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ABSTRACT 

THREE DIMENSIONAL LOCALIZATION AND TRACKING FOR SITE SAFETY 

USING FUSION OF COMPUTER VISION AND RFID 

By 

Rana Hammad Raza 

 We propose a state of the art fusion framework of Computer Vision (CV) and Radio 

Frequency Identification (RFID) to support object recognition and tracking in a three 

dimensional space. Fusion can significantly improve performance in applications of autonomous 

vision and navigation and site monitoring, especially in outdoor environments. Increasing safety 

in construction zones and enhancing security in airports are important problems that involve 

understanding interactions between objects, machines and material and can be solved using 

sensor fusion and activity analysis. Identifying objects solely via vision is computationally 

costly, error prone, limited by occlusion, and sometimes impossible in practice. RFID can 

reliably identify tagged objects and can even localize targets at coarse spatial resolution. 

Alternatively, CV can increase the performance of RFID by fine tuning the location information 

and providing fuzzy features to avoid cloning or deception.  

 

 We have implemented stereo using commodity cameras and have used a commercial RFID 

based Real Time Location System (RTLS) for our experiments and have achieved encouraging 

results. The performance of both modalities was evaluated separately and in fused mode. In our 

stereo experiments outdoors we obtained an RMS accuracy of within ~7.6 in (19.3 cm) for 

objects up to 80 ft (24.4 m) away from the cameras. For real time trajectories, RTLS provided 2 

m to ~2.6 m location accuracy for dynamic tagged objects in a cell of 40×40 m with four readers. 

We propose a fusion based tracking algorithm and our research demonstrates benefits obtained 



when most objects are cooperative and tagged. We abstract the information structures in order to 

support a Site Safety System (S-3) with diverse information sources and constraints and 

processes that may not have knowledge of each other. We have used relaxation to control the 

integration of information from CV, RFID, and naïve physics in tracking. The label elimination 

approach readily represents the ambiguity occurring in real-life applications. The key to reducing 

the computational requirements is to eliminate many labels at each filtering step while keeping 

those labels compatible with observation. As a post processing step to labeling, we have used 

total track smoothness for optimization to update computed tracks for increasing system tracking 

reliability. Work site analysis can proceed even when information from one sensor or 

information source is unavailable at some time instances.  

 

 We have shown with simulations and real data that fusion can greatly increase tracking 

performance and can reduce computational cost and combination search space up to 99% in 

some cases. Test cases showed how fusion can solve some difficult tracking problems outdoors. 

We assessed performance of tracking using track error i.e fraction of wrong trajectory point 

assignments. For some object trajectories outdoors, the fused system reduced the track error from 

0.53 to 0.13. The likelihood of producing correct object trajectories in regions partially or fully 

occluded to CV is also increased. We conclude that significant real-time decision-making should 

be possible if the S-3 system can integrate information effectively between the sensor level and 

activity understanding level. Engineering faster RFID updates will likely reduce the number of 

objects that can be sensed; however, this should be a favorable tradeoff in a construction site. 

Employing knowledge based constraints and analyzing systematically object track initiation and 

termination are some of the possible research expansions to be worked upon in the near future. 
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_____________________________________________________________________________________________ 

 

CHAPTER 1 

Introduction 

_____________________________________________________________________________________________ 

 

Site safety and security, which requires understanding the interaction of persons, objects and 

machines, is an important problem that can be solved using sensor fusion and activity analysis. 

Identifying objects solely via computer vision (CV) is computationally costly, error prone, 

limited by occlusion, and sometimes impossible in practice. Radio Frequency Identification 

(RFID) can reliably identify tagged objects and can even localize targets at coarse spatial 

resolution. Our research that focuses on construction sites demonstrates benefits obtained when 

most objects are “cooperative” by being RFID tagged. We do not assume a controlled 

environment, but do assume that a survey of the terrain exists, including benchmark locations. 

This partial control is needed since tracking, especially in an outdoor environment, presents 

difficulties with varying lighting, rain, smoke, dust, and noise, and occasional unexpected agents 

or objects. Real-time decision-making, which is needed for safety and security applications, 

should be possible if the overall system can integrate information effectively between the sensor 

level and activity understanding level. 

 

 

racking multiple objects is a fundamental problem with wide application and a rich 

literature. We are interested in application problems in site monitoring, security, and T 
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activity analysis. Examples are tracking workers, materials, and machines in construction sites; 

baggage and people in airports; or patients and care workers in medical care facilities. There are 

many other important applications that come under this domain such as analysis of social or 

workplace interactions, analysis of games or shopping, asset management, old age home 

monitoring, and assisting persons with disability etc. 

 

1.1 Research problem and area of focus 

 

 In most of our experimental work we have focused on construction site safety in an off-

highway outdoor environment. The approach we have presented is conceptually analogous and 

valid for other applications.  

 

 Construction sites are planned areas that consist of resources such as personnel, equipment 

and materials involved in active work tasks. These resources are continuously dynamic and 

possess uncontrolled and sometimes arbitrary trajectories during the construction work. Also, 

construction sites are generally constrained and crowded areas. Any spatial interference in such 

dynamic construction sites can cause accidents involving collisions. Each year, more than 100 

workers are killed and over 20,000 are injured in the construction industry [1]. One of the 

distinct safety problems has been identified as the proximity of workers-on-foot to heavy 

construction equipment and other vehicles [2]. Fatigue, work pressure, repetition of work [1], 

lack of awareness of existing specific risk factors, along with blind spots [3] are among the major 

causes of such work fatalities. Also many commercially available types of proximity warning 
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sensors and systems can be rendered useless in the construction environment when covered with 

mud, ice, snow, ore, rock, and other material. 

 

There are several proximity warning technologies that are available to help eliminate blind 

spots and associated accidents involving large off-highway equipment [4]. These include Radio 

Detection and Ranging (RADAR), Global Positioning System (GPS), RFID tags, cameras, 3D 

laser scanners and combinations of these technologies. Each of these comes with some 

limitations, such as operating range, signal availability, size and weight, cost, susceptibility to 

false alarms and applicability to construction environment. Successful implementation of these 

systems may be achieved if their shortcomings are realized properly and anticipated.  

 

To avoid spatial conflicts of construction resources, time-lapse photography and cameras are 

often used to analyze daily safety procedures [5]. Due to computational complexity in an 

uncontrolled environment, vision based techniques lack capability for real-time alerts. Therefore 

using Computer Vision (CV) alone for object recognition, localization and tracking tasks is still 

challenging. Some of the limiting factors are blind spots, arbitrary trajectories, changes in pose, 

scale, lighting, occlusion, visual data quality, volume of data and uncertainty.  

 

1.2  Basic functionality requirement and significance of research  

 

 Construction site safety and similar applications of interest require a Site Safety System (S-3) 

that provides some or all of the following basic functions. 
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a. Detection of the presence of objects of interest (persons, machines, materials, vehicles…) 

b. Identification of the objects (by class or by a unique object instance) 

c. Object location in workspace coordinates or by designated areas,  

d. Object track, if the object is moving,  

e. Important object properties, such as shape, color, weight, speed, ownership, supplier, 

etc.  

f. A memory representation of space and time including location of objects, trajectories, 

and behaviors. 

g. Application specific processes that manage objects and control their behavior (such as 

collision avoidance or creation) 

 

Fusion of computer vision and RFID can provide this functionality in many cases. While 

humans rely on visual sensing for such problems, an automatic system will perform faster and 

more reliably with fused input compared to optical input alone. Higher level problem-specific 

analysis can then be applied on top of functionality (a) to (e) to create a dynamic inventory of a 

workspace, infer what agents or objects are doing (function f), manage interactions, define and 

summarize events etc. (function g). 

 

 In a construction site domain, fusion can be used to design a real-time three dimensional 

localization and tracking system incorporated to better automate work safety technologies. It is 

possible to accurately locate and track static and moving objects using three dimensional fused 

data obtained from RFID and CV. The S-3 system will have video cameras, RFID tags/readers, a 

spatial database, local and global warning systems, and wireless networking to synchronize and 
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transmit information to displays for remote control and alerting workers/operators. Such a 

system with effective management practices has sufficient potential to significantly improve 

safety at construction sites. In a construction site environment, it is safe to assume that the 

objects are mostly cooperative and tagged, wearing distinctive clothing, and that 3D survey data 

of the test site exists. 

 

 The significance of this research is to explore integration of S-3 system capabilities as 

follows: 

 

a. Integrate cost effective sensors for fusion into a real-time construction site environment. 

b. Enhancing system detection and recognition capabilities. 

c. Understanding interactions between objects and materials in an outdoor environment.  

d. Augmenting three dimensional localization and tracking that can enable safety spheres 

for construction personnel in the work envelope of construction vehicles and heavy 

equipment. 

e. Creating dynamic inventory of a workspace for resource efficiency maximization. This 

will help improve construction site management by utilizing site information to better 

account for equipment, materials, personnel, and activities. 

 

1.3 Motivating application: monitoring activities in kindergarten 

 

Consider a motivating application of “analyzing” what is going on in a kindergarten: Figure 

1.1 (see S. Nakagawa et al. [6]). The major output is video. Parents can view their child’s 

activity on the Internet: they can see what their child does and what other children or toys he/she  
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plays with. Placing video cameras throughout the environment is easy, but selecting the right 

cameras and time slices is difficult. RFID tags can be placed on the play objects and on the 

children so that readers within the play space can locate and identify them as they move about. 

 
 

Figure 1.1 

Fusion based Kindergarten students’ online observing system. 

"For interpretation of the references to color in this and all other figures, the reader is referred 

to the electronic version of this dissertation." 
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Appropriate cameras can be selected for good views of selected children and/or objects. Alarms 

can be implemented for interaction between designated pairs of objects. Doing summarization 

automatically requires automatic identification of the children and toys, and perhaps their 

interactions. How much time does the child spend with toys versus other children? With which 

children did the child interact during the day? There is much current CV research on this, but use 

of RFID to identify children and toys can create a working system today. Motion and activity 

analysis can then be used to classify and select video segments. Although automatic activity 

analysis may not be robust, at least the parents will be watching the right child. There are other 

applications requiring similar functionality – for example, monitoring assisted living facilities or 

studying how shoppers examine items for sale in a store. Extension of this functionality to 

outdoor site management can enable some control of real time operations. 

 

1.4   Capabilities and limitations of CV 

 

 Computer Vision has been very successful in controlled indoor environments, but challenged 

in uncontrolled outdoor environments. The CV literature contains thousands of reports on object 

detection and recognition, tracking, and motion analysis. Image sensors are passive, cheap, can 

be far-seeing, and can collect a good deal of information about a scene. The output images are 

conveniently interpreted by humans. Commodity cameras easily produce frame rates useable for 

most human motion analysis. Detections and relationships in a 2D image can often be mapped to 

the real 3D scene. Using multiple camera stereo, objects can be located in 3D. Or, special active 

sensors can yield range/depth images. Images are useful to sense the extent and pose of an 

object, its relationship to other objects, its motion trajectory and behavior. Vision requires a clear 
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line of sight and perhaps the object must be in a suitable pose (position and orientation) for 

detection and identification. 

 

 Object identification via CV, function 1.2(a) above, is often difficult and is usually based on 

sensed features 1.2(e). Even accurate features may not precisely ID an object, e.g. who is that 

person or what year is that Chevy Cruz. ID by features, if possible and reliable, can be 

computationally costly given the necessary signal processing and the variation of appearance 

over many possible 3D poses. So, while person identification using carefully imaged biometrics 

might yield ID accuracies of over 98%, more general object recognition via color camera image 

is far less accurate. Acquiring quality images under occlusion and variations in lighting also 

causes serious problems in CV applications. Uncontrolled outdoor environments might be dark, 

dusty, have rain or snow, and have both static and dynamic objects occluding the sensor view. 

Finally, CV may sometimes give too much information; for example, humans do not want to be 

imaged in private spaces, and may resent being watched in work places. 

 

1.5  Capabilities and limitations of RFID 

 

RFID applies generally in industry and business for automatic identification of items. Due to 

its improved functionality compared with barcodes, it is now replacing those ancestors wherever 

feasible. The major advantage of RFID is that its operation is independent of line of sight 

between reader and tag. The tags come with a read and write capability when there is onboard 

memory. RFID can also be combined with sensors to make sensory tags. RFID can easily and 

reliably provide a unique object ID by transmitting a digital signal to a reader. Such reliable 
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identification is often difficult using vision. With enough power, RFID can also transmit non-

visual features of a person, such as name, weight, height etc. and in case of objects, their 

ownership, contents, and the full surface description of a 3D object etc. RFID can operate in 

smoke, and darkness, thus it is widely used in sales and inventory systems and is replacing bar 

coding when cost permits. Object ID approaches 100% accuracy in commercial applications 

where objects are close to (presented to) a reader in a controlled environment. Objects with RFID 

tags can actually transmit their own physical description to an automated system or a security 

person. In robotics or material handling, the description might send a CAD model to a CV 

system to teach it how to recognize the object. RFID technology offers a wide variation in terms 

of cost, size, sensing distance, memory and processing power, and security [7]. With higher 

RFID frequency, higher data rate can be achieved. The higher data rate with appropriate anti-

collision algorithm can enable a single reader to read a large population of tags.  

 

RFID can even be used to locate objects. Although the inexpensive nature of passive RFID 

offers large scale utilization, cheap passive tags have the limitation that the tag can only provide 

its identity, but to acquire location information complex infrastructure is required. Some 

applications use active tags for localization. The Real Time Location System [8] that we have 

used for our RFID sensing is discussed in Chapter 4. RFID codes cannot be sensed by humans 

and hence can yield less overt ID and might be tolerated in private human spaces. 

 

RFID requires that an object be physically tagged, thus changing the object itself and 

requiring that the object be “cooperative”. Although passive RFID tags can be tiny and do not 

require their own energy source, they are used for limited range and have limited memory. 
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Highly functional RFID tags require an energy source for communication, memory, and 

processing. An RFID tag is a proxy for an actual object so it or its communication can be 

counterfeit, thus making an object appear to be what it is not.  Simple examples of this would be 

one driver stealing an EZ-Pass device from another driver, a shopper moving a tag from a cheap 

article to an expensive one, or two airline passengers swapping their RFID boarding passes. Thus 

RFID tags in critical security applications need to use encryption and secure operating system 

principles.  

 

Table 1 highlights the relative strengths and weaknesses that will be discussed in Chapter 2 

and referenced throughout this thesis. 

Table 1.1  

Advantages and disadvantages of CV and RFID. 

CV versus RFID Computer Vision RFID 

 

Advantages 

 

 Passive feature-based sensing  

 2D array represents many 

properties of 3D world 

 Cheap commodity sensors 

 Similar to human vision 

 Can recognize object and pose 

 Yields human-useable displays  

 

 Object oriented sensing 

 Can provide arbitrary symbolic 

object properties 

 Occlusion not a problem in 

several cases 

 Object recognition not a 

problem 

 Coarse object location possible 

 

Disadvantages  Occlusion prevents sensing 

 Variations in lighting and object 

appearance  

 Variations in 3D object pose 

 Some object properties are not 

observable 

 Object/background separation 

 Active sensing recommended 

for distant location sensing 

 Sensing distance and angle can 

be complex 

 Greater distance requires 

greater power 

 Tag content must be written 

 Tags can be cloned or lost 
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1.6  Dissertation outline 

 

 The rest of this dissertation is organized as follows. Chapter 2 provides a summary of the 

related literature reviewed in developing the presented work. Chapter 3 provides the problem 

formulation and  approach to its solution. Chapter 4 highlights location sensing with respect to 

stereo CV and RFID. Chapter 5 explains the fusion model. Chapter 6 provides details on tracking 

using fusion. Testing methodology and experimental results are given in Chapter 7 along with a 

discussion of limitations and problems. Finally, Chapter 8 presents the research conclusions and 

need for future work. 
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_____________________________________________________________________________________________ 

 

CHAPTER 2 

Background 

_____________________________________________________________________________________________ 

 

This chapter provides the necessary background material for understanding the work and 

discussion in the rest of this dissertation. Where required, a brief background about the topic 

under discussion will also appear in other chapters. This chapter discusses the functionality of 

computer vision and RFID and what are the constraints when these techniques are used 

separately. As the discussion progresses, the state-of-the-art projects are explained that have 

used fusion for detection, identification, location and tracking; however, some single mode 

applications are discussed to show how fusion can improve performance. We have also 

explained our work in the natural outdoor environment. The categories of these tag based vision 

projects have been made in the context of application defined functionalities.  

 

nimal vision solves recognition and navigation problems in a 3D world. An organism 

needs to know what objects and activities are in its environment and what consequences 

these have. Visual sensing is often integrated with auditory or other sensing -- and also with 

memory -- for an organism to make decisions. A dog is attacking, a car is passing, a trash bin is 

heavy. Invention of radio frequency identification tags now provides the capability for an object 

to notify a nearby agent of its presence and properties; and, it may be that neither the presence 

A
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nor properties are observable via vision. For example, a buried steel drum can transmit a 

description of its contents; an unseen vehicle can warn of its approach, and a store item can tell 

that it has not been purchased.  To start here the functionality and limitations of RFID is 

discussed. 

 

2.1 The functionality and limitations of RFID 

 

 RFID technology is a mature and economically successful technology that can provide 

reliable symbolic identification of objects that are tagged, including features of the object that 

cannot be observed via vision. RFID technology has revolutionized manufacturing, distribution, 

sales, and transportation technologies by providing non contact, non optical object ID. Cheap 

low end RFID tags are substitutes for a printed bar code. Higher end RFID tags are 

communicating devices with a power source, memory and processing power, and are much like a 

wireless computing device. Moreover, RFID technology can not only provide object ID, but can 

also be used to provide object location. RFID enables all individual railroad cars [9] and many 

trucks in the US [10] to be recognized by a nearby reader and tracked via a network. The RFID 

based automatic vehicle identification system of Trans Core technologies is providing control 

and tracking of commercial ground transportation vehicles at busiest airports of US [11]. Other 

tracking solutions integrating RFID with GPS [12] and cell phones are currently available in 

world markets. In this chapter, we do not concentrate on how RFID can replace optical sensing 

or CV, but instead on how RFID together with CV can enable new or more capable systems.  
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Automatic Identification (Auto-ID) deals with information control and material flow 

problems. Contactless identification is an integral part of automatic identification. Contactless 

identification is an independent research area that combines varying fields such as 

telecommunication, semiconductor, cryptography, security, data protection and handling. 

Barcodes, magnetic inks, optical character recognition (OCR), smart cards, biometrics and Radio 

Frequency Identification (RFID) are automatic identification methods. RFID is a wireless 

technology since it communicates using Radio Waves. Want [13] describes the benefits of RFID 

technology, which include more reliable scanning, better tracking, integrated metadata 

management, reduced back-end communication, efficient label management, and wireless 

sensing. In addition to its obvious application in business architectures, RFID has also been 

integrated into robotics and artificial intelligence applications. In the subsections below, we 

consider several aspects of RFID, such as cost, wavelengths that are used, power that is needed, 

and distances and angles between object and reader. Different types of engineered solutions are 

available for different applications.  

 

2.1.1 RFID operation 

 

 The major components of the RFID infrastructure are the tag, reader, database and a host 

application: Figure 2.1. The host application manages the RFID reader. It allows a reader, via 

radio frequency through its antenna, to activate and/or directly communicate with a transponder 

on a tag attached to an object. Access to the parking lot via an RFID tag presented a few inches 

from a reader at the gate allows the reader to remotely read and/or write data to the RFID tag.  
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 The tag modifies the received signal and transmits back a modulated signal. The reader 

through its antenna receives this modulated signal and decodes the tag ID. The data related to the 

tag ID in the database is then used by the host application. For example, when a drum of 

antifreeze is loaded onto a truck, the tag on the drum and the tag on the truck are read in order to 

complete shipping and inventory records. RFID read distance ranges from few inches to more 

than 100 m and RFID antenna read angle ranges from a pencil beam to 360
o
.   

 

 
 

Figure 2.1 

General infrastructure of an RFID system. The RFID tag may be many meters distant from the 

reader. 
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2.1.2 Types of RFID tags 

 

 RFID tags can be classified in different ways; however, we use the two groups commonly 

used in industry [14], – by power and by reading distance. First, depending upon the chip’s 

power requirement, RFID tags can be categorized into passive, semi-passive (sometimes called 

as semi-active), and active tags. Moreover, the type of tag dictates the memory capacity of the 

tag. Passive tags consist of a semiconductor chip and an antenna. Electromagnetic energy 

received from the reader is used to power the response of the passive tag back to the reader. The 

read distance of passive tags is short due to limited induced voltage and reflected signal. Semi-

passive tags contain a battery for powering only the logic in the tag; however, their 

communication principle is just like passive tags. Due to the onboard battery they can operate at 

long ranges compared with passive tags since they don’t have to rely only on induced voltage. 

An active tag utilizes an onboard battery for communicating and for powering the tag logic and 

operates at ranges greater than passive and semi-passive tags. Unlike passive and semi-passive 

tags, the added benefit of an active tag is that it can initiate, as well as respond to communication 

with the reader. The broadly categorized RFID structure with their functionalities is listed in 

Table 2.1.  
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 A second classification of tags depends upon the field of operation, categorizing the tags as 

near field or far field.  The near field tag’s operating principle is based on Faraday’s law of 

magnetic induction. The reader, through its antenna coil, induces voltage in the tag’s coil. This 

induced voltage is then varied by the tag’s onboard circuitry by changing the applied load, 

thereby encoding a unique tag ID. This varying induced voltage is then sensed at the reader. This 

method of sending data in the near field operation is called “load modulation”. The far field tag 

operates on the principle of radio waves. The reader propagates electromagnetic waves using a 

dipole antenna. Some of this energy is reflected back from the tag dipole antenna due to 

impedance mismatch. Changing antenna impedance over time causes variation in the reflected 

signal strength. This pattern is used to encode the tag ID that is then decoded at the reader. This 

Table 2.1  

RFID tag types. 

Type Functionality Power Life span Security Communication 

 

Passive 

Tags  

 

Purely passive and can 

vary from read only to 

read and write  

 

 

Power 

from 

reader 

 

Indefinite 

 

Ranges 

from zero 

to low 

security 

 

 

Response only 

Semi-

Passive 

Tags  

Integrated sensing 

circuitry and onboard 

battery power to 

supplement received 

energy 

 

Onboard 

battery 

Depends 

upon 

battery life 

Minimal to 

highly 

secured 

 

Response only 

Active 

Tags  

Onboard battery, 

complex protocols and 

communication with 

active tags  

 

Onboard 

battery 

Depends 

upon 

battery life 

 

Highly 

secured 

Respond or 

initiate 
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way of sending data to the reader is called “back scattering”. The physics of these designs 

determine their cost and performance. 

 

2.1.3 Radio frequency 

 

 RFID uses radio waves with frequencies from 125 KHz to approximately 3.1 GHz. Lack of 

worldwide uniformity of frequency regulation is hampering international standards of RFID 

systems. Though there has not been an international consensus on the frequency bands for RFID, 

typical RFID frequencies with read range comparison and respective costs are given in Table 2.2. 

A summary of the commonly used RFID frequencies with their different attributes is given in 

Table 2.3. 

 

 

 

 

 

 

Table 2.2 

RFID typical frequencies in use and respective ranges. 

Tag class Band Frequency Band RFID  Frequency Read range Cost 

 

Passive 

 

LF 

 

 30  - 300 KHz 

 

125 - 134  KHz 

 

0.2 to 0.5 m 

 

$0.2-$0.8 

HF  3  -   30 MHz 13.56        MHz 1.5 to 3    m $0.2-$2 

UHF 0.3  -   3 GHz 865 -  956 MHz 0.5 to 7    m $0.2-$0.8 

 

Semi-Passive         Available in LF, HF and UHF band 20 to 100  m $4-$20 

 

Active UHF 0.3 - 3 GHz 433          MHz  100       m $5-$50 

MW  2 - 30 GHz 2.45         GHz  100       m $5-$50 

UWB  2 - 30 GHz 3.1-10.6   GHz  100       m $5-$50 
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2.1.4 Limitations and needed improvements 

 

 For maximum exploitation of RFID technology there is still a need for technical and security 

advancement. Following are some of the major limitations. 

 

 

  

Table 2.3 

RFID frequency attributes. 

Attributes Low Frequency High Frequency Ultra High 

Frequency 

Microwave 

Frequency 

 

Frequency 

 

 

125 - 134  KHz 

 

13.56  MHz 

 

865 -  956  MHz 

 

2.45  GHz 

Data Rate 

 

Slow Moderate High Very high 

Range 

 

Close contact About 3 ft About 10 to 30 ft More than 100  ft 

Penetration Penetrates water 

and tissue 

Not good near 

metal and 

penetrates some 

materials 

 

Does not penetrate 

metals 

Does not penetrate 

metals 

Tag size Relatively bigger 

tag size 

Thin 

construction but 

relatively bigger 

tag size 

 

Small tag size Small tag size 

Moisture 

effect 

 

No effect No effect Negative effect Negative effect 
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2.1.4.1 Standardization and cost 

 

 Business demands resulted in reduced RFID cost to replace other labeling technologies. 

However, there are two standards being generally followed, EPC governed by Auto-ID Center, 

and the ISO specified set of standards. Therefore, a definition of mutual commonality is required 

for global application and discerning of RFID coding. 

 

2.1.4.2 Read accuracy 

 

 Read accuracy is important for a specific application and environment. It is affected by false-

negative readings, i.e. missing a tag, and false-positive readings, i.e. detection of a tag that is not 

in range.  Read accuracy is influenced by RFID reader design, reader and/or tag orientation and 

obstructions. A typical E-ZPASS installed on a highway toll station operates on UHF (900 MHz) 

with flawless detection of a low lying sports car to large trucks moving 5 MPH [15]. 

 

2.1.4.3 Anti-collision  

 

 Anti-collision algorithms are applied to overcome signal collision and data loss during 

scanning of several tags at same time. The reader as well as tags can adopt an anti-collision 

algorithm [7]. Presently, anti-collision technologies allow simultaneous communication between 

a reader and up to 2000 tags in the reading area.  
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2.1.4.4 Security 

 

 An RFID system should ensure security at all interfaces to prevent unauthorized processes 

from reading or writing tag data.  For example, a business must prevent a shopper from changing 

the price of an item and the toll authority must prevent driver A from charging an EZ-Pass toll to 

driver B’s account.  Higher level security features result in increased tag cost. Common security 

features are write lock, password protection, authentication, stream encryption and crypto 

processors [16]. Note that interfering with an RFID transaction is similar to disguising an object 

or incorrect feature detection in the optical domain.  

 

2.1.4.5 Size and power 

 

 Nanotechnology is exploited to reduce the size of RFID tags. A few of the industry’s lowest 

power microprocessor chips are reported by Phoenix as having 30 pW of power requirement in 

sleep mode. For comparison, some passive tags power requirements range from 5.1W to 25 W 

depending upon the frequency and read range. For passive tags, nano-particles are used to 

produce printable RFID transponders. Semi-passive and active tags incorporate a battery and 

thus the tag size and cost is increased; and, there is a need to consider the temperature limits as 

well as time of service. Toward a design without a battery, there is current research focusing on 

zero energy RFID tags being powered from thermal, vibration (piezoelectric), or solar energy. 
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2.1.4.6 Miscellaneous limitations 

 

 Having stated the main strengths of RFID towards fusion, we mention the weaknesses 

relative to our overall goals of object recognition and tracking. RFID tags do not reveal the 

appearance of an object – size, shape, color, etc. – unless it is symbolically encoded in the tag 

memory. CV here can also address this issue by providing visual analysis of the scene. RFID 

tags do not reveal object orientation, unless multiple antennas [17] or lattice of tags are affixed, 

which demands composite arrangements. In cases where initial estimate of the pose is 

predictable by RFID, CV can then be used for refined pose estimation and tracking. Finally, 

more power is required to supply more information to a reader and at greater distances – that is, 

active RFID is needed. Apart from indoor inventory management and similar long range settings, 

such a setup is generally required in outdoor environments where CV is mostly constrained due 

to lighting conditions and other weather effects. 

 

2.1.5 Positional information  

 

 Within business applications the early focus for RFID use was for identification tasks only. 

However, with the expansion of RFID to location and tracking problems, position information 

comes into play; for example, where objects must be moved or grasped by robots or transfer 

systems. For positioning in outdoor environments GPS is often used, however its reliability in 

indoor scenes is poor. RFID identification systems generally lack positional information, thereby 

not providing direct information on the tagged object location. A network of RFID readers can 

be created, where the readers are used as artificial landmarks. An object can be located by being 
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near to a known reader at a known location. For example, using only RFID, it is easy to 

determine what cars are in a parking lot that has a reader at the gate, or in what hospital room is a 

tagged doctor, thus giving “symbolic” location. Coordinate information will be available 

according to the accuracy of the known reader location.  

  

 Methods that use signal strength or triangulation from multiple readers to compute general 

object coordinates are discussed more under Wireless Location Sensing (WLS) in Appendix D. 

For completeness here, we highlight a few reported results. In [18] the Average Error Distance 

using the active RFID tag infrastructure working at 433 MHz in an outdoor environment is 

reported to be better than 7 m within a range of 100~500 m. In [19] the accuracy using 96-bit 

UHF passive RFID infrastructure to localize objects in an indoor environment was 15 cm within 

a 23 m area. In [8] CSL Technologies  provide an economical off the shelf  Real Time Location 

Systems (RTLS) using active RFID infrastructure at 2.4 GHz in an outdoor environment with an 

accuracy of about 1~2 m within a range of 200 m. The system is in use for tracking of elephants 

in the Dallas zoo [20] and has been independently evaluated in [21]. RFID localization will 

depend on the number of objects and amount of environmental clutter in the application. Some 

other RTLS equipment providers are Ubisense [22] and AeroScout [23] . 

 

2.1.6 Smart objects, networks, location-aware computing 

 

 The technology of wireless and mobile computing and communication is vast and changing 

rapidly. Functionally, a cell phone is much like an active RFID tag, the major difference being 

that the cell phone is designed to connect a human to a network rather than some other object. 
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Cell phones can have large memories and exchange arbitrary data across networks. They can act 

as GPS receivers and provide location information – hence a new field called “location aware 

computing”. They also can contain accelerometers that can provide information on movement. 

Commodity pricing brings impressive power to cell phones at moderate cost. By using local 

multiple radio signals from known locations, a device or tagged object can locate itself within a 

few centimeters in a work area one kilometer across [24]. This supports precision agriculture, 

where precise location supports faster field operations, correspondence of work site points to 

aerial imagery or other sensor input, and more efficient application of fertilizer or pesticides.  

 

Wireless location sensing has provided automation to indoor and outdoor systems. The 

outdoor location sensing systems are generally based on line of sight technologies e.g. GPS and 

cellular, while indoor systems use local positioning systems based on WLAN, bluetooth, sensor 

network, RFID, infrared and ultrasonic, etc. or combinations of these. There is a rich literature 

available on local sensing [25], [26], [27], [28], [29], [30]. We have briefly highlighted wireless 

location sensing in Appendix D. 

