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ABSTRACT

IDENTIFICATION OF MATERIAL CHARAC-

TERISTICS OF LAYERED STRUCTURES BY

ULTRASONIC INTERROGATION

By

Chih-Yeh King

In this research, the theory and approximations of scattered fields are studied, and

mode retraction techniques that can be applied to improve the accuracy of ultrasonic iden-

tification with the reflection waveform are developed. Since conventional interrogating

algorithms are not valid when dealing with a thin layer, more sophisticated algorithms are

needed.

First, a wave transmission matrix uses a linearized version of the wave propagation

equation and gives an especially simple reconstruction algorithm. This research reviews

inverse problem methodology as applied to the backward scattering field, and investigates

the quality of the reconstructions when the assumptions behind these approaches are vio-

lated. The experimental results show that the evaluation procedures, using a spectral

Prony method, are valid only when the wave number is linearly dependent on the fre-

quency, and that the specified band-pass spectrum is valid when the incident wave is

excited by a Gaussian-pulse shaped acoustic plane wave.
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Better identification is based on a higher mode assumption about the reflection

waveform. The advantage of this research is that the information obtained is based solely

on the echo retum from the successive acoustic interfaces without using the signature of

the incident wave which is difficult to capture experimentally. An additional feature of this

research is that the results can be used to determine more than one material characteristic

from a single trace of reflection waveform.
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CHAPTER 1

INTRODUCTION

The word interrogation generally refers to a type of verbal questioning. In phy-

sics, ultrasonic interrogation refers to a procedure used to collect data about the inter-

nal structure of an object and to then mathematically generate an image of some other-

wise hidden properties of the object.

Identification, on the other hand, extracts material properties from the echo retum

which consists of incident pulse convolved with the transfer function of the object

being investigated. Conventionally, only a single feature such as the interface reflection

coefficient, acoustic impedance, attenuation constant, or velocity of prepagation is used

for material discrimination. For a more complex structure, however, it is desirable to

utilize as many features as possible so that a higher precision of identification can be

achieved. Thus we require more sophisticated techniques than the one used for tradi-

tional identification. These new techniques for advanced identification are the subject

of this work. '

Techniques for the estimation of reflection coefficients at different interfaces have

typically involved the manipulation of the echo amplitude in the time domain [1 - 2].

Spectral analyses are commonly used for the estimation of attenuation properties of

materials [3 - 6].



However, these techniques suffer from the following shortcomings:

(a) Amplitude detection processes have inherent limitations such as the loss of phase

information, inability to cape with dispersive media, and low resolution.

(b) Spectral resolution is restricted to the reciprocal of the sample spacing in the

discrete Fourier transformation [7].

The reconstruction of the geometry and composition of material characteristics

based on the measurement of the ultrasound field reflected from a layered structure is

known as the inverse reflecting problem [8]. The concept of an inverse problem has

also been used in other areas, such as aerodynamics, fluid mechanics, speech and

image processing, and electromagnetics [9 - 11]. Since a true inverse problem in

acoustics is extremely difficult to solve due to the scattering effect and the mode

conversion at the interfaces, one needs to use a simplified model with reasonable

assumptions to obtain meaningful results for identifying material characteristics.

This work is presented in four parts: the derivation of the wave equation and the

first order reconstruction algorithm, the development of the modified Spectral Prony

Algorithm (SPA) technique which utilizes unique features in the frequency domain of

the reflected response of .a layered structure, the evaluation of the ultrasonic field

within an inhomogeneous and arbitrarily shaped object to complete the theoretical

background, and finally an experiment verification of the proposed techniques.

It is first hypothesized that the frequency domain scattered field response of a

acoustic medium can be defined entirely as a function of medium geometry and pro-

perties. Then, for a layered structure, the medium function approximately comprises a

set of natural modes which uniquely determine the structure. The SPA is a specified

phase detection technique constructed in such a way that, upon interaction with a cer-

tain structure, results in a reflected waveform contain only a pro-specified component

of the natural mode spectrum.



The advantages of the SPA technique are twofold. First, it can be used to esti-

mate several material characteristics in a single measurement. The information

obtained from this technique is solely based on the echo return from the successive

interfaces, rather than the signature of the incident pulse which is difficult to capture

experimentally. Second, the diffraction effect can be reduced greatly when the

reflections from the interfaces are used as references for successive estimation.

In Chapter 2, the acoustic wave equation is deve10ped. This vector equation forms

the basis of all work to be described. In addition, the Born and Rytov approximations

are introduced and a linearized model for the scattered field as a function of the object

Chapter 3 presents a brief overview of some of the more relevant identification

schemes developed by other researchers, and underscores the need for the SPA tech-

nique. A wave transmission matrix is used to find an expression for the reflected field

of a layered structure. This forms the basis of the SPA technique which is useful to

extract more than one property.

The SPA concept is introduced in Chapter 4, and expanded upon in detail.

Material in this chapter also includes other extraction schemes and provides numerical

results to prove that the proposed method is preferred. Chapter 5 presents a theoretical

analysis of SPA reconstruction and includes methods of SPA synthesis and interpreta-

tion. Since the mathematical approximations and the experimental limitations contri-

bute in different ways to the error in the final outcomes, an overview is also given in

this chapter. The mathematical approximations are only valid for some regions of

objects, as described in Chapter 2, and the experimental limitations are entirely caused

by the limited availability of data. In addition, some signal processing issues will be

discussed and experimental results presented.
“
J

 

-
;
_
.
I
‘
m

,
-



In certain applications, it is desirable to gain knowledge of the field distribution

inside a medium. For example, in hypertherrnia treatment of tumors, the induced tem-

perature profile is directly related to the ultrasonic field distribution. Therefore, Chapter

6 follows the wave equations addressed in Chapter 2 and develops a specific algorithm

to avoid the singularity of the integration of the Green’s function so that the unique-

ness of the ultrasonic field is preserved within the medium. In order to complete this

important topic, some inhomogeneous models for solving the given problem are also

investigated.

Finally, Chapter 7 introduces experimental validation of both the identification of

material characteristics of the waveform reflected from thin plexiglass layers, and of

the SPA concept itself. Verification of the SPA concept is provided by using the

reflection waveform of some multi-layered structures.

 



CHAPTER 2

PROPAGATION OF ULTRASONIC FIELDS

2.1 Introduction

Characteristic identification from scattered energy cannot be modeled by a set of

equations considering forward propagation wave only. Ultrasonic and electromagnetic

waves do not travel along straight rays in an inhomogeneous medium with finite boun-

daries. The backward flow of energy can be described with the wave equation under

the assumption that the operating wavelengths are small compared with the physical

dimensions of the system. It will be shown that the scattering identifications can be

approximated by a non-scattering identification.

First, let us consider the propagation of waves in homogeneous media. The wave

equation is a second order linear difl'erential equation. The field intensity at any given

' location can be obtained by solving the wave equation.

The problem is not to identify a homogeneous media but rather to identify one

that is inhomogeneous in nature. To solve the inhomogeneous wave equation, one of

two approximations, the Born [19] or the Rytov [20], needed to be used. With these

two approximations, expressions for the inhomogeneous scattered field can be

obtained.

n
u
.
‘



The theory to be developed will be applicable to both two- and three-dimensional

structures. Even in a three-dimensional case, a two-dimensional model can often be

used if the structure varies slowly in the third direction. This assumption, for example,

is often made in the evaluation of electromagnetic fields distribution [12]. The theory

of ultrasonic identification of materials will be presented almost entirely for the two-

dimensional case. The reason is that the ideas behind the theory are often easier to

reconstruct the material characteristics in two-dimensional case by using spatial

transformation technique. In addition, technology has yet to make it practical to irnple-

ment and to evaluate the results of threedimension methods. This limitation will cer-

tainly be eliminated in the near future, and where the differences are significant, both

the two- and three-dimensional solutions will be expected.

2.2 Homogeneous Wave Equation

In a homogeneous medium the propagation of compressional ultrasonic waves can

be modeled with the scalar Helmholtz equation [13]. For a temporal frequency of a)

radians per second, a scalar potential (N?) satisfies the equation

V2 cm + k} em = o . (2.1)

For homogeneous media. the wave number k0 is a constant related to the wavelength

1. of the wave by

2
k, .. x . (2.2)

The wavelength 3. is related to the temporal frequency of the wave by the propagation

speed in the media tic or

A = '23-“: . 1 (23)

Furthermore, the compressional ultrasonic field 11’0") at position 7‘ is denoted as
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70") = - VdJC?) . (2.4)

The technique developed in this research are based on harmonic ultrasonic fields,

the time dependence of the fields will be suppressed in this work. Thus, all fields

should be multiplied by e’j‘” to find the measured field as a function of time. For

ultrasonic fields. 1??) is the displacement field at position 7’. Since the time depen-

dence of the fields has been suppressed, 1??) represents the complex amplitude of the

field. As a function of time and space, the field is given by

itcr, t) = Re{- Verne-1“} . (2.5)

The vector gradient operator, ”V", can be expanded into its two dimensional represen-

tation and Eq. (2.1) becomes

 

2 2

a at? + a £2”) + tie?) = o . (2.6)

As a trial solution let

em = ei" ' 7’ (2.7)

where the vector 2’ = (k, , Icy) is the two-dimensional propagation vector and (DC?)

represents a two-dimensional plane wave of propagation factor IPI. This form of (X?)

represents the basic function for the two-dimensional Fourier transform [14]. Using

this equation, any two-dimensional function can be represented as a weighted sum of

plane waves. Calculating the derivatives as indicated in Eq. (2.6), it can be seen that

any plane wave that satisfies the condition

m=g+g=g am

is a valid solution to the wave equation. The homogeneous wave equation is a linear

differential equation, so the general solution can be written as a weighted sum of each



possible plane wave solution. In two dimensions, at a temporal frequency of to, the

potential,M is given by

1 " x 1 " L xm: ElAaykflkx 4*,”de + fiimkflefl-k' +ky)')dky ’ (2.9)

and by Eq. (2.8)

k, = \lk} - k} . (2.10)

The form of this equation might be surprising to the reader for two reasons.

(1) The integral has been split into two parts. The coefficients of waves traveling to

the right are represented by A (k,) and those traveling to the left by B (ky ).

(2) In addition, the limits of the integrals are —oo and on. For It,2 greater than Ira2 the

radical in Eq. (2.10) becomes imaginary and the plane wave becomes an

evanescent wave.

These are valid solutions to the wave equation, but, because It, is imaginary, the

exponential has a real or attenuating component. This real component that causes the

evanescent waves which decay rapidly within several wavelengths [13], and they can

often be ignored.

The limited range of valid solutions to the wave equation allows (under certain

conditions) an expression to be written for the field in all of 2-D plane given the

amplitude of the field along a line. The three-dimensional version of this idea gives the

field in 3-D space, if the field is known at all points on a plane.

Let us consider a plane acoustic wave travelling in the direction shown in Figure

2.1. By calculating the one-dimensional Fourier transform of the field along the direc-

tion of propagation, the field can be decomposed into a number of one-dimensional

components. Each of these one-dimensional components can then be attributed to one

of the valid wave solutions to the homogeneous wave equation. Referring to Eq. (2.9),

 



there will exist two solutions that satisfy the wave equation with a value of Icy. If the

incident field has been defined to prepagate toward the right, then a one-dimensional

Fourier component at a value of k, can be attributed to a two-dimensional wave with a

propagation vector of (W, k, ). This can be formulated on a more precise

mathematical basis, if the one-dimensional Fourier transform of the field is compared

with the general form of the wave equation. When only the forward travelling wave is

considered, the general solut ion to the wave equation becomes

1 .

cc?) = 31;- ]A(It,)e“"*’ ”malt, . (2.11)

Now, if the origin of the wave propagation is chosen to coincide with x = 0, then the

expression for the field becomes

1 .

om, y) = ?1? [ A(k,)efl‘r’dk, . (2.12)

This equation establishes the link between the one-dimensional Fourier transform of

the field along the line to the two-dimensional field. The coefficients A (Icy) are given

by the one-dimensional Fourier transform of the field

A (to) = Fr {M0, n} . (2.13)

where FT denotes the Fourier transform.
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x=x0 x=x1

Figure 2.1: A plane wave with direction cosines (‘1 kg -k§ ,ky) is

pr0pagating along the k direction .
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If the propagation vector is known, then all the sources for the field potential

d>(x=tx,,y) = O, e1“Pu”) can be decomposed into plane wave components. For a

compressional plane wave, the ultrasonic field i? can be expressed as

r't’(x=x,,y) = - V<b(x= ,,y) = 9 U, eja’xfik’w (2.14)

where U, = jlt:y O, .

The field undergoes a phase shift as it arrives at x = x1, and the acoustic field can

be written as

l't"(x=xl,y) = " V¢(x=x1,y) (2.15)

= 9 U, ,J(k.x.+*,y) ,jksut-x.) = ?(x=x,,y) ,flam-x.) .

Thus, the complex amplitude of the plane wave at x = x1 is related to its complex

amplitude at x = x, by a factor cigar“).

The process of evaluating the field at x = x1 is as follows:

(1) Obtain the Fourier decomposition of (b as a function of Iry by taking the

Fourier transform of <I>(x,, y).

' (2) Obtain the plane wave expression at x = 1:1 by multiplying by the phase factor

ekur‘), where as before k, =W.

(3) Obtain the field potential d>(x, y) by taking the inverse Fourier transform of the

plane wave decomposition.

2.3 Inhomogeneous Wave Equation

Considering an inclusion occupying a volume V, in space, embedded in a homo-

geneous background medium (see Figure 2.2), the incident wave induces a scattered

force [15]. This force, 7; is calculated for an observation point that arises from the

spatial variations in density (p) and lame parameters 0. and 11)
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7:05 = (02890???) + [810”) + 251105] V[v - rm] (2.16)

— SuCFDVxVXH’C?)

where to is the temporal frequency and 8p('r") , 8M7”) , 511(7) are the position-

dependent incremental changes in elastic parameters with respect to the background.

They are

59C?) = pt?) - pa . (2.17a)

57m = M?) - x, , (2.17b)

and 5M?) = at?) - u. . (me

with p, , 1,, and 11, being the density, bulk modulus, and shear modulus of the back-

ground respectively. These incremental changes are proportional to the elastic parame-

ter contrasts between the background and inhomogeneous media.

A more general form of the compressional wave equation can be written as

 vzocr) + Itfocr) = ‘2'1 v 71(7) (2.18)

a) 9.

A + 2

where k, = :0)“ and t), = V—L—uf- is the propagation speed in the background.

C 0

The term on the right-hand side of Eq. (2.18), is the forcing function of the

differential equation [V2 + kg] OO’). Note that Eq. (2.18) is a scalar wave equation. As

a result, all depolarization effects can be ignored. It has been shown [16] that the

depolarization effects can be ignored when the compressional waves propagate through

a viscous compressible fluid. If this condition is not met, the forcing function would be

of a much more complicated form [17].

The potential field O0") contains two components -- the incident field O, (‘r") and

the scattered field O, (7). The incident field satisfies the homogeneous wave equation
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[V2 + k,2]O,(T’) = o , (2.19)

and the scattered field O, (‘7’) is primarily based on medium inhomogeneities,

«h (r) = W) - c. (r) . (2.20)

The wave equation then becomes

 [V2+k,2]O,(i’)= (0;; V-ficr‘) . (2.21)

The scalar Helmholtz Eq. (2.21) cannot be used to solve O, (7’) directly. However,

a solution can be obtained through the use of the Green’s function technique [18]. The

Green’s function, which is a solution of the differential equation

 

[V2 + if]Gm? ') = - ace-7 ') (2.22)

is written in free-space as

IT” ”M I? ?’|OWL-41:1? ,R- - . (2.23)

In two-dimensional problems, the solution of Eq. (2.22) can be written in terms of a

zero-order Hankel function of the first kind and can be expressed as

6(7’1? ') = £11}th . (2.24)

Notice that the Green’s function GCF’IT’ ’) is a function of the difference between the

field point and source point 7’ - 7’ ’, so the function is often represented as G (P-‘P ’).

Since the forcing function in Eq. (2.22) represents a point source, the Green’s function

can be considered as a single point scatterer.
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( Transmitter

/ Receiver )

homogeneous

Background

Figure 2.2: General scattering configuration.
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It is possible to represent the forcing function of the wave equation as an away of

impulses suchthat

V°fi®=IV’-fl(?’)6(?-?')dv’ . (2.25)

In this expression, the forcing function of the inhomogeneous wave equation becomes

a summation of impulses weighted by V - 7,0") and shifted by “P ’. Green’s function

represents the solution of the wave equation for a single impulse response. The even-

tual field solution can be obtained by summing the scattered fields due to each indivi-

dual point scatterer.

Following the approach, the total field due to the impulse V' - 7, (? var-r ') can

be written as the summation of scalar and shifted versions of the impulse response

G (P). This is a convolution process and the total field resulting from all sources on the

right hand side of Eq. (2.21) is obtained from the following superposition:

 em = 0,1 [V’-}’,(?')G(?lr')dv’ . (2.25)
90 V

Recall that of Eq. (2.4), the compressional ultrasonic scattered field 7'?) at a

position 7’ can be expressed as

for) = - vo,(r) (2.27)

 - 1 [VJ’V’TRP‘WCF’IT’W’]
0:29..

I? egir-r'l

h c ' =——
w ere (7’ ) 4nl1’-r"l

dinate, the unprimed gradient operation can be put inside the integral,

. Since the integration is with respect to the source coor-

 r'cr)=-w21 [IV’-f;(f”)VG(?|?’)dv’]. (2.23)

90 V
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If the observation point 7 is outside the inhomogeneous volume, V, , then the

point 1’ ’ will not pass through ? when carrying out the integration. To carry out the

integration, we need to use the dyadic identity [12]

V’ - [710”) VG (PI? 3] = [V’ - fit? ')] VG (fl? ') (2.29)

+720“)- V’vccrlr')

and the symmetry property of the Green’s function

V’G (7’1? ’) = — VG (Pl? ') . (2.30)

If one substitutes equation Eq. (2.29) and Eq. (2.30) into Eq. (2.28), the scattered ultra-

sonic field becomes

 lrm= .. 021 [j V’- [firivccrmyv' (2.31)
a V

- {Era-womanly] .

l

(,2

 

Defining 8m? ') = We(7|? '). Eq. (2.31) is rewritten as

Po

em: - [fl -flcr')]vc(rlrw - (2.32)
S

+£7,(7")- 8(T’l'i”)dv’ .

In general. it will be assumed that the volume V, has a finite size; therefore fim

is zero outside the volume. Thus, the first surface integration of Eq. (2.32) vanishes at

a specified point 7’ outside V,, and Eq. (2.32) reduces to

wm=1£m~ tiered)! . (2.33)

From the conservation of momentum, 7(7) At = - p(?’) 4%], and when
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At —>0,thescatteredforce?,(?)is

720') = - 890') [W] (2.34)

= 0289557?)

= m (mt-rm

where m (7) = (0261)?) represents all inhomogeneities of the medium. With this scat-

tered force expression, the scattered field becomes

an?) = ”(7370”)- 8crlr'w . (2.35)

At first glance it appears that this is the solution for the scattered field. However,

notice that the scattered field i?’ C?) is expressed in terms of the total field,

11’0") = i“ (7') + i“ (3’). In order to solve the scattered field, some approximations must

be made.

