

value:

featu-

lEVel

79

features that the board position took on.

Although this technique was able to account for

interaction between features, it introduced a significant

space-complexity'problems For a large number of features, each

with a large number of potential values, the size of the array

would grow to a prohibitive expanse. Samuel’s solution for

thisiwas two-fold. First, he restricted the number of possible

values that a feature could take on. Second, he arranged his

features into a hierarchy of signature tables. At the lowest

level, the signature tables consisted of subsets of the

board-position features themselves, with each feature having

a greatly restricted range of possible values. Higher-level

signature tables used lower-level tables as "composite

features", and because the number of these lower-level tables

was considerably smaller than the number of board position

features themselves, the table-outputs could have a larger

range of possible values. Thus, through the use of a hierarchy

of signature tables, Samuel was able to arrive at accurate

assessments of the worthiness of potential board positions in

a reasonable amount.of time. This greatly improved the quality

of play of his checker program, and significantly contributed

to his research in machine learning. Note, however, that any

notion of "weighted scoring", the primary activity of the

linear polynomial method, was totally abandoned in the

signature table approach. This forced the space of potential

feature values to be discrete, whereas the linear polynomial

apprc

resee

class

anal:

mult.

2.4

ofi

hult

Stru

refi

80

approach allows for a continuous space.

Although Bylander was the first to generalize the

signature table approach into a knowledge acquisition (generic

task) tool, signature tables have been used widely in other

areas of AI. For example, Page (1972, 1977) extended Samuel's

approach to apply to pattern recognition tasks. In his

research, signature tables ‘were constructed. in order ‘to

classify' patterns in. health screening' and ‘urban. housing

analysis domains. He found that such methods wresuperior to

multiple regression for certain types of predictive tasks.

2.4.5.2 Another Approach to Structured-Hatching’s IPT

Both structured matching and signature tables are methods

of implementing a sort of evaluation based on assessment of

multiple attributes of an individual. In particular,

structured matching is an integral part of CSRL’s establish-

refine operations and DSPL's and PEIRCE’s sponsor-selector

mechanism, whereby the most "promising" options are selected.

In essence, structured matching is doing a form of multi-

attribute utility assessment via a pattern-matching algorithm.

The same is true of Samuel’s signature tables. In Chapter 4,

we‘will see that there are other possible approaches to multi-

attribute utility measurement. In particular, hierarchical

linear models (using weighted algebraic methods) have been

used to perform the same sorts of tasks. Chapter 5 will

discuss the Candidate Evaluation architecture, which uses a

hierarcl

attribu‘

L5 0th

Tr

philosc

there I

In thi

the up

2.5.1

Carlie

gene:

TSAs

hone,

6.ch

narr

Solv

81

hierarchical quasi-linear model (HQLM) to perform multi-

attribute utility assessment.

2.5 Other Approaches to Task-Specific Architectures

Thus far, I have concentrated mainly on the Generic Task

philosophy in describing task-specific architectures. However,

there has been significant work by other researchers in TSA.

In this section, I will describe two other approaches to TSA,

the KADS approach and McDermott’s approach.

2.5.1 TSA work done by HbDerlott and colleagues at DEC and

Carnegie Helon

Just as Chandrasekaran's group at O.S.U. is doing work in

generic tasks, McDermott and others arerdoing parallel work in

TSAs at DEC and CMU (Marcus 1988). Like Chandrasekaran,

HcDermott’s group is interested in facilitating the knowledge

acquisition process by developing tools which solve rather

narrowly-defined tasks using specific "role-limiting" problem

solving methods (HcDermott 1988). Role-limiting methods are

contrasted with Newell's "weak methods" (Laird and Newell

1983) in that they are not generalizable across all task

types, but rather are focussed on a particular task type.

Thus, there is a similarity in the approaches taken by

McDermott and Chandrasekaran.

However, there is also a subtle difference between the

two research strategies, as described by Boose (1989).

Chan

the

gene

82

Chandrasekaran's team is primarily concerned with identifying

generic problem solving methods and developing languages to

implement these methods. In contrast, the approach of

HcDermott's group tends to focus on a specific problem,

develop knowledge acquisition methods for solving that

problem, and only later attempt to generalize the problem to

other related problems. Thus, McDermott's tools tend to be

more domain-oriented than Chandrasekaran's tools.

Another difference between the tools developed by

McDermott and his colleagues and those developed by

Chandrasekaran's team is the nature of the interaction between

the tool and the expert. McDermott et al.’s tools are

generally interactive knowledge acquisition tools that guide

the expert via a question-and-answer interviewing process and

sometimes allow for second-guessing and validation of the

expert-generated knowledge. These KA tools often convert the

expert-generated knowledge into more traditional

representation paradigms, such as rules. By contrast, the

generic task tools are generally "programming languages",

whose constructs and primitives are task-specific. Thus, the

generic task tools are not complete KA tools per se, unlike

the tools generated by McDermott's group.

Despite these differences, there is considerable overlap

in the methods they employ, as will be described below. This

fact leads to implications that support the notion of TSAs in

general. It also supports the idea that there are certain

proble

that c

tools

tools

2.5.1

heuri

solvj

diffe

the]

the:

USes

that

disC

in p

(or

the

sYi

hie

no.3

T
1

’
1

83

problem-solving methods that are used repeatedly by humans and

that can be used to more easily generate expert systems.

The following sections will briefly describe some of the

tools developed at DEC and CMU, comparing some of them to

tools developed by OSU researchers.

2.5.1.1 HOLE: A.Tool for cover-and-Differentiate Systems

MOLE (Eshelman 1988) is a KA tool for developing

heuristic classification expert systems using a problem-

solving' method. called cover-and-differentiate. Cover-and-

differentiate is analogous to abductive inference, in that it

is a method whose purpose is to explain findings or symptoms.

The PS method involves finding all hypotheses that account for

the findings or symptoms of the case (this is cover). Then, it

uses heuristics to select the "best" hypotheses out of those

that. cover ‘the findings (differentiate). The reader can

discern that this is essentially the same activity occurring

in RED or PEIRCE described above.

MOLE’s underlying representational structure is a network

(or more accurately tangled hierarchy) of nodes. The nodes at

the bottom level represent the possible "findings" or

"symptoms" of a problem. Nodes at higher levels in the

hierarchy represent hypotheses or compound hypotheses. Root

nodes represent the ultimate or final explanations.

The covering activity is guided by the exhaustivity

puinciple, which states that if an event has at least one

pote

leas

finc

helm

pat!

the

an:

im

in

fie

Ev

84

potential explanation, the final diagnosis must include at

least one of these potential explanations. This means that any

finding that can be explained by the system must be explained.

The differentiating activity is guided by several

heuristic principles. First, for a given finding, a single

path leading to a top-level explanation is preferred. Second,

there should be as few top-level explanations as possible to

cover the findings. Third, the covering explanations should be

guided by Bayesian principles of independence and

dependability. Specifically, an explanation's "prior

probability" and its "conditional probability" should be

sufficiently high. (See chapter 3 for more discussion on

Bayesian reasoning systems). Note that the first two

principles are consistent with PEIRCE’s parsimony principle

and essentiality principle.

The third principle, dealing with Bayesian issues, is

implemented using event-qualifying knowledge (for

independence) and connection-qualifying knowledge (for

dependability). Event-qualifying knowledge is represented by

evidence nodes in the network, other than the actual

"findings" nodes, that are linked to the hypotheses nodes.

Thus, when a hypothesis node is activated (found from the

covering activity based on the findings), any attached event-

qualifying nodes are tested in order to obtain independent

verification of the hypothesis node. Note that the effect of

an event-qualifying node is global in the sense that it

affect

findin

hand,

evider

hypotl

connec

hveotl

abili

the t:

other

vaIUe

2.5.1

SYSte

this

desit

fOr 1

lee“.

revi

PrOC

This

rgug

thOS

Para

85

affects the validity of the hypothesis node regardless of what

finding the hypothesis is supposed to explain. On the other

hand, connection-qualifying knowledge is represented by

evidence nodes that are associated with the link between a

hypothesis node and a findings node. Thus, the effect of the

connection-qualifying node is not to validate or discredit a

hypothesis, but to validate or discredit that hypothesis'

ability to explain the finding in question. In other words,

the hypothesis may be true, and may be able to account for

other findings, regardless of the connection-qualifying node’s

value.

2.5.1.2 SALT: A.Tool for Propose-and-Revise Systems

SALT (Marcus 1988) is a KA tool for developing expert

systems that construct, rather than select, a solution. In

this sense it is similar to Brown’s DSPL, handling a "routine

design" task. The idea is to specify values and constraints

for the design parameters of a particular design task. Marcus

identifies the kind of task being done by SALT as "propose and

revise".

There are three main types of knowledge in SALT.

Procedures are used to propose values for design parameters.

This can be done via calculations or database lookups, and is

roughly equivalent to the steps of DSPL. Constraints, like

those in DSPL, are used to identify, for a given design

parameter, the nature of limits to its value. Finally, Fixes

propos

violat

of tas

Hovev.

diffe

the i

hiera

of t:

cent:

In 5

cons

IEp:

revi

86

propose refinements to parameters whose proposed values are in

violation of a constraint. Thus, a fix performs the same sort

of task as the failure suggestions and redesigns of DSPL.

Thus we see some similarities between DSPL and SALT.

However, there are also significant differences. One of these

differences concerns the overall control and organization of

the two representations. DSPL knowledge is organized as a

hierarchy of specialists, where explicit procedural knowledge

of the design process is sequentially represented in tasks. By

contrast, SALT knowledge is organized in a dependency network.

In SALT’s network, nodes represent the design parameters,

constraints, or inputs. Nodes are connected via directed links

representing "contributes-to", "constrains", or "suggests

revision of" relationships between the nodes.

Another difference between DSPL and SALT pertains to the

nature of the knowledge acquisition process. Like other

generic-task tools, DSPL is essentially a "programming

language". It is a passive shell that the knowledge engineer

uses to develop an expert system. By contrast, SALT is

explicitly a knowledge acquisition tool, and takes a much more

active role in the ES development process. For example, it

prompts the user for input values, and checks for completeness

in the knowledge base. It also checks to ensure that there are

no cyclic dependencies in the network. Finally, like other

tools developed by McDermott’s group, SALT compiles the

knowledge obtained from a domain expert into a rule—base. This

is 0

(inc

the

syst

2.5.

87

is considerably different from any of the generic task tools

(including DSPL), where knowledge is kept in the structure of

the tool and not converted into "first-generation" expert-

systems constructs.

2.5.1.3 KNACK: A real for Sample-Based Report Generation

KNACK (Klinker 1988) performs the "reporting task", which

involves collecting data and presenting them in the form of a

document. These can be technical documents, proposals,

progress reports, etc. The method used by KNACK is called

acquire-and-present.

The acquire portion of the problem solving method

involves interacting with the domain expert to obtain sample

reports, a domain model, and sample report-generation

strategies. Sample reports are typed in by the expert, then

divided into fragments by KNACK. Then KNACK obtains structural

and functional descriptions of the domain model from the

expert, via a graphical user interface. The domain model will

include generalized concepts, their relations and attributes,

and instantiated values for the concept attributes based on

the sample report. Next, via the sample report and the domain

model, KNACK interacts with the expert to generalize the

report in order to make it possible to generate reports

fitting the domain model. This involves creating a skeletal

report (basically, an outline obtained through the sample-

report fragmentation),then replacing the fixed report text

 —-

with ge

text vi

Finally

obtaini

reports

model.

called

obtain

Thus, 1

the WR:

88

with generalized concept (by matching a word in the report

text with an instantiated concept in the domain model).

Finally, report-generating strategies are developed for

obtaining information from the end-user in order to generate

reports fitting the generalized report structure and domain

model. The strategies are implemented in reporting systems

called WRINGERS, which interact with end-users in order to

obtain information in a coherent manner and generate reports.

Thus, the present part of KNACK’s PS-method is performed by

the WRINGERs that KNACK generates.

2.5.1.4 SIZZLE: A.Case-Based Tool for Sizing Systems

SIZZLE (Offut 1988) is a system for handling the task of

determining the optimal size of resources to meet the needs,

types, and quantities of users. It was first developed for

computer system resource sizing (combining CPU power, RAM,

disk space, etc.), but could be applied to other resource-

sizing problems as well. Thus the "sizing" information

processing task tackled by SIZZLE it to map the input facts

about the types and quantities of resource users onto output

recommendations regarding the size and quantity of resources.

The method used by SIZZLE is a case-based reasoning

approach that Offut calls "extrapolate from a similar case".

A knowledge base generated through SIZZLE contains a set of

cases. Each case contains a description of the types and

quantities of the users, together with the expert-supplied

soluti

SIZZLE

demanc

requir

i

find

requiy

inthe

in the

ident;

the c

Speci;

TESOu;

deed

Other

malpr

Sizin

89

solution in terms of the suggested size of the resource(s). A

SIZZLE knowledge base also contains an expert-supplied user

demand model, which contains information about the resource

requirements for each type of user.

Thus, the knowledge base uses case based reasoning to

find the existing case that is most similar to the input

requirements, based on matching the types/quantities of users

imithe databaserof cases against the types/quantities of users

in the current situation. After the most similar case has been

identified, the user demand model is used to extrapolate from

the chosen case in order to adjust the solution to the

specific requirements of the current situation.

Although SIZZLE was initially developed for computer-

resource sizing problems, Offut claims that its simple case-

based and extrapolation mechanism can be generalized to tackle

other sizing problems such as electric-motor sizing,

malpractice-suit settlement sizing, and automatic copier

sizing.

2.5.1.5 A Possible way to Test the Generic Task Hypothesis

The generic task hypothesis states that there should be

a finite, manageably-sized number of general problem solving

methods (implementable in knowledge-based languages or tools)

that can serve as building blocks for solving any problem

requiring an expert-systems solution. One way to test this

hypothesis is to see if the generic task tools developed at

OSU C.

McDerz

some <

SALT,

is st

preli

enplc

devei

SALT

cove

abdu

fine

Yfibfi

0i

3.1

Ca

9O

OSU can be successfully applied to the same problems that

McDermott’s tools are solving. One would think that either:

some combination of OSU’s generic tasks can handle the KNACK,

SALT, SIZZLE, and MOLE tasks; or OSU’s list of generic tasks

is still incomplete and needs to be expanded. A

preliminary analysis suggests that many of the PS methods

employed by the above-mentioned tools are analogous to methods

developed at OSU. The propose-and-refine strategy employed by

SALT is similar to the routine—design method of DSPL. MOLE’s

cover-and-differentiate appears to be analogous to PEIRCE’s

abductive assembly.

However, there are some cases where the mapping is not as

apparent. For example, it is difficult to see a clean mapping

between KNACK’s acquire-and-present strategy and one or more

generic tasks. I see two possible reasons for this. First,

there is no generic task that deals specifically with text

analysis and generation. Second, the:existing'generiC'tasks do

not include any sample-based (or case-based) mechanisms. Both

of these are important components of KNACK’s architecture.

Likewise, it is difficult to see which generic task tool(s)

can be applied to the sizing problem addressed by SIZZLE,

partially because of the lack of case—based reasoning

capabilities in current GT tools.

Thus, a preliminary comparison of the GT tools with the

tools mentioned in this section indicates that OSU’s list of

generic tasks should,be expanded to include such capabilities.

It a;

enunl

if m

simi

also

2.5.

Bret

Unli

eSp{

fra:

IEp}

met;

91

It also raises in my mind the possibility that an exhaustive

enumeration of primitive problem-solving methods is a daunting

if not impossible task. Here, I have found that, despite the

similarity of some methods used by the two groups, there are

also some tasks that are not handled by both groups.

2.5.2 The KADS Approach: TSA research in Enrope

There is another research stream in TSAs described by

Breuker and Wielinga (1989) at the University of Amsterdam.

Unlike the generic task school of thought and unlike the ideas

espoused by McDermott and his colleagues, the European

framework does not believe that domain knowledge

representation is guided by the role-limiting effects of the

task or problem-solving type. Rather, domain knowledge is seen

to be task-independent, and different task—specific PS methods

can be successfully applied to the same task-independent

domain knowledge representation. This is consistent with the

old ideas of a separation between the knowledge base and the

inference engine, and is a significant departure from the

philosophies espoused by both Chandrasekaran and McDermott.

Breuker and Wielinga describe a knowledge acquisition

methodology called KADS (for knowledge acquisition and design

system). KADS is motivated by the notion that the KA

bottleneck is not in knowledge elicitation, but in. the

analysis of acquired knowledge. They criticize the "mining"

view of RA, which states that the main task of KA is to

92

extract the knowledge. Instead, they argue for a "modelling"

viewu whereby knowledge is transformed and abstracted prior to

encoding. In this sense, their approach is consistent with the

methods employed by Chandrasekaran and by McDermott.

However, there is a significant difference in the methods

employed to represent domain knowledge. For both

Chandrasekaran and McDermott, the domain knowledge

representation is dependent on its intended use. For example,

knowledge to be used for classification tasks will be

represented differently than knowledge used for design. This

is the interaction hypothesis (Bylander and Chandrasekaran

1987) mentioned earlier in this chapter. In other words, there

is no such thing as "task-neutral" domain knowledge. The

implication is that domain knowledge that had previously been

used for one task must be reformulated and restructured for

use in a different task. By contrast, the KADS approach

assumes that domain knowledge can be, at some level,

independent of its intended use. This idea of task-neutral

domain models is an integral part of KADS, and is consistent

with earlier notions of a separation from inference engine and

knowledge bases.

The KADS methodology is supported by the tool KCML (for

KADS Conceptual Modelling Language). KADS and KCML are based

on a "layered" approach to problem solving. There are four

layers, the domain layer, inference layer, task layer, and

strategic layer. Note the similarity between the layered

93

approach in jKADS and 'the approach used. in. OPMZ and 881

described earlier in this chapter. The layers of KCML are

analogous to the planes of the blackboard, with the higher

layers representing a more abstracted view of the knowledge.

The domain layer involves "generic facts and models (Breuker

and Wielinka 1989, p.12) and an "axiomatic framework" that

produces a very general purpose representation. The inference

layer, roughly analogous to Clancey’s (1985) heuristic

classification description, where problem-solving processes

are expressed in terms of abstraction, specification,

matching, assembly, etc. The inference layer provides a

higher-level description of domain-layer knowledge, where the

language constructs include "match", "decompose, "abstract",

etc. The task layer is a hierarchy of tasks and goals, which

control the actions of the inference-layer. The strategic

layer'is responsible for monitoring, diagnosing, and planning.

It controls the actions of the task layer.

Chandrasekaran's generic tasks chapter appear to bridge

KADS’ inference and task layers. In addition, Punch's research

on TIPS (1989) deals with issues related to KADS’ strategic

layer. However, there is no generic-task equivalent to the

domain layer in KADS. In fact, the interaction hypothesis

states that such layer is impossible, or at the very least

impractical, as a knowledge representation. This is where the

philosophies of KADS and generic-tasks collide.

2.6I

appr

501

94

2.6 Conclusions about TSAs

This chapter discussed the Task Specific Architecture

approach to knowledge representation. It started by discussing

some "first-generation" representation paradigms, then

proceeded to a review of some philosophical arguments

motivating a task-specific approach. Briefly, these arguments

suggest that representation schemes should be expressed at a

higher level of abstraction than the first-generation

approaches provide. Additionally, knowledge should be

distributed and modular, and should be represented in a way

that is consistent with how it is to be used. These motivating

factors lead to the TSA approach.

This chapter went into detail covering the generic task

school of thought and enumerated several of the problem

solving methods and expert system shells developed by

Chandrasekaran and his O.S.U LAIR colleagues. The tools were

compared against other systems and methods that have been

developed to solve similar problems, as shown in figures 2.2

and 2.3. Generally, they were found to have greater structure

and more explicit ontology than their

Gave

Pm

95

Mow/edge-use

[away

‘1. Functional 9‘39”“?“0
i; R ing Routine' Reasoning y \

'- . . Design ‘~
'1 Hierarchical \I

‘\ Classification Candidate /

\ ' I

Structured Abductive Evaluation

\. . Matching as“, H

Genera/ ‘xx- . . . ____________, [lama/h

P1149059 """" Specxfic

Blackboards

Case-based

Rules Specific expert

FE . 55 systems built using

L09": mles, frames, etc.

USP

0

Pascal

Assembler

Mpbmefltat/bn

Lei/e/

Legend

734 ----------------------------

67'

Figure 2.2

Different programming constructs and Al knowledge representation

schemes differ in terms of their degree of 'genericness' and in their

level of representational abstraction. Task-specific architectures tend

to be expreosed at a higher 'knowiedge-levelz, and can be either

domain specific or general purpose. Genen‘c tasks are also expressed

a a knowledge level, but tend to be general-purpose in scope, applied

t0 a wide variety of domains. Thus generic tasks can be thought of as

a SUbset of task specific architectures.

"
‘

,
1
.

’
1

1
"
-
”
V

,
fl
—
y
/

,
M
3
9

/
(

.
l
/
(
/
(

g
’

4
L

'
{

A
/

I
{
a

-

/
P
7
'

m
7
7
,
9
0
0
,

/
(
,
q

C
o
n
t
r
o
l

S
a
m
p
l
e

A
/
l
‘
e
r

”
V
6

7
3
5
‘
,

M
e
fi
o
a
’

I
y
p
e

P
y
m
/
b
i
a
s

fl
a
g
/
M
e
A
p
p
/
I
c
a
fl
o
n
s

7
e
o
d
s
/

0
0
s

.
G
i
v
e
n

II
I

S
p
e
c
i
a
l
i
s
t
s
.

'
.

p
d
h
m

r
e
c
o
g
n
i
t
i
o
n

H
i
e
r
a
r
c
h
i
c
a
l

a
r
m
.
W
"
:

7
W
"

7
”
”

"
M
W

G
r
o
u
p
.
W

m
”

m
u
m
m

M
i
c
a

'
'

'
.

h
i
l
a
r
a
r
c
h
i
c
d

.
C
l
a
s
s
m
c
a
t
l
o
n

D
m
i
t
g
fl
m

W
S
p
o
c
l
a
l
i
s
b

W
e
!

W
W
W
”

W
W

l

G
i
v
o
n
a
e
o
t
o
t

ll
S
e
t
-
c
o
v
e
r
i
n
g
.

!
T
y
p
e
l
T
h
e
o
r
y
.
.
.

S
i
m
i
a
a
n
d

C
o
r
t
d
l
o
o
p
m
i
c
h

W
i
l
l
i
a
m

A
b
d
u
c
t
i
v
e

fil
in

dt
ha

g
b
e
e

!
W

M
a
d
i
s
o
n
.

M
O
L
E

A
s
s
e
m
b
l
y

W
W

W
W
W

i
m
.

Al
go
ri
th
m
W
W

”
M
m
e
,
”

i
a

(
P
5
7
5
5
1
7

l l

S
i
m
p
l
e
(
c
l
a
s
s
a
)

T
o
p
-
d
o
w
n

5
T
y
p
e

II
T
h
e
o
r
y
.

l
e
t
s
.

B
e
a
“
t
m

s
e
a
r
c
h

D
e
s
i
g
n
a
t

0
P
M

(
B
l
a
c
k
b
o
a
r
d
)

.
,

.
.

h
R
o
u
t
l
n
e

“
p
e
r
.
.
.

m
m
.

"
i

M
W
-

W
a
r
m
.
.
.

m
-

D
e
s
i
g
n

.
W
W

.
1
m

W
m
”

n
u
d
e
-
i
o
n
a
d
d
e
d
b
y

(
a
s

ai
r
w
o
n
d
e
r
s
)

S
A
L
T

'
'

'
m
.

'
(
1
m

(
n
e
w
;

W
W
"

I
l

37
3"

96

E.

_
C
o
n
s
e
q
u
e
n
c
e
—

_
.

.
g

T
ll

D
w
i
c
e
a
,

i
r
r
'
n
a
l
c
o
n
d
h
i
o
n
s
a
n
d

M
e
d
i
c
a
l

.

F
u
n
c
t
i
o
n
a
l

m
~

.n
ms

“"
m"

"°
"-

b”
e°

°l
y‘

”
"'

°°
"
W
-

M
i
n
n
o
w
W

W
W
3
.
.
.
“

R
e
a
s
o
n
i
n
g

m
a
y
?

i
M
o
d
u
l
a
r
S
p
e
c
i
a
l
s
i
s
t
a
m
”

d
p
a
fi
d
s
z
g
e
d
i
a
g

3
:
,
"
t
h
W

#
7
7
}

W
i
l
l
e
m

I
b

a
p
p
r
o
p
r
i
a
t
e
,_
d
e
t
a
i
l
.

m
a
m
-
3
,
,

L

l

R
e
c
o
g
n
i
t
i
o
n
,

T
r
u
t
h
-
t
a
b
l
e

-
T
w
o

ll
T
h
e
o
r
y
.
.
.

0
!
m
a
t
c
h
e
r

U
s
e
d
a
s
m

h
t
o
g
r
a
l
W

t
a
b
l
e
s
,

h
i
e
r
a
r
h

;
'

o
i

o
t
h
o

.
S
t
r
U
C
t
y
r
e
d

c
a
m
-
a
s
s
e
s
s
m
e
n
t
.

P
ll

M
a
t
c
h
i
n
g

l
T
r
u
t
h
T
m

I
I
?
J
O
E
W
U
W

M
g
a
n
a
n
‘
c
m

r
l
-
I
e
r
a
r
c
h
l
c
a
l

M
a
t
c
h
l
n
g

“
e
v
a
l
u
a
t
i
o
n
"

!
m
o
d
i
fi
e
r
s
p
e
c
i
a
l
i
s
t
s

(
K
n
o
w
l
e
d
g
e

p
a
’
a
m
o
t
e
r
v
a
l
u
e
s

c
i
r
c
u
s

m
u
"

:
W
)

W
W
W

(
C
E
V
E
D
/
C
E
V
A
L
)

F
i
g
u
r
e
2
.
3

F
i
v
e
G
e
n
e
r
i
c
T
a
s
k
s
,
i
m
p
l
e
m
e
n
t
e
d

i
n
t
a
s
k
-
s
p
e
c
i
f
i
c
s
h
e
l
l
s
.

.
T
h
e

t
a
s
k
,
p
r
o
b
l
e
m
-
s
o
l
v
i
n
g

m
e
t
h
o
d
s
,
r
e
p
r
e
s
e
n
t
a
t
i
o
n
p
r
l
m
l
t
l
v
e
s
a
n
d

c
o
n
t
r
o
l
r
e

I
m
e
s
a
r
e
s
h
o
w
n
.
A
l
s
o
s
h
o
w
n
a
r
e

c
u
r
r
e
n
t
a
p
p
l
l
c
a
t
l
o
n
s
a
n
d

a
l
t
e
r
n
a
t
i
v
e
m
e
t
h
o
d
s
a
n
d

o
o
l
s
f
o
r
p
e
r
f
o
r
m
i
n
g
t
h
e
s
a
m
e

t
a
s
k
s
.

alternativ‘

generic ta-

research.

of the GT

aanageable

all of the

true that d.

"interactio

These
lSSL‘

undoubtably

NEVert

Offer as

knowledge

limiting pr

a Problem t.

that Can

bottleneck

automate
kt

the archit

this thesi

The r

SOIVing
it

theoretic

exmanator

97

alternatives, although they were usually less flexible. The

generic task tools were also compared against other TSA

research. This comparison calls into question two assumptions

of the GT philosophy. First, is it plausible that a

manageable enumeration of problem solving methods can cover

all of the tasks required by expert systems? Second, is it

true that domain knowledge is tied to its use, the so-called

"interaction hypothesis" (Bylander and Chandrasekaran 1987)?

These issues are debatable, and future writers will

undoubtably have much to say about them.

Nevertheless, it seems undeniable that TSAs have much to

offer as knowledge representation tools. Representing

knowledge at high levels of abstraction and using role-

limiting primitives makes it possible to merge the analysis of

a problem with the implementation of its solution in a manner

that can significantly reduce the knowledge acquisition

bottleneck. The use of these tools by domain experts helps to

automate knowledge acquisition. This provides a motivation for

the architecture that will be described in the remainder of

this thesis.

The remainder of this thesis describes a TSA for problem

solving in evaluation tasks. The method employs decision-

theoretic judgement approaches combined with the verbal

explanatory power of AI.

In ti“

probabilisi

first desc

used in (3

include d;

(SEUT) and

diagram re

inference

makes ext:

"111 comp

disCUSsior

in Underl-

deviate f1

over whet

“Omatin

System Sh

3,1 The B

The 1

a hYpothe:

18 a fUnc

in the ge!

and the (3‘

CHAPTER 3

BAYESIAN MODELS IN DECISION THEORY AND AI

In this chapter I will discuss the use of Bayesian

probabilistic models in AI and.in decision theory (DT). I will

first describe the Bayes model. Then, I will show how it is

used in decision theory and decision analysis. This will

include discussion of subjective expected utility theory

(SEUT) and its implementation in decision tree and influence-

diagram representations. Next, I will discuss probabilistic

inference networks (PIN), a knowledge representation that

makes extensive use of the Bayes model and fuzzy logics. I

will compare PINs against DT representations, including a

discussion of similarities and differences in architecture and

in underlying philosophy. Next, I will discuss how human's

deviate from SEUT and Bayesian behavior, and revieW’theldebate

over whether or not Bayesian reasoning should be considered

normative (i.e. optimal). Finally, I will describe an expert

system shell, called QXQ, which combines the SEUT model with

AI-based explanation methods.

3.1 The Bayes model

The Bayes model asserts that.the posterior probability of

a hypothesis (i.e. its probability in light of the given data)

is a function of its prior probability (i.e. its probability

in the general case, or its probability if no data were given)

and the conditional probability of the given data or evidence

98

——-—-

(i.e. the

hypothesis

The Be

conditional

odds-likelf

Where

99

(i.e. the probability of the data's occurrence if the

hypothesis were true). The equation expressing this is:

P(E:Hj) xP(H)

2:1 P(E'iHi)xP(Hi)

 P(Hle) -

The Bayes model is often expressed in terms of prior,

conditional, and posterior odds:rather than.probabilities. The

odds-likelihood formulation is defined as:

0(Hi : E) -O(E'iH1~) xO(Hl-)

where

P(EiHi)

0(E'Hi)' P(ElnHi)

The conditional odds O(E|H) is called the likelihood

ratio, and is a measure of how the presence or absence of

evidence E impacts the likelihood of hypothesis H. Later we

will see how AI and DT systems use this likelihood ratio.

The Bayesian approach to decision-making using several

sources of information is represented as a multiplicative

model.

This equation shows that, for Bayesian modelling of

decision-making, all that is needed is a knowledge of the

prior odds

ratio indiI

determining

systens pr

Shown late

Conditiona

Values) , T

Variables ,

100

0(H3E1, . . .,E,,)-1'[1”_1 0(EiiH) 0(H)

prior odds 0(H) and the likelihood ratio. Thus, the likelihood

ratio indicates how important a particular data item is in

determining the plausibility of the hypothesis. Both UT and AI

systems provide this in their representations, as will be

shown later. Note that this multiplicative model assumes

conditional independence of the various data elements (the EA

values). The model can be extended to handle dependence of

variables, as shown in the following equation:

P(HlE1,E2) -P(E2lH,E'1) ><P<E1 : H) xP(H)

Of course, as the number of conditionally dependent

variables increase, the model quickly becomes unmanageable.

