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ABSTRACT

COMPARATIVE STATICS UNDER UNCERTAINTY FOR DECISION MODELS

WITH MORE THAN ONE CHOICE VARIABLE

By

Gyemyung Choi

Any economic decision model under uncertainty contains random and

nonrandom parameters, the choice variables, an objective function, and a

set of decision makers. Decision models can be divided into several

types according to how many random parameters, choice or outcome

variables they have. An important question in the study of economic

decision models involving randomness is how does a particular type of a

change in a random parameter affect the level of the choice variables

selected by a decision maker.

Using a general one random-two choice—one outcome(l—2—l) model, we

investigate the comparative static properties of three types of changes

in randomness: simple increases in risk, relatively strong increases in

risk, and first degree stochastic dominant(FSD) shifts. Several

theorems are presented giving conditions on the economic model and risk

taking characteristics of the decision maker that are sufficient to

obtain unambiguous comparative static results for the three types of

changes in randomness. A diagrammatical method is introduced, which can

deal with corner solutions and may have a pedagogical value.

Specific two random—two choice-one outcome(2—2-l) models are also

considered, but only modest results are obtained. The 2—2—1 model is

quite difficult to analyze because of the problems of dealing with both

the joint cumulative distribution function and two first-order

conditions. Finally, we examine a specific two random-one choice—two



outcome(2—l-2) model including cases where the risks are not independent

of one another, and present sufficient conditions for signing the

effects on the choice variable of an arbitrary Rothschild and Stiglitz

increase in risk and a FSD shift.
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CHAPTER ONE

INTRODUCTION

Almost every aspect of economic behavior is affected by

uncertainty. It is widely believed that the underlying determinants of

supply and demand have significant stochastic components, and the number

and arrival times of customers at a store are stochastic. As would be

expected, human behavior has adapted to uncertainty in a variety ways.

Insurance, futures markets, and stock markets are three of the most

important institutions that facilitate the reallocation of risk among

individuals and firms.

A theory of choice under certainty does not provide an adequate

explanation of an economic decision maker's response to a stochastic

environment. For example, it cannot explain why some people buy a

lottery ticket or insurance. Therefore, a theory of choice under

uncertainty is naturally needed. Any economic decision model under

uncertainty has several components: 1) the random and nonrandom

parameters, 2) the choice(or control) variables, 3) the objective

function, 4) the set of decision makers.

Decision models which include random parameters can be divided

into two types. One type, called specific models, are constructed to

explain a specific economic phenomenon. The model structure and

variables have a specific interpretations. Another type, referred to as

general models, are formulated to include many specific models as

special cases. General models are usually more difficult to analyze

than specific models.
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There are two important comparative static questions in the area

of risk analysis. The first one is concerned with determination of the

effect of a particular type of change in randomness on the expected

utility of a decision maker. The second one is concerned with

determination of the direction of change for choice variables selected

by the decision maker when a particular type of change in a random

parameter occurs in an economic decision model. This paper deals with

the latter question.

There are many types of changes in randomness whose effects can be

analyzed. For example, an increase in the first two moments or

variations in the maximum and minimum value of a random variable are

types of changes in randomness whose effects may be examined. Also,

increases in risk in thefiRothschild and Stiglitzmsense or first and

 

 

second degree stochastically dominant shifts are types of changes in the

random parameter that can be analyzed. Various groups of decision

makers may prefer one type of change in randomness to the current

situation, but another group of decision makers may not.

There are also several assumptions that can be made concerning the

objective function. Under the expected utility hypothesis, the

individual, when faced with alternative risky prospects or lotteries

over a set of outcomes, will always choose that prospect which yields

the highest mathematical expectation of some von Neumann—Morgenstern

utility function u(-) defined over the set of outcomes. Assuming

utility depends only on one outcome variable, denoted 2, then the

individual's problem is to choose the choice variable to maximize

a-._ _._ _

Eu(z), where z usually depends on random parameters, choice variables,
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andFawsetmofwngnrandom_parameters. Some conditions concerning the

function 2 are often needed in order to prove comparative static

results.

Finally, there are many types of decision makers. For instance,

one group of decision makers prefers risk, but another group does not.

Even if individuals in a group of decision makers are the same in the

sense that they dislike risk, each individual's preference for risk can

differ. Thus, decision makers are grouped according to their risk

taking characteristics using such assumptions as decreasing absolute

risk aversion.

An influential theoretical contribution to risk analysis is found

in a pair of articles by Rothschild and Stiglitz[1970,l97l]. R—s

develop a general definition of an increase in risk by specifying

conditions on the change in cumulative distribution function of a random

parameter, and show that a R—S increase in risk reduces expected utility

for all risk-averse decision makers. Also, they use a general decision

model to analyze a risk—averse economic agent's choice's respond to a

R—S increase in risk.

At about the same time, Sandmo[l97l] develops a mean-preserving

linear transformation of the random variable to represent a particular

type of an increase in risk. Using a specific rather than a general

decision model, he examines the effect of this increase in risk.

Sandmo determines the effect of the risk increase on the output decision

of a competitive firm exhibiting decreasing absolute risk aversion

(DARA). Other specific models are presented at about this time by

Arrow[1971], Fishburn and Porter[1976], and Mossin[1968].
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Most papers dealing with comparative statics under uncertainty

assume that the first—order and second-order conditions are satisfied to

guarantee an interior or a bounded solution. Recently, Dionne,

Eeckhoudt and Gollier[1991] address the issue of a corner or an

unbounded solution. They emphasize that the assumption of an interior

or a bounded solution is quite restrictive and may rule out some

interesting cases. This is discussed further in chapter 2.

We use only general decision model formulations, beginning with

Kraus'[1979] decision model. In this model, utility depends only on one

outcome variable which in turn depends on one random parameter, a choice

variable, and also a set of nonrandom parameters. In this model it is

assumed that the agent chooses a to maximize Eu(z(x,a,A)). The outcome

variable, 2, depends on a random variable, i, a choice variable, a, and

a set of nonrandom parameters, A. We call this model the one random-one

choice-one outcome(l-1—l) general decision model.

Specific models which are special cases of this l-l-l model

include the following. One is the Sandmo model of the competitive firm,

in which 2 takes the form z(§,a,A) - x-a - c(a) - A, where i is the

price of output, a is output level, A is fixed cost, and c(-) is a

variable cost function. Another is the standard portfolio model

analyzed by Arrow[197l] and Fishburn and Porter[1976]. For this model,

z(i,a,A) - Al-(a-(i — A2) + A2), where i is the return to a risky asset,

a is the proportion invested in the risky asset, and A1 and A2 represent

initial wealth, and the return of a riskless asset, respectively.

Many researchers have analyzed 1-1-1 models,.but only a few have

considered two choice variable models. Batra and Ullah[1974] examine a
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competitive firm's input decisions under output price uncertainty for

the two input case. Feder[l977] considers a general decision model

which is developed to include in it many economic decision models

frequently encountered by economists. He does not, however, investigate

the problem of determining the direction of impact on individual choice

variables, except for the one choice variable case. Feder, Just and

Schmitz(FJS)[1977] investigate an international trade model with one

random and two choice variables, and Katz, Paroush and Kahana(KPK)[l982]

explore the optimal policy of a price discriminating firm which operates

under price uncertainty in one of two markets.

We use the following notation to represent the one random-two

choice—one outcome(l-2-1) decision model. Assume the agent chooses a

and 6 to maximize Eu(z(§,a,6,A)), where the outcome variable, 2, depends

on a random variable, i, two choice variables, a and 6, and a set of

nonrandom parameters, A. Batra and Ullah's model takes the form

z(i,a,6,A) - i-f(a,6) — Al-a -A2-6, where i is the price of output,

a and 6 are two inputs, Ai(i-l,2) represent the prices of the inputs,

and f is a production function. The price discrimination model of KPK

has outcome variable given by z(§,a,6,A) - §qu(a) + Al-Rz(6) - c(a +

6) - A2. In this case i represents randomness in market 1, a and 6 are

the firm's sales in market 1 and market 2 respectively, A1 represents

demand conditions in market 2, and A2 is fixed cost. In addition,

R5(i-1,2) is the revenue function of market 1, and c(-) is the variable

cost function.

Researchers such as Kraus[l979], Meyer and Ormiston [1985,1989],

and Black and Bulkley[1989] have exhaustively analyzed the general l-l—l
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model. The general 1—2—1 model, however, remains largely unexplored.

All 1—2-1 models in the literature, except Feder's model[1977], are

specific rather than general models. In its general form, the 1-2-1

model requires special assumptions to solve. Only by imposing a fairly

rigid structure on the general 1-2-1 model can the comparative statics

be determined.

The issue of a corner solution is more interesting in the two

choice variable case than in the one choice variable case. Assuming a

corner solution in a 1-1—1 model does not allow comparative statics to

be conducted for small changes because the only choice variable is

determined by the constraint. However, in a 1-2—1 model, because there

are two choice variables and one of them can be an interior solution,

comparative static analysis can still be carried out. The usual

algebraic method does not work unless the first—order conditions are

satisfied as equalities. That is the main reason we adopt a

diagrammatical tool in order to handle corner solutions.

In addition to expanding the number of choice variables, we can

expand the number of random variables. Radar and Seo[1990] extend the

standard portfolio model with only one risky asset by considering a

portfolio model containing two risky assets, but no riskless assets.

Thus, there is still only one choice variable. H—S avoid the subject of

stochastic dependence among risky assets, by assuming independence.

After examining the portfolio model with two risky assets and one choice

variable, they then extend the model to include n risky assets and nrl

choice variables but make little progress. Recently, Meyer and Ormiston

[1991] extend Hadar-Seo's portfolio model in an important direction by
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considering the cases where the two random variables are not independent

of one another. Also, Meyer[l99l] investigates an insurance demand

model with two random variables and one choice variable.

Each of these decision models is a two random—one choice—one

outcome(Z—l-l) model. A general form for these models assumes the agent

chooses a to maximize Eu(z(x,y,a,A)), where the outcome variable, 2,

depends on two random variables, i and y, one choice variable, a, and a

set of nonrandom parameters, A. Radar and Seo's portfolio model assumes

2 takes the form z(§,y,a) - a-i + (1 — a)-§, where i and y are the

returns to the risky assets, and a is the proportion invested in the

risky asset i. Meyer's insurance demand model has z(x,y,a,A) - (A1 - i)

+ a-(i - A2) + y, where the support of i is [0,A1], a is the coinsurance

rate, and A2 is the insurance premium.

Combining these extensions we have the two random-two choice-one

outcome(2—2—1) model. In it the agent is assumed to choose a and 6 to

maximize Eu(z(§,y,a,6,A)), where the outcome variable, 2, depends on two

random variables, i and y, two choice variables, a and 6, and a set of

nonrandom parameters, A. Specific examples of the 2—2—1 model include

the following models. First is the portfolio model with one riskless

asset, two risky assets, and two choice variables, where z(§,y,a,6,A) -

a-x + 6-y + (1 - a - 6)oA. In ths model i and y are the returns to

risky assets, a and 6 are the proportion invested in the risky assets i

and y respectively, and A is the return to the riskless asset. Another

example is Feder's general decision model where z(x,y,a,6,A) -

i-y-f(a,6) + g(a,6) + A. Again, i and y are random parameters, a and 6

are choice variables, and A is a nonrandom parameter. In this model f
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and g are real-valued functions of only the control variables.

Extension of either the 2-1-1 or 1-2-1 models to the 2—2-1 model

is quite difficult because of the problems of stochastic dependence

between random variables, and of two first—order conditions. Until now,

the 2-2—1 model remains largely unexplored and only modest results are

presented here.

Finally, Sandmo[l970], Block and Heineke[1973], and Dardanoni

[1988] examine a decision model composed of one random, one choice, but

twp outcome variables. In these models, the utility function depends on

two outcome variables, each of which in turn depends on one random

variable, one choice variable, and a set of nonrandom parameters. In

general form an agent is assumed to choose a to maximize

Eu(zl(§,a,A),zz(x,a,A)), where the outcome variables, 21 and 22, depend

on a random parameter, E, a choice variable, a, and a set of nonrandom

parameters, A. We define this model as the one random-one choice-two

outcome(l-l-Z) model. Sandmo's[l970] two period consumptionrsavings

model, in which 21(x,a,A) - a and 22(x,a,A) - E-(Al - a) + A2, is a

special case where i is the return to savings, a is the consumption in

the first period, and the nonrandom parameters A1 and A2 represent

initial wealth and the income of the second period, respectively.

The relationships among the models presented above are given as

follows. First, the set of 1-1-1 models is a subset of 1—2—1 models

because a 1-1—1 model can be obtained from a 1-2—1 model by simply

holding a choice variable in the 1—2—1 model fixed. The set of 1-1—1

models is also a subset of 2—1-1 models because a 1—1-1 model can be

obtained from a 2-1-1 model by assuming a degenerate random variable in
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the 2—1—1 model. In a similar manner, the sets of 1-2—1 models or 2—1-1

models are subsets of 2—2-1 models, and the set of 1-1—2 models is a

subset of 2—1—2 models.

This research is organized as follows. Chapter 2 reviews the

literature concerning the 1-1—1 model. Chapter 3 investigates a general

1-2-1 model and developes several theorems concerning the effects of

changes in randomness. A diagrammatical method, which handles corner

solutions and may have a pedagogical value, is introduced in that

chapter. Chapter 4 considers two specific 2-2-1 models but presents

only modest results. Chapter 5 extends a specific 1-1—2 model to a

2-1-2 model.



CHAPTER TWO

LITERATURE REVIEW

This chapter provides an opportunity to review the historical

background in this area and to present various definitions and results

which are necessary for chapter 3. We do this by reviewing the

literature concerning the 1-1-1 model.

In the 1-1—1 model, utility depends on one outcome variable which

in turn depends on one random parameter, one choice variable, and a set

of nonrandom parameters. In this model it is assumed that the decision

maker chooses a to maximize Eu(z(x,a,A)). The outcome variable, 2,

depends on a random variable, i, a choice variable, a, and a set of

nonrandom parameters, A. The essential feature of this framework is

that the contour map of the objective function u(z(x,a,A)) in i, a space

depends on the scalar-valued intermediate function z and is independent

of u.

This particular formulation has several advantages. First, in

this decision framework, utility depends only on one outcome variable,

2. Thus BFPPlfi‘Ii.9311113838}£19.19?“31‘3I}£1}£X.-9,f._BE.1...1}E7: pointed out

by Kihlstrom and Mirman[1974], are avoided. Second, the measures of

absolute and relative risk aversion introduced by Pratt[1964] and

Arrow[197l] and described below, can be used directly. Finally, in a

world of certainty, all decision makers select the same level of a.

To see this last point, note that if the random varible i is fixed at

x0, then all decision makers select a so as to maximize z(x°,a,A)

no matter what their risk taking preferences are. This allows the

10
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analysis to focus on the effects of randomness and risk aversion without

worrying about differences in behavior which would arise even in a world

of certainty.

Given the existence of a van NeumanneMorgenstern utility function,

Pratt and Arrow propose the function R‘(z) - — u"(z)/u'(z) as a measure

of risk aversion. The measure has several positive features. First, it

does not depend on which utility function is used to represent

preferences. Second, it is related to risk when the risk is small.

Finally, it completely and uniquely represents preferences. Pratt and

Arrow also talk about another measure of risk aversion RR(z) - z-R‘(z).

This is known as the measure of relative risk aversion. While it is

generally assumed that most individuals prefer more to less and are risk

averse(R* 2 0), further assumptions concerning preferences are gfiggg

needed in order to prove comparative static results. Nonincreasing

absolute and nondecreasing relative risk aversion are widely assumed to

be exhibited by individuals. Recently, the conditions of RR(z) S l or

RR(z) S 2 have been used.

An important question in the study of economic decision models

involving randomness is how does a particular type of a change in random

variable i affect the level of the choice variable selected by

a decision maker. This question has received much attention in the ,-

literature both in general as well as specific decision models.
__ , a”- a... N‘— y...

