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ABSTRACT

RECTANGULAR WAVEGUIDE MATERIAL CHARACTERIZATION: ANISOTROPIC
PROPERTY EXTRACTION AND MEASUREMENT VALIDATION

By

Benjamin Reid Crowgey

Rectangular waveguide methods are appealing for measuring isotropic and anisotropic

materials because of high signal strength due to field confinement, and the ability to control

the polarization of the applied electric field. As a stepping stone to developing methods for

characterizing materials with fully-populated anisotropic tensor characteristics, techniques

are presented in this dissertation to characterize isotropic, biaxially anisotropic, and gyro-

magnetic materials. Two characterization techniques are investigated for each material, and

thus six di↵erent techniques are described. Additionally, a waveguide standard is introduced

which may be used to validate the measurement of the permittivity and permeability of

materials at microwave frequencies.

The first characterization method examined is the Nicolson-Ross-Weir (NRW) technique

for the extraction of isotropic parameters of a sample completely filling the cross-section

of a rectangular waveguide. A second technique is proposed for the characterization of an

isotropic conductor-backed sample filling the cross-section of a waveguide. If the sample

is conductor-backed, and occupies the entire cross-section, a transmission measurement is

not available, and thus a method must be found for providing two su�ciently di↵erent

reflection measurements.The technique proposed here is to place a waveguide iris in front

of the sample, exposing the sample to a spectrum of evanescent modes. By measuring the

reflection coe�cient with and without an iris, the necessary two data may be obtained to

determine the material parameters. A mode-matching approach is used to determine the

theoretical response of a sample placed behind the waveguide iris. This response is used

in a root-searching algorithm to determine permittivity and permeability by comparing to

measurements of the reflection coe�cient.



For the characterization of biaxially anisotropic materials, the first method considers an

extension of the NRW technique for characterization of a sample filling the cross-section

of a waveguide. Due to the rectangular nature of the waveguide, typically three di↵erent

samples are manufactured from the same material in order to characterize the six complex

material parameters. The second technique for measuring the electromagnetic properties

of a biaxially anisotropic material sample uses a reduced-aperture waveguide sample holder

designed to accommodate a cubical sample. All the tensor material parameters can then be

determined by measuring the reflection and transmission coe�cients of a single sample placed

into several orientations. The parameters are obtained using a root-searching algorithm by

comparing theoretically computed and measured reflection and transmission coe�cients.

The theoretical coe�cients are determined using a mode matching technique.

The first technique for characterizing the electromagnetic properties of gyromagnetic

materials considers requires filling the cross-section of a waveguide. The material parameters

are extracted from the measured reflection and transmission coe�cients. Since the cross-

sectional dimensions of waveguides become prohibitively large at low frequencies, and it

is at these frequencies that the gyromagnetic properties are most pronounced, su�ciently

large samples may not be available. Therefore, the second technique uses a reduced-aperture

sample holder that does not require the sample to fill the entire cross section of the guide.

The theoretical reflection and transmission coe�cients for both methods are determined

using a mode matching technique. A nonlinear least squares method is employed to extract

the gyromagnetic material parameters.

Finally, this dissertation introduces a waveguide standard that acts as a surrogate mate-

rial with both electric and magnetic properties and is useful for verifying systems designed

to characterize engineered materials using the NRW technique. A genetic algorithm is used

to optimize the all-metallic structure to produce a surrogate with both relative permittivity

and permeability near six across S-band, and with low sensitivity to changes in geometry to

reduce the e↵ects of fabrication errors.
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CHAPTER 1

INTRODUCTION AND

BACKGROUND

1.1 Electromagnetic Material Characterization

Electromangetic material characterization has long been an interest of the research com-

munity. The goal is to determine permittivity (✏) and permeability (µ), also known as the

constitutive parameters, as accurately as possible [1]. The constitutive parameters describe

the e↵ect externally applied electric and magnetic fields have on a material. Many disciplines

rely on the knowledge of the electromagnetic material properties, including stealth and in-

tegrated circuits. In stealth technology, the constitutive parameters describe how e↵ectively

a particular materials absorbs a radar signal [2]. Integrated circuits rely on new materials,

and subsequently accurate knowledge of constitutive parameters, to increase the ability to

transmit higher bandwidth signals as clock speeds in electronic devices continue to increase

[3].

Engineered materials, which have gained increasing importance in a variety of applica-

tions at microwave frequencies, often have anisotropic electromagnetic characteristics. The

use of engineered materials in the design of radio frequency (RF) systems requires an ac-
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curate knowledge of material constitutive parameters. Some recently synthesized materials

include the use of graphene nanoribbons or metallic inclusions in miniaturization of electronic

components [4]-[5], ferrite loaded polymers to increase EMI shielding [6], cellular materials

such as honeycomb structures to decrease radar cross section [7]-[8], and anisotropic ma-

terials used to enhance antenna operation [9]-[10]. Since the properties of these materials

are often hard to accurately predict (due to modeling uncertainties and variability in the

manufacturing process), they are usually measured in a laboratory.

The theoretical implications of anisotropic materials are well described in the literature

[11], and several techniques for the characterization of these materials have been introduced.

These include free space methods [12]-[13], resonant cavity methods [14]-[17], open-ended

waveguide probe methods [18]-[19], and rectangular waveguide methods [20]-[22]. Free-space

methods are unattractive for many materials because the sample size must be large compared

to the footprint of the interrogating beam to minimize edge di↵raction, and samples are

generally limited in size. Similarly, contact probe methods require sample sizes larger than

the probe aperture. Cavity methods usually involve small samples but are inherently narrow-

band, and thus characterization of materials over a wide frequency range is di�cult. This

dissertation concentrates on the use of rectangular waveguide applicators for anisotropic

material characterization.

1.2 Rectangular Waveguide Material Characterization

Rectangular waveguide methods are popular for measuring the electromagnetic properties of

materials because of ease of sample preparation, high signal strength, and wide bandwidth.

A variety of characterization techniques use rectangular waveguide applicators. In these

techniques, samples can be placed inside the guide, against an open-ended flange, or even

pressed against a slot cut into a waveguide wall. The most common method is to machine a

sample to fill the cross-section of the waveguide and measure the transmission and reflection
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coe�cients. These measurements provide the two necessary data to find both material

parameters of an isotropic sample. One of the most widely used extraction algorithms is the

Nicolson-Ross-Weir (NRW) method [23]-[24]. The attraction of the NRW characterization

method results from the availability of closed-form expressions for µ and ✏. The NRW

extraction can be used with rectangular waveguides [25], coaxial applicators [26]-[27], free-

space methods [28], and stripline measurements [29]. Unfortunately, a closed form expression

is not available for most types of anisotropic materials. Typically, these parameters are

obtained using iterative solvers, such as Newton’s method [30]-[31] or a least squares approach

[32]-[33] by comparing theoretically computed and measured reflection and transmission

coe�cients.

Rectangular waveguide characterization techniques can be limited by sample size restric-

tions or poor signal-to-noise ratio (SNR) for the transmission. To maintain dominant mode

excitation, the cross section of a waveguide becomes larger as the operational frequency of

the guide decreases. In [34], the authors make use of a reduced-waveguide technique to char-

acterize isotropic materials with small electrical size at low frequencies, avoiding the large

waveguides ordinarily required. The reflection and transmission coe�cients are measured

to determine the scalar permittivity and permeability. The use of waveguide applicators

may also result in extracted material parameters that are highly sensitive to error propa-

gation from measurement uncertainties. This is especially prominent when measuring high

loss or highly reflective samples where there is poor SNR for the transmission coe�cient

measurement. In [35] the authors present a partially-filled waveguide method that enhances

transmission quality and accuracy of the material characterization. It was demonstrated

that this method accurately characterizes samples with low-loss and high-loss parameters.

To calculate the theoretical reflection and transmission coe�cients, both of these techniques

use a mode-matching technique to accommodate the high-order mode excitation resulting

from the waveguide discontinuities. The extraction of material parameters was performed in

[34] using a nonlinear least squares algorithm, while [35] used a Newton root search method.
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Other rectangular waveguide techniques make use of only the reflection measurements

because of the simplification of the measurement configuration, or because a transmission

measurement is not available. Two common types of reflection-only characterization tech-

niques are underlay and overlay methods [36]. Underlay methods make use of changing the

backing of the material under test (MUT). The air/conductor backed method [37] measures

a sample first with the MUT backed by a conductor and then with the MUT backed by

air. In a rectangular waveguide these measurements are performed with the MUT backed

by a short circuit and a match load. In the layer-shift method [38] the reflection is measured

with a conductor placed at two positions behind the MUT. For a rectangular waveguide

measurement system this is done using two di↵erent o↵set shorts.

Overlay methods are commonly used when the backing of the MUT cannot be altered.

Magnetic radar-absorbing materials (MagRAM) are often applied to the conducting surfaces

of air vehicles to reduce radar cross section. To ensure proper aircraft design, the electro-

magnetic properties of these materials must be accurately characterized. Unfortunately, the

process of bonding the MagRAM to the conductor produces a chemical reaction that alters

the intrinsic electromagnetic properties of the absorber in unpredictable ways, and thus it

is crucial that the absorber be characterized while still attached to the conductor backing.

If the sample is conductor backed, and occupies the entire cross section of a waveguide, a

transmission measurement is not available, and thus a method must be found for providing

two su�ciently di↵erent reflection measurements. Overlay methods are prominent in contact

probe characterization techniques. In [39], the authors achieve the characterization of ✏ and

µ of a conductor-backed sample using a rectangular open-ended waveguide probe applicator.

Two independent reflection measurements are obtained using either two thicknesses of the

same material or one measurement with one material and a second measurement with a

known material as a top layer. The theoretical reflection coe�cients necessary for character-

ization are determined using a variational method to develop expressions of the waveguide

impedance. The approach using two thicknesses is useful in the lab where two samples of the
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MUT are available, but it is not practical in the field where the MUT is typically a�xed to

a conductor backing. However, material characterization using the two-layer method in the

field is possible since a known layer of material can be placed on top of a conductor-backed

sample without having to remove the conductor backing.

Another contact probe method is described in [40], where the authors discuss the use

of a two-iris waveguide probe technique to characterize lossy, conductor-backed materials.

A open-ended rectangular waveguide is applied to the MUT, and the reflection coe�cient

is measured under two conditions. First, the reflection is measured when the open-ended

waveguide aperture is unobstructed, and a second measurement is obtained when an iris is

placed in the aperture of the guide. This provides the two necessary data to characterize

the constitutive parameters. The theoretical reflection coe�cients are determined using a

combination of a modal expansion in the waveguide and aperture regions with a magnetic-

field integral equation (MFIE). It is found that this technique is not as accurate as the

two-thickness method but is better than the two-layer method. Since the two-thickness

method cannot be employed in the field, the two-iris technique provides a favorable contact

probe method.

A method is describe in [41] where conductor backed material samples are characterized

through the use of a transverse slot cut in the bottom wall of a rectangular waveguide.

The reflection and transmission coe�cients of the sample pressed against the waveguide

slot are measured. The theoretical coe�cients were determined using a MFIE technique.

A Newton’s complex root search algorithm is then employed to iteratively solve for the

constitutive parameters by comparing measurements to theory. This technique was partially

successful using the transmission and reflection measurements for characterization. However,

it was determined that using measurements of two separate thicknesses of the same material

was more encouraging for characterization of ✏ and µ.

This dissertation investigates a characterization technique for determining scalar ✏ and

µ of a conductor-back material when two thicknesses of a sample are not available. In the
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present case, there is no need for measurements to be conducted in the field; therefore a

sample can be manufactured for placement inside a rectangular waveguide for laboratory

measurements. An iris approach, like that discussed in [40], is used to provide the two

necessary reflection measurements for characterization.

1.3 Biaxially Anisotropic Material Characterization

The tensors for biaxial materials have six nonzero entries, corresponding to six complex ma-

terial parameters, and therefore a minimum three di↵erent sets of complex reflection and

transmission coe�cient measurements are required. The typical inverse problem consists

of first determining what measured data are su�cient for unequivocal determination of the

constitutive parameters, and secondly, what experimental setup is preferred to collect the

needed data. Some methods consider only characterizing the permittivity tensor, which re-

duces the number of unknown constitutive parameters to three. One such method uses a

cavity perturbation technique to determine the permittivity parameters of a sample [17].

Here, the authors present the methodology to characterize low-loss engineered material and

naturally uniaxial dielectrics. In the case of uniaxial dielectric materials there are only two

unknown material parameters, because two dielectric material parameters are identical and

the third is di↵erent. Multiple samples are manufactured and measured with the axes of

the material tensor aligned with the geometry of the cavity. Using the multiple measure-

ments, the cavity perturbation technique is combined with a finite element (FEM) solver to

determine the permittivity tensor and loss tangents. This method proved to produce highly

accurate results for characterizing the loss tangents. However, like most cavity methods, the

characterization is inherently narrow-band.

Another method that considers characterizing only the dielectric material properties is

discussed in [42]. The authors use a modified free-space focused beam system to measure the

co- and cross-polarized transmission coe�cients. Plane waves probe the material to provide
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the adequate number of measurements for characterization. This approach uses a hybrid

global-local optimization to obtain the material parameters by minimizing the di↵erence

between theoretically computed and measured transmission coe�cients. The theoretical co-

e�cients are determined using a computational electromagnetic (CEM) modeling tool. Using

CEM modeling for calculation of the theoretical coe�cients can be computationally expen-

sive. Thus, the overall extraction of the material parameters is computationally intensive

when a lengthy optimizer is used. Analytical solutions for the theoretical coe�cients are

more attractive since the time required for convergence of the solutions is typically serval

orders of magnitude smaller than the time required for CEM modeling tools.

In [18], the authors describe a waveguide probe system for characterizing both the electric

and magnetic biaxial material properties. Here the authors extended the open-ended wave-

guide probe method to anisotropic materials. This method makes use of higher-order modes

produced at the probe aperture. These higher-order modes have fields with components in

multiple directions, and thus the fields are related to all of the entries in the biaxial tensors.

To determine the material parameters, multiple measurements with the probe oriented in

multiple directions is required. Two coupled electric field integral equations (EFIEs) for the

aperture field are solved numerically using a method of moments. The electric field is then

expressed in terms of the material parameters. A Newton-Raphson method is employed to

minimize the di↵erence between theoretically computed and measured reflection coe�cients.

Like with most waveguide probe applicators, the size of the required sample must be larger

than the probe aperture for accurate characterization.

Placement of a biaxial sample in the cross-section of a rectangular waveguide is considered

in [20]. The necessary measurements required for characterization are obtained by using

TE10 and TE20 mode excitations. Closed-form solutions for three out of the six material

parameters are derived assuming these two di↵erent excitations. By rotating and measuring

the sample again, the additional material parameters can be extracted in closed form. Here

four measurements are obtained to characterize three material parameters. The additional
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measurement greatly simplifies the steps needed to solve the inverse problem. A complicated

measurement fixture is proposed in this paper where the two di↵erent modes are excited;

however, no actual measurements of a biaxial sample were carried out. The authors do not

go into detail on how to rotate the sample such that the fields interrogate all the material

parameters. Since the shape of the sample must be rectangular to fill the cross section of

the guide, it is assumed that a separate sample must be manufactured with the material

parameters aligned di↵erently.

This dissertation investigates two biaxial material characterization techniques. The first

is an extension of the NRW method, where solutions for all six material parameters can

be obtained in closed form. Much like in [20], multiple samples are required. However,

a complicated waveguide applicator is not needed for characterization. To characterize a

biaxial material using a single sample, the second method considers a sample holder which

can accommodate a cubical sample. Here the single sample is interrogated in multiple

orientations. This reduced-waveguide technique is similar to the isotropic characterization

method discussed in [34]. However, the goal in [34] was to accommodate samples of small

electrical size at low frequencies. Thus, sample shapes were typically not cubical, and a

single sample was measured under one orientation to determine the scalar permittivity and

permeability. In this dissertation the multiple measurements of the single sample provide

the necessary measurements for full biaxial material characterization.

1.4 Gyromagnetic Material Characterization

Gyromagnetic materials are commonly used in microwave devices such as circulators, phase

shifters, and tunable filters [43]. As a step towards full anisotropic tensor characterization,

this dissertation considers the extraction of diagonal and o↵-diagonal tensor entries. Gyro-

magnetic materials have scalar permittivity and anisotropic permeability. The permeability

tensor has two equivalent (µg) and one di↵erent (µ0) diagonal entries, and two o↵-diagonal
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entries. The two o↵-diagonal tensor entries are determined using the same parameter . Thus

characterizing gyromagnetic materials require the extraction of three complex unknowns: ✏,

µg, and .

In [22] and [44] the authors describe a method for measuring the complex scalar per-

mittivity and permeability tensor components of a gyromagnetic material using a partially

filled waveguide technique. A sample partially fills the cross-section of the guide in the broad

dimension while extending fully in the shorter dimension. The sample is placed o↵ center

about the broad dimension. A known isotropic material is inserted next to the gyromagnetic

sample for support. A mode-matching technique is used to derive the theoretical reflection

and transmission coe�cients. With this anisotropic material o↵ center, the waveguide sys-

tem is nonreciprocal, which means S11 = S22 and S21 6= S12. The nonreciprocity of the

system permits the characterization of the permeability tensor and scalar permittivity from

a signal set of measurements. The material parameters are extracted using an optimiza-

tion method which seems to minimize the di↵erence between theoretically computed and

measured S-parameters. In this technique, the calculation of the theoretical S-parameters

needs to deal with a complicated field structure in the sample regions. This complicated

field structure includes finding the modal propagation constants by solving a transcendental

equation. Thus the implementation of this technique is numerically complicated.

In this dissertation, two methods are investigated for the characterization of gyromagnetic

materials. The first approach considers completely filling the cross-section of a rectangular

waveguide while the second technique uses a reduced aperture sample holder to accommodate

samples of small electrical size. The calculation of the theoretical reflection and transmission

coe�cients for both methods are analytically less complex than the approach described in

[22] and [44]. Thus the implementation of the techniques described in this dissertation are

numerically less complicated.

9



1.5 Overview of Research

The motivation for this dissertation is to explore the possible methods for characterization

of anisotropic materials. As a stepping stone to developing methods for characterizing ma-

terials with fully-populated anisotropic tensor characteristics, techniques are presented in

this dissertation to characterize isotropic, biaxially anisotropic, and gyromagnetic materials.

Two characterization techniques are investigated for each of these materials, and thus six

di↵erent techniques are described. Additionally, a waveguide standard is introduced which

may be used to validate the measurement of the permittivity and permeability of materials

at microwave frequencies.

Chapter 2 provides the mathematical background required for the modal analysis used

in anisotropic material characterization techniques discussed in this dissertation. A bian-

isotropic medium containing sources is considered for transverse and longitudinal direction

decomposition. Following this, a TE/TM decomposition is performed and the resulting dif-

ferential equation is solved using a Fourier transformation method. Next the geometries of

the materials considered in this dissertation considers are restricted to fit into a rectangular

waveguide applicator and the appropriate wave equations arenderived. These wave equations

are then solved using separation of variables in conjunction with the application of boundary

conditions on the waveguide conducting walls. Finally, expressions for the modal fields for

various anisotropic materials placed inside a rectangular waveguide are formulated. These

can then be used in the proposed characterization techniques.

The third chapter presents two methods for characterizing isotropic materials. The first

technique is the classical NRW extraction method for a sample filling the cross section of a

rectangular waveguide. The second technique assumes the sample is conductor-backed and

occupies the entire cross section. Here a transmission measurement is not available, and thus

a method must be found for providing two su�ciently di↵erent reflection measurements. The

technique proposed investigates placing a waveguide iris in front of the sample, thereby ex-
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posing the sample to a spectrum of evanescent modes. By measuring the reflection coe�cient

with and without an iris, the necessary two data may be obtained to determine ✏ and µ. A

mode-matching approach is used to determine the theoretical response of a sample placed

behind a waveguide iris. This response is used in a root-searching algorithm to determine

✏ and µ using measurements of the reflection coe�cient. A Monte Carlo analysis is used to

characterize the sensitivity of the technique to typical measurement uncertainties, thereby

providing a basis for the design of the waveguide applicator. Measured results are presented

using commercially-available absorbers to establish the e�cacy of both techniques.

Chapter 4 discusses two techniques for measuring the electromagnetic properties of a

biaxially anisotropic material sample. The first approach uses three samples machined from

the same material with the axes of the permittivity and permeability tensors aligned with

the geometry of the waveguide. The six complex material parameters can be extracted from

the measured reflection and transmission coe�cients of these three samples using closed-

form expressions. The second technique uses a reduced-aperture waveguide sample holder

designed to accommodate a cubical sample. All of the tensor material parameters can then be

determined by measuring the reflection and transmission coe�cients of a single sample placed

into several orientations. The theoretical reflection and transmission coe�cients necessary

to perform the material parameter extraction are obtained using a modal analysis technique.

A Newton’s method is used to perform the extraction by comparing theoretically computed

and measured reflection and transmission coe�cients. A Monte Carlo analysis is used to

investigate the e↵ects of the propagation of random error inherent to a vector network

analyzer (VNA) used in measurement for both techniques. S-band material parameters are

extracted for a biaxial sample placed in the reduced-aperture waveguide sample holder.

The fifth chapter describes two characterization techniques used to determine the electro-

magnetic properties of gyromagnetic materials. The first technique examined considers com-

pletely filling the cross-section of a waveguide. The material parameters are extracted from

the measured reflection and transmission coe�cients. Unfortunately, the available sample
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size for gyromagnetic materials is too small to completely fill the waveguide cross section.

To address this issue, the second technique describes the use of a reduced-aperture sample

holder that does not require the sample to fill the entire cross section. Modal analysis is

used in both methods to determine the reflection and transmission coe�cients of the dom-

inant mode. A non-linear least squares method is employed to extract the gyromagnetic

material parameters. Details on the methodology for obtaining the theoretical reflection and

transmission coe�cients and a comparison to a full wave FEM solver are presented for both

techniques. A Monte Carlo analysis is used to characterize the sensitivity of the reduced

aperture approach to typical measurement uncertainties for di↵erent sized apertures.

The sixth chapter in this dissertation introduces a waveguide standard that acts as a sur-

rogate material with both electric and magnetic properties and is useful for verifying systems

designed to characterize engineered materials using the NRW technique. A genetic algorithm

was used to optimize the all-metallic structure of the standard to produce a surrogate with

both relative permittivity and permeability near six across S-band, and with low sensitivity

to changes in geometry to reduce the e↵ects of fabrication errors. A mode-matching approach

allows the user to predict the material properties with high accuracy, and thus compensate

for di↵erences in geometry due to machining inaccuracy or limited availability of component

parts. The mode-matching method also allows the user to design standards that may be used

within other measurement bands. An example standard is characterized experimentally, the

errors due to uncertainties in measured dimensions and the experimental repeatability are

explored, and the usefulness of the standard as a verification tool is validated. The final

chapter discusses any concluding remarks and suggestions for future work.
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CHAPTER 2

Mathematical Background

2.1 Introduction

This chapter presents the theory required for the formulation of the waveguide modal anal-

ysis for anisotropic materials filling a rectangular waveguide. The field structures are first

examined for a bianisotropic medium containing electric and magnetic sources. The sources

and fields are decomposed along transverse and longitudinal directions. Next a TE/TM

decomposition of the fields is performed, and the transverse fields are related to the longi-

tudinal fields in terms of a di↵erential equation. The di↵erential equation is solved using

a Fourier transform method. Then the specific materials of interest in this dissertation are

considered for the derivation of the TE/TM wave equations. The solution to the wave equa-

tion determines the longitudinal fields. Additionally, expressions are derived that explicitly

relate the transverse fields to the longitudinal fields. The wave equation is then solved us-

ing separation of variables and the application of boundary conditions at the rectangular

waveguide conducting walls.
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2.2 Fields in a Bianisotropic Material

The characterization of the electromagnetic properties of a material is largely dependent on

the physical behavior of the material in the presence of an electromagnetic field. Maxwell’s

equations and the constitutive relations describe the overall relationship between the electro-

magnetic field and the media through which the field propagates. Consider a homogeneous

bianisotropic medium containing phasor electric current sources, ~J (~r), and magnetic current

sources, ~Jm (~r). Maxwell’s equations in the frequency domain are given by

r⇥ ~E (~r) = �j! ~B (~r)� ~Jm (~r) (2.1)

r⇥ ~H (~r) = j! ~D (~r) + ~J (~r) (2.2)

r · ~D = ⇢ (2.3)

r · ~B = ⇢m. (2.4)

The constitutive relationships are expressed as

~D (~r) = ✏ · ~E (~r) + ⇠ · ~H (~r) (2.5)

~B (~r) = ⇣ · ~E (~r) + µ · ~H (~r) . (2.6)

Here ~E is the electric field intensity, ~H is the magnetic field intensity, ~D is the electric flux

density, and ~B is the magnetic flux density. Additionally, ✏ is the permittivity dyadic and µ

is the permeability dyadic. The quantities ⇠ and ⇣ are coupling dyadics, and ⇢ and ⇢m are

the electric and magnetic charge density, respectively. In (2.1) - (2.6) it is assumed that µ

and ✏ do not depend on applied field strengths or spatial coordinates and thus the material

is linear and homogeneous.
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2.2.1 Decomposition of Fields and Sources into Transverse and

Longitudinal Components

The first step for field decomposition is obtaining equations that relate the transverse field to

the longitudinal fields. For brevity, the dependence on ~r in (2.1) - (2.6) will be left implicit.

The sources and fields are decomposed into their respective transverse and longitudinal parts.

The longitudinal component of ~A is defined as ûAu, where û is a constant but otherwise

arbitrary direction. Here

Au = û · ~A. (2.7)

The transverse component in turn is defined as

~A⇢ = ~A� ûAu, (2.8)

such that û · ~A⇢ = 0. Using this notation, the longitudinal component of ~B is given by

Bu = û · ~B. (2.9)

Using the constitutive relationship for bianisotropic media, (2.6), and the distributive iden-

tity (A.2), (2.9) becomes

Bu = û ·
h

⇣ · ~E
i

+ û ·
h

µ · ~H
i

. (2.10)

From the dyadic identity (A.2), it can be shown that

Bu = ~⇣u · ~E + ~µu · ~H, (2.11)
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where ~⇣u = û · ⇣ and ~µu = û · µ. The electric and magnetic fields are then decomposed into

their respective transverse and longitudinal components, resulting in

Bu = ~⇣u ·
h

~E⇢ + ûEu
i

+ ~µu ·
h

~H⇢ + ûHu
i

. (2.12)

Using the distributive property again and defining ⇣uu = ~⇣u · û and µuu = ~µu · û, the

longitudinal component of ~B is given as

Bu = ~⇣u · ~E⇢ + ⇣uuEu + ~µu · ~H⇢ + µuuHu. (2.13)

With the longitudinal component determined, the transverse component is expressed using

(2.8), yielding

~B⇢ = ⇣ · ~E + µ · ~H � û
h

~⇣u · ~E⇢ + ⇣uuEu + ~µu · ~H⇢ + µuuHu
i

. (2.14)

Decomposing ~E and ~H into their transverse and longitudinal parts and rearranging (2.14)

gives

~B⇢ = ⇣ ·
h

~E⇢ + ûEu
i

� û
⇣

~⇣u · ~E⇢
⌘

� û (⇣uuEu)

+µ ·
h

~H⇢ + ûHu
i

� û
⇣

~µu · ~H⇢
⌘

� û (µuuHu) . (2.15)

Using the distributive property again results in

~B⇢ =
h

⇣ � û~⇣u
i

· ~E⇢ +
h

~⇣ū � û⇣uu
i

Eu

+
⇥

µ� û~µu
⇤

· ~H⇢ + [~µū � ûµuu]Hu, (2.16)
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where ~⇣ū = ⇣ · û and ~µū = µ · û. This is simplifed further by defining

⇣⇢ = ⇣ � û~⇣u (2.17)

µ⇢ = µ� û~µu (2.18)

~⇣⇢u = ~⇣ū � û⇣uu (2.19)

~µ⇢u = ~µū � ûµuu. (2.20)

The expression in (2.16) for the transverse component of ~B is then reduced to

~B⇢ = ⇣⇢ · ~E⇢ + ~⇣⇢uEu + µ⇢ · ~H⇢ + ~µ⇢uHu. (2.21)

Following a similar procedure, the electric flux density, ~D, can be decomposed into trans-

verse and longitudinal components. This decomposition results in

Du = ~✏u · ~E⇢ + ✏uuEu + ~⇠u · ~H⇢ + ⇠uuHu (2.22)

~D⇢ = ✏⇢ · ~E⇢ + ~✏⇢uEu + ⇠⇢ · ~H⇢ + ~⇠⇢uHu, (2.23)

where ~✏u = û ·✏, ~⇠u = û ·⇠, ~✏ū = ✏ · û, ~⇠ū = ⇠ · û, ✏⇢ = ✏� û~✏u, ⇠⇢ = ⇠� û~⇠u, ~✏⇢u = ~✏ū� û✏uu,

and ~⇠⇢u = ~⇠ū � û⇠uu.

The bianisotropic medium considered here contains phasor electrical and magnetic cur-

rent sources; these sources must also be decomposed into their respective transverse and

longitudinal parts. The decomposition of the sources are carried out in a manner similar to

the decomposition of the fields, resulting in

~Jm = ~Jm⇢ + ûJmu (2.24)

~J = ~J⇢ + ûJu, (2.25)

where Jmu = û · ~Jm and Ju = û · ~J .
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2.2.2 Decomposition of Maxwell’s Equations into Transverse and

Longitudinal Components

Now that ~B and ~D are decomposed into transverse and longitudinal components, the next

step is decomposing the operators in Maxwell’s equations into transverse and longitudinal

parts. First note that

@

@u
⌘ û ·r, (2.26)

and that the transverse del operator is defined as

r⇢ ⌘ r� û
@

@u
. (2.27)

Using these definitions, the vector curl can be decomposed into transverse and longitudinal

components. The transverse component of the vector curl is determined using the identity

(A.4) as

⇣

r⇥ ~A
⌘

⇢
= �û⇥ û⇥

⇣

r⇥ ~A
⌘

. (2.28)

Using the identity (A.6), (2.28) becomes

⇣

r⇥ ~A
⌘

⇢
= �û⇥ û⇥

⇣

r⇢ ⇥ ~A⇢
⌘

� û⇥ û⇥
 

û⇥
"

@ ~A⇢
@u

�r⇢Au

#!

. (2.29)

Here the first term on the right side is equal to zero by property (A.7). Using the identity

in (A.9) the second term on the right side can be rewritten as

�û

(

û ·
 

û⇥
"

@ ~A⇢
@u

�r⇢Au

#!)

+ (û · û)
 

û⇥
"

@ ~A⇢
@u

�r⇢Au

#!

. (2.30)
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The first of these terms in (2.29) is analyzed. The expression

û ·
 

û⇥
"

@ ~A⇢
@u

�r⇢Au

#!

(2.31)

is rearranged using the property (A.10), yielding

û ·
 

û⇥
"

@ ~A⇢
@u

�r⇢Au

#!

=

"

@ ~A⇢
@u

�r⇢Au

#

· (û⇥ û) . (2.32)

Here (û⇥ û) = 0, and thus the transverse component of the vector curl is given by

⇣

r⇥ ~A
⌘

⇢
= û⇥

"

@ ~A⇢
@u

�r⇢Au

#

. (2.33)

Using the property (2.8), the longitudinal part is just the di↵erence between the curl and its

transverse component. Thus

û
⇣

û ·r⇥ ~A
⌘

= r⇢ ⇥ ~A⇢. (2.34)

With the curl operation decomposed, Maxwell’s equations can be decomposed into trans-

verse and longitudinal parts, which results in

r⇢ ⇥ ~E⇢ = �j!ûBu � ûJmu (2.35)

û⇥
"

@ ~E⇢
@u

�r⇢Eu

#

= �j! ~B⇢ � ~Jm⇢ (2.36)

r⇢ ⇥ ~H⇢ = j!ûDu + ûJu (2.37)

û⇥
"

@ ~H⇢
@u

�r⇢Hu

#

= j! ~D⇢ + ~J⇢. (2.38)

Now (2.21) is substituted into (2.36), giving

�û⇥r⇢Eu + û⇥
@ ~E⇢
@u

= �j!
h

⇣⇢ · ~E⇢ + ~⇣⇢uEu + µ⇢ · ~H⇢ + ~µ⇢uHu
i

� ~Jm⇢. (2.39)
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Then substituting the expressions for the longitudinal component of ~D, (2.23), into (2.38),

results in

�û⇥r⇢Hu + û⇥
@ ~H⇢
@u

= j!
h

✏⇢ · ~E⇢ + ~✏⇢uEu + ⇠⇢ · ~H⇢ + ~⇠⇢uHu
i

+ ~J⇢. (2.40)

Taking the cross product of û and the expressions in (2.39)and(2.40) results in

�û⇥ û⇥r⇢Eu + û⇥ û⇥
@ ~E⇢
@u

= �j!û⇥
⇣

⇣⇢ · ~E⇢
⌘

� j!û⇥
⇣

~⇣⇢uEu
⌘

�j!û⇥
⇣

µ⇢ · ~H⇢
⌘

� j!û⇥
�

~µ⇢uHu
�

� û⇥ ~Jm⇢, (2.41)

and

�û⇥ û⇥r⇢Hu + û⇥ û⇥
@ ~H⇢
@u

= j!û⇥
⇣

✏⇢ · ~E⇢
⌘

+ j!û⇥
�

~✏⇢uEu
�

+j!û⇥
⇣

⇠⇢ · ~J⇢
⌘

+ j!û⇥
⇣

~⇠⇢uHu
⌘

+ û⇥ ~J⇢, (2.42)

respectively.

To simplify (2.41) and (2.42), the longitudinal component of ~A is considered. Using the

property (A.4) and (2.8), it can be shown that

û⇥
⇥

û⇥r⇢Au
⇤

= �
⇥

r⇢Au � û
�

û ·r⇢Au
�⇤

. (2.43)

Using (2.27), (2.43) may be expressed as

û⇥
⇥

û⇥r⇢Au
⇤

= �


r⇢Au � û

✓

û ·
⇢

rAu � û
@Au
@u

�◆�

. (2.44)

From (2.26), this expression reduces to

û⇥
⇥

û⇥r⇢Au
⇤

= �
⇥

r⇢Au � û (û · {rAu � û (û ·rAu)})
⇤

. (2.45)
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Using the property (A.1) this expression becomes

û⇥
⇥

û⇥r⇢Au
⇤

= �
⇥

r⇢Au � û (û ·rAu � û ·rAu)
⇤

(2.46)

or

û⇥
⇥

û⇥r⇢Au
⇤

= �r⇢Au. (2.47)

Similarly, using the property (A.4) and (2.8), it can be shown that

û⇥
"

û⇥
@ ~A⇢
@u

#

= �
"

@ ~A⇢
@u

� û

 

û ·
@ ~A⇢
@u

!#

(2.48)

or

û⇥
"

û⇥
@ ~A⇢
@u

#

= � @

@u

h

~A⇢ � û
⇣

û · ~A⇢
⌘i

. (2.49)

Then from property (A.5), this expression becomes

û⇥
"

û⇥
@ ~A⇢
@u

#

= � ~A⇢. (2.50)

Using the relationships in (2.47) and (2.50), (2.41) and (2.42) reduce to

r⇢Eu �
@ ~E⇢
@u

= �j!û⇥
⇣

⇣⇢ · ~E⇢
⌘

� j!û⇥
⇣

~⇣⇢uEu
⌘

� j!û⇥
⇣

µ⇢ · ~H⇢
⌘

�j!û⇥
�

~µ⇢uHu
�

� û⇥ ~Jm⇢ (2.51)

r⇢Hu �
@ ~H⇢
@u

= j!û⇥
⇣

✏⇢ · ~H⇢
⌘

+ j!û⇥
�

~✏⇢uHu
�

+ j!û⇥
⇣

⇠⇢ · ~E⇢
⌘

+j!û⇥
⇣

~⇠⇢uEu
⌘

+ û⇥ ~J⇢. (2.52)

These expressions can be simplified further by considering the dyadic P , where P⇢ =
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⇣

P � û~Pu
⌘

and ~Pu = û · P . Using the identity from (A.3) it can be shown that

û⇥
⇣

P⇢ · ~A⇢
⌘

=
⇣

û⇥ P⇢
⌘

· ~A⇢ (2.53)

or

û⇥
⇣

P⇢ · ~A⇢
⌘

=
⇣

û⇥
h

P � û~Pu
i⌘

· ~A⇢. (2.54)

Since û⇥ û = 0, this expression becomes

û⇥
⇣

P⇢ · ~A⇢
⌘

=
⇣

û⇥ P
⌘

· ~A⇢. (2.55)

Additionally, using the dyadic P and the transverse component of ~A, where ~P⇢u =
⇣

~Pū � ûPuu
⌘

,

~Pū = P · û, and Puu = û · P · û, it can be shown that

û⇥
⇣

~P⇢uAu
⌘

=
⇣

û⇥
h

~Pū � ûPuu
i

Au
⌘

(2.56)

or

û⇥
⇣

~P⇢uAu
⌘

=
⇣

û⇥
h

P · û
i

Au � û⇥ û
h

û · P · û
i

Au
⌘

. (2.57)

Since û⇥ û = 0, this expression becomes

û⇥
⇣

~P⇢uAu
⌘

= û⇥
h

P · û
i

Au. (2.58)

Using the identity (A.3) then results in

û⇥
⇣

~P⇢uAu
⌘

=
⇣

û⇥ P
⌘

· ûAu. (2.59)
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Employing the properties from (2.55) and (2.59), (2.51) and (2.52) become

r⇢Eu �
@ ~E⇢
@u

= �j!
⇣

û⇥ ⇣
⌘

· ~E⇢ � j!
⇣

û⇥ ⇣
⌘

· ûEu � j!
�

û⇥ µ
�

· ~H⇢

�j!
�

û⇥ µ
�

· ûHu � û⇥ ~Jm⇢ (2.60)

r⇢Hu �
@ ~H⇢
@u

= j!
�

û⇥ ✏
�

· ~E⇢ + j!
�

û⇥ ✏
�

· ûEu + j!
⇣

û⇥ ⇠
⌘

· ~H⇢

+j!
⇣

û⇥ ⇠
⌘

· ûHu + û⇥ ~J⇢. (2.61)

By defining ⇣ux = û⇥ ⇣, µux = û⇥ µ, ✏ux = û⇥ ✏, and ⇠ux = û⇥ ⇠, (2.60) and (2.61) can

be expressed as

r⇢Eu �
@ ~E⇢
@u

= �j!⇣ux · ~E⇢ � j!⇣ux · ûEu � j!µux · ~H⇢

�j!µux · ûHu � û⇥ ~Jm⇢ (2.62)

r⇢Hu �
@ ~H⇢
@u

= j!✏ux · ~E⇢ + j!✏ux · ûEu + j!⇠ux · ~H⇢

+j!⇠ux · ûHu + û⇥ ~J⇢. (2.63)

2.2.3 ~H⇢ in Terms of Eu, Hu, and Sources

The ~H⇢ field will first be related to the ~Eu, ~Hu, and the sources by substituting (2.63) into

(2.62). Before the substitution, (2.63) is rearranged to become

j!✏ux · ~E⇢ = �
@ ~H⇢
@u

+r⇢Hu � j!✏ux · ûEu � j!⇠ux · ~H⇢

�j!⇠ux · ûHu � û⇥ ~J⇢. (2.64)

Taking the dot product of
�

✏ux
��1 and (2.64) and diving by j! yields

~E⇢ =
�

✏ux
��1 ·

(

� 1

j!

@ ~H⇢
@u

+
1

j!
r⇢Hu � ✏ux · ûEu � ⇠ux · ~H⇢

�⇠ux · ûHu � 1

j!
û⇥ ~J⇢

�

. (2.65)
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Here
�

✏ux
��1 ·

�

✏ux
�

= I. This expression is now substituted into (2.62) and results in

r⇢Eu �
�

✏ux
��1 ·

(

� 1

j!

@2 ~H⇢

@u2
+

1

j!
r⇢

@Hu
@u

� ✏ux · û@Eu
@u

� ⇠ux ·
@ ~H⇢
@u

�⇠ux · û@Hu
@u

� 1

j!
û⇥

@ ~J⇢
@u

)

= �j!⇣ux · ûEu � j!µux · ~H⇢ � j!µux · ûHu

�û⇥ ~Jm⇢ � j!⇣ux ·
�

✏ux
��1 ·

(

� 1

j!

@ ~H⇢
@u

+
1

j!
r⇢Hu � ✏ux · ûEu � ⇠ux · ~H⇢

�⇠ux · ûHu � 1

j!
û⇥ ~J⇢

�

. (2.66)

Taking the dot product of ✏ux and (2.66) yields

✏ux ·r⇢Eu +
1

j!

@2 ~H⇢

@u2
� 1

j!
r⇢

@Hu
@u

+ ✏ux · û@Eu
@u

+ ⇠ux ·
@ ~H⇢
@u

+⇠ux · û@Hu
@u

+
1

j!
û⇥

@ ~J⇢
@u

= �j!✏ux ·
⇣

⇣ux · ûEu
⌘

� j!✏ux ·
⇣

µux · ~H⇢
⌘

�j!✏ux ·
�

µux · ûHu
�

� ✏ux ·
⇣

û⇥ ~Jm⇢
⌘

� �E ·
(

� 1

j!

@ ~H⇢
@u

+
1

j!
r⇢Hu � ✏ux · ûEu � ⇠ux · ~H⇢ � ⇠ux · ûHu � 1

j!
û⇥ ~J⇢

�

, (2.67)

where �E = j!
⇣

✏ux · ⇣ux ·
�

✏ux
��1

⌘

. Expanding the expression associated with dot prod-

uct of �E in (2.67) gives

✏ux ·r⇢Eu +
1

j!

@2 ~H⇢

@u2
� 1

j!
r⇢

@Hu
@u

+ ✏ux · û@Eu
@u

+⇠ux ·
@ ~H⇢
@u

+ ⇠ux · û@Hu
@u

+
1

j!
û⇥

@ ~J⇢
@u

= �j!✏ux ·
⇣

⇣ux · ûEu
⌘

�j!✏ux ·
⇣

µux · ~H⇢
⌘

� j!✏ux ·
�

µux · ûHu
�

� ✏ux ·
⇣

û⇥ ~Jm⇢
⌘

+�E · 1

j!