Therefore, the independence assumption is often made. This is

a limitation to the model. However, in circumstances where

conditional independence of input data can be assumed, the

Bayes model is considered optimal. This is because it

minimizes the average error that can be made.

3.2 Subjective Expected Utility Theory (SEUT)

Because of its optimality, the Bayes model leads

naturally to subjective expected utility theory (SEUT). The

SEUT model, first developed by Von Neumann and Morgenstern

(1947), rests on several assumptions. First, any two choices

can be compared to each other, ie ranked. Second, the

101

probabilities of the occurrence of an outcome will affect the

desirability of a choice. Third, in the ideal case, people

should act to maximize the product of the utility of a

particular outcome and its probability given the data. The

equation illustrating this is:

Eu (A1) "231:1 p(leAl.) xU(Cj)

This equation states that the expected utility for a

given action Al is equal to the sum of the products, for each

possible consequencelfilthat could result from the action, of

the probability p of that consequence given the action times

its utility (i.e. "goodness"). The probability function p(C|A)

is the posterior probability of consequence C given action A.

Thus we see that the Bayesian model is combined with a utility

function to form the core of SEUT.

SEUT was advocated as a normative decision-making model

by Savage (1954). Savage described the notion of small worlds,

which consist of a set of possible states S, a set of possible

actions that a decision-maker can choose from F, and a set of

possible consequences C. Each act f in F maps a state 5 onto

a consequence c. Savage suggested that a person’s preference

ranking of the acts of F can be used to infer the utilities of

the consequences as well as the probabilities of their

occurrences. Thus, when. explicit. subjective expected

Probabilities and utilities are not available, SEUT enables

 complete,

actions po

the decisi

POSSible

Second. it

belief of

102

you to infer them based on observations of the choices made by

human beings.

These small worlds are governed by several postulates,

three of which will be described here. First, there exists a

complete, irreflexive and transitive ranking of the optional

actions possible in the small world. SEUT thus assumes that

the decision maker, if called upon to do so, can order all the

possible actions, indicating a complete preference list.

Second, the utility value of a consequence is independent of

belief of its probability. In other words, the "goodness" of

an outcome remains the same whether that outcome is likely or

not. The ‘third. postulate, often. called. the .independence

postulate is a key assumption in the model. It states that if

one consequence C:L is preferred over consequence Ci, then that

preference remains in effect even if there is a chance for a

third outcome C5 to occur.

Studies have shown that all three of the above SEUT

postulates are regularly violated by human decision-makers.

Savage acknowledged this, but claimed that SEUT is normative.

Even though people don’t follow SEUT in real life, they

should. Other authors have disputed this claim, stating that

many reasonable selection strategies violate SEUT.

Nevertheless, SEUT is widely seen as a useful tool for

analyzing a complex problem and selecting from among a list of

possible problem-solving approaches. The next section describe

Ihow SEUT is implemented as a decision-aid model.

3.3 Bayes

In t.

represent"

form of

representa

second rep

is the pro}

each in to

3.3.1 Deci:

SEUT

trees or in

and of the

purpose of

 analysis. }

used in decj

theoretic

Bayesian re

InflUe

represem; ti

Utility vali

SUCh graphs

analysis .

103

3.3 Bayesian Knowledge Representations in OT and AI

In this section, I will describe two Bayesian knowledge

representations. The first.is an implementation of SEUT in the

form of decision trees and influence diagrams. This

representation is frequently used in decision analysis. The

second representation, first presented by Duda et al. (1976),

is the probabilistic inference network (PIN). I will describe

each in turn, then compare their structures and uses.

3.3.1 Decision Trees and Influence Diagrams

SEUT is often represented in practice using decision

trees or influence diagrams. The use of these representations

and. of the above-mentioned utility' measurements for the

purpose of aiding decision-making is often called decision

analysis. Here, I will describe the representation schemes

used in decision analysis. Later I will compare this decision-

theoretic Bayesian representation against a commonly-used

Bayesian representation used in Al.

Influence diagrams are graph structures whose nodes

represent the various decision points, chance occurrences, and

utility values of the decision-making process being modelled.

Such.graphs are usually used in the initial stages of decision

analysis, because of their relative simplicity, then are

translated into decision trees (which are more comprehensive)

for detailed analysis. Decision trees and influence diagrams

'model cause-effect relationships as well as plan-refinement

 strategie

choices t

point in

(thus imp

branches

consequenc

relationsh

terminatesl

that path

Value can t

bllt its Va
Wham utilil

values are

 Probabiliti

”all. Utilit

When the lit

decision

pres(Hit
ciri

The Si

104

strategies. Branches emanating from decision nodes represent

choices that can be made by the decision maker at a given

point in time. These branches lead to other decision nodes

(thus implementing plan refinement) or to chance nodes. The

branches emanating from chance nodes represent possible

consequences of the choice (thus implementing cause-effect

relationships). A path in an influence graph or decision tree

terminates at a node representing the utility of following

that path of decisions and chance occurrences. This utility

value can be calculated in many ways, depending on the domain,

but its value is somehow determined from expert knowledge.

When utilities at termination points are calculated, their

values are propagated back through the path, attenuated by

probabilities of the chance links that lead to them. In this

way, utilities can be calculated for decision nodes as well.

When the utilities at all decision nodes are calculated, the

decision tree shows the "best" decisions to make in the

present circumstances.

The structure and behavior of decision trees and

influence diagrams obey the postulates set forth by SEUT. The

utilities assigned to value nodes are independent of the

likelihood of paths that lead to them. Indeed, probabilities

and 'utilities are stored. in completely' different nodes:

chance-nodes and value-nodes respectively. The possible

outcomes are represented as the leaves of the decision tree,

and are therefore complete and, because they have scores

(utilitie

Bayes rul

compared

calculate

and value-

Next,

using Baye

3.3.2 hob
One A

Probabilis

representa.

These rep;

Bedical

marketing)

chips). The

or near‘o1

decisions;

certainty

of insanen

105

(utilities) assigned to them, are comparable and rankable. Via

Bayes rule, decision nodes higher up in the tree can be

compared and ranked also. Their derived utilities are

calculated from the probabilities and.utilities of the chance-

and value-nodes in their subtrees.

Next, I will describe another knowledge representation

using Bayes models.

3.3.2 Probabilistic Inference networks (PIN)

One AI area making extensive use of the Bayesian model is

probabilistic inference network (PIN) knowledge

representations.

These representations have been used for diagnosis (both

medical and machine), strategy formation (military,

marketing), and design (software, civil engineering, VLSI

chips). They are appropriate for domains that: require optimal

or near-optimal decisions, and justifications for these

decisions; involve information available at various levels of

certainty and completeness; and have available general rules

of inference that can be applied to the problem. (Tanimoto

1987).

Probabilistic inference nets are graph structures that

involve nodes representing evidence (facts) and hypotheses. We

will call such nodes E-nodes and H-nodes, respectively. The

links between these nodes represent the reasoning steps that

one would take in a problem-solving process (e.g. diagnosis),

in much t

based sys

An e

of ll-nodesj

It also it

various hyl

during theI

uPilate thel

nodes base

nodes, whi

H‘nodes, a:

be describe

In c

pmbabilitj

values Olltc

the Conditi

values for

prohabiliti

Prior probe

probabilitil

probabilitiE

106

in much the same way that the if -- then structure of a rule

based system works.

An expert system using PIN typically includes one layer

of E-nodes, representing the data that is input to the system.

It also includes one or more layers of H-nodes, representing

various hypotheses and sub-hypotheses that the system computes

during the problem-solving process. The Bayes rule is used to

update the posterior probabilities of the first level of H-

nodes based on the E-nodes. Probabilities for subsequent H-

nodes, which are based on boolean combinations of early-level

H-nodes, are usually determined using fuzzy logics, which‘will

be described later.

In order to ascertain the first-level H-node

probabilities, the expert system uses a table mapping E-node

values onto H-node probabilities. Such a table will contain

the conditional probabilities for each combination of E-node

values for each first-level H-node (i.e. the joint

probabilities). Also included in the representation is the

prior probability for each first—level H-node. All these

probabilities are provided by the expert as subjective

probabilities, or are based on frequency statistics obtained

through empirical studies in the domain being modelled. Thus,

when the data become available to the system, the posterior

probabilities of the first-level H-nodes are calculated using

the table and the Bayes model.

Early Bayesian diagnostic systems used only these tabular

use of 0th

is to use

described

Once

via the

Combined

at Subs

equivale.

the Clar

truth ta

With D1

107

representations. Although they frequently performed at or near

expert level, there are problems with this representation.

These problems stem from the axioms of probability requiring

a complete, mutually exclusive hypothesis set, where'each item

of evidence presented to the system must be statistically

independent of all others (Langlotz 1989). This motivated the

use of other AI techniques and heuristics. One such heuristic

is to use fuzzy logic to expand upon the Bayesian model, as

described below.

Once the first-level H-node probabilities are determined

via the probabilities tables mentioned above, they are

combined using fuzzy logics to determine H-node probabilities

at subsequent levels. Fuzzy logics are probabilistic

equivalents of propositional calculus clauses. For example,

the clause A OR B, in propositional calculus results in a

truth table like this:

A B A OR B

T T T

T F T

F T T

F F F

With probabilistic values for A and B instead of T/F values,

two possible fuzzy logics for A OR B are max(a,b) and a+b-

ab (Tanimoto p. 248). Similar fuzzy logics exist for other

clauses such as NOT, AND, IMPLY, and XOR.

Bayes rule is used for updating H-node probabilities.

Frequently, the impact of one node's truth or falsehood on

108

another node’s probability is expressed via the likelihood

ratios O(E|H) and O(E|H’) (see above for full description of

likelihood ratios). These ratios are sometimes called the

sufficiency coefficient and the necessity coefficient,

respectively. The sufficiency coefficient 0(EIH) gives an

indication of how strongly the presence of the evidence E

implies the truth of hypothesis H. A high value (much greater

than 1) indicates that.E is sufficient evidence to conclude H.

The necessity coefficient O(E|H’) indicates how strongly the

presence of E refutes hypothesis H’. A low value (<< 1)

indicates that E is necessary to conclude H. Both coefficients

are provided by the expert.

Often the evidence E being presented to a decision-maker

is uncertain. Decision tree representations assume that the

evidence is known and correct. PIN representations, however,

are designed to deal with uncertain evidence. As mentioned

above, the prior probabilities of the hypotheses and

likelihood ratios of the evidence under the hypotheses in a

PIN'are typically provided by the expert. In addition, experts

can also provide prior probabilities of each evidence item

P(E). This provides a sort of "default" value in the absence

of observed data.

This introduces a problem of consistency in the

representation. The system designer should make sure that

P(H), P(E|H), and P(E) are not in conflict. If they are, the

system may exhibit anomalous behavior. For example, suppose we

109

make an observation E’, and suppose P(EIE’) = P(E). Then, to

maintain consistency, it must also be true that P(HIE’) =

P(H). In other words, for a linear relationship between

P(EIE') (the x-axis) and P(H|E’) (the y-axis) , there should be

a point.on the line at (P(E),P(H)). However, in practice, this

is often not the case. In order to compensate for this, PINs

use "interpolation functions" to enforce consistency. Duda et

al. (1976) gives a good review of some common interpolation

functions.

Like the decision-theoretic models of sequential

decision-making mentioned above, PINs use a multiplicative

model to update hypotheses based on multiple evidence. As

mentioned above, this method assumes independence among the E-

nodes. The multiplicative model is robust, however, in that it

is unaffected by the order in which data is presented, unlike

humans who are affected by primacy-recency factors.

3.3.3 Cbmparing Decision Trees to Inference Networks

Thus, we see that the decision tree model based on SEUT,

and the probabilistic inference network model used as a

knowledge representation in AI system design, both use the

Bayesian model as their core component. However, the behaviors

and structures of these two representations are quite

different, and reflect different underlying philosophies and

assumptions.

With decision trees and influence diagrams, the Bayesian

110

model is used to calculate utilities of the decision nodes

based on the values assigned to the branches of chance-nodes

and utility values calculated at outcome-nodes. The utilities

are calculated based on the Bayes rule that a derived utility

is the sum of products of the probabilities and utilities of

each outcome. Thus, the decision tree acts in a data-driven

manner. The branch to take from a decision node requires

knowledge of the outcome utilities.

The semantics of decision trees uses notions of action

and consequence. In this sense it is similar to game tree

representations. In addition, the notion of utility gives

decision trees and evaluative flavor, an indication of

goodness or badness. By contrast, the PIN model uses notions

of evidence and hypothesis, which have a more deductive or

diagnostic flavor. With PINS, the Bayes model is used to

represent certainty of hypotheses and impact of evidence.

With PINs, the Bayes model is supplemented with fuzzy

logics for dealing with the various boolean combinations of

facts and hypotheses. This makes it them flexible enough to

handle conditional dependencies between variables, which as

mentioned earlier, make the Bayes model unreliable or

unwieldy. By contrast, decision trees and influence diagrams

do not allow for conditional dependencies. In addition,

decision trees distinguish between utility and probability.

SPIN models make no such distinction; everything is expressed

in terms of probability.

lll

Whereas decision trees assume that the set of possible

solutions is complete and comparable, there is no such

assumption underlying PINS.

3.4 Bayesian Studies of human decision-making

A frequently-used experimental paradigm in studies of

human judgement uses a Bayesian model as a baseline against

which to compare human performance. Typically, the subject is

asked to estimate the posterior probability P(E|H), where E is

provided by the experimenter. With each new Eh, the subject

must revise his or her estimate of the posterior probability.

As espoused by Savage, the Bayesian model is generally

used as a normative model against which to compare subject’s

performance in decision-making under uncertainty. Typically,

such studies try to identify the reasons for subjects’

deviations from the Bayesian ideal. The experimenter will

manipulate the data input to the subject, the manner in which

the subject is required to respond, and perhaps the feedback

given to the subject. The experimenter will then study the

effects of these manipulations on the subject’s decision-

making process. Input manipulations may involve controlling

the order in which data are presented, presenting the data in

nominal vs probabilistic terms, or varying the diagnosticity

of the data. Subject response mode manipulations include

controlling whether subjects must give direct probability

estimates or indirect estimates, requiring repeated vs

112

intermittent. responses, and. requiring' lcategorical “vs

probabilistic responses. Feedback manipulations may involve

payoff or non-payoff situations.

The experiments typically involve decision-making in an

environment where the probability distributions are known

mathematically or can be safely assumed. For example, one

frequent experiment paradigm involves two bags of poker chips

(call them A and B), each with a different percentage of red

vs. blue chips. The subject is told the percentages of each

chip in each bag. The subject then draws chips from one of the

bag (s/he does not know which one) and give the posterior

probability P(HIEg)‘that it is bag A, where Eh indicates the

color that was drawn in draw i. The distribution of

probabilities in such an experiment is binomial. Bayes rule

would choose in aiway that.maximizes the posterior odds of bag

A, given the chips that have been drawn. The odds and

probabilities are known, via the binomial density function.

Other experimental paradigms involve making decisions

pertaining to human population samples. In this case, the

probability distribution is usually normal.

As mentioned earlier, the assumption that the input data

are conditionally independent is a limiting characteristic of

the Bayes model, and attempts to extend Bayes to account for

dependencies quickly renders the model unmanageable. Thus,

psychological experimenters using the Bayes model will try to

ensure that they are obeying the independence criteria by

113

using uncorrelated data. Interestingly, the choice of

populationlcan affect whether two data items are correlated.or

not. For example, in the general population, height and hair

length are negatively' correlated. This is because women

generally have longer hair than men, and are generally

shorter. However, within-gender, height and hair length are

uncorrelated. Therefore, an experiment that asks the subject

to decide, based on information about a person’s height and

hair length, the odds that the person is male, would be a

valid use of Bayes model, because the hypothesis is within-

gender, whereas the same experiment that asks the likelihood

that the person has blue eyes would not, because the

hypothesis is between—gender.

3.4.1 Why people deviate from Bayes

Experiments, such as the ones mentioned above, indicate

that people regularly deviate from the Bayesian norm in their

decision-making. These studies indicate 'that. in lgeneral,

people tend to be too conservative in the degree to which they

will change their hypothesis when new data is presented. In

other words, their posterior probability estimations tend to

be closer to the prior hypotheses than would be warranted by

the Bayesian model. This tendency to "err on the side of

caution" can be attributed to several factors that have been

discussed in the literature.

One reason for conservatism is the subject’s lack of

114

understanding of the data generator itself. This phenomenon,

called misperception in the literature, means that subjects

usually don’t understand the behaviors that can be expected of

the common probability distributions such as binomial,

multinomial, and normal distributions. Studies have suggested

that this lack of understanding of the data generator causes

people to be conservative in their hypothesis revisions. This

conservatism is particularly acute when the data presented is

very unlikely to occur, the "rare effects" phenomenon.

Presumuably, knowing more about the distributions can help

optimize the subjects' responses.

A second cause of conservatism is nfisaggregation, the

subject's inability to correctly synthesize and combine

multiple data elements in their posterior probability

assessments, which can also explain the rare-effect

phenomenon. Edwards.et al. (1968) found that.computer programs

implementing Bayes model consistently performed superior to

human subjects in tasks requiring aggregation of data

elements. This lends support to the idea that expert systems

could enhance human decision-making.

A third explanation for conservatism is the response bias

of the subject. DeCharme (1970) found that subjects were

unwilling to express extreme odds (e.g. greater than 10:1 or

less than 1:10) in their responses, even in the face of very

diagnostic data that strongly supported such extreme odds.

Tversky and Kahneman (1986) found that.human judgement is

115

biased by the way a problem is presented ("framed") to the

human. For example, he studied the effect of choice vs.

matching in human decision-making. Choice involves selecting

the "best" candidate among a set of candidates. Matching

involves adjusting the value for a particular attribute of one

option until it is deemed to be "as good as" the other option.

Tversky found that when someone is asked to choose between a

set of options (each with multiple attributes), that person's

weighting of the attributes will be much different than when

they are asked to match the options. In the choice task, the

dominant (i.e. high-weighted) attributes have more impact.than

in the matching tasks. This reflects a bias in human thinking

that goes against the axioms of probabilistic reasoning.

Presumably, expert systems should be robust enough to avoid

this bias.

Kuipers et al. (1988) compared protocol analysis of

experts against formal decision. analysis (decision ‘tree)

representations. He found significant differences. First, the

sequence of events and decision structure is different from

what is expected in dec tree. Experts used "top-down

refinement" mixed with opportunism whereas decision tree

representations use weighted averaging and "folding back"

after determining utilities for all final outcomes. Second,

concepts of likelihood are treated as categorical or ordinal

values, not numeric. Even numeric expressions are expressions

of’ categorical/ordinal info (e.g. thresholds. or :ranges).

116

Third, the final utilities of each choice tended to me more

clear-cut to the experts than what would appear based on

formal decision analysis.

It is interesting to note the distinction between the*way

a decision theorist would view these differences and the way

an AI theorist would view them. As mentioned in the above

section, the deviations from Bayesian reasoning are seen a

flaws and biases from the viewpoint of the decision theorist.

But AI theorists like Kuipers view such deviations as

motivations to change the model of human knowledge from

probabilistic to categorical in order to more closely

represent human problem-solving processes.

3.5 Combining Bayesian Decision Analysis with AI

Langlotz (1989) developed an expert system shell that

merges concepts from AI with concepts from decision theory,

and brings the best of both worlds together into a system

called QXQ, for "Qualitative Explanation of Quantitative

Models." He explored potential contributions from AI and DT as

they pertain to diagnostic, planning and explanation

facilities for systems operating in the medical domain. In so

doing, he presented an "axiomatic approach" to constructing

such computer systems.

QXQ involves two modules: a modelling (development)

environment, intended. for ‘the decision analyst for

representation of quantitative decision models; and an advice

117

generator, or performance system, intended for use by the end

user to consult with. Thus, QXQ facilitates both knowledge

representation and design on the one hand, and knowledge use

and performance on the other.

Langlotz defines axiomatic decision making framework as

one that embodies an "explicit agreement between the decision

making system and its users (Langlotz 1989, p.25)." For such

a framework, a set of properties are defined, and the user and

system must both behave in accordance with these properties.

This impacts all aspects of the construction and performance

of the expert system, including knowledge acquisition,

reasoning and.explanation. In addition.to being axiomatic, the

system should also be normative. This means that the axioms

and properties defined must be intuitively appealing in terms

of the constructs that experts use in the relevant tasks they

perform. Note that this requirement for axiomatic, normative

design principles is similar to the "knowledge-use level"

requirements that motivated the task-specific and generic-task

movements in AI, described earlier in this thesis.

.A major theme running throughout Langlotz's thesis is

that decision making involves two main components, diagnosis

and planning. Diagnosis involves assessing the beliefs of the

system, given what the system knows; it is a mapping from

evidence to hypotheses. Planning is a mapping from hypotheses

to actions, based on known goals of the system. Thus, the two

activities are interrelated and interdependent. However,

118

although Langlotz discusses diagnosis as a major component of

the decision making process, his QXQ system does not include

a diagnostic component. Rather, QXQ is primarily concerned

with ranking alternative plans and with providing explanations

that justify those plan rankings.

Langlotz proposed a normative, axiomatic framework for

each of the two major components of decision making, diagnosis

and planning. He identified desirable properties for

diagnostic reasoning. These include: clarity, completeness,

orderability (i.e. ability to rank hypotheses according to

degree of belief), thoroughness, and consistency. As we saw

earlier, Bayesian decision theory satisfies all these

properties. In fact, Langlotz claims that in terms of system

performance, the Bayesian approach is superior to mathematical

models and heuristic AI approaches for diagnostic tasks. Of

course, other' AI researchers and theorists may strongly

disagree with this claim on the grounds that probabilistic

approaches require too much prior knowledge about disease

probabilities and are not good at explaining their reasoning.

Langlotz addresses the first objection by saying that

frequency statistics from medical records, probabilistic

approximations from the medical literature, and expert

judgements can all be used for probability assessment, but he

also.acknowledges that such.probabilities are not exact, which

weakens the Bayesian framework. Langlotz strongly agrees with

the second argument (i.e. the explanatory power of AI

119

systems), and his QXQ system will show this.

Langlotz also lists the desired properties of planning

systems. These include orderability, monotonicity (decision

maker should pick the best outcome), decomposability (for

dealing with uncertain scenarios), continuity, and

substitutability. For these properties to hold, a system

should be able to represent the concept of utility in its

axiomatic framework. Thus, his approach to plan selection is

strongly grounded in the SEUT decision—theoretic model

described above.

Since the structure of a DT-based knowledge

representation can involve either influence diagrams or

decision trees, both are implemented in QXQ. As mentioned

earlier, influence diagrams are acyclic directed graphs that

involve three types of nodes: decision nodes represent the

explicit choices made by a decision maker at a given point in

the planning process; chance nodes represent probabilities

that.a.given decision.will result in.a particular outcome; and

value nodes represent.the desirability (or utility) of‘a given

outcome. QXQ represents these nodes as objects in an

object-oriented framework, and each node contains certain

slots and methods. An example for a slot for a value node is

the "expected utility" slot. For a chance node, one slot is

the "probability expression" slot. Both.types.of nodes include

"situation" slots, which are verbal accounts of the situation

for which the node is relevant, and which serves as an

120

explanation facility.

The second type of structure for DT-based representation

is the decision tree. This is the structure that is actually

used by the decision-making component of QXQ. It is often

easier for the designer to represent knowledge in terms of

influence diagrams, since this way one does not need to

explicitly show all possible branches of a decision tree.

However, in order to enhance the performance of a decision

making system, QXQ will convert influence diagrams into

decision trees.

Up to this point, I have described Langlotz’s thesis and

his QXQ system mostly in terms of decision theoretic

constructs. He asserts that, in terms of system performance,

decision theory is superior to heuristic (AI) approaches.

However, such an approach requires several assumptions which

are impossible for systems that must deal with incomplete or

uncertain information. These assumptions include: that the

diagnostic component of a system can be supplied with exact

values of probabilities and utilities (orderability); that all

conceivable plans can be evaluated (completeness); and that

all possible consequences of every action can be considered

(thoroughness). Such ideal performance is impossible in

practice, so Langlotz proposes that heuristic approaches be

introduced to supplement the decision-theoretic approaches.

In addition to compensating for the lack of completeness

and certainty in knowledge that would be required for

121

decision-theoretic approaches to expert systems design, AI

heuristic models also allow for intuitively appealing,

qualitative explanations of their reasoning. In this sense,

they are superior to mathematical models such as decision

theory, whose explanations must be couched in terms of

mathematical arguments. One of the major design considerations

that went into the development of QXQ was the desire to

provide qualitative explanations to support the

mathematically-based decision framework. These qualitative

explanations should not be mathematical in nature, but should

be expressed in terms of the domain in question, for example,

using medical terms and constructs.

In order to justify why QXQ makes a particular plan

selection, it must identify how this decision differs from

other possible decisions that could be made in the same

situation. In order to do this, QXQ does branch comparison,

which is "the process of analyzing the similarities and

differences among decision branches to find elements of the

tree that most contribute to the difference in expected

utility (Langlotz 1989, p.208)." Before comparing the

branches, however, the system must find branches that are

"analogous" in the sense that their corresponding nodes

pertain to the same situation. After the system finds two or

more analogous branches, it does a quantitative comparison of

the expected utilities that result from each branch. Note that

expected utility can be assessed at any level in the tree, and

122

that sub-branches can be compared at various levels also.

Thus, the comparison may be given at various levels of

abstraction, which facilitates the explanation process. QXQ

will continually decompose the branch comparison until it

reaches the bottom levels of the tree, and plans will be

ranked accordingly.

So far, I have just described how plans are ranked,

without talking about how these plan rankings are translated

into verbal explanations. Branch comparison has isolated the

various differences of expected utilities among plan

candidates. Now, the system must decide which of these

differences are relevant for describing in qualitative terms

to the end user. QXQ includes a control regime for providing

explanations based on rhetorical frameworks, which are

explanation strategies that. provide» a structure for' the

explanation that most effectively uses the available data to

argue for the results of the decision model. All of these

frameworks will result in an output whose form and content is

a document that looks like a journal article. The different

alternative rhetorical frameworks include: the

weighted-tradeoff method, where phrases are in terms of "the

advantages of choice x over choice y in terms of difference d;

OUTWEIGHS the advantages of choicery'over choice x in terms of

difference d3."; the extreme-value method, which identifies

particularly sensitive variables (using sensitivity analysis)

with extreme values and uses that as a justification for

123

making a particular plan decision: and the pivotal-parameter

method, which is employed when the overall expected utilities

for two plans are about the same and a particular sensitive

variable’s value is 'uncertain...in 'this case the system

advises that more information be obtained before making a

decision.

The choice of a rhetorical framework is based on the

types of differences that are found during the branch

comparison process, and these choices are made by rules

embodied in control blocks. These control blocks can be

developed by a knowledge engineer using QXQ’s development

environment. Thus, QXQ uses the nature of the differences

between decision branches to decide the structure of the

explanation.

3.6 Conclusion

We have seen that the combination of AI approaches and

decision-theoretic approaches is both feasible and useful. The

mathematical robustness of the Bayes decision rule and SEUT

(implemented in QXQ as decision trees and influence diagrams)

combines with the explanatory, heuristic power of AI systems

(implemented in QXQ as branch comparisons and rhetorical

frameworks) to providera powerful decision support.tool. As*we

will see later, my work with candidate evaluation and its

implementation in the CEVED/CEVAL tools attempt to provide a

similar mix of AI and decision theory. The difference is that

124

I concentrate my efforts on a different branch of DT, namely

the ”regression" approaches to decision theory, focussed

primarily on multi-attribute utility theory. Thus, the next

section of this thesis provides a detailed survey of

regression-based DT models.

CHAPTER 4

REGRESSION, LINEAR MODELS AND HULTI-ATTRIBUTE UTILITY THEORY

IN DECISION THEORY AND AI

The preceding chapter discusses the use of Bayesian

statistics and subjective expected utility theory (SEUT) in

decision theory and artificial intelligence. It closes with a

description of Langlotz’s QXQ program, an expert system shell

designed to combine the SEUT model with qualitative

explanatory facilities common to eXpert systems technology. In

this chapter, I will present another stream in decision theory

research. This stream of research involves regression

approaches instead of Bayesian methods.

Although many authors, including Pearl (1977) advocate

the use of Bayes model for evaluation modelling, many others

subscribe to the regression approach. The regression approach

toldecision theory makes use of statistical techniques such as

multiple regression, analysis of variance (ANOVA), and

correlational approaches to model human decision-making

processes. Like the Bayesian methods described previously,

they are frequently used as normative models against which to

compare actual human performance. As normative models, they

can also be used in AI and expert systems as decision support

aids. This chapter discusses regression models and their uses

in decision sciences and AI.

The chapter serves as an introduction of the decision-

theoretic foundation on which the Candidate Evaluation

125

126

architecture is based. Chapter 2 had discussed task-specific

architectures, and identified several commonly used problem-

solving methods such as classification, design, abduction, and

matching. Candidate Evaluation is another task-specific

problem solving method. It is based on the weighted linear

model, and its variants, described in this chapter. In

essence, this chapter describes multi-attribute utility theory

(MAUT) in order to provide the theoretical basis for the tools

CEVED» (Candidate Evaluation. Editor) and. CEVAL. (Candidate

Evaluator), which will be described in chapter 5.

4.1 Multiple Regression

Multiple regression is a general statistical technique

for analyzing the relationship between a set of independent

variables (often called predictor variables) and a dependent

variable (called a cmiterion variable). The multiple

regression equation is a "prediction equation" whose form

indicates how the predictor variables should be weighted and

summed.to obtain the best predictor of the criterion variable.

The regression model, when applied against a set of sample

cases whose values ar known for independent and dependent

variables, will give the best weights for the independent

variables. Graphically, this results in finding the best-

fitting line (in the bivariate case) or hyperplane (in the

multi-variate case) to fit the data given.

The bivariate regression model is:

127

Y’-A+BX

where Y’ is the predicted value of the dependent variable, X

is the independent variable, A is a constant representing the

Y-intercept, and B is the regression coefficient which

represents the slope of the regression line. Thus, B is an

indicator of the expected change in Y given a unit change in

X. It is B that is calculated when the regression model is

presented with actual training samples.

The regression coefficient is calculated using the

following formula:

B_ 2 (If—3?) (Y-Y)

2 (XIX) 2

The numerator is the sum of the cross products of X and Y

(SS£1), and the denominator is the sum of squares of x (83‘).

The regression line represented by this coefficient is also

called the "line of best fit" or least-squares line".

