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ABSTRACT

EXTREMAL PROBLEMS FOR THE MOBIUS FUNCTION

By

Margaret A. Readdy

In the vein of recent work of Sagan, Yeh and Ziegler, we study extremal problems
connected with the Mobius function p of certain families of subsets from O,, the
lattice of faces of the n-dimensional octahedron. In particular, we find that for lower
order ideals F in O,, |u(F)| attains a maximum by taking roughly the lower two-
thirds of the poset. For the case when F varies over all intervals of rank-selections, we
give a proof which finds the extremal configuration when n = 4(5). When n # 4(5),
our proof narrows down the extremal configuration to one of two possibilities. We
include data which supports our conjecture that the maximum occurs by taking the

ranks from approximately 2n to in.

Purtill showed in a recent thesis that the coefficients of the cd-index ® are non-
negative for certain posets, including the Boolean algebra B, and the n-octahedron.
This work has been generalized by Stanley, who found the coefficients of ® are non-
negative for face-lattices of convex polytopes. Stanley has observed that the non-
negativity of the coefficients of ® immediately implies the arbitrary rank-selection
results for face lattices of convex polytopes. The Maobius function is maximized by
taking every other rank of the corresponding face lattice. For the record, we verify
the details of Stanley’s observation. In fact, Purtill’s recurrence for the cd-index of

B, and O, allow us to conclude that the odd and even alternating ranks are the



only extremal configurations for these two posets. We include a conjecture of Stanley
which, if true, implies uniqueness of the extremal configuration for face lattices of

convex polytopes.

Sagan, Yeh, and Ziegler also studied L,(q), the lattice of subspaces of an n-
dimensional vector space over GF,. For this poset they found all of L,(q) is the
extremal configuration for the lower order ideal case. Using the inversion statistic,
we show the interval of ranks and arbitrary rank-selection cases also have the same

extremal configuration, i.e. the entire poset.
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0.1 Basic Notation

We follow [17, chapter 3] for most of the terminology and notation we will use in
this dissertation. A partially ordered set (poset) P is a set P together with a binary
relation < (sometimes denoted by <p to indicate the poset P) which is reflexive,

antisymmetric and transitive, i.e.

(z2) (reflexivity) Forallze P,z <z
(i7) (antisymmetry) If z <y and y < z,thenz =y.

(i21) (transitivity) Ifzr<yandy <z thenz <z

We use the notation z < y to indicate ¢ < y and z # y. In a similar fashion,
the notation y > = means ¢ < y. We say z,y € P are comparable if < y or
y < z; otherwise they are incomparable. The element y covers z (notation: = < y) if

z < z < y implies z = y.

Two posets P and @ are tsomorphic if there exists an order-preserving bijection
n: P — @ whose inverse is also order-preserving. The direct product or Cartesian

product of P and Q is the poset P x @ defined on the set

{(z,y): z€ P,yeQ}

such that

(z,y) <pxq (z',y") ifz <pz’and y <qy'

Given a finite poset P its Hasse diagram is a graph G = G(V, E). Its vertices V
consist of the elements of P. The edges E are determined by the cover relations of
P. In other words, we draw an edge between z and y if z < y. To clearly show the

“hierarchy” of P, we draw y above z.



A chain cin P is a subset of P so that every two elements are comparable. Thus,

if the elements of ¢ are {z¢, z1,...,2k}, with z; < z; when i < j, we can write c as
c: To<IT1<...< Tk
We say this chain c in P is unrefinable (or saturated) if we can write c as

c: To<11<...< Tk

A mazimal chain in a poset P is an unrefinable chain from a minimal element in P

to a maximal element in P.

Let P be a poset that has unique minimal element 0 and unique maximal element
(i.e., P is bounded). P is a graded poset of rank n if every maximal chain in P have the
same length n. All the posets we study in this dissertation will be finite and graded.

Thus, we have an associated rank function p defined by p: P — {0,1,...,n}, where

_fo ify="0
p(y)_{p(m)+1 ifz<y.

The n-dimensional octahedron O, is the convex hull of the 2n points
{xer,...,xe,}

in n-dimensional Euclidean space, where

e = (0,...,0,1,0,...,0).

-1 n—¢

For brevity, we will label these points by writing +: for +e; and —: for —e;. Using
this notation, we see that any proper face of O, can be labeled using a signed subset

of {1,...,n}, i.e. a subset of the set {£1,...,+n}, say

S ={ay,...,axr},



where S cannot contain both the elements +: and —:.

We can associate a poset O,, with this geometrical object, called the lattice of faces
of the n-dimensional octahedron. We construct O,, by taking all of the faces of O,
and ordering them by inclusion. With respect to the shorthand we have adopted, we
can represent O, as the poset of all signed subsets of {1,...,n} ordered by inclusion
with the element | adjoined. (Here we need to have an element which represents the
maximal face of O, i.e., O, itself, since the notation does not lend itself naturally
to representing this element. Thus i is this maximal face.) The rank of any element
S € 0, \1 is given by |S|, where | - | denotes cardinality. Observe that 1 has rank

n+1in O,.
For a family F C P we define its completion by
F=Fu{0,1i}

and its proper part by
F=rF\{0,1}.

An interval [z,y] in P is defined by
[z,y]={z€P: 2<2<y}, forz <y.

Notice that [z, z] consists of the element z. We do not allow the empty set to be an
interval. Given a poset P, the Mébius function p is defined recursively on intervals

[z,y]in P by

p(z,z) = 1 forall zin P,

- ¥ uiz,z).

rz<z<y

#(z,y)

For brevity, we let u(P) denote the value of up(0,1). For z an element of P we let

u(z) denote up(0, ). Additionally, for any family F of elements of P we let u(F)



equal pg(0,1).

Given a non-negative integers ¢ and j, we let

[[]={1,2,...,i}

and
[,5] = {i,i+1,...,5},
with the conventions that [0] = @ and [i,j] = @ for j < i. If rank(i) = r, then for a

family F C P and S C [r — 1], we define the rank-selected subposet
F(S) = {r € F: rank(z) € S}.
In particular the i** rank level of F is given by
F(i) = F({i}) = {z € F : rank(z) = i},

and the interval [i,j] of ranks of F (not to be confused with the closed interval [z, y]

of elements of P) is
Fli,jl = F([i,5]) = {z € F : rank(z) € [;, j]}.
Also, we use the shorthand
F[k] = F([k)).

Finally, a lower order ideal A is a subset A of P such that if z € A and y < z then

y €A

0.2 Introduction

The questions studied in this thesis belong to a branch of mathematics called ex-
tremal combinatorics. Extremal combinatorics is concerned with finding the “best”

configuration (according to some given criteria) among a set of possible arrangements.
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As an example, in [17, Exercise 3.41a] Stanley posed the following extremal ques-
tion: given a bounded poset P with a fixed number of elements, what is the maximum
value of the Mobius function of P? Ziegler answered this question for both bounded
posets and graded posets. He also determined the extremal configuration in each

situation [21].

Recent work of Sagan, Yeh and Ziegler [15] approached extremal problems involv-
ing the Maobius function from a slightly different angle. They fixed the poset under
consideration (in their case, the Boolean algebra B,) and studied the maximum value
attained by the Mobius function u over certain subsets of B,,. More specifically, if F
is a family of subsets contained in the Boolean algebra B,,, then the maxs |u(F)| has

been found for three categories of families:
i.  lower order ideals
ii. intervals of ranks
iii. arbitrary rank-selections.

The maxima are obtained by taking roughly the lower half, middle third, and every
other rank of B, respectively. The lower order ideal case was first solved by Eckhoff
[12] and Scheid [1], and viewed in the context of the reduced Euler characteristic
by Bjorner and Kalai [8]. Niven [13] and de Bruijn [11] had previously solved the

arbitrary rank-selection case, while the interval of ranks case was a new result.

In this dissertation, we will address analogous extremal problems for O,, the
lattice of faces of the n-dimensional octahedron. More specifically, by extending the
techniques developed for B, to O,, we find the extremal configuration for lower order
ideals is the lower two-thirds of the poset O,,. In chapter 2, we state our conjecture for
the interval of ranks question. Our proof gives a complete answer when n = 4(5) and

narrows down the answer to one of two possibilities for n # 4(5). Also, we include



data supporting our conjecture. In chapter 3, we see that for arbitrary rank-selections
the extremal configuration is to take every other rank of O,. This is actually a simple
observation made by Stanley that the non-negativity of the coeflicients of the cd-
index of B, and O, (proved by Purtill in his thesis) immediately imply the arbitrary
rank-selection result. In fact, Stanley’s observa.tioh applied to his new work on the
cd-index of face lattices of convex polytopes Lp also shows the Mobius function is
maximized for Lp by taking every other rank of the corresponding face lattice. In the
first half of chapter 4 we answer the interval of rank and arbitrary rank-selection cases
which were left undone in [15] for L,(q), the lattice of subspaces of an n-dimensional
vector space over GF,. In both cases, the extremal configuration is to take the entire

poset. Finally, we complete chapter 4 by indicating our future research.



Chapter 1

Lower Order Ideals

In this chapter we will be concerned with maximizing |u(F)| as F ranges over all

lower order ideals in O,. We first state the main result of this chapter:

Theorem 1.0.1 If F is a lower order ideal in O,,, then

1“‘3()( 2,

k=0

with equality occurring if and only if
F = Onlk] with k= |%].

(Here |-] denotes the greatest integer function.)

Before proving Theorem 1.0.1, we will first specialize F to be a rank-selected lower
order ideal, i.e., a lower order ideal of the form O,[k]U {0}. We show in Lemma 1.2.1
that |u(Oa[k])| is maximized if we take k to be |2], i.e. the lower two-thirds of
O,. Once we generalize F to be any lower order ideal in O,, we will see the ideal

On[|22]] U {0} is also the maximal configuration for Theorem 1.0.1.
7
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1.1 Elementary Properties for O,

We begin by determining the Mdbius value p of elements from O, and rank-selected
lower order ideals from O,. For the most part, these results follow from known
properties of the lattice O,, the definition of the Mobius function, and the product

theorem for the Mobius function.

The most important result we establish in this section is a recurrence for the
p#(On[k])’s (Corollary 1.1.5). We do this via a “reduced Euler characteristic” interpre-
tation of the Mobius function. This recurrence, in its absolute value form (Corollary
1.1.7), allows us to quickly narrow down the possibilities for the maximum of the
MGoébius function for rank-selected lower order ideals. The summation formula for the

1(On[k])’s allows us to sharpen and complete the argument for Theorem 1.0.1.

Let us first determine the Mobius value of elements from O,.
Proposition 1.1.1 Let z be an element of O, \ 1 with rank k. Then u(z) = (—1)*.

Proof. First note that

O \12Vx...xV,
N, s’

n

where V is the poset with Hasse diagram
+1 -1

V =

[}

This holds because of the following order-preserving bijection. Define : 0, — 1 —

Vx---xV by
N, s

n
z— 0= (v1,...,05)
where

-1, if —1€x
0, if i,—i ¢ x.

Yy =

{+1, if tex
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Let £ = z,,...,z) be an element of rank k in O, — 1. Using the bijection 7 between
O.—1and V x --- x V and the product theorem for the Mdbius function [17, Prop.
N —

3.8.2], we obtain i

Ho.-i(2) = pvx.xv(n(z))

= pv(0)**puy(£1)%,

where the elements 0, +1 and —1 correspond to the labeling of V. Noting pv(0) = +1

and pyv(+1) = py(—1) = —1 gives the result. O

We are able to express u(O,[k]) in two ways: in terms of a summation formula

(Corollary 1.1.2) or a recurrence (Corollary 1.1.5).

Corollary 1.1.2 The following summation formula holds for u(O,[k]):

k

wOuk) = ~(3 (3)(-2), o<k <n

=0

Proof. Use Proposition 1.1.1 and the fact there are (;‘) 2’ elements of rank j in O,.

0
Corollary 1.1.3 y(0,) = (-1)**', n > 1.

Proof. It is enough to observe u(0,) = u(On[n]) (recall 1 has rank n+1 in O,). The
result then immediately follows once we apply the binomial theorem to the summation

expression for p(O,[n]) given in Corollary 1.1.2. O

Combining Proposition 1.1.1 and Corollary 1.1.3 yields the following:

Proposition 1.1.4 Let z be an element of O, with rank k. Then u(z) = (—1)*.
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Corollary 1.1.5 The u(O,[k])’s satisfy the recurrence

I‘(On[k]) = "2I‘(On-l[k —=1]) + p(On-1[k]),

where n > 2, 0 < k < n, with boundary conditions

#(0,[0])) = =1 forn>0

and

p(On[n)) = (=1)"*! forn > 1.

We have two different proofs of this recurrence. The first applies the interpretation
of the Mobius function as counting certain chains in a poset. The second is a direct

application of the summation formula for (0, [k]) and induction.
Before beginning our first proof, we briefly review the aforementioned interpreta-
tion of the the Mobius function. For P a bounded poset, we let ¢; = ¢;(P) denote

the number of chains of length i in P\ {0,1}. Here a chain of length i is a totally

ordered subset containing ¢ + 1 elements.
A well-known result {17, Prop. 3.8.5] which relates chains with the Mobius func-
tion is

p(P)=-14co—ca+c2—c3+... (1.1)

We are now ready to use this formulation of the M6bius function.

