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ABSTRACT

MODELING A RADIO CONTROL SCALE HELICOPTER
FOR ROBUST CONTROL DESIGN

By
Chang-po Chao

Helicopter flight control serves as an interesting and significant benchmark control design
problem. In this study we look at the modeling of a scale helicopter and how it can be
related to control design. Three nonlinear models of a radio control (R/C) scale helicopter,
designed and fabricated in the ﬁynamic Systems and Control laboratory, are derived. Their
only difference is the inflow velocity distribution assumed to exist over the rotor disk.
After theses nonlinear models are determined we use the framework of uncertain linear
system to represent them in a manner useful for robust control design. Our goal is to
establish the effect of parameter variations in the nonlinear models on the uncertain linear
system representations and their associated robust control designs. We use parametric and
nonparametric uncertain linear system representations and the established theory of robust
control. The 2-norm of the tracking error is our performance measure. Each controller is
evaluated by considering the worst case tracking response of all possible compensated
nonlinear models to step inputs of three different amplitudes (10°,20°,30°) . The merit of
each modeling effort and control design is considered and recommendations are made

regarding the approach that offers the greatest promise for application.
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1. INTRODUCTION

1.1 Modeling the Physical System

)

Rotor Thrust
Output Signal Parallelogram linkage
‘7 »’ Hall Effect sensog DC motor
Couterweight

Base structure
Input Signal

Figure 1.1 Schematic Diagram of the Scale Helicopter

A single-degree-of-freedom scale helicopter was designed and built in the Dynamic
Systems and Control Laboratory to investigate the modeling and control of a rotor driven
system. A schematic diagram of this device is shown in Figure 1.1. The mechanical part
of the system has four components: a rotor system (DC motor, drive train and rotor), a
parallelogram linkage, a base structure, and a counterweight. The rotor system is mounted
on the parallelogram linkage, which is attached to the base structure, and is balanced by a
counterweight that can be moved to adjust the equilibrium thrust level. The input signal
corresponds to a voltage applied to the permanent magnet DC motor which powers the
rotor through the drive train. The pitch of the individual rotor blades is fixed and the thrust
of the rotor system is modulated by varying the rotor speed. The angle of the parallelogram
linkage relative to the base is the controlled variable. A Hall Effect sensor provides the
output signal which is used for control purposes.

A nonlinear, lumped parameter model was used to describe the dynamics of the device.

The electrical dynamics of the DC motor were neglected since they are much faster than the



2
mechanical dynamics of the system. The thrust produced and torque required by the rotor

were obtained by combining Blade Element Theory and Momentum Theory (as in [2] and
[3]). We assumed quasi-static aerodynamics and considered three different inflow velocity
distributions over the rotor disk: uniform, linear, and cubic. The parameters required for
cach model were identified using the method of least squares to fit the theoretical results to
static thrust measurements. Additional measurements and documented data were used to

determine the nominal values and expected variations of the other model parameters.

1.2 Modeling for Control Design

Once the three nominal nonlinear models were determined, we used the framework of
uncertain linear systems (ULS) to represent the dynamics of the device in a manner
applicable to robust control design. Both parametric and nonparametric ULS
representations were considered. We found the parametric ULS representations first and
then used disk shaped uncertainty regions in the Nyquist plane to form the nonparametric
representations. The parametric uncertainties in the ULS representations were the result of
unknown system parameters and system nonlinearities. We used the hard bound method
discussed in [5] and the conic sector bound method discussed in [6] to find bounds for
these parameters. We considered four parametric uncertainty descriptions and four
nonparametric uncertainty descriptions. Three of the parametric ULS models follow
directly from the uncertain nonlinear models derived and have a similar algebraic structure.
They differ only in the ranges of the parameters which result from the nonlinear terms
associated with the different assumed inflow distributions. The fourth description we
chose to include all three of the other descriptions. After finding the four parametric ULS

descriptions we then found their associated nonparametric representations.

1.3 Robust Control Design and Evaluation

The robust control design procedure we used consisted of two steps. In the first step, an

H, optimal control was designed to minimize the 2-norm of the tracking error for the
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nominal linear plant model assuming a step input was to be tracked. Once the nominal

controller was designed it was augmented by a low-pass filter which was adjusted to
achieve robust stability and performance.

The main goal of this study was to determine how variations in the nonlinear model
parameters affect the uncertain linear system models and the associated robust control
designs. We considered eight different plant models, hence eight different controllers. To
evaluate each controller we assumed that the “truth” model was described by one of the
three nonlinear model structures considered and had parameters belonging to a prescribed
allowable set. The performance of each controller was then judged by determining from
among all of the possible “truth” models the tracking error with the largest 2-norm that
resulted from a step up command held for ten seconds followed by a step down command

held for ten seconds. In order to get a feel for the nonlinear behavior of the compensated

systems three step amplitudes were used (10°,20°,30°).



2. MODELING THE PHYSICAL SYSTEM

2.1 Parallelogram Linkage Dynamics

}

Figure 2.1.1 Nomenclature of the Parallelogram Linkage

Using the nomenclature of Figure 2.1.1 and elementary dynamics we find the equation of
motion for the parallelogram linkage is given by

J,6+b 0=(-Mg+TL,)cos@+Tf, (2.1.1)
Jp=J, +Ls’ms (2.12)
M= Logm— Lsms (2.1.3)
where b, = Coefficient of viscous friction for the parallelogram linkage

f. = Offset of the acting line of the thrust

J, = Moment of inertia about O

J ,,' = Moment of inertia of the parallelogram linkage + rotor system

L = Length from the joint of the parallelogram linkage, O, to the center

of mass of the counterweight
Lcg =Length from O to C.G. of the parallelogram linkage

L = Length from the joint of the parallelogram linkage, O, to the
shaft of the DC motor
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= Mass of the parallelogram linkage and rotor assembly

m
mg = Mass of the counterweight

T = Thrust generated by the rotor
6

= Angular displacement of the parallelogram linkage

2.2 Drive Train Dynamics
A permanent magnet DC motor is used to drive the rotor through a single stage drive
train. The motor output torque balances the load torque which has three components.

These three components include the torque required to accelerate the drive train/rotor
system, the torque required to drive the rotor blades through the air, 7,,,,, and the torque

required to overcome friction in the drive train, Tj;y,,. The relationship among these

torques is given by (see Appendix A.1.1)

V,-K,0 .
KT(—G_'__LR ) =J, 0+ Ty + T friction (2.2.1)
a

K{(M) =J,0+T,,, +bysign(w)+ b w (2.2.2)

where b,= Coulomb friction coefficient
b, = Viscous friction coefficient

J, = Total Moment of Inertia of the Drive Train + Rotor
(referred to the rotor speed)

K, = Back EMF Constant (referred to the rotor speed)
K ; = Torque Constant (referred to the rotor speed)

R, = Armature Resistance

V. = Supply Voltage

@ = Rotor Speed

and in the second expression we assume 7j;qo, results from Coulomb and viscous

friction terms.



