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ABSTRACT

STATIC ANALYSIS OF STRUCTURAL THIN
FLAT MEMBRANES
By
ABDELILAH ELGUENNOUNI

The static nonlinear behavior of structural thin flat
membranes which are subjected to transverse 1loading was
investigated. Using a nondimensional formulation, two
geometrically nonlinear finite element models were considered.
First, a simplified model based on the von Karmd&n strain-
displacement relationships was developed and validated by
comparison to previously developed models. Then, a general
model based on the exact strain-displacement relationships was
developed.

A comparison between the two models was made to determine
the 1limitations of the simplified model. An extension to
deformation-dependent loading was also studied. Several
parametric studies were conducted to investigate the effect of
Poisson’s ratio, initial prestressing, and membrane boundary
conditions on deflections and stresses. An incremental-
iterative procedure was used to solve the nonlinear finite
element equations. To overcome the difficulty associated with
the ill-conditioning encountered for the first several
increments, a new technique referred to as "initial virtual

prestressing" was developed. This was found to be effective



and convenient compared to the usual strategy of guessing ﬁhe
initial deflected shape.

It was shown that a nondimensional coefficient k which is
a function of five parameters (load intensity, characteristic
length of the membrane, Young’s modulus, Poisson’s ratio and
membrane thickness) determines the state of straining in the
membrane. For values of k smaller than 0.01, the maximum
strain is less than 1.75%. The simplified model leads to
results that are sufficiently accurate for design purposes.
For values of k greater than 0.05, the maximum strain exceeds
5%, and the accuracy of the simplified model diminishes.

The use by previous investigators of second Piola-
Kirchhoff stresses is inappropriate because Cauchy stresses
are the more accurate representation of real stresses.
However, for values of k smaller than 0.01, the numerical
difference between the two stress measures was found to be
negligible. Also, it was shown that for values of k smaller
than 0.05, external pressure loading may be assumed to be
deformation-independent. Variation of Poisson’s ratio, initial
real prestressing and membrane boundary conditions were shown

to have significant effects on deflections and stresses.
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1. INTRODUCTION AND BACKGROUND

1.1 Introduction

The high capital cost of glass greenhouses has stimulated
interest in film plastic clad alternatives which require only
20 to 45% of the capital required for glass'.

In Morocco, there is a trend toward the construction of
plastic film greenhouses. More than 1000 hectares for banana
production have been covered by this type of structure during
the period 1981-19882.

Because of the favorable horticultural qualities of
polyethylene film (particularly for the Mediterranean climate)
and its low price compared to other covering materials, it has
been used extensively for greenhouses. Due to the fact that
the structural behavior of this covering material is not well
known, particularly under the random action of wind, the
reliability of these greenhouse structures remains uncertain.
Existing designs span a large range of reliability; some are
prone to structural failure while others appear to be
overdesigned to an uneconomic degree.

Greenhouse structures are hybrid systems in which plastic
membrane panels span between primary load carrying members
such as prestressed cables and rigid elements. Some of the

advantages of membrane structures are:
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- they are lightweight and collapsible and therefore easy to
transport and erect;
- the environmental loads are efficiently carried by direct
stress without bending;
- they are load-adaptive in that the members change geometry
to better accommodate changes in load patterns and magnitudes.

The structural mechanics of tension structures such as

greenhouses is well described in references® ¢ 5 6 7,

Large
deformations due to wind pressure, the resulting tearing of
the plastic due to the high membrane tension, and the collapse
of other structural elements are critical problems. |

Since the typical cost of greenhouse structures designed
for Morocco is between 250,000 and 300,000 Dirhams* per
"hectare, failure of a greenhouse represents a significant
loss. Therefore, an efficient and safe structural design of
these buildings must be achieved. To do this, several factors
that influence the design must be considered. The main factors
that are specific for these structures are the design wind
load and the structural behavior of film plastic membranes.

The first factor has received considerable attention; only a

few investigations have been concerned with the latter.

1.2 Review of Technical Literature

A membrane can only sustain tensile stresses. Therefore,

in order to be stable , i.e. have an equilibrium position, it

!, In June 1989, 1 Dirham = $ 0.125.
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must be prestretched. This can be effected by tensile forces
acting on the membrane edges, by selfweight,or, when a space
is completely enclosed, by pressurizing. Prestretching forces
stabilize the structure and provide stiffness against further
deflections. Membrane structures respond in a nonlinear
fashion to both prestretching and service loads, regardless of
linearity of materials, even if the loading is deformation-
independent.

