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ABSTRACT

STATIC ANALYSIS OF STRUCTURAL THIN

FLAT NIEMBRANES

BY

ABDELILAH ELGUENNOUNI

The static nonlinear behavior of structural thin flat

membranes which are subjected to transverse loading was

investigated. Using a: nondimensional formulation, two

geometrically nonlinear finite element models were considered.

First, a simplified model based on the von Karman strain-

displacement relationships was developed and validated by

comparison to previously developed models. Then, a general

model based on the exact strain-displacement relationships was

developed.

A comparison between.the two models was made to'determine

the limitations of the simplified model. An extension to

deformation-dependent loading was also studied. Several

parametric studies were.conducted.to investigate the.effect of

Poisson's ratio, initial prestressing, and membrane boundary

conditions on deflections and stresses. An incremental-

iterative procedure was used to solve the nonlinear finite

element equations. To overcome the difficulty associated with

the ill-conditioning encountered for the first several

increments, a new technique referred to as "initial virtual

prestressing" was developed. This was found to be effective



and convenient compared to the usual strategy of guessing the

initial deflected shape.

It was shown that a nondimensional coefficient k which is

a function of five parameters (load intensity, characteristic

length of the membrane, Young’s modulus, Poisson’s ratio and

membrane thickness) determines the state of straining in the

membrane. For values of 1: smaller than 0.01, the maximum

strain is less than 1.75%. The simplified model leads to

results that are sufficiently accurate for design purposes.

For values of k greater than 0.05, the maximum strain exceeds

5%, and the accuracy of the simplified model diminishes.

The use by previous investigators of second Piola-

Kirchhoff stresses is inappropriate because Cauchy stresses

are the more accurate representation of real stresses.

However, for values of k smaller than 0.01, the numerical

difference between the two stress measures was found to be

negligible. Also, it was shown that for values of k smaller

than 0.05, external pressure loading may be assumed to be

deformation—independent. Variationcanoisson’s ratio, initial

real prestressing and membrane boundary conditions were shown

to have significant effects on deflections and stresses.
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1 . INTRODUCTION AND BACKGROUND

1.1 Introduction

The high capital cost.of glass greenhouses has stimulated

interest in film plastic clad alternatives which require only

20 to 45% of the capital required for glassk

In Morocco, there is a trend toward the construction of

plastic film greenhouses. More than 1000 hectares for banana

production have been covered by this type Bf structure during

the period 1981-19882.

Because: of ‘the favorable Jhorticultural qualities of

polyethylene film (particularly for the Mediterranean climate)

and its low price compared to other covering materials, it.has

been used extensively for greenhouses. Due to the fact that

the structural behavior of this covering material is not well

known, particularly under the random action of wind, the

reliability of these greenhouse structures remains uncertain.

Existing designs span a large range of reliability; some are

prone to structural failure while others appear to be

overdesigned to an uneconomic degree.

Greenhouse structures are hybrid systems in which plastic

membrane panels span between primary load carrying members

such as prestressed cables and rigid elements. Some of the

advantages of membrane structures are:
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- they are lightweight and collapsible and therefore easy to

transport and erect;

- the environmental loads are efficiently carried by direct

stress without bending;

- they are load-adaptive in that the members change geometry

to better accommodate changes in load patterns and magnitudes.

The structural mechanics of tension structures such as

greenhouses is well described in references3 4 5 6 7. Large

deformations due to wind pressure, the resulting tearing of

the plastic due to the high membrane tension, and the collapse

of other structural elements are critical problems. -

Since the typical cost of greenhouse structures designed

for Morocco is between 250,000 and 300,000 Dirhams‘ per

'hectare, failure of a greenhouse represents a significant

loss. Therefore, an efficient and safe structural design of

these buildings must be achieved. To do this, several factors

that influence the design must be considered. The main factors

that are specific for these structures are the design wind

load and the structural behavior of film plastic membranes.

The first factor has received considerable attention; only a

few investigations have been concerned with the latter.

1.2 Review of Technical Literature

A.membrane can only sustain tensile stresses. Therefore,

in order to be stable , i.e. have an equilibrium position, it

 

‘. In June 1989, 1 Dirham = $ 0.125.
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must be prestretched. This can be effected by tensile forces

acting on the membrane edges, by selfweight,or, when a space

is completely enclosed, by pressurizing. Prestretching forces

stabilize the structure and provide stiffness against further

deflections. Membrane structures respond in a nonlinear

fashion to both prestretching and service loads, regardless of

linearity of materials, even if the loading is deformation-

independent.

The static analysis of prestretched structures comprises

two main problems:

1- Determination of the prestretching forces at equilibrium;

2— Establishment of the maximum tensile forces arising in the

system at the given load application. These, together with the

strength of the membrane, determine the maximum size of the

panel.

In order to determine the required prestretching forces

as well as the maximum stresses, it is necessary first to

determine.the internal forces. The ordinary membrane theory of

shells may be used, provided the material is only slightly

deformable so that the loads can be considered to act on the

undeformed system. It is far more difficult to determine the

state of stress for highly deformed membranes. In this case

the initial shape is incapable of supporting any load, and.the .

membrane undergoes finite deformations until an equilibrium

shape is reached. The state of stress depends markedly on the

final shape of the membrane. However, this shape is unknown,
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as are the internal forces. When the equilibrium state of a

system must be determined for the deformed position, it is

necessary to apply the theory of finite deformations, using

nonlinear strain-displacement relationships. This leads to

nonlinear displacement equations.

According to Shaw and Perronéfi the governing nonlinear

equations of 'membranes were first derived by Foppl and

Teubner". These equations follow directly from the von Karman

large deflection flat-plate equations by setting the plate

stiffness identically zero. The von Karman equations for the

large deflection of a thin flat plate of uniform thickness

are”:

(1.1)
    

341.32 64F + a4F=E( 62w)2_ azwazw

6x4 Ehfldyz dy‘ 1%{3Y 8x269)r2

 

  
 

jtg4i3 éFW' +é¥wg=lg£g+i¥F’d%v+i¥F'6%v__2 in' Eyw

6x4 dxzdyz dy‘ .D h dyzéhfl axzc'iyr2 dxifirdxih/

(1.2)

where w is the normal deflection, q=g(x,y) is the applied

normal load intensity, h is the plate thickness, E is Young’s

modulus for the plate material, D its bending stiffness

defined as Eh3/12 (l-VZ) where V is Poisson’s ratio, and F is a

stress function related to the forces per unit length in the

plane of the plate by the formulas:



N=hazF N=hazF N =hazF
x ayz y 6x2 ’0’ ' —axay ”'3’

  

Making the bending stiffness zero results in two simultaneous

nonlinear equations relating the membrane deflection and the

stress function

 

+ 5bfaY' Iggidyz

2

64F+2 an: 35 = E[( 62w) _ 52.4933] (1,4,

3x4 Ehfiayz dy‘

szdzw+ 62wa_2 62F 62w

6y2 6x2 32:36—37; 6x 6y 6x 5y =
(1.5) 

  .g +

h

The exact solution for the uniformly loaded rectangular

membrane has not been obtained.

In 1920, Foppl and Foppl” used the energy approach to

obtain an approximate solution for stress and deflection at

the center of a square membrane. They assumed a trigonometric

function for the membrane deformations. This function, which

contains a certain number of unknown coefficients, was chosen

so as to satisfy the boundary and symmetry conditions. The

unknown coefficients were evaluated by minimizing the total

energy of the membrane. A year later, Hencky12 achieved a

rather lengthy numerical finite difference solution for a

square membrane. His results differ slightly from Foppl and

Foppl’s.

According to Borg”, in 1940 Neubert and Sommer14 carried

through the Foppl's computations for the rectangular case and

drew curves for stresses and deflections. Additionally,

Neubert and Sommer obtained satisfactory experimental
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verification for the Ffippl’s and Hencky solution for the

square membrane, but.did not test a rectangular membrane. Head

and Sechler" got similar results from their experimental

work, but, for rectangular membranes with high aspect ratios,

they noted.a discrepancy from.the Foppl and Fappl solution for

stresses. Borg13 obtained an exact solution for the semi-

infinite membrane by taking the limit of the semi-infinite

tied-platel6 as the plate bending stiffness approaches zero.

He estimated the deflections and stresses of rectangular

membranes by interpolating' results for square and semi-

infinite rectangular membranes. He drew curves for central

deflection and central stress between the two limits in such

a way as to satisfy known experimental requirements.

Differences of the order of 19 per cent appeared between the

Borg and F6ppl's results in semi-infinite membrane solutions.

Borg attributed this discrepancy to the fact that as the

aspect ratio decreases, the trigonometric function assumed by

Foppl and Foppl becomes less accurate.

In 1954 Shaw and Perrone8 employed a finite difference

approximation in conjunction with a nonlinear relaxation

technique to obtain a solution for an aspect ratio of 5/7.

Rather than using the Foppl’s formulation, the ‘membrane

problem was dealt with numerically in terms of displacement

components. Their results compared fairly'well with Borg’s. In

1972 Kao and Perronel7 extended the solution to other aspect

ratios.
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In 1987, Allen and Al-Qarra18 used an incremental finite

element method in a total Lagrangian coordinate system. An

advantage of the method is that the problem of the large

deflection of thin flat membranes subjected to normal forces

is formulated in terms of simple physical concepts, and a

numerical solution is achieved without dealing directly with

the complex nonlinear differential equations.

All the investigations described above used Hooke’s law

to express the stress-strain relationships, which for an

elastic and isotropic material are

a=De (1.6)

where the stress vector 0, the stain vector 6, and the

elasticity matrix D are given by:

 

a={ax,ay,oxy}T (1.7)

e: {ewewexy}T (1.8)

1 v 0

D = E2 V 1 0 (1.9)

1-v 0 0 l-v
 

When large displacements are considered, Hooke’s law may still

be valid provided that second Piola-Kirchhoff stresses are

used in conjunction ‘with. Green-Lagrange strains and the

material straining is small”. Consequently, the previous

research mentioned above used implicitly second Piola-

Kirckhoff stress as a measure of stresses. There has been much
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discussion about the physical nature of the second Piola-

Kirchhoff stress tensorwmh However, It should be recognized

that the second Piola -Kirchhoff stresses have little physical

meaning, and.in practice, Cauchy stresses should be the stress

quantities to be compared to available experimental work.

The:general definition.of strains which, is valid whether

displacements or strains are small or large, was introduced by

Green and St.Venant, and.is known as the Green’s strain tensor

or the Green-Lagrange strain tensor. In a fixed xyz-Cartesian

coordinate system, the strain components in terms of the

displacement components are:

 

__ au 1 duz 6V2 aw2

Qx- ax +I2<dx) +(6.x) +(BXH (1°10)

_ 8v _1 duz 6V2 6w2

8’" 6y + 2(6)!) +(3Y) +(3YH (1°11)

 

Ky...g_y_g§%gg_y%rg}g%g_; (1...,

The investigators mentioned above, except Allen.and Al-Qarra“,

utilized a simplified geometric nonlinear model in which it is

assumed that the squares and products of derivatives of the

in-plane displacement components u and v are small compared

with those of w and therefore may be neglected. Thus, the

following strain-displacement relationships were used

_ Bu 1 6w2
ex _ .3; + 3(3) (1.13)



6V 1 dwz
= __ _.__. 1. 4

8” 6y + 2(3)!) ( 1)

8 Ba + 6V + awdw (1.15)

”‘5 a as

From now on, the term "von.Karman.model" will refer to a model

using equations (1.13-14-15) as the strain-displacement

relationships, while the term "general model" will refer to a

model using equations (1.10-11-12).

Allen and Al-Qarra mentioned in their paper18 the use of

a general model and that their results compared well with the

previous von Karman models cited above, but did not draw any

conclusions regarding this point. This does not seem to be

coherent, since an obvious and important conclusion that

should be drawn from their work is that analysis of membranes

with large displacements does not require the use of’a general

model. Also, it is clear from Equations 13 of their paper18

that the values of the load intensity, length of the membrane,

membrane thickness and Young’s modulus might have a

significant effect on the results for deflections and

stresses. Therefore, the use of the general model by Allen and

Al-Qarra is questioned.