Proof 1. Let

a; = # of chains of length j in O,_[k — 1]
b; = # of chains of length j in O,_, k]
¢; = # of chains of length j in O,[k].
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We will refer to chains of “type c;” to mean those chains of length j in O,[k]. Similar
terminology will be used for a; and b;. Using equation (1.1), we can translate the

recurrence in terms of chain notation, i.e.,
—1l4+c—ca+c—...=-2(-14ap—ar+az—...) + (-1+bo—b+b2—...) (1.2)

Regrouping the terms on the right side of equation (1.2) above gives
—l4c—c1+c2—... = =14(2(1)+bo) —(2a0+b1) +(2a; +b2) — (2a2+ b3) +... (1.3)

The chains of type ¢; : =) < 3 < ... < zj4; consist of those chains of length j in

O..[k]. They belong to one of the following four classes:

(?) neither {+n} nor {—n} € z; for any ¢
(i1) =z, = {+n} (“the chain starts with {+n}")
(it1) z, = {—n} (“the chain starts with {—n}")

(iv) all other remaining chains not accounted for in (z), (i¢) or (2:2).

If we let d; denote the cardinality of the last category (iv) of chains, then we claim

¢; = bjtaj1+ai1+d;
= bj+2(1j..1 +dj, (1.4)
with the convention that a_; = 1 counts the number of empty chains in O,_ [k — 1].
Clearly the chains of type b; and category (z) have the same cardinality via the identity

map. The collection of chains starting with {4+n} in O,[k] has the same cardinality

as the type a;_; chains by defining a natural bijection v between these two sets. Let

c: {tn}=z1<22<...<zjp

be such a category (:z) chain. We have n € z; for all 7, so we can map c to the chain

vic): z2\ {+n} <...<zjp\ {+n},
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which is a type a;_; chain. Conversely, if

c: Y1 <...<y;

is a chain of type a;_;, map it to the chain
v @) : {+n} <nU{+n} <...<y;U{+n}.

Clearly, v~'ov and vov~"! are the identity maps on category (i¢) and type a;_; chains,
respectively, so these two collections have the same cardinality. We can similarly show
the cardinality of category (7¢7) chains equals a;_; by uniformly replacing “+n” by

“—n” in this argument.

Substituting equation (1.4) for each of the ¢;’s appearing in the left side of equation
(1.3), we see that all the terms on the right side of equation (1.3) cancel out. The
remaining terms consist of an alternating sum of the d;’s. Hence the corollary will

follow once we have shown this alternating sum equals zero, i.e.

do—dl+d2—d3+...+(—l)k-ldk-1 =0. (15)

To complete this argument, we will construct a bijection A between certain chains
of type d; and type d;;1, according to where {£n} first occurs in each type of chain.
Here +n stands for either +n or —n (but not both), depending upon which occurs in
the chain. An important observation to make is that if z; < ... < z;4; is a chain of

length j in O,[k], then rank z; >i.

Let djo denote the cardinality of those type d; chains z; < ... < zj4; in O,[k]
with the property that if z; is the least element in the chain containing £n then
zp = zp-1 U {£n}. Let d;; be defined similarly, except that z,, D z4_, U {£n} (strict
containment). For k = 1, we let zo = 0. Note that d; = d;¢ + d;, for all j. From the

definitions of d;o and d;,, we easily derive the following two properties:
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(1) doo=0
(22) dk-l,l = 0.

Property (¢) holds by virtue of the fact that type dy chains do not include the chains

+n or —n. Suppose property (i) does not hold, i.e. dx_;,; > 0. A typical type di_1,

chain looks like

1 <...<yh1 <y U{En} <ypp1 U{En} <... <y U {£n}

with y, # yn-1. But then
N< . <Yh1 <Yh <Y1 <...< Yk

is a chain of length k — 1 (all the y;’s are distinct). Thus rank y; > k implies rank
(y« U {£n}) = k + 1, contradicting the fact that y, U {n} is an element from O,[k].

Hence property (1) holds.

Next we show that the identity

djn =djp10 (055 <k-2) (1.6)

holds. We define the map X : type d; chains — type d;;1,0 chains by

21 < ... <Tho1 <K Th < ... <zTjp— 0 <...<zpha < zp\{En} <zp < ... < zjp

where h is the first position where +n occurs in a type d;; chain. We define the

inverse map A~! : type d;41,0 chains — type d;, chains by
N<. ... <Uhaa <U<Yht1 <. <Yjp2— Y1 < ... <Yho1 < Yhp1 < ... < Yj42

where h + 1 is the first position where £n occurs in a type dj;1,0 chain. It is easy to
check A7! o ) is the identity on type d;; chains and X o A~! is the identity on type

d;4+1,0 chains, so A is a bijection.
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Since d; = djo + dj,, the alternating sum of d;’s in equation (1.5) simplifies to
verifying

doo + (_l)k-ldk—l,l =0,

which is indeed true by properties (i) and (z7).

Finally, the first boundary condition holds since

#(0a[0)) = —(o.(0)

= -1

The second boundary condition holds by virtue of the fact u(O,[r]) = u(0,), which
equals (—1)"*! by Corollary 1.1.3. O

Proof 2. We first substitute the summation formula for u(O,[k]) given in Corollary
1.1.2 into the expression —2u(Oyn-1[k — 1]) + p(On-1[k]). After shifting the index
of summation in the sum corresponding to —2u(On-1[k — 1]) and breaking off the
7 = Oth term from the sum corresponding to u(O,_1[k]), we obtain

J:

“2uOnmll = 1) + wOwalt) = 23 (" )ic2r -3 (" )2

1=0 J

I
|
™M=~
N
S
|
[
N——
~~
|
N
N
.
|
N
S
|
—
N——
—~~
|
[3%]
N—
<
|
b

(1.7)

Using the facts (") = ("'l) + ("'.1) and (3)(—2)0 = 1, we combine the three terms

J Jj-1 J

on the right side of equation (1.7) to get

Il

~2(On-slf = 1))+ W(Oncs ) ‘?-::1( (20)+ ("5 ez - (g)

=S ('f)(-z)f,

j=0 J
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which equals p(O,[k]) by Corollary 1.1.2. O

An easy result that we will need in order to complete the proof of Theorem 1.0.1

is the following corollary:

Corollary 1.1.8 When k is odd u(O,[k]) is positi.ve and when k is even p(Oy[k]) is

negative (n > 1, 0 < k < n).

Proof. The proof proceeds via induction on n and applying the recurrence for
p#(On[k]) described in Corollary 1.1.5. By the boundary conditions from Corollary
1.1.5, we have p(0,[0]) = —1 and p(O.[n]) = (—=1)"*!, the latter being positive for
n odd and negative for n even. In particular, the result holds for n = 1. Now assume
n > 1. We have handled the case for k¥ = 0 or n, so now we will consider 1 < k < n-1.
If k is odd, then by the induction hypothesis u(On—-1[k—1]) is negative and p(O,_,[k])
is positive. Hence the recurrence given in Corollary 1.1.5 implies (O, [k]) is positive.

A similar argument demonstrates u(O,[k]) is negative for k even. O

Putting Corollaries 1.1.5 and 1.1.6 together, we see that the |u(O,[k])|’s also

satisfy a recurrence.

Corollary 1.1.7 The |p(O,[k])| satisfy the recurrence
|#(On[k])| = 2|1(On-1[k = 1])| + |#(On-1[F])]

with boundary conditions
l(On[0])| =1 forn >0

and

[(On[n])| =1 forn>1.
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1.2 Rank-Selected Lower Order Ideals

Before we determine the extremal configuration for |u(F)|, F an arbitrary lower
order ideal, it is natural for us to first study “simpler” ideals. In particular, we study
ideals F which are rank-selected lower order ideals, i.e. lower order ideals of the form
F =0,k U0.

In order to state a special case of the main theorem of this chapter, we make a

few more definitions. We say a sequence ag, a,, .. .,a, of real numbers is unimodal if

for some k, 0 < k < n, we have

Similarly, a sequence is strictly unimodal if we replace the inequalities by strict in-
equalities in the definition of unimodal. Finally, a sequence a,, ..., a, is almost strictly

unimodal if the sequence is strictly unimodal or is of the form

;1 <A<+ < Ak = Akyy > Cky2 > *°* > Q.
We are now ready to state a rank-selection lemma:

Lemma 1.2.1 For fized n > 2, |p(O,[k])| is strictly unimodal with unique mazimum

occurring when k = | %],

Proof. The proof for rank-selected lower order ideals proceeds by induction on n.
By the recurrence for |u(O,[k])|, we quickly conclude the sequence {|u(On41[k])|}2%s
is almost unimodal and narrow down its maximum to one of two possibilities. We
will complete the argument by considering the equivalence class of n modulo 3 and

apply the summation formulas and recurrence relation for u(O,[k]) determined in the

previous section.
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Table 1.1: |u(O,[k])| for n = 2,3,4

k=1 2 3

-~ v |~
— 0 ofe

1 0
7 1
17 15

L-D-CAM

For n = 2,3, and 4, the lemma is easily checked to be true. Refer to Table 1.1.
Fix n and let k* be the index k for which |p(O,[k])| is a maximum. By Corollary

1.1.7 |u(On[k])| satisfies the recurrence
|#(On[k))| = 2|p(On-r[k = 1])| + [#(On-1[K])]. (1.8)

By the induction hypothesis the sequences {u(On[k])}z, and {u(O.[k])}i_.. are
strictly increasing and decreasing, respectively. Applying the recurrence to these

monotone sequences, we conclude the sequences
{ 1u(Onsa[K])] }2;1 (1.9)

and

{ 1#(Onsr [K])] FeZke 11 (1.10)

are strictly increasing and strictly decreasing, respectively. Thus, equations (1.9)
and (1.10) imply we have pinned down the index k corresponding to the maximum
|6(On41(k])| as one of two possibilities: k* or k* + 1. A case-by-case argument using
the equivalence class modulo 3 of n and applying the summation formula for u(O,[k])

will give the result.

For ease in notation, let

ar = |p(On-a[k])|
be = I/‘(On[k])l
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Ck = |l‘(0n+1[k])|-

We first suppose n = 1(3). Since n + 1 = 2(3), we wish to show

Cko41 > Cke.

Applying the recurrence (1.8), it suffices to show

2bge + bgey1 > 2bke_y + e,

i.e.

bko > 2bko_1 - bk0+1.

The summation formulas given in Corollary 1.1.2 and the fact n = 1(3) enable us to

rewrite this as

bre > breoy + (breoy — bkey)

k41 /o ‘
= bk‘-] + z (.)(_2)1’

i=ks \J

since k* is even. By the induction hypothesis we have bge > bie_;. If we can show

f;ﬂ (’;)(—2)-‘ is negative, then we will be finished. Write n as 3m + 1. Then

k* = |_-—2g‘J = 2m. Thus
k41 (o .
Z ( ‘)(_2)1 — (31" + 1)(_2)2m + (g : i)(_2)2m+l

j=ke \J 2m

(3m +1)! 2m -1
(2m)! m! (-2) [(m +1)(2m + 1)] ’

which is negative, as desired.

Next we consider n = 2(3). Since n + 1 = 0(3), we wish to show

Cko41 > Cke. (111)
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Using the same method as in the case for n = 1(3) (and noting k* is now odd), we

can rewrite equation (1.11) as

k41 /0 _
bee > breoy — Y (j)("Q)'-

=k

By the induction hypothesis we have bxe > bi._1, so it remains to show Ef;tf (';) (—2)

is non-negative. If we write n as 3m + 2, then k* = |%*| = 2m + 1. Thus
k.
i‘ n (_2)1‘ - M(_Q)(MH) [ 1 — 2 ]
i \J (2m + 1)! m! m+1 2m+2
= 0.

Note the above calculation implies
bk‘—l = bk0+1 for n = 2(3) (112)
We will need this result for the next case.
For n = 0(3) and n + 1 = 1(3), we wish to show

Cro41 < Cke,

or

bk- < Qbk-_l - bk‘+l- (1.13)
Rewriting equation (1.13) in terms of elements from the n — 1st row, we have

2ake_y + ape < 2(2ake—2 + age—1) — (2axe + @ge41),

i.e.

Aoy < 4(lko_g - 3Gk0. (114)

Observe n — 1 = 2(3), so by equation (1.12) we conclude ak+_2 = ax.. (Recall here

that the index k* is the index of the maximum in the nth, not the n — 1st, row. The
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index corresponding to the maximum in the n — 1st row is ¥* — 1.) Hence equation
(1.14) becomes

Qio g1 < ke,

which holds by the induction hypothesis on the n — 1st row. O

1.3 Arbitrary Lower Order Ideals

In this section we give the proof of Theorem 1.0.1. To do so, we develop the notions
of the shadow A(S) and the dual shadow V(S) of elements S of a fixed rank from O,,.
Using bipartite graph arguments, we obtain estimates for A(S) and V(.S) reminiscent

of Bollobas’ work on shadows for hypergraphs [10].

For the proof of Theorem 1.0.1 we suppose we have a lower order ideal ¥ C O,
which maximizes |u(F)|. By the shadow lemmas we find bounds for the “shape” of
F. Next we find rank-selected lower order ideals contained in F and containing F. A
lemma due to Baclawski [2, Lemma 4.6] and independently to Ste¢kin [20] enable us
to “peel off” elements from these ideals. Hence, we are able to compare the Mobius

values of these configurations with F and complete the proof.

Suppose we are given elements S all of the same rank in a poset. Since we are
working with lower order ideals, we would naturally like to be able to estimate the
number of elements in the poset covered by S. More formally, we define the shadow

of a subset S of rank r in O, by

A(S)={B€O0O,(r—1): BC Afor some A € S}.
We then have an inequality involving |A(S)| and |S|.

Lemma 1.3.1 (Shadow Lemma for O,) If S C On(r), wherer > 2242 then |A(S)| >
|S| with equality only when n = 2(3) and S = On(252).
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Proof. For the inequality we utilize an edge-counting argument. Consider the bipar-
tite graph G formed in the Hasse diagram of O, by S and A(S). Each vertex A € S
has degree r, so the graph G has exactly r|S| edges. Also, every vertex B € A(S) has
degree at most 2(n —r+1), so the number of edges in G is at most 2(n —r + 1)|A(S)|.
Thus

r|S| < 2(n —r + 1)|A(S)],

i.e.

n—r+1)
r

5] < & IA(S)!.