2.3 Rotor Thrust and Torque

To predict the thrust and torque generated by the rotor we combine Blade Element Theory
and Momentum Theory [2], [3]. The basic assumptions required are that the air is
incompressible, the flow is quasi-static and the inflow velocity distribution over the rotor

disk, vy =w(r), is represented by a one parameter family of surfaces. Three commonly

assumed inflow velocity distributions are uniform, linear, and cubic

w(r)=V, (2.3.1)
vw(r)=V,xr (2.3.2)
v(r)=V.xr*x(R-r) (2.3.3)
where r = Radial distance from the rotor’s hub

R =Radius of the rotor

V..V, V. = Parameters of the inflow velocity distributions

Once the inflow velocity distribution is assumed we find two differential expressions for
thrust. One results from Momentum Theory (see Appendix A.1.2) and the other from
Blade Element Theory (see Appendix A.1.3). Integrating each of these expressions and
then setting them equal to each other makes it possible to solve for the inflow velocity
parameter. This, in turn, makes it possible to determine the thrust produced and the torque
required by the rotor as a function of the rotor parameters, rotor speed, and velocity of the

rotor relative to the air mass. The expressions that result are given below.
(1) Rotor Model Assuming Uniform Inflow Distribution

3 2
T, = pac(wzop%- w%v,) (2.3.4)

Ty m =27pR* (V.2 -V v,) (2.3.5)
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2 2acw*0,R
v =(&_9ﬁ)+1\[(302_%) o 2C0°6,R
“\2 8t ) 2¥\4rx 3n

R _,R
rmlor.u pac(we V 3 Vl 2 )

(2) Rotor Model Assuming Linear Inflow Distribution
R3
T, o = pac(@6, - wV,)T

R* R?
3

T,.= 47rp(TV -—vV,

(4vo aca)) 1 J(acw 4v, )2 4aca’6,
V,= += +
6R 67R 3nR 3R 3nR
R4
w6V, -V,
mwrl paC( )T

(3) Rotor Model Assuming Cubic Inflow Distribution

R’ wV, R
T. = 29, — — —=—
c,bet pac( 20 )
RS ) RS
c.ml ”p(168 3 20 vo C)

V= (Zlvo 21aca)) \l(ZIacw 42v, )2 + 56aca:’0’
) R

5R* 207R’® 10nR*> 5R®

6 Rl
Troore = pac(wG,V, % -v? ﬁ)

(2.3.6)

(2.3.7)

(2.3.8)

(2.3.9)

(2.3.10)

(2.3.11)

(2.3.12)

(2.3.13)

(2.3.14)

(2.3.15)

Note that the subscripts u,c,/ refer to the uniform, cubic and linear velocity distributions,

respectively. The subscript bet indicates the expression derived from Blade Element

Theory and m¢ indicates that it derived from Momentum Theory.
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Figure 2.3.1 Velocity distributions

Three different velocity distributions are shown in Figure 2.3.1 that generating the same

magnitude thrust (0.3 LB = 1.33 N).

Among the three velocity distributions shown it appears that the cubic one is most

appealing on physical grounds. However, the other two distributions are often used for

historical reasons or due to their simplicity.



3 PARAMETER IDENTIFICATION

3.1 Documented and Experimental Information Available

The motor armature resistance, R,, was measured at twenty-three different rotor rotative
positions (Appendix A.2.1). The nominal value was determined to be the average of the
above twenty measurements. The torque constant, K, which has the same numerical
value as the back EMF constant, K,, in SI was obtained by referring to the catalog
provided by the DC motor company (and factoring in the gear ratio since we use the rotor
speed as our reference). To investigate the relationships among the thrust, rotor speed,
motor armature current and voltage, we performed a static thrust test (Appendix A.2.2 and
A.2.3). The thrust was measured using a model DFG 50 force gauge [8] from the
Chantillon Company. The rotor speed was measured using a B&K model strobescope type
4913. The armature current and the applied voltage were determined using two model

Fluke 77 digital multimeters.

3.2 Nominal Linkage Parameters and How They were Determined
The relationship between the output voltage of the Hall Effect Sensor and the angular

displacement of the parallelogram linkage was also investigated by experiment (see

Appendix A.2.4).
1 ..
0.5 ......... ........ " * " Measurements
2 ' ’ ' : | " - " Linear curve fitting
S ol N e
o 3
s
§°0-5 AP S P PO 5 O
120 30 20 -10 0 10 20 30 40

6 , Angular displacement of the parallelogram linkage (degree)

Figure 3.2 Hall Effect sensor curve fitting
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The linear curve fitting in Figure 3.2 shows that over a certain range of the magnetic

rotation, the relationship between angular position and the output voltage is linear and the

nominal voltage output is nearly zero. This linear relationship can be approximated by

VH =KH6 (321)
where Ky = 0.0235 (Volts/degree) and V is the output voltage of the sensor.

3.3 Nominal Rotor Parameters and How They were Determined

Among the rotor and acrodynamic parameters, the chord length, ¢, and the radius of the
rotor, R, were measured directly. The variation of air density p in the laboratory is small
enough to be ignored. Because the pitch angle 6, may be different from its static value
when the rotor is rotating and the exact value of the characteristic lift curve slope a is hard
to determine, the theoretical thrust can not predict very well if we use these parameter
value. To solve this problem, the least square method is utilized to calculate the optimal

rotor parameters 6, and a by fitting theoretical to experimental thrust (see Appendix

A.2.2). The results are shown in Table 3.3.1.

Table 3.3.1 Optimal rotor parameters

Uniform model Linear model Cubic model
a (no unit) 6.05 5.99 5.72
0, (degree) 13.1 12.8 13.0

Figure 3.3.1 shows that the thrust predicted using the associated optimized parameters
listed in Table 3.3.1 are almost the identical curves. It makes us ensured that all three
thrust prediction can well predict the thrust well with the rotor speed from 0 RPM to 1400
RPM.
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2.5 .
:l.. ' o ' cubic mmiCI .................................
'x ' linear model
T . '~ uniform model :
Q 1.5 " expeﬁmental measurement | --ccccc i M -
H
é ...........................................................
N0 N O N
0 200 400 600 800 1000 1200 1400
Rotor speed (RPM)
Figure 3.3.1 The thrust with the associated optimized parameters
0.035
0.0 ...............................................................................
’E‘ 0.02§8------- ‘o' cubicmodel | A
Z 'x ' linear model
§ 002------- '2 uniformmodel |t 2 A ~
g ; :
E“o- L0 0 ) T T S~ N L
00 ........................................................................
0‘00 ..............................

