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ABSTRACT

EXPERTISE AND INTRA-TASK VARIATION IN DECISION-MAKING

By

Dennis John Devine

Past research on the acquisition of expertise has taken

the task for granted and ignored task characteristics that

both promote and limit observed performance differences

between experts and novices. In this study, three

constructs were shown to have relevance to the information

seeking aspect of decision-making using the ACT* theoretical

framework —— domain knowledge, alternative labels and task

structure. A 2 (Domain Knowledge) x 2 (Alternative Labels)

x 2 (Decision Structure) experiment was then conducted in a

lab setting using a computerized information—board

methodology with experts and novices making decisions about

a game of basketball. Results indicated that, as predicted,

experts were more sensitive to the stereotypicality of the

task and the presence of alternative labels than were

novices. The discussion focuses on the need to consider

within-task factors in future research on expertise.
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INTRODUCTION

Discussing the concept of "expertise" is a bit like

trying to describe yourself to a good friend or your spouse

-— what can you say that everyday experience hasn’t said

already? Most of us are familiar with the concept of the

“expert" and probably feel like we have a pretty good

intuitive understanding of what an expert is. We hear the

term used every day, we bump into “experts“ everywhere we

turn and we even seek them out from time to time.

When it comes right down to it, however, "experts" play

an important part in our lives on a day-to-day basis.

Government policies are set and actions are determined by a

myriad of I'expert" consultants and advisors. We spend over

300 billion dollars a year as a nation on health care, and

much of this amount goes toward paying for the services of

medical “experts.“ When something goes wrong with our cars,

we seek out the expertise of an auto mechanic who can fix it

and prevent our busy lives from grinding to a halt. When we

get embroiled in the legal system, we get a lawyer. When we

want to hide as much money as possible from the government,

we turn to a certified public accountant. In essence, most

I'professions" in our society exist so that individuals can

make a living by becoming proficient at solving a certain

1
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solving a certain (relatively narrow) class of problems with

the aid of education and repeated experience.

The notion of expertise is also of great interest to

organizations. Implicitly, the function of training is to

take novice individuals in an organization and turn them

into experts at their jobs. However, experts also play a

large role in the indirect functioning of organizations,

such as when “subject-matter experts" are called upon to

describe their positions during job analysis or when human

resource experts generate/identify the criteria by which

people will be selected into the organization and against

which their performance will be appraised.

Ideally, the potential exists for every position in an

organization to be held by an I'expert" —- someone who

performs the job quickly and accurately, can make

intelligent, reasoned decisions and can solve problems in a

unique and creative fashion. Most of the important

decisions/actions within the context of an organization are

determined by someone who, implicitly or explicitly, is

expected to be an expert at what she/he does. Given the one

thing that everyone seems to agree with about experts —-

that they perform better than novices or "average“

performers -- an understanding of the process of becoming an

expert seems very relevant to improving the functioning of

any organization.

A greater understanding of how experts are created

will not necessarily result from more research with

 



3

"expertise" in the title. A great deal of research has

already examined the decisions of experts and much is

already known (Chi et al., 1988; Ericsson & Smith, 1992).

For instance, it has been fairly well-established that, in

most performance domains, "experts“ can be identified and

the outcomes of their decisions/problem-solving efforts can

be shown to differ from those of the “novice.“ In addition,

these studies have consistently shown that, in most domains,

experts make better decisions and/or judgments than novices

(Larkin, McDermott, & Simon, 1980; Chi et al., 1988;

Ericsson & Smith, 1992). However, research has largely

failed to address how expert and novice decision processes

are different.

This study will examine how information is acquired by

both experts and novices in the process of making decisions.

There is already an extensive literature base documenting

the manner in which individuals gather and use information

when making decisions already exist (e.g., Svenson, 1979;

Payne, 1982; Ford et al., 1989). Also, many studies have

focused on the differences in how domain experts and domain

novices solve problems and make decisions (e.g., Chase &

Simon, 1973; Chi et al., 1981; Hershey et al., 1990).

However, few studies on expert-novice differences have

examined these differences in conjunction with variation

within a task (Ford et al., 1989). For the most part, the

'task' has been taken for granted in past research and

little consideration seems to have been given to identifying
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the contextual variables (such as the labelling of

alternatives or the stereotypicality of the problem

situation) that may play a large role in whether or not the

expert performs like an expert. It seems fairly clear that

experts will perform better than novices in some situations

and perhaps even most. However, little research has

addressed the task-based influences that allow, further and

ultimately limit this distinction in performance.

In addition, past research on expertise and expert-

novice differences has not been based on a theoretical

framework of human cognition and performance. Due to the

difficulty of obtaining experts in most domains and the

arduous nature of process—tracing data collection methods,

most studies have not attempted to make predictions about

expected differences, only document them. Even then, most

studies have used small sample sizes. No study in the

literature has utilized the advantages of an information

board methodology (i.e., standardization, precise and

explicit measures of search variables) in conjunction with a

large enough sample size to test the hypotheses generated by

this exploratory research.

A variety of common findings have emerged in this

literature, but there is a pronounced need to begin

integrating findings, deriving predictions from a conceptual

framework and testing findings with adequate statistical

power. The purpose of this study, then, is to do what the

previous discussion has identified as lacking in the
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literature: identify a theoretical framework to integrate

past findings and generate predictions for the current study

and then, using that identified theoretical framework,

examine potential task characteristics that may affect the

performance of experts and novices. In the end, by

identifying aspects of the task which experts are sensitive

to but novices are not, we can arrive at a greater

understanding of the basis of expert performance.

The remainder of the introduction is organized in the

following fashion. First, a description is offered of a

model of human cognition, ACT* (Adaptive Control of

Thought), developed by John Anderson. This description will

review the basic tenets of ACT* theory and will be used to

identify three constructs relevant to the study of human

cognition and performance, domain knowledge (expertise),

alternative labelling and task structure. Following this,

each of the corresponding literatures will be reviewed. The

last section of this introduction will present a model that

attempts to integrate ACT* theory and the findings in the

traditional expert-novice literature for the purpose of

deriving hypotheses for the current study.

\

Overview of production systems

Any theory that attempts to explain the wide variety

of expert—novice differences present in the literature must

be broad enough to account for a number of phenomena across

many research domains yet be specific enough to suggest

hypotheses for future study. Production-systems models of
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human cognition appear to be able to do this. Such models

have a number of strengths. For example, production

systems, while they look quite complex and horrendous on

paper, are homogeneous in format, simple in structure and

utilize independent productions that can be combined in a

flexible and efficient fashion. Production—systems models

retain the stimulus-response flavor of behaviorism but

provide for goal—driven, “top—down" effects as well, as

goals are hierarchically ordered, satisfied and changed.

This adaptive characteristic makes production system models

the “principle theoretical medium in which to cast complex

theories of human intelligence" (Klahr, Langley, & Neches,

1987, p. ix).

All production systems consist of certain generic

components: a short-term working memory, a long-term

production memory and a "recognize—act“ cycle that allows

the two to interact. These elements are basic to any

production system model of human cognition.

werking memory (similar to STM, short—term memory) is a

limited—capacity processing site where data ("elements") are

stored in symbolic code and where operations can be

performed to alter old information and create new

information. The production memory (also known as LTM,

long-term memory) is an unlimited—capacity storage site for

condition-action rules known as productions. Without these

rules, the system could not function. Productions are

propositions composed of conditions, which describe
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configurations of data elements that might appear in working

memory, and actions, which specify alterations to the

elements in working memory or some form of overt behavior.

The recognize-act cycle has three stages: matching,

conflict resolution, and action. In the matching stage, the

contents of working memory are compared to the conditions of

stored productions in production memory. In the action

stage, if a pattern of elements in working memory satisfies

all of the conditions for a given production, then some

operation specified in the action portion of the production

is performed on the contents of working memory. If the

conditions for more than one production are matched with the

contents of working memory, some selection rule is used to

choose the production which will occur in the conflict

resolution stage.

The next section of the paper will address a specific

production systems theory, ACT*, to be used as a conceptual

framework for this study.

Theoretical Framework

ACT is a production system framework of human memory

and cognition. After laying out the fundamentals of human

cognition over 15 years ago with ACTE theory (Anderson,

1976), the ACT theoretical framework has been used as the

basis for generating several other ACT theories which have

revised and expanded the original ACTE theory. ACT is

centered around the notion that higher—level cognition in

humans is a unitary system (Anderson, 1983).
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At the heart of the ACT theoretical framework is the

assumption of two qualitatively different types of

knowledge: declarative knowledge and procedural knowledge.

Declarative knowledge consists of factual information

organized into an associative semantic network of nodes and

links in long—term memory, while procedural knowledge

consists of system—based “rules" for information processing

in the form of "If-Then“ productions. ACT* assumes three

memories where these two types of knowledge are stored:

declarative memory, working memory and production memory.

Declarative memory is a long—term, unlimited capacity

storage entity for factual information organized into a

propositional network of nodes and links. Each node in

declarative memory corresponds to a cognitive unit (or

'chunk") which can have up to five elements. Information at

a given node can be represented in one of three ways, each

way preserving a certain type of relation among its

elements. Temporal strings (or lists) preserve ordinal

relations among elements, spatial images preserve configural

information and abstract propositions preserve semantic

relations. Cognitive units, in turn, can be elements of

other cognitive units as well, allowing for, in Anderson's

terms, a "tangled hierarchy" of knowledge representation

that remains flexible.

Working memory is a special, limited—capacity

declarative repository where information can be altered and

created. Working memory is more of a function than a
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particular place. It consists of knowledge structures in

declarative memory which are active, as well as knowledge

structures which are created through the application of

productions. The production system can only modify and

create data in its small working memory. The other two

memories are just for storage.

Information in WM is matched against the conditional

clauses of existing productions to see if any apply. If a

production applies, it specifies an action or actions to be

performed on WM data or on the environment. Knowledge

structures can become activated in WM through the sensory

encoding of environmental stimuli, the activation of

information in declarative memory or through construction

“on-the--spot'I by productions in WM itself. Information

stays in WM only so long as it maintains a certain level of

activation which decays over time if not replenished from

source nodes. Sources of activation include objects of

perception in the environment and knowledge structures

created in WM. Activation levels are assumed to be a

continuous property of each node in declarative memory and

activation is assumed to spread over links in the

declarative network to associated concepts. Newly created

knowledge structures in WM have a given probability of being

stored in long-term declarative memory.

Production memory is a long-term storage site for the

rules (productions) used by the cognitive system that enable
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it to function. Except for base—level perceptual coding by

the senses, nothing gets done without a production.

ACT* assumes that all knowledge starts out as

declarative knowledge and is only later translated into

procedural knowledge that allows it to be "used.“ According

to ACT, novices solve problems through the use of

interpretative procedures that do not require the use of

domain-specific knowledge (i.e., existing productions).

These interpretative procedures fashion productions out of

declarative knowledge contained in the instructions and the

problem statement through the use of domain—independent

productions organized into strategies such as analogy, hill—

climbing, means—ends analysis, working backwards, etc.

Declarative knowledge is used interpretatively in that

it serves as data for these domain-independent procedures

(Anderson, 1982; Anderson, 1987). Anderson (1982) provides

an example of how geometry problems can be solved with a set

of 21 productions incorporating no procedural knowledge of

geometry and using only declarative information given by the

problem. For a more elaborate discussion of the process by

which declarative knowledge is transformed into procedural

knowledge, see Anderson (1982) or Anderson (1987).

Productions in ACT* theory utilize both constants (e.g,

house, car, Dad, Mary) and local variables (LVstring,

LVnumber, LVcolumn, LVrow, etc.) and are indexed for testing

on the basis of these two components. Productions are

initially selected for testing on the basis of a preliminary
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match between their constants and the contents of working

memory. Productions that pass this first stage are then

tested further to see what extent their antecedent elements

have been satisfied. When the conditional portions of more

than one production are satisfied by the contents of working

memory, the principles of refractoriness, strength and

specificity are used to determine which production will be

chosen to occur. In effect, the system selects stronger

productions before weaker productions, specific productions

before more general productions, and avoids having the same

production can] pot-rad and] (:4qu (" looping") . 

The control of information processing and subsequent

behavior is built into the production system itself through

the use of hierarchial goals in the conditions of the

productions. The production system may only have one goal

active at a time, but goals are "stacked" so that when one

is accomplished, activation is “popped" to the next higher

goal. Productions are organized into sub—routines that have

the same sub—goal in their conditional clauses. Thus,

according to Anderson (1982), ”the hierarchial control of

behavior derives from the structure of problem—solving"

(p. 372).

Acggiring expertise in ACT*

There are two general processes in ACT* that occur as

individuals acquire more decision-making/problem-solving

experience in a given domain: knowledge compilation and

tuning. Knowledge compilation occurs through the mechanisms
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of composition and proceduralization. Tuning takes place

after knowledge compilation through the mechanisms of

generalization, discrimination and strengthening.

When problems are solved through the use of general

interpretative procedures, productions are created from a

trace left by the problem—solving process. These newly—

created productions are stored in a production memory

separate from declarative memory. As productions are

activated and used, processes act on these productions to

make them more efficient and task—specific. Composition

refers to the process by which adjacent productions in a

problem-solving sequence are collapsed into a single

production that has the effect of the multiple-production

sequence. Proceduralization is a complementary process that

builds new versions of old productions but with fewer

conditions, allowing selection of the same production with

less matching information in WM. Composition combines the

conditional clauses of several productions into the

conditional clauses of one production and then specifies

multiple operations to be performed in the action clause.

Proceduralization simply eliminates existing conditional

clauses: TUning occurs after the creation of domain-

specific productions and alters them to make them more

useful and efficient. Generalization procedures are used to

make existing productions applicable in a wider variety of

situations. Generalization occurs when productions

containing local variables are created from specific
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productions involving constants. Discrimination occurs when

new productions are made by adding conditional clauses to

existing productions so as to limit their applicability.

Strengthening occurs as productions are successfully used.

Each time a production is invoked and feedback indicates

that it has been successful, its strength increases

incrementally, making the production more likely to be

invoked again in the future. Stronger productions are more

likely to be selected in the conflict—resolution stage if

multiple productions are applicable and their conditions are

tested more quickly than the conditions of weaker

productions.

Given that ACT presents an architecture for the

acquisition of cognitive skill, this implies that the

acquisition of cognitive skill amOunts to an increase in one

or both types of knowledge specified by ACT: declarative

knowledge and procedural knowledge.

Therefore, when one is first introduced to a particular

task (or domain), problems are approached in a domain—

independent manner using declarative knowledge given in the

problem statement and/or instructions in an interpretative

fashion: In doing this, declarative knowledge is I“plugged

into' a set of general, interpretative productions which

establish goals, identify methods, try these methods and

evaluate outcomes in an algorithmic manner. Interpretative

productions involve numerous local variables which must be

categorized, voluminous conditional clauses which must be
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matched to elements in WM and, in the end, choose actions

which move the system forward in small, conservative steps.

With each step, an increasingly heavy burden is placed on

the system to remember what has been "discovered" (i.e.,

retain it in WM).

Therefore, at any given time within a particular

domain, the efficiency of cognitive processes (e.g.,

problem—solving, decision-making) is related to the amount

of domain-related declarative knowledge held by an

individual as well as the number and sophistication of

domain-related productions available to utilize this

declarative knowledge. Thus, according to ACT, domain

expertise can be viewed as a function of the quantity and

quality of these two types of knowledge and, by definition,

the extent of domain expertise will influence the nature and

efficiency of domain-related cognitive processes.

At this point, the basic content of ACT* theory has

been laid out in summary fashion. Those interested in a

more detailed discussion of ACT* theory are invited to

consult the original source, as expanded and modified in

iterative fashion (Anderson, 1976; Anderson, 1982; Anderson,

1987). ‘

In sum, ACT* theory is a model of human cognition,

problem-solving and learning that specifies the processes by

which individuals acquire cognitive skill. As such, ACT* is

also a theory of how individuals acquire expertise in a

given domain and ACT* processes can be used to suggest
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expert-novice differences. The major processes involved in

acquiring expertise are: creation of productions through

interpretation of declarative knowledge and then -— after

productions have been formed -- composition,

proceduralization, generalization, discrimination and

strengthening. While these processes have been briefly

described, their implications for expert-novice differences

have not been explored. The next section of the paper will

examine these implications.

Expert-Novice Literature Review

The extensive expert-novice literature which exists has

traditionally viewed expertise as a function of the extent

of one's declarative knowledge within a domain (Spilich et

al., 1979; Chiesi et al., 1980; Voss et al., 1980; Means &

Voss, 1985; Hershey et al., 1990). ACT* recognizes the

declarative knowledge base component of expertise but adds

another component —- procedural knowledge. According to

ACT, traditional conceptualizations of expertise are

deficient in that they fail to address hgw experts use

declarative knowledge differently.

The study of expertise arose within the research

domains of cognitive science and artificial intelligence in

conjunction with attempts to understand and model accurate

human problem solving performance. The behavioral decision

literature, stemming from these two disciplines, has largely

focused on modelling and evaluating the outcomes of expert

judgment and decision making. This section will review the
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major exploratory studies on expert—novice differences and

the implications that these findings have for hypotheses

about experts and novices during information acquisition.

The distinction between declarative and procedural knowledge

was beginning to arise in the mid-19708 but, by and large,

the expert—novice literature has failed to address this

distinction.

Knowledge Organization

In a classic study, Chi et a1. (1981) asked experts and

novices in the domain of physics to sort physics problems

into categories. In a finding that has been replicated many

times now in other domains (e.g., Hinsley et al., 1977;

Schoenfeld & Herrmann, 1982), little overlap was found in

the category labels used by the two groups. Novices were

found to sort physics problems on the basis of “surface“

structures such as literal objects mentioned in the problem

or evident spatial relations while experts sorted their

problems according to major principles of physics that could

be used to solve the problems. It was also found that the

basic approach to problem—solving for experts (i.e., physics

principles) was cued by the description of the states and

conditions of the physical situation.

Chi et a1. (1981) found that, when cued for solution

procedures with various types of physics problems, verbal

protocol analysis revealed that expert responses could

easily be put into the form of production routines. These

production routines, organized into clusters of I'If—Then"
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rules used to guide working memory operations, utilized

explicit solution methods such as algebraic equations.

Novice production routines contained gaps where conditions

were not tied to actions and often did not contain equations

that could be used to solve the problem. When novice

productions did contain formulas, the formulas chosen early

in the verbal protocols contained the dependent variable and

missing independent variables, while efforts were directed

at finding the values for missing independent variables.

This was seen as an indication that novices were utilizing a

I'working backwards“ approach to problem solving.

From these results, Chi et a1. (1981) hypothesized

that knowledge is indexed in memory as a function of how a

problem is categorized and suggested that expert-novice

differences may be related to poorly formed, qualitatively

different or nonexistent categories in the novice. They

theorized that there are two components that interact in

determining how information about a problem is represented.