2.4 Approximations for Solving the Scattered Field

In the last section, an inhomogeneous integral equation was derived for finding

the scattered field WC?) as a function of the inhomogeneities of the medium. This

equation cannot be solved in a straightforward manner. However, a solution can be

obtained by using some approximations. These approximations, the Born [19] and the

Rytov [20], are valid under different condition, but the forms of the resulting solutions

are quite similar. These approximations are the foundation of solving the ultrasonic

scattering problem.

Mathematically speaking, Eq. (2.35) is a Fredholrn equation of the second kind

[21]. A number of mathematicians have presented work describing the solution of

scattering integrals [22, 23]. We will adopt these approximations to the ultrasonic
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scattering problem with some modifications for reducing computation time.

2.4.1 The Born Approximation

The Born approximation is the simpler of the two approaches. Recall that the

total field E?) is expressed as the sum of the incident field 7‘ (i’) and a small scattered

field ?' (P),

rm=r‘(r)+r"(r) . (2.36)

The integral of Eq. (2.35) is then

fm=£m(?’)7‘(7")-G(?l?’)dv’ . (2.37)

+1mcrir'tr3-8crlr'uv' .

If the scattered field tr'cr) is small compared to a" (r) , then the effects of the second

integral can be ignored and the following approximation can be made:

fm=fism=fm(?’)fi"(?’)-6(?|?’)dl/ . (2.38)

V

As a result, under the Born approximation, the magnitude of the scattered field

err) = rm - a“ (r) (2.39)

is smaller than the magnitude of the incident field 75(7).

If the medium is homogeneous, it is possible to express this condition as a func-

tion of the size of the medium and its refractive index. Let the incident wave a" (r) be

a plane wave propagating in the direction of the vector, 7:: = f, k, . For a large

medium, the field inside the medium will not be adequately approximated by the

incident field

rm:r‘m=£,rr, e13" . (2.40)
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In addition, the refractive index n 5 is a variable as well. The field inside the medium

has the following variation

arr) = IPA, Jam"; ' " . (2.41)

The phase difference between the incident field and the field inside the medium

can be obtained by integrating the refractive index over the length of the medium. For

a homogeneous layer of thickness d , the total phase shift through the layer is

(1
Phase Change = 21in 5? (2.42)

where it. is the wavelength of the incident wave. For the Born approximation to be

valid, a necessary condition is that the change in phase between the incident field and

the wave propagating through the layer be less than it [24]. This condition can be

expressed mathematically as

dn, < 3i“- . (2.43)

2.4.2 The Rytov Approximation

The Rytov approximation is another approximation for obtaining the scattered

field and is valid under slightly different restrictions. The assumption is that the total

field has a complex phase [20]

m?) = I? A,e“"’ . (2,44)

Recall that the wave equation for the ultrasonic field is

Wm?) + k3 (arc?) = - rn (mt-rm . (2.45)

In order to evaluate the complex phase, we substitute Eq. (2.44) into Eq. (2.45)and get

the wave equation as
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v - [V¢(F')em] + k,2(?')em = - m(mm (2.46)

or simply

[vim]2 + We?) + k} = - m (r) . (2.47)

The total phase function 4’ is the sum of the phase of the incident field it, and the

scattered phase (1, ,

00") = h, to + M?) . (2.48)

Substituting Eq. (2.48) into Eq. (2.47), one has

[V¢o(?)]2+2V¢o(7’)° Vac?) + [V¢t®]2+ Waco (2.49)

+V2¢,(r')+k,2+m(r)=0.

The incident field satisfies the homogeneous wave equation,

[V , m]2 + v26, (7’) + k} = 0 . (2.50)

With this consideration, the over-all wave equation becomes

2mm- vrm +V2¢rf7l = — [veer-mm . (2.51)

It can be linearized by considering the following relationship,

V2[u‘<r)¢. (1’)] = v - [Vu‘tflttm + u‘®V¢.®] . (2.52)

Expanding the right-hand side of this equation, we have

v2[u‘(r’)¢,(7)] = [Vzu‘Cfl]¢,(7) + 2Vu‘(7)- V¢,(r) (253)

+ u‘ (flVzo, CF') .

Using a plane wave for the incident field,
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r'tr) = I? A0ej‘; "’ . (2.54)

The Laplacian of the incident field is

vzuicr) = - k,2 u‘cr) . (2.55)

Finally, the inhomogeneous wave equation becomes

[vhrfkimam = -e‘m[[vo,m]2+mm] . (2.56)

The solution of this differential equation can be expressed in the form of an integral

equation,

r'cor.<o=1r‘cr0[[vv.r')]2+mr2] - acrlr'w . (2.57)

When the field of interest is in the far-zone region, the ultrasonic field can be

treated as a constant quantity. The terms in the brackets of the above equation can then

be approximated by

[V ,m]2+m(7’)=m(?’) . (258)

With this approximation, Eq. (2.57) becomes

r‘cm.cr>=‘1,mcrir‘cr')-8crrrw . (2.59)

Thus, the complex phase of the scattered field becomes

=L a" ' - 6’ Ir . 2.60

Substituting the expression for r” (r) in Eq. (2.38), the Rytov approximation can be

written as

M?) = i— . (2.61)

(5’)
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In the far-zone region, Eq. (2.58) is valid. Furthermore, "1(7) can be put in terms

of the change of the refractive index

m(?') = k,2[2n5(?’) + ngm] . (2.62)

For small variation of n 5,

mm = 2k,2n5(i’) , (2.63)

and the Rytov approximation is valid, however, the following condition must be

satisfied,

2

[Via (7’)]
n 5(7) > ——-2—-— . (2.64)

kc

This can be considered by observing that to the assumption of Eq. (2.58), the scattered

phase ¢,(i’) is linearly dependent on the refractive change; therefore, the second term

in Eq. (2.62) above can be safely ignored for a small refractive change. The term

V4), (7) is the change of the complex scattered phase per unit distance, while It, is the

wave number, the alternate form of the Rytov approximation is

W: 0")?»

2

"5(7) > [T] . (2.65)

In this result, the change in scattered phase 0, (75 over one wavelength has a dominant

effect on the solution of the scattered field.

Evaluation of 1? a O") for the Rytov case is not as straightforward as in the case of

Born approximation. Recall that the total field is

7(7) = r‘ (r) + W?) = dread-0"“ W’] . (2.66)

after rearranging the exponential terms, one has

arc?) = I? [A,c’-m[c"m - 1]] = r‘mLW’ - 1] . (2.67)
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The scattered phase 41,0") now is

 hm=m

 

Vim +1] . (2.68)

76’)

From Eq. (2.61), the field a” (r) for the Rytov approximation becomes

 tr” =ir" Ingm+l]. 2.69(7’) (7') [#(7’) ( )

Since the natural logarithm is a multiple-valued function, one must be careful in

choosing its value over a given region. For continuous functions, there is no ambiguity

about the solution since only one value will satisfy the continuity requirement. On the

other hand, for sampled signals, the choice becomes more difficult and one must resort

to a phase-wrapping algorithm for choosing the proper phase.

Under the Rytov approximation, the total compressional field is expressed as

116’) =A,e’°m”'m . (2.70)

Substituting the scattered phase Eq. (2.61), and the incident field Eq. (2.54), into this

expression,

u (r) = .4, J": "* “'m‘:"“"""3 "7 (2.71)

= aim efl'm&"¢xp(-in ° 7) .

The first exponential can be expanded into a power series. When u” (7’) is small, the

total field can be linearized,

u 0’) = u‘Cr')[l + 143(7) - life-fl: ' I] (2.72)

= 14‘?) + 113(7) .

When the magnitude of the scattered field is small, the Rytov solution approaches the

Born solution in Eq. (2.38).
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The similarity between the expressions for the Born and the Rytov solutions will

form the basis of the reconstruction algorithm to be considered in this work. In the

Born approximation, the complex amplitude of the scattered field is measured, and this

measurement is used as an estimate of the function Pam, while in the Rytov case,

i?‘B (i’) is estimated from the complex phase of the scattered field. Since the Rytov

approximation is considered more complex [19] than the Born approximation, it might

provide a better estimation of Va (7’).



CHAPTER 3

ULTRASONIC IDENTIFICATION OF

THE LAYERED STRUCTURE

3.1 Introduction

The identification of material characteristics in its basic form is an inverse prob-

lem - the reconstruction of the geometry and composition of a medium from measure-

ments of scattered ultrasonic radiation [26]. The medium can then be identified or

discriminated fi'orn other media or classes of media by comparison to known properties

and compositions [27].

In a less rigid sense, identification of material characteristics involves the extrac-

tion of features from the measured scattered ultrasonic field which correspond uniquely

to an individual medium [28]. Identification is then accomplished by comparing these

features.

Ultrasonic material features for a layered structure medium are closely related to

attenuation coefficients, wave velocities in the medium, and reflectivity at each inter-

face. These features can take advantage of all the information contained in the scat-

tered field such as the amplitude, phase and frequency content.

25
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Whereas the solution of a true inverse problem requires an infinite amount of informa-

tion (re. a measurement of the scattered field at all frequencies) [29], in practice, only

a single feature can ordinarily be acquired for the identification of different materials

[30].

In Section 3.2, a short overview of some of the more recent methods conceived

for ultrasonic material identification is presented. This review is not exhaustive. The

goal is to place the identification technique of this thesis in a proper perspective. The

two schemes suggested in Sections 3.3 and 3.4 will be compared. It will also be

shown that they are evaluations of the ultrasound field at a specified position. Finally,

the wave transmission matrix and an ultrasound field integral equation of the

ultrasound scattering field, resulting from a surface force induced by the incident field,

will be described in Section 3.5. However, the main focus will be on overcoming two

drawbacks in ultrasonic identification of materials:

(1) The derivation is simply based on the surface reflection force at the planar sur-

face of the medium rather than calculated by the complex integration of the 3-

D dyadic Green function which is difficult to compute mathematically.

(2) The parameter reconstruction can be reduced greatly when the scattered model

of the medium is evaluated by using this approach.

3.2 Ultrasonic Identification Schemes

The identification schemes reviewed in this section can be generally divided into

two fundamental groups. The first involves the use of the amplitude of echo signals,

the second utilizes the frequency response of the medium.

[A] Reflection Techniques

e Correlation Algorithm - In the case of time-harmonic excitation, it is con-

venient to consider a layered structure as a "transmission line” [31]. The
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ultrasonic wave backseattered from the perfectly homogeneous medium can be

related to the incident pulse wave through

it"(t) = h(t) * u‘(t) (3.1)

where " "' " denotes the convolution operation and h (t) is the 1-D impulse

response. This equation describes the delays in propagation between the

incident and reflected waves, and is a function of the layer thicknesses and

wave numbers. The impulse response h (t) of an echo return is in the form of

hm=£aw-n) ea

n=l

where 1:, , properly scaled, corresponds to the locations of the reflecting inter-

faces. Thus, the mapping is one-to-one and the reflection coefficients can be

exactly evaluated by using the correlation theorem [32]

Cueuicc) = $50,, Cuiui(‘tn) (3.3)

n=l

where " C " denotes the correlation function.

e Deconvolution Algorithm -- The discrete component of the reflected signals

in the opposite direction of the incident ultrasound wave can be written as [33]

u’(n) = £a(k)u’(n - k) + r(n) (3.4)

=1

where P is the order of the model and r (n) is an aperiodic pulse train,

corresponding to the reflectivity

r(n) = 213b(i)5(i - P5) (3.5)

i=1

where b (i) is the it” coefficient and P, is related to the 1"“ interface. Then the

common autoregressive model used in many digital signal processing
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applications [34] can be adopted to reconstruct the system r (n ). However,

ultrasound identification by reconstructing the reflection coefficients is impracti-

cal since measurements could be deteriorated due to the refraction effect.

Rather, the reflection property of any interface can be characterized by its

dispersion.

Frequency Response Techniques

Quite a large number of ultrasound identification schemes have been developed

based on the frequency response of the medium. Two of these will be con-

sidered in this section.

e Spectral Difference Algorithm - A very interesting ultrasound identification

scheme which simply describes the attenuation factor, a(f) = trf , has linear

frequency dependence [35]. Then the frequency domain response of the biologi—

cal tissue, illuminated by an incident wave, can be denoted as [36]

|H(f)|2 = e'W)‘ 2” = rm" (3.6)

where 20 is the double thickness of the tissue. Using this relationship, the

attenuation factor at can be evaluated by

a: -10g£|fHD(f)|2] . (3.7)
 

0 Phase Spectrum Algorithm - An ultrasonic wave prepagating in an

unbounded medium in a positive direction can be expressed as [4]

u(x,t) =Aej(°"‘“"")e‘°"‘ (3.8)

where A is amplitude, to is temporal frequency, 1: denotes the wave number, 9

is the related phase, and (1 denotes the attenuation.

It can be shown [5] that any permissible propagating waveform combines with

all reverberations can be expressed as
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+0. '1'“

u(x,t)=% j j Marne-trio ej(°°""‘)e'°“dal . (3.9)

For a referred point x = 0, Eq. (3.9) becomes

«foo-foo

u(0,t)=% j j Mary-tab ejm'do) . (3.10)
CI...

Applying the inverse Fourier transform technique, one obtains

4. +.

U(0,t)= j A((0,t)e"d¢= j u(0,t)e'j°‘dt . (3.11)

Similarly, we will get

U(x,t) = mom-flue“ . (3.12)

With the non-dispersive assumption, the difference in the phase spectrum of

these near and far region waves is then

alD

“c

 A4) = t), - 9.. = to = (3.13)

where D is the spatial distance, 4), and of are the corresponding phase to the

near and far regions respectively, and t), is the wave velocity in the medium.

As it is not possible to identify all materials with these assumptions, it is neces-

sary to approximate the linear frequency dependence within a specified frequency

band, and to consider the dispersive properties of the medium with some approxima-

tions. These issues will be addressed in the following sections.

3.3 Backward Scattering Measurements

In this section, we first review the salient features of the deviation of the 3-D

dyadic Green function for a planar layered medium formerly proposed in Chapter 2.
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When an elastic material is excited by a source, both compressional (C) and shear (S)

waves could be launched. Shear wave can be further partitioned into shear vertical

(SV) and shear horizontal (SH) polarizations [37]. As the medium is planar layered, C

and SV waves are coupled by boundary conditions on horizontal planes (i.e., an

incident C wave on the interface between two solids gives rise to both reflected and

transmitted of C and SV waves). On the other hand, SH waves do not couple to C and

SV waves [38]. Using this decomposition of waves and taking into account the cou-

pling at boundaries and the multiple reflections within the layers, it is possible to

derive explicit equations for a dyadic Green function for a perfectly layered structure.

In particular, it can be shown that when the observation point 7 and the source

point r" are in the same layer, 6’ is comprised of a free field ( singular at 7:7“)

and a regular part resulting from the contributions of the layered structure. If the

source and the observation points are not in the same layer, 6 is comprised of only a

regular part. Once 8 is determined, the ultrasound field for an arbitrary source is

obtained by applying this operator over the volume of the source weighted by an

equivalent force equation (see Eq. (2.35)).

For an identification problem, we can denote 17‘ (7) to represent the field at point

7 which was induced by the surface reflection force to compute the ultrasound field.

Assume the medium is insonified by a time-harmonic transducer placed in the upper

half-space labeled 1, as shown in Figure 3.1, and assume it is filled with fluid. The

axis of the transducer is perpendicular to the plane of the figure, and the wave is trav-

eling along the if direction as depicted on the figure. As a result, the displacement field

anywhere in the space will depend only on the lateral coordinate y and the depth coor-

dinate x. The origin is taken at the interface between layer 1 and layer 2. The incident

wave is modeled by

rim = (4.80! - 1:050” — an (3.14)
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where 7, = (x, ,y,) locates the incident wave source in the rectangular coordinate sys-

tem and u, is the wave magnitude at r,. A scattering force, as defined in Eq. (2.34),

represented by a global reflection coefficient of the layered structure can be denoted as

its”) = mcr')r(ril,.., (3.15)

where mCi’,) is the global reflection coefficient at 7, . With the Born approximation,

the scattered field, as defined in Eq. (2.35), becomes

r‘crl= [Berri-Kiridv (3.16)
V

 ?’=(x..r..z’)

+6.

=fo Igcflxo'Yorz’yfdz’

where f, = :71 (3)11, represents the force strength. Due to the spectral decomposition

of the dyadic Green’s function as a superposition of plane waves, a 2-D ultrasonic

field can be computed by setting the 2 component of the field to zero [39]. Thus, the

analysis of the backseattered ultrasonic field can be straightforwardly reduced to a 2-D

problem.
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 vi

Figure 3.1 : The 2-D backseattering problem to a planar-layered medium.
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Since layer 1 is a fluid which supports only compressional C waves, the x and y

components of 7' become scalar quantities, and they can be written in a more compact

 

 

forrnas

.fO jk) (y-yo)6.111 (I'4‘.)—

u;=(r)—jT (0thIn Rdky, (3.17)

u;m=— «fTo (021pr kye3310'»)e‘jks(x'xe)_l_R_dky
(3.18)

where R is the Euclidean distance from (x, y) to (x,, y, ), and the x and y com-

ponents of the compressional C wave vector obey

k} + It} = k} . (3.19)

It is also noted that the scattered field it" is only a function of the longitudinal dis-

placement x - x, and the lateral displacement y — y, . A computer simulation gives a

2—D mapping of the modulus of the 3: component of the scattered field versus the coor-

dinates x and y, is shown in Figure 3.2. The field mapping was sampled in the x

direction at dx = 1m. The sampling in the y direction was dictated by an approxi-

mated range of scattering effect, -25° 5 0 S +25°, resulting in dy = .5m; therefore

the area shown has the dimensions 8x8 mm2 and was centered at (xT,y1-) = (~64, 0.0).

The same computations were performed for the x component of the scattered field.

These results provide more detailed information about the distribution of the

backseattered filed and the optimal position for locating the transducer to gain a higher

reflected energy. Using this approach, the backseattered field can be evaluated with a

known global reflection coefficient. It is therefore a useful scheme for ultrasonic

identification.
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Figure 3.2: 2-D map of the modulus of the x and y component of the scattered

field lu’(x,y)| versus (x,y) within the region of layer 1.
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3.4 Angular - Spectrum Techniques

If the ultrasound scattered field were in a weakly scattering medium, it could be

represented by the following convolution

u8®=£m(?')u‘(7”)G(i’-?’)dv’ . (3.20)

where Off-T”) is the Green’s function and u,-(?) is the incident field. Thus Eq.

(2.35) can be considered entirely in the angular-spectrum [40]. The plots of Fig. 3.3

will be used to illustrate the various transformations that take place.

Again, considering the effect of a single plane wave illuminating a perfectly lay-

cred medium, the backward Scattered field can be obtained by using Eq. (3.20).The

scattered field can simply be considered as a convolution of the Green function

g?- 'P ’) with the product of the surface reflection coefficient mm and the incident

field u‘ (7’ '). First, define the following spatial Fourier transform pairs

mm <-.-> M(I?) . (3.21a)

GC?-?')<-—)5(?) . (3.211))

and

um (--) (10?) . (3.210)

The integral solution to the wave equation can now be written in terms of these spatial

Fourier transforms or

Uta?) = 6(2‘)[M(I?) * Um] (3.22)

where '* " represents convolution, and the propagation vector is I. = k,, Icy). An

incident plane wave 14‘ (7‘) can be expressed as

u‘ (I?) = 21:50? - 12;) , (3.23)
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and thus the convolution of Eq. (3.22) becomes a shift in the spatial frequency domain

or

Ma?) * UR?) = 21: Ma? - 75,) . (3.24)

This convolution is illustrated in Figures 3.3(a) - (c) for a plane wave propagating with

the propagation vector, I; = (k, ,0). Figure 3.3a shows the spatial Fourier transform of

a single cylinder of radius 1 A, and Figure 3.3b is the spatial Fourier transform of the

incident field. The resulting multiplication in the space domain or convolution in the

spatial frequency domain is shown in Figure 3.3c.