_. -—- w «.1.- W»-~wm. v‘~o “NHWWL-“fl'” "‘ ‘ .7 - ' \MNV‘WlwWM

 

Examples of general theoretical analyses are articles by Feder[l977], 1

Kraus[l979] and Katz[l981], Meyer and Ormiston [1983,1985,l989], Black

and Bulkley[1989], and Ormiston [1992]. Examples of analyses of

specific models are articles by Mossin[1968], Arrow[1971], Sandmo[l97l], /
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Fishburn and Porter[1976], and Cheng, Magil and Shafer[l987], to name .

just a few. We begin by reviewing the general model given by Kraus. g]

Kraus[l979] presents the general 1—1-1 model stated earlier and

shows that it includes many interesting decision models as special

cases. He first considers a special type of an increase in risk, termed

a global increase in risk or an introduction of risk. This is an

increase in risk from an initial nonrandom situation, where x - i, to a

situation when i is random with mean i. Kraus derives a sufficient

condition for signing the effect on the a selected by a risk averse

decision maker of this global increase in risk. The condition requires

that za be convex or concave in i and have an appropriate single

crossing of the i axis. Kraus presents the following theorem.

eo e : Assuming that decision makers choose a in order to

maximize Eu(z('x,a,A)) where u'(z) > 0, u"(z) < 0, 2x > 0, and z” < 0,

then all risk averse decision makers, when faced with a global increase

in risk, will decrease the optimal value of a if zm(2:0 and 2”“ s 0.

Katz[l981] provides a shorter proof of Kraus' result, and makes

the result and its application more accessible. Theorem 2.1 can be

adapted for other combinations of assumptions about z(x,a,A).

If 2" < 0, zax S 0, and 2m 5 0, then the random variable can be

transformed to y - - x and the theorem re-expressed in terms of y.

If zx > 0, zax:s 0, and zwu_z 0, then redefining the choice variable as

a - — a, the theorem can be applied. In a similar manner, if zx < 0,

zax a 0, and zaxx 2 0, then both the random variable and the choice

variable can be redefined. We shall restrict the discussion to the case
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where zx 2 0.

Other more general changes in the random parameter have been

considered. Rothschild and Stiglitz[1970] develop a characterization of

i becoming riskier for univariate probability distributions. They

demonstrate that the following three conditions on a pair of cumulative

distribution functions F and G with equal finite means are equivalent.

RSl: G can be obtained from F by the addition of nning; that is, there

exists a pair of random variables i and E with E(£|x) - 0 such that F

and G are the distributions of i and i + 2 respectively.

R82: Every risk—averse expected utility maximizer prefers F to G;

that is, if u(x)-dF(x) 2 L: u(x)-dG(x) for every concave function u(-).

RS3: G can be obtained from F by a sequence of one or more mean-

preserving spreads, where informally speaking, a mean-preserving spread

consists of a transfer of probability mass out of one region of the real

line to both the left and the right of the convex hull of this region,

in a manner that preserves the mean of the distribution.

These conditions are equivalent to and summarized by the following

definition. The characterization in definition 2.1, which was offered

as an alternative to the use of variance or standard deviation as a

measure of comparative risk, has led to the development of several'

powerful analytical results in the economic theory of risk under

uncertainty.

Definition 2,i: C(x) is riskier than F(x) if and only if

.&8 [C(X) - F(x)]dx 2 0 for all s and equals zero when s - B.



14

At the same time, Hadar and Russell[l969] address the question of

when F(-) is prefered to G(-) by all agents in some well-defined class.

The second definition of the R—S increase in risk asks exactly this

question for the case of the well—defined class being risk averse

agents. Stochastic dominance(SD) has been used to describe a particular

set of rules for ranking random variables. These rules apply to pairs

of random variables, and indicate when one is to be ranked higher than

the other by specifying a condition which the difference between their

CDFs must satisfy. First degree stochastic dominant(FSD) improvements

and second degree stochastic dominant(SSD) improvements are defined as

follows.

Definition 2.2: F(x) FSD G(x) if and only if F(x) - G(x) S 0 for all x

6 [0,3].

e t on 3: F(x) SSD G(x) if and only if];8 [F(x) — G(x)]dx S 0

for all s 6 [0,8].

After developing a general definition of an increase in risk,

Rothschild and Stiglitz[197l] use a general two argument decision model

to analyze all risk—averse decision makers' response to a Res increase

in risk. R-S demonstrate that assuming the agent chooses a to maximize

Eu(§,a), then um“ < 0 or um“ > 0 is required to predict the direction

of change in a selected by all risk-averse decision makers when i

undergoes an arbitrary Res increase in risk. Most of their paper

involves setting up several different problems in the literature and

asking when the conditions are satisfied. Because their model is a two

argument model, it is not reviewed further at this time.
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After presenting Theorem 2.1, Kraus[l979] also addresses the

question of how does a R-S increase in risk affect the level of the

choice variable, a, selected by a risk averse decision maker, in the

1-1-1 model. Unfortunately, Kraus was unable to answer the question,

seeningiy because the R—S condition cannot be generally satisfied. The

R—S sign condition for the 1—1—1 model requires that uz-zm + Zuzz-zu-zx

+ za-(uu-zxx + zxz-uzu) be signed. As long as interior solutions are

assumed, the first-order condition for the 1-1-1 model, Eu'(z)°za - 0,

implies that za must change sign. Hence the last term of this

expression is difficult to sign.

Sandmo[l97l] represents an increase in risk in a different manner.

He transforms i according to t(x) - i + 7-(x - x), where i is the mean

of i and a nonrandom parameter 1 is greater than or equal to one. This

represents a particular type of an increase in risk. Sandmo alters the

outcomes of the random variable i using a nondecreasing function t(x)

whose domain is all possible realizations of x. That is, each possible

outcome of the original random variable is mapped into a new value

thereby defining a new random variable. The transformation t(x) is

referred to as a deterministic transformation in order to distinguish it

from the stochastic transformation introduced by Rothschild and Stiglitz

[1970] in definition 1. Note that Et(x) - E[i + 1-(i - 2)] - i. Thus,

Sandmo uses a mean—preserving linear deterministic transformation.

Sandmo also linearly transforms i according to t(x) - i + 0, where 0 is

a positive nonrandom parameter, to represent a special type of a FSD

improvement in the random variable i.

Using a specific 1-1-1 model, Sandmo analyzes the effects on a of
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a global increase in risk, an increase in risk represented by an

increase in 1, and a FSD improvement represented by an increase in 0.

The comparative static results are all local, in the sense that the

results hold only at 1 - 1 or 0 - 0 and for small changes in 1 or 0.

Because the results are for a specific rather than general model,

details are not needed here.

In analyzing decision models involving risk, at least three

methods have been used to represent a change in random variable i.

These include changing the GDP for i, transforming i deterministically,

transforming i stochastically. Under quite general conditions the three

methods of representing a change in i are equivalent, and it is

primarily a matter of convenience as to which to use.

Meyer and Ormiston[1983] address the question of what conditions

on z(x,a,A) are required to derive determinate comparative static

results concerning the effect of an arbitrary R—S increase in risk on

the choice variable selected by all risk averse decision makers. While

Meyer and Ormiston answer the question, unfortunately, they conclude

that an arbitrary R—S increase in risk, or an FSD shift, causes all risk

averse decision makers to decrease the choice variable if and only if

the optimal value of the choice variable does not depend on the random

variable. Clearly, this is not an interesting case.

This negative result has one important implication for studying

comparative statics under uncertainty. In order to obtain interesting

comparative statics results, additional restrictions must be imposed on

the risk taking characteristics of the decision maker, the objective

function, or the type of change in randomness. This same conclusion is
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supported by examination of the literature. Invariably, restrictions

are made before the researcher is able to obtain interesting comparative

static results.

Although a global increase in risk imposes an additional

restriction sufficiently strong to yield determinate comparative static

results for all risk-averse decision makers, the added restriction is

rather severe, and limits significantly the situations to which those

results can be applied. Meyer and Ormiston[1985] extend the results of

Kraus[l979] and Katz[l98l] by developing a definition of an increase in

risk which includes a global increase in risk as a special case, yet

yields determinate comparative static analysis for arbitrary risk averse

decision makers. This type of risk increase, termed a strong increase

in risk, is defined as follows.

Definigion 2,4: G(x) represents a strong increase in risk from F(x) if

G(x) - F(x) satisfies

(a) f: [G(x) - F(x)]dx 2 o v s e [a,f]

(b) I: [G(x) - F(x)]dx - 0

(c) G(x) — F(x) is nonincreasing on (b,e), where the support of F is

contained in [b,e], the support of G is contained in [a,f], and

a S b S e S f.

The first two conditions simply require that a strong increase in

risk be a R—S increase in risk. The third property is the added

condition which identifies this particular type of risk increase, and

which allows determinate statements to be made concerning the effect of

a strong increase in risk on the choice variable Selected by a risk
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averse decision maker. Strong increases in risk transfer probability

mass from points in the interval (b,e) to [a,b] and [e,f], i.e.

outcomes which were previously possible become less likely, and other

outcomes either larger or smaller than previously possible now have a

nnnnggn probability of occurring. Thus, strong increases in risk

include risk increases from a risky position as well as from a no risk

position. Meyer and Ormiston present the following theorem.

Incoren 2,2: Assuming that decision makers choose a in order to

maximize Eu(z(§,a,A)) where u'(z) z 0, u"(z) S 0, 2x 2 0, and zm < 0,

then all risk averse decision makers, when faced with a strong increase

in risk, will decrease the optimal value of a if zw‘2:0 and 2”“ S 0.

Note that the restrictions on u(z) and z(x,a,A) in this theorem

are exactly those conditions determined by Katz[l98l] to be sufficient

for similar comparative static results for global increases in risk.

Thus, Theorem 2.2 is a generalization of Theorem 2.1.

Recently, Black and Bulkley[1989] extend the result of Meyer and

Ormiston[1985] by introducing a type of risk increase, termed a

relatively strong increase in risk. The relatively strong increase in

risk includes a strong increase in risk as a special case and is also

sufficient to sign the effect on a given the same conditions on u(z) and

z(§,a,A). Black and Bulkley define the relatively strong increase in

risk by using the ratio of probability densities. Their definition is:

Definition 2,5: G(x) represents a relatively strong increase in risk

compared with F(x) if

(a) I: [G(x) — F(x)]dx - o
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(b) For all points in the interval[c,d], f(x) 2 g(x) and for all points

outside this interval f(x) 5 g(x) where a 5 b s c S d s e s f, with

[a,f] being the supports of x under G(x) and [b,e] being the supports

under F(x)

(c) f(x)/g(x) is nonrdecreasing in the interval [b,c)

(d) f(x)/g(x) is non-increasing in the interval (d,e]

Conditions (a) and (b) are sufficient for G(x) to represent a

R—S increase in risk, and also to represent a strong increase in risk.

It is the case where b - c and d - e that is considered by Meyer and

Ormiston[1985]. The main result of Black and Bulkley is summarized in

the following theorem.

eo e 2 3: Assuming that decision makers choose a in order to

maximize Eu(z(x,a,A)) where u'(z) > 0, u"(z) s 0, 2x > 0, and zoa‘< 0,

then all risk averse decision makers, when faced with a relatively

strong increase in risk, will decrease a if zw,2:0 and 2mm s 0.

The result of 8-3 is exactly same as that of M—O, except that relatively

strong increases replace strong increases in risk.

Meyer and Ormiston[1989] observe that the literature concerning

the transformation approach to risk analysis has focused almost totally

on the linear mean—preserving transformation proposed by Sandmo, and

little has been done to explore the usefulness of more general nonlinear

transformations. M—O introduce a type of risk increase, termed a simple

increase in risk, which includes the Sandmo linear transformation as a

special case. The definition is given as follows.
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e 1 ti 2 6: The transformation t(x) represents a simple increase in

risk for a random variable given by F(x) if the function k(x) - t(x) — x

satisfies

(a) [0° k(x)dF(x) - o

(b) In" k(x)dF(x) s o Vse[0,B]

(c) k'(x) 2 0

The transformation t(x) is assumed to be nondecreasing, continuous

and piecewise differentiable. The nondecreasing assumption combined

with monotonic preferences for outcomes ensures that the transformation

does not reverse the preference ordering over the outcomes of the

original random variable. Meyer and Ormiston show that if the function

k(x) satisfies the first two conditions, then it reduces expected

utility for all risk averse decision makers. Thus, the transformation

can be interpreted as an increase in risk in the Rothschild and Stiglitz

sense. The third property, k'(x) 2 0, is the added condition which

identifies this particular type of risk increases, and allows general

statements to be made concerning the effect of a simple increase in risk

on the choice variable selected by a group of decision makers. The

simple increase in risk which is a subclass of a Res increase in risk is

carried out using a nonlinear deterministic transformation of the random

variable. As stated earlier, Sandmo considers a special type of the

simple increase in risk where k(x) - (1 - l) (i - x) and k'(x) - (1 — l)

2 0. We call an increase in risk represented by an increase in 7 nn

ingggnsg in 1. Meyer and Ormiston present the following theorem.

Thgoren 2,4: An economic decision maker choosing a to maximize
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Eu(z(§,a,A)) will decrease the optimal value of a selected when the

random variable is transformed according to t(x) - x + k(x) if

(a) u(z) displays decreasing absolute risk aversion,

(b) 2x2 0, zxxso, 2,0,2 0, and zms 0,

(c) t(x) is a simple increase in risk.

It is interesting to note that there is no relationship between a

simple and a strong increase in risk. Also, a simple increase in risk

requires more restrictive conditions on preferences and the objective

function, such as DARA and z”‘<:0, than does a strong increase in risk,

to derive unambiguous comparative static results.

Very recently, Ormiston[l992] observes that increases in risk

have been frequently examined in the literature, but general FSD changes

in i, using a deterministic transformation, have not been examined.

The definition and main result of Ormiston are given as follows.

Definition 2,2: A deterministic transformation represents a FSD

improvement in i if and only if k(x) 2 0 for all x in [0,8].

Ingnggn_2i§: Assuming that decision makers choose a in order to

maximize Eu(z(3’t,a,A)) where u'(z) _>. 0, u"(z) s 0, z" 2 0, and zm < 0,

then all risk averse decision makers exhibiting DARA, when faced with a

FSD improvement in 32, will increase the optimal value of a if zxx < 0,

zax z 0 and k'(x) S 0.

Sandmo[l97l] considers a special case of the FSD improvement in i where

k(x) - 0 > 0 and k'(x) - 0. That is, the FSD transformation used by

Sandmo is linear in i. We call a FSD improvement represented by an
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increase in 0 nn increase in 2. Cheng, Magil and Shafer[l987] analyze

the comparative static effects of a first degree stochastically dominant

shift in the distribution of a random variable in several variants of

the standard portfolio model.

All the above analysis assumes the first order condition is

satisfied as an equality. Dionne, Eeckhoudt and Gollier[l99l] note that

the assumption of an interior or a bounded solution can be quite

restrictive and may rule out some interesting cases. The following

example is given to highlight the issue. Consider a specific l-l-l

model, in which 2 takes the form z(i,a,A) - a-(x - A1) + A2, where i is

a random variable, a is a choice variable, and A1 and A2 are nonrandom

parameters. This formulation includes as special cases the standard

portfolio problem, the problem of the competitive firm with constant

marginal costs and the insurance problem; that is, A2 can be interpreted

as an initial endowment or a fixed cost, while A1 may represent either a

marginal cost of production, a sure interest rate or a marginal cost of

insurance. Obviously here 2x 2 0, when a 2 0, Zn and zxx are equal to

zero; which means that the outcome variable 2 is linear in a and x. The

utility function u(z) is assumed to be three times differentiable with

u'(z) > 0 and u"(z) S 0.

If we constrain the choice variable a to take values in the

interval [0,1], then a corner solution can be defined as a solution

determined by the constraint; that is, either a - 0 or a - 1 is a corner

solution. Similarly, if we assume that a takes values in the interval

[0,»], then an unbounded solution, a - w, may occur and a - 0 is

referred to a corner solution. Note that corner solutions are not
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unbounded but are ggnstraineg solutions in this discussion.

First, consider the case where 0 s a 5 1 and u"(z) - 0. Assuming

i > A1, then a corner solution, a - 1, occurs since the first order

condition evaluated at a - 0, Eu'(A2)(§ — A1), is positive nng the

second order condition is always ggzn. In a similar manner, when i <

A1, a corner solution, a - 0, occurs. If x - A1, then solutions are

undetermined. Thus, the set of decision makers exhibiting u"(z) - 0

should be ruled out for a unique interior solution.

Next, consider the case where 0 S a s 1 and u"(z) < 0. If i < A1,

then a corner solution, a - 0, occurs because Eu'(A2)-(§ - A1) < 0 and

the second order condition is always negative. However, in this case, a

unique interior solution may occur if i > A1. That is, the condition

x > A1 is necessary for interior solutions, 0 < a < 1. Suppose that a

decision maker is risk neutral. Then the decision maker will choose a -

0, when i < A1, while a - 1, when x > A1. Therefore, by continuity of

preferences, some risk averse agents with a relatively low risk aversion

(RA 4 0) select the same when x > A1 or x < A1.