Initially, problem representation is a function of

categorization. Then, upon categorizing the problem, a

“problem schema'I is invoked based on category membership and

knowledge associated with the category is used to fill in

the representation. Thus, problem representation is a

function of how a problem is categorized and the

thoroughness and/or existence of IIproblem schemata" with

relevance to the type of problem at hand.
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After learning a set of computer programming concepts

to criterion, McKeithen, Reitman, Rueter, and Hirtle (1981)

found that experts displayed more subjective organization

than novices in terms of the serial ordering consistency of

key programming concepts in cued and free recall. Beginner

students in computer programming appeared to recall ALGOL W

concepts using a variety of common-language associations and

mnemonic techniques. Expert recall was based upon

functional similarity in that concepts were recalled

contiguously when they occurred in the same program. A

multidimensional scaling routine also revealed that the

expert "tree" structures derived from recall data were more

similar to each other than novice and intermediate were to

other “tree“ structures in their respective classes.

Adelson (1981) assessed subjective organization of

recall to determine if expert computer programmers were more

consistent than novice programmers in the way that computer

programming concepts were organized in a multi-trial, free

recall task. Using a measure developed by Sternberg and

Tulving (1977) in which subjective organization is

determined by the number of concepts recalled in pairs

(i.e., temporally adjacent) on successive trials, it was

found that the experts' pair frequency score was 84 percent

of the maximum while the novices' pair frequency score was

only 26 percent of its maximum. Using a multidimensional

scaling routine and a hierarchial clustering technique,

novices were also found to organize information according to
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syntactic categories while experts organized concepts around

membership in sub—programs that could be formed from the

total set of concepts. Expert clustering on the basis of

procedural similarity was seen to reflect a schematic

knowledge organization in long-term memory.

Cooke and Schvaneveldt (1988) also used key words in

computer programming to show differences between expert and

novice organization. Subjects were given the task of rating

the relatedness of 16 programming concepts, one pair at a

time. Distance measures for each word pair were derived and

scaled according to the PATHFINDER algorithm.

Resulting network solutions for each skill level as a

group varied systematically as a function of computer

programming knowledge. Relatedness ratings for concept

pairs were correlated higher within groups than between

groups. Across four skill levels, relatedness ratings for

individual concept pairs gag derived group network solutions

were correlated higher with adjacent skill levels than

levels separated by other levels with expert-naive ratings

and group networks correlated the least. These two findings

indicate a similar conceptual organization within each skill

level with novices exhibiting the least intra-group between—

groups agreement and novices exhibiting the least intra—

group agreement. Finally, subjects could be categorized

into skill levels on the basis of their own network

structures, providing further evidence of consensual methods

of organization at each stage in skill development.
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The major results of these studies using sorting and

serial order techniques support the notion that experts

organize knowledge in terms of how it is used while novices

organize knowledge on the basis of syntactical similarity.

Also, it appears that experts are more consistent than

novices in the way that they organize domain concepts, and

the finding that knowledge organization for any given skill

level is more similar to nearby skill levels than those

further removed suggests that there may be a general,

domain-specific developmental sequence that individuals go

through on their way to becoming experts.

Domains with hierarchial goal structures

Several studies have attempted to explicate

('idealize“) the hierarchical goal structure of a given

domain and then show that experts have a greater

understanding of how domain—related actions relate to and

change the variables in this goal structure. Much of this

work has been done by James Voss, George Spilich, Harry

Chiesi and their colleagues.

Spilich, Vesonder, Chiesi and Voss (1979) developed an

idealized goal structure for the game of baseball that was

to be used again in two more studies. Goals in baseball

were arranged hierarchically (e.g., winning the game,

scoring runs, advancing runners, etc.) and their respective

attainment was represented at each level by a pattern of

variables (e.g, having won or lost, the score, the number of

batters on base, the pitching count, etc). A game state was
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then defined as the configuration of goal variables at each

level at any given time, while game actions were seen as

events occurring in the game that changed the value of a

goal variable at one or more levels.

Spilich et al. (1979) hypothesized that the high

knowledge individual has a more extensive knowledge of game

actions as well as a greater understanding of how game

actions are related to changes in a game's goal structure

variables. Therefore, given a certain game action, high

knowledge individuals know more about how such actions may

produce a change in the game state.

Using a fictitious account of a half—inning of

baseball, Spilich et al. (1979) found that high—knowledge

subjects recalled more goal—related text propositions as a

whole and, in particular, recalled significantly more

propositions about relevant enabling aspects of the game

setting, specific game actions and auxiliary actions

pertaining to how game actions occurred. Experts also

recalled information in the appropriate order more often

than novices and recalled game actions in more integrated

sequences. It was concluded that high-knowledge individuals

have a greater knowledge of how specific game actions are

related to the goal structure of the game and are better

able to process sequences of game actions in terms of

monitoring changes in the value of goal structure variables.

Chiesi, Spilich and Voss (1979) again used the

idealized domain approach to baseball to illustrate further
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behavioral differences between high- and low-knowledge

individuals. In this study, high knowledge individuals were

found to be better at recognizing both old and new text

propositions, particularly when changes in the text became

more important to the outcome of the game. It was also

found that high knowledge individuals needed less

information to make recognition judgments, were superior at

recalling event sequences and anticipated a greater

percentage of high—level goal state outcomes.

Voss, Vesonder and Spililch (1980) used baseball once

again to look at differences between high- and low—knowledge

individuals in terms of how they generate and recall domain

information. Subjects were asked to generate an account of

a fictitious half-inning of baseball and then recall those

accounts two weeks later. It was found that high-knowledge

individuals generated richer accounts in that game actions

relating to lower-level goal states variables were mentioned

more often. On the other hand, in terms of recall, low—

knowledge individuals often displayed problems integrating

sequences of actions that they themselves had generated.

High-knowledge individuals recalled more of their passages

correctly and were more likely to do so in the proper order.

It was concluded that low knowledge individuals were

deficient in the establishment of sub-goals and did not

integrate game state change sequences as well as high

knowledge individuals.
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Using an idealized goal structure in the fictional

domain of l'Star Wars,“ Means & Voss (1985) found the same

sorts of expert-novice differences. After the authors

generated a hierarchical structure of goals relevant to

actions in the movies I'Star Wars“ and "The Empire Strikes

Back," participants were divided into high- and low-

knowledge groups within two different age levels on the

basis of a knowledge test about the two movies. Each

participant was prompted to offer reasons explaining a

number of low-level 'basic' actions in the movies. After

each correct response, participants were prompted to offer a

reason for an action corresponding to a higher-order goal in

an attempt to assess their ability to relate actions in the

movies to the idealized goal-structure. Experts were able

to identify more basic actions, more fully explicate the

sub-goal structure and identify more high-level goals of the

characters.

It was concluded in these four studies that experts

were better able to relate the basic actions in a given

domain to logical, hierarchically-arranged goals within that

domain. While no precise mechanism was offered to account

for this conclusion, it was suggested that experts "map'

game actions and changes in goal state variables onto

existing knowledge structures which are more complete and

correct than the novices’ knowledge structures. This

I'mapping" process will be discussed later but, for now, we

turn to another group of studies that have looked at the
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acquisition of information in decision making/problem

solving.

Process-tracing

As the current study utilizes a process-tracing

approach, studies involving experts and novices that have

used this approach with experts and novices are particularly

interesting and relevant. The following is a selective

review of that literature.

One of the earliest process—tracing studies is one by

Simon and Simon (1978). Using verbal protocols in the

domain of physics, they found that experts took a quarter of

the time that novices did to solve the problems given, and

the experts made fewer errors. Experts and novices were

also found to use different strategies in solving problems.

Another study by Voss, Greene, Post & Penner (1983)

using verbal protocols with experts and novices in political

science is illustrative of expert-novice differences in

problem representation. In their study, experts and novices

were presented with the problem of low crop productivity in

the Soviet Union and asked to offer a method to improve it.

The problem as stated contained little information that

could be used to generate a solution. Experts were found to

exhibit two different strategies to develop a more

structured representation of the problem -- decomposition

and conversion. Experts first decomposed the problem by

using stored knowledge to make inferences, add constraints,

and assign responsibility for the low productivity to a
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small set of variables. At this point, the experts had

converted the problem into one which could be solved by

specifying remedial actions in response to the primary

causes of the problem.

Johnson (1980) found expert—novice differences in

information usage with a verbal protocol procedure in a

medical setting. The task involved rating the desirability

of accepting applicants for residencies and internships by

experienced physicians and novice undergraduates. Experts

completed the ratings task in a little less than half the

time that it took novices and experts looked at less than

half as much information as novices did. Experts also

examined different information, spending more time on the

application form while novices concentrated on the

transcript and letters of recommendation to a greater

extent. Finally, experts examined information more

actively, moving around in the folder and returning to

previously searched information more often.

Johnson (1980) concluded that experts appeared to

concentrate on a small subset of perceived diagnostic

information and treat the remainder of the information as

relatively uninformative. Also, nonlinear cue usage was an

important part of experts' predictive validity (15%) when

individual subject regression equations were constructed.

Johnson, Duran, Hassebrock, Moller, Prietula, Feltovich

and Swanson (1981) found further evidence for the

interactive use of cues by experts in a study on the
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diagnosis of congenital heart defects. Using an actual case

study depicting a particular form of pulmonary valve defect

in the heart, four "diagnostic“ cues in the profile

patient's case information were dichotomously manipulated as

either "strong“ or "weak." Sixteen variations of the four

cues representing all possible combinations were given to

four experts, four trainees and four students and an expert

computer diagnostic algorithm known as DIAGNOSER. Experts

made more correct diagnoses than the other participants and

DIAGNOSER, apparently through the use of two diagnostic cues

in an interactive fashion when the cues were in their "weak"

form. While the combination of I'weak" cues was apparently

not enough to convince the novices to make the correct

diagnosis, according to Johnson et al., (1981), "The

experts, on the other hand, were sufficiently confident on

the basis of the remaining data presented in the case and

were therefore unaffected by the lack of strong evidence

.' (p. 270).

Hobus et al. (1987) conducted a study to compare how

experienced and inexperienced doctors use contextual

information. Experienced doctors and medical students were

given short case-histories presented on slides. Each case

history contained a picture of the patient, a previous

disease history and the usual presenting complaint. The

information implicitly provided by the picture and disease

history was predicted to be more meaningful to experts and

thus processed more elaborately. Specifically, contextual
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information was assumed to provide knowledge about the

existence of "enabling conditions" in the disease process.

As predicted, experts generated significantly more

correct hypotheses and were also able to recall more of the

contextual information. It was concluded that "experts are

better able to utilize information implicitly available in

an information-restricted environment than novices are. . ."

(Hobus et al., 1987; p. 475)

In another study, Johnson & Sathi (1988) provided

experts (experienced research analysts) and novices (MBA

students) with the task of predicting year-end closing

prices for 40 securities with available information on 22

dimensions. Half of the securities were accompanied by news

item summaries of stories about the company that had

appeared in the Wall Street Journal over the course of the

year. Regression equations were then calculated for each

individual to determine what cues were used to make

decisions.

Johnson & Sathi (1988) found that experts took less

time per security and looked at fewer attribute dimensions

than novices. Experts were also marginally more accurate

than novices as a whole. Most importantly, the presence of

the news items substantially increased expert accuracy but

did not affect either the novices’ accuracy or the accuracy

of the linear regression model. Upon dividing experts'

predictive validity into linear and nonlinear components, it

was found that nonlinear cue usage was only significant in
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the news item condition and that, in this condition, over

50% of the experts’ predictive validity was due to the

nonlinear use of this information. On the other hand,

novices did not use nonlinear information to any appreciable

extent. Johnson & Sathi (1988) concluded that experts

concentrated their search on the identification and

interpretation of rare events (cue values).

Dawson, Zeitz and Wright (1989) looked at expert-novice

differences in social cognition. Clinical novices and

experts I'observed" behavioral examples of three prototypical

child I'targets": an aggressive target, an inverse target

(whose behaviors can best be described as counter-intuitive

in each situation) and a random target. Experts were more

accurate at labelling the aggressive target, were superior

at making predictions for the inverse target and organized

their free recall of target behaviors around classes of

antecedent events (e.g., adult praise, censure, etc.) while

novices did not organize their behavior according to any

particular principle.

A final study by Hershey et al. (1990) actually

compared experts and novices directly using a modified,

asymmetrical information board methodology. They theorized

that expertise consists of a construct very similar to

productions and problem schemata: the 'script.“ Through

experience, experts develop problem-solving "scripts'I that

employ a set of rule-based mental operations to identify and

utilize relevant problem parameters in reaching a solution.
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“Procedural efficiency" for novices was expected to be low.

Expertise was operationalized on the basis of domain—based

knowledge for financial problem—solving and created a

hierarchy of variables in three domains (need, suitability

and affordability) relating to the decision of whether a

married couple should open an IRA. Then, using verbal

protocols and problem-solving process maps, they found that

experts solved problems in less than half the time of

novices using fewer overall steps, utilized information at

higher levels in the information hierarchies and looked at

fewer pieces of unique information. It was concluded that

expert problem-solving routines appeared more goal-oriented

and demonstrated superior representation of the problem.

The studies on expert—novice differences using process—

tracing methodologies fill in and support the findings in

other domains. Experts have tended to be faster, to make

fewer mistakes, use less information and use that

information more configurally. While more will be said

about this later, such findings are generally consistent

with ACT*. The next section will review and synthesize the

major findings on experts and novices up to this point.

Summapy of research on egpertise

A number of studies have been reviewed that examined

the different outcomes associated with expert and novice

performance and have found that, as would be expected,

experts tend to be more accurate than novices (Simon and
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Simon, 1978; Johnson, 1980; Johnson et al., 1981; Hobus et

al., 1987).

Using process—tracing methods, experts have been found

to gather and use information differently than novices, as

would be suggested by a production systems account of human

problem—solving/decision-making. Experts have been found

to be faster than novices (Simon & Simon, 1978; Johnson,

1980; Johnson, 1988; Hershey et al., 1990), to use fewer

cues than novices (Johnson, 1980; Johnson, 1988; Hershey et

al., 1990) and use higher—order information (Hershey et al.,

1990) in making their decisions. Finally, experts have been

shown to use information in a nonlinear fashion to a greater

degree than novices (Johnson et a1, 1981; Johnson, 1980;

Johnson, 1988). These findings are generally consistent

with ACT*, and will be used to support the prediction of

various findings in the current study.

ACT* and the Task Environment

The assumptions of the cognitive architecture hold

implications for the selection of two other constructs in

problem solving/decision making research. According to

ACT*, the key aspects of cognition are: 1) activating

declarative knowledge structures in working memory, 2)

selecting one or more productions to test for applicability

and 3) matching working memory knowledge structures to the

conditional clauses of domain-related productions. Any

phenomenon affecting these activation, selection and
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matching processes will influence the nature and efficiency

of domain—related cognitive processes.

Two such phenomena are the presence of descriptive

category labels in the problem-solving/decision—making

context and the degree of “structure“ (stereotypicality) in

the task statement. ACT suggests that category labels might

affect cognitive processes by facilitating the activation of

declarative knowledge structures in working memory. Task

structure, on the other hand, is implicated in the selection

of productions for testing and the matching of working

memory information to the conditions of productions.

With regard to the activation of knowledge structures,

ACT specifies three ways in which information can achieve

the necessary level of activation to be accessible to

working memory: 1) through perception of some object or

concept in the external environment resulting in the

activation of the declarative knowledge structure

corresponding to that object or concept, 2) through creation

in working memory itself by manipulating or combining active

knowledge structures and, finally, 3) through spreading

activation among connected knowledge structures in the

existing declarative knowledge base. ACT* postulates a

“spreading activation“ mechanism and, therefore, implicates

the use of category labels in information acquisition,

Category labels should affect the problem-

solving/decision—making process by influencing the spread of

activation to associated knowledge structures in declarative
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memory. Category labels can be thought of as nodes in a

associative semantic network. These “category label“ nodes

are strongly related to other nodes representing the

characteristics of the category. Presumably, when category

label nodes become active in working memory through

perception during information search, a great deal of

activation is generated and spreads out to other “feature"

nodes along the strongest links. This will proceed to

rapidly bring related features (i.e, concepts or

characteristics) to the activation levels necessary to enter

consciousness. The information that becomes active in WM

can be used as if it were gained from search of the external

environment.

Spreading activation is a function of node strength and

link strength. Node strength in turn is a function of how

frequently a node has been activated in the past and

determines the overall quantity of activation which will

spread from a given node. Link strength is a function of

past amounts of activation which have spread from one node

to another along a given link. Link strength determines how

the activation at a given node will divide up and spread out

along the various links which are connected to the node in

question.

For experts, domain-related elements (features, etc)

should be strongly linked, with the result that activation

is 'channeled' down these domain-relevant links and not down

other links from a given node, say links relating the two
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nodes on the basis of semantic similarity. Thus, for the

expert, activating the node for a given category label

should bring into working memory various domain—related

features and attributes of this node through spreading

activation over strong, domain—relevant nodes. For the

novice, activating the node for a given category label

should bring into consciousness other concepts that bear a

semantic, common—language similarity to the label.

For the most part, the traditional cognitive psychology

literature has tended to view category labels as ACT* does -

- as nodes in an associative network of semantic concepts

(although see Hintzman, 1986; Kahneman & Miller, 1986 for

interesting alternatives). Therefore, there are a number of

studies in the literature which are relevant to an

understanding of how category labels are used to solve

problems and make decisions.

In a study by Fiske et al. (1987), subjects were asked

to rate the likability of target individuals in the

presence/absence of stereotyped occupational labels (e.g.,

professor, artist) in conjunction with the

consistency/inconsistency of available attribute

information. Correlations between independent ratings of

the labels themselves and the likability of persons with

labels plus attribute information indicated that more

category-based processing went on in the label-consistent

conditions as predicted. In a second study using the same

general procedure but with the addition of verbal protocols,
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it was found that more attribute traits were mentioned by

subjects in the conditions where attribute-based processing

was predicted to occur.

Two information board studies have directly looked at

the effects of labels on subsequent search behavior as well.

Hattrup and Ford (1991) asked subjects to rate the

'attractiveness of target profiles in terms of their

desirability as co-workers. Target profiles were

occupational stereotypes, with and without their respective

labels, and attributes were either consistent or

inconsistent with the occupational stereotype. Results

indicated that subjects did indeed search for less

individuating information in the presence of occupational

labels and took less time to make their ratings. Also of

note, these two findings were not affected by the

consistency of the attribute information with the elicited

category.

The second information board study (Gilliland, Wood, &

Schmitt, in press) asked persons experienced in real—estate

and economic development to rate the desirability of

locating a business in various states. As predicted, less

attribute information was accessed when states were labelled

as opposed to unlabelled. Furthermore, in this repeated

measures design, fewer states were examined and information

acquisition across states was more variable when

participants received the labelled decision task first but
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not when they received this task second after receiving the

unlabelled decision task previously.

Several other studies have examined the effect of

category labels in the context of differences in domain

knowledge (i.e., expertise). These studies suggest that

category labels allow the expert various advantages in

performing domain—related tasks.