Thus when r > 2%;"—2-, the first part of the lemma follows.

If n =2(3) and r = 222, then the above argument works as long as some vertex
in A(S) does not have degree 242, If every vertex B € A(S) has this degree, then
in O,, the vertices of A(S) are only adjacent to vertices of S (and vice-versa). Hence
if S C Oy(r) (strict containment), this would contradict shellability of the chain
complex of O, ([5], [7]). (See Section 2.1 for information about shellability and the

chain complex.) O

In an analogous manner, we define the dual shadow of S, where S is a subset of

rank r in Oy, by

V(S)={B€O.(r+1): B2 Afor some A € S}.

We also have a dual shadow lemma for O,. Since its proof is virtually identical to

that of Lemma 1.3.1, we shall simply state the result.

Lemma 1.3.2 (Dual Shadow Lemma for O,) If S C On(r) where r < 2251, then
[V(S)| > |S| with equality only when n =2(3) and S = O,(¥1). O

Now we are ready to give a proof of Theorem 1.0.1. Let F C O, be a lower order

ideal with maximum |x(F)| and let k be the maximum rank of an element in F. We
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will first derive some expressions that will enable us to compare u(F) with u(F[k—1])
and u(F[k - 2]), yielding an upper bound for k. The Shadow Lemma for O, and the
following proposition enable us to do this. Here max P denotes the set of maximal

elements of the poset P. Recall that for P a bounded poset, P = P\ {0,1}.

Proposition 1.3.8 [2, Lemma {.6] [20] Let P be a bounded poset. IfT C max P then
W(P) = l(P\T) = ¥ u(0,2). (1.15)
z€T

This result follows by counting the chains in P not containing elements of T and the
chains in P containing elements of T. Proposition 1.3.3 is useful in the sense that it
enables us to see how the Mobius function of a poset changes if we “peel off” some

(or all) of its top elements.

Applying equation (1.15) to P = F, T = F(k), and recalling u(0,z) = (—=1)* for

z € O, of rank k gives

#(F) = w(Flk = 1)) = (=1)|F k)],

or

p(Flk = 1]) = p(F) + (=1)*|F(k)|. (1.16)

Similarly applying equation (1.15) to P = F[k — 1}, T = F(k — 1), substituting for

p(F[k — 1]) in equation (1.16), and solving for u(F[k — 2]) gives

p(Flk = 2]) = w(F) = (-D*(1F(k = 1)] = |F(K)])- (1.17)
Since F is a lower order ideal, we have AF (k) C F(k — 1), so

|F(k - 1)| - |AF (k)| 2 0.



23

Suppose k > [22]. By the Shadow Lemma 1.3.1 we know
|AF (k)| > |F(k)].
Hence

|F(k=1)| = |F(k)| > 0.

After considering all the possibilities for the sign of u(F) and the parity of k, we see
one of equations (1.16), (1.17) implies |u(F)| is not a maximum, contradicting the

fact that F C O, is an ideal with maximum |u(F)|. Hence k < [%].

We will now work with the Dual Shadow Lemma to extract further information

about the structure of F. Let

F°={B: BeO,\F}

and define

¢ = min{rank(B): B € F°}.

Form G = FUF°(¢) and H = GU F°(¢ + 1). As before, we apply equation (1.15)
first to P =G, T = F°(€) and then to P = H, T = F°(¢ + 1) to obtain equations

resembling equations (1.16) and (1.17):
w(G) = n(F) = (-1)'|F(0)| (1.18)
p(H) = u(F) + (=) (IF°(€ + 1)| = [F(O)])- (1.19)

Now VF¢(€) C F°(£ + 1), implying |F(€ + 1)| — |[VF°(£)| > 0. Suppose £ < 221,

We apply the Dual Shadow Lemma 1.3.2 to conclude

|Fe(€+1)] = |F<(0)] > 0.
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Once we consider all the possibilities for the sign of u(F) and the parity of ¢, we see
that one of equations (1.18), (1.19) implies |u(F)| is not a maximum. Hence we must

have £ > 21,

To finish this argument, we reason in the following manner: for each equivalence
class of n modulo 3, the bounds for k and £ will enable us to find rank-selected lower
order ideal configurations containing F and contained in JF, respectively. As before,
we will apply equation (1.15) to obtain expressions for the Mobius function of these
two lower order ideal configurations, apply a parity and sign argument, and then the

rank-selection Lemma 1.2.1 to derive the required result.

By definition of k and ¢, we have k > ¢ — 1. We first consider the case n = 0(3).

We have

k>0—-1>2%2 -1,

and from before

implying

k
i
w|¥
@]
-
wl¥
]
[a—

2n

- Then we have

For convenience, let r =

Ou([r = 1]) € F € Ox([r)),

where the first containment follows from the definition of £ and its bounds, while the
second from the definition of k£ and its bounds. Note that r is even in this case, so by

equation (1.16) we have

p(Onlr = 1]) = u(F) + |F (7). (1.20)
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By the same token, equation (1.18) becomes
#(On[r]) = u(F) = |On(r) \ F(r)|. (1.21)

If u(F) > 0, then equation (1.20) and the maximality of |u(F)| imply F(r) = 0.
Hence F = O,[r — 1] = O0,[| %] - 1], contradicting the rank-selection Lemma 1.2.1.
Otherwise u(F) < 0, so equation (1.21) plus the maximality of |u(F)| imply O, (r) =
F(r). Thus F = Op[r] = O4[|2]], as desired.

Suppose n = 1(3). Again, by the inequalities derived for k¥ and ¢ and their
definitions, we obtain

2n+l_1 and ksZn;—l,

k>0-1>

implying

Letting r = 221 we have

On([r - 1]) - F - 0,.([7‘])

Notice r is odd in this case, so again equations (1.16) and (1.18) reduce to

#(Onlr — 1)) = u(F) — |F(r)| (1.22)

and

#(Onr]) = u(F) +|On(r) \ F(r)|. (1.23)

If u(F) > 0, then equation (1.23) and the maximality of |u(F)| imply O,(r) = F(r),
so F = 04| %) +~1], contradicting Lemma 1.2.1. If u(F) < 0, then equation (1.22)
and the maximality of |u(F)| imply F(r) = 0. Thus k=r — 1 and F = O,[|Z]], as

desired.
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Finally, suppose n = 2(3). We have the bounds

=1 andk< 2";2, (1.24)

implying

Letting r = 22=1 we have

On(lr — 1)) CF C On([r + 1)).

Suppose k = r + 1. We will see that this will lead to a contradiction. The choices for
k will then reduce to r — 1 or r, and the remainder of the argument will proceed as

in the n = 0(3) and n = 1(3) cases.

Since r is odd in this case, equations (1.16) and (1.17) become

p(Fr]) = u(F) + |F(r +1)| (1.25)

and

#(On[r — 1)) = p(F) + |F(r + 1) - |F(r)]. (1.26)

If u(F) > 0 then equation (1.25) and the maximality of |u(F)| imply F(r + 1) = 0,
contrary to our assumption on k. Thus u(F) < 0. However, recall that the Shadow

Lemma applied to § = F(r + 1) has

|F(r + D] < |AF(r+ )] < [F(r)l,

implying the difference |F(r + 1)| — |F(r)] < 0. If the difference is negative, this
contradicts the maximality of |u(F)|. If the difference is zero, then (by the Shadow

Lemma again) F(r + 1) = On(22£2). So F = O,[222], contradicting Lemma 1.2.1.
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The present situation is k is r — 1 or r, so we have

Ou([r = 1]) € F C Ou([r]).

Since r is odd, the same reasoning as in the n = 1(3) case shows that equations (1.22)
and (1.23) continue to hold. Now if u(F) < 0, equation (1.22) and the maximality of
|p(F)| imply F(r) = 8. Thus F = Oy[r — 1] = O4[| %] — 1], contradicting the rank-
selection Lemma 1.2.1. Therefore, u(F) > 0, so the maximality of |u(F)| implies
Ou(r)\ F(r) = 0,i.e. F = O,[r] = Oa[| 2]].

We thus conclude the extremal configuration occurring in Lemma 1.2.1 coincides

with the extremal configuration for Theorem 1. O

Table 1.2 displays the extremal configuration and the Mobius values of the lower

order ideal case for O,, n =1,...,25.



Table 1.2: Lower Order Ideal Extremal Configuration for O,, n =1,...,25

Extremal
n || Configuration F | |u(Oa(F))|
1 O:[1] 1
2 0,[1] 3
3 0s[2] 7
4 04[2] 17
5 Os[3] 49
6 Osl4] 129
7 O-[4] 351
8 Os)5) 1023
9 0,6 2815
10 010[6] 7937
11 Onl[7] 23297
12 012[8] 65537
13 0138 187903
14 Ow49] 553983
15 015[10] 1579007
16 016(10] 4571137
17 Or2(11] 13516801
18 018(12] 38862849
19 O19(12] 113213439
20 O30(13] 335478783
21 O [14] 970522623
22 O12[14] 2839740417
23 03315 8428126209
24 024(16] 24494735361
25 0,5(16] 71904919551




Chapter 2

Interval of Rank-Selections

In this chapter we are interested in maximizing |u(Onli,])| where [i,5] C [n] is
an interval of ranks from O,. To do this, we will translate this problem to one of
enumerating a certain class of permutations. A special edge-labeling of the poset O,,,

called an R-labeling, enables us to perform this conversion.

The main result we will prove in this chapter is the following:

Theorem 2.0.4 For intervals of rank-selections [i,j] C [n] of O,, where n > 0 is

fized and n # 2, |p(On(S5))| achieves a mazimum at one (or possibly both) of

( |2n 4n-5 2n+5 4n —
o], [5%] whenn=0(5)
[2n43 4n—4 2n43 4ntl —
5 ,[5, 5] when n = 1(5)

S = 2n5+1, 4n5—3‘ ’ [2n5+6, 4n5-{-2] when n = 2(5)

[2n44 4n-2] [2n+4 4n43 —
&, ‘,[ o2, ] when n = 3(5)

| [2nt2, ansl when n = 4(5).

For n = 2, the mazima occur when

S=[1,1or[22]

We conjecture that the following result is true.

29



30

Conjecture 2.0.5 For intervals of rank-selections [i,j] C [n] of O, where n > 0 is

fized and n # 2, |u(O,(S))| achieves a unique mazimum when

S = [|22£3), 4= ).

For n = 2, the mazima occur when

S=1[1,1] or [2,2]-

In section 3 we provide numerical evidence to support this conjecture.

We will return to the concept of edge-labelings, specifically EL- and CL-labelings,

in the next chapter.

2.1 Edge and Chain Labelings

In order to motivate the importance of edge and chain labelings, we first briefly
develop the notion of shellability of complexes. This topological condition implies
a certain result about simplicial homology. We will see that CL-shellings and EL-
shellings of order complexes are each combinatorial conditions which imply shellability

of the order complex.

We follow [6] for all notation and terminology related to shellability and homology.
A simplicial complez A is a collection of subsets of a finite set V' (called the vertex

set) such that

(i) fFeEAandGC FthenGeA
(i1) if v € V then {v} € A.

All the complexes we will work with will be nonvoid, so # € A. The members of

A are called simplices or faces, while the maximal faces of A are called facets. The
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dimension of a face F € A is |F| — 1, while the dimension of a complex is

dim A = max {dim F: F € A}.

A complex is pure is all of its facets are equicardinal.

Let A be a pure simplicial complex. A shelling of A is a linear order Fy, F3, ..., F;

of the facets of A satisfying the following condition:

Given facets F; and Fj with ¢ < j, there exists a facet Fj with k < j such

that F;N F; C Fi N Fj, where |[Fy N F;| = dim A — 1.

We call a complex shellable if it admits a shelling. If Fy,...,F, is a listing of the

facets of A in a shelling order, let

A;={GeA: GC F; for some k < 1}

and let

R(F,)={z€F,: Fi\z€ A}

be the restriction of F;.

We next review simplicial homology and homology of a shellable complex. Let
A be a simplicial complex of dimension d on the vertex set V. Assume that V has
been given some linear order. Hence, if F = {vp,v;,...,vx} is a nonempty face of
dimension k in A, we will write it as [v, v1,...,vx] if Vo < v; < ... < v} with respect
to the linear ordering of V. Let Ci(A) denote the free abelian group generated by

the set of k-dimensional faces of A written in canonical form. Notice that C_; =

and Co(A) = ZIVI, where Z denotes the integers. Define the boundary operator

ak . Ck(A) — Ck_l(A)
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by
k
O[vo,v1,. .., 0] = E(—l)"[vo, VlyeonyOiyene, Uk
1=0
(Here #; means delete the element z;.) One can verify that 0x 0 Oy, for all k € Z.

The kernel of the boundary operator d; forms a group Z;(A) called the group of
k-cycles, i.e.,

Z(A)=(p€C(A): O(p)=0).
Let Bi(A) be the group generated by the image of 8i41,
Bi(A) = (0 € Cu(A): 0 =8en(r), 7€ Cin(A) ),

called the group of k-dimensional boundaries. Notice that Bi(A) C Zx(A) for k € 2.

The reduced homology groups are the quotient groups defined by

Hi(A) = Z(A)/Bi(D).

We call a complex A acyclic over Z if H,(A) =0 for all k € 2.

An important result about the reduced homology of a shellable complex is the

following:

Theorem 2.1.1 [6, Theorem 7.7.2] Let A be a shellable d-dimensional complez with

facets F. Furthermore, suppose
{FeF: R(F)=F}={F,...,F},

where R(F') is the restriction operator induced by some shelling. Then

may={ & 124

Also, there are cycles py,...,ps € Hy(A) uniquely determined by

1 7=k
0 otherwise.

pe(F5) = {

Finally, {p1,...,p:} is a basis of the free group Hy(A).
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For P a poset, we can define a simplicial complex A(P) called the order complez.
We take the vertices of A(P) to be the elements of P and the faces of A(P) to be

the chains of P. Notice that the facets of A(P) are simply the maximal chains of P.