 

2.2  Computer Vision functionality and limitations 

 

 Computer vision (CV) is concerned with extracting information about the real world from 2D 

images, or a retina of pixels. 2.5D and 3D “images” may be included, or can be considered 

derived from 2D images [31]. Human vision can provide all of the first five functions a) to e) 

given in Chapter 1 and much of the study of CV involves developing machines with such 

functionality. A recent survey of pedestrian detection from single video frames from an on board 
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automobile camera concluded that humans are skilled at detections whereas current algorithms 

perform poorly [32]. Since the vehicle safety application is of great importance, research will 

continue, and along multiple lines including both monocular imagery and fused input. 

 

CV is related to both image processing and artificial intelligence, depending upon whether 

the (“lower level”) image processing is emphasized or how sensed features are related to 

memory models in recognizing objects (“higher level”) [33], [34]. Object recognition and visual 

motion analysis are two difficult problems for CV that generally involve several steps, each of 

which may be difficult. At the lower level, imagery needs to be normalized or interpreted relative 

to lighting and background so that image regions or boundaries corresponding to objects of 

interest can be extracted. At the higher level the features or extent of the object regions must be 

matched in some way to models of learned objects in memory. Matching of 3D objects can be 

complex due to unknown scale between the real object and sensed image, the large number of 

possible viewpoints (poses) and the effects of occlusion that prevents observation of some object 

features. Objects can be deformable or come in varied sizes and shapes, such as the human body. 

Moreover, even when there exists a workable CV solution, the computational costs can be high 

due to the large amount of image data processed and the large number of possible matches to 

memory. So, clearly there will be many applications that will benefit from using RFID for object 

recognition. 

 

Figure 2.2 shows a camera C observing a workspace with coordinate system W containing 

two objects, pyramid A and cube B, each with their own local coordinate systems. There are 

several methods that C can use to calibrate its relationship to W by observing points of W [31] Ch 
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13, which would be necessary to understand the activities of A and B in the space. The shape of 

each object can be defined in terms of its own object-centered coordinate system. The 

relationship between objects B and C can be represented in terms of coordinate system W. The 

camera has its own 3D coordinate system, and its pose defines a projection from 3D space W to 

the 2D image plane I. The relationship between camera C and an object can be computed using 

three 3D points of that object and the 2D images of those points. 

 
Figure 2.2 

Relationship of camera C with pyramid A and cube B in workspace W. 
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Figure 2.3 shows an intensity image from underneath the Alaskan Pipeline. Because of the 

shadowing, the image intensities were stretched in order to show detail in the shadows. 

Meaningful image regions are difficult to identify; for example, the surface of the pipe appears 

striated by corrosion. By applying a Laplacian operator, points of high intensity change are 

highlighted. Some of these show object structures and corner points, which can be identified in 

the image using higher level image processing operations [31] Ch 10. If an inspection robot 

knows its global location and has some model of what it expects to see, it can compute its 

orientation relative to the pipeline structure in order to perform its work. 

 

 

  

 
 

(a) 

 
 

(b) 

Figure 2.3 

Work robot seeing a section of the Alaska Pipeline via a) an intensity image and b) its Laplacian. 

A few corner points are evident that can enable the robot to get oriented to inspect and operate 

on the pipeline. See Shapiro et al. [31]. 
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Figure 2.4 illustrates the “P3P problem”: how does a known camera platform compute its 

orientation relative to a known object using the coordinates of three points of that object and a 

perspective projection of those three points. Fischler and Bolles [35] treat this problem, give a 

solution for P3P, and discuss more robust solutions when more points are known. The human 

head is a much-studied particular object that often has three observed points that can be used for 

computing head pose and possibly computing a normalized frontal view using that pose [36], 

[37]. 

 

 
Figure 2.4 

The Perspective 3-Point problem: a camera computes its orientation relative to three points seen 

from a known object. 

 

Some areas of CV are not of concern here: for example, automated object inspection and 

measurement operate on precise representations of a known object and are not helped by RFID. 
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Image enhancement, restoration, coding, etc. whose outputs are again images are also of no 

concern. On the other hand, adding symbolic tags to raw video indicating what objects or actions 

occur within a video segment can indeed benefit from RFID. For image or scene understanding, 

an autonomous agent must know what the objects are and where they are in its environment. 

Some environments are controlled, meaning that possible objects, background, and lighting are 

known. Uncontrolled environments make trouble for autonomous vision, since objects, 

backgrounds, and lighting are uncontrolled or unknown. Environments can be “in between”, for 

example, a soccer field or parking lot has mixed properties. There are major challenges to CV in 

uncontrolled scenes, some of which can be practically solved using RFID as noted below.  

 

2.2.1 High image processing and search cost 

 

 A 2D image array records many relations in the 3D world. Although cameras can be cheap, 

processing an array of pixels can be costly. Even if viable object recognition algorithms exist, 

they may be expensive in time and memory due to both the large number of pixels and the large 

number of operations on those pixels. In addition, recognition implies stored object 

representations and a matching algorithm, which imply memory and computational cost [38]. 

Computational cost rises with the number of possible objects. RFID clearly can alleviate these 

problems by having objects declare their presence to a reader. The observer/reader can then 

request an object model from the tagged object, or from a network using the object ID as key. 
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2.2.2 Optical sensing problems 

 

 Several distortions are present in viewing the 3D world via a 2D image, which may interfere 

with object extraction or matching for object identification, e.g. lens distortion, lighting 

variation, digitization noise, and object surface variation. Computation may be required to 

restore proper object features. Extra computation is needed for partial matching when a perfect 

object representation cannot be extracted from an image. Excessive computation and the 

uncertainty inherent in matching partial representations can be avoided if RFID can reliably 

provide object identification, and possibly even object coarse location. 

 

2.2.3  Object modeling 

  

 Irving Biederman [39] stated that a six-year old child might recognize 30,000 different 

objects while having a verbal vocabulary of only a few thousand words. The variety of objects, 

both man-made and natural, makes general object modeling extremely difficult. Imagine a junk 

yard robot tasked with sorting all the refuse of society! A grocery store or airline lobby is also 

very complex. Different types of object models have been proposed for different types of objects 

and applications. Learning or teaching of objects and the recognition algorithms vary with the 

type of object model [40]. Three common types of object models are appearance-based, feature-

based, and geometric-based. Appearance-based models represent an object, or object part, based 

on the sensor representation of it [41], [42]. Feature-based models typically represent an object 

as a fixed length vector [list] of features computed from that object [43]. Geometric-based 

models typically represent an object as an aggregate of vertices, creases, surface patches, etc. in 
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an object coordinate system. The type of model determines how it is created or learned and how 

it is used in recognition. Some models may have to be changed even while in use – for example, 

an object tracker using an appearance-based model has to continuously update the model during 

tracking as the lighting and image shape changes. If an object can transmit its own model 

information via active RFID, both the search of the observer’s model memory and the 

combinatorics of matching model to observations can be greatly reduced. 

 

2.2.4 Object tracking 

 

 Recognition and tracking an object in an image sequence is one fundamental problem of 

computer vision. The goal is usually to recognize a moving object and analyze what it is doing. 

If the observer is in motion, objects that are stationary in 3D will yield apparent motion to the 

sensor complicating analysis, as in the case of a moving car and moving pedestrians. Figure 

2.5(a) shows an image from a staring still camera monitoring a workspace. Entry of a person is 

detected by a change in region statistics over a few video frames.  Simple change detection 

greatly simplifies segmentation; however, object detection and ID remain as problems. Related 

applications are motion-based recognition, automated surveillance, video indexing, human-

computer interaction (HCI), traffic monitoring and vehicle navigation. Modeling object 

appearance and movement in vision-based methods are both computationally complex. 

Statistical and area processing methods of CV might be replaced by an engineered RFID 

solution. Khan and Shah [44] survey background on various image processing approaches to 

tracking objects and present a novel method for tracking people moving on a plane by combining 

information from multiple single image viewpoints. While their viewpoint combination method 
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performs well on the tests, it can be stymied by strong occlusion and by intersecting object 

tracks. They describe additional appearance-based methods that might help remove these 

ambiguities, but probably not as well as can fusion of RFID.  

 

      

                                          

                                            (a)                                                                                        (b) 
Figure 2.5 

Still camera monitoring a workspace: a) workspaces can be monitored by staring cameras. b) 

object motion can be detected by changes in region statistics. 

 

2.2.4.1 Object recognition  

 

 Performance of recognition and tracking systems strongly depends on their ability to detect 

and identify objects in some environment. The motion of the object may be necessary for its 

identification. The detection of an object might be performed in the first frame or in all frames. 

The complexity increases due to false alarms and false dismissals and also due to objects actually 

entering or leaving the observed space. Some of the CV processes used in detecting objects 

include feature point detection, background subtraction, supervised learning, and segmentation 
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[32]. Due to the projection of 3D to 2D and due to articulation of some objects, whatever model 

that the observer is using has to change over time, adding more complexity to the tracking task. 

 

2.2.4.2 Object location and pose estimation 

 

 Pose estimation is the process that estimates the position and orientation of an object in some 

coordinate system. Mathematically, we need to determine the three angles, or orientation 

parameters, and the three position parameters orienting and locating an object in the 3D 

coordinate space. Pose is used by a mobile platform for collision avoidance or interaction with 

the object. Some previous related work is given in [45], [46]. Figure 2.2 shows a camera viewing 

two objects in a workspace W. The application may need to compute the pose of each object 

relative to the workspace coordinates, as in the case of surveillance; relative to the observer, e.g. 

in the case of a robot operating on the objects; or relative to each other, as  in the case of activity 

recognition. Computing the pose of the observer relative to an object has already been introduced 

and sketched in Figure 2.4.  

 

2.2.4.3  Sensing and relating 3D object points 

 

 Pose in 3D is simplified by sensing 3D points on the object rather than just 2D points in an 

image. Stereo can be used to do this, as shown in Figure 2.6. If two cameras with known pose in 

3D space W observe the same object point P, then P can be located in space W by intersecting 

the two camera rays in space. (Due to approximation errors, the closest approach of two rays is 

actually computed. See [31] Ch 13. If more than two cameras are used, then robust analysis can 

be used on a set of approximate ray intersections.)  3D sensors have been constructed by 
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packaging multiple cameras. Or, if the camera C2 in Figure 2.6 is replaced by a laser beam or 

sheet of laser light, then a “structured-light” device is created. LIDAR scanners can compute 

range to a 3D point of an object surface by comparing the phase difference of a modulated light 

beam sent to and reflected from that surface. Thus there exist unit “range sensors” that can sense 

an entire scene as a set, perhaps a dense set, of 3D surface points [47], [48], [49], [50] and some 

current cars have these for collision avoidance [13].  

 

 Having 3D points greatly helps in scene segmentation and object shape analysis relative to 

having only 2D image features; however, it does not make segmentation and recognition easy. 

Once a set of 3D points is available from an object surface, they can be matched to a model 

surface using the general Iterated Closest Point Algorithm [51] to compute relative pose as well 

as quality of match. Approximate pose is required as a starting point. Point or surface matching 

is extended to a moving platform with SLAM (Simultaneous Localization and Mapping) [52]. 

By matching in 3D, we have seen that a sensor can compute its pose relative to 3D object/scene 

points. The sensor can then move and compute its new pose; moreover, it can compute the pose 

of newly observed scene points relative to formerly observed scene points and thus grow a map 

of a scene being explored. 
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Figure 2.6 

Pose in 3D simplified by sensing 3D points  - Two cameras C1 and C2 knowing their relation to 

the space W can triangulate to compute the coordinates of a point in that space. That point must 

lie on the intersection of the two imaging rays [31] Ch 13.   

 

2.3 Research projects based on fusion of CV and RFID 

 

Various methods for fusing the visual and tag sensing data have been proposed. These 

revolve around the basic functions of detection, identification, location and tracking. The 
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categories have been made in the context of fusion-oriented applications. Within the context of 

identification and tracking, the general architecture of tag-based fusion is given in Figure 2.7. 

 

 

 

  

 
 

Figure 2.7 

General architecture of RFID and vision fusion.  
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2.3.1 Model based recognition 

 

 One of the earliest approaches using model based recognition and RFID is proposed in [53].  

The algorithm identifies an object using RFID and then recognizes it in the scene using an 

appearance model stored in the object tag. The algorithm compares the observed model with the 

stored model from the tag and recognizes the object if both models match. If the object is not 

recognized then it is considered to be an occurrence of a new object with no prior appearance 

model. The system acquires the object model and saves it in the tag. Using edge data, a model is 

generated and stored. To accumulate many models, Eigen space analysis is used. Eigen space is 

updated every time an object with model is observed. Only fixed rigid objects were used for the 

experiments. On the same lines Boukraa and Ando [54] have reported a 3D scene analysis 

architecture for polyhedral shaped objects. The object identification is performed using 2.54 GHz 

passive tags with a read range of 1.2 m. The unique tag ID is received from the tagged object. 

Using that tag ID, the object model is then located in a model database, through a network.  The 

vision system then detects lines and edges and projective matching [55] is used for registration.  

Therefore, the object recognition task is reduced to registering the object model to the observed 

image and the recognition part is independent of the number of models in the database. In [54], 

[56] Boukraa and Ando used their knowledge-based recognition algorithm only for single object 

scenes with polyhedral shapes; whereas natural scenes are filled with free form objects.  

 

 

Cerrada et al. [57] approached object recognition and localization for free form static objects 

in complex scenes using fusion. 3D information of the objects is generated using range sensors. 

For vision only based techniques, recognition and localization are costly computational 
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algorithms due to the uncertainty of the objects in the current complex scene. The fusion 

approach reduces the original database to a number of objects in the current view. Their scheme 

presents comparative results with and without RFID. The RFID reader identifies the objects in 

the tagged environment with a list of read tags in the read range but does not provide location 

information. The information is fed to the Weighted Cone Curvature [58] stage from which an 

initial partial view estimate is acquired. Reduction in the original database is achieved by 

carrying out comparison of principal components and partial views.  Finally, for object 

recognition and localization, the difference between two clouds of points is minimized by the 

Iterative Closest Point algorithm [51]. Figure 2.8 shows the block diagram of the proposed 3D 

recognition method.  The validity of the object recognition algorithm in [57] was constrained by 

having always the same number of objects in the scene. The authors further generalized the 

methodology in [59] by allowing the number of objects in the scene to range from 4 to 20. The 

authors used RFID in the segmentation stage since RFID can easily give the number of objects in 

the scene along with their description. Their approach deals with the paradigm of object 

recognition for complex 3D scenes having medium and large databases. The statistical analysis 

provided in Table 2.4 estimates a linear regression model relating number of objects in the scene 

with the recognition time reduction. Recognition percentage increases by only 6% using RFID, 

but the computation time is reduced tremendously by 74% on average. 
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Table 2.4 

Obstacle recognition results. See Cerrada et al. [59]. 

No of scenes No of objects in scene % Recognition Total time(sec) 

RFID w/o 

RFID 

RFID w/o  

RFID 

 

12 

 

4 

 

91.7 

 

86.1 

 

2.45 

 

9.44 

9 3 86.1 83.3 2.96 9.19 

Average 89.3 84.9 2.67 9.33 

Standard Deviation 16.3 17.0 0.47 0.3 

 

 
Figure 2.8 

3D objection recognition algorithm. Recreated from Figures 3 and 5 of Cerrada et al. [57].  
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The CAD model concept is also used by Hontani et al.  [60], [61]. Some CAD based models 

for computer vision are summarized in [62]. In [60] the proposed system uses a combination of 

visual retro-reflector tags and RFID tags. After obtaining object ID from the RFID tag, the 

system gets an initial estimate of pose from the visual tag and then visually tracks objects by a 

model-based tracking method. The tracking algorithm updates object orientation and position by 

detecting edge movement in two consecutive frames. For building and learning the models in 

real time, vision algorithms for model-based recognition require user interaction. In [61] the 

system identifies the tagged object using RFID. The tagged object CAD model is then retrieved 

using the internet through a URL server. After determining a shape component in the captured 

image, the system selects an algorithm for initial estimate of pose relative to the camera. 

Thereafter the system starts tracking the object in front of the camera. The tracking is based on 

the difference between the visible edges and edges of the projected model.  

 

Similarly, for a test-bed having a robotic manipulator arm to clear dishes from a table, the 

authors in [63] used RFID passive tags placed on static objects to identify and retrieve object 

model and information from the database. The reader is placed on the robotic arm. The tag 

system is used for object recognition, vision for object localization and the robotic arm for object 

handling. Using pre-stored template images the ceiling mounted vision system provides location 

information transformed into robot coordinates. This information is then used to position the 

robotic arm and execute predefined commands to interact with the objects. Here RFID increased 

the accuracy and speed of the vision system. The group is also working on calculating the 

orientation of the object based on received signal strength from the static tags on the objects.  In 

another recent approach, Kim et al. [64] used a robot manipulator system for object recognition. 
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The proposed infrastructure uses self-fabricated smart tags having an active landmark (IRED) 

and a data structure consisting of geometrical, physical and semantic information. IRED is 

activated as soon as the tagged object comes in the read range. The robot then searches the 

shimmering light pattern produced by the IRED within the scene. Subsequently the object’s 

depth, size and pose is calculated using model based vision from its stereovision on a pan-tilt 

mechanism. The manipulator can then interact with the object.   

 

2.3.2 Human-object interaction and activity analysis 

 

 Within successful applications of vision-based approaches, human-object interaction and 

behavior and activity analysis are broadening. The problem domain ranges from tracking moving 

humans and objects to ubiquitous learning environments. However, based only on vision and 

image processing algorithms, the development of reliable solutions is still very difficult. A 

survey on human action recognition methods using vision is provided by Poppe [65]. The author 

has discussed limitations of vision state of art techniques. For data acquisition and to identify the 

human, biometric methods in speech recognition, image processing and computer vision are 

required. The RFID system, like other sensory devices, can provide such data. Like other fusion 

techniques in behavior and activity analysis, the key is to get the proper combination that can 

make better decisions and produce higher classification accuracy. Combinatorial fusion analysis 

is a growing research domain for analyzing data fusion methods from multiple scoring systems 

[66]; however, we focus only on fusion of RFID and vision. Hsu et al. [67] have proposed a 

layout for learning behavior monitoring. All the objects on a desk [books, stationary etc.] are 

tagged with an RFID reader under the table. A camera is used to monitor behaviors such as 
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away, sleeping, studying a particular subject, or doing homework. The system is designed to help 

the learner improve his/her learning efficiency compared to a planned schedule. 

 

N. Krahnstoever et al. [68] proposed a robust real time tracking system for analyzing human 

and object interactions and did prototype experimentation on a shelf holding objects with varying 

size and shape. To get the important actions and interactions between the humans and the tagged 

objects, the system combines stereo based articulated motion tracking and RFID based tracking. 

The RFID module provides the presence and orientation information and the vision system 

tracks the human body parts such as head and hand. The object pose is estimated using tag 

orientation. The orientation and angle of the tag relative to the antenna can be approximated 

using received signal strength. With three RFID antennas tag orientation can be determined 

accurately. The vision system target model is a low dimensional approximation of the human 

upper body. The authors claim that the system can easily detect which item the user is interacting 

with, which would be a challenging task for a vision-only system. Also it can recognize that the 

user is probably reading the label on the item, which would likewise be difficult for an RFID-

only system, since it can only estimate the orientation of items and has limited range. This 

research adds to the application areas that require user tracking and interactions.  

 

Another related contribution in activity recognition is given by Wu et al. [69]. Most of the 

objects are tagged with the user wearing an RFID bracelet. Their proposed system uses a 

Dynamic Bayesian Network (DBN) framework for learning object models by modeling the 

correlation between events presented by the RFID and video data. Without any explicit human 

supervision, the method automatically acquires object models from video and provides the most 
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likely activity along with common-sense knowledge about which objects are likely to be 

involved. Additionally, the untagged objects in the vicinity are also identified intuitively. They 

have used skin color models and do segmentation using change detection. For object model 

representation, the Scale Invariant Feature Transform (SIFT) [70] is used to extract feature 

descriptors with maximum likelihood estimates for learning. The experimental setup handles 16 

different household activities with 33 objects in the tracked environment. The unsupervised 

approach is used to learn the object models. The learned models are then used to infer the 

activity and object labels for the same video. Table 2.5 shows the experimental results from [69]. 

It is atypical to see comparable performance with vision only as compared with the outcome 

from both vision and RFID. This indicates that the Bayesian framework has utilized all the useful 

information in RFID and after the object models are learned, RFID is no longer useful. Their 

system lacks view independence due to a single camera and lack of learning motion information 

required for human-object tracking.  

 

Park and Kautz [71] extended the approach in [69] and addressed above limitations. The 

proposed method deals with incorporating human and object models and also building a DBN 

Table 2.5 

Activity and object recognition rates. See Jianxin et al. [69]. 

Common sense used Testing sensors Activity Object 

 

Yes 

 

RFID only 

 

64% 

 

63% 

 

Yes RFID+Vision 

Vision only 

81% 

81% 

72% 

73% 

 

No RFID+Vision 

Vision only 

61% 

63% 

75% 

75% 
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that recognized the human-object activities of daily living in a smart home. For obtaining view 

independent recognition, they used multiple cameras to attain a multi-view vision system. The 

vision system performs track-level and body-level analysis to attain a coarse and fine level 

recognition. The RFID module, having hand worn reader (iBracelet from Intel) and tags, is used 

for learning temporal segmentation of motion and object identification. The detection range of 

iBracelet is 10 to 15 cm. As the person’s hand approaches a tagged object, the reader detects the 

tag and transmits wirelessly the time stamped ID information to the PC-based activity 

recognition system. To generate the activity model, six coarse-level actions are coded for 

investigation. Reported activity recognition results show that different sensing modules better 

indicate different activities i.e activities such as “walking around” are better recognized with 

vision, while activities such as “preparing cereal, drinking water” are better recognized by RFID. 

 

Continuing their work on human-object interaction in [17], [72], Deyle et al. [73] have 

recently presented an approach of constructing RF signal strength images from RFID to be used 

as a distinct sensing modality. Low cost UHF tags are used in their system. By measuring the 

signal strength at each bearing, RSSI images are generated by panning and tilting the readers. 

RSSI images provide ID specific features of the object in range. The RSSI image and the 3D 

point laser range data are transformed into the 2D camera images. By using a probabilistic 

framework, these RSSI images are fused with visual and laser data for generating a maximum 

likelihood 3D point estimate of the tagged object. This information is in turn used by the 

autonomous mobile manipulator to approach the identified object. The interaction with an object 

is then remotely specified by the user using the context aware remote user interface. While 
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performing several test trials, the algorithm is validated in an indoor unobstructed scene by 

achieving authentic localization.   

 

Nemmaluri et al. [74] present a system named Sherlock to automatically recognize, locate 

and index tagged objects. This system is built on their previous work with Ferret in [75]. The 

primary difference is that Ferret used hand held readers and the Sherlock system infrastructure 

has fixed readers capable of controlling their own movement using steerable antennas and 

cameras. Sherlock scans in three different ways i.e fast, coarse and localize. While providing 

little position information, fast scan determines all objects in the environment and provides 

regions. Coarse scan gives a rough estimate of objects present in a particular region while 

localize scan provides position information of a desired individual object. The core component of 

the system is the fine grain RFID localization subsystem that can precisely recognize and locate 

objects. The overall cost of the equipment is high. The RFID reader used can control four 

independent antennas. In addition, the system has an integrated pan-tilt-zoom camera mounted at 

a fixed location. It provides an interface for query and visual system for user interaction and 

display. This system is used to help people interact with their moveable belongings in a realistic 

office environment. Sherlock can localize 90% of objects in a volume of 0.55 m
3
 and can 

localize 100 objects having passive tags in approximately 12 mins. Antenna movement 

determines the worst case scan time. 

 

Tracking humans in cluttered scenes by a mobile robot also requires effective interaction 

with the surrounding world. Some literature suggests utilizing multiple onboard sensors or visual 

measurements. In [76] Germa et al. provides initial adequate results for human tracking using a 
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mobile robot. They have modified a mobile platform with additional onboard capabilities such as 

a monocular pan tilt camera, WiFi, gyroscope and RFID reader with eight antennas for omni 

directionality. Their multi-modal tracking algorithm applies a particle filter for the heterogeneous 

data fusion in a stochastic framework. They have utilized vision to provide closed loop position 

control for a robot end effecter by designing three vision based PID controllers. This control 

strategy is helpful in providing required feedback control during visual information loss.  The 

proposed infrastructure also roughly estimates collision detection in high-risk areas. Validation 

of the whole infrastructure is performed in an indoor environment with sporadic occlusions when 

tracking a tagged individual. As an extension to this work, the authors suggest future research for 

multi person tracking with better collision avoidance while focusing on overcrowded scenes and 

coarse measurements by RFID-based distance evaluation. For checking the system robustness to 

occlusions and target loss, the authors considered the ratio of the frames while the user is in view 

to the total number of frames. For determining this ratio for tracking one to four persons, the 

ratio decreased from 0.22 to 0.19 with a vision only system as compared with 0.93 to 0.85 in the 

fused system, thereby demonstrating the fusion effectiveness. 

 

Blind people make use of tactile and haptic perception (the process of recognizing objects 

through touch and kinematics). The blind assistance devices available in the market require 

strategies for efficient understanding of the unseen environment. T. McDaniel et al. [77] have 

suggested a framework for integrating RFID and computer vision in enabling devices for remote 

object perception. Seeking a wearable device, they used vision and touch features, which can be 

classified at the perceptual level. The vision module provides users with only relevant 

information found through RFID identification. Their algorithm efficiently deals with RFID data 

http://en.wikipedia.org/wiki/Haptic_perception
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rate overload by particular content selection using vision and applies to untagged environments 

as well by gathering tactile features (shape, size, texture, material, etc.) from visual data. As 

future work the authors have suggested experimentation for usability of the proposed system in a 

real environment. 

 

2.3.3 Mobile robot localization 

 

 For a mobile robot to accurately obtain a target pose it needs guided input from the 

navigation module, which in turn depends on a localization algorithm. The robot actual position 

and target position varies due to problems such as wheel slippage. These errors accumulate over 

time. Dead reckoning alone is inadequate in this scenario and additional sensory input is needed. 

Multi mechanical sensors, RFID, and vision techniques have been proposed to solve this 

problem. Some fusion based methods are discussed below. 

 

2.3.3.1 Map- based navigation 

 

 Chae et al. [78] proposed a global to fine localization algorithm for a mobile robot in an 

indoor environment. They used 915 MHz active RFID tags with 6 m detection range as 

landmarks for achieving global localization. A mobile robot with camera onboard was used. The 

mobile robot movement area is divided into tagged regions and a visual map is built with known 

position of each RFID tag. For global localization, the algorithm assigns appropriate weights to 

each of the detected tags depending upon the distance of the found tag from the boundary of the 

region. To detect and describe local features in images, the authors have used SIFT features [70] 
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due to their stability against pose and lighting variation. This feature descriptor is used in a 

specific region to fine tune localization of the mobile robot, and its comparison with the visual 

map gives the current view angle of the robot. Given the tagged surrounding and the feature 

descriptors, the robot localization problem is narrowed down to feature-matching. In a work 

space of 6.27.8 m mean localization error of 0.23 m is reported. 

 

Weiguo et al. [79] have used RFID tags placed on the ceiling with a camera onboard the 

mobile platform to get relative positioning. RFID tags are used as visual landmarks. A 

topological map of indoor surroundings is built using adjacency relationships of the tags in the 

surroundings. The camera distance from the ceiling is kept constant thereby simplifying relative 

position and orientation calculation. The mobile platform traveling in the center uses direction 

and heading angle information from the identified node in the field of view of the camera as 

shown in Figure 2.9. The path planning is then post-processed as per the current heading and 

direction. Another object localization scheme for a mobile robot in a home environment using 

ceiling cameras is reported by Kamol et al. in [80]. The feature information for each object is 

also stored in each tag. The algorithm uses RFID to get rough location of the tagged object. For a 

precise estimate, the system recognizes the object features using a hue-color histogram with a 

subsequent location estimate using a particle filter. 
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Figure 2.9 

Map based navigation scheme. Recreated from Figures 1 and 3 of Weiguo et al. [79]. 

 

2.3.3.2 Obstacle recognition 

 

 S. Jia et al. [81] built a mobile cart, with RFID reader and a Bumblebee stereo vision camera. 

Passive tags are placed on the objects and the path. Obstacle detection and avoidance is handled 

by the RFID module. The presence of an identified object is further validated probabilistically 

using Bayes Rule. The obstacle/object direction with respect to the robot trajectory and the 

probability of the map in which that tag may exist is updated. The center position of the 

maximum probability is considered as the position of the tagged object. Experimental results 

achieved coarse object localization of 0.26 m
2
 with RFID alone. The stereovision cameras are 

used to fine tune localization results. The camera platform recognizes the tagged objects as 

landmarks and gets pose estimates with the help of object (obstacle) tag information such as size, 
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color and shape. Once the pose of the tagged object is identified, the robot determines the 

avoidance route. As continuation of the ongoing work [82], the localization of obstacles was 

further enhanced by using three RFID antennas instead of one. The research has been extended 

by the same group [83], [84] for human recognition in which they have used the same 

infrastructure along with multi RFID antennas. Table 2.6 shows some of the results from 

experiments with different settings. 

 

Table 2.6 

Obstacle localization with different antenna settings. Data extracted from Songmin et al. [82]. 

Antennas configuration Actual position of obstacle (cm) Simulation results (cm) 

 

Using 1 antenna 

 

(220, 400) 

 

(268, 320) 

(280, 400) (296, 276) 

(360, 400) (316, 296) 

 

Using 3 antennas in parallel (240, 400) (284, 304) 

(300, 400) (300, 280) 

(340, 400) (320, 284) 

 

Using 3 antennas with 45
o  

setting (160, 400) (180, 400) 

(320, 400) (324, 384) 

(360, 400) (365, 404) 

 

 

2.3.4 Miscellaneous 

 

 Tracking in the domain of augmented and virtual reality has been researched for some time. 

The tracking devices are inbuilt components of virtual reality systems. Tracking with the camera 

in virtual reality incorporates sensor based or vision based techniques. Gear such as head mounts 

are used for tracking under prepared calibrated environments. Such tracking gear often uses 

active sensor based solutions, including electromagnetic, acoustic, optical, radio, mechanical and 
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inertial systems. However, due to certain issues such as wired power, jittering, and 

computational complexity, they sometimes do not provide viable solutions. In vision-based 

tracking, the camera orientation and location are tracked using pair wise fundamental matrices, 

fiducial markers and feature points. However, limitations such as high data rate, computational 

complexity and feature extraction make use of passive devices very complex. Thus, 

implementation of certain processes such as color keying or chroma key compositing become 

very challenging. Color keying generally involves segmenting objects from background by using 

color cues that is challenging for vision only modules. A common example is the meteorologist 

presenting weather updates with background weather clips.   

 

The utility of RFID is being considered by some researchers in virtual environments to 

supplement some of the application specific vision limitations. Po et al. [85] proposed an RFID 

passive tag infrastructure for the 2D camera tracking problem in a virtual studio environment. 