In an interesting study that held constant the amount

of knowledge about a domain while examining expert-novice

recall, Fiske, Kinder and Larter (1983) found differences in

the manner that high and low knowledge subjects in political

science organized their recall about the country of

Mauritius. Subjects read descriptions of the country in

which it was labelled as either communist, democratic or

neither along with attributes which were both consistent and

inconsistent with this label. It was found that individuals

with high knowledge in political science recalled more

attributes overall as well as a greater number of attributes

that were inconsistent with the stated ideology of the

country. On the other hand, low knowledge individuals

recalled consistent attributes for the most part. Overall,

both groups tended to order the recall of attributes in a

similar fashion. Thus, it appears that labels in this case

allowed the expert to organize the information provided and

construct a superior representation of that knowledge in

working memory (i.e., available to be recalled).
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In a study using examining clinical diagnostic

categories, Murphy and Wright (1984) asked expert

clinicians, counselors with some experience and novices to

list as many diagnostic features as possible for children in

three psychopathological categories. It was found that

experts had larger categories in terms of number of

attributes but also had lower category distinctiveness in

that attributes that were added to each category become

progressively overlapping. Murphy and Wright suggested that

people first focus on relatively distinctive features of

concepts in order to separate them frdm other concepts.

Later, with increasing knowledge and attention to real-world

covariation, this “discrete“ categorization relaxes,

presumably reflecting a growing network of domain-related

associations in the declarative knowledge structures of the

expert.

Summapy -- Categogy Labels

These studies suggest that the presence of categorizing

labels, when associated with meaningful stereotypic

schemata, affect resulting decision processes. The extent

of domain knowledge possessed by an individual should

interact with the presence of labels in that high knowledge

individuals have rich, well—developed schemata associated

with their category labels while low knowledge individuals

may have incomplete schemata or none at all (Chi et al.,

1981). The presence of category labels and procedural

schemata should allow the expert to engage in category-based
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processing and reduce information acquisition while low

knowledge individuals should adopt a more extensive

attribute-based processing approach because of the need to

acquire relatively more attribute information.

Thus, "category-based processes" are traditionally

thought to involve the activation and use of default

features associated with various categories stored in

declarative memory. ACT* suggests that, through the

mechanism of spreading activation, features that are

strongly associated with various categories are activated in

declarative memory and become accessible to working memory

without the need to acquire such information from the

environment. However, category-based processing cannot be

used by individuals who do not possess the links between

feature information and a given category label (i.e.,

novices).

Task Structure

ACT* also suggests a number of influences on the

selection of a production in the conflict resolution stage

of cognition as a result of task structure. According to a

recent paper (Anderson, 1992), ACT* specifies five factors

that determine whether a production will be chosen from a

set to be executed in a given situation: the strength of

the individual production, the strength of other, competing

productions, the degree to which the conditional elements of

the production have been satisfied, and the activation of

the knowledge structures representing these conditional
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elements. Aspects of the task that affect one or more of

these factors are relevant to the study of how peOple solve

problems and make decisions.

Task structure should impact the problem—

solving/decision—making process by making certain

productions more likely to be selected for testing and,

also, by increasing the speed at which conditional elements

in such productions are matched against the contents of

working memory. When a stereotyped problem.situation is

encountered, a strong, domain-specific production is indexed

for selection by the constants in its conditional clauses.

Selection of applicable productions is a probabalistic

function of how often a production has been used

successfully in the past. Therefore, frequent exposure to

common domain-specific situations or patterns results in the

creation of 'strong' productions which become compiled and

proceduralized to a greater extent each time they are

invoked.

Stereotypical problem situations result in the creation

of productions which benefit the problem-solver at the

matching stage of cognition as well. Highly compiled and

proceduralized productions are capable of simplifying

complex, contingent processes to the point of a single

production containing one or two conditional clauses.

Information in working memory can be quickly matched to

these conditions, as matching time in ACT is a function of

knowledge structure activation level in working memory and
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the strength of a given production. Therefore, the

conditional elements to be tested for a strong, frequently-

used production are few in number and tested quickly

relative to the conditions of other, less frequently used

productions.

Reitman (1965) defined task structure along a continuum

representing the number of “open" constraints left

unsatisfied by the problem statement. well-structured

problems and ill-structured are opposite ends of a continuum

defined in terms of the number of “constraints“ left

unresolved by a problem statement. According to Reitman

(1965),

“To the extent that a problem situation evokes a high

level of agreement over a specified community of problem

solvers regarding the referents of the attributes in which

it is given, the operations that are permitted, and the

consequences of those operations, it may be termed

unambiguous or well-defined with respect to that community.

On the other hand, to the extent that a problem evokes a

highly variable set of responses concerning referents of

attributes, permissible operations, and their consequences,

it may be considered ill-defined or ambiguous with respect

to that community“ (p. 151).

The traditional definition of a well-structured problem

involves the perception of a common, domain-specific pattern

of antecedent stimuli and a consistent relation or action

"filling" the open constraint of "RESPONSE.“ In other

words, the defining element of "structure'I in a given

problem situation is the degree to which that problem is

stereotypical. To the extent that a problem situation is

familiar and has been experienced in a stereotyped,
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routinized fashion, it can be considered well-structured.

Highly structured problems involve situations in which open

constraints have been filled in a consistent, identical

manner over time. Conversely, ill-structured problem

situations lack a consistent pattern of constraint

resolution.

The “structure" of a given task is partly a function

of its domain. Some domains (e.g. mathematics, physical

sciences) are considered well-structured because there is a

great deal of agreement on the relations between domain

elements, acceptable parameter values for these elements,

permissible operations on these parameter values and

agreement on the consequences of various operations. In

domains such as political science, economics and sports,

typical problems often have multiple, conflicting goals,

causal information about the relationships between variables

is ambiguous or conflicting, and one person's solution is

another person's nistake. These types of domains are

considered ill-structured domains in that there is little

consensus about the nature of the problem (i.e., what it is,

how to solve it or when it is solved). In other words, the

degree of problem structure is a function of how well-

specified the goal is, how much information is given to

start the problem.and how much agreement there is concerning

what the goal is or when it has been achieved.

There are a number of studies in the literature on

expert-novice differences that examine the effect of how
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domain stimuli are "structured” in a task environment. The

typical study has found that experts recall a great deal

more information than novices when such information is

structured according to domain-specific conventions that

give it contextual meaning. When information is

I'unstructured" (e.g., randomly configured), expert recall

performance decreases to the level of the novice.

In a classic study, Chase and Simon (1973) found

differences between experts and novices performance in

chess. Chase and Simon used two different (and now

standard) tasks to infer that experts and novices did indeed

encode and store knowledge in different fashions. The

'perception' task asked subjects to reconstruct chess

positions using as many glances at the original position as

necessary. The second task, a memory task, allowed subjects

to reconstruct as much of a chess position as possible after

five seconds of view.

What Chase and Simon (1973) found was something that

would be replicated.many times again in other studies: when

chess pieces were arranged in configurations taken from

real-life games, experts could reconstruct the chess

positions with relative ease -- much faster and more

accurately than novices. However, when chess pieces were

randomiy arranged, expert performance declined to the level

of the novice.

Chase and Simon (1973) concluded that the superior

expert recall in structured situations was the result of a
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greater recognition of chess patterns rather than any basic

processing advantage in terms of working memory. This

performance advantage for real-life game positions was

attributed to a "chunking' mechanism that allowed them to

cluster the pieces on the board into various sub-patterns

and store these clusters as a unit. Presumably, "chunking"

(determined by glances in the perception task and pauses in

the memory task) was possible in the real-life game

positions because sub-patterns on the board matched “chunks"

that had previously been experienced and stored by the

expert. Experts were found to have larger chunks than

novices and experts were found to chunk pieces together in

terms of abstract patterns of relations (e.g., attack,

defense) rather than proximity, color and piece type such as

the novices. Experts were also found to recall more chunks

than novices in one of the tasks in spite of the finding

that experts suffered from the same constraints imposed by a

limited working memory (WM) capacity, suggesting that

"chunks“ can also be chunked hierarchically.

Chase and Simon interpreted these findings as evidence

that expert knowledge shows superior organization compared

to novices. This enables experts to match chess

configurations with existing stored configurations acquired

through experience, chunk “chunks“ hierarchically and, in

the end, retain more information. Novices, without the

benefit of stored patterns, cannot chunk pieces into

clusters and are to store individual chess pieces rather
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than unitized clusters. Thus, they suffer from the rigorous

constraints of working memory. Chi (1978) was able to

replicate these same findings with child experts and adult

novices in the domain of chess. In this case, child experts

were clearly better than adult novices when chess positions

were structured but not when unstructured.

In a study by Reitman (1976) involving the game G0, the

classic findings of Chase and Simon (1973) were partially

replicated. Using the same tasks as Chase & Simon, experts

were able to reconstruct game positions in the perception

task quicker than novices and were able to recall more

pieces in the memory task than were novices when board

configurations were taken from real games (i.e.,

'structured').

Engle and Bukstel (1978) were able to replicate the

classic findings of Chase and Simon (1973) in the domain of

bridge. In their study, subjects were asked to reconstruct

bridge hands in the now-standard perception and memory tasks

and were asked to play 10 bridge hands. As before, Engle

and Bukstel (1978) found that when information was organized

(“structured") according to suit in the perception and

memory tasks, the two expert subjects performed much better

than the novice. This was not the case on the memory task

when hands were arranged in an unstructured fashion. In the

perception task, the two experts did better in both

structured and unstructured conditions but took longer in

the latter condition —- perhaps reflecting an on-line
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re-configuring of information according to the way schematic

information was organized in memory (i.e., by suit).

Charness (1979) also used the domain of bridge to look

at the recall of experts and novices and found similar

effects of structure (i.e., arrangement of the cards).

Tasks in this study included rapid bidding, card recall

(immediate and after a short study time), and planning out

the play of hands using verbal protocol procedures. As in

previous studies, performance was highly and positively

correlated with expertise when hands were arranged by suit

(i.e., were well-structured). Charness (1979) concluded

that skill in bridge consists of having a large store of

recognizable bridge hands associated with appropriate

actions. It was hypothesized that better players encode the

cards in a manner that triggers plausible lines of play.

With the requisite vocabulary of stored card patterns,

expertise becomes a matter of classifying hands correctly so

that the proper strategy is invoked.

Egan and Schwartz (1979) used skilled electrical

technicians to show the effects of expertise on recall in

yet another domain. After brief exposure to circuit

diagrams, expert technicians were able to recall more

information than novices when circuits were functional

(meaningful) but not when they were random. IRTs and

transitional error probabilities indicated that experts were

'chunking' their recall by function, were faster on their
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between-chunk transitions and, also, were found to have

larger initial chunks during recall as compared to novices.

Summapy -- expertise and task structure

There is a good deal of research that suggests that

expert performance benefits from having information

organized in a meaningful way. “Meaningfulness” is a

function of past exposure to common domain—specific patterns

(chess, circuitry) and methods of organizing information

(bridge). In each domain, recall advantages exist for

experts when meaningful patterns are perceived and these

same advantages all but disappear when conventional patterns

are removed (Chase & Simon, 1973; Reitman, 1976; Engle &

Bukstel, 1978; Charness, 1979; Egan & Schwartz, 1979).

In ACT, high task structure can be thought of as

analogous to a stimulus situation that activates a

frequently-used production containing only a few simple

conditional elements that need to be satisfied. The

'domain-specific pattern of stimuli" from the traditional

definition corresponds to the satisfaction of conditional

clauses of a production in ACT*.

Labels, Task Structure and Expertise

\

In summary, the goal of the cognitive process is to

activate information in working memory that corresponds to

the conditional clauses of one or more productions in

production memory and then choose one production to apply.

In other words, to solve problems and make decisions, the

system needs a certain amount of declarative knowledge as
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well as productions that can utilize this knowledge. Domain

expertise is now defined as the quantity and quality of two

types of knowledge in the system: domain-related

declarative knowledge and domain—specific productions

applicable to this declarative knowledge. Domain expertise

should have an effect on the cognitive process by

influencing the amount of information that can enter working

memory by the process of spreading activation and, also, by

influencing the number of productions that can be applied to

information in working memory.

Category labels in ACT are nodes which serve as a

source of activation for strongly-associated networks of

nodes representing domain—relevant information. According

to ACT*, category labels should have an impact on the

problem-solving/decision-making process by providing a

tightly clustered network of declarative knowledge that can

be quickly activated by the presence of a label and brought

into working memory through the process of spreading

activation. Task structure is the degree to which a task

situation or problem statement elicits a solution production

which has its conditions satisfied without the need for

further information search. High task structure should

result in the immediate selection of a compiled, highly

proceduralized production involving few conditions (possibly

only a goal condition) that can be tested rapidly, leaving

the problemssolver/decision-maker with a “solution" almost

instantaneously.
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Up to this point, ACT has been used to suggest the

importance of two constructs on the problem solving/decision

making process, category labels and task structure. While

these constructs have been discussed in relative isolation,

it is important to note that the effects of labelling and

task structure are strongly tied to the extent of domain

expertise that an individual possesses. In other words, the

mechanisms underlying the effects of labelling and task

structure are such that novices would not be expected to

benefit from the presence of labels in a problem/decision

context or high task structure. On the other hand, ACT

suggests that experts should benefit from both the presence

of labels and highly-structured task situations.

Consider first the case of labels. Labels presumably

have their effect by augmenting the spread of activation to

related concepts and features, thus bringing additional

information into working memory without the need to acquire

it from the environment. For spreading activation to occur

in ACT, declarative knowledge structures must already exist

and be linked to other nodes in declarative memory. If an

individual has no existing declarative knowledge base (i.e.,

is a novice), then all knowledge that is used in solving a

problem or making a decision must come from perception in

the environment or creation in working memory.

This line of reasoning is consistent with Fiske and

Neuberg's (1987) continuum of processing theory, which

suggests that labels allow experts to use category-based
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processes (i.e., use knowledge associated with category

labels). Category labels, when combined with information

that is available, should allow the expert to rule out

certain alternatives or attribute dimensions from further

consideration through the substitution of “default" features

drawn from memory that are associated with the various

labels (Johnson, 1980). This category-based “labelling"

advantage should save time and reduce information retrieval.

In the case of labels, the expert uses the labels in the

problem context to activate related, problem-relevant

information in working memory through the aid of strong

associations in declarative memory.

The presence of labels in the problem context then

implies two benefits to experts that would not seem

applicable to novices: less information needs to be

acquired from the environment, and the conditional clauses

of various productions should be tested faster than those of

novices due to the higher level of activation for a given

feature.

Similarly, task structure is also a domain-dependent

phenomenon. Through past frequent association, experts have

associated certain common patterns (problem classes) with

certain I'successful" actions in the form of productions.

Initially, problem-solving routines involve many

productions, local variables and hordes of conditional

clauses. However, over time, constants replace local

'variables in the conditions, the routine becomes compiled
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and many conditional clauses drop out of the resulting

production with proceduralization. With frequent usage, a

long string of productions may be proceduralized and

compiled into one production with perhaps a goal condition

as its only antecedent. When this goal statement, which

corresponds to a particular class of problems, becomes

activated, the production is quickly invoked on the basis of

its constants and the few conditions (if more than one) are

rapidly tested.

ACT has thus been used to show the relevance of three

constructs on the problem-solving/decision-making process:

domain expertise, category labels and task structure. An

attempt has been made to demonstrate that the effect of

category labels and task structure on information

acquisition is largely dependent on past experience. As

such, the effects of these two constructs should be examined

jointly with domain expertise.

Model and Hypotheses

Figure 1 depicts a conceptual model of the discussion

to this point. According to this view, expertise is a

result of five ACT* mechanisms that produce the procedural

knowledge necessary to acquire skill in a given domain.

These mechanisms are composition, proceduralization,

generalization, discrimination and strengthening. Over

time, and with numerous and varied experiences, these

mechanisms will produce some degree of expertise in an

individual. The degree of expertise attained then affects
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the information acquisition process for a given task. Other

things being equal, ACT* suggests that experts will generate

a set of productions tailored by discrimination,

strengthened by frequent usage, compiled into problem—

solving routines and condensed by proceduralization. Thus,

for the expert, problem-solving routines are triggered

rapidly and with little information and are thus able to

avoid the constraints of limited working memory capacity.

Relative to novices then, experts should be more

accurate, examine cues for a shorter period of time, access

less information, and search more variably across

alternatives. Past literature has tended to support these

findings. Every study reviewed in this paper has found

experts to be more accurate than novices (see above) -- as

one would expect by definition —— but experts have also

been found to take less time in problem-solving (Simon &

Simon, 1978; E. Johnson, 1980, 1988), access less

information (E. Johnson, 1980, 1988; P.Johnson et al., 1981;

Hershey et al., 1990) and use information in a more variable

fashion (E. Johnson, 1980, 1988; P.Johnson et al., 1981).

However, the past literature has tended to focus on

both process and outcome differences between experts and

novices and take the task for granted. Indeed, Ford et al.

(1989) found that the process—tracing literature as a whole

has tended not to examine variations within the task except

for task complexity, which has been operationalized by

giving decision-makers a varying number of attributes and/or
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alternatives to choose from. Given the robust effect of

task complexity (Payne, 1982; Ford et al., 1989), it would

seem fruitful to examine other intra-task differences in the

context of differences in decision-maker knowledge.

ACT* provides the means for suggesting why this is the

case. As shown in Figure 1, ACT* suggests that the intra—

task variables will affect experts and novices differently.

As discussed above, ACT* suggests that a well-structured

task and the presence of labelled alternatives will have

information value for the expert but not for the novice.

Task structure should provide information to the expert

concerning which attributes are needed in the choice

alternative while alternative labelling provides information

about where these attributes are most likely to be found

(i.e., which alternatives are most likely to possess them).

Presumably, with any problem or decision in a given

domain, initial efforts to arrive at a solution involve many

productions, hordes of antecedent conditions to satisfy and

a great deal of intermediate knowledge to remember and pass

on to the next production just to yield a search for the

needed attribute(s). Over time, composition,

proceduralization, generalization and discrimination will

result in relatively few productions, as suggested by the

initial part of the model, ACT* --> expertise.

The traditional definition of a well-structured problem

is one in which task stimuli are organized according to

common, domain-specified conventions and open constraints
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are few in number and consistently “filled.” Thus, well—

structured versions of a task should correspond to (and

invoke) strong, compiled, well-tuned productions that are

selected and tested easily and quickly. Ill-structured

versions of the same task may have to rely on the older,

less-efficient production routines which must compete with

others to be selected, require more information, are tested

more slowly and, in the end, do not allow the expert to

behave like an expert.

The implication here is that when expertise and task

structure are both allowed to vary, we may see the expert

behave radically different on essentially the same task. In

effect, Figure 1 predicts that the expert will benefit from

the well-structured problem.much as would be expected from

the more global, “main effect" hypotheses stated above that

make no mention of task structure, but even more so.

Accuracy should be high on a well-structured version of the

task, as the relevant productions have been compiled and

tuned through extensive feedback. In addition, information

access should be focused on just the important attributes

and no more. Since the needed attributes are known in

advance and are needed regardless of other environment

variables, no other attributes need to be searched. In sum,

with well-structured tasks, experts should be highly

accurate and should acquire less information, especially

with respect to I'contextual" information which is
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unnecessary due to the strong associations between highly—

structured situations and certain specific attributes.