Thin flat structural membranes with negligible bending

stiffness rely on catenary action to support transverse

loading. Therefore, in the initial flat position, the problem

has no linear solution. An iterative procedure is then

necessary. The procedure employed by Allen and Al-Qarra18 is
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based on the generalized Newton-Raphson method; a deflected

shape for the loaded membrane was assumed as an initial guess

to start the numerical procedure. In some applications of this

technique, ill-conditioned stiffness matrices may arise from

an improper choice of the deflected shape. This situation can

be circumvented by arbitrary prescribing a new set of initial

displacements. The convergence rate is sensitive to the

accuracy of the assumed deflected shape, which depends on the

problem atqhand,and on the analyst’s intuition and experience.

To improve significantly the rate of convergence, Oden and

Sato21 proposed to start the analysis with a coarse finite

element representation of the membrane, then use the results

obtained as starting values for a more refined representation,

the displacements of the added node points being obtained

through linear interpolation. Dealing with the complete set of

undetermined displacements when guessing the initial deflected

shape, is a cumbersome task, particularly when there are few

restraints on the membrane edges.

1.3 Scope of the Research

The present research will investigate the static behavior

of thin flat membranes which are subjected to transverse

loads. It will include the following parts:

1. Theoretical development and computer implementation of a

nondimensional incremental nonlinear finite element model

using von Karman’s strain-displacement relationships to
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analyze thin flat membranes subjected to transverse loading.

A total Lagrangian formulation will be used.

2. Implementation of a new numerical technique which will

reduce the number of variables in the initial guess of the

deflected shape to at most three. These variables will be

referred to as "the initial virtual prestressing variables"

and the numerical technique as "the initial virtual

prestressing technique".

3. Investigation of several numerical examples in order to

test the validity of the model by comparison to the results of

previous research.

4. Evaluation of Cauchy stresses in the membrane to allow

meaningful comparisons with experimental results.

5. Theoretical development of a general incremental nonlinear

finite element model where the general strain-displacement

relationships will be used instead of those of von Karman.

6. Comparison of the von Karman model and the general model

and determination of the range of applicability of the von

Karman model.

7. Investigation of the effect of membrane aspect ratio on

deflections and stresses.

8. Investigation of the effect of Poisson’s ratio on stresses

and deflections.

9. Investigation of the effect of membrane initial

prestressing.
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10. Investigation of the effect of varying the boundary

conditions.

11. Investigation of the effect of considering a

nonconservative loading ,that is, one that changes due to

deformation. This permits a more accurate representation of

differential air pressure.



2.Theory and Implementation

2.1 Introduction

Because of the lack. of bending stiffness, membrane

structures show large displacements. Prestressing forces

stabilize the structure and provide stiffness against further

displacements. The response to prestressing forces is always

nonlinear because the equilibrium configuration as well as the

state of stress are: dependent. on 'those forces. But. the

response to in-service loads may be either nonlinear or quasi-

linear depending on the directions and magnitudes of the in-

service forces compared to stresses and deformations of the

prestressed structure. Three phases may be distinguished in

the physical behavior of a membrane structure7:

Deployment phase

During this phase, the membrane unfolds from its compact

configuration into a state of incipient straining and is

stress-free. The membrane behavior is lightly nonlinear, but

the equations of statics and constitutive equations are not of

interest until the state of incipient straining is reached and

the prestressing phase begins.

Prestressing phase

During this phase the structure undergoes large

displacements until a static equilibrium configuration is

reached. Therefore, nonlinear strain-displacement

13
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relationships are needed. Strains are small but relative

rotations may be large and thus second-order terms of

displacement gradients may be significant. During the

prestressing phase displacements predominate over strain

effects.

In-service phase

The additional displacements due to in-service loads are

generally much smaller than the prestressing displacements.

This is due to the fact that the prestressing stiffens the

membrane structure. The membrane behavior during this phase is

either nonlinear or quasi-linear depending on the relative

magnitudes of the prestressing forces and the in-service

loads.

The state of stress in a membrane subjected to loads

normal to its plane depends markedly on the final shape of the

membrane. However, this shape is unknown, as are the in-plane

membrane sectional loads. Accordingly, the theory of finite

deformations has tot be applied, and therefore nonlinear

strain-displacement relationships are needed. These strain-

displacement relationships are given by Equations 1.6, 1.7,

and 1.8. Also, the equilibrium conditions of the membrane

should be considered in the deformed configuration.

2.2 Basic Assumptions

The present work is concerned with the static behavior of

thin flat membranes which are subjected to transverse loading.

The following are the basic assumptions:
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- the initial state of the membrane is either a state of

incipient straining or is initially prestressed by in-plane

forces so that the initial configuration can be assumed to be

in a state of equilibrium prior to load application,

- The membrane is assumed to be flat in its initial

configuration, i.e. lying in the x-y plane of a fixed

Cartesian coordinate system xyz.

- the membrane material is homogeneous and isotropic and has

a linear elastic constitutive behavior.

- the membrane bending stiffness is generally negligible and

therefore may be discounted. Consequently, the membrane may be

considered as a two-dimensional material body in a biaxial

state of stress where only in-plane stresses occur.

- Due to the fact that generally the membrane thickness is

very small compared to the other dimensions of the membrane,

a uniform stress distribution across the membrane thickness

may be assumed. Therefore, the membrane stresses may be

replaced by membrane sectional loads.defined.as the statically

equivalent loads per unit length of section.
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2.3 Fundamental Equations Using a Nonlinear Finite Element

Formulation

2.3.1 Basic problem

In the development to follow, a thin flat structural

membrane in a Cartesian coordinate system is considered. When

subjected to transverse loading,the membrane can experience

largeldisplacements and large strains, but exhibits a linearly

elastic constitutive response. However, there is a strong

geometric nonlinearity in the deformation process of the

membrane. The aim is to determine the configuration of the

membrane in its final state of equilibrium and the

corresponding state of stress.

In order to include the effect of large deformation for

this geometrically nonlinear problem, special treatment is

required. The underlying theories and their solutions can be

formulated by means of nonlinear equations or through

equivalent variational principles. The latter approach will be

used in conjunction with the finite element method. This has

the advantage of solving the problem without dealing directly

with the complex nonlinear equations, and allows an easier

computer implementation.

To develop a finite element strategy, the membrane

continuum will be approximated by a finite number of small

components called elements. These elements are assumed to be

connected on their boundaries at selected node points on the
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membrane. Thus, the continuum is represented by a discrete

model at the onset. This way, the problem reduces to one of

evaluating a finite number of discrete variables which are the

displacement components of the node points.

2.3.2 Formulation of the Continuum Mechanics Equations of

Equilibrium

Using a total Lagrangian approach, the equilibrium of a

membrane finite element in the final configuration is

expressed by applying the principle of virtual displacements:

V09 53" a dVo" = [V00 6U” :3 dV0° + L. 6U3T £5 dse + ; aaf F1

(2.1)

where:

V0‘ is the volume of the membrane element in the initial

configuration,

5? is the surface area of the membrane element in the initial

configuration,

f” is the vector of body forces,

15 is the vector of surface tractions,

.E.are concentrated forces,

U is the displacement vector,

If is the surface displacement vector,

U. is the displacement vector corresponding to points of

application of concentrated forces F,
I

o is the second Piola-Kirchhoff stress vector,

6 is the Green-Lagrange strain vector, and
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6 means "variation in".

In the development to follow, it will be assumed that no

point forces are applied.to the membrane element and that body

forces are either negligible compared to transverse loading or

will be embedded in the vertical component of the transverse

loading. Equation 2.1 may be written as:

as” a dvoe =f 50” f5 d5:e (2.2)
v; s'

For clarity, the superscripts "e" and "S" will be dropped, and

Equation 2.2 may be written as:

de’adVo =fs dUdeS (2.3)

V0

2.3.3 Description of the Curved Isoparametric Finite Element

and the Corresponding Shape Functions

2.3.3.1 Isoparametric Finite Element

There are many possible choices for the master finite

element. As mentioned earlier, the membrane problem may be

considered as a plane stress problem. In a Cartesian

coordinate system, the simplest element form is a rectangle.

An eight-node isoparametric element called "serendipity

element" was chosen because it allows more accurate modelling

than a four-node element (see Figure 1 below). To ensure that

a small number of elements can represent a relatively complex

form, the two-dimensional rectangular element will be mapped

into a distorted rectangular element”.
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Figure 1: Representation of the Eight-Node Master Element

2.3.3.2 Shape Functions

The basic procedure in the isoparametric finite element

formulation is to express the element coordinates and element

displacements in the form of interpolations using the natural

coordinate system of the element. The coordinate

interpolations are:

8

x=2Nixi y=2Niyi (2.4)

' 1%

where x and y are the coordinates at any point of the element.

It should be mentioned that in a total Lagrangian formulation,

all computations are referred to the initial configuration of

the membrane. Therefore, the element nodal displacements will

be chosen aligned with the global assemblage nodal

displacements, and the element local coordinate systems

coincide with the global coordinate system.
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The interpolation functions also called shape functions

are defined in the natural coordinate system of the element,

which has variables r and.s that each vary from -1 to +1. They

are defined as follows (see Fig.1 above):

- for corner nodes (i=1,2,3,4)

N1. = —:-(1+r0) (1+so) (r0+so-1) (2.5a)

where:

r0 =rir so=sis (2.5b)

riand siare the natural coordinates of node i, respectively,

in the r and 5 directions.

— for midside nodes (i=5,6,7,8)

s?

1 (1+sb)(1-I2) (Z'SC’

I?

1V-= 1 (1+r0)(1-sz) + 2
1 2

 
 

2.3.3.3 Degrees of Freedom

In. what follows, only the translational degrees of

freedom u, v, and w will be considered. Therefore, there will

be 3 degrees of freedom per node.

In the isoparametric formulation, the element

displacements are interpolated in the same way as the

geometry:

8 8

11: 23Agui tr: 23AQV3 1V: 23AQW3 (2-6)

=1 l=ll
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where u, v and w are the local element displacements at any

point of the element and u,, v,, and w,, i=1,...,8, are the

corresponding element displacement at its nodes.

2.3.4 Reformulation of the Equilibrium Equations

Let:

U={u,v,w}T a={u1,vl,w1, ...... ,u8,v8,w8}7 (2.7)

The displacement vector U may be written as:

U=Na (2-8)

where N is a 3x24 matrix defined as

N= [N11,: ...... :NiI3i ...... {NBI3] (2.9)

and I} is the 3x3 identity matrix. Also, if B is the strain-

displacement matrix (to be defined later), then

de=36a de=Bda (2.10)

Consequently, Equation 2.3 becomes

6aT(f B’adVo—fNdes)=o (2.11)
w 5

6a being an arbitrary variation of a, Equation 2.11 may be

rewritten as

B’adVo-F=0 (2.12)

V0

where

r=fNdes (2.13)
3

Equation 2.12 constitutes the nonlinear equilibrium equations

of the finite element model of the membrane problem. In the
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solution procedure, a direct method does not guarantee

convergence to the solution, and consequently Equation 2.12

will not be used directly. Instead, an incremental version of

this equation will be derived.

2.3.5 Incremental Equilibrium Equations

The basic approach for deriving the incremental

equilibrium equations is to assume that the solution for load

g is known, and that the solution for load g+Ag is required,

where Ag is a suitably chosen load increment.

The equilibrium equations corresponding to g+Ag is:

w(q+Aq) = o (2.14a)

or

P(q+Aq) — F(q+Ag) = 0 (2.141))

where

P = B’adVo (2.15)

V0

and F is defined by Equation 2.13.