Passive RFID tags were distributed randomly over the virtual studio area. An algorithm reads 

each RFID tag and then calculates orientation and velocity of the camera. The scheme reduces 

camera position estimation error by comparing actual position of the camera and estimated 

camera position info using RFID. Therefore estimation error is directly related to the distances 

between RFID tags. As a validation platform, simulations have been performed in Maya 3D view 

to generate an avatar. For the experiments, avatar position and camera position are known. By 

analyzing the experimental images, the authors suggest that while distributing RFID tags, a 

distance between tags over 12 cm is not suitable for a virtual studio environment. Also, small tag 

distance of 5 cm to 10 cm is difficult for identification by the human eye. Moreover, use of a 

triangular tag distribution pattern reduces camera position error. 
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The amount of visual information available has been rapidly increasing across various fields, 

especially in video surveillance applications. There has been research in this area so that video 

information can be accessed more efficiently by retrieving important segments or highlights from 

lengthy video. This demands summarization of a large amount of visual data. Generating 

efficient video digests requires detecting interesting video portions, merging them into a digest 

and ignoring mundane parts. This research area can produce dependable outcomes by using 

fusion techniques. In [86] the digest generation method for Kindergarten surveillance uses a non-

parametric approach to structure location information from the RFID channel and visual features 

from a video feed. (Parents are able to view what their children are doing during the day.) 

Essential video chunks are kept while discarding other portions. The technique computes pose 

estimation and object detection using background subtraction and motion information using inter 

frame differencing. Video is divided into different segments forming clusters. As the cluster 

members are continuous temporally, each cluster is coarsely treated as a single event. The 

experimental setup consists of two cameras and RFID system with active tags placed in the 

pockets of students. 63 hrs of video with a resolution of 320240 resulted in a digest of 20 mins 

with a processing time of 2 hrs.  

 

2.3.5 Natural/outdoor site management 

 

 Resource and personnel tracking is a critical requirement in settings such as construction 

areas, hospitals and airports. This task is difficult due to a large number of sporadic interactions 

of objects and persons. Occlusions make tracking problems challenging. Radio frequency based 

tracking technologies have emerged as promising solutions in the market, including GPS, RFID, 



53 

 

Bluetooth and Wireless fidelity (Wi-Fi, Ultra-Wideband, etc). Several outdoor tracking and 

management approaches have been reported that use RFID and computer vision as separate 

entities. RFID alone is mainly used on sites for asset management [87], while CV has been used 

for personnel tracking [88].  The fusion of these technologies on sites and in similar applications 

such as airports [tagged boarding passes] and hospitals [tagged patient bracelets] should improve 

safety and security. The effectiveness of RFID on construction sites is examined in [89]. The 

authors checked performance of different tags in the lab and on site. The important findings of 

the paper show that passive tags do not perform well at long distances though they can be used 

for tracking tool loss and theft. On the other hand, active tags had 100% read accuracy at any tag 

orientation with distances of 25 ft or less. These results prove applicability of the fusion approach 

in an outdoor environment such as a construction site. Airport security and construction site 

safety and management require understanding the interaction of men, machines, materials, and 

terrain - other applications have similar requirements. For safety purposes the trajectory for 

desired objects on site should be updated in real time.  

 

We  have presented a method to examine the effect of partial object information, via RFID or 

special visual features, on the performance of object tracking, while solving the trajectory point 

correspondence problem in 3D space [90], [91]. In the initial work, the RFID feed is simulated 

and is used for reliable identification and locating target objects at coarse spatial resolution. 

Vision is used to provide finer spatial resolution for identified tagged objects. We extend 

geometry-based tracking so that intermittent information on object ID with location can be used 

in computing the overall quality of a set of paths of N objects over T time steps. We show that 
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partial object information can both reduce computation time and increase the likelihood of 

producing correct trajectories.  

 

Location sensing based on GPS and local beacons is currently used in the outdoor 

environment for precision agriculture in farm management [24]. Highly precise results of one 

inch year-to-year and pass-to-pass accuracy also depend on real time kinematics. Such a real 

time location system relates to our discussion of natural outdoor environments. The ability to 

manage a large farm and register points of land to all kinds of maps and aerial images is 

analogous to managing and tracking a work site via real time RFID and CV tracking while 

recording state information in a database that supports other dynamic analysis. 

 

 The GRASP Lab from University of Pennsylvania and their colleagues at MIT reported 

research work on cooperative manipulation and transportation with multiple flying quad-rotors 

[92]. The quad-rotors perform a number of maneuvers with less than three inches of clearance on 

all sides. The angular velocity of the quad-rotors is measured with onboard Inertial Measurement 

Units (IMUs). For the dynamics and control they have used Vicon [93] motion capturing 

technology. Each quad-rotor is affixed with four passive optical markers that are tracked by 

multiple infrared cameras, which in turn gives the 3D position in a track volume of 555 m. 

The group aims to have computer driven UAV flights that can be used for search and rescue in 

emergency situations such as earthquakes and fires. The published results have been reported in 

a lab environment and as future work they plan to validate these in natural outdoor settings.   
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_____________________________________________________________________________________________ 

 

CHAPTER 3 

Proposed solution and research methodology 

_____________________________________________________________________________________________ 

 

The introduction of fusion in the previous chapters showed that the problems of localization and 

tracking can be solved. Radio Frequency Identification (RFID) can be used to reliably identify 

target objects and can even locate targets at coarse spatial resolution, while CV provides fuzzy 

features for target ID at finer resolution. Our parameterization focuses on the site safety 

environment.  We assume the agents are mostly cooperative and tagged, wearing distinctive 

clothing, and that 3D survey data of the test site exists. Fusion provides a method to simplify the 

correspondence problem in 3D space. A Site Safety System (S-3) can query for unique object ID 

as well as tag ID information, such as target height, texture, shape and color, which can greatly 

enhance scene analysis. We extend geometry-based tracking so that intermittent information on 

ID and location can be used in determining a set of trajectories of N targets over T time steps. 

Our model provides a design for stages of future improvements. The first section of this chapter 

formulates the problem and discusses the necessary steps. Next, an introduction of the sensor 

infrastructure used is provided. Finally, the goals and possible research issues are explained. 

 

he research problem is to detect, identify, locate and generate real time tracks of N 

objects moving within a known 3D workspace within a global view. Observations from T 
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diverse sensors are combined into object locations, and possible IDs, at discrete time steps, 

which must be aggregated into N trajectories. Motion analysis will be triggered by daemons that 

monitor conditions in the data – e.g. nearness of certain objects.  

  

 We abstract the information structures in order to support a system with diverse information 

sources and constraints and processes that may not have knowledge of each other. Without loss 

of generality, we sometimes ground our discussion using the site safety application. In order to 

study the global tracking problem and to provide a solution that is independent of a specific 

application, we abstract the problem as follows.  

 

3.1 Tokens code observations from images and RFID 

 

 Consider a database that is to be built from observations from RFID readers and/or a sensor 

network infrastructure together with networked stereo vision sensors. Sensor observations and 

combination yield tokens <x, y, z, t, v, L>, each recording that an object with ID (name) L 

and feature vector v is at location (x,y,z) at time t. Some tokens will have incomplete or partial 

information: for example, ID L may be absent from CV observations and visual features may be 

absent from RFID observations. 3D coordinates may be absent for an observation from a single 

camera image or single RFID reader. Two or more of these tokens can be combined in the 

processing to get refined 3D coordinates. To keep the model simple at this point, we treat 

measurement accuracy and confidence values in a general heuristic manner and not as a 

component of a token. Higher level motion analysis will use this data and be triggered by 
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daemons that monitor conditions in the data – e.g. nearness of objects of class C1 and class C2. 

Higher level activity analysis is thus based on the real-time object track data.  

 

3.2 Object tracks {<x, y, z, t, v, L>} 

 

 The Site Safety System (S-3) needs to identify and locate all significant objects in the 

workspace within a few frames k of real time observation. S-3 may know L = f(<x,y,z,t>) from 

sensor subsystems that use RFID or visual features. When such information is unavailable, the 

system can use “tracking” to determine L = f (<x,y,z,v,t>) using prior records {<x, y, z, t-k>}, or 

perhaps even forward records {<x, y, z, t+k>}.  If object ID L is known, other object features w 

= f (L) may be available from an RFID tag, such as object mass, or even a CAD model. Finally, 

we note that if sensors supply object speed or acceleration we consider these as components of v 

along with color, texture, elongation, etc. of its image. 

 

 An object track is k or more tokens in time sequence with consistent object ID and features 

that also satisfy constraints for motion in space. Tracking is an important concern of this 

dissertation, and is a low level of motion understanding that uses naïve physics to aggregate 

observations over time. Heuristics from naïve physics enable aggregation of individual tokens 

into a sequence or track, one for each moving object. As objects move through the workspace 

they may be occluded at any instant from either cameras or RFID readers so there may not be 

multiple tokens to fuse. Smoothness constraints, or motion applied over multiple time steps can 

be used to interpolate. 
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 As we will see, it is not possible to assign unique object IDs to every token at every time 

instance. Consider, for example, the popular shell game where a bean is placed under one of 

three shells that look alike [94]. When the shells are shuffled quickly in space, most people 

cannot track the shell containing the bean. If the shells are of distinct colors, then the problem of 

picking the final shell is easy. If the shells are identical in appearance, but the bean is an RFID 

tag, RFID readers are unlikely to be able to distinguish the tagged shell in space when the shells 

are close to each other. Consider three workers with hard hats each with a tag and close together; 

if the hats are the same color, Real Time Location System (RTLS) cannot distinguish them due 

to read accuracy; if we know which colors contain which tags and the hats are of different colors, 

the system can solve the matching problem and locate each hat within the CV distance error. In 

order to model ambiguity, we will have to allow multiple labels L in the tokens of an object 

track: these labels record the ambiguity of ID at this point in time and space.  

 

3.3  Obtaining 3D object location (x, y, z) 

 

 One fundamental sensing concept is that a sensor observes an object along a ray in the 3D 

space and all sensors are calibrated to the same 3D workspace. If we model sensor error, the 

object lies in a cone formed by projecting the error at the [2D] sensor into 3D as shown in Figure 

3.1(a). Locating an object in 3D space is done by intersecting two (or more) rays [or error 

cones/lobes]. See [31] Ch 13. This can possibly be done by using two cameras as in the standard 

stereo solution or a structured light solution, or two RFID readers, or one RFID reader and one 

camera. Figure 3.1(b) shows the error volume in gray where the RFID reader directional antenna 

lobe intersects the camera error cone.  
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 The sensor fusion algorithm we use computes the shortest line segment connecting two rays 

[95]. Given a site survey, it is simple to intersect a ray with the ground surface or with a lofted 

ground surface if we know the object height.  

 

 The underlying geometry is angle-side-angle, where the side is the known 3D baseline 

between the two sensors. A second fundamental sensing concept is where the sensor observes an 

object at some distance d. If the object transmission is observed by three such sensors it can be 

 

                                (a)                                                                         (b) 

Figure 3.1 

Sensor error volumes: (a) rays intersection with error cones (b) intersection of error cone with 

RF lobe. 

Ray 

RF lobe 
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located by trilateration, intersection of three spheres with radii equal to the sensed distances. An 

object can also be located by intersection of the ray/cone determined by an image observation 

and the spherical shell determined by distance d sensed by a single RFID reader. The commercial 

RTLS system encapsulates multiple RFID readers and yields a token with unique object ID and 

(x, y) coordinates on the ground plane of the workspace. The principle is similar if there is an 

encapsulated stereo vision system. Finally, fusion by ray intersection can alleviate the stereo 

correspondence problem since ID and features may be available from RFID-tagged objects. 

 

3.4 Heuristics from naïve physics 

 

 Tracking is a lower level of motion understanding that uses naïve physics to aggregate 

observations of N objects moving over T time frames. Heuristics from naïve physics enable 

aggregation of individual observations into a sequence or track, one for each moving object. 

Naïve physics constraints are used to filter out unlikely labels for objects at time t based on the 

recent history of objects continuing from the k previous time steps. Our goal is to create a smart 

tracking algorithm based on the heuristics above, which will provide the means for safer 

activities and more efficient site management. Examples are as follows:  

 

 a. An object n must be at one and only one place at time t. 

 b. Location <x,y,z> can accommodate at most one object at time t. 

 c. Object n is likely to have consistent form and visual features. 

 d. Observations of object n must be consistent with its identity, if known. 

 e. The motion of object n is likely to have smooth direction. 
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 f. The motion of object n is likely to have smooth velocity [makes problem more complex]. 

 g. Constraints e and f are likely to be violated only when object n is in close proximity to 

 another object m. 

 h. Known objects are likely to move in a known terrain in predictable ways. 

 j. Some objects are known at some locations and time instants. 

 k. Objects do not enter or exit the workspace [our assumption]. 

 l. Noise may add in input trajectory points during stereo calculation.  

 

 These constraints are an extension of those used by Sethi-Jain [96] and Veenman et al. [97] 

and, unfortunately, none are hard constraints. For example, it may be that constraint (b) is 

violated as one object “consumes” another. Perhaps a machine consumes a worker - which S-3 

should prevent!. Perhaps a driver enters a vehicle - should S-3 prevent this? 

 

3.5 Fusion platform 

 

 We define fusion as the combination of different sensor tokens to obtain tokens containing 

information from the different sensors or with new information computed from the tokens from 

the different sensors. Most importantly, RFID and CV tokens will be fused to combine object ID 

with object features and to provide or to refine object location.  

 
3.5.1 Labeling with relational constraints 

  

To manage the complexity of the diverse information being fused and to provide a flexible 

experimental platform, we propose discrete relaxation to create the tracks of the N objects and to 
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update the time tokens comprising each track. Using relaxation, different sensors and sources of 

information can be turned on or off for experimentation or for practical reasons at a site. Fusion 

by relaxation is sketched as follows. Fusion processes operate on a blackboard containing the set 

of tokens.  

 

/* discrete relaxation labeling for objects 1....N moving over time */ 

 

a. Calibrate sensors to 3D site. 

b. Initialize representation for N objects x T time steps x N labels. 

c. For all time steps t = 0…..T. 

1. Run sensor processes to create [partial] tokens for detections. 

2. Run combination processes to merge and complete tokens. 

3. Run processes to eliminate impossible labels for object k at time t. 

4. Run tracking process to apply constraints and remove unlikely labels. 

5. Daemon processes possibly invoke higher level analyses processes. 

d. Output object tracks as N x T label matrix. 

e. Store object tracks for further analysis. 

 

3.6 Sensor arrangement  

 

 The sensor setup includes networked static cameras for visual coverage of the site. We have 

also considered installing cameras on the moving targets which in turn will be helpful for 

looming detection. The details of preliminary looming experiments are discussed in Appendix A. 
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The RFID readers are placed in known locations and most of the objects and personnel in the 

workspace are considered to be tagged. A GPS feed can also be used for validity. Figure 3.2 

shows the Site Safety System (S-3) block diagram. Sections below explain the basic sensors 

infrastructure in detail. 

 

  

 
 

Figure 3.2 

Block diagram of the Site Safety System using fusion of RFID and CV. 
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3.6.1 Vision infrastructure 

 

 Our system proposes the use of static cameras. As compared to costly cameras, these can be 

commodity good resolution cameras commercially available. The static cameras will be 

positioned in stereo pairs on fixed places to provide a global three dimensional field of view 

(FOV) of the work space. For looming detection moving objects and personnel are proposed to 

be equipped with wireless cameras for local operation. The site area is covered using a network 

of static cameras. The distance of the cameras from the tracking area can be governed by factors 

such as camera focal length, frame resolution and moving target desired size in images. Using 

low cost fixed focus equipment each camera can be positioned up to an approximate distance of 

about 100 ft (30.53 m) from the site. In a general sense with a frame resolution of 800600 

pixels the minimal desired target size is approximately 5030 pixels. This target size provides 

sufficient information (such as distinctive clothing eg. colorful hats, green and orange safety 

jackets etc.) for real-time video tracking. The scene extracted from [98] in Figure 3.3 shows the 

bounding boxes on some of the construction workers to give an idea of the minimal aspect ratio 

required of the moving objects with respect to a 800600 pixels field of view. The image in 

Figure 3.3 extracted from [98] also explains the construction scenario where the proposed fusion 

technique will be well suited. The static cameras can be used to process stereo tracking of the 

moving objects whose presence in the view is also validated by the RFID feed. The preliminary 

experiments done on stereo tracking are explained in Chapter 6. Looming object detection can be 

sensed using the local dynamic cameras with motion detection techniques such as optical flow, 

background subtraction and frame differencing. We have performed some preliminary tests on 

looming detection to study its feasibility, see Appendix A. The 3D survey data of the site is 
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given as input for processing structural stereo.  The overall system will monitor safety of 

multiple tracked targets and will generate a proximity warning about a possible collision threat to 

the tracked object; for example a worker-on-foot or vehicle backing up etc. It is known that 

processing is more complicated when the camera is on a moving platform where platform motion 

will cause optical flow even in the background. Though, this can be cancelled out as the object 

motion, direction and velocity information can be accessed from the trajectories with time 

stamping information, however, it is computationally expensive in real-time.  

 

 

 
 

 

Figure 3.3  

Construction scene example [98] with aspect ratio of persons and the field of view. 
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3.6.2 RFID infrastructure  

 

 Although GPS is widely used today for personal and commercial outdoor applications in 

open areas, it does not perform satisfactorily in indoor areas. Also it is not cost effective to equip 

every moving target with a GPS device. Since RFID works on wireless protocols, identification 

of the tagged object to be tracked can be conveyed to the visual feed for validation. The RFID 

location information, however coarse in nature, can supplement the visual info. RFID 

localization can be achieved using schemes such as lateration with distance estimation. The 

scene analysis can be enhanced with the deployment of extra reference tags, however, with RFID 

alone; target location in real time will not be as accurate as when using cameras. Refer to Section 

2.1.5 for highlights on RFID positional accuracy. Each RFID localization approach and 

equipment has its own strengths and weaknesses.  

  

 Most targets to be tracked are considered to be equipped with an active tag, if possible. 

Keeping in view the outdoor dynamics the optimum locations of the readers can be analyzed by 

performing different trials. Also using readers with different read ranges will provide interesting 

results [99]. By properly placing the readers in known locations, the whole region can be divided 

into number of sub-regions called cells, where each sub-region can be uniquely identified by the 

subset of readers that cover that cell. Given an RFID tag, based on the subset of readers that can 

detect it, the system should be able to associate that tag with a known sub-region. The accuracy 

of this approach depends upon the number of readers, the placement of these readers, and the 

range and power level of each reader. In order to increase accuracy without placing more 

readers, the system might use extra fixed location reference tags to help location calibration. 



67 

 

These reference tags serve as reference points in the system (like landmarks in our daily life). 

This approach shown in Figure 3.4 helps offset many environmental factors that contribute to the 

variations in detected range because the reference tags are subject to the same effect in the 

environment as the tags to be located.  

 

 In our experiments we have used and evaluated the commercially available RFID-based Real 

Time Location System (RTLS) from CSL (Convergence Systems Ltd.) [8] for its accuracy and 

reliability of object detection and location. The RFID based RTLS development kit used has six 

readers (one master and five slaves). They can be used in different settings to form a cell. The 

system uses time-of-arrival (TOA) concept where the distance between the tag and the readers is 

calculated by the roundtrip time.  

 

 

Figure 3.4 

Schematic of dense placement of reference RFID tags. 
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 The tags communicate with the readers using time-division-multiplexing (TDMA). Each 

reader has a beam width of 80
o 

in portrait and 30
o
 in landscape orientation. To perform location 

sensing each reader has to be pointed towards the center of the test site. To cover a larger area 

more readers can be installed thereby generating more cells to enhance the location accuracy in 

difficult configurations. The tags used are 2.4 GHz active tags with up to 200 m of read range in 

an open outdoor space. The tags run on 3AAA batteries and are approximately of the size of an 

iphone 4S and weigh less than the phone with batteries installed. Figure 3.5 shows the readers 

and the tags used in the RFID RTLS system. 

 

 

  

   

                                     (a)                                                                            (b) 

Figure 3.5 

CSL RFID based Real Time Location System: (a) active tag (b) master reader. 
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3.7 Goals and related research parameters 

 

 Using fused information in the multi-object tracking scenario, the approach envisions 

evolving according to the general steps and related research parameters discussed below. 

 

3.7.1 Calibrating the cameras 

 

 The static cameras are to be attached at fixed positions in the work space so as to provide the 

global three dimensional Field of View (FOV). They will be used to provide stereo tracking of 

the moving objects. The cameras are calibrated using the affine calibration method. A 3D global 

workspace coordinate system [X,Y,Z] is created. Place some fixed visual markers or identify 

structural landmarks in the scene to provide calibration points. The system can have apriori 

survey information about the 3D world coordinates of these points. Synchronize these cameras in 

time and space. Finally a transformation matrix for each fixed camera is obtained for stereo 

calculation. Details of the calibration process is provided in Chapter 4 and Appendix B. 

 

3.7.2 Defining the ground truth 

 

 Ground truth data is required to evaluate the system performance. To define ground truth 

measurements a mesh can be created which represents the surface of the ground upon which 

work will be done. Modern surveying instruments can be used for this task. In a lab environment 

this can be done by projecting a grid through a projector and later recording the surface detail. 

The ground can contain some fixed visual markers so that cameras can monitor and validate their 
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movement due to any undesirable factors, such as wind or vibration. Also the mobile objects are 

known to move on the ground, which provides constraints on their location. This helps formulate 

ground truth data by moving objects on predefined paths. 

 

3.7.3 Structural stereo approach 

 

 Solving correspondence and camera calibration in stereo are key issues. This requires 

autonomous relative camera orientation and stereo matching that uses the relationship between 

the correspondence problem and the camera pose estimation problem. Each camera needs to be 

calibrated to the workspace to obtain its camera matrix. Each camera should be able to see some 

moving objects A, B, C and a, b, c, etc. Object matching can be done using color blob detection 

and/or object ID. The color detection performance can also be analyzed in different lighting 

conditions. In case of visual occlusion some objects might be identified by RFID alone which 

can help in the matching process. For each object region in the image of camera 1, compatible 

matching regions are to be found in the image of camera 2. The camera matrices obtained from 

the calibration process will be used to compute 3D location [x,y,z] for each possible object 

match. The consistency of the object can be checked with the ground plane. One to one mapping 

should be created for each object in camera 1 and camera 2. IDs provided by the RFID system 

can be used to make mapping more efficient. Stereo using a single camera and a single RFID 

reader can also be examined. To analyze and evaluate the accuracy of the stereo system, it needs 

to be established how accurate can this matching be using visual and/or RFID information and 

how accurate motion trajectories are obtained after comparison with the ground truth. 
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3.7.4 Object sensing using multiple RFID readers 

 

 For the tagged objects, detection and spatial accuracy is to be analyzed in RFID sensing 

mode. The object detection and read accuracy will vary in different settings. Similarly the object 

location accuracy will change if the object is directly visible to more readers or otherwise or the 

readers configuration gets changed.  

 

3.7.5 Integration of multiple CV sensors 

 

 To cover the view of the workspace from all directions multiple cameras can be networked 

together. However, selecting the right cameras and time slices is difficult. The ID of each object 

by RFID can help choose the right camera for further calculations.  

 

3.7.6 Fusion of RFID and cameras 

 

 The fusion algorithm is the back bone of the S-3 system. Also the RFID and vision data 

being diverse in nature needs to be transformed in an appropriate format so that it can be 

compared and fused into refined tokens. All the sensors are to be calibrated to the same 

coordinate system. Synchronization within cameras or between cameras and RFID will be a 

complicated task. The number of RFID readers required to fully cover the desired area and their 

distribution needs to be worked out. Provision of any additional information through the database 

that can be used by daemon processes will help reduce runtime complexity.  
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3.7.7 Smoothness of trajectories 

 

 The dynamic scene can contain multiple independently moving objects. The objects are 

permanent; except for new objects entering or old objects leaving the workspace. Track initiation 

and termination are to be carefully examined as it might be that a tracked object reappeared after 

occlusion for a short time or a new object has entered the workspace. Smoothness is a global 

operation which can help high level processes to define and/or correct computed object tracks. 

Smoothness of trajectories requires a burst of time frames for reliable results. Defining appropriate 

naive physics constraints will help identify correct objects. It is safe to assume here that typically 

objects move along the surveyed ground plane. 

 

3.7.8 Looming detection 

 

 Motion and looming detection will apply toward the cameras placed on the head gear and 

moving vehicles. An optical flow algorithm can be used to detect the motion and looming 

phenomenon. Lucas-Kanade and Horn-Schunck are widely used methods for optical flow 

estimation. If the object is not fully available in the Field of View (FOV) then RFID input can 

help. Motion vectors can be extracted (possibly 3D) for one or more moving objects in the FOV. 

Looming object may or may not be a “smart object”. It can be analyzed how accurately the 

distance from smart object to sensing object (camera platform) can be computed. Depth 

measurement accuracy and motion measured parallel to the image plane can also be studied.  
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3.7.9 Object Inventory 

 

 The work safety system monitors 6-tuples in real-time and outputs safety controls. Other 

applications can analyze these attributes offline for work efficiency, materials inventory and 

person tracking, etc.  
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_____________________________________________________________________________________________ 

 

CHAPTER 4 

Localization of objects and scene points 

_____________________________________________________________________________________________ 

 

Localization involves computing object location with respect to some external frame using 

sensory data. Pose is an umbrella term that defines object location and orientation relative to the 

global reference frame. Visual image data has embedded information such as color, texture, and 

shape etc. which can be used to ascertain object pose. However, the errors due to vision system 

constraints and lighting conditions may propagate during computation. Data fusion from other 

active sensors such as RFID can help with object detection, identification and coarse location 

estimation. We introduce and discuss methods and configurations used for location estimation by 

both RFID and stereo vision and show accuracy that could be achieved by each of these 

modalities. In outdoor experiments stereo provided location accuracy within 7.6 in (19.3 cm) 

whereas for RFID was up to 1.5 m for a tagged person being stationary for few seconds at 

predefined points. 

 

he ability to detect, identify and locate objects in an environment are some tasks that 

determine the performance of a tracking system. Object appearance, features, orientation 

and motion are some characteristics that are used in the recognition and tracking processes. Over 

the past decade, fusion of RFID and CV has also being used in indoor mobile and industrial 

robotics to support tasks such as autonomous recognition, localization and tracking. RFID alone 

T 
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has also been researched widely in this quarter. Passive stereo vision can locate detected objects 

in a 3D volume provided the image of the same object can be identified in two or more cameras. 

An RFID reader can be used to ID an object observed in some 2D image, thus aiding stereo; or, a 

network of RFID readers can provide coarse 3D location without cameras. Thus RFID can help 

with object localization in multiple ways. RFID technology also enables smart objects to 

communicate information about themselves not available to optical sensors; for example object 

weight, container content, etc. A tagged rigid object can even help provide an optical observer 

with a network downloaded CAD model of itself to be used for pose computation by the 

observer. The focus of this chapter is to analyze object location procedures and accuracy using 

vision and RFID as single modalities. 

 

4.1 Object detection and blob analysis using vision 

 

 The site safety system acquires video frames from cameras observing the work site. 

Simultaneous frames from two cameras can be used as a stereo pair for detecting desired objects 

and locating them in 3D. To locate an object, detection and identification are initial tasks that are 

complex processes using vision as a single modality. RFID supports vision in this step. In our 

approach we locate objects in all frames. Working toward an automatic system, we currently 

have some manual steps in the research methods. Our vision based detection stage uses color and 

blob analysis for real-time processing and also allows user interactivity at times for outdoor data 

to avoid detection failure. We have also explored Hough transform based elliptical shape features 

for head detection and have used it for offline processing. We have used MATLAB
® 

2009a to 

acquire video from the cameras. The video frames are extracted using the image acquisition 
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toolbox. For color based detection, the desired color is extracted from the RGB image. Figure 4.1 

shows steps involved in the RGB color detection process. We have also used HSV space for 

detecting colors, which will be covered in the coming paragraphs. HSV space is capable of 

separating color components from intensity and is more robust towards lighting changes and 

shaded regions. The blob analysis steps in our approach are the same in RGB and HSV based 

color detection. 

  

 

Figure 4.1 

Flow diagram of specific RGB color detection and connected components blob analysis.  
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 The input image is converted to a grayscale image. The desired color is then subtracted from 

the grayscale image and the resultant image is converted to binary. Through connected 

components analysis, the algorithm merges object pixels that are close to each other so as to 

create blobs. For example, pixels that represent yellow are a portion of a person's head gear and 

are grouped together. Next, in the blob analysis the properties of the region are extracted and 

bounding boxes of these blobs are calculated. Based on these blob properties the individual 

bounding boxes maybe merged together so that each tracked object-part (eg. safety helmet etc.) 

is enclosed by a single bounding box. The center of each bounding box in both images is then 

considered to be the object center point for performing stereo correspondence. An object will 

have little displacement between two consecutive frames, therefore, the center of the blob 

provides a strong and useful feature for locating and tracking objects. Figure 4.2 shows desired 

blobs detected in input image in an outdoor environment. 

 

   

(a)                                                                           (b) 

Figure 4.2 

Blob detection outdoors: (a) original image (b) blobs of blue and yellow balls. 
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 For HSV based color detection the input RGB image is converted to the HSV space and H, S 

and V images are extracted individually. A histogram of these individual color bands is then 

calculated. Based on the color to be detected the minimum and maximum threshold is defined for 

hue, saturation and value image. For example, we have used the following threshold values for 

detecting the yellow color in our indoor experiments: 

 

Hue threshold low = 0.11 

Hue threshold high = 0.19 

Saturation threshold low = 0.39 

Saturation threshold high = 1 

Value threshold low = 0.39 

Value threshold high = 1 

 

 The defined threshold is then applied to each color band and individual masks are generated. 

The masks are then combined together to find where all of these are true for the color to be 

detected. With a little iteration the threshold values of H, S and V can be adjusted according to 

test environment. Based upon the size of the detected object the smaller objects are then filtered 

out. Holes are then filed in individual color band images. The desired color mask is then obtained 

to mask out the desired color from the RGB image.  

 

 

 .  
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4.1.1 Elliptical shape features for head detection  

 

 The human head can be approximated well with elliptical shape features. We have used 

Hough transform based ellipse shape detection given in [100]. This method takes advantage of 

the major axis of an ellipse to find ellipse parameters fast and efficiently.  

 

 For an arbitrary ellipse, there are five unknown parameters as shown in Figure 4.3. These are 

orientation α, center (p0, q0), major axis 2m and minor axis 2n. Their relationship is shown in 

equations below. The algorithm is initiated by giving a range of major axis [user specified] 

which is then used to find the minor axis of the ellipse. Since only a one-dimensional 

accumulator array is required to accumulate the length of the minor axis this step of the 

transformation is very efficient.  
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 
                                                   (4.6) 

 

 The background subtraction technique is applied on the incoming frame and the cropped 

image of the desired person is generated. This step helps reduce the edge pixels space required in 

the next steps. Edge detection is performed on the R, G and B channel of the cropped image and 

a union edge image is acquired. Binary image dilation using linear structuring elements is then 

performed to acquire boundary pixels. Each pair of edge pixels is considered as candidate for 

two vertices on the major axis of an ellipse. Using these two candidate pixels the four parameters 

are calculated. Another arbitrary point is used to find the half-length of the minor axis n. A 

voting process is then initiated to acquire the desired n using a one-dimensional accumulator 

array. Figure 4.4 shows the implementation steps. 