@ ~H⇢
@u

� 1

j!
�E ·r⇢Hu + j!✏ux ·

⇣

⇣ux · ûEu
⌘

+�E ·
⇣

⇠ux · ~H⇢
⌘

+ �E ·
⇣

⇠ux · ûHu
⌘

+ �E ·
✓

1

j!
û⇥ ~J⇢

◆

. (2.68)
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The two terms of j!✏ux ·
⇣

⇣ux · ûEu
⌘

on the right-hand side cancel out. Rearranging

the expression to have the transverse components on the left-hand side and longitudinal

components on the right-hand side, and multiplying through by j! results in

@2 ~H⇢

@u2
+ j!⇠ux ·

@ ~H⇢
@u

� �E ·
"

@ ~H⇢
@u

+ j!⇠ux · ~H⇢

#

� kE · ~H⇢

= �j!✏ux ·
✓

r⇢Eu + û
@Eu
@u

◆

+r⇢
@Hu
@u

� j!⇠ux · û@Hu
@u

� û⇥
@ ~J⇢
@u

+kE · ûHu � j!✏ux ·
⇣

û⇥ ~Jm⇢
⌘

+ �E ·
h

j!⇠ux · ûHu �r⇢Hu + û⇥ ~J⇢
i

, (2.69)

where kE = !2
�

✏ux · µux
�

. From (2.27), the first term of the right side reduces to �j!✏ux ·

rEu. Finally, the transverse components of ~H may now be related to the longitudinal

components and sources through the di↵erential equation

@2 ~H⇢

@u2
+ j!⇠ux ·

@ ~H⇢
@u

� �E ·
"

@ ~H⇢
@u

+ j!⇠ux · ~H⇢

#

� kE · ~H⇢

= �j!✏ux ·rEu +r⇢
@Hu
@u

� j!⇠ux · û@Hu
@u

� û⇥
@ ~J⇢
@u

+ kE · ûHu

�j!✏ux ·
⇣

û⇥ ~Jm⇢
⌘

+ �E ·
h

j!⇠ux · ûHu �r⇢Hu + û⇥ ~J⇢
i

. (2.70)

2.2.4 ~E⇢ in Terms of Eu, Hu, and Sources

In a similar set of steps the field ~E⇢ may be related to the fields ~Eu, ~Hu and the sources

through the substitution of (2.62) into (2.63). First (2.62) is rearranged as

j!µux · ~H⇢ =
@ ~E⇢
@u

�r⇢Eu � j!⇣ux · ~E⇢ � j!⇣ux · ûEu

�j!µux · ûHu � û⇥ ~Jm⇢. (2.71)
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Taking the dot product of
�

µux
��1 and (2.71) and then diving by j! results in

~H⇢ =
�

µux
��1 ·

(

1

j!

@ ~E⇢
@u

� 1

j!
r⇢Eu � ⇣ux · ~E⇢ � ⇣ux · ûEu

�µux · ûHu � 1

j!
û⇥ ~Jm⇢

�

. (2.72)

Here
�

µux
��1 · µux = I. This expression is now substituted into (2.62) and produces

r⇢Hu �
�

µux
��1 ·

(

1

j!

@2 ~E⇢

@u2
� 1

j!
r⇢

@Eu
@u

� ⇣ux ·
@ ~E⇢
@u

� ⇣ux · û@Eu
@u

�µux · û@Hu
@u

� 1

j!
û⇥

@ ~Jm⇢
@u

)

= j!✏ux · ~E⇢ + j!✏ux · ûEu + j!⇠ux · ûHu

+û⇥ ~J⇢ + j!⇠ux ·
�

µux
��1 ·

(

1

j!

@ ~E⇢
@u

� 1

j!
r⇢Eu � ⇣ux · ~E⇢ � ⇣ux · ûEu

�µux · ûHu � 1

j!
û⇥ ~Jm⇢

�

. (2.73)

Taking the dot product of µux and (2.73) results in

µux ·r⇢Hu � 1

j!

@2 ~E⇢

@u2
+

1

j!
r⇢

@Eu
@u

+ ⇣ux ·
@ ~E⇢
@u

+ ⇣ux · û@Eu
@u

+µux · û@Hu
@u

+
1

j!
û⇥

@ ~Jm⇢
@u

= j!µux ·
⇣

✏ux · ~E⇢
⌘

+ j!µux ·
�

✏ux · ûEu
�

+j!µux ·
⇣

⇠ux · ûHu
⌘

+ µux ·
⇣

û⇥ ~J⇢
⌘

+ �H ·
(

1

j!

@ ~E⇢
@u

� 1

j!
r⇢Eu � ⇣ux · ~E⇢ � ⇣ux · ûEu � µux · ûHu � 1

j!
û⇥ ~Jm⇢

�

, (2.74)
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where �H = j!
h

µux · ⇠ux ·
�

µux
��1

i

. Expanding the expressions associated with the dot

product of �H in (2.74) gives

µux ·r⇢Hu � 1

j!

@2 ~E⇢

@u2
+

1

j!
r⇢

@Eu
@u

+ ⇣ux ·
@ ~E⇢
@u

+⇣ux · û@Eu
@u

+ µux · û@Hu
@u

+
1

j!
û⇥

@ ~Jm⇢
@u

= j!µux ·
⇣

✏ux · ~E⇢
⌘

+j!µux ·
�

✏ux · ûEu
�

+ j!µux ·
⇣

⇠ux · ûHu
⌘

+ µux ·
⇣

û⇥ ~J⇢
⌘

+�H · 1

j!

@ ~E⇢
@u

� 1

j!
�H ·r⇢Eu � �H ·

⇣

⇣ux · ~E⇢
⌘

��H ·
⇣

⇣ux · ûEu
⌘

� j!µux ·
⇣

⇠ux · ûHu
⌘

� �H ·
✓

1

j!
û⇥ ~Jm⇢

◆

. (2.75)

The two terms of j!µux ·
⇣

⇠ux · ûHu
⌘

on the right-hand side cancel out. Rearranging

the expression to have the transverse components on the left-hand side and longitudinal

components on the right-hand side and multiplying through by �j! results in

@2 ~E⇢

@u2
� j!⇣ux ·

@ ~E⇢
@u

+ �E ·
"

@ ~E⇢
@u

� j!⇣ux · ~E⇢

#

� kH · ~E⇢

= j!µux ·
✓

r⇢Hu + û
@Hu
@u

◆

+r⇢
@Eu
@u

+ j!⇣ux · û@Eu
@u

+ û⇥
@ ~Jm⇢
@u

+kH · ûEu � j!µux ·
⇣

û⇥ ~J⇢
⌘

+ �H ·
h

j!⇣ux · ûEu +r⇢Eu + û⇥ ~Jm⇢
i

, (2.76)

where kH = !2
�

µux · ✏ux
�

. From (2.27), the first term of the right side reduces to j!µux ·

rHu. Finally, the transverse components of ~E may be expressed in terms of the longitudinal

components and sources, through the di↵erential equation

@2 ~E⇢

@u2
� j!⇣ux ·

@ ~E⇢
@u

+ �E ·
"

@ ~E⇢
@u

� j!⇣ux · ~E⇢

#

� kH · ~E⇢

= j!µux ·rHu +r⇢
@Eu
@u

+ j!⇣ux · û@Eu
@u

+ û⇥
@ ~Jm⇢
@u

+kH · ûEu � j!µux ·
⇣

û⇥ ~J⇢
⌘

+ �H ·
h

j!⇣ux · ûEu +r⇢Eu + û⇥ ~Jm⇢
i

. (2.77)
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2.2.5 TE/TM Decomposition of the Fields in a Bianisotropic ma-

terial

To analyze materials inside a rectangular waveguide, typically the electromagnetic fields are

first decomposed into TE and TM fields. TE/TM field decomposition is the source-free

special case of longitudinal/transverse decomposition. Setting ~J = 0 and ~Jm = 0, (2.70)

and (2.77) become

@2 ~H⇢

@u2
+ j!⇠ux ·

@ ~H⇢
@u

� �E ·
"

@ ~H⇢
@u

+ j!⇠ux · ~H⇢

#

� kE · ~H⇢

= �j!✏ux ·rEu +r⇢
@Hu
@u

� j!⇠ux · û@Hu
@u

+ kE · ûHu

+�E

h

j!⇠ux · ûHu �r⇢Hu
i

(2.78)

and

@2 ~E⇢

@u2
� j!⇣ux ·

@ ~E⇢
@u

+ �H ·
"

@ ~E⇢
@u

� j!⇣ux · ~E⇢

#

� kH · ~E⇢

= j!µux ·rHu +r⇢
@Eu
@u

+ j!⇣ux · û@Eu
@u

+ kH · ûEu

+�H ·
h

j!⇣ux · ûEu +r⇢Eu
i

, (2.79)

respectively. The electromagnetic field is now completely specified in terms of two scalar

fields Eu and Hu. To solve the di↵erential equations, it is beneficial to use superposition

since the right-hand side of the equation has two forcing terms. These equations can be

solved by considering only one forcing term at a time and then adding the results. If Eu = 0

then the field is termed TE to the û direction. When Hu = 0 the fields are termed TM to

the û direction. The relationships between transverse and longitudinal fields in the TE case
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are given as

@2 ~H⇢

@u2
+ j!⇠ux ·

@ ~H⇢
@u

� �E ·
"

@ ~H⇢
@u

+ j!⇠ux · ~H⇢

#

� kE · ~H⇢

= r⇢
@Hu
@u

� j!⇠ux · û@Hu
@u

+ kE · ûHu + �E

h

j!⇠ux · ûHu �r⇢Hu
i

(2.80)

@2 ~E⇢

@u2
� j!⇣ux ·

@ ~E⇢
@u

+ �H ·
"

@ ~E⇢
@u

� j!⇣ux · ~E⇢

#

� kH · ~E⇢ = j!µux ·rHu, (2.81)

and in the TM case as

@2 ~H⇢

@u2
+ j!⇠ux ·

@ ~H⇢
@u

� �E ·
"

@ ~H⇢
@u

+ j!⇠ux · ~H⇢

#

� kE · ~H⇢ = �j!✏ux ·rEu (2.82)

@2 ~E⇢

@u2
� j!⇣ux ·

@ ~E⇢
@u

+ �E ·
"

@ ~E⇢
@u

� j!⇣ux · ~E⇢

#

� kH · ~E⇢

= r⇢
@Eu
@u

+ j!⇣ux · û@Eu
@u

+ kH · ûEu + �H ·
h

j!⇣ux · ûEu +r⇢Eu
i

. (2.83)

2.2.6 Explicit Expressions for the Transverse Field Components

The di↵erential equations in (2.80) - (2.83) can be solved using the Fourier transform pairs

F (~⇢, �) =

Z 1

�1
f (~⇢, u) e�j�udu (2.84)

f (~⇢, u) =
1

2⇡

Z 1

�1
F (~⇢, �) ej�ud�, (2.85)

to obtain explicit expressions for the transverse field components. In (2.84) and (2.85) � is

the transform variable. Standard transform notation is

f(~⇢, u) $ F (~⇢, �) , (2.86)
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where $ designates a Fourier transform pair. The transform of the derivative of f(~⇢, u) is

found by di↵erentiating (2.85) which gives

@

@u
f (~⇢, u) =

1

2⇡

Z 1

�1
j�F (~⇢, �) ej�udu (2.87)

and so

@

@u
f(~⇢, u) $ j�F (~⇢, �) . (2.88)

2.2.6.1 TE Decomposition

Performing the Fourier transform of (2.80) and (2.81) results in

�2 ~H⇢(~⇢, �) + !�⇠ux · ~H⇢(~⇢, �) + j�E ·
h

� ~H⇢(~⇢, �) + !⇠ux · ~H⇢(~⇢, �)
i

+ kE · ~H⇢(~⇢, �)

= �j�r⇢Hu(~⇢, �)� !�⇠ux · ûHu(~⇢, �)� kE · ûHu(~⇢, �)

��E ·
h

j!⇠ux · ûHu(~⇢, �)�r⇢Hu(~⇢, �)
i

(2.89)

�2 ~E⇢(~⇢, �)� !�⇣ux · ~E⇢(~⇢, �)� j�E ·
h

� ~E⇢(~⇢, �)� !⇣ux · ~E⇢(~⇢, �)
i

+ kH · ~E⇢(~⇢, �)

= �j!µux ·
⇥

r⇢Hu(~⇢, �) + j�ûHu(~⇢, �)
⇤

. (2.90)

These expressions may also be written as

⌘ · ~H⇢(~⇢, �) = �j�r⇢Hu(~⇢, �)� !�⇠ux · ûHu(~⇢, �)

�kE · ûHu(~⇢, �)� �E ·
h

j!⇠ux · ûHu(~⇢, �)�r⇢Hu(~⇢, �)
i

(2.91)

⌧ · ~E⇢(~⇢, �) = �j!µux ·
⇥

r⇢Hu(~⇢, �) + j�ûHu(~⇢, �)
⇤

, (2.92)
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where

⌘ =
h

�2I + !�⇠ux + j��E + j!�E⇠ux + kE

i

(2.93)

and

⌧ =
h

�2I � !�⇣ux � j��H + j!�H⇣ux + kH

i

. (2.94)

The expressions for the transverse field components for the TE case are

~H⇢(~⇢, �) = ⌘�1 ·
n

�j�r⇢Hu(~⇢, �)� !�⇠ux · ûHu(~⇢, �)� kE · ûHu(~⇢, �)

��E ·
h

j!⇠ux · ûHu(~⇢, �)�r⇢Hu(~⇢, �)
io

(2.95)

~E⇢(~⇢, �) = ⌧�1 ·
�

�j!µux ·
⇥

r⇢Hu(~⇢, �) + j�ûHu(~⇢, �)
⇤ 

. (2.96)

2.2.6.2 TM Decomposition

Performing the Fourier transform of (2.82) and (2.83) yields

�2 ~H⇢(~⇢, �) + !�⇠ux · ~H⇢(~⇢, �) + j�E ·
h

� ~H⇢(~⇢, �) + !⇠ux · ~H⇢(~⇢, �)
i

+ kE · ~H⇢(~⇢, �)

= j!✏ux ·
⇥

r⇢Eu(~⇢, �) + j�ûEu(~⇢, �)
⇤

(2.97)

�2 ~E⇢(~⇢, �)� !�⇣ux · ~E⇢(~⇢, �)� j�E ·
h

� ~E⇢(~⇢, �)� !⇣ux · ~E⇢(~⇢, �)
i

+ kH · ~E⇢(~⇢, �)

= �j�r⇢Eu(~⇢, �) + !�⇣ux · ûEu(~⇢, �)� kH · ûEu(~⇢, �)

��H ·
h

j!⇣ux · ûEu(~⇢, �) +r⇢Eu(~⇢, �)
i

. (2.98)
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Using the definitions given in (2.93) and (2.94), (2.97) and (2.98) become

⌘ · ~H⇢(~⇢, �) = j!✏ux ·
⇥

r⇢Eu(~⇢, �) + j�ûEu(~⇢, �)
⇤

(2.99)

⌧ · ~E⇢(~⇢, �) = �j�r⇢Eu(~⇢, �) + !�⇣ux · ûEu(~⇢, �)� kH · ûEu(~⇢, �)

��H ·
h

j!⇣ux · ûEu(~⇢, �) +r⇢Eu(~⇢, �)
i

. (2.100)

Finally, the expressions for the transverse field components for the TM case are

~H⇢(~⇢, �) = ⌘�1 ·
�

j!✏ux ·
⇥

r⇢Eu(~⇢, �) + j�ûEu(~⇢, �)
⇤ 

(2.101)

~E⇢(~⇢, �) = ⌧�1 ·
n

�j�r⇢Eu(~⇢, �) + !�⇣ux · ûEu(~⇢, �)� kH · ûEu(~⇢, �)

��H ·
h

j!⇣ux · ûEu(~⇢, �) +r⇢Eu(~⇢, �)
io

. (2.102)

2.2.7 Homogeneous Wave Equations for the Longitudinal Field

Components

The homogeneous wave equations for the longitudinal field components are obtained using

the expressions from the longitudinal decomposition of Maxwell’s equations. Substituting

(2.13) into (2.35) and setting the source to zero results in

r⇢ ⇥ ~E⇢(~⇢, �) = �j!û
h

~⇣u · ~E⇢(~⇢, �) + ⇣uuEu(~⇢, �)

+~µu · ~H⇢(~⇢, �) + µuuHu(~⇢, �)
i

. (2.103)

Similarly, substituting (2.22) into (2.37) and eliminating the sources yields

r⇢ ⇥ ~H⇢(~⇢, �) = j!û
h

~✏u · ~E⇢(~⇢, �) + ✏uuEu(~⇢, �) + ~⇠u · ~H⇢(~⇢, �) + ⇠uuHu(~⇢, �)
i

.(2.104)

32



2.2.7.1 TE Homogeneous Wave Equation

The decomposition of TE to the u-direction requires Eu(~⇢, �) = 0. Thus (2.103) becomes

r⇢ ⇥ ~E⇢(~⇢, �) = �j!û~⇣u · ~E⇢(~⇢, �)� j!û~µu · ~H⇢(~⇢, �)� j!ûµuuHu(~⇢, �). (2.105)

Now substituting (2.95) and (2.96) into (2.105) yields the homogeneous wave equation for

Hu(~⇢, �)

r⇢ ⇥
h

⌧�1 ·
�

�j!µux ·
⇥

r⇢Hu(~⇢, �) + j�ûHu(~⇢, �)
⇤ 

i

= �j!û~⇣u ·
h

⌧�1 ·
�

�j!µux ·
⇥

r⇢Hu(~⇢, �) + j�ûHu(~⇢, �)
⇤ 

i

� j!ûµuuHu(~⇢, �)

�j!û~µu ·
h

⌘�1 ·
n

�j�r⇢Hu(~⇢, �)� !�⇠ux · ûHu(~⇢, �)� kE · ûHu(~⇢, �)

��E ·
⇣

j!⇠ux · ûHu(~⇢, �)�r⇢Hu(~⇢, �)
⌘oi

. (2.106)

2.2.7.2 TM Homogeneous Wave Equation

The decomposition of TM to the u-direction requires Hu(~⇢, �) = 0. Thus (2.104) becomes

r⇢ ⇥ ~H⇢(~⇢, �) = j!û~✏u · ~E⇢(~⇢, �) + j!~⇠u · ~H⇢(~⇢, �) + j!⇠uuHu(~⇢, �). (2.107)

Substituting (2.101) and (2.102) into (2.107) gives the homogenous wave equation forEu(~⇢, �)

as

r⇢ ⇥
h

⌘�1 ·
�

j!✏ux ·
⇥

r⇢Eu(~⇢, �) + j�ûEu(~⇢, �)
⇤ 

i

= j!û~⇠u ·
h

⌘�1 ·
�

j!✏ux ·
⇥

r⇢Eu(~⇢, �) + j�ûEu(~⇢, �)
⇤ 

i

+ j!û✏uuEu(~⇢, �)

+j!û~✏u ·
h

⌧�1 ·
n

�j�r⇢Eu(~⇢, �) + !�⇣ux · ûEu(~⇢, �)� kH · ûEu(~⇢, �)

��H ·
⇣

j!⇣ux · ûEu(~⇢, �) +r⇢Eu(~⇢, �)
⌘oi

. (2.108)
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Figure 2.1: Cross-section view of a rectangular waveguide used in derivations for isotropic
and gyromagnetic materials.

2.3 Specialization to Rectangular Waveguides

With expressions for the homogeneous wave equations for TE and TM fields in a bianisotropic

material determined, the special cases of less complex media completely filling a rectangular

waveguide are considered. The resulting homogeneous wave equations will be solved using

a separation of variables technique in conjunction with the application of boundary condi-

tions of the transverse field at the conducting surfaces of the guide. An expression for the

longitudinal field may be determined and subsequently the transverse fields can be derived

using (2.95) and (2.96) for fields TE to the u-direction and (2.101) and (2.102) for fields TM

to the u-direction.
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2.3.1 Isotropic Material Filled Guide

Isotropic material are considered first. Those materials have the tensor entries

✏ = ✏

2

6

6

6

6

4

1 0 0

0 1 0

0 0 1

3

7

7

7

7

5

= ✏I (2.109)

and

µ = µ

2

6

6

6

6

4

1 0 0

0 1 0

0 0 1

3

7

7

7

7

5

= µI. (2.110)

Additionally, cross coupling between the electric and magnetic fields does not exist, and so

⇣ = 0 and ⇠ = 0. In order to derive the homogenous wave equation for isotropic material, the

general bianisotropic homogenous wave equations for TE fields, (2.106), and for TM fields,

(2.108), are reduced to their respective isotropic forms. These equations are given by

r⇢ ⇥
h

⌧�1 ·
�

�j!µû⇥r⇢Hu(~⇢, �)
 

i

= �j!µûHu(~⇢, �)� j!µûû ·
h

⌘�1 ·
�

�j�r⇢Hu(~⇢, �)
 

i

(2.111)

for TE decomposition and

r⇢ ⇥
h

⌘�1 ·
�

�j!✏û⇥r⇢Eu(~⇢, �)
 

i

= �j!✏ûEu(~⇢, �) + j!✏ûû ·
h

⌧�1 ·
�

�j�r⇢Eu(~⇢, �)
 

i

(2.112)

for TM decomposition. Here

⌧ = �2I + !2µ✏
⇣

û⇥ I
⌘

·
⇣

û⇥ I
⌘

= ⌘. (2.113)
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Consider the case of fields TE to z for the filled waveguide shown in Figure 2.1. The

equation (2.111) can be written as



x̂
@

@x
+ ŷ

@

@y

�

⇥


⌧�1 ·
⇢

�j!µ



ŷ
@Hz(~⇢, �)

@x
� x̂

@Hz(~⇢, �)

@y

���

= �ẑj!µHz(~⇢, �)� ẑẑj!µ ·


⌘�1 ·
⇢

�j�

✓

x̂
@Hz(~⇢, �)

@x
+ ŷ

@Hz(~⇢, �)

@y

◆��

, (2.114)

where

⌧�1 = ⌘�1 = x̂x̂
1

� � !2✏µ
+ ŷŷ

1

� � !2✏µ
+ ẑẑ

1

�2
. (2.115)

Thus the wave equation for TEz fields reduces to

 

@2

@x2
+

@2

@y2
+ k2c

!

Hz(~⇢, �) = 0, (2.116)

where the wavenumber, kc, is

k2c = !2µ✏� �2. (2.117)

Through a similar set of steps, the TMz wave equation for isotropic materials is found to be

 

@2

@x2
+

@2

@y2
+ k2c

!

Ez(~⇢, �) = 0, (2.118)

where the wavenumber is described in (2.117).

2.3.1.1 Solution to the TEz Wave Equation for Isotropic Material Filled Guide

To solve the TEz wave equation, (2.116), a separation of variables is utilized, in conjunction

with applying boundary conditions on the tangential electric field at the interfaces between

the isotropic material and the perfectly conducting waveguide surfaces. Using the product
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solution of Hz(~⇢, �) = X(x, �)Y (y, �), (2.116) becomes

Y (y, �)
@2X(x, �)

@x2
+X(x, �)

@2Y (y, �)

@y2
+ k2cX(x, �)Y (y, �) = 0. (2.119)

Dividing through by X(x)Y (y) gives

1

X(x, �)

@2X(x, �)

@x2
+

1

Y (y, �)

@2Y (y, �)

@y2
+ k2c = 0. (2.120)

By observing that each term in (2.120) must equal a constant, this equation can be expressed

as

k2c = k2x + k2y, (2.121)

where

k2x = � 1

X(x, �)

@2X(x, �)

@x2
(2.122)

and

k2y = � 1

Y (y, �)

@2Y (y, �)

@y2
. (2.123)

These are two separated ordinary di↵erential equations,

@2X(x, �)

@x2
+ k2xX(x, �) = 0 (2.124)

@2Y (y, �)

@y2
+ k2yY (y, �) = 0. (2.125)

It will be shown through the application of boundary conditions on the tangential fields that

� takes the form of discrete eigenvalues. Additionally, kx and ky in (2.122) and (2.123) take
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on discrete values. The eigenfield associated with these eigenvalues is

Hz(~⇢, z) = [An sin( kxnx )+Bn cos (kxnx)] [Cn sin( kyny
�

+Dn cos
�

kyny
�⇤

e±j�nz.(2.126)

In the exponential, a negative sign corresponds to a wave traveling in the +z direction while

a positive sign corresponds to a traveling in the �z direction. For the following expressions

wherever a � appears a sign is included to designate the directions of the wave. For brevity,

the dependence on ~⇢ and z will be left implicit.

To determine the transverse field components for TE modes in isotropic materials, (2.96)

and (2.95) first must be reduced from bianisotropic to isotropic form. These expressions are

described by

~E⇢ = ⌧�1 ·
�

�j!µ
⇥

û⇥r⇢Hu
⇤ 

(2.127)

~H⇢ = ⌘�1 ·
�

⌥j�nr⇢Hu
 

. (2.128)

Referring to the geometry in Figure 2.1 and assuming TEz modes, (2.127) and (2.128) are

expressed as

~E⇢ = x̂
j!µ

�2n � !2µ✏

@Hz
@y

� ŷ
j!µ

�2n � !2µ✏

@Hz
@x

(2.129)

~H⇢ = ⌥x̂
j�n

�2n � !2µ✏

@Hz
@x

⌥ ŷ
j�n

�2n � !2µ✏

@Hz
@y

. (2.130)

Now with general expressions for the transverse fields, the solution to the wave equation,

(2.126), can be substituted into (2.130) and (2.129) which results in the transverse electric
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field components expressed as

Ex = � j!µ

!2µ✏� �2n
[An sin( kxnx )+Bn cos (kxnx)]⇥

⇥

Cnkyn cos
�

kyny
�

�Dnkyn sin
�

kyny
�⇤

e±j�nz (2.131)

Ey =
j!µ

!2µ✏� �2n
[Axkxn cos( kxnx )�Bxkxn sin (kxnx)]⇥

⇥

Ay sin
�

kyny
�

+By cos
�

kyny
�⇤

e±j�nz, (2.132)

and the transverse magnetic field components expressed as

Hx = ± j�n

!2µ✏� �2n
[Ankxn cos( kxnx )�Bnkxn sin (kxnx)]⇥

⇥

Cn sin
�

kyny
�

+Dn cos
�

kyny
�⇤

e±j�nz (2.133)

Hy = ± j�n

!2µ✏� �2n
[An sin( kxnx )+Bn cos (kxnx)]⇥

⇥

Cnky cos
�

kyny
�

�Dnky sin
�

kyny
�⇤

e±j�nz. (2.134)

The next step is applying the boundary condition on the tangential components of the

electric field at the perfectly conducting surfaces of the rectangular waveguide walls. At the

interface y = 0, the tangental electric field boundary condition requires

j!µkyn

!2µ✏� �2n
[An sin (kxnx) + Bn cos (kxnx)]Cne

±j�nz = 0. (2.135)

The tangential electric field boundary condition at x = 0 requires

j!µkxn

!2µ✏� �2n
[Cn sin( kyny

�

+Dn cos
�

kyny
�⇤

Ane
±j�nz = 0. (2.136)

Therefore, the coe�cients An and Cn equal zero. Defining BnDn = Fn, then

Hz = Fn cos (kxnx) cos
�

kyny
�

e±j�nz. (2.137)
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At x = a the tangential electric field boundary condition for Ey requires

� j!µkxn

!2µ✏� �2n
Fn sin (kxna) cos

�

kyny
�

e±j�nz = 0. (2.138)

This means kxna must be an integer multiple of ⇡ and therefore kxn = un⇡
a where un is an

integer. Similarly, applying the tangential electric field boundary conditions for Ex at y = b

requires

j!µkyn

!2µ✏� �2n
Fn cos (kxnx) sin

�

kynb
�

e±j�nz = 0, (2.139)

which leads to kyn = vn⇡
b where vn is an integer. Since the modal analysis in this dis-

sertation for isotropic materials use both TE and TM modes the variables un and vn are

introduced to distinguish between the di↵erent types of modes. Here the variables un and

vn correspond to the indices (u, v) for a TEuv wave (if the nth mode is TEz) or a TMuv

wave (if the nth mode is TMz). As was mentioned previously, � takes on discrete values

and the propagation constant for mode n is given by

�n =
q

!2µ✏� k2cn. (2.140)

Here kcn is the cuto↵ wave number of the nth mode and is given by

kcn =
q

k2xn + k2yn. (2.141)

The electric field components then reduce to

Ex =
j!µkyn

k2cn
Fn cos (kxnx) sin

�

kyny
�

e±j�nz (2.142)

Ey = �j!µkxn

k2cn
Fn sin (kxnx) cos

�

kyny
�

e±j�nz, (2.143)
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and the magnetic field components become

Hx = ⌥j�nkxn

k2cn
Fn sin (kxnx) cos

�

kyny
�

e±j�nz (2.144)

Hy = ⌥
j�nkyn

k2cn
Fn cos (kxnx) sin

�

kyny
�

e±j�nz, (2.145)

where Fn is the modal amplitude coe�cient. By defining the variable

Kn =
j!µ

k2cn
, (2.146)

(2.142) - (2.145) reduce to

Ex = FnKnkyn cos (kxnx) sin
�

kyny
�

e±j�nz (2.147)

Ey = �FnKnkxn sin (kxnx) cos
�

kyny
�

e±j�nz (2.148)

Hx = ⌥Fn
Kn
Zn

kxn sin (kxnx) cos
�

kyny
�

e±j�nz (2.149)

Hy = ⌥Fn
Kn
Zn

kyn cos (kxnx) sin
�

kyny
�

e±j�nz, (2.150)

where Zn = !µ/�n is the TE modal wave impedance. Since (2.147) - (2.150) all share the

common variable Kn, a new variable can be defined as Cn = FnKn which results in the

electric and magnetic transverse field equations for TEz modes reducing to

~E⇢ (~r) = Cn~en (~⇢) e±j�nz (2.151)

~H⇢ (~r) = ⌥Cn~hn (~⇢) e±j�nz. (2.152)

Here ~en (~⇢) and ~hn (~⇢) are the transverse electric and magnetic modal fields, respectively,
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and are given by

~en (~⇢) = x̂kyn cos (kxnx) sin
�

kyny
�

� ŷkxn sin (kxnx) cos
�

kyny
�

, (2.153)

~hn (~⇢) =
ẑ ⇥ ~en (~⇢)

Zn
=

1

Zn

⇥

x̂kxn sin (kxnx) cos
�

kyny
�

+ ŷkyn cos (kxnx) sin
�

kyny
�⇤

. (2.154)

Note that the definitions of ~en (~⇢) and ~hn (~⇢) in (2.153) and (2.154) are di↵erent than those

given in [45] and [46].

2.3.1.2 Solution to the TMz Wave Equation for Isotropic Filled Guide

To solve the TMz wave equation, (2.118), a separation of variables is utilized in conjunc-

tion with applying the boundary conditions on the tangential electric field at the perfectly

conducting waveguide walls. Using the product solution of Ez(~⇢, �) = X(x, �)Y (y, �) and

following the similar steps outlined for the TEz case, results in

@2X(x, �)

@x2
+ k2xX(x, �) = 0 (2.155)

@2Y (y, �)

@y2
+ k2yY (y, �) = 0. (2.156)

As it was shown for the TEz case, with the application of boundary conditions, �, kx, and

ky take the form of discrete eigenvalues. The eigenfield associated with on these eigenvalues

is

Ez = [An sin( kxnx )+Bn cos (kxnx)] [Cn sin( kyny
�

+Dn cos
�

kyny
�⇤

e±j�nz. (2.157)

The transverse field components for the TM modes in the isotropic material are reduced

from the general expressions for bianisotropic material, (2.101) and (2.102), thus resulting
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in

~H⇢ = ⌘ ·
�

j!✏
⇥

û⇥r⇢Eu
⇤ 

(2.158)

~E⇢ = ⌘�1 ·
�

⌥j�nr⇢Eu
 

. (2.159)

Referring to the geometry in Figure 2.1 and assuming TMz modes, (2.158) and (2.159)

become

~E⇢ = ⌥x̂
j�n

�2n � !2µ✏

@Ez
@x

⌥ ŷ
j�n

�2n � !2µ✏

@Ez
@y

(2.160)

~H⇢ = x̂
j!✏

�2n � !2µ✏

@Ez
@y

� ŷ
j!✏

�2n � !2µ✏

@Ez
@x

. (2.161)

Now with general expressions for the transverse fields, the solution to the wave equation,

(2.157), can be substituted into (2.160) and (2.161). The transverse electric field components

are thus given by

Ex = ±j�n

k2cn
[Ankxn cos( kxnx )�Bnkxn sin (kxnx)]⇥

⇥

Cn sin
�

kyny
�

+Dn cos
�

kyny
�⇤

e±j�nz (2.162)

Ey = ±j�n

k2cn
[An sin( kxnx )+Bn cos (kxnx)]⇥

⇥

Cnkyn cos
�

kyny
�

�Dnkyn sin
�

kyny
�⇤

e±j�nz, (2.163)

and the transverse magnetic field components are

Hx =
j!✏

k2cn
[An sin( kxnx )+Bn cos (kxnx)]⇥

⇥

Cnkyn cos
�

kyny
�

�Dnkyn sin
�

kyny
�⇤

e±j�nz (2.164)

Hy =
j!✏

k2cn
[Ankxn cos( kxnx )�Bnkxn sin (kxnx)]⇥

⇥

Cn sin
�

kyny
�

+Dn cos
�

kyny
�⇤

e±j�nz. (2.165)
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Following the procedure outlined in the TE case, the boundary conditions on the tan-

gential field components are applied at the perfectly conducting walls. Through these steps,

the longitudinal electric field component reduces to

Ez = Fn sin (kxnx) sin
�

kyny
�

e±j�nz. (2.166)

The transverse electric field components are given by

Ex = ±j�nkxn

k2cn
Fn cos (kxnx) sin

�

kyny
�

e±j�nz (2.167)

Ey = ±
j�nkyn

k2cn
Fn sin (kxnx) cos

�

kyny
�

e±j�nz, (2.168)

and the transverse magnetic field components are

Hx =
j!✏kyn

k2cn
Fn sin (kxnx) cos

�

kyny
�

e±j�nz (2.169)

Hy = �j!✏kxn

k2cn
Fn cos (kxnx) sin

�

kyny
�

e±j�nz, (2.170)

where Fn is the modal amplitude coe�cient. By defining the quantity

Ln =
j�n

k2cn
, (2.171)

(2.167) - (2.170) reduces to

Ex = ±FnLnkxn cos (kxnx) sin
�

kyny
�

e±j�nz (2.172)

Ey = ±FnLnkyn sin (kxnx) cos
�

kyny
�

e±j�nz (2.173)

Hx = Fn
Ln
Zn

kyn sin (kxnx) cos
�

kyny
�

e±j�nz (2.174)

Hy = �Fn
Ln
Zn

kxn cos (kxnx) sin
�

kyny
�

e±j�nz, (2.175)
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where Zn = �n
!✏ is the TM modal wave impedance. Since the transverse field equations all

share the variable Ln, a new variable Dn = FnLn is defined which results in a simplified

form of the electric and magnetic transverse field equations for TMz modes:

~E⇢ (~r) = ⌥Dn~en (~⇢) e±j�nz (2.176)

~H⇢ (~r) = Dn~hn (~⇢) e±j�nz. (2.177)

Here ~en (~⇢) and ~hn (~⇢) are the transverse electric and magnetic modal fields, respectively,

and are given by

~en (~⇢) = �x̂kxn cos (kxnx) sin
�

kyny
�

� ŷkyn sin (kxnx) cos
�

kyny
�

, (2.178)

~hn (~⇢) =
ẑ ⇥ ~en (~⇢)

ZTMn
=

1

ZTMn

⇥

x̂kyn sin (kxnx) cos
�

kyny
�

� kxn cos (kxnx) sin
�

kyny
�⇤

. (2.179)

To help with subsequent modal analysis, it is beneficial for the TE and TM field expressions

to have the same form. By substituting Dn = ⌥Cn, (2.176) and (2.177) becomes

~E⇢ (~r) = Cn~en (~⇢) e±j�nz (2.180)

~H⇢ (~r) = ⌥Cn~hn (~⇢) e±j�nz. (2.181)

Since this substitution only a↵ects the modal amplitude constants, as long as this change

is implemented in both equations, the results are the same. Consequently, the general

expressions for the isotropic transverse fields for TE and TM modes are of the same form,

but with di↵erent transverse electric and magnetic modal fields.
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2.3.2 Biaxial Material Filled Guide

The next type of material to be considered is a biaxially anisotropic material. Biaxial

materials are anisotropic and have six non-zero complex permittivity and permeability tensor

entries,

✏ =

2

6

6

6

6

4

✏x 0 0

0 ✏y 0

0 0 ✏z

3

7

7

7

7

5

(2.182)

and

µ =

2

6

6

6

6

4

µx 0 0

0 µy 0

0 0 µz

3

7

7

7

7

5

. (2.183)

In order to derive the homogenous wave equation for biaxial material, the general bian-

isotropic homogenous wave equations for TE waves, (2.106), and for TM waves, (2.108), are

reduced to their respective anisotropic form. The TE decomposition is given by

r⇢ ⇥
h

⌧�1 ·
�

�j!µux ·
⇥

r⇢Hu(�) + j�ûHu(�)
⇤ 

i

= �j!ûµuuHu(�)� j!û~µu ·
h

⌘�1 ·
n

�j�r⇢Hu(�)� kE · ûHu(�)
oi

, (2.184)

and the TM decompositions is expressed as

r⇢ ⇥
h

⌘�1 ·
�

j!✏ux ·
⇥

r⇢Eu(�) + j�ûEu(�)
⇤ 

i

= j!û✏uuEu(�) + j!û~✏u ·
h

⌧�1 ·
n

�j�r⇢Eu(�)� kH · ûEu(�)
oi

. (2.185)

Measurements of a biaxial sample with finite thickness typically uses empty waveguide

extensions connected to a sample holder. A vector network analyzer (VNA) measures the

reflection and transmission coe�cients of a biaxial sample completely filling the cross-section

of the sample holder. In the waveguide extension, the first mode that propagates is TE10.
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Figure 2.2: Cross-section view of rectangular waveguide used in derivations for biaxially
anisotropic materials.

It will be shown further on in this dissertation that when this mode is incident on a biaxial

material there is no coupling between orthogonal field components and therefore no excitation

of higher order modes. All of the characterization techniques for biaxial materials completely

filling the cross-section described in this dissertation assume the presence of only TE modes.

Consider a waveguide completely filled with a biaxial material, as shown in Figure 2.2 .

For TEz modes, the expressions in (2.184) become



x̂
@

@x
+ ŷ

@

@y

�

⇥


⌧�1 ·
⇢

�j!
�

µxŷx̂� µyx̂ŷ
�

·


x̂
@Hz
@x

+ ŷ
@Hz
@y

+ j�ẑHz

���

= �j!ẑµzHz � j!ẑ (ẑµz) ·


⌘�1 ·
⇢

�j�

✓

x̂
@Hz
@x

� ŷ
@Hz
@y

◆

�!2
�

�ŷŷ✏xµy � x̂x̂✏yµx
�

· ẑHz
oi

. (2.186)
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Here

⌧�1 = x̂x̂
1

� � !2✏yµx
+ ŷŷ

1

� � !2✏xµy
+ ẑẑ

1

�2
(2.187)

and

⌘�1 = x̂x̂
1

� � !2✏xµy
+ ŷŷ

1

� � !2✏yµx
+ ẑẑ

1

�2
. (2.188)

The TEz wave equation for Hz simplifies to

2

4

@2

@x2
+

µy
⇣

�2 � !2µx✏y
⌘

µx
⇣

�2 � !2µy✏x
⌘

@2

@y2
� µz

µx

⇣

�2 � µx✏y
⌘

3

5Hz = 0. (2.189)

2.3.2.1 Solution to the TEz Wave Equation for Biaxial Material Filled Guide

In addition to describing a characterization technique for biaxial material completely fill-

ing the cross-section of a guide, this dissertation considers a reduced-aperture waveguide

approach for single-sample characterization purposes. The reduction of the of the wave-

guide is symmetric about the width. Therefore, although a single TE10 mode is incident

from an empty waveguide region onto the sample region, because of mode conversion at

the discontinuity with the reduced aperture, an infinite number of waveguide modes are

reflected back into the empty guide. Also, there are an infinite number of modes present

in the reduced-aperture material region and the rectangular waveguide receiving extension.

However, because the aperture is symmetric about the width of the guide, only rectangular

waveguide modes of structure TEn0 (n = 1, 2, 3, . . .) are supported in the waveguide exten-

sions and in the sample region. For TEn0 modes in a rectangular waveguide there is no

y-dependence of the fields and the wave equation reduces to

 

@2

@x2
+ k2c

!

Hz(~⇢, �) = 0 (2.190)
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where

k2c =
µz
µx

⇣

!2µx✏y � �2
⌘

(2.191)

is the cuto↵ wavenumber.