For alternative labels, the benefit to experts is

similar to the benefit provided by a well—structured

situation but through a different mechanism. It seems

reasonable to postulate that, in addition to a domain-

specific solution production, task performance is also a

function of a production or set of generic productions that

search the environment for information. ACT* suggests that

the effect of alternative labelling may result from an

interaction between the extent of declarative knowledge

possessed by an expert and how the search production process

is organized. In essence, the expert can use her/his

greater store of conceptual declarative knowledge to order

and focus search on alternatives that are most likely to

possess the necessary attributes because category labels

provided by the task environment can be used to

probabilistically associate necessary attributes with choice

alternatives on the basis of stored conceptual knowledge in

declarative memory. Then, this inferred information can be

used to guide information acquisition. Thus, we might

expect experts to acquire less information when alternatives

are labelled with reference to a category because fewer

alternatives should be searched and search, which may occur

for many attributes in an effort to label the alternative,

may be terminated arbitrarily when the alternative can be

categorized. This also implies that expert search with
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labelled alternatives will be more variable across

alternatives because not all of the available alternatives

will be searched.

Table 1 lists the summarized hypotheses for this study.

Note that hypotheses are arranged by dependent variable and,

within each number, become less sweeping and more qualified

by ACT*.
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Table 1.

Study Hypotheses.

1. Experts will be more accurate than novices across all

Situations.

1a. Experts’ accuracy will improve in the well-structured

task relative to the ill-structured task while the accuracy

of novices will remain the same.

2. Experts will spend less time looking at each cue than

novices.

3. Experts will access fewer cues in making their

decisions than will novices.

4. Experts will access more cues in the contextual sub—

matrix than will novices.

4a. When alternative labels are present in the decision

situation, experts will access fewer cues in the contextual

matrix relative to when alternative labels are not present.

Novices will be unaffected by alternative labels.

4b. When the decision situation is well-structured experts

will access fewer cues in the contextual matrix relative to

when the decision situation is ill-structured. Novices will

be unaffected by decision structure.

5. Experts will access fewer cues in the solution sub-

matrix than will novices.

5a. When alternative labels are present in the decision

situation, experts will access fewer cues relative to when

alternative labels are not present. Novices will be

unaffected by alternative labels.

5b. When the decision situation is well—structured, experts

will access fewer cues in the solution sub—matrix than will

novices. Nevices will be unaffected by decision structure.
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Table 1 (cont’d)

6. Experts will be more variable in information

acquisition than will novices.

6a. When alternative labels are present in the decision

situation, experts will be more variable in information

acquisition relative to when alternative labels are not

present. N0vice variability will be unaffected by

alternative labels.

6b. When the decision situation is ill-structured, experts

will be more variable in the choice sub—matrix than will

novices. Novices will be unaffected by decision structure.

7. Experts will access information in a more

interdimensional fashion than novices.

8. All participants will search more interdimensionally

when alternative labels are present than when they are not

present.
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Participants

Two hundred seventy-eight participants were recruited

from the introductory psychology pool at Michigan State

University to take a test of basketball knowledge. After

scoring test results, 123 students were called back (62

students with high domain knowledge and 61 students with low

domain knowledge) to participate in the 90 minute self-

paced, computer-mediated portion of the experiment.

Students received course credit for participating in each

part of the study and no monetary incentives were offered.

_ Design

This study involves a fully-crossed three-way factorial

design: 2 (Domain knowledge: high, low) X 2 (Alternative

labels: present or absent), 2 (Decision structure: ill-

structured, well-structured). Each subject participated

individually and made two decisions related to game

situations in basketball. In each decision situation,

subjects were asked to take the role of head coach for an

NBA basketball team.at the end of a regular-season game.

Each decision situation presented the participant with a

game situation (e.g., the game is tied with 22 seconds left

on the clock, etc) and four “starting" players. The

58
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decision task for each participant was to choose a fifth

player (from among four potential alternatives) to be on the

floor when play resumes.

In order to make each decision, participants needed to

acquire some information from the information matrix. Four

of the alternatives in the information matrix (i.e., the

existing four players) are provided as a context in which to

aid selection of the fifth player. These four alternatives

and their attributes represented the contextual sub-matrix.

Subjects could examine information provided for the

alternatives in the contextual sub—matrix but were not

allowed to choose any of these alternatives to complete the

team. The decision task was completed by choosing a player

from among the four allowable alternatives (i.e., the choice

sub-matrix). Alternatives in the contextual and solution

sub-matrices were described along the exact same attribute

dimensions. The only functional significance of

differentiating the two matrices involved the stipulation

that the final choice must come from the choice sub-matrix.

A computer was used to record the manner in which

participants acquired information for each decision.

\

Independent Variables

Participants were categorized into high domain

knowledge or low domain knowledge on the basis of their

performance on a multiple choice questionnaire on basketball

knowledge (See Appendix A for this questionnaire). Domain

knowledge was measured as a between-subjects factor using
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this 40-item test. In keeping with the implications of

ACT*, an attempt was made to construct the knowledge test so

that it would tap both declarative and procedural knowledge.

The basketball knowledge test was constructed as

follows: A set of 15 items assessing declarative knowledge

in the domain of basketball formed the core of the

declarative knowledge component in this study. These items

were used in a previous pilot study and KR—20 reliability

was estimated at,; = .86. In addition several items were

added to this scale in an attempt to make it more content

valid. Following this, items were written concerning role

differentiation among basketball positions, strategy and

tactics in an effort to tap procedural knowledge of

basketball.

The entire test (both declarative and procedural

scales) was then given to two members of the Men’s

Basketball coaching staff at Michigan State University in

order to assess the degree of convergence concerning "right"

answers for the procedural knowledge items. Two members of

the coaching staff responded to this request. Agreement

between both coaches and the a priori answer key was good

(see Results for further discussion).

The Alternative labels factor was manipulated as a

between-subjects factor by including a position label for

the various alternatives (i.e., point guard, off guard,

small forward, forward, power forward, center) or simply

assigning each alternative a letter of the alphabet (i.e.,
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Player A, Player B, etc.,). Half of the subjects made their

decisions with all alternatives labelled by position, half

made their decisions without. These labels are used

ubiquitously at all levels of basketball to describe player

roles and thus should be probabalistically associated with

various levels of certain attributes (i.e., performance

statistics) in the minds' of individuals with a fair degree

of basketball knowledge.

Decision structure was manipulated as a within-subjects

factor by having each subject make two decisions. One

decision involved a common endgame basketball situation

where upcoming behavior of the opposing team could be

predicted with some degree of certainty (well-structured)

and the other decision involved a more general, late-game

situation where there is little agreement on how future play

will transpire or which players (and their corresponding

attributes) best serve the team (ill-structured).

The two decision situations were chosen to reflect

opposite ends of the task structure continuum. The ill—

structured condition involves a situation in which open

constraints (i.e., upcoming actions by the other team and

needed attributes on one's own team) are questionable. The

well-structured condition involves a situation in which the

open constraints are routinely filled in a predictable

manner -- the other team fouls immediately and the team that

is ahead needs to have good free-throw shooters on the

court. The ill-structured task cannot logically be resolved
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without recourse to the contextual matrix to determine which

attributes are lacking on the present team members. The

well-structured situation provides enough information to

identify one attribute which will certainly be needed.

Thus, the well-structured decision should provide enough

information to trigger a production like the following:

IF: One's team is ahead late in a basketball game

THEN: Put in good foul-shooters

Stimulus Materiglg

The proposed design involves the use of two

computerized information boards in a controlled setting.

Each computer information board consisted of eight

alternatives (players) X 15 attributes (performance-related

information) for a total of 120 pieces of information. Each

computerized information board included the following

dimensions for every alternative:

1) Season field goal percentage

2) Season free—throw percentage

3) Season three-point field goal percentage

4) Field goals made-attempted (game)

5) Free-throws made-attempted (game)

6) Three-point field goals made-attempted (game)

7) Turnovers (game)

8) Offensive Rebounds (game)

9) Defensive Rebounds (game)
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10) Steals (game)

11) Blocked Shots (game)

12) Assists (game)

13) Points scored (game)

14) Years in the NBA

15) Height

Two highly-similar information boards were created for

the two decision tasks. Both information boards were

constructed by generating cue values for each of the above

15 attribute dimensions for the eight player alternatives

after consulting Hollander (1991). The manner in which cues

were distributed across the various attribute dimensions was

intended to reflect real-life skewed tendencies. Thus, in

both information boards, some cue dimensions are positively

skewed, some normally distributed and some negatively

skewed. Cues in a respective attribute dimension were

distributed in like manner for each of the two decision

tasks (e.g., season field goal percentage is positively

skewed in both decision tasks). Each search matrix was used

for one decision task. (See Appendix B for the two search

matrices used in the study).

The first decision task represents a common basketball

endgame situation for which a consensus exists concerning

what should happen and what will happen. This decision task

featured a situation in which the subject's team a) had the

ball, b) wps ahead py four points and c) 22 seconds



64

remained in the game at the end of a regular season NBA

game. Also, the 24 second shot clock was off, so the

subject's team.could conceivably hold onto the ball and run

out the clock without shooting if allowed.

The second decision task involved a similar, but less

stereotypic, situation. Participants were asked to choose a

fifth player for an endgame situation in which the a) the

other team had the ball, b) the subject’s team was ahead py

one point and c) 2 minutes were left to play. The shot

clock was noted as being set at 24 seconds.

To avoid confounding decision structure with a

particular search matrix, half of the subjects received one

search matrix for their high—structure decision and half the

subjects received the other.

Dependent Variables

A number of dependent variables will be examined in

this study. These variables are decision accuracy; cue

latency, search depth, search variability and search

pattern.

The decision accuracy criterion was operationalized by

comparing the player alternative chosen by subjects with the

”correct" choice. The 'correct' choice was constructed in

each solution sub-matrix so that it would be obvious to

anyone with moderate basketball knowledge and access to the

entire search matrix. Cues in the contextual sub-matrix

indicated that the participant's team was shooting well but

was sorely in need of a player who could rebound. Given the
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general situation, participants needed to access information

in the contextual sub-matrix to determine what the problem

is before the correct choice can be made. For further

information about the decision accuracy criterion, see

Appendix C for a rational justification of how the correct

choice was arrived at in each of the decision tasks.

Cue latency was operationalized by recording the

overall amount of time subjects spend looking at information

cues making a single decision. Search depth was

operationalized as the number of times a subject accesses an

item of information in the either of the two sub-matrices

during a given decision task. An information retrieval was

counted each time a cue was acquired, even if redundant.

Search variability was operationalized according to

Payne's (1976) conceptualization. Using this method, search

variability is defined as the standard deviation of the

number of items accessed by the subject for each

alternative. The resulting value, ranging from zero

upwards, reflects the degree to which a subject gathers

information in a compensatory fashion. A value of zero

indicates that a subject accessed the same number of items

for each alternative and this as seen as a strong indication

of linear processing. A high value on search variability

reflects unequal amounts of information accessed for the

different alternatives and has been viewed as an indication

of noncompensatory processing of information.
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Search pattern refers to the relative amount of

interdimensional v. intradimensional information gathering.

This measure was operationalized by counting the number of

interdimensional transitions made by each subject,

subtracting the number of intradimensional transitions made

by the subject and dividing this number by the total number

of transitions made by the subject. An interdimensional

transition occurs when a subject accesses a second item of

information pertaining to the same alternative as the

previous item of information. An intradimensional

transition occurs when a subject accesses a second item of

information belonging to the same attribute dimension as the

last item of information. The resulting value has a range

from —1.00 to 1.00 and reflects the relative tendency for a

subject to gather information by searching along

alternatives (in this case, by persons) or by attributes (in

this case, performance information). A value of 1.0

reflects entirely interdimensional search while a value of

-1.0 reflects information acquisition that is entirely

intradimensional.

Procedure

A total of 278 undergraduate students responded to a

short questionnaire designed to assess their knowledge of

the game of basketball, as well as perceptions of importance

for various basketball attributes (e.g., offensive rebounds)

at various basketball positions (e.g., point guard).

Appendix D contains the instrument used measure the
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importance perceptions. Arrangements were made to bring

back 62 of the highest—scoring students on the test and 61

students scoring in the range slightly above chance on the

test (indicating that they had some familiarity with

basketball).

The 123 students that were called back participated in

the decision-making portion of this study. Each student was

randomly assigned to either the "Alternative labels”

condition or the l'No Alternative labels“ condition of the

Alternative Labels factor. Following this, each subject was

seated in front of an IBM-compatible XT-8088 class personal

computer in a small room from which they completed the

remainder of the study.

After subjects were seated in isolation, the

experimenter booted up a floppy disk containing a decision

task program.appropriate to the participant’s alternative

labelling condition (i.e., with position titles or without).

Each disk contained, in addition to the two decision tasks,

step-by-step instructions for how to access information from

the search matrix and how to make a decision for each task

(i.e., choose an alternative). Participants were allowed to

access as much information as they desired in each matrix in

order to decide which player to choose for the upcoming game

situation and were also provided with blank sheets of paper

with which to take notes during the experiment.

Upon seating, the experimenter gave a brief one-minute

overview of what was about to take place. All instructions
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needed to complete the decision task were contained within

the computer program, so this verbal summary was intended to

orient participants and focus their attention. The

experimenter also gave each participant a slip of paper at

this time which contained a summary of the game situation to

be encountered in the first decision task as well as a few

other simple reminders. After this, each participant was

instructed to hit any key on the keyboard to begin the

study. All subsequent information/instructions were given

via the computer.

Participants first made a practice decision using a

small search matrix in order to familiarize themselves with

the process of accessing cues and choosing an alternative.

The practice task involved choosing the best basketball

player from among four alternatives. The search matrix gave

information about each attribute on four dimensions. None

of these dimensions was used in the actual decision tasks to

avoid biasing the search process on the basis of learning in

the practice matrix. When the practice decision task was

completed, each participant was instructed by the computer

to notify the experimenter that she/he was ready to begin

the actual experiment. The task in each of the decision

tasks was to choose a player from the solution sub-matrix to

complete the team. All search data was stored on floppy

disks which were then collected by the experimenter.

Each participant was allowed to work through the two

decision tasks at his/her own pace. The order in which each
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participant received her/his decision tasks was determined

randomdy except for the last few participants who were

assigned ordering to allow for even numbers of both

orderings. In each condition, half of the subjects got the

well-structured (ahead, 17 seconds left) task first and half

received the ill-structured (behind, 2 minutes left) task

first. The experimenter remained in an adjacent room in

order to answer any questions and trouble—shoot any

computer—related problems. When the first task was

finished, the participant informed the experimenter who re-

entered the participant's room to load the second task and

gave the participant a new summary sheet. Upon finishing

the second decision task, subjects were given a short

questionnaire asking them to describe the way they went

about acquiring information and served also as a check on

how well the participant had understood the instructions.

(See Appendix E for this post-experimental questionnaire).

Finally, a debriefing sheet explaining the general goals of

the research was given to each participant.
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RESULTS

Overview

The Results section is divided into three main parts:

an examination of the properties of the knowledge test used

to assess domain-related expertise in basketball, an

examination of the manipulation checks used to assess the

influence of the two method factors, Order (order in which

decision tasks were received) and Matrix (cue values for the

given decision task) and a reporting of the main analyses

used to test the hypotheses specified previously in Table 1.

The main analyses are broken down into two method—based

approaches corresponding to the measurement scale of the

dependent variables (categorical versus ratio) and their

respective statistical tests (categorical linear modelling

versus multivariate analysis of variance).

The approach used to analyze the hypothesis about

decision accuracy involves the construction of a linear

model from repeated-measures categorical data and was

accomplished through the use of the SAS CATMOD procedure.

This procedure generates a parameter estimate for each

effect specified in the design model on the basis of

membership in a population defined by the between-subjects

factors in the design (SAS Institute, 1985). Estimated

70
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parameters are used to create a linear model of the response

probabilities observed in each cell of the design. The

appropriate test of significance for a given effect is the

Chi-square value associated with its parameter estimate.

These Chi-square values can be interpreted in a fashion

analogous to that of the 5 test when using ANOVA.

For hypotheses involving interval—level (or better)

dependent measures, a repeated-measures Multivariate

Analysis of Variance was used (MANOVA). A multivariate

procedure was used in this study as a result of the

covariation among the dependent variables, average.; = .225

(§,= 91). Table 2 contains means and standard deviations

for all variables in the study and Table 3 reports variable

intercorrelations.

Multivariate Analysis of Variance procedures (MANOVA)

accounts for the intercorrelation among dependent variables

when testing hypotheses. For dependent variables which are

highly correlated, multivariate ANOVA procedures yield‘fi

tests for each effect calculated over the set of dependent

variables. Only effects which are significant in the

Multivariate analysis or explicitly hypothesized should be

examined in the subsequent univariate tests (Cole & Grizzle,

1966).

Before the hypotheses can be meaningfully tested, it is

first necessary to evaluate the psychometric properties of

the knowledge test used to assess domain knowledge in

basketball. We now turn to a discussion of this process.
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Table 2

Means and standard deviations of study variables

variable gggg .§2

1) Contextual search, well-struc.1 11.89 cues 15.54

2) Contextual search, ill-struc.2 15.49 cues 18.89

3) Choice search, well-struc. 23.05 cues 19.13

4) Choice search, ill-struc. 27.45 cues 19.82

5) Cue latency, well-struc. 3.59 secs 2.00

6) Cue latency, ill-struc. 3.71 secs 2.06

7) Search pattern, well-struc. 0.10 .72

8) Search pattern, ill-struc. 0.14 .71

9) Search variability, well-struc. 2.72 cs/alt 2.07

10) Search variability, ill-struc. 3.24 cs/alt 2.23

11) Choice search var., well-struc. 1.57 cs/alt 1.51

12) Choice search var., ill—struc. 1.99 cs/alt 1.97

13) Decision accuracy, well-struc. 0.45 .50

14) Decision accuracy, ill-struc. 0.43 .50

1"Well—struc." refers to measurement of the variable in the

well-structured decision task

2"Ill—struc." refers to measurement of the variable in the

ill-structured decision task
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variable intercorrelations

E13. .1 .2. .3. A .51

1 100 64 59 41 04

2 100 37 39 -02

3 100 69 O4

4 100 -12

5 100
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Note: correlations above .19 are significant at p
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Assessment of Expertise

As noted above, the basketball knowledge test was

designed to tap both declarative and procedural knowledge in

the domain of basketball. Items intended to tap declarative

knowledge concerned with knowledge of the rules used in

basketball. As such, "objectively“ correct answers exist

and there is no need to assess reliability. This is not

true for procedural knowledge, which had to do with "how"

basketball is played and won, so an effort was made to

assess agreement between the scoring key and two subject—

matter experts.

Concerning the procedural items, disagreement between

the scoring key and the two members of the coaching staff

occurred on only six of the 23 items in the procedural

scale. Of these items, three items garnered different

responses from the three different judging sources and were

dropped. For the other three items, the “correct" response

was agreed upon by two of the three sources so these items

were kept with the “agreed-upon“ response judged the correct

answer. Thus, there was fairly good agreement concerning

the “correct“ responses to the procedural knowledge items.