In this chapter we have reviewed the literature concerning the

1-1-1 model to see what types of changes in randomness have been used in

either general or specific decision models. In the next chapter we use

a general 1-2-1 decision model formulation and consider the effects of

three types of changes in the random parameter: a simple increase in

risk, a relatively strong increase in risk, and a FSD improvement in i.

SSD shifts will not be explictly considered since they can be thought of

as combinations of an FSD and an MPC shift.



CHAPTER THREE

The 1-2-1 MODEL

3.0 Introduction

An important question in the study of economic decision models

involving randomness is how does a particular type of a change in random

variable i affect the level of the choice variable selected by a

decision maker. In the 1-1-1 model, the problems of dealing with two

first order conditions that occur in decision models with two choice

variables do not arise. Because of this, the 1-1—1 model has received

much attention in the literature both in general as well as specific

decision models.

On the other hand, the 1-2—1 model has received much less

attention in the literature. Several 1-2—1 models have been examined, —-

but only in the context of specific decision models and only with less

general changes in i. For example, Batra and Ullah[1974], Feder[l977],

Feder, Just and Schmitz(FJS)[1977], and Katz, Paroush and Kahana(KPK)

[1982] present such models and analysis.

These models analyze the effects of three types of changes in

randomness: an increase in risk represented by an increase in 1, a

global increase in risk, and a FSD improvement in i represented by an

increase in 9. The effects of more general types of changes in the

random parameter, for the general 1-2-1 decision model, have not been

analyzed. This will be done in this chapter.

We extend the 1—2—1 models in the literature by considering a

general 1-2—1 model, and by analyzing the effects of three general types

24
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of changes in randomness: a simple increase in risk, a relatively strong

increase in risk, and a more general FSD improvement. In addition, a

diagram method is introduced, which handles corner solutions and may

have a pedagogical value. The usual algebraic method does not work

unless the first order conditions are satisfied as equalities.

The issue of a corner solution is more interesting in the two

choice variable case than in the one choice variable case. Assuming a

corner solution in a 1-1—1 model does not allow comparative statics to

be conducted for small changes because the only choice variable is

determined by the constraint. However, in a 1-2-1 model, because there

are two choice variables and one of them can be an interior solution,

comparative statics analysis can still be carried out. All 1-2—1 models

in the literature so far assume interior solutions.

This chapter proceeds as follows. In the next section we first

review the literature concerning the 1—2—1 model and then discuss two

types of assumptions which make the 1—2—1 model tractable. Several

theorems concerning the effects of changes in randomness are developed.

Section 2 illustrates the use of our findings by extending a number of

published results. Section 3 examines a specific 1-2—1 model which

includes the Sandmo model of the competitive firm as a special case, and

considers corner solutions.

3.1 A Generalization

3.1.1 Literature Review

Batra and Ullah[1974] examine a competitive firm's input decisions u

under output price uncertainty for the two input case. For Batra and
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Ullah's model, the outcome variable 2 takes the form z(§,a,6,A) -

x-f(a,6) - A1-a — A2-6, where i is the price of output, a and 6 are two

inputs, Ai(i-l,2) represent the prices of the inputs, and f is a

production function. They analyze the effects on a and 6 of a global

increase in risk, an increase in 1, and an increase in 0. Batra and

Ullah find that if.aw - i-fiw > 0, then determinate comparative static

results concerning the effects on a and 6 of changes in randomness can

be derived.

Although the outcome variable 2 for Feder[l977]'s decision model

has a specific form such that z(§,a,6,A) - i'f(a,6) + g(a,6) + A, the

model can be classified as a general decision model because it does

include many specific models as special cases. Feder transforms the

random variable i according to t(i) - i + 1-(x - x), where i is the mean

of i and 1 is a positive nonrandom parameter. He then demonstrates that

an increase in 1 implies the R—S increase in risk. Feder analyzes the

effect on f(a,6) of an increase in 1. He also determines the effect of

an increase in 0, and a change in the nonrandom parameter, A. It should

be noted that even though Feder assumes a general form for the objective

function which includes more than one choice variable, he did not derive

comparative statics concerning the effects on the choice var ables, a

and 6, of changes in the random and nonrandom parameters, excgn; for the

one choice variable case. Interestingly, Feder does not consider a

global increase in risk, a change whose effects are usually analyzed.

Feder, Just and Schmitz(FJS)[1977] investigate an international

trade model with one random and two choice variables, in which 2 takes

the form z(i,a,5,x) - Si-[fm + 5 - 1,] + g(Az - a - A3-6) - A.-6.
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Here A2 is the fixed amount of capital, which can be used to produce two

goods, F and G, or to store F. f(-) and g(-) are production functions

for F and C, respectively. It is assumed that a fixed amount of F has

to be consumed. This is denoted A1. The amount of capital required for

storings F is proportional to the amount stored and given by A3-6. The

amount of capital used to produce F is denoted a. Then the available

capital for producing G is A2 - a — A3-6. A, represents the ratio of F

and G’s prices. The random variable i captures randomness in price of

F. FJS transform the random variable 2 according to t(i) - i + 7.(§ -

x) to represent an increase in risk in the R—S sense. FJS examine the

effects on a and 6 of an increase in 1 and an increase in 0. However,

they also do not consider the effect of a global increase in risk. Note

that 2“,, - A3'g"(-) < 0 is a characteristic of their model.

Katz, Paroush and Kahana(KPK)[l982] examine the optimal policy of

a price discriminating firm which operates under price uncertainty in

one of two markets. The price discrimination model of KPK has outcome

variable given by z(§,a,6,A) - §nR1(a) + Al-R2(6) - c(a + 6) - A2.

In this case i represents randomness in market 1, a and 6 are the firm's

sales in market 1 and market 2 respectively, A1 represents demand

conditions in market 2, and A2 is fixed cost. In addition, R4(i-l,2) is

the revenue function of market 1, and c(-) is the variable cost

function. KPK assume that i can be written as: i - i + 1-? where E(€) -

0, E(Ez) - l, and Prob(£ > - (i/1)) - 1. They analyze the effects on a

and 6 of a global increase in risk, an increase in 1, and an increase in

a. Changing 1 is a mean—preserving linear transfomation which is a

special type of a R—S increase in risk. An increase in i represents a
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special case of a FSD improvement in i.

These models are all specific and only consider quite restrictive

changes in the random parameter. This observation provides us an

impetus for this chapter. Decision models with two choice variables are

rather difficult to analyze because of the problems of handling two

first order conditions. To formulate a general 1-2-1 model, we look at

these four specific models to ngk what general structure makes

determinate comparative statics possible.

3.1.2 The Comparative Statics Problem

In the general 1—2-1 model, utility depends on one outcome

variable which in turn depends on one random parameter, two choice

variables, and a set of nonrandom parameters. In this model the

decision maker is assumed to choose a and 6 to maximize Eu(z(§,a,6,A)) -

fl: u(z(x,a,6,A))-dF(x). The outcome variable, 2, depends on a random

variable, i, two choice variables, a and 6, and a set of nonrandom

parameters, A. It is assumed that the random variable of concern, i, is

defined by a CDF, denoted F(x), with support in the interval [0,8].

This formulation includes all four specific 1—2—1 models which were just

reviewed as special cases.

The utility function u(z) is assumed to be three times

differentiable with u'(-) > 0 and u"(-) < 0; thus, the decision maker is

a strict risk averter. The function z(§,a,6,A) is assumed three times

differentiable with zm < 0, z“ < 0, and zm-z“ — 20,62 > 0. This

condition on 2, combined with u"(-) < 0, ensures that the second-order

condition for the maximization problem is satisfied. To simplify the
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discussion, we will focus on the case where 2x 2 0. This assumption,

combined with u'(z) > 0, indicates that higher values of the random

variable are preferred to lower values. Initially, to focus on interior

solutions to the maximization problem, it is assumed that both z“ - 0

and z‘ - 0 are satisfied for some finite a and 6 for all x e [0,B].

Given these assumptions, the first and second order conditions of

the 1—2-1 model can be written as:

H1(a,6,A) - aEu(z)/aa - Eu'(z)-za - f0” u'(z)-za-dF(x) - o

H2(a,6,A) - dEu(z)/a6 - Eu'(z)-z,, - f0” u'(z)-z6-dF(x) - 0

H11 - E[u'(z)-zm + u"(z)-20,2] < 0

H22 - E[u'(z)-z“ + u"(z)-252] < 0

1h; - E[u'(z)~za5-+ u"(z)-za-za]

H "' l‘111'szz ‘ H122 > 0

The comparative static questions addressed here are how do the

optimal values of a and 6 change when random variable i undergoes a

simple increase in risk, a relatively strong increase in risk, or a FSD

improvement in i. In its general form, a l~2—l model requires a fairly

rigid structure for the comparative statics to be determined.

To see this, suppose that a relatively strong increase in risk

occurs. Then, by using Cramer's rule, we have the following comparative

statics: aa/8(r.s.) - (l/H)-[ - (3H1/6(r.s.))-H22 + (8H2/8(r.s.))-H12 ],

36/6(r.s.) - (l/H)-[ - (aHz/8(r.s.))-H11-+ (aHm/a(r.s.))-ifiz ], where

aHL/a(r.s.) and 6a/6(r.s.) represent the effect of a relatively strong

increase in risk on H1 and a, respectively. Notice that even if the ~—~«

signs of aHL/a(r.s.) and aHz/6(r.s.) are known, this is not sufficient

for deriving unambiguous comparative statics because H12 can be positive
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or negative. For example, suppose that aHL/a(r.s.) < 0 and aHz/6(r.s.)

< 0. Then, we have unambiguous comparative statics if H12 > 0.

Assumptions such as 8Hz/6(r.s.) - 0 allow the comparative statics

to be simplified. Given aHz/a(r.s) - 0, aa/6(r.s.) has the same sign as

8H1/6(r.s.) since H22 < 0. Similarly, 86/8(r.s.) and 8H1/8(r.s.)«H12

have the same sign. This is one of the conditions which are present in

the specific models reviewed earlier that makes determinate comparative

statics possible. The condition zaxz- 0, which is satisfied in KPK,

simplifies the analysis. It implies that 25 does not depend on the

random variable; thus, the condition H2 - 0 is equivalent to 25 - 0.

That is, a change in i does not affect the condition H2:- 0.

Another condition, 2,, - (zax/zax)~z,,, is met in several of specific

1—2-1 models in the literature. This is the case for the Batra and

Ullah[1974] model, in which H1 - Eu'(z)-za - Eu'(-)-(§-fg - A1) - 0 and

H2 - Eu'(z)~za - Eu'(-)'(x-f3 - A2) - 0. Because fg/fg - Al/Az, this

implies that (lax/26015 - (fa/f6)-(§-f5 - A2) - 3':on - A1 - Z“. The

condition is also satisfied in Feder[l977] and FJS[1977]. In order to

make a 1—2-1 model tractable, we shall assume either that 2,, - (“x/z“)-

26 where (lax/25x) is nonrandom, or that 26,, - 0.

3.1.3 The Comparative Static Results for the Case: 2,, - (zax/Zax)'za

Even though there are two first order conditions, H1 - 0 and

ifi - 0, in the 1—2—1 model, notice that looking at either of them

individually is the same as looking at a 1-1-1 model. Therefore,

Theorem 2.3 - 2.5 derived for the 1-1-1 model by Black and Bulkley

[1989], Meyer and Ormiston[1989], and Ormiston[1992] can be used.

First, we deal with simple increases in risk.
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Let H101,6,A,0) denote the derivative with respect to the choice

variable a of expected utility when the random variable is transformed

according to t(x) - x + 0-k(x), where 0 s 0 s 1; that is,

ifi(a,6,A,0) - if u'(z(x + 0k(x),a,6,A))-za(x + 0k(x),a,6,A)-dF(x).

Note that H1(a,6,A,0) - 0 for the initial optimal values of a and 6.

goroilan Li: 6H1/60I9-0 < 0 when the random variable is transformed

according to t(x) - x + 0-k(x) if

(a) u(z) displays DARA

(b) 2x20, zxxSO, zuzo, andzwso

(c) t(x) represents a simple increase in risk

Egngf: The proof of corollary 3.1 is given in Meyer and Ormiston[1989]

and is simply sketched here. For the initial optimal value of a and 6,

inn/2mg.o - In” [u'(z)-2,, + u"(z)-za-zx] -k(x)-dF(x)

- f0“ u'(z)-zu~k(x)-dF(x) + f0l3 u"(z)-za-zx-k(x)-dF(x)

M—O show that under the conditions of the corollary, 6HL/60Imm < 0.

Coroilnry 3,1': inn/aolwm < 0 when the random variable is transformed

according to t(x) - x + 0-k(x) if

(a) u(z) displays DARA

(b) 2x2 0, zxxSO, 26x2 0, and Zaxx-S 0

(c) t(x) represents a simple increase in risk

Theogem 3,1: An economic agent choosing a and 6 to maximize

fl: u(z(§,a,6,A))-dF(x) will decrease the optimal values of a and 6 when

the random variable is transformed according to t(x) - x + 0-k(x) if

(a) u(z) displays DARA,
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(b) 2x 2 O, z“ - O, zax, 26x 2 0,

(c) z, - (Zea/25045 at H1 - 0 and H2 - 0 and 20,, > 0,

(d) t(x) represents a simple increase in risk.

m: If za - (zu/z“)-za is a characteristic of the model, and zax and

2“ do not depend on the random variable, then H1 - (zu/z5x)-H2 at Hi -

0. Therefore, aHZ/ao - (zax/zax)-6H1/60. By using Cramer's rule,

aa/ao|,-o - (l/H)' [-(6H1/60)-H22 + (8H2/60)-H12]

" - (1/H) ’ (3H1/39) ' [H22 " (lax/lax) '312]~

Simplifying the term [H22 - (zax/zax)-H12] using za - (zu/zax)-z,,

[H22 - (st/Zax)'H12] - E(1/zax)-u'(z)'(zaxoz“ - zax-zM). Substituting

this into aa/60|9-o, 60/60|9-0 - - (l/H)~(6H1/60)-E(1/zax)-u’(z)-(zaxz“ -

25x2“). By corollary 3.1, 6H1/60|9-0 < 0. Thus, under the conditions of

the theorem, aa/afllww < 0. By using a similar procedure, we can show

that 66/80|9=o - - (l/H)-(6H1/69)-E(l/zax)-u'(z)-(zaxzm - zaxzaa) < 0.

Theorem 3.1 gives conditions sufficient to yield unambiguous

comparative static results concerning the effect on a and 6 of a simple

increase in risk. Condition (a) restricts the set of decision makers to

those exhibiting DARA. DARA is generally thought to be a reasonable

assumption concerning preferences. Condition (b) restricts the model.

Note that zxx‘< 0 is allowed in the 1—1-1 model, but in the 1-2-1 model,

zxx - 0 is required to make (lax/25x) nonrandom. Also, zm - 0 since 2,“

- 0. Condition (c) further restricts the model. The condition that z“

- (Zn/25,016 is assumed to make the 1-2-1 model tractable. The

condition za52> 0 is added to allow determinate statements to be made

concerning the effect on a and 6 of a change in the random parameter.
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Condition (d) requires that an increase in risk be simple. Even though

a simple increase in risk is a subclass of the R-S increase in risk, it

includes the Sandmo linear transformation represented as an increase in

1 as a special case. While these conditions are restrictive, they do

include the models presented by Batra and Ullah, Feder, and FJS as

special cases.

Now, we deal with relatively strong increases in risk. It is

interesting to observe that since Kraus[l979], the CDF approach has been

used to analyze the effect of this type of increases in risk. Let

aHL/8(r.s.) denote the effect on H1 of a relatively strong increase in

risk; that is, aHl/6(r.s.) - f0“ u'(z)-za-d[C(x) - F(x)], where G(x)

represents a relatively strong increase in risk from F(x). For the

optimal value of a and 6 under F(x), H10:,6,A) - fl: u'(z)-za-dF(x) - 0.

a 3 2: Assume that a relatively strong increase in risk occurs.

