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ABSTRACT

EXTREMAL PROBLEMS FOR THE MOBIUS FUNCTION

By

Margaret A. Readdy

In the vein of recent work of Sagan, Yeh and Ziegler, we study extremal problems

connected with the Mobius function p of certain families of subsets from On, the

lattice of faces of the n-dimensional octahedron. In particular, we find that for lower

order ideals .‘F in On, |p(}")| attains a maximum by taking roughly the lower two-

thirds of the poset. For the case when .7: varies over all intervals of rank-selections, we

give a proof which finds the extremal configuration when n E 4(5). When n i 4(5),

our proof narrows down the extremal configuration to one of two possibilities. We

include data which supports our conjecture that the maximum occurs by taking the

ranks from approximately fin to En.

Purtill showed in a recent thesis that the coefficients of the cd-index <I> are non-

negative for certain posets, including the Boolean algebra B7, and the n—octahedron.

This work has been generalized by Stanley, who found the coefficients of (I) are non-

negative for face-lattices of convex polytopes. Stanley has observed that the non-

negativity of the coefficients of <I> immediately implies the arbitrary rank-selection

results for face lattices of convex polytopes. The Mobius function is maximized by

taking every other rank of the corresponding face lattice. For the record, we verify

the details of Stanley’s observation. In fact, Purtill’s recurrence for the cd-index of

Bn and 0,, allow us to conclude that the odd and even alternating ranks are the



only extremal configurations for these two posets. We include a conjecture of Stanley

which, if true, implies uniqueness of the extremal configuration for face lattices of

convex polytopes.

Sagan, Yeh, and Ziegler also studied Ln(q), the lattice of subspaces of an n-

dimensional vector space over GFq. For this poset they found all of Ln(q) is the

extremal configuration for the lower order ideal case. Using the inversion statistic,

we show the interval of ranks and arbitrary rank-selection cases also have the same

extremal configuration, i.e. the entire poset.
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0.1 Basic Notation

We follow [17, chapter 3] for most of the terminology and notation we will use in

this dissertation. A partially ordered set (poset) P is a set P together with a binary

relation 3 (sometimes denoted by _<_p to indicate the poset P) which is reflexive,

antisymmetric and transitive, i.e.

(i) (reflexivity) For all a: E P, a: S 1:.

(ii) (antisymmetry) If :1: S y and y S at, then a: = y.

(iii) (transitivity) If :r S y and y S 2, then a: 5 2.

We use the notation .1: < y to indicate .1: S y and 3: 7E y. In a similar fashion,

the notation y > a: means a: < y. We say 2,3] 6 P are comparable if :c _<_ y or

y _<_ 9:; otherwise they are incomparable. The element y covers a: (notation: a: 4 y) if

a:<zSyimpliesz=y.

Two posets P and Q are isomorphic if there exists an order-preserving bijection

n : P —+ Q whose inverse is also order-preserving. The direct product or Cartesian

product of P and Q is the poset P x Q defined on the set

flamszRyeQ}

such that

(93,3!) SPxQ (5.31,) if 17 SP 17' and 31 So y'.

Given a finite poset P its Hasse diagram is a graph G = G(V, E) Its vertices V

consist of the elements of P. The edges E are determined by the cover relations of

P. In other words, we draw an edge between a: and y if x < y. To clearly show the

“hierarchy” of P, we draw y above 2:.



A chain c in P is a subset of P so that every two elements are comparable. Thus,

if the elements of c are {$041, . . . ,n}, with z, < 2:,- when i < j, we can write c as

c: $o<$1 <...<xk.

We say this chain c in P is unrefinable (or saturated) if we can write c as

c: zo-<:r1-<...-<:ck.

A maximal chain in a poset P is an unrefinable chain from a minimal element in P

to a maximal element in P.

Let P be a poset that has unique minimal element 0 and unique maximal element 1

(i.e., P is bounded). P is a graded poset of rank n if every maximal chain in P have the

same length n. All the posets we study in this dissertation will be finite and graded.

Thus, we have an associated rank function p defined by p : P —> {0, 1, . . . , n}, where

_ 0 if y = 0

p(y)_{p(x)+1 ifx-<y.

The n-dimensional octahedron 0,, is the convex hull of the 2n points

{$61, . . . , :lzen}

in n-dimensional Euclidean space, where

e,-=(0,...,0,1,0,...,0).

t-l n—i

For brevity, we will label these points by writing +i for +e,- and —i for —e,-. Using

this notation, we see that any proper face of 0,, can be labeled using a signed subset

of{1,. . . ,n}, i.e. a subset of the set {i1,. . .,:tn}, say

5 ={01,...,ak},



where S cannot contain both the elements +i and —i.

We can associate a poset 0,, with this geometrical object, called the lattice offaces

of the n-dimensional octahedron. We construct 0,, by taking all of the faces of 0,,

and ordering them by inclusion. With respect to the shorthand we have adopted, we

can represent 0,, as the poset of all signed subsets of {1, . . . , n} ordered by inclusion

with the element l adjoined. (Here we need to have an element which represents the

maximal face of 0,,, i.e., 0,, itself, since the notation does not lend itself naturally

to representing this element. Thus I is this maximal face.) The rank of any element

5' E 0,, \ I is given by IS I, where I - | denotes cardinality. Observe that I has rank

n + l in 0,,.

For a family .7" (_I P we define its completion by

f” = 7-“ u {6, i}

and its proper part by

7‘ = .7-'\ {0, i}.

An interval [.r, y] in P is defined by

[z,y]={zEP: xngy}, forxSy.

Notice that [23, 3:] consists of the element at. We do not allow the empty set to be an

interval. Given a poset P, the Mo'bius function ,u is defined recursively on intervals

[x,y] in P by

p(:r,a:) = 1 for all a: in P,

#(xay) = - 2 ”(3,2).
z$z<y

For brevity, we let u(P) denote the value of up(0,1). For a: an element of P we let

p(:r) denote up(0,.r). Additionally, for any family .7: of elements of P we let M?)



equal p;(0, 1).

Given a non-negative integers i and j, we let

[i]={1,2,...,i}

and

liajl = {i,i+1,-~,J'},

with the conventions that [0] = 0 and [i, j] = 0 for j < i. If rank(l) = r, then for a

family .7: Q P and S Q [r — 1], we define the rank-selected subposet

f(5) = {:r E f: rank(:c) E S}.

In particular the 2"” rank level of .7 is given by

17(2) = .77({i}) = {2: E f: rank(a:) = i},

and the interval [i, j] of ranks of.7: (not to be confused with the closed interval [:r, y]

of elements of P) is

fizkj] = fawn = {. e f: mu.) 6 [2311}.

Also, we use the shorthand

1"[k] = .7([k]).

Finally, a lower order ideal A is a subset A of P such that if a: E .A and y S :1: then

yEA.

0.2 Introduction

The questions studied in this thesis belong to a branch of mathematics called ex-

tremal combinatorics. Extremal combinatorics is concerned with finding the “best”

configuration (according to some given criteria) among a set of possible arrangements.



As an example, in [17, Exercise 3.41a] Stanley posed the following extremal ques-

tion: given a bounded poset P with a fixed number of elements, what is the maximum

value of the Mobius function of P? Ziegler answered this question for both bounded

posets and graded posets. He also determined the extremal configuration in each

situation [21].

Recent work of Sagan, Yeh and Ziegler [15] approached extremal problems involv-

ing the Mobius function from a slightly different angle. They fixed the poset under

consideration (in their case, the Boolean algebra B,,) and studied the maximum value

attained by the Mobius function a over certain subsets of B,,. More specifically, if .77

is a family of subsets contained in the Boolean algebra B,,, then the max}- I ,u(f)I has

been found for three categories of families:

i. lower order ideals

ii. intervals of ranks

iii. arbitrary rank-selections.

The maxima are obtained by taking roughly the lower half, middle third, and every

other rank of B,,, respectively. The lower order ideal case was first solved by Eckhoff

[l2] and Scheid [l], and viewed in the context of the reduced Euler characteristic

by Bjorner and Kalai [8]. Niven [13] and de Bruijn [11] had previously solved the

arbitrary rank-selection case, while the interval of ranks case was a new result.

In this dissertation, we will address analogous extremal problems for 0,,, the

lattice of faces of the n-dimensional octahedron. More specifically, by extending the

techniques developed for B,, to 0,,, we find the extremal configuration for lower order

ideals is the lower two-thirds of the poset 0,,. In chapter 2, we state our conjecture for

the interval of ranks question. Our proof gives a complete answer when n 5 4(5) and

narrows down the answer to one of two possibilities for n aé 4(5). Also, we include



data supporting our conjecture. In chapter 3, we see that for arbitrary rank-selections

the extremal configuration is to take every other rank of 0,,. This is actually a simple

observation made by Stanley that the non-negativity of the coefficients of the cd-

index of 8,, and 0,, (proved by Purtill in his thesis) immediately imply the arbitrary

rank-selection result. In fact, Stanley’s observation applied to his new work on the

cd-index of face lattices of convex polytopes Lp also shows the Mobius function is

maximized for Lp by taking every other rank of the corresponding face lattice. In the

first half of chapter 4 we answer the interval of rank and arbitrary rank-selection cases

which were left undone in [15] for L,,(q), the lattice of subspaces of an n-dimensional

vector space over 0179. In both cases, the extremal configuration is to take the entire

poset. Finally, we complete chapter 4 by indicating our future research.



Chapter 1

Lower Order Ideals

In this chapter we will be concerned with maximizing |p(.77)l as f ranges over all

lower order ideals in 0,,. We first state the main result of this chapter:

Theorem 1.0.1 If}: is a lower order ideal in 0,,, then

[2.91 n

lu(f)| s I): (k)(—2)* I,
k=0

with equality occurring if and only if

P: = 0,,[k] with k = [233].

(Here [] denotes the greatest integer function.)

Before proving Theorem 1.0.1, we will first specialize f to be a rank-selected lower

order ideal, i.e., a lower order ideal of the form 0,,[lc] U {0}. We show in Lemma 1.2.1

that |u(0,,[lc])| is maximized if we take k to be [2%], i.e. the lower two-thirds of

0,,. Once we generalize .7: to be any lower order ideal in 0,,, we will see the ideal

0,,[[-25'1_]] U {0} is also the maximal configuration for Theorem 1.0.1.

7
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1.1 Elementary Properties for 0,,

We begin by determining the Mobius value p of elements from 0,, and rank-selected

lower order ideals from 0,,. For the most part, these results follow from known

properties of the lattice 0,,, the definition of the Mébius function, and the product

theorem for the Mobius function.

The most important result we establish in this section is a recurrence for the

u(0,,[lc])’s (Corollary 1.1.5). We do this via a “reduced Euler characteristic” interpre-

tation of the Mobius function. This recurrence, in its absolute value form (Corollary

1.1.7), allows us to quickly narrow down the possibilities for the maximum of the

Mébius function for rank-selected lower order ideals. The summation formula for the

u(0,,[lc])’s allows us to sharpen and complete the argument for Theorem 1.0.1.

Let us first determine the M6bius value of elements from 0,,.

Proposition 1.1.1 Let a: be an element of 0,, \ 1 with rank 1:. Then ”(23) = (—1)".

Proof. First note that

r
—
u

0,,\ Squ-xli,
V

n

 

where V is the poset with Hasse diagram

+1 -1

V=V.
0

This holds because of the following order-preserving bijection. Define 1) : 0,, — 1 —»

yX...bey

v

n

 

xi——H'i=(vl,...,v,,)

where

+1, if i E a:

v; = -1, If —i E 12

0, if i,—i ¢ 2:.
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Let a: = 2:1, . . . , at], be an element of rank k in 0,, — 1. Using the bijection 17 between

0,, — I and Y x - - - x I: and the product theorem for the Mobius function [17, Prop.
 v

3.8.2], we obtain n

#o.-i(w) = qu-..xv(n(x))

= #V(0)”'*#V(i1)k,

where the elements 0, +1 and —1 correspond to the labeling of V. Noting [ti/(0) = +1

and uv(+l) = pv(—l) = —1 gives the result. D

We are able to express p(0,,[k]) in two ways: in terms of a summation formula

(Corollary 1.1.2) or a recurrence (Corollary 1.1.5).

Corollary 1.1.2 The following summation formula holds for p(0,,[k]):

I:

now) = —( )3 (’J?)(—2)J' ). o s k s n.
i=0

Proof. Use Proposition 1.1.1 and the fact there are (2)21. elements of rank j in 0,,.

D

Corollary 1.1.3 u(0,,) = (—1)"+‘, n 2 1.

Proof. It is enough to observe u(0,,) = p(0,,[n]) (recall I has rank n +1 in 0,,). The

result then immediately follows once we apply the binomial theorem to the summation

expression for p(0,,[n]) given in Corollary 1.1.2. B

Combining Proposition 1.1.1 and Corollary 1.1.3 yields the following:

Proposition 1.1.4 Let a: be an element of 0,, with rank 1:. Then [1(33) 2 (—1)’°.
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Corollary 1.1.5 The u(0,,[k]) ’s satisfy the recurrence

#(Onlkl) = -2u(0n-1[l~‘ - 1]) + #(On—llkl),

where n 2 2, 0 < k < n, with boundary conditions

u(0,,[0]) = —l for n 2 0

and

u(0,,[n]) = (—1)"+1 for n 2 1.

We have two different proofs of this recurrence. The first applies the interpretation

of the Mobius function as counting certain chains in a poset. The second is a direct

application of the summation formula for p(0,,[lc]) and induction.

Before beginning our first proof, we briefly review the aforementioned interpreta—

tion of the the Mobius function. For P a bounded poset, we let c,- = c,-(P) denote

the number of chains of length i in P \ {0,1}. Here a chain of length i is a totally

ordered subset containing 2' + 1 elements.

A well-known result [17, Prop. 3.8.5] which relates chains with the Mobius func-

tion is

p(P)=—1+co—c1+c2—c3+... (1.1)

We are now ready to use this formulation of the Mébius function.