As you can see, the regression equation is a linear

model. There is some debate about the adequacy of linear

models for prediction and complex decision-making, especially

in circumstances where the interactions of variables can have

a significant impact. The simplicity of such a model makes it

attractive. Nevertheless, depending on the actual linearity of

the data, there may be significant error in the predictions

128

made by the regression coefficient. This error can be

quantified via the sum.of squared.residuals. A residual is the

difference between the predicted value of the dependent

variable Y’ and its actual value Y for any given sample. That

is, RES = Y - Y’, as illustrated in figure XX, and the sum of

squared residuals is expressed as 5352. Thus, the prediction

accuracy of the multiple regression model is expressed as:

I2 _ SSY-Ssres

xy ssy

This prediction accuracy measurement expresses the degree to

which the variability is Y is accounted for by the regression

model, and its value lies within the interval (0,1). The

closer I“2 is to 1, the more accurate the regression model is,

and, by implication, the more linear the data are.

Thus far, I have described.the regression formula for the

bivariate case, that is, when there is one independent

variable and one dependent variable. The multivariate version

of the regression equation is:

/ n

In this case, the B; are called "partial regression

coefficients". Each Bl represents the expected change in Y if

X1t is changed but X_1 remains constant. In other words, it

reflects the impact that XA has on Y independent of any

129

activity in the other predictor variables. This assumption of

independence in inherent in the regression model, just as it

is in the Bayes model.

4.2 Use of Regression in Decision Sciences

Regression models are used extensively in decision

theory. They are used for modelling' the interaction of

decision makers and their universe. They are also used to

model the policy-making behavior of judges. Slovic and

Lichtenstein (1971) identified two major paradigms in

regression-based decision models, the correlational paradigm

and the ANOVA (analysis if variance) paradigm. Correlational

approaches follow two main streams: the Brunswick lens model

for analyzing the judge’s performance in a real world setting:

and the judgement-policy model, which simply establishes the

relative importance of the various cues in the decision-making

process. ANOVA approaches are used to deal with configural

relationships between.the»cues, and.are particularly useful in

environments where the input variables exhibit some dependency

relationships amongst themselves.

4.2.1 Correlational Paradigm

Correlational approaches correlate the information cues

available to the judge against the judgements and/or decision

that s/he makes, typically using the Pearson correlation

coefficient:

130

2:1 (xi-7r) (Y1?)
I-

(K [2:1 (xi-m2] [2:1 (Yi—lei

The correlation coefficient is a measure of the weight of

importance of each cue presented to the judge. As with the

models mentioned above, there is an assumption of independence

between the cues.

4.2.1.1 Brunswick lens model

The Brunswick lens model, also called "probabilistic

functionalism", focusses on the adaptive interrelationships

between the organism and its environment. Studies involving

this model are concerned with.measuring how the judge uses and

weights environmental cues and with learning the

characteristics of the environment itself. In this sense, the

lens model represents probabilistic interrelations between

organismic and environmental components of the judgement

process.

4.2.1.2 Linear JUdgement Policy HOdels

Some researchers are interested solely in modelling the

policy of the judge (i.e. the weights associated with each

input cue) and are not concerned with the actual relationship

between cue and result in the environment. This approach uses

the simple linear model, with the idea that a judge’s

131

'ediction is simply a linear combination of the cues

esented to him or her. There is no representation of the

tual environmental correlation between cue and dependent

riable. Thus, these models represent half of what the

mswick Lens model represents. The mathematical description

the linear model is shown below:

1&2; wixl.

re Y is the final judgement score of the criterion

iable, X1 is the score of predictor variable and W1 is the

int of importance assigned to the predictor variable.

Dawes (1979) subdivided the overall linear model into two

5, which he called proper and improper linear models. The

erence between proper and improper models centers on how

veights of predictor variables are determined. With proper

ls, the weights are statistically generated, usually using

lard regression analysis or discriminant function

rsis, to optimally predict the criterion value of

'est. In contrast, the weights in improper models are

mined using some nonoptimal method, usually via polling

t judges (using Delphi studies, for example) to ascertain

intuitions on the importance of each of the predictor

ales.

Proper linear models, although optimal, are often

:tical to implement in practice. Dawes (1979) cites two

132

reasons for this. First, in order to be statistically viable,

the multiple regression method requires the ratio of observed

data samples to predictor variables to be as high as 20 to 1.

Second, the predictor and criterion variables of interest are

>ften subjective in nature, not easily converted to objective

{uantitative measurement. For example, how does one give an

bjective measure for "motivation" or "self esteem" when

valuating potential job applicants? For these reasons, users

E linear models often resort to suboptimal, improper methods

>r establishing weights of the predictor variables.

Linear models have proven to be very good predictors of

.man judgements, and have in fact been shown to be superior

human judgement performance in many domains. This fact has

en documented by Slovic and Lichtenstein (1971) and by Dawes

988) . They described a process of building a linear model of

a judge’s policy (in terms of the weighted outcome criteria)

I then using that model in place of a judge for decision-

ing. They called this process bootstrapping. Under

cumstances when the predictor variables have conditionally

atone relationships with criterion variables, these models

3 been shown to work very well. As a result, they have

>me ubiquitous in the decision sciences literature. For

lple, Dawes and Corrigan (1974) successfully used linear

Is for evaluating graduate applicants at the University of

on. Wiggens and Kohen (1971) used them to predict GPAs of

t-year graduate students, and found their performance to

133

superior to actual experts. Likewise, Goldberg (1970)

monstrated that linear models of judge’s decision policies

tperformed 26 of 29 clinical psychologists in diagnosing

uroses or psychoses of patients based on data from Minnesota

ltiphasic Personality Inventory (MMPI) profiles.

Why do linear models work so much better than actual

perts? Dawes suggests that this is because humans are

nerally not good at integrating information from various

urces in order to come up with valid decisions. In his

rds:

"People are good at picking out the right predictor

variables and at coding them in such a way that

they have a conditionally monotone relationship

with the criterion. People are bad at integrating

information from diverse and incomparable sources.

Proper linear models are good at such integration

when the predictions have a conditionally monotone

relationship with the criterion. (1979, p.574)"

though the above paragraph pertains to proper linear models,

ves argued that improper models are almost as good. In the

idies that he conducted, and in other studies he cites, the

proper models work as almost as well as proper models. In

5 words:

"...[improper] linear models are robust over

deviations from optimal weighting. In other words,

the bootstrapping findings, at least in these

studies, has simply been a reaffirmation of the

earlier findings that proper linear models are

superior to human judgements -- the weights derived

from the judges’ behavior being sufficiently close

to the optimal weights that the outputs of the

models are highly similar. (1979, p.577)"

Thus, the efficacy of this bootstrapping process suggests

rt linear models may work well as expert system

134

.hodologies, provided that an underlying explanation

:ility, so important for viable expert systems performance,

l be incorporated into the overall model.

i Hultiattribute Utility Theory (MAUT)

The efficacy of the linear model approach to judgement

l evaluation is further supported by a systematic theory

rtaining to evaluation, judgement, and preference models

.led multiattribute utility theory (MAUT). Von Winterfeldt

l Fischer (1975) described various multiattribute utility

tels, which they defined as "a class of psychological

isurement models and scaling procedures which can be applied

the evaluation of alternatives which have multiple value

Levant attributes (Von Winterfeldt and Fischer 1975, p.47) ."

3 types of models, and the classes of problems they are

signed for, varied along three dimension: first, whether or

: the choice alternatives have multiple attributes; second,

ether or not the input data is uncertain (thus requiring

)babilistic assessments); and third, whether or not the

nice is time-variable (i.e. do temporal considerations

Eect the utility of a choice alternative).

Two key assumptions pervade throughout most of these MAUT

iels: independence of attributes and transitivity of

eference. (Note that these assumptions are similar to those

scussed.for SEUT). There are varying levels of independence,

1 problems which exhibit stronger attribute independence

135

:ually allow for more structured, decomposable, and useful

rUT preference models. For example, multiattribute choice

.tuations where attribute 'values are certain and ‘time-

lvariant.can exhibit.four relevant levels of independence: no

idependence at all, l-WCUI (weakly-conditional utility

ldependence) , n-WCUI, and joint-independence. Thus, there are

iur possible MAUT models to choose from.

WCUI refers to situations where the preference based on

.lues of one attribute is independent of constant values in

.e other attributes. For example, when buying a car, all

.her things being equal, you would want the cheaper car in

1 cases. Thus, one may consider price to be a ‘WCUI

tribute. However, consider two other attributes, size-of—car

.d existence-of—power-steering. Given two cars with all

:tributes being equal except size, where both.cars have power

eering, one would probably choose the larger car. However,

. the same case where both cars do not have power steering,

e may very well prefer the smaller car, because it would be

sier to handle. Therefore, in this case, size of car would

rt be a WCUI attribute with respect to existence of power

.eering (Von Winterfeldt and Fischer 1975, p59).

1-WCUI refers to problems in which it is possible to find

single attribute that is WCUI to all others. n-WCUI refers

l problems in which all attributes are WCUI to all others.

lint independence refers to cases where each pair of

.tributes is WCUI to all others.

136

For problems where no independence can be established,

he MAUT preference model is forced to be very general and

lgebraically non-decomposable. At the other extreme, where

oint independence is established, it is a feasible and sound

ractice to use a highly structured model called conjoint

easurement, which is typically represented in an additive

armat, which states that vector X is preferred over vector Y

E and only if:

2:1 f1 (Xi) 22:1 f1 (Y1)

Vectors X and Y represent two alternatives from which to

loose, and each element of a vector represents an attribute

l consider when making the choice. As you can see, this model

. a generalization of the standard weighted-averaging linear

del espoused by Dawes and others. With Dawes’ model, the f1

nctions are simply weight-multipliers indicating importance

vels.

3 . 1 HAUT Approaches to Non-Linearity

One of the problems with the standard linear model

proach to MAUT, which is the method espoused by Dawes and

iers, is that it does not deal with nonlinear combinations

input data. Slovic and Lichtenstein (1971) discussed two

>ects where non-linearity could affect the judgement

>cess .

137

The first aspect of nonlinearity deals with curvilinear

lonmonotonic) relationships between input and output

iriables. An example of this is the relationship between the

reed of driving a car and the likelihood of reaching a

estination in time. In general, the faster the car goes, the

loner you will reach your destination, up to a point. After

.at, there is an increased likelihood of getting into an

:cident or being stopped by the police, which will certainly

ow your progress toward the destination. Such curvilinear

lationships can be expressed by using exponential terms in

.e policy equation, which changes the standard linear model

a nonlinear one. Note that this is still consistent with

e general conjoint measurement model described above. The

sumption of independence between input variables is still

intained, although there is no assumption of monotonic

lationship between input and output variables.

The second type of nonliearity refers to what Slovic and

chtenstein (1971) call configurality. This refers to the

ssibility that an interpretation or weighting of one input

riable may be influenced by the value of another input

riable. An example of this effect is in stock market

alysis. Suppose you are evaluating whether or not to invest

a company’s stock. You have two input variables: the

rrent strength and activity of the company’s stock and the

neral stock market conditions. If the company has a strong

ting, this is a positive sign. However, it is far more

138

meaningful to have a strong stock in a bearish market than to

have a strong stock in a bullish market. In a bullish market,

everyone looks good. In a bearish market, only the truly

viable companies will continue to have consistent strength.

Thus, the weight assigned to a company’s current trading

strength will be affected by the general market conditions.

This introduces a nonlinear dependency into the MAUT

framework, which cannot be dealt with by standard linear

models, or even by curvilinear conjoint measurement models.

Decision analysts often deal with such configural

ependencies through the use of analysis of variance (ANOVA)

echniques. ANOVA is a statistical method, using non-metric

ategorical input variables, which measures the effect that

1e categorical value(s) of the input variable(s) have on the

atria value of the output variable. For a one-way ANOVA

radigm (involving a single input variable), the formula is

pressed as:

SSx = SSW + 58%.

Here, Y is the output variable and SS! reflects the total

fiance of the Y. SSW indicates the degree to which this

put-variable variance is due to the different categories of

input variables, and SS,,,_,,,_,_,,_ indicates the impact of other,

—categorical factors on this variance. The ANOVA paradigm

be extended to multi-attribute cases via MANOVA

Ltivariate ANOVA), which uses several categorical input

.ables. This model involves a tabular representation which

139

-cross-correlates the effect of categories of the input

variable on the output variable.

4.3.2 Ron-compensatory Decision Rules

The multiattribute algebraic methods mentioned above fall

into the class of compensatory decision rules, because of the

fact that performance of the judged entity in one attribute

may compensate for or override the effects of its performance

along other attributes. This is an inherent aspect of weighted

additive or multiplicative models such as the ones discussed

so far.

Decision analysts sometimes use non-compensatory, non-

algebraic, methods for dealing with nonlinear issues affecting

multiattribute decision—making. Non-compensatory decision

rules deal with "quick reject" or "quick accept" situations.

These can be expressed in a number of ways.

One non-compensatory heuristic frequently cited is called

the conjunctive rule of decision making (Wright 1974, Fischer

1975). This is a "satisficing" technique that establishes the

minimum acceptable values for each attribute, and then judges

the alternatives on each of these attributes. An alternative’ 5

whose performance falls below the minimum threshold for any

attribute will be instantly rejected. The conjunctive rule is

thus an efficient mechanism for quickly eliminating obviously

bad candidates.

A second noncompensatory heuristic is called the

140

disjunctive rule. This rule is concerned with finding

attributes for which a candidate excels. It sets a upper

threshold for each attribute, and candidates scoring above

that threshold.for any single attribute‘will be accepted, even

if they do poorly in other attributes.

A. third. type of non-compensatory rule, called

lexicographic compares candidates according to the most

important attributes first. Those candidates that dominate the

others according to this attribute are selected for further

analysis. They are then compared according to the second most

important criterion, and the most dominant candidates

remaining are then passed on to the next selection stage. This

process continues sequentially until there is only one

candidate remaining or all the attributes have been analyzed.

Thus, the lexicographic rule can be thought of as a phased,

sequential version of the disjunctive rule described above.

Likewise, Tversky (1972) suggested. another' non-

compensatory rule called Elimination By Aspects (EBA), which

is similar to the lexicographic rule, except that it is

conjunctive in nature. Using this model, decision makers

compare candidates according to the most important attribute,

as in the lexicographic model. the difference is that, like

the conjunctive rule, a lowest-bound threshold is established

for this attribute, and candidates falling below this

threshold are eliminated. This process is continued for the

next-most important attribute, then the third-most important,

141

etc. until there is only one candidate left or the candidates

have been examined for all attributes. Thus, the EBA model

combines the sequential, phased flavor of the lexicographic

rule with the "process of elimination" flavor of the

conjunctive rule. Tversky found that the EBA rule was a good

descriptive model of human decision making in a wide variety

of choice situations.

When do subjects use compensatory rules and when do they

use non-compensatory rules? Empirical studies in decision-

making indicate that subjects tend to use non-compensatory

conjunctive and EBA rules early on in the selection process in

order to weed out the poor candidates and later use

compensatory weighting methods and disjunctive rules on the

reduced set of alternatives (Slovic et al. 1977) . Secondly,

they tend.to use noncompensatory rules in particularly complex

situations involving incomplete data and time constraints. The

key is to use the simpler-to-implement non-compensatory

strategies for as long as they are useful, and then use more

detailed compensatory analyses when dealing with alternatives

whose appeal are similar. Third, subjects tend to use

compensatory rules when their task is to rate an individual

candidate, and tend to use non—compensatory quick-elimination

methods when their taSk is to choose from or rank-order a

large number of candidates.

142

- 3 Applications of MAUT: Hultiattribute Utility Technology

Edwards and Newman (1982) developed a systematic

hodology for social program evaluation, based on the axioms

MAUT. They called this method Multiattribute Utility

:hnology. Their approach is intended to apply the

.eoretical constructs of MAUT into a decision aid tool. From

me perspective of the knowledge engineer, it provides a basis

albeit in a manual, non-computerized form) for structuring a

:ask-specific architecture for multi—attribute evaluation

problem-solving. Chapter 5 of this thesis describes Edwards

and Newman’s method for knowledge acquisition of MAUT-related

tasks. This method is particularly useful for the Candidate

Evaluation architecture described in chapter 5, because it

describes how to obtain and weight the evaluation criteria

needed for performing evaluation tasks.

4.4 Combining MAUT and Linear Models with AI

Just as Langlotz sought to combine the decision-analysis

strengths of SEUT with the explanatory power of AI in his QXQ

system (as described in chapter 3), I am combining MAUT models

with explanation and non-linear factors in a task-specific

problem solving architecture called Candidate Evaluation,

implemented in an expert system shell called CEVED/CEVAL. The

architecture and shell will be described in chapter 5, but

now I will discuss previous applications of linear models and

MAUT in artificial intelligence.

143

The idea of using linear weighted models in AI evaluation

k5 is not new, and was employed in early evaluation

lctions for state-space search problems and game-playing

items as far back as the 19508. Two users of this technique

r: game—playing systems were Samuel (1959), who used in a

recker playing system, and Berliner (1977), who used it in a

ackgammon playing system. In each case, the linear polynomial

’as used to evaluate the worthiness of potential board

positions, and was used in conjunction with game-tree search

strategies such as minimax and alpha-beta pruning. Samuel in

particular was interested in studying how a system learned

which features to select for the evaluation function and how

to weight each of these features.

Both researchers found that a straight linear polynomial

method to evaluation had a significant drawback. The context

of the evaluation was not accounted for, and therefore

decisions made based on this evaluation function could be in

error. This finding would seem to contradict the claims made

by Dawes and other proponents of the linear model.

4.4.1 Samuel’s Signature Tables Revisited

For Samuel, the problem is that the linear polynomial

method treats individual features as if they are independent

of each other, and thus does not account for interactions

between features. Samuel found that this greatly inhibited the

quality of learning in his checker playing system. Thus, he

144

introduced signature table method, described in chapter 2 (and

generalized into the structured matching generic task), which

results in a board position's overall score being specific to

the non-linear combination of features of the board position

being evaluated. As mentioned in chapter 2, this technique

introduces a significant space-complexity problem, which is

alleviated somewhat by restricting the number of features to

evaluate and by arranging the features into a hierarchy of

signature tables. Note that any notion of "weighted scoring",

the primary activity of the linear polynomial method, is

totally abandoned in the signature table approach. This forces

the space of potential feature values to be discrete, whereas

the linear polynomial approach allows for a continuous space.

I. 4.2 Berliner and Ackley’s Hierarchical Weighted Scoring

Another hierarchical static-evaluation technique was

eveloped by Berliner and Ackley (1982). They had done

revious work on linear polynomial evaluation functions

found similar problems as thoselerl iner 1 977) and

perienced by Samuel. Their domain, like Samuel’s, was

ne-playing, where the game was backgammon.

Berliner’s earlier program, BKG, used a straight linear

function to rate board positions. All boardynomial

were treateditions (i.e. states in the state-space)

ltically, where the same linear polynomial function was

to evaluate each one. Berliner soon discovered similar

145

roblems as those found by Samuel, namely that the linear

olynomial was too rigid to account for the context of the

oard position. Samuel had described the context in terms of

he interrelationships between features. Berliner expressed

ontext by partitioning the space of board positions into

bate-classes, which will be discussed later.

Like Samuel, Berliner and Ackley moved from a straight

inear polynomial function to a hierarchical representation of

he evaluation features, in a new program called QBKG.

owever, they differed from Samuel by not abandoning the

inear polynomial method entirely. Instead, primitive features

ould have weights and scores associated with them, and the

eighted scores would be propagated through the hierarchy in

rder to obtain scores for higher-level aggregate features

:alled concepts in B&A’s terminology). In effect, they

aintained the ability to deal with a continuous space of

ossible feature values, while Samuel’s method forced that

pace to be discrete.

The following sections describe specific differences

etween Samuel’s signature table approach and Berliner’s SNAC

ethod for multi-attribute evaluation. These differences are

ummarized in Figure 4.1.

.4.3 Cbntinuous vs. Discrete Representation

Thus, a major difference between the two approaches to

valuation is one of discrete (Samuel) vs. continuous

146

fBerliner) representations of the evaluation space. Berliner

Hui Ackley (1982) criticized. discrete representations in

evaluation functions, stating that they were fragile and

:uffered from the boundary problem.

By fragility, they meant that erroneous or noisy data

ould dramatically skew the results. In their words:

"In a discrete medical diagnostic system using

production rules, for example, an erroneous result

on a test could prevent the system from ever making

an accurate diagnosis, because the knowledge

relating to the actual disease is not used, due to

the non-satisfaction of the condition portions of

the relevant productions. (1982 p.214)".

They said continuous representations alleviate the

ragility problem by ensuring that all relevant factors are

aken into account by including them in an overall scoring

rocess.

Actually, continuousness of representation per se is not

mat alleviates the fragility problem. Rather, it is the use

E a compensatory scoring mechanism.that.dampens the effect of

rroneous or incomplete input data. This would be true in

Lscrete representations as well.

By the boundary problem, B&A were referring to the

endency for systems with large grain sizes to make erroneous

acisions when a feature’s actual value (as it would appear in

continuous domain) lies in a grey area at the boundary

:tween two possible discrete values, and is mapped

'bitrarily onto one of those discrete values. The idea here

w'that fine granularity is less likely to produce errors than

147

Signature Tab/es

ndimensional array

mow/edge 'ep'e‘e' “".‘9 “ppm
0 , , , from specrfic pattemorf

l’l/fl/I/VES input values onto a score.

56/1/3170” must be discrete, since each

n input value is represented as

We? a cell in the array.

hierarchical...lower level

Wan/2311.0” signature tables send their

scores up the hierarc to be

Input values for higher el

signature tablses

'0”/3Xt Context is represented as explicit

ap/esentafl'on Patter” 0“ Pamela-values.

SNAC

weighted

algebraic

summation

(linear model)

can be discrete

or continous.

hierarchical...lower level

concept scores are weighted

.andsummed to arrive at

higher-level concept scores.

Context is represented by

state-classes, which affect

weights of importance.

W/aflaf/a” Discrete representation allows for Continuous representation

bI/IOO’S explic't description of specific combination requires 'discretizing' after

’ of factors leading to score. scoring has taken place.

, . . Evaluating board positions Evduati board - .

(9173/. for chréerpjker-playing for backggmmonW

50/103110” ”“3 program.

. - Hierarchical

SOC/ated Structured Matching Linear Model

?”er/b Component of

Candidate Evaluation

91?

Figure 4.1

Comparison of two Al methods used for static evaluation functions.

148

coarse granularity. This can be a significant problem with

structured matching, which imposes a small limit on the number

of allowable values that a parameter may take on. In the

interest of computational tractability, structured matching

forces coarse granularity, thus becoming vulnerable to

boundary errors.

However, there are two problems with continuous

representation based on scoring methods that make qualitative,

discrete representations more attractive. The first is that

scoring methods cannot account for interactions between

variables in the way that conjunctive-clause production rules

:an. The second is that explanation is much easier with

liscrete representations.

Berliner and Ackley’s system does not appear to account

or specific interactions between variables the way that

amuel’s signature tables can. However, by arranging their

coring into a feature hierarchy they were able to provide

(planations at various degrees of abstraction for their

rstem. This is similar to Page's (1977) functional

:planation of signature table inference.

4.4 Context in evaluation

Another distinction between the Samuel’s and Berliner’ s

proaches involves the context of the evaluations they

rform. Although both Berliner and Samuel express context in

rms of abstraction levels via the hierarchical arrangement

149

of their knowledge groups (signature tables and scorers), they

differ in other expressions of the context of the game.

For Samuel, the context is represented specifically by

the interactions of the variables at each signature table in

the hierarchy, as described previously. Contextual factors and

evaluative factors are treated uniformly, all are represented

as variables in the system.

In contrast, Berliner's method, which does not explicitly

show interactions of variables, represents context by dividing

possible board positions into state classes (Berliner 1979),

which are categories describing overall aspects of the game.

For example, one state class contains all "endgame" board

positions, where the pieces for each player have already

each other and the two sides are racing to take theirpassed

pieces off the board. This is in contrast to another state

class, "engaged game" where the opposing pieces may still land

on one another. Context in this sense plays an important role

in determining the weightings for the various features of a

board position. For example, in an endgame context, it is no

longer important to avoid having a piece stand alone, since no

opposing piece can land on the lone piece. This would be an

.mportant consideration if the opposing players were

'engaged”. This dynamic, context-based weight adjustment

ntroduces a non-linear flavor to their SNAC derivation of the

inear polynomial evaluation function. Figure 2 illustrates

1is notion.

150

4.4.5 Explanation of Evaluation

As mentioned above, discrete knowledge representations

tend to be better than continuous representations at

facilitating the explanatory power of knowledge based systems.

When dealing with overall scores, it is difficult to identify

just what is wrong with the candidate being evaluated, or

exactly why one candidate is better than another.

Thus, it would appear that the signature table approach

is superior to SNAC in this regard. With QBKG, Berliner and

Ackley wanted to maintain the performance advantages of the

continuous representation, but keep the explanatory power of

the discrete representations. They saw two main tasks in this

regard:

1) Isolate relevant knowledge (pertaining to a query for

explanation) from irrelevant knowledge.

2) Decide when quantitative changes should be viewed as

qualitative changes.

They handled the first task via their hierarchical

rrangement of features. Thus, explanations at lower levels

ended to be narrow, and detailed, while explanations at

.gher levels were broad and unfocused. They handled the

econd task by partitioning the differences in scores between

ndidates (for any given feature) into "contexts", which may

phrased as "about the same", "somewhat larger", "much

rger", etc. In other words, they "discretized" the

aluation space after all the scoring had taken place,

151

thereby avoiding the pitfall of losing valuable information

due to arbitrary early classification. Once discretized, the

qualitative differences in scores could. be displayed as

explanations for choosing one candidate over another.

4.4.6 Empirical comparison of Truth Tables and Linear Models

Based partially on Dawes’ research, Chung (1987, 1989)

empirically compared the linear model approach against a

rule-based or truth-table approach in terms of inductive

knowledge acquisition methods for classificatory problem

types. His study indicated that the relative performance of

systems using these approaches differed based on the type of

:lassification problem they were applied against.

Specifically, he found that tasks involving conditional

nonotonicity are good linear candidates, whereas those

riolating conditional monotonicity are better rule-based or

:ruth-table candidates. This finding is consistent with the

findings of Dawes and Corrigan (1974).

l.5 Multiple Evaluators: Methods for Voting on Candidates

The previous discussions assume that the multi-attribute

evaluation is being done by a single evaluator. However, in

many real-world situations, evaluation is a team effort,

iointly accomplished through several stakeholders who often

lave dissimilar priorities. Political elections are a prime

example of this phenomonon. As pointed out by Edwards and

152

Newman (1982) , the types of differences between evaluators can

be fairly minor (involving differences in weights or score-

assignments) or can be quite extensive (involving major

differences in the selection of attributes upon which to base

an evaluation).

Edwards and Newman pointed out that, so long as the

various evaluators use a common set of attributes, differences

between them can be accounted for by weight adjustment.

However, with different evaluators using different sets of

attributes, there is no way of effectively comparing their

evaluations. This issue is not unlike the issue of feature

selection in pattern recognition.

The issue of multi-evaluator weight assessment has been

addressed in the decision science literature, and some

researchers have proposed techniques for resolving evaluator

differences. For example, Sheridan and Sicherman (1977)

suggested a method of electronic anonymous voting, whereby

each voter would rank-list his or her preferred candidates

(which were represented by various values for two attributes),

ind based on the preference rankings, attribute weights would

ee established according to the axioms of utility theory.

Rank voting methods can also be used for feature

election, particularly with respect to deciding the relative

mportance of each of the features (Edwards and Newman 1982).

or example, the list of "candidates" being ranked may be

:tributes as well as candidates being evaluated based on the

153

attributes. Chapter 5 gives more discussion about using

attribute-ranking methods for weight assessment in MAUT-based

evaluation tasks.

Voting methods can take many forms. Saari and Newenhizen

(1985) identified several voting techniques. For example, in

plurality voting, only the first-place alternative (or

candidate) is chosen from each voter (evaluator). In bullet

voting, a voter is given two votes, and is allowed to either:

1) cast one vote for his top ranked candidate, 2) cast one

vote each for the top two ranked candidates, or 3) cast both

votes for the top ranked candidate. In approval voting, a

voter casts a vote for all candidates that he or she approves

3f; thus the voter has a total of n votes he can choose to

:ast (where n is the total number of candidates).

Each of these voting methods have been shown to be

eontransitive (Saari 1985), and therefore suboptimal as

:andidate ranking methods. In fact, Arrow (1963) proved that

.0 standard non-dictatorial voting method is perfectly

ransitive. In other words, all voting methods can result in

situation where the preference between any two candidates

ay change depending on whether other candidates from the

otal candidate pool are present in the ranking.

nfortunately, when this is the case, it is difficult to

stablish reliable attribute weights for an MAUT model via

ink voting.

Thus, if attribute weights are to be obtained via rank

154

voting, then one should choose a voting method that minimizes

the inconsistencies described above. Saari (1985) showed that

the best non-dicatatorial voting method is the Borda Count.

In this method, voters rank their preferred candidates. If

there are n candidates, the Borda Count tallies n-j points for

a voter’s jth-place candidate.

Intuitively, it makes sense that Borda Count will be

superior to the other three voting methods. The Borda Count

method captures more information than either plurality voting

(in which each voter gives one point to his top candidate and

zero points to all other candidates), approval voting (in

vhich each voter gives one point to his top k candidates and

zero points the remaining n-k), and bullet voting (in which

each voter gives, at most, two points to a single candidate or

me point to the top two candidates, and zero to the

'emainder). In all three of these voting methods, the

nformation provided by each voter divides the candidate pool

nto at most two discriminable subsets (candidates that

eceived a vote and those that did not), whereas for Borda

ount, the information provided by a voter divides the

andidate pool into n discriminable subsets (where n is the

imber of candidates) since each voter gives a different

imber of points to each candidate in the ranking. In essence,

1e Borda Count is the only representation that provides

eformation about the total candidate ranking; all other

eting methods assume voter indifference about lower-ranking

155

candidates.

A voting method can be described as a vector fl! =

<w1,w2,...,wn>, where w.1 points are tallied for a voter’s jth-

place candidate. For example, plurality voting is represented

by the vector <1,0,0, . . . ,0>. Borda Count voting is defined as

<n,n-1,n-2,...0>. Saari’s proof of the superiority of Borda

Count is based on consideration of the set of all the possible

final ordinal rankings of all subsets (of at least two

candidates) from the total candidate pool that could result

from a group of voters using a particular voting method. Call

this set R... The total number of non-transitive outcomes from

R! is IRE] - n!, where n is the number of candidates. Now, let

R; be the set of all possible final rankings using the Borda

Zount voting method. Saari proved that RL5 is a proper subset

if Hg for any W <> B. From this, it is a simple extension to

how that |R§|-n! represents the smallest number of non-

ransitive outcomes, therefore making Borda Count the optimal

>ting method. For a full proof that Borda Count minimizes

entransitive outcomes, see (Saari 1985).

Borda Count has other attractive properties not found in

1er voting methods. For example, with Borda Count, it is

eossible for a Condorcet winner (i.e. a candidate that wins

ry pair-wise election) to be ranked last in a full ordinal

king. Likewise, no Condorcet loser can be ranked first in

111 ranking via Borda Count.