Then, 3H1/6(r.s.) < 0 if

(a) u'(z) > 0 and u"(z) < 0

(b) 2" z 0, 2,,Ix 2 0, and za,xx s 0

nggf: The proof of corollary 3.2 is given in Black and Bulkley[1989]

and is simply sketched here. B—B demonstrate that given the assumptions

about z(i,a,6,A) and u(z), aHL/6(r.s.) -,£f u'(z)-za°d[G(x) - F(x)] < 0

for the optimal value of a and 6 under F(x), where G(x) represents a

relatively strong increase in risk from F(x).

C r 1 a 3 2': .Assume that a relatively strong increase in risk

occurs. Then, aHZ/6(r.s.) < 0 if

(a) u’(z) > 0 and u"(z) < 0
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(b) 2" z 0, 26x 2 0, and Zaxx s 0

Ingnxgm_1i2: An economic agent choosing a and 6 to maximize

fl: u(z(§,a,6,A))'dF(x) will decrease the optimal values of a and 6 if

(a) u'(z) > 0 and u”(z) < 0,

(b) 2)( 2 0, Zn - 0, 2,“, z“ 2 0,

(c) 2,, - (zu/zaxyz‘ at Hi - 0 and 2a,, > 0,

(d) G(x) represents a relatively strong increase in risk from F(x).

ggnnf: By using a similar procedure which is provided for theorem 3.1,

6a/6(r.s.) - - (l/H)-(6H1/8(r.s.))°E(1/zax)-u'(z)-(zax-z“ - zax-z“),

66/6(r.s.) - - (l/H)-(aHl/a(r.s.))-E(l/zax)~u'(z)-(zax-zm - zax-z“).

By corollary 3.2, 8HL/6(r.s.) < 0. Thus, one can conclude that under

the conditions of the theorem, the optimal value of a and 6 are

decreased.

Theorem 3.2 gives conditions sufficient to yield unambiguous

comparative static results concerning the effect on a and 6 of a

relatively strong increase in risk. Condition (a) only requires that

the decision maker be risk averse. Conditions (b) and (c) are the same

as in theorem 3.1. Condition (d) requires that an increase in risk be

relatively strong. While a relatively strong increase in risk is a

special type of the R—S increase in risk, it includes a global increase

in risk as a special case. Note that even though there is no

relationship between simple and relatively strong increases in risk,

more restrictive condition on preferences, such as DARA, is required in

theorem 3.1 than in theorem 3.2.

Finally, we deal with a FSD improvement in the random variable.
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The transformation approach is used here as in corollary 3.1.

nggliagy 3,3: dHL/afllmm > 0 when the random variable is transformed

according to t(x) - x + 0-k(x) if

(a) u(z) displays DARA

(b) 2,20,2n50,andzu20

(c) t(x) represents a FSD improvement in i and k'(x) S 0

2:22;: The proof of corollary 3.3 is given in Ormiston[1992] and is

simply sketched here. For the initial optimal value of a and 6,

8H1/60|9-0 - J: (u'(z)-2,, + u"(z)-za-zx)-k(x)-dF(x)

- I: u'(z)-zax-k(x)-dF(x) + j: {-RA(z)-zx-k(x)]-u'(z)-z¢-dF(x).

Ormiston demonstrates that under the conditions of the corollary,

8HL/30|mm > 0. This is a local result in the sense that the result

holds only at 0 - 0 and for small changes in 0.

Coro 3 3': aha/aogwm > 0 when the random variable is transformed

according to t(x) - x + 0-k(x) if

(a) u(z) displays DARA

(b) 2" z 0, zxx S 0, and 26x 2 0

(c) t(x) represents a FSD improvement in i and k'(x) s 0

Theogen 3,3: An economic agent choosing a and 6 to maximize

fl: u(z(§,a,6,A))-dF(x) will increase the optimal values of a and 6 when

the random variable is transformed according to t(x) - x + 0-k(x) if

(a) u(z) displays DARA,

(b) 2" 2 0, z,“ - 0, z“, 25,, 2 O,

(c) 2,, - (lax/25016 at H; - 0 and 20,, > 0,
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(d) k(x) z 0 and k'(x) s 0.

Egggf: By using a similar procedure which is provided for theorem 3.1,

aa/a0|9.o - - (l/H)-(3H1/60)-E(1/Zax)'u'(2)'(zex'zaa " Zax'zaa)

66/80|9-o - - (l/H)-(aH1/60)-E(l/zax)-u'(z)-(z5x-zm - zax-z“).

By corollary 3.3, aHL/aolwm > 0; that is, given the assumptions about

z(x,a,6,A), u(z), and k'(x), the sign of H102,6,A,0), evaluated at the

initial optimal values of a and 6 and 9 - 0, changes from zero to

positive as a result of a FSD improvement.

Theorem 3.3 gives conditions sufficient to yield unambiguous

comparative static results concerning the effect on a and 6 of a FSD

improvement in i. As in theorem 3.1, condition (a) requires that

preferences exhibit DARA. Conditions (b) and (c) are the same as in

Theorem 3.1 and 3.2. Condition (d) implies that not all FSD

improvements in 2 permit the effect on a and 6 to be signed; that is,

the condition k'(x) s 0 is also required. The specific 1—2-1 models

reviewed earlier consider a special case of these FSD improvements; that

is, k(x) - 0 > 0 and k'(x) - 0 where 0 is a positive nonrandom

parameter.

3.1.4 The Comparative Static Results for the Case: zaxi- 0

In this section, we consider a 1-2-1 model in which zax" 0, and

address the same comparative static questions as in 3.1.3. The

condition Zox" 0 allows the comparative static analysis to be

simplified. We first write down the following three theorems, and then

demonstrate that they can be proved by using either the algebraic or

graphical approach. The algebraic method will be only used for proving
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Theorem 3.6. This is because Theorem 3.4 - 3.6 will be also proved by

using a diagram method.

Theogen 3,4: An economic agent choosing a and 6 to maximize

,&8 u(z(§,a,6,A))tdF(x) will decrease the optimal values of a and 6

(decrease a and increase 6) when the random variable is transformed

according to t(x) - x + 0-k(x) if

(a) u(z) displays DARA,

(b) 2n 2 0, zxx S 0, zax 2. 0, and zaxx _<_ 0,

(c) z“ - 0 and z“ >(<) 0,

(d) t(x) represents a simple increase in risk.

Theorem 3 5: An economic agent choosing a and 6 to maximize

 

.gs u(z(x,a,6,A))-dF(x) will decrease the optimal values of a and

6(decrease a and increase 6) if

(a) u'(z) > 0 and u"(z) < 0,

(b) 2x 2 0, za,x z 0, and zaxx S 0,

(c) z“ - 0 and 2a,, >(<) 0,

(d) G(x) represents a relatively strong increase in risk from F(x).

0 e 6: An economic agent choosing a and 6 to maximize

,La'u(z(i,a,6,A))odF(x) will increase the optimal values of a and 6

(increase a and decrease 6) when the random variable is transformed

according to t(x) - x + 0-k(x) if

(a) u(z) displays DARA,

(b) 2x20, zxxSO, zuZO,

(c) z“ - 0 and 20,5 >(<) 0,

(d) k(x) 2 0 and k'(x) S 0.
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2122:: Zax" 0 implies that the condition H2 - 0 is equivalent to 25 -

0. Thus, 6H¢/66 - 0. Then we have the following comparative statics:

30/30 - - (l/H)'[(3H1/39)'szl. 35/30 - (l/H)°[(aH1/39)°H12]-

Note that H12 - Eu'(z)-za6 since 26 - 0 from H2 - 0, and 6H1/60 > 0 by

corollary 3.3. Thus, under the conditions of the theorem, 6a/60 > 0 and

66/60 > 0 when 20,6 > 0, while 602/60 > 0 and 66/66 < 0 when z“, < 0.

Now, we introduce a diagram method to solve the same problem and

to be available for handling corner solutions. While the diagram

approach is a supplement to the algebraic approach, all of our results

derived for the 1-2—1 model in which 25x- 0 can also be proved by the

use of a simple diagram in the (a,6) plane. Furthermore, if a corner

solution exists, the key assumption of the comparative statics, that the

first-order condition is satisfied with equality, does not hold, yet the

diagram methods still can be used.

Define m1 and ma as the set of points in the (a,6) plane which

yield H1(a,6,A) - 0 and H2(a,6,A) - 0 respectively. To ensure the

existence of the m1 and m2 curves, it is assumed that H1 - 0 and H2 - 0

are satisfied for some finite a and 6. It is interesting to note that

the m1.and m2 curves are similar to the reaction curves which are used

to examine a Cournot duopoly model.

Emma 3.1,: If H12 >(<) 0 for all points in (0,6) plane, then the m1 and

uh curves have positive(negative) slopes and n; the intersection point,

|slope of mil > |slope of m2], where | - | means absolute value.

Pzgof: Totally differentiating H1(a,6,A) - 0 yields Hn-da + le-d6 - 0.

For a movement along m1, d6/da - - Hn/le. Notice that H12 is evaluated
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at (a,6) satisfying H1 - 0. Thus, iifihz >(<) 0 for all points in (a,6)

plane, then the m1 curve has positive(negative) slope since H11 < 0 from

the second order condition. In a similar manner, d6/da - - 1112/sz where

ID; is evaluated at (a,6) satisfying H¢(a,6,A) - 0. Let n donote

(4111/1112) - (—H12/H22), where H11, H12, and H22 are evaluated at (0,6)

satisfying ingtj; H1 - 0 and H2 - 0. Then, because H - Hn-sz — H122 > 0,

'I ' (‘Hn/Hiz) " (‘Hiz/sz) ' [‘(Hn‘sz ‘ H122)]/[H12'H22] W111 be positive

or negative according as anis positive or negative.

The diagram method introduced in Lemma 3.1 has several positive

features. First, it can be used to prove Theorem 3.4 - 3.6. That is,

it is supplement to the algebraic method. Second, ambiguous results

under the algebraic approach may be clear under the diagram approach.

One example is given in section 3.2.1. Finally, it can handle corner

solutions, which will be discussed in section 3.1.5.

eo e 3 4: An economic agent choosing a and 6 to maximize

,ga u(z(§,a,6,A))-dF(x) will decrease the optimal values of a and 6

(decrease a and increase 6) when the random variable is transformed

according to t(x) - x + 0-k(x) if

(a) u(z) displays DARA,

(b) 2x 2 0, Zxx s 0, 200‘ 2 0, and zaxx S 0,

(c) z” - 0 and 20,6 >(<) 0,

(d) t(x) represents a simple increase in risk.

roo : z“ - 0 implies that the condition H2 - 0 is not affected by

changes in the random parameter, and the sign of Huais the same as that

of 2“,. Notice that 1h; - E[u'(z)-za6-+ u"(z)oza-za] = Eu'(z)-za6 since
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m1' m1

m2

Figure 3.1.1

Za6:> 0

In2

Figure 3.1.2

Zaa'< 0
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26 - 0 from H202,6,A) - 0. Thus, the simple increase in risk does not

change the m2 curve. However, it will shift the m1 curve to the left to

position m1' because 6H1/69|9-o < 0 from corollary 3.1. This is because

ifil < 0 implies that a should be decreased when holding 6 fixed. From

lemma 3.1, the m1 and ma curves have the relative positions shown in

figure 3.1.1 and 3.1.2, according to the sign of 2a,. The conclusions

of the corollary follow immediately from the figures.

Theorem 3.4 gives conditions sufficient to yield unambiguous

comparative static results concerning the effect on a and 6 of a simple

increase in risk. Condition (a) requires that preferences exhibit DARA.

Condition (b) restricts the model. However, it does not require that

zxx must be equal to zero. Condition (c) further restricts the model.

Note that unambiguous comparative static results can be derived even if

z“ < 0. The condition that z“ - 0 is assumed to make the 1-2-1 model

tractable, but it is a severe restriction on the model. Condition (d)

is the same as in theorem 3.1.

eo e 5: An economic agent choosing a and 6 to maximize

,&8 u(z(§,a,6,A))-dF(x) will decrease the optimal values of a and

6(decrease a and increase 6) if

(a) u'(z) > 0 and u"(z) < 0,

(b) 2,, z 0, zax 2 0, and zaxx s 0,

(c) 25,, - 0 and z“ >(<) 0,

(d) G(x) represents a relatively strong increase in risk from F(x).

Proofi: The proof is similar to that which is provided for theorem 3.4

and is simply sketched here. Given Zax“ 0, the condition H2 - 0 is
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equivalent to z, - 0. Note that 26 does not include the random

parameter. Thus, by corollary 3.2, a relatively strong increase in risk

shifts the m1 curve to the left, but does not affect the m2 curve.

e0 6: An economic agent choosing a and 6 to maximize

L: u(z(§,a,6,A))-dF(x) will increase the optimal values of a and 6

(increase a and decrease 6) when the random variable is transformed

according to t(x) - x + 6-k(x) if

(a) u(z) displays DARA,

(b) 2x20, zxst, 209,20,

(c) z“ - 0 and 2a,, >(<) 0,

(d) k(x) 2 0 and k'(x) s 0.

2199:: The proof is similar to that which is provided for theorem 3.4

and is simply sketched here. Given the conditions of the theorem, a FSD

improvement in the random parameter shifts the m1 curve to the right,

but does not affect the m2 curve. The conclusions of the theorem follow

immediately from figures 3.1.1 and 3.1.2.

3.1.5 The Graphical Approach and Corner Solutions

The main purpose of this section is to show that the graphical

approach can handle corner solutions. Another example occurs in section

3.3. Let ac and 6c denote initial optimal values of a and 6, and a, and

5. new optimal values of a and 6 resulted from a change in i. Assuming

that the choice variables, a and 6, take values in the interval [0,m],

then a corner solution which Eng defined as a constrained solution

occurs when aCI- 0 or 6c - 0. There are two interesting possible corner

SOlutions under initial situations: 1) ac2> 0 and 6c - 0, 2) ac'- 0 and
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m1' m1

m2

(acto)

Figure 3.2.1

zaél> 0

m1' m1
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Figure 3.2.2

za6‘< 0

a
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6c > 0. The first case is discussed here. To simplify the discussion,

it is assumed that z“ - 0, and 2x 2 0, Zax 2 0, and zaxx 5 0.

We only consider the first case since corner solutions will be

discussed further in section 3.3. If ac1> 0 and 6c - 0, then ac2> 0 and

6c - 0 must satisfy both Eu'(°)-za(§,ac,0,A) - 0 and Eu'(-)'za(§,ac,0,A)

S 0. By lemma 3.1, the m1 and m2 curves have positive(negative) slopes

when zm52>(<) 0. Because the set of points above the m2 curve

represents Eu'(-)-za(§,ac,0,A) < 0, the m2 curve should lie to the right

of the m1 curve if za52> 0, while the m2 curve should rest below the m1

curve if za5‘< 0. Lemma 3.1 implies that the m1 and m2 curves have the

relative positions shown in figures 3.2.1 and 3.2.2. Suppose that a

relatively strong increase in risk occurs. Then, by corollary 3.2, it

shifts the m1 curve to the left to position ml', but does not affect the

an curve. From figure 3.2.1, one can conclude that if za5i> 0, then a,<<

ac and 6, - 6c - 0. In a similar manner, from figure 3.2.2, one can

conclude that if za5‘< 0, then aa < ac'but in this case 6a may(need not)

be positive. That is, the decision maker may increase 6 from 6c - 0,

when faced with a relatively strong increase in risk, only if za5‘< 0.

3.2 Examples of Applications

3.2.1 The Model of Batra and Ullah[1974]

For Batra and Ullah's model, the outcome variable 2 takes the form

z(§,a,6,A) - i-f(a,6) - Al-a - A2-6. It is assumed that i takes values

in the interval [0,8], and fa and f6, the marginal products of the

inputs, are positive. Hence, zx(- f(a,6)) 2 0, zxx - 0, and zu(- fa),

26x(- f5) > 0. The condition 2,, - (zax/zax)-z,, is also satisfied.
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Therefore, Theorems 3.1 - 3.3 can be applied to this model in order to

examine the effects of three general types of changes in randomness as

long as Zaa(' i-faa) > 0.

Hartman[1975] shows that the partial approach implicit in Batra

and Ullah's analysis(p.542) is incorrect and then argues that the

effects on input decisions of a global increase in risk and an increase

in 1 are the same as each other if the firm exhibits DARA. Note that

Batra and Ullah's mistake is to consider the shifts in the m1 and ma

curves holding the other fixed when investigating the effect of a global

increase in risk on the input decisions. Corollary 3.2 and Lemma 3.1

imply that a strong increase in risk shifts the nu curve leftward nng

the m2 curve downward. A two stage decision process is assumed in

Hartman's analysis; that is, the firm faced with a global increase in

risk first chooses the appropriate level of output and then, given the

level of output, it chooses the inputs to minimize cost.

