.-“.. “wo- THESlS I. ICHIGAN 8 ATE U V RSITY LIBRARIES ‘Illlllullll ll lllll‘ll l 3 1293 (@881 2798 l SUFPLEl’efiEfiTffiW NATEBEM This is to certify that the thesis entitled THE DYNAMICS AND SCIENTIFIC VISUALIZATION FOR THE ELECTROPHORETIC DEPOSITION PROCESSING OF SUSPENDED COLLOIDAL PARTICLES ONTO A REINFORCEMENT FIBER presented by Peter Timothy Robinson has been accepted towards fulfillment of the requirements for Masters degree in Engineering -4..’4 A _ .1 'or Date 7" IQ'Q5 0-7639 MS U is an Affirmative Action/Equal Opportunity Institution _ - __ ‘ ._ .._.p . — A - 4 LIBRARY Michigan State , University PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. DATE DUE DATE DUE DATE DUE Li B E] __l 1 "j MSU Is An Affirmative Action/Equal Opportunity institution cMMth THE DYNAMICS AND SCIENTIFIC VISUALIZATION FOR THE ELECTROPHORETIC DEPOSITION PROCESSING OF SUSPENDED COLLOIDAL PARTICLES ONTO A REINFORCEMENT FIBER By Peter Timothy Robinson A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Material Science and Mechanics 1993 To U166: mes at mam Rf: {nukmiud uk \\- ' 4. 11,;45 WtfutOlO' ' it: Clcx‘c'iopsd use: nautical i iclcs are due to Stairs drag. \‘isuailL imputcr. A me motion pm? Mix . collccu The coil ties for Fe ~40; 31c fO‘iiidation \ Jui‘l‘azor. ABSTRACT THE DYNAMICS AND SCIENTIFIC VISUALIZATION FOR THE ELECTROPHORETIC DEPOSITION PROCESSING OF SUSPENDED COLLOIDAL PARTICLES ONTO A REINFORCEMENT FIBER By Peter Timothy Robinson To meet the demands for new, innovative and more efficient manufacturing tech- niques of matrix composite materials, a method based on the ideas of colloid science has been introduced. The method relys on maximizing the electrophoretic deposition of sus- pended colloidal matrix particles onto a reinforcement fiber. A numerical algorithm has been developed to simulate the many body problem for the colloidal system. The algorithm uses numerical integration to solve the dynamical equations of motion. Motion of the par- ticles are due to London - van der Waal forces, Coulombic forces, gravitational forces and Stoke ’5 drag. Visualization of the algorithm in two dimensions has been attempted on a personal computer. A menu user interface allows flexibility and efficiency for modifying the initial condition parameters such that the optimal initial condition parameters that maximize the matrix - collector deposition may be determined. The colloidal suspension simulator algorithm was intended to be tested with param- for Fe-40Al matrix particles using an A1203 reinforcement fiber. This thesis presents eters the foundation work necessary for the construction of a functioning colloidal suspension simulator. LIST OF TABLE LIST OF HOW LIST OF SIM“- I H w ill NROD‘ LUIRAT FORML’I IMPLEM RESULT. CONCLL RECOM) GEXERAL REF APPENDIX B TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS I INTRODUCTION II LITERATURE REVIEW III FORMULATION OF EQUATIONS IV IMPLEMENTATION V RESULTS / DISSCUSSION VI CONCLUSIONS VII RECOMMENDATIONS LIST OF REFERENCES GENERAL REFERENCES APPENDIX A CSS PROGRAM LISTINGS APPENDIX B CSSDISP PROGRAM LISTINGS APPENDIX C CSSRUN PROGRAM LISTINGS iii iv viii 25 48 59 60 63 65 68 130 142 ‘1 o-t M, On. Table 2.1 2.2 4.1 5.1 LIST OF TABLES Colloidal Systems. Everett. D. H.. W Royal 300i- ety of Chemistry, London, 1988. Forces in a colloidal system. The table shows the possible forces that may be present in a col- loidal suspension system and lists the variables on which the forces depend. Russel, William B.. W The University of Msconsin Press, 1987. Default parameters used to initiate the CSS software. Number of changeable variables using the CSS software. iv Page 58 s IIIII l‘l 5.. .O J (J) This Ftprg Figure 1.1 2.1 2.2 2.3 2.4 LIST OF FIGURES Fiber electrophoretic deposition processing of Fe-40Al/A1203. The schematic diagram shows the FeAl fiber being pulled through the suspension basin. The colloidal particles adhere to the fiber by maximizing the attractive forces between particle and fiber and by minimizing the homocoagulation between Fe- 4OA1 - Fe-40Al and A1203 -A1203. This schematic shows only the idea of the production method. Free body diagram for a colloidal particle in suspension. This figure shows possible force vectors acting on the colloid particle, where, FDblis the double layer force, FSteer the steric repulsive force, FBris the force due to Brownian motion, Vel.is the velocity vector of the particle, FStruciS the structural force, FLoniS the attractive London - van der Waals force, Fvais the force due to gravity, Hyd Gouy - Chapman Double Layer. This figure shows an expanded view of the surface of the colloi- dal particle. The ions and coions migrate to the surface as shown. Ratio of the particle radius to the double layer thickness. The magnitudes of an vary in this figure. Most ceramic colloids have magnitudes of arc in the proximity of 50 to 100. Myscls. Karol 1.. W Robert E- Krieger Publishing Company, Huntington, New York, 1978. The Stern electrical double layer. This figure shows the small scale surface of a colloid particle, represented as a vertical line. The ions and coions are depicted as + and - symbols. The lower graph shows the shape of decay of the electric potential moving away from the surface of the particle. Myscls. Karol 1.111me Robert E. Krieger Publishing Company, Huntington, New York, 1978. Page 11 16 18 (J! (“’J 5,4 5.6 Molt n'fifir S...» . Harri. var. d 2.5 3.1 3.2 4.1 5.1 5.2 5.3 5.4 5.5 5.6 vi Molecule near a sphere. This figure depicts a molecule at point P at a distant OP from a sphere centered at point 0. Hamaker, H. C., Physica 4, 1058 - 1072, 1937, “The London - van der Waals Attraction Between Spherical Particles”. Flow chart for solving the many body problem. This figure begins in the upper left corner and progresses through the necessary steps required to solve multiple colloidal bodies interacting with each other. Graphic display used to visualize the suspended colloids. This figure shows the display screen for the simulation and the x and y dimensions.The grid shown is not actually displayed. Each particle is centered in one of the boxes to prevent initial overlap of particles. Communication links between the three sub - programs. This figure shows the direction of flow between the CSS, CSS- RUN and CSSDISP sub - programs. Zeta potential data for Fe-40Al. The measured data was obtained using 5.0 wt% Fe-40Al (0.935 volume%) powder dispersed into 0.001N KNO3. Zeta potential data for A1203 - FP. The measured data was obtained using 1.075 wt% (0.272 vol- ume%) A1203 -FP dispersed into 0.001 N KNO3. Zeta potential data for A1203 - PRD-l66. The measured data was obtained using 1.075 wt% (0.272 vol- ume%) A1203 - PRD-166 in 0.001N KNO3. Zeta potential data for Fe-4OAl. The measured data was obtained using 0.5 volume% A1203 dispersed into 0.001 N KNO3. This data was measured by Bret Mlson [19]. Zeta potential data for A1203 . The measured data was obtained using 0.2 volume% Fe-40Al powder dispersed into 0.001N KN 03. This data was measured by Bret Wilson [19]. Data file created with the CSSRUN software. This figure displays an example data file that is generated by the CSSRUN sub - program and is read by the CSSDISP sub - pro- 22 29 33 41 49 50 51 52 53 55 7.1 vii gram. The first number is the number of particles, followed by the radius and color number of each of the three particles. The rest of the data format is repeated showing the frame number fol- lowed by the x and y positions of each particle at that time frame. Depiction of accumulated mass. 62 This figure shows an example of data that could be calculated using the colloidal suspension simulator. Q ‘ f ' Penn: .1 ..... ~ o v} ‘1 Elect. \ f x . 1 “Mr" ‘ Elf5u\lnto\ b E Dzelecm: Fm COLLECTED: F.“ Force dc: FED H5i'od}? Fir T019; for: 3.; London - v Fiestas; 80112313: Tcmpcra; Repuisivc d" He. '5 ' 7) VJ Crag: dc Bulk con. Fiesta: Eltcmc Eltcm‘c p DFF} C'H‘. Content; r3 r5’ '7) >7) 4' C."( < H” Bull; con; Viscosity Eitcn‘opj-1 London . x POSithn .V 908mm: ”Clinton 3' Compon Viitilcc n: k r“ “ 1 (16:1 5’4 )4 N 'f or: . 4‘ ‘5 f: ._.i m gang-right? 0.93. w r egbfewe «N 71 so .5.’ LIST OF SYMBOLS Hamakcr constant Electric point charge Electronic charge = 1.60217733E-19 Coulomb Dielectric constant Coulombic, double layer force Force due to gravity Hydrodynamic force Total force acting on a colloid London - van der Waals force Electric potential Boltzmann constant = 1.380658E-23 J/K Temperature Repulsive potential energy Charge density Bulk concentration of positive and negative ions Electric potential at the surface of a colloid Electric potential at the Stem layer Electric potential at the surface of shear, the zeta potential Debye-Hiickel reciprocal length parameter Concentration of ions Bulk concentration of an ionic species Viscosity Electrophoretic mobility or mean London — van der Waals constant x position y position x component of velocity y component of velocity Valence number of an ion viii H...- Them-w ‘ V 3.3.x pastures L 2331303116 mazen 251523." «(101.32% To under: INTRODUCTION The manufacturing of an intermetallic matrix composite using a process based on the ideas of colloid science has been proposed [1]. The proposed process involves electro- phoretic deposition of Fe-40Al matrix particles onto a bundled A1203 fiber. The bundled fiber is pulled through a concentrated suspension of the particles, Figure 1.1, and the parti- cles adhere to the fiber due to adhesive, London - van der Waal and Coulombic forces. A major advantage of this technique over other production methods is the uniformity of matrix particles covering the fiber. The uniformity produced by this process results in a composite material that theoretically has improved mechanical properties and has greater resistance to fatigue. To understand the electrophoretic deposition process, investigation into the field of colloid chemistry is required. Physically, the colloidal domain is the size range of particles that lie between one nanometer and one micron. The domain of colloid chemistry lies between the microscopic size range, in which the strong and weak nuclear forces dominate and the macroscopic size range, in which gravitational forces dominate. A complete description of the dynamics of the colloidal electrophoretic deposition process involves two steps. The first step is the transport step in which the colloid particles are transported through the suspension medium and come into contact with each other or with the collector. The second step is the surface interaction step in which the particles are close enough to each other or to the collector such that surface interactions occur. Inquiry into the nature of the colloidal interactions between the surfaces of the colloids leads to the classical theoretical description developed independently by Derjaguin and Landau, and by etc: 5 e 5 < .3508 5338a 05 no 32 05 3.8 $27. 03828 £5. .mO~_<- mOm_< 98 3.3.0”— - 292$ 5953 sous—98883 05 wEfiEEE .3 93 one was Boga 5253 888 03858 on. 3382:: 3 hope 05 2 20:3 8693 266:8 2: .523 commeoemsm 05 3:85 BEE mien cone 36m 05 30% «Sumac onus—2.8 on... .mOflaSSVYom mo mcmmmoooi c.5388 ouoconnoboofi 89E 3 charm mafia“? wage? £35 seasommzm , 3on 855m _ _ commeommsm 2:03.55 Ea no"? lei-ti and 0‘ :53 II‘A'“ r ‘ - " . Larson-x a. at? \\ P 1.! ‘ r" F ‘ I lie???“ sits:\ .-o ‘1' I _:m\\.i-. 36 xii" §\\ :1: st: or the the 23:90:11: that :tSicc‘ “‘th dszc 3: DLVO them said. The corn Mid Li a con Riion behavio: It“ ht lill'tlahz: m For the initi :01, mt! a Ilmc I E Skaficd me 3 Vcrwey and Overbeek [2,3] referred to in literature as the DLVO theory. The DLVO theory suggests that the stability of a colloidal suspension is determined by the total surface inter- action energy acting between the colloids. The total surface interaction energy possessed by a colloid is the sum of the electrodynamic attractive energy plus the electrodynamic repulsive energy. The electrodynamic attractive energy is the direct consequence of the London-van der Waal attractive force. The electrodynamic repulsive energy arises from the Coulombic electrostatic force. Other possible forces that may also be present in a colloidal system will be described in greater detail later in this thesis. Several variables dictate the quality and efficiency of the electrophoretic deposition process. Changes in the processing pH level, the initial electrolyte concentration, the parti- cle size or the dielectric and Hamakcr constants for different types of materials can lead to a composite that is more or less uniformly distributed than a composite that has been pro- cessed with different starting conditions. This situation and the question of how accurately the DLVO theory models the physical world has lead to the construction of a computer model. The computer model is the focus of this thesis. The model is an algorithm imple- mented as a computer program and designed to provide scientific visualization of the dis- persion behavior of the composite components while they are in suspension. The program may be initialized with information for both matrix particles and collector and allowed to run. For the initial conditions provided, a measurement of developed mass onto the collec- tor over a time period may be recorded. The recorded developed mass on the collector for a specified time period indicates a measure of the success of the electrophoretic deposition process for a set of initial conditions. The program is flexible to allow the user to change any initial conditions that are required. A goal for the program is that it will be able to pre- dict optimal initial conditions that maximize the electrophoretic deposition for an arbitrary set of composite components. The program uses a numerical algorithm to simulate the many body problem for t ‘ ‘- -MF t" R“ i 9; .il ' - -suanbml“‘d ‘ "K ‘ . u ‘finO, 'v'V‘ ”huh. :rp.‘:‘\t.lt A potential. [sin 0 L ("'3 term of the e it: the algorgthr 4 suspended colloidal particles. The dynamical equations of motion describe the motion of the suspended particles as time evolves. The numerical algorithm is based on a “predictor - corrector” method for numerically integrating the equations of motion. For the “predictor” part of the algorithm, the Euler modified method is used. For the “corrector” part of the algorithm, the fourth order Adams — Bashforth method is used. The dynamical equations of motion are derived by incorporating the total forces that act on the system of particles. In order to obtain the total surface energy described by the DLVO theory, the elec- tric surface potential of the matrix particles and the electric surface potential of the collector must be characterized. Electrokinetic sonic amplitude (ESA) measurements were made for iron aluminide powder and for alumina fiber. The ESA measurements provide the experi— mental approximation to the electric surface potential in the form of the measured zeta potential. Using the zeta potential data as an input into the computer model, analysis of the dynamics of the electrophoretic deposition process may be conducted. Questions as to how well the algorithm describes the physical world will be addressed in order to gain better insight into the workings of the electrophoretic deposition phenomenon. This thesis provides the algorithm necessary to generate a computer tool for analyz- ing a colloidal suspension. A semi functioning computer program is included both in binary form on a 3 1/2 inch floppy disk and in printed form in the appendices. 73mm: attests .\ . l . {“1" 5152.5) 0. Skuak “ - -o» . :7- l . lug... lei-.365. 