To find the spatial Fourier transform of the Green’s function, the Fourier

transform of the equation for a point scatterer

[V2 + 1:02] G (Pl? ’) = - 8(7’ - 7’ ') (3.25)

is taken to find

[4:2 + k}]G(E’I? ') = — if? ' 7” . (3.26)

Rearranging terms the following expression for the Fourier transform of the Green’s

function is found

 

.jf’. r t

G PI? _ ‘ 3.27< ') k2 _ k0, ( )

This expression has a singularity for all 5’ such that

I?!2 = k} + k; = k} . (3.28)

An approximation of GO?) is shown in Fig. 3.3d.
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Figure 3.3 : 2-D angular-spectrum representation of the Helmholtz eqn.

(a) The incident field U‘(k), (b) The medium function M(k)

(c) The spectral convolution Mar) * U‘(k), (d) The Green

function G(k), and (e) The scattered field Us(k) .
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Figure 3.3 (cont’d)
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The spatial Fourier transfonn representation is somewhat misleading since it

represents a point scatterer as both a sink and a source of waves. A single plane wave

propagating downward can be considered in two different ways depending on the point

of view. From the upper side of the scatterer, the point scatterer represents a sink of

the wave while to the bottom of the scatterer the wave is spreading from a source

point. Later, when our expression for the scattered field is reflected, it will be neces-

sary to choose a solution that leads to backward-propagating waves only.

The efl'ect of the convolution in Eq. (3.20) is a multiplication in the spatial fre-

quency domain of the shifted medium function, Eq. (3.24), and the Green’s function,

Eq. (3.27), evaluated at 7 ’ = (0,0). The scattered field can be written as

Mw-a)
U'a?) = 2n—— . (3.29

k2 k} )

Figure 3.3e shows the results for a plane wave propagating along the x-axis. Since the

largest spatial frequency domain components of the Green’s function satisfies Eq.

(3.28), the spatial Fourier transform of the scattered field is dominated by a shifted and

sampled version of the medium’s Fourier transform.

An expression for the field at the receiver will now be derived. For simplicity, we

will continue to assume that the incident field is propagating along the positive 1 axis

or. it; = (k, ,0). The scattered field along the receiver line (x = x, .y) is simply the

inverse Fourier transform of the field in Eq. (3.29). That is

u'(x=x..y)=4—‘, I I maritime, (330)
R —.-.o

Using Eq. ( 3.27), this can be expressed as

 

3 _ _ 1 - " MCY-kovky) ,

"(MW-rail .2..._,,.e e .
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First we carry out the integral form with respect to 7. For a given Icy, the integral has a

singularity at

71.2 = i Vic} - k): . (3.32)

Using contour integration, the integral can be evaluated with respect to 7. By adding

-1- of the residue at each pole, the scattered field becomes

 

 

21:

u‘(x,y) = 31;] F1(x,ky)efl‘”dky + 311-:-j r,(x,k,)e""dk, (3.33)

where

w _ iM<Vk3-ky’-ko~ky> water.
1 .k,)- e (3.34a)

NEE-T;

and

-°M «jki- i-Ir ,Ffl
r2019): ’ ( ° '9 "Me-1’9””. (3.34h)

ZVk} - k}

It can be seen that 1‘1 represents the solution in terms of plane waves traveling along

the positive 1: axis, while 1‘2 represents plane waves traveling along the negative 1:

axis.

As discussed earlier, the spatial Fourier transform of the Green’s function Eq.

(3.27) represents the field due to both a point source and a point sink, but the two

solutions are distinct for receiver lines that are outside the extent of the medium. First

consider the case in which the scattered field along the line it = x, is less than that at

the x-coordinate of all points in the medium . Since all scattered fields originate in the

medium, reflected waves propagating along the negative 1: axis represent a backward

propagating waves while waves propagating along the positive x axis represent waves

from a point source. Thus for x 0 ( i.e., the receiver is above the medium ) the
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reflected waves are represented by F2 or

1
u’(x,y)= E! r,(ch,)e”‘"dk, , x <0 . (3.35)

Conversely, for a receiver along a line at = x, where x, is larger than the x-coordinate

of any point in the object, the scattered field is represented by 1‘1 or

1 .

when = 3;] Fr(ch,)e”‘”dk, . x > has... . (3.36)

where 1M” represents the physical thickness of the layered structure. In general, the

scattered field can be written as

, 1

u (x,y) = a! I‘(Jt,lcy)e’7"ydky , (3.37)

where it is understood that sign of the square root in the expression for 1‘ should be

chosen so that only reflecting waves result.

Taking the spatial Fourier transform of both sides of Eq. (3.37), the spatial

Fourier transform of the scattered field at the receiver line is

Iu‘(x =x,.y)e""‘v’dy = r(x,,k,) . (3.38)

Judging from Eqs. (3.34a) and (3.34b), I“(x,,,k,) is a phase shifted version of the

medium function. The Fourier transform of the scattered field along the line 3:: = x, is

related to the Fourier transform of the medium along a circular arc. The use of the

contour integration is further justified by noting that only those waves that satisfy the

relationship

k} + Ir,2 = k} (3.39)

will be propagated, thus it is safe to ignore all waves not on the It), ~circle.
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Figure 3.4: Estimates of the two-dimensional transform of the scatterer

are available along the solid are for reflection propagation

and the dashed are for transmission propagation.
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This result is depicted in Figure 3.4. The circular arc represents the locus of all

points (kJr .15.) such that k, = :l: k, - k}. The solid line shows the incoming waves

for a receiver line at x = are above the medium. This can be considered reflection

identification. Conversely, the dashed line indicates the locus of solutions for the

transmission case.

3.5 IPM Representation of the Layered Structure

The inverse problem method (IPM) is an identification technique first formalized

by T. K. Sarkar in 1981 for distinguishing the radar target from the complicated scat-

tered field which corresponds uniquely to the individual target [41]. However, its basis

is founded in the results of theoretical analysis (see [42 - 44] for examples) which

revealed that the scattering field of such an approach is dependent on its geometry and

material properties.

Later developments in the area of IPM have generally taken one of two direc-

tions. Many researchers have investigated the theoretical implications of the method

[45 - 47], including the proper expansion of the system responses, while others have

employed the method for the analysis of particular ultrasonic problems [48 - 49]. This

section will present the theoretical approaches to the IPM technique. These will form

the basis for an ultrasonic material identification method which will be investigated

extensively in later chapters.

3.5.1 Determination of the Wave Transmission Matrix

In general. the ultrasound wave scattered by a planar layered structure results

from the surface force induced by the incident wave, is shown in Figure 3.5. Sys-

tematic evidence suggests that the surface force can be represented as a wave reflection

and transmission problem by a wave transmission matrix (WTM).



Let us consider a plane ultrasound wave which is arriving at a planar interface, as

shown in Figure 3.5, at some arbitrary angle. We denote the downward wave D‘ as

the incident wave from above and the upward wave U‘ as the back-scattered wave.

In order to find the reflection and transmission coefficients at the interface, it

suffices to assume the total resultant field is represented by

U, =R,D, + T21U2 (3.40a)

and

D; = T12D1+ R2U2 (3.40b)

where the corresponding reflection and transmission coefficients are defined as

 

U D
R, = —-1- , 7,, = —2 . (3.4la)

D U
R2: —3- , 1,, = -—‘ . (3.4lb)

U: D.=o U2 D,=o 
After rearranging, Eq. (3.40b) becomes

D e—l-D -£2—U =-l—[D -R U] (342a)

l71227122732222. .

With this relationship, Eq. (3.14a) can be rewritten as

U, = £792,132 - 12,12,112] + 72,112 (3.42b)

l

= _7' [R102 + [712721- R1R2] U2] -

12
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layer (1)

 

Figure 3.5: The problem of the reflection and refraction of a plane

wave off a layered structure.
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Resulting fiom the reflection and transmission at the interface, two waves exist

inside the upper layer with difl'erent directions of propagation. As a result, the expres-

sion for the ultrasound wave, in the layer can be put in the following form

Dz = W11 W12

U2 W21 W22

Dz
Hz (3.43)

      

[Dr] = __l__ 1 ‘R2

U‘ 712 R1 [leTzl‘RrRz]

W W

where [W] = [W11 W12] is the wave transmission matrix (WTM). Two cases of

21 22

WTM are of interest:

Case A : Two half-space layers

Figure 3.6 shows there are only two unbound half-spaces, namely the upper space

1 and the lower space 2, with their acoustic irnpedances Z, and 22 respectively.

Assuming the downward wave D, and upward wave U2 have unity strength, the

reflection and transmission coefficients are related by

l + R1 = T12 (3°443)

1 + R: = 721 . (3.441»

The reflection coefficients are defined as

  

 

R zz-z, d R 2"22 345
l-Zz-l-Zl a“ 2‘z,+z,' (')

u

whereZ = pi d istheirnpedance of the 1"“ medium, 0, isthe incident angleatthe

‘ cosfl,

i "‘ interface, p, and 1),, are the density and wave velocity in the i"' medium respec-

tively. Since R2 = - R1, the elements of the matrix [W] can then be expressed as

 

(3.46a)
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-R2 Zz-Z, Z2+Z1 Zz-Z,
- = .. , .46b

W12 T12 [22 + Zl][ 22 22 (3 )

R1
W21 '-'-' “i.— = W12 , (3.46C)

12

and

' = TIZTZI'RIRZ = [1+Rl][l+R2] -R1R2 =.1_ (346d)

22 712 Ta 712

Two half-space layers, the WTM can simply be represented as

1 1 R1
W] = — . .47
[ 1'12 [R1 1] (3 )

Case B : Finite length of an unbound medium

For waves propagating through a finite length of medium, as depicted in Figure

3.7, the downward-going wave and upward-going wave are

D, = D ,e-jh" (3.48a)

y2 = 11,!“ (3.48b)

x

where lag, = 21:131. 3., is the wavelength of acoustic wave in the i "' medium and

C

x2, is the physical distance between point x, and x2. Thus one can define WTM, for a

finite length of an unbound medium, as

[w] = [‘15:3' [gm] . (3.49)
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Figure 3.6: Configuration for two half-space layers.

 

 

  
Figure 3.7 : Configuration for an unbound layer with finite length.
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Finally, by using the WTM technique, one can obtain the expression of the

reflected wave which is excited by an incident wave as it hits a layered structure of a

differing medium. For an N -layered structure with a planar interface as shown in Fig-

ure 3.8, the downward wave D,- and upward wave U,- of the i 'h medium are related to

the DM and U,“ waves of the i+1"’ layer as

Di _1 lRi eflqx‘ 0

U,‘ --]-'i—Ri 1 0 e'jkixi

; 1_<.i .<.N (3.50)

    

‘ “79‘ 1'
eJkixr‘ Rig 1 x

_1__ Di+l

Ti R- ejkl'xi e-jkixl‘

l
Ui-t-l 

  

where k,- and x,- are the wave number and thickness of the 1"” medium, respectively.

Using algebraic operations, the overall system becomes

    

Dr N 1 ejk‘x" Rte—jk‘x‘ Di+l
= — . . 3.51

U1 :1} Ti Rie’k‘x‘ e’mx‘ Ui+1 ( )

= W11 W12 DN+1

W21 W22 UN+1

   

is the overall wave transmission matrix.

 

W11 W12
where [A] — [W21 W22

For example, for a two-layered medium sandwiched between two half-space back-

grounds, as shown in Figure 3.9, the 4‘” medium is infinitely extended. As a result,

there is no reflected wave fi'om the 4‘” medium (i.e., U4 = 0 ).

The incident and reflected waves in the upper half-space are

in,

U1

D4W11 W12

- W21 W22

  

 

  

04:0

W11 W12 _ 3 1 ejk‘x‘ Rie—jk'x‘

_ r17“:— ROejkl‘xi e—jkixl'

t b
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Therefore, the surface reflection ratio m (7‘) at interface 1 (i.e., x = 0) is then

=— (3.53)

 

R,[l + R2R3e'ju’x’] + (”"7“[192 + R3e"2""’]

[1 + R2R3e'j2k”’] + R,e""*°’i[R, + R3e'iui‘3]

 

= R, + R2[l - Rae'ju’” + R3[l - R12][1- R22]

-12[Iexz + km]
e +
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Ui Ri 13' layer (i)
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Figure 3.8: Cascaded system of a planar N-lavered medium.
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k1(0)) =k0 lx,
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k2(€°) =03: 41"062) 0: 7 U3 92 I

A

x

Figure 3.9: The ultrasonic schematic diagram for a two-layered

medium embedded in a fluid background.
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3.5.2 Integral Equation for Surface Reflection Force

The wave number has been assumed to have a linear frequency dependency, the

complex wave number of the It“ layer can then be expressed as

k, ((0) = [0,, - j or,]m (3.54)

where B, and a, are the propagation and attenuation constants of the n" layer respec-

tively. Therefore, the first three terms of Eq. (3.53) become

m(o))=R,+R2[l-R12]e'jz(fii-ju")m"2 (3.55)

+ R3[l _ R12][1- R22]e"j2I(Bz ‘jazmz 4' (Br “133M131

= MIC-(01+le)” +M2e’(02+jvz)m + Mse'msi’jvs)”

where M, = R,, M, =R,[l -R,2], M3 = R3[l -R,2][1 49,2], 0', +jv, = 0 +10,

02 + iv: = 2am + jzflzxs and 03 + jV3 = 2[Brxr+flszs] +12[asxz+asxs]. This

result suggests that the surface reflection coefficient of an N-layered structure can be

represented in the frequency domain by the sum of the natural mode functions as

mass) = fiM,e'°-°’ (1” (3.56)

n=l

N

= 21‘4““,
u=l

where N is the number of the interface, Mn is the coupling coefficient of the n“

mode, and 1,, = -o,, - jv,, is the n‘“ complex natural mode factor.

Practically, a pulsed ultrasound field can be expressed as

r

 

E’Mejm" ; ltl S -A2—t

um) =i A, (3.57)

0 ; ltl > 3-
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where A: is the time duration of the pulse and to, is the harmonic frequency of the

ultrasound wave. Figure 3.10 shows the spectral distribution of a pulsed ultrasound

wave. The spectrum of this pulsed field can be written as

Atl2

17(F‘,co)= j 7(7’,t)e’j°"dt = j i?(7’)e““‘°‘°""dt (3.58)

-- -Atf2

. - _ At. - - A:
_ [757:2 [6 1(9) «0&2 _eJ(¢o maz]

(OJ-(0c

25in [(01) -- mc)-%’—]

 =31?)

(ll—(Dc

For a narrow pulse, the following approximation is valid,

 

 

 

  

sin[(al - (nal—3i]

2 __ 21:

Ar ~l , Ito-to, SE , (3.59)

((0 - (Dc)—

2

Finally, the surface reflection force becomes

7.0-1. .0» = m(?.m)?(?.w)5(? - e) (3.60)

F . 2sin [(0) - 0),)9-5]

_ N M ‘11” V? \ 2

- Lug "e 01 0) - me

P N a

= EMue‘” rice)

Lfl=1 J

N 1.0) Zn

=2Mnfilm)‘ ’ lm-mc S-A—t- ’
 

11:1

where 7.0;) = #01, )Ar is the spatial force distribution.
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Evaluation of the steady-state scattered field excited by the induced surface

reflection force can be simplified greatly by the use of a transform domain analysis.

The z-transform of a discrete function h (n) is defined as [50]

11(2) = 2 {h (11)} = ill (n )z’" (3.61)

n=0

and the corresponding inverse transform is

l
_ -l = n-l

h (n) Z {H (z )} flnj H(z )2 dz (3.62)

where the inversion integral is performed over the closed contour in the region of con-

vergence of H (z ), and h (n) is taken to be a causal function. If the 1‘“ frequency sam-

pleinthespecifiedband,m,=mc-%Stu,Smc+%=(oz,isdenotedas

to,=to,+lAco, OSISL-l , (3.63)

02’01
where An) = L
 

1t .

S 't—m—, Tmax = max{|t,|, ltzl, ° - ° , l‘tN'}, and L IS the total

number of samples, then the discrete form of the surface reflection force can be

denoted as

N

fire1>=ficit.cor)= zutficme‘”'*"°"- (3.64)
n=l

N

= £Mn(zn)f:.(7:)z,’, . 051 SL -1

1181

Am.

where 2,, = e and M', (z,,) = Mnem'“. Transforming these frequency samples into

the z-domain, the surface reflection force becomes

 

N

fimsl=2m<zeficm ‘ . (3.65)
ll=l Z - Zn
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Thus, the steady-state reflection force is the sum of simple singular poles in the com-

plex z-plane. For layered structures, the natural modes occur in N complex parameters,

and it can easily be seen that the application of the inverse transform Eq. (3.62) and

Cauchy’s residue theorem returns Eq. (3.65) to the spectral form of Eq. (3.60).

The fundamental assumption of inverse problem method analysis is that Eq.

(3.65) is a valid transform domain representation of the surface reflection force in the

steady-state. That is, there exist no contributions due to higher-order poles, and it is

important to stress that this representation is valid in the steady-state only.

Employing the bandpass concept, Eq. (2.33) results in the transform domain

expression for the reflected ultrasound field maintained by the induced surface

reflection force

r'trs) =£8W9 - firm) as (3.66)

 =§M,(z,) zznjfimryficr'm' .

Su=1 Z -

After the inverse transform, the IPM representation of the reflected ultrasonic field is

given by

Wait):iM,(z,)z,{18(?I?’)-fi,c?')dr’ ; OSISL-l , (3.67)

11:1 S

ordenoting

m,=to,+le) ; OSISL-l , (3.68)

the reflected field can be expressed in the frequency domain as

r'cr,m)=§M,e°'-18(?I?')-fi,(?')dr' ; (DismSah. (3.69)

8n=1
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Before Eq. (3.69) can be used to evaluate the reflected field, the surface reflection

force estimated by the incident field must be determined. This requires the calculation

of the natural modes and coupling coefficients, all of which are included in the Eq.

(3.65). As mentioned earlier, the natural modes are closely related to the properties and

physical dimension of the medium, while the coupling coefficients are strong functions

of interface reflectivity.

The surface reflection force can be determined through the use of the solution to

an ultrasound field integral equation (UFIE). The reason is that the function of the

ultrasound field equation is based on the boundary condition on the surface of the per-

fectly layered structure. The boundary condition is

f' 7‘(?.z) =f° 7 '(7’.z) (3.70)

where t“ is the tangential unit vector. Writing the reflected field as in Eq. (3.70) yields

the urn:

 

N

2Mn(zn)

1181 Z -21.. “-GCPI?')'?..O")48
’ =f°i?‘(?.z) (171)

S

which must hold for all points on the surface of the target. Since the incident field is

finite, the possible solutions to the resulting equation represent the natural modes of

the medium (i.e., there are solutions to the UFIE only at each discrete pole z = z,,).