If P is a finite graded poset, we say it is shellable if its order complex A(P) is
shellable. It would be useful to have a combinatorial criterion to show that the order
complex of a poset is shellable. The concepts of EL-labelings and CL-labelings each

imply shellability of the order complex.

Let P be a finite graded poset. An edge-labeling of P is a map A : {(z,y) € Px P :
z <y} — A, where A is some poset (usually the integers). We say an unrefinable
chain

Tg<T1 <... <X

in a poset with edge-labeling X is rising if

A(370a3"l) S ’\(11912) S R S ’\(xk-lsxk)-

An edge labeling ) of a poset P is called an R-labeling if for every interval [z, y]
in P there is a unique rising maximal chain ¢ in [z,y]. Furﬁhermore, we call an R-
labeling A an EL-labeling (edge lexicographical labeling) if this unique rising maximal
chain c is lexicographically least among all other maximal chains in [z,y]. A graded
poset that admits an EL-labeling is said to be EL-shellable (edge lexicographically
shellable).

Using the labeling of the elements of O, in section 0.1, we see that O, has a very

natural R-labeling:

Proposition 2.1.2 Let O, be the lattice of signed subsets of the elements [n] ordered

by inclusion with 1 adjoined. If we label each edge (z,y) € O, by

Nz,y) = { i;,\ " :;Zi 1
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then A is an R-labeling of O,. In fact, this A is also an EL-labeling of O,, so O, is
EL-shellable.

Proof. We first observe the edge-labeling A of O, is well-defined, for if £ < y with
y # 1, then |z| + 1 = |y|. Hence y \ z is a single integer. For z <y =1 in O, (i.e. z

is a coatom of O,,), the edge (z,y) is labeled by the integer 0.

Notice that any maximal chain in the interval [z,y], y # 1, is labeled by a sequence
of integers in the set {y\z}. Hence, the unique rising maximal chain cin [z, y] consists
of the elements of y\ z ordered with respect to the natural order of the integers. (Here
we are interchangeably thinking of a maximal chain in [z,y] as a set of labeled edges

from z to y.)

For y =1 and z = {z,,...,z4} of rank k < n, any maximal chain in [z,y] = [z, ]

is labeled by some signing of the n — k + 1 elements
{0} Ur]\ {lzal,- ., |zel} = {0} U {z1,..., 2k}
with z; > 2, > ... > z,_x. Hence, the unique rising chain c is
c: z<rU{-zn}<zU{-z,-2}<...<zU{-21,...,— 20k} <0.
By construction, this chain is lexicographically least among all other maximal chains
in the interval [z, 1], so A is in fact an EL-labeling of O,. O
The Boolean algebra has a well-known R-labeling.

Proposition 2.1.8 Let B, be the lattice of subsets of the elements [n] ordered by

inclusion. If we label each edge (z,y) € B, by

Mz,y) =y\z,

then X is an R-labeling of B,. In fact, this X is also an EL-labeling of B,, so B, is
EL-shellable.
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Let P be a graded poset of rank n. Let

E*'(P) ={(c,z,y): cis a maximal chain of P, z,y € ¢ and z < y}.

A chain-edge labeling of P is a map A : £*(P) — A, where A is some poset (usually

the integers), satisfying the following condition: if ¢ and ¢’ are two maximal chains

in P
c 0=zo<z1<...<z"=i
d: O=zp<z)<...<2z, =1

whose first d edges coincide, then the corresponding labels must also coincide along

these d edges, i.e.

Me,zior,z;) = M, zi_y,2)) fori=1,...,d.

Suppose we have assigned a chain-edge labeling A to P. Let [z,y] be an interval
in P with k = p(z,y)and r: 0 =ro <r; <--- < To(z) = T be a saturated chain from
0 to . We call the pair ([z,y],r) a rooted interval with root r, denoted by [z,y],. If
€:Z=29<2; <...< Tk =y is a maximal chain in [z, y],, then it has a well-defined

induced labeling given by
A(C, Ti-1, :E,') = /\(ma Tpo(z)+i-19 J:p(a.')-i—l')’ 1= 1, ey k’

where m is any maximal chain in P containing r and ¢. We say the maximal chain ¢

in a rooted interval [z,y], is increasing if

A(C, (Co,l'x) < A(C’ 1131:2) <...< A(C, xk—lazk)‘

A chain-edge labeling A is a CL-labeling (chain lexicographical labeling) if for

every rooted interval [z,y], in P: () there is a unique increasing maximal chain c
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in [z,y],, and (i7) for any other maximal chain ¢ in [z,y],, ¢ is lexicographically
least. Any graded poset which admits a CL-labeling is called CL-shellable (chain

lexicographically shellable).

From the definitions it is easy to see that if P is EL-shellable then it is CL-
shellable. A theorem of Bjorner links the ideas of EL-shellability, CL-shellability and
shellability.

Proposition 2.1.4 [5, Theorem 2.3 ] For P a graded poset we have the following
implications: P is EL-shellable = P is CL-shellable = P 1is shellable.

Using recursive atom orderings (a concept equivalent to CL-shellability), Bjorner and

Wachs proved the following theorem:

Theorem 2.1.5 [9, Theorem 4.5] Let P be a convez polytope and Lp be its lattice of
faces. Then Lp ts CL-shellable.

We will need this result for the proof of Theorem 3.0.8.

2.2 Augmented Signed Permutations and Rank-
selections

Given the R-labeling of O, described in section 1, we can use this to convert the
statement of Conjecture 2.0.5 to one of enumerating augmented signed permutations
of the integers [n]. Before doing this, we first recall some known results about R-

labelings and the Maobius function of rank-selections.

Let ap(S) = a(S) be the number of maximal chains in P(S)U {0,1}. We define

the beta invariant by

B(S) = Y (=1)\Tla(T).

TCS
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By the Principle of Inclusion and Exclusion, we have

a(S) =Y B(T).

TCS

We have the following proposition, due to Stanley.
Proposition 2.2.1 [16, Proposition 14.1] u(P(S)) = (=1)¥#+15(S).

Let = be a permutation of the n letters {a,,...,a,}. We will write all permutations

using one-line notation:

r = wn(a))r(az)---7(an)

We define the descent set of * = my7y -7, by

D(n) = {i| m > mip1}-

As an example, if * = 43152, then D(r) = {1,2,4}. We let the set of all augmented

signed permutations of [n] be the following:

St ={0=51...8a8n41: {81,...,8:.} C{L,2,...,n}U{L,2,...,n},

|si| # |8;] for i # j, and 8p41 = 0}.
(Here we are using the bar notation @ to denote —a.) For example,

S = {120,120, 120, 120, 210, 210, 210, 210}.

Note that the maximal chains in O, with respect to the labeling A described in
Proposition 2.1.2 correspond with the augmented signed permutations S¥. As an

example, there are seven maximal chains in O3 with descent set {1,2}:

{3210, 3120, 3120, 2130, 2130, 1230, 1230}
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Observe that |u(0O3[2])| = 7. The fact that these two numbers coincide is explained
by Corollary 2.2.3.

Theorem 2.2.2 Let P be a poset of rank n + 1 and S C [n]. If P admits an R-
labeling, then

B(S) = the number of mazimal chains in P with descent set S
(with respect to the given R-labeling )).

By Proposition 2.2.1, we have an important corollary.

Corollary 2.2.3 Under the same hypotheses as Theorem 2.2.2 we have

|u(P(S))| = the number of mazimal chains in P with descent set S
(with respect to the given R-labeling )\ ).

As a remark, Theorem 2.2.2 and Corollary 2.2.3 still hold if “R-labeling A” is replaced
by “EL-labeling A” or “CL-labeling A”.

2.3 Proof of the Interval Case for O,

We have established that O, has an R-labeling in Proposition 2.1.2. In light of

Corollary 2.2.3 we will now use the notation
Bn(S5) = [n(On (),
where S C [n]. We will also use the notation

B.(S)={r e SEf: D(r)=S}.

(Thus Ba(S) = |Ba(S)].)
The problem of maximizing |¢(O.(S))|, where S runs over all interval rank-
selections [z,7] C [n], is equivalent to maximizing the number of permutations in

B,.(S), where S runs over all intervals of descents [z, j] C [r]. To tackle this problem,
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we fix n > 0 and form a triangular array of the §,[t,j]’s. The jth row consists of the

values

Bull,n—3+1], Bul2,n—-3+2],...,8u5,n] (G=1,...,n).

For example,

01: 1
021 1
3 3
032 1
7 5
) 11 7

To prove Theorem 2.0.4, we look at various configurations in the triangles. In other
words, we try to determine the maximum value in a given row, a given diagonal, or a
given antidiagonal. Using bipartite graph arguments we have been able to determine
the maximum value of the diagonal case completely. (Here a diagonal means the
sequence of (3,[i, j]’s with j fixed, 1 < ¢ < j, and an antidiagonal means the sequence
of Ba[i,j]’s with i fixed, i < j < n.) Applying the same techniques to the row and
antidiagonal cases narrows down the maximum to one or two possibilities. Once we
have found the maximum behavior in the row, diagonal and antidiagonal sequences,

we will intersect this information to yield Theorem 2.0.4.

To get the reader accustomed to working with these augmented permutations,
we now give a “faster” proof of Corollary 1.1.7. In fact, Proposition 2.3.1 gives a

recurrence for any f,[¢, j], not just the 3,1, j]’s.
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Proposition 2.3.1 For the triangular array of B,[i,j]’s, with n > 1, the following

recurrences hold:

(2) ﬂn['a]] = 2ﬂn-—l[i - 19] - l] + 2ﬂn—-l[iaj - 1] + ﬂn-—l[iajlv 1 S z S .7 <n
(12) Buli,n] =2Bn-a[i—1,n=1]+ Byft,n—1], 1<i<n

with boundary conditions

Ai[1,1) =1 and B,(8) =1 (n>1).

Proof. Let

B.li,;] = {me S¥: D(r)=[ij]}
B}[i,j] = {r € B.[i,j]: = contains the element n}

B;[i,j] = {r € B,[i,j]: = contains the element 71}.

For shorthand we will sometimes use B, B and B~, when context makes the value

of the other parameters clear.

Each of the recurrences stated in this proposition follows easily after observing
what happens if we remove the element n or # from a permutation in S%. For (z),
let * = a;---apap41 = a1---a,0 € B,[i,j]. If 7 € B, then a; = n. Deleting the

element n from 7 gives the bijection

B:[i,j]"—’Bﬂ—l[i—l’j_I]UBﬂ—l[iaj_ll (2'1)

where the first term on the right side of equation (2.1) corresponds to a;_; > a4, and
the second term to @;—; < a;41. If * € B~ then either a; = 72 or aj;1 = 2. Deleting

the element 72 from = gives the bijection

B;[t,]] — Bn—l[i - 1,] - 1] U Bn_l[i,j] U Bn_l[i,j - 1] (22)
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(Again, the right side of equation (2.2) corresponds to the three cases a; = i, aj41 = 7
with a; > aj42, and aj4; = 7 with a; < aj42). After taking cardinalities, the

correspondences in (2.1) and (2.2) imply recurrence (7).
Part (ii) follows from the bijections

B}[i,n] «— Bu_1[i — 1,n — 1] U B,_4[i,n — 1] (2.3)

and

B;[i,n] ¥ B,_1[i — 1,n —1]. (2.4)

The boundary conditions follow from the facts

B,[1,1] = (1,0)

and

B.() = (#,n—1,...,1,0) O

We will need some notation before starting the various proofs to find the max-
imum value in a given row, diagonal or antidiagonal from the triangular array of
Bnlt,j]’s. Let # = a;a3- - - a, be any strictly increasing (respectively, strictly decreas-
ing) sequence of integers. For a € 7 an integer, we let # denote the sequence obtained
by inserting |a| in the sequence 7 so that it remains strictly increasing (respectively,
strictly decreasing). Similarly, we let # denote the sequence obtained by inserting
—|a| in the sequence 7, and 7’ denote the sequence obtained by inserting a into the
sequence 7. In each case, we add the element —|a| or a into the sequence = so that
the resulting sequence remains strictly increasing (respectively, strictly decreasing).
For a € 7 let # denote the sequence obtained by removing the element a from =.

(Note that since 7 was monotone, the sequence # will still be monotone.)
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Recall that a strictly unimodal sequence is a sequence a,,...,a, of the form

a1 <A<+ <Ak > Akyy > -+ > aAqg.

and a sequence ay,...,a, is almost strictly unimodal if the sequence is strictly uni-

modal or is of the form

) <A<+ < A = Qg D gy > 0 D Q.
We are now ready to begin the proofs.

Proposition 2.3.2 (Row Sequences) For r > 0 the sequence

Bn[l,1 + 1), 8.[2,2+1],...,Bu[n —r,n]

is almost strictly unimodal with marimum occurring at one (or both) of

BallZ252 ], |25 4 1], Bal[2251, [2252] 4 1)

For r =0 and n = 2(3), the sequence

Bn(1,1], 8a(2,2],. .., Ba[n,n]

is almost strictly unimodal with marimum occurring at

Ball 5], 12554 ] = Ball 2, 12524 ).

Proof. We first show B,[i — 1,i + r — 1] < By[i,i + r] for i < [225%|. To do this
we construct a bipartite graph G with vertex bipartition V; = B, [t — 1,7 +r — 1] and
Va2 = B,[i,t + r] and show that |V}| < |V;].

Given r = a; ---a,0 € Vj, we can write 71 = w7730 with
™M = 6@
T2 = @i Gigr

M3 = Qiyrg1°°°Qn.
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Note that

T=01<...<81>;,>...> 04y <Cigr41 <...<a,<0,
so 7, w2 and 73 are monotone increasing, decreasing and increasing, respectively.