To solve (2.190) a separation of variables technique is used in conjunction with the ap-

plication of boundary conditions on the tangential electric field at the perfectly conducting

waveguide walls. As was shown when considering isotropic materials, with the application

of boundary conditions � and kcn take the form of discrete eigenvalues. The eigenfield

associated with these eigenvalues is

Hz(x, z) = [An sin (kcnx)) + Bn cos (kcnx)] e
±j�nz. (2.192)

To determine the transverse field components for TE modes in a biaxial material, (2.95)

and (2.96) first must be simplified to anisotropic form. This gives

~H⇢ = ⌘�1 ·
n

⌥j�nr⇢Hu � kE · ûHu
o

(2.193)

~E⇢ = ⌧ ·
�

�j!µux ·
⇥

r⇢Hu + j�ûHu
⇤ 

. (2.194)

Then using the tensors described in (2.182) and (2.183) and assuming TEz modes, (2.193)

and (2.194) become

~E⇢(x, z) = x̂
j!µy

�2n � µy✏x

@Hz
@y

� ŷ
j!µx

�2n � µx✏y

@Hz
@x

(2.195)

~H⇢(x, z) = ⌥x̂
j�n

�2n � µx✏y

@Hz
@x

⌥ ŷ
j�

�2n � µy✏x

@Hz
@y

. (2.196)
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Since only TEn0 modes are of interest, the transverse field equations reduce to

Ey(x, z) = � j!µx

�2n � !2µx✏y

@Hz
@x

(2.197)

Hx(x, z) = ⌥ j�n

�2n � !2µx✏y

@Hz
@x

. (2.198)

The axial field, (2.192), can now be substituted into (2.197) and (2.198) giving

Ey = � j!µxkcn

!2µx✏y � �2n
[An cos (kcnx)� Bn sin (kcnx)] e

±j�nz (2.199)

Hx = ⌥ j�nkcn

!2µx✏y � �2n
[An cos (kcnx)� Bn sin (kcnx)] e

±j�nz. (2.200)

The next step is applying the boundary condition on the tangential component of the electric

field at the perfectly conducting waveguide walls. At the interfaces x = ±w
2 , the tangental

electric field boundary condition requires

� j!µxkcn

!2µx✏y � �2n



An cos

✓

wkcn
2

◆

� Bn sin

✓

wkcn
2

◆�

e±j�nz = 0. (2.201)

and

� j!µxkcn

!2µx✏y � �2n



An cos

✓

�wkcn
2

◆

� Bn sin

✓

�wkcn
2

◆�

e±j�nz = 0. (2.202)

These can be expressed in matrix form as

2

6

4

cos
⇣

kcnw
2

⌘

� sin
⇣

kcnw
2

⌘

� cos
⇣

kcnw
2

⌘

sin
⇣

kcnw
2

⌘

3

7

5

2

6

4

A

B

3

7

5

=

2

6

4

0

0

3

7

5

. (2.203)

This system of homogeneous linear equations has a non-trivial solution, if its determinant

is zero [47]. Therefore, the matrix in (2.203) has an infinite number of solutions if its
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determinant is equal to zero. The determinant is given by

cos

✓

wkcn
2

◆

sin

✓

wkcn
2

◆

+ cos

✓

wkcn
2

◆

sin

✓

wkcn
2

◆

= 0, (2.204)

or

2 cos

✓

wkcn
2

◆

sin

✓

wkcn
2

◆

= 0. (2.205)

From (2.205) it is determined that kcn = n⇡
w . The variable kcn is the cuto↵ wavenumber

for the nth TEn0 mode in the sample region. As was stated previously, � takes on discrete

values and thus the propagation constant for mode n is given by

�n =

r

!2µx✏y � µx
µz

k2cn. (2.206)

The equations for the tangential electric field boundary condition, (2.201) and (2.202),

also gives the expression

An =
Bn sin

⇣

kcnw
2

⌘

cos
⇣

kcnw
2

⌘ . (2.207)

Substituting (2.207) into the general expression for the longitudinal magnetic field compo-

nent, (2.192), results in

Hz(x, z) = B0
n cos

h

kcn
⇣

x� w

2

⌘i

e±j�nz, (2.208)

where

B0
n =

Bn

cos
⇣

kcnw
2

⌘ . (2.209)
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This new expression for the longitudinal magnetic field component also ends up altering the

expressions for the transverse field components, which are now given by

Ey(x, z) = B0
n

j!µxkcn

!2µx✏y � �2n
sin

h

kcn
⇣

x� w

2

⌘i

e±j�nz (2.210)

Hx(x, z) = ±B0
n

j�nkcn

!2µx✏y � �2n
sin

h

kcn
⇣

x� w

2

⌘i

e±j�nz. (2.211)

These equations can be simplified using (2.206), which results in

Ey(x, z) = �B0
n
j!µzkcn

k2cn
sin

h

kcn
⇣

x� w

2

⌘i

e±j�nz (2.212)

Hx(x, z) = ⌥B0
n
j�nkcn

µxk2cn
sin

h

kcn
⇣

x� w

2

⌘i

e±j�nz (2.213)

or

Ey(x, z) = �B0
nKn sin

h

kcn
⇣

x� w

2

⌘i

e±j�nz (2.214)

Hx(x, z) = ⌥B0
n
Kn
Zn

sin
h

kcn
⇣

x� w

2

⌘i

e±j�nz. (2.215)

Here Kn = j!µz/k2cn and Zn = !µx/�n is the modal wave impedance. By defining the

variable Cn = B0
nKn, the transverse field equations reduce to

Ey(x, z) = Cneyn (x) e±j�nz (2.216)

Hx(x, z) = ⌥Cnhxn (x) e±j�nz, (2.217)

where the modal transverse field equations are given by

eyn(x) = �kcn sin
h

kcn
⇣

x� w

2

⌘i

(2.218)

hxn(x) =
ẑ ⇥ eyn(x)

Zn
=

kcn
Zn

sin
h

kcn
⇣

x� w

2

⌘i

. (2.219)
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2.3.3 Gyromagnetic Material Filled Guide

The final type of material considered is a gyromagnetic material magnetized along the y-axis

of Figure 2.1. The permittivity dyadic is given by

✏ = ✏I, (2.220)

and the permeability dyadic is expressed as

µ =

2

6

6

6

6

4

µg 0 �j

0 µy 0

j 0 µg

3

7

7

7

7

5

. (2.221)

Using the constitutive parameter tensor and the general bianisotropic wave equations for TE

fields, (2.106), and for TM fields, (2.108), the homogenous equation for anisotropic material

is given by

r⇢ ⇥
h

⌧�1 ·
�

�j!µux ·
⇥

r⇢Hu + j�ûHu
⇤ 

i

= �j!ûµuuHu � j!û~µu ·
h

⌘�1 ·
n

�j�r⇢Hu � kE · ûHu
oi

, (2.222)

and

r⇢ ⇥
h

⌘�1 ·
�

j!✏ux ·
⇥

r⇢Eu + j�ûEu
⇤ 

i

= j!û✏uuEu + j!û~✏u ·
h

⌧�1 ·
n

�j�r⇢Eu � kH · ûEu
oi

, (2.223)

respectively.

Consider a sample of gyromagnetic material filling the cross-section of the rectangular

waveguide shown in Figure 2.1, with finite thickness, and magnetized along the y-axis. When

the TE10 propagates inside an empty waveguide extension and this mode is incident on the

53



sample, a coupling exists between orthogonal field components in the sample. This coupling

results in an excitation of higher-order modes. It will be shown in this dissertation that

when a TE10 is incident on this sample, and the sample is magnetized along the y-axis, only

TEn0 modes are supported. The homogeneous wave equation for TEz fields is given by



x̂
@

@x
+ ŷ

@

@y

�

⇥


⌧�1 ·
⇢

�j!
�

µgŷx̂� j�ŷẑ � µyx̂ŷ
�

·


x̂
@Hz
@x

+ ŷ
@Hz
@y

+ j�ẑHz

���

= �j!ẑµgHz +
�

!ẑx̂� j!ẑẑµg
�

·


⌘�1 ·
⇢

�j�

✓

x̂
@Hz
@x

+ ŷ
@Hz
@y

◆

�!2
�

�ŷŷ✏µy � x̂x̂✏µg + jx̂ẑ�✏
�

· ẑHz
oi

, (2.224)

where

⌘�1 =

 

1

�2 � !2µg✏

!

x̂x̂+

 

1

�2 � !2µy✏

!

ŷŷ +
1

�2
ẑẑ

�

0

@

j!✏

�2
⇣

�2 � !2µg✏
⌘

1

A x̂ẑ, (2.225)

and

⌧�1 =

 

1

�2 � !2µy✏

!

x̂x̂+

 

1

�2 � !2µg✏

!

ŷŷ +
1

�2
ẑẑ. (2.226)

The wave equation simplifies to

 

@2

@x2
+

µy
µg

�2 � µg✏!2

�2 � µy✏!2
@2

@y2
+ k2c

!

Hz = 0, (2.227)

where the cuto↵ wavenumber is given by

k2c = !2µg✏

 

1� 2

µ2g

!

� �2. (2.228)
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2.3.3.1 Solution to the TEz Wave Equation for Gyromagnetic Material Filled

Guide

For TEn0 modes in a rectangular waveguide there is no y-dependence of the fields, and the

wave equation in (2.227) reduces to

 

@2

@x2
+ k2c

!

Hz(x) = 0. (2.229)

As was shown for the isotropic and biaxial material filled guides, through the application of

boundary conditions, � and kcn will take the form of discrete eigenvalues. The eigenfield

associated with these eigenvalues is

Hz(x, z) = [An sin (kcnx) + Bn cos (kcnx)] e
±j�nz. (2.230)

To determine the transverse field components for TE modes in a gyromagnetic material,

(2.95) and (2.96) are reduce to anisotropic form, which results in

~H⇢ = ⌘�1 ·
n

⌥j�nr⇢Hu � kE · ûHu
o

(2.231)

~E⇢ = ⌧ ·
�

�j!µux ·
⇥

r⇢Hu + j�ûHu
⇤ 

. (2.232)

Considering the waveguide geometry shown in Figure 2.1 and the material tensors in (2.182)

and (2.183), the expressions in (2.231) and (2.232) become

~H⇢(x, z) = x̂

"

⌥ j�n

�2n � µg✏!2
@Hz
@x

+
j!2✏

�2n � µg✏!2
Hz

#

⌥ ŷ
j�n

�2n � µy✏!2
@Hz
@y

(2.233)

~E⇢(x, z) = x̂
j!µy

�2n � µy✏!2
@Hz
@y

� ŷ

"

j!µg

�2n � µg✏!2
@Hz
@x

+
j!�n

�2n � µg✏!2
Hz

#

. (2.234)

Since in this dissertation only higher order TEn0 modes are analyzed, the transverse fields
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are

~Hx(x, z) = x̂

"

⌥ j�n

�2n � µg✏!2
@Hz
@x

+
j!2✏

�2n � µg✏!2
Hz

#

(2.235)

~Ey(x, z) = �ŷ

"

j!µg

�2n � µg✏!2
@Hz
@x

± j!�n

�2n � µg✏!2
Hz

#

. (2.236)

The axial magnetic field (2.230), can be substituted into (2.236), resulting in

~Ey(x, z) = � j!

�2n � µg✏!2

⇥

µgkcnAn cos (kcnx)� �nµgkcnBn sin (kcnx)±

�nAn sin (kcnx)± �nBn cos (kcnx)] e
±j�nz. (2.237)

The unknown eigenvalues may be determined by applying the boundary conditions on Ey

at the interfaces between the material and the conduction waveguide walls. At x = 0, the

boundary condition on the tangential electric field requires

� j!

�2n � µg✏!2

⇥

µgkcnAn ± �nBn
⇤

e±j�nz = 0 (2.238)

or

An = ⌥Bn�n
µgkcn

. (2.239)

Substituting the expression for An into (2.237) yields,

Ey(x, z) =
j!

�2n � µg✏!2
Bn

2

µgkcn

"

µ2k2cn
2

+ �2n

#

sin (kcnx)e
±j�nz. (2.240)

Next, inserting the expression for An into (2.230) gives

Hz(x, z) = Bn



cos (kcns)⌥
�n
µgkcn

sin (kcnx).

�

e±j�nz (2.241)
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This expression for the solution to the wave equation is substituted into (2.236) and simpli-

fied, giving

Hx(x, z) = ⌥ j�nB

!2µg✏� �2n



sin (kcnx)⌥
kcn
µg�n

cos (kcnx)

�

e±j�nz. (2.242)

At z = a, the boundary condition on the tangential electric field requires

�j!Bµg

!2µg✏� �2n

 

1� 2

µ2g

!

sin (kcnz)e
±j�nz = 0 (2.243)

or

sin (kcna) = 0. (2.244)

From (2.244) it is determined that kcn = n⇡/a. Here kcn is the cuto↵ waveguide for the

nth TEn0 mode in the sample region. The propagation constant for mode n is found from

(2.228)

�n =

v

u

u

t!2µg✏

 

1� 2

µ2

!

� k2cn. (2.245)

Next, using (2.245) the transverse fields in (2.240) and (2.242) become

Ey(x, z) =
�j!Bnµg

kcn

 

1� 2

µ2g

!

sin (kcnx)e
±j�nz (2.246)

Hx(x, z) = ⌥j�nB

kcn



sin (kcnx)⌥
kcn
µg�n

cos (kcnx)

�

e±j�nz. (2.247)

By defining

Kn = j!µg/k
2
cn, (2.248)
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(2.246) and (2.247) reduce to

Ey(x, z) = �BnKnkcn

 

1� 2

µ2g

!

sin (kcnx)e
±j�nz (2.249)

Hx(x, z) = ⌥Bn
Knkcn
Zn



sin (kcnx)⌥
kcn
µg�n

cos (kcnx)

�

e±j�nz, (2.250)

where and Zn = !µg/�n is the modal wave impedance. By defining Cn = BnKn, the

transverse field equations reduce to

Ey(x, z) = �Cnkcn

 

1� 2

µ2g

!

sin (kcnx)e
±j�nz (2.251)

Hx(x, z) = ⌥Cnkcn
Zn



sin (kcnx)⌥
kcn
µg�n

cos (kcnx)

�

e±j�nz. (2.252)
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CHAPTER 3

ISOTROPIC MATERIAL

CHARACTERIZATION

3.1 Introduction

This chapter presents two methods for characterizing isotropic materials using rectangular

waveguides. The first technique described is the classical “Nicolson-Ross-Weir” (NRW) ex-

traction applied to an isotropic material completing filling the cross-section of a rectangular

waveguide [23]-[24]. This method extracts the material parameters using closed form expres-

sions from the measurement of reflection and transmission coe�cients. The convenience of

the NRW method, and its insensitivity to propagation of measurement uncertainties, com-

monly makes it a first choice for characterization of isotropic materials. It is for these reasons

that this dissertation makes use of the NRW extraction method and extends the technique

to biaxially anisotropic materials (Section 4.2). In addition, the developed waveguide verifi-

cation standard described in this dissertation (Chapter 6) assumes the use of this classical

extraction algorithm.

The second technique is a reflection-only method for conductor-backed absorbing ma-

terials using rectangular waveguides. If the sample is conductor backed, and occupies the
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entire cross-section of the guide, then a transmission measurement is not available, and thus

a method must be found for providing two su�ciently di↵erent reflection measurements.

The technique proposed here is to place a waveguide iris in front of the sample, exposing

the sample to a spectrum of evanescent modes. By measuring the reflection coe�cient both

with and without an iris the necessary two measurements may be obtained to determine ✏

and µ.

3.2 NRW Characterization for Isotropic Materials

The classic NRW extraction algorithm employs the measured reflection and transmission

coe�cients for a waveguide section completely filled by the material. The attraction of

the NRW characterization method results from the availability of closed-form expressions

for µ and ✏. This contrasts with methods requiring an iterative solver such as Newton’s

method [30]-[31] or a least squares approach [32]-[33]. The closed-form expressions are well-

conditioned for most of the material parameters of interest, except when the material thick-

ness approaches multiples of a half wavelength. The NRW extraction can be used with rect-

angular waveguides [25], coaxial applicators [26]-[27], free-space methods [28], and stripline

measurements [29]. This section presents the method for isotropic material characterization

using this classical technique with rectangular waveguides.

3.2.1 NRW Derivation

Assume the sample placed in the cross-sectional plane of the waveguide is linear and ho-

mogeneous as well as isotropic. The permittivity and permeability are represented by the

constitutive material tensors

✏ = ✏0

2

6

6

6

6

4

✏r 0 0

0 ✏r 0

0 0 ✏r

3

7

7

7

7

5

(3.1)
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and

µ = µ0

2

6

6

6

6

4

µr 0 0

0 µr 0

0 0 µr

3

7

7

7

7

5

, (3.2)

where tensor entries are complex quantities: ✏r = ✏0r + j✏00r , µr = µ0r + jµ00r .

Figure 3.1 shows the experimental configuration used in the NRW method. A sample

with unknown properties is placed into a sample holder occupying the region 0  z  d in

a rectangular waveguide system. Waveguide extensions are then attached to guarantee only

the dominant mode is present at the measurement ports. The S-parameters S11 and S21

are measured and used to determine the sample propagation constant and the interfacial

reflection coe�cient which then can be used to extract ✏r and µr.

3.2.1.1 Field Structure in a Waveguide Filled with Isotropic Material

Assume a TE10 mode is incident from the transmitting empty waveguide (z < 0). This

field will couple into the TE10 material filled waveguide mode since the field structure in

both regions is identical. In the empty and sample waveguide region, it can be shown from

Section 2.3.1.1 that the TE10 mode is the dominant mode (n = 1), which means u1 = 1

and v1 = 0. Therefore, k
e,s
x1 = ⇡/a, k

e,s
y1 = 0, and thus k

e,s
c1 = ⇡/a is the cuto↵ wavenumber

for the first order mode. Now, using (2.140) the propagation constant in the empty guide is

given by

�e1 =

r

k20 �
⇣

kec1

⌘2
, (3.3)

and the propagation constant in the sample region results in

�s1 =

r

k20✏rµr �
⇣

ksc1

⌘2
, (3.4)
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where k0 = !
p
µ0✏0. The transverse fields from (2.151) - (2.152) for both regions are given

by

E
e,s
y (x, z) = C1e

e,s
y1 (x) e

±j�
e,s
1 z

(3.5)

H
e,s
x (x, z) = ⌥C1h

e,s
x1 (x) e

±j�
e,s
1 z

. (3.6)

Here e
e,s
y1 and h

e,s
x1 are the transverse electric and magnetic modal fields in the empty guide

and sample regions, and are expressed as

e
e,s
y1 = �k

e,s
x1 sin

⇣

k
e,s
x1 x

⌘

, (3.7)

h
e,s
x1 =

k
e,s
x1

Z
e,s
1

sin
⇣

k
e,s
x1 x

⌘

, (3.8)

where the modal wave impedance in the empty guide and sample region is given by Ze1 =

!µ0/�
e
1 and Zs1 = !µ0µr/�

e
1, respectively.

3.2.1.2 Solution for Reflection and Transmission Coe�cients

The transverse fields in the sample region and in the waveguide extensions can be represented

using the modal fields, with the modal amplitudes determined through the application of

boundary conditions. The dominant-mode transverse fields for the transmitting extensions,

z < 0, may thus be written as

Ey(x, z) = �Aikex1 sin
�

kex1x
�

e
�j�e1z � Arkex1 sin

�

kex1x
�

e
j�e1z (3.9)

Hx(x, z) = Ai
kex1
Ze1

sin
�

kex1x
�

e
�j�e1z � Ar

kex1
Ze1

sin
�

kex1x
�

e
j�e1z. (3.10)
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Similarly, the dominant-mode transverse fields in the sample region 0 < z < d may be

written as

Ey(x, z) = �B+ksx1 sin
�

ksx1x
�

e
�j�s1z � B�ksx1 sin

�

ksx1x
�

e
j�s1z (3.11)

Hx(x, z) =
B+

Zs1
ksx1 sin

�

ksx1x
�

e
�j�s1z � B�

Zs1
ksx1 sin

�

ksx1x
�

e
j�s1z, (3.12)

while those in the receiving waveguide extension, z > d, may be expressed as

Ey(x, z) = �Ctkex1 sin
�

kex1x
�

e
�j�e1(z�d)

(3.13)

Hx(x, z) = Ctk
e
x1
Ze1

sin
�

kex1x
�

e
�j�e1(z�d)

. (3.14)

Here, Ai is the amplitude of the incident TE10 wave.

The modal amplitudes Ar,B+, B�, and Ct may be determined by applying the bound-

ary conditions on Ey and Hx at the interfaces between the isotropic sample and the empty

guides. At the interface z = 0, the tangential electric field boundary condition requires

h

Ai + Ar
i

kex1 sin
�

kex1x
�

=
h

B+ +B�
i

ksx1 sin
�

ksx1x
�

, (3.15)

and thus since ksx1 = kex1,

h

Ai + Ar
i

=
h

B+ +B�
i

. (3.16)

The tangential magnetic field boundary condition at z = 0 requires

h

Ai � Ar
i kex1
Ze1

sin
�

kex1x
�

=
h

B+ � B�
i ksx1
Zs1

sin
�

ksx1x
�

, (3.17)
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or

h

Ai � Ar
i Zs1
Ze1

=
h

B+ � B�
i

. (3.18)

At z = d, the boundary condition on the tangential electric field requires



B+e
�j�s1d +B�e

j�s1d
�

ksx1 sin
�

ksx1x
�

= Ctkex1 sin
�

kex1x
�

, (3.19)

or



B+e
�j�s1d +B�e

j�s1d
�

= Ct, (3.20)

while the boundary condition on the tangential magnetic field at z = d results in



B+e
�j�s1d � B�e

j�s1d
�

ksx1
Zs1

sin
�

ksx1x
�

= Ctk
e
x1
Ze1

sin
�

kex1x
�

, (3.21)

or



B+e
�j�s1d � B�e

j�s1d
�

1

Zs1
= Ct 1

Ze1
. (3.22)

The reflection coe�cient, R = Ar/Ai, is determined by first adding (3.16) to (3.18),

yielding,

2B+ = Ai
 

Zs1
Ze1

+ 1

!

� Ar
 

Zs1
Ze1

� 1

!

, (3.23)

and then subtracting (3.16) from (3.18), producing

2B� = �Ai
 

Zs1
Ze1

� 1

!

+ Ar
 

Zs1
Ze1

+ 1

!

. (3.24)
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Adding (3.20) and (3.22) results in

2B+ = Ct
"

Zs1
Ze1

+ 1

#

e
j�s1d, (3.25)

while subtracting (3.20) from (3.22) gives

2B� = �Ct
"

Zs1
Ze1

� 1

#

e
�j�s1d. (3.26)

Then dividing (3.26) by (3.25) produces

B�

B+ = �
"

Zs1 � Ze1
Zs1 + Ze1

#

e
�j2�s1d, (3.27)

which can also be written as

B�

B+ = ��P2. (3.28)

Here the interfacial reflection coe�cient is established as

� =
Zs1 � Ze1
Zs1 + Ze1

, (3.29)

and the propagation factor is defined as

P = e
�j�s1d. (3.30)

Next, dividing (3.24) by (3.25) gives

B�

B+ = �
Ai

✓

Zs1�Ze1
Ze1

◆

� Ar
✓

Zs1+Ze1
Ze1

◆

Ai
✓

Zs1+Ze1
Ze1

◆

� Ar
✓

Zs1�Ze1
Ze1

◆

. (3.31)
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Multiplying the numerator and denominator by Ze1/A
i yields

B�

B+ = �

⇣

Zs1 � Ze1

⌘

� Ar

Ai

⇣

Zs1 + Ze1

⌘

⇣

Zs1 + Ze1

⌘

� Ar

Ai

⇣

Zs1 � Ze1

⌘ , (3.32)

and dividing this expression by (Zs1 + Ze1) produces

B�

B+ = � ��R

1�R�
. (3.33)

The reflection coe�cient is now determined by setting (3.28) equal to (3.33), which results

in

�P2 =
��R

1�R�
. (3.34)

Solving for R then gives

R =
�
⇣

1� P2
⌘

1� �2P2
. (3.35)

Next, the transmission coe�cient, T = Ct/Ai, can be derived by first rearranging (3.20):

B+e
�j�s1d

"

1 +
B�

B+e
j2�s1d

#

= Ct (3.36)

Substituting (3.28), this expression becomes

B+e
�j�s1d [1 + �] = Ct. (3.37)

Then (3.23) can be substituted, yielding

1

2

"

Ai
 

Zs1 + Ze1
Ze1

!

� Ar
 

Zs1 � Ze1
Ze1

!#

[1� �] e
�j�s1d = Ct. (3.38)
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Factoring Ai/Ze1 and rearranging the equation produces

Ct

Ai
e
j�s1d =

1

2Ze1



�

Zs1 + Ze1
�

� Ar

Ai

�

Zs1 � Ze1
�

�

[1� �] , (3.39)

or

T e
j�s1d =

1

2Ze1

⇥�

Zs1 + Ze1
�

�R
�

Zs1 � Ze1
�⇤

[1� �] . (3.40)

Factoring out Zs1 � Ze1 gives

T e
j�s1d =

1

2Ze1

�

Zs1 + Ze1
�

"

1�R
Zs1 � Ze1
Zs1 + Ze1

#

[1� �] , (3.41)

which can also be written as

T e
j�s1d =

1

2Ze1

�

Zs1 + Ze1
�

[1�R�] [1� �] . (3.42)

Substituting (3.29) then yields

T e
j�s1d =

1

2Ze1

�

Zs1 + Ze1
�

2Ze1
Zs1 + Ze1

[1�R�] , (3.43)

and through addition algebraic manipulation, the transmission coe�cient becomes

T = (1�R�)P. (3.44)

Finally, using the equation for the reflection coe�cient, (3.35), the transmission coe�cient

is expressed as

T =
P
⇣

1� �2
⌘

1� �2P2
. (3.45)
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Note that S11 and S21 are typically measured at the ports of the waveguide extensions.

With properly applied phase shift, these may be transformed to the faces of the material

sample at z = 0 and z = d. In that case S11 = R and S21 = T . This process is called

de-embedding and is described in detail in Appendix B.

3.2.2 Validation of Theoretical Analysis

It is useful to validate the theoretical reflection and transmission coe�cients derived in the

previous section. The theoretical model is validated against the computational finite element

(FEM) solver HFSS with an Eccossorb FGM125 test sample. FGM125 has approximate

material parameters of ✏r = 7.3197 � j0.0464 and µr = 0.5756 � j0.4842 at 10.09 GHz.

These values were obtained using the waveguide NRW method and were provided by Captain

Milo Hyde IV of the Air Force Institute of Technology; they are tabulated in [46]. Though

the material properties for FGM125 vary with frequency, for this validation the material

parameters are assumed to be frequency independent. This provides a general validation of

the theory.

The derived theoretical expressions were used to compute the reflection and transmission

coe�cients for the FGM125 material paced in the cross-section of an X-band waveguide

system. The dimensions of the X-band system are a = 22.86 mm, b = 10.16 mm, and d =

3.175 mm. Figure 3.2 shows S11 and S21 at the faces of the sample computed using (3.35)

and (3.45). Also shown are the values of the reflection and transmission coe�cient computed

using HFSS. The waveguide extensions were explicitly modeled in the EM solver and were of

significant length to ensure that only the fundamental TE10 mode propagates; these lengths

were chosen to be 50 mm. The convergence in HFSS was specified to a maximum delta

S of 0.01, which is defined as the absolute di↵erence between all S-parameters from two

succeeding iterations computed at a chosen “solution frequency” of 12.4 GHz (this is HFSS

terminology and does not imply that the problem is only solved at one frequency). The S-

parameters were computed at 31 frequency points over the X-band range of 8.2� 12.4 GHz
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using an HFSS discrete frequency sweep. Choosing a “solution frequency” of 12.4 GHz

ensures convergence using a fine mesh since this is the highest frequency analyzed. Excellent

agreement is obtained between the theoretical equations and HFSS, thus validating the

computation of the theoretical reflection and transmission coe�cients.

3.2.3 Extraction Process

The S-parameters are measured using a vector network analyzer (VNA) attached at the end

of the waveguide extensions shown in Figure 3.1. The S-parameters are then mathematically

transformed to obtain the S-parameters at the sample planes, S11 and S21, as is discussed

in Appendix B. In this case S11 = R and S21 =. These sample-plane S-parameters are used

to determine the sample propagation constant �s1 and the interfacial reflection coe�cient �,

which may in turn be used to find ✏r and µr.

Define

V1 = S21 + S11 (3.46)

V2 = S21 � S11. (3.47)

Substituting (3.35) and (3.45), these variables then become

V1 =
P � �

1 + �P
(3.48)

V2 =
P � �

1� �P
. (3.49)

From (3.48), the propagation factor is given by

P =
V1 � �

1� �V1
. (3.50)
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Figure 3.1: Rectangular waveguide with isotropic sample placed in cross-sectional region
with waveguide extensions attached.
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Figure 3.2: S-parameters computed for a FGM125 test material.

70



Next, (3.49) is multiplied by 1� �P yielding

V2 (1� �P ) = P � �. (3.51)

Then inserting (3.50) into (3.51) gives

V2 � V2�



V1 � �

1� �V1

�

=
V1 � �

1� �V1
� �. (3.52)

Multiplying through by 1� PV1 and simplifying the expression results in

�2 � 2�X + 1 = 0, (3.53)

where

X =
1� V1V2
V1 � V2

. (3.54)

The solution to (3.53) is

� = X ±
q

X2 � 1. (3.55)

Here the appropriate sign is chosen such that |�|  1.

The propagation constant is then determined from (3.30) as

�s1 = � ln(P )± j2n⇡

jd
, (3.56)

where n depends on the thickness of the sample in terms of a wavelength. Proper choice of

n is discussed in Section 3.2.4. Next, rearranging (3.29) gives

Zs1
Ze1

=
1 + �

1� �
, (3.57)
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and the expressions for the modal impedances can then be substituted yielding

Zs1
Ze1

=
�e1
�s1

µr. (3.58)

Combining (3.57) and (3.58) gives

µr =
1 + �

1� �

�s1
�e1

, (3.59)

thus providing a closed-form expression for the permeability of the isotropic sample. Using

(3.4), an expression for ✏ can also be derived. First, k0 is brought outside the square root

yielding

�s1 = k0

v

u

u

t✏rµr �
 

ksx1
k0

!2

(3.60)

or

 

�s1
k0

!2

= ✏rµr �
 

ksx1
k0

!2

. (3.61)

Next, inserting (3.59) and simplifying gives

✏r =

2

4

 

�s1
k0

!2

+

 

ksx1
k0

!2
3

5

�e1
�s1

1� �

1 + �
. (3.62)

Thus, by measuring S11 and S21 for an isotropic sample filling the cross-section of a rectan-

gular waveguide, two equations, (3.59) and (3.62), can be used to extract the two material

parameters µr and ✏r.

It is important to validate the inversion method before proceeding with the characteriza-

tion of unknown materials. Therefore, the FGM125 material parameters outlined in Section

3.2.2 are used in HFSS to generate S-parameters with the sample completely filling the
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cross-section of an X-band waveguide, and the NRW extraction method is performed. The

HFSS simulation uses the same model as was used to generate the data for Figure 3.2. The

results of the characterization are shown in Figure 3.3. As expected, the characterized ma-

terial parameters are in accordance with the parameters used in the HFSS simulation. This

extraction gives confidence in the characterization technique before moving forward with

measurements.

3.2.4 Phase Ambiguity

An ambiguity exists when the electrical length of the material reaches a half wavelength and

every subsequent full wavelength, where the value n in (3.56) must be incremented. The

correct value of n must be determined for accurate characterization. This ambiguity results

from the VNA measuring the phase of the S-parameters from �180� to +180�. The phase

shift through the material is determined from the propagation factor, which is computed

using the measured S-parameters via (3.50). Since the VNA measures the phase of the S-

parameters from �180� to +180�, the computed phase shift will wrap around when these

measurement boundaries are met. Thus when measuring a sample of material, the phase

shift can actually wrap around multiple times and this needs to accounted for in (3.56). This

is done by incrementing n every time the phase shift wraps around.

The 1-way propagation factor for a wave traveling through the sample region is given by

P = e
�jd

⇣

�s1r+j�s1i

⌘

(3.63)

where the propagation constant in the material is split into its real and imaginary compo-

nents. This expression can also be written as

P = e

⇣

�s1id
⌘

e(j�), (3.64)
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where � = ��s1rd is the phase shift through the material. The wavelength in the material

is given by

�s =
2⇡

�s1r
. (3.65)

Thus phase shift through the material is given by

� = �2⇡

�s
d. (3.66)

The first wrap around occurs when � = �180� or � = �⇡, where

� = �⇡ = �2⇡

�s
d. (3.67)

Thus the first phase wrap happens when the thickness of the sample is a half-wavelength, or

d = �s/2. An example of phase wrap can be seen in Figure 3.4. Here an FGM125 sample was

simulated using (3.66) where �s1 was determined using (3.4). The phase shift was determined

with the FGM125 sample placed inside an X-band waveguide and simulated from 8.2 GHz

to 12.4 GHz. The thickness of the FGM125 sample was chosen to be6.35 mm. From Figure

3.4, it can be seen that n should be zero from 8.2 GHz to approximately 11.1 GHz. Around

11.1 GHz, or when � = �⇡ radians, the phase wraps around and n should change to one.

The next phase wrap doesn’t occurs until � = �3⇡ radians. Using (3.66) it is found that,

n = 1 for �s/2 < d < 3�s/2. Figure 3.4 also shows the typical sort of error that results

when using the NRW method to extract the permittivity when the wrong value of n is used

over certain portions of the frequency band. Though not shown, the permeability follows a

similar trend.

The ambiguity causes problems when measuring an unknown sample, since the values of

✏r and µr are yet to be determined, and so �s is not known a priori. Thus the number of

times the phase shift wraps around is unknown. A typical solution is to fabricate samples that
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are thin and assume the half-wavelength boundary does not occur within the measurement

band.

3.2.5 Experimental Results

To experimentally validate the NRW technique at X-band, the S-parameters from a sample of

Eccosorb FGM125 were measured and the material parameters extracted. The measurement

system consisted of two 152 mm long section of WR-90 commercial X-band waveguide, which

acted as extensions, with coaxial transitions attached at the ends. Since a sample holder

was not manufactured to the specific thickness to the FGM125 sample, as an alternative, the

sample was placed inside the waveguide extension connected to Port 1. The S-parameters

were then mathematically de-embedded to the faces of the sample. This type of sample

insertion is the second case discussed in Appendix B, where the mathematical equations

used for the de-embedding are given.

Measurements of the S-parameters of the FGM125 sample placed into the waveguide

extensions were made using an Aglient E5071C VNA. The VNA was calibrated using an

X7005M Maury Microwave X-Band calibration kit, consisting of two o↵set shorts and a

load. The measurements were made with VNA settings of�5 dBm source power, 64 averages,

and an IF bandwidth of 5 kHz. Finally, the material parameters were extracted using the

measured values of S11 and S21.

The measurement repeatability error was assessed by measuring the FGM125 sample 5

separate times, with the VNA calibrated at the start of each set of measurements. The

permittivity parameters extracted from the 5 measurements are shown in Figure 3.5, while

the permeability parameters are shown in Figure 3.6. The center solid line in these figures

represents the mean of the extracted values while the upper and lower solid lines define the

95% confidence levels, or ± two standard deviations. The dotted lines in Figure 3.5 and

Figure 3.6 show the material parameters of a di↵erent sample of FGM125 extracted from

S-parameter measurements performed at AFIT using the NRW method. These material
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parameters are tabulated in [46]. A strong agreement exists between the characterization of

the two di↵erent FGM125 samples; however, the extraction of the permeability parameters

are slightly di↵erent. This is mostly due to material parameters of FGM125 varying among

stock. Though the comparison of the results from the two extractions vary slightly, it still

gives confidence the NRW characterization method is outlined properly in this dissertation.

3.2.6 Summary

The NRW method for the characterization of isotropic materials using rectangular wave-

guides is described. Closed-form expression are given to characterize the two complex mate-

rial parameters. A discussion is presented on the ambiguity that exists when the electrical

length of the material reaches a half wavelength and subsequent full wavelengths. Validation

of the technique was performed using S-parameters generated using HFSS for an FGM125

sample filling the cross-section of an X-band waveguide. Additionally, measurements of the

S-parameters for a sample of FGM125 were used for further validation of the technique.

3.3 Measurement of the Electromagnetic Properties of

a Conductor-backed Material Using a Waveguide-

Iris Technique

Magnetic radar-absorbing materials (MagRAM) are often applied to the conducting surfaces

of air vehicles to reduce radar cross-section. To ensure proper aircraft design, the electro-

magnetic properties of these materials must be accurately characterized. Unfortunately, the

process of bonding the MagRAM to the conductor produces a chemical reaction that alters

the intrinsic electromagnetic properties of the absorber in unpredictable ways, and thus it is

crucial that the absorber be characterized while still attached to the conductor backing.

As outlined in Section 3.2, a sample is typically placed into the cross-section of a wave-
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performed at AFIT with a di↵erent sample than the one used at MSU.
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Figure 3.6: Real parts of relative permeability extracted from 5 sets of measurements. Center
solid line is the average of the measurements. Upper and lower lines show the 95% confidence
intervals. Dotted line shows permeability extracted from the S-parameter measurements
performed at AFIT with a di↵erent sample than the one used at MSU.
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guide and the transmission and reflection coe�cients are measured, providing the two nec-

essary data to find both the permittivity and permeability of the sample. If the sample is

conductor-backed, and occupies the entire cross-section, a transmission measurement is not

available, and thus a method must be found for providing two su�ciently di↵erent reflection

measurements. The technique proposed here is to place a waveguide iris in front of the sam-

ple, exposing the sample to a spectrum of evanescent modes. By measuring the reflection

coe�cient with and without an iris, the two necessary data may be obtained to determine ✏

and µ. A mode-matching approach is used to determine the theoretical response of a sample

placed behind a waveguide iris. This response may be used in a root-searching algorithm to

determine ✏ and µ using measurements of the reflection coe�cient.

3.3.1 Theoretical Reflection and Transmission Coe�cients

The conductor-backed material under test is assumed to be linear and homogeneous, with

tensor constitutive parameters

✏ = ✏0

2

6

6

6

6

4

✏s 0 0

0 ✏s 0

0 0 ✏s

3

7

7

7

7

5

(3.68)

and

µ = µ0

2

6

6

6

6

4

µs 0 0

0 µs 0

0 0 µs

3

7

7

7

7

5

, (3.69)

where tensor entries are complex quantities: ✏s = ✏0s + j✏00s , µs = µ0s + jµ00s .

The reflection coe�cient is measured under two conditions: with and without an iris

placed in front of the conductor-backed material. Thus, the theoretical reflection coe�cients

must accurately be determined under these two conditions.
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3.3.1.1 Reflection Coe�cient with Iris

For the calculation of the theoretical reflection coe�cient with the iris, consider Figure 3.7.

The conductor-backed material with thickness � is placed a distance d away from an iris of

thickness � and a window opening width of w2. The iris itself consists of two waveguide

junctions: a reduced step and an expanded step. The iris is centered about the width of

the guide. If a single TE10 mode is assumed to be incident on the iris boundary from

the transmitting region, then because of mode conversion at the discontinuity with the

iris an infinite number of waveguide modes are reflected back into the transmitting region.

Additionally, an infinite number of waveguide modes are transmitted into the iris region,

which are then incident on the discontinuity at the expanded-step boundary, and thus a

spectrum of modes are also reflected back into the iris region and transmitted into the guide

region containing the material under test. Since the electric field of the incident TE10 mode

is even about the width of the transmitting guide, and because the iris is also symmetric

about the width of the guide, only modes with electric fields even about the width of the

guide will be excited. Thus, only TEn0 modes with odd values of n are needed to describe

the fields in each of the waveguide regions.

To simplify the mode matching technique, each of the iris junctions are analyzed sepa-

rately. Consider a general reduced-step junction shown in Figure 3.8, where wB < wA. The

isotropic transverse field equations from (2.151) and (2.152) can be used in each of these

regions where the waveguide is centered about the y-axis, as long as the sinusoidal functions

are o↵set by either wA/2 or wB/2. Since only TEn0 modes are excited, v = 0 for all excited

modes. This leads to kyn = 0, reducing the transverse field equations to

E
A,B
y (x, z) = Cne

A,B
yn (x) e±j�

A,B
n z (3.70)

H
A,B
x (x, z) = ⌥Cnh

A,B
xn (x) e±j�

A,B
n z. (3.71)

Here e
A,B
yn and h

A,B
xn are the transverse electric and magnetic modal fields, respectively, and
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Figure 3.7: Conductor-backed material with iris and waveguide extension attached.

are found from (2.153) and (2.154) to be

e
A,B
yn (x) = �k

A,B
xn sin



k
A,B
xn

✓

x�
wA,B

2

◆�

, (3.72)

h
A,B
xn (x) = �

e
A,B
yn (x)

Z
A,B
n

, (3.73)

where k
A,B
xn = n⇡/a and Z

A,B
n = !µ0µA,B/�

A,B
n . Here �

A,B
n is determined from (2.140)

as

�
A,B
n =

q

(kA,B)2 � (k
A,B
xn )2, (3.74)

where kA,B = k0
p

µA,B✏A,B .

Using only odd values of n to describe the fields can be confusing when programing the

mode matching technique. Therefore, a change to the indexing of n can be implemented,

where n will now order the odd modes instead of all the modes. This is done by first
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examining the sinusoidal functions in the expressions for e
A,B
n and h

A,B
n :

sin



k
A,B
c,n

✓

x�
wA,B

2

◆�

= sin

"

n⇡

wA,B

✓

x�
wA,B

2

◆

#

n = 1, 3, 5 . . . . (3.75)

(3.76)

This can also be expressed as

sin



k
A,B
c,n

✓

x�
wA,B

2

◆�

= sin

"

2n� 1

wA,B
⇡

✓

x�
wA,B

2

◆

#

n = 1, 2, 3 . . . . (3.77)

(3.78)

Expanding the product and using a trigonometric identity results in

sin



k
A,B
c,n

✓

x�
wA,B

2

◆�

= � cos

"

2n� 1

wA,B
⇡x

#

sin



2n� 1

2
⇡

�

n = 1, 2, 3 . . . , (3.79)

or

sin



k
A,B
c,n

✓

x�
wA,B

2

◆�

= (�1)n cos

"

2n� 1

wA,B
⇡x

#

n = 1, 2, 3 . . . . (3.80)

Hence (4.80) and (4.81) become

e
A,B
yn (x) = �k

A,B
c,n (�1)n cos

h

k
A,B
c,n ⇡x

i

, (3.81)

h
A,B
xn (x) = �

e
A,B
yn (x)

Zen
, (3.82)

where k
A,B
c,n = 2n�1

wA,B
.

The transverse fields in regions A and B can be expanded in an infinite sum of modal

fields, with modal amplitudes to be determined through the application of appropriate
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boundary conditions. The transverse fields in region A, z < 0, are given by

Ey(x, z) =
N
X

n=1

aAn eAn (x)e�j�An z +
N
X

n=1

bAn eAn (x)ej�
A
n z (3.83)

Hy(x, z) =
N
X

n=1

aAn hAn (x)e�j�An z �
N
X

n=1

bAn hAn (x)ej�
A
n z, (3.84)

and the transverse fields in region B, z > 0, are described as

Ey(x, z) =
N
X

n=1

aBn eBn (x)e�j�Bn z +
N
X

n=1

bBn eBn (x)ej�
B
n z (3.85)

Hy(x, z) =
N
X

n=1

aBn hBn (x)e�j�Bn z �
N
X

n=1

bBn hBn (x)ej�
B
n z. (3.86)

The unknown modal amplitude coe�cients aAn , aBn , bAn , and bBn may be determined by

applying the boundary conditions on Ey and Hx at the interfaces between regions A and

B. At z = 0, the boundary condition on tangential electric field requires

N
X

n=1

aAn eAn (x) +
N
X

n=1

bAn eAn (x) =

8

>

<

>

:

PN
n=1 a

B
n eBn (x) +

PN
n=1 b

B
n eBn (x), |x| <

wB
2

0, |x| >
wB
2

,
(3.87)

while the boundary condition on tangential magnetic field requires

N
X

n=1

aAn hAn (x)�
N
X

n=1

bAn hAn (x) =
N
X

n=1

aBn hBn (x)�
N
X

n=1

bBn hBn (x). (3.88)

The system of functional equations (3.87)-(3.88) may be transformed into a system of linear

equations by applying appropriate testing operators. First, the equation resulting from the

tangential electric field boundary condition, (3.87), is multiplied by eAm(x) and integrated

over �wA/2  x  wA/2. Then, the equation resulting from the tangential magnetic field

boundary condition, (3.88), is multiplied by hBm(x) and integrated over�wB/2  x  wB/2.
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Here 1  m  N . This results in

N
X

n=1

aAn

wA
2
Z

�wA
2

eAn (x)eAm(x)dx+
N
X

n=1

bAn

wA
2
Z

�wA
2

eAn (x)eAm(x)dx =

N
X

n=1

aBn

wB
2
Z

�wB
2

eBn (x)eAm(x)dx+
N
X

n=1

bBn

wB
2
Z

�wB
2

eBn (x)eAm(x)dx (3.89)

N
X

n=1

aAn

wB
2
Z

�wB
2

hAn (x)hAm(x)dx�
N
X

n=1

bAn

wB
2
Z

�wB
2

hAn (x)hAm(x)dx =

N
X

n=1

aBn

wB
2
Z

�wB
2

hBn (x)hAm(x)dx�
N
X

n=1

bBn

wB
2
Z

�wB
2

hBn (x)hAm(x)dx. (3.90)

By defining new quantities, these expressions results in

N
X

n=1

aAnCmn +
N
X

n=1

bAnCmn =
N
X

n=1

aBn Dmn +
N
X

n=1

bBn Dmn (3.91)

N
X

n=1

aAnEmn �
N
X

n=1

bAnEmn =
N
X

n=1

aBn Fmn �
N
X

n=1

bBn Fmn, (3.92)
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where

Cmn =

wA
2
Z

�wA
2

eAm(x)eAn (x)dx, Dmn =

wB
2
Z

�wB
2

eAm(x)eBn (x)dx, (3.93)

Emn =

wB
2
Z

�wB
2

eBm(x)eAn (x)

ZAn
dx, Fmn =

wB
2
Z

�wB
2

eBm(x)eBn (x)

ZBn
dx. (3.94)

This yields the 2N ⇥ 2N matrix equation

2

6

4

D D

F �F

3

7

5

2

6

4

aB

bB

3

7

5

=

2

6

4

C C

E �E

3

7

5

2

6

4

aA

bA

3

7

5

, (3.95)

where each block of the matrix comprises N ⇥N submatrices. These submatrix entries are

specified in Appendix B.1.