 

prime.) ‘ jf-ficrrro-mmw=£-ricra.>. (3.72)
" sz - z,

Replacing the normal unit vector i with If", '(F’) ds’ , where f", '(F’) is the conjugate

3

force distribution of the m"' mode, and utilizing the symmetry property of the dyadic

Green’s function, then taking the limit 2,, -) z", and l’ Hospital’s rule to Eq. (3.72), the

coupling coefficients become
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M..<z...>= gl—jz?we're-Enema (3.73)
"'3

where d,” is a normalization coefficient and is given by

d... = I dsf‘m’cr’l - 180)?) - no») ds' . (3.74)
s s

Replacing 2.", by z, the coupling coefficients can be put in terms of the z-domain

parameter.

M'..<z)= QLIV‘WCzrfLG”) ctr . (3.75)
as

3.5.3 Spectral Representation of the Reflected Field

In most of the ultrasonic imaging applications, it can be assumed that the target is

in the far-zone field region. Thus, the incident ultrasonic pulse is a component of a

Gaussian wave front, or

11’ ‘(?,co) = I? u,((o)e‘17" , a), S (a S a), , (3.76)

where 12 determines the polarization of the ultrasonic field, and u,- (to) describes the

temporal variation of the field. Transforming this to the 2 domain via Eq. (3.62) yields

at ‘02) = i u,-(z)a-i"r . (3.77)

Substituting Eq. (3.77) into Eq. (3.75) and making use of Eq. (3.66), it gives the spec-

tral representation of the reflected field as

w'cr1)=2:-——"‘(z")z£ I «W5 new (378)
n=1 dfl S

x jawwmficrw , OSISL.
S
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This reflected field in the frequency domain can be written as

N

V'Ci’xn) = ZUnmeje'me‘” ; or, s (as (02 , (3.79)

n=l

where U,(r)ef°-m= "—1391 [tr-1V1? ~f;(?’)ds' x jdmrq-mrw.

n S S

This result reveals that the reflected ultrasonic field also varies, in the frequency

domain, as a sum of damped sinusoidal functions. This frequency response of the

reflected field will be utilized for ultrasonic identification of layered structures in the

following chapters. With the surface reflection force developed, we can further build

the framework for evaluating the reflected field of a layered structure using the Born or

the Rytov approximation. Moreover, the result is also applicable to the study of inverse

problems which provides methods of reconstructing images and detecting material

characteristics from the measurements of reflected field of a layered structures buried

in a homogeneous surrounding. These issues will be further pursued in Chapter 5.

 



CHAPTER 4

EXTRACTION OF THE NATURAL MODE

FACTORS FROM A MEASURED RESPONSE

4.1 Introduction

The most obvious requirement for the implementation of a layered structure

identification scheme based on material feature resonances is the accurate knowledge

of the natural mode factors of a wide variety of structures, as addressed in Chapter 3.

For most realistic structures, theoretical determination of the natural mode factors is

impractical. Thus, it becomes necessary, in some manner, to determine the natural

mode factors from a measurement of the reflected response of a layered structure.

This chapter presents a variety of methods for extracting the natural mode factors

of a structure from its reflected waveform. Basically, the methods can be divided into

four categories. The first involves Prony’s method, which is well known and discussed

in many fields [51 -53]. This approach has some disadvantages, including a sensitivity

to noise [54, 55].
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In the second group, the Maximum Likelihood (ML) method [56] and the MUlti-

ple SIgnal Classification (MUSIC) method [57] are discussed. They work best for

processes consisting of narrow band and uncorrelated signals in white noise, but

involve the high computational load of multivariate nonlinear maximization problems.

Because of these factors, these two classes of techniques are not suitable for our

research purpose, and other suboptimal techniques are needed.

The last two utilize eigenvalue analysis, solving first for a generalized eigenvalue

problem and then extracting the natural mode factors from the exponential polynomial.

The matrix pencil method [58, 59] involves reconstructing an autoregressive (AR)

model to optimize the performance by subspace decomposition. Our proposed spectral

Prony algorithm (SPA) involves evaluating a noncyclic convolution of the measured

response and an exponential model.

Each of these techniques will be discussed in detail. Their performance under

various circumstances, including the presence of random noise, will be examined for

their merits in the applications of material characterization.

4.2 Least Squares Prony Method

The modern least squares (LS) version of exponential fitting problem is consider-

ably different from the original Prony method [60]. This method makes use of a LS

analysis to fit an exponential model for cases where there are more data points than

needed to fit the assumed number of exponential terms [61].

For practical situations, the number of data points L usually exceeds the

minimum number needed to fit a model of N exponentials, i.e. , L > 2N. In this over-

determined case, the data sequence can only be approximated as an exponential

sequence,

u‘(l)=r’i(l)= £1132}, ; OSISL-l , (4.1)

n=1
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where the coupling parameters It, and natural modes 2,, from Eq. (3.67), are defined

as

ha =M',.I8(?l?')f,,(?’)ds’ (423)

s

= Aneje'

and

2,, = e-(o' ”WW” = £1.49) . (4.2b)

In denoting the approximation error as 8(1) = 14(1) - 12(1), one can find the order N

and the parameters {hmzn} forn =1 ton =N such that the total squared error

L-l

p = 2 e(r)|2 (4.3)

(=0

is a minimum. This is a difficult nonlinear problem. A suboptimum solution that pro-

vides satisfactory results may be obtained with a variant of the original Prony method

presented in Appendix A. The least squares approach [62] effectively reduces the non-

linearity of the exponential fitting problem into polynomial problem.

In the overdetermined data case, the linear difference equation (A.7) could be

modified to

gonna-n) = e(l) (4.4)

n=1

for N + l S l S L - 1. The term e(l) represents the linear prediction approximation

error, in contrast to error 8(1), which represents the exponential approximation error.

Equation (4.4) is identical to the forward linear prediction error equation. Each 0,,

term is a linear prediction parameter. Referring to Eq. (A.7), the a, may be selected

[.4

such that the linear prediction squared error 2 |e(l)|2 will be minimized. This is

lw-rl
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simply the covariance method of linear prediction [61]. The number of exponentials N

(also called the number of poles in reference to AR processing) may be estimated

using the same order selection rules. However, the maximum order is limited to

N S LI2. The roots of the polynomial constructed from the linear prediction

coefficients will yield, and the damping and phase factor can be solved from the roots

by using Eq. (A.9) and Eq. (A.10).

If 21, ' ° ' . 2” have been determined by a LS linear prediction analysis and by

polynomial parametering, then the exponential approximation 12(1) of Eq. (4.1)

becomes linear in the remaining unknown coupling parameters hl, - - - , h". Minimiz-

ing the squared error with respect to each of the h, parameters yields the complex-

valued NxN matrix normal equation

[zHZ]h = [2”u] (4.5)

where the superscript H denotes the Hermitian of a matrix. The LxN matrix Z, the

Nx1 vector h, and Lxl data vector u are defined as

    

r l l . . . 1 q ht ' “(0) '

zl z2 - - - ZN hz u(l)

z = ' ° ' , h = ' , II = ° . (4.6)

b 4:“ 25:“ zlé“ 4 hu 1: (I:-1).  
The NxN Hermitian matrix 2”2 has the form

F711 ’YlN

z”z= I I , (4.7)

  'YNl ‘YNN
b d



1"! e I e

'ler = 2 [2} Zr] = 7r} - (4-3)

(=0

A useful relationship that avoids the summation of Eq. (4.8) is

 

. L

[as] -1 . .
7th = . if z; z), at l (4,9)

[212* '1

= L if 2;“ =1 .

Then the unknown 11,, parameters can be solved using Eq. (4.5).

The LS Prony method will also fit exponentials to any additive noise present in

the data because the exponential model does not make a separate estimate of the noise

process. An exponential model incorporating additive noise would have the form

u(1)= fihflhw) , 1:0, 1, ---,L—l . (4.10)

n=1

The function e(1) has also been used to represent the approximation error of the

exponential model. If u(1) - e(1) is used in place of 11(1) in the analysis of Appendix

A, then the linear difference equation becomes

u(1)=- gonna—11H- gonad-n) . (4.11)

"=1 n=0

This is an autoregressive-moving average (ARMA) model with identical AR(N) and

MA(N) coefficients and a driving noise process 8(1). The first step of the LS Prony

method uses the linear predication

u(1)=- fianu(1-n)+e(1) (4.12)

01:1

and to whiten e(1). Comparing Eq. (4.12) with (4.11), the whitened process e(1) does
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N

not correspond well to the nonwhite MA process represented by Za, 80-n ). It is for

11:0

this reason that the LS Prony method does not often perform well in the presence of

significant additive noise; it fails to account for nonwhite noise in the process. When

the LS Prony estimation method is performed in the presence of significant additive

noise, the attenuation terms are significantly misestimated. They often are estimated

higher than they actually are [63].

4.3 Maximum Likelihood Method

In this section, we derive the Maximum Likelihood (ML) estimation of the cou-

pling parameters and natural modes {h,,, 2,, ; n = 1, - - - ,N}. The derivation fol-

lows the one in [64] (see also [65]). Referring to Eq. (4.10), the vector of the received

signals 11(1) can be expressed more compactly as

u = 211 + e (4.13)

where 11, Z, and h are defined in Eq. (4.6), and e is the noise vector. The evaluation

problem is to estimate the natural modes {z,, = e“°~ "M“;a =1, ---,N} of the

sources from the L samples of the array 11(0), - - ° , u(L-l).

To carry out the evaluation problem, we make the following assumptions [66]:

A1: The noise a is a stationary and ergodic complex valued Gaussian process with

zero mean and variance matrix 821, where 52 is an unknown scalar and I is the

identity matrix.

A2 : The noise samples {e(1)} are statistically independent.

Unlike the common approach in the sensor array literature [67], we do not regard

the signals as sample functions of random process. Instead, we regard them as unk-

nown deterministic sequences. Although this is done mainly because it allows, certain

computational simplifications, it also has some interesting advantages when the
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reflection waveforms are to be analyzed [68].

Under these assumptions, it follows from Eq. (4.13) that the joint density function

of the sampled data can be written as

 

1 l
= e - I -z 1112 4.14f (u) n. dct[521] XP[ 5, u (2..) J ( )

where 'det ( )" denotes the determinant. Thus, the log likelihood, ignoring constant

terms, is given by

1.11 = -L1og(82) - {lz-lu - Z(z,,)lrl2 . (4.15)

To compute the ML estimator, we have to maximize the log likelihood with

respect to the unknown parameters {2", h} and noise variance 5’. Fixing (2,, h}, and

then maximizing it with respect to 62, we get

8’ = %|u - 2(z,,)hl2 . (4.16)

Substituting this result back into the log-likelihood function, ignoring constant terms,

one deduces that the ML estimator is obtained by solving the following maximization

problem:

1
{:f" h {-Llog[—L—lu - Z(z,,)hI2]} . (4.17)

Since the logarithm is a monotonic function, the above maximization problem is

equivalent to the following minimization problem:

(gm)? h {In - Z(z,,)h|2} . (4.18)

To carry out this minimization, we fix h and minimize Eq. (4.18) with respect to

(2,, l n = 1, 2, - - - , N }. This yields the following solution
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h = [z”(z,,)2(z,,)]"z”(z,,)u . (4.19)

Substituting Eq. (4.19) into Eq. (4.18), we arrived at the following minimization

problem:

1:", {In - Z(z,,)[Z”(z,,)Z(z,,)]-1Z”(z,,)u|2} . (4.20)

This can be rewritten as

(:3 {In - Pz(z,,)u|2} (4.21a)

where Pz(z,,) is the projection operator onto the space spanned by the columns of the

matrix Z(z,, ),

-1

Pz(z,,) = Z(z,, )[Z” (2,, )Z(z,, )] Z” (2,.) . (4.21b)

Thus the ML estimator of the parameter z,, is obtained by maximizing the log-

likelihood function

LH({2..})= Il’z(zn)u|2 . (4.22)

This estimator has an appealing geometric interpretation. Notice, from Eq. (4.13),

that in the absence of noise the vector u stays in the N-dimensional space spanned by

the columns of Z(z,, ), referred to as the signal space, while the presence of noise may

cause u to wander away from this subspace. From Eq. (4.22), it follows that the ML

estimator is obtained by searching over the array manifold for those N steering vectors

that form the N—dimensional signal subspace which is closest to the vector u, where

closeness is measured by the modulus of the projection of the vectors onto this sub-

space. A different form of Eq. (4.22), which is found to be more suitable for our pur-

poses, is obtained by rewriting it as



68

LH ({z,, }) =. tr [Pz(z,, )R] (4.23a)

where “111 ]" is the trace of the bracketed matrix, and R is the sample covariance

matrix [69]

R = uu” . (4.23b)

However, The maximization of the log-likelihood Eq. (4.23) is a nonlinear,

multi-dimensional maximization problem, and as such is computationally expensive.

4.4 MUSIC Method

It is seen from Eq. (4.13) that the measured data with the ultrasound transducer

are given in the same form as those received by an L -element array antenna [70].

Thus, we may estimate the natural mode factors (z, ,n =1, - - - ,N} using the

MUSIC algorithm.

The MUSIC algorithm uses the eigenstructure of the measured data correlation

matrix [71]. From Eq. (4.13), the data correlation matrix can now be expressed as

R = E[uuH] (424)

= z E[hh”]z” + 521

where "E [ ]" denotes the ensemble average, and E [hhH] denotes the signal correlation

matrix. Here we assume that later”) = 821 holds in Eq. (4.24). Since these com-

ponents cannot be measured in advanced with the present ultrasonic system, we cannot

show the validity of the assumption.

Now we can express the eigenvalues and the corresponding eigenvectors of R as

n, 2 - - - 2 iii, and v, 2 - - ° 2 111,, respectively. Then, the following properties hold

when the individual signals are incoherent.
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(1) The minimum eigenvalue of R is equivalent to 52 with multiplicity L - N. Then

wehave

l1121122°” z11111>lllv+l-'="llv+2='°' =TlL=52- (425)

From the expression 11” > 11”,, =n~+2 = - ° - = m = 82 , we may obtain the

number of reflections (N).

(2) The eigenvectors corresponding to the minimum eigenvalue are orthogonal to the

columns of the matrix Z. That is, they are orthogonal to the ”mode vector" of the

signals:

{VN+1’ ° ' ° , VL}.I. {C(Z 1)’ ° ' ’ , C(ZN)} (4.26)

where c(z,,) = [1 2,, z,,2 --- 21'"? is the a“ column of the matrix L

We define a VL to be the Lx(L—N) matrix whose columns are the L - N noise

eigenvectors. Then, we can estimate the natural mode of each reflection by searching

the peak position of the following function.

¢(Z )HC(Z ) (427)
P - = .

m“(Z) e(z )”VLVf’c(z)

Properties (1) and (2), hold when the matrix hh" is nonsingular. However, the param-

eters (11,, . - - , h”) are coherent in the case of measurements with a layered structure

mechanism. This is because the parameters that are identical to the reflection

coefficients do not change, but have constant values. Thus, the matrix E(hhH) is

singular, and the MUSIC method does not work properly [72-73]. The construction of

E(hhh) has to employ some de-correlation preprocessing to destroy the parameter

coherence which makes the problem more difficult.
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4.5 Matrix Pencil Method

Following the idea of the matrix pencil method, we consider the following set of

"information” vectors: no, 11,, - - - , 11”, where

u,- = [u(i), u(i+l), ~ - - , u(r°+L-M-1)]T . (4.28)

The superscript " 7" denotes the transpose of a matrix. Based on these vectors, we

define the matrices u, and U, as

To look into the underlying structure of the two matrices, one can write

where

U1 = [“Ov “la ' ° ' . uM-l]

and U2=[u1,u2,°-°,uu] .

 

 

U1 = ZLHZR and

U2 = ZLHZO ZR

. 1 1 .

z1 ZN

z, - -

_Z{‘-M-1 [Ii—M-l‘

F M-1.

1 Z! M-1

1 7-2 2

ZR - o o ’

i z), . . . “Ali-1

zo =diag[zl. ° ' ’ 92”] r

and H=diag[h,, ~ ~ -

 

 

1,] .

(4.29)

(4.30)

(4.3 1)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)
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Based on the above decomposition of U, and U2, one can show that if

N SM SL -N, then the poles {an n = l,- - - ,N} arethe generalized eigenvalues

of the matrix pencil Uz-zU,. Namely, ifN SM SL -N, then z =z,, is a rank-

reducing eigenvalue of U, - zU,.

To develop and illustrate the use of an algorithm for computing the generalized

eigenvalues of the matrix pencil problem we can write

U,*U, = zfirrlzzzmz, z, (4.37)

=MAM

where the superscript * denotes the (Moore-Penrose) pseudo-inverse [74], whereas we

use “-1” for the regular inverse. It can be seen from Eq. (4.37) that there exist vectors

want = l,- .. ,N suchthat

UfU,w,, = w, (4.38)

and

U,*U2w,, = 2,, w, . (4.39)

The w, are the generalized eigenvectors of U2 - zU,. To compute the pseudo-inverse

U}, one can use the singular value decomposition (SVD) [75] of U, as follows:

N

Ul = znntnvrfl (440)

n=1

= TDV”

U,* = vn-l'r" (4.41)

where T=[t,,-- - ,tN], V=[v,,--- ,vN], and D=diag[n,,-- - ,nN]. The

superscript H denotes the conjugate transpose of a matrix. T and V are matrices of left

and right singular vectors, respectively. Note that for noisy data 11 (1 ) one should
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choose 11,, - - - , my to be the N largest singular values of U,, and the resulting U? is

called the truncated pseudo-inverse of U,. Since U,*U, = W” and v”v = r. substitut-

ing Eq. (4.41) into Eq. (4.39) and left multiplying Eq. (4.39) by v” yields

[z - 2,, I]z,, = o (4.42)

wheren =1, -- ~ ,N,

z = 041‘”U,v , (4.43)

and

2,, = VHwn . (4-44)

Notice that Z is an NxN matrix and that 2,, and 2,, are, respectively, eigenvalues and

eigenvectors of Z.

It is important to realize that the number of poles, N, can be estimated from the

singular values,

1112le2 ° ‘ ’ 2TIN 2 ' ‘ ‘ lenrin(L-M.M) .

Since "N44 = ’ ' ' = nm(L_M. M) = O for DOiSClCSS data.

IfM =N,theSVD ofU, isnotrequired, andz, ;n =1,--- ,N aretheeigen-

-1

values of the NxN matrix [11:70,] U,”U, which is obtained by substituting

-l

U? = [1150,] U,” into Eq. (4.39). Furthermore, one can verify that with or without

noise,

-1

[U,"UJ Uf’u, = ° - ° (4.45)

  
which is the companion matrix of the polynomial
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N

1+ 2a,,z-l =0 . (4.46)

n=l

Where

.

0N

aN-l 1

= - [111,110,] Uf’up (4.47)

. a.l .1  
is the solution of the least square Prony method. So for M = N, the matrix pencil

method is equivalent to the LS Prony method. However, in the matrix pencil method,

it gives us different values ofM forN S M S L -N.

4.6 SPA Method

A very interesting method for natural mode extraction which can be constructed

using the frequency-sampling concept introduced in Chapter 3. This section will

develop the SPA method such that the frequency response of the backseattered field

will pass through a given response. It is a fact that the backseattered field is not a

linear phase function, the sampled response must then contain both magnitude and

phase.

This method uses a criterion based on the SVD algorithm, which is helpful in

increasing the accuracy of the mode extraction [76, 77], rather than rely upon the more

commonly used LS error approximation between the actual and desired frequency

response. Furthermore, it is a useful noncyclic design to avoid the coherence of the

measured signals.