Since the solution corresponding to load g is known,

(2.16)

P(q+Aq) = PM +1”

where AP is the increment in nodal point forces corresponding

to the increment in element displacements and stresses from

load g to load q+Ag. AP can be approximated using a tangent

stiffness matrix KT(g) which corresponds to the geometric

conditions at load g as
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AP = K,(q) As (2.17)

where Aa is a vector of incremental nodal displacements.

Substituting Equations 2.17 and 2.16 into Equation 2.14blgives

K,(q) An = F(q+Aq) -P(q) (2.18)

and solving for Aa.approximates the.displacements for the load

q+Aq as

a(q+Aq> = a<q> +Aa (2.19)

The exact displacements at load q+Aq are those that

correspond to the applied load F(g+Ag). Because Equation 2.17

was used, the displacements computed in Equation 2.19 are only

an approximation to the exact displacements. Having an

approximation for a(q+Ag), the strains, stresses and

corresponding nodal forces at load.g+Aquay be evaluated. Then

the next increment is started. Due to the approximation made

in Equation 2.17, and in order to avoid instability, an

iteration process is required in order to obtain a

sufficiently accurate solution of Equation 2.14b. By combining

the INewton-Raphson iterative :method. with. the incremental

method described above, Equations 2.18 and 2.19 become,

respectively,

K251“ (q+Aq) A8“) (q+Aq) = F‘“ (q+Aq) -P”’1’(q+Aq) (2-20)

a‘“(q+Aq) = ia(1‘1’(q+Aq) +Aa‘1’ (2.21)

where i is the iteration number.
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The initial conditions are:

 

KI” (q+Aq) = x,<q)

8‘°’(q+Aq) = a(q) * 12:22)

P‘°’(q+Aq) = P(q) .

If an index In describing the mth increment is introduced,

the above equations may be written as

Kan“) A23" = Id" -P.f"“ (2.23)

a)" = a.”‘” +Aa.”’ (2.24)

Irina) = I’m-1

a)” - a“ > (2.25)

P.(o) Pfl-l ,

 



3. Fundamental Equations for the

von Karman Model

3.1 Derivation of Element Matrices

3.1.1 Derivation of the Basic Element Matrices

The von Karman strain-displacement relationships are

defined by Equations 1.13, 1.14, and 1.15. Rewriting these

three equations in a vectorial form gives

r w r

    

22 11v?
3x ax 2(dx)

:1: 2, =4 .31}: +++%(%’)2» (3.1)

a... 611.21 mm
3%! 6x; , ){dy‘

g1=¢L+gfim (302)

r du ‘ ' a '

‘1.” g}: r: 0 Tia} 0 v =LU (3-3)

.Qg+iflf .31 _Q.0

\dy' ax _dy'lix .    
where the subscript 1 refers to the von Karman model, and

O (3.4)
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From Equation 2.8,

where

With the help
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of Equation 2.9,

an: (3:: ...... :35: ...... :33

where

'aN, ‘
ax 0 O

aN-
B:=L[Ni1'3] = O a; O

6N} EFL 0

_757 ax .

also,

{1222‘ "—61 o-
2(dx) 6x ‘2!

._1aw2_1 flax_l

"" 2(8)“? 35’ 91' 3410‘

my _a_w a; ay
_ibtdyy _éb’ ax

where

"aw .

5; 0

6w
= O ——-

A1 ay

1"! 9!
(hr ax  

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)
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6w 6
——- 0 0 ——-ll

0: ax = ax v =L’U (3.11)

2‘." o o _6_

6y 6y

With the help of Equations 2.8 and 2.9,

 

 

01:01.: (3.12)

where

a1= [911: ...... : 1‘: ...... :a:] (3.13)

o 0 33f;

611:1/ [N113] = 6N (3.14)

o o 1'

65/

By taking the variation of Equation 3.2, and using Equations

3.5 and 3.9,

6.91 = deL+ 5811”, (3.15)

68L=BL58 (3.16)

emf-gamefigraal (3.17)

but

61:10:41,661 (3.1a)

therefore

defi=3m16a (3-19)

BHL1=AIGI
(3.20)
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With the help of Equation 3.13,

em = [31,: ...... mg“: ...... :Bgm]

dwémfi

° 0 are;

1 - 22%
3mm 0 0 6y 6y

0 . flflflfl.
_ dy 6x 8x dy.  

Using Equations 3.16 and 3.19,

621 = 816a

£H==BL+Bmu

Equation 3.2 becomes

:1 = 31a

2: ......m

or, in a partitioned form

31’ = [Ia/1: ...... : If: ...... :3’2]

where

1 1 1 1
3,1 = BI: 4.38an

(3.21)

(3.22)

(3.23a)

(3.23b)

(3.24a)

(3.24b)

(3.25a)

(3.25b)
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.aNi o .lfyfilfif

ax> 2 fix ax

6N3 ].aN16w
31:: 0 6y 333'5 (3.25c)

6N, 6N1- 1( 6N1. aw+ 6N1- 6w)

fa? 8x 3 ‘6‘)?8—52 Tia—x,

3.1.2 Derivation of Element stiffness Matrices

In the following paragraphs, it is assumed that the

loading is deformation-independent and the dimenSions of each

finite element are sufficiently small that the load intensity

q is uniform over each element. Thus,

F=q N’e,d5’o (3.26)

so

where e, is the unit vector normal to the membrane in its

initial configuration.

The nonlinear equilibrium equations of the finite element

model of the membrane problem are given by (see Equations 2.12

 

and 2.13):

1H8) = VOBlraldVo-F=O (3.27)

By letting

01 = 1-Ev2 of a; = {afimfimfiyf (3.28)

and using

dV,J =hds0 (3.29)

Equation 3.27 becomes



  



3O

Eh

1—v2

 fla) = [SB1TafidSo—F=o (3.30)

The tangent stiffness matrix is defined by

dt =Knda (3.31)

Differentiating Equation 3.30 with respect to a, and using the

assumption that F is independent of a, gives

Eh

1-v2

dt== (f5 0113de dso +f331’daé dso)(3.32)

The stress-strain relationship is

01=D81+ao (3.33)

or equivalently

  

 

04=D’£1+0{,
(3.34)

where

E E'
D: l-sz’ 00: 1-v20é (3.35)

1 v 0

pl: V 1 0 . (3.36)

O O l-v

2

Using Equations 3.23a and 3.34,

da§=D’del=D’31da (3.37)

then

1.303le0: 61.90 = [s BITDIB:l dS'o da = (K1,.+Kp;r.1) d3 (3.38)
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where

K}, = BLTD’BL d5o

so

I

Kim‘=j;(3mtpflamn*“QnuTDflBi+1%marpaamu)dSo

0

Also, using Equation 3.20,

_Lwdafraidso=iflflF5Tdm1T°éd5b

 

  

.04.

13-1 yawn-(v.13?
0 (43") (1(5)?) LO/ny ax}, 0y d(—y)

where

/ /

/ a} an,

51:

a/ 0/
xy y

  

using Equation 3.12,

cflfl==qlda

“deli” afi d30 = fSOGITsl’ c;1 d30 da = Kg. da

and

K51 = f 1311's; 91 dso
50

(3.39)

(3.40)

(3.41)

(3.42)-

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)
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-mnf=xi+xén+3$1

or, alternatively

“n:=xi+xhu+3%1

.5” is the element tangential stiffness matrix

 Ki==

K; is the linear element stiffness matrix

Eh I
 

Khm:=

Eh” is the nonlinear element stiffness matrix,

the geometric stiffness matrix

Kfi.='JEE"Kg

1-v2

and.Ka_is the element stress matrix.

The components of 81’ are given by

(3.48)

(3.49)

(3.50)

(3.513)

(3.51b)

also termed

(3.51c)
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of, = :.",‘+v(:y+af,x

/_ +, + / '
ay-vex 8y 0m, , (3.52)

_ 1-v

J 

3.2 Rearrangement of Element Stiffness Matrices for Computer

Implementation

3.2.1 Numerical Integration

To be able to evaluate the element stiffness matrices, it

is necessary to compute the basic element matrices BL, Em,

and 6,. These matrices are obtained in terms of derivatives of

element displacements or element shape functions with respect

to the local coordinates. The derivatives should be expressed

in terms of derivatives with respect to the natural

coordinates r and s as follows

_a_ _3_

&x 1 61

= ‘ 3.53a .7 a ( )

ay 63

where J is the Jacobian matrix defined as

6x ED:

J: Br Br (3.54)

&X‘QX

as 63

Also the element surface is expressed as
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d3o = Jdrds (3.55)

where J is the determinant of the Jacobian matrix.

The general expression of element stiffness matrices can then

be written as

XI = [soddso = f_:f_:xg(r, s) J(I,S) drds (3.56)

To evaluate explicitly the surface integrals in the

expressions of element matrices is not effective. Therefore,

numerical integration is employed. In fact, numerical

integration is an integral part of the isoparametric element

matrix evaluations. Practically, when using this numerical

integration procedure a choice should be made concerning the

kind.of integration scheme and the order of integration. Gauss

quadrature was chosen because it requires fewer function

evaluations to get accurate results. However, it should be

mentioned that the Newton-Cotes formulas also may be

efficient”. According to Bathe”, a third order Gaussian-

quadrature is a reliable integration order for an eight-node

isoparametric element.

Using numerical integration, Equation 3.56 may be written

£18:

3 3

K’=ZZd<ri,sj)J(rl-,sj)wiwj (3-57)

i=1 j=l

where.n, and.§ are the natural coordinates of Gauss points,

and w“ and wiare the corresponding Gauss weights.
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The expression of the load vector F can be written as

a -1

1r: qfsoro aso = qfdf’l 1P0(r,s) J(r,s) drds (3.58)

where

17,, =N’e, (3.59)

or, by using numerical integration

3 3

F: q: Zrfirflsj) J(ri,sj) wiwj (3-60)

i=1.j=1

The element internal force vector P appearing in the right-

hand side of Equation 2.23 may be written as

 

 

Eh I
p = B o/ds (3.61

_ Eh _ Eh ’1 '1
P1 — W soP°'1dS° - 1—v2 -1f-1 Po'1(r,s) J(r,s) drds (3.62)

where

pm 2.3170; (3.63)

or, using numerical integration

Eh

l-\’2 is

E
d
a

R1: 

3

jflH

For clarity, the arguments r and s will be dropped in the

following paragraphs.

3.2.2 Rearrangement of Element Matrices

The derived expressions of element matrices are very

general. To allow easy implementation of these matrices in a



 W  



36

computer program, the partitioning properties of matrices will

be used. 7

Because an element has eight nodes with three degrees of

freedom each, the element stiffness matrices will be of order

24. By taking advantage of the general form of the elementary

matrices BL, G, , and Bzvu (Equations 3.7, 3.13, and 3.21), and

using partitioning, all the element stiffness matrices K'o may

be put in the following form:

K5: . [Ir/0U]3x3 . (3.65)

where i is a row index, and j is a column index, both taking

values from 1 to 8. K'is thus partitioned into 64 submatrices

K’f of order three. The expressions of the typical submatrix

for each element stiffness matrix are given by

KI§£=BLJTDIBIZ1 (3.66)

I I I I

K0351 = Kom1,1+xom1,2+xoum,3 (3'67)

where
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1 _ 1T

JKQflnA.-1%;.D'Béu

1 T

Iflfihhz==‘mn.D’Bf

1 T

3:31am: = 11.1 9,331.1

1 _ 1T I

K’oi, - a, .91 of

The load 'vector integrand .E, may also

partitioned form as

1",, = [170“: ...... :FJ': ...... mg") T

where

O

PfE=Aglgeq==Nge = C)

i

(3.688)

(3.68b)

(3.68c)

be written

(3.69)

in a

(3.70)

(3.71)

3.3 Nondimensional Formulation of the Incremental Equilibrium

Equations

Instead of dealing with all the parameters involved in

membrane analysis in its original form, it is more interesting

to recast the above formulation.in a nondimensional form. This

has the advantage of reducing the number of parameters

involved by grouping them into a smaller number. In addition,

solving one problem gives the solution of a whole class of

problems.