Buli —1,t + 7 —1] B.[i,i + ]

a;_1 / 0 b;
a, 0

a /

by

Let = € V,. For each a € 73 form the permutations

g = fr17r27?30,

i.e., remove the element a from 73 and adjoin |a| to m; with respect to the usual

ordering, and

o= 7'r17r27?30,

i.e., remove the element a from 73 and adjoin —|a| to m; with respect to the usual

ordering. Notice that o and & are elements of B,[¢,i + r]. Now given 7 € V;, draw an

edge of G to every o and & that can be obtained from 7 in the manner just described.

In the bipartite graph constructed, every vertex in V; has degree equal to 2|r;| =

2(n —t —r). Conversely, each vertex in V; has degree at most |#;| = |#1| = ¢ since the

element a € 73 is negative. Notice there are some vertices 7 = b, --- 5,0 € V; with

degree < i. For instance, if b = f then & cannot be obtained from a = with 12 € ;3

since we always have min 73 > min 7,. Hence

2(n—i-r)V| < iV,
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or

Wil < 5 |Val.

0
(n—t—-r)
Therefore, for i < 2252 we have |Vj| < |V,|.

We next show B,[i,i+r] > Ba[i+1,i+r+1]for [223%] < i < n—r—1. Inasimilar
fashion, we construct a bipartite graph with vertex bipartition V; = B[t +1,i+7+1]
and V2 = B,[i,i +r].

But+1,i+r+1] B.[i,i+ 7]

Given ® = mymam30 € V;, where

m = a;<...<ay,
M = Qig1 > ... > Qigrgl,
T3 = Qigr42 <...<ay,

remove any a € 7, and draw an edge to every permutation in V; of the form

o= 7‘('177'27?30.

Here we have added —|a| < 0 to 73 with respect to the usual ordering because all
the elements of #3 must be negative. Observe & € B,[i,i + r] and every vertex in

Wi has degree |7,| = i. Every vertex in V, has degree at most 2(n — i — r) because
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|#3] = n — i — r and there are two choices for the signing of an element a € %3 when
it is put back into #;. The degree of a vertex could be less than 2(n — 7 — r). If
T=b---b,0 € B,[t,i +r] with b;;,4, = @1, then moving the element n into b, - - - b;_,

would give a permutation with : a member of its descent set. So we have

il <2(n—i-r)[V

Thus, we obtain |Vi| < |V,| for i > 2222,

The previous argument shows fu[n —r —1,n —1] > Bu[n —r,n] for r < n — 3.
If r = n — 1 there is no argument since 8,[0,n — 1](= B.(0)) is not an element of
the row sequence. For r = n — 2 the result follows by using the actual summation

formulas for B,[1, j]. We wish to show

Ba[lyn=1] > B,[2,n]

To obtain the equality in equation (2.5), we need a lemma.

Lemma 2.3.83 For S C [n] the following equality holds

ﬂn(S) = ﬂn([n] \ S) o

This lemma is proved by noting that there is a bijection B,(S) « B,([n]\ S) via the

bar operator which sends # = a;:--a,0 € B,(S) to # = @,---@,0 € B,([n] \ 5).

Now substitute the summation formula from Corollary 1.1.2 in equation (2.5). We

see it is enough to show

-5 () > 1- 2 (7)ot (26)

=0 i=
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Applying the the binomial theorem the left side of equation (2.6) and simplifying the

right side of equation (2.6) we obtain

| = (=1)"+(=2)"|=2"=1>|—142n| = 2n — L.

Here we are using the fact n > 3 to simplify the quantities appearing in the absolute
value signs. (Recall r = n—2> 0.) But 2" > 2n when n > 3, so equation (2.6) holds

for n > 3.

It remains to show

for n = 2(3). (This is the r = 0 case.) Write n = 3m + 2. Then

|-2_3nJ = '.Gms 4.' =2m+1

and
2] =2m +2
Note that
Bultsi] = |u(Oali,?))]
= (number of elements in O, of rank z) — 1.
Thus,

2m +1

= 22"‘*1(2—m%,‘)!+—1)![2m +2- 2(m + 1)]

BullZ2], 122]] — Bull220, 2] = (3"‘ + 2) gt _ (gz ' ;) i

= 0. 0

We conjecture that the row sequences obtain their maxima as follows.
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Conjecture 2.3.4 For fized 0 < r < n — 1 the sequence

ﬂn[lal + r]»ﬂn[2v2 + T],. .o ,,Bn[n - r,n]

is almost strictly unimodal. Its mazima only occur at

Ba[|22=Zrtl |, | Itz || forn £2(3) or r £0
ﬂn[l%J’ lz—"aﬂ” = ﬂn[[z—"—;,ﬂj, [%J] “forn =2(3) andr = 0.

We next fix j and consider the diagonal of elements 3,[¢,j], ¢ = 1,...,j. This

time we are able to determine the complete maximum behavior of this sequence.

Proposition 2.3.5 (Diagonal Sequences) The sequence

Bnll, 7], Bal2, 3]s - - -+ Buld, 7]

is strictly unimodal. It attains its unique mazimum at

Bu [[#2),4]  forj#n
B [[%J,n] forj =n.

Proof. We first show B,[i—1,j] < Bali, j] for i < 22 (j # n). Asin Proposition 2.3.2,

we form a bipartite graph with vertex bipartition V; = B,[i — 1, j] and V; = B[z, j].
Bali - 1,5] B.[i,J]

ai_, b; 0
NoA AL

1
a aj41 b/ i+
1
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Given * = a; ---a,0 = ma;_1m730 € V;, where

T = 1 <...<@;-2
T = @ >...>a;
T3 = @j41<...< @y

and a € 7,, form the permutation

! ' A
g = 1rla.-_11r21r30.

Since a € 73, we know a < a,_1, so 0 € B,[ti,j]. For every € W4, draw an edge to
every o that is constructed in the manner described. The degree of every vertex in
Wi is |mg| = j — i + 1, while the degree of every vertex in V; is at most |r]| =i — 1.

We obtain the edge count inequality
G-+l <@ -1V

This inequality is strict. For instance, if 7 = b, - - - 4,0 € B[z, j] with b; = 71, then we
cannot put # into b4y - - b;. If we did, then we would violate the property that for

permutations 7 € B,[i — 1, j] we have min 7; > min 73. So |Vj| < |V;] for ¢ < ’—;3

We next show Ba[i,j] > Bali +1,j] for i > & (j # n). Construct a bipartite

graph with vertex bipartition V; = B,[i + 1,j] and V2 = B,[1, j].

B.[i + 1, 5] B.[:, ;]

;Q. ..AO /b‘\ '/bO

/ b %
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Given * = a; - - a,0 = 714,417,730 € Vj, where

m = ¢ <...<a,
T = @iy2 > ... > Gjy4y,
T3 = Q42 <...< ay,

and a € 7, draw an edge to the permutation

0’ = i’;a,-+11r§1r30.
Since a € 7, we know a < a;41, so o’ € B,[i,j]. The degree of every vertex in V] is
|71| = ¢, while the degree of each vertex in V; is at most |75| = (j —¢+1). We obtain

the edge count inequality

iVi| < (j — i + 1)|Val.

This inequality is strict. For instance, if 7 = b, ---b,0 € B,[¢, ] with b; > bj,,,
then if we were to move the element b;;; into the sequence b, - - - b;,_;, the resulting
permutation would have the descent set [i + 1,5 + 1] rather than [: + 1, j]. Therefore

Vil < |Vl for i > 2.

We now know {f,[i,j]}, 1 < i < [’%2 |, is a strictly increasing sequence and
{Bnli,j1}, [ < i < j, is a strictly decreasing sequence. Observe that |32] =
[41]. Therefore, we may conclude the diagonal sequence {f,[i,5]},1 <i < j, j # n,

is strictly unimodal with unique maximum ﬂn[LJt—zj,j].

We have characterized the monotonic behavior of all the diagonal sequences except
the one with j = n. We now consider that sequence. To show G,[i — 1,n] < B,[i,n]
for i < %43, we consider a bipartite graph with vertex bipartition Vi = B,[i — 1,n]

and V; = B,[t,n].
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B,[i — 1,n] B.[i,n]

a;_y b;
/“. '-‘ ... ..-
a, / bn
e, N

Given * = a; ---a,0 = ma;_;7,0 € V;, where

1T = 1 <...<@ai-2

Ty = Q> ...> Gy

and a € 73, draw an edge to each of the permutations

g = 7?1(1.‘_1 7?20

and

o= irla;_lfrgO.

Since D(r) = [i — 1, n], we see that the elements a;_;, a;, .. .a, are positive. So a,_; >
a > 0 implies a;_; > —a. Each vertex in V] has degree equal to 2|m;| = 2(n — 7 + 1),
while each vertex in V; has degree at most |#;| = |#;| = (i — 1). For instance, if
7 =b;---b,0 € B,[i,n] with b = @1, then we cannot put n into b;4; - - - b, since then
b; < max 73 = n and the result would not be a permutation in B,[i — 1,n]. We thus

have the edge count inequality

2(n—i+ W] < (i - 1)|Val,

so [Vi| < |Va] for i < 2843,

To show B,[i,n] > Bnli + 1,n] for i > 2242 we construct a bipartite graph with

vertex bipartition V; = B, [t + 1,n], V; = B,[t,n].
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b
a;
Given 7 = a, ---a,0 = mym,0 € W, with
m™m = a;<...<a;
M = Gi41 > ...> 0y

and a € 7, draw an edge to the permutation

g = 7?1 7'['20

All the elements in 7, are positive, so we must place |a| in 73 so that the resulting
permutation o € B,[i,n]. Every vertex in V; has degree |r,| = i, while each vertex in
V2 has degree at most 2|%;| = 2(n — i + 1). For example, if 7 = b, ---b,0 € B[, n]
with b; = n, then we cannot put n back into #; = b, --- b;_;. If we did, this would
violate the property that max 7, < max =, for any permutation = € B,,[t + 1,n]. We

have the edge count inequality

Vil <2(n -1+ 1)|V2,

so |[Vi] < |Vq| for ¢ > 2242,
We have shown the sequence {4,[i,n]}, 1 <i < [2—":;5’-J, is strictly increasing and
the sequence {B.[i,n]}, [242] < i < n, is strictly decreasing. Hence, for n # 1(3)

the sequence {B,[i,n]}, 1 < i < n, is strictly unimodal with unique maximum of

Bal |22 m].
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For n = 1(3) we apply Lemma 2.3.3 to the sequence sequence of f3,[i,n|’s. We

obtain {Ba[1,i]}, 0 < i < |%], is strictly increasing and {B.[1,i]}, [#47] < i <
n — 1 is strictly decreasing. The permutations represented by these two sequences
correspond to rank selections of the form [1,] from O,,, i.e., rank-selected lower order
ideals. By Theorem 1.0.1 B,[1, [2]] > Ba[1, [2%2]]. Hence, the sequence {f,[1,1]},
0 < i < n—1isstrictly unimodal with maximum (1, |2*|]. Applying Lemma 2.3.3

again gives the result we claimed. O

The last sequence we consider is the one consisting of antidiagonal elements 3,3, j],

J=1,...,n.

Proposition 2.3.8 (Antidiagonal Sequences) The sequence
Balisi], Bulisi +1],...., Bali, n]

is almost strictly unimodal with marimum occurring at one (or both) of
Buli, [ 25 ]], Bali, [25=11).

When i = 1 the antidiagonal sequence
Bnlts 1), Baliyi + 1], . ., Bu[i, n]

is strictly unimodal with unique mazimum of

Bali, |25 ]).

Proof. We begin by forming a bipartite graph with vertex bipartition V; = B,[t,j—1]
and V2 = B,[¢,j] (7 # n).
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Bn[’a]" 1] B"[la]]

Given * = mym2a;730 € V}, where

T = a1 <...<@i-
T = a;>...>aj_1
3 = ;41 <...<ay,

and a € 73, form the permutations

g = 7(17?2(1]‘7?30

and

o= 1r17'r2aj7?30.

Since a; < @ < 0 for all a € 73, |a] > a;. Hence 0,6 € V2. From the vertex ,
draw an edge to each of the |73| = 2(n — j) permutations in V, constructed in the
manner described. The degree of each vertex in V; is at most |#;| = |72 =7 — 1 + 1.
fr=25...5,0 € V; with b = n, then we cannot place # into b;42---b, to form a
permutation in V; because the permutation by -« - b;_1 b4y - - - bj4172bj42 - - - b0 has its
jth element b;4, > @, violating a; < min 73 for permutations » = a;---4,0 € W.

We have the edge count inequality

2n - )Wl < (G -i+ 1)V,
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so [Vl < |V for j < 2nti=t,

Next we form a bipartite graph with vertex bipartition V; = B,[i,j + 1] and
V2 =Bali,j] (j +1#n).

B.[i,j +1] B.[i, ;]

0
a; b; ﬁn

A A& N\

o - ) : N

aj+2
J bl

Given * = mym730 € V4 and a € 7, with

m = a1 <...<a;
Ty = aiy1 > ... >aj+1
M3 = Gj42 < ...< @y,

form the permutation

o= m™ *27?30.

Observe that & € V; since all the elements of #3 must be negative. For each a € =3,
draw an edge from 7 to every & formed in this manner. We obtain the edge count
inequality

U —i+ D] <2(n - j5)IVa|.

The degree of every vertex in Vj is |r2| = j — i + 1 and each vertex in V; has degree

at most 2|%;3] = 2(n —j). If = b,...b,0 € V, with b;4; = 71, we cannot move # into
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bi41 - bj. If we did, then we would violate the property min 7, > min 73 for any

7 € V1. Thus for j > 224=1 we have |W| < |V2).