0 200 400 600 800 1000 1200 1400
Rotor speed (RPM)

Figure 3.3.2 The load torques with the associated optimized parameters

In Figure 3.3.2 the load torques predicted by three different set of optimal parameters

receptively shown to be different especially in high rotor speed range.
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3.4 Nominal Motor/Drive Train Parameters and How They were Determined

Among motor/drive train parameters, the coefficient of Coulomb friction for the DC

motor, by, was obtained by measuring the largest current that could be applied to the motor
without initiating rotor rotation. The coefficient of viscous friction, b, was identified by
the power balance

V=T @+i R+ Ty @ (3.4.1)
We assume the frictional terms result from the sum of the Coulomb's and viscous friction,

then the above equation become

iV, =1, o+i R, +blo|+bw? (3.4.2)

In (3.4.2), since a,0, used to predict 7, are set to fit the experimental results using the
measurements of the thrust, we can assume 7,,,,, is well predicted and the nominal values
of V,, i,, R, and b, can be measured, the only unknown in the power balance (3.4.2) is
the coefficient of the viscous friction, b,. Therefore by fitting the output power to the input
power and using least square method again, three nominal optimal b, are obtained in Table

3.4.1 for three different velocity distributions.

Table 3.4.1 Optimal nominal parameters derived from power balance

b, (Nm sec/rad)
Uniform Distribution 3.41x10-4
Linear Distribution 3.29x10-4
Cubic Distribution 3.85x10-4

Table 3.4.1 reveals that the values of b, for uniform and linear distribution are smaller

than the cubic one because the load torque predicted by uniform and linear distribution in

Figure 3.3.2 is larger than the other's.
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Figure 3.4.1 Power balance with three different velocity distribution

Figure 3.4.1 shows that the output power and the input power can well balanced for the

three different velocity distributions with their associated optimal parameters b,'s and the

fittings shown up are almost identical for three different velocity distributions.

3.5 Nominal Nonlinear State Variable Model
With the equation of motion for the parallelogram linkage, the equation describing the
drive train dynamics, the expressions used to predict the thrust and torque and the

parameters determined in this section which are measurable nominal values or optimized
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ones, the overall nonlinear system can be described by the following two nonlinear

differential equations and one output equation.

J,0+b, ,0=(-Mg+TxL,)cos6+f,xT (2.1.1)

. V,-K,0 .
o= [K,(_L&—)—bosxgn(w)—blw = Trotor )A’ (2.2.1)
Vy =Ky (3.2.1)

In addition to some dimensions and weights which can be measured directly, the other

parameters should have uncertainties associated with them such as

(1) Motor armature resistance R,

(2) Coulomb's friction b,

(3) Coefficient of the viscous friction b,

(4) Torque and Back EMF constant, K, and K,

(5) Slope of the hall Effect output equation (3.2.1), Ky

(6) Lift curve slope, a
(7) Pitch angle, 0,,

In state variable form, we may combine the nominal nonlinear state variable model

(2.1.1), (2.2.1) and (3.2.1) to be written as nonlinear state equations

x =f(x,u) (3.5.1)
y=Kyx o

6
where x=|x =06
0]



4 LINEARIZATION AND EXPERIMENTAL MODEL
VALIDATION

4.1 Linearization

In the laboratory, for the case the counterweight is set to be 2 1b (0.91 kg), the operating
range for the angular displacement of the parallelogram linkage is from -40 degree to 50
degree and the input armature voltage V, is about from 6.2 volts to 7.2 volts to prevent the
bottom of the gear box from hitting the ground. By setting the right hand side of the
nonlinear state equations (3.5.1) to zeros and solving it, we find the nominal supply

voltage and the nominal motor speed

V., =6.40 (Volts), 0, = 853 (RPM), 6, =0 (rad / sec) (4.1.1)

needed to keep the parallelogram linkage at the equivalent position 6,. This set of nominal
values are especially for the case of the cubic velocity distribution model. Using these
nominal values, the nonlinear state equations (3.5.4) can be linearized as (see Appendix

A.1.5)

x=Ax+Bu 412
»=Cx (4.1.2)
[0 1 0
where A=|a, a, a,]|,
0 a, ay
0
B=|0
-b3
C=[ky 0 0]

For the case that the equivalent 6, is 59, the linearized A, B, and C are

15
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0 1 0
A =|-0.0094 -0.3979 0.05320
0 0.5763 -3.6531

B=[0 0 49.6161]
C=[14324 0 0]

A(A)=[-3.6672 -1.4795 -0.0064]
We can see that the system have three non zero stable eigenvalues including one very slow

eigenvalue which is close to imaginary axis.

4.2 Model Validation
A experimental set-up shown in Figure 4.2.1 was used to investigate open-loop response
for model validation.
HP35660A Signal Analyzer

SourceQ !
j input

Nominal Voltage Supply, HP6235A

output

Hall Effect
sensor

HP 6825A
Amplifer

+

Figure 4.2.1 Schematic diagram of the experimental setup

The HP 35660A signal analyzer [7] was used to investigate the frequency response. This
analyzer can provide a source signal for excitation as input signal of the analyzer itself. In
this experiment set-up this signal was added to the nominal voltage which is supplied by

the HP 6235A power supply and is estimated off-line by the preceding experiments, which

measured the armature DC motor voltage V,, required for keeping the parallelogram
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linkage at the equilibrium position. HP 6825A amplifier provide the power to drive DC

motor. The output signal of the Hall Effect sensor is quasi-proportional to the angular
displacement of the parallelogram linkages, and this signal is connected to output channel
of the signal analyzer.
By setting the coefficient of the viscous friction for the shaft of parallelogram linkage as
by, = 0.33 (N sec/ rad) 4.2.1)

and using periodic chirp of amplitude 0.4 volts for excitation, the experimental and the
theoretical results are matched to each other well in Figure 4.2.2. In this Figure it shows
when the frequency of the excitation goes beyond 0.8 Hz, the amplitude of the response is
nearly zero and the noise become dominant, then the measurements are not reliable. By the
plotting of coherence shown in Figure 4.2.3, this coherence is very low when the
frequency goes below about 0.06 Hz. That means at this frequency region, the system
nonlinearity become dominant. It is why the theoretical result can not predict the behavior

very well at the very low frequency region.

50

a: Theoretical response
b: Experimental response

0.3 04 0.5 0.6 0.7 0.8

Gain(db)
(=

Phase(degree)

03 04 0.5 0.6 0.7 0.8
Frequency(Hz)

Figure 4.2.2 Experimental and theoretical Frequency Response
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Figure 4.2.3 Coherence of the Frequency Response
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5 MODELING FOR CONTROL DESIGN

5.1 Linear State Variable Model
In the linear state model (4.1.2), several parameter variations involved in this model.
Generally, they can be divided into two groups. In the first group, the uncertainties arise

from system parameter variation. These parameters are

(1) Motor armature resistance R,

(2) Coefficient of the viscous friction b,
(3) Torque and Back EMF constant, K, and K,

(4) Slope of the hall Effect output equation (3.5.3), Ky

Compared to those involved in nonlinear state variable model, Coulomb friction is not
included here because this terms will eliminated after linearization.
The second group is from nonlinearity and variation associated with the thrust and torque

which have the nonlinear characteristics and parametric variation arising from

(1) Lift curve slope, a
(2) Pitch angle, Op

5.2 Effect of Physical model parameter variations on linear model

parameter variations

The uncertainty for R, can be obtained by applying the statistic Hard Bound method [5]

on the static measurements (see appendix A.2.4) by assuming uniform distribution over the

uncertainty interval, thus
R,0 =2.25 (ohm), R, €[2.10,2.40] (5.2.1)
where R, , is the nominal DC motor armature resistance and subscript "0" denotes the

nominal value.