Using theorem 3.1 and 3.2, we show that the two stage decision

process need not be assumed. The effects of a relatively strong and a

simple increase in risk on the choice variables can be rewritten as:

6a/6(r.s.) - - (l/H)-(6H1/6(r.s.)-[(l/fa)-Eu'(z)-('x-faf55 — i'fafean

66/6(r.s.) - - (l/H)-(6H1/6(r.s.)-[(1/fa)-Eu'(z)-('x-f5fm — x-fafa5)]

'fafeaH

' fan)] .

X
i

act/am-.. - - (1/H)-(aH1/80)-[(l/f.)-Eu'(z)o(3'c-fafu -

X
i

35/39Ia-o - — (l/H)-(aH1/ao>-[<1/f.).Eu'<z)-(§-fafee -

By corollary 3.1 and 3.2, 6HL/6(r.s.) and 6HL/60 are same in sign under

DARA. Thus, the effects on a and 6 of a relatively strong and a simple

increase in risk are the same as each other if the firm exhibits DARA.

To further extend the analysis, consider the case where zaJ(-§-fa5)
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< 0. For this case, it is not obvious how to employ the algebraic

method to derive determinate comparative statics. However, the use of

the diagram approach does allow us to derive results which might not be

M under the algebraic approach. Given that 2,, - (zu/zax)-z5, H12 -

E[u'(z)-za5 + (26x/zax)-u"(z)-za2]. Thus, za5('x-fa5) < 0 implies that the

an and ma curves have negative slopes. Lemma 3.1 indicates that both

curves have the relative positions shown in figure 3.1.2. The strong or

simple increase in risk shifts the m1 curve leftward and the an curve

downward. Hence, one can conclude that all risk averse decision makers

(exhibiting DARA), when faced with a relatively strong or a simple

increase in risk, will not increase both a and 6 even if flfi.< 0.

3.2.2 The Model of Feder[l977]

The outcome variable 2 for Feder's decision model has a specific

form such that z(§,a,6,A) - x-f(a,6) + g(a,6) + A. The condition za -

(zax/zax)-z5 holds in this model. To see this, look at the first order

conditions: H1(a,6,A) - Eu'(z)-(§ fa + ga) - 0 and H2(a,6,A) - Eu'(z)-

('x-f, + g6) - 0. Because fa/f6 - ga/ga, this implies that (lax/25x)'za -

(fa/f5)-(§-f6 + g6) - i-fa + g, - 20,. Obviously here 2», - 0.

Feder writes(p. 509) that "it is not possible to determine the

direction of impact on the different control variables ---. Definite

results, however, can be obtained for the function f." Here we present

ginnig conditions about the function 2 which are sufficient for

determining the direction of changes in choice variables when the random

parameter E undergoes the three types of changes in randomness discussed

in section 3.1.

Applying Theorem 3.1, all risk—averse decision makers exhibiting
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DARA, when faced with a simple increase in risk, will decrease the

optimal values of a and 6 if zx(- f(a,6)) 2 0, zax(- f,,(a,6)), zax(-

f6(a,6)) z 0, and Zaa(' if“ + g“) > 0. Assuming that g(a,6) is

additively separable, then the condition about:aw can be simplified

because g“.- 0. Feder does not consider the effect of a global

increase in risk on f(a,6). Theorem 3.2, however, can be applied to

examine the effect of a relatively strong increase in risk 2n a and 6.

That is, all risk-averse decision makers, when faced with a relatively

strong increase in risk, will decrease the optimal values of a and 6 if

zx(- f(a,6)) 2 0, zax(- fa(a,6)), zax(- f6(a,6)) z 0, and z“(- if“ +

g“) > 0. Similarly, using theorem 3.3, we can also investigate the

effect on a and 6 of a FSD improvement in i. Note that other

combinations of assumptions concerning the function 2 can also be

considered.

3.2.3 The Model of Feder, Just and Schmitz(FJS)[1977]

For FJS's model, the function 2 takes the form z(§,a,6,A) -

i-[£(a) + 6 - A1] + g(Az — a - A3-6) - A1-6. FJS assume that i takes

values in the interval [0,8], the production functions, f(-) and g(-),

are increasing and concave, and the nonrandom parameters, Ai(i-1,4), are

all nonnegative. Let A denote f(a) + 6 - A1. Notice that zx(- A) can

be positive or negative. Also, zxx - 0, and zax(- f'(a)), z6x(- 1) > 0.

To see whether the condition 2,, - (26x/zax)-z,, at Hi - 0 is satisfied in

this model, look at the first order conditions: H1(a,6,A) - Eu'(o)t

(i-f'(') - g'(-)) - 0 and 3201.6.1) - Eu’(-)'(§ - 8'(')'A3 - At) - 0-

Because f' - g'/(g' -A3 + A,), this implies that (zu/zax)-za - f'-(§ -

g'-A3 — A,) - i-f’ - g' - Z“. The condition f' - g'/(g'-A3 + A‘) also
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implies l - A3-f' > 0 since g'-(l — A3-f') - f'-A, > 0.

Even though the condition za - (lax/25x)'za holds, Theorem 3.1 -

3.3 cannot be applied since za5(- A3-g"(-)) < 0. Whenever 20,5 < 0, the

signs of zax-z“ - zax-zd and zax-zm - zax-zaa are not usually determined.

However, in FJS's model, zax-z“ - Zax'zaa - A3-g"-(A30f' - l) > 0 and

z6x-zm - zuoza, - x-f" + g"°(l - A3-f') < 0 because 1 - Aa-f'(-) > 0.

First, we demonstrate that with DARA, a simple increase in risk

leads to an increase(a decrease) in a and a decrease(an increase) in 6

if A >(<) 0. From the proof of theorem 3.1, we know that

6a/60 [9-0 (1/H)- (6H1/60) ~(1/zax)-Eu'(z)- (zu-zw — Zax°zaa)

as/ao lo-o (l/H) - (6H1/66) - (1/zax) -Eu' (2) - (zsx-zm - zax-z“) .

Corollary 3.1 implies that if A >(<) 0, then 6HL/66 <(>) 0. Therefore,

6a/60lfim >(<) 0 and 66/60lmm <(>) 0 if A >(<) 0. Second, by using a

similar procedure, we can show that with u'(-) > 0 and u"(-) < 0, a

relatively strong increase in risk leads to an increase(a decrease) in a

and a decrease(an increase) in 6 if A >(<) 0. Finally, it can be shown

that with DARA, a FSD improvement in i leads to a decrease in a and an

increase in 6 if A >(<) 0 and k'(x) 5(2) 0.

3.2.4 The model of Katz, Paroush and Kahana(KPK)[l982]

The price discrimination model of KPK has outcome variable given

by z(§,a,6,A) - x-R1(a) + AltR2(6) - c(a + 6) - A2. In KPK model, Ri' >

0, R3" 5 0, and c', c" > 0. A characteristic of the model is zcx- 0.

Also, 2" - R1 2 0, zxx - 0, zax - Rl' > 0, and zux - 0. Thus, if

interior solutions are assumed, then theorem 3.4 - 3.6 can be applied to

this model to examine the effects of three types of changes in 2.

Applying theorem 3.4, the risk averse firm exhibiting DARA, when faced
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with a simple increase in risk, will decrease a and increase 6. Note

that zm5-‘- c”(-) < 0. Using theorem 3.5 and 3.6, we can also analyze

the effects on the choice variables of a relatively strong increase in

risk and a FSD improvement in i.

3.3 A Two Output Competitive Firm Model

Typical competitive firms produce more than one good. Many oil

companies produce natural gas and other related chemical products.

Numerous competitive farmers produce two or more products. When the

output price is random for one output, the competitive multiproduct firm

is able to spread its risks by ouptut diversification.

Here we investigate a model of a competitive multiproduct firm,

in which 2 takes the form z(§,a,6,A) - i-a + A1-6 - c(a,6) - A2, where §

is the price of product a, a and 6 are output levels, A1 is the price of

product 6, A2 is fixed cost, and c(a,6) is a variable cost function. We

assume that the variable cost function is monotone increasing and

convex: ca, c, > 0, cm, c“ > 0, and cam-c“ - caaz > 0.

Sandmo[l97l] shows that price uncertainty has a negative output

effect on the competitive firm producing a single product. We

demonstrate that price uncertainty can have a positive output effect on

a competitive multiproduct firm. Since our focus is on the effects of

price uncertainty on product choice as well as on output decisions, we

will also consider corner solutions. The primary purpose of this

section is to illustrate the diagram method introduced in 3.1.5. This

section proceeds as follows. We first analyze the effects of the three

types of changes in randomness discussed in 3.1, and then examine the

possible impacts of three kinds of taxation on the firm's output decisions.
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Let ac and 6c denote initial optimal values of a and 6, and an and

68 new optimal values of a and 6 resulted from a change in i. We assume

that the choice variables, a and 6, take values in the interval [0,w].

Under the initial situation, there are three possible outcomes. The

firm may specialize in the risky output, a, or the riskless output, 6,

or produce both a and 6. First, consider the effects of a relatively

strong increase in risk on a and 6. Because a relatively strong

increase in risk includes a global increase in risk as a special case,

the following corollaries can be applied to examine the impacts of price

uncertainty on a multiproduct firm's output decisions when uncertainty
 

is introduced from a nonrandom initial situation.

Co a 3 4: Assume ac > 0 and 6c - 0. That firm is producing risky

but not riskless output. Suppose that the firm is risk averse and a

relatively strong increase in risk occurs. If ca6‘< 0, then a,‘< ac and

6a - 0. If ca52> 0, then :28 < ac and 6a may be positive.

Egnnfz We can use the diagram method introduced in 3.1.5 because zax"

0. If ac > 0 and 6c - 0, then ac > 0 and 6c - 0 must satisfy both

Eu'(-)-(§ — ca(ac,0)) - 0 and Eu'(-)-(A1 - c5(ac,0)) 5 0. Because the

set of points above the m2 curve represents A1 - c5(a,6) < 0, the m2

curve should lie to the right of the m1 curve if cm, < 0, while the m2

curve should rest in below the m1 curve if 00,5 > 0. Note that H12 and

ca, are opposite in sign since 20,, - - c“. Lemma 3.1 implies that the

m1 and mg curves have the relative positions shown in figures 3.2.1 and

3.2.2. By corollary 3.2, a relatively strong increase in risk shifts

the m1 curve to the left to position ml'. The case of ca5‘< 0 is obvious
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from figure 3.2.1. In the case of ca62> 0, if the leftward shift in the

m1 curve resulted from a relatively strong increase in risk is enough,

then 5. may(need not) be positive.

Corollary 3.4 demonstrates positive output effect on riskless good

of price uncertainty. If ca6‘< 0, then the risk—averse firm continues

to specialize in risky product a. Thus, ca52> 0 is a necessary

condition for the risk increase to cause diversification or switching

into the riskless good. Only if the marginal cost of 6 also declines as

a is reduced, the risk-averse firm may start producing product 6.

Co 5: Assume ac > 0 and 6c > 0. Suppose that the firm is

risk averse and a relatively strong increase in risk occurs. Then, if

caai< 0, aa < ac and 68 < 6c. If ca, > 0, aa < ac and 68 > 66.

ggnnf: Suppose that ca(0,0) - 0 and c6(0,0) - 0, which are sufficient

conditions for product diversification. In this case, the m1 and m2

curves have a positive a—intercept and a positive 6-intercept,

respectively. By corollary 3.2, a relatively strong increase in risk

shifts the m1 curve to the left. See figures 3.1.1 and 3.1.2 for the

rest of the proof. Also, applying theorem 3.5 gives rise to the

corollary. This is because the corollary assumes an interior solution.

Qgrgilagy §,§: Assume ac - 0 and 6c > 0. Suppose that the firm is

risk averse and a relatively strong increase in risk occurs. Then,

(Ia-0 and 6.- 6c.

roo : If ac - 0 and 6c > 0, then ac - 0 and 6c > 0 must satisfy both

Eu'(-)°(§ - ca(0,6c)) s 0 and Eu'(-)°(A1 - c5(0,6c)) - 0. Because
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the set of points to the right of the m1 curve represents Eu'(-).(§ -

ca(a,6)) < 0, the nu curve should be below the m1 curve if cn5‘< 0, while

the m2 curve should be above the m1 curve if c“ > 0. Lemma 3.1 implies

that the m1 and ma curves have the relative positions shown in figures

3.3.1 and 3.3.2. By corollary 3.2, a relatively strong increase in risk

shifts the m1 curve to the left to position ml'. The conclusions

immediately follow from the figures. It is interesting to note that in

this case product diversification never occurs and the optimal value of

6 remains unchanged, regardless of the sign of Ca5-

The effects on a and 6 of a simple increase in risk and a FSD

change in i can also be examined by using a similar procedure, and the

details are omitted here.

Finally, to illustrate other uses of the graphical approach the

possible impacts of three kinds of taxation on a and 6 are determined.

These involve shifts in nonrandom parameters. To simplify the analysis,

it is assumed that ac > 0 and 6c > 0. First, consider the effect of an

increase in a profits tax on a and 6. Katz[l983] points out that the

relative risk aversion measure based on profits, used by Sandmo[l97l],

leads to two problems; the measure associated with the negative profits

can be negative, and risk aversion measures are not properly defined on

profits but on wealth. Following Katz, the model should be slightly

changed. Let A0 be the firm's initial wealth, and A3 the profit tax

rate. Then, the firm's final wealth which is assumed to be nonnegative

is given by z(§,a,6,A) - A0 + [x-a + A1-6 - c(a,6) - A2]-(l-A3). Given

DARA nng IRRA, an increase in A3 shifts the m1 curve to the right, since
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6HL/6A3 - — Eu"(z)-(x — ca)-[§-a + A1-6 — c(a,6) - A2] - [l/(l-A3)]-

E[Rg(z)-u'(z)-(§ - ca)] - [AG/(l-A3)]-E[RA(z)-u'(z)-(x — ca)]. Obviously

here 6Hz/6A3 - 0. Thus, the risk averse firm exhibiting DARA and.IRRA,

when faced with an increase in A3, will increase a and 6 if ca5<< 0,

while increase a and decrease 6 if ca62> 0.

Second, consider the effect of an increase in a specific tax on a

and 6. Assuming that a specific tax is imposed on good a, then the

outcome variable 2 takes the form z(x,a,6,A) - (xrA3)-a + A1-6 -

c(a,6) - A2. In this case, A3 represents a specific tax. It is clear

to see that 6HL/6A3 < 0 under DARA, and 6Hz/6A3 - 0. Thus, the risk

averse firm exhibiting DARA, when faced with an increase in a specific

tax imposed on good a, will decrease a and 6 if caat< 0, while decrease

a and increase 6 if ca, > 0.

Finally, consider the effect of an increase in an ad valorem sales

tax on a and 6. Let A3 be an ad valorem sales tax. Assuming that an ad

valorem sales tax is imposed on the firm, the firm's problem is to

choose a and 6 to maximize Eu[(1—A3)-(§-a + A1-6) - c(a,6) - A2].

Then, 6HL/6A3 - - Eu'(z)-§ - A1-6-Eu"(z)-((l—A3)-§ — ca) — a-Eu"(z)-

((l-A3)-§ - cu)§. The first term is negative, and the second term is

also nonpositive under DARA. However, the last term may be positive or

negative under DARA, and will be positive under IARA. Thus, the whole

expression may be negative or positive under DARA or IARA. Clearly,

6Hz/6A3 - — A1 < 0. It is very difficult to determine the effect of a

change in the sales tax rate on the firm's output decision. The

increase in A3 reduces not only the mean of E but also leads to a

decrease in risk. Therefore, the ultimate impact of a change in the tax
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rate on the m1 curve depends on two forces which operate in opposite

directions.



CHAPTER FOUR

THE 2-2-1 MODEL

4.0 Introduction

Determining the consequences of a change in a random parameter is

an important and frequently studied comparative statics problem. This

problem has been examined, but most often for decision models including

only one source of randomness. Papers which include multiple sources of

risk usually assume independent risks. Thus, an important direction in

which this comparative static analysis can and should be extended is to

examine decision models with multiple sources of randomness including

cases where the risks are not independent of one another.

Recently, Hadar and Seo[l990] extend the standard portfolio model

with only one risky asset by considering a portfolio model with more

than one risky asset. However, they avoid the issues involving

stochastic dependence by imposing the strong and simplifying restriction

that the random parameters are independently distributed. Meyer and

Ormiston [1992] extend Hadar and Seo's portfolio model with only two

risky assets by considering the case where the returns to risky assets

are not independently distributed.