38

The variables L1, L2, h, E, u, q and W defining the

membrane problem may be related by a function:

f1(L1,L2,h,E,v,W) =0 (3.72)

where

L1, L2 are two orthogonal representative dimensions of the

membrane in its plane, and W is a representative displacement

of an arbitrary membrane point e.g. one of the displacement

components u, v, w.

Using the Pi Theorem”, a relation equivalent to Equation

3.72, but expressed in terms of:nondimensional.parameters, can

be found:

f3(n1,n2,n3,n4,n5)==0 (3.73)

where

L2 L1 q W 4
1t =v; n =-——; n3=-——; 'n4=-—; fl5=-—— (3.74)

1 2 1 h E L1

or, alternatively, by combining dimensionless parameters

L2 3 qu) (3.75)W==L f v,-—n ,———

1 2[ L1 L1 Eh

It is clear that the nondimensionless parameter gin/Eh is the

most important among the four dimensionless parameters

included in Equation 3.75.

To permit comparison with previous work, the following

relationships are used%
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= - 2 9E:k 2(1 v ) Eh (3.76)

x=Lf{; y=Lj7 (3.77a)

3 3 ' l 3 b
U=Lk3fi v=Lk3V w=Lk3W (~77)

i={fi1,x71,w1, ...... ,fi8,\78,v78}7' (3.776)

where L replaces L1 and the factor 2(1-22) is introduced.

Then, it may be shown that

a = Lk'i'ué’
(3-788)

where M'is a 24 by 24 diagonal matrix written in a partitioned

  

form as

"Mo 0 o o o o o o‘

0 Mo 0 o o o o o

o 0 Mo 0 o o o o

o o o o o o o

M: M° (3.7813)

0 o o 0 Mo 0 o o

o o o o 0 Mo 0 o

o o o o o 0 Mo 0

o o o o o o 0 Mt

3

k3 0 o

M = _1'
3.786

° 0 k3 0 ( )

o o 1

and 0 is a 3 by 3 null matrix.
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If the variables with the tilde symbol are the "nondimensinal

variables", then

 

  

ds0 =L2d§o J=LZJ

au 361'} 6v 36)?
_.=k3 ’0 _=k3_;

6x a2 ax' a"

figzkéafi; flzkéafi-

6y 657 BY 557'

el=.k3é;

Equating Equations 3.24a, and

following relationships:

- 1- - .

ELM: k3BL 3mm: 3,,“

5'.= "15

where

Then

3

01:1(351/

3-

s{=k3 ’

The nondimensional stress-strain

aw- :22
E’c‘k a~

aw- 31-32
E k 6*

3.80,

relationships are

(3.79a)

(3.79b)

(3.79c)

(3.80)

and using the two

(3.81)

(3.82a)

(3.82b)

(3.83a)

(3.83b)
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1
? II

N
H

b

m E

l

h

m
:

5

h
p ll

N
H

P
:

w
l
w

l

51 =

$
"

+ k
'

E

Therefore

u __ 1 "Hi

‘Koi"E;HK0L

u _ k

57.3.... -
 

 

Klgrmm _ k E,”

M! - k

-Komna
 

Then

#1 _ k

Irum1‘

 

where

(3.84)

(3.85)

(3.86a)

(3.86b)

(3.87)

(3.883)

(3.88b)

(3.88c)

(3.89a)
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1

"11.1 _ ”I11 "I11 "' "I11

Kama ‘ Kama. +Kon1,3 +k 3 Korma

Also

2

111 _ k 3 ~11:

K 001 - 2 K 001

L

Then, with

[1 ._ [1 [1 I1

.Kqél-erihKogn+lde

[1.1 _ l ~I11

K on ‘ —3 Ken

L

where

1 2

"11:! _ "I11 - "I11 " “11.1

Kan "Kon+k3Koum+k3Kon

Also

1

I11 _ k 3 “71.10

' K on ' 2 K on

L

where

"l-U’ _ ~I11 ~11: -‘- "I11 ~11: ~I11

Kan " K0L+K0NLL1 +k 3(K 03114.2 +Koum,3+xon)

and

= flflq. l—V 6N1 5N]-

a)? a)? 2 637' 657

 

...1 .

K’.¥~.<1.1>

= v 8N1. 6N]. + 1-. 61v, em].

as: as; 2 357 352
 

E’éilum

(3.89b)

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.963)

(3.96b)



  



 

 
 

      

 

 

 

K’i"(1 3)_ LN1(%§E+V_3LVZQQ) + 1-v6N(aN, a_w+6N_Jaw)
011 a? a3 a? a? a? 2 ay' 3? fly a? ax

(3.960)

, aN aN 1- BN- 6N-K’ij = 1 j V 1 J
3.96d

1<,m(2 1) V 657' a)? 2 62 a5"; ( )

. 31v. 31v 1- 6N aN.
Iij = 1 j V 1 .7 3.96Izmn(2I2) a? a??? 2 a? 3X

( e)

R/ij‘ - 6NW( flaw+a—1N4_a_~w) + l—v 6Ni(aNj—_aw+ aN'46—147)

0 T1 ay 62 ax ay ay 2 65? 6x 6y 63’ 31?

(3.96f)

Kara, 1) = k%[a__Nj(aNi_3W LIE-fir), 1‘” aN(aNaw+ 6N64)]
an ax ax 6x 637 617 2 35’ 5X aY ‘97 ax

K/lj "

(3,2) =ki[a_N1(v

 

 

 

 

8_N1 6w_a_N1 6w

(3.969)

 

5N. 669+ 3N. 6:21)]
—)+ l—V6MG( __. _____.

2 a)? a)? 337 a)"; a}?

 

K011 a? 6x6x3y 6y

(3.96h)

21-. .1. 6N.a~ 6N.a~ 6N.a~)
I] = 3 ll 1 W .__-7__E

K°Tl(3'3) 1‘ as; a~(ax a7+v as; 657

. 61537 211.93 31193)
6" ay 657 a" a)? 6"

(3.961)

. 1-v 911v “1217) (flflaflzfl
2 a" a" a? a? 62 ~ ~ ~

+ aNi(§/_a_1!1+a“=’ % 6Ni(5 flJra/EIZZH

6* "6" "y 837 3" "y as: y 657

Us1ng Equations 3 57 3 65, 3 78, 3.79a, 3.92 and 3.94,

I _~I

Kim-Kn
(3.97a)
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l-~.
x’,,u=k3x’n (3.9713)

Also, with the help of Equations 3.58 and 3.59,

F0 =fI‘o F=L2f' (3.93)

where

f'= q)?"

3 3 (3.99)

P" = 2: EFo(ri,sj)J(ri,sj)w1-wj

i=1 j-1

Also, using Equations 3.63 and 3.64,

3
k3 2 .2- .

Po,1 = L 130,1 p1 =Lk3 1 (3 100)

Eh W
1‘5 = P"
1 l-VZ 1

P1’= 2 z Po'1(ri,sj) J(ri,sj) Win

1-1 j=1 ,

Using Equation 3.76,

P 2qL2jy

1 _ 1 1 (30102)

k?

The incremental equilibrium equations are given by

Equation 2.23. If the indices m and i are dropped, this

equation may be written as

KilAa==Fb£3 (3.103)

Using Equations 3.48, 3.76, 3.78, 3.97, 3.98, 3.99, and 3.102,

Equation 3.103 becomes
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If Aqiis the incremental load at the jth increment where

jsm, the load intensity at the mth increment is

11)

gr; qu (3.105)

'1

Letting

ACI- "' quL
p =__.J. a = p k =___(1—v2) (3.106)
j g m 1.1 j m Eh

gives

qm=amq km=amk (3.107)

If k is replaced by km, the incremental equilibrium equation

becomes

 

~n (b1) <')_ a -1~n) ~M a) 3.108[K 15]”) {Aa}ml _ 2m k 3 F ml _P1m1 ( )

Equation 3.108 has been derived for an arbitrary element.

However, it still represents the structure's fundamental

equation, provided each term contained in this equation be

regarded as the equivalent termicorresponding'tO'the assembled

structure. The assemblage procedure will be discussed in

Chapter 5.





4. Extension to the General

Nonlinear Model

4.1 Derivation of Element Matrices

4.1.1 Derivation of the Basic Element Matrices

The general strain-displacement relationships are defined

by Equations 1.10-11-12. Rewriting these three equations in

matrix form gives

82=31+Ae (4.1)

where the subscripts 1 and 2 refer to the von Karman model and

to the general model,respective1y, and

  

’ 3.2.922 i
49x (ax) (6x)

= A =_1_ 21.2 i” (4.2)

A: A8’ 2) (3Y)+(3Y) }

‘3 gamma);
k(6x895! axébJ,

or

Ae=%A,0, (4.3)

where

au 6V au 6V T
= __ _.__. _.__. .... 4.

0 {6x” 3x“ ay' ay} ‘ 4a)
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  _ay (hr 5; (be

 

 

 

also

Q,=(%£l

where

G-[Gl' 'G" "a-- 3) ...... :3) ...... I3

1

6N3 0 0

dx

6N3

0 ——— 0

Gf- ax

6N1' 0 o

6y

0 6N10

6y .  
Differentiating Equation 4.1,

dz, = d81+dA8

dAe =%d1l, 02%;}; d0,

Using

dAaa3=Wfiid03

dAe=Azd02=A2Gada

then

47

there results

(4.4b)

(4.5)

(4.6a)

(4.6b)

(4.7)

(4.8)

(4.9)

(4.10)
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dAe = AB da (4.11)

where

AB=A263 (4.12)

Therefore

de2=33da (4.13)

B,=31+AB (4.14)

Also using Equations 3.25a, 4.1 and 4.13, gives

22:132.: (4.15)

where Egzhs the strain-displacement matrix corresponding to

the general model and is given by

132=1§1+—AB (4.16)

4.1.2 Derivation of Element Stiffness Matrices

Similarly to the the von Kérmén model, the tangential

stiffness for the general model may be written as

 

Eh I

K72: 21:22 (4.17)

l-v

where

K42=K£+K§22+K52 (4.18)

With the help of the equations derived in the previous

paragraph together with those derived in Chapter 3, and using
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the same matrix techniques, the following equations may be

 

written

Kim = Kfm+AKQ (4.19)

where

Ax}... = Axgmxg (4.21)

A191,,1 = SOB1TDIABdS° (4.22)

4321:. = SOABTD’33 d3o (4.23)

Letting

0:: 1-Ev2 0; Ué={0,/(, 05/" 0:0,}1" 09°24)

Ax5=fs c;,T.s,’c-:.'2 ozs0 (4.25a)

0

/ /
I 02L, gal;

33 = (4.2513)
I /
QMJ; 03%;;

where I} is the 2x2 identity matrix.

Then

K42=K1£1+AK4
(4.26)





where

Ax; = Ax’m nut},re +Ax;

Equations

4.2 Nondimensional Formulation of the Incremental Equilibrium

 

.£~ 1 - k%

1 ~ ~ ~ 3 -

L

Ae=lA§a=545u§
2 2

But employing

1

A§M= k3A§

u
l
c
-

k
A =

8 2

 455

Then, with the help of Equation 3.73,

82

50

(4.27)

Using Equations 3.67-68-69 defined in Chapter 3,

(4.28)

 

(4.29)

(4.30)

(4.31)

Equation 4.1 becomes

(4.32)

(4.33)
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and

 . (4.34)

1 2

The stress-strain relationships are given by

0§=D’8z+0€
(4.35)

Then

3 3-

aé-kJér’,’ s,’=k3 3’ (4.35)

where

3

6',’=D’£’,+6'0/ a{,=k350/ (4.37)

Using Equations 4.22, 4.23, 4.25a, and 4.27,

’ - 3 "' 4.38ARfini-—k3AR;,n1 ( )

’ — 3 ~’ 40 9ARQQ-I:FAR%% ( 3 )

AK,’,=1<%A1?; (4.40)

1.. 3 ~/ ~/_ ~ / ~ / ~/ .
AKT-ksAK, AK, - Arm +41%: +419, (4 41)

The incremental equilibrium equations are given by

Equation 2.23. If the indices m and i are dropped, this

equation may be written as
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x” Aa=F-P3 (‘0‘2’

Using Equations 4.17, 4.26, 4.41 and 3.96, it is easy to show

that

3 ...