19
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The uncertainties of X,, K,, b, a and 6, are approximated by 5% of their nominal

values (see Appendix A.3)

5.3 Effect of Physical model nonlinearity on linear model parameter
variations

In addition to tﬁc above three parametric uncertainties, in fact we neglect the nonlinearity
due to linearization. In order to include the nonlinearity variation in the linear model, here

we introduce " Conic Sector Bound " method [6].

The Conic Sector Bound Method

Given The nonlinear function f(¥) that is Lipschitz, where ¥ is nx 1 vector
Find k and k such that there exists a vector k that can represent this nonlinear
function as f(¥) = k ¥ within the compact domain D,, (V ¥ € D,),

and this k has the bound

where k,k,andk areall 1xn vectors.

The strategy to solve this problem is that first we grid the compact domain D, and take
the finite number (relatively large enough) of sample points in D,. If the nonlinear function
is known to be Lipschitz [9], then for every single sample point by minimizing the 2-norm
of the vector k, we can find the most conservative k to predict the nonlinear function.
Secondly, comparing these all values of k resulting from every single point in , we choose
the maximum of all upper bounds as a new upper bound and the minimum of all lower
bounds as a new lower bound.

In order to apply Conic Sector Bound method, the equations used to predict the thrust
produced and the torque required to drive the rotor are assumed to have the following

forms for deriving Conic Sector Bounds.
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T(6, @)= T(85@0) = (T, + ki, )0 + (T, + hyp Y@ — @) = 2,6 + @, (0 - @)
16.0)- o6, @) =(7,° +hy )0+ (7, + k)@ - @) = 0,0 + @y (0 - @)

o_dl o_ dl o drt o drT
whe Ty dol.,..,.,,-,,,.v,,. @ da)L..-,.-,,,.-.,, ®  dBliitibvion © AD|ition

Because the above four nominal derivatives can be calculated. The remaining unknowns in
(5.3.1) are

(5.3.1)

kll’k‘lz or 0,,,Q, for Thrust

5.3.2
ky.k, or a,,a,, forTorque ( )
By minimizing the weighted 2-norm of
kDk’ (5.3.3)
0
where D= [le d,]

K =[k,,k,] or [ky,ky,]

and using the form of (5.3.1), we can find Conic Sector Bounds for the nonlinear function.
Note that the weighting matrix can be determined arbitrarily in order to obtain physically
reasonable Conic Sector Bounds.

Within the reasonable compact domain

D= {(é, )|8|<2,600 RPM < & <1400 RPM} (5.3.3)

,we consider the nonlinearity of the thrust and torque and the parametric uncertainties

arising form a and 6, Conic Sector Bounds are found by using the particular weighting

that make the system stable. These Bounds are shown in Table 5.3.1.

5.4 Effect of Physical model parameter measurements on linear model

parameter variations using Conic Sector Bound method

In addition to nonlinearity, we also use this Conic Sector Bound method to accommodate

the measurement uncertainty in linear variable model.



Table 5.3.1 The Conic Sector Bounds for three different models

weighting Qa,, a,,
“% & @ &y %
Cubic 30 -1.71x10°1  9.14x10°2  1.25x10°2  2.47x10-2
Linear 30 -1.87x10-1  -990x10-2  1.13x10°2  2.65x10-2
Uniform 30 -2.10x10°1  -1.34x10-1  1.01x102  2.73x10-2
weighting 0y Qy
d — _
2 dy % 29 73 Ay
Cubic 20 -2.05x10°3 4.43x10-4  1.25x10-4  3.05x10-4
Linear 20 -1.47x10°3  1.42x10-3  1.95x10-4  3.72x10-4
Uniform 20 -1.83x10°3  1.25x1003  1.77x1004  3.58x10-4

For the uncertainty associated with K, it can be calculated by treating the finite number
of experimental measurements as the nonlinear function values and applying the above

Conic Sector Bound method. Thus this uncertainty can be found as

Vy=Ky6, Ky e[0.0200,0.0250] , (5.4.1)



6 CONTROL DESIGN

The dynamics of the parallelogram linkage is heavily influenced by the parameter
variations. One method introduced by Morari and Zafiriou [7] uses the IMC controller to

minimize the effect of model uncertainty. This IMC structure is shown in Figure 6.0.1.

d

Figure 6.0.1 The IMC structure

Here p denotes the plant and p the nominal models. r;, " and w are physical input,
normalized input and weighting function ﬁ:spectively. q is IMC controller.
By comparison between the classic feedback controller structure and the IMC structure

shown in Figure 6.0.1, the performance achievable with IMC is identical to that achievable
with the classic feedback controller ¢, shown selected such that
¢, =—3— (6.0.1)
1-pq
The IMC controller design contain two steps. In the first step the controller § is selected

for good response without regard for constraint and model uncertainty; that is

g=1 (6.0.2)
p

Note that our model inverse is an acceptable solution because the linear model (4.1.2) is
minimum-phase plant.
In the second step for satisfying the robustness requirement the controller § is augmented

by a low-pass filter f

q9=4f (6.0.3)
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Figure 6.1.1 Fuzzy Nyquist plot for cubic model

to provide the roll-off necessary for robustness and milder action of the manipulated
variable. If it is designed for asymptotically constant inputs (step input), then

1

This filter can make g proper in order to be causal.

6.1 Parametric Uncertainty

Parametric uncertainty representation describes the model by using the linear state
variable model (4.1.2) and letting all uncertain parameters vary in their associated uncertain
interval including Conic Sector Bounds. The Fuzzy Nyquist in Figure 6.1.1 shows all
these various linear models which use cubic velocity distribution assumption.

Using the nominal linear model (4.1.2) as nominal plant to design the IMC controller q,
we plot the local Nyquist band of p(iw)c,(iw) near to (-1,0) with A from 0.05 to 10 in

Figure 6.1.2, which will never encircle or cover (-1,0) so that the closed-loop system is

guaranteed to be stable. By plotting Nyquist bands of p(iw)c.(iw) for the other two

models, the results also shows p(iw)c, (iw) does not cover (-1,0).

The sensitivity function € is defined as
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Figure 6.1.3 Upper bounds of the sensitivities for parametric representation

1
(1+pc.)’

In [7] the robust performance requires that the distance from all possible p(iw)c,(iw) to

E=

(6.1.1)

the point (-1,0), i.e., |l + pc,| has to exceed the specified maximum weighting function w.

By using the information revealed in the Fuzzy Nyquist plot of Figure 6.1.2 or the other

plot of p(iw)c (iw) for the other two models, we find out the upper bounds of the

sensitivity functions shown in Figure 6.1.3 for three different distribution models. It
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Figure 6.2.1 Robust stability consideration

appears that the bounds derived from three different models are almost identical to each
other. The upper bounds of the weighting functions can be obtained by the inverses of the

preceding sensitivity bounds.