In addition to expanding the number of random variables, we can

expand the number of choice variables. Combining these extensions we

have the two random—two choice-one outcome(2-2-l) model. In it the

agent is assumed to choose a and 6 to maximize Eu(z(§,y,a,6,A)), where

the outcome variable, 2, depends on two random parameters, i and y, two

choice variables, a and 6, and a set of nonrandom parameters, A. Hadar

56
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and Seo[l990] investigate a specific 2-2—1 model, but make limited

progress. Extension of either the 2-l-l or 1—2—1 models to the 2-2—1

model is quite difficult because of the problems of dealing with the

joint GDP and two first-order conditions. Until now, the 2-2-1 model

remains largely unexplored and only modest results are presented here.

Two specific 2—2—1 models are examined in this chapter. One is

the decision model presented by Feder[l977], and another is the model of

a competitive multiproduct firm. When investigating the first model, we

impose a strong assumption which allows the use of the mean-standard

deviation(MS) approach. However, under that assumption, the 2—2-1 model

is transformed into a 1-2-1 model, and the problems of dealing with the

joint CDF do not arise. On the other hand, the second model is analyzed

using the expected utility(EU) framework. To avoid the subject of

stochastic dependence, we assume that the random parameters are

independently distributed.

This chapter is organized as follows. Section 1 reviews the

literature concerning the 2-1—1 and 2-2—1 models. Section 2 first

reviews the literature concerning moment based decision models, and

then examines Feder's decision model under the MS framework. Section 3

investigates a two output competitive firm model under the EU framework,

and considers corner solutions.

4.1 Literature Review

A general form for the 2—1-1 model assumes the agent chooses a to

maximize Eu(z(§,y,a,A)) =- jgaj: u(z(§,y,a,A))-dZH(x,y), where the

outcome variable, 2, depends on two random parameters, i and y, one

choice variable, a, and a set of nonrandom parameters, A. In addition,
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the joint cumulative distribution function(CDF) for i and y are denoted

H(x,y). The conditional and marginal CDFs for i are denoted F(xly) and

F(x), respectively, and for y they are G(ylx) and G(y). If i and 9 are

independently distributed then F(xly) - F(x) for all y, G(ylx) - G(y)

for all x, and H(x,y) - F(x)-G(y). To simplify notation, the symbol

(FH(x,y) is used to denote [62H(x,y)/6x-6y]'dx-dy. Finally, the random

parameters i and y are assumed to take values in the interval [0,B].

An important question is how does a decision maker adjust the

optimal value of a when the random parameter i undergoes some types of

changes in randomness. In working out the details, two conceptual

questions should be addressed, as a preliminary matter. The first asks

which changes in a random parameter are most usefully analyzed. This

question arises because the various definitions of risk increases or

stochastically dominant shifts formulated for single random parameter

models do not necessarily have the same meaning in the multiple random

parameter case. The second question deals with which assumption to make

concerning the other random parameters, as the parameter of interest is

shifted. This is an especially important question when the random

parameters are stochastically dependent.

Random variable § is stochastically dependent on i if the

conditional distribution function for y given x is not degenerate for

each x, nor is it the same for each x. For example, if y is equal in

distribution to i + E where E(€|x) - 0, which is the first definition of

the Rothschild and Stiglitz increase in risk, then 5 is stochastically

dependent on i and is said to be a stochastic transformation of i

because the conditional distribution function for y given x is not
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degenerate for each x. When the conditional distribution functions are

the same for each x then 9 is independent of i. If the conditional

distribution functions are degenerate for each x, then nonstochastic

dependence occurs and y - t(i) for some function t(-). In this case, y

is said to be a deterministic transformation of i.

The literature concerning the 2-1-1 model includes the analysis of

incomplete insurance markets in Doherty and Schlesinger[l983,l985,1986],

and of the portfolio models in Kira and Ziemba[l980], Hadar and Sec

[1990] and Meyer and Ormiston[1992]. Eeckhoudt and Kimball[l991]

consider insurance demand with background risk. Note that most 2-1—1

models are formulated within a specific rather than a general decision

model. We only review the portfolio models, beginning with the model

given by Hadar and Seo[1990].

The two risky asset portfolio model presented by Hadar and Sec

assumes the outcome variable 2 takes the form z(§,y,a) - a-i + (l—a)-y,

where i and y are the returns to the risky assets, and a is the

proportion invested in the risky asset i. The utility function is

assumed to be three times continuously differentiable, nondecreasing and

concave in z. Hadar and Sec assume that given the initial joint

distribution of returns, the agent attains a unique, regular, interior

maximum at 0:0 satisfying 0 < a°-< 1. However, this assumption can be

quite restrictive and may rule out some interesting cases. For

instance, if i and y are independently distributed and u"(z) < 0, then

a sufficient condition for interior solutions is x - y.

The structure of the model is quite simple. To see this, let

u(x;y,a) denote the derivative with respect to a of utility; that is,
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¢(x;y,a) - 6u(z)/6a where z is the outcome variable. Then

6W3)! - [U'(Z) + U"(Z)a(X-y)] - [U'(Z) + U"(Z)-(ax + (l-a)y) - Y'U"(Z)]

- u'(2)[1 - RMZ) + Y'RA(Z)]-

62¢/6x? - u"(z)-a-[l - RR(z) + y-R‘(z)] + u'(z)-[-RR'(z)-a + y-R*'(z)-a].

Thus, VR 2 0 for all y z 0 and 0 < a < 1 if u' 2 0, u" s 0, and RR 5 1.

Also, t5,;s 0 for all y z 0 and 0 < a < 1 if u' z 0, u" s 0, Rh 5 1,

RR' 2 0, and RA' 5 0.

Hadar and Sec avoid the issues involving stochastic dependence by

imposing the strong and simplifying restriction that the random

parameters are independently distributed. This assumption allows them

to alter i without changing y, and without changing how y depends

stochastically on i. That is, i can be changed keeping the marginal and

the conditional CDFs for y unchanged. They then determine conditions on

the decision maker's preferences that are necessary and sufficient for a

first degree stochastic dominant(FSD) shift or a mean—preserving

contraction(MPC) in i to cause an increase in the optimal value of a.

The conditions on utility are the same as those found in the single

risky asset case by Fishburn and Porter[1976] for FSD changes, and

Rothschild and Stiglitz[197l] for MPCs. Thus, with independence, an

extension to two risky assets preserves the findings from the one risky

asset case. It is interesting to note that the simple conditions on the

utility function do not come from the independence assumption, but from

the simple structure of the model.

When § and 9 are stochastically dependent, either the marginal or

at least one of the conditional CDFs for y nngg change as i is changed.

The question of which of these, if any, to hold fixed as the parameter
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of interest i is altered is one which requires careful attention.

Kira and Ziemba[l980] address this issue when investigating the effect

of a FSD change in i on portfolio composition when i and y are not

independently distributed. They allow the marginal CDF for y to be

changed, thus choosing to hold the conditional CDF for y fixed, as i is

changed. Given the new marginal CDF for i and the unchanged conditional

CDFs for y, the new joint distribution of i and 9 resulting from the

change in i is uniquely determined. Depending on the initial joint

distribution of i and y, this assumption of Kira and Ziemba can lead to

unusual reactions to a change in i. This is because the change in i

causes a simultaneous change in the marginal CDF for y. Changes which

appear to be improvements in i can lead to even greater improvements in

y. As a result, Kira and Ziemba's conditions for determining the effect

of a FSD change in i are rather complex and have not been very useful in

economic analysis.

Unlike Kira and Ziemba[l980], Meyer and Ormiston[1992] allow the

~

conditional CDF for y to be changed, thus choosing to hold the marginal

CDF for y fixed, as i is changed. Meyer and Ormiston present two

counter examples to show that an arbitrary R—S decrease in risk or an

FSD dominant shift in the marginal CDF for i without changing the

marginal CDF for y may alter a stochastic relationship measured by, for

instance, correlation or conditional expectation, and therefore, may

lead to unusual comparative static results.

In presenting theorems concerning changes in i, M—O use stochastic

and deterministic transformations to represent a change in the random

parameter R. This is because these transformations of i do not affect
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y, keeping its marginal CDF fixed. In addition, the stochastic

dependence of y on i is kept similar to that which prevailed initially.

Furthermore, the stochastic transformation allows the characterization

of comparative risk for univariate CDFs introduced by Rothschild and

Stiglitz[1970] and Hadar and Russell[l969] to be used directly. Meyer

and Ormiston demonstrate that even if the independence is not assumed,

the same conditions on the utility function as those in Hadar and Sec

[1990] are still necessary and sufficient for the usual comparative

static results to follow. They also emphasize that the important

assumption of Hadar and Sec is not the independence assumption itself,

but their ceteris paribus assumption concerning how a random variable is

changed and what is not changed.

Now, turn to the 2—2—1 model. After examining the portfolio model

with two risky assets and one choice variable, Hadar and Seo[1990] then

extend the model to include n risky assets and n-1 choice variables but

make little progress. H—S show that the conditions which result in an

increase in asset i when the portfolio contains only two risky assets

are still necessary when there are n risky assets. On the other hand,

they were unable to show that these conditions are also sufficient

except in the case of an exponential utility function. Only by imposing

a severe restriction on the risk taking characteristics of the decision

maker and on the joint cumulative distribution function, they can

analyze the portfolio model which has a simple model structure.

4.2 Feder's Decision Model

4.2.1 Literature Review



63

Two different approaches to representing an agent's preferences

over strategies yielding random payoffs are in wide use. Under the

mean-standard deviation(MS) approach, the agent is assumed to rank the

alternatives according to the value of some function defined over the

first two moments of the random payoff, while the expected utility(EU)

criterion assumes that the expected value of some utility function

defined over payoffs is used instead. It is well known that some

restrictions must be placed on either the agents' preferences or the

distribution of random terms in order to guarantee consistency between

the EU and MS approaches. All such restrictions presented in the

literature, such as requiring that the agent's utility function be

quadratic or that the random alternatives be normally distributed, have

serious theoretical defects and/or have no empirical support.

Meyer[l987] identifies a restriction which is sufficient to ensure

the consistency between the MS and EU approaches and confirms that it

holds in many economic decision models. The results of Meyer can be

viewed as ones which improve moment based decision models in at least

two ways. First, the location and scale(LS) condition described below

is more acceptable, in the sense that the condition does not require any

special assumptions about the form of the utility function or the

distribution of random terms, and second, the various hypotheses and

assumptions that make EU analysis so powerful are translated into

equivalent conditions in the MS framework.

Defin. o 4 : Two cumulative distribution functions G1(-) and Gz(-)

are said to differ only by location and scale parameters A1 and A2 if
 

G1(X) '- 62(A1 + Az‘X) With A2 > O.
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In order to more formally specify the LS condition, and at the

same time establish the relationship it implies concerning the

preference representation under the MS and EU approaches, consider the

following. Assume a choice set in which all random variables 25 differ

from one another only by location and scale parameters. Let X be the

random variable obtained from one of the Zi using the normalizing

transformation X - (21 - pi)/ai‘where pi and a, are the mean and standard

deviation of Zi. All 2,, no matter which was selected to define X, are

equal in distribution to #4 + ai-X. Thus, the expected utility from 2i

for any agent with utility function u(-) can be written as:

Eu(Zi) - j: u(pi + ai-x)-dF(x) I V(ai,p,-), where the normalized random

variable X takes values in the interval [0,B].

Notice that the MS framework can be used only if the outcome

variable 2 is linea; in the random parameter; that is, zxx- 0.

In this case the choice set differs from one another only by location

and scale parameters. While the effect of a change in the random

parameter, which differs only by location and scale parameters, can be

analyzed under the MS analysis, it should be noted that the effect of a

completely arbitrary change in the random parameter can not be analyzed.

The risk-increasing linear transformation R + 1-(i - i), which is often

used in the EU framework, satisfies the location and scale condition,

since i + 1-(i - i) - —1-x + (1 + 1)-§ - A1 + A¢?§ where A1 - —1-i

and A2 - 1 + 1 > 0. Thus, the effect of such a change can be analyzed

under the MS framework.

The following results of Meyer[l987] prove useful:

a) V; > 0 if and only if u' > 0,
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b) V3‘< 0 if and only if u" < 0,

c) S(a,p) - —V,/Vu > 0 if u' > 0 and u" < 0,

d) V(a,p) is a concave function for a and u if and only if u" < 0,

e) S“ <(-) 0 if and only if u(-) displays DARA(CARA),

f) S, >(-) 0 if and only if u(-) displays DARA(CARA)(see Appendix).

4.2.2 The Comparative Statics Problem

We consider an extension of Feder's decision model, in which 2

takes the form z(§,y,a,6,A) - i-y-f(a,6) + g(a,6) + A, where i and y

are random parameters, a and 6 are choice variables, and A is a

nonrandom parameter. In this model f and g are real-valued functions of

only the control variables. The 2—2-1 model includes the 1-2-1 model

presented by Feder[l977] as well as specific l-l—l models such as the

standard portfolio model and the competitive firm model as special

cases.

We begin by assuming that the random variables take values in the

interval [0,B]. The utility function u(z) is assumed to be three times

differentiable with u'(z) > 0 and u"(z) < 0. The function z is assumed

three times differentiable with 2” < 0, z“ < 0, and zm-z“ — 20,52 > 0.

This condition on z, combined with u" < 0, ensures that the second order

condition for the maximization problem is satisfied. To simplify the

discussion, we focus on interior solutions to the maximization problem.

Even though the LS condition is satisfied in this model, to ensure

that changes in the random parameters of the model will change only

location and scale of members of the choice set, it is assumed that i-§

can be written as i-§ - 61 + 6252, where E(Z) - 0 and Var(Z) - 1.

Let 61 and ¢2 be the expected value and standard deviation of i-y,
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respectively; that is, ¢1 - E(x-y) - x-y + Cov(x,y), and ¢2 -

[Var(x-y)]1/2. Then, 323': - 4:1 + 432.? is a generalization of the risk

increasing linear transformation introduced by Sandmo. However, under

this assumption, the problems of dealing with the joint CDF for i and y

do not arise, and the 2-2-1 model is transformed into a 1-2-1 model.

Note that Var(x-y) itself will be a parameter of interest. More

commonly, comparative static properties of changes in parameters such as

Var(x) or Var(y) will be of interest. Thus, Var(x-y) can be written in

terms of these more interesting parameters (see Appendix).

Given these assumptions, the agent's problem is to choose a and 6

to maximize V(a,p), where a - 62 f(a,6), p - ¢1-f(a,6) + g(a,6) + A.

Thus, the first-order and second—order conditions can be written as:

H1 - 6V(a,p)/6a - Va-(aa/aa) + Vu-(au/aa) - 0

H2 - 6V(a,p)/66 - Va-(6a/66) + Vu-(6p/66) - 0

H11 - [Vaa-(60/6a) + Van-(6p/6a)]-(6a/6a) + V,,~(620/6a2) + [VW-(ap/6a) +

v,,,-(aa/aa)].(ap/aa) + vu-(aZp/aaz) < 0

H22 - [Vac-(60/66) + V,,,-(6p/66)]-(6a/66) + Va-(6za/662) + [Vuu-(6p/66) +

Van-(6a/66)]-(6p/66) + Va-(62p/662) < 0

H12 - [Vaa-(6a/66) + V,,,-(6p/66)]-(6a/6a) + Va-(620/6a66) + [Vuu-(6D/66) +

Vau- (60/66)] - (6p/6a) + Vu- (62p/6a66)

H - Hn-sz - H122 > 0.

The comparative static questions addressed here are how do the optimal

values of a and 6 change when a parameter which can affect the agent's

decision is changed. Parameters which can influence the agent's choice

are: i, y, Cov(x,y), Var(x), Var(y), Cov(x?,y2), and A.
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4.2.3 The Comparative Static Results

Notice that the condition fa/f5 - ga/g6 is a characteristic of the

model. Thus, at H1 - 0 and H2 - 0, H1 - (fa/f6)-H2. To simplify the

analysis, it is assumed that g(a,6) is additively separable and linear

in a and 6; thus, g“ - 0, gm - 0, and g“ - 0. The case where fa > 0

and f, > 0 is considered here. Also, it is assumed that g, and g6 have

negative signs. Assuming a parameter, E, is increased, then we have the

following comparative statics concerning the effect of a change in x:

60/6)": - - (l/H)-(6H1/6i)- [H22 - (fé/fa)-H12]. Simplifying the last term,

H22 ‘ (fa/fa)'H12 ' Va'¢2'f66 + Vu'¢2'faa ‘ (fa/fa)‘(Va'¢z‘faa + Vu‘¢1°faa) '

(l/f,,,)-(V,,-¢I>1 + V,-¢2)(fa-f“ - fJ-fw). Substituting this into 6a/6i,

30/33.! - - (1/H)'(3H1/3i)'(1/fa)'(Vu'¢1 + Va'¢2)(fa'faa " fa'faa).