Proof 1. Let

a,- = # of chains of lengthj in 0,,_1[k — 1]

b, = # of chains of lengthj in 0,,_1[lc]

c,- = # of chains of length j in 0,,[lr].
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We will refer to chains of “type c,” to mean those chains of length j in 0,,[k]. Similar

terminology will be used for a,- and bj. Using equation (1.1), we can translate the

recurrence in terms of chain notation, i.e.,

—1+Co—C1+Cg—... = —2(—1+ao—al+a2—...) + (—1+bo—bl+bg—...) (1.2)

Regrouping the terms on the right side of equation (1.2) above gives

—1+co—c1+c2—...=—1+(2(1)+bo)—(2ao+b1)+(2al+b2)—(2a2+b3)+... (1.3)

The chains of type c, : .131 < 32 < < $j+1 consist of those chains of length j in

0,,[lc]. They belong to one of the following four classes:

(i) neither {+n} nor {—n} E x,- for any i

(ii) 3:1 = {+n} (“the chain starts with {+n}”)

(iii) 2:] = {—n} (“the chain starts with {—n}”)

(iv) all other remaining chains not accounted for in (i), (ii) or (iii).

If we let d,- denote the cardinality of the last category (iv) of chains, then we claim

Ci = bi + a,-, + a,_, + d,

= bj+20j_1+dj, (1.4)

with the convention that a..1 = 1 counts the number of empty chains in 0,,_1[k — 1].

Clearly the chains of type b,- and category (i) have the same cardinality via the identity

map. The collection of chains starting with {+n} in 0,,[lc] has the same cardinality

as the type aj._1 chains by defining a natural bijection 11 between these two sets. Let

c: {+n}=:c1<:rg<...<.r,-+1

be such a category (ii) chain. We have n E x,- for all i, so we can map c to the chain

u(c): 2:2 \ {+n} < < 1:,“ \ {+n},
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which is a type aJ-_1 chain. Conversely, if

E: y1<...<y,-

is a chain of type a,_1, map it to the chain

V'l(6): {+n} < y1 U {+n} < . . . < y,- U {+72}.

-1 1

Clearly, y 011 and you‘ are the identity maps on category (ii) and type aj-1 chains,

respectively, so these two collections have the same cardinality. We can similarly show

the cardinality of category (iii) chains equals aj_1 by uniformly replacing “+n” by

“—n” in this argument.

Substituting equation (1.4) for each of the c,- ’s appearing in the left side of equation

(1.3), we see that all the terms on the right side of equation (1.3) cancel out. The

remaining terms consist of an alternating sum of the dj’s. Hence the corollary will

follow once we have shown this alternating sum equals zero, i.e.

do—d, +d2—d3+...+(—1)""d,._1 =0. (1.5)

To complete this argument, we will construct a bijection A between certain chains

of type d,- and type dj-H, according to where {in} first occurs in each type of chain.

Here in stands for either +n or —n (but not both), depending upon which occurs in

the chain. An important observation to make is that if an < < 32,-“ is a chain of

length j in 0,,[k], then rank 2:,- 2 i.

Let {1,-,0 denote the cardinality of those type d,- chains :01 < < 23,-.” in 0,,[k]

with the property that if an, is the least element in the chain containing in then

2:}, = $5-1 U {in}. Let did be defined similarly, except that as), I) 35.1 U {in} (strict

containment). For h = 1, we let (to = 0. Note that d,- = dj’o + de for all j. From the

definitions of djp and de, we easily derive the following two properties:
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(i) at... = 0

(ii) (1.-., = 0.

Property (i) holds by virtue of the fact that type do chains do not include the chains
 

+71 or —n. Suppose property (ii) does not hold, i.e. dk_1,1 > 0. A typical type dk_1,1

chain looks like

yl <...<yh-1 <yhU{:l:n} <yh+1U{in} <...<ka{in}

with y}, at y),_1. But then

311 <---<yh-1<yh<yh+1<---<yk

is a chain of length It — 1 (all the y,’s are distinct). Thus rank y], 2 It implies rank

(31;, U {in}) _>_ k + 1, contradicting the fact that y], U {in} is an element from 0,,[k].

Hence property (ii) holds.

Next we show that the identity

din = dj+1.o (0 Si S k — 2) A (1-6)

holds. We define the map A : type d“ chains —* type dj+l,0 chains by

$1<...<$},_1 <xh<...<:r,-+1+-—+:r1 <...<:c;,_1<:c;,\{:t:n}<xh<...<xj+1

where h is the first position where in occurs in a type d,“ chain. We define the

inverse map A’1 : type dj+1,o chains ——t type d,“ chains by

y] < <y;,_1 <y;, <yh+1 < < yj+2i—iy1 < <yh_1 < yh+1 < <yj+2

where h + 1 is the first position where in occurs in a type d144,.) chain. It is easy to

check A"1 o A is the identity on type d“ chains and A o A’1 is the identity on type

dj+1’o chains, so A is a bijection.
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Since d, = dip + dJ-J, the alternating sum of dj’s in equation ( 1.5) simplifies to

verifying

d0,0 + (—1)k-1dk-1,l = 0a

which is indeed true by properties (i) and (ii).

Finally, the first boundary condition holds since

”(040D = —(#o,.(0))

= —l.

The second boundary condition holds by virtue of the fact u(0,,[n]) = u(0,,), which

equals (—1)"+l by Corollary 1.1.3. D

Proof 2. We first substitute the summation formula for u(0,,[lc]) given in Corollary

1.1.2 into the expression —2u(0,,-1[k — 1]) + u(0,,-1[k]). After shifting the index

of summation in the sum corresponding to —2u(0,,-1[k — 1]) and breaking off the

j = 0th term from the sum corresponding to p(0,,_1[lc]), we obtain

22(7) ,.>:,(";1)<-

—Z:2(’}:,1)(—2)’-§5(";1)(—2)j—1.
1:1 j=1

(1.7)

—2fl(0n_1[k — 1]) 'l’ P(0n-l lkl)

Using the facts (’i) = (2") + ("71) and (3)(—2)° = l, we combine the three terms
J 1-1 J

on the right side of equation (1.7) to get

-2#(0n-1lk — 11) + ”(0mm = — {3((7 ' 1) + (” T 1))(_2),. — (3)(—2)°
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which equals p(0,,[lc]) by Corollary 1.1.2. D

An easy result that we will need in order to complete the proof of Theorem 1.0.1

is the following corollary:

Corollary 1.1.6 I'Vhen k is odd u(0,,[k]) is positive and when k is even p(0,,[k]) is

negative (n 2 1, 0 S k S n).

Proof. The proof proceeds via induction on n and applying the recurrence for

p(0,,[lc]) described in Corollary 1.1.5. By the boundary conditions from Corollary

1.1.5, we have p(0,,[0]) = —1 and p(0,,[n]) = (-1)"‘“, the latter being positive for

n odd and negative for n even. In particular, the result holds for n = 1. Now assume

n > 1. We have handled the case for k = 0 or n, so now we will consider 1 S k S n— 1.

If It is odd, then by the induction hypothesis p(0,,-1[lc—1]) is negative and p(0,,-1[k])

is positive. Hence the recurrence given in Corollary 1.1.5 implies u(0,,[lc]) is positive.

A similar argument demonstrates u(0,,[lc]) is negative for it even. 0

Putting Corollaries 1.1.5 and 1.1.6 together, we see that the |p(0,,[k])|’s also

satisfy a recurrence.

Corollary 1.1.7 The |p(0,,[k])| satisfy the recurrence

lu(0n[kl)| = 2lll(0n—1lk -1])|+I#(0n-1[kl)l

with boundary conditions

l#(0n[01)| =1 for n 2 0

and

[p(0,,[n])| =1 for n 2 1.



16

1.2 Rank-Selected Lower Order Ideals

Before we determine the extremal configuration for |p(}')l, .7: an arbitrary lower

order ideal, it is natural for us to first study “simpler” ideals. In particular, we study

ideals .77 which are rank-selected lower order ideals, i.e. lower order ideals of the form

r = 0,,[lc] u 6.

In order to state a special case of the main theorem of this chapter, we make a

few more definitions. We say a sequence a0, a1, . . . , a,, of real numbers is unimodal if

for some It, 0 S k S n, we have

aoS...Sak>...>a,,.

Similarly, a sequence is strictly unimodal if we replace the inequalities by strict in-

equalities in the definition of unimodal. Finally, a sequence a,, . . . , a,, is almost strictly

unimodal if the sequence is strictly unimodal or is of the form

a, <02 < <ak=ak+1 >ak+2 > >a,,.

We are now ready to state a rank-selection lemma:

Lemma 1.2.1 For fixed n 2 2, |p(0,,[lc])| is strictly unimodal with unique maximum

occurring when lc = [27"].

Proof. The proof for rank-selected lower order ideals proceeds by induction on n.

By the recurrence for |u(0,,[lc])|, we quickly conclude the sequence {|u(0,,+1 [k])|}2:(1,

is almost unimodal and narrow down its maximum to one of two possibilities. We

will complete the argument by considering the equivalence class of n modulo 3 and

apply the summation formulas and recurrence relation for p(0,,[lc]) determined in the

previous section.
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Table 1.1: [p(0,,[lc])| for n = 2,3,4

 

 

   

k=12 3 4

n=2 3100

3 5 710

4L71715‘1
 

For n = 2,3, and 4, the lemma is easily checked to be true. Refer to Table 1.1.

Fix n and let lc" be the index It for which |p(0,,[lc])| is a maximum. By Corollary

1.1.7 [p(0,,[lc])| satisfies the recurrence

|#(0nl’€l)| = 2|}!(0n-1llc —1l)|+ |/1(0n—1[kl)|- (1-8)

By the induction hypothesis the sequences {u(0,,[lc])}',§;, and {p(0,,[lc])}2=," are

strictly increasing and decreasing, respectively. Applying the recurrence to these

monotone sequences, we conclude the sequences

{ |u(0n+1[kl)| it; (1-9)

and

{ |It(0n+ilk])| Hit-+1 (1.10)

are strictly increasing and strictly decreasing, respectively. Thus, equations (1.9)

and (1.10) imply we have pinned down the index lc corresponding to the maximum

Iu(0,,+1[lc])| as one of two possibilities: k" or k“ + 1. A case-by-case argument using

the equivalence class modulo 3 of n and applying the summation formula for u(0,,[lc])

will give the result.

For ease in notation, let

at = |#(0n-1[kl)|

bk : l/‘(On lklll
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CI: = lfl(0n+1lkl)l-

We first suppose n E 1(3). Since n + 1 5 2(3), we wish to show

Ck0+1 > Ck. .

Applying the recurrence (1.8), it suffices to show

2bk° + bk°+1 > 2bk°-1 + bk‘a

i.e.

51,0 > 2bk0_1 — 01,-1.1.

The summation formulas given in Corollary 1.1.2 and the fact n :— 1(3) enable us to

rewrite this as

bk' > bk‘-l + (bk-1 — bin-1)

PM it .

= bk°-1 + Z (.)(—2)Ja

j=k° 3

since lc“ is even. By the induction hypothesis we have bk. > bk-_1. If we can show

:1} (;)(—2)j is negative, then we will be finished. Write n as 3m + 1. Then

lc" = [339-] = 2m. Thus

k.“ n J- _ 3m+1 2m 3m+1 2m 1

Z (1')”) " ( l”) + (2m + 1)(_2) +j=k. 2m

(3m+1)!( 2m[ —1 [

(2m)!m! _) (m+1)(2m+1) ’

 

which is negative, as desired.

Next we consider n E 2(3). Since n + 1 E 0(3), we wish to show

cko+1> Cko. (1.11)
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Using the same method as in the case for n E 1(3) (and noting lc‘ is now odd), we

can rewrite equation (1.11) as

k'+1 n _

bk' > bk°—l - 2 (j)(-2)J-

j=k°

By the induction hypothesis we have bk. > b1..-“ so it remains to show 2:3} (3‘) (—2)j

is non-negative. If we write n as 3m + 2, then lc“ = [27"] = 2m + 1. Thus

k.

j=k. j (2m+1)!ml m+1 2m+2

= O.

  

Note the above calculation implies

019-1 = bk0+1 for n 5 2(3). (1.12)

We will need this result for the next case.

For n E 0(3) and n + 1 E 1(3), we wish to show

Ck°+1 < Ck' ,

01‘

bk. < 2bk0-1 - bko+1. (1.13)

Rewriting equation (1.13) in terms of elements from the n — lst row, we have

2ak°-l + ak' < 2 (2611..-: + ak°-1)"‘(20k° + “Iv-H),

i.e.

01:04.] < 4(1ko_2 — 30kt. (1.14)

Observe n — l E 2(3), so by equation (1.12) we conclude a,,--2 = a». (Recall here

that the index k“ is the index of the maximum in the nth, not the n — lst, row. The
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index corresponding to the maximum in the n — lst row is k“ — 1.) Hence equation

(1.14) becomes

ak‘+t < a»,

which holds by the induction hypothesis on the n —. lst row. [3

1.3 Arbitrary Lower Order Ideals

In this section we give the proof of Theorem 1.0.1. To do so, we develop the notions

of the shadow A(S') and the dual shadow V(S') of elements 5' of a fixed rank from 0,,.

Using bipartite graph arguments, we obtain estimates for A(S) and V(S) reminiscent

of Bollobas’ work on shadows for hypergraphs [10].

For the proof of Theorem 1.0.1 we suppose we have a lower order ideal .7: Q 0,,

which maximizes |p(.7-')|. By the shadow lemmas we find bounds for the “shape” of

.7. Next we find rank-selected lower order ideals contained in .7: and containing .7". A

lemma due to Baclawski [2, Lemma 4.6] and independently to Steékin [20] enable us

to “peel off” elements from these ideals. Hence, we are able'to compare the Mobius

values of these configurations with .7: and complete the proof.

Suppose we are given elements 5' all of the same rank in a poset. Since we are

working with lower order ideals, we would naturally like to be able to estimate the

number of elements in the poset covered by S. More formally, we define the shadow

of a subset S of rank r in 0,, by

A(S) = {B E 0,,(r — 1) : B Q Afor some/1 E S}.

We then have an inequality involving [13(5)] and [5].

Lemma 1.3.1 (Shadow Lemmafor 0,,) US Q 0,,(r), where r 2 313113, then |A(S)I 2

[S] with equality only when n E 2(3) and S = 0,,(315'3).
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Proof. For the inequality we utilize an edge-counting argument. Consider the bipar-

tite graph G formed in the Hasse diagram of 0,, by S and A(S). Each vertex A E S

has degree r, so the graph G has exactly rISI edges. Also, every vertex B E A(S') has

degree at most 2(n — r+1), so the number of edges in G is at most 2(n — r +1)|A(S)|.

Thus ’

7‘ISI S 2(n - r +1)|A(5)|.

i.e.

n-r+ 1)
 

ISI 5 2‘ |A(S)I.

Thus when r > 2—"53, the first part of the lemma follows.