Another issue when dealing with multi-evaluator voting

156

for attribute weight assessment is the agenda-control of the

voting procedure. The above discussion of voting methods

assumed that all voters would be voting on all the candidates

concurrently. However, in many organizations, this is not the

case (Hammond 1986). For example, when doing binary

comparisons between legislative option, the agenda can

completely determine the outcome. Likewise, the organizational

structure of bureaucracies can also act as an agenda, in the

sense that the set of options and conflicts becomes smaller as

the decision-making makes its way up the organizational

hierarchy. Thus, the structure of an organization, like the

structure of an agenda, can greatly influence the outcome of

a vote.

Multi-evaluator issues also bring up the notion of

istributed problem solving. Evaluation tasks can be

istributed among multiple agents, whether via parallel

'ocessors or network nodes. The structure of a dimension

erarchy makes it a simple matter to distributing the scoring

subtrees to multiple agents. Alternatively, different

nts could evaluate different candidates, so candidates

.d be evaluated concurrently. Various AI formalisms,

uding blackboards, could be used to facilitate multiple-

: evaluation.

157

4.6 Conclusions

We have seen that multiattribute evaluation models based

on statistical methods such as regression, correlation, and

ANOVA are common frameworks in both decision sciences and

artificial intelligence. Despite the limitations imposed by

assumptions of independence, these models have proven to be

useful for performing many tasks involving evaluation. In

addition, their compensatory nature makes them less

susceptible to input-error effects than non-compensatory

discrete methods such as rules and truth tables. Finally, I

showed that the coefficients of an MAUT model can be

determined in a multiple evaluator situation through the use

of voting methods, preferably a method that minimizes the

possibility of non-transitive rankings such as Borda Count.

Thus, there is motivation to develop a problem-solving

.rchitecture combining MAUT principles with AI knowledge

epresentation facilities. This would fill the same niche

egarding MAUT that Langlotz’s QXQ fills regarding SEUT, as

.scussed in chapter 3. In addition, since MAUT is usually

ed for evaluative reasoning, a resulting knowledge

presentation could be properly characterized as a task-

ecific architecture (as described in Chapter 2).

In the next chapter, I will discuss just such an

hitecture, called Candidate Evaluation. I describe it as a

k-specific architecture, and compare it with other TSAs. In

:her chapters, I discuss its use in international

158

marketing, and describe another knowledge representation for

use in "evaluative databases" .

CHAPTER 5

THE CANDIDATE EVALUATION ARCHITECTURE

The previous chapters described some of the literature

background of decision-theoretic and AI approaches to

evaluation and selection problems. Particular attention was

devoted to multi-attribute utility theory (MAUT) and its

implementation in algebraic linear scoring models for

compensatory decision-making as well as non-compensatory

decision rules such as conjunctive, disjunctive and

lexicographic models. Also discussed was a description and

motivation for the notion of generic tasks (GT) and

task-specific architectures (TSA) . The purpose of this chapter

is to marry the two disciplines (MAUT and TSA) in order to

arrive at a general-purpose problem solving architecture for

dealing with evaluation tasks. I call this architecture

Candidate Evaluation.

Combining these two disciplines produces several

advantages. First, MAUT is a tried-and-true, mathematically

valid technique for evaluation and selection, as I showed in

chapter 4. Second, the explanatory power of expert systems

provides a verbal, qualitative contribution that can

supplement MAUT's mathematical model, and thereby produce

answers that users are comfortable with. Third, the use of

TSAS provide a knowledge representation whose constructs are

natural for the task at hand, thereby reducing the need to

"twist the knowledge" into rules, frames, or other, more

159

160

primitive, representation paradigms. The motivation for this

is to provide environments for non-programming domain experts

to easily encode evaluative knowledge that can be used in

expert systems, thereby reducing the problems encountered with

the infamous "knowledge acquisition bottleneck".

This chapter presents a detailed description of the

Candidate Evaluation architecture, its structure, behavior,

and use. First, I present the developmental principles behind

the architecture. Then, I show how the architecture satisfies

these principles. Then, I describe the structure and behavior

of the architecture, as it is implemented in the expert system

shell CEVED/CEVAL. I analyze Candidate Evaluation from the

perspective of the Generic Task point of view, and then from

the perspective of MAUT. Finally, I discuss how knowledge

acquisition and expert-systems validation would be done using

this architecture .

5.1 Developmental Principles for a Candidate Evaluation TSA

The philosophy guiding the development of the candidate

evaluation architecture is based on the following principles:

The architecture should allow for all types of evaluative

decision making , including both compensatory and

non-compensatory evaluation, using both discrete and

continuous representations of the evaluation space. The

architecture must allow for quick-reject or quick-accept

decisions (non-compensatory decision rules) as well as

161

thorough assessment of strengths and weaknesses in the

candidate being evaluated (compensatory decision rules). It

should also allow the evaluation process to be sensitive to

non-evaluative, contextual, factors in the environment.

The architecture should adhere to the task-specific

architecture (TSA) school of thought, and as much to the

generic task framework as possible. In particular, its

conceptual primitives should be natural for representing

evaluative knowledge, and the problem-solving method it

embodies should be applicable over a wide range of problem

domains.

The architecture should allow for a rich explanatory

facility, taking into account non-linear combinations of

features, and expressing various levels of abstraction. The

evaluation and explanation process should be easy for the

novice to interact with, and should provide effective, valid

evaluations and recommendations.

The architecture should be implementable in an expert

system shell. This shell should be directly usable by non-

programming domain experts, who will use the framework of the

architecture to encode their knowledge into performing

evaluative expert systems. There should be no need for an

intermediary AI programmer to encode evaluative knowledge. The

knowledge acquisition bottleneck should thus be eased

somewhat .

[ta

t\\e:

162

5.2 Overall Description of the Candidate Evaluation

Architecture

The Candidate Evaluation architecture meets these goals in the

following ways:

It incorporates all the evaluation methods mentioned

above. For compensatory decision-making, it utilizes a linear

model (MAUT) approach that, like Berliner's SNAC, provides for

dynamic weight adjustment based on context. Like Samuel's

signature table approach, it also takes into account the

interaction of variables, at least at an abstract level, by

mapping combinations of feature ratings onto recommendations.

It also provides for quick-reject (conjunctive or EBA decision

rule) or quick-accept (disjunctive or lexicographic decision

rule) decisions by allowing the developer to set threshold

levels for any single feature or composite feature.

The architecture adheres to the TSA and GT philosophies

in the following ways. First, its semantic structure and

conceptual primitives are at a level of abstraction that is

meaningful for evaluative tasks. The primitives include: a

hierarchy of composite features (dimensions of evaluation); a

set of evaluative questions (equivalent to QBKG’s primitive

features); a set of contextual questions for dynamic weight

adjustment (serving the same purpose as SNAC's state-classes);

and a set of recommendation fragments which, like Samuel's

signature tables, account for interactions of feature ratings.

These will be discussed in detail later. Second, in keeping

163

with generic task requirements, the architecture is applicable

across a wide variety of domains. Many problems requiring

evaluative reasoning are solvable using this architecture.

The architecture has a rich explanation facility

intertwined with its conceptual structure. Like QBKG, the

hierarchy of features allows for explanation.at'various levels

of abstraction. Also like QBKG, there is a post-evaluation

mapping from the continuous space (score) onto a discrete

space (feature rating), which allows for qualitative

expressions of the evaluation. In addition, because

recommendations are tied to combinations of feature ratings,

the system can provide explanations for interactions of

variables, like Samuel’s signature tables and Bylander’s

structured matching. Finally, textual explanations can be tied

to specific questions or dimensions.

The architecture has been implemented in an expert system

shell, including a development environment (CEVED) and a

run-time module (CEVAL). These will later be discussed in

detail. The shell is very easy to use, and has been used by

graduate students and domain experts in international

marketing. None of the users had prior computer programming or

.AI experience, yet they were able to quickly learn to use the

‘bool and have developed a dozen international-marketing

related expert systems using the tool.

164

Dar/73mm”

. . 1 | Context }

Drmensrons

f
w
—

1! K Questions }

CEVED

\ ’/,,._____.____..\‘

f Evaluative ‘. .

: I Recommend-

Questions ' [ations

\‘L/ \ ,1

Knowledge Bases

(Le. Partner Selector)

l l

. , \ ,

K \

2 i U 1.
Inference 1 2 ser

‘ 1

Engine 1 ;
l i

; i

l l
i

t o L J

Figure 5.1

Structural components and flow of knowledge in the CEVED/CEVAL

system. Domain expert creates knowledge bases using CEVED. End

user is led through consultation via CEVAL

165

5.3 The Candidate Evaluation Shell -- CEVED AND CEVAL

The shell for implementing candidate evaluation is

described below. It involves two components. The Candidate

EValuation EDitor (CEVED) is the development module. The

Candidate EVALuator (CEVAL) is the run-time module.

5.3.1 Candidate Evaluation EDitor (CEVED)

CEVED is a development environment intended to make it

easy for a non-programmer to represent evaluation-type

knowledge. There are four main types of objects that can be

represented via CEVED: dimensions of evaluation, contextual

questions, evaluativeequestions, and.recommendation.fragments

(see figure 5.1). In keeping with, the requirements for

user-friendly development environment, and to avoid the feel

of a "programming language", CEVED requires only two types of

input from the user: menu choice and text processing. The

text—processing facility of CEVED is for typing in

explanations and recommendations, and includes many

text-editing features found in standard word processors,

including cut-and-paste, text file import and export, etc.

Dimensions of Evaluation CEVED allows the developer to

define a hierarchy of abstracted candidate features, called

dimensions, which serve as the baseline for evaluating the

candidate. A dimension is made up of the following attributes:

(see Figure 5.2)

166

1) The dimension’s name

2) Its parent dimension

3) a list of qualitative ratings and corresponding

threshold scores. A rating is a verbal evaluative

description of the dimension, for example,

”excellent", "fair", "poor". A threshold score is

a minimum quantitative score for which a given

rating holds.

4) The dimension’s weight of importance...ie the degree

to which the dimension contributes to the overall

score of its parent.

5) An optional explanation message. The developer

can write a comment here that will help the end-user

understand what the dimension is measuring.

6) Optional threshold messages. These messages are tied

to a threshold score for the dimension. For example,

the developer can define a reject message that would

appear if the final score for a particular dimension

falls below a specified threshold.

Dimensions are related to each other' in. a jparent-child

relationship (via the parent attribute), producing a

tree-structured hierarchy. A parent dimension’s overall score

is based on a linear weighted sum of the scores of its

children dimensions. Figure 5.3 shows a sample dimension

hierarchy for an International Joint Venture Partner

Evaluation expert system, called PARTNER.

Contextual Questions are multiple-choice questions

designed to establish the weights of importance of various

features (dimensions) based on the context. They serve

essentially the same purpose as Berliner’s state classes. The

contextual questions contain the following attributes:

1) The dimensions (features) to which the question

pertains.

2) The question’s text.

3) A list of multiple-choice answers, and a corresponding

list of weight-adjustment values. Each

weight-adjustment value specifies the direction and

degree to which the chosen answer will change each

167

associated dimension’s weight (via multiplication).

4) An optional explanation message.

During a consultation, the answers that a user gives for

contextual questions will determine the final weights that

each dimension takes on. This process is illustrated in figure

5.4. Contextual questions will be asked before evaluative

questions.

Evaluative Questions CEVED allows the developer to

define multiple-choice evaluative questions which will be

presented to the end user during'alconsultation. Questions are

grouped into question sets. Each question set is associated

with a lowest-level dimension (i.e. a leaf node in the

dimension hierarchy).

An evaluative question contains the following attributes:

(see Figure 5.5)

1) The question text.

2) The question’s weight of importance. This identifies

the degree to which this question contributes to the

overall score of its question set.

3) A list of answers and their corresponding scores.

The answers will be presented to the end user as a

menu to select from during a consultation. Depending

on the answer chosen, its corresponding score will

be assigned to that question.

4) Optional threshold and explanation messages. These are

similar to the messages defined above for dimensions.

{hiring a consultation, The overall score of a question set is

a linear-weighted sum of the questions' weights and their

scores based on user answers during a consultation. This score

‘provides the rating for the question set (leaf-node

dimension), and is propagated upward to contribute to the

scores of the dimension’s ancestors in the dimension

168

hierarchy.

169a

Dimension Name

I Financial Resources 1

Parent Dimension

I Task-Related Criteria l

Ratings Threshold

Weight Vay Good

Good

30°/

° Moderate

Poor

0
8
8
8

Figure 5.2

A sample DIMENSION ENTRY screen in CEVED. Developer uses

this screen to enter dimension’s name, parent, importance level (weight),

ratings, and threshold scores.

I
'
—

;
a
“
r
t

;
]
I
.

W
A

R
5
0
9
”
;

4‘
4
1
'

F
i
n
a
n
c
l
a
l

M
a
r
k
e
t
i
n
g

C
.
.

n
e

..
'I

'
.
h
t
s

|
I
t
t
y

i
C
h
a
r
a
c
t
e
r
l
s
l
i
c
s
:

R
e
r
r
a
b
l
W

[
g
a
l
a
c
t
l
o
n

M
o
u
r
c
e
s

J
R
e
s
o
u
r
c
e
s

J
I

.
_
_
i
i
i
.
—

1
-
l
l
-
.
_
_
l
p

_
_

v
j
»

‘
.
_
.
_
.
i

~
l

.

P
r
o
d
u
c
t
i
o
n

R
5
0
a
n
d

P
l
a
n
t
s
a
n
d

T
e
c
h
n
i
c
a
l

F
i
x
e
d
A
s
s
e
t
s

F
i
g
u
r
e
5
.
3

E
x
a
m
p
l
e
d
i
m
e
n
s
i
o
n
h
i
e
r
a
r
c
h
y
f
o
r
I
n
t
e
r
n
a
t
i
o
n
a
l
P
a
r
t
n
e
r
S
e
l
e
c
t
o
r
m
o
d
u
l
e
.

(
S
o
m
e
r
a
t
i
n
g
s
a
n
d
t
h
r
e
s
h
o
l
d
s
a
r
e
s
h
o
w
n
)

169b

170

CONTEXT QUESTION

How would you rate the relative importance

ofDZVS. 03?

Answers

Aboutthesame

. ---------- DZmoreimportant

Damoreimportant l

-
-
-
-
-
-
.
.
_
.
_
.
_
_
-
—
_
—
4
p
-
-
—
.
—
—
_
-

*2

, . i

2 rte—F .

5W\ .5

02 'D3 3

.3/75 \ 7 .5/7 \\.5

D4 . . 05 , ‘06 ‘ D7 I

DIMENSION

HIERARCHY

Figure 5-4

A hypothetical contextual effect on the default weighting of the dimension hierarchy.

lfanswert ischosen.thereisnoeffect. lfanswerZischosen,thedefauItweight of

02 is doubled. Then. the weights of 02 and 03 are normalized so that their total is

1.0. This results in afinal weight of.67for DZand .33forDa. Answers producesthe

opposite effect as answer a In this way. context questions allow for dynamic weight

alterations during the course of a CEVAL consultation.

171

Recommendation Fragments CEVED allows the developer to

define .recommendation .fragments and. a .recommendation

presentation strategy. Recommendation fragments are linked to

(and triggered by) combinations of dimension ratings. The

recommendation presentation strategy controls the order in

which recommendation fragments appear, and allows some

recommendation fragments to suppress others.

A recommendation fragment includes the following

attributes:

1) The recommendation heading. This is a one-line

description.

2) The recommendation fragment’s presentation conditions.

The condition is made up of a list of dimensions and

their desired ratings. A recommendation fragment will

be presented only if the corresponding dimension's

have the desired ratings.

3) The recommendation fragment’s text.

4) The recommendation fragment's local presentation

strategy. This includes a list of all other

recommendation fragments that this recommendation

fragment suppresses, or prevents from appearing. It

also includes a list of all recommendation fragments

that it is suppressed by. This way, the developer of

a candidate-evaluation knowledge base can prevent

redundant or conflicting recommendation fragments from

appearing together.

CPIIE: global recommendation presentation strategy involves a

recommendation ordering strategy and a recommendation

Su£>pression strategy. The ordering strategy allows the

developer to describe, in general terms, the order in which

1:‘Ecommendation fragments should be presented to the end user

(1‘11?ing a consultation. For example, the developer can specify

that more abstract fragments come before less abstract ones,

(517 that fragments tied to more important dimensions should

172

appear before fragments tied to less important ones. The

suppression strategy’ allows the! developer' to rdefine, in

general terms, which types of recommendation fragments will

prevail if twofortmore redundant or conflicting fragments have

satisfied their presentation conditions.

5.3.2 Candidate EVALuator (CEVAL)

CEVAL is the run-time inference engine that executes the

knowledge bases developed via CEVED. It presents the questions

to the users, inputs their answers, scores and rates the

dimensions of the dimension hierarchy based on these answers,

and presents a final recommendation to the user based on the

dimension ratings and the recommendation presentation

strategy.

CEVAL’s inference behavior can be described as a weighted

depth-first traversal of the dimension hierarchy. First,

contextual questions are asked in order to determine the

weights of the various dimensions in the hierarchy. If the

resulting weight of any dimension is zero, that dimension and

its subtree are pruned from the search, thereby reducing the

number of questions asked. Then the depth-first traversal

takes place, where the most "important" (i.e. high weight)

dimensions are explored first. When a leaf-node dimension (an

evaluative question-set) is reached, the evaluative questions

in that set are presented to the user, and the user’s answers

are input. Then, CEVAL determines the score of the question

173

set via a linear-weighted sum of the questions' weights and

answers’ scores, and propagates the score up the tree to

determine minimum and maximum possible scores for each

ancestor of the question set dimension (see Figure 5.6). If

any dimension’s (or question’s) score falls below (or above)

its quick-reject (or quick-accept) threshold, a message

appears recommending to terminate the evaluation and make a

reject (accept) decision immediately. This is how CEVAL

implements non-compensatory evaluative reasoning.

After propagating the score up the tree, CEVAL attempts

to establish the qualitative rating for the ancestor

dimensions of the question set. If any ratings can be

determined (i.e. if the minimum and maximum scores for a

dimension are within a range that corresponds to a single

rating for that dimension), CEVAL triggers any recommendation

fragments tied to those dimension ratings. Each triggered

recommendation fragment checks its presentation conditions,

and if they are satisfied, the recommendation fragment is

added to a recommendation agenda list. The ordering and

suppression strategies are then used to order and prune the

recommendation list.

After the recommendation fragments have been processed,

CEVAL resumes the traversal of the tree. It continues to do

this until either all the questions have been asked, or enough

questions have been asked to qualitatively rate all the

dimensions deemed relevant by the end user. Then, the

174

Question

LThe production plants of your partner are:]

Question Set Weight

[Production Plam$/Fb<ed Assets]

Answers 300/3

Modern, well maintained. efficient . 100-0

Relaively old. yet well maintained 60.0

Relatively old. not well maintained 20.0

Obsolete, insufficient 0.0

Ih I

Figure 5.5

A sample EVALUATIVE QUESTION ENTRY screen in CEVED. The

developer uses this screen to enter the question’s text, weight, possible

answers and corresponding scores, and the dimension (question set) to

Which the question belongs.

M
a
x
s
c
o
r
e
:

1
0
0

M
i
n
s
c
o
r
e
.
3
0

P
a
fi
n
g
:
U
N
K
N
O
W
N

C
r
i
t
e
r
i
a

1
I
f
f

If
4

M
o
t
i
v
a
t
i
o
n

C
(
X
'
n
p
e
t
a
b
i
l
i
t
y

I
I
C
h
a
r
a
c
t
e
r
i
s
t
i
c
s

P
a
r
t
n
e
r

1
a
s
k

I

R
e
l
a
t
e
d

R
e
l
a
t
e
d

I

C
r
i
t
e
r
i
a

f
”
I

‘7
I

.
-
I
;
I

I
C
f
I

..
.

A
_

4
A

_
,

I
A

7
4

.
.

I
‘

.

I
F
l
n
a
n
c
r
a
l

M
a
r
k
e
t
i
n
g

I
I
P
t
o
d
u
c
t
l
o
n

I
I
R
&
D
a
n
d

I
O
r
g
a
n
i
z
a
t
i
o
n
a
l

R
e
s
o

P
l
a
n
t
s
a
n
d

I
I
T
e
c
h
n
i
c
a
l

I
u
r
c
e
S

I
I
F
i
x
e
d
A
s
s
e
t
s

I
I
R
e
s
o
u
r
c
e
s

I

P
a
n
n
e
r

'
R
e
s
o
u
r
c
e
s

P
r
o
t
e
c
t
l
o
n

l
I

I
R
e
s
o
u
r
c
e
s

I
R
e
l
i
a
b
i
l
i
t
y

I

,
l

F
i
g
u
r
e
5
.
6

A
p
o
s
s
i
b
l
e
s
c
e
n
a
r
i
o
o
f
s
c
o
r
e
p
r
o
p
a
g
a
t
i
o
n
p
a
r
t
w
a
y
t
h
r
o
u
g
h
a

C
E
V
A
L

c
o
n
s
u
l
t
a
t
i
o
n
.
H
e
r
e
t
h
e
u
s
e
r
h
a
s

j
u
s
t
c
o
m
p
l
e
t
e
d
t
h
e
M
o
t
i
v
a
t
i
o
n

p
o
r
t
i
o
n
.
s
c
o
r
i
n
g
1
0
0
%
.
R
a
t
i
n
g

i
s
k
n
o
w
n

f
o
r
M
o
t
i
v
a
t
i
o
n
,
a
n
d
m
a
x
-

a
n
d
m
i
n
—
s
c
o
r
e
s
p
r
o
p
a
g
a
t
e
u
p
t
h
e
t
r
e
e
.
R
a
t
i
n
g
s
a
r
e

s
t
i
l
l
u
n
k
n
o
w
n

a
t
h
i
g
h
e
r
l
e
v
e
l
s
i
n
t
h
e
h
i
e
r
a
r
c
h
y
.

175a

1751:)

/ VervGood--.

l /’
IF—‘I0‘ , Good .

I n < t I Rec #1 \

I W t “\ Moderate
. \ .

. \\
r 4_ I Poor I Suppress

I ' . VeryGood I

I I /./"
I

pm I I Task V Good . r——1 I
I . xf ____‘.

Related I I ““3“” I \\ __________________ Rec #2

Criteria #93?“ I \\\ Moderate I I

I . Poor

r——L—j VeryGood

r 1 I | I ///

, Market I Flnancml II

I ResourcesI ResourcesN

g L l \ ‘~“\ I I

\ Moderate

\ I Rec#3 I

Poor

Figure 5.7

Dimension-ratings and recommendation fragments are linked via

trigger/condition links (dashed lines). Recommendation fragments

may be linked to each other via suppression links. Suppression links

help prevent redundant and/or conflicting recommendation fragments

from appearing in the same recommendation.

176

recommendation fragments that have remained on the

recommendation list are presented to the user based on the

ordering and suppression strategies. Thus, the overall

recommendation is a combination of the recommendation

fragments whose conditions have been met and which have not

been suppressed.

As an example, see Figure 5.7. Assume that the user

obtained‘Very Good for Selection of Partner, Moderate for Task

Related Criteria, and Good for Financial Resources. In this

case, recommendation fragments 1, 2, and 3 all satisfy their

conditions. However, because fragment 2 suppresses fragment 1,

this will cause fragment 1 to be deleted from the final

recommendation fragment list. Also, if the ordering strategy

indicates that highly abstract recommendation fragments appear

after more detailed recommendations, this will cause

recommendation fragment 3 to be displayed before

recommendation fragment 2.

CEVAL allows the user to specify whether or not s/he

wants detailed explanations to appear during the

question-and-answer process, and to determine whether s/he

wants the recommendations to appear after each score

propagation or only at the end of the entire consultation. In

addition, the user can save a consultation for re-running at

a future time, and can save recommendations that result from

these consultations.

177

5.4 A Generic Task Analysis of Candidate Evaluation

Candidate Evaluation, as implemented in CEVED/CEVAL, is

clearly a TSA. But is it a generic task, in Chandrasekaran’s

meaning of the word? I believe the answer is no, primarily

because its structure and reasoning process can be decomposed

intolat least two other generic tasks, structured matching and

abduction.

5.4.1 Structured Hatching and Candidate EValuation

Actually, there are significant differences between the

dimension hierarchy of Candidate Evaluation and the

structured-matching/signature-table hierarchies described in

chapter 2. The main difference is that each node in the

structured-matcher is a truth table mapping specific patterns

of input values onto a specific score (discrete, non-linear

representation), whereas each node in the Candidate Evaluation

dimension hierarchy implements a weighted linear additive

averaging process. Nevertheless, there is significant overlap

in the type of task performed by these two representations.

The purpose of both representations is to evaluate. Both

representations are represented in a tree structure. In both

representations, scores are propagated up the tree.

This again bring to question, what is a generic task? Is

it defined by the broad purpose that is being served? Or does

it also embody the method in which the purpose is achieved? If

the former, than the hierarchical linear model of CEVAL and

178

the truth-table hierarchy of structured matching are merely

alternative implementations of the same generic task. If the

latter, than the hierarchical linear model is indeed a new

generic task, something distinct from structured matching.

In either case, the difference between the hierarchical

linear model and the hierarchical truth. table are very

significant with respect to their implications for knowledge

acquisition. Specifically, the hierarchical linear model is

better for acquiring and representing compensatory decision

rules whereas the truth-table representation is better for

noncompensatory decisionmaking.

Compensatory decision-making can be represented very

naturally’ using the hierarchical linear' models (such as

Berliner’ s SNAC method) because weights of importance for

various attributes can be explicitly represented in the SNAC

architecture. Also, modifying the compensatory evaluative

knowledge of the system is easy with a SNAC-like approach. If

an expert or knowledge engineer decides to change the

importance level of a particular feature, all s/he has to do

is change that feature’s weight value. By contrast, the

signature-table approach (and structured.matching) is awkward

for representing the compensatory rule. The relative

importance of each feature is not explicitly represented, but

rather is implied by the combination of feature values in a

pattern of the truth-table. This makes it difficult for the

Observer to ascertain which attributes are important and which

179

are not. Also, changing the importance level of a single

feature may require making changes to several patterns in a

truth table, creating a maintenance nightmare for knowledge

engineers dealing with large knowledge bases.

The discrete nature of signature tables and structured

matchers makes it easy and natural to represent

non-compensatory evaluative knowledge. Structured matching in

particular allows "quick reject" or "quick accept" parameters

to be evaluated early on, and thereby cut down on unnecessary

computing. By contrast, linear polynomial methods, including

SNAC, are not very good at representing or reasoning via

non-compensatory decision-rules. A continuous representation

is unnecessary for such "threshold" issues. Additionally, the

compensatory nature of weighted scoring makes it difficult to

minimize the number of variables that need to be resolved in

order to make a decision.

Thus, we see that linear models, or variants thereof, are

generally better at representing compensatory evaluative

knowledge whereas truth tables are better for handling

non-compensatory evaluation. The hierarchical linear model of

CEVAL is suited for compensatory but not noncompensatory

decisionmaking. However, noncompensatory decisionmaking is

facilitated through other CEVAL'mechanisms like reject/accept

thresholds. Additionally, the recommendation generation

process can be used to deal with nonlinear combinations of

findings.

180

5.4.2 Abductive Assembly and Candidate EValuation

The recommendation processing of CEVAL is very much like

abductive assembly. It makes sense that this would be the

case, because the entire purpose of the recommendation

fragments are to explain the findings of the dimension

hierarchy. Abduction is first and foremost a means of

explanation, not a deductive process. A comparison of the

CEVAL’s recommendation generating process with PEIRCE’s

abductive assembly algorithm (described in chapter 2) shows

that both perform the same broad steps:

1) Find the "hypotheses" that are consistent with the

findings.

2) Prune out inconsistent or redundant "hypotheses."

Step 1 embodies the same "set-covering" behavior that you

see in all abductive systems. With RED and PEIRCE, this is

done sequentially, based on a request to account for a

specific finding. Steps 1-3 of PEIRCE’s algorithm shows this.

In CEVAL, recommendation fragments are triggered and added to

a list if their preconditionS'match.theIdimension-rating’pairs

in the dimension hierarchy. This can be done if the user wants

to explain a particular finding (dimension—rating), or if the

user wants an overall interpretation performed.

Step 2 is accomplished in RED and PEIRCE by testing the

matching hypotheses (i.e. those that account for desired

finding) against the compatibility constraints. In CEVAL this

181

is accomplished through the use of the suppression strategy,

where certain recommendation fragments can suppress other

ones.

The terminology of abductive assembly has analogies in

CEVAL. "Hypotheses" are the same as recommendation fragments.

A "compound hypothesis" is like a full recommendation in

CEVAL .

5.5 Candidate Evaluation as an Implementation of HAUT

It is obvious that CE draws much of its conceptual

structure from the MAUT model. The idea of the algebraic

weighted model, where different terms reflect different

attributes of the option being judged, comes right out of the

MAUT literature. In addition, the notion that context plays a

role in determining the weight of an attribute is consistent

with the general conjoint measurement approach, in which the

coefficients for the attribute terms are described as

functions and not as constant numeric values, such as what

you’d find in a straight linear model. In this regard, CE

provides the sort of structure required for compensatory

decision-making. Because of the capacity for dynamic,

contextual weight adjustment, CE also deals with the non-

linear MAUT issues cited by Slovic and Lichtenstein (1971),

discussed in chapter 4. Context-based weight adjustment allows

for conditionally' non-monotone (curvilinear) relationship

between input values and output values of the weighted sum

182

model, as well as some forms of configural relationships

(assuming that context questions and evaluative questions are

both considered to be input values).

Non-compensatory decision-making is also implemented in

CE through the use of quick reject (i.e. conjunctive) and

quick accept (i.e. disjunctive) threshold messages. CEVAL can

be instructed to attempt a quick reject (non—compensatory)

evaluation prior to performing an exhaustive, compensatory

analysis. Thus, the: Candidate Evaluation. architecture is

consistent with both the compensatory and non-compensatory

aspects of MAUT theory.

5.6 Knowledge Acquisition for Candidate Evaluation

Knowledge acquisition is the most important, difficult,

and frustrating aspect of expert systems development. As I

argued in chapter 2, this process can be greatly simplified by

the use of task-specific architectures such as Candidate

Evaluation. This is because a TSA provides a knowledge-use

level "language" for implementation and imposes a structure

that forms as a blueprint for the knowledge acquisition

process. In this sense the CEVED/CEVAL tool, like other

generic-task and TSA tools (e.g. CSRL, DSPL, HYPER, etc.) can

be thought of as knowledge acquisition aids as well as expert

system shells.