By using a similar procedure, we can demonstrate that

as/ai - — (1/H>-(ant/am-u/fn-(vu-m + V.-¢2>-<f.-f.. - f.-f..>.

The first order conditions imply Vu'¢1 + Va'¢2 > 0, since interior

solutions are assumed here. Now, we assume that fifl.> 0. This

condition is required to make the last term in 6a/6i or 66/6i have

determinate sign. Under these assumptions, the comparative static

results will depend gniy on 6H1/6x. That is, if 6H1/6i > 0, then

act/61': > 0 and 66/63’: > 0.

The following comparative statics are straightforward, and some

parameters such as fa and 452 are omitted.

6H1/6i - - [So-(l/2)-(Var(xy))'1’2-(ZR-Var(y) - Zy-Cov(x,y)) + su-y]

— [S(a,p)-(l/2)-(Var(xy))'1/2-(2i'Var(y) - 2y-Cov(x,y))] + 37,

6111/35: - - [8,-(1/2)-(Var(xy))‘1/2-(Ty-Var(x) - 2i-Cov(x,y)) + Su-i]

— [S(a,p)-(l/2)(Var(xy))’1/2-(2y-Var(x) - 2x-Cov(x,y))] + SE,
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6H1/6Cov(x,y) - - [8,-(1/2)-(Var(xy))’“2-(—ZCOV<x.y) - 22°?) + Sn]

- [S(a,p).(l/2)-(Var(xy))"1/2-(—2(Iov(x,y) — 2mm + 1 > 0

under DARA,

6H1/3Var(X) - - [Se-(l/Z)-(Var(xy))'“2-(Var(y) + 33)] - [8(a.p)-(1/2)'

(Var(xy))'1/2-(Var(y) + 72)] < 0 under DARA,

8H1/8Var(y) - - [Se-(l/Z)-(Var(xy))'“2-(Var(X) + 22)] - [S(U.#)-(1/2)-

(Var(xy))’1/2-(Var(x) + 122)] < 0 under DARA,

6H1/BCOV(X"'.Y2) - - Se-(l/Z)~(Var(xy))'i”2 - 80141)-(1/2)~(Var(xy))'“2 < 0

under DARA,

6HL/6A - - Su-¢2 > 0 under DARA.

Many of the comparative static results of the 1-2-1 model carry

through to the case in which there are two sources of risk. Under DARA,

a reduction in variance of i or y increases the optimal values of a and

6. Also, under DARA, the effect of a change in A is the same as that in

the l-2-l model. However, other intuitively appealing results from the

1—2-1 model do not hold unambiguously in the case of two sources of

randomness.

An increase in i or 7 does not unambiguously result in an increase

in a and 6. This is because it increases the expected value of z, p,

but nny also increase the standard deviation, 0. The effect of an

increase in i on the standard deviation of 2 can be positive or negative

according as the term i-Var(y) - 7-Cov(x,y) is positive or negative.

If the effect is negative, then the increase in i unambiguously results

in an increase in a and 6 under DARA. However, if the effect is

positive, the increase in i does not unambiguously result in an increase
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in a and 6 even under DARA.

The term Cov(x,y) has two effects. First, a high Cov(x,y)

increases the expected value of the outcome variable, 2. Second, a

higher Cov(x,y) reduces the standard deviation of z. This second effect

runs counter to intuition, based on the notion that low(negative)

covariance will smooth out 2. That intuition is not wrong, but the

mathematical expression formalizing that intuition involves the

covariance between x3 and y2 and the covariance between x and y. The

‘variance of i-y is E(xz-yz) — [E(x°y)]z. Cov(x,y) increases the second

term and thus reduces the variance, while Cov(x2,y2) increases the first

term and thus increases the variance(see Appendix). The decomposition

presented here points out the importance of a distinction between

Cov(x,y) and Cov(x?,yz). Thus, under DARA, an increase in the term

Cov(x,y) unambiguously leads to an increase in the optimal value of a

and 6, while an increase in the term Cov(x?,y2) results in a decrease in

a and 6.

4.3 A Two Output Competitive Firm Model

In this section, we examine a specific 2—2—1 model, in which the

outcome variable 2 takes the form z(x,y,a,6,A) — i-a + y-6 — c(a,6) - A,

where i and y are the prices of products a and 6, respectively, a and 6

are two products, A is fixed cost, and c(a,6) is a variable cost

function. Note that the model is an extension to the 1-2-1 model

investigated in chapter 3.3. Assuming i and y are independently

distributed, the agent's problem is to choose a and 6 to maximize

Eu(z)-,&7£3‘u(z)dF(x)dG(y). It is assumed that the decision maker

is a risk averter; that is, u' > 0 and u" < 0, and the variable cost
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function has the same properties as in chapter 3.3.

Under these assumptions, the first-order conditions can be written

as: Hli- Eu'(i - ca(a,6)) - Eu'(i - ca(a,6)) + Cov(u',§) S 0,

H2 - Eu'(y — c6(a,6)) - Eu'(y - c5(a,6)) + Cov(u',y) S 0.

The question addressed here is how do the optimal values of a and 6

change when an increase in risk occurs from an initial nonrandom

situation, where x - x and y - y, to a situation when both i and y

are randoms with means i and 7, respectively. Let ac and 6c denote the

optimal values of a and 6 under certainty and a8 and 68 when both

product's prices become random. We assume that a and 6 take values in

the interval [0,w]. Then a corner solution occurs when acl- 0 or 6c -

0. The case where ac - 0 and 6c - 0 is not interesting. The diagram

approach is used to deal with corner solutions.

Lenmn 4,i: If i and y are independent, then Cov(u',x) S 0.

Egnnf: If i and y are independently distributed, then Cov(u',x) -

Eu'(x - i)-—,&§L° u'(-)(x - i)dF(x)dG(y). It is convenient to write

u' - u'(x,y) as it depends on both random parameters. Because

,Ligs‘u'(i,y)(x - i)dF(x)dG(y) - 0, we have

Eu'(x - i) - IOU," [u’(x.y) - u’(i.y)1(x - i)dF<x>dc<y).

Note that under u" < 0, the integrand is nonpositive since

u'(x,y) - u'(i,y) and (x - i) are opposite in sign for all x in [0,B].

Thus, Cov(u',x) s 0. The strict equality holds when a - 0.

Qorollary 4,1: Assume that the risk averse firm specializes in product

a under certainty; that is, ac > 0 and 6c - 0.

If ca5‘< 0, thenaa < ac and 6a - 6c a 0.
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If c“ > 0, then a. < ac and 6a may(need not) be positive.

Egnnfz If ac > 0 and 6c - 0, then ac.> 0 and 6c - 0 must satisfy

x - cu(ac,0) - 0 and y - c6(ac,0) S 0. Because the set of points above

the ma curve represents y - c, < 0, the m2 curve should lie to the right

of the m1 when ca, < 0, while the m2 should rest in below the m1 when

ca; > 0. Lemma 3.1 implies that the m1 and m2 curves have the relative

positions shown in figures 4.1.1 and 4.1.2. By lemma 4.1, the

introduction of uncertainty shifts the m1 curve to the left, and the m2

curve downward. This is because H11 < 0 and H22 < 0. The case of cm, <

0 is obvious from the figure. Also, it is clear to see that cm52> 0 is

a necessary condition for product diversification.

The case where ac - 0 and 6c > 0 is not considered since it is

analytically symmetric to the case investigated in corollary 4.1. This

corollary only requires that the decision maker be risk averse, and

indicates that if ca52> 0, then price uncertainty may result in product

diversification. The diversification occurs if a product which is not

produced under certainty is produced when its price is random.

0 l a 4 : Assume that the risk averse firm produces both goods

under certainty; that is, ac1> 0 and 6c > 0.

If cm, < 0, then aa < ac and 68 < 6c.

If cu62> 0, then the firm may increase the output of one product, but

will not increase the output of both products.

Pgoofi: The proof is similar to that which is provided for corollary 4.1

and is simply sketched here. By lemma 4.1, the introduction of
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uncertainty from an initial nonrandom situation shifts the m1 curve to

the left, and the m2 curve downward. The conclusion of the corollary

follows immediately from figures 4.2.1 and 4.2.2.
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APPENDIX

P 00 S __2_Q:(Leathers)

S(a,p) - -v,,/v,,. s, - (1/v,,2)-[-v,,,v,, + vavuu] - (1/v,)-[-v,,,, - 5(a,p)v,,,,]

<(-) 0 under DARA(CARA)[Meyer, 1987, p.425]. 8,, 5 0 implies that V,“ 2

0 and VW/Vm, s Va/V“. By prOperty (d) , Vac/V,“ s Vau/Vuu. Combining

these we have Vac/V,“ S Van/V“, S Va/V“. S,(a,p) - (Vaflu7' {-Vaa/vau +

Va/Vu] z 0 because V0,, .2 0 and (Va/V“ - Vac/Va“) 2 0-

Proof of of - vm:

Var(x-y) - E((x-y)2) - [E(x-y)]2. Expanding the first term, E(xz-yz) -

E(x2)-E(y2) + Cov(x2,y2) - [Var(x) + iz]-[Var(y) + 72] + Cov(x2,y2).

Also, [E(x-y)]2 - [2.7 + Cov(x.)')]2 - 22-352 + 2x-yCov(x,y) + (Cov(x,y))z.

Combining these we have Var(x-y) - Var(x)-Var(y) + xz-Var(y) +

yz-Var(x) + Cov(x2,y2) — (Cov(x,y))z - 2i-S"COV(X.Y)-



CHAPTER FIVE

THE 2-1-2 MODEL

5.0 Introduction

Many theoretically interesting and policy relevant economic

problems can be formulated by means of a two outcome(or argument) model,

where a decision maker's utility function has two outcomes related to

each other through a linear budget constraint. This framework which

captures the essence of decision making(the notion of tradeoffs within

an economic constraint) is commonly used to investigate the effects of

taxes on labor supply or of varying interest rates on savings. Some

parameters in the two outcome model are generally assumed to include

randomness. Nominal wage rate uncertainty in the labor supply model is

one example. It is most common in markets where earnings include

commissions or when present work yields an unknown future income.

Sandmo[l970], Rothschild and Stiglitz[197l], Dardanoni[l988], and

Ormiston and Schlee[1992] examine a decision model composed of one

random, one choice, but Eng outcome variables. In this model, the

utility function depends on two outcome variables, each of which in turn

depends on one random variable, one choice variable, and a set of

nonrandom parameters. They address the following question: how does a

decision maker adjust the choice variable when the random parameter

undergoes an increase in risk or first and second degree stochastically

dominant shifts? We extend these earlier works by considering £29

sources of randomness including cases where the risks are not

independent of one another, and we analyze the effects of two types of

76
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changes in randomness: FSD shifts and R—S increases in risk.

In analyzing decision models involving risk, at least three

methods have been used to represent a change in random variable i.

These include changing the CDF for i, transforming i stochastically,

and transforming R deterministically. The three methods are employed in

this chapter, with special emphasis on the stochastic transformation

which is used to examine the case where i and y are stochastically

dependent. This is because it allows the characterization of comparative

risk for univariate CDFs, introduced by Rothschild and Stiglitz[1970]

and Hadar and Russell[l969], to be used directly.

This chapter proceeds as follows. In the next section the

literature concerning the 1-1-2 model is reviewed first. In section 2,

the effects of FSD and MP3 changes in i within a specific 2-1—2 model

are examined using the CDF and transformation approaches. The analysis

shows that the conditions sufficient to make determinate comparative

static statements concerning the effects of FSD shifts and MPSs on the

choice variable are exactly those conditions determined in the 1-1-2

models.

5.1 Literature Review

In the 1-1-2 model, the utility function depends on two outcome

variables, each of which in turn depends on one random variable, one

choice variable, and a set of nonrandom parameters. In general form an

agent is assumed to choose a to maximize EU(21(§,a,A),zz(§,a,A)), where

the outcome variables, 21 and 22, depend on a random parameter, i, a

choice variable, a, and a set of nonrandom parameters, A.

Although the 1-1-2 model can represent wider ranges of economic
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decisions, it raises several difficult problems. First, in this

decision framework, utility depends on two outcomes, 21 and 2;. Thus,

problems involving multidimensionality of utility arise. Next, the risk

aversion measures derived for nnivagiate utility function cannot be used

directly. Finally, in a world of certainty, each decision maker may

select a different level of a. To see this last point, note that if the

random variable i is fixed at x0, then a decision maker whose preference

is represented by utility function U( , ) selects a so as to maximize

U(zl(x°,a,A),zz(xo,a,A)). Thus, another decision maker who has different

utility function V( , ) may select a different level of a. This causes

us to worry about differences in behavior which would arise even in a

world of certainty.

There are two interesting and frequently studied comparative

static problems. The first asks what conditions are needed to predict

the direction of change in the optimal value of a when an increase in

risk occurs from a nonrandom initial situation, where x - i, to a

situation when i is random with mean i. This question arises because

the comparative static analysis in single outcome variable models should

be changed in the two outcome variable case. The second question is

concerned with determination of the direction of change for the choice

variable selected by a decision maker when the random parameter i

undergoes an increase in risk or first and second degree stochastically

dominant shifts. This is an especially important question when the

utility function is not additively separable in outcome variables.

Mirman[197l] addresses the first question, and Sandmo[l970], Rothschild

and Stiglitz[197l], Block and Heineke[l973], Dardanoni[l988], and
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Ormiston and Schlee[1992] address the second. This chapter deals with

the latter question. We begin by reviewing a specific 1-1-2 model

presented by Mirman.

Mirman[197l] considers a two-period consumption and saving model,

in which zl(§,a,A) - A - a 2 0 and.zz(§,a,A) - x-f(a) z 0. Here R.

represents the uncertainty of the second period technology, a is

investment for the second period, A is initial endowment which can be

used for consumption in the first period or invested for consumption in

the second period, and f(-) is a production function with f'(o) > 0 and

f"(-) < 0. Mirman assumes the utility function is additively separable

in outcome variables; that is, U(21,zz) - u(zl) + v(zz) where u', v' > 0

and u", v" < 0. It is the assumption concerning the utility function

that allows him to investigate the effect on a of a global increase in

risk. Let ac denote the optimal value of a under a nonrandom initial

situation where x - i. Mirman's main result is:

Theorem 5 1: Assuming that a decision maker chooses a to maximize

 

E[u(A-a) + v(§-f(a))] where u', v' > 0, u", v" < 0, and f' > 0, f" < 0,

and that 0 < ac < A, then the decision maker, when faced with a global

increase in risk, will decrease the optimal value of a if R*(zz) S l and

RR'(zz) z 0, where RR(zz) - - zz-v"(zz)/v'(zz).

The general 1—1-2 model of Rothschild and Stiglitz[197l] has

outcome variables given by 21(§,a,A) - a and zz(§,a,A) - 2. They show

that the conditions of Um,x < 0 or Um“ > 0 are sufficient for signing

the effect of a R—S increase in risk on the choice variable selected by

a risk-averse decision maker. Unfortunately, for many specific 1-1-2
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models the conditions specified by R—S are too restrictive to allow one

to obtain interesting comparative static results. Additional

restrictions must be imposed on the risk taking characteristics of the

decision maker and/or the decision maker's behavior under certainty.

The specific 1-1-2 model analyzed by Sandmo[l970] takes the form

21(i,a,A) - A1 - a and.zz(x,a,A) - Az-a + i, where i is future income

(denoted the income risk case), a is saving, and A1 and A2 are the first

period income and the return to saving, respectively. Obviously here 21

does not include randomness, and 22 is linear in a and i. The utility

function U(zl,zz) defined over 21, 22 > 0, which denote respectively

present and future consumption, is assumed to be continuous, increasing,

concave and at least three times differentiable. In order to derive

determinate comparative static results concerning the effect of an

increase in risk represented by an increase in 1, Sandmo proposes the

temporal risk aversion function: RA(zl,zz) - - U22(zl,zz)/Uz(zl,zz) where

U2 - 6U(zl,zz)/6zz and U22 -= 62U(zl,zz)/6zzz. Sandmo's main result is:

Theorem 5 2: Assuming that a decision maker chooses a to maximize

 

EU(AI—a,Az-a+§), then the decision maker, when faced with an increase in

1, will increase the optimal value of a if (a) 6a/6x < 0 for all i and

A2 under a nonrandom situation where x - i and (b) 6RA(zl,zz)/6a < 0.