6.2 Nonparametric Uncertainty
In nonparametric representation, the family IT shown in Nyquist domain, which
represent all possible plants p, can be enclosed by a disk defined by

_|_|pliw)- plio)| _
H—{p. e <I (o) (6.2.1)

where [, is referred to as an multiplicative uncertainty and j(iw) is the nominal plant or

the model defining the centers of all the disk shaped regions, which is used to design IMC

controller q.

In [7], it suggests that for nonparametric representation, if the values of lff_| never

exceed one over all frequency domain, the closed-loop system is guaranteed to be robustly
stable. Figure 6.2.1 shows that the values of |fi_| never exceeds one over all physical

reasonable frequency domain so that the closed-loop system is robustly stable.
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Figure 6.2.2 Upper bounds of the sensitivity functions

The robust performance criterion also can be given by

IFL|+1- F)m <1 (6.2.2)
The above equation can be used to derive the upper bounds of weighting functions and

sensitivity functions which are shown in Figure 6.2.2.

6.3 Comprehensive Uncertainty

For the case of the comprehensive uncertainty representation we consider that the model
must be able to represent the dynamics that could arise from any of the three linear variable
models (differing by inflow distributions). Two controllers result from comprehensive
uncertainty. The first one, called "Comprehensive parametric representation,” uses the
nominal plant that has associated nominal parameters with uncertainties which can represent
all uncertainties arising from any of three models. The second one called, "Comprehensive
nonparametric representation,” uses nominal plant that is the centers of uncertainty disks in

Nyquist domain, which encircle the uncertainty arising from any of three models.
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Using the same previous criterions, for the case of "Comprehensive parametric

representation,” p(iw)c,(iw) still not encircle (-1,0) and the sensitivities are shown in

Figure 6.3.1 to be smaller than "comprehensi p ic" ones.
For the case of "Comprehensive nc ic representation,” the values of lfi_|

shown in Figure 6.3.2 does not exceed one so that the closed-loop system with this

controller still be robustly stable.
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6.4 Nominal Plants Used for Robust Control Design

Eight nominal plants used for robust control design are plotted in Figure 6.4. These
nominal plants are derived based on the uncertainties of
(a) Parametric representation and Cubic model. The nominal plant is the linear nominal
planet of the cubic model.
(b) Parametric representation and Linear model. The nominal plant is the linear nominal
plant of the linear model.
(¢) Parametric representation and Uniform model. The nominal plant is the linear nominal
plant of the uniform model.
(d) Comprehensive parametric representation. The nominal plant is the average of the
above three nominal plants
(e) Nonparametric representation and Cubic model. The nominal plant is the centers of
uncertainty disk in Nyquist domain for the cubic model
() Nonparametric representation and Linear model. The nominal plant is the centers of
uncertainty disk in Nyquist domain for the linear model
(g) Nonparametric representation and uniform model. The nominal plant is the centers of
uncertainty disk in Nyquist domain for the uniform model
(h) Comprehensive nonparametric representation. The nominal plant is the centers of
uncertainty disk in Nyquist domain. This uncertainty can arise from any of the above

three uncertainty linear models
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7 EVALUATION

We used the nonlinear state variable model (3.5.1) instead of linearized model and unit
output feedback structure for simulation. The IMC filter with 4 =0.1 or 4 =0.2 was
realized by controller canonical form [10]. The applicable eight different robust controller
which use the nominal plant shown in Figure 6.4. The control effort was the sum of the
output of the IMC filter and the nominal voltage supply that can keep the system at the
equilibrium position when the feedback signal is zero. The simulation algorithm was using

4th and 5th order Runge-Kutta formulas which has tolerance set under 1e-S.

7.1 How is the Worst-Case Determined

In order to define the worst case, we introduce an performance index called 2-norm

which is '
fee),
Iy
2
=,’ [le(e)"de 1.1)
) \/i(e(:,.)’ relt,)’ ) N
i=0 2
where (A =Y = Vss
At = Sample time interval = 0.1 sec
y = Time response trace
Vss = Steady state

Using this 2-norm definition, the worse case occurs when 2-norm error reaches its
maximum value. While using the three nonlinear state variable models (3.5.1), in addition
to considering possible plants due to the parametric uncertainties, which result from lift
curve slope , pitch angle, DC motor armature resistance, torque constant, viscous friction

and Hall Effect sensor, we add the uncertainties of 5% of the Coulomb friction into
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Table 7.2.1 Worst-case 2-nomms for the cases with IMC filter which has 4 = 0.1

Controller a Controller b Controller ¢ Controller d
100 13.7233 */ 13.7111 *u 13.7273 *I 13.6879 *I
200 ~ 29.6059 * u 29.5788 *u 29.5314 *c 29.5289 */
300 56.4482 *u 56.4871 *u 56.4803 *I 56.2301 *u

Controller e Controller f Controller g Controller h

100 14.6214 */ 14.4197 *| 14.0989 */ 15.5336 *I
200 30.4191 *u 30.1712 *u 30.0410 *u 31.8937 *I
300 51.8027 *u 52.4556 *u 55.1732 *u 50.8499 *u

* Note that ¢, u, or ! represent the worst case is corresponding to cubic, linear or uniform model
respectively.

account. Using line search method [11], we search for the worst-case responses with
respect to each controller.
7.2 Worst-case responses for different robust controllers and the
associated models

In simulation, for each controller we search for worse case and the associate 2-norms
which might corresponding to any of velocity model or system parameter. The reference
signal is set to be the step input which is some certain degree during the 10 sec and 0° in
the remaining 10 second. The simulation result shows that the worst-case parameters are
always boundary parameters and these parameters are dependent on the inflow velocity
distribution but independent of the controller used. Table 7.2.1 and Table 7.2.2 list the

worst-case 2-norms for each controller, which are corresponding to different IMC filters.
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Table 7.2.2 Worst-case 2-norms for the cases with IMC filter which has A = 0.2

Controller a Controller b Controller ¢ Controller d

100 18.7924 *I 18.8056 *u 18.7924 *I 18.7664 *I
200 38.2131 *u 38.2131 *u 37.9692 *c 37.8170 *I
300 ~ 58.8725 *u 58.7634 *u 58.5773 *I 58.4899 *u

Controller e Controller f Controller g Controller h

100 20.1400 *I 19.8789 *I 19.5240 *! 21.0060 *I
200 40.9684 *u 40.4430 *u 39.7484 *u 42.6154 *I
300 63.0479 *u 62.2680 *u 61.2601 *u 65.4545 *u

* Note that ¢, 4, or [ represent the worst case is corresponding to cubic, linear or uniform model
respectively.