The idea of using automated and semi-automated techniques

for knowledge acquisition is not new, and has been well

183

documented throughout the history of expert systems. There

have been several manual KA. strategies that have led

different types of computerized KA tools. Some strategies

result in implementations of very general KA interviewing

technique. One example of this is AQUINAS (Boose and Bradshaw,

1987), which implements psychological interviewing methods

such as multidimensional scaling (Butler and Corter, 1986),

and repertory grid analysis and personal construct theory

(Kelly 1955). Other KA strategies involve developing domain-

specific tooLs for obtaining expert knowledge. Examples of

this include OPAL (Musen et al. 1987) for gathering cancer-

therapy knowledge and STUDENT (Gale 1987) for statistical

analysis consultation. A third class of KA strategies is to

develop languages and knowledge structures for describing and

defining ask-specific but domain-independent problem solving

methods. This is the strategy used by Chandrasekaran and his

colleagues, and it is this strategy that CEVAL/CEVED fits

into.

Of course, the first step in the knowledge acquisition

process is to identify the particular task type that is

appropriate for the problem at hand. It would not do to use

CEVED/CEVAL for representing design knowledge, just as it

would be inappropriate to use DSPL for evaluation and

assessment. However, once a problem has been identified as one

for which Candidate Evaluation is an appropriate problem-

solving methodology, the knowledge acquisition process can be

184

structured accordingly.

5.6.1 RA and MAUT Assessment Techniques

Because the Candidate Evaluation task is grounded so

firmly in the tradition of MAUT and linear models, it is

useful to review the methods that decision analysts use to

acquire and.fit knowledge to the MAUT format. These assessment

procedures are used for both descriptive (empirical) and

normative (advisory) purposes.

Edwards and Newman (1982) identified the major assessment

tasks in the MAUT evaluation process as:

1)

2)

3)

4)

5)

6)

7)

Identifying the entities being evaluated

Identifying the stakeholders (i.e. the evaluators)

This is equivalent to identifying the "experts" in

an expert systems design process.

Elicit from the stakeholders the important attributes

(dimensions), and organize them into a hierarchy.

Edwards and Newman call this a value tree. In

CEVED/CEVAL terminology it is called a dimension

hierarchy.

Assess for each stakeholder the relative importance of

the attributes. (get the weights).

Ascertain how well each evaluated entity performs in

the various dimensions at the lowest levels of the

value tree. Edwards and Newman calls these lowest

level nodes "location measures". They correspond to

the evaluative questions of the Candidate Evaluation

architecture.

Aggregate location measures with measures of

importance. This is equivalent to the "score

propagation" phase of the CEVAL inference process.

Perform sensitivity analysis by varying the weights

and location measures.

From the perspective of expert systems design, it is

really steps 2 through 4 that are knowledge acquisition steps.

Steps 1, 5, and 6 are actually performance steps of a CEVAL

185

expert system. Step 7 may be considered an expert-system

validation step. In this sense, the term "MAUT assessment"

really refers to knowledge acquisition, knowledge

representation, and actual performance of the system.

Because CEVED/CEVAL also includes explanation and

recommendation facilities, which are not part of the MAUT

model, there are additional aspects to KA for CEVED/CEVAL that

would not be accounted for in Edwards and Newman’ s MAUT

assessment procedures. Therefore, the following sections,

which describe knowledge acquisition for Candidate Evaluation,

will include both MAUT-based processes and non—MAUT aspects.

5.6.2 Identifying the EXperts (or I'Stakeholders")

Of course, identifying and enlisting help from the domain

experts is a key aspect of the KA process. The idea of domain

expert (from the AI terminology) is related to but somewhat

distinct from the idea of stakeholder (in Edwards and.Newman’s

HAU Technology). Domain experts are people whose knowledge and

experience are being captured into the expert system. In many

cases, these people will not be the final users of the system.

Indeed, it is often the case that the domain expert is or will

be unavailable for consultation (for example, s/he may be

retiring from the job), and this unavailability is the prime

motivator for capturing the knowledge into an expert system.

In this sense, the domain expert may not have a stake in the

final outcome of the system, other than personal satisfaction.

186

By’contrastq a stakeholder'is an actual decision-maker or

at least someone who will be directly affected by the

decisions made (Edwards and Newman 1982, pp. 33-34). These

people have much more of a stake in the outcome of the

decisions being generated by an expert system. They may also

be domain experts, in that they know which criteria are

important, in the' decision-making process. (Note: in ‘the

following sections I will use the terms "expert",

"stakeholder", and "evaluator" interchangeably. This is not to

imply that all stakeholders or evaluators are necessarily

experts in the domain in question. Instead, this

interchangeable use of terminology is done to draw analogies

between the activities described in Edwards and Newman's MAUT

methodology and the activities done in many knowledge

acquisition techniques).

5.6.3 Identifying and Structuring the Hajor Criteria

(Dimensions)

Edwards and Newman suggest the following guidelines in

establishing the dimension hierarchy (or value tree):

From each stakeholder, obtain an exhaustive list of all

the criteria (or attributes) that they think are important in

the evaluation and decision process. It.is probable that.there

will be some overlap in the criteria given by the various

stakeholders, but there will also be considerable deviations.

From these lists, it is often the case that some

187

attributes are actually important for the evaluation process

and others are merely topics of interest. For the MAUT and CE

models, it is important to separate the attributes that are

critical for evaluation from the non-evaluative attributes.

Often, the distinction between attributes given by

various stakeholders reflect differences in terminology, and

not meaningful semantic differences. Thus, it is useful to

explicitly define each attribute and to standardize

terminology in order to avoid "distinctions without a

difference."

Group the attributes into common categories, and then

group the categories into super-categories, etc. The idea here

is to place similar concepts together so that explanations

that are generated by the expert system can be made at

abstract, summary levels, as well as more detailed level.

5.6.4 Identifying and Scaling the Indicator variables

(EValuative Questions)

Edwards and Newman’s term for indicator variable is

location measure. They define location measure as "an

assessment of how desirable an option is with respect to a

particular twig or bottom node of a value tree (1982, p.65)."

Thus, location measure is an expression of the utility of a

particular candidate for a particular low-level attribute.

Edwards and Newman distinguish between two types of

location measures. The first is an arithmetic transformation

188

of objective measures and the second is an arithmetic

transformation of impressionistic judgements. CEVAL’s

architecture allows for both types of transformations, with

the caveat that both the objective measure and the

impressionistic judgement must be from a discrete and finite

list of possible values. Currently, CEVAL.has no mechanism for

providing a continuous function mapping input values to scores

or location measures. Therefore, if an input value comes from

a continuous space, that space must be partitioned by the

expert into ranges before a location measure is established.

The location measure must be a discrete mapping from an input

value to a score between 0 and 100. In this sense, the utility

assessment done by CEVAL is incomplete with respect to MAUT,

which allows for utilities to be calculated via continuous

functions as well as discrete mappings.

In addition to identification of location measures

(evaluative questions) and assignment of numeric scores based

on input values, Candidate Evaluation requires the expert to

establish threshold values for score-to-rating

transformations. This is a requirement that goes beyond the

standard MAUT model, because it involves assigning qualitative

interpretations of the quantitative results. The expert must

be careful about assigning verbal ratings to scores, since

this assignment may lead.to the boundary problem.identified.by

Berliner and Ackley (1982) and discussed in chapter 4.

Page (1977) suggested a technique to establish thresholds

189

("cutpoints" in his terminology) for transforming a continuous

input space to a discrete output space. He was using signature

tables as a pattern recognition heuristic. The use of a

signature table representation requires discrete variables, as

discussed in chapter 4 of this thesis. However, many of the

actual data types for input variables in his system were

continuous in nature. Page’s approach was to develop a

computer program that would choose threshold values that

maximize correct-prediction rates and maximize

discriminability of candidates. This method requires a

significant number of training samples to be input to the

system, and is a "machine-learning" approach to threshold

determination. Actual training samples are often not available

when developing expert systems, so experts are forced to make

a best guess at establishing threshold values. However,

hypothetical training samples could be provided via Monte

Carlo analysis. Such a facility could be provided to enhance

the knowledge acquisition capabilities of CEVED. Chapter 8

discusses this as a potential future area of research.

5. 6 .5 Weight Assessment (default weights and contextual

factors)

Assessing the weights of importance of each of the

criteria (dimensions) and indicator variables (evaluative

questions) is one of the most important aspects of the

knowledge acquisition process. One possibility is to use

190

standard regression analysis with many training samples to

arrive at these weights statistically. However, as discussed

earlier, such "proper" linear models are often impossible to

obtain because of the subjective nature of the criteria in

question, the paucity of samples, and the possibility of

colinearity of the criteria and indicator variables. Thus, the

weights usually must be obtained from expert knowledge.

MAUT analysts have identified several methods of

obtaining'suchnweights. Edwards and Newman (1982) for'example,

described three such methods:

- using equal or unit weights

- determining weights from ranking

- ratio weighting

At first glance, the use of equal or unit weights would

seem ridiculous. Surely not all attributes are equally

important in most multiple-criteria evaluation situations.

However Dawes (1979) pointed out that even unit weighting of

variables can often produce "adequate" predictive results. In

addition, as Edwards and Newman (1982, p.53) say, assigning

unit weights is the simplest way to go, especially if there

are multiple experts (or stakeholders) with widely variant

opinions about the relative importance of the different

evaluation criteria.

Nevertheless, in order to approach optimality of the

evaluation process, some sort of differential weighting is

called for. One way to do this is to ask the expert (or

191

stakeholder) to rank the criteria from most important to least

important. This ranking could include assignment of weights

to the rank-ordered criteria, which may be ordinal (simple

ranking) or ratio (ratio ranking).

If there are multiple stakeholders involved, this brings

into play the issues of voting method discussed in chapter 4.

Note ‘that assigning *weights to :rank-ordered. criteria is

analogous to assigning points to rank-ordered alternatives in

a Borda Count voting method. Establishment of weights via

ranking of criteria will be fairly complicated in multiple-

expert situations, but could be facilitated through the use of

these voting methods. Delphi studies are another way of

establishing dimensions weights from multiple experts. Thus,

in terms of the Candidate Evaluation architecture, Borda Count

and Delphi studies could be incorporated as a multiple-expert

knowledge acquisition technique. For each higher-level

dimension, the experts could. be asked. to rank-list its

subdimensions in order of perceived importance. Borda Count

vote tallies could then be used to ascertain final weights. By

combining the Borda Count method with ratio ranking, the KA

process could also establish wide or narrow differences in

importance levels. The same method could also be incorporated

to establish weights of evaluative questions for a lowest-

level dimension (a question set).

CEVED does not currently implement any of these

techniques for weight assessment. It is merely a passive

192

recipient of expert-supplied weights in the sense that it asks

the expert to assign weights to the various dimensions (or

evaluative questions) and displays the list of dimension-

weights so the expert can verify the distribution. In this

regard, it is more similar to the generic task tools of

Chandrasekaran's group than to the more active knowledge

acquisition tools developed at other centers. As I discuss in

chapter 8, the use of rank.voting methods, delphi studies, and

linear regression models could enhance the knowledge

acquisition facilities in CEVED.

5.6.6 Interpretation Assessment (Recommendation.Fragments)

This aspect of CE diverges from the strict MAUT decision-

analysis model, because it pertains to explanation and

interpretation of the final results. Here, we leave the realm

of decision theory and enter the realm of expert systems and

AI, particularly with respect to explanation of reasoning.

As described earlier, the final verbal interpretation of

a candidate’s evaluation is constructed from a set of

recommendation fragments, each of which is a body of text that

will be displayed if its associated conditions are met.

Also mentioned is the fact the maximum possible number of

recommendation fragments is exponential with respect to the

number of dimensions or attributes in a CEVAL model. Thus, it

is important to use common sense when deciding just which

combinations of dimension—ratings are relevant for the

193

particular problem at hand. Recommendation fragments should

only be generated if they are important for the evaluation

process.

A good guideline in this process is to create a

recommendation fragment for each individual dimension-rating.

Each of these initial recommendation fragments will have a

single condition in its "if" clause. Thus, the system will be

guaranteed to present a statement for each factor of the

evaluation process. It also ensures computational

tractability, since the number of these initial recommendation

fragments will be equal to the product of the number of

dimensions times the number of ratings, which is of polynomial

complexity.

After creating these initial recommendation fragments,

the next step is to identify the relevant nonlinear

combinations of dimension-ratings and create recommendation

fragments to deal with these nonlinear combinations. The key

here is to keep the number of "combination" recommendation

fragments to a manageable level. This avoids the computational

complexity problems that could arise if recommendation

fragments are created for all possible combinations of

dimension-ratings.

Keep in mind that the purpose of the recommendation

fragments is to provide an explanation, a verbal

interpretation, of the evaluation results. This interpretation

should be comprehensive enough to reflect all important

194

components of the findings. However, it should not be so

exhaustive as to result in overly redundant, lengthy, and

cumbersome explanations.

5.7 Validation and Verification of CE Expert Systems

This section presents some of the issues that should be

considered when testing and validating the expert systems that

are generated via the CEVED/CEVAL process. In addition, it

suggests a multiple-criteria methodology for such testing,

using a weighted-scoring method similar to that used by CORE

and CEVAL applications themselves.

Gaschnig et al. (1983) identified four principles for

evaluation of expert systems:

1) Complex objects or processes cannot be evaluated

by a single criterion or number.

2) The larger’ the number' of distinct. criteria

evaluated, the more information will be available

on which to base an overall evaluation.

3) People will disagree on the relative

significance of various criteria, according to

their respective interests.

4) Anything can be measured experimentally as long

as exactly how to take the measurements is clearly

defined.

The implications of these four principles are: that a

multi-criteria approach is appropriate for validating expert

systems (based on 1 and 2); that a validation method should

include a flexible weighting scheme (based on 3); and that a

formal, systematic method should be developed (based on 4).

Interestingly enough, these implications by themselves

validate the candidate evaluation architecture as a general

195

evaluative method, which is based precisely on multiple-

criteria, flexible-weighting measurement.

5.7.1 What should be measured?

Gaschnig et al. also identified several characteristics

of an expert system that the validation/evaluation process

should measure. Below, I discuss these characteristics as they

relate to the Candidate Evaluation architecture.

5.7.1.1 The quality of the decision and advice.

In an ideal world, this would involve measuring

correctness against an objective standard. However, for most

expert systems domains, particularly in international

marketing, the output of the expert system is qualitative and

judgmental. It is difficult to establish correctness in an

absolute sense. Thus, Gaschnig argued that the decision/advice

of the ES should be measured against decisions that human

experts would give based on the same information input.

For CEVAL expert systems, the decisions and advice takes

on two forms:

1) A list of scores (0 - 100) and qualitative ratings

(e.g. excellent, fair, poor, etc.) of the various dimensions

(i.e. aggregate features) of the candidates.

2) A verbal, essay-like, assessment of the candidate’s

evaluation, in the form of recommendations, identifying

strengths and weaknesses of the candidate and suggesting a

196

course of action to take.

5.7.1.2 The correctness of the reasoning techniques.

Because of the subjective nature of the advice generated

by the expert systems, it is essential that its reasoning

methods and problem—solving behavior be validated as well as

the output" InLCEVAL’s case, the reasoning method includes the

following characteristics:

1) The structure and content of the dimension hierarchy.

Are all the relevant features for evaluation included? Are

they arranged correctly?

2) The quality of the evaluative and contextual

questions. Are the right questions being asked. Is there any

redundancy? Are any important questions missing? Does each

question have a complete list of multiple-choice answers?

3) The weighting scheme. This is probably the most

important factor. Is the importance of the various dimensions

and/or questions being assessed correctly?

4) The scoring scheme. Are the correct scores being

assigned to each question?

5) The appropriateness of using a hierarchical, weighted

scoring technique in the first place. In other words, is CEVAL

the correct tool to use for the application?

5.7.1.3 The quality of the human-computer interaction.

Here, we are concerned with issues such as the

197

explanatory power of the system and the specific wording of

the questions and recommendations. We are also concerned here

with the ease of use of the CEVAL program itself.

5.7.1.4 The efficiency of the system.

How much of a time commitment is required of the user?

Are irrelevant and unnecessary questions being skipped? Is the

system taking up too much disk space or CPU time?

This is not as important of a criteria as the first

three. Most CEVAL expert systems do not require massive

amounts of user time commitment...they all involve 30—60

questions that the user must answer.

5.7.1.5 The effectiveness of the system.

This involve issues about the results of going through

the expert systems. In other words, what tangible benefits did

the users actually gain? In what ways did the expert system

improve the users’ understanding of the problem and/or the

decisions that the users made? How much money did the expert

system save? Such questions will usually require long-term

study and may not be feasible for alpha testing.

5.7.2 HOV should measurement be done?

Gaschnig et al. gave four suggestions about evaluation

methodology that are relevant for Candidate Evaluation:

1) Compare the results of the ES against the results of

198

human experts given the same input. The method suggested is to

giveza1number of questionnaire results (i.e. questions and.the

answers given to those questions) to a number of experts and

obtain their results. Experts would be asked to provide these

results in the form of scores/ratings for dimensions and

verbal assessment/evaluation. Then, the experts’ results to

the would be compared to results obtained from the expert

system.

Note that obtaining results from actual experts would be

useful for more than just comparison against the ES results.

Expert results could also be used to validate weighting

schemes. When a sufficient number of test samples are

generated, a linear regression analysis can be performed,

based on the final scores that the experts produce, to infer

what weights should be.

2) Use blinding techniques to avoid bias in the

evaluation. The researchers who do the comparison of results

obtained from (1) should not know whether they are looking at

the expert system results or the expert results.

3) Use a sequential process of validation. In other

words, one study should validate the results of the system.

Another, separate study should test the reasoning process.

Still a third should measure the human-computer interaction.

This way, the validators will know precisely what is the

source of inadequacy when and if we find flaws in the system.

4) Use sensitivity analysis. The robustness of a system

199

requires that small changes in user input and/or weighting

should not cause massive changes in output. The researchers of

HYCIN used this technique to validate their certainty factors.

Sensitivity analysis could be implemented by doing a monte-

carlo study. This study would not require actual

users...instead sample cases could be randomly generated.

5.7.3 Testing Methodology for Candidate Evaluation Expert

system

This section presents a task breakdown describing the

method currently being used for validating the Candidate

Evaluation expert system modules. This general methodology

attacks three main.aspects of the expert systems: its semantic

content and verbiage, its validity in dealing with actual test

cases, and its ease of use.

5.7.3.1 Review of semantic content of expert systems.

Here, the expert reviews the semantic content of the

knowledge base, and suggests refinements. Specific attention

is focussed on the following:

a) Assessment of verbiage (qualitative information).

Each evaluative question, including the question, its answers,

and its explanation is reviewed. Then, each dimension’s

explanation, and finally, each recommendation fragment is

reviewed.

b) Assessment of weights, scores, rating thresholds

200

(quantitative information).

5.7.3.2 Experiment based on Sample Cases

The structure of the experiment involves the following

steps:

a) Create several sample sessions ("hypothetical

candidates"). Each one is a series of answers to the

questions. There should be some "excellent", some "good", some

"poor", etc. Some should be strong in some areas and weak in

others.

b) Present the questionnaires and answers for a sample

candidate to each expert. Have the experts score and rate the

candidate on each dimension, including an overall score and

rating. Scores are between 0 and 100. Ratings must be using

the rating terminology used in the CEVAL application.

c) Using a linear regression statistical method (via SPSS

or SAS), get the weights of each of the questions. These

empirically derived weights will be compared against the

weights in the expert systems module itself. This is done to

verify the weights assigned in the expert system. In the

absence of a sufficient number of cases, a delphi study would

replace the linear regression analysis.

d) Compare scores and ratings given by experts against

scores and ratings given by expert system, using a similarity

measure (e.g. percent.difference:in.score, ordinal distance in

rating). This will be done to verify the scores and rating

201

thresholds assigned in the expert system.

e) Using audiotaped interview (or perhaps a written

form), ask expert to give a verbal interpretation of results,

and recommendation about the candidate being evaluated. In

this interview (or written form), ask the expert which factors

influenced each of the interpretations given. This will be

compared with, and be used to validate, the verbal

recommendations given by the expert system.

f) Ask the expert to rank-order the sample cases

(candidates) in order of preference. This rank order can be

compared with the ranking established by CEVAL. If multiple

experts are used, the group's final rank order can be

established via Borda Count voting, as discussed in chapter 4.

5.8 Conclusions: Strengths and Weaknesses of CEVED/CEVAL

As mentioned earlier, one strength of the CEVED/CEVAL

shell is its ease of use for non-programming domain experts.

At Michigan State University’s Center for International

Business Education and Research (CIBER), we have found that

development of expert systems is greatly facilitated by the

use of this and other TSA-oriented shells. Our use of TSAs

speed up knowledge acquisition and expert systems development

because the domain expert is directly involved in encoding his

or her knowledge on the computer. Figure 5.1 illustrates how

the domain expert interacts with CEVED to encode his or her

knowledge.

202

Another strength is that explanation in CEVAL is

expressed in terms of the evaluation task, making it easier

for the end-user to comprehend. When a user asks why a

particular recommendation is given, the system responds by

indicating the score/rating of the dimension(s) that resulted

in the recommendation. The user can then get further

information about the subdimensions and/or questions that led

to that score/rating. Also, the user is shown how important

the various dimensions and questions are, and how these

importance levels were obtained. Thus, the structure of the

candidate evaluation architecture causes explanations that are

expressed in terms of evaluative reasoning, rather than in

terms of rule-tracing as you find in general-purpose shells.

The above two strengths are due to the task-specific

nature of the shell. However, task-specificity also leads to

lack of flexibility. Obviously, not all tasks are evaluative

in nature. CEVED/CEVAL cannot handle non-evaluative tasks.

Other shells would be needed.

The reader may notice that the imposition of multiple-

choice answers causes the system to be noncontinuous. In fact,

the boundary problem cited by Berliner and Ackley (see above)

is not solved using this tool. However, the fragility problem

is solved because of the use of a weighted scoring scheme. In

addition, despite the lack.of "true continuity", there are two

characteristics of the CE architecture that give it a "pseudo-

continuous" flavor. First, the mapping of answers to scores

203

allows for ratio representation, not merely nominal or

ordinal. Second, contextual weight adjustment significantly

increases the number of possible points in the evaluation

space.

Another' weakness in the current CEVED ‘tool is its

passivity as a knowledge acquisition devise. As stated

earlier, CEVED in its current form is merely a shell on which

to create evaluative knowledge bases. It. does not flag

inconsistencies entered by the developer, nor does it

implement any of the multiple-expert voting techniques

described in chapter 4. For CEVED to be considered a true

knowledge acquisition tool, it should be extended to

incorporate some of these capabilities.

The next chapter deals with application of the Candidate

Evaluation architecture to problems in the international

marketing domain.

CHAPTER 6

ISSUES IN INTERNATIONAL MARKETING

In recent years, there has been much research and some

development in the area of expert systems for marketing

applications (Rangaswami et a1. 1987). The specific

applications have included areas such as contract negotiation

(Rangaswami et al. 1989) and export-readiness assessment

(Cavusgil and Nason 1990). Most marketing expert systems have

not dealt specifically with international and global aspects

of marketing, although this trend is starting to change.

There are many decisions a manager must make when dealing

with internationalization of his or her marketing operations.

Major strategic issues involve "where to market" and "how to

market". The "where to market" issue involves selecting the

best countries and/or regions to concentrate on. The "how to

market" issue involves selecting the best mode of entry: that

is, whether to export, license, franchise, set up a foreign

manufacturing facility, or a myriad of other options. Often

the "where" and "how" issues are dependent on each other. For

example, if exporting, one needs to be cautious of countries

with high tariff levels. Conversely, if one wants to market in

a.high-tariff country, the entry mode chosen should usually be

something other than export.

In addition to these broad strategic issues, there are

many day-to-day operational decisions that international

marketers must face, such as: selection of distribution

204

205

channels: evaluation and selection of distributors, freight

forwarders, or joint venture partners: evaluation of

expatriate personnel and foreign subsidiaries: adapting

products to meet foreign demand: and construction of legal

agreements. All of these decisions can be aided through the

use of expert systems.

This chapter takes a closer look at some of the issues

described above.

6.1 Selection of Foreign Markets

Managers who wish to develop a comprehensive plan for

foreign market entry face the question "Where do we want to

go?" The real issue here is for a company to assess the

market potential of candidate countries in terms of the

company’s product or service, the company’s desired mode of

entry, and the political, economic, commercial and cultural

factors in the country itself.

6.1.1 Stages of Country Selection

Cavusgil (1985) suggested a three-stage, sequential

process of country selection, outlined below:

1) Preliminary screening

2) Industry market potential analysis

3) Company sales potential analysis

Stage one involves assessment of the physical, political,

economic, and cultural environment. Physical/demographic

206

factors include population size and distribution, climate,

availability of natural resources, and physical distribution

and communications networks. Political factors include system

of government, ideology, political stability, government

involvement in trade affairs, and government-imposed

restrictions such as tariffs and non-tariff barriers. Economic

factors include GNP, overall level of development, currency

issues, inflation, unemployment, per-capita income, and

balance of payments. Cultural issues include literacy and

education levels, existence of a middle class, language,

religion, and ethnicity. All of these factors can be

considered macro-indicators, in that they are not industry-

specific but rather involve the overall market climate in the

country. Countries that perform poorly in these criteria

should be disqualified, particularly if the company is rather

new in the globalization process. Companies with extensive

international experience may still want to consider such

countries if they are willing to take a risk.

Stage 2 involves an industry-specific analysis of market

access, product potential and local distribution and

production issues. Market access issues include further

analysis of tariff and non-tariff barriers such as standards,

quotas, documentation and.import regulations, as well as legal

issues involving intellectual property protection, investment,

employment, and repatriation. Product potential issues include

customer demand, attitudes toward foreign-origin products,

207

competition, exposure to the product. Distribution and

production issues include availability of intermediaries

(distributors, agents, etc.) transportation facilities, and

manpower availability. Thus, stage 2 involves issues that are

specific to the company’s particular industry. Such analysis

is difficult and time-consuming, which is why many countries

should have been weeded out in stage 1.

Stage 3 involves a detailed company profitability

analysis. Issues here include sales volume forecasting, landed

cost analysis, internal distribution costs, and pricing. This

is a very intensive process, and should be applied only to a

very few' potential countries. As Cavusgil (1985) notes,

"...Much of the information needed for the first and second

stage of opportunity analysis can be gathered through desk

research....In contrast, estimating company sales and

profitability often requires field research. (p.31)". Thus, it

is important to have weeded out the less promising markets

earlier on in the screening process. Cavusgil’s statement

supports the idea of using expert systems technology to aid in

steps 1 and 2 of market selection. Desk research usually

involves gathering information.frommgovernment, industry, and

academic publications, sifting through and sorting the data,

and using the data to evaluate potential target markets

according to the macro- and micro-indicators mentioned above.

Chapter 7 of this thesis describes a computer program using

database and AI technologies for aiding in performing these

208

data-collection and evaluation tasks.

6.1.2 Regression-based Mbdel for Country Evaluation

Root (1982) discussed similar stages and criteria in the

selection of foreign markets as those used by Cavusgil. He

also espoused the notion of using a weighted-averaging scoring

model as accept/reject decision rules in the screening

process. As an example, for assessing industry market

potential for television sets, he suggested the following.

First, identify population-based predictor variables such as

literacy level, urban population density, per-capita income,

standard-of—living index, number of households, etc. Then, use

regression analysis of historical sales of television sets in

order to obtain the coefficients (weights) for each of these

variables. Finally, evaluate the potential market with the

weights obtained through the regression analysis. Note that

this is a prime example of the proper linear models espoused

by Dawes and described in chapter 4 of this thesis. This use

of a weighted averaging scoring process based on a regression

formula lends credence to the potential usefulness of the

Candidate Evaluation architecture or a similar MAUT-based

approach for target-market evaluation and selection.

6.1.3 Providing Market Research Information and Evaluation

Much market research information can be found in

databases, government documents, and industry publications.

209

For example, the U.S. Department of Commerce publishes annual

reports, called Country Market Plans, on 60 countries. In

these reports, they’ assess the leconomic, political, and

commercial environment, including many of the issues described

above. Industry-specific information can be obtained via

D.O.C.'s Industry Sector Analysis reports as well as industry

publications from Dun and Bradstreet, Price Waterhouse, and

other firms. Much of this information has been electronically

captured on databases such as D.O.C.’s National Trade Data

Bank (NTDB) and Intellitrade Corp.’s Intellibanc.

However, to date there has been little effort to

systematically catalog the information according to the

features described by Cavusgil, nor to develop databases that

give explicit evaluations of a country’s performance in the

various features via MAUT methods as Root suggests. It is

precisely this sort of information-structure and judgement

facility that is needed if country selection is to be

automated in a decision support tool. In Chapter 7 I will

discuss a database that combines a semantic network indexing

scheme with a MAUT evaluation methodology to provide

judgements and evaluations about countries based on

information found in the publications mentioned above.

6.2 Selection of Entry Mbdes

In this section, I identify some major issues faced by

managers and. researchers as they attempt. to answer ‘the

210

question "How should we enter the target market?". In

addition, I will propose a computational framework for

answering this question, and compare it to other computational

approaches that have been used for this and other

decision-related problems. Thus, my discussion of the

market-entry issue will be from the perspective of a knowledge

engineer who is interested in representing the "how to enter"

question in a computerized, expert-system model.

Two major issues in research of entry-mode selection

involve classification of the factors involved in selecting

entry modes and classification of the entry modes themselves.

These issues are particularly pertinent in the context of

expert systems development because, as we will see, the

factors form the input to the expert system, and the chosen

modes form the output. Thus, the way that we represent the

factors and the modes will have a significant impact on the

way we design the expert system, and on the way that the

system performs its selection task.

In the topics that follow, I will first discuss the

factors that go into selecting entry modes. Then I will

discuss different methods for classifying the entry modes

themselves. Following this, I will discuss the implications

these classification schemes have for the type of knowledge

representation most appropriate for expert systems development

in this domain. Then I will compare and contrast some existing

models from the marketing literature in terms of their

211

knowledge representation frameworks. Finally, I

will propose a computational method for answering the "how to

enter" question and suggest other ways that computer science

can contribute toward solving this problem.

6.2.1 Factors Involved in Selecting Entry Modes

Much research has been devoted to identifying and

categorizing the factors that go into selecting modes.of entry

into target markets. Goodnow (1985) summarized several

theories pertaining to this issue. Such theories include: the

theory of comparative costs and relative factor proportions

(Ohlin 1983): theories based on value-added-chain

considerations (Kogut 1984, Porter 1985); industrial

structure theories (Knickerbocker 1973): desire-for-control

theories (Rugman 1979); and theories pertaining to political,

economic, and cultural factors in the target markets (Goodnow

and Hansz 1972).

These theories typically concentrate on a single factor

and attempt to explain how that factor influences the

decision-making processes of managers as they explore their

market entry options. However, a useful expert system for

entry-mode selection must take many factors into account

before making a recommendation. It must be able to identify

the relative importance of each of the factors, based on the

needs of the company and the circumstances of the market. It

must also be able to represent how the factors interact with

212

one another and how they may compensate for each other as

circumstances change. In more recent years, Goodnow (1985),

Cavusgil (1981), and others have explored combinations of

factors in terms of their influence on the choice of entry

modes. These "eclectic" theories are in an early stage, and

there needs to be more empirical research done to test them.