Next, the expanded step junction, as shown in Figure 3.9, where wA < wB , is analyzed.

The transverse field equations (3.83) - (3.86) are the same as with the reduced step junction,

while the expressions resulting from the implementation of the boundary conditions change.

At z = 0, the tangential electric field boundary condition requires

N
X

n=1

aBn eBn (x) +
N
X

n=1

bBn eBn (x) =

8

>

<

>

:

PN
n=1 a

A
n eAn (x) +

PN
n=1 b

A
n eAn (x), |x| <

wA
2

0, |x| >
wA
2

,
(3.96)

while the tangential magnetic field boundary condition requires

N
X

n=1

aAn hAn (x)�
N
X

n=1

bAn hAn (x) =
N
X

n=1

aBn hBn (x)�
N
X

n=1

bBn hBn (x). (3.97)

As was done for the reduced step junction, the system of functional equations (3.96)-(3.97)

may be transformed into a system of linear equations by applying the appropriate testing
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Figure 3.8: Top view of reduced step junction.
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Figure 3.9: Top view of expanded step junction.
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operators. The equation resulting from the tangential electric field boundary condition,

(3.96), is multiplied by eAm(x) and integrated over �wB/2  x  wB/2. Then the equation

resulting from the tangential magnetic field boundary condition, (3.97), is multiplied by

hBm(x) and integrated over �wA/2  x  wA/2. Once again 1  m  N . This results in

N
X

n=1

aBn

wB
2
Z

�wB
2

eBn (x)eBm(x)dx+
N
X

n=1

bBn

wB
2
Z

�wB
2

eBn (x)eBm(x)dx =

N
X

n=1

aAn

wA
2
Z

�wA
2

eAn (x)eBm(x)dx+
N
X

n=1

bAn

wA
2
Z

�wA
2

eAn (x)eBm(x)dx (3.98)

N
X

n=1

aAn

wA
2
Z

�wA
2

hAn (x)hAm(x)dx�
N
X

n=1

bAn

wA
2
Z

�wA
2

hAn (x)hAm(x)dx =

N
X

n=1

aBn

wA
2
Z

�wA
2

hBn (x)hAm(x)dx�
N
X

n=1

bBn

wA
2
Z

�wA
2

hBn (x)hAm(x)dx. (3.99)

By defining new quantities, these expressions become

N
X

n=1

aAn Lmn +
N
X

n=1

bAn Lmn =
N
X

n=1

aBn Mmn +
N
X

n=1

bBn Mmn (3.100)

N
X

n=1

aAnOmn �
N
X

n=1

bAnOmn =
N
X

n=1

aBn Wmn �
N
X

n=1

bBn Wmn, (3.101)
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where

Lmn =

wB
2
Z

�wB
2

eBm(x)eBn (x)dx, Mmn =

wA
2
Z

�wA
2

eAm(x)eBn (x)dx, (3.102)

Omn =

wA
2
Z

�wA
2

eAm(x)eBn (x)

ZBn
dx, Wmn =

wA
2
Z

�wA
2

eAn (x)eAm(x)

ZAn
dx. (3.103)

This yields the 2N ⇥ 2N matrix equation

2

6

4

L L

O �O

3

7

5

2

6

4

aB

bB

3

7

5

=

2

6

4

M M

W �W

3

7

5

2

6

4

aA

bA

3

7

5

, (3.104)

where L, W , M , and O are N ⇥N submatrices with entries specified in Appendix B.1.

With general expressions for the two di↵erent step junctions determined, a pinched-down

iris is analyzed. Consider the waveguide setup shown in Figure 3.10. The first junction is a

reduced step. Thus using (3.95), it can be shown that

2

6

4

C C

E �E

3

7

5

2

6

4

aA

bA

3

7

5

=

2

6

4

D D

F �F

3

7

5

2

6

4

aB

bB

3

7

5

, (3.105)

where wA = w1, wB = w2, ✏A = ✏0, ✏B = ✏i, µA = µ0, and µB = µi. Next, the expanded

step junction can be analyzed using (3.104) such that

2

6

4

L L

O �O

3

7

5

2

6

4

aC

bC

3

7

5

=

2

6

4

M M

W �W

3

7

5

2

6

4

aD

bD

3

7

5

. (3.106)

Here wA = w2, wB = w1, ✏A = ✏i, ✏B = ✏0, µA = µi, and µB = µ0. In (3.106), since

the width of the guides on either side of the iris are equivalent, the submatrices reduce to

90



L = C, M = D, O = E, and W = F , and thus

2

6

4

D D

F �F

3

7

5

2

6

4

aC

bC

3

7

5

=

2

6

4

C C

E �E

3

7

5

2

6

4

aD

bD

3

7

5

. (3.107)

Now, the modal amplitude coe�cients at Port A are shifted to Port D using

2

6

4

aC

bC

3

7

5

=

2

6

4

P� 0

0 P+

3

7

5

2

6

4

aB

bB

3

7

5

, (3.108)

where

P±
mn = �mne

±j�in�. (3.109)

Here �mn is Kronecker delta and �in is the propagation constant in the iris region. Now,

(3.108) can also be expressed as

2

6

4

aC

bC

3

7

5

=

"

P

#

2

6

4

aB

bB

3

7

5

, (3.110)

or

aC = PaB (3.111)

bB = PbC. (3.112)

Next, substituting (3.111) into (3.105) and (3.112) into and (3.107), results in

CaA + CbA = DaB +DPbC (3.113)
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EaA � EbA = FaB � FPbC (3.114)

DPaB +DbC = CaD + CbD (3.115)

FPaB � FbC = EaD � EbD. (3.116)

Multiplying (3.113) and (3.115) by C�1, and (3.114) and (3.116) by F�1 yields

aA + bA = UaB + UPbC (3.117)

V aA � V bA = aB � PbC (3.118)

UPaB + UbC = aD + bD (3.119)

PaB � bC = �V aD � V bD, (3.120)

where U = C�1D and V = F�1E. Now, rearranging (3.118) produces

aB = PbC + V aA � V bA, (3.121)

which can then be substituted into (3.117), (3.119), and (3.120), resulting in

aA + bA = UPbC + UV aA � UV bA + UPbC (3.122)

UPPbC + UPV aA � UPV bA + UbC = aD + bD (3.123)

PPbC + PV aA � PV bA � bC = V aD � V bD. (3.124)

Rearranging (3.124) and factoring bC gives

[I � PP ] bC = PV aA � PV bA � V aD + V bD, (3.125)
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or

bC = [I � PP ]�1 PV aA � [I � PP ]�1 PV bA

� [I � PP ]�1 V aD + [I � PP ]�1 V bD. (3.126)

Here I is the identity matrix. Substituting (3.126) into (3.122) yields

aA + bA = 2UP [I � PP ]�1 PV aA � 2UP [I � PP ]�1 PV bA

�2UP [I � PP ]�1 V aD + 2UP [I � PP ]�1 V bD + UV aA � UV bA. (3.127)

This is then rearranged, resulting in

n

I � UV � 2UP [I � PP ]�1 PV
o

aA +
n

I + UV + 2UP [I � PP ]�1 PV
o

bA =
n

�2UP [I � PP ]�1 V
o

aD +
n

2UP [I � PP ]�1 V
o

bD. (3.128)

The expression

UV + 2UP [I � PP ]�1 PV, (3.129)

which appears multiple times in (3.128), can be reduced by factoring U and V and simpli-

fying, resulting in

UV + 2UP [I � PP ]�1 PV = USV, (3.130)

where

Smn =
1 + P2

mn
1� P2

mn
. (3.131)

Note that since P is diagonal, the resulting S matrix is also diagonal. Thus inserting (3.130)
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into (3.128) gives

[I � USV ] aA + [I + USV ] bA =
n

�2UP [I � PP ]�1 V
o

aD +
n

2UP [I � PP ]�1 V
o

bD. (3.132)

Through similar simplification, the expressions on the right-hand side of (3.132) reduces to

[I � USV ] aA + [I + USV ] bA = [�UTV ] aD + [UTV ] bD, (3.133)

where

Tmn =
2Pmn

1� P2
mn

. (3.134)

The matrix T is also diagonal. Next, substituting (3.126) into (3.123) and simplifying results

in

[UTV ] aA + [�UTV ] bA = [I + USV ] aD + [I � USV ] bD. (3.135)

These two equations, (3.133) and (3.135), can now be written in matrix form as

2

6

4

K K̄

J �J

3

7

5

2

6

4

aA

bA

3

7

5

=

2

6

4

�J J

K̄ K

3

7

5

2

6

4

aD

bD

3

7

5

, (3.136)

where K = I � USV , K̄ = I + USV , and J = UTV . This reduces the system of equations

from four equations with 4N unknowns, (3.113) - (3.114), to a system of two equations with

2N unknowns, (3.136).

Now assuming aA is known, the remaining modal amplitude coe�cients, aD, bA and
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bD, can be determined by first defining

bD = RaD, (3.137)

where R is called the reflection matrix. This reflection matrix depends on what type of load

is being attached to Port D. A myriad of loads can be attached to the iris region and the

subsequent reflection matrix derived. In this dissertation, the expressions for the theoretical

reflection coe�cient for an iris placed in front of a conductor-backed material sample are

derived. Substituting (3.137) into (3.133) and (3.135) results in

KaA + K̄bA = �JaD + JRaD (3.138)

JaA � JbA = K̄aD +KRaD (3.139)

or

KaA + K̄bA = J (R� I) aD (3.140)

JaA � JbA =
�

K̄ +KR
�

aD. (3.141)

This can be written as a matrix equation

2

6

4

J (R� I) �K̄

K̄ +KR J

3

7

5

2

6

4

aD

bA

3

7

5

=

2

6

4

KaA

JaA

3

7

5

, (3.142)

which, upon solution, gives the desired reflection coe�cient for a terminated iris.

The reflection matrix for a material-loaded guide is required in (3.142) to find the desired

reflection coe�cient. This may be determined as follows. Considering Figure 3.11, the

95



transverse fields for the region �d < z < 0, are written as

Ey(x, z) =
N
X

n=1

a
g
ne

g
n(x)e

�j�
g
nz +

N
X

n=1

b
g
ne

g
n(x)e

j�
g
nz (3.143)

Hx(x, z) =
N
X

n=1

a
g
nh

g
n(x)e

�j�
g
nz �

N
X

n=1

b
g
nh

g
n(x)e

j�
g
nz, (3.144)

while those in the sample region, 0 < z < �, are

Ey(x, z) =
N
X

n=1

asne
s
n(x)e

�j�snz +
N
X

n=1

bsne
s
n(x)e

j�snz (3.145)

Hx(x, z) =
N
X

n=1

asnh
s
n(x)e

�j�snz �
N
X

n=1

bsnh
s
n(x)e

j�snz. (3.146)

Here, en(x) and hn(x) are the transverse electric and magnetic modal fields, respectively,

and as shown in (4.80) and (4.81) are given by

e
g,s
n (x) = �k

g,s
xn (�1)n cos

h

k
g,s
xn x

i

(3.147)

h
g,s
n (x) =

e
g,s
n (x)

Z
g,s
n

, (3.148)

where k
g,s
xn = (2n � 1)⇡/w1 and Z

g,s
n = !µ0µg,s/�

g,s
n . The propagation constant �

g,s
n

determined from (2.140) as

�
g,s
n =

r

(kg,s)2 �
⇣

k
g,s
xn

⌘2
, (3.149)

where kg,s = k0
p
µg,s✏g,s.

Expressions for the unknown modal amplitude coe�cients a
g
n, b

g
n, a

s
n, and bsn may be

determined by applying the boundary conditions on transverse electric and magnetic fields

at the interfaces between the guide and sample region and between the sample region and

conducting surface. At the interface z = 0 the tangential electric field boundary condition
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requires

N
X

n=1

a
g
ne

g
n(x) +

N
X

n=1

b
g
ne

g
n(x) =

N
X

n=1

asne
s
n(x) +

N
X

n=1

bsne
s
n(x), (3.150)

or, since e
g
n(x) = esn(x),

a
g
n + b

g
n = asn + bsn. (3.151)

The tangential magnetic field boundary condition requires

N
X

n=1

a
g
ne

g
n(x)�

N
X

n=1

b
g
nh

g
n(x) =

N
X

n=1

asnh
s
n(x)�

N
X

n=1

bsnh
s
n(x) (3.152)

or

a
g
n

Z
g
n
� b

g
n

Z
g
n

=
asn
Zsn

� bsn
Zsn

. (3.153)

At z = � the boundary condition on the tangential electric field requires

N
X

n=1

asne
s
n(x)e

�j�sn� +
N
X

n=1

bsne
s
n(x)e

j�sn� = 0 (3.154)

or

asne
�j�sn� + bsne

j�sn� = 0. (3.155)

Rearranging (3.155) and substituting into (3.151) and (3.153) gives

a
g
n + b

g
n = asn

h

1� e2n

i

(3.156)

�a
g
n + g

g
n =

Z
g
n

Zsn
asn

h

1 + e2n

i

, (3.157)
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where en = e�j�sn�. Dividing (3.156) by (3.157) results in

a
g
n + b

g
n

�a
g
n + b

g
n

=
Zsn
Z
g
n
Qn, (3.158)

where

Qn =
1� e2n
1 + e2n

. (3.159)

This expression is recognized as a tangent function, and can be written as

Qn = j tan
�

�sn�
�

. (3.160)

Now, multiplying (3.158) by Z
g
n

⇣

�a
g
n + b

g
n

⌘

yields

Z
g
na

g
n + Z

g
nb

g
n = Z

g
nQna

g
n � Z

g
nQnb

g
n. (3.161)

This expression is rearranged to give

b
g
n
a
g
n

=
ZsnQn � Z

g
n

ZsnQn + Z
g
n
. (3.162)

Now, as is shown in Appendix B, the modal field coe�cients can be shifted from one interface

to another. Thus the expressions to shift the modal field coe�cients from the interface at

z = 0 to z = �d are

a
g
n = aTn e�j�

g
nd (3.163)

bTn = b
g
ne

�j�
g
dd. (3.164)

These expressions can then be inserted into (3.162). Thus the reflection vector, rn = bTn /aTn ,
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is determined to be

rn = e�j�
g
n2dZ

s
nQn � Z

g
n

ZsnQn + Z
g
n
. (3.165)

This in turn means the reflection matrix, [R] from (3.138), is a diagonal matrix with entries

Rmn = �mnrn. Once the modal coe�cient bA is found by solving the matrix equation from

(3.142), the reflection coe�cient at Port A is given by

SI11 =
bA1
aA1

. (3.166)

3.3.1.2 Reflection Coe�cient with No Iris

The characterization of ✏s and µs is also dependent on the measurement of the reflection

coe�cient from the conductor-backed sample with no iris present. The theoretical reflection

coe�cient for no-iris case is determined in this section. Because the no-iris setup is the

same as shown in Figure 3.11, (3.165) can be used directly. The reflection coe�cient at the

measurement plane z = �d is given by

SN11 =
bT1
aT1

= r1. (3.167)

With no iris present, only the TE10 mode is implicated, thus

SN11 = e
�j�

g
12d

Zs1Q1 � Z
g
1

Zs1Q1 + Z
g
1
. (3.168)

3.3.2 Validation of Theoretical Analysis

Once again, the theoretical analysis is validated before using it for parameter extraction. As

was done for the NRW method in Section 3.2.2, the theoretical model is validated against
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HFSS with an FGM125 test sample. Using the FGM125 material parameters given in Section

3.2.2, the theoretical analysis was used to compute the reflection coe�cient from the sample

placed in an X-band waveguide with dimensions a = 22.86 mm and b = 10.16 mm. The

iris waveguide dimensions are d = 1 mm, � = 1 mm, and w2 = 7.62 mm. The results of

this theoretical analysis are shown in Figure 3.12. Absolute tolerances of 0.1 dB for |SI11|

and 0.01� for \SI11 were chosen so that the accuracy of the computed modal analysis is

better than the expected measurement accuracy of the HP 8510C vector network analyzer.

These tolerances were obtained using the HP 8510 Specifications & Performance Verification

Program. For the FGM 125 material considered, the S-parameters typically converge to the

specified tolerance with N = 140 terms.

Also shown in Figure 3.12 is SI11 computed using HFSS. The waveguide port was once

again model with a length of 50 mm. The convergence tolerance in HFSS was specified

as a maximum delta S of 0.01 at the solution frequency 12.4 GHz. Excellent agreement is

obtained between the modal analysis and HFSS, thus validating the modal computation.

Figure 3.13 shows the reflection coe�cient for the no-iris case computed using the the-

oretical analysis and HFSS. The theoretical analysis was used to determine the reflection

coe�cient from a sample of FGM125 sample with conductor-backing. The HFSS results

were obtained with similar port dimensions and convergence criteria used for the HFSS iris

simulation. Once again excellent agreement is achieved, which provides confidence before

implementation of the forward problem in the extraction routine.

3.3.3 Extraction Process

With the measurements of the reflection coe�cients with no iris, SN11, and with an iris,

SI11, the permittivity and permeability can be extracted. A complex root solver such as a

Newton’s method can be used to solve for two complex unknowns from two independent

measurements. Experience has shown that with typical values of experimental error it can

sometimes be di�cult to find solutions to this system of equations. This is why closed-
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Figure 3.12: S-parameters computed for a conductor-backed FGM125 test material placed
behind an iris.
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Figure 3.13: S-parameters computed for a conductor-backed FGM125 test material.
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form equations such as those in the NRW method or the Air-backed/Conductor-backed [37]

method are preferred. An alternative approach allows a complex root-solver to determine

ks from one measurement and then closed-form expressions can be used to compute µs and

✏s. First, Zs1 is solved for in (3.168) resulting in

Zs1Q1 = Z
g
1
1 + S̃N11
1� S̃N11

= ↵, (3.169)

where

S̃N11 = SN11e
j�

g
12d. (3.170)

This ↵ value is a known quantity since SN11 is measured and the impedance of the guide

depends on known values of µg and ✏g. Now, (3.169) can also be expressed as

!µs
�s1

Q1 = ↵, (3.171)

and solving for µs results in

µs =
�s1
Q1

↵

!
. (3.172)

The only unknown values in (3.172) are Q1 and �s1. From (3.160) it is seen that Q1 only

depends on �s1 and the known value of �. Therefore, the only unknown value is �s1, which

depends on ks = k0
p
µs✏s. A secant method can then be used to extract ks from the

measurement of SI11. Knowing ks, �s1 can be computed, which in turn can be used to

compute Q1. With �s1 and Q1 determined µs is found using (3.172). Finally using µs and

ks, ✏s can be determined.

Once again the extraction process is validated with the characterization of a known

material. The FGM125 material parameters are extracted from the HFSS generated S-
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parameters shown in Figure 3.12 and Figure 3.13. Here the distance between the iris and

the material is d = 1 mm. Figure 3.14 shows the results of the characterization. Also

shown in Figure 3.14 are the material parameters extracted from S-parameters generate in

HFSS with d = 1 mm in the model. Note that the material parameters used to generate

the S-parameters in HFSS assume frequency independent values of ✏s = 7.3197 � j0.0464

and µs = 0.5756 � j0.4842. The extracted constitutive parameters shown in Figure 3.14

are frequency dependent and not consistent with the values used in HFSS. The material

parameter ✏00s is especially inconsistent since the values become positive. This is a result of

the S-parameter error propagating through to the extraction. Notice that the constitutive

parameters are more consistent with the values used in HFSS when the distance between the

material and iris is decreased. The e↵ects of the propagation of S-parameter uncertainty on

the characterization of the material parameters is explored in greater detail in Section 3.3.4.

3.3.4 Iris Design

This characterization method for conductor-back materials can be customized for a particular

material by optimizing the iris-measurement system so that it has minimal sensitivity to S-

parameter uncertainty. To determine the optimal iris geometry a Monte Carlo technique

was used to study e↵ects of the propagation of the random error inherent to the VNA used

in the measurements. Depending on the material under test, the geometrical parameters of

the iris measurement (�, d, and w2 in Figure 3.7) are optimized to have low sensitivity to

uncertainties of the measured S-parameters. A single parameter sweep was used to perform

an exhaustive search of each geometrical parameter assuming the remaining two parameters

were fixed. The fixed parameters in each of the parameter sweeps were determined through

initial observations of random configurations of the iris-measurement system. The Monte

Carlo analysis of the propagation of VNA uncertainty was used for each of the individual

configurations in the parameter sweep and the amount of propagated error was calculated.

The uncertainties of the measured S-parameters used in the Monte Carlo error analysis
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were chosen to be smaller than those for an HP8510C network analyzer system, due to the

strong sensitivity of this technique to S-parameter uncertainty. The uncertainties for the

HP8510C network analyzer were determined using the software package HP 8510 Specifica-

tions & Performance Verification Program provided by Hewlett Packard. Although the VNA

measurement uncertainty is dependent on S-parameter amplitudes, for the range of ampli-

tudes encountered in this dissertation the VNA measurement uncertainty can be assumed

to be amplitude and frequency independent. Using the software package, the statistical

variance of S11 is specified linearly in amplitude and phase as values of �A11
= 0.004 and

��11
= 0.8�, respectively, for the HP8510C network analyzer. It should be noted that this is

not the analyzer used in subsequent measurements; however, these values give a worse case

set of uncertainties to gauge in the iris-measurement design optimization. Unfortunately,

these uncertainty values prove to be too high for the iris characterization technique and the

resulting extracted parameters are very inaccurate. Therefore, the statistical variance on

phase is reduced to ��11
= 0.1�.

The materials under test originally planned for experimental validation were Eccosorb

FGM125 and FGM40. The geometry of the FGM125 sample is w1 = 22.86 mm, b =

10.16 mm, and � = 3.175 mm. The geometry of the FGM40 sample is w1 = 22.86 mm,

b = 10.16 mm, and � = 1.016 mm. The forward problem was solved at 8.2 GHz, 10.09 GHz,

and 12.4 GHz using the geometrical parameters determined from the parameter sweep. The

material parameters of FGM125 and FGM40 at these frequencies are shown Table 3.1 and

Table 3.2, respectively. White Gaussian noise was then added to each of the S-parameter

sets, and the noisy data was used to extract the material parameters. Five hundred trials

were used in the Monte Carlo analysis in each of the parameter sweeps, and the average

values of the material parameters and the standard deviations were calculated.

The first material used in the iris-measurement design is FGM125. The e↵ects of changing

the thickness of the iris (�) were studied first. In these simulations the iris opening was set

to half the width of the X-band waveguide, w2 = 11.43 mm (0.45 inches), and the distance
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Table 3.1: Nominal material parameters for FGM125. These data were obtained using the
waveguide NRW method. Data provided by Captain Milo Hyde IV form the Air Force
Institute of Technology , Wright-Patterson AFB, Dayton, OH [46]

Frequency (GHz) Relative Permittivity RelativePermeability

8.2 7.258� j0.056 0.600� j0.761
10.9 7.320� j0.046 0.576� j0.484
12.4 7.374� j0.025 0.615� j0.212

Table 3.2: Nominal material parameters for FGM40. These data were obtained using the
waveguide NRW method. Data provided by Captain Milo Hyde IV form the Air Force
Institute of Technology , Wright-Patterson AFB, Dayton, OH [46]

Frequency (GHz) Relative Permittivity RelativePermeability

8.2 21.864� j0.390 2.088� j2.537
10.9 22.036� j0.332 1.668� j2.354
12.4 22.244� j0.166 1.245� j2.110

between the iris and the material was set to d = 0 mm. The forward problem was solved at 21

iris thicknesses evenly distributed from 0.1 mm to 4 mm at the three frequencies. To better

gauge the e↵ectiveness of this characterization technique, the results of the Monte Carlo

error analysis are compared against the two-thickness method, which is another reflection-

only measurement technique with relatively low sensitivity to propagation of measured S-

parameter error [27]. The second measurement in the two-thickness technique assumes a

thickness of 2�. Instead of plotting the average values and 2� error bars, as will be done in

subsequent Monte Carlo error analyses in this dissertation, the values obtained by dividing

the error of the iris technique (�iris) by the error from the two-thickness technique (�2-Thick)

are plotted. This gives a sense of how many times worse the iris technique is compared to

the two-thickness approach. Figures 3.15 - 3.17 show the results of the � parameter sweep

for the FGM125 sample. It is seen that the thinner the iris is, the less sensitive the extracted

material parameters are to the propagation of measured S-parameter uncertainty.

With the knowledge that a thin iris is best, the distance between the iris and the sample
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Figure 3.15: Comparison of the error in the constitutive parameters of FGM125 sample due
to S-parameter error using the iris technique and two thickness method. This shows the
results of the � parameter sweep assuming w2 = 11.43 mm and d = 0 mm at 8.2 GHz.
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Figure 3.16: Comparison of the error in the constitutive parameters of FGM125 sample due
to S-parameter error using the iris technique and two thickness method. This shows the
results of the � parameter sweep assuming w2 = 11.43 mm and d = 0 mm at 10.09 GHz.
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Figure 3.17: Comparison of the error in the constitutive parameters of FGM125 sample due
to S-parameter error using the iris technique and two thickness method. This shows the
results of the � parameter sweep assuming w2 = 11.43 mm and d = 0 mm at 12.4 GHz.
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was analyzed. Here d is swept from 0 mm to 2 mm at 0.1 mm steps. In these simulations the

iris opening was once again set to w2 = 11.43 mm (0.45 inches) and as determined from the

previous parameter sweep, a narrow iris thickness was used, specifically, the thickness was set

to � = 0.1 mm. The results of this parameter sweep are shown in Figures 3.18 through 3.20.

From these figures it is determined that the least error occurs when the FGM125 material

sample is placed against the iris.

Finally, the last parameter sweep analyzes the e↵ects of changing the width of the iris

opening while keeping d = 0 mm and � = 0.1 mm fixed. The iris width, w2, is swept from

5.08 mm (0.2 inches) to 16.51 mm (0.65 inches) at 21 evenly spaced steps. Figures 3.21

through 3.23 show the results of the parameter sweep. It was determined that the optimal

iris opening width is 7.62 inches (0.3 inches) for measurements of an FGM125 sample.

A similar iris measurement design was implemented for measurements of FGM40. Figures

3.24 through 3.26 show the results of the � parameter sweep from 0.1 mm to 4 mm with

w2 = 11.43 mm and d = 0 mm fixed. The results of the d parameter sweep from 0 mm to

2 mm are shown in Figures 3.27 through 3.29. Here the parameters � and w2 are fixed to

be 0.1 mm and w2 = 11.43 mm, respectively. Finally, Figures 3.30 through 3.32 show the

results of the w2 parameter sweep from 2.55 mm (0.1 inches) to 15.24 mm (0.6 inches) with

� = 0.1 mm and d = 0 mm. Similar to the FGM125 analysis, the optimal thickness of the

iris is to be as thin as possible and the optimal position of the sample is at d = 0 mm. It was

also determined that the best iris opening width is 5.08 mm (0.2 inches) for the measurement

of FGM40.

3.3.5 Experimental Results

To experimentally validate the proposed technique at X-band, an iris waveguide insert was

machined from 360 brass. The iris was made for the characterization of FGM125. The

specified inner dimensions of the iris are w2 = 0.3 inches by b = 0.9 inches, and measurement

of the constructed iris using precision calipers showed that the iris was constructed with a
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Figure 3.18: Comparison of the error in the constitutive parameters of FGM125 sample due
to S-parameter error using the iris technique and two thickness method. This shows the
results of the d parameter sweep assuming w2 = 11.43 mm and � = 0.1 mm at 8.2 GHz.
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Figure 3.19: Comparison of the error in the constitutive parameters of FGM125 sample due
to S-parameter error using the iris technique and two thickness method. This shows the
results of the d parameter sweep assuming w2 = 11.43 mm and � = 0.1 mm at 10.09 GHz.
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Figure 3.20: Comparison of the error in the constitutive parameters of FGM125 sample due
to S-parameter error using the iris technique and two thickness method. This shows the
results of the d parameter sweep assuming w2 = 11.43 mm and � = 0.1 mm at 12.4 GHz.
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Figure 3.21: Comparison of the error in the constitutive parameters of FGM125 sample due
to S-parameter error using the iris technique and two thickness method. This shows the
results of the w2 parameter sweep assuming d = 0 mm and � = 0.1 mm at 8.2 GHz.
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Figure 3.22: Comparison of the error in the constitutive parameters of FGM125 sample due
to S-parameter error using the iris technique and two thickness method. This shows the
results of the w2 parameter sweep assuming d = 0 mm and � = 0.1 mm at 10.09 GHz.
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Figure 3.23: Comparison of the error in the constitutive parameters of FGM125 sample due
to S-parameter error using the iris technique and two thickness method. This shows the
results of the w2 parameter sweep assuming d = 0 mm and � = 0.1 mm at 12.4 GHz.
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Figure 3.24: Comparison of the error propagated to constitutive parameters of FGM40
sample from S-parameter error using the iris technique and two thickness method. This
shows the results of the � parameter sweep assuming w2 = 11.43 mm and d = 0 mm at
8.2 GHz.
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Figure 3.25: Comparison of the error propagated to the constitutive parameters of FGM40
sample from S-parameter error using the iris technique and two thickness method. This
shows the results of the � parameter sweep assuming w2 = 11.43 mm and d = 0 mm at
10.09 GHz.
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Figure 3.26: Comparison of the error propagated to the constitutive parameters of FGM40
sample from S-parameter error using the iris technique and two thickness method. This
shows the results of the � parameter sweep assuming w2 = 11.43 mm and d = 0 mm at
12.4 GHz.
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Figure 3.27: Comparison of the error propagated to constitutive parameters of FGM40
sample from S-parameter error using the iris technique and two thickness method. This
shows the results of the d parameter sweep assuming w2 = 11.43 mm and � = 0.1 mm at
8.2 GHz.
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Figure 3.28: Comparison of the error propagated to constitutive parameters of FGM40
sample from S-parameter error using the iris technique and two thickness method. This
shows the results of the d parameter sweep assuming w2 = 11.43 mm and � = 0.1 mm at
10.09 GHz.
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Figure 3.29: Comparison of the error propagated to constitutive parameters of FGM40
sample from S-parameter error using the iris technique and two thickness method. This
shows the results of the d parameter sweep assuming w2 = 11.43 mm and � = 0.1 mm at
12.4 GHz.
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Figure 3.30: Comparison of the error propagated to constitutive parameters of FGM40
sample from S-parameter error using the iris technique and two thickness method. This
shows the results of the w2 parameter sweep assuming d = 0 mm and � = 0.1 mm at
8.2 GHz.
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Figure 3.31: Comparison of the error propagated to constitutive parameters of FGM40
sample from S-parameter error using the iris technique and two thickness method. This
shows the results of the w2 parameter sweep assuming d = 0 mm and � = 0.1 mm at
10.09 GHz.
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Figure 3.32: Comparison of the error propagated to constitutive parameters of FGM40
sample from S-parameter error using the iris technique and two thickness method. This
shows the results of the w2 parameter sweep assuming d = 0 mm and � = 0.1 mm at
12.4 GHz.
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manufacturing error of less than 5 mils. The iris was inserted between two 6 inch long

commercial X-band waveguide extensions of cross-section 0.4 inch by 0.9 inch. A sliding

short with a cross-section of 0.4 inch by 0.9 inch was used as a sample holder to provide the

conductor backing of the FGM125 sample.

A sample of FGM125 was cut from a sheet of Eccosorb FGM125. Figure 3.33 shows a

picture of the iris, FGM125 sample, waveguide extension, and sliding short sample holder.

The sample was cut approximately 0.01 mm larger than the inner dimensions of the sliding

short so that when inserted it would compress slightly and eliminate air gaps between the

FGM125 sample and the sliding short walls. The thickness of the sample is 2.96 mm.

Measurements of the S-parameters of the FGM125 sample with and without the iris were

made using an Agilent E5071C VNA. The VNA was calibrated using a Maury Microwave

X7005M X-band calibration kit, consisting of two o↵set shorts and a load. The measurements

were made with VNA settings of �5 dBm source power, 64 averages, and an IF bandwidth

of 5 kHz. Finally, the material parameters were extracted using the measured values of

SI11 and SN11. The results of the characterization are shown in Figure 3.34. Also shown

is the characterization of the same sample using the air-backed/conductor-backed method.

There exists good agreement between the two methods for the extraction of the permeability.

However, the characterization of the permittivity is poor using the iris technique.

The error in the extraction of the permittivity is a direct result of the propagation of error

from the S-parameter measurements. Figure 3.35 and Figure 3.36 show the comparison of

the measured SI11 and SN11, respectively, to the computed values of SI11 and SN11 generated

using the material parameters extracted with the air-back/conductor-backed method. The

deviation of the measurement from theory, and the strong oscillations in the measured values,

cause a dramatic e↵ect on the permittivity characterization. The most notable deviation is

the extraction of ✏00r , where the values are positive across the frequency band. Thus, it can

be concluded that while this technique can be used to accurately characterize permeability,

the characterization of permittivity is not reliable.
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Sample! Sliding short!

Waveguide extension! Iris!

Figure 3.33: Manufactured iris with waveguide extension, sliding short sample holder, and
FGM125 sample.
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Figure 3.34: Relative permittivity and permeability extracted using the iris technique and
the air-backed/conductor-backed method.
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Figure 3.35: Comparison of measured and forward problem generated SI11.
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3.3.6 Summary

A reflection-only measurement technique is outlined for characterizing conductor-backed

materials. The measurements of the reflection coe�cients for a conductor-backed material

with and without the presence of an iris are used to characterize the permeability and

permittivity. A mode-matching technique is outlined for computing the theoretical reflection

coe�cient from an iris in front of a conductor-backed sample. The dimensions of the iris

measurement system were optimized to reduce the amount of S-parameter error propagated

through to the characterization. Using these dimensions, an iris was fabricated and the

technique was validated using laboratory measurements of a FGM125 sample. It was found

that the technique is very sensitivity to S-parameter error, especially for the characterization

of ✏00r . The technique performs very well for the characterization of the permeability.
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CHAPTER 4

BIAXIAL MATERIAL

CHARACTERIZATION

4.1 Introduction

This chapter presents two methods for characterizing biaxially anisotropic materials using

rectangular waveguides. The first technique uses an extension of the NRW method (Section

3.2) applied to biaxial materials. These materials react di↵erently depending on the inci-

dent wave polarization, but do not establish coupling between orthogonal field components.

The tensors for biaxial materials have a total of six nonzero entries, corresponding to com-

plex material parameters, and therefore three di↵erent sets of reflection and transmission

measurements are required. This technique yields closed form solutions for all six material

parameters. Due to the rectangular nature of the waveguide, typically three separate sam-

ples are manufactured from the material for placement in the cross-sectional plane of the

waveguide. These samples are manufactured so the axes of the permittivity and permeability

tensors align with the geometry of the waveguide.

The second technique uses a reduced-aperture, square-waveguide sample holder, such that

a cubical sample can be used to characterize. This provides the minimum three reflection and
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transmission measurements required for characterization and allows all material parameters

to be determined from one sample. The sample holder is positioned between two empty

sections rectangular waveguides to guarantee only the dominant mode is present at the

sample holder, and the S-parameters are measured. Mode matching is used to determine the

theoretical reflection and transmission coe�cients of the dominant mode. Measurements of

the reflection and transmission coe�cients for various orientations of the same sample within

the sample holder produce multiple transcendental equations. The inverse problem is then

solved using a Newton’s method to find the material parameters.

4.2 NRW Material Characterization Extended to Bi-

axially Anisotropic Materials

Of the techniques proposed for measuring properties of isotropic materials, the most accu-

rate are those that expose a sample of the material to an electromagnetic wave and use

measurements of the reflection and transmission of the wave to determine the permittivity

and permeability. Confinement of the wave produces good signal strength, so an appealing

approach is to put a layer of the material into a rectangular waveguide and use a network

analyzer to measure the reflection and transmission coe�cients as a function of frequency.

Using simple guided wave theory, closed-form inverse expressions for permittivity and per-

meability may be obtained (see Section 3.2). These expressions are well-conditioned for

most of the material parameters of interest, except, as was discussed previously, when the

material thickness approaches multiples of a half wavelength. This section presents an exten-

sion of the classical waveguide technique for biaxial anisotropic materials and will describe

the waveguide technique along with exploring parameter sensitivity by performing a Monte

Carlo error analysis.
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4.2.1 Theoretical Reflection and Transmission Coe�cients

The sample placed in the cross-sectional plane of the waveguide is assumed to be linear and

homogeneous. The permittivity and permeability has the constitutive material tensors

✏ = ✏0

2

6

6

6

6

4

✏x 0 0

0 ✏y 0

0 0 ✏z

3

7

7

7

7

5

(4.1)

and

µ = µ0

2

6

6

6

6

4

µx 0 0

0 µy 0

0 0 µz

3

7

7

7

7

5

, (4.2)

where tensor entries are relative complex quantities: ✏x = ✏0x + j✏00x, µx = µ0x + jµ00x and so

on.

The waveguide system, shown in Figure 4.1, consist of empty waveguide sections attached

to the sample region. It is assumed that the empty waveguide sections are of adequate

length such that a single TE10 rectangular waveguide mode is incident on the sample from

the transmitting section (z < 0) and that single mode is obtained at the receiving extension

(z > d).

4.2.1.1 Field Structure in a Waveguide Filled with Biaxial Material

The TE10 mode incident from the transmitting empty waveguide couples into the TE10

biaxial filled waveguide mode since the field structure in both regions is identical. This

means the fields of the TE10 mode do not couple into orthogonal field components and

therefore higher order modes are not excited. This can be seen by first specializing the field

equations for the isotropic material filled guide (Section 2.3.1.1) and the biaxial filled guide

(Section 2.3.2.1) to the waveguide setup shown in Figure 4.1. The field equations for the
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isotopic material can be used to represent the propagating TE10 mode in the transmitting

region, and the field equations for the biaxial material can be used to determine the TE10

mode in the sample region.

In the empty waveguide region, it can be shown from Section 2.3.1.1 that the TE10 mode

is the dominant mode (n = 1), which means u1 = 1 and v1 = 0. Therefore, kex1 = ⇡/a,

key1 = 0, and kec1 = ⇡/a is the cuto↵ wavenumber for the first order mode. Now, using

(2.140) the propagation constant is given by

�e1 =

r

k20 �
⇣

kec1

⌘2
(4.3)

where k0 = !
p
µ0✏0. The transverse field equations from (2.151) - (2.152) then results in

Ee
y (x, z) = C1e

e
y1 (x) e

±j�e1z (4.4)

He
x (x, z) = ⌥C1h

e
x1 (x) e

±j�e1z. (4.5)

Here eey1 and hex1 are the transverse electric and magnetic modal fields in the empty guide,

respectively, and are expressed as

eey1 = �kex1 sin
�

kex1x
�

, (4.6)

hex1 =
kex1
Zen

sin
�

kex1x
�

, (4.7)

where the modal wave impedance in the empty guide is given by Ze1 = !µ0/�
e
1.

From Section (2.3.2.1) a TE10 mode in the biaxial material filled sample region implies

that n = 1, and so ksc1 = ⇡/a is the cuto↵ wavenumber for the first order mode. Thus the

propagation constant from (2.206) is given by

�s1 =
r

k20µx✏y � µx
µy

k2c1. (4.8)
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The transverse field equations from (2.216)-(2.217) become

Es
y(x, z) = C1e

s
y1 (x) e

±j�s1z (4.9)

Hs
x(x, z) = ⌥C1h

s
y1 (x) e

±j�s1z, (4.10)

where the modal fields are given by

esy1(x) = �ksc1 sin
�

ksc1
�

(4.11)

hsx1(x) =
ksc1
Zs1

sin
�

ksc1
�

. (4.12)

Here the modal wave impedance in the empty guide is given by Zs1 = !µ0µx/�
s
1.

It is clearly seen from the transverse field equations that the field structures in the empty

guide and in the sample region are identical; this results in direct coupling of the first order

mode from the empty region to the biaxially filled sample region. Thus a mode matching

analysis does not need to be used to calculate the reflection and transmission coe�cients.

4.2.1.2 Solution for Reflection and Transmission Coe�cients

The transverse fields in the sample region and in the waveguide extensions can be represented

using the modal fields, with the modal amplitudes determined through the application of

boundary conditions. For the empty waveguide region z < 0 the fields are

Ey(x, z) = �Hikex1 sin
�

kex1x
�

e
�j�e1z �Hrkex1 sin

�

kex1x
�

e
j�e1z (4.13)

Hx(x, z) = Hik
e
x1
Ze1

sin
�

kex1x
�

e
�j�e1z �Hrk

e
x1
Ze1

sin
�

kex1x
�

e
j�e1z. (4.14)
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Here, Hi is the amplitude of the incident TE10 wave, and is assumed to be known during

analysis. In the sample region, 0 < z < d, the transverse fields are given by

Ey(x, z) = �H+ksc1 sin
�

ksc1x
�

e
�j�s1z �H�ksc1 sin

�

ksc1x
�

e
j�s1z (4.15)

Hx(x, z) = H+ksc1
Zs1

sin
�

ksc1x
�

e
�j�s1z �H�ksc1

Zs1
sin

�

ksc1x
�

e
j�s1z. (4.16)

In the receiving waveguide extension, z > d, the fields are

Ey(x, z) = �Htkex1 sin
�

kex1x
�

e
�j�e1(z�d)

(4.17)

Hx(x, z) = Htk
e
x1
Ze1

sin
�

kex1x
�

e
�j�e1(z�d)

. (4.18)

The modal amplitudes Hr,H+, H�, and Ht may be determined by applying the bound-

ary conditions on Ey and Hx at the interfaces between the biaxial sample and empty guide.