K” = 17132 K,’.1+k3AK,’.) (4.43) 

Using Equations 3.76, 3.78, and 3.97, the left hand-side of

Equation 4.42 becomes

 

Kr: A8 = zqu fill-243 (4.44)

k7

where

i2, = f’;1+Afi; (4.45a)

and

A~;=k%A~;.M ' (4.45b)

Let the following quatities be defined

 

 

 

y Y' ) (4.463)

aNiaN3 aNiaNz

A3= ~-—1: A4=-—1r—<§
ax 6y 6y ax J

y y) (4.4613)

B=flfl Bzflgg

3 are 657' 4 637 65?,  
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c1 =A1 6'," +A2 ay’ + (A3 +114) axy’ (4.46c)

2 x ’7 y ) (4.46:!)

8N aa aN-aa
E =_7j_ E =_-7_~.

3 8x 37 4 57 a J

2 22 y y ) (4.469)

6N av 3N av

F =—=11—= F =—~1—.:
3 a a 4 a a ,

G _ 8N1 6!? G _fl 6!:

1 as? a}? 2 657 657
l (4.46f)

BNng G _ 6N1. aa

3 a}? 657 4 657 62?,

6N1 61‘? 6Ni 6“?"

H1 — H ~—-— ..
ax as: 2 6 6

57 y , (4.46g)

3N1 av 6N.- av

Hs‘ are—65"; H4‘a—ya2

_ 6N. aw 0N. aw

Tl‘ 652$? T2 857 ay
l (4.46h)

T = aNii‘? = aNi 6W

3 3" 6" 4 as; are,

Zl=A1+ 1_VA2 Z2=VA3+ EVA,

) (4.46i)

Z _ 1—v _ 1—v

3"VA4+ A3 Z4‘A2+ A1  





Z5=EQ+VEQ

z,=E3+vFE

z9 = 131 +sz

Z11 = G3 + G4

Z14 = E3 +E4

an

Z17 = Z1???

av

Zzo = Z2};

69'

Z23 = 23:9}

61'}

Z26 — Zz‘a}

l-V

Z29 = "—2_Zn

Z32 = (ZS Gl + 26 62 + Z14 Z29)k

Z33 = (Z7 G'1 +Z8 G2 +215 Z29)k

Z34 =(Z5H1 +Z6 H2 + Z14 Z3o)k

Zas = (Z7 H1 +Z3H2 + 215 Z3o)k
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z6 =E2+vE1

Z8 = F2+vF1

Zlo==Bz+VB1

Z12 = H3 +H4 Z13 = T3 + T4

ZlS=F3+F4 Z16=BB+B4

613 av

Z18 = Zz'a—f, Z19 = Z15}

_ ail _ 3131'

221 ' 235}: 222 ‘ Z433;

6i? afi

Z24 = Z4533; Zzs = 23-6—35

_ av _ av

227 ‘ Z353"; Z28 ‘ 2253'?

l-v 1—v

Z30 _ 2 Z12 Z31 — 2 213

w
h
o

u
l
u

 w
h
o

The coefficients of the 3x3

to 41%;, are given by

submatrix

 

(4.46j)

(4.46k)

(4.461)

(4.46m)

corresponding
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D
I
N

41.65241!“ (2Z17+Z18+Z25+Z32+C1)k

w
h
o

430341: 2) = (Z19 +Z20 +222 +Z26 +Z33)k

u
I
N

AKJT<1:3> = (Z9G1 + Z10G2 + Z16Z29)k

U
I
N

41.60.7(2'1) = (Z19+Z21+Z22+Z2.,+Z34)k

l

AKJTQIZ) = (Z23+2Z24+Z28+Z35+C1)k3

l

AKo.r(2I3) ‘—'(Z9H1+2710H2+Z16Z3o)k3 '

u
I
H

Affirm, 1) = (2521'1 + z5 T2 + z14z31)k

U
I
H

ARO‘T(2,3) = (z.,:l'1 +231"2 +zlsz31)1<

ARO‘T(3,3) 0

Equation 4.42 then becomes

 

~/2 ~_ k ~I "I
IrflrAa- 2 P’— 2

where

By using Equation 3.107,

expressions of element matrices,

equation becomes

U
'
H

1

(i) _ ' _ ~[(1-1)

m " 3 P
[Kan {Aa} 7mk F; ,m

(4.46n)

 
(4.47)

(4.48)

and substituting km for k in the

the incremental equilibrium

(4.49)
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4.3 Extension to the Case of External Pressure

The tangential stiffness matrix developed in the previous

paragraphs is valid only for membranes subjected to loads

which do not change in.direction as the membrane deforms. This

might be a severe restriction, particularly when the

structural membrane exibits large displacements and large

deformations, since the loading applied to membrane structures

is, in general, external pressure, which exerts force normal

to the deformed surface. In this section, element stiffness

matrices will be developed to account for changes in the

external loading due to deformation.

The element load vector is given by Equation 2.13. The

term de in Equation 2.13 is the load vector acting on the

deformed membrane element dS.

As the membrane deforms, there are changes in both the

direction of the external pressure force and the area on which

it acts. It is reasonable to assume that the intensity of the

external pressure does not change with deformation and that

the dimensions of the finite elements are sufficiently small

that the external pressure is essentially uniform over the

surfaces of each of them. Therefore,

f=qE', (4-50)

where E2 is the outward unit vector normal to S at an

arbitrary point of the deformed membrane.
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Expressing the product E2 dS as a function of the unit vectors

in the global fixed Cartesian system of coordinates and of the

area dSo of the undeformed membrane element gives

__ a a
E, dS - (93+a—g)®(ey+a—;7) d3o (4.51)

where the symbol ® stands for the cross product operation, and

the displacement vector U is given by

U = ue,+ve,+we, I (4.52)

Writing Equation 4.51 in vector form,

 

f flfl-fl(1+_aif) ‘

axay 6x 6y

_ 2291-31 .62 4.532:, d3 —( 6y ax ay(1+ ax) >dSo ( )

au 6V_§y_fl/

. (“Exhfifl 6y 5X . 
Decomposing E; into a difference of a constant vector and a

vector depending on the displacement components gives

 

' -fixfi’.§_¥1+§z’ ‘
0 axdy 6x( 8y)

_ _flfl Q E2:,ds— o dso—( 6y6x+ay(1+ax) Hiso (4.54)

1 -21.-_a_x_»-_a_mz.22a<
. 3X 33’ 5X 6y 8y 8X J 

The first vector on the right-hand-side of Equation 4.54 is

ezdSO. The second vector may also be decomposed into two

components:

13de = (9,-Eq1—Eq2)dso (4.55)



 

 

 



 

 

 

where

f g}! l

ax

_ .91
'En -< aY }

-224
. ax ay

and

’ _alfljzfly
ayébc axébr

E _) fiefirjgi’
9". axébr (firax

2222-222
L (bray axébr  J
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Thus, Equation 2.13 may be written as

F:

or

F==FQ,-.fin-PE,

where

qu = qfsoN’ e, ds0

En

'En

F“ is the

conservative loading.

1'quON qu d30

1'quON sq, d3o

load

 A

vector

1' __ T ... 1'q SON e, dSo quON E“ :130 qfsoN z“ dso

corresponding to the

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

case of





59

With the help of Equation 2.8, the following expressions may

be written

sq, = AaN a

  

  

(4.61)

where

6
O 0 -EE

01 6y

_ a -i

ax ay 0

, 0 -£&( it? 0 SW -u§Y

dy 6y ax ax

6w __6u _jfig .23
A?" 53—, 0 6y 6x 0 5X (4.621))

-_3X E o if _Q 0
. ay ay 6x 6x

and

Bu 6v 8w Bu 8V 6w T

= —I_l—I_l—I— 4'62

0 {ax' ax ax ay ay ay} ( c)

Differentiating Equation 4.59 gives

d? = -qu1-qu2 (4.63)

Substitution into Equations 4.60 and 4.61, leads to

1",, = (stoN’quN dSo a qu, = quda (4.64)

where

_ 1'Kg: - qfsoN AqlNdso (4.65)
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Also

div-q, = qfsaN’quzdSo

dz“ = gauge», $44,010

but, noting that

dAafi=Aq2d0

Equation 4.67 becomes

cfl%,==Am,d0

Noting also that

 

 

 

 

 

9:03 o=[ol:...:o,:...:oa]

where

'aNi
—— o 0

6x

0 6N1 0
6x

aN.

O 0 a;

G _.

1 6N1- o o

0y

o 6N1 0

0y

aN.

o o 1

6Y1  

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)
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Therefore

d0=Gda dEa=Aq2Gda (4.72)

and

(11",,2 = Kg, da (4.73)

where

Kg, = quONTquGdSo , (4.74)

Thus Equation 4.63 may be rewritten as

d? = _qua (4075)

1Q may be called the "load stiffness matrix", and is given by

re = K¢+Ka (4.76)

Introducing nondimensional variables,

 

1 ~ 1 ~
A“ = EA“ G = 3C: (4.77)

letting

Eh I
qu 1_v21rq1 (4.78)

and using Equation 3.76, gives

I
Kg, = —x1 k1 =fSNTAq1NdSO (4.79)

0

~ ~

K1 = LK1 K1 =f§N75q1Nd§o (4.30)
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I k.-

'K&I=‘§1Q

Also, if

Eh
K = x’

«2 l-v2 ‘2

then

K’ =ix, k,=fN’A ads
“7 2L % 9‘ o

By writing

  

  

Ac: = qu.1+Aq2.3

where

6w 6w
0 -—— 0 O ——-0

6y 6

A == 6w 6w
«2.1 — o o -— o 0

3y 6x

0 O 0 O O 0

6V avl
O O -—— 0 O -——

3y 6x

au Bu
= O 0 -—— 0 0 .__

Ac“ ay ax

_jbf.§2 o .QZ [EH 0

. (hr 3y dx ax

then

33==321+REJ

where

(4.81)

(4.82)

(4.83)

(4.84)

(4.85a)

(4.85b)

(4.86)

(4.87)



 
 



N°ting
that

 

 

 
 

 

 

 

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

(4.93b)
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it may be shown that

 

 

2 1L2 "3

3'44“ q; ‘43 (4.94)
k3

where

~. _ k‘i' ~. %~. 4.95

0 - 2 [ +k ] ( )

“8

 

 

The coefficients of the 3x3 submatrix corresponding to q are

given by

K3] (1,1) = 0

1
~..‘ 3

K33 (1,2) = 1; Ni(B4-B3)

3 cm 2~..‘ 3 . _

K37 (1,3) =1; Nj[—a§7+k’(F3-F4)]

K;J'(2,1) =-K;3'(1,2)

(4.96)~13. _ )Kg (2,2) - 0

Kg] (2,3)  
% dNfi 3

k2 “(av-M" (EVE-3’]

1

”ij‘ _ "" ”13'.

Kg (3,1) 1(3Kq (1,3)

1

~13. _ "~ij4
Kg (3,2) k3 g (2,3)

~

ijt _

Kq (3,3) — 0  
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The nondimensional incremental equilibrium equations are then

given by Equation 4.49, provided that

~14 _ a". ..

K,,—K,1+AK,+K (4.97)

and that k is replaced by km in the expressions of element

matrices.

The extension to external pressure loading is also valid

for the von Karman model.



 
 



5. Solution Technique

5.1 Assemblage of Structure Matrices

Since the nondimensional element stiffness matrices and

the nondimensional load vector were derived for a typical

membrane finite element, they hold for any element in the

finite element mesh.