First we define the z-transform of the ”causal" part of the spectral sequence 11(1)

U(z)= iu(1)z" . z e c. (4.48)

(=0
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With Eq. (4.1), this series converges for lzl > 1 to a rational function in the z-plane:

-- N

U(z) = z[):h,a}.]a-' (4.49)
(=0 n=l

n=l

= fihn [i424]

[=0

N

= 2])" Z

u=l Z - 2,,

 

N

EbnzN-n

_ 11=0

" N
ZanzN-n

11:0

= B z

A(z) ’

with a0 = l and b” = 0. Equation (4.49) can be rewritten as

B(z)=U(z)A(z) . (4.50)

which is the z-transform version of convolution. The convolution can be written as a

matrix multiplication. Using the first L terms of the impulse response, we can write

q

b0 P11(0) 0 0 1

5: um um) . .

. . 1

at

0 = 11(N) --°- 11(0) : . (4.51)

a.  

    _0 nal-1) - - - u(L-.N-1)_
d

To compute the coefficients of a, and b, , we partition the matrices into the form of

b U1 1

O “11U2 81
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where b is the vector of the N+1 numerator coefficients, with b” = 0, of Eq. (4.49), a,

is the vector of the N denominator coefficients, u, is the vector of the last L - N

terms of the impulse response, U, is the (N+1)x(N+1) partition of Eq. (4.51), and U2

is the (L-N)xN remaining part. The lower L - N equations are written as

0 = u, + U,a, (4.53a)

or

u, = - U,a, , (4.53b)

First, the vector 11,, the denominator coefficient in Eq. (4.49), has to be determined.

The upper N + 1 equations of Eq. (4.52), with a = [ 1 a, ], are written as

b = U,a . (4.54)

Then the numerator coefficients vector b of the transfer function (4.49) can be

evaluated.

Now the natural mode factors and coupling coefficients are

 

log(z,, )

,, — A0) (4.55a)

and

- - _ B (z) . = . . .
ha - 211-192(z z") m (Z) 9 n 19 a N 0 (45%)

It is a fact that 11 (1) can contain only an unknown but finite number N of exponentials.

A finite number L 2 2N of spectral samples 11(1) must be sufficient for the calculation

of U(z ), thereby requiring the use of Eq. (4.55) to determine 1,, and 11,. According to

Eq. (3.70), 1? ’(P’,o)) is known in a finite interval, the samples

11(1) = i? ’(i’,tu,); 1= 0,1, - - - , L, with LAO) S 0.12 — to, are also available.
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These properties lead to an effective strategy for determining the natural mode

factors of an ultrasound backseattering field out of band-limited measurement data.

Starting with L spectral samples 11 (1 ), a rational function (7(2) of order M can be

determined using SPA. In particular, the SVD algorithm, which was introduced in both

the MUSIC and the matrix pencil methods, can be used for the accuracy estimation of

the natural modes in the presence of additive noise. This yields the parameters of

 17(2)= "’ ; 210:1 and 5,,=o. (4.56)

During the procedure, the order M must be chosen large enough, i.e., M 2 N, to

correspond to a first estimate of the expected number of reflections. One must calculate

the N largest singular values of U, to evaluate poles 2,, of (7 (z ), and perform a noncy-

clic convolution to get the information required for determining the estimates of

natural mode factors and coupling coefficients by using Eq. (4.55). Because the

preceding methods are an interpolation scheme to design a model that only produces

the first L+1 terms of9 the specified 11 (1 ), these processes say nothing about other

points in the passband. To control 1‘1 (2) over the whole range of the passband. we pose

an approximation problem where we define an equation-error vector for Eq. (4.52) as

follows

[i] + [e] = — :11— - -l— . (4.57)

If U, has full rank, Eq.(4.57) can be solved for a,. This solution minimizes the

lower part of e, and b = U,a gives zero error for the upper part. Then the natural

mode factors and coupling coefficients are determined without any bound on
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resolution.

Therefore, it is not worthwhile to attempt to design a maximization scheme as in Sec-

tions 4.3 and 4.4, since it is difficult to calculate the peaks of the norm of Eqs. (4.22)

and (4.27) with respect to the natural modes. Rather, it is necessary to calculate these

using an SVD algorithm, for which many computer routines are available.

As with the maximization employed in Sections 4.3 and 4.4, initial guesses are

required as a starting point for the iteration process. The main benefit of the SPA

method over the ML method and MUSIC method is that no guesses for the complex

mode factors are required since they are not used in the construction of the SPA

method.

The major problem in employing this scheme is, in reality, the quality or the

measurement as the spectral samples 1‘1 (1) are perturbed by additive noise which causes

variations in the estimation process. The resulting resolution is highly influenced by

the choice of the modeling technique for the calculation of the parameters of (7 (z ). by

the SIN-ratio in the measured data, and by the number L of spectral samples. For high

SIN-ratios, however, some improvements can be achieved through additional echo

estimation via parameter modeling.

4.7 Comparison of Methods

Five methods for extracting the natural mode factors of the layered structure from

a measured response have been presented in this chapter. The sensitivity to random

noise and the computational load to numerical implementation have been noted as the

motivations behind introducing the SPA method. In this section, a comparison will be

made among the various methods, and justification for using the proposed technique

will be presented
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It has been shown that the new extraction routine SPA is successful in the simple

case of a single-mode response, while other methods are also known to work well

under certain circumstances. Without too much extra effort, we have shown that the

spectral Prony method can be extended to cover multi-mode responses. There are con-

ditions that the natural-mode extraction schemes must be satisfied. First, it must be

able to perform in the presence of random noise, which will undoubtedly be introduced

at points in the measuring process. Second, it must be able to discriminate nearly

degenerate modes which are quite closely spaced compared with the separation

between other modes. Third, it should work well when the number of modes in a

measured response is underestimated.

The last requirement leads to a particularly useful procedure. Since the number of

modes in a measured response will not be known a priori , one would like to start

from a small number of modes. For methods which need initial guesses, this small

number of initial guesses will be very advantageous. This is only possible, of course, if

the routine works well when the number of modes in measured response is underes-

timated.

To test the various requirements, consider a practical example with a three-mode

response given by

11(1) = .6045 + e<--°57-1"-257>f - .6759 e<--‘21-11°-3°4V ; o s f s 5 MHz (4.58)

Here, the complex mode factors used to construct 1’1‘(f ) are the first three natural mode

factors fi'orn a 4-layer (water-Plexiglas-Aluminum-water) structure. The amplitudes

have been chosen to accentuate the reflection coefficients. This response is then sam-

pled at 38 equally spaced points between 1.5 MHz and 3.0 MHz.
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The sensitivity of each of the methods to the presence of random noise can be

tested by perturbing each point in the response by a random number, the value of

which is defined by

L I11 (1)|2
SNR = —— 4.59

and

SNR (db) = 10 log,o(SNR) (4.60)

where L is the total number of signal samples and 62 is the noise variance. Tables 4.1

- 4.3 show the results of using each method with various levels of noise. In the ML

and MUSIC methods, only two phase factors have been evaluated. Using a more com-

plex technique would have produced other factors, but would have required more com-

putation time. A total of 200 Monte-Carlo runs were conducted in each of the pro-

posed methods. For the case of Prony’s method, the DC component in Eq. (4.58) has

been removed, since Prony’s method is unable to accommodate a DC component.

Tables 4.1 - 4.3 reveal that, with the exception of the LS Prony method, the tech-

niques work reasonably well in the presence of random noise, both the matrix pencil

method and SPA method are among the best. It is reassuring to see that these two

quite different approaches yield similar results.
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Table 4.1 : Evaluation of different mode extraction methods in the presence of

30 db white noise.

 

 

  

 

 

 

 

    

M099 01+1Vl 02+1V2 03 ”"3

Method 0 -057 - )7257 -.121 - j10.304

o, —— o, =- .079 i .016 03 =- .271 a .062

PRONY v, _ v, = 7275 a: .015 v3 = 10.441 x .079

a, _ 02 — o3 —

MLM v, = -.031 a; .22 v, = 7.226 :t .22 v3 = 10.344 3; .22

o, — 02 — o3 —

MUSIC II V, = -.031 1.22 v, = 7.226 a. .22 v3 = 10.344 x .22

o, = 0 02 =- .059 a .005 o, =-.121s.015

PENCIL ll v1 = 0 v2 = 7.258 a .006 v3 = 10.304 1.016

c, = 0 02 =- .057 a .006 03 =- .121 a .014

SPA II V, = 0 v2 = 7.257 :t .005 v3 = 10.305 i .012

 

20 db white noise .

Table 4.2: Evaluation of different mode extraction methods in the presence of

 

 

 

 

 

 

 

    

’ M096 01+1Vl 02+1V2 03+1V3

Method 0 -.057 - 17257 -.121 - j10.304

o, -— oz =- .197 i .054 0'3 =- 1.355 1 .435

PRONY v, __ v2 = 7.384 i .053 v3 = 11.249 x .415

a, _ oz — o3 —

MLM H v, = -.O31 i .22 v2 = 7.226 1.22 v, = 10.344 :t .22

o, — 02 — o3 _

MUSIC v, = -.031 i .22 v2 = 7.226 :1: .22 v3 = 10.344 1 .22

o, =-.0041.011 02 =- .069t .022 03 =-.188:I:.OS4

FENCE v, = 0 v2 = 7.388 i .053 v3 = 10.340 :1: .060

o, = -.001 3:014 02 =- .056 d: .017 03 =- .133 :t .043

SPA J v, = 0 v2 = 7.260 3: .017 v3 = 10.295 i .045
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Table 4.3: Evaluation of different mode extraction methods in the presence of

10 db white noise.

 

 

 

 

  
 

 

 

    
 

Mode ll Ol+lVl 02+1V2 03+IV3

Method J 0 -.057 - j7.257 -.121 - j10.304

o, — 62 =- .449 i .182 03 =- 4.560 :1: 1.732

PRONY v, _ v, = 7.549 x .131 v3 = 15.326 a 2.933

01 — 0’2 — 03 —

MLM v, = -.053 i .22 v2 = 7.248 :t .22 v3 = 10.322 i .22

01 — 02 — O3 —

I .

MUS C v, =-.053:22 v2 =7204:.22 v3 =10.366:t.22

o, = -205 :t .511 0; =- .189 a: .156 03 =- .535 i .307

PEN IL

C v, = .124: .324 v2 = 7.426: .761 v3 = 10.5462t .799

o, = -.006i .030 02 =- .089 a .106 03 =- .223 3: .151

PA

S V1 = 0 V2 = 7.414 i .811 V3 = 10.346 21: .797

Note : 6,, + jv,, Theoretical modes used to construct impulse response

PRONY Least square Prony’s Method

MLM Maximum Likelihood Method

MUSIC MUtiple Slgnal Classification

PENCIL PENCIL-matrix Method

SPA Spectral Prony’s Algorithm
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Figure 4.1 shows a simulation of the quasi-impulse response of this 4-layered

structure, with 20 1% random noise added. The first three natural modes were used.

This represents a typical measured response. We intend to extract the three modes

from the noisy response using the SPA method and Prony’s method.

Figure 4.2 shows the results of a straightforward Prony method. The simulated

results are deviated from the theoretical ones. Improvements can be made by assuming

larger number of modes in the response. These results are also shown in Figure 4.2.

The accuracy has improved for overestimated cases, but it is very difficult to determine

which of the modes are actually present in the response. Without the a priori

knowledge of the three mode values it would be difficult to identify the results. On the

other hand, Figure 4.3 shows the modes extracted using the SPA method assuming

only three modes are present. The results are quite reasonable. The results show that

one does not gain much advantage by assuming more than three initial modes.
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Figure 4.1 : The quasi-impulse response of a 4-layered structure , constructed

using the first three natural modes with 20 db noise added .
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CHAPTER 5

RECONSTRUCTION PROCEDURES

USING THE SPA APPROACH

5.1 Introduction

Ultrasonic identification techniques based on natural resonance involve illuminat-

ing an unknown layered structure with an arbitrary spectral waveform and analyzing

the scattered ultrasonic field. No special restriction is given on the shape of the

incident field other than demanding it to carry adequate energy contents to excite

natural modes of the target for identification purpose. On the other hand, the angular-

spectrum and backward scattering techniques investigate the probability of constructing

a specified wavenumber-limited model which would result a wavenumber-limited scat—

tered field. This chapter will introduce a method to enhance ultrasonic identification of

layered structures by combining the SPA concept with the aspect independence of

natural modes.

An SPA reconstruction can be described as a phase-detection filter (PDF) which

upon excitation of a particular layered structure extinguishes a pre-specified portion of

the natural mode phase spectrum. Since the scattered-field response of a layered struc-

ture is merely the convolution of the incident field waveform and the structure

85
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scattered-field impulse response, it is easy to show that SPA reconstruction need not

actually be implemented to affect identification. Indeed, two views of SPA reconstruc-

tion will be considered. The first describes the effects of directly passing a specified

PDF; it uses a z -transform approach. The second describes the more tractable scheme

of convolving this PDF with the measured scattered field waveform; this strategy uses

a discrete fiequency domain approach. Moreover, the effects of signal processing and

implementation considerations will be addressed in Sections 5.3 and 5.4.

Preliminary treatment of the SPA reconstruction technique has been carried out in

[78].

5.2 SPA Reconstruction

The motivation for adopting a Specified PDF is revealed in the examination of the

spectral representation, Eq. (3.79), of the scattered field. Notice that each of the com-

plex terms in the natural mode series of the scattered field is multiplied by 11, (I... ).

where 11,(z,, ) is the z-transform of the discrete incident field waveform 11, (1 ), and z. is

the pole of 11‘“ natural resonance mode of the layered structure. If a specified PDF is

defined as

A(z,,)=0, forall 1Sn SN , (5.1)

it will result in a null scattered-field waveform in the high-frequency samples. Conse-

quently, it is easy to reconstruct ultrasonic identification using the SPA technique.

Since the PDF is based entirely on the natural modes of a particular object. and since

the natural modes of a layered structure are unique, each PDF will then correspond

uniquely to one object. Thus, ultrasonic reconstruction using the SPA approach will be

easier than analyzing the spectral response of any given scattered field.
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As in the natural-resonance-based techniques described in Chapter 3, any con-

venient incident field with adequate spectral content could be used to illuminate the

unknown layered structure. Rather than analyzing the scattered field in terms of its

natural mode composition, it would be easier to convolve the scattered field with a

PDF defined by Eq. (5.1). Applying the z -transform of the discrete frequency samples

of the scattered field to Eq. (3.79) yields

fer-0’)N .

u’(7’.z)= zvmiL— . (5.2)
”:1 z -z,,

Convolution in the discrete frequency-domain is equivalent to multiplication in the z-

transform domain, thus we have

 

N

2 {am . u'm1)}=4(z)[z If..<r:,)e""-"-’z ‘2" . (5.3)
n=1 -

Implementing the inversion integral Eq. (3.62) and invoking Cauchy’s residue theorem

results in the response

b(1)=a(1)411‘(7’0,1) (5.4)

= fiv,'(1;)e’°-“’z,£rr(z,) .

1181

Ideally, A(z,,) = 0 by the definition of Eq. (5.1), so 12(1) = 0 in the high-frequency

samples. In other words, the PDF has extinguished the measured scattered field in the

high-frequency samples. It should be noted that it is impossible to reconstruct a PDF

as defined in Eq. (5.1), because the real ultrasound field is not available to be meas-

ured exactly. The response generated by convolving the PDF with an unexpected

object is only related to Eq. (5.4). The poles of A (z) do not correspond to the natural

modes of the measured object, however, the discrete frequency samples of b (1) are

still a sum of the natural modes.
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The problems are that the amplitudes and phases will not be the same as those

which would be measured if the specified PDF were used directly. This may seem

trivial, but it indicates that the accuracy of identifying certain modes may be poorer.

Another aspect is that the use of SPA reconstruction also gives interpolation bias of

the results. That is, the condition that b(1) be zero in Eq. (5.4) did not depend on the

aspect dependent modal amplitude and phases. Thus, convolution of a PDF with the

measured scattered field from the expected layered structure results in zero response

regardless of the reflection coefficients.

5.2.1 Reflected Signal Perspective

It is now necessary to find some convenient way to implement the defining PDF

equation. For ultrasonic identification, it is more appropriate to define a PDF via

b(1)=0 ; 12L, , (5.5)

where b(1) is given by

b(1)=a(1)411’(7’0,1) (5.6)

as in Eq. (5.4). Here L, is the duration of the PDF’s impulse response. It is obvious

that L, must always be taken to be finite, or else there would be no high-frequency

samples. This analysis may actually be termed a z -transform analysis since it is the z -

transform representation of the PDF which is utilized. The 2 -transform of the PDF is

1,-1

A(z)=Z a(1) = Za(1)z"' . (5.7)

1=o

Referring to Eq. (5.1), the z-transforrn representation of this PDF requires

L-l

A(z,)'= Ea(1)z,,"=0 , 1511 SN . (5.8)

1:0
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Denoting 2,, = e'(°" + M)“ and substituting into Eq.(5.8), the exponential becomes

L,-l

A(z,,) = 2a(1)e"°-W [cos(v,,A0)1)— jsin(v,,Ac01)] =0 ; lSn SN. (5.9)

(=0

This shows that both real and imaginary parts of Eq. (5.9) hold simultaneously only if

L.-l

a(1)e"°-A‘”"cos(v,Atoz)=0 ; lSn SN , (5.10a)

1:0

and

1,-1 A

za(1)e"°- mysin(v,,A001) =0 ; 1s» SN . (5.10b)

(=0

These equations will be used to calculate a (1) upon an appmpriate mathematical

representation.

We have considered Eq. (5.8) as the z-transform of PDF. Alternatively, it can

also be termed a frequency-domain analysis since all calculations avoid the z-

transform of b(1). Invoking the definition of Eq. (5.5) along with Eq. (5.6), the

scattered-field representation Eq. (3.79) yields

N

b(1)=a(1)t{2(f,,(7':,)ej°'mzf,}=0 ; 12L, . (5.11)

n=l

Writing the convolution in summation form gives

L-1 N 10 (7’)

b(1)= 2am Elna-me ' 2!." =0 ; 12!. (5.12)
1'=0 n=l

 

which can be written more simply as

n=l

N lac-1

b(1)= Ebn-[Zaa’kn'r] =0 ; 12L, (5.13)

1'=0



where b, = U"”(7,)e’o'mzj. Now Eq. (5.13) can hold only if

L,-l

2a(r)e“°-A””cos(v,,dror) = 0 ; IS 11 SN , (5.14a)

(=0

and

lie-'1 A00

a(1’)e"°- )rsin(v,,Ao)1')=0 ; lSn SN . (5.14b)

(=0 '

which are identical to Eq. (5.10) from the z-trarlsform analysis.

5.2.2 PDF Representation

To implement the 2N equations in Eqs. (5.10a) and (5.10b), the PDF must be

represented mathematically. It is necessary to have at least 2N variable parameters in

the representation in order to satisfy the equations.