If n E 2(3) and r = 3131—2, then the above argument works as long as some vertex

in A(S') does not have degree 31:3. If every vertex B 6 A(S') has this degree, then

in 0,, the vertices of A(.S') are only adjacent to vertices of S (and vice-versa). Hence

if S' C 0,,(r) (strict containment), this would contradict shellability of the chain

complex of 0,, ([5], [7]). (See Section 2.1 for information about shellability and the

chain complex.) B

In an analogous manner, we define the dual shadow of S, where S is a subset of

rank r in 0,,, by

V(S')= {BE 0,,(r+1): B2 Afor some/16 S}.

We also have a dual shadow lemma for 0,,. Since its proof is virtually identical to

that of Lemma 1.3.1, we shall simply state the result.

 Lemma 1.3.2 (Dual Shadow Lemma for 0,,) US 9 0,,(r) where r S “34, then

IV(S)I Z [S] with equality only when n E 2(3) and S = 0,,(3”3—"1-). Cl

Now we are ready to give a proof of Theorem 1.0.1. Let .7: g 0,, be a lower order

ideal with maximum |p(f')| and let it be the maximum rank of an element in T. We
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will first derive some expressions that will enable us to compare u(.77) with p(.’F[lc— 1])

and u(.7"[k — 2]), yielding an upper bound for k. The Shadow Lemma for 0,, and the

following proposition enable us to do this. Here max P denotes the set of maximal

elements of the poset P. Recall that for P a bounded poset, P = P \ {0,1}.

Proposition 1.3.3 [2, Lemma 4.6] [20] Let P be a bounded poset. IfT Q max P then

up) = MP \ T) — 2: #(0. .). (1.15)
267'

This result follows by counting the chains in P not containing elements of T and the

chains in P containing elements of T. Proposition 1.3.3 is useful in the sense that it

enables us to see how the Mébius function of a poset changes if we “peel off” some

(or all) of its top elements.

Applying equation (1.15) to P = .7, T = f(lc), and recalling p(0,:r) = (—1)k for

a: E 0,, of rank It gives

#(f) = 11(le -1])-(-1)"lf'(k)l,

01‘

#(flk-1])= #(f')+(-1)"lf(k)l- (1-16)

Similarly applying equation (1.15) to P = .7:[k — 1], T = .7:(lc — 1), substituting for

,u(f[lc — 1]) in equation (1.16), and solving for u(.7-'[k — 2]) gives

#(f'lk - 2]) = #(f) - (-1)"(|}'(’c -1)l - l-7"(k)|)- (1.17)

Since .7 is a lower order ideal, we have Af'Uc) Q .77(lc — 1), so

|f(k —1)|-IA.7-‘(Ic)| 2 o.
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Suppose k > [354]. By the Shadow Lemma 1.3.1 we know

lAf(k)| > WHI-

Hence

If'(lc—1)|—|f(k)| > 0.

After considering all the possibilities for the sign of p(.7") and the parity of k, we see

one of equations (1.16), (1.17) implies Iu(}')| is not a maximum, contradicting the

fact that .7 Q 0,, is an idea] with maximum |p(f)|. Hence I: S [23”].

We will now work with the Dual Shadow Lemma to extract further information

about the structure of .7". Let

f°={B: Beon\f}

and define

I = min{rank(B): B E fc}.

Form g = .7: U f°(t’) and ’H = Q U ff“ + 1). As before, we apply equation (1.15)

first to P = g, T = f°(€) and then to P = 'H, T 2 176(6 + 1) to obtain equations

resembling equations (1.16) and (1.17):

#(9) =It(-7") -(-1)‘|F(€)| (1-18)

#(H) = #(f)+(-1)'(|-7°(€+1)|-|~7"c(")|)- (1.19)

Now Vfcu) <_: .7-‘°(t +1), implying [me +1)| — IVfc(t)| 2 0. Suppose e < 2'1—3-1.

We apply the Dual Shadow Lemma 1.3.2 to conclude

If‘(€ +1)| — |f°(€)| > 0.
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Once we consider all the possibilities for the sign of p(}') and the parity of t, we see

that one of equations (1.18), (1.19) implies |u(f')| is not a maximum. Hence we must

have t 2 2—"§—‘.

To finish this argument, we reason in the following manner: for each equivalence

class of n modulo 3, the bounds for lc and I will enable us to find rank-selected lower

order ideal configurations containing .7: and contained in .77, respectively. As before,

we will apply equation ( 1.15) to obtain expressions for the Mébius function of these

two lower order ideal configurations, apply a parity and sign argument, and then the

rank-selection Lemma 1.2.1 to derive the required result.

By definition of k and t’, we have k 2 t’ — 1. We first consider the case n E 0(3).

We have

kze—1z%—1,

and from before

implying

For convenience, let r = 33“. Then we have

0,,([r —1])g 7? g 0..([r]).

where the first containment follows from the definition of t and its bounds, while the

second from the definition of k and its bounds. Note that r is even in this case, so by

equation ( 1.16) we have

#(Onlr -1]) = #(7’) + |~7"(r)|- (1-20)
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By the same token, equation (1.18) becomes

#(Onlt‘l) =14?) - |0n(r)\}'(7‘)|- (121)

If u(.7-') > 0, then equation (1.20) and the maximality of |u(.7-')| imply .77(r) = 0.

Hence ? = 0,, [r — 1] = 0n[[%"] - 1], contradicting the rank-selection Lemma 1.2.1.

Otherwise u(f') < 0, so equation (1.21) plus the maximality of |,u(.7:)| imply 0,,(r) =

.T(r). Thus If = 0,,[r] = 0,,[[2—;—]], as desired.

Suppose n E 1(3). Again, by the inequalities derived for lc and f and their

definitions, we obtain

  

  

1

leaf—122,1;- —1andlc_<_2n;1,

implying

2. 1 2 1

k: n;- or n; —1.

Letting r = Eff—l, we have

0n([" - 1]) Q 77' E 0n(l7‘l)-

Notice r is odd in this case, so again equations (1.16) and (1.18) reduce to

#(Onlr -11) = #(f') - |f(r)| (1-22)

and

#(Onlrl) = #(f') + l0n(r)\.7"(r)l- (1-23)

If p(}') > 0, then equation (1.23) and the maximality of |u(f')| imply 0,,(r) = .7:(r),

so P = 0,,[[%”] +1], contradicting Lemma 1.2.1. If u(.7:) < 0, then equation (1.22)

and the maximality of Iu(.7:)l imply 7(r) = 0. Thus k = r — 1 and IP = 0,,[[2—;4]], as

desired.
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Finally, suppose n E 2(3). We have the bounds

  

   

 

2 —l 2 2

k2 " —1andkS "3+, (1.24)

implying

2n —1 2n —1 2n —1

lc = — .3 l, 3 or 3 +1

Letting r = “3‘1 we have

0n([r —1])§ .7- <_: 0n([r +1]).

Suppose I: = r + 1. We will see that this will lead to a contradiction. The choices for

lc will then reduce to r - 1 or r, and the remainder of the argument will proceed as

in the n E 0(3) and n E 1(3) cases.

Since r is odd in this case, equations (1.16) and (1.17) become

#(firi) = M) + |f(r +1)| (1.25)

and

”(our "11) =H(F)+lf'(r +1)| — Iflrn. (1.26)

If u(.7-') > 0 then equation (1.25) and the maximality of |p(}')| imply .77(r + 1) = 0,

contrary to our assumption on k. Thus ”(f) < 0. However, recall that the Shadow

Lemma applied to S = f(r + 1) has

lflr +1)| S IAN" +1)| S lf(r)l.

implying the difference If(r + 1)] - |f(r)| S 0. If the difference is negative, this

contradicts the maximality of Ip(.77)]. If the difference is zero, then (by the Shadow

Lemma again) f'(r + 1) = 0,,(2—'§fl). So P = 0,,[2—"3fl], contradicting Lemma 1.2.1.
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The present situation is k is r — 1 or r, so we have

0n(lr — 1]) S; 7- Q 0n(lrl)

Since r is odd, the same reasoning as in the n E 1(3) case shows that equations (1.22)

and (1.23) continue to hold. Now if #07) < 0, equation (1.22) and the maximality of

Ip(.7)| imply .7(r) = 0. Thus T = 0,,[r — 1] = 0n[['2;_;lJ - 1], contradicting the rank-

selection Lemma 1.2.1. Therefore, [1(f') > 0, so the maximality of |u(.7-')[ implies

0.0") \ fl") = 0. i-e. 7 = Onlrl = 0..[L'%‘J].

We thus conclude the extremal configuration occurring in Lemma 1.2.1 coincides

with the extremal configuration for Theorem 1. B

Table 1.2 displays the extremal configuration and the Mébius values of the lower

order ideal case for 0,,, n = 1,... ,25.



Table 1.2: Lower Order Ideal Extremal Configuration for 0,,, n = 1,. . .,25

 

 

 

 

 

  

Extremal

n Configuration .7" |p(0,, (.77))I

1 041] 1

2 02m 3

3 0.12] 7

4 0.42] 17

5 05[3] 49

6 0.,[4] 129

7 07 [4] 351

8 0.[5] 1023

9 09[6] 2815

10 0,0[6] 7937

11 0n[7] 23297

12 0,2[8] 65537

13 0,3[8] 187903

14 0149] 553983

15 01:.[10] 1579007

16 0,6[10] 4571137

17 0,7[11] 13516801

18 0,8[12] 38862849

19 019[12] 113213439

20 0,0[13] 335478783

21 021[14] 970522623

22 022[14] 2839740417

23 023[15] 8428126209

24 02.1[16] 24494735361

25 025[16] 71904919551
  



Chapter 2

Interval of Rank-Selections

In this chapter we are interested in maximizing |u(0,,[i,j])| where [i, j] Q [n] is

an interval of ranks from 0,,. To do this, we will translate this problem to one of

enumerating a certain class of permutations. A special edge-labeling of the poset 0,,,

called an R—labeling, enables us to perform this conversion.

The main result we will prove in this chapter is the following:

Theorem 2.0.4 For intervals of rank-selections [i,j] Q [n] of 0,,, where n > 0 is

fired and n 74 2, [p(0,,(S))[ achieves a maximum at one (or‘possibly both) of

 

 

 

2—”, 4”{,5} [2—"51—5, 4—”] when n:— 0(5)

:irglfl,215;4:,[_n_5-L3, -—'151‘ when n=_ 1(5)

5: 2—"51—1, ‘—”5"3 [2—"5*§,fl‘i2: whennE2(5)

3311,5—"5'2 2%, 44%;; when n E 3(5)

:3—5'153, inf—1 when n E 4(5). 
For n = 2, the maxima occur when

5: [1,1].» [2,2].

We conjecture that the following result is true.

29
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Conjecture 2.0.5 For intervals of rank-selections [i,j] Q [n] of 0,,, where n > 0 is

fixed and n 94 2, |p(0,,(S'))| achieves a unique maximum when

s = 112591145111.

For n = 2, the maxima occur when

S = [1,1] or [2,2].

In section 3 we provide numerical evidence to support this conjecture.

We will return to the concept of edge-labelings, specifically EL- and CL-labelings,

in the next chapter.

2.1 Edge and Chain Labelings

In order to motivate the importance of edge and chain labelings, we first briefly

develop the notion of shellability of complexes. This topological condition implies

a certain result about simplicial homology. We will see that CL-shellings and EL-

shellings of order complexes are each combinatorial conditions which imply shellability

of the order complex.

We follow [6] for all notation and terminology related to shellability and homology.

A simplicial complex A is a collection of subsets of a finite set V (called the vertex

set) such that

(i) ifFEAandGQFthenGEA

(ii) ifvEVthen {v}€A.

All the complexes we will work with will be nonvoid, so 0 E A. The members of

A are called simplices or faces, while the maximal faces of A are called facets. The
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dimension of a face F E A is [F | — 1, while the dimension of a complex is

dimA=max {dimF: FE A}.

A complex is pure is all of its facets are equicardinal.

Let A be a pure simplicial complex. A shelling of A is a linear order F1, F2, . . . , F,

of the facets of A satisfying the following condition:

Given facets F,- and F,- with i < j, there exists a facet F], with k < j such

that Fgfl F,- Q FknFj, where [PkflFjI = dim A— 1.

We call a complex shellable if it admits a shelling. If F“. . . ,F, is a listing of the

facets of A in a shelling order, let

A,-={GEA: GQkaorsomekSi}

and let

R(E)={I€F.': F£\-’BEAi—l}

be the restriction of F}.

We next review simplicial homology and homology of a shellable complex. Let

A be a simplicial complex of dimension d on the vertex set V. Assume that V has

been given some linear order. Hence, if F = {vo,v1, . . . ,vk} is a nonempty face of

dimension It in A, we will write it as [v0, v1, . . . ,vk] if v0 < v, < . .. < v), with respect

to the linear ordering of V. Let Ck(A) denote the free abelian group generated by

the set of k-dimensional faces of A written in canonical form. Notice that 0-1 E Z

and Co(A) E 2'”, where Z denotes the integers. Define the boundary operator

0),: Ck(A) -t Ck_1(A)
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by

l:

8k[vo, v1, . . . , vk] = z(—1)“[vo, v1, . . . , 13,-, . . . , vk].

i=0

(Here :13; means delete the element x,.) One can verify that 8;, 0 3H1 for all k E Z.

The kernel of the boundary operator 8;, forms a group Zk(A) called the group of

k-cycles, i.e.,

Z401) = (P 6 04(13): (91:00) = 0 )-

Let B,,(A) be the group generated by the image of 6“,,

EMA) = (0 6 014A) = 0 = 5m“), T E 0,,,(A) ),

called the group of k-dimensional boundaries. Notice that B,,(A) Q Zk(A) for k E Z.

The reduced homology groups are the quotient groups defined by

HklA) = Zk(A)/Bk(A)-

We call a complex A acyclic over Z if BAA) = 0 for all k E Z.

An important result about the reduced homology of a shellable complex is the

following:

Theorem 2.1.1 [6, Theorem 7.7.2] Let A be a shellable d-dimensional complex with

facets .7". Furthermore, suppose

{FEfz 72(17): F} = {F1,...,F,},

where ’R(F) is the restriction operator induced by some shelling. Then

Mali :3.

Also, there are cycles 1),, . . . ,p¢ E BAA) uniquely determined by

1 j = I:

0 otherwise.
Pk(Fj) = {

Finally, {p1, . . . ,p,} is a basis of the free group B,,(A).
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For P a poset, we can define a simplicial complex A(P) called the order complex.