Applying the boundary condition on the tangential electric field at z = 0 results in

h

Hi +Hr
i

kex1 sin
�

kex1x
�

=
h

H+ +H�
i

ksc1 sin
�

ksc1x
�

, (4.19)

and since ksc1 = kex1, then

h

Hi +Hr
i

=
h

H+ +H�
i

. (4.20)

The tangential magnetic field boundary condition at z = 0 requires

h

Hi �Hr
i

kex1
kex1
Ze1

sin
�

kex1x
�

=
h

H+ �H�
i

ksc1
ksc1
Zs1

sin
�

ksc1x
�

, (4.21)

or

h

Hi �Hr
i Zs1
Ze1

=
h

H+ �H�
i

. (4.22)
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At z = d, the boundary condition on the tangential electric field requires



H+e
�j�s1d +H�e

j�s1d
�

ksc1 sin
�

ksc1x
�

= Htkex1 sin
�

kex1x
�

, (4.23)

or



H+e
�j�s1d +H�e

j�s1d
�

= Ht, (4.24)

while the boundary condition on the tangential magnetic field at z = d results in



H+e
�j�s1d �H�e

j�s1d
�

ksc1
Zs1

sin
�

ksc1x
�

= Htk
e
x1
Ze1

sin
�

kex1x
�

, (4.25)

or



H+e
�j�s1d �H�e

j�s1d
�

1

Zs1
= Ht 1

Ze1
. (4.26)

Now, to determine the reflection coe�cient, R = Hr/Hi, (4.20) is added to (4.22)

yielding

2H+ = Hi
 

Zs1
Ze1

+ 1

!

�Hr
 

Zs1
Ze1

� 1

!

, (4.27)

while subtracting (4.20) from (4.22) produces

2H� = �Hi
 

Zs1
Ze1

� 1

!

+Hr
 

Zs1
Ze1

+ 1

!

. (4.28)

Similarly, adding (4.24) and (4.26) together results in

2H+ = Ht
"

Zs1
Ze1

+ 1

#

e
j�s1d, (4.29)
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and subtracting (4.24) from (4.26) gives

2H� = �Ht
"

Zs1
Ze1

� 1

#

e
�j�s1d. (4.30)

The next step is to divide (4.30) by (4.29) producing

H�

H+ = �
"

Zs1 � Ze1
Zs1 + Ze1

#

e
�j2�s1d, (4.31)

which can also be written as

H�

H+ = ��P2. (4.32)

Here the interfacial reflection coe�cient is established as

� =
Zs1 � Ze1
Zs1 + Ze1

, (4.33)

and the propagation factor is defined as

P = e
�j�s1d. (4.34)

Next (4.28) is divided by (4.29) giving

H�

H+ = �
Hi

✓

Zs1�Ze1
Ze1

◆

�Hr
✓

Zs1+Ze1
Ze1

◆

Hi
✓

Zs1+Ze1
Ze1

◆

�Hr
✓

Zs1�Ze1
Ze1

◆

. (4.35)

Multiplying the numerator and denominator by Ze1/H
i yields

H�

H+ = �

⇣

Zs1 � Ze1

⌘

� Hr

Hi

⇣

Zs1 + Ze1

⌘

⇣

Zs1 + Ze1

⌘

� Hr

Hi

⇣

Zs1 � Ze1

⌘ , (4.36)
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and dividing through by (Zs1 + Ze1) produces

H�

H+ = � ��R

1�R�
. (4.37)

Now setting (4.32) equal to (4.37) results in

�P2 =
��R

1�R�
, (4.38)

and through algebraic manipulation the reflection coe�cient is determined to be

R =
�
⇣

1� P2
⌘

1� �2P2
. (4.39)

Next, the transmission coe�cient, T = Ht/Hi, can be derived by first rearranging (4.24):

H+e
�j�s1d

"

1 +
H�

H+e
j2�s1d

#

= Ht. (4.40)

Using (4.32), this equation becomes

H+e
�j�s1d [1 + �] = Ht. (4.41)

Then (4.27) can be substituted, yielding

1

2

"

Hi
 

Zs1 + Ze1
Ze1

!

�Hr
 

Zs1 � Ze1
Ze1

!#

[1� �] e
�j�s1d = Ht. (4.42)

Factoring Hi/Ze1 and rearranging the equation produces

Ht

Hi
e
j�s1d =

1

2Ze1



�

Zs1 + Ze1
�

� Hr

Hi

�

Zs1 � Ze1
�

�

[1� �] , (4.43)
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or

T e
j�s1d =

1

2Ze1

⇥�

Zs1 + Ze1
�

�R
�

Zs1 � Ze1
�⇤

[1� �] . (4.44)

Simplifying further gives

T e
j�s1d =

1

2Ze1

�

Zs1 + Ze1
�

"

1�R
Zs1 � Ze1
Zs1 + Ze1

#

[1� �] , (4.45)

also which can be written as

T e
j�s1d =

1

2Ze1

�

Zs1 + Ze1
�

[1�R�] [1� �] . (4.46)

Then (4.33) can be substituted, yielding

T e
j�s1d =

1

2Ze1

�

Zs1 + Ze1
�

2Ze1
Zs1 + Ze1

[1�R�] , (4.47)

and through addition alalgebraic manipulation, the transmission coe�cient becomes

T = (1�R�)P. (4.48)

Now, using the equation for the reflection coe�cient, (4.39), the transmission coe�cient is

expressed as

T =
P
⇣

1� �2
⌘

1� �2P2
. (4.49)

4.2.2 Validation of Theoretical Analysis

Before parameter extraction is performed, it is very important to validate the theoretical

reflection and transmission coe�cients of a biaxial sample completely filling the cross-section
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of a waveguide. Table 4.1 shows a fictitious biaxial test sample which is used to validate the

theoretical model against the computational FEM solver HFSS. Because a fictitious material

is being considered, each of the material parameters can be chosen such that none of the

diagonal tensor entries are the same. This provides a general validation of the theory.

Table 4.1: Material parameters for a fictitious biaxial material.

Parameter Value
✏x 2.0
✏y 2.35
✏z 3.50
µx 2.75
µy 2.25
µz 5

Theoretical analysis was used to compute the reflection and transmission coe�cient for

the fictitious material paced in the cross-section of an S-band waveguide system. The di-

mensions of the S-band system are a = 72.136 mm, b = 34.036 mm, and d = 10 mm. Figure

4.2 shows R and T computed using Figure 4.39 and Figure 4.49, respectively, with the orien-

tation of the sample axes aligned with the geometry of the waveguide. Also shown in Figure

4.2 are the values of the reflection and transmission coe�cient computed using HFSS. The

waveguide extensions were explicitly modeled in the EM solver and were of significant length

to ensure that only the fundamental TE10 mode propagates; these lengths were chosen to

be 100 mm. The convergence in HFSS was specified to a maximum delta S of 0.001, which

is defined as the absolute di↵erence between all S-parameters from two succeeding iterations

at the solution frequency of 3.95 GHz. Excellent agreement is obtained between the theoret-

ical equations and HFSS, thus validating the computation of the theoretical reflection and

transmission coe�cients.
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Figure 4.1: Rectangular waveguide with biaxial sample placed in cross-sectional region with
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4.2.3 Extraction Process

The interfacial reflection coe�cient, �, and the propagation factor can be extracted form the

measurements of R and T using an NRW method [23] - [24]. It is known that the measured

S-parameters, Sm11 and Sm21, are equal to the reflection and transmission coe�cients, respec-

tively. These S-parameters are used to determine the sample propagation constant �s1 and

the interfacial reflection coe�cient �, which may in turn be used to find permittivities and

permeabilities. Thus, as was done in Section 3.2.1, the S-parameters are combined into two

auxiliary variables,

V1 = Sm21 + Sm11 (4.50)

V2 = Sm21 � Sm11. (4.51)

Now using (4.39) and (4.49) these variable become

V1 =
P � �

1 + �P
(4.52)

V2 =
P � �

1� �P
. (4.53)

Rearranging (4.52) to determine the propagation factor yields

P =
V1 � �

1� �V1
. (4.54)

Similarly rearranging (4.53) and then inserting (4.54) gives

V2 � V2�



V1 � �

1� �V1

�

=
V1 � �

1� �V1
� �. (4.55)

Multiplying through by 1� PV1 and simplifying the expression results in

�2 � 2�X + 1 = 0, (4.56)
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where

X =
1� V1V2
V1 � V2

. (4.57)

Using the quadratic equation, the solution to (4.56) is

� = X ±
q

X2 � 1, (4.58)

where the appropriate sign is chosen such that |�|  1.

Next, the propagation constant is determined using (4.34), such that

�s1 = � ln(P )± j2n⇡

jd
, (4.59)

where n depends on the thickness of the sample in terms of wavelengths. This n value is the

same n value discussed in Section 3.2.4. Next (4.33) can be rearranged such that

Zs1
Ze1

=
1 + �

1� �
. (4.60)

Using the expressions for the modal impedances, it can be shown that

Zs1
Ze1

=
�e1
�s1

µx. (4.61)

Combining (4.60) and (4.61) gives

µx =
1 + �

1� �

�s1
�e1

, (4.62)

which is the first material parameter extracted from the measurements. Now using (4.8) an
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expression for the next material parameter can be derived. First, factoring k0
p
µx yields

�s1 = k0
p
µx

v

u

u

t✏y � 1

µz

 

ksc1
k0

!2

(4.63)

or

 

�s1
k0

!2

= µx

2

4✏y � 1

µz

 

ksc1
k0

!2
3

5 . (4.64)

Next, inserting (4.62) and simplifying gives

✏y =
�s1�

e
1

k20

1� �

1 + �
+

1

µz

 

ksc1
k0

!2

. (4.65)

Thus, by measuring Sm11 and Sm21 from a biaxial sample filling the cross-section of a rectan-

gular waveguide, two equations, (4.62) and (4.65), can be used to extract the two material

parameters µx and ✏y. To determine the other four unknown material parameters, addi-

tional measurements are needed. A measurement procedure to determine all six parameters

is discussed in the following section.

4.2.4 Measurement Procedure

Due to the rectangular shape of the waveguide, enough measurements for full tensor charac-

terization can not be determined from one sample using the method discussed above. Multi-

ple samples are required to obtain the additional measurements needed for characterization.

At a minimum, three samples with the material tensor rotated in orthogonal orientations is

required. To simplify the measurement procedure, consider the material tensors expressed
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✏ = ✏0
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5

(4.66)

and

µ = µ0

2

6

6

6

6

4

µA 0 0

0 µB 0

0 0 µC

3

7

7

7

7

5

. (4.67)

The determination of the six relative biaxial material parameters (✏A, ✏B, ✏C, µA, µB, µC )

requires a minimum of six independent measurements. The parameters can be determined

by measuring S11 and S21 with each of the axes (A, B, C) individually aligned along

the y-direction. The most straightforward approach is to measure the transmission and

reflection coe�cients for the samples placed with the A, B, C, axes under the following

three orientations,

(A,B,C) ! (x, y, z) ) Sample 1, (4.68)

(A,B,C) ! (z, x, y) ) Sample 2, (4.69)

(A,B,C) ! (y, z, x) ) Sample 3. (4.70)

Using (4.62), the material parameters µA, µB , and µC can be extracted from the S-

parameter measurements for Sample 1, Sample 2 and Sample 3, respectively. With all

the permeabilities characterized, the permittivities, ✏A, ✏B , and ✏C , can be determined

using (4.65), from the S-parameter measurements for Sample 3, Sample 1, and Sample 2,

respectively.

The extraction process is validated using the fictitious material parameters listed in Table

4.1. These parameters are used in HFSS to generate S-parameters for the multiple samples

with their material axes aligned in the three orientations previously described. The HFSS
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analysis uses the same waveguide model as was used to simulate the data in Figure 4.2.

Figure 4.3 and Figure 4.4 show the results of the permittivity characterization, while Figure

4.5 and Figure 4.6 show the permeability extraction. The results are in accordance with

the values listed in Table 4.1 and give reassurance of the characterization technique before

proceeding with the error and sensitivity analysis.

4.2.5 Error and Sensitivity Analysis

The error in the extracted material parameters may be placed into two categories. The first

results from inaccuracies in the theoretical reflection and transmission coe�cients, either

because an imperfect mathematical model of the experimental apparatus is used, or because

of errors in the numerical solution to the theoretical problem. The present analysis uses

closed-form expressions for the reflection and transmission coe�cients and therefore this

type of error is not an issue.

The second source of error is due to measurement inaccuracies and can be divided into

systematic error and random error. Systematic error mostly arises from the imperfect con-

struction of the sample holder and fabricated sample. Construction inaccuracies can produce

gaps between the sample and waveguide walls and cause uncertainty in geometric parameters

such as sample length. Random error includes sample alignment (which may change from

experiment to experiment) and measurement uncertainty inherent in the VNA. It is dif-

ficult to model the errors produced by uncertainty in the geometrical parameters, due to

the analysis assumption that the sample completely fills the cross-section of the guide, and

does not provide an accessible means for including air gaps or oversized samples. When

measurements are carried out, attempts must be made to reduce this error to the greatest

extent possible by using the smallest available manufacturing tolerances and ensuring that

the sample fits tightly within the holder. It is expected that these errors should be similar

to those encountered with other waveguide methods [27]-[48]. In comparison, propagation of

the random error inherent to the VNA may be easily studied using Monte Carlo techniques,
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Figure 4.3: Permittivity extraction using HFSS generated S-parameters.
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Figure 4.4: Permittivity extraction using HFSS generated S-parameters.
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Figure 4.5: Permeability extraction using HFSS generated S-parameters.
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Figure 4.6: Permeability extraction using HFSS generated S-parameters.
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and simple error bounds established.

The uncertainties of the measured S-parameters were determined for an HP8510C net-

work analyzer system using the software package HP 8510 Specifications & Performance

Verification Program provided by Hewlett Packard. Although VNA measurement uncer-

tainty is dependent on S-parameter amplitudes, for the range of amplitudes encountered in

this work the VNA measurement uncertainty can be assumed independent of amplitude and

frequency. Statistical variance of S11 is specified linearly in amplitude and phase, and for the

equipment used in the experiment, values of �A11
= 0.004 and ��11

= 0.8� were indicated.

Variance of S21 is specified logarithmically in amplitude and linearly in phase, and values

of �A21
= 0.04 dB and ��21

= 2.0� were found to be appropriate.

The fictitious test material describe in Table 4.1 was used in the the Monte Carlo analysis

of the propagation of VNA uncertainty. The geometry of the sample is a = 72.136 mm,

b = 34.036 mm, and d = 10 mm. The forward problem was solved at 31 frequency points over

the portion of S-band from 2.6 to 3.95 GHz with the axes of the material tensor aligned in the

three orientation outlined in Section Figure 4.2.4. White gaussian noise was then added to

each of the S-parameter sets, and the noisy data was used to extract the material parameters.

The standard deviations used to generate the additive noise are those indicated by the HP

8510 Specifications & Performance Verification Program. This Monte Carlo analysis used

100, 000 trials, and the average values of the material parameters were calculated, along

with the standard deviations. Figure 4.7 - 4.10 show the results of the Monte Carlo error

analysis. In these figures, the center of each triplet of lines is the average value of the 100, 00

trials, while the two surrounding lines indicate the 95% confidence interval of ±2 standard

deviations. The error in the extracted material parameters due to S-parameter noise is small

when comparing to other material characterization techniques in this dissertation. This is

to be expected since this technique is an extension of the NRW method, which is often used

due to its insensitivity to measurement error.
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Figure 4.7: Real relative permittivities for a fictitious material extracted using 100,000 ran-
dom trials. Center line is the average of the trials. Upper and lower bars show the 95%
confidence interval.
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Figure 4.8: Real relative permeabilities for a fictitious material extracted using 100,000
random trials. Center line is the average of the trials. Upper and lower bars show the 95%
confidence interval.
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Figure 4.9: Imaginary relative permittivities for a fictitious material extracted using 100,000
random trials. Center line is the average of the trials. Upper and lower bars show the 95%
confidence interval.
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Figure 4.10: Imaginary relative permeabilities for a fictitious material extracted using 100,000
random trials. Center line is the average of the trials. Upper and lower bars show the 95%
confidence interval.
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4.2.6 Summary

An extension of the NRW method to biaxially anisotropic materials was introduced. Closed-

form expressions were given to characterize the six complex material parameters. A step

toward validation was gained using the HFSS generated S-parameters for characterization of

the fictitious test sample. The performance of the technique was established using a Monte

Carlo error analysis based on network analyzer error. Total validation of the technique was

not completed since no measurements of biaxial material were conducted. The major flaw

of this approach is requiring three distinct samples completely filling the cross-section of

the waveguide. To eliminate this issue, the following section describes a technique in which

biaxial material can be characterized using a single sample.

4.3 Material Characterization of Biaxial Material Us-

ing a Reduced Aperture Waveguide

This section presents a convenient waveguide method that allows full biaxial tensor charac-

terization using a single sample, in comparison to the multiple samples needed in the method

described in the previous section. The theory and results described here are also published

in [49]. A sample manufactured in the shape of a cube is placed into a reduced-aperture

square-waveguide sample holder, and the transmission and reflection coe�cients are mea-

sured with the cube in several orientations. Inversion is accomplished by minimizing the

di↵erence between the theoretical reflection and transmission coe�cients and the measured

S-parameters. Ideally, only three orientations are required, but it has been found that by

measuring the S-parameters at a fourth orientation the numerical complexity of parameter

extraction is reduced significantly. Because a carefully computed forward problem is needed

for accurate characterization, a mode-matching approach is used to obtain the theoretical

reflection and transmission coe�cients. This allows the error in the forward problem to be
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easily controlled by specifying an appropriate number of modes.

4.3.1 Theoretical Transmission and Reflection Coe�cients Using

Mode-Matching Analysis

The material under test (MUT) is assumed to be linear and homogeneous, with a permittivity

and a permeability that are biaxial along the orthogonal axes A, B, and C. The MUT thus

has the tensor constitutive parameters

✏ = ✏0

2

6

6

6

6

4

✏A 0 0

0 ✏B 0

0 0 ✏C

3

7

7

7

7

5

(4.71)

and

µ = µ0
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7

7

7

5

, (4.72)

where the values ✏A, µA, etc., are relative parameters, and are complex quantities: ✏A =

✏0A + j✏00A, µA = µ0A + jµ00A, etc.

The reduced aperture waveguide dimensions, shown in 4.11, consists of empty waveguide

extensions connected to a sample holder that is completely filled by the MUT. A cross-section

view of the reduced-aperture guide is shown in 4.12. The MUT and associated sample holder

are cubical, allowing the same sample to be inserted in 24 di↵erent orientations. The width

and length of the sample holder are chosen to be identical to the height of the waveguide

extensions. It is assumed that the lengths of the extensions are such that a single TE10

rectangular waveguide mode is incident on the sample holder from the sending (z < 0)

extension, and that a single mode appears at the end of the receiving (z > d) extension.

Since the constitutive material parameters are determined by minimizing the di↵erence

between the measured and the theoretically computed reflection and transmission coe�-
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Figure 4.11: Waveguide cubical sample holder with waveguide extensions attached.
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Figure 4.12: Cross-sectional view of reduced-aperture waveguide.
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cients, accurate material characterization depends on careful modeling of the measurement

apparatus. This is accomplished by computing the S-parameters of the reduced-aperture

waveguide system using a mode-matching technique, which accommodates the higher order

modes excited at the interface between the empty waveguide extensions and the sample

holder. In this manner, the modeling error can be controlled in a predictable fashion.

Although a single TE10 rectangular waveguide mode is incident on the sample holder, as

shown in 4.13, because of mode conversion at the discontinuity with the reduced aperture an

infinite number of waveguide modes are reflected into the transmitting extension, while an

infinite number of waveguide modes are transmitted into the sample region 0 < z < d. The

transmitted modal fields are incident on the discontinuity at z = d, and thus a spectrum

of modes is also reflected back into the sample region, and transmitted into the rectangular

waveguide receiving extension. However, because the electric field of the incident TE10 mode

is even about x = 0, and because the aperture is symmetric about x = 0, only modes with

electric fields even about x = 0 will be excited. Thus, only TEn0 modes with odd values

of n are needed to describe the fields in each of the waveguide regions. Note that since the

fields in the waveguide section filled with biaxial material are of similar structure to those

in the empty waveguide extensions, modes in all sections can be numbered identically.
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Figure 4.13: Side view of reduced aperture waveguide.
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4.3.1.1 Field Structure in a Waveguide Filled with Biaxial Material

The material sample can be placed into the cubical sample holder in a number of orientations.

Assume that an orientation has been chosen such that the material is biaxial along the

directions x, y and z of 4.11. The wave equation for Hz(x, y) for TEz fields in the sample

region is given by (2.189) where µx, ✏x, etc., are relative parameters, and k0 = !
p
µ0✏0

is the free-space wavenumber. For TEn0 modes in a rectangular waveguide there is no

y�dependence of the fields and the wave equation reduces to (2.190). This wave equation is

written again in this section to reiterate what material parameters are used in the calculation

of the forward problem:
"

@2

@x2
+
�

kscn
�2
#

Hs
z (x) = 0 (4.73)

where
�

kscn
�2 =

µz
µx

h

k20µx✏y �
�

�sn
�2
i

(4.74)

is the cuto↵ wavenumber. This equation is solved using separation of variables and applying

the boundary conditions on the tangential electric field at the perfectly conducting waveguide

walls in Section 2.3.2.1. This leads to the following expressions for the transverse fields

Es
y(x, z) = Cne

s
yn (x) ej�

s
nz (4.75)

Hs
x(x, z) = ⌥Cnh

s
yn (x) e±j�snz, (4.76)

where the transverse modal fields are

esyn(x) = �kscn sin
h

kscn

⇣

x� w

2

⌘i

, hsxn(x) = �
esyn(x)

Zsn
. (4.77)

Here w = b is the width of the guide, kscn = n⇡/w is the cuto↵ wavenumber for the nth

TEn0 mode (n = 1, 2, . . .), and Zsn = ⌘0µx(k0/�
s
n) is the modal wave impedance with

⌘0 =
p

µ0/✏0 the free-space intrinsic impedance. Note that �sn is determined from kscn
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using (4.74).

The isotropic transverse field equations from (2.151) and (2.152) can be used in this

empty guide region for the present technique where the width of the waveguide is centered

about the y-axis, as long as sinusoidal functions will be o↵set by a/2. Also, since only

TEn0 modes are excited, v = 0 for all excited modes. This leads to kyn = 0, reducing the

transverse field equations to

Ee
y (x, z) = Cne

e
yn (x) e±j�enz (4.78)

He
x (x, z) = ⌥Cnh

e
xn (x) e±j�enz. (4.79)

Here eeyn and hexn are the transverse electric and magnetic modal fields in the empty guide,

respectively, and are shown from (2.153) and (2.154) to be

eeyn(x) = �kexn sin
h

kexn

⇣

x� a

2

⌘i

, (4.80)

hexn(x) = �
eeyn(x)

Zen
, (4.81)

where kexn = n⇡/a and Zen = ⌘0(k0/�
e
n), with �en determined from kecn through

�en =
q

k20 � (kecn)
2. (4.82)

4.3.1.2 Solution for S-Parameters Using Modal Expansions

The transverse fields in the sample holder and in the waveguide extensions can be expanded in

an infinite sum of modal fields, with modal amplitudes to be determined through application
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of appropriate boundary conditions. For the empty waveguide extension region z < 0,

Ey(x, z) = A+1 eey1(x)e
�j�e1z +

1
X

n=1
odd

A�n eeyn(x)e
j�enz (4.83)

Hx(x, z) = A+1 hey1(x)e
�j�e1z �

1
X

n=1
odd

A�n heyn(x)e
j�enz. (4.84)

Here A+1 is the amplitude of the incident TE10 wave, which is taken to be known during

analysis. In the sample holder, 0 < z < d, the transverse fields are

Ey(x, z) =
1
X

n=1
odd

h

B+
n e�j�snz +B�

n ej�
s
nz

i

esyn(x) (4.85)

Hx(x, z) =
1
X

n=1
odd

h

B+
n e�j�snz � B�

n ej�
s
nz

i

hsyn(x). (4.86)

Finally, in the waveguide extension z > d the fields are

Ey(x, z) =
1
X

n=1
odd

C+
n eeyn(x)e

�j�en(z�d) (4.87)

Hx(x, z) =
1
X

n=1
odd

C+
n heyn(x)e

�j�en(z�d). (4.88)

The modal amplitudes A�n , B+
n , B�

n and C+
n may be determined by applying the bound-

ary conditions on Ey and Hx at the interfaces between the two waveguide extensions and
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the sample holder. At z = 0 the boundary condition on tangential electric field requires

A+1 eey1(x) +
1
X
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(4.89)

while the boundary condition on tangential magnetic field requires
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At z = d the boundary condition on tangential electric field requires
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while the boundary condition on tangential magnetic field requires

1
X

n=1
odd

C+
n heyn(x) =

1
X

n=1
odd

h

B+
n e�j�snd � B�

n ej�
s
nd

i

hsyn(x), 0 < |x| < w

2
. (4.92)
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To convert the system of functional equations (4.89)-(4.92) to a system of linear equations,

the infinite summations are each truncated at N terms and the following testing operations

are applied. First, (4.89) is multiplied by eeym(x) and integrated over �a/2 < x < a/2.

Second, (4.90) is multiplied by Zsmhsxm(x) and integrated over �w/2 < x < w/2. Third,

(4.91) is multiplied by eeym(x) and integrated over �a/2 < x < a/2. Lastly, (4.92) is

multiplied by Zsmhsxm(x) and integrated over �w/2 < x < w/2. Here 1  m  N . This

yields the 4N ⇥ 4N matrix equation
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. (4.93)

Here the indices m and n are unique to each submatrix, en = exp{�j�snd}, and b�n =

B�
n /en. Note that b

�
n is introduced to avoid overflow during computation. In (4.93), Dmn,

Qmn, Pmn and Fmn are N ⇥N sub-matrices with entries specified in Appendix B.2. Once

the modal coe�cients are found, the S-parameters of the system are given by

S11 =
A�1
A+1

, S21 =
C+
1

A+1

. (4.94)

4.3.2 Specification of Computational Accuracy

To assess the performance of the extraction procedure, it is important to have a clear mea-

sure of the accuracy of the computed theoretical S-parameters. With the mode-matching

approach this is easily done by terminating the modal series at N terms and properly choos-

ing N . Rather than merely truncating the modal series when a specified accuracy has been

achieved, the extrapolation technique described in [50] is used. It is found that the S-

parameters may be extrapolated to the limit as 1/N ! 0, with N the number of modes used
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in both the sample region and in the waveguide extensions. To show how the S-parameters

converge as a function of 1/N a sample of teflon placed inside an S-band reduced aperture

sample holder is considered. The teflon sample is taken to be a lossless dielectric with real

relative permittivity of 2.1. The dimensions for the S-band system are a = 72.136 mm and

b = w = d = 34.036 mm. Figure 4.14 shows the reflection and transmission coe�cients at

2.6 GHz. It is desirable to estimate the e↵ect of using an infinite number of modes with-

out the use of a large number of modes. By examining the magnitude and phase of the

S-parameters vs. 1/N , a trend may exist in which the value for the magnitude and phase

can be extrapolated to estimate their values when 1/N = 0, which corresponds to N = 1;

this produces an improved estimate of the reflection and transmission coe�cients.

Several di↵erent extrapolation methods exist, including linear extrapolation, polynomial

extrapolation, and least squares. Examining Figure 4.14 shows there is a linear trend to

the data. This linear trend suggests that a simple linear extrapolation can be used to

estimate modal series as N approaches 1. A similar trend is seen when examining the other

frequencies across the band. The linear trend may also be seen for coe�cients computed in

the middle of the frequency band of interest, 3.275 GHz, in 4.15, and may also be seen for

the upper end, 3.95 GHz, in Figure 4.16.

The series is terminated when the extrapolated values of the magnitude and phase of the

S-parameters have reached specified tolerances for M contiguous values of N . Experience

shows that a value of M = 5 is su�cient to guarantee convergence to desired accuracy

in the method presented here. It is found that by using this extrapolation technique, the

S-Parameters may be e�ciently computed to high tolerance with many fewer terms in the

modal series compared to truncation based on using the value of the series.

4.3.3 Validation of Theoretical Analysis

It is important to validate the theoretical model before employing it in parameter extraction.

To do this, a fictitious biaxial test material is considered, with material parameters shown
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Figure 4.14: Magnitude and phase of reflection and transmission coe�cients for teflon sample
completely filling reduced-aperture waveguide sample regions at 2.6 GHz. These coe�cients
are plotted vs. 1/N .
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Figure 4.15: Magnitude and phase of reflection and transmission coe�cients for teflon sample
completely filling reduced-aperture waveguide sample regions at 3.275 GHz. These coe�-
cients are plotted vs. 1/N .
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are plotted vs. 1/N .
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in Figure 4.2. By using a fictitious material, each of the parameters can be chosen to have

di↵erent values, allowing for the most general validation of the theory.

Table 4.2: Material parameters for a fictitious biaxial material.

Parameter Value
✏A 2-j0.1
✏B 4-j0.5
✏C 3-j0
µA 1-j0.2
µB 2.5-j0
µC 2-j1

The mode matching technique was used to compute the S-parameters for the fictitious

material placed into a cubical sample holder in an S-band waveguide system. Figure 4.17

shows S11 and S21 computed using the modal series with the orientation (A,B,C) !

(x, y, z), meaning that the A-axis of the sample is aligned with the x-axis of the waveguide,

etc. Absolute tolerances of 0.1 dB for |S| and 0.01� for \S were chosen so that the accuracy

of the computed series is significantly better than the expected measurement accuracy of the

HP 8510C vector network analyzer (VNA) used in subsequent experiments. For the material

considered, the S-parameters typically converge to the specified tolerances within N = 81

terms.

Also shown in Figure 4.17 are the values of the S-parameters computed using the com-

mercial EM solver HFSS. The waveguide extensions must be explicitly modeled in HFSS,

and must be su�ciently long to ensure that only the fundamental TE10 mode propagates

at the waveguide ports. Here the extensions were chosen to be 82.98 mm in length. The

convergence tolerance in HFSS was specified as a maximum delta S of 0.001, which is the

absolute di↵erence between S-parameters from two iterations at the solution frequency of

3.95 GHz. It is seen that excellent agreement is obtained between the modal analysis and

HFSS, validating the modal computation of the theoretical S-parameters. Note that compu-

tational time is significantly shorter using the modal analysis compared to the HFSS finite
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element method solver. For a typical set of parameters, the modal analysis programmed in

Fortran is several orders of magnitude faster than FEM, and thus provides a good basis for

performing parameter extraction.

4.3.4 Extraction Process

Determination of the the six biaxial material parameters (✏A, ✏B, ✏C, µA, µB, µC ) requires

a minimum of six independent measurements. However, if it is known a priori that the

material is nonmagnetic (i.e., µA = µB = µC = 1), then the extraction process is simplified

greatly. The parameters ✏A, ✏B , and ✏C can be determined independently by measuring

S21 with each of the axes (A,B,C) individually aligned along the y-direction, since only ✏y

is implicated in (4.74). For instance, if the A direction is chosen to coincide with y, then ✏A

may be found as the solution to the equation

S
thy
21 (✏A)� Smeas

21 = 0, (4.95)

which is easily determined using Newton’s method.

For the generally biaxial case the most straightforward approach is to measure the trans-

mission and reflection coe�cients for the sample placed with its A, B, and C axes under

three orientations, as follows:

(A,B,C) ! (x, y, z) )
h

Smeas
11,1 , Smeas

21,1

i

, (4.96)

(A,B,C) ! (z, x, y) )
h

Smeas
11,2 , Smeas

21,2

i

, (4.97)

(A,B,C) ! (y, z, x) )
h

Smeas
11,3 , Smeas

21,3

i

. (4.98)

The material parameters are then found by solving the following system of six nonlinear
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complex equations in the six complex unknown material parameters:

S
thy
11,n(✏A, ✏B, ✏C, µA, µB, µC )� Smeas

11,n = 0, n = 1, 2, 3, (4.99)

S
thy
21,n(✏A, ✏B, ✏C, µA, µB, µC)� Smeas

21,n = 0, n = 1, 2, 3. (4.100)

Experience shows that with typical values of experimental error it can be di�cult to

find solutions to the system of equations (4.99)-(4.100), even with good initial guesses. An

alternative approach allows a subset of the six material parameters to be first determined, and

these parameters to be subsequently used in the computation of the remaining parameters.

This approach is based on the observation from (4.74) that only three of the six material

parameters are implicated in a measurement under any one orientation. That is, only ✏y,

µx, and µz appear in (4.74).

Refer to Figure 4.11. First, measurements are made with these orientations:

(A,B,C) ! (x, y, z) )
h

Smeas
11,1 , Smeas

21,1

i

, (4.101)

(A,B,C) ! (�z, y, x) )
h

Smeas
11,2 , Smeas

21,2

i

. (4.102)

These measurements only implicate the parameters ✏B , µA, and µC . Using three out of the

four complex measurements yields the following system of equations with three unknowns:

S
thy
11,n(✏B, µA, µC )� Smeas

11,n = 0, n = 1, (4.103)

S
thy
21,n(✏B, µA, µC)� Smeas

21,n = 0, n = 1, 2, (4.104)

which can be solved using a Newton’s method. Note that the di↵erent between S
thy
11,2 and

Smeas
11,2 could be used in place of one of the transmission coe�cient equations, however,

experience has shown more e�cient characterization using (4.103) and (4.104). Additionally,

a least squares approach could be used in place of a Newton’s method and use all four

measurements instead of eliminating the use of Smeas
11,2 . Next, a measurement is made under
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the orientation

(A,B,C) ! (y,�x, z) )
h

Smeas
11,3 , Smeas

21,3

i

. (4.105)

This measurement implicates ✏A, µB , and µC . However, µC is known from solving (4.103)-

(4.104), and thus the system of equations

S
thy
11,3(✏A, µB)� Smeas

11,3 = 0, (4.106)

S
thy
21,3(✏A, µB)� Smeas

21,3 = 0, (4.107)

can be solved for ✏A and µB . Finally, a last measurement is made under the orientation

(A,B,C) ! (z, x, y) )
h

Smeas
11,4 , Smeas

21,4

i

. (4.108)

This measurement implicates ✏C , µA, and µB . However, at this point only ✏C is unknown,

and thus the single complex equation

S
thy
21,4(✏C )� Smeas

21,4 = 0 (4.109)

is solved using a Newton’s method.

The drawback to this approach is that an additional measurement is required. However,

experience shows that reducing the number of unknowns improves the extraction process to

the extent where the extra experimental e↵ort is advantageous.

It is important to validate the inversion method before proceeding with the characteriza-

tion of unknown materials. Therefore, the fictitious material parameters from Table 4.2 are

used in HFSS to generated S-parameters with the cube in four orientations, and the four-

orientation extraction method is performed. The HFSS simulation uses the same model as

was used to generate the data for Figure 4.17. The results of the characterization are shown

in Figure 4.18 and Figure 4.19. As expected, the characterized material parameters are in

accordance with the parameters shown in Table 4.2. This extraction gives confidence in the
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characterization technique before moving forward with error analysis and measurements.

4.3.5 Error and Sensitivity Analysis

As done with previous characterization techniques, and described in Section 4.2.5, a Monte

Carlo technique was used to study e↵ects on the propagation of the random error inherent

to the VNA used in the measurements. Once again, the uncertainties of the measured S-

parameters were determined for an HP8510C network analyzer system using the software

package HP 8510 Specifications & Performance Verification Program provided by Hewlett

Packard and the values used for the statistical variance of S11 and S21 as outlined in Section

4.2.5.

A Monte Carlo analysis of the propagation of VNA uncertainty was undertaken using the

fictitious test material with the parameters given in Table 4.2. The geometry of the sample

is a = 72.136 mm and b = w = d = 34.036 mm. The forward problem was solved at 101

frequency points over the portion of S-band from 2.6 to 3.95 GHz under the four orientations

described in Section 4.3.4. White gaussian noise was then added to each of the S-parameter

sets and the noisy data used to extract the material parameters according to the four-

measurement process of Section 4.3.4. The standard deviations used to generate the additive

noise are those indicated by the HP 8510 Specifications & Performance Verification Program.

The process was repeated 500 times, and the average values of the material parameters were

calculated, along with the standard deviations. Results are shown in Figure 4.20 and Figure

4.21. In these figures, the center of each triplet of lines is the average value of the 500

trials, while the two surrounding lines indicate the 95% confidence interval of ±2 standard

deviations. These results for VNA uncertainty will be compounded by any systematic errors

present in the experiment, and have values typical of those encountered with other material

extraction methods, such as [51] and [40]. Note that for low loss materials with small ✏00 and

µ00, the relative error in the measured imaginary parts can be quite severe, even though the

absolute error may be less than those for ✏0 and µ0.
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Figure 4.18: Extracted permittivity using HFSS generated S-parameters.
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Figure 4.19: Extracted permeability using HFSS generated S-parameters.
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Figure 4.20: Relative permittivities for a fictitious material extracted using 500 random
trials. Center line is the average of the trials. Upper and lower lines show the 95% confidence
interval.
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Figure 4.21: Relative permeabilities for a fictitious material extracted using 500 random
trials. Center line is the average of the trials. Upper and lower lines show the 95% confidence
interval.
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4.3.6 Experimental Results

To experimentally validate the proposed technique at S-band, a reduced-aperture waveguide

was machined from 360 brass. The specified inner dimensions of the cubical sample holder are

b = w = d = 34.036 mm, and measurement of the constructed sample using precision calipers

showed that the holder was constructed with tolerances of less than 0.04 mm. The holder was

aligned with two 152.4 mm-long commercial S-band waveguide extensions of cross-section

dimension 34.036 mm by 72.136 mm and holes for precision alignment pins were drilled in

the sample holder to guarantee high repeatability of the alignment of the holder and the

extensions. This is necessary since the extensions must be removed to calibrate the system

and to insert and remove the sample.

Two samples were constructed to test the system. The first is a simple isotropic teflon

cube. The properties of teflon are well-established, and since the material is isotropic, it

can be used to characterize the repeatability of measurements as the sample is rotated

into the required four orientations. Figure 4.22 shows a picture of the sample holder and

the teflon sample. The sample was constructed approximately 0.01 mm larger than the

inner dimensions of the sample holder so that when inserted it would compress slightly and

eliminate air gaps between the MUT and the sample holder walls.

Measurements of the S-parameters of the teflon sample placed into the four required

orientations were made using an HP 8510C VNA. The VNA was calibrated using the Thru-

Reflect-Line (TRL) algorithm internal to the 8510C, with an aluminum plate used as the

reflection standard, and a 33.53 mm-long section of commercial waveguide used as the line

standard. As with the sample holder, precision alignment pins were used to ensure repeata-

bility of the alignment of the guides. All measurements were made with a 10 dBm source

power, 32 averages, and a 25 ms dwell time.

Teflon is a low-loss dielectric with a real relative permittivity of approximately 2.1. To

assess repeatability error, the teflon sample was measured 10 separate times, with the system
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Figure 4.22: Cubical sample holder and teflon sample.
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recalibrated between sample measurements. The results of the characterization are shown in

Figure 4.23 and Figure 4.24, where the center solid lines represent the mean extracted values

of the 10 measurement sets and the upper and lower circles show the 95% confidence interval

(± two standard deviations). Although teflon is isotropic, the measurements were conducted

assuming a biaxial material sample, and so six material parameters were computed for each

measurement set. The mean extracted values for each of the three permittivities and each

of the three permeabilities overlap closely in Figure 4.23 and Figure 4.24, as expected for an

isotropic material. Note that to avoid clutter, only the confidence intervals for ✏A and µA are

shown in Figure 4.23 and Figure 4.24. The confidence intervals for the remaining material

parameters are very similar. The extracted mean values show excellent agreement to the

expected material parameters of teflon and the confidence intervals closely resemble the error

bars shown in Figure 4.20 and Figure 4.21, suggesting that the dominant repeatability error

is due to S-parameter measurement uncertainty.

To test the characterization procedure using an anisotropic material, a cube was con-

structed by using layers of alternating dielectrics as shown in Figure 4.25. This produces

a material with anisotropic (uniaxial) dielectric properties, but isotropic magnetic proper-

ties. Since commercial, o↵-the-shelf anisotropic dielectric and anisotropic magnetic material

is not readily available, a uniaxial cube was constructed by gluing together Rogers RO3010

circuit board (the light layers in Figure 4.25) and Rogers RT/duroid 5870 circuit board (dark

layers). The 3010 board has a thickness of t1 = 1.27mm, a dielectric constant of ✏0r1 = 10.2

and a loss tangent of tan �1 = 0.0022. The 5870 board has a thickness of t2 = 3.4mm, a

dielectric constant of ✏0r2 = 2.33 and a loss tangent of tan �2 = 0.0012. If the B direction is

chosen to be aligned perpendicular to the layer interfaces, then it is expected that ✏A and

✏C should be identical, but di↵erent from ✏B . The advantage to using this structure is that

simple formulas exist for estimating ✏A, ✏B , and ✏C .

Note that at the highest frequency considered in the measurements, the free-space elec-

trical length of the stack period is k0(t1 + t2) = 0.387. Since k0

q

✏0r1(t1 + t2) ⌧ 2⇡, the
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Figure 4.23: Relative permittivities extracted from 10 sets of teflon measurements. Center
line is the average of the measurements. Upper and lower circles show the 95% confidence
interval for ✏A.
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Figure 4.24: Relative permeabilities extracted from 10 sets of teflon measurements. Center
line is the average of the measurements. Upper and lower circles show the 95% confidence
interval for µA.
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Figure 4.25: Cubical sample holder and alternating-layer dielectric sample.
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following approximate formulas may be used to determine the biaxial material constants

[59],

✏B =



1

✏r2
�

✏r1 � ✏r2
✏r1✏r2

t1
t1 + t2

��1
, (4.110)

✏A = ✏C = ✏2r + (✏1r � ✏2r)
t1

t1 + t2
, (4.111)

where ✏r1 = ✏0r1(1�j tan �1) and ✏r2 = ✏0r2(1�j tan �2). Substituting the board parameters

gives ✏B = 2.95 � j0.0038 and ✏A = ✏C = 4.47 � j0.0081. It is expected that the formula

for ✏A and ✏C will be less accurate than the formula for ✏B , since the presence of internal

reflections within the layers is most significant when the cube is oriented such that the

interfaces lie normal to the wave propagation. Results given in [53] for a layered sample

in a non-reduced rectangular guide suggest that a deviation of as much as 10-20 percent

may be expected unless the number of layers is significantly large. Although these results

cannot be directly used with the reduced-aperture guide, they suggest that a deviation of 10

percent would not be unexpected. Also note that the circuit boards themselves are slightly

anisotropic due to the alignment of the glass fibers used in their construction, and thus it is

expected that ✏A and ✏C should be slightly di↵erent [54]. However, no attempt is made to

quantify this di↵erence theoretically.