The static analysis of prestretched structures comprises

two main problems:
1- Determination of the prestretching forces at equilibrium;
2~ Establishment of the maximum tensile forces arising in the
system at the given load application. These, together with the
strength of the membrane, determine the maximum size of the
panel.

In order to determine the required prestretching forces
as well as the maximum stresses, it is necessary first to
determine tﬁe internal forces. The ordinary membrane theory of
shells may be used, provided the material is only slightly
deformable so that the loads can be considered to act on the
undeformed system. It is far more difficult to determine the
state of stress for highly deformed membranes. In this case
the initial shape is incapable of'supporting any load, and the
membrane undergoes finite deformations until an equilibrium
shape is reached. The state of stress depends markedly on the

final shape of the membrane. However, this shape is unknown,
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as are the internal forces. When the equilibrium state of a
system must be determined for the deformed position, it is
necessary to apply the theory of finite deformations, using
nonlinear strain-displacement relationships. This leads to
nonlinear displacement equations.

According to Shaw and Perrone®, the governing nonlinear
equations of membranes were first derived by Féppl and
Teubner®’. These equations follow directly from the von Karméan
large deflection flat-plate equations by setting the plate
stiffness identically zero. The von Karma&n equations for the
large deflection of a thin flat plate of uniform thickness

arel®:

(1.1)

FF,, OF 3‘F=E( azw)z_ Pw Pw
Ox%  0x2%0y? dy ¢ ox dy dx? dy?

Fw,, Ow  ow_hlg,K FFFw &FFFw _, FF Fw
ox* dx2dy2 Jdy* D\h 9y2? 9x2 9x? 9y? dx dy dx dy

(1.2)
where w is the normal deflection, g=q(x,y) is the applied
normal load intensity, h is the plate thickness, E is Young’s
modulus for the plate material, D its bending stiffness
defined as Eh®/12(1-v?) where » is Poisson’s ratio, and F is a
stress function related to the forces per unit length in the

plane of the plate by the formulas:



ChEE  u o nBE o p EF
M = h‘a}_z Ny oz w hax dy

(1.3)
Making the bending stiffness zero results in two simultaneous
nonlinear equations relating the membrane deflection and the

stress function

2
8‘F+2 *F_ | OF _ E( Fw ) _ Pw Pw (1.4)
ox®  9x29y? dy* ox dy dx2 dy?
g, Prdw  FFrFw _, FF Fw _ 0 (1.5)

h oy ? ox? 0x2 dy? 0x dy 0x dy
The exact solution for the uniformly loaded rectangular
membrane has not been obtained.

In 1920, Foéppl and Fdppl! used the energy approach to
obtain an approximate solution for stress and deflection at
the center of a square membrane. They assumed a trigonometric
function for the membrane deformations. This function, which
contains a certain number of unknown coefficients, was chosen
so as to satisfy the boundary and symmetry conditions. The
unknown coefficients were evaluated by minimizing the total
energy of the membrane. A year later, Hencky!? achieved a
rather lengthy numerical finite difference solution for a
square membrane. His results differ slightly from Foppl and
Foppl’s.

According to Borg', in 1940 Neubert and Sommer!* carried
through the Foppl’s computations for the rectangular case and
drew curves for stresses and deflections. Additionally,

Neubert and Sommer obtained satisfactory experimental
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verification for the FOppl’s and Hencky solution for the
square membrane, but did not test a rectangular membrane. Head
and Sechler” got similar results from their experimental
work, but, for rectangular membranes with high aspect ratios,
they noted a discrepancy from the F&ppl and Féppl solution for
stresses. Borg,; obtained an exact solution for the semi-
infinite membrane by taking the 1limit of the semi-infinite
tied-plate!® as the plate bending stiffness approaches zero.
He estimated the deflections and stresses of rectangular
membranes by interpolating results for square and semi-
infinite rectangular membranes. He drew curves for central
deflection and central stress between the two limits in such
a way as to satisfy known experimental requirements.
Differences of the order of 19 per cent appeared between the
Borg and Foppl’s results in semi-infinite membrane solutions.
Borg attributed this discrepancy to the fact that as the
aspect ratio decreases, the trigonometric function assumed by
F6ppl and Foppl becomes less accurate.