Viewing the test as a measure of basketball knowledge,

it appears to have good psychometric properties. The KR-20

estimate of internal consistency was 0.92 and the standard

error of measurement was correspondingly low as a result,

SEM = 2.70. When the worst four items were deleted and the

remaining 40 entered as a block into a regression equation
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designed to predict an additive composite of a six—item

Basketball Experience measure (see Appendix F), the

resulting multiple correlation was very high, 3 = .84, with

R-square = .71 and Adjusted R-square = .66. These values

indicate that a great deal of the variance in one’s reported

lifetime involvement with basketball can be accounted for by

performance on the basketball knowledge test..

In summary, it appears that the 40—item measure of

basketball knowledge “taps“ a single construct (basketball

knowledge) and measures it well. In addition, the overall

test score is highly related to a composite measure of

individual experience throughout life with the game of

basketball, providing some preliminary evidence of

convergent validity. Finally, the low standard error of

measurement provides evidence to support to the conclusion

that individuals categorized as "experts' did indeed have

true knowledge scores significantly higher than those

individuals categorized as “novices." When a 90% confidence

interval was created around each individual's score by

multiplying the standard error of measurement by 1.65, even

the highest—scoring novices (20) and lowest-scoring experts

(29) did not have overlapping confidence intervals (24.45 =

upper limit of novice distribution, 24.55 = lower end of

expert distribution). Therefore, we can be relatively

confident that experts did indeed know more than novices.
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Manipulation Checks

Before discussing the results of the tests of the

hypotheses, it is necessary to examine the impact of the

manipulations used in the study and assess the influence of

two method variables included in the design, the order in

which decision situations were received and (Order) and the

particular cue values in each of the decision situations

(Matrix).

The Alternative Labels manipulation was expected to

yield strong associations between basketball positions and

certain performance attributes (statistics) in the minds of

experts. Novice associations were expected to be weaker and

less differentiated across position. This assumption was

tested by asking both experts and novices to rate the degree

to which the following 10 attributes were important (1: Very

unimportant to 5 = Very important) to both the point guard

and center positions in basketball: points scored, field

goal percentage, free throw percentage, three—point field

goal percentage, steals, assists, turnovers, blocked shots,

offensive rebounds, and defensive rebounds.

Comparisons (g—tests) were then conducted for the

perceived importance of each of the 10 statistics as they

related to both point guard and center. Table 4 presents

the results of this analysis. For the point guard position,

mean ratings of importance for experts were significantly

different than novices on seven of the 10 statistics at p,=

.05 and for each of the seven statistics, the experts rated
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Table 4

T-tests, manipulation check for Alternative Labels

Point Guard

Variable Nov. Ex. df t 'p

Points scored 3.49 3.14 178 1.85 .066

Field Goal % 3.45 3.66 168 —1.14 .260

3-pt FG % 3.27 3.43 174 -0.93 .355

Steals 3.44 4.30 177 -5.28 .000

Assists 3.65 4.87 173 —9.24 .000

Off. Rebounds 2.52 1.44 172 6.68 .000

Def. Rebounds 2.98 1.58 172 8.19 .000

Blocked Shots 2.86 1.31 175 8.28 .000

Turnovers 3.86 4.83 171 -7.08 .000

Free-Throw % 3.54 4.51 171 -6.69 .000
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Table 4 (cont’d).

T—testsI manipulation check for Alternative Labels

Center

Variable Nplp Ex .mean if _t;_ p

Points scored 3.91 4.10 179 -1.17 .243

Field Goal % 3.71 4.21 171 —3.24 .002

3-pt FG % 3.10 1.30 176 11.45 .000

Steals 3.10 1.81 176 7.85 .000

Assists 3.31 1.70 178 10.24 .000

Off. Rebounds 4.09 4.86 173 -5.80 .000

Def. Rebounds 3.83 4.97 176 -8.02 .000

Blocked Shots 3.81 4.69 175 -5.75 .000

Turnovers 3.39 3.58 171 -1.13 .262

Free-Throw % 3.76 4.14 174 -2.51 .014
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the importance in a more extreme fashion, either very high

or very low. Results were nearly identical for the center

position, with mean ratings of importance for experts

significantly different than novices for eight of the 10

performance attributes and experts once again more extreme

in their perception of importance. The results of this

manipulation check support the conclusion that, as presumed,

experts have stronger associations between basketball

position labels and performance dimensions than do novices.

The results of the manipulation check for Decision

Structure sindlarly support the idea that information

acquisition would be focused on fewer attributes for all

subjects in the well-structured condition. Across all

participants, the number of attributes listed as being

weighed in the decision process was significantly greater in

the ill-structured task, p (113) = 7.47, p,< .000, (M = 3.68

cues in the ill-structured, 4.95 cues in the well-

structured). Thus, it appears that most subjects did indeed

perceive the need to consider more information in making

their decisions for the ill—structured task. Table 5

displays the results of this manipulation check.

Method Factor Analyses

Having verified that the study manipulations were

indeed having the effect desired, it was then necessary to

examine the influence of two method factors inherent in the

design. Order refers to the order in which individuals

received their two decision tasks -- i.e., receiving the
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T-tests, manipulation check for Decision Structure

t-test

Well-struc

Attributes

Ill-struc

Attributes

t-test

Novices

Experts

Novice

3.55

4.59
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5.29
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I
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0.89

-1.69
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n

-5.21

-5.50

.374

.094

.000

.000
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well-structured situation first followed by the ill-

structured situation, or vice versa. Matrix refers to the

particular information cues received for each particular

decision task. Both factors were between-subjects.

The Order factor was composed of two levels —— those

individuals who received the well-structured problem first

followed by the ill-structured problem and those individuals

who received the ill-structured task first followed by the

well-structured task. The Matrix factor was also composed

of two levels -- those individuals who received matrix B for

their well-structured task and matrix A for their ill-

structured task (Diskset 1) and those individuals who

received matrix A for the well-structured task and matrix B

for their ill-structured task (Diskset 2).

The order in which participants received the two

decisions was determined randomly, with the result that

roughly half of the participants received the well-

structured task first and half received it second. Levels

of the Matrix variable were not randomly assigned due to the

complexity of the design and the anticipated non-effect of

the factor. However, both method variables were examined

for their effects prior to conducting the main analyses.

The null hypothesis used in the preliminary method

analyses was that the various effects for both Order and

Matrix would be zero. If this is the case, it is safe to

ignore these factors in further analyses and treat variance

associated with the two factors as additional error
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variance. If either factor is found to have one or more

significant effects in the method analyses, it is necessary

to include that factor in subsequent analyses.

For the dependent variable Decision Accuracy, a SAS

repeated-measures linear model estimation procedure for

categorical data was conducted involving the two method

variables Order and Matrix, along with the repeated measure

that was confounded with the two, Decision Structure. For

the ratio-level dependent measures (contextual search depth,

solution search depth, search pattern, overall search

variability, solution matrix search variability and item

latency), a Multivariate Analysis of Variance (MANOVA) was

conducted involving the two method factors and the

confounded factor of interest, Decision Structure.

The results of both manipulation checks were

consistent. In both analyses, Order was involved in a

significant interaction with Decision Structure and thus was

included in subsequent analyses whereas there were no

significant effects found for Matrix. Table 6 displays the

results of these two analyses. In the categorical analysis

for Decision Accuracy, the chi-square test of the Order x

Decision Structure parameter was found to be statistically

significant in the linear model (pl< .02). No other

parameters in the method-factor saturated model was found to

be significant. In the multivariate analysis of variance,

the Order x Decision Structure effect was again the only
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Table 6

Results of Method-factor analyses

Effect X2 Value p value F test p value

Order (0) 0.91 0.34 0.33 0.92

Diskset (S) 0.58 0.45 0.34 0.84

Decision 0.27 0.60 3.13 0.01

Structure**

(DS)

0 X S 1.90 0.17 1.02 .41

O X DS** 5.84 0.02 4.17 .00

S X DS 0.56 0.46 1.81 .10

O X S X DS 2.90 0.09 0.62 .716

Note: significance at p < .01 indicated by "**'
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method effect to achieve significance, E (6, 114) = 4.17,

p < .01).

The conclusion from these analyses is that the

dependent measures in this study were not affected by the

particular cue values given to the participants (Matrix) but

were affected by the order in which they received their

decision situations (Order). On the basis of the Order x

Decision Structure factor in both the CATMOD and MANOVA

method analyses, Order was included in the main CATMOD and

MANOVA analyses for the tests of the specified hypotheses.

As there was no significant effects involving Matrix, it was

dropped from. subsequent analyses.

Main Analyses

The overall CATMOD and MANOVA analyses were then

conducted with four factors and their interaction terms:

Domain Knowledge, Alternative Labels, Decision Structure and

Order. For the main CATMOD analysis, Decision accuracy was

the dependent variable. For the main MANOVA, six dependent

variables were entered into the model for each of the two

decision tasks: contextual matrix search depth, solution

matrix search depth, cue latency, overall search

variability, solution matrix search variability and search

pattern. In all, there were 12 dependent variables for the

MANOVA.

In the main CATMOD analysis, two effects were found to

be significant at p,< .05, Domain Knowledge and the Domain

Knowledge x Decision Structure. In the overall MANOVA, the
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three main effects (Domain Knowledge, Alternative Labels and

Decision Structure) were found to be significant at p,< .01,

in addition to two higher-order interactions which were

significant as well, the Order x Decision Structure

interaction effect (p_< .01) and the Domain Knowledge x

Decision Structure x Order three-way interaction (p,= 0.01).

Table 7 contains the results of the overall CATMOD analysis

while Table 8 contains the results for the overall

multivariate ANOVA.

Following this, six univariate repeated—measures ANOVA

analyses were conducted, one for each of the six pairs of

dependent variables specified in the overall multivariate

MANOVA (e.g., contextual search depth for the ill-structured

task v. the well-structured task). Except for the specific

hypotheses predicting Domain Knowledge x Alternative Labels

interactions, only the five proceeding effects (three main

plus two interaction) discussed above were entered into the

model for the univariate tests.

Hypothesis 1: Decision Accurapy

Hypothesis 1 predicted that experts would be more

accurate than novices in making their player choices, and

that experts would benefit more from the presence of a well-

structured decision. This hypothesis was tested using the

SAS CATMOD procedure previously described. Four factors

were specified in the model: Domain Knowledge, Alternative

Labels, Decision Structure and Order. Table 7 shows the

chi—square values and p values for the various effects in
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ResultsI Overall CATMOD analysis

Effect

Intercept

Domain Know. (DK)

Alt. Labels (AL)

Dec. Struc. (DS)

Order (0)

DK x AL

DK x DS

DK x 0

AL x DS

AL x 0

DS x 0

DK x AL x DS

DK x AL x 0

DK x DS x 0

AL x D x 0

DK x AL x DS x 0

DK = Domain Knowledge

AL = Alternative Labels

DS = Decision Structure

0 = Order
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p value

.0000**

.0006**

.5459

.5926

.43940
0
0
0

O

.5887

.0000**

.4030

.2141

.1090

.0191*0
0
0
0
0
0

0.0776

0.9946

0.4881

0.9889

0.1018

Note: significance at p < .05 indicated by '*"

Note: significance at p < .01 indicated by '**'
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Resultsl Overall MANOVA

Effect

Constant

Domain Know. (DK)

Alt. Labels (AL)

Dec. Struc. (DS)

Order (O)

DK x

DK X

DK x 0

AL x

AL x

DS x

t
U
N
F
<
N

>
<
X
>
<
X

O
C
D
C
>
m

x x b x m x 0

DK Domain Knowledge

AL Alternative Labels

DS Decision Structure

0 = Order

m
m
m
m
m
m

m
m
m
m

m
m
m
m
m

88

F CGSt

167

I
b
l
-
‘
i
-
‘
O
l
-
‘
H

O
W
D
U
)

O
N
O
O

.90

.18

.79

.33

.46

p value

.000

.006

.000

.005

.8380
0
0
0

O

.150

.229

.927

.312

.091

.0010
0
0
0
0
0

0.660

0.650

0.010

0.769

0.147

Note: significance at p < .05 indicated by '*'

Note: significance at p < .01 indicated by '**'

NOte: Df (error term) - 114 for all tests
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the saturated model. The main effect of Domain Knowledge

‘was highly significant, A? (1) = 11.93, p = .0006, as was

the Domain Knowledge x Decision Structure interaction, X2

(1) = 21.83, p,< .0000. In addition to these two predicted

effects, an Order x Decision Structure interaction was found

to be significant as well, A? (1) = 5.49, p_= .0191.

An analysis of the marginal response probabilities

showed that, overall, experts made the correct choice in

53.2% of the decision situations, while novices were correct

in 33.6% of their decisions. The nature of the finding that

experts were more accurate than novices over all decisions,

however, is qualified by the Domain Knowledge x Decision

Structure.

Figure 2 shows that experts were relatively more

accurate in the well-structured decision while novices were

relatively more accurate in the ill-structured decision. As

predicted, experts were much more likely to make the correct

choice in the well-structured task, p = 67.7%, as opposed to

the ill-structured task, p = 45.9%. On the other hand,

novices showed just the opposite pattern, being relatively

more accurate in the ill-structured task, p = 38.7% and less

accurate on the well-structured task, p = 21.3%. In the

ill-structured decision, experts and novices showed similar

probabilities of choosing the right alternative (46% v. 39%,

respectively) but experts were more than three times more

likely to get the well-structured problem correct than were

novices (68% v. 21%), once again consistent with ACT*.



Percentage correct

 

 

   

     
Ill-structured Well-structured

Decision Structure

—*—' Experts —1— Novices

Figpre 2. Domain Knowledge x Decision Structure

interaction for Decision Accuracy
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Decomposition of this interaction revealed that experts

were significantly more accurate than novices in the well-

structured condition, A? (1) = 42.71, p.< .0001 (68% versus

21%) and significantly more accurate than their own

performance in the ill-structured decision, A? (1) = 12.10,

p = .0005 (68% versus 46%). Novices, surprisingly, were

significantly less accurate in their well-structured

decisions than they were in their ill-structured decisions,

.XZ(1) = 8.24, p,= .0041, (21% versus 39%). With respect to

Hypotheses 1 and 1a, strong support was found for the

prediction that experts would be more accurate than novices

overall and particularly so in well-structured decisions.

Figure 3 shows marginal response probability graphed as

a function of which decision task was undertaken first and

decision structure. This figure shows that all individuals

tended to be more accurate in making their second decision

than in their first, regardless of the structure of the

particular decision task. Individuals who received the ill-

structured task first got it right 37.7% of the time as a

group and then went on to improve to 54.1% in the well-

structured task. Individuals who received the well-

structured task first made the correct choice 35.5% of the

time and then improved to 46.8% in the following ill-

structured task.

Across participants in the ill-structured decision, the

difference in accuracy for those who got it first (38%) and

those who got it second (47%) was not significant,
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.¥3(1) = 1.25, n.s. In the well-structured decision task,

the difference in accuracy was significant, A? (1) = 5.23,

p =.0223 (36% versus 54%, for receiving the task first and

second, respectively). Within participants, the difference

in accuracy when moving from the well-structured decision

first to the ill-structured decision (36% versus 47%) was

not significant, 23(1) = 1.43, n.s., while for those

getting the ill-structured first and then the well-

structured (38% versus 54%) the difference in probability of

a correct choice was significant, A? (1) = 3.79, p_= .05.

These results appear to support both Hypotheses 1 and

1a. Consistent with Hypothesis 1, experts across all

situations were significantly more accurate than novices

(53% versus 34%) and, further, experts were quite a bit more

accurate than novices in the well—structured situation (68%

versus 21%), as predicted by Hypothesis 1a. Interestingly

enough, experts are mere accurate in the well-structured
 

task (relative to the ill-structured task) while novices are

actually lppp accurate. The finding that all individuals

tended to be more accurate in their second decision task

regardless of the structure of that task was independent of

the other effects. Thus, support for Hypotheses 1 and 1a

appears relatively sound.

Table 9 provides descriptive information concerning the

percentage breakdown of choices in the two decisions as a

function of Domain Knowledge, Alternative Labels, and

Matrix. The Matrix variable is shown in this table because



Table 9

Decision choices across all conditions
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111-Structured Decision

Domain Knowledge Label

Novice

Novice

Novice

Novice

Expert

Expert

Expert

Expert

NOte:

Yes

Yes

NO

NO

Yes

Yes

No

NO

_et; _1

1 58.3

2 00.0

1 26.3

2 09.1

1 14.3

2 06.3

1 13.6

2 10.0

Player #

_2_._3

08.3 25.

05.3 31.

05.3 47.

36.4 18.

07.1 42.

37.5 31.

13. 50.

10.0 40.

“Set" refers to which Diskset was received

08.

63.

21.

36.

35.

25.

22.

40.
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Table 9 (cont'd).

well-Structured Decision

Player #

Domain Knowledge M _ep _1 _2 _

Novice Yes 16.7 00.0 16

Novice Yes 21. 21.1 52.

Novice No 26. 15.8 21.

Novice No 00. 18.2 45.

Expert Yes 78. 07.1 07.

Expert Yes 00. 81.3 06.

Expert No 40. 04.5 09.

Expert No 00. 90.0 00.

05.

36.

36.

07.

12.

45.

10.

Total Percentages (across all conditions):

Player #

1 2 3 4

Novice 20.0 13.1 33.6 33.6

Expert 21.8 28.2 24.2 25.8
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the two tasks had different correct answers as a function of

the cue matrix used. For the Matrix level I'Diskset 1,"

Player 3 (Center) is the correct choice for the ill-

structured task and Player 1 (Point Guard) is the correct

choice for the well-structured task. For Matrix condition

“Diskset 2,“ Player 4 (Power Forward) is the correct choice

for the ill-structured task and Player 2 (Point Guard) is

the correct choice for the well-structured task.

An examination of Table 9 serves to highlight two

interesting points: 1) Novices agreed slightly more often

when alternative labels were present and 2) Experts agreed

to a greater extent than novices in the well-structured

decision but not in the ill-structured situation. In the

ill-structured decision, the average percentage for the

novices “top choice“ across the four cells is 49% and 30%

for the runner-up choice. For experts, these values are 43%

and 33%, respectively. In the well-structured decision,

these values are 51% and 25% for novices, 74% and 18% for

experts, reflecting the much greater agreement among experts

in the well-structured task. Interestingly enough, in the

ill-structured decision task, in three of the four cells for

both novices and experts, the alternative chosen most often

was the a priori 'best' choice. This is in stark contrast

to the well-structured decision. Across the four cells, the

"number one" choice of novices was never the "right“ one,

while experts again chose the correct alternative most often

in three of the four cells.
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When percentage choice for each alternative is averaged

over decision tasks, matrices and labelling (see bottom of

Table 9), the picture becomes clearer. Novices tended to

choose alternatives 3 and 4 more often regardless of the

decision task while experts spread their choices out to a

greater extent over the range of alternatives. More will be

said about this finding in the discussion.

Hypothesis 2: Cue latenpy

Hypothesis 2 predicts that experts will spend less time

looking at each information one than will novices. This

hypothesis is an intuitive one, falling out of the

traditional literature that has found experts to be faster

than novices at solving problem.in their domain of

expertise. The appropriate test statistic for evaluating

this hypothesis is the F test for the main effect of Domain

Knowledge in the repeated-measures ANOVA for mean cue

latency (see Table 10). The resulting value, 5 (1, 115) =

.257, was not significant, indicating that experts did not

differ significantly from novices in the amount of time that

they took to look at cues across the two decision tasks.