5.3.. . l .. . " ,4 $3573... G \Orlolu . . ,. Q- p‘, n 54.x. ELLMOH ll cur u I... V "'"vi . last if. a liquid. ’V" .Ll. ‘h ‘ ‘1- V usu- ~14. Alas a 1“ . ' I 1w. I $.13 ..l outline: LITERATURE REVIEW A colloid is a particle that has at least one of its three dimensions in the size range from 1.0 x 10'9 meters to 1.0 x 10'6 meters. The branch of science that studies these mac- roscopic objects is called colloid chemistry. D.H. Everett [4] discusses several familiar examples of colloidal systems including the following: fogs, mists, tobacco smoke, milk, butter, jellies, stained glass, photographic “emulsions”, blood, paints, muds and slurries. In general, a colloidal system is composed of a disperse phase; a gas, solid or liquid, and a dispersion medium; a gas, solid or liquid. A colloidal system that has a liquid disperse phase in a liquid dispersion medium, for example, is termed an emulsion. A colloidal sys- tem that has a liquid disperse phase in a gas dispersion medium is called a liquid aerosol. Table 2.1 outlines several types of colloidal systems. The class of colloidal system in which a solid is dispersed in a liquid is referred to as a colloidal suspension or a sol. For the electrophoretic deposition process under investi- gation, the disperse phase will be iron aluminide particles and the dispersion medium will be deionized, distilled water. Therefore, an investigation into the dynamics of a colloidal suspension is essential in order to formulate a physical model of the electrophoretic depo- sition process. To attempt a complete description of the overall dynamics of a colloidal suspension, many contributing factors need to be considered. The particle size as well as how the par- ticle size is distributed are two such factors. Vifrese and Healy [5] found experimental evi- dence correlating the particle size with colloid stability. The particle shape is another important factor. Intuitively, the motion of a spherical particle will behave unlike some Other geometrically shaped object, such as a cube or needle, while in suspension. Other fac- tors to be considered are the particles surface properties, such as the surface composition and the amount of electrical charge on the particles surface Finally, the primary factor con- 1156 - ‘ H.321 D H” E- 2935. #— Dispers Phase ,____ Liqufi i—— Solid Solid Solid & Solid \ Gas \ Table 2.1 Everett, D. H., W, Royal Society of Chemistry, London, 1988. Colloidal Systems. Dispersion Medium Class Examples Liquid Gas Liquid aerosol Fog, mist, tobacco smoke, “aerosol” sprays Solid Gas Solid aerosol Industrial smokes Liquid Liquid Emulsions Milk, butter, may- onnaise, asphalt Solid Liquid Colloidal Suspension Silver iodide, paints Solid Liquid Paste Clay slurries, tooth- paste, muds Solid Solid Solid Suspension Opal, pearl, stained glass Gas Liquid Foam Froths, foams wing to the '5.“- :cloi:' pa’ficit- TS 2:: safacc proper“ Several for :1: Electrod} 2: 22:53: elecros: =:.:e from ViSC'OSi'. manmdier S mt»: polymer 20:5 in the density M 3"».\ Short ran 3 \ 'I'J :ryef Lie surface 0 Lu; Newton's la' ieid can affect Lh fares that may be eszspended colioi Electrodyr ilift-“active Lon: mil) charged 3; ibis?) me colloid‘ ’15 in fact, contair A colloid i \‘w. Lul of [thC m ‘ C 7 tributing to the dynamics of a colloidal suspension is the total force acting on an individual colloid particle. The total force can be derived from knowledge of the particles size, shape and surface properties as well as from the dispersion medium properties. Several forces collectively define the total force acting on an individual colloid par- ticle. Electrodynamic forces include the attractive London-van der Waals force and the repulsive electrostatic double layer force. Hydrodynamic forces, that obey Stoke ’5 law, arise from viscosity and are proportional to the velocity of the particle moving in the dis- persion medium. Steric forces are repulsive forces that may be present from the overlap of adsorbed polymer layers. Brownian motion is erratic particle motion driven from fluctua- tions in the density of the liquid. Structural forces are strong repulsive forces that act over a very short range and result from changes in the dispersion medium structure in the vicin- ity of the surface or interface [6,7]. The gravitational force is an attractive force obeying Sir Isaac Newton’s law of gravitation. Lastly, the presence of an external electric or magnetic field can affect the motion of a charged colloid particle. Table 2.2 outlines the possible forces that may be present in a colloidal system. Figure 2.1 shows a free body diagram for a suspended colloidal particle. Electrodynamic forces, comprised of the repulsive double layer overlap force and the attractive London-van der Waal force, are present only if the colloid particles have elec- trically charged surfaces. Although some special types of colloidal suspensions exist in which the colloid particles possess no surface charge, the majority of colloidal suspensions do, in fact, contain electrically charged particles. A colloid in suspension can obtain a surface charge through several mechanisms. Many of these mechanisms are described by Ross and Morrison and by Hinze] and Raja- gopalan [2,6] and include preferential adsorption of ions, accumulation of electrons at the interface and adsorption of polyelectrolytes. Realizing that suspended colloids possess a surface charge led to the idea of the electrostatic double layer. The double layer concept, originated by Helmholtz (1879) and ' _._ "r IV - ‘“\ '5“ q. '- : \hL . 1322.3.C - -.'».. ‘ '71: Ph’S-{L “.‘AL-t H .. 1 Q‘- Pftn‘ 59v - i -Eiec*:os:a::.' K ‘ Hliradmamic Stokes D79, \ S‘eric l l . = Broom Enema Field ‘ Magnetic ‘ EiCCIfiC Table 2.2 Forces in a colloidal system. The table shows the possible forces that may be present in a colloidal suspension system and lists the variables on which the forces depend. Russel, William B., WW3, The University of Wisconsin Press, 1987. I FORCE l FUNCTION OF Electrodynamic - London - van der Waals Displacement, Material, Surface Charge - Electrostatic (Double Layer) Displacement, Material, Surface Charge Hydrodynamic - Stokes Drag Viscosity, Velocity Steric Displacement (Position of adsorbed polymer layers) Brownian Thermal Motion (Density Fluctuations) Structural Displacement Gravitation Mass, Displacement External Field - Magnetic Surface Charge, Displacement, Field Strength - Electric Surface Charge, Displacement, Field Strength . t .. . Ni . ; i. u; .I.. F .3. .m. n K NIJ .) «NU. A» 9L .lu» PU H E. wiFFEIlVFFFLIF 9 FDbl F ;/ Br Field Lines Vel. Colloid Particle \ Adsorbed Polymer I:Struc I:Gt'av Colloid Particle @ Figure 2.1 Free body diagram for a colloidal particle in suspension. This figure shows possible force vectors acting on the colloid particle, where, FDbl is the double layer force, FSter is the steric repulsive force, F3, is the force due to Brownian motion, Vel. is the velocity vector of the particle, FStruc is the structural force, FLon is the attractive London - van der Waals force, FGrav is the force due to gravity, FHyd is the hydrodynamic force. orb?” fl, ' u. b .. 4 i c“ {filmy 'Ar‘ 3‘ 5253233. Toe nxe.‘ -~.' t'fi? "- “' EL'QCOJLLCA‘CA..\~ 2: game cream .q 1 ... mus ar. exp i A; - . - a ~. J-w ELI-lake Ln reuse of them: V “.4 xiii-on would ' the!) msgbw p ‘\ ”fi'i’td‘ - t...U.L-.S SurfacC newourxen'o: (.2) 4. .t. . ‘1: “‘rg‘é‘d 10% Before a the: imPORam ( it deemed p0] killed 35 the cm at electriCal dou ED 56 dumb POI: h I'T‘L “'7 COUIOmbIC 10 investigated in greater detail by Louis George Gouy (1910) and David Leonard Chapmann (1913), suggests that a cloud of ions gather around a suspended colloid in an organized fashion. The fixed charge on the colloids surface attracts free ions of opposite sign, referred to as counterions. The attracted counterions, in turn, attract ions of the same sign as the ions on the surface of the colloid, called coions. This cycle repeats outward from the surface of the particle creating integrated layer upon layer of attracted coions and counterions. Figure 2.2 shows an exploded view of the Gouy-Chapman layer surrounding a particle. The cloud of diffuse ions that surround the colloid exactly neutralizes the fixed charge on the surface of the colloid. Collectively, the diffuse ion region and the colloids fixed surface charge region make up what is called the electrical double layer. In the absence of thermal agitation, counterions would migrate to the surface of a charged particle and would completely cover it, exactly neutralizing its charge [8]. The double layer in this situation would be extremely compact. In reality, thermal motion has a tendency to uni- formly distribute the free ions in the dispersion medium. As counterions are attracted to the colloids surface, the counterions produce a screening effect that blocks further attraction of other counterions. The combined effects of thermal agitation and screening of ions causes the charged ions in the diffuse region of the double layer to have a distinct distribution. Before a description of how the charged ions in the diffuse region are distributed, other important characteristic parameters of the double layer need to be defined, namely, the electrical potential energy and the electric potential. Potential energy, in general, is defined as the energy that a system possesses as a result of its configuration. In the case of the electrical double layer, ions and counterions that surround the colloid may be assumed to be electric point charges. These elecu'ic charges are separated by varying distances and exert Coulombic forces upon each other of the form: 4 541' F=— l 8,2 U 11 A + v 8 ‘E (D 39. O = O U — Diffuse ion P .. I Region + osrtrve on - Negative Ion Figure 2.2 Gouy - Chapman Double Layer. This figure shows an expanded view of the surface of the colloidal particle. The ions and coions migrate to the surface as shown. 1;»: a: ma: PC “”594 to file“ 5 .w-‘e‘u . 1.2135236 eieCf—‘T m z is the Va union (2,. desc time potenual. As outline ifise pm of the tier: particle rel river - trial potentia.‘ 12 where, q and qj are two electric point charges, a is the dielectric constant of the medium, and r is the distance between the charges. As a consequence of these forces, an electric potential scalar field exists between the charges. It is important to note that an electric potential, w, is associated with each point in space, whether or not there is any electric charge at that point. A change in the electric potential is equal to the amount of work required to move an electric charge from one point to another point. This latter statement defines the electrical potential energy and is defined as: VR = zqul, (2) where, z is the valence of the ion, q is the electronic charge and W is the electric potential. Equation (2) describes the general relation between the electrical potential energy and the electric potential. As outlined by Shaw [9], the Gouy-Chapman description suggests that ions in the diffuse part of the double layer obey Boltzmann’s distribution law. Boltzmann’s law for a colloid particle relates the probability of ions being at a given point at which they have an electrical potential energy relative to the surface of the colloid, i.e.: -Z.-q\v n,- = niocxp (W) (3) Where ni are the concentrations of positive and negative ions at points where the electric potential energy of these ions are zqw and -zq\u, respectively, “i0 is the bulk concentration of each ionic species, 2 is the valence number of the ions and q is the elecu'onic charge. Now that the concentration of ions can be calculated at points where the electric POtefltial is w, another definition, namely, the charge density, follows. The charge density, P- at a point where the electric potential is w, is defined as the sum of the charged ions, at that point, per unit volume. Mathematically, the charge density is: A. _ ... ‘ r ‘ ' .«ouhf't mflub‘ \.\..LU““: A i ‘v T) Thenexts :i; potent. ‘ in o zaauxchz-e "’1 “mefimemi ill-3mm} and m6 @3330“ ('8). the 13 p = zqni (4) Substituting equation (3) into equation (4), then, . "2W — fl 5) zq[n,o (exp[ kT ] exp|:kT:|):l =_2 ,. .1. fl- WW (6) p z...[2(..p[n] ...[HD] . 24W p = -22eqnioSlnh(-fi) . (7) '0 II A The next step is to find another equation that relates the charge density with the elec- tric potential in order to obtain an equation explicitly containing w. The Poisson equation relates the charge density to the Laplacian of the electric potential as: Vzv = 3. (8) where e is the dielectric constant of the medium, p is the charge density, ‘l’ is the electric potential and the inverted triangle is the gradient operator. Substituting equation (7) into equation (8), the well known Poisson-Boltzmann equation is obtained: Zan- 2 2 - —‘o . q_w V w — e srnh( kT ) . (9) The Poisson-Boltzmann equation is a second order, non-linear differential equation for the electric potential. A solution to this equation will provide a quantitative scalar field description for which the magnitude of the electric potential at any location in the diffuse part of the electrical double layer can be calculated. Unfortunately, no exact analytical solu- tion to this equation is known to exist and numerical methods must be used. If, however, the assumption is made that the value of I130 The ass; +5 .3 fl‘n. ‘3‘! .I;NCAC~L‘ \ r ‘5‘ :azor. simplit i‘hm. 14 24“, (fi— « 1 (10) in equation (9), then the following approximation holds: 24W 24W) = (777) - (11) Sinh ( '77-..— Equation (11) follows from the Taylor expansion of sinh and setting the higher order terms to zero. The assumption in equation (10) implies that at room temperature, i.e. T = 25° C, the electric potential has the value of, 2v « 5:: = 25.69mV. . (12) Substituting the right hand side of equation (11) into equation (9), the Poisson-Boltzmann equation simplifies to, V21) = sz, (13) where, 222 2n- x2 = ———q ‘ON” , (14) ekT \V = the electric potential, K = the Debye - Hiickel length, 2 = valence number of ions, q = the electronic charge, q = 1.60217733 E—19 Coulomb, “10 = the bulk concentration of ions, nio = ni0(1000)(mole/meter3), N A = Avagadros number, N A = 6.0221367 E+23 ( 1/mole), e = dielectric constant of the medium, 8 = £02,, £0 = permittivity of free space, so = 8.8541878 E-12 (Farad/meter), e, = the relative permittivity, k = Boltzmann constant, Tie ass-terrace. us Tribe-Hui: :0: 121V < :5. 32m: reciproc 212 it a}: The :52. wrist: the e.-ec To traders 5 972.3; out F0? ‘3ng "Tier _ . S'V01$m< 3:11: CleCm'c DOLC A fume mentioned abox f . Amn U 15 k = 1.380658 E-23 (Joules/Kelvin), T = Temperature in Kelvins. The assumption used to derive equation (13) is known as the Debye-Hiickel approximation. The Debye-Hiickel approximation is valid only for small electric potentials, i.e. from equa- tion (12) \y < 25.69 mV. The constant term K in equation (13) is defined as the Debye- Hiickel reciprocal length parameter and is an indicator of the thickness of the electrical dou- ble layer. The thickness of the double layer, UK, is the distance in the diffuse double layer in which the electric potential decays by a factor of 1/q for low potentials. To understand the geometry of the double layer, consider a spherical colloid particle of radius, a, and the ratio of this particle radius to the double layer thickness, arc, see Figure 2.3 [8]. When are is large, the double layer is nearly flat When are is small, the double layer is spread out. For variations in the potential in the x-direction, equation (13) takes the form, a it K2 — = w . (15) 8x2 Equation (15) is a second order linear differential equation. Letting the boundary conditions be t]! = ‘l’o at x = O and u! = 0 at x = infinity, and assuming low potentials at room tempera- ture, the solution to equation (15) is, where, Va is the electric potential at the surface of the particle. Equation (16) shows that the electric potential decays exponentially from the surface of the colloid. A further attribute of the electrical double layer was introduced by Otto Stern. As mentioned above, thermal agitation prevents counterions in the suspension medium from forming a very compact layer surrounding the charged colloid. If, however, the electrostatic 16 arc=1 ax=0.5 arc=10 arc=2 Figure 2.3 Ratio of the particle radius to the double layer thickness. The magnitudes of art vary in this figure. Most ceramic colloids have magnitudes of at: in the proximity of 50 to 100. Myscls. Karol 1.. Wmnmmemim Robert E. Kricgcr Publishing Company, Huntington, New York, 1978. .5.b Tue ClCCC .,..' 1 3:: 30151.53; El vvéa S 1'2 ' ' L hl5 m ib}c Era-«M A. ans w*...-..€b 11511.5 had by ele, IG‘Q 1 A I q ‘ .-._.g ere-.tm i“- t‘rrces a force t itl‘lly. A laser Verifies. l The CICC' dentude of rh 17 forces are too strong near the colloids surface, then thermal agitation will not be able to overcome them. The result is a semi—compact layer of counterions surrounding the colloid called the Stern layer. The new picture of the electrical double layer in terms of the elecuical potential is shown in Figure 2.4 [8]. The electric potential at the plane of shear near the Stern potential is defined as the zeta potential. Exactly how close the zeta potential lies in relation to the electric potential at the Stern layer is a topic of current research. The zeta potential can be experimentally determined using various techniques such as micro-electrophoresis or acoustophoresis as measured by electrokinetic sonic amplitude (ESA). Micro-electrophoresis applies an oscil- lating electric field to a colloid suspension. The presence of the external electric field induces a force that acts on each colloid causing the colloid particles to move with a certain velocity. A laser beam and a detector are used to optically measure the colloid particles velocities. The electrophoretic mobility is determined by dividing the observed velocity by the magnitude of the elecuic field. The electrophoretic mobility is directly related to the zeta potential by the following equations [2]: 6 g: “2“ whenaK<0.1 (17) 4 g = in“ when arc>100. (18) Where, C is the zeta potential, 1] is the viscosity, p. is the electrophoretic mobility and e is the dielectric constant Equation (17) is known as the Hiickel equation and equation (18) is knOWn as the Helmholtz - Smoluchowski equation. The acoustophoresis technique using an electrokinetic sonic amplitude (ESA) mea- sur<38 the zeta potential by applying a one megahertz oscillating electric field to a colloid suspension. Again, the particles move with a certain velocity due to the effects of the elec- 1“,- 3+ '+ 1++ + - + ( ‘nlluid Surface + + ‘T 1+ + +- + § 1"“ lik‘t‘n'u.