In 1954 Shaw and Perrone® employed a finite difference
approximation in conjunction with a nonlinear relaxation
technique to obtain a solution for an aspect ratio of 5/7.
Rather than using the Fo&ppl’s formulation, the membrane
problem was dealt with numerically in terms of displacement
components. Their results compared fairly well with Borg’s. In
1972 Kao and Perrone!’ extended the solution to other aspect

ratios.
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In 1987, Allen and Al-Qarra!® used an incremental finite
element method in a total Lagrangian coordinate system. An
advantage of the method is that the problem of the large
deflection of thin flat membranes subjected to normal forces
is formulated in terms of simple physical concepts, and a
numerical solution is achieved without dealing directly with
the complex nonlinear differential equations.

All the investigations described above used Hooke'’s law
to express the stress-strain relationships, which for an

elastic and isotropic material are

o=Deg (1.6)

where the stress vector o, the stain vector €, and the

elasticity matrix D are given by:

o={o0,,0, 0.7 (1.7)

e=1{c,, 6, 6,17 (1.8)
1v 0

D= Ez v 1 0 (1.9)
1-v2y o 1-v
2

When large displacements are considered, Hooke’s law may still
be valid provided that second Piola-Kirchhoff stresses are
used in conjunction with Green-Lagrange strains and the
material straining is small’®. Consequently, the previous
research mentioned above used implicitly second Piola-

Kirckhoff stress as a measure of stresses. There has been much
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discussion about the physical nature of the second Piola-
Kirchhoff stress tensor”?. However, It should be recognized
that the second Piola -Kirchhoff stresses have little physical
meaning, and in practice, Cauchy stresses should be the stress
quantities to be compared to available experimental work.

The general definition of strains which, is valid whether
displacements or strains are small or large, was intréduced by
Green and St.Venant, and is known as the Green’s strain tensor
or the Green-Lagrange strain tensor. In a fixed xyz-Cartesian
coordinate system, the strain components in terms of the

displacement components are:

- - 3]
oo 4T - 3]

du ov . du du . ov ov ow Ow

€ = + 3}—( &Ty -é}a_}/ + &Ty (1-12)

¥y
The investigators mentioned above, except Allen and Al-Qarralé,
utilized a simplified geometric nonlinear model in which it is
assumed that the squares and products of derivatives of the
in-plane displacement components u and v are small compared
with those of w and therefore may be neglected. Thus, the

following strain-displacement relationships were used

€

_ du , 1(aw)2 (1.13)

x "~ 9x 2\0x



ov 1/ dw)2
= Y (== 1.14
KO T 2(33') (1-14)
e du . ov . ow Ow (1.15)

» " 3y x Tydy
From now on, the term "von Karman model" will refer to a model
using equations (1.13-14-15) as the strain-displacement
relationships, while the term "general model" will refer to a
model using equations (1.10-11-12).

Allen and Al-Qarra mentioned in their paper!® the use of
a general model and that their results compared well with the
previous von Karmd&n models cited above, but did not draw any
conclusions regarding this point. This does not seem to be
coherent, since an obvious and important conclusion that
should be drawn from their work is that analysis of membranes
with large displacements does not require the use of a general
model. Also, it is clear from Equations 13 of their paper!®
that the values of the load intensity, length of the membrane,
membrane thickness and Young’s modulus might have a
significant effect on the results for deflections and
stresses. Therefore, the use of the general model by Allen and
Al-Qarra is questioned.

Thin flat structural membranes with negligible bending
stiffness rely on catenary action to support transverse
loading. Therefore, in the initial flat position, the problem
has no 1linear solution. An iterative procedure is then

necessary. The procedure employed by Allen and Al-Qarra'® is
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based on the generalized Newton-Raphson method; a deflected
shape for the loaded membrane was assumed as an initial guess
to start the numerical procedure. In some applications of this
technique, ill-conditioned stiffness matrices may arise from
an improper choice of the deflected shape. This situation can
be circumvented by arbitrary prescribing a new set of initial
displacements. The convergence rate is sensitive to the
accuracy of the assumed deflected shape, which depends on the
problem at hand,and on the analyst’s intuition and experience.
To improve significantly the rate of convergence, Oden and
Sato? proposed to start the analysis with a coarse finite
element representation of the membrane, then use the results
obtained as starting values for a more refined representation,
the displacements of the added node points being obtained
through linear interpolation. Dealing with the complete set of
undetermined displacements when guessing the initial deflected
shape, is a cumbersome task, particularly when there are few

restraints on the membrane edges.