The assemblage process to obtain the nondimensional

tangent stiffness matrix may be written in symbolic form as

E=Zflm 64)
D

where the term under the summation symbol is the

nondimensional tangent stiffness matrix of the typical

element, and the summation goes over all elements in the

finite:e1ement mesh. Similarly, the nondimensional load vector

is assembled from the element nondimensional load vectors.

It should be mentioned that the nondimensional tangent

stiffness matrix is not symmetric (see Equations 3.96, 4.46,

and 4.96). The loss of the symmetry property is due to the

form of the matrix H (see Equations 3.78b and 3.78c).

5.2 Solution of Equilibrium Equations

5.2.1 The Incremental Iterative Solution strategy

The nonlinear incremental equations to be solved are

given by Equations 3.108 and 4.49 and may be written as
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5
H
I
P

a

2

u
l
u

~/(i) "1(1-1) (5.2)
ka-Pm

[i;];1-1) {A5},‘,,“ =

where the full Newton-Raphson iteration method in conjunction

with an incremental loading procedure is implied. In this

method, each load step consists of the application of an

increment of external load and subsequent iterations to

restore equilibrium. This implies that the tangent stiffness

matrix has to be updated at each iteration. Since the major

computational cost per iteration lies in the evaluation and

factorization of the tangent stiffness matrix, it is in

general more effective to use some modification of the full

Newton-Raphson algorithm”. In this work, the modified Newton-

Raphson iteration procedure was used. Therefore, the tangent

stiffness matrix is assumed to be constant. within each

increment, and is updated only at the start of the next

increment. This is clearly more economical at each step but

convergence is slower. The modified nonlinear equations to be

solved are then

 

. _1_ ~ . ~ ._
[It/HS) {A5}? = kJF/(1)_P/u 1) (5.3)

whereIfiznP is the value of the tangent stiffness matrix at

the beginning of the mth increment based upon the nodal

displacement solution vector obtained in the last

iteration of the (m-1)th increment.
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5.2.2 Convergence Criteria

A problem associated with iterative techniques is the

decision as to whether the current iterate is sufficiently

close to the solution which is unknown. To overcome this

problem, a convergence criterion must be set. A displacement

criterion based on the maximum norm will be used to measure

24

the size of the error . The maximum norm is defined by

Aai

i.ref

(5.4) 

N

“ell, = max

1   

where N is the total number of unknown displacement

components; Aai is the change in displacement component 1'.

during a given iteration; and avg-is a reference displacement

quantity equal to the absolute value of the largest

displacement component of the corresponding type (u, v, or w) .

The convergence criterion is then

ll6|l..<# (5.5)

The value of u is usually between 10‘2 and 10‘, depending on

the accuracy desired.

5.2.3 The Initial Virtual Prestressing Technique

Iklnonlinear finite element analysis, the linear solution

is often used as the initial guess in the iteration procedure.

For initially thin flat membranes which are subjected to

transverse loading, there is no linear solution due to the

lack of bending stiffness. Therefore, the analyst has to make
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an initial guess to start the iteration procedure. As

mentioned earlier in the literature review, the initial guess

used in previous work involved all of the unknown.displacement

components. To avoid dealing with all of the components of the

displacement vector in formulating an initial guess, a new

technique referred to as the "initial virtual prestressing

technique" is introduced.

Unless the membrane is very strongly prestressed prior to

service loading, the tangent stiffness matrix in the first

stages of the incremental iterative procedure is either

singular or close to singular. Therefore, an ill-conditioned

problem arise. The basic idea of the initial virtual

prestressing technique is to circumvent this ill-conditioning

problem by introducing an imaginary initial prestressing so

that the tangent stiffness matrix is far from singularity. The

membrane problem is then modified. Since the main purpose in

the analysis is the evaluation of the final equilibrium

configuration of the membrane and its state of stress under

the true service loading, it is necessary to remove this

virtual prestressing before the final configuration is

reached. This can be done by removing part of the virtual

prestressing at the beginning of each load increment so that

by the end of the procedure the virtual prestressing is

removed completely.
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By letting the following vectors

f 1 f

    

v I:

00x 00x

4:40;” 03205),» (5.6)

v t

(”0’02 90ny

be, respectively, the initial virtual prestressing vector and

the initial true stress vector, the initial stress vector at

the first load increment becomes

051): 034-0: (5.7)

To reduce the initial virtual prestressing in subsequent

increments, a reduction factor A," is introduced so that at the

mth increment

05m = 03+4ma: (5.8)

and at the last increment

affl==¢fi (5.9)

where M is the total number of increments, and km is a

function of m. The initial prestressing may be suitably

expressed in terms of an equivalent initial prestraining as

a§=Ee§ aZ=E8§ (5-10)

in which

r . r
I:

80x 83x]

80=<sgy> 8::(8Zy) (5.11)

1:

Font (3310’,    
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By using Equations 4.23, 4.32 and 4.37, the nondimensional

stress at the mth increment may be written

6’,’ = (1—v2)(é',*+1m€,') (5.12)

The reduction factor A“ should be a decreasing function of m,

and should satisfy the following conditions

,1 =71 (m=1) =1

1 m (5.13)

1M=lm(m=M) =0

Many possible choices for A," can be used. The initial choice

for this work was

1 for m=1

I1 = l
(5014)

-W for m22

where B is a constant between 0 and 1. From preliminary

computations, it was found that a small value of B (0<B<0.3)

ensures numerical stability when a small number of increments

is considered. However, with five increments, B=1 was used

successfully. To speed up convergence, the following

alternative reduction factor was considered

1 for m=1

1m== 1 [ 1 ] (5.15)

1——-——— for m22

(1+B)M-m

 

With the latter reduction factor, the average number of

iterations per increment required for convergence was about
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one third of that obtained with the reduction factor given by

Equation 5.14.

By using the new method, all that is needed to start the

incremental iterative procedure is an initial guess of the

three components of the initial virtual stress vector. An

"optimum" guess of these values may be obtained by trying

different values with a coarse finite element mesh, and then

use this optimum with finer finite element meshes.

5.3 Evaluation of Strains and Stresses

5.3.1 Evaluation of Strains

Once the element nodal displacements are obtained, the

strains at any point can be evaluated as (see Equations 3.80,

3.82a, 4.32 and 4.33)

u
l
u

e=k é" €=§’&' (5-15’

5.3.2 Evaluation of Second Piola-Kirchhoff Stresses

The nondimensional second Piola-Kirchhoff stresses are

obtained using the following stress-strain relationships (see

Equations 3.84 and 4.37)

€=D’é’+6’0’ (5.17)

Using Equations 3.28, 3.83, 4.24, and 4.36, the second Piola-

Kirchhoff stresses are given by

 5/ (5.18)
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5.3.3 Evaluation of Cauchy Stresses

The Cauchy stress tensor is defined as19

r = 1110:" (5.19)

pa

where p is the mass density in the final configurations, p0 is

the mass density in the initial configuration, a is the second

Piola-Kirchhoff stress tensor, and X is the deformation

gradient given by

Bu Ba
1+... .__

x: 6" 65' (5.20)

.61 1.31» -
6x 6y

and

p0 = pdetx

(5.21)

- 31. 3: -6112detx — (1+ ax)(1+ 6y) 6x By

The components of the Cauchy stress tensor in terms of the

components of the second Piola-Kirchhoff stress tensor are

then given by

 

 

= 1 222 $2 3.4 :23 .
x detx[ax(l+6x) ”Y(ay) +20” 8Y(1+3X) (5 225)

ry = .__..dgtx [ay(1+.g}‘f)2 + 0x(%—;)2 + zawgk‘fhhgfl] (5.221))

= .__1__ _.__. __ .__.

1"” detx[ " 8x( 6x 3’ 6y 6y 6y 6x 6x 8y

(5.22c)

0 6V 1+§E)+a 611(14-av)+axy[i§fl+(1+2‘5)(1+§_¥)u



 



6. Model Validation and

Parametric Studies

A computer program was developed to test and validate the

theoretical models described in the previous chapters, and was

used to undertake some parametric studies. The initial virtual

prestressing technique was implemented in the computer

program.

To allow for an adequate comparison of the results of

this work with previous research, the membrane deflections and

stresses are conveniently presented in the form:

= 3.12%
W7 aL(Eh)

2 2 %
0:3(th2 E) }

(6.1)

_ qZLZEi

 

The coefficients a,fl and y are, respectively, the normal

deflection coefficient, the second Piola-Kirchhoff stress

coefficient, and the Cauchy stress coefficient.
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6.1 Model Validation

6.1.1 Convergence of the von Karmén Model

To study the convergence characteristics of the von

Karman model, a square membrane and a rectangular membrane

with two different aspect ratios were analyzed (see Figure 2).

The aspect ratio n is defined as the length of the membrane's

shorter side over the length of its longer side:

0 =
(6.2,

m
l
o

 

 

 
 

    
Figure 2: Region for Rectangular Membrane
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Letting L=b, Equation 5.1 becomes

= qb-i- ‘
w (Lb(§5)

2 2 3

a=p(.Q_'_13b2_.E_:)3 ( (6.3)

2 2 %
”7(qu E)

 

In all cases, the membrane was assumed to be fixed along

its four edges (u=v=w=0), and the transverse loading acting on

the membrane was considered uniform and deformation-

independent.

Due to double symmetry, only a quarter of the membrane

was required in the analysis. Different mesh sizes were

considered. The number of subdivisions in the x-direction N1‘

and in the y-direction Ny were chosen to be identical (Nx=Ny=N) .

Figures 3, 4 and 5 show the variation of the central

deflection and central and maximum principal second Piola-

Kirchhoff stresses with mesh refinement. It is evident from

the results that the von Karman -model exhibits good

convergence characteristics. The value of the nondimensional

coefficient k used to plot Figures 3, 4, and 5 was taken to be

equal to 1, and Poisson's ratio was taken equal to 0.3.
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Figure 3: Convergence of Deflection and Stresses for a

Square Membrane



 



D
e
f
l
e
c
t
i
o
n

a
n
d

s
t
r
e
s
s

c
o
e
f
f
i
c
i
e
n
t
s

78

 

1.1 l I l I l I l I I

1.0‘ -—*—- Moxknunwdeflecfion

‘ "“Lm Centrol stress

09 “.._l\ ------l“- Moxlmum stress

 

 

 

  O3 1 i l l 1 J 1 l 1
 

Number of subdivisions N

Figure 4: Convergence of Deflection and Stresses for a

Rectangular Membrane (17:5/7)
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Figure 5: Convergence of Deflection and Stresses for a

Rectangular Membrane (n=2/s)
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6.1.2 Comparison of the von Kirmfin Model with Previous Models

To test the validity of the numerical implementation of

the von Karman model, a square membrane and a rectangular

membrane with two different aspect ratios (n=5/7 and n=2/5)

were analyzed.