‘ l 'nu-nliul We 2.4 n“ TrQSfi Sho 1:1 . V) 5:: .nlC [OnS an “PC of 0C3 18 + + + + - + _ - i3 + ' + Positive Ion g + ' - Negative Ion E + - + "o‘ - : . . U + + g + W0 = Electric potential at the + _ - + - surface + + + - - . . 3 Vs = Electric potential at the —> <— Stern layer Stern layer “’0 Plane of shear t; = Electric potential at the surface of shear, the zeta potential 'g “’3 _1 8 a. 'é’ .13. C :1: Vs ° § 1h: h > (1 Distance from the Surface l:“igure 2.4 The Stern electrical double layer. This figure shows the small scale surface of a colloid particle, represented as a vertical 11118. The ions and coions are depicted as + and - symbols. The lower graph shows the shape of decay of the electric potential moving away from the surface of the particle. Mysers, Karol 1., W Robert E. Krieger Publishing Company, Huntington, New York, 1978. r5]; ficid. AS 1 aressure vl aw one deteetoi may be deter? zer: porenual “he: res;lt is an el energy heme the potential 1 of concentric. (ELF) [ll]. S Local potentia tion energy be l9 tric field. As the colloid particles vibrate back and forth in the suspension medium, a sonic pressure wave is produced. The frequency of the sound wave is measured by a sensitive sonic detector. Once the frequency of the sound wave is known, the velocity of the particle may be determined as well as the electrophoretic mobility. Using equations (17) or (18), the zeta potential is then obtained. When the diffuse regions of two double layers surrounding two colloids overlap, the result is an electrical potential energy of interaction. Derjaguin [10] derived the potential energy between two parallel plates of unequal charge. Using the calculations of Derjaguin, the potential energy between two unequal spheres was determined using a summation idea of concentric, parallel plates. This method was employed by Hogg, Healy and Fuerstenau (HHF) [12]. Starting with the electric potential and relating the electric potential to the elec- trical potential energy, Hogg, Healy and Fuerstenau [12] obtained the electrostatic interac- tion energy between two dissimilar spherical particles, _ 30102(\l’(2)1+‘l’(2)2) [[ 2W01‘V02 J (1+ exp (—KH0) - +1 1— -2 H R 4(dl-l-02) “[31+ng l-CXP(_KH0)) n( exp( K (9)] (19) where, e is the dielectric constant of the medium, a1, a2 are the respective radii of particle one and particle two, v01, rpm are the elecuic potentials at the surface of each particle, K is the Debye-Hilckel reciprocal length parameter and H0 is distance between the two parti- cle’s surfaces. When the initial conditions for two spherical colloids in suspension are spec- ified, equation (19) has the displacement between the two particles surfaces as its only independent variable. HHF [11] also show that equation (19) is a valid approximation for surface potentials less than approximately 50 to60 mV. Other methods for obtaining the potential energy relation between two dissimilar spherical particles are given by Bell, Levine and McCartney [12] and by Bell and Peterson [13]. The next topic to consider is the London - van der Waals attraction force between ccloit‘l pamcies. . ' n 4 r h Marion a... . The conce 3:: Elm mole; “.1: dtVClOpcj 4","‘1‘ “.3993 t nun-5L1 . ‘~U iot- energy of a g W0 mOICCUECS' ' iticlgpcd bV I..( 35.3: A is the cries. The cal cu titles has bCCn my ”Mel of Shaded 0n Pal: COHOid pmfle lemmas and r1 Hawker mOde 20 colloid particles. A brief summary of the evolution of the nature of this force is described by Mahanty and Ninham [14] and is outlined below. The concept of a force field existing between any pair of molecules whose range is larger than molecular dimensions was first investigated by van der Waals in 1873. van der Waals deve10ped an equation of state for a gas in which a constant term appeared that was directly related to the strength of the intermolecular forces. By averaging the interaction between two dipoles over all orientations, van der Waal and others found that the interac- tion energy of a dipolar molecule was proportional to l/r6, where r is the distance between two molecules. The explanation of the force between a pair of non-polar molecules was developed by London in 1930. The attractive interaction energy between two molecules due to the London - van der Waal force was determined to be: E (r) = -— (20) where, A is the London - van der Waals constant and r is the distance between the mole- cules. The calculation of the electrodynanric attraction force between two macroscopic par- ticles has been approached by two different methods. The Lifshitz model is based on a molar model of condensed media and uses quantum electrodynamics. The Hamaker model is based on pairwise summation of the attractive energies between the molecules of each colloid particle, ignoring multibody perturbations. Due to the complexity of the Lifshitz formulas and the necessity for numerical methods for determining material functions, the Hamaker model will be considered. Integration of equation (20) over the total volumes of two colloid particles provides the potential energy of interaction between two particles containing q atoms per cm3 and is given by Hamaker [15] as: I: _a1. (Figure 2.5). The sphere around 0 cuts out a surface, S(ABC) out of a second sphere centered around point P with radius r. The surface S(ABC) is: 00 5 (ABC) = 2x I rzsinOdO . (22) o where, 60 is given by the law of cosines: a1 = R2 + r2 + 2chosOo . (23) Integrating equation (22), the surface ABC is: S(ABC) = 112% (of- (R-r)2) . (24) The volume element dvl is given by: dvl = S (ABC) dr . (25) The potential energy of a molecule at P may then be written as: (R+afi A EP=— I %(%)(a§-(R—r)2)dr. (26) (R-q)r Figure 2.5 3 This fig“ do; mint 0. ”maker. H. c IlOI‘i BCIWCCn S 22 Figure 2.5 Molecule near a sphere. This figure depicts a molecule at point P at a distant OP from a sphere centered at point 0. Hamakcr, H. C., Physica 4, 1058 - 1072, 1937, “The London - van der Waals Attrac- tion Between Spherical Particles”. Cflf.’ Tie pom: al £23111“. centers be nods l4 : -A I o 6 . I r‘r - Shires. The P016: L f 23 The potential energy of interaction between two spheres, the second sphere having radius a2, with centers being a distance C apart is obtained from the following: (C + 02) R VA = 1 mo? (ag— (C-R)2)dR. (27) (C - 02) The result of this integration for the potential energy of interaction between two spheres yields, 200 200 Cz—(a +a)2 vA=-é(2 ’2 +2 ‘2 +ln(2 1 2 D (28) 6 C -(al-t-c12)2 C -(al—az)2 C -(al—az)2 where A is the Hamakcr constant and C is the distance between the centers of the two spheres. The potential energy of interaction for a sphere and a plane can be calculated by let- ting one of the sphere’s radius go to infinity and has the form [14]: x 1 +§-+—x+IN(f+—x)) 9 (29) ( CM):- 1 where, _ (C‘al) _ —0_1—— , x (30) A is the Hamakcr constant, C is the distance between the center of the sphere and the sur— face of the plane, and a1 is the radius of the sphere. The development of the potential energy equations due to both the double layer and the London - van der Waals force will be used to determine the dynamics of the surface interaction step of the electrophoretic deposition process. The transport step dynamics involve the forces listed in table 2.2 that may be present in the system, excluding electro- dl’narnic forces. The dynamical equations of motion and the numerical algrithm that may 24 be implemented on a computer will be derived in the following chapter. To cumin eecijed in order son will Clarify \s at: Ht 1.1565 10 (it: Because rl tric forces that be included. Alrhl he“ a» . .ngie. for an '7') combined ms 0 motive force u of no electrical 1 For the F the repulsive sre Finally. external obtained from th Other ini- hiding Vie-4 (T—I 91—1 ’13—: m FORMULATION OF EQUATIONS To examine the dynamics of a colloidal suspension, initial conditions need to be specified in order to isolate what forces will be present in the system. The following discus- sion will clarify what forces will be used for the derivation of the equations of motion that will be used to describe the dynamics of the colloidal system. Because the suspended particles will be moving in a viscous medium, hydrody- namic forces that obey Stoke’s law will be included in the system. Gravitational forces will be included. Although the magnitude of the gravitational force on an individual colloid is negligible, for an unstable system in which the colloids flocculate to form agglomerates, the combined mass of several particles can lead to sedimentation. The London - van der Waal attractive force will be included. The electrostatic repulsive force arising from the overlap of two electrical double layers will be included as well. For the FED process, no polymer chains will be added to the system and therefore the repulsive steric force will not be included. Brownian motion will not be included. Finally, external magnetic or electric fields will not be present and so the resulting forces obtained from these fields will not be included. Other initial conditions that will be imposed on the colloidal system include the fol- lowing: 1. The colloidal particles will be assumed to be spherical in shape and insolu- ble. 2. The surface of each particle will be assumed to have a constant charge den- srty. 3. Each spherical particle will be assumed to be infinitely hard and smooth. 4. The zeta potential will be used as the numerical equivalent of the surface potential in calculations. 5. The frame of reference used to specify the particles coordinates will be assumed to be an inertial frame of reference. 25 . ti fir Tn: alt-3“ 1"”1‘3'1 15 {1‘51 rec. in is "re “ : one :' ‘ Lhe Le . 332:} L ‘ '- l driganc Fg is t. ‘ 4,. tr Tie :orce one .t there. r is the ; densities and g “‘bm~ 1'l is the Velma; The CICCtrod .Vn What F iS Lhc | dient operamn ‘ 26 The equation of motion for an individual spherical, colloidal particle suspended in a medium is given by Newton’s second law of motion, di) .5 A J A A "13-,- : FDBL+FVan+FHYD+Fg = F771,, (31) where, m is the mass of the colloid particle, FDBL is the Coulombic, double layer force, FVan is the London - van der Waals force, FHYD is the hydrodynamic force due to Stoke’s drag and F8 is the force due to gravity. The force due to gravity for a sphere in a medium is given as: fi-4 3 * 32 g ‘ -31". (pz-p1)g 9 ( ) where, r is the particle radius, p2, p1 are the respective particle and suspension medium densities and g is the acceleration due to gravity. The Stoke’s drag force for a sphere is: 73mm = 61mm? . (33) where, 11 is the suspension medium viscosity, r is the particle radius and v is the particle’s velocity. The electrodynamic forces can be obtained from the following relation that is valid for a conserved system: F=—VU, an Where F is the total force, U is the potential energy equation and the dc] symbol is the gra- dient operator. Applying equation (34) to the potential equations, (19) and (28) the follow- ing electrodynamic force equations are: ;. Th: $831115“: H. ‘ r ‘. - Fhs' LPP. ' b o 35:76. "the attractive Where. 27 The repulsive force between two non-identical, spherical particles is: )(1-exp(-KH)) 2 rtexp(-KH) _(l+exp(—rtH))kexp(-KH) 9‘ ( “am-K”) (hem-«1m2 ‘ P =—s s 35 PM [P l ‘ (ef+e§)(1+exp(-KH)) + 2 ( ) where, _ £r1r2(g§+g§) 36 1 " 4rl+4r2 ( ) 2xex -2xH 2 = p( ) . (37) 1 - exp (-2KH) The attractive force between two non-identical, spherical particles is: _, A r2T2 r272 271 T2 T3T2 Fm, PP =—-——-— — —-— 38 V I l 12( '17:; ”73+ Ts (T1 T} D ( ) where, H2 ”'2 H "2 T =—+—+—+— (39) 1 4r? 2r? 2”1 r1 H ’2 l T =_+_+_ (40) 2 2r? 2r? 2"1 2 Hr T3: H +—3+” (41) 4r? r? 2'1 and H is the distance between the two particles surfaces. The system of n colloidal particles produces N equations of motion, one for each particle, Where N is an integer. The many body problem involves determining the position and velocity of each par- ticle as time progresses, provided that the initial position and velocity of each particle are k“OWn. A general solution to the many body problem for N greater than three is unknown flllfflelCélr r . a» n \I CCSS‘ iii: tilt DC '““= SVSICTI‘L. .31“- ‘ l Deane L r P A ((folarllrlal.l|l 11243456700 ((I‘l' 28 and numerical methods must be employed. The flow chart presented in Figure 3.1 shows the basic process used to solve the many body problem. The following algorithm will pro- vide the necessary steps that outline a solution to the many body problem applied to a col- loidal system. Many body problem Algorithm: 1. Define the initial values of the colloidal system. A-Eanifilzinfmmamm Common Name Chemical Name Shape Density Diameter mean Diameter Standard Deviation Number of Particles Hamaker Constant ”\IO‘MhWNr—n E Common Name Chemical Name Density Viscosity Relative permittivity Temperature Hamakcr Constant \lOsUrthv-e CW 1 Common Name 2 Chemical Name 3 Concentration DQQIleatsrLInfotmatiaa Common Name Chemical Name Shape Density Diameter (Aspect Ratio) Hamaker Constant OsthNv-t gm/cm3 um um Joules Imus grit/cm3 gm/(cm sec) Degrees Celsius Joules Joules l Define 1 Possible j Coormnates l ofPanicles Calculate Debye - Huckel length 3: Define initial POSonn Obtain Initial Values 1 Define Arrays Define Possible Coordinates of Particles i Calculate Debye - Huckel Length 1 Define Initial Position and Velocity I Assign Radii to Particles l Calculate Mass and Volume of each Particle Figure 3.1 29 Output the Initial Position, and Radius for the zero State Loop for the Number of States Calculate Distances Between Particles If Particles are in Contact With each other Calculate van der Waals Force __'__. Calculate Hydrodynamic Force i Calculate new position and velocity due to the ‘— forces V Output new position and radius for each particle V Increment the time step AT Check for Collisions l...— Calculate Double Layer ‘ Force Calculate Gravitational Force Flow chart for solving the many body problem. This figure begins in the upper left comer and progresses through the necessary steps recIllired to solve multiple colloidal bodies interacting with each other. .0 9 l l 'JJ.J.-"‘ :11 u—- r1; All number ticle de 1.H Suspeng to filua aSpher thWec panic}: VEnwc) knda]] "search indjvid “tree m 30 E. W LLLni s 1 pH Level - 2 Zeta potential of the particle mV 3 Zeta potential of the Collector mV F. W Lani 1 AT seconds 0 mull/1.93121. 1 DLVO 2 Acid / Base 3 Random H. Simulau’oaim 1 Particle A - Collector 2 Particle A - Particle B All of the initial values will be referenced throughout this algorithm by the step number proceeded by a letter proceeded by an index number. For example, the par- ticle density will be referenced by l.A.4. l.H describes a simulation type. Simulation l.H.l involves colloidal particles in suspension interacting with a plane-shaped collector. Equation (34) may be applied to equation (29) to obtain a force equation for the van der Waals attraction between a sphere and a plate. A similar formula may be obtained for the double layer force between a sphere and a plane. Simulation l.H.2 involves the interaction of colloidal particles of type A collecting onto particles of type B. l.G are the possible dynamic models available. 1.6.] is the Derjaguin, Landau, Verwey and Overbeek model. 1.G.2 is an acid/base model that claims that when col- loidal particles come into close proximity to one another the particles coagulate regardless of what forces may be present. 1.G.3 is a random model that allows the individual colloids to sample from a time dependent force distribution. Each of the three models affth the magnitude of the electrodynamic forces. —J ‘ xi )1 do‘dt dygiit de/dr dry/dz DlSlanCe Define the “65 will tx- Define the necessary arrays to hold the pertinent information for each colloidal par- ticle. Let N be the number of particles obtained from (l.A.7). Amalia: Density Mass Radius Volume dy/dt dvx/dt dvy/dt Distance imnin le le le le le le le le 4xN 4xN 4xN 4xN NxN NxN le le Comment Particle Density Particle Mass Particle Radius Particle Volume x Position y Position x Velocity y Velocity The four previous values Of in The four previous values Of Vyi The four previous values of acceleration. The four previous values of acceleration. The distance between par- ticle i and particle j The total force acting on particle i due to particle j The x component of Fm The x component of FT'I'L Define the display dimensions and the possible coordinates where the initial parti- cles will be placed. 