This theorem gives conditions sufficient to yield determinate

comparative static results concerning the effect on saving of a special

type of a R—S increase in risk. Condition (a) requires that the

decision maker's behavior under certainty should be known, and condition

(b) restricts the set of decision makers to those exhibiting decreasing
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temporal risk aversion with respect to the choice variable a. Dardanoni

[1988] extends the result by showing that the same conditions are still

sufficient for an arbitrary R—S increase in risk.

Sandmo considers another case, in which 21 is the same as before

and 22(§,a,A) - i-a + A2. In this case i is the return to saving

(denoted the capital risk case), a is saving, and A2 is the second

period income. Note that i represents a multiplicative risk. He

addresses the same question as does in the additive risk case, but is

unable to derive unambiguous comparative static results. That is,

Sandmo makes the distinction between the additive and multiplicative

risks in the study of saving decisions in a two-period model with a

general(nonseparable) utility function. Block and Heineke[l973]

consider a specific 1—1-2 model, whose structure is the same as

Sandmo's[l970], to examine the labor supply decision of a single

economic agent. B-H are nign unable to derive determinate comparative

static results concerning the effect of an increase in 1 when i

represents a multiplicative risk.

The specific 1-1-2 model of Dardanoni[l988] assumes the outcome

variables take the form 21(§,a,A) - A1 - a and 22(§,a,A) - i-a + A2,

where i is a random variable, a is a choice variable, and Ai(i-l,2) are

nonrandom parameters. This model includes Sandmo's model of optimal

savings and Block and Heineke's model of labor supply as special cases.

Notice that the random parameter i represents a multiplicative risk.

The assumptions concerning utility function are the same as those in

Sandmo[l970]. In order to derive unambiguous comparative static results

concerning the effect of an arbitrary Rothschild and Stiglitz increase
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in risk, Dardanoni uses the nzgpogtionai risk aversion function

introduced by Zeckhauser and Keeler[l970] and Menezes and Hanson[l97l]:

Rp(zl,22) - - (zZ—Az)-U22(zl,zz)/U2(zl,zz). His main result is:

 

Theorem 5 3: Assuming that a decision maker chooses a to maximize

EU(A1-a,§-a+A2), then the decision maker, when faced with an arbitrary

Rothschild and Stiglitz increase in risk, will increase the optimal

value of a if (a) 6a/6x < 0 for all x and A2 under a nonrandom situation

‘where x - i and (b) 6Rp(zl,zz)/6a < 0.

Again, theorem 5.3 implies that meaningful and intuitive

predictions on comparative statics in the 1-1-2 model may be obtained

using both the results from individual's behavior under certainty and

some restrictions on the utility function in terms of risk preferences.

It is interesting to observe that if 60/6)“: and 6Rp(zl,zz)/6a are

opposite in sign, then we may not unambiguously predict the decision

maker's response to a R—S increase in risk. However, there is no

legitimate assumption as to whether 6a/6i is in general likely to be

positive or negative; nor is it clear whether RP is in general likely to

be increasing or decreasing in a.

In the general 1—1-2 model given by Ormiston and Schlee[1992] it

is assumed that the agent chooses a to maximize EU(a,z(§,a)). O—S

provide conditions on preferences that are necessary and sufficient for

a dominating shift in the initial CDF, representing FSD improvements in

R or MPCs, to cause an unambiguous change in the optimal level of the

choice variable a. The identification of necessary conditions allows

one to see precisely the tradeoffs between restrictions on preferences
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and CDF changes in obtaining interesting comparative static results.

They then investigate the implications of their results for a linear

model which includes the labor supply and consumption—savings model.

5.2 A Specific 2-1—2 Model

5.2.1 The Comparative Statics Problem

A specific two random-one choice-two outcome(2-l-2) model is

considered in this section. In it the agent is assumed to choose a to

maximize EU(A-a,'x-a+'y) - fog]: U(A-a,§-a+'y)-d2H(x,y), where i and 3':

are random parameters which take values in the interval [0,3], a is a

choice variable, and A is a nonrandom parameter. In this case 21 -

A — a and 22 - i-a + y. The utility function U(zl,zz) defined over 21

and 22 is assumed to be continuous, increasing, concave and at least

three times differentiable.

The joint cumulative distribution function(CDF) for i and y are

denoted H(x,y). The conditional and marginal CDFs for i are denoted

F(x|y) and F(x), respectively, and for y they are G(ylx) and G(y). If i

and y are independently distributed then F(x|y) - F(x) for all y, G(ylx)

= G(y) for all x, and H(x,y) - F(x)-G(y). To simplify notation, the

symbol d2H(x,y) is used to denote [62H(x,y)/6x-6y]tdx-dy.

To simplify the analysis, the initial joint distribution H9(x,y)

is assumed to be such that the agent attains a unique, regular, interior

maximum at 0:0 satisfying 0 < aoi< A. This is defined by the first order

condition: u(ao) - fo'foa tb(x;y,a°)td2H°(x,y) =- o where ¢(x;y,ao) -

— U1(A-ao,x-a°+y) + x-U2(A—ao,x-ao+y). It is also assumed that

the second order condition is always satisfied at a - do; that is,
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u'(ao) - LBJ: 6¢(x;y,ao)/6a-dzH°(x,y) < 0. As usual, determining how

the optimal value for a changes as the random variable i is altered

involves determining the sign of ”(a0) after i has been changed.

The proofs of our theorems will be simplified if we utilize the

following corollary.

Coro 1 5 : (a) ¢x2>(<) 0 if and only if 6a/6i >(<) 0 for all i

under a nonrandom situation where x - i and y - y. (b) 16,0, >(<) 0 if

6a/6i <(>) 0 for all x and 6Rp(zl,zz)/6a <(>) 0 where Rp(zl,22) -

" (ZZ'Y) 'U22(21922)N2(zlvzz)-

2:99;: (a). Under a nonrandom situation where x - i and y - y,

aa/ai - —(1/H)-(—U12~a + ion” + U2) where H - U11 - 2:10,, + iz-Uzz < o.

The statement follows from 61/)(x;y,a)/6x - -U12-a + X'a°Uzz + U2.

(b). The proof is given in Dardanoni[l988] and is simply sketched here.

Dardanoni shows that the given conditions are snfficien; for determining

the sign 0f ¢xx ' aI2'(-Uizz + x'Uzzz) + 2X°U22-

5.2.2 The Comparative Static Results

The comparative static analysis concerning the effect of a change

in a random parameter for decision models with two sources of randomness

should resolve the problems of handling the joint CDF for i and y.

Hadar and Seo[1990] avoid the problems by assuming independence, while

Meyer and Ormiston[199l] propose the stochastic and deterministic

transformations as a method to solve them. For the case of independent

i and y, the comparative static analysis can be carried out by replacing

H°(x,y) - F°(x)-G(y) with H1(x,y) - F1(x)-G(y). FSD improvements in the
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CDF for i are represented by'Fd(x) s Fo(x) for all x in [0,B]. For MPSs

the condition is: f0” [F1(x)—F°(x)]-dx .>. o for all s in [0,3], with

equality for s - B.

Theorem §,4: Assume a) ii and y are stochastically independent,

1 - 0,1; b) 321 FSD 32°; c) EU(,\-o,,3'ti-a,+'§) is maximized at o < a, < A.

Then a1 >(<) do if and only if 6a/6i >(<) 0 for all i under a nonrandom

situation where x - i and y - y.

Engo_f: The FOC is: "(0:0) - LB]: ¢(x;y,ao)-d2H°(x,y) - 0. Subtracting

this from the similar expression.with H}(x,y) replacing H°(x,y) yields:

n*<ao) - IOU," t(x;y.ae)-d2[H1(x.y) - H°(x,y)]

- IOU,” wean-atria) — F°<x>1-dc(y>.

By part (a) of corollary 5.1, 0*(00) >(<) 0 if and only if 6a/6i >(<) 0

for all R. Then, the second order condition implies a1 >(<) a0.

Theorem 5 5: Assume a) ii and y are stochastically independent,

 

i - 0,1; b) 321 MP8 32°; c) EU(A—a;,'xi-a;+y) is maximized at 0 < a; < A.

Then a1 >(<) do if 60/62 <(>) 0 for all i under a nonrandom situation

where x - i and y - y and 6Rp(zl,zz)/6a <(>) 0.

Proof: Using the same procedure as in the proof of theorem 5.4, we have

n*<a.) - fon]: ¢(x;y.ao)-d[F1(x) - F°(x)]-dG(y). By part (b) of corollary

5.1, "*(ao) >(<) o if ao/as <(>) o for all i and aRp(z,,zZ)/ao <(>) 0.

Then, from the second order condition a1 >(<) do.

The conditions in theorem 5.4 and 5.5 are the same as those found

in the 1-1—2 model by Block and Heineke[l973] for FSD shifts, and
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Dardanoni[l988] for MPSs. Thus, with independence, extension to the

2-1-2 model preserves the findings from the 1-1-2 model.

Now, consider the case where i and y are stochastically dependent.

Rothschild and Stiglitz[1970] use a stochastic transformation of i in

one of their three definitions of an increase in the riskiness of i.

According to the first definition(RSl), i} is riskier than §° if

321 -C, [32° + z], where 2' satisfies E(zlx0) - o and n -d n represents "is

equal in distribution to". Theorem 5.6 uses this to extend theorem 5.5

to the case of dependent random variables.

Incogem §,6: Assume a) E} and y are stochastically dependent; b) i1 is

Obtained from i9 by adding E which satisfies E(leo) - 0, and Z is

independent of y; c) EU(A-ai,§i-ai+y) is maximized at 0 < a; < A. Then

a1 >(<) do if 60/62 <(>) 0 for all x under a nonrandom situation.where

x - i and y - y and 6Rp(zl,zz)/6a <(>) 0.

m: Because 2 is independent of 3", (321m - (3201):) + E for each y,

and therefore, the conditional random variable (xity) is riskier than

(iply) for each y. Note that these are univariate random variables.

Rothschild and Stiglitz have shown that j: [F1(XI)’) - F°(x|y)]dx 2 0 for

all s in [0,8] with equality at s-B. This is used in determining the

effect of changing i. The first order condition can be written as:

"((10) - LBJ: ¢(x;y,ao)-dF°(x|y)-dG(y) - 0. Subtracting this from the

similar expression with Eu(xly) replacing F”(x|y) yields:

71*(ao) - fo°fo° ¢(x;y,a°)~[dF1(x|y) - dF°(x|y)]-dG(y). It is interesting

to observe that the independent stochastic transformation of i allows

the characterization of comparative risk for univariate CDFs to be used
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directly. Now, note that if 6a/6x <(>) 0 for all 2 under a nonrandom

situation and 6Rp(zl,zz)/6a <(>) 0, then ¢(x;y,a) is convex(concave) in

x for all 0 < a < A. Thus, the result of R-S concerning convex(concave)

functions indicates that u'(ao) >(<) 0.

Theorem 5.6 contains Theorem 5.5 as a special case. To see this,

recall that Theorem 5.5 assumes that i? is a MP8 of §°, and that each ii

is independent of y. As mentioned earlier, R—S have shown that when i1

is a MP8 from 32°, then there exists a 2 such that 321 -d 32° + z, where

3 satisfies E(§|x°) - 0. Furthermore, even though 2 nny depend on §°,

because i0 is independent of y, E can be selected to be independent of

3". Define 321' - 32° + 3. Notice that 321' is equal to 32° + 2, and that

33 and if are equal in distribution to one another. Furthermore, the

pair (321,5) has the same joint CDF as does (3215). Note that for

expected utility maximizing decision maker, random variables are

completely described by their joint distribution function. Thus, if a

increases when E is added to x°, it also increases when i0 is replaced

by RI.

The procedure of adding independent noise to E can be used to

obtain nny R—S increase in risk for the case of independent i and y,

but can only yield a subset of all R—S increases in risk for the case of

dependent i and y. When §° is not independent of y, it may not be

possible to represent the R-S increase in risk by adding a E which is

independent of y. This is because E must be allowed to depend on.§°

in order to represent an arbitrary R-S increase in risk, and this may

also require that Z depend on y when §° and y are not independent of one
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another.

Theorem 5.6 indicates that when i is made riskier by means of an

independent stochastic transformation, the independence assumption is

not necessary. The independent stochastic transformation can make a

random variable i, for any y, be riskier in thg sense of Rothschild and

Stiglitz, without changing the stochastic relationship measured by, for

instance, conditional expectation. To remove the independence we have

to sufficiently limit changes in the stochastic relationship.

Having shown how stochastic transformations can be used to extend

theorem 5.5 concerning MPSs, it is quite straightforward to similarly

extend theorem 5.4. Random variable i} dominates §° in the first degree

if 321 - 32° + E, where the support of 'E is nonnegative.

Theoren §,Z: Assume a) fii and y are stochastically dependent; b) i1 is

obtained from §°'by adding 3, where E has nonnegative support; c)

EU(A—ai,32i-ai+y) is maximized at 0 < a; < A. Then a1 >(<) do if and only

if 6a/6i >(<) 0 for all i under a nonrandom situation where x - i and

y=7~

Epppfz Note that even though 2 need not be independent of y, (iiky) —

(§P|y) + (Ely) for each y, and although (3|y) may depend on y, each is

nonnegative. Thus, the conditional random variable (ilky) dominates

(iPIy) in the first degree. That is, their CDFs satisfy [Fd(x|y) —

F°(x|y)]dx s 0 for all x in [0,B] and all y. As in the proof of theorem

5.6. for.) - IOU,” t(x;y.ao>-[dF1<ny> - dF°<x|y>1~dc<y>. By part (a) of

corollary 5.1, ¢(x;y,a) is increasing(decreasing) in x for all 0 < a < A

if and only if 6a/6i >(<) 0 for all i. Thus, the FSD result of Hadar
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and Russell[l969] indicates that u'(ao) >(<) 0.

Independence of E and y is not required in Theorem 5.7 because if

E is nonnegative, it is nonnegative for all y. Thus, when E is added to

i, i improves in a FSD sense for all realizations of y. This same thing

does not happen when 2 increases the riskiness of i. Since independence

is not required of Z, a corollary to Theorem 5.7 can be presented in

terms of deterministic transformations.

A deterministic transformation of random variable i replaces every

realization of i by a new value determined according to a function

defined over the support of i. Formally, a deterministic transformation

is any nondecreasing function t(x) whose domain is all possible

realizations of i. Note that deterministic transformations provide a

sufficiently strong ceteris paribus restriction for the case of FSD

improvements, but not for the case of MPSs.

Corollary 5,2: Assume a) Rd and y are stochastically dependent,

i - 0,1; b) 5° is transformed in i} using deterministic transformation

t(x) which satisfies t(x) - x I k(x) 2 0 for all x in [0,B];

c) EU(A—ai, 32in; +32) is maximized at 0 < a; < A. Then (11 >(<) do if

and only if 6a/6i >(<) 0 for all i under a nonrandom situation where

x - i and y - y.

To show that Theorem 5.7 generalizes Theorem 5.4, Corollary 5.2 is

used. Assume that i1 is a FSD improvement over i0. This implies that

F°(x) s F°(x) for all x. For continuously distributed random variables,

this same shift from F° to F'1 can be accomplished using the

deterministic transformation: t(x) - infié: F°(€) 2 F°(x)}. Define iv -
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t(x°). While if is not necessarily the same as i1, it dose have the

same marginal distribution and joint distribution with y and hence leads

to the same selection of a.

5.3 Summary and Conclusions

This chapter extended a specific 1-1—2 model to a 2-1-2 model.

Especially, using stochastic transformations, the case where i and y are

not independently distributed was investigated. However, the analysis

shows that the conditions for signing the effect on the choice variable

a selected by a decision maker of FSD shifts and R—S increases in risk

are exactly those conditions determined in the 1—1-2 models.

Extension of the 2-1—2 model to a 2—2—2 model remains for further

research. An interesting 2-2-2 model is the integration of both the

labor and savings decisions into a single model of household decision

making in which the supply of labor and savings are simultaneously

determined and both factor returns are random.
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