Finally, we consider the terms of the form 3,[i,n] and B,[i,n—1]. Let V; = B, [i,n]

and V2 = B,[i,n — 1] be a vertex partition. (Note ¢t < n —1).

B.[i,n] Bu[i,n — 1]

0
a \Yn b \/
0 by
For # = my720 € V;, with
m = a1 <...<a
M2 = Qi1 > ...> 0y
and a € 7, form the permutation
g = ™ 7}2&0
Draw an edge from 7 to each of the |r;| = n — i permutations in V; formed in

the described manner. Each vertex in V; has degree at most one. For instance, if
T =0b---5,0 € V; and any one of the elements b;,...,b,_, is negative, replacing b,
by |ba| in b; - - - b, will not give us back a permutation in V;. We obtain the edge count
inequality

(n—9)Vi| < V2],

so |V1] < |Vz| when i <n —1.
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All parts of the proposition have now been proved except the case : = 1 which

follows by appealing to the lower order ideal Theorem 1.0.1. O

Now we are ready to give the proof of Theorem 2.0.4. The theorem easily holds
for n =1 and n = 2. (Refer back to the pictures of the triangular arrays for O, and
O, that were previously given.) Now fix n > 3. We first look at the candidates for the
overall maximum for f,[t, j] that the row and diagonal propositions give us. From

Proposition 2.3.5 the candidates for the maxima are those ., j] with i = 2], i.e.

Bulr+1,2r +1] forr=0,...,2r+1<n-1 (2.7)

Bulr +2,2r +2] forr=0,...,2r+2<n-1. (2.8)

Note that we do not need to consider the nth diagonal {f,[¢,n]}, 1 < ¢ < n, since
by Lemma 2.3.3 this sequence coincides with the sequence {8,[1,7]},1 < j < n (and

the common entry 3,[1,n] = 1, which is not a maximum).

The Row Sequence Proposition 2.3.2 predicts the maximum occurs at
Ba[lZ252 ], 1228 ] or Ba[[225201, [ 2271,

Restated, these maximum candidates are

Ba [—2";2', M;J when 2n — 2r = 0(3) (2.9)
g, ) e, ] bt -2 10) 10
Bn [2"_?_2’ 2"+3r_2]’ﬂn [2"_;”‘1 ) 2’11;“ when 2n — 2r = 2(3) (2.11)

Next we determine which row and diagonal candidates coincide. In other words,
we look for those integer values of r in which a maximum candidate from the diagonal
argument (equations (2.7) and (2.8)) is also a maximum candidate from the row
argument (equations (2.9), (2.10) and (2.11)). Note that in both cases r = j — i for

the entry B,[t, j], so we are using the same parameter in the rows and diagonals. For
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Table 2.1: Common Value of r for Row and Diagonal Results

Diagonal Row Common value
equation | equation of r Forcing
2n - 2r =1(3) (2.7) (2.10) o2 n = 2(5)
(2.8) (2.10) It = 1(5)
(2.7) (2.10) In-l n = 3(5)
(2.8) (2.10) in-d n = 2(5)
2n — 2r = 2(3) (2.7) (2.11) It n = 0(5)
(2.8) (2.11) In-8 n = 4(5)
(2.7) (2.11) In-2 n = 1(5)
(2.8) (2.11) In-t n = 0(5)

2n-3

2n-2r
3 5

. Since r is

example, when 2n — 2r = 0(3), =r+1ifand only if r =

In=¥ = r 42 when r = 2226 forcing

an integer, we must have n = 4(5). Similarly, 222%¢

n = 3(5).

The remaining cases when 2n — 2r = 1(3) and 2n — 2r = 2(3) follow in a similar

manner. Table 2.1 displays the information needed to complete these cases.

We now rearrange our results according to the equivalence class of n modulo 5. In
each case we decide if we can employ the antidiagonal sequence result to narrow down
the two max candidates to one overall maximum. We will see that the antidiagonal

Proposition 2.3.6 is only helpful when n = 4(5).

First suppose n = 0(5). Substituting r = 22=2 into the row maximum candidates

for 2n — 2r = 2(3), we obtain the candidates

’

n-2(38=8)-2 2n4(32=3)-2 -
ﬂn[" (3 )- n+( )- ] B 2n,4n 5]

2n-3(22=3)41 2+""5+1
ﬂn[n (1 ans(2552) ]:ﬂ“ 45 4n],
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These two possibilities lie in the same row, so we cannot apply the antidiagonal result.

For n = 1(5) the row and diagonal arguments give

8 [2:;-2(%)-1 2n+("‘—;’)—1] .y [Znis 4n—4]
n 3 ’ 3 n 5 " §

(here 2n — 2r = 1(3) and r = 22=7), and

5

m-2(20=2)41 2n4(22=2)4)
o[22 BN _ g, [2n2, 4na]

(here 2n — 2r = 2(3) and r = 22=2). Both of these elements lie in the same antidiag-

onal. Recall that the antidiagonal proposition asserts

,Bn[i,j - 1] < ﬂn[i’j] forj S |.2_n:3'L—lJ
Buli, 5] > Bali,j +1] for j > [224=1].

For n = 1(5) this says

Bn [22,5 — 1] < Ba [22£2,5] forj < 4=t

Ba [B£2,5] > B [22£2,5 +1] for j > 421,

Hence, Proposition 2.3.6 gives no additional information about the two candidates

for the maximum.

For n = 2(5) the two candidates for the maximum are

ﬂn[2nsil’ 4n5-3] and ﬂn[znsis’ 4n5;t2].

(Here 2n — 2r = 1(3) with r = 22=4.) As when n = 0(5), these two possibilities lie in

different antidiagonals, so the antidiagonal result cannot give any new information.

When n = 3(5) the candidates are

ﬂn[znsi-:’ms-z] and ﬂn[znsﬂ,msis]_
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(Here 2n — 2r = 0(3) with r = 22=¢ and 2n — 2r = 1(3) with r = 2221, respectively.)

These two values lie in the same antidiagonal. However, for n = 3(5) Proposition

2.3.6 says
Ba (24,5 - 1] < Ba [2£4,5] forj < 22

Ba [2554,.5] > Ba [B£4,5 +1] forj > 82,

which yields no new information about the two candidates for the maximum.

The last case is when n = 4(5). We obtain the candidate maxima

2n42 4n-1 42 4n-6
ﬂn[_ﬂ_si_,_"T_] and ﬂn[ist,_es_]

which lie in the same antidiagonal. (Here 2n —2r = 0(3) with r = 22=2 and 2n —2r =

2(3) with r = 22=8  respectively.) By Proposition 2.3.6 we have

Bn [22,5 - 1] < Ba [2822,5] forj <45t

B [2222,,5] > Ba [25£2,5 + 1] forj > 4L,

Hence we can conclude in this case that the overall maximum is ﬂn[%, %] a

The result of Theorem 2.0.4 is unsatisfactory in the sense that, unlike the Boolean
algebra, it does not determine the overall maximum for the interval rank-selection
case (except when n = 4(5)). Instead, for n # 4(5) it narrows down the extremal
configuration to one of two possibilities. Part of the difficulty with the n-octahedron is
that its triangle of 3,[7, j]’s is not symmetric along its rows like the Boolean algebra’s
triangle. More specifically, each row of the Boolean algebra’s triangle is symmetric

about its middle-most element (or elements, if the length of its row sequence is even.)

We have tried various methods to “sharpen” the bipartite arguments for O, by
redistributing the edges created between the different permutation types. Unfortu-

nately, none were successful. However, the data for the interval of ranks case behaves
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quite beautifully, as you can see in Table 2.2. The data strongly suggests that the

maximum occurs by taking the ranks |2%2| through |41
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Table 2.2: Extremal Configuration for Interval of Rank-selections from O,

Extremal
n || Configuration F [#(On(F))|
1 Ol 1] 1
2 || 05[1,1] = 0,[2,2] 3
3 03(2,2] 11
4 042, 3] 41
5 0s(3, 4] 161
6 O6[3, 5] 591
7 04[3, 5) 2631
8 Os[4, 6] 11871
9 Os[4, 7] 52513
10 0105, 8] 231937
11 Oul5,9) 993343
12 O12(5,9] 4699903
13 013[6, 10] 22111231
14 0146, 11] 102406721
15 O1s(7,12] 471223169
16 016[7,13] 2126966271
17 017[7,13) 10262581759
18 O1s(8, 14] 49138667007
19 O19(8, 15] 232427864577
20 O20[9, 16] 1091852042241
21 021[9,17] 5058126423039
22 022[9,17] 24635153735679
23 023[10, 18] 119106560870399
24 024[10,19] 570189596794881
25 Oy5(11,20] 2712059387740161




Chapter 3

Arbitrary Rank-selections

Given a permutation a; - - - a,, we say it is alternating if either

ag<ax;>az<aqg>... (31)

or

ay >a<az3>a4<.... (32)

In the first case (equation (3.1)) we call the permutation an alternating permutation
with initial ascent and in the second case (equation (3.2)) we call the permutation
an alternating permutation with initial descent. We say a permutation a, - - - a,, has a

double ascent if there exists an index k so that ax < ax41 < apya.

Let P be a poset of rank n, S C [n — 1], and A an R-labeling of P. Recall that
|#(P(S))| equals the number of maximal chains in P with descent set S with respect
to an R-labeling A. Proposition 2.1.3 gives an R-labeling ) of the Boolean algebra B,.
Note that the maximal chains in B, with respect to this A are simply permutations

in the symmetric group S, on n letters.

By Corollary 2.2.3, the question of maximizing the Mobius function over arbitrary
rank-selections from the Boolean algebra is equivalent to finding an S C [n — 1] which

maximizes the number of permutations of descent set S in the symmetric group S,.

62
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Sagan, Yeh and Ziegler [15, Theorem 1.2, part 2] used this interpretation of the
arbitrary rank-selection problem to solve the B, case. They constructed injective but
not surjective maps from permutations in S, with a double ascent to permutations

in S, with one less double ascent. They obtained the following result.

Theorem 3.0.7 For arbitrary rank-selections S C [n — 1] of By, |u(Bn(S))| attains

a unique mazimum when we take S to be
S={L3,5...}Nn[n=1]or S ={2,4,6,...} N[n —1].

In this case |p(B,.(S)| = E,, the nth Euler number.

In other words, for arbitrary rank-selections S C [n — 1] the Mobius function is
maximized by taking every other rank from B,. In terms of permutations from the
symmetric group, this result says the alternating permutations with initial ascent
(or the alternating permutations with initial descent) are the largest class with given

descent set.

The arbitrary rank-selection question, viewed in the context of permutations in
the symmetric group, was studied by Niven and de Bruijn. In [13] Niven also used
an injection-but-not-surjection argument, whereas in [11] de Bruijn developed an

algorithmic technique.

In this chapter we are interested in addressing the arbitrary rank-selection case
for the n-octahedron. Rather than studying this question in terms of augmented
signed permutations of [n] which arise from the R-labeling of O, in Proposition 2.1.2,
we present an approach based upon a non-commutative polynomial ® called the cd-
index. In a recent thesis, Purtill [14] showed that for certain lattices L, ®(L) has
non-negative coefficients. (See Theorem 3.1.2.) Stanley [18] generalized this to face

lattices of convex polytopes, which permitted him to conclude
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Theorem 3.0.8 (Stanley) Let Lp be lattice of faces of a convezx polytope P, where
the rank of Lp is n + 1. For arbitrary rank-selections S C [n] of Lp, |u(Lp(S))|

attains a mazimum when we take S to be

S={,3,5...}JN[n]or S= {2,4‘,6,...}ﬂ[n].

In this chapter we reconstruct Stanley’s proof in the case of the n-octahedron and

show that these are the only S which maximize y for O,.

Theorem 3.0.9 For arbitrary rank-selections S C [n] of O,, |p(On(S))| attains a

unique marimum when we take S to be
S ={1,3,5,...} n[n] or S = {2,4,6,...} N[n].

In this case |u(0.(S)| = EZ, the nth signed Euler number.

3.1 The ab-index and the cd-index

This section serves as a brief introduction to the ab-index and the cd-index. We
will follow [18] for all notation and terminology related to the cd-index. For those
interested in studying the cd-index’s origins, we refer to Bayer and Klapper’s paper
[4].

We will begin by describing Bayer and Billera’s work on flag h-vectors of Eulerian
posets. A key observation due to Fine links the ab-index with the cd-index. Once we
review some algebraic properties of the cd-index, we summarize Purtill’s dissertation
work. For us, his most important results are the non-negativity of the coefficients of

the cd-index of B,, and O,,, and a recurrence for each of their cd-indexes.

Let P be a finite, graded poset of rank n + 1 that is bounded. Recall in chapter

2 that for S C [n] we defined a(S) = ap(S), the number of maximal chains of
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P(S)u {0,1}, and B(S) = Br(S), the beta invariant. This defines o : 2" — Z, the
flag f-vector of P, by
S +— afS),

and f: 2" — Z, the flag h-vector of P, by

S — B(S).

We will now encode the flag h-vector (equivalently, the flag f-vector) of the poset

P. First, define a monomial in the noncommutative variables a and b by

where

_Joa, ifigS
Yi=1» ifies.

(For our purposes, it will be helpful to think of a as “ascent” and b as “descent”.) As
an example, if n = 5 and S = {1, 4, 5}, then us = baabb. We form a non-commutative
polynomial, called the ab-index, by
Wp(a,b) = > Bp(S)us.
SC[n]
We define the degree of both a and b be 1 so that ¥p(a, b) is homogeneous of degree

n.