32 The display size may be sized as desired but for this thesis the following values will be used: Display Dimensions: 150 units x 100 units Maximum Number of Particles: 120 Maximum Particle Diameter: 2 units Define an 8 row by 15 column grid centered in the middle of the display. Let each row and each column be separated by 3 units. The 8 row by 15 column grid defines 120 boxes, each box having dimension 3 units by 3 units. Figure 3.2 shows the graphic display that will be used to visualize the suspended colloidal particles. To prevent the particles from overlapping one another, each particle is initially posi- tioned at the center of an unoccupied box in the grid. Calculate the Debye-Huckel length using equation (14): 22 22 n K2=_4_°_’Xe, ekT (42) Define the initial position and velocity of each particle at time t = to. Xxiao) = xxio’ xyi(t0) = xyioa in(to) = ijo. Vyi(to)= Vyio. Assign a radius to each particle assuming that the particle diameters obey a Gauss- ian distribution. To calculate a gaussian random number from two uniform random numbers do the following: Obtain the Diameter mean, u, from l.A.S and obtain the Diameter standard devia- 2::- awr— 33 any—3.3a .«o 9:56 325 Boga o. waxes 2: no 28 E @2850 £ 2023 comm .coxfimmfi 3338 8: fl 226% 2% o—FacoucoEB » 93 x 05 Ba nous—58mm 05 .82. 528 chm—ammo 05 macaw Esme ”E. $2280 Becamzm 05 3:95? 2 v8: cash—mac 02¢an mam an 91100 1’2 91100 001 8:5 9» 8:5 On _ 10. 34 tion, 0, from l.A.6. Let 111 and uz be two uniform random numbers whose values range from 0 to 1. Define the parameter G as: G = -2 x logul x cos (21tu2) . (43) Assign the radius to be: ri = u + 00. (44) Calculate the Volume and Mass of each particle. V, = gm? , (45) "'1' = ini r (46) where, Vi is the volume of the i-th particle using the radius from equation (44), mi is the mass of the i-th particle, pi is the density of the i-th particle obtained from l.A.4 and i is an integer, i.e. i= 1, 2, ..., N. Assign the initial value conditions for each particle. (dXIdt)0,i = ini (dvx/dt)” = O, (dy/dt)o,i = vyi, (dvy/dt)oj = 0 Output the initial x, y positions and the corresponding radii. Calculate the state of the colloidal system at each time increment The state of the system is determined by calculating the position and velocity of each particle at a specified time. The time between states is incremented by At obtained from 1.F. Loop until the number of states have been generated. (Each loop through the fol- lowing sub-algorithm will generate a state of the system.) Generally, 30 states are needed for one second of animation. Let j = 1 Loop from i = 1 to N If j 0 i then calculate the total distance between particles i and j. (D), = Refresh (icy-.15..)2 (47) If the distance between particle i and particle j is less than 6 units then Calculate the relative Hamaker constant ”- »-....-.. 35 A123 = (Alf-435) (Ali—AS?) (48) A123 is the relative Hamakcr constant of substance 1 and 3 that are separated by substance 2. All is the Hamakcr constant for particle A, A33 is the Hamakcr constant for particle B and A22 is the Hamaker constant for the medium. Calculate the London van der Waals force between particle i and particle j using equations (38), (39), (40) and (41). If the distance between particle i and the collector is less than 8 units then Calculate the London van der Waals force between particle i and the collector. Calculate the dielectric constant of the medium using 1.B.5, the medium permittivity and the following equation: Dielectric Constant = (1.13.5) x (8.854187799 x 10'”. Use the zeta potential data from (1.E.2) and (1.E.3). Calculate the double layer repulsive force between particle i and par- ticle j using equations (35), (36) and (37). If the distance between particle i and the collector is less than 8 units then Calculate the double layer repulsive force between particle i and the collector. Calculate the total force acting on particle i due to particle j. 75711. = 1“} Van + 1"; DBL (49) Calculate the x and y force components on particle i: (50) . ”M- -2 36 where D is the distance between the particles. M (51) F - = F x r T71,- (D)ij y Else if the distance between particle i and particle j is equal to It + rj then Use the following elastic collision algorithm: For a perfectly elastic collision, the coefficient of restitution, e = 1. The magnitudes of the velocity are known from in and vyi. The . direction of the velocity may be obtained from xxi, xx“, xyi and xyi, 1. Define a vector, n, that is normal to the centers of the two particles. Define a tangent vector, t, that is perpendicular to n. Resolve the velocity into components along the t and n vectors.The impulse forces are directed along the vector n. The t components of velocity are unchanged after the collision. Use the following two equations to determine the new direction and magnitudes of the velocity after the collision [l6]: m;(V,')n+mj (Vj)n = m;(V,P)n+mj(VJP)n (52) (v5),- (vi), = e((v,-),,- (van) (53) Add the force due to gravity using equation (32). (Note that the force of gravity acts only on the y component.) ..‘I A 4 .8 F,.- = F,1-1— 1-3nr3(p2—p,)g) (54) where p2 is the particle density from (l.A.4) and p1 is the medium den- sity from (1.8.3). 37 Add the Hydrodynamic force obeying Stoke’s law using equation (33). A in = fixi—l ‘ (61t11r,‘71,-_1) (55) '11 II in yi ' (6“n’rl’yi- 1) (56) Use the Euler modified method to find the first three values of position and velocity. Ath x“. - xx, 1+At(vm_.1+——2m"") (57) Athy. xyi - xy,_ l+At(vy‘_ l+ 2m; y') (58) F v“ = v 1+At(;x ii) (59) v - +At(fl:) (60) yr vyi- l m dx _ (E)k,i - vxi (61) dy _ (2,7)“ — v,. (62) dvx in a ..- ' (‘7) ‘63) dv F . _J' = 1 dt )k,t' (mi) (64) where k =1, 2, 3. 38 Use the fourth order Adams - Bashforth method to find the new values of position and velocity for the remaining particles. {ti—1+; 4(.—55( (1:3) i-5.9(a—t dxz) i+3.7(2- (“)1 i.CT-09( dx)0 .') (65) xi- 1: - =1 yr yi— 1+2A4 _ dy dy dy (5.5(— f)“ 5‘9(H?)2,+37(d_t)1,’ 0'9(E)o,1) (66) V-=V 5.5 59 dv" 37 dv‘ 09 dv" 67 x; xi- 1+2—4( (d—v :3)’i— ' (a )2,i+ ° (E)l’i— ' (E )O’J') ( ) dv (IV '.::(55( :y) -5.9(—’) +3.7(—’) -0.9(— ‘9": ye 1+A_2.4 3,,- dr 2,,- dt 1,,- dt v50 ,) (68) Preserve the past three values of va and vyJ. Loop from k = 0 to 2 (dXIdt)k J = (dx/dt)k+1J (69) (dY/dt)k,i = (dY/dt)k+l,i (70) (dvx/dt)k J = (dvx/dt)k+1 J (71) (dvy/dt)k J = (dvy/dt)k+1 J (72) End the loop Set the new values (ax/down. (73) (dy/dt)3 J = vyi (74) (dvx/dt)3 J = (in/mi) (75) (dvy/dt)3J = (FyJ/mJ) (76) EndtheLoopfromi=1toN Output the new position and radius for the new state of the colloidal system. 39 Count the number of particles that have accumulated onto the collector. End the Loop for the number of states. Display the calculated states and display vital data to the display. The above algorithm provides the necessary instructions to visualize the colloidal system on a computer. The following chapter describes the implementation of the algorithm on a personal computer. t‘wA‘Wa “A”? an: lbw: 2!“ nor d»; nfi‘bo : r512; :cr ms of SR2§§Ci Tn DISP. The taminic Tr. muiator Union; IMPLEMENTATION The algorithm outlined in chapter three was implemented on an PC - clone type computer utilizing the Intel X86 series microprocessor chip. The program was written in Microsoft Quick Basic version 4.5 [17] and was linked with an additional graphics library [18]. Requirements for the program are only a color video graphics adapter (VGA) monitor and approximately 200 kilobytes of memory. The computer program is actually composed of three sub-programs. The first sub— pro gram is the human-machine interface consisting of several pop up menus. The pop up menus allow a user flexibility to change the initial values defined in step one of the algo- rithm outlined in chapter three. The second sub-program consists of the algorithm defined in step ten in chapter three. This program does all of the calculations to generate the new states of the colloidal system. The third sub-program provides the graphic display allowing scientific visualization to take place. The names of the three sub-programs are respectively, CSS, CSSRUN and CSS- DISP. The acronym CSS stands for colloidal suspension simulator. Figure 4.1 shows the communication links between the three sub-programs. The following discussion will provide instruction for using the colloidal suspension Simulator software. The floppy disk included with this thesis contains the following infor- mation: 1. BIN: This directory contains the executable files that run the soft- ware. The names of the files residing in this directory are: A. CSS.EXE B. CSSDISPEXE C. CSSRUNEXE 2. INCLUDE: This directory contains the include files that hold common 40 41 CSS Colloidal Suspension Simulator Menu Interface CSSRUN CSSDISP R al 1 ti Display and un c on a ons Animate A DATA FILE Figure 4.1 Communication links between the three sub - programs. This figure shows the direction of flow between the CSS, CSSRUN and CSSDISP sub - programs. 42 information and initialization parameters that are needed to run the software. The names of the files residing in this direc- tory are: A. CSSCOM.INC B. CSSINITJNC C. MENUPARJN C 3. SOURCE: This directory contains all of the binary computer source code for use with a Quick Basic compiler. The names of the files residing in this directory are: A. CSS.BAS B. CSSDISP.BAS C. CSSRUN.BAS 4. TXT: This directory contains all of the human-readable, ASCII computer source code listings of the software. The names of the files residing in this directory are: A. CSS.TXT B. CSSDISP.TXT C. CSSRUN.TXT The files necessary to run the software reside in the BIN directory. To install the software on a computer, the three executable files need to be copied from the BIN directory to a directory on the computer’s hard drive. To run the software, enter the command CSS. A menu will appear entitled, “Colloi- dal Suspension Simulator” with a second menu entitled, “Main Menu”. To select any of the options listed in the main menu, the high-lighted letter or number need only be pressed. By 43 pressing the letter “H”, for example, the help menu for the main menu will appear. The main menu allows for the choice of a simulation type, to save or load a config- uration and to display a previously calculated simulation. The first simulation involves the interactions between two types of particles, i. e., between particles of type A and particles of type B. The second simulation type involves the interaction between one type of particle and a fiber. A configuration is the set of current values that describe information about the par- ticles, the suspension medium, the fiber, the electrolyte, the surface parameters and the choice of a dynamic model. When the program is run for the first time, a default configura- tion is loaded. The default configuration is shown in table 4.1. Once a simulation type is specified by pressing “l” or “2” at the main menu, a menu entitled either, “Particle A - Particle B” or “Particle A - Fiber” will be displayed. This menu will be referred to as the simulation menu here after. In either case, the selections for the simulation menu allow for the modification of material parameters, the modification of sur- face parameters, the choice of a dynamic model and a gateway for running the CSSRUN sub-program. By pressing “2” at the simulation menu, the “Surface Parameter” menu will appear. This menu allows the pH of the medium to be changed and allows for the input of the zeta potential data for each particle or fiber. By pressing “3” at the simulation menu, the “Dynamic Model” menu will appear. The three possible model types to run are named, DLVO Theory Model, The Acid/Base Model and the Random Model. Only the DLVO model is implemented at this time. The DLVO Theory Model uses the theory stating that the stability of a colloidal suspension is based on the sum of the electrostatic repulsions due to the overlap of electrical double lay- ers plus the attractive potential due to the London - van der Waals forces. By pressing “4” at the “Dynamic Model” menu, the time increment can be modi- fied. The time increment specifies the time interval between the calculations of each state ...__.._ Table 4.1 E . l I E . Common Name Chemical Name Shape Density Average Initial Velocity Mean Diameter Diameter Standard Deviation Number of Particles Hamakcr Constant E] I E . Common Name Chemical Name Shape Density Diameter Hamakcr Constant Wanna Conunon Name Chemical Name Density Viscosity Hamakcr Constant Permeability Temperature 1 Inf ' n Common Name Chemical Name Concentration WW pH Level Zeta Potential, particle A Zeta Potential, particle B Zeta Potential, Fiber Time Increment Dynamic Model 44 MM Iron Aluminum FeAl Spherical 5.56 gm/cm3 30.0 urn/sec 1.0 pm 0.001 5 3.08E-19 Joules Elm: Alumina A1203 Cylindrical 3.97 gm/cm3 25.0 um 1.54E-19 Joules Mgfiigm Deionized Water H20 1.0 gm/cm3 0.01 gm/(cm sec) 4.35E-20 Joules 78.54 25.0 Degrees Celsius mm Potassium Nitrate KNO3 0.0001 Normality W 8.0 5.0 18.00 18.00 0.0000001 sec DLVO Default parameters used to initiate the CSS software. Baniszlifi Alumina A1203 Spherical 3.97 gm/cm3 30.0 tun/sec 0.9 pm 0.001 5 1.54E-19 Joules o. vfivl" 3. ,;..t.. l. a . AG: -156" p. n... "J i-fiuv SI 1 R 1""\ {title In. :1 ‘-~‘ 36 . ML; 3?: goal-aka».qu 3: ”Jill 3p; 45 of the system. Returning to the simulation menu and pressing “1” results in the “Material Param- eters” menu to be displayed. The “Material Parameters” menu allows for the modification of information for particle A, for particle B, for the fiber, for the suspension medium and for the electrolyte. By pressing “1” at the “Material Parameters” menu, the “Particle Information” menu appears. The following particle information may be modified: Common Name Chemical Name Shape Maximum Diameter Mean Diameter Diameter Standard Deviation Density Number of Particles Hamaker Constant pwflgwéwww If the “Particle A - Fiber” simulation was chosen, then pressing “2” at the “Material Parameters” menu causes the “Fiber Information” menu to appear. The following fiber data may be modified: Common Name Chemical Name Shape Diameter Density Hamakcr Constant QMPPNP By pressing “3” at the “Material Parameters” menu, the “Medium Information” menu appears. The following medium data may be modified: Common Name Chemical Name Density Viscosity Hamakcr Constant Permeability Temperature oawewwr By pressing “4” at the “Material Parameters” menu, the “Electrolyte Information” menu appears. The following electrolyte data may be modified: _ _.-——-.~._-._-. - -—'—_.- MW-.. ..__ 1))!J>r—‘ ....... v m 2 46 1. Common Name 2. Chemical Name 3. Concentration Returning to the simulation menu and pressing “R”, the “Run Model” menu will appear. An information box will appear at the bottom of the screen and will state: “Enter the Output File Name (with no extension): The requested file name will be used to write out the x and y positions of the colloidal particles at each time frame. The user may press enter without typing a file name and will be prompted with “Do You “fish to Quit [N]?”. Upon entering a valid output file name at the initial prompt, a second prompt will appear stating: “Enter the Number of Frames to be Calculatedz”. The number of frames to be cal- culated correspond to the number of states of the system that will be animated with the CSSDISP sub program. Once a valid number of frames to be calculated has been entered, the CSSRUN sub program will perform the calculations to generate each frame. Status messages will be dis- played to the screen to allow the user to keep track of how the calculations are progressing. Upon successful completion of the sub program, the user will be asked to press “C” to con- tinue. The file containing the newly calculated data MUST be written down and remem- bered at this point. The name of the data file will be used later in the display sub program The main menu will reappear. By pressing “D” at the main menu, the “Display Model” menu will appear. A prompt at the bottom of the screen will appear stating, “Enter the Input File Name (with no extension):”. The user may quit from this menu by pressing enter without entering a file name. The input file name that the software is looking for is the name of a file that was created by the CS SRUN sub program. If a valid file name is entered, the “Colloidal Suspension Simulator” display menu will appear. The right column of the screen displays the choice of dynamic model, the pH level of the medium, the zeta poten- tials of each material, the Debye length, the concentration, the time increment between each frame and the current frame number. By pressing any key, the simulation will begin. The simulation can be paused by wifi“? pan“. 