Similar to the measurements of the teflon cube, the layered cube was measured 10 separate

times. The results of the extraction are shown in Figure 4.26 through Figure 4.31, where

the solid lines represent the averaged extracted material parameter and the upper and lower

circles show the 95% confidence intervals for the 10 measurement sets. In each of these

figures, gaps are seen in the extracted parameters over certain ranges of frequency. This is

due to the well-known di�culty of extracting material parameters near frequencies where

the sample thickness approaches one half of a guided wavelength. This problem is inherent

to all guided-wave techniques in which both permittivity and permeability are determined

(including the Nicolson-Ross-Wier closed-form method for isotropic materials [23]-[24]), and
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is due to the propagation of measurement uncertainties. It can be seen in Figure 4.26

that as the frequency nears 3.7 GHz, the uncertainties begin to grow dramatically. within

the indicated gap, the uncertainties become so large that extraction is completely unreliable.

This is a drawback of using a cubical sample holder, since the thickness of the material cannot

be reduced to avoid these half-wavelength gaps when the material parameters are su�ciently

large. Experience has shown that the a frequency range within approximately ±5% of the

half-wavelength frequency should be avoided, and data within that range is not displayed

in the figures. Across other portions of the frequency band, the averaged extracted values

are reasonably close to those predicted from (4.110)-(4.111), and the confidence intervals

are consistent with the error due to S-parameter uncertainty described in Section 4.3.5. As

discussed above, it is not surprising to find that there is a deviation of about 10% in ✏A and

✏C from the result predicted using the simple formula (4.111).

The process of extracting the various material parameters in stages, with ✏B , µA, and µC

determined first, produces an unfortunate cascading of half-wavelength gaps in the extracted

data. Figure 4.27, Figure 4.29 and Figure 4.31 only show gaps near 3.7 GHz since the

orientations used to determine these parameters produce just a single half-wavelength point

in the measurement band. Similarly, the orientations used to determine ✏A, ✏C , and µB

produce only a single half-wavelength point near 2.8 GHz, and thus gaps at this frequency

can be seen in Figure 4.26, Figure 4.28 and Figure 4.30. However, since the previously

extracted values of ✏B , µA, and µC are used to find ✏A, ✏C , and µB , the gaps at 3.7 GHz

in those data are also present in Figure 4.26, Figure 4.28 and Figure 4.30.

Because the material parameters do not vary strongly with frequency, their values within

the gap regions may be approximated through interpolation. A simple approach is to fit

a polynomial function to the mean data, and evaluate the polynomial in the gap. For the

materials considered here, it is found that a fifth order polynomial fits the data well over the

entire measurement band. Figure 4.32 and Figure 4.33 show the interpolating polynomials

evaluated across the measurement band. These interpolated results show good agreement
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Figure 4.26: Relative permittivity ✏A extracted from 10 sets of measurements. Center line is
the average of the measurements. Upper and lower circles show the 95% confidence interval.

191



2.6 2.8 3 3.2 3.4 3.6 3.8
Frequency (GHz)

-1

0

1

2

3

R
el

at
iv

e 
Pe

rm
itt

iv
ity

ϵ'B

ϵ''B

Figure 4.27: Relative permittivity ✏B extracted from 10 sets of measurements. Center line is
the average of the measurements. Upper and lower circles show the 95% confidence interval.
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Figure 4.28: Relative permittivity ✏C extracted from 10 sets of measurements. Center line is
the average of the measurements. Upper and lower circles show the 95% confidence interval.
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Figure 4.29: Relative permeability µA extracted from 10 sets of measurements. Center line is
the average of the measurements. Upper and lower circles show the 95% confidence interval.
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Figure 4.30: Relative permeability µB extracted from 10 sets of measurements. Center
line is the average of the measurements. Upper and lower circles show the 95% confidence
interval.
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Figure 4.31: Relative permeability µC extracted from 10 sets of measurements. Center line is
the average of the measurements. Upper and lower circles show the 95% confidence interval.
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with the expected values from the simple formula outlined previously. Note that there is a

small amount of unphysical oscillation in the permeabilities, due to the variations in these

parameters near the edges of the gap regions. This oscillation can be reduced by using a

lower order polynomial, or by taking slightly wider gaps.

Because it is known a priori that the layered cube is nonmagnetic, the permittivity

parameters ✏A, ✏B , and ✏C can be determined independently from three measurements of

S21 using (4.95). Figure 4.34 shows the extracted values using the same 10 measurements

used to generate Figure 4.28-4.31. It is clearly seen that the di�culties at half-wavelength

frequencies do not occur in this case, and thus there are no gaps in the data. This is

because only transmission coe�cients are used in the extraction, and the extracted material

parameters are less sensitive to uncertainty in S21 than in S11. The results are very close

to those of Figure 4.32 found using the extrapolating polynomial.

Although the use of a non-magnetic uniaxial material does not fully explore the ability

of the proposed technique to extract all the parameters of a biaxial sample, the agreement

between ✏A and ✏C gives good evidence that the technique is viable.

4.3.7 Summary

A reduced aperture waveguide method is introduced for measuring the permittivity and

permeability of biaxially anisotropic materials. Only a single cubical sample is required

to completely characterize the material under test. This contrasts with the three distinct

samples required when using the standard waveguide technique in which a sample completely

fills the rectangular waveguide cross section. The performance of the technique is established

using an error analysis based on network analyzer uncertainty, and validation is provided by

laboratory measurements of a teflon and a stacked dielectric layered sample. It is found that

the technique performs very well for regions of the frequency band where the electrical length

of the sample does not approach a half wavelength, and that an interpolating polynomial

may be used to supply the data near the half-wavelength points
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Figure 4.32: Average permittivity from 10 sets of measurements extrapolated using a fifth
order polynomial.
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Figure 4.33: Average permeability from 10 sets of measurements extrapolated using a fifth
order polynomial.
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Figure 4.34: Relative permittivity extracted from 10 sets of measurements assuming the
sample is nonmagnetic. Center line is the average of the measurements. Upper and lower
lines show the 95% confidence interval.
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CHAPTER 5

GYROMAGNETIC MATERIAL

CHARACTERIZATION

5.1 Introduction

This chapter presents two methods for characterizing gyromagnetic materials using rectan-

gular waveguides where the sample is magnetized perpendicular to the broad dimension of

the guide. The first technique considers a gyromagnetic material completely filling the cross-

section of a waveguide. Gyromagnetic materials react di↵erently depending on the incident

wave polarization and the wave couples into orthogonal field components. A mode-matching

technique is used determine the theoretical reflection and transmission coe�cients needed for

material parameter characterization. The parameters are obtained using a nonlinear least

squares method that seeks to minimize the di↵erence between theoretically computed and

measured reflection and transmission coe�cients.

The second characterization technique uses a reduced-aperture sample holder such that

the gyromagnetic sample can be machined to have a smaller width than the cross-section

of the guide. The sample holder is positioned between two empty sections of rectangular

waveguides to guarantee only the dominant mode is present at the sample holder. The S-
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parameters are then measured. Mode matching is used to determine the theoretical reflection

and transmission coe�cients of the dominant mode. The inverse problem is then solved using

a non-linear least squares method to determine the material parameters.

5.2 Characterization of Gyromagnetic Material Filling

the Cross-Section of a Rectangular Waveguide

This section concentrates on the extraction of the e↵ective permittivity and permeability

of a sample of gyromagnetic material completely filling the cross-section of a rectangular

waveguide. It is customary for optimizers or root solvers (such as the Newton’s method

used in Section 4.3.4) to be used to determine the constitutive parameters of materials in

rectangular waveguides. In these methods, the reflection and transmission coe�cients from

a material placed in the cross-sectional plane of a waveguide are measured and compared

to theoretical S-parameters. It is essential to have accurate formulations of the theoretical

S-parameters for valid characterization of materials. A modal matching method is used to

determine the reflection and transmission coe�cients of the dominant mode from a sample

of gyromagnetic material filling the cross section of a rectangular guide. Details on the

methodology for obtaining the reflection and transmission coe�cients are presented along

with a comparison to a finite element full wave solver. Additionally, the characterization

method is tested by extracting the material parameters from the FEM generate S-parameters.

5.2.1 Theoretical Transmission and Reflection Coe�cients Using

Mode-Matching Analysis

The material under test (MUT) is assumed to be linear and homogeneous with isotropic per-

mittivity and a permeability that is uniaxial along the orthogonal axes and has o↵ diagonal
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parameters. The MUT has the tensor constitutive parameters

✏ = ✏0

2

6

6

6

6

4

✏r 0 0

0 ✏r 0

0 0 ✏r

3

7

7

7

7

5

(5.1)

and

µ = µ0

2

6

6

6

6

4

µg 0 �j

0 1 0

j 0 µg

3

7

7

7

7

5

, (5.2)

where the values ✏r, , and µg are relative complex quantities: ✏r = ✏0r + j✏00r ,  = 0 + j00

and µg = µ0g + jµ0g. This permeability tensor is for a material biased in the y-direction, or

the along the height of the waveguide. Here the o↵-diagonal parameter  is given by

 =
!!m

!20 � !2
, (5.3)

and the diagonal element µg is described as

µg =

 

1 +
!0!m

!20 � !2

!

. (5.4)

In (5.3) and (5.4), ! = 2⇡f is the operating frequency, !0 = µ0�H0 is the Larmor

frequency, and !m = µ0�Ms. Here H0 is the strength of the internal static biasing

magnetic field in oersteds and Ms the saturation magnetization typically expressed as

4⇡Ms gauss. The ratio of spin magnetic moment to the spin angular momentum for an

electron is called the gyromagnetic ratio and is given by � = 1.759 ⇥ 1011 C/kg. The

Lamor frequency can be expressed as f0 = !0/2⇡ = (2.8 MHz/oersted)(H0 oersted),

and fm = !m/2⇡ = (2.8 MHz/oersted)(4⇡Ms gauss) [55]. Additionally, in order to
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account for magnetic losses inherent in the magnetic materials, the linewidth �H is in-

cluded in the calculation of the Larmor frequency. Thus, !0 = µ0�H0 + jµ0��H/2, or

f0 = (2.8 MHz/oersted)(H0 oersted + j�H/2 oersted). During measurements the applied

biasing magnetic field will be applied external to the sample using permanent magnets and

it is therefore important to understand the relationship between the external and internal

biasing fields. When the applied field is parallel to the broad face of the gyromagnetic sam-

ple, which is the case considered in this dissertation, the continuity of the magnetic field at

the surface of the sample results in the external field being equal to the internal field.

The waveguide system, shown in Figure 5.1, consists of empty waveguide extensions

connected to a sample holder with the same cross-section as the empty guide. This sample

holder is completely filled by the MUT. It is assumed that the lengths of the extensions are

such that a single TE10 rectangular waveguide mode is incident on the sample holder from

the transmitting section (z < 0) and that a single mode is present at the receiving extension

(z > d).

The material parameters are obtained using optimization methods that seek to minimize

the di↵erence between theoretically computed and measured reflection and transmission coef-

ficients. As a result, accurate formulation of the theoretical scattering parameters is critical

for valid characterization of gyromagnetic materials. This is accomplished by computing

the S-parameters of the gyromagnetic material filled sample holder using a mode-matching

technique, which accommodate the higher order modes excited from the coupling between

orthogonal field components inside the sample region.

A single TE10 rectangular waveguide mode is incident on the sample, as shown in Figure

5.2, and, because of mode conversion at the interface been the empty guide and sample an

infinite number of waveguide modes are reflected into the transmitting extensions, while an

infinite number of waveguide modes are transmitted into the sample region, 0 < z < d. The

transmitted modal fields are incident on the next interface at z = d, and thus a spectrum

of modes is reflected into the sample region and transmitted into the empty waveguide
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extensions. Since the TE10 mode is invariant in the y-direction and even about x = a/2

and the gyromagnetic material is magnetized along the y-axis, then all excited higher order

modes are also y-invariant and even about x = a/2. Thus, only TEn0 modes are needed to

describe the fields in each of the waveguide regions.

5.2.1.1 Field Structure in a Waveguide Filled with Gyromagnetic Material

The wave equation for Hz(x, y) for TEz fields in the sample regions is given by (2.227). For

TEn0 modes in a rectangular waveguide there is no y-dependence of the fields and the wave

equation reduces to (2.229) and is expressed as

"

@2

@x2
+
�

ksc
�2
#

Hz(x) = 0, (5.5)

where

�

ksc
�2 = k20µg✏r

 

1� 2

µ2g

!

� �2 (5.6)

is the cuto↵ wavenumber and k0 = !2µ0✏0 is the free-space wavenumber. The transverse

fields are given by (2.251) and (2.252) and are shown to be

Es
y(x) = �Cnk

s
cn

 

1� 2

µ2g

!

sin
�

kscnx
�

e±j�snz (5.7)

Hs
x(x) = ⌥Cnkscn

Zsn



sin
�

kscnx
�

⌥ kscn
µg�sn

cos
�

kscnx
�

�

e±j�snz. (5.8)

Here kscn = n⇡/a is the cuto↵ wavenumber for the nth TEn0 modes (n = 1, 2, 3 . . .) and

Zsn = !µ0µg/�
s
n is the modal wave impedance. Note that �sn is determined from kscn using

(5.6).

The isotropic transverse field equations from (2.151) and (2.152) are used to represent

the fields in the empty guide region for the present technique. Here only TEn0 modes are
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Figure 5.1: Rectangular waveguide with gyromagnetic sample placed in cross-sectional region
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Figure 5.2: Side view of gyromagnetic material filled waveguide.
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excited,. This means v = 0 for all excited modes. This leads to kyn = 0, which reduces the

field equations to

Ee
y (x, z) = �Cnk

e
xn sin

�

kexnx
�

e±j�enz (5.9)

He
x (x, z) = ⌥Cn

kexn
Zen

sin
�

kexnx
�

e±j�enz. (5.10)

Here kscn = n⇡/w is the cuto↵ wavenumber, and Zen = !µ0/�
e
n is the modal wave impedance.

Note that �en is determined using (2.140).

5.2.1.2 Solutions for S-Parameters Using Modal Expansions

The transverse fields in the sample region and in the empty waveguide extensions can be

expanded in an infinite sum of modal fields where the modal amplitude coe�cients are deter-

mined through the enforcement of boundary conditions. In the empty waveguide extensions,

z < 0 and z > d, the transverse fields are expressed as

Ey(x, z) = �a+1 kex1 sin
�

kex1x
�

e
�j�e1z �

1
X

n=1

a�n kexn sin
�

kexnx
�

ej�
e
nz (5.11)

Hx(x, z) = a+1
kex1
Ze1

sin
�

kex1x
�

e
�j�e1z �

1
X

n=1

a�n
kexn
Zen

sin
�

kexnx
�

ej�
e
nz, (5.12)

and

Ey(x, z) = �
1
X

n=1

c+n kexn sin
�

kexnx
�

e�j�en(z�d) (5.13)

Hx(x, z) =
1
X

n=
c+n

kexn
Zen

sin
�

kexnx
�

e�j�en(z�d), (5.14)
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respectively. In the sample region, 0 < z < d, the transverse fields are given by

Ey(x, z) = �
1
X

n=1

kscn

h

b+n e�j�snz + b�n ej�
s
nz

i

 

1� 2

µ2g

!

sin
�

kscnx
�

(5.15)

Hx(x, z) =
1
X

n=

kscn
Zsn

b+n



sin
�

kscnx
�

+
kscn
µg�sn

cos
�

kscnx
�

�

e�j�snz

�
1
X

n=

kscn
Zsn

b�n


sin
�

kscnx
�

� kscn
µg�sn

cos
�

kscnx
�

�

ej�
s
nz. (5.16)

In (5.11) and (5.12), a+1 is the amplitude of the incident TE10 wave, which is assumed to

be known during analysis. The remaining modal amplitude coe�cients a�n , b+n , b�n , and

c+n may be determined by applying boundary conditions on Ey and Hx at the interfaces

between the empty waveguide and sample regions. At z = 0 the boundary condition on the

tangential electric field requires

a+1 kexn sin
�

kex1x
�

+
1
X

n=1

a�n kexn sin
�

kexnx
�

=

1
X

n=1

kscn

h

b+n + b�n
i

 

1� 2

µ2g

!

sin
�

kscnx
�

, (5.17)

while the boundary condition on the tangential magnetic field requires

a+1
kexn
Ze1

sin
�

kex1x
�

�
1
X

n=1

a�n
kexn
Zen

sin
�

kexnx
�

=

1
X

n=1

kscn
Zsn

b+n



sin
�

kscnx
�

+
kscn
µg�sn

cos
�

kscnx
�

�

�

1
X

n=1

kscn
Zsn

b�n


sin
�

kscnx
�

� kscn
µg�sn

cos
�

kscnx
�

�

. (5.18)
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Similarly, imposing the tangential boundary conditions on the electric and magnetic fields

at z = d gives

1
X

n=1

c+n kexn sin
�

kexnx
�

=
1
X

n=1

kscn

h

b+n e�j�snd + b�n ej�
s
nd

i

 

1� 2

µ2g

!

sin
�

kscnx
�

, (5.19)

and

1
X

n=1

c+n
kexn
Zen

sin
�

kexnx
�

=
1
X

n=1

kscn
Zsn

b+n



sin
�

kscnx
�

+
kscn
µg�sn

cos
�

kscnx
�

�

e�j�snd

�
1
X

n=1

kscn
Zsn

b�n


sin
�

kscnx
�

� kscn
µg�sn

cos
�

kscnx
�

�

ej�
s
nd, (5.20)

respectively.

To convert the system of functional equations (5.17)-(5.20) to a system of linear equations,

the infinite summations are each truncated at N terms and the following testing operations

are applied. First, (5.17) is multiplied by sin (kexmx) and integrated over 0 < x < a. This

results in

a+1 kex1
a

2
�m1 +

N
X

n=1

a�n kexn
a

2
�mn =

N
X

n=1

kscn

h

b+n + b�n
i

 

1� 2

µ2g

!

a

2
�mn m = 1, 2, 3 . . . N, (5.21)

or

�a�m + b+m

 

1� 2

µ2g

!

+ b�m

 

1� 2

µ2g

!

= a+1 �m1 m = 1, 2, 3 . . . N. (5.22)
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Then, (5.18) is multiplied by sin (kscmx) and integrated over 0 < x < a. This produces

a+1
kex1
Zem

a

2
�m1 �

N
X

n=1

a�n
kexn
Zen

a

2
�mn =

N
X

n=1

kscn
Zsn

b+n



a

2
�mn +

kscn
µg�sn

a

2
�mn

�

�
N
X

n=1

kscn
Zsn

b�n


a

2
�mn � kscn

µg�sn

a

2
�mn

�

m = 1, 2, 3 . . . N, (5.23)

or

a�m
kexm
Zem

+
N
X

n=1

kscn
Zsn

b+n
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�mn +
kscn
µg�sn

�mn

�

�
N
X

n=1

ksxn
Zsn

b�n


�mn � kscn
µg�sn

�mn

�

= a+1
kex1
Zem

�m1 m = 1, 2, 3 . . . N. (5.24)

Next, (5.19) is multiplied by sin (kexmx) and integrated over 0 < x < a. This results in

N
X

n=1

c+n kexn
a

2
�mn =

N
X

n=1

b+n kscn

 

1� 2

µ2g
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2
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!

a
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or
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ej�
s
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Finally, (5.20) is multiplied by sin (kscmx) and integrated over 0 < x < a. This produces

N
X

n=1

c+n
kexn
Zen

a

2
�mn =

N
X

n=1

kscn
Zsn
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2
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s
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or

c+m
kexm
Zem

=
N
X

n=1

kscn
Zsn

b+n



�mn +
kscn
µg�sn
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N
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In (5.21) - (5.28),

�mn =

8

>

<

>

:

0, m� n even

4
⇡

m
m2�n2

, m� n odd.
(5.29)

Note that these integrals are derived in Appendix B.4. These equations can be simplified by

defining Ln = �kscn/(µg�
s
n), C = (1� 2/µ2g), and P±

n = e⌥j�snd, which results in

�a�m + Cb+m + Cb�m = �m1a
+
1 (5.30)

kexm
Zem

a�m +
N
X

n=1

kscn
Zsn

b+n [�mn � Ln�mn]�
N
X

n=1

kscn
Zsn

b�n [�mn + Ln�mn]

=
kexm
Zem

�m1a
+
1(5.31)

Cb+mP+
m + Cb�mP�

m = c+m (5.32)

N
X

n=1

kscn
Zsn

b+n [�mn � Ln�mn]P
+
n �

N
X

n=1

kscn
Zsn

b�n [�mn + Ln�mn]P
�
n =

kexm
Zem

c+m. (5.33)

Next, rearranging (5.30) and substituting into (5.31) yields

kexn
Zem

⇣

Cb+m + Cb�m � �m1a
+
1

⌘

+
N
X

n=1

kscn
Zsn

b+n [�mn � Ln�mn]

�
N
X

n=1

kscn
Zsn

b�n [�mn + Ln�mn] =
kexm
Zem

�m1a
+
1 . (5.34)

The modal amplitude coe�cients, b+n and b�n , resulting from the substitution can be brought
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into the summations by multiplying the coe�cients by �mn. This results in
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Similarly, substituting (5.32) into (5.33) results in
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Now, (5.35) and (5.36) can be represented in a 2N ⇥ 2N matrix equation
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where D, F , H, and J are N ⇥N sub-matrices and K is a vector with N terms.

Once the modal coe�cients, b+n and b�n , are found by solving the matrix equation, the

remaining unknown modal coe�cients a�n and c+n may be determined using (5.30) and (5.32),

respectively. The sample-plane S-parameters are then given by

S11 =
a�1
a+1

(5.38)

S21 =
c+1
a+1

. (5.39)

The modal series is terminated when the magnitude and phase of the S-parameters reach

specified tolerances for M contiguous values of N . As was the case in Section 4.3.2, a value
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of M = 5 is su�cient to guarantee convergence to desired accuracy in the method presented

here.

5.2.2 Validation of the Mode-Matching Analysis

The mode-matching technique is validated by considering the gyromagnetic material G1010

made by Trans-Tech, Inc. A sample of the material with 5 mm thickness is simulated inside

the cross-sectional plane of WR-650 L-band waveguide with dimensions a = 6.50 inches

by b = 3.25 inches. The physical material parameters have a saturation magnetization

of 4⇡Ms = 1000 gauss, �H = 25 oersteds, and an applied static magnetic field H0 =

1000 oersteds. In this simulation a value of �H = 0 oersteds is considered. The value of

H0 was chosen because the resulting Ferromagnetic resonance (FMR) frequency of 2.8 GHz

is above the operating band of the L-band waveguide. FMR is also known as gyromagnetic

resonance and occurs when the permeability parameters, (5.3) and (5.4), become infinite

or when the operational frequency equals the Larmor frequency. An example of FMR is

shown in Figure 5.3, where, using these physical parameters,  and µg are determined

from (5.3) and (5.4), respectively. FMR just above the measurement band is beneficial

because the extracted µg and  have interesting values, i.e. µg > 1 and  6= 0. This is

demonstrated in the inset of Figure 5.3, where the permeability parameters are shown over

the L-band frequency range. When FMR occurs within the measurement band, the number

of modes, N , needed for convergence of the S-parameters becomes exceedingly high and the

computational time required for the mode matching analysis becomes prohibitively large.

Thus, when FMR occurs outside the measurement band, the mode matching approach is

faster, making lengthy optimizations far more feasible. When FMR is below the frequency

range of interest, either  ⇡ 0 and µg ⇡ 1, or  < 0 and µg < 0. These conditions are not

of interest for the characterization technique discussed in this dissertation.

The mode matching technique was simulated with absolute tolerances of 0.1 dB for |S|

and 0.01� for \S. These values were chosen so that the accuracy of the computed series
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Figure 5.3: Permeability tensor entries determined using (5.3) and (5.4).
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is significantly better than the expected measurement accuracy of the HP 8510C VNA.

The accuracy of the S-parameters computed by the mode matching analysis was tested by

comparing the simulated data to those obtained using a full-wave FEM solver developed at

Michigan State University. As seen in Figure 5.4, the FEM simulated S-parameter match

the results of the mode matching analysis very well across the L-band frequency range, thus

validating the modal computation of the theoretical S-parameters.

5.2.3 Extraction Process

To characterize a gyromagnetic sample with one set of measurements at discrete frequencies

requires extracting three complex unknown parameters (µg, , and ✏r) from two complex

measurements (S11 and S21). This results in an underdetermined system. Therefore, a non-

linear least squares inversion method [56] is utilized to extract the frequency-independent

parameters, Ms and H0, along with permittivity ✏r = ✏0r � j✏00r which is assumed to be

frequency independent, although it is not. For the types of gyromagnetic materials that are

of interest, the permittivity changes very little over the measurement band, and therefore the

assumption of a frequency-independent permittivity is su�cient for accurate characteriza-

tion. This method uses the transmission and reflection coe�cients measured (or simulated)

at a number of frequencies in the desired band, and employs a least squares method to solve

the over-determined problem. The squared error between the measured and theoretical

S-parameters is defined as
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where fj is the jth frequency point, and r and i denote the real and imaginary parts of

the S-parameters, respectively. Here, Sthy are the theoretical S-parameters calculated using

modal analysis, and Smeas are the measured (or simulated) values.

To test the extraction method, simulated S-parameters are used as a substitute for mea-

sured S-parameters. This current technique does not characterize �H, since initial imple-

mentation assumed lossless permeability. Although characterization of �H was originally

planned, obtaining large gyromagnetic samples to fill the cross-section of an L-Band or S-

Band waveguide was not possible. Therefore, the second technique in this chapter discusses

use of a reduce-aperture sample holder for characterizing smaller samples and subsequently

�H is included in the analysis. To validate the current extraction technique, the FEM simu-

lated S-parameters shown in Figure 5.4 are used, and the characterization technique is tested

by extracting the material parameters from the simulated data. Figure 5.5 shows the ex-

tracted and theoretical material parameters, and it is apparent that the developed extraction

routine is capable of accurately characterizing G1010 material. Note that the theoretical ma-

terial parameters are determined using (5.3) and (5.4) with the physical parameter outlined

in Section 5.2.2.

5.2.4 Summary

A technique for characterizing gyromagnetic materials has been developed and described in

this section. The technique uses the least-squares method to find the material parameters

from measured or simulated S-parameters. The technique has been tested using simulated

S-parameters obtained using an in-house FEM code that includes a full tensor model of

permeability. It was shown that the method is capable of accurately extracting the material

parameters of the gyromagnetic material G-1010. This method has limitations since the

sample size required for characterizing gyromagnetic samples with the use L-band or S-band

waveguides is not feasible due to sample size restrictions.
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5.3 Material Characterization of Gyromagnetic Mate-

rial Using a Reduced Aperture Waveguide

The focus of this section is the extraction of the permeability tensor and isotropic permittivity

of a gyromagnetic material using a reduced aperture sample holder. The cross-sectional

dimensions of waveguides become prohibitively large at low frequencies, and it is at these

frequencies that the gyromagnetic properties are most pronounced. However, su�ciently

large samples may not be available. Therefore, the use of a reduced aperture sample holder is

proposed which does not require the sample to fill the entire cross section of the guide. Modal

analysis is used to determine the reflection and transmission coe�cients of the dominant

mode. A non-linear least squares method is employed to extract the gyromagnetic material

parameters

5.3.1 Theoretical Transmission and Reflection Coe�cients Using

Mode-Matching Analysis

The MUT is assumed to be linear, homogeneous, and biased perpendicular to the broad

dimension of the waveguide which results in the permittivity and permeability tensor given

in (5.1) and (5.2). The waveguide system, shown in Figure 5.6, consists of empty waveguide

extensions connected to a reduced aperture sample holder completely filled by the MUT. A

cross-section view of the reduced aperture is shown in Figure 5.7. It is assumed that the

lengths of the extensions are such that a single TE10 mode rectangular waveguide mode is

incident on the sample holder from the transmitting extension (z < 0), and a single mode is

obtained at the end of the receiving extension (z > d).

As with every characterization technique discussed in this dissertation, accurate formula-

tion of the theoretical S-parameters is essential for reliable characterization of the MUT. The

constitutive material parameters are determined by minimizing the di↵erence between mea-
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sured and theoretically computed reflection and transmission coe�cients. The theoretical S-

parameters of the reduced-aperture waveguide system are determined using a mode-matching

technique which accommodates the higher order modes excited from the discontinuity with

the reduced aperture and the coupling between orthogonal field components. The single

TE10 mode incident on the sample holder results in an infinite number of waveguide modes

reflected back into the transmitting extension. Additionally, an infinite number of waveguide

modes are transmitted into the sample region and incident on the discontinuity at z = d.

Thus a spectrum of modes is also reflected back into the sample region and transmitted into

the waveguide extension.

Since the electric field of the TE10 mode incident on the sample holder, as shown in

Figure 5.8, is even about x = 0, and because the aperture is even about x = 0 and the

gyromagnetic material is biased along the y-axis, only modes with electric field even about

x = 0 will be excited. Thus, only TEn0 modes are needed to describe the fields in each of

the waveguide regions.

5.3.1.1 Field Structure in a Waveguide Filled with Gyromagnetic Material

Assume the gyromagnetic material is magnetized along the y-axis, such that the material

parameters are described in (5.1) and (5.2). For TEn0 modes in a gyromagnetic filled

rectangular waveguide region the wave equation from (2.227) reduces to (5.5), where the

cuto↵ wavenumber is expressed in (5.6). As was shown previously in Section 2.3.3.1, the

wave equation is solved using a separation of variables and enforcing the boundary conditions

on the tangential electric field at the perfectly conducting waveguide walls. Since the reduced-

aperture sample region is centered about x = 0 as seen Figure 5.6, the sinusoidal function

in the transverse electric and magnetic field equations from (2.251) and (2.252) are o↵set by
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w/2. This results in the following transverse field equations:
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Here kscn = n⇡/w is the cuto↵ wavenumber for the nth TEn0 mode, Zsn = !µ0µg/�
s
n, and

�sn is determined from (5.6).

The transverse field equations for the empty waveguide extensions may be determined

using (5.9) and (5.10), as long as, once again, the sinusoidal functions are o↵set. For the

empty regions, the sinusoidal functions are o↵set by a/2. This yields the following transverse

field equations:
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Here kscn = n⇡/w is the cuto↵ wavenumber, and Zen = !µ0/�
e
n is the modal wave impedance.

Note that �en is determined using (2.140).
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5.3.1.2 Solution for S-Parameters Using Modal Expansions

Mode-matching analysis is utilized to first expand the transverse field in the sample holder

and in the waveguide extensions in an infinite sum of modal fields. Then with the application

of boundary conditions, the modal amplitudes can be determined. First, in the empty

waveguide extension region, z < 0, the transverse fields are
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Here A+1 is the amplitude of the incident TE10 wave and is assumed known during analysis.

Next, in the sample holder region, 0 < z < d, the transverse fields are
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Finally, in the waveguide extension z > d the fields are given by
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By applying the boundary conditions on Ey and Hx at the interfaces between the two

waveguide extensions and the sample holder, the modal amplitude coe�cients A�n , B+
n ,

B�
n , and C+

n may be determined. The boundary condition on the tangential electric field

at z = 0 requires
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and the boundary condition on the tangential magnetic field requires
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Additionally, the boundary condition on the tangential electric field at z = d requires
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while the boundary condition on the tangential magnetic field requires

1
X

n=1

C+
n kexn
Zen

sin
h

kexn

⇣

x� a

2

⌘i

=

1
X

n=1

B+
n kscn
Zsn

⇢

sin
h

kscn

⇣

x� w

2

⌘i

+
kscn
µg�sn

cos
h

kscn

⇣

x� w

2

⌘i

�

e�j�snd

�
1
X

n=1

B�
n kscn
Zsn

⇢

sin
h

kscn

⇣

x� w

2

⌘i

� kscn
µg�sn

cos
h

kscn

⇣

x� w

2

⌘i

�

ej�
s
nd. (5.54)

The system of functional equations (5.51) - (5.54) are converted to a system of linear

equations by first truncating the infinite summations to N terms and then applying the fol-

lowing testing operations. The equations resulting from applying the tangential electric field

boundary conditions, (5.51) and (5.54), are multiplied by sin [kexm (x� a/2)] and integrated

over �a/2  x  a/2. Then, (5.52) and (5.54), which result from applying the tangential

magnetic field boundary conditions, are multiplied by sin [kscm (x� w/2)] and integrated

over �w/2  x  w/2. Here 1  m  N . This yields the 4N ⇥ 4N matrix equation
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where G, J , K, and L± are N ⇥ N submatrices, and g and k are vectors of length N .

These entries specified in Appendix B.4. Here P is a diagonal matrix with entries Pmn =

�mne�j�snd, with �mn the Kronecker delta. Note that b�n is introduced to avoid overflow

during computation.

The modal coe�cients are found by solving the matrix equation in (5.55). The S-

parameters of the system are given by

S11 =
A�1
A+1

(5.56)

S21 =
C+
1

A+1

. (5.57)

Similar to the first technique discussed in this Chapter, the modal series is terminated when

the magnitude and phase of the S-parameters reach specified tolerances at M contiguous

values of N . Here M = 5 is su�cient to guarantee convergence to desired accuracy.

5.3.2 Validation of Theoretical Analysis

The mode matching technique was used to compute the S-parameters for a sample of G1010

placed into a reduced aperture sample holder in an L-band waveguide system. The dimen-

sions of the L-band system are a = 6.50 inches and b = 3.25 inches. The sample thickness

was chosen to be 0.50 inches, while the width of the aperture was set to 1.75 inches. Figure

5.9 and Figure 5.10 show S11 and S21 computed by using the modal series with the applied

biasing magnetic field oriented along the y-axis of the waveguide. This biasing field value was

set to 900 oersteds and the line width, �H, to zero. The resulting FMR occurs at 2.52 GHz.

Absolute tolerances of 0.1 dB for |S| and 0.01� for \S were chosen so that the accuracy

of the computed series is similar to the other techniques discussed in this dissertation. For

the material and H0 considered here, the S-parameters typically converge to the specified

tolerances within N = 136 terms.
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Also shown in Figure 5.9 and Figure 5.10 are the values of the S-parameters computed

using the full-wave FEM solver developed at Michigan State University. The FEM simula-

tion used approximately 100000 unknowns with a specified mesh size. Excellent agreement

was obtained between the modal analysis and FEM for certain portions of the frequency

band. However, near resonances there is a discrepancy between the two techniques. Initial

thoughts were to implement higher-order basis functions in the FEM code. However, by

the completion of this dissertation, the higher-order FEM code had not been tested for this

problem. Therefore, to give confidence that this mode matching technique is providing accu-

rate results, the mesh size in the FEM simulation was increased; which resulted in the FEM

simulation having 400000 unknowns. There was a dramatic increase in FEM computational

time for this many unknowns. Figure 5.11 and Figure 5.12 show the comparison of the mode

matching technique and the FEM simulation using 400, 000 unknowns. It is seen that FEM

results are trending closer to the mode matching S-parameters. This gives confidence that

the theoretical S-parameters are computed properly.

5.3.3 Extraction Process

The same non-linear least squares method was used to determine the frequency indepen-

dent physical parameters H0, 4⇡Ms, ✏0r, ✏00r , and �H as was described in Section 5.2.3.

The squared error between the measure and theoretical S-parameters is defined in (5.40).

The extraction method was tested by using simulated S-parameters in lieu of measured S-

parameters. The FEM generated S-parameters shown in Figure 5.11 and Figure 5.12 are

used and the extraction process carried out. Figure 5.13 and Figure 5.14 show the extracted

parameters of the G1010 material filling the cross-section of the reduced aperture guide. It

is apparent that the significant amount of error present in the FEM simulations propagates

to the characterized material parameters, causing inaccurate results. Note that the theoret-

ical material parameters are determined using (5.3) and (5.4) with the physical parameter

outline in Section 5.2.2.
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Figure 5.9: Magnitude of S-parameters computed for a gyromagnetic test material. FEM
simulation uses 100000 unknowns.
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Figure 5.10: Phase of S-parameters computed for a gyromagnetic test material. FEM simu-
lation uses 100000 unknowns.
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Figure 5.11: Magnitude of S-parameters computed for a gyromagnetic test material. FEM
simulation uses 400000 unknowns.
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Figure 5.12: Phase of S-parameters computed for a gyromagnetic test material. FEM simu-
lation uses 400000 unknowns.
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Figure 5.13: Relative permittivity parameters characterized using FEM generated S-
parameters.
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Figure 5.14: Relative permeability parameters characterized using FEM generated S-
parameters.
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5.3.4 Error and Sensitivity Analysis

A sensitivity analysis can be used to determine the e↵ects of aperture size on error propaga-

tion from S-parameter uncertainties. To determine the sensitivity, a Monte Carlo technique

was used to study the e↵ects of propagation of random error inherent to the VNA. De-

pending on the material under test, the width of the aperture (w in Figure 5.6) can have

a dramatic e↵ect on the sensitivity to uncertainties of the measured S-parameters. Five

di↵erent aperture widths were analyzed: w = 12.02 mm, 24.04 mm, 36.06 mm, 48.08 mm,

and 60.10 mm.

The uncertainties of the measured S-parameters used in the Monte Carlo analysis are the

same as were employed in the similar analysis done for the iris technique in Section 3.3.4.

Once again, the VNA measurement uncertainty is assumed to be independent of amplitude

and frequency. Statistical variance of S11 is specified linearly in amplitude and phase with

values of �A11
= 0.004 and ��11

= 0.8�. Variance of S21 is specified logarithmically in

amplitude and linearly in phase with values �A21
= 0.04 dB and ��21

= 2.0�.

The G1010 test sample described in Section 5.2.2 was used in the Monte Carlo analysis of

the propagation of VNA uncertainty. The geometry of the sample holder is a = 72.136 mm,

b = 34.036 mm, and d = 5 mm. The biasing magnetic field is H0 = 2000 oersteds, while

the line width is �H = 25 oersteds. This H0 results in a FMR occurring at 5.60 GHz.

This �H is the approximate value specified by Trans Tech, Inc. The forward problem was

solved at 51 frequency points over the portion of S-band from 2.6 GHz to 3.95 GHz. White

Gaussian noise was then added to the S-parameters, and the noisy data was used to extract

the material parameters. One hundred trials were used in the Monte Carlo analysis, and

the average values of the material parameters and the standard deviations were calculated

for each aperture width examined. Figures 5.15 - 5.19 show the e↵ects on the permittivity

characterization with di↵erent apertures widths. Figures 5.20 - 5.24 similarly show the

e↵ects on the permeability characterization for the five di↵erent aperture widths. Note that
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the red lines in these figures are the theoretical values of G1010 used to generate the S-

parameters employed in the Monte Carlo analysis. It is seen that the wider the aperture

is, the less sensitive the extracted material parameters are to the propagation of measured

S-parameter uncertainty. Additionally, the results of the sensitivity analysis have values

typical of those encountered with other material extraction methods, such as [51] and [40].

This is encouraging for characterization of measured data, which by the completion of this

dissertation has not been carried out and is left for future work.

5.3.5 Summary

A reduced aperture waveguide method is introduced for measuring the permittivity and

permeability of gyromagnetic materials. The technique is capable of characterizing sample

sizes less than the cross-section of a rectangular waveguide. The performance of the technique

is established using a sensitivity analysis based on network analyzer uncertainties. It is found

that the technique performs well using simulated data, however, further validation is needed

using laboratory measurements.
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Figure 5.15: Relative permittivity extracted from 100 random trials of simulated S-
parameters for a G1010 sample filling a reduced aperture of width 12.02 mm. Center black
line is the average of the trials. Upper and lower black lines show the 95% confidence in-
terval. Red lines are the theoretical permittivity values used to generate the S-parameters
employed in the Monte Carlo simulation.
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Figure 5.16: RRelative permittivity extracted from 100 random trials of simulated S-
parameters for a G1010 sample filling a reduced aperture of width 24.04 mm. Center black
line is the average of the trials. Upper and lower black lines show the 95% confidence in-
terval. Red lines are the theoretical permittivity values used to generate the S-parameters
employed in the Monte Carlo simulation.
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Figure 5.17: Relative permittivity extracted from 100 random trials of simulated S-
parameters for a G1010 sample filling a reduced aperture of width 36.06 mm. Center black
line is the average of the trials. Upper and lower black lines show the 95% confidence in-
terval. Red lines are the theoretical permittivity values used to generate the S-parameters
employed in the Monte Carlo simulation.
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Figure 5.18: Relative permittivity extracted from 100 random trials of simulated S-
parameters for a G1010 sample filling a reduced aperture of width 48.08 mm. Center black
line is the average of the trials. Upper and lower black lines show the 95% confidence in-
terval. Red lines are the theoretical permittivity values used to generate the S-parameters
employed in the Monte Carlo simulation.
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Figure 5.19: Relative permittivity extracted from 100 random trials of simulated S-
parameters for a G1010 sample filling a reduced aperture of width 60.10 mm. Center black
line is the average of the trials. Upper and lower black lines show the 95% confidence in-
terval. Red lines are the theoretical permittivity values used to generate the S-parameters
employed in the Monte Carlo simulation.
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Figure 5.20: Relative permeability values extracted from 100 random trials of simulated
S-parameters for a G1010 sample filling a reduced aperture of width 12.02 mm. Center
black line is the average of the trials. Upper and lower black lines show the 95% confidence
interval. Red lines are the theoretical permeability values determined using (5.3) and (5.4).
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Figure 5.21: Relative permeability values extracted from 100 random trials of simulated
S-parameters for a G1010 sample filling a reduced aperture of width 24.04 mm. Center
black line is the average of the trials. Upper and lower black lines show the 95% confidence
interval. Red lines are the theoretical permeability values determined using (5.3) and (5.4).
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Figure 5.22: Relative permeability values extracted from 100 random trials of simulated
S-parameters for a G1010 sample filling a reduced aperture of width 36.06 mm. Center
black line is the average of the trials. Upper and lower black lines show the 95% confidence
interval. Red lines are the theoretical permeability values determined using (5.3) and (5.4).
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Figure 5.23: Relative permeability values extracted from 100 random trials of simulated
S-parameters for a G1010 sample filling a reduced aperture of width 48.08 mm. Center
black line is the average of the trials. Upper and lower black lines show the 95% confidence
interval. Red lines are the theoretical permeability values determined using (5.3) and (5.4).
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Figure 5.24: Relative permeability values extracted from 100 random trials of simulated
S-parameters for a G1010 sample filling a reduced aperture of width 60.10 mm. Center
black line is the average of the trials. Upper and lower black lines show the 95% confidence
interval. Red lines are the theoretical permeability values determined using (5.3) and (5.4).