Thus, no support was found for Hypothesis 2.

However, an Order x Decision Structure interaction was

found, ‘3 (1, 115) = 15.09, p_< .001. Figure 4 displays

this interaction. As can be seen in the figure, regardless

of the structure of the decision, individuals tended to

spend more time looking at cues in their first decision than

in their second. Examining within individuals, for



Table 10
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Univariate ANOVA, Cue Latenpy

 

Effect _cfi SSiMS E p

Dom. Know. 01 9.02 1.30 .257

Alt. Labels 01 3.06 0.44 .508

Dom. Know x 01 3.04 0.44 .509

Alt. Labels

Between-subjects 115 797.75 6.94

Error

Decision 01 0.71 0.52 .472

Structure

Dec. Struc x 01 3.36 2.46 .119

Dom. Know

Dec. Struc x 01 20.59 15.09 .000

Order

Dec. Struc x 01 0.06 0.04 .833

Dom. Know. x

Order .

Within-subjects 115 156.93 / 1.36

Error
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Cue Latency (sec)
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participants who received the well—structured decision

first, the mean number of seconds spent looking at each cue

was 3.78 seconds in the well-structured task, 3.33 seconds

in the following ill—structured decision. This difference

was significant, p (61) = 2.00, p_= .05. For individuals

who received their decision tasks in the opposite order,

4.10 seconds was the mean latency for cues in the first

(ill-structured) task and this value decreased to 3.40

seconds in the second (well—structured) task. This

difference was also significant, p_(60) = 3.59, p_= .001.

Looking across participants within the particular decisions

themselves, the mean difference in item.latency for

individuals in the well-structured decision (3.78 seconds

versus 3.40 seconds) was not significant, F (1, 121) = 1.07,

n.s., while for the ill-structured decision, the mean

difference in item latency was significant, 5 (1, 121) =

4.40, p,= .038.

Thus, while there is no support for the hypothesis that

experts would spend less time looking at each cue, the order

in which decision tasks were received once again was found

to affect the process of information acquisition.

Hypothesis 3: Total Search Depth

Hypotheses 3-5b concern the number of information cues

accessed by an individual in the process of decision-making.

On the basis of the voluminous expert-novice literature, it

was hypothesized that generally experts would acquire fewer

informational cues than novices when making decisions within



101

their domain of expertise. However, the production-systems

framework highlights the importance of information provided

to the expert by both the decision context (structure) and

the labelling of alternatives. This view suggests these

aspects of the decision environment will have informational

value to experts but not to novices. Experts, then, will

acquire fewer cues than novices when labels are present for

decision alternatives and when a decision situation is well-

structured, respectively. When these two phenomena are not

present, experts are predicted to behave much like novices.

Hypothesis 3 is the general prediction that experts

will search fewer cues than novices across the entire matrix

of cue values in each decision. A repeated-measures

univariate ANOVA was performed on the sum total of all cues

accessed in each decision, collapsing over the contextual

and choice sub-matrices. See Table 11 for the results of

this analysis. The main effect for Domain Knowledge in this

analysis was significant, F (1,115) = 7.54, (p_= .007), but

analysis of the cell means indicated that experts accessed

more information than novices, not less as predicted.

Experts, on average, acquired 13 more information cues in

each task than did novices (45.13 cues versus 32.02 cues,

respectively). Surprisingly then, no support was found for

Hypothesis 3. Further analyses were conducted to address

the more fine-grained "contextual" versus “choice“

distinction in one values included in each overall matrix
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Table 11

Univariate ANOVAI Total Search Depth

 

Effect ,gf SSiMS .3 .p

Dom. Know. 01 11048.70 7.54 .007

Alt. Labels 01 12703.87 8.67 .004

Dom. Know x 01 6205.48 4.23 .042

Alt. Labels

Between-subjects 115 168509.82

Error

Decision 01 3228.61 12.24 .001

Structure

Dec. Struc x 01 836.37 3.17 .078

Dom. Know

Dec. Struc x 01 315.18 1.20 .277

Order

Dec. Struc x 01 784.62 2.98 .087

Dom. Know. x

Order

Within-subjects 115 30325.59

Error
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Hypothesis 4: Contextual Search Depth

Hypothesis 4 states that experts will access more cues

than novices in the contextual search matrix. The rationale

for this hypothesis stems from research findings which

suggest that experts concentrate their information-

processing efforts on setting up an internal representation

of the decision/problem situation and attempting to identify

information that will make the problem representation more

complete. In addition, Hypothesis 4a predicts that the

difference between expert and novice search depth in the

contextual matrix will be less when contextual alternatives

are labelled, as information provided to the expert by

alternative labelling will help to fill in the problem

representation. Similarly, Hypothesis 4b suggests that

experts will benefit from a well-structured decision

situation in which a complete and accessible task

representation already exists in memory and so the

difference between expert and novice acquisition in this

condition should be less as well.

In general, Hypothesis 4 predicting experts would

acquire more contextual information than novices was

supported by the results of the repeated-measure univariate

ANOVA for contextual search depth (see Table 12). The main

effect for Domain Knowledge was significant, F (1,115) =

15.28, p_< .000, with experts accessing over twice as many

cues as novices in the contextual matrix (M = 18.67 cues for

experts, 8.63 cues for novices). Indeed, the other two main
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Univariate ANOVA, Contextual Search Depth

 

Effect pi; SSéMS E p

Dom. Know. 01 6205.44 15.28 .000

Alt. Labels 01 3077.66 7.58 .007

Dom. Know x 01 1903.14 4.69 .032

Alt. Labels

Between-subjects 115 46713.12 / 406.20

Error

Decision 01 785.47 7.33 .008

Structure

Dec. Struc x 01 487.66 4.55 .035

Dom. Know

Dec. Struc x 01 617.06 5.76 .018

Order

Dec. Struc x 01 113.65 1.06 .305

Dom. Know. x

Order

Within—subjects 115 12328.46 / 107.20

Error
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effects were found to be significant as well but were

qualified by higher—order interactions. The main effect of

Decision Structure was significant, §_(1,115) = 7.33, p,=

.008, as was the effect of Alternative Labels, §_(1,115) =

7.58, p_= .007. Analysis of the condition means indicated

that more cues were acquired on average in the ill-

structured situation than in the well-structured situation

(M = 15.49 cues versus 11.89 cues, respectively), and more

cues were accessed by individuals who did not receive labels

for their alternatives than for those individuals who did (M

= 17.29 cues without labels versus 10.02 cues with labels).

The appropriate statistic for evaluating Hypotheses 4a

and 4b is the.§ statistic for the Domain Knowledge x

Alternative Labels (4a) and Domain Knowledge x Decision

Structure (4b) interaction effects in the repeated-measures

univariate ANOVA for search depth in the contextual matrix.

As Table 12 shows, both of these two interactions had a

significant effect on the amount of information accessed in

the contextual matrix, Domain Knowledge x Alternative

Labels, F (1,115) = 4.69, p_= .032, Domain Knowledge x

F‘(1,115) = 4.55, p,= .035, as well asDecision Structure,

the nowawmiliar Order x Decision Structure, F (1,115) =

5.76, p_= .018. Figures 5-7 (respectively) decompose these

three interactions.

As Figure 5 shows, novices were basically unaffected by

Alternative Labels (M = 7.98 cues accessed with labelled

alternatives, M = 9.28 cues accessed without). This

'
V
i
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Number of items accessed

30 

 
  
 

Labels N0 Labels

Alternative Labels

—l— Novices + Experts

Figure 5. Domain Knowledge x Alternative Labels

interaction for Contextual Search Depth
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difference was not significant, p_(59) = —0.40, p,= .691.

Experts, on the other hand, were quite sensitive to the

presence or absence of alternative labels. Experts who did

not receive labelled alternatives searched for over twice as

much information in the contextual matrix compared to

experts with labelled alternatives (M = 24.80 cues without

labels versus 12.13 cues with labels). This difference was

significant, p_(60) = 3.22, p_= .002. In addition, expert

search depth in the no label condition was significantly

greater than novice search depth in the no label condition

[p,(60) = 3.79, p_< .000], with experts accessing over twice

as much information (M = 24.8 cues for experts, 9.28 cues

for novices). Finally, expert search depth in the labelled

condition was not significantly different from that of

novices, p (59) = -1.36, p,= .179 (M = 12.13 cues for

experts, 7.98 cues for novices).

The entire interaction is thus accounted for by the

significant difference of expert search depth in the no

label condition compared to experts in the labelled

condition and novices in the no label condition. With

respect to Hypothesis 4a, experts accessed more cues than

novices across all conditions, but distinctly benefitted

from the presence of alternative labels which allowed them

to reduce their search depth by 50% on average. Thus, there

is good support for Hypothesis 4a.

Figure 6 shows an almost identical pattern of results

in the Domain Knowledge x Decision Structure interaction for
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search depth in the contextual matrix. Once again, experts

were sensitive to the presence of a knowledge-dependent

source of information while novices were not. Expert search

depth in the ill-structured decision (M = 21.84 cues) was

significantly greater than expert search depth in the well-

structured decision (M = 15.5 cues), p_(61) = 2.80, p,=

.007) as well as Novice search depth in ill—structured

decision (M = 9.03 cues), E_(1,121) = 15.85, p,< .000).

Also, expert search depth in the well-structured decision (M

= 15.5 cues) was significantly greater than novice search

 depth in the well—structured decision (M = 8.21 cues), F L

(1,121) = 7.10, p_= .009.

These analyses indicate that, while experts accessed

more information than novices in both types of situations,

the discrepancy is greatest in the ill—structured conditions

with experts acquiring roughly 33% more cues. This finding

is consistent with Hypothesis 4b which predicted that

experts would be much more sensitive to the benefits of a

well-structured decision situation than will novices.

Figure 7 displays the Decision Structure interaction

involving the Order method factor. As apparent in the

figure, contextual search depth for individuals who received

the well-structured task first was not affected by the

particular structure of the decision in either the well-

structured (M = 13.21 cues) or ill-structured tasks (13.68

cues). However, individuals who received the ill-structured

task first (M = 17.32 cues) and the well-structured task
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second (M = 10.54 cues) were affected by the structure of

the task. This interaction of Order x Decision Structure

was significant, F (1,115) = 5.76, p = .018.

T-tests of the cell means for this interaction

indicated that, for individuals receiving the ill—structured

problem first, contextual search depth in their ill-

structured task (M = 17.33 cues) was significantly greater

than contextual search depth in their well-structured task

(M = 10.55 cues), L,(60) = 3.46, p,= .001, and across

participants, was significantly greater than the ill-

structured contextual search depth for individuals who

received the task second (M = 13.68 cues), g (1, 118) =

5.255, p_= .024. A t-test of the means for individuals

receiving the well-structured decision first indicated that

contextual search in the well-structured decision (M = 13.21

cues) was not significantly different than their contextual

search in the ill—structured decision (M = 13.68 cues), p

(61) = -0.26, n.s, but was significantly different than the

well-structured contextual search depth of individuals who

received this task second (M = 10.54 cues), F (1,118) =

6.77, p,= .01.

Hypothesis 5: Choice Search Depth

Hypothesis 5 was based on the assumption that experts

would acquire more information in the contextual sub-matrix

and would use that information to identify a narrow set of

attributes needed in the choice alternative and a narrowed

set of alternatives to examine, thus reducing their
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information acquisition in the choice sub-matrix in

comparison to novices. Table 13 contains the results of the

univariate ANOVA for choice matrix search depth. Hypothesis

5 was tested by examining the significance of the main

effect of Domain Knowledge in the choice matrix search depth

univariate ANOVA, which was not significant,.§ (1,115) =

1.65, p_= .202, indicating that experts did not differ

significantly from novices in the number of cues they

accessed among choice alternatives. At this point, there is

no support for Hypothesis 5 and the notion that information

acquisition for experts in the solution matrix will be more

constrained than that of novices.

Not surprisingly, the two main effects for the other

task factors were significant in the ANOVA for choice matrix

search depth. For the Alternative Labels factor,

individuals in the labelled conditions searched for

significantly less information (M = 21.96 cues) than

individuals in the no label conditions (M = 28.49 cues), F

(1,115) = 4.28, p_= .041. The main effect for Decision

Structure, §,(1,115) = 9.96, p_= .002, resulted from the

fact that, across all conditions, individuals searched for

significantly less information in the well—structured task

(M = 23.05 cues) than in the ill-structured task (M = 27.45

cues). However, this effect is heavily qualified by a

higher-order interaction.

Hypothesis 5a is similar to Hypothesis 4a in predicting

that expert choice matrix search depth will be reduced in
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Univariate ANOVAI Choice Search Depth

 

Effect g; SSiMS _F_ p

Dom. Know. 01 982.92 1.65 .202

Alt. Labels 01 2551.21 4.28 .041

Dom. Know x 01 807.96 1.35 .247

Alt. Labels

Between-subjects 115 68620.82 / 596.70

Error

Decision 01 1142.98 9.96 .002

Structure

Dec. Struc x 01 140.43 1.22 .271

Dom. Know

Dec. Struc x 01 4.30 0.04 .847

Order

Dec. Struc x 01 500.15 4.36 .039

Dom. Know. x

Order

Within-subjects 115 13196.14 / 114.75

Error
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the presence of labelled alternatives. The appropriate

statistic for evaluating this hypothesis is the F test for

the Domain Knowledge x Alternative Labels test in the

repeated-measures univariate ANOVA. Contrary to prediction,

expert search in the choice matrix was not significantly

affected by the presence of labels, 3 (1, 1115) = 1.35, p,=

.247. Thus, there was no support found for Hypothesis 5a.

Hypothesis 5b is similar to Hypothesis 4b in suggesting

that a well-structured decision will benefit experts in that

the need to acquire cues is reduced by the structuring of

the task. Hypothesis 5b specifies that experts will access

fewer cues relative to novices when the decision problem is

well-structured but not when it is ill—structured. The

appropriate test of this hypothesis is the significance of

the F test for the Domain Knowledge x Decision Structure

effect in the repeated-measures univariate ANOVA for choice

matrix search depth. This effect was not significant, 2 (1,

115) = 1.22, p_= .271, but the Domain Knowledge x Decision

Structure effect was included in a significant three-way

interaction involving Domain Knowledge, Decision Structure

and Order, F (1,115) = 4.36, p_= .039. (See Figures 8 and

\

9).

As suggested by the figures, the locus of the three—way

interaction is the significance of the Domain Knowledge x

Decision Structure interaction for individuals who received

the ill-structured task first,.§ (1,59) = 7.13, p_= .010,

and the non-significance of the Domain Knowledge x Decision



115

Number of cues accessed

35 

 

 

 

20
  

15 

 

 

10 - .........

 

 
 

Ill-structured Well-structure

Decision Structure

—i— Novices + Experts

Figpre 8. Domain Knowledge x Decision Structure

interaction for Choice Search Depth with

I'ill-structured task first“ ordering

 



116

Number of Items accessed

 30

 

 

  

 
 1o ‘ _ ...............................................

 
 

  
 

O l I

Well-structured Ill-structured

Decision Structure

—i— Novices + Experts

Figure 9. Domain Knowledge x Decision Structure

interaction for Choice Search Depth with

"well—structured task firstl ordering



117

Structure interaction for individuals who received it

second, F (1,60) = .51, p_= .478. Thus, the predicted

Domain Knowledge x Decision Structure interaction does occur

in situations in which individuals receive the ill-

structured task first, but not for individuals who received

the well-structured task first.

Decomposition of the significant two-way interaction

for the I'ill--structured task first“ ordering indicated that

expert search depth in the ill-structured decision task (M

32.00 cues) was significantly greater than expert search

depth in the well-structured task (M = 23.71 cues), t (30)

3.55, p_= .001. All other differences between cell means

were non-significant. Thus, the three-way interaction

occurred as a result of the sensitivity of experts to the

benefits of the well-structured decision task when they

received the ill-structured task first but not when they

received this task second.

In sum, there appears to be some support for Hypotheses

5b. In the analysis of search depth in the choice sub—

matrix, the Domain Knowledge x Decision Structure

interaction was not significant, but the observed three—way

interaction between Domain Knowledge, Decision Structure and

Order indicates that the Domain Knowledge x Decision

Structure interaction does exist in some situations. These

results provide support for the notion that decision

structure influences the amount of information concerning
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choice alternatives accessed by experts to a greater degree

than it does novices.

Hypothesis 6: Overall Search Variability

Hypothesis 6 specifies that experts will be more

variable than novices in their information acquisition

across all alternatives. The appropriate test for this

hypothesis is the F statistic for the repeated—measures

univariate ANOVA for the standard deviation of information

cues accessed across all alternatives (see Table 14 for the

results of this ANOVA). The result of this test was non-

significant, F (1,115) = 0.34, p_= .559, indicating that

there is no support for the hypothesis that experts, across

all conditions, would show greater variability in the number

of information cues accessed across alternatives.

Hypothesis 6a qualifies Hypothesis 6 on the basis of the

logic set forth in the ACT*-based model. According to the

model presented in the introduction, alternative labels

provide the expert with information concerning which

alternatives to search to find the desired attribute levels,

implying that not all alternatives will be searched equally.

Novices would not be expected to be able to narrow search

for desired attributes on the basis of alternative labels,

or should fail if they try.

Hypothesis 6b predicts that experts should be able to

narrow the set of important attributes needed in the choice

alternative from the streamlined production invoked by the

well-structured decision. Since there is little overall
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Table 14

Univariate ANOVA, Overall Search Variability

Effect .Qi SSlMS .E 'p

Dom. Know. 01 25690.15 0.34 .559

Alt. Labels 01 103570.18 1.38 .242

Dom. Know x 01 46099.63 0.61 .435

Alt. Labels

Between-subjects 115 8621486.82 / 74969.45

Error

 

Decision 01 157261.49 10.67 .001

Structure

Dec. Struc x 01 5591.51 0.38 .539

Dom. Know

Dec. Struc x 01 25755.15 1.75 .189

Order

Dec. Struc x 01 117796.80 7.99 .006

Dom. Know. x

Order

Within-subjects 115 1694789.01 / 14737.30

Error
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information to be acquired in this situation, experts would

then presumably search every possible choice alternative for

the important attribute(s). In the ill-structured decision,

evaluation of individuals was predicted to be more holistic

and, as more information needs to be acquired, experts are

predicted to gather information about a potential

alternative until enough has been gathered to identify the

role such an alternative is playing and evaluate how well

the role is being filled. This should in turn lead to more

variable search across alternatives, as search for

alternatives is halted at arbitrary points when enough is

known about them.

Thus Hypotheses 6a and 6b, derived from a production

systems framework, suggest that experts will show greater

variability in information access not in all situations but

only in those situations where the decision environment

interacts with their knowledge base to provide extra

information that is not available to the novice. Hypothesis

6a was not supported, however, as the Domain Knowledge x

Alternative Labels interaction effect was not significant,

§_(1,115) = 0.61, p,= .435. Hypothesis 6b did receive

partial support, however, in that the Domain Knowledge x

Decision Structure x Order interaction was again

significant, F (1,115) = 7.99, p_= .006. Figures 10 and 11

display this three—way interaction.