1 'EO‘V 1...») ’3 ' il's- - 4" "'5‘ ya. “4‘ - ‘K'V w._bk 47 pressing the “enter” key or stopped entirely by pressing any other key. The up and down “arrow” keys adjust the replay speed of the simulation, level 20 being the fastest speed and level 0 being the slowest speed. The simulation may be replayed again and again by press- ing the space bar. Simulations that have been run previously may be viewed again by choosing the desired file at the “Display Model” menu. RESULTS / DISCUSSION The algorithm derived in chapter three requires some empirical data, namely, the zeta potential data. The colloidal suspension software requires the user to input the pH of the medium and the corresponding zeta potentials of each particle or fiber. Zeta potential ‘ data was obtained for the interrnetallic, Fe-40Al, particles and for two types of Alumina, A1203 - PP and A1203 PRD-166. The data was obtained at E. I. DuPont in \Vrlmington, Delaware under the supervision of Dr. Rulon Johnson and Mr. Jerry Hughes. The zeta potentials were measured using the acoustophoresis technique on an electrokinetic sonic amplitude (BSA) device engineered by Matec Inc. The data obtained from the Matec 8000 is displayed in Figure 5.1, in Figure 5.2 and in Figure 5.3. The zeta data for the A1203 fiber obtained at Dupont, however, does not agree with the known zeta potential data for Alu- mina. The inconsistency with the A1203 fiber was most likely attributed to the large, dis- . continuous fiber sizes that were not entirely eliminated by the grinding process that was } used. The zeta potential data shown in Figure 5.4 and in Figure 5.5 were performed with greater accuracy using a Matec 8000 by Brett \Vrlson [19]. The primary equations that determine the stability of the colloidal suspension according to the DLVO theory were found in the literature and were presented in chapter two by equations (19) and (28). The corresponding equations for the repulsive force, equa- tions (35) through (37), and the attractive force, equations (38) through (41), were derived from the equations given in the literature. The algorithm described in chapter three was based on the general method for solv- ing a many body system. The algorithm was tailored and customized for the explicit intent of solving the many body problem for a colloidal suspension system. The implementation of the algorithm in the form of the colloidal suspension simu— lator (CS S) software was the intended result of this thesis. The software in its delivered form provides a flexible tool for understanding colloidal suspensions. The CSS software 48 — Accumulated Mass onto the Fiber Time Figure 7.1 Depiction of accumulated mass. This figure shows an example of data that could be calculated using the colloidal SUSpension simulator. LIST OF REFERENCES . Crimp, M. A. and Crimp, M.J., REF Proposal, July 1990, “Fiber Electrophoretic Dep- osition Processing of FeAl/A1203 Interrnetallic Matrix Composite”. . Heimenz, WW Marcel Dekkcr. New York, 2“dedition,1986. . Ross, Sydney and Morrison, Ian Douglas, W, John Wiley and Sons, New York, 1988. . Everett, D. H., W, Royal Society of Chemistry, Lon- don,1988. . Wiese, G. R. and Healy, T. W., Transactions of the Faraday Society, 1970, 66, 490 - 499, “Efiect of Particle Size on Colloid Stability”. . Hinzcl. C. S. and Rajagopalan. Raj. CollmdaljhenmmAdxancedlonms Noyes Publications, New Jersey, 1985. . Mahanty, J. and Ninham, B. W., W, Academic Press, Inc., London, 1976. . Mysels, Karol 1., W Robert E. Krieger Publishing Company, Huntington, New York, 1978. . Shaw. Duncan 1.. WW Buttcrworths. Lon- don, 1966. 10. Derjaguin, B. V., Discussions of the Faraday Society,Vol. 18, 85 - 98, 1954, “A Theory of the Hetercoagulation, Interaction and Adhesion of Dissirrrilar Particles in Solutions of Electrolytes.” 11. Hogg, R., Healy, T. w. and Fuerstenau, D. W., Transactions of the Faraday Society, 62, 1638, 1966, “Mutual Coagulation of Colloidal Dispersions”. 12. Bell, G. M., Levine, S. and McCartney, L N., Journal of Colloid and Interface Science, Vol. 33, No. 3, 335 - 359, July 1970, “Approximate Methods of Determining the Double - Layer Free Energy of Interaction Between Two Charged Colloidal Spheres”. 13. Bell, G.M. and Peterson, G. C., Journal of Colloid and Interface Science, Vol. 41, No. 3. 342 - 366, December 1972, “Calculation of the Electric Double - Layer Between Unlike Spheres”. 63 64 14. Mahanty, J. and Ninham, B. W., Disfigign Fgmes, Academic Press, Inc., London, 1976. 15. Hamakcr, H. C., Physica 4, 1058 - 1072, 1937, “The London - van der Waals Attraction Between Spherical Particles”. 16. Beer, Ferdinand P. and Johnston, E. Russel, Vggtgr Mmhgigs for; Engineers; Dynam- ics, McGraw-Hill Book Company, Ney York, 1988. 17. Hammerly, Wayne M. and Hanlin III, Thomas G., ADVAS Proramnring Library, Share- ware, 1988. 18. Microsoft Corporation, QuickBASIC 4.50, 1985-1988. 19. Wilson, Brett, Masters Thesis, “Prediction of Colloidal Suspension Stability for SiC/ Si3N4 and FeAl/A1203 Fiber Systems Using Material and System Parameters”,Michi- gan State University, 1992. GENERAL REFERENCES . Heimcnz. WW Marcel Dckkcr. New York. 2“dedition,1986. . Crimp, M. A. and Crimp, M.J., REF Proposal, July 1990, “Fiber Electrophoretic Dep- osition Processing of FeAl/Ale3 Interrnetallic Matrix Composite”. . Hamakcr, H. C., Physica 4, 1058 - 1072, 1937, “The London - van der Waals Attraction Between Spherical Particles”. . Hogg, R., Healy, T. w. and Fuerstenau, D. W., Transactions of the Faraday Society, 62, 1638, 1966, “Mutual Coagulation of Colloidal Dispersions”. . Bierman, Arthur, Journal of Colloid and Interface Science, 10, 231 - 245, 1955, “Elec- trostatic Forces Between Nonidentical Colloidal Particles”. . Barouch, Eytan, Matijevic, Egon, Ring, Terry A. and Finlan, J. Michael, Journal of Col- loid and Interface Science, Vol. II, No. 1, October 1978, “Hetercoagulation II. Interac- tion Energy of Two Unequal Spheres”. . Bell, G. M., Levine, S. and McCartney, L N., Journal of Colloid and Interface Science, Vol. 33, No. 3, 335 - 359, July 1970, “Approximate Methods of Determining the Double - Layer Free Energy of Interaction Between Two Charged Colloidal Spheres”. . Bell, G.M. and Peterson, G. C., Journal of Colloid and Interface Science, Vol. 41, No. 3, 342 - 366, December 1972, “Calculation of the Electric Double - Layer Between Unlike Spheres”. . Schenkel, J. K. and Kitchener, Transactions of the Faraday Society, September 1959, 161 - 173, “A Test of the Derjaguin — Landau - Verwey - Overbeek theory with a C01- loidal Suspension”. 10. Hall, Simon Bemers, Duffield, John Ralph and Williams, David Raymond, Journal of Colloid and Interface Science, Vol. 143, No. 2, 416 - 422, May 1991, “A Stochastic Computer Simulation of Emulsion Coalescence”. ll. Derjaguin, B. V., Discussions of the Faraday Society,Vol. 18, 85 - 98, 1954, “A Theory of the Hetercoagulation, Interaction and Adhesion of Dissimilar Particles in Solutions of Electrolytes.” 12. Wiese, G. R. and Healy, T. w., Transactions of the Faraday Society, 1970, 66, 490 - 499. “Effect of Particle Size on Colloid Stability”. 65 66 13. Matijevic, Egon, Pure and Appl. Chem, Vol. 53, 2167 - 2179, “Interactions in Mixed Colloidal Systems (Hetercoagulation, Adhesion, Microflotation)”. 14. Tamura, Hiroki, Matijevic, Egon and Meites, Louis, Journal of Colloid and Interface Science, Vol. 92, No. 2, 303- 314, April 1983, “Adsorption of Co 2* Ions on Spherical Magnetite Particles” 15. Rajagopalan and Chu, Richard Q., Journal of Colloid and Interface Science, Vol. 86, No. 2, 299 - 317, April 1982, “Dynamics of Adsorption of Colloidal Particles in Packed Beds”. 16. Derjaguin, V. M., Muller and Toporov, Yu. B, Journal of Colloid and Interface Science, Vol. 53, No. 2, 314 - 326, November 1975, “Effect of Contact Deformations on the Adhesion of Particles”. 17. Kar, G, Chander, S. and Mika, T. 8., Journal of Colloid and Interface Science, Vol. 44, No. 2, August 197 3, 347 - 355, “The Potential Energy of Interaction Between Dissim- ilar Electrical Double Layers”. 18. Visser, J ., Advan. Colloid Interface Sci., 3, 331 - 363, 1972, “On Hamaker Constants: A comparison Between Hamakcr Constants and Lifshitz - van der Waals Constants”. 19. Verwey. E. J. W., Overbeek. J. T. G.. W. Elsevier, Amsterdam, 1948. 20. Derjaguin, B. V., Landau, L. D., Acta Physichim, URSS, 14, 633, 1941. 21. Ross, Sydney and Morrison, Ian Douglas, W5, John Wiley and Sons, New York, 1988. 22. Russel, VVrlliam B., W, The University of Wisconsin Press, 1987. 23. Vold, Robert and Vold, Marjorie J., W Addison - Wesley Publishing Company, Inc., Reading, Massachusetts, 1983. 24. Mysels. Karol 1.. mmmmmmunamim Robert E. Kricgcr Publishing Company, Huntington, New York, 197 8. 25. ShaW. Duncan J., Wmmmmmmmm ButtcrworthS. Lon- don. 1966. 26. Edited by Kerker, Milton, Zettlemoyer, Albert C. and Rowell, Robert L., W A,cademic Press Inc, London, 1988. 67 27. Everett, D. H., W, Royal Society of Chemistry, Lon- don,1988. 28. Lynch, C. T. and Kershaw, J. P., W, CRC Press, The Chenrical Rubber Co., Cleveland, Ohio, 1988. 29. Mahanty, J. and Ninham, B. W., W, Academic Press, Inc., London, 1976. 30. Marciniak. Andrzej. W. D. Reidel Publish- ing Company, Dordrecht, Holland, 1985. 31. Becher. Paul. W Marcel Dekker. Inc., New York, 1990. 32. Hirtzel. C. S. and RajagOPalan. Raj. ColloidaLEhenomenaaAdxancedenics. Noyes Publications, New Jersey, 1985. 33. Crimp, Melissa J ., Masters Thesis, Case Western Reserve University, 1985, “Colloidal Characterization of Silicon Carbide and Silican Nitride”. 34. me CRC Press. Inc., Flor- ida, 1989. 35. Mattuck. Richard. D.. AW McGraw - Hill Book Company, London, 1967. APPENDIX A CSS PROGRAM LISTINGS APPENDIX A CSS PROGRAM LISTINGS c 8.5222 53 .53qu c 22 92 5.565 c 8mg: ea 52.65 o 955 E2 mgomo o <22... 5m 5565 o 255.2 mam mgoma c S525sz mam mgumn o 535825 82 manna c 52225 5.». mgumn c 22.25 58 2.205 c 255225 58 24.55 9 5125225 5m 2365 o 122E225 5m $2.55 o =5<2am5 man 5255 o 222.25 5.» 3565 c 52525 53 52.55 c <5<2m5 5.... 5.505 c 55.2255 52 5255 c 58525 85 52.55 Samoémmé 55.25 5m 52.55 c 55.5525 58 52.55 0 45022525 55 mgumo 882.255 55:25 82 52.55 c 55822...qu .5” 52.55 35:22.. a... 8:85 . Saz . ”.83: Ease. . «a. .4" Fe... "35 . 8322 H 5....— ..553. . .8335. . a... s . .8288 was 2. £8... a 5:353 2.. . 800:8 25:8 55. .8325. coma-onus. . waésaaéoéaesaaoeaafiaaifind. 9:38 33.2 «E . $0 ”25.: 332a . N-< F250 68 69 “.2508 an... .850 5:3 .5.“ moo—.0 H 02m 30 son—m :o 823. o .m— x0400 o memom H..52m2 83:52 333 a... 5.x . A2372~82~<2Pm0 4.20 5:2: £2: 05 S 59: 05 mm»: 93 E33. . 22255—9 30 5:2: :2 95 239.25 H oumZOQ on E 02m .02—H—ZBm0. ”mad—6w. uni—m "29(ng int—<0 zmmh. _ H 20.57: "a 59mg tut—<0 0 5:53. 3.. same... 2.. 8532 2.3.298. 9386. § 8. Smofimez gm 25 a2 2. 3% gm 25 825285 8.8 .555 zo 079200me. ”met—023. 0 5.5.8th man 524qu o 3.9.322 5m 35 9 £5ng 53 52305 c 5055a 52 5505 o §<5m>0mm~0 “0:82 .5:on . 4m002z>0mm~0 55 5% 02m A$m00 u obx00 u $50k z: u 3mg on u $400M VN n $30mm “a u 9530““. v n .3400..— Z<>0 .E M0400 .02—dm¥2~ a; @004 00 ...oscucoo 2 >3 >5 88m - 358° 3: Sum =< : Ema— : : EMA .. : Ema— : 3 P755 .. .. #753 N— meMUm c nggw "Bic—mug 71 40639420 mam 5% 02m ..A0mmv: P233 2 + 2400 K + 30m @7004 :2: H.253 o - 2400 4. + 30m @5004 Opaque “Dz—mm 2400 .n + 30x mh<004 ...m: 235 2400 .v + 30m @5004 ...N: 2.255 2400 .m + 30x B<004 :4: .4253 2400 .N + 30x 95.004 2<>0 .3044m; ~40400 ..anm 0.4. A0mmv: p.235 4 + 2400 K + 30x P5004 .. 98.. 8.2::— a - 2.50 s + Boa 8.53 :63: .4253 an + 2400 .n + 30x mk<004 ..35534 25L. .m: 253 2400 .n + 30x B<004 L382 Sci—am .n: H233 2400 .v + 30m @5004 ...302 vane—23‘ .N: P253 2400 .m + 30% 95.004 .8082 52:. 059 ..., 28 238 .N + Boa 8.63 2<>0 .E «0400 .8282 . .028 9 .322 05 .85.. .28 2 - 2.80 .33 8.53 2<>0 .3044m> M0400 mm H 2400 v u 30¢ A§m0»0024>»mv4<2 44(0 502m «ugh. ma mug ZENH4>402m2n= 2 n 5218 c u $98 55 u 80% 8.83 n .3me .382 .022 2.595.. n 382.. no u 303 : u 2.26% m a $308. a u 303 72 :2: 0.2—Mm h + 2400 .o + 30M “5.004 ...m: 0.2—Mm 2400 .v + 30M 0.5.004 ...N: 0.2—Mm 2400 .m + 30M 0.5004 :4: 0.2—Mm 2400 .N + 30M 0.0.4.004 H4204: M0400 ..EBoM oh A0mmv: 0.255 2 + 2400 .c + 30M 0.5004 .. so? .52: n + 250 .0 + 33 E53 .3252: 0.2.8 on + 250 .v + 33 8.53 .. u=52§§50 .3. 0.25.. 250 .v + 33 8.50.. .. ”252 52820 .N: 02354 2400 .m + 30M mF<004 .. "0:52 .58:50 4.. 0.2—Mm 2400 .N + 30M 0.54004 0040 .00.; M0400 .8032 B s .508 2.. 0a .352 2.. 32.2.. 0.2:: 2400 .30M mk<004 004m .30440> M0400 mm H 2400 nu 30M $0002— .§M04DZm2n= _ H 3.2252 c n 3008 80.5 n .555 8.83 u 0.85..— ..ao2 85:53 8.2.8.0.. u 303 2. u 3.53 : u @330 e u 339: a u 303 30% u 0.40.404: .020.M¢MDZN2. u0034020”. o 802 . ”39.8 835. . 82 .803. "35 . 5:23— ..r 58 .352 . "canteen . 580385 H.222 532.. . 73 o 252 . ”.085.— coE>oM . NS. .803. .35 . acminoM 0. 55a— ..55=< . 80452030 . 0.8.2.25 Benz 5.82... Mmammm40 mDm N-< .02th0 mam 020 o . d meM0m .... n 98.5 353 .53 on 2.5.80 o. 30. >2 .8. 0.25.. 85.. .853 550 a .8 B53 2 582 2225582 0.25.. M. .N + 2 8.53 a. 8. . u 2 .5". 03m .3348» 5.50 3000‘..— .§M00 g3 M0400 N . .o meMUm .020.M=m: EZEA a + 2400 .e + 30% B400..— .. ".0255 .n: EZRA 2‘50 .0 + 30x mE £0400 mm" 2400 nflBOm Aome»Omm ..WAAOUA ..WABOME ..WAAOUAVBOQZAzrg 30 EQZm mug mam mug ZmAAEmugADZmSA— _ u fig 0 u $m0»OQZ~>»mv—U ME; 1800 N . .o ngm .UZA.~_0 SEE £0400 o me¢0m .50de u EEO—m 2490 u ~0200om . N8. .223. .25 . 8.2.3. H .2... 22.3. . .222: £28 05 mas—Am... 052.95.... 22E 2.2.9.890 . 22.2.2.5 .252 5.2.... . Z~E 65ng 64mm??— 6630mm ..RDOUA 2830M; ..8400403002A3g 420 c u E A u $822 o n mam—01E Z<>0 u $v~00 .853 M300 .07:d0 .E «0400 ..cououfim 5:5: P255 m + 2400 .30m P2004 Z<>0 .3044m> x0400 hu2400 mu30m A$m00 .mPEB "—0400 ..coaofiow .854: F234..— m + .2400 .30m P5004 Z<>0 .3044m; mO400 3 n 2400 v u 30% A$m04DZmEE 4 u 882435 c n $m00 n «Satay E n .8540...— ...a2 a......._.__:_... 3.22.. n Sun... S n .8400x 2 u $30Mm m n 4530”: w— n @4004 304E u H4304: c 2mmm0m 02445528.... Nmun—D4025. 0:02 . is... 8.35. . «a. .222. .35 . cause. ... 58.. .353. . "cannaoo H 3582.25 u25.2 552.. . :Smmgéa ma. 43m 02m 79 3300 .N + 30x mh MSOU RHEOU nHBOx A§m0 ~0400 mm H 2400 n u 30m £09034 03—043 .8548 .§ 602% .Smmj .o030mm 4.048% £03019 50400403002522 44<0 EQZm .22.: mam mug ngu4>402m2n= 84 ..00000_0m 000:0: 0.22.— m + 2400 .30m mb<004 m34m .3044m> «0400 m— H 2400 5 "30M $3.003— .§M04DZm=2 n: 4 n 00% o n $m0 .I. H5044..— o zmmm0m .UZ~.M4bzm2n44 4 u .44.; o u §m00 u $040445 “4.4.44.4? u $940K .35: .3255 8&3? u Smmfi 64. u $4001 04 n $30~4m m u A440240.444. w4 u $4004 3044m> u 4.44.4034 .024.~4Q mam mam 02m ..Amev: 4.24.444 54 + 42400 .e + 30x P5004 :44: ..4.Z4~4A4 4. + 42400 .0 + 30x m4.4.<004 ODOMOO EH“; 2400 .v + 30% m.4.<004 ...N: 4.25:4 2400 .m + 30x P424004 ... 4.. HZ4~4A4 2400 .N + 3044 m.4.<004 b.0405 ”40400 ...—.4834 0.4. A0mmv: 4.22.4 4.4 + 2400 .0 + 3044 @5004 .. 20:: 0.205 258.239.44.284 n44n42m ..>oE.. .4253 N0 + 42400 .4. + 30x E<004 .. "0244.4 05 .40 43:30.4 80N .44.. 2444.4 2400 .v + 30x W4.<004 29.4.4. N n 004404085 Ema ..>oE: 4.2443 N4. + 42400 .0 + 3044 m.4.<004 .. Hm 04040.54 40 4044:0494 80N .44.. 4.24444 2400 .v + 30x ”4.424004 25.4.4. 4 n 004404055 ....44 .524... 4.2445 N0 + 42400 .m + 30% E<004 .. H< 04044.54 .40 33:80.4 80N .N: 4.2443 2400 .m + 30x m.4.<004 .. "538: 2.. 0o :0 .r. 0.2:... 2.50 .N + 39. E53 Z<>0 4.4.44.4? 440400 :38: B s .526 2.. .o .3252 2.. .85. 0.22.4 2000 .302 E300 Z<>0 .3044m> x0400 04 "2400 vu30M Gauges ..8v404DZmE n44 .000 4040042 004 0002 004.00.004.44 04044.54 05 404.405 . 00 oumZOQ 0002 H "b80444 00400234 . N8. .203. .25. 8253. .... .20.. 22.3. . "00400400000 . 504.5544 .282 .5324. 4044.4.0mw4m mam 4445 02m 4 u szQ 44.4.23 54004 "44 02m 4 u NZOQ 0008 00030.5 05 S 53044 . 28.4.4. o u $.50 "44 4§0¥4m0022>em0 444.0 .0002 00440000404 040454 05 8 40.404 05 @409, 405 4.4000< . ...44 02m 4m00422>0n4m40 44<0 43435540 4444.0 2432420 4446 mw4m 4mn4022>n444m4n4 44<0 2844. N u 4>4DZM442 n44 .25 .252 a. 2.22 82.5.8... 22.20 2.. 3&5 . 00 oumZOQ v ll“; . ocoz 00804: 00404.5“ . - -<-§-.-.-,<-\¢.-.l.- - -<.- ~ 1. ...~z~x~ 88 0:02 . ”b90444 00404544 . N8. .222 .25 . 2005.434 ..4. 00.0.4 ”005.2 . "004.04.00.00 . 0000222050 H2....2 same... . 30.4.2404 4m40022>em0 mam N-< H250 443m 92m 4 n ”.4200 44.4.75 .4004 "44 02m 4 u mZOQ 0000.. 2.03000 05 0. 50¢ . 24444.4. 0 u E0 ...44 4.440.42404mmm4n4hm0 44<0 .0002 0000000424 0.00.0.4 0.4. 0. .2404 0.4. 24400.. 405 240004.. . Balm ......Ema 4.20 .ggmmfi 1:20 4345.540 4440 2764.540 44<0 mm4m Mmfimmflfl 44<0 29.: m u 4>4DZm42 .44 2.0 .08: .... 2.22 8.253.... .3... 2.. 22.2.0 H 0A4 oumZOQ .32 H 2.9.... 8.25. . «a. .30.... .25 . cacao... .... 3.0.. H22...... 22.2.3.0 H «mm... “25.2 5.02.. . “we mam N-< 02mmmn4 gm 02m 7428444244484 .2020 7028 -“-":'- P I-‘Iic 89 .... u ”00,0000 00 .... u 950.4200. 0000024090 44<0 o n 0523 2040.4. :4... u ”00404.40 “44030 .. A: 00.00409. 