Because the nondimensional coefficient k enters the

fundamental incremental equilibrium equation to be solved (see

Equation 3.108), the analysis was carried out with seven

different values of k ranging from 0.0001 to 1, i.e. values of

0.0001, 0.001, 0.01, 0.05, 0.1, 0.5 and 1. However, it was

found that the values of the central deflection and the

central and maximum second Piola-Kirchhoff stresses were not

affected by the variation of k. Then, a comparison was made of

the results for the central deflection and central and maximum

principal second Piola-Kirchhoff stresses with the results of

Fopplu, Hencky”, Borg”, Shaw and Perronez, Kao and Perrone”,

and Allen and Al-Qarra”. The results given in terms of

deflection and stress coefficients are shown in Tables 1, 2

and 3.
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Table 1: Square Membrane Under Uniform Transverse Loading

Comparing different Models

 

 

 

 

 

 

 

Maximum Central Maximum

Model deflection stress stress

Foppl 0.8 0.409 0.56

Hencky 0.716 0.436 0.458

Kao & Perrone 0.723 0.439 0.497

Allen & Al-Qarra 0.722 0.435 0.518

Present work

von Karman model 0.722 0.436 0.518    

Loading (n=6/7) Comparing different Models

Table 2: Rectangular Membrane Under Uniform Transverse

 

 

 

 

 

 

 

 

Maximum Central Maximum

Model deflection stress stress

Foppl 0.943 0.543 0.735

Borg 0.864 0.504 -

Shaw and Perrone 0.824 0.520 0.591

Kao & Perrone 0.841 0.522 0.574

Allen & Al-Qarra 0.836 0.536 0.598

Present work

von Karmén model 0.836 0.533 0.594    
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Table 3: Rectangular Membrane Under Uniform Transverse

Loading (n=2/5) Comparing different Models

 

 

 

 

 

 

    

Maximum Central Maximum

Model deflection stress stress

F6pp1 1.069 0.642 0.889

Kao & Perrone 0.895 0.551 0.582

Allen & Al-Qarra 0.877 0.581 0.605

Present work

von Karman model 0.877 0.572 0.596   
It is evident from the comparison, that the numerical

implementation of the von Karman model is consistent with the

implementation done by other investigators. In the author’s

model, the second Piola-Kirchhoff stresses were evaluated at

the element nodes and the center of each element. This may

account for some of the discrepancy between the tabulated

values and those obtained by Borg and by Kao and Perrone,

since those investigators do not specify where stresses were

evaluated. Also, it is important to note that the maximum

second Piola-Kirchhoff stress occurs at the middle of the

longest edge of the rectangular membrane (see point A in

Figure 2).

6.1.3 Discussion

As was mentioned in the literature review, second Piola-

Kirchhoff stresses do not represent "real" membrane stresses

when large displacements are considered, and in practice
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Cauchy stresses should be computed. A comparison between

second Piola-Kirchoff stress coefficients and Cauchy stress

coefficients, using the von Karman model, is presented in

Tables 4, 5, and 6.

Table 4: Stress Coefficients for a Square Membrane

 

 

 

 

 

 

 

 

      

2nd Piola-Kirchhoff Cauchy Stresses

Stresses

k Central Maximum Central Maximum

' Stress Stress Stress Stress

0.0001 0.436 0.518 0.436 0.522

0.001 0.436 0.518 0.436 0.520

0.01 0.436 0.518 0.436 0.509

0.05 0.436 0.518 0.436 0.484

0.1 0.436 0.518 0.436 0.461

0.5 0.436 0.518 0.436 0.342

1.0 0.436 0.518 0.436 0.346
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Table 5: Stress Coefficients for a Rectangular Membrane

 

 

 

 

 

 

 

 

      

(n=S/7)

2nd Piola-Kirchhoff Cauchy Stresses

Stresses

k Central Maximum Central Maximum

Stress Stress Stress Stress

0.0001 0.533 0.594 0.536 0.597

0.001 0.533 0.594 0.536 0.594

0.01 0.533 0.594 0.539 0.581

0.05 0.533 0.594 0.546 0.550

0.1 0.533 0.594 0.552 0.522

0.5 0.533 0.594 0.582 0.376

1.0 0.533 0.594 0.606 0.436

 

Table 6: Stress Coefficients for a Rectangular Membrane

 

 

 

 

 

 

 

 

      

(n=2/5)

2nd Piola-Kirchhoff Cauchy Stresses

k Stresses

Central Maximum Central Maximum

Stress Stress Stress Stress

0.0001 0.572 0.596 0.575 0.599

0.001 0.572 0.596 0.577 0.595

0.01 0.572 0.596 0.583 0.581

0.05 0.572 0.596 0.598 0.547

0.1 0.572 0.596 0.612 0.515

0.5 0.572 0.596 0.681 0.354

1.0 0.572 0.596 0.741 0.513
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Table 7 shows the relative error when second Piola-Kirchhoff

stresses are used instead of Cauchy stresses. The relative

error in the stress coefficients is defined as:

At: 0"?

T

(6.4) 

where a and r are, respectively, the second Piola-Kirchhoff

stress and the Cauchy stress.

Table 7: Relative Error in Stress Coefficients

 

 

 

 

 

 

 

 

 

  

Relative Error %

Central Stress Maximum Stress

k n=1 n=5/7 n=2/5 17:1 n=5/7 17:2/5

0.0001 0 -0.56 -0.52 -0.77 -0.50 -0.50

0.001 0 -0.56 -0.87 -0.38 0 0.17

0.01 0 -1.11 -l.89 1.77 2.24 2.58

0.05 0 -2.38 -4.35 7.02 8.00 8.96

0.1 0 -3.44 -6.54 12.4 13.8 15.7

0.5 0 -8.42 -16.0 51.5 58.0 68.4

1.0 0 -12.0 -22.8 49.7 36.2 16.2       
It is evident from the above results that, in general,

 
the use of second Piola-Kirchhoff stresses instead of Cauchy

stresses underestimates the central stresses but overestimates

the maximum stresses. For values of k smaller than 0.01, the

use of second Piola-Kirchhoff stresses leads to results that

but Cauchyare sufficiently accurate for ‘most. purposes,

stresses need to be used for values of k greater than 0.05.
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However, for high values of strains, the membrane may exhibit

an inelastic behavior. When this is the case, the assumption

of elastic behavior may no longer valid, and new constitutive

relationships modelling the material behavior should be

considered.

To check.the state of strain in the membrane, the central

and maximum actual strains were computed, and are listed in

Tables 8, 9, and 10.

Table 8: Strains in a Square Membrane

 

 

 

 

 

 

 

 

k Central Strain % Maximum Strain %

0.0001 0.04 0.07

0.001 0.21 0.32

0.01 0.95 1.48

0.05 2.79 4.33

0.1 4.42 6.87

0.5 12.9 20.1

1.0 20.5 31.9     
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Table 9: Strains in a Rectangular Membrane (n=6/7)

 

 

 

 

 

 

 

 

   

k Central Strain % Maximum Strain %

0.0001 0.06 0.08

0.001 0.29 0.36

0.01 1.33 1.69

0.05 3.88 4.95

0.1 6.16 7.86

0.5 18.0 23.0

1.0 28.6 36.5

 

Table 10: Strains in a Rectangular Membrane (n=2/5)

 

 

 

 

 

 

 

 

   

k Central Strain % Maximum Strain %

0.0001. 0.07 0.08

0.001 0.34 0.37

0.01 1.57 1.70

0.05 4.60 4.97

0.1 7.31 7.88

0.5 21.4 23.1

1.0 33.9 36.6

 

 

 

6.1.4 Comparison of the von Karman Model with the General

Model

To determine the limitations of the von Karman model and

therefore its rangeiof applicability, the three membrane cases

studied above were analyzed using the general model. Figures

6, 7 and 8, which are plotted for k=1, demonstrate that
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convergence for the general model is comparable to that of the

von Karman model (Figures 3, 4 and S).
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A comparison was made of the general model with the von

Karman model for the central deflection, and the central and

maximum

deflection and stress coefficients,

12, 13 and 14.

Cauchy' stresses. The results ,

Central Deflection Coefficients

given in terms of

are shown in Tables 11,

 

 

 

 

 

 

 

 

 

 

Table 11:

Von Karman Model General model

Aspect ratio Aspect ratio

k 1 5/7 2/5 1 5/7 2/5

0.0001 0.722 0.836 0.877 0.722 0.836 0.877

0.001 0.722 0.836 0.877 0.722 0.836 0.876

0.01 0.722 0.836 0.877 0.722 0.836 0.876

0.05 0.722 0.836 0.877 0.722 0.835 0.874

0.1 0.722 0.836 0.877 0.722 0.835 0.873

0.5 0.722 0.836 0.877 0.724 0.836 0.872

1.0 0.722 0.836 0.877 0.726 0.838 0.873         





Table 12: Cauchy Stress Coefficients in a Square Membrane
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Von Karman Model General Model

Central Maximum Central Maximum

k Stress Stress Stress Stress

0.0001 0.436 0.522 0.437 0.522

0.001 0.436 0.520 0.436 0.521

0.01 0.436 0.509 0.432 0.517

0.05 0.436 0.484 0.422 0.507

0.1 0.436 0.461 0.415 0.499

0.5 0.436 0.342 0.383 0.466

1.0 0.436 0.346 0.362 0.445

 

Table 13: Cauchy Stress Coefficients in a Rectangular Membrane

 

 

 

 

 

 

 

 

      

(n=5/7)

Von Karmén Model General Model

Central Maximum Central Maximum

k Stress Stress Stress Stress

0.0001 0.536 0.597 0.535 0.597

0.001 0.536 0.594 0.534 0.596

0.01 0.539 0.581 0.531 0.592

0.05 0.546 0.550 0.522 0.582

0.1 0.552. 0.522 0.514 0.574

0.5 0.582 0.376 0.484 0.543

1.0 0.606 0.436 0.465 0.523
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Table 14: Cauchy Stress Coefficients in a Rectangular Membrane

 

 

 

 

 

 

 

 

 

("=2/5)

Von Karman Model General Model

Central Maximum Central Maximum

k Stress Stress Stress Stress

0.0001 0.575 0.599 0.575 0.599

0.001 0.577 0.595 0.574 0.598

0.01 0.583 0.581 0.571 0.594

0.05 0.598 0.547 0.565 0.585

0.1 0.612 0.515 0.559 0.577

0.5 0.681 0.354 0.539 0.549

1.0 0.741 0.513 0.527 0.531      
 

Tables 15, 16 and 17 show the relative error in deflection and

stress coefficients when the von Karman model is used instead

of the general model. The relative error in a variable Q

(deflection coefficient or stress coefficient) is defined as:

 (6.5)

where Q, is the corresponding variable in the von Kérma’m

model, and Q: is the corresponding quantity in the general

model.



  



Table 15: Relative Error for a Square Membrane
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Relative Error %

k Central Central Maximum

Deflection Stress Stress

0.0001 0 -0.23 0

0.001 0 0 -0.19

0.01 0 0.93 -1.55

0.05 0 3.32 -4.54

0.1 0 5.06 -9.62

0.5 -0.28 13.8 -26.6

1 -0.55 20.4 -22.2

 

Table 16: Relative Error for a Rectangular Membrane (n=5/7)

 

 

 

 

 

 

 

 

     

Relative Error %

k Central Central Maximum

Deflection Stress~ Stress

0.0001 0 0.19 0

0.001 0 0.37 -0.34

0.01 0 1.50 -1.86

0.05 0.12 4.60 -5.50

0.1 0.12 7.39 -9.06

0.5 0 20.2 -30.8

1 -0.23 30.3 -16.6

 

 

 

 





 

Table 17: Relative Error for a Rectangular Membrane (n=Q/5)
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Relative Error %

k Central Central Maximum

Deflection Stress Stress

0.0001 0 0 0

0.001 0.11 0.52 -0.50

0.01 0.11 2.10 -2.19

0.05 0.34 5.84 -6.50

0.1 0.46 9.48 -10.7

0.5 0.57 26.3 -35.5

1 0.46 40.6 -3.39

  
It appears from the above results that the von Karmén model

overestimates the central stress but underestimates the

maximum stress. The accuracy of the von Karman model declines

sharply as k increases beyond 0.01.

In addition, a comparison between the two models for the

central and maximum actual strains is made. The corresponding

results are shown in Tables 18, 19 and 20.
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Table 18: Comparison of Strains for a Square Membrane

 

 

 

 

 

 

 

 

      

Von Karman Model General Model

k Central Maximum Central Maximum

Strain % Strain % Strain % Strain %

0.0001 0.04 0.07 0.04 0.07

0.001 0.21 0.32 0.20 0.32

0.01 0.95 1.48 0.94 1.50

0.05 2.79 4.33 2.69 4.49

0.1 4.42 6.87 4.20 7.25

0.5 12.9 20.1 11.3 22.5.