The PDF is considered to be represented as

a(1)= §amfm(l) ; 0S1SLe-l (5.15)

m=0

where f, (1) is the m'” basis function from an appmpriately chosen set and an, is the

coefficient of the 111‘” basis function. The basis functions do not have specified forms,

and they may overlap or be sub-sectional. Substituting Eq. (5.15) into Eq. (5.10) yields

(.4

gam-[Efm(1)e'(°'mycos(v,,Ac01)] = 0 , 1 S n S N , (5.16a)

m=0 (=0

and

2N L-1

a,,- f (1)e“°-‘°“”sin(v,,Am1) =0 , 1Sn SN . (5.16b)

=0 (=0 mM

When the amplitude parameters represent all the unknown variables, these equations

become simultaneous linear equations and can be written in matrix form as
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Qrfm - “0 .0-

...... . = . (5.17)

0;," L02” 0

where

r,.-1

95.3. = me(l)e‘(°"’°’)' cosmAcol) . (5.18a)

(=0

and

r,.-1

9:... = 2f..(l)e"°"“°”sin(v,Aml) . (5.18b)

1:0

The entries of the Q matrix are generally difficult to compute by the use of Eqs.

(5.18a) and (5.18b). The amount of effort needed to calculate these entries in closed

form can be reduced by using the z-transform domain analysis of Section 5.2.1. Com-

paring Eq. (5.18) with Eq. (5.8) reveals that the matrix entries can also be written in

terms ofthe z-transform offm(1) as

9.5..» = Re {Fm(zn)} (5.1%)

and

9.1.... = Im{F...(z.)} (5.1%)

where E", (z) is the transform of f," (1 ). With few exceptions, the transform of f, (1 )

will be a much simpler function than those resulting from the computation of Eq.

(5.18). The real and imaginary parts of F", (2) are easily separated after the transform

has been numerically evaluated. The only drawback to this approach is the need for

tedious arithmetic manipulations.
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5.2.3 SPA Approach

Letting 11 (1) represent the discrete frequency-domain response of a layered struc-

ture, the convolution of a specified PDF a (1) and its response can be written as

L.-l

b(1)=a(l)eu(l)= Za((’)u(1-1') ; 051 SL . (5.20)

(’=O

The natural mode factors embedded in 11(1) can be extracted by constructing a (1) as a

PDF [via Eq. (5.18)] and minimizing the norm of the high-frequency sample con-

volved response

L

||b(l)||2 = 2 [12(1)]2 (5.21)

(=L,

with respect to the parameters 0,, - - - ,oN,v,,, - - - .11”, where L -L, discrete

points are chosen at which to evaluate the norm. If 11(1) is a pure sum of natural

modes, and if a sufficient number of natural mode factors are used to construct 11(1),

then the minimum of Eq. (5.21) will be zero, and the routine will work well.

For the sake of extracting complex factors from the PDF as easily as possible, it

is preferable to express the PDF in terms of discrete impulses,

a(1)= gamda -m) with ao=l ‘ (5.22)

m=0

where N modes are assumed to be in 11(1). In theory it would be permissible to use

more than 2N basis functions, but this leads to matrix conditioning problems, since

only N modes are actually present in 11(1). However, the summation equation is forced

to be satisfied at discrete samples which are spaced in the same manner as the impulse

functions in 11 (1 ). This allows Eq. (5.6) to be written as



l):l<2N

“o

“l “0

“2 “1

_“2N-r“2N-2 

where 11: [0, a2

2):!22N
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alum-1+ azuzN-z 4. aauzN-s .,. . . .

aluZN +02u2N-1-1- a3u2N-2 + .. -

a luL-l +

  

T

02"] andb= bob,

   

be

“1 b1

“2 b2

., baZNJ .bZN-L

b

r

6%,].

+ “211% =

+ aZNul =

+02NuL-2N= "IIL

(5.238)

(5.23b)

(5.24)

where L 2 4N is the total samples of 11 (1) and 11, = 11 (1). Eq. (5.24) can then be

written in matrix form as

P

 . “L-l “1.4

where b,=[-112N -112N+, ° ° -

“2N-r ”2N-2 . .

"2N Hz"._1 . . .

  

.4 .

“0 al

"1 02

‘ ”1,-sz _02N

Uz'a=b1

  . “L .1

-11 2N+1

 

(5.25a)

(5.25b)
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Once the coefficient of an is determined by solving Eq. (5.25), the natural mode

factors can be found by calculating the roots of

2N

z amzm'" = 0 . (5.26)

m=0

The 11'“ coupling coefficient can also be determined as

. 10m=~ _ Jig.11,,(7’)e 111-11; [z 2,] u (z) . (5.27)

5.3 Signal Processing Considerations

The reconstruction algorithm described above involves a number of signal pro-

cessing steps. The following procedure describes the final reconstruction when small

changes are made to the signal processing procedure.

The algorithm for reconstructing acoustic properties of a layered structure from

SPA is briefly described below:

1) Collect the reflected waveform.

2) Fourier transform each reflection waveform.

3) Evaluate the N natural modes of the layered structure using the SPA method.

4) Implement SPA by using an N"' order PDF to get the estimates of the acoustic

properties of the layered structure.

At each step of this procedure, the signal processing theory suggests a number of

methods to improve the reconstruction. These include:

a)

b)

Applying a Hamming window to the reflection waveform to smooth the data at

the end of the receiver.

Zero padding the samples to reduce the effects of inter-period interference. This

also increases the resolution in the frequency domain and Should make mode

extraction more accurate.
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c) Multiplying the Fourier transform of the reflection waveform by a band-pass filter

(BPF) to reduce the effects of high and low frequency deformations.

These steps are illustrated in Figure 5.1 where optional steps have been indicated with

 

 

    
 

 

 

  

 

 

dashed boxes.
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Figure 5.1 : The signal processing steps in a typical S P A reconstruction are

shown above. The steps that are needed are shown with a solid

box while the optional steps are shown with dashed boxes.
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To evaluate the effects of each of these changes, Figures 5.2 and 5.3 Show the

estimated natural mode factors using all eight possible combinations of options. The

data were measured from a 11.675 mm Plexiglass layer under the ultrasonic wave with

an operation frequency of 2.25 MHz . An important part of the reconstruction process

is filtering the reflection data. The filter is implemented with an FFI‘ algorithm. These

algorithms do not perform an aperiodic convolution like that used in linear system

theory, but rather a circular convolution. If the data are padded with zeros so that the

new data sequence is twice as long as the original, then the results produced by circu-

lar and aperiodic convolution are the same. In addition, zero padding the original

reflection increases the resolution of the data in the frequency domain and thus makes

an interpolation scheme more accurate. Unfortunately, the extra data require more than

double the computational time. For example: an FFI‘ takes NlogzN operations so that

when N is doubled, the computational expense goes up by a factor of

(2N)1082(2N) _ 2

NlogzN -2[1 + logzN] °

  

(5.28)

Based on the reconstruction results shown in Figure 5.2, it can be concluded that dou-

bling the size of the reflection data only makes a small improvement in the quality of

the reconstruction. Since the extra zeros cause more than doubling the computational

expense involved in filtering the data, it is advisable not to zero pad.

A second signal processing concern relates to data truncation. In a real-life exper-

iment, it is only possible to collect and process a finite amount of data. Generally, this

does not present a problem since the data eventually vanishes outside a specific range

and the data can be truncated without loss of signal information. The data truncation

error can then be mathematically modeled as a multiplication in the time domain by a

rectangular window [79]. In the frequency domain this is equivalent to convolving the

data with a sine function and thus leveling the frequency domain signal. Other
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windows like the Hamming window have also been used to reduce the effects of data

truncation.

Figure 5.2 shows that a Hamming window does not have the same positive effect

as the SPA reconstruction. In this case, most of the high frequency information is at

either end of the reflected waveform; thus, the window only serves to attenuate the

high frequency components. Figure 5.4 shows that the Fourier transform of the

reflection is smoothed before (top graph) and after (bottom graph) a Hamming window

is applied. The loss of high frequency data caused by the Hamming window leads to

lower attenuation factors in reconstruction, as depicted in Figures 5.2 and 5.3.

Finally, a very big improvement is observed by adding a BPF before SPA recon-

struction of the data. Before the filtering, SPA implementation includes partial terms

which also serve to enhance the low and high frequency noises. However, by adding a

BPF, this effect is counteracted.

Based on the information shown in Figures 5.2 and 5.3, we conclude that the best

results are obtained if a BPF is used, but that zero padding the reflection data and

applying a Hamming window to the reflection data do not significantly improve the

results.
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No zero padding Mth zero padding

Attenuation 0 09 Attenuation

.29 . 1

3 (db/ mm-MHz) (db/ mm-MHz) O 3 06

O

3 Acoustic Speed Acoustic Speed

3 2850.03 2848.45

g, (m/sec) (m/sec)

E Reflection Coeff. ' 0.3713 Reflection Coeff. 0.3711

2
Acoustic Im . Acoustic Im .

ped 3.272 *106 pad 3.270 *106

(Kg lmz—sec) (Kg / mz-sec)

Attenuation 0 55 Attenuation 0 1484

.1 5 .

(dbl mm-MHz) (db / mm-MHz)

3

.8 Acoustic Speed Acoustic Speed

.5 2845.89 2841.15

3 (mlsec) (m/sec).

00

2 Reflection Coeff. 0.3707 Reflection Coeff. 0.3700

3

Acoustic Irn . Acoustic Irn .

M 3.267 *106 pod 3.262 *106

(Kg lmz-sec) (Kg / mz-sec)        
Figure 5.2: The material properties of reconstruction are shown with a 11.675 mm

thin Plexiglass layer and the Hamming window added.

(All reconstruction shown here are without band-pass filtering)
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Figure 5.3: The material properties of reconstruction are shown with a 11.675 mm

thin Plexiglass layer and the Hamming window added.

(All reconstruction shown here are with band-pass filtering)
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5.4 Implementation Considerations

The quality of an SPA reconstruction is limited by both mathematical approxima-

tions and experimental limitations. In the derivation of a model for the scattered field

either the Born or the Rytov approximation is used to solve UFIE for the scattered

field. These approximations are a source of error and limit the applications, as

addressed in Chapter 2.

The experimental considerations, on the other hand, are caused by a shortage of

data. It is only possible to collect a finite amount of data about the backseattering field,

and the experimental errors can be attributed to interpolation error and the finite aper-

ture. Regardless of the limit in resolution caused by evanescent waves, the limit in

quality due to the Born and the Rytov approximations still exist.

5.4.1 Limitation of the Wave Propagation

The most fundamental limitation is that evanescent waves are ignored. Since these

waves have a complex wave number, they are severely attenuated and phase delayed

over a distance as short as a wavelength. This sets the upper limit of the wave number

10

km = 35:3 . ‘ (5.29)

This also leads to a fundamental limit of the propagation process, and the range resolu-

tion of the SPA reconstruction. These can be improved by conducting the ultrasonic

identification at a higher operation frequency (or shorter wavelength).

After the wave has been scattered by the target and received by the receiver, the

signal must be detected and processed. Unfortunately, it is not possible to sample at

every point, so a non-zero interval must be chosen. This introduces an interpolation

error into the process. By the Nyquist theorem this can be modeled as a low-pass
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filtering operation, where the highest evaluated propagation delay, as defined in Eq.

(3.63), is given by

rm, = 2% (5.30)

and A0) is the sampling interval. Of course this analysis has ignored the non-linear pro-

perties of wave number and the resulting frequency shifts that occur.

5.4.2 Efl'ect of a Finite Receiving Region

Not only are there physical limitations on the finest sampling interval, there is

usually a limitation on the region that can be covered. This generally means that sig-

nals of the received waveform will be collected at only a portion of signal energy in

the receiver region. Consider a single scatterer which is located at the far-zone field

region. The wave propagating from this single scatterer is a cylindrical wave in two

dimensions or a spherical wave in three dimensions. This efl‘ect is depicted in Figure

5.5. It is easier to analyze the effect by considering the expanding wave to be locally

planar at any given point from the scatterer. This can be justified on a more analytical

basis by evaluating the phase of the propagating wave. The received wave at a point

(x = x, ,y,) due to a scatterer at the origin is given by

crew

11 (x 0') =W

This instantaneous spatial frequency along the receiver region

(5.31)

(x,-ASxSx,+A,y,-AySySy,-l-A) can be found by taking the spatial

derivative of the phase with respect to y [80]

phase = 1:0)le + y2 (5.32)
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and

key

k... = _F‘_..2+ ,2

where (cm, is the spatial frequency received at the point (x,y ). From Figure 5.5, it is

(5.33)

 

easy to see that

tan a = a} , (5.34)

and we obtain

a... iJfl (5.35)
.\/(x)z+l - ‘11an20+1

I

Thus, km is a monotonically increasing function of the angle of view 0. It is easy to

see that the maximum received energy can be increased by either moving the receiver

closer to the focus line of the object or by increasing the region of the receiver.
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Figure 5.5: The field scattered by a layered structure is measured

along a transducer region with finite dimension.



CHAPTER 6

ULTRASOUND FIELD WITHIN AN ARBITRARILY

SHAPED AND INHOMOGENEOUS SCATTERER

6.1 Introduction

In certain applications, it is desirable to gain the knowledge of the ultrasound

field distribution inside a medium. For example, in hypertherrnia treatment of tumors

[81 - 83], the induced temperature profile is directly related to the ultrasound field dis-

tribution. Therefore, knowledge of the field distribution plays an extremely important

role in the success of treatments.

Much work has been reported on the evaluation of scattered acoustic fields [84 -

87]. Specifically, the displacement field has been obtained by computing the scattering

integral in which the dyadic Green’s function has been used [88 - 90]. However, the

field distribution inside the scatterer has not been investigated extensively due to the

fact that the boundary conditions of an arbitrarily shaped scatterer are rather compli-

cated. Without knowing the intemal field distribution, it is virtually impossible to

determine the heat generation and, consequently, the temperature profile inside the

medium structure.

105
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Most of the work published in evaluating the internal field of a medium has been

confined to the case of planar layered media with homogeneous and uniform attenua-

tion properties [91 - 93], because of their simple in boundary conditions. In other

areas, such as the case of underwater acoustics or seismology, one can ignore the

boundary conditions because a large-scale problem is being considered [94 - 96].

Recent studies show that the scattering effect of a scatterer, embedded in an inhomo-

geneous layered structure, can be solved by using the dyadic Green’s function with the

Born approximation [97 - 99]. However, field distribution within the scatterer that

remains unsolved could due to the existence of singularity in the integral equation.

In this chapter, we seek to relax the restrictive assumptions commonly made on

the medium and to design a novel approach to avoid the singularity of the integration.

The outline of the chapter is. as follows: (1) In the next section, we develop a general

3-D forward scattering formulation [100] for the purpose of evaluating the scattered

field of an arbitrarily shaped scatterer. Then, we decompose the displacement field into

an incident field and a scattered field of interest. The incident field results from the ori-

ginal excitation in the background medium on the absence of the scatterer whereas the

scattered field results from the scatterer. (2) In Section 6.3, we consider an arbitrarily

shaped medium embedded in a homogeneous background (such as water), and develop

an expression for the 3-D displacement field induced by a plane ultrasonic wave. We

then use the proposed technique to preset the coefficients of the transform matrix in

Section 6.4. Finally, four simulations are performed. The results show that the fields

obtained from the proposed technique are reasonable over a wide range of pixel

dimensions.
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6.2 Integral Representation of the Scattered Field

Consider a finite scatterer of arbitrary dimension, with the density p,” (F) and the

compressibility c," (7'), illuminated in a background medium (such as water) by a

compressional plane ultrasonic wave as shown in Figure 6. l. The induced ultrasonic

force in the scatterer gives rise to a scattered ultrasound displacement field 0"(7) ,

which might be accounted for by replacing an equivalent background force density

function 7;, (7) [101]

740,) = - Lmzpmm - m2pa] VG.) (6-1)

 Cc... (aka?) - c. k3] rm

- c'" (711430) —1 [c, 1}] m?)

c0 k02

 

= - nm[c,t,2] at?)

= - m (7’) EC?) .

The wave number 11,, (7') = 0,, (‘1’) — j a", (7') is a complex quantity governed by the

. . . . cm 0" 0)

nature of the scatterer. The veloclty 1n the medrum rs u", (7’) = ——,A = —,

Pm BM (7")

a. (‘1’) is the attenuation coefficient, and p, and c, are the density and compressibility

of the backgron medium respectively. Moreover, 11 (fl is the complex deviation ratio

of the scatterer and the background, as defined in Eq. (6.1), and 3’0") is the total dis-

placement field inside the scatterer.
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Scatterer

3(a) (pawllcmtin _ ,

EGfimQFG’X '-

_’

Tr’m=u‘(?) +1151?)

Figure 6.1 : An inhomogeneous scatterer insonified by a plane

ultrasonic wave.
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In general, the scattered displacement field E" (7) inside the scatterer can be

expressed in terms of K9?) by the use of the dyadic Green’s function 80’0”) as

follows [102]:

11"(1’) = 174(72‘ 80%? ’)dv’ (6.2)

V

1 arm-17c: - ,,_,.,,
—3—vv , ,
to p, 4xl't’-? l

 where the dyadic Green’s function, GCPI? ’) =

45

represents the transfer function of the background medium, and IZI = m[&-]

co

denotes the wave number of the background medium.

In this case in which the field point is inside the scatterer, fl" (1") should be

evaluated with special care because of the existence of singularity and the requirement

of uniqueness properties. The scattered field 7" (‘7) at an arbitrary point inside the

scatterer can be written as ( see Appendix B)

11"(P')=PV £71,090- c’crlr'w -§LQ (6.3)

30120.

where the symbol ”PV" denotes the principal value of the integral. We may now write

the total ultrasonic displacement field 3‘?) inside the scatterer as the sum of the

incident field 17‘ and the scattered field if as

am=rm+rm . (6.4)

Substituting Eq. (6.3) into Eq. (6.4) and rearranging terms gives the integral equation

for 70’) :

[l - m] fiG’H-PV £m(?')i?(?’)- 5(7’17’)dv’ =V‘0") . (6.5)

30129.

In Eq. (6.5), if (7') is the incident ultrasonic field and is considered to be a known
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quantity. 170’) is the unknown total ultrasonic field inside the scatterer, which can be

discretized to yield a linear system of equations with complex coefficients.

6.3 Evaluation Procedure

Assuming that 7(7) and m (7’) are smoothly-varying functions of space within the

volume of the scatterer, we can partition the medium into N pixels, and treat 1??) and

m(?) as constants in each pixel. Under these assumptions, the integral Eq. (6.5) can be

transformed into a linear system problem.

Denoting the m‘“ sub-volume by V,,, and the position of V", by 7:, , we can

rewriteEq.(6.5) usingx,=x, x2=y, and x3=z ,as

mm.)
1 .-

I We.

 

3 N

114,07.“ 2: 2[m<r.>
q=1 11:1

- PV 1'prer l?’)dv’:l 11,.(Z,)=u;'(fi,,)

V.

wherep,q=1,2,3and

,' 82 arm-1‘3; '(7111-?'))

0291: 3x9 81‘11 479$"? "

 083.01,]?3:

For simplicity, one can define

11:3. =m(7,,)‘ PV JG,',,(2,,I7')dt/ .

Then Eq. (6.6) becomes

3 N 11101,)

2 Ag. ”no”, 1-—3m2 u,'(r;)= trim) ,

q=l 11:1 0

m=1,2,...,N and p,q=l,2,3.

(6.6)

(6.7)

(6.8)

(6.9)
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Denoting [15"]“1‘, as a matrix, its elements are assigned by

mm.)

30129.