Once again, the locus of the three-way interaction

stems from the predicted Domain Knowledge x Decision
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Structure interaction occurring when the ill—structured

decision was received first but not when the well-structured

decision was received first. The Domain Knowledge x

Decision Structure effect approaches significance with the

well-structured first ordering, F (1,60) = 2.45, p_= .123,

but actually achieves significance for the ill-structured

first individuals,.§ (1,60) = 6.42, p_= .014. As predicted

by Hypothesis 6b, in the “ill—structured first“ conditions

experts are considerably more variable in information

acquisition across alternatives in the ill-structured

condition (SD 3.54 cues) than in the well—structured

condition (SD = 2.72 cues), p_(30) = -2.45, p_= .021. While

there were no other significant differences, novices

revealed just the opposite tendency, displaying more

variability in the well-structured task and less in the

ill-structured task.

Hypothesis 6: Choice Matrix Search Variability

An attempt was made to analyze search variability

within the two component matrices as well. Due to the

common occurrence of no search in the contextual sub—matrix

for over 50% of the individuals in the study, results from

such an analysis are questionable. However, no such problem

existed for search variability with respect to the four

potential solution alternatives, as every participant

searched at least some subset of information in the choice

sub-matrix. Returning to Hypothesis 6a and 6b, the effects
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of interest were the Domain Knowledge x Alternative Labels

and the Domain Knowledge x Decision Structure interactions.

As Table 15 shows, two effects were found to be

significant in the repeated-measures univariate ANOVA, the

main effect of Structure and the Domain Knowledge x

Alternative Labels interaction effect. Not surprisingly,

individuals in the ill—structured decision task tended to be

more variable in accessing information across alternatives

than when on the well-structured task, M = 2.43 cues in the

ill-structured task, M = 2.06 cues for the well¥structured

task.

Hypothesis 6a received partial support from.the

significant Domain Knowledge x Alternative Labels

interaction,‘§ (1, 115) = 5.66, p,= .019. Figure 12

displays this two-way interaction. The surprising element

in this interaction is the behavior of novices. While

experts are relatively unaffected by the absence of

alternative labels, novices react to the absence of

alternative labels by becomdng considerably more

compensatory in their information acquisition. The

difference in standard deviation among novices in the no

label condition (SD = 1.42 cues) is significantly different

from the standard deviation of information acquisition for

experts in the no label condition (SD = 2.53 cues), p_(60) =

-2.58, p,= .011 as well as novices in the labelled condition

(SD = 2.63 ones). 2 (59) = 3.19, p_= .002. No other

differences were significant.



Table 15

125

Univariate ANOVA, Choice Matrix Search Variability

 

Effect ‘gg SSlMS E, .p

Dom. Know. 01 113282.90 2.09 .151

Alt. Labels 01 170789.43 3.15 .079

Dom. Know x 01 307096.53 5.66 .019

Alt. Labels

Between-subjects 115 6237205.72 / 54236.57

Error

Decision 01 83013.68 3.96 .049

Structure

Dec. Struc x 01 8925.86 0.43 .515

Dom. Know

Dec. Struc x 01 15864.21 0.76 .323

Order

Dec. Struc x 01 60691.11 2.90 .092

Dom. Know. X

Order

Within-subjects 115 2410425.11 / 20960.22

Error
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In acquiring information for choice alternatives,

experts appear not to be influenced by the presence of

labelled alternatives, retaining high search variability.

However, surprisingly, it appears that novices become a

great deal more linear (i.e., compensatory) in their

information acquisition for choice alternatives when

deprived of labels, suggesting that novices use the labels

as well.

Overall then, there is no support for the more global

hypothesis (6) that experts will be more variable than

novices in acquiring information cues across alternatives,

but they do exhibit greater search variability than novices

in the ill-structured decision, as hypothesized (6b), when

the decisions are received in a certain order. Concerning

the effect of alternative labels (6a), novices appear to

alter their behavior with the presence of labels rather than

experts, with the former group searching in a decidedly more

linear fashion without labels.

Hypotheses 7 and 8: Search Pattern

The final dependent variable examined in this study was

search pattern. Hypothesis 7 specified that experts would

search in a more intradimensional fashion than would novices

as a result of a more attribute-oriented search process.

The appropriate test statistic for this hypothesis is the E

statistic for the main effect of Domain Knowledge in the

repeated-measures univariate ANOVA. (See Table 16 for the

results of this analysis). This value did not achieve
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significance, §_(1, 115) = .73, p_= .396. Thus, there is no

support for the notion that experts will search more

intradimensionally than novices across all decision

situations.

However, the robust Order x Decision Structure

interaction was again significant, 3 (1,115) = 4.16, p_=

.044 and the decomposition of this effect indicated that,

once again, search behavior was quite different in the ill—

structured task simply as a function of whether it was

received first or not. Figure 13 displays this interaction.

 In the well-structured task, it hardly matters whether

I
r

individuals received the decision first or second -- they

searched in almost identical patterns regardless (M = 0.092

for "well-structured first'I ordering, M = 0.099 for “well-

structured last“ ordering, §_(1,121) = .003, p,= .958). The

huge difference in search behavior occurs in the ill—

structured task -- when individuals received this task

first, they searched in a moderately interdimensional

fashion (M = 0.267) as opposed to when they received this

task second, when there appears to be no predominance of one

search pattern over the other (M = 0.007). This difference

was significant, _F_‘ (1,121) = 4.23, p_ = .042, as was the

difference between the ill- and well—structured tasks for

individuals receiving the “ill-structured first" ordering, p_

(60) = 2.34, p_= .022. No other differences were

significant.



129

Table 16

Univariate ANOVA, Seapch Pattepn index

 

Effect fl SS(MS E p

Dom. Know. 01 0.55 0.73 .396

Alt. Labels 01 4.02 5.26 .024

Dom. Know x 01 2.13 2.79 .098

Alt. Labels

Between—subjects 115 87.86 / 0.76

Error

Decision 01 0.13 0.57 .453

Structure

Dec. Struc x 01 ' 0.66 2.91 .091

Dom. Know

Dec. Struc x 01 0.94 4.16 .044

Order

Dec. Struc x 01 0.61 2.68 .104

Dom. Know. x

Order

Within-subjects 115 26.05 / 0.23

Error
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O 3 Search Pattern (inter-lntra/Total)
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Finally, Hypothesis 8 states that all individuals

should search more interdimensionally (i.e., within-player)

when alternative labels are present, as the position titles

provide a strong suggestion concerning how organize incoming

information. The appropriate test of this hypothesis is the

§_statistic for the main effect of Alternative Labels in the

repeated-measures univariate ANOVA for search pattern.

 

g:

Hypothesis 8 received support from this test, g (1,115) = )

5.26, p_= .024, with all individuals tending to acquire

information more interdimensionally (by player) when

alternative labels were present than when they were absent Li

(M = .240 with Labels, M = -0.010 without Labels).



DISCUSSION

The major finding in this study was that, as predicted,

the decision processes and outcomes of experts would be

sensitive to minor variations within a task while those of

novices were not. Previous research on the differences

between experts and novices has largely ignored the issue of

 
intra-task variation. This study was intended to begin 4

addressing this issue. In this section, a summary of the

study findings is offered followed by a more in-depth

exploration of the implications of viewing expertise as a

function of both the type of task and the particular

configuration of task variables. After this, some comments

will be offered concerning several issues arising from the

results of the study.

Summapy

Table 17 provides a summary of the hypotheses tested in

this study. In general, the broader hypotheses predicting

unqualified main effects for expertise were rejected while

support was found for the alternative set of hypotheses

which specified that intra-task variation would affect the

behavior of experts.

As expected for decision accuracy, experts were found

to be more accurate than novices across all situations and

132
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Table 17

Hypotheses-Study Result linkages

Hypothesis

£3, Predicted Effect Observed

1 DK DK

1a DK X DS DK X US

2 DK NONE

3 DK -DK

4 DK DK

4a DK x AL DK x AL

4b DK x DS DK x DS

5 DK -DK

5a DK X AL NONE

5b DK x DS DK x DS x O

6 DK NONE

6a DK x AL DK x AL--

Choice only

6b DK x DS DK x DS x O

7 DK NONE

8 ~ AL AL

Notes

DK Domain Knowledge

DK x AL = Domain Knowledge x Alternative Labels

DK x DS = Domain Knowledge x Decision Structure

DK x

Support

Yes

Yes

No

No

Yes

Yes

Yes

No

No

Partial

No

Partial

Partial

No

Yes

DS x O = Domain Knowledge x Decision Structure x Order
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particularly so in the well-structured situation, in which

novices became more inaccurate with respect to their

performance in the ill-structured condition. Contrary to

prediction, experts did not spend less time looking at cues

accessed, and surprisingly, they did not access fewer cues

than novices when both sub-matrices were considered

together.

However, as predicted, experts did access more cues

providing contextual information (i.e., about the existing

team) than did novices, and the number of contextual cues

that experts accessed was strongly affected by the structure

of the decision and the presence/absence of alternative

labels as predicted. This was not true of novices.

Concerning the number of cues accessed for potential choice

alternatives, experts were predicted to access fewer cues

than novices in general but they did not. However, the

number of cues that experts did access was again affected by

the decision structure as predicted when the decisions were

received in one of the two orders.

Concerning search variability, experts were predicted

to be more variable than novices in general and particularly

so in the ill-structured situation and when labels were

present. Results indicated that experts were not in fact

more variable over both decisions, but were more variable

than novices in the ill-structured situation as

hypothesized. Surprisingly, the absence of labels did not

affect experts' search variability but it did affect
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novices, who acquired information quite a bit more linearly

when alternatives were not labelled. Finally, experts did

not acquire information more intradimensionally than novices

across decisions.

Egpertise and Intra-Task Variation

The major purpose of this study was to contrast a set

of hypotheses concerning the effects of intra-task variation

that stem from consistent findings in the expert-novice

literature with a second set of "qualified" hypotheses which

were specified from ACT*. A second purpose of this study

was to examine the acquisition of information that did not

directly bear on the choice of alternatives through

inclusion of a contextual sub-matrix in the information

board methodology. I will first address the implications of

the lack of support for the first set of hypotheses and the

corresponding support for the ACT*-derived hypotheses, then

discuss the utility of including a contextual sub-matrix in

future research.

The first set of hypotheses specified generally that,

for a given task, experts would behave differently than

novices in a systematic fashion across all conditions of

that task. With respect to novices, experts were predicted

to be more accurate, access less information, be more

variable in their search and search more intradimensionally

regardless of the degree of task structure present in the

situation. In fact, there were no "unqualified” main

effects of Domain Knowledge found in this study.
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The “unconditional“ hypotheses were uniformly rejected in

favor of the more I‘conditional" set of hypotheses predicting

that the advantages of expertise would be greater or lesser

depending on the task context.

The results of this study support the notion that, to

understand the concept of expertise, we can no longer take

for granted the “task." Intuitively, the notion of

expertise seems linked to some domain in which an "expert"

performs all (or most) tasks relatively well. However, the

literature on expert-novice differences has focused on tying

the notion of expertise to the task. Tasks have generally

been viewed as a set of behaviors that yield an outcome in

some specific form -- e.g., a numerical answer with lots of

decimals, or a verbal expression of preference for one

apartment another. In essence then, solving a physics

problem or choosing an apartment has been viewed as one task

regardless of 'micro' level differences in the variables

that, as a configuration, determine how well "structured'I

the task is and to what extent previous knowledge can be

utilized.

However, the 'task' is not the lowest unit of analysis

useful in understanding expertise. Tasks have attributes

which can vary (Beach & Mitchell, 1978). This study

examined two of those task characteristics, the

presence/absence of alternative labels and the degree to

which a task is stereotypical. Other task factors which may

affect observed performance include the location of the
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needed information (e.g., memory v. environment), feedback

history, prior identification of alternatives, as well as

the number of relevant alternatives and attributes. ACT*

suggests that expert performance develops around productions

that are sensitive to the level of these attributes. Thus,

expertise may be dependent on the particular configuration

of task attributes in addition to the task itself.

The present study served to illustrate how changes in

the context of the same task can greatly affect how a domain

"expert“ goes about performing the task. Given the task of

simply choosing a player to complete a team in the domain of

basketball, small changes in certain variables of the choice

situation (i.e., score, time remaining, which team had the

ball) greatly affected the process and product of expert

choices. Even though the two decisions involved the same

number of stimuli, same amount of information and same

choice requirement, going from four points ahead with only

seconds remaining in the game to four points behind with

several minutes left to go resulted in experts acquiring

more information about the decision context, more

information about the choice alternatives, and acquiring

information more variably across the choice alternatives.

In the end, they also made less accurate choices.

The distinction between a 'task' and specific

characteristics of the task suggests that we need to do more

than just examine how experts acquire and use information

about direct solutions to the task -- i.e., the choice
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alternatives in a decision making study. Most studies in

the past have simply given participants information that

directly concerned potential choices -— i.e., location of an

apartment or price of a particular consumer brand.

However, information acquisition on choice alternatives may

be greatly affected by the context of the choice.

Accordingly, the present study divided the information

provided to the decision-makers into two halves on the basis

of whether it was directly or indirectly concerned with a

solution (choice alternative). The utility of this

procedure is demonstrated by considering the differences in

the results for the contextual (indirect) and choice

(direct) sub-matrices. In the contextual matrix, experts

searched for a great deal more information than novices but

this was not true in the choice matrix. The implication

here is that finding expertise for a particular task may

depend on where you look.

The ongoing discussion has been centered around the

notions that tasks are inherently heterogenous and that we

need to begin to look at various aspects of a given task

(degree of structure, context) to better understand

expertise. Experts may in fact only behave like the typical

conception of an expert when the task is analogous to a

I'problem" -- when the task is typical and familiar, when

there is consensual agreement on the rules for identifying

and evaluating necessary attributes, and when this

information can be retrieved quickly from memory.
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In contrast, experts may perform quite similar to novices

when task variables are arranged to handicap expert

performance, such as the typical I'decision" involving pre-

specified alternatives and attributes, the need to acquire

all or most information from the environment, and a lack of

consensus about what the correct choice is. The results of

this study support the notion that expertise cannot be well {-

understood without examining how experts respond to patterns

of variables in the task environment. ;

Stu Issues

 
In general, the effects of Decision Structure and

‘
5
”
:

Alternative Labels were as predicted -- expert search

processes benefitted when situations contained stimuli with

alternative labels and/or were well-structured. What was

not expected was that some findings would be contingent on

the order in which tasks were received.

Three-way interactions involving Domain Knowledge,

Decision Structure and Order occurred for search depth in

the choice matrix and for overall search variability. Two-

way interactions between Decision Structure and Order also

occurred in the analyses for decision accuracy, contextual

search depth, cue latency and search pattern. Effectively,

then, search behavior was affected by the order in which

decision tasks were received in every analysis undertaken.

The following question then becomes relevant: To what

extent does this interaction qualify the conclusion that

domain knowledge and task factors interact?
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An inspection of the Order interactions represented in

Figures 3—13 seem to suggest that this consistent effect may

result from learning. As can be seen, there is a similarity

in the pattern of Order interactions across analyses. In

each case, the interaction occurs because the first task

appears to have elicited more effort than the second task.

Although all study participants received a practice decision

task allowing them to familiarize themselves with the basic

information board procedure, the order interactions suggest

that participants learned a great deal about how to

effectively acquire information in the search matrix in the

course of the first decision. The result of this learning

appears to be a streamlined information acquisition

procedure in the second decision task.

A number of interesting questions can be raised on the

basis of the results of this study. One particular issue is

why experts accessed so much information? It might be

expected (even though not specific stated in this study)

that in situations which appear to maximally benefit the

expert (i.e., well—structured situations and/or labels),

experts should search for less information than novices.

This did not occur. In the contextual sub-matrix overall,

experts searched for more information as predicted and

decreased their search depth for well—structured situations,

but they still searched for more information than novices.

The same is true for the contextual sub—matrix with regard

to the presence of alternative labels. In the choice
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sub-matrix, the situation is similar but here we also see

the first instance of experts actually searching less than

novices, and then the difference is not statistically

significant (experts in well-structured, task received

second). Thus, the finding that experts acquired more

information than novices appears quite robust. Why?

A closer analysis of the Decision Structure

manipulation check may provide some insight into the answer

to this question. As can be seen from Table 4, experts

considered a greater number of attributes important to the

selection of a choice alternative than did novices across

both decision tasks. More directly, in response to the

statement, “I accessed more information than I needed in

order to make good decisions," 31 experts either agreed (19)

or strongly agreed (12) while only 13 novices agreed and a

mere two strongly agreed. Similarly, in response to the

statement, “This study was fun," 25 experts agreed with the

statement and 29 experts strongly agreed, while 29 novices

agreed with the statement and only 9 strongly agreed. Thus,

the most promising explanation of why experts acquired so

much information seems to be that they enjoyed the task and

may have acquired information even after they had made their

decision about the correct alternative -- much as one checks

the box scores even after the final score of the game is

known.

A second issue which arises is why novices focused

their selection on Alternatives 3 and 4. Experts, across
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all situations, were less inclined to favor any one

particular alternative. The most likely explanation seems

to be that novices appeared to be searching for the best

all-around alternative while experts were looking for

something in particular. If the particular attributes which

are important in a given situation are unknown, it does seem

reasonable to choose an alternative on the basis of

attributes which would appear to be important in.gpy

situation -- e.g., height, scoring ability, etc. The manner

in which choice alternatives are numbered roughly

corresponds to a pattern of increasing overall proficiency

across all attribute dimensions. In addition, it also

appears that how choice players were labelled may have had

an effect as well, as novice choices were more concentrated

on the alternatives with semantically-positive labels (i.e.,

“power forward").

The effect of semantic connotation may also help to

explain the poor performance of novices on the well-

structured task compared to the ill-structured task. Again,

a possible clue is provided by the distribution of novice

choices over all tasks as shown in Table 9. N0vices, in

general across both tasks, tended to choose alternatives

that had scored more points, were taller and had

semantically-positive titles (e.g., I'Power Forward").

Coincidentally, this type of player was the correct choice

in the ill-structured task but not in the well-structured

task, where a different "role'I was needed. The better
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novice performance on the ill—structured task may well

reflect a spurious match between their prejudices and the

demands of the ill—structured situation.

Another point which arises is why novice choice search

variability decreased to such an extent when alternatives

were not labelled. As will be recalled, expert choice

search variability was not much affected by the presence of
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labels. One potential explanation is that although position

labels were not strongly linked to basketball performance

dimensions for novices, such labels were still used (perhaps

incorrectly) to make inferences about where to look for w

certain information and how to evaluate the information that

was acquired. Interestingly, one implication of this notion

is that labelling alternatives may impact novice information

acquisition process to a greater degree than experts in a

decision making/problem solving situation.

Finally, an effort was made in this study to tap not

only the traditional element of expertise, declarative

knowledge, but also procedural knowledge as well. To this

end, items were written and included in the basketball

knowledge test that tapped essentially basketball strategy

and tactics. These iteme, while not having “correct"

answers in any official game sense, were judged to indeed

have responses that were substantially better than others,

and in this sense were consensually validated. Future

studies might consider using other (and better) methods of

capturing procedural knowledge.
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Task Variable Interactions

The basic model presented in Figure 1 suggests that the

information value of a well-structured decision and the

presence of alternative labels is independent of each other.