1.3 Scope of the Research

The present research will investigate the static behavior
of thin flat membranes which are subjected to transverse
loads. It will include the following parts:

1. Theoretical development and computer implementation of a
nondimensional incremental nonlinear finite element model

using von KAarman’s strain-displacement relationships to
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analyze thin flat membranes subjected to transverse loading.
A total Lagrangian formulation will be used.
2. Implementation of a new numerical technique which will
reduce the number of variables in the initial guess of the
deflected shape to at most three. These variables will be
referred to as "the initial virtual prestressing variables"
and the numerical technique as "the initial virtual
prestressing technique".
3. Investigation of several numerical examples in order to
test the validity of the model by comparison to the results of
previous research.
4. Evaluation of Cauchy stresses in the membrane to allow
meaningful comparisons with experimental results.
5. Theoretical development of a general incremental nonlinear
finite element model where the general strain-displacement
relationships will be used instead of those of von KAarmé&n.
6. Comparison of the von Karmé&n model and the general model
and determination of the range of applicability of the von
Karm&n model.
7. Investigation of the effect of membrane aspect ratio on
deflections and stresses.
8. Investigation of the effect of Poisson’s ratio on stresses
and deflections.
9. Investigation of the effect of nmembrane initial

prestressing.
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10. Investigation of the effect of varying the boundary
conditions.
11. Investigation of the effect of considering a
nonconservative loading ,that is, one that changes due to
deformation. This permits a more accurate representation of

differential air pressure.



2.Theory and Implementation

2.1 Introduction

Because of the lack of bending stiffness, membrane
structures show 1large displacements. Prestressing forces
stabilize the structure and provide stiffness against further
displacements. The response to prestressing forces is always
nonlinear because the equilibrium configuration as well as the
state of stress are dependent on those forces. But the
response to in-service loads may be either nonlinear or quasi-
linear depending on the directions and magnitudes of the in-
service forces compared to stresses and deformations of the
prestressed structure. Three phases may be distinguished in
the physical behavior of a membrane structure’:

Deployment phase

During this phase, the membrane unfolds from its compact
configuration into a state of incipient straining and is
stress-free. The membrane behavior is lightly nonlinear, but
the equations of statics and constitutive equations are not of
interest until the state of incipient straining is reached and
the prestressing phase begins.

Prestressing phase

During this phase the structure undergoes large

displacements until a static equilibrium configuration is

reached. Therefore, nonlinear strain-displacement

13
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relationships are needed. Strains are small but relative
rotations may be 1large and thus second-order terms of
displacement gradients may be significant. During the
prestressing phase displacements predominate over strain
effects.
In-service phase

The additional displacements due to in-service loads are
generally much smaller than the prestressing displacements.
This is due to the fact that the prestressing stiffens the
membrane structure. The membrane behavior during this phase is
either nonlinear or quasi-linear depending on the relative
magnitudes of the prestressing forces and the in-service
loads.

The state of stress in a membrane subjected to loads
normal to its plane depends markedly on the final shape of the
membrane. However, this shape is unknown, as are the in-plane
membrane sectional loads. Accordingly, the theory of finite
deformations has to be applied, and therefore nonlinear
strain-displacement relationships are needed. These strain-
displacement relationships are given by Equations 1.6, 1.7,
and 1.8. Also, the equilibrium conditions of the membrane

should be considered in the deformed configuration.
2.2 Basic Assumptions
The present work is concerned with the static behavior of

thin flat membranes which are subjected to transverse loading.