However, they form the basis for the models that will be

discussed in this paper.

Factors influencing entry have been classified by several

authors. Root (1982) and Goodnow (1985) both divided these

factors into two main categories, internal and external.

Internal factors are those features of the company and its

product that can influence the choice of entry mode. These

include: characteristics of the product itself (bulk and

weight, ease of use, price, service requirements, etc.);

characteristics of the corporate strengths and competitiveness

of the organization (corporate size, management experience,

financial flexibility, etc.); and characteristics of the

corporate policies and desires of the organization (level of

commitment, desired payback period, willingness to take risks,

degree of control desired).

External factors influencing choice of entry mode

include: factors in the target market (political, social,

economic, and cultural environment, market opportunity and

demand for the product, government policies regarding foreign

entry, physical and distribution infrastructure, etc.); and

213

factors in the home country (government policies toward

export, market saturation of the product, demand at home,

etc.).

The factors involved can be classified in a

tree-structured hierarchy (see figure 6.1). Note that this

hierarchy enables the expert system to represent factors at

various levels of abstraction. This has important consequences

for the explanatory power of the system. An expert system

should be able to explain its reasoning at a general level,

and if required, at more detailed levels. Hierarchical

representations of the input factors provide a framework for

doing this.

Two major issues involving the factors are: first, what

are the relative importance levels of each of the factors as

they pertain to the choice of entry mode; and second, how do

the factors interact with each other in influencing the choice

of entry mode? It appears that more research has been devoted

to the first question than to the second, although my study of

5
0
3
3
/
M
a
d
e

F
a
c
i
a
l
s

/

m
f
e
m
a
/
F
a
d
e
/
3

/

/
\
C
o
r

c
r
a
t
e

m
o
i
/
c
t

-
-

@
9
5
3
”

.
9
P
0
m
e
s

E
n
e
m
a
/
F
a
c
i
a
l
s

S
/
z
e
/

f
e
c
fl
n
o
/
O
g
/
b
a
/
/
/

\
h
g
m
e

f
a
r
g
e
r
/

M
a
r
k
e
t

0
0
m
m

5
7
3
/

\
\
\
0
0
5

P
r
o
d
/
m
e
n
/
/
\

E
.

n
V
/
r
o
n
m
e
n

6
o
n
e
m
m
e
n
t

C
o
m
m
e
r
a
e
/

G
o
v
e
r
n
m
e
n
t

£
5
,
3
3
7
,
5
3
0
;

'
P
o
/
I
b
/
e
s

5
’
7
"
T
O
/
7
0
7
9
0
1

P
o
k
e
/
e
9
C
U
M
/
r
a
i
l

P
o
/
I
i
'
l
b
a
/

E
n
w
‘
r
o
/
I
m
e
n
t

214

F
i
g
u
r
e
6
.
1

F
a
c
t
o
r
s
i
n
fl
u
e
n
c
i
n
g
t
h
e
c
h
o
i
c
e
o
f
E
n
t
r
y
M
o
d
e

215

the literature is certainly incomplete in this regard. Note

that which issue we focus on will have a profound impact on

how we represent the knowledge that goes into the expert

system: more about this later.

6.2.2 Classification of Entry MOdes

Throughout the literature, there seems to be two main

ways of characterizing and classifying the various modes of

entry that a company can use in international marketing. The

first classification scheme is a descriptive taxonomic

approach, which divides entry modes into three main

categories: export. modes, contractual. modes, and. foreign

direct investment modes (Root 1982, p.7). The second approach

uses a continuum of modes, usually based on the degree of

commitment, control, and/or risk involved in utilizing each.of

these modes (Goodnow 1985). Closely related to the second

approach is one in which the entry modes used are associated

with the "stage of internationalization" that a company is in

(Root 1982). As a company becomes more experienced in the

internationalization process, it will be more willing to

devote resources to that effort and to take the risks needed

for successful market entry.

The descriptive taxonomic approach is based on

characteristics of the modes themselves (see figure 6.2). For

example, the top-level tier of the hierarchy consists of

exports, contractual.modes, and.investment modes. Export modes

1/1 I

216

all involve a home-based production process coupled with some

form of marketing effort in the target country. The marketing

effort may be done by the company itself

(branch or subsidiary), by a distributor or agent in the

foreign market, or by a trading house or agent in the host

country.

Contractual modes all involve non-equity associations for

transfer of technology, knowledge, or other intangible

benefits of the company. This can involve licensing,

franchising, manufacturing contracts, management contracts,

etc. Foreign direct investment involves some form of direct

ownershipiof a production process that would take place in the

target country.

The continuum of commitment approach to entry-mode

classification is based on the level of effort and resource

commitment required, and control retained, when implementing

a given entry mode. For example, modes such as indirect export

and licensing require little effort, but also exact a cost of

losing control over the process. Modes such as

subsidiary-based export or wholly-owned

manufacturingfacilities involve much effort and commitment,

but also allow the company to retain control over the process.

The method used for classifying entry' modes is an

important issue in developing decision support and expert

systems to help managers select from among the possible entry

modes available to them. The type of classification scheme has

217

//510/Madx\

’
mves'rmenr

Moves
Manes -

/ \

/ \ S“? t ”7’
mm Bram/7 ' Va m"? 509 “9””?

. Cometua/ New Venture

W W Manes
AW / \ mm

06m: / \
I: 0 -

‘\

/ Tumkey

Fame/fig Contract

Service Contract

Contract

Figure 6.2

A descriptive taxonomy of Entry Modes

(irom Root)

218

a direct impact on how'the knowledge is acquired, represented,

and used.

The taxonomic approach is useful as a descriptive

framework. However, attempts to implement the descriptive

taxonomy as a decision tree for an expert system will present

problems. The taxonomic hierarchy may not be the best-suited

representation for making entry—mode selection decisions.

There are several reasons for this.

The first problem is one of fuzzy classification. For

example, is a joint venture a contractual mode or an

investment mode? Root classifies it as an investment mode.

However, Casson (1987) describes it as a contractual mode.

Obviously, it includes characteristics of both modes, and

therefore does not fit cleanly in a particular spot of the

taxonomy. Another example of fuzzy classification is a foreign

subsidiary that assembles intermediate products which were

produced in and imported from the home country. Would this be

considered a foreign direct investment mode or simply an

extension of the export process?

A second problem with using the descriptive taxonomy for

a decision tree is that many important factors influencing a

company’s entry decisions span across this hierarchy. For

example, there are high-commitment and low-commitment export

‘modes. Likewise, there are high-commitment and low-commitment

contractual modes. Therefore, a factor like commitment level

is not one that could quickly rule out a branch of the

219

hierarchy. A major purpose of a hierarchical classification

(decision tree) approach to selection is to be able to quickly

rule out entire branches of the tree based on early, important

questions. This speeds up the decision process. However, it

has been our experience that quick "rule-out" factors that

help prune a decision tree based on the descriptive taxonomy

are hard to come by.

Closely related to the second problem is the fact that

entry-mode choice factors often compensate for one another.

For example, high tariff rates may appear to rule out export

modes at an early stage in a decision-tree selection approach.

However, if the product is in great demand and other costs are

low, export may still be feasible despite the high tariff

levels. After all, Japan.has no problem selling Toyotas in the

U.S.

Perhaps for these reasons, most models of entry-mode

selection in the academic literature, and the few software

products that have been developed to aid in choosing entry

:modes, tend to focus on the "continuum of commitment"

classification of entry modes rather than on the descriptive

taxonomy classification. We will see that this "continuum of

icommitment" approach is consistent with the weighted linear

models discussed in chapter 4, and particularly with the

Candidate Evaluation architecture described in Chapter 5.

220

6.2.3 Three Mbdels of Entry Mode Selection

Below, I will discuss three models for selecting entry

modes that have appeared in the academic international

marketing literature. These three models include: Goodnow’s

Gauge for International Market Strategies (GIMS), Cavusgil's

Company Readiness to Export (CORE), and Casson’s model for

selecting the best contractual arrangement.

6.2.3.1 Geodnow’s GIMS

Goodnow’s GIMS approach, implemented as a computer

program written in BASIC, is based on a "continuum of

commitment" classification scheme. It presents a questionnaire

that assesses internal corporate factors and external market

factors. The internal factors include corporate policy,

competitiveness, financial strengths, and product

characteristics. The external factors include domestic and

foreign government policies, comparative host country costs,

market opportunity, and the political, cultural and economic

environment of the host country. Based on an overall score

‘that results from the questionnaire, GIMS suggests modes that

:range from no entry or cash-in-advance-only at one extreme to

wholly-owned subsidiary at the other. These modes are arranged

.in order of the degree of commitment and resources required to

Imaintain them. GIMS will suggest that high-commitment modes

are inappropriate for weak companies facing unpromising market

conditions. For strong companies entering promising markets,

221

GIMS suggests that high commitment modes are feasible, but

also that other, less costly modes, are acceptable aS‘well. In

essence, GIMS suggests to a firm that it has a wider latitude

of entry strategies as it gains strength in the home and

target. markets. This is consistent. with. the "stages of

internationalization" models described by Root and Cavusgil.

In addition to the overall recommendation based on total

score, GIMS identifies specific variables which imply the

inappropriateness of certain specific modes of entry. For

example, if the user indicates that s/he wants a high degree

of control over the distribution process, GIMS will flag this

variable to imply that licensing and exporting may be

unsuitable entry modes.

Thus, we see two main mechanisms operating in the GIMS

program. First is a linear-weighted sum (ala MAUT) which

results in an overall score indicating the strength of the

«organization, product, and environment. in terms of

appropriateness for market entry. Second is a flagging of

specific individual variables in terms of their impact on the

appropriateness of he alternative entry modes, dealing with

nonrcompensatory issues. Note that there is a direct

representation of the relative importance levels of the

variables, expressed as user-provided weights. Note also that,

despite the fact that individual variables are flagged to

indicate unsuitability of specific modes of entry (which may

imply a certain rule-like quality to the program), there is no

222

explicit representation of the interaction between variables

in terms of their impact on their mode-selection effects.

Thus, GIMS does not account for configural effects in entry

mode selection.

6.2.3.2 Casson’s Hbdel of centractual Entry Mode Selection

Casson (1987) suggested a theoretical model for choosing

between alternative contractual arrangements via a weighted

scoring technique that calculates scores for each possible

contractual mode based on yes/no values for relevant factors.

The possible contractual modes include: greenfield (i.e.

starting from scratch), merger, joint venture, industrial

cooperation, subcontracting, sales franchising, and licensing.

There are eighteen input factors, which break down into four

major categories: nature of the advantage, nature of the firm,

nature of the industry, and nature of the home vs. target

countries.

Like GIMS, Casson’s model involves a weighted sum scoring

lmethod. However, Casson’s method differs significantly from

(SIMS in the following respect. GIMS score is merely a measure

of strength of the organization, product, and environment. The

GIMS score indicates the degree to which the company can dive

iJTto the international marketing waters, so to speak, and the

recommendation output from GIMS suggests a wider scope of

potential entry modes as

the score increases. As I mentioned earlier, GIMS is

223

essentially using a continuum of commitment classification of

entry modes, and.the GIMS score indicates where a<company lies

on that continuum. The implication is that the company can use

any mode that falls at or below the company's position on that

continuum.

In contrast, Casson’s method explicitly discriminates

between entry modes by scoring each mode individually. Thus,

whereas GIMS gives a single score, Casson gives eight

individual scores, one for each contractual mode. The

advantage of this approach is that the various modes can be

directly compared to one another in order to pick.the best one

for a given situation. In this sense, Casson’s model is

similar to Berliner and Ackley’s method of scoring different

board positions based on feature values of the current game.

Casson’s entry modes are equivalent to Berliner and Ackley’s

board choices.

6.2.3.3 cavusgil's GORE

Cavusgil’s CORE (Company Readiness to Export) program

(Cavusgil and Nason, 1990) is geared toward evaluating a firm

and its product in terms of their suitability for

internationalization. It is not an entry-mode selection method

per se, although the output recommendations do give some

indication as to which modes may be feasible based on the

company’s final evaluation.

Like GIMS, CORE uses a liner-weighted sum approach to

224

evaluate the company’ s strength in terms of international

marketing factors. Also like GIMS, CORE uses specific

variables to flag specific outputs for recommendation.

However, CORE differs from GIMS in several important respects.

First, CORE’s weighted scoring is broken down into the

individual factor categories : business background ,

motivations, management commitment, product strengths, and

market-specific strengths. Thus, unlike GIMS, whose final

score is an undifferentiated accumulation of the overall

strength of the company and its product, CORE offers the

ability to identify those factors for which the company is

strong and those for which the company is weak. This

differentiation allows the output of CORE to be more specific

to the particular situation that the company faces, and thus

is a more tailored, intelligent output. Note that, in this

respect, CORE attacks the problem of context in a manner very

similar Edwards and Newman’s value tree and to Berliner and

Ackley’s hierarchy of linear scorers described in chapter 4.

Second, unlike both GIMS and Casson’s method, CORE

actually accounts for interactions between the variables, at

least at a high level of abstraction (i.e. CORE accounts for

configural effect). The nine possible final recommendations

are based on combinations of product and organizational

ratings. Thus, if the company is strong organizationally but

weak in terms of its product line, the final recommendation

can take this into account. There is no comparable mechanism

225

in the GIMS program. This is another example of CORE’s ability

to tailor the final recommendation to the situation of the

user. Thus, CORE is imposing a sort of rule-based approach to

account for interactions between high-level variables, and is

thus tackling the same issue of interdependence that Samuel’s

checker-playing program addressed.

Third, CORE does not flag its variables with the

intention of identifying unsuitable entry modes, as does GIMS.

Instead, it flags the variables to identify particular

strengths and weaknesses of the company. This is a reflection

of the difference in focus between CORE and GIMS...CORE is a

readiness evaluator, whereas GIMS is a mode-selector.

CORE’s method is one that combines a scoring system with

a matching (rule-like) mechanism. Thus, it is the only method

of the three that explicitly represents both the relative

importance of the variables and the interactions between the

variables. Thus, CORE attempts to incorporate the advantages

of scoring and rule-based approaches to expert systems

development, although at a fairly rudimentary level.

CORE’s overall approach was generalized into the

Candidate Evaluation architecture as implemented in

CEVED/CEVAL. In other words, CORE is the seed from which CEVAL

was sprung, in the same sense that MYCIN begat EMYCIN and MDX

begat CSRL. CEVAL’s evaluative questions are essentially

identical in structure to those of CORE. The ides of weighted

dimensions is a generalization of CORE's hierarchy of

226

Goodnow’s Casson’s Cavusgl’s

GIMS Model 00

Scoring Overall
BothOverall

Scope 50°“: 0&2" and
only Subsection scores

Objectbeing The Company The potential The company

Scored

entry mode and product

. . Yes. to identify Yes, to identify

Vaflee/e .W-mg NONE specrfic' strengths and

Fbggmg entry modes weaknesses

. ' Yes, at higher

filtered/ans 0f NONE NONE levels in the feature
Var/ab/es hierarchy.

Here/ch/be/ 1:3"; facilitate

Hep/esefllal‘lon NONE NONE d '9' ”'5'“? 'ess

Figure 6.3

Acomparison ofthree models for entry mode selection.

227

evaluation features. Like CEVAL, CORE has paragraphs that

display conditioned on combinations of dimension-ratings.

6.2.3.4.A.Final Look at the Three Medals

Figure 6.3 illustrates the differences and similarities

between the three models described in the previous sections.

As we can see, CORE and GIMS differ from Casson’s method in

two main respects. First, the object.being scored.in both.CORE

and GIMS is the company itself whereas in Casson’s method the

scored objects are the alternative entry modes. Second, in

CORE and GIMS, there is a flagging of individual variables

which enables a customized output to occur. CORE differs from

GIMS and Casson's approach in that it explicitly represents

the interactions between variables at a high level, and that

the scores accumulated by CORE are broken down by

subcategories of the company/product/market factors.

I propose that a useful model of entry-mode selection

should incorporate the strengths of all three approaches.

jNamely it should be like Casson’s approach in terms of scoring

and rating the various entry modes. It should be like GIMS in

‘terms of flagging specific reasons that particular entry modes

:may be desirable or unattractive. It should be like CORE in

terms of allowing differentiated scoring and explicit

:nepresentation of variable interaction. A model that uses all

these strengths will provide a customized expert system for

entry mode selection.

228

6.2.4 Use of Candidate Evaluation for Entry Mbde Selection

The framework required for a successful Entry Mode

Selection expert system can be partially met via the Candidate

Evaluation architecture as described in chapter 5.

Specifically, the representation of a hierarchy of factors

shown in figure 6.1 is representable as a dimension hierarchy

in CEVAL, and questions are assigned to the lowest level

features. An MAUT representation can be generated by

associating weights to the dimensions and questions. An

overall assessment of a company's strengths and weaknesses can

be generated through the use of recommendation fragments and

dimension-ratings, providing a significant improvement to

CORE’s method.

However, the actual selection of entry modes is not

easily represented in the Candidate Evaluation architecture as

described in chapter 5. What type of CEVAL object can be used

to represent an entry mode? Despite the capability to have a

taxonomic representation of entry modes, it is clear that such

a tree is not the same as a dimension hierarchy. Rather, the

entry mode hierarchy is more appropriately matched to the type

of classification hierarchies represented in CSRL. However, as

mentioned earlier, the descriptive taxonomy is not useful for

selection purposes, largely because of the compensatory nature

of the selection problem. In addition, the number of possible

entry modes is sufficiently small (around a dozen) that a

hierarchical representation may be unnecessary. Thus, there

"
L

229

should be a way of classification which does not rely on the

hierarchical representation and which can support the

compensatory evaluation needs of the entry-mode selection

problem.

If not dimensions, then might entry modes be considered

"candidates"? This would address the compensatory nature of

the problem-solving task, and does not rely on a taxonomy.

However, upon closer inspection, it is clear that the real

candidate is the company, product, and market being evaluated,

not the entry modes themselves. The choice of entry mode is

made after (and as a result of) evaluating the company,

product, and market.

Thus, a new type of object is needed for representing

entry modes, and in general, for representing mutually-

exclusive choices to make based on an evaluation. This object

should essentially be an instance in a classification

representation (like a leaf level node of a CSRL tree).

1However, the representation should allow' a compensatory

mechanism for selection, like the general MAUT model and

particularly like Casson’s model described earlier. Recall

that.Steels (1990) had identified six classification methods,

one of which is a "weighted evidence accumulation" approach.

It is this approach to classification that seems most

applicable to entry-mode selection, due to its ability to deal

‘with compensatory decision-making.

As a result of the need for a classification facility in

230

developing an entry-mode selection expert system, CEVAL's

architecture has been expanded to include two new object

types, called 1) Plan Types and 2) Plans. A plan type is a

class of plans. "Entry Mode" is an example of plan type. A

plan is an instance of a particular plan type. Export, joint

venture, and licensing are all examples of plans. Each plan in

a plan type is linked to the dimension hierarchy via degree of

support links, by which a particular dimension-rating pair

makes a weighted contribution to the plan’s overall score. The

architecture allows weights to be specific for the plan. For

example, tariff levels are an important consideration when

dealing with export modes, but are less important when dealing

with licensing or direct investment. CEVAL’s architecture

allows the developer to adjust the importance of tariff level

for each plan.

From the above discussion, we see support for Langlotz’s

assertion, discussed in chapter 3 of this thesis, that

decision making involves two major components, diagnosis and

planning. Prior to introducing plan types and plans into

CEVAL’s structure, Candidate Evaluation was mainly doing

diagnosis in the sense that it was assessing a candidate’s

strengths and weaknesses. Although the text of the

recommendation fragments could be worded to suggest plans of

action, even the recommendations are abductive explanations of

the findings (i.e. part of the diagnostic process). Thus,

CEVAL as an architecture was incomplete with respect to

t
i
n
-
I
L
.

231

decision-making based on the evaluation. With the introduction

of plan types and plans, CEVAL can suggest one of a number of

action options based on these evaluation results. Thus, CEVAL

can be used for solving the entry-mode selection problem.

It is interesting to consider the chronological sequence

of events leading to development of the entry-mode module.

First was an attempt to use CEVAL, with its dimensions,

evaluative questions, context questions, and recommendation

fragments. This led to discovery of significant obstacles,

which in turn led to adding new CEVAL features to overcome

these obstacles. This incremental addition of new features to

CEVAL based on needs of the domain problem may disqualify

CEVAL as a generic task implementation. CEVAL’s development

has been significantly influenced.by the specific needs of the

international marketing domain. A generic task should,

ideally, be domain independent. This is one reason that I do

not claim CEVAL to be an implementation of a generic task.

However, CEVAL’s plan types and plans are consistent with the

primary TSA criterion requiring knowledge-use level

primitives. In addition, the MAUT nature of CEVAL’s reasoning

method for plan selection (using degree-of—support links) is

consistent with the compensatory reasoning philosophy

underlying Candidate Evaluation as a whole. Thus, in my view,

adding plans and plan types to CEVAL does not violate any

principles of task-specific knowledge representations.

Using CEVAL to model the entry-mode selection problem is

232

an improvement over the three models mentioned previously. In

effect, CEVAL contains the combined strengths of Goodnow's

GIMS, Cavusgil’s CORE, and Casson's contractual-mode selection

model (as shown in Figure 6.3).

6.3 Some Operational Issues in International Marketing

Several other day-to-day issues must be addressed by the

business manager who wants to market his or her products or

services abroad. Some of these issues are discussed below.

A key operational issue is selection of a foreign

distributor. This is of primary importance to exporters of

products, since the distributor will frequently be their

primary representative in the target market. Major criteria

for distributor evaluation and selection include financial and

company strengths, commitment to the relationship, marketing

skills, degree of familiarity with the product, and other

facilitating factors (Yeoh 1991)

A similar issue involves selection of freight forwarders.

These are companies whose service involves shipping the

product from the exporter’s home base to the target market.

Forwarders may be responsible for shipment, custom clearance,

warehousing, and/or insurance. Thus, it is important to find

well—qualified forwarders. Some important criteria include

knowledge of customs procedures in target markets,

specialization in the exporter’s product line, physical

facilities such as warehouses, financial strength, and

p
-
‘
_

233

reputation (Ozsomer 1991).

For companies interested in going beyond mere export, to

long term joint-venture arrangements, there is the important

issue of selecting and evaluating potential joint—venture

partners. Such an evaluation is based on two major criteria,

partner-related and task-related characteristics. Partner-

related characteristics include motivation, reliability,

commitment, respect for property-rights protection, and other

company-related factors. Task-related criteria involve the

potential partner’ s financial strengths, research-and-

development resources, marketing abilities, production plants

and fixed assets, and organizational resources (Subieta 1991) .

Any company that intends to commit significant resources

into internationalization will sooner or later need a

representative in the target market. Thus, they will need to

evaluate and select expatriate personnel based on job-related

skills, corporate fit, and country fit. Job-related skills

include managerial, marketing, and communications. Corporate

fit is particularly important with expatriate personnel

because of the distance and resulting lack of supervision.

Country fit involves the employee’ 5 level of comfort with the

target market's culture as well as the specific network of

relationships that the employee has cultivated in the target

country (Whitney 1991).

The above four international marketing tasks all involve

evaluation and selection of candidates. The type of candidate

234

differs, but the Candidate Evaluation method can be applied to

all these tasks.

6.4 Conclusion

This chapter discussed several prominent issues dealing

with international. marketing. Primary' among' these issues

include selection of target markets and selection of entry

modes (the "where" and "how" of internationalization).

Additional operational issues involve evaluation and selection

of distributors, freight forwarders, joint venture partners,

and expatriate personnel. In this chapter, I argued that the

Candidate Evaluation architecture, or some other

representations involving MAUT and linear-weighted algebraic

models, can be applied to solve these types of problems. The

reason for this is the evaluative nature of the tasks and the

compensatory nature of the decisions being made. My argument

is supported.by theories espoused by Cavusgil and.Root, and.by

models developed by Goodnow, Cavusgil, and Casson.

Chapter 7 describes a database using MAUT which aids in

evaluating target markets based on market research information

that can be found in government, industry, and academic

publications.

CHAPTER 7

THE COUNTRY CONSULTANT:

AN INFERENTIAL-EVALUATIVE DATABASE

In previous chapters, I described the MAUT approach to

evaluation problem-solving, and presented a problem-solving

architecture called Candidate Evaluation which implements a

combination of MAUT principles with AI explanatory techniques

into an expert system shell called CEVED/CEVAL. I also showed

some applications of this architecture and shell in

international marketing.

In this chapter, I describe a database which makes

further use of the MAUT evaluation approach. Specifically, I

describe a method that combines MAUT with semantic networks to

produce an inferential evaluative database. This database,

called the Country Consultant, is a domain-specific repository

of market-research information, designed to be used by

international marketing professionals.

As mentioned in chapter 6, there is a significant

motivation for providing databases of market information for

various countries throughout the world. Some databases have

been developed to contain such information, but these

typically store raw statistical data or collections of

articles and/or government documents. The Country Consultant

is unlike most others in that it does not contain statistical

or demographic data in a raw form, but instead contains

judgements and guidelines pertaining to various aspects of the

235

236

countries in question, and geared toward specific industries

and entry modes. In other words, the database contains

processed information in the form of qualitative, judgmental

knowledge, and catalogued according to specific markets,

industries and entry modes. The ultimate purpose of this

knowledge is to aid the end-user to make intelligent decisions

pertaining to selection of the best countries to enter for

marketing their products and/or services.

In addition to serving as a repository of processed,

judgmental knowledge, the Country Consultant has the facility

to respond intelligently to queries given by the user. If it

cannot find a judgement or guideline that specifically meets

the user’s query, it can infer a likely value for that

judgement or guideline by searching the database for

conceptually similar judgements or guidelines. Thus, even if

the database is incomplete (as it almost certainly will be),

it can still give reasonable answers to queries for which it

may not contain explicit data.

As mentioned in chapter 6,information on the demographic,

political, economic, cultural and legal environments, as well

as information on market entry conditions and on the market

structure (in aggregate or disaggregate form) are pointed out

in the literature as the principal information requirements in

country selection. However, the proposed frameworks tend not

to be comprehensive in defining information requirements for

evaluating the market structure. Furthermore, the empirically

237

."\

Guidelines

\ Database 1
e /,,c_,\

,/ Q

/ / "\

. / Q Q\0

lnferencral / \ \

g Que”- O O /0\

HM \\ .0 Q /

\w

CCU/WHY I

COMS‘l/Lm/VT

(.6595

Figure 7.1

Structural components and information flow of Country Consultant.

Judge enters information based on expert knowledge and market

research findings. User queries the system for information, which triggers

inferencing process. Semantic networks aid in knowledge organization

and inferencing.

238

tested frameworks do not incorporate all of the information

categories outlined above or their levels of aggregation

differ.

All this implies that there is a need for information to

be available at many levels of abstraction, and pertaining to

many features of the market(s) being evaluated, While raw'data

is useful in obtaining this information, actual decisions are

based on processed, qualitative, and judgmental information.

Thus, there is a strong motivation for making such information

available in software form, via an indexing mechanism that

makes it easily accessible. Also, since such information is

incomplete, there is motivation for use of AI techniques for

allowing unavailable information to be inferred based on

available information.

This chapter describes the Country Consultant, analyzing

its structure in terms a semantic network model. It also

describes the Country Consultant's evaluative inferencing

mechanism from the perspective of semantic networks (spreading

activation) and MAUT (attribute weight assessment). The

overall framework for the Country Consultant is shown in

Figure 7 . 1 .

7 . 1 Semantic Network Knowledge and Data Representations

A semantic network is a form of knowledge

representation based on a graph structure of nodes and links.

The nodes usually represent objects in the world and the links

239

represent relationships between these objects. Semantic

networks are useful knowledge representations for two main

reasons. First, they provide explicit representations of the

semantics, or meaning, of the terms in the knowledge substrate

by showing relationships between these terms. Second, they

allow for inferences to be made about knowledge that may not

be explicitly entered, via a mechanism called spreading

activation. Spreading activation is a process where the

"attention" or "focus" of the computer travels from one node

to another via the links which connect them. This fosters a

kind of reasoning by association, where associations are the

links in the network. Thus, the semantic network formalism is

sometimes called an associational knowledge representation.

Semantic networks were first developed as models of human

memory and natural language representations. Neither of these

topics are within the scope of this paper. However, there has

Zbeen work on semantic networks in database design, which is

directly related to our work with the CC. Below, I will

present some of the important work that has been done in

semantic networks, then describe the network structure of the

CC.

7.1.1 Quillian’s Semantic Memory MOdel

Quillian’s (1967) pioneering work in semantic network

representations was primarily geared toward modelling long-

term memory structures, particularly as it pertains to

240

sentence understanding. The nodes and links of his network

were organized into planes, which were used to define

concepts. A plane consists of two kinds of nodes. For each

plane, there is a single type node, which identifies the

concept which the plane is defining. Also, there are a number

of token.nodes, which identify other concepts that.are related

to, or subsumed by, the plane's concept. A token node points

to another plane in the network, whose type node is identical

to the token node pointing to it. Thus, token nodes serve as

reference pointers to the conceptual structures (planes) that

define the concepts that they "tokenize".

The nodes of a plane are related via associational links.

Link types include superclass-subclass relations, modifiers,

disjunctive and conjunctive clauses, and subject-object

relations.

Quillian's work also introduced the notion of spreading

.activation, whereby the intersection of two concepts could be

found in order to identify how the concepts are related to

each other.

7.1.2 Sbhank's Conceptual Dependency Theory

Roger Schank’s (1974) work with semantic networks was

primarily concerned with applying the semantic network

formalism to problems of natural language understanding. He

hypothesized that all linguistic concepts can be grouped into

six categories: real world objects, real world actions,

241

attributes of objects, attributes of actions, time, and

locations. Thus, for Schank, all nodes of the semantic network

fall into one of these categories.

Action nodes form the core of Schank's conceptual

dependency representation. Schank identified twelve such

nodes, and claimed that any verb could be mapped onto one of

these primitive actions. The action nodes are: ATRANS

(abstract transfer), PTRANS (physical location transfer),

PROPEL, MOVE, GRASP, INGEST, EXPEL, MTRANS (mental information

transfer), CONC (conceptualization), MBUILD, ATTEND, and

SPEAK.

The links and link structures (called cases) of Schank’s

network include the following types: relations between actor

and action: relations between actor and object: causal

dependence links ; and relations between donor, recipient,

action and object. Links could also have modifiers indicating,

among other things, past or future tense.

The main purpose of Schank's conceptual dependency

networks was to provide inferencing power to systems

attempting to understand and respond to natural language

statements. Schank drew a sharp distinction between

inferencing and logical deduction. He said that inferencing is

more of a "reflex response", and may not be logically valid or

true. For example, syllogisms (e.g. A implies B, B, therefore

A) are not logically valid, but may be inferentially useful.