We take the vertices of A(P) to be the elements of P and the faces of A(P) to be

the chains of P. Notice that the facets of A(P) are simply the maximal chains of P.

If P is a finite graded poset, we say it is shellable if its order complex A(P) is

shellable. It would be useful to have a combinatorial criterion to show that the order

complex of a poset is shellable. The concepts of EL-labelings and CL-labelings each

imply shellability of the order complex.

Let P be a finite graded poset. An edge-labeling of P is a map A : {(x, y) E P x P :

x -< y} —> A, where A is some poset (usually the integers). We say an unrefinable

chain

xo-<x1-<...-<xk

in a poset with edge-labeling A is rising if

A(30,$1)S A(11,$2)S . . . S A(Zk-1,$k).

An edge labeling A of a poset P is called an R-labeling if for every interval [x, y]

in P there is a unique rising maximal chain c in [x, y]. Furthermore, we call an R-

labeling A an EL-labeling (edge lexicographical labeling) if this unique rising maximal

chain c is lexicographically least among all other maximal chains in [x, y]. A graded

poset that admits an EL-labeling is said to be EL-shellable (edge lexicographically

shellable).

Using the labeling of the elements of 0,, in section 0.1, we see that 0,, has a very

natural R—labeling:

Proposition 2.1.2 Let 0,, be the lattice of signed subsets of the elements [n] ordered

by inclusion with 1 adjoined. If we label each edge (x,y) E 0,, by

.(.,.>={g,\e 33:;
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, then A is an R-labeling of 0,,. In fact, this A is also an EL-labeling of 0,,, so 0,, is

EL-shellable.

Proof. We first observe the edge-labeling A of 0,, is well—defined, for if x «< y with

y 791, then Ix] + 1 = lyl. Hence y \ x is a single integer. For x -< y =1 in 0,, (i.e. x

is a coatom of 0,,), the edge (x, y) is labeled by the integer 0.

Notice that any maximal chain in the interval [x, y], y ;£ 1, is labeled by a sequence

of integers in the set {y\x}. Hence, the unique rising maximal chain c in [x, y] consists

of the elements of y\x ordered with respect to the natural order of the integers. (Here

we are interchangeably thinking of a maximal chain in [x, y] as a set of labeled edges

from x to y.)

For y = l and x = {1:1, . . . ,xk} of rank k S n, any maximal chain in [x,y] = [x, 1]

is labeled by some signing of the n — k + 1 elements

{0} U [n] \ {|x1|, . . . , kal} = {0} U {21, . . . ,z,,_k}

with 21 > 22 > . .. > z,,_;,. Hence, the unique rising chain c is

c: x < xU{—zl} < xU {—zl,—22} < < xU{—zl,...,—z,,_1,} < 0.

By construction, this chain is lexicographically least among all other maximal chains

in the interval [x, 1], so A is in fact an EL-labeling of 0,,. D

The Boolean algebra has a well-known R-labeling.

Proposition 2.1.3 Let B,, be the lattice of subsets of the elements [n] ordered by

inclusion. If we label each edge (x,y) 6 B,, by

A(3:11,) : y\x,

then A is an R-labeling of B,,. In fact, this A is also an EL-labeling of B,,, so 8,, is

EL-shellable.
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Let P be a graded poset of rank n. Let

£‘(P) = {(c,x,y): c is a maximal chain of P, x,y E c and x 4 y}.

A chain-edge labeling of P is a map A : £‘(P) -+ A, where A is some poset (usually

the integers), satisfying the following condition: if c and c’ are two maximal chains

inP

c 0=xo4x14...4x,,=1

c’ 0=x64x',4 4x],=1

whose first d edges coincide, then the corresponding labels must also coincide along

these d edges, i.e.

A(c,x,_1,x,-) = A(c’,x:-_,,x') for i = 1,. . . ,d.

Suppose we have assigned a chain-edge labeling A to P. Let [x,y] be an interval

in P with I: = p(x,y) and r : 0 = r0 4 r1 4 - - - 4 rp(,) = x be a saturated chain from

0 to x. We call the pair ([x,y],r) a rooted interval with root r, denoted by [x, y],. If

e : x = x0 4 x1 4 . . . 4 x1, = y is a maximal chain in [x, y],, then it has a well-defined

induced labeling given by

A(C, xi-li (17,) = A(ma $p(x)+i-—1a xp(x)+i)a Z: 13 - - ° 3 k)

where m is any maximal chain in P containing r and c. We say the maximal chain c

in a rooted interval [x, y], is increasing if

A(c,xo,x1) < A(c,x1,x2) < < A(c,xk_1,x;,).

A chain-edge labeling A is a CL-labeling (chain lexicographical labeling) if for

every rooted interval [x,y], in P: (i) there is a unique increasing maximal chain c
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in [x,y],, and (ii) for any other maximal chain c’ in [x,y],, c is lexicographically

least. Any graded poset which admits a CL-labeling is called CL-shellable (chain

lexicographically shellable).

From the definitions it is easy to see that if P is EL-shellable then it is CL-

shellable. A theorem of Bj6rner links the ideas of EL-shellability, CL-shellability and

shellability.

Proposition 2.1.4 [5, Theorem 2.3 ] For P a graded poset we have the following

implications: P is EL-shellable => P is CL-shellable => P is shellable.

Using recursive atom orderings (a concept equivalent to CL-shellability), Bjérner and

Wachs proved the following theorem:

Theorem 2.1.5 [9, Theorem 4.5] Let P be a convex polytope and Lp be its lattice of

faces. Then Lp is CL-shellable.

We will need this result for the proof of Theorem 3.0.8.

2.2 Augmented Signed Permutations and Rank-

selections

Given the R—labeling of 0,, described in section 1, we can use this to convert the

statement of Conjecture 2.0.5 to one of enumerating augmented signed permutations

of the integers [n]. Before doing this, we first recall some known results about R-

labelings and the Mébius function of rank-selections.

Let ap(S) = 0(5) be the number of maximal chains in P(S) U {0,1}. We define

the beta invariant by

3(5) = Z(-1)'S\T'0(T)o
rgs
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By the Principle of Inclusion and Exclusion, we have

07(3) = Z 3(T).

Tgs

We have the following proposition, due to Stanley.

Proposition 2.2.1 [16, Proposition 14.1] u(P(S)) = (—1)'S'+IB(S).

Let it be a permutation of the n letters {a1 , . . . , a,,}. We will write all permutations

using one-line notation:

1r = «(a1)7r(ag)~-7r(a,,)

= inn-”15,.

We define the descent set of 1r = «1772 - - - 1r,, by

D(1r) = [i] 7r, > 77.4,}.

As an example, if 17 = 43152, then D(7r) = {1,2,4}. We let the set of all augmented

signed permutations of [n] be the following:

5,? = {0:31...s,,s,,+1: {sl,...,s,,} C {1,2,...,n}U{1,2,...,n},

|s,-| 3£ |st for i 96 j, and s,,+1 = 0}.

(Here we are using the bar notation (‘1 to denote —a.) For example,

5; = {120, 120,120,i20,210,210,210,210}.

Note that the maximal chains in 0,, with respect to the labeling A described in

Proposition 2.1.2 correspond with the augmented signed permutations 5:. As an

example, there are seven maximal chains in 03 with descent set {1, 2}:

{3210, 3120, 3120, 2130, 2130, 1230, I230}
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Observe that |u(03[2])| = 7. The fact that these two numbers coincide is explained

by Corollary 2.2.3.

Theorem 2.2.2 Let P be a poset of rank n + 1 and S Q [n]. If P admits an R-

labeling, then

6(5) = the number of maximal chains in P with descent set S

(with respect to the given R-labeling A).

By Proposition 2.2.1, we have an important corollary.

Corollary 2.2.3 Under the same hypotheses as Theorem 2.2.2 we have

Iu(P(S))| = the number of maximal chains in P with descent set S

(with respect to the given R-labeling A ).

As a remark, Theorem 2.2.2 and Corollary 2.2.3 still hold if “R-labeling A” is replaced

by “EL-labeling A” or “CL-labeling A”.

2.3 Proof of the Interval Case for 0,,

We have established that 0,, has an R—labeling in PropoSition 2.1.2. In light of

Corollary 2.2.3 we will now use the notation

371(5) = “4071(5)“,

where S Q [n]. We will also use the notation

871(5) = {7r 6 Sf: D(1r)= S}.

(Thus 6.45) = an(S)l')

The problem of maximizing |u(0,,(S))|, where S runs over all interval rank-

selections [i, j] Q [n], is equivalent to maximizing the number of permutations in

B,,( S), where S runs over all intervals of descents [i , j] Q [n]. To tackle this problem,
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we fix n > 0 and form a triangular array of the 6,,[i, j]’s. The jth row consists of the

values

fl.[1,n—j+1],s..[2,n-j+2], ...,fl,,[j,n] (j=1,...,n).

For example,

012 1

022 1

3 3

03! 1

7 5

5 11 7

To prove Theorem 2.0.4, we look at various configurations in the triangles. In other

words, we try to determine the maximum value in a given row, a given diagonal, or a

given antidiagonal. Using bipartite graph arguments we have been able to determine

the maximum value of the diagonal case completely. (Here a diagonal means the

sequence of B,,[i, j]’s with j fixed, 1 S i S j, and an antidiagonal means the sequence

of ,6,,[i,j]’s with i fixed, i S j S n.) Applying the same techniques to the row and

antidiagonal cases narrows down the maximum to one or two possibilities. Once we

have found the maximum behavior in the row, diagonal and antidiagonal sequences,

we will intersect this information to yield Theorem 2.0.4.

To get the reader accustomed to working with these augmented permutations,

we now give a “faster” proof of Corollary 1.1.7. In fact, Proposition 2.3.1 gives a

recurrence for any ,Bn[i, j], not just the B,,[1, j]’s.
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Proposition 2.3.1 For the triangular array of 6,,[i, j] ’s, with n > 1, the following

recurrences hold:

(a) 6.[i.j]=2fl.-.[i—1.j-1]+29.-.[z',j—11+fl.—.Iz'.j]. 1545704

(a) fln[i,n]=2fl,,_,[i-1,n—1]+B,,_1[i,n—1], 19's..

with boundary conditions

5111.1] = 1 and 5.40) =1 (n 21).

Proof. Let

8.03:] = {7 e 82‘: 0(7) = [i,j]}

B:[i,j] = {7r 6 B,,[i,j] : 17 contains the element n}

B;[i,j] = {1r 6 B,,[i,j]: 77 contains the element a}.

For shorthand we will sometimes use 3, 8+ and 8‘, when context makes the value

of the other parameters clear.

Each of the recurrences stated in this proposition follows easily after observing

what happens if we remove the element n or n from a permutation in Sf. For (i),

let 1r = al---a,,a,,+1 = a1---a,,0 E B,,[i,j]. If 7r 6 3+, then a,- = n. Deleting the

element 71 from 1r gives the bijection

B:[z',j] «—» B,,-,[i— 1,j — 1] UB,,_1[i,j — 1] (2.1)

where the first term on the right side of equation (2.1) corresponds to a,-_1 > a,-+1 and

the second term to a,--1 < ag+1. If 1r 6 B" then either a, = n or a,“ = n. Deleting

the element a from 11' gives the bijection

B;[i,j] +—i B,,-,[i — l,j — 1] U B,,-1[i,j] U Bn_1[i,j— 1]. (2.2)
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(Again, the right side of equation (2.2) corresponds to the three cases a, = n, a,“ = n

with a,- > “1+2, and a,“ = n with a,- < din). After taking cardinalities, the

correspondences in (2.1) and (2.2) imply recurrence (i).

Part (ii) follows from the bijections

B:[i,n] +——+ B,,-;[i — 1,n — 1] U B,,_1[i,n — 1] (2.3)

and

B;[i,n] 4—-—-+ B,,-,[i — 1,n — 1]. (2.4)

The boundary conditions follow from the facts

Bl[1, 1] = (1,0)

and

B,,(0)=(1'1.,n—1,...,1,0)D

 

We will need some notation before starting the various proofs to find the max-

imum value in a given row, diagonal or antidiagonal from the triangular array of

,B,,[i, j]’s. Let 77 = 0102 - - - a,, be any strictly increasing (respectively, strictly decreas-

ing) sequence of integers. For a ¢ 77 an integer, we let 1'r denote the sequence obtained

by inserting [a] in the sequence 7r so that it remains strictly increasing (respectively,

strictly decreasing). Similarly, we let 71' denote the sequence obtained by inserting

—|a] in the sequence 7r, and 7r’ denote the sequence obtained by inserting a into the

sequence 7r. In each case, we add the element -—|a| or a into the sequence 7r so that

the resulting sequence remains strictly increasing (respectively, strictly decreasing).

For a 6 7r let 7? denote the sequence obtained by removing the element a from 77.

(Note that since 7r was monotone, the sequence ir will still be monotone.)
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Recall that a strictly unimodal sequence is a sequence a], . . . , a,, of the form

a1<a2<~~<ak>ak+1>-°->a,,.

and a sequence a,, . . . ,a,, is almost strictly unimodal if the sequence is strictly uni-

modal or is of the form

a1<ag <<ak=ak+1>ak+2 > > a,,.

We are now ready to begin the proofs.

Proposition 2.3.2 (How Sequences) For r 2 0 the sequence

,3,,[1,1+ r],fl,,[2,2 + r], . . . ,flnIn — r, n]

is almost strictly unimodal with maximum occurring at one (or both) of

Bully-37251, [1%211 + r]. flnllglifll. [ES—”l + 7‘1-

For r = 0 and n E 2(3), the sequence

B,,[1,1],B,,[2, 2],. . . , B,,In, n]

is almost strictly unimodal with maximum occurring at

 

flnllz'TJa [Sill] = Alibi-‘1, [3311]-

Proof. We first show 6,,[i—1,i+ r — 1] < 6,,[i,i + r] for i S [313$]. To do this

we construct a bipartite graph G with vertex bipartition V1 = B,,[i — 1, i + r — 1] and

V,» = B,,[i,i + r] and show that [VII < IV2I.

Given 77 = a1 - - - a,,0 E V], we can write 7r = 71'171'271'30 with

771 = 01°”ai—1

1r2 = (Ia-”an.-

773 = ai+r+l°"an-
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Note that

77 =01 < < a,-_1 > a, > >a,-+,. <a,~+,.+1< <a,, <0,

so 7r1, 71'; and W3 are monotone increasing, decreasing and increasing, respectively.