245



CHAPTER 6

VERIFICATION STANDARDS FOR

MATERIAL CHARACTERIZATION

6.1 Introduction

The use of engineered materials in the design of radio frequency (RF) systems requires an

accurate knowledge of material constitutive parameters. Some recently synthesized materials

include graphene nanoribbons or metallic inclusions for use in miniaturization of electronic

components [4]-[5], ferrite loaded polymers to increase EMI shielding [6], cellular materials

such as honey comb structures to decrease radar cross-section [7]-[8], and anisotropic ma-

terials used to enhance antenna operation [9]-[10]. Since the properties of these materials

are often hard to accurately predict (due to modeling uncertainties and variability in the

manufacturing process), they are usually measured in a laboratory.

As seen in this dissertation, rectangular waveguide applicators are commonly used to

extract the electromagnetic properties of materials. Benefits over alternative methods, such

as free-space systems, include the availability of analytical expressions to describe sample

interrogation, high signal strength, and the simplicity of manufacturing rectangular samples

[20]-[22]. The S-parameters measured with a material sample placed in the cross-sectional
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plane of a waveguide may be used to determine the complex values of the permittivity,

✏ = ✏0(✏
0
r + j✏00r ), and the permeability, µ = µ0(µ

0
r + jµ00r ), from closed-form expressions

described in Section 3.2.

The accuracy of a material characterization system is often established by measuring a

standard material with known properties. A desirable standard material is easy to machine,

is stable thermally and chemically, is readily available, and has values of constitutive para-

meters numerically close to those of samples of interest with only minor variations within the

measurement band. If the permittivity of materials is of primary interest, a dielectric sample

such as RexoliteR� may be used to provide highly-predictable parameters in the microwave

spectrum with a value characteristic of many plastics [35] and [57]. The recent introduction

of engineered materials with magnetic as well as dielectric properties has made it more dif-

ficult to find standard test materials whose constitutive parameters are known with great

accuracy and have appropriate values within the microwave spectrum. Fortunately, it is

possible to create a surrogate material sample that can act as the standard test material in

the sense that its use in a material measurement system will produce extracted constitutive

parameters with predictable, highly-accurate, and appropriate values. The surrogate need

not resemble an actual material, and in fact can be inhomogeneous and non-magnetic. The

only requirement is that when inserted in place of a test material, the surrogate provides

proper S-parameters that may be used in the extraction process. Although some previous

work has been done to create waveguide standards using circuits, obstacles, or components

[58], these fabricated structures are only meant to validate the reflection and transmission

coe�cients, not the extracted material parameters.

It is crucial that a material standard produce highly accurate, stable, and repeatable

values of extracted permittivity and permeability across the measurement band. It must be

reproducible for the majority of users, and thus should be of simple design and made from

readily available materials. The values of the extracted constitutive parameters should not

be overly sensitive to the geometrical dimensions of the standard, so that errors in fabrication
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or changes in the operating environment (temperature, humidity, etc.) do not cause unpre-

dictable or unacceptable results. Additionally, the values of permittivity and permeability

must be predictable to high accuracy using standard, reproducible analytic techniques. For

these reasons, the design adopted for the surrogate described here uses two simple metallic

waveguide windows, or apertures, separated by a spacer. Given just four geometrical para-

meters, mode-matching techniques can be used to accurately compute the S-parameters of

the surrogate material, and from these the extracted constitutive parameters may be de-

termined. A description of the design process used to obtain an optimized geometry and a

typical design for S-band using standard WR-284 dimensions are given below. Details of the

theoretical analysis are also given, so that any user may design an appropriate surrogate.

The measured results for an example verification standard constructed from materials on

hand are shown and discussed.

6.2 Material Characterization Procedure

A verification standard provides confidence in the operation of an experimental system by

producing known results under appropriate operating conditions. In the case of material

characterization, the verification standard is placed into the system and known values of µ

and ✏ are extracted using a specific algorithm. The standard described in this dissertation

assumes the use of the classic “Nicolson-Ross-Weir” (NRW) extraction algorithm, outlined

in Section 3.2, that employs the measured reflection and transmission coe�cients for a wave-

guide section completely filled by the material [23]-[24]. Other algorithms are available that

use, for instance, only reflection measurements [36]; these would require a di↵erent standard.

The attraction of the NRW characterization method results from the availability of closed-

form expressions for µ and ✏. This contrasts with methods requiring an iterative solver such

as Newton’s method [30]-[31] or a least squares approach [32]-[33]. The convenience of the

NRW method, and its insensitivity to propagation of measurement uncertainties, commonly
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makes it a first choice for material characterization. Since NRW extraction can be used

with rectangular waveguides [25], coaxial applicators [26]-[27], free-space methods [28], and

stripline measurements [29], the concept of the waveguide surrogate described here has wide

applicability, although the details of the structural design vary from system to system.

Figure 6.1 shows the experimental configuration used in the NRW method. A sample

with unknown properties is placed into a sample holder occupying the region 0  z  d in

a rectangular waveguide system. Waveguide extensions are usually employed to guarantee

only the dominant mode is present at the measurement ports. The S-parameters S11 and

S21 are measured using a vector network analyzer (VNA) attached at these ports, and the S-

parameters are then mathematically transformed to obtain the S-parameters at the sample

planes. These sample-plane S-parameters are used to determine the sample propagation

constant � and the interfacial reflection coe�cient �, which may in turn be used to find ✏

and µ.

The waveguide standard is placed into the measurement system in a manner identical to

an actual unknown material; see Figure 6.1. The length of the surrogate sample is z3 = d

and thus the S-parameter planes are taken at z = 0 and z = d as in the case of an actual

sample. The NRW method assumes that the material sample is isotropic and homogeneous,

and thus the measured S-parameters obey S11 = S22 and S12 = S21. Although it is not

necessary that the waveguide standard be homogeneous, it is helpful if the S-parameters

of the surrogate obey the same relationships as do those of an actual material. Thus, the

waveguide standard should be symmetric in the longitudinal (z) direction. This allows the

standard to be interrogated from either direction with identical results, and if the standard

is constructed from lossless (or perfectly conducting) materials, it also allows the permittiv-

ity and permeability of the surrogate extracted using the NRW method to be purely real

(corresponding to a lossless material). The condition under which this occurs is identified

in Appendix C. Interestingly, if the waveguide standard is made from lossless materials but

is not symmetric along z, the NRW method may return complex values for µ and ✏ with
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Figure 6.1: Waveguide material measurement system showing presence of material sample
(top), and waveguide verification standard surrogate material (bottom). Adopted surrogate

has �` = �r, y`1 = yr1, and y`2 = yr2.
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positive imaginary parts, indicating gain, which is not a property of a useful surrogate. To

demonstrate this, consider two surrogate materials, each constructed from alternating layers

of perfect (lossless) dielectrics, as shown in Figure 6.2. The sample plane S-parameters of

each system may be easily computed using cascaded matrices [59], and the permittivity and

permeability of the surrogate extracted using the NRW method; see Figure 6.2. When the

properties of the symmetric material (Sample A) are extracted, the permittivity is found

to be purely real (characteristic of a lossless material). However, when the properties of

the asymmetric material (Sample B) are extracted, the imaginary part of the permittivity

is found to be nonzero and positive (characteristic of an active material). The extracted

permeability of the asymmetric material is found to have a small negative imaginary part

and a real part less than unity. This contrasts the extraction of the symmetric sample where

the imaginary permeability is found to be zero. Note that in both cases, the real parts of the

extracted permittivity and permeability are frequency dependent, even though the dielectric

constants of the material layers are independent of frequency. This frequency dependence

is expected of any inhomogeneous surrogate, and leads to the drawback that the material

parameters do not obey the Kronig-Kramers relations [60]. However, an inhomogeneous

surrogate is still valuable as a verification standard since its material parameters can be

tailored to a desired range and, if lossless, provide a quick check of the credibility of the

measurements.

6.3 Waveguide Verification Standard Design

It is important to develop a waveguide standard that is easily fabricated using materials read-

ily available to most users. For this reason the surrogate was chosen to be constructed from

purely metallic parts, and in the following analysis is assumed to be perfectly conducting.

Assemblies of structures such as loops, posts, and both circular and rectangular apertures

were considered, with the goal to produce a surrogate material with both a permittivity and
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a permeability as near to six as possible across S-band. (Note that materials with large but

equal values of permittivity and permeability are useful in the construction of microwave

antennas with enhanced radiation properties; values near 6 are a good goal.) As discussed

in the previous section, by making the structure longitudinally symmetric, the extracted

material parameters may be purely real and correspond to a lossless material. However, as

also discussed, the parameters are frequency dependent, and thus a genetic algorithm (GA)

was employed to find a structure with slowly varying parameters as near to a target value

of six as possible. It is also important that the extracted material parameters be relatively

insensitive to small changes in the geometry of the structure, so that tight manufacturing

tolerances are not required.

To find structures that satisfy the design requirements, a combination of a GA and a

Monte Carlo error analysis routine was employed. For each candidate structure, the com-

mercial solver HFSS was used to determine the S-parameters, and the NRW method was

used to find ✏r and µr. A Matlab to HFSS interface was implemented, where all exported

data from HFSS was stored in Matlab and analyzed during post processing and GA execu-

tion. Figure 6.3 shows a flow chart of the Matlab to HFSS interface. An initial design of

the waveguide surrogate (loops, posts, apertures, etc.) is programmed into Matlab, which

in turn generates application programming interface (API) functions that are used to talk

between Matlab and HFSS. The Matlab program then creates and executes an HFSS script.

Using this script, HFSS draws and analyzes the structure and then exports the specified

solution data back to Matlab. Then Matlab generates a new set of API functions using

the next randomly determined geometrical modification (such as post radius, aperture size,

sample thickness) to the surrogate design. Using the stored results from HFSS it is possible

to take a small population of possible designs, analyze the permittivity and permeability,

and determine if with fine tuning this type of surrogate is viable for a waveguide standard.

Figure 6.4 shows a surrogate design of brass posts that was analyzed for a possible waveguide

standard candidate. In this simulation, the number of posts was fixed, but the GA was used
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to determine the individual radius of each post, whether the posts came from the bottom or

top of the guide, and the length of each post. It was found that this type of surrogate would

not meet the objectives for a waveguide standard. Typical results from the GA analysis of

the brass-post surrogate design are shown in Figure 6.5. The surrogate design has highly

varying ✏0r and µ0r, and thus is not a usable waveguide standard design. Additionally, the ✏r

and µr become complex of certain portions of the frequency band. Since the surrogate design

is symmetric in the longitudinal dimension and made from lossless materials, the portions

of the frequency band in which the material parameters are complex result from Case 2 in

Appendix C, where X2  1 with X = S11r/|S11|2. This can be seen in Figure 6.6, where

the inset shows an expanded vertical region of a plot of X2. Comparing Figure 6.5 with

Figure 6.6, it can be seen that the frequencies where ✏r and µr are complex correspond with

frequencies where X2  1. Thus, avoiding regions where Case 2 is in e↵ect results in an

acceptable surrogate design for use as a verification standard.

Once a possible surrogate design was determined, the geometry of each candidate struc-

ture was perturbed randomly multiple times and the error that propagated to the extracted

material properties was computed. After many lengthy searches, several structures were

found with acceptable properties, some exhibiting highly complex geometries. One structure

in particular was found to be quite promising due to its simple geometry, and was adopted

as the waveguide standard analyzed and presented in this dissertation. It consists of two

identical rectangular apertures of thickness �` = �r separated by a spacer of thickness �s,

as shown in Figure 6.1.

The simple geometry of the adopted waveguide standard has several important advan-

tages over more complex structures. First, it may be easily machined from simple metal

sheets. Second, an easily implemented mode-matching technique may be used to analyze

the structure quickly and with great accuracy, and thus commercial solvers are not required

to determine the material properties of the surrogate. By controlling the accuracy of the

analysis, the errors propagated to the extracted material parameters from the uncertain-
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Figure 6.4: Example of brass-post surrogate design.

256



2.6 2.8 3 3.2 3.4 3.6 3.8
Frequency (GHz)

-60

-40

-20

0

20

40

2.6 2.8 3 3.2 3.4 3.6 3.8
Frequency (GHz)

-20
0

20
40
60
80

100
120

M
at

er
ia

l P
ar

am
et

er
s

μ'r

μ''r

M
at

er
ia

l P
ar

am
et

er
s

ε'r

ε''r

Figure 6.5: Characterization results from a GA analysis of a brass-post surrogate design.
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ties in the dimensions of the fabricated parts and from the uncertainties of the measured

S-parameters may be appropriately calculated. Third, if the standard is manufactured using

materials of thicknesses di↵erent than those described in the optimized design, or if the man-

ufactured apertures are somewhat o↵set from those of the optimized design, mode matching

may be used to determine the theoretical properties of the manufactured standard, and the

standard may still be used to verify the accuracy of a material measurement system.

The adopted design was further tuned using an additional GA. This GA varied the

vertical window positions (positions y`1 = yr1 and y`2 = yr2 in Figure 6.1), horizontal window

positions, and the thickness of the apertures and waveguide spacer. The thicknesses of

each aperture and spacer were limited to the values of United States standard brass stock

(multiples of 1/16 inch, or 1.5875 mm), to simplify the fabrication process. To produce a

symmetric verification standard, the apertures were assigned identical openings. The final

optimized design consists of apertures with widths identical to the waveguide width and

with vertical positions y`1 = yr1 = 5.064mm, y`2 = yr2 = 23.86mm. The thicknesses of

the optimized design are the standard stock thicknesses �` = �r = 1/8 inch (3.175mm),

and �s = 1/2 inch (12.7mm). The material parameters extracted from the S-parameters

of the optimized design are shown in Figure 6.7. As expected, the imaginary part of the

extracted parameters are zero (to computational accuracy) and the real parts are dependent

on frequency. Note that the optimizer has produced a trade o↵ between frequency variation,

and values near to six. In contrast with the brass-post surrogate design, Figure 6.8 shows

that X2 > 1 for the entire frequency band and thus the material parameters are real.

Precise values for the material parameters produced by the optimized waveguide standard

may be found by applying the mode-matching technique (see Section 6.4 for details of the

mode-matching theory.) A su�cient number of modes was used (N = 500) to guarantee

a minimum of five digits of precision in the material parameters extracted using the NRW

method. The resulting values are listed in Table 6.1. Note that only the real parts of ✏r and

µr are shown, since the imaginary parts are less than 10�5. These values can be used to
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verify the operational accuracy of waveguide material parameters measurement systems in S-

band. Similar standards may be devised for other waveguide bands using the mode-matching

method.

6.4 Computation of S-Parameters of adopted Wave-

guide Standard using Mode Matching

Useful implementation of the waveguide standard requires that the user has access to an

accurate method for computing the S-parameters. For this reason, a detailed description of

the mode-matching method applied to the adopted standard is presented here.

Consider the geometry of the adopted waveguide standard shown in Figure 6.1. Per-

fectly conducting apertures are positioned at z = 0 and z = z2 with thickness �` and �r,

respectively. Although the adopted standard is longitudinally symmetric, the thicknesses

of the apertures are allowed to be di↵erent so that the e↵ects of manufacturing errors may

be evaluated. The width of the apertures are the same as the width of the empty wave-

guide, a, while the vertical openings are describe by the height positions y`1 and y`2 for the

left aperture, and yr1 and yr2 for the right aperture. The waveguide extensions are assumed

to be of su�cient length such that, even though a full spectrum of higher order modes is

produced at the apertures, only a TE10 mode is received at the measurement ports. The

waveguide used is standard S-band WR-284 with dimensions a = 2.84 inch by b = 1.34 inch

(72.136⇥ 34.036 mm) and a designated operational band of 2.6 to 3.95 GHz.

6.4.1 Mode Matching Analysis for the Waveguide Standard

Assume a TE10 mode is incident from the transmitting extension z < 0. Interaction of

this field with the aperture at z = 0 generates an infinite spectrum of modes in each of the

waveguide sections. However, because of the symmetry of the incident field, only the TE1,v

and TM1,v modes are excited with nonzero amplitude [61]. The transverse fields for the
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Table 6.1: Real parts of relative material parameters for the waveguide verification standard
optimized for S-band using WR-284 waveguides found using mode matching. Dimensions

of the standard are: y`1 = yr1 = 5.064 mm, y`2 = yr2 = 23.86 mm, �` = �r = 1/8 inch
(3.175 mm), and �s = 1/2 inch (12.7 mm).

Frequency (GHz) ✏r µr
2.60 6.0356 7.8526
2.65 6.1182 7.5486
2.70 6.1797 7.2848
2.75 6.2232 7.0541
2.80 6.2509 6.8508
2.85 6.2650 6.6707
2.90 6.2670 6.5105
2.95 6.2584 6.3676
3.00 6.2403 6.2399
3.05 6.2137 6.1258
3.10 6.1795 6.0238
3.15 6.1383 5.9330
3.20 6.0908 5.8523
3.25 6.0374 5.7811
3.30 5.9785 5.7188
3.35 5.9145 5.6650
3.40 5.8457 5.6194
3.45 5.7723 5.5817
3.50 5.6944 5.5518
3.55 5.6120 5.5298
3.60 5.5254 5.5157
3.65 5.4343 5.5098
3.70 5.3389 5.5123
3.75 5.2389 5.5238
3.80 5.1342 5.5449
3.85 5.0245 5.5764
3.90 4.9096 5.6194
3.95 4.7889 5.6754
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transmitting extension, z < 0, may thus be written as the modal series

~Et(~r) = a+1 ~e
f
1 (~⇢)e

�j�
f
1 z +

N
X

n=1

a�n ~e
f
n(~⇢)e

j�
f
nz, (6.1)

~Ht(~r) = a+1
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f
1 (~⇢)e

�j�
f
1 z �

N
X

n=1

a�n ~h
f
n(~⇢)e

j�
f
nz, (6.2)

where the series has been truncated at N modes for computational expediency. Similarly,

the transverse fields in the region z1 < z < z2 may be written as

~Et(~r) =
N
X

n=1

"

c+n e�j�
f
n(z�z1) + c�n e�j�

f
n(z2�z)

#

~e
f
n(~⇢), (6.3)

~Ht(~r) =
N
X
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c+n e�j�
f
n(z�z1) � c�n e�j�

f
n(z2�z)

#

~h
f
n(~⇢), (6.4)

while those in the receiving extension, z > z3, may be expressed as

~Et(~r) =
N
X

n=1

f+n ~e
f
n(~⇢)e

�j�
f
n(z�z3), (6.5)

~Ht(~r) =
N
X

n=1

f+n ~h
f
n(~⇢)e

�j�
f
n(z�z3). (6.6)

Here a+1 is the known amplitude of the incident TE10 mode, and the ej!t time convention

is assumed. From (2.140) the propagation constant for mode n is given by

�
f
n =

r

k20 � (k
f
cn)

2, (6.7)

where kcn is the cuto↵ wave number for the nth mode expressed as

k
f
cn =

r

(⇡/a)2 + (k
f
yn)

2, (6.8)
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with k
f
yn = vn⇡/b. The index n orders the modes according to cuto↵ frequency. If the nth

mode is TEz the variable vn corresponds to a TE1,vn wave; if the nth mode is TMz this

variable corresponds to a TM1,vn wave.

The fields in the aperture regions are expanded similarly as

~Et(~r) =
N
X

n=1



b+n e�j�`nz + b�n e�j�`n(z1�z)
�

~e`n(~⇢), (6.9)

~Ht(~r) =
N
X

n=1



b+n e�j�`nz � b�n e�j�`n(z1�z)
�

~h`n(~⇢), (6.10)

in the left aperture region, 0 < z < z1, and

~Et(~r) =
N
X

n=1

h

d+n e�j�rn(z�z2) + d�n e�j�rn(z3�z)
i

~ern(~⇢), (6.11)

~Ht(~r) =
N
X

n=1

h

d+n e�j�rn(z�z2) � d�n e�j�rn(z3�z)
i

~hrn(~⇢), (6.12)

in the right aperture region, z2 < z < z3. Note that the propagation constants in the

apertures may be di↵erent, depending on the aperture sizes, and are thus written as

�
`,r
n =

r

k20 � (k
`,r
cn )2. (6.13)

Here

k
`,r
cn =

r

(⇡/a)2 + (k
`,r
yn )

2, (6.14)

with k`yn = vn⇡/w` and kryn = vn⇡/wr, where w` = y`2 � y`1, and wr = yr2 � yr1. As in

the other waveguide sections, the modes in the apertures are ordered according to cuto↵

frequency.

In the above expressions, ~en(~⇢) and ~hn(~⇢) are the transverse electric and magnetic modal
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fields, respectively, and as shown in (2.153) and (2.154) are given by
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for the TE1,vn modes and from (2.180) and (2.181) are expressed as
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for the TM1,vn modes. Here �f = 0, �` = y`1, �
r = yr1, Z

f,`,r
n = !µ0/�

f,`,r
n is the TE

wave impedance, and Z
f,`,r
n = �

f,`,r
n /(✏0!) is the TM wave impedance.

The unknown modal amplitudes a�n , b+n , b�n , c+n , c�n , d+n , d�n , and f+n may be deter-

mined by applying the boundary conditions on ~Et and ~Ht at the interfaces between the full

waveguide and the aperture regions. At the interface z = 0, the tangential electric field

boundary condition requires

a+1 ~e
f
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while the tangential magnetic field boundary condition requires
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Here ⌦1 designates the aperture extending from y = y`1 to y = y`2, while �⌦1 designates

the remaining conducting surfaces occupying 0 < y < y`1 and y`2 < y < b. At z = z1 the

boundary condition on the tangential electric field requires
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while the boundary condition on the tangential magnetic field requires
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Similarly imposing the tangential boundary conditions on the electric and magnetic fields

at z = z2 gives
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respectively. Here ⌦2 designates the aperture region between y = yr1 and y = yr2, while �⌦2

designates the conducting surfaces occupying 0 < y < yr1 and yr2 < y < b. Finally, at z = z3

the boundary conditions on the tangential electric and magnetic fields require
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and
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N
X
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f+n ~h
f
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respectively.

The system of functional equations (6.19)-(6.26) may be transformed into a system of

linear equations by applying appropriate testing operators as follows. First, the equations

resulting from applying a tangential electric field boundary condition, (6.19), (6.21), (6.23)

and (6.25), are multiplied by ~e
f
m(~⇢) and integrated over the cross-section of the waveguide

designated by 0  x  a, 0  y  b. Then, (6.20) and (6.22), which result from applying the

tangential magnetic field boundary conditions on the left aperture, are multiplied by ~h`m(~⇢)

and integrated over ⌦1. Similarly for the right aperture, (6.24) and (6.26) are multiplied

by ~hrm(~⇢) and integrated over ⌦2. The result is a system of linear equations that may be

268



written in terms of an 8N ⇥ 8N partitioned matrix. Note that all of the integrals may be

computed in closed form, and that many matrix entries are repeated or zero. This allows the

matrix to be filled rapidly and leads to the overall e�ciency of the mode-matching approach

compared to more generic numerical electromagnetic techniques such as finite elements. The

matrix equation may be written in block form as

2
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Br Ar
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7
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c
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Here A`, B`, Br, are Ar are partitioned into the 4N ⇥ 4N sub-matrices
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where G, J`,r, K`,r, and L`,r are N ⇥ N sub-matrices with entries specified in Appendix

B.5. Here P and Q are diagonal matrices with entries P
`,r
mn = �mne�j�

`,r
n �`,r

and Qmn =

�mne�j�
f
n�

s
, with �mn the Kronecker delta. The unknown vector is partitioned into eight

subvectors each of length N , and is given by cT =
h

a�n , b+n , b�n , c+n , f+n , d�n , d+n , c�n
i

, while

the right hand side is similarly partitioned as dT = [Gm1, Km1, 0, 0, 0, 0, 0, 0].

Once the modal coe�cients are found by solving the matrix equation, the sample-plane
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S-parameters of the verification standard are given by

S11 =
a�1
a+1

(6.30)

S21 =
f+1
a+1

. (6.31)

6.4.2 Validation of the Mode-Matching Analysis

It is important to validate the mode-matching technique before using it to compute the S-

parameters of a standard design, or to establish the errors introduced by measurement or

fabrication uncertainties. This is accomplished by comparing to results from the commercial

EM solver HFSS. Figure 6.9 shows the values of S11 and S21 computed for the waveguide

standard used to generate Table 6.1. To obtain the HFSS-computed S-parameters shown in

Figure 6.9 the waveguide extensions were explicitly modeled with a length su�cient to ensure

that only the fundamental TE10 mode is important at the waveguide ports. Here the exten-

sions were chosen to be 55.475 mm long. This is an arbitrary value of su�cient length. The

convergence in HFSS was set to a maximum �S of 0.0005, which is the absolute di↵erence

between the magnitudes of the S-parameters at successive iterations computed at the solution

frequency 3.95 GHz. This very tight convergence criterion, which requires significant com-

puter resources, is needed to achieve good agreement with the mode-matching S-parameters

at the higher frequencies. Excellent agreement between the S-parameters obtained by the

two methods is seen, giving confidence to the mode matching results. Additional valida-

tion is provided by comparing the permittivity and permeability extracted from each set of

S-parameters; these results are shown in Figure 6.10.

Note that the computational time required for HFSS is approximately 60 times larger

than the time required for mode matching with equivalent accuracy on a 3.5 GHz Intel quad

core processor with 24 GB of RAM. Thus, the faster mode-matching approach makes lengthy

optimizations far more feasible, and is used in the computationally-intensive Monte Carlo
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error analysis presented in the next section.

6.5 Error and Sensitivity Analysis

One of the objectives for the waveguide verification standard is to have an easily manufac-

tured design that can be accurately characterized. Therefore, the sensitivity of the standard

needs to be minor when small changes to the design geometry occur. These geometry changes

can result from inaccuracies in the manufacturing process. To access this sensitivity error,

a Monte Carlo error analysis was used to explore the dependence of the extracted material

parameters on small changes to the geometry.

These manufacturing inaccuracies are systematic errors, which include the uncertainties

in the thickness of the apertures and spacer (�`, �s, and �r), the vertical window positions

for both apertures (y`1, y
`
2, y

r
1, and yr2), the uniformity of the thicknesses, and uniformity

of the widow width and height. Another possible type of error is random error, which can

result from the alignment of the verification standards (this may change from experiment to

experiment) and measurement uncertainty inherent in the VNA. It is di�cult to model all

the di↵erent types of error produced by uncertainties in the geometrical parameters, since

the mode-matching technique assumes uniform thicknesses and vertical window positions.

However, the other systematic errors may be easily studied using Mote Carlo techniques,

since the mode-matching technique is capable of analyzing di↵erent thicknesses and vertical

window positions. This allows for error bounds to be established due to small inaccuracies

in the manufacturing processes.

A Monte Carlo analysis on the propagation of uncertainties in the geometrical parameters

was undertaken using the designed parameters outlined in Section 6.3. The forward problem

was solved at 28 frequency points over the portion of S-band from 2.6 to 3.95 GHz. Dimen-

sions were generated randomly using a Gaussian distribution with a mean value set equal to

designed parameters, and a standard deviation equal to the manufacturing accuracy outlined
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by the Department of Physics and Astronomy Machine Shop at Michigan State University:

5 mils for uncertainty in thickness and 2 mils for uncertainty in the aperture heights. The

mode matching technique analyzed these dimensions and the erroneous S-parameter data

was used to extract the material parameters. This process was repeated 500 times, and the

average values and the standard deviations of the extracted material parameters were calcu-

lated. Figure 6.11 shows results of the Monte Carlo error analysis on varying the thicknesses

�`, �s, and �r. Figure 6.12 shows results from varying the vertical window positions y`1,

y`2, y
r
1, and yr2. Finally, Figure 6.13 shows the combination of uncertainties in thicknesses

and vertical window positions. In these figures, the center of each triplet of lines is the

average value of the 500 trials, while the two surrounding lines indicate the 95% confidence

intervals of ±2 standard deviations. For the imaginary values the mean of the 500 trials is

near zero, therefore only the error is shown. Note that complex material parameters result

from the asymmetric trials being analyzed in the Monte Carlo analysis. These results for

geometrical uncertainties exhibit low sensitivity to possible manufacturing error, leading to

the decision to fabricate and further test this surrogate design.

6.5.1 Theoretical Material Parameters for the Fabricated Stan-

dard

The thicknesses and aperture positions of the constructed inserts were measured using pre-

cision calipers with a manufacturer-specified accuracy of ±0.02 mm. Measurements were

made at 15 positions on the inserts and the mean and standard deviation computed. The

mean is taken to be the estimated dimension, while the standard deviation is taken to be the

uncertainty in that dimension. The results are shown in Table 6.2, along with the specified

values for the optimized standard. Note that since the fabricated standard is not perfectly

symmetric along z it is anticipated that measured values of µ and ✏ will have small imaginary

parts.

Although the dimensions of the fabricated standard di↵er somewhat from those of the
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Figure 6.11: Relative constitutive parameters found when randomly varying �`, �s, and
�r extracted using 500 trials. Center line in the upper plot is the average of real relative
parameters of the trials, while the upper and lower dashed-lines show the 95% confidence
intervals. The average of the imaginary relative parameters is near zero, while the lower plot
shows +2� values.

Table 6.2: Measured dimensions of fabricated waveguide standard.

Dimension Optimized Value (mm) Fabricated Value (mm)

�` 3.175 3.622± 0.028
�r 3.175 3.571± 0.038
�s 12.7 12.347± 0.071

y`1 5.064 5.183± 0.057

y`2 23.86 23.907± 0.111
yr1 5.064 5.276± 0.071
yr2 23.86 23.494± 0.105
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Figure 6.12: Relative constitutive parameters found when randomly varying y`1, y
`
2, y

r
1, and

yr2 extracted using 500 trials. Center line in the upper plot is the average of real relative
parameters of the trials, while the upper and lower dashed-lines show the 95% confidence
intervals. The average of the imaginary relative parameters is near zero, while the lower plot
shows +2� values.
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Figure 6.13: Relative constitutive parameters found when randomly varying �`, �s, �r,

y`1, y
`
2, y

r
1, and yr2 extracted using 500 trials. Center line in the upper plot is the average of

real relative parameters of the trials, while the upper and lower dashed-lines show the 95%
confidence intervals. The average of the imaginary relative parameters is near zero, while
the lower plot shows +2� values.
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optimized standard used to establish Table 6.1, the fabricated standard is still useful for its

intended purpose. Because the optimization process included minimizing the sensitivity of

extracted µ and ✏ to small changes in the geometrical parameters, the resulting values of

µ and ✏ extracted from measurements of the fabricated standard are only slightly di↵erent

than those for the optimized standard. Also, due to the availability of the mode-matching

method, the dimensions of the fabricated standard may be used to establish the expected

values of µ and ✏, and these parameters used for verification of the measurement system.

The mode matching method was used to compute the theoretical S-parameters for the

fabricated geometry with the mean dimensions shown in Table 6.2. These S-parameters were

then used to compute the values of µ and ✏ associated with the fabricated standard. Figure

6.15 compares the real parts of these parameters with those found using the optimized design,

while the imaginary parts are compared in Figure 6.16. (Recall that the optimized design

is longitudinally symmetric and thus produces zero imaginary parts.) While the di↵erence

in geometry does produce a shift in the material parameters, this shift is not excessive and

the values still retain their desired properties of being near 6 while varying slowly across the

measurement band.

6.5.2 Measured Material Parameters for the Fabricated Standard

Measurements of the S-parameters of the verification standard were made using an Agilent

E5071C VNA. The verification standard was sandwiched between two 6 inch (152.4 mm)

long sections of WR-284 commercial S-band waveguide, to act as extensions, with coaxial

transitions attached at the ends. The VNA was calibrated at the ends of the waveguide

extensions using the Through-Reflect-Line (TRL) method. Alignment pins were used for

the di↵erent assemblies to ensure high repeatability of the measurements. All measurements

were made with VNA settings of �5 dBm source power, 64 averages, and an IF bandwidth

of 70 kHz. Finally, the material parameters were extracted using the measured values of S11

and S21, assuming the average values of the insert dimensions shown in Table 6.2.
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Figure 6.14: Brass aperture plates forming the fabricated waveguide verification standard.
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Figure 6.15: Real parts of relative permittivity and permeability for optimized geometry
(solid line) and fabricated geometry (dotted line).
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Figure 6.16: Imaginary parts of relative permittivity and permeability for optimized geom-
etry (solid line) and fabricated geometry (dotted line).
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The measurement repeatability error was assessed by measuring the verification standard

10 separate times, with the VNA calibrated at the start of each set of measurements. The real

parts of the material parameters extracted from the 10 measurements are shown in Figure

6.17, while the imaginary parts are shown in Figure 6.18. The center solid line in these figures

represents the mean of the extracted values while the upper and lower solid lines define the

95% confidence intervals (± two standard deviations). The dotted lines show the theoretical

material parameters from Figure 6.15 and Figure 6.16, found using the measured dimensions

of the waveguide standard. Although the theoretical values for the imaginary parts lie within

the 95% confidence intervals, the real parts lie just slightly outside these intervals, at least

at some frequencies. This is shown more clearly in the insets, which zoom in on a chosen

narrow region of the measurement band. There are several possible reasons for this, including

calibration error, misalignment of the waveguide sections, imperfect electrical connections,

variability in the thickness of the inserts, errors in the machining of the apertures, etc.

One error that can be modeled is produced by the uncertainty in the measured values of

several of the geometric parameters. These include the thicknesses of the aperture plates

and spacer, and the sizes and vertical positions of the aperture openings. Unfortunately, the

mode-matching approach does not allow the modeling of possible rotation of the apertures

or spatial variations in thickness or opening size.

A Monte Carlo analysis was undertaken to determine the e↵ects of geometry uncertainty

on the extracted material parameters. Dimensions were generated randomly using a Gaussian

distribution with a mean value set equal to the average of the measured values shown in Table

6.2, and a standard deviation equal to the standard deviation of the measured values shown

in the table. The material parameters were extracted and the process repeated 500 times.

The average values and the standard deviations of the extracted material parameters were

calculated and are shown in Figure 6.19 and Figure 6.20. In these figures the measured data

and their 95% confidence interval (solid triplet of lines) is shown along with the average

Monte Carlo data and their 95% confidence interval (dashed triplet of lines). Clearly the
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Figure 6.17: Real parts of relative permittivity and permeability extracted from 10 sets of
measurements. Center solid line is the average of the measurements. Upper and lower lines
show the 95% confidence intervals. Dotted line shows the material parameters extracted
from the mode-matching S-parameters generated using the measured geometry.
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Figure 6.18: Imaginary parts of relative permittivity and permeability extracted from 10
sets of measurements. Center solid line is the average of the measurements. Upper and
lower lines show the 95% confidence intervals. Dotted line shows the material parameters
extracted from the mode-matching S-parameters generated using the measured geometry.
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measured data (including the 95% confidence interval) lie within the uncertainty interval of

the Monte Carlo data for both real and imaginary parts of µ and ✏, and the usefulness of

the standard to predict the operability of the measurement system is demonstrated.

6.6 Summary

A waveguide standard is introduced to provide a surrogate material useful for verifying ma-

terial characterization systems in the microwave spectrum. A surrogate is needed since no

convenient materials are available that have slowly-varying, predictable and accurately re-

producible magnetic characteristics at microwave frequencies. The standard is constructed

from all metal parts, allowing for easy fabrication, and is straightforward to design us-

ing a mode-matching method for analysis. Specific dimensions are provided for an S-band

standard to give relative permittivity and permeability near six when using the Nicolson-

Ross-Weir method. The example standard is optimized using a genetic algorithm such that

the extracted material properties are not highly sensitive to changes in the geometrical para-

meters, and thereby reduce the need for tight manufacturing tolerances.

An example standard is measured and the errors introduced by uncertainty in the dimen-

sions of the machined parts is characterized. By showing that the measurement precision

defined by the repeatability of the experiments is consistent with the error due to propa-

gation of geometrical uncertainties, the usefulness of the standard for verifying the proper

operation of a waveguide material measurement system is demonstrated.
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Figure 6.19: Real parts of the relative permittivity and permeability extracted from 10 sets
of measurements (solid lines). Center solid line is the average of the measurements. Upper
and lower solid lines show the 95% confidence intervals. Dotted lines show mode-matching
results for 500 random trials. Center dotted line is the average and upper and lower dotted
lines show the 95% confidence intervals.
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Figure 6.20: Imaginary parts of the relative permittivity and permeability extracted from
10 sets of measurements (solid lines). Center solid line is the average of the measurements.
Upper and lower solid lines show the 95% confidence intervals. Dotted lines show mode-
matching results for 500 random trials. Center dotted line is the average and upper and
lower dotted lines show the 95% confidence intervals.

287



CHAPTER 7

CONCLUSIONS AND FUTURE

STUDIES

Major contributions to the research community discussed in this dissertation are the new

methods for the characterization of anisotropic materials. Additionally, the waveguide stan-

dard is introduced which may be used as a surrogate material useful for verifying material

characterization systems in the microwave spectrum.

A general description of the NRW method is outlined for isotropic material characteriza-

tion using a rectangular waveguide. An iris technique is investigated for the characterization

of conductor-backed isotropic materials. A mode-matching method is used to calculate the

theoretical reflection and transmission coe�cients. These theoretical coe�cients are used in

the extraction of isotropic material parameters using a secant method. This technique was

shown to be very sensitive to measurement uncertainties, especially for the characterization of

✏00. By the completion of this dissertation accurate characterization of a conductor-backed

material using this technique has not been accomplished. Possible future work includes

manufacturing a sample holder for the FGM125 sample such that a shorting plate can be

connected to the back of the sample. Here the use of sliding short is not necessary. Use of

the shorting plate might decrease the amount of error in the measured S-parameters.
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Previous work was not found on the characterization of biaxial material using closed form

solutions. This dissertation described the use of the NRW method for biaxial materials with-

out the use of an iterative solver. This technique produced accurate results using simulated

S-parameter data in lieu of measurements. Future work might include the verification of this

technique using measurements of biaxial or uniaxial materials.

If three samples are not available for characterization of a biaxial material, then this

dissertation introduced a reduced aperture waveguide method for measuring the permittivity

and permeability of biaxially anisotropic materials. Only a single cubical sample is required

to completely characterize the material under test. This contrasts with the three distinct

samples required when using the NRW extension technique. A mode-matching technique

is used to accommodate the higher-order mode excitation resulting from the waveguide

discontinuity. Then a Newton’s method is employed to extract the six complex material

parameters. The reduced aperture waveguide technique was used to characterize isotropic

and uniaxial properties of two samples. However, as with many characterization techniques,

there are limits on the accuracy of the extraction when the electrical length of the sample

approaches a half wavelength. Possible future work includes exploring the use of additional

measurements to ameliorate this issue. Also it is possible to construct an electrically-biaxial

sample by using layers of alternating strips, as suggested in [59]. This could be accomplished

by slicing a layered cube, rotating the slices by ninety degrees, and gluing the slices together.

Additionally, a magnetic uniaxial sample could be constructed from alternating layers of

dielectric and FGM125 or FGM40. The usefulness of using such a sample as a biaxial or

magnetic uniaxial surrogate is left for future exploration.

As a next step towards full anisotropic material tensor characterization, gyromagnetic

materials were considered. Previous work the characterization of gyromagnetic materials

using rectangular waveguides was limited. This dissertation described two characterization

methods using a completely filled cross section or reduced aperture sample holder. Here the

reduced aperture sample holder is used to characterize samples with electrical size smaller
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than the cross-section of a waveguide. Details on the mode matching technique used for

obtaining the theoretical reflection and transmission coe�cients and a comparison to a full

wave FEM solver are presented for these two characterization techniques. The extraction

method using a nonlinear least squares algorithm was tested by using simulated S-parameters

in lieu of measurements. The sensitivity analysis for measurement uncertainties performed

for the reduced-aperture technique demonstrates promise for characterization using measure-

ments. The measurement uncertainties used in the Monte Carlo technique represent a worst

case error. Since the results of the sensitivity analysis in Section 5.3.4 demonstrate that

the extraction techniques is not highly sensitive to measurement uncertainties, it is hopeful

that accurate characterization will result from measurements. Extraction of gyromagnetic

material parameters from experimental results is left for future study.

The usefulness of the waveguide standard for verifying the proper operation of a wave-

guide material measurement system is demonstrated in this dissertation. Additionally a

mode-matching approach is described which allows the user to predict the material proper-

ties with higher accuracy, and thus compensates for manufacturing inaccuracies. Surrogate

materials of similar geometries should be useful for verifying the performance of other types of

material measurements systems that employ the NRW method, such as coaxial and stripline

applicators. Design of these standards is left for future study.
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Appendix A: Useful Identities

~A ·
⇣

~B + ~C
⌘

= ~A · ~B + ~A · ~C (A.1)

⇣

~A · P
⌘

· ~B = ~A ·
⇣

P · ~B
⌘

= ~A · P · ~B (A.2)

⇣

~A⇥ P
⌘

· ~B = ~A ·
⇣

P ⇥ ~B
⌘

(A.3)

û⇥
⇣

û⇥ ~A
⌘

= � ~A⇢ (A.4)

û · ~A⇢ = 0 (A.5)

r⇥ ~A = r⇢ ⇥ ~A⇢ + û⇥
"

@ ~A⇢
@u

�r⇢Au

#

(A.6)

û⇥
⇣

r⇢ ⇥ ~A⇢
⌘

= 0 (A.7)

û ·
⇣

û⇥ ~A
⌘

= 0 (A.8)

~A⇥
⇣

~B ⇥ ~C
⌘

= ~B
⇣

~A · ~C
⌘

� ~C
⇣

~A · ~B
⌘

(A.9)
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~A ·
⇣

~B ⇥ ~C
⌘

= ~C ·
⇣

~A⇥ ~B
⌘

(A.10)

P = P · P
n�1

(A.11)

P
0
= I (A.12)
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Appendix B: De-embedding

S-parameters

S-parameters of a waveguide system are measured by a VNA using waveguide to coaxial

line adaptors and waveguide extensions. The extensions are used to guarantee that only the

dominant waveguide mode is present at the measurement ports. A calibration is performed

at the ends of the waveguide extensions and calibration planes are established there. When

characterizing a material sample, the S-parameters are measured with the sample positioned

somewhere in the waveguide system. Typically, the sample is placed inside a sample holder,

and the holder is positioned in between the two calibration planes, as shown in Figure B.1.

Another common sample placement is to insert the sample inside the waveguide extension

as is shown in Figure B.2.

The characterization techniques described in this dissertation make use of sample plane

S-parameters. Sample plane S-parameters are defined at the faces of the material sample

while the calibration plane S-parameters are measured by the VNA at the calibration planes.