The former provides information about what attributes to

search, the latter provides information on where to search

(i.e., which alternatives are most likely to provide these

desired features). Conceptually then, there is no reason

for these task characteristics to interact with Domain

Knowledge.

However, as indicated in Table 7, the three-way

interaction parameter for Domain Knowledge x Alternative

Labels x Decision Structure was marginally significant in

the model for Decision accuracy, A? = 3.11, p = .078. The

locus of the marginal three-way interaction stems from the

fact that experts with labelled alternatives in the well-

structured task were substantially more accurate than

experts without alternative labels in the same task.

Novices, appear to do even worse in the well-structured task

when alternative labels are present, possibly for the

reasons mentioned above.

Experts in the well-structured task who received

alternative labels were very accurate, p,= 80.0%, as opposed

to Experts in the well-structured task who did not receive

alternative labels, p,= 56.3%. Apparently, when experts

have the benefit of alternative labels and a well-structured

decision, they do indeed perform like experts -- four times
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more accurate than novices in the corresponding condition

(80% versus 19%, respectively).

However, contrary to the proposed model in Figure 1,

this findings suggests that the effects of alternative

labelling and a well-structured task are somewhat contingent

on one another. Experts do not seem to benefit as much from

having labelled alternatives when the task is ill—

 

at

structured. There appear two potential explanations for

this phenomenon: 1) the information provided by alternative

labels and a well-structured decision is redundant to some

degree and/or 2) the presence of both a well-structured L;

situation and labelled alternatives aids the representation

of information in working memory and thus reduce the amount

lost to decay or overload. At this point, it is not clear

if either (or both) hypotheses are correct, but future

research might fruitfully address this question.

Conclusions

Past research has viewed expertise as a function of the

task but has not devoted much attention to variations in the

same task. In addition, the literature on expertise has

been exploratory and descriptive and has generally failed to

test its many scattered findings with inferential methods.

This study was an attempt to begin addressing these

issues. Experts were gathered in sufficient numbers to

statistically test hypotheses. Unlike past research,

expertise was viewed as a function of declarative knowledge

and procedural knowledge. In addition, several factors than
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can vary within a task were examined along with expertise.

Finally, an addition was made to the standard information

board methodology that incorporated cues which both directly

and indirectly provided information about the correct

alternative.

The results of this study support the conclusions that

expertise may exist for, and be limited to, a configuration

of variables present in the task -— not just the generic

"task". This conclusion suggests a view of expertise that

is somewhat different from the existing literature, which

has tended to ignore variability within the task and has

instead focused on performance differences across tasks.

Future research would do well to focus on the interaction

between the “top-down,“ schematic, categorical knowledge

that an expert possesses and the various “bottom-up" aspects

of the task and its environment which both aid and hinder

the expert in constructing a representation of the problem

and performing like an 'expert' should.
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APPENDIX A

Basketball Knowledge questionnaire

Rules and terminology

1. In addition to “full“ time—outs in the NBA, another type

of time-out exists that lasts for how long?

2.

which of the following?

a.

b.

c.

d.

e

3

6.

the

a. 20 seconds d. 1 minute

b. 30 seconds e. 2 minutes :-

c. 45 seconds

In professional basketball, a "triple—double" refers to

when a player commits three double-fouls in one game

when a players scores three consecutive two-point

baskets

when a player gets double-digit statistics in the

following categories: points, rebounds and assists.

when a player makes two consecutive three-point baskets

when a player two free-throws three times in a game

 

How many referees are used in for a professional

basketball game?

a. one c. three

b. two d. four

A "pick“ is when which of the following occurs?

a good pass picks open a strong defense

a defensive player gets between an offensive player and

the basket

an offensive player has the ball stolen from him by a

defensive player

an offensive player shields a defensive player with his

body

a defensive player guards the basket by himeelf against

multiple offensive players on a fast-break

How high is the rim of the basket from the floor?

a. 10 feet c. 9 feet

b. 7 feet d. 12 feet

Which of the following types of defenses is illegal in

NBA?

a. man-to-man c. press

b. zone d. double-teaming
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7. How are the top seven college prospects chosen in the

NBA draft?

a. by multiple coin tosses

b. by computer formula taking into account strength of

schedule

c. in order of the worst team (i.e., worst team chooses

first, second-worst team chooses second, etc.)

d. with a lottery

8. After how many fouls does a player "foul out" of a

professional basketball game?

a. four c. six

b. five d. none of the

above

9. Which of the following players is commonly referred to

as the “sixth man?“

the first player to come off the bench

the coach

the assistant coach

a player who forgets to check in at the scorer’s

table

0
:
0
6
0

10. How many free-throws does a player get when he is

fouled in the act of shooting a three-point shot AND makes

it?

a. none c. two

b. one d. three

11. What happens when a defensive player steps in the lane

too soon right before an offensive player misses a free

throw?

nothing

the offensive team gets the ball out of bounds.

. the offensive team gets to shoot over

the offensive team automatically gets the pointC
L
O
U
D
)

12. How long does a team have to inbounds the ball before a

violation occurs and the other team gets the ball?

a.. 4 seconds d. 8 seconds

b. 5 seconds e. 10 seconds

c. 6 seconds

13. How many minutes are there in an NBA quarter?

a. 8 minutes d. 15 minutes

b. 10 minutes e. 20 minutes

c. 12 minutes
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14. How many total games are played by a team in an NBA

regular season? ‘

a. 65 games d. 82 games

b. 74 games e. 84 games

o. 80 games

15. About how far is the three-point line from the basket

in the NBA? .

a. 19 feet d. 22 feet

b. 20 feet e. 23 feet

c. 21 feet

16. How long does a team have to get the ball over the time

line before a violation occurs and the other team gets the

ball?

a 5 seconds d. 20 seconds

b. 10 seconds e. 30 seconds

c 15 seconds

17. The free-throw line is how many feet from the basket?

a. 10 feet d. 14 feet

b. 12 feet e. 15 feet

c. 12.8 feet

18. A turnover is committed when a player on offense is

"closely guardedI for how long?

a. 3 seconds d. 12 seconds

b. 5 seconds e. 15 seconds

c. 10 seconds

19. The term.'spot-up' implies what kind of shot?

a. an open jump shot

b. a turn-around shot from.the low block

c. a closely guarded hook shot

d. a drive down the base-line

20. How long is the shot clock in professional basketball?

24 seconds d. 45 seconds

25 seconds e. there is no shot

0
0
"
!
”

30 seconds

\

Strategy and Tactics

21. In which of the following situations would playing a

zone defense be much better than playing a man-to-man

defense?

when the other team is shooting well from the outside

when the other team.is slower and smaller

when the other team.passes very well

when the other team is taller and quicker

'
Q
u
a
t
r
m



150

22. Which of the following players is likely to get the

most steals in a game?

the point guard

the small forward

the power forward

the centerQ
J
O
O
‘
W

23. A penetration move by a point guard usually WILL NOT

end up in which of the following?

a a shooting foul

b. an open jump shot

c a “dish" and a slam

d. a turn—around jumper from the low post

24. If your team is playing on the road in front of a noisy,

hostile crowd and the other team has scored the last 9

points of the game (4 of them.coming on steals and dunks),

what might you do?

a. call a time out

b. use a pressing defense next time

c. try a fast-break

d. go for a three-point shot

25. Which of the following is LEAST likely to work against

a zone defense?

a a three-point shot

b. a pull—up jumper

c a drive to the basket

d a base-line turn-around

26. When is it a good time NOT to play a man-to-man

defense?

when the other team shoots very well from.the

outside

when the other team has one excellent scorer

when the other team runs the fast break well

when your team is in foul trouble0
4
0
0
'

C
D

27. A good thing to do to when playing at home and your

team seems unmotivated is

a. pull out all five players and put in subs for a few

minutes

b. hold the ball on offense

c. commit an intentional foul

d. draw a technical foul
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28. The last person you would expect to see bringing the

basketball up the court is a ?

a. a point guard

b. an off guard

c. a small forward

d. a center

29. In order to use a press defense, which of the following

must happen?

the other team must be slow

the other team.must have one bad ball-handler

your team.must make a basket

the inbounding player must be guardedQ
I
O
U
‘
O
J

30. Which position is least likely to get an offensive

rebound?

a. point guard d. power forward

b. off guard e. center

c. small forward

31. In order to consistently take advantage of a fast-break

offense, which of the following things is most basic?

get offensive rebounds

get defensive rebounds

play defense

shoot pull-up jumpers

make long outlet passes(
D
Q
O
U
'
O
’

32. Which of the following makes for the best combination

of talents among five starters on a basketball team?

a. a ball-handler, an outside shooter, a low-post man

and two rebounders

b. three shooters and one rebounder and one shot

blocker

c. three scorers and one rebounder and one free-throw

specialist

d. four scorers and one rebounder

e two ball-handlers, one shooter and two rebounders

33. What type of risky pass can sometimes offer an open

shot against a zone defense?

a. no-look c. skip

b. behind-the-back d. half-court

34. If your team is behind by 12 points with 2 minutes left

in the game, which of the following positions should be

over-represented on the floor (i.e., more than one)?

a. point guard d. power forward

b. off guard e. center

c. small forward
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35. Which of the following violations is probably least

seen in the NBA?

a. over-the-back d. 3 seconds in the

lane

b. on—the-arm (shooting) e. charging

c. blocking

36. Which of the following statistics are most important to

a team trying to preserve a lead?

assists and offensive rebounds

three point shooting and steals

defensive rebounds and free-throws

field-goal shooting and three-point shooting

assists and free-throws(
D
Q
O
U
‘
D
’

37. An average free—throw shooter in the NBA will shoot

near which of the following percentages over the course of a

season?

a. 68% d. 85%

b. 70% e. 88%

c. 77%

38. What area would you find a power forward (on offense)

playing near most of the time?

 

a. the low post c. the high post

b. the top of the key d. the wing

39. The player who traditionally is the best outside

shooter on a professional basketball team is the ?

a. point guard c. small forward

b. off guard d. center

40. Which player has his back to the basket most often in a

traditional basketball offense?

a. point guard c. small forward

b. off guard d. center
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Appendix B

Table B-1

Cue Values for Search Matrix A

Attribute Dimension

1214.5. 5 .2. £219

A 16 49 82 33 6-11 3-3 1-3 4 0 01

B 22 54 79 46 8-12 1-2 5-6 1 0 01

C 23 60 68 17 9-16 5—8 0-0 1 1 03

D 11 52 74 20 4-8 3-4 0-0 1 1 02

E 14 50 61 16 5-10 1-2 1-2 2 0 01

F 05 48 91 30 1-2 3-3 0—1 0 0 00

G 06 48 72 11 3-8 0-0 0-0 0 2 04

H 08 55 75 40 3-7 1-1 1-1 0 1 01

11.11.214.15

A 02 03 09 05 02

B 03 02 02 07 07

C 03 03 01 03 09

D 04 02 02 11 09

E 00 01 00 03 08

F 02 00 01 09 04

G 11 02 00 04 10

H 03 02 01 01 03

Attribute Dimensions

1 = Points scored (game) 9 = Blocked Shots

2 = Season field-goal % 10 = Offensive Rebounds

3 = Season free-throw % 11 = Defensive Rebounds

4 = Season three-point FG % 12 = Turnovers

5 = Field-goals attempted-made 13 = Assists

6 = Free—throws attempted-made 14 = Years in the NBA

7 = Three-point field-goals at./mm 15 = Height (inches over

8 = Steals six feet)
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Appendix B (cont’d)

Table B-2

Cue values for Search Matrix B

Attribute Dimension

1.2.3.45 .6. .7. 82$

I 13 47 84 37 5-8 1—1 2-2 2 0 01

J 13 50 80 48 4-7 3-4 2-3 3 1 02

K 19 57 65 10 8-14 3-5 0-1 0 0 02

L 31 55 77 18 11-21 9-12 0-0 1 1 01

M 02 46 93 29 0-0 2-2 0—0 1 0 00

N 10 49 73 51 3-6 1-2 3-6 0 0 02

O 13 52 77 35 5-11 2—3 1-4 2 0 01

p 09 50 70 15 4-8 1—2 0-0 0 3 05

£221.41;

I 02 02 05 04 01

J 02 04 04 04 04

K 03 02 01 07 09

L 05 04 03 06 10

M 00 00 00 06 00

N 04 01 00 03 04

O 01 00 01 11 08

P 09 02 02 07 09

Attribute Dimensions

1 = Points scored (game) 9 = Blocked Shots

2 = Season field-goal % 10 = Offensive Rebounds

3 = Season free-throw % 11 = Defensive Rebounds

4 = Season three-point FG % 12 = Turnovers

5 = Field-goals attempted-made 13 = Assists

6 = Free-throws attempted-made 14 = Years in the NBA

7 = Three-point field-goals at./m, 15 = Height (inches over

8 = Steals six feet)
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APPENDIX C

Rationale for correct alternative choice

To win in the well-structured situation, the subject’s

team does not have to do anything —- including shoot the

ball. If desired and allowed, the subject's team can simply

hold on to the ball and run out the clock. The opposing

team needs to get the ball back to have any chance of

winning. There are only four events that could get them the

ball back: 1) the team with the ball fails to inbounds it

within five seconds, 2) a steal, 3) a turnover or 4) a foul

and a missed free-throw and a rebound.

These four events implicate two attributes which are

important in choosing a fifth player on the decision-maker’s

team; free-throw shooting ability and ball-handling

ability. These two skills correspond most closely with the

attribute dimensions I'Season Free-Throw Percentage“ and

"Turnovers" (game). The logical choice would be to select

is the alternative who is best on both of these attributes.

To avoid a trade-off dilemma, the correct alternative in

both decision matrices has the best values on the team with

respect to both of these attributes. In Search Matrix A,

the correct alternative in the high-structure decision task

is Alternative F. In Search Matrix B, the correct

alternative is Alternative M.

In the low structure decision task, the “correct“

choice is less obvious but still exists. Given that the

subject’s team is behind by four and the other team.has the

ball, the subject's team.needs to score several baskets in

the next two minutes while preventing the other team from

scoring. Two minutes in the NBA -- with time-outs, free-

throws and half-court inbounding - can last a long time.

There is no immediate need to panic. Necessary attributes

include the ability to score, steal, block shots and rebound

(with more emphasis on defensive rebounds). The four

players~already chosen include good scorers and stealers.

The other team.will likely attempt to use up as much of the

24-second clock as possible before shooting each time they

get the ball, but teams that hold the ball usually do not

get off good shots so there should be many opportunities to

snare defensive rebounds. In addition, every time there is

a shot and the other team gets the ball back, they can hold

it for another 24 seconds. This puts a premium on choosing

a player who can get defensive rebounds.
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APPENDIX C (cont ’ d.)

The logical alternative is to select is the player

that has the most rebounds (offensive and defensive, or just

defensive). The correct alternative in both decision

matrices has the most offensive rebounds, defensive rebounds

and total rebounds of anyone on the team, with no other

alternative remotely comparable. In Search Matrix A, the

correct alternative for the low structure decision task is

Alternative G. In Search Matrix B, the correct alternative

is Alternative P.
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APPENDIX D

Importance Ratings

For the following two basketball positions, please indicate

how important the following statistics/attributes are to

each position by marking your choice in the appropriate

blank on the opscan sheet using the scale below. The two

positions you will be considering are “Point Guard“ and

“Center." Please use the following 5 point scale to

indicate how important each statistic is to each position:

Not very important to this position

Somewhat important to this position

Moderately important to this position

Fairly important to this position

Very important to this positionU
'
l
t
t
h
I
—
i

II
II

II
II

II

If you really do not have any idea about the importance of a

given statistic/skill to one of the positions, please

respond with the following

9 = Don't know

Point Guard Center

45. Points per game 55. Points per game

46. Field Goal % 56. Field goal %

47. Three—point field goal % 57. Three-point field

goal %

48. Steals 58. Steals

49. Assists 59. Assists

50. Offensive rebounds 60. Offensive rebounds

51. Defensive rebounds 61. Defensive rebounds

52. Blocked Shots 62. Blocked Shots

53. Avoiding turnovers 63. Avoiding turnovers

54. Free-throw % 64. Free—throw %
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APPENDIX E

Post-experimental questionnaire

1 = Strongly disagree

2 = Disagree

3 = Neither Agree nor Disagree

4 = Agree

5 = Strongly Agree

1). The instructions for using the computer were clear and

understandable.

2). It was easy to use the computer to access player

information.
 

3). This study was fun.
 

4). I accessed more information than I needed in order to

make good decisions.
 

 

5). I felt overwhelmed by all of the information I could

look at.

6). I knew what player attributes were important in the

situation where my team was AHEAD before I started looking.

 

7). I knew what player attributes were important in the

situation where my team was BEHIND before I started looking.

 

8). I had a general "strategy” for accessing player

information.

 

9). In the space below, please circle those player

attributes you l'weighted" most heavily in making your

decisions:

\

When your team was AHEAD:

Points Season Field Goal % Season Free-Throw%

Steals Blocked Shots OFF.REB DEF.REB FG MADE-ATT

FT MADE-ATT 3ptFG MADE-ATT Season 3pt FG% Height

Years/NBA Turnovers Assists
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APPENDIX E (cont'd)

When your team was BEHIND:

Points Season Field Goal % Season Free-Throw%

Assists Steals Blocked Shots OFF.REB DEF.REB

FG MADE-ATT FT MADE—ATT 3ptFG MADE-ATT

Season 3pt FG% Height Years/NBA Turnovers

9). Please comment on your general "strategy“ for accessing

information when your team was AHEAD:

10). Please comment on your general 'strategy' for

accessing information when your team was AHEAD:

What was the score of the game when you were ahead?

 

What was the score of the game when you were behind?
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APPENDIX E

Basketball Experience questionnaire

65. In terms of high school basketball (school team or

intramurals), I:

 

a. did not play on a basketball team in high school

b. played high school basketball for one year

c. played high school basketball for two years

d. played high school basketball for three years

66. I watch college basketball games on TV per week

during college basketball season.

a. less than one game a week c. three—four games a

week

b. one or two games per week d. five or more games a

week

67. I watch professional basketball on TV times

per week during the NBA season.

a. less than one game a week c. three-four games a

week

b. one or two games per week d. five or more games a

week

68. Currently, I play basketball (informally or

intramurals) about times a week.

a. less than one c. three-four

b. once or twice d. more than four

69. Concerning the basic rules of basketball (i.e., rules

common to all levels of basketball), I would say that I know

them:
\

a. not at all c. very well

b. not very well d. well enough to be a

ref

c. well enough to understand most of the game
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APPENDIX E (cont'd)

70. In terms of knowledge of basketball strategy and

tactics, where would you place yourself on the following

scale?

I know you need to score more points to win

I know what some of the common plays/defenses are

I know what each of the players should be doing and when

someone has taken a good/bad shot

d. I can often predict what the coach/team will do in an

upcoming situation

e. I could do a decent job coaching a boys or girls team

O
U
’
D
’
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