Bali—1.i+r—1] B,,[i,i+r]

07-1 0 be

A, A A. A”

01 /

b1

Let 77 6 V1. For each a 6 7r;; form the permutations

U = 7T17l'271'30,

i.e., remove the element a from W3 and adjoin [a] to 7r, with respect to the usual

ordering, and

0’ = 217137130,

i.e., remove the element a from W3 and adjoin -IaI to 77, with respect to the usual

ordering. Notice that 0’ and 6 are elements of 8,, Ii, i + 1']. Now given 7r 6 V1, draw an

edge of G to every 6 and 6 that can be obtained from 1r in the manner just described.

In the bipartite graph constructed, every vertex in V1 has degree equal to 2I773| =

2(n — i — r). Conversely, each vertex in V: has degree at most I711] = |th = i since the

element a 6 n3 is negative. Notice there are some vertices r = b, - - - b,,0 6 V2 with

degree < i. For instance, if b, = n then 6 cannot be obtained from a 77 with n E 7r3

since we always have min «:1 > min 772. Hence

2(n - i - r)IV1I < z°|V2l.
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01'

i
 

(n-i-r)

Therefore, for i _<_ 113$ we have [VII < IV2I.

We next show fln[i,i+r] > fln[i+1,i+r+1] for [Ln-331] S i S n—r—l. In asimilar

fashion, we construct a bipartite graph with vertex bipartition V1 = B,,[i + 1, i + 1' +1]

and V; = Bn[i,i + r].

Bn[i+1,i+r+1] B,,[z',i+r]

05H 0 be A"

flu
A o

ai+r+2 / bi+r+l

Given 7r = 1r,7r21r30 6 V1, where

7n = 01 < < a,,

7r2 = a,“ > . .. > ag+r+1,

”3 = ag+r+2 < o o o < an,

remove any a 6 1r, and draw an edge to every permutation in V1» of the form

6' = irmfirgO.

Here we have added —|a| < 0 to 1'3 with respect to the usual ordering because all

the elements of 63 must be negative. Observe 6 E B,,[i,i + r] and every vertex in

V; has degree |1r1| = i. Every vertex in V; has degree at most 2(n — i — r) because
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|1i'3l :2 n — i — r and there are two choices for the signing of an element a E 63 when

it is put back into in. The degree of a vertex could be less than 2(n — i — r). If

1' = b1 ~ - - bnO E Bn[i, i + r] with b;+,.+1 = ii, then moving the element n into b1 - - . 6.1

would give a permutation with i a member of its descent set. So we have

i|V1|< 2(n - i - r)IV2I-

Thus, we obtain |V1|< |V2| for i Z gig-24.

The previous argument shows 3,,[12 - r — 1,n — 1] > B,,[n — r, n] for r S n — 3.

If r = n — 1 there is no argument since fln[0,n — 1](= fln(0)) is not an element of

the row sequence. For r = n — 2 the result follows by using the actual summation

formulas for [3,41, j]. We wish to show

B,,[Ln—l] > fln[2,n]

= fln[1, 1] (2.5)

To obtain the equality in equation (2.5), we need a lemma.

Lemma 2.3.3 For 5' Q [n] the following equality holds

,Bn(S) = {inflnl \ 5)- '3

This lemma is proved by noting that there is a bijection B,,(S') H Bn([n] \ S) via the

bar operator which sends 1r = a1 - - - a,,O E B,,(S) to 7r = 61- - - 6,.0 E Bn([n] \ S).

Now substitute the summation formula from Corollary 1.1.2 in equation (2.5). We

see it is enough to show

I- )3 (:)(-2)"| > I- i (:)(—2)J'I. (2.6)
i=0 i=0
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Applying the the binomial theorem the left side of equation (2.6) and simplifying the

right side of equation (2.6) we obtain

|—(—1)"+(—2)"|=2"-—1>|—1+2n|=2n—1.

Here we are using the fact 12 Z 3 to simplify the quantities appearing in the absolute

value signs. (Recall r = n — 2 > 0.) But 2" > 212 when n 2 3, so equation (2.6) holds

for n 2 3.

It remains to show

Bull—232.], [273]] = flnllzé‘l, [ZS—"ll

for n 5 2(3). (This is the r = 0 case.) Write n = 3m + 2. Then

l'zbfll : l6m3 4] = 2m+1

and

[23"] = 2m + 2

Note that

[Mid] = lu(0n[i, 2W

= (number of elements in 0,, of rank 2) — 1.

Thus,

2m+1

= 22m+lmlffifiéfiflm + 2 — 2(m +1)]

all-”£1. L231] - M's]. rs“ = (3m + 2),...H _ (3:13),...”

=O,Cl

We conjecture that the row sequences obtain their maxima as follows.
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Conjecture 2.3.4 For fixed 0 S r S n — 1 the sequence

,Bn[1,1+ r], fln[2,2 + r], . . . ,fin[n — r, n]

is almost strictly unimodal. Its maxima only occur at

:Bn[l.2n——§hfl.l’ [24334]] forn i 2(3) or r 9e 0

,Bn[l213flJ,l'2n—§H'J] = flnuygflj, (2%” ‘forn 5 2(3) andr = 0.

We next fix j and consider the diagonal of elements fln[i, j], i = 1,. . . , j. This

time we are able to determine the complete maximum behavior of this sequence.

Proposition 2.3.5 (Diagonal Sequences) The sequence

Balm}. [Bul29j], - - ”fianl

is strictly unimodal. It attains its unique maximum at

a [Ft-21,1] forj aé n

flu [Vlgfljm] forj = n.

Proof. We first show fln[i—1,j] < flulfij] fori 3 L423 (j 7‘- n). As in Proposition 2.3.2,

we form a bipartite graph with vertex bipartition V1 = B,,[i — 1, j] and V2 = B,,[i, j].

Bali-1,i] Bulidl

ai—l be 0

.A. W A. ../‘“

V / b-+1
01 aj+1 b J

1
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Given 1r = a1 - - - a,,O = 1r1a,--17r21r30 E V1, where

1r1 = a1<...<a,-_2

1r; = a;>...>aj

7r3 = a,“ <... <a,,»

and a 6 «2, form the permutation

I I e

a = 7rla,-_11r27r30.

Since a E «2, we know a < 05-1, so 0’ E Bn[i,j]. For every 7r 6 V1, draw an edge to

every 6 that is constructed in the manner described. The degree of every vertex in

V1 is |1r2| = j — i + 1, while the degree of every vertex in V2 is at most |1r§| = i — 1.

We obtain the edge count inequality

(j-i+1)|V1| < (i-1)|V2|

This inequality is strict. For instance, if T = b, - - - bnO E B,,[i, j] with bl = 1'2, then we

cannot put r'i into big ' - - (7,. If we did, then we would violate the property that for

permutations 1r 6 B,,[i—1,j] we have min 7r; > min 1r3. So |V1| < |V2| for i 5 Liz.

We next show fln[i,j] > fln[i + 1,j] for i 2 1-12'3- (j 9f n). Construct a bipartite

graph with vertex bipartition V1 = B,,[i + 1,j] and V; = B,,[i,j].

Buli+1.j] Balm}

ai+1 0 bi

/\ ./ /\ /,, °

/ b. v
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Given 1r = a1 - - ~a,,0 = 1r1a,-+11r21r30 6 V1, where

1n = al<...<a,-,

1r; = 05+2 > ... >aj+1,

“'3 = aj+2<...<a,,,'

and a 6 1r], draw an edge to the permutation

O” = irlag+11réir30.

Since a E n], we know a < a,+1, so 6’ E Bn[i, j]. The degree of every vertex in V1 is

[m] = i, while the degree of each vertex in V2 is at most |7r§| = (j - i + 1). We obtain

the edge count inequality

i|V1| < (j-i+1)lV2|-

This inequality is strict. For instance, if 1' = b1 .. ~bn0 E B,,[i,j] with b,- > bi“,

then if we were to move the element bj+1 into the sequence by - - b,-_1, the resulting

permutation would have the descent set [i + 1, j + 1] rather than [i + 1, j]. Therefore

|V1l<lV2l Melt—R

We now know {fln[i,j]}, 1 S i S [2.15.2j, is a strictly increasing sequence and

{fln[i,j]}, [1%] S i S j, is a strictly decreasing sequence. Observe that [32:2] =

[1321]. Therefore, we may conclude the diagonal sequence {fln[i, j]}, 1 S i S j, j 75 n,

is strictly unimodal with unique maximum flnll'%2.la j].

We have characterized the monotonic behavior of all the diagonal sequences except

the one with j = n. We now consider that sequence. To show 6,, [i — 1,n] < ,Bnli, n]

for i S £33, we consider a bipartite graph with vertex bipartition V1 2 B,,[i — 1, n]

and V2 = B,,[i,n].
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Bah—1,n] B,,[i,n]

(15-1 bi

/ o. ... .°.

01 / b"

Given 7r = a1 - - ~a,,0 = 1r1a,-_17r20 6 V1, where

“I = G] < O O O < a.._2

712 = a,->...>a,,

and a 6 irg, draw an edge to each of the permutations

0‘ = 7.110.;17‘120

and

6 = 3'1 a,_1 3'20.

Since D(7r) = [i — 1, n], we see that the elements a,_1, a,, . . . a,, are positive. So a,_.1 Z

a > 0 implies ag_1 > —a. Each vertex in VI has degree equal to 2|1r2| = 2(n — i + 1),

while each vertex in V: has degree at most |1'rll = |th = (i — 1). For instance, if

T = b1 - - - bnO E Bn[i,n] with bl = fl, then we cannot put n into b,-+1 ~ - - (1,. since then

b,- < max «2 = n and the result would not be a permutation in B,,[i — 1, n]. We thus

have the edge count inequality

2(n -i+1)|V1| < (i-1)|V2l.

so “’1' < IVgl for i S 27%;.

To show fln[i,n] > B,,[i + 1,n] for i Z 2—"3fl, we construct a bipartite graph with

vertex bipartition V1 = B,,[i + 1,n], V2 = Bn[i,n].
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B,,[i + 1,n] B,,[i,n]

“5+1 bi

/\,° /\

\.0 / .. ‘ V2)

/ b1
01

Given 1r = a1“ -a,,0 = 1rlir20 6 V1, with

7n = al<...<a,-

«2 = a.-+1>...>an

and a 6 1n, draw an edge to the permutation

0’ = 7r17r20.

All the elements in 1r; are positive, so we must place |a| in irg so that the resulting

permutation a E Bn[i, n]. Every vertex in V1 has degree |1r1| = i, while each vertex in

V2 has degree at most 2|7'rgl = 2(n — i + 1). For example, if T = b1 - - -b,,0 E Bn[i,n]

with b,- = n, then we cannot put 11 back into in = b1---b,-_1. If we did, this would

violate the pr0perty that max 7r, < max 7r; for any permutation 7r 6 B,,[i + 1, n]. We

have the edge count inequality

i|V1|< 2(n—i+1)IV2l.

so IVII < |V2| for i _>_ gig—2a

We have shown the sequence {fln[i,n]}, 1 S i S [Egg], is strictly increasing and

the sequence {,Bn[i,n]}, [2—"3‘31 S i S n, is strictly decreasing. Hence, for n 32 1(3)

the sequence {fln[i,n]}, 1 S i S n, is strictly unimodal with unique maximum of

allk‘a‘éJml-
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For n 5 1(3) we apply Lemma 2.3.3 to the sequence sequence of ,Bn[i,n]’s. We

obtain {,Bn[l,i]}, 0 S i S [333], is strictly increasing and {fln[1,i]}, [£311] S i S

n — 1 is strictly decreasing. The permutations represented by these two sequences

correspond to rank selections of the form [1, i] from 0,,, i.e., rank-selected lower order

ideals. By Theorem 1.0.1 B,,[L L?” > ,Bn[l, [2"‘1]]. Hence, the sequence {fln[1,i]}$3

 

0 S i S n — 1 is strictly unimodal with maximum 341, [27%]. Applying Lemma 2.3.3

again gives the result we claimed. C]

The last sequence we consider is the one consisting of antidiagonal elements fln[i, j],

J=z,IIO,nO

Proposition 2.3.6 (Antidiagonal Sequences) The sequence

flnlidlfinlid + 11,- - ..flnlim]

is almost strictly unimodal with maximum occurring at one (or both) of

flnlia lfiiflfl, flnli, [ESL-ill-

W'hen i = 1 the antidiagonal sequence

Buliiilaflnliii'l‘1l3°",IBn[i3n]

is strictly unimodal with unique maximum of

MHz—"+911.

Proof. We begin by forming a bipartite graph with vertex bipartition V1 = Bn[i, j — 1]

and v2 = BM] (3' ¢ n).
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Bn[iaj — 1] Bfllzaj]

a1 ()1 bj+l

Given 1r = 1r11r2aJ-7r30 6 V1, where

71'} = a1<...<a,-_1

712 = a.->...>aj_1

1r3 = aj+1<...<a,,

and a E #3, form the permutations

0 = 71'17'1'201'330

and

6 = W17T20j7i'30.

Since a,- < a < 0 for all a 6 n3, |a| > a,-. Hence 6,6 6 V2. From the vertex 7r,

draw an edge to each of the |7r3| = 2(n — j) permutations in V2 constructed in the

manner described. The degree of each vertex in V2 is at most |7'r2| = I62] 2 j — i + 1.

If 1' = b1 . . .bnO 6 V2 with b,- = n, then we cannot place a into bj+2 - - - bn to form a

permutation in V1 because the permutation b1 . - - b,-_1b,-+1 - - - bj+1fibj+2 - - - bn0 has its

jth element b,“ > n, violating a,- < min «3 for permutations 7r = a1 - --a,,0 6 V1.

We have the edge count inequality

2(n -J')|V1| < (j-i+1)|V2|.
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so IV1| < IV2I forj 5 2—3—2‘

Next we form a bipartite graph with vertex bipartition V1 = B,,[i, j + 1] and

v2 = B.[i.j1(j+1¢ n).

B,,[i,j+1] ' Balm}

Given 1r = r17r27r30 E V1 and a 6 7r; with

1r; = a1<...<a,-

772 2 05+] >... >aj+1

r3 = aj+2 < <a,,,

form the permutation

6 = 1n 7‘1'271'30.