The following are the basic assumptions:
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- the initial state of the membrane is either a state of
incipient straining or is initially prestressed by in-plane
forces so that the initial configuration can be assumed to be
in a state of equilibrium prior to load application,
- The membrane is assumed to be flat in its initial
configuration, i.e. 1lying in the x-y plane of a fixed
Cartesian coordinate system xyz.
- the membrane material is homogeneous and isotropic and has
a linear elastic constitutive behavior.
- the membrane bending stiffness is generally negligible and
therefore may be discounted. Consequently, the membrane may be
considered as a two-dimensional material body in a biaxial
state of stress where only in-plane stresses occur.
- Due to the fact that generally the membrane thickness is
very small compared to the other dimensions of the membrane,
a uniform stress distribution across the membrane thickness
may be assumed. Therefore, the membrane stresses may be
replaced by membrane sectional loads defined as the statically

equivalent loads per unit length of section.
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2.3 Fundamental Equations Using a Nonlinear Finite Element

Formulation

2.3.1 Basic problem

In the development to follow, a thin flat structural
membrane in a Cartesian coordinate system is considered. When
subjected to transverse loading,the membrane can experience
large displacements and large strains, but exhibits a linearly
elastic constitutive response. However, there is a strong
geometric nonlinearity in the deformation process of the
membrane. The aim is to determine the configuration of the
membrane in its final state of equilibrium and the
corresponding state of stress.

In order tq include the effect of large deformation for
this geometrically nonlinear problem, special treatment is
required. The underlying theories and their solutions can be
formulated by means of nonlinear equations or through
equivalent variational principles. The latter approach will be
used in conjunction with the finite element method. This has
the advantage of solving the problem without dealing directly
with the complex nonlinear equations, and allows an easier
computer implementation.

To develop a finite element strategy, the membrane
continuum will be approximated by a finite number of small
components called elements. These elements are assumed to be

connected on their boundaries at selected node points on the
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membrane. Thus, the continuum is represented by a discrete
model at the onset. This way, the problem reduces to one of
evaluating a finite number of discrete variables which are the
displacement components of the node points.
2.3.2 Formulation of the Continuum Mechanics Equations of
Equilibrium

Using a total Lagrangian approach, the equilibrium of a
membrane finite element in the final configuration is

expressed by applying the principle of virtual displacements:

Vo

8eT o dVy = f%‘ 6UT £2 avy + [ 60T £ dse + Y 60,7 F,
1

(2.1)
where:
vV, is the volume of the membrane element in the initial
configuration,
S° is the surface area of the membrane element in the initial
configuration,
f% is the vector of body forces,
£’ is the vector of surface tractions,
F, are concentrated forces,
U is the displacement vector,
U° is the surface displacement vector,
U, is the displacement vector corresponding to points of
application of concentrated forces F;,
0 is the second Piola-Kirchhoff stress vector,

€ is the Green-Lagrange strain vector, and
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§ means "variation in".

In the development to follow, it will be assumed that no
point forces are applied to the membrane element and that body
forces are either negligible compared to transverse loading or
will be embedded in the vertical component of the transverse

loading. Equation 2.1 may be written as:

82T o AV =f 50T £8 ds e (2.2)
Ve se

For clarity, the superscripts "e" and "S" will be dropped, and

Equation 2.2 may be written as:

8¢ o dv, = fs SUT £ ds (2.3)

Vo

2.3.3 Description of the Curved Isoparametric Finite Element
and the Corresponding Shape Functions
2.3.3.1 Isoparametric Finite Element

There are many possible choices for the master finite
element. As mentioned earlier, the membrane problem may be
considered as a plane stress problem. In a Cartesian
coordinate system, the simplest element form is a rectangle.
An eight-node isoparametric element called '"serendipity
element" was chosen because it allows more accurate modelling
than a four-node element (see Figure 1 below). To ensure that
a small number of elements can represent a relatively complex
form, the two-dimensional rectangular element will be mapped

into a distorted rectangular element?.
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Figure 1: Representation of the Eight-Node Master Element

2.3.3.2 Sshape Functions

The basic procedure in the isoparametric finite element
formulation is to express the element coordinates and element
displacements in the form of interpolations using the natural
coordinate system of the element. The coordinate

interpolations are:
8

x =3 N; x; y=3Y Ny, (2.4)
=

where x and y are the coordinates at any point of the element.
It should be mentioned that in a total Lagrangian formulation,
all computations are referred to the initial configuration of
the membrane. Therefore, the element nodal displacements will
be chosen aligned with the global assemblage nodal
displacements, and the element 1local coordinate systems

coincide with the global coordinate system.
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The interpolation functions also called shape functions
are defined in the natural coordinate system of the element,
which has variables r and s that each vary from -1 to +1. They
are defined as follows (see Fig.1l above):

- for corner nodes (i=1,2,3,4)

Ny = 3 (1+1,) (1+8) (2o+54-1) (2.5a)
where:
ry=r;r Sy, =5;8 (2.5Db)

r, and s; are the natural coordinates of node i, respectively,
in the r and s directions.