0.2400 S4400 .N + 300 0.43.004 2<>0 0.4020000 00400 .0 All Bau~umoo 2““ $4400 .4 + 300 mh<004 Z<>0 .N02000n4 00400 .. A: 00.00409. 02400 42400 .300 m.4.<004 2<>0 4020000 00400 ”44 020 m u 40422>0 30440> n 4020000 2040.4. ..m: n «0040440 "44030 N u 4022>0 334% n N02000n4 2040.4. ..N: u 340404.40 .0030 4 u 40422>0 30440> n 4020094 2044.4. ..4: u «00404.40 "44 2<>0 n 4020000 2<>0 u N02000n4 2<>0 n 4020000 9 u 94.05 2040.4. ..m: n “00404.40 00 ..N: u ”00404.40 00 ..4: n «00404.40 "44 9.8.2. u 80.020 00 .. A: 40800409. 0.2400 2400 .N + 300 0.42.004 2<>0 $020000 00400 .. A: 00.00409. 0240.4 2400 .4 + 300 0.42.004 2<>0 32000.0 00400 .. A: 00.00409. 0.2400 2400 .300 0.424004 2<>0 4020000 00400 "44 020 3044a n 4020000 2040.4. m u 4022>0 "44030 30% u N02000n4 2040.4. N n 4022>0 "44030 30% n 4020000 2040.4. 4 u 40422>0 m4 2<>0 u 44020000 2<>0 u N02000n4 2<>0 u 402008 55000.4. ”234.33.44.43: 02494 0.2400. 6:40.02. n..<<004040 44<0 2mm... :2. n 4805288303 Emflm 4 u 028 o u 5.8 ”9.8m. sz. 45226 n 3685 "mm—Sm 000002—0640 44<0 82425.0. u..tiiazazzr. 0250 0.2000 . 8:40.20. u..<<<<§.g4~.44.@4? 0250 0.2000 Z<>0 450440? 00400 Nm + 2400 .m + 300 0.5004 4 n 044<> 40.20 0004 E 020 4 u 0—4<> 030 ”44 020 38.8 B. o :82». .35.. we a 2 =5... 2:? 228.2 256 .3348» 238 2 .2 8203 mfim 4 u 9.25 awn—mam n .8425... 2.25 828 uv amnion 92¢. o A immune a Gum—Eamzs» u Emu—mam 28¢ .... 0 “En a «Em u 95.4.:sz ”mm—"Eon .... u .522. o... .8 8.50.. 256 .853 238 #5223 e242.— z<>o .z<>o 238 ...... .mm ”.563 .. 5. asap. 2.2:: a .fi MEGS 2<>u .mp5; 238 have: vi; 9%: 2.2:: . 552:0. u..§.§: 0235 EA ... . 0.55 052... g 8 ..N 8.50.. z<>u £3.45 «38 N l .Sasz 91 2000000 n 00800400590340 200.0. 44 uv 4000000 0Z< o A 4000000 "0 30000000413 u 000.000 28.... .... O “28...... ... 28...... u 08.2.28. 28...... ...... 5.2. on .NN 82.00.. 256 8.23 «0400 0.52.38. 2,5... 256 .256 20000 on .2 .500. .. a. «9.20.. 32.2.. a .NN 08.00.. 2.36 8.23 2300 :83... 3.5.52”. .....§§§ 02.3 .20... ”..NGOfinhCUOGOU: EMA 8 ..N 08.00,. 2<6 .3038. 20000 .... n 28.5.. 00 .... u £00.38. 202002.220 ....5 o u 0...<> 2mm... ...: u 80.020 .53.. 000002004040 44<0 0.5282404824950040 0.7000 0040 .30440> 00400 n + 2400 .4 + 300 0.0084 ”00.0000 u 25.28240. 40.42.42.840 204.0. .... Av «000.000 "0 “000.000 ...: . 0.0024 mm .NN 0.5.004 .. .8 09.240: 0.2400 NN .NN 0.5004 2490 .0000? 00400 25.28240. 40024050040 02 .252 433.240.. 0.2400 .. ..N $.84 256 .33....» 20400 .... u «00.0030 000002—2340 44<0 2000. ..N: n ”0040000 040040 200023.... ....<0 2525.0. 3.52.85 .20... 85.. .3058. 2300 N + 2.50 .30.. 860.. 38...... u 05250285982... 28: .... O «28...... .... ”2820.. ..... . ......z. 2<6 .3038. 2300 .n .NN 8.50.. .. .9 0936.. .20... 2.06 8....3 «0000 8 .NN .503 00.025004005004005 "3 .0032 0054.000: 0.2—0n— 2<6 30......» 2300 ... ..N “.5004 .... u ”28...... 2000.92.50 ....<0 2...... ...: u 80.020 ... “>007: n ”0000000 00 50200485050040 ...§.;. 02490 0.2400 n + 34400 .N + 300 0.2004 05282404020030 0.2400 v + 2400 .4 + 300 0.5004 0.5250040024050040 0.2000 N + 42400 .300 002004 8.3 .3040» «38 8.4300 $.39. 92 0.25.055... .....3333. 02.00 .20... m - .2000 ... + 300 0.200.. 5.055.005.0000 n.03.“...3: 02000 0.200 N - 2400 .m + 300 00.<004 03.0.8530... 0.2.0.. v - .2000 .0 + 300 0.200.. 0.2028000600000000 02—00 v + 2400 4 + 300 00.<004 0802500600130 0200 N + 02400 .300 00.4004 040 .3044m; 00400 own 2400 00300 ou...00 ou0200 ou§..0 0232002002. H0004020». 2.02 H “0.5.00.0 003.60 . «8. .803. .30. 0005000 .0. .800 ".053... . .5353 H 000......00 H......2 502.. . $00000 0000.00.00 00m N-< 02900 000 020 0.020 020 30 205 . ".000... . n 0200 ....20 ..000 ... 020 o . .0 20000... 006000000... ....<0 205 ...... u 00.000.009.00 0.00.... . n 0200 c u 0.....0 2.8.0. 20.... .5200 u 000.000 0.0000 000002005 4:70 :00000. 0000002030 u..tiaiéé: 02000 0.2000 0040 0,0440% 00400 n + 2400 .N + 300 00.<004 .u004<>400.200004 "0020 .un04<> 0040 00020 ...... ...: 0 :82... .38.... .8. . ... 0...... 0...? 02.0.. 2<6 300...... 00.00 0. .8 0.50.. 030 . u 0...<> 93 2<6 .EEB 238 ”582,": 22.. 2<6 .z<6 2306 an .2 ”.563 .. ”2 0936.. :5: a [a 9503 2<6 MES: «38 2305525222 ”ii? 02%: ~25: ”: “53:35: 2mm «N .a 8.53 z<6 .3039 «38 on .... n #5228 o u 9.?» 28822.55 .35 28: ..y. u «656 53m 288225 4.26 answesfim 92:3 mam .3348. 2306 v - .58 .N + 262 353 gunman u ages—Em 28:. .... 0 gunman a 2E3 ..... u 5%: a .NN MEGS : “2 09:25.. 92:5 8 Nu MEGS 2S6 .82; 238 answesgm 2.. 5&5: 2.253 a ..N @263 2<6 .3058, 238 .... u mam—EB 2802255 4.26 28¢. ..m: n ”8530 Emmanu— XOmBZ—gqu 4.20 «SZEEUdEBE BEE 3.5 .3045» «38 v + .58 ._ + 302 E<§ 2933 u o§ze£o.o§anm 2B; .... 0 ”gm "2 2E3 ...: u 5.2. a .NN ”.563 .. a. 0:26.. .25: a .NN MESS 2<6 ..HEmB 238 9525268532 2.. "832 3526.. 92:5 2 ..N 353 2<6 .3ch 238 .... u ”Em 2892an .35 sz. :N: u «930:0 Emmy—m 2028536 .55 25258633E 2.2:... man .3058, 238 N + 2.56 .302 ”.563 2952 .... «525.66.853.32 2% .... .0 39532 5 ”En ..... n .5222 2&6 .3348, 238 E .NN 8.50.. .. a. $56.. 2.222 236 .865 238 8 .NN “.563 ocaonUdEEE 2.. H2....2 885061.222 256 §o§ 238 a .a 8203 .... u ”mun—mam 682822.85 .35 28:. ..r. n 8296 "a n>mMZ~ n «NU—OED OD .. z u ”£25m §§§E§E ....ii. czg 2E 358 .niommhfioq 94 5252.35.35 2223.3? 628: 2.2222 2.25.28 3.52.. 2.2222 2 .22 2253 2&6 .3032» 238 .... u 2222.52 8 XOmOmZEEQ 30 .... u wgmmzmh o n D325 2mg. :0: u ”NUMOIU "mm—3m 233222236 3.26 885.8522 .....233. 0223 2.2222 232 .3342» 238 m - .238 .2 + 302 2.9.63 2 n 9425 ED @004 n: 92m _ u 9‘35 NE "a Dzm ...8888 22 o 5022 ES: .8. a 2 .83 22?. 2.2222 2.26 .26de 238 2 .8 2.503 232 2 u 93> 2222.222 n 825.2538 225 8.8 uv 222.2232 95. o A 2222.52 ..2 $222,523.; n 2222232 ZmE. .... Av ”gan—"5m E mum—"Ema u gum—2E mags ...: ” FDA—2H Om .NN $00..— Z<>U E £38 8:328. .95: 2&6 2&6 2300 8 .8 2.263 .. a. 856.. 2.2222 a .8 2.263 246 .2523 238 82523232 222:3 028: 2.2222 2.22.289. 2.2222 s .3 2.263 2&6 .3332» 238 .... u 222.2222 8 .... n 2232222 23322225 35 c u 9.3, 222:. 2.. n 2858 22232 XOmOmZ—g‘fiv 1:420 888585235 Vii? 0233 #255 mqu .3; “300 N - 338 .m + 30x WH EZD moo; E QZm _ u 94<> mam ...: 92m .888 as o :85“... .35.... .3. . a 325 22?. 2.2222 Z<>U .3; £300 3 .mm B42004 mam _ u 9‘75 EEQ n 8.085.852an— 22 Soda uv Emu—"Sm QZ< c A Emu—"Sm nu Aa§m3<> u .Em 2E .... Av “mun—"5m "a «Mamba n ”59:28. ”Em .... “S222 8 .8 E263 95 ammnEDm u ”2(2sz ”Em ...:u FDA—79 he .NN E42004 Z<>0 .E KS8 ... 28.2322 2.2 8 5.3. 25522 52.2.. .9222 z<>0 .BOAAE M0400 m .NN @5200; .... u ”MEm X0m0mZEm~0 4.70 023290292. "mm—34025. 0:02 . “.0an 20.2309 . No3 .3u=< .820 . acmfinom H 2809 "205.3. H "20.3880 H 22.23.2220 222 .5222 . 321.2295 EZENO mDm N-< 9.29me mam 02m .9 02m 02m 8 22.8."...502. 738.22.22.23 m. 922 . u 223 o u 8.80 2.822. 22.2... .836 u 8.08 2.232 c . .o zmmm0m «mm; 4.20 2.915. :2: n GmU~0E00nmm<00 Ema X0902§ 4.20 Bfigqoufiufimm u..<<<<$¥.§g_a: 029m: H253 Ban .3049; M300 0 + 2400 .n + 30x W500..— — u 94<> 9.95 .50..— 9 02m _ u 917$ mam ...: 02m 29.2.... .22 . 82.22. .35.... has... 5 a. 52:. 21?. 2.2.22 Z<>0 5,0449% 90400 3 .mm mk<004 mam _ u 9A<> Emu—":5 n BxanquSuBE 29¢. cm+m_ uv ”Em 02.4. o A .En 9 Gugmits n awn—"Sm 29.3. .... Av ”KNEE; .9 ”gm u ”~09ng «mun—"Sm ...: . FDA—.7: 3H .NN mb<000 Z<>0 E 10400 Ema-2m: 9.235 R .NN $5.00..— Z<>0 .2290 90400 : .9 09:50.. #29.— 256 NE; 238 22 .NN p.53 - -'v:v-~ ' I I1»..\ 96 282 . "0834.4 .8435“ . $2 .892. ”25 . ecu—.4934 ..4. 28024 ".8534 . "2044444630 . figmfigmo v.52 cans; . 34.02400 44<4~4mh.<4)4.n.m.0 00m N.< 02wmm0 mDm 020 4 n .4200 44,420 24004 "—4 02m 4 n 0200 4 u .500 o n 420225 23.0. ..X: n 4am04044009m4m<00 "003m 9 . .o mem0m 224224484 44<0 28.0. :44: n Amm0404400amm<00 Emm4m 4 n 0200 m u 202425 28.4.0. :0: u 4§40vamm<0D "44030 4 n 0200 v n 20225 204.0. :4... u ”00404.40 Ema 4 n 0200 4 n 2222.» 2E; o. M: H “whoa BN3 4 n 0200 N u 42ng 28.4.4. ..N: u “00404.00 "4530 0.4254202 u 238:2{8230 294.0. 52.44202 A 4385248444524 "44 8 u 0.42.4202 4 n 0200 4 n 20253 28.0. :4: u 80404.40 "44 w>mv424 u 80404.40 00 oumzoo $29225 oubao 0:02 H "baa: 82:52 . 82 .392 "25 . 8833. H as“. .853 . .258 2.540 . 24. 8.5 88948.. .8: 05 30» 2.432 v.45. "204244880 . 222.80 352 252.4 . 42024249 2444.250 00m mam nzm rang .4440 97 4 - 2400 .m + 30x P2004 3.85.3352qu ......ii 027.: 2.2:; m - 2.50 .N + >62 8.53 05254404858348: 024.4424 4. + 2400 .4 + 3044 E44004 0.528400400583342 0234.4 N + 2400 .BOM P434004 m04m .3044m> x800 ovu2400 hu30~4 oubao oumzoo 27..on .024.~4o~4 . 82 :33. use. 8.532 H .39.. .553. H .8333 . 22282.45 .252 game... 495.500 422§m40 00m N.< E0 00m 020 E95 92m flu 28¢. _ ubaoa o n 0200 0444.5» A4004 E 02m 4 u m200 o u $0240 28:. 0.394400 n «00404.40 "44030 c . .c meMUm 464224494 44<0 204.0. :0: u 48040440309400 Ema 4 u m200 v u 8:0 28.4.4. :4... u 80404.40 503m 4 u m200 n n «5:0 28.0. ..m: u ”M04020 "44030 4 n 0200 N u 96.0200 204.0. ..N: u ”00404.40 503m 4 n 0200 4 u $.50 28.0. ..4: u ”00404.40 E ”>845 u ”8404.40 00 outao oumzoo oufito 98 2 .8 0.200.. 030 . ... 92> E00000 u 3.80.32.52.02 2000 §.§ uv 300000 02 o A 3.00000 0. 30000002., n 2000.... Z00... .... 0 200000 .... 20000.. n #50020... 0000.50 ...... .502. 8 .3 0200.. 2.6 .0023 00.50 ”000.209 5.00 2.6 .256 00.50 on .NN 0200.. .. .2 00:20.. 0.2.0.. a. .2 0200.. 20 0:23 00.50 3.50.32.532 ....3033. 02.8 5...... ... n0.....50: 02.00 8 ..~ 0200.. 2.6 .3030» 00.50 .... n 0000000 00 .... u 950020.. 050002.020 ...20 o u 92> 20.00 :0. u 000.000 0.030 050002.203 ...20 83256325522 5.00 003 .3030» 00.50 m + 2.50 .. + 300 0200.. 200000 u §z§.0..o2.e=§2 20E .... 0 2000.... 0. 2000.... ...... ......z. a .NN 0200.. .. ”s 00.5.0: .55... N4 .NN $50.4 2.6 .0023 00.50 0528203858502 ... 6.52 48.5.2.0: 0.2.0.. 0. .4m 8.2.00.4 z<>u 050.4402 ”40.400 .... u ”Em 04000024000 .430 204.0. ..N: u «00404.40 "44030 050002.203 3<0 0525003855382 .20... 0.30 .3038. 00.50 N + 2.50 .300 0200.. 200000 n 052583855052 z0E. .... 0 0000000 0. 0000000 ..... . .502. 2.6 .3030» 00.50 .m .NN 0200.. .. a. “.0520: .20... 2.6 0......3 00.50 8 .NN 0200.. 0:32:30. 4 6.458300: "3 "0:32 4.05500: 0.2—Mam 2.6 .3030.» 00.50 ... ..N 0200.. .... n 000000.. 0500070005 3<0 zma ..... u 000.000 0. n>mv424 u «00404.40 00 0500.32.55.82 .133; 02.00 0.2:... 2.50 ... + 30.. 0200.. .500. 48045544842 ...¥.§. 024mb 0.2—”4.4 N + 2.400 .n + 30“ 0.5.0014 3.....0355082 ..§.¥ 02.8 .20... ... + 2.50 ... + 30.. 0.200.. 230.3253. .22.... .22. 22 1‘ 1‘If‘ \IlF.‘ h ...,.) aF\ h! \v.‘ 99 Aammmmbm§<> n 34004000 20.... .... 0 0000000 .... 0000000 n 0000020... 0000000 ..... . .502. .2 .NN 0200.. 2<»0 .823 00.50 000002....» .20.. 2<»0 .2<»0 00.50 00 .NN 0200.. .. a. 00520.. 2.0.. a. .2 0200.. z<»0 0......3 00.50 .2250. 3.5.5252 .............22. 02.00 ...2.0.. 0.0.2.50. 0.2.0.. .0 ..N 0200.. z<»0 .3030» 00.50 .... n 0000000 00 .... n 0000020... 000002.005 ...20 o u 92> 20..» 50.. u 000.000 0.003 000002.230 ...20 0..§$..0=..§.B2 .....2......2.. 02.00 02.0.. 00.0 .3030» 00.50 . - 2.50 .0 + 300 0.200.. 4 n 04.4<> 2440.2: 0400.4 040 020 4 n 00:75 030 ...44 020 ...8080 ...... o 53.3 .35.... .5... . ... 2...... 0...? 0.2.0.. Z<>U .3050» 00.400 m 4 .nu 0.5.00.4 mam 4 "00.25 .00000 n 028.220.053.32 20:.» 80.8... uv 000000 02.. o A 00.00.. ... 0000000303 u .00....00 204.0..30nmmmmbmm4 0000000 n 0000020.. 0000000 .... . 0.002. .0 .NN 0.200.. 2»0 .0023 00.50 0000.20... 0.2.0.. z<»0 .2<»0 00.50 .0 .3 0.200.. .. .9 00520.. 0.2.0.. 8 .2 0.200.. 2<»0 00.23 00.50 0.08.50.02.52002 ......i....2... 02.00 0.2.0.. .. 0.885.. 0.2.0.. 8 ..N 0200.. z<»0 .3030» 00.50 00 .... n 0000020» 0 u 92> 200002.005 ...20 204.0. :9: u «00404.00 "44030 000002.005 ...20 0080.32.55.32 .........2..2... 02.00 0.2.0.. 00.... .3030» 00.50 0 - 2.50 .0 + 300 0200.. 4 u 004$, 44.42: 0400.4 04 020 4 u 04..4<> ma ".4 020 .8002. ...... 2 282.2. .32.... ...,... .. ... 2...... 2...? 0.2.0.. 5.0.0 08.4.4.9. .4300 100 «Em ...... 0.0.424 mm .NN 8.2.004 Z<>U .8040? M0400 agmgmh 0.744040 Z<>0 .Z<>U «0400 mm .NN 82.004 .. .... 00520.. 0.2.00 mm .NN m.4.<004 Z<>U £004.43 040400 800.440.004.033: .....i; 0230 0.24m... ....bmfiaogom: 0.75404 0N .4m P400004 7790 .3044m> M0400 .... u mugm 00 .... n gmfizmh. x0m0042404040 44 zm4.4.4. :0: u «8404.40 044mm4m4 X0mon424m £04000 0 + 42400 .9 + 30x P5004 4 n 0445/ 44.4.20 04004 "44 02m 4 u 044<> mm4m4 044 02m .0000. ...... 0 =82... .35.... .3. . .... 2.0... 0...? 0.2.00 Z<>U .3044m; M40400 04 .MN P5004 mm4m 4 u Q44<> .mmmmbm n 00000000440004.2300: 28.4.4. om+m4 uv 4§m 02¢. o A 4am 044 20.2203. . 0000.... zmm... .... Av 00.040030 0. 0050.40 n 0030020... 00.040050 ...: . 0.3024 0.0 .NN Bo .8000? 00.400 «030.4200. 0.2.0.4 z<>u .z<>o 00.400 20 .NN m0.o .0953 00.400 .ofi§:.o0...§.82 ......222...22. 02.00 0.2.00 4:04—33:00 03—65:: F220.— 0. .4m B2004 z<>0 050.440; 00.400 .... n 0000030 on .... u 00300420... 0000004240040 44 mw4m4 n44 02m ...8008 ...... o 283.2. .35.... .8. .. ... 2...... 0...? 0.2.00 z<»0 .3030» 00.00 0. .00 0.200.. 0000 . u 0...<> .000000 u 025.002.25.32 ...... 2.2.20.0...022..2220 101 a ozm nzm So 2%... ~ ":29: ~ u mzoa .52: .83 a 92m o . .o zmmmum Eaamza .35 sz. ..:.. n 3855520: 53m fl u mzoa o n «8.8 8.8m. sz €325 u E996 Emflm x8855 .35 geoiogeauoz .....iii.» 02%: 2E man .3035 «38 2.50 .o + Box MEGS ~ u 9.35 43.23 A504 E 92m _ u 92> mam E 92m ...8888 as 82:- 503.3 .35.... .3. a a. .89.. 3.5.. .555 2S6 .3343 «0.50 2 .8 8284 mSm g n 9.?» Ewan—pm u as»... 3.55502 EB. 8888 uv EEm nz< 9.8”. A Emu—mam a GES> u .Em meh. .... Av «Em E «Em u gage. 2E5“. .... u .52 0N .NN E§m§ nun—2m ~u94<> ma EQZN ...8888 B. o =82“... .38.... :2 a a .85 21?. 92:: Z<>U .3; £048 3 .mm @5604 m3 _ u 91> ”Em u «Eon. 395:3:qu 28.—h Sada? nv Emu—E5 2 o A Emu—“5m "a Aw§m§> u .Mmmnsm 2mm: .... Av «Em E “Em ugmfifi 102 mmmnEDm u oeazsouéecwam zmmh .... Av gunman E agm ...: u .52 z<>o .3045; «0.50 :H .NN @5004 .. a. 85...? .95... z<>u .mEB «0.50 cm .NN W500; oEaZEoU.<8—.gm 9. ”0:82 coEEoU: Ema z<>U 590% mOJOU M: .3 ”#5004 .... u ammmmDm xOmOszmE 47.0 28.5. ..r. n ”mu—0x0 n: w>m¥2~ n 8205 on .. : H ”323mm ..ofiEaIiOuEEA u:<<<<§.§: 0283 H255 e + .2400 .w + 30m @5504 BE:Z.<£5§A ”zit? 028: P235 a + $300 .5 + 30% P500..— bficoflééfitam ....ii. 028: P235 m - 2400 .e + 30x mk§2.<855m 3.33.1: 0253 P233 3 + 3300 .m + 30x P5064 82m.U .3; «300 2 .mm @9604 mam _ n 9.75 mun—mam u fi>§24££§£ meu. 5n uv «Em SEGAEQE Gmmmnsmvflvs u Em 2mg. .... Av “Em "a gunman u 83.38. 2E3 ..... u .52 on .NN ”.503 z<>o .BE? «38 $8.:sz .253 256 .256 «38 on .NN $63 .. a. 0936.. .955 n .NN $53 2&6 .353 «0.50 t>§2<£=u§ at; 9:3 5:: p. 5.8; :25 .33... 5:... M: .8 8.53 2.56 .3035 «300 on .... u £8.38. a u 32> xOmOszmE d5 sz. ...? n 3055 "mm—3m xOmBzHSd .25 afiésé Ea mam .3038» «38 e - 2.50 .N + 39. MEGS ”Em u 095.533 2mm... .... 0 gunman & ”Em ..... u 5.2. : .NN 828.. .. a. 2.56.. 5:5 8 .8 .9503 2&6 .353 «38 &.__m.<°.a=§ p. ”as? .223 a .3 8.53 256 .3349 «38 .... u numb—mam xenonzfia .36 28.: ..m: n «@2ch Bug 5825 .35 25252.0(355m 92:5 man .303» «300 v + 248 ._ + Box 8.63 2E3 u 05255535 28:. .... 0 «Em n: «Em ..... u .52 mm .NN MEGS .. 3. asap. Eva «a .NN .9203 z<>u MES «Sou usazssguéofiuam v. ”2.5.2 3530.. .22.. 2 .a 8.53 z<>o .5033 «0.50 .... u «Em xOmomEmmE .55 zmmh ..N: u ”NBC—.6 Ema xomfiagd .35 Qfizsoodoaqfin 92:5 .figsgss 104 592m ..3 Es o H.823 i.e.... :2 a a Has 21?. ESE Z<>U .304? M300 2 .MN P5004 wax—m _ .I. 94<> mmnEDm u §oEa§>uQW<£=gm 28.5. 2 uvamEOAEmE Aammmmbm3<> n Mmmn—Dm 2E .... Av ”Em "a SEQ u ”5:23 ”EB ...: H .52 S .8 $03 236 .853 «Sou E2228. :9: 2&6 .256 ~38 R .NN BU .3; ”—88 2 .mm B xenon—Emma d5 sz ..w. u 808:0 "um—3m xenonzg .35 _o>§2 2% ..w: n ”NU—CID "Emma—m XOmOmZS—(d‘uo 30 222342552— r..2¥.¥. 0253 H253 mDu—m 25% «800 m - $300 .0 + 30x P5004 _ u 9.75 ..FHZD m8..— ....= QZN _ n 92> max—m E QZm .232 2. o .32... is. .... . .3 Has as. :52 2<6 .303m> 20300 2 .3 850.. m3 3 u 03<> E00 u 005043550 zafi§.§uvmm&0m02 28:. g? n 8055 233m 20002702530 .35 .aosafitnméesfim H.222: 028: 2.22.. E30 .3033» 20300 3 + 2300 .n + 302 B503 ~u94<> 45.2358..— 33. am 106 whim frog mOJOU e + 2300 .m + 30m B 33.3.23 A383 "33 92m 3 u Q3135 mam n33 92m .233 2... 3 :82... .35.... 3222 s. 2 3.32 22>: .5322 Z<>U .3033m> ”30300 n 3 .mm m.3. 28.3.3. :9. N ”830330 "mm—Sm 030202232530 33 33.3.23 .3003 "33 92m 3 n A333<> mg ".33 Dzm 23 022 .33 2a 3 8023 .85.... bass 5 2 .32 22>. .5322 223:. 3 u 53:22 23232 ..8 2a 3 8253 38.... 5232 5 2 522 22?. 2.2322 222.3. 3 u c2322 23 Z<>U .3; MCQOU n3 .3 m3.3.<003 ma 3 u A333<> mmnEDm u 2382240323553 28.3.3. 533332332 uv ~393qu QZ< o A Em "33 "33 92m 83 u 3.3223352 23333.3. N n 003323055 Ema 522332332 n 23&=Z.<0.3=3:an3 2.83.3. .5232? A 20.333524033333253 m3 8 u 5.323.373 283.3. 3 u 203333.58 "33 SEBASV u Em 23.33.33. .... Av ”Em "33 ”gm u «25mg E22? .22 2 22283 107 .. .. u uMZSm 22.52.925.22 H.....<<<<222 022m: .223 o + .500 .w + 302 ”.503 EE:Z.mo.3:35n3 u.2222: 023m: .3253 o + 2.300 .5 + 30m @5004 225935.22 22:2: 022: .225 m - 2.200 .0 + 302 ”.2200.— 2BoEa3n3>onm8=3§m 3.22222: 0253 .3233 N3 + 2.300 .m + 30x B4004 2892255032m8235n3 2:23.22: 023w: .3253 m + 32.300 .2 + 30m 95..qu 3o>xa2.mo.3:35n3 9.22222: 0233 #25323 23 + 32.38 .M + 30m P3300..