Observe that 6 6 V2 since all the elements of in; must be negative. For each a 6 r3,

draw an edge from 1r to every 6 formed in this manner. We obtain the edge count

inequality

(j-i+1)|V1| < 2(n -J')|V2|-

The degree of every vertex in V1 is |7r2| = j — i + l and each vertex in V2 has degree

at most 2Ii'rgl = 2(n —j). If r = b1...b,,0 6 V2 with bj+1 = n, we cannot move n into
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b,-+1 - - - bj. If we did, then we would violate the property min 1r2 > min «3 for any

1r 6 V1. Thus forj _>_ 2413'; we have |V1| < IVgl.

Finally, we consider the terms of the form fln[i, n] and fln[i, n— 1]. Let V1 = B,,[i, n]

and V: = B,,[i,n — 1] be a vertex partition. (Note 2' S n — 1).

B,,[i,n] Bn[i,n — 1]

0

01 Yr: b1 v

0 bn

For 71' = 7r11r20 6 V1, with

in = a1<...<a,-

7r; = a,+1 > >an

and a 6 «2, form the permutation

6' = 71'] 6260

Draw an edge from r to each of the In] = n — i permutations in V2 formed in

the described manner. Each vertex in V; has degree at most one. For instance, if

1' = b1 - - - bnO 6 V2 and any one of the elements 1),, . . . , bn_1 is negative, replacing 67,

by |an in b,- - - - b" will not give us back a permutation in V1. We obtain the edge count

inequality

(n-illel < |V2l,

so |V1|<IV2|wheniSn-1.
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All parts of the proposition have now been proved except the case i = 1 which

follows by appealing to the lower order ideal Theorem 1.0.1. D

Now we are ready to give the proof of Theorem 2.0.4. The theorem easily holds

for n = 1 and n = 2. (Refer back to the pictures of the triangular arrays for 01 and

02 that were previously given.) Now fix n 2 3. We first look at the candidates for the

overall maximum for ,Bn[i, j] that the row and diagonal propositions give us. From

Proposition 2.3.5 the candidates for the maxima are those fln[i, j] with i = [1129-] , i.e.

,Bn[r+l,2r+1] forr=0,...,2r+1Sn—1 (2.7)

fl..[r+2,2r+2] forr=0,...,2r+2Sn—1. (2.8)

Note that we do not need to consider the nth diagonal {fln[i,n]}, 1 S i S n, since

by Lemma 2.3.3 this sequence coincides with the sequence {fln[1,j]}, 1 S j S n (and

the common entry fln[1,n] = 1, which is not a maximum).

The Row Sequence Proposition 2.3.2 predicts the maximum occurs at

snags-rJ. [2—"3fl J] or weak]. rain].

Restated, these maximum candidates are

  

 

,Bn [2%, @531] when 2n — 2r 5 0(3) (2.9)

,6“ [2n—gr—1 , 2n-t3r—1]’ fin [2n—3rf2, 2n-gr-1-2; when 2n _ 21‘ E 1(3) (2.10)

fin [2n—gr—2, 21133152], ’8" [2n—gri-1 , 2n-fz-3ri-1: when 2" _ 27‘ E 2(3) (211)

  

Next we determine which row and diagonal candidates coincide. In other words,

we look for those integer values of r in which a maximum candidate from the diagonal

argument (equations (2.7) and (2.8)) is also a maximum candidate from the row

argument (equations (2.9), (2.10) and (2.11)). Note that in both cases 1' = j — i for

the entry ,Bn[i, j], so we are using the same parameter in the rows and diagonals. For
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Table 2.1: Common Value of r for Row and Diagonal Results

 

 

 

 

 

  
    

Diagonal Row Common value

equation equation of r Forcing

2n - 2r E 1(3) (2.7) (2.10) Ls"! n 5 2(5)

(2.8) (2.10) ' “5’7 E 1(5)

(2.7) (2.10) “—5'1 n E 3(5)

(2.8) (2.10) ’"g‘ n 5 2(5)

2n - 2r 5 2(3) (2.7) (2.11) Z—"fl n E 0(5)

(2.8) (2.11) 2";‘3 n 5 4(5)

(2.7) (2.11) @514 n 5 1(5)

(2.8) (2.11) I] 39-515- n 5 0(5)  
2n—32n—2r

3 5
. Since r is

 example, when 2n — 2r 5 0(3), = r + 1 if and only if r =

2n-2r
 

2n-6

5 a
       an integer, we must have n 5 4(5). Similarly, -—r + 2 when r =

n 5 3(5).

The remaining cases when 2n — 2r E 1(3) and Zn — 2r E 2(3) follow in a similar

manner. Table 2.1 displays the information needed to complete these cases.

We now rearrange our results according to the equivalence class of n modulo 5. In

each case we decide if we can employ the antidiagonal sequence result to narrow down

the two max candidates to one overall maximum. We will see that the antidiagonal

Proposition 2.3.6 is only helpful when n E 4(5).

First an ose n E 0 5 . Substitutin r = 2—"53 into the row maximum candidates
PP g 5

for 2n — 2r 5 2(3), we obtain the candidates

3 [2..--2(32=-)—2 2n+(3"—;3)--__2] fl..[2.. _4_5_n—5]
fl 3 , 3

 

 

2-2’—"=é+12+"""’+1 ":5fiL;[ n (35 l , fl ( g l ] ==£L125 ,%?].
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These two possibilities lie in the same row, so we cannot apply the antidiagonal result.

For n E 1(5) the row and diagonal arguments give

 

fl [2n-2(2‘f—')-1 2n+(’";’)-1] = fl [M3 ...—4]
n 3 9 3 n 5 ’ 5

(here 2n — 2r E 1(3) and r = 2"“7), and
5

 

 

[B [2n-2th—2'H'1 2n+(2n;2)+1] _IB [2ni3 4nil]

" 3 ’ 3 "' n 5 ’ 5

(here 2n — 2r E 2(3) and r = P‘s—'2). Both of these elements lie in the same antidiag-

onal. Recall that the antidiagonal proposition asserts

5.[z'.j — 1] < Maui] forj 3 [WJ

aw] > 3,421+ 1] forj 2 read].

For n E 1(5) this says

a. [245% - 1] < 3.. [3232.1] forj s 11%!-

IBn [zit—gigajj > fin [21:93]. + 1] forj Z 12531.

Hence, Proposition 2.3.6 gives no additional information about the two candidates

for the maximum.

For n E 2(5) the two candidates for the maximum are

271i] 4n—3 2ni6 4711-2

fin] 5 a 5 J and fi%[ 5 , 5 ].

(Here 2n — 2r 5 1(3) with r = 3"?“1.) As when n E 0(5), these two possibilities lie in

different antidiagonals, so the antidiagonal result cannot give any new information.

When n 5 3(5) the candidates are

2 i4 4 -2 2 i i3fln[n5 , n5 1 and fin] n54,4n5 ].
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 (Here 2n -— 2r E 0(3) with r = E? and 2n — 21' E 1(3) with r = 2:1, respectively.)

These two values lie in the same antidiagonal. However, for n E 3(5) Proposition

2.3.6 says

a. [243‘s — 1] < a. [Hg—4,1] forj s 125:3

a. [Lzfiflj] > a. [Ls—w + 1] forj 2 —;&

which yields no new information about the two candidates for the maximum.

The last case is when n E 4(5). We obtain the candidate maxima

2 i2 — 2 i2 —6flu] n5 ,4n51] and fin] 715 ,4115 1

which lie in the same antidiagonal. (Here 2n — 2r E 0(3) with r = 33-5—3 and 2n — 2r E

 2(3) with r = ”5’8, respectively.) By Proposition 2.3.6 we have

 

fl. [ls—”.1 — 1] < [3. [115cm] forj s

3.. [243—21] > 3.. [3%34' + 1] forj _>_ 4—"-—‘.

Hence we can conclude in this case that the overall maximum is fln[2—"5‘L2, %]. C1

The result of Theorem 2.0.4 is unsatisfactory in the sense that, unlike the Boolean

algebra, it does not determine the overall maximum for the interval rank-selection

case (except when n _=-: 4(5)). Instead, for n 1 4(5) it narrows down the extremal

configuration to one of two possibilities. Part of the difficulty with the n-octahedron is

that its triangle of ,Bn[i, j]’s is not symmetric along its rows like the Boolean algebra’s

triangle. More specifically, each row of the Boolean algebra’s triangle is symmetric

about its middle-most element (or elements, if the length of its row sequence is even.)

We have tried various methods to “sharpen” the bipartite arguments for 0,, by

redistributing the edges created between the different permutation types. Unfortu-

nately, none were successful. However, the data for the interval of ranks case behaves
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quite beautifully, as you can see in Table 2.2. The data strongly suggests that the

maximum occurs by taking the ranks [Egg] through [951,3].



Table 2.2: Extremal Configuration for Interval of Rank-selections from On

61

 

 

 

 

 

 

 

   

Extremal

n Configuration .7 Ip(0n(f'))l

1 01[1,1] 1

2 02[1,1] = 0,.[2,2] 3

3 03[2, 2] 11

4 0,[2, 3] 41

5 05[3, 4] 161

6 06[3, 5] 591

7 07[3, 5] 2631

8 08[4, 6] 11871

9 09[4, 7] 52513

10 010[5, 8] 231937

11 0,,[5,9] 993343

12 012 [5, 9] 4699903

13 013[6,10] 22111231

14 014[6, 11] 102406721

15 0147, 12] 471223169

16 0,6[7, 13] 2126966271

17 017V, 13] 10262581759

18 0148, 14] 49138667007

19 019[8, 15] 232427864577

20 02.49, 16] 1091852042241

21 021 [9, 17] 5058126423039

22 0,2[9 17] 24635153735679

23 02.410, 18] 119106560870399

24 02410, 19] 570189596794881

25 02411.20] 2712059387740161
 

 



Chapter 3

Arbitrary Rank-selections

Given a permutation a1 - - - a,,, we say it is alternating if either

a1<a2>a3<a4>... (3.1)

01‘

a1>ag<ag>a4<.... (3.2)

In the first case (equation (3.1)) we call the permutation an alternating permutation

with initial ascent and in the second case (equation (3.2)) we call the permutation

an alternating permutation with initial descent. We say a permutation a1 - - - a,, has a

double ascent if there exists an index It so that a]. < a,,“ < a,,”.

Let P be a poset of rank n, S g [n — 1], and /\ an R-labeling of P. Recall that

|p(P(S))| equals the number of maximal chains in P with descent set S with respect

to an R-labeling A. Proposition 2.1.3 gives an R-labeling /\ of the Boolean algebra B,,.

Note that the maximal chains in B" with respect to this A are simply permutations

in the symmetric group 5,, on 72 letters.

By Corollary 2.2.3, the question of maximizing the Miibius function over arbitrary

rank-selections from the Boolean algebra is equivalent to finding an S Q [n — 1] which

maximizes the number of permutations of descent set S in the symmetric group Sn.

62
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Sagan, Yeh and Ziegler [15, Theorem 1.2, part 2] used this interpretation of the

arbitrary rank—selection problem to solve the 13,. case. They constructed injective but

not surjective maps from permutations in Sn with a double ascent to permutations

in 5,, with one less double ascent. They obtained the following result.

Theorem 3.0.7 For arbitrary rank-selections S Q [n — 1] of En, |p(B,,(S))| attains

a unique maximum when we take S to be

S: {1,3,5,...}n[n— 1] orS= {2,4,6,...}fl[n— 1].

In this case |u(B,,(S)I = En, the nth Euler number.

In other words, for arbitrary rank-selections S Q [n — 1] the M6bius function is

maximized by taking every other rank from B,,. In terms of permutations from the

symmetric group, this result says the alternating permutations with initial ascent

(or the alternating permutations with initial descent) are the largest class with given

descent set.

The arbitrary rank-selection question, viewed in the context of permutations in

the symmetric group, was studied by Niven and de Bruijn. In [13] Niven also used

an injection-but-not-surjection argument, whereas in [11] de Bruijn developed an

algorithmic technique.

In this chapter we are interested in addressing the arbitrary rank-selection case

for the n-octahedron. Rather than studying this question in terms of augmented

signed permutations of [n] which arise from the R-labeling of 0,, in Proposition 2.1.2,

we present an approach based upon a non-commutative polynomial (I) called the cd-

index. In a recent thesis, Purtill [14] showed that for certain lattices L, <I>(L) has

non-negative coefficients. (See Theorem 3.1.2.) Stanley [18] generalized this to face

lattices of convex polytopes, which permitted him to conclude
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Theorem 3.0.8 (Stanley) Let Lp be lattice of faces of a convex polytope P, where

the rank of Lp is n + 1. For arbitrary rank-selections S Q [n] of Lp, |u(Lp(S))|

attains a maximum when we take S to be

3: {1,3,5,...} n[n] orS= {2,4,6,...}fl[n].

In this chapter we reconstruct Stanley’s proof in the case of the n-octahedron and

show that these are the only S which maximize p for 0,,.

Theorem 3.0.9 For arbitrary rank-selections S Q [n] of 0,,, |u(0n(S))| attains a

unique maximum when we take S to be

S = {1,3,5,...] 0 [n] or S = {2,4,6,...} 0 [n].

In this case |p(0n(S)I = Eff, the nth signed Euler number.

3.1 The ab-index and the cd-index

This section serves as a brief introduction to the ab—index and the cd-index. We

will follow [18] for all notation and terminology related to the cd-index. For those

interested in studying the cd-index’s origins, we refer to Bayer and Klapper’s paper

[4].

We will begin by describing Bayer and Billera’s work on flag h-vectors of Eulerian

posets. A key observation due to Fine links the ab—index with the cd-index. Once we

review some algebraic properties of the cd-index, we summarize Purtill’s dissertation

work. For us, his most important results are the non-negativity of the coefficients of

the cd-index of Ba and 0,,, and a recurrence for each of their cd-indexes.

Let P be a finite, graded poset of rank n + 1 that is bounded. Recall in chapter

2 that for S _C_ [n] we defined 0(5) = ap(S), the number of maximal chains of
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P(S) U {0,1}, and 6(5) = 5;:(5), the beta invariant. This defines a : 2" —-> Z, the

flag f-vector of P, by

S H 0(5),

and fl : 2" —* Z, the flag h-vector of P, by

s ... 3(5).

We will now encode the flag h-vector (equivalently, the flag f-vector) of the poset

P. First, define a monomial in the noncommutative variables a and b by

uszulooeun,

where

__ a, ifiQ'S

...- b, irres.

(For our purposes, it will be helpful to think of a as “ascent” and b as “descent”.) As

an example, if n = 5 and S = {1, 4, 5}, then us = baabb. We form a non-commutative

polynomial, called the ab-index, by

\I'p(a,b) = Z ,Bp(S)u5.