When P is an Eulerian poset (refer to [17, Chapter 3] for terminology), Bayer
and Billera [3] showed the flag h-vector Bp satisfies certain linear relations called the
generalized Dehn-Sommerville equations. In the literature these equations are also
referred to as the Bayer-Billera relations. Fine observed that having Bp satisfy the
Bayer-Billera relations is equivalent to having the ab-index contained in the algebra

generated by the two elements ¢ = a + b and d = ab + ba.
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Proposition 3.1.1 [{, Theorem {] (Fine) Let P be a finite graded poset that is also
bounded. Then the flag h-vector Bp satisfies the Bayer-Billera relations if and only
if ¥p(a,b) can be written as a polynomial ®p(c,d) in the noncommutative variables

c=a+bandd=ab+ ba.

We call the polynomial ®p(c,d) the cd-indez of P.

As noted in [18] the cd-index has some very nice algebraic properties. If ®p(c,d)
exists (which it does for Eulerian posets such as B, and O,), then it is unique.
(As noncommutative polynomials over any field K, ¢ = a + b and d = ab + ba are
algebraically independent.) If we define the degree of ¢ to be 1 and the degree of d to
be 2, then ®p(c,d) is homogeneous of degree n with integer coefficients. By the very
nature of the variables ¢ = a + b and d = ab+ ba, if ®p(c, d) exists then its associated

ab-index ¥p(a,b) is symmetric in a and b.

In his dissertation, Purtill proved the following result about the cd-index. For

shorthand we will write ®(P) for ®p(c, d).

Theorem 3.1.2 [14, Theorem 6.1] For B, and O,, its cd-indez ®(B,), respectively

®(0,.), has non-negative coefficients.
He also established recurrences for ®(B,) and ®(0,).

Proposition 3.1.3 [14, Corollary 5.8] The following recurrence holds for the cd-

indez of the Boolean algebra:

8(Burs) = B(Bass) + 3 (7 8(B)48( B, 720,

=1
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Proposition 3.1.4 [14, Corollary 5.12] The following recurrence holds for the cd-

indez of the n + 1-octahedron:

Q(O,H.]) = &(On) + z":2’ (:)Q(Bj)dé(on—,‘l)a n > 0,

i=1

with ®(0,) = 1.

Some values for ®(B,) and (0, are given below:

Q(Bl) =1
Q(Bg) =cC
®(B;)=c*+d

®(By) = A + 2¢d + 2dc
®(Bs) = c* + 3c®d + 5cdc + 3dc? + 4d?

®(0o) =1

@(01) =cC

®(0;)=c*+2d

®(03) = 3 + 6¢d + 4dc
)

®(0,) = c* + 14c*d + 16cdc + 6dc? + 204?
®(0s) = ¢ + 30cdc? + 48cdc + 30c3d + 100cd? + 64d%c + 80dcd + 8dc®

3.2 Arbitrary Rank-selections: Lp and O,

In this section we will prove the arbitrary rank-selection result for face lattices of
convex polytopes Lp. The results we will have to appeal to are very strong. Two
such examples are Stanley’s non-negativity of the coefficients of the cd-index for Lp

and Bjorner’s and Wachs’ result that these face lattices are CL-shellable.

Before proving Theorem 3.0.8, we first verify some properties of ab-expansions
of monomials in the variables ¢ and d. When we formally substitute ¢ = a + b
and d = ab + ba into ®(Lp) to recapture ¥(Lp), we will see the ab-words which

receive the highest contribution from the coefficients of ®(Lp) are the alternating
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ones: the alternating initial ascent word of length n, ababab... and the alternating
initial descent word of length n, bababa.... This conclusion requires Stanley’s result
| abadybadbii

n
about the non-negativity of the coefficients of ®(Lp).

Since Lp is CL-shellable (Theorem 2.1.5), the coefficient 8s of a given word us in

¥y, (a,b) equals |u(Lp(S))|. Hence, we will have shown the rank-selections

S=1{1,3,5,...}N[n]and S = {2,4,6,...} N [n]

maximize |u(Lp)|-.

We are able to conclude that the odd and even alternating rank-selections from
Lp each maximize the Mobius function for the arbitrary rank-selection question.
What we are not able to conclude at this time is a uniqueness result, i.e., that the
alternating rank-selections are the only extremal configuration. We can, however,
show uniqueness when Lp = O, via the recurrence for (0,) in Proposition 3.1.4.
We also include a conjecture of Stanley which, if true, implies the uniqueness of the

extremal configuration in Theorem 3.0.8 for any Lp.

We begin by defining a convez polytope P (or polytope) to be the convex hull of
a non-empty finite set of points in Euclidean space. For instance, the n-dimensional

octahedron is a convex polytope since it is the convex hull of the 2n points
{:tel, ey icn}

in n-dimensional Euclidean space, where

e = (0,...,0,1,0,....,0).

-1 n—s

A polyhedral complez A (not to be confused with the shadow A(S) defined in chapter

1) is finite set of polytopes {P;,...,P;} in Euclidean space such that

(1) any face belonging to some P; is a member of A
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(i7) the intersection of any two members of A is again a member of A.

The maximal faces of a polyhedral complex are called facets. We say A is an n-
complez if the dimension of all the facets of A is n. Finally, for an n-complex A
we form its face lattice La by ordering the faces of A by inclusion and adjoining a
maximal element i. For example, the dimension of all the facets of the n-dimensional

octahedron O, is n — 1. Thus, Lo, = O,, the n-octahedron.

We next make some simple observations about monomials in the variables ¢ and
d. f w=w,:--w, is an ab-word of degree n, then we say w has a double ascent at

position i if w; = w;4; = a and has a double descent at position 1 if w; = w4, = b.

Lemma 3.2.1 Given any monomial w of degree n in the noncommutative variables

c=a+ b and d = ab+ ba, its ab-erpansion satisfies

(i) the alternating initial ascent word of length n occurs ezactly once
(i) the alternating initial descent word of length n occurs ezactly once
(iii) any given ab-word of length n occurs at most once.

(iv) If w = w'dw” with deg w’ =i — 1 then its ab-ezpansion contains no

ab-word with a double ascent or double descent at position 1.

Proof. For properties (i) through (i:1) we proceed by induction on the degree n of a

monomial in ¢ and d. By convention for n = 0 the only monomial in ¢ and d is 1.

Now let w be a monomial in the variables ¢ and d of degree n > 1. We have
two cases to consider, depending upon the first element of w. If w begins with c,
then remove this initial ¢. This leaves a monomial w’ in the variables ¢ and d of
degree n — 1. By the induction hypothesis the ab-expansion of w’ yields exactly one
alternating initial ascent word of length n —1 and one alternating initial descent word

of length n — 1. All the other possible ab-words of length n — 1 occur at most once.
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Premultiply all of these monomials by ¢ = a+b. This yields exactly one alternating
initial ascent word of length n and one alternating initial descent word of length n.
All the other possible length n monomials in @ and b occur at most once. If not, then
deleting the initial @ or b from two duplicate monomials in a and b of length n would
give two duplicate length n — 1 monomials in a and b arising from the same cd-word

of degree n — 1. This would contradict the induction hypothesis.

In a similar fashion, we show the same result for w a monomial in the variables ¢
and d of degree n > 1 whose first element is d. The difference here is we will have to

apply the induction hypothesis for words in the variables ¢ and d of degree n — 2.

Remove the initial d from w. This leaves a monomial w’ in the variables ¢ and d
of degree n — 2. By the induction hypothesis for n — 2 the ab-expansion of v’ yields
exactly one alternating initial ascent word of length n — 2 and one alternating initial
descent word of length n — 2. All other possible ab-words of length n — 2 occur at

most once.

Now, premultiply all of these monomials by d = ab + ba. This gives exactly one
alternating initial ascent word of length n and one alternating initial descent word of
length n. All other possible length n ab-monomials occur at most once. If not, then
delete the initial ab or ba from two of the duplicate ab-monomials of length n. This
gives two duplicate length n — 2 monomials in @ and b arising from some word in ¢

and d of degree n — 2, contradicting the induction hypothesis.

For (iv), suppose w = w'dw” with deg w' =i — 1. Since the degree of v’ is 1 — 1,
the d (of degree 2) which follows w’ will contribute to the :th and ¢ + 1st positions of
the ab-words formed from the ab-expansion of w. This element d can only contribute
ab or ba. Hence, the ab-expansion of w contains no ab-word with a double ascent or

double descent at the ith position. O
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The uniqueness result in Theorem 3.0.9 requires two key observations about

®(0,).
Lemma 3.2.2 The following two properties hold for ®(0,,):

(i) all possible monomials of degree n in the variables ¢ and d occur at least
once in ®(0,,)

(ii) forn > 0 if m is some monomial of length n in the variables a and b
that is not alternating, then there ezists @ monomial w in &(0,) whose

ab-ezpansion makes no contribution to m.

Proof. We first show (z) holds by induction on n. Property (z) is vacuously true for

n = 0 since (0p) = 1.

Now assume n > 1. By the recurrence of Proposition 3.1.4
n-1 _
®(0,) = c®(0,-1) + Z 2 (n ; 1) ®(B;)d®(On-j-1), n > 1, (3.3)
J=1

with ®(Op) = 1. Suppose w is a monomial of degree n in the variables ¢ and d. If w
begins with the variable ¢, remove it to form the monomial w’ of degree n —1. By the
induction hypothesis, w’ appears at least once in ®(0,_,). Hence the term ¢®(0,_,)
appearing in equation (3.3) contains the monomial w = cw’. We do not have to worry
about any possible cancellation since the coefficients of ®(0,,) are clearly non-negative

from equation (3.3).

Next, let w be a monomial in ¢ and d of degree n beginning with the letter d. We
similarly use the first term of the second summand appearing in equation (3.3) to
verify property (i) for w. Remove d from w to form w’, a monomial of degree n — 2.
By the induction hypothesis w' appears at least once in ®(O,-2). Also ®(B;) = 1.
Hence the term in the summand corresponding to j = 1 in equation (3.3) creates a

w = 1dw' for ®(0,).



72

Property (iz) is vacuously true when n = 0 since there are no non-alternating
words of length 1 in the variables a and b. For n > 1, (iz) will follow immediately
from part (i) of this lemma and from (iv) of Lemma 3.2.1. Let m be a monomial of
length n in the variables a and b that is not alternating. Then m has a double ascent
or double descent. Without loss of generality we may assume m has a double ascent
aa at the ith position. (The same argument works when m has a double descent bb
at the ith position.) By property (i) we know every monomial of degree n in the
variables ¢ and d occurs at least once in (0,). In particular, monomials of the form
w = w'dw” with deg w’ = 1 — 1 occur at least once. By Lemma 3.2.1 the ab-expansion

of any such w makes no contribution to m. O

We have an analogous version of Lemma 3.2.2 for B,. Its proof is omitted since

it is virtually identical to that of Lemma 3.2.2.

Lemma 3.2.8 The following two properties hold for ®(B,):

(i) all possible monomials of degree n — 1 in the variables ¢ and d occur at least
once in ®(B,)

(ii)) forn > 1 if m is some monomial of length n — 1 in the variables a and b
that is not alternating, then there ezists a monomial w in ®(B,) whose

ab-expansion makes no contribution to m. O

It is well-known that the nth Fuler number E, counts the total number of alter-

nating permutations in the symmetric group with odd (or even) descent set, i.e.

E, = |{r€S,: D(r)={1,3,5,...}Nn[n—1]}| (3.4)

= |{r€Sn: D(r)={2,4,6,...} Nn[n—1]} (3.5)
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A recurrence for the nth Euler numbers is
n

n
En+2 = Z (j)EjEn—j+la n 2 la

=0

with Ep = E; = 1. In a similar manner, Purtill defines the nth signed Euler num-
ber EX which counts the total number of augmented signed permutations that are

alternating with odd (or even) descent set:

EX = |{reS%: D(r)=1{1,3,5,...} n[n]}| (3.6)

= |{reS*: D(r)={2,4,6,...}n[n]}. (3.7)

A recurrence for the nth signed Euler numbers is
" n
Bt =3 (]_)E,.E:_,., n>1,
Jj=0

with Ey = Ef = 1. (See [14, section 6).)

From Lemmas 3.2.1 and 3.2.2, we can now very easily give the proofs of the
arbitrary rank-selection theorems for Lp and O,. We first consider the arbitrary
rank-selection question for Lp, and then prove the uniqueness result for O,. It is a
well-known fact that Lp is Eulerian. Thus, ®(Lp) exists by Bayer and Billera’s work
in [3] and Fine’s equivalence in Proposition 3.1.1. By Stanley [18, Theorem 3.1.2],

the coefficients of (Lp) are non-negative.

Consider the ab-expansion of ®(Lp) into ¥(Lp). By Lemma 3.2.1 each monomial
in ®(Lp) contributes exactly one term to the alternating initial ascent word of length
n, exactly one term to the alternating initial descent word of length n, and at most
one term to all other words of length n in the variables @ and 4. Thus, the coefficient
of the alternating permutations of length n with initial ascent (equivalently, with

initial descent) equals the number of monomials appearing in ®(Lp). In turn, this
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number is just the sum of all the coefficients of ®(Lp), i.e., ®1,.(1,1). (Here we are

formally substituting c =1 and d =1 in ®,(c,d).)

For an ab-word ug, S C [n], we define

D(us) = S

(Recall that when we introduced ug, we said it would be helpful to think of the a’s
as ascents and the b’s as descents.) Since Lp is CL-shellable (Theorem 2.1.5), the

coefficient of any ab-word us in W(Lp) is |u(Lp(S))|-

We have shown the alternating ab-words of length n receive the greatest contri-
bution from the coefficients of ®(Lp). In fact, they receive the maximum possible
contribution, since the expansion of each monomial in ®(Lp) contributes at most one
to each ab-word. Thus, the extremal configuration for rank-selections S C [n] from
Lpis

S=1{1,3,5,...}N[n] or S = {2,4,6,...} N [n).

This is Theorem 3.0.8.