Thus, Schank used the spreading activation capabilities of

242

semantic nets to perform inferences of various types. These

inferencing mechanisms were forms of default reasoning,

dealing with assumptions that can be made in the absence of

contradictory information. Schank listed twelve inference

types: including linguistic inference, action inference,

trans-enable inference, result inference, object-affect

inference, belief—pattern inference, instrumental inference,

property inference, sequential inference, causality inference,

backward inference, and intention inference.

7.1.3 Wood’s "What’s in a Link"

As can be seen by comparing Schank’s and Quillian’s

‘models, the node-and—link formalism can be used in several

ways and for several purposes. Thus, the idea of semantic

network is not a rigid, standardized formalism as is, for

example, boolean logic. Rather, it is a general model that may

11y modified to suit the needs of the user. This is useful, but

art the same time may introduce ambiguities about the meaning

(If the term "semantic network".

Woods (1975) critiqued the various semantic network

architectures that had been developed by the mid-1970s for

their lack of firm semantic structure. His complaint was that

the term "semantic network" was being used to describe

several , often widely differing, node-and-link representations

.of' so-called semantic knowledge. He was concerned that not

enough emphasis was being placed on the meaning of the

243

notation used in the semantic networks. In his words:

"When one devises a semantic network notation, it

is necessary not only to specify the types of nodes

and links that can be used and the rules for their

possible combinations (the syntax of the network

notation), but also to specify the import of the

various types of links and structures -- what is

meant by them (the semantics of the network

notation)." (p. 225).

For example, he cited several examples of links used in

semantic networks that may imply that a link’ 5 purpose is

essentially'to represent attributes of an'object. One example:

height

John ----------> 6 ft

implies that the height link is an attribute link. However,

consider the following:

height

John ----------> over 6 ft

In this case, the height link is a pointer to a predicate.

This also brings into question the semantics of a node.

Is a node a value of an attribute? Or is it a predicate?

Links can also involve non-attributive relations between

nodes. For example:

hit

John -----------> Mary

iJuiicates a action-relationship between a subject (John) and

an object (Mary).

Thus, Woods wanted more emphasis placed on the meaning of

the node and link notations themselves, and not just the

244

concepts that the nodes and links are representing.

7.1.4 Brach-an’s KLONE

Brachman (1979) was concerned with the "level" of

knowledge being represented by semantic networks. He discussed

four levels of semantic network representations, each of which

has its own types of primitive representational constructs.

The lowest level, called the implementational level, treats

semantic networks simply as data structures, and its

primitives are atoms (nodes) and pointers (links). The next

level is the logical level, whose primitives include

propositions, predicates, and logical operators. Next comes

the conceptual level, whose primitives are semantic

relationships (cases), and primitive objects and actions.

Finally comes the linguistic level, with primitives including

'words, expressions, and arbitrary concepts.

Brachman proposed a fifth level, to fit between the

logical and conceptual levels, which he called the

epistemological level. This level would involve primitives

such.as concept types, conceptual subpieces, inheritance and

structuring relations. Epistemological formalisms would be

:neutral in regard to actual semantic relationships, unlike

conceptual level representations. In Brachman’s words: "It is

the job of the epistemological formalism to provide case-

defining facilities -- not particular cases. (p.206)"

For example, consider Schank’s case types (links). These

245

were explicitly defined as actor-action relationships, actor-

object relationships, causal dependency relationships, etc.

Likewise, Quillian's cases included subject-object relations

as well as logical connectives such as conjunction and

disjunction. By contrast, Brachman suggested that the

epistemological level provides the capability to create

specific conceptual models using a generic semantic network

"shell”. The shell in question is called KLONE.

Brachman was presented a comprehensive survey of semantic

network architectures as they existed around 1980. He showed

that there was no standard that defines the semantic network

model, rather, there was an ad hoc collection of several

different models all sharing the node-and-link formalism of

semantic networks, but.all expressed.using different levels of

primitives in their representations. These early semantic

networks were generally used to represent psychological models

or linguistic structures. Brachman’s analysis of these early

systems showed. that their primitives were expressed at

(iifferent levels of

abstraction. At the lowest level were simple implementational

;primdtives, mere nodes and links with no substantive

knowledge-structure claims. At a higher level were semantic

nets made up of logic primitives, where links represented

logical relationships such as AND, SUBSET, etc.

Next were the conceptual models, where nodes and links

represented conceptual entities and their relationships.

246

Brachman classified Schank’s conceptual dependency model as

fitting into this category. Finally, Brachman listed a

linguistic level of semantic network primitives. Brachman

suggested that there should be another level, between the

logical and conceptual levels, that he called the

epistemological level, and introduced KL-ONE as a language for

representing semantic networks at this level.

7.2 Semantic Networks as Database Mbdels

The idea of using a semantic network for representing

database structure is not new, and has been employed for

making databases more intelligent. Roussopoulos and Mylopoulos

(1975) were among the first to experiment with semantic-

network data models. One frequent complaint about traditional

data representation formalisms (e.g. hierarchical, network,

and relational models) is that they lack a coherent framework

for representing the semantics of the data contained within

the database. Although some work has been done in describing

semantics via functional dependencies, Roussopoulos and

Mylopoulos argued that this does not capture all semantic

information about. a database. Rather, they argue for a

semantic network formalism, which they used to represent the

semantic structure of the database. This semantic structure

would then be converted into relational schema.

Their semantic net model is a graph representation using

four types of nodes (concepts, events, characteristics, and

247

values). Nodes are linked together via edges that pertain to

concepts such as sub-type, part-of, and definition-of. Large

chunks of the nodes and edges of the semantic network are

called scenarios, and it is through the use of these scenarios

that inferences and predictions about the data can be made,

even if the data is incomplete (i.e. the nodes of the semantic

net are only partially instantiated).

The nodes and edges of their semantic net form a natural

correspondence to, and can be converted easily into,

relational schema such as concept relations, part relations,

event. relations, and. icharacteristic :relations. Thus,

operations on the database should be comparable to those

employed by the relational model.

Cohen and Kjeldsen’s GRANT expert system (1987) uses a

semantic network representation for the purpose of indexing

into a database of research agencies. GRANT’s approach differs

from Roussopoulos and Mylopoulos’s model in that the semantic

network representation is not intended to be converted into a

relational model. Rather, the links of the semantic network

are used to provide a rich indexing scheme into the database,

and thus foster the ability to do limited inferencing of the

data by means of a constrained form of spreading activation.

The database itself consists of records (frames)

pertaining to research agencies whose fields (slots) contain

information about those agencies. The nodes of the GRANT's

semantic network represent concepts pertaining to various

248

research interests that one or more agency may support. The

concepts may be very specific (e.g. specialized sorts of heart

disease such as mitral valve prolapse) or more general (e.g.

medical issues in general). Nodes are connected via links that

represent. superclass-subclass. hierarchies, cause-effect

relationships, part-of relationships and many more (48 link

types in all).

Cohen and.Kjeldsen hypothesized (and showed empirically)

that the spreading activation capability of semantic network

database indexing would result in a higher "hit rate" (i.e.

discovery of viable research agencies) for database queries

than would a simple keyword search. This is because keyword

search restricts the search to those words explicitly entered

via the query, whereas spreading activation allows search to

include words and concepts that are "related" to the explicit

query words. However, spreading activation increases the

"false-positive rate" (i.e. discovery of research agencies

that are not viable for the stated query) for the same reason.

Thus, Cohen and Kjeldsen used several methods of

constraining the spreading activation. One simple but weak

method is to limit the distance of the spread to only four

links. A second method is to stop the spread once a node with

large "fan-out" (i.e. one connected to many other nodes) is

reached. The third, and most sophisticated method, is to use

heuristics to describe the "kinds" of paths that can be

searched in the network. Such path-endorsement heuristics

249

describe what kinds of links can be combined together to form

a traversable path.

Cohen and Kjeldsen found that the use of these

constraints helped reduce the false-positive rate while still

maintaining a significantly better hit rate than straight

keyword searches of the database. Thus, the use of semantic

network database indexing schemes appear to be a viable

option, particularly if inferencing is required.

7.3 A Semantic Network View of the Country Consultant (CC)

As mentioned earlier, the CC's indexing scheme is based

on four major conceptual groups (called concept types). The

concept types are: market feature, industry, mode of

operation, and market. Each concept type can be thought of as

a miniature semantic network. For example, market feature

consists of around sixty feature concepts (e.g. tariff level,

commercial environment, political stability, economic growth,

non-tariff barriers, etc.) which are represented as nodes in

the network. The nodes are related to each other via links.

Currently, the only kind of links in our system are parent-

child links, representing the classic IS-A relation. for

example, tariff level is a subordinate (child) feature of

regulations.

250

GENERAL

/

Political

Environment .

/ l Market

Stability Government . Access

Involvement / \

/ \Barriers “WW

Regulations ,

Non-Tariff Barriers

/ l
/

/ l \

emba'gos standards @085

/ \
/]

//’

/ l \\

health labelling technical

standards standards standards

Figure 7.2

Partial view of Country Consultant’s semantic network for MARKET'FEATURE

concept type.

251

Figure 7.2 shows a partial semantic net view of the feature

concepts. Similar relationships exist for mode-of—operations

concepts and for industry concepts.

7.3.1 How the CC Infers Evaluations

The evaluative nature of the CC is expressed in the

judgement records. These records, which are entered by experts

(hereafter called judges), contain judgements pertaining to

specific concept combinations (market feature, entry mode,

industry, and market). For example, a judge may enter a

judgement record stating that the commercial environment

(feature) for exporting (mode) drugs and pharmaceuticals

(industry) to.Austria (market) is good. The judge»can indicate

his or her confidence in that judgement (between 0 and 1). The

judge can also indicate the direction (improving, getting

worse, etc.) and confidence in the direction. Finally, the

judge can enter comments justifying the judgement entered.

Figure 7.3 shows a sample Judgement Entry Screen.

Obviously, a database with a large numbers of industry

classes, markets, features and entry modes will have a very

large possible number of judgements. Currently the breakdown

of conceptual primitives in the database is like this:

57 market features

98 industry categories

11 entry modes

39 markets

This results in 2,396,394 possible judgements in the

252

database, and we anticipate that.this number*will grow'as:more

concepts are added to the network. Of course, it is not

feasible for experts to enter all of these judgements. This is

especially true because we are forcing judgements to be

well-researched, based on text found in international

marketing reports, such as 0.5. Commerce Department’s Country

Market Plans (CMPs). Therefore, the CC should be able to infer

what a judgement should be upon request, even if thatjudgement

has not been explicitly entered by an expert, based on the

explicit judgements that are "conceptually close" to it.

Additionally, with such a large database, it is important

to maintain the integrity of the content of the database.

Judgements should be consistent with each other. Thus, the CC

should be able to "second-guess" judges. Inferring what a

judgement should be based on conceptually close judgements

would help in this regard.

The CC does this inferencing by combining ideas from two

areas in AI:

1) the spreading-activation inference structure common to

semantic networks.

2) the use of weighted evidence accumulation common in

probabilistic inference networks and some rule-based

systems. The linear model common to MAUT is used to

253

Current Feature is: Commercial Environment

Current Industry is: 011195 and Pharmaceuticals Jwggme

Current Mode is: Export -Aug-

Current Market is: Austria

Judgement Direction

C-lbod l. - moving

Fair j Stable

Poor I Deteriorating

Terrible l ‘ Rapidly Deteriorating

Judgement Confidence Direction Confidence

Enter your comments here:

US. Dept. oi Commerce Country Market Plan gives positive

rahgsforthisindtstryduring 1991.

Figure 7.3

ASampIeJudgementEntryScreen.

Please select your inference strategy.

WW lehr Seats At? 7'01.” Steps fl

FEATURE Parent 2 0.9 Child 2 0.9

INDUSTRY Parent 2 0.9 Child 2 0.9

MODE Parent 1 0.9 Child 1 0.9

Figure 7.4

Country Consultant's Inference Strategy Entry Screen.

254

assess utility of any combination of concepts

(market, market feature, industry, and entry mode).

7.3.2 Spreading Activation in CC

The user can request CC to infer the value of a

particular unknown judgement (pertaining to a specific

industry class, market, market feature, and entry mode). CC

responds to this request by performing a constrained spreading

activation of each concept type, anchoring at the queried

concept in the type. The spreading activation is constrained

via a default inference strategy established by the knowledge

engineer or by an inference strategy selected by the user. The

inference strategy sets a limit for how far along each link

type to search, as shown in the Inference Strategy Entry

screen of figure 7.4. Additionally, the inference strategy

specifies an "attenuation factor", defining the degree to

which the conceptual distance from the located judgement to

the queried judgement along various links will diminish the

influence that the located judgement has on the inferred

(queried) judgement. As shown in figure 7.4, the attenuation

factor for all links is set to 0.9. This means that for each

step away from the concept being inferred, the influence is

multiplied by 0.9. Thus, for one step away the influence is

90%, for two steps 81%, for three steps 72%, etc.

Figure 7.5 shows an example where the inference strategy

specifies a limit of two steps along the parent link and two

255

Political

Environment __

//i’ Market \1

Stability Government Access .-

//|nvolvement

\‘f\

Regulations ‘ I

\ ‘. _

/ \ l

Taxes Contracts .

- \' ,7 Non-Tariff Barriers

/ \ / ! ..

Surcharges Tariffs ,/ | \\

I, x/ l \\

ernbargos standards quotas

,/ I .

// ‘ I\\ l
/ \ \-

health labelling technical

‘ _ standards standards standards

~-. --.--‘lcx

‘

\

--o’ _/

Figure 7.5

The 'scope' of a spreading activation of MARKET FEATURE concepts,

centering on NON-TARIFF BARRIERS, with parent- and child- link search

steps limited to 2.. Concepts within the scope will be used in inference process.

256

steps along the child link for the MARKET FEATURE concept

type, anchored at the concept Non-Tariff Barriers. You.can.see

that with this constraint, CC is limited to looking at six

feature concepts. By placing similar constraints of the other

concept types, one can reduce the scope of the search

considerably, as shown in figure 7.5.

Based on the number-of-steps constraint in the inference

strategy,the CC will enumerate all possible combinations of

FEATURE, INDUSTRY, and MODE concepts for a given market. Then

it will search the database searching for judgements that

pertain to any of these combinations. The judgements that are

found will all be used to infer the queried judgement.

7.3.3 Inferring Judgements via Weighted Evidence Accumlation

As mentioned earlier, CC uses techniques from MAUT to

infer a judgement for a given concept combination based on

related judgements found during the spreading activation

process. This section describes how weights are assigned to

each located judgement in order to arrive at the final

inferred judgement. Note that the standard weighted linear

model is used in the Country Consultant, similarly to its use

in CEVAL. However, unlike CEVAL, weights are not assigned

explicitly by the knowledge engineer or domain expert, but

rather are calculated by CC.

Once the relevant judgements have been located via the

spreading activation process, the system must decide the

257

degree to which each judgement found will contribute to the

judgement being inferred. This decision is based on the

following two principles:

1) Judgements that are "conceptually close" the inferred

judgement have more influence than those that are

"conceptually far".

2) Judgements with higher confidence levels have more

influence than those with low confidence levels.

Thus, the weight of influence that a located judgement

exerts on the inferred judgement is based on a combination of

these two principles, as expressed.in the following equations:

C n a 'o CAF :

CAF-ATT STEPS

where ATT is the attenuation factor for the given concept

link

type based on the inference strategy

and STEPS is the number of steps (links) between the found

judgement and the inferred judgement along that link

path

258

J d e u t' :

JAF-H: CAFi

where n is the number of concept types (currently 4)

Jud e e We' d eme ' rflflgj_

JAFEXJCi

i‘ n

21 JAijJC'j

where n is the total number of judgements found via the

spreading

activation process

and JC; is the confidence level assigned to judgement i.

In d e JS °

2:?JMQxJSi

IJS- 1

where n is the total number of judgements found via the

spreading

activation process

and J8; is the judgement score for judgement i.

Once the judgement score is inferred, that score is mapped

259

onto a rating by comparison with threshold scores. For

example, a minimum score of 90 results in an Excellent rating.

7 . 4 The Country Consultant as a MAUT Model

The reader will note that, like the Candidate Evaluation

architecture described previously, the Country Consultant

makes use of a weighted additive model to ascertain evaluative

information. The main difference is that, unlike the CE model,

the parent-child links between conceptual nodes are not used

for propagating scores from lower-level nodes to higher-level

nodes. Rather, the links are used to facilitate spreading

activation, which in turn provides all possible judgements

that could influence the final evaluation, subject to the

constraints imposed by the inference strategy. Nevertheless,

once these judgements have been obtained, they become the

terms of a weighted linear model. Thus, the evaluation process

is an implementation of compensatory MAUT decision rules,

where the MAUT "attributes" are actually judgements. Also,

like the CE model, the final score resulting from the additive

model is translated, via a comparison with threshold values,

into a verbal rating (excellent, good, fair, poor, terrible).

To my knowledge, this is the first time a semantic

network representation has been combined with an additive MAUT

judgement model to provide a database representation

facilitating evaluative reasoning. Although this particular

implementation is designed for international marketing, it is

260

my belief that the "MAUT semantic network" approach can be

used in other domains as well. As I*will discuss in chapter 8,

a possible avenue of future research is to generalize the

semantic-network/MAUT method into a domain-independent

problem-solving architecture.

7.5 Knowledge Acquisition and Validation for the Country

Consultant

In the Country Consultant, knowledge acquisition takes

two forms. First is the development of the semantic network.

This includes identification of the nodes (concepts) as well

as their links (relationships). As mentioned earlier, nodes

are of four types: markets, market features, entry modes, and

industry classifications. Of these, the industry

classifications and the markets are fairly straightforward.

Currently, CC includes approximately 26 countries (markets)

and approximately 100 industry classifications. The industry

classifications roughly correspond to U.S. Department of

Commerce classifications. the entry mode classification is

based on the descriptive taxonomy shown in chapter 6 of this

thesis. Likewise, the market features are based on research

conducted by Cavusgil, Root, and others, also discussed in

chapter 6. Development of the semantic network also involves

assigning an inference strategy' to each. concept in ‘the

network. For example, the inference strategy for the feature

Intellectual Property Protection was set to allow a search of

261

one step down the child link and zero steps up the parent

link, with attenuation factor of 0.9 for each child-link.step.

Thus, each time the Country Consultant attempts to infer a

judgement or guideline for intellectual property protection,

the features that will be included in the search are IPP

itself and each of its "children" (copyrights, trademarks,

patent protection, and royalties).

The second form of knowledge acquisition is the day-to-

day market research and entry of information into the proper

concept combination. This is essentially a data entry task,

performed by judges who scan the academic, government, and

industry literature and enter appropriate information into the

Country Consultant via edit screens, as shown in figure 7.3.

The important element in this type of knowledge acquisition is

to appropriately classify each entry in terms of its market,

industry, entry mode, and feature. In addition, if the entry

is a judgement, proper judgement and directions must be

entered, as well as appropriate confidence levels. Because of

the subjective nature of these judgements, it is important to

continuously validate the information that has been entered.

This issue, while an important one, has not been sufficiently

addressed in my current research. It would be a pertinent

issue to explore in future research, as discussed in chapter

8.

262

7.6 Conclusions

This chapter presents an inferential-evaluative database,

called the Country Consultant, which makes use of MAUT methods

and a semantic network indexing scheme. The database is used

to store market research information for the international

marketing domain.

The Country Consultant is currently being used at

International Business Centers and Michigan State University

to facilitate education and counselling in international

marketing. It is being used both as an educational tool

(Bhargava et al. 1991) and as an aid for international

business counselling. As of this writing, approximately twenty

small business executives and over' one hundred. graduate

students have used Country Consultant in some way. It has two

main advantages over other market-research databases. First,

entries into CC are catalogued according to market, feature,

entry mode, and industry, so that a user can query to obtain

information specifically geared to answering a particular

question. Second, through the use of MAUT and spreading

activation, the system is able to infer judgements for which

it has no explicit records. This introduces.AI capabilities to

CC, making it more than just a database.

CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

The jpreceding' chapters explored. two 'major' areas of

research, and combined their findings into a new expert-system

method for solving certain kinds of problems. The task-

specific approach to knowledge representation in artificial

intelligence and multi-attribute utility approaches to

decision theory were combined to inspire development of a

problem solving architecture for candidate evaluation. Below

is listed the contributions of this thesis, and some

suggestions for future research.

8.1 Contributions of the Thesis

This research makes a number of contributions:

First, it helps bridge the gap between AI and decision

sciences, particularly in terms of multi-attribute utility

theory. To this end, the thesis presents a review of parallel

research being done in both fields, including decision

theorists like Tversky, Dawes, and Slovic, as well as AI

researchers such as Samuel, Berliner, and Langlotz. In

addition, the thesis characterizes a HQLM (hierarchical quasi-

linear model), describing it from an AI and DT perspective. An

architecture is described which combines compensatory and non-

compensatory reasoning methods into a single representation,

and provides a facility for qualitative explanations of

quantitative reasoning techniques. In this sense, the research

263

264

makes a similar sort of contribution as that made by

Langlotz’s QXQ system, specifically to provide qualitative

insight into the quantitative reasoning processes inherent in

decision theory.

Second, the research describes Candidate Evaluation as a

new task-specific architecture. The thesis presents a

comprehensive survey of and comparison between different TSA

approaches, including' Chandrasekaran's generic task approach

and the knowledge acquisition methods developed by McDermott

and colleagues. In addition, the thesis provides a detailed

description of the Candidate Evaluation architecture and its

implementation in the CEVED/CEVAL shell.

Third, the research explores another potential

combination of MAUT and AI. A MAUT semantic network model is

introduced for developing an evaluative-inference database,

the Country Consultant. The thesis provides a description of

the database, together with a review of the semantic network

model in Al and in database representations.

Fourth, the thesis contributes to the business research

community by applying AI and decision-theoretic techniques to

international marketing problems. Specifically, the MAUT

semantic network model is used to develop a database of market

research information. The Candidate Evaluation architecture,

through the tools CEVED and CEVAL, are used to develop expert

systems for tasks such as entry mode selection,

distributor/agent evaluation, freight forwarder evaluation,

265

and joint venture partner selection.

Fifth, the research contributes to knowledge acquisition

by facilitating the use of TSA shells by non-technical domain

experts. This is made possible through the knowledge-use level

of the Candidate Evaluation language, and its specific focus

on a single problem-solving method. CEVED was developed as an

authoring tool to be used by College of Business faculty and

students, most of whom have little or no AI and computer

science background. The fact that successful applications have

been developed using CEVED is testimony'to the validity of the

Candidate Evaluation architecture. In addition, several

articles have been submitted to and/or published in academic

literature, both in AI (Mitri 1990, Mitri 1991) and in

marketing (Mitri et al. 1991a, Mitri et al. 1991b).

8.2 Future directions:

The research described in this thesis serves as a

stepping stone for future research in AI, decision.theory, and

knowledge acquisition. Some of the issues pertinent to future

research include the following:

8.2.1 Multiple-evaluator issues

The Candidate Evaluation architecture does not currently

address the issue of multiple evaluators, an issue discussed

in chapter 4. However, our experiences working with multiple

experts establishing and validating dimension weights has

266

shown us how important it is to reconcile differences in

weightings among the experts. Thus, a promising and necessary

avenue for future research concerns developing computational

methods for deriving weights based on candidate rankings,

delphi studies, and various voting methods. One possibility

would be to include in CEVEDla facility for Borda Count voting

among experts. Thus, the knowledge acquisition facility in

CEVED would be enhanced by the introduction of an optimal

voting method for ranking sample candidates and/or dimensions

and thereby obtaining consistent dimension weights. In

addition, CEVED or CEVAL could include Borda Count voting for

ranking of candidates in the validation process.

8.2.2 Generalizations and Extensions of Semantic-Net MAUT

model

Currently, the MAUT semantic net database is implemented

in the form of the Country Consultant, a domain-specific

database for international marketing. However, the model is

generalizable across a wide variety of domains. Like the

Candidate Evaluation architecture, it tends to be task-

specific, and is best suited for tasks requiring associative,

weighted multi-attribute reasoning techniques. Thus, a useful

next step would be to develop a general-purpose MAUT semantic

network shell that could be used to model many evaluative

inferential databases.

Another enhancement to the MAUT semantic network would be

267

to .refine the inference strategy. The current inference

strategy implements a "weak" heuristic in the sense that it

provides a default search constraint and attenuation factor

for each concept of a particular concept type, but is not

specific to a particular situation. The default inference

strategy can be supplemented with concept-specific inference

strategies, which provide specific search scopes and

attenuations for specific combinations of concepts. Such

"strong" heuristics would add intelligence to the database

search.

One need that became clear with the development of the

Country Consultant is the need for automated validation

techniques. Factors pointing to this need include the

potential size of such a database, the volatility of market

research data and its inevitable change over time, and the

complexity of the semantic network structure. Clearly the

validation and verification process will be unwieldy if left

to manual means alone. Thus, future research should

concentrate on automating the validation process with respect

to internal and external consistency of judgements and

guidelines. Several issues are pertinent in validation

research. First, how should judgements be distributed across

the Excellent-to-Terrible spectrum? Are we looking for a

normal curve? Second, how is "inferential consistency" (i.e.

the consistency between an actual judgement and an inferred

judgement for the same concept combination) to be measured?

268

Third, exploration should be done pertaining to the use of AI

text analysis methods for verifying the judgements and/or

concept-combination assignments for text entered into the

system.

8.2.3 Linkage of CEVAL modules with Country consultant and

Each other

Future development of CEVAL and Country Consultant will

involve providing linkage between the tools. This.is necessary

because many decisions made in CEVAL modules will require

assessment of target market characteristics. Such a linkage

between TSA tools is not unusual. For example, CSRL currently

has database hooks to obtain information from intelligent

databases via a GT tool called IDABLE.

In the future, CEVAL modules can be linked together. The

evaluation results coming from one module may become the

contextual factors of a second module. In addition, plans in

one CEVAL module may trigger the running of another CEVAL

module. In this way, strategic control of large knowledge

bases involving several modules can be implemented.

8 . 2 . 4 Knowledge Acquisition and Representation Enhancements to

CEVED

Currently, the CEVED tool is closer in functionality to

the generic task languages (CSRL, DSPL, HYPER, etc.) than to

269

knowledge acquisition tools like SALT, MOLE, and KNACK. In

other words, CEVED is more or lessia blank slate, an authoring

tool, a programming language. It does not contain knowledge

acquisition techniques such as interviewing, or doing

consistency checks. Future research should concentrate on

making true KA contributions to the MAUT technology via CEVED.

Such enhancements may be facilitated through a number of

modifications of CEVED. For example, CEVED should include the

capability for Monte Carlo analysis. Monte Carlo analysis will

provide the ability to produce "training samples" to the

system, which could then be used to computationally derive

threshold values for ratings, as suggested by Page (1977) and

discussed in chapter 5 of this thesis. The implementation of

delphi studies, Borda Count voting, and linear regression

would also enhance the KA facility.

Graphic representations and browsers should be included

to provide appealing visual information. Finally there should

be the ability'toldo consistency checks in the knowledge base,

such as verifying that combinations of preconditions for a

recommendation fragment can actually occur given the current

weight and rating-threshold circumstances. More exploration of

MAUT and evaluation research will provide insight into further

refinements that can be made to the Candidate Evaluation

architecture and the CEVED tool.

270

8.3 Final Conclusions

The work.described in this thesis is a result of research

done in three main academic disciplines. First, research in

artificial intelligence, and particularly in the task-specific

architecture (TSA) approach to knowledge acquisition and

representation for expert systems, served as a motivator and

guide for the development of a shell to facilitate encoding of

domain expertise. Second, research in decision theory,

especially dealing with multi-attribute utility theory (MAUT) ,

provided an architectural framework for encoding of evaluative

reasoning tasks. Third, research and practical experience in

international marketing provided a domain in which to apply

and test the problem-solving architecture.

From the research, literature review, and software

development accomplished for this thesis, it is clear that

MAUT and TSA can be combined for generating an environment

that facilitates knowledge acquisition for evaluative tasks

and allows non-programming domain experts to play a more

central role in expert systems development than is possible

with conventional expert system shells. This supports many of

the claims made by proponents of TSA and generic tasks (such

as Chandrasekaran), and is consistent with the findings of

researchers, such as Langlotz, who combine AI and decision-

theoretic techniques. In addition, it is clear that there is

much potential for this MAUT-TSA combination in the business

world, and particularly in internatinonal marketing.

271

The CEVED and CEVAL tools have been and will continue to

be used for this research.and.development effort. Enhancements

described in the preceding section will be implemented to

improve their effectiveness. In addition, there will be

continued effort to apply the Candidate Evaluation technique

to domains outside of international marketing in order to

demonstrate the general utility of the model.

APPENDIX A

FORMAL CHARACTERIZATION OF THE CANDIDATE EVALUATION

ARCHITECTURE

272

APPENDIX A

FORMAL CHARACTERIZATION OF THE CANDIDATE EVALUATION

ARCHITECTURE

Space complexity

The following is an analysis, from a set-theoretic

viewpoint, of the space complexity of the candidate evaluation

architecture.

D = the set of all dimensions:

D-{d1,d2, . . .d }
Hill

where n9 is the total number of dimensions in the knowledge

base.

R = the set of all ratings:

R-{r1,r2, . . . ,rnI}

where Hg is the total number of ratings in the knowledge base.

Because ratings are tied to dimensions, another

characterization of R is useful:

R-{RIUR2U. . .URndI

where RE is the set of ratings associated with dimension Di,

such that:

IKCR

273

DR = the set of all possible dimension-rating pairs

DR-{dR1, d182, . . . , and}

where dR‘L is the set of dimension-rating pairs for the

dimension di, such that:

dRi-{(dl’ril) I (dilriz) I - 0 I I (di’rin)}

R1

where “m. is the number of ratings associated. with the

dimension d;.

It follows that:

DRCDXR

and:

lee-23d [Rilslclxlld

Thus, the upper bound for the size of all possible

dimension-rating pairs is the product of the number of

dimensions and the number of ratings in the knowledge base.

Now, let.RF'be the set of all recommendation fragments in

the knowledge base:

RF-{If1,rf2, . . . ,If I
“If

274

where n“ is the total number of recommendation fragments in

the knowlege base. Each recommendation fragment can be

associated with at most one rating for each dimension. That

is, a recommendation fragment may be tied to several

dimensions, but at most to one rating for each of those

dimensions. Thus, the maximum number of conditions associated

with a recommendation fragment rfl is 129.

Consider a subset of D consisting of (d£,d£,...,d_1_,_.).

Call this set D1. Then we can define a subset of RF, called

”21.: which is the set of all possible recommendation

fragments that are associated with all the dimensions in D1.

The size of RF21 is bounded by the number of ratings for each

dimension in D3. In particular:

lRijlSlRin'Rizlx- . .lekl
.1

In practice, not all these recommendation fragments will

be plausible, since there may be inconsistencies between

ratings of the different dimensions in D1. For example, if an

is a parent of dB then, depending on the maximum and minimum

possible weights of d_1_2, the chosen rating for da may in fact

restrict the possible ratings for du- It may be impossible for

dLJL to be rated as excellent and dAa to be rated as horrible.