1.0 20.5 31.9 17.0 36.8   

Table 19: Comparison of Strains for a Rectangular Membrane

 

 

 

 

 

 

 

 

 

(n=5/7)

Von Karman Model General Model

k Central Maximum Central Maximum

Strain % Strain % Strain % Strain %

0.0001 0.06 0.08 0.06 0.08

0.001. 0.29 0.36 0.28 0.37

0.01 1.33 1.69 1.31 1.72

0.05 3.88 4.95 3.71 5.17

0.1 6.16 7.86 5.74 8.38

0.5 18.0 23.0 15.2 26.2

1.0 28.6 36.5 22.7 42.8       
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Table 20: Comparison of Strains for a Rectangular Membrane

 

 

 

 

 

 

 

 

 

 

(n=2/5)

Von Karman Model General Model

Central Maximum Central Maximum

k Strain % Strain % Strain % Strain %

0.0001 0.07 0.08 0.07 0.08

0.001 0.34 0.37 0.34 0.37

0.01 1.57 1.70 1.54 1.73

0.05 4.60 4.97 4.36 5.23

0.1 7.31 7.88 6.73 8.49

0.5 21.4 23.1 17.6 26.8

1.0 33.9 36.6 26.0 44.0       
The von Karman model overestimates the central strain but

underestimates the maximum strain. Again, it should be

mentioned that for higher values of strains the membrane may

exhibit an anelastic behavior. When this is the case, the

assumption of elastic behavior is no longer valid, and new

constitutive relationships modelling the material behavior

should be considered.

To illustrate the distribution of deflections and

stresses within. the 'membrane, the. deflection and stress

coefficients for the three membrane.cases studied were plotted

along the center lines a-a and d-d, quarter lines b-b and e-e,

and edge lines c-c and f—f as shown in Figure 9. Figures 10 to

19 illustrate the results. The nondimensional coefficient k

was taken equal to 0.01.
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Figure 9: Typical Quarter of a Membrane
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Shorter Side of a Rectangular Membrane (n=Q/5)
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6.2 Parametric Studies

6.2.1 Effect of Poisson's Ratio

To investigate the effect of Poisson's ratio on

deflections and stresses, a square membrane was analyzed. Nine

different values of Poisson’s ratio ranging from 0.2 to 0.48

‘were considered. These values are: 0.2, 0.25, 0.3, 0.33, 0.37,

0.4, 0.43, 0.45, and 0.48. Figure 20 shows the variation of

the central deflection, the central stress, and the maximum

stress with Poisson’s ratio.

It is evident from the results that as Poisson’s ratio

increases, the deflections decrease and the stresses increase.

From v=0.2 to 1=0.48, the variation in the central deflection

coefficient, the central stress coefficient, and the maximum

stress coefficient are, respectively, 10.7%, 10.5%, and 3.9%.
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6.2.2 Effect of Initial Prestressing

The membrane cases studied above were assumed to be

stress-free before the application of normal loading. In

actual use, it is common to prestress membranes in order to

compensate for the lack of bending stiffness. To investigate

the effect of initial prestressing on membrane deflections and

stresses, a square membrane initially prestressed along the x-

direction was analyzed. For the purpose of generality, initial

prestressing is expressed in terms of initial prestraining.

Different values of initial prestraining up to 1.4% were

considered. Poisson’s ratio was taken equal to 0.4. Figure 21

shows the variation of the central deflection coefficient, and

the central and maximum.stress coefficients with these values.

As expected, the central deflection decreases as the

initial prestressing increases. The membrane behaves as if it

has an initial bending stiffness. Nevertheless, the stresses

increase ‘with. the increase: of the initial prestressing.

Therefore the latter may contribute to premature tearing of

the membrane. The variation of the central deflection

coefficient, and the central and maximum stress coefficients

are, respectively, 10.8%, 36.6%, and 29% when the value of the

initial prestraining varies from 0 to 1.4%.
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6.2.3 Effect of the Boundary Conditions

In the examples studied in the previous sections the

membrane was assumed to be fixed along its four edges. In this

section, the membrane is assumed to have the two edges

parallel to the x-axis free, while the other two edges remain

fixed. This type of membrane boundary conditions is common in

plastic greenhouses.

Deflections and stresses of a square membrane, for this

type of boundary conditions and the one considered previously,

are compared in Figures 22, 23, 24 and 25. The superscripts

bcl and bc2 refer, respectively, to the previous case and the

present case. The values of the nondimensional coefficient k

and Poisson's ratio V considered were, respectively, 0.01 and

0.3.

Deflections and stress coefficients corresponding to the

present case are higher than in the previous case ( 23.1% for

the central deflection, and 12.4% for the maximum stress).
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6.2.4 Effect of Nonconservative Loading: Case of External

Pressure

So far, the normal loading acting on the membrane was

assumed to be deformation-independent. In this section, a

deformation-dependent loading is considered. A square membrane

subjected to this type of loading was analyzed.

For values of the nondimensional coefficient k ranging

from 0.0001 to 0.05, the maximum deflection coefficients for

the two types of loading were identical to three significant

digits, as were the maximum stress coefficients. Apparently,

the assumption that the loading is deformation-independent is

quite accurate in the range of straining considered.

6.2.5 Comments About the Initial Virtual Prestressing

Technique

In all the numerical cases studied, the "optimum" initial

guess of the initial virtual prestressing vector was obtained

with a 3x3 finite element mesh, using the reduction factor

defined by Equation 5.15. Then, this optimum guess was used

with a 5x5 finite element mesh.

For the case of membranes fixed along their four edges,

the minimum number of increments needed was five, and the

average number of iterations per increment required for

convergence was 5.6. However, in the free-fixed square

membrane studied in section 6.2.3, 15 increments were required

while the average number of iterations per increment was only

2.4.



 

 

 



7. Summary and Conclusions

7.1 Summary

This research investigated the static nonlinear behavior

of structural thin flat membranes which are subjected to

transverse loading. The membrane material was assumed to have

a linear elastic constitutive behavior. Only geometric

nonlinearities were considered. An incremental nonlinear

finite, element. method. using' nondimensional variables 'was

employed.

First, a geometric nonlinear model referred to as the von

Karman model was developedd This model was based on simplified

strain-displacement relationships in which the squares and

products of derivatives of the in-plane displacement

components were neglected. An incremental-iterative procedure

was used to solve the equilibrium equations for the nodal

displacements. To overcome the difficulty associated with the

ill-conditioning arising at the start of this procedure, a new

technique referred to as "initial virtual prestressing" was

developed.

To validate this model, a square membrane and rectangular

membranes with two different aspect ratios were analyzed.

Then, results for the central deflection and central and

maximum second Piola-Kirchhoff stresses were compared with the

results of previous investigators who also had used the von

120
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Karman simplification of the strain-displacement relation-

ships. Cauchy stresses were also computed and compared to

second Piola-Kirchhoff stresses to determine whether the use

of the latter was appropriate. To the best of the investi-

gator’s knowledge the comparison of the two types of stresses

has never been published.

Next, aigeneral geometric.nonlinear'model using the exact

strain-displacement relationships was developed. This model is

referred to as the general model. It was used to analyze the

three membrane cases mentioned above. A comparison of its

results with those of the von Karman model was made to assess

the limitations of the latter model. To the best of the

investigator’ 5 knowledge the comparison of the comparison

between the two models has never been published.

Finally, some parametric studies were conducted to

investigate the effect of varying Poisson’s ratio, introducing

initial real prestressing and changing the boundary

conditions. The effect of nonconservative loading also was

investigated.

7.2 Conclusions

7.2.1 Comparison of the von Karman Model to previously

developed models

Comparison of the results of the von Karman model with

those obtained by previous investigators shows overall

agreement, particularly’ for' deflections. Because ‘the
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nondimensional coefficient k enters the fundamental

incremental equilibrium equations, the analysis was carried

out for different values of k ranging from 0.0001 to 1. It was

shown that the central deflection coefficient and the central

and the maximum second Piola-Kirchhoff stresses were not

affected by the variation of k.

7.2.2 Second Piola-Kirchhoff Stresses and Cauchy stresses

Unlike the second Piola-Kirchhoff stresses, Cauchy

stresses vary with k. From the theoretical point of view, the

Cauchy stress represents the real membrane stress. A

comparison of these stresses with second Piola-Kirchhoff

stresses for different values of the nondimensional

coefficient k shows that the use of second Piola-Kirchhoff

stress leads to an underestimation of the central stress, and

an overestimation of the maximum stress. Nevertheless, for

values of k smaller than 0.01, the differences are negligible

for design purposes.

7.2.3 Limitation of the von Karman Model

A comparison of the results for the central deflection

coefficient and the central and maximum Cauchy stress

coefficients with those.obtained using the general model shows

that the von Karmén model overestimates the central stress,

but underestimates the maximum stress. However, for values of

k smaller than 0.01, the von Karmén model gives results that

are sufficiently accurate for design.
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The nondimensional coefficient k (a function of load

intensity, characteristic. length of the membrane, Young’s

modulus, Poisson’s ratio and membrane thickness) determines

the state of straining in a membrane. For values of k smaller

than 0.01, the maximum strain is less than 1.75%. For values

of k greater than 0.05, the maximum strain exceeds 4.5%. For

high values of strains, the membrane may exhibit inelastic

behavior; in which.case, new'constitutive relationships should

be considered.

7.2.4 Effect of Poisson's Ratio

To investigate the effect of Poisson's ratio on

deflections and stresses, a square membrane was analyzed with

different values of Poisson’s ratio. The results shoW'that.the

variations in the values of the central deflection coeffi-

cient, and the central and the maximum stress coefficients

are, respectively, 10.7%, 10.5%, and 3.9% when the value of

Poisson's ratio is varied from 0.2 to 0.48.

7.2.5 Effect of Initial Prestressing

Initial prestressing was expressed in terms of initial

prestraining to allow for a general interpretation of the

results. The results of the analysis of a square membrane

initially prestressed along one direction show that when the

initial prestraining increases from 0 to 1.4%, the central

deflection coefficient decreases by 10.8%, while the central

and maximum stress coefficients increase, respectively, by

36.6%, and.29%. Consequently; in practical situations, initial
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prestressing might be introduced when small deflections are

required, but the ‘magnitude should be limited to avoid

premature tearing of the membrane.

7.2.6 Effect of Boundary Conditions

A square membrane with the two edges parallel to the x-

axis free, and the two other edges fixed, was analyzed.

Comparison of results with those obtained in a membrane with

four fixed edges shows that the deflections and stress

coefficients corresponding to the former case are higher than

in ‘the latter' case. Variations. of 23.1% and 12.4% 'were

obtained, respectively, for'theicentral deflection and maximum

stress.

7.2.7 Effect of Nonconservative Loading

External pressure on a flexible membrane is a deforma-

tion-dependent loading. To investigate the effect.of this type

of loading on membrane deflections and stresses, a square

membrane was analyzed. The results obtained for the maximum

deflection and stress coefficients, for the range of values of

k between 0.0001 and 0.05, were nearly the same as those

obtained when considering a conservative type of loading.

7.2.8 Use of The Initial Virtual Prestressing Technique

Newly developed for this study, the initial virtual

prestressing technique was used in the incremental-iterative

procedure to avoid ill-conditioning and assure convergence.

The advantage of ‘this technique is ‘that. only’ the ‘three

components of the initial virtual prestressing vector need to
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be guessed, while in previous work, an initial guess of the

deflected shape of the membrane was required. The "optimum"

values corresponding to the initial guess may be obtained by

trial and error on a coarse finite element mesh.

7.3 Further study

For plastic greenhouses, the practical value of the

nondimensional coefficient k ranges between 0.005 and 0.05.

Therefore, the models and the results for nondimensional

parameters developed in this study are potentially useful in

design. In. particular, the assumption of linear elastic

behavior might be very critical. To get a better insight of

the structural behavior of membranes, a further study is

needed to include more accurate constitutive relationships,

particularly for low density polyethylene which exhibits a

nonlinear viscoelstic behavior.
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