Form Table 7.2.1 with 4 =0.1, in 2-norm sense, the controller d derived from the
comprehensive parametric uncertainty is proved better than the others for the smaller step
input (e.g. 10° 200) but for larger step input (e.g. 30°), the controller h derived from
comprehensive nonparametric uncertainty is proved better. Form Table 7.2.2 with
A =0.2, in 2-norm sense, the controller d derived from the comprehensive parametric
uncertainty is proved better than the others for different kinds of input

In Figure 7.2.1, using the step input 300 we plot the eight worst-case traces
corresponding to eight controllers with A =0.1. It indicates that the upward motion is
absolutely different from the downward motion. Figure 7.2.2 shows the same worst-case

responses but with 4 =0.2.
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Figure 7.2.1 Worse-case response for 300 input with 4 = 0.1

Figure 7.2.3 shows the time trace of the control effort, i.e., the output voltage of the IMC
filter for the worst-case for the input 30° with 4 =0.2. It indicates that the amplifier used
for implementation have to be powerful enough to generate as high as about sum of peak of
output voltage of IMC filter, 10 Volts and nominal voltage about 6 Volts.

Figure 7.2.4 shows the time traces corresponding to rotor speed using IMC filter with
A =0.1. Obviously, the rotor speed is out of reasonable physical range

{w:600RPM < w» <1400RPM} (7.2.1)
which is the one we used to derive the Conic Sector Bounds. Figure 7.2.4 shows rotor

speed will always in the physical range if we use IMC filter with 4 =0.2.
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8. CONCLUSION

The physical system was described by a nonlinear model. This nonlinear model is able to
predict the dynamics of drive train, parallelogram linkage and the thrust produced and the
torque required by the rotor.

We modeled a nonlinear system using the framework of Uncertain Linear System which
has the uncertainty that results from parametric uncertainty or Conic Sector Bounds. By
using this ULS, we can investigate the effect of three different inflow velocity distributions
on both the uncertain linear system and the control design. It was found that for small
parameter variations, the effect of inflow velocity distribution assumed was not very
significant.

Eight robust controllers were designed to minimize the effect of the uncertainty. They are
designed using parametric, nonparametric and comprehensive uncertainty representation for
three different velocity distribution models. The stability analysis shows that the closed-
loop system is stable for any controller. A time domain analysis including simulation and
the 2-norm error calculation were completed. The worst case always occurs for the plant
with the boundary parameters. The simulation results shows that using the reasonable IMC
filter with A = 0.2, the controller design using comprehensive parametric uncertainty yields

better performance than the others.
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APPENDIX

A.1 Mathematical Development

NN\~ »«Z+ Motor _£_|_

Figure A.1.1 Simplified model of a DC motor

In a running permanent magnet DC motor, the current i, flows through the armature
which has resistance R, , inductance L, and supply armature voltage V,. Since the

armature is a conductor rotating in a magnetic field, a voltage referred to as the back EMF.,

V,, is induced in the armature. A simple model shown in Figure A.1.1 describing this
electric circuit is given by
di .
V,=V,+L,—~+R, (A.1.1.1)
dt
The relationships governing the behavior of the gyrator portion of the model in Figure A.1
are given by
V,=K,w (A.1.1.2)
Toor = K, (A.1.1.3)
where K, is the back EMF constant, @ is the rotor speed, Tp,,,ris the output torque of

the motor and K, is the torque constant (Note that for convenience we have chosen the rotor

speed as our reference speed and this will affect the values of K, and K;). The term
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La%:- in (A.1.1.1) is small enough over the frequency range of interest to be considered

zero. Therefore we can combine (A.1.1.1), (A.1.1.2), and (A.1.1.3) to find

Tror = K,(-A—V ;K'w) (A.1.1.4)

This motor torque balances the torque required to accelerate the drive train/rotor system,
the torque required to drive the rotor blades through the air mass, 7,,,, and the torque

resulting from friction in the drive train 7, . This relationship is given by

Vo,—K,0 .
KT(—LEL) = J,-(O + Trotor + Tfriction (A.1.1.5)
a

Thrust

dA,,P,v,

Figure A.1.2 Control Volume used in Momentum Theory

In Figure A.1.2, we show the control volume used for this analysis. The areas,

pressures, and velocities shown in this Figure are defined below

dA, = upstream cross-sectional differential area of the stream tube

dA, = Cross-sectional differential area of the stream tube at the rotor disk
dA, = Downstream cross-sectional differential area of the stream tube

P, = Atmospheric pressure
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P, = Pressure on upper side of the rotor disk

P, = Pressure on lower side of the rotor disk

Vo = Upstream velocity of the air flow relative to the rotor disk

v = Velocity of the air flow through the rotor disk

v, = Downstream velocity of the air flow relative to the rotor disk
P = Air density

We assume that the air is incompressible and apply Bernoulli's equation to streamlines

above and below the rotor disk and find

P, +%va2 =P, +-;-pv,2 (A.1.2.1)

P, + %pv,2 =P, + %pv,2 (A.1.2.2)
Subtracting (A.1.2.1) from (A.1.2.2) yields
1
Ep(v(,2 -v,2)=P,-P, (A.1.2.3)

The Momentum Equation is given by
(P - Py)dA; = pvy2dA, - pvy2dA (A.1.2.4)
The Continuity Equation yields
VodA, = v, dA =v,dA, (A.1.2.5)
Substituting (A.1.2.5) into (A.1.2.4), we have
(Py = Py)dAy = pvy(vg — v )dA, (A.1.2.6)

Multiplying (A.1.2.3) by dA, leads to

1
(P, = P,)dA, = =p(v; =¥, )(v, +vo)d4, (A.1.2.7)
Comparing (A.1.2.6) and (A.1.2.7), we find
v, =2v, -V, (A.1.2.8)

Substituting (A.1.2.8) into (A.1.2.6) we finally arrive at an expression for the differential

thrust dT" generated by the rotor
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dT =(Py-Py)dA
=pv(2v) — 2vg)dA (A.1.2.9)
=2pvy(v1 —vp)d4
Note that v, is the inflow velocity distribution assumed to exist over the rotor disk.
\.1.3_Application of Blade El T for R
Blade Element Theory is introduced [2] here to find an alternative expression for the

thrust and torque that are dependent on the rotor geometric design. In order to develop this

expression, certain terms used in 2-D airfoil theory are shown in Figure A.1.3 below.

Rotor disk plane

Figure A.1.3 2-D Airfoil Terms for a Rotor Blade Section

Recalling from 2-D airfoil theory the drag and lift forces are dependent on the square of the

resultant wind velocity v, . We can write the differential lift and drag equations as

dD = %pv_,z(CDc)dr (A.1.3.1)

1
dL= Epv_,’(C,_c)dr (A.1.3.2)
where d represent the differential notation. D and L are the drag and the lift force,
respectively. Note that dD is parallel and dL is perpendicular to the relative wind v,,.
The lift coefficient is approximated well (as long as the section is within stall limits) by

C,=aa (A.1.3.3)

where a = Lift curve slope

a=(0-¢) =Angleofattack
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The inflow angle (in Fig A.1.3) ¢ is typically small so that it can be approximated by

6= tan” (i)-i (A.1.3.4)

r ar

and the resultant wind velocity can be approximated by

v, =or (A.1.3.5)
Here v, is the inflow wind velocity, r, refers to the radial position on the rotor blade, and

@ is the angular speed of the rotor.
The angle of attack is the difference between the pitch angle 8, and the inflow angle ¢.

a=6,-¢ (A.1.3.6)
By substituting (A.1.3.3), (A.1.3.4), (A.1.3.5) and (A.1.3.6) into (A.1.3.2), the
differential lift on a blade element becomes
a:lpwzrzac(o -ﬂ-)dr (A.1.3.7)
20 P or

Since dD is very small relative to dL, the differential thrust dT is well approximated by

differential lift dL well. Thus

pa) r ac(O 4-)4 (A.1.3.8)

The torque required to drive the blade element through the air mass can be approximately
produced by the component of the lifting force dL in the rotor disk plane normal to the

blade centerline. Therefore
dr,,, =rsin(¢)dL =r¢dL = -";dL (A.13.9)
Substituting (A.1.3.7) into (A.1.3.9), we find
dr,,,, = pac(@r*6,v, — v} )dr (A.1.3.10)

The differential thrust (A.1.3.8) and torque (A.1.3.10) are used to derive net thrust and

torque.