 

Figure 4.3 

Ellipse geometry showing basic parameters to define an ellipse. 
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Figure 4.4 

Implementation steps for elliptical shape feature detection. 
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 Figure 4.5 shows the results of head detection using elliptical shape features. Figure 4.5(a) 

shows the input 640480 image. The cropped image with best two ellipses [red and yellow 

color] is shown in Figure 4.5(b). Figure 4.5(c) shows the cropped edge image with the same two 

best fit ellipses. For this case, eccentricity ratio of 0.4 with orientation angle range between 50
o 

to 

90
o
 was used.  

 

 

 
                                                (a)                                                    (b)                      (c) 

 

 

Figure 4.5 

Results of head detection using elliptical shape features: (a) input image 640480 (b) cropped 

image with best two ellipses (c) cropped edge image with best two ellipses. 
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4.2  Stereo vision using ray-ray combination 

 

 Stereo vision based on the principle of ray-ray intersection uses cameras that have slightly 

different pose in space. Unlike various other stereo approaches, the cameras do not need to be 

specially configured relative to each other, however they should have an effective and common 

field of view. Each camera is calibrated to the 3D workspace. The 3D point is calculated by 

solving the correspondence problem, that entails observing the same feature point in two or more 

2D images from these cameras. Some basic concepts about stereo vision and 3D reconstruction 

are provided in Appendix B. 

 

 Due to factors such as lens distortion, digitization noise, small camera vibrations and sub-

pixel difference in correlating corresponding points, the errors generate and propagate in the 

stereo system. If we model camera errors and project the error at the cameras into 3D, then due 

to the propagating nature of these errors, rays are transformed to cones. The object in 3D lies in 

the overlapping volume of these cones referred to as the error volume. Apart from the factors 

mentioned, the error volume also varies with the selected pose of the cameras. The variation in 

the error volume with change in camera pose is demonstrated in Figure 4.6.  
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Figure 4.6 

Error cones obtained from projecting 2D imaging error back into 3D. 

 

4.2.1 Stereo configuration 

 

 In our setup, the vision system consists of two cameras separately calibrated to the 3D work 

space. The known 3D points in the work space are used for camera calibration. Figure 4.7 shows 

the perspective model having two cameras viewing the same 3D workspace. A right hand 

coordinate system is used. The points farther from the camera have more positive depth 

coordinates in the camera coordinate system. The site area is considered as the 3D world with its 

own global coordinate system. A 3D world point is represented as 
W

P = [ 
W

P 
x
, 

W
P 

y
, 

W
P 

z 
] 

t
. 

The intersection of the two imaging rays, 
W

PO1 and 
W

PO2 determines the location of the 3D 
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point 
W

P. We have adopted a general stereo approach [31], [101], [102] where the same feature 

point 
I
Pi in two or more calibrated cameras is used to calculate the 3D world point 

W
P. 

 

 

 

Figure 4.7 

General stereo configuration with two cameras viewing a 3D object in a 3D  workspace W. 
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 For any required computation, the pose of camera 1 and camera 2 in the 3D world coordinate 

system W and camera intrinsic parameters such as the focal length etc. shall be known through 

calibration. This information is defined in the camera matrix obtained by calibration, known as 

the affine method; see [31] Ch 13 and [103] Ch 12. The calibration procedure does not model 

radial distortion and we do not rectify the images. This method provides a more general form of 

camera parameterization and the exterior and interior parameters are combined in the elements 

Cij of the camera matrix. Fewer parameters means fewer required calibration points. The affine 

camera matrix calibration procedure used is explained in Appendix B. For stereo processing, the 

correspondence between a set of 2D and 3D points needs to be recognized.  

  

4.2.2 Computing shortest line segment connecting two rays 

 

 In practice, two camera rays will not intersect in 3D space. The main cause of this can be due 

to the approximation errors in camera models and due to errors in image point location. Such 

errors can occur even due to sub-pixel inaccuracy in the image points.  Once generated, this error 

amplifies as the ray propagates in space. To get a reasonable 3D location estimate, the approach 

of shortest line segment connecting two rays [31] Ch 13, [95] Ch 10 is used and is shown in 

Figure 4.8. The coordinate system symbols are dropped from the notation hereafter. The center 

of this line segment will represent the 3D point. So the smaller the segment, the better is the 

correspondence of image points and vice versa. We have also used this segment length criterion 

as a constraint to solve the correspondence problem. Epipolar constraints are also used in 

conjunction for robustness. Refer to Appendix B for background on epipolar constraint.   
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 P1 and P2 are the points on the ray originating from camera optical center O1 and passing 

through image point I1 while Q1 and Q2 are the points on the ray originating from camera optical 

center O2 passing through image point I2. If the optical center of the cameras is not known then 

camera 1 ray points can be computed using the two equations in Equation A.9 while choosing an 

arbitrary value of 
W zP = z. If the computed ray is parallel with the z-axis then the same 

procedure can be repeated for y and z while 
W zP = x and so on. u1  and u2  are the unit vectors 

along these rays respectively. The shortest line segment is represented by vector V and is 

orthogonal to both u1  and u2  and is given as: 

 
( ) ( )V = P +a u - Q +a u1 1 1 1 2 2                                         (4.7) 

 The variables a1  and a2  can be computed using the following set of linear equations. Here    

' ' represents dot product: 

 

Figure 4.8 

Shortest line segment connecting the two skew rays. 
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[( ) ( )]

[( ) ( )]

P + a u - Q + a u u = 01 1 1 1 2 2 1

P + a u - Q + a u u = 01 1 1 1 2 2 2
               (4.8) 

 Rearranging Equations 4.8: 

[( ) ( )]

[( ) ( )]

P - Q + a u - a u u = 01 1 1 1 2 2 1

P - Q + a u - a u u = 01 1 1 1 2 2 2
                          (4.9) 

[( )] [( )]

[( )] [( )]

P - Q u + a u - a u u = 01 1 1 1 1 2 2 1

P - Q u + a u - a u u = 01 1 2 1 1 2 2 2
              (4.10) 

[( )] [( )] [( )]

[( )] [( )] [( )]

P - Q u + a .1 - a u u = 01 1 1 1 2 2 1

P - Q u + a u u - a .1 = 01 1 2 1 1 2 2
            (4.11) 

( ) [( )]a - a u u = - P - Q u1 2 1 2 1 1 1                            (4.12) 

( ) [( )]-a + a u u = - P - Q u2 1 1 2 1 1 2                            (4.13) 

 Solving Equation 4.12 and 4.13 further to get a1  and a2 . Multiply Equation 4.13 by 

( )u u1 2 and subtract from Equation 4.12: 

[ ( ) ] [( )] [( ) ]( )2a 1- u u = Q - P u - Q - P u u u1 1 2 1 1 1 1 1 2 1 2   (4.14) 

[( )] [( ) ]( )

[ ( ) ]

Q - P u - Q - P u u u1 1 1 1 1 2 1 2a =1 21 - u u1 2

              (4.15) 

 Multiply Equation 4.12 by ( )u u1 2 and subtract Equation 4.13 from Equation 4.12: 

[( ) ] [( )] [( ) ]( )2a u u -1 = Q - P u - Q - P u u u2 1 2 1 1 2 1 1 1 1 2   (4.16) 

[( ) ]( ) [( )]

[ ( ) ]

Q - P u u u - Q - P u1 1 1 1 2 1 1 2a =2 21- u u1 2

              (4.17) 

 If the magnitude of vector V is less than a desired threshold then the 3D world coordinates x, 

y, z of the point 
W

P are given as the midpoint of V: 
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      [( ) ( )]
1W P = P +a u + Q +a u1 1 1 1 2 2
2

                          (4.18) 

 

4.3 3D location estimation results using stereo vision 

 

 We provide here the details and results obtained from our stereo experiments. We have used 

commodity cameras in an indoor and outdoor scenario. The indoor test site was surveyed using 

laser range finder and tape measurements. The outdoor test site was surveyed using a total station 

[surveying equipment], laser range finder and tape measurements. Details about site survey 

procedures are provided in Appendix C. 

 

4.3.1 Computing residual error using jig 

 

 The cameras were calibrated using the affine transformation procedure in Appendix B. The 

test stereo image pairs of a jig were used for further analysis. The jig  is a physical object with 

precise and easily recognizable feature points (yellow) as shown in Figure 4.9. The feature 

points/corners are then used as calibration points to compute the transformation matrix of each 

camera. For ground truth the 3D dimensions of the jig assembly are known. A typical camera 

matrix C is represented as follows: 

 

c    c    c    c11 12 13 14

C = c    c    c    c  21 22 23 24

c    c    c     131 32 33

 
 
 
  

                      (4.19) 
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 To do a fundamental experiment we used test images. These images contain the jig with a 

video tape box. We have used ten corresponding calibration points i.e i ≥10 in Equation 4.20 to 

calculate the transformation matrix.  

, ,

, ,

c11

c12

c13

c14

x y z x r y r z r c21W W W W I W I W I, , , 1, 0,0,0,0,- - -P P P P P P P P Pi i i i i i i i i
c  22

x y z y c y c z cW W W W I W I W I0,0,0 0, , , 1,-  ,-  ,- cP P P P P P P P Pi i i i i i i i i 23

c24

c31

c32

c33

 
 
 
 
 
 
 

      
  

       
 
 
 
 
 
  

rIPi

cIPi

 
 
 
  

     (4.20) 

  

 The calibration points (A,B,C,D,E,F,K,L,N,P) are shown in Figure 4.9(a) and (b). The lower 

bound on the number of calibration points to be used is eight.  
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 The camera matrices obtained from the right and left images are shown in  Table 4.1. 

 

Table 4.1 

Left and right camera transformation matrices. 

Right camera 

    

146.1 114.2 -24.9 525.7 

35.6 -73.6 -168.4 911.3 

-0.008 0.01 -0.01 1 

     

Left camera 

183.6 -154.9 -22.7 1206.6 

-89.9 -80.9 -206.9 1721.2 

0.01 0.01 -0.01 1 

     

  

  

 For quantitative analysis Table 4.2 shows the 2D residuals (absolute difference between 

original and computed 2D points) in pixels for the left and right image of the jig with tape. The 

 

(a)                                                                         (b) 

Figure 4.9 

Jig images with easily recognizable feature points: (a) left image (b) right image. 
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underlined readings show an error greater than one pixel. The RMS error of the left image is 

L
Xrms = 0.9 pixel, 

L
Yrms = 0.9 pixel and of the right image is 

R
Xrms = 0.7 pixel, 

R
Yrms = 1 pixel. 

 

  

 Figure 4.10 shows the procedure to compute 2D points for the jig that are not used in the 

calibration. The 2D points are recalculated from 3D projected into 2D using the transformation 

matrices.  

Table 4.2 

2D residuals for left and right image of jig - scale is in pixels. 

 

Points World  

3D 

points 

Left 

Image 

original 

2D points 

Left 

Image 

computed 

2D points 

Left 

image  

2D 

Residuals 

Right 

Image 

original 

2D points 

Right 

Image 

computed 

2D points 

Right 

image  

2D 

Residuals 

 

A 

 

0,0,0 

 

1208 

1721 

 

1206.6 

1721.2 

 

1.4 

0.2 

 

527 

910 

 

525.7 

911.2 

 

1.3 

1.2 

B 0,6,0 254 

1142 

256.3 

1143.2 

2.3 

1.2 

1121 

434 

1120.9 

434.9 

0.1 

0.9 

C 11,6,0 1859 

200 

1858.8 

199.7 

0.2 

0.3 

2854 

871 

2853.7 

872.3 

0.3 

1.3 

D 11,0,0 2792 

635 

2791.5 

633.6 

0.5 

1.4 

2349 

1437 

2350.9 

1436.1 

1.9 

0.9 

E 8.25,0,-4.5 2389 

1617 

2390.2 

1617.3 

1.2 

0.3 

1878 

2002 

1878.5 

2000.6 

0.5 

1.4 

F 2.75,0,-4.5 1644 

2179 

1643.2 

2179.1 

0.8 

0.1 

1012 

1717 

1011.6 

1718.7 

0.4 

1.7 

K 2,0,0 1528 

1500 

1530.8 

1499.1 

2.8 

0.9 

833 

1000 

831.9 

999.4 

1.1 

0.6 

L 2,6,0 583 

952 

581.9 

951.9 

1.1 

0.1 

1413 

511 

1413.4 

508.8 

0.4 

2.2 

N 9,0,0 2537 

810 

2537.8 

809.1 

0.8 

0.9 

1992 

1333 

1991.8 

1332.9 

0.2 

0.1 

P 2.75,0,-1.81 1646 

1740 

1645.9 

1738.3 

0.1 

1.7 

976 

1323 

975.3 

1320.1 

0.7 

2.9 
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Figure 4.10 

Procedure for calculating 2D residuals of jig images. 

  

4.3.2 Components of the stereo system used 

 

 To perform the stereo experiments the platform used is a core i5 580M with 4GB RAM. Two 

Logitech C210 fixed focus cameras were used for the stereo trials. The focal length of these 

cameras is ~4 mm. The frame rate is 15 fps with 640×480 resolution. All the computation is done 

using MATLAB
® 

2009a. 
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4.3.3 Indoor stereo computation using a wireframe workspace 

 

Next for our stereo experiments in an indoor lab environment, we have used a wireframe 

workspace as our test volume. The object detection and identification is achieved using symbolic 

color [representing RFID]. To avoid the illumination and pose problems, the experiment is 

performed in a controlled indoor scenario using a red ball. Since the ball has a spherical shape, it 

will have the same projection regardless of view point/pose. Both the cameras were connected to 

the same laptop. Since the cameras acquire image frames  one at a time, there is a very small lag 

in synchronization, which can be disregarded at this stage.  

 

To calculate the relative accuracy of the stereo results compared to the ground truth, we 

initially did experiments based on the dataset of images with known 3D points, instead of live 

feed frames. The cameras are calibrated using the affine transformation calibration procedure 

explained in Appendix B. The wireframe workspace volume xy z is 2731.7524 in (68.6

80.661 cm). The camera pair used were 27.5 in (69.9 cm) apart. As explained before our stereo 

approach doesn't require the camera poses to be specially configured relative to each other. The 

distance between them is provided here just to present the layout of the test environment.  The 

cameras were 59.25 in (150.5 cm) away from the wireframe. Figure 4.11 shows the experimental 

setup for stereo testing and the spiral track for the red sphere. For reference, point 1 in is 

considered to be the origin. Both the cameras locate the red sphere in RGB color space. Runs 

have also been conducted using the HSV space. The color detection module gives the center of 

the sphere to the stereo module for every frame captured by the two cameras. The system 
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computes the 3D world coordinates by observing the same feature point (center of the red 

sphere) in two 2D images from cameras that are calibrated to the 3D workspace.  

 

    

Figure 4.11 

Wireframe workspace experimental setup for testing stereo localization indoors - red object with 

spiral trajectory. 
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With this procedure, whenever two or more cameras are calibrated, the user can then use the 

camera models to compute the 3D locations of any identifiable 2D feature point set that has not 

been used for calibration.  

 

Ground truth data for several 3D points in the wireframe workspace were acquired. Some of 

these points were used for calibration and the rest were used to test the 3D sensing accuracy. 

Experiments show that generally eight calibration points in this setup can provide sufficient 

accuracy for further location estimation. These eight points can be chosen in a way to create a 

volumetric space of interest as shown in Figure 4.11 (b) and (c). 

 

During the error analysis, the 3D residuals are computed. For points whose ground truth 

coordinates are known, the residuals are the difference between the ground truth coordinates and 

those computed via stereo. For other points, the residuals are an estimate of the standard 

deviation of the computed estimate of the coordinates. Table 4.3 shows the 3D residuals for 

some points in wireframe workspace. The maximum error is only 0.34 in (8.6 mm) in a tracking 

space volume of 2731.7524 in (68.680.661 cm).  

 

Table 4.3 

3D stereo residuals for some points in wireframe workspace - scale is in inches. 

Actual 3D points Calculated 3D points 3D residuals 

W xPr   
W yPr  

W zPr  
W xP  

W yP  
W zP  Xr  Yr  Zr  

 

13.2 

 

-30.7 

 

-20.7 

 

13.54 

 

-30.61 

 

-20.99 

 

0.34 

 

0.09 

 

0.29 

15.9 -14.6 -15.9 16.18 -14.29 -15.81 0.28 0.31 0.09 

8.2 -10.3 -0.5 8.46 -10.04 -0.35 0.26 0.26 0.15 
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The RMS error in three directions is calculated as XRMS = 0.3 in (0.76 cm), YRMS =  0.24 in 

(0.61 cm), ZRMS =  0.2 in (0.51 cm). The maximum error is  ~1.3% of the X-axis of the 

calibrated volume. This error scalable to a construction space of 404040 m turns out to be 

XRMS = 44 cm, YRMS = 30 cm, ZRMS =  33 cm. Keeping in view a 5 m radius circle of safety for 

moving personnel to avoid any collision in the construction environment the localization error of 

less than an arm length in the 3D space using a vision only method validates its real-time 

applicability. Figure 4.12 shows the 3D stereo location estimation procedure. Figure 4.13 shows 

the computed trajectory of the sphere.  

 

 

 

Figure 4.12 

Procedure for 3D stereo location estimation in wireframe workspace indoors - Flow diagram.  
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Figure 4.13 

Computed sphere trajectory in wireframe workspace indoors. 

 

4.3.4 Indoor stereo computation at surveyed lab area 

 

To test stereo performance at a room scale, we surveyed an indoor lab area 280476105 in 

(7.112.12.7 m). The cameras were calibrated using affine calibration explained in Appendix 

B. The 11 calibration points chosen are marked with '■' (yellow) in Figure 4.14. The lab area and 

the 3D model generated from the survey data along with the position of the stereo cameras 

represented with '●' (green) are also shown in Figure 4.14.  
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Figure 4.14 

3D survey data and model of indoors lab area with stereo cameras '●' (green). Calibration 

points are represented by '■' (yellow). 

 

 The stereo cameras were placed 22.5 in (57.2 cm) apart. The area was divided into 42 grid 

with center points marked as shown in Figure 4.14 top image. Each grid cell measured 119140 

in (3.023.6 m). The person moved in the common view area of both cameras while wearing a 

colored hat. The center of the hat was located in both cameras to perform stereo. Color detection 

was performed in both RGB and HSV space. To calculate the relative accuracy of the stereo 

results as compared to the ground truth, the experiments were performed with the person 

standing at the center of each grid cell ~15 ft (4.6 m) to 34 ft (10.4 m) from the cameras. Various 

other trajectories were also observed to analyze the stereo error. The RMS error observed was 
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XRMS =4.1 in (10.4 cm), YRMS = 6.4 in (16.3 cm),  ZRMS = 2.7 in (6.9 cm). It is to be noted that 

the Y-axis here is along the camera viewing direction. 

 

 Another example of a trajectory of a person moving randomly is shown in Figure 4.15(a). 

Since the height of the person is known i.e ~72 in (1.8 m), therefore it is easy to compare the z-

dimension error here.  Figure 4.15(b) shows the histogram of error in z-direction with error 

mostly accumulated in 3.82 in histogram bin. 

 

    
                                            (a)                                                                        (b) 

 

Figure 4.15 

Indoors lab area trajectory for a person moving randomly with error estimation: (a) object 

tracks in 3D (b) histogram of error along z-axis. 

 

4.3.5 Outdoor stereo computation 

 

 We installed our cameras in a 40×40 m outdoor test area. The cameras were placed on 

4.5 ft (1.37 m) high pillars. The separation between the pillars is ~10 ft (3.05 m). The persons 

were wearing distinctive color clothing and head gear. We located the center of the head of the 
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persons who moved on predefined points without stopping or, in some runs the 3D data was 

obtained with the persons being stationary for few seconds at those points. The analysis was 

done offline over several trajectories to compare with the ground truth. Figure 4.16 shows the 

left and right image with eight 2D calibration points shown by '■' (yellow). These points were 

selected in nearby and distant parts of the image. Choosing appropriate calibration points 

covering the near and far field of the scene is necessary for results with minimal error. 

 

  

 The 3D view of the outdoor test site with object tracks is shown in Figure 4.17. '●' (red) 

shows the center of the test area. The 3D location of the person's head  is represented by '+'. 

Analyzing individually two persons' trajectories moving within 10 ft (3.05 m) to 80 ft (24.4 m) 

distance from the stereo system, the RMS error observed was XRMS =7.6 in (19.3 cm), YRMS = 

 

(a)                                                                             (b) 

Figure 4.16 

Outdoor test site with 2D calibration points shown by '■' (yellow): (a) left image (b) right image. 
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5.2 in (13.2 cm),  ZRMS = 3.8 in (9.7 cm) as compared to the scaled error of XRMS = 44 cm, 

YRMS = 30 cm, ZRMS =  33 cm,  from our lab experiments indoors. 

  

 As shown in Figure 4.18 the observations beyond 80 ft (24.4 m) distance show the outliers 

with '•' (black) representing the ground. The stereo cameras are represented by '▲' (grey). The 

actual height of the person in Figure 4.18 is 72 in (1.83 m). The detected height of the person on 

average within 10 ft (3.05 m) to 80 ft (24.4 m) from the stereo system is 70 ± 4 in (10.16 cm).  

 

 

 

Figure 4.17 

3D view of the outdoor test area with object tracks shown by '+' (red) using stereo. 
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Figure 4.18 

Top view of the outdoor test area showing person locations computed using stereo and the 

ground truth '•'of outliers beyond x = 960 in (24.4 m). 

 

4.4 Active RFID based Real Time Location System 

 

 A Real Time Location Systems (RTLS) typically refers to a collection of sensors that work 

together to automatically identify and track the location of objects (including people) in real 

time.  
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4.4.1 RTLS infrastructure 

 

 We have used the Convergence Systems Limited RTLS [8] development kit. The kit includes 

one narrow beam width master RFID reader (CS5113TD) with ethernet support, five narrow 

beam width slave readers (CS5111TD) and ten active RFID tags (CS3151TC). Figure 4.19 

shows four readers and tripods. The master and slave readers come in different beam width 

configurations. Due to our test area size and narrow beam width readers we have used one 

master and three slave readers as specified by OEM.  

 

  

 
 

Figure 4.19 

CSL RFID based RTLS system: Tripods hold the readers. 
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 The equipment operating frequency is 2.4 GHz and it uses Time-Of-Arrival (TOA) for 

location determination, where the distance between the tag and the readers is calculated by the 

roundtrip time. The equipment works on Non Line of Sight (NLoS) communication. As 

compared to Received Signal Strength Indicator (RSSI) methods the TOA based location 

estimation and 2.4 GHz frequency makes the system more robust towards RF energy absorption 

by water and dynamic environments. Each reader has a beam width of 80
o 

in portrait and 30
o 

in 

landscape orientation. As per OEM instructions, for a cell with a square or near square shape, all 

the readers should be set up in a portrait manner. For a cell with a highly rectangular shape 

where one dimension is much longer than the other, all the readers should be set up in a 

landscape orientation. The active tags run on 3×AAA batteries and are of the size of an iphone 4S 

and weigh less than the phone with batteries installed. The tag read range is up to 200 m in an 

open space outdoors. 

 

 Triangulation is based on the geometric principle of triangles: if one side and two angles of a 

triangle are known then the other two sides of the triangle can be calculated . Trilateration 

determines the object position in 2D by measuring its distance simultaneously from three known 

locations using the geometry of circles. With the TOA scheme, location can be estimated using 

triangulation or trilateration. Triangulation can be used by antennas that search over a range of 

angles for best signal strength. Trilateration requires raw data from at least three readers. 

Intersection of the three circles around the readers can yield the location of the tagged object on 

the ground plane. However, the problem becomes more complex with issues such as clock 

synchronization, software delays and multiple paths that results in degraded position accuracy. 

Beep-Beep is another localization technique reported in [104] which avoids sources of 
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inaccuracy found in typical TOA schemes. The proposed beep-beep system uses cell phones 

commercially available and provides around two centimeters accuracy within a range of ten 

meters. However, sound level in the environment can limit the range of the beep-beep system 

accuracy.  

 

 Like all other electromagnetic waves, radio waves travel at the speed of light. The CSL 

RTLS basic principle of operation is that the total time of radio waves travel between the tag and 

the reader is multiplied by the speed of light to calculate the total distance of travel [21]. This 

number is divided by two to determine one way distance between the reader and tag. The CSL 

system further refines the estimate by accounting for hardware latency and uses probabilistic 

positioning algorithms that apply Bayesian statistics. As per CSL policy, details of location 

estimation algorithm were not provided, therefore analysis at the algorithm level is not possible.  

 

 The overall location accuracy varies depending on how often the tag transmits, the number of 

readers used, whether the tag is stationary or moving and the type of structures in the 

environment. The OEM reports that the system can provide average accuracy of one meter 

outdoors and two meters indoors for stationary objects.  

 

 The RTLS tag trajectories acquired in real time provide two dimensional data in the 3D 

workspace xy-plane due to limitation in CSL software provided with the equipment. 

Subsequently the readers placement are in the xy-plane of the workspace. The z-plane 

information is however considered constant and requires user interaction by defining tag height 

during the run. This assists in estimating correct location of the tag in the 3D workspace. The 

http://en.wikipedia.org/wiki/Speed_of_light
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RTLS location in the xy-plane of the 3D workspace carries sufficient information for supporting 

the 3D stereo location data and should not be confused with the 2D imagery data. Acquiring real 

time height data from RTLS is not limited theoretically and can be obtained by updating the 

software and deploying the readers in a 3D space. 

 

4.4.2 Cell architecture  

 

 The system allows defining geographical areas, called cells, where tagged objects are 

localized and tracked. Each cell is made up of at least  four readers, in most cases six, and up to 

eight readers in challenging environments such as an indoor warehouse. The maximum cell size 

can be 100100 m. Larger areas can be segregated into multiple cells. To achieve good outdoor 

location accuracy, the tags should preferably be in the cell area where antenna beams of at least 

three readers intersect without any solid obstruction that can reflect RF energy. Moreover to 

increase system accuracy, software optimization tools can also be used.  

 

4.5 RTLS based location estimation  

 

 We deployed the active RFID based location sensing equipment in indoors and outdoors 

respectively to analyze its location performance. We provide here the details and results obtained 

from our experiments.  
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4.5.1 Indoor location sensing 

 

 We placed our four RTLS readers (one master and three slaves) indoors in a hallway 27×12 

ft (8.233.66 m). The readers were placed on the four corners to form a single cell. The reference 

tag was placed at the center of the cell and other points to check for the location accuracy. Figure 

4.20 shows the indoor setup of RTLS. The average location accuracy for static tags was ~1.9 m. 

The performance for dynamic tags varied a lot due to multipath effects in a compact space. 

 

 

 Figure 4.21 shows the floor map of RTLS indoors. It shows one active cell with the location 

of four readers and one tag in active state. The master reader is represented here as M1, and the 

slave readers are represented as S1, S2 and S3. 

  

    

Figure 4.20 

RTLS location sensing indoors - setup. 
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Figure 4.21 

RTLS location sensing indoors - Floor map. 

 

 

 

4.5.2 Outdoor location sensing 

 

 To check RTLS outdoors we installed the four readers in the four corners of the same test site 

(40×40 m) where we previously tested the stereo system. A single cell was configured using the 

four readers. Each reader was placed in a portrait orientation to provide beam width of 80
o
. 

Figure 4.22 shows the outdoor setup of RTLS.  
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 As per the operator manual a 15
o
spatial offset was applied to the readers to direct the antenna 

beam towards the center of the test area. Reference tags were also placed at specific positions to 

estimate location accuracy. A tagged person followed exactly the same predefined eight path 

points used in stereo runs with the person being stationary for few seconds at those points. The 

tag location was recorded when the person reached the desired points. This approach provided 

RTLS system accuracy in the workable area of the test site. Figure 4.23 shows the person 

locations ('♦') computed using RTLS at eight points. Four green squares ('■') show the location of 

the four readers.  

 

   

(a)                                                  (b)                                                 (c) 

Figure 4.22 

RTLS location sensing outdoors - setup: (a) master reader on tripod (b) reader pointing towards 

test site center (c) reference tag placed in test site. 
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 Table 4.4 shows location data in the xy-plane and the difference between the ground truth 

observations and the location obtained using RTLS. The average error obtained along x-axis is 

Xavg diff  = 60.1 in (1.53 m) and similarly along y-axis is Yavg diff  = 54.1 in (1.37 m). 

 

Figure 4.23 

Top view of the outdoor test area showing person locations computed using RTLS. 
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Table 4.4 

Comparison between ground and RFID observations in xy-plane- scale is in inches. 

W xP
ground

  
yW P

ground
 W xP

RFID
  

yW P
RFID

 X diff  Ydiff  
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-1.2 

 

53.02 

 

50.4 

 

67.0 

 

51.6 

250 0.7 162.5 -36.5 87.5 37.2 

370 -2.9 333.1 89.2 36.9 92.1 

534 -4.1 473.9 63.7 60.1 67.8 

700 0.4 636.4 -45.4 63.6 45.8 

810 -1.3 781 53.4 29 54.7 

950 -3.2 912.8 -22.9 37.2 26.1 

1070 2.1 970.3 -55.2 99.7 57.3 

 

 

 

 Figure 4.24 shows the tagged person's locations computed using RFID ('♦') and the ground 

truth (○). The radius of the circles [shown in dotted blue line] represents the location error 

between the ground truth and the RFID observations. The center of the circle is at the ground 

truth observations. The circles are shown in different colors for easy representation. Since the 

test site center has solid structures, due to factors such as multipath and partial occlusion the 

location error increases as the tagged person moves towards the center of the test site. In the next 

chapters we will explain how this coarse location can help fusion. 



113 

 

 

Figure 4.24 

Computed locations of the person using RTLS and error estimation - error circles represent 

difference between ground truth and RTLS. 

 

 The average accuracy for the person location while being stationary at desired points was 

observed to be ~ 1.5 m. The readers' locations needs to be accurately provided in the software 

otherwise the tag location accuracy will be affected. It is also noted that the RTLS system has at 

the minimum ~ +2 sec refresh rate with four tags in the area. The more tags in the cell the greater 

will be the time required to update the next location of each tag. 