- for midside nodes (i=5,6,7,8)

2 2
a3 (1+r,) (1-s2) + ! (1+s,) (1-r?) (2.5¢)

N; =
2

. 2

2.3.3.3 Degrees of Freedom

In what follows, only the translational degrees of
freedom u, v, and w will be considered. Therefore, there will
be 3 degrees of freedom per node.

In the isoparametric formulation, the element
displacements are interpolated in the same way as the
geometry:

8
u=ZNiui V=ZNiVi w=2Niwi (2.6)
1

1
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where u, v and w are the local element displacements at any
point of the element and vy, v;, and w;, i=1,...,8, are the
corresponding element displacement at its nodes.
2.3.4 Reformulation of the Equilibrium Equations
Let:
U={u,v,w}7 a={u,v,, Wy, ...... ,Ug, Vg, Wa} T (2.7)

The displacement vector U may be written as:

U=Na (2.8)

N=[NI\...... IN; Tyt | N, I,] (2.9)

and I; is the 3x3 identity matrix. Also, if B is the strain-

displacement matrix (to be defined later), then

e = B da de = B da (2.10)

Consequently, Equation 2.3 becomes
5aT(f B’adVo—fN"de)=O (2.11)
Vo s

Sa being an arbitrary variation of a, Equation 2.11 may be

rewritten as

BT odvV,-F=0 (2.12)
Vo
where
r=f1v"fds (2.13)
S

Equation 2.12 constitutes the nonlinear equilibrium equations

of the finite element model of the membrane problem. In the
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solution procedure, a direct method does not guarantee
convergence to the solution, and consequently Equation 2.12
will not be used directly. Instead, an incremental version of
this equation will be derived.
2.3.5 Incremental Equilibrium Equations

The basic approach for deriving the incremental
equilibrium equations is to assume that the solution for load
g is known, and that the solution for load g+Aq is required,
where Aq is a suitably chosen load increment.

The equilibrium equations corresponding to g+Ag is:

y(g+Aq) =0 (2.14a)
or

P(g+Aqgq) - F(g+rAg) =0 (2.14Db)
where

P=| BTody, (2.15)

Vo

and F is defined by Equation 2.13.

Since the solution corresponding to load g is known,

(2.16)
P(g+AqQ) = P(q) +AP

where AP is the increment in nodal point forces corresponding
to the increment in element displacements and stresses from
load g to load g+Ag. AP can be approximated using a tangent
stiffness matrix K;(g) which corresponds to the geometric

conditions at load g as
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AP = K (q) Aa (2.17)

where Aa is a vector of incremental nodal displacements.

Substituting Equations 2.17 and 2.16 into Equation 2.14b gives
K.(q) Aa = F(g+Aq) - P(q) (2.18)
and solving for Aa approximates the displacements for the load

g+Ag as
a(g+Aqg) = a(qg) +Aa (2.19)

The exact displacements at load g+Ag are those that
correspond to the applied load F(g+Aq). Because Equation 2.17
was used, the displacements computed in Equation 2.19 are only
an approximation to the exact displacements. Having an
approximation for a(g+Aq), the strains, stresses and
corresponding nodal forces at load g+Aq may be evaluated. Then
the next increment is started. Due to the approximation made
in Equation 2.17, and in order to avoid instability, an
iteration process is required in order to obtain a
sufficiently accurate solution of Equation 2.14b. By combining
the Newton-Raphson iterative method with the incremental

method described above, Equations 2.18 and 2.19 become,

respectively,
K,f“l)(q+Aq) Aa“’(q+Aq) = F“’(q+Aq) _P(i—l)(q+Aq) (2.20)

where 1 is the iteration number.
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The initial conditions are:

£ (g+Aq) = K.(q)
al?(g+Aq) = a(q) (2.22)
PO (g+rAq) = P(q)

If an index m describing the mth increment is introduced,

the above equations may be written as

Krl(nigl) Aa‘si) - F‘:i) _P‘(.{—l) (2.23<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>