\.1.4 Linearizati
Xx=Ax+Bu
4.1.2
y=Cx (4.1.2)
[0 1 0
where A=|a, a, a,l,
L0 ay a4
[0
B=|0
| by
C=[KH 0 0]
-Mg+T xL,)xsinx
a21=( ’) /J"
dT _cosx, f, dT
=—X——="XL +=+X—=pb, ,
Oz dx, "p ’ "r dx, v
=decosx, L+f-'—x£,
dx, J, P, dx

2
1 r,| KK dz
=__J_ Ty rolor_b .
% J,[ (r_) R, dx, ‘J
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A.2 Experimental Data

All experiments were designed and performed in Control Laboratory at Michigan State
University. Some experiments apply high-tech equipments such as Force Gauge and
Signal Analyzer. Standard experimental procedure and detailed technique are recorded in

associated menus available in the laboratory. All measurements precision are recorded in

maximum precision of the equipments.

The armature resistance R, is not possible to be measured when the rotor is running. We

used the multimeter to measure the static motor armature resistance with respect to twenty-

three different angular position of the rotor.

Resistance (ohm)
2.33
2.36
2.24
2.28
2.20
2.17
2.27
2.26
2.20
2.15
2.14
2.19
2.10
2.17
2.20
2.24
2.30
2.38
2.39
2.36
2.09
2.14
2.12

Figure A.2.1 Measurements of the motor armature resistance, R,
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A.2.2 Relationship | he Tt i Speed of R

Taking off the counterweight, Force Gauge, which was used to measure lift force, was
placed below the rotor assembly to support parallelogram linkage. By using Strobescope
Type 4913, we can measure the rotor speed in unit of RPM. The reasonable operating
range for rotor speed is from 0 RPM to 1400 RPM. The following measurements were

calibrated based on the precision of digital multimeter.

m
(RPM) (N)
0 0

100 4.48x10-2
200 8.96x10-2
300 8.96x10-2
400 8.96x10"2
500 1.79x10-!
600 2.69x10-1
700 4.48x10-1
800 5.38x10-!
900 8.06x10-1
1000 1.06
1100 1.25
1200 1.52
1300 1.79
1400 2.15

Table A.2.2 Measurements for the relationship between the thrust and rotor speed



We measured the Current and voltage by repeating the same experimental procedure and

taking more samples within the reasonable operating range. The results is shown in Table

A23.
Speed (RPM) Voltage (Volts) Current (Amp) Thrust (N)
40 1.00 0.150 2.22x10-2
50 2.00 0.200 2.22x10-2
405 3.00 0.290 8.96x10-2
491 3.50 0.360 1.86x10"1
598 4.00 0.450 2.91x10-1
669 4.50 0.540 3.72x10-1
749 5.00 0.630 5.40x10-1
834 5.50 0.740 6.50x10-1
886 6.00 0.890 7.84x10-1
944 6.50 0.990 8.96x10-1
995 7.00 1.12 1.00
1053 7.50 1.26 1.12
1110 8.00 1.40 1.25
1150 8.50 1.54 1.39
1210 9.00 1.73 1.55
1250 9.50 1.86 1.66
1310 10.0 2.00 1.79
1340 10.5 2.12 1.93
1380 11.0 2.26 1.99
1400 11.5 2.39 2.14
1420 12.0 2.53 2.20

Table A.2.3 Measurements for the relationship among the thrust, torque, rotor, current and

voltage
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A2.4 Relationship | l f Hall Eff i 11 I
fisp] o llel lint

Using the split supply * 6 volts and adjusting the angular position of the Hall Effect
sensor relative to the base support, we can set the nominal output voltage of Hall Effect
sensor to ncarly'zcro when the parallelogram linkage is at horizontal position. The
following measurements were made with angular displacement of the parallelogram linkage

from -32.59 to 400.

Angular displacement (degree) Output voltage (Volts)

40.0 -0.753
35.0 -0.677
30.0 -0.612
25.0 -0.542
20.0 -0.47
15.0 -0.365
10.0 -0.276
5.00 -0.167
0.00 -0.047
-5.00 0.108
-10.0 0.235
-15.0 0.391
-20.0 0.521
-25.0 0.713
-30.0 0.854
-32.5 0.903

Table A.2.4 Measurements for the relationship between Hall Effect sensor and the angular

displacement of the parallelogram linkage
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A.3 Nominal System Parameters

Symbols
a = 5.72 (Cubsic)

= 5.99 (Linear)

= 6.05 (Uniform)
b, = 6.31 x10-3

b, = 3.85 x10-4 (Cubsic)
=3.29 x10-4 (Linear)
= 3.85 x10-4 (Uniform)

b, =0339

¢ =3.00 x10-2
fs=230x10"2

g2 =9.81
J =5.53 x10-4

K, =6.57x103

K, =6.57x10-3
Leg = 495x10-1

m = 7.30x10!

R =2.20x10"1
R, =225

Greek Characters
6, =13.09 (Cubic)

Characteristic lift curve slope

Coefficient of Coulomb friction

Coefficient of viscous friction

Coefficient of viscous friction for the
parallelogram linkage

Chord length

Offset of acting line of the thrust

Magnitude of gravity
Moment of inertia for the rotor and

the gear assembly
Back EMF constant

Torque constant
Length from O to C.G. of the parallelogram
linkage

Mass of the parallelogram linkage and gear

assembly

Radius of the rotor

Armature resistance

Pitch angle

(dimensionless)

(Nm)
(N m sec/rad) r

(N sec/rad)

(m)

(m)
(m/sec2)
(kg m2)

(kg m2)
(Volt sec/rad)
(N m/amp)

(kg)

(m)
(ohm)

(degree)



50
= 12.80 (Linear)

= 13.19 (Uniform)
p=123 Air density (kg / m3)



S1

A.4 Parameter Uncertainties
All uncertainties which were derived from conic sector bounds, or hard-bound and used
in chapters are listed below.
(1) Armature resistance
R,, =227 (ohm) R, €[2.10,2.40]
(2) Coefficient of Coulomb friction
by =6.31x107 (N m) b €[5.99,6.62]x1072