 

 

4.6 Summary discussion 

 

 In this chapter we have evaluated the localization performance of stereo vision and RFID as 

single modalities. Working towards an automatic system, we currently have some steps in the 
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research methods that require user interactivity. We have studied and implemented the ray-ray 

stereo scheme [31] for 3D localization in an indoor lab environment using commodity cameras 

and have reported an RMS accuracy of ~0.34 in (8.64 mm). Later the efficacy of the stereo 

approach was tested outdoors in a surveyed test site. In our analysis we have obtained RMS 

location accuracy within ~7.6 in (19.3 cm) which offers potential for future researchers to 

examine automated three dimensional tracking outdoors using economical vision sensors. Later 

an RFID based location system was used for analyzing location performance. We have assessed 

that the system can achieve ~1.5 m accuracy outdoors for tagged persons following predefined 

paths and being stationary for few seconds at selected points. The acquired RTLS system 

presently provides real time location in the xy-plane of the 3D workspace with approximately 

two seconds minimum system latency due to OEM software constraint and no provision of 

copyrighted location processing details to the customers. The z dimension, though available 

comes with planar restriction defined by the tag height. Getting interpolated location estimates 

and varying tag height data is however, not limited in theory. 

 

 In general we have shown how proper sensor placement can support localization and 

tracking. This enables the system to spend more resources on tracking anomalies -- 

"unauthorized" objects, machines, or materials in a site safety environment.   
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_____________________________________________________________________________________________ 

 

CHAPTER 5 

Fusion dynamics and analysis 

_____________________________________________________________________________________________ 

 

In performing data fusion, our aim is to combine and enhance the sensor information - so that it 

is better than would be possible if the sensor observations were used individually. In this chapter 

we define and characterize our sensor relationship w.r.t recognized standards and explain the 

basic building block of fusion. Next, general fusion benefits in a tracking environment are listed. 

Finally, particular examples of fusion using CV and RFID are explained to highlight how fusion 

may address the weaknesses of single sensing modalities.  

 

ith a single sensing modality the sensor will cover a limited region of the environment 

and provide measurement data of only local events, aspects, or attributes. Frequency 

of measurement or the refresh rate and the accuracy/precision of the basic sensing element in the 

sensor are some other constraints worth considering while choosing sensors for a tracking 

application.  

 

 Fusion of sensor data is a dynamic process that involves association, correlation, and 

combination of data derived from multiple sensors resulting in a fused product with a common 

representational format, which is more complete and accurate. Employing more than one sensor 

W 
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in the workspace may enhance the synergistic effect in several ways, including: increased spatial 

and temporal coverage, increased robustness to sensor and algorithmic failures, better noise 

suppression and increased estimation accuracy. Data from multiple sensors could be of the same 

type or of different types. For the fusion process this data has to be represented in a common 

format that is meaningful in order to estimate or predict some aspect of an observed scene. In the 

paragraphs below we characterize our sensor setup and  fusion approach in light of recognized 

standards. 

 

5.1  The fusion process approach    

  

 Boudjemaa et al. [105] categorized fusion as across sensors, across attributes, across 

domains or across time. In fusion across sensors a same property is measured by a number of 

sensors versus the across attributes category where sensors measure different properties 

associated within the same workspace. In across domain the sensors measure the same attribute 

over varying domains. Lastly the fusion is categorized as across time when current 

measurements are fused with prior information. 

 

 Our sensor infrastructure as single modalities exploit a fusion scheme across sensors. This is 

because two or more cameras are used to observe the same workspace for stereo vision; however 

independent observations can be utilized when calculating depth information from single camera 

and single RFID reader. Also four or more RFID readers provide object ID and location 

information. Common representation of the location information x,y,z from RFID and vision as 

single modalities, into tokens <x, y, z, t, v, L> depicts fusion across sensors. However, the 
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different feature set v of these modalities provided to resolve ambiguities between objects 

exemplifies the use of fusion across attributes. Our S-3 system can also use prior records {<x, y, 

z, t-k>}, or perhaps even forward records {<x, y, z, t+k>} to determine L = f (<x, y, z, v, t>) to 

update the object tracks presenting fusion across time. 

 

5.2  Multiple sensor configuration 

 

 Durrant-Whyte [106] classifies a multiple sensor data fusion system according to three basic 

sensor configurations. They are described as complementary, competitive and cooperative. In 

complementary configuration the sensors may not have a direct dependency relationship, 

however they can be combined to provide a comprehensive image of the phenomenon under 

observation. It is exemplified by the use of multiple cameras, each observing different parts of a 

workspace, to provide a complete view of the scene. Complementary sensors help resolve the 

problem of incompleteness. Fusion of complementary data is relatively easy because the data 

from independent sensors can be appended to each other. A competitive relationship among 

sensors is described as independent measurement of the same property by each sensor. This 

configuration allows combining competing sensors that are not necessarily identical. Calculating 

refined object location by RFID and vision location estimate uses competitive relationship. It 

provides robustness and fault-tolerance because comparison with another competitive sensor can 

be used to reduce the effects of uncertain and erroneous observations. Cooperative type data 

provided by two independent sensors are used to derive information that would not be available 

from a single sensor. The resulting data will be sensitive to the inaccuracies in all the individual 
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sensors. Our stereo approach where two independent cameras are used to compute the 3D pose 

of an object comes under cooperative sensor configuration.  

 

 In terms of usage, these sensor configurations are not mutually exclusive because more than 

one of these categories can be used in most cases. Figure 5.1(c) illustrates complementary 

configuration  where cameras are networked to cover most of the workspace area and increase 

the workspace visual coverage.  Figure 5.1(d) explains competitive sensor configuration where 

both RFID are CV are used to obtain ID and refined 3D location of the tagged object.  

 

 

  (a) 

 

(b) 

 

(c) 

  

(d) 

Figure 5.1 

Multi-sensor configurations: (a) cooperative (b) cooperative (c) complementary (d) competitive. 
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5.3  Building block for multiple sensor fusion  

 

 The basic building block for multiple sensor fusion is called a fusion node. An overall system 

can have a distributed network of these nodes. The sensor observations s iO
 
are received as 

single or group inputs to the fusion node: 

 

   ,  ,  ,  , , , , ,O x y z ts i j s i j s i j s i j s i j      

{ , , }

{ ,1,2,3,......}

{ ,1,2,3,......}

s CV RFID group

i

j



 

 

  (5.1) 

 

 The single inputs, for example, can be 2D image points in case of stereo calculation. The 

sensor group input is provided when a 3D location of the object is provided by the cameras or 

RFID. The ,Zs i j   is not applicable for 2D calculations. The feature set ,vs i j  is provided to the 

node as auxiliary information from the sensor. This includes information such as color, texture, 

ID, height, dimensions, predefined labels, etc., that are generated dynamically or accessed from 

the database. The sensor process in the node processes the observations and forms tokens ,s i j .  

 

   ,  ,  ,  ,  ,  , , , , , , ,x y z t v Ls i j s i j s i j s i j s i j s i j s i j     (5.2)  

 

 The node receives data in common representational format and initiates data association, 

estimation and filtering processes. Data association and estimation can be based on hard decision 

methods, such as nearest neighbor, Euclidean distance etc., whereas Kalman filtering or particle 

filtering can be used for a probabilistic approach. We have used a hard decision method to 



120 

 

correlate sensor observations, which involves discrete relaxation labeling. All the data received 

by the node is combined together to produce a fused token. The output token represented as 

may, or may not, differ in position, time, value and uncertainty from the input observations. The 

fused output is also provided to the node for fusion across time which might be required to 

generate the object tracks.  Figure 5.2 shows a graphical representation of a fusion node [107] 

which integrates in applications such as temporal tracking of objects in a given environment. 

 

 

 

Figure 5.2 

Basic fusion node architecture. 
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5.4 Benefits of fusing RFID and CV 

 

 Although object recognition and scene understanding using a purely CV approach is 

advancing, performance lags what many applications require. Lai et al. [108] report on object 

modeling and recognition experiments with 300 common objects using color, shape, and depth 

features. Coarsely summarized, they show 80% precision at 60% recall. This work involved 

stationary objects in indoor environments and mostly manufactured surfaces. NIST reports on a 

large base of biometrics experiments for person identification [109]. Some cases are reported 

where automatic systems perform better than humans and where there are viable commercial 

applications. In general, excellent performance is achieved only when high quality images are 

available. In the Advantage I-75 project, Walton et al. reports [110] optical license plate reading 

performance of 35% to 45% while RFID systems routinely achieve read rates exceeding 99%.  

Many of the difficult cases for CV are due to poor image quality such as caused by dirty or bent 

license plates. 

 

 In many applications, engineering with RFID technology can avoid the problems of a purely 

CV recognition approach and can yield reliable object recognition leading to better object 

tracking and motion analysis as we will see in the next sections. In addition, some purely RFID 

solutions can benefit from adding some CV. Many retail stores use either bar code or RFID tags 

on items for machine reading. A customer, or “sweetheart” clerk, can cheat by changing the tag 

from one item to another, or perhaps using a counterfeit tag. Some CV capability at the checkout 

station can guard against this: visual features of the item can be sensed and compared to 

symbolic features stored on the tag. IBM’s Veggie Vision system [43] can recognize 350 
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produce items using color, texture, shape, and size features -- produce items are usually not 

tagged with bar codes unless packaged. This technology can be extended to thousands of other 

supermarket items as a check on bar code or RFID recognition. A related application of RFID is 

the EZ Pass highway toll-collection system [15]. Typically, a video camera is included in the 

system to take frames of cars that pass through without a legal transaction so that fines may be 

levied based on license plate ID. CV could be used here as a check that the car with the EZ Pass 

transponder has visual features corresponding to those stored in the active RFID tag. This adds 

security against theft or cloning. CV can be used similarly for person ID when credit cards or 

“smart cards” are used. Symbolic features on the card can be compared to an image of the live 

person using the card - either by a clerk or automatically. The state of the art of person 

verification is good enough to support this operation. 

  

 There are many possible applications based on fusion of RFID and vision. They can range 

from reliable object and person recognition, to assisting persons with disabilities, making 

shipping more efficient, and enhancing construction site safety. Specific examples are already 

provided in Chapter 2. Some important general characteristics of the fusion are as follows: 

 

a. Improved object recognition accuracy - Uncertainty depends on the object being 

observed and arises in case of occlusions and limited sensor measurement accuracy. 

Since the primary purpose of RFID is object identification, object detection and 

identification/recognition will be much more accurate in the fused infrastructure 

compared to a CV only approach thereby decreasing uncertainty. 
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b. View independent tracking - The fused system has the main benefit of view independent 

tracking. This is only possible due to the powerful tool of wireless identification in RFID.  

 

c. Easy object representation - Representation of the objects and/or humans is a 

complicated operation when using only 3D CV. The fusion approach provides direct 

symbolic representation. 

 

d. Robust segmentation - With the fusion approach, object identification in a scene becomes 

easy and accurate since object model information can be retrieved from the object tag.  

Fusion can provide robust segmentation of images in real time. 

 

 e. Training free learning - The fused system can train itself on the fly for the tagged objects 

in the environment. By directly sensing object ID, the system can efficiently learn object 

appearance models using the CV component without human intervention. New objects 

teach the system when they arrive. 

 

f. Compatibility of RFID passive tags and CV - RFID passive tags are of very small size. 

Applying them to objects does not change their appearance or pose. Therefore their use 

does not hamper operation of any vision based techniques. Active tags though come in 

bigger sizes. 
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g. Efficient handling of occlusion - The fused system can be used for handling the occlusion 

problem without increasing the computational and hardware complexity if multiple 

cameras are used. 

 

h. Supplemental object information - The onboard memory of an RFID tag can carry a 

variety of information about the tagged object. For example, an object can transmit its 

color and size, which supplements the visual feed. This element is essential in designing 

autonomous systems that require real time interaction. Moreover, RFID tags can transmit 

important non-visual information, such as object weight or chemical composition. 

 

i. Increased spatial and temporal coverage - The networked RFID and cameras can 

increase the workspace spatial and visual coverage.  

 

j. Improved resolution - When multiple independent observations from similar sensors of 

the same property are fused, the resolution of the resulting value can be better than a 

single sensor’s observation 

 

To benefit from sensor fusion, there is a need to combine the strengths of RFID and CV to 

avoid problems of each mode. Fusion must be designed so that problems such as failure in un-

tagged environments, high data rate, and lack of positional information do not defeat its 

principles.  

 

  



125 

 

5.5  Test cases to explain fusion and its analysis 

 

 We illustrate in this section how CV and RFID in a competitive configuration supplement 

each other in critical test cases. For clarity we first assume that for case I and II, both CV and 

RFID feeds are continuously available and the objects are not occluded by each other or by the 

background and are moving with approximately the same velocities. We briefly mention 

relaxation labeling based filtering which eliminates the incompatible labels iteratively. To 

maintain sequential flow of concepts, relaxation labeling will be explained in Chapter 6. The 

cases mentioned below are symbolic versions of our outdoor test trials. 

 

5.5.1 Test case I - Same colored objects 

 

 For case I, consider two objects represented as '▲' and '■' with 3D data at each instance over 

nine time frames. For better visualization the tracks in Figure 5.3(a) are displayed in the xy-

plane. The objects are converging from north to south towards each other, and intersect at time 

frame 5 and thereafter follow their direction of motion. Even if the objects were moving in a 

straight line, the points would appear to be scattered along the true path due to propagating 

location errors and distortions in a 3D space. CV and RFID location accuracies are shown with 

circles. The inner circle around every point shows the localization error of CV and the outer 

circle represents that of RFID. Figure 5.3(a) and (b) shows case I where both the objects are of 

the same color. Figure 5.3(a) shows the object tracks and Figure 5.3(b) represents label 

assignments. The CV system can correctly assign labels to '▲' as label 1 and '■' as label 2 up 

until time frame t = 4. Thereafter there is a probability of no ID assignment, which based on 
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relaxation labeling means no wrong label elimination and is represented here as keeping both 

possible labels for both points. On the other hand, RFID provides correct label assignments other 

then at t = 5 due to fully overlapping localization error of point '▲' and '■'. In this case RFID 

helps CV to generate correct object tracks. However, no label elimination in the intersection area 

is possible. CV contributes by refining location. 

 

      

                              (a)                                                                          (b) 

Figure 5.3 

CV and RFID supplementing each other - Case I: (a) same colored object tracks (b) label 

assignments. 

 

5.5.2 Test case II - Different colored objects 

 

 Figure 5.4(a) and (b) shows case II where objects are of different color. Due to no occlusion 

CV will be able to provide correct label assignments. However, RFID will have no label 

assignments at t = 5. Fusing both feeds, CV supplements RFID here and the label assignment at t 

= 5 is obtained.  
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                                (a)                                                                        (b) 

Figure 5.4 

CV and RFID supplementing each other  - Case II: (a) different colored object tracks (b) label 

assignments. 

 

 For both case I and II, CV support can also be clearly appreciated when RFID location error 

is maximum (i.e on outer circle boundary) for two points having overlapping localization error in 

consecutive frames. 

 

5.5.3 Test case III - Different colored objects with intermittent RFID/CV feeds 

 

 Figure 5.5(a) and (b) shows case III where some of the objects are occluded by the 

background and the RFID feed is intermittent. This is represented here as missing vision and/or 

RFID location accuracy circles. The dash symbol shows non-availability of observation for that 

time instance. Comparing Figure 5.5(a) and (b) it is obvious that CV and RFID supplement each 

other at missing spots and fusion of these generates correct label assignments.  
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                              (a)                                                                         (b) 

Figure 5.5 

CV and RFID supplementing each other - Case III: (a) considering visual occlusion and 

intermittent RFID, different colored object tracks (b) label assignments. 

 

5.6 Summary discussion 

 

 This chapter presented a multi-sensor fusion configuration that combines information from 

vision and RFID and generates tokens. We have presented the attributes of our fusion scheme to 

explain its adaptability towards established fusion standards. It explains the competitive and 

cooperative relationships of our sensors and the fusion building block needed to develop the 

fused system. The potential benefits of fusion focusing on localization and tracking tasks are also 

highlighted. To practically elaborate the potential in fusion, we have demonstrated test cases 

where fusion disambiguates object tracks and combines the strengths of RFID and vision to 

avoid problems of each mode.  
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_____________________________________________________________________________________________ 

 

CHAPTER 6 

Tracking using fusion of CV and RFID 

_____________________________________________________________________________________________ 

 

Object tracking comprises estimation of the current position and orientation of a tracked object 

and its motion, usually based on noisy measurements that generate uncertainties especially for 

dynamic objects. This chapter covers the algorithm development procedure for object tracking 

using fusion. We introduce a relaxation labeling scheme that can implement object tracking. The 

constraint satisfaction process is based on fusion of CV and RFID. Further, we have used 

smoothing for optimization, which is a high level technique that operates globally, to update 

computed tracks for increasing tracking reliability. 

 

n object track is k or more tokens in time sequence with consistent object ID and features 

that also satisfy constraints for motion in space. The complexity of the tracking problem 

increases for multiple object tracks. Observations from multiple sensors helps decrease the 

uncertainty. 

 

6.1  Object tracking model using sensor fusion 

  

 In the process of object tracking, object tracks are updated by correlating sensor tokens with 

the existing tracks or by initiating new tracks using tokens from different sensors. An object 

A 
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track here can be defined as a temporal sequence of assigned tokens with consistent features and 

label that also satisfy constraints for motion in space. Token association, which provides token-

token or token-track correlation, facilitates the constraint satisfaction iterative steps. The process 

of relaxation labeling filter out incompatible objects leaving behind compatible candidates for 

track updates by the optimization process. We have used smoothness as an optimization process. 

Details of the smoothness algorithm will be provided towards the end of this chapter. Figure 6.1 

describes tracking using sensor fusion. 

 

 

 

Figure 6.1 

Schematic diagram of object tracking using sensor fusion and relaxation labeling. 

 

6.2 Labeling via iterative processing 

 

 Relaxation labeling is an attractive technique because it is highly parallel, involving the 

propagation of local information via iterative processing. Suppose there are N objects detected at 
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a particular time instance t. We use discrete relaxation to create the tracks of these N objects and 

to update the time tokens comprising each track. Using relaxation, different sensors and sources 

of information can be turned on or off for experimentation or for practical reasons at a site. 

Fusion processes operate on a blackboard containing the set of tokens. When an observation is 

made, its initial label set is the set of all possible N known objects. Filtering processes are then 

applied to eliminate labels inconsistent with constraints. Sensing continues over the T time steps 

and naïve physics processes aggregate object consistent tracks. 

 

 For clarity, suppose that N objects are detected at time t=1 and that we arbitrarily label these 

objects 1,…,N. At time t=2, we have another N observations and we want to label each of those 

with the labels from time t=1. A label possible for a token at time t=2 will be consistent in color, 

motion, and RFID ID with the tokens at time t=1. Initially, a new observation may detect any of 

the known objects, so all labels L are possible. A totally new object entering the site could be 

given a new unknown label. Most of these labels are filtered out quickly by failing constraint 

satisfaction criteria. For example, suppose five orange hard hats are detected at t=1 and these 

have initial labels 3,4,6,8,9. For any token for time t=2 that is not orange, labels 3,4,6,8,9 will be 

deleted from its possible label set. Filtering can be done by space as well as by color. If any 

token at time t=2 is unreasonably far from a token m at time t=1, then label m should be deleted 

from its label set. 
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6.2.1 Sensor process 

  

 A CV sensor takes a video frame, segments it into special regions of color, and provides two 

points on each of the imaging rays that are presented as sensor observations. Object region 

features are provided in the feature vector v. Using this information, the sensor process then 

generates tokens, one for each segment detected. Object label L is initially unknown. An RFID 

reading produces a similar token, except that an object label L is known in almost all cases.   

 

6.2.2  Combination process 

 

 Fusion processes take the sensor observations and generate tokens and possibly merge 

information using ray intersection, ray-surface intersection, etc., whichever applies, and outputs a 

token with refined 3D location or label information. Filtering processes eliminate unlikely token 

labels by comparing tokens and by looking at feature vectors over time. The current software 

implementation of relaxation inputs combined tokens that have been pre-computed from stereo 

correspondence. Similarly, RFID tokens have 3D information from the encapsulated RTLS 

system. 

 

6.2.3  Tracking process 

 

 Naïve physics constraints are used to filter out highly unlikely labels for objects at time t 

based on the recent history of objects continuing from the k previous time steps. Our current 

results have used the current and two previous time steps. 
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6.2.4 Relaxation labeling algorithm       

 

 The processes and constraints described above are now formalized into an algorithm: 

 

Output: Object Labels at Lk and 3D location XYZrefined ϵ R
3 

for each object 

Input: Object Labels at Lk-2 and Lk-1 with color, RFID and XYZRFID and XYZstereo ϵ R
3
 

FOR  t = k :Kframes 
/*Process all time frames */ 

 Obtain color information if any for XYZstereo 

observations from 2D histogram matching 

 

 Sort colors into groups     /* How many colored hats and balls 

and which colors*/ 

Detect 

 

 n number of XYZstereo observations detected  

 

/* Motion detection and color 

detection*/ 

 m number of XYZRFID observations detected /* Active RFID*/ 

 Merge tokens and generate empty label matrices for 

p observations  

/* p = max(n,m)*/  

 Assign p labels to all p observations and proceed to 

next pass  
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Identify /* Binary relationship criteria*/ 

 Identify XYZstereo observations based on color 

information 

 Identify XYZRFID observations based on ID 

 Correlate identity information 

 

IF Only one color group /*All XYZstereo observations have 

same color*/ 

No label elimination and proceed to next pass   

ELSEIF  Different color groups  /*Some XYZstereo observations have 

different color*/ 

Eliminate labels from p label matrices based on 

respective color groups and proceed to next pass 

END IF 

 

 

Locate /* Binary relationship criteria*/ 

 Set stereo and RFID location threshold values 

 

/*Thresholds are defined based on 

sensor location accuracy and object 

speed*/ 

 Locate XYZstereo observations 

 Locate XYZRFID observations with ID and location 

 Correlate location information 
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FOR  i = 1 : p       

            StereoObservationSet(i) = Starting at t=k-1 use 

stereo threshold and find near neighbors at t=k 

for XYZstereo observation  

 IF Label is in StereoObservationSet(i) 

  Keep label 

 ELSE 

  Eliminate label and proceed to next pass 

END IF 

END 

 

Smooth 

 Calculate direction of flow/velocity for every 

XYZstereo observation at t=k relative to k-2 and k-1  

/* z dimension gives valuable 

information here */ 

 Correlate with RFID label/s ID and location 

information from XYZRFID 

IF  No difference in flow detected 

 Labels kept 

 

ELSEIF  Difference in flow detected 

 

/* Only compatible labels 

remaining.*/ 

Eliminate unlikely labels 

END IF 
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Compatible label/s obtained /*All possible labels for specific 

object*/ 

 Compatible label/s provided to optimization process 

to obtain XYZrefined 

END FOR 

 

 

6.2.5    Test cases to analyze discrete relaxation labeling 

  

 To realize how the dynamics of relaxation labeling can fuse information we describe here 

some related critical test cases. 

 

6.2.5.1 Test cases IV - Two same colored objects with simple dynamics 

 

 We start with a simpler dynamics as shown in Figure 6.2 where two objects having the same 

color features moving from west to east first converge, move side by side for some time, and 

then diverge. The possible compatible labels after fusion are shown below each block of time 

frames. Assuming there is no occlusion, the labeling algorithm generates unique compatible 

labels '▲', '■' before the object tracks intersect at t=4. Thereafter there will be no label 

elimination until t=7 due to overlapping location errors of CV and RFID. The applied constraints 

can then categorize inconsistent labels at t=8 and onwards. Moving towards a more complex 

scenario in the next test case, the structure and efficacy of the relaxation scheme is explained 

step by step.  
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6.2.5.2 Test cases V - Four same colored objects with increased complexity 

 

 Two persons '▲', '♦' carrying two balls '●', '■' move towards each other and meet at the 

center of the test area. They then exchange the balls and move back towards the direction of their 

starting positions. The return paths are separated for better illustration. Both persons and both 

balls are tagged. To test algorithm robustness and increase complexity we consider that the color 

of the balls and the persons head gear are the same. Figure 6.3(a) and (b) show the 3D points 

over consecutive time frames. 

 

 Here Figure 6.3(a) represents the correct trajectories of the persons and the balls. If we 

assume that there is no occlusion and the stereo feed is continuously available then Figure 6.3(b) 

shows incorrect trajectories of the persons calculated by the stereo feed alone.  

 

 

Figure 6.2 

Correct object tracks with possible compatible labels at each block of time frames. 
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(a) 

 

(b) 

 

(c) 

Figure 6.3 

Test case showing relaxation labeling: (a) correct trajectories of persons and balls. (b) correct balls 

and incorrect persons' trajectories (c) left matrix - General pattern of four relaxation constraint 

passes and final compatible label/s. Right matrix - RFID location information.  
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 It is assumed that we have information about the feature set and 3D location of the object 

labels at time frame t=1 and 2. For subsequent time frames we correlate CV and RFID 

information and apply constraints in detect, identify, locate and smooth passes. Constraint based 

label elimination by these filtering passes update the label matrix for every observed point at 

every time instance t>2. Once all impossible labels are removed and no further elimination is 

possible then the remaining label/s is/are considered as compatible label/s. The label/s is/are then 

passed on to the post-processing optimization process for updating fused token feature vector v 

and the refined location XYZ and, where required, determining a possible unique label amongst 

the four compatible labels sets. The optimized labels acquired are then assigned to the observed 

points respectively.  Figure 6.3(c) demonstrates a typical label matrix on the left that shows all 

four passes with the remaining compatible labels at the end. The RFID location information on 

the right is shown with each label matrix to provide evidence of objects presence.  

 

 For the observations in Figure 6.3(a), a step-by-step explanation is provided on how the label 

matrices in Figure 6.4 are updated. For time frame t=3 and 4 in each label matrix the objects are 

detected in the detect pass based on motion, color and ID and subsequently all the possible labels 

are assigned to all the observed object points. In the identify pass the system identifies objects 

based on color groups and ID from RFID. Since the color information for the observed points is 

the same no label is eliminated at this pass. The color histogram similarity measures can be used 

for color based sub-grouping. In the locate pass the labels are eliminated based on near neighbors 

where thresholding is done using sensor location accuracy and object speed. This helps identify 

'▲','●' and '♦', '■' as consistent label pairs. The two inconsistent labels are then eliminated from 

the respective label matrices.  
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 The smooth pass correlates labels with RFID and deletes one further label with unlikely 

motion according to local (3 point or 2 point) smoothness and object height constraints. This 

completes relaxation labeling. Global tracking is done as post processing. Note that at t = 5 the 

process of label elimination is complex due to the overlapping location errors of stereo and RFID 

and therefore label elimination is not possible in detect, identify and locate passes. During the 

smooth pass, RFID provides no label elimination information showing all four labels 

'▲','♦','●','■' as valid; however, the system identifies '●','■' and '▲','♦' as possible label set pairs 

based on object height and velocity constraint and subsequently outputs two compatible labels.  

 

 The compatible labels from relaxation are fed to the post optimization process to identify the 

optimal label for each observation. It is to be noted here that the system keeps one extra label as 

t=

1 

t=

2 
t=3  t=5 t=6 

 

 
 

 

. 

 
  

 

 
 

 

. 

 
  

 

 
 

 

. 

 
  

 

 
 

 

. 

 
  

(d) 

Figure 6.4 

Label matrix updating steps for same colored objects at each time frame for Figure 6.3(a) 

tracks. 
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part of the possible compatible label set. This explains a tradeoff between increased post 

processing computation for keeping a wrong label and the cost of eliminating a correct label. 

Since the objects have the same color and are assumed to be moving with the same velocity, at 

t=6 the color and near neighbor constraints will not provide valuable information for label 

elimination. In the smooth pass based on height and direction of flow relative to previous 

velocity vector direction, CV identifies '▲','●', and '♦','■' as compatible label sets for the 

respective observations. These two label pairs for each observation represent correct trajectories 

of the balls; but incorrect trajectories of the persons as shown in Figure 6.3(b). However RFID 

provides '♦','●', and '▲','■'  as possible label pairs. Correlating this information helps obtain one 

correct compatible label for each observation.  

 

6.3 Optimization process 

 

 An optimization process is applied on the compatible labels obtained after relaxation labeling 

so that the tracks can be optimized. We explain here how smoothness, which is a global operator, 

can help optimize object tracks. The process only optimizes some token  parameters without 

violating specified constraints. Smoothness of trajectories requires a burst of time frames. Our 

tracking version used a burst of four consecutive time frames to compute track smoothness, 

curvature, and acceleration. 
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6.3.1 Smoothness of trajectories 

  

 Our smoothing algorithm is motivated by the Sethi-Jain [96] and Veenman et al. [97] 

algorithms. It can work in either 3D or 2D and includes more information on some objects at 

some time instants [as is available from the RFID or vision sensors] than those previous 

algorithms. If a 2D algorithm is used, the constraint that two objects cannot be in the same 

location at the same time should be relaxed since it may just be that one object is occluding the 

other at some instant. The general algorithm will have different specializations depending on the 

application and how much sensor information and object constraints are available. For example, 

in the S-3 system, our cameras are calibrated to a surveyed 3D terrain, so if an image object is 

known, then an approximate 3D object location can be computed using the image from a single 

calibrated camera (we can just intersect a camera ray, or cone, with a surface in the 3D space).  

 

 Our goal is to optimize the tracking based on the heuristics explained in Section 3.4, which 

will provide the means for safer activities and more efficient site management. A set of T vectors 

of information for each time frame t=1,2,3,…T is provided as input. Each of these time frames 

represent “frame vectors” that contain N tuples <x,y,z,v,L>, where label L may identify a known 

object (L=1,2, …,q or N) or it may be unknown (L=0). The purpose of the algorithm is to assign 

(discover) labels L = 1,2,3 …q or N, to each position tuple at each time t.  
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6.3.2 Tracking algorithm description 

 

 The algorithm takes input tokens containing N observations of 3D points over T time 

instants, thus NT tuples total are grouped into T time frames. It extracts a smoothest set of paths 

through these points, observed in frames 1 to T; all tuples are now grouped into N tracks. The 

object ID and location provide labeling information with the 3D points when available i.e L = 

1,2,3,……,N. The number of such “tagged points” must be less than or equal to T for any of the 

objects n. For object track n, the trajectory consists of 3D points at each time frame t=1,2,3, 

………,T.  The trajectory with label L is represented as:  

 

[ ]C = P ,P ,.........,PL n1 n2 nT  ;  , , , , ,,P x y z t v Ln t                 (5.3)

   

 As in Sethi-Jain [96], the path difference between two consecutive 3D points is defined as:   

 

 ;, ,    ,D P Pn t n i n ij j t                    (5.4) 

 

 Smoothness at a current point Pn,t is calculated using the previous point Pn,t-1 and next point 

Pn,t+1. Dn,t-1 is the path difference between the current and previous point and Dn,t+1 is the path 

difference between current and future point. Smoothness value Sn,t of a 3D point is then defined 

as follows: 
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   (5.5) 

 

 To yield 0 1,Sn t   a weight factor w is used such that 0 1w  . The initial points of N 

object tracks are assigned arbitrarily. The total sum of smoothness over T time frames for a 

single object track n with assigned label L is then given as: 

 

1

2

TLS Sn,tTotal
t




                  (5.6) 

 

 One can then define total smoothness for all tracks by summing smoothness over all N tracks. 