— Kazmmégm .3.Z3mn3 v - 2.300 .N + 30m EEOC; uEaZEonomefitam .3255 v + 32.300 .3 + 30m P3284 oEuZEoU.mo.3:3§n3 .3255 N + 32.300 .30m @5604 mDmm .3; MSOU QvuZAOU hflBOm 3.2.50 oumZOQ ongEO .023.~3o .z<.6 «38 on .8 MEGS .. a. $56.. 5:5 mm .NN 8.63 2&6 HEB ~5qu §§Zm§=§ ”....ii. 025: .95: 3. ”38:5 3.3 as»? .953 a .3 “9203 2.36 .3348, «38 on .... u Eamgmp o n 8.29 xOmOmzaaa .35 sz ...... u “855 53m x8855 .35 £55955 .955 mam 56de «38 v - 2.50 .N + Box @203 29mg u unswmesfim sz .... 0 3E3 & Sufism ..... u .52 a Na P563 .. ”a $551.22; 8 .NN B53 z<>o MEI? «38 azwmesfim r. 385.. SEE a .3 P503 2S6 .3038» «38 .... u ”Em xomOmzamB .30 28: :m: u «NU—0:0 Ema xenon—7:36 1:46 232526.355; .233 BE .3038, 8.50 v + .58 ._ + 30x 82.84 Emu—mam u Bazsugodeéé sz. .... 0 ”Em a gunman ..... u 5%: a .NN E<§ .. no. 0220.. 92:: a .8 ”.563 2&6 .mp5? «300 u§z§6de==§ r ”25.2 3526.. 5:: 2 .3 P563 z<>u .3039 8.50 .... u ”Em xenonfiamaa ...—<0 sz. ..N: u aNBOIU Ema XOmOmzHgU EU oEaZEoUdéStam P235 mqu <5ij> MOAOU N + 2400 .30m @500..— mman—Dm u oEaZEoUdoucgm 2mm: .... Av “Em n: ammmnsm ...: ” 5&7: Z490 .Boa MSOU R .NN @5002 2 N9 own—20.. Ema Z<>U a; mOAOU 8 .NN P5004 oEaZEOUdEfiflaL r. "252 58:50.. Ema Z<>U 5»ng mOAOU m— .3 mk «30.255 35 2mm... :0: u ”...—206 Ema XOQEZHSAU 30 8.0:...5502d0udgm ...¥.;. 0253 2mm mDAm .30a .1300 m + 2400 .v + 30% mV.—2.004 .u 91> E23 .80..— EDZm .uefl; mam nan—2m ....” as. c 593.2. .35.... .8. a M.. 2...... 2...? «.22.. Z<>U .Boa £0400 m. ...H B Emu—gm u .SoEaacaoS.m8—.gm 2mm... .N uv .mmmmbm go A man "a Gamma—33> u EEG 2mm... .... Av amen—3m E «Ema u ”.5ng “En ..... . 5...... x .2 8.53 2<>u «2......» «38 9.8.5.... ~22. 256 2&6 «38 a .8 «.203 .. .9 0.55.. ..z.«.. a .NN «.28.. 2&6 «Ex? «38 .3»§5§2.«.«=.§.. .....ti. .2. m: ...z.«.. «.5355 53:... .22... a. ..N 8&3 2&6 .33.”... «38 3 .... n 22.5%.... c n n...<> 2082255 ....§2.mo..£5m ”...».......3.. 0253 p.235 9.5m .3§ M0400 3 + 3300 .m + 30¢ BU 59% «01.8 n. .8 $8.. mam . n 94S, .mmmmbm u .o>§.mo..:.5m 2mm... 8... uv Emu—n5: nz< c A Emu—mam m. .2835. u «E... 2...... 3055...... 110 2 .4m P5004 Z<>0 .3044m> «0400 .... u «Em 00 X0m0m24n4m40 44 ZE ..w: n $40406 Ems...“ X0m0n424~4 ~40400 m - 42400 6 + 30x P5004 4 u 044$» 44.4.23 .4004 "44 02m 4 u Q44<> mw4m4 n44 02m .....83. 2.. o 52...... i.e.... .3. . ... =2... 22>: ..z.«.. 256 .33.”... «38 o. .8 8.53 mm... . u 8.75 «PE... u 2.2.5.222... 2...... 8.38 uv .«mEDm 22¢. o A «WE... .. 588...... u «WE... 284.4. .... Av ”Em m4 ammmmbm u gnaw? “Em ...... 4.3.424 Om .NN B<004 Z<>U E M0400 ”59428. .4253 Z<>0 .Z<>U ~40400 an .NN B4604 .. a. 0.56.. ...z.«.. 2 .8 «.28.. z<>o 5...... «38 2.2.5 «2...... .3322... 82.2. ...z.«.. ... 2.289. .22... .N ..N E63 226 .33.”... «38 .... n 2mg... 3 .... u 3.22m... 289.225... .... 44.4.2: .4004 "44 02m 4 u Q44<> mam "—4 02m ...... 2.. o .83.... .35.... .3. . 2 3.... 22?. 922.. z<>0 .3044m> ~40400 m4 .8 @9004 ma 4 u 044<> Ewan—Sm u gofiaagmdecuhm 23.4.4. 44 uv .EQQEOA .Emn: GEM—44$» u ”Em 28.4.4. .... Av ”Em .44 29...... u 3.3.... ”gm .3... 5.424 a $4.84 25 «...... .88 111 94.42.5484 44<0 28.4.4. ..4.4.. u 4wm040v404wmm<02 Emw4m4 202022.223”. ....<0 .025...22=.§. €523;. 02.3 .22. 23.. .33....» 238 e + 2.8 .. + >62 2.5.03 4 n 044<> 44.4.23 .4004 "44 02m 4 n 9445 mm4m n44 02m .82.... 2.. . .83.... .35.... ....32 s. 2 .2... 22>. 2.2.. 744.90 52044."; 440400 n 4 .mm m.4.<004 mw4m4 4 n 9445 .mmmmbm u 3.428234404042224 28.4.4. Om+m44 uv .mmmmbm 02¢. o A Ewan—44m n44 Gmmmmbe4<> u EEG 222... .... 0 222.52 ... 222.52 u 2:22.22... 2225.. .522. 3. .NN 2203 236 2......» 238 2.5232... ...2.2.. R .NN 2.203 256 .236 238 .. a. 0......0. .22.. 236 .25.? 238 mm .2. 2.5.03 52.552252... 2.35222... 02.2 2.2.. 9.2.3200 822524.... .4.z4~4.4 e. ..N .503 2&6 .33....» 238 ... n 2225.. on X0m0n424n4m40 44(0 .... u ugmgmh o u 044<> 28.4.4. :9. n $8404.40 "Guam 202022.258 2.20 352.225.... .......... 02.5 2.2.. .5... .33....» 238 a + 2.8 2 + >62 2.203 4 u Q44<> 44.4.20 .4004 "44 02m 4 "94S, max—m ...44 02m .8 2a . 8.3.2. .32.... is... s. ... 2...... 22>. 2.2.2.. Z<>0 .3044m> M0400 n4 .3 $004 mw4m 4 u Q44<> .mmnEDm u .BEZdOEA 28.4.4. 8 av .mmmmbm 02¢ o A EEG n44 Smummbma.’ u .mmmhsm 2...... .... 0 222.52 ... 22.5.. n 2522229 222...... .... . 5.2. R .NN 2.203 256 2......» 238 252.222.. .22.. R .NN 2.200.. 250 .226 238 . a. .2520. .22.. 256 .255 238 . . a «N E53 3.52 53...... ......a. 02.5 .22.. ..."...3... .o .852. 2.2.2.. C . .2 2321.va 112 535850 6.52 532.. . EELOV ~MUmv~7= u 305:0 on OHEDO cumZOQ campus—O 0.52 H "beam commmzm . 82 .392 "35 . caczom .... sum 853. . ”cinema _§mEo ”22.2 532m . SPEOV ~25th mDm N-< 075me gm 92m EQZm 92m 30 2mm: _ u .530 a: _umzoa.=._.z:._§ ....sz .umzoa canine 232m. 55. $55 n 3085 Emfim OIGZNNKUm .. a ... liq. ‘ ¢ 1%.... Iotatwtbn ...-....tsf-utbn~ . .2::::£:.c v.2.h‘ 113 3300 .30m B160..— _ u 91> .52: .53 a 92m _ u 81> mfim a 92m :3; Es o 83.3 .352. as . a “as 21>: .25 2.36 .3348, 8qu 3 .8 363 mfim _ u 93> BEN—am u 33:; sz E nv Eamon nz< o A ”Em & AEEB‘E u Egan sz .... 0 ”En E 2958 u $2525 2958 ..... u 5%: on .NN @203 2&6 .853 «Sou $8.5m: .95: z<>u .256 «Sou on .NN E53 :5. 09.25. .95: 2 .2 E53 2190.; «Sou 33% ”ii. 025: be”: p. um“... :93 8 .a E53 z<>o .3038» ~5qu .... u gunman on .... u 952:3 xOmoszmE ‘30 o u 9‘75 sz ..r. u 820:0 a u>mMzH n 8206 on n: DZm EQHSSQN u......z‘..§_? 02%: ESE m— + 248 .N + 30x P5004 22 N n cocci—=6 Emma—m mauEEuN u...»iwfifi: 02$: ESE m— + 2400 .N + 30m ““5100:— meh _ n scan—35m "a (8:3 ":i.¥: 0253 EM.“ 2 + 2400 J + 30% mh<004 35% 9.3.2.. can: :55 :38 .39. E03 Z<>U .3§> «0400 3 n 2400 o n 30% oubao cumzoo ouefio .UZ_.m u “Mm—"EDQ ZmE. .... Av ”gm n: ammmmbm u 95995.4. ”Em ...: " H22 3 .NN mh<004 Z<>0 .E M0400 «mamas—wk P753 Z<>0 .Z<>0 «0400 3 .NN m._.<004 .. H9 098:0: F253 oN .NN P5004 Z<>0 .E M300 E 02m mac—SuN ”..ifxr. 024m: EMA r. "69E 05 .3 33:80.4 SoN: FEMA— vafi. N n saunas—mm ”mm—3m mOHSSoN v.3.i. 0250 p.233 ”: “m 0.0435 Ho 15.—Son— SQN: P255 2mm: 4 u scan—:85 n: 94 4N wh<004 Z<>0 .3044m> «0400 .... u «gm 00 .... u ”59442.": x0m0m25m40 44<0 o u 94$, 2% ..n: u wm040m0 Ema x0meza0 .3044m> x0400 m— + 2400 .4 + 30x mh<004 4" Q4<> 45.75 @004 E 02m 4 u B4<> mam m4 02m ..§.8 2a «.88- :82»; 25.... we a a .35 21>: Ema Z<>0 .3044m> £048 2 .MN @3004 mam 4 u 94$» Emmmbm u <8580N ZmE Soda nv ”Em QZ< 30.8- A Emu—"Sm n: Aa§m04<> u Emu—"Sm 28¢ .... 0 ”En n: «Em u 8:938. ”Em ...: n 5.2. 8 .NN .9203 z<>u .353 «38 £8th 5:5 236 .zsC «0.50 8 .NN 353 .. a. «~55: 5:3 am .NN 353 2&6 .thB «38 Susana $3.3: 25: e238 p. 2 225m 0.. 3.86; 3.. Ema 2 .3 MEGS 2&6 .3343 «38 .... u ”Em on .... u 8:223 xOmOmEmmE 35 o u 9.25 28:. ..N: n 8085 "53m nag an BEE; 9%.? can: .233 256 .339“: «300 I FILE. in 7‘“. 115 .. .. u €3m§3§ .. .. u Ragga .. 32.. §m§2 2?. u scammzmdm .. .. u :38:me .. 685“ 2:3 .8 s: - 5:3: n 6338sz .. 2.. a 26 3:32. 3:85“ 2.. 33 .53 03:8 .853.» a... 1988sz :9: L26 2: 9 26 «comm—=92 ”58858—0 05 ..o 58 05 :0 v8.3 a? u 85mg; .. comm—5%.; 12.58 a ..o Danae 05 35 wanna boos. 05 a? u Atwmmsa .. 20385 - 33:5 - 26:3 - 5:3qu "£885 .. u onmmmzmqmm .. .82: .92. 059 2F. u Anxmmsfimm : : u Avvwmmuza ...358 a; .2: .32: 05 8 :8: 39:5: 05 32m .. u 353sz : .. u Amvwmmza :25: .082 0:525 .. u :xwmsmdm 2.02 H ”Ema :2m_>om . 82 .32 ”35 . 52.30% H hang 695.5 . "coma—tuna H 25.3mm H2.....2 5.32m . Z>Q§ mDm mam 92m EQZm Dzm 30 29.; u u H50 m— _ u mzoa .52: .53 n: azm o . .o zmmxom mug—magma dU .3ij> «048 Q + 248 .N + 30x P500:— — n QA<> 3923 .50:— E QZm _ u 9‘35 may—m n: QZm 38.8 2a 8.28. 8223 .352. we a a gas 21?. 5:: 256 .3345 «Sou 2 .R 8.53 mSm _ u 8.3, a 92m ”Em u mac—son 28.: n u coma—25m Emmi NEE u moEaVN . u . zfinfisfiafimfi szaaauv .gm§<§.&-£§mfi - “v.45“ '- .. ...—.3... 22.32:: .v£.~... fl «v.~vwv¢. m~zn~§w=1~ 116 .. .. u vaéa .. .. n Anvwmmza .. .8220 B 2 55% 2.. s :2. .35.... 05 32?. 13$ng .. .. u Amvmmmzmqmm .. : u Amvmmmsa .352 59.58.: gm .. u SKEW—8* ocoz . ".0ng .8333“ . 82 .253 H£5 . acmfinom 9 “Sun— 2055< . E33185 . «mamfimE apaz 532? yam—mafia,” 55 5.5 92m AOmmemqmwcmAmmn—QQ 54.0 .. .. u acaémdm .. .. n 838sz .. .. u Exam—2% 3.103382% .. .. u 53$sz .. .. u scammzfimh .. .. u agwmza .. .. u @3ng .. .. u 2382a .. .. u Aogmmza .. .. u aims; .. .. u Qummzfimm .. .. u 688‘; .. .. u @384qu .. .. ... 3582qu .. flowsfio B 8 =39 05 9 “no: .385: 2: «8.5 .. u Avvammimqm: .. .. u 358sz .. .. u axmmsfim: :55: Eggnog 0538m— .. n cxmmza ocoz . SEE: 535% . 82 an»: "95 . cacsom H man 853 . "82:88 . 0&0ng u..éaz 2.32m . Ogmdma mam 9% 92m ACwmmzaamwa 4:20 .. s u aanmga ...mcouaiu—au 5923 155 05 888% 2880.85 2:... 25: u 83333152 .. .. u a §§5§ .. .. u 8.582% .. 32.. 585m 2:... u Guammzfimi 'ng' ' nil III Ivuhfl .. .. n. «A wimflWhEaN‘FmNfi‘ 117 252 H "Ema :OEEM . «8. =33. v.5 . cemfinom H ~30.“ BREE . ":3“.qu . 8.2258 352 5.3on . gammy.— mDm mam 92m ammmzmqmutfimzmmua 30 : .. n Sammmuza .. .8323 .33. 3 .96? 05 o. :8: 59:5: 05 9:829 .3: u Afixga .. @032 3 @023. 3 >2: cougwacoo < 63.3— mm confiswacoo: u Abfiwmmdza ...—.53 a as: Ea 2.. .8 s: 3 Samoa 2.. :23 .32.. 25%?1338288: .. a mo 86:0 05 93 €83.83 88.3 2: 6.32.020 on... n 33¢ng =5... 2.. .5338 835%.; 2.. .8623 2.. sea sausage? u $3382.58 : 2:886 35 833 .556 ..o .8 05 mm 535380 < .. u AmSwmema .. .. u Ansngn—E .. .6223 mm 35 RS c2338? 05 8 :8: 325.: 95 82m: u 2 Gaga—E .. .. u AonmmEmE .. .32. a as 335.». u 838258: .. go Kb 0.8 503.3 838285 05 8235 coma—:57. 9.88.. n anagram: .. 2:. .m 25 2 8.25.. 2. < as .0 8.25m :82»; .3: u €382.35 ...»..EE 2 3.5 92 8233 238.25 2.. 8:25 83:5: a $382.85 .. Eu 2: 58.528 a 32 s 2.: 9 2a 25 893.5» ... n £382.38: ..omoogo 8 :92 2321 3:2: 53: 2F £38039. 5 8a 205 £23.. u AvvwmemAm—I .. .202... 3.28 .0 £525 a: 8:35 532.. a: .. u 3382.88 .. : u ANVumen—Am: .. soda—25m 2.07.5926 33:00 05 8 2.8203 s u ASmmm—zn—Amm 0 £82 . "ESE.— .BESx . SS 233. "35 . 8853. .... .28 .853. "coinaoo H 222.38: 352 saws; . 222% 9% 9.5 sz :vnwmzaammmw—Q 30 .. .. u 8382,38 .. .. u 8382.38: .. .. 1238258: .. .. u 338288: .. .. u $382.38: .. .. u $38288 .. .. n 2888258: .. .. n 5582848 .. .. u 53828.8: .. .. u 838288 3 3 " «avwmfia .. .. u 233% .. .. n 2382848 118 (5888 352 5&2“— . <§ADZmE A$EOV _ Asmmhgmo 20 .282 £80553.“ 3832 05 8 39: 05 >23 v.3 Enou< . ...: 92m m n .5523,— _A<—Mm.22mwa 4.20 35839 20 gamma 4.20 mam ~g§mm~9 20 2% N u $45752 E .25 .082 3. =.52 3255 3.2.2 2.. 3&5 H .52 H "2.9.9.5 .6233— . 22 :33. "35 . 52.23. .._. 88m 853. . ”52:33 . SSE N9:22 Ecumen— . 3522 35 N2 UZmnHmQ mDm QZm & nzm & nzm 88o<82§xm§a .35 :25 .2. 88 .. n @5382 ”2...sz + .. Hoe 2: .. u 3538.2 5‘”- ‘ ~1. . .1“;.-—'=‘ .I: r.) .. _. ...»...uwd £2.52 222%,}. “H 0 ~ . 123 ~2~wmm~0 20 22.85 4.20 mg 22952— 20 28.5. m H 15.522 E 6:0 .032 :8 5:02 333:8:— o-ogm 05 haw—$0 . 00 oumZOQ 0:02 . r0821 :3m_>ux . 82 .392 as: . 5253— H gum £0552 . ":ountomofl . $5: asaz 532: . 2.52.— gm N.< 029.50 5% 02m ~nNZOQdHZDm004 802m _um200 :58 323.5 05 9 580m . meh. o u wags E A§EOZ2EQN2HNO 20 5:92 :ouascofim 0.35m 05 S 39: 05 >23 .5: E802 . 502m ~2202mm—0 4.20 35mmh22mm~0 20 ~2~QO~0 4.20 222.52— 4.20 mmqm ~220m2mm~0 4.20 29.: n u 222 n: 6:0 352 :8 :52 £52585 225m 05 .335 . 00 oumZOQ 2.2 H “Dogma :ommtrom . 82 :33 "35 . cacao: .... 88: uo£=< . "saw—800 . anm: 232 .552: . 124 ":ouambmun— . 89mg 252 same: . .22ng mam mam 02m 2 u m200 4223 m8..— nn 02m _ u 200 5:2: 25:65 05 8 580% . 22 o u §0 n: A$E00mh2gm0 20 .282 guns—.525 20:82 85 8 5&5 05 mac: 9.: .992 . EQZN gnaw—0 20 ~2m22mw~0 20 _2~mmm~0 20 Ema—0 4.20 msm gnaw—0 20 28.2. m n 2522 n: .25 3o: 3: :5: 53:23:. 225: 2.. 22:2: . 00 oum200 0:62 H E92: 833: . 82 .322. "2.5 . aggro: H .20: 22.3. . "82.23”: . :52: H252 552: . 2.— gm N.< E0 95 02m _ n NZOQ 4:23 @004 E 02m — u 200 ::oE 3255 05 8 5302 . 2mm: 6 n g0 ...: A$EOV<250 4.20 5:82 gag—:8:— o-omtam 05 S «:9: 05 >23 US. $802 . 502m (#25590 20 1255222558 20 125 :wm0... + “22qu u “22; 29.5. .... Av «222% E "a 02m .... u ”222 8am03mm~023- £5 £5 02m "2 02m 3 mmOAU 2.20.522 .2 .3 HmO ; m2 wt; 22 mmm00< 200722 202 E 2mm0 2.5.: swmkmmxmdm E $2.392 .aEHmHXm 20 8220 + :2mhww0: u «a :2me0: u E 22 H "52: 82:: . 82 .322 "25 . 5:53. 2. .2»: 22.2 . L _.«__7 ‘2'..- ;‘-‘£‘" ‘1" - . : -.Cu sill/EEK 2.4L: 126 «ZDMwa 75m $55212": 4120 m n .5557: 28¢. @392; n: SwahmHXmAE .§Z>thm_xm 4.20 A9350 + wZDflmmU u E750 29.: v n «$25 Emmam AmQOEZ>Q 4.20 28.: m u $.50 53m 50$“me 30 28.; N u $.50 Emgm SSMESZ 4120 ZmE. ~ u E0 n: «"425sz Sagov—Emhmo 4.20 9:2: 0:0 E52 05 2 :55 05 big 13 333‘ . E QZm Saga—D 4‘20 Egan—Q 4.20 madm— SZEAQQ 4.20 28.: _ u ESDZNS n: 55: g .80: 2.. 3&5 . 0Q oumZOQ 2.2 H $825 5633— . 22 as»: ”3.5 . cog—Box H 8.0m uo5=< H "canteen H :22 3.52 sips . =25 mDm N-< OkaNQ me DZm nu 92m Na muons .55sz .2 .2 .5; 5325.». .2 .2 .5; .5223 .: .2 .5. 3532 .2 .2 .5; 3532 a .2 .5; 353$ .w .2 .5.— Eét s .2 .5.“ 4532.»: a .2 .5; 8535 .n .2 Sn 3.52.82 ... .2 :5 335.202 .m .2 Sn 355.. a .2 .5; $35.. ._ .2 .5; Na m< PC; em»— mmmUU< 2824)— m8 92(sz meO 127 .252 noun—EOE 32:5 05 8 3&5 05 big 55 E30" H n: QZN ~mUom . 22 .8»? ”35 . com—Bax H “Sum uafi:< H "cougar—omen H "muémam v.52 sage." . 503*me mam N-< EEG me 92m _ u mZOD 575 A84 "a 92m _ u mZOQ 28.5. o u $50 Ema u: 92m 0 . .o ZNNMUm Aenmo335 =££>ox . 89 .832 ”3.5. acmfinom H uses ”353‘ . "countomofl H 3.3.82; 6.52 532.. . 0&2ng mam N-< EEO mam QZm ; mmSU 23.5... .2 .3 S.— EnEzH .2 .3 .3: 82353 .e .3 .5.— .5225 .: .3 .53 .3th .2 .3 Ba mozifi .o .3 5.. <8..an .w .3 .53 33mg .3 .3 :3 .55sz a .3 .53 85593 .n .3 SA fiafioaoofi .v .3 SA Busfiamvoz .m .3 Sm no???” .N .3 S.— «38.55am J .3 PD.— ; m< mt; g mmmUU< SODZé me a meo ..Ezmhmmv: u an. o 0:02 . 59.5 835. . 82 .332 "35. .3953— H gum u05=< . ”82:88 N <38; H3...: .532... $552,303. $5 N-< 075me E5 92m ~ u mZOO ED .50..— E 92m _ u mZOQ 3:2: .30th 05 9 530m . 28.: c u 96.50 n: 3989 ~8 Nuzmmmo Tumqu ouxujm 8.5.88 :88. » 8882 . o... u .22» .8888 823 » 88....2 . 8 u 52» 825.88 =88 x 8.832 . ...n .... .222 .Oaamvhoou 6028 x SEE—2 . O N 25* .uhzo .NmeE cum—LOG 2.58.5.5. — 8125 . 2582.....8 games—«22m .cu220< 85022.2. u a. E Ho 028 2F . 3.33236 u in Nm u m0 38...... .8. 58.88 2.82 . 5.8 £0.55 . «EVE w< 559.8232 8 3500 SR— .28 0.02.25 . mam—.59 m< ngDZ 8 Swag SEA— 888 N ...o . 888 m2 5.5.222 o... 288 25 828.. » ...o . 888 2 5.5222 2... .80» 25 828.. x ...o . 888 2 98.222 9.. .80.. 25 20:82 N . mamas m< Elk—2:2 DH SON En— 8382 > . mamDOQ m< CM ER— :oEmon X . Snag m< 5523222 09 Sex S—Q 888 N . 888 2 522222 8 ..N 25 88. » . 888 2 5.8222 8 2» 25 132 2% ON v dams EmSm . n: 02m .... u ”many—m .. .. H255 N .wN mh<004 .... .I. n>m¥2~ mg @004 00 ..oanam: P755 3 £0400 N .wN @9004 Zmflh Amaze”? u Aammmmmvwmm<00 E mNmmmME u ”mamma— zmmh .... Av nNmmmMm n: .... u wwamam 02¢. 39% uv £2 a? @001— _ + #2 u #2 a>mv~7= u aNmmmdm 00 o u #2 oo— 9 N < Adm—mama - ONV u 3.5 m>m¥7= u wmwmmm ..83m 8 AdNFZNV u«6E: P255 3 M300 VN .wN @9004 .385 EB 3. E £8.sz 2.. a 83m . m + P2000 u H2000 oumznggAmEEE ~+§n§§ ~+§Hhub§qh .35. 2.. 8 .258 2.. 3i: . Ammkzmvméu u Amway—88203 m0 .... u ammmmm 02< ANEON H02 m; 00 458205 0:5 :80 3 889? . 36:8 2. “a saw :08 3&6 s a.8. 2.. 30m . 5500 53:2 .08 .Oo> .03" .CN A; .oxv>5mm_0 420 2x; .03“ .0500 .Cwag A; 6% égzmflmvombpmemm 4.20 .3393; 05 mo 2528a 12.: 05 >295 . E 02m 9 u Ewan— : .. H235 N .wN P5004 .... u «>59: mam—3 @004 00 .. 83:53 2.. 55 9 E E. and .. .52.. 334m? 3 «Sou a .8 MEGS sz u u SE B 82590 30 IM/flll II... .5 1””. :39 2.. Sea. Ill/fl! 133 «2339. wt... 025: :53 2 «0.50 a. ._ 363 ... 68% 3.5.. :93 3 «38 R ._ 82.8.. a 92m mmmm o u 3333mm 28¢. a v 4233mm 5 _ - 33335. n «9.3me 28¢ 3ogz3oa u Q a 3052238 55 a 92m .... u “22.25 3333mm ....i. 075.: .955 2 .338 $ ._ ”.503 ... aim 3.5... .555 z 8.50 mm ._ 8.53 a azm. mmmm 8 u 3333mm 2mm... 8 A 3333mm a 3 + 3333mm u 4233mm 28¢. 30%;: u Q a 30523: 35 d- LooueoazafianE a. we 35 02m. _ ... mzoa 928m mmmMszwmm<00 u ngm 00 .mem o. 6me 35 fig .843 9 .322 25 .33; 2 32m moémv 22¢ .. 32:3 3 M0400 N .wN $004 3333mm ":3. 02:5 .22.. 2 x38 ... "Beam 3.3... .22: z 338 a ._ €53 a>mv=é u gamma flash 53 a... 3 . a 8 9 .23 £5.33 . Na um040 n4004 25300 .Omag .OQN do» .03“ .ON A; .OXV><4n—m_0 44<0 4 mez G; .ex .Na SE]: €> n Go» 8x u even gazbz 8 4 u 4 «Om 202% .Na FDA—Z— 60.an 05 .3 80239 30: 2: big . ll’fl" ill I, tl'. EQZm. 134 8275R— mam £5 92....— A$m0U u obxoU u «$22 .... u 3mg on u «...—00% VN n $30mm a u 95.50% v n .848:— Z<>U MP; mow—CU .UZHMlEDZm—z. .mQDAUZ—n. .22 H H39.... .335. . N8. .82.. .35 . 8.58.. .... .30.. .353. . .588 05 .o 58.3 . 05 ... 0382: 05 mac—o 2:50.53 «Eh .5ququ . .8823... U252 2.32.. . XOmOmEgU mam «DZmEmmU 23m .... u firmly: a? mOOA OD ...oacucoo 9 >8— .3.. $2.. - v2.63 8... Sum :< .. P755 3 .. P753 3 .. Em...— .. .. gm 3 3 F253 N. meunvm o meMUm 53.9% @0530 an: 3.5 .23 Bu Moo—5 . ”3282me 23¢ .532. .938 u... s .53. . .nooquowaz. _ umZOn—AFZDLOOA Amfiommvuéu Av azprSm QZ< 30¢...ng Av «2953a a? A84 .55 83... n2... .... 9.... .....285. 135 we .3 mh<004 ....S .. .20... .0. viii; 02.8 .20... 0. ...§.§¥... 02.8 .95.... 33...... 8.80 8 .... 8.63 .. .503 02.x... .23... 8.0.3.. 2300 8 ... ....Eoo. "a 02m ..>:. .. Em.— Eofi—SuN $3.33? 0250 2mm 3044a m0400 we .44 mh<004 u.. ”CBEVSoN: P755 E34 m0400 on .o— wh<004 29.5. N u coma—agm Ema ..