(3) Coefficient of viscous friction in the drive train

(i) Cubic

b, o =3.84 x10™ N m(sec/ rad) b, €[3.65,4.04] x10™
(ii) Linear

b,o =3.29x10™* Nm(sec/ rad) b, €[3.12,3.45]x10™
(iii) Uniform

b, =3.41x10™ Nm(sec/ rad) b, €[3.24,3.58]x10™

(4) Torque constant
K., =0.00657 (Nm/ Amp) K. €[6.24,6.89]x107

(5) Back EMF constant
K, , =0.00657 (Volt (sec/ rad)) Ky €[6.24,6.89] x107

(6) Hall Effect output equation
V,=Ky0, Kyo=0.0235 Ky €[2.00,2.50] x1072

(7) Lift curve slope ( no unit )

(i) Cubic

ay=5.72 a€(5.44,6.01]
(i) Linear

ay =5.99 ae[5.69,6.29]
(iii) Uniform

ay =6.05 ae[5.75,6.35]
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(7) Pitch angle
(i) Cubic
6,0 =130x 10' (degree) 6, €[1.23,1.36] x 10! (degree)
(ii) Linear .
6,0 =1.28% 10! (degree) 6, €[1.21,1.34] x 10' (degree)
(iii) Uniform

6,0 =131x 10! (degree) 6, €[1.24,1.37] x 10' (degree)
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A.S Simulation Results

Three state traces and control effort which is corresponding to worst-case response are all
plotted in the following eighty-four plots with the input 10°, 20° or 30° and 4 =0.10r 0.2

In each plot, the corresponding controller is

(1) Solid line - Controller a or e

(2) Dashed line - Controller b or f

(3) Dotted line - Controller cor g

(4) Dot dashed line - Controller d or h
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(1) The first twenty-four plots are for the IMC controllers with 4 =0.1

Angular displacement of parallelogram linkage (degree)

Angular velocity of parallelogram linkage (rad/sec)

50

Simulation of Parametric Controllers for 30 degree input

-10¢L :
00 5 10 15 20
Time History (sec)
15 Simulation of Parametric Controllers for 30 degree input

0 5 10 15 20
Time History (sec)
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b

g_8

Rotor Speed (RPM)
3

0 5 10 15 20
Time History (sec)

Simulation of Parametric Controller for input 30 degrees

Output voltage of IMC filter (Volts)

0 5 10 15 20
Time History (sec)
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g) 50 Simulation of NoNParametric Controller for input 30 degrees
'\8, . .
f’-j’
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g :
2 .10 :
E 0 5 10 15 20
: 20 Time History (sec)
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2 :
f
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&
=

Simulation of NonParametric Controllers for input 30 degrees

g &

g 8

Rotor Speed (RPM)
W
S

0 5 10 15 20
Time History (sec)

25

Simulation of NoNParametric Controller for input 30 degrees

Output voltage of IMC filter (Volts)

5 10 15 20

Time History (sec)
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Simulation of Parametric Controller for input 20 degree

W

N
W

[
(=)

15

10}

0 5 10 15 20
Time History (sec)

Angular displacement of parallelogram linkage (degree)

Simulation of Parametric Controller for input 20 degree

S
FY

(=)

Angular velocity of parallelogram linkage (rad/sec)
=)
N

Time History (sec)
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2000 Simulation of Parametric Controllers for input 20 degree

15000 S S TSR SO

2

g

Rotor Speed (RPM)

(=}

500 : : :
%% 5 10 15 20

Time History (sec)

15 Simulation of Parametric Controller for input 20 degre

Output voltage of IMC filter (Volts)

Time History (sec)



Angular displacement of parallelogram linkage (degree)

Angular velocity of parallelogram linkage (rad/sec)

30

Simulation of NonParametric Controller for input 20 degree

-5
Time History (sec)
Simulation of NoNParametric Controller for input 20 degree

0.8

Time History (sec)
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Simulation of NonParametric Controllers for input 20 degree

2000
15000 SV AN SO
g . .
& 1000
“ 500
St
2
M o
0 ;
E'
-500 5 10 15 20
Time History (sec)

Output voltage of IMC filter (volts)

Simulation of NoNParametric Controller for input 20 degre:

15

0 5 10 15 20
Time History (sec)
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Simulation of Parametric Controllers for input 10 degree

Angular displacement of parallelogram linkage (degree)

2
Time History (sec)
0.4 Simulation of Parametric Controllers for input 10 degree

-0 5 10 15 20
Time History (sec)

Angular velocity of parallelogram linkage (rad/sec)



Rotor Speed (RPM)

Output Voltage of IMC filter (Volts)
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Simulation of Parametric Controllers for input 10 degree

2005 5 10 15 20
Time History (sec)
g Simulation of Parametric Controllers for input 10 degre

0 5 10 15 20
Time History (sec)



Angular displacement of parallelogram linkage (degree)

Angular velocity of parallelogram linkage (rad/sec)

Simulation of NonParametric Controllers for input 10 degree

Time History (sec)

0.4 Simulation of NonParametric Controllers for input 10 degre

Time History (sec)
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1400 Simulation of NonParametric Controllers for input 10 degree
12000 oo ....................... .......................
é 1000 e e
g so0f-
w
S
§ 600
400
2 E E :
000 5 10 15 20
Time History (sec)
6 Simulation of NonParametric Controllers for input 10 degre

Output voltage of IMC filter (Volts)

0 5 10 15 20
Time History (sec)
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(2) The next twenty-four plots are for IMC controllers with 4 =0.2

Angular displacement of parallelogram linkage (degree)

Angular velocity of parallelogram linkage (rad/sec)

Simualtion of Parametric controller for 30 degree

40 .
-10t
0 5 10 15 20

Time History (sec)

Simualtion of Parametric controller for 30 degree

Time History (sec)
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Rotor Speed (RPM)
o0
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Simualtion of Parametric controller for 30 degree

400
2005 5 10 15 20
Time History (sec)
10 Simualtion of Parametric controller for 30 degree

Output Voltage of IMC filter (Vlots)

th
1

2

'
L

-10\ ;i . :
0 5 10 15 20
Time History (sec)
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Simualtion of NonParametric controller for 30 degree

Angular displacement of parallelogram linkage (degree)

-10
Time History (sec)
0.6 Simualtion of NonParametric controller for 30 degree

Angular velocity of parallelogram linkage (rad/sec)

Time History (sec)



69

Simualtion of NonParametric controller for 30 degree

Rotor Speed (RPM)

0 5 10 15 20
Time History (sec)

Simualtion of NonParametric controller for 30 degre
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Output Voltage of IMC filter (Volts)

-10

0 5 10 15 20
Time History (sec)
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Rotor Speed (RPM)

Output voltage of IMC filter (Volts)
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1200 Simualtion of Parametric controller for 20 degre

1100

E

Time History (sec)

Simualtion of Parametric controller for 20 degree

Time History (sec)
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Simualtion of NonParametric controller for 20 degree
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g

Rotor Speed (RPM)

Output voltage of IMC filter (Volts)
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100 Simualtion of NonParametric controller for 20 degree
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Simualtion of Parametric controller for 10 degree
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Simualtion of NonParametric controller for 10 degree
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