A” -A,',','§' +8Pq8m 1-
w. "

(6.10)
 

where m, n = 1, 2, ..., N and p, q = 1, 2, 3. [11,5] and [11;] are N-dimensional vec-

tors which are given by

”...,m)‘ In}, (7’1)

[a5] = I and [14"] = I (6.11)

_ux,(?N)j 11;, (TN)    
where p = l, 2, 3. For all possible values of m and p in Eq. (6.10), the matrix

representation of Eq. (6.9) is obtained as

. - ~ , . ,

[in] [4,1 (A...) [11,] 0111

[5,114,115,] 01,] = [11;] (612a)

[A3] [A0] [A3] [“2] [”514    

[11] = :u‘] (6.12b)

  where [A] is a 3N>GN matrix, while [11: and [11" have dimension 3N expressing the

total displacement field and the incident displacement field at the centers of the N pix-

els.

Notice that in this way, a 3-D image matrix is represented by a 1-D vector

stacked by rows. The inverse problem becomes that of determining the total ultrasound

displacement field 170’) from the measurements 1? ‘(7). Therefore, one may evaluate

the field distribution inside the medium by solving the Eq. (6.12) with available

methods [103 - 105].
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6.4 Determination of Transformation Matrix Elements

In order to evaluate the coefficients of the matrix [11,,a] , one must be careful in

calculating the principal value of Eq. (6.8). Examining the off-diagonal elements of

[74%] , we clearly see that r,. does not belong to V, , and prx'fi, I? ’) is continuous

throughout V, . Therefore, we may omit the principal value operation from our evalua-

tions. However, when we deal with the diagonal elements of [A‘9‘] , r,,, now belongs

to V,ll , and we need to make some approximations.

6.4.1 Off-Diagonal Elements

First let us consider the off-diagonal elements of [19%], where p, q = l, 2, 3.

From Eq. (6.9), it is clear that

11;"; ”3;. =nr(r:,)- J G,,(2,I7')dv' ; m at» . (6.13)

With the same approximation described in Section 6.3, we have

.43; as; = 11103,)Gx','(7},, Imav, ; m at n , (6.14)

where AV, = I 111’. Using the definition of Eq. (6.7), we can rewrite Eq. (6.14) as

v.

A'”=

1 en: (-jk,,Rm,” (x"' — x”) (71!" - x1")
 

 

(6.15)

. [3 — (kgkm)2 +j3k0Rm] - (1 +jk,R,,,,,)5pq} ; m at n ,

whereRM = 117,, —T:,|,while7;, andl’), aredenoted

m=rxr+yxg+£xg ,and 7,,=2x','+yx','+£x;. (6.16)
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When N is chosen properly, reasonable results can be obtained by using Eqs.

(6.14) and (6.15). For better accuracy, however, Eq. (6.13) should be integrated numer-

ically by any conventional method.

6.4.2 Diagonal Elements

For the diagonal elements of [4mm] in Eq. (6.9), we have

"103.)

39129.

 11;", =m(r;,) PV JG,,,(7;,1?')dv' +8W 1— (6.17)

 

mfi’)
= lim 1? dv’ + 8 1- "

"1070;“ V. J “.0540: I) P9 360290

For better accuracy, the volume V, has been approximated as a sphere having the

same volume as the cubic pixel which is centered at r, . Now, let a, be the radius of

the sphere, after steps of manipulation (see Appendix C), Eq. (6.17) becomes

mm.) . . mat.)
r,., ,, 3m,” [11+1k.a.)exp<-Jk.a.)- 1] + 1- 30), .

t J

V
  

(6.18)
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3AV

where a, =[ 411“] . If the actual shape of V, differs appreciably from that of a

sphere, the approximation may lead to errors. In such a case, the integration

throughout a small sphere surrounding r, should be performed by prowdures outlined

in Appendix C; the integration throughout the remainder of V, must be carried out

numerically.
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6.5 Computer Simulation

Numerical simulations of some simple composite models are performed to test the

validity of the theory developed. Other models will also be used to explore the scatter-

ing effects within an arbitrarily shaped inhomogeneous medium.

6.5.1 Dimension of Pixels

When using a discretized pulse expansion in a linear system of equations, it is

crucial to establish a suitable limitation on the dimensions of the sub-volumes. In order

to arrive at an optimal choice, we consider a homogeneous bar with a deviation ratio

of n (7') = 10, as shown in Figure 6.2a, illuminated by a 1 MHz plane wave with unit

strength. Expressed in wavelengths, the dimensions of the this homogeneous bar is

6x%x%P.

When the homogeneous medium is partitioned into cubical pixels, the induced

field can be evaluated in each pixel. Models having different pixel numbers (N = 12,

N = 96, and N = 324), with dimensions of $3., %1., and %h respectively, are used in

this study. Computational results confirm with our assumption that the induced

ultrasound field is dominantly the 1: component.

Figure 6.2b shows the axial ultrasound fields along the f-axis for each model. For

the %1 case, the field intensity distribution deviates noticeably from the other two

cases. This is because too large a pixel dimension was chosen. For the 71-3. and %71.

cases, the fields are symmetrical to the axial axis. A standing wave pattern is esta-

blished along the plate due to the finite boundary condition. Since none of the pixels,

as shown in the :14. case, lies along the f-axis, we plotted the average field intensity

in its surroundings to facilitate a comparison with the cases of £4. and 715-1. The
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results indicate that pixels with dimension of 7:— }. produce quite an accurate field dis-

tribution; it is therefore not necessary to choose yet smaller pixel sizes.

We have also investigated the effects of frequency and deviation ratio upon the

field distributions. A small cube (1.5 x 1.5 x 1.5 mm 3) with the combinations of

different harmonic frequencies and deviation ratios was used. Since the cube presents a

symmetrical cross—section to the incident field, we only need to evaluate the induced

field in one quadrant The results are summarized in Table 6.1. We observe that the

field strength at the center of the cube is nearly independent of the harmonic frequency

but is highly dependent on the deviation ratio.

Table 6.1 : The central displacement field of a (1.5 x 1.5 x 1.5 m3) homoge-

neous cube with various n( r), insonified by a plane ultrasonic

wave of different harmonic frequencies.

 

Displacement field

a(r)

at cubical center

1 1.5 0.5 2.25 11, = 0.1078 - j 0.0708

11y = 0.0179 - j 0.0021

u2 = uy

0.1 15 0.5 22.5 ux = 0.1065 - j 0.0853

uy = 0.0207 - 1 0.0053

‘12 = uy

0.1 15 5.0 90.0 ux = -0.0468 + j 0.0102

11,. = -0.0021 +1 0.0013

u2 = uy

0.1 15 50.0 765 “x = -0.0036 + j 0.0003

uy = -0.0008 + J 0.0003

“2 = uy

    

   

       
Note : Do=(C0/Po)1/2 and limo)=(c,,,(r)/P,,.(r))1/2
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6.5.2 Evaluation of Inhomogeneous Field Distributions

Two models composed of biological materials with their properties given in Table

6.2 [106] are used in our simulation.

Table 6.2: Specified values of tissue properties, under a harmonic frequency

of 1 MHz used in the computational simulations.

 

 

 

 

Biological Velocity Attenuation density

material (m/scc) (Np/m) (kg/m3)

fat 1445 7 921

(1440 -1490) (5 - 9)

muscle 1570 9 1138

(1500 - 1630) (4.5 - 15)      
 

(1) Model A : fat-muscle plate.

(2) Model B : fat-muscle-fat bar.

For the planar model, as shown in Figure 6.3a, we set the incident ultrasonic field

to be perpendicular to the surface of the model (i.e., .t-axis). From the results of the

previous section, no transverse components need to be considered since we are using a

purely longitudinal ultrasonic wave.
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The fat-muscle square plate has a dimensions 4.5 x 4.5 x .75 m3. The distribu-

tions of the ultrasound field inside both layers, versus the f- and 2 - axes, are shown in

Figure 6.3b. As expected, the field distributions at the fat-muscle interface are discon-

tinuous due to the difference of their acoustic irnpedances. The field intensity is higher

in the fat region than in the muscle region. Figure 6.4a shows the 13.5 mm long bar of

fat with a 1.125 mm layer of muscle in its center. The axial field distribution is shown

in Figure 6.4b. It can easily be seen that the field contains a forward propagation and

a reflected component. These waves attenuate exponentially as they travel. As a result,

a standing wave pattern is established between the boundaries. For a homogeneous

medium, the field intensity is the lowest at the middle of the structure. This is

expected, since no boundary exists inside the structure which could cause reflections to

trap acoustic energy. On the other hand, structures composed of different materials

could produce a local maximum in the field intensity distribution.

In addition, if one wants to evaluate the acoustic power variation within a

medium, one can relate power to pressure variation. The acoustic pressure can be

expressed as a linear function of the phase constant B as

pm=pma—“,€3 =jmpmu<e=jamzmum (6.19)

where Z,,(‘i’) = p,, (7)0,(7’) is the acoustic impedance and 0,,(7’) is the acoustic velo-

city in the medium. The power absorbed by the medium is

Power?) = 11,, [$33] (6.20)

where 11,, is the absorption coefficient [107].
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Figure 6.3 (cont’d)
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In this chapter, we have deve10ped a method to determine the acoustic field distri-

bution around and inside a scatterer. A dyadic Green’s function has been used in the

evaluation process. A special arrangement to handle the singularity in the Green’s

function integration has also been demonstrated. Two models of simple structures

made of biological materials are used in the field distribution analysis. In choosing the

pixel size for computer simulation, it is obvious that a smaller pixel size will give a

more accurate result. However, computing time increases with decreasing pixel size.

We found that a pixel size of 11;), cube gives acceptable results with a reasonable com-

puting effort.

In most of the published work, the factor e‘” is attached to the field solution to

account for attenuation. The present analysis indicates that the attenuation and phase

characteristics should be properly handled as a complex propagation factor throughout

the analysis.

It is interesting to note that the power absorbed in the muscle region of an inho-

mogeneous bar is several times larger than that absorbed by the surrounding fat layers.

Specifically, a material with high field attenuation and high mass density will absorb

more power and consequently reaches a high temperature. A good example is the case

of hypertherrnia treatment of tumors. A tumor has a high mass density and higher

attenuation than the surrounding soft tissues. Together with the fact that a tumor site

has poor blood circulation, its temperature could easily exceed the cell survival level

under ultrasonic irradiation.



CHAPTER 7

EXPERIMENTS

7.1 Introduction

This chapter has two main purposes. The first is to present experimental

justification for using the IPM concept to reconstruct an object’s scattered field. This is

accomplished by comparing the acoustic properties of a thin plexiglass layer obtained

from time-domain measurements of the reflected waveform. A verification of the

dimensional independence of material properties will also be given, via time-domain

measurements taken from different layer thicknesses. Note that each of these tasks

requires the utilization of natural mode extraction scheme, and thus also provides a

practical test for the techniques of Chapter 5.

Second, with the legitimacy of the IPM concept strengthened by empirical obser-

vation, an experimental verification of the SPA algorithm is sought. This is accom-

plished by using the reflected waveform measurements of two multi-layered models -

a plexiglass-aluminum and a plexiglass-copper model.

123
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7.2 Experiment Facility and Measurement System

A system for measuring the time-domain reflected waveform of layered structures

has been built at the MSU ultrasonic laboratory. A schematic representation of the

measurement equipment utilized in ultrasonic interrogation is shown in Figure 7.1.

Target excitation is provided by an incident ultrasonic wave radiated by a

transmitter (SIN: MD306) suspended over a water tank. The transducer has an axial

focal length of 2 cm, a radius of 1.27 cm, and a characteristic impedance of 50 Q. It

transmits a pulsed longitudinal wave which approximates a pulsed plane wave pro-

pagated perpendicular to the surface of the target. Reception of the ultrasonic field

reflected by a layered target is also received by the same transducer.

The transducer (SIN: MD306) is driven by a Panametrics SOSOPR pulser, which

provides a quasi-Gaussian pulse of approximately 5 its duration at a rate of 800 Hz .

Electronic gains and power levels can be adjusted on the pulser panel. Since the trans-

ducer is designed for a specified frequency, the spectrum of the ultrasonic wave pulse

is transmitted with a Gaussian shape centered at 2.25 MHz (bandwidth: 1.5 MHz ).

Channel 2 of a Tektronix 466 storage oscilloscope measures the signal from the

ultrasonic transducer, while channel 1 of the scape is Optionally connected to a trigger

output located at the pulser for timing purposes. A waveform acquisition board (Waag

II) interfaces the sampling reflected signal with an IBM-PC computer, which acquires

the measured data under software control. Each of the reflected waveforms is accessed

through input channel A in the waveform acquisition board.

Once measurements have been obtained and stored in microcomputer memory,

they can be processed and placed on local hard disk or transmitted via modem to the

MSU mainframe computer system.



125

Pulser

Panametrics (SOSOPR) N

 

 

 

 

    

  
 

 

  
 

i [m l\
7 U U \

—> Ch. 1

b Ch. 2

_: Oscilloscope

C3; Tektronix (466)

3%
3 3 Signal interface board

5 3 (Was II)

{-.. CO

5 1

On

  
 

a
!

 

water tank Data acquisition, processing,

7// fl and storage

:5§:E-’:5§555§55553 Layered ObjCCt M"

R\\\ Q (IBM-PC)

 

   
 

 
 

Figure 7.1 : Schematic representation of the Ultrasonic Interrogation System.
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7.3 Data Acquisition and Processing Procedure

As mentioned in the previous section, reception of the layered object reflected

waveform is provided by means of a single transducer. The reason for using such a

transducer is that its simplified configuration can easily be modeled. Moreover, there is

no need to be concerned about the timing and amplitude differences between the

transmitter and receiver.

Generally, the measured signals are unavoidably corrupted by the presence of ran-

dom noise. To overcome this problem, the data acquisition process involves making

repeated measurement runs and averaging the results. This has been found to increase

the signal to noise ratio considerably. However, inconsistencies in the measurements

between runs due to triggering jitter, inaccurate reproduction of sampling density, and

drift of the preamplifier characteristics and the external power supply voltage necessi-

tate the implementation of fairly sophisticated data acquisition and processing software.

Figure 7.2 shows a typical trace on the sampling reflected waveform, displaying

the reflected waveform from the testing object. Because the AID converter will only

accept voltage values between —5 and +5 volts, the first large positive going and nega-

tive going peaks of the reflection response must be adjusted so that any portion of the

trace to be measured falls within this range. The amplifier gain on the pulser is turned

up to near maximum on the signal trace channel, to accentuate the steady-state portion

of the reflection waveform.

Frgure 7.3 shows a flowchart of the data acquisition and processing routines. The

data acquisition phase consists of making multiple (usually 128) separate traces. The

sampling density is adjusted such that each data run takes roughly 10 ms to complete.

It is important that the sampling density be high enough for the layered structure’s

response to be accurately reproduced. Data acquisition software (a C-program) allows

the selection of an AID converter sampling rate of up to 40 Mlz . However, the
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amount of available PC memory puts a limit on the number of points allowed in each

data run.

The data acquisition phase begins by running the C-program SCANS. This pro-

gram controls the AID converter and interfaces with the experimenter via keyboard

control. It then 100ps through the entire data acquisition process N titnes. After the

data run is finished, the computer gives the operator the option of repeating the run (in

case of problems incurred during the sweep), viewing the acquired data, resetting the

time-domain window size, and/or writing the data to a floppy disk. It is important to

keep the disk writing time to a minimum in order to make the entire data acquisition

process as short as possible, because this minimizes the amount of transducer drifting

between data runs.

Data processing begins by averaging the subsequent data sets and then subtracting

the DC offset. If satisfactory processing of all the data sets results in a high signal-to-

noise ratio and differentiated response of the layered structure, this response is finally

writtentoharddiskastheprocesseddata. '

At any point in the data analysis, the C-program DATAPLOT allows the plotting

of a disk file data set on the CRT screen, and also allows a hard copy to be printed.

Moreover, it contains a program employing the fast Fourier transform algorithm [108]

to obtain the Fourier spectrum of a disk file data set. This allows a preliminary

discrimination of the imaginary parts of the object’s natural modes, which can then be

used as initial guesses in the more sophisticated natural mode extraction schemes of

Chapter 4.

One main goal of all the data processing routines discussed is to accomplish as

much as possible in the laboratory using the IBM-PC computer. At this time, every-

thing but the natural mode extraction schemes can be completed quite rapidly in the

laboratory.
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Figure 7.2: Typical layered structure trace of a reflection waveform insonified
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7.4 Experimental Investigation of IPM Validity

The SPA concept discussed in this thesis is based entirely upon the hypothesis

that the steady-state scattered field response of a layered structure can be written as in

Eq. (3.79) - that is, it can be represented completely by a series of natural-resonance-

based damped sinusoid functions. If this expansion is not correct, or if it is not com-

plete, then the SPA scheme will fail. It thus becomes crucial to verify experimentally

the natural mode behavior of a layered structure.

Affirmation of the natural mode description of the frequency-domain response of

a layered structure can be accomplished by comparing the extracted natural modes

with those obtained from the theoretical IPM analysis in Chapter 3. To the extent that

IPM involves implicitly the assumption of a pure natural mode description, close

agreement between the two sets of modes would tend to substantiate the IPM recon-

struction. This necessitates, however, the use of a layered structure which has been

analyzed theoretically. The layered structure should also have clear boundaries and

well-known properties, to make the mode extraction easier. Judging from these res-

tricted criteria, we decided that the model should be made of thin Plexiglass layers.

A visually striking confirmation of the natural mode resonance is shown in Figure

7.4. This is the measured reflection waveform of a thin plexiglass layer of a thickness

of 11.675 mm , placed perpendicular to the ultrasonic transducer. Note that the indi-

cated early-time and late-time regions are reflections from the front and rear surfaces.

It is obvious that this structure response is dominated by a single natural mode which

is determined by the product of the double layer thickness (D) and the wave number

(I: (to) = fl(co) + ja(to)) of the specified plexiglass layer. Figure 7.5 shows a single

mode best fit of the ratio of the rear and front responses from the SPA method.

"
J
.
.
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Figure 7.4: The measured reflection waveform of a 11.675 mm thin plexiglass layer

placed perpendicular to the transducer axis.
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Figure 7.5: One-mode best fit to the spectral ratio of the rear and the front echoes,

obtained from a 11.675 mm thin plexiglass layer.
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Based on analysis in Chapter 5, the first natural mode of this layer should occur at

o, + jo, = -.0376 + j8.522 MHz". The single mode best fit from the SPA method

ascribes a mode of 61 + jul = -.0358 + j 8.478 MHz'l. The agreement is extremely

close.

By thinning the layer it is possible to lower the mode factors and thus to stimu-

late the existence of higher order modes caused by reverberation. Figure 7.6 shows the

measured surface reflection waveform of a thin plate having a thickness of 1.475 mm

placed perpendicular to the ultrasonic transducer. This reflection is apparently not dom-

inated by any single mode. The question then becomes whether the reflection can be

represented by a pure natural mode series. Figure 7.7 shows evidence for a positive

answer. This figure displays the phase spectrum of the reflection waveform obtained

via SPA. Three peaks very clearly dominate the spectrum and they can be used for ini-

tial guesses in the SPA method. Due to scattering and absorption efl'ects, only the first

three modes of this thin layer are absorbable.



133

9 ; 

Ultrasonic reflection from

a 1.475 mm thin plexiglass layer ‘O i
n

O
0

d
N

I
I

—
'
—
=

l
I

 

.5  N
o
r
m
a
l
i
z
e
d

a
m
p
l
i
t
u
d
e

o

      

b b

  H .'
A 1 J_ l l

e a 1B 1 2 1 4 1a 1 a

Time axis (psec.)

e lo 

O n
.

,1
.
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2nd echo

0 b

1st echo

0 b
V
f 1

O
O

b
.