Thus, the above equation serves as an upper bounds for the

size of R1793, which is probably going to be much larger than

its actual allowable size. (Actually, such a "consistency

275

constraint" is not currently implemented in the Candidate

Evaluation shell; there is no way to prevent the developer

from creating a recommendation fragment whose conditions are

inconsistent with each other. However, that recommendation

fragment will never appear to the end user during a

consultation, since its conditions are impossible).

Now, the set of all [5 is the power set 29. Thus, the

upper bound for the size of RF can be characterized as:

liar-1323“ [RFDJI

From here, we can define a recommendation recl'thusly:

reci—{rfil,rf. ,rf.}
12". 1k

In other words, a recommendation is a set of recommendation

fragments . Thus , we can define the set of al 1 possible

recommendations as the power set of all possible

recommendation fragments:

REC-ZRF

Of course, there is also a "consistency constraint" on the

number of possible recommendations. Such a constraint is based

on the following two principles:

1) A recommendation cannot contain two recommendation

V

276

fragments whose conditions are inconsistent with one another.

In other words, two recommendation fragments whose conditions

are associated with the same dimension but involve different

ratings for that dimension will never appear together in a

recommendation.

2) A recommendation cannot contain two recommendation

fragments if one fragment suppresses the other.

These two constraints can significantly reduce the number

of possible recommendations for' a given. knowledge base,

although.that number will still be exponential with respect.to

the number of dimensions. This is not a space complexity

issue, however, since recommendations are not stored

explicitly but are constructed from recommendation fragments

based on the results of a consultation.

Time complexity

There are three basic steps in the candidate evaluation

process. These are:

1) Dimension weight adjustment based on context

questions.

2) Dimension scoring and score propagation based on

evaluative questions.

3) Recommendation triggering and presentation based on

dimension ratings.

277

Weight Adjustment

Adjusting a dimension’s weight involves two main steps:

First, make the weight change based on the answer to a

context question. This is 0(1).

Second, normalize the weights of the affected dimensions

and all its siblings so that they add up to 100% while

maintaining their new ratio to each other. The formula for

doing this for each sibling dimension is:

tn,

——;————x100

2j chj

where n1 is the total number of siblings. Thus, there must

first be a summation of all weights, which is 0(n2). Then, the

normalization must take place for each sibling, also 0(nl).

Since this is a step-by-step process (i.e. first sum the

weights, then normalize each dimension weight), the total

complexity for adjusting a dimensions weight is 0(n1). If we

make a worst-case assumption that the dimension hierarchy

consists of one root node and n2.. 1 siblings under the root

(where 1212 is the number of dimensions in the knowledge base),

then this implies 0(n2) complexity for dimension weight

adjustment and normalization of a single dimension.

Now, the answer to a context question may impact more

than one dimension. In a worst case scenario (which, in

practice should never occur), a context question’s answer may

affect all dimensions. Thus, the complexity for dimension

wei

que

que-

com

COD

only

case

Sco;

set

ass

to

“In

th.

Su

1e

31

0n

th

Se

al

278

weight adjustment based on the answer to a single context

question is 0(n23). If we let 112 be the number of context

questions in the knowledge base, then the worst case

complexity for dimension weight adjustment for an entire

consultation is 0(ngn23) .

In practice, a context question will be associated with

only a few dimensions, maybe two or three. Thus, the average

case time complexity for weight adjustment should be 0(ng5).

Score Propagation

The time to score a leaf node dimension (i.e. a "question

set") is 0(ng) where nu_is the number of evaluative questions

associated with the dimension i. This is because it is simply

a.matter of adding'nsu weighted scores together. Thus, the time

to score all question sets is (Huh), where 129 is the total

number of evaluative questions in the knowledge base.

The time to propagate a leaf node dimension’s score up

the dimension hierarchy is 0(log n9). This is true because

such a propagation involves tracing the ancestral path of the

leaf node, altering maximum and minimum scores for each node

along that path. If we assume that each dimension contains

only one evaluative question (a worst-case scenario), then

this implies that there are nSI leaf node dimensions (question

sets). This sets the upper bound for propagating scores for

all leaf node dimensions up the hierarchy at 0(ns1 log n2).

279

Recommendation Triggering and Presentation

Triggering and presenting recommendations involve three

main steps:

1) Triggering the recommendation fragments

2) Suppressing recommendation fragments

3) Sorting recommendation fragments

The basic algorithm for triggering recommendation

fragments is shown below:

for each recommendation fragment

if the conditions match for that recommendation

fragment

add it to a list of triggerred recommendation

fragments

end

end

If we let Es be the number of recommendation fragments

in the knowledge base and m be the maximum number of

conditions per recommendation fragment, then the time to

trigger recommendation fragments is 0(mngj.

The algorithm for suppressing recommendations is as

follows:

for each recommendation fregment in the triggered list

for each rec fragment suppressed by the current one

add the suppressed rec fragment to a list of

suppressed recommendation fragments

end

end

end

for each suppressed recommendation fragment

delete it from the triggered rec-fragment list

end

If we make the worst case assumption that a

280

recommendation fragment can suppress all others, then the

first loop is 0(ngf). The second loop is 0(ngj. Thus,

recommendation suppression is 0(ngf).

Sorting the recommendation fragments is done via standard

sort techniques, which will be at most polynomial. Thus, if we

assume that the maximum number of conditions per

recommendation fragment is no more than the total number of

recommendations, then the worst case time complexity for

triggering, suppressing, and sorting recommendations is

O(n,_,3) .

Total time complexity for a CEVAL consultation

The above three sections described the time complexity

for each portion of a CEVAL consultation. If we add the total

time equired for context-based weight adjustment, score

propagation, and recommendation presentation, it comes to:

0(ngn23) + 0(ng log mg) + 0(ngg)

where:

1% is the number of context questions in the knowledge base

1% is the number of dimensions in the knowledge base

9 is the number of evaluative questions in the knowledge

base.

ng; is the number of recommendation fragments in the

knowledge base.

Thus, this translates to a polynomial time complexity

with respect to the various types of input variables that

281

CEVAL receives. Keep in mind that the number of recommendation

fragments could.potentially'be exponential.with.respect.to the

number of dimensions in the knowledge base. However, in

practice this will not occur: rather, recommendation fragments

will be created only for "relevant" combinations of dimension-

rating values, as deemed necessary by the knowledge engineer.

282

BIBLIOGRAPHY

Arrow, K.J. (1963) Social Choiceiand.Individual Values. Cowles

Foundation Monograph 12. Yale University Press. New Haven.

Barr, A., Cohen, P.R., Geigenbaum, E.A. (1989) The Handbook

of Artificial Intelligence. Vol IV. Addison Wesley. Reading,

Mass.

Berliner, H. (1977) Experiences in Evaluation with BKG -- a

Program that plays Backgammon. Proc. Intl Joint Conf on

Artificial Intelligence. pp. 428-433

Berliner, H. (1979) On the Construction of Evaluation

Functions for Large Domains. Proc.Intl Joint Conf on

Artificial Intelligence. pp. 53-55.

Berliner, H. and.D. Ackley. (1982) The:QBKG System: Generating

Explanations from a Non-Discrete Knowledge Representation.

Proc. National Conf. on Artificial Intalligence. pp. 213-216.

Bhargava, V., Evirgen, C., Mitri, M. and.Cavusgil, S.T. (1991)

Using Expert Systems in the Classroom: The Case of the Country

Consultant. Submitted for publication to The Journal of

Teaching in International Business.

Boose, J.H. (1989) A Survey of Knowledge Acquisition

Techniques and Tools. Knowledge Acquisition. Vol. 1 No. 1 pp.

3-37.

Boose, J.H. and Bradshaw, J.M. (1987) AQUINAS: A Knowledge

Acquisition Workbench for Building Knowledge-Based Systems.

Proceedings of the lst European Workshop on Knowledge

Acquisition for Knowledge-Based Systems. Reading University,

Sept. pp.A6.1-6.

Brachman, R.J. (1979) On the Epistemological Status of

Semantic Networks. In Readings in Knowledge Representation.

Ed. Brachman and Levesque. Morgan Kaufmann Publishers, Inc.

1985. pp. 191-216.

Breuker, J. and Wielinga, B. (1989) Models of Expertise in

Knowledge Acquisition. In Topics in Expert Systems Design:

Methodologies and Tools. North Holland Publishing

Company:Amsterdam.

Brown, D. (1987) Routine Design Problem Solving. RES in

Engineering and Architecture. (Ed.) J.Gero. Addison-Wesley.

Brown, D. and B. Chandrasekaran. (1986) Knowledge and Control

for a Mechanical Design Expert System. IEEE Computer Magazine,

Special Issue on.Expert Systems.foerngineerinngroblems. July

283

1986.

Butler, K.A. and Corter, J.E. Use of Psychometric Tools for

Knowledge Acquisition: A Case Study. In W.A. Gale Artificial

Intelligence and Statistics. Academic Press. New York. pp.295-

320.

Bylander, T. and Mittal, S. (1986) CSRL: A Language for

Classificatory Problem Solving and Uncertainty Handling. AI

Magazine Vol. 7 No. 3. pp. 66-77.

Bylander, T. and Smith, J. (1986) Mapping Medical Knowledge

into Conceptual Structures. Proc. of the EXpert Systems in

Govt Symposium.

Bylander, T. and B. Chandrasekaran. (1987) Generic Tasks in

knowledge-based reasoning: The ’right’ level of abstraction

for knowledge acquisition. International Journal of

Man-Machine Studies, 1987. Vol. 26, No. 2. pp. 231—243

Bylander, T., Goel, A., Johnson, T. (1988) Structured

Matching: A Computationally Feasible Technique for Making

Decisions. Ohio State University LAIR Technical Report 88-TB-

MATCH.

Casson, Mark (1987) Contractual Arrangements for Technology

Transfer: New Evidence from Business History. In The Firm

and The Market. MIT Press. Cambridge, MA.

Cavusgil, S.T. (1981) Internal Determinants of Export

Marketing Behavior: An Empirical Investigation. Journal of

Marketing Research. Vol. XVIII. Feb, 1981. pp. 114-119.

Cavusgil, S.T. (1985) Guidelines for Export Market Research.

Business Horizons. Nov-Dec 1985. pp. 27-33.

Cavusgil, S.T. (1987) Qualitative Insights into Company

Experiences in International Marketing Research. Journal of

Business and Industrial Marketing. Vol. 2 No. 3. pp. 41-54.

Cavusgil, S.T. (1988) Unraveling the Mystique of Export

Pricing. Business Horizons. Indiana.Universityu Vol. 31 No. 3.

May-June 1988.

Cavusgil, S.T. (1990) Expert Systems in International

Marketing. Proceedings of the 1990 AMA Summer Educators’

Conference.

Cavusgil, S.T. and Nason, R.W. (1990) Assessment of Company

Readiness to Export. Singapore Marketing Review.

Cavusgil, S.T. and Sikora,E. (1987) Company Strategies for

284

International Expansion. Advances in Business Studies. Vol.

1 NO. 1. 1987. pp. 1-11.

Chandrasekaran, B. (1983) Towards a Taxonomy of Problem

Solving Types. AI Magazine. Winter/Spring 1983. pp. 9-17

Chandrasekaran, B. (1986) Generic Tasks in Knowledge-Based

Reasoning: High. Level Building Blocks for Expert. System

Design. Ohio State University LAIR Technical Report 86-BC-

IEEEX.

Chandrasekaran, B; Josephson, J.; Keuneke, A.: Hemans, D.

(1986) An Approach to Routine Planning. Ohio State University

LAIR Technical Report 86-BC-PLANNING.

Chung, H.M. (1987) A Comparative Simulation of Expert

Decisions: An Empirical Study. UCLA Anderson School of

Management Information Systems Working Paper #5-88.

Chung, H.M. (1989) Empirical Analysis of Inductive Knowledge

Acquisition Methods. SIGART Newsletter. April 1989. Number

108. Knowledge Acquisition Special Issue. pp.156-159.

Clancey, W.J. (1985) Heuristic Classification. Artificial

Intelligence Vol 27 (1985) pp.289-350.

Cohen, P. and R. Kjeldsen. (1987) Information Retrieval by

Constrained Spreading Activation in Semantic Networks. COINS

Technical Report 87-66. University of Massachusetts at

Amherst.

Daser, Sayeste (1985),International Marketing Information

Systems: A Neglected Prerequisite for Foreign Marketing

Planning, in Global Perspectives in Marketing,Erdener

Kaynak,ed.,NY. Praeger Publishers. pp.139-153.

Davidson, William H. (1983) Marketing Similarities and Market

Selection:Implications for International Marketing Strategy,

Journal of Business Research Vol.11,(December), pp.439-456.

Davis, R. (1984) Diagnostic Reasoning Based on Structure and

Behavior. Artificial Intelligence Vol. 24 pp.347-410.

Dawes, R. (1979) The Robust Beauty of Improper Linear Models

in Decision Making. American Psychologist Vol.34 No.7 pp.571-

582.

Dawes, R. (1988) Rational Choice in an Uncertain World.

Harcourt Bruce Jovanovich Publishers, Inc. Orlando, FLA.

Dawes, R. and Corrigan, B., (1974) Linear Models in Decision

Making. Psychological Bulletin. Vol.81 No.2. pp. 95-106.

285

DeCharme, W.M. (1970) A Response Bias Explanation of

conservative Human Inference. Journal of Experimental

Psychology. Vol.85 pp.66-74.

Douglas, Susan and C.Samuel Craig (1988),"Information for

International Marketing Decisions",in Handbook of

International Business,Ingo Walter and Tracy Murray,eds., New

York:John Wiley & Sons, Vol.29. pp.3-29.

Duda, R.O., Hart, P.E., and Nilsson, N.J. (1976). Subjective

Bayesian Methods for Rule-Based Inference Systems. In Readings

in Uncertain Reasoning, Ed: Shafer, G. and Pearl, J. Morgan

Kaufmann:San Mateo, Calif. 1990. pp. 274-281.

Edwards, W. and Newman, J.R. (1982) Multiattribute

Evaluation. Sage Publications . Beverly Hills, CA.

Edwards, W., Phillips, L.D., Hays, W.L., and Goodman, B.C.

(1968) Probabilistic Information Processing Systems: Design

and Evaluation. IEEE Transactions on System Science and

Cybernetics. Vol.SSC-4. pp.248-265.

Ehrman, Chaim Meyer and Moris Hamburg (1986) Information

Search for Foreign Direct Investment Using Two-Stage Country

Selection Procedures:A New Procedure. Journal of International

Business Studies,Summer, pp.83-88.

Engelmore, R. Morgan, T. (Editors). (1988) Blackboard

Systems. Copyright 1988. Addison-Wesley.

Erman, L.D.; Hayes-Roth, F: Lesser, V.R.: Reddy, R. (1980) The

Hearsay-II Speech Understanding System: Integrating Knowledge

to Resolve Uncertainty; .ACM' Computing' Surveys Vol 12.

pp.213-253.

Eshelman, L. (1988) MOLE: A Knowledge-Acquisition Tool for

Cover-and-Differentiate Systems. in Marcus, S. (ed) (1988)

Automating Knowledge Acquisition for Expert Systems. Kluwer

Academic Press. Norwell, MA. pp.37-80.

Fischer, G.W. (1975) Experimental Applications of Multi-

Attribute Utility Models. In Utility, Probability, and Human

Decision Making. ed. D.Wendt. Dordrecht. The Netherlands.

pp.7-46.

Gale, W.A. (1987) Knowledge-Based Knowledge Acquisition for a

Statistical Counselling System. International Journal of Man-

Machine Studies. Vol.26 pp.55-64.

Gaschnig, J., P. Klahr, H. Pople, E. Shortliffe, A. Terry.

(1983) . Evaluation of Expert Systems: Issues and Case Studies.

In Building Expert Systems. Ed. Hayes-Roth, F., Waterman, D.,

286

Lenat, D. Addison-Wesley Publishing Co. Reading, MA. pp.241-

280.

Goldberg, L.R. (1970) Man vs. Model of Man: A.Rationale, Plus

some Evidence, for a Method of Improving on Clinical

Inferences. Psychological Bulletin. Vol.73 pp.422-432..

Goodnow, J.D. (1985) Developments in International Mode of

Entry Analysis. International Marketing Review. Autumn,

1985. pp.17-30.

Goodnow, J.D. and Hansz, J.E. (1972) Environmental

Determinants of Overseas Market Entry Strategies. Journal of

International Business Studies. Spring, 1972. pp.33-50.

Hammond, T.H. (1986) Agenda Control, Organizational Structure,

and Bureaucratic Politics. American Journal of Political

Science. Vol 30. No 2.

Hayes-Roth B. (1984) An Architecture for Blackboard Systems

that Control, Explain, and Learn About Their Own Behavior.

Stanford University Technical Report No. HPP 84-16.

Hayes-Roth, B. (1985) A Blackboard Architecture for Control.

Artificial Intelligence. Vol 26. pp.251-321.

Hayes-Roth, B and Hayes-Roth, F. (1979) A Cognitive Model of

Planning. Cognitive Science Vol.3 pp.275-310.

Hayes-Roth, F. , Waterman, D. , Lenat, B. (1983) Building Expert

Systems Copyright 1983. Addison-Wesley. Reading, MA.

Herman, D., Josephson, J. Hartung, R. (1986) Use of DSPL for

the Design of a Mission Planning Assistant. Proceedings of the

IEEE Expert Systems in Government Symposium. October 1986, pp.

273-278.

Julesz, B. (1975) Experiments in the Visual Perception of

Texture. Scientific American Vol.14. pp.24-43.

Kelly, G.A. (1955) The Psychology of Personal Constructs.

Norton. New York.

Klinker, G. (1988) KNACK: Sample-Driven Knowledge Acquisition

for Reporting systems. in Marcus, S. (ed) (1988) Automating

Knowledge Acquisition for Expert Systems. Kluwer Academic

Press. Norwell, MA. pp.125-174.

Knickerbocker, F.T. (1973) Oligopolistic Reaction and

Multinationalization Enterprise. Boston: Harvard. Graduate

School of Business Administration.

287

Kogut, B. (1984) Normative Observation on the International

Value-Added. Chain. and. Strategic: Groups. Journal of

International Business Studies. Fall. pp.151-167.

Kuipers, B., Moskowitz, A.J., and Kassirir, J.P. (1988).

Critical Decisions Under Uncertainty: Representation and

Structure. In Readings in Uncertain Reasoning, Ed: Shafer, G.

and Pearl, J. Morgan Kaufmann:San Mateo, Calif. 1990.

pp.105-121.

Laird, J., Newell, A., Rosenbloom, P. (1977) "BOAR; An

Architecture for General Intelligence. Artificial

Intelligence. Vol 33. pp.1-64.

Laird, J. and Newell, (1983) A. A Universal Weak Method.

Technical Report, Carnegie Mellon University. Dept. of

Computer Science.

Langlotz, C.P. (1989). A Decision-Theoretic Approach to

Heuristic Planning. PhD Thesis. Stanford University. Report

#STAN-CS-89-1295.

Marcus, 8. (ed) (1988) Automating Knowledge Acquisition for

Expert Systems. Kluwer Academic Press. Norwell, MA.

Marr, David. (1976) Artificial Intelligence -- a personal

view. Massachussetts Institute of Technology Paper AIM355.

March, 1976.

McDermott, J. (1982) R1: A Rule-Based Configurer of Computer

Systems. Artificial Intelligence. Vol.19 No.1 pp.39-88.

McDermott, J. (1988) Preliminary Steps Toward a Taxonomy of

Problem-Solving Methods. in Marcus, S. (ed) (1988) Automating

Knowledge Acquisition for Expert Systems. Kluwer Academic

Press. Norwell, MA. pp.225-256.

Michie, D. (1982) High-Road and Low-Road Programs. AI

Magazine. Vol 3. pp.21-22.

Minsky, M. (1979) The Society Theory of Thinking. In

Artificial Intelligence: An MIT Perspective. Vol 1.

pp.421-452.

Mitri, Michel. (1991) A Task Specific Problem Solving

Architecture for Candidate Evaluation. AI Magazine. Vol.12

No.3. pp.95-109.

Mitri, M., Yeoh, P.L., Ozsomer, A., Cavusgil, S.T. (1991)

Expert Systems in International Marketing. Proceedings of the

1991 AMA Microcomputers in Education Conference. August, 1991.

288

Musen, M.A., Fagan, L.M., Combs, D.M., and Shortliffe, E.H.

(1987) Use of a Domain Model to Drive an Interactive

Knowledge-Editing Tool. International Journal of Man-Machine

Studies. Vol.26. pp.105-121.

Newell, Allen. (1969) Heuristic Programming: Ill-Structured

Problems. In J. Aronofsky (ed) Progress in Operations

Research. NY. John Wiley pp.360-414.

Newell, Allen. (1981) The Knowledge Level. AI Magazine.

Summer 1981. pp.1-20.

Newell, A. and Simon, H. (1957) Empirical Explorations with

the Logic Theorist Machine. In Computers and Thought (eds)

Feigenbaum, E.A. and Feldman, J. New York: McGraw-Hill. 1963.

Nii, H. Penny (1986) Blackboard Application Systems and a

Knowledge Engineering Perspective. AI Magazine Aug 1986.

pp.82-106

Nii, H.P.; Feigenbaum, J.J.: Rockmore, A.J.: (1982)

Signal-to-Symbol Transformation: HASP/SIAP Case Study. AI

Magazine Vol 3 #2. 1982. pp.23-35.

Offut, D. (1988) SIZZLE: A Knowledge-Acquisition Tool

Specialized for the Sizing Task. in Marcus, S. (ed) (1988)

Automating Knowledge Acquisition for EXpert Systems. Kluwer

Academic Press. Norwell, MA. pp.175-200.

Ohlin, B. (1983) Interregional and International Trade.

Harvard University Press. Cambridge, MA.

O’Keefe, R.M. (1989) The Evaluation of Decision-Aiding

Systems: Guidelines and Methods. Information and Management:

The International Journal of Information Systems Applications.

Vol.1? No.4. pp.217-226.

Ozsomer, A. (1991) FREIGHT: An Expert System.for International

Freight Forwarder Evaluation and Selection. CEVED/CEVAL Expert

Systems Module. Developed at International Business Centers,

Michigan State University.

Page, C.V. (1972) Applications of Signature Table Analysis to

Computer-Assisted Health Screening. Proceedings of the Fifth

Hawaii International Conference of Systems Sciences, Computers

and Biomedicine. January 1972. pp.97-99.

Page, C.V. (1977) Heuristics for Signature Table Analysis as

a Pattern Recognition Technique. IEEE Transactions on Systems,

Man, and Cybernetics. Vol. SMC-7 No 2. pp.77-86.

Pearl, J. (1977) A Framework for Processing Value Judgements.

I
I
.
.
.

289

IEEE Transactions on Systems, Man, and Cybernetics. Vol.SMC-7.

No.5 pp.349-354.

Porter, M. E. (1985) competitive Advantage. New York. Free

Press. 1985.

Punch, W. (1989) A Diagnostic System Using a Task Integrated

Problem Solver Architecture (TIPS), Including Causal

Reasoning. PhD Dissertation. Ohio State University.

Punch, W., Tanner, M., Josephson, J., Smith, J. (1990) PIERCE:

A Tool for Experimenting with Abduction. IEEE Expert. Vol.5.

No.5. pp.34-45.

Punch, W., Tanner, M., Josephson, J., Smith, J. (1991) Using

the Tool PIERCE to Represent the Goal Structure of Abductive

Reasoning. Ohio State University LAIR Technical Report 91-WP-

PEIRCE.

Quillian, M.R. (1967) Word Concepts: A Theory and Simulation

of Some Basic Semantic Capabilities. In Readings in Knowledge

Representation. Ed. Brachman and Levesque. Morgan Kaufmann

Publishers, Inc. 1985. pp 97-118.

Rangaswamy, A., Burke, R. Wind, J., Eliashberg, J. (1987)

Expert Systems for Marketing. Massachussetts Science Institute

Working Paper. Report No.87-1107. Cambridge, MA.

Rangaswamy, A., Eliashberg, J., Burke, R. Wind, J. (1989)

Developing Marketing Expert Systems: An Application to

International Negotiations. Journal of Marketing. Vol.53. Oct

1989. pp.24-39.

Root, F. R. (1982) Foreign Market Entry Strategies. AMACOM.

New York, NY.

Roussopoulos, N. and J. Mylopoulos. (1975) Using Semantic

Networks for Database Management. In Readings in Artificial

Intelligence and Databases. Ed. Mylopolopus and Brodie. Morgan

Kaufmann Publishers, Inc. 1988. pp.112-137.

Rugman, A.M. (1979) Internalization: The General Theory of

Foreign Direct Investment. Columbia Univ. Graduate School of

Business Working Paper No. 218a. April, 1979.

Saari, D.G. (1985) The Optimal Ranking Method is the Borda

Count. Discussion Paper #638. Northwestern Univers1ty.

Saari D.G,. and Newenhizen, J.V. (1985). A. Case Against

Bullet, Approval, and Plurality voting. Discu351on paper #637.

Northwestern University.

290

Samuel, A.L. (1959) Some Studies in Machine Learning Using the

Game of Checkers. IBM Journal. Vol.3. pp.211-229.

Samuel, A.L. (1967) Some Studies in Machine Learning Using the

Game of Checkers. II - Recent Progress. IBMwJournal. Nov 1967.

pp.601-617.

Savage, L.J. (1954). The .FoundationS' of .Statistics. New

York:Wiley.

Schank, R.C. and C.J. Rieger. (1974) Inference and Computer

Understanding of Natural Language. In Readings in Knowledge

Representation. Ed. Brachman and Levesque. Morgan Kaufmann

Publishers, Inc. 1985. pp.119-140.

Schiffman, L.G.and L.L. Kanuk. (1987) Consumer Behavior.

1987. Prentis-Hall, Inc. Englewood Cliffs, NJ.

Sembugamoorthy, V. , Chandrasekaran, B. (1986) Functional

Representation of Devices and Compilation of Diagnostic

Problem-Solving Systems. In Experience, Memory, and Reasoning.

edited by Kolodner and Reisback. Lawrence Erlbaum .Associates

publishers, 1986.

Sheridan, T.B. and Sicherman, A. (1977) Estimation of a

Group’s Multiattribute Utility function in Real Time by

Anonymous Voting. IEEE Transactions on Systems, Man, and

Cybernetics. Vol.SMC-7. No.5 pp.392-394.

Shortliffe, E.H. (1976) Computer-based Medical Consultations:

MYCIN. New York: North-Holland.

Simon, Herbert.A. (1969) The Sciences of the Artificial. 1969.

MIT Press. Cambridge, MA.

Simon, Herbert, A. (1974) "The Structure of Ill-Structured

Problems." Artificial Intelligence. Vol 4. pp.181-201.

Slagle, J., Wick, M. (1988) A Method for Evaluating Candidate

Expert System Applications. AI Magazine. Winter 1988. Vol.9.

Nbr.4. pp 44-53

Slovic, P, Fischhoff, B., and Lichtenstein, S. (1977).

Behavioral Decision Theory. Annual Review of Psychology.

Vol.28 pp.1-39.

Slovic, P. and Lichtenstein, S. (1971). Comparison. of

Bayesian and Regression Approaches to the Study of Information

Processing in Judgement. Organizational Behavior and HUman

Performance. Vol.6 pp.649-744.

Steels, Luc. (1990) Components of Expertise. AI Magazine. Vol

‘
-

291

11. No.2. pp.29-49.

Stefik, M: Aikens, J; Balzar, R: Benoit, J: Birnbaam, L;

Hayes-Roth, F: Sacerdoti, E. (1983) The Architectureeof Expert

Systems. In Building Expert Systems. 1983. pp.89-126.

Sticklen, J. (1987) MDX2: An Integrated Medical Diagnostic

System. PhD Dissertation. Ohio State University.

Sticklen, J. (1989) Problem-Solving Architecture at the

Knowledge Level. Journal of Experiment and Theory in

Artificial Intelligence. Vol.1. pp.233-247.

Sticklen, J.: Chandrasekaran, B.; Bond, W. (1989) Distributed

Causal Reasoning. Knowledge Acquisition. Vol.1. pp 139-162.

Sticklen, J., Chandrasekaran, B., Josephson, J. (1987)

Modularity of Domain Knowledge. Expert Systems: Research and

Applications, Vol.1. 1987.

Sticklen, J3 Chandrasekaran, B., Smith, J., Svirbely, J.

(1985) MDX-MYCIN: The MDX Paradigm Applioed to the MYCIN

Domain. Comp» and Maths with Applications Vol 11 No. 5 pp 527-

539.

Subieta, A. (1991) INTJVS: An Expert System for International

Joint Venture Partner Evaluation and Selection. CEVED/CEVAL

Expert Systems Module. Developed at International Business

Centers, Michigan State University.

Tanimoto, S.L. (1987). The Elements of Artificial

Intelligence. Computer Science Press, Rockville, MD.

Tversky, A. (1972) Elimination by Aspects: A Theory of Choice.

Psychological Review Vol.79 No.4 pp.281-199.

Tversky, A. and Kahneman, DE. (1986). Rational Choice and the

Framing of Decisions. In Readings in Uncertain Reasoning, Ed:

Shafer, G. and Pearl, J. Morgan Kaufmann:San Mateo, Calif.

1990. pp.91-104.

Von Neumann, J. and Morgenstern, O. (1947). Theory of Games

and Economic Behavior. Princeton Press, Princeton, NJ.

Von Winterfeldt, D. and Fiscer, G.W. (1975) Multi-Attribute

Utility Theory: Models and.Assessment Procedures. InlUtility,

Probability, and HUman Decision Making. ed. D.Wendt.

Dordrecht. The Netherlands. pp.47-86.

Wang, H. (1960) Towards Mechanical Mathematics. IBM Journal of

Research and Development. Vol.4 pp.2-22.

292

Whitney, K. (1991) PEREVAL: An Expert System for Expatriate

Personnel Evaluation and Selection. CEVED/CEVAL Expert Systems

Module. Developed at International Business Centers, Michigan

State University.

Wiggens, N. and Kohen, E.S. (1971) Man vs. Models of Man

Revisited: The Forecasting of Graduate School Success. Journal

of Personality and Social Psychology. Vol.66 pp.675-685.

Winston, In Artificial Intelligence. Addison Wesley

Publishing Co. Copyright 1984.

Woods, W.A. (1975) What’s in a Link: Foundations of Semantic

Networks. In Readings in Knowledge Representation. Ed.

Brachman and Levesque. Morgan Kaufmann Publishers, Inc. 1985.

pp.217-242.

Wright, P.L. (1975) "Consumer Choice Strategies: Simplifying

vs. Optimizing," Journal of Marketing Research. Vol.12 (Feb

1975), pp.60-67.

Yeoh, P.L. (1991) DISTEVAL: An Expert System for Distributor

Evaluation and Selection. CEVED/CEVAL Expert Systems Module.

Developed at International Business Centers, Michigan State

University.

MICHIGAN $1an UNIV. LIBRARIES

lliilWIN“illliililliiliillliiiIlHIIIiHIUWW
31293008775599