For efficient implementation, the algorithm uses a burst or block set concept. A real time 

algorithm must make decisions within, say, a fifth of a second, or six video frames. This limits 

the amount of look ahead that can be used. A burst or block set denoted by B is defined as a 

sequence of N-tuples <x,y,z,t,v,L> for a fixed length of time frames m. The size of B is then N  

m. From RFID properties, it is reasonable to assume that object IDs and their respective locations 

persist or are absent for multiple frames. In reality, these bursts can have arbitrary length and 

start time; however, in our simulations and analysis we assume more regularity. 

 

 Step by step implementation of the algorithm is as follows:  

   

Input: N tokens of 3D points over T time instants  /*Each time frame having N 
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number of rows is considered as a 

frame vector*/ 

Output: Smoothed trajectories CN. 
 

 At t=1, for all N object tracks, assign labels n 

=1,2,3,……,N  arbitrarily to the frame vector. 

/* Initialize labeling */ 

 

 Define burst length m /* m = 3,4,5,6 */ 

 Assign k = 0. /* Initialize k */ 

FOR  t = 2 : m-1 : T-1 /* Loop over T-1 time frames with 

increment of m-1 */ 

 k = k+1; /* Increment k */ 

 Label L may identify a known object (L=1,2, …,q 

or N) or it may be unknown (L=0). 

/* Availability of partial label 

information will reduce number of 

possible combinations */ 

 Optional - Use nearest neighbor assignments for t-

1:t frames with N tracks. 

/* If selected, this helps reduce 

combination volume in next step */  

 Consider t-1:t-1+m time frames with N object 

tracks and form frame vector block set Bk having 

kc
N

 sub trajectories. 

/* Generate frame vector block set  

of length m starting t=1*/ 

/* If nearest neighbor assignment 

selected then consider t:t+m-1 time 

frames */ 
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 Compute all possible combinations |U| of the 

elements of block set Bk.  

/*|U| is rm+1 */ 

/*|U| is rm with nearest neighbor 

option */ 

/* r is the product of the number of 

elements of N trajectories in block 

set Bk */ 

FOR  j=1:r  

FOR  d=2:m /* d=2:m-1 for nearest neighbor 

option */  

 Calculate smoothness 
,j d

S
total

at every 

instance in m-1 time frames for r 

combinations.  

 

END  

 Calculate total smoothness 
rS
total

over m-1 time 

frames for each combination of r. 

 

END 
 

 Sort end total smoothness for each combination in 

descending order. 

 

 While indexing, choose highest total smoothness 

of N pairs with combinations having different 

elements in each frame vector in an instance. 

/*Point Pn,k in frame vector is 

assigned once to a trajectory in one 

time instance and cannot be 
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reassigned elsewhere*/ 

 Exchange points and assign kc
N

 smooth 

trajectories in Bk as a subset of final smoothed 

trajectories. 

 

 Save kc
N

. 
 

 Increment t.  

END  /*When last positive integer value 

of t is reached */ 

 Correlate similar end points of kc
N

smoothed 

trajectories in Bk with similar initial points of k+1c
N

smoothed trajectories in Bk+1. 

/* Based on this similarity measure, 

 rearrange the order/label of k+1c
N

 

smoothed trajectories */ 

 Combine similar label subset trajectories from 

processed frame blocks and generate final smoothed 

trajectories CN. 

 

        

 Figure 6.5 shows the block diagram of the smoothness algorithm. Tracking algorithms 

sometimes lose correct object tracks at ambiguous intersecting points of trajectories. Optimizing 

object tracks here using trajectory smoothness helps the system in such ambiguous areas to 

interpret correct trajectories. Real-time implementation is possible as availability of ID from 

RFID could reduce the search space up to 99%.  
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Figure 6.5 

Block diagram of the smoothness algorithm. 

  

 To show the effectiveness of the smoothness algorithm we demonstrate step by step results of 

an example. The input data is displayed in Figure 6.6(a) and consists of a sequence of six time 

frames with three trajectories having 3D data at each point. Each point of the trajectories is 

symbolized by '■', '●' or '►'. For better visualization the z dimension of all the input data is 

fixed. Figure 6.6(b) shows the trajectory assignments after nearest neighbor linking. In the next 

step the exchange candidates are then decided using total smoothness. For this example block set 

Bk of length m=6 is used. Figure 6.6(c) shows the smoothed trajectories with '■' as label 1, '●' as 

label 2 and '►' as label 3. The algorithm took only 0.102 sec with no assignment error. 
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                        (a)                                                (b)                                                (c) 

 

Figure 6.6 

Step by step results of an example with smoothness algorithm applied: (a) input data (b) nearest 

neighbor assignment (c) smoothed trajectories. 

 

6.4 Summary discussion 

 

 We have proposed a three dimensional object tracking scheme using fusion of vision and 

RFID. Data integration and filtering are important tasks in tracking. We used discrete relaxation 

to control the integration of information from CV, RFID, and naïve physics. We have provided 

the theoretical and practical understanding of our proposed relaxation filtering technique that is 

based on the constraint satisfaction. The label elimination approach easily represents the 

ambiguity occurring in real-life applications. As a post processing step to labeling we have used 

smoothness for optimization to update computed tracks for increasing tracking reliability. We 

have shown how fusion can greatly increase tracking performance. 
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_____________________________________________________________________________________________ 

 

CHAPTER 7 

Experiments, results and analysis 

_____________________________________________________________________________________________ 

 

To study the value of fused sensor information in localizing and tracking multiple objects we 

report here experiments, results and analysis. Based on the defined performance metrics, 

analysis for CV and RFID as single and fused modalities is reported. First, we have evaluated 

use of stereo vision both indoors and outdoors for 3D accuracy and reliability of object location. 

Secondly, we have evaluated the commercially available RFID-based Real Time Location System 

(RTLS) for its accuracy and reliability of object detection and location. Finally, we have 

explored via simulations and also with the real time data how fusion can reduce the 

combinatorics of tracking. 

 

 

o validate the localization and tracking approach provided in Chapters 4 and 6 we provide 

in this chapter detailed experiments, results and analysis. For stereo experiments we have 

used Logitech C210 fixed focus commodity cameras. The focal length of these cameras is ~4mm 

with a frame rate of 15 fps at 640×480 resolution. For RFID based experiments we have used the 

CSL RTLS kit for localization and tracking. The computing platform used to run the simulations 

is a core i5 580M with 4GB RAM. All the simulations were done using MATLAB
® 

2009a. 

 

 

T 
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7.1 Generating stereo trajectories 

 

 To evaluate use of stereo vision both indoors and outdoors for 3D accuracy and reliability of 

object location we have generated three types of trajectories. The first type of stereo data was 

extracted from an indoor lab bench using stereo vision. The second type of stereo data was 

generated artificially using mathematical curves and the third type was the real stereo trajectories 

obtained indoors and outdoors. Simulations allowed us to construct interesting test cases and to 

control the ground truth, however, gaps between simulation and real-time may occur with respect 

to the assumption about the sensor capabilities, natural environment and the tracked objects 

attributes and dynamics. 

 

7.1.1 Real indoor trajectories from wireframe workspace 

 

 To generate real trajectories indoors, we used 3D stereo. A colored sphere on a stick was 

moved by hand along a specified trajectory within a wireframe workspace of 27 31.75 24 in 

(68.680.661 cm). The structure was used for calibrating the cameras. The trajectory of the 

sphere yielded T records <x,y,z,t,L> for object track L at times 1,2, …, T. The experimenter then 

repeated this using the stereo system to generate more trajectories until there were N of them, 

one for each object moving in the workspace: L = 1,2,3 … N. Each of these N sequences was an 

“object track”. If we had N object tracks, then there were 2
N

 subsets of these to choose for study. 

We had generated multiple tracks by varying the path and velocity through the workspace and 

also took care to create some near collisions. Figure 7.1 shows a set of a few trajectories 

generated using our stereo setup. 

 
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7.1.2 Mathematical trajectories  

 

 We created a dataset generator that can randomly create smooth object tracks with various 

speeds and densities without collision. We generated N smooth paths for T time frames each in 

3D space using a helix structure, which was randomly spread out for a selected number of time 

frames using pseudorandom values as shown in Figure 7.2. The circular helix of radius a and 

pitch 2πb in 3D space can be parameterized with Cartesian coordinates as follows: 

 

 

Figure 7.1 

Example of stereo trajectories generated from wireframe workspace indoors. 



153 

 

 

 

 To meet the constraints in Section 3.4, the generated data has the following parameters by 

default: 

 

( ) cos( )

( ) sin( )

( )

x t a t

y t a t

z t bt







 

 

Figure 7.2 

Mathematically generated trajectories using dataset generator with T=11 and N=7. 
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 a. Object tracks N=10. 

 b. Time frames T =11. 

 c. Smooth velocity vectors. 

 d. Unique trajectory directions. 

 e. No chance of collision.  

 f. Randomly spread out trajectories in a 3D space of 1 m
3
. 

 

7.1.3 Real stereo trajectories from indoors lab area 

 

We generated several trajectories using colored hats i.e orange and yellow in our lab area. 

We acquired random as well as ground truth trajectories where persons wearing colored hats 

moved over specified paths in real-time or while stopping at known points for few seconds. 

Figure 7.3 shows the trajectory generated while the person moved on a predefined path.   

 

 

Figure 7.3 

Indoors lab area real stereo trajectory where a person moved over predefined points.   

 

  



155 

 

7.1.4 Real stereo trajectories from outdoors 

 

 We conducted several experiments to test the stereo setup outdoors.  The persons moved over 

predefined measured points without stopping or, in some runs the 3D data was obtained with the 

persons being stationary for few seconds at those points. We tracked head, shoulder and hands of 

two persons. The ground truth points were carefully generated so that the persons were not 

occluded by each other or by the background. The tracker solves stereo correspondence and 

generates object tracks automatically. With cheap commodity cameras placed 10 ft apart and 4.5 

ft high we were able to track five same color coded points in real time with 6 fps. The RMS error 

was within 7.6 in (19.3 cm). Some of the real trajectories where the persons moved continuously 

are shown in Figure 7.4.  
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(a) 

 

(b) 

Figure 7.4 

Five outdoor real stereo trajectories: (a) 3D display of site (b) zoomed in top view of 

trajectories.  

 

 The system was able to track and distinguish between the head, shoulder and hands of the 

persons during the run time. This was achievable by applying epipolar geometry along with the 
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threshold defined for the shortest line segment constraint while solving the correspondence 

problem in 2D.  

 

7.2  Real outdoor trajectories using RTLS  

 

 Using RTLS outdoors we also generated data sets of ground truth trajectories for the tagged 

persons and objects. The z dimension requires user interaction for defining the tag height that is 

helpful in estimating tag location. The readings were taken while the persons moved in real time 

and didn't change tag height. We also placed some stationary reference tags to help analyze 

RTLS location performance. Figure 7.5 shows sample trajectories of a tagged person. The CSL 

software generates trajectories in XML format which are then imported to MATLAB. The XML 

file contains date, time and location information for each observation. Below is a sample XML  

parent-child node structure generated by the RTLS. The parent node is accessed by the tag name. 

The child nodes under the parent tree then contains the desired location information for each 

time instance.  

 

 <id>EE4CBB6A6223</id> 

 <name>EE4CBB6A6223</name> 

- <position_list> 

 - <Position> 

   <x>14.504</x> 

   <y>9.519</y> 

   <z>48</z> 
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   <time>2012-07-30T19:22:51.7626037-04:00</time> 

  </Position> 

 </position_list> 

 

 

Figure 7.5 

Outdoors 2D RTLS trajectories of a tagged person (green paths). 

 

7.3 Metrics for evaluation of performance 

  

 In this section we provide information on performance evaluation metrics used. We have 

evaluated fusion of CV and RFID as well as their effectiveness as single modalities for 

localization and tracking. Following are the details of the evaluation metrics used: 

 

     RFID Reader 

     Tag location 
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 a. Location accuracy - The location accuracy is defined as the difference between location 

observations obtained by sensing and the corresponding ground truth data. We have 

primarily used statistical measures such as root mean square (RMS) error to express the 

location error in x,y and z direction.  

 

b. Least squares error - We have used least squares and polynomial fitting schemes for 

evaluating the error in the real data obtained in our experiments for which acquiring 

ground truth data was complex. We have also utilized a piecewise line fitting scheme to 

analyze the RTLS trajectories to have more meaningful results.  

 

c. Probability and percentage of observation availability - The RTLS readers’ 

communication with the tags varies from one place to another. Also the system refresh 

rate changes with different number of tags present in the test site. We have measured 

probability of tag location-signal availability in respective runs. This information is 

useful in analyzing the reduction in the combination search space of the tracking 

algorithm. 

 

  For real-time tracking the object recognition and tracking needs to be automated. 

There is a fair chance of missed observations due to lack of object 

detection/identification, object exiting the field of view of the sensor, or occlusion caused 

by another object or background. We express missed observation quantity in terms of 

percentage.  
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d. Track error - We assessed performance of tracking using smoothness constraints in terms 

of track error. Track error is defined as a fraction of wrong trajectory point assignments 

by the tracking algorithm. At present we have assumed that the objects do not enter or 

exit; therefore a pair of  wrong label assignments between points Pj,t and Pk,t (where j≠k ) 

is considered as one error. The final track error is then averaged over the number of 

simulation runs. Alternatively, track error can be more fairly defined in terms of point 

sensing tolerance; an object label assigned to a sensed point is considered correct if the 

sensed point is within measurement tolerance of the ground truth sensed point. This 

alternative does not penalize switching the labels of observations that are very close 

together in space. 

 

  We assessed performance of tracking using track error for different burst/block set 

lengths ‘m’ defined in Section 6.3.2. Varying the burst length and the density of points 

over time affects the track error performance. Increasing the block length decreases the 

error but increases the number of combinations. Fusing ID information from another 

source such as RTLS helps reduce this combination space. 

 

e. Similarity of object color - For studying color based object detection outdoors we have 

correlated histograms of the segmented objects under different illumination conditions, 

i.e sun and shade. For comparing these we have used Euclidean distance to characterize 

color histogram variations.   
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7.4 Real-time tracking performance: indoor with RFID feed simulated using color 

 

 The stereo approach was tested in the real time indoor environment while tracking two balls 

in the wireframe workspace of 27×31.75×24 in (68.680.661 cm). Since it is impossible for us 

to gather the number of cases needed using real data, RFID is simulated using same and different 

color (red and blue) -- in extracting trajectories, object location and ID are sometimes randomly 

provided to the tracking algorithm for some of the observations where possible. The tracking 

algorithm was applied to the observations to segment them into separate object trajectories. 

Later, to assess the performance real-time trajectories were then compared with ground truth data 

were available. The tracks were generated and displayed in parallel. We show that recognition of 

some objects during some time intervals can greatly speed up and make more reliable the 

organization of time frame information into the tracks of separate objects.  For one of our tests 

the system took 58.6 sec to acquire 1000 frames from both cameras while executing and 

displaying the input and the output. The tracking algorithm had less than 1.4% missed 

observations with zero track error when both the colored balls were moving and being tracked. It 

was established that the proposed approach has an ability to track the object while generating its 

tracks on the fly.  

 

7.5 Indoor stereo live demo results 

 

To analyze the stereo live demo results visually we generated trajectories that can be 

interpreted easily. Details of the stereo tracking live demo are provided below and shown in 

Figure 7.6.  
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 a. Blue object kept stationary while red object is moving. 

  

 The red cursive writing sample in the yz-plane while a red smiling face in the xz-plane is 

the red ball trajectory. The blue object was stationary and is shown by blue dots. 

 

b. Blue and red object moving. 

 

 The heart shapes in blue and red are the respective trajectories of blue and red balls being 

tracked. The shapes were made in the yz-plane and its view from the xz-plane is shown 

for better understanding. 
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Next the system was tested at room scale and real-time trajectories were generated in the lab 

280476105 in (7.112.12.7 m) using one (orange) and two color (orange and yellow) 

combination. As above for better visual analysis Figure 7.7(a) and (b) shows cursive text and 

heart shape trajectories using single and two colors tracking respectively. Figure 7.7(c) shows the 

 
 

Figure 7.6 

3D stereo tracking in wireframe workspace indoors - live demo. 
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two color detection where yellow color is used as an initializing marker for tracking orange. The 

image also shows 2D bounding boxes over colored hats. 

 

   

                                         (a)                                                                (b) 

 

(c) 

Figure 7.7 

3D stereo tracking in lab area indoors - live demo: (a) orange cursive writing sample (b) heart 

shapes using orange and yellow color (c) yellow used as initializing marker to track orange. 

 

7.6 Stereo error analysis in x,y,z dimensions versus distance from the cameras 

 

 Slight inaccuracies in selecting the calibration points in the image generates error in the 

camera matrix while error in image point location of objects will yield error in the imaging rays 
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used in stereo computations. Also factors such as lens distortion, lighting variation, digitization 

noise, and object surface variation contribute to image point error and hence the stereo error. The 

stereo error in x,y,z dimensions is observed by computing 3D location for six selected ground 

truth points not chosen for the calibration procedure. The 3D points were selected on the basis of 

their distances from the cameras. The run was repeated eight times. Figure 7.8 shows the selected 

2D corresponding points in the image pair.   

 

  

Figure 7.8 

Selected 2D corresponding points in left and right camera image for analyzing outdoor stereo 

error. 

 

 We have used RMS error to represent the stereo location accuracy in all the three 

dimensions. Table 7.1 tabulates the 3D ground truth and the 3D computed data from eight runs.  

  

X 

Y 

Z 
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 The RMS error in all three dimensions was within 7.6 in (19.3 cm) for 3D points 20 ft to 80 ft 

distance from the cameras. The RMS error has nearly linear behavior in relation to the distance 

from the cameras and is shown graphically in Figure 7.9 and supports the error cone concept. 

The magnitude of error in x dimension is more compared to y and z dimension. The x dimension 

here is in line with camera viewing direction. 

Table 7.1 

3D ground truth and computed data for analyzing outdoor stereo error - scale is in inches. 

 3D ground 

truth 

Computed 3D data from eight runs RMS 

error 

    

X1 242 237.9 237.9 238.6 237.1 237.9 237.9 237.9 238.6 4.06 

Y1 60 61.2 61.2 61.5 61.2 61.2 61.2 61.2 61.5 0.17 

Z1 36 31.6 31.3 31.3 31.7 31.6 31.6 31.3 31.3 0.19 

            

X2 357 355.5 357.1 357.1 356.9 356.9 357.1 358.5 358.5 0.92 

Y2 60 60 60 60 60.5 60.5 60 60.5 60.5 0.33 

Z2 36 36.7 36.3 36.6 36.6 36.6 36.6 36.6 36.6 0.59 

            

X3 429 434 433.9 433.9 431.7 436 433.7 431.7 433.8 4.77 

Y3 72 73.6 73.6 73.6 73.6 74.2 74.2 73.6 74.2 1.84 

Z3 41 43.5 43.9 43.7 44 43.5 43.5 43.5 43.3 2.63 

            

X4 540 542.2 542.1 538.9 545.3 542.2 545.4 542.1 538.8 3.13 

Y4 0 1 1.8 0.6 1.4 1 1.4 1 1.4 1.27 

Z4 0 2.4 2.5 2.9 2.4 2.4 2.2 2.1 2.4 2.43 

            

X5 953 960.4 965.4 951 960.8 960 959.6 951 960.4 7.28 

Y5 0 1.6 1.5 1.5 1.5 0.9 0.9 1.5 1.5 1.39 

Z5 0 2 3 3.9 2.6 2.9 2 3.9 3 2.99 

            

X6 1190 1210 1194.8 1210.5 1194.9 1195.6 1196.1 1195.6 1194.6 11.09 

Y6 0 3.4 2.5 3.4 2.5 2.5 4.2 2.5 4.2 3.25 

Z6 0 4.8 6.5 4.3 6 4.8 3.2 4.8 6.1 5.17 
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Figure 7.9 

Stereo RMS error in x, y and z direction versus distance from the camera. 

 

7.7 Least squares analysis on real outdoor stereo trajectories 

  

 Figure 7.10 shows some of the left camera frames that were used to compute the trajectory of 

a ball [tossed upward] using stereo alone. The ball is circled in the images for easy 

representation.  
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Figure 7.10 

Left camera images showing projectile trajectory of a ball tossed upward. 

 

 The projectile motion of the five 3D points corresponding to the five images in Figure 7.10 is 

shown in Figure 7.11. The ball’s trajectory can be seen in two different views. The 3D points are 

represented by '+' in green. 

Y 
X 

Z 
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Figure 7.11 

Two different views of 3D points showing ball projectile trajectory computed using stereo. 

 

 A solid (blue) line in Figure 7.12 shows the ball's computed trajectory in the yz-plane. To 

analyze stereo performance here we used least squares fitting. The dotted (magenta) line shows 

the parabolic curve fitted on the computed data. We took note of the estimated start [position 1 

~98 ft from cameras] of the ball during the experiment which is different by ~15.3 in from the 

one observed. This supports our analysis in the previous section about stereo RMS error 
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increasing linearly especially at a greater rate along the axis in line with camera viewing 

direction i.e y-axis in this case.  

 

 

Figure 7.12 

Computed ball projectile trajectory (solid blue) with parabolic fitting (dotted magenta). 

  

 We use three position estimates here that includes initial estimated thrower position, ball 

position in frame 3, ball position while touching the ground. These points can define the 

projectile trajectory of the ball. Using a three parameter model the parabolic curve can be fitted 

to these three points as shown by solid (green) line in Figure 7.13. 
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Figure 7.13 

Actual trajectory (dashed blue) with linearly increasing error along y-axis and corrected 

trajectory (solid green) using parabolic curve fitting. 

  

 It is noted that the ball's trajectory has gradual increase in stereo error (right to left) along the 

y-axis away from the cameras and beyond the site center (~84 ft from cameras). Table 7.2 shows 

comparison of the observed and corrected [after curve fitting] observations. This started 

decreasing as the projectile crossed the site center towards the cameras. Modeling error estimates 

along y-axis with corrected curve fitting can help calculate intermediate trajectory points.  
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Table 7.2 

Ball projectile observed using stereo and fitted data along yz-plane - scale is in inches. 

Point Yobserved Zobserved Yfitting Zfitting Ydiff Zdiff 

       

1 -181.6 76.7 -166.3 71.5 15.3 5.2 

2 -79.7 155.9 -67.1 149.4 12.6 6.5 

4 348.4 93.9 345.8 90.2 2.6 3.7 

  

 

 The problem of increasing stereo error was explained here to give an idea about the upper 

bound using Logitech C210 cameras. This can be addressed in practice by using multiple 

cameras in the test site and naive physics constraints. The combined 3D observations from two 

or more stereo pairs can be smartly combined to cover an overlapping area. For example as soon 

as an object trajectory enters the 70+ ft range from one stereo pair then another set of stereo pairs 

can be engaged for which the object is within the desired tracking range. 

 

 To analyze RTLS location performance we consider the tagged person trajectory (without 

stopping) given in Figure 7.5. Piecewise line fitting on the tag trajectory is shown in Figure 7.14. 

To find the least squares error, we have evaluated the sum of the squares of the differences 

between the line fit and the tag trajectory. The least squares error here is 22.1 in. 
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Figure 7.14 

Piecewise line fitting (solid green) on RTLS tag trajectory (dotted blue). 

 

 Next we compared this RTLS tag linear trajectory [dashed green] with the ground truth 

[dotted red] for checking location accuracy. For reader understanding, the location error circles 

are drawn at every instant around the ground truth observations as shown in Figure 7.15. The 

radius of the circle represents the spatial difference between the ground truth and RTLS location 

observations. The tag observations are represented by '■' [green] and that of ground truth by '♦' 

[111].  
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Figure 7.15 

RTLS tag location error circles. 

 

 As shown in Table 7.3 the location error increases as the tag moves towards the arch 

structure. This is likely due to the multipath effect as our test site represents a semi-indoor 

environment. Similarly the location error decreases as the tag moves away. The RMS location 

error for the tag trajectory is 80.7 in (2.05 m). 

 

Table 7.3 

Location error for RTLS tag trajectory in Figure 7.1 - scale is in inches. 

 

1 2 3 4 5 6 7 8 

        

29.4 43.1 11.9 91.5 113.8 110.6 92.9 123.3 

        

9 10 11 12 13 14 RMS  

        

21.4 17.9 65.6 80.7 102.2 94.6 80.7  
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7.8 RTLS signal availability  

 

 Having RFID feed available significantly reduces CV tasks for tagged object detection and 

identification. The RFID feed availability depends on the refresh cycle and the number of tags. 

Also, missing tag information is another key factor to be considered. Figure 7.16(a) shows the 

RTLS real trajectory of a single dynamic tag obtained when there were three other tags actively 

transmitting and present in the test site. The trajectory was designed to cover most of the test 

area. The RFID signal for a single tag was available on average after every 2.5 sec.  

 

 Note that in Figure 7.16 there are some visible gaps between two consecutive tag locations, 

which represent missing observations. Missed  observation means non-availability of location 

information when the RTLS signal is expected to be  there. This can occur due to tag orientation, 

miss reads by the reader, or some direct occlusions which resulted in read failure. For 

quantitative analysis there were ~25 missed observations in addition to 136 times signal was 

availabe i.e (
25

×100
136 + 25

) 15.5% missed observations.  
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Figure 7.16 

RTLS  trajectory analysis: (a) RTLS single tag trajectory (green path) (b) RTLS tag location 

signal availability over time. 

 

7.9 Simulations of object tracking  

  

 Prior to working on real fused outdoor data, we performed many simulations in order to 

assess how effective RFID labels could be in tracking under smoothness constraints – using 

observations of location but not color. For simulations we used ten subsets of real indoor stereo 

trajectories explained in Section 7.1.1. N observations over the time steps 1...T were selected and 

presented to our tracking algorithm to see what tracks would be aggregated using the naïve 
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physics constraints. Smoothness of trajectories requires a burst of time frames for reliable results. 

Below, we have used burst length of four time frames to compute track smoothness, curvature, 

and acceleration.  

  

 If we consider n objects and a burst of m time frames then the number of possible paths will 

be (n)
 m

. Assume that T is divisible by m. If there is no ID information available then the number 

of combinations for T time frames will be (T/m)×(n)
m

. Depending upon the probability P for an 

observation ID being available for the burst, the combination volume may be reduced 

accordingly. It is considered that the ID when present is available for the whole burst.  For 

example n=3, m=4 and T = 60 the total number of track combinations will be 1215. Different 

frequency of ID availability across bursts will have different impact in reduction of 

combinations. As shown in Figure 7.17, for P=0.267, ID availability settings represented by a 

solid red line reduces the possible combinations to 435; however for P=0.267 the dotted blue 

line setting reduces it to 631. This shows that for the same probability, an object ID can be 

available in many configurations. In this case 435 also explains the upper bound in combination 

reduction with the lower bound ranging to 891. Therefore, the more the RFID signal availability 

is spread across time, more volume reduction is possible.  
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Figure 7.17 

Reduction in combination volume - with probability of random ID information availability. 

 

 The simulations were done using MATLAB
®

2009 on a Core i5 M580 2.67 GHz platform. 

Simulations were conducted for N=5, 6 and 10 object tracks and T=60 time steps. Using 

probability P, the ground truth ID was provided in the token. Figure 7.18 shows results for 

possible reduction in combination volume with increase in probability P of object ID being in the 

token. Computation time is also shown at marked places to realize the reduction in volume. With 

respect to our outdoor experiments, the probability P represents the time percentage for which 

the RFID feed for a tag was available for each object. The algorithm was run with frame burst 

length, m=4. ID was assumed to be randomly available [across bursts] over time steps T. Figure 

7.18 shows that while tracking ten objects the combination volume can be decreased up to 99.9% 

with the partial ID feed thereby significantly reducing computation time. The effect of having 

some ID in the tokens increases as the number of object tracks N increases. Also, object location 

and ID info increase the accuracy of calculated trajectories. This data shows the difficulty faced 

by tracking algorithms that only use motion of image points to aggregate object tracks. Without 

any object ID, quantifying motion over several time steps leads to too many possible tracks. 

Although color, shape and texture features can be used by a passive CV system, the reliability of 
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unique labels from RFID can yield correct tracks with far less computation. Thus we were 

motivated to implement an actual Site Safety System using fusion of CV and RFID. 

 
 

 Table 7.4 shows the behavior of the algorithm in terms of track error performance. The 

experiments were conducted while randomizing observations of three real time 3D trajectories 

acquired from the stereo system. The simulations were run twenty times with different burst 

length m. Different values of time frames T were used. The outputs were then averaged to 

generate the results. The results were also compared to the ground truth. It is clear from Table 

7.4 that varying m and density of points over time affects the track error performance. Since the 

 

Figure 7.18 

Possible combination volume with N objects and probability P of object ID in bursts of four tokens. 
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indoor stereo system readings generate an error of up to 0.34 in (~8.64 mm), this error tolerance 

can be used in comparison to ground truth in determining track error. The last column of Table 

7.4 shows the results with error tolerance applied while using m=6. Increasing m decreases the 

error, however, the number of possible combinations also increases so it affects computation 

time. These combinations as explained above can be reduced if we have partial knowledge of the 

trajectory points.  

 

Table 7.4 

Track error with different points density and block length m. Track error is a fraction of wrong 

trajectory point assignments. 

T m=3 m=4 m=5 m=6 
m=6  

w/ error tolerance 

      

10+ 0.121 0.095 0.043 0.027 0.0 

20+ 0.196 0.096 0.054 0.042 0.004 

30+ 0.239 0.103 0.067 0.058 0.021 

40+ 0.251 0.134 0.083 0.066 0.023 

50+ 0.262 0.159 0.091 0.071 0.036 

60+ 0.266 0.167 0.098 0.075 0.038 

      
 

 

7.10 Tracking efficiency using fusion 

 

 We have explored via simulations and real scenarios how fusion can reduce the 

combinatorics of tracking. These cases can help reveal our fusion approach behavior. Although 

we have acquired both RFID and CV data from an outdoor site, it is impossible to explore the 

many possible parameterizations using real data. Moreover, simulations allow us to construct 

interesting test cases and to control their ground truth.  
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7.10.1 Simulated scenario: two persons and two briefcases 

 

 We consider two persons who walk toward each other, exchange brief cases, and then move 

to different final positions. Due to smoothness constraints, the geometric data will produce 

incorrect tracks with the persons continuing with their briefcases to different final positions. 

However, reliable location and ID of whichever person using either RFID or CV enables the 

correct interpretations to be extracted. This case is simulated by generating two trajectories (N=2 

for T=70 time frames) with ID info randomly provided and simulated using color. The point of 

intersection occurs at frame t=43. The mean velocity of both the object tracks is kept the same.  

As shown in Figure 7.19(a) using the smoothness criteria alone with no labeling information, 

produced wrong trajectories with a track error of 0.39. However, once ID labels with location 

information are provided near the intersection, the tracking algorithm interprets correct object 

tracks as shown in Figure 7.19(b). Therefore to avoid ambiguities in the vicinity of collision 

points, some localization and object ID information is necessary outside the area of collision.  
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(a)                                                                       (b) 

Figure 7.19 

Testing fusion using simulated scenario of two persons exchanging briefcases: (a) wrong 

interpretation of trajectories with CV alone (b) correct interpretation of trajectories with CV & 

RFID fusion. 