3rd echo ‘

O t
-

o b

N
o
r
m
a
l
i
z
e
d

m
a
g
n
i
t
u
d
e

0 h
i

  o— l 1 J l l ‘ ‘

-2 -1 o 1 2 a 4 5

Delay time (11sec) ,

 

Figure 7.7 : Phase spectrum of the measured reflection waveform of a 1.475 mm

thin plexiglas layer, obtained via SPA.
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The theoretical and evaluated values of these natural modes are summarized in

Table 7.1.

Table 7.1 : The reconstructed natural modes of a l .475 mm thin

plexiglass layer, evaluated via the SPA method.

 

 

Theoretical Evaluated Evaluated

Natural modes value value amplitude

0 .0041 + j0.0092 0.3872

1st mode

 

2nd mode -0.04 - jl.05 -.0213 - jl.0399 0.3451

 

      3rd mode -0.08 - j2.10 -.0743 - j2.1004 0.0631

 

The imaginary parts of the natural modes compare well with the theoretical values.

However, the damping coefficients are not quite as close. We suspect that the

discrepancies are due to the scattering and attenuation effects.

Confirmation of the IPM reconstruction can also be provided through reflected

waveform measurements. For example, Figures 7.8a and 7.8b show the measured echo

reflected by 5.365 mm and 4.645 mm thin plexiglass layers placed perpendicular to the

transducer axis. It is obvious that the echo measurements are much noisier than that of

11.675 mm case. In fact, there is a noticeable amount of overlapping between the front

and rear echo waveforms. Because of only two successive echoes, a single mode is
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excited.

Figures 7.8c and 7.8d show the single-mode best fit to the pass-band portion of

the frequency response provided by the SPA method. These results for the thin plexi-

glass layers provide a great amount of confidence in the natural mode extraction from

the reflection waveform of layered structures. If the reconstruction is indeed complete,

then the material properties evaluated from the layer reflection waveforms should be

independent of layer thickness. This has been shown to be true in the case of the thin

plexiglass layers above.

A verification of the thickness independence of the material characteristics of this

layered structure can be obtained by making measurements at different thicknesses,

and evaluating the material characteristics from each reflection. Table 7.2 shows the

experimental results. Material properties obtained from the experiment: such as velo-

city, attenuation coefficients, reflection coefficients, and acoustic impedance, are almost

the same for four plexiglass layers with different thicknesses.

This completes the validation of natural modes reconstruction by using the IPM

approach.
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Figure 7.8 (cont’d)
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7.5 Experimental verification of the SPA Reconstruction

With the natural mode representation validated by the results of the previous sec-

tion, the next step is to verify the reconstruction of the layered structure experimen-

tally. Two different layered su'uctures will be tested.

Figure 7.9a shows the reflected waveform of a solid plexiglass-aluminum struc-

ture. The geometry is shown in the same figure. Similarly, Figure 7.9b shows the

reflected waveform of the plexiglass-copper structure. The Fourier spectrum of the

plexiglas-aluminum response is shown in Frgure 7.10a. Three distinct modes are

observed in the phase spectrum, as shown in Figure 7.11a. A similar analysis reveals a

total of three dominant modes for the plexiglass-copper structure, as shown in Figures

7.10b and 7.11b. The extracted natural modes (U,,-l-j 1),.) corresponding to each struc-

ture have been evaluated by the SPA method, and are indicated in Figures 7.9a and

7.9b.

The experimental results suggest that as long as the echoes from the front and

rear of the layer are not overlapping, the first order model is applicable. The transfer

function of a given layer can be put strictly in terms of the properties of that layer,

rather than the signature of the incident pulse and the characteristics of the measuring

device. The transfer function of the n "' layer is

U‘ (0))[A +lejmua+l+jcn+l)] A .

Hnfi+l(m) = n _ _fleImW-auflauut) (7.1)

vi ((0) [An ‘1”(Va+I0u)] - A"

 

where U300) is the incident spectrum and um+1+jam+1 = (1),,+1+j0',,+1) - (u,+jo,.)

is the natural mode of that layer.

For all cases, the SPA method is employed to evaluate material characteristics.

The experimental results are summarized in Table 7.4. For the sake of comparison,

published values [109, 110] of the material properties are listed in Table 7.3. It can
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readily be seen that the velocity, reflection coefficient, and characteristic impedance

compare favorable with the published data [109, 110]. However, it is noticed that the

attenuation constant deviates from the published value by a significant margin. This is

possibly due to the scattering of the incident wave at the interfaces and the absorption

of the transmitted wave propagating through the layer. Reviewing the results, we

observe that

( 1) The attenuation factors are approximately linear within the frequency band, 1.5

m1: <f < 3.0 MHz.

(2) The measured velocity of various samples are very close to the published values,

with a standard deviation of less than 1.2 % .

(3) The reflection coefficient varies over a wider range, since it is highly influenced

by scattering, absorption, and attenuation.

In this chapter, we have tested the SPA algorithm based on natural modes with

appropriate arrangement, and have shown that features can be simultaneously evaluated

by utilizing a spectral sequence. Comparing the results with published data, this

approach seems very promising. For example, the overall standard deviation of the

estimated velocity is found to be within a 1.2% error band. The application of this

method will be valuable for nondestructive evaluation of materials in industrial appli-

cations.
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Figure 7.9a: Measured reflection waveform of a plexiglass-aluminum layered

model placed perpendicular to the transducer axis.
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Figure 7.9b: Measured reflection waveform of a plexiglass-copper layered

model placed perpendicular to the transducer axis.
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Figure 7.10a: Phase spectrum of the reflection waveform obtained from a

plexiglass-aluminum model.
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Figure 7.10b: Phase spectrum of the reflection waveform obtained from a

plexiglass-copper model.
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Table 7.3: The acoustical properties of different materials published by

 

 

 

 

 

 

    

Kino [110].

Material

F Aluminum Plexiglass Copper

“mm (7075 -T6) (70 - 30)

Attenuation

(db /MHz-cm) 0.38 0.17 —

Velocity

(m / sec) 6420 2740 4400

Density 2 71

(g / cm3) . 1.15 8.64

Char. Impedence

17.33x106 6 40.61x106(kg lmz-sec) 3.26X10  

Table 7.4: Acoustic properties of different materials evaluated by

 

 

 

 

 

the SPA method.

Material

Aluminum Plexiglass Copper

Feature

(7075-T6) (70 - 30)

Attenuation

(db IMHz-cm) 0-443 0136 0.255

Veloci

Char. Irn ence

(kg lmzpic) 17mm“ 3321x106 37.480x106     
 

 

 

 



CHAPTER 8

CONCLUSION

The purpose of this research has been to investigate techniques of evaluating

material properties by ultrasonic interrogation. This chapter reviews the state-of-the-art

of ultrasonic identification as well as the techniques we have deve10ped here in recent

years. Finally, suggestions for future studies are given.

8.1 Summary

There are two major contributions from this thesis work: a proposed theoretical

model for ultrasonic field reconstruction, and develOpment of a scheme for layered

structure identification.

In Chapter 2, an acoustic wave equation with the presence of scatterer was formu-

lated. Wave solution using the Green’s function technique was presented. To general-

ize the analysis, all distances were expressed in wavelengths and the medium functions

were put in terms of the complex refractive index of the inhomogeneous medium. In

such a way, the results could easily be adopted for solving other similar problems.
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Two approximations, the Born and the Rytov, were used to linearize the wave

equation. These two perturbational approximations are very useful since they allow

simple inversion algorithms to be derived. Since these approximations play an impor-

tant role in ultrasonic interrogation, the mathematical limitations of each approximation

were reviewed and discussed.

The reconstruction theorem presented in Chapter 3 relates the scattered field

measured on a location to the angular spectrum of the medium. This theorem is only

true when either the Born or the Rytov approximation is valid. However, the imaging

reconstruction research community has shown tremendous interest in this theorem.

The reconstruction theorem was derived by the use of IPM and WTM concepts in

this work. Applying both to the reconstruction theorem leads to a simplified relation-

ship between the reflected waveform and the natural modes of a layered structure. The

conventional technique of extraction is to decompose the Green’s function of the field

reflected by a layered structure into plane waves, and then to substitute this result into

the integral solution of the wave equation. The new technique of extraction is to con-

sider the reconstruction theorem entirely in the frequency domain. This method results

in improved computer implementation and was utilized in Chapter 4 for better estima-

tions of material characteristics.

Other topics pertinent to the SPA technique were discussed as well. Five methods

for extracting the natural modes of structures from their measured reflected waveform

were presented. These methods were needed to provide the basis for SPA reconstruc-

tion routine, where conventional identification is usually unworkable. Only the SPA

method was shown to be successful in the presence of random noise.

In addition, several signal processing concerns were examined in Chapter 5. By

examining the standard deviation between the structure and the reconstruction, it was

concluded that zero padding a waveform would be a way to reduce the interpolation
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error. On the other hand, using a Hamming window to shape the waveform could

severely attenuate the high frequency information and introduces errors.

Chapter 6 present a theoretical analysis of field distribution around and inside an

inhomogeneous and arbitrarily shaped target. The dyadic Green’s function was used in

the evaluation process, and a special arrangement to handle the singularity in the

integral equation was also introduced. The results showed that a structure consisting of

different materials could produce a local maximum in its field intensity distribution.

In Chapter 7, identification was also carried out using the measured reflected

waveform of thin plexiglass plates with different thicknesses. The success of this

experimental results provided an empirical verification of the SPA concept. Evaluation

of material characteristics of several multi-layer structures were also successfully per-

formed.

8.2 Suggestion for Future Studies

Some topics suggested in this wOrk have not been fully explored, while other

ideas have been generated during the course of this work. This section high-lights

several of them.

In deriving the Born and the Rytov approximations, it was assumed that the scat-

tered fields were small compared to the incident fields. This says that the structure

must be weakly scattered for the ultrasonic identification to hold. If this condition is

not met, then the reconstruction will have artifacts. This t0pic should be pursued

further by looking into the limitations of physical dimensions and material properties.

It is also possible to extend the analysis by using other approximations.

For better reconstruction, several steps of the SPA schemes could be modified. It

is possible to include variable sampling size of the measured reflected response, as

well as selection of the dimension of the signal space in SVD application. In the
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algorithm involving the construction of the PDF, the inclusion of some specified func-

tions might be useful.

Lastly, the most interesting topic might perhaps be the most difficult one. There

remains the question as to whether the refraction effect of the reflected field response

can be utilized for ultrasonic identification purposes, despite its heavy dependence

upon structural aspects. To pursue this topic, one should start out with a simple struc-

ture and measure the reflected field response in a 2-D region and see how well it com-

pares with the theoretical prediction. To minimize the system error, it is preferable to

exclude the receiving transducer response from the analysis. This requires the accurate

positioning of the spatial response from the measured data. To this end, an efficient

and accurate deconvolution scheme must be developed.
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APPENDIX A

ORIGINAL PRONY METHOD

If as many data samples are used as there are exponential parameters, then an

exact exponential fit to the data may be made. Consider the N-exponential discrete-

time function

a(1)=ihnz}, , l=0,1, ---,L-1. (A.1)

n=l

Note that a(l), rather than £0), has been used because exactly 2N complex samples

14(0), - - - , u(2N) are used to fit an exact exponential model to the 2N complex

parameter Ill, - - - , h”, 21, - - - , 2”. The N equations of Eq. (Al) for 0 SI SN-l

may be expressed in matrix form as

      

o o '
Z1 12 ZN h .r 1 . . . 1 hr I "(0)

Zr 22 ZN 2 u(2)

o o = 0 (A2)

zI‘I-l Z120-1 . . . lid-l h”. flag.”

The matrix of indexed z elements has a Vandermonde structure. If a method can be

found to determine separately the z elements, then Eq. (A.2) represents a set of linear

simultaneous equations that can be solved for the unknown vector of complex ampli-

tudes.
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First, one could assume the polynomial ¢(z ), which has the z, exponents as its

roots, defined as

N

M2) = U(z - z") . (A3)

n=l

Then the products of Eq. (A3) are expanded into a power series and the polyno-

mial may be represented as the summation

N

¢(z) = 20,,ZN'” . (A4)

n=0

with complex coefficients {a,. ,n =0, l, - - - ,N} such that ao= 1. After that, one

shifts the index on Eq. (A.l) from I to l - m and multiplies it by the parameter a," to

yield

N

amuU-m) = a,, 215,47" . (A.5)

u=l

Forming similar products aou (I ), . - - , a,,,u (l-m) and summing, it produces

N N N I

2a,,u(I-m) = 2h, Eamzn‘” , (A.6)

03$ n=1 m=0

which is valid for N + l s z s 2N. Substituting 4"" = 2,17" z,’,""", Eq. (A6) becomes

N N N

2 a,,,u(l-m) = 2h,z,’,'” Eager-m = o . (A.7)

m=0 11:1 m=0

The right-hand summation in Eq. (A.7) may be recognized as the polynomial defined

by Eq. (A.4), evaluated at each of its roots 2, , yielding the zero result indicated. Eq.

(A7) is the linear difference equation whose homogeneous solution is given by Eq.

(A. 1). The polynomial (AA) is the characteristic equation associated with this linear

difference equation.
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The N equations representing the valid values of a", that satisfy Eq. (A.7) may

be expressed as the NxN matrix equation

      

'u(N-l) a(N) 11(0) ‘ “I ' u(N) ‘

a(N) r(N-l) u(l) as u(N+l)
. . . . = _ . . (A8)

_u(2N-2)u(2N-3) adv-1) _an e(zN-r)

Eq. (A.8) demonstrates that, with 2N complex data samples, it is possible to decouple

the h, and 2,, parameters. The complex polynomial coefficients a 1, - ~ - , a”, which

are functions of only the time-dependent components z, of the exponential model,

form a linear predictive relationship among the time samples.

The Prony procedure to fit N exponentials to 2N data samples may now be sum-

marized in three steps. First, the solution of Eq. (A.8) for the polynomial coefficients is

obtained. Second, the roots of the polynomial defined by Eq. (A.4) are calculated.

Finally, the damping a, and phase factor v, may be determined from the roots za

using the relationships

 

_ loglznl MH _1 A9

0,, - A0) z ( )

_ _ 1 -1 Irn(z,.)v,,- M) tan [Re(z,.)] . (A10)

To complete the Prony procedure, the roots computed in the second step are used to

construct the matrix elements of Eq. (A.2), which are solved for the N complex

parameters In, - - - , h”. The amplitude A, and initial phase 0,, may be determined

from each h, parameter with the relationships

A, = lhnl (All)

and.)
- -1

9" " m“ [R6020
 

radians . (A.12)

 

 



APPENDIX B

DERIVATION OF THE DYADIC GREEN’8

FUNCTION IN A SOURCE REGION

If the field point ‘P is inside the source region, illuminated in Figure B.l, the

integral Eq. (6.2) does not converge. In order to carry out the integration, a small

volume surrounding the field point should be excluded. The evaluation of the integral

will greatly depend on the shape of this excluded volume. Generally, we can express

the displacement field at 7 as

rm=pv quo-mflr'wsswm (13.1)

where i? c (7') is a correction term which should be added to the integral to yield a

correct value for the velocity field at 7’. The correction term fi’ " (7) is produced by the

stress density function fig (7) and the displacement density function 11C?) on the spher-

ical surface of AV, which is a differential spherical volume with a radius 1»: as shown

in Figure B.2.

To calculate the 7 c (i’), a coordinate system is chosen so that its origin coincides

with that of the spatial coordinates and so that 7,, (7) is paralleled to the polar axis.

Considering that 7:901) inside AV is uniform, we can then write

f... = if... . (3.2)
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By using the continuity equation ( v - 714(7) = - tropes) ), and defining

nmAS = lim IOO’Wmnecanexpressna’) as

840 Av

feq cos 0

rue) = —7— . (3.3)
Pa

The displacement field at the center of AV can be expressed in terms of a scalar poten-

tial field d>(7’) as i’ " (7’) = —Vd>(?). If AV is small enough, the quasi-static approxima-

tion can be used to evaluated (1) as

_ l ,. , ¢XP('I7‘;'A7')

M7)— (ozp, 5.1/v £40,) 41tlA?’| W (BA)

  

whiz ° A7”)
if,

410A? ’l

 

+IM®
AS

where A?=T’-‘P’ is the distance between the source point and the field point, and

AS is the surface of AV. It is evident that the first term of Eq. (B.4) goes to zero as

AV approaches zero. However, th can be shown to converge to a finite value as AV

approaches zero. This implies that V " C?) remains a finite value at the center of AV.

For simplicity, we will evaluate the term -Vd> for a spherical volume AV as follows

?‘®-_£lim 91 I” 'k flds’ s- nMInU 22 exP(-Jo€)COS . (3.)
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Figure B.l : A general configuration of a source region problem.

AV = 4?1l5 a:

an :Radius of sphere AV

 

Figure B.2: Evaluating the displacement density 110) by using a

differential spherical volume AV.



APPENDIX C

EVALUATION OF THE PRINCIPAL INTEGRATION

OF THE GREEN’8 FUNCTION

Using a strategy similar to the one described in Appendix B, we modify V, as a

sphere with the same volume centered at 7,, shown in Figure B.2. The radius of the

sphere is denoted by

 

3AV, "3

a, = 4n . ((2.1)

Considering the property of equality : V’OCPI‘P') = - VGW’) , Eq. (6.7) can be

rewritten as

 (C.2)
 

2 -°? - —r

G,” (3'7”): 21 ?'—, [exp( 1 a C? 3)] r

' (1) p, 3x, 3X, 41tIP-T’ ’l

p, q =1, 2, 3 .

Therefore, we are allowed to treat the point?=T, as the new origin with the transfor-

mation of coordinates. Eq. (C.2) then becomes

 

l a2 [apt-1K?)
—— , C.3

(02% qu’ax,’ 47"? " ] ( )
G‘P‘Cm ’r')=erxt(r')=

p,q=l,2,3 .
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In the spherical coordinates,

———.::,l-~lAtari—tim]livelier-J.
p,q=l,2,3 .

The principal value of the integration becomes

 

 

a. 2x x{xx

PV G , I?’ = d d J’J- as

it”??? W (Dz-”Poe“3,11% r2 ()

arm-1k: 7) l x

lfwi ]*7[‘~’if]

 

-73.

. fr—[exp(4’n: fl]}r2sin ode .

Carrying out the integration by parts, it becomes

O4 a

d exp (’Jka ' 7") '

PV G ’)dv‘ = lim 2— .

J. 54,011? (0po e-io {[r dr [ 41w H; (C 6)

21: xxx

-jdpj-E-2-"—sinedo

0 0 1'

  

2: x xx

+£d¢£ fipq-3-Ef-sin6d9

‘- F’

d exp(-Jko°fl

'£E[ 4.. ]”"}
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arm-1'13 ° 7’)

41tr

 

0.

O 0 d

Althoughtheequatronlrgb i rdr[

 

21: x xx

jd¢j[5m-3J—2¢-]sinede=o ; p.q=l,2,3,

o o r

and

2: x

xpxq - _4_fi . ..
dd)! r2 srnOdO- 35,, , p,q-l,2,3 .

Therefore, the Eq. (C.6) becomes

-6 4 d apt-j? WH}
= _H. - _E 2... 0

PV £0,541! (0po .131-r3{ 3 [r dr[ 4” a

-5pq . .
S 3029., [(1 + Jka ankxpwea..) - 1]

 

 

_y

where k, '7’ ,ggSkoan .

Jdr —-) no, it is readily verified that

(C.7)

(C.8)

(C.9)
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