The sample plane S-parameters can be obtain by properly applying corrections to the S-

parameters measured by the VNA. This process is called de-embedding. De-embedding

procedures for the two di↵erent sample insertion cases are described in this appendix.

In Figure B.1 and Figure B.2, the modal amplitude coe�cients are shown at both the

calibration and sample planes. The modal coe�cients can be shifted from one plane to the

other by multiplying by e�j�D in the direction of the wave propagation. Here, D is the
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Figure B.1: Measurement and sample plane modal coe�cients for a sample holder.
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Figure B.2: Measurement and sample plane modal coe�cients with sample inserted into the
waveguide extension attached to port 1.
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distance of the shift, and � is the propagation constant of the empty waveguide extension

which can be found using (3.3). The calibration plane S-parameters are defined as

Sc11 =
bc1
ac1

(B.1)

Sc21 =
bc2
ac1

(B.2)

Sc12 =
bc1
ac2

(B.3)

Sc22 =
bc2
ac2

, (B.4)

while the sample plane S-parameters are defined as

Ss11 =
bs1
as1

(B.5)

Ss21 =
bs2
as1

(B.6)

Ss12 =
bs1
as2

(B.7)

Ss22 =
bs2
as2

. (B.8)

Consider the case shown in Figure B.1. The calibration and sample plane modal coe�-

cients are related as follows:

as1 = ac1e
�j�d1 (B.9)

bc1 = bs1e
�j�d1 (B.10)

as2 = ac2e
�j�d2 (B.11)

bc2 = bs2e
�j�d2 . (B.12)

Here d1 and d2 are the distances between the sample and the ends of the waveguide ex-
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tensions attached to port 1 and port 2, respectively. To express the sample plane modal

coe�cients in terms of calibration plane modal coe�cients, (B.10) is divided by e�j�d1 and

(B.12) is divided by e�j�d2, yielding

bs1 = bc1e
j�d1 (B.13)

bs2 = bc2e
j�d2 . (B.14)

Now, Ss11 can be expressed using the measured Sc11, by first substituting (B.9) and (B.13)

into (B.5), which results in

Ss11 =
bc1e

j�d1

ac1e
�j�d1

. (B.15)

Using (B.1) and simplifying, this becomes

Ss11 = Sc11e
j2�d1 . (B.16)

The remaining sample plane S-parameters can be derived by a similar set of steps producing

Ss21 = Sc21e
j�(d1+d2) (B.17)

Ss12 = Sc12e
j�(d1+d2) (B.18)

Ss22 = Sc22e
j2�d2 . (B.19)

The next case involves inserting the sample inside the waveguide extension as shown in
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Figure B.2. In this setup the calibration and sample plane modal coe�cients are related by

ac1 = as1e
�j�(d+�) (B.20)

bs1 = bc1e
�j�(d+�) (B.21)

as2 = ac2e
�j�d (B.22)

bc2 = bs2e
�j�d. (B.23)

Here d is the distance between the sample and the calibration plane and � is the thickness of

the sample. The sample plane modal coe�cients are expressed in terms of calibration plane

modal coe�cients by dividing (B.20) by e�j�(d+�) and (B.23) by e�j�d. This gives

as1 = ac1e
j�(d+�) (B.24)

bs2 = bc2e
j�d. (B.25)

The expressions for the sample plane modal coe�cients are substituted into definitions for

the sample plane S-parameters, (B.5) - (B.8), which yields the following:

Ss11 = Sc11e
�j2�(d+�) (B.26)

Ss21 = Sc21e
�j�� (B.27)

Ss12 = Sc12e
�j�� (B.28)

Ss22 = Sc22e
�j2�d. (B.29)

In both cases of de-embedding, since the sample plane S-parameters result from a recip-

rocal and symmetric system, it is known that

Ss21 = Ss12 (B.30)

Ss11 = Ss22. (B.31)
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However, the calibration plane S-parameters, or the S-parameters measured by the VNA,

have the following relationships:

Sc21 = Sc12 (B.32)

Sc11 6= Sc22. (B.33)

This can be deduced from (B.16) and (B.19) for the first case, and from (B.26) and (B.29)

for the second case. Here, since (B.31) holds true, in general Sc11 6= Sc22. This means the

VNA measurements of the reflection coe�cient at port 1 will in general be di↵erent than

the reflection coe�cient at port 2. However, a special case does exist when Sc11 = Sc22. This

occurs in the first case when the sample is centered in the sample holder (d1 = d2).
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Appendix C: Calculation of

Waveguide Transverse Mode Integrals

C.1: Iris Integrals

The derivation of the transverse mode integrals for the mode matching technique used in the

calculation of the reflection coe�cient from an iris in front of a conductor-backed material

is outlined here. The integrals for the reduced-aperture junction, wB < wA, are

Cmn =

wA
2
Z

�wA
2

eAm(x)eAn (x)dx, (C.1)

Dmn =

wB
2
Z

�wB
2

eAm(x)eBn (x)dx, (C.2)

Emn =

wB
2
Z

�wB
2

eBm(x)eAn (x)

ZAn
dx, (C.3)
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Fmn =

wB
2
Z

�wB
2

eBm(x)eBn (x)

ZBn
dx, (C.4)

while the integrals for the expanded-aperture, wA < wB are

Lmn =

wB
2
Z

�wB
2

eBm(x)eBn (x)dx, (C.5)

Mmn =

wA
2
Z

�wA
2

eAm(x)eBn (x)dx, (C.6)

Omn =

wA
2
Z

�wA
2

eAm(x)eBn (x)

ZBn
dx, (C.7)

Wmn =

wA
2
Z

�wA
2

eAn (x)eAm(x)

ZAn
dx. (C.8)

First the integrals for the reduced step are evaluated. Cmn is expressed as

Cmn = kAxnk
A
xm (�1)n+m

wA
2
Z

�wA
2

cos

✓

2n� 1

wA
⇡x

◆

cos

✓

2m� 1

wA
⇡x

◆

dx. (C.9)
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Using the integral identity

Z

cos (ax) cos (Bx) dx =
1

2

sin [(a� b)x]

a� b
+

1

2

sin [(a+ b)x]

a+ b
, (C.10)

Cmn becomes

Cmn = kAxnk
A
xm (�1)n+m

8

<

:

sin
h

⇡x
wA

(2n� 2m)
i

⇡
wA

(2n� 2m)
+

sin
h

⇡x
wA

(2n+ 2m� 2)
i

⇡
wA

(2n+ 2m� 2)

9

=

;

wA
2

�wA
2

.(C.11)

When m 6= n,

Cmn = 0. (C.12)

When m = n, (C.9) becomes

Cmn =
⇣

kAxn

⌘2

wA
2
Z

�wA
2

cos2


2n� 1

wA
⇡x

�

dx. (C.13)

Through the use of integral integral identity,

Z

cos2 (ax) dx =
2ax+ sin(2ax)

4a
, (C.14)

(C.13) becomes

Cmn =
⇣

kAxn

⌘2 wA
2

. (C.15)
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Therefore,

Cmn =

8

>

<

>

:

⇣

kAxn

⌘2 wA
2 , m = n

0, m 6= n
(C.16)

or

Cmn =
⇣

kAxn

⌘2 wA
2

�mn. (C.17)

The integral for Fmn can be evaluated in a similar set of steps and is given by

Fmn =
⇣

kBxn

⌘2 wB
2ZBn

�mn. (C.18)

Next, the integral for Dmn is expressed as

Dmn = kBxnk
A
xm(�1)n+m

wB
2
Z

�wB
2

cos



2n� 1

wB
⇡x

�

cos



2m� 1

wA
⇡x

�

dx. (C.19)

Using the integral identity (C.10), Dmn becomes

Dmn = kBxnk
A
xm(�1)n+m

8

<

:

sin
h

⇡x
⇣

2n�1
wB

� 2m�1
wA

⌘i

2⇡
⇣

2n�1
wB

� 2m�1
wA

⌘ +

sin
h

⇡x
⇣

2n�1
wB

+ 2m�1
wA

⌘i

2⇡
⇣

2n�1
wB

+ 2m�1
wA

⌘

9

=

;

�

�

�

�

�

wB
2

�wB
2

, (C.20)
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or

Dmn = kBxnk
A
xm(�1)n+m

2

4

sin
h

2n�1
2 ⇡ � 2m�1

2 ⇡
wB
wA

i

⇡
⇣

2n�1
wB

� 2m�1
wA

⌘ +

sin
h

2n�1
2 ⇡ + 2m�1

2 ⇡
wB
wA

i

⇡
⇣

2n�1
wB

+ 2m�1
wA

⌘

3

5 . (C.21)

Using a trigonometric identity, it can be shown that

sin



2n� 1

2
⇡ ± 2m� 1

2
⇡
wB
wA

�

= sin



2n� 1

2
⇡

�

cos



2m� 1

2
⇡
wB
wA

�

, (C.22)

or

sin



2n� 1

2
⇡ ± 2m� 1

2
⇡
wB
wA

�

= �(�1)n cos



2m� 1

2
⇡
wB
wA

�

. (C.23)

Substituting (C.23) into (C.21) yields

Dmn = �kBxnk
A
xm(�1)n+m(�1)n cos



2m� 1

2
⇡
wB
wA

�

1

⇡
2

4

1
2n�1
wB

� 2m�1
wA

+
1

2n�1
wB

+ 2m�1
wA

3

5 , (C.24)

or

Dmn = kBxnk
A
xm(1)m+1 cos



2m� 1

2
⇡
wB
wA

�

2

⇡

⇣

2n�1
wB

⌘

⇣

2n�1
wB

⌘2
�
⇣

2m�1
wA

⌘2
. (C.25)
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The case of 2n�1
wB

= 2m�1
wA

must be handled separately. When this occurs, (C.19) becomes

Dmn = kBxnk
A
xm(�1)n+m

wB
2
Z

�wB
2

cos2


2n� 1

wB
⇡x

�

dx. (C.26)

This integral can be evaluated in the manner for Cmn, and results in

Dmn = kBxnk
A
xm(�1)n+mwB

2
. (C.27)

Finally, the integral for Emn can be derived in a similar set of steps and given as

Emn =
Dnm

ZAn
. (C.28)

Following similar procedure to that outlined for the reduced-aperture junction integrals,

the integrals for the expanded step are derived as follows:

Lmn =
⇣

kBxn

⌘2 wB
2

�mn (C.29)

Wmn =
⇣

kAxn

⌘2 wA
2ZAn

�mn (C.30)

Mmn = Dmn

�

�

�

�

�

A$B
(C.31)

Omn =
Mnm

ZBn
. (C.32)

Note to obtain Mmn using Dmn, all instances of wA and kAxn must be changed to wB and

kBxn, and all instances of wB and kBxn must be changed to wA and kAxn.
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C.2: Reduced Aperture Waveguide for Biaxial Materials

In the calculation of the matrix elements for biaxial material characterization using a reduced

aperture waveguide, it is necessary to evaluate the integrals associated with the transverse

waveguide fields. These are

Dmn =

Z a
2

�a
2

eeym(x)eeyn(x)dx, (C.33)

Fmn =

Z w
2

�w
2

esym(x)esyn(x)dx, (C.34)

Pmn = Zsm

Z w
2

�w
2

hsxm(x)hexn(x)dx, (C.35)

Qmn = Zsm

Z w
2

�w
2

hsxm(x)hsxn(x)dx. (C.36)

First Dmn is expressed as

Z a
2

�a
2

eeym(x)eeyn(x)dx = kexmkexn
R

a
2
�a
2
sin

h

kexm

⇣

x� a
2

⌘i

sin
h

kexn

⇣

x� a
2

⌘i

dx.(C.37)

Using the change of variables, where u = a
2 � x, this becomes

Dmn = kexmkexn

Z a

0
sin

�

kexmu
�

sin
�

kexnu
�

du. (C.38)

From (2.3.2), it is shown that kexn = n⇡/a and similarly kexm = m⇡/a. Therefore

Dmn =
mn⇡2

a2

Z a

0
sin

⇣m⇡

a
u
⌘

sin
⇣n⇡

a
u
⌘

du. (C.39)

Because the integrand is even about x, this integral can be expressed as

Dmn =
mn⇡2

2a2

Z a

�a
sin

⇣m⇡

a
u
⌘

sin
⇣n⇡

a
u
⌘

du (C.40)
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If m = n, then the identity

Z

sin2 (ax) dx =
x

2
� 1

4a
sin 2ax (C.41)

can be used. If m 6= n then Dmn = 0. Therefore

Dmn =

8

>

<

>

:

n2⇡2
2a , m = n

0, m 6= n
(C.42)

or

Dmn =
n2⇡2

2a
�mn. (C.43)

The integral for Qmn can be evaluated similarly and is given by

Qmn =
n2⇡2

2wZsn
�mn. (C.44)

Next, the integral for Fmn is expressed as

Fmn = kexmkscn

Z w
2

�w
2

sin
h

kecm

⇣

x� a

2

⌘i

sin
h

kscn

⇣

x� w

2

⌘i

dx. (C.45)

This integral will be derived generally, since integrals of similar form will be needed for

Chapter 6. Therefore, Fmn is written as

Fmn = kexmkscn�
B
mn, (C.46)

where

�Bmn =

Z ⌫2

⌫1
sin [↵m (x� )] sin [�n (x� ⌫1)]dx. (C.47)
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Here ↵m = kecm, �n = kscn, ⌫2 = w/2, ⌫1 = �w/2, and  = �a/2. Expanding the

arguments of the sine functions gives

�Bmn =

Z ⌫2

⌫1
sin (↵mx� ↵m) sin (�nx� �n⌫1)dx. (C.48)

This definite integral now can make use of the expression [62]

Z ↵2

↵1
sin (Ax+B) sin (Cx+D)dx = (C.49)

sin [(A� C) x+ (B �D)]

2 (A� C)
� sin [(A+ C) x+ (B +D)]

2 (A+ C)

�

�

�

�

↵2

↵1
. (C.50)

Therefore �Bmn can be expressed as

�Bmn =
sin [(↵m � �n) x� (↵m� �n⌫1)]

2 (↵m � �n)
�

sin [(↵m + �n) x� (↵m+ �⌫1)]

2 (↵m + �n)

�

�

�

�

⌫2

⌫1
.(C.51)

Expanding this further gives

�Bmn =
sin (↵m�2 � �n�)� sin (↵m�1)

2 (↵m � �n)
�

sin (↵m�2 + �n�)� sin (↵m�1)

2 (↵m + �n)
, (C.52)

where� = ⌫2�⌫1, �1 = ⌫1�, and �2 = ⌫2�. Multiplying through by (↵m � �n) (↵m + �n)

to get a common denominator and combining like elements gives

�Bmn =
1

2
⇣

↵2m � �2n

⌘ {↵m [sin (↵m�2 � �n�)� sin (↵m�2 + �n�)] (C.53)

+�n [sin (↵m�2 � �n�)� sin (↵m�2 + �n�)] + 2�n sin (�m�1)} . (C.54)

308



Using the trigonometric identies

sin u+ sin v = 2 sin

✓

u+ v

2

◆

cos

✓

u� v

2

◆

(C.55)

sin u� sin v = 2 cos

✓

u+ v

2

◆

sin

✓

u� v

2

◆

, (C.56)

simplifies �Bmn further to

�Bmn =
�↵m cos (↵m�2) sin (�n�) + �n sin (↵m�2) cos (�n�)� �n sin (↵m�1)

↵2m � �2n
, (C.57)

or

�Bmn =
�n [sin (↵m�2) cos (�n�)� sin (↵m�1)]� ↵m cos (↵m�2) sin (�n�)

↵2m � �2n
. (C.58)

A special case exists when ↵m = �n = 0. This results in �Bmn = 0. Therefore,

�Bmn =

8

>

<

>

:

0, ↵m = �n = 0

�n[sin(↵m�2) cos(�n�)�sin(↵m�1)]�↵m cos(↵m�2) sin(�n�)

↵2m��2n
, otherwise

.(C.59)

Finally the integral for Pmn can be evaluated in the manner done for Fmn and is given

by

Pmn =
Fnm
Zsn

. (C.60)

C.3: Gyromagnetic Material Filled Waveguide Cross-

section

Closed-form expressions for integrals associated with the transverse waveguide functions

used in Section 5.2.1.2 are derived in this appendix. The integrals associated with (5.21)
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and (5.25) are

Z a

0
sin

�

kexmx
�

sin
�

kexnx
�

dx (C.61)
Z a

0
sin

�

kexmx
�

sin
�

kscnx
�

dx, (C.62)

while the integrals associated with (5.23) and (5.27) are

Z a

0
sin

�

kscmx
�

sin
�

kecnx
�

dx (C.63)
Z a

0
sin

�

kscmx
�

sin
�

kscnx
�

dx (C.64)
Z a

0
sin

�

kecmx
�

cos
�

kscnx
�

dx. (C.65)

First, it is known that kexm = m⇡/a and kscn = n⇡/a. Thus (C.61) - (C.64) become

Z a

0
sin

⇣m⇡

a
x
⌘

sin
⇣n⇡

a
x
⌘

dx, (C.66)

while (C.65) is given by

Z a

0
sin

⇣m⇡

a
x
⌘

cos
⇣n⇡

a
x
⌘

dx. (C.67)

Now, since sine is an odd function and the multiplication of two odd functions is an even

function, (C.66) can be expressed as

Z a

0
sin

⇣m⇡

a
x
⌘

sin
⇣n⇡

a
x
⌘

dx =
1

2

Z a

�a
sin

⇣m⇡

a
x
⌘

sin
⇣n⇡

a
x
⌘

dx. (C.68)

If m = n, then the identity from (C.41) can be used. If m 6= n then this integral is equal to
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zero. Therefore,

Z a

0
sin

⇣m⇡

a
x
⌘

sin
⇣n⇡

a
x
⌘

dx =

8

>

<

>

:

a
2 , m = n

0, m 6= n
(C.69)

or

Z a

0
sin

⇣m⇡

a
x
⌘

sin
⇣n⇡

a
x
⌘

dx =
a

2
�mn. (C.70)

Next, using a substitution of variables, where u = ⇡/ax, (C.67) becomes

Z a

0
sin

⇣m⇡

a
x
⌘

cos
⇣n⇡

a
x
⌘

dx =
a

⇡

Z ⇡

0
sin (mu) cos (nu) du. (C.71)

The trigonometric identity

sin(x) cos(y) =
1

2
[sin(x+ y) + sin(x� y)] (C.72)

is employed, yielding

Z a

0
sin

⇣m⇡

a
x
⌘

cos
⇣n⇡

a
x
⌘

dx =
a

2⇡

Z ⇡

0
sin [(m+ n) u] + sin [(m� n) u] du. (C.73)

If m = n, then

Z a

0
sin

⇣m⇡

a
x
⌘

cos
⇣n⇡

a
x
⌘

dx =
a

2⇡

Z ⇡

0
sin (2mu) du, (C.74)

which when evaluated is equal to zero. If m 6= n then

Z a

0
sin

⇣m⇡

a
x
⌘

cos
⇣n⇡

a
x
⌘

dx =
a

2⇡

⇢

�cos [(m+ n)u]

m+ n
� cos [(m� n)u]

m� n

�

�

�

�

�

�

⇡

0
. (C.75)
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Now if m� n is even then

Z a

0
sin

⇣m⇡

a
x
⌘

cos
⇣n⇡

a
x
⌘

dx = 0, (C.76)

and if m� n is odd

Z a

0
sin

⇣m⇡

a
x
⌘

cos
⇣n⇡

a
x
⌘

dx =
a

2⇡



1

m+ n
+

1

m� n

�

. (C.77)

Thus

Z a

0
sin

⇣m⇡

a
x
⌘

cos
⇣n⇡

a
x
⌘

dx =
a

2
�mn, (C.78)

where

�mn =

8

>

<

>

:

0, m� n is even

4
⇡

m
m2�n2

, m� n is odd.
(C.79)

312



C.4: Reduced Aperture Waveguide for Gyromagnetic

Materials

Closed-form expressions for the matrix entries in (5.55) are derived in this section. The

entries are

Gmn = kexn

Z a
2

�a
2

sin
h

kexm

⇣

x� a

2

⌘i

sin
h

kexn

⇣

x� a

2

⌘i

dx (C.80)

Jmn = kscn

 

1� 2

µ2g

!

Z w
2

�w
2

sin
h

kexm

⇣

x� a

2

⌘i

sin
h

kscn

⇣

x� w

2

⌘i

dx (C.81)

Kmn =
kexn
Zen

Z w
2

�w
2

sin
h

kscm

⇣

x� w

2

⌘i

sin
h

kexn

⇣

x� a

2

⌘i

dx (C.82)

L±mn =
kscn
Zsn

Z w
2

�w
2

sin
h

kscm

⇣

x� w

2

⌘in

sin
h

kscn

⇣

x� w

2

⌘i

± kscn
µg�sn

cos
h

kscn

⇣

x� w

2

⌘i

�

dx. (C.83)

First, Gmn is extracted in a similar procedure as the entry Dmn from Appendix C.2.

Thus, Gmn is expressed as

Gmn = kexn
a

2
�mn. (C.84)

Next, the integral for Jmn is extracted similarly as was done for Fmn in Appendix C.2,

and results in

Jmn =

8

>

<

>

:

0, ↵m = �n = 0

Q
�n[sin(↵m�2) cos(�n�)�sin(↵m�1)]�↵m cos(↵m�2) sin(�n�)

↵2m��2n
otherwise,

(C.85)

where ↵m = kecm, �n = kscn, �1 = �w/2 + a/2, �2 = w/2 + a/2, � = w, and Q =

kscn

⇣

1� 2/µ2g

⌘

.
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Now, the integral for Kmn can be evaluated by once again following the steps done for

Fmn in Appendix C.2, and is evaluated as

Kmn =
kexnJnm
QZen

. (C.86)

Finally, the integral for Lmn is evaluated in steps. The first part of the integral examined

is

kscn
Zsn

Z w
2

�w
2

sin
h

kscm

⇣

x� w

2

⌘i

sin
h

kscn

⇣

x� w

2

⌘i

dx. (C.87)

This is a similar integral evaluated to obtain the entry Qmn from Appendix C.2, and may

be expressed as

kscn
Zsn

Z w
2

�w
2

sin
h

kscm

⇣

x� w

2

⌘i

sin
h

kscn

⇣

x� w

2

⌘i

dx =
wkscn
2Zsn

�mn. (C.88)

The second part of the integral is expressed as

±kscn
Zsn

kscn
µg�sn

Z w
2

�w
2

sin
h

kscm

⇣

x� w

2

⌘i

cos
h

kscn

⇣

x� w

2

⌘i

dx. (C.89)

Using the substitution of variables u = ⇡
w

⇣

w
2 � x

⌘

±kscn
Zsn

kscn
µg�sn

Z w
2

�w
2

sin
h

kscm

⇣

x� w

2

⌘i

cos
h

kscn

⇣

x� w

2

⌘i

dx =

⌥kscn
Zsn

kscn
µg�sn

Z ⇡

0
sin (mu) cos (nu) du. (C.90)
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Then performing similar steps as was done to evaluate the integral in (C.71), (C.90) becomes

±kscn
Zsn

kscn
µg�sn

Z w
2

�w
2

sin
h

kscm

⇣

x� w

2

⌘i

cos
h

kscn

⇣

x� w

2

⌘i

dx =

⌥kscn
Zsn

kscn
µg�sn

w

2
�mn, (C.91)

where

�mn =

8

>

<

>

:

0, m� n is even

4
⇡

m
m2�n2

, m� n is odd.
(C.92)

Therefore the entry L±mn is expressed as

L±mn =
kscn
Zsn

✓

w

2
�mn ⌥ kscn

µg�sn

w

2
�mn

◆

. (C.93)

Additionally, the vectors g and k are given by

gm = Gm1km = Km1. (C.94)
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C.5: Waveguide Standard Integrals

Closed-form expressions for the matrix entries in (6.27) are derived in this appendix. The

entries are

Gmn =

Z b

0

Z a

0
~e
f
m(~⇢) · ~efn(~⇢)dxdy, (C.95)

J
`,r
mn =

Z y
`,r
2

y
`,r
1

Z a

0
~e
f
m(~⇢) · ~e`,rn (~⇢)dxdy, (C.96)

K
`,r
mn =

Z y
`,r
2

y
`,r
1

Z a

0
~h
`,r
m (~⇢) · ~hfn(~⇢)dxdy, (C.97)

L
`,r
mn =

Z y
`,r
2

y
`,r
1

Z a

0
~h
`,r
m (~⇢) · ~h`,rn (~⇢)dxdy. (C.98)

To simply the derivations, only the integrals for the left aperture are derived in this appendix.

This means to get the entries Jr, Kr, and Lr, use the equations for Jl, Kl, and Ll, and

change all instances of ` to r. The entries depend on whether modes m and n are TE or

TM, and are thus split into the following four cases:

Case 1: TEm,TEn

First Gmn is expressed as

Z b

0

Z a

0
~e
f
m(~⇢) · ~efn(~⇢)dxdy =

Z b

0

Z a

0

h

x̂k
f
ym cos

⇣⇡x

a

⌘

sin
⇣

k
f
ymy

⌘

�

ŷ
⇡

a
sin

⇣⇡x

a

⌘

cos
⇣

k
f
ymy

⌘i

·
h

x̂k
f
yn cos

⇣⇡x

a

⌘

sin
⇣

k
f
yny

⌘

�

ŷ
⇡

a
sin

⇣⇡x

a

⌘

cos
⇣

k
f
yny

⌘i

dxdy. (C.99)
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Expanding the dot product, this becomes

Gmn =

Z a

0
k
f
ymk

f
yn cos2

⇣⇡x

a

⌘

dx

Z b

0
sin

⇣

k
f
ymy

⌘

sin
⇣

k
f
yny

⌘

dy +

Z a

0

⇣⇡

a

⌘2
sin2

⇣⇡x

a

⌘

dx

Z b

0
cos

⇣

k
f
ymy

⌘

cos
⇣

k
f
yny

⌘

dy. (C.100)

Using the integral identities

cos2 (Ax) dx =



x

2
+

sin (2Ax)

4A

�

(C.101)

sin2 (Ax) dx =



x

2
� sin (2Ax)

4A

�

, (C.102)

it can be shown that the integrals over x both become a/2. Thus

Gmn = k
f
ymk

f
yn

a

2

Z b

0
sin

⇣

k
f
ymy

⌘

sin
⇣

k
f
yny

⌘

dy +

⇡2

2a

Z b

0
cos

⇣

k
f
ymy

⌘

cos
⇣

k
f
yny

⌘

dy. (C.103)

If m = n, then the identities in (C.101) and (C.102) can be used again. If m 6= n then

Gmn = 0. Therefore

Gmn =

8

>

<

>

:

⇣

k
f
cn

⌘2 ab
4 , m = n

0, m 6= n
(C.104)

or

Gmn =
⇣

k
f
cn

⌘2 ab

4
�mn. (C.105)

A special case does exist when m = n = 1, which means k
f
y1 = 0. When this occurs

Gmn =
⇣

k
f
cn

⌘2 ab

2
�mn. (C.106)
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Therefore a general expression is given by

Gmn =
⇣

k
f
cn

⌘2 ab

⇠
�mn, (C.107)

where ⇠ = 2 for k
f
ym = k

f
yn = 0, and otherwise ⇠ = 4.

The integral for L`mn can be derived in a similar set of steps and is evaluated as

L`mn =

 

k`cn

Z`n

!2
aw`

⇣
�mn, (C.108)

where ⇣ = 2 for k`ym = k`yn = 0, and otherwise ⇣ = 4.

Next, the integral for J`mn is expressed as

J`mn =

Z y`2

y`1

Z a

0

h

x̂k
f
ym cos

⇣⇡x

a

⌘

sin
⇣

k
f
ymy

⌘

� ŷ
⇡

a
sin

⇣⇡x

a

⌘

cos
⇣

k
f
ymy

⌘i

·

h

x̂k`yn cos
⇣⇡x

a

⌘

sin
⇣

k`yn(y � y`1)
⌘

� ŷ
⇡

a
sin

⇣⇡x

a

⌘

cos
⇣

k`yn(y � y`1)
⌘i

dxdy. (C.109)

Expanding the dot product gives

Jmn =

Z a

0
k
f
ymk`yn cos2

⇣⇡x

a

⌘

dx

Z y`2

y`1

sin
⇣

k
f
ymy

⌘

sin
⇣

k`yn(y � y`1)
⌘

dy +

Z a

0

⇣⇡

a

⌘2
sin2

⇣⇡x

a

⌘

dx

Z y`2

y`1

cos
⇣

k
f
ymy

⌘

cos
⇣

k`yn(y � y`1)
⌘

dy. (C.110)

Once again using (C.101) and (C.102) results in

Jmn = k
f
ymk`yn

a

2

Z y`2

y`1

sin
⇣

k
f
ymy

⌘

sin
⇣

k`yn(y � y`1)
⌘

dy +

⇡2

2a

Z y`2

y`1

cos
⇣

k
f
ymy

⌘

cos
⇣

k`yn(y � y`1

⌘

dy. (C.111)
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The general expression for �Bmn given in Appendix B.2 can now be used, where

�Bmn =

Z ⌫2

⌫1
sin [↵m (x� )] sin [�n (x� ⌫1)]dx. (C.112)

It was shown that

�Bmn =

8

>

<

>

:

0, ↵m = �n = 0

�n[sin(↵m�2) cos(�n�)�sin(↵m�1)]�↵m cos(↵m�2) sin(�n�)

↵2m��2n
otherwise.

(C.113)

Following the same steps outlined in Section B.2, a similar general integral for

�Amn =

Z ⌫2

⌫1
cos [↵m (x� )] cos [�n (x� ⌫1)]dx, (C.114)

can be derived. The result is

�Amn =

8

>

<

>

:

�, ↵m = �n = 0

↵m[sin(↵m�2) cos(�n�)�sin(↵m�1)]��n cos(↵m�2) sin(�n�)

↵2m��2n
otherwise.

(C.115)

Using (C.113) and (C.115), J`mn reduces to

J`mn = ↵m�n
a

2
�Bmn +

⇡2

2a
�Amn, (C.116)

where ↵m = k
f
ym, �n = k`yn, � = �`, �2 = y`2, and �1 = y`1.

The integral for K`
mn can be derived in a similar set of steps and is evaluated as

K`
mn =

J`nm

Z`mZ
f
n

. (C.117)

Following steps similar to those used for Case 1, the rest of the integrals are derived, and

given below.
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Case 2: TMm,TMn

Gmn =
⇣

k
f
cn

⌘2 ab

⇠
�mn (C.118)

L`mn =

 

k`cn

Z`n

!2
aw`

⇣
�mn (C.119)

J`mn = ↵m�n
a

2
�Amn +

⇡2

2a
�Bmn (C.120)

K`
mn =

J`nm

Z`mZ
f
n

(C.121)

(C.122)

Case 3:TEm,TMn

Gmn = 0 (C.123)

L`mn = 0 (C.124)

J`mn = �n
⇡

2
�Amn � ↵m

⇡

2
�Bmn (C.125)

K`
mn =

1

Z`mZ
f
n

h

↵n
⇡

2
�Anm � �m

⇡

2
�Bnm

i

(C.126)

Case 4: TMm,TEn

Gmn = 0 (C.127)

L`mn = 0 (C.128)

J`mn = ��n
⇡

2
�Bmn + ↵m

⇡

2
�Amn (C.129)

K`
mn =

1

Z`mZ
f
n

h

�↵n
⇡

2
�Bnm + �m

⇡

2
�Anm

i

(C.130)
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Appendix D: Analysis of NRW

Method

Consider an isotropic, lossless, symmetric 2-port network with S-parameters S11, S12, S21

and S22. The goal of this appendix is to establish the conditions under which values of µ

and ✏ extracted from the S-parameters using the NRW equations will be real.

The S-parameters of a lossless 2-port network satisfy the unitary condition [S]T [S⇤] = [U ]

or
2

6

4

S11 S21

S12 S22

3

7

5

2

6

4

S⇤11 S⇤12
S⇤21 S⇤22

3

7

5

=

2

6

4

1 0

0 1

3

7

5

. (D.1)

Writing out the matrix product gives the four equations

|S11|
2 + |S21|

2 = 1, (D.2)

S11S
⇤
12 + S21S

⇤
22 = 0, (D.3)

S12S
⇤
11 + S22S

⇤
21 = 0, (D.4)

|S12|
2 + |S22|

2 = 1. (D.5)

If the network is reciprocal, S12 = S21. Making this substitution and taking the complex

conjugate of (D.4) results in both (D.3) and (D.4) becoming

S11S
⇤
21 + S21S

⇤
22 = 0. (D.6)
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If the network is also symmetric, such that S11 = S22, then the allowed values of the S-

parameters are subject to two restrictions. The first restriction results from (D.2) and (D.5)

both becoming

|S11|
2 + |S21|

2 = 1. (D.7)

The next restriction is derived by first substituting S11 for S22 in (D.6) yielding

S11S
⇤
21 + S21S

⇤
11 = 0. (D.8)

This can be rewritten as
�

S11S
⇤
21
�

+
�

S11S
⇤
21
�⇤ = 0, (D.9)

or

A+ A⇤ = 0, (D.10)

where A = S11S
⇤
21. The addition of a complex variable with its complex conjugate is just

twice the real part of the variable. Thus (D.9) becomes,

Re
�

S11S
⇤
21
 

= 0, (D.11)

or, by splitting the S-parameters into the real and imaginary parts,

Re
n

�

S11r + jS11i
� �

S21r + jS21i
�⇤o = 0. (D.12)

This restriction on the allowed values of the S-parameters reduces to

S21rS11r + S21iS11i = 0. (D.13)

Examining these restrictions further revels a relationship between S11 and S21. From
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(D.13), it can be shown that

S21r = �S21i
S11i
S11r

(D.14)

and

S21i = �S21r
S11r
S11i

. (D.15)

Rearranging (D.7) yields

|S21|
2 = 1� |S11|

2, (D.16)

or

1� |S11|
2 = S221r + S221i. (D.17)

Then substituting (D.15) results in

1� |S11|
2 = S221r + S221r

S211r
S211i

. (D.18)

Factoring out S221r and simplifying gives

1� |S11|
2 = S221r

 

S211i + S211r
S211i

!

, (D.19)

or

1� |S11|
2 = S221r

 

|S11|2

S211i

!

. (D.20)
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Solving for S21r yields

S21r = ±S11iQ, (D.21)

where

Q =

s

1� |S11|2

|S11|2
. (D.22)

A similar process of substituting (D.14) into (D.17), gives an expression for S21i:

S21i = ±S11rQ. (D.23)

Using (D.21) and (D.23), it is easily seen that

S21 = ±jQS11 (D.24)

or

S21 = ±jQS⇤11. (D.25)

Two possible values of S21 result since the signs on (D.21) and (D.23) do not have to be

the same. However, (D.7) and (D.13) must still hold true. By substituting either (D.24)

or (D.25) into (D.7) will result in the expressions equaling 1. (D.13) holds true when

substituting (D.24), however, substituting (D.25) will not work. Therefore only (D.24) is a

valid relationship between S11 and S21.

Substituting this relationship into the NRW equations, (3.46) and (3.47), gives

V1 = S11(1± jQ) (D.26)

V2 = S11(�1± jQ), (D.27)
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which satisfy |V1| = |V2| = 1. From (3.55),

� = X ±
q

X2 � 1, (D.28)

where

X =
1� V1V2
V1 � V2

. (D.29)

Substituting (D.26) and (D.27) into (D.29) yields

X =
1� S211 [1± jQ] [�1± jQ]

2S11
, (D.30)

or

X =
1 + S211

h

1 +Q2
i

2S11
. (D.31)

Using (D.22) gives

X =

1 + S211

"

1 +
1�|S11|2
|S11|2

#

2S11
, (D.32)

or

X =

1 +
S211

|S11|2
2S11

. (D.33)

Multiplying both sides of the equation by |S11|2 produces

|S11|
2X =

|S11|2 + S211
2S11

, (D.34)
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and S11 can now be split into real and imaginary parts yielding

|S11|
2X =

S211r + S211i + S211r � S211i + 2jS11rS11i
2S11

. (D.35)

This can be simplified to

|S11|
2X =

S211r + jS11rS11i
S11

. (D.36)

Then by factoring S11r gives

|S11|
2X = S11r

S11r + jS11i
S11

, (D.37)

or

|S11|
2X = S11r. (D.38)

Thus it is found

X =
S11r
|S11|2

, (D.39)

regardless of the sign chosen in (D.24) and it can be seen that X is real. Evaluating � from

(D.28) then leads to two possible cases:

Case 1: X2 > 1.

In this case � is real. Examining (3.50) and splitting V1 into real and imaginary parts

yields

P =
V1r + jV1i � �

1� �
�

V1r + jV1i
� . (D.40)
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The magnitude of P is expressed as

|P | =
(V1r � �)2 + V 2

1i
(1� �V1r)

2 + �2V 2
1i

, (D.41)

or

|P | =
V 2
1r + �2 � 2�V1r + V 2

1i
1 + �2V 2

1r � 2�V1r + �2V 2
1i

. (D.42)

Now substituting (3.46) gives

|P | =
(S21r + S11r)

2 + �2 � 2� (S21r + S11r) +
�

S21i + S11i
�2

1 + �2 (S21r + S11r)
2 � 2� (S21r + S11r) + �2

�

S21i + S11i
�2

. (D.43)

By expanding the products and using (D.13) gives

|P | =
|S21|2 + |S11|2 + �2 � 2� (S21r + S11r)

1 + �2
⇣

|S21|2 + |S11|2
⌘

� 2� (S21r + S11r)
. (D.44)

With the knowledge of (D.7), the magnitude of the propagation factor is determined to be

|P | = 1 (D.45)

Thus P can be expressed as

P = 1ej�, (D.46)

and from (3.56), it is determined that

�s1 = ��� 2n⇡

d
, (D.47)

which is a real value. Finally, with the knowledge that � and �s1 are both real and from
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(3.59) and (3.62) it is found that both µ and ✏ are real.

Case 2: X2  1.

In this case � = A±jB, where B =
p

1� A2. This yields |�| = 1, which would represent

total reflection in an actual material measurement scenario. Thus, this condition should be

avoided when designing a material surrogate. Regardless, there might still exist a special

case where ✏ and µ are real. In (3.59), � occurs in the ratio

�R =
1 + �

1� �
. (D.48)

Therefore, start by substituting � = A± jB into (D.48). This results in

�R =
(1 + A)± jB

(1� A)⌥ jB
. (D.49)

Next, multiplying the top and bottom by the complex conjugate of the denominator results

in

�R =
[(1 + A)± jB] [(1� A)± jB]

(1� A)2 +B2
(D.50)

or

�R =

⇣

1� A2
⌘

± jB (1� A+ 1 + A)� B

2 (1� A)
. (D.51)

This simplifies to

�R = ±j

r

B

1� A
(D.52)

or

�R = ±j

r

1 + A

1� A
(D.53)

and is thus imaginary. Now as was done in Case 1, when examine the propagation factor,
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(3.50) and � are split in real and imaginary parts. This results in

P =
V1r + jV1i �

�

�r + j�i
�

1�
�

�r + j�i
� �

V1r + jV1i
� . (D.54)

or

P =
V1r � �r + j

�

V1i � �i
�

1� �rV1r + �iV1i � j
�

�iV1r + �rV1i
� . (D.55)

Now multiplying the top and bottom by the complex conjugate of the denominator results

in

P =

⇥

V1r � �r + j
�

V1i � �i
�⇤ ⇥

1� �rV1r + �iV1i + j
�

�iV1r + �rV1i
�⇤

�

1� �rV1r + �iV1i
�2 +

�

�iV1r + �rV1i
�2

, (D.56)

or

P =

⇥

V1r � �r + j
�

V1i � �i
�⇤ ⇥

1� �rV1r + �iV1i + j
�

�iV1r + �rV1i
�⇤

D
, (D.57)

where

D =
�

1� �rV1r + �iV1i
�2 +

�

�iV1r + �rV1i
�2 . (D.58)

Writing P = Pr + jPi, the imaginary part of P is examined. Multiplying both sides of the

(D.58) by D and analyzing the imaginary part yields

DPi =
�

V1i � �i
� �

1� �rV1r + �iV1i
�

+ (V1r � �r)
�

�iV1r + �rV1i
�

. (D.59)

Expanding and simplifying the expression results in

DPi = V1i

h

1� |�|2
i

+ �i

h

|V1|
2 � 1

i

. (D.60)
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Using |�| = 1 and |V1| = 1, this expression reduces to

DPi = 0, (D.61)

which proves that P is a real quantity. Now, examining the real part of P shows

DPr = (V1r � �r)
�

1� �rV1r + �iV1i
�

+
�

V1i � �i
� �

�iV1r + �rV1i
�

, (D.62)

and through similar simplification process that was done for the imaginary part of P , it is

determined that

DPr = 2 (V1r � �r) . (D.63)

Expanding the products in D and canceling like terms results in

D = 2
�

1� �rV1r + �iV1i
�

. (D.64)

Finally, the propagation constant for Case 1 can be expressed as

P =
V1r � �r

1� �rV1r + �iV1i
, (D.65)

or

P =
<{V1 � �}
<{1� �V1}

. (D.66)

Case 2 can now be split into 2 cases:

Case A: P > 0

In this case

P = |P |ej0 (D.67)
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and thus

lnP = ln |P |, (D.68)

which is real. So (3.56) then becomes

�s1 =
ln |P | ± j2n⇡

�jd
, (D.69)

which is complex unless n = 0. In this case �s1 is imaginary. In (D.53) it is shown that �R

is imaginary, thus when �s1 is complex, which occurs for all values of n except n = 0, µ will

be complex. If µ is complex, then from (3.62), it can be deduced that ✏ will be complex.

Now when n = 0, �s1 is imaginary and �R is imaginary, thus µ will be real. If µ is real, then

from (3.62), it can be deduced that ✏ will be real.

Case B: P < 0

In this case

P = |P |e±j⇡ (D.70)

and thus

lnP = ln |P | ± j⇡. (D.71)

Then from (3.56),

�s1 =
ln |P | ± j⇡ ± j2n⇡

�jd
, (D.72)

and is complex, since ±j⇡ can never cancel with ±j2n⇡. Thus if �s1 is complex both µ and

✏ will be complex.

So, in summary if the 2-port network being analyzed is lossless and symmetric then
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X = S11r/|S11|2 and two cases exist to determine if µ and ✏ are real or complex. First it

was determined if X2 � 1 then µ and ✏ are real. Next, if X2 < 1 then

1 + �

1� �
= ±j

r

1 + A

1� A
(D.73)

and is thus imaginary. Then with some e↵ort it was shown that

P =
<{V1 � �}
<{1� �V1}

(D.74)

and is thus real. So, if P is positive and n = 0 is chosen in (3.56), �s1 will be imaginary and

again µ and ✏ will be real. However, if P is negative, � will in general be complex and µ and

✏ will in general be complex.
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