 

7.10.2 Real outdoor scenario 

 

 We generated a scenario to track the activity in the test site outdoors. The cameras were 

placed on tripods at a height of 9 ft with a baseline of 10 ft. The center of the test site was 84 ft 

from the cameras. The area of activity was 47 ft to 93 ft from the cameras. The persons wore 

bright colored clothing, which was helpful to generate a good quality feature vector. Four RTLS 

readers (one master and three slaves) were installed in the test site of 40×40 m to generate a 

single cell. 

 

 Two tagged persons wearing distinctive color clothing and helmets slowly move forward 

towards each other and meet at the center of the test site. They exchange RFID tagged colored 
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balls and then backtrack to their starting positions. All the movement was done on predefined 

paths to compare the acquired data with the ground truth trajectories. The run was carefully 

conducted so that the exchange interaction over some of the time frames is either fully or 

partially not visible to the cameras. If a ball’s feature vector does not contain color, then CV 

detection using shape/size might show wrong 3D labels of the ball’s track. This might result as if 

the persons took them back towards their starting position. Even if the color info were available 

there still would be uncertainty or loss of trajectory points as the interaction was occluded from 

the cameras at the center of the test site. This might again result in wrong labeling or lost tracks. 

Additionally, in case of person tracking, the smoothness constraints would fail to provide correct 

trajectories (see Section 3.4 for details). Figure 7.20 shows the outdoor arrangement as well as 

the 3D map of the site with computed real trajectories.  

 
 

 

Figure 7.20 

 

3D view of test site with calculated real trajectories. 
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The experimental runs were conducted while tags were placed on the objects or in the 

pockets of the persons.  The reported experiment was conducted on a partly cloudy day with 

considerable variation in illumination; moreover, 30 mph gusts of wind typically shook cameras 

and RFID readers at some point during each data collection trial. We also placed some reference 

tags in the area during the experiments. It is observed that the location accuracy of the stationary 

tags, when visible by all four readers, was within 1.5 m. This ranged up to 4.3 m at some points 

where the tags were visible only to two readers. The test site selected is such that it has some 

indoor properties -- brick structures and trees -- that cause obstruction and generate a multipath 

effect. These obstacles also provided occlusion for CV, which helped our study. We also note 

that the RFID system software initially lost track of all the tags due to the operating system 

protection scheme to counter hacking attacks. Once registered, the system on average kept track 

of five RFID tags 79% of the time. Figure 7.21 shows the left camera view of the test site and 

correct 3D trajectories using fusion.  
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(a)   

                                                                              

(b) 

Figure 7.21 

Outdoor scenario to test fusion: (a) left camera view of test site (b) computed correct 3D ball 

trajectories using fusion. 

Ball 2 

Person 2 

Ball 1 

Person 1 

Ball 1 Trajectory 
+  Ball 2 Trajectory 
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For this scenario we assessed performance of tracking using track error. To sync video frames 

and RFID refresh cycle the test was conducted by tracking the balls and the persons with thirty 

non-consecutive time frames (i.e T=30) approximately three seconds apart and burst length of 

four (i.e m=4). While person 1 was holding ball 1 the stereo track error performance for ball 1 

and person 1 trajectory was 0.06. For the time person 2 was holding ball 2, the stereo track error 

for ball 2 and person 2 trajectory was 0.53. The track error for ball 2 and person 2 was much 

larger due to fewer distant camera calibration points in the image, which resulted in larger 3D 

stereo error. Also due to strong winds the cameras position was not stable which likely increased 

stereo error. Linearly increasing stereo error is an another reason. Therefore the trajectories 

beyond the site center point (84 ft from the cameras) had more stereo location accuracy error, 

which subsequently resulted in greater track error. The greater stereo error however, generated 

favorable conditions to investigate fusion efficacy. 

 

Due to occlusion, the vision system often lost track of the balls at the center of the test site (84 

ft from cameras) while the persons were exchanging the balls. The tracking  algorithm assigned 

correct labels to both person trajectories up to the site center. Thereafter the labels were assigned 

incorrectly due to change in direction of the persons as they backtracked to their starting 

position. The interaction at the test site center was clearly detected by the readers since the tags 

were directly visible to all four readers in that area.  The RFID location information, when fused 

around these points, helped reassign correct tokens resulting in correct labels and trajectories of 

both persons and balls. When RFID location information was applied, the computation time in 

this area was reduced due to reduction in the combination space. Also the track error for the 

initial trajectory of ball 2 and person 2 decreased from 53% to 13%. Discarding the outliers, the 
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RFID location accuracy for dynamic tags averaged 2.6 m, which is nearly comparable to the one 

mentioned by the OEM [21]. To achieve this location performance it is noted that the tags should 

be in the cell area where antenna beams of at least three readers intersect without any solid 

obstruction.  

 

7.10.3 Outdoor scenarios with varying fusion information  

 

 To analyze further we generated other ground truth trajectories with varying sensor 

information in different configurations. The persons are assumed to be moving with the same 

mean velocities. We generated two other cases where two tagged persons start from opposite 

directions towards each other and:  

 

 a.  Keep going without any direction change.  

 b.  Split on sides at the center of test site as shown in Figure 7.22. 
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Figure 7.22 

Outdoor RTLS trajectories of two tagged persons with varying fusion information - persons split 

on sides at the center of test site. 

 

 For site safety and security, we can assume that a high percentage of objects are tagged and 

cooperative. We have shown how proper sensor placement can support tracking. This enables the 

system to spend more resources on tracking anomalies -- "unauthorized" animals, machines, or 

materials. Location accuracy and compute time of a central algorithm, although good, is 

insufficient to handle collision avoidance, so we recommend that moving objects use local 

collision avoidance -- perhaps based on looming (CV) or locally shared kinematics. Fundamental 

tests on looming detection are reported in Appendix A. Cell phone and sensor network 

technology are advancing rapidly and probably will soon provide such functions [104]. 
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7.11  Object color variations 

 

 Figure 7.23 shows four color histograms of segmented objects extracted from the left camera 

video feed under different outdoor conditions at different time instances. The histograms were 

computed using HSV color space. There are two objects, a blue ball and a yellow ball, and two 

different illumination conditions, sun and shade.  

 

 The irregular outdoor illumination variations and abrupt changes of brightness is evident in 

Figure 7.23(a) and (b). If color is to be used by CV to help tag and distinguish objects, then the 

objects must be for the most part distinguishable in the video images. In many cases workers will 

be wearing hard hats or vests of special coloring. The S-3 should be able to take advantage of 

these distinctive colors by exploiting color consistency for reliable color clustering.  

 

 Even though there is variation in illumination however the histograms (in sun and shade) of 

the balls (blue or yellow) in Figure 7.23 show noticeable association within each color group. 

The experiments reported in the previous sections of this chapter did not use automatic color 

similarity computations to distinguish the class of object color: instead, a symbolic color was 

assigned to the token.  
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(a) 

 

(c) 

 

(e) 

 

(b) 

 

(d) 

 

(f) 

Figure 7.23 

Change in illumination observed in left camera video feed when: (a) sunny (b) shady. Color 

histograms: (c) blue ball in sunlight, (d) blue ball in shade, (e) yellow ball in sunlight, (f) 

yellow ball in shade.  

 

 We collected various samples and analyzed HSV color space consistency for the blue and 

yellow balls in different weather (winter and summer) and illumination (sun and shade) 

conditions as shown in Figure 7.24.  
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Figure 7.24 

Sample images for different weather and illumination conditions to study blue and yellow color 

consistency. 

  

 The results shown in Figure 7.25 show the color consistency for blue and yellow balls for 

reliable color clustering. The points shown are the average pixel values of the ball area taken 

from different frames. The yellow marker 'o' represents the yellow ball HSV value and the blue 

marker '+' represents the blue ball HSV value. The color clusters are clearly separated along the 

hue axis which supports usefulness of CV to help distinguish objects based on color in an 

outdoor environment.  
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Figure 7.25 

Analyzing blue and yellow ball color consistency in HSV color space under different weather 

and illumination conditions. 
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7.12 Sensor Error and synchronization problems  

 

 In an outdoor environment we evaluated positional accuracy and reliability for the RFID 

based Real Time Location System (RTLS) and the stereo computation obtained using 

commodity cameras. The calibration of stereo system and RTLS system were done on the same 

test site. An adequate number of distant points (in the background) and nearby points (in the 

foreground) were acquired to serve as calibration markers for stereo computation. The stereo 

infrastructure provided RMS positional accuracy within 7.6 in (19.3 cm) for x, y and z directions. 

The reported location accuracy for the RTLS system for static tags is ~1.5 m and that of dynamic 

tags is ~2.6 m. RMS error does not include the occasional outliers that are possible from 

incorrect stereo correspondence or multiple path effects in RFID. The RTLS location accuracy 

however can be increased by deploying further readers in the test site. 

 

 One significant practical problem for fusion is the different sampling rates of the sensors or 

the extended time needed to smooth data or to make decisions about the motion of an object. Due 

to time division multiplexing, our RFID system provides data on all objects every two to three 

seconds, while our stereo implementation could produce ten updates per second for a few 

objects. In our experiments, we typically force a common sampling time for RFID and CV and 

look back two time samples to estimate motion. The uncertainty of location for RFID is much 

larger than for CV for static objects and even larger for moving objects due to under-sampling. 

Interpolation using CV locations can be used with sparse RFID samples with reliable ID – 

another benefit of fusion. Finally, it is possible that an object is invisible at some time steps to 
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either or both CV and RFID due to occlusion and higher level processes are left to interpret what 

is happening. 

 

7.13 Summary discussion 

 

 In this chapter we have reported experiments and results that evaluate use of stereo vision 

and the commercially available RTLS system in single and fused modes.  To test the 3D 

accuracy and reliability of object location using stereo we have generated three types of 

trajectories that includes mathematical, real indoors and real outdoors. We acquired ground truth 

data for various predefined points in the surveyed test site with which the RTLS and stereo data 

can be compared. We have discussed the performance metrics criteria used to evaluate 

localization and tracking schemes. We assessed performance of tracking using smoothness 

constraints in terms of track error. The stereo approach with RFID simulated using color was 

tested in a real time indoor lab bench. The tracking algorithm there had less than 1.4% missed 

observations with zero track error. For visual analysis we showed trajectories both in the 

wireframe volume and lab area. We analyzed that the stereo error has a linear behavior when the 

distance between the observed object and stereo setup varies. Least squares analysis was also 

performed to assess the error in location using vision and RFID. The stereo provided within 7.6 

in (19.3 cm) accuracy and for RTLS it varies between ~2 m to ~2.6 m for moving tagged objects. 

To achieve this location performance it is noted that the tags should be in the RTLS cell area 

where antenna beams of at least three readers intersect without any solid obstruction. With a 

refresh rate of two to three seconds the RTLS hardware provided 79% to 84.5% signal 

availability which can significantly reduce the combination space.  Also in the fused system, the 

RFID information availability at ambiguous instants in tracking could reduce runtime up to 99%. 
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The likelihood of producing correct object trajectories in regions partially or fully occluded to 

CV is also increased. Lastly we have studied object color variation in different illumination 

conditions and found noticeable association within each object color group that can help object 

detection in outdoors.   

 

 We have shown how fusion can improve identification, localization and tracking results 

while also reducing computational cost. In general fusion of RFID and CV is better than using 

only one mode alone and, where costs are justified, will produce systems that are better than 

those using only one modality. 
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_____________________________________________________________________________________________ 

 

CHAPTER 8 

Conclusions and future work 

_____________________________________________________________________________________________ 

 

n this dissertation we have presented, a generalized framework for the fusion of Computer 

Vision (CV) and Radio Frequency Identification (RFID) that can produce more accurate 

object localization and tracking in a three dimensional space and do so using more efficient 

computation. The important components of a fused system have been implemented and tested 

and the results obtained support the premise that fusion can improve performance in various 

applications over use of RFID or CV alone. The basic rationale is that RFID can provide highly 

reliable unique object identification, although with coarse object location, while CV can provide 

more accurate object location along with confirming visual features and can also avoid cloning 

of tags and decrease counterfeiting. Below we provide the concluding discussion highlighting 

our contributions and the research expansions that are possible as a future work. 

 

8.1  Background Survey 

 

 Research and development using fusion of RFID and computer vision has been thriving over 

the past decade. Almost all work has been done in indoor environments. During our background 

research we have presented the collection of these schemes and have related the research and 

I 
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actual applications and installations. Dozens of publications were found that directly used the 

fusion approach. The work had been generally from the area of recognition, localization, and 

tracking where RFID was mostly being used at the initial stages of object detection and/or 

identification. Moreover, a few dozen more publications in either RFID or CV showed clear 

potential for improvement via fusion. Most reported work was done in an indoor controlled 

environment at small scales and using passive tags which require close read range. We also 

learned that RFID can be very useful outdoors in a number of applications, such as construction 

site safety, when tagging is possible. Moreover, formal linkage of RFID based RTLS with vision 

is a new and expanding research area with great potential. All these factors gave us motivation 

towards exploring these modalities for real time localization and tracking. We believe that the 

survey of the fusion approaches that we have provided in this dissertation will offer great support 

to the researchers interested in this area.   

 

8.2  Evaluation of RFID, CV, and fused sensing  

 

 For RFID we have used a commercially available Real Time Location System [8] and we 

developed our own stereo system with a laptop, MATLAB, and two commodity color cameras. 

Our total hardware cost was only about US$5500, for both the RTLS and only one stereo pair of 

cameras. High level performance would require more cameras and more RFID readers in the 

workspace than we have used. We have defined our performance metrics and have done error 

analysis for location estimation by these modalities. We have evaluated the use of stereo vision 

as a single modality both indoors and outdoors for 3D accuracy and reliability of object location. 

We have studied and implemented the ray-ray stereo scheme [31] for 3D localization in an 
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indoor environment and have reported an RMS accuracy of ~0.34 in in a wireframe workspace 

and ~6.4 in (16.3 cm) at room level. The average RTLS location accuracy indoors for static tags 

was ~1.9 m. The performance for dynamic tags varied a lot due to multipath effects in a compact 

space. However, using optimization tools RTLS accuracy indoors can be improved. 

 

8.2.1 Demonstrated performance, potential and parameters for outdoor applications 

 

 We analyzed the efficacy of the stereo approach outdoors in a surveyed test. In our 

analysis we have obtained RMS location accuracy within ~7.6 in (19.3 cm) in x, y, and z for 

trajectories within range of 30 ft to 70 ft from the cameras in a workspace that is 40×40 m. 

Choosing appropriate calibration points covering the near and far field of the scene is necessary 

for results with minimal error. This offers potential for future researchers to examine automated 

three dimensional tracking outdoors using economical vision sensors. We established that the 

location accuracy for RFID in the same outdoor test area was ~1.5 m in x and y ground 

coordinates for static objects, but ~2 m to ~2.6 m for dynamic objects, which we attribute to the 

location update frequency i.e one RTLS observation approximately every two seconds. 

Deploying more readers in the area can substantially improve the location accuracy for moving 

objects. The z dimension, though available, comes with a planar restriction defined by the tag 

height. Getting interpolated location estimates and varying tag height data is, however, not 

limited in theory. We have shown with simulations and real data that fused sensing increases the 

likelihood of producing correct object trajectories in regions partially or fully occluded to CV. 

As the stereo system readings generate an error of up to 7.6 in (19.3 cm), this error tolerance can 

be helpful in comparison to ground truth in determining track error. We have also studied object 
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color variation in different illumination conditions and found noticeable association within each 

object color group that can help object detection in outdoors.  In general we have shown how 

proper sensor placement can support localization and tracking. This enables the system to spend 

more resources on tracking anomalies -- "unauthorized" objects, machines, or materials in a site 

safety environment. 

 

8.3  Modeling fusion and its benefits 

 

 We have presented our fusion model and have described the competitive and cooperative 

relationship of our sensors and the fusion building block needed to develop the fused system. 

The features and characteristics of our fusion scheme are also provided to explain its adaptability 

towards established fusion standards. With a focus towards localization and tracking applications 

we have provided the potential benefits achievable from the fused system and have documented 

examples where fusion disambiguates object tracks and combines the strengths of RFID and 

vision to avoid problems of each mode. 

 

8.4  Data integration and filtering using relaxation labeling 

  

 To manage the complexity and integration of the diverse information being fused and to 

provide a flexible experimental platform we proposed and demonstrated an algorithm based on 

discrete relaxation. Discrete relaxation was chosen to control tracking so that we could easily 

experiment by switching on or off sources of information and develop our software in a modular 

way. Moreover, the label elimination approach easily represents the ambiguity occurring in real-
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life applications. If there are N objects and N labels, the computational complexity of tracking is 

potentially of the order N
2 

across just two time steps. The key to reducing the computational 

requirements by using relaxation is to eliminate many labels at each filtering step while keeping 

those labels compatible with observation. The output labels from the relaxation labeling process 

can be optimized further by the post processing operation.  

 

8.5  3D object tracking algorithm 

 

 We have proposed a three dimensional object tracking scheme using fusion of vision and 

RFID. As explained above, relaxation was used for filtering out incompatible labels in the 

tracking algorithm. As a post processing step to relaxation labeling we have used total track 

smoothness for optimization to update computed tracks for increasing system tracking reliability. 

We assessed performance of tracking using smoothness constraints in terms of track error. With 

simulations we have shown how fusion can greatly increase tracking performance while also 

reducing computational cost and combination search space up to 99% in some cases. Test cases 

show how fusion can solve some difficult tracking problems outdoors. For some object 

trajectories outdoors, the fused system reduced the track error from 0.53 to 0.13. We have 

demonstrated cases where fusion disambiguates object tracks and we have also given cases 

where disambiguation is impossible, as in the well known shell game. We demonstrated how 

uncooperative objects can cheat the system. However, in general, fusion of RFID and CV is 

better than using only one mode alone and, where costs are justified, will produce systems that 

are better than those using only one modality. Moreover, an automatic system detects the 

ambiguities and can cue the attention of higher level processes or longer lived processes, 
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including the attention of human security personnel. Simulations of tracking over many ground 

truth paths demonstrates how knowledge of unique object ID for some time instances can 

significantly improve correct tracking as well as reduce computation time in producing the 

tracks. Thus, many more objects can be tracked in practice if fused sensing is available compared 

to tracking by CV alone. A fast tracking implementation would be active – it could plan more 

efficient work, warn of possible collisions, or detect illegal operations. Finally, it is clear that the 

global workspace view we have used is too imprecise for detailed object interactions, such as 

cooperation compared to collision, or handing off carried objects. Object born touch or looming 

sensors would be needed for some applications. Our current work shows that pursuit of these 

extensions should be fruitful. 

 

8.6  Future work and limitations 

 

 One significant problem in fusing the RFID and CV feeds is the difference in sensing 

frequency. Commodity cameras are designed to represent human motion well and produce 

upwards of ten video images per second, whereas our RTLS system produced tokens for all tags 

at approximately two second intervals. Engineering faster RFID updates will likely reduce the 

number of objects that can be sensed; however, this should be a favorable tradeoff in a 

construction site. It may also be good design to have a hierarchy of RFID sensing with a slow 

system for asset/material inventory and a fast system for critical objects such as workers and 

moving machinery. 
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 We need to continue to develop our system to perform the lower level token combination and 

to test it fully using a set of objects with some typical behavior. We will also make the revisions 

that model objects that appear and disappear from the surveyed workspace. Also the constraints 

and heuristics used in the tracking algorithm should be further studied and improved. There are 

many knowledge based constraints that we have not yet applied.  

 

 Much of what has been discussed assumed objects were single independently tracked points. 

Clearly, some objects would be a rigid aggregate of points. For example, a truck might have a 

single RFID tag and perhaps four or eight visual markers that would reduce combinatorics and 

enable rigid motion analysis. Such planar rigid structures and symmetries are also helpful to 

track moving objects over wide variations in position and orientation of the objects. 

 

 Considering the fact that most construction sites involve collaborative work, interactions 

between workers, and workers-machines will happen frequently. The interactions will introduce 

static or dynamic occlusion, which causes difficulties for visual tracking. In case of short-

duration, partial object-object and background-object occlusions, the vision system should 

continue to track the object. RFID though can help CV here, but it is important to deal with 

occurrences of an occlusion while having an RFID feed failure scenario in rare cases. 

Knowledge based information input can be used to inform the tracking processes to handle 

occlusion. Also by tracking each object, it is possible to use global 3D information to tackle 

occlusion with predictive trajectories in our optimization process. The occlusion management 

framework to be worked on is shown in Figure 8.1.  
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Figure 8.1 

Occlusion management flow during stereo tracking. 

 

Location accuracy and computing time of a central algorithm, although good, is insufficient 

to handle collision avoidance. So there is need to have a local object-object communication. We 

recommend that moving objects use local collision avoidance -- perhaps based on looming (CV) 

or locally shared kinematics. Cell phone and sensor network technology are advancing rapidly 

and probably will soon provide such functions [104]. As part of our future work we have 

presented some of the fundamental experiments on looming in Appendix A. 

 

The results we have presented apply to tracking in either 3D space or in a 2D image of that 

space. Our conceptual model is ahead of our current implementation, and thus provides a design 

for stages of future improvements. Incorporating object track initiation and termination, more 



204 

 

cameras and readers, more constraints, and more sensed features, such as object velocity are on 

our list for future work. 

 

Historically, most security and surveillance systems have used video input fed to human 

monitors. Automated methods in CV have been developed to replace or augment the human 

recognition duties with varying success. In controlled areas, such as airports, hospitals, 

workplaces, and construction sites, many objects can be tagged, including cooperative humans. 

Thus RFID based detection and location can be available for integration with the video data. 

Tracking of tagged objects using RFID can drastically reduce the computational load of a vision 

only approach as well as increase its performance. The CV component would only need to 

process exceptions and might be able to pass some of them to a human monitor. This fused 

tracking information will increase the safety or security of those being tracked and their 

activities. Current applications include individual and group recreational and commercial sports.  

 

We finish this dissertation with a conviction that the work on fusion of RFID and CV would 

further the cause of mankind; e.g. more secure and safer public transportation and human 

management [such as at airports], while even more efficient and economical resource 

management. Looking in the future, it can be applied for disaster/rescue management as in an air 

crash. Currently, a downed plane can be localized but the search and rescue of unfortunate 

passengers is still dependent on human sight. Imagine the possibility of human movement 

tracking through cell phones or medium tolerant RFID bracelets worn by passengers. This could 

be achieved by deploying preprogrammed flying robots equipped with cameras and RFID tag 
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readers and tag libraries, which would relay real time and processed crash site info to the main 

rescue vehicle for timely actions and making the difference between living or otherwise. 
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_____________________________________________________________________________________________ 

 

APPENDIX A 

Fundamental experiments on looming  

_____________________________________________________________________________________________ 

 

Looming is present in animal vision and is vital for collision avoidance and alighting. In a Site 

Safety System (S-3) realizing collision avoidance requires understanding local interactions 

between workers and machines. For understanding looming concepts, fundamental experiments 

were carried out. We have studied the relationship between the rigid object area versus the 

looming distance. Later we employ and analyze significance of looming information for collision 

avoidance in real time. The details of our indoor test platform are also provided that uses optical 

flow algorithm for object and looming detection. Possible future developments using other 

sensors onboard the smart phones are also discussed at the end.    

 

A.1  Generating looming dataset 

 

 The initial experiment was conducted offline to generate a training dataset for looming in a 

controlled indoor environment. It included a ball placed on a LEGO NXT robot as shown in 

Figure A.1.  A red colored ball was used due to a rigid spherical shape and easy detection. A 

lightly textured background also helped in object detection. The assembly start position was at 

ten feet and the stop position was at two feet from the camera. The distance markers were placed 
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on the floor after every two inches for providing distance info. The robot was programmed to 

move towards the camera in a straight line while stopping for five seconds on the predefined 

points. Images were captured when the robot was stationary and a dataset of images was 

generated with distance stamps. The camera used was a low cost Logitech C210 at a resolution 

of 640480 pixels. The simulation was done using MATLAB 
©
 2009a. 

 

 

As explained in Section 4.1 we used color and blob analysis to detect the ball. The algorithm 

generated an [approximately square] bounding box around the ball as shown in Figure A.1(b). 

Ideally, after object detection the algorithm should be able to produce an approximate square 

around the ball. However, in practice it becomes challenging to obtain precise object edge 

information due to factors such as low camera resolution and varying illumination conditions. As 

our further analysis depends upon area of the bounding box, therefore we considered comparing 

the bounding box height and width to test their degree of uniformity.  Figure A.2  shows the 

linear relationship between the bounding box parameters [width and height in pixels] relative to 

                     

(a)                                                                      (b) 

Figure A.1  

Looming image dataset at different distances: (a) object at ten feet (b) object at two feet. 
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the distance from the camera . The maximum error observed due to the noise was within 4% of 

the linear theoretical range.   

 

 

   

 

Figure A.2 

Graph of bounding box width and height relationship for training dataset. 

 

Figure A.3  shows the bounding box normalized area versus the distance relationship. The 

graph provides information that the area of the rigid square object changes quadratically with the 

change in looming distance from the camera.   
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Figure A.3 

Graph of bounding box area vs looming distance relationship for training dataset. 

 

A.2  Object distance measurement in real-time 

 

Next the same run was conducted in real-time for ten trials in a controlled environment. 

Following the supervised learning approach by having a training dataset, the looming algorithm 

computed the normalized area of the ball [in pixels] and estimated the distance of the ball from 

the camera. Figure A.4 shows the results for two real-time trials compared to the offline results 

generated from the training dataset in Section A.1. The variation in the graph represents variation 
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in the bounding box width and height. This mainly occurred due to pixelation effects, varying 

illumination, jpg compressed version of the acquired images from the camera, and the system 

inherent noise which in turn affect the color and blob detection output. The RMS error in the area 

for the dataset 1 compared to the training set was 22.6 pixel square and for dataset 2 was 68.7 

pixel square. This experiment presented a basic understanding on how local workspace agents 

can learn and acquire knowledge about looming and distance for rigid objects in a controlled 

setting.  

                                                                

 

 

Figure A.4 

Graph of bounding box area vs looming distance relationship for two real time datasets. 
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A.3  Real-time lab demo for collision avoidance 

 

 Next for studying looming detection for collision avoidance in an indoor lab environment we 

designed our own test platform with a LEGO NXT robotics kit with an onboard wireless camera.  

The collision avoidance algorithm is based on the optical flow. The wireless video was obtained 

by installing the iPhone 3GS on the NXT robot as shown in Figure A.5.  

 

  

Figure A.5 

Indoor lab platform consisting of NXT robotics kit and the iphone 3GS to test collision 

avoidance using optical flow. 

 

 The iPhone camera video was accessed as an IP camera over a local WiFi network, using IP 

Cam application [112]. Since all the simulations were conducted in MATLAB
©

2009a, an m-file 

routine was written to acquire iPhone video feed using the MATLAB image acquisition toolbox. 

For acquiring motion vectors using optical flow we have used both Horn-Schunck [113] and 

Lucas-Kanade [114] methods separately. The optical flow algorithm converts the acquired RGB 
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image into a gray scale image. Figure A.6 shows the results of motion vectors computed between 

a test image pair [gray scale] using Horn-Schunck and Lucas-Kanade algorithm. The 

performance of both the algorithms varied by changing their controlling parameters. A shadow 

effect at the base of the ball is visible in both the motion vector images.  

 

  

(a) (b) 

  

(c) (d) 

Figure A.6 

Motion vectors computation during real-time lab demo for collision avoidance:(a) test frame k-1 

(b) test  frame k (c) motion vectors using Horn-Schunck (d) motion vectors using Lucas-Kanade. 



214 

 

 We have used the RWTH Aachen University's NXT MATLAB toolbox [115] to interface 

NXT with MATLAB. The NXT wirelessly communicates with the PC using the bluetooth 

protocol. The optical flow algorithm was used to calculate the motion vector magnitudes in both 

halves of each consecutive frame acquired. If the sum of the magnitudes at a particular time 

instance reaches a certain threshold then it was considered to be an obstacle and the robot 

changed its path. The direction in which the robot turned was again governed by the motion 

vector magnitude sum of the image halves. If the sum of the magnitude of the left half was 

smaller than that of the right half, then the robot turned left and vice versa. Figure A.7(a) shows a 

motion vector frame when the robot was approaching the object. The clip on the left shows the 

actual image acquired by the system. Figure A.7(b) shows the motion vector image when the 

robot detected the object and changed its trajectory. Due to inherent noise and factors explained 

above, there was a small number of motion vectors detected when the robot was stationary. 

  

  

                                   (a)                                                                         (b) 

Figure A.7 

Realtime indoor collision avoidance experiment: (a) robot approaching the obstacle (b) robot 

detected the obstacle. 
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 We are also interested in accessing the sensors in the iPhone using the User Datagram 

Protocol (UDP). These can be useful in acquiring the object pose and trajectory in real-time that 

will support collision avoidance structure. The iPhone 3GS along with the camera has digital 

compass, accelerometers and GPS onboard. The latest smart-phone versions also carry a 

gyroscope and secondary cameras which can be of additional value. Presently we have been able 

to access the sensor data using the SensorData application [116]. We have written our m-file 

routine to access this buffered sensor data in MATLAB through the UDP port.  Typical data 

accessed through the iPhone carries information in the following format:  

 

Timestamp,Accel_X,Accel_Y,Accel_Z,MagHeading,TrueHeading,HeadingAccuracy,MagX,MagY

,MagZ,Lat,Long,LocAccuracy,Course,Speed,Altitude 

 

 Though GPS information cannot be utilized indoors, digital compass and accelerometers can 

be used to calculate a machine’s or person’s course, speed, altitude and pose. Such data from 

workspace agents indoors as well as outdoors will also be helpful for the local as well as global 

processes in the Site Safety System (S-3) to make appropriate decisions and generate system 

alarms.  
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_____________________________________________________________________________________________ 

 

APPENDIX B 

Stereo concepts and calibration procedure 

_____________________________________________________________________________________________ 

 

We have provided basic stereo concepts here that are helpful to understand the stereo approach 

used in this  dissertation. It is explained how stereo can be used for recovering 3D information 

from 2D and what is a correspondence problem. Later we have provided the camera calibration 

procedure used in our experiments. The method of computing 3D from 2D using the shortest line 

segment approach is also highlighted. 

 

B.1 Basic stereo vision principles  

 

 3D world points on the same viewing line have the same 2D point on the image. Therefore 

the inverse process in general will be unable to recover all 3D point coordinates from 2D image 

coordinates, which results in depth information loss as shown in Figure B.1.   

 

 W
X, 

W
Y, 

W
Z represents world coordinates and camera coordinates are represented by 

C
X, 

C
Y, 

C
Z. Both 3D world points ( , , )W W x W y W zP P P P  and ( , , )W W x W y W zQ Q Q Q  project into 
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the same image point ( , ) ( , )I I r I c I I r I cP P P Q Q Q which makes it impossible to recover 

W
P and 

W
Q from 

I
P = 

I
Q.  