591"]

We define the degree of both a and b be 1 so that \Ilp(a, b) is homogeneous of degree

n.

When P is an Eulerian poset (refer to [17, Chapter 3] for terminology), Bayer

and Billera [3] showed the flag h-vector ,3}? satisfies certain linear relations called the

generalized Dehn-Sommerville equations. In the literature these equations are also

referred to as the Bayer-Billera relations. Fine observed that having flp satisfy the

Bayer-Billera relations is equivalent to having the ab—index contained in the algebra

generated by the two elements c = a + b and d = ab + ba.
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Proposition 3.1.1 [4, Theorem 4] (Fine) Let P be a finite graded poset that is also

bounded. Then the flag h-vector Hp satisfies the Bayer-Billera relations if and only

if \Ilp(a,b) can be written as a polynomial (bp(c,d) in the noncommutative variables

c=a+bandd=ab+ba.

We call the polynomial <I>p(c, d) the cd-index of P.

As noted in [18] the cd-index has some very nice algebraic properties. If <I>p(c, (1)

exists (which it does for Eulerian posets such as Bn and 0,,), then it is unique.

(As noncommutative polynomials over any field K, c = a + b and d = ab + ba are

algebraically independent.) If we define the degree of c to be 1 and the degree of d to

be 2, then (Dp(c, d) is homogeneous of degree n with integer coefficients. By the very

nature of the variables c = a + b and d = ab+ ba, if <I>p(c, (1) exists then its associated

ab-index \Ilp(a, b) is symmetric in a and b.

In his dissertation, Purtill proved the following result about the cd-index. For

shorthand we will write (P(P) for <1>p(c, d).

Theorem 3.1.2 [14, Theorem 6.1] For 8,, and 0,,, its cd-index <I>(B,,), respectively

(P(On), has non-negative coefficients.

He also established recurrences for <I>(B,,) and <I>(0,,).

Proposition 3.1.3 [14, Corollary 5.8] The following recurrence holds for the cd-

index of the Boolean algebra:

(P(Bn+2) = C(P(Bn+1) + En: (n) (P(Bj)dQ(Bn+1_j), n 2 0,

i=1 7
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Proposition 3.1.4 [1], Corollary 5.12] The following recurrence holds for the cd-

index of the n + l-octahedron:

<I>(O,,+1) = c<l>(0,.) + i24(;)<1>(3,)d¢(0,_,), n 2 0,

i=1

with T(Oo) = 1.

Some values for <I>(B,,) and <I>(O,,) are given below:

0(32) = C

Q(Bs) = 62 + (1

(11(34): 03 + Zed + 2dc

<I>(B5) = c4 + 3c2d + 5cdc + 3dc2 + 4d2

<I>(Oo) = 1

Q(01) = C

¢(02) = 62 '1' 2d

0(03) = c3 + 6cd + 4dc

0(04) = c4 + 146261 + l6cdc + 6dc2 + 20d2

<I>(05) = c5 + 30cdc2 + 48cde + 3034 + 100w!2 + 64d’c + 80dcd + 8dc3

3.2 Arbitrary Rank-selections: Lp and On

In this section we will prove the arbitrary rank-selection result for face lattices of

convex polytopes Lp. The results we will have to appeal to are very strong. Two

such examples are Stanley’s non-negativity of the coefficients of the cd-index for Lp

and Bjérner’s and Wachs’ result that these face lattices are CL-shellable.

Before proving Theorem 3.0.8, we first verify some properties of ab-expansions

of monomials in the variables c and d. When we formally substitute c = a + b

and d = ab + ba into <I>(Lp) to recapture \II(Lp), we will see the ab-words which

receive the highest contribution from the coefficients of (P(Lp) are the alternating
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ones: the alternating initial ascent word of length n, ababab. . . and the alternating
W

initial descent word of length n, bababa . . .. This conclusion requires Stanley’s result
W

about the non-negativity of the coefficients of <I>(Lp).

Since Lp is CL-shellable (Theorem 2.1.5), the coefficient 35 of a given word us in

\IILP(a, b) equals |p(Lp(S))|. Hence, we will have shown the rank-selections

S = {1,3,5,...} 0 [n] and S: {2,4,6,...}fl [n]

maximize |p(Lp)|.

We are able to conclude that the odd and even alternating rank-selections from

Lp each maximize the Mébius function for the arbitrary rank-selection question.

What we are not able to conclude at this time is a uniqueness result, i.e., that the

alternating rank-selections are the only extremal configuration. We can, however,

show uniqueness when Lp = 0,, via the recurrence for (P(On) in Proposition 3.1.4.

We also include a conjecture of Stanley which, if true, implies the uniqueness of the

extremal configuration in Theorem 3.0.8 for any Lp.

We begin by defining a convex polytope P (or polytope) to be the convex hull of

a non-empty finite set of points in Euclidean space. For instance, the n-dimensional

octahedron is a convex polytope since it is the convex hull of the Zn points

{21261, . . . , Ziten}

in n-dimensional Euclidean space, where

e,- = (0,...,0,1,0,...,0).

i—l 16-1

A polyhedral complex A (not to be confused with the shadow A(S) defined in chapter

1) is finite set of polytopes {P1, . . . ,’P,-} in Euclidean space such that

(i) any face belonging to some 7’,- is a member of A
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(ii) the intersection of any two members of A is again a member of A.

The maximal faces of a polyhedral complex are called facets. We say A is an n-

complex if the dimension of all the facets of A is 11. Finally, for an n-complex A

we form its face lattice LA by ordering the faces ofA by inclusion and adjoining a

maximal element 1. For example, the dimension of all the facets of the n-dimensional

octahedron 0,, is n - 1. Thus, L0,, = 0,,, the n-octahedron.

We next make some simple observations about monomials in the variables c and

d. If w = w; - - - 10,, is an ab—word of degree n, then we say w has a double ascent at

position i if w,- = w,-+1 = a and has a double descent at position i if w,- = w.-+1 = b.

Lemma 3.2.1 Given any monomial w of degree n in the noncommutative variables

c = a + b and d 2 ob + ba, its ab-expansion satisfies

(i) the alternating initial ascent word of length n occurs exactly once

(ii) the alternating initial descent word of length n occurs exactly once

(iii) any given ab—word of length n occurs at most once.

(iv) If w = w’dw” with deg w’ = i — 1 then its ab-expansion contains no

ab-word with a double ascent or double descent at position i.

Proof. For properties (i) through (iii) we proceed by induction on the degree n of a

monomial in c and d. By convention for n = 0 the only monomial in c and d is 1.

Now let w be a monomial in the variables c and d of degree n 2 1. We have

two cases to consider, depending upon the first element of w. If w begins with c,

then remove this initial c. This leaves a monomial w’ in the variables c and d of

degree n - 1. By the induction hypothesis the ab-expansion of w’ yields exactly one

alternating initial ascent word of length n —1 and one alternating initial descent word

of length n — 1. All the other possible ab-words of length n — 1 occur at most once.
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Premultiply all of these monomials by c = a+b. This yields exactly one alternating

initial ascent word of length n and one alternating initial descent word of length n.

All the other possible length n monomials in a and b occur at most once. If not, then

deleting the initial a or b from two duplicate monomials in a and b of length 11. would

give two duplicate length n — 1 monomials in a and lb arising from the same cd-word

of degree n — 1. This would contradict the induction hypothesis.

In a similar fashion, we show the same result for w a monomial in the variables c

and d of degree n > 1 whose first element is d. The difference here is we will have to

apply the induction hypothesis for words in the variables c and d of degree n — 2.

Remove the initial d from w. This leaves a monomial w’ in the variables c and d

of degree n — 2. By the induction hypothesis for n -— 2 the ab-expansion of w’ yields

exactly one alternating initial ascent word of length n — 2 and one alternating initial

descent word of length n — 2. All other possible ab—words of length n — 2 occur at

most once.

Now, premultiply all of these monomials by d = ab + ba. This gives exactly one

alternating initial ascent word of length n and one alternating initial descent word of

length n. All other possible length n ab-monomials occur at most once. If not, then

delete the initial ab or ba from two of the duplicate ab—monomials of length n. This

gives two duplicate length n — 2 monomials in a and b arising from some word in c

and d of degree n — 2, contradicting the induction hypothesis.

For (iv), suppose w = w’dw” with deg w’ = i — 1. Since the degree of w’ is i — 1,

the d (of degree 2) which follows w’ will contribute to the ith and i + lst positions of

the ab-words formed from the ab—expansion of w. This element d can only contribute

ab or ba. Hence, the ab-expansion of w contains no ab-word with a double ascent or

double descent at the ith position. Cl
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The uniqueness result in Theorem 3.0.9 requires two key observations about

(P(On).

Lemma 3.2.2 The following two properties hold for (P(On):

(i) all possible monomials of degree n in the variables c and d occur at least

once in (P(On)

(ii) for n 2 0 ifm is some monomial of length n in the variables a and b

that is not alternating, then there exists a monomial w in <I>(0,,) whose

ab-expansion makes no contribution to m.

Proof. We first show (i) holds by induction on 71. Property (i) is vacuously true for

n = 0 since 0(00) = 1.

Now assume n 2 1. By the recurrence of Proposition 3.1.4

n-l . _ 1

<I>(0,,) = c<I>(0,,_1) + Z 21(n j )<I>(B,~)d<I>(0,,_,-_1), n 2 1, (3.3)

i=1

with <I>(Oo) = 1. Suppose w is a monomial of degree n in the variables c and d. If w

begins with the variable c, remove it to form the monomial w’ of degree n - 1. By the

induction hypothesis, w’ appears at least once in Q(0,,_1). Hence the term c<I>(0,,_1)

appearing in equation (3.3) contains the monomial w = cw’. We do not have to worry

about any possible cancellation since the coefficients of <I>(O,.) are clearly non-negative

from equation (3.3).

Next, let w be a monomial in c and d of degree n beginning with the letter d. We

similarly use the first term of the second summand appearing in equation (3.3) to

verify property (i) for w. Remove d from w to form w’, a monomial of degree n — 2.

By the induction hypothesis w’ appears at least once in (P(On-z). Also (P(Bl) = 1.

Hence the term in the summand corresponding to j = 1 in equation (3.3) creates a

w = ldw’ for 0(0n).
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Property (ii) is vacuously true when n = 0 since there are no non-alternating

words of length l in the variables a and b. For n 2 1, (ii) will follow immediately

from part (i) of this lemma and from (iv) of Lemma 3.2.1. Let m be a monomial of

length n in the variables a and b that is not alternating. Then m has a double ascent

or double descent. Without loss of generality we may assume m has a double ascent

aa at the ith position. (The same argument works when m has a double descent bb

at the ith position.) By property (i) we know every monomial of degree n in the

variables c and (1 occurs at least once in (P(On). In particular, monomials of the form

w = w’dw” with deg w’ = i— 1 occur at least once. By Lemma 3.2.1 the ab—expansion

of any such w makes no contribution to m. D

We have an analogous version of Lemma 3.2.2 for B,,. Its proof is omitted since

it is virtually identical to that of Lemma 3.2.2.

Lemma 3.2.3 The following two properties hold for <I>(B,,):

(i) all possible monomials of degree n — 1 in the variables c and d occur at least

once in <I>(B,,)

(ii) for n 2 1 if m is some monomial of length n — l in the variables a and b

that is not alternating, then there exists a monomial w in (P(Bn) whose

ab-expansion makes no contribution to m. D

It is well-known that the nth Euler number En counts the total number of alter-

nating permutations in the symmetric group with odd (or even) descent set, i.e.

E, = [{rESn: D(1r)={1,3,5,...}fl[n—1]}| (3.4)

= |{7r 6 Sn: D(7r) = {2,4,6,...} n [n —1]}|. (3.5)
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A recurrence for the nth Euler numbers is

n

n

Err-+2 = Z (j)EjEn-j+li n 2 1:

i=0

with E0 = E1 = 1. In a similar manner, Purtill defines the nth signed Euler num-

ber E: which counts the total number of augmented signed permutations that are

alternating with odd (or even) descent set:

E: = ”71'6sz D(7r)={1,3,5,...}n[n]}| (3.6)

= |{7rEsz D(7r)={2,4,6,...}n[n]}|. (3.7)

A recurrence for the nth signed Euler numbers is

Eff“ = 221' (313,131,, n 21,

i=0

with E3“ = Ejt = 1. (See [14, section 6].)

From Lemmas 3.2.1 and 3.2.2, we can now very easily give the proofs of the

arbitrary rank—selection theorems for Lp and 0,,. We first consider the arbitrary

rank-selection question for Lp, and then prove the uniqueness result for 0,,. It is a

well-known fact that Lp is Eulerian. Thus, <1>( Lp) exists by Bayer and Billera’s work

in [3] and Fine’s equivalence in Proposition 3.1.1. By Stanley [18, Theorem 3.1.2],

the coefficients of <I>(Lp) are non-negative.

Consider the ab-expansion of <I>(Lp) into \II(Lp). By Lemma 3.2.1 each monomial

in 0(Lp) contributes exactly one term to the alternating initial ascent word of length

n, exactly one term to the alternating initial descent word of length n, and at most

one term to all other words of length n in the variables a and b. Thus, the coefficient

of the alternating permutations of length n with initial ascent (equivalently, with

initial descent) equals the number of monomials appearing in <1>(Lp). In turn, this
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. number is just the sum of all the coefficients of <I>(Lp), i.e., (I’LP(1,1). (Here we are

formally substituting c = 1 and d = l in (PL,,(c,d).)

For an ab—word us, S Q [n], we define

D(US) = 5.

(Recall that when we introduced us, we said it would be helpful to think of the a’s

as ascents and the b’s as descents.) Since Lp is CL—shellable (Theorem 2.1.5), the

coefficient of any ab-word us in \It(Lp) is |p(Lp(S))|.

We have shown the alternating ab—words of length n receive the greatest contri-

bution from the coefficients of <I>(Lp). In fact, they receive the maximum possible

contribution, since the expansion of each monomial in (P(Lp) contributes at most one

to each ab-word. Thus, the extremal configuration for rank-selections S Q [n] from

Lp is

S = {l,3,5,...}fl[n] orS = {2,4,6,...}fl[n].

This is Theorem 3.0.8.