We next show that for O, the odd and even alternating rank-selections are the
only extremal configuration. Suppose m is not an alternating word in the variables
a and b. By property (1) of Lemma 3.2.2 there exists a monomial w in ®(0,,) whose
ab-expansion does not make any contribution to m. Thus the coefficient of m in
¥(0,) is less than that of the alternating initial ascent (or descent) ab-word of length

n. O

As a comment, we could use Lemma 3.2.3, the B,, counterpart of Lemma 3.2.2,
in the argument just given to reprove Theorem 3.0.7. Also, for the proof of Theorem
3.0.9 we did not have to appeal to Stanley’s non-negativity of the coefficients of ®(L,)

and the CL-shellability of L,. Instead, we could have used Purtill’s non-negativity of
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the coeflicients of $(0,) and the fact O, has an R-labeling.

In a personal communication with Stanley we brought to his attention that we
cannot conclude uniqueness of the extremal configuration for Lp other than the cases

when Lp is B, or O,. Consequently, Stanley has made the following conjecture:

Conjecture 3.2.4 [19] Among all n-polytopes (or more generally Gorenstein* lat-
tices of rank n + 1), the simplez (i.e., the Boolean algebra) has the least cd-index

coefficient-wise.

If Stanley’s conjecture is true, it would immediately imply the uniqueness result for
Theorem 3.0.8: we would know that every cd-word occurs at least once in ®(Lp),
since every cd-word occurs at least once in ®(B,) with positive coefficients. This
would give an Lp counterpart of part (i) of Lemma 3.2.2. Moreover, since part (:z) of
Lemma 3.2.2 follows from part (2) of the same lemma and from Lemma 3.2.1, Lemma

3.2.2 would hold for any Lp, not just O, and B,,.

In the table that follows, we include the Mobius values of the extremal configura-

tion for Theorem 3.0.9.



Table 3.1: Arbitrary Rank-selection from O,: Maximum Mobius Value for n

1,...,10
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Chapter 4

Ln(q); Related Extremal Questions

In the first section of this chapter we address extremal problems for L,(gq), the lattice
of subspaces of an n-dimensional vector space over the finite field GF,. For the lower
order ideal case, Sagan, Yeh and Ziegler found the entire poset L,(q) is the extremal
configuration. Their argument uses techniques analogous to the ones they developed
for B,. We determine that all of the ranks of the poset L,(gq) is also the extremal
configuration for its the interval of ranks and arbitrary rank-selection cases. As usual

in such cases, we use the inversion statistic.

The second section of this chapter describes work-in-progress related to questions

addressed in this dissertation.

4.1 L,(q): Interval of Ranks and Arbitrary Rank-
selections

For S C [n — 1], we use the notation

(La(q),S)={W € L.(qg): dim W € S}

to indicate the S rank-selection from L,(q). For = my73--- 7, € Sy, define

invr=|{(,7): m>m;andi<j}|.
77
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For example, if r = 31524 € S5, then inv x = 5.

In chapter 2 we saw that we could translate questions involving the Mobius func-
tion of rank-selections S from B, and O, into questions of studying certain permuta-
tions with descent set S. For S rank-selections from L,(q) there is a way to compute

|#(Ln(g),S)| in terms of the inversion statistic.

Proposition 4.1.1 [17, Theorem 38.12.3] Let L,(q) be the lattice of subspaces of an

n-dimensional vector space over GF, and let S C [n — 1]. Then

I#(Ln(q)a S)l = Z qiﬂur.

x€Sn,D(7)=S

We will use this interpretation of S rank-selections from L,(g) to establish its interval

of rank and arbitrary rank-selection results.

Theorem 4.1.2 For sufficiently large q and arbitrary rank-selections S C [n — 1]
from L,(q), |u#(La(q),S)| attains a mazimum when we take S = [n — 1]. In other

words, for large enough values of q,

1(Ln(g), S)| < ¢(3)

with equality holding if and only if S = [n — 1].

Since the extremal configuration in Theorem 4.1.2 is an instance of an interval rank-

selection, we have the immediate corollary:

Corollary 4.1.8 For interval of rank-selections S C [n—1] from L,(q), the extremal

configuration coincides with the one in Theorem 4.1.2.

The proof of Theorem 4.1.2 will follow once we establish a simple result about

inversions of permutations in S,,.
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Proposition 4.1.4 For « € S,, we have the following bound

n
. < ‘
mvr < (2)

Furthermore, t =nn —1-.-21 is the unique permutation in S, with inv * = (’2‘) .

Proof. For any o = 0102 -- 0, € S, we have the following bound on the maximum

number of inversions that the :th element o; € & can contribute to inv o:

|{j: oi>0;andi<j}|<n-—i. (4.1)

Hence, the greatest number of possible inversions any 7 = mymy .- 7, € S, could have

in—i:(g).

=1

is

Suppose inv 7 = (’;), where * = my73-- 7, € Sp. Thus for 1 <1 < n, 7; must

attain the maximum possible number of inversions described in equation (4.1). When
¢ = 1 equation (4.1) forces m; = n. The letters [n — 1] are now left, so when i = 2

equation (4.1) forces m; = n — 1. Continuing in this fashion, we see that

m=n—1t+1, 1<:<n. 0O

Theorem 4.1.2 now follows immediately from Proposition 4.1.4. |u(Ln(gq),S)|is a

polynomial in ¢ with degree at most (7). The degree equals (}) only when S = [n—1].
2 2

n

2), so we are done.

There is only one such permutation = € S, with D(7) = (

A more precise statement of what is meant by the phrase “large-enough ¢” in

Theorem 4.1.2 is given in the next proposition.

Proposition 4.1.5 The mazimum in Theorem {.1.2 is guaranteed to hold if ¢ > E,,,

where E, is the nth Euler number.
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Proof. We have for S # [n — 1]

G-
ln(La(@), $) = 3 ad', (4.2)

=0

where

¢;=|{r€S,: D(x)=S, invr=1}|

Taking the most naive upper bound for each ¢' appearing in equation (4.2) gives

l#(Lna(q), S)I

A
™
I
=
o3
T

(3)-1
= q(;)—l E C;

= ¢ {reS.: D(x)=S5}]

D1 E, (4.3)

IA

a3, (4.4)

IA

where the inequality in equation (4.4) holds if ¢ > E,. The bound in equation (4.3)
arises since the greatest number of permutations in S, with the same descent set is

E, [11].

To see how good the estimate is in Proposition 4.1.5, we will need the following

proposition:
Proposition 4.1.8 For S C [n—1] and |S| =n —2, |u(Ln(q),S)| is of the form

14(La(), )| = )7 + 0(¢(3)-?)  (as ¢ = o). (4.5)

Conversely, if for S C [n — 1] equation (4.5) holds, then |S| =n — 2.
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Proof. For the forward direction, it suffices to show there exists exactly one permu-
tation x € S, withinvx = ('2‘) —1 and with D(r) = S, where S C [n—1],|S|=n-2
is given. First suppose S = [n — 1]\ {i} with¢: # 1. Let r = 7y --- 7, € S, with
D(7) = S. Thus

ML D DT < Tip1 > Mg > *** > Wy,

so either 7, = n or 7,4, = n. If 7;;; = n, then 7, can contribute at most n — 2 to the
total number of inversions. Since 7; < 741, 7; can contribute at most n —i — 1 to the
total number of inversions of x. By equation (4.1), we cannot achieve inv = = (") -1,

2

so we must have 7; = n.

Under the new assumption that m; = n, x; can still contribute at most n — 7 — 1

n

2) — 1, m; must

to the total number of inversions of ». In order to have inv r = (

contribute exactly n — i — 1 to the total number of inversions, implying
Ti> Miga > Migg > -+ > T
Also, the other 7;, j # i, must contribute the maximum number of inversions to =,
i.e.,inv®; =n—j, j#1i Hence
LD M > coe > Moy > Tigr.
But 7; < 741, so we have
LD oo D> Misy D Mgy DT D Migg D Migz D o+ > T,

implying
n—j+1 forj#i,i+1
Ti=¢ n—1i for j =1
n—i1+4+1 forj=i+1.
Next suppose S = [n—1]\ {1} =[2,n—1]. Forr =7 --- 7, € S, with D(7) = S
we have

MM D>A3> "> Ty,
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implying #3 = n. Thus 73 contributes n — 2 to the total number of inversions of .
Furthermore, suppose inv r = ('2‘) — 1. Since 7; < 73, 7; can contribute at most n — 2
to the total number of inversions of x. In fact, by equation (4.1) m, must contribute
exactly n — 2 to the total number of inversions of x. Similarly, the remaining terms

must contribute n — j to the total number of inversions (j # 1). Thus we have
T D> R3> Ry,

implying
n—1 forj=1
=4 n for 3 =2
n—j+1, forj=3,...,n.

The converse is clearly true for n = 3. Now suppose n > 3 and S C [n — 1] with
|#(Ln(q), S)| satisfying equation (4.5). Then there exists exactly one 7 = m;--- 7, €
Sp with D(7) = S and inv 7 = ('2‘) —1. Suppose on the contrary that |S| < n—2. The
permutation 7 has at least two ascents, i.e. S C [n—1]\ {k,{} for some k # [ € [n—1].

This means 7, < 74y and 7 < 74,. But then

[{7: m>mjandk<j}|<n—-k-1

and

|{j: m>nmjandl<j}|<n-1-1.

Thus inv 7 < (;) — 2, contradicting the fact inv 7 = ('2‘) —1. Thus |[S|=n-2. O

We also have a recurrence for the |p(Ln(g), S)| which appear in Proposition 4.1.6.
This recurrence enables us to easily evaluate |u(Ln(g),S)|, and hence compare the
value of ¢ which Theorem 4.1.2 is guaranteed to hold (Proposition 4.1.5) with the

actual smallest value of ¢ for which it holds.
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Proposition 4.1.7 For S C [n— 1], with S = [n — 1]\ {¢} end n > 3, |u(Ln(q), S)|
satisfies the following recurrence:

Fori#1,n-1,

I/‘(Ln(q)a S)l = qn—lll‘(Ln-l(q)s {n - 2] \ {‘ - 1})| +

¢" " (Iu(Ln-r(9), [n = 2D)] + [u(Ln-1(9), [n = 2]\ {e})]). (4.6)

Fori=1

lt(La(9), S)| = ¢ 2(|u(Ln-1(q),[n — 2D| + |#(Ln-1(q), [2,n = 2])]), (4.7)

and fori =n —1

lu(La(9), S)] = ¢"7'u(La-r(q), [ = DI + |1(Ln-a(g), [n = 2])I.  (4.8)
The boundary conditions are:

11(Ln(g), [ = 1])] = ¢@
I1(Ln(q), 0)] = 1.

Proof. Supposen >3 and S =[n—1]\{i} withi#1,n—1. Forr =mny---7, € Sy,

with D(x) = S, either m; = n or 7,4y = n. Thus

b(La(g), ) = Y ™"+ Y g™ (4.9)
*€Sn.D(x)=s m€an Dir)=s

Deleting n from x gives

|#(La(9),S)| = ¢ Mu(Ln-1(q),[n—=2)\ {i —1})| +

" (I(La-1(q), [n = 2))| + |u(Ln-1(q), [n — 2] \ {s})]).

For ¢ = 1 the first summand on the right side of equation (4.9) is zero, so by virtually

the same argument we obtain the recurrence in equation (4.7). Similarly, fori = n—1
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Table 4.1: Comparison of the Predicted ¢ with the Actual ¢, n =1,...,10

Predicted | Actual
n || ¢k, q

2

5

16

61

272

1385

7936

10 50521

© 00 4 O O W
W W W W wWw W N

we note the second summand on the right side of equation (4.9) will only contribute

one term when we delete n from =, so we also obtain equation (4.8). O

In Table 4.1 we compare the predicted ¢ so that Theorem 4.1.2 is guaranteed to
hold with the actual q. As one can see, there is room to improve the estimate in

Proposition 4.1.5.

4.2 Related Extremal Questions

We are currently focusing upon four main extremal problems in our research. What

follows is a brief description of each.
I. Classification of Posets with Rank-selected Extremal Configuration

For the Boolean algebra and the n-octahedron, the Maobius function attains a
maximum over lower order ideals by taking a certain rank-selected lower order ideal.
(See [15] and Theorem 1.0.1). Given the results for these two posets, we would
like to address a much more difficult question: identify those posets whose extremal

configuration maximizing the Mobius function over lower order ideals corresponds to
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a rank-selected lower order ideal. Since the Boolean algebra and the n-octahedron
are examples of face lattices of convex polytopes, we expect the face lattices of convex

polytopes to naturally belong to this class of posets.
II. New Applications of the cd-index

The cd-index is a relatively new object of study. As we saw in chapter 3, for certain
posets the cd-index encodes information about the Mobius function of rank-selections.
The answer to the question of maximizing the Mobius function over arbitrary rank-
selections from the n-octahedron (and more generally, from any face lattice of a
convex polytope) was an easy consequence of recent work of Purtill and Stanley on
the coefficients of the cd-index. We are looking for other results for O, and B,
which the cd-index answers quite naturally. Also, we would like to prove Stanley’é

Conjecture 3.2.4 or find a counterexample.
II1I. Extremal Questions for Other Posets

The g-analog of the Boolean algebra B, is L,(g), so it would make sense for us
to study the g-analog of O,. This poset is I,(q), the poset of isotropic subspaces.
For I,(q) we plan to address extremal questions analogous to the ones studied in this

dissertation.
IV. Permutations and Their Inverses

One can study the absolute value of the Mobius function of rank-selected subposets
from the Boolean algebra in terms of permutations in the symmetric group. A related
question posed by Ira Gessel is: for fixed n let f,(A, B) be the number of permutations
in the symmetric group on n elements with descent set A such that the descent set
of the inverse is B. For what A and B is f,(A, B) the greatest? The data we have
looked at suggests that A and B are “alternating”. We hope to prove this result by

applying an algorithmic technique similar to one developed by de Bruijn [11].
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