 

  

 The 3D information can be fully recovered using two 2D images of the same scene with 

slightly different views.  Figure B.2 shows how 
W

P and 
W

Q can be recovered when the same 

points in Figure B.1 are viewed by another camera at a slightly different position. The setting 

 

Figure B.1 

Loss of depth information in 2D - Caused by projection of 3D points on same viewing line onto 

2D image. 
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represents stereo vision. O1 and O2 are the optical centers of the two cameras and the relative 

pose of both cameras is independent of each other.  

  

 

 

Figure B.2 

Recovering 3D point coordinates using stereo vision. 

 

 Now consider that both points 
W

P and 
W

Q are not on the same viewing line of camera 1 and 

camera 2. To perform stereo computation there is a need of identifying 2D projections of 
W

P and 

W
Q in image 1 ( 

I
P1 , 

I
Q1 ) which can be identified as the same points in image 2 ( 

I
P2 , 

I
Q2 ). 

This is known as the correspondence problem as shown in Figure B.3.  The geometric 

relationship between the 3D world points and the 2D projections is known as the epipolar 

geometry and is explained below. Epipolar constraints can be used to solve the correspondence 

problem.  
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Figure B.3 

Stereo correspondence problem: which points in Image 1 actually correspond to points 
W

P and 

W
Q in Image 2? 

 

 The projection of one camera's optical center into the image of the other camera is called the 

epipole. Figure B.4 shows the epipolar geometry. 
W

P here represents the point of interest in both 

cameras. Points 
I
P1 and 

I
P2 are the projections of point 

W
P onto the left and right image planes 

respectively. The projection of O2 on the image 1 plane is the left epipole e1, similarly 

projection of O1 on the image 2 is the right epipole e2. The plane defined by 
W

P, O1, O2 is 

known as the epipolar plane. The ray O1
 W

P  is seen by the camera 1 as a point because it is 

directly in line with the camera's optical center. However, camera 2 sees this ray as a line in its 

image plane. That line e2
 I

P2 in  camera 2 is called an epipolar line. In other words intersection 
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of the epipolar plane with the image plane represents the epipolar line. It is the property of the 

system that all epipolar lines should go through the camera’s epipole. 

 

 Given an image point
 
I
P1, 

W
P can lie anywhere on the ray from O1 through 

W
P. To establish 

the epipolar constraint the correct match of 
I
P1 must lie on the epipolar line on right image. The 

search for correspondences is reduced to a 1D problem. This makes the epipolar constraint 

effective in rejecting false matches due to occlusion. Conjugate points along corresponding 

epipolar lines have the same order in each image. However, ordering is not a hard constraint 

because corresponding points may not have the same order if they lie on the same epipolar plane 

and imaged from different sides. Once the correspondence problem is solved then using cameras 

 

Figure B.4 

Epipolar geometry. 
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transformation matrices the 3D coordinates can be recovered and the object model can be 

reconstructed as show in Figure B.5.  

   

 

Figure B.5 

3D reconstruction using 2D image points. 

 

 The camera transformation matrices are obtained by calibrating the cameras by the 3D world. 

The section below explains the camera calibration procedure that we have used. 
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B.2 Camera calibration 

 

 The coordinate system used in the affine camera calibration procedure [31] is shown 

below in Figure B.6. 

 

We define here the transformation formula to project every point of 3D model to camera 

image coordinates. 
I
P represents here the image coordinates, C is the calibration matrix and 

W
P 

is the world point.  

 I I WP C P
W

                   (B.1) 

 

W xPI rs  P c    c    c    c11 12 13 14 W yPI cs  P = c    c    c    c   21 22 23 24
W zP    s c    c    c    131 32 33
  1

 
                     
     

              (B.2) 

  

(a)                                                        (b) 

Figure B.6 

Coordinate system used in camera calibration: (a) 3-D world (b) camera. 
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In the matrix above, the parameter s is the scale factor which is used to adjust the pixel 

position according to the unit difference. To calculate the 11 parameters in the transformation 

matrix following derived formula need to be used, and then input the set of corresponding points 

from 3D world coordinates and the camera images from the stereo pair. Repeated experiments 

show that at least eight (i.e i ≥ 8) 3D calibration points in most cases are required to provide 

good results. 

, ,

, ,

c11

c12

c13

c14

x y z x r y r z r c21W W W W I W I W I, , , 1, 0,0,0,0,- - -P P P P P P P P Pi i i i i i i i i
c  22
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Each input pair of points has two equations in the left matrix, and the size of the left matrix is 

2×11, so least squares fit method to calculate the 11 parameters can be used: 

 

 A   X   =  B2n × 11 11 × 1 2n × 1                             (B.4) 

          T TX   =  A  × A \ A  × B11 × 1                    (B.5) 
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The ‘X’ transform matrix, once calculated, can be recomposed as follows to get the camera 

calibration matrix for each camera: 
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B.3 Computing 3D from 2D 

 

 Using the above camera model the real world 3D point , ,W x W y W zP P P 
  

 can be 

calculated from the two images I r I cP , P
1 1

 
  

 and  I r I cP , P
2 2

 
  

. This yields the following two 

camera models.      

W xPI rs  P
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   (B.7) 
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W xPI rt  P
2 c    c    c    c11 12 13 14 W yPI ct  P = c    c    c    c   21 22 23 242

W zc    c    c    1 P31 32 33   t
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 Eliminating the homogeneous coordinates s and t following 4 equations and 3 unknowns are 

obtained: 

     
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I c I c W x I c W y I c W zP  = b  - b  P P  +  b  - b  P P + b  - b  P P +  b21 31 22 32 23 33 241 1 1 1

I r I r W x I r W y IP  = c  - c  P P  +  c  - c  P P + c  - c  11 31 12 32 13 332 2 2  
     

r W zP P  +  c142

I c I c W x I c W y I c W zP  = c  - c  P P  +  c  - c  P P + c  - c  P P +  c21 31 22 32 23 33 242 2 2 2

   (B.9) 
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Any 3 of these 4 equations can be solved to obtain the 3D world point , ,W x W y W zP P P 
  

, 

however, due to approximation errors in the camera model and image points, each subset of three 

equations will yield slightly different coordinates for 
W

P.  

 

These inaccuracies explained above once generated, amplifies as the ray propagates in space. 

Therefore we have used a more robust shortest line segment approach [95] as shown in Figure 

B.7. We have dropped the coordinate system symbols from the notation. The center of this line 

segment will represent the 3D point. So the smaller the segment better is the correspondence of 

image points and vice versa. We have also used this segment length criterion as a constraint to 

solve the correspondence problem. Epipolar constraints are also used in conjunction for 

robustness.  

  

 

Figure B.7 

Shortest line segment connecting the two skew rays. 
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 P1 and P2 are the points on the ray originating from camera optical center O1 and passing 

through image point I1 while Q1 and Q2 are the points on the ray originating from camera optical 

center O2 passing through image point I2. If the optical center of the cameras is not known then 

camera 1 ray points can be computed using the two equations in Equation B.13 while choosing 

an arbitrary value of 
W

P 
z
= z. If the computed ray is parallel with the z-axis then the same 

procedure can be repeated for y and z while 
W

P 
z 

=x and so on. u1andu2 are the unit vectors 

along these rays respectively. The shortest line segment is represented by vector V and is 

orthogonal to both u1  and u2 and is given as: 

( ) ( )V = P +a u - Q +a u1 1 1 1 2 2                                       (B.12) 

 The variables a1  and a2  can be computed using the following set of linear equations. Here   

' ' represents dot product: 

[( ) ( )]

[( ) ( )]

P + a u - Q + a u u = 01 1 1 1 2 2 1

P + a u - Q + a u u = 01 1 1 1 2 2 2
                         (B.13) 

 Rearranging Equations B.13: 

[( ) ( )]

[( ) ( )]

P - Q + a u - a u u = 01 1 1 1 2 2 1

P - Q + a u - a u u = 01 1 1 1 2 2 2
                (B.14) 

[( )] [( )]

[( )] [( )]

P - Q u + a u - a u u = 01 1 1 1 1 2 2 1

P - Q u + a u - a u u = 01 1 2 1 1 2 2 2
                (B.15) 

[( )] [( )] [( )]

[( )] [( )] [( )]

P - Q u + a .1 - a u u = 01 1 1 1 2 2 1

P - Q u + a u u - a .1 = 01 1 2 1 1 2 2
                  (B.16) 

( ) [( )]a - a u u = - P - Q u1 2 1 2 1 1 1                           (B.17) 
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2 1 1 2 1 1 2( ) [( )]a a u u P Q u    
                               (B.18) 

 Solving Equation B.17 and B.18 further to get a1  and a2 . Multiply Equation B.18 by 

( )u u1 2 and subtract from Equation B.17: 

[ ( ) ] [( )] [( ) ]( )2a 1- u u = Q - P u - Q - P u u u1 1 2 1 1 1 1 1 2 1 2                (B.19) 

[( )] [( ) ]( )

[ ( ) ]

Q - P u - Q - P u u u1 1 1 1 1 2 1 2a =1 21 - u u1 2

                    (B.20) 

 Multiply Equation B.17 by ( )u u1 2 and subtract Equation B.18 from Equation B.17: 

[( ) ] [( )] [( ) ]( )2a u u -1 = Q - P u - Q - P u u u2 1 2 1 1 2 1 1 1 1 2                  (B.21) 

[( ) ]( ) [( )]

[ ( ) ]

Q - P u u u - Q - P u1 1 1 1 2 1 1 2a =2 21- u u1 2

                                  (B.22) 

 If the magnitude of vector V is less than a desired threshold then the 3D world coordinates x, 

y, z of the point 
W

P are given as the midpoint of V: 

      [( ) ( )]
1W P = P +a u + Q +a u1 1 1 1 2 2
2

                                            (B.23) 
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_____________________________________________________________________________________________ 

 

APPENDIX C 

Site survey details 

_____________________________________________________________________________________________ 

 

 This appendix provides information about the outdoor test site that we have used in our 

experiments. Some extra pictures of the test site are also provided to elaborate the local 

dynamics of the test environment. We have also briefly explained the survey procedure used to 

acquire the survey data. 

 

e have selected the MSU Engineering building courtyard as our outdoor test site. 

Figure C.1 shows the satellite view of the Engineering building obtained by Google 

Earth.  

W 

 
Figure C.1 

MSU Engineering building satellite view. 
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 The Engineering building latitude and longitude are  42.72477, -84.481594 respectively. For 

object localization and tracking the courtyard possesses complex semi-indoor features due to 

surrounding walls, trees, different sized pillars and arch structure in the middle of the courtyard. 

For our experiments the ground was considered to be leveled. Figure C.2(a) shows the aerial 

view of the courtyard. To have better insight of the local structures Figure C.2(b) to Figure 

C.2(e) provide local images. The approximate position and direction where these pictures were 

taken is highlighted in Figure C.2(a). 

 

(a) (b)  

   

                        (c)                                              (d)                                             (e) 

Figure C.2 

Different views of the courtyard. 

   

(b) 

(c) 

(d) 

(e) 

Origin 
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 We started survey of the site using the total station provided courtesy of the MSU Civil 

Engineering department. Figure C.3 shows the similar equipment used in the survey. The 

location where we placed the total station was selected carefully so that most of the points are in 

direct line of sight of the total station. The equipment location was selected as the origin of the 

3D coordinate system.  

 

 
Figure C.3 

Total station surveying equipment - Image extracted from [117]. 

 

 We have used a right hand side coordinate system as shown in Figure C.4. We started the 

survey by leveling the equipment.  The height of the equipment once leveled was adjusted at 4.8 

ft. The goal was to obtain the coordinate information for all the possible corners that will be 

helpful to design a simulated 3D model of the test environment. The angles and distances of the 

predefined points from the total station were acquired. The relative position of the points from 

the origin was then calculated using trigonometry. We also used laser meters, tape measurements 

and ranging poles to obtain detail for the points not visible to the total station. This was also 

helpful to validate data obtained from the total station. Later the acquired survey data was 
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imported to MATLAB for making scaled model of the test site that were then used in simulations 

and experiments. The data was obtained in feet. To remain in sync with the unit system used in 

the lab experiments we later converted it to inches during the simulation.  

 

 

 The RFID readers were placed at a 40×40 m space. In our experiments, to assess the 

performance of stereo system we selected two different positions which provided varying choice 

of near and far field calibration points. The landmarks for camera positions, RFID reader 

 
 

Figure C.4 

Top view of the outdoor test site with legend showing equipment position and the coordinate 

system. 
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positions, origin, test site center and the coordinate system are mentioned in Figure C.4. Figure 

C.5 shows the simulated 3D view of the outdoor test site in same orientation of Figure C.4. The 

location of the RFID readers and the cameras in position 2 are also shown.  

 

 

  

 

 

Figure C.5 

3D view of the outdoor test site with sensor configuration - scale is in inches. 
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 Figure C.6 shows labeled calibration points (shown by '■' in yellow) used during camera 

calibration.  

 

 

 Table C.1 provides coordinates of some of the important 3D landmarks in inches. The 3D 

ground truth points with respect to the 2D calibration points shown in Figure C.6 are also 

mentioned.  

  

 

(a)                                                                             (b) 

Figure C.6 

Outdoor test site with 2D calibration points shown by '■' (yellow): (a) left image (b) right image. 
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Table C.1 

3D coordinates of calibration points and some important landmarks in MSU Engineering 

courtyard - scale is in inches. 

Landmarks X Y Z 

    

Origin 0 0 0 

Site center 524 0 0 

Master reader -534 0 0 

Slave reader 1 524 -1061 0 

Slave reader 2 1585 0 0 

Slave reader 3 524 1061 0 

Left camera position 2 0 72 54 

Right camera position 2 0 -72 54 

Point 1 242 60 36 

Point 2  242 -60 36 

Point 3 242 60 0 

Point 4 242 -60 0 

Point 5 429 84 140 

Point 6 429 -84 140 

Point 7 945.5 72 30 

Point 8 945.5 -72 30 
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_____________________________________________________________________________________________ 

 

APPENDIX D 

Wireless location sensing 

_____________________________________________________________________________________________ 

 

Wireless location sensing (WLS) methods have provided a new layer of automation to many 

indoor and outdoor location systems that need to know the physical location of objects and 

persons either relative to a known location or within a coordinate system. The process of WLS 

estimates the node location, where a node can be a smart phone, GPS receiver, wireless sensor, 

tag or a cellular base station. In this appendix we have briefly explained location system 

topologies, principles and methods with a summary of recent updates in the location sensing 

technology.  

 

ireless location sensing is an umbrella term used for many type of indoor and outdoor 

location providing schemes and is interchangeably used with wireless positioning 

systems (WPS). The variety of location systems can broadly be categorized into global  

positioning system (GPS) and local positioning systems (LPS) [30]. GPS provides global 

position information whereas LPS provides relative position information. Some of the outdoor 

systems use cellular or satellite based positioning which are mostly line of sight based, while the 

indoor schemes use local positioning technologies such as Wireless Local Area Network 

(WLAN), cameras, bluetooth, sensor networks, Radio Frequency Identification (RFID), infrared 

W 
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and ultrasonic etc. The wireless assisted Global Positioning System (GPS) and cellular base 

station linked with indoor mobile client can also be used for indoor localization. For example, 

locating an airport might best be done using GPS, but analyzing the behavior of a group of 

people waiting at an airport gate can be done in an LPS for just that gate or for just that airport. 

Several surveys covering broader local sensing aspects are available on the topic [25], [28], [29],  

[118], [119] and a handbook of location estimation is recently published by Zekavat and Buehrer 

[30]. In the ensuing paragraphs we have provided the basic information about WLS systems with 

recent advances and trends. 

  

D.1  Location system topologies 

 

 The LPS can have following four different system topologies [120].  

 

a. Self positioning - Such a system has receiver and measuring unit onboard the mobile 

object. It communicates with several geographically distributed transmitters with known 

locations and calculates its position accordingly. An inertial navigation system (INS) 

works on this phenomenon.  

 

b. Indirect remote positioning - A self-positioning system sending position information to a 

mobile unit via a wireless link.  
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c. Remote positioning -  The mobile transmitter onboard the tracked object communicates 

with fixed receivers. Based on the received signals the position of the mobile object is 

measured in a central unit. 

 

d. Indirect self positioning  - A remote positioning system sending position information to a 

mobile unit via a wireless link.  

 

D.2  Location  system principles  

 

 In a broader spectrum, location sensing has two general principles i.e triangulation and 

trilateration.  

 

a. Triangulation - With triangulation multiple sensor nodes observe some other node. 

Triangulation can be done in 2D if two network nodes fixed in space can compute the 

heading to the moving receiver node (angle-side-angle). Figure D.1 shows the 

triangulation concept. Same concept applies in 3D, where three fixed nodes form a 

tetrahedron with the mobile object. 
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  The location of the receiver in Figure D.1 can be calculated as: 

 

2 2 2L = L + L - 2L L cos
1 2 3 2 3

= 180 - -



  
 

 

b. Trilateration - Using trilateration a mobile node locates itself relative to other 

transmitting base nodes that are in known locations. Distance from each base node is 

computed from signal strength or timing. In a 2D space, the mobile node locates itself at 

the intersection of three circles whose radii are the sensed distances, and in 3D at the 

intersection of four spheres. Using more than the minimum number of base nodes enables 

more robust computation of location in real noisy environments. 

 

 

Figure D.1 

Triangulation geometry. 
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D.3  Location methods 

 

 The location methods utilized in WLS are either geometric or time based. The geometric 

based techniques are angle of arrival (AOA), also called direction of arrival (DOA), received 

signal strength indicator (RSSI), or phase of arrival (POA); while propagation time based 

systems are time of arrival (TOA), also called time of flight (TOF), time difference of arrival 

(TDOA), and round trip time of flight (RTOF) [25], [118]. 

 

 AOA estimates signal direction/angle at the desired point from at least two known reference 

points. RSSI calculates signal strength by comparing transmitted and received signal. This signal 

attenuation factor is then used to estimate range. The POA method estimates the received signal 

phase difference to get range estimates. The TOA/TOF measures one way signal travel time 

from a transmitter to receiver. For distance calculation the time measurements should at least be 

from three points of reference. TDOA on the other hand estimates difference in time at which the 

same signal arrives at multiple receivers instead of absolute arrival time. RTOF measures the two 

way signal travel time between the transmitter and receiver. Propagation time based systems are 

sensitive to the availability of line of sight (LOS) [121] and doesn’t work well in mountainous 

terrain or around skyscrapers. However, non line of sight (NLOS) method such as RSSI is 

affected only slightly with lack of LOS. To improve position and tracking performance, location 

sensing technologies also use parameter estimators such as Kalman, Particle filter and Bayesian 

estimation.  
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D.4  Some location sensing system descriptions  

 

 There are a number of different implementation approaches that exist for the above systems. 

Some of them are given below.  

 

D.4.1 Received Signal Strength based localization 

 

 An electronic fingerprint makes it possible to identify a wireless device by its unique 

radio transmission characteristics. Using spectrum analyzers, the RF location fingerprints of the 

scene are initially calculated. To estimate the position of an object, the observed measurements 

are compared with the fingerprint database. In a Wi-Fi environment, the RSS based algorithms 

mostly use Wireless Local Area Networks (WLAN) signatures for indoor localization. RADAR 

[122] was the first indoor system location and tracking system. Depending on the environment 

and application, RADAR and similar WLAN based location sensing systems provide tracking 

accuracy of one to three meters [123]. The accuracy of other typical WLAN positioning systems 

is approximately 3 to 30 m [25]. Some of the recent work on WLAN based localization is 

presented in [124], [125], [126].  RSS based localization is classified as RF fingerprinting, model 

based and kernel based. 

 

 a. RSS fingerprinting - These methods [127] work in two steps i.e offline and online. RF 

signatures are captured in the off line mode and the database is generated. In online mode 

the location is estimated based on the database matching. Fingerprinting location 

techniques do not rely on LOS geometric assumptions.  
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 b. RSS Model based - Model based RSS use a statistical model to generate the relationship 

between the RSS and distance [128], [129].  

 

 c. RSS Kernel based - Kernel based methods are statistical algorithms which provide the 

relationship between RSS and physical location using kernel functions [130].  

 

D.4.2 Radiolocation using cellular signals 

 

 Position can also be estimated by cellular phones using measurements for the signal between 

different signal towers and the phone. Location sensing using cellular signals has a benefit that 

mobile existing hardware can be used and the system can potentially provide location estimates 

anywhere wireless service is available. Radiolocation through cellular telephony mainly includes 

techniques, such as cell identification, AOA, TOA/TDOA, Assisted GPS (AGPS) [131] and 

Enhanced Observed Time Difference (E-OTD). AGPS combines mobile technology and GPS. E-

OTD measures the signal arrival time difference at handset, transmitted from minimum three 

synchronized base towers. United States Federal Communications Commission (FCC) for 

reliability, subscriber safety and quicker response, directed wireless carriers to provide automatic 

location identification [132] for the 911 emergency calls. Consequently there has been a wave of 

exploration in this area by the cellular services. For instance 2G GSM (Global System for Mobile 

communication) using E-OTD and 3G HSDPA (High Speed Downlink Packet Access) based 

wireless providers have integrated FCC positioning accuracy requirements in their systems. 

Universal Mobile Telecommunication System (UMTS) is a third generation technology for GSM 
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networks. The observed TDOA (O-TDOA) is considered as the UMTS version of E-OTD. 

CDMA (Code Division Multiple Access) based networks are utilizing TDOA and AGPS 

techniques for location based services. 

 

 There are several solutions reported for positioning using cellular phones [133], [134], [135], 

[136], [137], [138]. A large variety of smartphones in the market has also played an important 

role. Radiolocation from the cellular infrastructure can be achieved by handset based methods 

(upgraded handsets with GPS-based technology), network based methods, SIM based methods or 

hybrid.  

  

 a. Handset based - These methods require a client software running on the phones. 

Development of such client software with multi OS interface and cooperative mobile 

subscriber are some of main concerns in this approach.  

 

 b. Network based - Network based cellular localization method requires additions only in 

the provider’s infrastructure. Its accuracy varies with the concentration of the signal 

towers and the timing method being used.  

 

 c. SIM based - Using the SIM it is possible to get cell ID, RSS and the RTOF 

measurements. 

 

 d. Hybrid - Hybrid systems use mixture of techniques, for example, network based 

technique can use GPS feed for validating location information. As cell sizes vary from 
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tens of meters in crowded urban areas to thousands of meters in rural area (having clear 

LOS), therefore, the location accuracy using cell ID varies. Fusing techniques such as 

TOA and TDOA with cell IDs can increase the accuracy. 2G GSM networks mostly use 

TDOA techniques however, for more accuracy AT&T now also utilize GPS feed for 

position estimation just like CDMA based networks.  

 

 FCC has specified that position estimation for 67%  of emergency calls should be within 50 

m for handset based and 100 m for network based methods. Table D.1 from [138] compares the 

location accuracies in cellular phones using above mentioned technologies.  

 

D.4.3 Localization using smart phone sensors 

 

 Increasing the number of embedded sensors such as Wi-Fi radio, cellular radio, 

accelerometer, gyroscope, compass, cameras, magnetometer, microphone, speakers and GPS in 

the cell phones presents new opportunities for logical localization. Using phone embedded 

hardware to determine RSSI fingerprints, Martin et al. has reported localization accuracy of 1.5 

Table D.1 

Location accuracies of cellular radiolocation technologies. See Kos et al. [138]. 

Type Rural Suburban Urban Indoor 

 

Cell ID 

 

1-35 Km 

 

 

1-10 Km 

 

150-500 m 

 

10-50 m 

 

E-OTD - 

 

50-150 m 50-150 m good 

 

AGPS 10m 

 

10-20 m 10-100 m 

 

variable 
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m [139]. The accuracy is better in regions having more Wi-Fi radios in range. The authors in 

[136] have used smart phone compasses and accelerometers for localization without relying on 

Wi-Fi wireless networks with reported accuracy of around 11 m. Location estimation is also 

done using photo-acoustic signatures such as sound, light and color (from microphone and 

camera) and user motion (from accelerometers) [140]. Overview of how AGPS provides better 

accuracy and cost is given in [131]. Peng et al. [104] provides an acoustic based ranging system 

using only the phone’s microphone and speaker.  The software based algorithm relies on two-

way sensing, self recording and sample counting to estimate the location. Their system provides 

one to two centimeter accuracy in an area of about 10 m. A similar approach in 3D without any 

infrastructure support has been reported in [141]. Their acoustic signatures are based on time of 

arrival and power level. Their system can provide localization accuracy of 13.9 cm for 90% of 

estimates when the phones are several meters apart. Kessel and Werner [142] evaluated location 

based services using deterministic 802.11 RSS fingerprinting and a digital compass on a smart 

phone. The reported position accuracy is 2.74 m over an area of 250 m
2
.  

 

D.4.4 Sensor networks 

 

 Advancement in micro electro mechanical systems (MEMs) has enabled small size, low cost, 

low power wireless sensors possible. Sensor networks are generally used to monitor the 

environment but location based services and GPS positional accuracy can be combined. Solving 

location estimation using sensor networks faces challenges such as lack of central control 

system, computational capability, limited wireless bandwidth and high data traffic. In [143] the 

RSSI based location-tracking of an object in sensor networks was simulated by cooperation of 
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sensors through an election process and initiation of a mobile tracking agent. A mobile software 

agent is an intelligent program that follows an automated sequence of actions to track the target 

object. The system has prior knowledge of global and relative position information of each 

sensor. The mobile agent monitors the object by choosing the sensor closest to the object; i.e 

inviting nearby sensors and inhibiting irrelevant sensors. Each object is marked with its unique 

ID code by interpreting signal strengths from different sensors. The data overload issue was 

addressed by forwarding tracking histories to a location server. Recent research indicates that 

using low cost wireless sensors is an acceptable approach to scalable target tracking applications 

such as smart homes, fleet monitoring, air traffic control and security. In an indoor sensor 

network setup, an RMS location error of 1.2 m  for TOA and 2.2 m RSSI are reported [144]. 

Some of the background work on sensor network localization methods is given in [145], [146], 

[147], [148]. 

 

D.4.5  Infrared positioning 

 

 The infrared positioning systems do not have reflection problems and are widely used for 

high accuracy applications such as virtual reality, games and computer graphics in the movie 

industry. One popular  infrared camera based motion tracking system is provided by Vicon [93]. 

Its results, operating range and accuracy varies over different applications and environments, 

mainly due to camera placement, lighting conditions and volume location effects etc. The Vicon 

system is also being used by the group at University of Pennsylvania for controlling highly 

accurate maneuvers of cooperating flying robots [149]. Also, IR motion trackers are used for 

medical applications such as surgical navigation [150].  
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D.4.6 Ultrasonic trackers 

 

 Due to ultrasonic noise interference, ultrasonic trackers are more suitable for sound 

controlled areas such as indoor environments (offices, hospitals, labs etc.). Their low cost and 

good accuracy for small distances leverage their use in human movement analysis [151] and for 

robot collision avoidance and distance measurement [152], [153]. 

 

D.4.7 Laser range finders 

 

 Laser range finders (LRF) are also being used in position estimation systems especially in the 

field of robot navigation. They provide the estimate of how far is the closest obstruction from the 

robot. Wall mounted LRFs are also used in human tracking system with people wearing infrared 

tags [154]. The system merges multi-sensor information using Bayesian filter and perform 

identity estimation. Efficiency of LRFs is independent of the lighting conditions and provides 

accuracy within centimeters in controlled indoor environments [155], [156].  

 

D.4.8 Magnetic motion trackers 

 

 Position and orientation information can also be obtained by magnetic motion trackers [157]. 

These systems generate magnetic pulses by the transmitter, which are then observed and reported 

by the magnetic receiver mounted. These sensors do not require LOS and are small and 

lightweight but have high cost and small range of operation (within ~3 m of the transmitter). 

Since the sensors can be affected by ferrous material and electricity [158], [159], the highest 
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accuracy is ensured in a controlled indoor environment where there is minimal magnetic 

distortion. The wide range trakSTAR system estimates  X, Y, Z positional coordinates and 

orientation angles within 2.1 m range from the transmitter with a single sensor static accuracy of 

3.8 mm. The system is used for human motion and activity capturing and analysis [160], 

biomechanics, simulations and computer graphics. The typical accuracy of a magnetic tracking 

system is less than 10 mm [160]. Unlike other postion sensors, its permeability through human 

tissue allows  tracking objects inside the human body and therefore they are used to track 

surgical equipment and drug delivery inside the human body [161].   

 

D.4.9 Ultra Wide Band 

 

 Another localization technique uses Ultra Wide Band (UWB) signals. UWB wireless 

technology uses frequency spectrum larger than 500 MHz. The UWB trackers have wall 

penetration capability, typical accuracy between 30-50 cm in 10 m working range (better than 

RF) and require low transmission power. However the system itself is costly. A commercially 

available UWB based tracking system is provided by Ubisense [22]. The system has tens of 

meter range and estimates 3D location of UWB moving tags. The company claims that the 

system provides 15 cm accuracy 95% of the time. UWB use in military applications and systems 

is given in [162].  

 

D.4.10 Bluetooth 

 

 Bluetooth wireless networking technology can be used for location sensing; however, due to   

fewer transmitters and low scan/refresh rate it does not make an ideal choice for real time 
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location systems (RTLS). If sufficient transmitting beacons are available then typically Bluetooth 

can provide up to 10 m accuracy [163]. Authors in [163] used a combination of WLAN and 

Bluetooth technologies to improve the location accuracy. Purely Bluetooth RSSI based indoor 

position estimation is reported in [164].  

 

D.4.11 Inertial Measuring Units (INS) 

 

 For outdoor localization and tracking INS is being used in airplanes, submarines, shuttles, 

spacecrafts and unarmed vehicles (UAVs). By virtue of micro-electro-mechanical systems 

(MEMs) the smaller version of these systems have now made their place as a position and 

orientation estimator in object location and tracking. Inertial Measuring Units (IMU) are the 

main component of INS. The IMUs consist of gyroscopes and accelerometers and they provide 

position accuracy of around 10 m without the requirement of LOS. An autonomous positioning 

system having IMU as a system component is explained in [165], which can locate and track the 

firefighter’s position during rescue operations. An IMU integrated with GPS allows the GPS feed 

to continue in case of GPS signal loss. Integrating information from IMUs and marker based 

video tracking, a system for 3D indoor location tracking is provided in [166].  

 

D.4.12 Miscellaneous 

 

 One of the system examples for RTOF based position estimation is Siemens local positioning 

radar [167]. The system is claimed to provide an accuracy of a few centimeters. To locate the 

position of the object earlier systems such as the Active badge system [168], Cyberguide [169] 
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used infrared and CricketNav [170], ActiveBat [171] used ultrasound. The active badge system 

and CricketNav estimate the room or portion of a room where the device is located. The 

ActiveBat system provides accuracy of 9 cm 95% of the time in a 100 m
2
 area. These 

technologies however, suffer from LOS restriction and require large amount of extra hardware to 

be installed.  
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