>E .. H.235 ”maucauN ...:f3: 0253 Ex...— 3044m> M0400 we .: mh<004 ": Am .EESQN: H.755 E4 M0400 3 .o— mh<004 2mm: 4 u coma—0E5 u: ..>E .. F255 ”<00580N viii: 0253 92:5 3044...; ”40400 we .w P7004 ... .44.. 8&3: ESE E34 «0400 we .4. mk<004 .25.... ......3: 02.8 .20... 30......» 2300 .... .n .500... .. .23 ...... 8.... 8.0.3.. 8.8 8 .n 8.50.. "a 02m ..Eovcam: P233 22 m u 402750 Ema ..mQEo<: .4255 2mm: N u 4QZZ>Q Emma—m ..0>40.. F255 ZmE. 4 u 4QEZ>0 ...: 3044M; «0400 Q. .m mk<004 u...—04.32.. 2mm E34 M0400 we .n mk<004 mm .4 4th 6519:. .38 ”...—7:4 05280048584002 P753 9. SN @9004 m4 02m mm 64 .GNv NEVA»; .3: 24 802800.858an F253 0N .NN P5004 28.4.4. N u coma—:85 Bug 2 .v ANNv .ww: m40m40 oEaZEOUdfiSfiam Ema 0N .NN B<0Q4 Zulu. 4 u cows—:55 n: w.— .v ANN... .9 M4050 oEuZEoUéecuhm 5.255 m KN P2004 0.5.3.. 2300 ... "3038. 2.8.5.. 136 A0500 .m4m300 m< Cmag .m4m300 m< CoN £45400 mt. 00> .m4m300 m< Cox .m4m300 m< ON .m4m300 w< A; .m4m300 m< 000 ><4mma mDm mam 02m A§m00 u $300 .954; M0400 02.02.032.34. nm03407=9 2.02 H “beam: 53.6% . a... .802 "35 . 28:33. H .925 .853. H .523 05 ..0 80:3 . o... ... cacao... a 82.50 35.558 85. Heisman— . XOQEZEmR— .252 E9325. . XOmOnHZEm—n— mam mDm 02m m .m. .8; .9018 .28 m2: 3 M0400 82F: u:2..=a¥$. 024w: EMA 3044m> «0400 ac .NN 95.004 ....382 25."... EMA— E4 «0400 cc .NN mF<004 :§ 0. 2% ...—05085. 3.55343: 0253 H753 ..0508F u...3.2¥§..3: 024mb 0.2—Mm. 3044m> m0400 3 .CN P5004 .....UEOUS 0:5... 9253 E4 m0400 8 .3 mh<004 ..Z .. P755 2.00.80. 3.58.85 ...<<<<.¥.;. 024w: P753 .8250. 3052.005 u......2225.§.. 0253 F223. 3044m> "—0400 we .: B<84 .. ":33550009. E E4 m0400 137 8 02m 6800 .Aa3m2> £26200 Emma 28.2. 4 u POO 8 5500 .328 .932 £38.30 8080 282. Qx<2> v g + a3m2> 02¢. 82> A 38% - u3m2>v 024~ 09.2% v g + $580“ 02¢. 22X A E - .3825. .8 28.2. 2X<2> v $5m2> 02¢. 22> A *Bmzt 024. 220» v agmzx 02¢. 242% A 35800. 8 . .520... 05 ..o o... 8028.. > 0.... X o... ... H 8.00 0.00.39 05 5.3 0.8.0 o .03 . 8 02m M0 £04000 8080 28.2. 2X<2> v E + 3040> 02¢. 82> A :28 - 3405 02¢. Cn<2x v g ... 80X 2 2X A E - 34000. 8 .0028 05 ..o o... 8028.. > 0.8 X 05 ... H 5.8 28.» .02. 2.. ...... fl...... . ...... . 2~2> + a; \ A22> - X<2>vv _. €> - .8v. u a3m2> 82X ... 348% \ 222x - 03.2000 9 ex u *Bmzx 22> + C4 \ A782> - X<2>vv ... eo> - .9... u 340> 22% + a; \ A2222 - 03.200. ... 35% n 3402 Gig \ AZEX - 09.200. . Aswan—<6 u g 24% \ A2220" - 09.2va 15954 ... Swan—<5 u E . $3840.08 0020.. . 0. 83.... as... 0.... 8.05088 .3. 05 .8280 . 802m .... 2.8.0 .8 - .32» .....N + 2....» .0 m2... .3... 2.. 3.5 . 2...... N u 5.3.2.5 ... m .853 AX<2> .N<2XI2~2> .225 ”.2224 ...... Q... .....o . HM oNu22> an" 02.22 cu22x .3... 0N.......... . 138 «a. .822 .25 . acacia”— H ..Som .853. . .coaambuun M $23.28 .252 .58.... Gmfiwmdm .wm2<2m44..b gzmémw mam mam sz A§m0»OQz4>»mM<2 44U .mhg £0400 o ZNMMUm 3044m> n H4392 Z<>U u NQZOUAE E u ~32me 9.15 n 9200.. 12596: a :Z: n vaamma‘UD OZ< ..?. u Aaénmmg‘UD mg @004 am u.. HS): 3:0 ch .33 50> on: SE S .3 @5504 8 .02.. "II a“ Z<>U Saga—E «800 mam um sz .... u w>mv~zm a? moo.“ CO :35 8: moon .. ”Agavwmwxxob r. ”can 25: F753 on .3 EU .3§m> MSOO mam E Dzm .... u w>mMZ~ a? @004 On— szdmvwmm<03 r. .5.“ 958 3E Sun— oz: EMA Z<>U “$044.“; M048 w— .3 E4604 mam _ u mZOQ ZE awhmmxmdm E AnSHm—XNE £2?vame £0 555.5 + ”ms—<2? u «2:...— zmmp. $whm~X§ "a 3.3.2: .Emdnchmmxm 1:46 @350 + 92mg u ENE ...—35... + ”ms—<2; u mgza figs... + mgzmdm a ”mafia mam 2E ...—.50.. u ”glue u: 2% .... Av ”22% a: n: QZm .... u 32:"— amOU a; mOAOU p. ”eoacsxm 2m 8 as: 252 2m .35 2:. 5.9. SEE Z<>U gag MSOU n .NN B .mquOQ m< Cox .Mmomhzu m< 038 .mAmDOQ m< Swag dam—DOD w< O> 4.538 m< ox .mEZmdn—v 099‘ng mam meh .... 0 “fig E 55 92m . 3ng .3228 .0... ex 3:286 $2523.— 23 mgomn 855.22 2.232232% 223336 83 2503 c 3336 20:02:"— 225me A3; 2.50m; 33% 524qu O (gm—mg gm gumm— Ag .32 £9— .tS— in: Emmy—mm 20522 mug—(383 :9— .3m .Xc Egan 20623..— mgqu 0 $33 33m 521—033 3.3338 m< O: .9538 m< CE .3338 m< CE 3338 m< Oboe .EMDOQ m< C? 3338 m< ON .358 m< Swan—(d .5 E0 gm 52.380 @3338 m< C: .3338 m< CE .BQDOD m< CE £4938 w< cHOn—N £1538 m< cw .m‘EDOQ m< 0% .3358 m< CwD—g .5 Ema—3m 33m 571—83 C XOmOn—ZEma 33m 573qu . O uncanny—23230 m3m gumm— Aéor .X—AOX i? .33 3320330 gm gn— C 27.23330 33m 33 802 H ”can: 325. . a... "is H 0.32 ”3.2—:— H «a. ...N has: ”35 H 8.523. .... 5o.— u§=< .258. 3333 B. 3 33 33.3%.. F880: 05 3303K van 2522 .5238 . cargoaisfiasu§afi ”83:88. 95.2238 65.2 an. 2:280 66.2 332.. . N..< H253 142 143 60.252— ..0 9:26 . 2.265 S 8200 .30 80:52 . cm. u 32 951.30.508.28 > 2F . H.538 m< hwy—$3232 8 3: 3:9 E .0 28:09:00 X 2F . H.538 m< cyan—232 09. CE Sun— a . 22...... ... 2.... . £03.5— 00 we?! . 020.. .809 . H838 m< Ahm<23z32 OP 3 .52ng 8 .E an a 22...... . ...... . 22...... . 083.3 85.20 . 52:00 m< $3.202 02 . 5.2202 8. 0825.90 2.0 ....th u .290 2.03260 . 3:88.503 05 .30 . 33.; 30:6... 50. 2F. Ham—38 m< Chg—:32 OF _ .m DH ovhegfl ED 2.5... u .222. 82.3.... . 3.58.53; 05 mo . 82.; “50:65 50.. 2F. NAM—38 w< gag—32 OF 3 .m 8 OVPEOQXG 3:0 ..> u 2...... 2.2.3.... . 3.36am: 2: mo . 80:3 30:65 50.. 2F . ”.3338 m< CMAEEDZ OH 3 .m 8 SHED 230 .x> u :53. «00:00—00 . 135350 3 05 mo . 80:; 3016.5 50.. 0.5. . H.538 m< $3232 8 3 .m 8 BEG an ...E. 5.8.2. 22...... . 3.500 a... .gazaz 2. 8.00» 2.0 .3... ”0.22.... 22...... . 3.500 ...... .53202 0.. 2.08. 2.0 SE2... N . 5.500 m... 02......202 2. an 2.0 8.28.. > . 5.500 9.. .gazaz 9.. c» 2.0 828.. x . 32:00 a... 62.202 8 :2 2.0 00.00 2.58..— . mmmvmkzu m< Cyan—232 CH. 5300 an oEEo> 0.0.5.“ . H3338 m< CM 23n— uamvam £00853 . H.538 m< AEEZDZ OF Swan—(M 233 v.32 £03.25 . H.538 m< Ewan—:32 8 3me San bacon— o—ogm . @538 m< CR x ......z... 2.. .e 22...... > . .3.ch 3. £2 E :56: :5 1:: 3.9.5... ......E. 2: .e 2532. x . mamboa 2.. 82 2 Scan 25 144 8.32.9.5 8...— ..83 . ifififiiiifi§§§§§§§§ififiiii§§§§§§§l‘§§§§§*§§§§§§§§§o ... nzm .o>§2.§2.§:.mo....§.. . 92.. . zm... u 855 .o>§2...o....§.. . 92.. .. 29m u 6.88. a..coqmo.=.§.. u .32.... 3330.2... _. .358 + .3522 1.529.... 2.5.. 3.524355. A . ... 535222 09 _ u _ mou— .b.oo_o> 3...: E... “was. .0822, 5.3.8.. 6.2!... 2.. . 033.... .3395. ..o .382. o... 8 2.0 .0”. . o 3.8.... $82.4... ....xmz m + ...<>> u 3<>> ...B ..zu 2.. .c 5.38. x . 3n n as... . Caz . + .20 u Eu m + as... u as... as; u $28.58.. 3.9.. u $20.58.. n. 8 . u . «on. .. 8 . u . «on. ...3 ..zu 2.. .o 8.38. > . no. u is; .3 u ...<>x . u ...zu 68.... 2. ...... 8.2.2... . 1...... 2.. 22.3 .838 $2.28.. 03.22. 2.. 2..."... . H.532 ouezmxfi. mZQHLu—MOH— o u PZDOU .028 33>» hut :u> 05 Qua—330 8 conga:v 558mg:— oFH . 2: u EZmémE .83. a»... ..mo 2.. 2.5.28 s 85.... SEE... 2: . 5. n 3929.: 2%....» 8%.... 5.5.2.. . n. u .239... .9 .33.. 83...... 32m. .- u 22.... 5.25... u 3 ... .o 2...: 2.... . 3.883... n a... .N \ §o§5>oflmd£cuhm u ‘9,on MN \ goggzdofigm u ans—o: .n \ §§5>oflm€£=gm u .39qu .N \ §§S. . 3.58 a... ...z 8 .58.. .25 32...... . 2...... 2.. a. 2.8.8.. x . 5.58 m< ...z o... 308.. 25 145 G>mMZOnmmQ BROAD» u c .SEXQ 2.2.680 2..: 2...... =23. . QU~$>XOM u e> AMUEVXXOm u ex MOE n 0676ng o n 0000 a? $004 _ u Q80 23.: o u 95—8ng "a _ + Rim 9 mzvg u M05 8 o u GOOD 22.... H .23 a. 2.8.2. .22 8.28.. 1...... 2.. 22.x. . 5:8» 5 and: .EBZDAO> .. aghmzou 2 Acmzmn u a“: «Tm. u 3.72.828 m < swag .. in ... cnx .3 u €922.22, ......i...iiifiiifiiififiiiafi25*.§§§§§§§§§QO§§fifill§OOiio .50.. ..au»>mv.amd:38. 33.8 .95... . 6.58. .....ii; wza: .52.. . 2 s @203 . 8.88. .:§.§. can: .22.. . v .. .563 . 146 EL. 253$. . 00?... u ... 92008530 5.0.0.3.: . 0.05.. n ... 92008520 ASPCA; u E .PZ000FBO 50.00% H A: H2000V§0 £5352 \ 50?“: 2 ..05080. + ASPCA; u ASPCA; £531.42. £02.00 2 55250. + 090.00% H 90.00% "a 02m Ann—40> #0402 .8; 50000443520800 44<0 223005 2 02m 2 XZOm + 90> u 90> ..ZBOMm 2 022 2 220w + 00% u 00X 205 u >20m 28.0. o u >28 E 203 n XZOm 28.0. c u x23 .0 $040> - EVCZOm u >20m c.0400” - 500020m u 220m 00:00.. 5.5205 .03. . 225mg...)— \ 04va 2 an \ 85086 + 0030 2 852:0. + a; u 90> 29me123: 00an 2 an \ 852:6 + 50.0.0000 2 8525.2. + 00% u COX 3002 0>40 . 28.0. 4 .I. 4QEZ>0 Ema 2.3—40> £0402 .5; 560044<>$~0m20 44<0 200m 2 02m 2 .25: + a; u a; 205 2 02m 2 .28: + 002 u 50X "0 02m 3 u 3...: 28.0. .n A _o>x22.<0§& "a max—m .n u .25: 28.0. .n A _o>§2.m8£§.m E 28.0. BE:2.<0..£§A A n E 22.3.. Exaggeon 5. ...... - 8.82 58.3. . 2...... n u 00.2220 ... a; u 340% 052 u $0402 «$00.2, 05. 00320.. «0 8...: 025 E... . 2:0:«90050E00500883Wo580. 28.0. m uv P2000 E = ":13: 0250 P203 2. .0 E4004 m04m .3044m> £0400 .. 6.02.820 .0250: .0205 mm 4— mk<004 N040 g3 m0400 5?... .600. .o._.00> 6.0.002 .O> .CX .Cmag 00:0 44<0 . 2822.58 83. 2 .22 x 2.. 2232.0 . o bags—HHMOQ E000 "2;: 0250 P205 an 4— P5004 . + F2000 u H2000 5N u mm<0mm ...: 02m ... ..mmmmefimogufi u .0. sz. .... 0 30...... ... 147 §~§F v FZDOU QZ< 920mm Av hm E moo..— ACN A; .OX ..HZDOUVSQQPZEA 4.7.0 “8.4.1sz oi 2: 2 88¢ . Bu: 2: .8 5.8 93 action 30: 05 :5 out? . =5an nun—2m Aavmmé \ cart u E .mvhega 259mg \ 36%": u E .9th avg u a .OHEQ AEHOQX u A: .OHQXQ 22% as. 25% .o ”8.: 32. «5 8 . _ HXNZ a A + Chegfl u a ign— a A + CFEOQXQ u a dHQPOn—XQ a ._ + :EQ u a .OED a J + :59 n a 62.39 N 09 o 0 ~ m2 42% as .33 .o 82.: 82. 28 as 058$ . AA: .OVEQ .. o. - a .GEOQ>Q .. Em + a .thega ... Qm - E .mvhegn . 00 c AWN \ 652:6 + EVE u 962 2: .oVHeOenQ .. a. - a .SHQPODxQ o fin + a .NVHQFOQXQ .. o6 - E .MVEOQXQ _. 00 .. Sam \ 85086 + Ochoa n avg n: sz A§O> .EAOX 56> A5X§4<3MUNIU 4120 aZBOMm o fizz u XZOm + a; n a; tZBOmm . sz .. XZOw + 25% u 96% 208 u >28 2mm... o u >28 5 208 u 228 28:. o u 228 "a $99 - 9528 u >28 $902 - €528 u x28 :82. 52.522. 3% . A8 .ovéfl 5 a. - A: .SHEQ ... hm + a .NVEQ .. o6 - a .mvhan— . 00 .. 3N \ 8525.5 + a; u a; a: .BHQXQ a a. - A: .CHQXQ .. Em + 8 .NVHQXQ . o6 - a Kuhn—ND . We . 3N \ 8525C + 96% u SEX .252 059 . 28¢ _ n .5225 53m $39 .3402 25> 252532086 4.20 298 . ozm . a + 25> n 8; 29v. .. 922 . a + a? u 252 .3252 535853 5. 25 - :28: 5852 . 28¢ a n 5223 a a; u §O> EVK u tau—OX 5:023 was .8288 .3 329, 30: . 05 Ba 9 352: €8.33— 253‘ .820 5:5.“ 2: 8: . mam I-llllllll"‘l‘lll'l‘ll‘lll’il'llr‘i ‘ 35sz z: x as 2% sea. as EC .. 148 X0m§§ £5 £5 92m n: 92....— §O>ua> 228— At>mouva>m~ a»? 59.8 8 as 32 0.25.. a 5.8.2. > 0“3.2.0. Eflzw EAOXuaX 2822.82 ASAMO _ VSCE .030 8083 .0 Q0. 32 0.02:2. a 20:02:. X 09.2.0. A§O> .EAOX J; .33 33208.6 mDm wDZNSmmU 23¢ .... u m>mMZ~ mg LOO..— 8 £223.50 3 >8. >5 82n— - 02300 8: 5mm :< .. p.255 .. .. 2.2—mm .. .. F253 .. .. H235 : : 2.2—mm .. 3 H235 N2 zgm o ZEUm ”bu—gmugm 02.580 8.. .55 .23 ~02 Moo—U . $3282me 232 .60qu 2:2: 80 05 9 580m . & 02m ..0.. 0 23mm 20896: max? 200‘. 00 .-----v 2.528 s 0 322 A...... >20: MNK BOO; ..>=a§8=m 32.258 .5822 2F. .225 E18 .3039 20.50 a .... M.,—2000 mmmm mmmm mama mflm ..0.. 0 58.5885: 553 .80.. 00 ..-..3V 0:52:00 8 U 395 5...}: EMA a .2. MESS ..zaaéem 3.553... .5322 .. 2.2.2.. m .n 82.004 mama 2%? 9208 u >2 5 max—m E 2048 Any—(Eamflucdng a0 03 2.920 05 9 8808.23 05 82.885 . N.» mde 205652335830. 149 ngmRH mam mDm 92m A§m0U u $MoU .E «300 .UZHMSHDZBZ. 534023. 2.02 H r0085 20352 . 82 .822. 3.5. 28:53— ..H 83¢ ”0053‘ H .528 05 20 80:3 . 05 2* owammoE a «22%? 25:03:» “BF "noun—tuna . 280sz20 3,52 5322 . XOmOmZEw—Q mDm mDm 92m A§m0U u $MuU u 405—8 .... u am? on n «0482 VN u obBOMm ~N u $30”: v u $408 Z<>U E 238 .UZ—dlEDZm—z. ”mm—34025. o 802 . "E0252 20352 . 82 .322 ”3.0 . cage: 9 .30.. 55.2 . .528 05 .20 58.3 . 2: a 0938:. 05 Ego—o 95.55% ”E Bitumen . 208272530 "252 535 . 150 0202 . r0085 20352 . 8.2 .822 30 . 282302 2. 2802 20223 . "202222809 N 8222220 352 .5222 . G2<2mdm dgza $222520 29¢ N-< 2.29.229 20523.2 922 3ND .. $2 .. N300 ... $290009 . fi¢20m n 2829220 922 u 2.0.9 922 u :0 329420 202.0292 N-< 02wn—m9 20m 922 A$m0<2 .$20<2 .$m202 .$2>.H $2224.22 .2422: $3022 .$.._002 $302.9. .$900d30929>»m2<2 30 290. mug 72.852 c u $m0<2 2992 u $20<2 2.9.2.23 u $m20n~ Loco: 222 - 292—2225 20320825 2:20:00: u 51—223 as u $9002 2 u $3022 N u $302.9. n u $9004 30 2<>0 .2222? 2800 6 222202 3% n .5202.— z<>0 u N9200<2 2.9.2.23 u «920202 2992 u 9Z00<2 2.2.223 u 920202 029.2(2022—2. "2909025. 0 8oz . ".0322 8252 . 82 .392 "3.0 . 282302 2. 2302 uo£2< H .2202. 22:2 05 822—822 02220.52» «29. ”20232899 H 222220 "252 5.522 . o 151 0202 H 2002222 203.62 . 0202 "302220. 0202 "32022 H .35 N 2020502 .2. .2802 ”205022 H .5283 H E2220 .052 .5222 . . 2.22 -009 m< O>2 .222909 m< OX2 2..—2309 m< C2.09> .222009 w< 02.09% .222909 m< O> .222009 m< OX .222909 m< 0299922 .5 E2220 20w 29m 922 a n 2208 2.223 2002 22 022 u: 3 Eu“ 2 .a 2.2002 2.. .. 2.2222 cm 22 2.2002 22 022 .2200: u «25.22.22 2 n 2200 22222. ..>: N 358209 22 ..2.. u 322223.00 02¢. .22.. u 32223.0: 222:? 2002 22 2.. 222 22.0 .2. 2.23 2% .0: 5222 2 .a 2.2002 00 :23 u a“ 2.36 26222» 20200 232 2 n 2200 .220... + 22522.22 ... 222222222 .022... + 2222.22.22 n 22222.22 20.: 2222. 3200.. n 2222222222 22 22E .... 0 22224222222 22 2— 922 .... n 2222222122 ”202.322 2.2222 n .3 2.2002 :28. 20 22308220 22220 on 2222 32.22 0:2 .. u “2022.322 ”2026222 2.2222 n dm 22.42002 x2222 0:2 22:22 .. n ”2042322 2222. a A 22222222220222 .2 202027223 2.22.0 $222202 n «2222222 «222292 ...: 2 2.3229 an .NN 222.00..— 2<>0 .2222? 20.200 2.. 28223.22 22 8 550 252 22 2.250 22. 9.2.. 2.2222 2<>0 250% 2800 n .NN 22.22002 .... u n222292 2020222229 2.2220 09 cu2209 072.2(29222. u2932022”. .238 8% a: a 2. 20an 10:2...“ a . 5233 028 £33 :6 5; 56:3 05 83315 . pzummm—Bmag u 3M . FZUMNmEVX u «NED . 28.: 539232 uv qummem E . 25.5. N u Zoggm n: . E sz 5 u 3mg mam AER JE .nNm £1: .aaqmmgm n a; ZESAagfin—ué—zvaa 152 .3228 .85.} ca. 5233 088 cam—an.— bma. 03:8 05 833:5 . n: 92m N u Eh. mam — H ER 28¢. 89E:Z.<8=~flum HV 2. n: a 92m $255055 n .3528 N u EC. mflm £85355 u “5.23 _ u at. 2%... 352.535 uv n ”a 5.323 .1. *Nfl Osman—(x u 3M SHED u a n: 92m 5 u ...—Egtm mam—m QNm 42m .tefibgtmm n zsgafl ZmE. 8 A $55 QZ< 5:35—52 v 3.39 an 60—0339 iota—Em 03. . :853 028 £83 you 53 sou—.3 05 Sago—«U . Cayman—é u aNm 5523 u *3— .FEG u a a 83:56 €5.82 83 as H 93 u 0.0% 503.3 088 2: v5 _. 0.0% . as H 0.2:... =823 88. Es 2.. 32:26 . n. < Axum—B + *EBO u firm—Q N 15; - Garv u *NnE—n; N < 25% - 530 u EON .H 33.3 2. . _ 225g :82»; 853% 39 «a 0:36 . 2220:": gage—"2M8 2..—.sz 8 u 9.0: 8 n CAKE 5&232 DH m n 2. m2 153 a 92m 8 52958559502 u «Q .365 E .8 age . 2mm... .... 0 azofibm a gmzaxmwfia u “20.55 3.3: «mug—wane 3% 683 z....._..i!.:.. . a>mv~gmm + ABE H CO?”— aXmMOPmm + 553 u 583 N < 59x: \ Raké i 32 ... tUm~> ... a5 ... 3v- u n>mMOPmn~ N < max: \ AAEVHOQX ... 32 ... “63> u *5 ... mg. n «XNMBmm §§a>4oE§mBz u 6m; 09.8 wan 38$ 3.: «8.3m 05 Si . a>§om + EVE u SE 3E>zoo \ $5280 .. Saga—OESMBE - ..Eme _. a < :93: . as . 396v u nab—cu 9:5: 9 9.5: 52.8. n < ”88_ u 6,5528 9822 u 392 ~<§>8 a». 398° n .5208 5 s. u :96 £5» 3 8.. nee 2.. 2E . 2. mez ...: 92m 35H” \ 55> - Gut _. a; + ac?“— u cc: 3.99 \ 25X - 5.va .. EH95 + chm u SSE = 22.2 8 58:329. 85 > as x 2.. 32:25 . gammy—m + §é.§ a»: s .Qoaxeo a»: 582 _. EVE u SE .mzoflpa a»: s _~<§>so a»: .88_ .. EVE u SE & 92m .53 n... u 382 max; on am 8%. sz. an n 3 a a 92m .3 :82 ”mm? .953 2 ..3 $53 d .2 848 t o... a u d «8 3 3 "- ”ma; mam 3,58% a:§.¥= @283 5:3 >639 «38 x. ”E 95.. 52.. E «38 8 .2 8200‘. and—Bum u..逧¥.¥.. cza: 5:: 3345 «Sou w. an «an: .253 8.53 «38 R .2 @203 320m u=§.¥ 025: .955 3349 «Sou r 5:20.. 52.. E3 «38 8 .2 353 EEEE §;. 025: .555 334m» «38 r. sea... as? .8 5? Eva B53 ”.38 a .3 8.83 33% 3523:; 025: fizz: 334m» «38 r ”83m 33 9339.. 5:3 2 .2 E53 BE? «38 z u 334m» 2 u BE? .55 2%. m .2 $63. 29:. _ u 8.5m & a 9m _- . mas—u u ”3...” m as». 25 28¢ 2. n max E —MM qI-fl 155 282 H ”Ema 535% . 0:02 ”3:95” 252 “3:9: M £5 H 5330M F “Sun ".8534 H Eonmflofifl H E3 3.52 same“. . «is mam mDm 02m nu 02m x0m224m m0400 an .o— @5004 .. soabcoc B 8 863"— me 89:52.. .95... n .2 353 mam .853 «38 2%... _ 0 too "a 4ne4<>4§z=m004 nan—2m. 4u94<>. mm4m. nun—ZN us .. P255 8 .NN P5004 68.8 2. _ 8253 .328 £35 5 3 .35 3.5.. 4.2:... 256 .3348, «Sou o. a" MEGS mfim r. .. ...EE 2 ....N @284 r. .. Ema on .2 MEGS E ozm ~ u :30 ~ u 32> sz Lr. n @6330: a ..z: u 358203 02¢ ..>: u Aa§m<03 a? @004 mm “: ”47: $30 0.4. an? =o> 00.. 5.424 2 .MN B3004 00 :2: H mm Z<>U .3044m> £0400 2mm: .... u ammmnsm M0 o u .Em Ema 4 u 044$» ”Em u EEC. 2mm; 85m nv ”Em DZ< c A ENE—3m E Anxgma> u .me3m 23: .... Av ”Em "a . ”Em u ”:5ng ”gm ...: u S2 0n .NN P5004 z<>0 .mp5? M300 3. Saga 3 9 855 .o 3:52 2:. cam: .52.— n .NN B<004 z<>0 .3044m> M0400 .... u “Em 00 .... n ”MEm 156 4% 495. £94 £34 inc Swan—m 2052B 2062:"— 02m 33% \ azoo . :+m_ . .2 u .2 2+8 . 332.: .... .2. Rn. < ass - G. < :93 ... Rn. < 320 - G. < 34 .8458 m< Ox 4.4320540 $748255 55 204.4023 02m "44 02m 5 u Sun—mama mw4m 42.8. s .zTEE :3 -:o0 . 48084 . 4432mm: + *m442mmh _. t<42~4mb ... 35208 n Ewan—.4 SE .. g . axon.— - E 5: . E 1388 . :5. .. é u .3.sz a < 3280 \ $200 . 3208 - £28 \ 3.280- n 842mg 4:28 . 3208 4 £28 _. *3 . tans . s u .3sz £2 . v + .5. . 3 4 £28 . fix . 3. . 3205-0 n 3828 £4 . Egg . :5. u 328 3: .. £34.55 + 4 u 328 Q: . E068 - _ u :28 ~§§+N