We next show that for 0,, the odd and even alternating rank—selections are the

only extremal configuration. Suppose m is not an alternating word in the variables

a and b. By property (ii) of Lemma 3.2.2 there exists a monomial w in 0(0n) whose

ab-expansion does not make any contribution to m. Thus the coefficient of m in

\It(0,,) is less than that of the alternating initial ascent (or descent) ab—word of length

n.Cl

As a comment, we could use Lemma 3.2.3, the 8,, counterpart of Lemma 3.2.2,

in the argument just given to reprove Theorem 3.0.7. Also, for the proof of Theorem

3.0.9 we did not have to appeal to Stanley’s non-negativity of the coefficients of <I>(Lp)

and the CL-shellability of LP. Instead, we could have used Purtill’s non-negativity of
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the coefficients of 0(0n) and the fact 0,, has an R-labeling.

In a personal communication with Stanley we brought to his attention that we

cannot conclude uniqueness of the extremal configuration for Lp other than the cases

when Lp is 8,, or 0,,. Consequently, Stanley has made the following conjecture:

Conjecture 3.2.4 [19] Among all n-polytopes (or more generally Gorenstein* lat-

tices of rank n + 1), the simplex (i.e., the Boolean algebra) has the least cd-index

coeflicient-wise.

If Stanley’s conjecture is true, it would immediately imply the uniqueness result for

Theorem 3.0.8: we would know that every cd-word occurs at least once in <I>(Lp),

since every cd-word occurs at least once in (P(Bn) with positive coefficients. This

would give an Lp counterpart of part (i) of Lemma 3.2.2. Moreover, since part (ii) of

Lemma 3.2.2 follows from part (i) of the same lemma and from Lemma 3.2.1, Lemma

3.2.2 would hold for any Lp, not just 0,, and B,,.

In the table that follows, we include the Mébius values of the extremal configura-

tion for Theorem 3.0.9.



Table 3.1: Arbitrary Rank-selection from 0,,: Maximum M6bius Value for n

1,...,10
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Chapter 4

Ln(q); Related Extremal Questions

In the first section of this chapter we address extremal problems for L,,(q), the lattice

of subspaces of an n-dimensional vector space over the finite field GFq. For the lower

order ideal case, Sagan, Yeh and Ziegler found the entire poset L,,(q) is the extremal

configuration. Their argument uses techniques analogous to the ones they developed

for B,,. We determine that all of the ranks of the poset L,,(q) is also the extremal

configuration for its the interval of ranks and arbitrary rank-selection cases. As usual

in such cases, we use the inversion statistic.

The second section of this chapter describes work-in-progress related to questions

addressed in this dissertation.

4.1 L,,(q): Interval of Ranks and Arbitrary Rank-

selections

For S Q [n — l], we use the notation

(L,,(q),S) = {W E L,,(q): dim W E S}

to indicate the S rank-selection from L,,(q). For 1r = 71’171'2° - - 7r,, 6 Sn, define

inV7r=|{(i,j): 7r,>7r,andi<j} I

77
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For example, if 71’ = 31524 E 35, then inv 7r = 5.

In chapter 2 we saw that we could translate questions involving the M6bius func-

tion of rank-selections S from 8,, and On into questions of studying certain permuta-

tions with descent set S. For S rank-selections from L,,(q) there is a way to compute

Ip(L,,(q), S)I in terms of the inversion statistic.

Proposition 4.1.1 [17, Theorem 3.12.3] Let L,,(q) be the lattice of subspaces of an

n-dimensional vector space over GE, and let S Q [n — 1]. Then

|#(Ln(q).5)| = Z q‘"""-
«es...D(«)=s

We will use this interpretation of S rank-selections from L,,(q) to establish its interval

of rank and arbitrary rank-selection results.

Theorem 4.1.2 For sufi’iciently large q and arbitrary rank-selections S Q [n — 1]

from L,,(q), Ip(L,,(q),S)I attains a maximum when we take S = [n — 1]. In other

words, for large enough values of q,

Iu(L..(q),S)| 3 (1(3)

with equality holding if and only ifS = [n — 1].

Since the extremal configuration in Theorem 4.1.2 is an instance of an interval rank-

selection, we have the immediate corollary:

Corollary 4.1.3 For interval of rank-selections S Q [n— 1] from L,,(q), the extremal

configuration coincides with the one in Theorem 4.1.2.

The proof of Theorem 4.1.2 will follow once we establish a simple result about

inversions of permutations in Sn.
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Proposition 4.1.4 For 7r 6 5,, we have the following bound

n. < .

inv1r_ (2)

Furthermore, 1r = n n — 1- - - 2 l is the unique permutation in S,, with inv 1r = (’2‘).

Proof. For any 6 = 0102 - - - 6,, E S", we have the following bound on the maximum

number of inversions that the ith element 6,- E 6 can contribute to inv 6:

I{j: 6,>6,-andi<j}ISn—i. (4.1)

Hence, the greatest number of possible inversions any 7r = «1772 - - . 1r,, 6 Sn could have

n n i— (n)

i=1 2

), where 77 = mag-urn E S... Thus for l S i S n, 77,- must

is

71

Suppose inv 1r = (2

attain the maximum possible number of inversions described in equation (4.1). When

i = 1 equation (4.1) forces 1n = n. The letters [71 — 1] are now left, so when i = 2

equation (4.1) forces 7r; = n — 1. Continuing in this fashion, we see that

1r,=n—i+1,1SiSn. Cl

Theorem 4.1.2 now follows immediately from Proposition 4.1.4. Ip(L,,(q), S)I is a

polynomial in q with degree at most (3) . The degree equals ('2‘) only when S = [n — 1].

There is only one such permutation 7r E S,, with D(7r) = (’2‘), so we are done.

A more precise statement of what is meant by the phrase “large-enough q” in

Theorem 4.1.2 is given in the next proposition.

Proposition 4.1.5 The maximum in Theorem 4.1.2 is guaranteed to hold ifq 2 En,

where E, is the nth Euler number.
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Proof. We have for S 2f [n — 1]

('2')-1 ,

|u(Ln(q).S)| = Z 69'. (4-2)
i=0

where

c,-=|{1rES,,: D(7r)=S,inV7r=i}I.

Taking the most naive upper bound for each qi appearing in equation (4.2) gives

(1)4 ..

ll‘(Ln(Q).S)l S 2; caqm‘1

. (3-1
: q(2)-1 ; Ci

= q(';)-1| {7r 6 5,: 1)(«) = S} |

(1(3)-1 En (4.3)|
/
\

l
/
\

a
A 0
0
3

v , _ (4.4)

where the inequality in equation (4.4) holds if q 2 En. The bound in equation (4.3)

arises since the greatest number of permutations in S, with the same descent set is

E, [11].

To see how good the estimate is in Proposition 4.1.5, we will need the following

proposition:

Proposition 4.1.6 For S Q [n - 1] and ISI = n — 2, Ip(L,,(q),S)I is of the form

146.015» = <73)“ + 00(3)”) (as q —» oo). (45)

Conversely, iffor S Q [n — 1] equation (7.5) holds, then ISI = n — 2.
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Proof. For the forward direction, it suffices to show there exists exactly one permu-

tation 1r 6 8,. with inv r = (1])—1 and with D(1r) = S, where S §[n—1],|S|= n—2

is given. First suppose S = [n — 1] \ {i} with i 76 1. Let 1r = «In-«n 6 S, with

D(1r) = S. Thus

1r1>~->W.'<1r.-+1 >7rg+2>-°~>1rn,

so either 7n = n or 1r,-+1 = n. If «5+1 = n, then 1n can contribute at most n — 2 to the

total number of inversions. Since 1r,- < «5+1, 1r,- can contribute at most 11 — i — 1 to the

total number of inversions of 1r. By equation (4.1), we cannot achieve inv 1r = (g) — 1,

so we must have 1n = n.

Under the new assumption that 7n = n, 1r.- can still contribute at most n — i — 1

n

2) — 1, 1r; mustto the total number of inversions of 7r. In order to have inv 1r = (

contribute exactly 12 - i — 1 to the total number of inversions, implying

7r; > 1r,” > «5+3 > > 71'".

Also, the other 15, j 94 i, must contribute the maximum number of inversions to 1r,

i.e., inv 1r,- = n — j, j 96 2'. Hence

1n > 1r; > > «H > 1r.-+1.

But 1r,- < 7r,-+1, so we have

7r1>--->7r.-_1 >7r,-.H >7r,->7r,-+2>1r,-+3>--->7rn,

implying

n—j+1forj5£i,i+1

7rj= n—i forj=i

n—i+1 forj=i+1.

Next supposeS= [n—1]\{1} = [2,n—1]. For1r = 1r1---7r,. 6 Sn with D(7r) = S

wehave

7r1<7r2>7r3>~~>7rm
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implying 7r; = n. Thus #2 contributes n — 2 to the total number of inversions of 7r.

fl

2) - 1' Since 1'1 < 1'2, 1n can contribute at most n — 2Furthermore, suppose inv 1r = (

to the total number of inversions of 1r. In fact, by equation (4.1) «1 must contribute

exactly it — 2 to the total number of inversions of 1r. Similarly, the remaining terms

must contribute n - j to the total number of inversions (j 95 1). Thus we have

1r; >7l’3 > “'7,"

implying

n — 1 for j = 1

7r,- = n for j = 2

n—j+ l, forj =3,...,n.

The converse is clearly true for n = 3. Now suppose n > 3 and S Q [n — 1] with

|p(L,,(q), S)I satisfying equation (4.5). Then there exists exactly one 7r = 7r1 - - - 7n. 6

5,, with D(7r) = S and inv 1r = ('2‘) — 1. Suppose on the contrary that IS] < n-2. The

permutation x has at least two ascents, i.e. S Q [n-1]\{k, I} for some I: 79 I 6 [n— 1].

This means 1r). < n+1 and 1r; < n+1. But then

I{j: Wk>7rjandk<j
}|gn_k_1

and

I{j: 7r1>1rjandl<j}|Sn—I—1.

Thus inv 1r S ('2‘) — 2, contradicting the fact inv 11' = (Z) — 1. Thus ISI = n — 2. D

We also have a recurrence for the |p(Ln(q), S)I which appear in Proposition 4.1.6.

This recurrence enables us to easily evaluate |p(L,,(q), S)I, and hence compare the

value of q which Theorem 4.1.2 is guaranteed to hold (Proposition 4.1.5) with the

actual smallest value of q for which it holds.
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Proposition 4.1.7 For S Q [n — 1], with S = [n — l] \ {i} and n 2 3, |u(Ln(q),S)I

satisfies the following recurrence:

Fori9£1,n—1,

|#(Ln(q). S)I = q""‘|#(Ln-1(q), [n - 2] \ {17- 1})I +

qn-i_l(ll‘(Ln—1(Q)a [n " 2])] + |/1(Ln-1(q). [n — 2] \ {3})” (4-6)

Fori=l

|”(Ln(Q)9 5)I = Q"'2(I#(Ln_x(q). [n - 2l)| + |#(Ln_1(<1), [2, n - 2DI), (4-7)

andfori=n—1

|u(Ln(q). 5)l = q""l#(Ln—1(q). [n - 3])l + |It(L..-1(q). [n - 2])|- (4-8)

The boundary conditions are:

Ip(Ln(Q). [n —1])| = q(’.‘)

i/‘(Ln(Q),0)l = 1.

Proof. Supposen Z3andS= [n—1]\{i} withiyé 1,n—1. For7r=7r1~-7r,1 6 Sn

with 0(a) = S, either 1n = n or 1r,-+1 = n. Thus

|n(Ln(q),S)l = Z: q"“’"+ Z q""’"- (49)
nESn,D(w)=S n65mD(w)=S

7r1=n 1r.+1=n

Deleting n from 1r gives

|#(Ln(q).5)| = q"“|p(Ln-1(q).[n-21\{i-1})|+

q"-"‘(|;¢(L,._.(q), [n - 2l)| + |M(Ln—1(q). [n - 2] \ {i})l)-

For i = 1 the first summand on the right side of equation (4.9) is zero, so by virtually

the same argument we obtain the recurrence in equation (4.7). Similarly, for i = n — l
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Table 4.1: Comparison of the Predicted q with the Actual q, n = 1,... ,10

 

Predicted Actual

n q 2 En q

2

5

16

61

272

1385

7936

10 50521
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fi
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v
h
w

W
Q
Q
W
W
W
N
M

     
we note the second summand on the right side of equation (4.9) will only contribute

one term when we delete n from 1r, so we also obtain equation (4.8). D

In Table 4.1 we compare the predicted q so that Theorem 4.1.2 is guaranteed to

hold with the actual q. As one can see, there is room to improve the estimate in

Proposition 4.1.5.

4.2 Related Extremal Questions

We are currently focusing upon four main extremal problems in our research. What

follows is a brief description of each.

I. Classification of Posets with Rank-selected Extremal Configuration

For the Boolean algebra and the n-octahedron, the Mobius function attains a

maximum over lower order ideals by taking a certain rank-selected lower order ideal.

(See [15] and Theorem 1.0.1). Given the results for these two posets, we would

like to address a much more difficult question: identify those posets whose extremal

configuration maximizing the Mobius function over lower order ideals corresponds to
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a rank-selected lower order ideal. Since the Boolean algebra and the n-octahedron

are examples of face lattices of convex polytopes, we expect the face lattices of convex

polytopes to naturally belong to this class of posets.

II. New Applications of the cd-index

The cd-index is a relatively new object of study. As we saw in chapter 3, for certain

posets the cd-index encodes information about the Mébius function of rank-selections.

The answer to the question of maximizing the Mobius function over arbitrary rank-

selections from the n-octahedron (and more generally, from any face lattice of a

convex polytope) was an easy consequence of recent work of Purtill and Stanley on

the coefficients of the cd-index. We are looking for other results for On and B,

which the cd-index answers quite naturally. Also, we would like to prove Stanley’s.

Conjecture 3.2.4 or find a counterexample.

III. Extremal Questions for Other Posets

The q—analog of the Boolean algebra B" is L,,(q), so it would make sense for us

to study the q-analog of 0,,. This poset is 1,,(q), the poset of isotropic subspaces.

For 1,,(q) we plan to address extremal questions analogous to the ones studied in this

dissertation.

IV. Permutations and Their Inverses

One can study the absolute value of the Mobius function of rank-selected subposets

from the Boolean algebra in terms of permutations in the symmetric group. A related

question posed by Ira Gessel is: for fixed n let fn(A, B) be the number of permutations

in the symmetric group on n elements with descent set A such that the descent set

of the inverse is B. For what A and B is fn(A,B) the greatest? The data we have

looked at suggests that A and B are “alternating”. We hope to prove this result by

applying an algorithmic technique similar to one developed by de Bruijn [11].
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